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On the Crossing Numbers of the Joining of a Specific Graph on Six Vertices with the Discrete
Graph
Reprinted from: Symmetry 2020, 12, 135, doi:10.3390/sym12010135 . . . . . . . . . . . . . . . . . 1

Abdollah Alhevaz, Maryam Baghipur, Hilal Ahmad Ganie and Yilun Shang

Bounds for the Generalized Distance Eigenvalues of a Graph
Reprinted from: Symmetry 2019, 11, 1529, doi:10.3390/sym11121529 . . . . . . . . . . . . . . . . . 13
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ICM, 2016.

ix





Preface to ”Discrete Mathematics and Symmetry”

SYMMETRY AND GEOMETRY. One of the core concepts essential to understanding natural

phenomena and the dynamics of social systems is the concept of “relation”. Furthermore, scientists

rely on relational structures with high levels of symmetry because of their optimal behavior and

high performance. Human friendships, social and interconnection networks, traffic systems, chemical

structures, etc., can be expressed as relational structures. A mathematical model capturing the essence

of this situation is a combinatorial object exhibiting a high level of symmetry, and the underlying

mathematical discipline is algebraic combinatorics—the most vivid expression of the concept of

symmetry in discrete mathematics. The purpose of this Special Issue of the journal Symmetry is to

present some recent developments as well as possible future directions in algebraic combinatorics.

Special emphasis is given to the concept of symmetry in graphs, finite geometries, and designs.

Of interest are solutions of long-standing open problems in algebraic combinatorics, as well as

contributions opening up new research topics encompassing symmetry within the boundaries of

discrete mathematics but with the possibility of transcending these boundaries. Prof. Dr. Angel

Garrido, Guest Editor.

Angel Garrido

Special Issue Editor
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On the Crossing Numbers of the Joining of a Specific
Graph on Six Vertices with the Discrete Graph

Michal Staš

Faculty of Electrical Engineering and Informatics, Technical University of Košice, 042 00 Košice, Slovakia;
michal.stas@tuke.sk
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Abstract: In the paper, we extend known results concerning crossing numbers of join products of
small graphs of order six with discrete graphs. The crossing number of the join product G∗ + Dn

for the graph G∗ on six vertices consists of one vertex which is adjacent with three non-consecutive
vertices of the 5-cycle. The proofs were based on the idea of establishing minimum values of crossings
between two different subgraphs that cross the edges of the graph G∗ exactly once. These minimum
symmetrical values are described in the individual symmetric tables.

Keywords: graph; good drawing; crossing number; join product; cyclic permutation

1. Introduction

An investigation on the crossing number of graphs is a classical and very difficult problem. Garey
and Johnson [1] proved that this problem is NP-complete. Recall that the exact values of the crossing
numbers are known for only a few families of graphs. The purpose of this article is to extend the
known results concerning this topic. In this article, we use the definitions and notation of the crossing
numbers of graphs presented by Klešč in [2]. Kulli and Muddebihal [3] described the characterization
for all pairs of graphs which join product of a planar graph. In the paper, some parts of proofs are
also based on Kleitman’s result [4] on the crossing numbers for some complete bipartite graphs. More
precisely, he showed that

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, for m ≤ 6.

Again, by Kleitman’s result [4], the crossing numbers for the join of two different paths, the join of
two different cycles, and also for the join of path and cycle, were established in [2]. Further, the exact
values for crossing numbers of G + Dn and of G + Pn for all graphs G on less than five vertices were
determined in [5]. At present, the crossing numbers of the graphs G + Dn are known only for few
graphs G of order six in [6–9]. In all these cases, the graph G is usually connected and includes at least
one cycle.

The methods in the paper mostly use the combinatorial properties of cyclic permutations. For
the first time, the idea of configurations is converted from the family of subgraphs which do not cross
the edges of the graph G∗ of order six onto the family of subgraphs whose edges cross the edges of
G∗ just once. According to this algebraic topological approach, we can extend known results for the
crossing numbers of new graphs. Some of the ideas and methods were used for the first time in [10].
In [6,8,9], some parts of proofs were done with the help of software which is described in detail in [11].
It is important to recall that the methods presented in [5,7,12] do not suffice to determine the crossing
number of the graph G∗ + Dn. Also in this article, some parts of proofs can be simplified by utilizing
the work of the software that generates all cyclic permutations in [11]. Its C++ version is located
also on the website http://web.tuke.sk/fei-km/coga/, and the list with all short names of 120 cyclic
permutations of six elements have already been collected in Table 1 of [8].

Symmetry 2020, 12, 135; doi:10.3390/sym12010135 www.mdpi.com/journal/symmetry1
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2. Cyclic Permutations and Corresponding Configurations of Subgraphs

Let G∗ be the connected graph on six vertices consisting of one vertex which is adjacent with three
non-consecutive vertices of the 5-cycle. We consider the join product of the graph G∗ with the discrete
graph Dn on n vertices. It is not difficult to see that the graph G∗ + Dn consists of just one copy of the
graph G∗ and of n vertices t1, . . . , tn, where any vertex tj, j = 1, . . . , n, is adjacent to every vertex of
the graph G∗. Let Tj, j = 1, . . . , n, denote the subgraph which is uniquely induced by the six edges
incident with the fixed vertex tj. This means that the graph T1 ∪ · · · ∪ Tn is isomorphic with K6,n and

G∗ + Dn = G∗ ∪ K6,n = G∗ ∪
( n⋃

j=1

Tj
)

. (1)

In the paper, the definitions and notation of the cyclic permutations and of the corresponding
configurations of subgraphs for a good drawing D of the graph G∗ + Dn presented in [8] are used.
The rotation rotD(tj) of a vertex tj in the drawing D is the cyclic permutation that records the (cyclic)
counter-clockwise order in which the edges leave tj, see [10]. We use the notation (123456) if the
counterclockwise order of the edges incident with the vertex tj is tjv1, tjv2, tjv3, tjv4, tjv5, and tjv6.
Recall that a rotation is a cyclic permutation. Moreover, as we have already mentioned, we separate all
subgraphs Tj, j = 1, . . . , n, of the graph G∗+ Dn into three mutually-disjoint families depending on how
many times the edges of G∗ are crossed by the edges of the considered subgraph Tj in D. This means,
for j = 1, . . . , n, let RD = {Tj : crD(G∗, Tj) = 0} and SD = {Tj : crD(G∗, Tj) = 1}. The edges of G∗ are
crossed by each other subgraph Tj at least twice in D. For Tj ∈ RD ∪ SD, let Fj denote the subgraph
G∗ ∪ Tj, j ∈ {1, 2, . . . , n}, of G∗ + Dn, and let D(Fj) be its subdrawing induced by D.

If we would like to obtain an optimal drawing D of G∗ + Dn, then the set RD ∪ SD must be
nonempty provided by the arguments in Theorem 1. Thus, we only consider drawings of the graph G∗

for which there is a possibility of obtaining a subgraph Tj ∈ RD ∪ SD. Since the graph G∗ contains the
6-cycle as a subgraph (for brevity, we can write C6(G∗)), we have to assume only crossings between
possible subdrawings of the subgraph C6(G∗) and two remaining edges of G∗. Of course, the edges of
the cycle C6(G∗) can cross themselves in the considered subdrawings. The vertex notation of G∗ will
be substantiated later in all drawings in Figure 1.

First, assume a good drawing D of G∗ + Dn in which the edges of G∗ do not cross each other.
In this case, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1a. Clearly, the set RD is empty. Our aim is to list all possible rotations rotD(tj)

which can appear in D if the edges of G∗ are crossed by the edges of Tj just once. There is only one
possible subdrawing of Fj \ {v4} represented by the rotation (16532), which yields that there are
exactly five ways of obtaining the subdrawing of G ∪ Tj depending on which edge of the graph G∗

can be crossed by the edge tjv4. We denote these five possibilities by Ak, for k = 1, . . . , 5. For our
considerations over the number of crossings of G∗ + Dn, it does not play a role in which of the regions
is unbounded. So we can assume the drawings shown in Figure 2. Thus, the configurations A1, A2,
A3, A4, and A5 are represented by the cyclic permutations (165324), (165432), (146532), (165342),
and (164532), respectively. Of course, in a fixed drawing of the graph G∗ + Dn, some configurations
fromM = {A1,A2,A3,A4,A5} need not appear. We denote byMD the set of all configurations that
exist in the drawing D belonging to the setM.

2
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Figure 1. Six possible drawings of G∗ with no crossing among edges of C6(G∗). (a): the planar drawing
of G∗; (b): the drawing of G∗ with crD(G∗) = 1 and without crossing on edges of C6(G∗); (c): the
drawing of G∗ only with two crossings on edges of C6(G∗); (d): the drawing of G∗ with crD(G∗) = 2
and with one crossing on edges of C6(G∗); (e): the drawing of G∗ only with one crossing on edges of
C6(G∗); (f): the drawing of G∗ with crD(G∗) = 2 and with one crossing on edges of C6(G∗).

Figure 2. Drawings of five possible configurations fromM of the subgraph Fj.

Recall that we are able to extend the idea of establishing minimum values of crossings between two
different subgraphs onto the family of subgraphs which cross the edges of G∗ exactly once. Let X and
Y be the configurations fromMD. We denote by crD(X and Y) the number of crossings in D between
Ti and Tj for different Ti, Tj ∈ SD such that Fi and Fj have configurations X and Y , respectively.
Finally, let cr(X ,Y) = min{crD(X ,Y)} over all possible good drawings of G∗ + Dn with X ,Y ∈ MD.

3
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Our aim is to determine cr(X ,Y) for all such pairs X ,Y ∈ M. In particular, the configurationsA1 and
A2 are represented by the cyclic permutations (165324) and (165432), respectively. Since the minimum
number of interchanges of adjacent elements of (165324) required to produce cyclic permutation
(165432) is two, we need at least four interchanges of adjacent elements of (165432) to produce cyclic
permutation (165324) = (142356). (Let Tx and Ty be two different subgraphs represented by their
rot(tx) and rot(ty) of length m, m ≥ 3. If the minimum number of interchanges of adjacent elements of
rot(tx) required to produce rot(ty) is at most z, then crD(Tx, Ty) ≥ ⌊m

2
⌋⌊m−1

2
⌋− z. Details have been

worked out by Woodall [13].) So any subgraph Tj with the configuration A2 of Fj crosses the edges
of Ti with the configuration A1 of Fi at least four times; that is, cr(A1,A2) ≥ 4. The same reasoning
gives cr(A1,A3) ≥ 5, cr(A1,A4) ≥ 5, cr(A1,A5) ≥ 4, cr(A2,A3) ≥ 4, cr(A2,A4) ≥ 5, cr(A2,A5) ≥ 5,
cr(A3,A4) ≥ 4, cr(A3,A5) ≥ 5, and cr(A4,A5) ≥ 4. Clearly, also cr(Ai,Ai) ≥ 6 for any i = 1, . . . , 5.
All resulting lower bounds for the number of crossings of two configurations fromM are summarized
in the symmetric Table 1 (here, Ak and Al are configurations of the subgraphs Fi and Fj, where
k, l ∈ {1, 2, 3, 4, 5}).

Table 1. The necessary number of crossings between Ti and Tj for the configurations Ak, Al .

- A1 A2 A3 A4 A5

A1 6 4 5 5 4
A2 4 6 4 5 5
A3 5 4 6 4 5
A4 5 5 4 6 4
A5 4 5 5 4 6

Assume a good drawing D of the graph G∗ + Dn with just one crossing among edges of the graph
G∗ (in which there is a possibility of obtaining of subgraph Tj ∈ RD ∪ SD). At first, without loss of
generality, we can consider the drawing of G∗ with the vertex notation like that in Figure 1b. Of course,
the set RD can be nonempty, but our aim will be also to list all possible rotations rotD(tj) which can
appear in D if the edges of G∗ are crossed by the edges of Tj just once. Since the edges v1v2, v2v3, v1v6,
and v5v6 of G∗ can be crossed by the edges tjv3, tjv1, tjv5, and tjv1, respectively, these four ways under
our consideration can be denoted by Bk, for k = 1, 2, 3, 4. Based on the aforementioned arguments,
we assume the drawings shown in Figure 3.

Thus, the configurations B1, B2, B3, and B4 are uniquely represented by the cyclic permutations
(165423), (126543), (156432), and (154326), respectively. Because some configurations from
N = {B1,B2,B3,B4}may not appear in a fixed drawing of G∗ + Dn, we denote by ND the subset of
N consisting of all configurations that exist in the drawing D. Further, due to the properties of the
cyclic rotations, we can easily verify that cr(Bi,Bj) ≥ 4 for any i, j ∈ {1, 2, 3, 4}, i 	= j. (Let us note that
this idea was used for an establishing the values in Table 1)

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1e. In this case, the set RD is also empty. Hence, our aim is to list again all possible
rotations rotD(tj) which can appear in D if Tj ∈ SD. Since there is only one subdrawing of Fj \ {v3}
represented by the rotation (16542), there are four ways to obtain the subdrawing of Fj depending
on which edge of G∗ is crossed by the edge tjv3. These four possibilities under our consideration
are denoted by Ek, for k = 1, 2, 3, 4. Again, based on the aforementioned arguments, we assume
the drawings shown in Figure 4.

4



Symmetry 2020, 12, 135

Figure 3. Drawings of four possible configurations from N of the subgraph Fj.

Figure 4. Drawings of four possible configurations from O of the subgraph Fj.

Thus, the configurations E1, E2, E3, and E4 are represented by the cyclic permutations (165432),
(163542), (165342), and (136542), respectively. Again, we denote byOD the subset ofO = {E1, E2, E3, E4}
consisting of all configurations that exist in the drawing D. Further, due to the properties of the cyclic
rotations, all lower-bounds of number of crossings of two configurations from O can be summarized
in the symmetric Table 2 (here, Ek and El are configurations of the subgraphs Fi and Fj, where
k, l ∈ {1, 2, 3, 4}).

5
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Table 2. The necessary number of crossings between Ti and Tj for the configurations Ek, El .

- E1 E2 E3 E4

E1 6 4 5 4
E2 4 6 5 5
E3 5 5 6 4
E4 4 5 4 6

Finally, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1f. In this case, the set RD is also empty. So our aim will be to list again all possible
rotations rotD(tj) which can appear in D if Tj ∈ SD. Since there is only one subdrawing of Fj \ {v2}
represented by the rotation (16543), there are three ways to obtain the subdrawing of Fj depending
on which edge of G∗ is crossed by the edge tjv2. These three possibilities under our consideration are
denoted byFk, for k = 1, 2, 3. Again, based on the aforementioned arguments, we assume the drawings
shown in Figure 5.

Figure 5. Drawings of three possible configurations from P of the subgraph Fj.

Thus, the configurations F1, F2, and F3 are represented by the cyclic permutations (165432),
(162543), and (126543), respectively. Again, we denote by PD the subset of P = {F1,F2,F3} consisting
of all configurations that exist in the drawing D. Further, due to the properties of the cyclic rotations,
all lower-bounds of number of crossings of two configurations from P can be summarized in the
symmetric Table 3 (here, Fk and Fl are configurations of the subgraphs Fi and Fj, where k, l ∈ {1, 2, 3}).

Table 3. The necessary number of crossings between Ti and Tj for the configurations Fk and Fl .

- F1 F2 F3

F1 6 4 5
F2 4 6 5
F3 5 5 6

3. The Crossing Number of G∗ + Dn

Recall that two vertices ti and tj of G∗ + Dn are antipodal in a drawing D of G∗ + Dn if the
subgraphs Ti and Tj do not cross. A drawing is antipodal-free if it has no antipodal vertices. For easier
and more accurate labeling in the proofs of assertions, let us define notation of regions in some
subdrawings of G∗ + Dn. The unique drawing of G∗ as shown in Figure 1a contains four different
regions. Let us denote these four regions by ω1,2,3,4, ω1,4,5,6, ω3,4,5, and ω1,2,3,5,6 depending on which
of vertices are located on the boundary of the corresponding region.

Lemma 1. Let D be a good and antipodal-free drawing of G∗ + Dn, for n > 3, with the drawing of G∗ with the
vertex notation like that in Figure 1a. If Tu, Tv, Tt ∈ SD are three different subgraphs such that Fu, Fv, and Ft

have three different configurations from the set {Ai,Aj,Ak} ⊆ MD with i + 2 ≡ j + 1 ≡ k (mod 5), then

crD(G∗ ∪ Tu ∪ Tv ∪ Tt, Tm) ≥ 6 for any Tm 	∈ SD.

6
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Proof of Lemma 1. Let us assume the configurations A1 of Fu, A2 of Fv, and A3 of Ft. It is obvious
that crD(Tu ∪ Tv ∪ Tt, Tm) ≥ 3 holds for any subgraph Tm, m 	= u, v, t. Further, if crD(G∗, Tm) > 2,
then we obtain the desired result crD(G∗ ∪ Tu ∪ Tv ∪ Tt, Tm) ≥ 3 + 3 = 6. To finish the proof, let us
suppose that there is a subgraph Tm 	∈ SD such that Tm crosses exactly once the edges of each subgraph
Tu, Tv, and Tt, and let also consider crD(G∗, Tm) = 2. As crD(Tu, Tm) = 1, the vertex tm must be
placed in the quadrangular region with four vertices of G∗ on its boundary; that is, tm ∈ ω1,4,5,6.
Similarly, the assumption crD(Tt, Tm) = 1 enforces that tm ∈ ω1,2,3,4. Since the vertex tm cannot be
placed simultaneously in both regions, we obtain a contradiction. The proof proceeds in the similar
way also for the remaining possible cases of the configurations of subgraphs Fu, Fv, and Ft, and the
proof is done.

Now we are able to prove the main result of the article. We can calculate the exact values of
crossing numbers for small graphs using an algorithm located on a website http://crossings.uos.de/.
It uses an ILP formulation based on Kuratowski subgraphs. The system also generates verifiable
formal proofs like those described in [14]. Unfortunately, the capacity of this system is limited.

Lemma 2. cr(G∗ + D1) = 1 and cr(G∗ + D2) = 3.

Theorem 1. cr(G∗ + Dn) = 6
⌊

n
2

⌋⌊
n−1

2

⌋
+ n +

⌊
n
2

⌋
for n ≥ 1.

Proof of Theorem 1. Figure 6 offers the drawing of G∗ + Dn with exactly 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings. Thus, cr(G∗ + Dn) ≤ 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋
. We prove the reverse inequality by induction

on n. By Lemma 2, the result is true for n = 1 and n = 2. Now suppose that, for some n ≥ 3, there is
a drawing D with

crD(G∗ + Dn) < 6
⌊n

2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
(2)

and that
cr(G∗ + Dm) ≥ 6

⌊m
2

⌋⌊m− 1
2

⌋
+ m +

⌊m
2

⌋
for any integer m < n. (3)

Figure 6. The good drawing of G∗ + Dn with 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings.

Let us first show that the considered drawing D must be antipodal-free. For a contradiction,
suppose, without loss of generality, that crD(Tn−1, Tn) = 0. If at least one of Tn−1 and Tn, say Tn,
does not cross G∗, it is not difficult to verify in Figure 1 that Tn−1 must cross G∗ ∪ Tn at least trice;
that is, crD(G∗, Tn−1 ∪ Tn) ≥ 3. From [4], we already know that cr(K6,3) = 6, which yields that the
edges of the subgraph Tn−1 ∪ Tn are crossed by any Tk, k = 1, 2, . . . , n− 2, at least six times. So, for
the number of crossings in D we have:

crD(G∗ + Dn) = crD (G∗ + Dn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, Tn−1 ∪ Tn) + crD(G∗, Tn−1 ∪ Tn)

7
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≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ n− 2 +

⌊n− 2
2

⌋
+ 6(n− 2) + 3 = 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

This contradiction with the assumption (2) confirms that D is antipodal-free. Moreover, if r = |RD|
and s = |SD|, the assumption (3) together with cr(K6,n) = 6

⌊ n
2
⌋⌊ n−1

2
⌋

imply that, in D, if r = 0, then
there are at least

⌈ n
2
⌉
+ 1 subgraphs Tj for which the edges of G∗ are crossed just once by them.

More precisely:

crD(G∗) + crD(G∗, K6,n) ≤ crD(G∗) + 0r + 1s + 2(n− r− s) < n +
⌊n

2

⌋
;

that is,
s + 2(n− r− s) < n +

⌊n
2

⌋
. (4)

This enforces that 2r + s ≥ n− ⌊ n
2
⌋
+ 1, and if r = 0, then s ≥ n− ⌊ n

2
⌋
+ 1 =

⌈ n
2
⌉
+ 1. Now,

for Tj ∈ RD ∪ SD, we discuss the existence of possible configurations of subgraphs Fj = G∗ ∪ Tj in D.
Case 1: crD(G∗) = 0. Without loss of generality, we can consider the drawing of G∗ with the

vertex notation like that in Figure 1a. It is obvious that the set RD is empty; that is, r = 0. Thus, we deal
with only the configurations belonging to the nonempty setMD and we discuss over all cardinalities
of the setMD in the following subcases:

i. |MD| ≥ 3. We consider two subcases. Let us first assume that {Ai,Aj,Ak} ⊆ MD with
i + 2 ≡ j + 1 ≡ k (mod 5). Without lost of generality, let us consider three different
subgraphs Tn−2, Tn−1, Tn ∈ SD such that Fn−2, Fn−1 and Fn have configurations Ai, Aj,
and Ak, respectively. Then, crD(Tn−2 ∪ Tn−1 ∪ Tn, Tm) ≥ 14 holds for any Tm ∈ SD with
m 	= n− 2, n− 1, n by summing the values in all columns in the considered three rows of Table 1.
Moreover, crD(G∗ ∪Tn−2∪Tn−1∪Tn, Tm) ≥ 6 is fulfilling for any subgraph Tm 	∈ SD by Lemma 1.
crD(Tn−2 ∪ Tn−1 ∪ Tn) ≥ 13 holds by summing of three corresponding values of Table 1 between
the considered configurations Ai, Aj, and Ak, by fixing the subgraph G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn,

crD(G∗+ Dn) = crD(K6,n−3)+ crD(K6,n−3, G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn)+ crD(G∗ ∪ Tn−2 ∪ Tn−1 ∪ Tn)

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 15(s− 3) + 6(n− s) + 13 + 3 = 6

⌊n− 3
2

⌋⌊n− 4
2

⌋
+ 6n + 9s− 29

≥ 6
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 6n + 9

(⌈n
2

⌉
+ 1
)
− 29 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, let us assume thatMD = {Ai,Aj,Ak} with i + 1 ≡ j (mod 5), j + 1 	≡ k (mod 5),
and k + 1 	≡ i (mod 5). Without lost of generality, let us consider two different subgraphs
Tn−1, Tn ∈ SD such that Fn−1 and Fn have mentioned configurations Ai and Aj, respectively.
Then, crD(G∗ ∪ Tn−1 ∪ Tn, Tm) ≥ 1 + 10 = 11 holds for any Tm ∈ SD with m 	= n− 1, n also, by
summing the values in Table 1. Hence, by fixing the subgraph G∗ ∪ Tn−1 ∪ Tn,

crD(G∗ + Dn) = crD(K6,n−2) + crD(K6,n−2, G∗ ∪ Tn−1 ∪ Tn) + crD(G∗ ∪ Tn−1 ∪ Tn)

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 11(s− 2) + 4(n− s) + 4 + 2 = 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + 7s− 16

≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n + 7

(⌈n
2

⌉
+ 1
)
− 16 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. |MD| = 2; that is,MD = {Ai,Aj} for some i, j ∈ {1, . . . , 5} with i 	= j. Without lost of generality,
let us consider two different subgraphs Tn−1, Tn ∈ SD such that Fn−1 and Fn have mentioned
configurations Ai and Aj, respectively. Then, crD(G∗ ∪ Tn−1 ∪ Tn, Tm) ≥ 1 + 10 = 11 holds for
any Tm ∈ SD with m 	= n− 1, n also by Table 1. Thus, by fixing the subgraph G∗ ∪ Tn−1 ∪ Tn, we
are able to use the same inequalities as in the previous subcase.

8
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iii. |MD| = 1; that is, MD = {Aj} for only one j ∈ {1, . . . , 5}. Without lost of generality, let us
assume that Tn ∈ SD with the configuration Aj ∈ MD of the subgraph Fn. As MD = {Aj},
we have crD(G∗ ∪ Tn, Tk) ≥ 1 + 6 = 7 for any Tk ∈ SD, k 	= n provided that rotD(tn) = rotD(tk),
for more see [13]. Hence, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) = crD(K6,n−1) + crD(K6,n−1, G∗ ∪ Tn) + crD(G∗ ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 7(s− 1) + 3(n− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 4s− 6

≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3n + 4

(⌈n
2

⌉
+ 1
)
− 6 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 2: crD(G∗) = 1 with crD(C6(G∗)) = 0. At first, without loss of generality, we can consider
the drawing of G∗ with the vertex notation like that in Figure 1b. Since the set RD can be nonempty,
two possible subcases may occur:

i. Let RD be the nonempty set; that is, there is a subgraph Ti ∈ RD. Now, for a Ti ∈ RD, the reader
can easily see that the subgraph Fi = G∗ ∪ Ti is uniquely represented by rotD(ti) = (165432),
and crD(Ti, Tj) ≥ 6 for any Tj ∈ RD with j 	= i provided that rotD(ti) = rotD(tj); for more
see [13]. Moreover, it is not difficult to verify by a discussion over all possible drawings D that
crD(G∗ ∪ Ti, Tk) ≥ 5 holds for any subgraph Tk ∈ SD, and crD(G∗ ∪ Ti, Tk) ≥ 4 is also fulfilling
for any subgraph Tk 	∈ RD ∪ SD. Thus, by fixing the subgraph G∗ ∪ Ti,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(r− 1) + 5s + 4(n− r− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + (2r + s)− 5 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(
n−

⌊n
2

⌋
+ 1
)
− 5 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. Let RD be the empty set; that is, each subgraph Tj crosses the edges of G∗ at least once in D. Thus,
we deal with the configurations belonging to the nonempty set ND. Let us consider a subgraph
Tj ∈ SD with the configuration Bi ∈ ND of Fj, where i ∈ {1, 2, 3, 4}. Then, the lower-bounds of
number of crossings of two configurations from N confirm that crD(G∗ ∪ Tj, Tk) ≥ 1 + 4 = 5
holds for any Tk ∈ SD, k 	= j. Moreover, one can also easily verify over all possible drawings
D that crD(G∗ ∪ Tj, Tk) ≥ 4 is true for any subgraph Tk 	∈ SD. Hence, by fixing the subgraph
G∗ ∪ Tj,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + s− 3 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1e. It is obvious that the set RD is empty; that is, the set SD cannot be empty. Thus,
we deal with the configurations belonging to the nonempty set OD. Note that the lower-bounds of
number of crossings of two configurations from O were already established in Table 2. Since there is
a possibility to find a subdrawing of G∗ ∪ Tj ∪ Tk, in which crD(G∗ ∪ Tj, Tk) = 3 with Tj ∈ SD and
Tk 	∈ SD, we discuss four following subcases:

i. E4 ∈ OD. Without lost of generality, let us assume that Tn ∈ SD with the configuration E4 ∈ OD
of Fn. Only for this subcase, one can easily verify over all possible drawings D for which
crD(G∗ ∪ Tn, Tk) ≥ 4 is true for any subgraph Tk 	∈ SD. Thus, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
9
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+4n + s− 3 ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

ii. E4 	∈ OD and E3 ∈ OD. Without lost of generality, let us assume that Tn ∈ SD with the
configuration E3 ∈ OD of Fn. In this subcase, crD(G∗ ∪ Tn, Tk) ≥ 1 + 5 = 6 holds for any
subgraph Tk ∈ SD, k 	= n by the remaining values in the third row of Table 2. Hence, by fixing
the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 6(s− 1) + 3(n− s) + 1 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n + 3s− 4 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 3

(⌈n
2

⌉
+ 1
)
− 4 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

iii. OD = {E1, E2}. Without lost of generality, let us consider two different subgraphs Tn−1, Tn ∈ SD
such that Fn−1 and Fn have mentioned configurations E1 and E2, respectively. Then, crD(G∗ ∪
Tn−1 ∪ Tn, Tk) ≥ 1 + 10 = 11 holds for any Tk ∈ SD with k 	= n− 1, n also by Table 2. Thus, by
fixing the subgraph G∗ ∪ Tn−1 ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 11(s− 2) + 4(n− s) + 4 + 2 = 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + 7s− 16 ≥ 6

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + 7

(⌈n
2

⌉
+ 1
)
− 16 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

iv. OD = {Ei} for only one i ∈ {1, 2}. Without lost of generality, let us assume that Tn ∈ SD with
the configuration E1 of Fn. In this subcase, crD(G∗ ∪ Tn, Tk) ≥ 1 + 6 = 7 holds for any Tk ∈ SD,
k 	= n provided that rotD(tn) = rotD(tk). Hence, by fixing the subgraph G∗ ∪ Tn,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 7(s− 1) + 3(n− s) + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+3n + 4s− 6 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 3n + 4

(⌈n
2

⌉
+ 1
)
− 6 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

Case 3: crD(G∗) = 2 with crD(C6(G∗)) = 0. At first, without loss of generality, we can consider
the drawing of G∗ with the vertex notation like that in Figure 1c. It is obvious that the set RD is empty,
that is, the set SD cannot be empty. Our aim is to list again all possible rotations rotD(tj) which can
appear in D if a subgraph Tj ∈ SD. Since there is only one subdrawing of Fj \ {v1} represented by
the rotation (26543), there are three ways to obtain the subdrawing of Fj depending on which edge
of G∗ is crossed by the edge tjv1. These three possible ways under our consideration can be denoted
by Ck, for k = 1, 2, 3. Based on the aforementioned arguments, we assume the drawings shown in
Figure 7.

Figure 7. Drawings of three possible configurations of the subgraph Fj.

10
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Thus the configurations C1, C2, and C3 are represented by the cyclic permutations (132654),
(143265), and (165432), respectively. Further, due to the properties of the cyclic rotations we can easily
verify that cr(Ci, Cj) ≥ 4 for any i, j ∈ {1, 2, 3}. Moreover, one can also easily verify over all possible
drawings D that crD(G∗ ∪ Tj, Tk) ≥ 4 holds for any subgraph Tk 	∈ SD, where Tj ∈ SD with some
configuration Ci of Fj. As there is a Tj ∈ SD, by fixing the subgraph G∗ ∪ Tj,

crD(G∗ + Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 5(s− 1) + 4(n− s) + 2 + 1 = 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+4n + s− 2 ≥ 6

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 2 ≥ 6

⌊n
2

⌋⌊n− 1
2

⌋
+ n +

⌊n
2

⌋
.

In addition, without loss of generality, we can consider the drawing of G∗ with the vertex notation
like that in Figure 1d. In this case, by applying the same process, we obtain two possible forms of
rotation rotD(tj) for Tj ∈ SD. Namely, the rotations (165423) and (165432) if the edge tjv2 crosses
either the edge v3v4 or the edge v3v5 of G∗, respectively. Further, they satisfy also the same properties
like in the previous subcase, i.e., the same lower bounds of numbers of crossings on the edges of the
subgraph G∗ ∪ Tj by any Tk, k 	= j. Hence, we are able to use the same fixing of the subgraph G∗ ∪ Tj

for obtaining a contradiction with the number of crossings in D.
Finally, without loss of generality, we can consider the drawing of G∗ with the vertex notation

like that in Figure 1f. In this case, the set RD is empty; that is, the set SD cannot be empty. Thus, we
can deal with the configurations belonging to the nonempty set PD. Recall that the lower-bounds of
number of crossings of two configurations from P were already established in Table 3. Further, we can
apply the same idea and also the same arguments as for the configurations Ei ∈ OD, with i = 1, 2, 3,
in the subcases ii.–iv. of Case 2.

Case 4: crD(G∗) ≥ 1 with crD(C6(G∗)) ≥ 1. For all possible subdrawings of the graph G∗ with at
least one crossing among edges of C6(G∗), and also with the possibility of obtaining a subgraph Tj

that crosses the edges of G∗ at most once, one of the ideas of the previous subcases can be applied.
We have shown, in all cases, that there is no good drawing D of the graph G∗ + Dn with fewer

than 6
⌊ n

2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋

crossings. This completes the proof of the main theorem.

4. Conclusions

Determining the crossing number of a graph G + Dn is an essential step in establishing the so far
unknown values of the numbers of crossings of graphs G + Pn and G + Cn, where Pn and Cn are the
path and the cycle on n vertices, respectively. Using the result in Theorem 1 and the optimal drawing
of G∗ + Dn in Figure 6, we are able to postulate that cr(G∗ + Pn) and cr(G∗ + Cn) are at least one more
than cr(G∗ + Dn) = 6

⌊ n
2
⌋⌊ n−1

2
⌋
+ n +

⌊ n
2
⌋
.
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Abstract: Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G)

be the distance matrix, DL(G) be the distance Laplacian, DQ(G) be the distance signless Laplacian,
and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote
by Dα(G) the generalized distance matrix, i.e., Dα(G) = αTr(G) + (1− α)D(G), where α ∈ [0, 1].
In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G,
making use of some graph parameters like the order n, the diameter, the minimum degree, the second
minimum degree, the transmission degree, the second transmission degree and the parameter α,
improving some bounds recently given in the literature. We also characterize the extremal graphs
attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds
recently given in the literature for the case of distance matrix and distance signless Laplacian matrix.
We also obtain new bounds for the k-th generalized distance eigenvalue.
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1. Introduction

We will consider simple finite graphs in this paper. A (simple) graph is denoted by G =

(V(G), E(G)), where V(G) = {v1, v2, . . . , vn} represents its vertex set and E(G) represents its edge
set. The order of G is the number of vertices represented by n = |V(G)| and its size is the number of
edges represented by m = |E(G)|. The neighborhood N(v) of a vertex v consists of the set of vertices
that are adjacent to it. The degree dG(v) or simply d(v) is the number of vertices in N(v). In a regular
graph, all its vertices have the same degree. Let duv be the distance between two vertices u, v ∈ V(G).
It is defined as the length of a shortest path. D(G) = (duv)u,v∈V(G) is called the distance matrix of G.
G is the complement of the graph G. It has the same vertex set with G but its edge set consists of the
edges not present in G. Moreover, the complete graph Kn, the complete bipartite graph Ks,t, the path
Pn, and the cycle Cn are defined in the conventional way.

The transmission TrG(v) of a vertex v is the sum of the distances from v to all other vertices in G,
i.e., TrG(v) = ∑

u∈V(G)
duv. A graph G is said to be k-transmission regular if TrG(v) = k, for each v ∈ V(G).

The transmission (also called the Wiener index) of a graph G, denoted by W(G), is the sum of distances
between all unordered pairs of vertices in G. We have W(G) = 1

2 ∑
v∈V(G)

TrG(v).

Symmetry 2019, 11, 1529; doi:10.3390/sym11121529 www.mdpi.com/journal/symmetry13



Symmetry 2019, 11, 1529

For a vertex vi ∈ V(G), TrG(vi) is also referred to as the transmission degree, or shortly Tri.
The sequence of transmission degrees {Tr1, Tr2, . . . , Trn} is the transmission degree sequence of the graph.

Ti =
n

∑
j=1

dijTrj is called the second transmission degree of vi.

Distance matrix and its spectrum has been studied extensively in the literature, see e.g., [6].
Compared to adjacency matrix, distance matrix encapsulates more information such as a wide range
of walk-related parameters, which can be applicable in thermodynamic calculations and have some
biological applications in terms of molecular characterization. It is known that embedding theory and
molecular stability have to do with graph distance matrix.

Almost all results obtained for the distance matrix of trees were extended to the case of weighted
trees by Bapat [12] and Bapat et al. [13]. Not only different classes of graphs but the definition of
distance matrix has been extended. Indeed, Bapat et al. [14] generalized the concept of the distance
matrix to that of q-analogue of the distance matrix. Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal
matrix of vertex transmissions of G. The works [7–9] introduced the distance Laplacian and the
distance signless Laplacian matrix for a connected graph G. The matrix DL(G) = Tr(G)− D(G) is
referred to as the distance Laplacian matrix of G, while the matrix DQ(G) = Tr(G) + D(G) is the distance
signless Laplacian matrix of G. Spectral properties of D(G) and DQ(G) have been extensively studied
since then.

Let A be the adjacency matrix and Deg(G) = diag(d1, d2, . . . , dn) be the degree matrix G. Q(G) =

Deg(G) + A is the signless Laplacian matrix of G. This matrix has been put forth by Cvetkovic in [16]
and since then studied extensively by many researchers. For detailed coverage of this research
see [17–20] and the references therein. To digging out the contribution of these summands in Q(G),
Nikiforov in [33] proposed to study the α-adjacency matrix Aα(G) of a graph G given by Aα(G) =

α Deg(G) + (1− α)A, where α ∈ [0, 1]. We see that Aα(G) is a convex combination of the matrices
A and Deg(G). Since A0(G) = A and 2A1/2(G) = Q(G), the matrix Aα(G) can underpin a unified
theory of A and Q(G). Motivated by [33], Cui et al. [15] introduced the convex combinations Dα(G) of
Tr(G) and D(G). The matrix Dα(G) = αTr(G) + (1− α)D(G), 0 ≤ α ≤ 1, is called generalized distance
matrix of G. Therefore the generalized distance matrix can be applied to the study of other less general
constructions. This not only gives new results for several matrices simultaneously, but also serves the
unification of known theorems.

Since the matrix Dα(G) is real and symmetric, its eigenvalues can be arranged as: ∂1 ≥ ∂2 ≥
· · · ≥ ∂n, where ∂1 is referred to as the generalized distance spectral radius of G. For simplicity, ∂(G) is the
shorthand for ∂1(G). By the Perron-Frobenius theorem, ∂(G) is unique and it has a unique generalized
distance Perron vector, X, which is positive. This is due to the fact that Dα(G) is non-negative and
irreducible.

A column vector X = (x1, x2, . . . , xn)T ∈ Rn is a function defined on V(G). We have X(vi) = xi
for all i. Moreover,

XT Dα(G)X = α
n

∑
i=1

Tr(vi)x2
i + 2(1− α) ∑

1≤i<j≤n
d(vi, vj)xixj,

and λ has an eigenvector X if and only if X 	= 0 and

λxv = αTr(vi)xi + (1− α)
n

∑
j=1

d(vi, vj)xj.

They are often referred to as the (λ, x)-eigenequations of G. If X ∈ Rn has at least one non-negative
element and it is normalized, then in the light of the Rayleigh’s principle, it can be seen that

∂(G) ≥ XT Dα(G)X,
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where the equality holds if and only if X becomes the generalized distance Perron vector of G.
Spectral graph theory has been an active research field for the past decades, in which for

example distance signless Laplacian spectrum has been intensively explored. The work [41] identified
the graphs with minimum distance signless Laplacian spectral radius among some special classes
of graphs. The unique graphs with minimum and second-minimum distance signless Laplacian
spectral radii among all bicyclic graphs of the same order are identified in [40]. In [24], the authors
show some bounding inequalities for distance signless Laplacian spectral radius by utilizing vertex
transmissions. In [26], chromatic number is used to derive a lower bound for distance signless
Laplacian spectral radius. The distance signless Laplacian spectrum has varies connections with
other interesting graph topics such as chromatic number [10]; domination and independence
numbers [21], Estrada indices [4,5,22,23,34–36,38], cospectrality [11,42], multiplicity of the distance
(signless) Laplacian eigenvalues [25,29,30] and many more, see e.g., [1–3,27,28,32].

The rest of the paper is organized as follows. In Section 2, we obtain some bounds for the
generalized distance spectral radius of graphs using the diameter, the order, the minimum degree,
the second minimum degree, the transmission degree, the second transmission degree and the
parameter α. We then characterize the extremal graphs. In Section 3, we are devoted to derive
new upper and lower bounds for the k-th generalized distance eigenvalue of the graph G using
signless Laplacian eigenvalues and the α-adjacency eigenvalues.

2. Bounds on Generalized Distance Spectral Radius

In this section, we obtain bounds for the generalized distance spectral radius, in terms of the
diameter, the order, the minimum degree, the second minimum degree, the transmission degree,
the second transmission degree and the parameter α.

The following lemma can be found in [31].

Lemma 1. If A is an n× n non-negative matrix with the spectral radius λ(A) and row sums r1, r2, . . . , rn, then

min
1≤i≤n

ri ≤ λ(A) ≤ max
1≤i≤n

ri.

Moreover, if A is irreducible, then both of the equalities holds if and only if the row sums of A are all equal.

The following gives an upper bound for ∂(G), in terms of the order n, the diameter d and the
minimum degree δ of the graph G.

Theorem 1. Let G be a connected graph of order n having diameter d and minimum degree δ. Then

∂(G) ≤ dn− d(d− 1)
2

− 1− δ(d− 1), (1)

with equality if and only if G is a regular graph with diameter ≤ 2.

Proof. First, it is easily seen that,

Trp =
n

∑
j=1

djp ≤ dp + 2 + 3 + · · ·+ (d− 1) + d(n− 1− dp − (d− 2))

= dn− d(d− 1)
2

− 1− dp(d− 1), for all p = 1, 2, . . . , n. (2)
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Let Trmax = max{TrG(vi) : 1 ≤ i ≤ n}. For a matrix A denote λ(A) its largest eigenvalue.
We have

∂(G) = λ
(

α(Tr(G)) + (1− α)D(G)
)

≤ αλ
(
Tr(G)

)
+ (1− α)λ

(
D(G)

)
≤ αTrmax + (1− α)Trmax = Trmax.

Applying Equation (2), the inequality follows.
Suppose that G is regular graph with diameter less than or equal to two, then all coordinates of the

generalized distance Perron vector of G are equal. If d = 1, then G ∼= Kn and ∂ = n− 1. Thus equality
in (1) holds. If d = 2, we get ∂(G) = di + 2(n− 1− di) = 2n− 2− di, and the equality in (1) holds.
Note that the equality in (1) holds if and only if all coordinates the generalized distance Perron vector
are equal, and hence Dα(G) has equal row sums.

Conversely, suppose that equality in (1) holds. This will force inequalities above to become
equations. Then we get Tr1 = Tr2 = · · · = Trn = Trmax, hence all the transmissions of the vertices are
equal and so G is a transmission regular graph. If d ≥ 3, then from the above argument, for every
vertex vi, there is exactly one vertex vj with dG(vi, vj) = 2, and thus d = 3, and for a vertex vs of
eccentricity 2,

∂(G)xs = dsxs + 2(n− 1− ds)xs =

(
3n− 3(3− 1)

2
− 1− ds(3− 1)

)
xs,

implying that ds = n − 2, giving that G = P4. But the Dα(P4) is not transmission regular graph.
Therefore, G turns out to be regular and its diameter can not be greater than 2.

Taking α = 1
2 in Theorem 1, we immediately get the following bound for the distance signless

Laplacian spectral radius ρQ
1 (G), which was proved recently in [27].

Corollary 1. ([27], Theorem 2.6) Let G be a connected graph of order n ≥ 3, with minimum degree δ1,
second minimum degree δ2 and diameter d. Then

ρQ
1 (G) ≤ 2dn− d(d− 1)− 2− (δ1 + δ2)(d− 1),

with equality if and only if G is (transmission) regular graph of diameter d ≤ 2.

Proof. As 2D 1
2
(G) = DQ(G), letting δ = δ1 in Theorem 1, we have

ρQ
1 (G) = 2∂(G) ≤ 2dn− d(d− 1)− 2− 2δ1(d− 1) ≤ 2dn− d(d− 1)− 2− (δ1 + δ2)(d− 1),

and the result follows.

Next, the generalized distance spectral radius ∂(G) of a connected graph and its complement is
characterized in terms of a Nordhaus-Gaddum type inequality.

Corollary 2. Let G be a graph of order n, such that both G and its complement G are connected. Let δ and Δ be
the minimum degree and the maximum degree of G, respectively. Then

∂(G) + ∂(G) ≤ 2nk− (t− 1)(t + n + δ− Δ− 1)− 2,

where k = max{d, d}, t = min{d, d} and d, d are the diameters of G and G, respectively.
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Proof. Let δ denote the minimum degree of G. Then δ = n− 1− Δ, and by Theorem 1, we have

∂(G) + ∂(G) ≤ dn− d(d− 1)
2

− 1− δ(d− 1) + d̄n− d̄(d̄− 1)
2

− 1− δ̄(d̄− 1)

= n(d + d̄)− 1
2
(d(d− 1) + d̄(d̄− 1))− 2− δ(d− 1)− (n− 1− Δ)(d̄− 1)

≤ 2nk− (t− 1)(t + n + δ− Δ− 1)− 2.

The following gives an upper bound for ∂(G), in terms of the order n, the minimum degree δ = δ1

and the second minimum degree δ2 of the graph G.

Theorem 2. Let G be a connected graph of order n having minimum degree δ1 and second minimum degree δ2.
Then for s = δ1 + δ2, we have

∂(G) ≤ αΨ +
√

α2Ψ2 + 4(1− 2α)Θ
2

, (3)

where Θ =
(

dn− d(d−1)
2 − 1− δ1(d− 1)

) (
dn− d(d−1)

2 − 1− δ2(d− 1)
)

and Ψ = 2dn− d(d− 1)− 2−
s(d− 1). Also equality holds if and only if G is a regular graph with diameter at most two.

Proof. Let X = (x1, x2, . . . , xn)T be the generalized distance Perron vector of graph G and let xi =

max{xk|k = 1, 2, . . . , n} and xj = maxk 	=i{xk|k = 1, 2, . . . , n}. From the ith equation of Dα(G)X =

∂(G)X, we obtain

∂xi = αTrixi + (1− α)
n

∑
k=1,k 	=i

dikxk ≤ αTrixi + (1− α)Trixj. (4)

Similarly, from the jth equation of Dα(G)X = ∂(G)X, we obtain

∂xj = αTrjxj + (1− α)
n

∑
k=1,k 	=j

djkxk ≤ αTrjxj + (1− α)Trjxi. (5)

Now, by (2), we have,(
∂− α

(
dn− d(d− 1)

2
− 1− di(d− 1)

))
xi ≤ (1− α)

(
dn− d(d− 1)

2
− 1− di(d− 1)

)
xj(

∂− α

(
dn− d(d− 1)

2
− 1− dj(d− 1)

))
xj ≤ (1− α)

(
dn− d(d− 1)

2
− 1− dj(d− 1)

)
xi.

Multiplying the corresponding sides of these inequalities and using the fact that xk > 0 for all k,
we obtain

∂2 − α(2dn− d(d− 1)− 2− (d− 1)(di + dj))∂− (1− 2α)ξiξ j ≤ 0,

where ξl = dn− d(d−1)
2 − 1− dl(d− 1), l = i, j, which in turn gives

∂(G) ≤ α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

.

Now, using di + dj ≥ δ1 + δ2, the result follows.
Suppose that equality occurs in (3), then equality occurs in each of the above inequalities.

If equality occurs in (4) and (5), the we obtain xi = xk, for all k = 1, 2, . . . , n giving that G is a
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transmission regular graph. Also, equality in (2), similar to that of Theorem 1, gives that G is a graph
of diameter at most two and equality in di + dj ≥ δ1 + δ2 gives that G is a regular graph. Combining
all these it follows that equality occurs in (3) if G is a regular graph of diameter at most two.

Conversely, if G is a connected δ-regular graph of diameter at most two, then ∂(G) = Tri =

dn− d(d−1)
2 − 1− di(d− 1). Also

α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

=
α(2dn− d(d− 1)− 2− s(d− 1)) + (2dn− d(d− 1)− 2− s(d− 1))(1− α)

2

= dn− d(d− 1)
2

− 1− δ(d− 1) = ∂(G).

That completes the proof.

Remark 1. For any connected graph G of order n having minimum degree δ, the upper bound given by
Theorem 2 is better than the upper bound given by Theorem 1. As

α(2dn− d(d− 1)− 2− s(d− 1)) +
√

α2(2dn− d(d− 1)− 2− s(d− 1))2 + 4(1− 2α)Θ
2

,

≤ α(2dn− d(d− 1)− 2− 2δ(d− 1)) +
√

α2(2dn− d(d− 1)− 2− 2δ(d− 1))2 + 4(1− 2α)Φ
2

,

=
α(2dn− d(d− 1)− 2− 2δ(d− 1)) + (2dn− d(d− 1)− 2− 2δ(d− 1))(1− α)

2

= dn− d(d− 1)
2

− 1− δ(d− 1),

where Φ = (2dn− d(d− 1)− 2− 2δ(d− 1))2.

The following gives an upper bound for ∂(G) by using quantities like transmission degrees as
well as second transmission degrees.

Theorem 3. If the transmission degree sequence and the second transmission degree sequence of G are
{Tr1, Tr2, . . . , Trn} and {T1, T2, . . . , Tn}, respectively, then

∂(G) ≤ max
1≤i≤n

⎧⎨⎩−β +
√

β2 + 4(αTr2
i + (1− α)Ti + βTri)

2

⎫⎬⎭ , (6)

where β ≥ 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Let X = (x1, . . . , xn) be the generalized distance Perron vector of G and xi = max{xj| j =
1, 2, . . . , n}. Since

∂(G)2X = (Dα(G))2X = (αTr + (1− α)D)2X

= α2Tr2X + α(1− α)TrDX + α(1− α)DTrX + (1− α)2D2X,

we have

∂2(G)xi = α2Tr2
i xi + α(1− α)Tri

n

∑
j=1

dijxj + α(1− α)
n

∑
j=1

dijTrjxj + (1− α)2
n

∑
j=1

n

∑
k=1

dijdjkxk.
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Now, we consider a simple quadratic function of ∂(G) :

(∂2(G) + β∂(G))X = (α2Tr2X + α(1− α)TrDX + α(1− α)DTrX + (1− α)2D2X)

+ β(αTrX + (1− α)DX).

Considering the ith equation, we have

(∂2(G) + β∂(G))xi = α2Tr2
i xi + α(1− α)Tri

n

∑
j=1

dijxj + α(1− α)
n

∑
j=1

dijTrjxj

+ (1− α)2
n

∑
j=1

n

∑
k=1

dijdjkxk + β

(
αTrixi + α(1− α)

n

∑
j=1

dijxj

)
.

It is easy to see that the inequalities below are true

α(1− α)Tri

n

∑
j=1

dijxj ≤ α(1− α)Tr2
i xi, α(1− α)

n

∑
j=1

dijTrjxj ≤ α(1− α)Tixi,

(1− α)2
n

∑
j=1

n

∑
k=1

djkdijxk ≤ (1− α)2Tixi, (1− α)
n

∑
j=1

dijxj ≤ (1− α)Trixi.

Hence, we have

(∂2(G) + β∂(G))xi ≤ αTr2
i xi − αTixi + Tixi + βTrixi

⇒ ∂2(G) + β∂(G)− (αTr2
i − (α− 1)Ti + βTri) ≤ 0

⇒ ∂(G) ≤
−β +

√
β2 + 4(αTr2

i − (α− 1)Ti + βTri)

2
.

From this the result follows.
Now, suppose that equality occurs in (6), then each of the above inequalities in the above argument

occur as equalities. Since each of the inequalities

α(1− α)Tri

n

∑
j=1

dijxj ≤ α(1− α)Tr2
i xi, α(1− α)

n

∑
j=1

dijTrjxj ≤ α(1− α)Tixi

and

(1− α)2
n

∑
j=1

n

∑
k=1

djkdijxk ≤ (1− α)2Tixi, (1− α)
n

∑
j=1

dijxj ≤ (1− α)Trixi,

occur as equalities if and only if G is a transmission regular graph. It follows that equality occurs in (6)
if and only if G is a transmission regular graph. That completes the proof.

The following upper bound for the generalized distance spectral radius ∂(G) was obtained in [15]:

∂(G) ≤ max
1≤i≤n

{√
αTr2

i + (1− α)Ti

}
, (7)

with equality if and only if αTr2
i + (1− α)Ti is same for i.
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Remark 2. For a connected graph G having transmission degree sequence {Tr1, Tr2, . . . , Trn} and the second
transmission degree sequence {T1, T2, . . . , Tn}, provided that Ti ≤ Tr2

i for all i, we have

−β +
√

β2 + 4αTr2
i + 4(1− α)Ti + 4βTri

2
≤
√

αTr2
i + (1− α)Ti.

Therefore, the upper bound given by Theorem 3 is better than the upper bound given by (7).

If, in particular we take the parameter β in Theorem 3 equal to the vertex covering number
τ, the edge covering number, the clique number ω, the independence number, the domination
number, the generalized distance rank, minimum transmission degree, maximum transmission degree,
etc., then Theorem 3 gives an upper bound for ∂(G), in terms of the vertex covering number τ,
the edge covering number, the clique number ω, the independence number, the domination number,
the generalized distance rank, minimum transmission degree, maximum transmission degree, etc.

Let xi = min{xj| j = 1, 2, . . . , n} be the minimum among the entries of the generalized distance
Perron vector X = (x1, . . . , xn) of the graph G. Proceeding similar to Theorem 3, we obtain the
following lower bound for ∂(G), in terms of the transmission degrees, the second transmission degrees
and a parameter β.

Theorem 4. If the transmission degree sequence and the second transmission degree sequence of G are
{Tr1, Tr2, . . . , Trn} and {T1, T2, . . . , Tn}, respectively, then

∂(G) ≥ min
1≤i≤n

⎧⎨⎩−β +
√

β2 + 4(αTr2
i + (1− α)Ti + βTri)

2

⎫⎬⎭ ,

where β ≥ 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Similar to the proof of Theorem 3 and is omitted.

The following lower bound for the generalized distance spectral radius was obtained in [15]:

∂(G) ≥ min
1≤i≤n

{√
αTr2

i + (1− α)Ti

}
, (8)

with equality if and only if αTr2
i + (1− α)Ti is same for i.

Similar to Remark 2, it can be seen that the lower bound given by Theorem 4 is better than the
lower bound given by (8) for all graphs G with Ti ≥ Tr2

i , for all i.
Again, if in particular we take the parameter β in Theorem 4 equal to the vertex covering

number τ, the edge covering number, the clique number ω, the independence number, the domination
number, the generalized distance rank, minimum transmission degree, maximum transmission degree,
etc, then Theorem 4 gives a lower bound for ∂(G), in terms of the vertex covering number τ,
the edge covering number, the clique number ω, the independence number, the domination number,
the generalized distance rank, minimum transmission degree, maximum transmission degree, etc.

G1∇G2 is referred to as join of G1 and G2. It is defined by joining every vertex in G1 to every
vertex in G2.

Example 1. (a) Let C4 be the cycle of order 4. One can easily see that C4 is a 4-transmission regular
graph and the generalized distance spectrum of C4 is {4, 4α, 6α − 2[2]}. Hence, ∂(C4) = 4. Moreover,
the transmission degree sequence and the second transmission degree sequence of C4 are {4, 4, 4, 4} and
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{16, 16, 16, 16}, respectively. Now, putting β = Trmax = 4 in the given bound of Theorem 3, we can see that
the equality holds:

∂(C4) ≤ −4 +
√

16 + 4(16α + 16(1− α) + 16)
2

=
−4 +

√
144

2
= 4.

(b) Let Wn+1 be the wheel graph of order n + 1. It is well known that Wn+1 = Cn∇K1. The distance
signless Laplacian matrix of W5 is

DQ(W5) =

⎛⎜⎜⎜⎜⎜⎝
5 1 2 1 1
1 5 1 2 1
2 1 5 1 1
1 2 1 5 1
1 1 1 1 4

⎞⎟⎟⎟⎟⎟⎠ .

Hence the distance signless Laplacian spectrum of W5 is spec(W5) =
{

13+
√

41
4 , 13−√41

4 , 5
2 , 3

2
[2]
}

, and then

the distance signless Laplacian spectral radius is ρQ
1 (W5) =

13+
√

41
4 . Also, the transmission degree sequence

and the second transmission degree sequence of W5 are {5, 5, 5, 5, 4} and {24, 24, 24, 24, 20}, respectively.
As D 1

2
(G) = 1

2 DQ(G), taking α = 1
2 and β = Trmax = 5 in the given bound of Theorem 3, we immediately

get the following upper bound for the distance signless Laplacian spectral radius ρQ
1 (W5):

1
2

ρQ
1 (W5) ≤ −5 +

√
25 + 50 + 48 + 100

2
=
−5 +

√
223

2
,

which implies that
ρQ

1 (W5) ≤ −5 +
√

223 � 9.93.

3. Bounds for the k-th Generalized Distance Eigenvalue

In this section, we discuss the relationship between the generalized distance eigenvalues and the
other graph parameters.

The following lemma can be found in [37].

Lemma 2. Let X and Y be Hermitian matrices of order n such that Z = X + Y, and denote the eigenvalues of
a matrix M by λ1 ≥ λ2 ≥ · · · ≥ λn.Then

λk(Z) ≤ λj(X) + λk−j+1(Y), n ≥ k ≥ j ≥ 1,

λk(Z) ≥ λj(X) + λk−j+n(Y), n ≥ j ≥ k ≥ 1,

where λi(M) is the ith largest eigenvalue of the matrix M. Any equality above holds if and only if a unit vector
can be an eigenvector corresponding to each of the three eigenvalues.

The following gives a relation between the generalized distance eigenvalues of the graph G of
diameter 2 and the signless Laplacain eigenvalues of the complement G of the graph G. It also gives a
relation between generalized distance eigenvalues of the graph G of diameter greater than or equal to
3 with the α-adjacency eigenvalues of the complement G of the graph G.

Theorem 5. Let G be a connected graph of order n ≥ 4 having diameter d. Let G be the complement of G and
let q1 ≥ q2 ≥ · · · ≥ qn be the signless Laplacian eigenvalues of G. If d = 2, then for all k = 1, 2, . . . , n, we have

(3α− 1)n− 2α + (1− 2α)dk + (1− α)qk ≤ ∂k(G) ≤ (2n− 2)α + (1− 2α)dk + (1− α)qk.
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Equality occurs on the right if and only if k = 1 and G is a transmission regular graph and on the left if
and only if k 	= 1 and G is a transmission regular graph.

If d ≥ 3, then for all k = 1, 2, . . . , n, we have

αn− 1 + λk(Aα(G)) + λn(M′) ≤ ∂k(G) ≤ n− 1 + λk(Aα(G)) + λ1(M′),

where Aα(G) = α Deg(G) + (1− α)A is the α-adjacency matrix of G and M′ = αTr′(G) + (1− α)M with
M = (mij) a symmetric matrix of order n having mij = max{0, dij− 2}, dij is the distance between the vertices
vi, vj and Tr′(G) = diag(Tr′1, Tr′2, . . . , Tr′n), Tr′i = ∑

dij≥3
(dij − 2).

Proof. Let G be a connected graph of order n ≥ 4 having diameter d. Let Deg(G) = diag(n− 1−
d1, n− 1− d2, . . . , n− 1− dn) be the diagonal matrix of vertex degrees of G. Suppose that diameter
d of G is two, then transmission degree Tri = 2n− 2− di, for all i, then the distance matrix of G can
be written as D(G) = A + 2A, where A and A are the adjacency matrices of G and G, respectively.
We have

Dα(G) = αTr(G) + (1− α)D(G) = α(2n− 2)I − α Deg(G) + (1− α)(A + 2A)

= α(2n− 2)I − α Deg(G) + (1− α)(A + A) + (1− α)A

= (3nα− n− 2α)I + (1− α)J + (1− 2α)Deg(G) + (1− α)Q(G),

where I is the identity matrix and J is the all one matrix of order n. Taking Y = (3nα− n− 2α)I + (1−
2α)Deg(G) + (1− α)Q(G), X = (1− α)J, j = 1 in the first inequality of Lemma 2 and using the fact
that spec(J) = {n, 0[n−1]}, it follows that

∂k(G) ≤ (2n− 2)α + (1− 2α)dk + (1− α)qk, for all k = 1, 2, . . . , n. (9)

Again, taking Y = (3nα− n− 2α)I + (1− 2α)Deg(G) + (1− α)Q(G), X = (1− α)J and j = n in
the second inequality of Lemma 2, it follows that

∂k(G) ≥ (3α− 1)n− 2α + (1− 2α)dk + (1− α)qk, for all k = 1, 2, . . . , n. (10)

Combining (9) and (10) the first inequality follows. Equality occurs in first inequality if and only
if equality occurs in (9) and (10). Suppose that equality occurs in (9), then by Lemma 2, the eigenvalues
∂k, (3n− 2)α− n + (1− 2α)dk + (1− α)qk and n(1− α) of the matrices Dα(G), X and Y have the same
unit eigenvector. Since 1 = 1

n (1, 1, . . . , 1)T is the unit eigenvector of Y for the eigenvalue n(1− α),
it follows that equality occurs in (9) if and only if 1 is the unit eigenvector for each of the matrices
Dα(G), X and Y. This gives that G is a transmission regular graph and G is a regular graph. Since a
graph of diameter 2 is regular if and only if it is transmission regular and complement of a regular
graph is regular. Using the fact that for a connected graph G the unit vector 1 is an eigenvector for
the eigenvalue ∂1 if and only if G is transmission regular graph, it follows that equality occurs in first
inequality if and only if k = 1 and G is a transmission regular graph.

Suppose that equality occurs in (10), then again by Lemma 2, the eigenvalues ∂k, (3n− 2)α−
n + (1− 2α)dk + (1− α)qk and 0 of the matrices Dα(G), X and Y have the same unit eigenvector x.
Since Jx = 0, it follows that xT1 = 0. Using the fact that the matrix J is symmetric(so its normalized
eigenvectors are orthogonal [43]), we conclude that the vector 1 belongs to the set of eigenvectors of
the matrix J and so of the matrices Dα(G), X. Now, 1 is an eigenvector of the matrices Dα(G) and
X, gives that G is a regular graph. Since for a regular graph of diameter 2 any eigenvector of Q(G)

and Dα(G) is orthogonal to 1, it follows that equality occurs in (10) if and only if k 	= 1 and G is
a regular graph.

If d ≥ 3, we define the matrix M = (mij) of order n, where mij = max{0, dij− 2}, dij is the distance
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between the vertices vi and vj. The transmission of a vertex vi can be written as Tri = di + 2di + Tr′i ,
where Tr′i = ∑

dij≥3
(dij − 2), is the contribution from the vertices which are at distance more than two

from vi. For Tr′(G) = diag(Tr′1, Tr′2, . . . , Tr′n), we have

Dα(G) = αTr(G) + (1− α)D(G) = α Deg(G) + 2α Deg(G) + αTr′(G) + (1− α)(A + 2A + M)

= α(Deg(G) + Deg(G)) + (1− α)(A + A) + (α Deg(G) + (1− α)A) + (αTr′(G) + (1− α)M)

= Dα(Kn) + Aα(G) + M′,

where Aα(G) is the α-adjacency matrix of G and M′ = αTr′(G) + (1− α)M. Taking X = Dα(Kn),
Y = Aα(G) + M′ and j = 1 in the first inequality of Lemma 2 and using the fact that spec(Dα(Kn)) =

{n− 1, αn− 1[n−1]}, it follows that

∂k(G) ≤ n− 1 + λk(Aα(G) + M′), for all k = 1, 2, . . . , n.

Again, taking Y = Aα(G), X = M′ and j = 1 in the first inequality of Lemma 2, we obtain

∂k(G) ≤ n− 1 + λk(Aα(G)) + λ1(M′), for all k = 1, 2, . . . , n. (11)

Similarly, taking X = Dα(Kn), Y = Aα(G) + M′ and j = n and then Y = Aα(G), X = M′ and
j = n in the second inequality of Lemma 2, we obtain

∂k(G) ≥ αn− 1 + λk(Aα(G)) + λn(M′), for all k = 1, 2, . . . , n. (12)

From (11) and (12) the second inequality follows. That completes the proof.

It can be seen that the matrix M′ defined in Theorem 5 is positive semi-definite for all 1
2 ≤ α ≤ 1.

Therefore, we have the following observation from Theorem 5.

Corollary 3. Let G be a connected graph of order n ≥ 4 having diameter d ≥ 3. If 1
2 ≤ α ≤ 1, then

∂k(G) ≥ αn− 1 + λk(Aα(G)), for all k = 1, 2, . . . , n,

where Aα(G) = α Deg(G) + (1− α)A is the α-adjacency matrix of G.

It is clear from Corollary 3 that for 1
2 ≤ α ≤ 1, any lower bound for the α-adjacency λk(Aα(G))

gives a lower bound for ∂k and conversely any upper bound for ∂ gives an upper bound for λk(Aα(G)).
We note that Theorem 5 generalizes one of the Theorems (namely Theorem 3.8) given in [8].

Example 2. (a) Let Cn be a cycle of order n. It is well known (see [7]) that Cn is a k-transmission regular
graph with k = n2

4 if n is even and k = n2−1
4 if n is odd. Let n = 4. It is clear that the distance spectrum

of the graph C4 is {4, 0,−2[2]}. Also, since C4 is a 4-transmission regular graph, then Tr(C4) = 4I4 and so
Dα(C4) = 4αI4 +(1− α)D(C4). Hence the generalized distance spectrum of C4 is {4, 4α, 6α− 2[2]}. Moreover,
the signless Laplacian spectrum of C4 is {2[2], 0[2]}. Since the diameter of C4 is 2, hence, applying Theorem 5,
for k = 1, we have,

4α = 4(3α− 1)− 2α + 2(1− 2α) + 2(1− α) ≤ ∂1(C4) = 4 ≤ 6α + 2(1− 2α) + 2(1− α) = 4,

which shows that the equality occurs on right for k = 1 and transmission regular graph C4.
Also, for k = 2, we have

4α = 4(3α− 1)− 2α + 2(1− 2α) + 2(1− α) ≤ ∂2(C4) = 4α ≤ 6α + 2(1− 2α) + 2(1− α) = 4,
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which shows that the equality occurs on left for k = 2 and transmission regular graph C4.
(b) Let C6 be a cycle of order 6. It is clear that the distance spectrum of the graph C6 is {9, 0[2],−1,−4[2]}.

Since C6 is a 9-transmission regular graph, then Tr(C6) = 9I6 and so Dα(C6) = 9αI6 + (1− α)D(C6). Hence,
the generalized distance spectrum of C6 is {9, 9α[2], 10α− 1, 13α− 4[2]}. Also, the α-adjacency spectrum of
C6 is {3, 2α + 1, 3α[2], 5α− 2[2]}. Let M′ be the matrix defined by the Theorem 5, hence the spectrum of M′ is
{1[3], 2α− 1[3]}. Since diameter of the graph C6 is 3, hence, applying Theorem 5, for k = 1, we have

8α + 1 = 6α− 1 + 3 + 2α− 1 ≤ ∂1(C6) = 9 ≤ 5 + 3 + 1 = 9.

Also for k = 2, we have

10α− 1 = 6α− 1 + 2α + 1 + 2α− 1 ≤ ∂2(C6) = 9α ≤ 5 + 2α + 1 + 1 = 2α + 7.

We need the following lemma proved by Hoffman and Wielandt [39].

Lemma 3. Suppose we have C = A + B. Here, all these matrices are symmetric and have order n. Suppose they
have the eigenvalues αi, βi, and γi, where 1 ≤ i ≤ n, respectively arranged in non-increasing order. Therefore,
∑n

i=1(γi − αi)
2 ≤ ∑n

i=1 β2
i .

The following gives relation between generalized distance spectrum and distance spectrum for a
simple connected graph G. We use [n] to denote the set of {1, 2, . . . , n}. For each subset S of [n], we use
Sc to denote [n]− S.

Theorem 6. Let G be a connected graph of order n and let μ1, . . . , μn be the eigenvalues of the distance matrix
of G. Then for each non-empty subset S = {r1, r2, . . . , rk} of [n], we have the following inequalities:

2kαW(G)−
√

k(n− k)
(
n ∑n

i=1 α2Tr2
i − 4α2W2(G)

)
n

≤ ∑
i∈S

(∂i + (α− 1)μi)

≤
2kαW(G) +

√
k(n− k)

(
n ∑n

i=1 α2Tr2
i − 4α2W2(G)

)
n

.

Proof. Since Dα(G) = αTr(G) + (1− α)D(G), then by the fact that 2αW(G) = ∑n
i=1(∂i + (α− 1)μi),

we get 2αW(G) − ∑i∈S(∂i + (α − 1)μi) = ∑i∈SC (∂i + (α − 1)μi). By Cauchy-Schwarz inequality,
we further have that(

2αW(G)−∑
i∈S

(∂i + (α− 1)μi)

)2

≤ ∑
i∈SC

12 ∑
i∈SC

(∂i + (α− 1)μi)
2.

Therefore (
2αW(G)−∑

i∈S
(∂i + (α− 1)μi)

)2

≤ (n− k)

(
n

∑
i=1

(∂i + (α− 1)μi)
2 −∑

i∈S
(∂i + (α− 1)μi)

2

)
.
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By Lemma 3, we have that(
2αW(G)−∑

i∈S
(∂i + (α− 1)μi)

)2

+ (n− k) ∑
i∈S

(∂i + (α− 1)μi)
2

≤ (n− k)
n

∑
i=1

(∂i + (α− 1)μi)
2 ≤ (n− k)

n

∑
i=1

α2Tr2
i .

Again by Cauchy-Schwarz inequality, we have that

(
n− k

k

)(
∑
i∈S

(∂i + (α− 1)μi)

)2

=

(
∑
i∈S

√
n− k

k
(∂i + (α− 1)μi)

)2

≤ ∑
i∈S

(
n− k

k

)
∑
i∈S

(∂i + (α− 1)μi)
2 = (n− k) ∑

i∈S
(∂i + (α− 1)μi)

2.

Therefore, we have the following inequality(
2αW(G)−∑

i∈S
(∂i + (α− 1)μi)

)2

+

(
n− k

k

)(
∑
i∈S

(∂i + (α− 1)μi)

)2

≤ (n− k)
n

∑
i=1

α2Tr2
i .

Solving the quadratic inequality for ∑i∈S(∂i + (α− 1)μi), so we complete the proof.

Notice that ∑n
i=1(∂i − αTri) = 0 and by Lemma 3, we also have ∑n

i=1(∂i − αTri)
2 ≤ (1 −

α)2 ∑n
i=1 μ2

i = 2(1− α)2 ∑n
1≤i<j≤n d2

ij. We can similarly prove the following theorem.

Theorem 7. Let G be a connected graph of order n. Then for each non-empty subset S = {r1, r2, . . . , rk} of [n],
we have: ∣∣∣∣∣∑i∈S

(∂i − αTri)

∣∣∣∣∣ ≤
√

2k(n− k)(1− α)2 ∑1≤i<j≤n d2
ij

n
.

We conclude by giving the following bounds for the k-th largest generalized distance eigenvalue
of a graph.

Theorem 8. Assume G is connected and is of order n. Suppose it has diameter d and δ is its minimum
degree. Let

ϕ(G) = min
{

n2(n− 1)
(

α2n2(n− 1)
4

+ (1− α)2d2
)
− 4α2W2(G),

n

(
α2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ (1− α)2n(n− 1)d2

)
− 4α2W2(G)

}
.

Then for k = 1, . . . , n,

1
n

{
2αW(G)−

√
k− 1

n− k + 1
ϕ(G)

}
≤ ∂k(G) ≤ 1

n

{
2αW(G) +

√
n− k

k
ϕ(G)

}
. (13)
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Proof. First we prove the upper bound. It is clear that

trace(D2
α(G)) =

k

∑
i=1

∂2
i +

n

∑
i=k+1

∂2
i ≥

(∑k
i=1 ∂i)

2

k
+

(∑n
i=k+1 ∂i)

2

n− k
.

Let Mk = ∑k
i=1 ∂i. Then

trace(D2
α(G)) ≥ M2

k
k

+
(2αW(G)−Mk)

2

n− k
,

which implies

∂k(G) ≤ Mk
k
≤ 1

n

{
2αW(G) +

√
n− k

k
[n · trace(D2

α(G))− 4α2W2(G)]

}
.

We observe that

n · trace(D2
α(G))− 4α2W2(G) = nα2

n

∑
i=1

Tr2
i + 2n(1− α)2 ∑

1≤i<j≤n
(dij)

2 − 4α2W2(G)

≤ nα2 n3(n− 1)2

4
+ 2n(1− α)2 n(n− 1)

2
d2 − 4α2W2(G)

= n2(n− 1)
(

α2n2(n− 1)
4

+ (1− α)2d2
)
− 4α2W2(G),

since Tri ≤ n(n−1)
2 , and

n · trace(D2
α(G))− 4α2W2(G)

= nα2
n

∑
i=1

Tr2
i + 2n(1− α)2 ∑

1≤i<j≤n
(dij)

2 − 4α2W2(G)

≤ nα2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ 2n(1− α)2 n(n− 1)
2

d2 − 4α2W2(G)

= n

(
α2
(

nd− d(d− 1)
2

− 1− δ(d− 1)
)2

+ (1− α)2n(n− 1)d2

)
− 4α2W2(G),

since Tri ≤ nd− d(d−1)
2 − 1− di(d− 1). Hence, we get the right-hand side of the inequality (13).

Now, we prove the lower bound. Let Nk = ∑n
i=k ∂i. Then we have

trace(D2
α(G)) =

k−1

∑
i=1

∂2
i +

n

∑
i=k

∂2
i ≥

(
∑k−1

i=1 ∂i

)2

k− 1
+

(
∑n

i=k ∂i

)2

n− k + 1

=
(2αW(G)− Nk)

2

k− 1
+

N2
k

n− k + 1
.

Hence

∂k(G) ≥ Nk
n− k + 1

≥ 1
n

{
2αW(G)−

√
k− 1

n− k + 1
[n · trace(D2

α(G))− 4α2W2(G)]

}
,

and we get the left-hand side of the inequality (13).

By a chemical tree, we mean a tree which has all vertices of degree less than or equal to 4.
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Example 3. In Figure 1, we depicted a chemical tree of order n = 5.

Figure 1. A chemical tree T.

The distance matrix of T is

D(T) =

⎛⎜⎜⎜⎜⎜⎝
0 1 2 3 3
1 0 1 2 2
2 1 0 1 1
3 2 1 0 2
3 2 1 2 0

⎞⎟⎟⎟⎟⎟⎠ .

Let μ1, . . . , μ5 be the distance eigenvalues of the tree T. Then one can easily see that μ1 = 7.46, μ2 = −0.51,
μ3 = −1.08, μ4 = −2 and μ5 = −3.86. Note that, as D0(T) = D(T), taking α = 0 in Theorem 8, then for

n = 5 we get−6
√

k−1
6−k ≤ μk ≤ 6

√
5−k

k , for any 1 ≤ k ≤ 5. For example,−6 ≤ μ1 ≤ 12 and−3 ≤ μ2 ≤ 7.3.

4. Conclusions

Motivated by an article entitled “Merging the A- and Q-spectral theories” by V. Nikiforov [33],
recently, Cui et al. [15] dealt with the integration of spectra of distance matrix and distance signless
Laplacian through elegant convex combinations accommodating vertex transmissions as well as
distance matrix. For α ∈ [0, 1], the generalized distance matrix is known as Dα(G) = αTr(G) +

(1 − α)D(G). Our results shed light on some properties of Dα(G) and contribute to establishing
new inequalities (such as lower and upper bounds) connecting varied interesting graph invariants.
We established some bounds for the generalized distance spectral radius for a connected graph
using various identities like the number of vertices n, the diameter, the minimum degree, the second
minimum degree, the transmission degree, the second transmission degree and the parameter α,
improving some bounds recently given in the literature. We also characterized the extremal graphs
attaining these bounds. Notice that the current work mainly focuses to determine some bounds for
the spectral radius (largest eigenvalue) of the generalized distance matrix. It would be interesting to
derive some bounds for other important eigenvalues such as the smallest eigenvalue as well as the
second largest eigenvalue of this matrix.
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Abstract: In this paper we extend one of the main problems of near-rings to the framework of algebraic
hypercompositional structures. This problem states that every near-ring is isomorphic with a near-ring
of the transformations of a group. First we endow the set of all multitransformations of a hypergroup
(not necessarily abelian) with a general hypernear-ring structure, called the multitransformation
general hypernear-ring associated with a hypergroup. Then we show that any hypernear-ring can
be weakly embedded into a multitransformation general hypernear-ring, generalizing the similar
classical theorem on near-rings. Several properties of hypernear-rings related with this property are
discussed and illustrated also by examples.

Keywords: hypernear-ring; multitransformation; embedding

1. Introduction

Generally speaking, the embedding of an algebraic structure into another one requires the
existence of an injective map between the two algebraic objects, that also preserves the structure, i.e.,
a monomorphism. The most natural, canonical and well-known embeddings are those of numbers:
the natural numbers into integers, the integers into the rational numbers, the rational numbers
into the real numbers and the real numbers into the complex numbers. One important type of
rings is that one of the endomorphisms of an abelian group under function pointwise addition and
composition of functions. It is well known that every ring is isomorphic with a subring of such
a ring of endomorphisms. But this result holds only in the commutative case, since the set of the
endomorphisms of a non-abelian group is no longer closed under addition. This aspect motivates the
interest in studying near-rings, that appear to have applications also in characterizing transformations
of a group. More exactly, the set of all transformations of a group G, i.e., T(G) = { f : G → G} can be
endowed with a near-ring structure under pointwise addition and composition of mappings, such a
near-ring being called the transformation near-ring of the group G.

In 1959 Berman and Silverman [1] claimed that every near-ring is isomorphic with a near-ring
of transformations. At that time only some hints were presented, while a direct and clear proof of
this result appeared in Malone and Heatherly [2] almost ten years later. Since T(G) has an identity,
it immediately follows that any near-ring can be embedded in a near-ring with identity. Moreover,
in the same paper [2], it was proved that a group (H,+) can be embedded in a group (G,+) if and only
if the near-ring T0(H), consisting of all transformations of H which multiplicatively commute with the
zero transformation, can be embedded into the similar near-ring T0(G) on G under a kernel-preserving
monomorphism of near-rings.

Similarly to near-rings, but in the framework of algebraic hyperstructures, Dašić [3] defined the
hypernear-rings as hyperstructures with the additive part being a quasicanonical hypergroup [4,5]
(called also a polygroup [6,7]), and the multiplicative part being a semigroup with a bilaterally
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absorbing element, such that the multiplication is distributive with respect to the hyperaddition on the
left-hand side. Later on, this algebraic hyperstructure was called a strongly distributive hypernear-ring,
or a zero-symmetric hypernear-ring, while in a hypernear-ring the distributivity property was replaced
by the “inclusive distributivity” from the left (or right) side. Moreover, when the additive part
is a hypergroup and all the other properties related to the multiplication are conserved, we talk
about a general hypernear-ring [8]. The distributivity property is important also in other types of
hyperstructures, see e.g., [9]. A detailed discussion about the terminology related to hypernear-rings
is included in [10]. In the same paper, the authors defined on the set of all transformations of a
quasicanonical hypergroup that preserves the zero element a hyperaddition and a multiplication
(as the composition of functions) in such a way to obtain a hypernear-ring. More general, the set of all
transformations of a hypergroup (not necessarily commutative) together with the same hyperaddition
and multiplication is a strongly distributive hypernear-ring [3]. In this note we will extend the study
to the set of all multimappings (or multitransformations) of a (non-abelian) hypergroup, defining first
a structure of (left) general hypernear-ring, called the multitransformation general hypernear-ring
associated with a hypergroup. Then we will show that any hypernear-ring can be weakly embedded
into a multitransformation general hypernear-ring, generalizing the similar classical theorem on
near-rings [2]. Besides, under same conditions, any additive hypernear-ring is weakly embeddable
into the additive hypernear-ring of the transformations of a hypergroup with identity element that
commute multiplicatively with the zero-function. The paper ends with some conclusive ideas and
suggestions of future works on this topic.

2. Preliminaries

We start with some basic definitions and results in the framework of hypernear-rings and
near-rings of group mappings. For further properties of these concepts we refer the reader to the
papers [2,3,11,12] and the fundamental books [13–15]. For the consistence of our study, regarding
hypernear-rings we keep the terminology established and explained in [8,16].

First we recall the definition introduced by Dašić in 1978.

Definition 1. [12] A hypernear-ring is an algebraic system (R,+, ·), where R is a non-empty set endowed with
a hyperoperation + : R× R→ P∗(R) and an operation · : R× R→ R, satisfying the following three axioms:

1. (R,+) is a quasicanonical hypergroup (named also polygroup [6]), meaning that:

(a) x + (y + z) = (x + y) + z for any x, y, z ∈ R,
(b) there exists 0 ∈ R such that, for any x ∈ R, x + 0 = 0 + x = {x},
(c) for any x ∈ R there exists a unique element −x ∈ R, such that 0 ∈ x + (−x) ∩ (−x) + x,
(d) for any x, y, z ∈ R, z ∈ x + y implies that x ∈ z + (−y), y ∈ (−x) + z.

2. (R, ·) is a semigroup endowed with a two-sided absorbing element 0, i.e., for any x ∈ R, x · 0 = 0 · x = 0.
3. The operation “·” is distributive with respect to the hyperoperation “+” from the left-hand side: for any

x, y, z ∈ R, there is x · (y + z) = x · y + x · z.

This kind of hypernear-ring was called by Gontineac [11] a zero-symmetric hypernear-ring. In our
previous works [10,16], regarding the distributivity, we kept the Vougiouklis’ terminology [17],
and therefore, we say that a hypernear-ring is a hyperstructure (R,+, ·) satisfying the above mentioned
axioms 1. and 2., and the new one:

3′. The operation “·” is inclusively distributive with respect to the hyperoperation “+” from the
left-hand side: for any x, y, z ∈ R, x · (y + z) ⊆ x · y + x · z. Accordingly, the Dašić ’s hypernear-ring
(satisfying the axioms 1., 2., and 3.) is called strongly distributive hypernear-ring.

Furthermore, if the additive part is a hypergroup (and not a polygroup), then we talk about a
more general type of hypernear-rings.
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Definition 2. [8] A general (left) hypernear-ring is an algebraic structure (R,+, ·) such that (R,+) is a
hypergroup, (R, ·) is a semihypergroup and the hyperoperation “·” is inclusively distributive with respect to
the hyperoperation “+” from the left-hand side, i.e., x · (y + z) ⊆ x · y + x · z, for any x, y, z ∈ R. If in the
third condition the equality is valid, then the structure (R,+, ·) is called strongly distributive general (left)
hypernear-ring. Besides, if the multiplicative part (R, ·) is only a semigroup (instead of a semihypergroup),
we get the notion of general (left) additive hypernear-ring.

Definition 3. Let (R1,+, ·) and (R2,+, ·) be two general hypernear-rings. A map ρ : R1 → R2 is called an
inclusion homomorphism if the following conditions are satisfied:

1. ρ(x + y) ⊆ ρ(x) + ρ(y)
2. ρ(x · y) ⊆ ρ(x) · ρ(y) for all x, y ∈ R1.

A map ρ is called a good (strong) homomorphism if in the conditions 1. and 2. the equality is valid.

In the second part of this section we will briefly recall the fundamentals on near-rings of
group mappings. A left near-ring (N,+, ·) is a non-empty set endowed with two binary operations,
the addition + and the multiplication ·, such that (N,+) is a group (not necessarily abelian) with
the neutral element 0, (N, ·) is a semigroup, and the multiplication is distributive with respect to the
addition from the left-hand side. Similarly, we have a right near-ring. Several examples of near-rings
are obtained on the set of “non-linear” mappings and here we will see two of them.

Let (G,+) be a group (not necessarily commutative) and let T(G) be the set of all functions from
G to G. On T(G) define two binary operations: “+” is the pointwise addition of functions, while the
multiplication “·” is the composition of functions. Then (T(G),+, ·) is a (left) near-ring, called the
transformation near-ring on the group G. Moreover, let T0(G) be the subnear-ring of T(G) consisting of
the functions of T(G) that commute multiplicatively with the zero function, i.e., T0(G) = { f ∈ T(G) |
f (0) = 0}. These two near-rings, T(G) and T0(G), have a fundamental role in embeddings. Already in
1959, it was claimed by Berman and Silverman [1] that every near-ring is isomorphic with a near-ring
of transformations. One year later the proof was given by the same authors, but using an elaborate
terminology and methodology. Here below we recall this result together with other related properties,
as presented by Malone and Heatherly [2].

Theorem 1. [2] Let (R,+, ·) be a near-ring. If (G,+) is any group containing (R,+) as a proper subgroup,
then (R,+, ·) can be embedded in the transformation near-ring T(G).

Corollary 1. [2] Every near-ring can be embedded in a near-ring with identity.

Theorem 2. [2] A group (H,+) can be embedded in a group (G,+) if and only if T0(H) can be embedded in
T0(G) by a near-ring monomorphism which is kernel-preserving.

Theorem 3. [2] A group (H,+) can be embedded in a group (G,+) if and only if the near-ring T(H) can be
embedded in the near-ring T(G).

3. Weak Embeddable Hypernear-Rings

In this section we aim to extend the results related to embeddings of near-rings to the case of
hypernear-rings. In this respect, instead of a group (G,+) we will consider a hypergroup (H,+) and
then the set of all multimappings on H, which we endow with a structure of general hypernear-ring.

Theorem 4. Let (H,+) be a hypergroup (not necessarily abelian) and T∗(H) = {h : H → P∗(H)}
the set of all multimappings of the hypergroup (H,+). Define, for all ( f , g) ∈ T∗(H) × T∗(H), the
following hyperoperations:

f ⊕ g = {h ∈ T∗(H) | (∀x ∈ H) h(x) ⊆ f (x) + g(x)}
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f � g = {h ∈ T∗(H) | (∀x ∈ H) h(x) ⊆ g( f (x)) =
⋃

u∈ f (x)

g(u)}.

The structure (T∗(H),⊕,�) is a (left) general hypernear-ring.

Proof. For any f , g ∈ T∗(H) it holds: f ⊕ g 	= ∅. Indeed, for any x ∈ H, it holds f (x) 	= ∅
and g(x) 	= ∅ and thus, f (x) + g(x) 	= ∅. Therefore, for the map h : H → P∗(H) defined by:
h(x) = f (x) + g(x) for all x ∈ H, it holds h ∈ f ⊕ g. Now, we prove that the hyperoperation ⊕ is
associative. Let f , g, h ∈ T∗(H) and set

L = ( f ⊕ g)⊕ h =
⋃{h′ ⊕ h | h′ ∈ f ⊕ g} =

=
⋃{h′ ⊕ h | (∀x ∈ H) h′(x) ⊆ f (x) + g(x)}.

Thus, if h′′ ∈ L, then, for all x ∈ H, it holds: h′′(x) ⊆ h′(x) + h(x) ⊆ ( f (x) + g(x)) + h(x).
Conversely, if h′′ is an element of T∗(H) such that: h′′(x) ⊆ ( f (x) + g(x)) + h(x), for all x ∈ H,
and if we choose h′ such that h′(x) = f (x) + g(x) for all x ∈ H, then h′ ∈ f ⊕ g and h′′ ∈ h′ ⊕ h
i.e., h′′ ∈ L. So, L = {h′′ ∈ T∗(H)|(∀x ∈ H)h′′(x) ⊆ ( f (x) + g(x)) + h(x)}. On the other side,
take D = f ⊕ (g ⊕ h). Then, D = {h′′ ∈ T∗(H)|(∀x ∈ H)h′′(x) ⊆ f (x) + (g(x) + h(x))}. By the
associativity of the hyperoperation + we obtain that L = D, meaning that the hyperoperation ⊕
is associative.

Let f , g ∈ T∗(H). We prove that the equation f ∈ g ⊕ a has a solution a ∈ T∗(H). If we set
a(x) = H, for all x ∈ H, then a ∈ T∗(H) and for all x ∈ H it holds g(x) + a(x) = H ⊇ f (x). So,
f ∈ g⊕ a. Similarly, the equation f ∈ a⊕ g has a solution in T∗(H). Thus, (T∗(H),⊕) is a hypergroup.

Now, we show that (T∗(H),�) is a semihypergroup. Let f , g ∈ T∗(H). For all x ∈ H it holds
g(x) 	= ∅ and so g( f (x)) 	= ∅. Let h : H → P∗(H) be a multimapping defined by h(x) = g( f (x)),
for all x ∈ H. Obviously, h ∈ f � g and so f � g 	= ∅. Let us prove that � is a associative.
Let f , g, h ∈ T∗(H). Set:

L = ( f � g)� h =
⋃{h′ � h | h′ ∈ f � g} = {h′ � h | (∀x ∈ H) h′(x) ⊆ g( f (x))} =

= {h′′ | (∀x ∈ H) h′′(x) ⊆ h(h′(x)) ∧ h′(x) ⊆ g( f (x))}.
So, if h′′ ∈ L, then h′′(x) ⊆ h(g( f (x))), for all x ∈ H. On the other side, if h′′ ∈ T∗(H) and h′′(x) ⊆

h(g( f (x))) for all x ∈ H, then we choose h′ ∈ T∗(H) such that h′(x) = g( f (x)) and consequently we
obtain that h′′ ⊆ h(h′(x)). Thus, h′′ ∈ L. So, L = {h′′ ∈ T∗(H) | (∀x ∈ H) h′′(x) ⊆ h(g( f (x)))}.

Similarly, D = f � (g� h) = {h′′ | (∀x ∈ H) h′′(x) ⊆ h(g( f (x)))}. Thus, L = D.
It remains to prove that the hyperoperation ⊕ is inclusively distributive with respect to the

hyperoperation � on the left-hand side. Let f , g, h ∈ T∗(H). Set L = f � (g⊕ h) =
⋃{ f � h′|h′ ∈

g⊕ h} = ⋃{ f � h′|h′ ∈ T∗(H) ∧ (∀x)h′(x) ⊆ g(x) + h(x)}. So, if k ∈ L then for all x ∈ H it holds:
k(x) ⊆ h′( f (x)) ⊆ g( f (x)) + h( f (x)).

On the other hand, D = ( f � g)⊕ ( f � h) =
⋃{k1⊕ k2|k1 ∈ f � g, k2 ∈ f � h}. Let k ∈ L. Choose,

k1, k2 ∈ T∗(H) such that k1(x) = g( f (x)) and k2(x) = h( f (x)) for all x ∈ H. Then k1 ∈ f � g and
k2 ∈ f � h. Thus, k(x) ⊆ k1(x) + k2(x) for all x ∈ H, i.e., k ∈ k1 ⊕ k2 and k1 ∈ f � g, k2 ∈ f � h.
So, k ∈ D. Therefore, L ⊆ D.

Definition 4. T∗(H) is called the multitransformations general hypernear-ring on the hypergroup H.

Remark 1. Let (G,+) be a group and T(G) be the transformations near-ring on G. Obviously, T(G) ⊂
T∗(G) = { f : G → P∗(G)} and, for all f , g ∈ T(G), it holds: f ⊕ g = f + g, f � g = f · g, meaning that
the hyperoperations defined in Theorem 4 are the same as the operations in Theorem 1. It follows that T(G) is a
sub(hyper)near-ring of (T∗(G),⊕,�).
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Definition 5. We say that the hypernear-ring (R1,+, ·) is weak embeddable (by short W− embeddable) in the
hypernear-ring (R2,+, ·) if there exists an injective inclusion homomorphism μ : R1 → R2.

The next theorem is a generalization of Theorem 1 [5].

Theorem 5. For every general hypernear-ring (R,+, ·) there exists a hypergroup (H,+) such that R is W−
embeddable in the associated hypernear-ring T∗(H).

Proof. Let (R,+, ·) be a hypernear-ring and let (H,+) be a hypergroup such that (R,+) is a proper
subhypergroup of (H,+). For a fixed element r ∈ R we define a multimapping fr : H → P∗(H)

as follows

fr(g) =

{
g · r, if g ∈ R
r, if g ∈ H \ R.

Let us define now the mapping μ : R→ T∗(H) as μ(r) = fr, which is an inclusion homomorphism.
Indeed, if a, b ∈ R then we have μ(a + b) = { fc | c ∈ a + b} and μ(a)⊕ μ(b) = fa ⊕ fb = {h | (∀g ∈
H) h(g) ⊆ fa(g) + fb(g)}.

Consider c ∈ a + b and g ∈ H. If g ∈ R, then fc(g) = g · c ⊆ g · (a + b) ⊆ g · a + g · b =

fa(g) + fb(g). If g ∈ H \ R, then fc(g) = c ∈ a + b = fa(g) + fb(g). It follows that, for all g ∈ H, we
have fc(g) ⊆ fa(g) + fb(g) and therefore fc ∈ μ(a)⊕ μ(b), meaning that μ(a + b) ⊆ μ(a)⊕ μ(b).

Similarly, there is μ(a · b) = { fc | c ∈ a · b} and μ(a)� μ(b) = fa � fb = {h ∈ T∗(H) | (∀g ∈
H) h(g) ⊆ fb( fa(g))}. Let c ∈ a · b. Then, for g ∈ R, it holds: fc(g) = g · c ⊆ g · (a · b) = (g · a) · b =

fb( fa(g)). If g ∈ H \ R, then there is fc(g) = c ∈ a · b = fb(a) = fb( fa(g)). Thus, fc ∈ μ(a)� μ(b) and
so μ(a� b) ⊆ μ(a)� μ(b).

Based on Definition 3, we conclude that μ is an inclusive homomorphism. It remains to show that
μ is injective. If μ(a) = μ(b), then for all g ∈ H, it holds fa(g) = fb(g). So, if we choose g ∈ H \ R,
then we get that a = fa(g) = fb(g) = b.

These all show that the general hypernear-ring R is W-embeddable in T∗(H).

Remark 2. If (R,+, ·) is a near-ring such that (R,+) is a proper subgroup of a group (G,+), then for a fixed
r ∈ R the multimapping fr constructed in the proof of Theorem 5 is in fact a map from G to G, since in this
case the multiplication · is an ordinary operation, i.e., g · r ∈ G, for all g ∈ R. Thus fr : G → G and thereby
μ(R) ⊆ T(G). By consequence μ : R→ T(G) is an ordinary monomorphism. In other words, Theorem 5 is a
generalization of Theorem 1.

Example 1. Let (R,+, ·) be a left near-ring. Let P1 and P2 be non-empty subsets of R such that R · P1 ⊆ P1

and P1 ⊆ Z(R), where Z(R) is the center of R, i.e., Z(R) = {x ∈ R | (∀y ∈ R)x + y = y + x}. For any
(x, y) ∈ R2 define:

x⊕P1 y = x + y + P1, x�P2 y = xP2y.

Then the structure (R,⊕P1 ,�P2) is a general left hypernear-ring [8,18]. Let H = R ∪ {a} and define on
H the hyperoperation ⊕′P as follows:

x⊕′P1
y =

{
x⊕P1 y, if x, y ∈ R
H, if x = a ∨ y = a.

It is clear that H is a hypergroup such that (R,+) is a proper subhypergroup of (H,+). Besides, based on
Theorem 5, for every r ∈ R the multimapping fr : H → P∗(H) is defined as

fr(g) =

{
g�P2 r, if g ∈ R
r, if g = a

=

{
gP2r, if g ∈ R
r, if g = a.
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Clearly it follows that μ : R → P∗(H), defined by μ(r) = fr, is an inclusive homomorphism, so the
general left hypernear-ring (R,⊕P1 ,�P2) is W-embeddable in T∗(H).

Example 2. Consider the semigroup (N, ·) of natural numbers with the standard multiplication operation and
the order “≤”. Define on it the hyperoperations +≤ and ·≤ as follows:

x +≤ y = {z | x ≤ z ∨ y ≤ z}

x ·≤ y = {z | x · y ≤ z}.
Then the structure (N,+≤, ·≤) is a strongly distributive general hypernear-ring (in fact it is a hyperring).

This follows from Theorem 4.3 [19]. Furthermore, for any a /∈ N, it can be easily verified that (N,+≤) is a
proper subhypergroup of (N∪ {a},+′≤), where the hyperoperation +′≤ is defined by:

x +′≤ y =

{
x +≤ y, if x, y ∈ N
N∪ {a}, if x = a ∨ y = a.

In this case, for a fixed n ∈ N, we can define the multimapping fn : N∪ {a} → P∗(N∪ {a}) as follows:

fn(g) =

{
g ·≤ n, if g ∈ N
n, if g = a

=

{
{k ∈ N | g · n ≤ k}, if g ∈ N
n, if g = a

and therefore the mapping μ : N → P∗(N ∪ {a}) is an inclusive homomorphism. Again this shows that the
general hypernear-ring (N,+≤, ·≤) is W-embeddable in T∗(N∪ {a}).

Example 3. Let R = {0, 1, 2, 3}. Consider now the semigroup (R, ·) defined by Table 1:

Table 1. The Cayley table of the semigroup (R, ·)

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

Define on R the hyperoperation +≤ as follows: x +≤ y = {z | x ≤ z ∨ y ≤ z}, so its Cayley table is
described in Table 2:

Table 2. The Cayley table of the hypergroupoid (R,+≤)

+≤ 0 1 2 3

0 R R R R
1 R {1,2,3} {1,2,3} {1,2,3}
2 R {1,2,3} {2,3} {2,3}
3 R {1,2,3} {2,3} {3}

Obviously, the relation ≤ is reflexive and transitive and, for all x, y, z ∈ R, it holds: x ≤ y⇒ z · x ≤ z · y.
Thus, (R,+≤, ·) is an (additive) hypernear-ring. Let H = R∪ {4} and define the hyperoperation +≤ as follows:

x +≤ y =

{
x +≤ y, if x, y ∈ {0, 1, 2, 3}

H, if x = 4∨ y = 4
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It follows that (R,+) is a proper subhypergroup of (H,+) and for a fixed r ∈ R it holds fr(x) = r, for all
x ∈ H. This implies that the mapping μ : H → P∗(H), defined by μ(r) = fr for any r ∈ R, is an
inclusive homomorphism.

Now we will construct a left general additive hypernear-ring associated with an
arbitrary hypergroup.

Theorem 6. Let (H,+) be a hypergroup and T(H) = { f : H → H}. On the set T(H) define the
hyperoperation ⊕T and the operation �T as follows:

f ⊕T g = {h ∈ T(H) | (∀x ∈ H) h(x) ∈ f (x) + g(x)},

( f �T g)(x) = g( f (x)), for all x ∈ H.

The obtained structure (T(H),⊕T ,�T) is a (left) general additive hypernear-ring.

Proof. Let f , g ∈ T(H). We prove that there exists h ∈ T(H) such that h(x) ∈ f (x) + g(x) for all
x ∈ H. Let x ∈ H. Since f (x) + g(x) 	= ∅ we can choose hx ∈ f (x) + g(x) and define h(x) = hx.
Obviously, h ∈ f ⊕T g. Now we prove that the hyperoperation ⊕T is associative. Let f , g, h ∈ T(H).
Set L = ( f ⊕T g) ⊕T h = {h′′ | (∀x) h′′(x) ∈ h′(x) + h(x) ∧ h′(x) ∈ f (x) + g(x)} and D = f ⊕T
(g⊕T h) = { f ′′ | (∀x) f ′′(x) ∈ f (x) + f ′(x) ∧ f ′(x) ∈ g(x) + h(x)}. Thus, if h′′ ∈ L, then h′′(x) ∈
( f (x) + g(x)) + h(x) = f (x) + (g(x) + h(x)). Thereby, for any x ∈ H, there exists ax ∈ g(x) + h(x)
such that h′′(x) ∈ f (x) + ax. Define f ′(x) = ax. Then, f ′ ∈ g ⊕T h and for all x ∈ H it holds
h′′(x) ∈ f (x) + f ′(x). Therefore, h′′ ∈ D. So, L ⊆ D. Similarly, we obtain that D ⊆ L. Now,
let f , g ∈ T(H). We prove that the equation f ∈ g ⊕T h has a solution h ∈ T(H). Since (H,+)

is a hypergroup, it follows that, for any x ∈ H, there exists bx ∈ H such that f (x) ∈ g(x) + bx.
Define h : H → H by h(x) = bx. Then h ∈ T(H) and f ∈ g⊕T h. Similarly, we obtain that the equation
f ∈ h⊕T g has a solution in T(H). We may conclude that (T(H),⊕T) is a hypergroup.

Obviously, (T(H),�T) is a semigroup, because the composition of functions is associative.
Now we prove that the hyperoperation ⊕T is left inclusively distributive with respect to the
operation �T . Let f , g, h ∈ T(H). Set L = f �T (g ⊕T h) = { f �T k | k ∈ g ⊕T h} and
D = ( f �T g) ⊕T ( f �T h) = {h′ | (∀x ∈ H) h′(x) ∈ g( f (x)) + h( f (x))}. Let k ∈ g ⊕ h. Then,
for all x ∈ H, it holds ( f � k)(x) = k( f (x)) ⊆ g( f (x)) + h( f (x)). Thus, f � k ∈ D, meaning that
L ⊆ D.

For an arbitrary group G, Malone and Heatherly [2] denote by T0(G) the subset of T(G) consisting
of the functions which commute multiplicatively with the zero-function, i.e., T0(G) = { f : G → G |
f (0) = 0}. Obviously, T0(G) is a sub-near-ring of (T(G),+, ·). The next result extends this property to
the case of hyperstructures.

Theorem 7. Let (H,+) be a hypergroup with the identity element 0 (i.e., for all x ∈ H, it holds x ∈
x + 0 ∩ 0 + x), such that 0 + 0 = {0}. Let T0(H) = { f : H → H | f (0) = 0}. Then, T0(H) is a
subhypernear-ring of the general additive hypernear-ring (T(H),⊕T ,�T).

Proof. Let f , g ∈ T0(H). If h ∈ f ⊕T g, then h(0) ∈ f (0) + g(0) = 0 + 0 = {0}, i.e., h(0) = 0.
Thus, h ∈ T0(H). Let f , g ∈ T0(H). We prove now that the equation f ∈ g ⊕ a has a solution
a ∈ T0(H). If we set a(0) = 0 and a(x) = ax, where f (x) ∈ g(x) + ax, for x 	= 0 and ax ∈ H,
then a ∈ T0(H) and f ∈ g + a. Similarly the equation f ∈ a ⊕ g has a solution a ∈ T0(H). Thus,
(T0(H),⊕T) is a subhypergroup of (T(H),⊕T). Obviously, if f , g ∈ T0(H), then it follows that
( f �T g)(0) = g( f (0)) = g(0) = 0, i.e., f �T g ∈ T0(H). So, (T0(H),�T) is a subsemihypergroup of
(T(H),�T), implying that T0(H) is a subsemihypernear-ring of T(H).
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Theorem 8. Let (R,+, ·) be an additive hypernear-ring such that (R,+) is a proper subhypergroup of the
hypergroup (H,+), having an identity element 0 satisfying the following properties:

1. 0 + 0 = {0} and
2. 0 · r = 0, for all r ∈ R.

Then the hypernear-ring (R,+, ·) is W−embeddable in the additive hypernear-ring T0(H).

Proof. For a fixed r ∈ R, define a map f : H → H as follows

fr(g) =

{
g · r, if g ∈ R
r, if g ∈ H \ R.

Obviously, fr(0) = 0 · r = 0. So, fr ∈ T0(H) and, similarly as in the proof of Theorem 5,
we obtain that the map ρ : (R,+, ·)→ (T0(H),⊕T ,�T) defined by ρ(r) = fr is an injective inclusion
homomorphism.

Example 4. On the set H = {0, 1, 2, 3, 4, 5, 6} define an additive hyperoperation and a multiplicative operation
having the Cayley tables described in Tables 3 and 4, respectively:

Table 3. The Cayley table of the hypergroupoid (H,+)

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 {0, 6} 1
2 2 3 4 5 {0, 6} 1 2
3 3 4 5 {0, 6} 1 2 3
4 4 5 {0, 6} 1 2 3 4
5 5 {0, 6} 1 2 3 4 5
6 6 1 2 3 4 5 0

Table 4. The Cayley table of the semigroup (H, ·)

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 5 4 3 2 1 0
2 0 1 2 3 4 5 0
3 0 0 0 0 0 0 0
4 0 5 4 3 2 1 0
5 0 1 2 3 4 5 0
6 0 0 0 0 0 0 0

The structure (H,+, ·) is an (additive) hypernear-ring [16].

Let R = {0, 3, 6}. Then (R,+, ·) is a hypernear-ring (in particular it is a subhypernear-ring of (H,+, ·)).
Obviously, (R,+) is a proper subhypergroup of the hypergroup (H,+), which has the identity 0 such that
0 + 0 = {0} and 0 · r = 0, for all r ∈ R. It follows that, for each r ∈ {0, 3, 6}, fr : H → H is a map such that
f0(g) = 0, for all g ∈ H,

f3(g) =

{
g · 3, if g ∈ {0, 3, 6}

3, if g ∈ {1, 2, 4} =

{
0, if g ∈ {0, 3, 6}
3, if g ∈ {1, 2, 4},

while

f6(g) =

{
g · 6, if g ∈ {0, 3, 6}

6, if g ∈ {1, 2, 4} =

{
0, if g ∈ {0, 3, 6}
6, if g ∈ {1, 2, 4}.
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Clearly, the map ρ : (R,+, ·) → (T0(H),⊕T ,�T), defined by ρ(r) = fr, is an injective inclusion
homomorphism, so the hypernear-ring R is W-embeddable in T0(H).

Remark 3. If (G,+) is a group, then, for any f , g ∈ T(G) = { f : G → G}, it holds f ⊕T g = f + g
and f �T g = f · g, meaning that the transformation near-ring (T(G),+, ·) of a group G is in fact the
structure (T(G),⊕T ,�T). Furthermore, if (R,+, ·) is a zero-symmetric near-ring, i.e., a near-ring in which
any element x satisfies the relation x · 0 = 0 · x = 0, then the map ρ constructed in the proof of Theorem 8 is the
injective homomorphism ρ : R→ T0(G). Thus, according with Theorem 8, it follows that the zero-symmetric
near-ring (R,+, ·) is W-embeddable in the near-ring T0(G), where (G,+) is any group containing (R,+) as a
proper subgroup.

Remark 4. If (G,+) is a group, then the following inclusions hold: T0(G) ⊆ T(G) ⊆ T∗(G), where both
T(G) and T0(G) are sub-(hyper)near-rings of the hypernear-ring T∗(G). Considering now (H,+) a
hypergroup, the same inclusions exist: T0(H) ⊆ T(H) ⊆ T∗(H), but generally T(H) and T0(H) are
not subhypernear-rings of T∗(H).

Proposition 1. Let (H,+) be a hypergroup with the identity element 0 (i.e., for all x ∈ H it holds x ∈
x + 0 ∩ 0 + x) such that 0 + 0 = {0}. Let T∗0 (H) = { f : H → P∗(H) | f (0) = 0}. Then, T∗0 (H) is a
subhypernear-ring of the general hypernear-ring (T∗(H),⊕,�).

Proof. Let f , g ∈ T∗0 (H). If h ∈ f ⊕ g, then it holds h(0) ⊆ f (0) + g(0) = 0 + 0 = {0}. Since h(0) 	= ∅,
it follows that h(0) = {0}. Thus, h ∈ T∗0 (H). Let f , g ∈ T∗0 (H). We prove that the equation f ∈ g⊕ a
has a solution a ∈ T∗0 (H). If we set a(0) = 0 and a(x) = H, for all x 	= 0, then a ∈ T∗0 (H) and,
for all x 	= 0, it holds g(x) + a(x) = H ⊇ f (x) and g(0) + a(0) = {0} = f (0), meaning that
f ∈ g⊕ a. Similarly, the equation f ∈ a⊕ g has a solution in T∗0 (H). So, (T∗0 (H)) is a subhypergroup
of (T∗(H),⊕). Obviously, if h ∈ f � g, then h(0) ⊆ g( f (0)) = {0}. So, h ∈ T∗0 (H). Thus T∗0 (H) is a
subsemihypergroup of (T∗(H),�). Therefore, T∗0 (H) is a subhypernear-ring of (T∗(H),⊕,�).

4. Conclusions

Distributivity property plays a fundamental role in the ring-like structures, i.e., algebraic structures
endowed with two operations, usually denoted by addition and multiplication, where the
multiplication distributes over the addition. If this happens only from one-hand side, then we
talk about near-rings. Similarly, in the framework of algebraic hypercompositional structures,
a general hypernear-ring has the additive part an arbitrary hypergroup, the multiplicative part is a
semihypergroup, and the multiplication hyperoperation inclusively distributes over the hyperaddition
from the left or right-hand side, i.e., for three arbitrary elements x, y, z, there is x · (y + z) ⊆ x · y + x · z
for the left-hand side, and respectively, (y + z) · x ⊆ y · x + z · x for the right-hand side. If the inclusion
is substituted by equality, then the general hypernear-ring is called strongly distributive. We also recall
here that there exist also hyperrings having the additive part a group, while the multiplicative one is a
semihypergroup, being called multiplicative hyperrings [20].

The set of all transformations of a group G, i.e., T(G) = {g : G → G}, can be endowed with
a near-ring structure, while similarly, on the set of all multitransformations of a hypergroup H,
i.e., T∗(H) = {h : H → P∗(H)}, can be defined a general hypernear-ring structure, called the
multitransformations general hypernear-ring associated with the hypergroup H. We have shown that
for every general hypernear-ring R there exists a hypergroup H such that R is weakly embeddable
in the associated multitransformations general hypernear-ring T∗(H) (see Theorem 5). Moreover,
considering the set T(H) = { f : H → H} of all transformations of a hypergroup H, we have defined
on it a hyperaddition and a multiplication such that T(H) becomes a general additive hypernear-ring.
We have determined conditions under which the set T0(H), formed with the transformations of H
that multiplicatively commute with the zero function on H, is a subhypernear-ring of T(H). Besides,
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an additive hypernear-ring satisfying certain conditions can be weakly embedded in the additive
hypernear-ring T0(H) (see Theorem 8).

In our future work, we intend to introduce and study properties of Δ−endomorphisms and
Δ−multiendomorphisms of hypernear-rings as generalizations of similar notions on near-rings.
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Abstract: Edge even graceful labeling (e.e.g., l.) of graphs is a modular technique of edge labeling
of graphs, introduced in 2017. An e.e.g., l. of simple finite undirected graph G = (V(G), E(G)) of
order P =

∣∣∣(V(G)
∣∣∣ and size q =

∣∣∣E(G)
∣∣∣ is a bijection f : E(G)→ {2, 4, . . . , 2q

}
, such that when each

vertex v ∈ V(G) is assigned the modular sum of the labels (images of f ) of the edges incident to v, the
resulting vertex labels are distinct mod2r, where r = max(p, q). In this work, the family of cylinder
grid graphs are studied. Explicit formulas of e.e.g., l. for all of the cases of each member of this family
have been proven.

Keywords: graceful labeling; edge even graceful labeling; cylinder grid graph

1. Introduction

The field of graph theory plays an important role in various areas of pure and applied sciences.
One of the important areas in graph theory is graph labeling of a graph G which is an assignment of
integers either to the vertices or edges or both subject to certain conditions. Graph labeling began
nearly 50 years ago. Over these decades, more than 200 methods of labeling techniques were invented,
and more than 2500 papers were published. In spite of this huge literature, just few general results were
discovered. Nowadays, graph labeling has much attention from different brilliant researchers in graph
theory, which has rigorous applications in many disciplines, e.g., communication networks, coding
theory, X-ray crystallography, radar, astronomy, circuit design, communication network addressing,
database management, and graph decomposition problems. More interesting applications of graph
labeling can be found in References [1–11]. A function f is called a graceful labeling of a graph G
if f : V(G)→ {0, 1, 2, . . . , q

}
is injective and the induced function f ∗ : E(G)→ {1, 2, . . . , q

}
, defined as

f ∗(e = uv) =
∣∣∣ f (u) − f (v)

∣∣∣, is bijective. This type of graph labeling was first introduced by Rosa in
1967 [12] as a β− valuation, and later, Solomon W. Golomb [13] termed it as graceful labeling. A function
f is called an odd graceful labeling of a graph G if f : V(G)→ {0, 1, 2, . . . , 2q− 1

}
is injective and the

induced function f ∗ : E(G)→ {1, 3, . . . , 2q− 1
}
, defined as f ∗(e = uv) =

∣∣∣ f (u) − f (v)
∣∣∣, is bijective.

This type of graph labeling first introduced by Gnanajothi in 1991 [14]. For more results on this type
of labeling, see References [15,16]. A function f is called an edge graceful labeling of a graph G if
f : E(G)→ {1, 2, . . . , q

}
is bijective and the induced function f ∗ : V(G)→ {0, 1, 2, . . . , p− 1

}
, defined

as f ∗(u) =
∑

e=uv∈E(G)
f (e)(modp), is bijective. This type of graph labeling was first introduced by

Lo in 1985 [17]. For more results on this labeling see [18,19]. A function f is called an edge odd
graceful labeling of a graph G if f : E(G)→ {1, 3, . . . , 2q− 1

}
is bijective and the induced function

f ∗ : V(G)→ {0, 1, 2, . . . , 2q− 1
}

defined as f ∗(u) =
∑

e=uv∈E(G)
f (e)(mod2q) is injective. This type of

graph labeling was first introduced by Solairaju and Chithra in 2009 [20]. For more results on this
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labeling, see References [21–23]. A function f is called an edge even graceful labeling of a graph
G if f : E(G)→ {2, 4, . . . , 2q− 2

}
is bijective and the induced function f ∗ : V(G)→ {0, 2, 4, . . . , 2q− 2

}
,

defined as f ∗(u) =
∑

e=uv∈E(G)
f (e)(mod2r) where r = max

{
p, q
}
, is injective. This type of graph labeling

was first introduced by Elsonbaty and Daoud in 2017 [24,25]. For a summary of the results on these
five types of graceful labels as well as all known labeling techniques, see Reference [26].

2. Cylinder Grid Graph

The Cartesian product G1 ×G2 of two graphs G1 and G2, is the graph with vertex set V(G1)×V(G2),
and any two vertices (u1, v1) and (u2, v2) are adjacent in G1 ×G2 whenever u1 = u2 and v1v2 ∈ E(G2)

or v1 = v2 and u1u2 ∈ E(G1). The cylinder grid graph Cm,n is the graph formed from the Cartesian
product Pm ×Cn of the path graph Pm and the cycle graph Cn. That is, the cylinder grid graph consists
of m copies of Cn represented by circles, and will be numbered from the innermost circle to the outer
circle as C(1)

n , C(2)
n , C(3)

n , . . . , C(m−1)
n , C(m)

n and we call them simply circles; n copies of Pm represented by
paths transverse the m circles and will be numbered clockwise as P(1)

m , P(2)
m , P(3)

m , . . . , P(n−1)
m , P(n)

m and we
call them paths (see Figure 1).

Figure 1. Cylinder grid graph Cm,n.

Theorem 1. If m is an even positive integer greater than or equal 2 and n ≥ 2, then the cylinder grid graph
Cm,n, is an edge even graceful graph.
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Proof. Using standard notation p =
∣∣∣V(Cm,n)

∣∣∣ = mn, q =
∣∣∣E(Cm,n)

∣∣∣ = 2mn−n and r = max(p, q) = 2mn−n
and f : E(Cm,n)→ {2, 4, 6, . . . , 4mn− 2n− 2}. Let the cylinder grid graph Cm,n be as in Figure 2. �

Figure 2. The cylinder grid graph Cm,n, m is even and n ≥ 2.

First, we label the edges of the paths P(k)
m , 1 ≤ k ≤ n beginning with the edges of the path

P(1)
m as follows: Move anticlockwise to label the edges v1vn+1, vnv2n, vn−1v2n−1, . . . , v3vn+3, v2vn+2

by 2, 4, 6, . . . , 2n − 2, 2n, then move clockwise to label the edges vn+1v2n+1, vn+2v2n+2, vn+3v2n+3, . . .,
v2n−1v3n−1, v2nv3n by 2n + 2, 2n + 4, 2n + 6, . . . , 4n− 2, 4n, then move anticlockwise to label the edges
v2n+1v3n+1, v3nv4n, v3n−1v4n−1, . . . , v2n+3v3n+3, v2n+2v3n+2 by 4n+ 2, 4n+ 4, 4n+ 6, . . . , 6n− 2, 6n and so
on. Finally, move anticlockwise to label the edges v(m−2)n+1v(m−1)n+1, v(m−1)nvmn, v(m−1)n−1vmn−1, . . .,
v(m−2)n+3v(n−1)m+3, v(m−2)n+2v(m−1)n+2 by 2n(m − 1) + 2, 2n(m − 2) + 4, 2n(m − 2) + 6, 2n(m − 2) +
8, . . . , 2n(m− 1) − 2, 2n(m− 1).

Secondly, we label the edges of the circles C(k)
n , 1 ≤ k ≤ m beginning with the edges of the innermost

circle C(1)
n then the edges of outer circle C(m)

n , then the edges of the circles C(m−2)
n , C(m−4)

n , . . . , C(2)
n .

Finally, we label the edges of the circles C(m−1)
n , C(m−3)

n , . . . , C(3)
n as follows: f (vivi+1) = 2n(m− 1) +

2i, 1 ≤ i ≤ n− 1, f (vnv1) = 2mn; f (v(m−1)n+iv(m−1)n+i+1) = 2mn + 2i, 1 ≤ i ≤ n− 1, f (vmnv(m−1)n+1) =

2n(m + 1); f (v(k−1)n+iv(k−1)n+i+1) = n(3m− k) + 2i, 1 ≤ i ≤ n− 1, f (vknv(k−1)n+1) = n(3m− k + 2), 2 ≤
k ≤ m − 2; f (v(k−1)n+iv(k−1)n+i+1) = n(4m − k − 1) + 2i, 1 ≤ i ≤ n − 1, f (vknv(k−1)n+1) = n(4m − k + 1),
3 ≤ k ≤ m− 1, k is odd.
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Thus, the labels of corresponding vertices mod(4mn − 2n) will be: f ∗(vi) ≡ 2i + 2; f ∗(vn+i) ≡
2mn + 2n + 4i + 2; f ∗(v2n+i) ≡ 4n + 4i + 2; f ∗(v3n+i) ≡ 2mn + 6n + 4i + 2; . . . ; f ∗(v(m−3)n+i) ≡ 4mn −
6n + 4i + 2; f ∗(v(m−2)n+i) ≡ 2mn− 4n + 4i + 2; f ∗(v(m−1)n+i) ≡ 2mn + 2i + 2, 1 ≤ i ≤ n.

Illustration: An e.e.g., l, of the cylinder grid graphs C8,11 and C8,12 are shown in Figure 3.

Theorem 2. If m = 3 and n is an odd positive integer greater than 3, then the cylinder grid graph C3,n, is an
edge even graceful graph.

Proof. Using standard notation p =
∣∣∣V(C3,n)

∣∣∣ = 3n, q =
∣∣∣E(C3,n)

∣∣∣ = 5n, r = max(p, q) = 5n, and
f : E(C3,n)→ {2, 4, 6, . . . , 10n− 2}. There are three cases:

Case (1): If n ≡ 1mod6, let the cylinder grid graph C3,n be as in Figure 4.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. An edge even graceful labeling (e.e.g., l.) of the cylinder grid graphs C8,11 and C8,12.

First, we label the edges of the paths P(k)
3 , 1 ≤ k ≤ n beginning with the edges of the path

P(1)
3 as follows: Move clockwise to label the edges f (v1vn+1) = 2, f (v2vn+2) = 6, f (vivn+i) =

2i + 2, 3 ≤ i ≤ n. Then, move anticlockwise to label the edges f (vn+1v2n+1) = 2n + 4, f (v2nv3n) = 2n +

6, f (v2n−1v3n−1) = 2n + 8, f (v2n−2v3n−2) = 2n + 10, . . . , f (vn+3v2n+3) = 4n, f (vn+2v2n+2) = 4n + 2.
Secondly, we label the edges of the circles C(k)

n , 1 ≤ k ≤ 3 beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(3)
n , and then the edges of the circle C(2)

n . Label the edges of
the circle C(1)

n as follows: f (v1v2) = 4n+ 4, f (v2v3) = 4n+ 6, . . . , f (v n−1
3

v n+2
3
) = 14n+10

3 , f (v n+2
3

v n+5
3
) =

14n+4
3 , f (v n+5

3
v n+8

3
) = 14n+16

3 , f (v n+8
3

v n+11
3

) = 14n+22
3 , f (v n+11

3
v n+14

3
) = 14n+34

3 , f (v n+14
3

v n+17
3

) =

14n+28
3 , f (v n+17

3
v n+20

3
) = 14n+40

3 , f (v n+20
3

v n+23
3

) = 14n+46
3 , f (v n+23

3
v n+26

3
) = 14n+58

3 , f (v n+26
3

v n+29
3

) =

14n+52
3 , f (v n+29

3
v n+32

3
) = 14n+64

3 , f (v n+32
3

v n+35
3

) = 14n+70
3 , f (v n+35

3
v n+38

3
) = 14n+82

3 , f (v n+38
3

v n+41
3

) =

14n+76
3 , f (v n+41

3
v n+44

3
) = 14n+88

3 , f (v n+44
3

v n+47
3

) = 14n+94
3 , . . . , f (vn−13vn−12) = 6n − 22, f (vn−12vn−11) =

6n − 24, f (vn−11vn−10) = 6n − 20, f (vn−10vn−9) = 6n − 18, f (vn−9vn−8) = 6n − 14, f (vn−8vn−7) =

6n − 16, f (vn−7vn−6) = 6n − 12, f (vn−6vn−5) = 6n − 10, f (vn−5vn−4) = 6n − 6, f (vn−4vn−3) = 6n −
8, f (vn−3vn−2) = 6n− 4, f (vn−2vn−1) = 6n− 2, f (vn−1vn) = 6n + 2, f (vnv1) = 6n. �
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Figure 4. The cylinder grid graph C3,n, n ≡ 1mod6.

Label the edges of the circle C(2)
n as follows: f (vn+ivn+i+1) = 8n+ 2i+ 2, 1 ≤ i ≤ n−1, f (v2nvn+1) = 4.

Label the edges of the circle C(3)
n as follows: f (v2n+iv2n+i+1) = 6n + 2i + 2, 1 ≤ i ≤ n.

The labels of corresponding of vertices mod10n are as follows:
The labels of vertices of the circle C(1)

n are as follows: f ∗(v1) ≡ 6, f ∗(v2) ≡ 8n + 16, f ∗(v3) ≡
8n + 22, . . . , f ∗(v n−1

3
) ≡ 4, f ∗(v n+2

3
) ≡ 8, f ∗(v n+5

3
) ≡ 12, f ∗(v n+8

3
) ≡ 20, f ∗(v n+11

3
) ≡ 28, f ∗(v n+14

3
) ≡

32, f ∗(v n+17
3

) ≡ 36, f ∗(v n+20
3

) ≡ 44, f ∗(v n+23
3

) ≡ 52, f ∗(v n+26
3

) ≡ 56, f ∗(v n+29
3

) ≡ 60, f ∗(v n+32
3

) ≡ 68,

f ∗(v n+35
3

) ≡ 76, f ∗(v n+38
3

) ≡ 80, f ∗(v n+41
3

) ≡ 84, f ∗(v n+44
3

) ≡ 92, f ∗(v n+47
3

) ≡ 100, . . . , f ∗(vn−12) ≡ 4n −
68, f ∗(vn−11) ≡ 4n − 64, f ∗(vn−10) ≡ 4n − 56, f ∗(vn−9) ≡ 4n − 48, f ∗(vn−8) ≡ 4n − 44, f ∗(vn−7) ≡ 4n −
40, f ∗(vn−6) ≡ 4n − 32, f ∗(vn−5) ≡ 4n − 24, f ∗(vn−4) ≡ 4n − 20, f ∗(vn−3) ≡ 4n − 16, f ∗(vn−2) ≡ 4n −
8, f ∗(vn−1) ≡ 4n, f ∗(vn) ≡ 4n + 4.

The labels of vertices of the circle C(2)
n are f ∗(vi+1) = 4i + 10, 1 ≤ i ≤ n− 1, f ∗(v2n) = 4n + 12.

The labels of vertices of the circle C(3)
n are f ∗(v2i+1) = 6n + 2i + 8, 1 ≤ i ≤ n.

Case (2): If n ≡ 3mod6, let the cylinder grid graph C3,n be as in Figure 5.
First, we label the edges of the paths P(k)

3 , 1 ≤ k ≤ n beginning with the edges of the path P(1)
3 as

the same in case (1).
Secondly, we label the edges of the circles C(k)

n , 1 ≤ k ≤ 3 beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(3)
n , and then the edges of the circle C(2)

n .
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Figure 5. The cylinder grid graph C3,n, n ≡ 3mod6.

Label the edges of the circle C(1)
n as follows: f (v1v2) = 4n+ 4, f (v2v3) = 4n+ 6, . . . , f (v n+3

3
v n+6

3
) =

14n+18
3 , f (v n+6

3
v n+9

3
) = 14n+12

3 , f (v n+9
3

v n+12
3

) = 14n+24
3 , f (v n+12

3
v n+15

3
) = 14n+30

3 , f (v n+15
3

v n+18
3

) =

14n+42
3 , f (v n+18

3
v n+21

3
) = 14n+36

3 , f (v n+21
3

v n+24
3

) = 14n+48
3 , f (v n+24

3
v n+27

3
) = 14n+54

3 , f (v n+27
3

v n+30
3

) =

14n+66
3 , f (v n+30

3
v n+33

3
) = 14n+60

3 , f (v n+33
3

v n+36
3

) = 14n+72
3 , f (v n+36

3
v n+39

3
) = 14n+78

3 , f (v n+39
3

v n+42
3

) =

14n+90
3 , f (v n+42

3
v n+45

3
) = 14n+84

3 , f (v n+45
3

v n+48
3

) = 14n+96
3 , f (v n+48

3
v n+51

3
) = 14n+102

3 , . . ., f (vn−13vn−12) =

6n − 22, f (vn−12vn−11) = 6n − 24, f (vn−11vn−10) f (vn−9vn−8) = 6n − 14, f (vn−8vn−7) = 6n − 16,
f (vn−7vn−6) = 6n − 12, f (vn−6vn−5) = 6n − 10, f (vn−5vn−4) = 6n − 6, f (vn−4vn−3) = 6n −
8, f (vn−3vn−2) = 6n− 4, f (vn−2vn−1) = 6n− 2, f (vn−1vn) = 6n + 2, f (vnv1) = 6n.

The labels of corresponding vertices mod10n are as follows: The label of vertices of the circle C(1)
n

are f ∗(v1) ≡ 6, f ∗(v2) ≡ 8n + 16, f ∗(v3) ≡ 8n + 22, . . . , f ∗(v n
3−1) ≡ 10n − 2, f ∗(v n

3
) ≡ 4, f ∗(v n

3 +1) ≡
12, f ∗(v n

3 +2) ≡ 16, f ∗(v n
3 +3) ≡ 20, f ∗(v n

3 +4) ≡ 28, f ∗(v n
3 +5) ≡ 36, f ∗(v n

3 +6) ≡ 40, f ∗(v n
3 +7) ≡

44, f ∗(v n
3 +8) ≡ 52, f ∗(v n

3 +9) ≡ 60, f ∗(v n
3 +10) ≡ 64, f ∗(v n

3 +11) ≡ 68, f ∗(v n
3 +12) ≡ 76, f ∗(v n

3 +13) ≡
84, f ∗(v n

3 +14) ≡ 88, f ∗(v n
3 +15) ≡ 92, f ∗(v n

3 +16) ≡ 100, . . . , f ∗(vn−12) ≡ 4n − 68, f ∗(vn−11) ≡ 4n − 64,
f ∗(vn−10) ≡ 4n − 56, f ∗(vn−9) ≡ 4n − 48, f ∗(vn−8) ≡ 4n − 44, f ∗(vn−7) ≡ 4n − 40, f ∗(vn−6) ≡ 4n −
32, f ∗(vn−5) ≡ 4n− 24, f ∗(vn−4) ≡ 4n− 20, f ∗(vn−3) ≡ 4n− 16, f ∗(vn−2) ≡ 4n− 8, f ∗(vn−1) ≡ 4n, f ∗(vn) ≡
4n + 4.

The labels of vertices of the circles C(2)
n and C(3)

n are the same as in case (1).
Case (3): If n ≡ 5mod6, let the cylinder grid graph C3,n be as in Figure 6.
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Figure 6. The cylinder grid graph C3,n, n ≡ 5mod6.

First, we label the edges of the paths P(k)
3 , 1 ≤ k ≤ 2 beginning with the edges of the path P(1)

3 as

the same in case (1). Second, we label the edges of the circles C(k)
n , 1 ≤ k ≤ 3 beginning with the edges

of the innermost circle C(1)
n , then the edges of outer circle C(3)

n , and then the edges of the circle C(2)
n .

Label the edges of the circle C(1)
n as follows: f (v1v2) = 4n+ 4, f (v2v3) = 4n+ 6, . . . , f (v n−5

3
v n−2

3
) =

14n+2
3 , f (v n−2

3
v n+1

3
) = 14n−4

3 , f (v n+1
3

v n+4
3
) = 14n+8

3 , f (v n+4
3

v n+7
3
) = 14n+14

3 , f (v n+7
3

v n+10
3

) =

14n+26
3 , f (v n+10

3
v n+13

3
) = 14n+20

3 , f (v n+13
3

v n+16
3

) = 14n+32
3 , f (v n+16

3
v n+19

3
) = 14n+38

3 , f (v n+19
3

v n+22
3

) =

14n+50
3 , f (v n+22

3
v n+25

3
) = 14n+44

3 , f (v n+25
3

v n+28
3

) = 14n+56
3 , f (v n+28

3
v n+31

3
) = 14n+62

3 , f (v n+31
3

v n+34
3

) =

14n+74
3 , f (v n+34

3
v n+37

3
) = 14n+68

3 , f (v n+37
3

v n+40
3

) = 14n+80
3 , f (v n+40

3
v n+43

3
) = 14n+86

3 , . . . , f (vn−13vn−12) =

6n − 22, f (vn−12vn−11) = 6n − 24, f (vn−11vn−10) = 6n − 20, f (vn−10vn−9) = 6n − 18, f (vn−9vn−8) =

6n − 14, f (vn−8vn−7) = 6n − 16, f (vn−7vn−6) = 6n − 12, f (vn−6vn−5) = 6n − 10, f (vn−5vn−4) = 6n −
6, f (vn−4vn−3) = 6n− 8, f (vn−3vn−2) = 6n− 4, f (vn−2vn−1) = 6n− 2, f (vn−1vn) = 6n + 2, f (vnv1) = 6n.

The labels of corresponding vertices mod10n are as follows: The labels of vertices of the
circle C(1)

n : f ∗(v1) ≡ 6, f ∗(v2) ≡ 8n + 16, f ∗(v3) ≡ 8n + 22, . . . , f ∗(v n
3−5) ≡ 10n − 4, f ∗(v n−2

3
) ≡

0, f ∗(v n+1
3
) ≡ 4, f ∗(v n+4

3
) ≡ 12, f ∗(v n+7

3
) ≡ 20, f ∗(v n+10

3
) ≡ 24, f ∗(v n+13

3
) ≡ 28, f ∗(v n+16

3
) ≡ 36, f ∗(v n

3 +7) ≡
44, f ∗(v n+19

3
) ≡ 44, f ∗(v n+22

3
) ≡ 48, f ∗(v n+25

3
) ≡ 52, f ∗(v n+28

3
) ≡ 60, f ∗(v n+31

3
) ≡ 68, f ∗(v n+34

3
) ≡

72, f ∗(v n+37
3

) ≡ 76, f ∗(v n+40
3

) ≡ 84, f ∗(v n+43
3

) ≡ 92, f ∗(v n+46
3

) ≡ 96, f ∗(v n+49
3

) ≡ 100, . . . , f ∗(vn−12) ≡
4n − 68, f ∗(vn−11) ≡ 4n − 64, f ∗(vn−10) ≡ 4n − 56, f ∗(vn−9) ≡ 4n − 48, f ∗(vn−8) ≡ 4n − 44, f ∗(vn−7) ≡
4n − 40, f ∗(vn−6) ≡ 4n − 32, f ∗(vn−5) ≡ 4n − 24, f ∗(vn−4) ≡ 4n − 20, f ∗(vn−3) ≡ 4n − 16, f ∗(vn−2) ≡
4n− 8, f ∗(vn−1) ≡ 4n, f ∗(vn) ≡ 4n + 4.
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The labels of vertices of the circles C(2)
n and C(3)

n are the same as in case (1).
Illustration: An e.e.g., l. of the cylinder grid graphs C3,25, C3,27 and C3,29 are shown in Figure 7.

 

(a)  

 

(b)  

Figure 7. Cont.
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(c)  

Figure 7. An e.e.g., l. of the cylinder grid graphs C3,25, C3,27 and C3,29.

Remark 1. Note that C3,5 is an edge even graceful graph but it does not follow the pervious rule (see Figure 8).

Figure 8. An e.e.g., l. of the cylinder grid graph C3,5.
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Theorem 3. If m is an odd positive integer greater than 3 and n is an even positive integer, n ≥ 2, then the
cylinder grid graph Cm,n, is an edge even graceful graph.

Proof. Using standard notation p =
∣∣∣V(Cm,n)

∣∣∣ = mn, q =
∣∣∣E(Cm,n)

∣∣∣ = 2mn − n and r = max(p, q) =
2mn− n and f : E(Cm,n)→ {2, 4, 6, . . . , 4mn− 2n− 2}. �

Let the cylinder grid graph Cm,n be as in Figure 9. There are six cases:

Figure 9. The cylinder grid graph Cm,n,m is odd greater than 3 and n ≥ 2.

Case (1): n ≡ 0mod12. First, we label the edges of the paths P(k)
m , 1 ≤ k ≤ n

beginning with the edges of the path P(1)
m as follows: Move clockwise to label the edges

v1vn+1, v2vn+2, v3vn+3, . . . , vn−1v2n−1, vnv2n by 2, 4, 6, . . . , 2n − 2, 2n, then move anticlockwise to label
the edges vn+1vn+2, v2nv3n, v2n−1v3n−1, . . . , vn+3v2n+3, vn+2v2n+2 by 2n + 2, 2n + 4, 2n + 6, . . . , 4n− 2, 4n,
then move clockwise to label the edges v2n+1v3n+1, v2n+2v3n+2, v2n+3v3n+3, . . . , v3n−1v4n−1, v3nv4n by
4n + 2, 4n + 4, 4n + 6, . . . , 6n− 2, 6n and so on.

Finally, move anticlockwise to label the edges v(m−2)n+1v(m−1)n+1, v(m−1)nvmn, v(m−1)n−1vmn−1, . . . ,
v(m−2)n+3v(m−1)n+3, v(m−2)n+2vm(n−1)+2 by 2n(m− 2) + 2, 2n(m− 2) + 4, 2n(m− 2) + 6, . . . , 2n(m− 1) −
2, 2n(m− 1).
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Secondly, we label the edges of the circles C(k)
n , 1 ≤ k ≤ m beginning with the edges of the inner

most circle C(1)
n , then the edges of outer circle C(m)

n , then the edges of the circles C(m−1)
m , C(m−3)

m , . . . , C(2)
m .

Finally, we label the edges of the circles C(m−1)
m , C(m−3)

m , . . . , C(2)
m .

Label the edges of the circle C(1)
n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +

6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, . . . , f (vn−7vn−6) = 2mn −
14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) = 2mn − 12, f (vn−4vn−3) = 2mn − 8, f (vn−3vn−2) = 2mn −
2, f (vn−2vn−1) = 2mn− 6, f (vn−1vn) = 2mn, f (vnv1) = 2mn− 4.

Label the edges of the circle C(m)
n as follows: f (v(m−1)n+iv(m−1)n+i+1) = 2mn +

2i, f (vmnv(m−1)n+1) = 2n(m + 1), 1 ≤ i ≤ n− 1.

Label the edges of the circle C(m−2)
n as follows: f (v(m−3)n+iv(m−3)n+i+1) = 2n(m + 1) +

2i, f (v(m−2)nv(m−3)n+1) = 2n(m + 2), 1 ≤ i ≤ n− 1.

Label the edges of the circle C(m−4)
n as follows: f (v(m−5)n+iv(m−5)n+i+1) = 2n(m + 2) +

2i, f (v(m−4)nv(m−5)n+1) = 2n(m + 3), 1 ≤ i ≤ n− 1, and so on.

Label the edges of the circle C(3)
n as follows: f (v2n+iv2n+i+1) = 3n(m − 1) + 2i, f (v3nv2n+1) =

n(3m− 1), 1 ≤ i ≤ n− 1,
Label the edges of the circle C(m−1)

n as follows: f (v(m−2)n+iv(m−2)n+i+1) = n(3m − 1) +
2i, f (v(m−1)nv(m−1)n+1) = n(3m + 1) − 1, 1 ≤ i ≤ n− 1,

Label the edges of the circle C(m−3)
n as follows: f (v(m−4)n+iv(m−4)n+i+1) = n(3m + 2) +

2i, f (v(m−3)nv(m−4)n+1) = 3n(m + 1), 1 ≤ i ≤ n− 1, . . . , and so on.

Label the edges of the circle C(4)
n as follows: f (v3n+iv3n+i+1) = 2n(2m − 3) + 2i, f (v4nv3n+1) =

4n(m− 1), 1 ≤ i ≤ n− 1,
Label the edges of C(2)

n as follows: f (vn+ivn+i+1) = 4n(m− 1) + 2i, f (v2nv2n+1) = 2n(m− 1), 1 ≤
i ≤ n− 1,

Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The label the vertices of C(1)

n are: f ∗(v1) ≡ 0; f ∗(v2) ≡ 4mn − 4n + 12; f ∗(v3) ≡ 4mn − 4n +

16; f ∗(v4) ≡ 4mn − 4n + 20; f ∗(v5) ≡ 4mn − 4n + 28; f ∗(v6) ≡ 4mn − 4n + 36; f ∗(v7) ≡ 4mn − 4n +

40; f ∗(v8) ≡ 4mn − 4n + 44; f ∗(v9) ≡ 4mn − 4n + 52; f ∗(v10) ≡ 4mn − 4n + 60; f ∗(v11) ≡ 4mn − 4n +

64; f ∗(v12) ≡ 4mn − 4n + 68; . . . ; f ∗(vn−6) ≡ 4n − 36; f ∗(vn−5) ≡ 4n − 32; f ∗(vn−4) ≡ 4n − 28; f ∗(vn−3) ≡
4n− 16; f ∗(vn−2) ≡ 4n− 12; f ∗(vn−1) ≡ 4n− 8; f ∗(vn) ≡ 4n− 4.

The label the vertices of C(2)
n , C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n respectively are: f ∗(vn+i) ≡
4i + 2; f ∗(v2n+i) ≡ 2mn + 4n + 4i + 2; f ∗(v3n+i) ≡ 4n + 4i + 2; . . . ; f ∗(v(m−3)n+i) ≡ 4mn − 6n + 4i + 2;
f ∗(v(m−2)n+i) ≡ 2mn− 6n + 4i + 2; f ∗(v(m−1)n+i) ≡ 2mn + 2i + 2, 1 ≤ i ≤ n.

Case (2): n ≡ 2mod12, n � 2.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n begin with the edges of the path P(1)
m as the

same in case (1).
Secondly, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m begin with the edges of the inner most
circle C(1)

n , then the edges of outer circle C(m)
n , then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, . . ., f (vn−9vn−8) = 2mn −
18, f (vn−8vn−7) = 2mn − 14, f (vn−7vn−6) = 2mn − 16, f (vn−6vn−5) = 2mn − 12, f (vn−5vn−4) =

2mn − 10, f (vn−4vn−3) = 2mn − 6, f (vn−3vn−2) = 2mn − 8, f (vn−2vn−1) = 2mn − 4, f (vn−1vn) =

2mn− 2, f (vnv1) = 2mn.
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Label the edges of the circle C(2)
n as follows: f (vn+1vn+2) = 4n(m − 1) + 4, f (vn+2vn+3) =

4n(m − 1) + 2, f (vn+3vn+4) = 4n(m − 1) + 8, f (vn+4vn+5) = 4n(m − 1) + 6, f (vn+ivn+i+1) = 4n(m −
1) + 2i, 6 ≤ i ≤ n − 2, f (v2n−1v2n) = 2n(2m − 1), f (v2nvn+1) = 2n(2m − 1) − 2. Label the edges of
C(m)

n , C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n as in case (1).

Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The label the vertices of C(1)

n are: f ∗(v1) ≡ 4, f ∗(v2) ≡ 4mn − 4n + 12, f ∗(v3) ≡ 4mn −
4n + 16, f ∗(v4) ≡ 4mn − 4n + 20, f ∗(v5) ≡ 4mn − 4n + 28, f ∗(v6) ≡ 4mn − 4n + 36, f ∗(v7) ≡
4mn − 4n + 40, f ∗(v8) ≡ 4mn − 4n + 44, f ∗(v9) ≡ 4mn − 4n + 52, f ∗(v10) ≡ 4mn − 4n + 60, f ∗(v11) ≡
4mn − 4n + 64, f ∗(v12) ≡ 4mn − 4n + 68, f ∗(v13) ≡ 4mn − 4n + 76, . . . , f ∗(vn−8) ≡ 4n − 48, f ∗(vn−7) ≡
4n − 44, f ∗(vn−6) ≡ 4n − 40, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 24, f ∗(vn−3) ≡ 4n − 20, f ∗(vn−2) ≡
4n− 16, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n− 2.

The label the vertices of the circle C(2)
n are: f ∗(vn+1) ≡ 6, f ∗(vn+2) ≡ 10, f ∗(vn+3) ≡ 14, f ∗(vn+4) ≡

18, f ∗(vn+5) ≡ 20, f ∗(vn+i) ≡ 4i + 2, 6 ≤ i ≤ n− 2, f ∗(v2n−1) ≡ 4n, f ∗(v2n) ≡ 4n + 2.
The label the vertices of C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n respectively are as the same as in case (1).

Remark 2. In case n = 2. Let the edges of the cylinder grid graph Cm,2 are labeled as shown in Figure 10.
The corresponding labels of vertices mod(8m − 4) are as follows: f ∗(v1) ≡ 8, f ∗(v2i+1) ≡ 4m + 8i + 4, 1 ≤
i ≤ m−3

2 , f ∗(v2i) ≡ 8i + 6, 1 ≤ i ≤ m−1
2 ; f ∗(v′1) ≡ 12, f ∗(v′2) ≡ 20, f ∗(v′2i+1) ≡ 4m + 8i + 18, 1 ≤ i ≤

m−3
2 , f ∗(v′2i) ≡ 8i + 10, 2 ≤ i ≤ m−1

2 .

 
Figure 10. The cylinder grid graph Cm,2.
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Case (3): n ≡ 4mod12.
First we label the edges of the paths P(k)

m , 1 ≤ k ≤ n begin with the edges of the path P(1)
m as the

same in case (1).
Second we label the edges of the circles C(k)

n , 1 ≤ k ≤ m begin with the edges of the inner most
circle C(1)

n , then the edges of outer circle C(m)
n , then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, . . . , f (vn−8vn−7) = 2mn −
16, f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) = 2mn − 12, f (vn−4vn−3) = 2mn −
8, f (vn−3vn−2) = 2mn− 2, f (vn−2vn−1) = 2mn− 6, f (vn−1vn) = 2mn, and f (vnv1) = 2mn− 4.

Label the edges of C(m)
n , C(m−2)

n , C(m−4)
n , . . . , C(3)

n and C(m−1)
n , C(m−3)

n , C(m−5)
n , . . . , C(4)

n , C(2)
n as in case (1).

Thus we have the labels of corresponding vertices of the circle C(1)
n mod(4mn − 2n) will be:

f ∗(v1) ≡ 0, f ∗(v2) ≡ 4mn − 4n + 12, f ∗(v3) ≡ 4mn − 4n + 16, f ∗(v4) ≡ 4mn − 4n + 20, f ∗(v5) ≡ 4mn −
4n + 28, f ∗(v6) ≡ 4mn − 4n + 36, f ∗(v7) ≡ 4mn − 4n + 40, f ∗(v8) ≡ 4mn − 4n + 44, f ∗(v9) ≡ 4mn −
4n + 52, f ∗(v10) ≡ 4mn − 4n + 60, f ∗(v11) ≡ 4mn − 4n + 64, f ∗(v12) ≡ 4mn − 4n + 68, f ∗(v13) ≡ 4mn −
4n + 76, . . . , f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 36, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 28, f ∗(vn−3) ≡
4n− 16, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n− 4.

The label the vertices of C(2)
n , C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n respectively are as same in case (1)

Remark 3. In case n = 4. Let the the edges of the cylinder grid graph Cm,4 are labeled as shown in Figure 11.
The corresponding labels of vertices mod(16m− 8) are as follows: f ∗(v1) ≡ 6, f ∗(v2) ≡ 8, f ∗(v3) ≡ 16, f ∗(v4) ≡
20; f ∗(v4i+1) ≡ 4i + 10, 1 ≤ i ≤ 3, f ∗(v8) ≡ 28; f ∗(v8k+i) ≡ 8m + 4i + 16k − 10, 1 ≤ i ≤ 4, 1 ≤ k ≤
m−5

2 ; f ∗(v4m−11) ≡ 0, f ∗(v4m−10) ≡ 2, f ∗(v4m−9) ≡ 4, f ∗(v4m−8) ≡ 10, f ∗(v8k+4+i) ≡ 4i + 16k + 10, 1 ≤ i ≤
4, 1 ≤ k ≤ m−3

2 .

Case (4): n ≡ 6mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n begin with the edges of the path P(1)
m as the

same in case (1).
Secondly, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m begin with the edges of the inner most
circle C(1)

n , then the edges of outer circle C(m)
n , then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, . . ., f (vn−9vn−8) = 2mn −
18, f (vn−8vn−7) = 2mn − 14, f (vn−7vn−6) = 2mn − 16, f (vn−6vn−5) = 2mn − 12, f (vn−5vn−4) = 2mn −
10, f (vn−4vn−3) = 2mn − 6, f (vn−3vn−2) = 2mn − 8, f (vn−2vn−1) = 2mn − 4, f (vn−1vn) = 2mn + 2,
f (vnv1) = 2mn− 2.

Label the edges of C(m−4)
n , . . . , C(3)

n and C(m−1)
n , C(m−3)

n , C(m−5)
n , . . . , C(4)

n , C(2)
n as in case (1).

Label the edges of the circle C(m−2)
n as follows: f (v(m−3)n+1v(m−3)n+2) = 2n(m +

2), f (v(m−3)n+iv(m−3)n+i+1) = 2n(m + 1) + 2i, 2 ≤ i ≤ n− 1, f (v(m−2)nv(m−3)n+1) = 2n(m + 2) + 2.

Label the edges of the circle C(m)
n as follows: f (v(m−1)n+1v(m−1)n+2) =

2mn, f (v(m−1)n+iv(m−1)n+i+1) = 2mn + 2i, 2 ≤ i ≤ n− 1, f (v(m−2)nv(m−3)n+1) = 2n(m + 2).
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Figure 11. An e.e.g., l. of the cylinder grid graph Cm,4.

Thus we have the labels of corresponding vertices mod(4mn− 2n) will be:
The labels the vertices of the circle C(1)

n are: f ∗(v1) ≡ 2, f ∗(v2) ≡ 4mn − 4n + 12, f ∗(v3) ≡
4mn− 4n + 16, f ∗(v4) ≡ 4mn− 4n + 20, f ∗(v5) ≡ 4mn− 4n + 28, f ∗(v6) ≡ 4mn− 4n + 36, f ∗(v7) ≡ 4mn−
4n + 40, f ∗(v8) ≡ 4mn− 4n + 44, f ∗(v9) ≡ 4mn− 4n + 52, f ∗(v10) ≡ 4mn− 4n + 60, f ∗(v11) ≡ 4mn− 4n +

64, f ∗(v12) ≡ 4mn − 4n + 68, . . . , f ∗(vn−8) ≡ 4n − 48, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 40, f ∗(vn−5) ≡
4n− 32, f ∗(vn−4) ≡ 4n− 24, f ∗(vn−3) ≡ 4n− 20, f ∗(vn−2) ≡ 4n− 16, f ∗(vn−1) ≡ 4n− 4; f ∗(vn) ≡ 4n.

The labels the vertices of the circle C(m−2)
n are: f ∗(v(m−3)n+1) ≡ 4mn − 6n + 6; f ∗(v(m−3)n+2) ≡

4mn− 6n + 8; f ∗(v(m−3)n+i) ≡ 4mn− 6n + 4i + 2, 3 ≤ i ≤ n− 1, f ∗(v(m−2)n) ≡ 4mn− 4n + 4.

The labels the vertices of C(2)
n , C(3)

n , C(4)
n , . . . , C(m−1)

n , C(m−3)
n respectively are the same as in case (1).

The labels the vertices of C(m)
n are: f ∗(v(m−1)n+1) ≡ 2mn+ 2, f ∗(v(m−1)n+2) ≡ 2mn+ 4, f ∗(v(m−1)n+i) ≡

2mn+ 2i+ 2, 3 ≤ i ≤ n. Case (5): n ≡ 8mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n begin with the edges of the path P(1)
m as the

same in case (1).
Secondly, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m begin with the edges of the inner most
circle C(1)

n , then the edges of outer circle C(m)
n , then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m

Label the edges of the circle C(1)
n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +

6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =
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2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, f (v13v14) = 2n(m − 1) +
26, . . . , f (vn−9vn−8) = 2mn − 20, f (vn−8vn−7) = 2mn − 16, f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) =

2mn − 10, f (vn−5vn−4) = 2mn − 12, f (vn−4vn−3) = 2mn − 8, f (vn−3vn−2) = 2mn − 6, f (vn−2vn−1) =

2mn− 2, f (vn−1vn) = 2mn− 4, f (vnv1) = 2mn + 4.
Label the edges of the circle C(m)

n as follows f (v(m−1)n+1v(m−1)n+2) = 2mn +

2, f (v(m−1)n+2v(m−1)n+3) = 2mn + 6, f (v(m−1)n+iv(m−1)n+i+1) = 2mn + 2i + 2, 3 ≤ i ≤ n −
1, f (vmnv(m−1)n+1) = 2mn.

Label the edges of C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n , C(2)

n as the same in
case (1).

Thus we labels of corresponding vertices of the circle C(1)
n mod(4mn − 2n) will be: f ∗(v1) ≡

8, f ∗(v2) ≡ 4mn − 4n + 12, f ∗(v3) ≡ 4mn − 4n + 16, f ∗(v4) ≡ 4mn − 4n + 20, f ∗(v5) ≡ 4mn − 4n + 28,
f ∗(v6) ≡ 4mn − 4n + 36, f ∗(v7) ≡ 4mn − 4n + 40, f ∗(v8) ≡ 4mn − 4n + 44, f ∗(v9) ≡ 4mn − 4n + 52,
f ∗(v10) ≡ 4mn− 4n + 60, f ∗(v11) ≡ 4mn− 4n + 64, f ∗(v12) ≡ 4mn− 4n + 68, f ∗(v13) ≡ 4mn− 4n + 76, . . .,
f ∗(vn−8) ≡ 4n − 52, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 36, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 28,
f ∗(vn−3) ≡ 4n− 20, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n.

The labels the vertices of the circle C(m)
n are: f ∗(v(m−1)n+1) ≡ 2mn − 4n + 14, f ∗(v(m−1)n+2) ≡

2mn + 8, f ∗(v(m−1)n+i) ≡ 2mn + 2i + 6, 3 ≤ i ≤ n − 1, f ∗(vmn) ≡ 2mn + 4. The labels the vertices of

C(2)
n , C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n respectively are as the same in case (1).

Case (6): n ≡ 10mod12. First we label the edges of the paths P(k)
m , 1 ≤ k ≤ n begin with the edges

of the path P(1)
m as the same as in case (1).

Second we label the edges of the circles C(k)
n , 1 ≤ k ≤ m begin with the edges of the inner most

circle C(1)
n , then the edges of outer circle C(m)

n , then the edges of the circles C(m−2)
n , C(m−4)

n , . . . , C(3)
n .

Finally we label the edges of the circles C(m−1)
m , C(m−3)

m , . . . , C(2)
m .

Label the edges of the circle C(1)
n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +

6, f (v3v4) = 2n(m − 1) + 4, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 14, f (v7v8) = 2n(m − 1) + 12, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 22, f (v11v12) = 2n(m − 1) + 20, f (v12v13) = 2n(m − 1) + 24, f (v13v14) = 2n(m − 1) +
26, . . . , f (vn−9vn−8) = 2mn − 18, f (vn−8vn−7) = 2mn − 14, f (vn−7vn−6) = 2mn − 16, f (vn−6vn−5) =

2mn − 12, f (vn−5vn−4) = 2mn − 10, f (vn−4vn−3) = 2mn − 6, f (vn−3vn−2) = 2mn − 8, f (vn−2vn−1) =

2mn− 4, f (vn−1vn) = 2mn− 2, f (vnv1) = 2mn.
Label the edges of the circle C(2)

n as follows: f (vn+1vn+2) = 4n(m − 1) + 4, f (vn+2vn+3) =

4n(m− 1) + 2, f (vn+ivn+i+1) = 4n(m− 1) + 2i, 3 ≤ i ≤ n− 2, f (v2n−1v2n) = 2n(2m− 1), f (v2nv2n+1) =

2n(2m− 1) − 2.
Label the edges of C(m)

n , C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n as in case (1).

Thus we have the labels of corresponding vertices mod(4mn− 2n) will be:
The labels the vertices of the circle C(1)

n are as follows: f ∗(v1) ≡ 4, f ∗(v2) ≡ 4mn− 4n + 12, f ∗(v3) ≡
4mn − 4n + 16, f ∗(v4) ≡ 4mn − 4n + 20, f ∗(v5) ≡ 4mn − 4n + 28, f ∗(v6) ≡ 4mn − 4n + 36, f ∗(v7) ≡
4mn−4n+ 40, f ∗(v8) ≡ 4mn−4n+ 44, f ∗(v9) ≡ 4mn−4n+ 52, f ∗(v10) ≡ 4mn−4n+ 60, f ∗(v11) ≡ 4mn−
4n + 64, f ∗(v12) ≡ 4mn − 4n + 68, f ∗(v13) ≡ 4mn − 4n + 76, f ∗(v14) ≡ 4mn − 4n + 84, . . . , f ∗(vn−8) ≡
4n − 48, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 40, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 24, f ∗(vn−3) ≡
4n− 20, f ∗(vn−2) ≡ 4n− 16, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n− 2.

The labels the vertices of the circle C(2)
n are as follows: f ∗(vn+1) ≡ 6, f ∗(vn+2) ≡ 10, f ∗(vn+3) ≡

12, f ∗(vn+i) ≡ 4i + 2, 4 ≤ i ≤ n − 2, f ∗(v2n−1) ≡ 4n, f ∗(v2n) ≡ 4n + 2. Label the vertices of
C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n respectively are as the same as in case (1).
Illustration: The edge even graceful labeling of the cylinder grid graphs

C9,2, C9,4, C7,10, C7,12, C7,14C7,16C7,18 and C7,20 are shown in Figure 12.

55



Symmetry 2019, 11, 584

 

(a)  

(b)  

Figure 12. Cont.
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(c) 

(d)   

Figure 12. Cont.
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(e) 

 

(f) 

Figure 12. Cont.
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(g) 

(h) 

Figure 12. An e.e.g., l. of the cylinder grid graphs C9,2, C9,4, C7,10, C7,12, C7,14, C7,16, C7,18, and C7,20.
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Theorem 4. If m is an odd positive integer greater than 3 and n is an odd positive integer, n ≥ 3, then the
cylinder grid graph Cm,n, is an edge even graceful graph.

Proof. Using standard notation p =
∣∣∣V(Cm,n)

∣∣∣ = mn, q =
∣∣∣E(Cm,n)

∣∣∣ = 2mn−n, r = max(p, q) = 2mn−n,
and f : E(Cm,n)→ {2, 4, 6, . . . , 4mn− 2n− 2}. �

Let the cylinder grid graph Cm,n be as in Figure 9. There are six cases:
Case (1): n ≡ 1mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m as

follows: Move clockwise to label the edges v1vn+1, v2vn+2, v3vn+3, . . . , vn−1v2n−1, vnv2n by 2, 4, 6, . . . , 2n−
2, 2n, then move anticlockwise to label the edges vn+1vn+2, v2nv3n, v2n−1v3n−1, . . . , vn+3v2n+3, vn+2v2n+2

by 2n + 2, 2n + 4, 2n + 6, . . . , 4n − 2, 4n, then move clockwise to label the edges
v2n+1v3n+1, v2n+2v3n+2, v2n+3v3n+3, . . . , v3n−1v4n−1, v3nv4n by 4n + 2, 4n + 4, 4n + 6, . . . , 6n − 2, 6n,
and so on.

Finally, move anticlockwise to label the edges v(m−2)n+1v(m−1)n+1, v(m−1)nvmn, v(m−1)n−1vmn−1, . . .,
v(m−2)n+3v(m−1)n+3, v(m−2)n+2vm(n−1)+2 by 2n(m− 2) + 2, 2n(m− 2) + 4, 2n(m− 2) + 6, . . . , 2n(m− 1) −
2, 2n(m− 1).

Second, we label the edges of the circles C(k)
n , 1 ≤ k ≤ m beginning with the edges of the innermost

circle C(1)
n , then the edges of outer circle C(m)

n , and then the edges of the circles C(m−2)
n , C(m−4)

n , . . . , C(3)
n .

Finally, we label the edges of the circles C(m−1)
m , C(m−3)

m , . . . , C(2)
m .

Label the edges of C(1)
n as follows: f (v1v2) = 2n(m− 1) + 2, f (v2v3) = 2n(m− 1) + 4, f (v3v4) =

2n(m − 1) + 8, f (v4v5) = 2n(m − 1) + 6, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m − 1) +
12, f (v7v8) = 2n(m − 1) + 16, f (v8v9) = 2n(m − 1) + 14, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 20, f (v11v12) = 2n(m − 1) + 24, f (v12v13) = 2n(m − 1) + 22, f (v13v14) = 2n(m − 1) + 26,
f (v14v15) = 2n(m − 1) + 28, . . . , f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) =

2mn − 12, f (vn−4vn−3) = 2mn − 8, f (vn−3vn−2) = 2mn − 6, f (vn−2vn−1) = 2mn − 2, f (vn−1vn) =

2mn− 4, f (vnv1) = 2mn.
Then, label the edges of C(m)

n , C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n , C(2)

n
as follows:

Label the edges of the circle C(m)
n as follows: f (v(m−1)n+iv(m−1)n+i+1) = 2mn +

2i, f (vmnv(m−1)n+1) = 2n(m + 1), 1 ≤ i ≤ n− 1.

Label the edges of the circle C(m−2)
n as follows: f (v(m−3)n+iv(m−3)n+i+1) = 2n(m + 1) +

2i, f (v(m−2)nv(m−3)n+1) = 2n(m + 2), 1 ≤ i ≤ n− 1.

Label the edges of the circle C(m−4)
n as follows: f (v(m−5)n+iv(m−5)n+i+1) = 2n(m + 2) +

2i, f (v(m−4)nv(m−5)n+1) = 2n(m + 3), 1 ≤ i ≤ n− 1, and so on.

Label the edges of the circle C(3)
n as follows: f (v2n+iv2n+i+1) = 3n(m − 1) + 2i, f (v3nv2n+1) =

n(3m− 1), 1 ≤ i ≤ n− 1,
Label the edges of the circle C(m−1)

n as follows: f (v(m−2)n+iv(m−2)n+i+1) = n(3m − 1) +
2i, f (v(m−1)nv(m−1)n+1) = n(3m + 1), 1 ≤ i ≤ n− 1,

Label the edges of the circle C(m−3)
n as follows: f (v(m−4)n+iv(m−4)n+i+1) = n(3m + 2) +

2i, f (v(m−3)nv(m−4)n+1) = 3n(m + 1), 1 ≤ i ≤ n− 1, . . . , and so on.

Label the edges of the circle C(4)
n as follows: f (v3n+iv3n+i+1) = 2n(2m − 3) + 2i, f (v4nv3n+1) =

4n(m− 1), 1 ≤ i ≤ n− 1,
Label the edges of C(2)

n as follows: f (vn+ivn+i+1) = 4n(m− 1) + 2i, f (v2nv2n+1) = 2n(m− 1), 1 ≤
i ≤ n− 1,

Thus, the labels of corresponding vertices of the circle C(1)
n mod(4mn−2n)will be: f ∗(v1) ≡ 4, f ∗(v2) ≡

4mn− 4n + 10, f ∗(v3) ≡ 4mn− 4n + 18, f ∗(v4) ≡ 4mn− 4n + 22, f ∗(v5) ≡ 4mn− 4n + 26, f ∗(v6) ≡ 4mn−
4n + 34, f ∗(v7) ≡ 4mn − 4n + 42, f ∗(v8) ≡ 4mn − 4n + 46, f ∗(v9) ≡ 4mn − 4n + 50, f ∗(v10) ≡ 4mn −
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4n + 58, f ∗(v11) ≡ 4mn − 4n + 66, f ∗(v12) ≡ 4mn − 4n + 70, f ∗(v13) ≡ 4mn − 4n + 74, f ∗(v14) ≡ 4mn −
4n + 82, . . . , f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 36, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 28, f ∗(vn−3) ≡
4n− 20, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n− 4.

The labels of the vertices of C(2)
n , C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n , respectively, are as follows:
f ∗(vn+i) ≡ 4i + 2; f ∗(v2n+i) ≡ 2mn + 4n + 4i + 2; f ∗(v3n+i) ≡ 4n + 4i + 2; . . . ; f ∗(v(m−3)n+i) ≡ 4mn −
6n + 4i + 2; f ∗(v(m−2)n+i) ≡ 2mn− 6n + 4i + 2; f ∗(v(m−1)n+i) ≡ 2mn + 2i + 2, 1 ≤ i ≤ n.

Case (2): n ≡ 3mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m as

the same in case (1).
Second, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(m)
n , and then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
4, f (v3v4) = 2n(m − 1) + 8, f (v4v5) = 2n(m − 1) + 6, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 12, f (v7v8) = 2n(m − 1) + 16, f (v8v9) = 2n(m − 1) + 14, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 20, f (v11v12) = 2n(m − 1) + 24, f (v12v13) = 2n(m − 1) + 22, f (v13v14) = 2n(m − 1) +
26, . . ., f (vn−9vn−8) = 2mn − 18, f (vn−8vn−7) = 2mn − 14, f (vn−7vn−6) = 2mn − 16, f (vn−6vn−5) =

2mn − 12, f (vn−5vn−4) = 2mn − 10, f (vn−4vn−3) = 2mn − 6, f (vn−3vn−2) = 2mn − 8, f (vn−2vn−1) =

2mn, f (vn−1vn) = 2mn− 2, f (vnv1) = 2mn− 4.
Label the edges of the circle C(2)

n as follows: f (vn+ivn+i+1) = 4n(m − 1) + 2i, 1 ≤ i ≤ n −
9, f (v2n−9v2n−8) = 2n(2m− 1) − 18, f (v2n−8v2n−7) = 2n(2m− 1) − 14, f (v2n−7v2n−6) = 2n(2m− 1) − 16,
f (v2n−6v2n−5) = 2n(2m − 1) − 10, f (v2n−5v2n−4) = 2n(2m − 1) − 12, f (v2n−4v2n−3) = 2n(2m − 1) − 6,
f (v2n−3v2n−2) = 2n(2m − 1) − 8, f (v2n−2v2n−1) = 2n(2m − 1) − 4, f (v2n−1v2n) = 2n(2m − 1) −
2, f (v2nvn+1) = 2n(2m− 1).

Label the edges of C(m)
n , C(m−2)

n , C(m−4)
n , . . . , C(3)

n and C(m−1)
n , C(m−3)

n , C(m−5)
n , . . . , C(4)

n as in case (1).
Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The labels of the vertices of C(1)

n are as follows: f ∗(v1) ≡ 0, f ∗(v2) ≡ 4mn − 4n + 10, f ∗(v3) ≡
4mn − 4n + 18, f ∗(v4) ≡ 4mn − 4n + 22, f ∗(v5) ≡ 4mn − 4n + 26, f ∗(v6) ≡ 4mn − 4n + 34, f ∗(v7) ≡
4mn−4n+ 42, f ∗(v8) ≡ 4mn−4n+ 46, f ∗(v9) ≡ 4mn−4n+ 50, f ∗(v10) ≡ 4mn−4n+ 58, f ∗(v11) ≡ 4mn−
4n + 66, f ∗(v12) ≡ 4mn − 4n + 70, f ∗(v13) ≡ 4mn − 4n + 74, f ∗(v14) ≡ 4mn − 4n + 82, . . . , f ∗(vn−8) ≡
4n − 48, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 40, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 24, f ∗(vn−3) ≡
4n− 20, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 4, f ∗(vn) ≡ 4n− 6.

The labels of the vertices of the circle C(2)
n are as follows: f ∗(vn+i) ≡ 4i + 2, 1 ≤ i ≤ n −

9, f ∗(v2n−8) ≡ 4n− 28, f ∗(v2n−7) ≡ 4n− 26, f ∗(v2n−6) ≡ 4n− 22, f ∗(v2n−5) ≡ 4n− 18, f ∗(v2n−4) ≡ 4n− 14,
f ∗(v2n−3) ≡ 4n− 10, f ∗(v2n−2) ≡ 4n− 8, f ∗(v2n−1) ≡ 4n− 2, f ∗(v2n) ≡ 4n + 2.

The labels of the vertices of C(3)
n , C(4)

n , . . . , C(m−2)
n , C(m−1)

n , C(m)
n , respectively, are the same as in case (1).

Remark 4. In case n = 3 and m is odd, m ≥ 3.
Let the label of edges of the cylinder grid graph Cm,3 be as in Figure 13.
Thus, the labels of corresponding vertices mod(12m− 6) are as follows:
The labels of the vertices of the circle C(1)

3 are f ∗(v1) ≡ 8, f ∗(v2) ≡ 12, f ∗(v3) ≡ 16.

The labels of the vertices of the circle C(3)
3 are f ∗(v3m−2) ≡ 6m + 10, f ∗(v3m−1) ≡ 6m + 12, f ∗(v3m) ≡

6m + 14.
The labels of the vertices of the circles C(2)

3 , C(4)
3 , . . . , C(m−1)

3 are f ∗(v3k+i) ≡ 4i + 6k + 4, 1 ≤ i ≤ 3, 1 ≤
k ≤ m− 2, k is odd.

The labels of the vertices of the circles C(3)
3 , C(5)

3 , . . . , C(m−2)
3 are f ∗(v3k+i) ≡ 6m + 4i + 6k + 10, 1 ≤ i ≤

3, 2 ≤ k ≤ m− 3, k is even.
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Figure 13. The cylinder grid graph Cm,3, m is odd, m ≥ 3.

Case (3): n ≡ 5mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m the

same as in case (1).
Second, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(m)
n , and then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
4, f (v3v4) = 2n(m − 1) + 8, f (v4v5) = 2n(m − 1) + 6, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 12, f (v7v8) = 2n(m − 1) + 16, f (v8v9) = 2n(m − 1) + 14, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 20, f (v11v12) = 2n(m − 1) + 24, f (v12v13) = 2n(m − 1) + 22, f (v13v14) = 2n(m − 1) +
26, . . . , f (vn−8vn−7) = 2mn − 16, f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) =

2mn− 12, f (vn−4vn−3) = 2mn− 8, f (vn−3vn−2) = 2mn− 6, f (vn−2vn−1) = 2mn− 2, f (vn−1vn) = 2mn− 4,
f (vnv1) = 2mn. Label the edges of C(m)

n , C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n , C(2)

n
as in case (1).

Thus, the labels of corresponding vertices of the circle C(1)
n mod(4mn − 2n) will be: f ∗(v1) ≡

4, f ∗(v2) ≡ 4mn − 4n + 10, f ∗(v3) ≡ 4mn − 4n + 18, f ∗(v4) ≡ 4mn − 4n + 22, f ∗(v5) ≡ 4mn − 4n + 26,
f ∗(v6) ≡ 4mn − 4n + 34, f ∗(v7) ≡ 4mn − 4n + 42, f ∗(v8) ≡ 4mn − 4n + 46, f ∗(v9) ≡ 4mn − 4n + 50,
f ∗(v10) ≡ 4mn − 4n + 58, f ∗(v11) ≡ 4mn − 4n + 66, f ∗(v12) ≡ 4mn − 4n + 70, f ∗(v13) ≡ 4mn − 4n + 74,
f ∗(v14) ≡ 4mn − 4n + 82, . . . , f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 36, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡
4n− 28, f ∗(vn−3) ≡ 4n− 20, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 8, f ∗(vn) ≡ 4n− 4.
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The labels of the vertices of C(2)
n , C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n , respectively, are the same as in
case (1).

Case (4): n ≡ 7mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m the

same as in case (1).
Second, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(m)
n , and then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
4, f (v3v4) = 2n(m − 1) + 8, f (v4v5) = 2n(m − 1) + 6, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 12, f (v7v8) = 2n(m − 1) + 16, f (v8v9) = 2n(m − 1) + 14, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 20, f (v11v12) = 2n(m − 1) + 24, f (v12v13) = 2n(m − 1) + 22, f (v13v14) = 2n(m − 1) +
26, . . . , f (vn−10vn−9) = 2mn − 20, f (vn−9vn−8) = 2mn − 18, f (vn−8vn−7) = 2mn − 14, f (vn−7vn−6) =

2mn − 16, f (vn−6vn−5) = 2mn − 12, f (vn−5vn−4) = 2mn − 10, f (vn−4vn−3) = 2mn − 6, f (vn−3vn−2) =

2mn− 8, f (vn−2vn−1) = 2mn, f (vn−1vn) = 2mn− 2, f (vnv1) = 2mn− 4.
Label the edges of the circle C(2)

n as follows: f (vn+ivn+i+1) = 4n(m − 1) + 2i, 1 ≤ i ≤
n − 9, f (v2n−9v2n−8) = 2n(2m − 1) − 18, f (v2n−8v2n−7) = 2n(2m − 1) − 14, f (v2n−7v2n−6) = 2n(2m −
1) − 16, f (v2n−6v2n−5) = 2n(2m − 1) − 10, f (v2n−5v2n−4) = 2n(2m − 1) − 12, f (v2n−4v2n−3) = 2n(2m −
1) − 6, f (v2n−3v2n−2) = 2n(2m − 1) − 8, f (v2n−2v2n−1) = 2n(2m − 1) − 4, f (v2n−1v2n) = 2n(2m − 1) −
2, f (v2nvn+1) = 2n(2m− 1).

Label the edges of C(m)
n , C(m−2)

n , C(m−4)
n , . . . , C(3)

n and C(m−1)
n , C(m−3)

n , C(m−5)
n , . . . , C(4)

n as in case (1).
Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The labels of the vertices of the circle C(1)

n are as follows: f ∗(v1) ≡ 0, f ∗(v2) ≡ 4mn − 4n +

10, f ∗(v3) ≡ 4mn − 4n + 18, f ∗(v4) ≡ 4mn − 4n + 22, f ∗(v5) ≡ 4mn − 4n + 26, f ∗(v6) ≡ 4mn − 4n +

34, f ∗(v7) ≡ 4mn − 4n + 42, f ∗(v8) ≡ 4mn − 4n + 46, f ∗(v9) ≡ 4mn − 4n + 50, f ∗(v10) ≡ 4mn − 4n +

58, f ∗(v11) ≡ 4mn − 4n + 66, f ∗(v12) ≡ 4mn − 4n + 70, f ∗(v13) ≡ 4mn − 4n + 74, f ∗(v14) ≡ 4mn − 4n +

82, . . . , f ∗(vn−9) ≡ 4n − 56, f ∗(vn−8) ≡ 4n − 48, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡ 4n − 40, f ∗(vn−5) ≡
4n− 32, f ∗(vn−4) ≡ 4n− 24, f ∗(vn−3) ≡ 4n− 20, f ∗(vn−2) ≡ 4n− 12, f ∗(vn−1) ≡ 4n− 4, f ∗(vn) ≡ 4n− 6.

The labels of the vertices of the circle C(2)
n are as follows: f ∗(vn+i) ≡ 4i+ 2, 1 ≤ i ≤ n− 9, f ∗(v2n−8) ≡

4n − 28, f ∗(v2n−7) ≡ 4n − 26, f ∗(v2n−6) ≡ 4n − 22, f ∗(v2n−5) ≡ 4n − 18, f ∗(v2n−4) ≡ 4n − 14, f ∗(v2n−3) ≡
4n− 10, f ∗(v2n−2) ≡ 4n− 8, f ∗(v2n−1) ≡ 4n− 2, f ∗(v2n) ≡ 4n + 2.

The labels of the vertices of C(3)
n , C(4)

n , . . . , C(m−2)
n , C(m−1)

n , C(m)
n , respectively, are as in case (1).

Case (5): n ≡ 9mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m the

same as in case (1).
Second, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(m)
n , and then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 2, f (v2v3) = 2n(m − 1) +
4, f (v3v4) = 2n(m − 1) + 8, f (v4v5) = 2n(m − 1) + 6, f (v5v6) = 2n(m − 1) + 10, f (v6v7) = 2n(m −
1) + 12, f (v7v8) = 2n(m − 1) + 16, f (v8v9) = 2n(m − 1) + 14, f (v9v10) = 2n(m − 1) + 18, f (v10v11) =

2n(m − 1) + 20, f (v11v12) = 2n(m − 1) + 24, f (v12v13) = 2n(m − 1) + 22, f (v13v14) = 2n(m − 1) +
26, . . . , f (vn−11vn−10) = 2mn − 22, f (vn−10vn−9) = 2mn − 18, f (vn−9vn−8) = 2mn − 20, f (vn−8vn−7) =

2mn − 16, f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) = 2mn − 12, f (vn−4vn−3) =

2mn− 8, f (vn−3vn−2) = 2mn− 6, f (vn−2vn−1) = 2mn, f (vn−1vn) = 2mn− 2, f (vnv1) = 2mn− 4.
Label the edges of the circle C(2)

n as follows: f (vn+ivn+i+1) = 4n(m − 1) + 2i, 1 ≤ i ≤ n −
8, f (v2n−7v2n−6) = 2n(2m − 1) − 12, f (v2n−6v2n−5) = 2n(2m − 1) − 14, f (v2n−5v2n−4) = 2n(2m − 1) −
6, f (v2n−4v2n−3) = 2n(2m − 1) − 10, f (v2n−3v2n−2) = 2n(2m − 1) − 8, f (v2n−2v2n−1) = 2n(2m − 1) −
4, f (v2nvn+1) = 2n(2m− 1).
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Label the edges of C(m)
n , C(m−2)

n , C(m−4)
n , . . . , C(3)

n and C(m−1)
n , C(m−3)

n , C(m−5)
n , . . . , C(4)

n as in case (1).
Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The labels of the vertices of the circle C(1)

n are as follows: f ∗(v1) ≡ 0, f ∗(v2) ≡ 4mn − 4n +

10, f ∗(v3) ≡ 4mn − 4n + 18, f ∗(v4) ≡ 4mn − 4n + 22, f ∗(v5) ≡ 4mn − 4n + 26, f ∗(v6) ≡ 4mn − 4n +

34, f ∗(v7) ≡ 4mn − 4n + 42, f ∗(v8) ≡ 4mn − 4n + 46, f ∗(v9) ≡ 4mn − 4n + 50, f ∗(v10) ≡ 4mn − 4n +

58, f ∗(v11) ≡ 4mn − 4n + 66, f ∗(v12) ≡ 4mn − 4n + 70, f ∗(v13) ≡ 4mn − 4n + 74, f ∗(v14) ≡ 4mn − 4n +

82, . . . , f ∗(vn−10) ≡ 4n − 60, f ∗(vn−9) ≡ 4n − 56, f ∗(vn−8) ≡ 4n − 52, f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡
4n− 36, f ∗(vn−5) ≡ 4n− 32, f ∗(vn−4) ≡ 4n− 28, f ∗(vn−3) ≡ 4n− 20, f ∗(vn−2) ≡ 4n− 10, f ∗(vn−1) ≡ 4n− 4,
f ∗(vn) ≡ 4n− 6.

The labels of the vertices of the circle C(2)
n are as follows: f ∗(vn+i) ≡ 4i+ 2, 1 ≤ i ≤ n− 8, f ∗(v2n−7) ≡

4n − 24, f ∗(v2n−6) ≡ 4n − 22, f ∗(v2n−5) ≡ 4n − 16, f ∗(v2n−4) ≡ 4n − 12, f ∗(v2n−3) ≡ 4n − 14, f ∗(v2n−2) ≡
4n− 8, f ∗(v2n−1) ≡ 4n− 2, f ∗(v2n) ≡ 4n + 2.

The labels of the vertices of C(3)
n , C(4)

n , . . . , C(m−2)
n , C(m−1)

n , C(m)
n , respectively, are as in case (1).

Case (6): n ≡ 11mod12.
First, we label the edges of the paths P(k)

m , 1 ≤ k ≤ n beginning with the edges of the path P(1)
m the

same as in case (1).
Second, we label the edges of the circles C(k)

n , 1 ≤ k ≤ m beginning with the edges of the innermost
circle C(1)

n , then the edges of outer circle C(m)
n , and then the edges of the circles C(m−2)

n , C(m−4)
n , . . . , C(3)

n .
Finally, we label the edges of the circles C(m−1)

m , C(m−3)
m , . . . , C(2)

m .
Label the edges of the circle C(1)

n as follows: f (v1v2) = 2n(m − 1) + 4, f (v2v3) = 2n(m − 1) +
2, f (v3v4) = 2n(m − 1) + 6, f (v4v5) = 2n(m − 1) + 8, f (v5v6) = 2n(m − 1) + 12, f (v6v7) = 2n(m −
1) + 10, f (v7v8) = 2n(m − 1) + 14, f (v8v9) = 2n(m − 1) + 16, f (v9v10) = 2n(m − 1) + 20, f (v10v11) =

2n(m − 1) + 18, f (v11v12) = 2n(m − 1) + 22, f (v12v13) = 2n(m − 1) + 24, f (v13v14) = 2n(m − 1) +
28, . . . , f (vn−8vn−7) = 2mn − 16, f (vn−7vn−6) = 2mn − 14, f (vn−6vn−5) = 2mn − 10, f (vn−5vn−4) =

2mn − 12, f (vn−4vn−3) = 2mn − 8, f (vn−3vn−2) = 2mn − 6, f (vn−2vn−1) = 2mn − 2, f (vn−1vn) = 2mn −
4, f (vnv1) = 2mn.

Label the edges of the circle C(2)
n as follows: f (vn+ivn+i+1) = 4n(m − 1) + 2i, 1 ≤ i ≤ n −

2, f (v2n−1v2n) = 4mn, f (v2nvn+1) = 4mn− 2.
Label the edges of C(m)

n , C(m−2)
n , C(m−4)

n , . . . , C(3)
n and C(m−1)

n , C(m−3)
n , C(m−5)

n , . . . , C(4)
n as in case (1).

Thus, the labels of corresponding vertices mod(4mn− 2n) will be:
The labels of the vertices of the circle C(1)

n are as follows: f ∗(v1) ≡ 6, f ∗(v2) ≡ 4mn −
4n + 10, f ∗(v3) ≡ 4mn − 4n + 14, f ∗(v4) ≡ 4mn − 4n + 22, f ∗(v5) ≡ 4mn − 4n + 30, f ∗(v6) ≡
4mn − 4n + 34, f ∗(v7) ≡ 4mn − 4n + 38, f ∗(v8) ≡ 4mn − 4n + 46, f ∗(v9) ≡ 4mn − 4n + 54, f ∗(v10) ≡
4mn − 4n + 58, f ∗(v11) ≡ 4mn − 4n + 62, f ∗(v12) ≡ 4mn − 4n + 70, . . . , f ∗(vn−7) ≡ 4n − 44, f ∗(vn−6) ≡
4n − 36, f ∗(vn−5) ≡ 4n − 32, f ∗(vn−4) ≡ 4n − 28, f ∗(vn−3) ≡ 4n − 20, f ∗(vn−2) ≡ 4n − 12, f ∗(vn−1) ≡
4n− 8, f ∗(vn) ≡ 4n− 4.

The labels of the vertices of the circle C(2)
n are as follows: f ∗(vn+1) ≡ 4, f ∗(vn+i) ≡ 4i + 2, 2 ≤ i ≤

n− 2, f ∗(v2n−1) ≡ 4n, f ∗(v2n) ≡ 4n + 2.
The labels of the vertices of C(3)

n , C(4)
n , . . . , C(m−2)

n , C(m−1)
n , C(m)

n , respectively, are as the same as in
case (1).

Illustration: An e.e.g.l. of the cylinder grid graphs C9,3, C7,9, C7,11, C7,13, C7,15, C7,17 and C7,19 is
shown in Figure 14.
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(e) C  

 

(f) C  

Figure 14. Cont.
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(g) C  

Figure 14. An e.e.g.l. of the cylinder grid graphs C9,3, C7,9, C7,11, C7,13, C7,15, C7,17 and C7,19.

3. Conclusions

In this paper, using the connection of labeling of graphs with modular arithmetic and theory
of numbers in general, we give a detailed study for e.e.g., l. of all cases of members of the cylinder
grid graphs. The study of necessary and sufficient conditions for e.e.g., l. of other important families
including torus Cm ×Cn and rectangular Pm × Pn grid graphs should be taken into consideration in
future studies of e.e.g., l.

Author Contributions: All authors contributed equally to this work.

Funding: This work was supported by the deanship of Scientific Research, Taibah University, Al-Madinah
Al-Munawwarah, Saudi Arabia.

Acknowledgments: The authors are grateful to the anonymous reviewers for their helpful comments and
suggestions for improving the original version of the paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
this paper.

References

1. Acharya, B.D.; Arumugam, S.; Rosa, A. Labeling of Discrete Structures and Applications; Narosa Publishing
House: New Delhi, India, 2008; pp. 1–14.

2. Bloom, G.S. Numbered Undirected Graphs and Their Uses, a Survey of a Unifying Scientific and Engineering
Concept and Its Use in Developing a Theory of Non-Redundant Homometric Sets Relating to Some
Ambiguities in X-ray Diffraction Analysis. Ph.D. Thesis, University of Southern California, Los Angeles, CA,
USA, 1975.

3. Bloom, G.S.; Golomb, S.W. Numbered complete graphs, unusual rulers, and assorted applications. In Theory
and Applications of Graphs, Lecture Notes in Math, 642; Springer: New York, NY, USA, 1978; pp. 53–65.

4. Bloom, G.S.; Golomb, S.W. Applications of numbered undirected graphs. Proc. IEEE 1977, 65, 562–570.
[CrossRef]

68



Symmetry 2019, 11, 584

5. Bloom, G.S.; Hsu, D.F. On graceful digraphs and a problem in network addressing. Congr. Numer. 1982, 35,
91–103.

6. Graham, R.L.; Pollak, H.O. On the addressing problem for loop switching. Bell Syst. Tech. J. 1971, 50,
2495–2519. [CrossRef]

7. Sutton, M.; Labellings, S.G. Summable Graphs Labellings and Their Applications. Ph.D. Thesis, the University
of Newcastle, New South Wales, Australia, 2001.

8. Shang, Y. More on the normalized Laplacian Estrada index. Appl. Anal. Discret. Math. 2014, 8, 346–357.
[CrossRef]

9. Shang, Y. Geometric assortative growth model for small-world networks. Sci. World J. 2014, 2014, 1–8.
[CrossRef] [PubMed]

10. Shang, Y. Deffuant model of opinion formation in one-dimensional multiplex networks. J. Phys. A Math. Theor.
2015, 48, 395101. [CrossRef]

11. Gross, J.; Yellen, J. Graph Theory and Its Applications; CRC Press: Boca Raton, FL, USA, 1999.
12. Rosa, A. On certain valuations of the vertices of a graph. In Theory of Graphs, Proceedings of the International

Symposium, Rome, Italy, July 1966; Gordan and Breach, Dunod: New York, NY, USA, 1967; pp. 349–355.
13. Golomb, S.W. How to Number a Graph. In Graph Theory and Computing; Read, R.C., Ed.; Cademic Press:

New York, NY, USA, 1972; pp. 23–37.
14. Gnanajothi, R.B. Topics in Graph Theory. Ph.D. Thesis, Madurai Kamaraj University, Tamil Nadu, India, 1991.
15. Seoud, M.A.; Abdel-Aal, M.E. On odd graceful graphs. Ars Comb. 2013, 108, 161–185.
16. Gao, Z. Odd graceful labelings of some union graphs. J. Nat. Sci. Heilongjiang Univ. 2007, 24, 35–39.
17. Lo, S.P. On edge-graceful1abelings of graphs. Congr. Numer. 1985, 50, 231–241.
18. Kuan, Q.; Lee, S.; Mitchem, J.; Wang, A. On edge-graceful unicyclic graphs. Congr. Numer. 1988, 61, 65–74.
19. Lee, L.; Lee, S.; Murty, G. On edge-graceful labelings of complete graphs: Solutions of Lo’s conjecture.

Congr. Numer. 1988, 62, 225–233.
20. Solairaju, A.; Chithra, K. Edge-odd graceful graphs. Electron. Notes Discret. Math. 2009, 33, 15–20. [CrossRef]
21. Daoud, S.N. Edge odd graceful labeling of some path and cycle related graphs. AKCE Int. J. Graphs Comb.

2017, 14, 178–203. [CrossRef]
22. Daoud, S.N. Edge odd graceful labeling cylinder grid and torus grid graphs. IEEE Access 2019, 7, 10568–10592.

[CrossRef]
23. Daoud, S.N. Vertex odd graceful labeling. Ars Comb. 2019, 142, 65–87.
24. Elsonbaty, A.; Daoud, S.N. Edge even graceful labeling of some path and cycle related graphs. Ars Comb.

2017, 130, 79–96.
25. Daoud, S.N. Edge even graceful labeling polar grid graph. Symmetry 2019, 11, 38. [CrossRef]
26. Gallian, J.A. A dynamic survey of graph labeling. Electron. J. Comb. 2017, 22, #DS6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

69



symmetryS S
Article

Involution Abel–Grassmann’s Groups and Filter
Theory of Abel–Grassmann’s Groups

Xiaohong Zhang * and Xiaoying Wu

Department of Mathematics, Shaanxi University of Science & Technology, Xi’an 710021, China;
46018@sust.edu.cn
* Correspondence: zhangxiaohong@sust.edu.cn

Received: 12 March 2019; Accepted: 8 April 2019; Published: 17 April 2019

Abstract: In this paper, some basic properties and structure characterizations of AG-groups are
further studied. First, some examples of infinite AG-groups are given, and weak commutative,
alternative and quasi-cancellative AG-groups are discussed. Second, two new concepts of involution
AG-group and generalized involution AG-group are proposed, the relationships among (generalized)
involution AG-groups, commutative groups and AG-groups are investigated, and the structure
theorems of (generalized) involution AG-groups are proved. Third, the notion of filter of an AG-group
is introduced, the congruence relation is constructed from arbitrary filter, and the corresponding
quotient structure and homomorphism theorems are established.
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1. Introduction

Nowadays, the theories of groups and semigroups [1–5] are attracting increasing attention,
which can be used to express various symmetries and generalized symmetries in the real world.
Every group or semigroup has a binary operation that satisfies the associative law. On the other hand,
non-associative algebraic structures have great research value. Euclidean space R3 with multiplication
given by the vector cross product is an example of an algebra that is not associative, at the same time;
Jordan algebra and Lie algebra are non-associative.

For the generalization of commutative semigroup, the notion of an AG-groupoid
(Abel–Grassmann’s groupoid) is introduced in [6], which is also said to be a left almost semigroup
(LA-semigroup). Moreover, a class of non-associative ring with condition x(yz) = z(yx) is investigated
in [7]; in fact, the condition x(yz) = z(yx) is a dual distortion of the operation law in AG-groupoids.

An AG-groupoid is a non-associative algebraic structure, but it is a groupoid (N, *) satisfying the
left invertive law:

(a ∗ b) ∗ c = (c ∗ b) ∗ a, for any a, b, c ∈ N.

Now, many characterizations of AG-groupoids and various special subclasses are investigated
in [8–13]. As a generalization of commutative group (Abelian group) and a special case of quasigroup,
Kamran extended the concept of AG-groupoid to AG-group in [14]. An AG-groupoid is called
AG-group if there exists left identity and inverse, and its many properties (similar to the properties of
groups) have been revealed successively in [15,16].

In this paper, we further analyze and study the structural characteristics of AG-groups, reveal the
relationship between AG-groups and commutative groups, and establish filter and quotient algebra
theories of AG-groups. The paper is organized as follows. Section 2 presents several basic concepts
and results. Some new properties of AG-groups are investigated in Section 3, especially some examples
of infinite AG-groups, and the authors prove that every weak commutative or alternative AG-group is

Symmetry 2019, 11, 553; doi:10.3390/sym11040553 www.mdpi.com/journal/symmetry70
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a commutative group (Abelian group) and every AG-group is quasi-cancellative. In Section 4, two
special classes of AG-groups are studied and the structure theorems are proved. In Section 5, the filter
theory of AG-groups is established, the quotient structures induced by filters are constructed, and
some homomorphism theorems are proved. Finally, the main results of this paper are systematically
summarized via a schematic figure.

2. Preliminaries

First, we present some basic notions and properties.
A groupoid (N, *) is called an AG-groupoid (Abel–Grassmann’s groupoid), if for any a, b, c∈N,

(a*b)*c = (c*b)*a. It is easy to verify that in an AG-groupoid (N, *), the medial law holds:

(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), for any a, b, c, d ∈ N.

Let (N, *) be an AG-groupoid with left identity e, we have

a ∗ (b ∗ c) = b ∗ (a ∗ c), for any a, b, c ∈ N;

(a ∗ b) ∗ (c ∗ d) = (d ∗ b) ∗ (c ∗ a), for any a, b, c, d ∈ N.

NN = N, N*e = N = e*N.

An AG-groupoid (N, *) is called a locally associative AG-groupoid, if it satisfies
a*(a*a) = (a*a)*a, ∀a∈N.

An AG-groupoid (N, *) is called an AG-band, if it satisfies a*a = a (∀a∈N).

Definition 1. ([9,10]) Let (N, *) be an AG-groupoid. Then, N is called to be quasi-cancellative if for any a, b∈N,

a = a*b and b2 = b*a imply that a = b; and (1)

a = b*a and b2 = a*b imply that a = b. (2)

Proposition 1. ([9,10]) Every AG-band is quasi-cancellative.

Definition 2. ([14,15]) An AG-groupoid (N, *) is called an AG-group or a left almost group (LA-group), if there
exists left identity e∈N (that is e*a = a, for all a∈N), and there exists a−1∈N such that a−1*a = a* a−1 = e (∀a∈N).

Proposition 2. ([15]) Assume that (N, *) is an AG-group. We get that (N, *) is a commutative Abel–Grassmann’s
Group if and only if it is an associative AG-Group.

Proposition 3. ([15]) Let (N, *) be an AG-group with right identity e. Then, (N, *) is an Abelian group.

Proposition 4. ([15]) Let (N, *) be an AG-group. Then, (N, *) has exactly one idempotent element, which is the
left identity.

Proposition 5. ([11]) Let (N, *) be an AG-groupoid with a left identity e. Then, the following conditions
are equivalent,

(1) N is an AG-group.
(2) Every element of N has a right inverse.
(3) Every element a of N has a unique inverse a−1.
(4) The equation x*a = b has a unique solution for all a, b∈N.
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Proposition 6. ([16]) Let (N, *) be an AG-group. Define a binary operation ◦ as follows:

x◦y = (x*e)*y, for any x, y∈N.

Then, (N, ◦) is an Abelian group, denote it by ret(N, *) = (N, ◦).
3. Some Examples and New Results of AG-Groups

In this section, we give some examples of AG-groups (including some infinite examples),
and investigate the characterizations of weak commutative AG-groups, alternative AG-groups and
quasi-cancellative AG-groups. Moreover, we obtain two subalgebras from arbitrary AG-group.

Example 1. Let us consider the rotation transformations of a square. A square is rotated 90◦, 180◦ and 270◦ to
the right (clockwise) and they are denoted by ϕa, ϕb and ϕc, respectively (see Figure 1). There is of course the
movement that does nothing, which is denoted by ϕe. The following figure gives an intuitive description of these
transformations. Denote N = {ϕe, ϕa, ϕb, ϕc}.

  
e a 

  
b c 

Figure 1. The rotation transformations of a square.

Obviously, two consecutive rotations have the following results: ϕeϕe = ϕe, ϕaϕc = ϕcϕa = ϕe, ϕbϕb =

ϕe. That is, ϕe
−1 = ϕe, ϕa

−1 = ϕc, ϕb
−1 = ϕb,ϕc

−1 = ϕa. Now, we define operations * on N as follows:

ϕx*ϕy = ϕx
−1 ϕy, ∀x, y∈{e, a, b, c}.

Then, (N, *) satisfies the left invertive law, and the operation * is as follows in Table 1. We can verify that
(N, *) is an AG-Group.

Table 1. AG-group generated by rotation transformations of a square.

* ϕe ϕa ϕb ϕc

ϕe ϕe ϕa ϕb ϕc
ϕa ϕc ϕe ϕa ϕb
ϕb ϕb ϕc ϕe ϕa
ϕc ϕa ϕb ϕc ϕe
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Example 2. Let X = {(a, b)|a, b∈R−{0}}, where R represents the set of all real numbers. Define binary operation *
as follows:

(a, b) * (c, d) = (ac, d/b), for any (a, b), (c, d)∈ X.

Then,
[(a, b) * (c, d)] * (e, f) = (ac, d/b) * (e, f) = (ace, fb/d);

[(e, f) * (c, d)] * (a, b) = (ec, d/f) * (a, b) = (ace, fb/d).

Therefore, [(a, b) * (c, d)] * (e, f) = [(e, f) * (c, d)] * (a, b), that is, the operation * satisfies left invertive law. For
any (a, b)∈X, (1, 1) is the left identity of (a, b) and (1/a, b) is the left inverse of (a, b):

(1,1) * (a, b) = (a, b); (1/a, b) * (a, b) = (1, 1).

Therefore, (X, *) is an AG-Group.

Example 3. Let Y = {(a, b)|a∈R, b = 1 or −1}, where R represents the set of all real numbers. Define binary
operation * as follows:

(a, b) * (c, d) = (ac, b/d), for any (a, b), (c, d)∈Y.

Then,
[(a, b) * (c, d)] * (e, f) = (ac, b/d) * (e, f) = (ace, b/df);

[(e, f) * (c, d)] * (a, b) = (ec, f/d) * (a, b) = (ace, f/bd).

Because b, f∈ {1, −1}, b2 = f 2, and b/f = f/b. We can get b/df = f/bd. Therefore, [(a, b) * (c, d)] * (e, f) =
[(e, f) * (c, d)] * (a, b), that is, the operation * satisfies left invertive law. Moreover, we can verify that (1, 1) is the
left identity and (1/a, ±1) is the left inverse of (a, ±1), since

(1, 1) * (a, b) = (a,1/b) = (a, b); (because b=1 or −1)

(1/a, 1) * (a, 1) = (1, 1) and (1/a, −1) * (a, −1) = (1, 1).

Therefore, (Y, *) is an AG-group.

Example 4. Let Z = {(a, b)|a∈R, b = 1, −1, i, or −i}, where R represents the set of all real numbers and I
represents the imaginary unit. Define binary operation * as follows:

(a, b) * (c, d) = (ac, b/d), for any (a, b), (c, d) ∈Z

Then,
[(a, b) * (c, d)] * (e, f) = (ac, b/d) * (e, f) = (ace, b/df);

[(e, f) * (c, d)] * (a, b) = (ec, f/d) * (a, b) = (ace, f/bd).

Because b, f∈{1, −1, i, −i}, hence b2 = f 2, and b/f = f/b. We can get b/df = f/bd. Therefore, [(a, b) * (c, d)] *
(e, f) = [(e, f) * (c, d)] * (a, b), that is, the operation * satisfies left invertive law. Therefore, (Z, *) is an AG-groupoid.
However, it is not an AG-group, since

(1, 1) * (a, 1) = (a, 1), (1, 1) * (a, −1) = (a, −1);

(1, −1) * (a, i) = (a, i), (1, −1) * (a, −i) = (a, −i).

That is, (1, 1) and (1, −1) are locally identity, not an identity.

Definition 3. Assume that (N, *) is an AG-group. (N, *) is said to be a weak commutative Abel– Grassmann’s
group (AG-group), if one of the following conditions holds:
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(1) e*x−1 = x−1*e, for all x in N;
(2) e*x = x*e, for all x in N; or
(3) x−1*y−1 = y−1*x−1, for all x, y in N.

Theorem 1. Let (N, *) be an AG-group. We can get that N is a weak commutative AG-group if and only if it is
an Abelian group.

Proof. First, we prove that the Conditions (1)–(3) in Definition 3 are equivalent for an AG-group (N, *).
(1)→(2): Suppose thatCondition (1) holds in the AG-group (N, *). For all x in N, by (x−1)

−1
= x,

we have e*(x−1)
−1
= (x−1)

−1*e, that is, e*x = x*e.
(2)→(3): Suppose that Condition (2) holds in the AG-group (N, *). For all x, y in N, by Proposition

3, we know that N is an Abelian group, that is, x*y = y*x, it follows that x−1*y−1 = y−1*x−1.
(3)→(1): Suppose that Condition (3) holds in the AG-group (N, *). Then, for all x in N, we have

(e−1)
−1*x−1 = x−1 * (e−1)

−1, that is, e*x−1 = x−1*e.
Now, we prove that an AG-group (N, *) satisfying Condition (2) in Definition 3 is an Abelian

group. Through Condition (2), e*a = a*e for any a∈N. Then, a*e = e*a = a, which means that e is right
identity. Applying Proposition 3, we get that (N, ∗) is an Abelian group. Moreover, obviously, every
Abelian group is a weak commutative AG-group. Therefore, the proof is completed. �

Theorem 2. Assume that (N, *) is an AG-group, we have that (N, *) is quasi-cancellative AG-groupoid, that is,
if it satisfies the following conditions, for any x, y∈N,

(1) x = x * y and y2 = y*x imply that x = y; and
(2) x = y * x and y2 = x * y imply that x = y.

Proof. (1) Suppose that x = x*y and y2 = y*x, where x, y∈N. Then,

x = x ∗ y = (e ∗ x) ∗ y = (y ∗ x) ∗ e = y2∗e = (e ∗ y) ∗ y = y2. (a)

That is, x = y2; it follows that x*y = y*x. Moreover, we have

y ∗ e = y ∗ (x−1∗x) = (e ∗ y) ∗ ( x−1∗x) = (e ∗ x−1) ∗ (y ∗ x) = x−1∗(y ∗ x) = x−1 ∗ x = e. (b)

x ∗ e = (x ∗ y) ∗ e = (x ∗ y) ∗ ( x−1∗x) = (x ∗ x−1) ∗ (y ∗ x) = (x ∗ x−1) ∗ y2 = (x ∗ x−1) ∗ (y ∗ y)
= (x ∗ y) ∗ ( x−1∗y) = x ∗ (x−1∗y) = (e ∗ x) ∗ ( x−1∗y) = (e ∗ x−1) ∗ (x ∗ y)

= x−1∗(x ∗ y) = x−1 ∗ x = e.
(c)

Combining Equations (b) and (c), we can get

x = e*x = (y*e)*x = (x*e)*y = e*y = y.

(2) Suppose that x=y*x and y2=x*y, where x, y∈N. Then,

x = y ∗ x = (e ∗ y) ∗ (x ∗ y) ∗ e = y2∗e = (e ∗ y) ∗ y = y2∗e = (e ∗ y) ∗ y = y2. (d)

That is, x = y2; it follows that x*y = y*x. Then, we have

y ∗ e = y ∗ (x−1∗x) = (e ∗ y) ∗ (x−1∗x) = (e ∗ x−1) ∗ (y ∗ x) = (e ∗ x−1) ∗ x = e. (e)

x ∗ e = x ∗ (y−1∗y) = (e ∗ x) ∗ (y−1∗y) = y−1∗(x ∗ y) = y−1∗y2 = y−1∗(y ∗ y) = y ∗ (y−1 ∗ y) = y ∗ e = e. (f)

Combining Equations (e) and (f), we can get

x = e*x = (y*e)*x = (x*e)*y = e*y = y.
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Hence, (N, *) is quasi-cancellative AG-groupoid. �

Definition 4. Let (N, *) be an AG-group. Then, (N, *) is called to be alternative, if it satisfies one of the
following conditions,

(1) a*(a*b) = (a*a)*b, ∀a, b∈N; or
(2) a*(b*b) = (a*b)*b, ∀a, b∈N.

Theorem 3. Let (N, *) be an AG-group. Then, (N, *) is alternative if and only if it is an Abelian group.

Proof. (1) Suppose that (N, *) is an alternative AG-group, then Condition (2) in Definition 4 holds.
Then, for any a, b∈N, a*(b*b) = (a*b)*b. Putting b = e and applying left invertive law, we get that
a*e = a*(e*e) = (a*e)*e = (e*e)*a = e*a = a; by Proposition 3, we know that (N, *) is an Abelian group.

(2) Suppose that (N, *) is an alternative AG-group, then Condition (1) in Definition 4 holds. For any
a, b∈N, it satisfies a*(a*b) = (a*a)*b. Putting b = e, we have (a*a)*e = a*(a*e). According to the arbitrariness
of a, we can get that

((a*e)*(a*e))*e = (a*e)*((a*e)*e).

Then,

a*a = (e*a)*a = (a*a)*e = ((a*a)*(e*e))*e = ((a*e)*(a*e))*e = (a*e)*((a*e)*e) = (a*e)*a.

Let b*a = e, using Condition (1) in Definition 4, (a*a)*b = a*(a*b). It follows that (a*a)*b = ((a*e)*a)*b.
Thus,

a = e*a = (b*a)*a = (a*a)*b = ((a*e)*a)*b = (b*a)*(a*e) = e*(a*e) = a*e.

Applying Proposition (3), we know that (N, *) is an Abelian group.
Conversely, it is obvious that every Abelian group is an alternative AG-group. Therefore, the

proof is completed. �

Theorem 4. Let (N, *) be an AG-group. Denote

U(N) = {x∈N| x = x*e}.

Then,

(1) U(N) is sub-algebra of N.
(2) U(N) is maximal subgroup of N with identity e.

Proof. (1) Obviously, e ∈ U(N), that is, U(N) is not empty. Suppose x, y∈U(N), then x*e = x and y*e = y.
Thus, x*y = (x*e)*(y*e) = (x*y)*e ∈ U(N). This means that U(N) is a subalgebra of N.

(2) For any x∈U(N), that is, x*e = x. Assume that y is the left inverse of x in N, then y*x = e. Thus,

x*y = (e*x)*y = ((y*x)*x)*y = (y*x)*(y*x) = e*e = e,

y = e*y = (x*y)*y = ((x*e)*y)*y = ((y*e)*x)*y = (y*x)*(y*e) = e*(y*e) = y*e.

It follows that y∈U(N). Therefore, U(N) is a group, and it is a subgroup of N with identity e. If M
is a subgroup of N with identity e, and U(N)⊆M, then M is an Abelian group (by Proposition (3))
and satisfies x*e = e*x = x, for any x∈M. Thus, M⊆U(N), it follows that M = U(N). Therefore, U(N) is
maximal subgroup of N with identity e. �
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Theorem 5. Let (N, *) be an AG-group. Denote P(N) = {x∈N|∃a∈N, s.t x = a*a}. Then

(1) P(N) is the subalgebra of N;
(2) f is a homomorphism mapping from N to P(N), where f: N→P(N), f(x)=x*x∈P(N).

Proof. (1) Obviously, e ∈ P(N), that is, P(N) is not empty. Suppose x, y∈P(N) and a, b∈N. Then, a*a = x
and b*b = y. Thus, x*y = (a*a)*(b*b) = (a*b)*(a*b) ∈ P(N). This means that P(N) is a subalgebra of N.

(2) For any x, y ∈N, we have

f (x*y) = (x*y)*(x*y) = (x*x)*(y*y) = f (x)*f (y).

Therefore, f is a homomorphism mapping from N to P(N). �

4. Involution AG-Groups and Generalized Involution AG-Groups

In this section, we discuss two special classes of AG-groups, that is, involution AG-groups
and generalized involution AG-groups. Some research into the involutivity in AG-groupoids is
presented in [16,17] as the foundation, and further results are given in this section, especially the close
relationship between these algebraic structures and commutative groups (Abelian groups), and their
structural characteristics.

Definition 5. Let (N, *) be an AG-group. If (N, *) satisfies a*a = e, for any a∈N, then (N, *) is called an
involution AG-Group.

We can verify that (N, *) in Example 1 is an involution AG-Group.

Example 5. Denote N = {a, b, c, d}, define operations * on N as shown in Table 1. We can verify that (N, *) is an
involution AG-group (Table 2).

Table 2. Involution AG-group (N, *).

* a b c d

a a b c d
b b a d c
c d c a b
d c d b a

Example 6. Let (G, +) be an Abelian group. Define operations * on G as follows:

x*y = (−x) + y, ∀x, y∈G

where (−x) is the inverse of x in G. Then, (G, *) is an involution AG-group. Denote (G, *) by der (G, +) (see [15]),
and call it derived AG-group by Abelian group (G, +).

Theorem 6. Let (N, *) be an AG-group. Then, (N, *) is an involution AG-Group if and only if it satisfies one of
the following conditions:

(1) P(N) = {e}, where P(N) is defined as Theorem 5.
(2) (x*x)*x = x for any x∈N.

Proof. Obviously, (N, *) is an involution AG-group if and only if P(N) = {e}.
If (N, *) is an involution AG-group, then apply Definition 5, for any x∈N,

(x*x)*x = e*x = x.
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Conversely, if (N, *) satisfies the Condition (2), then for any x∈N,

(x*x)*(x*x) = ((x*x)*x)*x = x*x.

This means that (x*x) is an idempotent element. Using Proposition 4, we have x*x = e. Thus, (N, *)
is an involution AG-group. �

Theorem 7. Let (N, *) be an involution AG-group. Then, (N, ◦) = ret (N, *) defined in Proposition 6 is an
Abelian group, and the derived AG-group der (N, ◦) by ret (N, *) (see Example 5) is equal to (N, *), that is,

der(ret(N, *)) = (N, *).

Proof. (1) By Proposition 6 and Definition 5, ∀x, y, z∈N, we can get that

x◦y = y◦x; x◦e = e◦x = x; (x◦y)◦z = x◦(y◦z); x◦x−1 = x−1◦x = e.

This means that (N, ◦) = ret(N, *) is an Abelian group.
(2) For any x, y∈der(ret(N, *)) = der(N, ◦) = (N, •),

x•y = (−x)◦y = ((−x)∗e)*y = ((x∗e)∗e)*y = ((e∗e)∗x)*y = (e∗x)*y = x*y.

That is, der(ret(N, *)) = (N, •)= (N, *). �

Definition 6. Let (N, *) be an AG-group. Then, (N, *) is called a generalized involution AG-group if it satisfies:
for any x∈N, (x*x)*(x*x) = e.

Obviously, every involution AG-group is a generalized involution AG-group. The inverse is not
true, see the following example.

Example 7. Denote N = {e, a, b, c}, and define the operations * on N as shown in Table 3. We can verify that
(N, *) is a generalized involution AG-group, but it is not an involution AG-group.

Table 3. Generalized involution AG-group (N, *).

* e a b c

e e a b c
a a e c b
b c b a e
c b c e a

Theorem 8. Let (N, *) be a generalized involution AG-group. Define binary relation ≈ on N as follows:

x ≈ y⇔ x ∗ x = y ∗ y, f or any x, y ∈ N.

Then,

(1) ≈ is an equvalent relation on N, and we denote the equivalent class contained x by[x]≈.
(2) The equivalent class contained e by [e]≈ is an involution sub-AG-group.
(3) For any x, y, z∈N, x≈y implies x*z≈y*z and z*x≈z*y.
(4) The quotient (N/≈ , *) is an involution AG-group.
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Proof. (1) For any a∈N, we have a*a = a*a, thus a≈a.
If a≈b, then a*a = b*b; it is obvious that b≈a.
If a≈b and b≈c, then a*a = b*b and b*b = c*c; it is obvious that a*a = c*c, that is, a≈c.
Therefore, ≈ is an equivalent relation on N.
(2) ∀x, y∈ [e]≈, we have x*x = y*y = e*e = e, thus

(x*y)*(x*y) = (x*x)*(y*y) = e*e = e.

This means that [e]≈ is a subalgebra of N. Thus, [e]≈ is an involution sub-AG-group of N.
(3) Assume that x≈y, then x*x = y*y. Thus,

(x*z)*(x*z) = (x*x)*(z*z) = (y*y)*(z*z) = (y*z)*(y*z);

(z*x)*(z*x) = (z*z)*(x*x) = (z*z)*(y*y) = (z*y)*(z*y).

It follows that x*z≈y*z and z*x≈z*y.
(4) By (3), we know that (N/≈ , *) is an AG-group. Moreover, for any

x ∈ [a]≈∗[a]≈ = [a∗a]≈, x ∗ x = (a ∗ a) ∗ (a ∗ a)

By Definition 6,
(a*a)*(a*a) = e.

Then,
x ∗ x = e for any x ∈ [a∗a]≈.

From this, we have x∈[e]≈ , [a*a]≈ ⊆ [e]≈ . Hence, [a*a]≈ = [e]≈ . That is, [a]≈*[a]≈ = [e]≈ . Therefore,
(N/≈ , *) is an involution AG-group. �

Theorem 9. Let (N, *) be an AG-group, denote

I(N) = {x∈N|x*x=e}, GI(N) = {x∈N|(x*x)*(x*x)=e}.

Then, I(N) and GI(N) are sub-algebra of N. I(N) is an involution AG-group and GI(N) is a generalized involution
AG-group.

Proof. (1) It is obvious that e∈I(N). For any x, y∈I(X), we have x*x = e and y*y = e. By medial law,
(x*y)*(x*y) = (x*x)*(y*y) = e*e = e. Hence, I(N) is a sub-algebra of N and I(N) is an involution AG-group.

(2) Obviously, e∈GI(N). Assume that x, y∈GI(X), then

(x*x)*(x*x) = (y*y)*(y*y) = e.

Thus,

((x*y)*(x*y))*((x*y)*(x*y)) = ((x*x)*(y*y))*((x*x)*(y*y)) = ((x*x)*(x*x))*((y*y)*(y*y)) = e*e = e.

It follows that x*y∈GI(N), and GI(N) is a subalgebra of N. Moreover, from ((x*x)*x)*x= (x*x)*(x*x)= e,
we get that a = (x*x)*x is the left inverse of x, and

(a*a)*(a*a) = (((x*x)*x)*((x*x)*x))*(a*a) = ((x*x)*(x*x))*(x*x))*(a*a) = (e*(x*x))*(a*a) = (x*x)*(a*a) = (x*x)*(x*x) = e.

That is, a = (x*x)*x∈GI(N). It follows that GI(N) is an AG-group. By the definition of GI(N), we get
that GI(N) is a generalized involution AG-group. �
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5. Filter of AG-Groups and Homomorphism Theorems

Definition 7. Let (N, *) be an AG-group. A non-empty subset F of N is called a filter of N if, for all x, y∈N, F
satisfies the following properties,

(1) e∈F;
(2) x*x∈F; and
(3) x∈F and x*y∈F imply that y∈F.

If F is a filter and subalgebra of N, then F will be called a closed filter of N.

Theorem 10. Let (N, *) be a generalized involution AG-group, I(N) = {x∈N| e=x*x} be the involution part of N
(see Theorem 9). Then, I(N) is a closed filter of N.

Proof. It is obvious that e∈I(N). ∀x∈N, since

(x*x)*(x*x) = e,

then x*x∈I(N). Moreover, assuming that x∈I(N) and x*y∈I(N), then

e = x*x, (x*y)*(x*y) = e.

Thus,
y*y = e*(y*y) = (x*x)*(y*y) = (x*y)*(x*y) = e.

Hence, y∈I(N), and I(N) is a filter of N. By Theorem 9, I(N) is a subalgebra of N. Therefore, I(N) is
a closed filter of N. �

Theorem 11. Let (N, *) be an AG-group and F be a closed filter of N. Define binary relation ≈F on N as follows:

x ≈F y ⇔ (x ∗ y ∈ F, y ∗ x ∈ F), f or any x, y in N.

Then,

(1) ≈F is an equivalent relation on N.
(2) x≈Fy and a≈Fb imply x*a≈Fy*b.
(3) f: N→N/F is a homomorphism mapping, where N/F = {[x]F: x∈N}, [x]F denote the equivalent class

contained x.

Proof. (1) ∀x∈N, by Definition 7(2), x*x∈F. Thus, x≈Fx.
Assume x≈Fy, then x*y∈F, y*x∈F. It follows that y≈Fx.
Suppose that x≈Fy and y≈Fz. We have x*y∈F, y*x∈F, y*z∈F and z*y∈F. By medial law and

Definition 7,
(y ∗ y) ∗ (z ∗ x) = (y ∗ z) ∗ (y ∗ x) ∈F, then (z ∗ x) ∈ F;

(y ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z) ∈F, then (x ∗ z) ∈ F.

It follows that x≈Fz.
Therefore, ≈F is an equivalent relation on N.
(2) Suppose that x≈Fy and a≈Fb. We have x*y∈F, y*x∈F, a*b∈F and b*a∈F. By medial law and

Definition 7,

(x ∗ a) ∗ (y ∗ b) = (x ∗ y) ∗ (a ∗ b) ∈F; (y ∗ b) ∗ (x ∗ a) = (y ∗ x) ∗ (b ∗ a) ∈ F.

It follows that x*a≈Fy*b.
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(3) Combining (1) and (2), we can obtain (3).
The proof complete. �

Theorem 12. Let (N, *) be a generalized involution AG-group, I(N) the involution part of N (defined as
Theorem 9). Then, f: N→N/I(N) is a homomorphism mapping, and N/I(N) is involutive, where N/I(N) = {[x]|
x∈N}, [x] is the equivalent class contained x by closed filter I(N).

Proof. It follows from Theorem 10 and Theorem 11. �

Theorem 13. Let (N, *) be an AG-group, P(N) = {x∈N|∃a∈N, s.t x =a*a} be the power part of N (see Theorem 5).
Then, P(N) is a closed filter of N.

Proof. It is obvious that e = e ∗ e ∈ P(N). For any x∈N, x*x∈P(N).
Moreover, assume that x∈P(N) and x*y∈P(N), then there exists a, b∈N such that

x = a*a, x*y = b*b.

Denote c = a−1*b, where a−1 is the left inverse of a in N. Then,

c*c = (a−1*b)*(a−1*b) = (a−1*a−1)*(b*b) = (a−1*a−1)*(x*y) = (a−1*a−1)*((a*a)*y) = (a−1*a−1)*((y*a)*a) =
(a−1*(y*a))*(a−1*a)= (a−1*(y*a))*e = (e*(y*a))*a−1 = (y*a)*a−1 = (a−1*a)*y = e*y= y.

Thus, y∈P(N). It follows that P(N) is a filter of N. By Theorem 5, P(N) is a subalgebra of N, therefore,
P(N) is a closed filter of N. �

Theorem 14. Let (N, *) be an AG-group, P(N) the power part of N (defined as Theorem 13). Then, f: N→N/P(N)
is a homomorphism mapping, where N/P(N) = {[x]| x∈N}, [x] is the equivalent class contained x by closed
filter P(N).

Proof. It follows from Theorems 11 and 13. �

6. Conclusions

In the paper, we give some examples of AG-groups, and obtain some new properties of AG-groups:
an AG-group is weak commutative (or alternative) if and only if it is an Abelian group; every AG-group
is a quasi-cancellative AG-groupoid. We introduce two new concepts of involution AG-group
and generalized involution AG-group, establish a one-to-one correspondence between involution
AG-groups and Abelian groups, and construct a homomorphism mapping from generalized involution
AG-groups to involution AG-groups. Moreover, we introduce the notion of filter in AG-groups,
establish quotient algebra by every filter, and obtain some homomorphism theorems. Some results
in this paper are expressed in Figure 2. In the future, we can investigate the combination of some
uncertainty set theories (fuzzy set, neutrosophic set, etc.) and algebra systems (see [18–22]).
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Figure 2. Some results in this paper.
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Abstract: Social networks describe social interactions between people, which are often modeled
by intersection graphs. In this paper, we propose an intersection graph model that is induced by
adding a sparse random bipartite graph to a given bipartite graph. Under some mild conditions,
we show that the vertex–isoperimetric number and the edge–isoperimetric number of the randomly
perturbed intersection graph on n vertices are Ω(1/ ln n) asymptomatically almost surely. Numerical
simulations for small graphs extracted from two real-world social networks, namely, the board
interlocking network and the scientific collaboration network, were performed. It was revealed that
the effect of increasing isoperimetric numbers (i.e., expansion properties) on randomly perturbed
intersection graphs is presumably independent of the order of the network.

Keywords: isoperimetric number; random graph; intersection graph; social network

1. Introduction

Complex large-scale network structures arise in a variety of natural and technological
settings [1,2], and they pose numerous challenges to computer scientists and applied mathematicians.
Many interesting ideas in this area come from the analysis of social networks [3], where each vertex
(actor) is associated with a set of properties (attributes), and pairs of sets with nonempty intersections
correspond to edges in the network. Complex and social networks represented by such intersection
graphs are copious in the real world. Well-known examples include the film actor network [4], where
actors are linked by an edge if they performed in the same movie, the academic co-authorship
network [5], where two researchers are linked by an edge if they have a joint publication, the circle of
friends in online social networks (e.g., Google+), where two users are declared adjacent if they share
a common interest, and the Eschenauer–Gligor key predistribution scheme [6] in secure wireless sensor
networks, where two sensors establish secure communication over a link if they have at least one
common key. Remarkably, it was shown in Reference [7] that all graphs are indeed intersection graphs.

To understand statistical properties of intersection graphs, a probability model was introduced in
References [8,9] as a generalization of the classical model G(n, p) of Erdős and Rényi [10]. Formally,
let n, m be positive integers and let p ∈ [0, 1]. We start with a random bipartite graph B(n, m, p)
with independent vertex sets V = {v1, · · · , vn} and W = {w1, · · · , wm} and edges between V and W
existing independently with probability p. In terms of social networks, V is interpreted as a set of
actors and W a set of attributes. We then define the random intersection graph G(n, m, p) with vertex set
V and vertices vi, vj ∈ V adjacent if and only if there exists some w ∈W such that both vi and vj are
adjacent to w in B(n, m, p). Several variant models of random intersection graphs have been proposed,
and many graph-theoretic properties of G(n, m, p), such as degree distribution, connected components,
fixed subgraphs, independence number, clique number, diameter, Hamiltonicity and clustering, have
been extensively studied [8,9,11–14]. We refer the reader to References [15,16] for an updated review
of recent results in this prolific field.
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Symmetry 2019, 11, 452

In light of the above list of properties studied, it is, perhaps, surprising that there has been
little work regarding isoperimetric numbers of random intersection graphs. The isoperimetric numbers,
which measure the expansion properties of a graph (see Section 2 below for precise definitions),
have a long history in random graph theory [17–19] and are strongly related to the graph spectrum
and expanders [20]. They have found a wide range of applications in theoretical computer science,
including algorithm design, data compression, rapid mixing, error correcting codes, and robust
computer networks [21]. Social networks such as co-authorship networks are commonly believed to
have poor expansion properties (i.e., small isoperimetric numbers), which indicate the existence
of bottlenecks (e.g., cuts with small size) inside the networks, because of their modular and
community organization [22,23]. In this paper, we hope to show that it is possible to increase the
isoperimetric numbers by a gentle perturbation of the original bipartite graph structure underlying the
intersection graphs.

In recent times, there has been an effort to study the effect of random perturbation on graphs.
The most mathematically famous example is perhaps the Newman–Watts small-world network [1,24],
which is a random instance obtained by adding random edges to a cycle, exhibiting short average
distance and high clustering coefficient, namely, the so-called small-world phenomenon. A random
graph model G ∪ R [25] with general connected base graph G on n vertices and R being a sparse
Erdős-Rényi random graph G(n, ε/n) where ε > 0 is some small constant has been introduced in [26],
and its further properties, such as connectivity, fixed subgraphs, Hamiltonicity, diameter, mixing time,
vertex and edge expansion, have been intensively examined; see, e.g., [27–34] and references therein.
For instance, in Reference [29], a necessary condition for the base graph is given under which the
perturbed graph G ∪ R is an expander a.a.s. (asymptomatically almost surely); for a connected base
graph G, it is shown in Reference [30] that, a.a.s. the perturbed graph has an edge–isoperimetric
number Ω(1/ ln n), diameter O(ln n), and vertex–isoperimetric number Ω(1/ ln n), where for the last
property G is assumed to have bounded maximum degree. Here, we say that G ∪ R possesses a graph
property P asymptotically almost surely, or a.a.s. for brevity, if the probability that G ∪ R possesses P
tends to 1 as n goes to infinity. In this paper, to go a step further in this line of research, we investigate
the bipartite graph type perturbation, where random edges are only added to the base (bipartite) graph
between the two independent sets. We provide lower bounds for the isoperimetric numbers of random
intersection graphs induced by such perturbations.

The rest of the paper is organized as follows. In Section 2, we state and discuss the main
results, with proofs relegated to Section 4. In Section 3, we give numerical examples based upon real
network data, complementing our theoretical results in small network sizes. Section 5 contains some
concluding remarks.

2. Results

Let G = (V, E) be a graph with vertex set V and edge set E. If S ⊆ V is a set of vertices, then ∂GS
denotes the set of edges of G having one end in S and the other end in V\S. Given S ⊆ V, write G[S]
for the subgraph of G induced by S. We use NG(S) to denote the collection of vertices of V\S which
are adjacent to some vertex of S. For a vertex v ∈ V, NG(v) is the neighborhood of v, and we denote
by N2

G(v) = NG(NG(v)) the second neighborhood of v. The above subscript G will be omitted when
no ambiguity may arise. For a graph G, its edge–isoperimetric number, c(G) (also called its Cheeger
constant), is given by:

c(G) = min
S⊆V

0<|S|≤|V|/2

|∂GS|
|S| .

The vertex–isoperimetric number of G, ι(G), can be defined similarly as:

ι(G) = min
S⊆V

0<|S|≤|V|/2

|NG(S)|
|S| .
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It is well-known that c(G)/Δ(G) ≤ ι(G) ≤ c(G) [35], where Δ(G) is the maximum degree of G.
We will consider the following model of randomly perturbed intersection graphs. Given a fixed

bipartite graph B = B(V, W, E) with two independent vertex sets V (|V| = n) and W (|W| = m),
the intersection graph derived from B is denoted by G(B). That is, G(B) is a graph on the vertex set V
with two vertices adjacent if they have a common neighbor in B. For each pair of vertices v ∈ V and
w ∈ W, we add the edge {v, w} to B independently with probability p. The resulting bipartite graph,
denoted B ∪ R, can be viewed as the union of B and a bipartite graph R ∼ B(n, m, p), meaning that
R is a random graph distributed according to B(n, m, p). We write G(B ∪ R), the intersection graph
derived from B ∪ R. Clearly, if the base graph B(V, W, E) is taken to be the empty bipartite graph,
our model G(B ∪ R) reduces to the random intersection graph G(n, m, p).

Throughout the paper, the standard Landau asymptotic notations will be utilized (see, e.g., [10]).
Let �·� be the round-down operator. As customary in the theory of random intersection graphs,
we take m = �nα� for a fixed real α ∈ (0, ∞), which allows for a natural progression from sparse to
dense graphs. Recall that we say that G(B ∪ R) possesses a graph property P a.a.s. if the probability
that G(B ∪ R) possesses P tends to 1 as n goes to infinity.

We are now ready to formulate the main results of this paper.

Theorem 1. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = �nα� such that any two
vertices in V are connected by a path and Δ := maxv∈V N2

B(v) is a constant (i.e., independent of n). For any
ε > 0, let R ∼ B(n, m, p) with p = ε/n if α ≤ 1 and p = ε/

√
nm if α > 1. Then there exists some constant

δ > 0 satisfying ι(G(B ∪ R)) ≥ δ/ ln n a.a.s.

A couple of remarks are in order.

Remark 1. The local ef fects of the perturbation are quite mild, as a small ε is of interest. Nonetheless, the global
influence on the vertex–isoperimetric number can be prominent. To see this, note that any connected (intersection)
graph G has ι(G) = Ω(1/n). In particular, if G is a tree, we have ι(G) = Θ(1/n) (see e.g., [36]).

Remark 2. It is easy to check that the maximum degree of G(B) is Δ. In fact, v ∈ V and v1 ∈ V are
adjacent in G(B) if and only if they have a common neighbor w ∈ W, namely, w ∈ NB(v) and v1 ∈ NB(w).
Hence, the degree of v is NB(NB(v)). The assumption that Δ is a constant cannot be removed in general. Indeed,
when α ≥ 1, consider the bipartite graph B(V, W, E) with V = {v1, · · · , vn}, W = {w1, · · · , wm}, and the
edge set E = {{v1, wi}, {vj, wj−1}|i = 1, · · · , n− 1, j = 2, · · · , n}. It is clear that G(B) is a star with center
v1 over the vertex set V. There are no more than n2 p edges over V\{v1} in the graph G(B ∪ R), which covers
at most 2n2 p vertices. In G(B ∪ R), there will be an independent set S (meaning that G(B ∪ R)[S] is empty) of
order at least:

n− 2n2 p = n
(

1− 2ε

√
n
m

)
and NG(B∪R)(S) = 1. Therefore, ι(G(B ∪ R)) ≤ 1/

(
n(1 − 2ε

√
n/m)

)
= O(1/n). When α < 1,

consider the bipartite graph B(V, W, E) with the edge set E = {{v1, wi}, {vj, wj−1}, {vl , wm}| i = 1, · · · , m,
j = 2, · · · , m + 1, l = m + 2, · · · , n}. Then G(B) can be thought of as the joining of a star K1,m having center
v1 and a complete graph Kn−m+1 by identifying v1 with any vertex of Kn−m+1. After adding nmε/n = mε

edges to B, in G(B ∪ R), there will be an independent set S of order at least m− 1− 2mε and NG(B∪R)(S) = 1.
Therefore, ι(G(B ∪ R)) ≤ 1/(m− 1− 2mε) = O(1/m).

Recall that the inequality c(G) ≥ ι(G) holds for any graph G. Therefore, a direct corollary of
Theorem 1 reads c(G(B ∪ R)) ≥ δ/ ln n a.a.s. for some δ > 0. The following theorem shows that this
lower bound for edge–isoperimetric number actually holds without any assumption on Δ.
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Theorem 2. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = �nα� such that any two
vertices in V are connected by a path. For any ε > 0, let R ∼ B(n, m, p) with p = ε/

√
nm. Then there exists

some constant δ > 0 satisfying c(G(B ∪ R)) ≥ δ/(1 + ln n) a.a.s.

Theorems 1 and 2 hold in the sense of large n limit. In the next section, we shall demonstrate that
the isoperimetric numbers can be improved as well for small randomly perturbed intersection graphs
based upon real network data.

3. Illustration on Small Networks

To find the exact isoperimetric numbers, one needs to calculate the minimum fraction of
neighboring vertices or edges over the nodes inside the subset for all possible subsets of vertices
with order at most |V|/2. Since this is an NP-hard problem, it is intractable to compute the exact values
for general graphs [21,35]. It is well known that Cheeger’s inequality, also known as the Alon–Milman
inequality, provides bounds for the isoperimetric numbers using graph Laplacian eigenvalues. On the
other hand, standard algorithms in linear algebra can be used to efficiently compute the spectrum of
a given large graph. Here, instead of evaluating “approximate” values involving other parameters
such as eigenvalues, we are interested in obtaining exact values of ι(G(B ∪ R)) and c(G(B ∪ R)) for
small networks.

Two intersection-based social networks are considered here: (i) The Norwegian interlocking
directorate network Nor-Boards [37], where two directors are adjacent if they are sitting on the board
of the same company based on the Norwegian Business Register on 5 August 2009. The underlying
bipartite graph B̄(V̄, W̄, Ē) contains |V̄| = 1495 directors, |W̄| = 367 companies, and |Ē| = 1834
edges indicating the affiliation relations; (ii) the co-authorship network ca-CondMat [5] based on
preprints posted to the Condensed Matter Section of arXiv E-Print Archive between 1995 and 1999.
The underlying bipartite graph B̄(V̄, W̄, Ē) contains |V̄| =16,726 authors, |W̄| = 22,016 papers,
and |Ē| = 58,596 edges indicating authorship.

Figures 1 and 2 report the vertex–isoperimetric numbers and edge–isoperimetric numbers
for subsets of Nor-Boards and ca-CondMat, respectively. For a given n ∈ [20, 30], we first take
a subgraph B = B(V, W, E) from B̄(V̄, W̄, Ē) with |V| = n so that G(B) is connected and calculate its
vertex–isoperimetric and edge–isoperimetric numbers. Each data point (blue square) in Figures 1 and 2
is obtained by means of an ensemble averaging of 30 independently taken graphs. For each chosen
bipartite graph B, we then perturb it following the rules specified in Theorems 1 and 2 with ε = 1
to get the perturbed intersection graph G(B ∪ R). Each data point (red circle) in Figures 1 and 2 is
obtained by means of a mixed ensemble averaging of 50 independently-implemented perturbations
for 30 graphs. From a statistics viewpoint, it is clear that our random perturbation scheme increases
both the vertex–isoperimetric and the edge–isoperimetric number for both cases. This, together with
the theoretical results, suggests that the quantitative effect of random perturbations is independent of
the order of the network.

Remark 3. It is worth stressing that the theoretical results (Theorems 1 and 2) are in the large limit of the
network size n. In other words, the form 1

ln n only makes sense as n→ ∞. The simulation results presented in
Figures 1 and 2 are for very small networks. Therefore, these results have no bearing on the 1

ln n dependence
(although a slight decline tendency for ι(G(B ∪ R)) can be seen in Figure 1a). The main phenomenon we
observe from Figures 1 and 2 is that the random perturbation increases both vertex– and edge–isoperimetric
numbers for all the cases considered. The numerical results (for small finite graphs) are a nice complement to the
theoretical results (for infinite graphs). However, our numerical observations neither prove the 1

ln n dependence
would hold for small graphs nor show that such an increase of isoperimetric numbers would be universal in
any sense. (A practical issue stems from graph sampling. To establish a proper model fit to the data, Akaike
information criteria and Bayesian information criteria need to be applied.) The establishment of correlation
between isoperimetric numbers and graph size n for finite intersection graphs is an interesting future work.
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Figure 1. Vertex–isoperimetric number (panel (a)) and edge–isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B ∪ R)) taken from Nor-Boards.
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Figure 2. Vertex–isoperimetric number (panel (a)) and edge–isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B∪ R)) taken from ca-CondMat.

4. Proofs

In this section, we prove Theorems 1 and 2. Our idea behind this is somewhat simple: If the
network can be carefully decomposed into some subnetworks so that the resulting super-network
(with these subnetworks being super-vertices) is sparse and highly connected, then its isoperimetric
numbers are expected to be high. Similar approaches have been applied in, e.g., References [29–31].

Proof of Theorem 1. Set s = CΔ(ln n)/ε for some constant C = C(ε) > 0 to be determined.
By assumption, G(B) is connected. Following Reference [38] (Proposition 4.5), we can divide the
vertex set V into disjoint sets V1, V2, · · · , Vθ satisfying s ≤ |Vi| ≤ Δs and G(B)[Vi] connected for each
i. Clearly, n/(Δs) ≤ θ ≤ n/s. Let [θ] = {1, 2, · · · , θ}. For a graph G = (V, E), we say two sets
S1, S2 ⊆ V have common neighbors in G if there exist v1 ∈ S1, v2 ∈ S2, and v ∈ V such that {v1, v} ∈ E
and {v2, v} ∈ E hold.

We will first show the following property for the random bipartite graph R holds a.a.s.: For every
Θ ⊆ [θ] with 0 < |Θ| ≤ θ/2, there exist at least |Θ|/2 many of Vi (i ∈ [θ]\Θ) which have common
neighbors with ∪i∈ΘVi in R.

Indeed, the probability that two sets Vi and Vj have no common neighbors in R can be computed

as
{

1− [1− (1− p)|Vi |][1− (1− p)|Vj |]
}m

. Hence, the probability that there exists a set Θ ⊆ [θ] with
0 < |Θ| ≤ θ/2 such that no more than |Θ|/2 many of Vi (i ∈ [θ]\Θ) have common neighbors with
∪i∈ΘVi in R is upper bounded by:
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∑
1≤j≤θ/2

(
θ

j

)(
θ − j

� j
2�
){

1− [1− (1− p)js][1− (1− p)(θ−�3j/2�)s]
}m

,

≤ ∑
1≤j≤θ/2

(
eθ

j

)j (2e(θ − j)
j

)j/2 (
1− s2 j(θ − 3j/2)p2

4

)m

,

where (θ
j)(

θ−j
� j

2 �
) counts the choice of Θ (with |Θ| = j) and the corresponding sets {Vi} described

above, the estimate |Vi| ≥ s for all i ∈ [θ] is utilized in the multiplicative probabilities
(i.e., there are at least (θ − �3j/2�) sets in the union ∪i∈ΘVi), and the upper bound comes
from a direct application of inequalities ([10], p. 386). The above probability is further upper
bounded by (C(ln n)/n)m ∑1≤j≤θ/2(2θ/j)3j/2 = o(1) when α ≤ 1, and is upper bounded by

∑1≤j≤θ/2 θ3j/2+2 exp(−CεΔj ln n) = o(1) when α > 1 for a sufficiently large C. Therefore, the above
property for the random bipartite graph R holds a.a.s. In the following, we will condition on such
an R.

Fix a set S ⊆ V with |S| ≤ n/2. Define three sets of indices: Θ0 = {i ∈ [θ]|Vi ⊆ S},
Θ1 = {i ∈ [θ]|0 < |Vi ∩ S| < |Vi|}, and Θ2 = {i ∈ [θ]\Θ0|NG(B∪R)(Vi)∩ S 	= ∅}. Note that Θ0 and Θ1

are deterministic, but Θ2 is a random set. If |Θ0| ≤ θ/2, |Θ2| ≥ |Θ0|/2 a.a.s. by the above assumed
property of R. Similarly, if |Θ0| > θ/2, we have |Θ2| ≥ |Θ|/2 = (θ − |Θ0| − |Θ2|)/2 a.a.s., where
Θ = [θ]\(Θ0 ∪Θ2). Hence, |Θ2| ≥ min{|Θ0|/2, (θ − |Θ0|)/3} a.a.s. Recall that |S| ≤ n/2. We derive
that n/2 ≤ |V\S| ≤ | ∪i 	∈Θ0 Vi| ≤ (θ − |Θ0|)Δs ≤ (θ − |Θ0|)Δn/θ, and thus, θ − |Θ0| ≥ θ/(2Δ).
Therefore, we have a.a.s.:

|Θ2| ≥ min
{ |Θ0|

2
,

θ

6Δ

}
≥ |Θ0|

6Δ
.

By definition, we have S ⊆ ∪i∈Θ0∪Θ1 Vi. Thus, |S| ≤ (|Θ0| + |Θ1|)Δs. Since G(B)[Vi] for
i ∈ Θ1 is connected, |NG(B∪R)(S)| ≥ |Θ1 ∪ Θ2|. Now we consider two cases. If |Θ1| ≥ |Θ0|,
then |NG(B∪R)(S)| ≥ |Θ1| ≥ |S|/(2Δs). If |Θ1| ≤ |Θ0|, then |NG(B∪R)(S)| ≥ |Θ2| ≥ |Θ0|/(6Δ) ≥
|S|/(12Δ2s) a.a.s. Therefore:

|NG(B∪R)(S)|
|S| ≥ min

{
1

2Δs
,

1
12Δ2s

}
a.a.s.

Recall the definition of s at the beginning of the proof, and we complete the proof by taking
δ = ε/(12Δ3C).

We have made no attempt to optimize the constants in the proof. It is easy to check that the
condition that G(B) is connected in Theorem 1 can be weakened. For example, the above proof holds
if each connected component of G(B) is of order at least CΔ(ln n)/ε.

Let G = (V, E) be a graph of order n. For integers a, b, and c, define S(a, b, c) as a collection of
all sets S ⊆ V such that |S| = a and there exists a partition S = S1 ∪ · · · ∪ Sb, where each G[Si] is
connected, there are no edges in E connecting different Si, and |NG(S1)|+ · · ·+ |NG(Sb)| = c. The next
lemma gives an upper bound of the size of S(a, b, c).

Lemma 1. ([30])

|S(a, b, c)| ≤
( en

b

)b ( ea
b

)b ( ec
b

)b
(

e(a + c)
c

)c
.

Proof of Theorem 2. Consider the family S(a, b, c) of sets defined in graph G(B). Since G(B) is
connected, we have for each S ∈ S(a, b, c), |∂G(B)S| ≥ c ≥ b. Note that |∂G(B∪R)S| ≥ |∂G(R)S|
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holds. It suffices to show that the following property for the random bipartite graph R holds a.a.s.:
There are constants K, δ > 0 such that for any K ln n ≤ a ≤ n/2, we have:

|∂G(R)S| ≥
δa

1 + ln n
,

for each S ∈ S(a, b, c) with b ≤ c ≤ δa/(1 + ln n). Indeed, when |S| = a ≤ K ln n, we can choose
a small δ such that 2Kδ ≤ 1. Thus, |∂G(B∪R)S| ≥ |∂G(B)(S)| ≥ 1 ≥ δa/(1 + ln n).

It follows from Lemma 1 and b ≤ c ≤ δa/(1 + ln n) ≤ a that:

|S(a, b, c)| ≤
(

2e4na2

c3

)c

≤
(

2e4n(1 + ln n)3

δ3a

)δa/(1+ln n)

≤ eCδa ln(1/δ),

for some constant C > 0, where the first inequality holds since f (x) = (eρ/x)x is increasing on (0, ρ]

and the second inequality holds since g(x) = (ρ/x3)x is increasing on (0, ρ1/3].
Note that mp2 → 0 and 1− (1− p2)m ∼ mp2. For a fixed S with |S| = a ≤ n/2, we obtain:

P(|∂G(R)S| < δa) � P(Bin(a(n− a), mp2) < δa) ≤ P
(

Bin
(na

2
, mp2

)
< δa

)
≤ exp

(
− aε2

16

)
,

provided δ < ε2/4, where the first inequality relies on Reference [9] (Theorem 2.2) and the last line
uses a standard Chernoff’s bound (e.g., [10]). Hence:

P
(
|∂G(R)S| <

δa
1 + ln n

, ∃S ∈ S(a, b, c), b ≤ c ≤ δa
1 + ln n

, K ln n ≤ a ≤ n
2

)
≤ P

(
|∂G(R)S| < δa, ∃S ∈ S(a, b, c), b ≤ c ≤ n, K ln n ≤ a ≤ n

)
≤ n3 exp

(
Cδa ln

(
1
δ

)
− aε2

16

)
.

By taking Cδ ln(1/δ) ≤ ε2/32 and K ≥ 100/ε2, the last line above is upper bounded by
n3 exp(−ε2a/32) ≤ n3 exp(−ε2K(ln n)/32) ≤ n3 exp(−25(ln n)/8) = o(1) as n → ∞. The proof
is complete.

5. Concluding Remarks

In this paper, we presented a model of randomly perturbed intersection graphs. The intersection
graph is induced by a given bipartite graph (base graph) plus a binomial random bipartite graph.
We proved that a.a.s., the vertex–isoperimetric number and the edge–isoperimetric number of the
randomly perturbed intersection graphs are of order Ω(1/ ln n) under some mild conditions. It would
be interesting to investigate path length, diameter, and clustering coefficient of this model, which are
important characteristics of real-life complex and social networks.

Another intriguing direction is to examine more general intersection graph models, such as
active and passive intersection graphs [39]. In particular, if two vertices in one independent set V
are declared adjacent when they have at least k ≥ 1 common neighbors in the other independent set
W, what role will k play in estimating the isoperimetric numbers, clustering, and path length of the
resulting perturbed intersection graphs? Other perturbation mechanisms are also of research interest.
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Abstract: The search for complete graph invariants is an important problem in graph theory and
computer science. Two networks with a different structure can be distinguished from each other by
complete graph invariants. In order to find a complete graph invariant, we introduce the generalized
permanental polynomials of graphs. Let G be a graph with adjacency matrix A(G) and degree matrix
D(G). The generalized permanental polynomial of G is defined by PG(x, μ) = per(xI − (A(G)−
μD(G))). In this paper, we compute the generalized permanental polynomials for all graphs on at
most 10 vertices, and we count the numbers of such graphs for which there is another graph with the
same generalized permanental polynomial. The present data show that the generalized permanental
polynomial is quite efficient for distinguishing graphs. Furthermore, we can write PG(x, μ) in the
coefficient form ∑n

i=0 cμi(G)xn−i and obtain the combinatorial expressions for the first five coefficients
cμi(G) (i = 0, 1, . . . , 4) of PG(x, μ).

Keywords: generalized permanental polynomial; coefficient; co-permanental

1. Introduction

A graph invariant f is a function from the set of all graphs into any commutative ring, such that f
has the same value for any two isomorphic graphs. Graph invariants can be used to check whether
two graphs are not isomorphic. If a graph invariant f satisfies the condition that f (G) = f (H) implies
G and H are isomorphic, then f is called a complete graph invariant. The problem of finding complete
graph invariants is closely related to the graph isomorphism problem. Up to now, no complete graph
invariant for general graphs has been found. However, some complete graph invariants have been
identified for special cases and graph classes (see, for example, [1]).

Graph polynomials are graph invariants whose values are polynomials, which have been
developed for measuring the structural information of networks and for characterizing graphs [2].
Noy [3] surveyed results for determining graphs that can be characterized by graph polynomials. In a
series of papers [1,4–6], Dehmer et al. studied highly discriminating descriptors to distinguish graphs
(networks) based on graph polynomials. In [5], it was found that the graph invariants based on the
zeros of permanental polynomials are quite efficient in distinguishing graphs. Balasubramanian and
Parthasarathy [7,8] introduced the bivariate permanent polynomial of a graph and conjectured that
this graph polynomial is a complete graph invariant. In [9], Liu gave counterexamples to the conjecture
by a computer search.

In order to find almost complete graph invariants, we introduce a graph polynomial by employing
graph matrices and the permanent of a square matrix. We will see that this graph polynomial turns
out to be quite efficient when we use it to distinguish graphs (networks).

The permanent of an n× n matrix M with entries mij (i, j = 1, 2, . . . , n) is defined by

per(M) = ∑
σ

n

∏
i=1

miσ(i),

Symmetry 2019, 11, 242; doi:10.3390/sym11020242 www.mdpi.com/journal/symmetry92
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where the sum is over all permutations σ of {1, 2, . . . , n}. Valiant [10] proved that computing the
permanent is #P-complete, even when restricted to (0,1)-matrices. The permanental polynomial of M,
denoted by π(M, x), is defined to be the permanent of the characteristic matrix of M; that is,

π(M, x) = per(xIn −M),

where In is the identity matrix of size n.
Let G = (V(G), E(G)) be a graph with adjacency matrix A(G) and degree matrix D(G).

The Laplacian matrix and signless Laplacian matrix of G are defined by L(G) = D(G)− A(G) and
Q(G) = D(G) + A(G), respectively. The ordinary permanental polynomial of a graph G is defined as
the permanental polynomial of the adjacency matrix A(G) of G (i.e., π(A(G), x)). We call π(L(G), x)
(respectively, π(Q(G), x)) the Laplacian (respectively, the signless Laplacian) permanental polynomial
of G.

The permanental polynomial π(A(G), x) of a graph G was first studied in mathematics by
Merris et al. [11], and it was first studied in the chemical literature by Kasum et al. [12]. It was found
that the coefficients and roots of π(A(G), x) encode the structural information of a (chemical) graph G
(see, e.g., [13,14]). Characterization of graphs by the permanental polynomial has been investigated,
see [15–19]. The Laplacian permanental polynomial of a graph was first considered by Merris et al. [11],
and the signless Laplacian permanental polynomial was first studied by Faria [20]. For more on
permanental polynomials of graphs, we refer the reader to the survey [21].

We consider a bivariate graph polynomial of a graph G on n vertices, defined by

PG(x, μ) = per(xIn − (A(G)− μD(G))).

It is easy to see that PG(x, μ) generalizes some well-known permanental polynomials of a graph
G. For example, the ordinary permanental polynomial of G is PG(x, 0), the Laplacian permanental
polynomial of G is (−1)|V(G)|PG(−x, 1), and the signless Laplacian permanental polynomial of G is
PG(x,−1). We call PG(x, μ) the generalized permanental polynomial of G.

We can write the generalized permanental polynomial PG(x, μ) in the coefficient form

PG(x, μ) =
n

∑
i=0

cμi(G)xn−i.

The general problem is to achieve a better understanding of the coefficients of PG(x, μ). For any
graph polynomial, it is interesting to determine its ability to characterize or distinguish graphs.
A natural question is how well the generalized permanental polynomial distinguishes graphs.

The rest of the paper is organized as follows. In Section 2, we obtain the combinatorial expressions
for the first five coefficients cμ0, cμ1, cμ2, cμ3, and cμ4 of PG(x, μ), and we compute the first five
coefficients of PG(x, μ) for some specific graphs. In Section 3, we compute the generalized permanental
polynomials for all graphs on at most 10 vertices, and we count the numbers of such graphs for which
there is another graph with the same generalized permanental polynomial. The presented data shows
that the generalized permanental polynomial is quite efficient in distinguishing graphs. It may serve
as a powerful tool for dealing with graph isomorphisms.

2. Coefficients

In Section 2.1, we obtain a general relation between the generalized and the ordinary permanental
polynomials of graphs. Explicit expressions for the first five coefficients of the generalized permanental
polynomial are given in Section 2.2. As an application, we obtain the explicit expressions for the first
five coefficients of the generalized permanental polynomials of some specific graphs in Section 2.3.
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2.1. Relation between the Generalized and the Ordinary Permanental Polynomials

First, we present two properties of the permanent.

Lemma 1. Let A, B, and C be three n× n matrices. If A, B, and C differ only in the rth row (or column), and the
rth row (or column) of C is the sum of the rth rows (or columns) of A and B, then per(C) = per(A) + per(B).

Lemma 2. Let M = (mij) be an n× n matrix. Then, for any i ∈ {1, 2, . . . , n},

per(M) =
n

∑
j=1

mij per(M(i, j)),

where M(i, j) denotes the matrix obtained by deleting the ith row and jth column from M.

Since Lemmas 1 and 2 can be easily verified using the definition of the permanent, the proofs
are omitted.

We need the following notations. Let G = (V(G), E(G)) be a graph with vertex set
V(G) = {v1, v2, . . . , vn} and edge set E(G). Let di = dG(vi) be the degree of vi in G. The degree
matrix D(G) of G is the diagonal matrix whose (i, i)th entry is dG(vi). Let vr1 , vr2 , . . . , vrk be k distinct
vertices of G. Then Gr1,r2,...,rk denotes the subgraph obtained by deleting vertices vr1 , vr2 , . . . , vrk from
G. We use G[hr] to denote the graph obtained from G by attaching to the vertex vr a loop of weight
hr. Similarly, G[hr, hs] stands for the graph obtained by attaching to both vr and vs loops of weight hr

and hs, respectively. Finally, G[h1, h2, . . . , hn] is the graph obtained by attaching a loop of weight hr

to vertex vr for each r = 1, 2, . . . , n. The adjacency matrix A(G[hr1 , hr2 , . . . , hrs ]) of G[hr1 , hr2 , . . . , hrs ] is
defined as the n× n matrix (aij) with

aij =

⎧⎪⎨⎪⎩
hr, if i = j = r and r ∈ {r1, r2, . . . , rs},
1, if i 	= j and vivj ∈ E(G),
0, otherwise.

By Lemmas 1 and 2, expanding along the rth column, we can obtain the recursion relation

π(A(G[hr]), x) = π(A(G), x)− hrπ(A(Gr), x). (1)

For example, expanding along the first column of π(A(G[h1]), x), we have

π(A(G[h1]), x) = per(xIn − A(G[h1]))

= per

[
x− h1 u

v xIn−1 − A(G1)

]

= per

[
x u
v xIn−1 − A(G1)

]
+ per

[
−h1 u

0 xIn−1 − A(G1)

]
= π(A(G), x)− h1per(xIn−1 − A(G1))

= π(A(G), x)− h1π(A(G1), x).

By repeated application of (1) for G[hr, hs], we have

π(A(G[hr, hs]), x)

= π(A(G[hr]), x)− hsπ(A(Gs[hr]), x)

= π(A(G), x)− hrπ(A(Gr), x)− hs(π(A(Gs), x)− hrπ(A(Gr,s), x))

= π(A(G), x)− hrπ(A(Gr), x)− hsπ(A(Gs), x) + hrhsπ(A(Gr,s), x).
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Additional iterations can be made to take into account loops on additional vertices. For loops on
all n vertices, the expression becomes

π(A(G[h1, h2, . . . , hn]), x) = π(A(G), x) +
n

∑
k=1

(−1)k ∑
1≤r1<···<rk≤n

hr1 · · · hrk π(A(Gr1,...,rk ), x). (2)

Let Aμ(G) := A(G) − μD(G). We see that the generalized permanental polynomial PG(x, μ)

of G is the permanental polynomial of Aμ(G); that is, π(Aμ(G), x). If the degree sequence of G is
(d1, d2, . . . , dn), then Aμ(G) is precisely the adjacency matrix of G[−μd1,−μd2, . . . ,−μdn]. Hence,
we obtain a relation between the generalized and ordinary permanental polynomials as an immediate
consequence of (2).

Theorem 1. Let G be a graph on n vertices. Then,

PG(x, μ) = π(Aμ(G), x) = π(A(G), x) +
n

∑
k=1

μk ∑
1≤r1<···<rk≤n

dr1 · · · drk π(A(Gr1,...,rk ), x).

Theorem 1 was inspired by Gutman’s method [22] for obtaining a general relation between the
Laplacian and the ordinary characteristic polynomials of graphs. From Theorem 1, one can easily give
a coefficient formula between the generalized and the ordinary permanental polynomials.

Theorem 2. Suppose that π(A(G), x) =
n
∑

i=0
ai(G)xn−i and PG(x, μ) =

n
∑

i=0
cμi(G)xn−i. Then,

cμi(G) = ai(G) +
n

∑
k=1

μk ∑
1≤r1<···<rk≤n

dr1 · · · drk ai−k(Gr1,...,rk ), 1 ≤ i ≤ n.

2.2. The First Five Coefficients of PG(x, μ)

In what follows, we use tG and qG to denote respectively the number of triangles (i.e., cycles of
length 3) and quadrangles (i.e., cycles of length 4) of G, and tG(v) denotes the number of triangles
containing the vertex v of G.

Liu and Zhang [15] obtained combinatorial expressions for the first five coefficients of the
permanental polynomial of a graph.

Lemma 3 ([15]). Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence
of G. Suppose that π(A(G), x) = ∑n

i=0 ai(G)xn−i. Then,

a0(G) = 1, a1(G) = 0, a2(G) = m, a3(G) = −2tG, a4(G) =

(
m
2

)
−

n

∑
i=1

(
di
2

)
+ 2qG.

Theorem 3. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that PG(x, μ) = ∑n

i=0 cμi(G)xn−i. Then

cμ0(G) = 1, cμ1(G) = 2μm, cμ2(G) = 2μ2m2 + m− 1
2

μ2
n

∑
i=1

d2
i ,

cμ3(G) =
1
3

μ3
n

∑
i=1

d3
i − (μ3m + μ)

n

∑
i=1

d2
i +

4
3

μ3m3 + 2μm2 − 2tG,
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cμ4(G) = −1
4

μ4
n

∑
i=1

d4
i +

(
2
3

μ4m + μ2
) n

∑
i=1

d3
i −

1
2
(2μ4m2 + 5μ2m + 1)

n

∑
i=1

d2
i

+
1
8

μ4

(
n

∑
i=1

d2
i

)2

+ μ2 ∑
vivj∈E(G)

didj + 2μ
n

∑
i=1

ditG(vi) + 2qG − 4μm tG

+
2
3

μ4m4 + 2μ2m3 +
1
2

m2 +
1
2

m.

Proof. It is obvious that cμ0(G) = 1. By Theorem 2 and Lemma 3, we have

cμ1(G) = a1(G) + μ ∑i dia0(Gi) = 0 + μ ∑i di = 2μm,

cμ2(G) = a2(G) + μ ∑i dia1(Gi) + μ2 ∑i<j didja0(Gi,j) = m + 0 + μ2 ∑i<j didj

= m + 1
2 μ2
(
(∑i di)

2 −∑i d2
i

)
= 2μ2m2 + m− 1

2 μ2 ∑i d2
i ,

cμ3(G) = a3(G) + μ ∑i dia2(Gi) + μ2 ∑i<j didja1(Gi,j) + μ3 ∑i<j<k didjdka0(Gi,j,k)

= −2tG + μ ∑i di(m− di) + 0 + μ3 ∑i<j<k didjdk

= −2tG + μm ∑i di − μ ∑i d2
i +

1
6 μ3

(
(∑i di)

3 − 3 ∑i ∑ j
j 	=i

d2
i dj −∑i d3

i

)
= −2tG + 2μm2 − μ ∑i d2

i +
4
3 μ3m3 − 1

2 μ3
((

∑i d2
i
) (

∑j dj

)
−∑i d3

i

)
− 1

6 μ3 ∑i d3
i

= 1
3 μ3 ∑i d3

i − (μ3m + μ)∑i d2
i +

4
3 μ3m3 + 2μm2 − 2tG,

cμ4(G) = a4(G) + μ ∑i dia3(Gi) + μ2 ∑i<j didja2(Gi,j) + μ3 ∑i<j<k didjdka1(Gi,j,k)

+μ4 ∑i<j<k<l didjdkdla0(Gi,j,k,l)

= (m
2 )−∑i (

di
2 ) + 2qG − 2μ ∑i di(tG − tG(vi)) + μ2 ∑i<j didj|E(Gi,j)|+ 0

+μ4 ∑i<j<k<l didjdkdl .

(3)

By a straightforward calculation, we have

∑i<j didj|E(Gi,j)| = ∑ i<j
vivj∈E(G)

didj|E(Gi,j)|+ ∑ i<j
vivj 	∈E(G)

didj|E(Gi,j)|

= ∑ i<j
vivj∈E(G)

didj(m− di − dj + 1) + ∑ i<j
vivj 	∈E(G)

didj(m− di − dj)

= ∑i<j didj(m− di − dj) + ∑vivj∈E(G) didj

= m ∑i<j didj −∑i ∑ j
j 	=i

d2
i dj + ∑vivj∈E(G) didj

= m
2
(
4m2 −∑i d2

i
)− (2m ∑i d2

i −∑i d3
i
)
+ ∑vivj∈E(G) didj

= ∑i d3
i − 5

2 m ∑i d2
i + ∑vivj∈E(G) didj + 2m3,

(4)

and
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∑i<j<k<l didjdkdl

= 1
24

(
(∑i di)

4 − 12 ∑i ∑ j
j 	=i

∑ k
k 	=i,k 	=j

d2
i djdk − 4 ∑i ∑ j

j 	=i
d3

i dj − 6 ∑i<j d2
i d2

j −∑i d4
i

)

= 2
3 m4 − 1

2 × 1
2

((
∑i d2

i
)
(∑i di)

2 −∑i d4
i − 2 ∑i<j d2

i d2
j − 2 ∑i ∑ j

j 	=i
d3

i dj

)
− 1

6 ∑i ∑ j
j 	=i

d3
i dj − 1

4 ∑i<j d2
i d2

j − 1
24 ∑i d4

i

= 2
3 m4 −m2 ∑i d2

i +
5
24 ∑i d4

i +
1
4 ∑i<j d2

i d2
j +

1
3 ∑i ∑ j

j 	=i
d3

i dj

= 2
3 m4 −m2 ∑i d2

i +
5
24 ∑i d4

i +
1
4 × 1

2

((
∑i d2

i
)2 −∑i d4

i

)
+ 1

3
((

∑i d3
i
)
(∑i di)−∑i d4

i
)

= − 1
4 ∑i d4

i +
2
3 m ∑i d3

i −m2 ∑i d2
i +

1
8
(
∑i d2

i
)2

+ 2
3 m4.

(5)

Substituting (4) and (5) into (3), we obtain

cμ4(G) = −1
4

μ4
n

∑
i=1

d4
i +

(
2
3

μ4m + μ2
) n

∑
i=1

d3
i −

1
2
(2μ4m2 + 5μ2m + 1)

n

∑
i=1

d2
i

+
1
8

μ4

(
n

∑
i=1

d2
i

)2

+ μ2 ∑
vivj∈E(G)

didj + 2μ
n

∑
i=1

ditG(vi) + 2qG − 4μm tG

+
2
3

μ4m4 + 2μ2m3 +
1
2

m2 +
1
2

m.

This completes the proof.

Since π(L(G), x) = (−1)|V(G)|PG(−x, 1) and π(Q(G), x) = PG(x,−1), we immediately obtain the
combinatorial expressions for the first five coefficients of π(L(G), x) and π(Q(G), x) by Theorem 3.

Corollary 1. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that π(L(G), x) = ∑n

i=0 pi(G)xn−i, then

p0(G) = 1, p1(G) = −2m, p2(G) = 2m2 + m− 1
2

n

∑
i=1

d2
i ,

p3(G) = −1
3

n

∑
i=1

d3
i + (m + 1)

n

∑
i=1

d2
i −

4
3

m3 − 2m2 + 2tG,

p4(G) = −1
4

n

∑
i=1

d4
i +

(
2
3

m + 1
) n

∑
i=1

d3
i −

1
2
(2m2 + 5m + 1)

n

∑
i=1

d2
i +

1
8

(
n

∑
i=1

d2
i

)2

+ ∑
vivj∈E(G)

didj + 2
n

∑
i=1

ditG(vi) + 2qG − 4m tG +
2
3

m4 + 2m3 +
1
2

m2 +
1
2

m.

Corollary 2. Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn) be the degree sequence of G.
Suppose that π(Q(G), x) = ∑n

i=0 qi(G)xn−i. Then,
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q0(G) = 1, q1(G) = −2m, q2(G) = 2m2 + m− 1
2

n

∑
i=1

d2
i ,

q3(G) = −1
3

n

∑
i=1

d3
i + (m + 1)

n

∑
i=1

d2
i −

4
3

m3 − 2m2 − 2tG,

q4(G) = −1
4

n

∑
i=1

d4
i +

(
2
3

m + 1
) n

∑
i=1

d3
i −

1
2
(2m2 + 5m + 1)

n

∑
i=1

d2
i +

1
8

(
n

∑
i=1

d2
i

)2

+ ∑
vivj∈E(G)

didj − 2
n

∑
i=1

ditG(vi) + 2qG + 4m tG +
2
3

m4 + 2m3 +
1
2

m2 +
1
2

m.

2.3. Examples

In this subsection, by applying Theorem 3, we obtain the first five coefficients of the generalized
permanental polynomials of some specific graphs: Paths, cycles, complete graphs, complete bipartite
graphs, star graphs, and wheel graphs.

Example 1. Let Pn (n ≥ 3) be the path on n vertices. We see at once that tPn = qPn = 0, and tPn(v) = 0 for
each vertex v of Pn. By Theorem 3, we have

cμ0(Pn) = 1, cμ1(Pn) = 2(n− 1)μ, cμ2(Pn) = (2n2 − 6n + 5)μ2 + n− 1,

cμ3(Pn) =
2
3
(2n2 − 8n + 9)(n− 2)μ3 + 2(n− 2)2μ,

cμ4(Pn) =
2
3
(n2 − 5n + 7)(n− 3)(n− 2)μ4 + (2n2 − 10n + 13)(n− 3)μ2 +

1
2
(n− 3)(n− 2).

Example 2. Let Cn (n ≥ 5) be the cycle on n vertices. We see at once that tCn = qCn = 0, and tCn(v) = 0 for
each vertex v of Cn. By Theorem 3, we have

cμ0(Cn) = 1, cμ1(Cn) = 2nμ, cμ2(Cn) = 2n(n− 1)μ2 + n,

cμ3(Cn) =
4
3

n(n− 1)(n− 2)μ3 + 2n(n− 2)μ,

cμ4(Cn) =
2
3

n(n− 1)(n− 2)(n− 3)μ4 + 2n(n− 2)(n− 3)μ2 +
1
2

n(n− 3).

Example 3. Let Kn (n ≥ 4) be the complete graph on n vertices. It is easy to check that tKn = (n
3) =

n(n− 1)(n− 2)/6, qKn = 3(n
4) = n(n− 1)(n− 2)(n− 3)/8, and tKn(v) = (n−1

2 ) = (n− 1)(n− 2)/2 for
each vertex v of Kn. By Theorem 3, we have

cμ0(Kn) = 1, cμ1(Kn) = n(n− 1)μ, cμ2(Kn) =
1
2

n(n− 1)3μ2 +
1
2

n(n− 1),

cμ3(Kn) =
1
6

n(n− 2)(n− 1)4μ3 +
1
2

n(n− 2)(n− 1)2μ− 1
3

n(n− 1)(n− 2),

cμ4(Kn) =
1
24

n(n− 2)(n− 3)(n− 1)5μ4 +
1
4

n(n− 2)(n− 3)(n− 1)3μ2−
1
3

n(n− 2)(n− 3)(n− 1)2μ +
3
8

n(n− 1)(n− 2)(n− 3).

Example 4. Let Ka,b (a ≥ b ≥ 2) be the complete bipartite graph with partition sets of sizes a and b. We see
at once that tKa,b = 0, qKa,b = (a

2)(
b
2) = ab(a − 1)(b − 1)/4, and tKa,b(v) = 0 for each vertex v of Ka,b.

By Theorem 3, we have
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cμ0(Ka,b) = 1, cμ1(Ka,b) = 2abμ, cμ2(Ka,b) =
1
2

ab(4ab− a− b)μ2 + ab,

cμ3(Ka,b) =
1
3

ab(4a2b2 − 3a2b− 3ab2 + a2 + b2)μ3 + ab(2ab− a− b)μ,

cμ4(Ka,b) =
1
24

ab(16a3b3 − 24a3b2 − 24a2b3 + 19a3b + 6a2b2 + 19ab3 − 6a3 − 6b3)μ4+

1
2

ab(4a2b2 − 5a2b− 5ab2 + 2a2 + 2ab + 2b2)μ2 + ab(a− 1)(b− 1).

Example 5. Let Sn (n ≥ 3) be the star graph with n+ 1 vertices and n edges. We see at once that tSn = qSn = 0,
and tSn(v) = 0 for each vertex v of Sn. By Theorem 3, we have

cμ0(Sn) = 1, cμ1(Sn) = 2nμ, cμ2(Sn) =
1
2

n(3n− 1)μ2 + n,

cμ3(Sn) =
1
3

n(2n− 1)(n− 1)μ3 + n(n− 1)μ,

cμ4(Sn) =
1

24
n(n− 1)(n− 2)(5n− 3)μ4 +

1
2

n(n− 1)(n− 2)μ2.

Example 6. Let Wn (n ≥ 5) be the wheel graph with n + 1 vertices and 2n edges. It is obvious that
tWn = qWn = n. Let v0 be the hub (i.e., the vertex of degree n) of Wn. We see that tWn(v0) = n and tWn(v) = 2
for other vertices v of Wn. By Theorem 3, we have

cμ0(Wn) = 1, cμ1(Wn) = 4nμ, cμ2(Wn) =
3
2

n(5n− 3)μ2 + 2n,

cμ3(Wn) = 9n(n− 1)2μ3 + n(7n− 9)μ− 2n,

cμ4(Wn) =
9
8

n(n− 1)(n− 2)(7n− 9)μ4 + 6n(2n− 3)(n− 2)μ2 − 6n(n− 2)μ +
3
2

n(n− 1).

3. Numerical Results

In this section, by computer we enumerate the generalized permanental polynomials for all
graphs on at most 10 vertices, and we count the numbers of such graphs for which there is another
graph with the same generalized permanental polynomial.

Two graphs G and H are said to be generalized co-permanental if they have the same generalized
permanental polynomial. If a graph H is generalized co-permanental but non-isomorphic to G, then H
is called a generalized co-permanental mate of G.

In order to compute the generalized permanental polynomials of graphs, we, first of all, have to
generate the graphs by computer. We use nauty and Traces [23] to generate all graphs on at most
10 vertices. Next, the generalized permanental polynomials of these graphs are calculated by a Maple
procedure. Finally, we count the numbers of generalized co-permanental graphs.

The results are summarized in Table 1. Table 1 lists, for n ≤ 10, the total number of graphs on n
vertices, the total number of distinct generalized permanental polynomials of such graphs, the number
of such graphs with a generalized co-permanental mate, the fraction of such graphs with a generalized
co-permanental mate, and the size of the largest family of generalized co-permanental graphs.

In Table 1, we see that the smallest generalized co-permanental graphs, with respect to the order,
contain 10 vertices. Even more striking is that out of 12,005,168 graphs with 10 vertices, only 106 graphs
could not be discriminated by the generalized permanental polynomial.

From Table 1 in [9], we see that the smallest graphs that cannot be distinguished by the
bivariate permanent polynomial, introduced by Balasubramanian and Parthasarathy, contain 8 vertices.
By comparing the present data of Table 1 with that of Table 1 in [9], we find that the generalized
permanental polynomial is more efficient than the bivariate permanent polynomial when we use
them to distinguish graphs. From Tables 2 and 3 in [5], it is seen that the generalized permanental
polynomial is more efficient than the graph invariants based on the zeros of permanental polynomials
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of graphs. Comparing the present data of Table 1 with that of Table 1 in [24], we see that the
generalized permanental polynomial is also superior to the the generalized characteristic polynomial
when distinguishing graphs. So, the generalized permanental polynomial is quite efficient in
distinguishing graphs.

Table 1. Graphs on at most 10 vertices.

n # Graphs # Generalized Perm. Pols # with Mate Frac. with Mate Max. Family

1 1 1 0 0 1
2 2 2 0 0 1
3 4 4 0 0 1
4 11 11 0 0 1
5 34 34 0 0 1
6 156 156 0 0 1
7 1044 1044 0 0 1
8 12,346 12,346 0 0 1
9 274,668 274,668 0 0 1

10 12,005,168 12,005,115 106 8.83× 10−6 2

We enumerate all graphs on 10 vertices with a generalized co-permanental mate for each possible
number of edges in Appendix A. We see that the generalized co-permanental graphs G1 and H1 with
10 edges are disconnected (see Figure 1), the generalized co-permanental graphs G2 and H2 with
11 edges, and G3 and H3 with 12 edges are all bipartite (see Figures 2 and 3), and two pairs (G4, H4)

and (G5, H5) of generalized co-permanental graphs with 14 edges are all non-bipartite (see Figure 4).
The common generalized permanental polynomial of the smallest generalized co-permanental graphs
G1 and H1 is

PG1(x, μ) = PH1(x, μ)

= x10 + 20μx9 + (178μ2 + 10)x8 + (928μ3 + 156μ)x7 + (3137μ4 + 1050μ2 + 37)x6

+ (7180μ5 + 3980μ3 + 416μ)x5 + (11260μ6 + 9284μ4 + 1912μ2 + 60)x4

+ (11936μ7 + 13632μ5 + 4592μ3 + 416μ)x3 + (8176μ8 + 12288μ6 + 6068μ4 + 1048μ2 + 36)x2

+ (3264μ9 + 6208μ7 + 4176μ5 + 1136μ3 + 96μ)x + 576μ10 + 1344μ8 + 1168μ6 + 448μ4 + 64μ2.

1
G 1

H

Figure 1. Two generalized co-permanental graphs with 10 vertices and 10 edges.

2
G 2

H

Figure 2. Two generalized co-permanental graphs with 10 vertices and 11 edges.
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3
G 3

H

Figure 3. Two generalized co-permanental graphs with 10 vertices and 12 edges.

4
G 4

H
5

G
5

H

Figure 4. Two pairs of generalized co-permanental graphs with 10 vertices and 14 edges.

4. Conclusions

This paper is a continuance of the research relating to the search of almost-complete graph
invariants. In order to find an almost-complete graph invariant, we introduce the generalized
permanental polynomials of graphs. As can be seen, the generalized permanental polynomial is
quite efficient in distinguishing graphs (networks). It may serve as a powerful tool for dealing with
graph isomorphisms. We also obtain the combinatorial expressions for the first five coefficients of the
generalized permanental polynomials of graphs.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11501050)
and the Fundamental Research Funds for the Central Universities (Grant Nos. 300102128201, 300102128104).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In the Appendix, we enumerate all graphs on 10 vertices with a generalized co-permanental mate
for each possible number m of edges. Since the coefficient of xn−1 in PG(x, μ) is 2μm, two graphs with a
distinct number of edges must have distinct generalized permanental polynomials. So, the enumeration
can be implemented for each possible number of edges. We list the numbers of graphs with 10 vertices
for all numbers m of edges, the numbers of distinct generalized permanental polynomials of such
graphs, the numbers of such graphs with a generalized co-permanental mate, and the maximum size
of a family of generalized co-permanental graphs (see Table A1).

Table A1. Graphs on 10 vertices.

m # Graphs # Generalized Perm. Pols # with Mate Max. Family

0 1 1 0 1
1 1 1 0 1
2 2 2 0 1
3 5 5 0 1
4 11 11 0 1
5 26 26 0 1
6 66 66 0 1
7 165 165 0 1
8 428 428 0 1
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Table A1. Cont.

m # Graphs # Generalized Perm. Pols # with Mate Max. Family

9 1103 1103 0 1
10 2769 2768 2 2
11 6759 6758 2 2
12 15,772 15,771 2 2
13 34,663 34,663 0 1
14 71,318 71,316 4 2
15 136,433 136,429 8 2
16 241,577 241,575 4 2
17 395,166 395,162 8 2
18 596,191 596,183 16 2
19 828,728 828,723 10 2
20 1,061,159 1,061,154 10 2
21 1,251,389 1,251,381 16 2
22 1,358,852 1,358,848 8 2
23 1,358,852 1,358,850 4 2
24 1,251,389 1,251,385 8 2
25 1,061,159 1,061,157 4 2
26 828,728 828,728 0 1
27 596,191 596,191 0 1
28 395,166 395,166 0 1
29 241,577 241,577 0 1
30 136,433 136,433 0 1
31 71,318 71,318 0 1
32 34,663 34,663 0 1
33 15,772 15,772 0 1
34 6759 6759 0 1
35 2769 2769 0 1
36 1103 1103 0 1
37 428 428 0 1
38 165 165 0 1
39 66 66 0 1
40 26 26 0 1
41 11 11 0 1
42 5 5 0 1
43 2 2 0 1
44 1 1 0 1
45 1 1 0 1
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Abstract: This paper deals with the methods for investigating the nonlinear dynamics of discrete
chaotic systems (DCS) applied to piecewise linear systems of the third order. The paper proposes
an approach to the analysis of the systems under research and their improvement. Thus, effective
and mathematically sound methods for the analysis of nonlinear motions in the models under
consideration are proposed. It makes it possible to obtain simple calculated relations for determining
the basic dynamic characteristics of systems. Based on these methods, the authors developed
algorithms for calculating the dynamic characteristics of discrete systems, i.e. areas of the existence
of steady-state motion, areas of stability, capture band, and parameters of transients. By virtue of
the developed methods and algorithms, the dynamic modes of several models of discrete phase
synchronization systems can be analyzed. They are as follows: Pulsed and digital different orders,
dual-ring systems of various types, including combined ones, and systems with cyclic interruption of
auto-tuning. The efficiency of various devices for information processing, generation and stabilization
could be increased by using the mentioned discrete synchronization systems on the grounds of
the results of the analysis. We are now developing original software for analyzing the dynamic
characteristics of various classes of discrete phase synchronization systems, based on the developed
methods and algorithms.

Keywords: nonlinear; synchronized; linear discrete; chaotic system; algorithm

1. Introduction

The nonlinear dynamics of discrete chaotic systems are not new for research, but they have not
lost their relevance, due to a number of unresolved issues. As it is known [1], the implementation
of chaotic systems on digital computers with finite-precision arithmetic (i.e., on real computers) has
significant difficulties. It results in the fact that we get pseudochaotic systems [2]. This problem has
led to the need for further development of analytical methods in the theory of nonlinear dynamics of
discrete chaotic systems. New effective approaches to the synthesis and analysis of chaotic systems
have appeared. Thus, Reference [3] shows the increasing importance that the fractional calculus of
meromorphic functions has in chaotic systems. References [4,5] show the prospect of solving a number
of problems using wavelet analysis.

There are a limited number of papers devoted to the study of nonlinear dynamics of discrete
discrete chaotic systems (DCS) of the third order, in which fairly complete and accurate results are
represented. This mainly concerns studies in which periodic motions and the acquisition band of
synchronization systems [1,2] and numerical studies [3,4] are examined numerically. The purpose of
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this paper is to summarize theoretically the results of investigating the nonlinear dynamics of a third
order phase synchronization systems (SPS), both in terms of the development of qualitatively-numerical
methods of analysis, and in part of the study of specific systems described by the generalized model,
Equation (1): ⎧⎪⎨⎪⎩

ϕn+1 = ϕn − αF(ϕn) + xn + gn

xn+1 = dxn − βF(ϕn) + yn + g
yn+1 = hxn − ηF(ϕn)

(1)

where ϕn, xn, yn are the generalized coordinates of the system, α, β, η, d, h, g are generalized parameters,
gn is a variable component of the input frequency.

The expression in Equation (1) reduces to a general expression, as written:

→
q n+1 = A

(→
q n

)
+ B · →u n, (2)

where
→
q n =

(
ϕn, xi

n
)

is the state vector of the system at the n-th time moment, the dimension of the
vector is determined by the order of the system; ϕn is the phase difference of the impulse or code
sequences at the inputs of the detector; A

(→
q n

)
is a nonlinear transition matrix whose properties

depend on the kind of characteristics of the phase detector F(ϕn);
→
u n is the exposure vector; and B is

the exposure matrix.

2. Phase Portraits of the Onset of Instability of Fixed Points of Piecewise Linear Expressions of
the Third Order

The study of steady motions of piecewise linear 3D DCS of the third order is based on the study
of typical bifurcations of phase portraits of the mapping (Equation (1)). These include [5–10]:

(1) The loss of stability by k-fold fixed points associated with the transition of local stability
boundaries G1, G−1, Gϕ;

(2) The loss of stability by k-fold fixed points associated with the transition of limiting points of
nonlinearity (ϕi = ±c for Fc(ϕ) and ϕi = ±1 for F1(ϕ));

(3) The bifurcations of phase portraits caused by the intersection of separatrix invariant manifolds
of k-fold saddle points.

At the qualitative level, the basic regularities of the appearance of fixed k-fold points for mappings
of the second and third orders are repeated [5]. The transition of the boundaries of the areas of local
stability G1, G−1, Gϕ leads to the loss of stability of the fixed points and to qualitatively similar
motions. The boundaries of the existence of fixed points of piecewise linear mappings of both orders
in the general case for non-zero frequency detunings do not coincide with the boundaries of local
stability. In the phase space, the boundaries of existence correspond to the boundaries of linear sections.
This allows the condition for the k-fold fixed point to hit the linearity boundary as one of the necessary
conditions for the appearance of periodic motions of the period k [6].

The cross sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter n have a shape close to a triangular one. They are bounded by the curves
G1, G−1, Gϕ corresponding to the transition of one of the eigenvalues of the linearized matrix of the
map (Equation (1)) through the values ± 1 or e±jϕ. The line R on the sections bounds the region of
existence of a simple fixed point. Its equation is obtained from Equation (1) and it is written as follows:

β = g− (1− d− h)α− η. (3)

The singularity of the transition of stability boundaries, in the case of a third order mapping,
consists of a large variety of possible combinations of the eigenvalues of the linearized matrix A
corresponding to the boundary.
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In accordance with Table 1, when the boundary G−1 is crossed, there are also three types of nodes
and with the transition of the vibrational boundary Gϕ, there are four types of foci. The transition
through the boundaries Gϕ, G−1 occurs in the linear sections of the functions F1(ϕ) and Fc(ϕ). It is
accompanied respectively by such bifurcations as a stable focus-complex saddle and a stable node, i.e.
a real saddle. As in the case of second order mappings, the bifurcation data leads to the appearance of
invariant closed curves, which are quasiperiodic motions. By virtue of the existence of a boundary
R (for g 	= 0) that does not coincide with G1 for piecewise linear mappings, in the general case the
bifurcations of the appearance of both simple and k-fold fixed points occur on this boundary. In this
case, a fixed point (one of the types of a stable node or focus) is generated simultaneously with one of
the types of a saddle fixed point. The disappearance of a fixed stable point also occurs at the boundary
R because of the fusion of a stable node or focus with a saddle point, followed by the formation of
a stream of densified trajectories. The condition for the appearance of a pair of fixed points on the
boundaries of piecewise linear mappings will be laid down below as the basis for the method of
calculating bifurcation parameters.

Table 1. Parameters for solving.

The Eigenvalues of the Matrix A Type of a Stable Point

1) 0 < p < 1, 0 < p2 < 1, 0 < p3 < 1, p1, p2, p3 are real-valued stable node of the 1st type

2) −1 < p3 < 0, p1, p2, p3 are real-valued. stable node of the 2nd type

3) 0 < p < 1, are real-valued stable node of the 3rd type

4) 0 < p < 1, 0 < p2 < 1, −1 < pb < 0, pl, p2, p3 are real-valued stable node of the 4th type

5) 0 < Re < l are real-valued, p2, p3 stable focus of the 1st type

6) −l < Re < 0 stable focus of the 2nd type

7) 0 < R < l; px are real-valued, p2, p3 stable focus of the 3rd type

8) −1 < p < 0, are real-valued, p2, p3 stable focus of the 4th type

In Figure 1, sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter n are given on the plane of generalized parameters a, b.

  
(a) (b) 

Figure 1. Cont.
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(c) (d) 

Figure 1. Cross-sections of the body with the local stability synchronization systems of the third order
((a) η = −1.2; (b) η = −0.6; (c) η = 0; (d) η = 0.5).

The formation of quasiperiodic motions under the conditions of the existence of fixed points is
determined by the mutual arrangement of invariant separatrix manifolds of a simple or k-fold saddle
fixed point. The difference from the second order mapping consists of a greater number of typical
phase portraits near the saddle point, determined by the variety of the point itself.

3. SPS Model with Saw-Tooth Nonlinearity

The proposed method for calculating the bifurcation parameters of piecewise linear mappings of
the third order is based on the assertions that fixed points on the boundaries of the linear sections of the
functions Fc(ϕ) and F1(ϕ) can arise. For the occurrence of simple fixed points of data, the assertions are
sufficient. For the appearance of k-fold fixed points, the formulated assertions appear as necessary ones.

Let F(ϕ) = F1(ϕ). Since F1(ϕ) is periodic, the phase space of the mapping (Equation (1)) is a
three-dimensional cylinder, whose scan cross-sections are shown in Figure 2.

Figure 2. Phase cylinder cross section.

Figure 2 shows the section of the phase space by the plane yn = 0. The lines Lϕ,0(AB), Lx,0(CD)

and Ly,0 are sections of the surfaces of the map preserving the coordinates ϕ, x and y, respectively.
The equations of these surfaces can be obtained from (Equation (1)) respectively with ϕn+1 = ϕn,
xn+1 = xn, yn+1 = yn:

Lϕ,0 : x = αϕ,
Lϕ,0 : x = (y− γϕ + g)/(1− d),
Lϕ,0 : y = hx− σϕ.

(4)

The mapping (display) surface with the preserved coordinate y is defined under the condition
xn = x01. It should be noted that the coordinate y is not included in the equation for Lϕ,0, so the surface
under consideration is perpendicular to the plane y = 0. Moreover, the surface b passes through the
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origin of coordinates, and like in the second order system, it does not depend on the normalized initial
detuning g. The point of intersection of these surfaces is the equilibrium state of the system (at the
same time, the conditions ϕn+1 = ϕn, xn+1 = xn and yn+1 = yn are satisfied, and has the coordinates
O(ϕ01, x01, y01).

By analogy with a system of the second order, domains of space can be found starting from which
the solution (Equation (1)) falls on the boundary of the nonlinearity period F1(ϕ) ϕn = 1 and ϕn = −1.
The required domains are a set of planes GQ.m (the index m is the number of the period F1(ϕ)) on
whose boundary the solution falls) whose equations are written as follows [11–17]:

GQ.m : x = (α− 1)ϕ + 2m− 1, m = 1, 2, 3 . . . (5)

And
GQ.m : x = (α− 1)ϕ + 2m + 1, m = −1,−2,−3 . . . (6)

In Equations (5) and (6), like in the expression for Lϕ,0, the coordinate y is not included,
and consequently these planes are perpendicular to the plane yn = 0.

The arrows show the directions of the motion of the state vector
→
q n(ϕn, xn, yn) along the directions

ϕn and xn under the mapping, in each of the four zones formed by the segments AB and CD. For some
saddle points shown in Figure 2, quasiperiodic motions do not take place.

In Figure 2, the domains of the nonlinear mapping are shaded with output correspondingly
to the boundaries ϕn = +1 and ϕn = −1 of the phase cylinder scan −Q1 and Q−1. On both sides,
the domains Q1 and Q−1 are bounded by the planes ϕn = ±1, with the third one, by the plane
x = 1− (1− α)ϕ for Q1 (mapping in the direction of increasing xn) and the plane x = −1− (1− α)ϕ

for Q−1 (the mapping in the direction of decreasing ϕn). In the directions yn and one of the directions
xn, the domains Q1 and Q−1 are unbounded. Between the domains Q1 and Q−1 there is a domain Q0,
the map from which occurs linearly.

For a nonlinear mapping, the domain Q1 passes to the domain Q′1. Moreover, the point B(1, α, 0)
is mapped to the point B′(−1, αd− β + g, αh− σ); L(−1, 2− α, 0) to the point L′(−1, d(2− α) + β +

g, h(2− α)− σ), and so on.
Changing the coordinate [

→
q n]y of the state vector in the Q1, a domain leads to a change in

the coordinate of the vector [
→
q n+1]x in Q′1: With increasing (decreasing) [

→
q n]y increases (decreases)

[
→
q n+1]x. Thus, the entire domain Q1 is mapped into an infinite strip along the xn -axis bounded along

the ϕn axis by the planes ϕn = ±1 and, in addition, by two parallel planes that are mappings of
the planes ϕn = ±1. Analogous arguments lead to the construction of the domain Q′−1, which is a
mapping of Q−1. It should be noted that there is an intersection of the domains Q′1 and Q−1, as well as
Q′−1 and Q1, which fundamentally distinguishes the considered system from the second order system.

Let us consider iterations with initial conditions from an arbitrary state vector
→
q 0 = (ϕ0, x0, y0).

According to (Equation (1)) vector
→
q n may be expressed by means of

→
q 0 as follows:

→
q n = An · →q 0 +

n−1

∑
j=0

Aj ·
(→

r +
→
p n−j−1

)
(7)

where A is linearized matrix corresponding to (Equation (1)) under the linear mapping
→
p j = (0, 0, 0)T ,

in the case of a nonlinear mapping
→
p j = (±2, 0, 0)T , with this, the sign "+" corresponds to going abroad

ϕ = −1, the sign "-" corresponds to going abroad x = +1. The vector
→
p j returns the state vector of the

system to the (j + 1)-step in the interval [−1; 1] for the coordinate x. We rewrite (Equation (7)) as:

→
q n = An

→
q 0 + (E− An)(E− A)−1→r +

n−1

∑
j=0

Aj→p n−j−1 (8)
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For a cycle of period k existing, it is necessary that the closure condition −→q k =
→
q 0 be satisfied.

Taking this condition into account, the expression for the initial point of the cycle follows from
(Equation (8)):

→
q n =

(
E− Ak

)−1
(

k−1

∑
j=0

Aj→p k−j−1

)
+ (E− A)−1→r (9)

The expression (Equation (9)) may be considered as the first necessary condition for the existence
of a cycle, or the closure condition. The second condition is to find all the state vectors of a cycle of
a required structure within the interval |ϕ| ≤ 1 (i.e., the structural condition). Implementation of
this condition means that all state vectors of the cycle are in the corresponding domains Q1, Q0, Q−1.
Otherwise, Equation (9) can formally lead to some state that is not a point of the cycle. The formulated
conditions are necessary and sufficient for the existence of a cycle with a certain structure.

Similar to a discrete SPS of the second order, it can be shown that an arbitrary cycle existing
in a system with nonlinearity F1(ϕ) is stable under the conditions of local stability of the mapping
(Equation (1)).

Consider the structure cycle (u/k), where u is the number of nonlinear mappings on the cycle
period, k is the cycle period. For the limit cycle of the first kind u = 0, for the limit cycle of the second
kind in the case of rotation along the coordinate p in the direction of increasing u > 0, in the case of
rotation in the direction of decreasing the coordinate ϕ− u < 0. In accordance with (9), the vector of
an arbitrary point of the cycle can be represented as follows:

→
q j =

→
l j + g

→
b , j = 1, . . . , k (10)

where
→
l j =

(
E− Ak

)−1
(

k−1
∑

j=0
Aj→p k−j−1

)
,
→
b = (E− A)−1(0, 1, 0)T ;

→
l j is a vector, depending on the

structure of the cycle and the choice of the starting point,
→
b is a vector depending neither on the

structure of the cycle nor its initial state.

When g is changed, all points of the cycle in the phase domain are displaced along the vector
→
b .

This can lead to both the occurrence and destruction of the cycle due to the transition of cycle points
between the domains Q1, Q0, Q−1, and also when the points of the plane cycle ϕn = ±1 intersect
the vectors.

Let us find conditions for the generalized detuning g for which there exists a cycle of a certain
structure (u/κ). To do this, we use the above conditions for the existence of a cycle. From (7–9) we
assess the values of the generalized detuning g− j and g+ j for which the state vector

→
q j intersects the

boundaries ϕn = −1 and ϕn = +1, respectively:

g− j =

−1−
[→

lj

]
1[→

bj

]
1

, g+ j =

1−
[→

lj

]
1[→

bj

]
1

(11)

All points of the cycle intersect the plane ϕn = −1 if the condition g > max
j=1...k

(
g−j
)

is satisfied,

at least one cycle point intersects the plane ϕn = 1 for g < min
j=1...k

(
g+j
)

. A cycle can exist when:

max
j=1...k

(
g−j
)
< min

j=1...k

(
g+j
)

, (12)

in the detuning range max
j=1...k

(
g−j
)
< g < min

j=1...k

(
g+j
)

.
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4. Algorithm for Determining the Acquisition Bandwidth

We constructed an algorithm for determining the acquisition band. It is based on the condition
of the occurrence of the simplest limit cycles of the first and second kind. In the general case, it is
necessary to determine two values of the initial detuning γmin, γmax. With γ < γmax all PC2 disappear,
with γ > γmin all PC1 disappear [16–22].

Let us find γmax, for this we define the value of γk, at which the PC2 structures (1/k) appear. To be
exact, we consider the initial state on the cycle to be the state into which the system comes after the
nonlinear mapping through the boundary ϕn= 1. For this case

→
p j = (0, 0, 0)T , 0 ≤ j <k−1;

→
p k−1 =

(−2, 0, 0)T . According to Equations (10)–(12), the initial state vector
→
q 0 will be as follows [11–17]:

→
q 0 =

→
Pk−1

E− Ak +

→
r

E− A
(13)

The cycle of the second kind of period k will exist when conditions (Equation (13)) are fulfilled
and will occur, taking into account Equations (1) and (5) with frequency detuning

γk
2 =
−1 + 2

[
(E− Ak)

−1
]

11

ξ
[
(E− A)−1

]
12

(14)

The boundary of the cycle generation may be expressed as follows:

γ = γmax = min
k=1...kmax

(
γk

2

)
. (15)

It remains to find k, for which the founded value of the initial detuning will be the smallest,
which determines the boundary condition for the occurrence of PC2. The algorithm proposes the
assignment of some kmax, which obviously exceeds the desired value. Recommendations for choosing
kmax are similar to the second order system and are as follows. In the case of complex eigenvalues of

the matrix A, the behavior of the vector
→
l is oscillatory in parameter k (the end of the vector with an

increase in the cycle period k describes a twisting spiral around a point (−2, 0, 0) and it is enough to
take half the oscillation period as kmax.

The analysis of the above dependencies from the standpoint of global stability of the FAS leads to
the following conclusions:

1. With increasing α1, α2, the stability domains with respect to the amplification D expand. The most
significant increase is observed for large m1. For example, for m1 = 0.8 with increasing α1, α2 from
values 0.5–0.8 (Figure 3) to values 2–4 (Figure 3), the stability domains in parameter D increase
2–4 times.

2. The boundary of the areas with global stability on the initial mismatch β also expands significantly
with increasing α1, α2. However, dependence on m1 is more complex. A decrease in the upper
bound β with increasing m1 is observed near the limits of the local stability. On the contrary,
in the farther zone from the boundary of local stability (medium D), there is a significant increase
in the upper boundary β with increasing m1.

3. Limiting the stability of the bottom of the frequency detuning (limiting with the cycles of the
first kind) is most expressed with small m1 and, as stated above, is non-monotonous. The most
significant restriction is observed for large D (Figure 3) and can reach values of 0.3–0.4.
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(a) (b) 

Figure 3. Acquisition band SFS of the third ((a) α1 = 0.5; (b) α1 = 1) order with F1(ϕ).

5. SPS Model with a Triangular Nonlinearity

Let F(ϕ) = Fc(ϕ). The basic laws of the appearance of periodic motions of the second kind and
quasiperiodic motions in a third order system with a triangular nonlinearity repeat at a qualitative level
in the results obtained for a second order system [12,19,21–25]. In this case, both the final dependencies
and the mechanisms explaining them are qualitatively repeated. In this regard, we will not dwell
on them in detail below. The quantitative differences will be demonstrated on a number of graphs
devoted to the analysis of the acquisition band.

The situation with cycles of the first kind, whose existence has been established in a system with a
saw-tooth nonlinearity, is completely different. Their analysis is important because they have occurred
with small initial detuning and limit the acquisition domain in frequency from below.

A quantitative estimate of the boundary of first kind cycles can be obtained by considering
the change in the area of their existence in the parameter space with a change in the shape of the
characteristic. Figure 5 shows the region of existence of PC1 on the plane D, γ for different values
of c. The boundaries of the areas are almost straight lines, the slope of which depends only on the
filter parameters (α1, m1, α2, m2). Changing c does not change the shape of these curves, but shifts
them along the abscissa. PC1 cycles disappear in two cases: Firstly, at a certain maximum value of
the parameter cmax; and secondly, with a saw-tooth characteristic of the detector and certain filter
parameters (Figure 4).

The authors can note the strong influence of parameters on these dependencies.
From a practical point of view, the filter parameters are of a certain interest. Limit cycles of the

first kind (quasi-synchronism mode) are impossible for them. Figure 5 shows the regions of existence
of PC1 on the plane α1, α2 with equal forcing coefficients m1, m2. For m1 = m2= 0, there is a boundary
close to a straight line, above which there are no cycles. With increasing m1, m2, the area of existence
of cycles is symmetrically limited by α1, α2, and disappears when m1 = m2 ≥ 0.165.
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Figure 4. Shows the dependences of cmax on the time constant of one of the links of the filter.

 

Figure 5. The acquisition band of the pulsed SPS ((a) α1 = 1; (b) α1 = 10) with Fc(ϕ).

Analysis of the above results shows that the existence of cycles of the first kind with a
saw-tooth-like, or close to it, detector characteristic is determined only by the filter parameters and is
not related to the gain of the system.

The dependencies in Figure 5 allow us to analyze the acquisition band when changing the duration
of the stable branch of the detector characteristics and to answer the question about its optimal value.
As in the case of pulsed DSC of the second order, for small D, a weak dependence of the acquisition
band on the shape of the characteristics is observed. There is some loss for Fc(ϕ), increasing with the
steepness of the stable branch.

With increasing D (to the boundary of local stability) due to a shift in the boundary of the onset of
quasiperiodic motions towards large β, the maximum of the acquisition band is provided in the case
of Fc(ϕ). With different ratios of filter parameters, the gain in the acquisition band can reach up to 50%
as compared with Fc(ϕ). Figure 5 also shows the limitations of the acquisition area from below due to
PC1. It is possible to get rid of such restrictions by increasing the steepness (decreasing the duration)
of a stable part of the characteristics.
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6. Results

The dual-ring synthesizer was simulated. The computer model made it possible to take into
account a number of factors additionally, which were not considered in the mathematical model.
They included the inconstancy of the discretization periods and the difference between the detector
model and the zero order extrapolator.

Allowance for variations of the sampling period (epoch) resulted in corrections of the dynamic
characteristics, primarily the stability domain. However, this applied mainly to the range of large gains
(α > 1, β > 1). For operating gains, the results of mathematical and computer simulation coincided
with high accuracy [25–28].

Figure 6 shows the dependences of the capture band and the transient time of the dual-ring SPS,
taking into account the variable nature of the sampling periods, for k1 / k2 = 8. To compare, Figure 6a
shows the results for a constant sampling period (upper curves). With positive detuning, allowance for
the variations led to a certain decrease in the capture band, repeating the known result for single-ring
systems. A change in the capture band as a function of μ repeated similar changes for a model with a
constant sampling period. A decrease in the capture band with increasing μ was observed. Changing
the sign of μ to the opposite, resulted in an increase in the capture band, partially offsetting the loss
from the variations in the sampling period.

  
(a) (b) 

  
(c) (d) 

Figure 6. Dependencies of the capture band and the settling time in the dual-ring SPS ((a) μ = −0.1;
(b) μ = 0.1; (c) m1 = 0; (d) m1 = 0.5).

An analysis of the average time for the frequency settling in a dual-ring SPS (Figure 6b–d)
suggested a qualitative coincidence with the results of the model analysis [6,8].

In particular, there is was a fairly wide range of parameters (shown in the Figure for gains),
where the frequency setting time was rather small and almost invariable. It confirmed the stabilizing
effect of mutual bonds (the results are given to establish the frequency with an accuracy of 0.01 F).
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A certain range shift to the left was explained by an increase in the equivalent gain due to the variable
sampling period. According to the above results, for filter parameters that provided suppression at a
sampling frequency close to 10 dB (m = 0.5, αΦ = 0.5–1.0), the time for setting the frequency did not
exceed 10 samples of the output ring in a wide range of gains.

7. Conclusions

Based on the general provisions of the theory of bifurcations, the directions for analyzing the
conditions for the occurrence of periodic and quasiperiodic motions in a third order DCS with a
piecewise linear characteristic of the detector are defined. As in the case of the second order DCS,
the basis for the occurrence and loss of stability of k-multiple fixed points is the condition that the
linear sections fall on the boundaries of linear sections. The mandatory requirement for the occurrence
of quasiperiodic motions is the contact of the incoming and outgoing separatrix manifolds by a
saddle point. The difference from the second order systems is in a large number of different types of
saddle points and, accordingly, the number of possible scenarios of motions in the neighborhood of
separatrix manifolds.

The method of estimating the bifurcation parameters of piecewise linear mappings of the
third order has been developed. This makes it possible to find the boundaries of areas of the
existence of various types of periodic and quasiperiodic motions. The method is based on the
mandatory and sufficient conditions for the occurrence of a k-multiple fixed point through the
formation of an intermediate complex point node-saddle or focus-saddle and the conditions for
tangency of the incoming and outgoing separatrix manifolds at the boundaries of the linear sections of
the characteristics.
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Abstract: The main aim of the paper is to give the crossing number of the join product G + Dn for
the disconnected graph G of order five consisting of one isolated vertex and of one vertex incident
with some vertex of the three-cycle, and Dn consists of n isolated vertices. In the proofs, the idea of
the new representation of the minimum numbers of crossings between two different subgraphs that
do not cross the edges of the graph G by the graph of configurations GD in the considered drawing
D of G + Dn will be used. Finally, by adding some edges to the graph G, we are able to obtain the
crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices
for three other graphs.

Keywords: graph; good drawing; crossing number; join product; cyclic permutation

1. Introduction

The investigation of the crossing number of graphs is a classical and very difficult problem
provided that computing of the crossing number of a given graph in general is an NP-complete
problem. It is well known that the problem of reducing the number of crossings in the graph has been
studied in many areas, and the most prominent area is very large-scale integration technology.

In the paper, we will use notations and definitions of the crossing numbers of graphs like
in [1]. We will often use Kleitman’s result [2] on crossing numbers of the complete bipartite graphs.
More precisely, he proved that:

cr(Km,n) =
⌊m

2

⌋⌊m− 1
2

⌋⌊n
2

⌋⌊n− 1
2

⌋
, if m ≤ 6.

Using Kleitman’s result [2], the crossing numbers for join of two paths, join of two cycles, and
for join of path and cycle were studied in [1]. Moreover, the exact values for crossing numbers of
G + Dn and G + Pn for all graphs G of order at most four are given in [3]. Furthermore, the crossing
numbers of the graphs G + Dn are known for a few graphs G of order five and six in [4–10]. In all of
these cases, the graph G is connected and contains at least one cycle. Further, the exact values for the
crossing numbers G + Pn and G + Cn have been also investigated for some graphs G of order five and
six in [5,7,11,12].

The methods presented in the paper are new, and they are based on multiple combinatorial
properties of the cyclic permutations. It turns out that if the graph of configurations is used like
a graphical representation of the minimum numbers of crossings between two different subgraphs,
then the proof of the main theorem will be simpler to understand. Similar methods were partially
used for the first time in the papers [8,13]. In [4,9,10,14], the properties of cyclic permutations were
also verified with the help of software in [15]. In our opinion, the methods used in [3,5,7] do not allow
establishing the crossing number of the join product G + Dn.

Symmetry 2019, 11, 123; doi:10.3390/sym11020123 www.mdpi.com/journal/symmetry116
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2. Cyclic Permutations and Configurations

Let G be the disconnected graph of order five consisting of one isolated vertex and of one vertex
incident with some vertex of the three-cycle. We will consider the join product of the graph G with the
discrete graph on n vertices denoted by Dn. The graph G + Dn consists of one copy of the graph G
and of n vertices t1, . . . , tn, where any vertex ti, i = 1, . . . , n, is adjacent to every vertex of G. Let Ti,
1 ≤ i ≤ n, denote the subgraph induced by the five edges incident with the vertex ti. Thus, the graph
T1 ∪ · · · ∪ Tn is isomorphic with the complete bipartite graph K5,n and:

G + Dn = G ∪ K5,n = G ∪
( n⋃

i=1

Ti
)

. (1)

In the paper, we will use the same notation and definitions for cyclic permutations and the
corresponding configurations for a good drawing D of the graph G + Dn like in [9,14]. Let D be
a drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti in the drawing D like the
cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave ti
has been defined by Hernández-Vélez, Medina, and Salazar [13]. We use the notation (12345) if
the counter-clockwise order the edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5.
We have to emphasize that a rotation is a cyclic permutation. In the paper, each cyclic permutation
will be represented by the permutation with one in the first position. Let rotD(ti) denote the inverse
permutation of rotD(ti). We will deal with the minimal necessary number of crossings between the
edges of Ti and the edges of Tj in a subgraph Ti ∪ Tj depending on the rotations rotD(ti) and rotD(tj).

We will separate all subgraphs Ti, i = 1, . . . , n, of the graph G + Dn into three mutually-disjoint
subsets depending on how many of the considered Ti cross the edges of G in D. For i = 1, . . . , n,
let RD = {Ti : crD(G, Ti) = 0} and SD = {Ti : crD(G, Ti) = 1}. Every other subgraph Ti crosses
the edges of G at least twice in D. Moreover, let Fi denote the subgraph G ∪ Ti for Ti ∈ RD,
where i ∈ {1, . . . , n}. Thus, for a given subdrawing of G, any subgraph Fi is exactly represented
by rotD(ti).

Let us suppose first a good drawing D of the graph G + Dn in which the edges of G do not
cross each other. In this case, without loss of generality, we can choose the vertex notation of the
graph in such a way as shown in Figure 1a. Our aim is to list all possible rotations rotD(ti) that
can appear in D if the edges of Ti do not cross the edges of G. Since there is only one subdrawing
of Fi \ {v2, v5} represented by the rotation (143), there are two possibilities for how to obtain the
subdrawing of Fi \ v5 depending on in which region the edge tiv2 is placed. Of course, the vertex v5

can be placed in one of four regions of the subdrawing Fi \ v5 with the vertex ti on their boundaries.
These 2× 4 = 8 possibilities under our consideration will be denoted by Ak and Bl , for k = 1, 2 and
l = 1, . . . , 6. The configuration is of type A or B in the considered drawing D, if the vertex v5 is placed
in the quadrangular or in the triangular region in the subdrawing D(Fi \ v5), respectively. As for our
considerations, it does not play a role in which of the regions is unbounded; assume the drawings
shown in Figure 2. Thus, the configurations A1, A2, B1, B2, B3, B4, B5, and B6 are represented by
the cyclic permutations (15432), (12435), (14532), (12453), (14325), (15243), (12543), and (14352),
respectively. In a fixed drawing of the graph G + Dn, some configurations fromM need not appear.
We denote byMD the subset ofM = {A1, A2, B1, B2, B3, B4, B5, B6} consisting of all configurations
that exist in the drawing D.

We remark that if two different subgraphs Fi and Fj with their configurations fromMD cross in
a considered drawing D of the graph G + Dn, then the edges of Ti are crossed only by the edges of Tj.
Let X, Y be the configurations fromMD. We briefly denote by crD(X, Y) the number of crossings in D
between Ti and Tj for two different Ti, Tj ∈ RD such that Fi, Fj have configurations X, Y, respectively.
Finally, let cr(X, Y) = min{crD(X, Y)} over all good drawings of the graph G + Dn with X, Y ∈ MD.
Our aim shall be to establish cr(X, Y) for all pairs X, Y ∈ M.
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Figure 1. Two good drawings of the graph G. (a): the planar drawing of G; (b): the drawing of G with
crD(G) = 1.

Figure 2. Drawings of eight possible configurations fromM of the subgraph Fi.

The configurations A1 and A2 are represented by the cyclic permutations (15432) and (12435),
respectively. Since the minimum number of interchanges of adjacent elements of (15432) required
to produce cyclic permutation (12435) = (15342) is one, any subgraph Tj with the configuration
A2 of Fj crosses the edges of Ti at least once, i.e., cr(A1, A2) ≥ 1. Details have been worked out by
Woodall [16]. The same reason gives cr(A1, B2) ≥ 2, cr(A1, B4) ≥ 2, cr(A1, B6) ≥ 2, cr(A2, B1) ≥ 2,
cr(A2, B3) ≥ 2, cr(A2, B5) ≥ 2, cr(Bi, Bj) ≥ 2, and cr(Ai, Bj) ≥ 3 for i ≡ j (mod 2). Moreover,
by a discussion of possible subdrawings, we can verify that cr(B1, B5) ≥ 4, cr(B3, B5) ≥ 4, cr(B2, B6) ≥ 4,
and cr(B4, B6) ≥ 4. Let Fi be the subgraph having the configuration B5, and let Tj be a subgraph from
RD with j 	= i. Using Woodall’s result crD(Ti, Tj) = Q(rotD(ti), rotD(tj)) + 2k for some nonnegative
integer k, let us also suppose that Q(rotD(ti), rotD(tj)) = 2. Of course, any subgraph Fj having the
configuration B1 or B3 satisfies the mentioned condition. One can easily see that if tj ∈ ω1,2 ∪ω3,4 ∪
ω1,2,3, then cr(Ti, Tj) > 2. If tj ∈ ω2,4,5 and cr(Ti, Tj) = 2, then the subdrawing D(Fj) induced by the
edges incident with the vertices v1 and v3 crosses the edges of Ti exactly once, and once, respectively.
Thus, rotD(tj) = (12435), i.e., the subgraph Fj has the configuration A2. This forces cr(B5, B1) ≥ 4
and cr(B5, B3) ≥ 4. Similar arguments are applied for cr(B6, B2) ≥ 4 and cr(B6, B4) ≥ 4. Clearly,
also cr(Ak, Ak) ≥ 4 and cr(Bl , Bl) ≥ 4 for any k = 1, 2 and l = 1, . . . , 6. Thus, all lower bounds of
the number of crossing of configurations fromM are summarized in the symmetric Table 1 (here,
Xk and Yl are configurations of the subgraphs Fi and Fj, where k, l are integers from {1, 2} or {1, . . . , 6},
and X, Y ∈ {A, B}).
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Table 1. The necessary number of crossings between Ti and Tj for the configurations Xk, Yl .

− A1 A2 B1 B2 B3 B4 B5 B6

A1 4 1 3 2 3 2 3 2
A2 1 4 2 3 2 3 2 3
B1 3 2 4 3 2 3 4 3
B2 2 3 3 4 3 2 3 4
B3 3 2 2 3 4 3 4 3
B4 2 3 3 2 3 4 3 4
B5 3 2 4 3 4 3 4 3
B6 2 3 3 4 3 4 3 4

Assume a good drawing D of the graph G + Dn with one crossing among edges of the graph
G (in which there is a subgraph Ti ∈ RD). In this case, without loss of generality, we can choose
also the vertex notations of the graph in such a way as shown in Figure 1b. Since there is only one
subdrawing of Fi \ {v5} represented by the rotation (1324), we have four possibilities for how to
obtain the subdrawing of Fi depending on in which region the vertex v5 is placed. Thus, there are
four different possible configurations of the subgraph Fi denoted as A1, A2, A3, and A4, with the
corresponding rotations (13245), (13524), (13254), and (15324), respectively. We denote by ND the
subset of N = {A1, A2, A3, A4} consisting of all configurations that exist in the drawing D. The same
way as above can be applied for the verification of the lower bounds of the number of crossings of
two different configurations from N . Thus, all lower bounds of the numbers of crossings of two
configurations from N are summarized in the symmetric Table 2 (here, Ak and Al are configurations
of the subgraphs Fi and Fj, where k, l ∈ {1, 2, 3, 4}).

Table 2. The necessary number of crossings between Ti and Tj for the configurations Ak, Al .

− A1 A2 A3 A4

A1 4 2 3 3
A2 2 4 3 3
A3 3 3 4 2
A4 3 3 2 4

3. The Graph of Configurations GD

In general, the low possible number of crossings between two different subgraphs in a good
subdrawing of G + Dn is one of the main problems in the proofs on the crossing number of the join of
the graph G with the discrete graphs Dn. The lower bounds of the numbers of crossings between two
subgraphs, which do not cross the edges of G, were summarized in the symmetric Table 1. Since some
configurations from the setM need not appear in the fixed drawing of G + Dn, we will first deal with
the smallest possible values in Table 1 as with the worst possible case in the mentioned proofs. Thus,
a new graphical representation of Table 1 by the graph of configurations will be useful.

Let us suppose that D is a good drawing of the graph G + Dn with crD(G) = 0, and let
MD be the nonempty set of all configurations that exist in the drawing D belonging to the set
M = {A1, A2, B1, B2, B3, B4, B5, B6}. A graph of configurations GD is an ordered triple (VD, ED, wD),
where VD is the set of vertices, ED is the set of edges, which is formed by all unordered pairs of distinct
vertices, and a weight function w : ED → N that associates with each edge of ED an unordered pair
of two vertices of VD. The vertex xk ∈ VD for some x ∈ {a, b} if the corresponding configuration
Xk ∈ MD for some X ∈ {A, B}, where k ∈ {1, 2} or k ∈ {1, . . . , 6}. The edge e = xkyl ∈ ED if xk and
yl are two different vertices of the graph GD. Finally, wD(e) = m ∈ N for the edge e = xkyl , if m is
the associated lower bound between two different configurations Xk, and Yl in Table 1. Of course,
GD is the simple undirected edge-weighted graph uniquely determined by the drawing D. Moreover,
if we define the graph G = (V, E, w) in the same way over the setM, then GD is the subgraph of G
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induced by VD for the considered drawing D. Since the graph G = (V, E, w) can be represented like
the edge-weighted complete graph K8, it will be more transparent to follow the subcases in the proof
of the main theorem; see Figure 3.

Figure 3. Representation of the lower bounds of Table 1 by the graph G = (V, E, w).

4. The Crossing Number of G + Dn

Two vertices ti and tj of G + Dn are antipodal in a drawing of G + Dn if the subgraphs Ti and
Tj do not cross. A drawing is antipodal-free if it has no antipodal vertices. In the rest of the paper,
each considered drawing of the graph G + Dn will be assumed antipodal-free. In the proof of the main
theorem, the following lemma related to some restricted subdrawings of the graph G + Dn is helpful.

Lemma 1. Let D be a good and antipodal-free drawing of G + Dn, n > 2. If Ti, Tj ∈ RD are different
subgraphs such that Fi, Fj have different configurations from any of the sets {A1, B2}, {A1, B6}, {A2, B1},
and {A2, B5}, then:

crD(G ∪ Ti ∪ Tj, Tk) ≥ 4 for any Tk ∈ SD.

Proof of Lemma 1. Let us suppose the configuration A1 of the subgraph Fi, and note that it is exactly
represented by rotD(ti) = (15432). The unique drawing of the subgraph Fi contains four regions with
the vertex ti on their boundaries (Figure 2). If there is a Tk ∈ SD with crD(Ti, Tk) = 1, then one can
easily see that tk ∈ ω1,2,4,5. Of course, the edge tkv3 must cross one edge of the graph G. If tkv3 crosses
the edge v1v2, then the subgraph Fk is represented by rotD(tk) = (13245). If the edge tkv3 crosses the
edge v2v4, then there are only three possibilities for the considered subdrawing of Fk, i.e., the subgraph
Fk can be represented by three possible cyclic permutations (13452), (15234), or (12354).

For the remaining configurations A2, B1, B2, B5, and B6 of Fi, using the same arguments, one can
easily verify that the rotations of the vertex tk are from the sets {(15324), (12534), (13425), (13542)},
{(12345), (14235)}, {(15342), (15423)}, {(12345)}, and {(15342)}, respectively. This forces that there
is no subgraph Tk ∈ SD with crD(Ti ∪ Tj, Tk) = 2, where the subgraph Fj has the configuration
B2 or B6. The same reason is given for the case of A2 with the configurations B1 and B5. Finally,
crD(G ∪ Ti ∪ Tj, Tk) ≥ 1 + 3 = 4 for any Tk ∈ SD. This completes the proof.

We have to emphasize that we cannot generalize Lemma 1 for all pairs of different configurations
fromM. Let us assume the configurations A1 of Fi and B4 of Fj. For Tk ∈ SD, the reader can easily
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find a subdrawing of G ∪ Ti ∪ Tj ∪ Tk in which crD(Ti, Tk) = crD(Tj, Tk) = 1. The same remark holds
for pairs A2 with B3, B1 with B3, and B2 with B4.

Theorem 1. cr(G + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 1.

Proof of Theorem 1. The drawing in Figure 4b shows that cr(G + Dn) ≤ 4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋
. We prove

the reverse inequality by contradiction. The graph G + D1 is planar; hence, cr(G + D1) = 0. Since the
graph G + D2 contains a subdivision of the complete bipartite graph K3,3, we have cr(G + D2) ≥ 1.
Thus, cr(G + D2) = 1 by the good drawing of G + D2 in Figure 4a. Suppose now that for n ≥ 3,
there is a drawing D with:

crD(G + Dn) < 4
⌊n

2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
, (2)

and let
cr(G + Dm) ≥ 4

⌊m
2

⌋⌊m− 1
2

⌋
+
⌊m

2

⌋
for any integer m < n. (3)

Figure 4. The good drawings of G + D2 and of G + Dn. (a): the drawing of G + D2 with one crossing;

(b): the drawing of G + Dn with 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
crossings.

Let us first show that the considered drawing D must be antipodal-free. As a contradiction, suppose
that, without loss of generality, crD(Tn, Tn−1) = 0. Using positive values in Tables 1 and 2, one can
easily verify that both subgraphs Tn and Tn−1 are not from the set RD, i.e., crD(G, Tn ∪ Tn−1) ≥ 1.
The known fact that cr(K5,3) = 4 implies that any Tk, k = 1, . . . , n− 2, crosses the edges of the subgraph
Tn ∪ Tn−1 at least four times. Therefore, for the number of crossings in the considered drawing D,
we have:

crD(G + Dn) = crD (G + Dn−2) + crD(G, Tn ∪ Tn−1) + crD(Tn ∪ Tn−1) + crD(K5,n−2, Tn ∪ Tn−1)

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+
⌊n− 2

2

⌋
+ 1 + 0 + 4(n− 2) = 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

This contradiction with the assumption (2) confirms that D must be an antipodal-free drawing.
Moreover, if r = |RD| and s = |SD|, the assumption (3) together with the well-known fact

cr(K5,n) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
imply that in D, there are at least

⌈ n
2
⌉
+ 1 subgraphs Ti, which do not cross the

edges of G. More precisely:

crD(G) + crD(G, K5,n) ≤ crD(G) + 0r + 1s + 2(n− r− s) <
⌊n

2

⌋
,
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i.e.,
s + 2(n− r− s) <

⌊n
2

⌋
. (4)

This forces that r ≥ 2, and r ≥ ⌈ n
2
⌉
+ 1. Now, for Ti ∈ RD, we will discuss the existence of

possible configurations of subgraphs Fi = G ∪ Ti in the drawing D.
Case 1. crD(G) = 0. Without loss of generality, we can choose the vertex notation of the graph G in

such a way as shown in Figure 1a. Thus, we will deal with the configurations belonging to the nonempty
setMD. According to the minimum value of the weights of edges in the graph GD = (VD, ED, wD),
we will fix one, or two, or three subgraphs with a contradiction with the condition (2) in the
following subcases:

i. {A1, A2} ⊆ MD, i.e., wD(a1a2) = 1. Without loss of generality, let us consider two different
subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have configurations A1 and A2, respectively.
Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 5 for any Ti ∈ RD with i 	= n− 1, n by summing the values in
all columns in the considered two rows of Table 1. Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 3 for any
subgraph Ti with i 	= n− 1, n due to the properties of the cyclic permutations. Hence, by fixing
the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 5(r− 2) + 4(n− r) + 1 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n + r− 9

≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 4n +

(⌈n
2

⌉
+ 1
)
− 9 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

ii. {A1, A2} 	⊆ MD, i.e., wD(e) ≥ 2 for any e ∈ ED.

Let us assume that {A1, B2, B4} ⊆ MD or {A2, B1, B3} ⊆ MD, i.e., there is a three-cycle in
the graph GD with weights of two of all its edges. Without loss of generality, let us consider
three different subgraphs Tn, Tn−1 Tn−2 ∈ RD such that Fn, Fn−1m and Fn−2 have different
configurations from {A1, B2, B4}. Then, crD(G ∪ Tn ∪ Tn−1 ∪ Tn−2, Ti) ≥ 8 for any Ti ∈ RD with
i 	= n − 1, n by Table 1, and crD(G ∪ Tn ∪ Tn−1 ∪ Tn−2, Ti) ≥ 5 for any subgraph Ti ∈ SD by
Lemma 1. Thus, by fixing the graph G ∪ Tn ∪ Tn−1 ∪ Tn−2,

crD(G + Dn) ≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 8(r− 3) + 5(n− r) + 6 ≥ 4

⌊n− 3
2

⌋⌊n− 4
2

⌋
+ 5n + 3r− 18

≥ 4
⌊n− 3

2

⌋⌊n− 4
2

⌋
+ 5n + 3

(⌈n
2

⌉
+ 1
)
− 18 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

In the next part, let us suppose that {A1, B2, B4} 	⊆ MD and {A2, B1, B3} 	⊆ MD,

(1) {Aj, Bk} ⊆ MD for some k ≡ j + 1 (mod 2) or {Bj, Bj+2} ⊆ MD, where j ∈ {1, 2}. Without loss
of generality, let us consider two different subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have
configurations A1 and B2, respectively. Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 6 for any Ti ∈ RD with
i 	= n− 1, n by Table 1. Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 2 for any subgraph Ti with i 	= n− 1, n
due to properties of the cyclic permutations. Hence, if we fix the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + r + r− s− 10 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n +

⌈n
2

⌉
+ 1 + 1− 10 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.
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(2) {Aj, Bk} 	⊆ MD for any k ≡ j + 1 (mod 2) and {Bj, Bj+2} 	⊆ MD, where j = 1, 2, i.e., wD(e) ≥ 3
for any e ∈ ED. Without loss of generality, we can assume that Tn ∈ RD. Then, crD(Tn, Ti) ≥ 3
for any Ti ∈ RD with i 	= n. Thus, by fixing the graph G ∪ Tn,

crD(G + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(r− 1) + 2(n− r) + 0 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + r− 3

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌈n
2

⌉
+ 1
)
− 3 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

Case 2. crD(G) = 1. Without loss of generality, we can choose the vertex notation of the graph
G in such a way as shown in Figure 1b. Thus, we will deal with the configurations belonging to the
nonempty set ND in the following two cases:

i. {Ai, Ai+1} ⊆ ND for some i ∈ {1, 2}. Without loss of generality, let us consider two different
subgraphs Tn, Tn−1 ∈ RD such that Fn and Fn−1 have different configurations from the set
{A1, A2}. Then, crD(G ∪ Tn ∪ Tn−1, Ti) ≥ 6 for any Ti ∈ RD with i 	= n − 1, n by Table 2.
Moreover, crD(Tn ∪ Tn−1, Ti) ≥ 2 for any subgraph Ti with i 	= n− 1, n due to the properties of
the cyclic permutations. Hence, by fixing the graph G ∪ Tn ∪ Tn−1,

crD(G + Dn) ≥ 4
⌊n− 2

2

⌋⌊n− 3
2

⌋
+ 6(r− 2) + 3s + 4(n− r− s) + 2 + 1 = 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+4n + r + r− s− 9 ≥ 4

⌊n− 2
2

⌋⌊n− 3
2

⌋
+ 4n +

⌈n
2

⌉
+ 1 + 1− 9 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

If Fn and Fn−1 have different configurations from the set {A3, A4}, then the same argument can
be applied.

ii. {Ai, Ai+1} 	⊆ ND for any i = 1, 2. Without loss of generality, we can assume that Tn ∈ RD.
Then, crD(Tn, Ti) ≥ 3 for any Ti ∈ RD with i 	= n. Thus, by fixing the graph G ∪ Tn,

crD(G + Dn) ≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 3(r− 1) + 2(n− r) + 1 = 4

⌊n− 1
2

⌋⌊n− 2
2

⌋
+ 2n + r− 2

≥ 4
⌊n− 1

2

⌋⌊n− 2
2

⌋
+ 2n +

(⌈n
2

⌉
+ 1
)
− 2 ≥ 4

⌊n
2

⌋⌊n− 1
2

⌋
+
⌊n

2

⌋
.

Thus, it was shown that there is no good drawing D of the graph G + Dn with less than
4
⌊ n

2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings. This completes the proof of Theorem 1.

5. Three Other Graphs

Finally, in Figure 4b, we are able to add the edges v3v5 and v1v5 to the graph G without additional
crossings, and we obtain three new graphs Hi for i = 1, 2, 3 in Figure 5. Therefore, the drawing of
the graphs H1 + Dn, H2 + Dn, and H3 + Dn with 4

⌊ n
2
⌋⌊ n−1

2
⌋
+
⌊ n

2
⌋

crossings is obtained. On the
other hand, G + Dn is a subgraph of each Hi + Dn, and therefore, cr(Hi + Dn) ≥ cr(G + Dn) for any
i = 1, 2, 3. Thus, the next results are obvious.

Corollary 1. cr(Hi + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 1, where i = 1, 2, 3.

We remark that the crossing numbers of the graphs H1 + Dn and H3 + Dn were already obtained
by Berežný and Staš [4], and Klešč and Schrötter [7], respectively. Moreover, into the drawing in
Figure 4b, it is possible to add n edges, which form the path Pn, n ≥ 2 on the vertices of Dn without
another crossing. Thus, the next results are also obvious.

Theorem 2. cr(G + Pn) = cr(H2 + Pn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+
⌊

n
2

⌋
for n ≥ 2.
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The crossing number of the graph H1 + Pn has been investigated in [12].

Figure 5. Three graphs H1, H2, and H3 by adding new edges to the graph G.
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Abstract: Edge Even Graceful Labelingwas first defined byElsonbaty and Daoud in 2017. An edge
even graceful labeling of a simple graph G with p vertices and q edges is a bijection f from the edges
of the graph to the set {2, 4, . . . , 2q} such that, when each vertex is assigned the sum of all edges
incident to it mod2r where r = max{p, q}, the resulting vertex labels are distinct. In this paper we
proved necessary and sufficient conditions for the polar grid graph to be edge even graceful graph.

Keywords: graceful labeling; edge graceful labeling; edge even graceful labeling; polar grid graph

1. Introduction

The field of Graph Theory plays an important role in various areas of pure and applied sciences.
One of the important areas in graph theory is Graph Labeling of a graph G which is an assignment of
integers either to the vertices or edges or both subject to certain conditions. Graph labeling is a very
powerful tool that eventually makes things in different fields very ease to be handled in mathematical
way. Nowadays graph labeling has much attention from different brilliant researches ingraph theory
which has rigorous applications in many disciplines, e.g., communication networks, coding theory,
x-raycrystallography, radar, astronomy, circuit design, communication network addressing, data base
management and graph decomposition problems. More interesting applications of graph labeling can
be found in [1–10].

Let G = (V(G), E(G)) with p = |V(G)| and q = |E(G)| be a simple, connected, finite,
undirected graph.

A function f is called a graceful labeling of a graph G if f : V(G)→ {0, 1, 2, . . . , q} is injective
and the induced function f ∗ : E(G)→ {1, 2, . . . , q} defined as f ∗(e = uv) = | f (u)− f (v)| is bijective.
This type of graph labeling first introducedby Rosa in 1967 [11] as a β− valuation, later on Solomon W.
Golomb [12] called as graceful labeling.

A function f is called an odd graceful labeling of a graph G if f : V(G)→ {0, 1, 2, . . . , 2q− 1}
is injective and the induced function f ∗ : E(G)→ {1, 3, . . . , 2q− 1} defined as f ∗(e = uv) =

| f (u)− f (v)| is bijective. This type of graph labeling first introducedby Gnanajothi in 1991 [13].
For more results on this type of labeling see [14,15].

A function f is called an edge graceful labeling of a graph G if f : E(G)→ {1, 2, . . . , q} is bijective
and the induced function f ∗ : V(G)→ {0, 1, 2, . . . , p− 1} defined as f ∗(u) = ∑

e=uv∈E(G)
f (e)mod p is

bijective. This type of graph labeling first introducedby Lo in 1985 [16]. For more results on this
labeling see [17,18].

A function f is called an edge odd graceful labeling of a graph G if f : E(G)→ {1, 3, . . . , 2q− 1}
is bijective and the induced function f ∗ : V(G)→ {0, 1, 2, . . . , 2q− 1} defined as f ∗(u) =

∑
e=uv∈E(G)

f (e)mod2q is injective. This type of graph labeling first introducedby Solairaju and Chithra

in 2009 [19]. See also Daoud [20].
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A function f is called an edge even graceful labeling of a graph G if f : E(G)→ {2, 4, . . . , 2q}
is bijective and the induced function f ∗ : V(G)→ {0, 2, 4, . . . , 2q− 2} defined as f ∗(u) =

∑
e=uv∈E(G)

f (e)mod2r, where r = max{p, q} is injective. This type of graph labeling first introduced by

Elsonbaty and Daoud in 2017 [21].
For a summary of the results on these five types of graceful labels as well as all known labels so

far, see [22].

2. Polar Grid Graph Pm,n

The polargrid graph Pm,n is the graph consists of n copies of circles Cm which will be numbered
from the inner most circle to the outer circle as C(1)

m , C(2)
m , . . . , C(n−1)

m , C(n)
m and m copies of paths

Pn+1 intersected at the center vertex v0 which will be numbered as P(1)
n+1, P(2)

n+1, . . . , P(m−1)
n+1 , P(m)

n+1. See
Figure 1.

Figure 1. Polar grid graph Pm,n.

Theorem 1. If m and n are even positive integes such that m ≥ 4 and n ≥ 2, then the polar grid graph Pm,n is
an edge even graceful graph.

Proof. Using standard notation p = |V(Pm,n)| = mn + 1, q = |E(Pm,n)| = 2mn and r = max{p, q} =
2mn Let the polar grid graph Pm,n be labeled as in Figure 2. Let f : E(G)→ {2, 4, . . . , 2q}. �

First we label the edges of paths P(k)
n+1, ≤ k ≤ m begin with the edges of the

path P(1)
n+1 to the edges of the path P(m)

n+1 as follows: Move clockwise to label the edges
v0v1, v0v2, . . . , v0vm−1, v0vm by 2, 4, . . . , 2m − 2, 2m, then move anticlockwise to label the edges
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v1vm+1, vmv2m, vm−1v2m−1, . . . , v3vm+3, v2vm+2 by 2m + 2, 2m + 4, 2m + 6, . . . , 4m − 2, 4m, then
move clockwise to label the edges vm+1v2m+1, vm+2v2m+2, vm+3v2m+3, . . . , v2m−1v3m−1, vmv3m by
4m + 2, 4m + 4, 4m + 6, . . . , 6m − 2, 6m and so on. Finally move anticlockwise to label the
edges vm(n−2)+1vm(n−1)+1, vm(n−1)−1vmn, vm(n−1)−1vmn−1, . . . , vm(n−2)+2vm(n−1)+2 by 2m(n − 1) +
2, 2m(n − 1) + 4, 2m(n − 1) + 6, . . . , 2mn − 2, 2mn. Second we label the edges of the circles

C(k)
m , 1 ≤ k ≤ n begin with the edges of the inner most circle C(1)

m to the edges of the circle C( n
2 )

m , then

the edges of the outer circle C(n)
m . Finally the edges of circles C( n

2 +1)
m , C( n

2 +2)
m , . . . , C(n−1)

m respectively
as follows: f (vm(k−1)+ivm(k−1)+i+1) = 2mn + 2m(k − 1) + 2i, f (vkmvm(k−1)+1) = 2mn + 2mk, 1 ≤
i ≤ m − 1, 1 ≤ k ≤ n

2 ; f (vm(n−1)+ivm(n−1)+i+1) = 3mn + 2i, 1 ≤ i ≤ m − 1; f (vkmvm(k−1)+1) =

2mn + (2k + 1)m, n
2 + 1 ≤ k ≤ n− 1.

Figure 2. Labeling ofthe polar grid graph Pm,n when n is even, n ≥ 2.

Now the corresponding labels of vertices mod4mn are assigned as follows:
Case (1) m ≡ 4kmod4n, 1 ≤ k ≤ n− 1 and m = 2mod4n.
The labels of the vertices of the inner most circle C(1)

m to the circle C( n
2 )

m are given by f ∗(v(k−1)m+i) ≡
4m(2k− 1) + 4i, 1 ≤ k ≤ n

2 , 1 ≤ i ≤ m, the labels of the vertices of the outre circle C(n)
m are given by

f ∗(v(n−1)m+i) ≡ 2i + 2, 1 ≤ i ≤ m and the labels of the vertices of the circles C( n
2 +1)

m , . . . , C(n−1)
m are

given by f ∗(v(k−1)m+i) ≡ 8m(k− n
2 ) + 4i + 2, 1 ≤ i ≤ m , n

2 + 1 ≤ k ≤ n− 1.
The label of the center vertex v0 is assigned as follows: when m = 4kmod4n, 1 ≤ k ≤ n − 1,

f ∗(v0) ≡ m
2 (2m + 2) = m2 + m, since m = 4kmod4n then m = 4nh + 4k, thus f ∗(v0) = m(4k + 1) and

when m = 2mod4n, we have f ∗(v0) = 3m.
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Case (2) m ≡ (8k − 2)mod4n, 1 ≤ k ≤ n
2 . In this case the vertex vkm−( m+2

4 ) in the

circle C(k)
m will repeat with the center vertex v0. To avoid this problem we replace the labels

of the two edges vkm−( m+2
4 )vkm−( m−2

4 ) and vkm−( m−2
4 )vkm−( m−6

4 ). That is f (vkm−( m+2
4 )vkm−( m−2

4 )) =

2mn + m(2k − 1) + m+2
2 and f (vkm−( m−2

4 )vkm−( m−6
4 )) = 2mn + m(2k − 1) + m−2

2 and we obtain the
labels of the corresponding vertices as follows f ∗(vkm−( m+2

4 )) ≡ m(8k − 1) + 2, f ∗(vkm−( m−2
4 )) ≡

m(8k − 1) + 4, f ∗(vkm−( m−6
4 )) ≡ m(8k − 1) + 6 and the label of the center vertex v0 is assigened as

f ∗(v0) ≡ m(8k− 1).The rest vertices are labeled as in case(1).

Case (3) m ≡ (8k + 2)mod4n, 1 ≤ k ≤ n
2 − 1. In this case the vertex vkm−( m+2

2 ) in the circle C( n
2 +k)

m

will repeat with the center vertex v0. To avoid this problem we replace the labels of the two edges
vkm−( m+2

2 )vkm−( m
2 )

and vkm−( m
2 )

vkm−( m−2
2 ). That is f (vkm−( m+2

2 )vkm−( m
2 )
) = 2mn + m(2k + 1) + m+2

2

and f (vkm−( m
2 )

vkm−( m−2
2 )) = 2mn + m(2k + 1) + m−2

2 and we obtain the labels of the corresponding
vertices as follows f ∗(vkm−( m+2

2 )) ≡ m(8k + 3) + 2, f ∗(vkm−( m
2 )
) ≡ m(8k + 3) + 4, f ∗(vkm−( m−2

2 )) ≡
m(8k + 3) + 6 and the label of the center vertex v0 is assigened f ∗(v0) ≡ m(8k − 29) as. The rest
vertices are labeled as in case(1).

Case (4) m ≡ 0mod4n. In this case the vertex vmn−( m+2
2 ) in the outer circle will repeat with the

center vertex v0. To avoid this problem we replace the labels of the two edges vmn−( m+4
2 )vmn−( m+2

2 )

and vmnvm(n−1)+1. That is f (vmn−( m+4
2 )vmn−( m+2

2 )) = m(3n + 2) and f (vmnvm(n−1)+1) = 3mn +

m − 4 and we obtain the labels of the corresponding vertices as follows f ∗(vmn−( m+4
2 )) ≡ 2m +

2, f ∗(vmn−( m+2
2 )) ≡ 2m + 4, f ∗(vmn) ≡ m − 2 and f ∗(vm(n−1)+1) ≡ 4mn − m and the label of the

center vertex v0 is assigened as f ∗(v0) ≡ m. The rest vertices are labeled as in case (1).

Illustration. The edge even graceful labeling of the polar grid graphs P14,6, P16,6, P18,6, P24,6 and P26,6

respectively are shown in Figure 3.

Remark 1. In case m = 2 and n is even, n > 2.

Let the label of edges of the polar grid graph be as in Figure 4. Thus we have the label of the
corresponding vertices are as follows:

f ∗(v1) ≡ 4n + 12; f ∗(vi) ≡ 16i− 2, 2 ≤ i ≤ n
2 ; f ∗(v n

2 +i) ≡ 16i + 6, 1 ≤ i ≤ n
2 − 1;

f ∗(vn) ≡ 4; f ∗(v′i) ≡ 16i + 2, 1 ≤ i ≤ n
2 − 1; f ∗(v′ n

2 +i) ≡ 2; f ∗(v′ n
2 +i) ≡ 16i + 10, 1 ≤ i ≤ n

2 − 2;

f ∗(v′n−1) ≡ 4n− 4; f ∗(v′n) ≡ 4n + 8 and f ∗(v0) ≡ 4n + 4.
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a P

(b) P

Figure 3. Cont.
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(c) P   

(d) P   

Figure 3. Cont.
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(e) P   

Figure 3. The edge even graceful labeling of the polar grid graphs P14,6, P16,6, P18,6, P24,6 and P26 , 6.

Figure 4. Labeling of the polar grid graph P2,n, n is even integer greater than 2.

Note that P2,2 is an edge even graceful graph but not follow this rule. See Figure 5.
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Figure 5. The polar grid graph P2,2.

Theorem 2. If m is an odd positive integer greater than 1 and n an is even positive integer greater than or equal
2, then the polar grid graph Pm,n is an edge even graceful graph.

Proof. Let the edges of the polar grid graph Pm,n be labeled as in Figure 2. �

Now the corresponding labels of vertices mod4mn are assigned as follows: There are four cases
Case (1): m ≡ (4k− 1)mod4n, 1 ≤ k ≤ n

The labels of the vertices of the inner most circle C(1)
m to the circle C( n

2 )
m are given by f ∗(v(k−1)m+i) ≡

4m(2k− 1) + 4i + 2, 1 ≤ k ≤ n
2 , 1 ≤ i ≤ m, the labels of the vertices of the outer circle C(n)

m are given

by f ∗(v(n−1)m+i) ≡ 2i + 2, 1 ≤ i ≤ m and the labels of the vertices of the circles C( n
2 +1)

m , . . . , C(n−1)
m are

given by f ∗(v(k−1)m+i) ≡ 8m(k− n
2 ) + 4i + 2, 1 ≤ i ≤ m, n

2 + 1 ≤ k ≤ n− 1.
The center vertex v0 is labeled as f ∗(v0) ≡ 4mk, and if k = n, we have f ∗(v0) ≡ 0.
Case (2): m ≡ (8k− 3)mod4n, 1 ≤ k ≤ n

2 .

In this case the vertex vkm( m+1
2 ) in the circle C(k)

m will repeat with the center vertex v0. To avoid this
problem we replace the labels of the two edges vkm−( m+1

2 )vkm−( m−1
2 ) and vkm−( m−1

2 )vkm−( m−3
2 ). That is

f (vkm−( m+1
2 )vkm−( m−1

2 )) = 2mn + m(2k − 1) + 1 and f (vkm−( m−1
2 )vkm−( m−3

2 )) = 2mn + m(2k − 1)− 1
and we obtain the labels of the corresponding vertices as follows f ∗(vkm−( m+1

2 )) ≡ 2m(4k − 1) +
2, f ∗(vkm−( m−1

2 )) ≡ 2m(4k − 1) + 4 and f ∗(vkm−( m−3
2 )) ≡ 2m(4k − 1) + 6. The center vertex v0 is

labeled as f ∗(v0) = 2m(4k− 1). The rest vertices are labeled as in case (1).
Case (3): m ≡ (8k + 1)mod4n, 1 ≤ k ≤ n

2 − 1.

In this case the vertex vm( n
2 +k) ( m+1

2 ) in the circle C( n
2 +k)

m will repeat with the center vertex
v0. To avoid this problem we replace the labels of the two edges vm( n

2 +k)−( m+1
2 )vm( n

2 +k) ( m−1
2 ) and

vm( n
2 +k)−( m−1

2 )vm( n
2 +k)−( m−3

2 ). That is f (vm( n
2 +k)−( m+1

2 )vm( n
2 +k)−( m−1

2 ) ) = 3mn + m(2k − 1) + 1 and
f (vm( n

2 +k)−( m−1
2 )vm( n

2 +k)−( m−3
2 ) ) = 3mn + m(2k + 1)− 1 and we obtain the labels of the corresponding

vertices as follows f ∗(vm( n
2 +k)−( m+1

2 )) ≡ 2m(4k + 1) + 2, f ∗(vm( n
2 +k)−( m−1

2 )) ≡ 2m(4k + 1) + 4, and
f ∗(vm( n

2 +k)−( m−3
2 )) ≡ 2m(4k + 1) + 6 and in this case the center vertex v0 is labeled as f ∗(v0) =

2m(4k + 1). The rest vertices are labeled as in case (1).
Case (4): m ≡ 1mod4n
In this case the vertex vmn−1 in the outer circle C(n)

m will repeat with the center vertex v0. To avoid this
problem we replace the labels of the two edges vmn−2vmn−1 and vmnvm(n−1)+1. That is f (vmn−2vmn−1) =

m(3n + 2) and f (vmnvm(n−1)+1) = m(3n + 2)− 4 and we obtain the labels of the corresponding vertices
as follows f ∗(vmn−2) ≡ 2m + 2, f ∗(vmn−1) ≡ 2m + 4, f ∗(vmn) ≡ 2m− 2 and f ∗(vm(n−1)+1) ≡ 0, the
center vertex v0 is labeled as f ∗(v0) ≡ 2m. The rest vertices are labeled as in case (1).
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Illustration. The edge even graceful labeling of the polar grid graphs P13,6, P15,6, P17,6 and P25,6 respectively
are shown in Figure 6.

(a) P  

(b) P  

Figure 6. Cont.
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(c) P  

 
(d) P  

Figure 6. The edge even graceful labeling of the polar grid graphs P13,6, P15,6, P17,6 and P25,6.

Theorem 3. If m is an even positive integer greater than or equal 4 and n is an odd positive integer greater than
or equal 3. Then the polar grid graph Pm,n is an edge even graceful graph.

Proof. Let the polar grid graph Pm,n be labeled as in Figure 7. Let f : E(G)→ {2, 4, . . . , 2q}. �
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First we label the edges of the circles C(k)
m , 1 ≤ k ≤ n begin with the edges of the inner most circle

C(1)
m to edges of the outer circle C(n)

m as follows:

f (vm(k−1)+ivm(k−1)+i+1) = 2m(k− 1) + 2i, f (vkmv(k−1)m+1) = 2km, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n.

Second we label the edges of paths P(k)
n+1, 1 ≤ k ≤ m begin with the edges of the

path P(1)
n+1 as follows: Move anticlockwise to label the edges v0v1, v0vm, v0vm−1, . . . , v0v3, v0v2

by 2mn + 2, 2mn + 4, 2mn + 6, . . . , 2m(n + 1) − 2, 2m(n + 1), then move clockwise to label the
edges v1vm+1, v2vm+2, v3vm+3, . . . , vm−1v2m−1, vmv2m by 2m(n + 1) + 2, 2m(n + 1) + 4, 2m(n + 1) +
6, . . . , 2m(n + 2) − 2, 2m(n + 2), then move anticlockwise to label the edges vm+1v2m+1, v2mv3m,
v2m−1v3m−1, . . . , vm+3v2m+3, vm+2v2m+2 by 2m(n + 2) + 2, 2m(n + 2) + 4, 2m(n + 2) + 6, . . . ,
2m(n + 3) − 2, 2m(n + 3) and so on. Finally move anticlockwise to label the edges
vm(n−2)+1vm(n−1)+1, vm(n−1)+1vmn, vm(n−1)−1vmn−1, . . . , vm(n−2)+3vm(m−1)+3, vm(n−2)+2vm(m−1)+2 by
2m(2n− 1) + 2, 2m(2n− 1) + 4, 2m(2n− 1) + 6, . . . , 4mn− 2, 4mn.

Figure 7. Labeling of the polar grid graph Pm,n when n is odd and n ≥ 3.

The corresponding labels of vertices mod4mn are assigned as follows: There are four cases
Case (1) m ≡ 4kmod4n, 1 ≤ k ≤ n− 2; m ≡ (4n− 2)mod4n and m ≡ 0mod4n
f ∗(v(k−1)m+i) ≡ 4m(2k − 1) + 4i + 2, 1 ≤ i ≤ m, 1 ≤ k ≤ n − 1. That is the labels of the

vertices in the most inner circle C(1)
m are assigned by f ∗(vi) ≡ 4m + 4i + 2, 1 ≤ i ≤ m, the labels of

the vertices in the circle C(2)
m are assigned by f ∗(vm+i) ≡ 12m + 4i + 2, the labels of vertices of the

circle C( n−1
2 )

m are assigned by f ∗( vm(n−3)
2 + i) ≡ 4mn− 8m + 4i + 2, the labels of vertices of the circle

C( n+1
2 )

m are assigned by f ∗( vm(n−1)
2 + i) ≡ 4i + 2, the labels of vertices of the circle C( n+3

2 )
m are assigned
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by f ∗( vm(n+1)
2 + i) ≡ 8m + 4i + 2, . . . , the labels of the vertices in the circle C(n−1)

m are assigned by
f ∗(vm(n−2)+i) ≡ 4mn − 12m + 4i + 2, 1 ≤ i ≤ m and the labels of the vertices of the outer circle

C(n)
m are assigned by f ∗(vm(n−1)+i) ≡ 4mn− 4m + 2i + 2, 1 ≤ i ≤ m. The labels of the center vertex

v0 is assigned by f ∗(v0) ≡ m2(2n + 1) when m ≡ 4kmod4n, we have f ∗(v0) ≡ m(4k + 1), when
m ≡ (4n− 2)mod 4n, f ∗(v0) ≡ 4mn−m and when m ≡ 0 mod4n, f ∗(v0) ≡ m.

Case (2) m ≡ (8k− 2)mod 4n, 1 ≤ k ≤ n−1
2 .

In this case the vertex vkm−( m+2
4 ) in the circle C(k)

m will repeat with the center vertex v0. To avoid
this problem we replace the label of two edges vkm−( m+2

4 )vkm−( m−2
4 ) and vkm−( m−2

4 )vkm−( m−6
4 ). That is

f (vkm−( m+2
4 )vkm−( m−2

4 )) = m(2k − 1) + m+2
2 and f (vkm−( m−2

4 )vkm−( m−6
2 )) = m(2k − 1) + m−2

2 and
we obtain the labels of the corresponding vertices as follows f ∗(vkm−( m+2

4 )) ≡ m(8k − 1) + 2,
f ∗(vkm−( m−2

4 )) ≡ m(8k− 1) + 4 and f ∗(vkm−( m−6
2 )) ≡ m(8k− 1) + 6. In this case the center vertex v0 is

labeled as f ∗(v0) ≡ m(2mn + m + 1) ≡ m(8k− 1). The rest vertices are labeled as in case (1).
Case (3) m ≡ (8k − 6)mod4n, 1 ≤ k ≤ n−1

2 and m 	= 2. In this case the

vertex vm( n+2k−1
2 )−( m+2

4 ) in the circle C( n+2k−1
2 )

m will repeat with the center vertex v0. To avoid
this problem we replace the labels of the two edges vm( n+2k−1

2 )−( m+2
4 )vm( n+2k−1

2 )−( m−2
4 ) and

vm( n+2k−1
2 )−( m−2

4 )vm( n+2k−1
2 )−( m−6

4 ). That is f (vm( n+2k−1
2 )−( m+2

4 )vm( n+2k−1
2 )−( m−2

4 )) = mn + 2m(k − 1) +
m+2

2 and f (vm( n+2k−1
2 )−( m−2

4 )vm( n+2k−1
2 )−( m−6

4 )) = mn + 2m(k − 1) + m−2
2 and we obtain the labels of

the corresponding vertices as follows f ∗(vm( n+2k−1
2 )−( m+2

4 )) ≡ m(8k− 5) + 2, f ∗(vm( n+2k−1
2 )−( m−2

4 )) ≡
m(8k− 5) + 4 and f ∗(vm( n+2k−1

2 )−( m−6
4 )) ≡ m(8k− 5) + 6 and in this case the center vertex v0 is labeled

as f ∗(v0) ≡ m(8k− 5). The rest vertices are labeled as in case (1).
Case (4) m ≡ (4n − 4)mod4n. In this case the vertex vmn−( m+2

2 ) in the outer circle C(n)
m

will repeat with the center vertex v0. To avoid this problem we replace the labels of the
two edges vmn−( m+6

4 )vmn−( m+2
4 ) and vmnvm(n−1)+1. That is f (vmn−( m+6

4 )vmn−( m+2
4 )) = 2mn and

f (vmnvm(n−1)+1 ) = m(2n− 1)− 4 and we obtain the labels of the corresponding vertices as follows
f ∗(vmn−( m+6

4 )) ≡ 4mn − 2m + 2, f ∗(vmn−( m+2
4 )) ≡ 4mn − 2m + 8, f ∗(vmn) ≡ 4mn − 3m − 2 and

f ∗(vm(n−1)+1) ≡ 4mn − 5m and in this case the center vertex v0 is labeled as f ∗(v0) ≡ m(4n − 3).
The rest vertices are labeled as in case (1).

Illustration. The edge even graceful labeling of the polar grid graphs P10,5, P12,5, P14,5, P16,5, P18,5 and P20,5

respectively are shown in Figure 8.

Remark 2. In case m = 2, n is odd, n ≥ 3.

Let the label of edges of the polar grid graph P2,n be as in Figure 9. Thus we have the labels
of the corresponding vertices as follows: f ∗(v1) ≡ 12; f ∗(vi) ≡ 16i− 2, 2 ≤ i ≤ n−1

2 ; f ∗(v n+2i−1
2

) ≡
16i− 10, 1 ≤ i ≤ n−1

2 ; f ∗(vn) ≡ 8n− 2; f ∗(v′ i) ≡ 16i + 2, 1 ≤ i ≤ n−1
2 ; f ∗(v′ n+1

2
) ≡ 2; f ∗(v′ n+2i−1

2
) ≡

16i− 6, 2 ≤ i ≤ n−1
2 ; f ∗(v′n) ≡ 0 and f ∗(v0) ≡ 4.
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(a) P  

(b) P  

Figure 8. Cont.
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(c) P  

(d) P  

Figure 8. Cont.
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(e) P  

(f) P  

Figure 8. The edge even graceful labeling of the polar grid graphs P10,5, P12,5, P14,5, P16,5, P18,5 and P20,5.
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Figure 9. The labeling of the polar grid graph P2,n, n ≥ 3.

Illustration. The edge even graceful labeling of the polar grid graphs P2,5 is shown in Figure 10.

Figure 10. The labeling of the polar grid graph P2,5.

Theorem 4. If m and n are odd positive integers greater than 1. Then the polar grid graph Pm,n is an edge even
graceful graph.

Proof. Let the polar grid graph Pm,n be labeled as in Figure 7. Let f : E(G)→ {2, 4, . . . , 2q}. �

The corresponding labels of vertices mod4mn are assigned as follows: There are two cases:
Case (1) n ≡ 1 mod4, this case contains five subcases as follows:
SubCase (i) m ≡ (4k− 3)mod 4n, 2 ≤ k ≤ n
f ∗(v(k−1)m+i) ≡ 4m(2k − 1) + 4i + 2, 1 ≤ k ≤ n − 1 , 1 ≤ i ≤ m. That is the labels of vertices

of the most inner circle C(1)
m are assigned by f ∗(vi) = 4m + 4i + 2, the labels of vertices of the
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circle C(2)
m are assigned by f ∗(vm+i) ≡ 12m + 4i + 2, the labels of the vertices of the circle C( n−1

2 )
m

are assigned by f ∗(v m(n−3)
2 +i

) ≡ 4mn − 8m + 4i + 2, the labels of the vertices of the circle C( n+1
2 )

m

are assigned by f ∗(v m(n−1)
2 +i

) ≡ 4i + 2, the labels of the vertices of the circle C( n+3
2 )

m are assigned

by f ∗(v m(n+1)
2 +i

) ≡ 8m + 4i + 2, . . . , the labels of the vertices of the circle C(n−1)
m are assigned by

f ∗(vm(n−2)+i) ≡ 4mn− 12m + 4i + 2, 1 ≤ i ≤ m and the labels of the vertices of the outer circle C(n)
m

are assigned by f ∗(vm(n−1)+i) ≡ 4mn− 12m + 2i + 2, 1 ≤ i ≤ m. The label of the center vertex v0 is
assigned by f ∗(v0) ≡ 2mn + 2m(2k− 1), when k = n+1

2 , we have f ∗(v0) ≡ 0.
SubCase (ii) m ≡ (8k − 5)mod4n, 1 ≤ k ≤ n+1

2 , m 	= 3. In this subcase the

vertex vm( n+4k−1
4 )−( m+1

2 ) in the circle C( n+4k−1
4 )

m will repeat with the center vertex v0. To avoid
this problem we replace the labels of the two edges vm( n+4k−1

4 )−( m+1
2 )vm( n+4k−1

4 )−( m−1
2 ) and

vm( n+4k−1
4 )−( m−1

2 )vm( n+4k−1
4 )−( m−3

2 ). That is f (vm( n+4k−1
4 )−( m+1

2 )vm( n+4k−1
4 )−( m−1

2 )) = m[2k + n−3
2 ] + 1 and

f (vm( n+4k−1
4 )−( m−1

2 )vm( n+4k−1
4 )−( m−3

2 )) = m[2k + n−3
2 ]− 1 and we obtain the labels of the corresponding

vertices as follows f ∗(vm( n+4k−1
4 )−( m+1

2 )) ≡ 2mn + 4m(2k − 1) + 2, f ∗(vm( n+4k−1
4 )−( m−1

2 )) ≡ 2mn +

4m(2k − 1) + 4, f ∗(vm( n+4k−1
4 )−( m−3

2 )) ≡ 2mn + 4m(2k − 1) + 6, and in this case the center vertex

v0 is labeled as f ∗(v0) ≡ 2mn + 4m(2k− 1). The rest vertices will be labeled as in subCase (i).

Remark 3. When n ≡ 1 mod4 and m = 3, in this case the vertex v3( n−1
4 )+1 in the circle C( n−1

4 +1)
3 will repeat

with the center vertex v0. To avoid this problem we replace the labels of the two edges v3( n−1
4 )+2v3( n−1

4 )+3 and

v3( n−1
4 )+1v3( n−1

4 )+3. That is f (v3( n−1
4 )+2v3( n−1

4 )+3) = 3( n−1
2 )+ 6 and f (v3( n−1

4 )+1v3( n−1
4 )+3) = 3( n−1

2 )+ 4

and we obtain the labels of the corresponding vertices as follows f ∗(v3( n−1
4 )+1) ≡ 6n + 10, f ∗(v3( n−1

4 )+2) ≡
6n + 18, f ∗(v3( n−1

4 )+3) ≡ 6n + 16 and the center vertex v0 is labeld as f ∗(v0) ≡ 6n + 12.

SubCase (iii) m ≡ (8k − 1)mod4n, 1 ≤ k ≤ n−5
4 . In this subcase the vertex vm( 3n+4k+1

4 )−( m+1
2 )

in the circle C( 3n+4k−1
4 )

m will repeat with the center vertex v0. To avoid this problem we replace
the labels of the two edges vm( 3n+4k+1

4 )−( m+1
2 )vm( 3n+4k+1

4 )−( m−1
2 ) and vm( 3n+4k+1

4 )−( m−1
2 )vm( 3n+4k+1

4 )−( m−3
2 ).

That is f (vm( 3n+4k+1
4 )−( m+1

2 )vm( 3n+4k+1
4 )−( m−1

2 )) = 2mn + m[2k − n+1
2 ] + 1 and f (vm( 3n+4k−1

4 )−( m−1
2 )

vm( 3n+4k−1
4 )−( m−3

2 )) = 2mn + m[2k − n+1
2 ] − 1 and we obtain the labels of the corresponding

vertices as follows f ∗(vm( 3n+4k+1
4 )−( m+1

2 )) ≡ 2mn + 8km + 2, f ∗(vm( 3n+4k−1
4 )−( m−1

2 )) ≡ 2mn + 8km +

4, f ∗(vm( 3n+4k+1
4 )−( m−3

2 )) ≡ 2mn + 8km + 6, and in this case the center vertex v0 is labeled as f ∗(v0) ≡
2mn + 8km. The rest vertices will be labeled as in subCase (i).

SubCase (iv) m ≡ (8k − 1)mod 4n, n+3
4 ≤ k ≤ n−1

2 . In this case the vertex

vm( 4k−n+1
4 )−( m+1

2 ) in the circle C( 4n−k+1
4 )

m will repeat with the center vertex v0. To avoid
this problem we replace the labels of the two edges vm( 4k−n+1

4 )−( m+1
2 )vm( 4k−n+1

4 )−( m−1
2 ) and

vm( 4k−n+1
4 )−( m−1

2 )vm( 4k−n+1
4 )−( m−3

2 ). That is f (vm( 4k−n+1
4 )−( m+1

2 )vm( 4k−n+1
4 )−( m−1

2 )) = m[2k− n+1
2 ] + 1 and

f (vm( 4k−n+1
4 )−( m−1

2 )vm( 4k−n+1
4 )−( m−3

2 )) = m[2k− n+1
2 ]− 1 and we obtain the labels of the corresponding

vertices as follows f ∗(vm( 4k−n+1
4 )−( m+1

2 )) ≡ 2mn + 8km + 2, f ∗(vm( 4k−n+1
4 )−( m−1

2 )) ≡ 8km − 2mn +

4, f ∗(vm( 4k−n+1
4 )−( m−3

2 )) ≡ 8km− 2mn + 6, and in this case the center vertex v0 is labeled as f ∗(v0) ≡
8km− 2mn. The rest vertices will be labeled as in subCase (i).

SubCase (v) m ≡ (2n− 3)mod4n. In this case the vertex vmn−1 in the outer circle C(n)
m will repeat

with the center vertex v0. To avoid this problem we replace the labels of the two edges vmn−2vmn−1 and
vmnvm(n−1)+1. That is f (vmn−2 vmn−1) = 2mn− 4, f (vmnvm(n−1)+1) = 2mn and we obtain the labels
of the corresponding vertices are as follows f ∗(vmn−2) ≡ 4mn− 2m + 2, f ∗(vmn−1) ≡ 4mn− 2m + 4,
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f ∗(vmn) ≡ 4mn − 2m − 2 and f ∗(vm(n−1)+1) ≡ 4mn − 4m, and in this case the center vertex v0 is
labeled as f ∗(v0) ≡ 4mn− 2m. The rest vertices will be labeled as in subCase (i).

Illustration. The edge odd graceful labeling of the polar grid graphs P3,5, P13,5, P11,5, P7,9, P15,5 and P7,5

respectively are shown in Figure 11.

Case (2) n ≡ 3 mod4. This case contains also five subcases as follows:
SubCase (i) m ≡ (4k− 3)mod4n, 2 ≤ k ≤ n
f ∗(v(k−1)m+i) ≡ 4m(2k − 1) + 4i + 2, 1 ≤ k ≤ n − 1, 1 ≤ i ≤ m. That is the labels of vertices

of the most inner circle C(1)
m are assigned by f ∗(vi) ≡ 4m + 4i + 2, the label of vertices of the circle

C(2)
m are assigned by f ∗(vm+i) ≡ 12m + 4i + 2, the labels of vertices of the circle C( n−1

2 )
m are assigned

by f ∗(v m(n−1)
2 +i

) ≡ 4mn − 8m + 4i + 2, the labels of vertices of the circle C( n+1
2 )

m are assigned by

f ∗(v m(n−3)
2 +i

) ≡ 4i + 2, the labels of vertices of the circle C( n+3
2 )

m are assigned by f ∗(v m(n+1)
2 +i

) ≡
8m + 4i + 2, . . . , the labels of vertices of the circle C(n−1)

m are assigned by f ∗(vm(n−2)+i) ≡ 4mn− 12m +

4i + 2, 1 ≤ i ≤ m and the labels of the vertices of the outer circle C(n)
m are assigned by f ∗(vm(n−1)+i) ≡

4mn − 12m + 2i + 2, 1 ≤ i ≤ m. The label of the center vertex v0 is assigned by f ∗(v0) ≡ 2mn +

2m(2k− 1), when k = n+1
2 , we have f ∗(v0) ≡ 0.

SubCase (ii) m ≡ (8k− 5)mod4n, 1 ≤ k ≤ n−3
4 , m 	= 3

In this subcase the vertex vm( 3n+4k−1
4 )−( m+1

2 ) in the circle C( 3n+4k−1
4 )

m will repeat with the center vertex
v0. To avoid this problem we replace the labels of the two edges vm( 3n+4k−1

4 )−( m+1
2 )vm( 3n+4k−1

4 )−( m−1
2 )

and vm( 3n+4k−1
4 )−( m−1

2 )vm( 3n+4k−1
4 )−( m−3

2 ). That is f (vm( 3n+4k−1
4 )−( m+1

2 )vm( 3n+4k−1
4 )−( m−1

2 )) = 2mn + m[2k−
n+3

2 ] + 1 and f (vm( 3n+4k−1
4 )−( m−1

2 )vm( 3n+4k−1
4 )−( m−3

2 )) = 2mn + m[2k − n+3
2 ] − 1 and we obtain the

labels of the corresponding vertices as follows f ∗(vm( 3n+4k−1
4 )−( m+1

2 )) ≡ 2mn + 4m(2k − 1) +

2, f ∗(vm( 3n+4k−1
4 )−( m−1

2 )) ≡ 2mn + 4m(2k − 1) + 4, f ∗(vm( 3n+4k−1
4 )−( m−3

2 )) ≡ 2mn + 4m(2k − 1) + 6,

and the label of the center vertex v0 is assigned by f ∗(v0) ≡ 2mn + 4m(2k− 1). That rest vertices will
be labeled as in subcase (i).

(a) P  

Figure 11. Cont.

142



Symmetry 2019, 11, 38

(b) P  

 
(c) P  

Figure 11. Cont.
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(d) P  

(e) P  

Figure 11. Cont.
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(f) P  

Figure 11. The polar grid graphs P3,5, P13,5, P11,5, P7,9, P15,5 and P7,5.

Remark 4. When n ≡ 3 mod4 and m = 3, we have the vertex v3( 3n−1
4 )+1 in the circle C( 3n−1

4 +1)
m will repeat

with the center vertex v0. To avoid this problem we replace the labels of the two edges v3( 3n−1
4 )+2v3( 3n−1

4 )+3

and v3( 3n−1
4 )+1v3( 3n−1

4 )+3. That is f (v3( 3n−1
4 )+2v3( 3n−1

4 )+3) = 3( 3n−1
2 ) + 6 and f (v3( 3n−1

4 )+1v3( 3n−1
4 )+3) =

3( 3n−1
2 ) + 4 and we obtain the labes of the corresponding vertices mod4mn are as follows: f ∗(v3( 3n−1

4 )+1) ≡
6n + 10, f ∗(v3( 3n−1

4 )+2) ≡ 6n + 18, f ∗(v3( 3n−1
4 )+3) ≡ 6n + 20 and the label of the center vertex v0 is assigned

by f ∗(v0) ≡ 6n + 12.

Note that P3,3 is an edge even graceful grapg but not follow this rule. See Figure 12.

Figure 12. The polar grid graphs P3,3.

145



Symmetry 2019, 11, 38

SubCase (iii) m ≡ (8k− 1)mod4n, n+5
4 ≤ k ≤ n+1

2 ,

In this subcase the vertex vm( 4k−n−1
4 )−( m+1

2 ) in the circle C( 4k−n−1
4 )

m will repeat with the center vertex
v0. To avoid this problem we replace the labels of the two edges vm( 4k−n−1

4 )−( m+1
2 )vm( 4k−n−1

4 )−( m−1
2 )

and vm( 4k−n−1
4 )−( m−1

2 )vm( 4k−n−1
4 )−( m−3

2 ) That is f (vm( 4k−n−1
4 )−( m+1

2 )vm( 4k−n−1
4 )−( m−1

2 )) = (2k− 1)m + 1 and

f (vm( 4k−n−1
4 )−( m−1

2 )vm( 4k−n−1
4 )−( m−3

2 )) = (2k− 1)m− 1 and we obtain the labels of the corresponding

vertices as follows: f ∗(vm( 4k−n−1
4 )−( m+1

2 )) ≡ 2m(4k − 1) + 2, f ∗(vm( 4k−n−1
4 )−( m−1

2 )) ≡ 2m(4k − 1) + 4

and f ∗(vm( 4k−n−1
4 )−( m−3

2 )) ≡ 2m(4k− 1) + 6. The label of the center vertex v0 is assigned by f ∗(v0) ≡
2m(4k− 1). The rest vertices will be labeled as in subCase (i).

SubCase (iv) m ≡ (8k− 1)mod4n, 1 ≤ k ≤ n−1
2

In this subcase the vertex vm( n+4k+1
4 )−( m+1

2 ) in the circle C( n+4k+1
4 )

m will repeat with the center vertex
v0. To avoid this problem we replace the labels of the two edges vm( n+4k+1

4 )−( m+1
2 )vm( n+4k+1

4 )−( m−1
2 ) and

vm( n+4k+1
4 )−( m−1

2 )vm( n+4k+1
4 )−( m−3

2 ) That is f (vm( n+4k+1
4 )−( m+1

2 )vm( n+4k+1
4 )−( m−1

2 )) = (2k + n−1
2 )m + 1 and

f (vm( n+4k+1
4 )−( m−1

2 )vm( n+4k+1
4 )−( m−3

2 )) = (2k + n−1
2 )m− 1 and we obtain the labels of the corresponding

vertices as follows f ∗(vm( n+4k+1
4 )−( m+1

2 )) = 2mn + 8km + 2, f ∗(vm( n+4k+1
4 )−( m−1

2 )) = 2mn + 8km +

4, f ∗(vm( n+4k+1
4 )−( m−3

2 )) = 2mn + 8km + 6 and the label of the center vertex v0 is labeled as f ∗(v0) ≡
2mn + 8km. The rest vertices will be labeled as in subCase (i).

Remark 5. If k = n+1
4 we have f ∗(vm( n+4k+1

4 )−( m+1
2 )) = 8km− 2mn + 2, f ∗(vm( n+4k+1

4 )−( m−1
2 )) = 8km−

2mn + 4, f ∗(vm( n+4k+1
4 )−( m−3

2 )) = 8km− 2mn + 6 and the center vertex v0 is labeled as f ∗(v0) ≡ 8km−
2mn.

SubCase (v) m ≡ (2n− 3)mod4n
In this subcase the vertex vmn−1 in the outer circle C(n)

m will repeat with the center vertex v0.
To avoid this problem we replace the labels of the two edges vmn−2vmn−1 and vmnvm(n−1)+1. That is
f (vmn−2vmn−1) = 2mn− 4, f (vmnvm(n−1)+1) = 2mn and we obtain the labes of the corresponding
vertices as follows:

f ∗(vmn−2) = 4mn − 2m + 2, f ∗(vmn−1) = 4mn − 2m + 4, f ∗(vmn) = 4mn − 2m − 2 and
f ∗(vm(n−1)+1) = 4m(n− 1) and the label of the center vertex v0 is assigned by f ∗(v0) ≡ 2m(2n− 1).

The rest vertices will be labeled as in subCase (i).

Illustration. The edge odd graceful labeling of the polar grid graphs P3,7, P13,7, P19,7, P11,7 and P15,7

respectively are shown in Figure 13.
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(a) P  

(b) P   

Figure 13. Cont.
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(c) P   

(d) P   

Figure 13. Cont.
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(e) P  

Figure 13. The polar grid graphs P3,7, P13,7, P19,7, P11,7 P15,7.

3. Conclusions

This paper gives some basic knowledge about the application of Graph labeling and Graph Theory
in real life which is the one branch of mathematics. It is designed for the researcher who research in
graph labeling and graph Theory. In this paper, we give necessary and sufficient conditions for a polar
grid graph to admit edge even labeling. In future work we will study the necessary and sufficient
conditions for the cylinder Pm × Cn, torus Cm × Cn and rectangular Pm × Pn grid graphs to be edge
even graceful.
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Abstract: Topological indices are graph invariants computed by the distance or degree of vertices of
the molecular graph. In chemical graph theory, topological indices have been successfully used in
describing the structures and predicting certain physicochemical properties of chemical compounds.
In this paper, we propose a definition of generalized bridge molecular graphs that can model more
kinds of long chain polymerization products than the bridge molecular graphs, and provide some
results of the edge versions of atom-bond connectivity (ABCe) and geometric arithmetic (GAe)
indices for some generalized bridge molecular graphs, which have regular, periodic and symmetrical
structures. The results of this paper offer promising prospects in the applications for chemical and
material engineering, especially in chemical industry research.

Keywords: atom-bond connectivity index; geometric arithmetic index; line graph; generalized bridge
molecular graph

1. Introduction

Let G be an undirected simple graph without loops or multiple edges. We denote by V(G) the
vertex set of G and we denote by E(G) the edge set of G. We denote by e = uv the edge connect vertices
u and v or vertices u and v adjacent. We denote by Pn, Cn, and Sn the path, cycle, and star of n vertices,
respectively. We denote by N(v) the open neighborhood of vertex v, i.e., N(v) = {u|uv ∈ E(G)}.
We denote by d(v) or dG(v) the degree of a vertex v of a graph G, i.e., d(v) = |{u ∈ N(v)}|. Let L(G)

or GL be a line graph of G, so each vertex of L(G) corresponds an edge of G. Two vertices of L(G)

are adjacent if and only if a common endpoint is shared by their corresponding edges in G [1].
The degree of edge e in G is denoted by dL(G)(e), which is the number of edges that share common
endpoint with edge e in G; it is also the degree of vertex e in L(G). We give simple a illustration to
explain the relationship of original graph and corresponding line graph in Figure 1. We can see u, v, w
denote corresponding vertexes, and e, f , g, h, i, j denote corresponding edges in original graph G and
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denote corresponding vertices in line graph L(G). We get d(u) = d(v) = 3, d(w) = 2. dL(G)(e), which
is the degree of vertex e in L(G), is also the degree of edge e in G, thus dL(G)(e) = 4 in Figure 1.

Figure 1. The original graph G and corresponding line graph L(G).

Topological indices are graph invariants, which are obtained by performing some numerical
operations on the distance or degree of vertices of the molecular graph. In chemical graph theory,
topological indices are the molecular descriptors. They have been successfully used in describing the
structures and predicting certain physicochemical properties of chemical compounds. To study the
relationship between molecular structure and physical properties of saturated hydrocarbons, Wiener
index was first published in 1947 [2], and the edge version of Wiener index, which can be considered as
the Wiener index of line graph of G, was proposed by Iranmanesh et al. in 2009 [3]. As the important
role of topological indices in chemical research has been confirmed, more topological indices appeared,
which include atom-bond connectivity index and geometric arithmetic index.

In chemical graph theory, hydrogen atoms are usually ignored when the topological indices are
calculated, which is very similar to how organic chemists usually simply write a benzene ring as a
hexagon [4]. Now, three types of graphs of C24H28 are illustrated in Figure 2.

Figure 2. (a) C24H28 ball and stick model graph in 3D; (b) C24H28 chemical structure graph; and (c)
C24H28 model graph in chemical graph theory.

To explore the properties of simple short chain compound products, Gao et al. [5] defined some
join graphs such as Pn +Cm, Pn + Sm, Cm + Pn +Cm, Sm + Pn + Sm, and Cm + Pn + Sr, created by Pn, Cn

and Sn and obtained the ABCe and GAe indices of these graphs. In another paper, Gao et al. [6] defined
the bridge molecular structures, which can be used to research some long chain polymerization
products, and the forgotten indices (F(G)) formulae of some simple bridge molecular structures
constructed by P2, C6 or K3 are presented. The forgotten index is defined as F(G) = ∑

v∈V(G)
(d(v)3) [7].

In this paper, we define generalized bridge molecular graphs that could cover more kinds of long chain
polymerization products, and the edge-version atom-bond connectivity and geometric arithmetic
indices of generalized bridge molecular graphs are calculated.

To facilitate the reader, the topological indices discussed in this thesis are all given in Table 1.
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Table 1. The definition of topological indices.

Index Name Definition Proposed Recent Studied

atom-bond connection index ABC(G) = ∑
uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v) [8] [9–11]

edge version of ABC index ABCe(G) = ∑
e1e2∈E(L(G))

√
dL(G)(e1)+dL(G)(e2)−2

dL(G)(e1)×dL(G)(e2)
[12] [5,13,14]

geometric arithmetic index GA(G) = ∑
uv∈E(G)

2
√

dG(u)dG(v)
dG(u)+dG(v)

[15] [16–18]

edge version of GA index GAe(G) = ∑
e1e2∈E(L(G))

2
√

dL(G)(e1)dL(G)(e2)

dL(G)(e1)+dL(G)(e2)
[19] [5,12,19–21]

In Table 1, dG(u) and dG(v) are the degrees of the vertices u and v in G, and dL(G)(e1) and dL(G)(e2)

are the degrees of the edges e1 and e2 in G.

2. Main Results and Proofs

2.1. Definition of the Generalized Bridge Molecular Graph

Before we start a discussion, we give the definition of the generalized bridge molecular graph as
follows. For a positive integer d, d pairwise disjoint molecular graphs {G(1), G(2), · · · , G(d)}with v(i) ∈
V(G(i)) for each i = 1, 2, · · · , d, and d− 1 pairwise disjoint path molecular graphs P(1), P(2), · · · , P(d−1)

(called bridges), the generalized bridge molecular graph GBG(G(1), v(1), G(2), v(2), · · · , G(d), v(d); P(1),
P(2), · · · , P(d−1)) is the graph obtained by connecting the vertices v(i) and v(i+1) by a path P(i) for
which two end vertices are identified with v(i) and v(i+1) for i = 1, 2, ..., d− 1 (See Figure 3). When
G := G(i), P := P(i), v := v(i) for each i, we simplify GBG(G(1), v(1), G(2), v(2), · · · , G(d), v(d); P(1),
P(2), · · · , P(d−1)) to be GBG(G, v; P; d). In this paper, if G is a star, then v is the central vertex and
if G is a cycle, v is considered as any vertex. In such cases, we further simplify GBG(G, v; P; d) to
be GBG(G, P; d). The bridge molecular graph’s bridge is strictly P2 in [6], which limits the scope of
modeling objects. The generalized bridge molecular graphs can model more kinds of long chain
polymerization products than the bridge molecular graphs, because the bridge can be either P2 or Pn

and n ≥ 3.

Figure 3. The generalized bridge molecular graph GBG(G(1), v(1), G(2), v(2), ..., G(d), v(d); P(1), P(2), ..., P(d−1)).

2.2. Results and Discussion

In the following, we discuss the edge-version atom-bond connectivity and geometric arithmetic
indices of some generalized bridge molecular graph. The line graph GBGL(Sm, Pn; d) of GBG(Sm, Pn; d)
is illustrated in Figure 4.
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Figure 4. The generalized bridge molecular graph of GBG(Sm, Pn; d) and GBGL(Sm, Pn; d).

Theorem 1. Let GBG(Sm, Pn; d) be the generalized bridge molecular graph for n ≥ 4, d ≥ 2 and m ≥ 2
(see Figure 4), then the ABCe and GAe of GBG(Sm, Pn; d) are

ABCe(GBG(Sm, Pn; d)) =

√
2

2
(d− 1)(n− 2) +

d− 2
m + 1

√
2m

+2(m− 1)

√
2m− 3
m2 −m

+ 2(d− 2)(m− 1)

√
2m− 1
m2 + m

+(m− 2)
√

2m− 4 +
(d− 2)(m− 1)(m− 2)

√
2m− 2

2m
,

GAe(GBG(Sm, Pn; d)) =
4
√

2m
m + 2

+
4(d− 2)

√
2m + 2

m + 3
+ (d− 1)(n− 4) + (d− 2)

+4(m− 1)

√
m2 −m

2m− 1
+ 4(d− 2)(m− 1)

√
m2 + m

2m + 1

+
d
2
(m− 1)(m− 2).

Proof. This line graph has 2− 2m− n + d
2 (m

2 + m + 2n− 4) edges. If dL(G)(e1) and dL(G)(e2) are the
degree of edge of e1 and e2, then there are 2 edges of type dL(G)(e1) = m, dL(G)(e2) = 2, 2(d− 2) edges of
type dL(G)(e1) = m + 1, dL(G)(e2) = 2, (d− 1)(n− 4) edges of type dL(G)(e1) = dL(G)(e2) = 2, d− 2
edges of type dL(G)(e1) = dL(G)(e2) = m + 1, 2(m− 1) edges of type dL(G)(e1) = m, dL(G)(e2) = m− 1,
2(d − 2)(m − 1) edges of type dL(G)(e1) = m, dL(G)(e2) = m + 1, (m − 1)(m − 2) edges of type
dL(G)(e1) = dL(G)(e2) = m − 1, and d−2

2 (m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m.
Hence, we get
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ABCe(GBG(Sm, Pn; d)) = 2
(√

m + 2− 2
m× 2

)
+ 2(d− 2)

(√
m + 1 + 2− 2
(m + 1)× 2

)
+(d− 1)(n− 4)

(√
2 + 2− 2

2× 2

)

+(d− 2)
(√

m + 1 + m + 1− 2
(m + 1)× (m + 1)

)

+2(m− 1)
(√

m + m− 1− 2
m× (m− 1)

)

+2(d− 2)(m− 1)
(√

m + m + 1− 2
m× (m + 1)

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)
+

d− 2
2

(m− 1)(m− 2)
(√

m + m− 2
m×m

)
=

√
2

2
(d− 1)(n− 2) +

d− 2
m + 1

√
2m

+2(m− 1)

√
2m− 3
m2 −m

+ 2(d− 2)(m− 1)

√
2m− 1
m2 + m

+(m− 2)
√

2m− 4 +
(d− 2)(m− 1)(m− 2)

√
2m− 2

2m
,

GAe(GBG(Sm, Pn; d)) = 2
(

2
√

m× 2
m + 2

)
+ 2(d− 2)

(
2
√
(m + 1)× 2

m + 1 + 2

)
+(d− 1)(n− 4)

(
2
√

2× 2
2 + 2

)
+(d− 2)

(
2
√
(m + 1)× (m + 1)
m + 1 + m + 1

)
+2(m− 1)

(
2
√

m× (m− 1)
m + m− 1

)
+2(d− 2)(m− 1)

(
2
√

m× (m + 1)
m + m + 1

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
=

4
√

2m
m + 2

+
4(d− 2)

√
2m + 2

m + 3
+ (d− 1)(n− 4) + (d− 2)

+4(m− 1)

√
m2 −m

2m− 1
+ 4(d− 2)(m− 1)

√
m2 + m

2m + 1

+
d
2
(m− 1)(m− 2).

The proof is complete.
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For Example 1, in Figure 5, 2, 7, 7, 12− tetramethyltridecane can be modeled by GBG(S3, P6; 3),
so ABCe(GBG(S3, P6; 3)) ≈ 13.76052 and GAe(GBG(S3, P6; 3)) ≈ 19.72337.

Figure 5. (a) 2, 7, 7, 12-tetramethyltridecane ball and stick model graph in 3D; (b)
2, 7, 7, 12-tetramethyltridecane chemical structure graph; and (c) 2, 7, 7, 12-tetramethyltridecane
model graph in chemical graph theory.

Theorem 2. Let GBG(Sm, P3; d) be the generalized bridge molecular graph for n = 3, d ≥ 3 and m ≥ 2
(see Figure 6), then the ABCe and GAe of GBG(Sm, P3; d) are

ABCe(GBG(Sm, P3; d)) = 2

√
2m− 1
m2 + m

+
2d− 5
m + 1

√
2m + 2(m− 1)

√
2m− 3
m2 −m

+2(d− 2)(m− 1)

√
2m− 1
m2 + m

+ (m− 2)
√

2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2,

GAe(GBG(Sm, P3; d)) =
4

2m + 1

√
m2 + m + (2d− 5)

+
4

2m− 1
(m− 1)

√
m2 −m

+
4

2m + 1
(d− 2)(m− 1)

√
m2 + m

+
d
2
(m− 1)(m− 2).

Figure 6. The generalized bridge molecular graph of GBG(Sm, P3; d) and GBGL(Sm, P3; d).
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Proof. This line graph has d
2 (m

2 + m + 2)− 2m− 1 edges. If dL(G)(e1) and dL(G)(e2) are the degree of
edge of e1 and e2, then there are 2 edges of type dL(G)(e1) = m, dL(G)(e2) = m + 1, 2d− 5 edges of
type dL(G)(e1) = m + 1, dL(G)(e2) = m + 1, 2(m − 1) edges of type dL(G)(e1) = m, dL(G)(e2) =

m− 1, 2(d− 2)(m− 1) edges of type dL(G)(e1) = m,dL(G)(e2) = m + 1, (m− 1)(m− 2) edges of type
dL(G)(e1) = dL(G)(e2) = m − 1, and d−2

2 (m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m.
Hence, we get

ABCe(GBG(Sm, P3; d)) = 2
(√

m + m + 1− 2
m× (m + 1)

)
+ (2d− 5)

(√
m + 1 + m + 1− 2
(m + 1)× (m + 1)

)

+2(m− 1)
(√

m + m− 1− 2
m× (m− 1)

)

+2(d− 2)(m− 1)
(√

m + m + 1− 2
m× (m + 1)

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)
+

d− 2
2

(m− 1)(m− 2)
(√

m + m− 2
m×m

)
= 2

√
2m− 1
m2 + m

+
2d− 5
m + 1

√
2m + 2(m− 1)

√
2m− 3
m2 −m

+2(d− 2)(m− 1)

√
2m− 1
m2 + m

+ (m− 2)
√

2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2,

GAe(GBG(Sm, P3; d)) = 2
(

2
√

m× (m + 1)
m + m + 1

)
+ (2d− 5)

(
2
√
(m + 1)× (m + 1)
m + 1 + m + 1

)
+2(m− 1)

(
2
√

m× (m− 1)
m + m− 1

)
+2(d− 2)(m− 1)

(
2
√

m× (m + 1)
m + m + 1

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
=

4
2m + 1

√
m2 + m + (2d− 5)

+
4

2m− 1
(m− 1)

√
m2 −m

+
4

2m + 1
(d− 2)(m− 1)

√
m2 + m

+
d
2
(m− 1)(m− 2).

The proof is complete.

For Example 2, in Figure 7, 2, 4, 4, 6 − tetramethylheptane can be modeled by GBG(S3, P3; 3),
so ABCe(GBG(S3, P3; 3)) ≈ 9.394663 and GAe(GBG(S3, P3; 3)) ≈ 13.85764.
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Figure 7. (a) 2, 4, 4, 6-tetramethylheptane ball and stick model graph in 3D; (b) 2, 4, 4, 6-tetramethylheptane
chemical structure graph; and (c) 2, 4, 4, 6-tetramethylheptane model graph in chemical graph theory.

Theorem 3. Let GBG(Sm, P2; d) be the generalized bridge molecular graph for n = 2, d ≥ 4 and m ≥ 2
(see Figure 8), then the ABCe and GAe of GBG(Sm, P2; d) are

ABCe(GBG(Sm, P2; d)) = 2(m− 1)

√
3m− 4

2m2 − 3m + 1
+ 2(m− 1)

√
3m− 3

2m2 −m

+2
(d− 3)(m− 1)

m

√
3m− 2

2
+ (m− 2)

√
2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2

+2

√
4m− 3

4m2 − 2m
+

d− 4
2m

√
4m− 2,

GAe(GBG(Sm, P2; d)) =
4(m− 1)
3m− 2

√
2m2 − 3m + 1 +

4(m− 1)
3m− 1

√
2m2 −m

+
4
√

2
3

(d− 3)(m− 1) +
d
2
(m− 1)(m− 2)

+
4
(√

4m2 − 2m
)

4m− 1
+ (d− 4).

Figure 8. The generalized bridge molecular graph of GBG(Sm, P2; d) and GBGL(Sm, P2; d).

Proof. This line graph has 1
2 m(dm+ d− 4) edges. If dL(G)(e1) and dL(G)(e2) are the degree of edge of e1

and e2, then there are 2(m− 1) edges of type dL(G)(e1) = 2m− 1,dL(G)(e2) = m− 1, 2(m− 1) edges of
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type dL(G)(e1) = 2m− 1,dL(G)(e2) = m, 2(d− 3)(m− 1) edges of type dL(G)(e1) = 2m,dL(G)(e2) = m,
(m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m − 1, d−2

2 (m − 1)(m − 2) edges of type
dL(G)(e1) = dL(G)(e2) = m, 2 edges of type dL(G)(e1) = 2m− 1,dL(G)(e2) = 2m, and d− 4 edges of
type dL(G)(e1) = dL(G)(e2) = 2m. Hence, we get

ABCe(GBG(Sm, P2; d)) = 2(m− 1)
(√

2m− 1 + m− 1− 2
(2m− 1)× (m− 1)

)

+2(m− 1)
(√

2m− 1 + m− 2
(2m− 1)×m

)

+2(d− 3)(m− 1)
(√

2m + m− 2
2m×m

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)

+
d− 2

2
(m− 1)(m− 2)

(√
m + m− 2

m×m

)

+2
(√

2m− 1 + 2m− 2
(2m− 1)× 2m

)

+(d− 4)
(√

2m + 2m− 2
2m× 2m

)
= 2(m− 1)

√
3m− 4

2m2 − 3m + 1
+ 2(m− 1)

√
3m− 3

2m2 −m

+2
(d− 3)(m− 1)

m

√
3m− 2

2
+ (m− 2)

√
2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2

+2

√
4m− 3

4m2 − 2m
+

d− 4
2m

√
4m− 2,

GAe(GBG(Sm, P2; d)) = 2(m− 1)
(

2
√
(2m− 1)× (m− 1)
2m− 1 + m− 1

)
+2(m− 1)

(
2
√
(2m− 1)×m

2m− 1 + m

)
+2(d− 3)(m− 1)

(
2
√

2m×m
2m + m

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
+2
(

2
√
(2m− 1)× 2m

2m− 1 + 2m

)
+(d− 4)

(
2
√

2m× 2m
2m + 2m

)
=

4(m− 1)
3m− 2

√
2m2 − 3m + 1 +

4(m− 1)
3m− 1

√
2m2 −m

+
4
√

2
3

(d− 3)(m− 1) +
d
2
(m− 1)(m− 2)

+
4
(√

4m2 − 2m
)

4m− 1
+ (d− 4).
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The proof is complete.

For Example 3, in Figure 9, 2, 3, 3, 4-tetramethylpentane can be modeled by GBG(S3, P2; 4),
so ABCe(GBG(S3, P2; 4)) ≈ 11.69568 and GAe(GBG(S3, P2; 4)) ≈ 17.24996952.

Figure 9. (a) 2, 3, 3, 4-tetramethylpentane ball and stick model graph in 3D; (b)
2, 3, 3, 4-tetramethylpentane chemical structure graph; and (c) 2, 3, 3, 4-tetramethylpentane model graph
in chemical graph theory.

Theorem 4. Let GBG(Cm, Pn; d) be the generalized bridge molecular graph for n ≥ 4, d ≥ 2 and m ≥ 3
(see Figure 10), then the ABCe and GAe of GBG(Cm, Pn; d) are

ABCe(GBG(Cm, Pn; d)) =

√
2

2
(d(m− 3) + (d− 1)(n− 4)) + (2

√
2 +

3
√

6
2

)d

−
√

2− 3
√

6 + 4,

GAe(GBG(Cm, Pn; d)) = d(m− 3) + (d− 1)(n− 4)

+(
8
√

2
3

+ 6)(d− 2) +
12
√

6
5

+ 5.

Figure 10. The generalized bridge molecular graph of GBG(Cm, Pn; d) and GBGL(Cm, Pn; d).
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Proof. In Figure 10, the degrees of vertices in line graph GL(Gd(Cm + Pn)) are displayed near by
the corresponding vertices. This line graph has d(m + n + 3)− n− 4 edges. In addition, there are
d(m− 3) + (d− 1)(n− 4) edges of type dL(G)(e1) = dL(G)(e2) = 2, 6 edges of type dL(G)(e1) = 2 and
dL(G)(e2) = 3, 6 edges of type dL(G)(e1) = dL(G)(e2) = 3, 4(d− 2) edges of type dL(G)(e1) = 2 and
dL(G)(e2) = 4, and 6(d− 2) edges of type dL(G)(e1) = dL(G)(e2) = 4. Hence, we have

ABCe(GBG(Cm, Pn; d)) =

(
d(m− 3) + (d− 1)(n− 4)

)(√
2 + 2− 2

2× 2

)
+6
(√

2 + 3− 2
2× 3

)
+ 6
(√

3 + 3− 2
3× 3

)
+4(d− 2)

(√
2 + 4− 2

2× 4

)
+ 6(d− 2)

(√
4 + 4− 2

4× 4

)
=

√
2

2
(d(m− 3) + (d− 1)(n− 4)) + (2

√
2 +

3
√

6
2

)d

−
√

2− 3
√

6 + 4,

GAe(GBG(Cm, Pn; d)) =

(
d(m− 3) + (d− 1)(n− 4)

)(
2
√

2× 2
2 + 2

)
+6
(

2
√

2× 3
2 + 3

)
+ 6
(

2
√

3× 3
3 + 3

)
+4(d− 2)

(
2
√

2× 4
2 + 4

)
+ 6(d− 2)

(
2
√

4× 4
4 + 4

)
= d(m− 3) + (d− 1)(n− 4)

+(
8
√

2
3

+ 6)(d− 2) +
12
√

6
5

+ 5.

The proof is complete.

For Example 4, in Figure 2, C24H28 is (cyclohexa-2, 4-diene-1, 1-diylbis(propane-3, 1-diyl))dibenzene,
which can be modeled by GBG(C6, P5; 3), so ABCe(GBG(C6, P5; 3)) ≈ 22.52347702 and
GAe(GBG(C6, P5; 3)) ≈ 31.65001155.

Theorem 5. Let GBG(Cm, P3; d) be the generalized bridge molecular graph for n = 3, d ≥ 3, and m ≥ 3
(see Figure 11), then the ABCe and GAe of GBG(Cm, P3; d) are

ABCe(GBG(Cm, P3; d)) =
√

2
2 d(m− 3) + (

√
2 + 7

√
6

4 )d + 4 +
√

15
3 − 15

√
6

4 ,

GAe(GBG(Cm, P3; d)) = d(m− 3) + ( 4
√

2
3 + 7)d + 8

√
6

5 + 6 + 8
√

3
7 − 8

√
2

3 − 15.

Proof. In Figure 11, the degrees of vertices in line graph GL(GBG(Cm, P3; d)) are displayed near by
the corresponding vertices. This line graph has d(m + 6)− 7 edges. In addition, there are d(m− 3)
edges of type dL(G)(e1) = dL(G)(e2) = 2, 4 edges of type dL(G)(e1) = 2 and dL(G)(e2) = 3, 2(d− 2)
edges of type dL(G)(e1) = 2 and dL(G)(e2) = 4, 6 edges of type dL(G)(e1) = dL(G)(e2) = 3, 2 edges of
type dL(G)(e1) = 3 and dL(G)(e2) = 4, and 7d− 15 edges of type dL(G)(e1) = dL(G)(e2) = 4. Hence,
we have
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ABCe(GBG(Cm, P3; d)) = d(m− 3)
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The proof is complete.

Figure 11. The generalized bridge molecular graph of GBG(Cm, P3; d) and GBGL(Cm, P3; d).

For Example 5, in Figure 12, (cyclohexane-1, 1-diylbis(methylene))dicyclohexane can be modeled
by GBG(C6, P3; 3), so ABCe(GBG(C6, P3; 3)) ≈ 19.57183078 and GAe(GBG(C6, P3; 3)) ≈ 28.78428831.
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Figure 12. (a) (cyclohexane-1, 1-diylbis(methylene))dicyclohexane ball and stick model graph
in 3D; (b) (cyclohexane-1, 1-diylbis(methylene))dicyclohexane chemical structure graph; and (c)
(cyclohexane-1, 1-diylbis(methylene))dicyclohexane model graph in chemical graph theory.

Theorem 6. Let GBG(Cm, P2; d) be the generalized bridge molecular graph for n = 2, d ≥ 4, and m ≥ 3
(see Figure 13), then the ABCe and GAe of GBG(Cm, P2; d) are

ABCe(GBG(Cm, P2; d)) =
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2
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GAe(GBG(Cm, P2; d)) = dm + (
4
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2
3

+
8
√

6
5
− 1)d +

√
15 +

16
√

5
9

+
4
√
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11

−16
√

6
5
− 8
√

2
3
− 4.

Figure 13. The generalized bridge molecular graph of GBG(Cm, P2; d) and GBGL(Cm, P2; d).

Proof. In Figure 13, the degrees of vertices in line graph GL(GBG(Cm, P2; d)) are displayed near by
the corresponding vertices. This line graph has d(m− 5)− 6 edges. In addition, there are d(m− 3)
edges of type dL(G)(e1) = dL(G)(e2) = 2, 4 edges of type dL(G)(e1) = 2, dL(G)(e2) = 3, 2(d − 2)
edges of type dL(G)(e1) = 2,dL(G)(e2) = 4, 2 edges of type dL(G)(e1) = dL(G)(e2) = 3, 4 edges of
type dL(G)(e1) = 3, dL(G)(e2) = 5, d − 2 edges of type dL(G)(e1) = dL(G)(e2) = 4, 4 edges of type
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dL(G)(e1) = 4, dL(G)(e2) = 5, 4(d − 3) edges of type dL(G)(e1) = 4, dL(G)(e2) = 6, 2 edges of type
dL(G)(e1) = 5, dL(G)(e2) = 6, and d− 4 edges of type dL(G)(e1) = dL(G)(e2) = 6. Hence, we have
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The proof is complete.γi(C6�Cn)

For Example 6, in Figure 14, 2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl can be modeled by
GBG(C6, P2; 4), so ABCe(GBG(C6, P2; 4)) ≈ 25.00131406 and GAe(GBG(C6, P2; 4)) ≈ 37.44953704.

Figure 14. (a) 2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl ball and stick model graph in 3D; (b)
2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl chemical structure graph; and (c) 2′H, 2′′H-1, 1′ : 1′, 1′′ :
1′′, 1′′′-quaterphenyl model graph in chemical graph theory.
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3. Conclusions

Topological indices are proven to be very helpful to test the chemical properties of new chemical
or physical materials. To describe more kinds of long chain polymerization products than the bridge
molecular graphs, we propose the generalized bridge molecular graph structures. In this paper,
we focus on some generalized bridge molecular graphs such as GBG(Sm, Pn; d) and GBG(Cm, Pn; d)
and give the formulas of the edge version ABC and GA indices of these generalized bridge molecular
graphs. By demonstrating the calculation of real molecules, we find that some long chain molecular
graphs can be quickly modeled and their topological indices can be calculated using generalized
bridge molecular graphs. The results of this paper also offer promising prospects in the applications
for chemical and material engineering, especially in chemical industry research.
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Abstract: The convexity in triangular norm (for short, ⊗−convexity) is a generalization of Zadeh’s
quasiconvexity. The aggregation of two ⊗−convex sets is under the aggregation operator ⊗ is
also ⊗−convex, but the aggregation operator ⊗ is not unique. To solve it in complexity, in the
present paper, we give some sufficient conditions for aggregation operators preserve ⊗−convexity.
In particular, when aggregation operators are triangular norms, we have that several results such
as arbitrary triangular norm preserve ⊗D−convexity and ⊗a−convexity on bounded lattices, ⊗M
preserves ⊗H−convexity in the real unite interval [0, 1].

Keywords: aggregation operator; triangular norm; ⊗−convex set

1. Introduction

Fuzzy set theory introduced by Zadeh in 1965, as an mathematical tool to deal with uncertainty
in information system and knowledge base, has been widely used in various fields of science and
technology. By applying fuzzy set theory, Zadeh in [1] proposed the concept of quasiconvex fuzzy set,
and has attracted wide attention of researchers and practitioners from many different areas such as
fuzzy mathematics, optimization and engineering. Subsequently, Zadeh’s quasiconvex fuzzy set was
generalized with a lattice L instead of the interval [0, 1]. A fuzzy set μ : Rn → L is quasiconvex if for
any x, y ∈ Rn and all λ ∈ [0, 1] the inequality

μ(λx + (1− λ)y) ≥ μ(x) ∧ μ(y) (1)

holds.
A quasiconvex fuzzy set has an important property: intersection of quasiconvex fuzzy sets is a

quasiconvex fuzzy set, i.e., let X ⊆ Rn, for any fuzzy sets μ and ν,

μ and ν are quasiconvex ⇒ min{μ, ν} is quasiconvex. (2)

The above condition is called intersection preserving quasiconvexity. This property is also true
for lattice valued fuzzy sets.

The theory of aggregation operators [2], has been successfully used in mathematics, complex
networks and decision making etc (e.g., see [3–6]). The arithmetic mean, the ordered weighted
averaging operator and the probabilistic aggregation are widely used examples. In reference [7]
Janiš, Král and Renčová pointed that the intersection of fuzzy sets is not the only operator preserving
quasiconvexity in general, and they gave someconditions in order that an aggregation operator
preserves quasiconvexity.

Symmetry 2018, 10, 729; doi:10.3390/sym10120729 www.mdpi.com/journal/symmetry167
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Triangular norms are kinds of binary aggregation operations that become an essential tool in
fuzzy logic, information science and computer sciences. By using triangular norms, properties of
fuzzy convexity and various generalizations of fuzzy convexity were considered by many authors
(for example, see [8–11]). Suppose ⊗ : [0, 1]2 → [0, 1] is a triangular norm, Nourouzi [10] given the
concept of ⊗−convex set which generalized Zadeh’s quasiconvex fuzzy set. A ⊗−convex set as
defined in [10] can also be generalized as being lattice-valued in the following sense. Let L be a lattice
and let ⊗ : L2 → L be a triangular norm. A fuzzy set μ : Rn → L is called ⊗−convex if for any
x, y ∈ Rn and all λ ∈ [0, 1] the inequality

μ(λx + (1− λ)y) ≥ μ(x)⊗ μ(y) (3)

holds.
Following [7,10], in the present paper, we continue to study sufficient conditions for aggregation

operators and triangular norms that preserve ⊗−convexity on a bounded lattice. In Section 3,
we give some sufficient conditions for aggregation operator preserving ⊗−convexity, those results are
generalizations of Propositions 2 and 3 (in [7]). Triangular norm is a kind of important aggregation
operator, we give some sufficient conditions for triangular norm preserving ⊗−convexity in Section 4.
And Section 5 is conclusion.

2. Preliminaries

We first give the basic definitions and results from the existing literature. In following, we use L
denote a bounded lattice (L ≤, 0L, 1L).

Definition 1. [2] An aggregation operation is a function A : Ln → L which satisfies

(i) A(a1, a2, . . . , an) ≤ A(a′1, a′2, . . . , a′n) whenever ai ≤ a′i for 1 ≤ i ≤ n.
(ii) A(0L, 0L, . . . , 0L) = 0L and A(1L, 1L, . . . , 1L) = 1L.

A binary aggregation operation is said to be symmetric if for any a1, a2 ∈ L, A(a1, a2) = A(a2, a1).
A special aggregation function is a triangular norm defined as following.

Definition 2. [12] A map ⊗ : L2 → L is called a triangular norm if

(T1) a⊗ b = b⊗ a.
(T2) a1 ⊗ b ≤ a2 ⊗ b if a1 ≤ a2.
(T3) a⊗ (b⊗ c) = (a⊗ b)⊗ c.
(T4) a⊗ 1L = a.

Example 1. The two basic triangular norms ⊗M and ⊗D defined as the following are the strongest and the
weakest triangular norms on L, respectively.

a⊗M b = a ∧ b,

a⊗D b =

{
a ∧ b, a, b ∈ {1L},
0, otherwise.

Example 2. Suppose H = (0, λ) ⊆ [0, 1) and let ∗ : H2 → H be an operation on H which satisfies
(T1)–(T3) and

a ∗ b ≤ min{a, b},
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a⊗H b =

{
a ∗ b, (a, b) ∈ H2;

min{a, b} otherwise.

Then ⊗H is a kind of triangular norms on [0, 1] follows from Proposition 3.60 in [13].

3. Sufficient Conditions for an Aggregation Operator Preserving ⊗−Convexity

In this Section, we generalize Propositions 2 and 3 (in [7]), and give some sufficient conditions for
an aggregation operator which preserves ⊗−convexity.

Theorem 1. Let A : L2 → L be an aggregation operator on L, let μ, ν : Rn → L be arbitrarily ⊗−convex
fuzzy sets. If A(a⊗ b, c⊗ d) = A(a, c)⊗ A(b, d) for each a, b, c, d ∈ L, then A(μ, ν) is ⊗−convex.

Proof. Let μ, ν : Rn → L be arbitrarily ⊗−convex fuzzy sets, and x, y ∈ Rn. Then we see

A(μ, ν)(λx + (1− λ)y)

= A(μ(λx + (1− λ)y), ν(λx + (1− λ)y))

≥ A(μ(x)⊗ μ(y), ν(x)⊗ ν(y))

= A(μ(x), ν(x))⊗ A(μ(y), ν(y))

= A(μ, ν)(x)⊗ A(μ, ν)(y).

Thus, A(μ, ν) is ⊗−convex.

The converse of Theorem 1, however, is in general not true. For example,

Example 3. Consider a lattice L = (0L, a, b, 1L), where 0L ≤ a ≤ 1L, 0L ≤ b ≤ 1L, and a, b are incomparable
elements and the aggregation operator defined in Table 1. Let μ, ν : Rn → L be arbitrarily ⊗D−convex fuzzy
sets. For any x, y ∈ Rn and all λ ∈ [0, 1]

A(μ, ν)(λx + (1− λ)y)

= A(μ(λx + (1− λ)y), ν(λx + (1− λ)y))

≥ A(μ(x)⊗D μ(y), ν(x)⊗D ν(y))

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A(μ(y), ν(y)), μ(x) = ν(x) = 1L,
A(μ(y), ν(x)), μ(x) = ν(y) = 1L,
A(μ(x), ν(x)), μ(y) = ν(y) = 1L,
A(μ(x), ν(y)), μ(y) = ν(x) = 1L,
0L, otherwise,

we have

A(μ, ν)(x)⊗D A(μ, ν)(y)

=

⎧⎪⎨⎪⎩
A(μ(y), ν(y)), A(μ, ν)(x) = 1L,
A(μ(x), ν(x)), A(μ, ν)(y) = 1L,
0L, otherwise,

=

⎧⎪⎨⎪⎩
A(μ(y), ν(y)), μ(x) = ν(x) = 1L,
A(μ(x), ν(x)), μ(y) = ν(y) = 1L,
0L, otherwise.

.

Hence, A(μ, ν) is ⊗D−convex. And A(1L ⊗D b, a⊗D 1L) = A(b, a) = a, A(1L, a)⊗D A(b, 1L) =

a⊗D b = 0L.
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Table 1. Aggregation operator A.

A 0L a b 1L

0L 0L 0L 0L 0L
a 0L 0 b b
b 0L a b b

1L 0L a b 1L

Theorem 2. Let A : L2 → L be an aggregation operator on L, let μ, ν : Rn → L be arbitrary ⊗−convex fuzzy
sets. If A(μ, ν) is ⊗−convex, then A(a⊗ b, c⊗ d) ≥ A(a, c)⊗ A(b, d) for each a, b, c, d ∈ L. Moreover if the
triangular norm ⊗ is idempotent, then A(a⊗ b, c⊗ d) = A(a, c)⊗ A(b, d) for each a, b, c, d ∈ L.

Proof. Suppose that A(μ, ν) is ⊗−convex. Let a, b, c, d be arbitrary elements of L. For x, y ∈ Rn and
z = λx + (1− λ)y, define

μ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a, t = z + θ(y− z), θ < 0;
a⊗ b, t = z;
b, t = z + θ(y− z), θ > 0;
0L, otherwise,

ν(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c, t = z + θ(y− z), θ < 0;
c⊗ d, t = z;
d, t = z + θ(y− z), θ > 0;
0L, otherwise.

Clearly μ, ν are ⊗−convex. And

A(μ, ν)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(a, c), t = z + θ(y− z), θ < 0;
A(a⊗ b, c⊗ d), t = z;
A(b, d), t = z + θ(y− z), θ > 0;
0L, otherwise.

As A(μ, ν) has to be a ⊗−convex fuzzy set, we have

A(a⊗ b, c⊗ d) ≥ A(a, c)⊗ A(b, d).

From the monotonicity of A it follows that A(a ⊗ b, c ⊗ d) ≤ A(a, c) and A(a ⊗ b, c ⊗ d) ≤
A(b, d). Hence

A(a⊗ b, c⊗ d)⊗ A(a⊗ b, c⊗ d) ≤ A(a, c)⊗ A(b, d).

Therefore, since the operator ⊗ is idempotent it follows that

A(a⊗ b, c⊗ d) ≤ A(a, c)⊗ A(b, d).

Since the triangular norm a ⊗M b = a ∧ b is idempotent, Proposition 2 (in [7]) follows from
Theorems 1 and 2.

Theorem 3. Let A : L2 → L be an aggregation operator on L, and let μ, ν : Rn → L be arbitrary ⊗−convex
fuzzy sets. If A(a, b) = A(a, a)⊗ A(b, b) = A(a⊗ b, a⊗ b) for each a, b ∈ L, then A(μ, ν) is ⊗−convex.
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Proof. Let μ, ν : Rn → L be arbitrary ⊗−convex fuzzy sets. For any x, y ∈ Rn and all λ ∈ [0, 1]

A(μ, ν)(λx + (1− λ)y)

= A(μ(λx + (1− λ)y), ν(λx + (1− λ)y))

= A(μ(λx + (1− λ)y), μ(λx + (1− λ)y))⊗ A(ν(λx + (1− λ)y), ν(λx + (1− λ)y))

≥ A(μ(x)⊗ μ(y), μ(x)⊗ μ(y))⊗ A(ν(x)⊗ ν(y), ν(x)⊗ ν(y))

= A(μ(x), μ(y))⊗ A(ν(x), ν(y))

= (A(μ(x), μ(x))⊗ A(μ(y), μ(y)))⊗ (A(ν(x), ν(x))⊗ A(ν(y), ν(y)))

= (A(μ(x), μ(x))⊗ A(ν(x), ν(x)))⊗ (A(μ(y), μ(y))⊗ A(ν(y), ν(y)))

= A(μ, ν)(x)⊗ A(μ, ν)(y).

Thus, A(μ, ν) is ⊗−convex.

The following shows that the converse of Theorem 3 is in general not true.

Example 4. Consider a lattice L = (0L, a, b, 1L), where 0L ≤ a ≤ 1L, 0L ≤ b ≤ 1L, and a, b are incomparable
elements and the binary symmetric aggregation operator A defined in Table 2. Let μ, ν : Rn → L be arbitrary
⊗D−convex fuzzy sets. For any x, y ∈ Rn and all λ ∈ [0, 1], can prove that A(μ, ν) is ⊗D−convex.
And A(b, a) = a, A(b, b)⊗D A(a, a) = a⊗D a = 0L, and A(b⊗D b, a⊗D a) = A(0L, 0L) = 0L.

Table 2. Aggregation operator A.

A 0L a b 1L

0L 0L 0L 0L 0L
a 0L a a a
b 0L a a b

1L 0L a b 1L

Theorem 4. Let A : L2 → L be an symmetric aggregation operator on L, let μ, ν : Rn → L be arbitrary
⊗−convex fuzzy sets. If A(μ, ν) is ⊗−convex, then A(a, b) ≥ A(a, a)⊗ A(b, b) for each a, b ∈ L. Moreover
if the triangular norm ⊗ is idempotent, then A(a, b) = A(a, a)⊗ A(b, b) = A(a⊗ b, a⊗ b) for each a, b ∈ L.

Proof. Suppose that A(μ, ν) is ⊗−convex. Let a, b be arbitrary elements of L, and put, for x, y ∈ Rn

and 0 < λ < 1, z = λx + (1− λ)y. We define

μ(t) =

⎧⎪⎨⎪⎩
a, t = z + θ(y− z), θ ≤ 0;
b, t = z + θ(y− z), θ > 0;
0L, otherwise,

ν(t) =

⎧⎪⎨⎪⎩
a, t = z + θ(y− z), θ < 0;
b, t = z + θ(y− z), θ ≥ 0;
0L, otherwise.

Clearly μ, ν are ⊗−convex and as A preserves ⊗−convexity, then we have

A(a, b) ≥ A(a, a)⊗ A(b, b).

Suppose that the triangular norm ⊗ is idempotent. Let x, y ∈ Rn and z = λx + (1− λ)y, define

μ(t) =

⎧⎪⎨⎪⎩
a, t = z + θ(y− z), θ ≤ 0;
1L, t = z + θ(y− z), θ > 0;
0L, otherwise,

ν(t) =

⎧⎪⎨⎪⎩
a, t = z + θ(y− z), θ < 0;
1L, t = z + θ(y− z), θ ≥ 0;
0L, otherwise.

Clearly μ, ν are ⊗−convex. Since, in addition, A preserves ⊗−convexity this can be combined
with the fact that the triangular norm ⊗ is idempotent, we deduce

A(a, a) ≥ A(a, 1L)⊗ A(1L, a) = A(1L, a)⊗ A(1L, a) = A(1L, a).
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From the monotony of A it follows that A(a, a) ≤ A(1L, a). Hence

A(a, a) = A(1L, a).

Therefore

A(a, b) ≤ A(1L, b) = A(b, b), A(a, b) ≤ A(1L, a) = A(a, a).

Hence

A(a, b) = A(a, b)⊗ A(a, b) ≤ A(a, a)⊗ A(b, b).

Thus

A(a, b) = A(a, a)⊗ A(b, b).

Let c = a, d = b, from Theorem 2 we have

A(a, b) = A(a⊗ b, a⊗ b).

Then Proposition 3 (in [7]) follows from Theorems 3 and 4 due to a⊗M b = a ∧ b is idempotent.
Since the triangular norm a⊗M b = min{a, b} is the strongest triangular norm on [0, 1], from the

definition of ⊗−convexity we can prove the following theorem.

Theorem 5. If f1, f2 : [0, 1] → [0, 1] are both nondecreasing, min{ f1(0), f2(0)} = 0, f1(1) = f2(1) = 1.
Let A : [0, 1]2 → [0, 1] defined by A(a, b) = min{ f1(a), f2(b)}, then A(μ, ν) preserves ⊗−convexity for any
triangular norm on [0, 1]. But the converse statement is in general not true.

Example 5. Suppose L = [0, 1], A(a, b) = 1
2 (a + b). Then A(μ, ν)(λx + (1− λ)y) ≥ A(μ, ν)(x) ⊗D

A(μ, ν)(y). i.e., A(μ, ν) is ⊗D−convex. And A(a, b) = 1
2 (a + b) 	= min{ f1(a), f2(b)}.

4. Sufficient Conditions for Triangular Norm Preserving ⊗−Convexity

In this section we give some sufficient conditions which guarantee that a triangular norm preserves
⊗−convexity. The following theorem is obvious.

Theorem 6. Let ⊗ : L2 → L be a triangular norm on L. If μ, ν : Rn → L are arbitrary ⊗−convex fuzzy sets,
then μ⊗ ν is ⊗−convex.

Theorem 7. Let ⊗ : L2 → L be a triangular norm on L. If μ, ν : Rn → L are arbitrary ⊗D−convex fuzzy
sets, then μ⊗ ν is ⊗D−convex.
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Proof. Let μ, ν : Rn → L be arbitrary ⊗D−convex fuzzy sets. For any x, y ∈ Rn and all λ ∈ [0, 1]

(μ⊗ ν)(λx + (1− λ)y)

= μ(λx + (1− λ)y)⊗ ν(λx + (1− λ)y)

≥ (μ(x)⊗D μ(y))⊗ (ν(x)⊗D ν(y))

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ(x)⊗ ν(x), μ(y) = ν(y) = 1L,
μ(y)⊗ ν(y), μ(x) = ν(x) = 1L,
μ(x)⊗ ν(y), μ(y) = ν(x) = 1L,
μ(y)⊗ ν(x), μ(x) = ν(y) = 1L,
0L, otherwise.

Then we see

(μ⊗ ν)(x)⊗D (μ⊗ ν)(y)

= (μ(x)⊗ ν(x))⊗D (μ(y)⊗ ν(y))

=

⎧⎪⎨⎪⎩
μ(x)⊗ ν(x), μ(y)⊗ ν(y) = 1L,
μ(y)⊗ ν(y), μ(x)⊗ ν(x) = 1L,
0L, otherwise,

=

⎧⎪⎨⎪⎩
μ(x)⊗ ν(x), μ(y) = ν(y) = 1L,
μ(y)⊗ ν(y), μ(x) = ν(x) = 1L,
0L, otherwise.

Hence

(μ⊗ ν)(λx + (1− λ)y) ≥ (μ⊗ ν)(x)⊗D (μ⊗ ν)(y).

Thus, μ⊗ ν is ⊗D−convex.

Let ⊗ be a triangular norm on L. Li in [14] given a family triangular norms (⊗a)a∈L as follows

x⊗a y =

{
0L, x⊗ y ≤ a and x, y 	= 1L;
x⊗ y, otherwise.

Theorem 8. Let⊗ : L2 → L be a triangular norm on L, and a ∈ L. If μ, ν : Rn → L are arbitrary⊗a−convex
fuzzy sets, then μ⊗ ν is ⊗a−convex.

Proof. Let μ, ν : Rn → L be arbitrary ⊗a−convex fuzzy sets. For any x, y ∈ Rn and all λ ∈ [0, 1]

(μ⊗ ν)(λx + (1− λ)y)

= μ(λx + (1− λ)y)⊗ ν(λx + (1− λ)y)

≥ (μ(x)⊗a μ(y))⊗ (ν(x)⊗a ν(y))

=

{
0L, μ(x)⊗ μ(y) ≤ a or ν(x)⊗ ν(y) ≤ a,
μ(x)⊗ μ(y)⊗ ν(x)⊗ ν(y), otherwise.
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Then we have

(μ⊗ ν)(x)⊗a (μ⊗ ν)(y)

= (μ(x)⊗ ν(x))⊗a (μ(y)⊗ ν(y))

=

{
0L, μ(x)⊗ ν(x)⊗ μ(y)⊗ ν(y) ≤ a,
μ(x)⊗ μ(y)⊗ ν(x)⊗ ν(y), otherwise.

Since μ(x)⊗ μ(y) ≤ a or ν(x)⊗ ν(y) ≤ a implies μ(x)⊗ ν(x)⊗ μ(y)⊗ ν(y) ≤ a, we have

(μ⊗ ν)(λx + (1− λ)y) ≥ (μ⊗ ν)(x)⊗a (μ⊗ ν)(y).

Thus, μ⊗ ν is ⊗a−convex.

Example 6. Consider the lattice (L = {0L, a, b, c, d, 1L},≤, 0, 1) given in Figure 1. Consider the function ⊗b
on L defined by

α⊗b β =

{
0L, α ∧ β ≤ b and α, β 	= 1L;
α ∧ β, otherwise,

then ⊗b is a triangular norm and ⊗b is described in Table 3.
Hence, for any ⊗b-convex sets μ, ν : Rn → L, μ⊗M ν = μ ∧ ν is also a ⊗b-convex set.

Table 3. Triangular norm ⊗b.

Tb 0L a b c d 1L

0L 0L 0L 0L 0L 0L 0L
a 0L 0L 0L 0L 0L a
b 0L 0L 0L 0L 0L b
c 0L 0L 0L c 0L c
d 0L 0L 0L 0L d d

1L 0L a b c d 1L

0L

a

b

c d

1L

Figure 1. The order ≤ on L.

Theorem 9. Let μ, ν : Rn → [0, 1] be arbitrary ⊗H−convex fuzzy sets. Then min{μ, ν} is a ⊗H−convex
fuzzy set.
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Proof. Let μ, ν : Rn → L be arbitrary ⊗H−convex fuzzy sets. For any x, y ∈ Rn and all λ ∈ [0, 1]

min{μ, ν}(λx + (1− λ)y)

= min{μ(λx + (1− λ)y), ν(λx + (1− λ)y)}
≥ min{μ(x)⊗H μ(y), ν(x)⊗H ν(y)}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{μ(x) ∗ μ(y), ν(x) ∗ ν(y)}, (μ(x), μ(y)) ∈ H2 and (ν(x), ν(y)) ∈ H2,
min{μ(x) ∗ μ(y), ν(x), ν(y)}, (μ(x), μ(y)) ∈ H2 and (ν(x), ν(y)) /∈ H2,
min{μ(x), μ(y), ν(x) ∗ ν(y)}, (μ(x), μ(y)) /∈ H2 and (ν(x), ν(y)) ∈ H2,
min{μ(x), μ(y), ν(x), ν(y)}, otherwise.

Then we deduce

min{μ, ν}(x)⊗H min{μ, ν}(y)
= min{μ(x), ν(x)} ⊗H min{μ(y), ν(y)}

=

{
min{μ(x), ν(x)} ∗min{μ(y), ν(y)}, (min{μ(x), ν(x)}, min{μ(y), ν(y)}) ∈ H2,
min{μ(x), μ(y), ν(x), ν(y)}, otherwise.

Since min{μ(x), μ(y)} ≥ μ(x) ∗ μ(y) ≥ min{μ(x), ν(x)} ∗min{μ(y), ν(y)}, min{ν(x), ν(y)} ≥
ν(x) ∗ ν(y) ≥ min{μ(x), ν(x)} ∗min{μ(y) we have

min{μ, ν}(λx + (1− λ)y) ≥ min{μ, ν}(x)⊗H min{μ, ν}(y).

Thus, min{μ, ν} is a ⊗H−convex fuzzy set.

Example 7. Suppose H = (0, 1
2 ) and the triangular norm ⊗H is

a⊗H b =

{
ab
2 , (a, b) ∈ (0, 1

2 )
2;

min{a, b} otherwise,

then, min{μ, ν} is a ⊗H−convex fuzzy set.

5. Conclusions

The authors of the paper [7] discuss properties which are preserved under aggregation for arbitrary
lattices and arbitrary pairs of mappings Results in this paper are also discussed under aggregation for
an arbitrary lattice and an arbitrary pair of mappings. However, this does not mean that even without
these conditions the aggregation of SOME quasiconvex (⊗−convex) mappings to SOME lattices need
not be quasiconvex (⊗−convex). Which are the properties of a lattice L and an aggregation A (weaker
than those from the paper by Janis, Kral and Rencova in [7]), such that A preserves quasiconvexity
(⊗−convex) for mappings into L? We hope to solve this problem in future work.
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Abstract: In this paper, an edge detection method based on the regularized Laplacian operation is
given. The Laplacian operation has been used extensively as a second-order edge detector due
to its variable separability and rotation symmetry. Since the image data might contain some
noises inevitably, regularization methods should be introduced to overcome the instability of
Laplacian operation. By rewriting the Laplacian operation as an integral equation of the first kind,
a regularization based on partial differential equation (PDE) can be used to compute the Laplacian
operation approximately. We first propose a novel edge detection algorithm based on the regularized
Laplacian operation. Considering the importance of the regularization parameter, an unsupervised
choice strategy of the regularization parameter is introduced subsequently. Finally, the validity of the
proposed edge detection algorithm is shown by some comparison experiments.

Keywords: edge detection; Laplacian operation; regularization; parameter selection; performance
evaluation

1. Introduction

In a digital image, edges can be defined as abrupt changes of the image intensity. Edge is one
of the most essential features contained in an image. The result of edge detection not only retains
the main information of an image, but also reduces the amount of data to be processed drastically.
Therefore, edge detection has been used as a front-end step in many image processing and computer
vision applications [1].

Since the abrupt changes in an image can be reflected by their derivatives, differentiation-based
methods are widely used in edge detection. Generally, edges can be detected by finding the maximum
of first-order derivatives or the zero-crossing of second-order derivatives of the image intensity. From
the original contribution of Roberts in 1965, there have been a large number of works concerning
this topic. Some researchers have paid attention to constructing optimal filters according to some
reasonable hypotheses and criteria (see [2–5]), while some others are interested in designing discrete
masks, such as the well-known Prewitt, Sobel and Laplacian of Gaussian (LoG) operators. Some
recently developed methods can be found in [6–8].

The differentiation-based edge detection methods need to calculate derivatives numerically. As we
know, numerical differentiations are unstable since a small perturbation of the data may cause huge
errors in its derivatives [9]. In real applications, the image is often corrupted by noise during the
processes of collection, acquisition and transmission. In order to calculate derivatives of the noisy
data stably, some regularization methods should be introduced. There have been much work into
this over the past years, such as the Tikhonov regularization [10], the Lavrentiev regularization [11],
the Lanczos method [12], the mollification method [9] and the total variation method [13]. Some of the
regularization methods for computing the first-order numerical differentiation have been applied to
detecting image edges (see [10,13]).

Symmetry 2018, 10, 697; doi:10.3390/sym10120697 www.mdpi.com/journal/symmetry177
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Compared with the first-order numerical differentiation, the computation of second-order
derivatives is more unstable and more likely to be influenced by noises. However, the edge
detection based on second-order derivatives has higher localization accuracy and a stronger response
to final details [14]. The most common second-order derivative used in edge detection is the
Laplacian operation due to its variable separability and rotation invariance. In order to overcome the
instability of Laplacian operation, one of the existing works is the LoG [2]. Since the image data is
discrete, the sampled representation of the LoG and some related issues have been discussed in [15].
The performance of a LoG detector depends mainly on the choice of the scale parameter. For larger
scales, the zero-crossings deviate from the true edges, which may cause poor localization. For small
scales, there would be many false zero-crossings produced by noises. Besides the LoG detector, a model
for designing a discrete mask of the Laplacian operator is introduced in [7].

In view of the above-mentioned facts, a natural idea is to compute the Laplacian operation by the
regularization method and construct a novel edge detection algorithm based on this. By rewriting the
Laplacian operation as an integral equation of the first kind, a PDE-based regularization for computing
the Laplacian operation has been proposed in [16]. In this paper, the PDE-based regularization method
will be generalized to edge detection. Based on the objective parameter selection for edge detection
given in [17], we will introduce a new choice strategy of the regularization parameter. Comparative
experiments with the LoG detector and the Laplacian-based mask given in [7] are considered.

The paper is organized as follows. In Section 2, the PDE-based regularization method for
computing the Laplacian operation of image data is given. The novel edge detection algorithm
based on the regularized Laplacian operation is given in Section 3. Comparative experiments are
shown in Section 4. Finally, the main conclusions are summarized in Section 5.

2. Regularized Laplacian Operation

Considering the image intensity as a function f (r), r = (x, y) of two variables, the Laplacian
operation can be defined as

u = Δ f =
∂2 f
∂x2 +

∂2 f
∂y2 , (x, y) ∈ Ω := [0, a]× [0, b].

Without loss of generality, we assume the value of f (x, y) on the boundary of Ω is zero, i.e.,
f |∂Ω ≡ 0 . Otherwise, denote f0 as the solution of{

Δ f0 = 0, in Ω
f0 = f , on ∂Ω

,

and replace f by f − f0. Since the latter satisfies

Δ( f − f0) = Δ f = u, ( f − f0)|∂Ω ≡ 0 ,

it has {
Δ f = u, in Ω
f = 0, on ∂Ω

. (1)

Problem (1) is the Dirichlet problem of the Poisson equation. According to the classic theory of
the Poisson equation, the relationship between f and u can be expressed as

A[u] :=
∫

Ω
G(r, r′) u(r′)dr′ = − f , (2)
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where G(r, r′) is the Green function of the Dirichlet problem (see [18]). Since Ω is a rectangular domain,
the Green function has the explicit expression

G(r, r′) =
∞

∑
k1,k2=1

p(k1, k2) u(r; k1, k2) u(r′; k1, k2),

where
u(r; k1, k2) = sin

k1πx
a

sin
k2πy

b
, p(k1, k2) =

4ab
π2(k2

1b2 + k2
2a2)

.

The calculation of Laplacian operation u = Δ f is equivalent to solving the integral Equation (2), which
can be simplified in the following.

Denote f δ as the noise data of f ; the calculation of the Laplacian operation Δ f δ is unstable, which
means the noise may be amplified. A stabilized strategy is to solve the equivalent Equation (2) by the
regularization method. Solving the integral Equation (2) by the Lavrentiev regularization method,
an efficient method is given in [16]. The Laplacian operation can be computed approximately by
solving the regularization equation

αuα,δ + A[uα,δ] = − f δ, (3)

where α > 0 is the regularization parameter, and uα,δ is the regularized Laplacian operation. Assuming
that hα,δ is a function satisfying {

Δhα,δ = uα,δ, in Ω
hα,δ = 0, on ∂Ω

,

then it has A[uα,δ] = −hα,δ. Equation (3) can be rewritten as{
αΔhα,δ − hα,δ = − f δ, in Ω
hα,δ = 0, on ∂Ω

(4)

This boundary value problem of PDE can be solved by classic numerical methods, and then the
regularized Laplacian operation uα,δ can be expressed as

uα,δ(r) = Δhα,δ(r) =
1
α
[hα,δ(r)− f δ(r)], r ∈ Ω. (5)

From the above rewriting, we can see that (4) and (5) are equivalent to the integral Equation (3).
Compared with solving the regularization Equation (3) directly, the computational burden of solving
(4) and (5) is reduced drastically.

The work of [16] mainly focuses on the choice of the regularization parameter α and the error
estimate of the regularized Laplacian operation uα,δ. Unfortunately, the choice strategy given in [16]
depends on the noise level of the noise data, which is unknown in practice. Since the choice strategy of
the regularization parameter plays an important role in the regularization method, as the authors stated
in [16], the selection of parameter α in the edge detection algorithm should be considered carefully.

3. The Edge Detection Algorithm

In this section, we will construct the novel edge detection algorithm based on the regularized
Laplacian operation given in Section 2.

The first thing we are concerned with is the weakness of the Lavrentiev regularization. Notice that
hα,δ(r) = 0, r ∈ ∂Ω, it has uα,δ(r) = − 1

α f δ(r), r ∈ ∂Ω. The parameter α > 0 is usually a small number,
which means the error of the regularized Laplacian operation on the boundary can be amplified 1

α

times. Thus, the computation is meaningless on ∂Ω. In fact, the validity of the regularized Laplacian
operation uα,δ(r) has been weakened when r is close to the boundary. Experiments in [16] have shown
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that the weakness only affects the points very close to the boundary. Hence, except a few pixels
which are as close as possible to the boundary of the image domain, the edge detection results will
be acceptable.

The second thing we are concerned with is the choice strategy of the regularization parameter α.
Since the noise level of an image data is unknown, the choice strategy given in [16] cannot be carried
out. Considering only the edge detection problem, the objective parameter selection given in [17] can
be adopted to choose the regularization parameter.

Once the regularization parameter α is chosen, the regularized Laplacian operation uα,δ can be
obtained by solving Equations (4) and (5), where Equation (4) can be solved by the standard finite
difference method or finite element method.

Combined with the objective parameter selection given in [17], the main framework of the choice
strategy is summarized as follows:

Step 1: Regularization parameters αj, j ∈ {1, 2, . . . , n} are used to generate N different edge
maps Dj, j ∈ {1, 2, . . . , n} by the proposed edge detection algorithm. Then, N potential ground truths
(PGTs) are constructed, and each PGTi includes pixels which have been identified as edges by at least i
different edge maps.

Step 2: Each PGTi is compared with each edge map Dj, and it generates four different
probabilities:TPPGTi , Dj , FPPGTi , Dj , TNPGTi , Dj , FNPGTi , Dj . Among them, TPA,B (true positive) means
the probability of pixels which have been determined as edges in both edge maps A and B; FPA,B
(false positive) means the probability of pixels determined as edges in A, but non-edges in B; TNA,B
(true negative) means the probability of pixels determined as non-edges in both A and B; and FNA,B
(false negative) means the probability of pixels determined as edges in B, but non-edges in A.

Step 3: For each PGTi, we average the four probabilities over all edge maps Dj, and get

TPPGTi , FPPGTi , TNPGTi , FNPGTi , where TPPGTi = 1
N

N
∑

j=1
TPPGTi ,Dj , and the expressions of other

probabilities are similar. Then, a statistical measurement of each PGTi is given by the Chi-square test:

χ2
PGTi

=
TPR−Q

1−Q
· (1 − FPR)− (1−Q)

Q
, (6)

where

Q = TPPGTi + FPPGTi , TPR =
TPPGTi

TPPGTi + FNPGTi

, FPR =
FPPGTi

FPPGTi + TNPGTi

.

The PGTi with the highest χ2
PGTi

is considered as the estimated ground truth (EGT).
Step 4: Each edge map’s Dj is then matched to the EGT by four new probabilities:

TPDj ,EGT, FPDj ,EGT, TNDj ,EGT, FNDj ,EGT. The Chi-square measurements χ2
Dj

are obtained by the same

way as in Step 3. Then, the best edge map is the one which gives the highest χ2
Dj

, and the corresponding
regularization parameter αj is the one we want.

The Chi-square measure (6) can reflect the similarity of two edge maps, and the bigger the value
of the Chi-square measurement, the better. As Lopez-Molina et al. stated in [19], the Chi-square
measurement can evaluate the errors caused by spurious responses (false positives, FPs) and missing
edges (false negatives, FNs), but it cannot work on the localization error when the detected edges
deviate from their true position. For example, a reference edge image and three polluted edge maps
are given in Figure 1. Compared with the reference edge (Figure 1a), the Chi-square measurements of
the three polluted edge maps are the same, yet their localization accuracies are different. In order to
reflect the localization error in these edge maps, distance-based error measures should be introduced.
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(a) (b) (c) (d) 

Figure 1. The reference edge image and three polluted edge maps: (a) reference edge ER; (b) polluted
edge map E1; (c) polluted edge map E2; (d) polluted edge map E3.

The Baddeley’s delta metric (BDM) is one of the most common distance-based measures [20].
It has been proven to be an ideal measure for the comparison of edge detection algorithms [19,21].
Let A and B be two edge maps with the same resolution M× N, and P = {1, . . . , M} × {1, . . . , N} be
the set of pixels in the image. The value of BDM between A and B is defined as

Δk(A, B) =

[
1

MN ∑
p∈P
|w(d(p, A))− w(d(p, B))|k

]1/k

, (7)

where d(p, A) is the Euclidean distance from p ∈ P to the closest edge points in A, the parameter k
is a given positive integer and w(d(p, A)) = min(d(p, A), c) for a given constant c > 0. Compared
with the reference edge ER in Figure 1, the BDMs of the three polluted edge maps Ei (i = 1, 2, 3)
are given in Table 1 with different parameters c and k. The smaller the value of BDM, the better.
As we can see from Table 1, localization errors of the three edge maps are apparently distinguished.
Therefore, the Chi-square measure (6) will be replaced by the BDM (7) in the choice strategies of the
regularization parameter.

Table 1. The Baddeley’s delta metrics (BDMs) between the reference edge image ER and the polluted
edge maps Ei (i = 1, 2, 3) with the different choices of parameters c and k.

Parameter Sets Δk(ER,E1) Δk(ER,E2) Δk(ER,E3)

k = 1, c = 2 0.0566 0.0937 0.1256
k = 1, c = 3 0.0950 0.1879 0.2461
k = 1, c = 4 0.1397 0.2614 0.3305
k = 2, c = 2 0.2182 0.3307 0.3637
k = 2, c = 3 0.2753 0.4925 0.6313
k = 2, c = 4 0.3317 0.6159 0.8021

4. Experiments and Results

In order to show the validity of the proposed edge detection algorithm, some comparative
experiments are given in this section. In the experiments, our regularized edge detector (RED) will be
compared with the LoG detector and the Laplacian-based edge detector (LED) proposed in [7].

As Yitzhaky and Peli said in [17], the parameter selection for edge detection depends mainly on
the set of parameters used to generate the initial detection results. In order to reduce this influence
properly, the range of the parameter is set to be large enough that instead of forming a very sparse
edge map it forms a very dense one. The scale parameter of the LoG detector is set from 1.5 to 4 in
steps of 0.25. The regularization parameter of the regularized edge detector is set from 0.01 (≈0) to
0.1 in steps of 0.01. The images we used are taken from [22], and some of them are shown in Figure 2.
The optimal edge maps given in [22] will be seen as the ground truth in our quantitative comparisons.
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Let us first consider the choice strategy of the regularization parameter α, where the parameters
in BDM are set as k = 1, c = 2. Taking the airplane image as an example, the BDM of each
PGTi, i ∈ {1, 2, . . . 11} is shown in Figure 3a, from which we can see the EGT is PGT6. Compared
with the EGT, the BDM of each edge map Dj is shown in Figure 3b, from which we can see the best
edge map is D6. Hence, the regularization parameter is chosen as α = 0.05. The choice of the scale
parameter in the LoG detector is carried out similarly. It does not need any parameters in the LED.

For the airplane image, the ground truth and edges detected by the three edge detectors are shown
in Figure 4. From Figure 4b, we can see that the influence of the Lavrentiev regularization’s weakness
on the RED is negligible. From Figure 4b,c, we can see that the RED is better than the LoG detector
for noise suppression and maintaining continuous edges. Comparing Figure 4d with Figure 4b,c,
we can see the superiority of the parameter-dependent edge detector. Similar results for the elephant
image are shown in Figure 5. For some images taken from [22], quantitative comparisons of the edges
detected by the LoG detector, the RED and the LED against the ground truth are given in Table 2. Since
the smaller the value of BDM, the better, this shows that the RED has better performance than the LoG
detector and the LED in most cases.

  
(a) (b) 

Figure 2. Some images taken from [22]: (a) airplane; (b) elephant.

  
(a) (b) 
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Figure 3. The figure of BDMs: (a) the BDM of Δ1
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, i ∈ {1, 2, . . . , 11}; (b) the BDM of
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Dj
, i ∈ {1, 2, . . . , 11}.
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(a) (b) 

  
(c) (d) 

Figure 4. Edge detection results of the airplane image: (a) the ground truth; (b) the edge detected by
the regularized edge detector (RED); (c) the Laplacian of Gaussian (LoG); (d) the Laplacian-based edge
detector (LED).

  
(a) (b) 

  
(c) (d) 

Figure 5. Edge detection results of the elephant image: (a) the ground truth; (b) the edge detected by
the RED; (c) the LoG; (d) the LED.
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Table 2. Quantitative comparison of the edges detected by the LoG, the RED and the LED.

Images LED LoG RED

Airplane 0.7515 0.1270 0.1232
Elephant 0.6619 0.3041 0.2593

Turtle 0.4430 0.1226 0.1323
Brush 0.5790 0.1883 0.1673
Tiger 0.9239 0.2854 0.2748

Grater 0.5537 0.2353 0.2143
Pitcher 0.5032 0.2584 0.2296

5. Conclusions

In this paper, a novel edge detection algorithm is proposed based on the regularized Laplacian
operation. The PDE-based regularization enables us to compute the regularized Laplacian operation
in a direct way. Considering the importance of the regularization parameter, an objective choice
strategy of the regularization parameter is proposed. Numerical implementations of the regularization
parameter and the edge detection algorithm are also given. Based on the image database and ground
truth edges taken from [22], the superiority of the RED against the LED and the LoG detector has been
shown by the edge images and quantitative comparison.
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Abstract: The methods of measuring the complexity (spanning trees) in a finite graph, a problem
related to various areas of mathematics and physics, have been inspected by many mathematicians
and physicists. In this work, we defined some classes of pyramid graphs created by a gear graph
then we developed the Kirchhoff’s matrix tree theorem method to produce explicit formulas for
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knowledge of Chebyshev polynomials. Finally, we gave some numerical results for the number of
spanning trees of the studied graphs.
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1. Introduction

The graph theory is a theory that combines computer science and mathematics, which can
solve considerable problems in several fields (telecom, social network, molecules, computer network,
genetics, etc.) by designing graphs and facilitating them through idealistic cases such as the spanning
trees, see [1–10].

A spanning tree of a finite connected graph G is a maximal subset of the edges that contains
no cycle, or equivalently a minimal subset of the edges that connects all the vertices. The history of
enumerating the number of spanning trees τ (G) of a graph G dates back to 1842 when the physicist
Kirchhoff [11] offered the matrix tree theorem established on the determinants of a certain matrix
gained from the Laplacian matrix L defined by the difference between the degree matrix D and
adjacency matrix A, where D is a diagonal matrix, D = dig (d1, d2, . . . , dn) corresponding to a graph
G with n vertices that has the vertex degree of di in the ith position of a graph G and A is a matrix with
rows and columns labeled by graph vertices, with a 1 or 0 in position (ui, uj) according to whether ui
and uj are adjacent or not. That is

Li j =

⎧⎪⎨⎪⎩
ai if i = j
−1 if i 	= j and i is adjacent to j
0 otherwise

,

where ai denotes the degree of the vertex i.
This method allows beneficial results for a graph comprising a small number of vertices, but is not

feasible for large graphs. There is one more method for calculating τ(G). Let λ1 ≥ λ2 ≥ . . . ≥ λk = 0

Symmetry 2018, 10, 689; doi:10.3390/sym10120689 www.mdpi.com/journal/symmetry186
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denote the eigenvalues of the matrix L of a graph G with n vertices. “Kelmans” and “Chelnokov” [12]
have derived that

τ(G) =
1
k

k−1

∏
i=1

λk.

One of the favorite methods of calculating the complexity is the contraction–deletion theorem.
For any graph G, the complexity τ(G) of G is equal to τ(G) = τ(G− e) + τ(G/e), where e is any edge
of G, and where G− e is the deletion of e from G, and G/e is the contraction of e in G. This gives a
recursive method to calculate the complexity of a graph [13,14].

Another important method is using electrically equivalent transformations of networks. Yilun
Shang [15] derived a closed-form formula for the enumeration of spanning trees the subdivided-line
graph of a simple connected graph using the theory of electrical networks.

Many works have conceived techniques to derive the number of spanning trees of a graph, some
of which can be found at [16–18].

Now, we give the following Lemma:

Lemma 1 [19]. τ (G) = 1
k2 det (k I −Dc + Ac) where Ac and Dc are the adjacency and degree matrices of Gc,

the complement of G, respectively, and I is the k× k identity matrix.

The characteristic of this formula is to express τ (G) straightway as a determinant rather than in
terms of cofactors as in Kirchhoff theorem or eigenvalues as in Kelmans and Chelnokov formula.

2. Chebyshev Polynomial

In this part we insert some relations regarding Chebyshev polynomials of the first and second
types which we use in our calculations.

We start from their definitions, see Yuanping, et al. [20].
Let An(x) be n× n matrix such that

An(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2x −1 0 · · · 0

−1 2x −1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 2x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Furthermore, we render that the Chebyshev polynomials of the first type are defined by

Tn(x) = cos(n cos−1 x) (1)

The Chebyshev polynomials of the second type are defined by

Un−1(x) =
1
n

d
dx

Tn(x) =
sin (n cos−1 x)

sin (cos−1 x)
(2)

It is easily confirmed that

Un(x)− 2xUn−1(x) + Un−2(x) = 0 (3)

It can then be shown from this recursion that by expanding detAn(x) one obtains

Un(x) = det(An(x)), n ≥ 1 (4)

Moreover, by solving the recursion (3), one gets the straightforward formula
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Un(x) =
(x +

√
x2 − 1)

n+1 − (x−√x2 − 1)
n+1

2
√

x2 − 1
, n ≥ 1, (5)

where the conformity is valid for all complex x (except at x = ±1, where the function can be taken as
the limit).

The definition of Un(x) easily yields its zeros and it can therefore be confirmed that

Un−1(x) = 2n−1
n−1

∏
j=1

(x− cos
jπ
n
) (6)

One further notes that
Un−1(−x) = (−1)n−1Un−1(x) (7)

From Equations (6) and (7), we have:

Un−1
2(x) = 4n−1

n−1

∏
j=1

(x2 − cos2 jπ
n
) (8)

Finally, straightforward manipulation of the above formula produces the following formula (9),
which is highly beneficial to us later:

Un−1
2(

√
x + 2

4
) =

n−1

∏
j=1

(x− 2 cos
2jπ

n
) (9)

Moreover, one can see that

Un−1
2(x) =

1− T2n(x)
2(1− x2)

=
1− Tn(2x2 − 1)

2(1− x2)
(10)

Tn(x) =
1
2
[(x +

√
x2 − 1 )

n
+ ((x−

√
x2 − 1 )

n
] (11)

Now we introduce the following important two Lemmas.

Lemma 2 [21]. Let Bn(x) be n× n Circulant matrix such that

Bn(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0 1 · · · 1 0

0
. . . . . . . . . . . . 1

1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1

1
. . . . . . . . . . . . 0

0 1 · · · 1 0 x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then for n ≥ 3, x ≥ 4, one has

det(Bn(x)) =
2(x + n− 3)

x− 3
[Tn(

x− 1
2

)− 1].

Lemma 3 [22]. If A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n and D ∈ Fm×m. Suppose that A and D are nonsingular
matrices, then:

det

(
A B
C D

)
= det(A− BD−1C)detD = detAdet(D− CA−1B).

This Lemma gives a type of symmetry for some matrices which simplify our calculations of the complexity
of graphs studied in this paper.
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3. Main Results

Definition 1. The pyramid graph A(m)
n is the graph created from the gear graph

Gm+1 with vertices {u0; u1, u2, . . . , um ; w1, w2, . . . , wm} and m sets of vertices, say,{
v1

1, v1
2, . . . , v1

n
}

,
{

v2
1, v2

2, . . . , v2
n
}

, . . . ,
{

vm
1 , vm

2 , . . . , vm
n
}

, such that for all i = 1, 2, . . . , n the vertex

vj
i is adjacent to uj and uj+1,where j = 1, 2, . . . , m− 1, and vm

i is adjacent to u1 and um. See Figure 1.

 

Figure 1. The pyramid graph A(3)
n .

Theorem 1. For n ≥ 0, m ≥ 3 , τ(A(m)
n ) = 2mn[(n + 2 +

√
2n + 3 )

m
+ (n + 2−√2n + 3 )

m −
2(n + 1)m] .

Proof. Using Lemma 1, we have

τ(A(m)
n ) = 1

(mn+2m+1)2 × det((mn + 2m + 1) I − Dc + Ac) = 1
(mn+2m+1)2×

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(m + 1) 0 0 · · · · · · · · · 0 1 · · · · · · · · · · · · 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
0 2(n + 2) 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1 0 · · · 0
... 1

. . . . . . . . . . . .
... 0

. . . . . . . . . . . . 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1
...

...
. . . . . . . . . . . .

... 1
. . . . . . . . .

...
... 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . .

...
... 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · ·

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . . 1
... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ...

0 1 · · · · · · · · · 1 2(n + 2) 1 · · · · · · 1 0 0 1 · · · 1 1 · · · 1 · · · · · · 1 · · · 1 0 · · · 0 0 · · · 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
... 1

. . . . . . . . . . . .
... 1

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... · · · ...

... · · · ... · · · · · · · · · · · · · · · ... · · · ...
... · · · 1

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

... · · · ...
... · · · ... · · · · · · · · · · · · · · · ... · · · ...

... · · · ...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
1 0 0 1 · · · 1 0 1 1 · · · · · · 1 1 3 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 0 1
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 1 0
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 0

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
... 1

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 1

... 0
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1

...
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 1 1
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 0 1 1 · · · 0 · · · 1 1 · · · · · · 1 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3
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Let j = (1 · · · 1) be the 1× n matrix with all one, and Jn be the n× n matrix with all one. Set
a = 2n + 4 and b = mn + 2m + 1. Then we obtain:

τ
(

A(m)
n

)
= 1

b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m + 1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . .
... 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

...
...

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
0 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
b a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . .
... 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

...
...

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
b 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
b 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

b 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
bjt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
bjt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
1 a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . .
... 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

...
...

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
1 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
1jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

1jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 a 1 · · · · · · · · · 1 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j
... 1

. . . . . . . . . . . .
... −1 −1

. . . . . . . . . 0 −j
. . . . . . . . . . . . 0

...
...

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . −1 0
...

. . . . . . . . . . . . 0
0 1 · · · · · · · · · 1 a 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 0 0 1 · · · · · · 1 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0
... 1 0

. . . . . . . . . 1 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 0 1 · · · · · · 1 0 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 0 0 jt · · · · · · jt 0 · · · · · · · · · · · · 0
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
0 0 jt · · · · · · jt 0 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 1 · · · · · · · · · 1 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j

1
. . . . . . . . . . . .

... −1 −1
. . . . . . . . . 0 −j

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . −1 0
...

. . . . . . . . . . . . 0
1 · · · · · · · · · 1 a 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 0 1 · · · · · · 1 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0

1 0
. . . . . . . . . 1 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

1
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
0 1 · · · · · · 1 0 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 0 jt · · · · · · jt 0 · · · · · · · · · · · · 0

jt 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
. . . . . . . . . . . . jt ...

. . . . . . . . . . . .
...

jt . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 jt · · · · · · jt 0 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3, yields

τ (A(m)
n ) = 1

b × det

(
A B
C 2Imn

)
= 1

b × det(A− B 1
2Imn

C)× 2mn

= 1
b 2mn × 2−2m × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a n + 2 2(n + 1) · · · 2(n + 1) n + 2 −2 0 · · · · · · 0 −2

n + 2 2a n + 2 2(n + 1) · · · 2(n + 1) −2
. . . . . . . . . . . . 0

2(n + 1) n + 2
. . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2(n + 1)
...

. . . . . . . . . . . .
...

2(n + 1)
. . . . . . . . . . . . n + 2

...
. . . . . . . . . . . . 0

n + 2 2(n + 1) · · · 2(n + 1) n + 2 2a 0 · · · · · · 0 −2 −2
0 0 2 · · · · · · 2 4 0 · · · · · · · · · 0

2
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

2
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 2 · · · · · · 2 0 0 · · · · · · · · · 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3 again, yields

τ (A(m)
n ) =

2m n−2m

b
× det

(
D E
F 4Im

)
=

2m n

b
× det(D− E

1
4Im

F)
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τ (A(m)
n ) = 2mn

b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a (n + 3) 2(n + 2) · · · 2(n + 2) (n + 3)

(n + 3) 2a (n + 3)
. . . · · · 2(n + 2)

2(n + 2)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2(n + 2)

2(n + 2)
. . . . . . . . . . . . (n + 3)

(n + 3) 2(n + 2) · · · 2(n + 2) (n + 3) 2a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Straightforward inducement using the properties of determinants, one can obtain

τ (A(m)
n ) = 2mn

b × 2b
m n+m+2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a− n− 3) 0 (n + 1) · · · (n + 1) 0

0 (2a− n− 3) 0
. . . · · · (n + 1)

(n + 1)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . (n + 1)

(n + 1)
. . . . . . . . . . . . 0

0 (n + 1) · · · (n + 1) 0 (2a− n− 3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2m n+1 (n+1)m

m n+m+2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a−n−3)
(n+1) 0 1 · · · 1 0

0 (2a−n−3)
(n+1) 0

. . . . . . 1

1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1

1
. . . . . . . . . . . . 0

0 1 · · · 1 0 (2a−n−3)
(n+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 2, yields

τ (A(m)
n ) = 2m n+1 × (n+1)m

mn+m+2 ×
2( 2a−n−3

n+1 +m−3)
2a−n−3

n+1 −3
× [Tm(

2a−n−3
n+1 −1

2 )− 1]

= 2mn+1 × (n + 1)m × [Tm(
n+2
n+1 )− 1].

Using Equation (11), yields the result. �

Definition 2. The pyramid graph B(m)
n is the graph created from the gear graph Gm+1 with

vertices {u0 ; u1, u2, . . . , um ; w1, w2, . . . , wm} with double internal edges and m sets of vertices, say,{
v1

1, v1
2, . . . , v1

n
}

,
{

v2
1, v2

2, . . . , v2
n
}

, . . . ,
{

vm
1 , vm

2 , . . . , vm
n
}

, such that for all i = 1, 2, . . . , n the vertex vj
i is

adjacent to uj and uj+1, where j = 1, 2, . . . , m− 1, and vm
i is adjacent to u1 and um. See Figure 2.

 

Figure 2. The pyramid graph B(3)
n .
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Theorem 2. For n ≥ 0, m ≥ 3, τ(B(m)
n ) = 2mn[(n + 3 + 2

√
n + 2 )

m
+ (n + 3− 2

√
n + 2 )

m −
2(n + 1)m] .

Proof. Using Lemma 1, we get:

τ(B(m)
n ) = 1

(mn+2m+1)2 × det((mn + 2m + 1) I − Dc + Ac) = 1
(mn+2m+1)2×

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2m + 1) −1 −1 · · · · · · · · · −1 1 · · · · · · · · · · · · 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
−1 (2n + 5) 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1 0 · · · 0

... 1
. . . . . . . . . . . .

... 0
. . . . . . . . . . . . 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1

...
...

. . . . . . . . . . . .
... 1

. . . . . . . . .
...

... 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . .
...

... 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · ·
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . . 1

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ...
−1 1 · · · · · · · · · 1 (2n + 5) 1 · · · · · · 1 0 0 1 · · · 1 1 · · · 1 · · · · · · 1 · · · 1 0 · · · 0 0 · · · 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
... 1

. . . . . . . . . . . .
... 1

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... · · · ...

... · · · ... · · · · · · · · · · · · · · · ... · · · ...
... · · · 1

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

... · · · ...
... · · · ... · · · · · · · · · · · · · · · ... · · · ...

... · · · ...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
1 0 0 1 · · · 1 0 1 1 · · · · · · 1 1 3 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 0 1
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 1 0
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 0

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
... 1

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 1

... 0
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1

...
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 1 1
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 0 1 1 · · · 0 · · · 1 1 · · · · · · 1 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let j = (1 · · · 1) be the 1× n matrix with all one, and Jn be the n× n matrix with all one. Set
a = 2n + 5 and b = mn + 2m + 1. Then we get:

τ
(

B(m)
n

)
= 1

b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2m + 1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
−1 a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0

... 1
. . . . . . . . . . . .

... 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
...

...
. . . . . . . . . . . .

... 1 0
. . . . . . . . .

... j
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 1

...
. . . . . . 0 0 1

...
. . . . . . . . . . . . j

−1 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
b a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . .
... 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

...
...

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
b 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
b 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

b 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
bjt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt

... jt 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

... 2Im n + Jm n
...

...
. . . . . . . . . . . . jt ...

. . . . . . . . . . . .
...

... jt . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

bjt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
1 a 1 · · · · · · · · · 1 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . .
... 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

...
...

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
1 1 · · · · · · · · · 1 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
1jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt

... jt 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

... 2Im n + Jm n
...

...
. . . . . . . . . . . . jt ...

. . . . . . . . . . . .
...

... jt . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

1jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 (a + 1) 2 · · · · · · · · · 2 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j
... 2

. . . . . . . . . . . .
... −1 −1

. . . . . . . . . 0 −j
. . . . . . . . . . . . 0

...
...

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . −1 0
...

. . . . . . . . . . . . 0
0 2 · · · · · · · · · 2 (a + 1) 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 1 1 2 · · · · · · 2 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0
... 2 1

. . . . . . . . . 2 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 2

. . . . . . . . . . . . 1
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 1 2 · · · · · · 2 1 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 jt jt 2jt · · · · · · 2jt 0 · · · · · · · · · · · · 0
... 2jt jt

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
...

. . . . . . . . . . . . 2jt ...
. . . . . . . . . . . .

...
... 2jt . . . . . . . . . . . . jt ...

. . . . . . . . . . . .
...

0 jt 2jt · · · · · · 2jt jt 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a + 1) 2 · · · · · · · · · 2 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j

2
. . . . . . . . . . . .

... −1 −1
. . . . . . . . . 0 −j

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . −1 0
...

. . . . . . . . . . . . 0
2 · · · · · · · · · 2 (a + 1) 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
1 1 2 · · · · · · 2 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0

2 1
. . . . . . . . . 2 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

2
. . . . . . . . . . . . 1

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
1 2 · · · · · · 2 1 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
jt jt 2jt · · · · · · 2jt 0 · · · · · · · · · · · · 0

2jt jt
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
. . . . . . . . . . . . 2jt ...

. . . . . . . . . . . .
...

2jt . . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
jt 2jt · · · · · · 2jt jt 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3, yields

τ (B(m)
n ) = 1

b × det

(
A B
C 2Imn

)
= 1

b × det(A− B 1
2Imn

C)× 2mn

= 1
b 2mn × 2−2m × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a + 2n + 2) 3n + 4 4(n + 1) · · · 4(n + 1) 3n + 4 −2 0 · · · · · · 0 −2

3n + 4 (2a + 2n + 2) 3n + 4 4(n + 1) · · · 4(n + 1) −2
. . . . . . . . . . . . 0

4(n + 1) 3n + 4
. . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4(n + 1)
...

. . . . . . . . . . . .
...

4(n + 1)
. . . . . . . . . . . . 3n + 4

...
. . . . . . . . . . . . 0

3n + 4 4(n + 1) · · · 4(n + 1) 3n + 4 (2a + 2n + 2) 0 · · · · · · 0 −2 −2
2 2 4 · · · · · · 4 4 0 · · · · · · · · · 0

4
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4
...

. . . . . . . . . . . .
...

4
. . . . . . . . . . . . 2

...
. . . . . . . . . . . . 0

2 4 · · · · · · 4 2 0 · · · · · · · · · 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3 again, yields

τ (B(m)
n ) = 2m n−2m

b × det

(
D E
F 4Im

)
= 2m n

b × det(D− E 1
4Im

F)

τ (B(m)
n ) = 2mn

b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a + 2n + 4) (3n + 7) 4(n + 2) · · · 4(n + 2) (3n + 7)

(3n + 7) (2a + 2n + 4) (3n + 7)
. . . · · · 4(n + 2)

4(n + 2)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4(n + 2)

4(n + 2)
. . . . . . . . . . . . (3n + 7)

(3n + 7) 4(n + 2) · · · 4(n + 2) (3n + 7) (2a + 2n + 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
With a straightforward inducement using properties of determinants, we obtain

τ (B(m)
n ) = 2mn

b × 4b
m n+m+4 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a− n− 3) 0 (n + 1) · · · (n + 1) 0

0 (2a− n− 3) 0
. . . · · · (n + 1)

(n + 1)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . (n + 1)

(n + 1)
. . . . . . . . . . . . 0

0 (n + 1) · · · (n + 1) 0 (2a− n− 3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 2m n+2× (n+1)m

m n+m+4 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a−n−3)
(n+1) 0 1 · · · 1 0

0 (2a−n−3)
(n+1) 0

. . . . . . 1

1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1

1
. . . . . . . . . . . . 0

0 1 · · · 1 0 (2a−n−3)
(n+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 2, yields

τ (B(m)
n ) = 2m n+2 × (n+1)m

mn+m+4 ×
2( 2a−n−3

n+1 +m−3)
2a−n−3

n+1 −3
× [Tm(

2a−n−3
n+1 −1

2 )− 1]

= 2mn+1 × (n + 1)m × [Tm(
n+3
n+1 )− 1].

Using Equation (11), yields the result. �

Definition 3. The pyramid graph C(m)
n is the graph created from the gear graph Gm+1 with

vertices {u0 ; u1, u2, . . . , um ; w1, w2, . . . , wm} with double external edges and m sets of vertices, say,{
v1

1, v1
2, . . . , v1

n
}

,
{

v2
1, u2

2, . . . , v2
n
}

, . . . ,
{

vm
1 , vm

2 , . . . , vm
n
}

, such that for all i = 1, 2, . . . , n the vertex vj
i is

adjacent to uj and uj+1, where j = 1, 2, . . . , m− 1, and vm
i is adjacent to u1 and um. See Figure 3.

 

Figure 3. The pyramid graph C(3)
n .

Theorem 3. For n ≥ 0, m ≥ 3, τ(C(m)
n ) = 2mn[(n + 4 +

√
2n + 7 )

m
+ (n + 4−√2n + 7 )

m −
2(n + 3)m].

Proof. Using Lemma 1, we have:

τ(C(m)
n ) = 1

(mn+2m+1)2 × det((mn + 2m + 1) I − Dc + Ac) = 1
(mn+2m+1)2×
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det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(m + 1) 0 0 · · · · · · · · · 0 1 · · · · · · · · · · · · 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
0 2(n + 3) 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1 0 · · · 0
... 0

. . . . . . . . . . . . 1 0
. . . . . . . . . . . . 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1

... 1
. . . . . . . . . . . .

... 1
. . . . . . . . .

...
... 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . .
...

... 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · ·
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ...

0 0 1 · · · 1 0 2(n + 3) 1 · · · · · · 1 0 0 1 · · · 1 1 · · · 1 · · · · · · 1 · · · 1 0 · · · 0 0 · · · 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
... 1

. . . . . . . . . . . .
... 1

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... · · · ...

... · · · ... · · · · · · · · · · · · · · · ... · · · ...
... · · · 1

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

... · · · ...
... · · · ... · · · · · · · · · · · · · · · ... · · · ...

... · · · ...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
1 0 0 1 · · · 1 0 1 1 · · · · · · 1 1 3 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 0 1
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 1 0
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 0

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
... 1

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 1

... 0
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1

...
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 1 1
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 0 1 1 · · · 0 · · · 1 1 · · · · · · 1 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let j = (1 · · · 1) be the 1× n matrix with all one, and Jn be the n× n matrix with all one. Set
a = 2n + 6 and b = mn + 2m + 1. Then we have:

τ
(

C(m)
n

)
= 1

b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m + 1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 0

. . . . . . . . . . . . 1 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
... 1

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
0 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
b a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 1

. . . . . . . . . . . . 1 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
...

...
. . . . . . . . . . . .

... 1 0
. . . . . . . . .

... j
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

... 1
. . . . . . . . . . . . 0

...
. . . . . . 0 0 1

...
. . . . . . . . . . . . j

b 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
b 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

b 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
bjt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
bjt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
1 a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 0

. . . . . . . . . . . . 1 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
... 1

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . .
...

. . . . . . 0
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
1 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
1jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
1jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · · · · · 0 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 a 0 1 · · · 1 0 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j
... 1

. . . . . . . . . . . . 1 −1 −1
. . . . . . . . . 0 −j

. . . . . . . . . . . . 0
...

...
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

... 1
. . . . . . . . . . . . 0

...
. . . . . . . . . −1 0

...
. . . . . . . . . . . . 0

0 0 1 · · · 1 0 a 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 0 0 1 · · · · · · 1 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0
... 1 0

. . . . . . . . . 1 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 0 1 · · · · · · 1 0 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 0 0 jt · · · · · · jt 0 · · · · · · · · · · · · 0
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
0 0 jt · · · · · · jt 0 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 1 · · · 1 0 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j

0
. . . . . . . . . . . . 1 −1 −1

. . . . . . . . . 0 −j
. . . . . . . . . . . . 0

1
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...

1
. . . . . . . . . . . . 0

...
. . . . . . . . . −1 0

...
. . . . . . . . . . . . 0

0 1 · · · 1 0 a 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 0 1 · · · · · · 1 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0

1 0
. . . . . . . . . 1 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

1
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
0 1 · · · · · · 1 0 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 0 jt · · · · · · jt 0 · · · · · · · · · · · · 0

jt 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
. . . . . . . . . . . . jt ...

. . . . . . . . . . . .
...

jt . . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 jt · · · · · · jt 0 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3, yields

τ (C(m)
n ) = 1

b × det

(
A B
C 2Imn

)
= 1

b × det(A− B 1
2Imn

C)× 2mn

= 1
b × 2mn × 2−2m × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a n 2(n + 1) · · · 2(n + 1) n −2 0 · · · · · · 0 −2

n 2a n + 2 2(n + 1) · · · 2(n + 1) −2
. . . . . . . . . . . . 0

2(n + 1) n
. . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2(n + 1)
...

. . . . . . . . . . . .
...

2(n + 1)
. . . . . . . . . . . . n

...
. . . . . . . . . . . . 0

n 2(n + 1) · · · 2(n + 1) n 2a 0 · · · · · · 0 −2 −2
0 0 2 · · · · · · 2 4 0 · · · · · · · · · 0

2
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

2
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 0

0 2 · · · · · · 2 0 0 · · · · · · · · · 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3 again, yields

τ (C(m)
n ) = 2m n−2m

b × det

(
D E
F 4Im

)
= 2m n

b × det(D− E 1
4Im

F)

τ (C(m)
n ) = 2mn

b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a (n + 1) 2(n + 2) · · · 2(n + 2) (n + 1)

(n + 1) 2a (n + 3)
. . . · · · 2(n + 2)

2(n + 2)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2(n + 2)

2(n + 2)
. . . . . . . . . . . . (n + 1)

(n + 1) 2(n + 2) · · · 2(n + 2) (n + 1) 2a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using properties of determinants, we have:
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τ (C(m)
n ) = 2mn

b × 2b
m n+3m+2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a− n− 1) 0 (n + 3) · · · (n + 3) 0

0 (2a− n− 1) 0
. . . · · · (n + 3)

(n + 3)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . (n + 3)

(n + 3)
. . . . . . . . . . . . 0

0 (n + 3) · · · (n + 3) 0 (2a− n− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2m n+1 (n+3)m

m n+3m+2 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a−n−1)
(n+3) 0 1 · · · 1 0

0 (2a−n−1)
(n+3) 0

. . . . . . 1

1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1

1
. . . . . . . . . . . . 0

0 1 · · · 1 0 (2a−n−1)
(n+3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 2, yields:

τ (C(m)
n ) = 2m n+1 × (n+3)m

mn+3m+2 ×
2( 2a−n−1

n+3 +m−3)
2a−n−1

n+3 −3
× [Tm(

2a−n−1
n+3 −1

2 )− 1]

= 2mn+1 × (n + 3)m × [Tm(
n+4
n+3 )− 1].

Using Equation (11), yields the result. �

Definition 4. The pyramid graph D(m)
n is the graph created from the gear graph Gm+1 with vertices

{u0 ; u1, u2, . . . , um ; w1, w2, . . . , wm} with double internal and external edges and m sets of vertices, say,{
v1

1, v1
2, . . . , v1

n
}

,
{

v2
1, v2

2, . . . , v2
n
}

, . . . ,
{

vm
1 , vm

2 , . . . , vm
n
}

, such that for all i = 1, 2, . . . , n the vertex vj
i is

adjacent to uj and uj+1, where j = 1, 2, . . . , m− 1, and vm
i is adjacent to u1 and um. See Figure 4.

Figure 4. The pyramid graph D(3)
n .
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Theorem 4. For n ≥ 0, m ≥ 3, τ(D(m)
n ) = 2mn[(n + 5 + 2

√
n + 4 )

m
+ (n + 5− 2

√
n + 4 )

m −
2(n + 3)m].

Proof. Applying Lemma 1, we have:

τ(D(m)
n ) = 1

(mn+2m+1)2 × det((mn + 2m + 1) I − Dc + Ac) = 1
(mn+2m+1)2×

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2m + 1) −1 −1 · · · · · · · · · −1 1 · · · · · · · · · · · · 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
−1 (2n + 7) 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1 0 · · · 0

... 0
. . . . . . . . . . . . 1 0

. . . . . . . . . . . . 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1 1 · · · 1
... 1

. . . . . . . . . . . .
... 1

. . . . . . . . .
...

... 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · · 1 · · · 1
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . .

...
... 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0 1 · · · 1 · · · · · ·

... 1
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . 1

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ...
−1 0 1 · · · 1 0 (2n + 7) 1 · · · · · · 1 0 0 1 · · · 1 1 · · · 1 · · · · · · 1 · · · 1 0 · · · 0 0 · · · 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
... 1

. . . . . . . . . . . .
... 1

. . . . . . . . . . . .
... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... · · · ...

... · · · ... · · · · · · · · · · · · · · · ... · · · ...
... · · · 1

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

... · · · ...
... · · · ... · · · · · · · · · · · · · · · ... · · · ...

... · · · ...

1 1
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

... 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 1 · · · 1 1 · · · 1 · · · · · · · · · · · · · · · 1 · · · 1 1 · · · 1
... 0 0 1 · · · 1 0 1 1 · · · · · · 1 1 3 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
...

...
...

...
...

...
...

...
...

...
...

...
... 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 0 1
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 0 0
... 1

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 1 1 0
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 0

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
... 1

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

... 1
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1 1

... 0
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
... 1 1

...
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

... 0 1 1
... 0

... 1 1 · · · · · · 1 1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 0 1 1 · · · 0 · · · 1 1 · · · · · · 1 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let j = (1 · · · 1) be the 1 × n matrix with all one, and Jn the n × n matrix with all one. Set
a = 2n + 7 and b = mn + 2m + 1. Then we have:

τ
(

D(m)
n

)
= 1

b2 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2m + 1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
−1 a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0

... 0
. . . . . . . . . . . . 1 0 0

. . . . . . . . . 1 0
. . . . . . . . . . . . j

... 1
. . . . . . . . . . . .

... 1 0
. . . . . . . . .

... j
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 1

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

... 1
. . . . . . . . . . . . 0

...
. . . . . . 0 0 1

...
. . . . . . . . . . . . j

−1 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b2 det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
b a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 0

. . . . . . . . . . . . 1 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
... 1

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
b 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
b 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

b 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
bjt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
bjt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
1 a 0 1 · · · 1 0 0 1 · · · · · · 1 0 0 j · · · · · · j 0
... 0

. . . . . . . . . . . . 1 0 0
. . . . . . . . . 1 0

. . . . . . . . . . . . j
... 1

. . . . . . . . . . . .
... 1 0

. . . . . . . . .
... j

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . 0 0 1
...

. . . . . . . . . . . . j
1 0 1 · · · 1 0 a 1 · · · · · · 1 0 0 j · · · · · · j 0 0
1 0 0 1 · · · · · · 1 3 1 · · · · · · · · · 1 j · · · · · · · · · · · · j
... 1 0

. . . . . . . . . 1 1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 1

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1
...

. . . . . . . . . . . .
...

1 0 1 · · · · · · 1 0 1 · · · · · · · · · 1 3 j · · · · · · · · · · · · j
1jt 0 0 jt · · · · · · jt jt · · · · · · · · · · · · jt
... jt 0

. . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n + Jm n

...
...

. . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
... jt . . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
1jt 0 jt · · · · · · jt 0 jt · · · · · · · · · · · · jt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
b det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 · · · · · · · · · · · · −1 1 · · · · · · · · · · · · 1 j · · · · · · · · · · · · j
0 (a + 1) 1 2 · · · 2 1 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j
... 1

. . . . . . . . . . . . 2 −1 −1
. . . . . . . . . 0 −j

. . . . . . . . . . . . 0
... 2

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
... 0

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 2

. . . . . . . . . . . . 1
...

. . . . . . . . . −1 0
...

. . . . . . . . . . . . 0
0 1 2 · · · 2 1 (a + 1) 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
0 1 1 2 · · · · · · 2 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0
... 2 1

. . . . . . . . . 2 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
... 2

. . . . . . . . . . . . 1
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . .
...

0 1 2 · · · · · · 2 1 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
0 jt jt 2jt · · · · · · 2jt 0 · · · · · · · · · · · · 0
... 2jt jt . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

... 2Im n
...

...
. . . . . . . . . . . . 2jt ...

. . . . . . . . . . . .
...

... 2jt . . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
0 jt 2jt · · · · · · 2jt jt 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 1
b det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a + 1) 1 2 · · · 2 1 −1 0 · · · · · · 0 −1 −j 0 · · · · · · 0 −j

1
. . . . . . . . . . . . 2 −1 −1

. . . . . . . . . 0 −j
. . . . . . . . . . . . 0

2
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 2
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...

2
. . . . . . . . . . . . 1

...
. . . . . . . . . −1 0

...
. . . . . . . . . . . . 0

1 2 · · · 2 1 (a + 1) 0 · · · · · · 0 −1 −1 0 · · · · · · 0 −j −j
1 1 2 · · · · · · 2 2 0 · · · · · · · · · 0 0 · · · · · · · · · · · · 0

2 1
. . . . . . . . . 2 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

2
. . . . . . . . . . . . 1

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...
1 2 · · · · · · 2 1 0 · · · · · · · · · 0 2 0 · · · · · · · · · · · · 0
jt jt 2jt · · · · · · 2jt 0 · · · · · · · · · · · · 0

2jt jt
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
... 2Im n

...
. . . . . . . . . . . . 2jt ...

. . . . . . . . . . . .
...

2jt . . . . . . . . . . . . jt ...
. . . . . . . . . . . .

...
jt 2jt · · · · · · 2jt jt 0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3, yields

τ (D(m)
n ) = 1

b × det

(
A B
C 2Imn

)
= 1

b × det(A− B 1
2Imn

C)× 2mn

= 1
b 2mn × 2−2m × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a + 2n + 2) 3n + 2 4(n + 1) · · · 4(n + 1) 3n + 2 −2 0 · · · · · · 0 −2

3n + 2 (2a + 2n + 2) 3n + 2 4(n + 1) · · · 4(n + 1) −2
. . . . . . . . . . . . 0

4(n + 1) 3n + 4
. . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4(n + 1)
...

. . . . . . . . . . . .
...

4(n + 1)
. . . . . . . . . . . . 3n + 2

...
. . . . . . . . . . . . 0

3n + 2 4(n + 1) · · · 4(n + 1) 3n + 2 (2a + 2n + 2) 0 · · · · · · 0 −2 −2
2 2 4 · · · · · · 4 4 0 · · · · · · · · · 0

4
. . . . . . . . . . . .

... 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4
...

. . . . . . . . . . . .
...

4
. . . . . . . . . . . . 2

...
. . . . . . . . . . . . 0

2 4 · · · · · · 4 2 0 · · · · · · · · · 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 3, yields

τ (D(m)
n ) = 2m n−2m

b × det

(
A B
C 4Im

)
= 2m n

b × det(A− B 1
4Im

C)

τ (D(m)
n ) = 2mn

b × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a + 2n + 4) (3n + 5) 4(n + 2) · · · 4(n + 2) (3n + 5)

(3n + 5) (2a + 2n + 4) (3n + 5)
. . . · · · 4(n + 2)

4(n + 2)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 4(n + 2)

4(n + 2)
. . . . . . . . . . . . (3n + 5)

(3n + 5) 4(n + 2) · · · 4(n + 2) (3n + 5) (2a + 2n + 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Straightforward inducement using properties of determinants, we get:

τ (D(m)
n ) = 2mn

b × 4b
m n+3m+4 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a− n− 1) 0 (n + 3) · · · (n + 3) 0

0 (2a− n− 1) 0
. . . · · · (n + 3)

(n + 3)
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . (n + 3)

(n + 3)
. . . . . . . . . . . . 0

0 (n + 3) · · · (n + 3) 0 (2a− n− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= 2m n+2 (n+3)m

m n+3m+4 × det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a−n−1)
(n+3) 0 1 · · · 1 0

0 (2a−n−1)
(n+3) 0

. . . . . . 1

1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1

1
. . . . . . . . . . . . 0

0 1 · · · 1 0 (2a−n−1)
(n+3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using Lemma 2, yields:

τ (D(m)
n ) = 2m n+2 × (n+3)m

mn+3m+4 ×
2( 2a−n−1

n+3 +m−3)
2a−n−1

n+3 −3
× [Tm(

2a−n−1
n+3 −1

2 )− 1] = 2mn+1 × (n + 3)m × [Tm(
n+5
n+3 )− 1].

Using Equation (11), yields the result. �

4. Numerical Results

The following Table 1 illustrates some values of the number of spanning trees of studied
pyramid graphs.

Table 1. Some values of the number of spanning trees of studied pyramid graphs.

m n τ (P(m)
n ) τ (A(m)

n ) τ (B(m)
n ) τ (C(m)

n )

3 0 50 196 242 676
3 1 1024 3200 3136 8192
3 2 15, 488 43, 264 36, 992 92, 416
3 3 200, 704 524, 288 409, 600 991, 232
3 4 2, 367, 488 5, 914, 624 4, 333, 568 10, 240, 000
3 5 26, 214, 400 63, 438, 848 44, 302, 336 102, 760, 448
4 0 192 1152 1792 6400
4 1 11, 520 49, 152 57, 600 184, 320
4 2 458, 752 1, 638, 400 1, 622, 016 4, 816, 896
4 3 14, 745, 600 47, 185, 920 41, 746, 432 117, 440, 512
4 4 415, 236, 096 1, 233, 125, 376 1, 006, 632, 960 2, 717, 908, 992
4 5 10, 687, 086, 592 30, 064, 771, 072 23, 102, 226, 432 60, 397, 977, 600
5 0 722 6724 12, 482 58, 564
5 1 123, 904 739, 328 984, 064 3, 964, 928
5 2 12, 781, 568 59, 969, 536 65, 619, 968 237, 899, 776
5 3 1, 007, 681, 536 4, 060, 086, 272 3, 901, 751, 296 13, 088, 325, 632
5 4 67, 194, 847, 232 243, 609, 370, 624 213, 408, 284, 672 674, 448, 277, 504
5 5 3, 995, 393, 327, 104 243, 609, 370, 624 10, 953, 240, 346, 624 33, 019, 708, 571, 648

5. Conclusions

The number of spanning trees τ(G) in graphs (networks) is an important invariant.
The computation of this number is not only beneficial from a mathematical (computational) standpoint,
but it is also an important measure of the reliability of a network and electrical circuit layout.
Some computationally laborious problems such as the traveling salesman problem can be resolved
approximately by using spanning trees. In this paper, we define some classes of pyramid graphs
created by a gear graph and we have studied the problem of computing the number of spanning trees
of these graphs.
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Abstract: The existing construction methods of granularity importance degree only consider the
direct influence of single granularity on decision-making; however, they ignore the joint impact from
other granularities when carrying out granularity selection. In this regard, we have the following
improvements. First of all, we define a more reasonable granularity importance degree calculating
method among multiple granularities to deal with the above problem and give a granularity reduction
algorithm based on this method. Besides, this paper combines the reduction sets of optimistic and
pessimistic multi-granulation rough sets with intuitionistic fuzzy sets, respectively, and their related
properties are shown synchronously. Based on this, to further reduce the redundant objects in each
granularity of reduction sets, four novel kinds of three-way decisions models with multi-granulation
rough intuitionistic fuzzy sets are developed. Moreover, a series of concrete examples can demonstrate
that these joint models not only can remove the redundant objects inside each granularity of the
reduction sets, but also can generate much suitable granularity selection results using the designed
comprehensive score function and comprehensive accuracy function of granularities.

Keywords: three-way decisions; intuitionistic fuzzy sets; multi-granulation rough intuitionistic fuzzy
sets; granularity importance degree

1. Introduction

Pawlak [1,2] proposed rough sets theory in 1982 as a method of dealing with inaccuracy
and uncertainty, and it has been developed into a variety of theories [3–6]. For example,
the multi-granulation rough sets (MRS) model is one of the important developments [7,8]. The MRS
can also be regarded as a mathematical framework to handle granular computing, which is proposed
by Qian et al. [9]. Thereinto, the problem of granularity reduction is a vital research aspect of MRS.
Considering the test cost problem of granularity structure selection in data mining and machine
learning, Yang et al. constructed two reduction algorithms of cost-sensitive multi-granulation
decision-making system based on the definition of approximate quality [10]. Through introducing
the concept of distribution reduction [11] and taking the quality of approximate distribution as
the measure in the multi-granulation decision rough sets model, Sang et al. proposed an α-lower
approximate distribution reduction algorithm based on multi-granulation decision rough sets, however,
the interactions among multiple granularities were not considered [12]. In order to overcome the
problem of updating reduction, when the large-scale data vary dynamically, Jing et al. developed an
incremental attribute reduction approach based on knowledge granularity with a multi-granulation
view [13]. Then other multi-granulation reduction methods have been put forward one after
another [14–17].

Symmetry 2018, 10, 662; doi:10.3390/sym10110662 www.mdpi.com/journal/symmetry207
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The notion of intuitionistic fuzzy sets (IFS), proposed by Atanassov [18,19], was initially developed
in the framework of fuzzy sets [20,21]. Within the previous literature, how to get reasonable
membership and non-membership functions is a key issue. In the interest of dealing with fuzzy
information better, many experts and scholars have expanded the IFS model. Huang et al. combined
IFS with MRS to obtain intuitionistic fuzzy MRS [22]. On the basis of fuzzy rough sets, Liu et al.
constructed covering-based multi-granulation fuzzy rough sets [23]. Moreover, multi-granulation
rough intuitionistic fuzzy cut sets model was structured by Xue et al. [24]. In order to reduce the
classification errors and the limitation of ordering by single theory, they further combined IFS with
graded rough sets theory based on dominance relation and extended them to a multi-granulation
perspective. [25]. Under the optimistic multi-granulation intuitionistic fuzzy rough sets, Wang et al.
proposed a novel method to solve multiple criteria group decision-making problems [26]. However,
the above studies rarely deal with the optimal granularity selection problem in intuitionistic fuzzy
environments. The measure of similarity between intuitionistic fuzzy sets is also one of the hot areas
of research for experts, and some similarity measures about IFS are summarized in references [27–29],
whereas these metric formulas cannot measure the importance degree of multiple granularities in the
same IFS.

For further explaining the semantics of decision-theoretic rough sets (DTRS), Yao proposed
a three-way decisions theory [30,31], which vastly pushed the development of rough sets. As a
risk decision-making method, the key strategy of three-way decisions is to divide the domain
into acceptance, rejection, and non-commitment. Up to now, researchers have accumulated a vast
literature on its theory and application. For instance, in order to narrow the applications limits of
three-way decisions model in uncertainty environment, Zhai et al. extended the three-way decisions
models to tolerance rough fuzzy sets and rough fuzzy sets, respectively, the target concepts are
relatively extended to tolerance rough fuzzy sets and rough fuzzy sets [32,33]. To accommodate
the situation where the objects or attributes in a multi-scale decision table are sequentially updated,
Hao et al. used sequential three-way decisions to investigate the optimal scale selection problem [34].
Subsequently, Luo et al. applied three-way decisions theory to incomplete multi-scale information
systems [35]. With respect to multiple attribute decision-making, Zhang et al. study the inclusion
relations of neutrosophic sets in their case in reference [36]. For improving the classification correct
rate of three-way decisions, Zhang et al. proposed a novel three-way decisions model with DTRS by
considering the new risk measurement functions through the utility theory [37]. Yang et al. combined
three-way decisions theory with IFS to obtain novel three-way decision rules [38]. At the same time,
Liu et al. explored the intuitionistic fuzzy three-way decision theory based on intuitionistic fuzzy
decision systems [39]. Nevertheless, Yang et al. [38] and Liu et al. [39] only considered the case of a
single granularity, and did not analyze the decision-making situation of multiple granularities in an
intuitionistic fuzzy environment. The DTRS and three-way decisions theory are both used to deal
with decision-making problems, so it is also enlightening for us to study three-way decisions theory
through DTRS. An extension version that can be used to multi-periods scenarios has been introduced by
Liang et al. using intuitionistic fuzzy decision- theoretic rough sets [40]. Furthermore, they introduced
the intuitionistic fuzzy point operator into DTRS [41]. The three-way decisions are also applied in
multiple attribute group decision making [42], supplier selection problem [43], clustering analysis [44],
cognitive computer [45], and so on. However, they have not applied the three-way decisions theory to
the optimal granularity selection problem. To solve this problem, we have expanded the three-way
decisions models.

The main contributions of this paper include four points:
(1) The new granularity importance degree calculating methods among multiple granularities

(i.e., sig′,Δin (Ai, A′, D) and sig′,Δout(Ai, A′, D)) are given respectively, which can generate more
discriminative granularities.

(2) Optimistic optimistic multi-granulation rough intuitionistic fuzzy sets (OOMRIFS)
model, optimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (OIMRIFS) model,
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pessimistic optimistic multi-granulation rough intuitionistic fuzzy sets (IOMRIFS) model and
pessimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (IIMRIFS) model are
constructed by combining intuitionistic fuzzy sets with the reduction of the optimistic and pessimistic
multi-granulation rough sets. These four models can reduce the subjective errors caused by a single
intuitionistic fuzzy set.

(3) We put forward four kinds of three-way decisions models based on the proposed four
multi-granulation rough intuitionistic fuzzy sets (MRIFS), which can further reduce the redundant
objects in each granularity of reduction sets.

(4) Comprehensive score function and comprehensive accuracy function based on MRIFS are
constructed. Based on this, we can obtain the optimal granularity selection results.

The rest of this paper is organized as follows. In Section 2, some basic concepts of MRS, IFS,
and three-way decisions are briefly reviewed. In Section 3, we propose two new granularity importance
degree calculating methods and a granularity reduction Algorithm 1. At the same time, a comparative
example is given. Four novel MRIFS models are constructed in Section 4, and the properties of the
four models are verified by Example 2. Section 5 proposes some novel three-way decisions models
based on above four new MRIFS, and the comprehensive score function and comprehensive accuracy
function based on MRIFS are built. At the same time, through Algorithm 2, we make the optimal
granularity selection. In Section 6, we use Example 3 to study and illustrate the three-way decisions
models based on new MRIFS. Section 7 concludes this paper.

2. Preliminaries

The basic notions of MRS, IFS, and three-way decisions theory are briefly reviewed in this section.
Throughout the paper, we denote U as a nonempty object set, i.e., the universe of discourse and
A = {A1, A2, · · · , Am} is an attribute set.

Definition 1 ([9]). Suppose IS =< U, A, V, f > is a consistent information system,
A = {A1, A2, · · · , Am} is an attribute set. And RAi is an equivalence relation generated by A. [x]Ai

is
the equivalence class of RAi , ∀X ⊆ U, the lower and upper approximations of optimistic multi-granulation
rough sets (OMRS) of X are defined by the following two formulas:

m
∑

i=1
Ai

O
(X) = {x ∈ U|[x]A1

⊆ X ∨ [x]A2
⊆ X ∨ [x]A3

⊆ X . . . ∨ [x]Am
⊆ X};

m
∑

i=1
Ai

O

(X) = ∼ (
m
∑

i=1
Ai

O
( ∼ X)).

where ∨ is a disjunction operation, ∼ X is a complement of X, if
m
∑

i=1
Ai

O
(X) 	= m

∑
i=1

Ai

O

(X), the pair

(
m
∑

i=1
Ai

O
(X),

m
∑

i=1
Ai

O

(X)) is referred to as an optimistic multi-granulation rough set of X.

Definition 2 ([9]). Let IS =< U, A, V, f > be an information system, where A = {A1, A2, · · · , Am} is an
attribute set, and RAi is an equivalence relation generated by A. [x]Ai

is the equivalence class of RAi , ∀X ⊆ U,
the pessimistic multi-granulation rough sets (IMRS) of X with respect to A are defined as follows:

m
∑

i=1
Ai

I
(X) = {x ∈ U|[x]A1

⊆ X ∧ [x]A2
⊆ X ∧ [x]A3

⊆ X ∧ . . . ∧ [x]Am
⊆ X};

m
∑

i=1
Ai

I

(X) = ∼ (
m
∑

i=1
Ai

I
( ∼ X)).
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where [x]Ai
(1 ≤ i ≤ m) is equivalence class of x for Ai, ∧ is a conjunction operation, if

m
∑

i=1
Ai

I
(X) 	=

m
∑

i=1
Ai

I

(X), the pair (
m
∑

i=1
Ai

I
(X),

m
∑

i=1
Ai

I

(X)) is referred to as a pessimistic multi-granulation rough set of X.

Definition 3 ([18,19]). Let U be a finite non-empty universe set, then the IFS E in U are denoted by:

E = {< x, μE(x), νE(x) > |x ∈ U},

where μE(x) : U → [0, 1] and νE(x) : U → [0, 1] . μE(x) and νE(x) are called membership and non-mem-
bership functions of the element x in E with 0 ≤ μE(x)+ νE(x) ≤ 1. For ∀ x ∈ U, the hesitancy degree function
is defined as πE(x) = 1− μE(x)− νE(x), obviously, πE(x) : U → [0, 1] . Suppose ∀ E1, E2 ∈ IFS(U),
the basic operations of E1 and E2 are given as follows:

(1) E1 ⊆ E2 ⇔ μE1(x) ≤ μE2(x), νE1(x) ≥ νE2(x), ∀x ∈ U;
(2) A = B⇔ μA(x) = μB(x), νA(x) = νB(x), ∀x ∈ U;
(3) E1 ∪ E2 = {< x, max{μE1(x), μE2(x)}, min{νE1(x), νE2(x)} > |x ∈ U};
(4) (4) E1 ∩ E2 = {< x, min{μE1(x), μE2(x)}, max{νE1(x), νE2(x)} > |x ∈ U};
(5) (5) ∼ E1 = {< x, νE1(x), μE1(x) > |x ∈ U}.

Definition 4 ([30,31]). Let U = {x1, x2, · · · , xn} be a universe of discourse, ξ = {ωP, ωN , ωB} represents
the decisions of dividing an object x into receptive POS(X), rejective NEG(X), and boundary regions BND(X),
respectively. The cost functions λPP, λNP and λBP are used to represent the three decision- making costs of
∀x ∈ U, and the cost functions λPN, λNN and λBN are used to represent the three decision-making costs of
∀x /∈ U, as shown in Table 1.

Table 1. Cost matrix of decision actions.

Decision Actions
Decision Functions

X ∼X

ωP λPP λPN
ωB λBP λBN
ωN λNP λNN

According to the minimum-risk principle of Bayesian decision procedure, three-way decisions
rules can be obtained as follows:

(P): If P(X|[x]) ≥ α, then x ∈ POS(X);
(N): If P(X|[x]) ≤ β, then x ∈ NEG(X);
(B): If β < P(X|[x]) < α, then x ∈ BND(X).
Here α, β and γ represent respectively:

α =
λPN − λBN

(λPN − λBN) + (λBP − λPP)
;

β =
λBN − λNN

(λBN − λNN) + (λNP − λBP)
;

γ =
λPN − λNN

(λPN − λNN) + (λNP − λPP)
.
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3. Granularity Reduction Algorithm Derives from Granularity Importance Degree

Definition 5 ([10,12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2,
· · · , Am} are m sub-attributes of condition attributes C. U/D = {X1, X2, · · · , Xs} is the partition induced
by the decision attributes D, then approximation quality of U/D about granularity set A is defined as:

γ(A, D) =

∣∣∣∣∣∪
{

m
∑

i=1
Ai

Δ
(Xt)|1 ≤ t ≤ s

}∣∣∣∣∣
|U| .

where |X| denotes the cardinal number of set X. Δ ∈ {O, I} represents two cases of optimistic and pessimistic
multi-granulation rough sets, the same as the following.

Definition 6 ([12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am}
are m sub-attributes of C, A′ ⊆ A, X ∈ U/D,

(1) If
m
∑

i=1,Ai∈A
Ai

Δ
(X) 	= m

∑
i=1,Ai∈A−A′

Ai

Δ
(X), then A′ is important in A for X;

(2) If
m
∑

i=1,Ai∈A
Ai

Δ
(X) =

m
∑

i=1,Ai∈A−A′
Ai

Δ
(X), then A′ is not important in A for X.

Definition 7 ([10,12]). Suppose DIS = (U, C∪D, V, f ) is a decision information system, A = {A1, A2, · · · ,
Am} are m sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A′, on the granularity sets A′, the internal importance degree
of Ai for D can be defined as follows:

sigΔ
in(Ai, A′, D) = |γ(A′, D)− γ(A′ − {Ai}, D)|.

Definition 8 ([10,12]). Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · ,
Am} are m sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A− A′, on the granularity sets A′, the external importance
degree of Ai for D can be defined as follows:

sigΔ
out(Ai, A′, D) = |γ(Ai ∪ A′, D)− γ(A′, D)|.

Theorem 1. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C, A′ ⊆ A.

(1) For ∀Ai ∈ A′, on the basis of attribute subset family A′, the granularity importance degree of Ai in A′
with respect to D is expressed as follows:

sigΔ
in(Ai, A′, D) =

1
m− 1∑ |sigΔ

in({Ak, Ai}, A′, D)− sigΔ
in(Ak, A′ − {Ai}, D)|.

where 1 ≤ k ≤ m, k 	= i, the same as the following.
(2) For ∀Ai ∈ A− A′, on the basis of attribute subset family A′, the granularity importance degree of Ai

in A− A′ with respect to D, we have:

sigΔ
out(Ai, A′, D) =

1
m− 1∑ |sigΔ

out({Ak, Ai}, {Ai} ∪ A′, D)− sigΔ
out(Ak, A′, D)|.
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Proof. (1) According to Definition 7, then

sig
Δ

in(Ai, A′, D) = |γ(A′, D)− γ(A′ − {Ai}, D)|
= m−1

m−1 |γ(A′, D)− γ(A′ − {Ai}, D)|+ ∑ |γ(A′ − {Ak, Ai}, D)− γ(A′ − {Ak, Ai}, D)|
= 1

m−1 ∑ (|γ(A′, D)− γ(A′ − {Ak, Ai}, D)− (γ(A′ − {Ai}, D)− γ(A′ − {Ak, Ai}, D)|)
= 1

m−1 ∑ |sig
Δ

in({Ak, Ai}, A′, D)− sig
Δ

in(Ak, A′ − {Ai}, D)|.

(2) According to Definition 8, we can get:

sig
Δ

out(Ai, A′, D) = |γ({Ai} ∪ A′, D)− γ(A′, D)|
= m−1

m−1 |γ({Ai} ∪ A′, D)− γ(A′, D)| −∑ |γ(A′ − {Ak}, D)− γ(A′ − {Ak}, D)|
= 1

m−1 ∑ (|γ({Ai} ∪ A′, D)− γ(A′ − {Ak}, D)| − |(γ(A′ − {Ak}, D)− γ(A′, D)|)
= 1

m−1 ∑ |sig
Δ

out({Ak, Ai}, {Ai} ∪ A′, D)− sig
Δ

out(Ak, A′, D)|.

�

In Definitions 7 and 8, only the direct effect of a single granularity on the whole granularity sets
is given, without considering the indirect effect of the remaining granularities on decision-making.
The following Definitions 9 and 10 synthetically analyze the interdependence between multiple
granularities and present two new methods for calculating granularity importance degree.

Definition 9. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are
m sub-attributes of C, A′ ⊆ A. ∀Ai, Ak ∈ A′, on the attribute subset family, A, the new internal importance
degree of Ai relative to D is defined as follows:

sig′,Δin (Ai, A′, D) = sigΔ
in(Ai, A′, D) +

1
m− 1∑ |sigΔ

in(Ak, A′ − {Ai}, D)− sigΔ
in(Ak, A′, D)|.

sigΔ
in(Ai, A′, D) and 1

m−1 ∑ |sigΔ
in(Ak, A′ − {Ai}, D)− sigΔ

in(Ak, A′, D)| respectively indicate the direct

and indirect effects of granularity Ai on decision-making. When |sig
Δ

in(Ak, A′ − {Ai}, D)− sig
Δ

in(Ak, A′, D)|
> 0 is satisfied, it is shown that the granularity importance degree of Ak is increased by the addition of Ai
in attribute subset A′ − {Ai}, so the granularity importance degree of Ak should be added to Ai. Therefore,
when there are m sub-attributes, we should add 1

m−1 ∑ |sigΔ
in(Ak, A′ − {Ai}, D)− sigΔ

in(Ak, A′, D)| to the
granularity importance degree of Ai.

If |sig
Δ

in(Ak, A′ − {Ai}, D)− sig
Δ

in(Ak, A′, D)| = 0 and k 	= i, then it shows that there is no interaction
between granularity Ai and other granularities, which means sig′,Δin (Ai, A′, D) = sig

Δ

in(Ai, A′, D).

Definition 10. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} be m
sub-attributes of C, A′ ⊆ A. ∀Ai ∈ A− A′, the new external importance degree of Ai relative to D is defined
as follows:

sig′,Δout(Ai, A′, D) = sigΔ
out(Ai, A′, D) +

1
m− 1∑ |sigΔ

out(Ak, A′, D)− sigΔ
out(Ak, {Ai} ∪ A′, D)|.

Similarly, the new external importance degree calculation formula has a similar effect.

Theorem 2. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} be m
sub-attributes of C, A′ ⊆ A, ∀Ai ∈ A′. The improved internal importance can be rewritten as:

sig′,Δin (Ai, A′, D) =
1

m− 1∑ sig
Δ

in(Ai, A′ − {Ak}, D).
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Proof.

sig′,Δin (Ai, A′, D) = sig
Δ

in(Ai, A′, D) + 1
m−1 ∑ |sig

Δ

in(Ak, A′ − {Ai}, D)− sig
Δ

in(Ak, A′, D)|
= m−1

m−1 |γ(A′, D)− γ(A′ − {Ai}, D)|+ 1
m−1 ∑ ||γ(A′ − {Ai}, D)−

γ(A′ − {Ak, Ai}, D)| − |γ(A′, D)− γ(A′ − {Ak}, D)||
= 1

m−1 ∑ |γ(A′ − {Ak}, D)− γ(A′ − {Ak, Ai}, D)|
= 1

m−1 ∑ sig
Δ

in(Ai, A′ − {Ak}, D).

�

Theorem 3. Let DIS = (U, C ∪ D, V, f ) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C, A′ ⊆ A. The improved external importance can be expressed as follows:

sig′,Δout(Ai, A′, D) =
1

m− 1∑ sig
Δ

out(Ai, {Ak} ∪ A′, D).

Proof.

sig′,Δout(Ai, A′, D) = sig
Δ

out(Ai, A′, D) + 1
m−1 ∑ |(sig

Δ

out(Ak, A′, D)− sig
Δ

out(Ak, {Ai} ∪ A′, D))|
= m−1

m−1 |γ({Ai} ∪ A′, D)− γ(A′, D)|+ 1
m−1 ∑ ||γ(A′, D)− γ({Ak} ∪ A′, D)|−

|γ({Ai} ∪ A′, D)||
= 1

m−1 ∑ |γ({Ai, Ak} ∪ A′, D)− γ({Ai} ∪ A′, D)|
= 1

m−1 ∑ sig
Δ

out(Ai, {Ak} ∪ A′, D).

�

Theorems 2 and 3 show that when sigΔ
in(Ai, A′ − {Ak}, D) = 0 (sig

Δ

out(Ai, {Ak} ∪ A′, D) = 0)
is satisfied, having sig′,Δin (Ai, A′, D) = 0 (sig′,Δout(Ai, A′, D) = 0). And each granularity importance
degree is calculated on the basis of removing Ak from A′, which makes it more convenient for us to
choose the required granularity.

According to [10,12], we can get optimistic and pessimistic multi-granulation lower
approximations LO and LI . The granularity reduction algorithm based on improved granularity
importance degree is derived from Theorems 2 and 3, as shown in Algorithm 1.
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Algorithm 1. Granularity reduction algorithm derives from granularity importance degree

Input: DIS = (U, C ∪ D, V, f ), A = {A1, A2, · · · , Am} are m sub-attributes of C, A′ ⊆ A, ∀Ai ∈ A′,
U/D = {X1, X2, · · · , Xs};
Output: A granularity reduction set A

Δ

i of this information system.
1: set up A

Δ

i ← φ , 1 ≤ h ≤ m;
2: compute U/D, optimistic and pessimistic multi-granulation lower approximations LΔ;
3: for ∀Ai ∈ A
4: compute sig′,Δin (Ai, A′, D) via Definition 9;
5: if (sig′,Δin (Ai, A′, D) > 0) then A

Δ

i = A
Δ

i ∪ Ai;
6: end

7: for ∀Ai ∈ A− A
Δ

i
8: if γ(A

Δ

i , D) = γ(A, D) then compute sig′,Δout(Ai, A′, D) via Definition 10;
9: end

10: if sig′,Δout(Ah, A′, D) = max{sig′,Δout(Ah, A′, D)} then A
Δ

i = A
Δ

i ∪ Ah;
11: end

12: end

13: for ∀Ai ∈ A
Δ

i ,
14: if γ(A

Δ

i − Ai, D) = γ(A, D) then A
Δ

i = A
Δ

i − Ai;
15: end

16: end

17: return granularity reduction set A
Δ

i ;
18: end

Therefore, we can obtain two reductions by utilizing Algorithm 1.

Example 1. This paper calculates the granularity importance of 10 on-line investment schemes given in
Reference [12]. After comparing and analyzing the obtained granularity importance degree, we can obtain the
reduction results of 5 evaluation sites through Algorithm 1, and the detailed calculation steps are as follows.

According to [12], we can get A = {A1, A2, A3, A4, A5}, A′ ⊆ A, U/D =

{{x1, x2, x4, x6, x8}, {x3, x5, x7, x9, x10}}.
(1) Reduction set of OMRS

First of all, we can calculate the internal importance degree of OMRS by Theorem 2 as shown in
Table 2.

Table 2. Internal importance degree of optimistic multi-granulation rough sets (OMRS).

A1 A2 A3 A4 A5

sigO
in(Ai, A′, D) 0 0.15 0.05 0 0.05

sig′,Oin (Ai, A′, D) 0.025 0.375 0.225 0 0

Then, according to Algorithm 1, we can deduce the initial granularity set is {A1, A2, A3}.
Inspired by Definition 5, we obtain rO({A2, A3}, D) = rO(A, D) = 1. So, the reduction set of the
OMRS is AO

i = {A2, A3}.
As shown in Table 2, when using the new method to calculate internal importance degree,

more discriminative granularities can be generated, which are more convenient for screening out the
required granularities. In literature [12], the approximate quality of granularity A2 in the reduction set
is different from that of the whole granularity set, so it is necessary to calculate the external importance
degree again. When calculating the internal and external importance degree, References [10,12] only
considered the direct influence of the single granularity on the granularity A2, so the influence of the
granularity A2 on the overall decision-making can’t be fully reflected.
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(2) Reduction set of IMRS

Similarly, by using Theorem 2, we can get the internal importance degree of each site under IMRS,
as shown in Table 3.

Table 3. Internal importance degree of pessimistic multi-granulation rough sets (IMRS).

A1 A2 A3 A4 A5

sigI
in(Ai, A′, D) 0 0.05 0 0 0

sig′,Iin(Ai, A′, D) 0 0.025 0 0.025 0.025

According to Algorithm 1, the sites 2, 4, and 5 with internal importance degrees greater than 0,
which are added to the granularity reduction set as the initial granularity set, and then the approximate
quality of it can be calculated as follows:

rI({A2, A4}, D) = rI({A4, A5}, D) = rI(A, D) = 0.2.

Namely, the reduction set of IMRS is AI
i = {A2, A4} or AI

i = {A4, A5} without calculating the
external importance degree.

In this paper, when calculating the internal and external importance degree of each granularity,
the influence of removing other granularities on decision-making is also considered. According to
Theorem 2, after calculating the internal importance degree of OMRS and IMRS, if the approximate
quality of each granularity in the reduction sets are the same as the overall granularities, it is
not necessary to calculate the external importance degree again, which can reduce the amount
of computation.

4. Novel Multi-Granulation Rough Intuitionistic Fuzzy Sets Models

In Example 1, two reduction sets are obtained under IMRS, so we need a novel method to obtain
more accurate granularity reduction results by calculating granularity reduction.

In order to obtain the optimal determined site selection result, we combine the optimistic and
pessimistic multi-granulation reduction sets based on Algorithm 1 with IFS, respectively, and construct
the following four new MRIFS models.

Definition 11 ([22,25]). Suppose IS = (U, A, V, f ) is an information system, A = {A1, A2, · · · , Am}.
∀E ⊆ U, E are IFS. Then the lower and upper approximations of optimistic MRIFS of Ai are respectively
defined by:

m
∑

i=1
RAi

O
(E) = {< x, μ m

∑
i=1

RAi

O
(E)

(x), ν m
∑

i=1
RAi

O
(E)

(x) > |x ∈ U};

m
∑

i=1
RAi

O

(E) = {< x, μ m
∑

i=1
RAi

O

(E)
(x), ν m

∑
i=1

RAi

O

(E)
(x) > |x ∈ U}.

where
μ m

∑
i=1

RAi

O
(E)

(x) =
m∨

i=1
inf

y∈[x]Ai

μE(y), ν m
∑

i=1
RAi

O
(E)

(x) =
m∧

i=1
sup

y∈[x]Ai

νE(y);

μ m
∑

i=1
RAi

O

(E)
(x) =

m∧
i=1

sup
y∈[x]Ai

μE(y), ν m
∑

i=1
RAi

O

(E)
(x) =

m∨
i=1

inf
y∈[x]Ai

νE(y).

where RAi is an equivalence relation of x in A, [x]Ai
is the equivalence class of RAi ,and ∨ is a

disjunction operation.
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Definition 12 ([22,25]). Suppose IS =< U, A, V, f > is an information system, A = {A1, A2, · · · , Am}.
∀E ⊆ U, E are IFS. Then the lower and upper approximations of pessimistic MRIFS of Ai can be described
as follows:

m
∑

i=1
RAi

I
(E) = {< x, μ m

∑
i=1

RAi

I
(E)

(x), ν m
∑

i=1
RAi

I
(E))

(x) > |x ∈ U};

m
∑

i=1
RAi

I

(E) = {< x, μ m
∑

i=1
RAi

I

(E)
(x), ν m

∑
i=1

RAi

I

(E)
(x) > |x ∈ U}.

where
μ m

∑
i=1

RAi

I
(E)

(x) =
m∧

i=1
inf

y∈[x]Ai

μE(y), ν m
∑

i=1
RAi

I
(E)

(x) =
m∨

i=1
sup

y∈[x]Ai

νE(y);

μ m
∑

i=1
RAi

I

(E)
(x) =

m∨
i=1

sup
y∈[x]Ai

μE(y), ν m
∑

i=1
RAi

I

(E)
(x) =

m∧
i=1

inf
y∈[x]Ai

νE(y).

where [x]Ai
is the equivalence class of x about the equivalence relation RAi , and ∧ is a conjunction operation.

Definition 13. Suppose IS =< U, A, V, f > is an information system, AO
i = {A1, A2, · · · , Ar} ⊆ A,

A = {A1, A2, · · · , Am}. And RAi
O is an equivalence relation of x with respect to the attribute reduction set

AO
i under OMRS, [x]Ai

O is the equivalence class of RAi
O . Let E be IFS of U and they can be characterized by a

pair of lower and upper approximations:

r
∑

i=1
RAO

i

O
(E) = {< x, μ r

∑
i=1

R
AO

i

O
(E)

(x), ν r
∑

i=1
R

AO
i

O
(E)

(x) > |x ∈ U};

r
∑

i=1
RAO

i

O

(E) = {< x, μ r
∑

i=1
R

AO
i

O

(E)
(x), ν r

∑
i=1

R
AO

i

O

(E)
(x) > |x ∈ U}.

where
μ r

∑
i=1

R
AO

i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]Ai
O

μE(y), ν r
∑

i=1
R

AO
i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]Ai
O

νE(y);

μ r
∑

i=1
R

AO
i

O

(E)
(x) =

r∧
i=1

sup
y∈[x]Ai

O

μE(y), ν r
∑

i=1
R

AO
i

O

(E)
(x) =

r∨
i=1

inf
y∈[x]Ai

O
νE(y).

If
r
∑

i=1
RAO

i

O
(E) 	= r

∑
i=1

RAO
i

O

(E), then E can be called OOMRIFS.

Definition 14. Suppose IS =< U, A, V, f > is an information system, ∀E ⊆ U, E are IFS. AO
i =

{A1, A2, · · · , Ar} ⊆ A, A = {A1, A2, · · · , Am}. where AO
i is an optimistic multi-granulation

attribute reduction set. Then the lower and upper approximations of pessimistic MRIFS under optimistic
multi-granulation environment can be defined as follows:

r
∑

i=1
RAO

i

I
(E) = {< x, μ r

∑
i=1

R
AO

i

I
(E)

(x), ν r
∑

i=1
R

AO
i

I
(E)

(x) > |x ∈ U};

r
∑

i=1
RAO

i

I

(E) = {< x, μ r
∑

i=1
R

AO
i

I

(E)
(x), ν r

∑
i=1

R
AO

i

I

(E)
(x) > |x ∈ U}.
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where
μ r

∑
i=1

R
AO

i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]Ai
O

μE(y), ν r
∑

i=1
R

AO
i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]Ai
O

νE(y);

μ r
∑

i=1
R

AO
i

I

(E)
(x) =

r∨
i=1

sup
y∈[x]Ai

O

μE(y), ν r
∑

i=1
R

AO
i

I

(E)
(x) =

r∧
i=1

inf
y∈[x]Ai

O
νE(y).

The pair (
r
∑

i=1
RAO

i

I
(E),

r
∑

i=1
RAO

i

I

(E)) are called OIMRIFS, if
r
∑

i=1
RAO

i

I
(E) 	= r

∑
i=1

RAO
i

I

(E).

According to Definitions 13 and 14, the following theorem can be obtained.

Theorem 4. Let IS =< U, A, V, f > be an information system, AO
i = {A1, A2, · · · , Ar} ⊆ A, A =

{A1, A2, · · · , Am}, and E1, E2 be IFS on U. Comparing with Definitions 13 and 14, the following proposition
is obtained.

(1)
r
∑

i=1
RAO

i

O
(E1) =

r∪
i=1

RAO
i

O(E1);

(2)
r
∑

i=1
RAO

i

O

(E1) =
r∩

i=1
RAO

i

O
(E1);

(3)
r
∑

i=1
RAO

i

I
(E1) =

r∩
i=1

RAO
i

I(E1);

(4)
r
∑

i=1
RAO

i

I
(E1) =

r∪
i=1

RAO
i

I(E1);

(5)
r
∑

i=1
RAO

i

I
(E1) ⊆

r
∑

i=1
RAO

i

O
(E1);

(6)
r
∑

i=1
RAO

i

O

(E1) ⊆
r
∑

i=1
RAO

i

I

(E1);

(7)
r
∑

i=1
RAO

i

O
(E1 ∩ E2) =

r
∑

i=1
RAO

i

O
(E1) ∩

r
∑

i=1
RAO

i

O
(E2),

r
∑

i=1
RAO

i

I
(E1 ∩ E2) =

r
∑

i=1
RAO

i

I
(E1) ∩

r
∑

i=1
RAO

i

I
(E2);

(8)
r
∑

i=1
RAO

i

O

(E1 ∪ E2) =
r
∑

i=1
RAO

i

O

(E1) ∪
r
∑

i=1
RAO

i

O

(E2),
r
∑

i=1
RAO

i

I

(E1 ∪ E2) =
r
∑

i=1
RAO

i

I

(E1) ∪
r
∑

i=1
RAO

i

I

(E2);

(9)
r
∑

i=1
RAO

i

O
(E1 ∪ E2) ⊇

r
∑

i=1
RAO

i

O
(E1) ∪

r
∑

i=1
RAO

i

O
(E2),

r
∑

i=1
RAO

i

I
(E1 ∪ E2) ⊇

r
∑

i=1
RAO

i

I
(E1) ∪

r
∑

i=1
RAO

i

I
(E2);

(10)
r
∑

i=1
RAO

i

O

(E1 ∩ E2) ⊆
r
∑

i=1
RAO

i

O

(E1) ∩
r
∑

i=1
RAO

i

O

(E2),
r
∑

i=1
RAO

i

I

(E1 ∩ E2) ⊆
r
∑

i=1
RAO

i

I

(E1) ∩
r
∑

i=1
RAO

i

I

(E2).

Proof. It is easy to prove by the Definitions 13 and 14. �

Definition 15. Let IS =< U, A, V, f > be an information system, and E be IFS on U. AI
i = {A1, A2, · · · ,

Ar} ⊆ A, A = {A1, A2, · · · , Am}, where AI
i is a pessimistic multi-granulation attribute reduction set. Then,

the pessimistic optimistic lower and upper approximations of E with respect to equivalence relation RAi
I are

defined by the following formulas:

r
∑

i=1
RAI

i

O
(E) = {< x, μ r

∑
i=1

RAI
i

O
(E)

(x), ν r
∑

i=1
RAI

i

O
(E)

(x) > |x ∈ U};

r
∑

i=1
RAI

i

O

(E) = {< x, μ r
∑

i=1
RAI

i

O

(E)
(x), ν r

∑
i=1

RAI
i

O

(E)
(x) > |x ∈ U}.
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where
μ r

∑
i=1

RAI
i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]Ai
I
μE(y), ν r

∑
i=1

RAI
i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]Ai
I

νE(y);

μ r
∑

i=1
RAI

i

O

(E)
(x) =

r∧
i=1

sup
y∈[x]Ai

I

μE(y), ν r
∑

i=1
RAI

i

O

(E)
(x) =

r∨
i=1

inf
y∈[x]Ai

I
νE(y).

If
r
∑

i=1
RAI

i

O
(E) 	= r

∑
i=1

RAI
i

O

(E), then E can be called IOMRIFS.

Definition 16. Let IS =< U, A, V, f > be an information system, and E be IFS on U. AI
i = {A1, A2, · · · ,

Ar} ⊆ A, A = {A1, A2, · · · , Am}, where AI
i is a pessimistic multi-granulation attribute reduction set. Then,

the pessimistic lower and upper approximations of E under IMRS are defined by the following formulas:

r
∑

i=1
RAI

i

I
(E) = {< x, μ r

∑
i=1

RAI
i

I
(E)

(x), ν r
∑

i=1
RAI

i

I
(E)

(x) > |x ∈ U};

r
∑

i=1
RAI

i

I

(E) = {< x, μ r
∑

i=1
RAI

i

I

(E)
(x), ν r

∑
i=1

RAI
i

I

(E)
(x) > |x ∈ U}.

where
μ r

∑
i=1

RAI
i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]Ai
I
μE(y), ν r

∑
i=1

RAI
i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]Ai
I

νE(y);

μ r
∑

i=1
RAI

i

I

(E)
(x) =

r∨
i=1

sup
y∈[x]Ai

I

μE(y), ν r
∑

i=1
RAI

i

I

(E)
(x) =

r∧
i=1

inf
y∈[x]Ai

I
νE(y).

where RAi
I is an equivalence relation of x about the attribute reduction set AI

i under IMRS, [x]Ai
O is the

equivalence class of RAi
I .

If
r
∑

i=1
RAI

i

I
(E) 	= r

∑
i=1

RAI
i

I

(E), then the pair (
r
∑

i=1
RAI

i

I
(E),

r
∑

i=1
RAI

i

I

(E)) is said to be IIMRIFS.

According to Definitions 15 and 16, the following theorem can be captured.

Theorem 5. Let IS =< U, A, V, f > be an information system, AI
i = {A1, A2, · · · , Ar} ⊆ A, A = {A1,

A2, · · · , Am}, and E1, E2 be IFS on U. Then IOMRIFS and IIOMRIFS models have the following properties:

(1)
r
∑

i=1
RAI

i

O
(E1) =

r∪
i=1

RAI
i

O(E1);

(2)
r
∑

i=1
RAI

i

O

(E1) =
r∩

i=1
RAI

i

O
(E1);

(3)
r
∑

i=1
RAI

i

I
(E1) =

r∪
i=1

RAI
i

I(E1);

(4)
r
∑

i=1
RAI

i

I
(E1) =

r∪
i=1

RAI
i

I(E1);

(5)
r
∑

i=1
RAI

i

I
(E1) ⊆

r
∑

i=1
RAI

i

O
(E1);

(6)
r
∑

i=1
RAI

i

O

(E1) ⊆
r
∑

i=1
RAI

i

I

(E1).

(7)
r
∑

i=1
RAI

i

O
(E1 ∩ E2) =

r
∑

i=1
RAI

i

O
(E1) ∩

r
∑

i=1
RAI

i

O
(E2),

r
∑

i=1
RAI

i

I
(E1 ∩ E2) =

r
∑

i=1
RAI

i

I
(E1) ∩

r
∑

i=1
RAI

i

I
(E2);

(8)
r
∑

i=1
RAI

i

O

(E1 ∪ E2) =
r
∑

i=1
RAI

i

O

(E1) ∪
r
∑

i=1
RAI

i

O

(E2),
r
∑

i=1
RAI

i

I

(E1 ∪ E2) =
r
∑

i=1
RAI

i

I

(E1) ∪
r
∑

i=1
RAI

i

I

(E2);
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(9)
r
∑

i=1
RAI

i

O
(E1 ∪ E2) ⊇

r
∑

i=1
RAI

i

O
(E1) ∪

r
∑

i=1
RAI

i

O
(E2),

r
∑

i=1
RAI

i

I
(E1 ∪ E2) ⊇

r
∑

i=1
RAI

i

I
(E1) ∪

r
∑

i=1
RAI

i

I
(E2);

(10)
r
∑

i=1
RAI

i

O

(E1 ∩ E2) ⊆
r
∑

i=1
RAI

i

O

(E1) ∩
r
∑

i=1
RAI

i

O

(E2),
r
∑

i=1
RAI

i

I

(E1 ∩ E2) ⊆
r
∑

i=1
RAI

i

I

(E1) ∩
r
∑

i=1
RAI

i

I

(E2).

Proof. It can be derived directly from Definitions 15 and 16. �

The characteristics of the proposed four models are further verified by Example 2 below.

Example 2. (Continued with Example 1). From Example 1, we know that these 5 sites are evaluated by
10 investment schemes respectively. Suppose they have the following IFS with respect to 10 investment schemes

E =
{

[0.25,0.43]
x1

, [0.51,0.28]
x2

, [0.54,0.38]
x3

, [0.37,0.59]
x4

, [0.49,0.35]
x5

, [0.92,0.04]
x6

, [0.09,0.86]
x7

, [0.15,0.46]
x8

,

[0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(1) In OOMRIFS, the lower and upper approximations of OOMRIFS can be calculated as follows:

r
∑

i=1
RAO

i

O
(E) =

{
[0.25,0.59]

x1
, [0.49,0.38]

x2
, [0.49,0.38]

x3
, [0.25,0.59]

x4
, [0.49,0.38]

x5
, [0.25,0.46]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.15,0.46]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAO

i

O

(E) =
{

[0.51,0.28]
x1

, [0.51,0.28]
x2

, [0.54,0.35]
x3

, [0.51,0.28]
x4

, [0.54,0.35]
x5

, [0.92,0.04]
x6

, [0.54,0.35]
x7

,

[0.15,0.46]
x8

, [0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(2) Similarly, in OIMRIFS, we have:

r
∑

i=1
RAO

i

I
(E) =

{
[0.25,0.59]

x1
, [0.25,0.59]

x2
, [0.09,0.86]

x3
, [0.25,0.59]

x4
, [0.09,0.86]

x5
, [0.15,0.59]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.09,0.86]
x9

, [0.09,0.86]
x10

}
,

r
∑

i=1
RAO

i

I

(E) =
{

[0.92,0.04]
x1

, [0.54,0.28]
x2

, [0.54,0.28]
x3

, [0.92,0.04]
x4

, [0.54,0.28]
x5

, [0.92,0.04]
x6

, [0.72,0.12]
x7

,

[0.92,0.04]
x8

, [0.92,0.04]
x9

, [0.72,0.12]
x10

}
.

From the above results, Figure 1 can be drawn as follows:

Figure 1. The lower and upper approximations of OOMRIFS and OIMRIFS.

Note that
μ1 = μOO(xj) and ν1 = νOO(xj) represent the lower approximation of OOMRIFS;

μ2 = μOO(xj) and ν2 = νOO(xj) represent the upper approximation of OOMRIFS;

219



Symmetry 2018, 10, 662

μ3 = μOI(xj) and ν3 = νOI(xj) represent the lower approximation of OIMRIFS;

μ4 = μOI(xj) and ν4 = νOI(xj) represent the upper approximation of OIMRIFS.
Regarding Figure 1, we can get,

μOI(xj) ≥ μOO(xj) ≥ μOO(xj) ≥ μOI(xj); νOI(xj) ≥ νOO(xj) ≥ νOO(xj) ≥ νOI(xj).

As shown in Figure 1, the rules of Theorem 4 are satisfied. By constructing the OOMRIFS and OIMRIFS
models, we can reduce the subjective scoring errors of experts under intuitionistic fuzzy conditions.

(3) Similar to (1), in IOMRIFS, we have:

r
∑

i=1
RAI

i

O
(E) =

{
[0.25,0.43]

x1
, [0.25,0.43]

x2
, [0.25,0.43]

x3
, [0.37,0.59]

x4
, [0.25,0.43]

x5
, [0.25,0.46]

x6
, [0.09,0.86]

x7
,

[0.15,0.46]
x8

, [0.67,0.23]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAI

i

O

(E) =
{

[0.51,0.28]
x1

, [0.51,0.28]
x2

, [0.54,0.35]
x3

, [0.37,0.59]
x4

, [0.49,0.35]
x5

, [0.92,0.04]
x6

, [0.51,0.35]
x7

,

[0.49,0.35]
x8

, [0.72,0.12]
x9

, [0.67,0.23]
x10

}
.

(4) The same as (1), in IIMRIFS, we can get:

r
∑

i=1
RAI

i

I
(E) =

{
[0.25,0.59]

x1
, [0.09,0.86]

x2
, [0.09,0.86]

x3
, [0.25,0.59]

x4
, [0.09,0.86]

x5
, [0.09,0.86]

x6
, [0.09,0.86]

x7
,

[0.09,0.86]
x8

, [0.15,0.46]
x9

, [0.67,0.23]
x10

}
,

r
∑

i=1
RAI

i

I

(E) =
{

[0.92,0.04]
x1

, [0.54,0.28]
x2

, [0.92,0.04]
x3

, [0.92,0.04]
x4

, [0.54,0.28]
x5

, [0.92,0.04]
x6

, [0.92,0.04]
x7

,

[0.92,0.04]
x8

, [0.92,0.04]
x9

, [0.72,0.12]
x10

}
.

From (3) and (4), we can obtain Figure 2 as shown:

 

Figure 2. The lower and upper approximations of IOMRIFS and IIMRIFS.

Note that
μ5 = μIO(xj) and ν5 = νIO(xj) represent the lower approximation of IOMRIFS;

μ6 = μIO(xj) and ν6 = νIO(xj) represent the upper approximation of IOMRIFS;
μ7 = μI I(xj) and ν7 = νI I(xj) represent the lower approximation of IIMRIFS;

μ8 = μI I(xj) and ν8 = νI I(xj) represent the upper approximation of IIMRIFS.
For Figure 2, we can get,

μI I(xj) ≥ μIO(xj) ≥ μIO(xj) ≥ μI I(xj); νI I(xj) ≥ νIO(xj) ≥ νIO(xj) ≥ νI I(xj).
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As shown in Figure 2, the rules of Theorem 5 are satisfied.

Through the Example 2, we can obtain four relatively more objective MRIFS models, which are
beneficial to reduce subjective errors.

5. Three-Way Decisions Models Based on MRIFS and Optimal Granularity Selection

In order to obtain the optimal granularity selection results in the case of optimistic and pessimistic
multi-granulation sets, it is necessary to further distinguish the importance degree of each granularity
in the reduction sets. We respectively combine the four MRIFS models mentioned above with three-way
decisions theory to get four new three-way decisions models. By extracting the rules, the redundant
objects in the reduction sets are removed, and the decision error is further reduced. Then the optimal
granularity selection results in two cases are obtained respectively by constructing the comprehensive
score function and comprehensive accuracy function measurement formulas of each granularity of the
reduction sets.

5.1. Three-Way Decisions Model Based on OOMRIFS

Suppose AO
i is the reduction set under OMRS. According to reference [46], the expected loss

function ROO(ω∗|[x]AO
i
)(∗ = P, B, N) of object x can be obtained:

ROO(ωP|[x]AO
i
) = λPP · μOO(x) + λPN · νOO(x) + λPB · πOO(x);

ROO(ωN |[x]AO
i
) = λNP · μOO(x) + λNN · νOO(x) + λNB · πOO(x);

ROO(ωB|[x]AO
i
) = λBP · μOO(x) + λBN · νOO(x) + λBB · πOO(x).

where
μOO(x) = μ r

∑
i=1

R
AO

i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]
Ai

O
μE(y), νOO(x) = ν r

∑
i=1

R
AO

i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]
Ai

O

νE(y), πOO(x) = 1− μ r
∑

i=1
R

AO
i

O
(E)

(x)− ν r
∑

i=1
R

AO
i

O
(E)

(x);

or
μOO(x) = μ

r
∑

i=1
R

AO
i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]
Ai

O

μE(y), νOO(x) = ν
r
∑

i=1
R

AO
i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]
Ai

O
νE(y), πOO(x) = 1− μ

r
∑

i=1
R

AO
i

O
(E)

(x)− ν
r
∑

i=1
R

AO
i

O
(E)

(x).

The minimum-risk decision rules derived from the Bayesian decision process are as follows:(
P′
)
: If R′(ωP|[x]AO

i
) ≤ R′(ωB|[x]AO

i
) and R′(ωP|[x]AO

i
) ≤ R′(ωN |[x]AO

i
), then x ∈ POS(X);

(N′): If R′(ωN |[x]AO
i
) ≤ R′(ωP|[x]AO

i
) and R′(ωN |[x]AO

i
) ≤ R′(ωB|[x]AO

i
), then x ∈ NEG(X);

(B′): If R′(ωB|[x]AO
i
) ≤ R′(ωN |[x]AO

i
) and R′(ωB|[x]AO

i
) ≤ R′(ωP|[x]AO

i
), then x ∈ BND(X).

Thus, the decision rules (P′)-(B′) can be re-expressed concisely as:
(P′) rule satisfies:

(μOO(x) ≤ (1− πOO(x)) · λNN − λPN

(λPP − λNP) + (λPN − λNN)
) ∧ (μOO(x) ≤ (1− πOO(x)) · λBN − λPN

(λPP − λBP) + (λPN − λBN)
);

(N′) rule satisfies:

(μOO(x) < (1− πOO(x)) · λPN − λNN

(λNP − λPP) + (λPN − λNN)
) ∧ (μOO(x) < (1− πOO(x)) · λBN − λNN

(λNP − λBP) + (λBN − λNN)
);

(B′) rule satisfies:

(μOO(x) > (1− πOO(x)) · λBN − λPN

(λPN − λBN) + (λBP − λPP)
) ∧ (μOO(x) ≥ (1− πOO(x)) · λBN − λNN

(λBN − λNN) + (λNP − λBP)
).

Therefore, the three-way decisions rules based on OOMRIFS are as follows:
(P1): If μOO(x) ≥ (1− πOO(x)) · α, then x ∈ POS(X);
(N1): If μOO(x) ≤ (1− πOO(x)) · β, then x ∈ NEG(X);
(B1): If (1− πOO(x)) · β ≤ μOO(x) and μOO(x) ≤ (1− πOO(x)) · α, then x ∈ BND(X).
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5.2. Three-Way Decisions Model Based on OIMRIFS

Suppose AO
i is the reduction set under OMRS. According to reference [46], the expected loss

functions ROO(ω∗|[x]AO
i
)(∗ = P, B, N) of an object x are presented as follows:

ROI(ωP|[x]AO
i
) = λPP · μOI(x) + λPN · νOI(x) + λPB · πOI(x);

ROI(ωN |[x]AO
i
) = λNP · μOI(x) + λNN · νOI(x) + λNB · πOI(x);

ROI(ωB|[x]AO
i
) = λBP · μOI(x) + λBN · νOI(x) + λBB · πOI(x).

where
μOI (x) = μ r

∑
i=1

R
AO

i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]
Ai

O
μE(y), νOI (x) = v r

∑
i=1

R
AO

i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]
Ai

O

vE(y), πOI (x) = 1− μ r
∑

i=1
R

AO
i

I
(E)

(x)− v r
∑

i=1
R

AO
i

I
(E)

(x);

or
μOI (x) = μ r

∑
i=1

R
AO

i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]
Ai

O

μE(y), νOI (x) = ν r
∑

i=1
R

AO
i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]
Ai

O
νE(y), πOI (x) = 1− μ r

∑
i=1

R
AO

i

I
(E)

(x)− ν r
∑

i=1
R

AO
i

I
(E)

(x).

Therefore, the three-way decisions rules based on OIMRIFS are as follows:
(P2): If μOI(x) ≥ (1− πOI(x)) · α, then x ∈ POS(X);
(N2): If μOI(x) ≤ (1− πOI(x)) · β, then x ∈ NEG(X);
(B2): If (1− πOI(x)) · β ≤ μOI(x) and μOI(x) ≤ (1− πOI(x)) · α, then x ∈ BND(X).

5.3. Three-Way Decisions Model Based on IOMRIFS

Suppose AI
i is the reduction set under IMRS. According to reference [46], the expected loss

functions RIO(ω∗|[x]AI
i
)(∗ = P, B, N) of an object x are as follows:

RIO(ωP|[x]AI
i
) = λPP · μIO(x) + λPN · νIO(x) + λPB · π IO(x);

RIO(ωN |[x]AI
i
) = λNP · μIO(x) + λNN · νIO(x) + λNB · π IO(x);

RIO(ωB|[x]AI
i
) = λBP · μIO(x) + λBN · νIO(x) + λBB · π IO(x).

where
μIO(x) = μ r

∑
i=1

R
AI

i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]
Ai

I
μE(y), νIO(x) = ν r

∑
i=1

R
AI

i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]
Ai

I

νE(y), π IO(x) = 1− μ r
∑

i=1
R

AI
i

O
(E)

(x)− ν r
∑

i=1
R

AI
i

O
(E)

(x);

or
μIO(x) = μ r

∑
i=1

R
AI

i

O
(E)

(x) =
r∧

i=1
sup

y∈[x]
Ai

I

μE(y), νIO(x) = ν r
∑

i=1
R

AI
i

O
(E)

(x) =
r∨

i=1
inf

y∈[x]
Ai

I
νE(y), π IO(x) = 1− μ r

∑
i=1

R
AI

i

O
(E)

(x)− ν r
∑

i=1
R

AI
i

O
(E)

(x).

Therefore, the three-way decisions rules based on IOMRIFS are as follows:
(P3): If μIO(x) ≥ (1− π IO(x)) · α, then x ∈ POS(X);
(N3): If μIO(x) ≤ (1− π IO(x)) · β, then x ∈ NEG(X);
(B3): If (1− π IO(x)) · β ≤ μIO(x) and μIO(x) ≤ (1− π IO(x)) · α, then x ∈ BND(X).

5.4. Three-Way Decisions Model Based on IIMRIFS

Suppose AI
i is the reduction set under IMRS. Like Section 5.1, the expected loss functions

RII(ω∗|[x]AI
i
)(∗ = P, B, N) of an object x are as follows:

RII(ωP|[x]AI
i
) = λPP · μI I(x) + λPN · νI I(x) + λPB · π I I(x);

RII(ωN |[x]AI
i
) = λNP · μI I(x) + λNN · νI I(x) + λNB · π I I(x);

RII(ωB|[x]AI
i
) = λBP · μI I(x) + λBN · νI I(x) + λBB · π I I(x).

where
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μI I (x) = μ r
∑

i=1
R

AI
i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]
Ai

I
μE(y), νI I (x) = ν r

∑
i=1

R
AI

i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]
Ai

I

νE(y), π I I (x) = 1− μ r
∑

i=1
R

AI
i

I
(E)

(x)− ν r
∑

i=1
R

AI
i

I
(E)

(x);

or
μI I (x) = μ r

∑
i=1

R
AI

i

I
(E)

(x) =
r∨

i=1
sup

y∈[x]
Ai

I

μE(y), νI I (x) = ν r
∑

i=1
R

AI
i

I
(E)

(x) =
r∧

i=1
inf

y∈[x]
Ai

I
νE(y), π I I (x) = 1− μ r

∑
i=1

R
AI

i

I
(E)

(x)− ν r
∑

i=1
R

AI
i

I
(E)

(x).

Therefore, the three-way decisions rules based on IIMRIFS are captured as follows:
(P4): If μI I(x) ≥ (1− π I I(x)) · α, then x ∈ POS(X);
(N4): If μI I(x) ≤ (1− π I I(x)) · β, then x ∈ NEG(X);
(B4): If (1− π I I(x)) · β ≤ μI I(x) and μI I(x) ≤ (1− π I I(x)) · α, then x ∈ BND(X).
By constructing the above three decision models, the redundant objects in the reduction sets can

be removed, which is beneficial to the optimal granular selection.

5.5. Comprehensive Measuring Methods of Granularity

Definition 17 ([40]). Let an intuitionistic fuzzy number Ẽ( f1) = (μẼ( f1), νẼ( f1)), f1 ∈ U, then the score
function of Ẽ( f1) is calculated as:

S(Ẽ( f1)) = μẼ( f1)− νẼ( f1).

The accuracy function of Ẽ( f1) is defined as:

H(Ẽ( f1)) = μẼ( f1) + νẼ( f1).

where −1 ≤ S(Ẽ( f1)) ≤ 1 and 0 ≤ H(Ẽ( f1)) ≤ 1.

Definition 18. Let DIS = (U, C ∪ D) be a decision information system, A = {A1, A2, · · · , Am} are m
sub-attributes of C. Suppose E are IFS on the universe U = {x1, x2, · · · , xn}, defined by μAi (xj) and νAi (xj),
where μAi (xj) and νAi (xj) are their membership and non-membership functions respectively. |[xj]Ai

| is the
number of equivalence classes of xj on granularity Ai, U/D = {X1, X2, · · · , Xs} is the partition induced by
the decision attributes D. Then, the comprehensive score function of granularity Ai is captured as:

CSFAi (E) =
1
s
×

n

∑
j=1,n∈[xj ]Ai

|μAi (xj)− νAi (xj)|
|[xj]Ai

| .

The comprehensive accuracy function of granularity Ai is captured as:

CAFAi (E) =
1
s
×

n

∑
j=1,n∈[xj ]Ai

|μAi (xj) + νAi (xj)|
|[xj]Ai

| .

where −1 ≤ CSFAi (E) ≤ 1 and 0 ≤ CAFAi (E) ≤ 1.

With respect to Definition 19, according to references [27,39], we can deduce the following rules.

Definition 19. Let two granularities A1, A2, then we have:

(1) If CSFA1(E) > CSFA2(E), then A2 is smaller than A1, expressed as A1 > A2;
(2) If CSFA1(E) < CSFA2(E), then A1 is smaller than A2, expressed as A1 < A2;
(3) If CSFA1(E) = CSFA2(E), then

(i) If CSFA1(E) = CSFA2(E), then A2 is equal to A1, expressed as A1 = A2;
(ii) If CSFA1(E) > CSFA2(E), then A2 is smaller than A1, expressed as A1 > A2;
(iii) If CSFA1(E) < CSFA2(E), then A1 is smaller than A2, expressed as A1 < A2.
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5.6. Optimal Granularity Selection Algorithm to Derive Three-Way Decisions from MRIFS

Suppose the reduction sets of optimistic and IMRS are AO
i and AI

i respectively. In this
section, we take the reduction set under OMRS as an example to make the result AO

i
′ of optimal

granularity selection.

Algorithm 2. Optimal granularity selection algorithm to derive three-way decisions from MRIFS

Input: DIS = (U, C ∪ D, V, f ), A = {A1, A2, · · · , Am} be m sub-attributes of condition attributes C, ∀Ai ∈ A′,
U/D = {X1, X2, · · · , Xs}, IFS E;
Output: Optimal granularity selection result AO

i
′.

1: compute via Algorithm 1;
2: if |AO

i | > 1
3: for ∀Ai ∈ AO

i
4: compute μ r

∑
i=1

RAO
i

Δ
(E)

(xj), ν r
∑

i=1
RAO

i

Δ
(E)

(xj), μ r
∑

i=1
RAO

i

Δ

(E)
(xj) and ν r

∑
i=1

RAO
i

Δ

(E)
(xj);

5: according (P1)-(B1) and (P2)-(B2), compute POS(XOΔ), NEG(XOΔ), BND(XOΔ), POS(XOΔ),
NEG(XOΔ), BND(XOΔ);
6: if NEG(XOΔ) 	= U or NEG(XOΔ) 	= U

7: compute U/AOΔ
i , CSFAOΔ

i
(E), CAFAOΔ

i
(E) or (U/AOΔ

i ), (CSFAOΔ
i
(E), CAFAOΔ

i
(E);

8: according to Definition 19 to get AO
i
′;

9: return AO
i
′ = Ai;

10: end

11: else

12: return NULL;
13: end

14: end

15: end

16: else

17: return AO
i
′ = AO

i ;
18: end

6. Example Analysis 3 (Continued with Example 2)

In Example 1, only site 1 can be ignored under optimistic and pessimistic multi-granulation
conditions, so it can be determined that site 1 does not need to be evaluated, while sites 2 and 3 need
to be further investigated under the environment of optimistic multi-granulation. At the same time,
with respect to the environment of pessimistic multi-granulation, comprehensive considera- tion site
3 can ignore the assessment and sites 2, 4 and 5 need to be further investigated.

According to Example 1, we can get that the reduction set of OMRS is {A2, A3}, but in the case of
IMRS, there are two reduction sets, which are contradictory. Therefore, two reduction sets should be
reconsidered simultaneously, so the joint reduction set under IMRS is {A2, A4, A5}.

Where the corresponding granularity structures of sites 2, 3, 4 and 5 are divided as follows:

U/A2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/A3 = {{x1, x4, x6}, {x2, x3, x5}, {x8}, {x7, x9, x10}},
U/A4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/A5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.

According to reference [11], we can get:
α = 8−2

(8−2)+(2−0) = 0.75; β = 2−0
(2−0)+(6−2) = 0.33.

The optimal site selection process under optimistic and IMRS is as follows:

(1) Optimal site selection based on OOMRIFS
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According to the Example 2, we can get the values of evaluation functions μOO(xj), (1−πOO(xj)) ·
α, (1−πOO(xj)) · β, μOO(xj), (1−πOO(xj)) · α and (1−πOO(xj)) · β of OOMRIFS, as shown in Table 4.

Table 4. The values of evaluation functions for OOMRIFS.

μOO(xj) (1−πOO(xj))·α (1−πOO(xj))·β μOO(xj) (1−πOO(xj))·α (1−πOO(xj))·β
x1 0.25 0.63 0.2772 0.51 0.5925 0.2607
x2 0.49 0.6525 0.2871 0.51 0.5925 0.2607
x3 0.49 0.6525 0.2871 0.54 0.6675 0.2937
x4 0.25 0.63 0.2772 0.51 0.5925 0.2607
x5 0.49 0.6525 0.2871 0.54 0.6675 0.2937
x6 0.25 0.5325 0.2343 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.54 0.6675 0.2937
x8 0.15 0.4575 0.2013 0.15 0.4575 0.2013
x9 0.15 0.4575 0.2013 0.72 0.63 0.2772
x10 0.67 0.675 0.297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of OOMRIFS by three-way
decisions of the Section 5.1, as follows:

POS(XOO) = φ,
NEG(XOO) = {x1, x4, x7, x8, x9},
BND(XOO) = {x2, x3, x5, x6, x10};
POS(XOO) = {x6, x9},
NEG(XOO) = {x8},
BND(XOO) = {x2, x3, x5}.
In the light of three-way decisions rules based on OOMRIFS, after getting rid of the objects in

the rejection domain, we choose to fuse the objects in the delay domain with those in the acceptance
domain for the optimal granularity selection. Therefore, the new granularities A2, A3 are as follows:

U/AOI
2 = {{x2}, {x3, x5}, {x6}, {x10}},

U/AOI
3 = {{x2, x3, x5}, {x6}, {x10}};

U/AOI
2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x9}, {x10}},

U/AOI
3 = {{x1, x4, x6}, {x2, x3, x5}, {x7, x9, x10}}.

Then, according to Definition 18, we can get:

CSFAOO
2

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|μAi
(xj)−νAi

(xj)|
|[xj ]Ai

|

= 1
4 ×

10
∑

j=1,n∈[xj ]AOO
2

|μ
AOO

2
(xj)−ν

AOO
2

(xj)|
|[xj ]AOO

2
|

= 1
4 × ((0.49− 0.38) + (0.49−0.38)+(0.49−0.38)

2 + (0.25− 0.46) + (0.67− 0.23))

= 0.1125,

CSFAOO
3

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|μAi
(xj)−νAi

(xj)|
|[xj ]Ai

|

= 1
3 ×

10
∑

j=1,n∈[xj ]AOO
3

|μ
AOO

3
(xj)−ν

AOO
3

(xj)|
|[xj ]AOO

3
|

= 1
3 × ((0.25− 0.46) + (0.49−0.38)+(0.49−0.38)+(0.49−0.38)

3 + (0.81− 0.14))

= 0.1133;

Similarly, we have:
CSF

AOO
2

(E) = 0.4, CSF
AOO

3
(E) = 0.3533.
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From the above results, in OOMRIFS, we can see that we can’t get the selection result of sites
2 and 3 only according to the comprehensive score function of granularities A2 and A3. Therefore,
we need to further calculate the comprehensive accuracies to get the results as follows:

CAFAOO
2

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|μAi
(xj)+νAi

(xj)|
|[xj ]Ai

|

= 1
4 ×

10
∑

j=1,n∈[xj ]AOO
2

|μ
AOO

2
(xj)+ν

AOO
2

(xj)|
|[xj ]AOO

2
|

= 1
4 × ((0.49 + 0.38) + (0.49+0.38)+(0.49+0.38)

2 + (0.25 + 0.46) + (0.67 + 0.23))

= 0.8375,

CAFAOO
3

(E) = 1
s ×

n
∑

j=1,n∈[xj ]Ai

|μAi
(xj)+νAi

(xj)|
|[xj ]Ai

|

= 1
3 ×

10
∑

j=1,n∈[xj ]AOO
3

|μ
AOO

3
(xj)+ν

AOO
3

(xj)|
|[xj ]AOO

3
|

= 1
3 × ((0.25 + 0.46) + (0.49+0.38)+(0.49+0.38)+(0.49+0.38)

3 + (0.81 + 0.14))

= 0.8267;

Analogously, we have:
CAF

AOO
2

(E) = 0.87, CAF
AOO

3
(E) = 0.86.

Through calculation above, we know that the comprehensive accuracy of the granularity A3 is
higher, so the site 3 is selected as the selection result.

(2) Optimal site selection based on OIMRIFS

The same as (1), we can get the values of evaluation functions μOI(xj), (1− πOI(xj)) · α, (1−
πOI(xj)) · β, μOI(xj), (1− πOI(xj)) · α and (1− πOI(xj)) · β of OIMRIFS listed in Table 5.

Table 5. The values of evaluation functions for OIMRIFS.

μOI(xj) (1−πOI(xj))·α (1−πOI(xj))·β μOI(xj) (1−πOI(xj))·α (1−πOI(xj))·β
x1 0.25 0.63 0.2772 0.92 0.72 0.3168
x2 0.25 0.63 0.2772 0.54 0.615 0.2706
x3 0.09 0.7125 0.3135 0.54 0.615 0.2706
x4 0.25 0.63 0.2772 0.92 0.72 0.3168
x5 0.09 0.7125 0.3135 0.54 0.615 0.2706
x6 0.15 0.555 0.2442 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.72 0.63 0.2772
x8 0.15 0.4575 0.2013 0.92 0.72 0.3168
x9 0.09 0.7125 0.3135 0.92 0.72 0.3168
x10 0.09 0.7125 0.3135 0.72 0.63 0.2772

We can get decision results of the lower and upper approximations of OIMRIFS by three-way
decisions in the Section 5.2, as follows:

POS(XOI) = φ,
NEG(XOI) = U,
BND(XOI) = φ;
POS(XOI) = {x1, x4, x6, x7, x8, x9, x10},
NEG(XOI) = φ,
BND(XOI) = {x2, x3, x5}.
Hence, in the upper approximations of OIMRIFS, the new granularities A2, A3 are as follows:
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U/AOI
2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},

U/AOI
3 = {{x1, x4, x6}, {x2, x3, x5}, {x8}, {x7, x9, x10}}.

According to Definition 18, we can calculate that
CSFAOI

2
(E) = CSFAOI

3
(E) = 0;

CAFAOI
2
(E) = CAFAOI

3
(E) = 0;

CSF
AOI

2
(E) = 0.6317, CSF

AOI
3
(E) = 0.6783;

CAF
AOI

2
(E) = 0.885, CAF

AOI
3
(E) = 0.905.

In OIMRIFS, the comprehensive score and comprehensive accuracy of the granularity A3 are both
higher than the granularity A2. So, we choose site 3 as the evaluation site.

In reality, we are more inclined to select the optimal granularity in the case of more stringent
requirements. According to (1) and (2), we can find that the granularity A3 is a better choice when
the requirements are stricter in four cases of OMRS. Therefore, we choose site 3 as the optimal
evaluation site.

(3) Optimal site selection based on IOMRIFS

Similar to (1), we can obtain the values of evaluation functions μIO(xj), (1 − π IO(xj)) · α,

(1− π IO(xj)) · β, μIO(xj), (1− π IO(xj)) · α and (1− π IO(xj)) · β of IOMRIFS, as described in Table 6.

Table 6. The values of evaluation functions for IOMRIFS.

μIO(xj) (1−πIO(xj))·α (1−πIO(xj))·β μIO(xj) (1−πIO(xj))·α (1−πIO(xj))·β
x1 0.25 0.51 0.2244 0.51 0.5925 0.2607
x2 0.25 0.51 0.2244 0.51 0.5925 0.2607
x3 0.25 0.51 0.2244 0.54 0.6675 0.2937
x4 0.37 0.72 0.3168 0.37 0.72 0.3168
x5 0.25 0.51 0.2244 0.49 0.63 0.2772
x6 0.25 0.5325 0.2343 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.51 0.645 0.2838
x8 0.15 0.4575 0.2013 0.49 0.63 0.2772
x9 0.67 0.675 0.297 0.72 0.63 0.2772
x10 0.67 0.675 0.297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of IOMRIFS by three-way
decisions in the Section 5.3, as follows:

POS(XIO) = φ,
NEG(XIO) = {x7, x8},
BND(XIO) = {x1, x2, x3, x4, x5, x6, x9, x10};
POS(XIO) = {x6, x9},
NEG(XIO) = φ,
BND(XIO) = {x1, x2, x3, x4, x5, x7, x8, x10}.
Therefore, the granularities A2, A4, A5 can be rewritten as follows:
U/AIO

2 = {{x1, x2, x4}, {x3, x5}, {x6, x9}, {x10}},
U/AIO

4 = {{x1, x2, x3, x5}, {x4}, {x6}, {x9, x10}},
U/AIO

5 = {{x1, x3, x4, x6}, {x2}, {x5}, {x9, x10}};
U/AIO

2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/AIO

4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/AIO

5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.
According to Definition 18, one can see that the results are captured as follows:
CSFAIO

2
(E) = 0.0454, CSFAIO

4
(E) = −0.0567, CSFAIO

5
(E) = −0.0294;

CSF
AIO

2
(E) = 0.3058, CSF

AIO
4
(E) = 0.2227, CSF

AIO
5
(E) = 0.2813.
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In summary, the comprehensive score function of the granularity A2 is higher than the granularity
A3 in IOMRIFS, so we choose site 2 as the result of granularity selection.

(4) Optimal site selection based on IIMRIFS

In the same way as (1), we can get the values of evaluation functions μI I(xj), (1− π I I(xj)) · α,

(1− π I I(xj)) · β, μI I(xj), (1− π I I(xj)) · α and (1− π I I(xj)) · β of IIMRIFS, as shown in Table 7.

Table 7. The values of evaluation functions for IIMRIFS.

μII(xj) (1−πII(xj))·α (1−πII(xj))·β μII(xj) (1−πII(xj))·α (1−πII(xj))·β
x1 0.25 0.63 0.2772 0.92 0.72 0.3168
x2 0.09 0.7125 0.3135 0.54 0.615 0.2706
x3 0.09 0.7125 0.3135 0.92 0.72 0.3168
x4 0.25 0.63 0.2772 0.92 0.72 0.3168
x5 0.09 0.7125 0.3135 0.54 0.615 0.2706
x6 0.09 0.7125 0.3135 0.92 0.72 0.3168
x7 0.09 0.7125 0.3135 0.92 0.72 0.3168
x8 0.09 0.7125 0.3135 0.92 0.72 0.3168
x9 0.15 0.4575 0.2013 0.92 0.72 0.3168
x10 0.67 0.675 0.297 0.72 0.63 0.2772

We can get decision results of the lower and upper approximations of IIMRIFS by three-way
decisions in the Section 5.4, as follows:

POS(XII) = φ,
NEG(XII) = {x1, x2, x3, x4, x5, x6, x7, x8, x9},
BND(XII) = {x10};
POS(XII) = {x1, x3, x4, x6, x7, x8, x9, x10},
NEG(XII) = φ,
BND(XII) = {x2, x5}.
Therefore, the granularity structures of A2, A4, A5 can be rewritten as follows:
U/AII

2 = U/AII
4 = U/AII

5 = {x10};
U/AII

2 = {{x1, x2, x4}, {x3, x5, x7}, {x6, x8, x9}, {x10}},
U/AII

4 = {{x1, x2, x3, x5}, {x4}, {x6, x7, x8}, {x9, x10}},
U/AII

5 = {{x1, x3, x4, x6}, {x2, x7}, {x5, x8}, {x9, x10}}.
According to Definition 18, one can see that the results are captured as follows:
CSFAII

2
(E) = CSFAII

4
(E) = CSFAII

5
(E) = 0.44;

CAFAII
2
(E) = CAFAII

4
(E) = CAFAII

5
(E) = 0.9;

CSF
AII

2
(E) = 0.7067, CSF

AII
4
(E) = 0.7675, CSF

AII
5
(E) = 0.69;

CAF
AII

2
(E) = 0.9067, CAF

AII
4
(E) = 0.9275, CAF

AII
5
(E) = 0.91.

In IIMRIFS, the values of the comprehensive score and comprehensive accuracy of granularity A4

are higher than A2 and A5, so site 4 is chosen as the evaluation site.
Considering (3) and (4) synthetically, we find that the results of granularity selection in IOMRIFS

and IIMRIFS are inconsistent, so we need to further compute the comprehensive accuracies of IIMRIFS.
CAFAIO

2
(E) = 0.7896, CAFAIO

4
(E) = 0.8125, CAFAIO

5
(E) = 0.7544;

CAF
AIO

2
(E) = 0.8725, CAF

AIO
4
(E) = 0.886, CAF

AIO
5
(E) = 0.8588.

Through the above calculation results, we can see that the comprehensive score and
comprehensive accuracy of granularity A4 are higher than A2 and A5 in the case of pessimistic
multi- granulation when the requirements are stricter. Therefore, the site 4 is eventually chosen as the
optimal evaluation site.
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7. Conclusions

In this paper, we propose two new granularity importance degree calculating methods among
multiple granularities, and a granularity reduction algorithm is further developed. Subsequently,
we design four novel MRIFS models based on reduction sets under optimistic and IMRS, i.e., OOMRIFS,
OIMRIFS, IOMRIFS, and IIMRIFS, and further demonstrate their relevant properties. In addition,
four three-way decisions models with novel MRIFS for the issue of internal redundant objects
in reduction sets are constructed. Finally, we designe the comprehensive score function and the
comprehensive precision function for the optimal granularity selection results. Meanwhile, the validity
of the proposed models is verified by algorithms and examples. The works of this paper expand the
application scopes of MRIFS and three-way decisions theory, which can solve issues such as spam
e-mail filtering, risk decision, investment decisions, and so on. A question worth considering is how to
extend the methods of this article to fit the big data environment. Moreover, how to combine the fuzzy
methods based on triangular or trapezoidal fuzzy numbers with the methods proposed in this paper is
also a research problem. These issues will be investigated in our future work.
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Abstract: The definition of a Detour–Harary index is ωH(G) = 1
2 ∑u,v∈V(G)

1
l(u,v|G)

, where G is a
simple and connected graph, and l(u, v|G) is equal to the length of the longest path between vertices
u and v. In this paper, we obtained the maximum Detour–Harary index about unicyclic graphs,
bicyclic graphs, and cacti, respectively.

Keywords: Detour–Harary index; maximum; unicyclic; bicyclic; cacti

1. Introduction

In recent years, chemical graph theory (CGT) has been fast-growing. It helps researchers to
understand the structural properties of a molecular graph, for example, References [1–3].

A simple graph is an undirected graph without multiple edges and loops. Let G be a simple and
connected graph, and V(G) and E(G) be the vertex set and edge set of G, respectively. For vertices
u, v of G, dG(v1, v2) (or d(v1, v2) for short) is the distance between v1 and v2, which equals to the length
of the shortest path between v1 and v2 in G; l(v1, v2|G) (or l(v1, v2) for short) is the detour distance
between v1 and v2, which equals to the longest path of a shortest path between v1 and v2 in G.

G[S] is an induced subgraph of G, the vertex set is S, and the edge set is the set of edges of G and
both ends in S. G− S is the induced subgraph G[V(G) \ S]; when S = {w}, we write G− w for short.

In 1947, Wiener introduced the first molecular topological index–Wiener index. The Wiener index
has applications in many fields, such as chemistry, communication, and cryptology [4–7]. Moreover,
the Wiener index was studied from a purely graph-theoretical point of view [8–10]. In Reference [11],
Wiener gave the definition of the Wiener index:

W(G) =
1
2 ∑

u,v∈V(G)

d(u, v).

The Harary index was independently introduced by Plavšić et al. [12] and by Ivanciuc et al. [13]
in 1993. In References [12,13], they gave the definition of the Harary index:

H(G) =
1
2 ∑

u,v∈V(G)

1
d(u, v)

.

Symmetry 2018, 10, 608; doi:10.3390/sym10110608 www.mdpi.com/journal/symmetry232
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In Reference [13], Ivanciuc gave the definition of the Detour index:

ω(G) =
1
2 ∑

u,v∈V(G)

l(u, v|G).

Lukovits [14] investigated the use of the Detour index in quantitative structure–activity
relationship (QSAR) studies. Trinajstić and his collaborators [15] analyzed the use of the Detour index,
and compared its application with Wiener index. They found that the Detour index in combination
with the Wiener index is very efficient in the structure-boiling point modeling of acyclic and cyclic
saturated hydrocarbons.

In this paper, we introduce a new graph invariant reciprocal to the Detour index, namely,
the Detour–Harary index, as

ωH(G) =
1
2 ∑

u,v∈V(G)

1
l(u, v|G)

.

Let G be a simple and connected graph, V(G) = n and E(G) = m. If m = n− 1, then G is a tree;
if m = n, then G is a unicyclic graph; if m = n + 1, then G is a bicyclic graph.

Suppose Un(Bn, respectively) is the set of unicyclic (bicyclic, respectively) graphs set with n
vertices. Any bicyclic graph G can be obtained from θ(p, q, l)-graph or θ(p, q, l)-graph G0 by attaching
trees to the vertices, where p, q, l ≥ 1, and at most one of them is equal to 1. We denote G0 be the kernel
of G (Figure 1).

If each block of G is either a cycle or an edge, then we called graph G a cactus graph. Suppose Ck
n

be the set of all cacti with n-vertices and k cycles. Obviously, C0
n are trees, C1

n are unicyclic graphs, and
C2

n are bicyclic graphs with exactly two cycles.

• • • •· · ·Cp Cq
v1 vl

∞(p, q, l)

• • • •· · ·
• • • • • •· · ·�
��

�
��

�
��

�
��• • • •· · ·

u v

Pp+1

Pl+1

Pq+1

θ(p, q, l)

Figure 1. ∞-graph and θ-graph.

There are more results about cacti and bicyclic graphs [16–25]. More results about Harary
index can be found in References [26–34], and more results about Detour index can be found in
References [14,35–39].

Note that the Detour–Harary index is the same as Harary index for a tree graph; we study the
Detour–Harary index of topological structures containing cycles. In this paper, we gave the maximum
Detour–Harary index among Un,Bn and Ck

n (k ≥ 3), respectively.

2. Preliminaries

In this section, we introduce useful lemmas and graph transformations.

Lemma 1. [40] Let G be a connected graph, x be a cut-vertex of G, and u and v be vertices occurring in different
components that arise upon the deletion of vertex x. Then

l(u, v|G) = l(u, x|G) + l(x, v|G).
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2.1. Edge-Lifting Transformation

The edge-lifting transformation [41]. Let G1 and G2 be two graphs with n1 ≥ 2 and n2 ≥ 2
vertices. u0 ∈ V(G1) and v0 ∈ V(G2), G is the graph obtained from G1 and G2 by adding an edge
between u0 and v0. G′ is the graph obtained by identifying u0 to v0 and adding a pendent edge to
u0(v0). We called graph G′ the edge-lifting transformation of graph G (see Figure 2).

• •G1 G2u0 v0

G

•

•w0

u0G′
1 G′

2

G′

−−−−−−−−−−−−−−−−−→
Edge-lifting transformation

Figure 2. Edge-lifting transformation.

Lemma 2. Let graph G′ be the edge-lifting transformation of graph G. Then ωH(G) < ωH(G′).

Proof. By the definition of ωH(G) and Lemma 1,

ωH(G) = ωH(G1) + ωH(G2) + ∑
x∈V(G1)\{u0}

1
l(v0, x|G)

+ ∑
y∈V(G2)\{v0}

1
l(u0, y|G)

+
1

l(u0, v0|G)
+ ∑

x∈V(G1)\{u0}
y∈V(G2)\{v0}

1
l(x, y|G)

= ωH(G1) + ωH(G2) + ∑
x∈V(G1)\{u0}

1
1 + l(u0, x|G)

+ ∑
y∈V(G2)\{v0}

1
1 + l(v0, y|G)

+ 1 + ∑
x∈V(G1)\{u0}
y∈V(G2)\{v0}

1
l(u0, x|G) + 1 + l(v0, y|G)

,

ωH(G′) = ωH(G′1) + ωH(G′2) + ∑
x′∈V(G′1)\{u0}

1
l(w0, x′|G′) + ∑

y′∈V(G′2)\{u0}

1
l(w0, y′|G′)

+
1

l(u0, w0|G′) + ∑
x′∈V(G′1)\{u0}
y′∈V(G′2)\{u0}

1
l(x′, y′|G′)

= ωH(G′1) + ωH(G′2) + ∑
x′∈V(G′1)\{u0}

1
1 + l(u0, x′|G′) + ∑

y′∈V(G′2)\{u0}

1
1 + l(u0, y′|G′)

+ 1 + ∑
x′∈V(G′1)\{u0}
y′∈V(G′2)\{u0}

1
l(u0, x′|G′) + l(u0, y′|G′) .

Obviously,

ωH(G1) = ωH(G′1);
ωH(G2) = ωH(G′2);

l(u0, x|G) = l(u0, x′|G′), where x ∈ V(G1) \ {u0} and x′ ∈ V(G′1) \ {u0};
l(v0, y|G) = l(u0, y′|G′), where y ∈ V(G2) \ {v0} and y′ ∈ V(G′2) \ {u0}.
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Then

ωH(G)−ωH(G′) = ∑
x∈V(G1)\{u0}
y∈V(G2)\{v0}

1
l(x, u0|G) + 1 + l(v0, y|G)

− ∑
x′∈V(G′1)\{u0}
y′∈V(G′2)\{u0}

1
l(x′, u0|G′) + l(u0, y′|G′) < 0.

2.2. Cycle-Edge Transformation

Suppose G ∈ C l
n is a cactus as shown in Figure 3. Cp = v1v2 · · · vpv1 is a cycle of G; Gi is a cactus,

and vi ∈ V(Gi), 1 ≤ i ≤ p; Wvi = NG(vi) ∩ V(Gi), 1 ≤ i ≤ p. G′ is the graph obtained from G by
deleting the edges from vi to Wvi (2 ≤ i ≤ p), while adding the edges from v1 to Wvi (2 ≤ i ≤ p).

We called graph G′ the cycle-edge transformation of graph G (see Figure 3).

•

•

•

•
···

v1

v2

v3

vp

G1

G2

G3

Gp

•

•

•

•
···

···v1

v2

v3

vp

G1

G2 − v2

Gp − vp

−−−−−−−−−−−−−−−−−→
Cycle edge transformation

G G′

Figure 3. Cycle-edge transformation.

Lemma 3. Suppose G ∈ C l
n is a cactus, p ≥ 3, and G′ is the cycle-edge transformation of G (see Figure 3).

Then, ωH(G) ≤ ωH(G′), and the equality holds if and only if G ∼= G′.

Proof. Let Vi = V(Gi − vi), 1 ≤ i ≤ p. By the definition of ωH(G) and Lemma 1,

ωH(G) = ωH(Cp) +
1
2

p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G)

+
1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, y|G)

+
p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, y|G)

= ωH(Cp) +
1
2

p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G)

+
1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, vi|G) + l(vi, vj|G) + l(vj, y|G)

+
p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, vi|G) + l(vi, y|G)

,
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ωH(G′) = ωH(Cp) +
1
2

p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G′) +

1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, y|G′) +

p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, y|G′)

= ωH(Cp) +
1
2

p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G′) +

1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, v1|G′) + l(v1, y|G′)

+
p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, v1|G′) + l(v1, y|G′) .

Obviously,

p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G)

=
p

∑
i=1

∑
x,y∈Vi

1
l(x, y|G′) ;

l(x, vi|G) = l(x, v1|G′), where x ∈ Vi;

l(vj, y|G) = l(v1, y|G′), where y ∈ Vj;
p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, vi|G) + l(vi, y|G)

=
p

∑
i=1

∑
x∈Vi

y∈V(Cp)

1
l(x, v1|G′) + l(v1, y|G′) .

Then

ωH(G)−ωH(G′) = 1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, vi|G) + l(vi, vj|G) + l(vj, y|G)

− 1
2

p

∑
i=1

p

∑
j=1

∑
x∈Vi
y∈Vj
i 	=j

1
l(x, v1|G′) + l(v1, y|G′) < 0.

The proof is completed.

2.3. Cycle Transformation

Suppose G ∈ C l
n is a cactus, as shown in Figure 4. Cp = v1v2 · · · vpv1 is a cycle of G, and G1 is a

simple and connected graph, v1 ∈ V(G1). G′ is the graph obtained from G by deleting the edges from
vi to vi+1(2 ≤ i ≤ p− 1), meanwhile, adding the edges from v1 to vi(3 ≤ i ≤ p− 1).

We called graph G′ is the cycle transformation of G (see Figure 4).

•

•

•

•

v1

v2
v3

vp
G1

···
•

•

• • • •···

v1

v2

vp
v3 v4 vp−1

G1
�

�
�

�
�

�

�
�
�

�
�
�

�
�
�

−−−−−−−−−−−−−→
Cycle transformation

G G′

Figure 4. Cycle transformation.

236



Symmetry 2018, 10, 608

Lemma 4. Suppose graph G is a simple and connected graph with p ≥ 4, and G′ is the cycle transformation of
G(see Figure 4). Then, ωH(G) < ωH(G′).

Proof. Let V(Cp) = {v1, v2, · · · , vp}, V1 = V(Cp − v1), V2 = V(G1 − v1). By the definition of ωH(G),

ωH(G) = ωH(G1) + ∑
x,y∈V(Cp)

1
l(x, y|G)

+ ∑
x∈V1
y∈V2

1
l(x, y|G)

= ωH(G1) + ∑
x,y∈V(Cp)

1
l(x, y|G)

+ ∑
x∈V1,
y∈V2

1
l(x, v1|G) + l(v1, y|G)

,

ωH(G′) = ωH(G1) + ∑
x,y∈V(Cp)

1
l(x, y|G′) + ∑

x∈V1,
y∈V2

1
l(x, y|G′)

= ωH(G1) + ∑
x,y∈V(Cp)

1
l(x, y|G′) + ∑

x∈V1,
y∈V2

1
l(x, v1|G′) + l(v1, y|G′) ,

Obviously,

l(x, y|G) ≥ l(x, y|G′), where x, y ∈ V1;

l(x, v1|G) > 2 ≥ l(x, v1|G′), where x ∈ V1;

l(v1, y|G) = l(v1, y|G′), where y ∈ V2.

Then

ωH(G)−ωH(G′) = ( ∑
x,y∈V(Cp)

1
l(x, y|G)

− ∑
x,y∈V(Cp)

1
l(x, y|G′) )

+ ( ∑
x∈V1,
y∈V2

1
l(x, v1|G) + l(v1, y|G)

− ∑
x∈V1,
y∈V2

1
l(x, v1|G′) + l(v1, y|G′) ) < 0.

3. Maximum Detour–Harary Index of Unicyclic Graphs

For any unicyclic graph G ∈ Un, by repeating edge-lifting transformations, cycle-edge
transformations, cycle transformations, or any combination of these on G, we get U1 from G, where
graph U1 is defined in Figure 5.

•

•

•

�
�

�

�
�

�

�
�
···
}

n− 3
v1

v2

v3

U1

Figure 5. Unicyclic graph U1.
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Theorem 1. Let U1 be defined as Figure 5. Then, U1 is the unique graph that attains the maximum
Detour–Harary index among all graphs in Un(n ≥ 3), and ωH(U1) =

3n2−n−6
12 .

Proof. By Lemmas 2–4, U1 is the unique graph which attains the maximum Detour–Harary index of
all graphs in Un. We then calculate the value ωH(U1).

Let V(U1) = {v1, v2, · · · , vn}. It can be checked directly that

n

∑
i=2

1
l(v1, vi|U1)

= n− 2;

∑
1≤i≤n,i 	=2

1
l(v2, vi|U1)

= ∑
1≤j≤n,j 	=3

1
l(v3, vj|U1)

=
1
2
+

1
2
+

n− 3
3

=
n
3

;

∑
1≤i≤n,i 	=4

1
l(v4, vi|U1)

= 1 +
n− 4

2
+

2
3
=

3n− 2
6

.

Then

ωH(U1) =
1
2
[

n

∑
i=2

1
l(v1, vi|U1)

+ 2 ∑
1≤i≤n,i 	=2

1
l(v2, vi|U1)

+ (n− 3)
n

∑
i=1

1
l(v4, vi|U1)

]

=
3n2 − n− 6

12
.

The proof is completed.

4. Maximum Detour–Harary Index of Bicyclic Graphs

For any bicyclic graph G ∈ ∞(p, q, l) with exactly two cycles, by repeating edge-lifting
transformations, cycle-edge transformations, cycle transformations, or any combination of these
on G, we get B1 from G, where graph B1 is defined in Figure 6.

For any bicyclic graph G ∈ θ(p, q, l) with n vertices, by repeating edge-lifting transformations on
G, we get B2 from G, where graph B2 is defined in Figure 7.
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Figure 6. Bicyclic graph B1.
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Figure 7. Bicyclic graph B2(t ≥ 2).

Theorem 2. Let B2, B3 be defined as Figures 7 and 8. Then, ωH(B2) ≤ ωH(B3), and the equality holds if and
only if B2 ∼= B3.
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Figure 8. Bicyclic graph B2(t ≥ 2).

Proof. Case 1. B2 = B3. Obviously, ωH(B2) = ωH(B3).
Case 2. B2 	= B3 and p = q = 3, t = 2(see Figures 7 and 8).
Let V1 = {v1, v2, v3, u3}, Wvi = {w | wvi ∈ E(B2) and dB2(w) = 1} and |Wvi | = ki,

Wu3 = {w | wu3 ∈ E(B2) and dB2(w) = 1} and |Wu3 | = l3, ki + l3 = n− 4 for 1 ≤ i ≤ 3.

ωH(B2) = ∑
x,y∈V1

1
l(x, y|B2)

+ ∑
x∈V1,

y∈V(B2)−V1

1
l(x, y|B2)

+ ∑
x,y∈V(B2)−V1

1
l(x, y|B2)

,

ωH(B3) = ∑
x,y∈V1

1
l(x, y|B3)

+ ∑
x∈V1,

y∈V(B3)−V1

1
l(x, y|B3)

+ ∑
x,y∈V(B3)−V1

1
l(x, y|B3)

.

Easily,

∑
x,y∈V1

1
l(x, y|B2)

= ∑
x,y∈V1

1
l(x, y|B3)

(1)
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∑
x∈V1,

y∈V(B2)−V1

1
l(x, y|B2)

= ∑
w∈V(B2)−V1

1
l(v1, w|B2)

+ ∑
w∈V(B2)−V1

1
l(v2, w|B2)

+ ∑
w∈V(B2)−V1

1
l(v3, w|B2)

+ ∑
w∈V(B2)−V1

1
l(u3, w|B2)

= (1 · k1 +
1
4
· k2 +

1
3
· k3 +

1
4
· l3) + (

1
4
· k1 + 1 · k2 +

1
4
· k3 +

1
4
· l3)

+ (
1
3
· k1 +

1
4
· k2 + 1 · k3 +

1
4
· l3) + (

1
4
· k1 +

1
4
· k2 +

1
4
· k3 + 1 · l3)

=
11(k1 + k3)

6
+

7(k2 + l3)
4

,

∑
x∈V1,

y∈V(B3)−V1

1
l(x, y|B3)

= ∑
w∈V(B3)−V1

1
l(v1, w|B3)

+ ∑
w∈V(B3)−V1

1
l(v2, w|B3)

+ ∑
w∈V(B3)−V1

1
l(v3, w|B3)

+ ∑
w∈V(B3)−V1

1
l(u3, w|B3)

= 1 · (n− 4) +
1
4
· (n− 4) +

1
3
· (n− 4) +

1
4
· (n− 4)

=
11(n− 4)

6

=
11(k1 + k2 + k3 + l3)

6
, (since ki + l3 = n− 4 for 1 ≤ i ≤ 3)

Then,

∑
x∈V1,

y∈V(B2)−V1

1
l(x, y|B2)

− ∑
x∈V1,

y∈V(B3)−V1

1
l(x, y|B3)

=
1
12

(k2 + l3) ≥ 0, (2)

the equality holds if and only if k2 = l3 = 0.
On the other hand 1

l(x,y|B2)
≤ 1

l(x,y|B3)
= 1

2 , where x, y ∈ V(B2)−V1, then

∑
x,y∈V(B3)−V1

1
l(x, y|B2)

≤ ∑
x,y∈V(B3)−V1

1
l(x, y|B3)

, (3)

the equality holds if k1 = n− 4 or k2 = n− 4 or k3 = n− 4 or l3 = n− 4.
By (1)–(3) and B2 	= B3, we have ωH(B2) < ωH(B3).
Case 3. B2 	= B3 and p + q− t > 4.
It can be checked directly that

ωH(B2) ≤ (1 + 1 + · · ·+ 1)︸ ︷︷ ︸+ 1
2 (

n−p−q+t
2 ) + 1

4
[
(n

2)− (n− p− q + t)− (n−p−q+t
2 )

]
,

n− p− q + t
ωH(B3) = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸+ 1

2 [1 + (n−4
2 )] + 1

3 [5 + (n− 4)] + 1
4 [2(n− 4)].

n− 4
B2, B3 are bicyclic graphs and | V(B2) |=| V(B3) |= n. Since p + q− t > 4, then n− p− q + t ≤

n− 5 and (n−p−q+t
2 ) < (n−4

2 ), we have ωH(B2) < ωH(B3).
The proof is completed.

Theorem 3. Let B1, B3 be defined as Figures 6 and 8. Then,

max{ωH(Bn)} =
{

ωH(B3) =
13
6 , if n = 4,

ωH(B1) = ωH(B3) =
3n2−5n−2

12 , if n ≥ 5.
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Proof. Let G ∈ ∞(p, q, l), by Lemmas 2–4, we have ωH(G) ≤ ωH(B1), and the equality holds if and
only if G ∼= B1.

For any bicyclic graph with G ∈ θ(p, q, l), by Lemmas 2–4 and Theorem 2, we have
ωH(G) ≤ ωH(B3), and the equality holds if and only if G ∼= B3. Thus, max{ωH(Bn)} =

max{ωH(B1), ωH(B3)}.
It can be checked directly that

ωH(B1) = (n− 5) +
1
2
[

(
n− 5

2

)
+ 6] +

1
3
[4(n− 5)] +

1
4
· 4 =

3n2 − 5n− 2
12

, n ≥ 5;

ωH(B3) = (n− 4) +
1
2

(
n− 4

2

)
+

1
3
(n− 4) +

1
4
[2(n− 4)] =

3n2 − 5n− 2
12

, n ≥ 4.

Therefore

max{ωH(Bn)} =
{

ωH(B3) =
13
6 , if n = 4,

ωH(B1) = ωH(B3) =
3n2−5n−2

12 , if n ≥ 5.

The proof is completed.

5. Maximum Detour–Harary Index of Cacti

For any cactus graph G ∈ Ck
n(k ≥ 3), by repeating edge-lifting transformations, cycle-edge

transformations, cycle transformations, or any combination of these on G, we get C1 from G,
where graph C1 is defined in Figure 9.

• •
•

•
•

•
•

• •

· · ·

· · ·

v1
v2

v3

v4

v5

v2k

v2k+1

v2k+2 vn
Figure 9. Cactus graph C1(k ≥ 3).

Theorem 4. Let C1 be defined as Figure 9. Then, C1 is the unique cactus graph in Ck
n(k ≥ 3) that attains the

maximum Detour–Harary index, and ωH(C1) =
3n2+2k2−4nk+3n−2k−6

12 .

Proof. By Lemmas 2–4, C1 is the unique graph that attains the maximum Detour–Harary index of all
graphs in Ck

n(k ≥ 3).
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Let V(C1) = {v1, v2, · · · , vn}, and it can be checked directly that

n

∑
i=2

1
l(v1, vi|C1)

= 1 · (n− 2k− 1) +
1
2
· 2k = n− k− 1;

∑
1≤i≤n,i 	=2

1
l(v2, vi|C1)

=
1
2
· 2 + 1

3
· (n− 2k− 1) +

1
4
· (2k− 2) =

1
3

n− 1
6

k +
1
6

;

n−1

∑
j=1

1
l(vn, vj|C1)

= 1 +
1
2
· (n− 2k− 2) +

1
3
· 2k =

1
2

n− 1
3

k.

Then,

ωH(C1) =
1
2
[(n− k− 1) + 2k · (1

3
n− 1

6
k +

1
6
) + (n− 2k− 1) · (1

2
n− 1

3
k)]

=
3n2 + 2k2 − 4nk + 3n− 2k− 6

12
.

The proof is completed.

Author Contributions: Conceptualization, W.F. and W.-H.L.; methodology, F.-Y.C.; Z.-J.X. and J.-B.L.;
writing—original draft preparation, W.F. and Z.-M.H; writing—review and editing, W.-H.L.

Funding: This research was funded by NSFC Grant (No.11601001, No.11601002, No.11601006).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Imran, M.; Ali, M.A.; Ahmad, S.; Siddiqui, M.K.; Baig, A.Q. Topological sharacterization of the symmetrical
structure of bismuth tri-iodide. Symmetry 2018, 10, 201. [CrossRef]

2. Liu, J.; Siddiqui, M.K.; Zahid, M.A.; Naeem, M.; Baig, A.Q. Topological Properties of Crystallographic
Structure of Molecules. Symmetry 2018, 10, 265. [CrossRef]

3. Shao, Z.; Siddiqui, M.K.; Muhammad, M.H. Computing zagreb indices and zagreb polynomials for
symmetrical nanotubes. Symmetry 2018, 10, 244. [CrossRef]

4. Dobrynin, A.; Entringer, R.; Gutman, I. Wiener Index of Trees: Theory and Applications. Acta Appl. Math.
2001, 66, 211–249. [CrossRef]

5. Alizadeh, Y.; Andova, V.; Zar, S.K.; Skrekovski, R.V. Wiener dimension: Fundamental properties and
(5,0)-nanotubical fullerenes. MATCH Commun. Math. Comput. Chem. 2014, 72, 279–294.

6. Needham, D.E.; Wei, I.C.; Seybold, P.G. Molecular modeling of the physical properties of alkanes. J. Am.
Chem. Soc. 1988, 110, 4186–4194. [CrossRef]

7. Vijayabarathi, A.; Anjaneyulu, G.S.G.N. Wiener index of a graph and chemical applications. Int. J.
ChemTech Res. 2013, 5, 1847–1853.

8. Gutman, I.; Cruz, R.; Rada, J. Wiener index of Eulerian graphs. Discret. Appl. Math. 2014, 162, 247–250.
[CrossRef]

9. Lin, H. Extremal Wiener index of trees with given number of vertices of even degree. MATCH Commun.
Math. Comput. Chem. 2014, 72, 311–320.

10. Lin, H. Note on the maximum Wiener index of trees with given number of vertices of maximum degree.
MATCH Commun. Math. Comput. Chem. 2014, 72, 783–790.

11. Wiener, H. Structural determination of paraffin boiling points. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef]
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Abstract: The concept of quantum B-algebra was introduced by Rump and Yang, that is, unified
algebraic semantics for various noncommutative fuzzy logics, quantum logics, and implication logics.
In this paper, a new notion of q-filter in quantum B-algebra is proposed, and quotient structures
are constructed by q-filters (in contrast, although the notion of filter in quantum B-algebra has been
defined before this paper, but corresponding quotient structures cannot be constructed according to
the usual methods). Moreover, a new, more general, implication algebra is proposed, which is called
basic implication algebra and can be regarded as a unified frame of general fuzzy logics, including
nonassociative fuzzy logics (in contrast, quantum B-algebra is not applied to nonassociative fuzzy
logics). The filter theory of basic implication algebras is also established.

Keywords: fuzzy implication; quantum B-algebra; q-filter; quotient algebra; basic implication algebra

1. Introduction

For classical logic and nonclassical logics (multivalued logic, quantum logic, t-norm-based fuzzy
logic [1–6]), logical implication operators play an important role. In the study of fuzzy logics, fuzzy
implications are also the focus of research, and a large number of literatures involve this topic [7–16].
Moreover, some algebraic systems focusing on implication operators are also hot topics. Especially
with the in-depth study of noncommutative fuzzy logics in recent years, some related implication
algebraic systems have attracted the attention of scholars, such as pseudo-basic-logic (BL) algebras,
pseudo- monoidal t-norm-based logic (MTL) algebras, and pseudo- B, C, K axiom (BCK)/ B, C, I axiom
(BCI) algebras [17–23] (see also References [5–7]).

For formalizing the implication fragment of the logic of quantales, Rump and Yang proposed the
notion of quantum B-algebras [24,25], which provide a unified semantic for a wide class of nonclassical
logics. Specifically, quantum B-algebras encompass many implication algebras, like pseudo-BCK/BCI
algebras, (commutative and noncommutative) residuated lattices, pseudo- MV/BL/MTL algebras,
and generalized pseudo-effect algebras. New research articles on quantum B-algebras can be found in
References [26–28]. Note that all hoops and pseudo-hoops are special quantum B-algebras, and they
are closely related to L-algebras [29].

Although the definition of a filter in a quantum B-algebra is given in Reference [30], quotient
algebraic structures are not established by using filters. In fact, filters in special subclasses of quantum
B-algebras are mainly discussed in Reference [30], and these subclasses require a unital element. In
this paper, by introducing the concept of a q-filter in quantum B-algebras, we establish the quotient
structures using q-filters in a natural way. At the same time, although quantum B-algebra has generality,
it cannot include the implication structure of non-associative fuzzy logics [31,32], so we propose a wider
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concept, that is, basic implication algebra that can include a wider range of implication operations,
establish filter theory, and obtain quotient algebra.

2. Preliminaries

Definition 1. Let (X, ≤) be partially ordered set endowed with two binary operations→ and � [24,25]. Then,
(X,→, �, ≤) is called a quantum B-algebra if it satisfies: ∀x, y, z∈X,

(1) y→z ≤ (x→y)→(x→z);
(2) y�z ≤ (x�y) � (x�z);
(3) y ≤ z⇒ x→y ≤ x→z;
(4) x ≤ y→z⇐⇒ y ≤ x�z.

If u∈X exists, such that u→x = u�x = x for all x in X, then u is called a unit element of X. Obviously, the
unit element is unique. When a unit element exists in X, we call X unital.

Proposition 1. An algebra structure (X,→, �,≤) endowed with a partially order≤ and two binary operations
→ and � is a quantum B-algebra if and only if it satisfies [4]: ∀x, y, z∈X,

(1) x→(y�z) = y�(x→z);
(2) y ≤ z⇒ x→y ≤ x→z;
(3) x ≤ y→z⇐⇒ y ≤ x�z.

Proposition 2. Let (X,→, �, ≤) be a quantum B-algebra [24–26]. Then, (∀ x, y, z∈X)

(1) y ≤ z⇒ x�y ≤ x�z;
(2) y ≤ z⇒ z�x ≤ y�x;
(3) y ≤ z⇒ z→x ≤ y→x;
(4) x ≤ (x�y)→y, x ≤ (x→y)�y;
(5) x→y = ((x→y)�y)→y, x�y = ((x�y)→y)�y;
(6) x→y ≤ (y→z)�(x→z);
(7) x�y ≤ (y�z)→(x�z);
(8) assume that u is the unit of X, then u ≤ x�y⇐⇒ x ≤ y⇐⇒ u ≤ x→y;
(9) if 0∈X exists, such that 0 ≤ x for all x in X, then 0 = 0�0 = 0→0 is the greatest element (denote by 1),

and x→1 = x�1=1 for all x∈X;
(10) if X is a lattice, then (x ∨ y)→z = (x→z)∧(y→z), (x∨y)�z = (x�z) ∨(y�z).

Definition 2. Let (X, ≤) be partially ordered set and Y⊆ X [24]. If x ≥ y∈Y implies x∈Y, then Y is called to be
an upper set of X. The smallest upper set containing a given x∈X is denoted by ↑x. For quantum B-algebra X,
the set of upper sets is denoted by U(X). For A, B∈U(X), define

A·B = {x∈X| ∃b∈B: b→x∈A}.

We can verify that A·B = {x∈X|∃a∈A: a�x∈B} = {x∈X|∃a∈A, b∈B: a≤b→x} = {x∈X|∃a∈A, b∈B: b
≤ a�x}.

Definition 3. Let A be an empty set, ≤ be a binary relation on A [17,18],→ and � be binary operations on
A, and 1 be an element of A. Then, structure (A,→, �, ≤, 1) is called a pseudo-BCI algebra if it satisfies the
following axioms: ∀ x, y, z∈A,

(1) x→y ≤ (y→z)�(x→z), x�y ≤ (y�z)→(x�z),
(2) x ≤ (x�y)→y, x ≤ (x→y)�y;
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(3) x ≤ x;
(4) x ≤ y, y ≤ x⇒ x = y;
(5) x ≤ y⇐⇒ x→y = 1⇐⇒ x�y = 1.

If pseudo-BCI algebra A satisfies: x→1 = 1 (or x�1 = 1) for all x∈A, then A is called a pseudo-BCK
algebra.

Proposition 3. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra [18–20]. We have (∀x, y, z∈A)

(1) if 1 ≤ x, then x = 1;
(2) if x ≤ y, then y→z ≤ x→z and y�z ≤ x�z;
(3) if x ≤ y and y ≤ z, then x ≤ z;
(4) x→(y�z) = y�(x→z);
(5) x ≤ y→z⇐⇒ y ≤ x�z;
(6) x→y ≤ (z→x)→(z→y); x�y ≤ (z�x)�(z�y);
(7) if x ≤ y, then z→x ≤ z→y and z�x ≤ z�y;
(8) 1→x = 1�x =x;
(9) y→x = ((y→x)�x)→x, y�x = ((y�x)→x)� x;
(10) x→y ≤ (y→x) �1, x�y ≤ (y�x)→1;
(11) (x→y)→1 = (x→1)�(y→1), (x�y)�1 = (x�1)→(y�1);
(12) x→1 = x�1.

Proposition 4. Let (A,→, �, ≤, 1) be a pseudo-BCK algebra [17], then (∀x, y∈A): x ≤ y→x, x ≤ y�x.

Definition 4. Let X be a unital quantum B-algebra [24]. If there exists x∈X, such that x→u = x�u = u, then
we call that x integral. The subset of integral element in X is denoted by I(X).

Proposition 5. Let X be a quantum B-algebra [24]. Then, the following assertions are equivalent:

(1) X is a pseudo-BCK algebra;
(2) X is unital, and every element of X is integral;
(3) X has the greatest element, which is a unit element.

Proposition 6. Every pseudo-BCI algebra is a unital quantum B-algebra [25]. And, a quantum B-algebra is a
pseudo-BCI algebra if and only if its unit element u is maximal.

Definition 5. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra [20,21]. When the following identities are satisfied,
we call X an antigrouped pseudo-BCI algebra:

∀x∈A, (x→1)→1 = x or (x�1)�1 = x.

Proposition 7. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra [20]. Then, A is antigrouped if and only if the
following conditions are satisfied:

(G1) for all x, y, z∈A, (x→y)→(x→z) = y→z, and
(G2) for all x, y, z∈A, (x�y)�(x�z) = y�z.

Definition 6. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra and F ⊆ X [19,20]. When the following conditions
are satisfied, we call F a pseudo-BCI filter (briefly, filter) of X:

(F1) 1∈F;
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(F2) x∈F, x→y∈F =⇒ y∈F;
(F3) x∈F, x�y∈F =⇒ y∈F.

Definition 7. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra and F be a filter of X [20,21]. When the following
condition is satisfied, we call F an antigrouped filter of X:

(GF) ∀x∈X, (x→1)→1∈F or (x�1)�1∈F =⇒ x∈F.

Definition 8. A subset F of pseudo-BCI algebra X is called a p-filter of X if the following conditions are
satisfied [20,21]:

(P1) 1∈F,
(P2) (x→y)�(x→z)∈F and y∈F imply z∈F,
(P3) (x�y)→(x�z)∈F and y∈F imply z∈F.

3. Q-Filters in Quantum B-Algebra

In Reference [30], the notion of filter in quantum B-algebra is proposed. If X is a quantum
B-algebra and F is a nonempty set of X, then F is called the filter of X if F∈U(X) and F·F ⊆ F. That is,
F is a filter of X, if and only if: (1) F is a nonempty upper subset of X; (2) (z∈X, y∈F, y→z∈F)⇒ z∈F.
We denote the set of all filters of X by F(X).

In this section, we discuss a new concept of q-filter in quantum B-algebra; by using q-filters,
we construct the quotient algebras.

Definition 9. A nonempty subset F of quantum B-algebra X is called a q-filter of X if it satisfies:

(1) F is an upper set of X, that is, F∈U(X);
(2) for all x∈F, x→x∈F and x�x∈F;
(3) x∈F, y∈X, x→y∈F =⇒ y∈F.
(4) A q-filter of X is normal if x→y∈F⇐⇒ x�y∈F.

Proposition 8. Let F be a q-filter of quantum B-algebra X. Then,

(1) x∈F, y∈X, x�y∈F =⇒ y∈F.
(2) x∈F and y∈X =⇒ (x�y)→y∈F and (x→y)�y∈F.
(3) if X is unital, then Condition (2) in Definition 9 can be replaced by u∈F, where u is the unit element of X.

Proof. (1) Assume that x∈F, y∈X, and x�y∈F. Then, by Proposition 2 (4), x ≤ (x�y)→y. Applying
Definition 9 (1) and (3), we get that y∈F.

(2) Using Proposition 2 (4) and Definition 9 (1), we can get (2).
(3) If X is unital with unit u, then u→u = u. Moreover, applying Proposition 2 (8), u ≤ x�x and u

≤ x→x from x ≤ x, for all x∈X. Therefore, for unital quantum B-algebra X, Condition (2) in Definition
8 can be replaced by condition “u∈F”. �

By Definition 6, and Propositions 6 and 8, we get the following result (the proof is omitted).

Proposition 9. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra. Then, an empty subset of A is a q-filter of A (as a
quantum B-algebra) if and only if it is a filter of A (according to Definition 6).

Example 1. Let X = {a, b, c, d, e, f}. Define operations→ and � on X as per the following Cayley Tables 1
and 2; the order on X is defined as follows: b ≤ a ≤ f; e ≤ d ≤ c. Then, X is a quantum B-algebra (we can verify
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it with the Matlab software (The MathWorks Inc., Natick, MA, USA)), but it is not a pseudo-BCI algebra. Let
F1 = {f}, F2 = {a, b, f}; then, F1 is a filter but not a q-filter of X, and F2 is a normal q-filter of X.

Table 1. Cayley table of operation→.

→ a b c d e f

a f a c c c f
b f a c c c f
c c c f a b c
d c c f f a c
e c c f f a c
f a b c d e f

Table 2. Cayley table of operation �.

� a b c d e f

a f a c c d f
b f f c c c f
c c c f a a c
d c c f a a c
e c c f f a c
f a b c d e f

Theorem 1. Let X be a quantum B-algebra and F a normal q-filter of X. Define the binary ≈F on X as follows:

x ≈F y⇐⇒ x→y∈F and y→x∈F, where x, y∈X.

Then,

(1) ≈F is an equivalent relation on X;
(2) ≈F is a congruence relation on X, that is, x≈F y =⇒ (z→x) ≈F (z→y), (x→z) ≈F (y→z), (z�x) ≈F

(z�y), (x�z) ≈F (y�z), for all z∈X.

Proof. (1) For any x∈X, by Definition 9 (2), x→x∈F, it follows that x ≈F x.
For all x, y∈X, if x ≈F y, we can easily verify that y ≈F x.
Assume that x ≈F y, y ≈F z. Then, x→y∈F, y→x∈F, y→z∈F, and z→y∈F, since

y→z ≤ (x→y)→(x→z) by Definition 1 (1).

From this and Definition 9, we have x→z∈F. Similarly, we can get z→x∈F. Thus, x ≈F z.
Therefore, ≈F is an equivalent relation on X.
(2) If x ≈F y, then x→y∈F, y→x∈F. Since

x→y ≤ (z→x)→(z→y), by Definition 1 (1).

y→x ≤ (z→y)→(z→x), by Definition 1 (1).

Using Definition 9 (1), (z→x)→(z→y)∈F, (z→y)→(z→x)∈F. It follows that (z→x) ≈F (z→y).
Moreover, since

x→y ≤ (y→z)�(x→z), by Proposition 2 (6).

y→x ≤ (x→z)�(y→z), by Proposition 2 (6).
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Then, form x→y∈F and y→x∈F; using Definition 9 (1), we have (y→z)�(x→z)∈F,
(x→z)�(y→z)∈F. Since F is normal, by Definition 9 we get (y→z)→(x→z)∈F, (x→z)→(y→z)∈F.
Thus, (x→z) ≈F (y→z).

Similarly, we can get that x ≈F y =⇒ (z�x) ≈F (z�y) and (x�z) ≈F (y�z). �

Definition 10. A quantum B-algebra X is considered to be perfect, if it satisfies:

(1) for any normal q-filter F of X, x, y in X, (there exists an∈X, such that [x→y]F = [a→a]F )⇐⇒ (there
exists b∈X, such that [x�y]F = [b�b]F ).

(1) for any normal q-filter F of X, (X/≈F →, �, ≤) is a quantum B-algebra, where quotient operations→
and � are defined in a canonical way, and ≤ is defined as follows:

[x]F ≤ [y]F ⇐⇒ (there exists a∈X such that [x]F→[y]F = [a→a]F)
⇐⇒ (there exists b∈X such that [x]F�[y]F = [b�b]F).

Theorem 2. Let (A,→, �, ≤, 1) be a pseudo-BCI algebra, then A is a perfect quantum B-algebra.

Proof. By Proposition 6, we know that A is a quantum B-algebra.
(1) For any normal q-filter F of A, x, y∈A, if there exists a∈A, such that [x→y]F = [a→a]F, then

[x→y]F = [a→a]F = [1]F.

It follows that (x→y)→1∈F, 1→(x→y) = x→y∈F. Applying Proposition 3 (11) and (12), we have

(x→1)�(y→1) = (x→y)→1∈F.

Since F is normal, from (x→1)�(y→1)∈F and x→y∈F we get that

(x→1)→(y→1)∈F and x�y∈F.

Applying Proposition 3 (11) and (12) again, (x�y)→1 = (x→1)→(y→1). Thus,

(x�y)→1 = (x→1)→(y→1)∈F and 1→(x�y) = x�y∈F.

This means that [x�y]F = [1]F = [1�1]F. Similarly, we can prove that the inverse is true. That is,
Definition 10 (1) holds for A.

(2) For any normal q-filter F of pseudo-BCI algebra A, binary ≤ on A/≈F is defined as the
following:

[x]F ≤ [y]F ⇐⇒ [x]F→[y]F = [1]F.

We verify that ≤ is a partial binary on A/≈F.
Obviously, [x]F ≤ [x]F for any x∈A.
If [x]F ≤ [y]F and [y]F ≤ [x]F, then [x]F→[y]F = [x→y]F = [1]F, [y]F→[x]F = [y→x]F = [1]F. By the

definition of equivalent class, x→y = 1→(x→y) ∈F, y→x = 1→(y→x)∈F. It follows that x ≈F y; thus,
[x]F = [y]F.

If [x]F ≤ [y]F and [y]F ≤ [z]F, then [x]F→[y]F = [x→y]F = [1]F, [y]F→[z]F = [y→z]F = [1]F. Thus,

x→y = 1→(x→y)∈F, (x→y)→1∈F;

y→z = 1→(y→z)∈F, (y→z)→1∈F.

Applying Definition 3 and Proposition 3,

y→z ≤ (x→y)→(x→z),
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(x→y)→1 = (x→1)�(y→1) ≤ ([(y→1)�(z→1)]→[(x→1)�(z→1)]) = [(y→z)→1]→[(x→z)→1].

By Definition 9,
1→(x→z) = x→z∈F, (x→z)→1∈F.

This means that (x→z) ≈F 1, [x→z]F = [1]F. That is, [x]F→[z]F =[x→z]F = [1]F, [x]F ≤ [z]F.
Therefore, applying Theorem 1, we know that (A/≈F →, �, [1]F) is a quantum B-algebra and

pseudo-BCI algebra. That is, Definition 10 (2) holds for A.
Hence, we know that A is a perfect quantum B-algebra. �

The following examples show that there are some perfect quantum B-algebras that may not be a
pseudo-BCI algebra.

Example 2. Let X = {a, b, c, d, e, 1}. Define operations→ and � on X as per the following Cayley Tables 3
and 4, the order on X is defined as the following: b ≤ a ≤ 1; e ≤ d ≤ c. Then, X is a pseudo-BCI algebra (we can
verify it with Matlab). Denote F1 = {1}, F2 = {a, b, 1}, F3 = X, then Fi (i = 1, 2, 3) are all normal q-filters of X,
and quotient algebras (X/≈Fi →, �, [1]Fi) are pseudo-BCI algebras. Thus, X is a perfect quantum B-algebra.

Table 3. Cayley table of operation→.

→ a b c d e 1

a 1 a c c c 1
b 1 1 c c c 1
c c c 1 a b c
d c c 1 1 a c
e c c 1 1 1 c
1 a b c d e 1

Table 4. Cayley table of operation �.

� a b c d e 1

a 1 a c c d 1
b 1 1 c c c 1
c c c 1 a a c
d c c 1 1 a c
e c c 1 1 1 c
1 a b c d e 1

Example 3. Let X = {a, b, c, d, e, f}. Define operations→ and � on X as per the following Cayley Tables 5
and 6, the order on X is defined as follows: b ≤ a ≤ f; e ≤ d ≤ c. Then, X is a quantum B-algebra (we can verify
it with Matlab), but it is not a pseudo-BCI algebra, since e�e 	= e→e. Denote F = {a, b, f}, then F, X are all
normal q-filters of X, quotient algebras (X/≈F→, �, ≤), (X/≈X→, �, ≤) are quantum B-algebras, and X is a
perfect quantum B-algebra.

Table 5. Cayley table of operation→.

→ a b c d e f

a f a c c c f
b f f c c c f
c c c f a b c
d c c f f a c
e c c f f f c
f a b c d e f
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Table 6. Cayley table of operation �.

� a b c d e f

a f a c c d f
b f f c c c f
c c c f a a c
d c c f f a c
e c c f f a c
f a b c d e f

4. Basic Implication Algebras and Filters

Definition 11. Let (A, ∨, ∧,
⊗

,→, 0, 1) be a type-(2, 2, 2, 2, 0, 0) algebra [32]. A is called a nonassociative
residuated lattice, if it satisfies:

(A1) (A, ∨, ∧, 0, 1) is a bounded lattice;
(A2) (A,

⊗
, 1) is a commutative groupoid with unit element 1;

(A3) ∀x, y, z∈A, x
⊗

y ≤ z⇐⇒ x ≤ y→z.

Proposition 10. Let (A, ∨, ∧,
⊗

,→, 0, 1) be a nonassociative residuated lattice [32]. Then, (∀ x, y, z∈A)

(1) x ≤ y⇐⇒ x→y = 1;
(2) x ≤ y⇒ x

⊗
z ≤ y

⊗
z;

(3) x ≤ y⇒ y→z ≤ x→z;
(4) x ≤ y⇒ z→x ≤ z→y;
(5) x

⊗
(y∨z) = (x

⊗
y)∨(x

⊗
z);

(6) x→(y∧z) = (x→y)∧(x→z);
(7) (y∨z)→x = (y→x)∧(z→x);
(8) (x→y)

⊗
x ≤ x, y;

(9) (x→y)→y ≥ x, y.

Example 4. Let A = [0, 1], operation
⊗

on A is defined as follows:

x
⊗

y = 0.5xy + 0.5max{0, x + y − 1}, x, y∈A.

Then,
⊗

is a nonassociative t-norm on A (see Example 1 in Reference [32]). Operation→ is defined as
follows:

x→y = max{z∈[0, 1]|z
⊗

x ≤ y}, x, y∈A.

Then, (A, max, min,
⊗

,→, 0, 1) is a nonassoiative residuated lattice (see Theorem 5 in Reference [32]).
Assume that x = 0.55, y = 0.2, z = 0.1, then

y→ z = 0.2→ 0.1 = max{a ∈ [0, 1|a⊗ 0.2 ≤ 0.1} = 5
6

.

x → y = 0.55→ 0.2 = max{a ∈ [0, 1|a⊗ 0.55 ≤ 0.2} = 17
31

.

x → z = 0.55→ 0.1 = max{a ∈ [0, 1|a⊗ 0.55 ≤ 0.1} = 4
11

.

(x → y) → (x → z) =
17
31
→ 4

11
= max{a ∈ [0, 1|a⊗ 17

31
≤ 4

11
} = 67

88
.

Therefore,
y→ z � (x → y)→ (x → z).

251



Symmetry 2018, 10, 573

Example 4 shows that Condition (1) in Definition 1 is not true for general non-associative
residuated lattices, that is, quantum B-algebras are not common basic of non-associative fuzzy logics.
So, we discuss more general implication algebras in this section.

Definition 12. A basic implication algebra is a partially ordered set (X, ≤) with binary operation→, such that
the following are satisfied for x, y, and z in X:

(1) x ≤ y⇒ z→x ≤ z→y;
(2) x ≤ y⇒ y→z ≤ x→z.

A basic implication algebra is considered to be normal, if it satisfies:
(3) for any x, y∈X, x→x = y→y;
(4) for any x, y∈X, x ≤ y⇐⇒ x→y = e, where e = x→x = y→y.

We can verify that the following results are true (the proofs are omitted).

Proposition 11. Let (X,→, ≤) be a basic implication algebra. Then, for all x, y, z∈X,

(1) x ≤ y⇒ y→x ≤ x→x ≤ x→y;
(2) x ≤ y⇒ y→x ≤ y→y ≤ x→y;
(3) x ≤ y and u ≤ v⇒ y→u ≤ x→v;
(4) x ≤ y and u ≤ v⇒ v→x ≤ u→y.

Proposition 12. Let (X,→, ≤, e) be a normal basic implication algebra. Then for all x, y, z∈X,

(1) x→x = e;
(2) x→y = y→x = e⇒ x = y;
(3) x ≤ y⇒ y→x ≤ e;
(4) if e is unit (that is, for all x in X, e→x = x), then e is a maximal element (that is, e ≤ x⇒ e = x).

Proposition 13. (1) If (X, →, �, ≤) is a a quantum B-algebra, then (X, →, ≤) and (X, �, ≤) are basic
implication algebras; (2) If (A,→, �, ≤, 1) is a pseudo-BCI algebra, then (A,→, ≤, 1) and (A, �, ≤, 1) are
normal basic implication algebras with unit 1; (3) If (A, ∨, ∧,

⊗
,→, 0, 1) is a non-associative residuated lattice,

then (A,→, ≤, 1) is a normal basic implication algebra.

The following example shows that element e may not be a unit.

Example 5. Let X = {a, b, c, d, 1}. Define a ≤ b ≤ c ≤ d ≤ 1 and operation→ on X as per the following Cayley
Table 7. Then, X is a normal basic implication algebra in which element 1 is not a unit. (X,→, ≤) is not a
commutative quantum B-algebra, since

c = 1→ c � b = (c→ d)→ (1→ d).

Table 7. Cayley table of operation→.

→ a b c d 1

a 1 1 1 1 1
b d 1 1 1 1
c d d 1 1 1
d b c d 1 1
1 b b c b 1

The following example shows that element e may be not maximal.
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Example 6. Let X = {a, b, c, d, 1}. Define a ≤ b ≤ c ≤ d, a ≤ b ≤ c ≤ 1 and operation→ on X as per the
following Cayley Table 8. Then, X is a normal basic implication algebra, and element 1 is not maximal and is not
a unit.

Table 8. Cayley table of operation→.

→ a b c d 1

a 1 1 1 1 1
b c 1 1 1 1
c c c 1 1 1
d a c a 1 c
1 a b b c 1

Definition 13. A nonempty subset F of basic implication algebra (X,→, ≤) is called a filter of X if it satisfies:

(1) F is an upper set of X, that is, x∈F and x ≤ y∈X =⇒ y∈F;
(2) for all x∈F, x→x∈F;
(3) x∈F, y∈X, x→y∈F =⇒ y∈F;
(4) x∈X, y→z∈F =⇒ (x→y)→(x→z)∈F;
(5) x∈X, y→z∈F =⇒ (z→x)→(y→x)∈F.

For normal basic implication algebra (X,→, ≤, e), a filter F of X is considered to be regular, if it satisfies:
(6) x∈X, (x→y)→e∈F and (y→z)→e∈F =⇒ (x→z)→e∈F.

Proposition 14. Let (X,→, ≤, e) be a normal basic implication algebra and F ⊆ X. Then, F is a filter of X if
and only if it satisfies:

(1) e∈F;
(2) x∈F, y∈X, x→y∈F =⇒ y∈F;
(3) x∈X, y→z∈F =⇒ (x→y)→(x→z)∈F;
(4) x∈X, y→z∈F =⇒ (z→x)→(y→x)∈F.

Obviously, if e is the maximal element of normal basic implication algebra (X,→, ≤, e), then any
filter of X is regular.

Theorem 3. Let X be a basic implication algebra and F a filter of X. Define binary ≈F on X as follows:

x≈F y⇐⇒ x→y∈F and y→x∈F, where x, y∈X.

Then

(1) ≈F is a equivalent relation on X;
(2) ≈F is a congruence relation on X, that is, x≈F y =⇒ (z→x) ≈F (z→y), (x→z) ≈F (y→z), for all z∈X.

Proof (1) ∀x∈X, from Definition 13 (2), x→x∈F, thus x ≈F x. Moreover, ∀x, y∈X, if x ≈F y, then y ≈F x.
If x ≈F y and y ≈F z. Then x→y∈F, y→x∈F, y→z∈F, and z→y∈F. Applying Definition 13 (4) and

(5), we have
(x→y)→(x→z)∈F, (z→y)→(z→x)∈F.

From this and Definition 13 (3), we have x→z∈F, z→x∈F. Thus, x ≈F z.
Hence, ≈F is a equivalent relation on X.
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(2) Assume x ≈F y. By the definition of bianary relation ≈F, we have x→y∈F, y→x∈F. Using
Definition 13 (4),

(z→x)→(z→y)∈F, (z→y)→(z→x)∈F.

This means that (z→x) ≈F (z→y). Moreover, using Definition 13 (5), we have

(y→z)→(x→z)∈F, (x→z)→(y→z)∈F.

Hence, (x→z) ≈F (y→z). �

Theorem 4. Let (X,→, ≤, e) be a normal basic implication algebra and F a regular filter of X. Define quotient
operation→ and binary relation ≤ on X/≈F as follows:

[x]F→[y]F = [x]F→[y]F, ∀x, y∈X;
[x]F≤ [y]F ⇐⇒ [x]F →[y]F = [e]F, ∀x, y∈X.

Then, (X/≈F,→, ≤, [e]F) is a normal basic implication algebra, and (X,→, ≤, e) ∼ (X/≈F,→, ≤, [e]F).

Proof. Firstly, we prove that binary relation ≤ on X/≈F is a partial order.
(1) ∀x∈X, obviously, [x]F ≤ [x]F.
(2) Assume that [x]F ≤ [y]F and [y]F ≤ [x]F, then

[x]F→[y]F = [x→y]F = [e]F, [y]F→[x]F = [y→x]F = [e]F.

It follows that e→(x→y)∈F, e→(y→x)∈F. Applying Proposition 14 (1) and (2), we get that (x→y)∈F
and (y→x)∈F. This means that [x]F = [y]F.

(3) Assume that [x]F ≤ [y]F and [y]F ≤ [z]F, then

[x]F→[y]F = [x→y]F = [e]F, [y]F→[z]F = [y→z]F = [e]F.

Using the definition of equivalent relation ≈F, we have

e→(x→y)∈F, (x→y)→e∈F; e→(y→z)∈F, (y→z)→e∈F.

From e→(x→y)∈F and e→(y→z)∈F, applying Proposition 14 (1) and (2), (x→y)∈F and (y→z)∈F.
By Proposition 14 (4), (x→y)→(x→z)∈F. It follows that (x→z)∈F. Hence, (x→x)→(x→z)∈F, by
Proposition 14 (4). Therefore,

e→(x→z) = (x→x)→(x→z)∈F.

Moreover, from (x→y)→e∈F and (y→z)→e∈F, applying regularity of F and Definition 13 (6), we
get that (x→z)→e∈F.

Combining the above e→(x→z)∈F and (x→z)→e∈F, we have x→z ≈F e, that is, [x→z]F = [e]F.
This means that [x]F ≤ [z]F. It follows that the binary relation ≤ on X/≈F is a partially order.

Therefore, applying Theorem 3, we know that (X/≈F →, ≤, [e]F) is a normal basic implication
algebra, and (X,→, ≤, e) ∼ (X/≈F →, ≤, [e]F) in the homomorphism mapping f : X→X/≈F; f (x) = [x]F.
�

Example 7. Let X = {a, b, c, d, 1}. Define operations→ on X as per the following Cayley Table 9, and the order
binary on X is defined as follows: a ≤ b ≤ c ≤ 1, b ≤ d ≤ 1. Then (X,→, ≤, 1) is a normal basic implication
algebra (it is not a quantum B-algebra). Denote F = {1}, then F is regular filters of X, and the quotient algebras
(X,→, ≤, 1) is isomorphism to (X/≈F,→, [1]F).
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Table 9. Cayley table of operation→.

→ a b c d 1

a 1 1 1 1 1
b d 1 1 1 1
c b d 1 d 1
d a c c 1 1
1 a b c d 1

Example 8. Denote X = {a, b, c, d, 1}. Define operations→ on X as per the following Cayley Table 10, and
the order binary on X is defined as follows: a ≤ b ≤ c ≤ 1, b ≤ d ≤ 1. Then (X,→, ≤, 1) is a normal basic
implication algebra (it is not a quantum B-algebra). Let F = {1, d}, then F is a regular filters of X, and the
quotient algebras (X/≈F,→, [1]F) is presented as the following Table 11, where X/≈F = {{a}, {b, c}, [1]F = {1,
d}}. Moreover, (X,→, ≤, 1) ∼ (X/≈F →, [1]F).

Table 10. Cayley table of operation→.

→ a b c d 1

a 1 1 1 1 1
b c 1 1 1 1
c b d 1 d 1
d a c c 1 1
1 a b c d 1

Table 11. Quotient algebra (X/≈F,→, [1]F).

→ {a} {b,c} [1]F

{a} [1]F [1]F [1]F
{b,c} {b,c} [1]F [1]F
[1]F {a} {b,c} [1]F

5. Conclusions

In this paper, we introduced the notion of a q-filter in quantum B-algebras and investigated
quotient structures; by using q-filters as a corollary, we obtained quotient pseudo-BCI algebras by
their filters. Moreover, we pointed out that the concept of quantum B-algebra does not apply to
non-associative fuzzy logics. From this fact, we proposed the new concept of basic implication algebra,
and established the corresponding filter theory and quotient algebra. In the future, we will study in
depth the structural characteristics of basic implication algebras and the relationship between other
algebraic structures and uncertainty theories (see References [33–36]). Moreover, we will consider the
applications of q-filters for Gentzel’s sequel calculus.
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Abstract: In this paper, the concept of fuzzy normed ring is introduced and some basic properties
related to it are established. Our definition of normed rings on fuzzy sets leads to a new structure,
which we call a fuzzy normed ring. We define fuzzy normed ring homomorphism, fuzzy normed
subring, fuzzy normed ideal, fuzzy normed prime ideal, and fuzzy normed maximal ideal of a
normed ring, respectively. We show some algebraic properties of normed ring theory on fuzzy sets,
prove theorems, and give relevant examples.
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1. Introduction

Normed rings attracted attention of researchers after the studies by Naimark [1], a generalization
of normed rings [2] and commutative normed rings [3]. Naimark defined normed rings in an algebraic
fashion, while Gel’fand addressed them as complex Banach spaces and introduced the notion of
commutative normed rings. In Reference [4], Jarden defined the ultrametric absolute value and studied
the properties of normed rings in a more topological perspective. During his invaluable studies,
Zadeh [5] presented fuzzy logic theory, changing the scientific history forever by making a modern
definition of vagueness and using the sets without strict boundaries. As, in almost every aspect of
computational science, fuzzy logic also became a convenient tool in classical algebra. Zimmermann [6]
made significant contributions to the fuzzy set theory. Mordeson, Bhutani, and Rosenfeld [7] defined
fuzzy subgroups, Liu [8], Mukherjee, and Bhattacharya [9] examined normal fuzzy subgroups. Liu [8]
also discussed fuzzy subrings and fuzzy ideals. Wang, Ruan and Kerre [10] studied fuzzy subrings
and fuzzy rings. Swamy and Swamy [11] defined and proved major theorems on fuzzy prime
ideals of rings. Gupta and Qi [12] are concerned with T-norms, T-conorms and T-operators. In this
study, we use the definitions of Kolmogorov, Silverman, and Formin [13] on linear spaces and norms.
Uluçay, Şahin, and Olgun [14] worked out on normed Z-Modules and also on soft normed rings [15].
Şahin, Olgun, and Uluçay [16] defined normed quotient rings while Şahin and Kargın [17] presented
neutrosophic triplet normed space. In Reference [18], Olgun and Şahin investigated fitting ideals of
the universal module and while Olgun [19] found a method to solve a problem on universal modules.
Şahin and Kargin proposed neutrosophic triplet inner product [20] and Florentin, Şahin, and Kargin
introduced neutrosophic triplet G-module [21]. Şahin and et al defined isomorphism theorems for
soft G-module in [22]. Fundamental homomorphism theorems for neutrosophic extended triplet
groups [23] were introduced by Mehmet, Moges, and Olgun in 2018. In Reference [24], Bal, Moges,
and Olgun introduced neutrosophic triplet cosets and quotient groups, and deal with its application
areas in neutrosophic logic.

This paper anticipates a normed ring on R and fuzzy rings are defined in the previous studies.
Now, we use that norm on fuzzy sets, hence a fuzzy norm is obtained and by defining our fuzzy norm
on fuzzy rings, we get fuzzy normed rings in this study. The organization of this paper is as follows.

Symmetry 2018, 10, 515; doi:10.3390/sym10100515 www.mdpi.com/journal/symmetry258
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In Section 2, we give preliminaries and fuzzy normed rings. In Section 3, consists of further definitions
and relevant theorems on fuzzy normed ideals of a normed ring. Fuzzy normed prime and fuzzy
normed maximal ideals of a normed ring are introduced in Section 4. The conclusions are summarized
in Section 5.

2. Preliminaries

In this section, definition of normed linear space, normed ring, Archimedean strict T-norm and
concepts of fuzzy sets are outlined.

Definition 1. [13] A functional ‖‖ defined on a linear space L is said to be a norm (in L) if it has the following
properties:

N1: ‖x‖ ≥ 0 for all x ∈ L, where ‖x‖ = 0 if and only if x = 0;
N2: ‖α · x‖ = |α|.‖x‖; (and hence ‖x‖ = ‖−x‖), for all x ∈ L and for all α;
N3: Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ L.
A linear space L, equipped with a norm is called a normed linear space.

Definition 2. [3] A ring A is said to be a normed ring if A possesses a norm ‖‖, that is, a non-negative
real-valued function ‖‖ : A→ R such that for any a, b ∈ A,

1. ‖a‖ = 0⇔ a = 0 ,
2. ‖a + b‖ ≤ ‖a‖+ ‖b‖,
3. ‖−a‖ = ‖a‖, (and hence ‖1A‖ = 1 = ‖−1‖ if identity exists), and
4. ‖ab‖ ≤ ‖a‖‖b‖.

Definition 3. [12] Let ∗ : [0, 1]× [0, 1]→ [0, 1] . ∗ is an Archimedean strict T-norm iff for all x, y, z ∈ [0, 1]:

(1) ∗ is commutative and associative, that is, ∗ (x, y) = ∗ (y, x) and ∗ (x, ∗ (y, z)) = ∗ (∗ (x, y), z),
(2) ∗ is continuous,
(3) ∗ (x, 1) = x ,
(4) ∗ is monotone, which means ∗ (x, y) ≤ ∗ (x, z) if y ≤ z,
(5) ∗ (x, x) < x for x ∈ (0, 1), and
(6) when x < z and y < t, ∗ (x, y) < ∗ (z, t) for all x, y, z, t ∈ (0, 1).

For convenience, we use the word t-norm shortly and show it as x ∗ y instead of ∗ (x, y) . Some examples
of t-norms are x ∗ y = min{x, y}, x ∗ y = max{x + y− 1, 0} and x ∗ y = x.y.

Definition 4. [12] Let % : [0, 1]× [0, 1]→ [0, 1] . ∗ is an Archimedean strict T-conorm iff for all x, y, z ∈ [0, 1]:

(1) % is commutative and associative, that is, % (x, y) = % (y, x) and % (x, % (y, z)) = % (% (x, y), z),
(2) % is continuous,
(3) % (x, 0) = x ,
(4) % is monotone, which means % (x, y) ≤ % (x, z) if y ≤ z,
(5) % (x, x) > x for x ∈ (0, 1), and
(6) when x < z and y < t, % (z, t) < % (x, y) for all x, y, z, t ∈ (0, 1).

For convenience, we use the word s-norm shortly and show it as x % y instead of % (x, y) . Some examples
of s-norms are x % y = max{x, y}, x ∗ y = min{x + y, 1} and x % y = x + y− x.y.

Definition 5. [6] The fuzzy set B on a universal set X is a set of ordered pairs

B = {(x, μB(x) : x ∈ X)}
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Here, μB(x) is the membership function or membership grade of x in B. For all x ∈ X, we have
0 ≤ μB(x) ≤ 1. If x /∈ B, μB(x) = 0, and if x is entirely contained in B, μB(x) = 1. The membership grade
of x in B is shown as B(x) in the rest of this paper.

Definition 6. [6] For the fuzzy sets A and B, the membership functions of the intersection, union and
complement are defined pointwise as follows respectively:

(A ∩ B)(x) = min{A(x), B(x)},

(A ∪ B)(x) = max{A(x), B(x)},
A(x) = 1− A(x).

Definition 7. [10] Let (R,+, .) be a ring and F(R) be the set of all fuzzy subsets of R. As A ∈ F(R), ∧ is
the fuzzy intersection and ∨ is the fuzzy union functions, for all x, y ∈ R, if A satisfies (1) A(x− y) ≥
A(x) ∧ A(y) and (2) A(x.y) ≥ A(x) ∧ A(y) then A is called a fuzzy subring of R. If A is a subring of R for
all a ∈ A, then A is itself a fuzzy ring.

Definition 8. [11] A non-empty fuzzy subset A of R is said to be an ideal (in fact a fuzzy ideal) if and only if,
for any x, y ∈ R, A(x− y) ≥ A(x) ∧ A(y) and A(x.y) ≥ A(x) ∨ A(y).

Note: The fuzzy operations of the fuzzy subsets A, B ∈ F(R) on the ring R can be extended to the
operations below by t-norms and s-norms:

For all z ∈ R,
(A + B)(z) = %

x+y=z
(A(x) ∗ B(y));

(A− B)(z) = %
x−y=z

(A(x) ∗ B(y));

(A.B)(z) = %
x.y=z

(A(x) ∗ B(y)).

3. Fuzzy Normed Rings and Fuzzy Normed Ideals

In this section, there has been defined the fuzzy normed ring and some basic properties related to
it. Throughout the rest of this paper, R is the set of real numbers, R will denote an associative ring
with identity, NR is a normed ring and F(X) is the set of all fuzzy subsets of the set X.

Definition 9. Let ∗ be a continuous t-norm and % a continuous s-norm, NR a normed ring and let A be a
fuzzy set. If the fuzzy set A = {(x, μA(x)) : x ∈ NR} over a fuzzy normed ring F(NR) satisfy the following
conditions then A is called a fuzzy normed subring of the normed ring (NR,+, .):

For all x, y ∈ NR,

(i) A(x− y) ≥ A(x) ∗ A(y)
(ii) A(x.y) ≥ A(x) ∗ A(y).

Let 0 be the zero of the normed ring NR. For any fuzzy normed subring A and for all x ∈ NR, we have
A(x) ≤ A(0), since A(x− x) ≥ A(x) ∗ A(x)⇒ A(0) ≥ A(x) .

Example 1. Let A fuzzy set and R = (Z,+, .) be the ring of all integers. Define a mapping
f : A→ F(NR(Z)) where, for any a ∈ A and x ∈ Z,

A f (x) =

{
0 if x is odd
1
a if x is even
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Corresponding t-norm (∗) and t-conorm (%) are defined as a ∗ b = min{a, b}, a % b = max{a, b}; then,
A is a fuzzy set as well as a fuzzy normed ring over [(Z,+, .), A].

Lemma 1. A ∈ F(NR) is a fuzzy normed subring of the normed ring NR if and only if A− A ⊆ A and
A.A ⊆ A.

Proof. Let A be a fuzzy normed subring of NR. By [10], it is clear that A is a fuzzy group under
addition and so A− A ⊆ A. Also for all z ∈ NR,

(A.A)(z) = %
x.y=z

(A(x) ∗ A(y)) ≤ %
x.y=z

A(xy) = A(z)⇒ A.A ⊆ A

Now we suppose A− A ⊆ A and A.A ⊆ A. For all x, y ∈ NR,

A(x− y) ≥ (A− A)(x− y) = %
s−t=x−y

(A(s) ∗ A(t)) ≥ A(x) ∗ A(y).

Similarly,
A(xy) ≥ (A.A)(xy) = %

st=xy
(A(s) ∗ A(t)) ≥ A(x) ∗ A(y).

Thus, A is a fuzzy normed subring of NR. �

Lemma 2.

i. Let A be a fuzzy normed subring of the normed ring NR and let f : NR→ NR′ be a ring homomorphism.
Then, f (A) is a fuzzy normed subring of NR′.

ii. Let f : NR→ NR′ be a normed ring homomorphism. If B is a fuzzy normed subring of NR′, then
f−1(B) is a fuzzy normed subring of NR.

Proof. (i) Take u, v ∈ NR′. As f is onto, there exists x, y ∈ NR such that f (x) = u and f (y) = v. So,

( f (A))(u) ∗ ( f (A))(v) =

(
%

f (x)=u
A(x)

)
∗
(
%

f (y)=v
A(y)

)
= %

f (x)=u, f (y)=v
(A(x) ∗ A(y))

≤ %
f (x)=u, f (y)=v

(A(x− y)) (as A is a fuzzy normed subring of NR)

≤ %
f (x)− f (y)=u−v

(A(x− y))

= %
f (x−y)=u−v

(A(x− y)) (since f is a homomorphism)

= %
f (z)=u−v

A(z)

= ( f (A))(u− v).

Similarly, it is easy to see that

( f (A))(u.v) ≥ ( f (A)(u) ∗ f (A)(v)).

Therefore, f (A) is a fuzzy normed subring of NR′.
(ii) Proof is straightforward and similar to the proof of (i). �

Definition 10. Let A1 and A2 be two fuzzy normed rings over the normed ring NR. Then A1 is a fuzzy
normed subring of A2 if

A1(x) ≤ A2(x)

for all x ∈ NR.

261



Symmetry 2018, 10, 515

Definition 11. Let NR be a normed ring, A ∈ F(NR) and let A 	= ∅. If for all x, y ∈ NR

(i) A(x− y) ≥ A(x) ∗ A(y) and
(ii) A(x.y) ≥ A(y) (A(x.y) ≥ A(x)),

then A is called a fuzzy left (right) normed ideal of NR.

Definition 12. If the fuzzy set A is both a fuzzy normed right and a fuzzy normed left ideal of NR, then A is
called a fuzzy normed ideal of NR; i.e., if for all x, y ∈ NR

(i) A(x− y) ≥ A(x) ∗ A(y) and
(ii) A(x.y) ≥ A(x) % A(y),

then A ∈ F(NR) is a fuzzy normed ideal of NR.

Remark 1. Let the multiplicative identity of NR (if exists) be 1NR. As A(x.y) ≥ A(x) % A(y) for all
x, y ∈ NR, A(x.1NR) ≥ A(x) % A(1NR) and therefore for all x ∈ NR, A(x) ≥ A(1NR).

Example 2. Let A and B be two (fuzzy normed left, fuzzy normed right) ideals of a normed ring NR. Then,
A ∩ B is also a (fuzzy normed left, fuzzy normed right) ideal of NR.

Solution: Let x, y ∈ NR.

(A ∩ B)(x− y) = min{A(x− y), B(x− y)}
≥ min{A(x) ∗ A(y), B(x) ∗ B(y)}
≥ min{(A ∩ B)(x), (A ∩ B)(y)}.

On the other hand, as A and B are fuzzy normed left ideals, using A(x.y) ≥ A(y) and B(x.y) ≥
B(y) we have

(A ∩ B)(x.y) = min{A(x.y), B(x.y)} ≥ min{A(y), B(y)} = (A ∩ B)(y).

So A ∩ B is a fuzzy normed left ideal. Similarly, it is easy to show that A ∩ B is a fuzzy normed
right ideal. As a result A ∩ B is an fuzzy normed ideal of NR.

Example 3. Let A be a fuzzy ideal of NR. The subring A0 = {x : μA(x) = μA(0NR)} is a fuzzy normed
ideal of NR, since for all x ∈ NR, A0(x) ≤ A0(0).

Theorem 1. Let A be a fuzzy normed ideal of NR, X = {a1, a2, . . . , am} ⊆ NR, x, y ∈ NR and let FN(X)

be the fuzzy normed ideal generated by the set X in NR. Then,

(i) w ∈ FN(X)⇒ A(w) ≥ ∗
1≤i≤m

(A(ai)) ,

(ii) x ∈ (y)⇒ A(x) ≥ A(y) ,
(iii) A(0) ≥ A(x) and
(iv) if 1 is the multiplicative identity of NR, then A(x) ≥ A(1).

Proof. (ii), (iii), and (iv) can be proved using (i). The set FN(X) consists of the finite sums in the form
ra + as + uav + na where a ∈ X, r, s, u, v ∈ NR and n is an integer. Let w ∈ FN(X). So there exists an
integer n and r, s, u, v ∈ NR such that w = rai + ais + uaiv + nai where 1 ≤ i ≤ m. As A is a fuzzy
normed ideal,

A(rai + ais + uaiv + nai) ≥ A(rai) ∗ A(ais) ∗ A(uaiv) ∗ A(nai) ≥ A(ai).
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Therefore
A(w) ≥ ∗

1≤i≤m
(A(ai)).

�

4. Fuzzy Normed Prime Ideal and Fuzzy Normed Maximal Ideal

In this section, fuzzy normed prime ideal and fuzzy normed maximal ideal are outlined.

Definition 13. Let A and B be two fuzzy subsets of the normed ring NR. We define the operation A ◦ B
as follows:

A ◦ B(x) =

{ %
x=yz

(A(y) ∗ B(z)) , if x can be defined as x = yz

0 , otherwise .

If the normed ring NR has a multiplicative inverse, namely if NR.NR = NR, then the second case
does not occur.

Lemma 3. If A and B are a fuzzy normed right and a fuzzy normed left ideal of a normed ring NR, respectively,
A ◦ B ⊆ A ∩ B and hence (A ◦ B)(x) ≤ (A ∩ B)(x) for all x ∈ NR.

Proof. It is shown in Example 2 that if A and B are fuzzy normed left ideals of NR, then A ∩ B is also a
fuzzy normed left ideal. Now, let A and B be a fuzzy normed right and a fuzzy normed left ideal of
NR, respectively. If A ◦ B(x) = 0, the proof is trivial.

Let
(A ◦ B)(x) = %

x=yz
(A(y) ∗ B(z)).

As A is a fuzzy normed right ideal and B is a fuzzy normed left ideal, we have

A(y) ≤ A(yz) = A(x)

and
B(y) ≤ B(yz) = B(x)

Thus,
(A ◦ B)(x) = %

x=yz
(A(y) ∗ B(z))

≤ min(A(x), B(x))
= (A ∩ B)(x)

�

Definition 14. Let A and B be fuzzy normed ideals of a normed ring NR and let FNP be a non-constant
function, which is not an ideal of NR. If

A ◦ B ⊆ FNP ⇒ A ⊆ FNP or B ⊆ FNP,

then FNP is called a fuzzy normed prime ideal of NR.

Example 4. Show that if the fuzzy normed ideal I (I 	= NR) is a fuzzy normed prime ideal of NR, then the
characteristic function λI is also a fuzzy normed prime ideal.

Solution: As I 	= NR, λI is a non-constant function on NR. Let A and B be two fuzzy normed
ideals on NR such that A ◦ B ⊆ λI , but AλI and BλI . There exists x, y ∈ NR such that A(x) ≤ λI(x)
and B(y) ≤ λI(y). In this case, A(x) 	= 0 and B(y) 	= 0, but λI(x) = 0 and λI(y) = 0. Therefore
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x /∈ I, y /∈ I. As I is a fuzzy normed prime ideal, there exists an r ∈ NR, such that xry /∈ I. This is
obvious, because if I is fuzzy normed prime, A ◦ B(xry) ⊆ I ⇒ A(x) ⊆ I or B(ry) ⊆ I and therefore
as (NRxNR)(NRryNR) = (NRxNR)(NRyNR) ⊆ I, we have either NRxNR ⊆ I or NRyNR ⊆ I.
Assume NRxNR ⊆ I. Then xxx = (x)3 ∈ I ⇒ x ⊆ I , but this contradicts with the fact that λI(x) = 0.
Now let a = xry. λI(a) = 0. Thus, A ◦ B(a) = 0. On the other hand,

A ◦ B(a) = %
a=cd

(A(c) ∗ B(d))

≥ A(x) ∗ B(ry)
≥ A(x) ∗ B(y)
≥ 0 ( as A(x) 	= 0 and B(y) 	= 0).

This is a contradiction, since A ◦ B(a) = 0. Therefore if A and B are fuzzy normed ideals of a
normed ring NR, then A ◦ B ⊆ λI ⇒ A ⊆ λI or B ⊆ λI . As a result, the characteristic function λI is a
fuzzy normed prime ideal.

Theorem 2. Let FNP be a fuzzy normed prime ideal of a normed ring NR. The ideal defined by FNP0 =

{x : x ∈ NR, FNP(x) = FNP(0)} and is also a fuzzy normed prime ideal of NR.

Proof: Let x, y ∈ FNP0. As FNP is an fuzzy normed ideal, FNP(x − y) ≥ FNP(x) ∗ FNP(y) =

FNP(0). On the other hand, by Theorem 1, we have FNP(0) ≥ FNP(x− y). So, FNP(x− y) = FNP(0)
and x − y ∈ FNP0. Now, let x ∈ FNP0 and r ∈ NR. In this case, FNP(rx) ≥ FNP(x) = FNP(0)
and thus FNP(rx) = FNP(0). Similarly, FNP(xr) = FNP(0). Now, for all x ∈ FNP0 and r ∈ NR,
rx, xr ∈ FNP0. Therefore, FNP0 is a fuzzy normed ideal of NR. Let I and J be two ideals of NR,
such that I J ⊆ FNP0. Now, we define fuzzy normed ideals A = FNP0λI and B = FNP0λJ . We
will show that (A ◦ B)(x) ≤ FNP(x) for all x ∈ NR. Assume (A ◦ B)(x) 	= 0. Recall A ◦ B =

%
x=yz

(A(y) ∗ B(z)), so we only need to take the cases of A(y) ∗ B(z) 	= 0 under consideration. However,

in all these cases, A(y) = FNP(0) or A(y) = 0 and similarly B(z) = FNP(0) or B(z) = 0 and hence
A(y) = B(z) = FNP(0). Now, λI(y) = 1 and λJ(z) = 1 implies y ∈ I, z ∈ J and x ∈ I J ⊆ FNP0.
Thus, FNP(x) = FNP(0) and for all x ∈ NR, we get (A ◦ B)(x) ≤ FNP(x). As FNP is a fuzzy
normed prime ideal and A and B are fuzzy normed ideals, either A ⊆ FNP or B ⊆ FNP. Assume
A = FNP0λI ⊆ FNP. We need to show that I ⊆ FNP0. Let IFNP. Then, there exists an a ∈ I, such
that a /∈ FNP0; i.e., FNP(a) 	= FNP(0). It is evident that FNP(0) ≥ FNP(a). Thus, FNP(a)<FNP(0).
However, A(a) = FNP0λI(a) = FNP(0)>FNP(a) and this is a contradiction to the assumption
A ⊆ FNP. So, I ⊆ FNP0. Similarly, one can show that B ⊆ FNP and J ⊆ FNP0. Thus, FNP0 is a
fuzzy normed prime ideal. �

Definition 15. Let A be a fuzzy normed ideal of a normed ring NR. If A is non-constant and for all fuzzy
normed ideals B of NR, A ⊆ B implies A0 = B0 or B = λNR, A is called a fuzzy normed maximal ideal of the
normed ring NR. Fuzzy normed maximal left(right) ideals are defined similarly.

Example 5. Let A be a fuzzy normed maximal left (right) ideal of a normed ring NR. Then, A0 =

{x ∈ NR : A(x) = A(0)} is a fuzzy normed maximal left (right) ideal of NR.

Theorem 3. If A is a fuzzy normed left(right) maximal ideal of a normed ring NR, then A(0) = 1.

Proof. Assume A(0) 	= 1. Let A(0) < t < 1 and let B be a fuzzy subset of NR such that B(x) = t
for all x ∈ NR. B is trivially an ideal of NR. Also it is easy to verify that A ⊂ B, B 	= λNR and
B0 = {x ∈ NR : B(x) = B(0)} = NR. But, despite the fact that A ⊂ B, A0 	= B0 and B 	= λNR is a
contradiction to the fuzzy normed maximality of A. Thus, A(0) = 1. �
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5. Conclusions

In this paper, we defined a fuzzy normed ring. Here we examine the algebraic properties of
fuzzy sets in ring structures. Some related notions, e.g., the fuzzy normed ring homomorphism, fuzzy
normed subring, fuzzy normed ideal, fuzzy normed prime ideal and fuzzy normed maximal ideal are
proposed. We hope that this new concept will bring a new opportunity in research and development
of fuzzy set theory. To extend our work, further research can be done to study the properties of fuzzy
normed rings in other algebraic structures such as fuzzy rings and fuzzy fields.
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Abstract: Symmetric graphs have non-trivial automorphism groups. This article starts with the proof
that all partition comparison measures we have found in the literature fail on symmetric graphs,
because they are not invariant with regard to the graph automorphisms. By the construction of a
pseudometric space of equivalence classes of permutations and with Hausdorff’s and von Neumann’s
methods of constructing invariant measures on the space of equivalence classes, we design three
different families of invariant measures, and we present two types of invariance proofs. Last,
but not least, we provide algorithms for computing invariant partition comparison measures as
pseudometrics on the partition space. When combining an invariant partition comparison measure
with its classical counterpart, the decomposition of the measure into a structural difference and a
difference contributed by the group automorphism is derived.

Keywords: graph partitioning; graph clustering; invariant measures; partition comparison; finite
automorphism groups; graph automorphisms

1. Introduction

Partition comparison measures are routinely used in a variety of tasks in cluster analysis:
finding the proper number of clusters, assessing the stability and robustness of solutions of cluster
algorithms, comparing different solutions of randomized cluster algorithms or comparing optimal
solutions of different cluster algorithms in benchmarks [1], or in competitions like the 10th DIMACS
graph-clustering challenge [2]. Their development has been for more than a century an active area of
research in statistics, data analysis and machine learning. One of the oldest and still very well-known
measure is the one of Jaccard [3]; more recent approaches were by Horta and Campello [4] and
Romano et al. [5]. For an overview of many of these measures, see Appendix B. Besides the need to
compare clustering partitions, there is an ongoing discussion of what actually are the best clusters [6,7].
Another problem often addressed is how to measure cluster validity [8,9].

However, the comparison of graph partitions leads to new challenges because of the need to
handle graph automorphisms properly. The following small example shows that standard partition
comparison measures have unexpected results when applied to graph partitions: in Figure 1, we show
two different ways of partitioning the cycle graph C4 (Figure 1a,d). Partitioning means grouping the
nodes into non-overlapping clusters. The nodes are arbitrarily labeled with 1 to 4 (Figure 1b,e), and
then, there are four possibilities of relabeling the nodes so that the edges stay the same. One possibility
is relabeling 1 by 2, 2 by 3, 3 by 4 and 4 by 1, and the images resulting from this relabeling are shown in
Figure 1c,f. The relabeling corresponds to a counterclockwise rotation of the graph by 90◦, and formal
details are given in Section 2. The effects of this relabeling on the partitions P1 and Q1 are different:

1. Partition P1 = {{1, 2}, {3, 4}} is mapped to the structurally equivalent partition P2 = {{1, 4}, {2, 3}}.
2. Partition Q1 = {{1, 3}, {2, 4}} is mapped to the identical partition Q2.

Symmetry 2018, 10, 504; doi:10.3390/sym10100504 www.mdpi.com/journal/symmetry266
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(a)

1 2

34

(b) P1

2 3

41

(c) P2

(d)

1

3

2

4

(e) Q1

2

4

3

1

(f) Q2

Figure 1. Two structurally different partitions of the cycle graph C4: grouping pairs of neighbors (a) and
grouping pairs of diagonals (d). Equally-colored nodes represent graph clusters, and the choice of colors
is arbitrary. Adding, again arbitrary, but fixed, node labels impacts the node partitions and results in the
failure to recognize the structural difference when comparing these partitions with partition comparison
measures (see Table 1). The different images (b,c) (P1 = {{1, 2}, {3, 4}}, P2 = {{1, 4}, {2, 3}}) and
(e,f) (Q1 = Q2 = {{1, 3}, {2, 4}}) emerge from the graph’s symmetry.

Table 1 illustrates the failure of partition comparison measures (here, the Rand Index (RI)) to
recognize structural differences:

1. Because P1 and P2 are structurally equivalent, the RI should be one (as for Cases 1, 2 and 3)
instead of 1/3.

2. Comparisons of structurally different different partitions (Cases 4 and 5) and comparisons of
structurally equivalent partitions (Case 6) should not result in the same value.

Table 1. The Rand index is RI = N11+N00
N11+N10+N01+N00

. N11 indicates the number of nodes that are in both
partitions together in a cluster; N10 and N01 are the number of nodes that are together in a cluster
in one partition, but not in the other; and N00 are the number of nodes that are in both partitions in
different clusters. See Appendix B for the formal definitions. Partitions P1 and P2 are equivalent (yet
not equal, denoted “∼”), and partitions Q1 and Q2 are identical (thus, also equivalent, denoted “=”).
However, the comparison of the structurally different partitions (denoted “ 	=”) Pi and Qj yields the
same result as the comparison between the equivalent partitions P1 and P2. This makes the recognition
of structural differences impossible.

Case Compared Partitions Relation N11 N10 N01 N00 RI

1 P1,P1 = 2 0 0 4 1
2 P2,P2 = 2 0 0 4 1
3 Q1,Q1 or Q1,Q2 or Q2,Q2 = 2 0 0 4 1

4 P1,Q1 or P1,Q2 	= 0 2 2 2 1
3

5 P2,Q1 or P2,Q2 	= 0 2 2 2 1
3

6 P1,P2 ∼ 0 2 2 2 1
3
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One may argue that graphs in real applications contain symmetries only rarely. However, recent
investigations of graph symmetries in real graph datasets show that a non-negligible proportion of
these graphs contain symmetries. MacArthur et al. [10] state that “a certain degree of symmetry is
also ubiquitous in complex systems” [10] (p. 3525). Their study includes a small number of biological,
technological and social networks. In addition, Darga et al. [11] studied automorphism groups in very
large sparse graphs (circuits, road networks and the Internet router network), with up to five million
nodes with eight million links with execution times below 10 s. Katebi et al. [12] reported symmetries
in 268 of 432 benchmark graphs. A recent large-scale study conducted by the authors of this article
for approximately 1700 real-world graphs revealed that about three quarters of these graphs contain
symmetries [13].

The rather frequent occurrence of symmetries in graphs and the obvious deficiencies of classic
partition comparison measures demonstrated above have motivated our analysis of the effects of graph
automorphisms on partition comparison measures.

Our contribution has the following structure: Permutation groups and graph automorphisms are
introduced in Section 2. The full automorphism group of the butterfly graph serves as a motivating
example for the formal definition of stable partitions, stable with regard to the actions of the
automorphism group of a graph. In Section 3, we first provide a definition that captures the property
that a measure is invariant with regard to the transformations in an automorphism group. Based on
this definition, we first give a simple proof by counterexample for each partition comparison measure
in Appendix B, that these measures based on the comparison of two partitions are not invariant to the
effects of automorphisms on partitions. The non-existence of partition comparison measures for which
the identity and the invariance axioms hold simultaneously is proven subsequently. In Section 4, we
construct three families of invariant partition comparison measures by a two-step process: First, we
define a pseudometric space by defining equivalence classes of partitions as the orbit of a partition
under the automorphism group Aut(G). Second, the definitions of the invariant counterpart of a
partition comparison measure are given: we define them as the computation of the maximum, the
minimum and the average of the direct product of the two equivalence classes. The section also contains
a proof of the equivalence of several variants of the computation of the invariant measures, which—by
exploiting the group properties of Aut(G)—differ in the complexity of the computation. In Section 5,
we introduce the decomposition of the measures into a structurally stable and unstable part, as well as
upper bounds for instability. In Section 6, we present an application of the decomposition of measures
for analyzing partitions of the Karate graph. The article ends with a short discussion, conclusion and
outlook in Section 7.

2. Graphs, Permutation Groups and Graph Automorphisms

We consider connected, undirected, unweighted and loop-free graphs. Let G = (V, E) denote
a graph where V is a finite set of nodes and E is a set of edges. An edge is represented as {u, v} ∈
{{x, y} | (x, y) ∈ V ×V ∧ x 	= y}. Nodes adjacent to u ∈ V (there exists an edge between u and those
nodes) are called neighbors. A partition P of a graph G is a set of subsets Ci, i = 1, . . . , k of V with the
usual properties: (i) Ci ∩ Cj = ∅ (i 	= j), (ii)

⋃
i Ci = V and (iii) Ci 	= ∅. Each subset is called a cluster,

and it is identified by its labeled nodes.
As a partition quality criterion, we use the well-known modularity measure Q of Newman and

Girvan [14] (see Appendix A). It is a popular optimization criterion for unsupervised graph clustering
algorithms, which try to partition the nodes of the graph in a way that the connectivity within the
clusters is maximized and the number of edges connecting the clusters is minimized. For a fast and
efficient randomized state-of-the-art algorithm, see Ovelgönne and Geyer-Schulz [15].

Partitions are compared by comparison measures, which are functions of the form m : P(V)×
P(V)→ R where P(V) denotes the set of all possible partitions of the set V. A survey of many of these
measures is given in Appendix B.
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A permutation on V is a bijection g : V → V. We denote permutations by the symbols f , g and
h. Each permutation can be written in cycle form: for a permutation with a single cycle of length r,
we write c = (v1 v2 . . . vr). c maps vi to vi+1 (i = 1, . . . , r− 1), vr to v1 and leave all other nodes fixed.
Permutations with more than one cycle are written as a product of disjoint cycles (i.e., no two cycles
have a common element). (vk) means that the element vk remains fixed, and for brevity, these elements
are omitted.

Permutations are applied from the right: The image of u under the permutation g is ug. The
composition of g and h is h ◦ g, with ◦ being the permutation composition symbol. For brevity, h ◦ g
is written as gh, so that u(gh) = (ug)h holds. Computer scientists call this a postfix notation; in
prefix notation, we have h(g(u)). Often, we also find ug, which we will use in the following. For k
compositions g ◦ g ◦ g ◦ . . ., we write gk and g0 = id.

A set of permutation functions forms a permutation group H, if the usual group axioms hold [16]:

1. Closure: ∀g, h ∈ H : g ◦ h ∈ H
2. Unit element: The identity function id ∈ H acts as the neutral element: ∀g ∈ H : id ◦ g = g ◦ id = g
3. Inverse element: For any g in H, the inverse permutation function g−1 ∈ H is the inverse of g:
∀g ∈ H : g ◦ g−1 = g−1 ◦ g = id

4. Associativity: The associative law holds: ∀ f , g, h ∈ H : f ◦ (g ◦ h) = ( f ◦ g) ◦ h

If H1 is a subset of H and if H1 is a group, H1 is a subgroup of H (written H1 ≤ H). The set of
all permutations of V is denoted by Sym(V). Sym(V) is a group, and it is called the symmetric group
(see [17]). Sym(V) ∼ Sym(V′) iff |V| = |V′| with ∼ denoting isomorphism. A generator of a finite
permutation group H is a subset of the permutations of H from which all permutations in H can be
generated by application of the group axioms [18].

An action of H on V (H acts on V) is called the group action of a set [19] (p. 5):

1. uid = u, ∀u ∈ V
2. (ug)h = ugh, ∀u ∈ V, ∀g, h ∈ H

Groups acting on a set V also act on combinatorial structures defined on V [20] (p. 149), for
example the power set 2V , the set of all partitions P(V) or the set of graphs G(V). We denote
combinatorial structures as capital calligraphic letters; in the following, only partitions (P) are of
interest because they are the results of graph cluster algorithms. The action of a permutation g on a
combinatorial structure is performed by pointwise application of g. For instance, for P , the image of g
is P g = {{ug | u ∈ C} | C ∈ P}.

Let H be a permutation group. When H acts on V, a node u is mapped by the elements of H onto
other nodes. The set of these images is called the orbit of u under H:

uH =
{

uh | h ∈ H
}

.

The group of permutations Hu that fixes u is called the stabilizer of u under H:

Hu = {h ∈ H | uh = u}.

The orbit stabilizer theorem is given without proof [16]. It links the order of a permutation group
with the cardinality of an orbit and the order of the stabilizer:

Theorem 1. The relation:
|H| = |uH | · |Hu|

holds.

The action of H on V induces an equivalence relation on the set: for u1, u2 ∈ V, let u1 ∼ u2 iff
there exists h ∈ H so that u1 = uh

2. All elements of an orbit are equivalent, and the orbits of a group
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partition the set V. An orbit of length one (in terms of set cardinality) is called trivial. Analogously, for
a partition P , the definition is:

Definition 1. The image of the action of H on a partition P (or the orbit of P under H) is the set of all equivalent
partitions of partition P under H

PH =
{
Ph | h ∈ H

}
.

A graph automorphism f is a permutation that preserves edges, i.e., {u f , v f } ∈ E⇔ {u, v} ∈ E,
∀u, v ∈ V.

The automorphism group of a graph contains all permutations of vertices that map edges to edges
and non-edges to non-edges. The automorphism group of G is defined as:

Aut(G) =
{

f ∈ Sym(V) | E f = E
}

where E f =
{
{u f , v f } | {u, v} ∈ E

}
. Of course, Aut(G) ≤ Sym(V).

Example 1. Let Gb f be the butterfly graph (Figure 2, e.g., Erdős et al. [21], Burr et al. [22]) whose full
automorphism group is given in Table 2 (first column). The permutation (2 5) is not an automorphism, because
it does not preserve the edges from 1 to 2 and from 5 to 4. The butterfly graph has the two orbits {1, 2, 4, 5} and
{3}. The group H = {id, g1, g2, g3} is a subgroup of Aut(Gb f ).

1

2

3

4

5

Figure 2. The butterfly graph (five nodes, with two node pairs connected by the bridging node 3).

Table 2. The full automorphism group Aut(Gb f ) = {id, g1, . . . , g7} of the butterfly graph in Figure 2
and its effect on three partitions. Bold partitions are distinct. A possible generator is {g1, g4}.

Permutation P1, Q = 0 P2, Q = 1
9 P3, Q = − 1

18

id = (1)(2)(3)(4)(5) {1, 2},{3},{4, 5} {1, 2, 3},{4, 5} {1, 2, 3, 4},{5}
g1 = (1 2) {2, 1}, {3}, {4, 5} {2, 1, 3}, {4, 5} {2, 1, 3, 4}, {5}
g2 = (4 5) {1, 2}, {3}, {5, 4} {1, 2, 3}, {5, 4} {1, 2, 3, 5},{4}
g3 = (1 2)(4 5) {2, 1}, {3}, {5, 4} {2, 1, 3}, {5, 4} {2, 1, 3, 5}, {4}
g4 = (1 4)(2 5) {4, 5}, {3}, {1, 2} {4, 5, 3},{1, 2} {4, 5, 3, 1},{2}
g5 = (1 5)(2 4) {5, 4}, {3}, {2, 1} {5, 4, 3}, {2, 1} {5, 4, 3, 2}, {1}
g6 = (1 4 2 5) {4, 5}, {3}, {2, 1} {4, 5, 3}, {2, 1} {4, 5, 3, 2},{1}
g7 = (1 5 2 4) {5, 4}, {3}, {1, 2} {5, 4, 3}, {1, 2} {5, 4, 3, 1}, {2}

Definition 2. Let G = (V, E) be a graph. A partition P is called stable, if |PAut(G)| = 1, otherwise it is
called unstable.

Stability here means that the automorphism group of the graph does not affect the given partition
by tearing apart clusters.
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Example 2. Only P1 in Table 2 is stable because its orbit is trivial. The two modularity optimal partitions

(e.g., P id
2 and P g4

2 ) are not stable because |PAut(Gb f )

2 | = 2. Furthermore, |PAut(Gb f )

3 | = 4.

For the evaluation of graph clustering solutions, the effects of graph automorphisms on graph
partitions are of considerable importance:

1. Automorphisms may lead to multiple equivalent optimal solutions as the butterfly graph shows
(P id

2 and P g4
2 in Table 2).

2. Partition comparison measures are not invariant with regard to automorphisms, as we show in
Section 3.

3. Graph Partition Comparison Measures Are Not Invariant

When comparing graph partitions, a natural requirement is that the partition comparison measure
is invariant under automorphism.

Definition 3. A partition comparison measure m : P(V)× P(V)→ R is invariant under automorphism, if:

m(P ,Q) = m(P̃ , Q̃)

for all P ,Q ∈ P(V) and P̃ ∈ PAut(G), Q̃ ∈ QAut(G).

Observe that if Q ∈ PAut(G), then such a measure m cannot distinguish between P and Q, since
m(P ,Q) = m(P ,P) by definition.

However, unfortunately, as we show in the rest of this section, such a partition comparison
measure does not exist. In the following, we present two proofs of this fact, which differ both in their
level of generality and sophistication.

3.1. Variant 1: Construction of a Counterexample

Theorem 2. The measures for comparing partitions defined in Appendix B do not fulfill Definition 3 in general.

Proof. We choose the cycle graph C36 and compute all modularity maximal partitions with Q = 2/3.
Each of these six partitions has six clusters, and each of these clusters consists of a chain of six nodes
(see Figure 3).

Clearly, since all partitions are equivalent, an invariant partition comparison measure should
identify them as equivalent:

m(P0,P g0

0 ) = . . . = m(P0,P g5

0 ) (1)

Computing m(P0,P gk

0 ) for k = 0, . . . , 5 produces Table 3. Because the values in each row
differ (in contrast to the requirements defined by Equation (1)), each row of Table 3 contains the
counterexample for the measure used.

3.2. Variant 2: Inconsistency of the Identity and the Invariance Axiom

Theorem 3. Let G = (V, E) be a graph with |V| > 2 and nontrivial Aut(G). For partition comparison
measures m : P(V)× P(V)→ R, it is impossible to fulfill jointly the identity axiom m(P ,Q) = c, if and only
if P = Q (e.g., for a distance measure c = 0, for a similarity measure c = 1, etc.) for all P ,Q ∈ P(V) and the
axiom of invariance (from Definition 3) m(P ,Q) = c, ∀Q ∈ PAut(G).

Proof.

1. Since Aut(G) is nontrivial, a nontrivial orbit with at least two different partitions, namely P and
Q, exists because |PAut(G)| > 1. It follows from the invariance axiom that m(P ,Q) = c.

2. The identity axiom implies that it follows from m(P ,Q) = c that P = Q.
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3. This contradicts the assumption that P and Q are different.

�

Table 3. Comparing the modularity maximizing partitions of the cycle graph C36 with modularity
Q = 2

3 . The six optimal partitions consist of six clusters (see Figure 3). The number of pairs in the same
cluster in both partitions is denoted by N11, in different clusters by N00 and in the same cluster in one
partition, but not in the other, by N01 or N10. For the definitions of all partition comparison measures,
see Appendix B. To compute this table, the R package partitionComparison has been used [23].

Measure
m(P0,P gk

0 ) with g = (1 2 3 . . . 35 36) for k:

0 1 2 3 4 5

Pair counting measures ( f (N11, N00, N01, N10); see Tables A1 and A2)

RI 1.0 0.90476 0.84762 0.82857 0.84762 0.90476
ARI 1.0 0.61111 0.37778 0.3 0.37778 0.61111
H 1.0 0.80952 0.69524 0.65714 0.69524 0.80952

CZ 1.0 0.66667 0.46667 0.4 0.46667 0.66667
K 1.0 0.66667 0.46667 0.4 0.46667 0.66667

MC 1.0 0.33333 −0.06667 −0.2 −0.06667 0.33333
P 1.0 0.61111 0.37778 0.3 0.37778 0.61111

WI 1.0 0.66667 0.46667 0.4 0.46667 0.66667
WII 1.0 0.66667 0.46667 0.4 0.46667 0.66667
FM 1.0 0.66667 0.46667 0.4 0.46667 0.66667
Γ 1.0 0.61111 0.37778 0.3 0.37778 0.61111

SS1 1.0 0.80556 0.68889 0.65 0.68889 0.80556
B1 1.0 0.91383 0.87084 0.85796 0.87084 0.91383
GL 1.0 0.95 0.91753 0.90625 0.91753 0.95
SS2 1.0 0.33333 0.17949 0.14286 0.17949 0.33333
SS3 1.0 0.62963 0.42519 0.36 0.42519 0.62963
RT 1.0 0.82609 0.73554 0.70732 0.73554 0.82609
GK 1.0 0.94286 0.79937 0.71429 0.79937 0.94286

J 1.0 0.5 0.30435 0.25 0.30435 0.5
RV 1.0 0.61039 0.37662 0.29870 0.37662 0.61039
RR 0.14286 0.09524 0.06667 0.05714 0.06667 0.09524
M 0.0 120.0 192.0 216.0 192.0 120.0
Mi 0.0 0.81650 1.03280 1.09545 1.03280 0.81650
Pe 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001
B2 0.12245 0.07483 0.04626 0.03673 0.04626 0.07483
LI 24.37212 14.89407 9.20724 7.31163 9.20724 14.89407

NLI 1.0 0.61111 0.37778 0.3 0.37778 0.61111
FMG 0.94730 0.61396 0.41396 0.34730 0.41396 0.61396

Set-based comparison measures (see Table A3)

LA 1.0 0.83333 0.66667 0.5 0.66667 0.83333
dCE 0.0 0.16667 0.33333 0.5 0.33333 0.16667
D 0.0 12.0 24.0 36.0 24.0 12.0

Information theory-based measures (see Table A4)

MI 1.79176 1.34120 1.15525 1.09861 1.15525 1.34120
NMI (max) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854
NMI (min) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854

NMI (Σ) 1.0 0.74854 0.64475 0.61315 0.64475 0.74854
VI 0.0 0.90112 1.27303 1.38629 1.27303 0.90112
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Figure 3. The cycle graph C36 (the “outer” cycle) and an initial partition of six clusters (connected nodes
of the same color, separated by dashed lines). A single application of g = (1 2 . . . 36) “rotates” the
graph by one node (the “inner” cycle Cg

36). As a consequence, in each cluster, one node drops out and is
added to another cluster: For instance, Node 1 drops out of the “original” cluster C = {1, 2, 3, 4, 5, 6},
and Node 7 is added, resulting in Cg = {2, 3, 4, 5, 6, 7}. All dropped nodes are shown in light gray.

4. The Construction of Invariant Measures for Finite Permutation Groups

The purpose of this section is to construct invariant counterparts for most of the partition
comparison measures in Appendix B. We proceed in two steps:

1. We construct a pseudometric space from the images of the actions of Aut(G) on partitions in P(V)

(Definition 1).
2. We extend the metrics for partition comparison by constructing invariant metrics on the

pseudo-metric space of partitions.

4.1. The Construction of the Pseudometric Space of Equivalence Classes of Graph Partitions

We use a variant of the idea of Doob’s concept of a pseudometric space [24] (p. 5). A metric for a
space S (with s, t, u ∈ S) is a function d : S× S→ R+ for which the following holds:

1. Symmetry: d(s, t) = d(t, s).
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2. Identity: d(s, t) = 0 if and only if s = t.
3. Triangle inequality: d(s, u) ≤ d(s, t) + d(t, u).

A pseudometric space (S, d∗) relaxes the identity condition to d∗(s, s) = 0. The distance between
two elements s1, s2 of an equivalence class [s] is defined as d∗(s1, s2) = 0 by Definition 3.

For graphs, S is the finite set of partitions P(V) and S∗ is the partition of P(V) into orbits of Aut(G):

S∗(V) = P(V)Aut(G) =
{
PAut(G) | P ∈ P(V)

}
.

A partition P in S corresponds to its orbit PAut(G) in S∗. The relations between the spaces used in
the following are:

1. (S, d) is a metric space with S = P(V) and with the function d : P(V)× P(V)→ R.
2. (S∗, d∗) is a metric space with S∗ = P(V)Aut(G) = {PAut(G) | P ∈ P(V)} and the function d∗:

P(V)Aut(G) × P(V)Aut(G) → R. We construct three variants of d∗ in Section 4.2.
3. (S, d∗) is the pseudometric space with S = P(V) and with the metric d∗. The partitions in S are

mapped to arguments of d∗ by the transformation ec : P(V)→ P(V)Aut(G), which is defined as
ec(P) := PAut(G).

Table 4 illustrates S∗ (the space of equivalence classes) of the pseudometric space (S, d∗) of the
butterfly graph (shown in Figure 2). S∗ is the partition of P({1, 2, 3, 4, 5}) into 17 equivalence classes.
Only the four classes E1, E8, E12 and E17 are stable because they are trivial orbits. The three partitions
from Table 2 are contained in the following equivalence classes: P1 ∈ E8, P2 ∈ E14, and P3 ∈ E13.

Table 4. The equivalence classes of the pseudometric space (S, d∗) of the butterfly graph (see Figure 2).
Classes are grouped by their partition type, which is the corresponding integer partition. k is the
number of partitions per type; l is the number of clusters the partitions of a type consists of; dia1−RI is
the diameter (see Equation (2)) of the equivalence class computed for the distance dRI computed from
the Rand Index (RI) by 1− RI.

PAut(G) Q dia1−RI

Partition type (1, 1, 1, 1, 1), k = 1, l = 5

E1 {1}, {2}, {3}, {4}, {5} − 2
9 0.0

Partition type (1, 1, 1, 2), k = 10, l = 4

E2 {1}, {2}, {3}, {4, 5} {1, 2}, {3}, {4}, {5} − 1
9 0.2

E3 {1}, {2}, {3, 4}, {5} {1}, {2}, {3, 5}, {4} {1}, {2, 3}, {4}, {5} − 1
6 0.2

{1, 3}, {2}, {4}, {5}
E4 {1}, {2, 4}, {3}, {5} {1}, {2, 5}, {3}, {4} {1, 4}, {2}, {3}, {5} − 5

18 0.2
{1, 5}, {2}, {3}, {4}
Partition type (1, 1, 3) k = 10, l = 3

E5 {1}, {2}, {3, 4, 5} {4}, {5}, {1, 2, 3} 0 0.6
E6 {1}, {3}, {2, 4, 5} {3}, {5}, {1, 2, 4} {3}, {4}, {1, 2, 5} − 2

9 0.4
{2}, {3}, {1, 4, 5}

E7 {1}, {5}, {2, 3, 4} {1}, {4}, {2, 3, 5} {2}, {5}, {1, 3, 4} − 1
6 0.6

{2}, {4}, {1, 3, 5}
Partition type (1, 2, 2), k = 15, l = 3

E8 {3}, {1, 2}, {4, 5} 0 0.0
E9 {3}, {1, 4}, {2, 5} {3}, {1, 5}, {2, 4} − 1

3 0.4
E10 {1}, {2, 3}, {4, 5} {5}, {1, 2}, {3, 4} {4}, {1, 2}, {3, 5} − 1

18 0.4
{2}, {1, 3}, {4, 5}

E11 {1}, {2, 4}, {3, 5} {1}, {2, 5}, {3, 4} {5}, {1, 3}, {2, 4} − 2
9 0.4

{4}, {1, 3}, {2, 5} {2}, {1, 4}, {3, 5} {5}, {1, 4}, {2, 3}
{2}, {1, 5}, {3, 4} {4}, {1, 5}, {2, 3}
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Table 4. Cont.

PAut(G) Q dia1−RI

Partition type (1, 4), k = 5, l = 2

E12 {1, 2, 4, 5}, {3} − 2
9 0.0

E13 {2, 3, 4, 5}, {1} {1, 2, 3, 4}, {5} {1, 2, 3, 5}, {4} − 1
18 0.6

{1, 3, 4, 5}, {2}
Partition type (2, 3), k = 10, l = 2

E14 {1, 2}, {3, 4, 5} {4, 5}, {1, 2, 3} 1
9 0.4

E15 {3, 5}, {1, 2, 4} {3, 4}, {1, 2, 5} {1, 3}, {2, 4, 5} − 1
6 0.6

{2, 3}, {1, 4, 5}
E16 {2, 5}, {1, 3, 4} {2, 4}, {1, 3, 5} {1, 4}, {2, 3, 5} − 2

9 0.6
{1, 5}, {2, 3, 4}
Partition type (5), k = 1, l = 1

E17 {1, 2, 3, 4, 5} 0 0.0

4.2. The Construction of Left-Invariant and Additive Measures on the Pseudometric Space of Equivalence
Classes of Graph Partitions

In the following, we consider only partition comparison measures, which are distance functions
of a metric space. Note that a normalized similarity measure s can be transformed into a distance by
the transformation d = 1− s.

In a pseudometric space (S, d∗), we measure the distance d∗(P ,Q) between equivalence classes
(which are sets) of partitions instead of the distance d(P ,Q) between partitions. The partitions P and
Q are formal arguments of d∗, which are expanded to equivalence classes by PAut(G) and QAut(G).
The standard construction of a distance measure between sets has been developed for the point set
topology and is due to Felix Hausdorff [25] (p. 166) and Kazimierz Kuratowski [26] (p. 209). For finite
sets, it requires the computation of the distances for all pairs of the direct product of the two sets. Since
for finite permutation groups, we deal with distances between two finite sets of partitions, we use the
following definitions for the lower and upper measures, respectively. Both definitions have the form
of an optimization problem:

d∗L(P ,Q) = min
P̃∈PAut(G) ,
Q̃∈QAut(G)

d(P̃ , Q̃)

and:

d∗U(P ,Q) =
⎧⎨⎩ 0 if PAut(G) = QAut(G)

maxP̃∈PAut(G) ,
Q̃∈QAut(G)

d(P̃ , Q̃) else

The diameter of a finite equivalence class of partitions is defined by

dia(P) = max
P̃∈PAut(G) ,
Q̃∈PAut(G)

d(P̃ , Q̃). (2)

The third option of defining a distance between two finite equivalence classes of partitions of
taking the average distance is due to John von Neumann [27]:

d∗av(P ,Q) =
⎧⎨⎩ 0 if PAut(G) = QAut(G)

1
|PAut(G) |·|QAut(G) | ∑P̃∈PAut(G) ,

Q̃∈QAut(G)

d(P̃ , Q̃) else
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Note that the definitions for d∗L, d∗U and d∗av require the computation of the minimal, maximal and
average distance of all pairs of the direct product PAut(G) ×QAut(G). The computational complexity
of this is quadratic in the size of the larger equivalence class.

Posed as a measurement problem, we can instead fix one partition in one of the orbits and measure
the minimal, maximal and average distance between all pairs of either the direct product of {P} ×
QAut(G) or {Q} × PAut(G). The complexity of this is linear in the size of the smaller equivalence class.

Theorems 4 and 5 and their proofs are based on these observations. They are the basis for the
development of algorithms for the computation of invariant partition comparison measures of a
computational complexity of at most linear order and often of constant order.

Theorem 4. For all PAut(G) 	= QAut(G), the following equations hold:

d∗L(P ,Q) = min
P̃∈PAut(G) ,
Q̃∈QAut(G)

d(P̃ , Q̃) = min
g,h∈Aut(G)

d(Ph,Qg)

= min
Q̃∈QAut(G)

d(P , Q̃) = min
g∈Aut(G)

d(P ,Qg)

= min
P̃∈PAut(G)

d(P̃ ,Q) = min
h∈Aut(G)

d(Ph,Q)

For PAut(G) 	= QAut(G):

d∗U(P ,Q) = max
P̃∈PAut(G) ,
Q̃∈PAut(G)

d(P̃ , Q̃) = max
g,h∈Aut(G)

d(Ph,Qg)

= max
Q̃∈QAut(G)

d(P , Q̃) = max
g∈Aut(G)

d(P ,Qg)

= max
P̃∈PAut(G)

d(P̃ ,Q) = max
h∈Aut(G)

d(Ph,Q)

Proof. Let g, h, f ∈ Aut(G), P̃ ∈ PAut(G) and Q̃ ∈ QAut(G), that is P̃ = Ph and Q̃ = Qg. Then, since
the orbits of both partitions are generated by Aut(G), the following identities between distances hold:

d(P , Q̃) = d(P ,Qg) = d(P g−1
,Q),

d(P̃ ,Q) = d(Ph,Q) = d(P ,Qh−1
)

as well as:
d(P̃ , Q̃) = d(Ph,Qg) = d(Phg−1

,Q),
and:

d(P̃ , Q̃) = d(Ph,Qg) = d(P ,Qgh−1
).

Furthermore, let f = gh−1.

1. For d∗L, we have:

min
Q̃∈QAut(G)

d(P , Q̃) = min
g∈Aut(G)

d(P ,Qg)

= min
g−1∈Aut(G)

d(P g−1
,Q) = min

P̃∈PAut(G)
d(P̃ ,Q)

by switching the reference systems. In the next sequence of equations, we establish that taking
the minimum over all reference systems is equivalent to finding the minimum for one arbitrarily
fixed reference system.
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min
P̃∈PAut(G) ,
Q̃∈QAut(G)

d(P̃ , Q̃) = min
g,h∈Aut(G)

d(Ph,Qg) = min
g,h∈Aut(G)

d(P ,Qgh−1
)

= min
f∈Aut(G)

d(P ,Q f ) = min
Q̃∈QAut(G)

d(P , Q̃)

2. For the proof of d∗U for PAut(G) 	= QAut(G) we substitute max for min in the proof of d∗L.

Theorem 5. For all PAut(G) 	= QAut(G), the following equations hold:

d∗av(P ,Q) = 1
|PAut(G)| · |QAut(G)| ∑

P̃∈PAut(G) ,
Q̃∈QAut(G)

d(P̃ , Q̃) (3)

=
1

|Aut(G)|2 ∑
h,g∈Aut(G)

d(Ph,Qg) (4)

=
1

|PAut(G)| ∑
P̃∈PAut(G)

d(P̃ ,Q) (5)

=
1

|Aut(G)| ∑
h∈Aut(G)

d(Ph,Q) (6)

=
1

|QAut(G)| ∑
Q̃∈QAut(G)

d(P , Q̃) (7)

=
1

|Aut(G)| ∑
g∈Aut(G)

d(P ,Qg) (8)

Proof. For the proof of the equality of the identities of d∗av, we use the property of an average of n
observations xi,j with k identical groups of size m with i ∈ 1, . . . , k, j ∈ 1, . . . , m:

1
n

k

∑
i=1

m

∑
j=1

xi,j =
k

km

m

∑
j=1

x1,j =
1
m

m

∑
j=1

x1,j (9)

The computation of an average over the group equals the result of the computation of an average
over the orbit, because the orbit stabilizer Theorem 1 implies that each element of the orbit is generated
|Aut(G)P | times, and this means that we average |Aut(G)P | groups of identical values and that
Equation (9) applies. This establishes the equality of Expressions (3) and (4), as well as of Expressions (5)
and (6) and of Expressions (7) and (8), respectively.

The two decompositions of the direct product Aut(G) × Aut(G) establish the equality of
Expressions (4) and (6), as well as of Expressions (4) and (8).

Note that these proofs also show that d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) are invariant. Next, we
prove that the three measures d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) are invariant measures.

Theorem 6. The lower pseudometric space (S, d∗L) has the following properties:

1. Identity: d∗L(P ,Q) = 0, if PAut(G) = QAut(G).
2. Invariance: d∗L(P ,Q) = d∗L(P̃ , Q̃), for all P ,Q ∈ P(V) and P̃ ∈ PAut(G), Q̃ ∈ QAut(G).
3. Symmetry: d∗L(P ,Q) = d∗L(Q,P).
4. Triangle inequality: d∗L(P ,R) ≤ d∗L(P ,Q) + d∗L(Q,R)

These properties also hold for the upper pseudometric space (S, d∗U) and the average pseudometric
space (S, d∗av).
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Proof.

1. Identity holds because of the definition of the distance d∗ between two elements in an equivalence
class of the pseudometric space (S, d∗).

2. Invariance of d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) is proven by Theorems 4 and 5.
3. Symmetry holds, because d is symmetric, and min, max and the average do not depend on the

order of their respective arguments.
4. To proof the triangular inequality, we make use of Theorems 4 and 5 and of the fact that d is a

metric for which the triangular inequality holds:

(a) For d∗L follows:

d∗L(P ,R) = min
P̃∈PAut(G) ,
R̃∈RAut(G)

d(P̃ , R̃)

≤ min
P̃∈PAut(G) ,
Q̃∈QAut(G) ,
R̃∈RAut(G)

(
d(P̃ , Q̃) + d(Q̃, R̃))

= min
P̃∈PAut(G) ,
R̃∈RAut(G)

(
d(P̃ ,Q) + d(Q, R̃))

= min
P̃∈PAut(G)

d(P̃ ,Q) + min
R̃∈RAut(G)

d(Q, R̃)

= d∗L(P ,Q) + d∗L(Q,R)

(b) For the proof of the triangular inequality for d∗U , we substitute max for min and dU for dL in
the proof of the triangular inequality for d∗L.

(c) For d∗av, it follows:

d∗av(P ,R) = 1
|PAut(G)| · |RAut(G)| ∑

P̃∈PAut(G)

∑
R̃∈RAut(G)

d(P̃ , R̃)

≤ 1
|PAut(G)| · |RAut(G)| ∑̃P

∑̃
R

[
d(P̃ ,Q) + d(Q, R̃)]

=
1

|PAut(G)| · |RAut(G)| ∑̃P
∑̃
R

d(P̃ ,Q) + 1
|PAut(G)| · |RAut(G)| ∑̃P

∑̃
R

d(Q, R̃)

=
1

|RAut(G)| ∑̃R
d∗av(P ,Q) + 1

|PAut(G)| ∑̃P
d∗av(Q,R)

= d∗av(P ,Q) + d(Q̃,R)

�

5. Decomposition of Partition Comparison Measures

In this section, we assess the structural (dis)similarity between two partitions and the effect of the
group actions by combining a partition comparison measure and its invariant counterpart defined
in Section 4. The distances d(P ,Q), d∗L(P ,Q), d∗U(P ,Q) and d∗av(P ,Q) allow the decomposition of a
partition comparison measure (transformed into a distance) into a structural component dstruc and the
effect dAut(G) of the automorphism group Aut(G):
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d(P ,Q) = d∗L(P ,Q)︸ ︷︷ ︸
dstruc

+ (d(P ,Q)− d∗L(P ,Q))︸ ︷︷ ︸
dAut(G)

= d∗U(P ,Q)︸ ︷︷ ︸
dstruc

− (d∗U(P ,Q)− d(P ,Q))︸ ︷︷ ︸
dAut(G)

= d∗av(P ,Q)︸ ︷︷ ︸
dstruc

− (d∗av(P ,Q)− d(P ,Q))︸ ︷︷ ︸
dAut(G)

dia(P) measures the effect of the automorphism group Aut(G) on the equivalence class PAut(G)

(see the last column of Table 4). eAut(G)
max is an upper bound of the automorphism effect on the distance

of two partitions P and Q:
eAut(G)

max = min(dia(P), dia(Q)).
This follows from Theorem 4. Note that eAut(G)

max ≥ d∗U − d∗L, as Case 1 in Table 5 shows.

Table 5. Measure decomposition for partitions of the butterfly graph for the Rand distance dRI = 1−RI.

Case P Q dRI d∗ dstruc dAut(G)

1
{{1, 2, 3, 4}{5}} {{4}{5}{1, 2, 3}} 0.3 d∗L 0.3 0.0

∈ E13 ∈ E5 0.3 d∗av 0.5 -0.2
dia(E13) = 0.6 dia(E5) = 0.6 0.3 d∗U 0.7 -0.4

2
{{2, 4}{1, 3, 5}} {{3}{1, 4}{2, 5}} 0.6 d∗L 0.2 0.4

∈ E16 ∈ E9 0.6 d∗av 0.4 0.2
dia(E16) = 0.6 dia(E9) = 0.4 0.6 d∗U 0.6 0.0

3
{{1}{2, 5}{3, 4}} {{1}{2, 3}{4}{5}} 0.3 d∗L 0.1 0.2

∈ E11 ∈ E3 0.3 d∗av 0.25 0.05
dia(E11) = 0.4 dia(E3) = 0.2 0.3 d∗U 0.3 0.0

4
{{3}{1, 2}{4, 5}} {{1}{2, 3}{4, 5}} 0.3 d∗L 0.3 0.0

∈ E8 ∈ E10 0.3 d∗av 0.3 0.0
(dia(E8) = 0, stable) dia(E10) = 0.4 0.3 d∗U 0.3 0.0

In Table 5, we show a few examples of measure decomposition for partitions of the butterfly
graph for the Rand distance dRI :

1. In Case 1, we compare two partitions from nontrivial equivalence classes: the difference of 0.4
between d∗U and d∗L indicates that the potential maximal automorphism effect is larger than the
lower measure. In addition, it is also smaller (by 0.2) than the automorphism effect in each of
the equivalence classes. That dAut(G) is zero for the lower measure implies that the pair (P ,Q)
is a pair with the minimal distance between the equivalence classes. The fact that d∗av = 0.5 is
the mid-point between the lower and upper measures indicates a symmetric distribution of the
distances between the equivalence classes.

2. That dAut(G) is zero for the upper measure in Case 2 means that we have found a pair with the
maximal distance between the equivalence classes.

3. In Case 3, we have also found a pair with maximal distance between the equivalence classes.
However, the maximal potential automorphism effect is smaller than for Cases 1 and 2. In addition,
the distribution of distances between the equivalence classes is asymmetric.

4. Case 4 shows the comparison of a partition from a trivial with a partition from a non-trivial
equivalence class. Note, that in this case, all three invariant measures, as well as dRI coincide and
that no automorphism effect exists.

A different approach to measure the potential instability in clustering a graph G is the computation
of the Kolmogorov–Sinai entropy of the finite permutation group Aut(G) acting on the graph [28].
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Note, that the Kolmogorov–Sinai entropy of a finite permutation group is a measure of the uncertainty
of the automorphism group. It cannot be used as a measure to compare two graph partitions.

6. Invariant Measures for the Karate Graph

In this section, we illustrate the use of invariant measures for the three partitions PO, P1 and P2

of the Karate graph K [29], which is shown in Figure 4. Aut(K) is of order 480, and it consists of the
three subgroups G1 = Sym(Ω1) with Ω1 = {15, 16, 19, 21, 23}, G2 = Sym(Ω2) with Ω2 = {18, 22} and
G3 = {(), (5 11), (6 7)}. In addition to the modularity optimal partition PO (with its clusters separated
by longer and dashed lines in Figure 4), we use the partitions P1 and P2:

P1 = {{5, 6, 7, 19, 21} , {1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22} ,

{9, 10, 11, 15, 16, 17, 23, 27, 30, 31, 33, 34} , {24, 25, 26, 28, 29, 32}}
P2 = {{5, 6, 7, 8, 12, 19, 21} , {1, 2, 3, 4, 13, 14, 18, 20, 22} ,

{9, 10, 11, 15, 16, 17, 23, 27, 30, 31, 33, 34} , {24, 25, 26, 28, 29, 32}}

Both partitions are affected by the orbits {15, 16, 19, 21, 23} and {5, 11}, each overlapping two
clusters. The dissimilarity to PO is larger for P2, which is reflected in Tables 6 and 7.
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4 8

9

10

12

13

14

17

20

24

25
26

27

28

29

30

31

32

33

34
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6

7
11

15

16

18

19
21

22

23

C1

C2

C3

C4

Figure 4. Zachary’s Karate graph K with the vertices of the orbits of the three subgroups of Aut(K) in
bold and the clusters of PO separated by dashed edges.

For the optimal partition PO of type (5, 6, 11, 12), the upper bound of the size of the equivalence
class is 480 [30] (p. 112). The actual size of the equivalence class of PO is one, which means the optimal
solution is not affected by Aut(K). Partition P1, which is of the same type as PO, also has an upper
bound of 480 for its equivalence class. The actual size of the equivalence classes of both P1 and P2 is 20.
Note that the actual size of the equivalence classes that drive the complexity of computing invariant
measures is in our example far below the upper bound. Table 6 shows the diameters of the equivalence
classes of the partitions.
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Table 6. Diameter (computed using dRI), orbit size and stability of partitions PO, P1 and P2.

X PO P1 P2

dia(X ) 0.0000 0.1176 0.1390
|X Aut(G)| 1 20 20
X stable? yes no no

Table 7 illustrates the decomposition into structural effects and automorphism effects for the three
partitions of the Karate graph. We see that for the comparison of a stable partition (PO) with one
of the unstable partitions, the classic partition comparison measures are sufficient. However, when
comparing the two unstable partitions P1 and P2, the structural effect (0.0499) is dominated by the
maximal automorphism effect (0.1176). Furthermore, we note that the distribution of values over the
orbit of the automorphism group is asymmetric (by looking at d∗L, d∗U and d∗av).

Table 7. Invariant measures and automorphism effects for the Karate graph. The R package
partitionComparison has been used for the computations [23].

Measure d = dRI m(PO,P1) m(PO,P2) m(P1,P2)

d 0.0927 0.1426 0.0499
d∗L + dAut(G) 0.0927 0.1426 0.0499 + 0.0000
d∗U − dAut(G) 0.0927 0.1426 0.1676− 0.1176
d∗av − dAut(G) 0.0927 0.1426 0.1280− 0.0781

eAut(K)
max 0.0000 0.0000 0.1176

The analysis of the effects of the automorphism group of the Karate network showed that the
automorphism group does not affect the stability of the optimal partition. However, the first results
show that the situation is different for other networks like the Internet AS graph with 40,164 nodes
and 85,123 edges (see Rossi et al. [31], and the data of of the graph tech-internet-as are from Rossi
and Ahmed [32]): for this graph, several locally optimal solutions with a modularity value above 0.694
exist, all of which are unstable. Further analysis of the structural properties of the solution landscape
of this graph is work in progress.

7. Discussion, Conclusions and Outlook

In this contribution, we study the effects of graph automorphisms on partition comparison
measures. Our main results are:

1. A formal definition of partition stability, namely P is stable iff |PAut(G)| = 1.
2. A proof of the non-invariance of all partition comparison measures if the automorphism group is

nontrivial (|Aut(G)| > 1).
3. The construction of a pseudometric space of equivalence classes of graph partitions for three

classes of invariant measures concerning finite permutation groups of graph automorphisms.
4. The proof that the measures are invariant and that for these measures (after the transformation to

a distance), the axioms of a metric space hold.
5. The space of partitions is equipped with a metric (the original partition comparison measure) and

a pseudometric (the invariant partition comparison measure).
6. The decomposition of the value of a partition comparison measure into a structural part and a

remainder that measures the effect of group actions.

Our definitions of invariant measures have the advantage that any existing partition comparison
measure (as long as it is a distance or can be transformed into one) can still be used for the task.
Moreover, the decomposition of measures restores the primary purpose of the existing comparison

281



Symmetry 2018, 10, 504

measures, which is to quantify structural difference. However, the construction of these measures
leads directly to the classic graph isomorphism problem, whose complexity—despite considerable
efforts and hopes to the contrary [33]—is still an open theoretical problem [34,35]. However, from
a pragmatic point of view, today, quite efficient and practically usable algorithms exist to tackle the
graph isomorphism problem [34]. In addition, for very large and sparse graphs, algorithms for finding
generators of the automorphism group exist [11]. Therefore, this dependence on a computationally
hard problem in general is not an actual disadvantage and allows one to implement the presented
measure decomposition. The efficient implementation of algorithms for the decomposition of graph
partition comparison measures is left for further research.

Another constraint is that we have investigated the effects of automorphisms on partition
comparison measures in the setting of graph clustering only. The reason for this restriction is that the
automorphism group of the graph is already defined by the graph itself and, therefore, is completely
contained in the graph data. For arbitrary datasets, the information about the automorphism group is
usually not contained in the data, but must be inferred from background theories. However, provided
we know the automorphism group, our results on the decomposition of the measures generalize to
arbitrary cluster problems.

All in all, this means that this article provides two major assets: first, it provides a theoretic
framework that is independent of the preferred measure and the data. Second, we provide insights
into a source of possible partition instability that has not yet been discussed in the literature. The
downsides (symmetry group must be known and graph clustering only) are in our opinion not too
severe, as we discussed above. Therefore, we think that our study indicates that a better understanding
of the principle of symmetry is important for future research in data analysis.

Supplementary Materials: The R package partitionComparison by the authors of this article that implements the
different partition comparison measures is available at https://cran.r-project.org/package=partitionComparison.
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Appendix A. Modularity

Newman’s and Girvan’s modularity [14] is defined as:

Q = ∑
i

(
eii − a2

i

)
with the edge fractions:

eij =

∣∣{{u, v} ∈ E|u ∈ Ci ∧ v ∈ Cj}
∣∣

2|E| , i 	= j,

and the cluster density:

eii =
|{{u, v} ∈ E|u, v ∈ Ci}|

|E| .

We have to distinguish eij and eii because of the set-based definition E. eij is the fraction of edges
from cluster Ci to cluster Cj and eji, vice versa. Therefore, the edges are counted twice, and thus, the
fraction has to be weighted with 1

2 . The second part of Q is the marginal distribution:

282



Symmetry 2018, 10, 504

a2
i =

(
∑

j
eij

)2

.

High values of Q indicate good partitions. The range of Q is [− 1
2 , 1). Even if the modularity

has some problems by design (e.g., the resolution limit [36], unbalanced cluster sizes [37], multiple
equivalent, but unstable solutions generated by automorphisms [38]), maximization of Q is the de
facto standard formal optimization criterion for graph clustering algorithms.

Appendix B. Measures for Comparing Partitions

We classify the measures that are used in the literature to compare object partitions as three
categories [39]:

1. Pair-counting measures.
2. Set-based comparison measures.
3. Information theory based measures.

All these measures come from a general context and, therefore, may be used to compare any
object partitions, not only graph partitions. The flip side of the coin is that they do not consider any
adjacency information from the underlying graph at all.

The column Abbr. of Tables A1–A4 denotes the Abbreviations used throughout this paper; the
column P = P denotes the value resulting when identical partitions are compared (max stands for
some maximum value depending on the partition).

Appendix B.1. Pair-Counting Measures

All the measures within the first class are based on the four coefficients Nxy that count pairs of
objects (nodes in our context). Let P ,Q be partitions of the node set V of a graph G. C and C′ denote
clusters (subsets of vertices C, C′ ⊆ V). The coefficients are defined as:

N11 :=
∣∣{{u, v} ⊆ V | (∃C ∈ P : {u, v} ⊆ C) ∧ (∃C′ ∈ Q : {u, v} ⊆ C′)

}∣∣ ,
N10 :=

∣∣{{u, v} ⊆ V | (∃C ∈ P : {u, v} ⊆ C) ∧ (∀C′ ∈ Q : {u, v} 	⊆ C′)
}∣∣ ,

N01 :=
∣∣{{u, v} ⊆ V | (∀C ∈ P : {u, v} 	⊆ C) ∧ (∃C′ ∈ Q : {u, v} ⊆ C′)

}∣∣ ,
N00 :=

∣∣{{u, v} ⊆ V | (∀C ∈ P : {u, v} 	⊆ C) ∧ (∀C′ ∈ Q : {u, v} 	⊆ C′)
}∣∣ .

Please note that N11 + N10 + N01 + N00 = (n
2) = n(n−1)

2 . One easily can see that for identical
partitions N10 = N01 = 0, because two nodes either occur in a cluster together or not. Completely
different partitions result in N11 = 0. All the measures we examined are given in Tables A1 and A2.
The RV coefficient is used by Youness and Saporta [40] for partition comparison, and p and q are the
cluster counts (e.g., p = |P|) for the two partitions. For a detailed definition of the Lerman index
(especially the definitions of the expectation and standard deviation), see Denœud and Guénoche [41].
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Table A1. The pair counting measures used in Table 3 [42]. The above measures are similarity measures.
Distance measures and non-normalized measures are listed in Table A2. For brevity: N21 = N11 + N10,
N12 = N11 + N01, N′01 = N00 + N01 and N′10 = N00 + N10. Abbr., Abbreviation.

Abbr. Measure Formula P = P
RI Rand [43] N11+N00

(n
2)

1.0

ARI Hubert and Arabie [44] 2(N00 N11−N10 N01)
N′01 N12+N′10 N21

1.0

H Hamann [45] (N11+N00)−(N10+N01)
(n

2)
1.0

CZ Czekanowski [46] 2N11
2N11+N10+N01

1.0

K Kulczynski [47] 1
2

(
N11
N21

+ N11
N12

)
1.0

MC McConnaughey [48] N2
11−N10 N01
N21 N12

1.0

P Peirce [49] N11 N00−N10 N01
N21 N′01

1.0

WI Wallace [50] N11
N21

1.0

WII Wallace [50] N11
N12

1.0

FM Fowlkes and Mallows [51]
√

N11
N21

N11
N12

1.0

Γ Yule [52] N11 N00−N10 N01√
N21 N12 N′10 N′01

1.0

SS1 Sokal and Sneath [53] 1
4

(
N11
N21

+ N11
N12

+ N00
N′10

+ N00
N′01

)
1.0

B1 Baulieu [54] (n
2)

2−(n
2)(N10+N01)+(N10−N01)2

(n
2)

2 1.0

GL Gower and Legendre [55] N11+N00
N11+

1
2 (N10+N01)+N00

1.0

SS2 Sokal and Sneath [53] N11
N11+2(N10+N01)

1.0

SS3 Sokal and Sneath [53] N11 N00√
N21 N12 N′01 N′10

1.0

RT Rogers and Tanimoto [56] N11+N00
N11+2(N10+N01)+N00

1.0

GK Goodman and Kruskal [57] N11 N00−N10 N01
N11 N00+N10 N01

1.0

J Jaccard [3] N11
N11+N10+N01

1.0

RV Robert and Escoufier [58]

(
N11 − 1

q N21 − 1
p N12 + (n

2)
1
pq

)[(
p−2

p N21 + (n
2)

1
p2

)
(

q−2
q N12 + (n

2)
1
q2

)]− 1
2

1.0
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Table A2. Pair counting measures that are not similarity measures. For brevity: N21 = N11 + N10,
N12 = N11 + N01, N′01 = N00 + N01 and N′10 = N00 + N10.

Abbr. Measure Formula P = P

RR Russel and Rao [59] N11
(n

2)
max

M Mirkin and Chernyi [60] 2(N01 + N10) 0.0

Mi Hilbert [61]
√

N10+N01
N11+N10

0.0

Pe Pearson [62] N11 N00−N10 N01
N21 N12 N′01 N′10

max

B2 Baulieu [54] N11 N00−N10 N01

(n
2)

2 max

LI Lerman [63] N11−E(N11)√
σ2(N11)

max

NLI Lerman [63] (normalized) LI(P1,P2)
LI(P1,P1)LI(P2,P2)

1.0

FMG Fager and McGowan [64] N11√
N21 N12

− 1
2
√

N21
max

Appendix B.2. Set-Based Comparison Measures

The second class is based on plain set comparison. We investigate three measures (see Table A3),
namely the measure of Larsen and Aone [65], the so-called classification error distance [66] and
Dongen’s metric [67].

Table A3. References and formulas for the three set-based comparison measures used in Table 3. σ is
the result of a maximum weighted matching of a bipartite graph. The bipartite graph is constructed
from the partitions that shall be compared: the two node sets are derived from the two partitions, and
each cluster is represented by a node. By definition, the two node sets are disjoint. The node sets are

connected by edges of weight wij =
∣∣∣{Ci ∩ C′j | Ci ∈ P , C′j ∈ Q}

∣∣∣. As in our context |P| = |Q|, the

found σ is assured to be a perfect (bijective) matching. n is the number of nodes |V|.

Abbr. Measure Formula P = P
LA Larsen and Aone [65] 1

|P| ∑C∈P maxC′∈Q
2|C∩C′ |
|C|+|C′ | 1.0

dCE Meilǎ and Heckerman [66] 1− 1
n maxσ ∑C∈P |C ∩ σ(C)| 0.0

D van Dongen [67]
2n−∑C∈P maxC′∈Q |C ∩ C′ |−

∑C′∈QmaxC∈P |C ∩ C′ | 0.0

Appendix B.3. Information Theory-Based Measures

The last class of measures contains those that are rooted in information theory. We show the
measures in Table A4, and we recap the fundamentals briefly: the entropy of a random variable X is
defined as:

H(X) = −
k

∑
i=1

pi log pi

with pi being the probability of a specific incidence. The entropy of a partition can analogously be
defined as:

H(P) = − ∑
C∈P

|C|
n

log
|C|
n

.
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The mutual information of two random variables is:

I(X, Y) =
k

∑
i=0

l

∑
j=0

pij log
pij

pi pj

and again, analogously:

MI(P ,Q) = ∑
C∈P

∑
C′∈Q

|C ∩ C′|
n

log n
|C ∩ C′|
|C||C′|

is the mutual information of two partitions [68]. Meilǎ [69] introduced the Variation of Information as
VI = H(P) + H(Q)− 2MI.

Table A4. Information theory-based measures used in Table 3. All measures are based on Shannon’s
definition of entropy. Again, n = |V|.

Abbr. Measure Formula P = P
MI e.g., Vinh et al. [68] ∑C∈P ∑C′∈Q

|C∩C′ |
n log n |C∩C′ |

|C||C′ | max

NMIϕ Danon et al. [70] MI
ϕ(H(P),H(Q)) , ϕ ∈ {min, max} 1.0

NMIΣ Danon et al. [70] 2·MI
H(P)+H(Q) 1.0

VI Meilǎ [69] H(P) + H(Q)− 2MI 0.0

Appendix B.4. Summary

As one can see, all three classes of measures rely mainly on set matching between node sets
(clusters), as an alternative definition of N11 = ∑C∈P ∑C′∈Q (|C∩C′ |

2 ) shows [42]. The adjacency
information of the graph is completely ignored.
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Abstract: Quality function deployment (QFD) is an effective approach to satisfy the customer
requirements (CRs). Furthermore, accurately prioritizing the engineering characteristics (ECs) as the
core of QFD is considered as a group decision making (GDM) problem. In order to availably deal with
various preferences and the vague information of different experts on a QFD team, multi-granularity
2-tuple linguistic representation is applied to elucidate the relationship and correlation between CRs
and ECs without loss of information. In addition, the importance of CRs is determined using the
best worst method (BWM), which is more applicable and has good consistency. Furthermore, we
propose considering the relationship matrix and correlation matrix method to prioritize ECs. Finally,
an example about evaluating emergency routes of metro station is proposed to illustrate the validity
of the proposed methodology.

Keywords: quality function deployment; engineering characteristics; group decision making; 2-tuple;
metro station; emergency routes

1. Introduction

In order to cope with intense global competitions, enterprises must design the highest quality
products that satisfy the voice of customers (VOCs). Quality function deployment (QFD) is an effective
method to map customer requirements (CRs) into engineering characteristics (ECs) in the area of
product development [1] and construction industry [2]. The core of QFD is requirements conversion,
moreover, the first phase in house of quality (HOQ) mapping CRs to ECs becomes an essential
procedure of implementing QFD [3].

Aiming at implementing QFD successfully, plenty of CRs should be acquired, and group decision
making (GDM) should be adopted [4]. QFD consists of two major steps: collecting the CRs and
mapping it to ECs, both of which are performed [5,6]. This paper focuses on how the ECs in QFD can
be prioritized.

There are plenty of methods to prioritize the ECs. Fuzzy set theory was widely employed to
calculate the rankings of ECs under the circumstance of vagueness and impreciseness. Fuzzy multiple
objective programming [7], fuzzy goal programming [8], fuzzy relationship and correlations [9], and
expected value-based method [10] are proposed to prioritize ECs. In addition, Geng et al. [11] integrated
the analytic network process to QFD to reflect the initial importance weights of ECs. However, the
problem is that they paid little attention to the GDM method, which can aggregate different experts’
preferences. For the purpose of reaching collective decisions, we combine GDM with QFD.

Kwong et al. [6] put forward the fuzzy GDM method integrated with a fuzzy weighted average
to rank ECs. Wang [12] adopted the method of aggregating technical importance rather than CRs to
prioritize ECs. With respect to consensus, modified fuzzy clustering was presented so as to reach
the consensus of the QFD team [13]. A two-stage GDM was proposed to simultaneously solve
the two types of uncertainties (i.e., human assessment on qualitative attributes as well as input
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information) underlying QFD [4]. However, due to varying personal experience and knowledge, the
input information of experts presented with multi-format or multi-granular linguistic preferences
makes prioritizing ECs more difficult. Therefore, some scholars have focused on the GDM approach
based on multi-granularity linguistic environments [14–17]. Xu [18,19] analyzed multiple formats’
preferences and provided an approach integrating information in the context of GDM. It is noteworthy
that multi-granularity evaluation should be analyzed.

The correlation between CRs and ECs influencing on the relationship becomes ignored and
simplified in the current study. In addition, the linguistic accuracy remains to be discussed.
Considering that the 2-tuple linguistic representation can increase the information of precision [20,21].
In order to fill the gap, it is necessary that the QFD methodology is extended with a 2-tuple linguistic
environment so as to lessen the loss of information and obtain accurate value of ECs. In addition,
decision makers may have different knowledge and experience in the process of group decision
making, and they may then adopt different linguistic labels to describe the same decision-making
problems. This process is denoted as multi-granular linguistic information, which conforms to the
actual decision-making process. Therefore, we allow decision makers to employ multi-granular
linguistic information, i.e., the linguistic term set has different granularities.

A majority of methods deal with multi-granular linguistic information. Herrera et al. proposed
the definition of a basic linguistic term set, and then different linguistic labels can be unified based
on a basic linguistic term set [22]. In addition, some transformation methods based on the linguistic
hierarchy and extended linguistic hierarchy were presented and applied to a plenty of decision-making
problems [23,24]. Among these approaches, the method considering linguistic hierarchy is more
flexible and convenient to carry out. In this paper, we adopt this method to deal with the problem
of multi-granular linguistic evaluation. For determining the weight of CRs, we adopt the best–worst
method (BWM) in this paper. This method has good consistency and is easier to implement [25,26]. Our
contributions lie in using the BWM to determine the importance of CRs and integrate the correlations
matrix with the relationship matrix based on a compromise idea, where experts can express their
thoughts in different granularities.

In this paper, a GDM approach is integrated with QFD to solve different preferences and prioritize
ECs. The multi-granularity 2-tuple linguistic information to reflect the attitudes of different experts
is employed. This paper is organized as follows: In Section 2, a 2-tuple multi-granularity linguistic
representation model, linguistic hierarchies, and a 2-tuple linguistic weighted geometric Bonferroni
mean (2TLWGBM) operator are presented. In Section 3, the BWM is applied to compute the weight
of CRs, and a novel GDM approach to prioritize ECs is proposed. An illustrated example about
metro stations is provided in Section 4 to demonstrate the applicability of this method. Ultimately,
conclusions and future research are marked in Section 5.

2. Preliminaries

In this section, we introduce some basic knowledge about QFD, 2-tuple representation and the
2TLWGBM Operator.

2.1. The Basic Knowledge on QFD

A four-phase QFD model is employed to translate the VOCs to ECs, which consists of Product
Planning, Part Deployment, Process Planning, and Process and Quality control [3]. The first phase
is to collect customer requirements for the product called WHATs and then to transform these needs
into ECs called HOWs. This phase is so fundamental in product development that the corresponding
QFD transformation matrix referred to the HOQ (Figure 1). The HOQ links customer needs to the
development team’s technical responses, so we focus on this phase in order to translate different
preference of customers and experts to prioritize ECs. In this paper, we first take the relationship
between CRs and ECs into consideration. In order to transform the importance of CRs into ECs, the
correlation of CRs and ECs is introduced to modify the initial relationship afterward.
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Figure 1. House of Quality (HOQ).

2.2. The 2-Tuple Linguistic Representation

There are numerous formats for representing preference such as linguistic, numerical and 2-tuple
linguistic representation. Compared with other forms, 2-tuple linguistic representation makes the
assessment more precise and without a loss of information [20]. Next, we will introduce some basic
knowledge about 2-tuple representation.

Definition 1 [27]. Assuming S =
{

s1, s2, · · · , sg
}

is a linguistic term set and β ∈ [0, g] represents
the consequence of a symbolic aggregation operation. Afterwards, the 2-tuple is expressed as the
equivalence to β as follows:

Δ : [0, g]→ S× [−0.5, 0.5) (1)

Δ(β) = (si, α), with

{
si, i = round(β)

α = β− i, α = [−0.5, 0.5)
(2)

where round (·) represents the usual round function, si has the closest index label to β, and α is the value of the
symbolic translation.

Definition 2 [27]. Let S =
{

s1, s2, · · · , sg
}

be a linguistic term set and (si, αi) be a 2-tuple. There is always a
function Δ−1 that can be defined, such that, from a 2-tuple (si, αi), its equivalent numerical value β ∈ [0, g] ⊂ R
can be obtained, which is described as follows:

Δ−1 :→ S× [−0.5, 0.5)→ [0, g] (3)

Δ−1(si, αi) = i + αi = β (4)

Definition 3 [28]. There are 2-tuples x = {(s1, α1), (s2, α2), · · · , (sn, αn)} . Their arithmetic mean is
expressed as:

(s, α) = Δ

(
1
n

n

∑
i=1

Δ−1(ri, αi)

)
, s ∈ S, α ∈ [−0.5, 0.5) (5)
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Definition 4 [28]. Let (si, αi) and (sj, αj) be two 2-tuple linguistic variables. Their granularities are both g,

and the distance between them is described as follows:

d((si, αi), (sj, αj)) =

∣∣Δ−1(i + αi)− Δ−1(j + αj)
∣∣

g
(6)

Definition 5 [28]. Let x = {(s1, α1), (s2, α2), · · · , (sn, αn)} be a set of 2-tuples and (s, α) be the arithmetic

mean of these 2-tuples. The degree of similarity is expressed as

sim((sπ(j), απ(j)), (s, α)) = 1− d((sπ(j), απ(j)), (s, α))
n
∑

j=1
d((sπ(j), απ(j)), (s, α))

, j = 1, 2, · · · , n (7)

Definition 6 [23]. Let LH = ∪
t
l(t, n(t)), which is the union of all level t, a linguistic hierarchy whose

linguistic term set is Sn(t) =
{

sn(t)
0 , sn(t)

1 , · · · , sn(t)
n(t)−1

}
. Furthermore, different granularities reflect

different preferences under the circumstance of evaluating. The transformation function (TF) between
level t and level t′ is defined as

TFt
t′ : l(t, n(t))→ l(t′, n(t′))

TFt
t′(s

n(t)
i , αn(t)) = Δ

(
Δ−1(sn(t)

i , αn(t)) · (n(t′)− 1)
n(t)− 1

)
(8)

where t and t′ represent different levels of linguistic hierarchy.

Note 1. The TF can implement the transformation between different granularities and further achieve
a unified linguistic label. Without loss of generality, the transformation usually is carried out from
the lower granularity to higher granularity in the process of transformation, i.e., the level t′ usually
corresponds to the maximum granularity.

2.3. The 2TLWGBM Operator

There are numerous operators to aggregate information in different linguistic environments,
such as hesitant fuzzy Maclaurin symmetric mean Operators [29], 2-tuple linguistic Muirhead mean
operators [30], 2-tuple linguistic Neutrosophic number Bonferroni mean operators [31], and hesitant
2-tuple linguistic prioritized weighted averaging aggregation operator [32] in the context of the 2-tuple
environment. In view of the Bonferroni mean (BM) operator capturing the interrelationship between
input information and ranking ECs under a 2-tuple environment, so the 2TLWGBM operator [33] will
be applied to prioritize the sequence of ECs. BM is defined as follows:

Definition 7 [33]. Let p, q ≥ 0 and ai(i = 1, 2, · · · , n) be a series of non-negative numbers. Then the BM
operator is defined as

BMp,q(a1, a2, · · · , an) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

n(n− 1)

n

∑
i, j = 1
i 	= j

ap
i aq

j

⎞⎟⎟⎟⎟⎟⎟⎠

1
p+q

(9)

Definition 8 [33]. Let x = {(r1, a1), (r2, a2), · · · , (rn, an)} be a set of 2-tuple and p, q ≥ 0. In addition,
w = (w1, w2, · · · , wn)

T is the weight vector of x, where wi > 0 (i = 1, 2, · · · , n) represents the importance
degree of (ri, ai) (i = 1, 2, · · · , n), and ∑n

i=1 wi = 1. The 2TLWGBM operator is then expressed as
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2TLWGBMp,q
w ((r1, a1), (r2, a2), · · · , (rn, an))

= Δ

⎛⎜⎜⎜⎜⎜⎜⎝
1

p+q

⎛⎜⎜⎜⎜⎜⎝
n
∏

i, j = 1
i 	= j

(
p
(
Δ−1(ri, ai)

)wi + q
(
Δ−1(rj, aj)

)wj
)
⎞⎟⎟⎟⎟⎟⎠

1
n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎠
(10)

For the sake of simplicity, it can be set p = q = 1, the aggregation operator is indicated as

2TLWGBM1,1
w ((r1, a1), (r2, a2), · · · , (rn, an))

= Δ

⎛⎜⎜⎜⎜⎜⎜⎝
1
2

⎛⎜⎜⎜⎜⎜⎝
n
∏

i, j = 1
i 	= j

((
Δ−1(ri, ai)

)wi +
(
Δ−1(rj, aj)

)wj
)
⎞⎟⎟⎟⎟⎟⎠

1
n(n−1)

⎞⎟⎟⎟⎟⎟⎟⎠
(11)

Note 2. Although a majority of aggregation operators have been proposed in recent years, the
2TLWGBM operator has some merits in prioritizing ECs. On the one hand, this operator considers the
relevance, which accords with the relationship and correlation between CRs and ECs. On the other
hand, it is more flexible owing to the parameter p and q, which makes it more suitable for different
decision makers.

3. A Group Decision-Making Approach to Prioritize ECs

3.1. Determine the Importance of CRs Based on BWM

Best worst method (BWM) is a MCDM method possessing the advantages in aspects of reaching
the consistency and simplifying the calculation with respect to AHP. The core idea of BWM is
constructing comparisons relationships between the best attribute (and the worst attribute) to the other
attributes. Additionally, an optimization model established ground on consistency is solved to obtain
the optical weights. Owing to simple operation and calculation, the BWM is synthesized to determine
the importance of CRs. The steps are listed as follows:

Step 1. CRs {CR1, CR2, · · · , CRn} are chosen, as are the best and the worst CR. The best CR is then
compared with the other CRs using Number 1–9 is constructed. The best-to-others (BO) vector AB =
(αB1, αB2, · · · , αBn) is represented where αBj describes the preference of the best CR over CRj. Similarly,
the Others-to-worst (OW) vector AW = (α1W , α2W , · · · , αnW)T is represented where αjW describes the
preference of CRj over the worst CR.

Step 2. The optimal weights of CRs are obtained. The optimization model is established to minimize
the maximum the difference {|wB − αBj wj|} and {|wj − αjW ωW|}.

(Model 1)
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Model 1 can be transformed into a linear programming model as follows:

(Model 2) 

Model 2 is solved to obtain the optimal importance of CRs (w∗1 , w∗2, · · · , w∗n) and ξ*. Alternatively,
the bigger ξ* demonstrates the higher consistency ratio provided by customers. The consistency ratio
can be calculated by the proportion between ξ* and max ξ (Consistency Index).

Consistency Ratio =
ξ∗

max ξ
=

ξ∗

Consistency Index
(12)

where the max ξ is determined according to (αBW − ξ) × (αBW − ξ) = (αBW + ξ) and αBW ∈ {1, 2, · · · ,
9}. The consistency index is listed in Table 1.

Table 1. Consistency index.

αBW 1 2 3 4 5 6 7 8 9

Consistency index 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

3.2. A Group Decision-Making Approach to Prioritize ECs

In this section, the steps of GDM for multi-granularity 2-tuple linguistic preference to prioritize
ECs in QFD are given as follows:

Step 3. Different multi-granularity linguistic preferences are obtained.

Suppose the experts EPk (k = 1, 2, · · · , t) in QFD product research or design team give
the relationship between CRi(i = 1, 2, · · · , n) and ECj(j = 1, 2, · · · , s) based on different
multi-granularities. The kth expert’s linguistic term set and evaluation matrix respectively denoted

as Sn(t)k =
{

sn(t)k
i |i = 0, 1, · · · , n(t)− 1

}
and Rk =

(
rij)n×s rij ∈ Sn(t)k , which is transformed into

2-tuple linguistic evaluation matrix R̃k =
(

rn(t)k
ij , 0)n×s, rn(t)k

ij ∈ Sn(t)k .

Step 4. Different multi-granularity linguistic preferences are unified.

To begin with, a basic linguistic term set Sn(t)u =
{

sn(t)u
i |i = 0, 1, · · · , n(t)− 1

}
can be chosen,

and the relationship matrix can then be transformed applying Equation (8) so as to make 2-tuple
linguistic representation reach the same granularity. For instance, the kth expert’s judgement matrix is

transformed as R̃k′ =
(

rn(t)u
ij , α

n(t)u
ij )n×s, rn(t)u

ij ∈ Sn(t)u .

Step 5. All the evaluation matrices are aggregated.

All the evaluation matrices uniformed are aggregated with 2TLWGBM operator in virtue of
Equation (10) into Rij(i = 1, 2, · · · , n ; j = 1, 2, · · · , s). Furthermore, the new matrix represents ultimate
relationship matrix between CRs and ECs in essence.

Step 6. The relationship between CRs and ECs is modified based on a compromise idea.

After establishing the aggregation matrix, experts give the correlations among CRs and
ECs and the initial HOQ can be obtained, which reflects the relationship Rij between CRi and
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ECj,i = 1, 2, · · · , n ; j = 1, 2, · · · , s.It is indispensable that the QFD team estimates the correlations
between CRs (i.e., Liξ(ξ 	= i, ξ = 1, 2, · · · , n)) and ECs (i.e., Tiθ(θ 	= i, θ = 1, 2, · · · , s)) using 2-tuple

based on the basic linguistic set Sn(t)u
i . Considering that the assessment result of Liξ(ξ 	= i, ξ =

1, 2, · · · , n) and Tiθ(θ 	= i, θ = 1, 2, · · · , s) has an effect on the initial aggregation matrix of relationship
Rij with respect to CRs and ECs, a higher Liξ(ξ 	= i, ξ = 1, 2, · · · , n) or Tiθ(θ 	= i, θ = 1, 2, · · · , s)
implies a benefit to Rij. Consequently, the correlations are taken into account when modifying
the relationships between CRs and ECs. In the process of adjustment, Equation (13) is applied to
integrate Liξ(ξ 	= i, ξ = 1, 2, · · · , n) and Tiθ(θ 	= i, θ = 1, 2, · · · , s) into Rij. Furthermore, the modified
relationship is computed using the formula as follows:

R′ij = Δ

(
V

∏
v=1

Δ−1(sm, αm)
γv

)
, i = 1, 2, · · · , n ; j = 1, 2, · · · , s (13)

where Δ−1(rm, am) is stemming from the set S =
{

Δ−1Rij(r
n(t)u
ij , α

n(t)u
ij ), Δ−1Liξ

(
rn(t)u

iξ , α
n(t)u
iξ ),

Δ−1Tjθ(r
n(t)u
jθ , α

n(t)u
jθ )

}
ξ 	= i, θ 	= j. In addition, the weight of γv is corresponding to the proportion

of Δ−1(rm, am). For the sake of reducing the impact from subjectivity, unduly high or unduly
low preference values in the correlation matrices are supposed to possess a low weight under the
circumstances. That means only moderated assessment giving a higher weight has a small deviation
from the true value, which might be advocated in the process of evaluation. Therefore, the weight can
be determined by Equation (14).

γv =
sim((sm, αm), (s, α))

V
∑

v=1
sim((sm, αm), (s, α))

(14)

Step 7. Integrated ECs priorities are determined.

On account of the inconformity of representation, the 2-tuple linguistic form of the relationship
matrix, and the numerical value of CRs importance, the integrated ECs priority STCj(j = 1, 2, · · · , s) is
calculated by Equation (11).

Step 8. Basic priority of ECs is confirmed.

The linguistic distance d((sn(t)
TCj

, αn(t))(sn(t)
min , αn(t))) can be adopted to measure the importance

degree, where (sn(t)
min , αn(t)) is the minimum value of linguistic term set. Furthermore, the measurement

of 2-tuple linguistic distance decides the importance of ECj(j = 1, 2, · · · , s). Therefore, the normative
value of basic priority bprj is computed as follows:

bprj =
d((sn(t)

ECj
, αn(t))(sn(t)

min , αn(t)))

s
∑

j=1
d((sn(t)

ECj
, αn(t))(sn(t)

min , αn(t)))
(13)

Step 9. End.
The flow chart of the whole procedures is shown in Figure 2.
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Figure 2. Group decision making for multi-granularity 2-tuple linguistic preference to prioritize
engineering characteristics in quality function deployment.

4. Case Study

4.1. Background

The Wuhan metro station is the most common two-floor island structure, which consists mainly
of a platform and a station hall. The underground floor is the station hall floor. As shown in Figure 3,
the metro station has four main exits and one reserved outlet for docking with the shopping mall
and fire curtains are installed at each exit. Therefore, when a crowd passes through the fire curtain
in the emergency evacuation process, they have reached the safe area. The station hall floor has
four automatic ticket checkers and two emergency dedicated channels. In emergency situations, an
automatic ticket checking machine and emergency dedicated channels are in open state. The second
underground floor is the platform layer. When an emergency occurs on the platform layer, the crowd
must first ascend to the station hall layer and then evacuate through the safety exit.

Figure 3. The structure of metro station in Wuhan.

Taking regional S as an example, we analyze the influence factors that have an effect on the
evacuation route planning in this area. Five CRs and ECs are selected in order to determine the weight
degree of ECs, which can be a basic of evaluating emergency routes.
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CR1 : Expected evacuation time
CR2 : Crowd density
CR3 : Risk level in the region
CR4 : Possibility of congestion
CR5 : Evacuation capability

EC1 : Number of evacuees per unit time
EC2 : Managerial capability
EC3 : Risk level of disaster
EC4 : Organizational situation
EC5 : Evacuation equipment

4.2. Implementation

Step 1. The evaluation CRs relationships by passengers are shown in Tables 2 and 3.

Table 2. Best-to-others (BO) vector for passengers.

Passengers Best CR1 CR2 CR3 CR4 CR5

1 CR2 3 1 5 9 7
2 CR2 5 1 4 9 8
3 CR1 1 2 7 5 9
4 CR3 4 3 1 7 9
5 CR1 1 3 9 6 8

Table 3. Others-to-worst (OW) vector for passengers.

Passengers 1 2 3 4 5

Worst CR4 CR4 CR5 CR5 CR3
CR1 6 4 9 4 9
CR2 9 9 8 7 7
CR3 5 7 2 9 1
CR4 1 1 5 2 6
CR5 4 3 1 1 3

Step 2. The importance of CRs is respectively computed as 0.302, 0.359, 0.187, 0.082 and 0.070,
which is determined by the average value by passengers. For example, the model by first passenger is
established as follows:

min ξ

s.t. |w2 − 3w1| ≤ ξ, |w2 − 5w3| ≤ ξ,
|w2 − 9w4| ≤ ξ, |w2 − 7w5| ≤ ξ,
|w1 − 6w4| ≤ ξ, |w3 − 5w4| ≤ ξ,
|w5 − 4w4| ≤ ξ, ∑

5
wj = 1,

wj ≥ 0, j = 1, 2, · · · , 5.

The parameter ξ is obtained as 0.12, and the consistency ratio can be then computed using
Equation (12) as 0.023, which indicates it has good consistency.

Step 3. In order to determine the basic priority of these ECs, three experts EP1, EP2, EP3 evaluate
the importance of ECs according to CRs given as below (Tables 4–6). They represent preference
by using the different linguistic term sets S71

i =
{

s7
0, s7

1, s7
2, s7

3, s7
4, s7

5, s7
6
}

S52
i =

{
s5

0, s5
1, s5

2, s5
3, s5

4
}

S93
i ={

s9
0, s9

1, s9
2, s9

3, s9
4, s9

5, s9
6, s9

7, s9
8
}

.
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Table 4. Evaluation matrix R1 for EP1.

EC1 EC2 EC3 EC4 EC5

CR1 s71
5 s71

6 s71
0 s71

4 s71
0

CR2 s71
1 s71

5 s71
1 s71

3 s71
4

CR3 s71
2 s71

4 s71
4 s71

1 s71
1

CR4 s71
3 s71

5 s71
1 s71

6 s71
5

CR5 s71
1 s71

4 s71
1 s71

4 s71
5

Table 5. Evaluation matrix R2 for EP2.

EC1 EC2 EC3 EC4 EC5

CR1 s52
3 s52

4 s52
0 s52

3 s52
1

CR2 s52
1 s52

3 s52
2 s52

2 s52
3

CR3 s52
1 s52

2 s52
3 s52

1 s52
1

CR4 s52
2 s52

3 s52
1 s52

4 s52
3

CR5 s52
0 s52

3 s52
1 s52

2 s52
3

Table 6. Evaluation matrix R3 for EP3.

EC1 EC2 EC3 EC4 EC5

CR1 s93
6 s93

8 s93
1 s93

5 s93
0

CR2 s93
2 s93

7 s93
2 s93

6 s93
6

CR3 s93
0 s93

6 s93
6 s93

2 s93
4

CR4 s93
3 s93

7 s93
2 s93

8 s93
6

CR5 s93
1 s93

7 s93
1 s93

7 s93
7

Step 4. Three evaluation matrices are transformed into 2-tuple representation in Tables 7–9.

Table 7. 2-tuple linguistic evaluation matrix R̃1 for EP1.

EC1 EC2 EC3 EC4 EC5

CR1

(
s71

5 , 0
) (

s71
6 , 0
) (

s71
0 , 0
) (

s71
4 , 0
) (

s71
0 , 0
)

CR2

(
s71

1 , 0
) (

s71
5 , 0
) (

s71
1 , 0
) (

s71
3 , 0
) (

s71
4 , 0
)

CR3

(
s71

2 , 0
) (

s71
4 , 0
) (

s71
4 , 0
) (

s71
1 , 0
) (

s71
1 , 0
)

CR4

(
s71

3 , 0
) (

s71
5 , 0
) (

s71
1 , 0
) (

s71
6 , 0
) (

s71
5 , 0
)

CR5

(
s71

1 , 0
) (

s71
4 , 0
) (

s71
1 , 0
) (

s71
4 , 0
) (

s71
5 , 0
)

Table 8. 2-tuple linguistic evaluation matrix R̃2 for EP2.

EC1 EC2 EC3 EC4 EC5

CR1

(
s52

3 , 0
) (

s52
4 , 0
) (

s52
0 , 0
) (

s52
3 , 0
) (

s52
1 , 0
)

CR2

(
s52

1 , 0
) (

s52
3 , 0
) (

s52
2 , 0
) (

s52
2 , 0
) (

s52
3 , 0
)

CR3

(
s52

1 , 0
) (

s52
2 , 0
) (

s52
3 , 0
) (

s52
1 , 0
) (

s52
1 , 0
)

CR4

(
s52

2 , 0
) (

s52
3 , 0
) (

s52
1 , 0
) (

s52
4 , 0
) (

s52
3 , 0
)

CR5

(
s52

0 , 0
) (

s52
3 , 0
) (

s52
1 , 0
) (

s52
2 , 0
) (

s52
3 , 0
)
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Table 9. 2-tuple linguistic evaluation matrix R̃3 for EP3.

EC1 EC2 EC3 EC4 EC5

CR1

(
s93

6 , 0
) (

s93
8 , 0
) (

s93
1 , 0
) (

s93
5 , 0
) (

s93
0 , 0
)

CR2

(
s93

2 , 0
) (

s93
7 , 0
) (

s93
2 , 0
) (

s93
6 , 0
) (

s93
6 , 0
)

CR3

(
s93

0 , 0
) (

s93
6 , 0
) (

s93
6 , 0
) (

s93
2 , 0
) (

s93
4 , 0
)

CR4 s93
3

(
s93

7 , 0
) (

s93
2 , 0
) (

s93
8 , 0
) (

s93
6 , 0
)

CR5

(
s93

1 , 0
) (

s93
7 , 0
) (

s93
1 , 0
) (

s93
7 , 0
) (

s93
7 , 0
)

Step 5. The aggregation of all the evaluation matrices in Tables 9–11 applying 2TLWGBM operator
in Equation (11) into Rij is shown in Table 12.

Table 10. The transformed 2-tuple linguistic evaluation matrix R̃1′ for EP1.

EC1 EC2 EC3 EC4 EC5

CR1 (s91
7 ,−0.33) (s91

8 , 0) (s91
0 , 0) (s91

5 , 0.33) (s91
0 , 0)

CR2 (s91
1 , 0.33) (s91

7 ,−0.33) (s91
1 , 0.33) (s91

4 , 0) (s91
5 , 0.33)

CR3 (s91
3 ,−0.33) (s91

5 , 0.33) (s91
5 , 0.33) (s91

1 , 0.33) (s91
1 , 0.33)

CR4 (s91
4 , 0) (s91

7 ,−0.33) (s91
1 , 0.33)

(
s93

8 , 0
)

(s91
7 ,−0.33)

CR5 (s91
1 , 0.33) (s91

5 , 0.33) (s91
1 , 0.33) (s91

5 , 0.33) (s91
7 ,−0.33)

Table 11. The transformed 2-tuple linguistic evaluation matrix R̃2′ for EP2.

EC1 EC2 EC3 EC4 EC5

CR1 (s92
6 , 0) (s92

8 , 0) (s91
0 , 0) (s92

6 , 0) (s92
2 , 0)

CR2 (s92
2 , 0) (s92

6 , 0) (s92
4 , 0) (s91

4 , 0) (s92
6 , 0)

CR3 (s92
2 , 0) (s92

4 , 0) (s92
6 , 0) (s92

2 , 0) (s92
2 , 0)

CR4 (s92
4 , 0) (s92

6 , 0) (s92
2 , 0) (s92

8 , 0) (s92
6 , 0)

CR5 (s92
0 , 0) (s92

6 , 0) (s92
2 , 0) (s92

4 , 0) (s92
6 , 0)

Table 12. The aggregation of all the evaluation matrices.

EC1 EC2 EC3 EC4 EC5

CR1 (s9
2,−0.14) (s9

2, 0.05) (s9
0, 0) (s9

2,−0.23) (s9
0, 0)

CR2 (s9
1, 0.23) (s9

2,−0.08) (s9
1, 0.33) (s9

2,−0.26) (s9
2,−0.16)

CR3 (s9
1,−0.23) (s9

2,−0.23) (s9
2,−0.16) (s9

1, 0.23) (s9
1, 0.41)

CR4 (s9
2,−0.48) (s9

2,−0.08) (s9
1, 0.23) (s9

2, 0.05) (s9
2,−0.14)

CR5 (s9
1,−0.35) (s9

2,−0.1) (s9
1, 0.1) (s9

2,−0.17) (s9
2,−0.08)

Step 6. On the basic of different knowledge and experience, three experts adopt their own
linguistic representations to evaluate correlations between CRs and ECs. These matrices are then
aggregated in the same way as the fourth step. Consequently, the initial HOQ is shown in Figure 4.
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Figure 4. The 2-tuple initial HOQ.

In Figure 4, the correlations between CRs and ECs are computed in the same way as the
relationships between CRs and ECs are treated. Apparently, an appropriate relationship matrix
should take correlations into account, so the modified relationship in virtue of Equations (5)–(7), (12),
and (13) is obtained. The result is illustrated in Figure 5.

We take the relationship between CR1 and EC1 for an example, the process of calculation is
demonstrated as follow

(s, α) = '( 1
3 ('−1(s9

2,−0.14) + ('−1(s9
2,−0.32) + ('−1(s9

1, 0.39))
= (s9

2,−0.36)

d((s9
2,−0.14), (s9

2,−0.36)) =

∣∣'−1(2− 0.14)−'−1(2− 0.36)
∣∣

9
= 0.024

Similarly, d((s9
2,−0.32), (s9

2,−0.36)) = 0.004, d((s9
1, 0.39), (s9

2,−0.36)) = 0.028

sim((s9
2,−0.14), (s9

2,−0.36)) = 1− 0.024
0.024 + 0.004 + 0.028

= 0.571

Similarly, sim((s9
2,−0.32), (s9

2,−0.36)) = 0.928, sim((s9
1, 0.39), (s9

2,−0.36)) = 0.5
We then compute the weight γv by Equation (13)

γ(s9
2,−0.14) =

0.571
0.571 + 0.928 + 0.5

= 0.286

In the same way, γ(s9
2,−0.32) = 0.464, γ(s9

1, 0.39) = 0.25
The modified relationship is expressed

R′11 = '('−1(s9
2,−0.14)

0.286 ∗ '−1(s9
2,−0.32)

0.464 ∗ '−1(s9
1, 0.39)

0.25
) = (s9

2,−0.35)
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Figure 5. The 2-tuple modified HOQ.

Step 7. After obtaining the modified matrix, the importance of CRs should be integrated to reach
the final relationships between CRs and ECs. The result is presented in Table 13. Therefore, the rank of
integrated ECs priority is EC2 ( EC4 ( EC1 ( EC5 ( EC3.

Table 13. The integrated ECs priority.

EC1 EC2 EC3 EC4 EC5

Priority (s9
1, 0.07) (s9

1, 0.13) (s9
1,−0.18) (s9

1, 0.11) (s9
1,−0.16)

Step 8. The basic priority of ECs is computed according to Equations (7) and (14) and Table 13.
The minimum value of linguistic term set is (sn(t)

min , αn(t)) = (s9
0
, 0). The ultimate weights of ECs are

(s9
0, 0.215) (s9

0, 0.228) (s9
0, 0.165) (s9

0, 0.223) (s9
0, 0.169).

Step 9. End.

4.3. Managerial Tips

The outcomes of this study are beneficial to planning and selecting the appropriate emergency
routes. Moreover, the ranking result can be outlined that decision makers should be paid more
attention to management ability. The result indicates that crowd density has a significant influence on
emergency route evaluation. Subsequently decision makers should concentrate on these two aspects
in order to design and select emergency routes.

In addition, the proposed model is sufficient robust and could be easily implemented in practices
for GDM problems. DMs can choose their linguistic preference to evaluate the correlation and
relationship between CRs and ECs. Furthermore, the importance of ECs can be adjusted appropriately
according to the actual circumstance.
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5. Conclusions and Future Research

A systematic GDM approach for prioritizing ECs in QFD under the multi-granularity 2-tuple
linguistic environment is proposed in this paper. The provided method allows experts from QFD team
to evaluate the relationship and correlations between CRs and ECs in accordance with their experience
and preference. For the sake of guaranteeing accurate information, the 2-tuple linguistic representation
addressing the vague and imprecise information is utilized. Based on the linguistic hierarchy, different
granularities originating from different experts are translated into a basic linguistic term we set in
advance. The BWM is applied to determine the importance of CRs, which is simple and quick to
represent customers’ advice.

BM can capture inter-relationships among the aggregated information by taking the conjunction
among each pairs of aggregated arguments, for instance, correlations among CRs. Therefore, the
2TLWGBM operator is applied to aggregate the evaluation matrix and the importance of CRs. In
addition, correlations could have an impact on relationship between CRs and ECs. A modified matrix
reflecting the influence is determined in this paper. Compared with other approaches in terms of
calculating weight, a method that can lessen the subjectivity of assessment is put forward. Finally, a
case study has been calculated and is presented to verify the effectiveness of the proposed method.

In this study, prioritizing ECs in QFD is extended to 2-tuple linguistic environment, in which
all evaluation matrices from experts are represented by 2-tuple. For one thing, an appropriate and
applicable BM operator is employed to deal with the aggregation problem, which should be suitable for
accurately prioritizing ECs in QFD. Moreover, the degree of similarity is introduced to determine the
weight that responds to the effect of correlations, which could obtain a more objective modified matrix.

In future research, the proposed method can be applied to supplier selection, green buildings and
new product development. In addition, other GDM approaches can be integrated into QFD to rank the
ECs, and consensus can be considered. A more reasonable aggregation operator should be developed
and applied to QFD. In real life, plenty of problems might be complex and changeful. Establishing a
dynamic HOQ is necessary.
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Abstract: For mathematical fuzzy logic systems, the study of corresponding algebraic structures
plays an important role. Pseudo-BCI algebra is a class of non-classical logic algebras, which is
closely related to various non-commutative fuzzy logic systems. The aim of this paper is focus on
the structure of a special class of pseudo-BCI algebras in which every element is quasi-maximal
(call it QM-pseudo-BCI algebras in this paper). First, the new notions of quasi-maximal element
and quasi-left unit element in pseudo-BCK algebras and pseudo-BCI algebras are proposed and
some properties are discussed. Second, the following structure theorem of QM-pseudo-BCI algebra
is proved: every QM-pseudo-BCI algebra is a KG-union of a quasi-alternating BCK-algebra and
an anti-group pseudo-BCI algebra. Third, the new notion of weak associative pseudo-BCI algebra
(WA-pseudo-BCI algebra) is introduced and the following result is proved: every WA-pseudo-BCI
algebra is a KG-union of a quasi-alternating BCK-algebra and an Abel group.

Keywords: fuzzy logic; pseudo-BCI algebra; quasi-maximal element; KG-union; quasi-alternating
BCK-algebra

1. Introduction

In the study of t-norm based fuzzy logic systems [1–9], algebraic systems (such as residuated lattices,
BL-algebras, MTL-algebras, pseudo-BL algebras, pseudo-MTL algebras, et al.) play an important role.
In this paper, we discuss pseudo-BCI/BCK algebras which are connected with non-commutative fuzzy
logic systems (such that non-commutative residuared lattices, pseudo-BL/pseudo-MTL algebras).

BCK-algebras and BCI-algebras were introduced by Iséki [10] as algebras induced by Meredith’s
implicational logics BCK and BCI. The name of BCK-algebra and BCI-algebra originates from the
combinatories B, C, K, I in combinatory logic. The notion of pseudo-BCK algebra was introduced
by G. Georgescu and A. Iorgulescu in [11] as a non-commutative extension of BCK-algebras.
Then, as common generalization of pseudo-BCK algebras and BCI-algebras, W.A. Dudek and Y.B.
Jun introduced the concept of pseudo-BCI algebra in [12]. In fact, there are many other non-classical
logic algebraic systems related to BCK- and BCI-algebras, such as BCC-algebra, BZ-algebra and so
forth, some monographs and papers on these topics can be found in [7–9,13–18].

Pseudo-BCI-algebras are algebraic models of some extension of a noncommutative version of
the BCI-logic, the corresponding logic is called pseudo-BCI logic [19]. P. Emanovský and J. Kühr
studied some properties of pseudo-BCI algebras, X.L. Xin et al. [20] investigated monadic pseudo
BCI-algebras and corresponding logics and some authors discussed the filter (ideal) theory of
pseudo-BCI algebras [21–28]. Moreover, some notions of period, state and soft set are applied to
pseudo-BCI algebras [29–31].

In this paper, we further study the structure characterizations of pseudo-BCI algebras. By using
the notions of quasi-maximal element, quasi-left unit element, KG-union and direct product, we give
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the structure theorem of the class of pseudo-BCI algebras in which every element is quasi-maximal
(call they QM-pseudo-BCI algebras). Moreover, we introduce weak associative property in pseudo-BCI
algebras, discuss basic properties of weak associative pseudo-BCI algebra (WA-pseudo-BCI algebra)
and establish the structure theorem of WA-pseudo-BCI algebra.

It should be noted that the original definition of pseudo-BCI/BCK algebra is different from the
definition used in this paper. They are dual. We think that the logical semantics of this algebraic
structure can be better represented by using the present definition.

2. Preliminaries

Definition 1 ([10,16]). An algebra (A;→, 1) of type (2,0) is called a BCI-algebra if the following conditions are
satisfied for all x, y, z from A:

(1) x → y ≤ (y→ z) → (x → z),
(2) x ≤ (x → y) → y,
(3) x ≤ x,
(4) x ≤ y, y ≤ x imply x = y, where x ≤ y means x → y = 1 . An algebra (A;→, 1) of type (2,0) is called

a BCK-algebra if it is a BCI-algebra and satisfies:
(5) x → 1 = 1, ∀x ∈ A.

Definition 2 ([10,16]). A BCK-algebra (A;→, 1) is called bounded if there exists unique element 0 such that
0→ x = 1 for any x ∈ A.

Definition 3 ([13,14]). A BCK-algebra (A; →, 1) is called quasi-alternating BCK-algebra if it satisfies the
following axiom: ∀ x, y ∈ X, x 	= y implies x→ y = y.

Definition 4 ([9,11]). A pseudo-BCK algebra is a structure (A; ≤,→, �, 1), where “≤” is a binary relation
on A, “→” and “�” are binary operations on A and “1” is an element of A, verifying the axioms: for all
x, y, z ∈ A,

(1) x → y ≤ ( y→ z ) � ( x→ z ), x � y ≤ ( y � z )→ ( x � z ),
(2) x ≤ (x → y) � y, x ≤ (x � y)→ y
(3) x ≤ x,
(4) x ≤ 1,
(5) x ≤ y, y ≤ x ⇒ x = y,
(6) x ≤ y � x → y = 1⇔ x � y = 1.

If (A;≤,→, �, 1) is a pseudo-BCK algebra satisfying x→ y = x � y for all x, y ∈ A, then (A;→, 1)
is a BCK-algebra.

Proposition 1 ([9,11]). Let (A; ≤,→, �, 1) be a pseudo-BCK algebra, then A satisfy the following properties
(∀x, y, z ∈ A):

(1) x ≤ y⇒ y→ z ≤ x → z, y � z ≤ x � z
(2) x ≤ y, y ≤ z⇒ x ≤ z,
(3) x � (y→ z) = y→ (x � z),
(4) x ≤ y→ z⇔ y ≤ x � z,
(5) x → y ≤ (z→ x)→ (z→ y), x � y ≤ (z � x) � (z � y),
(6) x ≤ y→ x, x ≤ y � x,
(7) 1→ x = x, 1 � x = x,
(8) x ≤ y⇒ z→ x ≤ z→ y, z � x ≤ z � y,
(9) ((y→ x) � x)→ x = y→ x, ((y � x)→ x) � x = y � x.
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Definition 5 ([[12]). A pseudo-BCI algebra is a structure (A; ≤,→, �, 1), where “≤” is a binary relation
on A, “→” and “�” are binary operations on A and “1” is an element of A, verifying the axioms: for all
x, y, z ∈ A,

(1) x → y ≤ (y→ z) � (x → z), x � y ≤ (y � z)→ (x � z),
(2) x ≤ (x → y) � y, x ≤ (x � y)→ y,
(3) x ≤ x,
(4) if x ≤ y and y ≤ x, then x = y,
(5) x ≤ y iff x → y = 1 iff x � y = 1.

Note that, every pseudo-BCI algebra satisfying x → y = x � y for all x, y ∈ A is a BCI-algebra.

Proposition 2 ([12,22,24]). Let (A; ≤, →, �, 1) be a pseudo-BCI algebra, then A satisfy the following
properties (∀x, y, z ∈ A):

(1) if 1 ≤ x, then x = 1,
(2) if x ≤ y, then y→ z ≤ x → z and y � z ≤ x � z,
(3) if x ≤ y and y ≤ z, then x ≤ z,
(4) x � (y→ z) = y→ (x � z),
(5) x ≤ y→ z, iff y ≤ x � z
(6) x → y ≤ (z→ x)→ (z→ y), x � y ≤ (z � x) � (z � y),
(7) if x ≤ y, then z→ x ≤ z→ y and z � x ≤ z � y,
(8) 1→ x = x, 1 � x = x,
(9) ((y→ x) � x)→ x = y→ x, ((y � x)→ x) � x = y � x,
(10) x → y ≤ (y→ x) � 1, x � y ≤ (y � x)→ 1,
(11) (x→ y)→ 1 = (x→ 1)� (y→ 1),(x� y)� 1 = (x� 1)→ (y→ 1)
(12) x → 1 = x � 1 .

Definition 6 ([10,24]). A pseudo-BCI algebra A is said to be an anti-grouped pseudo-BCI algebra if it satisfies
the following identities:

f or any x ∈ A, (x → 1)→ 1 = x or (x � 1) � 1 = x.

Proposition 3 ([24]). A pseudo-BCI algebra A is anti-grouped if and only if it satisfies:

(G1) for all x, y, z ∈ A, (x→ y)→ (x→ z) = y→ z and
(G2) for all x, y, z ∈ A, (x � y) � (x � z) = y � z.

Proposition 4 ([24]). Let A = (A; ≤,→, �, 1) be an anti-grouped pseudo-BCI algebra. Define Φ(A) = (A; +,
−, 1) by

x + y = (x → 1)→ y = (y � 1) � x, ∀x, y ∈ A;

−x = x → 1 = x � 1, ∀x ∈ A.

Then Φ(A) is a group. Conversely, let G = (G; +, −, 1) be a group. Define Ψ(G) = (G; ≤,→, �, 1), where

x → y = (−x) + y, x � y = y + (−x), ∀x, y ∈ G;

x ≤ y i f and only i f (−x) + y = 1 (or y + (−x) = 1), ∀x, y ∈ G.

Then,Ψ(G) is an anti-grouped pseudo-BCI algebra. Moreover, the mapping Φ and Ψ are mutually inverse.
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Definition 7 ([27]). Let (A; ≤,→, �, 1) be a pseudo-BCI algebra. Denote

K(A) = {x ∈ A|x ≤ 1};

AG(A) = {x ∈ A|(x → 1)→ 1 = x}.
We say that K(A) is the pseudo-BCK part of A and AG(A) is the anti-grouped part of A.

Definition 8 ([28]). A pseudo-BCI algebra A is said to be a T-type if it satisfies the following identities:
(T1) for all x ∈ A, (x → 1) → 1 = x → 1 , or (x � 1) � 1 = x � 1.

Proposition 5 ([28]). A pseudo-BCI algebra A is T-type if and only if it satisfies:
(T2) for all x ∈ A, x→ (x → 1) = 1, or x � (x � 1) = 1.

3. Some New Concepts and Results

By the definition of pseudo-BCI/BCK algebra, we know that the direct product of two
pseudo-BCI/BCK algebras is a pseudo-BCI/BCK algebra. That is, we have the following lemma.

Lemma 1 ([20]). Let (X; → X , � X , 1X ) and (Y; → Y , � Y, 1Y ) be two pseudo-BCI algebras. Define two
binary operators→, � on X×Y as follwos: for any (x1, y1), (x2, y2) ∈ X×Y,

(x1, y1) → (x2, y2) = (x1 → X x2, y1 → Yy2);

(x1, y1) � (x2, y2) = ( x1 � X x2y1 � Yy2);

and denote 1 = (1X, 1Y). Then (X×Y;→, �, 1) is a pseudo-BCI algebra.

By the results in [18,20], we can easy to verify that the following lemma (the proof is omitted).

Lemma 2. Let (K;→, �, 1) be a pseudo-BCK algebra, (G;→, �, 1) an anti-grouped pseudo-BCI algebra and
K∩G = {1}. Denote A = KG b and define the operations→, � on A as follows:

x → y =

⎧⎪⎪⎨⎪⎪⎩
x → y i f x, y ∈ K or x, y ∈ G

y i f x ∈ K, y ∈ G

x → 1 i f y ∈ K{1}, x ∈ G

x � y =

⎧⎪⎪⎨⎪⎪⎩
x � y i f x, y ∈ K or x, y ∈ G

y i f x ∈ K, y ∈ G

x � 1 i f y ∈ K{1}, x ∈ G

Then (A;→, �, 1) is a pseudo-BCI algebra.

Definition 9. Let K be a pseudo-BCK algebra and G be an anti-grouped pseudo-BCI algebra, K∩G = {1}. If the
operators→, � are defined on A = K∪G according to Lemma 2, then (A;→, �, 1) is a pseudo-BCI algebra,
we call A to be a KG-union of K and G and denote by A = K⊕KGG.

Definition 10. Let (X, ≤) is a partial ordered set with 1 as a constant element. For x in X, we call x a
quasi-maximal element of X, if for any a ∈ X, x ≤ a⇒ x = a or a = 1.

Definition 11. Let (G,*) be a grouoid, x ∈ G. Then x is called a quasi-left unit element of G, if it satisfies:

∀y ∈ G, x ∗ y = y when x 	= y.
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Theorem 1. Let (A; ≤,→, �, 1) be pseudo-BCK algebra. Then the following conditions are equivalent:

(a1) ∀x ∈ A, x is a quasi-maximal element;
(a2) ∀x ∈ A, y ∈ A− {1}, x ≤ y implies x = y;
(a3) ∀x ∈ A, x is a quasi-left unit elemen w.r.t →,� , that is, x 	= y implies x → y = y and x � y = y ;
(a4) ∀x, y ∈ A, x 	= y implies x → y = y ;
(a5) ∀x, y ∈ A, x 	= y implies x � y = y .

Proof. (a1)⇒ (a2) : Suppose that x ∈ A, y ∈ A− {1} and x ≤ y.
Case 1: If x = 1, it is follows that 1 = x ≤ y ≤ 1, that is, x = y = 1.
Case 2: If x 	= 1, by (a1) and Definition 10, from x ≤ y and y 	= 1, we have x = y. Therefore,

(a2) hold.
(a2)⇒ (a3) : For any x, y in A, by Proposition 1 (6) and Definition 4 (2), we have x ≤ y→ x ,

y ≤ x → y, x ≤ (x → y) � y . Assume x 	= y. If y→ x = 1 , then x → y 	= 1 (since, if x → y = 1 ,
then form y→ x = 1 and x → y = 1 we get x = y, this is contradictory to the hypothesis x 	= y).
Thus, from y ≤ x → y and x → y 	= 1, using (a2) we have y = x → y .

If y→ x 	= 1 , from this and x ≤ y→ x and applying (a2), we have x = y→ x . Thus,

(i) when (x → y) � y = 1 , we can get x → y ≤ y ≤ x → y , that is, y = x → y ;
(ii) when (x → y) � y 	= 1 , from this and x ≤ (x → y) � y, using (a2) we have x = (x → y) � y.

Combine the aforementioned conclusion x = y→ x , we can get

x = y→ x = y→ ((x → y) � y) = (x → y) � (y→ y) = (x → y) � 1 = 1,

It follows that y = 1→ y = x → y .
Therefore, based on the above cases we know that x 	= y implies y = x → y .
Similarly, we can prove that x 	= y implies y = x � y .
(a3)⇒ (a4): Obviously.
(a4)⇒ (a5): Suppose x 	= y. Applying (a4), x→ y = y. Also, by Definition 4 (2), x ≤ (x � y)→ y ,

thus x → [(x � y)→ y] = 1 .
Case 1: If x 	= (x � y)→ y , using (a4), x → [(x � y)→ y] = [(x � y)→ y]. Hence,

(x � y)→ y = 1. Moreover,

y→ (x � y) = x � (y→ y) = x � 1 = 1.

Therefore, y = x � y. Case 2: If x = (x � y)→ y , then x � y = y . In fact, if x � y 	= y ,
using (a4), (x � y)→ y = y, it follows that x = y, this is a contradiction with x 	= y.

By above results we know that (a5) hold.
(a5)⇒ (a1): Assume that x ∈ X, a ∈ X and x ≤ a. Then x � a = 1 . If x 	= a, by (a5), x � a = a ,

then a = x � a = 1 . This means that x ≤ a implies x = a or a = 1. �
By Theorem 1 and Definition 3 we get

Corollary 1. Let (A; ≤,→, �, 1) be a pseudo-BCK algebra. Then every element of A is quasi-maximal if and
only if A is a quasi-alternating BCK-algebra.

4. The Class of Pseudo-BCI Algebras in Which Every Element is Quasi-Maximal

Example 1. Let A = {a, b, c, d, e, f, g, 1}. Define operations→ and � on A as following Cayley Tables 1 and 2.
Then A is pseudo-BCI algebra in which every element is quasi-maximal.
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Table 1. The Cayley table of operation→.

→ a b c d e f g 1

a 1 b c d e f g 1
b a 1 c d e f g 1
c c c 1 f g d e c
d d d e 1 c g f d
e f f g c 1 e d f
f e e d g f 1 c e
g g g c d e f 1 g
1 a b c d e f g 1

Table 2. The Cayley table of operation �.

� a b c d e f g 1

a 1 b c d e f g 1
b a 1 c d e f g 1
c c c 1 f g d e c
d d d e 1 c g f d
e f f g c 1 e d f
f e e d g f 1 c e
g g g c d e f 1 g
1 a b c d e f g 1

Definition 12. A pseudo-BCI/BCK algebra A is said to be a QM-pseudo-BCI/BCK algebra if every element of A
is quasi-maximal.

Theorem 2. Let (A; ≤,→, �, 1) be a pseudo-BCI algebra. Then A is a QM-pseudo-BCI algebra if and only if
it satisfies:

f or any x, y ∈ A− {1}, x ≤ y⇒ x = y.

Proof. If A is a QM-pseudo-BCI algebra, by Definitions 10 and 12, the above condition is satisfied.
Conversely, assume that x, y ∈ A, x ≤ y. If x = 1, then 1 = x ≤ y, it follows that x = y = 1,

by Proposition 2 (1). If x 	= 1, y 	= 1, then x = y by the condition. This means that x is a quasi- maximal
element in A, hence, A is a QM-pseudo-BCI algebra. �

By Theorem 1 we know that a pseudo-BCK algebra is a QM-pseudo-BCK algebra if and only if it
is a quasi-alternating BCK-algebra. It will be proved that any QM-pseudo-BCI algebra is constructed
by the combination of a quasi-alternating BCK-algebra and an anti-grouped pseudo- BCI algebra
(a group-like algebra).

Lemma 3 ([27]). Let A be a pseudo-BCI algebra, K(A) the pseudo-BCK part of A. If AG(A) = (A − K(A))∪{1}
is subalgebra of A, then (∀x, y ∈ A)

(1) If x ∈ K(A) and y ∈ A− K(A), then x → y = x � y = y.
(2) If x ∈ A− K(A) and y ∈ K(A), then x→ y = x � y = x → 1.

Applying the results in [24,27] we can easy to verify that the following lemma is true (the proof
is omitted).

Lemma 4. Let A be an anti-grouped pseudo-BCI algebra. Then

(1) for any x, y in A, x ≤ y implies x = y;
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(2) for any x, y in A, x = (x → y) � y = (x � y)→ y.

Theorem 3. Let A be a pseudo-BCI algebra, K(A) the pseudo-BCK part of A and AG(A) the anti-grouped part
of A. The following statements are equivalent:

(1) A is a QM-pseudo-BCI algebra;
(2) K(A) is quasi-alternating BCK-algebras and AG(A) = (A − K(A)) ∪ {1};
(3) ∀x, y ∈ A, x 	= y implies (x → y) � y = (x → 1)→ 1;
(4) ∀x, y ∈ A, x 	= y implies (x � y)→ y = (x → 1)→ 1;
(5) ∀x, y ∈ A, x 	= y implies (x → y)→ y = (x → 1)→ 1;
(6) ∀x, y ∈ A, x 	= y implies (x � y) � y = (x → 1)→ 1.

Proof. (1)⇒ (2): Suppose that A is a QM-pseudo-BCI algebra. Then, for all x, y ∈ K(A), by Corollary
1, we can know K(A) is quasi-alternating BCK-algebras. If x ∈ A − K(A), then x → 1 	= 1
and (x → 1)→ 1 	= 1. Since x ≤ (x → 1)→ 1 , by Definition 12 we have x = (x → 1)→ 1 . Thus,
(A − K(A))∪{1} ⊆ AG(A). On the other hand, obviously, AG(A) ⊆ (A − K(A))∪{1}. Hence AG(A) =
(A − K(A))∪{1}.

(2)⇒ (3): Assume that (2) hold. For any x, y in A, x 	= y,
Case 1: x, y ∈ K(A). Then x → 1 = y→ 1 = 1. Because K(A) is quasi-alternating BCK-algebra,

using Theorem 1, x → y = y . Thus

(x → y) � y = y � y = 1 = 1→ 1 = (x → 1)→ 1.

Case 2: x, y ∈ AG(A). Since AG(A) is an anti-grouped pseudo-BCI subalgebra of A, then by
Lemma 4 we get

(x → y) � y = x = (x → 1)→ 1.

Case 3: x ∈ K(A), y ∈ AG(A). Then x → 1 = 1. Applying Lemma 3 (1), x → y = y. Then

(x → y) � y = y � y = 1 = 1→ 1 = (x → 1)→ 1.

Case 4: x ∈ AG(A), y ∈ K(A). Then x = (x→ 1)→ 1, y→ 1 = 1. Applying Lemma 3 (2),
x→ y = x→ 1. When x = 1, then (x→ y) � y = (x→ 1)→ 1; when x 	= 1, then x→ 1 ∈ A− K(A),
using Lemma 3 (2),

(x → 1) � y = (x → 1)→ 1

Hence,
(x → y) � y = (x → 1) � y = (x → 1)→ 1.

(3)⇒ (1): Assume that x ≤ y and x 	= y. We will prove that y = 1. By (3), we have

y = 1 � y = (x → y) � y = (x → 1)→ 1.

Case 1: when x ∈ K(A), then x → 1 = 1 , so y = 1. Case 2: when x ∈ X − K(A),
then (x → 1)→ 1 = x , so y = x, this is a contradiction with x 	= y.

Therefore, for all x ∈ A, x is a quasi-maximal element of A.
(4)⇒ (2): Suppose (4) hold. For any x, y in A.
If x, y ∈ K(A), x 	= y, by (4),

(x � y)→ y = (x → 1)→ 1 = 1.
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Then, x � y ≤ y. Since K(A) is a pseudo-BCK subalgebra of A, using Proposition 1 (6), y ≤ x � y .
It follows that y ≤ x � y ≤ y , that is, x � y = y . Thus, applying Theorem 1, K(A) is a quasi-
alternating BCK-algebra.

If x ∈ A− K(A), we prove that (x → 1)→ 1 = x . Assume (x → 1)→ 1 	= x, by (4), we have

{[(x → 1)→ 1] � x} → x = {[(x → 1)→ 1]→ 1} → 1.

Using Proposition 2 (9) and (12),

{[(x → 1)→ 1]→ 1} → 1 = (x → 1)→ 1.

Thus
{[(x → 1)→ 1] � x} → x = (x → 1)→ 1.

Moreover, applying Proposition 2 (9), (11) and (12) we have

{[(x → 1)→ 1] � x} → 1
= {[(x → 1)→ 1] � 1} → (x � 1)
= {[(x → 1) � 1]→ 1} → (x � 1)
= (x → 1)→ (x � 1)
= 1.

This means that ((x → 1)→ 1)→ x ∈ K(A). By Lemma 3 (1),

{[(x → 1)→ 1] � x} → x = x.

Hence, (x→ 1)→ 1 = x . This is contraction with (x→ 1)→ 1 	= x. Therefore, (x→ 1)→ 1 = x
and x ∈ AG(A). It follows that (A− K(A))∪{1}⊆ AG(A). Obviously, AG(A)⊆ (A− K(A))∪{1}. So AG(A)
= (A − K(A))∪{1}.

(2)⇒ (4): It is similar to (2)⇒ (3). It follows that (4)⇔ (2).
Similarly, we can prove (5)⇔ (2), (6)⇔ (2). �

Theorem 4. Let (A; ≤, →, �, 1) be a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A. Then A is a QM-pseudo-BCI algebra if and only if K(A) is a quasi-alternating BCK-algebra
and A = K(A)⊕KGAG(A).

Proof. If A is a QM-pseudo-BCI algebra, then K(A) is a quasi-alternating BCK-algebra and
A = K(A)⊕KGAG(A), by Lemma 3 and Theorem 3.

Conversely, if K(A) is a quasi-alternating BCK-algebra, then every element in K(A) is quasi-maximal;
if A = K(A)⊕KGAG(A), then AG(A) = (A − K(A))∪{1}, it follows that every element in A − K(A) is
quasi-maximal. By Definition 12, we know that A is a QM-pseudo-BCI algebra. �

5. Weak Associative Pseudo-BCI Algebras

Definition 13. A pseudo-BCI/BCK algebra A is said to be weak associative, if it satisfies:

f or any, y, z ∈ A, (x → y)→ z = x → (y→ z) when (x 	= y, x 	= z).

Example 2 Let A = {a, b, c, d, e, f, 1}. Define operation→ on A as following Cayley Table 3. Then A is a weak
associative pseudo-BCI algebra, where � =→ .
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Table 3. The Cayley table of the operation→.

→ a b c d e f 1

a 1 b c d e f 1
b a 1 c d e f 1
c a b 1 d e f 1
d d d d 1 f e d
e e e e f 1 d e
f f f f e d 1 f
1 a b c d e f 1

Theorem 5. Let (A; ≤, →, �, 1) be a weak associative pseudo-BCI algebra. Then A is a QM-pseudo-BCI
algebra and a T-type pseudo-BCI algebra.

Proof. For any x, y in A, x 	= y, then (by Definition 13)

(x → y)→ y = x → (y→ y) = x → 1.

Thus, if x 	= 1, then (x → 1)→ 1 = x → 1. Obviously, when x = 1, (x → 1)→ 1 = x → 1.
Hence, from Definition 13 we get that for any x, y in A, x 	= y ⇒ (x → y)→ y = (x → 1)→ 1.
Applying Theorem 3 (5) we know that A is a QM-pseudo-BCI algebra.

Moreover, we already prove that (x → 1)→ 1 = x → 1 for any x in A, by Definition 8 we know
that A is a T-type pseudo-BCI algebra. �

The inverse of Theorem 5 is not true. Since (d → c ) → c 	= d→ 1, so the QM-pseudo-BCI algebra
in Example 1 is not weak associative. The following example shows that a T-type pseudo-BCI algebra
may be not a QM-pseudo-BCI algebra.

Example 3. Let A = {a, b, c, d, 1}. Define operations → and � on A as following Cayley Tables 4 and 5.
Then A is a T-type pseudo-BCI algebra but it is not a QM-pseudo-BCI algebra, since

(b→ c)→ a = a 	= 1 = b→ (c→ a).

Table 4. The operation→ in the T-type pseudo-BCI algebra.

→ a b c d 1

a 1 1 1 d 1
b b 1 1 d 1
c b b 1 d 1
d d d d 1 d
1 a b c d 1

Table 5. The operation � in the T-type pseudo-BCI algebra.

� a b c d 1

a 1 1 1 d 1
b c 1 1 d 1
c a b 1 d 1
d d d d 1 d
1 a b c d 1

Lemma 5 ([16,24]). Let (A;→, 1) be a BCI-algebra. Then the following statements are equivalent:
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(1) A is associative, that is, (x → y)→ z = x → (y→ z) for any x, y, z in A;
(2) for any x in A, x → 1 = x;
(3) for all x, y in A, x→ y = y→ x.

Theorem 6. Let (A; ≤,→, �, 1) be a weak associative pseudo-BCI algebra, AG(A) the anti-grouped part of A,
K(A) the pseudo-BCK part of A. Then

(1) K(A) is quasi-alternating BCK-algebra and AG(A) = (A − K(A))∪{1};
(2) For any x in AG(A), x → 1 = x � 1 = x ;
(3) For any x, y in A, x → y = x � y, that is, A is a BCI-algebra;
(4) AG(A) is an Abel group, that is, AG(A) is associative BCI-algebra.

Proof. (1) It follows from Theorems 5 and 3.
(2) For any x in AG(A), then (x → 1)→ 1 = x. We will prove that x → 1 = x.
If x = 1, obviously, x → 1 = x.
If x 	= 1, then (x → 1)→ 1 = x → 1 by Definition 13. Thus,

x → 1 = (x → 1)→ 1 = x.

Applying Proposition 2 (12) we have

x � 1 = x → 1 = x.

(3) For any x, y in A,

(i) when x, y in K(A), by (1), K(A) is a BCK-algebra, so x → y = x � y;
(ii) when x, y in (A − K(A)), by (1) and (2), applying Proposition 2 (11),

x → y = (x → y)→ 1 = (x → 1) � (y→ 1) = x � y;

(iii) when x in K(A), y in (A − K(A)), using Lemma 3 (1), x → y = x � y;
(iv) when y in K(A), x in (A − K(A)), using Lemma 3 (2), x → y = x � y;

Therefore, for all x, y in A, x→ y = x � y. It follows that A is a BCI-algebra.
(4) Applying (2), by Lemma 5 we know that AG(A) is an Abel group, that is, AG(A) is associative

BCI-algebra. �
From Theorems 6 and 4 we immediately get

Theorem 7. Let (A; ≤, →, �, 1) be a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A. Then A is a weak associative pseudo-BCI algebra if and only if K(A) is a quasi-alternating
BCK-algebra, AG(A) is an Abelian group and A = K(A)⊕KGAG(A).

Theorem 8. Let (A; ≤,→, �, 1) be a pseudo-BCI algebra. Then the following conditions are equivalent:

(1) for any x, y, z ∈ A, (x → y)→ z = x → (y→ z) when (x 	= y, x 	= z);
(2) for any x, y, z ∈ A, (x � y) � z = x � (y � z) when (x 	= y, x 	= z);
(3) for any x, y, z ∈ A, (x → y) � z = x → (y � z) when (x 	= y, x 	= z);
(4) for any x, y, z ∈ A, (x � y)→ z = x � (y→ z) when (x 	= y, x 	= z).

Proof. (1)⇒ (2) : It follows from Definition 13 and Theorem 6.
(2)⇒ (1) : Similar to the discussion process from Definition 13 to Theorem 6, we can obtain a

result similar to Theorem 6. That is, from (2) we can get that A is a BCI-algebra. Hence, (2) implies (1).
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Similarly, (3)⇔ (1) and (4)⇔ (1). �
Finally, we discuss the relationships among general pseudo-BCI algebras, QM-pseudo-BCI

algebras and weak associative pseudo-BCI algebras (WA-pseudo-BCI algebras).
In fact, in every T-type pseudo-BCI algebra, there is a maximal WA-pseudo-BCI subalgebra.

That is, if (A; ≤,→, �, 1) is a T-type pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the
pseudo-BCK part of A, then Kqm(A)∪AG(A) is a WA-pseudo-BCI subalgebra of A, where Kqm(A) is the
set of all quasi-maximal element in K(A). For example, {c, d, 1} is a WA-pseudo-BCI subalgebra of the
pseudo-BCI algebra A in Example 3.

In general, in every pseudo-BCI algebra, there is a maximal QM-pseudo-BCI subalgebra. That is,
if (A; ≤,→, �, 1) is a pseudo-BCI algebra, AG(A) the anti-grouped part of A, K(A) the pseudo-BCK
part of A, then Kqm(A)∪AG(A) is a QM-pseudo-BCI subalgebra of A, where Kqm(A) is the set of all
quasi-maximal element in K(A).

6. Conclusions

In the study of pseudo-BCI algebras, the structures of various special pseudo-BCI algebras
are naturally an important problem. At present, the structures of several subclasses such as
quasi-alternating pseudo-BCI algebras and anti-grouped pseudo-BCI algebras are clear. In this paper,
we have studied an important subclass of pseudo-BCI algebras, that is, QM-pseudo-BCI algebras in
which every element is quasi-maximal. We obtain a very clear structure theorem of this subclass. At the
same time, we have studied a class of more special pseudo-BCI algebras, that is, weak associative
(WA) pseudo-BCI algebras in which every element is weak associative and obtained the structure
theorem of this subclass. These results enrich the research content of pseudo-BCI algebras and clearly
presented the relationships between various subclasses, which can be illustrated as Figure 1. Finally,
we show that the two types of pseudo-BCI algebras are very important, since (1) every pseudo-BCI
algebra contains a subalgebra which is QM-pseudo-BCI algebra, (2) every T-type pseudo-BCI algebra
contains a subalgebra which is WA-pseudo-BCI algebra. As a further study direction, we will discuss
the integration of related topics in the light of some new research findings in [32–34].

 
Figure 1. Main results in this paper.
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Abstract: Let P be a planar point set with no three points collinear, k points of P be a k-hole of P if the
k points are the vertices of a convex polygon without points of P. This article proves 13 is the smallest
integer such that any planar points set containing at least 13 points with no three points collinear,
contains a 3-hole, a 4-hole and a 5-hole which are pairwise disjoint.

Keywords: planar point set; convex polygon; disjoint holes

1. Introduction

In this paper, we deal with the finite planar point set P in general position, that is to say, no three
points in P are collinear. In 1935, Erdős and Szekeres [1], posed a famous combinational geometry
question: Whether for every positive integer m ≥ 3, there exists a smallest integer ES(m), such that any
set of n points (n ≥ ES(m)), contains a subset of m points which are the vertices of a convex polygon.
It is a long standing open problem to evaluate the exact value of ES(m). Erdős and Szekeres [2] showed
that ES(m) ≥ 2m−2 + 1, which is also conjectured to be sharp. We have known that ES(4) = 5 and
ES(5) = 9. Then by using computer, Szekeres and Peters [3] proved that ES(6) = 17. The value of
ES(m) for all m > 6 is unknown.

For a planar point set P, let k points of P be a k-hole of P if the k points are the vertices of
a convex polygon whose interior contains no points of P. Erdős posed another famous question in
1978. He asked whether for every positive integer k, there exists a smallest integer H(k), such that
any set of at least H(k) points in the plane, contains a k-hole. It is obvious that H(3) = 3. Esther Klein
showed H(4) = 5. Harborth [4] determined H(5) = 10, and also gave the configuration of nine points
with no empty convex pentagons. Horton [5] showed that it was possible to construct arbitrarily
large set of points without a 7-hole, That is to say H(k) does not exist for k ≥ 7. The existence of
H(6) had been proved by Gerken [6] and Nicolás [7], independently. In [8], Urabe first studied the
disjoint holes problems when hewas considering the question about partitioning of planar point sets.
Let Ch(P) stand for the convex hull of a point set P. A family of holes {Hi}i∈I is called pairwise
disjoint if Ch(Hi) ∩ Ch(Hj) = ∅, i 	= j; i ∈ I, j ∈ I. These holes are disjoint with each other. Determine
the smallest integer n(k1, ..., kl), k1 ≤ k2 ≤ ... ≤ kl , such that any set of at least n(k1, ..., kl) points of
the plane, contains a ki-hole for every i, 1 ≤ i ≤ l, where the holes are disjoint. From [9], we know
n(2, 4) = 6, n(3, 3) = 6. Urabe [8] showed that n(3, 4) = 7, while Hosono and Urabe [10] showed that
n(4, 4) = 9. In [11], Hosono and Urabe also gave n(3, 5) = 10, 12 ≤ n(4, 5) ≤ 14 and 16 ≤ n(5, 5) ≤ 20.
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The result n(3, 4) = 7 and n(4, 5) ≤ 14 were re-authentication by Wu and Ding [12]. Hosono and
Urabe [9] proved n(4, 5) ≤ 13. n(4, 5) = 12 by Bhattacharya and Das was published in [13], who also
discussed the convex polygons and pseudo-triangles [14]. Hosono and Urabe also changed the lower
bound on H(5, 5) to 17 [9], and Bhattacharya and Das showed the upper bound on n(5, 5) to 19 [15].
Recently, more detailed discussions about two holes are published in [16]. Hosono and Urabe in [9]
showed n(2, 3, 4) = 9, n(2, 3, 5) = 11, n(4, 4, 4) = 16. We showed n(3, 3, 5) = 12 in [17]. We have
proved that n(3, 3, 5) = 12 [17], n(4, 4, 5) ≤ 16 [18] and also discuss a disjoint holes problem in
preference [19]. In this paper, we will continue discussing this problem and prove that n(3, 4, 5) = 13.

2. Definitions

The vertices are on convex hull of the given points,from the remaining interior points. Let V(P)
denote a set of the vertices and I(P) be a set of the interior points of P. |P| stands for the number of
points contained in P. Let p1, p2, ..., pk be k points of P, we know that p1, p2, ..., pk be a k-hole H when
the k points are the vertices of a convex polygon whose interior does not contain any point of P. And we
simply say H = (p1 p2...pk)k. As in [9], let l(a, b) be the line passing points a and b. Determine the
closed half-plane with l(a, b), who contains c or does not contain c by H(c; ab) or H(c̄; ab), respectively.
R is a region in the plane. An interior point of R is an element of a given point set P in its interior,
and we say R is empty when R contains no interior points, and simply R = ∅. The interior region of
the angular domain determined by the points a, b and c is a convex cone. It is denoted by γ(a; b, c). a
is the apex. b and c are on the boundary of the angular domain. If γ(a; b, c) is not empty, we define
an interior point of γ(a; b, c) be attack point α(a; b, c), such that γ(a; b, α(a; b, c)) is empty, as shown in
Figure 1.

Figure 1. Figure of attack point.

For β = b or β = c of γ(a; b, c), let β
′

be a point such that a is on the line segment ββ
′ . γ(a; b

′
, c)

means that a lies on the segment bb′ . Let v1, v2, v3, v4 ∈ P and (v1v2v3v4)4 be a 4-hole, as shown in
Figure 2. We name l(v3, v4) a separating line, denoted by SL(v3, v4) or SL4 for simple, when all of the
remaining points of P locate in H(v1; v3v4).

Figure 2. Figure of separating line.

We identify indices modulo t, when indexing a set of t points.
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3. Main Result and Proof

Theorem 1. [9] For any planar point set with at least 13 points in general position, if there exists a separating
line SL4, which separates a 4-hole from all of the remaining points, we always can find a 3-hole, a 4-hole and
a 5-hole which are pairwise disjoint.

From [20], we know that 13 ≤ n(3, 4, 5) ≤ 14. In this note we will give the exact value of n(3, 4, 5),
that is the following theorem.

Theorem 2. n(3, 4, 5) = 13, that is to say, 13 is the smallest integer such that any planar point set with at
least 13 points in general position, we always can find a 3-hole, a 4-hole and a 5-hole which are pairwise disjoint.

Proof. Let P be a 13 points set. CH(P) = {v1, v2, ..., vl}. If we can find a 5-hole and a disjoint convex
region with at least 7 points remained, we are done by n(3, 4) = 7 [8]. That is to say, if we find a straight
line which separates a 5-hole from at least 7 points remained, the result is correct. We call such a line
a cutting line through two points u and v in P, denoted by L5(u, v). If we can find a 4-hole and the
vertices number of the remaining points is more than 4, we are done by Theorem 1, where the two
parts are disjoint. That is to say, if we can find such a cutting line through two points m and n in
P, denoted by L4(m, n), our conclusion is correct. Therefore, in the following proof, if we can find
a cutting line L5(u, v) or L4(m, n), our conclusion must be true.

In the following, we will assume there does not exist a separating line SL4. Then there must exist
a point pi, such that γ(pi; vi, v

′
i−1) and γ(pi; vi−1, v

′
i) are empty, as shown in Figure 3. Considering the

13 points, it is easy to know the conclusion is obvious right when |V(P)| ≥ 7. Next, we discuss the
considerations that 3 ≤ |V(P)| ≤ 6.

Figure 3. Figure of point determined by two separating lines.

Case 1 |V(P)| = 6.

Let vi ∈ V(P) for i = 1, 2, ...6. As shown in Figure 4, we have the points pi for i = 1, 2, ...6,
such that the shaded region is empty and we have 1 point p7 remained.

Figure 4. Figure of |V(P)| = 6
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As the isomorphism of geometry from Figure 4, we only discuss one case. And the rest could be
obtained in the same way.

Assume γ(v1; p1, v3)∩ γ(v3; v1, p2) = ∅. We have a cutting line L5(v1, α(v1; v3, v6)).
Assume γ(v1; p1, v3)∩ γ(v3; v1, p2) �= ∅. We have a cutting line L5(v1, p4).

Case 2 |V(P)| = 5.

Let vi ∈ V(P) for i = 1, 2, 3, 4, 5. We have 5 friend points pi for i = 1, 2, 3, 4, 5 as shown in
Figure 5. Then we have 3 points r1, r2, r3 remained.

Figure 5. Figure of |V(P)| = 5.

Assume γ(p1; v
′
1, p3)∩ γ(p2; v

′
3, v

′
2) = ∅. We have a cutting line L5(p1, α(p1; p3, v

′
2)).

Assume γ(p3; v
′
3, p5)∩ γ(p4; v

′
4, v

′
5) = ∅. We have a cutting line L5(p3, α(p3; p5, p1)).

Assume γ(p1; v
′
1, p3) ∩ γ(p2; v

′
3, v

′
2) �= ∅ and γ(p3; v

′
3, p5) ∩ γ(p4; v

′
4, v

′
5) �= ∅. Suppose

γ(p1; v
′
2, p3) ∩ γ(p5; v

′
5, p3) = ∅. If γ(p1; v

′
1, p3) ∩ γ(p2; v

′
3, v

′
2) has two of the remaining

points say r1, r2, r3 ∈ γ(p5; p3, v5), let r1 = α(p3; p1, v
′
4): and if r2 ∈ γ(r1; p2, p

′
3) �= ∅,

we have a cutting line L5(r1, p3); and if r2 ∈ γ(r1; p
′
1, p3), we have (v2v3 p2)3, (p1r1r2 p3v1)5 and

a 4-hole from the remaining points; and if r2 ∈ γ(r1; p2, p
′
1), we have a cutting line L5(p1, r1).

If γ(p5; p3, v5)∩ γ(v4; p3, p4) has two of the remaining points, symmetrically, the conclusion is also
right. Suppose γ(p1; v

′
2, p3)∩ γ(p5; v

′
5, p3) �= ∅. We may suppose r1 ∈ γ(p1; v

′
1, p3)∩ γ(p2; v

′
3, v

′
2),

r2 ∈ γ(p1; v
′
2, p3)∩ γ(p5; v

′
5, p3), r3 ∈ γ(p3; v4, p5) ∩ γ(p4; v

′
4, v

′
5). If γ(r2; p1, p

′
3) �= ∅, we have

(v2v3 p2)3, (p1r1 p3r2v1)5 and a 4-hole from the remaining points. If γ(r2; p3, p
′
1) �= ∅, we have

(v2v3 p2)3, (r2 p1r1 p3α(r2; p3, p
′
1))5 and a 4-hole from the remaining points. If γ(r2; p1, p

′
3) = ∅ and

γ(r2; p3, p
′
1) = ∅, we have (v4v5 p4)3, (r3 p5v1r2 p3)5 and a 4-hole from the remaining points.

Case 3 |V(P)| = 4.

Let vi ∈ V(P) for i = 1, 2, 3, 4. We have 4 friend points pi for i = 1, 2, 3, 4. Then we have 5 points
r1, r2, r3, r4, r5 remained as shown in Figure 6.
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Figure 6. Figure of |V(P)| = 4.

If γ(p1; v
′
1, v

′
2) ∩ H(p1; p2 p4) = ∅ or γ(p3; v

′
3, v

′
4) ∩ H(p3; p2 p4) = ∅, we have a cutting

line L5(p4, α(p4; p2, v
′
1)) or L5(p4, α(p4; p2, v

′
4)). Then we will consider that γ(p1; v

′
1, v

′
2) ∩

H(p1; p2 p4) �= ∅ and γ(p3; v
′
3, v

′
4)∩ H(p3; p2 p4) �= ∅.

Assume one of the five points say r1 ∈ γ(p1; v
′
1, v

′
2) ∩ H(p1; p2 p4) and the remaining

four say ri ∈ γ(p3; v
′
3, v

′
4) ∩ H(p3; p2 p4), i = 2, 3, 4, 5. (If γ(p1; v

′
1, v

′
2) ∩ H(p1; p2 p4) has four

points and γ(p1; v
′
1, v

′
2) ∩ H(p1; p2 p4) has one point, symmetrically, the conclusion is also right).

Let r2 = α(p4; p2, v
′
1).

Suppose r1 ∈ γ(p1; v
′
1, p2) or r1 ∈ γ(p1; v

′
2, p4). We always have a cutting line L5(p2, p4).

Suppose r1 ∈ γ(p1; p4, r2)∩ H(p1; p2 p4)). We have (v1v4 p4)3, (p1v2 p2r2r1)5 and a 4-hole from the
remaining points. Suppose r1 ∈ γ(p1; p2, r2)∩ H(p1; p2 p4). We have (v2v3 p2)3, (p1v1 p4r2r1)5 and
a 4-hole from the remaining points.

Assume two of the five points, say r1, r2 ∈ γ(p1; v
′
1, v

′
2)∩ H(p1; p2 p4) and the remaining three

say ri ∈ γ(p3; v
′
3, v

′
4)∩ H(p3; p2 p4), i = 3, 4, 5. (If γ(p1; v

′
1, v

′
2)∩ H(p1; p2 p4) has three points and

γ(p1; v
′
1, v

′
2)∩ H(p1; p2 p4) has two points, symmetrically, our conclusion is also right.)

Suppose γ(p2; v1, p4) = ∅. If γ(p2; v1, p1) �= ∅, let r1 = α(p2; v1, p1), we have (r2 p1v2)3,
(p4v1r1 p2α(p2; p4, v

′
2))5 and a 4-hole from the remaining points. If γ(p2; v1, p1) = ∅, we have

(r1r2v2)3, (p4v1 p1 p2α(p2; p4, v
′
2))5 and a 4-hole from the remaining points. Suppose γ(p2; v1, p4) �=

∅. Let r1 = α(p2; p4, v1). If r2 ∈ γ(r1; p1, p
′
2), we have (v1v4 p4)3, (r1r2 p1v2 p2)5 and a 4-hole from

the remaining points. If r2 ∈ γ(r1; p1, p
′
4), we have (v2 p2v3)3, (v1 p1r2r1 p4)5 and a 4-hole from the

remaining points. If r2 ∈ γ(r1; p2, p
′
4), we have (v1v2 p1)3, (p4r1r2 p2α(p2; p4, v

′
2)5 and a 4-hole from

the remaining points.

Case 4 |V(P)| = 3.

Let v1, v2, v3 ∈ V(P). We have 3 friend points p1, p2, p3 and 7 points remained. As shown in
Figure 7, denote γ(p1; v

′
2, p3)∩ γ(p3; v

′
3, p1) = T1, γ(p1; v

′
1, p2)∩ γ(p2; v

′
3, p1) = T2, γ(p2; v

′
2, p3)∩

γ(p3; v
′
1, p1) = T3.

Without loss of generality, we assume |T3| ≥ |T1| ≥ |T2|.
(1) |T3| = 7.

We have a cutting line L5(p2, α(p2; p3, v
′
2))).

(2) |T3| = 6.

Name the remaining one r1. If r1 ∈ γ(p3; v
′
3, p1) or r1 ∈ γ(p2; v

′
3, p1), we have a cutting line

L5(p2, p3). If r1 ∈ γ(p3; p1, p2) ∩ γ(p1; p2, p3): and if γ(r1; p3, p
′
1) �= ∅, we have a cutting line
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L5(r1, α(r1; p3, p
′
1)); and if γ(r1; p3, p

′
1) = ∅, we have (v1v3 p3)3, (r1 p1v2 p2α(r1; p2, p

′
1))5 and a

4-hole from the remaining points.

(3) |T3| = 5.

Name the remaining two points r1, r2. Then we will discuss the region γ(p3; v1, p1), as shown in
Figure 8.

Figure 7. Figure of |V(P)| = 5.

Figure 8. Figure of |T3| = 5

Assume γ(p3; v1, p1) = ∅. (If γ(p1; p2, v2) = ∅, by the similar reason our conclusion is also
right.) Let r1 = α(p3; p1, p2). Suppose r1 ∈ γ(p2; p1, p3).

If r2 ∈ γ(r1; p3, p
′
1), we have a cutting line L5(p3, r2). If r2 ∈ γ(p2; r1, p1): and if γ(r1; p3, p

′
1) �=

∅, we have (r2 p2v2)3, (p3v1 p1r1α(r1; p3, p
′
1))5 and a 4-hole from the remaining points; and if

γ(r1; p3, p
′
1) = ∅, we have (v1v2 p1)3, (p3r1r2 p2α(p2; p3, v3))5 and a 4-hole from the remaining points.

Suppose r1 ∈ γ(p2; p1, v
′
3). If r2 ∈ γ(r1; p3, p

′
1), we have a cutting line L5(p3, r2). If r2 ∈ γ(r1; p

′
1, p

′
3),

we have (r1v2 p2)3, (p3v1 p1r1α(r1; p3, p2))5 and a 4-hole from the remaining points.
Assume γ(p3; v1, p1) �= ∅ and γ(p1; p2, v2) �= ∅. Then we suppose γ(p3; v1, p1) has one point

say r1 and γ(p1; p2, v2) has one point say r2. If γ(r1; p1, p
′
2) �= ∅, we have a cutting line L5(p2, r1).

If γ(r1; p1, p
′
2) = ∅, we have a cutting line L5(r1, α(r1; p2, p3).

(4) |T3| = 4.
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Name the remaining three points r1, r2, r3. Then we will discuss the region γ(p3; p1, v
′
3), as shown

in Figure 9.

Figure 9. Figure of |T3| = 4

(a) Assume r1, r2, r3 ∈ γ(p3; p1, v
′
3). Let r1 = α(p3; p1, v

′
3). We have (v1 p2 p3)3, (r1 p1v2 p2 p3)5 and

a 4-hole from the remaining points.
(b) Assume two of ri, i = 1, 2, 3, say r1, r2 ∈ γ(p3; p1, v

′
3). Suppose r3 ∈ γ(p2; p1, p3) ∩

γ(p3; p1, p2). If γ(r3; p1, p
′
2) �= ∅: we have a 4-hole from {r4, r5, r6, r7, v3},

(p1v2 p2r3α(r3; p1, p
′
2))5 and a 3-hole from the remaining points. If γ(r3; p1, p

′
2) �= ∅,

we have(r3 p1v2 p2α(r3; p2, p
′
1))5, (r1r2v1)3 and a 4-hole from the remaining points.

If γ(r3; p1, p
′
2) = ∅ and γ(r3; p1, p

′
2) = ∅, we have a cutting line L4(p2, r3).

(c) Assume one of ri, i = 1, 2, 3, say r1 ∈ γ(p3; p1, v
′
3).

Suppose γ(r3; p1, v2) = ∅. We have a cutting line L5(p3, r2).

Suppose γ(p3; p1, v2) �= ∅. Let r2 = α(p3; p1, v2). If r2 ∈ γ(p1; v
′
1, p2), we have a cutting

line L5(r2, α(r2; p3, p2)). Then we suppose r2 ∈ γ(p1; p2, p3). If r1 ∈ γ(r2; p
′
2, p1): and if

r3 ∈ γ(r2; p3, p
′
1), we have a cutting line L5(r2, r3); and if r3 ∈ γ(r2; p2, p

′
1), we have (v1r1 p3)3,

(p1v2 p2r3r2)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p2, v2), we have
(v1v3 p3)3, (r1 p1v2r3r2)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; v2, p

′
3),

we have a cutting line L5(v2, p3). If r1 ∈ γ(r2; p
′
2, p3): and if r3 ∈ γ(r2; p3, p

′
1), we have a cutting

line L5(r2, α(r2; p3, p
′
1)); and if r3 ∈ γ(r2; p2, p

′
1), we have (v1r1 p3)3, (r2 p1v2 p2r3)5 and a 4-hole

from the remaining points; and if r3 ∈ γ(r2; r
′
1, p2), we have (v1v2 p1)3, (p3r1r2r3 p2)5 and

a 4-hole from the remaining points; and if r3 ∈ γ(r2; v2, r
′
1), we have (v1v3 p3)3, (r1 p1v2r3r2)5 and

a 4-hole from the remaining points; and if r3 ∈ γ(r2; p
′
3, v2), we have (v1r1 p1)3, (p3r2r3v2 p2)5

and a 4-hole from the remaining points.
(d) Assume γ(p3; p1, v

′
3) = ∅. By the same reason, we also assume γ(p1; p2, v

′
1) = ∅. Then we will

discuss the region γ(v1; p1, p2), as shown in Figure 10.
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Figure 10. Figure of |T3| = 4 with shaded region nonempty.

(d1) Suppose γ(v1; p1, p2) = ∅. Let r1 = α(p1; p3, p2) within (p1 p2 p3).

If γ(r1; p1, p
′
3) �= ∅, we have (v2v3 p2)3, (r1 p3v1 p1α(r1; p1, p

′
3))5 and a 4-hole from the

remaining points.

If γ(r1; p1, p
′
3) = ∅: and if γ(r1; p3, p

′
1) �= ∅, we have (v2v3 p2)3,

(p3v1 p1r1α(r1; p3, p1))5 and a 4-hole from the remaining points; and if γ(r1; p3, p
′
1) = ∅,

let r2 = α(r1; p
′
3, p

′
1) within (p1 p2 p3), we have (v1v3 p3)3, (r1 p1v2r2r3)5 and a 4-hole

from the remaining points when r3 ∈ γ(r2; r1, v
′
2)∩ γ(r1; r2, p

′
1), we have (v1 p1r1 p3)4,

(r3r2v2 p2α(r3; p2, r2))5 and a 3-hole from the remaining points when r3 ∈ γ(r2; p
′
1, v

′
2)

and γ(p3; p2, v
′
1) ∩ γ(r3; p2, r

′
2) �= ∅, we have (v1v2 p1)3, (p3r1r2r3α(r3; p3, r

′
2))5 and

a 4-hole from the remaining points when r3 ∈ γ(r2; p
′
1, v

′
2) and γ(p3; p2, v

′
1) ∩

γ(r3; p2, r
′
2) = ∅, we have (v1r1 p3)3, (p1v2 p2r3r2)5 and a 4-hole from the remaining

points when r3 ∈ γ(r2; p
′
1, p2), we have (v1v2 p1)3, (p3r1r2r3 p2)5 and a 4-hole from the

remaining points when r3 ∈ γ(r2; r
′
1, p2).

(d2) Suppose γ(v1; p1, p2) has one of the r1, r2, r3, say r1 ∈ γ(r1; p1, p2). Let r2 = α(p2; p1, p3).

If r2 ∈ γ(r1; p2, p3), we have (v2v3 p2)3, (r1 p1v1 p3r2)5 and a 4-hole from the
remaining points.

If r2 ∈ γ(r1; p1, p3): and if r3 ∈ γ(r2; r1, p3), we have (v1v2 p1)3, (r3r2r1 p2 p3)5 and
a 4-hole from the remaining points; and if r3 ∈ γ(r2; p3, p

′
1), we have (v2v3 p2)3,

(v1 p1r2r3 p3)5 and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p
′
1, v

′
1),

we have a cutting line L5(r1, α(r1; p2, p
′
1)) when γ(r1; p2, p

′
1) �= ∅, we have (v2v3 p2)3,

(r3r2 p1r1α(r3; r1, r
′
2))5 and a 4-hole from the remaining points when γ(r1; p2, p

′
1) = ∅

and γ(r3; r1, r
′
2) �= ∅, we have (r1 p1v2 p2)4, (p3v1r2r3α(r3; p3, r

′
2))5 and a 3-hole from the

remaining points when γ(r1; p2, p
′
1) = ∅ and γ(r3; r1, r

′
2) = ∅.

If r2 ∈ γ(r1; p2, p3), we have (v2v3 p2)3, (p3v1 p1r1r2)5 and a 4-hole from the
remaining points.

(d3) Suppose γ(v1; p1, p2) has two of the points r1, r2, r3, say r1, r2 ∈ γ(r1; p1, p2).
Let r1 = α(p2; p1, p3).

If γ(r1; p2, p
′
1) �= ∅, we have a cutting line L5(r1, α(r1; p2, p

′
1)).

If γ(r1; p2, p
′
1) = ∅, let r2 = α(p1; p2, p2): and if r2 ∈ γ(v1; p2, p3), we have a cutting

line L5(r2, r3) when r3 ∈ γ(r2; p1, p3), we have (v1 p1v2)3, (p3r2r3r1 p2)5 and a 4-hole
from the remaining points when r3 ∈ γ(r2; p3, r1), we have (v2v3 p2)3, (r2v1 p1r1 p3)5
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and a 4-hole from the remaining points when r3 ∈ γ(r1; r2, p
′
1), we have (v1 p3v3)3,

(r1 p1v2 p2r3)5 and a 4-hole from the remaining points when r3 ∈ γ(r1; p2, p
′
1); and if

r2 ∈ γ(v1; p1, p2), we have (p1r1 p2v2)4, (p1v1r1r3α(r3; p3, r
′
2))5 and a 3-hole from

the remaining points when γ(r2; r3, p
′
1) ∩ γ(p2; p3, v

′
2) �= ∅, we have a cutting line

L5(r1, α(r1; p2, p
′
1)), when γ(r1; p2, p

′
1) �= ∅, we have (v1v3 p3)3, (r3r2 p1r1α(r1; r3, p

′
1))5

and a 4-hole from the remaining points when γ(r2; r3, p
′
1) ∩ γ(p2; p3, v

′
2) = ∅ and

γ(r1; p2, p
′
1) = ∅.

(d4) Suppose γ(v1; p1, p2) has all of the three points r1, r2, r3. Let r1 = α(p1; p3, p2),
r2 = α(p1; p2, p3).

If γ(r1; p3, p
′
1) �= ∅ or γ(r2; p2, p

′
1) �= ∅, we always have a cutting line L5.

If γ(r1; p3, p
′
1) = ∅ and γ(r2; p2, p

′
1) = ∅: and if r3 ∈ γ(r1; p1, p

′
3), we have a cutting

line L5(p3, r1); and if r3 ∈ γ(r1; p
′
3, p2)∩ γ(r2; p

′
2, r1), we have (v1v2 p1)3, (p3r1r3r2 p2)5

and a 4-hole from the remaining points; and if r3 ∈ γ(r2; p1, p
′
2), we have a cutting

line L5(p2, r2); and if r3 ∈ γ(r2; p
′
1, v

′
2), we have (v1 p1r1 p3)4, (r3r2v2 p2α(r3; p2, r

′
2))5

and a 3-hole from the remaining points when γ(r3; p2, r
′
2) ∩ γ(v1; p2, p3) �= ∅,

we have (v2v3 p2)3, (r1 p1r2r3α(r3; p3, r
′
2))5 and a 4-hole from the remaining points when

γ(r3; p2, r
′
2)∩ γ(v1; p2, p3) �= ∅.

(5) |T3| = 3. Let r1, r2, r3 ∈ T3.

(a) |T1| = 3.

Let r4, r5, r6 ∈ T1. Name the remaining one point r7. Assume r7 ∈ γ(v2; p3, p2), as shown in
Figure 11.

Figure 11. Figure of |T1| = 3.

Symmetrically, our conclusion is also right when r7 ∈ γ(v2; p3, p1). Let r4 = α(p3; p1, v
′
3).

We have (r5r6v1)3, (r4 p1v2r7 p3)5 and a 4-hole from the remaining points.
(b) |T1| = 2.

Let r4, r5 ∈ T1. Name the remaining two points r6, r7.

(b1) |T2| = 2. Let r6, r7 ∈ T2.

Assume γ(v1; p1, p2) = ∅. Let r4 = α(p2; v1, p3). Suppose r5 ∈ γ(r4; p
′
2, p3).

We have a cutting line L5(p1, p3). Suppose r5 ∈ γ(r4; v
′
1, p3). If γ(r5; p3, r

′
4) �= ∅,

we have a cutting line L5(r5, α(r5; p3, v
′
4)). If γ(r5; p3, r

′
4) = ∅, we have a cutting

line L5(r1, α(r1; p1, p2) where r1 = α(p1; p3, p2). Suppose r5 ∈ γ(r4; p
′
2, v

′
1). We have

(r6r7v2)3, (r4v1 p1 p2r5)5 and a 4-hole from the remaining points.
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Assume γ(v1; p1, p2) has one of r4, r5. Let r4 ∈ α(v1; p1, p2). Suppose r5 ∈ α(r4; p
′
1, v1).

If γ(r4; p2, v
′
1) = ∅, we have (r2r3v3)3, (r5r4 p2r1 p3)5 and a 4-hole from the remaining

points where r1 = α(p2; p3, v3). If γ(r4; p2, v
′
1) �= ∅, we have (p1v2r7)3, (v1r4r6 p2r5)5

and a 4-hole from the remaining points where r6 = α(r4; p2, v
′
1).

Assume γ(v1; p1, p2) has r4, r5. Let r4 ∈ α(p2; v1, p1), r1 = α(p2; p3, v3). we have
(r2r3v3)3, (p2r1 p3v1r4)5 and a 4-hole from the remaining points.

(b2) |T2| = 1.

Let r6 ∈ T2 and r7 ∈ (p1 p2 p3), as shown in Figure 12.

Figure 12. Figure of |T2| = 1.

Assume r6 ∈ γ(r7; p
′
3, p2). We have (r2r3v3)3, (p3r7r6 p2r1)5 and a 4-hole from the

remaining points where r1 = α(p2; p3, v3). Assume r6 ∈ γ(r7; p
′
3, v2). We have (r4r5v1)3,

(p1v2r6r7 p3)5 and a 4-hole from the remaining points. Assume r6 ∈ γ(r7; p1, v2).
If γ(r7; r

′
6, p2) �= ∅, we have (r2r3v3)3, (p6r7r1 p2v2)5 and a 4-hole from the remaining

points where r1 = α(r7; p2, r
′
6). If γ(r7; r

′
6, p2) = ∅, we have (v2v3 p2)3, (p1r6r7r1 p3)5

and a 4-hole from the remaining points where r1 = α(r7; p3, p
′
1).

(b3) |T2| = 0.

Let r6, r7 ∈ (p1 p2 p3). Then we will discuss the region γ(p3; p1, v1), as shown in Figure 13.

Figure 13. Figure of |T2| = 0.

328



Symmetry 2018, 10, 447

Assume γ(p3; p1, v1) = ∅. Suppose γ(r6; p3, v
′
2) �= ∅. We have (p3 p1v2r6α(r6; p3, v

′
2))5,

(r4r5v1)3 and a 4-hole from the remaining points. Suppose γ(r6; p3, v
′
2) = ∅.

If γ(r7; r
′
6, p2)∩ γ(p2; r7, v

′
2) �= ∅, we have (r2r3v3)3, (r6v2 p2r1r7)5 and a 4-hole from

the remaining points where r1 = α(r7; p2, r
′
6). If γ(r7; r

′
6, p2) ∩ γ(p2; r7, v

′
2) = ∅,

we have (v2v3 p2)3, (r1r7r6 p1α(r1; p1, p3))5 and a 4-hole from the remaining points where
r1 = α(p1; r7, p3) within γ(p3; p2, v3).

Assume γ(p3; p2, v1) = ∅. We have (r2r3v3)3, (r1 p3r6v2 p2)5 and a 4-hole from the
remaining points where r1 = α(p3; p2, v3) and r6 = α(p3; v2, p1).

Assume γ(p3; p1, v2) �= ∅ and γ(p3; p1, v2) �= ∅. We may assume r6 ∈ γ(p3; p1, v2)

and r7 ∈ γ(p3; p1, v2). Suppose r7 ∈ γ(r6; p2, p
′
1). We have (r4r5v1)3, (r6r7 p2v2 p1)5

and a 4-hole from the remaining points. Suppose r7 ∈ γ(r6; p3, p
′
1). If γ(r7; r

′
6, p2) �=

∅, we have (r2r3v3)3, (r7r6v2 p2r1)5 and a 4-hole from the remaining points where
r1 = α(p2; r7, v

′
2). If γ(r7; r

′
6, p2) = ∅: and if γ(r7; p1, v1) = ∅, we have (r2v3 p2)3,

(v1 p1r6r7r4)5 and a 4-hole from the remaining points where r4 = α(r7; p1, p3) within
γ(p3; p1, v1); and if γ(r7; p1, v1) �= ∅, we have (r2v3 p2)3, (r4 p1r6r7r1)5 and a 4-hole from
the remaining points where r4 = α(r7; p1, v1).

(c) |T1| = 1. Let r4 ∈ T1.

(c1) |T2| = 1. Let r5 ∈ T2 and r6, r7 ∈ (p1 p2 p3).

Firstly, consider r4 ∈ γ(v1; p1, p2), then we will discuss the region γ(v1; p1, p2) ∩
(p1 p2 p3) = ∅, as shown in Figure 14.

Figure 14. Figure of |T1| = 1 and |T2| = 1.

Assume γ(v1; p1, p2) ∩ (p1 p2 p3) = ∅. We have a cutting line L5(r4, α(r4; p2, p
′
1)).

Assume γ(v1; p1, p2) ∩ (p1 p2 p3) �= ∅. Let r6 = α(p2; p1, v1). If γ(r6; p2, p
′
1) �= ∅,

we have a cutting line L5(r4, α(r6; p2, p
′
1)). Then we may assume γ(r6; p2, p

′
1) = ∅.

Suppose r5 ∈ γ(r6; v2, r
′
4). If r7 ∈ γ(r6; p

′
2, r4), we have (p1v2r5)3,

(r4r7r6 p2α(r4; p2, p3))5 and a 4-hole from the remaining points. If r7 ∈ γ(r6; p
′
1, r4),

we have a cutting line L5(r4, r6).

Suppose r5 ∈ γ(r6; v2, p1). If γ(r6; r
′
5, p

′
1) �= ∅, we have (v1r4 p1)3,

(r6r5v2 p2α(r6; p2, r
′
5))5 and a 4-hole from the remaining points. If γ(r6; r

′
5, p

′
1) = ∅:

and if r7 ∈ γ(r6; r4, r
′
5), we have (v2v3 p2)3, (r4 p1r5r6r7)5 and a 4-hole from the

remaining points; and if r7 ∈ γ(r6; r4, p
′
2), we have (p1v2r5)3, (r4r7r6 p2α(r4; p2, p3))5

and a 4-hole from the remaining points. Suppose r5 ∈ γ(r6; p2, r
′
4). If r7 ∈ γ(r6; p

′
2, r4),
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we have (p1v2r5)3, (p2r6r7r4α(r4; p2, p3))5 and a 4-hole from the remaining points.
If r7 ∈ γ(r6; r4, p2) ∩ H(r6; r4 p2), we have (p1v2r6r5)3, (p3r4r7 p2α(p3; p2, v

′
1))5 and a

3-hole from the remaining points. If r7 ∈ γ(p2; r4, v1), we have (v1v2 p1)3, (r1r6r5 p2r7)5

and a 4-hole from the remaining points. If r7 ∈ γ(p2; v1, p3), we have (p1v2r5)3,
(v1r4r6 p2r7)5 and a 4-hole from the remaining points.

Secondly, consider r4 ∈ γ(v1; p2, p3), then we will discuss the region γ(r4; p2, p3) ∩
(p1 p2 p3) = ∅, as shown in Figure 15.

Figure 15. Figure of |T1| = 1 and |T2| = 1 with shaded region nonempty.

Assume γ(r4; p2, p3) ∩ (p1 p2 p3) = ∅. We have (r2r3v3)3, (r1 p3r4r6 p2)5 and a 4-hole
from the remaining points where r1 = α(p3; p2, v3), r6 = α(r4; p2, p1). Assume
γ(r4; p1, p2)∩ (p1 p2 p3) = ∅. We have L5(p2, r4). Assume γ(r4; p2, p3)∩ (p1 p2 p3) �=
∅ and γ(r4; p1, p2) ∩ (p1 p2 p3) �= ∅. Then we may assume r6 ∈ γ(r4; p2, p3), r7 ∈
γ(r4; p1, p2). Suppose r6 ∈ γ(r4; v

′
1, p3) ∩ (p1 p2 p3). If γ(r6; r

′
4, p3) �= ∅, we have

(p1r5 p2r7)4, (v1r4r6r1 p3)5 and (r2r3v3)3 where r1 = α(r6; p3, r
′
4). If γ(r6; r

′
4, p3) = ∅:

and if r7 ∈ γ(r4; v1, p2) ∩ γ(v1; p2, r4), we have L5(p2; r4); and if r7 ∈ γ(r4; r5, p2) ∩
γ(p2; p1, v1), we have L5(r4; r7); and if r7 ∈ γ(r4; p1, r5), we have (v1v2 p1)3,
(r4r7r5 p2r6)5 and a 4-hole from the remaining points. Suppose r6 ∈ γ(r4; v

′
1, p2) ∩

(p1 p2 p3). If r7 ∈ γ(v1; p1, p2)∩ (p1 p2 p3), we have (r5v2 p1)3, (v1r7 p2r6r4)5 and a 4-hole
from the remaining points. If r7 ∈ γ(v1; p2, r4)∩ γ(r4; p1, p2): and if r7 ∈ γ(r7; r

′
4, p1),

we have L5(r4, r7); and if r5 ∈ γ(r7; r
′
4, p2), we have (v1v2 p1)3, (r4r7r5 p2r6)5 and a 4-hole

from the remaining points.
(c2) |T2| = 0.

Denote r1, r2, r3 ∈ T3, r4 ∈ T2, r5, r6, r7 ∈ (p1 p2 p3). Let r5 = α(p3; p1, p2)

within (p1 p2 p3). If γ(r5; p
′
1, p3) �= ∅, we have L5(r5; α(r5; p3, p

′
1)). Then we assume

γ(r5; p
′
1, p3) = ∅, and we will discuss the region γ(r5; p1, p2)∩ (p1 p2 p3) = ∅, as hown

in Figure 16.
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Figure 16. Figure of |T1| = 1 and |T2| = 0.

Assume γ(r5; p1, p2)∩ (p1 p2 p3) = ∅, we have (v1r4 p3)3, (r5 p1v2 p2α(p2; r5, p3))5 and
a 4-hole from the remaining points.

Assume γ(r5; p2, p3)∩ (p1 p2 p3) = ∅. Let p6 = α(r5; p2, p
′
3). Suppose r4 ∈ γ(r5; p3, r

′
6).

We have (r2r3v3)3, (p2r1 p3r4α(r4; p2, p
′
3))5 and a 4-hole from the remaining points where

r1 = α(p2; p3, v
′
2). Suppose r4 ∈ γ(r5; p1, r

′
6). We have (r2r3r4)3, (p2r1 p3r5r6)5 and

a 4-hole from the remaining points where r1 = α(p2; p3, v
′
2).

Assume γ(r5; p1, p2)∩ (p1 p2 p3) �= ∅ and γ(r5; p2, p3)∩ (p1 p2 p3) �= ∅. Without loss
of generality, we suppose r6 ∈ γ(r5; p1, p2), r7 ∈ γ(r5; p2, p3).

Firstly, we may assume r6 ∈ γ(r5; v2, p2). Suppose r4 ∈ γ(r6; p7, p
′
2). We have L5(p2, r6).

Suppose r4 ∈ γ(r5; r
′
6, p1) ∩ H(r5; r6 p2). We have a cutting line L5(r5, r6). Suppose

r4 ∈ γ(r6; p
′
6, p

′
1). If r7 ∈ γ(r4; p2, p3), we have (v1v2 p1)3, (v4r5r6 p2r7)5 and a 4-hole

from the remaining points. If r7 ∈ γ(p2; r4, p5), we have (v3r2r3)3, (v1 p1r6r5)4 and
(p3r4r7 p2r1)5 where r1 = α(p2; p3, v

′
2).

Secondly, we have may assume r6 ∈ γ(r5; v2, p
′
3), we have (v1 p1r4)3, (r5r6v2 p2r7)5 and

a 4-hole from the remaining points.

(d) |T1| = 0. |T2| = 0.

Let r4, r5, r6, r7 ∈ (p1 p2 p3). And r1 = α(p3; p2, v3), r4 = α(p3; p2, p1), r5 = α(p2; p1, r4).
If γ(r4; p2, p

′
3) �= ∅, we have (r2r3v3)3, (p2r1 p3r4α(r4; p2, p

′
3))5 and a 4-hole from the

remaining points. Assume r5 ∈ γ(r4; p1, p3). If γ(r5; p2, p
′
1) �= ∅, we have a cutting

line L5(r5; α(r5; p2, p
′
1)). Then we will discuss the region γ(v4; p1, p

′
2) ∩ (p1 p2 p3) and

γ(r4; p1, p
′
3)∩ γ(p1; p5, r4), as shown in Figure 17.
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Figure 17. Figure of |T1| = 1 and |T2| = 0 with shaded region nonempty.

Assume γ(v4; p1, p
′
2)∩ (p1 p2 p3) = ∅. We have (r7r5v2)3, (r4 p3v1 p1r6)5 and a 4-hole from the

remaining points where r6 = α(r4; p1, p
′
3).

Assume γ(r4; p1, p
′
3) ∩ γ(p1; p5, r4) = ∅. Let r6 = α(p1; p3, r4). Suppose r7 ∈ γ(r6; r4, p

′
1).

We have (v1v2 p1)3, (p2r4r7r6r5)5 and a 4-hole from the remaining points. Suppose
r7 ∈ γ(r6; r4, v

′
1)∩ γ(r4; p1, p

′
2). We have (r1r2r3)3, (p1v2 p2r5)4 and (r4 p3v1r6r7)5. Suppose

r7 ∈ γ(r6; r5, v
′
1) ∩ γ(r4; p1, p

′
2). We have (v3r2r3)3, (r4 p2r1 p3)4 and (r6v1 p2r5r7)5. Suppose

r7 ∈ γ(r6; r5, p
′
2). We have (v1v2 p2)3, (r4 p3r6r7r5)5 and a 4-hole from the remaining points.

Suppose r7 ∈ γ(r6; p1, r
′
3). We have a cutting line L5(p3, r6).

Assume γ(v4; p1, p
′
2) ∩ (p1 p2 p3) �= ∅ and γ(r4; p1, p

′
3) ∩ γ(p1; p5, r4) �= ∅. Without loss of

generality, assume r6 ∈ γ(r4; p1, p
′
2)∩ (p1 p2 p3), r7 ∈ γ(r4; p1, p

′
3)∩ γ(p1; p5, r

′
4).

Suppose r6 ∈ γ(r5; p3, p
′
1). We have a cutting line L5(r6, α(r6; p1, p

′
3).

Suppose r6 ∈ γ(r5; p3, p1)∩γ(v1; r4, p3). If r7 ∈ γ(r5; p3, p
′
2)∩γ(p1; r5, r4), we have (v2 p2r5)3,

(v1 p1r7r4r6)5 and a 4-hole from the remaining points. If r7 ∈ γ(r5; p
′
3, p

′
1) ∩ γ(r4; p1, p

′
3),

we have (v2 p2 p3)3, (v1 p1r5r7r6)5 and a 4-hole from the remaining points.

Suppose r6 ∈ γ(r5; p3, p1) ∩ γ(v1; r1, p1). If r7 ∈ γ(r6; r4, v
′
1), we have (v1r6r7r4 p3)5,

(p1v2 p2r5)4 and (r1r2r3)3. If r7 ∈ γ(r6; r5, v
′
1), we have (v2v3 p2)3, (v1 p1r5r7r6)5 and a 4-hole

from the remaining points.

(6) |T3| = 2.

Let r1, r2 ∈ T3 and r1 = α(p2; p3, v
′
1). Assume r2 ∈ γ(r1; p2, v3). We have (p2r1r2v3)4 and the

remaining 9 points are in H(v3; p2 p3), as shown in Figure 18.
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Figure 18. Figure of |T3| = 2.

By the discussion of Part One, we know our conclusion is right. Assume r2 ∈ γ(r1; p
′
3, v2).

We have (p3r1r2v2)4. By the discussion of Part One, we know our conclusion is also right. Assume
r2 ∈ γ(r1; p

′
3, p2). We have a cutting line L5(p2, α(p2; p3, p1)).

(7) |T3| = 1.

Let r1 ∈ T3, r2 ∈ T1, r3 ∈ T2 and r4, r5, r6, r7 ∈ (p1 p2 p3). Let r4 = α(p3; p2, p1) within (p1 p2 p3).
Assume r4 ∈ γ(p3; p1, v1), as shown in Figure 19.

Figure 19. Figure of |T3| = 1.

If r2 ∈ γ(v1; p2, p3), we have a cutting line L5(r2, α(r2; p2, p1)). If r2 ∈ γ(v1; p2, p1), we have
a cutting line L5(v1, α(v1; p2, p1)). Assume r4 ∈ γ(p3; p2, v1). If γ(r4; p3, p

′
2) �= ∅, we have a

cutting line L5(r4, α(r4; p3, p
′
2)). If γ(r4; p2, p

′
3) �= ∅, we have a cutting line L5(r4; α(r4; p2, p

′
3)).

If γ(r4; p3, p
′
2) = ∅ and γ(r4; p2, p

′
3) = ∅: and if r1 ∈ γ(r4; p2, v3), we have (r4 p3v3r1)4; and if

r1 ∈ γ(r4; p3, v3), we have (p2r4r1v3)4. Then the remaining 9 points are all in H(v3; p2 p3). By the
discussion of Part One, our conclusion is right.

(8) |T3| = 0.
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Then |T2| = 0, |T1| = 0 and ri ∈ (p1 p2 p3) for i = 1, ..., 7. Let r1 = α(p1; p3, p2).
If r1 ∈ γ(p1; p3, v3), as shown in Figure 20.

Figure 20. Figure of |T1| = 0 and |T2| = 0.

We have (v1 p1r1 p3)4 and the remaining 9 points are all in H(p3; p1r1). By the discussion of Part
One, our conclusion is right. If r1 ∈ γ(p1; p3, v3): and if γ(r1; p1, p

′
3) = ∅, we have (v1 p3r1 p1)4

and the remaining 9 points are all in H(v1; p3r1); and if γ(r1; p1, p
′
3) �= ∅, we have a cutting line

L5(r1, α(r1; p1, p
′
3)).

4. Conclusions

In this paper, we discuss a classical discrete geometry problem. After detailed proof, conclusion
shows that a general planar point set contains a 3-hole, a 4-hole and a 5-hole, with at least 13 points.
As 30 ≤ n(6) ≤ 463 [16,21] and n(7) does not exist, the proposed theorem will contribute to the
theoretical research to some degree. Discrete geometry is a meaningful tool to study social networks.
Therefore, our conclusion could be used to deal with some complex network problems. For example,
under the environment of competition social structure, the structural holes which have been studied
by many economists, are part of an important research branch of discrete geometry.
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Abstract: From the perspective of the degrees of classification error, we proposed graded rough
intuitionistic fuzzy sets as the extension of classic rough intuitionistic fuzzy sets. Firstly, combining
dominance relation of graded rough sets with dominance relation in intuitionistic fuzzy ordered
information systems, we designed type-I dominance relation and type-II dominance relation. Type-I
dominance relation reduces the errors caused by single theory and improves the precision of ordering.
Type-II dominance relation decreases the limitation of ordering by single theory. After that, we
proposed graded rough intuitionistic fuzzy sets based on type-I dominance relation and type-II
dominance relation. Furthermore, from the viewpoint of multi-granulation, we further established
multi-granulation graded rough intuitionistic fuzzy sets models based on type-I dominance relation
and type-II dominance relation. Meanwhile, some properties of these models were discussed. Finally,
the validity of these models was verified by an algorithm and some relative examples.

Keywords: graded rough sets; rough intuitionistic fuzzy sets; dominance relation; logical conjunction
operation; logical disjunction operation; multi-granulation

1. Introduction

Pawlak proposed a rough set model in 1982, which is a significant method in dealing with
uncertain, incomplete, and inaccurate information [1]. Its key strategy is to consider the lower and
upper approximations based on precise classification.

As a tool, the classic rough set is based on precise classification. It is too restrictive for some
problems in the real world. Considering this defect of classic rough sets, Yao proposed the graded
rough sets (GRS) model [2]. Then researchers paid more attention to it and relative literatures began
to accumulate on its theory and application. GRS can be defined as the lower approximation being
Rk(X) = {x||[x]R| − |[x]R ∩ X| ≤ k, x ∈ U} and the upper approximation being Rk(X) = {x||[x]R ∩
X| > k, x ∈ U}. |[x]R ∩ X| is the absolute number of the elements of |[x]R| inside X and should be
called internal grade, |[x]R| − |[x]R ∩ X| is the absolute number of the elements of |[x]R| outside X
and should be called external grade. Rk(X) means union of the elements whose equivalence class’
internal-grade about X is greater than k, Rk(X) means union of the elements whose equivalence class’
external grade about X is at most k [3].

In the view of granular computing [4], the classic rough set is a single-granulation rough set.
However, in the real world, we need multiple granularities to analyze and solve problems and Qian et
al. proposed multi-granulation rough sets solving this issue [5]. Subsequently, multi-granulation rough
sets were extended in References [6–9]. In addition, in the viewpoint of the degrees of classification
error, Hu et al. and Wang et al. established a novel model of multi-granulation graded covering
rough sets [10,11]. Simultaneously, Wu et al. constructed graded multi-granulation rough sets [12].

Symmetry 2018, 10, 446; doi:10.3390/sym10100446 www.mdpi.com/journal/symmetry336
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References [13–17] discussed GRS in a multi-granulation environment. Moreover, for GRS, it has been
studied that the equivalence relation has been extended to the dominance relation [13,14], the limited
tolerance relation [17] and so forth [10,11]. In general, all these aforementioned studies have naturally
contributed to the development of GRS.

Inspired by the research reported in References [5,13–17], intuitionistic fuzzy sets (IFS) are also a
theory which describe uncertainty [18]. IFS consisting of a membership function and a non-membership
function are commonly encountered in uncertainty, imprecision, and vagueness [18]. The notion of IFS,
proposed by Atanassov, was initially developed in the framework of fuzzy sets [19]. Furthermore, it
can describe the “fuzzy concept” of “not this and not that”, that is to say, neutral state or neutral degree,
thus it is more precise to portray the ambiguous nature of the objective world. IFS theory is applicable
in decision-making, logical planning, medical diagnosis, machine learning, and market forecasting, etc.
Applications of IFS have attracted people’s attention and achieved fruitful results [20–27].

In recent years, IFS have been a hot research topic in uncertain information systems [6,28–30].
For example, in the development of IFS theory, Ai et al. proposed intuitionistic fuzzy line integrals
and gave their concrete values in Reference [31]. Zhang et al. researched the fuzzy logic algebraic
system and neutrosophic sets as generalizations of IFS in References [23,26,27]. Furthermore, Guo et al.
provided the dominance relation of intuitionistic fuzzy information systems [30].

Both rough sets and IFS not only describe uncertain information but also have strong
complementarity in practical problems. As such many researchers have studied the combination
of rough sets and IFS, namely, rough intuitionistic fuzzy sets (RIFS) and intuitionistic fuzzy rough
sets (IFRS) [32]. For example, Huang et al., Gong et al., Zhang et al., He et al., and Tiwari et al.
effectively developed IFRS respectively from uncertainty measures, variable precision rough sets,
dominance–based rough sets, interval-valued IFS, and attribute selection [29,30,33–35]. Additionally,
Zhang and Chen, Zhang and Yang, Huang et al. studied dominance relation of IFRS [19–21]. With
respect to RIFS, Xue et al. provided a multi-granulation covering the RIFS model [9].

The above models did not consider the classification of some degrees of error [6–9,29,30,33,36]
in dominance relation on GRS and dominance relation in intuitionistic fuzzy ordered information
systems [37]. Therefore, in this paper, firstly, we introduce GRS into RIFS to get graded rough
intuitionistic fuzzy sets (GRIFS) solving this problem. Then, considering the need for more precise
sequence information in the real world, based on dominance relation of GRS and an intuitionistic fuzzy
ordered information system, we respectively perform logical conjunction and disjunction operation to
gain type-I dominance relation and type-II dominance relation. After that, we use type-I dominance
relation and type-II dominance relation thereby replacing equivalence relation to generalize GRIFS.
We design two novel models of GRIFS based on type-I dominance relation and type-II dominance
relation. In addition, to accommodate a complex environment, we further extend GRIFS models based
on type-I dominance relation and type-II dominance relation, respectively, to multi-granulation GRIFS
models based on type-I dominance relation and type-II dominance relation. These models present a
new path to extract more flexible and accurate information.

The rest of this paper is organized as follows. In Section 2, some basic concepts of IFS and GRS,
RIFS are briefly reviewed, at the same time, we give the definition of GRS based on dominance relation.
In Section 3, we respectively propose two novel models of GRIFS models based on type-I dominance
relation and type-II dominance relation and verify the validity of these two models. In Section 4,
the basic concepts of multi-granulation RIFS are given. Then, we propose multi-granulation GRIFS
models based on type-I dominance relation and type-II dominance relation, and provide the concepts
of optimistic and pessimistic multi-granulation GRIFS models based on type-I dominance relation
and type-II dominance relation, respectively. In Section 5, we use an algorithm and example to study
and illustrate the multi-granulation GRIFS models based on type-I dominance relation and type-II
dominance relation, respectively. In Section 6, we conclude the paper and illuminate on future research.
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2. Preliminaries

Definition 1 ([22]). Let U be a non-empty classic universe of discourse. U is denoted by:

A = {< x, μA(x), νA(x) > |x ∈ U},

A can be viewed as IFS on U, where μA(x) : U → [0, 1] and νA(x) : U → [0, 1] . μA(x) and νA(x) are
denoted as membership and non-membership degrees of the element x in A, satisfying 0 ≤ μA(x) + νA(x) ≤ 1.
For ∀ x ∈ U, the hesitancy degree is πA(x) = 1− μA(x)− νA(x), noticeably, πA(x) : U → [0, 1] . ∀ A, B ∈
IFS(U), the basic operations of A and B are given as follows:

(1) A ⊆ B⇔ μA(x) ≤ μB(x), νA(x) ≥ νB(x), ∀x ∈ U,
(2) A = B⇔ μA(x) = μB(x), νA(x) = νB(x), ∀x ∈ U,
(3) A ∪ B = {< x, max{μA(x), μB(x)}, min{νA(x), νB(x)} > |x ∈ U},
(4) A ∩ B = {< x, min{μA(x), μB(x)}, max{νA(x), νB(x)} > |x ∈ U},
(5) ∼ A = {< x, νA(x), μA(x) > |x ∈ U}.

Definition 2 ([2]). Let (U, R) be an approximation space, assume k ∈ N, where N is the natural number set.
Then GRS can be defined as follows:

Rk(X) = {x||[x]R| − |[x]R ∩ X| ≤ k, x ∈ U},
Rk(X) = {x||[x]R ∩ X| > k, x ∈ U}.

Rk(X) and Rk(X) can be considered as the lower and upper approximations of X with respect to the graded
k. Then we call the pair (Rk(X), Rk(X)) GRS. When k = 0, R0(X) = R(X), R0(X) = R(X). However, in
general, Rk(X)Rk(X), Rk(X)Rk(X).

In Reference [4], the positive and negative domains of X are given as follows:

POS(X) = Rk(X) ∩ Rk(X), NEG(X) = ¬(Rk(X) ∪ Rk(X)).

Definition 3 ([36]). If we denote R≥a = {(xi, xj) ∈ U ×U : f (xi) ≥ f (xj), ∀a ∈ A} where A is a subset of
the attributes set and f (x) is the value of attribute a, then [x]≥a is referred to as the dominance class of dominance
relation R≥a . Moreover, we denote approximation space based on dominance relations by S = (U, R≥a ).

Definition 4. Let (U, R≥a ) be an information approximation. U/R≥a is the set of dominance classes induced by
a dominance relation R≥a , and [x]≥a is called the dominance class containing x. Assume k ∈ N, where N is the
natural number set. GRS based on dominance relation can be defined:

R≥k (X) = {x||[x]≥a | − |[x]≥a ∩ X| ≤ k, x ∈ U},
R≥k (X) = {x||[x]≥a ∩ X| > k, x ∈ U}.

When k = 0, (R≥0 (X), R≥0 (X)) will be rough sets based on dominance relation.

Example 1. Suppose there are nine patients U = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, they may suffer from a cold.
According to their fever, we get U/R≥a = {{x1, x2, x4}, {x3, x8}, {x6, x8}, {x5, x7, x8, x9}}, X ⊆ U. Then
suppose X = {x1, x2, x4, x7, x9}, we can obtain GRS based on dominance relation.

The demonstration process is given as follows:
Suppose k = 1, then we can get,

[x1]
≥
a = [x2]

≥
a = [x4]

≥
a = {x1, x2, x4}, [x3]

≥
a = [x8]

≥
a = {x3, x8}, [x6]

≥
a = [x8]

≥
a = {x6, x8},

[x5]
≥
a = [x7]

≥
a = [x8]

≥
a = [x9]

≥
a = {x5, x7, x8, x9}.
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Then, we can calculate R≥1 (X), R≥1 (X) and POS(X), NEG(X).

R≥1 (X) = {x1, x2, x4}, R≥1 (X) = {x1, x2, x4, x5, x7, x8, x9}.

POS(X) = R≥1 (X) ∩ R≥1 (X) = {x1, x2, x4} ∩ {x1, x2, x4, x5, x7, x8, x9} = {x1, x2, x4},
NEG(X) = ¬(R≥1 (X) ∪ R≥1 (X)) = ¬({x1, x2, x4} ∪ {x1, x2, x4, x5, x7, x8, x9}) = {x3, x6}.

Through the above analysis, we can see x1, x2, and x4 patients suffering from a cold disease and x3 and x6
patients not having a cold disease.

When k = 0, (R≥0 (X), R≥0 (X)) will be rough sets based on dominance relation.

Definition 5 ([8,32,35]). Let X be a non-empty set and R be an equivalence relation on X. Let B be IFS in X
with the membership function μB(x) and non-membership function νB(x). The lower and upper approximations,
respectively, of B are IFS of the quotient set X/R with

(1) Membership function defined by

μR(B)(Xi) = inf{μB(x)| x ∈ Xi}, μR(B)(Xi) = sup{μB(x)| x ∈ Xi}.

(2) Non-membership function defined by

νR(B)(Xi) = sup{νB(x)| x ∈ Xi}, νR(B)(Xi) = inf{νB(x)| x ∈ Xi}.

In this way, we can prove R(B) and R(B) are IFS.
For ∀x ∈ Xi, we can obtain,

μB(x) + νB(x) ≤ 1, μB(x) ≤ 1− νB(x),sup{μB(x)| x ∈ Xi} ≤ sup{1− νB(x)| x ∈ Xi},sup{μB(x)| x ∈ Xi} ≤ 1− inf{νB

Hence R(B) is IFS. Similarly, we can prove that R(B) is IFS. The RIFS of R(B) and R(B) are given
as ollows:

R(B) = {< x, inf
y∈[x]i

μB(y), sup
y∈[x]i

νB(y) > |x ∈ U},

R(B) = {< x, sup
y∈[x]i

μB(y), inf
y∈[x]i

νB(y) > |x ∈ U}.

3. GRIFS Model Based on Dominance Relation

In this section, we propose a GRIFS model based on dominance relation. Moreover, this model
contains a GRIFS model based on type-I dominance relation and GRIFS model based on type-II
dominance relation, respectively. Then we employ an example to demonstrate the validity of these
two models, and finish by discussing some basic properties of these two models.

Definition 6 ([37]). If (U, A, V, f ) is an intuitionistic fuzzy ordered information system, so (R′)≥a =

{(x, y) ∈ U ×U| fa(y) ≥ fa(x), ∀a ∈ A} can be called dominance relation in the intuitionistic fuzzy ordered
information system.

[x]≥
′

a = {y|(x, y) ∈ (R′)≥a , ∀a ∈ A, y ∈ U}
= {y|μa(y) ≥ μa(x), νa(y) ≤ νa(x), ∀a ∈ A, y ∈ U}

[x]≥
′

a is dominance class of x in terms of dominance relation (R′)≥a .
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3.1. GRIFS Model Based on Type-I Dominance Relation

Definition 7. Let IS≥I
= (U, A, V, f ) be an intuitionistic fuzzy ordered information system and R≥a be a

dominance relation of the attribute set A. Suppose X is the GRS of R≥a on U, a ∈ A, and IFS B on U about
attribute a satisfies dominance relation (R′)≥a . The lower approximation R≥

I

k (B) and the upper approximation

R≥
I

k (B) with respect to the graded k are given as follows:
When k ≥ 1, we can gain,

R≥
I

k (B) = {< x, inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∧ μ′B(y)), sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∨ ν′B(y)) > |x ∈ U},

R≥
I

k (B) = {< x, sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∨ μ′B(y)), inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∧ ν′B(y)) > |x ∈ U}.

μ′B(y) =
|R≥k (X) ∩ R≥k (X)|

|U| , ν′B(y) =
|¬(R≥k (X) ∪ R≥k (X))|

|U| .

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.
When k = 0, μ′B(y) and ν′B(y) degenerate to be calculated by the classical rough set. However, under these

circumstances, the model is still valid, we call this model RIFS based on type-I dominance relation.
Note that, in GRIFS model based on type-I dominance relation, we let [x]≥a and [x]≥

′
a perform a conjunction

operation ∧, this is to say ≥I means
j∧

s=1
(([x]≥a )s ∧ [x]≥

′
a ).

Note that,
j∧

s=1
(([x]≥a )s ∧ [x]≥

′
a ) in GRIFS model based on type-I dominance relation, if x have j dominance

classes [x]≥a of dominance relation R≥a on GRS, we perform a conjunction operation ∧ of j dominance classes
[x]≥a and [x]≥

′
a .

According to Definition 7, the following theorem can be obtained.

Theorem 1. Let IS≥I
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, and B be IFS on

U. Then a GRIFS model based on type-I dominance relation has these following properties:

(1) R≥
I

k (B) ⊆ B ⊆ R≥
I

k (B),

(2) A ⊆ B, R≥
I

k (A) ⊆ R≥
I

k (B), R≥
I

k (A) ⊆ R≥
I

k (B),

(3) R≥
I

k (A ∩ B) = R≥
I

k (A) ∩ R≥
I

k (B), R≥
I

k (A ∪ B) = R≥
I

k (A) ∪ R≥
I

k (B).

Proof. (1) From Definition 7, we can get,

inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∧ μ′B(y)) ≤ μB(x) ≤ sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∨ μ′B(y))⇔ μ
R≥I

k (B)
(x) ≤ μB(x) ≤ μ

R≥
I

k (B)
(x),

sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∨ ν′B(y)) ≥ νB(x) ≥ inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∧ ν′B(y))⇔ ν
R≥I

k (B)
(x) ≥ νB(x) ≥ ν

R≥
I

k (B)
(x),

Hence, R≥
I

k (B) ⊆ B ⊆ R≥
I

k (B).

(2) Based on Definition 1 and A ⊆ B,

Thus we can get, μA(x) ≤ μB(x), νA(x) ≥ νB(x).
From Definition 7, we can get, μ′A(y) = μ′B(y), ν′A(y) = ν′B(y).
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Then, in the GRIFS model based on type-I dominance relation, we can get,

inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μA(y) ∧ μ′A(y)) ≤ inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∧ μ′B(y))⇔ μ
R≥I

k (A)
(x) ≤ μ

R≥I
k (B)

(x),

sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νA(y) ∨ ν′A(y)) ≥ sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∨ ν′B(y))⇔ ν
R≥I

k (A)
(x) ≥ ν

R≥I
k (B)

(x).

Thus we can get, R≥
I

k (A) ⊆ R≥
I

k (B).

In the same way, we can get, R≥
I

k (A) ⊆ R≥
I

k (B).

(3) From Definition 7, we can get,

μ
R≥I

k (A∩B)
(x) = inf

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μA∩B(y) ∧ μ′A∩B(y)) = ( inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μA(y) ∧ μ′A(y))) ∧ ( inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(μB(y) ∧ μ′B(y)))

= μ
R≥I

k (A)
(x) ∧ μ

R≥I
k (B)

(x),

ν
R≥I

k (A∩B)
(x) = sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νA∩B(y) ∨ ν′A∩B(y)) = ( sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νA(y) ∨ ν′A(y))) ∧ ( sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

(νB(y) ∨ ν′B(y)))

= ν
R≥I

k (A)
(x) ∧ ν

R≥I
k (B)

(x),

Thus we can get, R≥
I

k (A ∩ B) = R≥
I

k (A) ∩ R≥
I

k (B).

In the same way, we can get R≥
I

k (A ∪ B) = R≥
I

k (A) ∪ R≥
I

k (B). �

Example 2. In a city, the court administration needs to recruit 3 staff. Applicants who pass the application,
preliminary examination of qualifications, written examination, interview, qualification review, political
review, and physical examination can be employed. In order to facilitate the calculation, we simplify the
enrollment process to qualification review, written test, interview. At present, 12 people have passed the
preliminary examination of qualifications, and 9 of them have passed the written examination (administrative
professional ability test and application). U = {x1, x2, x3, x4, x5, x6, x7, x8, x9} is the domain. We can get
U/R≥a = {{x1, x2, x4}, {x3, x8}, {x7}, {x4, x5, x6, x9}} according to the “excellent” and “pass” of the two
results. In addition, through the interview of 9 people, the following IFS can be obtained, and we suppose
X = {x1, x4, x5, x6, x9}, X ⊆ U.

B =

{
[0.9, 0]

x1
,
[0.8, 0.1]

x2
,
[0.65, 0.3]

x3
,
[0.85, 0.1]

x4
,
[0.95, 0.05]

x5
,
[0.7, 0.3]

x6
,
[0.5, 0.2]

x7
,
[0.87, 0.1]

x8
,
[0.75, 0.2]

x9

}
.

To solve the above problems, we can use the model described in References [38,39], which are
rough sets based on dominance relation.

First, according to U/R≥a , we can get,

R≥(X) = {x4, x5, x6, x9}, R≥(X) = {x1, x2, x4, x5, x6, x9},

Through rough sets based on dominance relation, we can get some applicants with better written
test scores. However, regarding IFS B, we cannot use rough sets based on dominance relation to handle
the data. Therefore, we are even less able to get the final result with the model. To process the interview
data, we need to use another model, described in Reference [40]. Through data processing, we can
obtain the dominance classes as follows:

[x1]
≥′
a = {x1}, [x2]

≥′
a = {x2, x4, x5, x8}, [x3]

≥′
a = {x3, x4, x5, x6, x8, x9}, [x4]

≥′
a = {x4, x5},

[x5]
≥′
a = {x5}, [x6]

≥′
a = {x6, x8, x9}, [x7]

≥′
a = {x7, x8, x9}, [x8]

≥′
a = {x8}, [x9]

≥′
a = {x9}.
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From the above analysis, we can get,

x5 ≥ x1 ≥ x8 ≥ x4 ≥ x2 ≥ x9 ≥ x6 ≥ x3 ≥ x7

Through dominance relation in the intuitionistic fuzzy ordered information system, we can get
some applicants with better interview results, but we still cannot get the final results. To get this
result, we need to analyze the applicants who have better written test scores and better written test
scores. Based on the above conclusions, we can determine that only x5 and x4 applicants meet the
requirements. However, the performance of others is not certain. If they only need one or two staff,
then this analysis can help us to choose the applicant. However, we need 3 applicants, so we cannot
get the result in this way. However, there is a model in Definition 6 that can help us get the results.
The calculation process is as follows:

According to Example 1, when k = 1, we can get

R≥1 (X) = {x1, x2, x4, x5, x6, x7, x9}, R≥1 (X) = {x1, x2, x4, x5, x6, x7, x9},

According to Definitions 7 and 8, we can then get,

μ′B(y) =
|R≥1 (X) ∩ R≥1 (X)|

|U| =
7
9
≈ 0.78, ν′B(y) =

|¬(R≥1 (X) ∪ R≥1 (X))|
|U| =

2
9
≈ 0.22.

So, according to Definition 6 and Example 1, we can compute the conjunction operation of [x]≥a
and [x]≥

′
a , and the results are as Table 1.

Table 1. The conjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∧[x]≥
′

a

x1 {x1, x2, x4} {x1} {x1}
x2 {x1, x2, x4} {x2, x4, x5, x8} {x2, x4}
x3 {x3, x8} {x3, x4, x5, x6, x8, x9} {x3, x8}
x4 {x1, x2, x4}, {x4, x5, x6, x9} {x4, x5} {x4}
x5 {x4, x5, x6, x9} {x5} {x5}
x6 {x4, x5, x6, x9} {x6, x8, x9} {x6, x9}
x7 {x7} {x7, x8, x9} {x7}
x8 {x3, x8} {x8} {x8}
x9 {x4, x5, x6, x9} {x9} {x9}

GRIFS model based on type-I dominance relation can be obtained as follows:

R≥
I

1 (B) =
{

[0.78,0.22]
x1

, [0.78,0.22]
x2

, [0.65,0.3]
x3

, [0.78,0.22]
x4

, [0.78,0.22]
x5

, [0.7,0.3]
x6

, [0.5,0.22]
x7

, [0.78,0.22]
x8

, [0.75,0.22]
x9

}
,

R≥
I

1 (B) =
{

[0.9,0]
x1

, [0.85,0.1]
x2

, [0.78,0.1]
x3

, [0.85,0.1]
x4

, [0.95,0.05]
x5

, [0.87,0.1]
x6

, [0.78,0.1]
x7

, [0.87,0.1]
x8

, [0.78,0.2]
x9

}
.

Comprehensive analysis R≥
I

1 (B) and R≥
I

1 (B), we can conclude that x5, x1, x8, x2 and x4 applicants
are more suitable for the position in the pessimistic situation. From this example we can see that our
model is able to handle more complicated situations than the previous theories, and it can help us get
more accurate results.

3.2. GRIFS Model Based on Type-II Dominance Relation

Definition 8. Let U be a non-empty set and A be the attribute set on U, and a ∈ A, R≥a is a dominance relation
of attribute A. Let X be GRS of R≥a on U, and IFS B on U about attribute a satisfies dominance relation (R′)≥a .
The lower and upper approximations of B with respect to the graded k are given as follows:
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When k ≥ 1, we can get,

R≥
Π

k (B) = {< x, inf
y∈(

j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

(μB(y) ∧ μ′B(y)), sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

(νB(y) ∨ ν′B(y)) > |x ∈ U},

R≥
Π

k (B) = {< x, sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

(μB(y) ∨ μ′B(y)), inf
y∈(

j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

(νB(y) ∧ ν′B(y)) > |x ∈ U}.

μ′B(y) =
|R≥k (X) ∩ R≥k (X)|

|U| , ν′B(y) =
|¬(R≥k (X) ∪ R≥k (X))|

|U| .

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.
When k = 0, μ′B(y) and ν′B(y) are calculated from the classical rough set. However, under these

circumstances the model is still valid and we call this model RIFS based on type-II dominance relation.
Note that in the GRIFS model based on type-II dominance relation, we perform a disjunction operation ∨

on [x]≥a and [x]≥
′

a , this is to say ≥Π means
j∨

s=1
(([x]≥a )s ∨ [x]≥

′
a ).

Note that,
j∨

s=1
(([x]≥a )s ∨ [x]≥

′
a ) in the GRIFS model based on type-II dominance relation. If x have j

dominance classes [x]≥a of dominance relation R≥a on GRS, we perform a disjunction operation ∨ of j dominance
classes [x]≥a and [x]≥

′
a , respectively.

According to Definition 8, the following theorem can be obtained.

Theorem 2. Let IS≥Π
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, and B be IFS

on U. Then GRIFS model based on type-II dominance relation will have the following properties:

(1) R≥
Π

k (B) ⊆ B ⊆ R≥
Π

k (B),

(2) A ⊆ B, R≥
Π

k (A) ⊆ R≥
Π

k (B), R≥
Π

k (A) ⊆ R≥
Π

k (B),

(3) R≥
Π

k (A ∩ B) = R≥
Π

k (A) ∩ R≥
Π

k (B), R≥
Π

k (A ∪ B) = R≥
Π

k (A) ∪ R≥
Π

k (B).

Proof. The proving process of Theorem 2 is similar to Theorem 1. �

Example 3. Nine senior university students are going to graduate from a computer department and they
want to work for a famous internet company. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be the domain. The
company has a campus recruitment at this university. Based on their confidence in programming skills, we get
the following IFS B whether they succeed in the campus recruitment or not. At the same time, according to
programming skills grades in school, U/R≥a = {{x1, x2, x4}, {x4, x5, x6, x9}, {x3, x8}, {x7}} can be obtained.
We suppose X = {x1, x4, x5, x6, x9}, X ⊆ U.

B =

{
[0.9, 0]

x1
,
[0.8, 0.1]

x2
,
[0.65, 0.3]

x3
,
[0.85, 0.1]

x4
,
[0.95, 0.05]

x5
,
[0.7, 0.3]

x6
,
[0.5, 0.2]

x7
,
[0.87, 0.1]

x8
,
[0.75, 0.2]

x9

}
.

We can try to use rough sets based on dominance relation to solve the above problems, as
described in Reference [38].

First, according to U/R≥a , we can get the result as follows.

R≥(X) = {x4, x5, x6, x9}, R≥(X) = {x1, x2, x4, x5, x6, x9},
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From the upper and lower approximations, we can get that x4, x5, x6 and x9 students may pass the
campus interview. However, we cannot use the rough set based on dominance relation to deal with
the data of the test scores of their programming skills. In order to process B, we need to use another
model, outlined in Reference [40]. The result is as follows:

x5 ≥ x1 ≥ x8 ≥ x4 ≥ x2 ≥ x9 ≥ x6 ≥ x3 ≥ x7

Through IFS, we can get that x4, x2, x1 and x7 students are better than other students. From the
above analysis, we can get student x4 who can be successful in the interview. However, we are not sure
about other students. At the same time, from the process of analysis, we find that different models
are built for the examples, and the predicted results will have deviation. Our model is based on GRS
based on dominance relation and the dominance relation in intuitionistic fuzzy ordered information
system. Thus, we can use the model to predict the campus interview.

Consequently, according to Definition 8 and Example 1, we can compute the disjunction operation
of [x]≥a and [x]≥

′
a , the results are as Table 2.

Table 2. The disjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∨[x]≥
′

a

x1 {x1, x2, x4} {x1} {x1, x2, x4}
x2 {x1, x2, x4} {x2, x4, x5, x8} {x1, x2, x4, x5, x8}
x3 {x3, x8} {x3, x4, x5, x6, x8, x9} {x3, x4, x5, x6, x8, x9}
x4 {x1, x2, x4}, {x4, x5, x6, x9} {x4, x5} {x1, x2, x4, x5, x6, x9}
x5 {x4, x5, x6, x9} {x5} {x4, x5, x6, x9}
x6 {x4, x5, x6, x9} {x6, x8, x9} {x4, x5, x6, x8, x9}
x7 {x7} {x7, x8, x9} {x7, x8, x9}
x8 {x3, x8} {x8} {x3, x8}
x9 {x4, x5, x6, x9} {x9} {x4, x5, x6, x9}

GRIFS model based on type-II dominance relation can be obtained as follows:

R≥
Π

1 (B) =
{

[0.78,0.22]
x1

, [0.78,0.22]
x2

, [0.65,0.3]
x3

, [0.7,0.22]
x4

, [0.7,0.22]
x5

, [0.7,0.3]
x6

, [0.5,0.22]
x7

, [0.65,0.3]
x8

, [0.7,0.3]
x9

}
,

R≥
Π

1 (B) =
{

[0.9,0]
x1

, [0.95,0]
x2

, [0.95,0.05]
x3

, [0.95,0]
x4

, [0.95,0.05]
x5

, [0.95,0.05]
x6

, [0.87,0.1]
x7

, [0.87,0.1]
x8

, [0.95,0.05]
x9

}
.

Through the above analysis, the students’ interviews prediction can be obtained. x4, x2 and
x1 students are better than others. From this example, the model can help us to analyze the
same situation though two kinds of dominance relations. Therefore, this example can be analyzed
more comprehensively

4. Multi-Granulation GRIFS Models Based on Dominance Relation

In this section, we give the multi-granulation RIFS conception, and then propose optimistic and
pessimistic multi-granulation GRIFS models based on type-I dominance relation and type-II dominance
relation, respectively. These four models are constructed by multiple granularities GRIFS models based
on type-I and type-II dominance relation. Finally, we discuss some properties of these models.
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Definition 9 ([39]). Let IS =< U, A, V, f > be an information system, A1, A2, · · · , Am ⊆ A, and RAi is an
equivalence relation of x in terms of attribute set A. [x]Ai

is the equivalence class of RAi , ∀B ⊆ U, B is IFS.
Then the optimistic multi-granulation lower and upper approximations of Ai can be defined as follows:

m
∑

i=1
RO

Ai
(B) = {< x, μ m

∑
i=1

RO
Ai
(B)

(x), ν m
∑

i=1
RO

Ai
(B)

(x) > |x ∈ U},

m
∑

i=1
RO

Ai
(B) = {< x, μ m

∑
i=1

RO
Ai
(B)

(x), ν m
∑

i=1
RO

Ai
(B)

(x) > |x ∈ U},

μ m
∑

i=1
RO

Ai
(B)

(x) =
m∨

i=1
inf

y∈[x]Ai

μB(y), ν m
∑

i=1
RO

Ai
(B)

(x) =
m∧

i=1
sup

y∈[x]Ai

νB(y),

μ m
∑

i=1
RO

Ai
(B)

(x) =
m∧

i=1
sup

y∈[x]Ai

μB(y), ν m
∑

i=1
RO

Ai
(B)

(x) =
m∨

i=1
inf

y∈[x]Ai

νB(y).

where [x]Ai
is the equivalence class of x in terms of the equivalence relation Ai. [x]A1

, [x]A2
, · · · , [x]Am

are m
equivalence classes, and ∨ is a disjunction operation.

Definition 10 ([39]). Let IS =< U, A, V, f > be an information system, A1, A2, · · · , Am ⊆ A, and RAi is
an equivalence relation of x in terms of attribute set A. [x]Ai

is the equivalence class of RAi , ∀B ⊆ U, B is IFS.
Then the pessimistic multi-granulation lower and upper approximations of Ai can be easily obtained by:

m
∑

i=1
Rp

Ai
(B) = {< x, μ m

∑
i=1

Rp
Ai
(B)

(x), ν m
∑

i=1
Rp

Ai
(B)

(x) > |x ∈ U},

m
∑

i=1
Rp

Ai
(B) = {< x, μ m

∑
i=1

Rp
Ai
(B)

(x), ν m
∑

i=1
Rp

Ai
(B)

(x) > |x ∈ U},

μ m
∑

i=1
RP

Ai
(B)

(x) =
m∧

i=1
inf

y∈[x]Ai

μB(y), ν m
∑

i=1
RP

Ai
(B)

(x) =
m∨

i=1
sup

y∈[x]Ai

νB(y),

μ m
∑

i=1
RP

Ai
(B)

(x) =
m∨

i=1
sup

y∈[x]Ai

μB(y), ν m
∑

i=1
RP

Ai
(B)

(x) =
m∧

i=1
inf

y∈[x]Ai

νB(y).

where [x]Ai
is the equivalence class of x in terms of the equivalence relation Ai. [x]A1

, [x]A2
, · · · , [x]Am

are m
equivalence classes, and ∧ is a conjunction operation.

4.1. GRIFS Model Based on Type-I Dominance Relation

Definition 11. Let IS≥I
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2, · · · ,

Am ⊆ A. (R≥a )i is a dominance relation of x in terms of attribute Ai, a ∈ Ai, where ([x]≥a )i is the dominance
class of (R≥a )i. Suppose X is GRS of (R≥a )i and B is IFS on U. IFS B with respect to attribute a satisfies
dominance relation ((R′)≥a )i. Therefore, the lower and upper approximations of B with respect to the graded k
are given as follows:

When k ≥ 1, we can get,

m
∑

i=1
RO

Ai

≥I

(k)

(B) = {< x, μ
m
∑

i=1
RO

Ai

≥I

(k)

(B)
(x), ν

m
∑

i=1
RO

Ai

≥I

(k)

(B)
(x) > |x ∈ U},

m
∑

i=1
RO

Ai

≥I

(k)
(B) = {< x, μ

m
∑

i=1
RO

Ai

≥I

(k)
(B)

(x), ν
m
∑

i=1
RO

Ai

≥I

(k)
(B)

(x) > |x ∈ U},

μ′Bi
(y) = |R≥k (X)∩R≥k (X)|

|U| , ν′Bi
(y) = |¬(R≥k (X)∪R≥k (X))|

|U| .
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We can get GRS in A1, A2, · · · , Am, then there will be μ′B1
(y), μ′B2

(y), μ′B3
(y), · · · , μ′Bm

(y) and
ν′B1

(y), ν′B2
(y), ν′B3

(y), · · · , ν′Bm
(y). Subsequently, we can obtain,

μ
m
∑

i=1
RO

Ai

≥I

(k)

(B)
(x) =

m∨
i=1

inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(μB(y) ∧ μ′Bi
(y)), ν

m
∑

i=1
RO

Ai

≥I

(k)

(B)
(x) =

m∧
i=1

sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(νB(y) ∨ ν′Bi
(y)),

μ
m
∑

i=1
RO

Ai

≥I

(k)
(B)

(x) =
m∧

i=1
sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(μB(y) ∨ μ′Bi
(y)), ν

m
∑

i=1
RO

Ai

≥I

(k)
(B)

(x) =
m∨

i=1
inf

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(νB(y) ∧ ν′Bi
(y)).

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.

When
m
∑

i=1
RO

Ai

≥I

(k)

(B) 	= m
∑

i=1
RO

Ai

≥I

(k)
(B), B is an optimistic multi-granulation GRIFS model based on type-I

dominance relation.
When k = 0, μ′Bi

(y) and ν′Bi
(y) are calculated through the classical rough set. However, under these

circumstances the model is still valid and we call this model an optimistic multi-granulation RIFS based on
type-I dominance relation.

Definition 12. Let IS≥I
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2, · · · ,

Am ⊆ A. (R≥a )i is a dominance relation of x in terms of attribute Ai, where ([x]≥a )i is the dominance class of
(R≥a )i. Suppose X is GRS of (R≥a )i and B is IFS on U. IFS B about attribute a satisfies dominance relation
((R′)≥a )i, a ∈ Ai. Then the lower and upper approximations of B with respect to the graded k are given as
follows:

When k ≥ 1, we can get,

m
∑

i=1
Rp

Ai

≥I

(k)

(B) = {< x, μ
m
∑

i=1
Rp

Ai

≥I

(k)

(B)
(x), ν

m
∑

i=1
Rp

Ai

≥I

(k)

(B)
(x) > |x ∈ U},

m
∑

i=1
Rp

Ai

≥I

(k)
(B) = {< x, μ

m
∑

i=1
Rp

Ai

≥I

(k)
(B)

(x), ν
m
∑

i=1
Rp

Ai

≥I

(k)
(B)

(x) > |x ∈ U},

μ′Bi
(y) =

|R≥k (X) ∩ R≥k (X)|
|U| , ν′Bi

(y) =
|¬(R≥k (X) ∪ R≥k (X))|

|U| .

We can obtain GRS in A1, A2, · · · , Am, then there will be μ′B1
(y), μ′B2

(y), μ′B3
(y), · · · , μ′Bm

(y) and
ν′B1

(y), ν′B2
(y), ν′B3

(y), · · · , ν′Bm
(y). Subsequently, we can obtain,

μ
m
∑

i=1
Rp

Ai

≥I

(k)

(B)
(x) =

m∧
i=1

inf
y∈(

j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(μB(y) ∧ μ′Bi
(y)), ν

m
∑

i=1
Rp

Ai

≥I

(k)

(B)
(x) =

m∨
i=1

sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(νB(y) ∨ ν′Bi
(y)),

μ
m
∑

i=1
Rp

Ai

≥I

(k)
(B)

(x) =
m∨

i=1
sup

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(μB(y) ∨ μ′Bi
(y)), ν

m
∑

i=1
Rp

Ai

≥I

(k)
(B)

(x) =
m∧

i=1
inf

y∈(
j
∧

s=1
(([x]≥a )s∧[x]≥

′
a ))

i

(νB(y) ∧ ν′Bi
(y)).

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.

When
m
∑

i=1
Rp

Ai

≥I

(k)

(B) 	= m
∑

i=1
Rp

Ai

≥I

(k)
(B), B is a pessimistic multi-granulation GRIFS model based on type-I

dominance relation.
When k = 0, μ′Bi

(y) and ν′Bi
(y) are calculated through the classical rough set. However, under these

circumstances the model is still valid and we call this model a pessimistic multi-granulation RIFS based on
type-I dominance relation.
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Note that, (
j∧

s=1
(([x]≥a )s ∧ [x]≥

′
a ))

i
in multi-granulation GRIFS models based on type-I dominance relation.

If x have j dominance classes [x]≥a of dominance relation R≥a on GRS, we perform a conjunction operation ∧ of j
dominance classes [x]≥a and [x]≥

′
a , respectively.

Note that multi-granulation GRIFS models based on type-I dominance relation are formed by combining
multiple granularities GRIFS models based on type-I dominance relation.

According to Definitions 11 and 12, the following theorem can be obtained.

Theorem 3. Let IS≥I
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2, · · · ,

Am ⊆ A, and B be IFS on U. Then the optimistic and pessimistic multi-granulation GRIFS models based on
type-I dominance relation have the following properties:

m

∑
i=1

RO
Ai

≥I

(k)

(B) =
m∪

i=1
RAi
≥I

(k)
(B),

m

∑
i=1

RO
Ai

≥I

(k)

(B) =
m∩

i=1
RAi

≥I

(k)(B).

m

∑
i=1

Rp
Ai

≥I

(k)

(B) =
m∩

i=1
RAi
≥I

(k)
(B),

m

∑
i=1

Rp
Ai

≥I

(k)

(B) =
m∪

i=1
RAi

≥I

(k)(B).

Proof. One can derive them from Definitions 7, 11, and 12. �

4.2. GRIFS Model Based on Type-II Dominance Relation

Definition 13. Let IS≥Π
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2,

· · · , Am ⊆ A, and U be the universe of discourse. (R≥a )i is a dominance relation of x in terms of attribute
Ai, a ∈ Ai, where ([x]≥a )i is the dominance class of (R≥a )i. Suppose X is GRS of (R≥a )i and B is IFS on U.
IFS B about attribute a satisfies dominance relation ((R′)≥a )i. So the lower and upper approximations of B with
respect to the graded k are given as follows:

When k ≥ 1, we can get,

m
∑

i=1
RO

Ai

≥Π

(k)

(B) = {< x, μ
m
∑

i=1
RO

Ai

≥Π

(k)

(B)
(x), ν

m
∑

i=1
RO

Ai

≥Π

(k)

(B)
(x) > |x ∈ U},

m
∑

i=1
RO

Ai

≥Π

(k)
(B) = {< x, μ

m
∑

i=1
RO

Ai

≥Π

(k)
(B)

(x), ν
m
∑

i=1
RO

Ai

≥Π

(k)
(B)

(x) > |x ∈ U},

μ′Bi
(y) = |R≥k (X)∩R≥k (X)|

|U| , ν′Bi
(y) = |¬(R≥k (X)∪R≥k (X))|

|U| .

We can obtain GRS in A1, A2, · · · , Am, then there will be μ′B1
(y), μ′B2

(y), μ′B3
(y), · · · , μ′Bm

(y) and
ν′B1

(y), ν′B2
(y), ν′B3

(y), · · · , ν′Bm
(y). Subsequently, we can obtain,

μ
m
∑

i=1
RO

Ai

≥Π

(k)

(B)
(x) =

m∨
i=1

inf
y∈(

j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(μB(y) ∧ μ′Bi
(y)), ν

m
∑

i=1
RO

Ai

≥Π

(k)

(B)
(x) =

m∧
i=1

sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(νB(y) ∨ ν′Bi
(y)),

μ
m
∑

i=1
RO

Ai

≥Π

(k)
(B)

(x) =
m∧

i=1
sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(μB(y) ∨ μ′Bi
(y)), ν

m
∑

i=1
RO

Ai

≥Π

(k)
(B)

(x) =
m∨

i=1
inf

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(νB(y) ∧ ν′Bi
(y)).

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.

347



Symmetry 2018, 10, 446

When
m
∑

i=1
RO

Ai

≥Π

(k)

(B) 	= m
∑

i=1
RO

Ai

≥Π

(k)
(B), B is an optimistic multi-granulation GRIFS model based on type-II

dominance relation.
When k = 0, μ′Bi

(y) and ν′Bi
(y) are calculated from the classical rough set. Under these circumstances,

the model is still valid.

Definition 14. Let IS≥Π
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2, · · · ,

Am ⊆ A. (R≥a )i is a dominance relation of x in terms of attribute Ai, a ∈ Ai, where ([x]≥a )i is the dominance
class of (R≥a )i. Suppose X is GRS of (R≥a )i on U and B is IFS on U. IFS B with respect to attribute a satisfies
dominance relation ((R′)≥a )i. Then lower and upper approximations of B with respect to the graded k are as
follows:

When k ≥ 1, we can get,

m

∑
i=1

Rp
Ai

≥Π

(k)

(B) = {< x, μ
m
∑

i=1
Rp

Ai

≥Π

(k)

(B)
(x), ν

m
∑

i=1
Rp

Ai

≥Π

(k)

(B)
(x) > |x ∈ U},

m

∑
i=1

Rp
Ai

≥Π

(k)

(B) = {< x, μ
m
∑

i=1
Rp

Ai

≥Π

(k)
(B)

(x), ν
m
∑

i=1
Rp

Ai

≥Π

(k)
(B)

(x) > |x ∈ U},

μ′Bi
(y) =

|R≥k (X) ∩ R≥k (X)|
|U| , ν′Bi

(y) =
|¬(R≥k (X) ∪ R≥k (X))|

|U| .

We can obtain GRS in A1, A2, · · · , Am, then there will be μ′B1
(y), μ′B2

(y), μ′B3
(y), · · · , μ′Bm

(y) and
ν′B1

(y), ν′B2
(y), ν′B3

(y), · · · , ν′Bm
(y). Subsequently, we can obtain,

μ
m
∑

i=1
Rp

Ai

≥Π

(k)

(B)
(x) =

m∧
i=1

inf
y∈(

j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(μB(y) ∧ μ′Bi
(y)), ν

m
∑

i=1
Rp

Ai

≥Π

(k)

(B)
(x) =

m∨
i=1

sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(νB(y) ∨ ν′Bi
(y)),

μ
m
∑

i=1
Rp

Ai

≥Π

(k)
(B)

(x) =
m∨

i=1
sup

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(μB(y) ∨ μ′Bi
(y)), ν

m
∑

i=1
Rp

Ai

≥Π

(k)
(B)

(x) =
m∧

i=1
inf

y∈(
j
∨

s=1
(([x]≥a )s∨[x]≥

′
a ))

i

(νB(y) ∧ ν′Bi
(y)).

Obviously, 0 ≤ μ′B(y) ≤ 1, 0 ≤ ν′B(y) ≤ 1, j = 1, 2, · · · , n.

When
m
∑

i=1
Rp

Ai

≥Π

(k)

(B) 	= m
∑

i=1
Rp

Ai

≥Π

(k)
(B), B is a pessimistic multi-granulation GRIFS model based on type-II

dominance relation.
When k = 0, μ′Bi

(y) and ν′Bi
(y) are calculated from the classical rough set. Under these circumstances,

the model is still valid.

Note that, in (
j∨

s=1
(([x]≥a )s ∨ [x]≥

′
a ))

i
, if x have j dominance classes [x]≥a of dominance relation R≥a on

GRS, we perform a disjunction operation ∨ of j dominance classes [x]≥a and [x]≥
′

a , respectively.
Note that multi-granulation GRIFS models based on type-II dominance relation are formed by combining

multiple granularities GRIFS models based on type-II dominance relation.

According to Definitions 13 and 14, the following theorem can be obtained.
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Theorem 4. Let IS≥Π
=< U, A, V, f > be an intuitionistic fuzzy ordered information system, A1, A2, · · · ,

Am ⊆ A, and IFS B ⊆ U. Then optimistic and pessimistic multi-granulation GRIFS models based on type-II
dominance relation have the following properties:

m

∑
i=1

RO
Ai

≥Π

(k)

(B) =
m∪

i=1
RAi
≥Π

(k)
(B),

m

∑
i=1

RO
Ai

≥Π

(k)

(B) =
m∩

i=1
RAi

≥Π

(k) (B),

m

∑
i=1

Rp
Ai

≥Π

(k)

(B) =
m∩

i=1
RAi
≥Π

(k)
(B),

m

∑
i=1

Rp
Ai

≥Π

(k)

(B) =
m∪

i=1
RAi

≥Π

(k) (B).

Proof. One can derive them from Definitions 7, 13 and 14. �

5. Algorithm and Example Analysis

5.1. Algorithm

Through Examples 1–3, we can conclude that the GRIFS model is effective, and now we use
multi-granulation GRIFS models based on dominance relation to predict results under the same
situations again as Algorithm 1.

Algorithm 1. Computing multi-granulation GRIFS models based on dominance relation.

Input: IS =< U, A, V, f >, X ⊆ U, IFS B ⊆ U, k is a natural number
Output: Multi-granulation GRIFS models based on dominance relation
1:if (U 	= φ and A 	= φ)
2: if can build up GRS
3: if (k ≥ 1 && i = 1 to m && a ∈ Ai)
4: compute μ′B(y) and ν′B(y), [x]

≥
a and [x]≥

′
a , for each Ai ⊆ A;

5: then compute ∧ and ∨ of μB(y) and μ′Bi
(y), ν′Bi

(y) and νB(y) and compute ∧ and ∨ of [x]≥a and

[x]≥
′

a ;

6: if (x ∈ U && ∀y ∈ (
j∗

s=1
(([x]≥a )s ∗ [x]≥

′
a ))

i
)

7: for (i = 1 to m && 1 ≤ j ≤ n)
8: compute μ m

∑
i=1

RΔ
Ai

≥•

(k)

(B)
(x), ν m

∑
i=1

RΔ
Ai

≥•

(k)

(B)
(x), μ

m
∑

i=1
RΔ

Ai

≥•

(k)
(B)

(x), ν
m
∑

i=1
RΔ

Ai

≥•

(k)
(B)

(x);

9: end

10: compute
m
∑

i=1
RΔ

Ai

≥•

(k)

(B),
m
∑

i=1
RΔ

Ai

≥•

(k)
(B).

11: end

12: end

13: end

14:else

return NULL
15:end

Note that Δ represents optimistic and pessimistic and ∗ means ∧ or ∨ operation, and in

(
j∗

s=1
(([x]≥a )s ∗ [x]≥

′
a ))

i
, (

j∗
s=1

(([x]≥a )s ∗ [x]≥
′

a ))
i

represent (
j∧

s=1
(([x]≥a )s ∧ [x]≥

′
a ))

i
or (

j∨
s=1

(([x]≥a )s ∨ [x]≥
′

a ))
i

in this algorithm. • represents I or II.
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Through this algorithm, we next illustrate these models by example again.

5.2. An Illustrative Example

We use this example to illustrate Algorithm 1 of multi-granulation GRIFS models based on type-I
and type-II dominance relation. According to Algorithm 1, we will not discuss this case where k is 0.
There are 9 patients. Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be the domain. Next, we analyzed these 9
patients from these symptoms of fever and salivation. The set of condition attributes are A = {fever,
salivation, streaming nose}. For fever, we can get U/R≥ = {{x1, x2, x4}, {x3, x8}, {x7}, {x4, x5, x6, x9}},
for salivation there is U/R≥ = {{x1}, {x1, x4}, {x3, x5, x6}, {x5, x6}, {x6, x9}, {x2, x7, x8}}, and for
streaming nose U/R≥ = {{x1}, {x1, x2, x4}, {x3, x5, x6}, {x4, x6, x7, x9}, {x2, x7, x8}}. According to the
cold disease, these patients have the have the following IFS

B =

{
[0.9, 0]

x1
,
[0.8, 0.1]

x2
,
[0.65, 0.3]

x3
,
[0.85, 0.1]

x4
,
[0.95, 0.05]

x5
,
[0.7, 0.3]

x6
,
[0.5, 0.2]

x7
,
[0.87, 0.1]

x8
,
[0.75, 0.2]

x9

}
.

Suppose X = {x1, x4, x5, x6, x9}, k = 1. Then we can obtain multi-granulation GRIFS models
based on type-I and type-II dominance relation through Definitions 11–14. Results are as follows.

For fever, according to U/R≥, we can get,

R≥1 (X) = {x1, x2, x4, x5, x6, x7, x9}, R≥1 (X) = {x1, x2, x4, x5, x6, x7, x9},
μ′B1

(y) = |R≥1 (X)∩R≥1 (X)|
|U| = 7

9 ≈ 0.78, ν′B1
(y) = |¬(R≥1 (X)∪R≥1 (X))|

|U| = 2
9 ≈ 0.22.

Similarly, for salivation and streaming nose, the results are as follows:

μ′B2
(y) =

6
9
≈ 0.67, ν′B2

(y) =
3
9
≈ 0.33. μ′B2

(y) =
8
9
≈ 0.89, ν′B2

(y) =
1
9
≈ 0.11.

According to Definitions 11–14, we can obtain multi-granulation GRIFS models based on type-I
dominance relation and type-II dominance relation.

For μ′B1
(y) and ν′B1

(y), μ′B2
(y) and ν′B2

(y) and μ′B3
(y) and ν′B3

(y), the results are the followings as
Table 3.

Table 3. The conjunction and disjunction operation of μB(y) and μ′B1
(y).

x x1 x2 x3 x4 x5 x6 x7 x8 x9

μB(y) 0.9 0.8 0.65 0.85 0.95 0.7 0.5 0.87 0.75
μB(y) 0 0.1 0.3 0.1 0.05 0.3 0.2 0.1 0.2

μB(y) ∧ μ′B1
(y) 0.78 0.78 0.65 0.78 0.78 0.7 0.5 0.72 0.75

νB(y) ∧ ν′B1
(y) 0.22 0.22 0.3 0.22 0.22 0.3 0.22 0.22 0.22

μB(y) ∨ μ′B1
(y) 0.9 0.8 0.78 0.85 0.95 0.78 0.78 0.78 0.78

νB(y) ∧ ν′B1
(y) 0 0.1 0.22 0.1 0.05 0.22 0.2 0.1 0.2

μB(y) ∧ μ′B2
(y) 0.67 0.67 0.65 0.67 0.67 0.67 0.5 0.6 0.67

νB(y) ∨ ν′B2
(y) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

μB(y) ∨ μ′B2
(y) 0.89 0.8 0.67 0.85 0.95 0.7 0.67 0.67 0.75

νB(y) ∧ ν′B2
(y) 0.11 0.1 0.3 0.1 0.05 0.3 0.2 0.1 0.2

μB(y) ∧ μ′B3
(y) 0.9 0.8 0.65 0.85 0.89 0.7 0.5 0.87 0.75

νB(y) ∨ ν′B3
(y) 0 0.11 0.3 0.11 0.11 0.3 0.2 0.11 0.2

μB(y) ∨ μ′B3
(y) 0.9 0.89 0.89 0.89 0.95 0.89 0.89 0.89 0.89

νB(y) ∧ ν′B3
(y) 0 0.1 0.11 0.1 0.05 0.11 0.11 0.1 0.11

Then, according to Definition 6, for B, we can get [x]≥
′

a . Then, the conjunction operation of [x]≥a
and [x]≥

′
a can be computed as Table 1.
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For fever, we can get GRIFS based on type-I dominance relation as follows:

R≥
I

1 (B) =
{

[0.78,0.22]
x1

, [0.78,0.22]
x2

, [0.65,0.3]
x3

, [0.78,0.22]
x4

, [0.78,0.22]
x5

, [0.7,0.3]
x6

, [0.5,0.22]
x7

, [0.78,0.22]
x8

, [0.75,0.22]
x9

}
,

R≥
I

1 (B) =
{

[0.9,0]
x1

, [0.85,0.1]
x2

, [0.78,0.1]
x3

, [0.85,0.1]
x4

, [0.95,0.05]
x5

, [0.87,0.1]
x6

, [0.78,0.1]
x7

, [0.87,0.1]
x8

, [0.78,0.2]
x9

}
.

For streaming nose, similar to Table 1, we can obtain [x]≥a ∧ [x]≥
′

a as Table 4.

Table 4. The conjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∧[x]≥
′

a

x1 {x1}, {x1, x2, x4} {x1} {x1}
x2 {x1, x2, x4}, {x2, x7, x8} {x2, x4, x5, x8} {x2}
x3 {x3, x5, x6} {x3, x4, x5, x6, x8, x9} {x3, x5, x6}
x4 {x1, x2, x4}, {x4, x6, x7, x9} {x4, x5} {x4}
x5 {x3, x5, x6} {x5} {x5}
x6 {x3, x5, x6}, {x4, x6, x7, x9} {x6, x8, x9} {x6}
x7 {x2, x7, x8}, {x4, x6, x7, x9} {x7, x8, x9} {x7}
x8 {x2, x7, x8} {x8} {x8}
x9 {x4, x6, x7, x9} {x9} {x9}

For salivation, similar to Table 1, we can obtain [x]≥a ∧ [x]≥
′

a as Table 5.

Table 5. The conjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∧[x]≥
′

a

x1 {x1, x2} {x1} {x1}
x2 {x1, x2}, {x2, x4} {x2, x4, x5, x8} {x2}
x3 {x3, x8} {x3, x4, x5, x6, x8, x9} {x3, x8}
x4 {x2, x4} {x4, x5} {x4}
x5 {x5, x6} {x5} {x5}
x6 {x5, x6} {x6, x8, x9} {x6}
x7 {x7, x9}, {x7, x8, x9} {x7, x8, x9} {x7, x9}
x8 {x3, x8}, {x7, x8, x9} {x8} {x8}
x9 {x7, x9}, {x7, x8, x9} {x9} {x9}

For streaming nose, we can get GRIFS based on type-I dominance relation as follows:

R≥
I

1 (B) =
{

[0.9,0.11]
x1

, [0.8,0.11]
x2

, [0.65,0.3]
x3

, [0.85,0.11]
x4

, [0.89,0.11]
x5

, [0.7,0.3]
x6

, [0.5,0.2]
x7

, [0.87,0.11]
x8

,
[0.75,0.2]

x9

}
,

R≥
I

1 (B) =
{

[0.9,0]
x1

, [0.89,0.1]
x2

, [0.95,0.05]
x3

, [0.89,0.1]
x4

, [0.95,0.05]
x5

, [0.89,0.11]
x6

, [0.89,0.11]
x7

, [0.89,0.1]
x8

,
[0.89,0.11]

x9

}
.

For salivation, we can get GRIFS based on type-I dominance relation as follows:

R≥
I

1 (B) =
{

[0.67,0.33]
x1

, [0.67,0.33]
x2

, [0.65,0.33]
x3

, [0.67,0.33]
x4

, [0.67,0.33]
x5

, [0.67,0.33]
x6

, [0.67,0.33]
x7

, [0.67,0.33]
x8

,
[0.67,0.33]

x9

}
,

R≥
I

1 (B) =
{

[0.9,0]
x1

, [0.8,0.1]
x2

, [0.87,0.1]
x3

, [0.85,0.1]
x4

, [0.95,0.05]
x5

, [0.7,0.3]
x6

, [0.75,0.2]
x7

, [0.87,0.1]
x8

, [0.75,0.2]
x9

}
.
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For [x2]
≥
a = {x1, x2}, [x2]

≥
a = {x2, x4} and [x2]

≥′
a = {x2, x4, x5, x8}, based on Definitions 11–14,

we should perform the conjunction operation of them, respectively.

([x1]
≥
a ∧ [x1]

≥′
a ) ∧ ([x1]

≥
a ∧ [x1]

≥′
a ) = ({x1} ∧ {x1, x1, x4}) ∧ ({x1, x2} ∧ {x1, x2, x4}) = {x1} ∧ {x1, x2} = {x1}.

Similarly, for x2, x4, x6 and x7, we can get the results as Tables 4 and 5.
Therefore, according to the Definitions 11 and 12 and the above calculations, we can get

multi-granulation GRIFS models based on a type-I dominance relation as follows:

3
∑

i=1
RO

Ai

≥I

1

(B) =
{

[0.89,0.11]
x1

, [0.8,0.11]
x2

, [0.65,0.3]
x3

, [0.85,0.11]
x4

, [0.89,0.11]
x5

, [0.7,0.3]
x6

, [0.67,0.2]
x7

, [0.87,0.11]
x8

, [0.75,0.2]
x9

}
,

3
∑

i=1
RO

Ai

≥I

1
(B) =

{
[0.9,0]

x1
, [0.8,0.1]

x2
, [0.78,0.1]

x3
, [0.85,0.1]

x4
, [0.95,0.05]

x5
, [0.7,0.3]

x6
, [0.75,0.2]

x7
, [0.87,0.1]

x8
, [0.75,0.2]

x9

}
.

3
∑

i=1
RP

Ai

≥I

1

(B) =
{

[0.67,0.33]
x1

, [0.67,0.33]
x2

, [0.65,0.33]
x3

, [0.67,0.33]
x4

, [0.67,0.33]
x5

, [0.67,0.33]
x6

, [0.5,0.33]
x7

, [0.67,0.33]
x8

,

[0.67,0.33]
x9

}
,

3
∑

i=1
RP

Ai

≥I

1
(B) =

{
[0.89,0]

x1
, [0.85,0.1]

x2
, [0.95,0.05]

x3
, [0.85,0.1]

x4
, [0.95,0.05]

x5
, [0.87,0.05]

x6
, [0.78,0.1]

x7
, [0.87,0.1]

x8
, [0.78,0.1]

x9

}
.

From the above results, Figures 1 and 2 can be drawn as follows:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 u(GRIFS type-I)fever

v(GRIFS type-I) fever

u(optimisitc multi-granulation GRIFS type-I)

v(optimisitc multi-graulation GRIFS type-I)

u(pessimistic multi-granulation GRIFS type-I)

v(pessimistic multi-granulation GRIFS type-I)

u(GRIFS type-I) salivation

v(GRIFS type-I) salivation

u(GRIFS type-I) streaming nose

v(GRIFS type-I) streaming nose

Figure 1. The lower approximation of GRIFS based on type-I dominance relation, as well as optimistic
and pessimistic multi-granulation GRIFS based on type-I dominance relation.

For Figure 1, we can obtain,

μ(y)OI1 ≥ μ(y)GIn1Θ μ(y)GI f 1Θ(y)GIs1 ≥ μ(y)PI1,ν(y)GIs1 ≥ ν(y)PI1 ≥ ν(y)OI1 = ν(y)GI f 1 ≥ ν(y)GIn1;
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Note:

Θ represents ≤ or ≥;
μ(y)GI f 1 and ν(y)GI f 1 represent GRIFS type-I dominance relation (fever);
μ(y)GIs1 and ν(y)GIs1 represent GRIFS type-I dominance relation (salivation);
μ(y)GIn1 and ν(y)GIn1 represent GRIFS type-I dominance relation (streaming nose);
μ(y)OI1 and ν(y)OI1 represent optimistic multi-granulation GRIFS type-I dominance relation;
μ(y)PI1 and ν(y)PI1 represent pessimistic multi-granulation GRIFS type-I dominance relation;

From Figure 1, we can get that x1, x2, x4, x5 and x8 patients have the disease, and x7 patients do
not have the disease.

 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 u(GRIFS type-I)fever

v(GRIFS type-I) fever

u(optimisitc multi-granulation GRIFS type-I)

v(optimisitc multi-graulation GRIFS type-I)

u(pessimistic multi-granulation GRIFS type-I)

v(pessimistic multi-granulation GRIFS type-I)

u(GRIFS type-I) salivation

v(GRIFS type-I) salivation

u(GRIFS type-I) streaming nose

v(GRIFS type-I) streaming nose

Figure 2. The upper approximation of GRIFS based on type-I dominance relation, as well as optimistic
and pessimistic multi-granulation GRIFS based on type-I dominance relation.

Then, from Figure 2, we can obtain,

μ(y)OI2 = μ(y)GIn2 ≥ μ(y)PI2Θ μ(y)GIs2Θ μ(y)GI f 2,ν(y)GIs2 ≥ ν(y)OI2Θ ν(y)PI2Θ ν(y)GI f 2 ≥ ν(y)GIn2;

Note:

Θ represents ≤ or ≥;
μ(y)GI f 2 and ν(y)GI f 2 represent GRIFS type-I dominance relation (fever);
μ(y)GIs2 and ν(y)GIs2 represent GRIFS type-I dominance relation (salivation);
μ(y)GIn2 and ν(y)GIn2 represent GRIFS type-I dominance relation (streaming nose);
μ(y)OI2 and ν(y)OI2 represent optimistic multi-granulation GRIFS type-I dominance relation;
μ(y)PI2 and ν(y)PI2 represent pessimistic multi-granulation GRIFS type-I dominance relation;

From Figure 2, we can get that x1, x2, x3, x4, x5, x6, x8, and x9 patients have the disease, and x6

patients do not have the disease.
For multi-granulation GRIFS models based on type-II dominance relation, the calculations for

this model are similar to multi-granulation GRIFS models based on type-I dominance relation.
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Firstly, for streaming nose, we can compute the disjunction operation of [x]≥a and [x]≥
′

a , and the
results are as Table 6.

Table 6. The disjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∨[x]≥
′

a

x1 {x1}, {x1, x2, x4} {x1} {x1, x2, x4}
x2 {x1, x2, x4}, {x2, x7, x8} {x2, x4, x5, x8} {x1, x2, x4, x5, x7, x8}
x3 {x3, x5, x6} {x3, x4, x5, x6, x8, x9} {x3, x4, x5, x6, x8, x9}
x4 {x1, x2, x4}, {x4, x6, x7, x9} {x4, x5} {x1, x2, x4, x5, x6, x7, x9}
x5 {x3, x5, x6} {x5} {x3, x5, x6}
x6 {x3, x5, x6}, {x4, x6, x7, x9} {x6, x8, x9} {x3, x4, x5, x6, x7, x8, x9}
x7 {x2, x7, x8}, {x4, x6, x7, x9} {x7, x8, x9} {x2, x4, x6, x7, x8, x9}
x8 {x2, x7, x8} {x8} {x2, x7, x8}
x9 {x4, x6, x7, x9} {x9} {x4, x6, x7, x9}

Next, for salivation, we can compute the disjunction operation of [x]≥a and [x]≥
′

a , and the results
are as Table 7.

Table 7. The disjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∨[x]≥
′

a

x1 {x1, x2} {x1} {x1, x2}
x2 {x1, x2}, {x2, x4} {x2, x4, x5, x8} {x1, x2, x4, x5, x8}
x3 {x3, x8} {x3, x4, x5, x6, x8, x9} {x3, x4, x5, x6, x8, x9}
x4 {x2, x4} {x4, x5} {x2, x4, x5}
x5 {x5, x6} {x5} {x5, x6}
x6 {x5, x6} {x6, x8, x9} {x5, x6, x8, x9}
x7 {x7, x9}, {x7, x8, x9} {x7, x8, x9} {x7, x8, x9}
x8 {x3, x8}, {x7, x8, x9} {x8} {x3, x7, x8, x9}
x9 {x7, x9}, {x7, x8, x9} {x9} {x7, x8, x9}

Then, for fever, we compute the disjunction operation of [x]≥a and [x]≥
′

a , and these results are
shown as Table 8.

Table 8. The disjunction operation of [x]≥a and [x]≥
′

a .

x [x]≥a [x]≥
′

a [x]≥a ∨[x]≥
′

a

x1 {x1, x2, x4} {x1} {x1, x2, x4}
x2 {x1, x2, x4} {x2, x4, x5, x8} {x1, x2, x4, x5, x8}
x3 {x3, x8} {x3, x4, x5, x6, x8, x9} {x3, x4, x5, x6, x8, x9}
x4 {x1, x2, x4}, {x4, x5, x6, x9} {x4, x5} {x1, x2, x4, x5, x6, x9}
x5 {x4, x5, x6, x9} {x5} {x4, x5, x6, x9}
x6 {x4, x5, x6, x9} {x6, x8, x9} {x4, x5, x6, x8, x9}
x7 {x7} {x7, x8, x9} {x7, x8, x9}
x8 {x3, x8} {x8} {x3, x8}
x9 {x4, x5, x6, x9} {x9} {x4, x5, x6, x9}

For streaming nose, we can get GRIFS based on type-II dominance relation,

R≥
Π

1 (B) =
{

[0.8,0.11]
x1

, [0.5,0.2]
x2

, [0.65,0.3]
x3

, [0.5,0.3]
x4

, [0.65,0.3]
x5

, [0.5,0.3]
x6

, [0.5,0.3]
x7

, [0.5,0.2]
x8

, [0.5,0.3]
x9

}
,

R≥
Π

1 (B) =
{

[0.9,0]
x1

, [0.95,0]
x2

, [0.95,0.05]
x3

, [0.95,0]
x4

, [0.95,0.05]
x5

, [0.95,0.05]
x6

, [0.89,0.1]
x7

, [0.89,0.1]
x8

, [0.89,0.1]
x9

}
.
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For salivation, we can get GRIFS based on type-II dominance relation,

R≥
Π

1 (B) =
{

[0.67,0.33]
x1

, [0.67,0.33]
x2

, [0.65,0.33]
x3

, [0.67,0.33]
x4

, [0.67,0.33]
x5

, [0.67,0.33]
x6

, [0.5,0.33]
x7

, [0.5,0.33]
x8

,
[0.5,0.33]

x9

}
,

R≥
Π

1 (B) =
{

[0.9,0]
x1

, [0.95,0]
x2

, [0.95,0.05]
x3

, [0.95,0.05]
x4

, [0.95,0.05]
x5

, [0.95,0.05]
x6

, [0.87,0.1]
x7

, [0.87,0.1]
x8

, [0.87,0.1]
x9

}
.

For fever, GRIFS type-II dominance relation can be calculated as follows:

R≥
Π

1 (B) =
{

[0.78,0.22]
x1

, [0.78,0.22]
x2

, [0.65,0.3]
x3

, [0.7,0.22]
x4

, [0.7,0.22]
x5

, [0.7,0.3]
x6

, [0.5,0.22]
x7

, [0.65,0.3]
x8

, [0.7,0.3]
x9

}
,

R≥
Π

1 (B) =
{

[0.9,0]
x1

, [0.95,0]
x2

, [0.95,0.05]
x3

, [0.95,0]
x4

, [0.95,0.05]
x5

, [0.95,0.05]
x6

, [0.87,0.1]
x7

, [0.87,0.1]
x8

, [0.95,0.05]
x9

}
.

Based on Definitions 13 and 14, the condition of these patients based on multi-granulation GRIFS
type-II dominance relation can be obtained as follows:

3
∑

i=1
RO

Ai

≥Π

1

(B) =
{

[0.8,0.11]
x1

, [0.78,0.2]
x2

, [0.65,0.3]
x3

, [0.7,0.22]
x4

, [0.7,0.3]
x5

, [0.7,0.3]
x6

, [0.5,0.22]
x7

, [0.65,0.2]
x8

, [0.7,0.3]
x9

}
,

3
∑

i=1
RO

Ai

≥Π

1
(B) =

{
[0.9,0]

x1
, [0.95,0]

x2
, [0.95,0.05]

x3
, [0.95,0.05]

x4
, [0.95,0.05]

x5
, [0.95,0.05]

x6
, [0.87,0.1]

x7
, [0.87,0.1]

x8
, [0.87,0.1]

x9

}
.

3
∑

i=1
RP

Ai

≥Π

1

(B) =
{

[0.67,0.33]
x1

, [0.5,0.33]
x2

, [0.65,0.33]
x3

, [0.5,0.4]
x4

, [0.65,0.33]
x5

, [0.5,0.33]
x6

, [0.5,0.33]
x7

, [0.5,0.33]
x8

, [0.5,0.33]
x9

}
,

3
∑

i=1
RP

Ai

≥Π

1
(B) =

{
[0.9,0]

x1
, [0.95,0]

x2
, [0.95,0.05]

x3
, [0.95,0]

x4
, [0.95,0.05]

x5
, [0.95,0.05]

x6
, [0.89,0.1]

x7
, [0.89,0.1]

x8
, [0.95,0.05]

x9

}
.

Then, from Figure 3, we can obtain,

μ(y)OΠ3 ≥ μ(y)GΠ f 3Θ μ(y)GΠn3Θ μ(y)GΠs3 ≥ μ(y)PΠ3,ν(y)PΠ3 ≥ ν(y)GΠs3Θ ν(y)OΠ3Θ ν(y)GΠ f 3Θ ν(y)GΠn3;

Note:

Θ represents ≤ or ≥;
μ(y)GΠ f 3 and ν(y)GΠ f 3 represent GRIFS type-II dominance relation (fever);
μ(y)GΠs3 and ν(y)GΠs3 represent GRIFS type-II dominance relation (salivation);
μ(y)GΠn3 and ν(y)GΠn3 represent GRIFS type-II dominance relation (streaming nose);
μ(y)OΠ3 and ν(y)OΠ3 represent optimistic multi-granulation GRIFS type-II dominance relation;
μ(y)PΠ3 and ν(y)PΠ3 represent pessimistic multi-granulation GRIFS type-II dominance relation;

From Figure 3, we can see that x1, x2, x4 patients have the disease, and x3, x5, x6, x7, x8, x9 patients
do not have the disease.

Then, from Figure 4, we can obtain,

μ(y)OΠ4 ≥ μ(y)GΠn4Θ μ(y)GΠ f 4Θ μ(y)GΠs4 ≥ μ(y)PΠ4,ν(y)PΠ4Θ ν(y)GΠs4Θ ν(y)GΠ f 4Θ ν(y)GΠn4Θ ν(y)OΠ4;

Note:

Θ represents ≤ or ≥;
μ(y)GΠ f 4 and ν(y)GΠ f 4 represent GRIFS type-II dominance relation (fever);
μ(y)GΠs4 and ν(y)GΠs4 represent GRIFS type-II dominance relation (salivation);
μ(y)GΠn4 and ν(y)GΠn4 represent GRIFS type-II dominance relation (streaming nose);
μ(y)OΠ4 and ν(y)OΠ4 represent optimistic multi-granulation GRIFS type-II dominance relation;
μ(y)PΠ4 and ν(y)PΠ4 represent pessimistic multi-granulation GRIFS type-II dominance relation;

355



Symmetry 2018, 10, 446

From Figure 4, we can see that x1, x2, x3, x4, x5, x6, x7, x8 and x9 patients have the disease.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 u(GRIFS type- )fever

v(GRIFS type- ) fever

u(optimisitc multi-granulation GRIFS type- )

v(optimisitc multi-graulation GRIFS type- )

u(pessimistic multi-granulation GRIFS type- )

v(pessimistic multi-granulation GRIFS type- )

u(GRIFS type- ) salivation

v(GRIFS type- ) salivation

u(GRIFS type- ) streaming nose

v(GRIFS type- ) streaming nose

Figure 3. The lower approximation of GRIFS based on type-II dominance relation, as well as optimistic
and pessimistic multi-granulation GRIFS based on type-II dominance relation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 u(GRIFS type- )fever

v(GRIFS type- ) fever

u(optimisitc multi-granulation GRIFS type- )

v(optimisitc multi-graulation GRIFS type- )

u(pessimistic multi-granulation GRIFS type- )

v(pessimistic multi-granulation GRIFS type- )

u(GRIFS type- ) salivation

v(GRIFS type- ) salivation

u(GRIFS type- ) streaming nose

v(GRIFS type- ) streaming nose

Figure 4. The upper approximation of GRIFS based on type-II dominance relation, as well as optimistic
and pessimistic multi-granulation GRIFS based on type-II dominance relation.
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From Figures 1 and 2, x1, x2, x4 and x8 patients have the disease, x6 and x7 patient do not have the
disease. From Figures 3 and 4, x1, x2 and x4 patients have the disease, x3, x5, x6, x7, x8 and x9 patients
do not have the disease. Furthermore, this example proves the accuracy of Algorithm 1.

This example analyzes and discusses multi-granulation GRIFS models based on dominance
relation. From conjunction and disjunction operations of two kinds of dominance classes perspective,
we analyzed GRIFS models based on type-I dominance relation and type-II dominance relation and
also optimistic and pessimistic multi-granulation GRIFS models based on type-I dominance relation
and type-II dominance relation, respectively. Through the analysis of this example, the validity of
these multi-granulation GRIFS models based on type-I dominance relation and type-II dominance
relation models can be obtained.

6. Conclusions

These theories of GRS and RIFS are extensions of the classical rough set theory. In this paper,
we proposed a series of models on GRIFS based on dominance relation, which were based on the
combination of GRS, RIFS, and dominance relations. Moreover, these models of multi-granulation
GRIFS models based on dominance relation were established on GRIFS models based on dominance
relation using multiple dominance relations on the universe. The validity of these models was
demonstrated by giving examples. Compared with GRS based on dominance relation, GRIFS models
based on dominance relation can be more precise. Compared with GRIFS models based on dominance
relation, multi-granulation GRIFS models based on dominance relation can be more accurate. It can be
demonstrated using the algorithm, and our methods provide a way to combine GRS and RIFS. Our
next work is to study the combination of GRS and variable precision rough sets on the basis of our
proposed methods.
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Abstract: Rough sets provide a useful tool for data preprocessing during data mining. However,
many algorithms related to some problems in rough sets, such as attribute reduction, are greedy ones.
Matroids propose a good platform for greedy algorithms. Therefore, it is important to study the
combination between rough sets and matroids. In this paper, we investigate rough sets and matroids
through their operators, and provide a matroidal method for attribute reduction in information
systems. Firstly, we generalize four operators of rough sets to four operators of matroids through the
interior, closure, exterior and boundary axioms, respectively. Thus, there are four matroids induced
by these four operators of rough sets. Then, we find that these four matroids are the same one, which
implies the relationship about operators between rough sets and matroids. Secondly, a relationship
about operations between matroids and rough sets is presented according to the induced matroid.
Finally, the girth function of matroids is used to compute attribute reduction in information systems.

Keywords: rough set; matroid; operator; attribute reduction

1. Introduction

Rough set theory was proposed by Pawlak [1,2] in 1982 as a mathematical tool to deal with various
types of data in data mining. There are many practical problems have been solved by it, such as
rule extraction [3,4], attribute reduction [5–7], feature selection [8–10] and knowledge discovery [11].
In Pawlak’s rough sets, the relationships of objects are equivalence relations. However, it is well
known that this requirement is excessive in practice [12,13]. Hence, Pawlak’s rough sets have been
extended by relations [14,15], coverings [16–18] and neighborhoods [6,19]. They have been combined
with other theories including topology [20], lattice theory [21,22], graph theory [23,24] and fuzzy set
theory [25,26].

However, many optimization issues related to rough sets, including attribute reduction,
are NP-hard. Therefore, the algorithms to deal with them are often greedy ones [27]. Matroid
theory [28–30] is a generalization of graph and linear algebra theories. It has been used in information
coding [31] and cryptology [32]. Recently, the combination between rough sets and matroids has
attracted many interesting research. For example, Zhu and Wang [33] established a matroidal
structure through the upper approximation number and studied generalized rough sets with matroidal
approaches. Liu and Zhu [34] established a parametric matroid through the lower approximation
operator of rough sets. Li et al. [35,36] used matroidal approaches to investigate rough sets through
closure operators. Su and Zhu [37] presented three types of matroidal structures of covering-based
rough sets. Wang et al. [38] induced a matroid named 2-circuit matroid by equivalence relations, and
equivalently formulated attribute reduction with matroidal approaches. Wang and Zhu used matrix

Symmetry 2018, 10, 418; doi:10.3390/sym10090418 www.mdpi.com/journal/symmetry360
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approaches to study the 2-circuit matroid [39], and used contraction operation in matroids to study
some relationships between a subset and the upper approximation of this subset in rough sets [40].
Unfortunately, all of these papers never study matroids and rough sets through the positive, negative
and boundary operators of rough sets. Thus, it is necessary to further study rough sets and matroids by
these operators in this paper. In addition, only Wang et al. [38] presented two equivalent descriptions
of attribute reduction by closure operators and rank functions of matroids, respectively. We consider
presenting a novel approach to attribute reduction through the girth function of matroids in this paper.

In this paper, we mainly use the positive operator, the negative operator and the boundary
operator to study matroids and rough sets, and propose a method to compute attribute reduction
in information systems through the girth function of matroids. Firstly, we generalize the positive
(the lower approximation operator), upper approximation, negative and boundary operators of rough
sets to the interior, closure, exterior and boundary operators of matroids respectively. Among them,
the upper and lower approximation operators have been studied in [35]. Thus, there are four matroids
induced by these four operators of rough sets. Then, the relationship between these four matroids
is studied, which implies the relationship about operators between rough sets and matroids. In fact,
these four matroids are the same one. Secondly, a relationship about the restriction operation both in
matroids and rough sets is proposed. Finally, a matroidal approach is proposed to compute attribute
reduction in information systems through the girth function of matroids, and an example about
attribute reduction is solved. Using this matroidal approach, we can compute attribute reduction
through their results “2” and “∞”.

The rest of this paper is organized as follows. Section 2 recalls some basic notions about rough
sets, information systems and matroids. In Section 3, we generalize four operators of rough sets to
four operators of matroids, respectively. In addition, we study the relationship between four matroids
induced by these four operators of rough sets. Moreover, a relationship about operations between
matroids and rough sets is presented. In Section 4, an equivalent formulation of attribute reduction
through the girth function is presented. Based on the equivalent formulation, a novel method is
proposed to compute attribute reduction in information systems. Finally, Section 5 concludes this
paper and indicates further works.

2. Basic Definitions

In this section, we review some notions in Pawlak’s rough sets, information systems and matroids.

2.1. Pawlak’s Rough Sets and Information Systems

The definition of approximation operators is presented in [1,41].
Let R an equivalence relation on U. For any X ⊆ U, a pair of approximation R(X) and R(X) of X

are defined by
R(X) = {x ∈ U : RN(x)

⋂
X 	= ∅},

R(X) = {x ∈ U : RN(x) ⊆ X},
where RN(x) = {y ∈ U : xRy}. R and R are called the upper and lower approximation operators with
respect to R, respectively.

In this paper, U is a nonempty and finite set called universe. Let −X be the complement of X in
U and ∅ be the empty set. We have the following conclusions about R and R.

Proposition 1. Refs. [1,41] Let R be an equivalence relation on U. For any X, Y ⊆ U,
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(1L) R(U) = U,

(2L) R(φ) = φ,

(3L) R(X) ⊆ X,

(4L) R(X
⋂

Y) = R(X)
⋂

R(Y),

(5L) R(R(X)) = R(X),

(6L) X ⊆ Y ⇒ R(X) ⊆ R(Y),

(7L) R(−R(X)) = −R(X),

(8LH) R(−X) = −R(X),

(1H) R(U) = U,

(2H) R(φ) = φ,

(3H) X ⊆ R(X),

(4H) R(X
⋃

Y) = R(X)
⋃

R(Y),

(5H) R(R(X)) = R(X),

(6H) X ⊆ Y ⇒ R(X) ⊆ R(Y),

(7H) R(−R(X)) = −R(X),

(9LH) R(X) ⊆ R(X).

On the basis of the upper and lower approximation operators with respect to R, one can define
three operators to divide the universe, namely, the negative operator NEGR, the positive operator
POSR and the boundary operator BNDR:

NEGR(X) = U − R(X),

POSR(X) = R(X),

BNDR(X) = R(X)− R(X).

An information system [38] is an ordered pair IS = (U, A), where U is a nonempty finite set of
objects and A is a nonempty finite set of attributes such that a : U → Va for any a ∈ A, where Va is
called the value set of a. For all B ⊆ A, the indiscernibility relation induced by B is defined as follows:

IND(B) = {(x, y) ∈ U ×U : ∀b ∈ B, b(x) = b(y)}.

Definition 1. (Reduct [38]) Let IS = (U, A) be an information system. For all B ⊆ A, B is called a reduct of
IS, if the following two conditions hold:

(1) IND(B) 	= IND(B− b) for any b ∈ B,
(2) IND(B) = IND(A).

2.2. Matroids

Definition 2. (Matroid [29,30]) Let U is a finite set, and I is a nonempty subset of 2U (the set of all subsets of
U). (U, I) is called a matroid, if the following conditions hold:
(I1) If I ∈ I and I′ ⊆ I, then I′ ∈ I.
(I2) If I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2 − I1 such that I1

⋃{e} ∈ I, where |I| denotes the
cardinality of I.

Let M = (U, I) be a matroid. We shall often write U(M) for U and I(M) for I, particularly when
several matroids are being considered. The members of I are the independent sets of M.

Example 1. Let U = {a1, a2, a3, a4, a5} and I = {∅, {a1}, {a2}, {a3}, {a4}, {a5}, {a1, a3}, {a1, a4}, {a1, a5},
{a2, a3}, {a2, a4}, {a2, a5}, {a3, a4}, {a3, a5}, {a4, a5}, {a1, a3, a4}, {a1, a3, a5}, {a1, a4, a5}, {a2, a3, a4}, {a2,
a3, a5}, {a2, a4, a5}}. Then, M = (U, I) is a matroid.

In order to make some expressions brief, some denotations are presented. Let A ⊆ 2U . Then,

Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆ X ⇒ X = Y},
Max(A) = {X ∈ A : ∀Y ∈ A, X ⊆ Y ⇒ X = Y},
Opp(A) = {X ⊆ U : X 	∈ A}.
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The set of all circuits of M is defined as C(M) = Min(Opp(I)). The rank function rM of M is
denoted by rM(X) = max{|I| : I ⊆ X, I ∈ I} for any X ⊆ U. rM(X) is called the rank of X in M.
The closure operator clM of M is defined as

clM(X) = {u ∈ U : rM(X) = rM(X
⋃{u})} for all X ⊆ U.

We call clM(X) the closure of X in M. X is called a closed set if clM(X) = X, and we denote
the family of all closed sets of M by F(M). The closure axiom of a matroid is introduced in the
following proposition.

Proposition 2. (Closure axiom [29,30]) Let cl be an operator of U. Then, there exists one and only one matroid
M such that cl = clM iff cl satisfies the following four conditions:
(CL1) X ⊆ cl(X) for any X ⊆ U;
(CL2) If X ⊆ Y ⊆ U, then cl(X) ⊆ cl(Y);
(CL3) cl(cl(X)) = cl(X) for any X ⊆ U;
(CL4) For any x, y ∈ U, if y ∈ cl(X

⋃{x})− cl(X), then x ∈ cl(X
⋃{y}).

Example 2. (Continued from Example 1) Let X = {a3, a4}. Then,
C(M) = Min(Opp(I)) = {{a1, a2}, {a3, a4, a5}},
rM(X) = max{|I| : I ⊆ X, I ∈ I} = 2,
clM(X) = {u ∈ U : rM(X) = rM(X

⋃{u})} = {a3, a4, a5},
F(M) = {∅, {a3}, {a4}, {a5}, {a1, a2}, {a1, a2, a3}, {a1, a2, a4}, {a1, a2, a5}, {a3, a4, a5}, {a1, a2, a3, a4, a5}}.

Based on F(M), the interior operator intM of M is defined as

intM(X) =
⋃{Y ⊆ X : U −Y ∈ F(M)} for any X ⊆ U.

intM(X) is called the interior of X in M. X is called a open set if intM(X) = X. The following
proposition shows the interior axiom of a matroid.

Proposition 3. (Interior axiom [29,30]) Let int be an operator of U. Then, there exists one and only one matroid
M such that int = intM iff int satisfies the following four conditions:
(INT1) int(X) ⊆ X for any X ⊆ U,
(INT2) If X ⊆ Y ⊆ U, then int(X) ⊆ int(Y),
(INT3) int(int(X)) = int(X) for any X ⊆ U,
(INT4) For any x, y ∈ U, if y ∈ int(X)− int(X− {x}), then x 	∈ int(X− {y}).

Example 3. (Continued from Example 2) intM(X) =
⋃{Y ⊆ X : U −Y ∈ F(M)} = {a3, a4}.

Based on the closure operator clM, the exterior operator exM and the boundary operator boM of
M are defined as

exM(X) = −clM(X) and boM(X) = clM(X)
⋂

clM(−X) for all X ⊆ U.

exM(X) is called the exterior of X in M, and boM(X) is called the boundary of X in M.
The following two propositions present the exterior and boundary axioms, respectively.

Proposition 4. (Exterior axiom [42]) Let ex be an operator of U. Then, there exists one and only one matroid
M such that ex = exM iff exM satisfies the following four conditions:
(EX1) X

⋂
ex(X) = ∅ for any X ⊆ U;

(EX2) If X ⊆ Y ⊆ U, then ex(Y) ⊆ ex(X);
(EX3) ex(−ex(X)) = ex(X) for any X ⊆ U;
(EX4) For any x, y ∈ U, if y ∈ ex(X)− ex(X

⋃{x}), then x 	∈ ex(X
⋃{y}).
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Proposition 5. (Boundary axiom [42]) Let bo be an operator of U. Then, there exists one and only one matroid
M such that bo = boM iff bo satisfies the following five conditions:
(BO1) bo(X) = bo(−X) for any X ⊆ U;
(BO2) bo(bo(X)) ⊆ bo(X) for any X ⊆ U;
(BO3) X

⋂
Y
⋂
(bo(X)

⋃
bo(Y)) ⊆ X

⋂
Y
⋂

bo(X
⋂

Y) for any X, Y ⊆ U;
(BO4) For any x, y ∈ U, if y ∈ bo(X

⋃{x})− bo(X), then x ∈ bo(X
⋃{y});

(BO5) bo(X
⋃

bo(X)) ⊆ bo(X) for any X ⊆ U.

Example 4. (Continued from Example 2) exM(X) = U − {a3, a4, a5} = {a1, a2},
boM(X) = clM(X)

⋂
clM(−X) = {a3, a4, a5}⋂{a1, a2, a5} = {a5}.

The following proposition shows some relationships between these above four operators, namely
clM, intM, exM and boM.

Proposition 6. Ref. [42] Let M = (U, I) be a matroid. For all X ⊆ U, the following statements hold:
(1) intM(X) = −clM(−X) and clM(X) = −intM(−X);
(2) clM(boM(X)) = boM(X);
(3) boM(exM(X)) = boM(−X).

3. The Relationship about Operators between Rough Sets and Matroids

In this section, four matroids are induced by four operators of rough sets. These four matroids are
induced by the lower approximation operator R (because R = POSR, we only consider R), the upper
approximation operator R, the negative operator NEGR and the boundary operator BNDR through
the interior axiom, the closure axiom, the exterior axiom and the boundary axiom, respectively.
Among them, the upper approximation operator R has been studied in [35]. Then, the relationship
between these four matroids are studied, and we find that these four are the same one. According to
this work, we present the relationship about operators between rough sets and matroids.

3.1. Four Matroids Induced by Four Operators of Rough Sets

In this subsection, we generalize the positive operator (the lower approximation operator),
the upper approximation operator, the negative operator and the boundary operator of rough sets to
the interior operator, the closure operator, the exterior operator and the boundary operator of matroids,
respectively. Firstly, the following lemma is proposed.

Lemma 1. Refs. [1,41] Let R be an equivalence relation on U. For any x, y ∈ U, if x ∈ RN(y), then
y ∈ RN(x).

The following proposition shows that the lower approximation operator R satisfies
the interior axiom of matroids.

Proposition 7. Let R be an equivalence relation on U. Then, R satisfies (INT1), (INT2), (INT3) and
(INT4) of Proposition 3.

Proof. By (1L), (6L) and (5L) of Proposition 1, R satisfies (INT1), (INT2) and (INT3), respectively.
(INT4): For any x, y ∈ U, if y ∈ R(X)− R(X − {x}), then y ∈ R(X) but y 	∈ R(X − {x}). Hence,
RN(y) ⊆ X but RN(y) 	⊆ X− {x}. Therefore, x ∈ RN(y). According to Lemma 1, y ∈ RN(x). Hence,
RN(x) 	⊆ X− {y}, i.e., x 	∈ R(X− {y}).

Inspired by Proposition 7, there is a matroid such that R is its interior operator.
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Definition 3. Let R be an equivalence relation on U. The matroid whose interior operator is R is denoted by
M(R). We say M(R) is the matroid induced by R.

Corollary 1. Let R be an equivalence relation on U. Then, intM(R) = POSR.

Proof. According to Definition 3, intM(R) = R. Since POSR = R, so intM(R) = POSR.

The upper approximation operator R satisfies the closure axiom in [35,38].

Proposition 8. Refs. [35,38] Let R be an equivalence relation on U. Then, R satisfies (CL1), (CL2), (CL3)
and (CL4) of Proposition 2.

Proposition 8 determines the second matroid induced by R.

Definition 4. Let R be an equivalence relation on U. The matroid whose closure operator is R is denoted by
M(R). We say that M(R) is the matroid induced by R.

The negative operator NEGR satisfies the exterior axiom.

Proposition 9. Let R be an equivalence relation on U. Then, NEGR satisfies (EX1), (EX2), (EX3) and
(EX4) of Proposition 4.

Proof. (EX1): For any X ⊆ U, NEGR(X) = U− R(X). According to (3H) of Proposition 1, X ⊆ R(X).
Therefore, X

⋂
NEGR(X) = ∅;

(EX2): According to (6H) of Proposition 1, if X ⊆ Y ⊆ U, then R(X) ⊆ R(Y). Therefore,
U − R(Y) ⊆ U − R(Y), i.e., NEGR(Y) ⊆ NEGR(X);
(EX3): For any X ⊆ U, NEGR(X) = U − R(X). Hence, −NEGR(X) = U − NEGR(X) = U − (U −
R(X)) = R(X). Therefore, NEGR(−NEGR(X)) = NEGR(R(X)) = U − R(R(X)). According to (5H)

of Proposition 1, R(R(X)) = R(X). Hence, NEGR(−NEGR(X)) = U − R(X) = NEGR(X);
(EX4): For any x, y ∈ U, if y ∈ NEGR(X) − NEGR(X

⋃{x}), then y ∈ NEGR(X) but y 	∈
NEGR(X

⋃{x}), i.e., y ∈ U − R(X) but y 	∈ U − R(X
⋃{x}). Since R(X) ⊆ U and R(X

⋃{x}) ⊆ U,
so y ∈ R(X

⋃{x}) but y 	∈ R(X). Hence, RN(y)
⋂
(X
⋃{x}) 	= ∅ but RN(y)

⋂
X = ∅. Therefore,

RN(y)
⋂{x} 	= ∅, i.e., x ∈ RN(y). According to Lemma 1, y ∈ RN(x). Hence, RN(x)

⋂
(X
⋃{y}) 	= ∅,

i.e., x ∈ R(X
⋃{y}). Therefore, x 	∈ U − R(X

⋃{y}), i.e., x 	∈ NEGR(X
⋃{y}).

Proposition 9 determines the third matroid such that NEGR is its exterior operator.

Definition 5. Let R be an equivalence relation on U. The matroid whose exterior operator is NEGR is denoted
by M(NEGR). We say M(NEGR) is the matroid induced by NEGR.

In order to certify the boundary operator BNDR satisfies the boundary axiom, the following two
lemmas are proposed.

Lemma 2. Refs. [1,41] Let R be an equivalence relation on U. For all X, Y ⊆ U, R(X
⋂

Y) ⊆ R(X)
⋂

R(Y).

Lemma 3. Let R be an equivalence relation on U. If X ⊆ Y ⊆ U, then X
⋂

BNDR(Y) ⊆ BNDR(X).

Proof. For any x ∈ X
⋂

BNDR(Y), X
⋂

BNDR(Y) = X
⋂
(R(X) − R(X)) = X

⋂
R(X)

⋂
R(−X)).

Since X ⊆ Y ⊆ U, so −Y ⊆ −X ⊆ U. According to (6H) of Proposition 1, X
⋂

R(X)
⋂

R(−X)) =

X
⋂

R(−X) ⊆ R(X)
⋂

R(−X) = BNDR(X). Hence, x ∈ BNDR(X), i.e., X
⋂

BNDR(Y) ⊆
BNDR(X).

The boundary operator BNDR satisfies the boundary axiom.
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Proposition 10. Let R be an equivalence relation on U. Then, BNDR satisfies (BO1), (BO2), (BO3), (BO4)
and (BO5) of Proposition 5.

Proof. (BO1): According to (8LH) of Proposition 1, R(−X) = −R(X). For any X ⊆ U,

BNDR(−X) = R(−X)− R(−X)

= R(−X)
⋂
(U − R(−X))

= (−R(X))
⋂

R(X)

= R(X)
⋂
(−R(X))

= R(X)− R(X)

= BNDR(X).

(BO2): For any X ⊆ U,

BNDR(BNDR(X)) = R(BNDR(X))− R(BNDR(X))

= R(BNDR(X))
⋂
(U − R(BNDR(X)))

= R(BNDR(X))
⋂
(−R(BNDR(X)))

= R(BNDR(X))
⋂
(R(−BNDR(X)))

⊆ R(BNDR(X))

= R(R(X)− R(X))

= R(R(X)
⋂
(−R(X))).

According to Lemma 1, we know

R(R(X)
⋂
(−R(X))) ⊆ R(R(X))

⋂
R(−R(X))

= R(X)
⋂

R(−R(X))

= R(X)− R(X)

= BNDR(X).

Hence, BNDR(BNDR(X)) ⊆ BNDR(X);
(BO3): For any X, Y ⊆ U, X

⋂
Y
⋂
(BNDR(X)

⋃
BNDR(Y)) = X

⋂
Y
⋂
((R(X) −R(X))

⋃
(R(Y) −

R(Y))) = X
⋂

Y
⋂

((R(X)
⋂

R(−X))
⋃
(R(Y)

⋂
R(−Y))) ⊆ X

⋂
Y
⋂
(R(−X)

⋃
R(−Y)). According

to (4H) of Proposition 1, we know X
⋂

Y
⋂

(R(−X)
⋃

R(−Y)) = X
⋂

Y
⋂

R((−X)
⋃
(−Y)) =

X
⋂

Y
⋂

R(−(X
⋂

Y)). According to (6H) of Proposition 1, we know X
⋂

Y ⊆ R(X
⋂

Y). Therefore,
X
⋂

Y
⋂

R(−(X
⋂

Y)) = X
⋂

Y
⋂

R(−(X
⋂

Y))
⋂

R(X
⋂

Y) = X
⋂

Y
⋂

BNDR(X
⋂

Y).
(BO4): When x = y or x ∈ X, it is straightforward. When y ∈ X, it does not hold. (In fact, we suppose
y ∈ X. If y ∈ BNDR(X

⋃{x}), according to Lemma 3, we know y ∈ X
⋂

BNDR(X
⋃{x}) ⊆ BNDR(X),
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which is contradictory with y ∈ BNDR(X
⋃{x})− BNDR(X). Hence, y 	∈ X.) We only need to prove

it for x 	= y and x, y 	∈ X. If y ∈ BNDR(X
⋃{x})− BNDR(X), since

BNDR(X
⋃ {x})− BNDR(X)

= (R(X
⋃{x})− R(X

⋃{x}))− (R(X)− R(X))

= (R(X
⋃{x}) ⋂ R(−(X

⋃{x})))− (R(X)
⋂

R(−X))

= (R(X
⋃ {x})⋂ R(−(X

⋃{x})))⋂((− R(X))
⋃
(−R(−X)))

= (R(X
⋃{x})⋂ R(−(X

⋃{x}))⋂(−R(X)))
⋃
(R(X

⋃{x})⋂
(R(−(X

⋃{x})))⋂(−R(−X)))

= R(X
⋃{x})⋂ R( −(X

⋃{x}))⋂(−R(X))

= R(X
⋃{x})⋂(−R(X))

⋂
R(−(X

⋃{x}))
= (R(X

⋃ {x})− R(X))
⋂

R(−(X
⋃ {x})),

then y ∈ R(X
⋃{x}) − R(X) and y ∈ R(−(X⋃ {x})). According to Proposition 8, we have x ∈

R(X
⋃{y}). Since y ∈ R(−(X⋃ {x})), so x ∈ R(−(X⋃{y})). Hence, y ∈ R(X

⋃{y})⋂R(−(X⋃{y})),
i.e., y ∈ BNDR(X

⋃{y}).
(BO5): For any X, Y ⊆ U,

BNDR(X
⋃

BNDR(X)) = R(X
⋃

BNDR(X))− R(X
⋃

BNDR(X))

= R(X
⋃

BNDR(X))
⋂

R(−(X
⋃

BNDR(X)))

= R(X
⋃

BNDR(X))
⋂

R((−X)
⋂
(BNDR(−X)))

⊆ R(X
⋃

BNDR(X))
⋂

R(−X)

= R(X
⋃
(R(X)

⋂
R(−X)))

⋂
R(−X)

= R(R(X)
⋂

U)
⋂

R(−X)

= R(R(X))
⋂

R(−X).

According to (5H) and (8LH) of Proposition 1, R(R(X))
⋂

R(−X) = R(X)
⋂

R( −X) = R(X)−
R(X) = BNDR(X). Therefore, BNDR(X

⋃
BNDR(X)) ⊆ BNDR(X).

Proposition 8 determines the fourth matroid such that BNDR is its boundary operator.

Definition 6. Let R be an equivalence relation on U. The matroid whose boundary operator is BNDR is denoted
by M(BNDR). We say that M(BNDR) is the matroid induced by BNDR.

3.2. The Relationship between These Four Matroids

This subsection studies the relationship between these four matroids in the above subsection.
In fact, these four matroids are the same one.

Theorem 1. Let R be an equivalence relation on U. Then,

M(R) = M(R) = M(NEGR) = M(BNDR).

Proof. (1) On one hand, M(R) and M(R) have the same grand U. On the other hand, according
to Definition 3, we know intM(R)(X) = R(X) for any X ⊆ U. By Proposition 6, clM(R)(X) =

−intM(R)(−X) = −R(−X). According to (8LH) of Proposition 1, −R(−X) = R(X). Hence,
clM(R)(X) = R(X). According to Definition 4, clM(R)(X) = R(X). Therefore, clM(R)(X) = clM(R)(X),
i.e., M(R) = M(R).
(2) On one hand, M(R) and M(NEGR) have the same grand U. On the other hand, according to
Definition 4, we know clM(R) = R. For any X ⊆ U, exM(R)(X) = −clM(R)(X) = −R(X) = U −
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R(X) = NEGR(X). By Definition 5, exM(NEGR)
(X) = NEGR(X). Hence, exM(R)(X) = exM(NEGR)

(X),
i.e., M(R) = M(NEGR).
(3) On one hand, M(R) and M(NEGR) have the same grand U. On the other hand, according
to Definition 4, we have clM(R) = R. For all X ⊆ U, boM(R)(X) = clM(R)(X)

⋂
clM(R)(−X) =

R(X)
⋂

R(−X) = R(X)
⋂

R(−X) = R(X) − R(X) = BNDR(X). According to Definition 6,
boM(NEGR)

(X) = BNDR(X). Therefore, boM(R)(X) = boM(NEGR)
(X), i.e., M(R) = M(NEGR).

Definition 7. Let R be an equivalence relation on U. The matroid whose interior operator, closure operator,
exterior operator and boundary operator are R, R, NEGR and BNDR is defined as M(R). We say that M(R) is
the matroid induced by R.

According to the above definition, we have the relationship about operators between rough sets
and matroids as Table 1:

Table 1. The relationship about operators between rough sets and matroids.

M(R) Is the Matroid Induced by R

intM(R) = R = POSR
clM(R) = R
exM(R) = NEGR
boM(R) = BNDR

3.3. The Relationship about Operations between Matroids and Rough Sets

In this subection, a relationship about the restriction operation both in matroids and rough
sets is proposed. First of all, two definitions of these two operations are presented in the following
two definitions.

Definition 8. (Restriction [29,30]) Let M = (U, I) be a matroid. For X ⊆ U, the restriction of M to X is
defined as M|X = (X, IX), where IX = {I ⊆ X : I ∈ I}.

Not that C(M|X) = {C ⊆ X : C ∈ C(M)}. For an equivalence relation R on U, there is also a
definition of restriction of R. For any X ⊆ U, R|X is an equivalence relation called the restriction of R
to X, where R|X = {(x, y) ∈ X× X : (x, y) ∈ R}, X × X is the product set of X and X. According to
Definition 7, M(R|X) is a matroid on X.

In [38], the set of independent sets of M(R) is proposed in the following lemma.

Lemma 4. Ref. [38] Let R be an equivalence relation on U. Then,

I(M(R)) = {X ⊆ U : ∀x, y ∈ X, x 	= y⇒ (x, y) /∈ R}.

Example 5. Let R be an equivalence relation on U with U = {a, b, c, d, e}, and U/R = {{a, b}, {c, d, e}}.
According to Lemma 4, I(M(R)) = {∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {b, c}, {a, d}, {b, d}, {a, e}, {b, e}}.

Proposition 11. Let R be an equivalence relation on U and X ⊆ U. Then, M(R|X) = M(R)|X.

Proof. For any X ⊆ U, R|X is an equivalence relation on X. Thus, M(R|X) is a matroid on X.
By Definition 8, M(R)|X is a matroid on X. Therefore, we need to prove only I(M(R|X)) = I(M(R)|X).
According to Lemma 4, I(M(R|X)) = {Y ⊆ X : ∀x, y ∈ Y, x 	= y ⇒ (x, y) /∈ R|X}, I(M(R)|X) =

{Y ⊆ X : ∀x, y ∈ Y, x 	= y ⇒ (x, y) /∈ R}. On one hand, since R|X ⊆ R, I(M(R)|X) ⊆ I(M(R|X)).
On the other hand, suppose Y ∈ I(M(R|X))− I(M(R)|X). For any x, y ∈ Y, if x 	= y, then (x, y) /∈ R|X
but (x, y) ∈ R. Therefore, x, y /∈ X but x, y ∈ U, i.e., x, y ∈ U − X. Hence, Y ⊆ U − X, which is
contradictory with Y ⊆ X, i.e., Y ∈ I(M(R|X))− I(M(R)|X). Thus, I(M(R|X)) ⊆ I(M(R)|X).
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Example 6. (Continued from Example 5) Let X = {a, b, c}. According to Definition 8,
I(M(R)|X) = {∅, {a}, {b}, {c}, {a, c}, {b, c}}, and M(R)|X = (X, I(M(R)| X)). Since R|X =

{(a, a), (b, b), (c, c), (a, b), (b, a)}, so X/(R|X) = {{a, b}, {c}}. According to Lemma 4, I(M(R|X)) =

{∅, {a}, {b}, {c}, {a, c}, {b, c}}, and M(R|X) = (X, I(M(R|X)). Therefore, M(R|X) = M(R)|X.

4. A Matroidal Approach to Attribute Reduction through the Girth Function

In this section, a matroidal approach is proposed to compute attribute reduction in information
systems through the girth function of matroids.

4.1. An Equivalent Formulation of Attribute Reduction through the Girth Function

Lemma 5. Ref. [15] Let R1 and R2 be two equivalence relations on U, respectively. Then, R1 = R2 if and only
if R1 = R2.

Based on Lemma 5, we propose a necessary and sufficient condition for two equivalence relations
induce the same matroids.

Proposition 12. Let R1 and R2 be two equivalence relations on U, respectively. Then, M(R1) = M(R2) if
and only if R1 = R2.

Proof. According to Definition 7, M(R1) and M(R2) have the same grand U. According to
Proposition 3, Proposition 7 and Lemma 5,

M(R1) = M(R2) ⇔ intM(R1)
= intM(R2)

⇔ R1 = R2

⇔ R1 = R2.

An equivalent formulation of attribute reduction in information systems is presented from the
viewpoint of matroids.

Proposition 13. Let IS = (U, A) be an information system. For all B ⊆ A, B is a reduct of IS if and only if it
satisfies the following two conditions:

(1) For all b ∈ B, M(IND(B)) 	= M(IND(B− b));
(2) M(IND(B)) = M(IND(A)).

Proof. Since IND(A), IND(B) and IND(B − b) are equivalence relations on U, M(IND(A)),
M(IND(B)) and M(IND(B− b)) are matroids on U. According to Proposition 12,

(1) For all b ∈ B, M(IND(B)) 	= M(IND(B− b))⇔ IND(B) 	= IND(B− b);
(2) M(IND(B)) = M(IND(A))⇔ IND(B) = IND(A).

According to Definition 1, it is immediate.

In Proposition 13, the equivalent formulation of attribute reduction is not convenient for us to
compute the attribute reduction. We consider to use the girth function of matroids to compute it.

Definition 9. (Girth function [29,30]) Let M = (U, I) be a matroid. The girth g(M) of M is defined as:

g(M) =

{
min{|C| : C ∈ C(M)}, C(M) 	= ∅;
∞, C(M) = ∅.

For all X ⊆ U, the girth function gM is defined as gM(X) = g(M|X). gM(X) is called the girth of X in M.
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According to Definition 9, the girth function is related to circuits. Thus, the following lemma
presents the family of all circuits of M(R).

Lemma 6. Ref. [38] Let R be an equivalence relation on U. Then,

C(M(R)) = {{x, y} ⊆ U : x 	= y ∧ (x, y) ∈ R}.

Example 7. (Continued from Example 5) C(M(R)) = {{a, b}, {c, d}, {c, e}, {d, e}}.

Based on the characteristics of the matroid induced by an equivalence relation, a type of matroids
is abstracted, which is called a 2-circuit matroid. M is called a 2-circuit matroid if |C| = 2 for all
C ∈ C(M). Note that, if C(M) = ∅, then M is also a 2-circuit matroid. In this section, we don’t
consider this case. The matroid M(R) is a 2-circuit matroid.

Proposition 14. Let R be an equivalence relation on U and X ⊆ U. Then,

g(M(R)) =

{
2, C(M(R)) 	= ∅;
∞, C(M(R)) = ∅;

gM(R)(X) =

{
2, C(M(R)|X) 	= ∅;
∞, C(M(R)|X) = ∅.

Proof. Since M(R) is a 2-circuit matroid, |C| = 2 for all C ∈ C(M(R)). According to Definition 9,
it is immediate.

Corollary 2. Let R be an equivalence relation on U and X ⊆ U. Then,

g(M(R)) =

{
2, ∃x ∈ U, s.t., |RN(x)| ≥ 2;
∞, otherwise,

gM(R)(X) =

{
2, ∃x ∈ X, s.t., |RN(x)

⋂
X| ≥ 2;

∞, otherwise.

Proof. According to Lemma 6,

C(M(R)) 	= ∅ ⇔ ∃x, y ⊆ U, s.t., x 	= y ∧ (x, y) ∈ R

⇔ ∃x ∈ U, s.t., |RN(x)| ≥ 2.

Hence,

g(M(R)) =

{
2, ∃x ∈ U, s.t., |RN(x)| ≥ 2;
∞, otherwise.

Since C(M(R)|X) = {C ⊆ X : C ∈ C(M(R))} = {{x, y} ⊆ X : x 	= y ∧ (x, y) ∈ R},

C(M(R)|X) 	= ∅ ⇔ ∃x, y ⊆ X, s.t., x 	= y ∧ (x, y) ∈ R

⇔ ∃x ∈ U, s.t., |RN(x)
⋂

X| ≥ 2.

Hence,

gM(R)(X) =

{
2, ∃x ∈ X, s.t., |RN(x)

⋂
X| ≥ 2;

∞, otherwise.
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Lemma 7. Refs. [1,41] Let R1 and R2 be two equivalence relations on U, respectively. Then, for any x ∈ U,

(R1
⋂

R2)N(x) = R1N(x)
⋂

R2N(x).

According to Corollary 2, the girth function of the matroid induced by attribute subsets is
presented in the following proposition.

Proposition 15. Let IS = (U, A) be an information system and X ⊆ U. Then, for all B ⊆ A,

g(M(IND(B))) =

⎧⎨⎩ 2, ∃x ∈ U, s.t., | ⋂
Ri∈B

Ri N(x)| ≥ 2;

∞, otherwise,

gM(IND(B))(X) =

⎧⎨⎩ 2, ∃x ∈ X, s.t., |( ⋂
Ri∈B

Ri N(x))
⋂

X| ≥ 2;

∞, otherwise.

Proof. According to Lemma 7 and Corollary 2, it is immediate.

Note that Ri in Ri N denotes the equivalence relation induced by attribute Ri ∈ A. According to
the girth axiom, we know that a matroid is corresponding to one and only one girth function.

Proposition 16. (Girth axiom [29,30]) Let g : 2U → Z+ ⋃{0, ∞} be a function. Then, there exists one and
only one matroid M such that g = gM iff g satisfies the following three conditions:
(G1) If X ⊆ U and g(X) < ∞, then X has a subset Y such that g(X) = g(Y) = |Y|.
(G2) If X ⊆ Y ⊆ U, then g(X) ≥ g(Y).
(G3) If X and Y are distinct subsets of U with g(X) = |X|, g(Y) = |Y|, then g((X

⋃
Y)− {e}) < ∞ for any

e ∈ X
⋂

Y.

Inspired by Propositions 13 and 16, we can use the girth function in matroids to compute
attribute reduction.

Theorem 2. Let IS = (U, A) be an information system. For all B ⊆ A, B is a reduct of IS if and only if it
satisfies the following two conditions:

(1) For all b ∈ B, there exists X ⊆ U such that gM(IND(B))(X) 	= gM(IND(B−b))(X).
(2) For all X ⊆ U, gM(IND(B))(X) = gM(IND(A))(X).

Proof. According to Propositions 13 and 16, it is immediate.

4.2. The Process of the Matroidal Methodology

In this subsection, we give the process of the matroidal approach to compute attribute reduction
in information systems according to the equivalent description in Section 4.1.

In order to obtain all results of an information system IS = (U, A), we need to compute
gM(IND(B))(X) for all B ⊆ A and X ⊆ U based on Theorem 2. According to Definition 1, we know
a reduct of IS will not be ∅. Hence, we only consider B ⊆ A and B 	= ∅. On the other hand, for all
X ⊆ U and B ⊆ A, if |X| ≤ 1, then gM(IND(B))(X) = gM(IND(A))(X). According to Theorem 2, we only
consider X whose |X| ≥ 2. Therefore, the process is shown as follows:

• Input: An information system IS = (U, A), where U = {u1, u2, · · · , un} and A =

{a1, a2, · · · , am}.
• Output: All results of IS.
• Step 1: Suppose Bi ⊂ A (Bi 	= ∅ and i = 1, 2, · · · , 2m − 2), we compute all IND(Bi) and IND(A).
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• Step 2: For any i = 1, 2, · · · , 2m − 2, we compute gM(IND(Bi))
(X) and gM(IND(A))(X) for any

X ⊆ U and |X| ≥ 2.
• Step 3: Obtain all results of IS according to Theorem 2.

4.3. An Applied Example

Example 8. Let us consider the following information system IS = (U, A) as is shown in Table 2.

Table 2. An information system.

a1 a2 a3

u1 0 1 0
u2 1 2 2
u3 1 0 0
u4 2 1 1
u5 1 1 2

Let B1 = {a1}, B2 = {a2}, B3 = {a3}, B4 = {a1, a2}, B5 = {a1, a3}, B6 = {a2, a3}, A = {a1, a1, a3}.
gBi denotes gM(IND(Bi))

for 1 ≤ i ≤ 6 and gA denotes gM(IND(A)). All girth functions induced by attribute
subsets as is shown in Table 3.

Table 3. Girth functions induced by attribute subsets.

gB1
gB2

gB3
gB4

gB5
gB6

gA

u1, u2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u1, u3 ∞ ∞ 2 ∞ ∞ ∞ ∞
u1, u4 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u2, u3 2 ∞ ∞ ∞ ∞ ∞ ∞
u2, u4 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u2, u5 ∞ ∞ 2 ∞ 2 ∞ ∞
u3, u4 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u3, u5 ∞ ∞ ∞ ∞ ∞ ∞ ∞
u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u3 2 ∞ 2 ∞ ∞ ∞ ∞
u1, u2, u4 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u5 ∞ 2 2 ∞ 2 ∞ ∞
u1, u3, u4 ∞ 2 2 ∞ ∞ ∞ ∞
u1, u3, u5 ∞ 2 2 ∞ ∞ ∞ ∞
u1, u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u2, u3, u4 2 ∞ ∞ ∞ ∞ ∞ ∞
u2, u3, u5 2 ∞ ∞ ∞ 2 ∞ ∞
u2, u4, u5 ∞ 2 2 ∞ 2 ∞ ∞
u3, u4, u5 ∞ 2 ∞ ∞ ∞ ∞ ∞
u1, u2, u3, u4 2 2 2 ∞ ∞ ∞ ∞
u1, u2, u3, u5 2 2 2 ∞ 2 ∞ ∞
u1, u2, u4, u5 ∞ 2 2 ∞ 2 ∞ ∞
u1, u3, u4, u5 ∞ 2 2 ∞ ∞ ∞ ∞
u2, u3, u4, u5 2 2 2 ∞ 2 ∞ ∞
u1, u2, u3, u4, u5 2 2 2 ∞ 2 ∞ ∞

Accordingly, there are two reducts of IS: B4 = {a1, a2} and B6 = {a2, a3}.

5. Conclusions

In this paper, we generalize four operators of rough sets to four operators of matroids through the
interior axiom, the closure axiom, the exterior axiom and the boundary axiom, respectively. Moreover,
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we present a matroidal approach to compute attribute reduction in information systems. The main
conclusions in this paper and the continuous work to do are listed as follows:

1. There are four matroids induced by these four operators of rough sets. In fact, these four matroids
are the same one, which implies the relationship about operators between rough sets and matroids.
In this work, we assume an equivalence relation. However, there are other structures have been
used in rough set theory, among them, tolerance relations [43], similarity relations [44], and binary
relations [15,45]. Hence, they can suggest as a future research, the possibility of extending their
ideas to these types of settings.

2. The girth function of matroids is used to compute attribute reduction in information systems.
This work can be viewed as a bridge linking matroids and information systems in the theoretical
impact. In the practical impact, it is a novel method by which calculations will become algorithmic
and can be implemented by a computer. Based on this work, we can use the girth function of
matroids for attribute reduction in decision systems in the future.

3. In the future, we will further expand the research content of this paper based on some new
studies on neutrosophic sets and related algebraic structures [46–50].
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Abstract: As a generalization of single value neutrosophic rough sets, the concept of multi-granulation
neutrosophic rough sets was proposed by Bo et al., and some basic properties of the pessimistic
(optimistic) multigranulation neutrosophic rough approximation operators were studied. However,
they did not do a comprehensive study on the algebraic structure of the pessimistic (optimistic)
multigranulation neutrosophic rough approximation operators. In the present paper, we will provide
the lattice structure of the pessimistic multigranulation neutrosophic rough approximation operators.
In particular, in the one-dimensional case, for special neutrosophic relations, the completely lattice
isomorphic relationship between upper neutrosophic rough approximation operators and lower
neutrosophic rough approximation operators is proved.

Keywords: neutrosophic set; neutrosophic rough set; pessimistic (optimistic) multigranulation
neutrosophic approximation operators; complete lattice

1. Introduction

In order to deal with imprecise information and inconsistent knowledge, Smarandache [1,2]
first introduced the notion of neutrosophic set by fusing a tri-component set and the non-standard
analysis. A neutrosophic set consists of three membership functions, where every function value is
a real standard or non-standard subset of the nonstandard unit interval ]0−, 1+[. Since then, many
authors have studied various aspects of neutrosophic sets from different points of view, for example,
in order to apply the neutrosophic idea to logics, Rivieccio [3] proposed neutrosophic logics which is a
generalization of fuzzy logics and studied some basic properties. Guo and Cheng [4] and Guo and
Sengur [5] obtained good applications in cluster analysis and image processing by using neutrosophic
sets. Salama and Broumi [6] and Broumi and Smarandache [7] first introduced the concept of rough
neutrosophic sets, handled incomplete and indeterminate information, and studied some operations
and their properties.

In order to apply neutrosophic sets conveniently, Wang et al. [8] proposed single valued
neutrosophic sets by simplifying neutrosophic sets. Single valued neutrosophic sets can also be
viewed as a generalization of intuitionistic fuzzy sets (Atanassov [9]). Single valued neutrosophic sets
have become a new majorly research issue. Ye [10–12] proposed decision making based on correlation
coefficients and weighted correlation coefficient of single valued neutrosophic sets, and gave an
application of proposed methods. Majumdar and Samant [13] studied similarity, distance and entropy
of single valued neutrosophic sets from a theoretical aspect.

Şahin and Küçük [14] gave a subsethood measure of single valued neutrosophic sets based on
distance and showed its effectiveness through an example. We know that there’s a certain connection
among fuzzy rough approximation operators and fuzzy relations (resp., fuzzy topologies, information
systems [15–17]). Hence, Yang et al. [18] firstly proposed neutrosophic relations and studied some
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kinds of kernels and closures of neutrosophic relations. Subsequently they proposed single valued
neutrosophic rough sets [19] by fusing single valued neutrosophic sets and rough sets (Pawlak, [20]),
and they studied some properties of single value neutrosophic upper and lower approximation
operators. As a generalization of single value neutrosophic rough sets, Bao and Yang [21] introduced
p-dimension single valued neutrosophic refined rough sets, and they also gave some properties of
p-dimension single valued neutrosophic upper and lower approximation operators.

As another generalization of single value neutrosophic rough sets, Bo et al. [22] proposed the concept
of multi-granulation neutrosophic rough sets and obtained some basic properties of the pessimistic
(optimistic) multigranulation neutrosophic rough approximation operators. However, the lattice structures
of those rough approximation operators in references [19,21,22], were not well studied. Following this
idea, Zhao and Zhang [23] gave the supremum and infimum of the p-dimension neutrosophic upper
and lower approximation operators, but they did not study the relationship between the p-dimension
neutrosophic upper approximation operators and the p-dimension neutrosophic lower approximation
operators, especially in the one-dimensional case. Inspired by paper [23], a natural problem is: Can the
lattice structure of pessimistic (optimistic) multigranulation neutrosophic approximation operators
be given?

In the present paper, we study the algebraic structure of optimistic (pessimistic) multigranulation
single valued neutrosophic approximation operators.

The structure of the paper is organized as follows. The next section reviews some basic definitions of
neutrosophic sets and one-dimensional multi-granulation rough sets. In Section 3, the lattice structure of
the pessimistic multigranulation neutrosophic rough approximation operators are studied. In Section 4,
for special neutrosophic relations, a one-to-one correspondence relationship between neutrosophic
upper approximation operators and lower approximation operators is given. Finally, Section 5
concludes this article and points out the deficiencies of the current research.

2. Preliminaries

In this section, we briefly recall several definitions of neutrosophic set (here “neutrosophic set”
refers exclusively to “single value neutrosophic set”) and one-dimensional multi-granulation rough set.

Definition 1 ([8]). A neutrosophic set B in X is defined as follows: ∀a ∈ X,

B = (TA(a), IA(a), FA(a)),

where TA(a), IA(a), FA(a) ∈ [0, 1], 0 ≤ supTA(a) + supIA(a) + supFA(a) ≤ 3. The set of all neutrosophic
sets on X will be denoted by SVNS(X).

Definition 2 ([11]). Let C and D be two neutrosophic sets in X, if

TC(a) ≤ TD(a), IC(a) ≥ ID(a) and FC(a) ≥ FD(a)

for each a ∈ X, then we called C is contained in D, i.e., C � D. If C � D and D � C, then we called C is equal
to D, denoted by C = D.

Definition 3 ([18]). Let A and B be two neutrosophic sets in X,

(1) The union of A and B is a s neutrosophic set C, denoted by A � B, where ∀x ∈ X,

TC(a) = max{TA(a), TB(a)}, IC(a) = min{IA(a), IB(a)}, and
FC(a) = min{FA(a), FB(a)}.
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(2) The intersection of A and B is a neutrosophic set D, denoted by A � B, where ∀x ∈ X,

TD(a) = min{TA(a), TB(a)}, ID(a) = max{IA(a), IB(a)}, and
FD(a) = max{FA(a), FB(a)}.

Definition 4 ([18]). A neutrosophic relation R in X is defined as follows:

R = {< (a, b), TR(a, b), IR(a, b), FR(a, b) >| (a, b) ∈ X× X},

where TR : X× X → [0, 1], IR : X× X → [0, 1], FR : X× X → [0, 1] , and

0 ≤ supTR(a, b) + supIR(a, b) + supFR(a, b) ≤ 3.

The family of all neutrosophic relations in X will be denoted by SVNR(X), and the pair (X, R) is called a
neutrosophic approximation space.

Definition 5 ([19]). Let (X, R) be a neutrosophic approximation space, ∀A ∈ SVNS(X), the lower and upper
approximations of A with respect to (X, R), denoted by R(A) and R(A), are two neutrosophic sets whose
membership functions are defined as: ∀a ∈ X,

TR(A)(a) = ∧
b∈X

[FR(a, b) ∨ TA(b)], IR(A)(a) = ∨
b∈X

[(1− IR(a, b)) ∧ IA(b)],

FR(A)(a) = ∨
b∈X

[TR(a, b) ∧ FA(b)], TR(A)(a) = ∨
b∈X

[TR(a, b) ∧ TA(b)],

IR(A)(a) = ∧
b∈X

[IR(a, b) ∨ IA(b)], FR(A)(a) = ∧
b∈X

[FR(a, b) ∨ FA(b)].

The pair (R(A), R(A)) is called the one-dimensional multi-granulation rough set (also called single value
neutrosophic rough set or one-dimension single valued neutrosophic refined rough set) of A with respect to
(X, R). R and R are referred to as the neutrosophic lower and upper approximation operators,respectively.

Lemma 1 ([19]). Let R1 and R2 be two neutrosophic relations in X, ∀A ∈ SVNS(X), we have

(1) R1 � R2(A) = R1(A)� R2(A);
(2) R1 � R2(A) = R1(A)� R2(A);
(3) R1 � R2(A) � R1(A)� R2(A) � R1(A)� R2(A);
(4) R1 � R2(A) � R1(A)� R2(A).

3. The Lattice Structure of the Pessimistic Multigranulation Neutrosophic Rough
Approximation Operators

In this section, set M = {R1, R2, · · · , Rn} = {Ri}i=1,n is called a multigranulation neutrosophic
relations set on X if each Ri is a neutrosophic relation on X. In this case, the pair (X, M) will be called
an n-dimensional multigranulation neutrosophic apptoximation space.

Definition 6 ([22]). Let (X, M) be an n-dimensional multigranulation neutrosophic apptoximation space. We
define two pairs of approximation operators as follows, for all ∀A ∈ SVNS(X) and a ∈ X,

MO(A) = (MO(A), MO
(A)), MP(A) = (MP(A), MP

(A)),

where

TMO(A)(a) = ∨n
i=1TRi(A)(a), IMO(A)(a) = ∧n

i=1 IRi(A)(a), FMO(A)(a) = ∧n
i=1FRi(A)(a).

T
MO

(A)
(a) = ∧n

i=1TRi(A)(a), I
MO

(A)
(a) = ∨n

i=1 IRi(A)(a), F
MO

(A)
(a) = ∨n

i=1FRi(A)(a).
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TMP(A)(a) = ∧n
i=1TRi(A)(a), IMP(A)(a) = ∨n

i=1 IRi(A)(a), FMP(A)(a) = ∨n
i=1FRi(A)(a).

T
MP

(A)
(a) = ∨n

i=1TRi(A)(a), I
MP

(A)
(a) = ∧n

i=1 IRi(A)(a), F
MP

(A)
(a) = ∧n

i=1FRi(A)(a).

Then the pair MO(A) = (MO(A), MO
(A)) is called an optismistic multigranulation neutrosophic rough

set, and the pair MP(A) = (MP(A), MP
(A)) is called an pessimistic multigranulation neutrosophic rough set

MO and MP are referred to as the optimistic and pessimistic multigranulation neutrosophic upper approximation
operators, respectively. Similarly, MO and MP are referred to as the optimistic and pessimistic multigranulation
neutrosophic lower approximation operators, respectively.

Remark 1. If n = 1, then the multigranulation neutrosophic rough set will degenerated to a one-dimensional
multi-granulation rough set (see Definition 5). In the following, the family of all multigranulation neutrosophic
relations set on X will be denoted by n−SVNR(X). Defined a relation) on n−SVNR(X) as follows: M ) N
if and only if Mi � Ni, then (n− SVNR(X),)) is a poset, where M = {Mi}i=1,n and N = {Ni}i=1,n.

∀{Mj}
j∈Λ ⊆ n− SVNR(X), where Mj =

{
Mj

i

}
i=1,n

and Λ be a index set, we can define union and

intersection of Mj as follows:

∨
j∈Λ

Mj =
{
�j∈Λ Mj

i

}
i=1,n

, ∧
j∈Λ

Mj =
{
�j∈Λ Mj

i

}
i=1,n

,

where
T�j∈Λ Mj

i
(a, b) = ∨

j∈Λ
T

Mj
i
(a, b), I�j∈Λ Mj

i
(a, b) = ∧

j∈Λ
I
Mj

i
(a, b),

F�j∈Λ Mj
i
(a, b) = ∧

j∈Λ
F

Mj
i
(a, b), T�j∈Λ Mj

i
(a, b) = ∧

j∈Λ
T

Mj
i
(a, b),

I�j∈Λ Mj
i
(a, b) = ∨

j∈Λ
I
Mj

i
(a, b), F�j∈Λ Mj

i
(a, b) = ∨

j∈Λ
F

Mj
i
(a, b).

Then ∨
j∈Λ

Mj and ∧
j∈Λ

Mj are two multigranulation neutrosophic relations on X, and we easily show that

∨
j∈Λ

Mj and ∧
j∈Λ

Mj are infimum and supremum of
{

Mj}
j∈Λ, respectively. Hence we can easily obtain the

following theorem:

Theorem 1. (n − SVNR(X),),∧,∨) is a complete lattice, X̃n = {Xn, Xn, · · · , Xn︸ ︷︷ ︸
n

} and ∅̃N =

{∅N ,∅N , · · · ,∅N︸ ︷︷ ︸
n

} are its top element and bottom element, respectively, where Xn and ∅N are two

neutrosophic relations in X and defined as follows: ∀(a, b) ∈ X × X, TXN (a, b) = 1, IXN (a, b) = 0,
FXN (a, b) = 0 and T∅N (a, b) = 0, I∅N (a, b) = 1, F∅N (a, b) = 1. In particular, (SVNR(X),�,�,�)
is a complete lattice.

Theorem 2. Let M = {Ri}i=1,n and N = {Qi}i=1,n be two multigranulation neutrosophic relations set on X,
∀A ∈ SVNS(X), we have

(1) M ∨ NO(A) � MO(A)� NO(A), M ∨ NP(A) = MP(A)� NP(A);

(2) M ∨ NO
(A) � MO

(A)� NO
(A), M ∨ NP

(A) = MP
(A)� NP

(A);
(3) M ∧ NO(A) � MO(A) � NO(A) � MO(A) � NO(A), M ∧ NP(A) � MP(A) � NP(A) �

MP(A)� NP(A);

(4) M ∧ NO
(A) � MO

(A)� NO
(A), M ∧ NP

(A) � MP
(A)� NP

(A).
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Proof. We only show that the case of the optimistic multigranulation neutrosophic approximation operators.

(1) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

TM∨NO(A)(a)
= ∨n

i=1TRi�Qi(A)(a) = ∨n
i=1TRi(A)�Qi(A)(a)

= ∨n
i=1

[
TRi(A)(a) ∧ TQi(A)(a)

]
≤
[
∨n

i=1TRi(A)(a)
]
∧
[
∨n

i=1TQi(A)(a)
]

= TMO(A)(a) ∧ TNO(A)(a)
= TMO(A)�NO(A)(a),

IM∨NO(A)(a)
= ∧n

i=1 IRi�Qi(A)(a) = ∧n
i=1 IRi(A)�Qi(A)(a)

= ∧n
i=1

[
IRi(A)(a) ∨ IQi(A)(a)

]
≥
[
∧n

i=1 IRi(A)(a)
]
∨
[
∧n

i=1 IQi(A)(a)
]

= IMO(A)(a) ∨ INO(A)(a)
= IMO(A)�NO(A)(a),

FM∨NO(A)(a)
= ∧n

i=1FRi�Qi(A)(a) = ∧n
i=1FRi(A)�Qi(A)(a)

= ∧n
i=1

[
FRi(A)(a) ∨ FQi(A)(a)

]
≥
[
∧n

i=1FRi(A)(a)
]
∨
[
∧n

i=1FQi(A)(a)
]

= FMO(A)(a) ∨ FNO(A)(a)
= FMO(A)�NO(A)(a).

Hence, M ∨ NO(A) � MO(A)� NO(A).
(2) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

T
M∨NO

(A)
(a)

= ∧n
i=1TRi�Qi(A)(a) = ∧n

i=1TRi(A)�Qi(A)(a)

= ∧n
i=1

[
TRi(A)(a) ∨ TQi(A)(a)

]
≥
[
∧n

i=1TRi(A)(a)
]
∨
[
∧n

i=1TQi(A)(a)
]

= T
MO

(A)
(a) ∨ T

NO
(A)

(a) = T
MO

(A)�NO
(A)

(a),

I
M∨NO

(A)
(a)

= ∨n
i=1 IRi�Qi(A)(a) = ∨n

i=1 IRi(A)�Qi(A)(a)

= ∨n
i=1

[
IRi(A)(a) ∧ IQi(A)(a)

]
≤
[
∨n

i=1 IRi(A)(a)
]
∧
[
∨n

i=1 IQi(A)(a)
]

= I
MO

(A)
(a) ∧ I

NO
(A)

(a) = I
MO

(A)�NO
(A)

(a),

F
M∨NO

(A)
(a)

= ∨n
i=1FRi�Qi(A)(a) = ∨n

i=1FRi(A)�Qi(A)(a)

= ∨n
i=1

[
FRi(A)(a) ∧ FQi(A)(a)

]
≤
[
∨n

i=1FRi(A)(a)
]
∧
[
∨n

i=1FQi(A)(a)
]

= F
MO

(A)
(a) ∧ F

NO
(A)

(a) = F
MO

(A)�NO
(A)

(a).

Hence, M ∨ NO
(A) � MO

(A)� NO
(A).
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(3) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

TM∧NO(A)(a)
= ∨n

i=1TRi�Qi(A)(a) ≥ ∨n
i=1TRi(A)�Qi(A)(a)

= ∨n
i=1

[
TRi(A)(a) ∨ TQi(A)(a)

]
=
[
∨n

i=1TRi(A)(a)
]
∨
[
∨n

i=1TQi(A)(a)
]

= TMO(A)(a) ∨ TNO(A)(a) ≥ TMO(A)(a) ∧ TNO(A)(a),

IM∧NO(A)(a)
= ∧n

i=1 IRi�Qi(A)(a) ≤ ∧n
i=1 IRi(A)�Qi(A)(a)

= ∧n
i=1

[
IRi(A)(a) ∧ IQi(A)(a)

]
=
[
∧n

i=1 IRi(A)(a)
]
∧
[
∧n

i=1 IQi(A)(a)
]

= IMO(A)(a) ∧ INO(A)(a) ≤ IMO(A)(a) ∨ INO(A)(a),

FM∧NO(A)(a)
= ∧n

i=1FRi�Qi(A)(a) ≤ ∧n
i=1FRi(A)�Qi(A)(a)

= ∧n
i=1

[
FRi(A)(a) ∧ FQi(A)(a)

]
=
[
∧n

i=1FRi(A)(a)
]
∧
[
∧n

i=1FQi(A)(a)
]

= FMO(A)(a) ∧ FNO(A)(a) ≤ FMO(A)(a) ∨ FNO(A)(a).

Hence, M ∧ No(A) � Mo(A)� No(A) � Mo(A)� No(A).
(4) ∀a ∈ X, by Lemma 1 and Definition 6, we have the following:

T
M∧NO

(A)
(a)

= ∧n
i=1TRi�Qi(A)(a) ≤ ∧n

i=1TRi(A)�Qi(A)(a)

= ∧n
i=1

[
TRi(A)(a) ∧ TQi(A)(a)

]
=
[
∧n

i=1TRi(A)(a)
]
∧
[
∧n

i=1TQi(A)(a)
]

= T
MO

(A)
(a) ∧ T

NO
(A)

(a) = T
MO

(A)�NO
(A)

(a),

I
M∧NO

(A)
(a)

= ∨n
i=1 IRi�Qi(A)(a) ≥ ∨n

i=1 IRi(A)�Qi(A)(a)

= ∨n
i=1

[
IRi(A)(a) ∨ IQi(A)(a)

]
=
[
∨n

i=1 IRi(A)(a)
]
∨
[
∨n

i=1 IQi(A)(a)
]

= I
MO

(A)
(a) ∨ T

NO
(A)

(a) = I
MO

(A)�NO
(A)

(a),

F
M∧NO

(A)
(a)

= ∨n
i=1FRi�Qi(A)(a) ≥ ∨n

i=1FRi(A)�Qi(A)(a)

= ∨n
i=1

[
FRi(A)(a) ∨ FQi(A)(a)

]
=
[
∨n

i=1FRi(A)(a)
]
∨
[
∨n

i=1FQi(A)(a)
]

= F
MO

(A)
(a) ∨ F

NO
(A)

(a) = F
MO

(A)�NO
(A)

(a).

Hence, M ∧ NO
(A) � MO

(A)� NO
(A). �

From Theorem 2, we can easily obtain the following corollary:
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Corollary 1. Let M = {Ri}i=1,n and N = {Qi}i=1,n be two multigranulation neutrosophic relations set on
X. If M ) N, then ∀A ∈ SVNS(X),

NO(A) � MO(A), NP(A) � MP(A)), MO
(A) � NO

(A), MP
(A) � NP

(A).

Let HP
n =

{
MP | M ∈ n− SVNR(X)

}
and LP

n =
{

MP | M ∈ n− SVNR(X)
}

be the set of
pessimistic multigranulation neutrosophic upper and lower approximation operators in X, respectively.

• Defined a relation ≤̂ on HP
n as follows: MP≤̂NP if and only if MP

(A) � NP
(A) for each

A ∈ SVNS(X). Then (HP
n , ≤̂) is a poset.

• Defined a relation ≤̂ on LP
n as follows: MP≤̂NP if and only if NP(A) � MP(A) for each A ∈

SVNS(X). Then (LP
n , ≤̂) is a poset.

Let HO
n =

{
MO | M ∈ n− SVNR(X)

}
and LO

n =
{

MO | M ∈ n− SVNR(X)
}

be the set of optimistic
multigranulation neutrosophic upper and lower approximation operators in X, respectively.

• Defined a relation ≤̂ on HO
n as follows: MO≤̂NO if and only if MO

(A) � NO
(A) for each

A ∈ SVNS(X). Then (HO
n , ≤̂) is a poset.

• Defined a relation ≤̂ on LO
n as follows: MO≤̂NO if and only if NO(A)) � MO(A) for each

A ∈ SVNS(X). Then (LO
n , ≤̂) is a poset.

Theorem 3. (1) ∀
{

MP
i

}
i∈I
⊆(HP

n , ≤̂) and I be a index set, we can define union and intersection of MP
i

as follows:

∨̂
i∈I

MP
i = ∨

i∈I
Mi

P , ∧̂
i∈I

MP
i = [ ∧

i∈I
Mi]

P
,

where [ ∧
i∈I

Mi] = ∨
{

M ∈ n− SVNR(X) | ∀A ∈ SVNS(X), MP
(A) � �i∈I MP

i (A)
}

. Then ∨̂
i∈I

MP
i and

∧̂
i∈I

MP
i are supremum and infimum of

{
MP

i

}
i∈I

, respectively.

(2) ∀
{

MP
i

}
i∈I
⊆(LP

n , ≤̂) and I be a index set, we can define union and intersection of MP
i as follows:

∨̂
i∈I

MP
i = ∨

i∈I
Mi

P, ∧̂
i∈I

MP
i = [ ∨

i∈I
Mi]

P,

where [ ∨
i∈I

Mi] = ∨
{

M ∈ n− SVNR(X) | ∀A ∈ SVNS(X),�i∈I MP
i (A) � MP(A)

}
. Then ∨̂

i∈I
MP

i and

∧̂
i∈I

MP
i are supremum and infimum of

{
MP

i

}
i∈I

, respectively.

Proof. We only show (1).
Let M = ∨

i∈I
Mi, then Mi ) M for each i ∈ I. By Corollary 1, we have Mi

P
(A) � MP

(A) for

any A ∈ SVNS(X). Thus Mi
P ≤̂MP. If M� is a multigranulation neutrosophic relations set such that

Mi
P≤̂M�P for each i ∈ I, then A ∈ SVNS(X), Mi

P
(A) � M�P

(A). Hence,

MP
(A) = ∨

i∈I
Mi

P
(A) = �i∈I Mi

P
(A) � M�P

(A).

Thus MP≤̂M�P. So ∨̂
i∈I

MP
i = ∨

i∈I
Mi

P is the supremum of
{

MP
i

}
i∈I

.

Let Q = [ ∧
i∈I

Mi], then ∀B ∈ SVNS(X), we have

QP
(B) = [ ∧

i∈I
Mi]

P
(B) � �i∈I MP

i (B) � MP
i (B).
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Thus QP≤̂MP
i for each i ∈ I. If M∗ is a multigranulation neutrosophic relations set such that

M∗P≤̂MP
i for each i ∈ I, then

M∗P
(A) � �i∈I MP

i (A).

By the construction of [ ∧
i∈I

Mi], we can easily obtain M∗ ) [ ∧
i∈I

Mi] = Q. Hence,

M∗P≤̂ [ ∧
i∈I

Mi]
P
= QP,

So ∧̂
i∈I

MP
i = [ ∧

i∈I
Mi]

P
is the infimum of

{
MP

i

}
i∈I

. �

Remark 2. (1) ∀A ∈ SVNS(X), ∀a ∈ X, we can calculate that the following formula holds.

T
∅̃N

P
(A)

(a) = 0, I
∅̃N

P
(A)

(a) = 1, F
∅̃N

P
(A)

(a) = 1,

T
∅̃N

P
(A)

(a) = 1, I
∅̃N

P
(A)

(a) = 0, F
∅̃N

P
(A)

(a) = 0.

Hence, ∀M ∈ n− SVNR(X), ∅̃N
P
(A) � MP

(A) and MP(A) � ∅̃N
P
(A). It shows that ∅̃N

P≤̂MP

and ∅̃N
P≤̂MP, i.e., ∅̃N

P
is the bottom element of (HP

n , ≤̂) and ∅̃N
P is the bottom element of (LP

n , ≤̂). By
Theorem 3, we have the following result: Both (HP

n , ≤̂, ∧̂, ∨̂) and (LP
n , ≤̂, ∧̂, ∨̂) are complete lattices.

(2) Similarly, we can prove that both (HO
n , ≤̂, ∧̂, ∨̂) and (LO

n , ≤̂, ∧̂, ∨̂) are complete lattices if we can use
the generalization formula of

M ∨ NO
(A) � MO

(A)� NO
(A) and M ∨ NO(A) � MO(A)� NO(A),

However, by Theorem 2, we known that

M ∨ NO
(A) � MO

(A)� NO
(A) and M ∨ NO(A) � MO(A)� NO(A).

So, naturally, there is the following problem:
How to give the supremum and infimum of the optimistic multigranulation neutrosophic rough

approximation operators?

In the one-dimensional case, for convenience, we will use H =
{

R | R ∈ SVNR(X)
}

and
L = {R | R ∈ SVNR(X)} to denote the set of neutrosophic upper and lower approximation operators
in X, respectively. According to Lemma 1, Remark 2 and Theorem 3, we have the following result: both
(H,≤,∧,∨) and (L,≤,∧,∨) are complete lattices (it is also the one-dimensional case of Reference [23]).

4. The Relationship between Complete Lattices (H,≤,∧,∨) and (L,≤,∧,∨)
In this section, we will study the relationship between complete lattices (H,≤,∧,∨) and

(L,≤,∧,∨). Set

A =
{

SVNR(X) | ∀R1, R2 ∈ SVNR(X), R1 ≤ R2 ⇔ R1 � R2 ⇔ R1 ≤ R2
}

.

Firstly, we will give an example to illustrate thatA is not an empty family.

Example 1. Let X = {a} be a single point set, R1 and R2 are two single valued neutrosophic relations in X.

(1) If R1 ≤ R2, then R1 � R2. In fact, if R1 ≤ R2, then R1(A) � R2(A) for each A ∈ SVNS({a}).
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Thus, ∀a ∈ X,

TR1(A)(a) ≤ TR2(A)(a), IR1(A)(a) ≥ IR2(A)(a), and FR1(A)(a) ≥ FR2(A)(a).

Moreover, TR1(a, a) ∧ TA(a) ≤ TR2(a, a) ∧ TA(a), IR1(a, a) ∨ IA(a) ≥ IR2(a, a) ∨ IA(a),
and FR1(a, a) ∨ FA(a) ≥ FR2(a, a) ∨ FA(a). Considering the arbitrariness of A, in particular, take
A = {< a, (1, 0, 0) >}, we have TR1(a, a) ≤ TR2(a, a), IR1(a, a) ≥ IR2(a, a) and FR1(a, a) ≥ FR2(a, a).

Hence, R1 � R2.

Similarly, we also can show that the following result:
(2) If R1 ≤ R2, then R1 � R2. So, by (1), (2) and Corollary 1, we have SVNR({a}) ∈ A, i.e., A is not an

empty family.

Now, we will give the relationship between complete lattices (H,≤,∧,∨) and (L,≤,∧,∨).

Proposition 1. If SVNR(X) ∈ A, then [�i∈I Ri] = �i∈I Ri = [�i∈I Ri], where I is a index set, and Ri ∈
SVNR(X) for each i ∈ I.

Proof. We first show that [�i∈I Ri] = �i∈I Ri. Let R be a neutrosophic relation in X such that
�i∈I Ri(A) � R(A) for each A ∈ SVNS(X), then Ri ≥ R, this is equivalent to Ri � R since SVNR(X) ∈
A. Thus �i∈I Ri � R. Moreover, by the construction of [�i∈I Ri], we have �i∈I Ri � [�i∈I Ri]. On the
other hand, we can show that �i∈I Ri(A) � �i∈I Ri(A) for each A ∈ SVNS(X). So

[�i∈I Ri] = �
{

R ∈ SVNR(X) | ∀A ∈ SVNS(X),�i∈I Ri(A) � R(A)
}
� �i∈I Ri.

Hence [�i∈I Ri] = �i∈I Ri.
Now, we show that �i∈I Ri = [�i∈I Ri]. Let R be a single valued neutrosophic relation in such

that �i∈I Ri(A) � R(A) for each A ∈ SVNS(X), then Ri ≥ R, this is equivalent to Ri � R since
SVNR(X) ∈ A. Thus �i∈I Ri � R. Moreover, by the construction of [�i∈I Ri]. We have �i∈I Ri �
[�i∈I Ri].

On the other hand, we can show that �i∈I Ri(A) � �i∈I Ri(A) for each A ∈ SVNS(X). So

[�i∈I Ri] = �{R ∈ SVNR(X) | ∀A ∈ SVNS(X),�i∈I Ri(A) � R(A)} � �i∈I Ri.

Hence, [�i∈I Ri] = �i∈I Ri.
From above proved, we know that [�i∈I Ri] = �i∈I Ri = [�j∈J Rj]. �

Theorem 4. If SVNR(X) ∈ A, then (SVNR(X),�,�,�) and (H,≤,∧,∨) are complete lattice isomorphism.

Proof. Define a mapping φ12 : SVNR(X)→ H as follows: ∀R ∈ SVNR(X), φ12(R) = R. Obviously,
φ12 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ12 is one-one.
∀{Ri}i∈I ⊆ SVNR(X) and I be a index set. By Theorem 3 and Proposition 1, we have

φ12(�i∈I Ri) = �i∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ12(Ri),

and
φ12(�i∈I Ri) = �i∈I Ri = [�i∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ12(Ri).

Hence, φ12 preserves arbitrary union and arbitrary intersection. �

From above proved, we know that (SVNR(X),�,�,�) and (H,≤,∧,∨) are complete
lattice isomorphism.
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Theorem 5. If SVNR(X) ∈ A, then (SVNR(X),�,�,�) and (L,≤,∧,∨) are complete lattice isomorphism.

Proof. Define a mapping φ13 : SVNR(X)→ L as follows:∀R ∈ SVNR(X), φ12(R) = R. Obviously,
φ13 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ13 is one-one.
∀{Ri}i∈I ⊆ SVNR(X) and I be an index set. By Theorem 3 and Proposition 1, we have

φ13(�i∈I Ri) = �i∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ13(Ri),

and
φ13(�i∈I Ri) = �i∈I Ri = [�i∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ13(Ri).

Hence, φ13 preserves arbitrary union and arbitrary intersection. �

From the above proof, we know that (SVNR(X),�,�,�) and (L,≤,∧,∨) are complete
lattice isomorphism.

Theorem 6. If SVNR(X) ∈ A, then (H,≤,∧,∨) and (L,≤,∧,∨) are complete lattice isomorphism.

Proof. Through Theorems 4 and 5, we immediately know that the conclusion holds. We can also prove
it by the following way:

Define a mapping φ23 : H → L as follows: ∀R ∈ H, φ23(R) = R. Through Theorems 4 and 5,
there must be one and only one R ∈ SVNR(X) such that φ23(R) = R for each R ∈ L. This shows
φ23 is surjective. If R1 = R2, notice that SVNR(X) ∈ A, we know that R1 = R2. So φ23 is one-one.
∀{Ri

}
i∈I ⊆ H and I be a index set. Through Theorem 3 and Proposition 1, we have

φ23( ∨
i∈I

Ri) = φ23(�i∈I Ri) = �i∈I Ri = ∨
i∈I

Ri = ∨
i∈I

φ13(Ri),

and
φ13( ∧

i∈I
Ri) = φ13([�i∈I Ri]) = [�i∈I Ri] = [�i∈I Ri] = ∧

i∈I
Ri = ∧

i∈I
φ23(Ri).

Hence, φ23 preserves arbitrary union and arbitrary intersection. So, (H,≤,∧,∨) and (L,≤,∧,∨)
are complete lattice isomorphism. �

Remark 3. Through Theorems 4–6, we can ascertain that φ12,φ13 and φ23 are isomorphic mappings among
complete lattices. Moreover, the following diagram can commute, i.e., φ23 ◦ φ12 = φ13 (see Figure 1).

 

                  

             

                       

Figure 1. Correspondence relationship among three complete lattices.

5. Conclusions

Following the idea of multigranulation neutrosophic rough sets on a single domain as introduced
by Bo et al. (2018), we gave the lattice structure of the pessimistic multigranulation neutrosophic
rough approximation operators. In the one-dimensional case, for each special SVNR(X), we gave a
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one-to-one correspondence relationship between complete lattices (H,≤) and (L,≤). Unfortunately,
at the moment, we haven’t solved the following problems:

(1) Can the supremum and infimum of the optimistic multigranulation neutrosophic rough
approximation operators be given?

(2) For any set , are (H,≤) and (L,≤) isomorphic between complete lattices?
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Abstract: Fixed points of functions have applications in game theory, mathematics, physics, economics
and computer science. The purpose of this article is to compute fixed points of a general quadratic
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1. Introduction

Geometry of space-time can be understood by the choice of convenient algebra which reveals
hidden properties of the physical system. These properties are best describable by the reflections
of symmetries of physical signals that we receive and of the algebra using in the measurement
process [1–3]. Thus, we need normed division algebras with a unit element for the better understanding
of these systems. For these reasons, higher dimension algebras have been an immense source of
inspiration for mathematicians and physicists as their representations pave the way towards easy
understanding of universal phenomenons. These algebras present nice understandings towards general
rotations and describe some easy ways to consider geometric problems in mechanics and dynamical
systems [4,5].

Quaternion algebra have been playing a central role in many fields of sciences such as differential
geometry, human imaging, control theory, quantum physics, theory of relativity, simulation of particle
motion, 3D geo-phones, multi-spectral images, signal processing including seismic velocity analysis,
seismic waveform de-convolution, statistical signal processing and probability distributions (see [6–8]
and references therein). It is known that rotations of 3D-Minkowski spaces can be represented by
the algebra of split quaternions [5]. Applications of these algebras can be traced in the study of
Graphenes, Black holes, quantum gravity and Gauge theory. A classical application of split quaternion
is given in [1] where Pavsic discussed spin gauge theory. Quantum gravity of 2 + 1 dimension has
been described by Carlip in [2] using split quaternions. A great deal of research is in progress where
authors are focused on considering matrices of quaternions and split-quaternions [9–12]. The authors
in [13] gave a fast structure-preserving method to compute singular value decomposition of quaternion
matrices. Split quaternions play a vital role in geometry and physical models in four-dimensional
spaces as the elements of split quaternion are used to express Lorentzian rotations [14]. Particularly,

Symmetry 2018, 10, 405; doi:10.3390/sym10090405 www.mdpi.com/journal/symmetry388
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the geometric and physical applications of split quaternions require solving split quaternionic
equations [15,16]. Similarly, octonion and split octonion algebras play important role in mathematical
physics. In [8], authors discussed ten dimensional space-time with help of these eight dimensional
algebras. In [16], authors gave comprehensive applications of split octonions in geometry. Anastasiou
developed M-theory algebra with the help of octonions [3].

This article mainly covers finite algebras of split quaternion and split octonion over prime fields Zp.
Split quaternion algebra over R was in fact introduced by James Cockle in 1849 on already established
quaternions by Hamilton in 1843. Both of these algebras are actually associative, but non-commutative,
non-division ring generated by four basic elements. Like quaternion, it also forms a four dimensional
real vector space equipped with a multiplicative operation. However, unlike the quaternion algebra,
the split quaternion algebra contains zero divisors, nilpotent and nontrivial idempotents. For a detailed
description of quaternion and its generalization (octonions), please follow [15–18]. As mathematical
structures, both are algebras over the real numbers which are isomorphic to the algebra of 2× 2 real
matrices. The name split quaternion is used due to the division into positive and negative terms in the
modulus function. The set (1, î, ĵ, k̂) forms a basis. The product of these elements are î2 = −1, ĵ2 =

1 = k̂2, î ĵ = k̂ = − ĵî, ĵk̂ = −î = −k̂ ĵ, k̂î = ĵ = −îk̂, î ĵk̂ = 1. It follows from the defining relations that
the set (±1,±i,±j,±k) is a group under split quaternion multiplication which is isomorphic to the
dihedral group of a square. Following Table 1 encodes the multiplication of basis split quaternions.

Table 1. Split quaternion multiplication table.

. 1 î ĵ k̂

1 1 î ĵ k̂
î î −1 k̂ − ĵ
ĵ ĵ −k̂ 1 −î
k̂ k̂ ĵ î 1

The split octonion is an eight-dimensional algebraic structure, which is non-associative algebra
over some field with basis 1, t́1, t́2, t́3, t́4, t́5, t́6 and t́7. The subtraction and addition in split octonions is
computed by subtracting and adding corresponding terms and their coefficients. Their multiplication
is given in this table. The product of each term can be given by multiplication of the coefficients and a
multiplication table of the unit split octonions is given following Table 2.

Table 2. Split octonions’ multiplication table.

. t́1 t́2 t́3 t́4 t́5 t́6 t́7

t́1 −1 t́3 −t́2 −t́7 t́6 −t́5 t́4
t́2 −t́3 −1 t́1 −t́6 −t́7 t́4 t́5
t́3 t́2 −t́1 −1 t́5 −t́4 −t́7 t́6
t́4 t́7 t́6 −t́5 1 −t́3 t́2 t́1
t́5 −́t6 t́7 t́4 t́3 1 −t́1 t́2
t́6 t́5 −́t4 t́7 −t́2 t́1 1 t́3
t́7 −́t4 −́t5 −t́6 −t́1 −t́2 −t́3 1

From the table, we get very useful results:

t́2
i = −1, ∀i = 1, ..., 3,

t́2
i = 1, ∀i = 4, ..., 7,

t́i t́j = −t́j t́i, ∀i 	= j.
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Brand in [19] computed the roots of a quaternion over R. Strictly speaking, he proved mainly
De Moivres theorem and then used it to find nth roots of a quaternion. His approach paved way for
finding roots of a quaternion in an efficient and intelligent way. Ozdemir in [20] computed the roots of
a split quaternion. In [21], authors discussed Euler’s formula and De Moivres formula for quaternions.
In [15], authors gave some geometrical applications of the split quaternion. It is important to mention
that these two algebras can also be constructed for Zp over prime finite fields of characteristic P. In this
way, we obtain finite algebras with entirely different properties. Recently, the ring of quaternion over
Zp was studied by Michael Aristidou in [22,23], where they computed the idempotents and nilpotents
in H/Zp. In [18], authors computed the roots of a general quadratic polynomial in algebra of split
quaternion over R. They also computed fixed points of general quadratic polynomials in the same
sittings. A natural question arises as to what happens with the same situations over Zp. Authors
in [24] discussed split-quaternion over Zp in algebraic settings.

In the present article, we first obtain the roots of a general quadratic polynomial in the algebra of
split quaternion over Zp. Some characterizations of fixed points in terms of the coefficients of these
polynomials are also given. As a consequence, we give some computations about algebraic properties
of particular classes of elements in this settings. We also give examples as well as the codes that create
these examples with ease. For a computer program, we refer to Appendix A at the end of the article.
We hope that our results will be helpful in understanding the communication in machine language
and cryptography.

Definition 1. Let x ∈ Hs, x = a0 + a1 î + a2 ĵ + a3k̂ where ai ∈ R. The conjugate of x is defined as
x̄ = a0 − a1 î− a2 ĵ− a3k̂. The square of pseudo-norm of x is given by

N(x) = xx̄ = a2
0 + a2

1 − a2
3 − a2

4. (1)

Definition 2. Let x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp. The conjugate of x is defined as

x = a0 +
7

∑
i=1

ai t́i

= a0 +
7

∑
i=1

ai t́i

= a0 −
7

∑
i=1

ai t́i

= a0 +
7

∑
i=1

ái t́i,

where ái = −ai where i = 1, 2, ..., 7. The square of pseudo-norm of x is given by

N(x) = xx =
3

∑
i=0

a2
i −

7

∑
i=4

a2
i .

2. Main Results

In this section, we formulate our main results. At first, we give these results for split quaternions
and then we move towards split octonions.
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2.1. Some Fixed Points Results of Quadratic Functions in Split Quaternions over the Prime Field

We first solve a general quadratic polynomial in algebra of split quaternion. As a consequence,
we find fixed points of associated functions in this algebra.

Theorem 1. The quadratic equation ax2 + bx + c = 0 a, b, c ∈ Zp, where p is an odd prime and p � a, has root

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp if and only if a0 = p−b
2a and a2

1 − a2
2 − a2

3 = ( p2−b2

4a2 ) + c
a .

Proof.

x = a0 + a1 î + a2 ĵ + a3k̂, (2)

x2 = (a0 + a1 î + a2 ĵ + a3k̂)2, (3)

= a2
0 − a2

1 + a2
2 + a2

3 + 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= a2
0 + a2

0 − ‖x‖+ 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= 2a2
0 − ‖x‖+ 2a0a1 î + 2a0a2 ĵ + 2a0a3k̂

= 2a0(a0 + a1 î + a2 ĵ + a3k̂)− ‖x‖
= 2a0x− ‖x‖.

Putting x and x2 into ax2 + bx + c = 0, we have

2aa0x− a‖x‖+ bx + c = 0,

(2aa0 + b)x− a‖x‖+ c = 0,

(2aa0 + b)(a0 + a1 î + a2 ĵ + a3k̂)− a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0,

(2aa0 + b)a0 + (2aa0 + b)(a1 î + a2 ĵ + a3k̂)− a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0.

Comparing vector terms in the above equation, we get

2aa0 + b = 0, (4)

a0 =
−b
2a

=
p− b

2a
. (5)

Comparing constant terms, we get

(2aa0 + b)a0 − a(a2
0 + a2

1 − a2
2 − a2

3) + c = 0, (6)

(2aa0 + b)a0 − aa2
0 + c = a(a2

1 − a2
2 − a2

3), (7)

aa2
0 + ba0 + c = a(a2

1 − a2
2 − a2

3), (8)

(aa0 + b)a0 + c = a(a2
1 − a2

2 − a2
3), (9)

(a(
p− b

2a
) + b)

p− b
2a

+ c = a(a2
1 − a2

2 − a2
3), (10)

p2 − b2

4a2 +
c
a

= a2
1 − a2

2 − a2
3. (11)

On the basis of the above results 2.1, we arrive at a new result given as
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Theorem 2. The fixed point of function f (x) = x2 + (b + 1)x + c where a, b, c ∈ Zp, p is an odd prime and

p � a is x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp if and only if a0 = p−b
2a and a2

1 − a2
2 − a2

3 = ( p2−b2

4a2 ) + c
a .

Proof. It is enough to give a new relation f (x) = g(x) + x, where g(x) = x2 + bx + c. Then, existence
of fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate
from the above theorem.

Theorem 3. Let p be an odd prime, p � a, if x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp is a root of quadratic equation
x2 + bx + c = 0, where a, b, c ∈ Zp. Then, conjugate of x i.e., x̄ = a0 − a1 î− a2 ĵ− a3k̂ ∈ Hs/Zp is also the
root of quadratic equation x2 + bx + c = 0.

Proof. The proof follows simply by using condition of Theorem 1 applied on the conjugate of x.

Theorem 4. Let p be an odd prime, p � a, if x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp be the fixed point of function
f (x) = x2 +(b+ 1)x+ c, where a, b, c ∈ Zp. Then, the conjugate of x i.e., x̄ = a0− a1 î− a2 ĵ− a3k̂ ∈ Hs/Zp

also be the fix point of function f (x) = x2 + (b + 1)x + c.

Proof. Again, it is enough to use relation f (x) = g(x) + x where g(x) = x2 + bx + c. Then, the existence
of fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

The following two theorems are new results about the number of fixed points of f (x) = x2 + (b +
1)x + c.

Theorem 5. |Fix( f )| =
{

p2, b = 0, c = 0,
p2 + p + 2, c = 0, b 	= 0.

Proof. We split the proof in cases.

Case 1: For c = 0 and b = 0, we obtain two Hs/Zp ∼= M2(Zp),where p is prime. It is easy to see
that Hs/Zp and M2(Zp) are isomorphic as algebras, the map ϕ : Hs/Zp *−→ M2(Zp) is defined as
ϕ(a0 + a1 î + a2 ĵ + a3k̂) = a0(

10
01) + a1(

0p−1
10 ) + a2(

0p−1
p−10) + a3(

p−10
01 ). As Hs/Zp ∼= M2(Zp), so we find the

number of nilpotent elements in M2(Zp). It is well-known by Fine and Herstein that the probability
that n× n matrix over a Galois field having pα elements have pα.n nilpotent elements. As in our case,
α = 1 and n = 2, thus the probability that the 2× 2 matrix over Zp has p−2 nilpotent elements:

|nil(M2(Zp))|
|(M2(Zp|)) = p−2, (12)

|nil(M2(Zp))|
p4 = p−2, (13)

|nil(M2(Zp))| = p2. (14)

Case 2: For c = 0 and b 	= 0, we obtain as many points as there are matrices M2(Zp) because of the
above isomorphism, and, using the argument given in 2, we arrive at the result.

Theorem 6. Let b 	= 0 and c 	= 0. Then, |Fix( f )| =

⎧⎪⎨⎪⎩
p2 − p, p ≡ 1(mod3),
p2 + p, p ≡ 2(mod3),
3, p = 3.

Proof. Case 1: For p = 3, there is nothing to prove.
Case 2: For p ≡ 1(mod3), we have two further cases:
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case I: If p ≡ 3(mod4),
x2 + y2 = z has a unique solution for z = 0.
x2 + y2 = z has (p + 1) options for z 	= 0, thus (p + 1)(p− 1) options in all.
Thus, we get that x2 + y2 = z has total number of solutions (p + 1)(p− 1) + 1 = p2 − 1 + 1 = p2.
Now, when z = 0, we get no solution for a1:

� = 1(p + 1) + 2(
p− 1

2
)(p + 1) (15)

= p + 1 + p2 − 1 (16)

= p2 + p. (17)

case II: If p ≡ 1(mod4),
x2 + y2 = z has (2p− 1) solutions for z = 0.
x2 + y2 = z has (p− 1) options for z 	= 0, thus (p− 1)(p− 1) options in all.
Thus, we get that x2 + y2 = z has total number of solutions
(p− 1)(p− 1) + (2p− 1) = p2 − p− p + 1 + 2p− 1 = p2.
Now, when z = 0, we get two solutions for a1:

� = 2(2p− 1) + 2(
p− 3

2
)(p− 1) + 1(p− 1) (18)

= 4p− 2 + p2 − p− 3p + 3 + p− 1 (19)

= p2 + p. (20)

Case 3: For p ≡ 2(mod3), we have two further cases:
case I: If p ≡ 3(mod4)
x2 + y2 = z has a unique solution for z = 0.
x2 + y2 = z has (p + 1) options for z 	= 0. So (p + 1)(p− 1) options in all.
Thus we get, x2 + y2 = z has total number of solutions (p + 1)(p− 1) + 1 = p2 − 1 + 1 = p2

Now, when z = 0, we get no solution for a1:

� = 1(2) + 2(
p− 3

2
)(p + 1) + 1(p + 1) (21)

= 2 + p2 + p− 3p− 3 + p + 1 (22)

= p2 − p. (23)

case II: If p ≡ 1(mod4),
x2 + y2 = z has (2p− 1) solutions for z = 0.
x2 + y2 = z has (p− 1) options for z 	= 0. So (p− 1)(p− 1) options in all.
Thus we get, x2 + y2 = z has total number of solutions
(p− 1)(p− 1) + (2p− 1) = p2 − p− p + 1 + 2p− 1 = p2.
Now, when z = 0, we get two solutions for a1.

� = 1(p− 1) + 2(
p− 1

2
)(p− 1) (24)

= p− 1 + p2 − p− p + 1 (25)

= p2 − p. (26)
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2.2. Some Algebraic Consequences about Hs/Zp

We can understand the algebraic structure of Hs/Zp with ease. The following results are simple
facts obtained from the previous section.

Corollary 1. Let p be an odd prime, an element

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp (27)

is idempotent⇔ a0 = p+1
2 and a2

1 − a2
2 − a2

3 = p2−1
4 .

Proof. Taking a = 1, b = p− 1 and c = p in the above theorem, we have

x2 + (p− 1)x + p = 0,

x2 − x = 0,

x2 = x

has root

x = a0 + a1 î + a2 ĵ + a3k̂,

where

a0 =
p− b

2a

=
p + 1

2
,

and

a2
1 − a2

2 − a2
3 =

p2 − b2

4a2 +
c
a
=

p2 − (−1)2

4(1)2 +
0
1

=
p2 − 1

4
.

In other words, we can say x is idempotent.

We also present similar results but without proof as they can be derived similarly.

Corollary 2. Let p be an odd prime an element and

x = a0 + a1 î + a2 ĵ + a3k̂ ∈ Hs/Zp (28)

is idempotent if and only if a0 = p+1
2 and ‖x‖ = 0.

Corollary 3. Let p be an odd prime and x ∈ Hs/Zp. If x is an idempotent, then ‖x‖ = 0.

Corollary 4. Let p be an odd prime. If x ∈ Hs/Zp is idempotent, then x̄ is also an idempotent.

Corollary 5. Let p be an odd prime. If x ∈ Hs/Zp and x is of the form x = a0. If x is idempotent, then it is
either 0 or 1.
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Corollary 6. Let p be an odd prime and x ∈ Hs/Zp of the form

x = a0 + a1 î + a2 ĵ + a3k̂, (29)

where at least one ai 	= 0. Then, x is not an idempotent.

Corollary 7. Let p be an odd prime, and the quadratic equation x2 = 0 has root x = a0 + a1 î + a2 ĵ + a3k̂ ∈
Hs/Zp, where a0 = p

2 and a2
1 − a2

2 − a2
3 = p2

4 .

Proof. Taking a = 1, b = 0 and c = 0 in the above theorem, we have that

x2 + (p)x + o = 0,

x2 = 0

has root

x = a0 + a1 î + a2 ĵ + a3k̂,

where

a0 =
p− b

2a
=

p− 0
2

=
p
2

,

and

a2
1 − a2

2 − a2
3 =

p2 − b2

4a2 +
c
a
=

p2 − (0)2

4(1)2 +
0
1

a2
1 − a2

2 − a2
3 =

p2

4
.

In other words, we can say x is nilpotent.

2.3. Some Fixed Points Results of Quadratic Functions in Split Octonions over the Prime Field

Theorem 7. The quadratic equation ax2 + bx + c = 0 where a, b, c ∈ Zp, p is an odd prime and p � a has root

x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp if and only if a0 = p−b

2a and ∑3
i=1 a2

i −∑7
i=4 a2

i = ( p2−b2

4a2 ) + c
a .

Proof.

ax2 + bx + c = 0.
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Take x = a0 + ∑7
i=1 ai t́i, we have

x2 = (a0 +
7

∑
i=1

ai t́i)
2

= (a0)
2 + (

7

∑
i=1

ai t́i)
2 + 2a0

7

∑
i=1

ai t́i

= (a0)
2 −

7

∑
i=1

a2
i + 2a0

7

∑
i=1

ai t́iwhere(
7

∑
i=1

ai t́i)
2 = −

7

∑
i=1

a2
i

= (a0)
2 + a2

0 − ||x||+ 2a0

7

∑
i=1

ai t́iwhere||x|| = a0 +
7

∑
i=1

a2
i

= 2(a0)
2 − ||x||+ 2a0

7

∑
i=1

ai t́i

= 2(a0)
2 + 2a0

7

∑
i=1

ai t́i − ||x||,

= 2a0x− ||x||.

Putting it in the above equation, we get

a(2a0x− ||x||) + bx + c = 0, (30)

2aa0x− a||x||+ bx + c = 0, (31)

(2aa0 + b)x− a||x||+ c = 0. (32)

Here, x = a0 + ∑7
i=1 ai t́i and ||x|| = a2

0 + ∑3
i=1 a2

i −∑7
i=3 a2

i , we have

(2aa0 + b)(a0 +
7

∑
i=1

ai t́i)− a[a2
0 +

3

∑
i=1

a2
i −

7

∑
i=3

a2
i ] + c = o,

(2aa0 + b)a0 + (2aa0 + b)
7

∑
i=1

ai t́i − aa2
0 − a

3

∑
i=1

a2
i + a

7

∑
i=3

a2
i + c = o,

Comparing vector terms on both sides, we have

(2aa0 + b)ai = 0,

2aa0 + b = 0,

a0 =
−b
2a

,

a0 =
p− b

2a
.

Comparing constant terms on both sides, we have

(2aa0 + b)a0 − aa2
0 − a

3

∑
i=1

a2
i + a

7

∑
i=4

a2
i + c = o,

2aa2
0 + ba0 − aa2

0 + c = a
3

∑
i=1

a2
i − a

7

∑
i=4

a2
i ,

a0(aa0 + b) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],
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where a0 = p−b
2a .

(
p− b

2a
)(a(

p− b
2a

) + b) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p− b

2a
)(

p + b
2

) + c = a[
3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p2 − b2

4a
) + c = a[

3

∑
i=1

a2
i −

7

∑
i=4

a2
i ],

(
p2 − b2

4a2 ) +
c
a

=
3

∑
i=1

a2
i −

7

∑
i=4

a2
i .

Theorem 8. The fixed points of function f (x) = ax2 + (b + 1)x + c are x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp, where

a0 = p−b
2a and ∑3

i=1 a2
i −∑7

i=4 a2
i = ( p2−b2

4a2 ) + c
a .

Proof. It is enough to use relation f (x) = g(x) + x where g(x) = ax2 + bx + c. Then, the existence of
fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

Corollary 8. The fixed point of function f (x) = x2 + x are x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp where a0 = p

2 and

∑3
i=1 a2

i −∑7
i=4 a2

i = p2

4 .

Proof. It is obvious from the above theorem, only by taking a = 1, b = 0 and c = 0.

Theorem 9. Let p be an odd prime. If x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp is the root of the quadratic equation

ax2 + bx + c = 0 a, b, c ∈ Zp, then x = a0 + ∑7
i=1 ái t́i ∈ Os/Zp is also the root of the quadratic equation

ax2 + bx + c = 0 a, b, c ∈ Zp.

Proof.

x = a0 +
7

∑
i=1

ai t́i = a0 +
7

∑
i=1

áiti = a0 −
7

∑
i=1

ai t́i (33)

= a0 +
7

∑
i=1

ái t́i, (34)

where ái = −ai where i = 1, 2, ..., 7 as

a0 =
p− b

2a
and

3

∑
i=1

ái
2 −

7

∑
i=4

ái
2 =

3

∑
i=1

(−ai)
2 −

7

∑
i=4

(−ai)
2 (35)

=
3

∑
i=1

(ai)
2 −

7

∑
i=4

(ai)
2 (36)

=
p2 − b2

4a2 +
c
a

. (37)

It implies that x is the root of the quadratic equation ax2 + bx + c = 0 a, b, c ∈ Zp.
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Theorem 10. If the function f (x) = ax2 + (b + 1)x + c has fixed point x = a0 + ∑7
i=1 ai t́i ∈ Os/Zp, then

x = a0 + ∑7
i=1 ái t́i ∈ Os/Zp also is the fixed point of function f (x) = ax2 + (b + 1)x + c.

Proof. It is enough to use relation f (x) = g(x) + x, where g(x) = ax2 + bx + c. Then, the existence of
fixed points for f (x) is equivalent to the solutions of g(x). Then, the required result is immediate from
the above theorem.

3. Some Algebraic Consequences about Os/Zp

Proposition 1. Let p be an odd prime and an element

x = a0 +
7

∑
i=1

ai t́i ∈ Os/Zp

is idempotent⇔ a0 = p+1
2 and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − 1
4

.

Proof. Taking a = 1, b = p− 1 and c = p in the above theorem, we have

x2 + (p− 1)x + p = 0, (38)

x2 − x = 0, (39)

x2 = x (40)

has root

x = a0 +
7

∑
i=1

ai t́i, (41)

where

a0 =
p− b

2a
=

p− p + 1
2

(42)

=
1
2

, (43)

and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − b2

4a2 +
c
a
=

p2 − (−1)2

4(1)2 +
0
1

(44)

=
p2 − 1

4
. (45)

In other words, we can say that x is idempotent.

Proposition 2. Let p be an odd prime and element

x = a0 +
7

∑
i=1

ai t́i ∈ Os/Zp (46)

is idempotent if and only if a0 = p+1
2 and ‖x‖ = 0.

Proposition 3. Let p be an odd prime and x ∈ Os/Zp. If x is an idempotent, then ‖x‖ = 0.
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Proposition 4. Let p be an odd prime. If x ∈ Os/Zp is idempotent, then x̄ is also an idempotent.

Proposition 5. Let p be an odd prime. If x = a0 ∈ Os/Zp is idempotent, then it is either 0 or 1.

Proposition 6. Let p be an odd prime and x ∈ Os/Zp be of the form

x =
7

∑
i=1

ai t́i, (47)

where at least one ai 	= 0. Then, x is not an idempotent.

Proposition 7. Let p be an odd prime and the quadratic equation x2 = 0 has root x = a0 + ∑7
i=1 ai t́i ∈

Os/Zp, where a0 = p
2 and ∑3

i=1 a2
i −∑7

i=4 a2
i = p2

4 .

Proof. Taking a = 1, b = 0 and c = 0 in the above theorem, we have

x2 + (p)x + o = 0, (48)

x2 = 0 (49)

has root

x = a0 +
7

∑
i=1

ai t́i, (50)

where

a0 =
p− b

2a
=

p− 0
2

(51)

=
p
2

(52)

and

3

∑
i=1

a2
i −

7

∑
i=4

a2
i =

p2 − b2

4a2 +
c
a
=

p2 − (0)2

4(1)2 +
0
1

(53)

=
p2

4
. (54)

In other words, we can say that x is nilpotent.

Using results of the previous section and programs mentioned in the Appendix A, we can give
many examples.

4. Examples

In this section, we add examples relating to the previous section. These results are generated
by the codes given in Appendix A. These along with other examples can be created using codes,
and results can be applied to crypto systems and communication channel systems.
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Example 1. We find all solutions of x2 − x = 0 over Hs/Z7. As above, we see that, if x ∈ Hs/Z7, then
a0 = 7−(−1)

2 = 4 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2
1 + a2

2 +

a2
3 = −5 or a2

1 − a2
2 − a2

3 = 5.

(0, 1, 1) (0, 1, 6) (0, 3, 0) (0, 4, 0) (0, 1, 1) (0, 6, 1) (0, 6, 6) (1, 1, 3)
(1, 1, 4) (1, 3, 1) (1, 3, 6) (1, 4, 1) (1, 4, 6) (1, 6, 4) (2, 2, 3) (2, 2, 4)
(2, 3, 2) (2, 3, 3) (2, 3, 5) (2, 4, 2) (2, 4, 3) (2, 4, 5) (2, 5, 3) (2, 5, 4)
(3, 0, 2) (3, 0, 5) (3, 2, 0) (3, 3, 3) (3, 3, 4) (3, 4, 3) (3, 4, 4) (3, 5, 0)
(4, 0, 2) (4, 0, 5) (4, 2, 0) (4, 3, 3) (4, 3, 4) (4, 4, 3) (4, 4, 4) (4, 5, 0)
(5, 0, 6) (5, 2, 3) (5, 2, 4) (5, 3, 2) (5, 3, 5) (5, 4, 2) (5, 4, 5) (5, 5, 3)
(5, 5, 4) (5, 6, 0) (6, 1, 4) (6, 3, 6) (6, 4, 1) (6, 4, 6) (6, 6, 3) (6, 6, 4)

.

Example 2. We compute all solutions of 2x2 + x = 0 over Hs/Z5. As above, we see that, if x ∈ Hs/Z5, then
a0 = 1 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2

1 + a2
2 + a2

3 = −4
or a2

1 − a2
2 − a2

3 = 4.

(0, 0, 1) (1, 4, 1) (2, 2, 4) (3, 1, 2) (3, 4, 2)
(0, 0, 4) (1, 4, 4) (2, 3, 1) (3, 1, 3) (3, 4, 3)
(0, 1, 0) (2, 0, 0) (2, 3, 4) (3, 2, 1) (4, 1, 1)
(0, 4, 0) (2, 1, 2) (2, 4, 2) (3, 2, 4) (4, 1, 4)
(1, 1, 1) (2, 1, 3) (2, 4, 3) (3, 3, 1) (4, 4, 1)
(1, 1, 4) (2, 2, 1) (3, 0, 0) (3, 3, 4) (4, 4, 4)

.

Example 3. We compute all solutions of x2 + x+ 1 = 0 over Hs/Z7. As above, we see that, if x ∈ Hs/Z7, then
a0 = 3 and following are the values of a1, a2 and a3, respectively satisfying the equation −a2

1 + a2
2 + a2

3 = −6
or a2

1 − a2
2 − a2

3 = 6.

(0, 0, 1) (1, 0, 3) (6, 0, 3) (2, 1, 2) (5, 1, 2) (3, 1, 3) (4, 1, 3)
(0, 0, 6) (1, 0, 4) (6, 0, 4) (2, 1, 5) (5, 1, 5) (3, 1, 4) (4, 1, 4)
(0, 1, 0) (1, 1, 6) (6, 1, 6) (2, 2, 1) (5, 2, 1) (3, 3, 1) (4, 3, 1)
(0, 2, 2) (1, 3, 0) (6, 3, 0) (2, 2, 6) (5, 2, 6) (3, 3, 6) (4, 3, 6)
(0, 2, 5) (1, 4, 0) (6, 4, 0) (2, 5, 1) (5, 5, 1) (3, 4, 1) (4, 4, 1)
(0, 5, 2) (1, 6, 1) (6, 6, 1) (2, 5, 6) (5, 5, 6) (3, 4, 6) (4, 4, 6)
(0, 5, 5) (1, 1, 1) (6, 1, 1) (2, 6, 2) (5, 6, 2) (3, 6, 3) (4, 6, 2)
(0, 6, 0) (1, 6, 6) (6, 6, 6) (2, 6, 5) (5, 6, 5) (3, 6, 4) (4, 6, 5)

.

Example 4. We compute all solutions of x2 = 0 over Hs/Z5. As above, we see that, if x ∈ Hs/Z5, then
a0 = 0 and following are the values of a1, a2 and a3, respectively, satisfying the equation −a2

1 + a2
2 + a2

3 = 0 or
a2

1 − a2
2 − a2

3 = 0.

(0, 0, 0) (0, 3, 4) (1, 4, 0) (2, 0, 3) (3, 3, 0)
(0, 1, 2) (0, 4, 2) (4, 0, 1) (2, 2, 0) (0, 3, 1)
(0, 1, 3) (0, 4, 3) (4, 0, 4) (2, 3, 0) (1, 1, 0)
(0, 2, 1) (1, 0, 1) (4, 1, 0) (3, 0, 2) (2, 0, 2)
(0, 2, 4) (1, 0, 4) (4, 4, 0) (3, 0, 3) (3, 2, 0)

.

Example 5. We compute all solutions of x2 − x = 0 over Os/Z3 (idempotents in the split octonion algebra).
As above we see that x = a0 + ∑7

i=1 ai t́i ∈ Os/Z3 where a0 = 3−(−1)
2 = 2 and following is the values of a1,

a2, a3, a4, a5, a6 and a7 respectively satisfying the equation ∑3
i=1 a2

i −∑7
i=4 a2

i = ( p2−b2

4a2 ) + c
a = 2 .

We do so by putting values for p = 3, a = 1, b = −1, c = 0 in above given code.
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(2, 1, 0, 1, 1, 0, 2); (2, 1, 0, 1, 1, 1, 0); (2, 1, 0, 1, 1, 2, 0); (2, 1, 0, 1, 2, 0, 1);

(2, 1, 0, 1, 2, 0, 2); (2, 1, 0, 1, 2, 1, 0); (2, 1, 0, 1, 2, 2, 0); (2, 1, 0, 2, 0, 1, 1);

(2, 1, 0, 2, 0, 1, 2); (2, 1, 0, 2, 0, 2, 1); (2, 1, 0, 2, 0, 2, 2); (2, 1, 0, 2, 1, 0, 1);

(2, 1, 0, 2, 1, 0, 2); (2, 1, 0, 2, 1, 1, 0); (2, 1, 0, 2, 1, 2, 0); (2, 1, 0, 2, 2, 0, 1);

(2, 1, 0, 2, 2, 0, 2); (2, 1, 0, 2, 2, 1, 0); (2, 1, 0, 2, 2, 2, 0); (2, 1, 1, 0, 0, 0, 1);

(2, 1, 1, 0, 0, 0, 2); (2, 1, 1, 0, 0, 1, 0); (2, 1, 1, 0, 0, 2, 0); (2, 1, 1, 0, 1, 0, 0);

(2, 1, 1, 0, 2, 0, 0); (2, 1, 1, 1, 0, 0, 0); (2, 1, 1, 1, 1, 1, 1); (2, 1, 1, 1, 1, 1, 2);

(2, 1, 1, 1, 1, 2, 1); (2, 1, 1, 1, 1, 1, 1); (2, 1, 1, 1, 1, 1, 2); (2, 1, 1, 1, 1, 2, 1);

(2, 1, 1, 1, 1, 2, 2); (2, 1, 1, 1, 2, 1, 1); (2, 1, 1, 1, 2, 1, 2); (2, 1, 1, 1, 2, 2, 1);

(2, 1, 1, 1, 2, 2, 2); (2, 1, 1, 2, 0, 0, 0); (2, 1, 1, 2, 1, 1, 1); (2, 1, 1, 2, 1, 1, 2);

(2, 1, 1, 2, 1, 2, 1); (2, 1, 1, 2, 1, 2, 2); (2, 1, 1, 2, 2, 1, 1); (2, 1, 1, 2, 2, 1, 2);

(2, 1, 1, 2, 2, 2, 1); (2, 1, 1, 2, 2, 2, 2); (2, 1, 2, 0, 0, 0, 1); (2, 1, 2, 0, 0, 0, 2);

(2, 1, 2, 0, 0, 1, 0); (2, 1, 2, 0, 0, 2, 0); (2, 1, 2, 0, 1, 0, 0); (2, 1, 2, 0, 2, 0, 0);

(2, 1, 2, 1, 0, 0, 0); (2, 1, 2, 1, 1, 1, 1); (2, 1, 2, 1, 1, 1, 2); (2, 1, 2, 1, 1, 2, 1);

(2, 1, 2, 1, 1, 2, 2); (2, 1, 2, 1, 2, 1, 1); (2, 1, 2, 1, 2, 1, 2); (2, 1, 2, 1, 2, 2, 1);

(2, 1, 2, 1, 2, 2, 2); (2, 1, 2, 2, 0, 0, 0); (2, 1, 2, 2, 1, 1, 1); (2, 1, 2, 2, 1, 1, 2);

(2, 1, 2, 2, 1, 2, 1); (2, 1, 2, 2, 1, 2, 2); (2, 1, 2, 2, 2, 1, 1); (2, 1, 2, 2, 2, 1, 2);

(2, 1, 2, 2, 2, 2, 1); (2, 1, 2, 2, 2, 2, 2); (2, 2, 0, 0, 0, 0, 0); (2, 2, 0, 0, 1, 1, 1);

(2, 2, 0, 0, 1, 1, 2); (2, 2, 0, 0, 1, 2, 1); (2, 2, 0, 0, 1, 2, 2); (2, 2, 0, 0, 1, 2, 2);

(2, 2, 0, 0, 2, 1, 1); (2, 2, 0, 0, 2, 1, 2); (2, 2, 0, 0, 2, 2, 1); (2, 2, 0, 0, 2, 2, 2);

(2, 2, 0, 1, 0, 1, 1); (2, 2, 0, 1, 0, 1, 2); (2, 2, 0, 1, 0, 2, 1); (2, 2, 0, 1, 0, 2, 2);

(2, 2, 0, 1, 1, 0, 1); (2, 2, 0, 1, 1, 0, 2); (2, 2, 0, 1, 1, 1, 0); (2, 2, 0, 1, 1, 2, 0);

(2, 2, 0, 1, 2, 0, 1); (2, 2, 0, 1, 2, 0, 2); (2, 2, 0, 1, 2, 1, 0); (2, 2, 0, 1, 2, 2, 0);

(2, 2, 0, 2, 0, 1, 1); (2, 2, 0, 2, 0, 1, 1); (2, 2, 0, 2, 0, 1, 2); (2, 2, 0, 2, 0, 2, 1);

(2, 2, 0, 2, 0, 2, 2); (2, 2, 0, 2, 1, 0, 1); (2, 2, 0, 2, 1, 0, 2); (2, 2, 0, 2, 1, 1, 0);

(2, 2, 0, 2, 1, 2, 0); (2, 2, 0, 2, 2, 0, 1); (2, 2, 0, 2, 2, 0, 2); (2, 2, 0, 2, 2, 1, 0);

(2, 2, 0, 2, 2, 2, 0); (2, 2, 1, 0, 0, 0, 1); (2, 2, 1, 0, 0, 0, 2); (2, 2, 1, 0, 0, 1, 0);

(2, 2, 1, 0, 0, 2, 0); (2, 2, 1, 0, 1, 0, 0); (2, 2, 1, 0, 2, 0, 0); (2, 2, 1, 1, 0, 0, 0);

(2, 2, 1, 1, 1, 1, 1); (2, 2, 1, 1, 1, 1, 1); (2, 2, 1, 1, 1, 1, 2); (2, 2, 1, 1, 1, 2, 1);

(2, 2, 1, 1, 1, 2, 2); (2, 2, 1, 1, 2, 1, 1); (2, 2, 1, 1, 2, 1, 2); (2, 2, 1, 1, 2, 2, 1);

(2, 2, 1, 1, 2, 2, 2); (2, 2, 1, 2, 0, 0, 0); (2, 2, 1, 2, 1, 1, 1); (2, 2, 1, 2, 1, 1, 2);

(2, 2, 1, 2, 1, 2, 1); (2, 2, 1, 2, 1, 2, 2); (2, 2, 1, 2, 2, 1, 1); (2, 2, 1, 2, 2, 1, 2);

(2, 2, 1, 2, 2, 2, 1); (2, 2, 1, 2, 2, 2, 2); (2, 2, 2, 0, 0, 0, 1); (2, 2, 2, 0, 0, 0, 2);

(2, 2, 2, 0, 0, 1, 0); (2, 2, 2, 0, 0, 2, 0); (2, 2, 2, 0, 1, 0, 0); (2, 2, 2, 0, 2, 0, 0);

(2, 2, 2, 1, 0, 0, 0); (2, 2, 2, 1, 1, 1, 1); (2, 2, 2, 1, 1, 1, 2); (2, 2, 2, 1, 1, 2, 1);

(2, 2, 2, 1, 1, 2, 2); (2, 2, 2, 1, 2, 1, 2); (2, 2, 2, 1, 2, 2, 1); (2, 2, 2, 1, 2, 2, 2);

(2, 2, 2, 2, 0, 0, 0); (2, 2, 2, 2, 1, 1, 1); (2, 2, 2, 2, 1, 1, 2); (2, 2, 2, 2, 1, 2, 1);

(2, 2, 2, 2, 1, 2, 2); (2, 2, 2, 2, 2, 1, 1); (2, 2, 2, 2, 2, 1, 2); (2, 2, 2, 2, 2, 2, 1);

(2, 2, 2, 2, 2, 2, 2).
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5. Conclusions and Further Directions

In this article, we produced some general results about fixed points of a general quadratic
polynomial in algebras of split quaternion and octonion over Zp. We not only characterized these
points in terms of the coefficients of these polynomials but also gave the cardinality of these points and
also the programs that produced fixed points. We arrived at the following new results for a general
quadratic function.

Theorem 11. |Fix( f )| =
{

p2, b = 0, c = 0,
p2 + p + 2, c = 0, b 	= 0.

Theorem 12. Let b 	= 0 and c 	= 0. Then, |Fix( f )| =

⎧⎪⎨⎪⎩
p2 − p, p ≡ 1(mod3);
p2 + p, p ≡ 2(mod3);
3, p = 3.

We also give the following two new results for the fixed points of a general quadratic quaternionic
equation without proofs. Proofs are left as an open problem.

Theorem 13. |Fix( f )| =
{

p6, b = 0, c = 0;
p6 + p3, c = 0, b 	= 0.

Theorem 14. Let b 	= 0 and c 	= 0. Then, |Fix( f )| =

⎧⎪⎨⎪⎩
p6 + p3, p ≡ 1(mod3);
p6 − p3, p ≡ 2(mod3);
p6, p = 3.

We like to remark that new results can be obtained for a general cubic polynomials in these algebras.

6. Data Availability Statement

No such data has been used to prove these results.

Author Contributions: M.M. conceived the idea and drafted the manuscript. Computations have been done
by A.R., A.N. and M.S.S., S.M.K. edited and made final corrections. All authors read and approved the
final manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to the reviewers for their valuable comments and suggestions.
The authors are thankful to the University of Education Lahore for providing us a platform to present this article
at ICE 2018.

Conflicts of Interest: The authors declare that they have no competing interests.

Appendix A. Computer Codes

Here, we put together some programs to compute fixed points and roots easily.

Appendix A.1. Program for Finding Solutions of the Quadratic Equation in Hs/Zp

Following codes, count and print the number of solutions of quadratic equation ax2 + bx + c = 0
in Hs/Zp. These codes print the string a1, a2, a3 with the understanding that the co-efficient a0 = p−b

2a is

fixed in Hs/Zp and satisfying the relation a2
1 − a2

2 − a2
3 = ( p2−b2

4a2 ) + c
a or −a2

1 + a2
2 + a2

3 = (−p2+b2

4a2 )− c
a

for Hs/Zp.

CODE: This code will give solutions of the quadratic equation only by putting values for p, a, b, c,
where p is an odd prime and a, b, cεZp.

#include<iostream>
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#include<conio.h>

using namespace std;

main()

{

int a1, a2, a3, p, n, a, b, c, count;

count=0;

cout<<"Enter value for p: ";

cin>>p;

cout<<"Enter value for a: ";

cin>>a;

cout<<"Enter value for b: ";

cin>>b;

cout<<"Enter value for c: ";

cin>>c;

n=((p*p-b*b)/(4*a*a))+(c/a);

while(n<0)

n=n+p;

for(int i=0; i<p; i++)

{

a3=i;

for(int j=0; j<p; j++)

{

a2=j;

for(int k=0; k<p; k++)

{

a1=k;

int sum=(a1*a1)-(a2*a2)-(a3*a3);

while(sum<0)

sum=sum+p;

if(sum%p==n)

{

count++;

cout<<a1<<" "<<a2<<" "<<a3<<endl;

}

}

}

}

cout<<"\nCount: "<<count;

getch();

}

Appendix A.2. Program for Finding Roots of the Quadratic Equation in Os/Zp

Following codes, count and print the number of solutions of quadratic equation ax2 + bx+ c = 0 in
Os/Zp. These codes print the string a1, a2, a3, a4, a5, a6, a7 with the understanding that the co-efficient

a0 = p−b
2a is fixed in Os/Zp and satisfying the relation ∑3

i=1 a2
i −∑7

i=4 a2
i = ( p2−b2

4a2 ) + c
a for Os/Zp.

CODE: This code will give solutions of the quadratic equation only by putting values for p, a, b, c,
where p is an odd prime and a, b, c ∈ Zp.

#include <iostream>
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#include <fstream>

using namespace std;

int main(){

int a1,a2,a3,a4,a5,a6,a7;

int sum=0;

int p;

int n=0;

int count=2;

int totalCount=0;

cout<<"Enter value of p: ";

cin>>p;

n = ((p*p -1)/4)%p;

for(int i=0;i<p;i++)

{

a1 = i;

for(int j=0; j<p; j++)

{

a2 = j;

for(int k=0; k<p; k++)

{

a3 = k;

for(int l=0; l<p;l++)

{

a4 = l;

for(int m=0; m<p; m++)

{

a5 = m;

for(int q=0; q<p; q++)

{

a6 = q;

for(int r=0; r<p;r++)

{

a7 = r;

totalCount++;

cout<<a1<<" "<<a2<<" "<<a3<<" "<<a4<<" "<<a5

<<" "<<a6<<" "<<a7<<endl;

//dataFile << a1 << endl;

sum = a1*a1+a2*a2+a3*a3-a4*a4-a5*a5-a6*a6-a7*a7;

if(sum%p == n)

count++;

}

}

}

}

}

}

}

cout<<"Total Count is: "<<totalCount<<endl;

cout<<"Count is: "<<count<<endl;

system("pause");
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return 0;

}
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Abstract: Electric multiple unit (EMU) trains’ high-level maintenance planning is a discrete problem
in mathematics. The high-level maintenance process of the EMU trains consumes plenty of time.
When the process is undertaken during peak periods of the passenger flow, the transportation
demand may not be fully satisfied due to the insufficient supply of trains. In contrast, if the process
is undergone in advance, extra costs will be incurred. Based on the practical requirements of
high-level maintenance, a 0–1 programming model is proposed. To simplify the description of the
model, candidate sets of delivery dates, i.e., time windows, are generated according to the historical
data and maintenance regulations. The constraints of the model include maintenance regulations,
the passenger transportation demand, and capacities of workshop. The objective function is to
minimize the mileage losses of all EMU trains. Moreover, a modified particle swarm algorithm is
developed for solving the problem. Finally, a real-world case study of Shanghai Railway is conducted
to demonstrate the proposed method. Computational results indicate that the (approximate) optimal
solution can be obtained successfully by our method and the proposed method significantly reduces
the solution time to 500 s.

Keywords: Electric multiple unit trains; high-level maintenance planning; time window;
0–1 programming model; particle swarm algorithm

1. Introduction

In China, high-speed railway has become a priority option for the long trip due to its convenience
and comfortableness, and it account for 60% of rail total passenger traffic. It has long been a difficult
problem for the China Railway (CR) that supply enough available Electric Multiple Unit (EMU) trains
in tourist rush seasons to fulfill heavy transportation tasks. The EMU trains are the unique vehicles
running on the China high-speed railway. In addition, they have a high purchase cost and complicated
maintenance regulations. Therefore, the problem becomes much worse.

The gigh-level maintenance planning (HMP) is an important part of the operation and
maintenance management for the EMU trains, which covers the third-level maintenance,
the fourth-level maintenance and the fifth-level maintenance. Due to the complex regular preventive
maintenance, uneven distribution of passenger flow, limited maintenance capacity of workshop and
several weeks for maintenance service time, the EMU trains’ HMP needs to be scheduled in advance,
of which the planning horizon lasts for a natural year or more. The HMP’s aim is to provide enough

Symmetry 2018, 10, 349; doi:10.3390/sym10080349 www.mdpi.com/journal/symmetry406
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available EMU trains for the long peak period of the passenger flow (such as the Spring Festival and
the summer holiday) under the conditions of limited maintenance resources and the regular preventive
maintenance policy. The HMP is a prerequisite for the EMU operational plan, the second-level
maintenance plan, the job shop scheduling at workshop, and the outsourcing plan for high-level
maintenance workloads (see Figure 1).

HMP for EMU trains

Operational Plan

Job Shop Scheduling
 at workshop

Outsourcing Plan for 
High-level Maintenance    

 

Figure 1. The position of high-level maintenance plan (HMP) in the operation and maintenance
management system for the electric multiple unit (EMU) trains.

In the CR system, according to the maintenance regulations [1], the EMU trains that have been put
into operation in the first period will undergo the high-level maintenance (HM) procedures together in
the next few years. When lots of EMU trains are sent to workshop in tourist rush season, it will lead
to the travel needs of passengers cannot be met. Not only the operating income but also the traveler
satisfaction level on high-speed railway transportation will decrease. Meanwhile, it will increase the
maintenance costs when the HM procedures are undergone in advance. Due to the limited capacities
of workshops, the maintenance service time will be prolonged when plenty of EMU trains undergo
the maintenance procedures together. Therefore, to scientifically formulate the HMP that meets the
travel demands and reduces maintenance cost as much as possible is a complicated combinatorial
optimization problem that needs to be solved in the field of high-speed railway operation.

For the maintenance system, Stuchly et al. [2] and Rezvanizaniani et al. [3] developed a condition
based maintenance management system, Shimada [4] introduced the accident prevention maintenance
system, and Cheng and Tsao [5] proposed a preventive and corrective maintenances system.
These maintenance systems can reduce the maintenance costs and improve the utilization efficiency of
EMU train.

Many experts and scholars study the first-level and the second-level maintenances. Maróti and
Kroon [6,7] proposed that adjust the operation schedule ahead of time to ensure the maintenance
procedures can be undertook in time. Tsuji et al. [8] developed a novel approach based on ant
colony optimization and Wang et al. [9] designed an algorithm based column generation to solve
the EMU train maintenance plan problem. Giacco et al. [10] integrated the rolling stock circulation
problem and short-term maintenance planning, and a mixed-integer linear-programming formulation
was proposed.

In other fields, scheduled maintenance planning problems also have been researched.
Ziarati et al. [11], Lingaya et al. [12], and Wang et al. [13] studied the locomotive operation and
maintenance. Moudania and Félix [14] and Mehmet and Bilge [15] developed the aircraft operation
and maintenance. Budai et al. [16] researched the long-term planning of railway maintenance works.
In addition, Grigoriev et al. [17] tried to find the length of maintenance plan to minimize the total
operation costs.
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There are a few relevant literatures available for the EMU trains HMP problem. Lin et al. [18]
designed a state function to show the state of EMU train on each day during the planning horizon,
and a non-linear 0–1 programming model and its solution strategy was proposed. Wu et al. [19]
proposed a time-state network to optimize the EMU trains HMP problem. Li et al. [20] presented
a forecast method to estimate the maintenance quantity of the EMU trains in future.

Compared to the existing researches, a 0–1 programming model and solution strategy
were proposed. In the mathematic model, all necessary regulations and practical constraints
were considered.

The remainder of this paper is organized as follows. The problem description of HMP in the CR
system is presented in Section 2. In Section 3, a 0–1 programming model is proposed, and then the
solution algorithm on the basis of particle swarm algorithm is designed in Section 4. An empirical case
is provided to verify the effectiveness of the model and the algorithm in Section 5. The last section
gives some conclusions and the possible areas of further research.

2. HMP Problem at CR

The HMP, a typical discrete system, is a tactical plan that determines when the EMU trains to
undergo the high-level maintenance. The length of the planning horizon lasts for about one year.
Each train undergoes the high-level maintenance at most once during the planning horizon because of
the interval between two adjacent HM processes is longer than the span of planning horizon; the order
of the maintenance level for a train is the third-level, the fourth-level, the third-level, the fifth level,
the third-level and so on until they are scrapped [1]. Therefore, the level of the high-level maintenance
can be deduced beforehand according to the records and regulations of maintenance. According to the
maintenance regulations, each train has a time window during which the train can be delivered to
workshop on any day. The lower bound of the time window is the earliest date on which a train can be
delivered to workshop while the upper bound is the latest date. The detailed problem descriptions
can be referred to Lin et al. [18] and Wu et al. [19]. Here, we focus on the generation steps of the
time window.

The estimated time of arrival (eta) of the HM can be easily calculated [20]. In this process,
the average daily operating mileage is used to describe the daily usage of EMU trains before HM
procedures. The notations used in the generation process of the time window are listed in Table 1.

Table 1. Notations used in the generation process of the time window.

Notations Definition

e The index of EMU trains;
E The set of all EMU trains;
E′ An empty set;

etae The eta of the HM for the EMU train e;
e(m) The type of the EMU train e;
e(g) The maintenance level of the EMU train e;

R+
mg

The maximum value of the difference between the actual operating mileage before the HM
and the etae for the train of which the type is m and maintenance level is g;

R−mg
The maximum value of the difference between the etae and the actual operating mileage
before the HM for the train of which the type is m and the maintenance level is g;

le The average daily operating mileage for the EMU train e before HM.

The time window of the start time for the HM can be generated as follows.
Step 1. Take an EMU train e from E, and calculate the eta of HM [20];
Step 2. According to e(m) and e(g), determine the offset range of the operating mileage for the

EMU train e: [−R−e(m),e(g),R
+
e(m),e(g)];

Step 3. Calculate the offset range of the time window for the EMU train e:
[−R−e(m),e(g)/le,R+

e(m),e(g)/le];
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Step 4. Determine the time window of the EMU train e: [etae − R−e(m),e(g)/le,etae + R+
e(m),e(g)/le],

and set E = E− {e}, E′ = E′ + {e};
Step 5. If E = φ, turn to Step 6, otherwise turn to Step 1;
Step 6. Set E = E′, over.
The EMU train’s time window is continuous if we set the “day” as the minimum time unit. In

this way, the time window can be presented by a time interval.
In addition, the HMP aims to ensure that there are enough well-conditioned trains to meet the

passenger transport demand. We set a maximum HM rate to guarantee it. The HM rate is the ratio of
the number of trains in HM state to the fleet size.

3. Mathematical Model of the HMP Problem

In this section, we propose a 0–1 programming model for the HMP problem. The constraints of
the model include the maintenance interval, the passenger transportation demand, and the capacity of
workshop. The objective function is to minimize the mileage losses of all EMU trains.

3.1. Notations

The all notations that used in the model are listed in Table 2.

Table 2. Notations used in the model.

Notations Definition

Indices

e The index of EMU trains;
m The index of types for the EMU trains;
t The index of dates during the planning horizon;
g The index of the maintenance level;

Set

E The set of all EMU trains; e ∈ E
M The set of all types; m ∈ M
T The set of all dates during the planning horizon; t ∈ T
G The set of all maintenance levels; g ∈ G

Input parameters

e(g) The maintenance level of the EMU train e;
e(m) The type of the EMU train e;

c The unit penalty fee for the unused mileage before the HM;
etae The eta for the EMU train e;
le The average daily operating mileage for the EMU train e before the HM;

WSe The first date of the time window for the EMU train e, WSe = etae − R−e(m),e(g)/le (See Section 2);

WEe The last date of the time window for the EMU train e, WEe = etae + R+
e(m),e(g)/le (See Section 2);

αm
The conversion coefficient for train of which the type is m, indicates whether the train includes
sixteen cars or not, if yes, then αm = 2; otherwise, αm = 1;

θt The maximum HM rate on the t-th day;
Inv The fleet size (the standard set);
dt

m The maximum number of an EMU train in the HM state for the m type on the t-th day;
bg The maximum number of an EMU train in the g-th level maintenance state;

Ng
The maximum number of an acceptable EMU train in the g-th level maintenance state at the
same time;

Q A sufficiently large positive number;
Hg

m The maintenance service time for an EMU train with the m-th type and the g-th level;

Jg
m

The minimum interval time for delivering another train after an EMU train with the m-th type
and the g-th level enters the workshop;

|T| The length of the planning horizon;
|E| The number of the EMU trains which need to be maintained during the planning horizon;
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Table 2. Cont.

Notations Definition

Decision Variables

xt
e

Binary variable, indicates whether the EMU train e selects the t-th day to start the HM
procedures during the planning horizon, xt

e = 1 if yes, xt
e = 0 otherwise;

yt
e

Binary variable, indicates whether the EMU train e in the e(g)-th level maintenance state on the
t-th day during the planning horizon, yt

e = 1 if yes, yt
e = 0 otherwise;

zt
e

Binary variable, indicate whether the EMU train e in the e(g)-th level delivery interval on the
t-th day during the planning horizon, zt

e = 1 if yes, zt
e = 0 otherwise;

3.2. Optimization Objective

The objective function of the mathematical model is to maximize the service efficiency of the EMU
trains, i.e., to minimize the unutilized mileage. In this way, the objective function can be presented
as follows.

minZ = c ∑
t∈[WSe ,WEe ]

∑
e∈E

(WEe − t)lext
e (1)

3.3. Constraints Analysis

According to Section 2, each train e can choose one and only one delivery date during the time
window. This is the uniqueness constraint.

∑
t∈[WSe ,WEe ]

xt
e = 1 ∀ e ∈ E (2)

Any time t out of the time window for the train e cannot be selected.

xt
e = 0 ∀ e ∈ E, t /∈ [WSe, WEe] and t ∈ T (3)

The θt is a variable according to travel demand which should be guaranteed.
Theoretically, the value of θt is different for each day during the planning horizon. To describe this
requirement, a set of constraints established as follows.

∑
e∈E

αe(m)y
t
e ≤ θt · Inv ∀ t ∈ T (4)

Because of the various itineraries, the number of the trains with the specific type in the HM state
must be less than the given threshold value on the t-th day. Constraints in this respect can be expressed
as follows.

∑
e∈E|e(m)=m

yt
e ≤ dt

m ∀m ∈ M, t ∈ T (5)

The number of trains in each level of the HM state should not be exceeded the capacity of
workshops. A set of constraints can be listed as follows.

∑
e∈E|e(g)=g

yt
e ≤ bg ∀ g ∈ G, t ∈ T (6)

Meanwhile, restricted by the limited resources, only a few trains are permitted to enter the
workshop over several days. This situation can be described in the form of mathematical inequalities
as follows.

∑
e∈E|e(g)=g

zt
e ≤ Ng ∀ g ∈ G, t ∈ T (7)
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In addition, the logical relationships between those three sets of decision variables are presented
as follows.

(xk
e − 1)Q ≤ (

k+He(g)
e(m)
−1

∑
t=k

yt
e − He(g)

e(m)
) ≤ (1− xk

e )Q k ∈ [WSe, WEe], ∀e ∈ E (8)

|T|+He(g)
e(m)

∑
t=1

yt
e = He(g)

e(m)
∀ e ∈ E (9)

(xk
e − 1)Q ≤ (

k+Je(g)
e(m)
−1

∑
t=k

zt
e − Je(g)

e(m)
) ≤ (1− xk

e )Q k ∈ [WSe, WEe], ∀e ∈ E (10)

|T|+Je(g)
e(m)

∑
t=1

zt
e = Je(g)

e(m)
∀ e ∈ E (11)

Finally, all of the decision variables are binary variables.

xt
e, yt

e, zt
e ∈ {0, 1} ∀ e ∈ E, t ∈ T (12)

3.4. Model Construction

On the basis of above analysis, a 0–1 programming model for the EMU train HMP problem is
proposed as follows.

HMP model : min Z = c ∑
t∈[WSe ,WEe ]

∑
e∈E

(WEe − t)lext
e

s.t. ∑
t∈[WSe ,WEe ]

xt
e = 1 ∀ e ∈ E

xt
e = 0 ∀ e ∈ E, t /∈ [WSe, WEe] and t ∈ T

∑
e∈E

αe(m)y
t
e ≤ θt · Inv ∀ t ∈ T

∑
e∈E|e(m)=m

yt
e ≤ dt

m ∀m ∈ M, t ∈ T

∑
e∈E|e(g)=g

yt
e ≤ bg ∀ g ∈ G, t ∈ T

∑
e∈E|e(g)=g

zt
e ≤ Ng ∀ g ∈ G, t ∈ T

(xk
e − 1)Q ≤ (

k+He(g)
e(m)
−1

∑
t=k

yt
e − He(g)

e(m)
) ≤ (1− xk

e )Q k ∈ [WSe, WEe], ∀e ∈ E

|T|+He(g)
e(m)

∑
t=1

yt
e = He(g)

e(m)
∀ e ∈ E

(xk
e − 1)Q ≤ (

k+Je(g)
e(m)
−1

∑
t=k

zt
e − Je(g)

e(m)
) ≤ (1− xk

e )Q k ∈ [WSe, WEe], ∀e ∈ E
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|T|+Je(g)
e(m)

∑
t=1

zt
e = Je(g)

e(m)
∀ e ∈ E

xt
e, yt

e, zt
e ∈ {0, 1} ∀ e ∈ E, t ∈ T

We can see from the HMP model that the number of all decision variables equals to 3× |T| × |E|
that is the product of two factors: the time span of the planning horizon and the number of trains.
But the search space will reach |T |̂|E| according to the model. It is too complicated to be solved by
using CPLEX or Gurobi within a reasonable time. Thus, a meta-heuristic solution strategy based on
the particle swarm optimization (PSO) algorithm is designed to address this problem.

4. Modified Particle Swarm Optimization Algorithm

PSO algorithm is a population based stochastic optimization technique motivated by social
behavior of organisms. PSO algorithm has the advantage of fast convergence speed and high accuracy
solution and it is easy to be applied in most areas [21], which makes it attract great attention from
researchers. The algorithm can also be used in solving the combinatorial optimization problem [22,23].
In this section, we present a modified particle swarm optimization (MPSO) algorithm to solve the
HMP model based on analysis and preprocess.

4.1. Processing of Model Constraints

The constraint conditions of the HMP model need to be processed before applying the MPSO
algorithm. Constraints (2), (3), (8)–(12) are the logical relationships, and they can be observed by the
specific encoding rules (see the latter section), while the others can be removed by the penalty function
method. For the value of the penalty factor, it is necessary to combine the actual application of the
EMU trains and the strength of the constraint. Among the Inequations (4)–(7), the Inequation (7) has
the strongest constraint and the Inequation (4) has the weakest constraint. The relationship of the
penalty coefficient is λ4 > λ3 > λ2 > λ1. The optimization model can be presented as follows.

min W = c ∑
t∈[WSe ,WEe ]

∑
e∈E

(WEe − t)lext
e + λ1 ∑

t∈T
max{0, ∑

e∈E
αe(m)yt

e − θt · Inv}
+λ2 ∑

t∈T
∑

m∈M
max{0, ∑

e∈E|e(m)=m
yt

e − dt
m}+ λ3 ∑

t∈T
∑

g∈G
max{0, ∑

e∈E|e(g)=g
yt

e − bg}+ λ4 ∑
t∈T

∑
g∈G

max{0, ∑
e∈E|e(g)=g

zt
e − Ng} (13)

s.t. (2), (3), (8)–(12).

4.2. General Particle Swarm Optimization Algorithm

In general PSO algorithm, the basic update equations of the velocity and position of the particles
are as follows:

Vi(r + 1) = ωVi(r) + c1ξ(HBi(r)− Pi(r)) + c2η(GB(r)− Pi(r)) (14)

Pi(r + 1) = Pi(r) + Vi(r + 1) (15)

where Vi(r) and Pi(r) denote the velocity and the position, respectively, for particle i in the r − th
iteration. HBi(r) denotes the best position in the history for particle i by the end of the r− th iteration;
GB(r) denotes the best position in the history for all of the particles by the end of the r− th iteration.
ω denotes the inertia weight; c1 denotes the self-learning factor; c2 denotes the social learning factor;
ξ and η are the random numbers in [0, 1].
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4.3. MPSO and Solution Strategy

4.3.1. Inertia Weight

In order to make the particles have a better search ability in the early stage of evolution and have
a better development ability in the later stage of the evolution, the linear time-varying inertia weight is
adopted in this paper. The inertia weight can be calculated as follows.

ω(r) = ωmax − (ωmax −ωmin)·r/MAXR (16)

where ω(r) denotes the inertia weight at the r-th iteration. ωmax and ωmin denotes the maximum
inertia weight and the minimum inertia weight, respectively. And MAXR denotes the maximum
number of the evolution iterations.

4.3.2. Learning Factor

In the same way, in order to make the particles strengthen the global search ability in the early
stage and converge to the global optimum in the later period, we decrease the self-learning factor and
increase the social learning factor continuously during the process of optimization. The calculation
formulae are as follows.

c1(r) = c′1 + (c′′ 1 − c′1)·r/MAXR (17)

c2(r) = c′2 + (c′′ 2 − c′2)·r/MAXR (18)

where c1(r) and c2(r) denote the self-learning factor and the social learning factor in the r− th iteration.
c′1 and c′′ 1 denote the initial value and the final value for the self-learning factor; c′2 and c′′ 2 denote
the initial value and the final value for the social learning factor; they are the constants.

4.3.3. Update Equations

The particle continuously updates its position in the search space at an unfixed speed. The velocity
represents the variation of position in magnitude and direction like the definition in classical physics,
and it has the same dimension as the position. Let hbesti(r) denote the corresponding fitness value
of HBi(r). Let gbest(r) denote the corresponding fitness value of GB(r). The fitness value can be
calculated by the formula (13). The update equations of the position and velocity for the particle i are
as follows.

Vi(r + 1) = ω(r)·Vi(r) + c1(r)·ξ(r)·(HBi(r)− Pi(r)) + c2(r)·η(r)·(GB(r)− Pi(r)) (19)

Pi(r + 1) = Pi(r) + Vi(r + 1) (20)

where ξ(r) and η(r) are the random numbers in [0,1].
Each dimension of the velocity of a particle is limited to an interval [−Vmax, Vmax], and if it is out

of the interval, we set the boundary value of the interval as the actual velocity component. Similarly,
the components of the position vector are limited to the time window for each train. Let pbesti(r)
denote the fitness value for Pi(r).

4.3.4. Encoding Rules and Initial Solution

It is a crucial step to make the particle of the MPSO and the solution of a certain problem
correspond with each other. We use a particle to represent an overall HMP for all of the EMU trains.
According to Equations (2) and (3), we set the dimensionality of a particle to |E|. The value of
each dimension represents the start time of the HM for the corresponding EMU train. The detailed
description is shown in Figure 2 with the help of schematic diagram.
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Figure 2. Encoding Rules (a particle).

In Figure 2, te denotes the start time of the HM for the e− th EMU train. Therefore, xt
e = 1 when

the value of te is determined, and the t in xt
e equals to te. Because of the maintenance level and the

type of each train can be ensured in advance, the value of He(g)
e(m)

and Je(g)
e(m)

for the train e is known.

Then, the value of yt
e and zt

e can be determined accordingly, i.e., yt
e = 1 (t ∈ [te, te + He(g)

e(m)
− 1]); zt

e = 1

(t ∈ [te, te + Je(g)
e(m)
− 1]). In this way, the Constraints (2), (3), (8)–(12) are well handled.

The initial solution can be generated by selecting the start time of the HM during the time window
for each train. The selection is stochastic in this process.

4.4. Algorithm Steps

Step 1. Generate the time window for all of the EMU trains that need to be maintained during the
planning horizon, turn to Step 2.

Step 2. Initialization. Assign values to related parameters including the size of particle swarm
I, ωmax, ωmin, c′1, c′′ 1, c′2, c′′ 2, MAXR and Vmax. Generate the initial solution Pi(0) according to
Section 4.3.1, and generate the initial velocity Vi(0) randomly. Set r = 0, turn to Step 3.

Step 3. Calculate the fitness value pbesti(r) of each particle, turn to Step 4.
Step 4. Compare the fitness values of Pi(r) with HBi(r). If pbesti(r) < hbesti(r), then HBi(r) =

Pi(r), hbesti(r) = pbesti(r). Turn to Step 5.
Step 5. Compare the fitness values of HBi(r)(i ∈ I) with GB(r). If hbesti(r) < gbest(r),

then GB(r) = HBi(r), gbest(r) = hbesti(r). Turn to Step 6.
Step 6. Update ω(r), c1(r) and c2(r) according to Formulas (16)–(18), turn to Step 7.
Step 7. Update Vi(r) and Pi(r) according to Formulas (19) and (20). If any dimension in Vi(r) out

of [−Vmax, Vmax], we set the boundary value of the interval as an actual value. If any dimension in
Pi(r) out of [WSe, WEe], we set the boundary value of the time window as an actual value, turn to
Step 8.

Step 8. r = r + 1. If r > MAXR or gbest(r) = gbest(r− 200) (r > 200), turn to Step 9; otherwise,
turn to Step 3.

Step 9. Make GB(r) feasible according to the HMP model, and output GB(r) and gbest(r). Over.

5. Case Study

In this section, we implement the proposed method to solve a practice problem. The detailed
description of the case can be found in the literature [20]. The proposed model is solved by the
commercial optimization solver, e.g., Gurobi, as well as the MPSO algorithm. The exact method is
coded in Python 2.7 and implemented within Spyder 3.1.4 and the MPSO algorithm is implemented in
C++. All the computational experiments are conducted on the computer with Intel Core i5-6200U CPU
and 8 GB RAM.

According to the literature [20], some parameters are valued as follows. Inv = 115, |E| = 60,
|T| = 533. To protect data confidentiality, we can only generate the time window in advance for each
train and use an ID number replace the train. The initial conditions of trains when |T| = 0, which include
the train ID, type, the average daily operating mileage, the time window, the maintenance level and
the maintenance service time, are listed in Table 3.
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Table 3. Initial conditions of all trains.

ID Type le (km) Time Window Level H
e(g)
e(m)

(Day)

1 m1 1600 [64,164] 3 50
2 m1 1600 [64,164] 3 50
3 m1 1600 [90,190] 3 50
4 m1 1600 [124,224] 3 50
5 m1 1600 [144,244] 3 50
6 m1 1600 [188,288] 3 50
7 m1 1600 [200,300] 3 50
8 m1 1600 [274,374] 4 55
9 m1 1600 [370,470] 4 55
10 m1 1600 [379,479] 4 55
11 m1 1600 [429,479] 4 55
12 m2 1600 [72,172] 3 50
13 m2 1600 [158,258] 3 50
14 m2 1600 [216,316] 3 50
15 m2 1600 [264,354] 3 50
16 m2 1600 [387,484] 3 50
17 m2 1600 [396,484] 3 50
18 m2 1600 [409,484] 3 50
19 m2 1600 [443,484] 4 55
21 m3 2000 [134,234] 5 60
21 m3 2000 [149,249] 3 40
22 m3 2000 [150,250] 3 40
23 m3 2000 [153,253] 3 40
24 m3 2000 [158,258] 5 60
25 m3 2000 [158,258] 3 40
26 m3 2000 [159,259] 3 40
27 m3 2000 [167,267] 3 40
28 m3 2000 [172,272] 4 55
29 m3 2000 [172,272] 3 40
30 m3 2000 [182,282] 3 40
31 m3 2000 [184,284] 3 40
32 m3 2000 [185,285] 3 40
33 m3 2000 [190,290] 3 40
34 m3 2000 [190,290] 3 40
35 m3 2000 [191,291] 3 40
36 m3 2000 [192,292] 3 40
37 m3 2000 [193,293] 3 40
38 m3 2000 [206,306] 3 40
39 m3 2000 [209,309] 3 40
40 m3 2000 [211,311] 3 40
41 m3 2000 [211,311] 3 40
42 m3 2000 [249,349] 3 40
43 m3 2000 [276,376] 3 40
44 m3 2000 [280,380] 3 40
45 m3 2000 [281,381] 3 40
46 m3 2000 [289,389] 3 40
47 m3 2000 [290,390] 3 40
48 m3 2000 [299,399] 3 40
49 m3 2000 [300,400] 3 40
50 m3 2000 [309,409] 3 40
51 m3 2000 [309,409] 3 40
52 m3 2000 [320,420] 3 40
53 m3 2000 [321,421] 3 40
54 m3 2000 [325,425] 3 40
55 m3 2000 [395,494] 3 40
56 m3 2000 [398,494] 3 40
57 m3 2000 [425,494] 3 40
58 m3 2000 [429,494] 3 40
59 m3 2000 [448,494] 3 40
60 m3 2000 [459,494] 3 40
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From Table 3, it can be seen that there are 60 EMU trains will undergo HM procedures during the
planning period. Among them, there are 101 candidate dates at most, and the minimum values are
only 36 candidate dates.

During the planning horizon, the HM rate is valued as follows:

θt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 i f t ∈ [149, 189)
7% i f t ∈ [189, 318)
6% i f t ∈ [318, 380)
0 i f t = 533
9% otherwise

(21)

All of these trains undergo the HM procedures in the factory. The maximal capacity is
ten, i.e., b1 + b2 + b3 = 10. Meanwhile, the receiving capability per day for a factory is limited,
e.g., N3+N4+N5 = 1; J3

m1 = J4
m1 = J5

m1 = J3
m2 = J4

m2 = J5
m2 = J3

m3 = J4
m3 = J5

m3 = 1. According to the
demand, dt

m1 = dt
m2 = 4, dt

m3 = 10 (t ∈ T). Therefore, the Formula (13) can be converted to the
following form.

min W = c ∑
t∈[WSe ,WEe ]

∑
e∈E

(WEe − t)lext
e + λ1 ∑

t∈T
max{0, ∑

e∈E
αe(m)yt

e − θt Inv}
+λ2 ∑

t∈T
∑

m∈M
max{0, ∑

e∈E|e(m)=m
yt

e − dt
m}+ λ3 ∑

t∈T
max{0,−10 + ∑

g∈G
∑

e∈E|e(g)=g
yt

e}+ λ4 ∑
t∈T

max{0,−1 + ∑
g∈G

∑
e∈E|e(g)=g

zt
e}

(22)

In addition, the values of other parameters are as follows. c = 0.001, λ1 = 100, λ2 = 500, λ3 = 800,
λ4 = 1000; I = 1000, ωmax = 1.2, ωmin = 0.8, c′1 = 2.5, c′′ 1 = 0.5, c′2 = 0.5, c′′ 2 = 2.5, Vmax = (WEe-WSe+1)/2
MAXR = 1000.

Based on the data given above, the HMP model is solved by the proposed algorithm. The program
runs for 500 s. The returned optimal fitness value is 3,213,121. The curve of the optimal fitness value in
the iterative process is depicted in Figure 3.

Figure 3. The optimal fitness value curve.

As can be seen in Figure 3, in the first 300 iterations, the algorithm has a strong search capability,
which can effectively avoid the occurrence of the premature phenomena; and from about the 300th to
the 690th iteration, the development ability of the algorithm is strengthened, which is helpful to search
the optimal solution; the fitness value remains the same in the last 200 iterations, indicating that the
(approximate) optimal solution for the HMP problem has been generated. The (approximate) optimal
solution is listed in Table 4, and the first column is the train’s ID; the second column is the start date of
HM procedures denoted by te.
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Table 4. Optimal solution.

e te e te e te e te e te e te

1 108 11 481 21 182 31 280 41 310 51 409
2 103 12 142 22 220 32 252 42 349 52 419
3 153 13 212 23 250 33 278 43 376 53 421
4 193 14 333 24 240 34 273 44 379 54 425
5 198 15 360 25 248 35 282 45 381 55 472
6 300 16 460 26 188 36 276 46 388 56 498
7 312 17 492 27 218 37 238 47 390 57 500
8 387 18 458 28 268 38 303 48 398 58 502
9 482 19 490 29 270 39 243 49 400 59 496

10 480 20 190 30 246 40 308 50 407 60 494

We present the daily HM rates from the (approximate) optimal solution, and compare those with
the predefined maintenance rate thresholds (see Figure 4).

 

Figure 4. The distribution of the high-level maintenance rate in 2017.

From Figure 4, we can see that the HM rate of the optimal solution remains below the threshold
in each period. Therefore, the proposed HMP model and the algorithm can meet the travel demands.
However, the HM rate from the unscheduled solution fluctuates sharply.

In addition, to compare the performance of the proposed algorithm, we solve the HMP model by
the Gurobi solver because the HMP model is linear. The detailed numerical comparison results of two
solution methods, i.e., the Gurobi and the MPSO algorithm, are shown in Table 5.

Table 5. Numerical comparison results.

Method z (km) Time Consumption (s)

Gurobi 3,213,121 3186 s
MPSO 3,213,121 500 s
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We can conclude that our proposed approach is efficient and effective from Table 5. This result
demonstrates that the proposed algorithm is more efficient than the commercial optimization solver
with reducing 84.31% in the solution time consumption.

6. Conclusions

This paper researches the electric multiple unit train’s HMP problem. A 0–1 integer programming
model and a modified particle swarm optimization algorithm are proposed. The objective function of
the model is to minimize the unutilized mileage for all trains, and the model considers the necessary
regulations and practical constraints, including passenger transport demand, workshop maintenance
capacity, and maintenance regulations. A real-world instance demonstrates that the proposed method
can efficaciously obtain the (approximate) optimal solution (see Table 4), and the solution strategy
significantly reduces the solution time to 500 s (see Table 5). This result also demonstrates that the
proposed algorithm is more efficient than the commercial optimization solver with reducing 84.31% in
the solution time consumption. Optimize the workshop’s overhaul process to shorten the maintenance
service time is needed in future research.
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Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell.
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1. Introduction

The classification of finite subgroups in SLn(C) derives attention from various research
areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE
singularity theory [1].

The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups
corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to
regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic
solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron),
but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups,
there are only three binary polyhedral groups (binary tetrahedral group 2T, binary octahedral group
2O, binary icosahedral group 2I) related to regular polyhedrons. Moreover, it is a well-known fact that
there is a correspondence between binary polyhedral groups and vertices of 4-polytopes as follows:

2T ↔ vertices of 24-cell,
2O ↔ vertices of dual compound of 24-cell,
2I ↔ vertices of 600-cell,

where the dual compound of 24-cell means by the compound polytopes obtained from 24-cell and its
dual polytope, which is also a 24-cell [2–5].

As the symmetries of polyhedrons are isometries, the related finite subgroups are also considered
as the subgroups of SU(2). As SU(2) = Sp(1) is a spin group of SO(3), we can regard 2T, 2O, and 2I
as subgroups of quaternions H. From this point of view, it is also well known that the vertices of 24 cell
correspond to roots of D4, and the set of vertices of the dual compound of 24-cell, which is the union of
a 24-cell and a dual 24-cell forms a roots of F4. The 600-cell is a complicated case of a reflection group
of H4-type [3,6].

The aim of this article is to provide explicit description of a binary icosahedron group 2I as a
600-cell. By applying spin covering map from Sp(1) to SO(3), we introduce a method to construct
the binary polyhedral groups in terms of quaternions from the symmetries of regular polyhedrons.
Then, by applying the theory of reflection groups along the Coxeter–Dynkin diagram, we show that
the subgroup 2I in H is indeed the set of vertices of a 600-cell. We also discuss 2T related to 24-cell,
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but, because the dual compound of a 24-cell is not regular, its relation to 2O will be discussed in
another article.

2. Binary Polyhedral Groups in Quaternions

Every finite subgroup of SL2(C) is conjugate to a finite subgroup of SU(2) so that the classification
of the finite subgroup of SL2(C) including binary polyhedral groups corresponds to the classification
of the finite subgroup of SU(2). As SU(2) � Sp(1), we can identify the binary polyhedral groups as
certain subsets in quaternions H. In fact, Sp(1) is not only a unit sphere in H but also the spin group
Spin(3), which is a 2-covering map of SO(3). In this section, we explain how an element in SO(3) lifts
to quaternions in Sp(1).

The algebra of quaternions H is the four-dimensional vector space over R defined by

H := {a + bi + cj + dk | a, b, c, d ∈ R}

satisfying relations i2 = j2 = k2 = ijk = −1. The quaternionic conjugate of q = a + bi + cj + dk is
defined by

q̄ := a− bi− cj− dk

and the corresponding norm |q| is also defined by |q| :=
√

qq̄ =
√

a2 + b2 + c2 + d2. Along this
norm, quaternions satisfy |pg| = |p| |g|, which implies that it is one of the normed algebras whose
classification consists of real numbers R, complex numbers C, quaternions H, and octonions O.
A quaternion q is called real if q̄ = q and is called imaginary if q̄ = −q. According to these facts, we
can divide H into a real part and an imaginary part:

H � R4 � Re(H)⊕ Im(H) = R⊕R3.

It is well known that the set of unit sphere S3 = {q ∈ H | |q| = 1} in H is a Lie group Sp(1), which
is also isomorphic to SU(2) as follows:

Sp(1) � SU(2) =

{(
a b
−b̄ ā

)∣∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}
,

q = a + bj ←→
(

a b
−b̄ ā

)
.

Below, we use the identification between R3 and Im(H). Along this, a vector v = (v1, v2, v3)

in R3 (resp. a quaternion q = a1i + a2 j + a3k in Im(H)) is corresponded to a quaternion
(v)# = v1i + v2 j + v3k in Im(H) (resp. a vector�q = (a1, a2, a3) in R3).

Now, we define a map Φ,which is given by an action of Sp(1) on Im(H) ∼= R3

Φ : Sp(1) → SO(3),
x *→ Φ (x) := ρx : Im(H) → Im(H)

v *→ xvx̄.
,

As a matter of fact, the map ρx must be defined as

ρx : R3 → R3

v *→ −−−−→(
xv# x̄

)
so that ρx is in SO(3). However, we use a simpler definition instead. It is well known that Φ is a
2-covering map, which is also a group homomorphism.

In the next section, we will consider the preimage of Φ to define the lifting of symmetry groups of
polyhedrons in R3, which are subgroups of SO(3). For this purpose, we consider ρx further in below.
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We observe that the multiplication of two pure quaternions p, q in Im(H) can be written by the
cross product × and the standard inner product · on R3:

pq = −�p ·�q + (�p×�q)# .

After we denote x = x0 + x+ ( x0 ∈ Re(H), x+ ∈ Im(H) ), ρx(v) can be written as

ρx(v) = xvx̄ = (x0 + x+)v(x0 − x+)

=
(

x0v−�v · −→x+ +
(−→x+ ×�v

)#
)
(x0 − x+)

= (x2
0 − |−→x+|2)v + 2

(−→x+ · −→v ) x+ + 2x0
(−→x+ ×�v

)# .

Here, since |x|2 = x2
0 + |−→x+|2, we denote x = cos θ + sin θ x+

|x+ | where cos θ = x0 and sin θ = |−→x+|2
for some θ ∈ [0, π).

Now, to understand the meaning of ρx(v), we consider two cases for −→v case (1) −→v ⊥ −→x+ and
case (2) −→v //−→x+.

(1) (Case −→v ⊥ −→x+ ) Since −→v · −→x+ = 0, we have

ρx(v) = (x2
0 − |−→x+|2)v + 2x0

(−→x+ ×�v
)#

= (x2
0 − |−→x+|2)v + 2x0|−→x+|

( −→x+
|−→x+|

× −→v
)#

= cos 2θ v + sin 2θ

( −→x+
|−→x+|

× −→v
)#

.

(2) (Case −→v //−→x+ ) After we denote −→v = t −→x+ for some t ∈ R,

ρx(v) = (x2
0 − |−→x+|2)tx+ + 2

(−→x+ · t −→x+) x+

=
(

t (x2
0 − |−→x+|2) + 2

(−→x+ · t −→x+)) x+

= t (x2
0 + |−→x+|2)x+ = tx+ = v.

By the two cases above, we conclude ρx(v) presents the rotation of vector −→v in R3 with respect to
the axis −→x+ by 2 cos−1 x0 ∈ [0, 2π).

By applying the above, we have the following lemma.

Lemma 1. For each element A in SO(3) presenting a rotation with respect to a unit vector �a for angle
α ∈ [0, 2π), the preimage of Φ : Sp(1)→ SO(3) is given as

Φ−1 (A) =
{
±
(

cos
α

2
+ sin

α

2
(�a)#

)}
⊂ H.

Note if we choose unit vector −�a instead�a in the lemma, then the rotation performed for angle
−α. Therefore, the related lifting is given by cos

(− α
2
)
+ sin

(− α
2
)
(−�a)# = cos α

2 + sin α
2 (�a)#. Hence

Φ−1 (A) is well defined.
By applying Lemma 1, we can consider the preimage of any subset G in SO(3). We call the

preimage Φ−1 (G) the lift of G in Sp(1) ⊂ H. When G is one of the symmetry groups of regular
polyhedrons, the lift Φ−1 (G) is called binary polyhedral group. In particular, we consider binary
tetrahedral group 2T, binary octahedral group 2O, and binary icosahedral group 2I , which are lifts of
symmetry groups of tetrahedron, octahedron and icosahedron with order 24, 48, 120, respectively.
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2.1. Symmetry Groups of Regular Polyhedrons

A polyhedron considered here is convex and regular. According to convention, we denote a
regular polyhedron by {p, q}, which means that the polyhedron has only one type of face which is
a p-gon, and each vertex is contained in q faces. It is well known that there are only five regular
polyhedrons, which are also called Platonic solids. Up to duality, we consider three classes of regular
polyhedrons as follows:

Tetrahedron ↔ Tetrahedron(self-dual),
Octahedron ↔ Cube,
Icosahedron ↔ Dodecahedron.

As the special linear group SO(3) is generated by rotations on R3, we consider rotations of
R3 preserving a regular polyhedron to study the symmetry group of it. When the axis of the rotation
crosses a vertex (the barycenter of an edge, the barycenter or a face resp.), we call the rotation vertex
symmetry (edge symmetry, face symmetry resp.). For instance, the tetrahedron has two different types
of axes of rotations. One is the line passing through a vertex and the barycenter of the opposite face,
and the other is the line connecting barycenters of the edges at the opposite position. We also say that
a symmetry has order n if the order of the corresponding rotation is n. Note that the order of each edge
symmetry is 2. One can figure all the possible orders of each type of symmetry for regular polyhedrons,
as shown in Table 1.

Table 1. Order of symmetries.

Polyhedron Tetrahedron Octahedron Icosahedron

Point Symmetry 3 4, 2 5
Edge Symmetry 2 2 2
Face Symmetry 3 3 3

Construction of binary polyhedral groups

Now, we will introduce a construction which provides a way to find the elements of binary
polyhedral groups related to regular polyhedrons when the set of vertices of regular polyhedrons
are given.

Assume we have a regular polyhedron {p, q} whose barycenter is the origin of R3 and let {Pi} be
the set of vertices of the regular polyhedron:

(1) Find the barycenters of vertices, edges and faces (The barycenter of each vertex is itself).
(2) For each barycenter, derive all the related symmetries in SO(3) by identifying corresponding axis

of rotations and its order.
(3) For each symmetry obtained from step 2, we get related lifts in H by applying Lemma 1. It is

useful to observe that we obtain the axis of rotation and its order instead of related angle where
there can be more than one related angle.

(4) The union of lifts is a subset of binary polyhedral groups. In fact, its union with {±1} is the
binary polyhedral group by counting elements.

Note: From the above, it is clear that two regular polyhedrons which are dual to each other are
associated with the same binary polyhedral groups.

For example, let B be a barycenter of order 3. Then, there are two related angles
π

3
and

2π

3
.

Thus, the corresponding lift is{
±
(

cos
π

3
+ sin

π

3
B
|B|
)

,±
(

cos
2π

3
+ sin

2π

3
B
|B|
)}

.
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Here, we also observe that, if we begin with −B instead of B, the corresponding lifts are still
the same.

Binary tetrahedral group

We consider a tetrahedron consisting of vertices {P1, P2, P3, P4}.

�����

�
�
�
�
�
�

P1

�����
P4

�













P3

�
P2

Tetrahedron

(1) Since vertex symmetry has order 3, each vertex symmetry has two angles
π

3
and

2π

3
and the union

of lifts of vertex symmetries is

VT :=
⋃
i

{
±
(

cos
π

3
+ sin

π

3
Pi
|Pi|
)

, ±
(

cos
2π

3
+ sin

2π

3
Pi
|Pi|
)}

.

Thus, we have
|VT | = |vertices of a tetrahedron| × 4 = 16.

(2) As the edge symmetry has order 2, each edge symmetry has only one angle
π

2
so that the related

lift is ⎧⎪⎪⎨⎪⎪⎩±
⎛⎜⎜⎝cos

π

2
+ sin

π

2

Pi + Pj

2∣∣∣∣Pi + Pj

2

∣∣∣∣
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

and the union is given as

ET :=
⋃

i 	=j

{
±
(

Pi + Pj∣∣Pi + Pj
∣∣
)}

.

Since P1 + P2 + P3 + P4 = 0, two barycenters
1
2
(P1 + P2) and

1
2
(P3 + P4) of edges have the same

lifts of edge symmetries. Similarly, the pairs of edges produce the same lifts of edge symmetries, and
we get

|ET | = |edges of a tetrahedron|
2

× 2 = 6.

(3) For a barycenter of face consisting of {P1, P2, P3}, we have a relation

P1 + P2 + P3

3
= −P4

3

since P1 + P2 + P3 + P4 = 0. Thus, the related lift of face symmetry is the same as the lift of vertex lift
for a vertex P4. Similarly, each lift of face symmetry corresponds to the lift of vertex symmetry.

Finally, the union VT ∪ ET of lifts of symmetries of a tetrahedron is a subset binary tetrahedral
group 2T in Sp(1). Since

|VT ∪ ET ∪ {±1}| = 16 + 6 + 2 = 24 = |2T| ,
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the union VT ∪ ET ∪ {±1} is a binary tetrahedral group, namely

2T = VT ∪ ET ∪ {±1}.

If we choose vertices {P1, P2, P3, P4} of a tetrahedron as{
P1 =

i + j + k
2

, P2 =
i− j− k

2
, P3 =

−i + j− k
2

, P4 =
−i− j + k

2

}
,

the corresponding binary tetrahedral group is obtained as

2T̂ =:
{
±1, ±i, ±j, ±k,

1
2
(±1± i± j± k)

}
.

Remark: The subset 2T̂ is the unit integral quaternions which is also known as Hurwitz integral
quaternions. ([7,8])

Binary Octahedral Group

We consider an octahedron consisting of vertices {Pi i = 1, ..., 8} as below.
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�������









�
P2

Octahedron

(1) The possible orders of vertex symmetry are 2 and 4. The vertex symmetry with order 4 has two

angles
π

4
and

3π

4
and one with order 2 has one angle

π

2
. Thus, the union of lifts of vertex symmetries is

VO :=
⋃
i

{
±
(

cos
π

4
+ sin

π

4
Pi
|Pi|
)

, ±
(

cos
3π

4
+ sin

3π

4
Pi
|Pi|
)

, ±
(

cos
π

2
+ sin

π

2
Pi
|Pi|
)}

.

Since two antipodal vertices produce the same lifts of vertex symmetries, we obtain that

|VO| = |vertices of an octahedron|
2

× 6 = 18.

(2) As the edge symmetry has order 2, each edge symmetry has only one angle
π

2
so that the union of

the related lift is

EO :=
⋃{±( Pi + Pj∣∣Pi + Pj

∣∣
)}

,

where the union is performed for all the pairs of Pi and Pj form an edge. For the barycenter of an edge

given by
1
2
(

Pi + Pj
)
, there is exactly one edge whose barycenter is antipodal to

1
2
(

Pi + Pj
)
. Moreover,

the pair of edges produce the same lifts of edge symmetries. Therefore, we get

|EO| = |edges of an octahedron|
2

× 2 = 12.
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(3) For a barycenter of face given as
Pi + Pj + Pk

3
, the face symmetry has order 3 and it is related to

two angles
π

3
and

2π

3
. Thus, the lifts of a face symmetry is

⎧⎪⎪⎨⎪⎪⎩±
⎛⎜⎜⎝cos

π

3
+ sin

π

3

Pi + Pj + Pk

3∣∣∣∣Pi + Pj + Pk

3

∣∣∣∣
⎞⎟⎟⎠ ,±

⎛⎜⎜⎝cos
2π

3
+ sin

2π

3

Pi + Pj + Pk

3∣∣∣∣Pi + Pj + Pk

3

∣∣∣∣
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

and the union of lifting of face symmetries is

FO :=
⋃{±(cos

π

3
+ sin

π

3
Pi + Pj + Pk

|Pi + Pj + Pk|

)
,±
(

cos
2π

3
+ sin

2π

3
Pi + Pj + Pk

|Pi + Pj + Pk|

)}
.

Since the octahedron is symmetric for origin, for the barycenter of a face given by
1
3
(

Pi + Pj + Pk
)
,

there is exactly one face whose barycenter is antipodal to
1
3
(

Pi + Pj + Pk
)
, and the pair of faces produce

the same lifts of face symmetries. Therefore, we deduce

|FO| = |faces of an octahedron|
2

× 4 = 16.

Finally, the union VO ∪ EO ∪FO of lifts of symmetries of an octahedron is a subset of the binary
octahedral group 2O in Sp(1). Since

|VO ∪ EO ∪ FO ∪ {±1}| = 18 + 12 + 16 + 2 = 48 = |2O| ,

the union VO ∪ EO ∪ FO ∪ {±1} is a binary octahedral group, namely

2O = VO ∪ EO ∪ FO ∪ {±1}.

One can take Pis as follows:

P1 = i, P2 = j, P3 = k, P4 = −i, P5 = −j, P6 = −k

so as to obtain

2Ô :=

{
±1, ±i, ±j, ±k, 1

2 (±1± i± j± k) ,
1√
2
(±1± i) , 1√

2
(±1± j) , 1√

2
(±1± k) , 1√

2
(±i± j) , 1√

2
(±i± k) , 1√

2
(±j± k)

}
.

Binary Icosahedral Group

Since both the regular icosahedron and its dual regular dodecahedron produce the binary
icosahedral group, we consider a regular dodecahedron in R3 instead of a regular icosahedron.
Moreover, for the sake of convenience, one can choose specific coordinates of vertices of a dodecahedron
in R3 such as {

(±1,±1,±1), (±τ,± 1
τ

, 0), (0,±τ,± 1
τ
), (± 1

τ
, 0,±τ)

}
,

where τ =

√
5 + 1
2

= 2 cos
π

5
and

1
τ

=

√
5− 1
2

= −2 cos
2π

5
. It is also useful to know

sin
π

5
=

√
10− 2

√
5

4
and sin

2π

5
=

√
10 + 2

√
5

4
.
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In the following diagram, we consider the given set of vertices as a subset in ImH = R3 and
depict the configuration among the vertices.

�

−τi− 1
τ j
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�
�
�
�
�
�
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�
�
�





































� −i− j + k�
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��
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�

�

−τi + 1
τ j














�

− 1
τ i + τk

������

	
	
	
	
	
	�−i + j + k ������

�−τj + 1
τ k �

�
�
�
�
�

�
�
�

�1
τ i + τk

�
�
�

�i− j + k

�

τj + 1
τ k

������

�i + j + k �
�
�

�−τj− 1
τ k

�
�
�
�
�
�

�−i− j− k
�
�
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�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

� τi + 1
τ j������

� τi− 1
τ j�

�
�

� τj− 1
τ k
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�
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�
�

�
�
��

�

i + j− k
�

�
�
�
�
�

�

−i + j− k
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�1
τ i− τk �

− 1
τ i− τk

dodecahedron

For the above dodecahedron, we denote the set of vertices as {Pi i = 1, ..., 20} without a specific
choice of order.

(1) Since the possible order of each vertex symmetry is 3, the vertex symmetry has two angles
π

3
and

2π

3
. Thus, the union of lifts of vertex symmetries is

VI :=
⋃
i

{
±
(

cos
π

3
+ sin

π

3
Pi
|Pi|
)

, ±
(

cos
2π

3
+ sin

2π

3
Pi
|Pi|
)}

.

Since the dodecahedron is symmetric for origin, each vertex and its antipodal vertex produce the
same lifts of vertex symmetries. Thus, we obtain that

|VI | = |vertices of a dodecahedron|
2

× 4 = 40.
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(2) As before, the edge symmetry has order 2, and each edge symmetry has only one angle
π

2
so that

the union of the related lifts is

EI :=
⋃{±( Pi + Pj∣∣Pi + Pj

∣∣
)}

,

where the union is performed for all the pairs of Pi and Pj form an edge. Just like the lifts of edge
symmetries for an octahedron, the pair of antipodal edges produce the same lifts of edge symmetries.
Therefore, we get

|EI | = |edges of a dodecahedron|
2

× 2 = 30.

(3) For a barycenter of face given as
1
5
(

Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)

where Pil (l = 1, 2, 3, 4, 5) forms

a face, the face symmetry has order 5 and it is related to four angles
aπ

5
(a = 1, 2, 3, 4). Thus, the lifts

of a face symmetry are⎧⎪⎪⎨⎪⎪⎩±
⎛⎜⎜⎝cos

aπ

5
+ sin

aπ

5

1
5
(

Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)∣∣∣∣15 (Pi1 + Pi2 + Pi3 + Pi4 + Pi5
)∣∣∣∣
⎞⎟⎟⎠ (a = 1, 2, 3, 4)

⎫⎪⎪⎬⎪⎪⎭
and the union of lifts of face symmetries is

FI :=
⋃{±(cos

aπ

5
+ sin

aπ

5
Pi1 + Pi2 + Pi3 + Pi4 + Pi5
|Pi1 + Pi2 + Pi3 + Pi4 + Pi5 |

)
(a = 1, 2, 3, 4)

}
.

Since a pair of antipodal faces produce the same lifts of face symmetries, we deduce

|FI | = |faces of a dodecahedron|
2

× 8 = 48.

Finally, the union VI ∪ EI ∪ FI of lifts of symmetries of a dodecahedron is a subset of a binary
icosahedral group 2I in Sp(1). Since

|VI ∪ EI ∪ FI ∪ {±1}| = 40 + 30 + 48 + 2 = 120 = |2I| ,

the union VI ∪ EI ∪ FI ∪ {±1} is a binary icosahedral group, namely

2I = VI ∪ EI ∪ FI ∪ {±1}.

For the given vertices we have, we can obtain

VI =

{
1
2
(±1± i± j± k) ,

1
2

(
±1± τ j± 1

τ
k
)

,
1
2

(
±1± 1

τ
i± τk

)
,

1
2

(
±1± τi± 1

τ
j
)}

EI =

{
±i, ±j, ±k,

1
2

(
±i± 1

τ
j± τk

)
,

1
2

(
± 1

τ
i± τ j± k

)
,

1
2

(
±τi± j± 1

τ
k
)}

FI =

⎧⎪⎪⎨⎪⎪⎩
1
2

(
± 1

τ
± τi± k

)
, 1

2

(
±τ ± 1

τ
i± j

)
, 1

2

(
±τ ± 1

τ
j± k

)
,

1
2

(
±τ ± i± 1

τ
k
)

, 1
2

(
± 1

τ
± i± τ j

)
, 1

2

(
± 1

τ
± j± τk

)
⎫⎪⎪⎬⎪⎪⎭ .
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As a result, we can identify all the elements of the binary icosahedral group as

2 Î :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±1, ±i, ±j, ±k,
1
2
(±1± i± j± k)

1
2

(
±i± 1

τ
j± τk

)
, 1

2

(
±1± τ j± 1

τ
k
)

, 1
2

(
± 1

τ
± τi± k

)
, 1

2

(
±τ ± 1

τ
i± j

)
,

1
2

(
± 1

τ
i± τ j± k

)
, 1

2

(
±τ ± 1

τ
j± k

)
, 1

2

(
±τ ± i± 1

τ
k
)

, 1
2

(
± 1

τ
± i± τ j

)
,

1
2

(
±τi± j± 1

τ
k
)

, 1
2

(
± 1

τ
± j± τk

)
, 1

2

(
±1± 1

τ
i± τk

)
, 1

2

(
±1± τi± 1

τ
j
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Theorem 1. The finite subsets 2T̂, 2Ô and 2 Î in H defined as above are a binary tetrahedral group, a binary
octahedral group, and a binary icosahedral group, respectively.

Note that it is well known that the a subset
{
±1,±i,±j,±k,

1
2
(±1± i± j± k)

}
in 2I is the

vertices of 24-cell and the complementary subset in 2I is the vertices of a snub 24-cell.

3. 600-Cell

The Coxeter–Dynkin diagrams are the way of describing the group generated by reflections.
For each graph, node represents a mirror (or a reflection hypersurface) and the label m attached to
a branch between nodes marks the dihedral angle π

m between two mirrors. By convention, no label
is attached to a branch if the corresponding dihedral angle is π

3 . When all the dihedral angles are
π
3 , the diagram is called simply laced. Ringed nodes present so called active mirrors where there is a
point P not to sit in the hyperplanes of reflections corresponded to the mirrors. By successive applying
the reflections in the diagram to the point P, we obtain a polytope whose symmetry group is the
Weyl group generated by the Coxeter–Dynkin diagram. Moreover, the combinatorics of subpolytopes
can also be decoded by the Coxeter–Dynkin diagram when it is simply laced with one ringed node
(see [7,9,10]). In fact, a similar method can be applied for the diagram, which is not simply laced or has
more than one ringed node.

The Coxeter–Dynkin diagram of 24-cell is an example of simply laced with one ringed node.

�
α1

�
α2

� �
α4

� α3

Coxeter–Dynkin diagram of 24-cell

The Weyl group associated with this diagram is D4-type. In [7], the subpolytopes of 24-cell as
shown in Table 2 are described by using the Coxeter–Dynkin diagram.

Table 2. Subpolytopes of 24-cell.

Subpolytope Vertices Edges Faces Cells

total number 24 96 96 ({3}) 24 ({3, 3})

The Coxeter–Dynkin diagram of 600-cell is given by
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�

α1
5

�

α2

�

α3

�

α4

�

Coxeter–Dynkin diagram of 600-cell

whose Weyl group is H4-type. Thus, the diagram is not simply laced and has one ringed node.

(1) Vertices

� 5 � � ��

By removing a ringed node, we obtain the isotropy subgroup in the Weyl group of H4 which fixed
a vertex in the 600-cell. Here, the corresponding isotropy group is H3 and we can compute the total
number of vertices as

|H4|
|H3| =

14400
120

= 120.

For the remaining diagram above, we ring a node connected to the removed node. Then, we obtain
the Coxeter–Dynkin diagram of an Icosahedron, which implies that the vertex figure of 600 cell is an
icosahedron.

(2) Edges

For edges, we consider the ringed node that performs one reflection corresponding to an edge.

� 5 � � ��

For the isotropy subgroup of the edge, we remove the unringed node connected to the ringed
node. In addition, the remaining diagram generates the isotropy subgroup H2× A1. Thus, we compute
the total number of edges as

|H4|
|H2||A1| =

14400
10 · 2 = 720.

(3) Faces

For faces, we consider the ringed node and extend the diagram to unringed nodes so as to obtain
a subdiagram of A2-type. The subdiagram of A2 with one ringed node generate {3}, namely a triangle.
Thus, the faces of 600-cell are all triangles.

� � � ��

For the isotropy subgroup of a face, we remove any unringed node connected to the subdiagram
of a face. The remaining subdiagram generates the isotropy subgroup of a face, which is A1 × A2.
Thus, we compute the total number of faces as

|H4|
|A1||A2| =

14400
2!3̇!

= 1200.
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(4) Cells

To obtain a cell in a 600-cell, we consider an extended diagram from the ringed nodes to unringed
nodes so as to obtain a subdiagram of A3. The diagram of type A3 with one ringed node on one side
represents a tetrahedron.

� � � ��

For the isotropy subgroup of a cell, we consider that any unringed node connected to the
subdiagram of A3, and the subdiagram given by removing the node generates the isotropy subgroup,
which is A3. Thus, we compute the total number of cells, Table 3 shows the subpolytopes of 600:

|H4|
|A3| =

14400
4!

= 600.

Table 3. Subpolytopes of 600-cell.

Subpolytopes Vertices Edges Faces Cells

total number 120 720 1200 ({3}) 600 ({3, 3})

4. Binary Polyhedral Groups as Polytopes

In this section, we show that the binary icosahedral group 2I in H is the set of vertices of a 600-cell.
Thus, the convex hull of 2I in H is a 600-cell.

For each α in H with |α| = 1, we define a reflection on H as

σα : H −→ H,
x *→ σα(x) := x− 2 (�x ·�α) α.

Since H is a normed division algebra, σα(x) is also written as σa(x) = −a x̄ a via quaternionic
multiplication (see Ref. [7]). Since σa is a reflection for a vector α, σa has eigenvalues ±1 where α is an
eigenvector of −1 and the hyperplane perpendicular to α is the eigenspace of 1. Moreover, it is not an
element in SO(3).

Binary tetrahedral group 2T̂ in H and 24-cell

For 24-cell, we consider the Coxeter–Dynkin diagram of type D4 given in Section 3, where

α1 = i, α2 =
1
2
(1 + i + j + k), α3 = j, α4 = k.

In Ref. [7], the Weyl group generated by the Coxeter–Dynkin diagram acts on the binary
tetrahedral group 2T̂. Moreover, it is shown that 2T̂ is the set of vertices of a 24-cell. In fact, it
is also the subset of unit integral quaternions.

Binary icosahedral group 2 Î in H and 600-cell

Similarly, for 600-cell, we consider the Coxeter–Dynkin diagram of Type H4 given in
Section 3, where

α1 = i, α2 =
1
2

(
τi + j− 1

τ
k
)

, α3 = j, α4 =
1
2

(
− 1

τ
+ j + τk

)
.
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The Weyl group generated by the reflections {σαi i = 1, 2, 3, 4} is denoted by WH . In below, we
want to show that (1) the Weyl group WH acts on the binary icosahedral group 2 Î, and (2) 2 Î is a single
orbit, where it corresponds to the set of vertices of 600-cell.

Lemma 2. The Weyl group WH acts on the binary icosahedral group 2 Î in H.

Proof. Since the Weyl group WH is generated by the reflections σαi (i = 1, 2, 3, 4), we show that each
σαi acts on 2I. For an arbitrary element a + bi + cj + dk ∈ H, the reflections are written as follows:

σα1(a + bi + cj + dk) = a− bi + cj + dk,

σα2(a + bi + cj + dk) = a +
(
− 1

2τ
b− τ

2
c +

1
2

d
)

i

+

(
−τ

2
b +

1
2

c +
1

2τ
d
)

j +
(

1
2

b +
1

2τ
c +

τ

2
d
)

k,

σα3(a + bi + cj + dk) = a + bi− cj + dk,

σα4(a + bi + cj + dk) =
(

τ

2
a +

1
2τ

c +
1
2

d
)
+ bi

+

(
1

2τ
a +

1
2

c− τ

2
d
)

j +
(

1
2

a− τ

2
c− 1

2τ
d
)

k.

It is easy to see that σα1 and σα3 act on 2 Î. By choosing {1, i, j, k} as an ordered orthonormal basis
of H, σα2 and σα4 can be written as

σα2 =

⎛⎜⎜⎜⎝
1 0 0 0
0 − 1

2τ − τ
2

1
2

0 − τ
2

1
2

1
2τ

0 1
2

1
2τ

τ
2

⎞⎟⎟⎟⎠ and σα4 =

⎛⎜⎜⎜⎝
τ
2 0 1

2τ
1
2

0 1 0 0
1

2τ 0 1
2 − τ

2
1
2 0 − τ

2 − 1
2τ

⎞⎟⎟⎟⎠ .

In addition, these are similar because σα4 = Stσα2 S, where S is an orthogonal matrix⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞⎟⎟⎟⎠ .

In fact, S is an element in SO(4) defined by

1→ k, i→ 1, j→ j, k→ i

and one can check that S acts on 2 Î by simple calculation. Thus, it suffices to show that σα2 acts on 2I
to check σα2 and σα4 act on 2 Î. For σα2 , we consider 3× 3 submatrix A of σα2 defined as

A :=

⎛⎜⎝ − 1
2τ − τ

2
1
2

− τ
2

1
2

1
2τ

1
2

1
2τ

τ
2

⎞⎟⎠ .

This is a automorphism of ImH which satisfies At A = Id and det A = −1. Moreover, A also
acts on {

(±1,±1,±1), (±τ,± 1
τ

, 0), (0,±τ,± 1
τ
), (± 1

τ
, 0,±τ)

}
,

which is our choice of the vertices of a dodecahedron. Since A is a reflection, it is also a symmetry
of the dodecahedron so that it also acts on the set of edges and the set of faces. According to the
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construction of binary icosahedral group 2 Î in Section 2.1, the action of A on the icosahedron induces
the action of σα2 on 2 Î. For example, an edge symmetry given by an edge Pi + Pj is sent to another
given by APi + APj because

σα2

(
Pi + Pj∣∣Pi + Pj

∣∣
)

=
APi + APj∣∣Pi + Pj

∣∣ =
APi + APj∣∣APi + APj

∣∣ .
Similarly, we conclude that σα2 acts on 2 Î.

By applying the above lemma, we obtain the following theorem.

Theorem 2. The set 2 Î of a binary icosahedral group is an orbit of the Weyl group WH, and it is the set of
vertices of a 600-cell.

Proof. By Lemma 2, the Weyl group WH acts on 2I. Now, we consider an element 1 in 2 Î and

its orbit WH {1} ⊂ 2 Î. Since 1 is perpendicular to α1 = i, α2 =
1
2

(
τi + j− 1

τ k
)

, α3 = j and

1 · α4 = (1, 0, 0, 0) ·
(
− 1

2τ , 0, 1
2 , τ

2

)
	= 0, the orbit WH {1} is given by the following Coxeter–Dynkin

diagram 3 of 600-cell. By Section 3, we have |WH {1}| = 120 =
∣∣2 Î
∣∣. Therefore, we conclude

WH {1} = 2 Î and this gives the theorem.
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Abstract: One of the main problems in the theory of strongly regular graphs (SRGs) is constructing
and classifying SRGs with given parameters. Strongly regular graphs with parameters (37, 18, 8, 9),
(41, 20, 9, 10), (45, 22, 10, 11), (49, 24, 11, 12), (49, 18, 7, 6) and (50, 21, 8, 9) are the only strongly regular
graphs on up to 50 vertices that still have to be classified. In this paper, we give the enumeration of
SRGs with these parameters having S3 as an automorphism group. The construction of SRGs in this
paper is a step in the classification of SRGs on up to 50 vertices.

Keywords: strongly regular graph; automorphism group; orbit matrix

1. Introduction

We assume that the reader is familiar with the basic notions of the theory of finite groups. For basic
definitions and properties of strongly regular graphs, we refer the reader to [1–3].

A graph is regular if all its vertices have the same valency; a simple regular graph Γ = (V , E) is
strongly regular with parameters (v, k, λ, μ) if it has |V| = v vertices, valency k, and if any two adjacent
vertices are together adjacent to λ vertices, while any two nonadjacent vertices are together adjacent to
μ vertices. A strongly regular graph with parameters (v, k, λ, μ) is usually denoted by SRG(v, k, λ, μ).
An automorphism of a strongly regular graph Γ is a permutation of vertices of Γ, such that every two
vertices are adjacent if and only if their images are adjacent.

By S(V), we denote the symmetric group on the nonempty set V. If G ≤ S(V) and x ∈ V, then the
set xG = {xg|g ∈ G} is called a G-orbit of x. The set Gx = {g ∈ G|xg = x} is called a stabilizer of x
in G. If G is finite, then |xG| = |G|

|Gx | . By Gg
x , we denote a conjugate subgroup g−1Gxg of Gx.

One of the main problems in the theory of strongly regular graphs (SRGs) is constructing and
classifying SRGs with given parameters. A frequently-used method of constructing combinatorial
structures is the construction of combinatorial structures with a prescribed automorphism group.
Orbit matrices of block designs have been used for such a construction of combinatorial designs since
the 1980s. However, orbit matrices of strongly regular graphs had not been introduced until 2011.
Namely, Majid Behbahani and Clement Lam introduced the concept of orbit matrices of strongly
regular graphs in [4]. They developed an algorithm for the construction of orbit matrices of strongly
regular graphs with an automorphism group of prime order and the construction of corresponding
strongly regular graphs.

A method of constructing strongly regular graphs admitting an automorphism group of composite
order using orbit matrices is introduced and presented in [5]. Using this method, we classify strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having S3 as an automorphism group. These graphs are the only strongly regular
graphs with up to 50 vertices that still have to be classified. Enumeration of SRGs with these parameters
having a non-abelian automorphism group of order six, i.e., the construction of SRGs with these
parameters in this paper, is a step in that classification. Using this construction, we show that

Symmetry 2018, 10, 212; doi:10.3390/sym10060212 www.mdpi.com/journal/symmetry434
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there is no SRG(37, 18, 8, 9) having S3 as an automorphism group. Furthermore, we show that there
are 80 SRGs(41, 20, 9, 10), 288 SRGs(45, 22, 10, 11), 72 SRGs(49, 24, 11, 12), 34 SRGs(49, 18, 7, 6) and
45 SRGs(50, 21, 8, 9) having a non-abelian automorphism group of order six.

The paper is organized as follows: After a brief description of the terminology and some
background results, in Section 2, we describe the concept of orbit matrices, based on the work of
Behbahani and Lam [4]. In Section 3, we explain the method of construction of strongly regular graphs
from their orbit matrices presented in [5]. In Section 4, we apply this method to construct strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having a non-abelian automorphism group of order six.

For the construction of orbit matrices and graphs, we have used our own computer programs
written for GAP [6]. Isomorphism testing for the obtained graphs and the analysis of their full
automorphism groups are conducted using the Grape package for GAP [7].

2. Orbit Matrices of Strongly Regular Graphs

Orbit matrices of block designs have been frequently used for the construction of block designs
with a presumed automorphism group, see, e.g., [8–11]. In 2011, Behbahani and Lam introduced the
concept of orbit matrices of SRGs (see [4]). While Behbahani and Lam were mostly focused on orbit
matrices of strongly regular graphs admitting an automorphism of prime order, a general definition of
an orbit matrix of a strongly regular graph is given in [12].

Let Γ be an SRG(v, k, λ, μ) and A be its adjacency matrix. Suppose an automorphism group G of
Γ partitions the set of vertices V into b orbits O1, . . . , Ob, with sizes n1, . . . , nb, respectively. The orbits
divide A into submatrices [Aij], where Aij is the adjacency matrix of vertices in Oi versus those in Oj.
We define matrices C = [cij] and R = [rij], 1 ≤ i, j ≤ b, such that cij is the column sum of Aij and rij is
the row sum of Aij. The matrix R is related to C by:

rijni = cijnj. (1)

Since the adjacency matrix is symmetric, it follows that:

R = CT . (2)

The matrix R is the row orbit matrix of the graph Γ with respect to G, and the matrix C is the
column orbit matrix of the graph Γ with respect to G.

Behbahani and Lam showed that orbit matrices R = [rij] and RT = C = [cij] satisfy the condition:

b

∑
s=1

cisrsjns = δij(k− μ)nj + μninj + (λ− μ)cijnj.

Since R = CT , it follows that:

b

∑
s=1

ns

nj
ciscjs = δij(k− μ) + μni + (λ− μ)cij (3)

and:
b

∑
s=1

ns

nj
rsirsj = δij(k− μ) + μni + (λ− μ)rji.

Therefore, in [12], we introduced the following definition of orbit matrices of strongly
regular graphs.
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Definition 1. A (b× b)-matrix R = [rij] with entries satisfying conditions:

b

∑
j=1

rij =
b

∑
i=1

ni
nj

rij = k (4)

b

∑
s=1

ns

nj
rsirsj = δij(k− μ) + μni + (λ− μ)rji (5)

where 0 ≤ rij ≤ nj, 0 ≤ rii ≤ ni − 1 and ∑b
i=1 ni = v, is called a row orbit matrix for a strongly regular graph

with parameters (v, k, λ, μ) and the orbit length distribution (n1, . . . , nb).

Definition 2. A (b× b)-matrix C = [cij] with entries satisfying conditions:

b

∑
i=1

cij =
b

∑
j=1

nj

ni
cij = k (6)

b

∑
s=1

ns

nj
ciscjs = δij(k− μ) + μni + (λ− μ)cij (7)

where 0 ≤ cij ≤ ni, 0 ≤ cii ≤ ni − 1 and ∑b
i=1 ni = v, is called a column orbit matrix for a strongly regular

graph with parameters (v, k, λ, μ) and the orbit length distribution (n1, . . . , nb).

3. The Method of Construction

A method of constructing strongly regular graphs admitting an automorphism group of composite
order using orbit matrices is introduced and presented in [5]. In this section, we will give a brief
overview of this method.

For the construction of strongly regular graphs with parameters (v, k, λ, μ), we first check whether
these parameters are feasible (see [2]). Then, we select the group G and assume that it acts as an
automorphism group of an SRG(v, k, λ, μ). The construction of strongly regular graphs admitting
an action of a presumed automorphism group, using orbit matrices, consists of the following two
basic steps:

• Construction of orbit matrices for the presumed automorphism group
• Construction of strongly regular graphs from the obtained orbit matrices (indexing of

orbit matrices)

We could use row or column orbit matrices, but since we are constructing matrices row by row,
it is more convenient for us to use column orbit matrices. For the construction of orbit matrices for
the presumed automorphism group, we need to determine all possible orbit length distributions
(n1, n2, . . . , nb) for an action of the group G. Suppose an automorphism group G of Γ partitions
the set of vertices V into b orbits O1, . . . , Ob, with sizes n1, . . . , nb. Obviously, ni is a divisor of |G|,
i = 1, . . . , b, and:

b

∑
i=1

ni = v.

When determining the orbit length distribution, we also use the following result that can be found
in [13].

Theorem 1. Let s < r < k be the eigenvalues of an SRG(v, k, λ, μ), then:

φ ≤ max(λ, μ)

k− r
v,

where φ is the number of fixed points for a nontrivial automorphism group G.
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For each orbit length distribution we construct column orbit matrices. For the construction of
orbit matrices, we first need to find prototypes.

3.1. Prototypes for a Row of a Column Orbit Matrix

A prototype for a row of a column orbit matrix C gives us information about the number of
occurrences of each integer as an entry of a particular row of C. Behbahani and Lam [4,13] introduced
the concept of a prototype for a row of a column orbit matrix C of a strongly regular graph with
a presumed automorphism group of prime order. We will generalize this concept and describe
a prototype for a row of a column orbit matrix C of a strongly regular graph under a presumed
automorphism group of composite order. Prototypes are useful in the first step of the construction of
strongly regular graphs, namely the construction of column orbit matrices.

Suppose an automorphism group G of a strongly regular graph Γ with parameters (v, k, λ, μ)

partitions the set of vertices V into b orbits O1, . . . , Ob, of sizes n1, . . . , nb. With li, i = 1, . . . , ρ, we denote
all divisors of |G| in ascending order (l1 = 1, . . . , lρ = |G|).

3.1.1. Prototypes for a Fixed Row

Consider the row r of a column orbit matrix C. We say that it is a fixed row of a matrix C if nr = 1,
i.e., if it corresponds to an orbit of length one. The entries in this row are either zero or one. Let dli
denote the number of orbits whose length are li, i = 1, . . . , ρ.

Let xe denote the number of occurrences of an element e ∈ {0, 1} at the positions of the row r that
correspond to the orbits of length one. It follows that:

x0 + x1 = d1, (8)

where d1 is the number of orbits of length one. Since the diagonal elements of the adjacency matrix of
a strongly regular graph are equal to zero, it follows that x0 ≥ 1.

Let y(li)e denote the number of occurrences of an element e ∈ {0, 1} at the positions of the row r
that correspond to the orbits of length li (i = 2, . . . , ρ). We have:

y(li)0 + y(li)1 = dli , i = 2, . . . , ρ (9)

Because the row sum of an adjacency matrix of Γ is equal to k, it follows that:

x1 +
ρ

∑
i=2

li · y(li)1 = k. (10)

The vector:
p1 = (x0, x1; y(l2)0 , y(l2)1 ; . . . ; y

(lρ)
0 , y

(lρ)
1 )

whose components are nonnegative integer solutions of the equalities (8), (9) and (10) is called a
prototype for a fixed row.

3.1.2. Prototypes for a Non-Fixed Row

Let us consider the row r of a column orbit matrix C, where nr 	= 1. Let dli denote the number of
orbits whose length is li, i = 1, . . . , ρ.

If a fixed vertex is adjacent to a vertex from an orbit Oi, 1 ≤ i ≤ b, then it is adjacent to all vertices
from the orbit Oi. Therefore, the entries at the positions corresponding to fixed columns are either zero
or nr. Let xe denote the number of occurrences of an element e ∈ {0, nr} at those positions of the row r,
which correspond to the orbits of length one. We have:

x0 + xnr = d1. (11)
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The entries at the positions corresponding to the orbits whose lengths are greater than one are
0, 1, . . . , nr − 1 or nr. The entry at the position (r, r) is 0 ≤ crr ≤ nr − 1, since the diagonal elements of
the adjacency matrix of strongly regular graphs are zero.

Let y(li)e denote the number of occurrences of an element e ∈ {0, . . . , nr} of row r at the positions
that correspond to the orbits of length li (i = 2, . . . , ρ). From (1) and (2), we conclude that:

crini = cirnr, (12)

where cir ∈ {0, . . . , ni}. If cri · ni
nr
	∈ {0, . . . , ni}, then y(ni)

cri = 0. It follows that:

nr

∑
e=0

y(li)e = dli , i = 2, . . . , ρ. (13)

Since the row sum of an adjacency matrix is equal to k, we have that:

xnr +
ρ

∑
i=2

nr

∑
h=1

y(li)h · h · nli
nr

= k, (14)

From (3), we conclude that:

b

∑
s=1

crscrsns = (k− μ)nr + μn2
r + (λ− μ)crrnr,

where crr ∈ {0, . . . , nr − 1}. It follows that:

n2
r xnr +

ρ

∑
i=2

nr

∑
h=1

y(li)h · h2 · nli = (k− μ)nr + μn2
r + (λ− μ)crrnr, (15)

The vector:
pnr = (x0, xnr ; yl2

0 , . . . , yl2
nr ; . . . ; y

lρ
0 , . . . , y

lρ
nr ),

whose components are nonnegative integer solutions of Equalities (11), (13), (14) and (15) is called a
prototype for a row corresponding to the orbit of length nr.

Using prototypes, we construct an orbit matrix row by row.
Not every orbit matrix gives rise to a strongly regular graph, while, on the other hand, a single

orbit matrix may produce several nonisomorphic strongly regular graphs. Further, nonisomorphic
orbit matrices may produce isomorphic graphs. Therefore, the constructed graphs need to be checked
for isomorphism.

Theorem 2. Let Γ = (V, E) be a strongly regular graph, G ≤ Aut(Γ), and let (b× b)-matrix C be a column
orbit matrix of the graph Γ with respect to the group G. Further, let α be an element of S(V) with the following
property: if α(i) = j, then the stabilizer Gxi is conjugate to Gxj , where xi, xj ∈ V and Oi = xiG, Oj = xjG.
Then, there exists permutation g∗ ∈ CS(V)(G) such that α(i) = j ⇐⇒ g∗(Oi) = Oj.

Definition 3. Let A = (aij) be an (b× b)-matrix and α ∈ Sb. The matrix B = Aα is the (b× b)-matrix
B = (bij), where bα(i)α(j) = aij. If Aα = A, then α is called an automorphism of the matrix A.

Definition 4. Let an (b× b)-matrix A = (aij) be the orbit matrix of a strongly regular graph Γ with respect
to the group G ≤ Aut(Γ). A mapping α ∈ Sb is called an isomorphism from A to B = Aα if the following
condition holds: if α(i) = j, then the stabilizer Gxi is conjugate to Gxj . We say that the orbit matrices A and B
are isomorphic. If Aα = A, then α is called an automorphism of the orbit matrix A. All automorphisms of an
orbit matrix A form the full automorphism group of A, denoted by Aut(A).
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During the construction of orbit matrices, for the elimination of isomorphic structures, we use
permutations that satisfy the conditions from Theorem 2, i.e., isomorphisms from Definition 4.

The next big step of the construction of graphs, called indexing, often cannot be performed in a
reasonable amount of time. To make such a construction possible, for a refinement of constructed orbit
matrices, we use the composition series:

{1} = H0 	 H1 	 · · ·	 Hn = G,

of a solvable automorphism group G of a strongly regular graph. Let Γ be a strongly regular graph
and H 	 G ≤ Aut(Γ). Each G-orbit of Γ decomposes to H-orbits of the same size (see [9]). Therefore,
each orbit matrix for the group G decomposes to orbit matrices for the group H, and the following
theorem holds [5].

Theorem 3. Let Ω be a finite nonempty set, H 
 G ≤ S(Ω), x ∈ Ω and xG =
h⊔

i=1

xi H. Then, a group G/H

acts transitively on the set {xi H | i = 1, 2, . . . , h}.

Therefore, after we have constructed corresponding orbit matrices for the group G, we continue
until we find all refinements for the normal subgroup Hn−1 	 G. In the next step, we obtain orbit
matrices for the group Hn−2, Hn−3, and so on. Our last step is the construction of the corresponding
orbit matrices for the subgroup H0 = {1}, i.e., construction of adjacency matrices of the strongly
regular graphs. The concept of the G-isomorphism of two-block designs was introduced in [14].
For the elimination of mutually-isomorphic structures, we use the concept of G-isomorphism.

Definition 5. Let Γ1 = (V, E1) and Γ2 = (V, E2) be strongly regular graphs, and let G ≤ Aut(Γ1) ∩
Aut(Γ2) ≤ S(V). An isomorphism α : Γ1 → Γ2 is called a G-isomorphism from Γ1 onto Γ2 if there is an
automorphism τ : G → G such that for each x, y ∈ V and each g ∈ G, the following holds:

(αx)(τg) = αy⇔ xg = y.

If α is a G−isomorphism from Γ1 to Γ2, then the vertices xi and xj are in the same G-orbit if and
only if the vertices α(xi) and α(xj) are in the same G-orbit.

Lemma 1. Let Γ1 = (V, E1) and Γ2 = (V, E2) be strongly regular graphs, and let G ≤ Aut(Γ1)∩ Aut(Γ2) ≤
S = S(V). A permutation α ∈ S is a G-isomorphism from Γ1 onto Γ2 if and only if α is an isomorphism from
Γ1 to Γ2 and α ∈ NS(G), where NS(G) is the normalizer of G in S.

In each step of refinement of an orbit matrix A, we eliminate isomorphic orbit matrices
using the automorphisms from Aut(A), because each automorphism of an orbit matrix determines
an G-isomorphism.

4. SRGs with up to 50 Vertices Having S3 as an Automorphism Group

SRGs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 24, 11, 12), (49, 18, 7, 6) and
(50, 21, 8, 9) are the only strongly regular graphs on up to 50 vertices that still have to be classified [2,15].
According to [2], it is known that strongly regular graphs with these parameters exist, but their final
enumeration result is not known. In this section, we present the results of the constructed strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having S3 ∼= Z3 : Z2 ∼= 〈ρφ|ρ3 = 1, φ2 = 1, φρφ = ρ−1〉 as an automorphism group.
In each case, we construct strongly regular graphs by using the algorithm described in Section 3.
The orbit lengths for an action of the group G at the set of points of a graph can get values from
the set {1, 2, 3, 6}. Using the program Mathematica [16], we get all possible orbit length distributions
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(d1, d2, d3, d6) for the action of S3 on a particular SRG that satisfy Theorem 1. For each orbit length
distribution, we find the corresponding prototypes using Mathematica. Using our own programs,
which are written for GAP [6], we construct all orbit matrices for a given orbit length distribution.
Having in mind the action of the whole group, we refine the constructed orbit matrices. For the
refinement, we use the composition series

{1}	 〈ρ〉	 S3

and obtain orbit matrices for the action of the subgroup Z3 
 S3. In this step, each orbit of length
two and six decomposes to two orbits of length one and three, respectively. In the final step of the
construction, we obtain adjacency matrices of the strongly regular graphs with particular parameters
admitting a non-abelian automorphism group of order six. Finally, we check isomorphisms of strongly
regular graphs and determine orders of the full automorphism groups using the Grape package for
GAP [7].

4.1. SRGs(37,18,8,9)

In this section, we present the results of SRGs(37,18,8,9) having S3 as an automorphism group.
According to [17], there are at least 6760 SRGs(37,18,8,9), and none of them have S3 as an automorphism
group. We show that there are no strongly regular graphs with parameters (37,18,8,9) having a
non-abelian automorphism group of order six.

We get 176 possibilities for orbit length distributions, but only three give rise to orbit matrices.
In Table 1, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (37,18,8,9). These calculations prove Theorem 4.

Table 1. Number of orbit matrices and SRGs(37,18,8,9) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,0,0,6) 3 6 0
(1,0,4,4) 3 3 0
(1,0,8,2) 3 3 0

Theorem 4. There are no strongly regular graphs with parameters (37, 18, 8, 9) having an automorphism group
isomorphic to the symmetric group S3.

4.2. SRGs(41,20,9,10)

In this section, we present the results of SRGs(41, 20, 9, 10) having S3 as an automorphism group.
We show that there are exactly 80 strongly regular graphs with parameters (41, 20, 9, 10) having a
non-abelian automorphism group of order six.

We get 216 possibilities for orbit length distributions, but only one gives rise to any orbit
matrices. In Table 2, we present the number of mutually-nonisomorphic orbit matrices for each
orbit length distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the
number of constructed SRGs with parameters (41, 20, 9, 10). These calculations prove Theorem 5.
Information about the orders of the full automorphism groups is presented in Table 3.

Table 2. Number of orbit matrices and SRGs(41,20,9,10) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,2,4,4) 10 10 80
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Theorem 5. Up to isomorphism, there are exactly 80 strongly regular graphs with parameters (41, 20, 9, 10)
having an automorphism group isomorphic to the symmetric group S3.

Table 3. SRGs with parameters (41,20,9,10) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 80

The adjacency matrices of the constructed SRGs can be found at [18].

4.3. SRGs(45,22,10,11)

In this section, we present the results of SRGs(45, 22, 10, 11) having S3 as an automorphism group.
We show that there are exactly 288 strongly regular graphs with parameters (45, 22, 10, 11) having a
non-abelian automorphism group of order six.

We get 309 possibilities for orbit length distributions, but only one gives rise to any orbit
matrices. In Table 4, we present the number of mutually-nonisomorphic orbit matrices for each
orbit length distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the
number of constructed SRGs with parameters (45, 22, 10, 11). These calculations prove Theorem 6.
Information about orders of the full automorphism groups is presented in Table 5.

Table 4. Number of orbit matrices and SRGs(45,22,10,11) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,4,4,4) 7 7 288

Table 5. SRGs with parameters (45,22,10,11) having S3 as an automorphism group

|Aut(Γ)| #SRGs

6 288

Theorem 6. Up to isomorphism, there are exactly 288 strongly regular graphs with parameters (45, 22, 10, 11)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [19].

4.4. SRGs(49,18,7,6)

In the paper [5], we proved the following theorem.

Theorem 7. Up to isomorphism, there are exactly 36 strongly regular graphs with parameters (49, 18, 7, 6)
having an automorphism group isomorphic to the symmetric group S3.

Two of these graphs have not been constructed in [4,20]. The adjacency matrices of the constructed
SRGs can be found at [21].

4.5. SRGs(49,24,11,12)

In this section, we present the results of SRGs(49, 24, 11, 12) having S3 as an automorphism group.
We show that there are exactly 72 strongly regular graphs with parameters (49, 24, 11, 12) having a
non-abelian automorphism group of order six.
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We get 435 possibilities for orbit length distributions, but only a few give rise to orbit matrices.
In Table 6, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (49, 24, 11, 12). Thus, we prove Theorem 8. Information about
orders of the full automorphism groups is presented in Table 7.

Table 6. Number of orbit matrices and SRGs(49, 24, 11, 12) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs Distribution #OM-S3 #OM-Z3 #SRGs

(0,2,3,6) 8 16 6 (1,3,0,7) 6 6 0
(0,2,5,5) 4 0 0 (1,3,2,6) 10 2 0
(0,2,7,4) 8 0 0 (1,3,6,4) 2 2 0
(1,0,0,8) 2 15 2 (1,6,0,6) 1 0 0
(1,0,2,7) 20 32 0 (3,2,0,7) 4 10 0
(1,0,8,4) 26 24 12 (3,2,6,4) 6 16 0
(1,0,10,3) 2 0 0 (4,0,9,3) 6 0 0
(1,0,12,2) 16 0 0 (5,1,0,7) 2 4 0
(1,0,14,1) 12 0 0 (5,1,6,4) 2 2 12

(7,0,0,7) 2 2 40

Table 7. SRGs with parameters (49, 24, 11, 12) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 42
18 22
24 4
126 4

Theorem 8. Up to isomorphism, there are exactly 72 strongly regular graphs with parameters (49, 24, 11, 12)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [22].

4.6. SRGs(50,21,8,9)

In this section, we present the results of SRGs(50, 21, 8, 9) having S3 as an automorphism group.
According to [17], there are 18 graphs obtained from the 18 Steiner (2,4,25) systems, and three of them
have S3 as an automorphism group. We show that there are exactly 45 strongly regular graphs with
parameters (50, 21, 8, 9) having a non-abelian automorphism group of order six. Hence, to our best
knowledge, 42 of the constructed strongly regular graphs are new.

We get 340 possibilities for orbit length distributions, but only a few give rise to orbit matrices.
In Table 8, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (50, 21, 8, 9). Thus, we prove Theorem 9. Information about the
orders of the full automorphism groups is presented in Table 9.

Theorem 9. Up to isomorphism, there are exactly 45 strongly regular graphs with parameters (50, 21, 8, 9)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [23].
In Table 10, we summarize the obtained results, i.e., give a list of all the obtained strongly regular

graphs and orders of their full automorphism groups.
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Table 8. Number of orbit matrices and SRGs(50, 21, 8, 9) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs Distribution #OM-S3 #OM-Z3 #SRGs

(0,1,2,7) 10 3 2 (2,0,2,7) 10 16 0
(0,1,4,6) 10 4 6 (2,0,8,4) 22 24 12
(0,1,6,5) 12 21 6 (2,0,10,3) 2 0 0
(0,1,8,4) 8 8 1 (2,0,12,2) 27 0 0
(0,4,2,6) 2 2 0 (2,0,14,1) 14 0 0
(0,4,4,5) 4 3 16 (2,3,0,7) 2 3 0
(0,4,6,4) 3 4 0 (2,3,2,6) 6 1 0
(0,4,8,2) 4 6 0 (2,3,6,4) 2 4 0
(1,2,3,6) 10 20 5 (4,2,6,4) 6 12 0
(1,2,5,5) 2 0 0 (5,0,9,3) 2 0 0
(1,2,7,4) 4 0 0 (6,1,6,4) 1 1 4

Table 9. SRGs with parameters (50, 21, 8, 9) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 35
18 6
72 1
150 1
336 1
504 1

Table 10. SRGs on up to 50 vertices having S3 as an automorphism group.

(v, k, λ, μ) |Aut(Γ)| #SRGs

(41, 20, 9, 10) 6 80

(45, 22, 10, 11) 6 288

(49, 18, 7, 6) 6 18
(49, 18, 7, 6) 12 2
(49, 18, 7, 6) 18 2
(49, 18, 7, 6) 24 4
(49, 18, 7, 6) 48 1
(49, 18, 7, 6) 72 4
(49, 18, 7, 6) 126 1
(49, 18, 7, 6) 144 2
(49, 18, 7, 6) 1008 1
(49, 18, 7, 6) 1764 1

(49, 24, 11, 12) 6 42
(49, 24, 11, 12) 18 22
(49, 24, 11, 12) 24 4
(49, 24, 11, 12) 126 4

(50, 21, 8, 9) 6 35
(50, 21, 8, 9) 18 6
(50, 21, 8, 9) 72 1
(50, 21, 8, 9) 150 1
(50, 21, 8, 9) 336 1
(50, 21, 8, 9) 504 1
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