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Preface to "Discrete Mathematics and Symmetry”

SYMMETRY AND GEOMETRY. One of the core concepts essential to understanding natural
phenomena and the dynamics of social systems is the concept of “relation”. Furthermore, scientists
rely on relational structures with high levels of symmetry because of their optimal behavior and
high performance. Human friendships, social and interconnection networks, traffic systems, chemical
structures, etc., can be expressed as relational structures. A mathematical model capturing the essence
of this situation is a combinatorial object exhibiting a high level of symmetry, and the underlying
mathematical discipline is algebraic combinatorics—the most vivid expression of the concept of
symmetry in discrete mathematics. The purpose of this Special Issue of the journal Symmetry is to
present some recent developments as well as possible future directions in algebraic combinatorics.
Special emphasis is given to the concept of symmetry in graphs, finite geometries, and designs.
Of interest are solutions of long-standing open problems in algebraic combinatorics, as well as
contributions opening up new research topics encompassing symmetry within the boundaries of
discrete mathematics but with the possibility of transcending these boundaries. Prof. Dr. Angel
Garrido, Guest Editor.

Angel Garrido
Special Issue Editor
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Article
On the Crossing Numbers of the Joining of a Specific
Graph on Six Vertices with the Discrete Graph

Michal Stas

Faculty of Electrical Engineering and Informatics, Technical University of Kosice, 042 00 Kosice, Slovakia;
michal.stas@tuke.sk
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Abstract: In the paper, we extend known results concerning crossing numbers of join products of
small graphs of order six with discrete graphs. The crossing number of the join product G* + D,
for the graph G* on six vertices consists of one vertex which is adjacent with three non-consecutive
vertices of the 5-cycle. The proofs were based on the idea of establishing minimum values of crossings
between two different subgraphs that cross the edges of the graph G* exactly once. These minimum
symmetrical values are described in the individual symmetric tables.

Keywords: graph; good drawing; crossing number; join product; cyclic permutation

1. Introduction

An investigation on the crossing number of graphs is a classical and very difficult problem. Garey
and Johnson [1] proved that this problem is NP-complete. Recall that the exact values of the crossing
numbers are known for only a few families of graphs. The purpose of this article is to extend the
known results concerning this topic. In this article, we use the definitions and notation of the crossing
numbers of graphs presented by Kles¢ in [2]. Kulli and Muddebihal [3] described the characterization
for all pairs of graphs which join product of a planar graph. In the paper, some parts of proofs are
also based on Kleitman'’s result [4] on the crossing numbers for some complete bipartite graphs. More
precisely, he showed that

atkon = |7 L5 s e

Again, by Kleitman'’s result [4], the crossing numbers for the join of two different paths, the join of
two different cycles, and also for the join of path and cycle, were established in [2]. Further, the exact
values for crossing numbers of G + D;, and of G + P, for all graphs G on less than five vertices were
determined in [5]. At present, the crossing numbers of the graphs G + D, are known only for few
graphs G of order six in [6-9]. In all these cases, the graph G is usually connected and includes at least
one cycle.

The methods in the paper mostly use the combinatorial properties of cyclic permutations. For
the first time, the idea of configurations is converted from the family of subgraphs which do not cross
the edges of the graph G* of order six onto the family of subgraphs whose edges cross the edges of
G* just once. According to this algebraic topological approach, we can extend known results for the
crossing numbers of new graphs. Some of the ideas and methods were used for the first time in [10].
In [6,8,9], some parts of proofs were done with the help of software which is described in detail in [11].
It is important to recall that the methods presented in [5,7,12] do not suffice to determine the crossing
number of the graph G* + Dj,. Also in this article, some parts of proofs can be simplified by utilizing
the work of the software that generates all cyclic permutations in [11]. Its C++ version is located
also on the website http:/ /web.tuke.sk/fei-km/coga/, and the list with all short names of 120 cyclic
permutations of six elements have already been collected in Table 1 of [8].

Symmetry 2020, 12, 135; doi:10.3390/sym12010135 1 www.mdpi.com/journal /symmetry
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2. Cyclic Permutations and Corresponding Configurations of Subgraphs

Let G* be the connected graph on six vertices consisting of one vertex which is adjacent with three
non-consecutive vertices of the 5-cycle. We consider the join product of the graph G* with the discrete
graph D,, on n vertices. It is not difficult to see that the graph G* 4 D,, consists of just one copy of the
graph G* and of n vertices ty, ..., t;, where any vertex t;, j = 1,...,n, is adjacent to every vertex of
the graph G*. Let T/, j = 1,...,n, denote the subgraph which is uniquely induced by the six edges
incident with the fixed vertex t;. This means that the graph T'U- .- UT" is isomorphic with Kg , and

n
G*+Dn:G*uK6,n:G*u<UTf>, 1)
j=1

In the paper, the definitions and notation of the cyclic permutations and of the corresponding
configurations of subgraphs for a good drawing D of the graph G* 4 D, presented in [8] are used.
The rotation rotp(t;) of a vertex t; in the drawing D is the cyclic permutation that records the (cyclic)
counter-clockwise order in which the edges leave t;, see [10]. We use the notation (123456) if the
counterclockwise order of the edges incident with the vertex tjis tjvy, tjvy, tjvs, tjvy, tjvs, and tjve.
Recall that a rotation is a cyclic permutation. Moreover, as we have already mentioned, we separate all
subgraphs T, j=1,...,n,of the graph G* + D, into three mutually-disjoint families depending on how
many times the edges of G* are crossed by the edges of the considered subgraph T/ in D. This means,
forj=1,...,nlet Rp = {T/ : crp(G*, T/) = 0} and Sp = {T/ : crp(G*, T/) = 1}. The edges of G* are
crossed by each other subgraph T/ at least twice in D. For T/ € Rp U Sp, let F/ denote the subgraph
G*UT/,j€{1,2,...,n}, of G* + Dy, and let D(F/) be its subdrawing induced by D.

If we would like to obtain an optimal drawing D of G* + D,,, then the set Rp U Sp must be
nonempty provided by the arguments in Theorem 1. Thus, we only consider drawings of the graph G*
for which there is a possibility of obtaining a subgraph T/ € Rp U Sp. Since the graph G* contains the
6-cycle as a subgraph (for brevity, we can write C¢(G*)), we have to assume only crossings between
possible subdrawings of the subgraph Cs(G*) and two remaining edges of G*. Of course, the edges of
the cycle Ce(G*) can cross themselves in the considered subdrawings. The vertex notation of G* will
be substantiated later in all drawings in Figure 1.

First, assume a good drawing D of G* + D, in which the edges of G* do not cross each other.
In this case, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure 1a. Clearly, the set Rp is empty. Our aim is to list all possible rotations rotp(t;)
which can appear in D if the edges of G* are crossed by the edges of T/ just once. There is only one
possible subdrawing of F/ \ {0y} represented by the rotation (16532), which yields that there are
exactly five ways of obtaining the subdrawing of G U T/ depending on which edge of the graph G*
can be crossed by the edge tjvg. We denote these five possibilities by Ay, for k = 1,...,5. For our
considerations over the number of crossings of G* 4- D,,, it does not play a role in which of the regions
is unbounded. So we can assume the drawings shown in Figure 2. Thus, the configurations A, A,,
As, Ay, and As are represented by the cyclic permutations (165324), (165432), (146532), (165342),
and (164532), respectively. Of course, in a fixed drawing of the graph G* + D, some configurations
from M = {4, Ay, A3, A4, As} need not appear. We denote by M the set of all configurations that
exist in the drawing D belonging to the set M.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Six possible drawings of G* with no crossing among edges of C4(G*). (a): the planar drawing
of G*; (b): the drawing of G* with crp(G*) = 1 and without crossing on edges of C¢(G*); (c): the
drawing of G* only with two crossings on edges of C4(G*); (d): the drawing of G* with crp(G*) =2
and with one crossing on edges of C¢(G*); (e): the drawing of G* only with one crossing on edges of
Cs(G*); (: the drawing of G* with crp(G*) = 2 and with one crossing on edges of C¢(G*).

A3 Aq As

Figure 2. Drawings of five possible configurations from M of the subgraph F/.

Recall that we are able to extend the idea of establishing minimum values of crossings between two
different subgraphs onto the family of subgraphs which cross the edges of G* exactly once. Let X" and
Y be the configurations from M p. We denote by crp (X and V) the number of crossings in D between
T' and T/ for different T/, T/ € Sp such that F' and F/ have configurations X’ and Y, respectively.
Finally, let cr(X, V) = min{crp (X, ))} over all possible good drawings of G* + D,, with X',V € Mp.
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Our aim is to determine cr( X, V) for all such pairs X, ) € M. In particular, the configurations .A; and
Ay are represented by the cyclic permutations (165324) and (165432), respectively. Since the minimum
number of interchanges of adjacent elements of (165324) required to produce cyclic permutation
(165432) is two, we need at least four interchanges of adjacent elements of (165432) to produce cyclic
permutation (165324) = (142356). (Let T* and TY be two different subgraphs represented by their
rot(ty) and rot(ty) of length m, m > 3. If the minimum number of interchanges of adjacent elements of
rot(ty) required to produce rot(t,) is at most z, then crp (T*, TY) > | % || 271 | — z. Details have been
worked out by Woodall [13].) So any subgraph T/ with the configuration A, of F/ crosses the edges
of T! with the configuration A; of F " at least four times; that is, cr(Ay, Ay) > 4. The same reasoning
gives cr(Ay, Az) > 5, cr( Ay, Ag) > 5,cr(Ag, As) > 4, cr( Ay, Asz) > 4, cr( Az, Ag) > 5, cr( Ay, As) > 5,
cr(As, Ag) > 4, cr( Az, As) > 5, and cr(Ayg, As) > 4. Clearly, also cr(A4;, 4;) > 6foranyi=1,...,5.
All resulting lower bounds for the number of crossings of two configurations from M are summarized
in the symmetric Table 1 (here, A; and 4, are configurations of the subgraphs F' and F/, where

k1€ {1,2,3,4,5}).

Table 1. The necessary number of crossings between T? and T/ for the configurations Ay, A;.

- A A A A A

A 6 4 5 5 4
A 4 6 4 5 5
Ay 5 4 6 4 5
A, 5 5 4 6 4
As 4 5 5 4 ¢

Assume a good drawing D of the graph G* + D,, with just one crossing among edges of the graph
G* (in which there is a possibility of obtaining of subgraph T/ € Rp U Sp). At first, without loss of
generality, we can consider the drawing of G* with the vertex notation like that in Figure 1b. Of course,
the set Rp can be nonempty, but our aim will be also to list all possible rotations rotp (t;) which can
appear in D if the edges of G* are crossed by the edges of T’ just once. Since the edges v1vy, 1203, V17,
and 0506 of G* can be crossed by the edges t;v3, t;01, tjus, and tjvq, respectively, these four ways under
our consideration can be denoted by By, for k = 1,2, 3,4. Based on the aforementioned arguments,
we assume the drawings shown in Figure 3.

Thus, the configurations By, B,, B, and By are uniquely represented by the cyclic permutations
(165423), (126543), (156432), and (154326), respectively. Because some configurations from
N = {By, B2, B3, B4} may not appear in a fixed drawing of G* + D,;, we denote by N the subset of
N consisting of all configurations that exist in the drawing D. Further, due to the properties of the
cyclic rotations, we can easily verify that cr(B;, B]-) >4foranyi,j€ {1,2,3,4},i # j. (Let us note that
this idea was used for an establishing the values in Table 1)

In addition, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure le. In this case, the set Rp is also empty. Hence, our aim is to list again all possible
rotations rotp (t;) which can appear in D if T/ € Sp. Since there is only one subdrawing of F/ \ {v3}
represented by the rotation (16542), there are four ways to obtain the subdrawing of F/ depending
on which edge of G* is crossed by the edge t;v3. These four possibilities under our consideration
are denoted by &, for k = 1,2,3,4. Again, based on the aforementioned arguments, we assume
the drawings shown in Figure 4.
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Eq

E3

Figure 4. Drawings of four possible configurations from O of the subgraph F/.

Thus, the configurations &, &, £, and &, are represented by the cyclic permutations (165432),
(163542), (165342), and (136542), respectively. Again, we denote by Op the subset of O = {&1, &, €3, &4}
consisting of all configurations that exist in the drawing D. Further, due to the properties of the cyclic
rotations, all lower-bounds of number of crossings of two configurations from O can be summarized
in the symmetric Table 2 (here, & and & are configurations of the subgraphs F! and F/, where

k1€ {1,2,3,4}).
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Table 2. The necessary number of crossings between T’ and T for the configurations &, &;.

- &8 & & &

& 6 4 5 4
& 4 6 5 5
& 5 5 6 4
& 4 5 4 6

Finally, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure 1f. In this case, the set Rp is also empty. So our aim will be to list again all possible
rotations rotp (¢;) which can appear in D if T/ € Sp. Since there is only one subdrawing of F/ \ {v,}
represented by the rotation (16543), there are three ways to obtain the subdrawing of F/ depending
on which edge of G* is crossed by the edge #;0;. These three possibilities under our consideration are

denoted by Fy, for k = 1,2,3. Again, based on the aforementioned arguments, we assume the drawings
shown in Figure 5.

F1 F F3

Figure 5. Drawings of three possible configurations from P of the subgraph F/.

Thus, the configurations Fj, F;, and Fj are represented by the cyclic permutations (165432),
(162543), and (126543), respectively. Again, we denote by Pp the subset of P = {Fy, F, F3} consisting
of all configurations that exist in the drawing D. Further, due to the properties of the cyclic rotations,
all lower-bounds of number of crossings of two configurations from P can be summarized in the
symmetric Table 3 (here, 7 and F; are configurations of the subgraphs F " and F/, where k,I € {1,2,3}).

Table 3. The necessary number of crossings between T' and T/ for the configurations Fj and F;.

- F P F
F1 6 4 5
Fo 4 6 5
F3 5 5 6

3. The Crossing Number of G* + D,

Recall that two vertices t; and t of G* + Dy, are antipodal in a drawing D of G* + D,, if the
subgraphs T* and T/ do not cross. A drawing is antipodal-free if it has no antipodal vertices. For easier
and more accurate labeling in the proofs of assertions, let us define notation of regions in some
subdrawings of G* 4+ D;,. The unique drawing of G* as shown in Figure la contains four different
regions. Let us denote these four regions by w1234, w1456, w345, and wi 2356 depending on which
of vertices are located on the boundary of the corresponding region.

Lemma 1. Let D be a good and antipodal-free drawing of G* + Dy, for n > 3, with the drawing of G* with the
vertex notation like that in Figure 1a. If T", T?, T € Sp are three different subgraphs such that F*, F°, and Ft
have three different configurations from the set { A;, A;, Ay} € Mp withi+2=j+1=k (mod 5), then

cap(G*UTYUTUT,LT™) > 6 forany T™ ¢ Sp.
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Proof of Lemma 1. Let us assume the configurations Ay of F¥, A, of F?, and Aj3 of F. It is obvious
that crp (T" U T? U T, T™) > 3 holds for any subgraph T, m # u, v, t. Further, if crp(G*, T™) > 2,
then we obtain the desired result crp(G* U T* UT? UT!, T™) > 34 3 = 6. To finish the proof, let us
suppose that there is a subgraph T ¢ Sp such that T™ crosses exactly once the edges of each subgraph
T", T?, and T, and let also consider crp(G*, T™) = 2. As crp(T", T™) = 1, the vertex t,, must be
placed in the quadrangular region with four vertices of G* on its boundary; that is, t;; € w1456.
Similarly, the assumption crp(T!, T™) = 1 enforces that t,, € wy234. Since the vertex t,, cannot be
placed simultaneously in both regions, we obtain a contradiction. The proof proceeds in the similar
way also for the remaining possible cases of the configurations of subgraphs F*, F?, and F!, and the
proof is done. O

Now we are able to prove the main result of the article. We can calculate the exact values of
crossing numbers for small graphs using an algorithm located on a website http://crossings.uos.de/.
It uses an ILP formulation based on Kuratowski subgraphs. The system also generates verifiable
formal proofs like those described in [14]. Unfortunately, the capacity of this system is limited.

Lemma 2. cr(G* + D) = land cr(G* + D) = 3.
Theorem 1. cr(G* + D) = 6{% L”z;lJ +n+ {%J forn>1.

Proof of Theorem 1. Figure 6 offers the drawing of G* + D, with exactly 6\_%J \_%J +n—+ L%j
crossings. Thus, cr(G* + Dy) < 6| %||"52 | +n + | %|. We prove the reverse inequality by induction
on n. By Lemma 2, the result is true for n = 1 and n = 2. Now suppose that, for some n > 3, there is
a drawing D with

oot =00 <o 41552 < 2 @
and that
cr(G* + Dpy) > 6{%J VnTilJ +m+ L%J for any integer m < n. 3)

Figure 6. The good drawing of G* + Dy, with 6| 4 | | %52 | +n + | 4] crossings.

Let us first show that the considered drawing D must be antipodal-free. For a contradiction,
suppose, without loss of generality, that crp(T"~1, T") = 0. If at least one of T"~! and T", say T",
does not cross G*, it is not difficult to verify in Figure 1 that T"~1 must cross G* U T" at least trice;
that is, crp (G*, T"~1 U T") > 3. From [4], we already know that cr(Kg3) = 6, which yields that the
edges of the subgraph T"~1 U T" are crossed by any T, k = 1,2,...,1 — 2, at least six times. So, for
the number of crossings in D we have:

CrD(G* + Dn) = Crp (G* + D”,z) + CI‘D(]H7171 @] Tn) + CI‘D(K@n,z, T’171 @] Tn) + CrD(G*, Tn71 U Tn)
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el ] st-n 43 =3[ +ne 3]

This contradiction with the assumption (2) confirms that D is antipodal-free. Moreover, if r = |Rp|
and s = [Sp|, the assumption (3) together with cr(Kg ) = 6| 4] | %5} | imply that, in D, if r = 0, then
there are at least [4] + 1 subgraphs T/ for which the edges of G* are crossed just once by them.
More precisely:

Z6L J+n72+{

crp(G*) + erp(G*, Kgn) < erp(G*)+0r+1s+2(n—r—s) <n+ {gJ ;
that is,

s+2(nfrfs)<n+{gJ. (4)

This enforces that 2r +s > n — [gj +1,andif r = 0, thens > n — L%j +1= ]—%] + 1. Now,
for T/ € Rp U Sp, we discuss the existence of possible configurations of subgraphs F/ = G* U T/ in D.

Case 1: crp(G*) = 0. Without loss of generality, we can consider the drawing of G* with the
vertex notation like that in Figure 1a. It is obvious that the set Rp is empty; that is, # = 0. Thus, we deal
with only the configurations belonging to the nonempty set M and we discuss over all cardinalities
of the set Mp in the following subcases:

i. |Mp| > 3. We consider two subcases. Let us first assume that {A;, Aj, A} € Mp with
i+2 = j+1 = k (mod5). Without lost of generality, let us consider three different
subgraphs =2, "1 T" ¢ Sp such that F*~2, F"~1 and F" have configurations A;, Aj,
and Ay, respectively. Then, crp(T"2UT-1U T T") > 14 holds for any T" € Sp with
m # n —2,n — 1,n by summing the values in all columns in the considered three rows of Table 1.
Moreover, crp(G*U T 2U T 1UT", T™) > 6is fulfilling for any subgraph T" ¢ Sp by Lemma 1.
crp(T"2U T~ 1 U T") > 13 holds by summing of three corresponding values of Table 1 between
the considered configurations A4;, A j,and Ay, by fixing the subgraph G* U T2y r-lyTn,

crp(G* 4 Dy) = crp(Kgn3) +crp(Kep—3, G*UT" 2UT 1 UT") 4+ erp (G UT2U T TUTY)

26[";% L";‘LJ +15(s—3)+6(n—s)+13+3:6{";3JL”gﬂ 4611+ 95— 29
=62 |1 oo (5] +1) ~29 6 5] | " s 5

In addition, let us assume that Mp = {A;, A;, A} withi+1=j (mod 5),j+1 # k (mod 5),
and k+1 # i (mod 5). Without lost of generality, let us consider two different subgraphs
T"1, T" € Sp such that F"~! and F" have mentioned configurations A; and A;, respectively.
Then, crp(G* U T~ 1 U T", T™) > 1+ 10 = 11 holds for any T™ € Sp withm # n — 1, n also, by
summing the values in Table 1. Hence, by fixing the subgraph G* U T" 1 U T",

crp(G* + Dy) = crp(Kgpn_2) + crp(Kgn_o, G*U T VU T") 4 crp(GFU T LU TT)

zeL"QZJ ["ESJ +11(s—2)+4(n—5)+4+2:6V;2J ["ESJ +4n+75— 16
26" |15 [ raner ([5]4) —rez 6 5[ one 5

ii. |Mp|=2;thatis, Mp = {A;, A;} for somei,j € {1,...,5} with i # j. Without lost of generality,
let us consider two different subgraphs T"~!, T" € Sp such that F"~! and F" have mentioned
configurations A; and Aj, respectively. Then, crp(G* U T" "1 UT", T™) > 1+ 10 = 11 holds for
any T" € Sp with m # n — 1, also by Table 1. Thus, by fixing the subgraph G* U T"~1 U T", we
are able to use the same inequalities as in the previous subcase.
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iti. |Mp| = 1; thatis, Mp = {A;} for only one j € {1,...,5}. Without lost of generality, let us
assume that T" € Sp with the configuration A; € Mp of the subgraph F". As Mp = {A;},
we have crp(G* U T", T¥) > 146 = 7 for any T¥ € Sp, k # n provided that rotp (t,) = rotp(t),
for more see [13]. Hence, by fixing the subgraph G* U T",

cap(G* 4+ Dy) = arp(Kep—1) +crp(Kgu—1,G*UT") +crp(G*UT")

nflJ {1172
2 2
n

Jranea([5] 1) -2 o325 e )

Case 2: crp(G*) = 1 with crp(Ce(G*)) = 0. At first, without loss of generality, we can consider
the drawing of G* with the vertex notation like that in Figure 1b. Since the set Rp can be nonempty,
two possible subcases may occur:

an;lJViZJ+7(s—1)+3(n—5)+1:6L J+3"+4S—6

2
n;lJ {ngz

>6|

i. Let Rp be the nonempty set; that is, there is a subgraph T' € Rp. Now, for a T' € Rp, the reader
can easily see that the subgraph F = G* U T' is uniquely represented by rotp(t;) = (165432),
and crp(T/, T/) > 6 for any T/ € Rp with j # i provided that rotp(t;) = rotp(t;); for more
see [13]. Moreover, it is not difficult to verify by a discussion over all possible drawings D that
crp(GFU T, Tk) > 5 holds for any subgraph T* € Sp, and crp(G*U T, Tk) > 4 is also fulfilling
for any subgraph T¥ ¢ Rp U Sp. Thus, by fixing the subgraph G* U T,

n;lJLHQZJ+6(r71)+5s+4(n777s)+1:6“_1JLH_ZJ

rp(G* + Dy) 26[ . .

n—1)1n-2 n nin—1 n

Han+ (2r+5) =5 2 6| o= | |5 | +an+ (n— [ Z] +1) =52 6|7 | |55 | +n+ 5]

ii. Let Rp be the empty set; that is, each subgraph T/ crosses the edges of G* at least once in D. Thus,
we deal with the configurations belonging to the nonempty set AVp. Let us consider a subgraph
Ties p with the configuration B; € Np of F/, wherei € {1,2,3,4}. Then, the lower-bounds of
number of crossings of two configurations from A confirm that crp(G* U T/, Tk )>14+4=5
holds for any T* € Sp, k # j. Moreover, one can also easily verify over all possible drawings
D that crp(G* U T/, T¥) > 4 is true for any subgraph TX ¢ Sp. Hence, by fixing the subgraph
G*uUT,

crp(G* + Dy) ze{"‘lj {"‘2

2 2 J+5(5—1)+4(n—5)+1+1:6L”;1JVz;zJ

ez o 2 22 s (3] 1) -0 o[ 325 o 3

In addition, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure le. It is obvious that the set Rp is empty; that is, the set Sp cannot be empty. Thus,
we deal with the configurations belonging to the nonempty set Op. Note that the lower-bounds of
number of crossings of two configurations from O were already established in Table 2. Since there is
a possibility to find a subdrawing of G* U T/ U T, in which crp(G* U T/, TF) = 3 with T/ € Sp and
T ¢ Sp, we discuss four following subcases:

i. &4 € Op. Without lost of generality, let us assume that T" € Sp with the configuration £, € Op
of F". Only for this subcase, one can easily verify over all possible drawings D for which
crp(G* U T, TF) > 4 s true for any subgraph T* ¢ Sp. Thus, by fixing the subgraph G* U T",

erp(G* +Dy) > 6| 1| |12

2 2 J+5(5—1)+4(n—s)+1+1:6{";1J{nng



Symmetry 2020, 12,135

a5 2o 5|75 o (3] 1) =52 e[3] 75 s 3]

ii. & ¢ Op and & € Op. Without lost of generality, let us assume that T" € Sp with the
configuration &3 € Op of F". In this subcase, crp(G* U T", Tk) > 145 = 6 holds for any
subgraph TC € Sp,k#n by the remaining values in the third row of Table 2. Hence, by fixing
the subgraph G* U T",

”glJ["QZJ+6(s—1)+3(n—s)+1+1:qnglJ[”_2J

* >
crp(G* + Dy) 76[ .

santas—azo| 1|1 5F ranra (5] +1) ez |55+ 3]

iii. Op = {&,&}. Without lost of generality, let us consider two different subgraphs ™1, T" € Sp
such that F"~1 and F"" have mentioned configurations £; and &, respectively. Then, crp(G* U
T 1UT", TF) > 1+ 10 = 11 holds for any T € Sp with k # n — 1,7 also by Table 2. Thus, by
fixing the subgraph G* U T"~1 U T",

anJ sz?)

. . J+11(S,2)+4(nfs)+4+2:6V1*2J{n73J

ch(G*Jan)zé{ ) 5

w1620 2|72 e ([3] 1) s o 3|75 o 3]

iv. Op = {&;} for only one i € {1,2}. Without lost of generality, let us assume that T" € Sp with
the configuration & of F”. In this subcase, crp(G* U T", Tk) > 1+ 6 = 7 holds for any Tk € Sp,
k # n provided that rotp(t,) = rotp(t). Hence, by fixing the subgraph G* U T",

CrD(G*JrD")zqnngnng+7(5_1)+3(”—5)+1:6V§1J[HQZJ

n

Jranra (5] +1) -o2el3] |75 oo 3]

Case 3: crp(G*) = 2 with crp(Ce(G*)) = 0. At first, without loss of generality, we can consider
the drawing of G* with the vertex notation like that in Figure 1c. It is obvious that the set Rp is empty,
that is, the set Sp cannot be empty. Our aim is to list again all possible rotations rotp(t;) which can
appear in D if a subgraph T/ € Sp. Since there is only one subdrawing of F/ \ {v;} represented by
the rotation (26543), there are three ways to obtain the subdrawing of F/ depending on which edge
of G* is crossed by the edge t;v1. These three possible ways under our consideration can be denoted
by Cy, for k = 1,2,3. Based on the aforementioned arguments, we assume the drawings shown in

+3n+4s—626[”_1H”_2

2 2

Figure 7.

C1 Cy C3

Figure 7. Drawings of three possible configurations of the subgraph F/.

10
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Thus the configurations C;, Cy, and C3 are represented by the cyclic permutations (132654),
(143265), and (165432), respectively. Further, due to the properties of the cyclic rotations we can easily
verify that cr(C;, C;) > 4 for any i,j € {1,2,3}. Moreover, one can also easily verify over all possible
drawings D that crp(G* U T/, T¥) > 4 holds for any subgraph TX ¢ Sp, where T/ € Sp with some
configuration C; of F/. As there is a T/ € Sp, by fixing the subgraph G* U T/,

nflJ Vl72

ch(G*Jan)zé{ 5 5

ez ol 2|72 e (5] +1) <22 of3] 75 o 3]

In addition, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure 1d. In this case, by applying the same process, we obtain two possible forms of
rotation rotp (t;) for T/ € Sp. Namely, the rotations (165423) and (165432) if the edge tjvp crosses
either the edge v3v4 or the edge v3v5 of G*, respectively. Further, they satisfy also the same properties
like in the previous subcase, i.e., the same lower bounds of numbers of crossings on the edges of the
subgraph G* U T/ by any TX, k # j. Hence, we are able to use the same fixing of the subgraph G* U T/
for obtaining a contradiction with the number of crossings in D.

Finally, without loss of generality, we can consider the drawing of G* with the vertex notation
like that in Figure 1f. In this case, the set Rp is empty; that is, the set Sp cannot be empty. Thus, we
can deal with the configurations belonging to the nonempty set Pp. Recall that the lower-bounds of
number of crossings of two configurations from P were already established in Table 3. Further, we can
apply the same idea and also the same arguments as for the configurations & € Op, withi =1,2,3,
in the subcases ii.—iv. of Case 2.

Case 4: crp(G*) > 1 with crp(Ce(G*)) > 1. For all possible subdrawings of the graph G* with at
least one crossing among edges of C4(G*), and also with the possibility of obtaining a subgraph T/
that crosses the edges of G* at most once, one of the ideas of the previous subcases can be applied.

We have shown, in all cases, that there is no good drawing D of the graph G* 4 D,, with fewer
than 6|2 || 252 | 4+ n + | 4| crossings. This completes the proof of the main theorem. LI

J+5(S*1)+4(n7s)+2+1:6{’7;1J Vl;ZJ

4. Conclusions

Determining the crossing number of a graph G + D, is an essential step in establishing the so far
unknown values of the numbers of crossings of graphs G + P, and G + C;;, where P, and C,, are the
path and the cycle on n vertices, respectively. Using the result in Theorem 1 and the optimal drawing
of G* + D,, in Figure 6, we are able to postulate that cr(G* + P,;) and cr(G* + Cy,) are at least one more
than cr(G* + D,,) = 6| 5 | \_”T_lj +n+ 5]
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Abstract: Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D(G)
be the distance matrix, D*(G) be the distance Laplacian, D?(G) be the distance signless Laplacian,
and Tr(G) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote
by D, (G) the generalized distance matrix, i.e., D4(G) = aTr(G) + (1 — «)D(G), where « € [0,1].
In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G,
making use of some graph parameters like the order 7, the diameter, the minimum degree, the second
minimum degree, the transmission degree, the second transmission degree and the parameter «,
improving some bounds recently given in the literature. We also characterize the extremal graphs
attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds
recently given in the literature for the case of distance matrix and distance signless Laplacian matrix.
We also obtain new bounds for the k-th generalized distance eigenvalue.

Keywords: distance matrix (spectrum); distance signlees Laplacian matrix (spectrum); (generalized)
distance matrix; spectral radius; transmission regular graph

MSC: Primary: 05C50, 05C12; Secondary: 15A18

1. Introduction

We will consider simple finite graphs in this paper. A (simple) graph is denoted by G =
(V(G),E(G)), where V(G) = {v1,0y,...,v,} represents its vertex set and E(G) represents its edge
set. The order of G is the number of vertices represented by n = |V(G)| and its size is the number of
edges represented by m = |E(G)|. The neighborhood N(v) of a vertex v consists of the set of vertices
that are adjacent to it. The degree d(v) or simply d(v) is the number of vertices in N(v). In a regular
graph, all its vertices have the same degree. Let dy, be the distance between two vertices 1, v € V(G).
It is defined as the length of a shortest path. D(G) = (duo),, ey (q) is called the distance matrix of G.
G is the complement of the graph G. It has the same vertex set with G but its edge set consists of the
edges not present in G. Moreover, the complete graph Kj;, the complete bipartite graph K ;, the path
P,, and the cycle C;; are defined in the conventional way.

The transmission Trg(v) of a vertex v is the sum of the distances from v to all other vertices in G,
ie, Trg(v) = Y duo. A graph G is said to be k-transmission regular if Trg(v) = k, for each v € V(G).

ueV(G
The transmission (;ls)o called the Wiener index) of a graph G, denoted by W(G), is the sum of distances
between all unordered pairs of vertices in G. We have W(G) = 1 Y~ Trg(v).
veV(G)

Symmetry 2019, 11, 1529; doi:10.3390/sym11121529 13 www.mdpi.com/journal /symmetry
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For a vertex v; € V(G), Trg(v;) is also referred to as the transmission degree, or shortly Tr;.
The sequence of transmission degrees {Try, Try, ..., Tr, } is the transmission degree sequence of the graph.
n

T, = Z d;jTr; is called the second transmission degree of v;.
=1

]]Distance matrix and its spectrum has been studied extensively in the literature, see e.g., [6].
Compared to adjacency matrix, distance matrix encapsulates more information such as a wide range
of walk-related parameters, which can be applicable in thermodynamic calculations and have some
biological applications in terms of molecular characterization. It is known that embedding theory and
molecular stability have to do with graph distance matrix.

Almost all results obtained for the distance matrix of trees were extended to the case of weighted
trees by Bapat [12] and Bapat et al. [13]. Not only different classes of graphs but the definition of
distance matrix has been extended. Indeed, Bapat et al. [14] generalized the concept of the distance
matrix to that of g-analogue of the distance matrix. Let Tr(G) = diag(Try, Tra, ..., Try) be the diagonal
matrix of vertex transmissions of G. The works [7-9] introduced the distance Laplacian and the
distance signless Laplacian matrix for a connected graph G. The matrix D' (G) = Tr(G) — D(G) is
referred to as the distance Laplacian matrix of G, while the matrix D?(G) = Tr(G) + D(G) is the distance
signless Laplacian matrix of G. Spectral properties of D(G) and D?(G) have been extensively studied
since then.

Let A be the adjacency matrix and Deg(G) = diag(dy, dy, ..., d,) be the degree matrix G. Q(G) =
Deg(G) + A is the signless Laplacian matrix of G. This matrix has been put forth by Cvetkovic in [16]
and since then studied extensively by many researchers. For detailed coverage of this research
see [17-20] and the references therein. To digging out the contribution of these summands in Q(G),
Nikiforov in [33] proposed to study the a-adjacency matrix A,(G) of a graph G given by A,(G) =
aDeg(G) + (1 —a)A, where a € [0,1]. We see that A,(G) is a convex combination of the matrices
A and Deg(G). Since Ag(G) = A and 241 ,5(G) = Q(G), the matrix A,(G) can underpin a unified
theory of A and Q(G). Motivated by [33], Cui et al. [15] introduced the convex combinations Dy (G) of
Tr(G) and D(G). The matrix Dy (G) = aTr(G) + (1 —a)D(G), 0 < a < 1, is called generalized distance
matrix of G. Therefore the generalized distance matrix can be applied to the study of other less general
constructions. This not only gives new results for several matrices simultaneously, but also serves the
unification of known theorems.

Since the matrix D, (G) is real and symmetric, its eigenvalues can be arranged as: 9; > 9 >
-+ > 0y, where 91 is referred to as the generalized distance spectral radius of G. For simplicity, 9(G) is the
shorthand for 01 (G). By the Perron-Frobenius theorem, 9(G) is unique and it has a unique generalized
distance Perron vector, X, which is positive. This is due to the fact that D,(G) is non-negative and
irreducible.

A column vector X = (x1,x2,...,%,)T € R" is a function defined on V(G). We have X(v;) = x;
for all i. Moreover,

n
XTD(G)X =a ) Tr(v)xi +2(1—a) Y. d(v;,v))xx;,
i=1 1<i<j<n
and A has an eigenvector X if and only if X # 0 and
n
Axy = aTr(v)x; + (1—a) Y d(v;,0))x;.
j=1

They are often referred to as the (A, x)-eigenequations of G. If X € R" has at least one non-negative
element and it is normalized, then in the light of the Rayleigh’s principle, it can be seen that

9(G) > XTD.(G)X,

14
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where the equality holds if and only if X becomes the generalized distance Perron vector of G.

Spectral graph theory has been an active research field for the past decades, in which for
example distance signless Laplacian spectrum has been intensively explored. The work [41] identified
the graphs with minimum distance signless Laplacian spectral radius among some special classes
of graphs. The unique graphs with minimum and second-minimum distance signless Laplacian
spectral radii among all bicyclic graphs of the same order are identified in [40]. In [24], the authors
show some bounding inequalities for distance signless Laplacian spectral radius by utilizing vertex
transmissions. In [26], chromatic number is used to derive a lower bound for distance signless
Laplacian spectral radius. The distance signless Laplacian spectrum has varies connections with
other interesting graph topics such as chromatic number [10]; domination and independence
numbers [21], Estrada indices [4,5,22,23,34-36,38], cospectrality [11,42], multiplicity of the distance
(signless) Laplacian eigenvalues [25,29,30] and many more, see e.g., [1-3,27,28,32].

The rest of the paper is organized as follows. In Section 2, we obtain some bounds for the
generalized distance spectral radius of graphs using the diameter, the order, the minimum degree,
the second minimum degree, the transmission degree, the second transmission degree and the
parameter . We then characterize the extremal graphs. In Section 3, we are devoted to derive
new upper and lower bounds for the k-th generalized distance eigenvalue of the graph G using
signless Laplacian eigenvalues and the x-adjacency eigenvalues.

2. Bounds on Generalized Distance Spectral Radius

In this section, we obtain bounds for the generalized distance spectral radius, in terms of the
diameter, the order, the minimum degree, the second minimum degree, the transmission degree,
the second transmission degree and the parameter «.

The following lemma can be found in [31].
Lemma 1. If A isan n X n non-negative matrix with the spectral radius A(A) and row sums r1,1a, . .., ry, then

min 7; < A(A) < max r;.
1<i<n 1<i<n

Moreover, if A is irreducible, then both of the equalities holds if and only if the row sums of A are all equal.

The following gives an upper bound for 9(G), in terms of the order , the diameter d and the
minimum degree ¢ of the graph G.

Theorem 1. Let G be a connected graph of order n having diameter d and minimum degree 6. Then

A(d—1)

< _
9(G) <dn 3

—-1-4(d—1), @
with equality if and only if G is a regular graph with diameter < 2.

Proof. First, it is easily seen that,

IN

n
Tr,,:ﬁdjp dp+243+---+@d-1)+dn—-1—d,— (d—2))
iz

= dnfﬂ%mflfdp(dfl), for all p=1,2,...,n. 2)
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Let Tryax = max{Trg(v;) : 1 < i < n}. For a matrix A denote A(A) its largest eigenvalue.
We have

2(G) = A(a(Tr(G))+(1-w)D(G))
aA(Tr(G)) 4+ (1 — a)A(D(G))

&Trmax + (1 — &) Trimax = Trmax-

INIA

Applying Equation (2), the inequality follows.

Suppose that G is regular graph with diameter less than or equal to two, then all coordinates of the
generalized distance Perron vector of G are equal. If 4 = 1, then G = K;; and 9 = n — 1. Thus equality
in (1) holds. If d = 2, we get 0(G) = d; +2(n — 1 — d;) = 2n — 2 — d;, and the equality in (1) holds.
Note that the equality in (1) holds if and only if all coordinates the generalized distance Perron vector
are equal, and hence D, (G) has equal row sums.

Conversely, suppose that equality in (1) holds. This will force inequalities above to become
equations. Then we get Try = Trp = - - - = Try = Trmax, hence all the transmissions of the vertices are
equal and so G is a transmission regular graph. If d > 3, then from the above argument, for every
vertex v;, there is exactly one vertex v; with dg(v;, vj) = 2, and thus d = 3, and for a vertex vs of
eccentricity 2,

33-1)

9(G)xs =dsxs +2(n—1—ds)xs = (3717 717d5(371)> Xs,

implying that d; = n — 2, giving that G = P;. But the Dy(Ps) is not transmission regular graph.
Therefore, G turns out to be regular and its diameter can not be greater than 2. [

Taking & = % in Theorem 1, we immediately get the following bound for the distance signless
Laplacian spectral radius plQ (G), which was proved recently in [27].

Corollary 1. ([27], Theorem 2.6) Let G be a connected graph of order n > 3, with minimum degree 6y,
second minimum degree 5y and diameter d. Then

p2(G) < 2dn —d(d—1) —2— (8, +8)(d — 1),
with equality if and only if G is (transmission) regular graph of diameter d < 2.
Proof. As ZD% (G) = DQ(G), letting & = &; in Theorem 1, we have
p?(G) =20(G) <2dn—d(d—1)—2—-26(d—1) <2dn—d(d—1) —2— (61 + &) (d — 1),

and the result follows. [

Next, the generalized distance spectral radius 9(G) of a connected graph and its complement is
characterized in terms of a Nordhaus-Gaddum type inequality.

Corollary 2. Let G be a graph of order n, such that both G and its complement G are connected. Let § and A be
the minimum degree and the maximum degree of G, respectively. Then

9(G)+9(G) <2nk—(t—1)(t+n+5—-A-1) -2,

where k = max{d,d},t = min{d,d} and d, d are the diameters of G and G, respectively.
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Proof. Let ¢ denote the minimum degree of G.Thend =n—1—A, and by Theorem 1, we have

3(G) +a(C) < dnfd(%l)flﬂs(dq)wnf

d(d-1) .
S —1-dd-1)

—_

= nm+5y—§mu—1y+ﬂd—n)—2—&d—n-(n—1—AxJ—U

< 2nk—(t—1)(t+n+d6—A-1) -2
0

The following gives an upper bound for 0(G), in terms of the order 1, the minimum degree 6 = 6;
and the second minimum degree ¢, of the graph G.

Theorem 2. Let G be a connected graph of order n having minimum degree 61 and second minimum degree 6.
Then for s = 61 + dp, we have

a¥ + /a?¥2 +4(1 —20)O
a(G) < =20, @

where ® = (dnf ) g fdl(dfl)) (dnf ) 752(d71)) and ¥ = 2dn —d(d —1) —2—
s(d — 1). Also equality holds if and only if G is a reqular graph with diameter at most two.

Proof. Let X = (x1,x,..., xn)T be the generalized distance Perron vector of graph G and let x; =
max{x[k = 1,2,...,n} and x; = max,i{x|k = 1,2,...,n}. From the ith equation of Da(G)X =
9(G)X, we obtain
n
ox; = aTrix;+ (1 —«a) digxp < aTrix; + (1 — a) Trix;. 4)
k=Tk#i

Similarly, from the jth equation of D,(G)X = 9(G)X, we obtain

=

ox; = aTrjx; + (1 — «) digxe < aTrpxj + (1 — ) Trjx;. )

k=Tk#j

-

Now, by (2), we have,

(87a<dn7d(d2_1) flfdi(d71)>>xi§ (1—a) (dnfd(dz_l) flfdi(d71)> X

<a—a (dn— d(dz_l) —1—dj(d—1)>>xj <(1-ua <dn— d(dz_l) —1—dj(d—1)> ..

Multiplying the corresponding sides of these inequalities and using the fact that x; > 0 for all k,
we obtain

0% —a(2dn —d(d—1) —2— (d —1)(d; + d;))d — (1 - 20)&; <0,

where & = dn — d<d;]) —1—-d;(d—1),1 =i,j, which in turn gives

3(G) < a(2dn —d(d—1) —2—s(d—1)) + /a22dn —d(d —1) =2 —s(d —1))2 +4(1 — 22)®
< 5 .

Now, using d; +d i > 01 + o, the result follows.
Suppose that equality occurs in (3), then equality occurs in each of the above inequalities.
If equality occurs in (4) and (5), the we obtain x; = x, for all k = 1,2,...,n giving that G is a
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transmission regular graph. Also, equality in (2), similar to that of Theorem 1, gives that G is a graph
of diameter at most two and equality in d; +d; > &1 + J gives that G is a regular graph. Combining
all these it follows that equality occurs in (3) if G is a regular graph of diameter at most two.

Conversely, if G is a connected J-regular graph of diameter at most two, then 9(G) = Tr; =
dn— 290 1 _d,(d—1). Also

a(2dn —d(d—1) —2—s(d—1)) + /a2(2dn —d(d —1) =2 —s(d —1))2+4(1 — 22)®

2
_ a@dn—d(d—-1)-2—-s(d—-1))+(2dn —d(d—1) —2—s(d —1))(1 — )
B 2
- dn—d(dgl)—l—é(d—l):a(G).

That completes the proof. [

Remark 1. For any connected graph G of order n having minimum degree 6, the upper bound given by
Theorem 2 is better than the upper bound given by Theorem 1. As

a(2dn —d(d—1) —2—s(d—1)) + /a2(2dn —d(d —1) =2 —s(d —1))2 +4(1 — 22)©®

2 7
a(2dn —d(d —1) —2—26(d — 1)) + /a2(2dn —d(d — 1) —2—26(d — 1))2 +4(1 — 2a)D
< 2 ,
w(2dn —d(d—1) =2 —26(d — 1)) + (2dn — d(d — 1) —2 —26(d — 1)) (1 — &)

2

= dn-— —1-56(d—1),

d(d—1)
2

where ® = (2dn —d(d —1) —2 —25(d — 1))

The following gives an upper bound for 9(G) by using quantities like transmission degrees as
well as second transmission degrees.

Theorem 3. If the transmission degree sequence and the second transmission degree sequence of G are
{Try, Try, ..., Trp} and {Ty, To, ..., Tn}, respectively, then

9(G) < max
1<i<n

. ©®

{ -B+ \/ﬁz +4(aTr? + (1 — a)T; + BTr;) }

where B > 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Let X = (x1,...,%x) be the generalized distance Perron vector of G and x; = max{x;| j =
1,2,...,n}.Since

(Da(G))*X = (aTr + (1 — a)D)?X
T’ X 4+ a(1 — a)TrDX + a(1 — a)DTrX + (1 — a)?D?X,

9(G)*X

we have

n n non
az(G)X,‘ = IXZT‘V‘I'ZXZ' + Dé(]. — DL)TI’Z' Z dzjx, + Dé(]. — DL) Z di]'TTij + (1 — Dé)z 2 Z d,‘jdjkxk.
j=1 j=1 j=1k=1
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Now, we consider a simple quadratic function of 9(G) :

(0*(G)+BA(G)X = (a®*Tr*X +a(1—a)TrDX + a(1 — «)DTrX + (1 — «)?D?X)
+ B(aTrX + (1 —a)DX).

Considering the ith equation, we have

n n
(*(G)+pAG))x; = a®Trix;+a(l—a)Tr; Y dijxj+a(l—a) Y d;jTrx;
j=1 j=1
n n
+ (1—«) ZZ iidjexk + B | aTrix; + a(1 —a) Zdl]x]
j=1k=1 j=1

It is easy to see that the inequalities below are true

n n
a1 —a)Tr; Z dijxj < a(l— a)Trle,-, a(l—a) E dijTrix; < a(1 —a)Tix;,
j=1 j=1

n n

(1—a) Z Z dpdijxe < (1—)*Tix;, (1—a)
j=1k= j

M:

dijxj < (1 —a)Trx;.
1

Hence, we have
(0*(G) + BA(G))x; < aTr?x; — aTix; + Tix; + BTrix;
= &(G) +pa(G) — (aTr? — (« — 1)T; + BTr;) <0

—B+ \//52 +4(aTrf — (« = 1)T; + pTr;)
5 :

= 9(G) <

From this the result follows.
Now, suppose that equality occurs in (6), then each of the above inequalities in the above argument
occur as equalities. Since each of the inequalities

n
a(l1—a)Tr; Y dijx; < a(1—a)Trix;, a(1—a Zd,]Tr]x/ <a(l—a)Tix;
j=1 j=1

and

n

n n
(1—a) Z Z i < (1—a)’Tixg, (1—a) Y dijxj < (1—a)Trix;,
s | i—1

occur as equalities if and only if G is a transmission regular graph. It follows that equality occurs in (6)
if and only if G is a transmission regular graph. That completes the proof. [

The following upper bound for the generalized distance spectral radius 0(G) was obtained in [15]:
9(G) < max { aTr? + (1 fzx)Tl}, %)

1<i<n

with equality if and only if aTr? + (1 — a)T; is same for i.
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Remark 2. For a connected graph G having transmission degree sequence {Trq, Tro, ..., Try } and the second
transmission degree sequence {T1, Ty, ..., Ty}, provided that T; < Tr? for all i, we have

—+ /B + 4T +4(1 — )T, + 4pTy; .
o <y/aTrs +(1—a)T;.

Therefore, the upper bound given by Theorem 3 is better than the upper bound given by (7).

If, in particular we take the parameter  in Theorem 3 equal to the vertex covering number
7, the edge covering number, the clique number w, the independence number, the domination
number, the generalized distance rank, minimum transmission degree, maximum transmission degree,
etc., then Theorem 3 gives an upper bound for d(G), in terms of the vertex covering number T,
the edge covering number, the clique number w, the independence number, the domination number,
the generalized distance rank, minimum transmission degree, maximum transmission degree, etc.

Let x; = min{x;| j = 1,2,..., 1} be the minimum among the entries of the generalized distance
Perron vector X = (x1,...,xy) of the graph G. Proceeding similar to Theorem 3, we obtain the
following lower bound for 9(G), in terms of the transmission degrees, the second transmission degrees
and a parameter .

Theorem 4. If the transmission degree sequence and the second transmission degree sequence of G are
{Tr1,Try, ..., Trp} and {Ty, To, ..., Tn}, respectively, then

23G) > min d T VB2 + 4T + (1 )T, + BTry)

T 1<i<n 2
where B > 0 is an unknown parameter. Equality occurs if and only if G is a transmission regular graph.

Proof. Similar to the proof of Theorem 3 and is omitted. [

The following lower bound for the generalized distance spectral radius was obtained in [15]:

9(G) > @ign { aTr? 4 (1— a)Ti}, ®)
with equality if and only if aTr? + (1 — a)T; is same for i.

Similar to Remark 2, it can be seen that the lower bound given by Theorem 4 is better than the
lower bound given by (8) for all graphs G with T; > Tr2, for all i.

Again, if in particular we take the parameter B in Theorem 4 equal to the vertex covering
number 7, the edge covering number, the clique number w, the independence number, the domination
number, the generalized distance rank, minimum transmission degree, maximum transmission degree,
etc, then Theorem 4 gives a lower bound for d(G), in terms of the vertex covering number T,
the edge covering number, the clique number w, the independence number, the domination number,
the generalized distance rank, minimum transmission degree, maximum transmission degree, etc.

G1V Gy is referred to as join of Gy and Gy. It is defined by joining every vertex in G; to every
vertex in G.

Example 1. (a) Let Cy be the cycle of order 4. One can easily see that Cy is a 4-transmission regular

graph and the generalized distance spectrum of Cy is {4,4x,6a — 221}, Hence, d(C4) = 4. Moreover,
the transmission degree sequence and the second transmission degree sequence of Cq are {4,4,4,4} and
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{16,16,16,16}, respectively. Now, putting B = Tryax = 4 in the given bound of Theorem 3, we can see that
the equality holds:

a(Cy) < —2F VI6+4(T6a +16(1—a) +16) _ —4+ /144 _

4.
2 2

(b) Let W11 be the wheel graph of order n + 1. It is well known that W, 1 = C, VK. The distance
signless Laplacian matrix of Ws is

51211
15121
DPeWs)=[2 1 5 1 1
12151
1111 4

Hence the distance signless Laplacian spectrum of Wi is spec(Ws) = { %, %, 3, %[2] }, and then

the distance signless Laplacian spectral radius is plQ(Wg,) = %. Also, the transmission degree sequernce

and the second transmission degree sequence of Ws are {5,5,5,5,4} and {24,24,24,24,20}, respectively.

As Di(G) = 1DQ(G), taking « = 1 and B = Tryax = 5 in the given bound of Theorem 3, we immediately
2

get the following upper bound for the distance signless Laplacian spectral radius plQ (Ws):

—5+25+50+48+100 —54 /223
2 a 2 !

1
SPE(Ws) <

which implies that
PR (Ws) < —5+ /223 ~9.93.
3. Bounds for the k-th Generalized Distance Eigenvalue

In this section, we discuss the relationship between the generalized distance eigenvalues and the
other graph parameters.
The following lemma can be found in [37].

Lemma 2. Let X and Y be Hermitian matrices of order n such that Z = X + Y, and denote the eigenvalues of
amatrix Mby Ay > Ay > -+ > A,.Then

M(Z) <MK+ A ja(Y), n
M(Z) = M(X) + Ax—ju(Y), 1

Y
[\
Y

k>j>1
j>k>1,

%
%
\%

where Ai(M) is the ith largest eigenvalue of the matrix M. Any equality above holds if and only if a unit vector
can be an eigenvector corresponding to each of the three eigenvalues.

The following gives a relation between the generalized distance eigenvalues of the graph G of
diameter 2 and the signless Laplacain eigenvalues of the complement G of the graph G. It also gives a
relation between generalized distance eigenvalues of the graph G of diameter greater than or equal to
3 with the a-adjacency eigenvalues of the complement G of the graph G.

Theorem 5. Let G be a connected graph of order n > 4 having diameter d. Let G be the complement of G and
letq, >q, > - > 7, be the signless Laplacian eigenvalues of G. If d = 2, then forallk = 1,2, ..., n, we have

B —1)n =20+ (1 = 2a)dy + (1 — )7 < % (G) < (2n —2)a + (1 — 2a)dy + (1 — &)
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Equality occurs on the right if and only if k = 1 and G is a transmission regular graph and on the left if
and only if k # 1 and G is a transmission regular graph.
Ifd > 3, then forallk = 1,2,...,n, we have

an =1+ A (Au(G)) + An(M') < 3(G) < 1 =14 Ap(Ae(G)) + A (M),

where Ay(G) = aDeg(G) + (1 — a) A is the a-adjacency matrix of G and M' = aTr'(G) + (1 — &) M with
M = (mj;) a symmetric matrix of order n having m;; = max{0,d;; — 2}, d;; is the distance between the vertices
v, vjand Tr'(G) = diag(Try, Try, ..., Try,), Tri = L (dij —2).

ij=

Proof. Let G be a connected graph of order n > 4 having diameter d. Let Deg(G) = diag(n — 1 —
dy,n—1—dy,...,n—1—d,) be the diagonal matrix of vertex degrees of G. Suppose that diameter
d of G is two, then transmission degree Tr; = 2n — 2 — d;, for all 7, then the distance matrix of G can
be written as D(G) = A + 2A, where A and A are the adjacency matrices of G and G, respectively.
We have

Dy(G) = aTr(G) + (1 — «)D(G) = a(2n — 2)I — a Deg(G) + (1 — a)(A + 2A)
=ua(2n—2)I —aDeg(G)+ (1 —a)(A+A)+(1—a)A
= (Bna—n—2a)I+ (1 —a)] + (1 —2a) Deg(G) + (1 —a)Q(G),

where I is the identity matrix and ] is the all one matrix of order n. Taking Y = (3na —n —2a)I + (1 —
2a) Deg(G) + (1 —a)Q(G), X = (1 — a)], j = 1 in the first inequality of Lemma 2 and using the fact
that spec(J) = {n, 00"}, it follows that

(G) < (2n—2)a+ (1 —2a)di + (1 —a)g,, forall k=1,2,...,n )

Again, taking Y = (3na —n — 2a)I + (1 — 2a) Deg(G) + (1 — #)Q(G), X = (1 —a)J and j = nin
the second inequality of Lemma 2, it follows that

(G) > (B —1)n — 20+ (1 —2a)dy + (1 —a)g,, forall k=1,2,...,n. (10)

Combining (9) and (10) the first inequality follows. Equality occurs in first inequality if and only
if equality occurs in (9) and (10). Suppose that equality occurs in (9), then by Lemma 2, the eigenvalues
O, (Bn —2)a —n+ (1 —2a)dy + (1 — a)g; and n(1 — «) of the matrices D, (G), X and Y have the same
unit eigenvector. Since 1 = 1(1,1,...,1)7 is the unit eigenvector of Y for the eigenvalue n(1 — a),
it follows that equality occurs in (9) if and only if 1 is the unit eigenvector for each of the matrices
D,(G), X and Y. This gives that G is a transmission regular graph and G is a regular graph. Since a
graph of diameter 2 is regular if and only if it is transmission regular and complement of a regular
graph is regular. Using the fact that for a connected graph G the unit vector 1 is an eigenvector for
the eigenvalue 9y if and only if G is transmission regular graph, it follows that equality occurs in first
inequality if and only if k = 1 and G is a transmission regular graph.

Suppose that equality occurs in (10), then again by Lemma 2, the eigenvalues 9y, (3n — 2)a —
n+ (1 —2a)dx + (1 — a)g, and 0 of the matrices D,(G), X and Y have the same unit eigenvector x.
Since Jx = 0, it follows that x71 = 0. Using the fact that the matrix J is symmetric(so its normalized
eigenvectors are orthogonal [43]), we conclude that the vector 1 belongs to the set of eigenvectors of
the matrix | and so of the matrices D,(G), X. Now, 1 is an eigenvector of the matrices D,(G) and
X, gives that G is a regular graph. Since for a regular graph of diameter 2 any eigenvector of Q(G)
and D,(G) is orthogonal to 1, it follows that equality occurs in (10) if and only if k # 1 and G is
a regular graph.

Ifd > 3, we define the matrix M = (m1;;) of order n, where m;; = max{0, d;; — 2}, d;; is the distance
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between the vertices v; and v;. The transmission of a vertex v; can be written as Tr; = d; + 2d; + Tr!,

where Tr; = ) (d;; — 2), is the contribution from the vertices which are at distance more than two
;>3

from v;. For Tr'(G) = diag(Tr}, Tr}, ..., Tr},), we have

Dx(G) = aTr(G) + (1 — a)D(G) = a Deg(G) + 2a Deg(G) + aTr' (G) + (1 — a) (A + 2A + M)

= a(Deg(G) +Deg(G)) + (1 —a)(A+ A) + («Deg(G) + (1 — a)A) + (aT'(G) + (1 — a) M)
= Da(Kn) + Aa(é) + M/r

Y = Ax(G) + M’ and j = 1 in the first inequality of Lemma 2 and using the fact that spec(Dq (Ky))
{n—1,an —1"=1}, it follows that

where A,(G) is the a-adjacency matrix of G and M’ = aTr'(G) + (1 — &) M. Taking X = Dy (Ky),

%(G) <n—1+ A (A(G)+ M), forall k=1,2,...,n.
Again, taking Y = A,(G), X = M’ and j = 1 in the first inequality of Lemma 2, we obtain
9% (G) <n—1+ A (Ax(G)) + A (M), forall k=1,2,...,n. (11)

Similarly, taking X = Dy(Ky), Y = Ax(G) + M’ and j = n and then Y = A,(G), X = M’ and
j = n in the second inequality of Lemma 2, we obtain

9(G) > an — 1+ A(Ag(G)) + An(M'), forall k=1,2,...,n. (12)

From (11) and (12) the second inequality follows. That completes the proof. [J

It can be seen that the matrix M’ defined in Theorem 5 is positive semi-definite for all % <a<l.
Therefore, we have the following observation from Theorem 5.

Corollary 3. Let G be a connected graph of order n > 4 having diameter d > 3. If% < wa <1, then
%(G) > an — 1+ A (Ax(G)), forall k=1,2,...,n,
where Ay (G) = a Deg(G) + (1 — a) A is the a-adjacency matrix of G.

It is clear from Corollary 3 that for J < a < 1, any lower bound for the a-adjacency A (A (G))
gives a lower bound for 9 and conversely any upper bound for d gives an upper bound for Ay (A4 (G)).
We note that Theorem 5 generalizes one of the Theorems (namely Theorem 3.8) given in [8].

Example 2. (a) Let C,;, be a cycle of order n. It is well known (see [7]) that C, is a k-transmission regular
graph with k = %2 if n is even and k = ”2[1 if nisodd. Let n = 4. It is clear that the distance spectrum
of the graph Cy is {4,0, —2P21}. Also, since Cy is a 4-transmission regular graph, then Tr(Cy) = 4ly and so
Dy (Cy4) = 4aly + (1 — a)D(Cy). Hence the generalized distance spectrum of Cy is {4, 4w, 6a — 221}, Moreover,
the signless Laplacian spectrum of Cy is {2121, 021}, Since the diameter of Cy is 2, hence, applying Theoren 5,

for k =1, we have,

4o =408 —1) =20 +2(1 —20) +2(1 —a) < 01(Cq) =4 <6 +2(1—20) +2(1 —a) =4,

which shows that the equality occurs on right for k = 1 and transmission regular graph Cy.
Also, for k = 2, we have

4o =4(30 —1) — 20 +2(1 — 2a) +2(1 — &) < 32(Cy) = 4o < 60 +2(1 —20) +2(1 — ) = 4,
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which shows that the equality occurs on left for k = 2 and transmission regular graph C.

(b) Let Cg be a cycle of order 6. 1t is clear that the distance spectrum of the graph Cg is {9,002, —1, —4(2]},
Since Cq is a 9-transmission reqular graph, then Tr(Cq) = 9Ig and so Dy (Cg) = 9l + (1 — a) D(Cg). Hence,
the generalized distance spectrum of Ce is {9,9a/%,100 — 1,13a — 4121}, Also, the a-adjacency spectrum of
Ceis {3,2a + 1,30([2],50( —2[2] }. Let M’ be the matrix defined by the Theorem 5, hence the spectrum of M is
{181, 20 — 1B1}. Since diameter of the graph C is 3, hence, applying Theorem 5, for k = 1, we have

8v+1=6x—1+34+20—-1<091(Cs) =9<5+3+1=09.
Also for k = 2, we have
100 —1=6a—14+20+1+20—-1<0(Ce) =9 <5+2a+1+1=2a+7.
We need the following lemma proved by Hoffman and Wielandt [39].

Lemma 3. Suppose we have C = A + B. Here, all these matrices are symmetric and have order n. Suppose they
have the eigenvalues zx,, Bi, and «y;, where 1 < i < n, respectively arranged in non-increasing order. Therefore,

Y 1(71*“) 152

The following gives relation between generalized distance spectrum and distance spectrum for a
simple connected graph G. We use [1] to denote the set of {1,2,...,n}. For each subset S of (1], we use
5S¢ to denote [n] —

Theorem 6. Let G be a connected graph of order n and let py, . . ., iy be the eigenvalues of the distance matrix
of G. Then for each non-empty subset S = {r1,ra,..., 1} of [n], we have the following inequalities:

2kaW(G) — \/k(n — k) (1 T, a2T? — 42W2(G))
n
< Y@+ (a—1w)
ics
2kaW(G) + \/k (n—k) (n 2y a2Tr? — 402W2(G))
< .

n

Proof. Since Dy(G) = aTr(G) + (1 — a) D(G), then by the fact that 2aW(G) = Y1 1 (9; + (a — 1)),
we get 204W(G) — Yies(9; + (0 — 1)py) = Yicge(9i + (« — 1)p;). By Cauchy-Schwarz inequality,
we further have that

<2‘XW(G) =Y @i+ (a—1)p ) <Y 1Py @ — D)

icS ieSC  ieSC

Therefore
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By Lemma 3, we have that

2
(2“W(G) - Y 0+ (a— 1)#1‘)) + (n—k) Y0+ (a — 1)p;)?

i€eS i€S

<(n—k)

-

(@ + (0= 1D)p)> < (n—k) i:zszriz.
i=1

i=1

Again by Cauchy-Schwarz inequality, we have that

2 2
(2 o) - (o)

ics ies
< ¥ ( _k) Y@+ (a=Dp)* = (n—k) L (8 + (= D).
G\ kg s

Therefore, we have the following inequality

2 2
(W(G) - 2<ai+<a1>ui>> () (Z(a,-+ (al)m)>

i€S i€S

n
<(n—k) Y o*Tr2.
i-1

Solving the quadratic inequality for Y ;5(9; + (« — 1)p;), so we complete the proof. [

Notice that Y-/ ;(9; — aTr;) = 0 and by Lemma 3, we also have Y/, (9; — aTr;)> < (1 -
)2 Ty pf = 2(1 = a)? T <,y 7. We can similarly prove the following theorem.

Theorem 7. Let G be a connected graph of order n. Then for each non-empty subset S = {rq,ro,...,1¢} of [n],
we have:

|« (PO T B

ieS n

We conclude by giving the following bounds for the k-th largest generalized distance eigenvalue
of a graph.

Theorem 8. Assume G is connected and is of order n. Suppose it has diameter d and ¢ is its minimum
degree. Let

— mind n2(n— ”‘2”2(”*1) — 0282 — 4022
p(©) = min{n(r-1) (G 0w ) (o),
2
n (zxz (nd— @ -1 —5(d—1)> + (1 —a)’n(n —1)d2> —4a2W2(G)}.

Then fork=1,...,n,

i{zawm) - \/nﬁkilfp(c;)} <3(G) < {zaw«n + ”’k"qmc)}. 13)
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Proof. First we prove the upper bound. It is clear that

trace Dz Zaz i (Zi'(:l ai)z + (Z?:kﬂ ai)z.
i=k+1 k n—k

Let My = ¥ | 9;. Then

M2 (2aW(G) — My)?
R

trace(D3(G)) > e

which implies

9 (G) < < < % {ZaW(G) + \/ank[n - trace(D2(G)) — 4ac2W2(G)]} .
We observe that

1 -trace(D2(G)) — 4®>W?(G) = naziTrlﬂz+2n(1fﬂ)2 Y (dy)* - 4a®W*(G)

i=1 1<i<j<n
30, 1)2 _
< 02 o ™D gini )
2,20
_ 112(1’1 _ 1) (w + (1 _ a)2d2> *40(2W2(G),

since Tr; < @, and
n - trace(D2(G)) — 4a’*W?(G)

n
= na? Y Tr? +2n(1 — a)? Yy (ali]-)2 — 40®W2(G)

i=1 1<i<j<n

< na? (nd - d(d; D_ 1-6(d— 1)>2 +2n(1 - a)zwdz — 46®W*(G)
=n <zx2 <nd - @ —1-6(d— 1))2 + (1 —a)?n(n — 1)d2> —40°W%(G),

since Tr; < nd — (d D1 d;(d —1). Hence, we get the right-hand side of the inequality (13).
Now, we prove the lower bound. Let Ny = Y_I' , 9;. Then we have

2
(sa) (s1.0)
trace D2 282+282 > P + PP
(2aW(G) — Ny)? N
a k—1 n—k+1

%(G) > — k5 % {szW(G) - \/nf;kil [n - trace(D2(G)) — 41x2W2(G)]},

and we get the left-hand side of the inequality (13). O

By a chemical tree, we mean a tree which has all vertices of degree less than or equal to 4.
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Example 3. In Figure 1, we depicted a chemical tree of order n = 5.

V.

¥
o
a2
s

Figure 1. A chemical tree T.

The distance matrix of T is

012 3 3
101 2 2
DT)=12 1 0 1 1
3210 2
32120

Let pq, ..., jis be the distance eigenvalues of the tree T. Then one can easily see that yy = 7.46, jip = —0.51,
uz = —1.08, g = —2 and ps = —3.86. Note that, as Do(T) = D(T), taking & = 0 in Theorem 8, then for

n = 5we get —6,/’(;%,1( < < 6\/¥,forunyl <k < 5. For example, —6 < p1q < 12and —3 < pp < 7.3.

4. Conclusions

Motivated by an article entitled “Merging the A- and Q-spectral theories” by V. Nikiforov [33],
recently, Cui et al. [15] dealt with the integration of spectra of distance matrix and distance signless
Laplacian through elegant convex combinations accommodating vertex transmissions as well as
distance matrix. For « € [0,1], the generalized distance matrix is known as Dy(G) = aTr(G) +
(1 —a)D(G). Our results shed light on some properties of D,(G) and contribute to establishing
new inequalities (such as lower and upper bounds) connecting varied interesting graph invariants.
We established some bounds for the generalized distance spectral radius for a connected graph
using various identities like the number of vertices 7, the diameter, the minimum degree, the second
minimum degree, the transmission degree, the second transmission degree and the parameter «,
improving some bounds recently given in the literature. We also characterized the extremal graphs
attaining these bounds. Notice that the current work mainly focuses to determine some bounds for
the spectral radius (largest eigenvalue) of the generalized distance matrix. It would be interesting to
derive some bounds for other important eigenvalues such as the smallest eigenvalue as well as the
second largest eigenvalue of this matrix.
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Abstract: In this paper we extend one of the main problems of near-rings to the framework of algebraic
hypercompositional structures. This problem states that every near-ring is isomorphic with a near-ring
of the transformations of a group. First we endow the set of all multitransformations of a hypergroup
(not necessarily abelian) with a general hypernear-ring structure, called the multitransformation
general hypernear-ring associated with a hypergroup. Then we show that any hypernear-ring can
be weakly embedded into a multitransformation general hypernear-ring, generalizing the similar
classical theorem on near-rings. Several properties of hypernear-rings related with this property are
discussed and illustrated also by examples.

Keywords: hypernear-ring; multitransformation; embedding

1. Introduction

Generally speaking, the embedding of an algebraic structure into another one requires the
existence of an injective map between the two algebraic objects, that also preserves the structure, i.e.,
a monomorphism. The most natural, canonical and well-known embeddings are those of numbers:
the natural numbers into integers, the integers into the rational numbers, the rational numbers
into the real numbers and the real numbers into the complex numbers. One important type of
rings is that one of the endomorphisms of an abelian group under function pointwise addition and
composition of functions. It is well known that every ring is isomorphic with a subring of such
a ring of endomorphisms. But this result holds only in the commutative case, since the set of the
endomorphisms of a non-abelian group is no longer closed under addition. This aspect motivates the
interest in studying near-rings, that appear to have applications also in characterizing transformations
of a group. More exactly, the set of all transformations of a group G, ie., T(G) = {f : G — G} can be
endowed with a near-ring structure under pointwise addition and composition of mappings, such a
near-ring being called the transformation near-ring of the group G.

In 1959 Berman and Silverman [1] claimed that every near-ring is isomorphic with a near-ring
of transformations. At that time only some hints were presented, while a direct and clear proof of
this result appeared in Malone and Heatherly [2] almost ten years later. Since T(G) has an identity,
it immediately follows that any near-ring can be embedded in a near-ring with identity. Moreover,
in the same paper [2], it was proved that a group (H, +) can be embedded in a group (G, +) if and only
if the near-ring Ty (H), consisting of all transformations of H which multiplicatively commute with the
zero transformation, can be embedded into the similar near-ring Tp(G) on G under a kernel-preserving
monomorphism of near-rings.

Similarly to near-rings, but in the framework of algebraic hyperstructures, Dasi¢ [3] defined the
hypernear-rings as hyperstructures with the additive part being a quasicanonical hypergroup [4,5]
(called also a polygroup [6,7]), and the multiplicative part being a semigroup with a bilaterally

Symmetry 2019, 11, 964; doi:10.3390/sym11080964 30 www.mdpi.com/journal /symmetry
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absorbing element, such that the multiplication is distributive with respect to the hyperaddition on the
left-hand side. Later on, this algebraic hyperstructure was called a strongly distributive hypernear-ring,
or a zero-symmetric hypernear-ring, while in a hypernear-ring the distributivity property was replaced
by the “inclusive distributivity” from the left (or right) side. Moreover, when the additive part
is a hypergroup and all the other properties related to the multiplication are conserved, we talk
about a general hypernear-ring [8]. The distributivity property is important also in other types of
hyperstructures, see e.g., [9]. A detailed discussion about the terminology related to hypernear-rings
is included in [10]. In the same paper, the authors defined on the set of all transformations of a
quasicanonical hypergroup that preserves the zero element a hyperaddition and a multiplication
(as the composition of functions) in such a way to obtain a hypernear-ring. More general, the set of all
transformations of a hypergroup (not necessarily commutative) together with the same hyperaddition
and multiplication is a strongly distributive hypernear-ring [3]. In this note we will extend the study
to the set of all multimappings (or multitransformations) of a (non-abelian) hypergroup, defining first
a structure of (left) general hypernear-ring, called the multitransformation general hypernear-ring
associated with a hypergroup. Then we will show that any hypernear-ring can be weakly embedded
into a multitransformation general hypernear-ring, generalizing the similar classical theorem on
near-rings [2]. Besides, under same conditions, any additive hypernear-ring is weakly embeddable
into the additive hypernear-ring of the transformations of a hypergroup with identity element that
commute multiplicatively with the zero-function. The paper ends with some conclusive ideas and
suggestions of future works on this topic.

2. Preliminaries

We start with some basic definitions and results in the framework of hypernear-rings and
near-rings of group mappings. For further properties of these concepts we refer the reader to the
papers [2,3,11,12] and the fundamental books [13-15]. For the consistence of our study, regarding
hypernear-rings we keep the terminology established and explained in [8,16].

First we recall the definition introduced by Dasi¢ in 1978.

Definition 1. [12] A hypernear-ring is an algebraic system (R, +, -), where R is a non-empty set endowed with
a hyperoperation + : R x R — P*(R) and an operation - : R x R — R, satisfying the following three axioms:

1. (R, +) is a quasicanonical hypergroup (named also polygroup [6]), meaning that:

(@) x+(y+z)=(x+y) +zforanyx,y,zcR,
(b)  there exists 0 € R such that, forany x € R,x +0 =0+ x = {x},
(c)  forany x € R there exists a unique element —x € R, such that 0 € x + (—x) N (—x) + x,
(d)  forany x,y,z € R,z € x +y implies that x € z+ (—y),y € (—x) +z.
2. (R,-) is a semigroup endowed with a two-sided absorbing element 0, i.e., forany x € R,x-0=0-x = 0.

3. The operation “-" is distributive with respect to the hyperoperation “+" from the left-hand side: for any
X, Y,z € R, thereisx - (y+z) =x-y+x-z

This kind of hypernear-ring was called by Gontineac [11] a zero-symmetric hypernear-ring. In our
previous works [10,16], regarding the distributivity, we kept the Vougiouklis’ terminology [17],
and therefore, we say that a hypernear-ring is a hyperstructure (R, +, -) satisfying the above mentioned
axioms 1. and 2., and the new one:

3'. The operation “-” is inclusively distributive with respect to the hyperoperation “+” from the
left-hand side: for any x,y,z € R, x - (y +z) € x -y + x - z. Accordingly, the Dasic¢ ’s hypernear-ring
(satisfying the axioms 1., 2., and 3.) is called strongly distributive hypernear-ring.

Furthermore, if the additive part is a hypergroup (and not a polygroup), then we talk about a
more general type of hypernear-rings.
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Definition 2. [8] A general (left) hypernear-ring is an algebraic structure (R,+,-) such that (R, +) is a
hypergroup, (R, -) is a semihypergroup and the hyperoperation “-" is inclusively distributive with respect to
the hyperoperation “+" from the left-hand side, i.e., x - (y+z) C x -y + x -z, for any x,y,z € R. If in the
third condition the equality is valid, then the structure (R, +, -) is called strongly distributive general (left)
hypernear-ring. Besides, if the multiplicative part (R, ) is only a semigroup (instead of a semihypergroup),
we get the notion of general (left) additive hypernear-ring.

Definition 3. Let (Ry,+,-) and (Ry, +, ) be two general hypernear-rings. A map p : Ry — Ry is called an
inclusion homomorphism if the following conditions are satisfied:

1. p(x+y) Cpo(x)+p(y)
2. p(x-y) Cp(x)-p(y) forall x,y € Ry.

A map p is called a good (strong) homomorphism if in the conditions 1. and 2. the equality is valid.

In the second part of this section we will briefly recall the fundamentals on near-rings of
group mappings. A left near-ring (N,+, -) is a non-empty set endowed with two binary operations,
the addition + and the multiplication -, such that (N, +) is a group (not necessarily abelian) with
the neutral element 0, (N, -) is a semigroup, and the multiplication is distributive with respect to the
addition from the left-hand side. Similarly, we have a right near-ring. Several examples of near-rings
are obtained on the set of “non-linear” mappings and here we will see two of them.

Let (G, +) be a group (not necessarily commutative) and let T(G) be the set of all functions from
G to G. On T(G) define two binary operations: “+” is the pointwise addition of functions, while the
multiplication “-” is the composition of functions. Then (T(G), +,-) is a (left) near-ring, called the
transformation near-ring on the group G. Moreover, let To(G) be the subnear-ring of T(G) consisting of
the functions of T(G) that commute multiplicatively with the zero function, i.e., To(G) = {f € T(G) |
£(0) = 0}. These two near-rings, T(G) and Ty(G), have a fundamental role in embeddings. Already in
1959, it was claimed by Berman and Silverman [1] that every near-ring is isomorphic with a near-ring
of transformations. One year later the proof was given by the same authors, but using an elaborate
terminology and methodology. Here below we recall this result together with other related properties,
as presented by Malone and Heatherly [2].

Theorem 1. [2] Let (R, +, -) be a near-ring. If (G, +) is any group containing (R, +) as a proper subgroup,
then (R, +,-) can be embedded in the transformation near-ring T(G).

Corollary 1. [2] Every near-ring can be embedded in a near-ring with identity.

Theorem 2. [2] A group (H,+) can be embedded in a group (G, +) if and only if To(H) can be embedded in
To(G) by a near-ring monomorphism which is kernel-preserving.

Theorem 3. [2] A group (H,+) can be embedded in a group (G, +) if and only if the near-ring T(H) can be
embedded in the near-ring T(G).

3. Weak Embeddable Hypernear-Rings

In this section we aim to extend the results related to embeddings of near-rings to the case of
hypernear-rings. In this respect, instead of a group (G, +) we will consider a hypergroup (H, +) and
then the set of all multimappings on H, which we endow with a structure of general hypernear-ring.

Theorem 4. Let (H,+) be a hypergroup (not necessarily abelian) and T*(H) = {h : H — P*(H)}
the set of all multimappings of the hypergroup (H,+). Define, for all (f,g) € T*(H) x T*(H), the
following hyperoperations:

feg={heT (H)|(VxeH)h(x) C f(x)+g(x)}
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fog={neT(H)|(Vxe H)h(x) Cg(f(x)) = U su)}
The structure (T*(H), ®, ®) is a (left) general hypernear-ring.

Proof. For any f,¢ € T*(H) it holds: f ® ¢ # @. Indeed, for any x € H, it holds f(x) # @
and g(x) # @ and thus, f(x) + g(x) # @. Therefore, for the map h : H — P*(H) defined by:
h(x) = f(x)+g(x) forall x € H, itholds I € f & g. Now, we prove that the hyperoperation & is
associative. Let f, ¢, h € T*(H) and set

L=(feg)eh=J{oh|lcfogl=

=W en| (vxe H) I (x) C f(x) +g(x)}.

Thus, if i € L, then, for all x € H, it holds: h”(x) C W (x) + h(x) C (f(x) + g(x)) + h(x).
Conversely, if " is an element of T*(H) such that: 1"’ (x) C (f(x) + g(x)) + h(x), for all x € H,
and if we choose i’ such that #'(x) = f(x)+ g(x) forallx € H, thenh’ € f@gand W’ € W & h
ie, h" € L.So, L = {h' € T*(H)|(Vx € H)I'(x) C (f(x)+ g(x)) + h(x)}. On the other side,
take D = f@® (g@®h). Then, D = {h" € T*(H)|(Vx € H)h"(x) C f(x) + (g(x) + h(x))}. By the
associativity of the hyperoperation 4+ we obtain that L = D, meaning that the hyperoperation &
is associative.

Let f,g € T*(H). We prove that the equation f € ¢ @ a has a solution a € T*(H). If we set
a(x) = H, forall x € H, thena € T*(H) and for all x € H it holds g(x) + a(x) = H 2 f(x). So,
f € g @a. Similarly, the equation f € a & g has a solution in T*(H). Thus, (T*(H), ®) is a hypergroup.

Now, we show that (T*(H), ®) is a semihypergroup. Let f,g € T*(H). For all x € H it holds
g(x) # @ and so g(f(x)) # @. Leth : H — P*(H) be a multimapping defined by h(x) = g(f(x)),
for all x € H. Obviously, h € fOgandso f®g # @. Let us prove that ©® is a associative.
Let f,g,h € T*(H). Set:

L=(fogon=U{Hon|necfogt={Non|(vxeH) N (x)Cg(f(x))} =

= {W" | (vx € H) ' (x) C h(W'(x)) AH (x) € g(f(x))}-

So,if i € L, thenh"’(x) C h(g(f(x))), forallx € H. On the other side, if /" € T*(H) and h"(x) C
h(g(f(x))) forall x € H, then we choose i’ € T*(H) such that h'(x) = g(f(x)) and consequently we
obtain that " C h(h'(x)). Thus, W € L. So, L = {h" € T*(H) | (Vx € H) W (x) C h(g(f(x)))}.

Similarly, D = f® (g®h) = {h" | (Vx € H) h"'(x) C h(g(f(x)))}. Thus, L = D.

It remains to prove that the hyperoperation @ is inclusively distributive with respect to the
hyperoperation ® on the left-hand side. Let f,g,h € T*(H).SetL = f® (gD h) = U{f O Wi €
g@h}y =U{fON|N € T*(H) A (Vx)l'(x) C g(x) +h(x)}. So, if k € L then for all x € H it holds:
k(x) CH (f(x)) € g(f(x)) +h(f(x)).

Ontheotherhand, D = (f ©g) ® (f ©h) = U{k1 D kolk1 € f© g, kr € f ©h}. Letk € L. Choose,
k1,ky € T*(H) such that k1 (x) = g(f(x)) and ka(x) = h(f(x)) forall x € H. Thenk; € f ® g and
ky € f©h. Thus, k(x) C ki(x) +kz(x) forallx € H,ie, k € ky®kyand kg € fO gk € fOI.
So, k € D. Therefore, L C D. [

Definition 4. T*(H) is called the multitransformations general hypernear-ring on the hypergroup H.
Remark 1. Let (G,+) be a group and T(G) be the transformations near-ring on G. Obviously, T(G) C
T(G) ={f:G — P*(G)}and, forall f,g € T(G),itholds: f®g=f+g fOg=f-g meaning that

the hyperoperations defined in Theorem 4 are the same as the operations in Theorem 1. It follows that T(G) is a
sub(hyper)near-ring of (T*(G), ®, ®).
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Definition 5. We say that the hypernear-ring (Ry, +, ) is weak embeddable (by short W— embeddable) in the
hypernear-ring (Ry, +, -) if there exists an injective inclusion homomorphism y : Ry — Ry.

The next theorem is a generalization of Theorem 1 [5].

Theorem 5. For every general hypernear-ring (R, +, -) there exists a hypergroup (H, +) such that R is W—
embeddable in the associated hypernear-ring T*(H).

Proof. Let (R, +,) be a hypernear-ring and let (H, +) be a hypergroup such that (R, +) is a proper
subhypergroup of (H,+). For a fixed element r € R we define a multimapping f, : H — P*(H)

as follows
) g-r, ifgeR
f’(g){r, if g € H\R.

Let us define now the mapping y : R — T*(H) as j(r) = f;, which is an inclusion homomorphism.
Indeed, ifa,b € Rthenwe have y(a+b) = {fc. |cca+b}and u(a) Dub) = fa® f={h| (Vg e
H) h(g) € fulg) + fulg)}-

Consider c € a+band g € H. If g € R, then fo(g) = g-c C g-(a+b) C g-a+g-b =
fa(g) + f(g). If g € H\ R, then fo(g§) =c € a+b = fa(g) + fp(g)- It follows that, for all ¢ € H, we
have fc(g) C fa(g) + f»(g) and therefore f, € p(a) @ p(b), meaning that p(a +b) C u(a) ® u(b).

Similarly, there is p(a-b) = {fc | c € a-b} and p(a) ©u(b) = fa®© fy = {h € T*(H) | (Vg €
H) h(g) C fp(fa(g))}. Letc € a-b. Then, for g € R, itholds: fc(§) =g-cC g-(a-b)=(g-a)-b=
fo(fa(g))-If g € H\ R, then there is fc(g) =c € a-b = fy(a) = f,(fa(g)). Thus, fc € p(a) © u(b) and
sop(a®b) C p(a) © u(b).

Based on Definition 3, we conclude that y is an inclusive homomorphism. It remains to show that
u is injective. If p(a) = pu(b), then for all ¢ € H, it holds f,(g) = fi(g)- So, if we choose g € H\ R,
then we get thata = f,(g) = f,(g) = 1.

These all show that the general hypernear-ring R is W-embeddable in T*(H). [

Remark 2. If (R, +, ) is a near-ring such that (R, +) is a proper subgroup of a group (G, +), then for a fixed
r € R the multimapping f, constructed in the proof of Theorem 5 is in fact a map from G to G, since in this
case the multiplication - is an ordinary operation, i.e., g - € G, forall g € R. Thus f, : G — G and thereby
#(R) C T(G). By consequence y : R — T(G) is an ordinary monomorphism. In other words, Theorem 5 is a
generalization of Theorem 1.

Example 1. Let (R, +,-) be a left near-ring. Let Py and P, be non-empty subsets of R such that R - P; C P
and Py C Z(R), where Z(R) is the center of R, i.e., Z(R) = {x € R | (Vy € R)x +y = y + x}. For any
(x,y) € R? define:
x®py=x+y+P, xOpy=xPy.
Then the structure (R, ®p,, ©p,) is a general left hypernear-ring [8,18]. Let H = R U {a} and define on
H the hyperoperation &', as follows:

P _ ) x0py fryeRr
x®P1y_{H, ifx=aVvVy=a.

It is clear that H is a hypergroup such that (R, +) is a proper subhypergroup of (H, +). Besides, based on
Theorem 5, for every r € R the multimapping fr : H — P*(H) is defined as

Filg) = gOp 1, ifgeER _ ) &hr, ifgeR
! 7, ifg=a r, ifg=a.
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Clearly it follows that y : R — P*(H), defined by u(r) = f,, is an inclusive homomorphism, so the
general left hypernear-ring (R, ®p,, ©p,) is W-embeddable in T*(H).

Example 2. Consider the semigroup (N, -) of natural numbers with the standard multiplication operation and
the order “<”. Define on it the hyperoperations +< and -< as follows:

s+ey={zlx<zvy<z)

x<y={z|xy<z).

Then the structure (N, +<, -<) is a strongly distributive general hypernear-ring (in fact it is a hyperring).
This follows from Theorem 4.3 [19]. Furthermore, for any a ¢ N, it can be easily verified that (N, +<) is a
proper subhypergroup of (NU {a}, +), where the hyperoperation +'_ is defined by:

r o) x+<y, ifxryeN
x+<y{ NuU{a}, ifx=aVvVy=a.

In this case, for a fixed n € N, we can define the multimapping f, : NU {a} — P*(NU {a}) as follows:

_ ) g<n ifgeN _ | {keN[g-n<k}, ifgeN
fn(g){n, ifg=a {n, ifg=a

and therefore the mapping y : N — P*(NU {a}) is an inclusive homomorphism. Again this shows that the
general hypernear-ring (N, +<, -<) is W-embeddable in T*(N U {a}).

Example 3. Let R = {0,1,2,3}. Consider now the semigroup (R, -) defined by Table 1:

Table 1. The Cayley table of the semigroup (R, -)

WIN=OoO

oo oo |o
_= = O -
NMNNNO|N
W W wWwo|w

Define on R the hyperoperation +< as follows: x +<y = {z | x < zVy < z}, so its Cayley table is
described in Table 2:

Table 2. The Cayley table of the hypergroupoid (R, +<)

+< 0 1 2 3
0 R R R R
1 R {123} {123} {123
2 R {123} {231 {23
3 R {123 {23} 3

Obviously, the relation < is reflexive and transitive and, forall x,y,z € R, it holds: x <y =z-x < z-y.
Thus, (R, +<, -) is an (additive) hypernear-ring. Let H = R U {4} and define the hyperoperation +< as follows:

) x+<y, ifx,ye{0,1,23}
x+<y{ H, ~— ifx=4vy=4
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It follows that (R, +) is a proper subhypergroup of (H, +) and for a fixed r € R it holds fr(x) = r, for all
x € H. This implies that the mapping y : H — P*(H), defined by u(r) = f, for any r € R, is an
inclusive homomorphism.

Now we will construct a left general additive hypernear-ring associated with an
arbitrary hypergroup.

Theorem 6. Let (H,+) be a hypergroup and T(H) = {f : H — H}. On the set T(H) define the
hyperoperation @ and the operation O as follows:

forg={heT(H)|(VxeH) h(x) € f(x)+g(x)},

(f Org)(x) = g(f(x)), forall x € H.
The obtained structure (T(H), &, O1) is a (left) general additive hypernear-ring.

Proof. Let f,g € T(H). We prove that there exists 1 € T(H) such that h(x) € f(x)+ g(x) for all
x € H. Let x € H. Since f(x) + g(x) # @ we can choose hy € f(x)+ g(x) and define h(x) = hy.
Obviously, h € f ©1 g. Now we prove that the hyperoperation ©r is associative Let f,g,h € T(H).
SetL = (f@rg) @rh = {W" | (¥x) '(x) € W(x) +h(x) AW(x) € f(x) +g(x)} and D = f&q
ooy & U1 040) 7100 € Syt 1) 1) & 5000 4 M) T i & L shem W) <
(f(x) +g(x)) +h(x) = f(x) + (g(x) + h(x)). Thereby, for any x € H, there exists a, € g(x) + h(x)
such that 1”(x) € f(x)+ ay. Define f’(x) = ay. Then, f' € ¢®rh and for all x € H it holds
h'(x) € f(x)+ f'(x). Therefore, W' € D. So, L C D. Similarly, we obtain that D C L. Now,
let f,¢ € T(H). We prove that the equation f € ¢ @t h has a solution i € T(H). Since (H,+)
is a hypergroup, it follows that, for any x € H, there exists by € H such that f(x) € g(x) + by
Define h : H — H by h(x) = byx. Thenh € T(H) and f € ¢ @7 h. Similarly, we obtain that the equation
f € h @7 g has a solution in T(H). We may conclude that (T(H), &) is a hypergroup.

Obviously, (T(H), ®r) is a semigroup, because the composition of functions is associative.
Now we prove that the hyperoperation @7 is left inclusively distributive with respect to the
operation ®7. Let f,g,h € T(H). Set L = for(g@rh) = {fork | k € g®rh} and
D = (forg)@r(forh) = (i | (vx € H)I'(x) € g(f(x)) +h(f(x))}. Letk € g&h. Then,
forall x € H, itholds (f ®k)(x) = k(f(x)) € g(f(x)) +h(f(x)). Thus, f ®k € D, meaning that
LCD. O

For an arbitrary group G, Malone and Heatherly [2] denote by Ty(G) the subset of T(G) consisting
of the functions which commute multiplicatively with the zero-function, i.e., To(G) = {f : G — G |
£(0) = 0}. Obviously, Ty(G) is a sub-near-ring of (T(G), +, -). The next result extends this property to
the case of hyperstructures.

Theorem 7. Let (H,+) be a hypergroup with the identity element O (i.e., for all x € H, it holds x €
x+0N0+x), such that 0+ 0 = {0}. Let Ty(H) = {f : H — H | f(0) = 0}. Then, To(H) is a
subhypernear-ring of the general additive hypernear-ring (T(H), &1, Or).

Proof. Let f,g € To(H). If h € f&rg, then h(0) € f(0) +g(0) = 0+0 = {0}, i.e., h(0) = 0.
Thus, h € To(H). Let f,g € To(H). We prove now that the equation f € ¢ @ a has a solution
a € To(H). If we set a(0) = 0 and a(x) = ay, where f(x) € g(x) +ay, for x # 0and a, € H,
thena € To(H) and f € g+ a. Similarly the equation f € a @ g has a solution a € To(H). Thus,
(To(H), ®7) is a subhypergroup of (T(H), @1). Obviously, if f,¢ € Ty(H), then it follows that
(forg)0) =g(f(0)) =g(0) =0,ie., fOrg € To(H). So, (To(H), ©) is a subsemihypergroup of
(T(H), ®1), implying that Ty (H) is a subsemihypernear-ring of T(H). O
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Theorem 8. Let (R, +,-) be an additive hypernear-ring such that (R, +) is a proper subhypergroup of the
hypergroup (H, +), having an identity element 0 satisfying the following properties:

1. 0+0={0}and
2. 0-r=0,forallr € R.

Then the hypernear-ring (R, +, -) is W—embeddable in the additive hypernear-ring To(H).

Proof. For a fixed r € R, defineamap f : H — H as follows

) g1, ifgeR
fr(g)_{r, ifge H\R.
Obviously, f,(0) = 0-r = 0. So, f, € Ty(H) and, similarly as in the proof of Theorem 5,
we obtain that the map p : (R, +,-) = (To(H), &1, 1) defined by p(r) = f; is an injective inclusion

homomorphism. [

Example 4. On the set H = {0,1,2,3,4,5,6} define an additive hyperoperation and a multiplicative operation
having the Cayley tables described in Tables 3 and 4, respectively:

Table 3. The Cayley table of the hypergroupoid (H, +)

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 {06 1
2 2 3 4 5 {06 1 2
3 3 4 5 {0,6) 1 2 3
4 4 5 {06 1 2 3 4
5 5 {06 1 2 3 4 5
6 6 1 2 3 4 5 0

Table 4. The Cayley table of the semigroup (H, -)

NU B WN=O

oo oo ooco|o
O Ul O = Ul O
ONPBEONPREO|IN
O WWOWWo| W
OHENOHRNO|-
SR, O U~ Ol u
SO OO O OO

The structure (H,+, ) is an (additive) hypernear-ring [16].

Let R = {0,3,6}. Then (R, +, ) is a hypernear-ring (in particular it is a subhypernear-ring of (H, +,)).
Obviously, (R,+) is a proper subhypergroup of the hypergroup (H,+), which has the identity 0 such that
04+0={0}and0-r=0,forall r € R. It follows that, for each r € {0,3,6}, f, : H — H is a map such that
fo(g) =0, forall g € H,

_) 83 ifge{036} _ |0 ifge{0,36}
f3(8) = { 3, ifge{1,24} { 3, ifge{1,2,4},
while
falg) = { 8, TEEOS

_J o ifge{o36}
6, ifge{l,2,4}

0
6, ifge{1,2,4}.

37



Symmetry 2019, 11, 964

Clearly, the map p : (R, +,-) — (To(H), @1, Or), defined by p(r) = f,, is an injective inclusion
homomorphism, so the hypernear-ring R is W-embeddable in To(H).

Remark 3. If (G, +) is a group, then, for any f,g € T(G) = {f : G — G}, it holds f ®rg = f+g
and f Op g = f - g, meaning that the transformation near-ring (T(G),+,-) of a group G is in fact the
structure (T(G), &1, ©). Furthermore, if (R, +, ) is a zero-symmetric near-ring, i.e., a near-ring in which
any element x satisfies the relation x -0 = 0 - x = 0, then the map p constructed in the proof of Theorem 8 is the
injective homomorphism p : R — To(G). Thus, according with Theorem 8, it follows that the zero-symmetric
near-ring (R, +, -) is W-embeddable in the near-ring To(G), where (G, +) is any group containing (R, +) as a
proper subgroup.

Remark 4. If (G, +) is a group, then the following inclusions hold: To(G) C T(G) C T*(G), where both
T(G) and Ty(G) are sub-(hyper)near-rings of the hypernear-ring T*(G). Considering now (H,+) a
hypergroup, the same inclusions exist: To(H) C T(H) C T*(H), but generally T(H) and Ty(H) are
not subhypernear-rings of T*(H).

Proposition 1. Let (H,+) be a hypergroup with the identity element 0 (i.e., for all x € H it holds x €
x+0N0+x) such that 040 = {0}. Let T;(H) = {f : H — P*(H) | f(0) = 0}. Then, Tj(H) isa
subhypernear-ring of the general hypernear-ring (T*(H), &, ®).

Proof. Let f,g € Tj(H).If h € f ® g, then itholds 1(0) C f(0) +

it follows that #(0) = {0}. Thus, h € T;(H). Let f, g € T;(H). We prove that the equation f € g @ a
has a solution a € Tj;(H). If we set a(0) = 0 and a(x) = H, for all x # 0, then a € T;(H) and,
for all x # 0, it holds g(x) +a(x) = H 2 f(x) and g(0) +a(0) = {0} = f(0), meaning that
f € ¢ ® a. Similarly, the equation f € a @ g has a solution in To (H). So, (T (H)) is a subhypergroup
of (T*(H),®). Obviously, if h € f® g, then h(0) C g(f(0)) = {0}. So, h € T;(H). Thus T (H) is a
subsemihypergroup of (T*(H), ®). Therefore, T (H) is a subhypernear ring of (T*(H),®,®). O

¢(0) = 0+0 = {0}. Since h(0) # @,

4. Conclusions

Distributivity property plays a fundamental role in the ring-like structures, i.e., algebraic structures
endowed with two operations, usually denoted by addition and multiplication, where the
multiplication distributes over the addition. If this happens only from one-hand side, then we
talk about near-rings. Similarly, in the framework of algebraic hypercompositional structures,
a general hypernear-ring has the additive part an arbitrary hypergroup, the multiplicative part is a
semihypergroup, and the multiplication hyperoperation inclusively distributes over the hyperaddition
from the left or right-hand side, i.e., for three arbitrary elements x,y,z, thereisx- (y+z) Cx-y+x-z
for the left-hand side, and respectively, (y +z) - x C y - x + z - x for the right-hand side. If the inclusion
is substituted by equality, then the general hypernear-ring is called strongly distributive. We also recall
here that there exist also hyperrings having the additive part a group, while the multiplicative one is a
semihypergroup, being called multiplicative hyperrings [20].

The set of all transformations of a group G, i.e.,, T(G) = {g : G — G}, can be endowed with
a near-ring structure, while similarly, on the set of all multitransformations of a hypergroup H,
ie, T*(H) = {h : H — P*(H)}, can be defined a general hypernear-ring structure, called the
multitransformations general hypernear-ring associated with the hypergroup H. We have shown that
for every general hypernear-ring R there exists a hypergroup H such that R is weakly embeddable
in the associated multitransformations general hypernear-ring T*(H) (see Theorem 5). Moreover,
considering the set T(H) = {f : H — H} of all transformations of a hypergroup H, we have defined
on it a hyperaddition and a multiplication such that T(H) becomes a general additive hypernear-ring.
We have determined conditions under which the set Ty(H), formed with the transformations of H
that multiplicatively commute with the zero function on H, is a subhypernear-ring of T(H). Besides,
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an additive hypernear-ring satisfying certain conditions can be weakly embedded in the additive
hypernear-ring To(H) (see Theorem 8).

In our future work, we intend to introduce and study properties of A—endomorphisms and

A—multiendomorphisms of hypernear-rings as generalizations of similar notions on near-rings.
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Abstract: Edge even graceful labeling (e.e.g., 1.) of graphs is a modular technique of edge labeling
of graphs, introduced in 2017. An e.e.g., l. of simple finite undirected graph G = (V(G), E(G)) of
order P = |(V(G)| and size g = |E(G)| is a bijection f: E(G) — {2,4,...,2q}, such that when each
vertex v € V(G) is assigned the modular sum of the labels (images of f) of the edges incident to v, the
resulting vertex labels are distinct mod2r, where r = max(p, ). In this work, the family of cylinder
grid graphs are studied. Explicit formulas of e.e.g., 1. for all of the cases of each member of this family
have been proven.

Keywords: graceful labeling; edge even graceful labeling; cylinder grid graph

1. Introduction

The field of graph theory plays an important role in various areas of pure and applied sciences.
One of the important areas in graph theory is graph labeling of a graph G which is an assignment of
integers either to the vertices or edges or both subject to certain conditions. Graph labeling began
nearly 50 years ago. Over these decades, more than 200 methods of labeling techniques were invented,
and more than 2500 papers were published. In spite of this huge literature, just few general results were
discovered. Nowadays, graph labeling has much attention from different brilliant researchers in graph
theory, which has rigorous applications in many disciplines, e.g., communication networks, coding
theory, X-ray crystallography, radar, astronomy, circuit design, communication network addressing,
database management, and graph decomposition problems. More interesting applications of graph
labeling can be found in References [1-11]. A function f is called a graceful labeling of a graph G
if f:V(G) —{0,1,2,...,q} is injective and the induced function f*: E(G) — {1,2,...,q}, defined as
fle=uv) = | f(u) — f(v)|, is bijective. This type of graph labeling was first introduced by Rosa in
1967 [12] as a p— valuation, and later, Solomon W. Golomb [13] termed it as graceful labeling. A function
f is called an odd graceful labeling of a graph G if f : V(G) — {0,1,2,...,2q — 1} is injective and the
induced function f*:E(G) — {1,3,...,29—1}, defined as f*(e = uv) = |f(u) —f(v)', is bijective.
This type of graph labeling first introduced by Gnanajothi in 1991 [14]. For more results on this type
of labeling, see References [15,16]. A function f is called an edge graceful labeling of a graph G if
f:E(G) —{1,2,...,q} is bijective and the induced function f*: V(G) = {0,1,2,...,p -1}, defined
as f*(u) = Y. f(e)(modp), is bijective. This type of graph labeling was first introduced by

(G)

e=uvekE

Lo in 1985 [17]. For more results on this labeling see [18,19]. A function f is called an edge odd
graceful labeling of a graph G if f:E(G) — {1,3,...,29 -1} is bijective and the induced function
f:V(G) = {0,1,2,...,29—1} defined as f*(u) = Y,  f(e)(mod2q) is injective. This type of

e=uveE(G)

graph labeling was first introduced by Solairaju and Chithra in 2009 [20]. For more results on this

Symmetry 2019, 11, 584; doi:10.3390/sym11040584 40 www.mdpi.com/journal/symmetry
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labeling, see References [21-23]. A function f is called an edge even graceful labeling of a graph

Gif f:E(G) = {2,4,...,29 — 2} is bijective and the induced function f*: V(G) — {0,2,4,...,29 -2},

defined as f*(u) = Y. f(e)(mod2r) where r = max{p, q}, is injective. This type of graph labeling
e=uveE(G)

was first introduced by Elsonbaty and Daoud in 2017 [24,25]. For a summary of the results on these

five types of graceful labels as well as all known labeling techniques, see Reference [26].

2. Cylinder Grid Graph

The Cartesian product G; X G of two graphs Gy and Gy, is the graph with vertex set V(G1) X V(Gy),
and any two vertices (u1,v1) and (up, v2) are adjacent in G; X G, whenever 11 = uy and v10; € E(G3)
or vy = vp and ujup € E(Gy). The cylinder grid graph Cy, , is the graph formed from the Cartesian
product Py, X C,; of the path graph P,, and the cycle graph C,,. That is, the cylinder grid graph consists

of m copies of C,, represented by circles, and will be numbered from the innermost circle to the outer
M @) ~6)

w0, Chl Gy, Cim_l) , Cs,m) and we call them simply circles; n copies of P,, represented by

paths transverse the m circles and will be numbered clockwise as PS,}), anz ) , PE,‘?), ceey P,(: 71), P,(: ) and we

circle as C

call them paths (see Figure 1).

o

Vimapn

Figure 1. Cylinder grid graph Cy; ;.

Theorem 1. If m is an even positive integer greater than or equal 2 and n > 2, then the cylinder grid graph
Cinn, is an edge even graceful graph.
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Proof. Using standard notation p = |V(Cm,n)| =mn,q= |E(Cm,n)| =2mn—nandr = max(p,q) = 2mn—n
and f: E(Cypu) — {2,4,6,...,4mn —2n —2}. Let the cylinder grid graph C,,,, be as in Figure 2. O

mn+d

Imned

2n(m —3)+6

nGm+1+4

n(m —2)+ 4

2r(m-1)+4

Imn-2

2 (2m =1)=2

an(m —2)-2 N
2rimt D=2

2alm=2)rE Y e

nn n (Gme2-2
Vimna

2n(m+ D=2

Figure 2. The cylinder grid graph C; ,, m is even and n > 2.

First, we label the edges of the paths Pf:),l < k < n beginning with the edges of the path
P,(nl ) as follows: Move anticlockwise to label the edges U111, UnV2n, Un—1021-1, - - - , V3043, V20Vn42
by 2,4,6,...,2n - 2,2n, then move clockwise to label the edges v}, 102,41, Vn4202142, Un4+302043, - -
V2p—103n—1, V2003 DY 204+ 2,2n 4+ 4,20 +6,...,4n — 2,4n, then move anticlockwise to label the edges
V244103041, U3n Vi, V3n—194n—1, - - - , V2143031143, V2n 120342 by 41 +2,4n +4,4n +6,...,6n — 2,61 and so
on. Finally, move anticlockwise to label the edges v(,,_2),410(n-1)n+1, U (m-1)nPmns O(m—-1)n-1Vmn-1, - -
v(m—Z)n+3U(n—l)m+3/v(m—z)n+2v(m—1)n+2 bY 21’1(711 - 1) +2, 271(711 - 2) +4, Zn(m - 2) +6, Zn(m - 2) +
8,....2n(m—-1)-2,2n(m—-1).

Secondly, we label the edges of the circles C,(qk), 1 < k < mbeginning with the edges of the innermost
circle Cfll) then the edges of outer circle Cs,m), then the edges of the circles C,Smiz) , C,(,,"Hl) CEIZ).

Finally, we label the edges of the circles Cs,m_l), C,(,m_3), ey C(ns) as follows: f(vjvii1) =2n(m—-1)+
2i,1<i<n=1, f(ogor) = 2mm; f(O(u-1)nyOm-1ynriv1) = 2mn+2i,1 <i <n =1, f(Oun0(u-1)ns1) =
2n(m +1); f(O(-1)n+i0k-1)n+iv1) = n(Bm—=k) +2i,1 <i <n =1, f(On0(k-1)n11) = n(Bm—k+2),2 <
k<m=2; fog1)ynsiOk-1ynriv1) = n(dm—-k=1)+2i,1 <i <n-1, f(0e0(k-1)u11) = n(dm -k +1),
3<k<m-1,kisodd.

ey
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Thus, the labels of corresponding vertices mod(4mn — 2n) will be: f*(v;) = 2i+2; f*(v,44) =
2mn +2n + 4i + 2; f*(02p1i) = 4n +4i+2; f(03n4) = 2mn+6n+4i +2;. . f(O—g)nqi) = 4mn —
61+ 4i +2; £ (Vo) yi) = 2mn —4n + 40+ 2; f*(0(_1ypgq) =2mn+2i+2,1<i<n.

Illustration: An e.e.g., 1, of the cylinder grid graphs Cg 11 and Cg 12 are shown in Figure 3.

Theorem 2. If m = 3 and n is an odd positive integer greater than 3, then the cylinder grid graph Cz ,, is an
edge even graceful graph.

Proof. Using standard notation p = |V(C3,V,)| =3n,q= |E(C3,,,)| = 5n, r = max(p,q) = 5n, and
f:E(Csn) = {2,4,6,...,10n — 2}. There are three cases:
Case (1): If n = 1mode6, let the cylinder grid graph Cs ,, be as in Figure 4.

(a) CVK,II

Figure 3. Cont.
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158 122

(b) CS.IZ

Figure 3. An edge even graceful labeling (e.e.g., .) of the cylinder grid graphs Cg 11 and Cg ;5.

First, we label the edges of the paths ng), 1 < k < n beginning with the edges of the path

Pgl) as follows: Move clockwise to label the edges f(v1v,41) = 2, f(020n42) = 6, f(vivy4i) =

2i+2,3 < i < n. Then, move anticlockwise to label the edges f(v,1102,41) = 21 +4, f(v2,03,) = 21+

6,f(272,/,_12737,_1) =2n+8, f(?]z,,,2”03n,2) =2n+10,... ,f(0n+302”+3) = 411,f(”0n+2?]2”+2) =4n+2.
Secondly, we label the edges of the circles C,ak), 1 < k < 3 beginning with the edges of the innermost

circle C 5,1), then the edges of outer circle C,(,,3), and then the edges of the circle CE,Z). Label the edges of

the circle cf}) as follows: f(v1v2) = 4n+4, f(vav3) = 4n+6,...,f(v%v#) = w,f(v#v#) =

B f(ongsvngs) = 5, fowsown) = M52 f(opnvan) = P f(omuony) =
wrf(vnngnzzo) = w,f(vnf%U%) = w, f(v%vw%) = wlf(vngjvugﬁa)
14“3_+52/f(vm3297)u§32) = M"\T*'“,f(v#v%as) = 14”_;—7()/_/[(0&%357}#) = nis, fousssvuin) =

wzf X %/ .- -/f(vn—BUn—]Z) =6n-22, f(Un—]Zvn—H) =

6n — 24, f(U”_11Z}n_10) = 6n— 20,f(’0n_10’0n,9) = 6n— 18,f(vn,9vn,g) = 6n— 14,f(vn,gvn,7) =
6n —16, f(vy—yvn-¢) = 6n—12, f(vy_6vp—s5) = 6n—10, f(vy_50y-4) = 61— 6, f(Vy_4Vy—3) = 61 —
8, f(vn—3vy—2) = 61 —4, f(vy—20y-1) = 6n—2, f(vy_10,;) = 6n+2, f(vyv1) =6n. O

4
_ 1 ngt88,f(

(U%UHM) = Uﬂ?’%)
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205+4 Vo 20mE1D

10s +14
3

20m +22

265 +10

Figure 4. The cylinder grid graph C3,,, n = 1modé.

Label the edges of the circle C,(f) asfollows: f(vy4iUpyit1) =8n+2i+2,1<i<n—1, f(v2y0p41) = 4.
Label the edges of the circle C(f) as follows: f(vay4iVonyiv1) =6n+2i+2,1<i<n.

The labels of corresponding of vertices mod10n are as follows:
(1)

The labels of vertices of the circle C,,’ are as follows: f*(v1) = 6, f*(v2) = 8n+ 16, f*(v3) =
8n+22,...,f*(v,,T_1) = 4,f*(vy,%z) = 8,f*(v#) = 12,f*(v#) = 20,f*(v,1+311) = 28, f*(v%m) =
32, f'(vagr) = 36, f (vusn) = 44, f (vus0) = 52, f*(v%)‘z 56, f* (Vi) = 60, f*(vusz2) = 68,

f*(v%) = 76,f*(v%3g) = 80,f*(v”+%) = 84,f*(v#) = 92,f*(v%47) = 100,..., f*(vy-12) = 4n—
68, f*(vy-11) = 4n—64, f*(vy-10) = 4n—56, f*(vy—9) = 4n—48, f*(v,—g) = 4n—44, f*(vy—7) = 4n—
40, f*(vy-¢) = 4n =32, f*(vy—5) = 4n —24, f*(vy—4) = 4n—20, f*(vy—3) = 4n - 16, f*(vy—2) = 4n —
8, f(vy-1) =4n, f*(vy) = 4n+ 4.

The labels of vertices of the circle C,(lz) are f*(viy1) =4i+10,1<i<n-1, f*(v2,) = 4n+12.

The labels of vertices of the circle C,(f’) are f*(vyip1) = 6n+2i+8,1<i<n.

Case (2): If n = 3modeé, let the cylinder grid graph Cs ,, be as in Figure 5.

First, we label the edges of the paths P§k>
the same in case (1).

Secondly, we label the edges of the circles cﬁ,k), 1 < k < 3 beginning with the edges of the innermost

circle Cfll) , then the edges of outer circle C,(,,3) , and then the edges of the circle CEIZ).

,1 <k < n beginning with the edges of the path Pgl) as
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Wr+12 vy 208418

202 +24

Figure 5. The cylinder grid graph C3 ,, n = 3mod6.

Label the edges of the circle C,(Tl) as follows: f(v1v2) =4n+4, f(vv3) =4n+6,..., f(Vi3 Vi) =

3

IS f(0,00,0) = M5 f(o000n) = BB, flopnvais) = B30 f(0,5000) =
B founvun) = 5%, fonavnn) = H52 fonnoug) = B52% fonzonw) =
“%—*%,f(v@v@> = Mn_;wff(vngj?f@) = %rf(?fug%vng&’) = M, fOnzvmn) =
M’ﬂv#v%) - W_;M’f(v%v%“) = w'f(”%”%) = Wt® . f(on130012) =

6n — 22, f(vy—120p-11) = 6n — 24, f(vy-1193-10) f(Vn-9vUn—g) = 6n — 14, f(v,_gv,—y) = 6n — 16,
f(op—yvy—6) = 6n—12, f(vy_6vy—5) = 6n —10,f(vy-50,-4) = 61 — 6, f(Vy_4vy_3) = 6n —
8, f(vn—3vy—2) = 6n —4, f(Vy—20y1) = 61 =2, f(Vy_10s) = 61 + 2, f(v401) = 6n.

The labels of corresponding vertices mod10n are as follows: The label of vertices of the circle C,(f)
are f*(v1) = 6,f"(v2) = 8n+16,f"(v3) = 81 +22,..., f (vg1) = 10n=2,f*(vy) = 4, f (vg41) =
12, f*(vgy2) = 16,f"(vz43) = 20, f'(vgig) = 28,f (vg45) = 36,f (vyy) = 40,f (vey7) =
44, (0215) = 52, F(0540) = 60, (05 110) = 64, f (0g11) = 68, f (03010) = 76, F'(03.13) =
84,f*(v%+14) = 88,f*(v%+15) 92,f*(vg+16) = 100,..., f*(vy_12) = 4n —68, f*(v,-11) = 4n — 64,
f(vp-10) = 4n =56, f*(vy—9) = 4n—48, f*(vy-g) = 4n—44, f*(v,—7) = 4n —40, f*(vy_¢) = 4n —
32, f*(vn-s5) = 4n—24, f*(v,-4) = 4n —20, f*(vy—3) = 4n—16, f*(v4—2) = 4n -8, f*(v,-1) = 4n, f*(vn) =
4n + 4.

The labels of vertices of the circles C(nz) and C,(f) are the same as in case (1).

Case (3): If n = 5mode6, let the cylinder grid graph Cs , be as in Figure 6.

[
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102422
3

2n+2

{20n+38
i3

Figure 6. The cylinder grid graph C3,,, n = 5mod6.

First, we label the edges of the paths Pék), 1 < k < 2 beginning with the edges of the path Pgl) as
the same in case (1). Second, we label the edges of the circles C,Sk) ,1 <k < 3 beginning with the edges
of the innermost circle C,(,l), then the edges of outer circle Cff), and then the edges of the circle C,(Tz).

Label the edges of the circle C,gl) as follows: f(v1vp) = 4n+4, f(vv3) =4n+6,. .. ,f(v%v%_z) =

%,f(v%v%l) = %,f(v%vn#) = %J(U%Wsﬂ) = fugvmn) =
2 fougonn) = 5 fOgvage) = M2 flosgevu) = B3, foupoug) =
B fonpouzs) = P52 foupvun) = #5292 foumvun) = #52, fouavny) =
PR, fomnvny) = PR, fonzvuw) = B0, f(0nwvun) = HHR, L f(0,1300-12) =

6n —22, f(vy-120p-11) = 6n—24, f(vy-1104-10) = 61 — 20, f(Vy_10Un—9) = 61 — 18, f(Vy—9Vy_3)
6n — 14, f(vy—gvy—7) = 6n =16, f(vy_70y—) = 6n —12, f(v,—6vy—5) = 61 —10, f(vy_50,-4) = 61 —
6, f(p—4vy—3) = 6n =8, f(vy-30y-2) = 6n—4, f(Vy_20,-1) = 61 =2, f(vy_104) = 61+ 2, f(v,v1) = 61.
The labels of corresponding vertices mod10n are as follows: The labels of vertices of the
circle Csll): frv) = 6,f(v2) = 81416,f (v3) = 81 +22,...,f (vy_5) = 10n - 4,f*(v,%z)
0, f (vun) =4, f*(vaps) =12, f*(v0y7) = 20, f*(vwsno) =24, f*(0s1a) = 28, f*(vusse) = 36, f* (vg17)
44,f*(v%19) 44,f*(v%) = 48,f*(v%) = 52,f*(vn+328) = 60, f*(v%) = 68,f*(v,,+334)
72,f*(v%37) = 76,f*(v@) = 84,f*(v#) = 92,f*(vn+346) = 96,f*(v#) = 100, ..., f*(v4-12)
4n — 68, f*(vy-11) = 4n —48, f*(vy—g) = 4n—44, f*(vy—7)
)

4n — 64, f*(v,_10) = 41— 56, f*(0y9)
4n — 40, f*(vy—6) = 4n =32, f*(vy=5) = 4n —24, f*(vy_a) = 4n—20, f*(vy-3) = 4n—16, f*(vy—2
4n -8, f*(vy-1) = 4n, f*(vn) = 4n +4.



Symmetry 2019, 11, 584

The labels of vertices of the circles C,(,,z) and C ,(13) are the same as in case (1).
Illustration: An e.e.g., l. of the cylinder grid graphs C3 25, C3 57 and C3 59 are shown in Figure 7.

(®) Ciy

Figure 7. Cont.
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(C) C 3,29

Figure 7. Ane.e.g., l. of the cylinder grid graphs C3 75, C3 27 and Cz 9.

Remark 1. Note that C3 5 is an edge even graceful graph but it does not follow the pervious rule (see Figure 8).

40

Figure 8. An e.e.g., 1. of the cylinder grid graph Cz 5.
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Theorem 3. If m is an odd positive integer greater than 3 and n is an even positive integer, n > 2, then the
cylinder grid graph C,, , is an edge even graceful graph.

Proof. Using standard notation p = |V(Cm,n)| =mn,q = |E(Cm,n)| =2mn—-nand r = max(p,q) =
2mn—nand f:E(Cpun) — {2,4,6,...,4mn—2n-2}. O

Let the cylinder grid graph Cy, ,, be as in Figure 9. There are six cases:

mn+4 2nfn-1)-2

Vem-ams
nEm-D+4 oz

2n(m-3+6

Y m a3
2n(m +1+ 4,

20 (2m - 344 T

(-1
In(m=l)+d , (e

2nim-1¢
anm-D+d A 5

Inn+l

Yiu-tmal

an gn -1-2

Van n(In+D-2

In(m+D)-2
Figure 9. The cylinder grid graph C;, ,,m is odd greater than 3 and n > 2.

Case (1): n = Omodl2. First, we label the edges of the paths pr, 1 <k <n
beginning with the edges of the path P,ﬁ? as follows: Move clockwise to label the edges
V1Un41, V2Un42, V3Un43, - - -, Uy—1U2n—1, UnU2 by 2,4,6,...,2n — 2,21, then move anticlockwise to label
the edges v, 11042, V24 V31, V2n—193n-1, - - - » V3020143, Unt202n42 by 2 +2,2n +4,2n +6,...,4n —2,4n,
then move clockwise to label the edges 02110341, V2n+2U3n+2, V2143U31+3, - - -  V3n—1V4n-1, U3nVan DY
dn+2,4n+4,4n+6,...,6n—2,6n and so on.

Finally, move anticlockwise to label the edges (-2)+10(m-1)n+1, 0 (m=1)nVmns O (u=1)n-10mn—1, - - -,
U(nl—Z()n+3v()rn—])11+3/ Y(m-2)n+2Vm(n-1)+2 bY 21’1(711 - 2) +2, Zn(m - 2) +4, 2n(m - 2) +6,..., 2”(”7 - 1) -
2,2n(m-—1).
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Secondly, we label the edges of the circles Cs,k), 1 < k < m beginning with the edges of the inner

most circle C,(1 ), then the edges of outer circle C; ), then the edges of the circles C,S'ZZ 1), anm_g), cees Cﬁnz ).

Finally, we label the edges of the circles C,(,’l" 1>, anm 3), e, C,(j ).

Label the edges of the circle C,S ) as follows: f(r1vp) = 2n(m—1) + 2, f(vov3) = 2n(m—1) +
6, f(v3vg) = 2n(m—1) +4, f(v4vs) = 2n(m —1) + 8, f(vsve) = 2n(m —1) 410, f(vevy) = 2n(m -
1)+ 14, f(v7vg) = 2n(m —1) + 12, f(vgvg) = 2n(m —1) + 16, f(vgv19) = 2n(m —1) + 18, f(vipv11) =
2n(m —1) 4+ 22, f(v11012) = 2n(m—1) 4 20, f(vipv13) = 2n(m—1) +24,..., f(V4—704-¢) = 2mn —
14, f(vy—evn-5) = 2mn — 10, f(vy_50,-4) = 2mn —12, f(vy_4vy-3) = 2mn —8, f(vy_30y—2) = 2mn —
2, f(vy—pp—1) = 2mn —6, f(v,104) = 2mn, f(v,01) = 2mn — 4.

Label the edges of the circle C,S"” as follows:  f(Vu-1)ynti@m-tyntit1) = 2mn +
2i,f(U,y,nU (m-1 n+l) = 2”(m+ 1) 1<i<n-1

Label the edges of the circle C(m 2 as follows: FOu-3mtiO(m-3)nsriv1) = 2n(m+1) +
Zi,f(U (m=2)n? (m— 3)n+1) _Zn(m+2) 1<i<n-1

Label the edges of the circle C(m Y as follows: F@m-s)nti0(m-synris1) = 2n(m+2) +
2i, f(O(m-a)n¥(m—5yn+1) = 2n(m +3),1 <i<n-1,and so on.

Label the edges of the circle C,(f) as follows: f(vay4ivantiv1) = 3n(m—1) + 2i, f(v3y0241) =
n(Bm-1),1<i<n-1,

Label the edges of the circle C;m_n as follows:  f(v(y-2)utiO(m-2)nriv1) = n(Bm—1)+
26, f(Ou-1)n¥(m-1yn1) =nBm~+1)-1,1<i<n-1,

Label the edges of the circle C,(qm_s) as follows:  f(V(—aynri®m—synyi+1) = n(3m+2) +
2i, f(O(m-3)n¥(m-tyn41) = 3n(m+1),1<i<n-1,...,and so on.

Label the edges of the circle ij” as follows: f(v3y4iUspyiv1) = 2n(2m —3) + 2i, f(vanv3,41) =
dn(m-1),1<i<n-1,

Label the edges of Cff) as follows: f(vy4ivytiy1) =4n(m—1)+ 2i, f(voyvpp41) =2n(m—-1),1 <
i<n-1,

Thus, the labels of corresponding vertices mod (4mn — 2n) will be:

The label the vertices of C(nl) are: f*(v1) = 0;f*(v2) = 4mn —4n + 12; f*(v3) = 4mn —4n +
16; f*(vs) = 4mn —4n + 20; f*(vs) = 4mn —4n +28; f*(ve) = 4mn —4n + 36; f*(v7) = 4mn —4n +
40; f*(vg) = 4mn —4n + 44; f*(v9) = 4mn — 4n + 52; f*(v19) = 4mn — 4n + 60; f*(v11) = 4mn —4n +
64; f*(v12) = 4mn —4n +68;...; f*(vy—¢) = 4n —36; f*(vy—5) = 4n —32; f*(vy—a) = 4n —28; f*(v,-3) =
4n—16; f*(vy—) = 4n—12; f*(v,-1) =4n—-8; f*(v,) = 4n — 4.

The label the vertices of C(z) ( ) cﬁ,‘”,...,cf,m‘z),cf{" v, ,(4’") respectively are: f*(v,4i) =
4i+2; f*(vopyi) = 2mn +4n + 4i + 2; f (O3n+i) = 4n+4i+ 2. f (O(uogyppi) = 4mn—6n+4i+2;
F @n-2)ngi) = 2mn —6n+4i+2; f*(0(_1yppq) = 2mn+2i+2,1<i<n.

Case (2): n = 2mod12,n # 2.

First, we label the edges of the paths Pg,f ), 1 < k < n begin with the edges of the path P,<,3> as the
same in case (1).

Secondly, we label the edges of the circles CElk), 1 < k < m begin with the edges of the inner most

circle qu ) , then the edges of outer circle CS, >, then the edges of the circles C,, (m-2) Cslm%), ., Cff).

Finally, we label the edges of the circles Cﬁn ), C,(fl” 3), S, anz ),

Label the edges of the circle Cs,l) as follows: f(v1v2) = 2n(m—1) + 2, f(vpv3) = 2n(m—1) +
6, f(v3vy) = 2n(m —1) +4, f(vavs) = 2n(m—1) + 8, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m —
1) + 14,f(v7’08) = 211(111 - 1) + 12,f(’08’09) = Zn(m - 1) + 16, f(’()gvlo) = Zn(m - 1) + 18,f(010011) =
2n(m —1) 4+ 22, f(v11v12) = 2n(m —1) + 20, f(vipv13) = 2n(m —1) + 24, ..., f(vy—9vy—g) = 2mn —
18, f(vy—svn—7) = 2mn — 14, f(vy_yv4_¢) = 2mn — 16, f(Vy_eVy-5) = 2mn — 12, f(vy_50,-4) =
2mn =10, f(vy-4vy—3) = 2mn — 6, f(vy_3vy—2) = 2mn —8, f(vy_2vy_1) = 2mn —4, f(v,_104) =
2mn -2, f(vyv1) = 2mn.
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Label the edges of the circle C,(qz) as follows: f(vy410n42) = 4n(m —1) +4, f(Vp420043) =

dn(m—1) +2, f(vy430p44) = 4n(m—1) + 8, f(Vy1avn15) = 4n(m—1) + 6, f(vyyiVptit1) = 4n(m—
1) +2i,6 <i <n-2,f(vo-1024) = 2n(2m —1), f(v2,0y41) = 2n(2m — 1) — 2. Label the edges of
clm clm=2) clm=4) " cB)ang V) cm3) cm5 W asin case (1).

Thus, the labels of corresponding vertices mod (4mn — 2n) will be:

The label the vertices of Cf,l) are: f*(v1) = 4, (v2) = 4mn—4n+12,f*(v3) = 4mn -
4n + 16, f*(vs) = 4mn —4n + 20, f*(vs) = 4mn —4n + 28, f*(vg) = 4mn —4n + 36, f*(v7) =
4mn — 4n + 40, f*(vg) = 4mn —4n + 44, f*(vg) = 4mn —4n + 52, f*(v1g) = 4mn —4n + 60, f*(v11) =
4mn —4n + 64, f*(v12) = 4mn —4n + 68, f*(vi3) = dmn—4n+76,..., f*(vy-g) = 4n—48, f*(vy—7) =
4n — 44, f*(vp—6) = 4n —40, f*(vy-5) = 4n—32, f*(vy-a) = 4n—24, f*(vy,—3) = 4n —20, f*(vy—2)
4n—16, f*(vy—1) =4n =38, f*(vy) =4n-2.

The label the vertices of the circle C(nz) are: f*(v,11) =6, f*(vnr2) =10, f(vy13) = 14, f(v,04) =
18, f*(vpys5) =20, f*(vy4i) =4i+2,6 <i<n—=2, f*(vyy-1) =4n, f*(vo,) = 4n+ 2.

The label the vertices of C£,3), C,(f), ceey Ci,m_2>, C,Sm_l), C,g'") respectively are as the same as in case (1).

Remark 2. In case n = 2. Let the edges of the cylinder grid graph C,,, are labeled as shown in Figure 10.
The corresponding labels of vertices mod(8m — 4) are as follows: f*(v1) = 8, f*(vpiy1) = 4m +8i+4,1 <
i< S (o) =8i+61<i< L f(vy) =12, f(v2) = 20, f*(VVpi41) = 4m +8i+18,1 < i <
m3 f(v'y) =8i+10,2 <i < 251

dm +4

-
.'/
& G =2 (N
Brz 4
v, A Lo e L 1o 12 8 . W 10§ s 4m -2
1 1 HE o v . [ o =
am+2
4
.\__
R m
-
&m—6

6 +8
4m+10

S +d
A +6

Figure 10. The cylinder grid graph C,, .
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Case (3): n = 4mod12.

First we label the edges of the paths P,(,],(), 1 < k < n begin with the edges of the path P,(ﬂ1 ) as the
same in case (1).

Second we label the edges of the circles CE,k), 1 < k < m begin with the edges of the inner most

(1) (m)

circle C,,/, then the edges of outer circle C;; ", then the edges of the circles Cilmfz), Cflm%), S C7(43>.
Finally we label the edges of the circles CE,Z”‘”, CS,T_S), ey C,(i).

Label the edges of the circle Cs,l) as follows: f(v1v2) = 2n(m—1) + 2, f(vpv3) = 2n(m—1) +
6, f(v3vs) = 2n(m —1) +4, f(vavs) = 2n(m—1) + 8, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m —
1) + 14, f(vyvg) = 2n(m —1) 4+ 12, f(vgvy) = 2n(m —1) + 16, f(vgv1g) = 2n(m —1) + 18, f(vigv11) =
2n(m —1) + 22, f(v11v12) = 2n(m —1) + 20, f(v12013) = 2n(m—1) +24,..., f(Vy-8Vp—y) = 2mn —
16, f(vy—yvn-¢) = 2mn — 14, f(vy—vp-s5) = 2mn — 10, f(vy—50,-4) = 2mn — 12, f(vy_4vy_3) = 2mn —
8, f(vu—3vy—2) = 2mn —2, f(vy—2vy_1) = 2mn — 6, f(v,_1v,) = 2mn, and f(v,v1) = 2mn — 4.

Label the edges of Cflm), C,(1m_2>, C,(Z'"_4), e C,(f) and C,(Zm_l), C,(qm_3), C,Sm_s), e C,(f)

Thus we have the labels of corresponding vertices of the circle C,(f) mod (4mn — 2n) will be:
f(n) =0, f(v2) = 4mn—4n+ 12, f*(v3) = 4mn —4n + 16, f*(v4) = 4mn —4n + 20, f*(vs) = 4mn —
4n + 28, f*(vs) = 4mn —4n + 36, f*(v7) = 4mn —4n + 40, f*(vg) = 4mn —4n + 44, f*(v9)
4n + 52, f*(v10) = 4mn —4n + 60, f*(v11) = 4mn —4n + 64, f*(v12) = 4mn —4n + 68, f*(v13)
An+76,...,f (vy—7) = 4n—44, f*(vy—6) = 4n =36, f*(vy_5) = 4n — 32, f*(vy_4) = 4n —28, f*(v,_3) =
4n—16, f*(vy—p) =4n—12, f*(vy—1) = 4n -8, f*(v,) = 4n —4.

The label the vertices of Cﬁlz), C£,3), C,(Z4), e, Cs,m_z), ngm—l)’ Cs,m) respectively are as same in case (1)

, Cff) asin case (1).

Remark 3. In case n = 4. Let the the edges of the cylinder grid graph C,, 4 are labeled as shown in Figure 1
The corresponding labels of vertices mod(16m — 8) are as follows: f*(v1) = 6, f*(v2) =8, f*(v3) = 16, f*(v4)

20; f*(v4i11) = 4i+10,1 < i < 3, f(vs) = 28; f*(vgers) = Sm +4i+16k-10,1 < i < 4,1 <k

232, f (0am-11) = 0, f*(0am-10) = 2, f*(0am-9) = 4, f*(0am-s) = 10, f* (Vg 141:) = 4i + 16k + 10,1 < i
4,1<k< 23,

IANIAN I =

Case (4): n = 6mod12.

First, we label the edges of the paths Pi,]f), 1 < k < n begin with the edges of the path Psnl ) as the
same in case (1).

Secondly, we label the edges of the circles C;H, 1 < k < m begin with the edges of the inner most

5,1), then the edges of outer circle C,(qm>, then the edges of the circles C,(qm_z), Cﬁlm_4>, ., ch?’).

Finally, we label the edges of the circles CE: 1_1), CEnm_3), e, C,(nz).

Label the edges of the circle C,Sl) as follows: f(v1v2) = 2n(m—1) + 2, f(vpv3) = 2n(m—1) +
6, f(v3vg) = 2n(m—1) +4, f(vavs) = 2n(m—1) +8, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m -
1)+ 14, f(v7vs) = 2n(m —1) + 12, f(vgvg) = 2n(m —1) + 16, f(v9v1g) = 2n(m —1) + 18, f(vipv11) =
2n(m —1) 4+ 22, f(v11v12) = 2n(m —1) + 20, f(vipv13) = 2n(m —1) +24,..., f(vp—9vy_g) = 2mn —
18, f(vp-8vn—7) = 2mn — 14, f(vy—70p—¢) = 2mn — 16, f(vy—cUp—5) = 2mn —12, f(vy_50,_4) = 2mn —
10, f(vy—avp-3) = 2mn — 6, f(vy_3vy—2) = 2mn — 8, f(vy_2v,—1) = 2mn —4, f(vy_1v,) = 2mn + 2,
f(vqv1) = 2mn - 2.

Label the edges of C£Lm_4), ., C,(qs) and C;m—l), ch’"‘?’), C,(qm_S), ., C£L4), C£,2> as in case (1).

Label the edges of the circle C,Sm_z) as follows:  f(V(u-3yn10(m-3)nt2) = 2n(m +
2), f(v(rn—S)n+iv(m—3)n+i+l) =2n(m+1)+2i,2<i<n-1, f(v(m—Z)nv(m—3)n+1) =2n(m+2)+2.

Label the edges of the circle C,(1m) as follows: FOm-1nt1%m=1ynr2) =
2mn, f(v(nl—l)n+iv(rrz—l)n+i+1) =2mn+2,2<i<n-1, f(v(m—Z)nU(m—S)n+l) = Zn(m + 2)'

circle C
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Figure 11. Ane.e.g., L. of the cylinder grid graph C,,, 4.

Thus we have the labels of corresponding vertices mod (4mn — 2n) will be:

The labels the vertices of the circle c,(f) are: f*(v1) = 2,f"(v2) = 4mn—4n+12, f*(v3) =
dmn —4n + 16, f*(vs) = 4mn —4n+ 20, f*(vs) = 4mn —4n + 28, f*(ve) = 4mn —4n + 36, f*(vy) = 4mn —
4n +40, f*(vg) = 4mn —4n + 44, f*(vg) = 4mn —4n + 52, f*(vyp) = 4mn —4n+ 60, f*(v11) = 4mn —4n +
64, f*(v12) =4mn—4n+68,..., f*(vy—g) = 4n—48, f*(v,—7) = 4n—44, f* (v4-¢) = 4n — 40, f*(v,y—5) =
4n —32, f*(vy—a) =4n—24, f*(vy-3) = 4n—20, f*(vy—2) =4n—16, f*(v,-1) = 4n—4; f*(v,) = 4n.

The labels the vertices of the circle C(mfz) are: f*(V(u-zyns1) = 4mn—6n+6; f(0(y_3)s2) =
dmn — 61+ 8; f*(V(y_g)npi) =4mn—6n+4i+2,3<i<n—1, f*(0(,_2),) = 4mn —4n + 4.

The labels the vertices of C,S ), C,(,3>, C£,4), e, C(m 1 CL"’ 3 respectively are the same as in case (1).

The labels the vertices ofC ) are: F Opm-tyns1) = 2mn+2, f(0p-1yns2) = 2mn+4, f ©ppo1ynsi) =
2mn +2i+2,3 <i < n.Case (5): n = 8mod12.

First, we label the edges of the paths P,(,],( ), 1 < k < n begin with the edges of the path P
same in case (1).

Secondly, we label the edges of the circles Cs,k), 1 < k < m begin with the edges of the inner most

circle Cfll) , then the edges of outer circle C,(1 " , then the edges of the circles C,, (m=2) ,C ('"74), S ijs).

Finally we label the edges of the circles C,(,’,n 1), C%n 3), ...,C @

m

Label the edges of the circle C,<Z ) as follows: f(v1v2) = 2n(m—1) + 2, f(vov3) = 2n(m—1) +
6, f(v3vy) = 2n(m —1) +4, f(vavs) = 2n(m—1) + 8, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m —
1)+ 14, f(v7vs) = 2n(m —1) + 12, f(vgvg) = 2n(m —1) + 16, f(vgv1g) = 2n(m —1) + 18, f(vipv11) =

(1) as the

m
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2n(m —1) + 22, f(v11v12) = 2n(m —1) 4+ 20, f(vipv13) = 2n(m —1) + 24, f(vi3v1a) = 2n(m—-1) +
26,..., f(oy—9vp—g) = 2mn — 20, f(vy_gvy—y) = 2mn —16, f(vy_7vy_¢) = 2mn — 14, f(vy_evy-5) =
2mn — 10, f(vy—504-4) = 2mn =12, f(vy_4v,-3) = 2mn =8, f(vy_3v4—2) = 2mn —6, f(vy_20,-1) =
2mn =2, f(vy-10n) = 2mn —4, f(v,01) = 2mn + 4.

Label the edges of the circle CE,m) as follows f(v(u_1)ut10m-1)ns2) = 2mn +
2'f(v(m—l)n+20(m—l)n+3) = 2mn + 6/f(v(m—l)n+iv(m—l)n+i+l) = 2mn+2i+2 3 < i < n-
L, f(Omn0(m-1)n+1) = 2mn.

Label the edges of C,ﬁ’"‘z), C,(Zm_4), ey Cg,?’) and C,Sm_w, CS,m_?’), C,(qm_S),. C,S , C(2> as the same in

case (1).

Thus we labels of corresponding vertices of the circle C(l) mod (4mn — 2n) will be: f*(vy) =
8, f*(v2) = 4mn —4n +12, f*(v3) = 4mn —4n + 16, f*(vs) = 4mn —4n + 20, f*(v5) = 4mn — 4n + 28,
f*(ve) = 4mn —4n + 36, f*(v7) = 4mn —4n + 40, f*(vg) = 4mn —4n + 44, f*(v9) = 4mn —4n + 52,
fH(v10) = 4mn—4n+ 60, f*(v11) = 4mn —4n + 64, f*(v12) = 4mn —4n+ 68, f*(vi3) = 4mn —4n+76,. ..,
I
1

vy—3) = 4n —20, f*(vy—2) = 4n—12, f*(v,— 1) 4n -8, f*(v,) = 4n.
The labels the vertices of the circle C are: f*(v(p-1yng1) = 2mn—4n+ 14, f*(0(p-1)n42) =

2mn + 8, f*(Vu-typri) = 2mn+2i+6,3 <i < n—1,f (vyuy) = 2mn + 4. The labels the vertices of
C,(f), C,(Z3>, C£,4>, ey Ci,m_z), C,Sm_l) respectively are as the same in case (1).
Case (6): n = 10mod12. First we label the edges of the paths P,(,f >, 1 <k < n begin with the edges

of the path PS) as the same as in case (1).

Second we label the edges of the circles C,gk), 1 < k < m begin with the edges of the inner most

circle Cfp, then the edges of outer circle C,(:"), then the edges of the circles Cimiz), Cs,m74>, e, C513>.
Finally we label the edges of the circles C,(nmfl) , Cinm73), ey Cﬁf).

Label the edges of the circle C,(il) as follows: f(v1v2) = 2n(m—1) + 2, f(vov3) = 2n(m—1) +
6, f(v3vy) = 2n(m —1) + 4, f(vavs) = 2n(m—1) + 8, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m —
1) 4+ 14, f(v7vs) = 2n(m —1) + 12, f(vgvg) = 2n(m —1) + 16, f(vgv1g) = 2n(m —1) + 18, f(vipv11) =
2n(m —1) + 22, f(v11012) = 2n(m —1) 4+ 20, f(vipv13) = 2n(m —1) + 24, f(vi13v14) = 2n(m—1) +
26,..., f(oy—9vp—g) = 2mn —18, f(vy_gvy—y) = 2mn — 14, f(vy_704_¢) = 2mn —16, f(vy_eVn-5) =
2mn — 12, f(vy—504-4) = 2mn — 10, f(vy_4vy-3) = 2mn — 6, f(vy_304—2) = 2mn -8, f(vy_2v,-1) =
2mn — 4, f(vy-10,) = 2mn -2, f(v,01) = 2mn.

Label the edges of the circle C,g2> as follows: f(vy410n42) = 4n(m —1) +4, f(vp420043) =
dn(m—1) 42, f(OytiVnriz1) = 4n(m—1) + 20,3 <i <n -2, f(vay-102,) = 20(2m — 1), f (V2020 11) =
2n(2m—-1) - 2.

Label the edges of C(m) C<m 2) C(m 4), ( ) and C(m 2 C,gm_3),C,(zm_5),...,C£,4) as in case (1).

Thus we have the labels of correspondmg vertlces mod (4mn —2n) will be:

The labels the vertices of the circle CS) are as follows: f*(v1) =4, f*(v2) = 4mn—4n+12, f*(v3) =
4mn —4n + 16, f*(vs) = 4mn —4n + 20, f*(vs) = 4mn —4n + 28, f*(ve) = 4mn —4n + 36, f*(v7) =
dmn—4n+40, f*(vs) = 4mn—4n+44, f*(v9) = 4mn —4n+52, f*(v1g) = dmn—4n+60, f*(v11) = 4mn—
4n + 64, f*(v12) = 4mn —4n + 68, f*(v13) = 4mn —4n +76, f*(v1a) = 4mn—4n+84,..., f*(v,8) =
4n — 48, f*(vp—y) = 4n—44, f*(vy-6) = 4n—40, f*(vy—5) = 4n—32, f*(v,-4) = 4n—24, f*(vy—3) =
4n—20, f*(vy—) =4n—16, f*(v,-1) =4n -8, f*(v,) = 4n - 2.

The labels the vertices of the circle C;z) are as follows: f*(v,41) = 6, f*(vy42) = 10, f*(vyy3) =
12, f*(vpyi) = 4i+2,4 < i < n=2,f(vay-1) = 4n, f(v2y) = 4n+ 2. Label the vertices of
C£,3), C,S4>, R C,(1m_2>, c,ﬁ”“l), Cs,m) respectively are as the same as in case (1).

Illustration: The edge even graceful Ilabeling of the cylinder grid graphs
C9,2, C9/4, C7,10, C7,12, C7,14C7,16C7/18 and C7,20 are shown in Figure 12.
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@) C;p

Figure 12. Cont.
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(f) C7.l6

Figure 12. Cont.
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(h) C7.ZO

Figure 12. An e.e.gA, 1. Of the cylinder grid graphs Cg/z, C9,4, C7,10, C7,12/ C7,14, C7/1(,, C7,l8r and C7,20.
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Theorem 4. If m is an odd positive integer greater than 3 and n is an odd positive integer, n > 3, then the
cylinder grid graph C,, , is an edge even graceful graph.

Proof. Using standard notationp = |V(Cm,n)| =mn,q = |E(Cm,n)| =2mn—n,r = max(p,q) = 2mn—n,
and f:E(Cpun) — {2,4,6,...,4mn—2n-2}. O

Let the cylinder grid graph Cy, ,, be as in Figure 9. There are six cases:

Case (1): n = Ilmod12.

First, we label the edges of the paths PE: ) ,1 <k < nbeginning with the edges of the path P,(;) as
follows: Move clockwise to label the edges v1v,,1.1, V2V 42, U3Up43, - - ., Up—1V24—1, UnV2, by 2,4,6,..., 21—
2,2n, then move anticlockwise to label the edges v, 11V, 12, ¥24V31, V21—1931-1, - - - , V43020143, Unt-202042
by 2n +2,2n + 4,2n + 6,...,4n — 2,4n, then move clockwise to label the edges
V20103041, V2n4+2031+2, 0214303143, - - -, U3n—104n—1,03n04n by 4n + 2,4n + 4,4n +6,...,6n — 2,6n,
and so on.

Finally, move anticlockwise to label the edges v(,,_2)u+19(m-1)n+1, O(m-1)n Vs V(m-1)n-19mn-1, - - »
O(m-2)n+39(m-1)n+37 U (m-2)n+2Y%m(n-1)+2 by 2n(m - 2) + 2,271(7’” - 2) +4, zn(m - 2) +6,... /Zn(m - 1) -
2,2n(m—1).

Second, we label the edges of the circles C,Sk) ,1 <k < mbeginning with the edges of the innermost

circle Cfll), then the edges of outer circle C,(im), and then the edges of the circles C,(qm_z), Cflm_4), . C£,3).

Finally, we label the edges of the circles Cf,,m_l), anm_?’), ceey C,(,%).

Label the edges of CE,U as follows: f(v1vp) = 2n(m—1) 42, f(vovs) = 2n(m—1) +4, f(v3vy) =
2n(m —1) + 8, f(vavs) = 2n(m—1) + 6, f(vsvg) = 2n(m—1) +10, f(vevy) = 2n(m—-1)+
12, f(v7vg) = 2n(m —1) + 16, f(vgvg) = 2n(m —1) + 14, f(vov19) = 2n(m —1) + 18, f(viov11) =
2n(m —1) 420, f(vn1v12) = 2n(m — 1) + 24, f(vip013) = 2n(m = 1) +22, f(v13014) = 2n(m —1) + 26,
f(v1av15) = 2n(m—1) +28,..., f(vy—yvn—6) = 2mn — 14, f(vy—vy-5) = 2mn — 10, f(vy—50,-4) =
2mn =12, f(vy_4vy—3) = 2mn —8, f(vy_3vy—2) = 2mn — 6, f(vy_2vy_1) = 2mn —2, f(vy,1vs) =
2mn —4, f(va01) = 2mn.

Then, label the edges of C"),c"2) clm=4 ¢ ang cl"D,cm=3) cm=5 W c?
as follows:

Label the edges of the circle C,(f") as follows:  f(O(p-1)tiVm-1)ntiv1) = 2mn +
2i, f(OmnO(m-1)ns1) = 2n(m+1),1<i<n-1

Label the edges of the circle C,(qm_z) as follows:  f(0(—gyri¥m—3yti+1) = 2n(m+1) +
2i, f(O(m-2)n¥V(m-3yng1) = 2n(m +2),1<i<n-1.

Label the edges of the circle Cs,m_‘l) as follows:  f(0(yes)yti®m—synyiv1) = 2n(m+2) +
2i, f(O(m-a)n¥(m-5yn+1) = 2n(m +3),1 <i<n-1,and so on.

Label the edges of the circle C,(f) as follows: f(vay4ivantiv1) = 3n(m—1) + 2i, f(v3,02541) =
n(Bm-1),1<i<n-1,

Label the edges of the circle C,Smil) as follows:  f(v(y—2)ntiV(m-2)nsiv1) = n(Bm—1) +
2i, f(v(nz—l)nv(nz—l)n+1) = n(3m + 1)! 1<i<n-1,

Label the edges of the circle C,({"Jj) as follows:  f(O(—aynti¥m-tynyi+1) = n(3m+2) +
2i, f(O(-3)n¥m—tyn41) = 3n(m+1),1<i<n-1,...,and so on.

Label the edges of the circle Cff) as follows: f(v3y+iU3ptit1) = 2n(2m —3) + 2i, f(v403,41) =
dn(m-1),1<i<n-1,

Label the edges of Cf) as follows: f(vy4iVntiv1) = 4n(m—1) + 2i, f(v2,02n41) = 2n(m—-1),1 <
i<n-1,

Thus, the labels of corresponding vertices of the circle C,gl) mod (4mn —2n) willbe: f*(v1) =4, f*(v2) =
dmn —4n + 10, f*(vs) = dmn —4n + 18, f*(v4) = dmn —4n + 22, f*(vs) = dmn — 4n + 26, f*(ve) = 4mn —
4n+ 34, f*(v7) = 4mn—4n+ 42, f*(vs) = 4mn —4n + 46, f*(v9) = 4mn —4n + 50, f*(vy9) = 4mn —
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4n + 58, f*(v11) = 4mn —4n + 66, f*(v12) = 4mn —4n + 70, f*(v13) = 4mn —4n + 74, f*(v14) = 4mn —
dn+82,...,f(vy—y) = d4n—44, f(vy—) = 41 —36, f*(vy—5) = 4n—32, f*(vy_4) = 41— 28, f*(vy_3) =
4n—20, f*(vy—2) =4n—12, f*(vy-1) =4n -8, f*(v,) = 4n—4.

The labels of the vertices of C(iz), C;B), Cff), ., Cﬁlm_z) Cﬁlm_m, CE,M, respectively, are as follows:
f(Ongi) = 4i+2; f(vangi) = 2mn+4dn +4i + 2; f*(v3040) = 4n+4i+ 25 f(O(ugynsi) = dmn—
61+ 4i +2; f*(V(p_p)nsi) = 2mn —6n+4i+2; f*(O(y_1yppi) =2mn +2i+2,1<i<n.

Case (2): n = 3mod12.

First, we label the edges of the paths P,(,Iz(), 1 < k < n beginning with the edges of the path P,(n1 ) as
the same in case (1).

Second, we label the edges of the circles C,(Zk), 1 < k < m beginning with the edges of the innermost

circle CS, ), then the edges of outer circle C,(1 ), and then the edges of the circles C,, (m=2) ,C <m74>, . C,(f).

Finally, we label the edges of the circles C,(n ), Cﬁ: "~ 3),. .., C,(ﬂ2 )4

Label the edges of the circle C,(ll) as follows: f(v1v2) = 2n(m—1) + 2, f(vov3) = 2n(m—1) +
4, f(v3v4) = 2n(m—1) + 8, f(v4vs) = 2n(m—1) + 6, f(vsv6) = 2n(m —1) + 10, f(vev7) = 2n(m —
1) 4+ 12, f(vyvs) = 2n(m —1) + 16, f(vgvg) = 2n(m —1) + 14, f(v9v1g) = 2n(m —1) + 18, f(vipv11) =
2n(m —1) + 20, f(v11012) = 2n(m —1) + 24, f(vipv13) = 2n(m—1) + 22, f(v13012) = 2n(m —1) +
26,..., f(vn-9vy—g) = 2mn —18, f(vy_gvy—y) = 2mn — 14, f(v,_704—¢) = 2mn — 16, f(vVy_eVy-5) =
2mn —12, f(vp—504-4) = 2mn =10, f(vy-40y-3) = 2mn — 6, f(vy_304-2) = 2mn —8, f(vy_2v,-1) =
2mn, f(vy—10n) = 2mn =2, f(vyv1) = 2mn — 4.

Label the edges of the circle C,(qz) as follows: f(vy+iUp+iv1) = 4n(m—-1)+2i,1 <i < n-
9, f(?]zn 90Dy 3) = 21’1(2711 1) 18, f(Uzn 8V — 7) = 271(2‘”1 1) 14, f(vzn 702— ) = (Zm 1) —16,
f(vzn 602n— 5) = 2n(2m - 1) - 10 f(vzn 5025— 4) = 271(2111 - 1) - 12 f(vzn 402 3) (2711 - 1) - 6,

f(van—3v2n—2) = 2n(2m —1) =8, f(van—202p-1) = 2n(2m —1) — 4, f(v2p-1024) = 2n(2m —1) —
2, f(v2nVn41) = 2n(2m —1).

Label the edges of Cslm), Cg’”’”, C,({'Hl), ey C,(f) and Ci,mfl), CS,"173), CE,miS), e C,(,4) as in case (1).

Thus, the labels of corresponding vertices mod (4mn — 2n) will be:

The labels of the vertices of C,(,U are as follows: f*(v1) = 0, f*(v2) = 4mn —4n+ 10, f*(v3)
dmn —4n + 18, f*(vy) = 4mn —4n + 22, f*(vs) = 4mn —4n + 26, f*(ve) = 4mn —4n + 34, f*(vy)
dmn—4n+42, f*(vg) = 4mn—4n+46, f*(v9) = 4mn —4n+50, f*(vig) = 4mn—4n+58, f*(v11) = 4mn—
4n+ 66, f*(v12) = 4mn—4n +70, f*(v13) = 4mn —4n + 74, f*(v1a) = 4mn—4n+82,..., f*(v,—g)
4n —48, f*(vp—y) = 4n—44, f*(vy—6) = 4n —40, f*(vy—5) = 4n =32, f*(v,-4) = 4n— 24, f*(v,-3)
4n-20, f*(vp—p) =4n—12, f*(v,-1) = 4n—4, f*(v,) = 4n—6.

The labels of the vertices of the circle CE,Z) are as follows: f*(v,4i) = 4i+2,1 <i < n-
9, f*(van-g) = 4n —28, f*(voy—7) = 4n —26, f*(von—g) = 4n — 22, f*(vop—5) = 4n — 18, f*(vyy—a) = 4n - 14,
f(van—3) =4n—10, f*(vop—2) = 4n -8, f*(vap-1) = 4n -2, f*(vay) = 4n + 2.

The labels of the vertices of CE,a), C£,4) ey C,(1m72>, C&mil) , C,(qm), respectively, are the same as in case (1).

Remark 4. In case n = 3 and m is odd, m > 3.

Let the label of edges of the cylinder grid graph C,, 3 be as in Figure 13.

Thus, the labels of corresponding vertices mod(12m — 6) are as follows:

The labels of the vertices of the circle Cgl) are f*(v1) =8, f*(v2) =12, f*(v3) = 16.

The labels of the vertices of the circle Céa) are f*(vay—2) = 6m + 10, f*(v3y-1) = 6m + 12, f*(v3y,) =
6m + 14.

The labels of the vertices of the circles Céz), C§4), s Cémil) are f*(vgyi) =4i+6k+4,1<i<3,1<
k<m-—2,kisodd.

The labels of the vertices of the circles C§3>, CéS), R Cémiz) are f*(vspyi) = 6m+4i+6k+10,1<i<
3,2 <k <m-3,kis even.
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P T ST

Figure 13. The cylinder grid graph C,, 3, m is odd, m > 3.

Case (3): n = 5mod12.

First, we label the edges of the paths P,g,() ,1 <k < nbeginning with the edges of the path P,
same as in case (1).

Second, we label the edges of the circles C,Sk) ,1 <k < mbeginning with the edges of the innermost

circle Cf}), then the edges of outer circle C,(,lm), and then the edges of the circles C,(,m_z), Cs,m_4>, S C£,3).

Finally, we label the edges of the circles C,(,',"_l), C,(,:n_3), ceey C,S%).

Label the edges of the circle Cs,l) as follows: f(viv2) = 2n(m—1) + 2, f(vov3) = 2n(m—1) +
4, f(v3vq) = 2n(m—1) + 8, f(vavs) = 2n(m—1) +6, f(vsvs) = 2n(m—1) + 10, f(vev7) = 2n(m —
1) + 12, f(vyvs) = 2n(m —1) 4 16, f(vsvy) = 2n(m —1) + 14, f(vgv1g) = 2n(m —1) + 18, f(v1gv11) =
2n(m = 1) +20, f(on1v12) = 2n(m = 1) + 24, f(vipv13) = 2n(m —1) + 22, f(v13014) = 2n(m - 1) +
26,..., f(vn_gvy—y) = 2mn — 16, f(vy—70n—) = 2mn — 14, f(vy_evy-5) = 2mn —10, f(v,-50,-4) =
2mn =12, f(vy—40y-3) = 2mn —8, f(vy_30y—2) = 2mn — 6, f(v,_0vy_1) = 2mn —2, f(vy_10,) = 2mn — 4,
F(on01) = 2mn. Label the edges of C!™), c{"=2 =4 ¢ ang (V) cm=3) cm=5) ¢l @)
as in case (1).

Thus, the labels of corresponding vertices of the circle C,S1> mod (4mn — 2n) will be: f*(v1) =

(1) the

m

4, f*(v2) = 4mn —4n+10, f*(v3) = 4mn —4n+ 18, f*(v4) = 4mn —4n + 22, f*(vs) = 4mn —4n + 26,
f(ve) = 4mn —4n + 34, f*(v7) = 4mn —4n + 42, f*(vg) = 4mn —4n + 46, f*(v9) = 4mn —4n + 50,
f*(v19) = 4mn —4n 458, f*(v11) = 4mn —4n + 66, f*(v12) = 4mn —4n + 70, f*(vi3) = 4mn — 4n + 74,
f(v1a) = dmn—4n+82,..., f(vp—7) = 4n — 44, f*(vy—6) = 4n —36, f*(vy—5) = 4n —32, f*(v,-4) =

4n—28, f*(vy—3) = 4n—20, f*(vy—2) =4n—12, f*(vy—1) = 4n -8, f*(vy) = 4n —4.
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The labels of the vertices of CLZ), C,(f) , C£,4),. .., C,(,mfz), Cff””, C,(qm) , respectively, are the same as in

case (1).

Case (4): n = 7mod12.

First, we label the edges of the paths Pi,],(), 1 < k < n beginning with the edges of the path Pﬁ,} ) the
same as in case (1).

Second, we label the edges of the circles C,(ik), 1 < k < m beginning with the edges of the innermost

circle CElU, then the edges of outer circle Cilm), and then the edges of the circles C,(1"172), CEZ'H}), e C,(,3).

Finally, we label the edges of the circles C,(ﬂm_l), C,(fl”_3), e, C£,,2 ),

Label the edges of the circle Cs,l) as follows: f(v1v2) = 2n(m—1) + 2, f(vpv3) = 2n(m—1) +
4, f(vzvy) = 2n(m—1) + 8, f(vgvs) = 2n(m—1) + 6, f(vsvg) = 2n(m—1) + 10, f(vevy) = 2n(m —
1) + 12, f(vyvg) = 2n(m —1) 4 16, f(vsvy) = 2n(m —1) + 14, f(vgv1g) = 2n(m —1) + 18, f(v1gv11) =
2n(m —1) + 20, f(v11v12) = 2n(m —1) + 24, f(vipv13) = 2n(m —1) +22, f(vi13v14) = 2n(m—1) +
26,..., f(Vy—10Un—9) = 2mn =20, f(vy_9vy—g) = 2mn — 18, f(vy_gvy—7) = 2mn — 14, f(vy_7v,-¢) =
2mn — 16, f(vy—eUn-5) = 2mn —12, f(vy-50y-4) = 2mn — 10, f(v,-40y-3) = 2mn — 6, f(Vy_30y—2) =
2mn — 8, f(vy—2vy—1) = 2mn, f(v,-10,) = 2mn =2, f(v,01) = 2mn —4.

Label the edges of the circle C,(f) as follows: f(vy4ivpyiv1) = 4n(m—1)+2i,1 < i <
1 =9, f(van—9v2n—8) = 2n(2m —1) = 18, f(voy-gvan—7) = 2n(2m —1) — 14, f(van-7024-6) = 2n(2m —
1) =16, f(v2n-6v2u-5) = 2n(2m —1) =10, f(v24-5024-4) = 2n(2m — 1) =12, f(v2y_4024-3) = 2n(2m —
1) = 6, f(van-3v2n—2) = 2n(2m —1) =8, f(von—vay-1) = 2n(2m —1) — 4, f(vy-1024) = 2n(2m —1) —
2, f(vanUpy1) = 2n(2m —1).

Label the edges of CELW, Cf,m_n, C,(qm_4), ., C;S) and Cg,m_l), Cﬁlm_3), c,(f"‘5>, ., C£,4) as in case (1).

Thus, the labels of corresponding vertices mod (4mn — 2n) will be:

The labels of the vertices of the circle cﬁ“ are as follows: f*(v1) = 0, f*(v2) = 4mn —4n +
10, f*(v3) = 4mn —4n + 18, f*(v4) = 4mn —4n + 22, f*(vs) = 4mn —4n + 26, f*(ve) = 4mn —4n +
34, f*(v7) = 4mn —4n + 42, f*(vg) = 4mn —4n + 46, f*(vg) = 4mn —4n+ 50, f*(vy9) = 4mn —4n +
58, f*(vn) = 4mn —4n + 66, f*(vlz) = 4mn —4n + 70, f*(vlg) = 4mn —4n + 74, f*(2)14) = 4mn —4n +
82,...,f (vy—9) = 4n—56,f (vy—g) = 4n—48, f*(vy—y) = 4n —44, f*(vy—¢) = 4n —40, f*(v,—5) =
4n —32, f*(vy—a) = 4n—24, f*(vy-3) = 4n - 20, f*(vy—2) =4n - 12, f*(v,—1) = 4n—4, f*(vy) = 4n —6.

The labels of the vertices of the circle C,(qz) are as follows: f*(v,4) =4i+2,1<i<n-9, f*(van-s)
4n — 28, f*(von—y) = 4n —26, f*(vay—¢) = 4n — 22, f*(voy—s5) = 4n — 18, f*(vap—a) = 4n— 14, f*(v2y-3)
4n —10, f*(vap—p) =4n—38, f*(vap-1) = 4n -2, f*(vay,) = 4n + 2.

The labels of the vertices of C7(43>, C,(:l), e, CE,miz), Cgmil) , C,(7"l), respectively, are as in case (1).

Case (5): n = 9mod12.

First, we label the edges of the paths Pg,f), 1 < k < n beginning with the edges of the path P,(ﬁ1 ) the
same as in case (1). "

Second, we label the edges of the circles C;;/, 1 < k < m beginning with the edges of the innermost
(1) (m) (m=2) ~(m—4) c®

circle C,,’/, then the edges of outer circle C,; /, and then the edges of the circles C,,” ~/,C,;” ,...,C,
Finally, we label the edges of the circles CE,:'FU, C,(:,"%), ey C,(n2 ),

Label the edges of the circle C,Sl) as follows: f(v1v2) = 2n(m—1) + 2, f(vpv3) = 2n(m—1) +
4, f(vzvy) = 2n(m —1) + 8, f(vavs) = 2n(m —1) + 6, f(vsve) = 2n(m —1) + 10, f(vevy) = 2n(m —
1) + 12,f(2)7'(]g) = 2n(m - l) -+ 16,f('(]g?]9) = 21’1(11’! - 1) + 14, f(UgU]o) = 21’1(71’! - 1) + 18,f(?]10?]1]) =
2n(m —=1) + 20, f(vi1012) = 2n(m —1) + 24, f(vpv13) = 2n(m = 1) + 22, f(vizv1) = 2n(m—1) +
26,..., f(0y—1104-10) = 2mn —22, f(vy_10Vp—9) = 2mn — 18, f(vy—gv,—_g) = 2mn — 20, f(v,—gvy-7) =
2mn — 16, f(vy—7v4-¢) = 2mn — 14, f(vy_6vy—5) = 2mn — 10, f(vy—50,-4) = 2mn —12, f(v,_4vy_3) =
2mn — 8, f(vn—3vn—2) = 2mn — 6, f(vy_pvy_1) = 2mn, f(v,_10,) = 2mn -2, f(v,v1) = 2mn — 4.

Label the edges of the circle C,SZ) as follows: f(vy4iUptit1) = 4n(m—1)+2i,1 <i < n-—
8, f(van—7van—6) = 2n(2m —1) =12, f(van-6v2n-5) = 2n(2m —1) = 14, f(vay-5v2y-4) = 2n(2m —-1) —
6rf(02n—402n—3) = 21’1(27’}‘1 - 1) - 10,f("02n,31)2n,2) = 21’1(27’}‘1 - 1) - 8, f(?]zn,z"()zn_l) = 21’1(2771 - 1) -
4, f(v2nUpy1) = 2n(2m —1).
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Label the edges of Cslm), Cff”’”, C,(;'Hl), ey C,(f) and C,(7"171), ij”’3>, CE,’"75), e C,(74) as in case (1).
Thus, the labels of corresponding vertices mod (4mn — 2n) will be:

The labels of the vertices of the circle C,(Il) are as follows: f*(v1) = 0, f*(v2) = 4mn —4n +
10, f*(v3) = 4mn —4n+ 18, f*(v4) = 4mn —4n + 22, f*(vs) = 4mn —4n + 26, f*(ve) = 4mn —4n +
34, f*(v7) = 4mn —4n + 42, f*(vg) = 4mn —4n + 46, f*(v9) = 4mn —4n+ 50, f*(vyg) = 4mn —4n +

58, f*(v11) = 4mn —4n + 66, f*(v12) = 4mn —4n + 70, f*(v13) = 4mn —4n + 74, f*(v14) = 4mn — 4n +
82,..., f (vy—10) = 4n—60, f*(vy—9) = 4n =56, f*(vy—8) = 4n =52, f*(vy—y) = 4n—44, (V) =
4n - 36, f*(vy—5) = 4n —32, f*(vy_4) = 4n =28, f*(vy—3) = 4n =20, f*(v4—2) = 4n —10, f*(v,—1) = 4n —4,
f(vog) =4n—6.

The labels of the vertices of the circle C,(f) are as follows: f*(v,4) =4i+2,1<i<n-38, f*(vay—7)
4n — 24, f*(2727476) =4n - 22,f*(02,,,5) =4n— 16, f*(02n_4) =4n - 12, f*(vzn,:g) =4n- 14,f* (UZn—Z)
4n -8, f*(vyy-1) =4n =2, f*(voy) = 4n + 2.

The labels of the vertices of CS,?’), C,(14), ., Cﬁlm_z), Cff"‘”, Cg,m), respectively, are as in case (1).

Case (6): n = 11mod12.

First, we label the edges of the paths Pg,f ), 1 < k < n beginning with the edges of the path Pinl ) the
same as in case (1).

Second, we label the edges of the circles C,(Zk), 1 < k < m beginning with the edges of the innermost

circle Cs,l), then the edges of outer circle Cim), and then the edges of the circles C,&miz), Cs,m74> C,(f).

Finally, we label the edges of the circles Cinm_l), Cﬁ: =3, C,(ﬂ2 ).

Label the edges of the circle C,(ll) as follows: f(v1v2) = 2n(m—1) +4, f(vv3) = 2n(m—1) +
2, f(v3vs) = 2n(m—1) 4+ 6, f(v4vs) = 2n(m—1) +8, f(vsvs) = 2n(m—1) + 12, f(vev7) = 2n(m —
1) 4+ 10, f(vyvs) = 2n(m —1) + 14, f(vgvg) = 2n(m —1) + 16, f(v9v1g) = 2n(m —1) + 20, f(vipv11) =
2n(m —1) + 18, f(v11v12) = 2n(m —1) 4+ 22, f(vipv13) = 2n(m —1) + 24, f(vi13v14) = 2n(m—-1) +
28,..., f(oy—g0p—y) = 2mn—16, f(vy_7vy_¢) = 2mn — 14, f(vy_evy-5) = 2mn —10, f(vy_50,-4) =
2mn =12, f(vy-40p-3) = 2mn =8, f(vy—30y—2) = 2mn —6, f(vy_2v,-1) = 2mn =2, f(v,_10,) = 2mn —
4, f(vqv1) = 2mn.

Label the edges of the circle C,(qz) as follows: f(vy+iUp+iv1) = 4n(m—-1)+2i,1 <i < n-
2, f(vap-1v2y) = 4mn, f(v2,0,11) = 4mn —2.

Label the edges of Cim), CS,m_2>, C,(qm_4), ey C,(f) and C,(qm_l), C,(j”‘”, cfj“‘5>, e C,(f) as in case (1).

Thus, the labels of corresponding vertices mod (4mn —2n) will be:

The labels of the vertices of the circle Cff) are as follows: f*(v1) = 6,f(v2) = 4mn —
4n + 10, f*(v3) = 4mn—4n + 14, f*(v4) = 4mn —4n + 22, f*(vs) = 4mn —4n + 30, f*(ve)
4mn —4n + 34, f*(vy) = 4mn —4n + 38, f*(vs) = 4mn —4n + 46, f*(v9) = 4mn —4n + 54, f*(vyg) =
4mn —4n + 58, f*(v11) = 4mn —4n+ 62, f*(v1p) = 4mn —4n+70,..., f*(vy—7) = 4n —44, f*(vy-6)
4n —36, f*(vp—5) = 4n —32, f*(vy-4) = 4n—28, f*(vy—3) = 4n—20, f*(vy—2) = 4n—12, f*(vy_1) =
4n -8, f*(vy) = 4n—4.

The labels of the vertices of the circle C,(f) are as follows: f*(v,11) =4, f*(vy4i) =4i+2,2<i<
n =2, f(van-1) = 4n, f*(vay) = 4n + 2.

The labels of the vertices of C,(f), C£Z4>, ., Cﬁlnl_z), C,(f"_l), Ci,m), respectively, are as the same as in
case (1).

Ilustration: An e.e.g.l. of the cylinder grid graphs Co3,C79,C711,C7,13,C7,15,C717 and C7 19 is
shown in Figure 14.

IRy
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(g) C7,I9

Figure 14. An e.e.g.l. of the cylinder grid graphs C9,3, C7,9, C7/11, C7/13, C7/15, C7/17 and C7/19.

3. Conclusions

In this paper, using the connection of labeling of graphs with modular arithmetic and theory
of numbers in general, we give a detailed study for e.e.g., I. of all cases of members of the cylinder
grid graphs. The study of necessary and sufficient conditions for e.e.g., . of other important families
including torus C;; X C;; and rectangular P, X P, grid graphs should be taken into consideration in
future studies of e.e.g., 1.
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1. Introduction

Nowadays, the theories of groups and semigroups [1-5] are attracting increasing attention,
which can be used to express various symmetries and generalized symmetries in the real world.
Every group or semigroup has a binary operation that satisfies the associative law. On the other hand,
non-associative algebraic structures have great research value. Euclidean space R® with multiplication
given by the vector cross product is an example of an algebra that is not associative, at the same time;
Jordan algebra and Lie algebra are non-associative.

For the generalization of commutative semigroup, the notion of an AG-groupoid
(Abel-Grassmann'’s groupoid) is introduced in [6], which is also said to be a left almost semigroup
(LA-semigroup). Moreover, a class of non-associative ring with condition x(yz) = z(yx) is investigated
in [7]; in fact, the condition x(yz) = z(yx) is a dual distortion of the operation law in AG-groupoids.

An AG-groupoid is a non-associative algebraic structure, but it is a groupoid (N, *) satisfying the
left invertive law:

(axb)*c = (cxb)=*a, foranya,b,c € N.

Now, many characterizations of AG-groupoids and various special subclasses are investigated
in [8-13]. As a generalization of commutative group (Abelian group) and a special case of quasigroup,
Kamran extended the concept of AG-groupoid to AG-group in [14]. An AG-groupoid is called
AG-group if there exists left identity and inverse, and its many properties (similar to the properties of
groups) have been revealed successively in [15,16].

In this paper, we further analyze and study the structural characteristics of AG-groups, reveal the
relationship between AG-groups and commutative groups, and establish filter and quotient algebra
theories of AG-groups. The paper is organized as follows. Section 2 presents several basic concepts
and results. Some new properties of AG-groups are investigated in Section 3, especially some examples
of infinite AG-groups, and the authors prove that every weak commutative or alternative AG-group is

Symmetry 2019, 11, 553; doi:10.3390/sym11040553 70 www.mdpi.com/journal/symmetry
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a commutative group (Abelian group) and every AG-group is quasi-cancellative. In Section 4, two
special classes of AG-groups are studied and the structure theorems are proved. In Section 5, the filter
theory of AG-groups is established, the quotient structures induced by filters are constructed, and
some homomorphism theorems are proved. Finally, the main results of this paper are systematically
summarized via a schematic figure.

2. Preliminaries

First, we present some basic notions and properties.
A groupoid (N, *) is called an AG-groupoid (Abel-Grassmann’s groupoid), if for any 4, b, ceN,
(a*b)*c = (c*b)*a. It is easy to verify that in an AG-groupoid (N, *), the medial law holds:

(axb)+(c+d) = (axc)*(b+d), foranya,b,c,d € N.
Let (N, *) be an AG-groupoid with left identity e, we have
ax(bxc) =bx(axc), foranya,b,ceN;

(axb)#(cxd) = (d=b)*(c*a), foranya,b,c,d € N.
NN =N, N*e =N = ¢*N.
An AG-groupoid (N, *) is called a locally associative AG-groupoid, if it satisfies
a*(a*a) = (a*a)*a, YaeN.
An AG-groupoid (N, *) is called an AG-band, if it satisfies a*a = a (Ya€N).
Definition 1. ([9,10]) Let (N, *) be an AG-groupoid. Then, N is called to be quasi-cancellative if for any a, beN,
a=a*band b* = b*a imply that a = b; and (1)

a = b*aand b* = a*b imply that a = b. 2)

Proposition 1. ([9,10]) Every AG-band is quasi-cancellative.

Definition 2. ([14,15]) An AG-groupoid (N, *) is called an AG-group or a left almost group (LA-group), if there
exists left identity e€N (that is e*a = a, for all a€N), and there exists a~ €N such that a=*a = a* a1 = e (YaeN).

Proposition 2. ([15]) Assume that (N, *) is an AG-group. We get that (N, *) is a commutative Abel-Grassmann’s
Group if and only if it is an associative AG-Group.

Proposition 3. ([15]) Let (N, *) be an AG-group with right identity e. Then, (N, *) is an Abelian group.

Proposition 4. ([15]) Let (N, *) be an AG-group. Then, (N, *) has exactly one idempotent element, which is the
left identity.

Proposition 5. ([11]) Let (N, *) be an AG-groupoid with a left identity e. Then, the following conditions
are equivalent,

(1) Nisan AG-group.

(2)  Every element of N has a right inverse.

(3)  Every element a of N has a unique inverse a™".
(4)  The equation x*a = b has a unique solution for all a, beN.
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Proposition 6. ([16]) Let (N, *) be an AG-group. Define a binary operation o as follows:
xoy = (x*e)*y, for any x, yeN.
Then, (N, o) is an Abelian group, denote it by ret(N, *) = (N, o).

3. Some Examples and New Results of AG-Groups

In this section, we give some examples of AG-groups (including some infinite examples),
and investigate the characterizations of weak commutative AG-groups, alternative AG-groups and
quasi-cancellative AG-groups. Moreover, we obtain two subalgebras from arbitrary AG-group.

Example 1. Let us consider the rotation transformations of a square. A square is rotated 90°, 180° and 270° to
the right (clockwise) and they are denoted by @a, ¢y and ., respectively (see Figure 1). There is of course the
movement that does nothing, which is denoted by .. The following figure gives an intuitive description of these
transformations. Denote N = {Qe, Qa, Qp, Pcl.

D D
a
P P
7
&
» @
Figure 1. The rotation transformations of a square.

Obviously, two consecutive rotations have the following results: Q.Qe = Qe, PaPc = PcPa = Pe, PoPy =
@e- That is, @1 = e, 0o = @c, Pp~1 = Pp, P! = @a. Now, we define operations * on N as follows:

Oy = o @y, Vx, yele, a, b, c).

Then, (N, *) satisfies the left invertive law, and the operation * is as follows in Table 1. We can verify that
(N, *) is an AG-Group.

Table 1. AG-group generated by rotation transformations of a square.

*

Pe Pa Pb Pe
Pe Pe Pa P Pe
Pa Pe Pe Pa Pp
Pb Pb Pe Pe Pa
Pc Pa P Pc Pe
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Example 2. Let X = {(a, b)la, beR—{0}{, where R represents the set of all real numbers. Define binary operation *
as follows:
(a,b) *(c, d) = (ac, d/b), for any (a, b), (c, d)e X.

Then,
[(a,b) * (c, d)] * (e, f) = (ac, d/b) * (e, f) = (ace, fbjd);

[(e, f) *(c, d)] * (a, b) = (ec, dff) * (a, b) = (ace, fb/d).

Therefore, [(a, b) * (c, d)] * (e, f) = [(e, f) * (c, d)] * (a, b), that is, the operation * satisfies left invertive law. For
any (a, b)eX, (1, 1) is the left identity of (a, b) and (1/a, b) is the left inverse of (a, b):

(1,1) *(a, b) = (a, b); (1/a, b) * (a, b) = (1, 1).
Therefore, (X, *) is an AG-Group.

Example 3. Let Y = {(a, b)la€R, b = 1 or =1}, where R represents the set of all real numbers. Define binary
operation * as follows:
(a,b) *(c,d) = (ac, bjd), for any (a, b), (c, d)€Y.

Then,
[(a, b) *(c, d)] * (e, f) = (ac, bjd) * (e, f) = (ace, bjdf);

[(e, f) * (c, d)] * (a, b) = (ec, fid) * (a, b) = (ace, flbd).

Because b, fe {1, =1}, b> = f?, and bff = flb. We can get b/df = flbd. Therefore, [(a, b) * (c, d)] * (e, f) =
[(e, ) * (¢, d)] *(a, b), that is, the operation * satisfies left invertive law. Moreover, we can verify that (1, 1) is the
left identity and (1/a, +1) is the left inverse of (a, +1), since

(1,1) *(a, b) = (a,1/b) = (a, b); (because b=1 or —1)
(1/a, 1) *(a,1) = (1, 1) and (1/a, =1) * (a, =1) = (1, 1).
Therefore, (Y, *) is an AG-group.

Example 4. Let Z = {(a, b)lacR, b = 1, -1, i, or —i}, where R represents the set of all real numbers and I
represents the imaginary unit. Define binary operation * as follows:

(a,b) *(c,d) = (ac, bd), for any (a, b), (c, d) €Z

Then,
[(a, b) * (c, d)] * (e, f) = (ac, bjd) * (e, f) = (ace, bjdf);

[(e, f) *(c,d)] * (a, b) = (ec, fid) * (a, b) = (ace, f/bd).

Because b, fe{1, -1, i, =i}, hence b> = 2, and bff = flb. We can get bjdf = flbd. Therefore, [(a, b) * (c, d)] *
(e, ) =1l(e,f) *(c,d)] *(a, b), that is, the operation * satisfies left invertive law. Therefore, (Z, *) is an AG-groupoid.
However, it is not an AG-group, since

(1,1)*(a,1)=(a,1),(1,1) *(a, 1) = (a, =1);

(1,-1)*(a,i) = (a, i), (1, =1) * (a, =i) = (a, —i).

That is, (1, 1) and (1, —1) are locally identity, not an identity.

Definition 3. Assume that (N, *) is an AG-group. (N, *) is said to be a weak commutative Abel- Grassmann’s
group (AG-group), if one of the following conditions holds:
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(1) exL=x"T%, forall xin N;
(2) ex=ux%, forall xin N; or
3 x Tyl =y forallx,yin N.

Theorem 1. Let (N, *) be an AG-group. We can get that N is a weak commutative AG-group if and only if it is
an Abelian group.

Proof. First, we prove that the Conditions (1)-(3) in Definition 3 are equivalent for an AG-group (N, *).
(1)=(2): Suppose thatCondition (1) holds in the AG-group (N, *). For all x in N, by (271 )71 =x,
we have e*(x1) ' = (x‘l)_l*e, that is, e*x = x*e.
(2)—(3): Suppose that Condition (2) holds in the AG-group (N, *). For all x, y in N, by Proposition
3, we know that N is an Abelian group, that is, x*y = y*x, it follows that x 1*y~1 = y~1*x~1,
(3)—(1): Suppose that Condition (3) holds in the AG-group (N, *). Then, for all x in N, we have
Tyl = x1x (e71) 7 that s, et = x T
Now, we prove that an AG-group (N, *) satisfying Condition (2) in Definition 3 is an Abelian
group. Through Condition (2), e*a = a*e for any aeN. Then, a*e = e*a = a, which means that e is right
identity. Applying Proposition 3, we get that (N, #) is an Abelian group. Moreover, obviously, every
Abelian group is a weak commutative AG-group. Therefore, the proof is completed. O

(e™)

Theorem 2. Assume that (N, *) is an AG-group, we have that (N, *) is quasi-cancellative AG-groupoid, that is,
if it satisfies the following conditions, for any x, yeN,

(1) x=x*yand y* = y*x imply that x = y; and
(2) x=y*xand y?>=x*yimply that x = y.
Proof. (1) Suppose that x = x*y and y?> = y*x, where x, yeN. Then,

x=xry= (exx)ry= (y*x)re = yhe= (exy)+y=y* @
That is, x = y?; it follows that x*y = y*x. Moreover, we have
yre=ye () = (exy)e (1) = (eex)x(yex) = xMe(yex) = xex = o ()
1

xre= (xxy)re = (xry)x(x7hx) = (xx 27 x(yrx) = (xxx7)x y? = (xxx7!)x(yxy)

= (xey) s (x7hy) = x5 (xThy) = (exx)x (x7ly) = (exx7!)x(xxy) (0)
= xlx(xxy) = x7lex = e

Combining Equations (b) and (c), we can get
x =e*x = (y*e)*x = (Xe)'y =e*y = y.
(2) Suppose that x=y*x and y>=x*y, where x, yeN. Then,

x=yrx= (exy)*(xry)re = yhre= (exy)ry= yhe = (exy)ry = v (d
That is, x = y?; it follows that x*y = y*x. Then, we have

yre= ye(xa) = (ery)e () = (exx)e(yex) = (exx)xx= e (@)

1,2 _

xre = xx(ylay) = (exx)«(yey) =y e(xry) = yP= ye(yry) = yr(yiey) = yre =e  (f)

Combining Equations (e) and (f), we can get
x =e*x = (y*e)*x = (Xe)*y = 'y =y.
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Hence, (N, *) is quasi-cancellative AG-groupoid. O

Definition 4. Let (N, *) be an AG-group. Then, (N, *) is called to be alternative, if it satisfies one of the
following conditions,

(1) a*a*b) = (a*a)*b, Ya, beN; or
(2) a*(b*b) = (a*b)*b, Ya, beN.

Theorem 3. Let (N, *) be an AG-group. Then, (N, ¥) is alternative if and only if it is an Abelian group.

Proof. (1) Suppose that (N, *) is an alternative AG-group, then Condition (2) in Definition 4 holds.
Then, for any a, beN, a*(b*b) = (a*b)*b. Putting b = e and applying left invertive law, we get that
a*e = a*(e*e) = (a*e)*e = (e*e)*a = e*a = a; by Proposition 3, we know that (N, *) is an Abelian group.

(2) Suppose that (N, *) is an alternative AG-group, then Condition (1) in Definition 4 holds. For any
a, beN, it satisfies a*(a*b) = (a*a)*b. Putting b = e, we have (a*a)*e = a*(a*e). According to the arbitrariness
of a, we can get that

((a”e)*(a”e))"e = (a"e)*((a"e)"e).
Then,
a*a = (e*a)*a = (a*a)*e = ((a*a)*(e*e))*e = ((a*e)*(a*e))e = (a*e)*((a*e)*e) = (a*e)*a.

Let b*a = e, using Condition (1) in Definition 4, (a*a)*b = a*(a*b). It follows that (a%a)*b = ((a*e)*a)*D.
Thus,
a =e*a = (b*a)*a = (a*a)*b = ((a*e)*a)*b = (b*a)*(a*e) = e*(a*e) = a’e.

Applying Proposition (3), we know that (N, *) is an Abelian group.
Conversely, it is obvious that every Abelian group is an alternative AG-group. Therefore, the
proof is completed. O

Theorem 4. Let (N, *) be an AG-group. Denote
U(N) = {xeN| x = x*e}.

Then,

(1) U(N) is sub-algebra of N.
(2)  U(N) is maximal subgroup of N with identity e.

Proof. (1) Obviously, e € U(N), that is, U(N) is not empty. Suppose x, yeU(N), then x*¢ = x and y*e = y.
Thus, x*y = (x*e)*(y*e) = (x*y)*e € U(N). This means that U(N) is a subalgebra of N.
(2) For any xeU(N), that is, x*e = x. Assume that y is the left inverse of x in N, then y*x = e. Thus,

Y = (@0 = (P = G =ee=e,

y=ey =)y = ((x"e)y)"y = (y"e)™)"y = (y"x)*(y"e) = e*(ye) = ye.
It follows that yeU(N). Therefore, U(N) is a group, and it is a subgroup of N with identity e. If M
is a subgroup of N with identity e, and U(N)CM, then M is an Abelian group (by Proposition (3))
and satisfies x*e = e*x = x, for any xeM. Thus, MCU(N), it follows that M = U(N). Therefore, U(N) is
maximal subgroup of N with identity e. O

75



Symmetry 2019, 11, 553

Theorem 5. Let (N, *) be an AG-group. Denote P(N) = {xeN|JaeN, s.t x = a*a}. Then

(1)  P(N) is the subalgebra of N;
(2)  fis a homomorphism mapping from N to P(N), where f: N—P(N), f(x)=x*x€P(N).

Proof. (1) Obviously, e € P(N), that is, P(N) is not empty. Suppose x, y€P(N) and a, beN. Then, a*a = x
and b*b = y. Thus, x*y = (a*a)*(b*b) = (a*b)*(a*b) € P(N). This means that P(N) is a subalgebra of N.
(2) For any x, y €N, we have

fxy) = Fy)*ay) = @) y*y) = f@0)F ).
Therefore, f is a homomorphism mapping from N to P(N). O

4. Involution AG-Groups and Generalized Involution AG-Groups

In this section, we discuss two special classes of AG-groups, that is, involution AG-groups
and generalized involution AG-groups. Some research into the involutivity in AG-groupoids is
presented in [16,17] as the foundation, and further results are given in this section, especially the close
relationship between these algebraic structures and commutative groups (Abelian groups), and their
structural characteristics.

Definition 5. Let (N, ¥) be an AG-group. If (N, *) satisfies a*a = e, for any a€N, then (N, *) is called an
involution AG-Group.
We can verify that (N, *) in Example 1 is an involution AG-Group.

Example 5. Denote N = {a, b, c, d}, define operations * on N as shown in Table 1. We can verify that (N, *) is an
involution AG-group (Table 2).

Table 2. Involution AG-group (N, *).

* a b c d
a a b c

b b a d c
c d c a b
d c d b a

Example 6. Let (G, +) be an Abelian group. Define operations * on G as follows:
Xy = (—x) +y, Vx, yet

where (=x) is the inverse of x in G. Then, (G, *) is an involution AG-group. Denote (G, *) by der (G, +) (see [15]),
and call it derived AG-group by Abelian group (G, +).

Theorem 6. Let (N, *) be an AG-group. Then, (N, *) is an involution AG-Group if and only if it satisfies one of
the following conditions:

(1) P(N) ={ef, where P(N) is defined as Theorem 5.
(2)  (x*x)*x = x for any xeN.

Proof. Obviously, (N, *) is an involution AG-group if and only if P(N) = {e}.
If (N, *) is an involution AG-group, then apply Definition 5, for any xeN,

(x*x)*x = e*x = x.
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Conversely, if (N, *) satisfies the Condition (2), then for any x€N,
(x*x)*(x*x) = ((x*x)*x)*x = x*x.

This means that (x*x) is an idempotent element. Using Proposition 4, we have x*x = e. Thus, (N, *)
is an involution AG-group. O

Theorem 7. Let (N, *) be an involution AG-group. Then, (N, o) = ret (N, *) defined in Proposition 6 is an
Abelian group, and the derived AG-group der (N, o) by ret (N, *) (see Example 5) is equal to (N, *), that is,

der(ret(N, *)) = (N, *).

Proof. (1) By Proposition 6 and Definition 5, Vx, y, zEN, we can get that
xoy = yox; xoe = eox = x; (xoy)oz = xo(yoz); xox ! = xlox =e.

This means that (N, o) = ret(N, *) is an Abelian group.
(2) For any x, yeder(ret(N, *)) = der(N, o) = (N, o),

xeoy = (=x)oy = ((—x)=e)*y = ((xxe)+e)*y = ((exe)+x)*y = (exx)*y = x*.
That is, der(ret(N, *)) = (N, )= (N, ¥). O

Definition 6. Let (N, *) be an AG-group. Then, (N, *) is called a generalized involution AG-group if it satisfies:
for any xeN, (x*x)*(x*x) =e.

Obviously, every involution AG-group is a generalized involution AG-group. The inverse is not
true, see the following example.

Example 7. Denote N = {e, a, b, c}, and define the operations * on N as shown in Table 3. We can verify that
(N, *) is a generalized involution AG-group, but it is not an involution AG-group.

Table 3. Generalized involution AG-group (N, *).

* e a b c
e e a b c
a a e c b
b c b a e
c b c e a

Theorem 8. Lef (N, *) be a generalized involution AG-group. Define binary relation = on N as follows:
xxy e x*rx=y+y, foranyx,y € N.

Then,

(1)~ is an equualent relation on N, and we denote the equivalent class contained x by[x| .
(2)  The equivalent class contained e by [e] . is an involution sub-AG-group.

(8)  Forany x, y, zeN, x=y implies x*z=y*z and z*x=z*y.

(4)  The quotient (N/= , *) is an involution AG-group.
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Proof. (1) For any aeN, we have a*a = a*a, thus a~a.
If a~b, then a*a = b*b; it is obvious that b~a.
If a~b and b~c, then a*a = b*b and b*b = c*c; it is obvious that a*a = c*c, that is, a~c.
Therefore, ~ is an equivalent relation on N.
(2) Yx, y€ [e], we have x*x = y*y = e*e = ¢, thus

(y)*ty) = () (yy) = e'e =e.

This means that [e] . is a subalgebra of N. Thus, [e]. is an involution sub-AG-group of N.
(3) Assume that x=y, then x*x = y*y. Thus,

(r*2)*(x*z) = (x*x)*(z*2) = (y*y)*(2*2) = (y*2)*(y*2);

(Z*)*(z*x) = (22)*(x"x) = (2*2)*(y*y) = (Z'y)*(Z"Y).

It follows that x*z~y*z and z*x~z*y.
(4) By (3), we know that (N/~ , *) is an AG-group. Moreover, for any

x € [a]rlal. = [awa), x0x = (@20) (a%a)
By Definition 6,
(a*a)*(a*a) =e.
Then,
x*x = e forany x € [axa]~.
From this, we have x€le|. , [a*a]~ C [e]. . Hence, [a*a]~ = [e]. . That s, [a].*[a]. = [e]. . Therefore,

(N/=,*) is an involution AG-group. O
Theorem 9. Lef (N, *) be an AG-group, denote
I(N) = {xeN|x*x=e}, GI(N) = {xeN|(x*x)*(x*x)=e}.

Then, I(N) and GI(N) are sub-algebra of N. I(N) is an involution AG-group and GI(N) is a generalized involution
AG-group.

Proof. (1) It is obvious that e€I(N). For any x, y€l(X), we have x*x = ¢ and y*y = e. By medial law,
(¥*y)*(x*y) = (¥*x)*(y*y) = e*e = e. Hence, I(N) is a sub-algebra of N and I(N) is an involution AG-group.
(2) Obviously, eeGI(N). Assume that x, yeGI(X), then
() (%) = YY) ) = e.
Thus,
()" y)) () (o)) = () * @) () ")) = () * (20 () " y) = ee =e.

It follows that x*y€GI(N), and GI(N) is a subalgebra of N. Moreover, from ((x*x)*x)*x = (x*x)*(x*x) =¢,
we get that a = (x*x)*x is the left inverse of x, and

(a%a)*(a*a) = (((x*2)*x)((x*x) ")) "(a%a) = ((c"x)*(x*x))*(x*x)) *(@"a) = (e*(x*x))*(a"a) = (x*x)*(a%a) = (x*x)*(x"x) = e.

That is, a = (x*x)*x€GI(N). It follows that GI(N) is an AG-group. By the definition of GI(N), we get
that GI(N) is a generalized involution AG-group. O
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5. Filter of AG-Groups and Homomorphism Theorems

Definition 7. Let (N, *) be an AG-group. A non-empty subset F of N is called a filter of N if, for all x, yeN, F
satisfies the following properties,

(1) eeF;
(2) x*xeF; and
(38) x€eF and x*yeF imply that yeF.

If F is a filter and subalgebra of N, then F will be called a closed filter of N.

Theorem 10. Let (N, *) be a generalized involution AG-group, I(N) = {xeN| e=x*x} be the involution part of N
(see Theorem 9). Then, I(N) is a closed filter of N.

Proof. It is obvious that ecI(N). YxeN, since
(Fx)y(x'x) =e,
then x*x€I(N). Moreover, assuming that x€I(N) and x*y€I(N), then
e =x*x, (x*y)*(x*y) =e.
Thus,
Yy =e'yy) = (W) WY) = @y y) =e

Hence, yeI(N), and I(N) is a filter of N. By Theorem 9, I(N) is a subalgebra of N. Therefore, I(N) is
a closed filter of N. O
Theorem 11. Let (N, *) be an AG-group and F be a closed filter of N. Define binary relation ~p on N as follows:

x~ry © (x+*yeF,yxx€F), foranyx,yin N.
Then,

(1) =r is an equivalent relation on N.

(2)  x=py and a=rb imply x*a~ry*b.

() f- NoNJF is a homomorphism mapping, where NJF = {[x|p: xeN], [x]p denote the equivalent class
contained x.

Proof. (1) VxeN, by Definition 7(2), x*xeF. Thus, x~px.
Assume x~py, then x*y€F, y*x€F. It follows that y~px.
Suppose that x~py and y~pz. We have x*yeF, y*xeF, y*z€F and z*yeF. By medial law and
Definition 7,
(y+y)* (z43) = (y+2) (y+x) €F, then (z+x) € F;

(yx—y)x—(x*z) = (y*x)*(y*z) €F, then (x+z) €F.

It follows that x~pz.

Therefore, ~f is an equivalent relation on N.

(2) Suppose that x~py and a~gb. We have x*yeF, y*x€F, a*beF and b*acF. By medial law and
Definition 7,

(xea) % (y*b) = (x+y) * (axb) €F; (y+b) = (x+a) = (y*x)= (b+a) €F.

It follows that x*a~gy*b.
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(3) Combining (1) and (2), we can obtain (3).
The proof complete. O

Theorem 12. Let (N, *) be a generalized involution AG-group, I(N) the involution part of N (defined as
Theorem 9). Then, f: N—N/I(N) is a homomorphism mapping, and N/I(N) is involutive, where N/I(N) = {[x]|
x€N}, [x] is the equivalent class contained x by closed filter I(N).

Proof. It follows from Theorem 10 and Theorem 11. O

Theorem 13. Let (N, *) be an AG-group, P(N) = {x€N|Ja€N, s.t x =a*a} be the power part of N (see Theorem 5).
Then, P(N) is a closed filter of N.

Proof. It is obvious thate = e+e € P(N). For any xeN, x*xeP(N).
Moreover, assume that xeP(N) and x*y€P(N), then there exists a, beN such that

x =a*a, x*y = b*b.
Denote ¢ = a~1*b, where a~! is the left inverse of 2 in N. Then,

cte = (tl_l x—b)*(u—l x—b) — (ﬂ_l *a‘l)*(b*b) — (a—l *‘Z—l)x-(x*y) — (a—l *a‘l)*((a*a)*y) — (11_1 *a"l)*((y*a)*u) —
(1171 *(y*ﬂ))*(ﬂil *Ll): (a’l*(y*a))*e — (ex-(yx-a))x-afl — (yx-a)x—afl — (ﬂil *ﬂ)*y — ex-y: y.

Thus, yeP(N). It follows that P(N) is a filter of N. By Theorem 5, P(N) is a subalgebra of N, therefore,
P(N) is a closed filter of N. O

Theorem 14. Let (N, *) be an AG-group, P(N) the power part of N (defined as Theorem 13). Then, f: N—N/P(N)
is a homomorphism mapping, where N/P(N) = {[x]| xeN}, [x] is the equivalent class contained x by closed
filter P(N).

Proof. It follows from Theorems 11 and 13. O

6. Conclusions

In the paper, we give some examples of AG-groups, and obtain some new properties of AG-groups:
an AG-group is weak commutative (or alternative) if and only if it is an Abelian group; every AG-group
is a quasi-cancellative AG-groupoid. We introduce two new concepts of involution AG-group
and generalized involution AG-group, establish a one-to-one correspondence between involution
AG-groups and Abelian groups, and construct a homomorphism mapping from generalized involution
AG-groups to involution AG-groups. Moreover, we introduce the notion of filter in AG-groups,
establish quotient algebra by every filter, and obtain some homomorphism theorems. Some results
in this paper are expressed in Figure 2. In the future, we can investigate the combination of some
uncertainty set theories (fuzzy set, neutrosophic set, etc.) and algebra systems (see [18-22]).
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/ Quasi-cancellative AG-groupoids \
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Figure 2. Some results in this paper.
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Abstract: Social networks describe social interactions between people, which are often modeled
by intersection graphs. In this paper, we propose an intersection graph model that is induced by
adding a sparse random bipartite graph to a given bipartite graph. Under some mild conditions,
we show that the vertex—isoperimetric number and the edge-isoperimetric number of the randomly
perturbed intersection graph on 1 vertices are ()(1/ Inn) asymptomatically almost surely. Numerical
simulations for small graphs extracted from two real-world social networks, namely, the board
interlocking network and the scientific collaboration network, were performed. It was revealed that
the effect of increasing isoperimetric numbers (i.e., expansion properties) on randomly perturbed
intersection graphs is presumably independent of the order of the network.

Keywords: isoperimetric number; random graph; intersection graph; social network

1. Introduction

Complex large-scale network structures arise in a variety of natural and technological
settings [1,2], and they pose numerous challenges to computer scientists and applied mathematicians.
Many interesting ideas in this area come from the analysis of social networks [3], where each vertex
(actor) is associated with a set of properties (attributes), and pairs of sets with nonempty intersections
correspond to edges in the network. Complex and social networks represented by such intersection
graphs are copious in the real world. Well-known examples include the film actor network [4], where
actors are linked by an edge if they performed in the same movie, the academic co-authorship
network [5], where two researchers are linked by an edge if they have a joint publication, the circle of
friends in online social networks (e.g., Google+), where two users are declared adjacent if they share
a common interest, and the Eschenauer-Gligor key predistribution scheme [6] in secure wireless sensor
networks, where two sensors establish secure communication over a link if they have at least one
common key. Remarkably, it was shown in Reference [7] that all graphs are indeed intersection graphs.

To understand statistical properties of intersection graphs, a probability model was introduced in
References [8,9] as a generalization of the classical model G(1, p) of Erd6s and Rényi [10]. Formally,
let n,m be positive integers and let p € [0,1]. We start with a random bipartite graph B(n,m, p)
with independent vertex sets V = {vy,- - ,v,} and W = {wy,- - - ,wy, } and edges between V and W
existing independently with probability p. In terms of social networks, V is interpreted as a set of
actors and W a set of attributes. We then define the random intersection graph G(n, m, p) with vertex set
V and vertices v;, v; € V adjacent if and only if there exists some w € W such that both v; and v; are
adjacent to w in B(n, m, p). Several variant models of random intersection graphs have been proposed,
and many graph-theoretic properties of G(n,m, p), such as degree distribution, connected components,
fixed subgraphs, independence number, clique number, diameter, Hamiltonicity and clustering, have
been extensively studied [8,9,11-14]. We refer the reader to References [15,16] for an updated review
of recent results in this prolific field.

Symmetry 2019, 11, 452; doi:10.3390/sym11040452 83 www.mdpi.com/journal /symmetry
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In light of the above list of properties studied, it is, perhaps, surprising that there has been
little work regarding isoperimetric numbers of random intersection graphs. The isoperimetric numbers,
which measure the expansion properties of a graph (see Section 2 below for precise definitions),
have a long history in random graph theory [17-19] and are strongly related to the graph spectrum
and expanders [20]. They have found a wide range of applications in theoretical computer science,
including algorithm design, data compression, rapid mixing, error correcting codes, and robust
computer networks [21]. Social networks such as co-authorship networks are commonly believed to
have poor expansion properties (i.e., small isoperimetric numbers), which indicate the existence
of bottlenecks (e.g., cuts with small size) inside the networks, because of their modular and
community organization [22,23]. In this paper, we hope to show that it is possible to increase the
isoperimetric numbers by a gentle perturbation of the original bipartite graph structure underlying the
intersection graphs.

In recent times, there has been an effort to study the effect of random perturbation on graphs.
The most mathematically famous example is perhaps the Newman-Watts small-world network [1,24],
which is a random instance obtained by adding random edges to a cycle, exhibiting short average
distance and high clustering coefficient, namely, the so-called small-world phenomenon. A random
graph model G U R [25] with general connected base graph G on 1 vertices and R being a sparse
Erd6s-Rényi random graph G(1,¢/n) where ¢ > 0 is some small constant has been introduced in [26],
and its further properties, such as connectivity, fixed subgraphs, Hamiltonicity, diameter, mixing time,
vertex and edge expansion, have been intensively examined; see, e.g., [27-34] and references therein.
For instance, in Reference [29], a necessary condition for the base graph is given under which the
perturbed graph G U R is an expander a.a.s. (asymptomatically almost surely); for a connected base
graph G, it is shown in Reference [30] that, a.a.s. the perturbed graph has an edge—isoperimetric
number Q(1/ Inn), diameter O(Inn), and vertex-isoperimetric number ()(1/ Inn), where for the last
property G is assumed to have bounded maximum degree. Here, we say that G U R possesses a graph
property P asymptotically almost surely, or a.a.s. for brevity, if the probability that G U R possesses P
tends to 1 as n goes to infinity. In this paper, to go a step further in this line of research, we investigate
the bipartite graph type perturbation, where random edges are only added to the base (bipartite) graph
between the two independent sets. We provide lower bounds for the isoperimetric numbers of random
intersection graphs induced by such perturbations.

The rest of the paper is organized as follows. In Section 2, we state and discuss the main
results, with proofs relegated to Section 4. In Section 3, we give numerical examples based upon real
network data, complementing our theoretical results in small network sizes. Section 5 contains some
concluding remarks.

2. Results

Let G = (V, E) be a graph with vertex set V and edge set E. If S C V is a set of vertices, then 9GS
denotes the set of edges of G having one end in S and the other end in V\S. Given S C V, write G[S]
for the subgraph of G induced by S. We use N (S) to denote the collection of vertices of V\ S which
are adjacent to some vertex of S. For a vertex v € V, Ng(v) is the neighborhood of v, and we denote
by N2(v) = Ng(Ng(v)) the second neighborhood of v. The above subscript G will be omitted when
no ambiguity may arise. For a graph G, its edge-isoperimetric number, ¢(G) (also called its Cheeger

constant), is given by:
[0 S|

IS|
The vertex—isoperimetric number of G, ((G), can be defined similarly as:

ING(S)
S|~

¢(G) = min
SCV
0<Is<IvI/2

1(G) = min
SC
0<|s[<|V|/2
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It is well-known that ¢(G) /A(G) < 1(G) < ¢(G) [35], where A(G) is the maximum degree of G.

We will consider the following model of randomly perturbed intersection graphs. Given a fixed
bipartite graph B = B(V, W, E) with two independent vertex sets V (|V| = n) and W (|[W| = m),
the intersection graph derived from B is denoted by G(B). That is, G(B) is a graph on the vertex set V
with two vertices adjacent if they have a common neighbor in B. For each pair of vertices v € V and
w € W, we add the edge {v, w} to B independently with probability p. The resulting bipartite graph,
denoted B U R, can be viewed as the union of B and a bipartite graph R ~ B(n,m, p), meaning that
R is a random graph distributed according to B(n,m, p). We write G(B U R), the intersection graph
derived from B U R. Clearly, if the base graph B(V, W, E) is taken to be the empty bipartite graph,
our model G(B U R) reduces to the random intersection graph G(n,m, p).

Throughout the paper, the standard Landau asymptotic notations will be utilized (see, e.g., [10]).
Let | -] be the round-down operator. As customary in the theory of random intersection graphs,
we take m = |n®| for a fixed real a € (0, c0), which allows for a natural progression from sparse to
dense graphs. Recall that we say that G(B U R) possesses a graph property P a.a.s. if the probability
that G(B U R) possesses P tends to 1 as 1 goes to infinity.

We are now ready to formulate the main results of this paper.

Theorem 1. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = |n*] such that any two
vertices in V are connected by a path and A := max,ey N3 (v) is a constant (i.e., independent of n). For any
e>0,let R~ B(n,m,p)withp =¢/nifa <1land p =e/\/nmif a« > 1. Then there exists some constant
0 > O satisfying (G(BUR)) > 6/ Inna.a.s.

A couple of remarks are in order.

Remark 1. The local effects of the perturbation are quite mild, as a small € is of interest. Nonetheless, the global
influence on the vertex—isoperimetric number can be prominent. To see this, note that any connected (intersection)
graph G has 1(G) = Q(1/n). In particular, if G is a tree, we have 1(G) = ©(1/n) (see e.g., [36]).

Remark 2. It is easy to check that the maximum degree of G(B) is A. In fact, v € V and v € V are
adjacent in G(B) if and only if they have a common neighbor w € W, namely, w € Ng(v) and v; € Np(w).
Hence, the degree of v is Ng(Ng(v)). The assumption that A is a constant cannot be removed in general. Indeed,
when « > 1, consider the bipartite graph B(V, W, E) with V = {vy,- -+ ,vo5}, W = {wy, - -+ ,wn }, and the
edgeset E = {{vy,w;},{vj,wj 1}|i=1,---,n—1,j=2,--- ,n}. Itis clear that G(B) is a star with center
1 over the vertex set V. There are no more than n>p edges over V\{v1} in the graph G(B U R), which covers
at most 2n2p vertices. In G(B U R), there will be an independent set S (meaning that G(B U R)[S] is empty) of

order at least:
2 n
n—2np=n (1728“*)

and Ngpur)(S) = 1. Therefore, (G(BUR)) < 1/(n(1 —2ey/n/m)) = O(1/n). When o < 1,
consider the bipartite graph B(V, W, E) with the edge set E = {{v1,w;}, {vj,w; 1}, {v, wm}|i=1,---,m,
j=2--,m+11l=m+2,--- ,n}. Then G(B) can be thought of as the joining of a star Ky ,, having center
vy and a complete graph K, _,, 11 by identifying vy with any vertex of K, _,,11. After adding nme/n = me
edges to B, in G(B U R), there will be an independent set S of order at least m — 1 — 2me and Ng(pug)(S) = 1.
Therefore, (G(BUR)) < 1/(m—1—2me) = O(1/m).

Recall that the inequality ¢(G) > ((G) holds for any graph G. Therefore, a direct corollary of

Theorem 1 reads ¢(G(BUR)) > §/Inn a.a.s. for some § > 0. The following theorem shows that this
lower bound for edge-isoperimetric number actually holds without any assumption on A.
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Theorem 2. Let B = B(V, W, E) be a bipartite graph with |V| = n and |W| = m = |n*] such that any two
vertices in 'V are connected by a path. For any € > 0, let R ~ B(n,m, p) with p = ¢/+/nm. Then there exists
some constant § > 0 satisfying c(G(BUR)) > 6/(1 +1Inn) a.as.

Theorems 1 and 2 hold in the sense of large n limit. In the next section, we shall demonstrate that
the isoperimetric numbers can be improved as well for small randomly perturbed intersection graphs
based upon real network data.

3. Illustration on Small Networks

To find the exact isoperimetric numbers, one needs to calculate the minimum fraction of
neighboring vertices or edges over the nodes inside the subset for all possible subsets of vertices
with order at most | V| /2. Since this is an NP-hard problem, it is intractable to compute the exact values
for general graphs [21,35]. It is well known that Cheeger’s inequality, also known as the Alon-Milman
inequality, provides bounds for the isoperimetric numbers using graph Laplacian eigenvalues. On the
other hand, standard algorithms in linear algebra can be used to efficiently compute the spectrum of
a given large graph. Here, instead of evaluating “approximate” values involving other parameters
such as eigenvalues, we are interested in obtaining exact values of ((G(BU R)) and ¢(G(B U R)) for
small networks.

Two intersection-based social networks are considered here: (i) The Norwegian interlocking
directorate network Nor-Boards [37], where two directors are adjacent if they are sitting on the board
of the same company based on the Norwegian Business Register on 5 August 2009. The underlying
bipartite graph B(V, W, E) contains |V| = 1495 directors, |W| = 367 companies, and |E| = 1834
edges indicating the affiliation relations; (ii) the co-authorship network ca-CondMat [5] based on
preprints posted to the Condensed Matter Section of arXiv E-Print Archive between 1995 and 1999.
The underlying bipartite graph B(V,W, E) contains |V| =16,726 authors, |IW| = 22,016 papers,
and |E| = 58,596 edges indicating authorship.

Figures 1 and 2 report the vertex—isoperimetric numbers and edge-isoperimetric numbers
for subsets of Nor-Boards and ca-CondMat, respectively. For a given n € [20,30], we first take
asubgraph B = B(V, W, E) from B(V, W, E) with |V| = n so that G(B) is connected and calculate its
vertex—isoperimetric and edge-isoperimetric numbers. Each data point (blue square) in Figures 1 and 2
is obtained by means of an ensemble averaging of 30 independently taken graphs. For each chosen
bipartite graph B, we then perturb it following the rules specified in Theorems 1 and 2 with e = 1
to get the perturbed intersection graph G(B U R). Each data point (red circle) in Figures 1 and 2 is
obtained by means of a mixed ensemble averaging of 50 independently-implemented perturbations
for 30 graphs. From a statistics viewpoint, it is clear that our random perturbation scheme increases
both the vertex—isoperimetric and the edge—isoperimetric number for both cases. This, together with
the theoretical results, suggests that the quantitative effect of random perturbations is independent of
the order of the network.

Remark 3. It is worth stressing that the theoretical results (Theorems 1 and 2) are in the large limit of the
network size n. In other words, the form ﬁ only makes sense as n — oo. The simulation results presented in
Figures 1 and 2 are for very small networks. Therefore, these results have no bearing on the ﬁ dependence
(although a slight decline tendency for 1«(G(B U R)) can be seen in Figure 1a). The main phenomenon we
observe from Figures 1 and 2 is that the random perturbation increases both vertex— and edge—isoperimetric
numbers for all the cases considered. The numerical results (for small finite graphs) are a nice complement to the
theoretical results (for infinite graphs). However, our numerical observations neither prove the ﬁ dependence
would hold for small graphs nor show that such an increase of isoperimetric numbers would be universal in
any sense. (A practical issue stems from graph sampling. To establish a proper model fit to the data, Akaike
information criteria and Bayesian information criteria need to be applied.) The establishment of correlation
between isoperimetric numbers and graph size n for finite intersection graphs is an interesting future work.
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Figure 1. Vertex—isoperimetric number (panel (a)) and edge-isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B U R)) taken from Nor-Boards.

o
©

1.1

(a) —5-1(G(B))

1

o

3
o)
@©
C
e

o

)
o
o)

e
3

vertex—isoperimetric number
o
U]i
@
\
edge-isoperimetric number

T

e

A
-

o
oY
o

o

'

22 24 26 28 30 20 22 24 26 28 30
n n

Figure 2. Vertex—isoperimetric number (panel (a)) and edge-isoperimetric number (panel (b)) versus
n = |G(B)| for subgraphs G(B) (and its randomly perturbed version G(B U R)) taken from ca-CondMat.

4. Proofs

In this section, we prove Theorems 1 and 2. Our idea behind this is somewhat simple: If the
network can be carefully decomposed into some subnetworks so that the resulting super-network
(with these subnetworks being super-vertices) is sparse and highly connected, then its isoperimetric
numbers are expected to be high. Similar approaches have been applied in, e.g., References [29-31].

Proof of Theorem 1. Set s = CA(Inn)/e for some constant C = C(e) > 0 to be determined.
By assumption, G(B) is connected. Following Reference [38] (Proposition 4.5), we can divide the
vertex set V into disjoint sets V3, Vs, - - -, Vg satisfying s < |V;| < As and G(B)[V;] connected for each
i. Clearly, n/(As) < 0 < n/s. Let [f)] = {1,2,---,0}. For a graph G = (V,E), we say two sets
S1,S2 C V have common neighbors in G if there exist v; € Sy, v2 € Sy, and v € V such that {v1,v} € E
and {vy,v} € E hold.

We will first show the following property for the random bipartite graph R holds a.a.s.: For every
© C [0] with 0 < |@] < 0/2, there exist at least |@|/2 many of V; (i € [0]\®) which have common
neighbors with U;cgV; in R.

Indeed, the probability that two sets V; and V; have no common neighbors in R can be computed
as {1 —1=a-p¥lp-a-pvl }m. Hence, the probability that there exists a set © C [0] with
0 < |®| < 0/2 such that no more than |®|/2 many of V; (i € [0]\®) have common neighbors with
Uico Vi in R is upper bounded by:
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1<j<0/2 G) (Ef) {1 —1-1-pFH-a- p)w—tsj/zj)s]}m,
: 1<j<6/2 (iﬁ)i <2€(9]7‘7j)>j/2 <1 - M)m,

where (?)(TZJ] ) counts the choice of ® (with |®| = j) and the corresponding sets {V;} described
above, the 2es’cimate Vil > s for all i € [f] is utilized in the multiplicative probabilities
(i.e., there are at least (6 — [3j/2]) sets in the union UjceV;), and the upper bound comes
from a direct application of inequalities ([10], p. 386). The above probability is further upper
bounded by (C(Inn)/n)™ Zlgjgo/z(zs/j)Bj/z = 0(1) when a < 1, and is upper bounded by
Yi<j<o/2 0%/2 2 exp(—CeAjlnn) = o(1) when a > 1 for a sufficiently large C. Therefore, the above
property for the random bipartite graph R holds a.a.s. In the following, we will condition on such
an R.

Fix a set S C V with |S| < n/2. Define three sets of indices: @) = {i € [0]|V; C S},
0, = {Z € [9”0 < ‘Vl n S| < ‘V1|}, and @, = {Z € [0]\®U‘NG(BUR)(VI) NS # @} Note that @y and ©;
are deterministic, but ®; is a random set. If |@y| < 6/2, |®;| > |®p|/2 a.a.s. by the above assumed
property of R. Similarly, if |©g| > 6/2, we have |®,| > |0|/2 = (6 — || — |©2|)/2 a.a.s., where
© = [0]\(Op UBy). Hence, |©y] > min{|Og|/2, (0 — |Op|)/3} a.a.s. Recall that |S| < 1/2. We derive
that n/2 < |[V\S| < |Uize, Vil < (6 — |@o|)ds < (6 — |©])An/6, and thus, 6 — |@g| > 6/(24).
Therefore, we have a.a.s.:

|©| 6 } < ©f

>min{ -2, { > 500
‘®2|—mm{ 2 "6A [~ 6A

By definition, we have S C Ujcoue,Vi- Thus, |S| < (|@g] + |©1])As. Since G(B)[Vj] for
i € O is connected, |Ng(pug)(S)| > @1 U®2|. Now we consider two cases. If @] > [y,
then [N (sup)(5)] > (@3] > [51/(249). If 1] < O], then [Ne(sor) ()| > €] > [@0]/(64) >
|S|/(12A%s) a.a.s. Therefore:

ING(BUR) (S)] emn) 11 s
B 205’ 120% e

Recall the definition of s at the beginning of the proof, and we complete the proof by taking
§=¢/(12A%C). O

We have made no attempt to optimize the constants in the proof. It is easy to check that the
condition that G(B) is connected in Theorem 1 can be weakened. For example, the above proof holds
if each connected component of G(B) is of order at least CA(Inn) /.

Let G = (V, E) be a graph of order n. For integers a, b, and ¢, define S(a,b, ¢) as a collection of
all sets S C V such that |S| = a and there exists a partition S = S; U - - - U S;, where each G[S;] is
connected, there are no edges in E connecting different S;, and [Ng(S1)| + - - - + |[Ng(Sp)| = ¢. The next
lemma gives an upper bound of the size of S(a, b, c).

senal= () () (3 ()"

Proof of Theorem 2. Consider the family S(a,b,c) of sets defined in graph G(B). Since G(B) is
connected, we have for each S € S(a,b,c), [dgp)S| > ¢ > b. Note that |dgpur)S| = [dg(r)S|

Lemma 1. ([30])
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holds. It suffices to show that the following property for the random bipartite graph R holds a.a.s.:
There are constants K, § > 0 such that for any Klnn < a < n/2, we have:

oa

>
96(r)S| 2 T

foreach S € S(a,b,¢) withb < ¢ < éa/(1 + Inn). Indeed, when |S| = a < Klnn, we can choose
a small ¢ such that 2Ké < 1. Thus, [dg(pur)S| = [9g(p)(S)| = 1 > da/(1 +Inn).
It follows from Lemma 1 and b < ¢ < da/(1+ Inn) < a that:

4.2\ € 4 3 da/(1+Inn) ) )
S(a,b,c)| < 2¢*na - 2¢*n(1+1Inn) < (Coaln(1/6),
c3 &a

for some constant C > 0, where the first inequality holds since f(x) = (ep/x)* is increasing on (0, p|
and the second inequality holds since g(x) = (o/x%)* is increasing on (0, p'/3].
Note that mp?> — 0and 1 — (1 — p?)"™ ~ mp?. For a fixed S with |S| = a < n/2, we obtain:

P(|9g(r)S| < 6a) < P(Bin(a(n — a),mp?) < 6a) <P (Bin (%,mpz) < 5(1)
ﬂSZ
exp|{ =3¢ |

provided 6 < ¢2/4, where the first inequality relies on Reference [9] (Theorem 2.2) and the last line
uses a standard Chernoff’s bound (e.g., [10]). Hence:

IN

éa oa n
[ << —i— <ag< -
IP’<|6G(R>S\ < 1+1nn'35€$(a'b'c)'b*C* 1+lnn'Klnn*a* 2>

P (\BG(R)S| <da,35 € S(a,b,c),b<c<nKlnn<a< n>

1\ aé

3 ) =
n exp(C(Saln((S) l6>’
By taking CéIn(1/6) < €2/32 and K

ndexp(—e2a/32) < ndexp(—e2K(Inn)/32)
is complete. [

IN

IN

100/¢2, the last line above is upper bounded by
3

>
< ndexp(—25(Inn)/8) = o(1) as n — oo. The proof

5. Concluding Remarks

In this paper, we presented a model of randomly perturbed intersection graphs. The intersection
graph is induced by a given bipartite graph (base graph) plus a binomial random bipartite graph.
We proved that a.a.s., the vertex—isoperimetric number and the edge—isoperimetric number of the
randomly perturbed intersection graphs are of order Q)(1/ Inn) under some mild conditions. It would
be interesting to investigate path length, diameter, and clustering coefficient of this model, which are
important characteristics of real-life complex and social networks.

Another intriguing direction is to examine more general intersection graph models, such as
active and passive intersection graphs [39]. In particular, if two vertices in one independent set V
are declared adjacent when they have at least k > 1 common neighbors in the other independent set
W, what role will k play in estimating the isoperimetric numbers, clustering, and path length of the
resulting perturbed intersection graphs? Other perturbation mechanisms are also of research interest.
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Abstract: The search for complete graph invariants is an important problem in graph theory and
computer science. Two networks with a different structure can be distinguished from each other by
complete graph invariants. In order to find a complete graph invariant, we introduce the generalized
permanental polynomials of graphs. Let G be a graph with adjacency matrix A(G) and degree matrix
D(G). The generalized permanental polynomial of G is defined by Ps(x, it) = per(xI — (A(G) —
#D(G))). In this paper, we compute the generalized permanental polynomials for all graphs on at
most 10 vertices, and we count the numbers of such graphs for which there is another graph with the
same generalized permanental polynomial. The present data show that the generalized permanental
polynomial is quite efficient for distinguishing graphs. Furthermore, we can write Pg(x, jt) in the
coefficient form )} cw-(G)x"’i and obtain the combinatorial expressions for the first five coefficients
cui(G) (i=0,1,...,4) of Pg(x, ).

Keywords: generalized permanental polynomial; coefficient; co-permanental

1. Introduction

A graph invariant f is a function from the set of all graphs into any commutative ring, such that f
has the same value for any two isomorphic graphs. Graph invariants can be used to check whether
two graphs are not isomorphic. If a graph invariant f satisfies the condition that f(G) = f(H) implies
G and H are isomorphic, then f is called a complete graph invariant. The problem of finding complete
graph invariants is closely related to the graph isomorphism problem. Up to now, no complete graph
invariant for general graphs has been found. However, some complete graph invariants have been
identified for special cases and graph classes (see, for example, [1]).

Graph polynomials are graph invariants whose values are polynomials, which have been
developed for measuring the structural information of networks and for characterizing graphs [2].
Noy [3] surveyed results for determining graphs that can be characterized by graph polynomials. In a
series of papers [1,4-6], Dehmer et al. studied highly discriminating descriptors to distinguish graphs
(networks) based on graph polynomials. In [5], it was found that the graph invariants based on the
zeros of permanental polynomials are quite efficient in distinguishing graphs. Balasubramanian and
Parthasarathy [7,8] introduced the bivariate permanent polynomial of a graph and conjectured that
this graph polynomial is a complete graph invariant. In [9], Liu gave counterexamples to the conjecture
by a computer search.

In order to find almost complete graph invariants, we introduce a graph polynomial by employing
graph matrices and the permanent of a square matrix. We will see that this graph polynomial turns
out to be quite efficient when we use it to distinguish graphs (networks).

The permanent of an 1 x n matrix M with entries m1;; (i,j =1,2,...,n) is defined by

per(M) = ) T [ i),
7 =1

Symmetry 2019, 11, 242; doi:10.3390/sym11020242 92 www.mdpi.com/journal /symmetry
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where the sum is over all permutations ¢ of {1,2,...,n}. Valiant [10] proved that computing the
permanent is #P-complete, even when restricted to (0,1)-matrices. The permanental polynomial of M,
denoted by 7t(M, x), is defined to be the permanent of the characteristic matrix of M; that is,

(M, x) = per(xI, — M),

where I;; is the identity matrix of size n.

Let G = (V(G),E(G)) be a graph with adjacency matrix A(G) and degree matrix D(G).
The Laplacian matrix and signless Laplacian matrix of G are defined by L(G) = D(G) — A(G) and
Q(G) = D(G) + A(G), respectively. The ordinary permanental polynomial of a graph G is defined as
the permanental polynomial of the adjacency matrix A(G) of G (i.e., T(A(G), x)). We call 7(L(G), x)
(respectively, 7(Q(G), x)) the Laplacian (respectively, the signless Laplacian) permanental polynomial
of G.

The permanental polynomial 71(A(G),x) of a graph G was first studied in mathematics by
Merris et al. [11], and it was first studied in the chemical literature by Kasum et al. [12]. It was found
that the coefficients and roots of 71(A(G), x) encode the structural information of a (chemical) graph G
(see, e.g., [13,14]). Characterization of graphs by the permanental polynomial has been investigated,
see [15-19]. The Laplacian permanental polynomial of a graph was first considered by Merris et al. [11],
and the signless Laplacian permanental polynomial was first studied by Faria [20]. For more on
permanental polynomials of graphs, we refer the reader to the survey [21].

We consider a bivariate graph polynomial of a graph G on n vertices, defined by

Pg(x,4) = per(xlp — (A(G) — uD(G)))-

It is easy to see that P;(x, ) generalizes some well-known permanental polynomials of a graph
G. For example, the ordinary permanental polynomial of G is P;(x,0), the Laplacian permanental
polynomial of G is (—1)IV(G)IPg(—x,1), and the signless Laplacian permanental polynomial of G is
Pg(x,—1). We call Pg(x, i) the generalized permanental polynomial of G.

We can write the generalized permanental polynomial P (x, ) in the coefficient form

n .
Po(x,p) = Y cui(G)x"
i=0

The general problem is to achieve a better understanding of the coefficients of Pg(x, it). For any
graph polynomial, it is interesting to determine its ability to characterize or distinguish graphs.
A natural question is how well the generalized permanental polynomial distinguishes graphs.

The rest of the paper is organized as follows. In Section 2, we obtain the combinatorial expressions
for the first five coefficients c,0, cu1, 2, cu3, and ¢y of Pg (x, 1), and we compute the first five
coefficients of Pg(x, ) for some specific graphs. In Section 3, we compute the generalized permanental
polynomials for all graphs on at most 10 vertices, and we count the numbers of such graphs for which
there is another graph with the same generalized permanental polynomial. The presented data shows
that the generalized permanental polynomial is quite efficient in distinguishing graphs. It may serve
as a powerful tool for dealing with graph isomorphisms.

2. Coefficients

In Section 2.1, we obtain a general relation between the generalized and the ordinary permanental
polynomials of graphs. Explicit expressions for the first five coefficients of the generalized permanental
polynomial are given in Section 2.2. As an application, we obtain the explicit expressions for the first
five coefficients of the generalized permanental polynomials of some specific graphs in Section 2.3.
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2.1. Relation between the Generalized and the Ordinary Permanental Polynomials

First, we present two properties of the permanent.

Lemma1l. Let A, B, and C be three n x n matrices. If A, B, and C differ only in the rth row (or column), and the
rth row (or column) of C is the sum of the rth rows (or columns) of A and B, then per(C) = per(A) + per(B).

Lemma 2. Let M = (m;j) be an n x n matrix. Then, foranyi € {1,2,...,n},
per(M Z mjj per(M(i, f)),

where M(i, j) denotes the matrix obtained by deleting the ith row and jth column from M.

Since Lemmas 1 and 2 can be easily verified using the definition of the permanent, the proofs
are omitted.

We need the following notations. Let G = (V(G),E(G)) be a graph with vertex set
V(G) = {v1,v2,...,v,} and edge set E(G). Let d; = dg(v;) be the degree of v; in G. The degree
matrix D(G) of G is the diagonal matrix whose (i, i)th entry is d;(v;). Let v, v,, ..., vy, be k distinct
vertices of G. Then G;, ..., denotes the subgraph obtained by deleting vertices v;,, vy, ..., vy, from
G. We use G[h,] to denote the graph obtained from G by attaching to the vertex v, a loop of weight
hy. Similarly, G[h,, hs] stands for the graph obtained by attaching to both v, and vs loops of weight &,
and ks, respectively. Finally, G[hy, hy, ..., h,] is the graph obtained by attaching a loop of weight /,
to vertex v, for each r = 1,2,...,n. The adjacency matrix A(G[hy,, hy,, ..., hy]) of Glhr, hry, ... By ] is
defined as the n x n matrix (a;;) with

hy, ifi=j=randr € {r,ry...,1s},
, 1fz;£]and 0;vj € E(G),
, otherwise.

—_

ﬂl‘]‘ =

(=]

By Lemmas 1 and 2, expanding along the rth column, we can obtain the recursion relation
(A(Glht]), x) = n(A(G),x) — hy,t(A(Gy), x). 1)
For example, expanding along the first column of 71(A(G[h1]), x), we have
7(A(G[m]), x) = per(xIn — A(G[m]))

— per _hl u
-P xI,-1 — A(Gy)

_hl u

X

—pe L} sl —AG)] TP 0 xl, - AG)
(A(G)
(

= 71(A(G),x) — yper(xl,_1 — A(G1))
m(A(G),x) = mm(A(Gr), x).

By repeated application of (1) for G[h;, hs), we have
(A(Glhr, hs]), x)
A(G[hy]), x) = hsmt(A(Gs[hy]), x)

=7(
m(A(G), x) = hyt(A(Gr), x) = hs (70 (A(Gs), x) = byt (A(Grs), X))
1(A(G), x) = hyt(A(Gyr), x) = hs7t(A(Gs), X) + hyhs 7t (A(Gy5), X).-
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Additional iterations can be made to take into account loops on additional vertices. For loops on
all n vertices, the expression becomes

(A(Glhy, hy, ... b)), x) = T(A(G), x) + i(fl)k Y. hey -y 0(A(Gyy, ), %) (2)
k=1

1<r<--<re<n

Let Ay(G) := A(G) — uD(G). We see that the generalized permanental polynomial Pg(x, j)
of G is the permanental polynomial of A, (G); that is, 77(A,(G), x). If the degree sequence of G is
(d1,da,...,dy), then Ay, (G) is precisely the adjacency matrix of G|—wdy, —pdy, ..., —pudy,]. Hence,
we obtain a relation between the generalized and ordinary permanental polynomials as an immediate
consequence of (2).

Theorem 1. Let G be a graph on n vertices. Then,

n

Po(x, 1) = 7(Ap(G),x) = w(A(G),x) + Yo ' Y dry oo dgt(A(Gr, ), ).

k=1 1<r <--<re<n

Theorem 1 was inspired by Gutman’s method [22] for obtaining a general relation between the
Laplacian and the ordinary characteristic polynomials of graphs. From Theorem 1, one can easily give
a coefficient formula between the generalized and the ordinary permanental polynomials.

n

Theorem 2. Suppose that t(A(G),x) = Y. a;(G)x" ' and Pg(x, u) = f CW'(G)x”_". Then,
i=0 i=0

n
cui(G) =a;(G)+ Y Y dy, - dra; 1 (Grym), 1<i<m.

k=1 1<n<-<n<n

2.2. The First Five Coefficients of Pg(x, )

In what follows, we use t; and g to denote respectively the number of triangles (i.e., cycles of
length 3) and quadrangles (i.e., cycles of length 4) of G, and t;(v) denotes the number of triangles
containing the vertex v of G.

Liu and Zhang [15] obtained combinatorial expressions for the first five coefficients of the
permanental polynomial of a graph.

Lemma 3 ([15]). Let G be a graph with n vertices and m edges, and let (dy,dy, . .., dy) be the degree sequence
of G. Suppose that 71(A(G),x) = Y1 a;(G)x" ' Then,

10(G) =1, m(G) = 0, 12(G) = m, a3(G) = —2tc, aa(G) = (’:) - é (i’) +246.

Theorem 3. Let G be a graph with n vertices and m edges, and let (dy,dy, . ..,dy) be the degree sequence of G.
Suppose that Pg(x, 1) = Y/ ¢i(G)x" . Then
2 2 Loy o
cu(G) =1, ¢1(G) =2um, c;(G)=2u"m*+m— S Zdi,
i=1

1 1 n 4
c3(G) = §V3 Z;d? — (1Bm+p) Z%d,z + §y3m3 +2um? — 2t¢,
1= 1=
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1 n 2 n l n
cus(G) = fzy‘l Y di+ <§y4m + y2> Yy a— E(2;44mz +5um+1) Y d?
= =1 i=1

2
1 U -
+gh* (Z,ﬁ) +12 Y didj+2u Y ditc(v) +2q6 —4um tg
i=1 0;0;,€E(G) i=1
24 4 203, 1 o 1
+3],1m +2um +2m +2m.

Proof. Itis obvious that ¢;,0(G) = 1. By Theorem 2 and Lemma 3, we have

c1(G) =a1(G) +uX;idiao(Gi) =04+ uy,d; =2um,
c2(G) = az(G) + u L diar (Gi) + p? Licjdidjag(Gyij) = m+0+ p? L did;
m+ yp ((Zi d;)* — ¥ d?) =2pPm? +m — 3 ¥ d7,
¢3(G) = a3(G) + u X dian(Gi) + 2 Licjdidjar (Gij) + 1 Licjei didjdrao(Gi k)
—2tG + uYidi(m —d;) + 0+ 1> L iy didjdy
= 2t +umy,;d;—py;d?+ %Vs (Zidi)s - 321‘2';51,251]‘ - Zid?>
i
= 2t +2um? — ;&2 + 4w — 1 (i l?) (ZJJ 4j) = Lid}) — b i}
= 3PN d? — (WPm+ o) S d? + 3PP + 2um? — 2,
cus(G) = a4(G) + u X diaz(Gy) + 2 Licjdidjar(Gij) + 1° icjey didjdrar (Gi )
1t Yicjekar didjdxdiag(Giji,1)
= (1) =% (%) + 296 — 2 T di(te — te(v) + p? Yicjdidj]E(Gij)| +0
1 Yicjoker didjdyd).

By a straightforward calculation, we have

Licjdidj|[E(Gij)l =L icj didj|E(Gip)|+¥L icj didj|E(Gi)l

0;0,€E(G) v;0;ZE(G)
=L g didim—di—di+1)+YL i didj(m—d;—d;)
0;0;€E(G) 00 £E(G)

= Licjdidj(m —di — dj) + Yoo cr(G) did)
=mY,;didj — Y Z;# d?d; + Looek(c) didj
] 1
=45 (4m? — L d7) — (2mTid} — Tid?) + Lo er(c) did
id) = 3m i 7 + Lo cr(c) did; +2m?,

and
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Yicjck<t didjdid,

=4 | (Tid)? 125, L ¢ Bddi—4Y Y Bdj— 6y d2d — Y d}
RS i 479
jAi kFLkE] j#i

i) ((zfd,?) (Syd? — ot — 21, 2 zz,-z‘;_dfdj>
j#i

DL ) § iy} - it ©
] 1
- gmhmz):,vd%%):id§+%Zingd}%zi):;d?dj

] 1

=Gt - L+ Tt o (D) - i) + 3 (D) () - i)

2
iyidt 2my &} - Py A2+ (D d?)? o+ 2t

Substituting (4) and (5) into (3), we obtain
n

1 u 2 u 1
cuu(G) = 71144 Y di+ <§y4m + y2> Y - E(Zy‘lmz +5um+1) Y d?
= = iz

2

1 n n

+ §ﬂ4 (Zd%) +H2 Z d,‘dj‘FZ}l Zd,‘tc(vi) +2qG *4}4th
i=1 v,-v/-EE(G) i=1

244 5023, 1 5 1
+3ym +2u*m +2m +2m.
This completes the proof. [

Since 77(L(G),x) = (—1)IV(@Ip5(—x,1) and 7(Q(G), x) = P5(x, —1), we immediately obtain the
combinatorial expressions for the first five coefficients of 7(L(G), x) and 71(Q(G), x) by Theorem 3.

Corollary 1. Let G be a graph with n vertices and m edges, and let (dy,dy, ..., dy) be the degree sequence of G.
Suppose that T(L(G), x) = Lo pi(G)x"~, then

1 n
PO(G) =1, Pl(G) = —2m, p2(G) = 2m2 +m— E 2‘112/
i=1
1 n n

p3(G) = —3 Y&+ (m+1)Y a2~ §m3 —2m? 4 21¢,
i=1 i=1

2
n 2 n 1 n 1 n
pa(G)=—- Y dt+ (Cm+1) Y d— —@m®+5m+1)Y d?+ = | Y d?
4i:l 3 i=1 2 i=1 8 i=1
+ ¥ d.d.+2id-t (0;) 4+ 2q¢ — 4mt 2t oty L2 L
ity - itG\Yi G G 3 2 i
v;v;€E(G) i=1

Corollary 2. Let G be a graph with n vertices and m edges, and let (d1,da, . .., dy) be the degree sequence of G.
Suppose that 7(Q(G), x) = Y1 4:(G)x" 1. Then,
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i=1 i=1
I 4 < 1.5 noo 1 2 ’
q4(G):—ZZd1+(§m+1)2d§’—§(2m +5m+1)2dl+g Y d,
i=1 i=1 i=1 i=1
U 2 4 5 1,1
+ did; —2)  ditc(v;) +24¢ +4mtc+§m +2m +§m +§m.

v;0;€E(G) i=1

2.3. Examples

In this subsection, by applying Theorem 3, we obtain the first five coefficients of the generalized
permanental polynomials of some specific graphs: Paths, cycles, complete graphs, complete bipartite
graphs, star graphs, and wheel graphs.

Example 1. Let P, (n > 3) be the path on n vertices. We see at once that tp, = qp, = 0, and tp,(v) = 0 for
each vertex v of P,. By Theorem 3, we have

CyO(Pn) =1, Cyl(Pn) = 2(” - 1),”/ C;LZ(PH) = (2”2 —6n +5)V2 +n-1,
2
cua(Pa) = 5 (2% = 8n.+9)(n = 2)° +2(n = 2)p,

Cua(Pu) = %(nz —5n+7)(n—3)(n—2)pt + (2n® — 10n +13)(n — 3)p® + %(n —3)(n—2).

Example 2. Let C, (n > 5) be the cycle on n vertices. We see at once that tc, = gc, = 0, and tc, (v) = 0 for
each vertex v of Cy,. By Theorem 3, we have

cu0(Cn) =1, ¢u1(Co) =2np, ¢2(Cy) =2n(n — 1);42 +n,
4
cy3(Cn) = gn(n —1)(n— 2);13 +2n(n —2)u,

cua(Co) = %n(n —1)(n = 2)(n — 3t + 2n(n — 2)(n — 3)u> + %n(n _3).

Example 3. Let K, (n > 4) be the complete graph on n vertices. It is easy to check that tx, = (3) =

n(n—1)(n—2)/6,qx, =3(y) =n(n—1)(n —2)(n—3)/8, and ty, (v) = (";1) =(m—-1)(n—2)/2 for
each vertex v of K;. By Theorem 3, we have

1 1
cuo(Kn) =1, cn(Ky) =n(n—1)u, co(Kn) = 5”(” — 1%+ 5”(” -1,

cun(K) = Sl —2)(n — 1) + %n(n (=10 = S —1)(n—2),

6 3
Gua(Kn) = 5gn(n=2)(n=3)(n = D%t + Jnln = 2)(n =3)(n = 1)~

%n(n ) —3)(n—1)%u + %n(n —)(n—2)(n—3).
Example 4. Let K, j, (a > b > 2) be the complete bipartite graph with partition sets of sizes a and b. We see

at once that tg,, = 0, g, = (g)(g) =ab(a—1)(b—1)/4, and tg,, (v) = O for each vertex v of K, p.
By Theorem 3, we have
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cuo(Kap) =1, c},l(Ka,b) =2abyu, c;p(Kyp) = %ab(élab —a— b)pt2 + ab,

c3(Kep) = %ab(élazb2 —3a%b — 3ab? + a® + b*)p® + ab(2ab — a — b)p,

cus(Kop) = iab(16a3b3 — 24a°b? — 24a%b® + 194D + 6a°b% + 19ab® — 6a° — 6b°) u* +
%ab(élazb2 — 5a%b — 5ab? + 2a* + 2ab + 2b*)p* + ab(a — 1)(b — 1).

Example 5. Let S, (n > 3) be the star graph with n + 1 vertices and n edges. We see at once that tg, = qs, = 0,
and tg, (v) = 0 for each vertex v of S,. By Theorem 3, we have

1
cu0(Sn) =1, a(Sn) =2np, c2(Sn) = En(Sn —Du?+n,
1
cu3(Sn) = gn(Zn —D(n—1)pd +nn—1)pu,
1 1
cua(Sn) = ﬂn(n —1)(n—2)(5n—3)u* + En(n —1)(n—2)u2.

Example 6. Let W, (n > 5) be the wheel graph with n + 1 vertices and 2n edges. It is obvious that
tw, = qw, = n. Let vg be the hub (i.e., the vertex of degree n) of W,,. We see that ty, (vy) = n and ty, (v) =2
for other vertices v of Wy,. By Theorem 3, we have

3
CHO(Wn) =1, Clll(wn) =4np, CItZ(Wn) = En(Sn - 3)V2 +2n,
cus(Wa) = 9n(n — 1) % + n(7n — 9)p — 2n,

Cua(Wy) = gn(n —1)(n = 2)(7n — )t + 6n(2n — 3)(n — 2)2 — bn(n — 2 + %n(n _1).

3. Numerical Results

In this section, by computer we enumerate the generalized permanental polynomials for all
graphs on at most 10 vertices, and we count the numbers of such graphs for which there is another
graph with the same generalized permanental polynomial.

Two graphs G and H are said to be generalized co-permanental if they have the same generalized
permanental polynomial. If a graph H is generalized co-permanental but non-isomorphic to G, then H
is called a generalized co-permanental mate of G.

In order to compute the generalized permanental polynomials of graphs, we, first of all, have to
generate the graphs by computer. We use nauty and Traces [23] to generate all graphs on at most
10 vertices. Next, the generalized permanental polynomials of these graphs are calculated by a Maple
procedure. Finally, we count the numbers of generalized co-permanental graphs.

The results are summarized in Table 1. Table 1 lists, for n < 10, the total number of graphs on n
vertices, the total number of distinct generalized permanental polynomials of such graphs, the number
of such graphs with a generalized co-permanental mate, the fraction of such graphs with a generalized
co-permanental mate, and the size of the largest family of generalized co-permanental graphs.

In Table 1, we see that the smallest generalized co-permanental graphs, with respect to the order,
contain 10 vertices. Even more striking is that out of 12,005,168 graphs with 10 vertices, only 106 graphs
could not be discriminated by the generalized permanental polynomial.

From Table 1 in [9], we see that the smallest graphs that cannot be distinguished by the
bivariate permanent polynomial, introduced by Balasubramanian and Parthasarathy, contain 8 vertices.
By comparing the present data of Table 1 with that of Table 1 in [9], we find that the generalized
permanental polynomial is more efficient than the bivariate permanent polynomial when we use
them to distinguish graphs. From Tables 2 and 3 in [5], it is seen that the generalized permanental
polynomial is more efficient than the graph invariants based on the zeros of permanental polynomials
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of graphs. Comparing the present data of Table 1 with that of Table 1 in [24], we see that the
generalized permanental polynomial is also superior to the the generalized characteristic polynomial
when distinguishing graphs. So, the generalized permanental polynomial is quite efficient in
distinguishing graphs.

Table 1. Graphs on at most 10 vertices.

n  #Graphs # Generalized Perm. Pols # with Mate Frac. with Mate Max. Family
1 1 1 0 0 1
2 2 2 0 0 1
3 4 4 0 0 1
4 11 11 0 0 1
5 34 34 0 0 1
6 156 156 0 0 1
7 1044 1044 0 0 1
8 12,346 12,346 0 0 1
9 274,668 274,668 0 0 1
10 12,005,168 12,005,115 106 8.83 x 107 2

We enumerate all graphs on 10 vertices with a generalized co-permanental mate for each possible
number of edges in Appendix A. We see that the generalized co-permanental graphs G; and H; with
10 edges are disconnected (see Figure 1), the generalized co-permanental graphs G, and H, with
11 edges, and G3 and Hj with 12 edges are all bipartite (see Figures 2 and 3), and two pairs (G4, Hy)
and (Gs, Hs) of generalized co-permanental graphs with 14 edges are all non-bipartite (see Figure 4).
The common generalized permanental polynomial of the smallest generalized co-permanental graphs
Gy and Hj is

Pg, (x, 1) = Ppy (x, 1)
= 210 4 20ux® + (178p% +10)x® + (928° + 156p)x” + (3137u* + 105042 + 37)x°
+ (718047 + 39804° + 4163)x° + (112601° + 9284p* + 1912 + 60)x*
+ (1193647 + 136324 + 45923 4 4163) x> + (81768 + 12288u° + 6068u* + 10482 + 36)x2
3264;4 + 6208;1 + 4176;4 + 1136;4 +96p)x + 576;410 + 1344;4 + 1168;4 + 448y + 64y

OO OO

Figure 1. Two generalized co-permanental graphs with 10 vertices and 10 edges.

O

Figure 2. Two generalized co-permanental graphs with 10 vertices and 11 edges.
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G, Hy

Figure 3. Two generalized co-permanental graphs with 10 vertices and 12 edges.

G, H, G, H

H

Figure 4. Two pairs of generalized co-permanental graphs with 10 vertices and 14 edges.
4. Conclusions

This paper is a continuance of the research relating to the search of almost-complete graph
invariants. In order to find an almost-complete graph invariant, we introduce the generalized
permanental polynomials of graphs. As can be seen, the generalized permanental polynomial is
quite efficient in distinguishing graphs (networks). It may serve as a powerful tool for dealing with
graph isomorphisms. We also obtain the combinatorial expressions for the first five coefficients of the
generalized permanental polynomials of graphs.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11501050)
and the Fundamental Research Funds for the Central Universities (Grant Nos. 300102128201, 300102128104).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In the Appendix, we enumerate all graphs on 10 vertices with a generalized co-permanental mate
for each possible number m of edges. Since the coefficient of x" 1 in P (x, i) is 2um, two graphs with a
distinct number of edges must have distinct generalized permanental polynomials. So, the enumeration
can be implemented for each possible number of edges. We list the numbers of graphs with 10 vertices
for all numbers m of edges, the numbers of distinct generalized permanental polynomials of such
graphs, the numbers of such graphs with a generalized co-permanental mate, and the maximum size
of a family of generalized co-permanental graphs (see Table A1).

Table Al. Graphs on 10 vertices.

m #Graphs # Generalized Perm. Pols # with Mate Max. Family
0 1 1 0
1 1 1 0 1
2 2 2 0 1
3 5 5 0 1
4 11 11 0 1
5 26 26 0 1
6 66 66 0 1
7 165 165 0 1
8 428 428 0 1
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Table A1. Cont.

m #Graphs # Generalized Perm. Pols # with Mate Max. Family

9 1103 1103 0 1
10 2769 2768 2 2
11 6759 6758 2 2
12 15,772 15,771 2 2
13 34,663 34,663 0 1
14 71,318 71,316 4 2
15 136,433 136,429 8 2
16 241,577 241,575 4 2
17 395,166 395,162 8 2
18 596,191 596,183 16 2
19 828,728 828,723 10 2
20 1,061,159 1,061,154 10 2
21 1,251,389 1,251,381 16 2
22 1,358,852 1,358,848 8 2
23 1,358,852 1,358,850 4 2
24 1,251,389 1,251,385 8 2
25 1,061,159 1,061,157 4 2
26 828,728 828,728 0 1
27 596,191 596,191 0 1
28 395,166 395,166 0 1
29 241,577 241,577 0 1
30 136,433 136,433 0 1
31 71,318 71,318 0 1
32 34,663 34,663 0 1
33 15,772 15,772 0 1
34 6759 6759 0 1
35 2769 2769 0 1
36 1103 1103 0 1
37 428 428 0 1
38 165 165 0 1
39 66 66 0 1
40 26 26 0 1
41 11 11 0 1
42 5 5 0 1
43 2 2 0 1
44 1 1 0 1
45 1 1 0 1
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Abstract: This paper deals with the methods for investigating the nonlinear dynamics of discrete
chaotic systems (DCS) applied to piecewise linear systems of the third order. The paper proposes
an approach to the analysis of the systems under research and their improvement. Thus, effective
and mathematically sound methods for the analysis of nonlinear motions in the models under
consideration are proposed. It makes it possible to obtain simple calculated relations for determining
the basic dynamic characteristics of systems. Based on these methods, the authors developed
algorithms for calculating the dynamic characteristics of discrete systems, i.e. areas of the existence
of steady-state motion, areas of stability, capture band, and parameters of transients. By virtue of
the developed methods and algorithms, the dynamic modes of several models of discrete phase
synchronization systems can be analyzed. They are as follows: Pulsed and digital different orders,
dual-ring systems of various types, including combined ones, and systems with cyclic interruption of
auto-tuning. The efficiency of various devices for information processing, generation and stabilization
could be increased by using the mentioned discrete synchronization systems on the grounds of
the results of the analysis. We are now developing original software for analyzing the dynamic
characteristics of various classes of discrete phase synchronization systems, based on the developed
methods and algorithms.

Keywords: nonlinear; synchronized; linear discrete; chaotic system; algorithm

1. Introduction

The nonlinear dynamics of discrete chaotic systems are not new for research, but they have not
lost their relevance, due to a number of unresolved issues. As it is known [1], the implementation
of chaotic systems on digital computers with finite-precision arithmetic (i.e., on real computers) has
significant difficulties. It results in the fact that we get pseudochaotic systems [2]. This problem has
led to the need for further development of analytical methods in the theory of nonlinear dynamics of
discrete chaotic systems. New effective approaches to the synthesis and analysis of chaotic systems
have appeared. Thus, Reference [3] shows the increasing importance that the fractional calculus of
meromorphic functions has in chaotic systems. References [4,5] show the prospect of solving a number
of problems using wavelet analysis.

There are a limited number of papers devoted to the study of nonlinear dynamics of discrete
discrete chaotic systems (DCS) of the third order, in which fairly complete and accurate results are
represented. This mainly concerns studies in which periodic motions and the acquisition band of
synchronization systems [1,2] and numerical studies [3,4] are examined numerically. The purpose of
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this paper is to summarize theoretically the results of investigating the nonlinear dynamics of a third
order phase synchronization systems (SPS), both in terms of the development of qualitatively-numerical
methods of analysis, and in part of the study of specific systems described by the generalized model,
Equation (1):
Pni1 = @n — &F(@n) + X+ gn
X1 = dxn — BF(@n) + yn + 8 @
Yn41 = hxn — 1F(@n)

where ¢y, x;;, v, are the generalized coordinates of the system, &, B, 77, d, h, g are generalized parameters,
gn is a variable component of the input frequency.
The expression in Equation (1) reduces to a general expression, as written:

;n+1 = A(;n) +B- a}”' (2)

where ;n = (¢n, x},) is the state vector of the system at the n-th time moment, the dimension of the
vector is determined by the order of the system; ¢, is the phase difference of the impulse or code

sequences at the inputs of the detector; A ( q n) is a nonlinear transition matrix whose properties

depend on the kind of characteristics of the phase detector F(¢;); Zn is the exposure vector; and B is
the exposure matrix.

2. Phase Portraits of the Onset of Instability of Fixed Points of Piecewise Linear Expressions of
the Third Order

The study of steady motions of piecewise linear 3D DCS of the third order is based on the study
of typical bifurcations of phase portraits of the mapping (Equation (1)). These include [5-10]:

(1) The loss of stability by k-fold fixed points associated with the transition of local stability
boundaries G1, G_1, Gy;

(2) The loss of stability by k-fold fixed points associated with the transition of limiting points of
nonlinearity (¢; = +c for F.(¢) and ¢; = £1 for F;(¢));

(3) The bifurcations of phase portraits caused by the intersection of separatrix invariant manifolds
of k-fold saddle points.

At the qualitative level, the basic regularities of the appearance of fixed k-fold points for mappings
of the second and third orders are repeated [5]. The transition of the boundaries of the areas of local
stability G1, G_1, G, leads to the loss of stability of the fixed points and to qualitatively similar
motions. The boundaries of the existence of fixed points of piecewise linear mappings of both orders
in the general case for non-zero frequency detunings do not coincide with the boundaries of local
stability. In the phase space, the boundaries of existence correspond to the boundaries of linear sections.
This allows the condition for the k-fold fixed point to hit the linearity boundary as one of the necessary
conditions for the appearance of periodic motions of the period k [6].

The cross sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter 7 have a shape close to a triangular one. They are bounded by the curves
G1, G_1, G, corresponding to the transition of one of the eigenvalues of the linearized matrix of the
map (Equation (1)) through the values + 1 or e*/?. The line R on the sections bounds the region of
existence of a simple fixed point. Its equation is obtained from Equation (1) and it is written as follows:

p=g—(1—d=hua—r. ®

The singularity of the transition of stability boundaries, in the case of a third order mapping,
consists of a large variety of possible combinations of the eigenvalues of the linearized matrix A
corresponding to the boundary.
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In accordance with Table 1, when the boundary G_; is crossed, there are also three types of nodes
and with the transition of the vibrational boundary G, there are four types of foci. The transition
through the boundaries G,, G_; occurs in the linear sections of the functions F(¢) and F.(¢). Itis
accompanied respectively by such bifurcations as a stable focus-complex saddle and a stable node, i.e.
a real saddle. As in the case of second order mappings, the bifurcation data leads to the appearance of
invariant closed curves, which are quasiperiodic motions. By virtue of the existence of a boundary
R (for g # 0) that does not coincide with G; for piecewise linear mappings, in the general case the
bifurcations of the appearance of both simple and k-fold fixed points occur on this boundary. In this
case, a fixed point (one of the types of a stable node or focus) is generated simultaneously with one of
the types of a saddle fixed point. The disappearance of a fixed stable point also occurs at the boundary
R because of the fusion of a stable node or focus with a saddle point, followed by the formation of
a stream of densified trajectories. The condition for the appearance of a pair of fixed points on the
boundaries of piecewise linear mappings will be laid down below as the basis for the method of
calculating bifurcation parameters.

Table 1. Parameters for solving.

The Eigenvalues of the Matrix A Type of a Stable Point
1)0<p<1,0<py<1,0<p3<1,py, p2 p3 are real-valued stable node of the 1% type
2) =1 <p3 <0, p1, p2, p3 are real-valued. stable node of the 2" type
3) 0 <p <1, are real-valued stable node of the 3" type
4$)0<p<1,0<py <1, =1<py <0, py, p2, p3 are real-valued stable node of the 4 type
5) 0 < Re <1are real-valued, p, p3 stable focus of the 1% type
6) -1<Re<0 stable focus of the 2" type
7) 0 <R <1; py are real-valued, py, p3 stable focus of the 3" type
8) —1 <p <0, are real-valued, p,, p3 stable focus of the 4 type

In Figure 1, sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter 1 are given on the plane of generalized parameters a, b.

fij T f T
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Figure 1. Cross-sections of the body with the local stability synchronization systems of the third order
(@) =—-1.2;(b)y = —0.6; (c) n = 0; (d) n = 0.5).

The formation of quasiperiodic motions under the conditions of the existence of fixed points is
determined by the mutual arrangement of invariant separatrix manifolds of a simple or k-fold saddle
fixed point. The difference from the second order mapping consists of a greater number of typical
phase portraits near the saddle point, determined by the variety of the point itself.

3. SPS Model with Saw-Tooth Nonlinearity

The proposed method for calculating the bifurcation parameters of piecewise linear mappings of
the third order is based on the assertions that fixed points on the boundaries of the linear sections of the
functions F.(¢) and F; (¢) can arise. For the occurrence of simple fixed points of data, the assertions are
sufficient. For the appearance of k-fold fixed points, the formulated assertions appear as necessary ones.

Let F(¢) = Fi(¢). Since F;(¢) is periodic, the phase space of the mapping (Equation (1)) is a
three-dimensional cylinder, whose scan cross-sections are shown in Figure 2.

y

L
C (100, B (Lw0) Gil,2+a,0)

o

{0,-1.0) x

A (-1,0.0) D L{-1,2-a0) Ui-1,4-a,0)

-2.00)

Figure 2. Phase cylinder cross section.

Figure 2 shows the section of the phase space by the plane y,, = 0. The lines Ly o(AB), Ly(CD)
and Ly are sections of the surfaces of the map preserving the coordinates ¢, x and y, respectively.
The equations of these surfaces can be obtained from (Equation (1)) respectively with ¢,11 = ¢,
Xn+1 = Xns Yn+1 = Yn'

Lyo:x=uag,
Loo:x=(y—rp+g)/(1-d), @)
Lyo:y=hx—og.

The mapping (display) surface with the preserved coordinate y is defined under the condition
xn = xo1- It should be noted that the coordinate y is not included in the equation for L, so the surface
under consideration is perpendicular to the plane y = 0. Moreover, the surface b passes through the
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origin of coordinates, and like in the second order system, it does not depend on the normalized initial
detuning g. The point of intersection of these surfaces is the equilibrium state of the system (at the
same time, the conditions ¢, 11 = ¢u, X411 = X, and y,, 41 = y, are satisfied, and has the coordinates
O(o1, Xo1, Yo1)-

By analogy with a system of the second order, domains of space can be found starting from which
the solution (Equation (1)) falls on the boundary of the nonlinearity period F; (¢) ¢, = 1 and ¢, = —1.
The required domains are a set of planes Gg, (the index m is the number of the period F;(¢)) on
whose boundary the solution falls) whose equations are written as follows [11-17]:

Gom:x=(a—-1)¢p+2m—-1,m=1,23... (5)

And
Gom:x=(a—-1)gp+2m+1,m=-1,-2,-3... (6)

In Equations (5) and (6), like in the expression for Ly, the coordinate y is not included,
and consequently these planes are perpendicular to the plane y,, = 0.

The arrows show the directions of the motion of the state vector ;n (@n, xn, yn) along the directions
@y and x;; under the mapping, in each of the four zones formed by the segments AB and CD. For some
saddle points shown in Figure 2, quasiperiodic motions do not take place.

In Figure 2, the domains of the nonlinear mapping are shaded with output correspondingly
to the boundaries ¢, = +1 and ¢, = —1 of the phase cylinder scan —Q; and Q_;. On both sides,
the domains Q; and Q_; are bounded by the planes ¢, = +1, with the third one, by the plane
x=1—(1—a)¢ for Qi (mapping in the direction of increasing x,) and the plane x = —1 — (1 — )¢
for Q_; (the mapping in the direction of decreasing ¢,). In the directions v, and one of the directions
Xy, the domains Q1 and Q_1 are unbounded. Between the domains Q; and Q_ there is a domain Qy,
the map from which occurs linearly.

For a nonlinear mapping, the domain Q; passes to the domain Q';. Moreover, the point B(1, «, 0)
is mapped to the point B'(—=1, ad — B+ g, ah —0); L(—1,2 — ,0) to the point L'(—1, d(2 — a) + f +
g, h(2—a) — ), and so on.

Changing the coordinate [;n} y of the state vector in the Qj, a domain leads to a change in
the coordinate of the vector [;" 1], in Q'q: With increasing (decreasing) [;n} , increases (decreases)
[;n 11],- Thus, the entire domain Q1 is mapped into an infinite strip along the x;, -axis bounded along
the ¢, axis by the planes ¢, = £1 and, in addition, by two parallel planes that are mappings of
the planes ¢, = £1. Analogous arguments lead to the construction of the domain Q'_4, whichisa
mapping of Q_1. It should be noted that there is an intersection of the domains Q' and Q_1, as well as
Q'_y and Qy, which fundamentally distinguishes the considered system from the second order system.

Let us consider iterations with initial conditions from an arbitrary state vector ;0 = (o, X0, Y0)-
According to (Equation (1)) vector ;n may be expressed by means of ;0 as follows:

n—-1
Gu=A" gy A (T 47, ) @)
j=0

where A is linearized matrix corresponding to (Equation (1)) under the linear mapping ? i = (0,0,0)7,

non

in the case of a nonlinear mapping ?]- = (£2,0, O)T, with this, the sign "+" corresponds to going abroad

@ = —1, the sign "-" corresponds to going abroad x = +1. The vector ? returns the state vector of the
system to the (j + 1)-step in the interval [—1; 1] for the coordinate x. We rewrite (Equation (7)) as:
— — " 1= n-1 i
qn:A”q0+(E7A)(E7A) r+ZApn—j—1 (8)
j=0
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For a cycle of period k existing, it is necessary that the closure condition _71{ = 70 be satisfied.
Taking this condition into account, the expression for the initial point of the cycle follows from
(Equation (8)):

N K —1 (k=1 s _1—
qn:(E*A> ];)A]pk—j—l +(E-A)r )

The expression (Equation (9)) may be considered as the first necessary condition for the existence
of a cycle, or the closure condition. The second condition is to find all the state vectors of a cycle of
a required structure within the interval |¢| < 1 (i.e., the structural condition). Implementation of
this condition means that all state vectors of the cycle are in the corresponding domains Q1, Qp, Q1.
Otherwise, Equation (9) can formally lead to some state that is not a point of the cycle. The formulated
conditions are necessary and sufficient for the existence of a cycle with a certain structure.

Similar to a discrete SPS of the second order, it can be shown that an arbitrary cycle existing
in a system with nonlinearity F; (¢) is stable under the conditions of local stability of the mapping
(Equation (1)).

Consider the structure cycle (u/k), where u is the number of nonlinear mappings on the cycle
period, k is the cycle period. For the limit cycle of the first kind u = 0, for the limit cycle of the second
kind in the case of rotation along the coordinate p in the direction of increasing u > 0, in the case of
rotation in the direction of decreasing the coordinate ¢ — u < 0. In accordance with (9), the vector of
an arbitrary point of the cycle can be represented as follows:

gj=1j+gb,j=1...k (10)

— r 1 (k=1 — 71 T 7. .
where l]- = (E — A ) ]EO Afpk,]-,l ,b=(E—-A)(0,1,0); ljlsavector, depending on the

structure of the cycle and the choice of the starting point, b is a vector depending neither on the
structure of the cycle nor its initial state.

When g is changed, all points of the cycle in the phase domain are displaced along the vector Z
This can lead to both the occurrence and destruction of the cycle due to the transition of cycle points
between the domains Qj, Qo, Q—_1, and also when the points of the plane cycle ¢, = %1 intersect
the vectors.

Let us find conditions for the generalized detuning g for which there exists a cycle of a certain
structure (u/x). To do this, we use the above conditions for the existence of a cycle. From (7-9) we
assess the values of the generalized detuning ¢~ ; and g" j for which the state vector ; j intersects the
boundaries ¢, = —1and ¢, = +1, respectively:

ol
- 1 ,+. 1 (11)

Ei= =1 8T =
g g
1 1

All points of the cycle intersect the plane ¢, = —1 if the condition g > max (g;) is satisfied,
j=1...

at least one cycle point intersects the plane ¢, = 1 for g < ‘n'aink (g}*) . A cycle can exist when:
j=1...

max (g7) < min (7). (12)

; ; — ; +
in the detuning range jrlllgﬁ (gj ) <g< ]I:nlmk (gj )
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4. Algorithm for Determining the Acquisition Bandwidth

We constructed an algorithm for determining the acquisition band. It is based on the condition
of the occurrence of the simplest limit cycles of the first and second kind. In the general case, it is
necessary to determine two values of the initial detuning min, Ymax. With ¥ < Ymax all PC2 disappear,
with ¢ > ymin all PC1 disappear [16-22].

Let us find ymax, for this we define the value of ’yk, at which the PC2 structures (1/k) appear. To be
exact, we consider the initial state on the cycle to be the state into which the system comes after the
nonlinear mapping through the boundary ¢,= 1. For this case ?]- = (0, O,O)T, 0 <j<k-1; ?k—l =

—

(=2,0, O)T. According to Equations (10)—(12), the initial state vector g, will be as follows [11-17]:

—
- Pk,l r
=k TEZA (13)

The cycle of the second kind of period k will exist when conditions (Equation (13)) are fulfilled
and will occur, taking into account Equations (1) and (5) with frequency detuning

~1+2[(E- Ak)’l]11

k
T2 = - (14)
¢ [(E —4) 1] 12
The boundary of the cycle generation may be expressed as follows:
— _ : k
Y = Tmax = k:ﬁll}rrlnax <72)~ (15)

It remains to find k, for which the founded value of the initial detuning will be the smallest,
which determines the boundary condition for the occurrence of PC2. The algorithm proposes the
assignment of some kmax, which obviously exceeds the desired value. Recommendations for choosing
kmax are similar to the second order system and are as follows. In the case of complex eigenvalues of

the matrix A, the behavior of the vector 7 is oscillatory in parameter k (the end of the vector with an
increase in the cycle period k describes a twisting spiral around a point (—2,0,0) and it is enough to
take half the oscillation period as kmax-

The analysis of the above dependencies from the standpoint of global stability of the FAS leads to
the following conclusions:

1. Withincreasing a1, &y, the stability domains with respect to the amplification D expand. The most
significant increase is observed for large ;. For example, for 717 = 0.8 with increasing a1, a, from
values 0.5-0.8 (Figure 3) to values 2—4 (Figure 3), the stability domains in parameter D increase
2—4 times.

2. Theboundary of the areas with global stability on the initial mismatch p also expands significantly
with increasing a1, a;. However, dependence on m; is more complex. A decrease in the upper
bound B with increasing m; is observed near the limits of the local stability. On the contrary,
in the farther zone from the boundary of local stability (medium D), there is a significant increase
in the upper boundary B with increasing ;.

3. Limiting the stability of the bottom of the frequency detuning (limiting with the cycles of the
first kind) is most expressed with small 117 and, as stated above, is non-monotonous. The most
significant restriction is observed for large D (Figure 3) and can reach values of 0.3-0.4.
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@ (b)

Figure 3. Acquisition band SFS of the third ((a) a; = 0.5; (b) a1 = 1) order with F;(¢).

5. SPS Model with a Triangular Nonlinearity

Let F(¢) = F.(¢). The basic laws of the appearance of periodic motions of the second kind and
quasiperiodic motions in a third order system with a triangular nonlinearity repeat at a qualitative level
in the results obtained for a second order system [12,19,21-25]. In this case, both the final dependencies
and the mechanisms explaining them are qualitatively repeated. In this regard, we will not dwell
on them in detail below. The quantitative differences will be demonstrated on a number of graphs
devoted to the analysis of the acquisition band.

The situation with cycles of the first kind, whose existence has been established in a system with a
saw-tooth nonlinearity, is completely different. Their analysis is important because they have occurred
with small initial detuning and limit the acquisition domain in frequency from below.

A quantitative estimate of the boundary of first kind cycles can be obtained by considering
the change in the area of their existence in the parameter space with a change in the shape of the
characteristic. Figure 5 shows the region of existence of PC1 on the plane D, -y for different values
of c. The boundaries of the areas are almost straight lines, the slope of which depends only on the
filter parameters (a1, my, ay, my). Changing c does not change the shape of these curves, but shifts
them along the abscissa. PC1 cycles disappear in two cases: Firstly, at a certain maximum value of
the parameter c¢max; and secondly, with a saw-tooth characteristic of the detector and certain filter
parameters (Figure 4).

The authors can note the strong influence of parameters on these dependencies.

From a practical point of view, the filter parameters are of a certain interest. Limit cycles of the
first kind (quasi-synchronism mode) are impossible for them. Figure 5 shows the regions of existence
of PC1 on the plane a;, ap with equal forcing coefficients 111, my. For m; = my= 0, there is a boundary
close to a straight line, above which there are no cycles. With increasing 11, mj, the area of existence
of cycles is symmetrically limited by a1, a, and disappears when m; = my > 0.165.
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Figure 4. Shows the dependences of cmax on the time constant of one of the links of the filter.
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Figure 5. The acquisition band of the pulsed SPS ((a) a1 = 1; (b) &7 = 10) with F.(¢).

Analysis of the above results shows that the existence of cycles of the first kind with a
saw-tooth-like, or close to it, detector characteristic is determined only by the filter parameters and is
not related to the gain of the system.

The dependencies in Figure 5 allow us to analyze the acquisition band when changing the duration
of the stable branch of the detector characteristics and to answer the question about its optimal value.
As in the case of pulsed DSC of the second order, for small D, a weak dependence of the acquisition
band on the shape of the characteristics is observed. There is some loss for F.(¢), increasing with the
steepness of the stable branch.

With increasing D (to the boundary of local stability) due to a shift in the boundary of the onset of
quasiperiodic motions towards large 8, the maximum of the acquisition band is provided in the case
of F.(¢). With different ratios of filter parameters, the gain in the acquisition band can reach up to 50%
as compared with F(¢). Figure 5 also shows the limitations of the acquisition area from below due to
PC1. It is possible to get rid of such restrictions by increasing the steepness (decreasing the duration)
of a stable part of the characteristics.
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6. Results

The dual-ring synthesizer was simulated. The computer model made it possible to take into
account a number of factors additionally, which were not considered in the mathematical model.
They included the inconstancy of the discretization periods and the difference between the detector
model and the zero order extrapolator.

Allowance for variations of the sampling period (epoch) resulted in corrections of the dynamic
characteristics, primarily the stability domain. However, this applied mainly to the range of large gains
(«>1, B >1). For operating gains, the results of mathematical and computer simulation coincided
with high accuracy [25-28].

Figure 6 shows the dependences of the capture band and the transient time of the dual-ring SPS,
taking into account the variable nature of the sampling periods, for k1 / k2 = 8. To compare, Figure 6a
shows the results for a constant sampling period (upper curves). With positive detuning, allowance for
the variations led to a certain decrease in the capture band, repeating the known result for single-ring
systems. A change in the capture band as a function of u repeated similar changes for a model with a
constant sampling period. A decrease in the capture band with increasing pt was observed. Changing
the sign of | to the opposite, resulted in an increase in the capture band, partially offsetting the loss
from the variations in the sampling period.
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Figure 6. Dependencies of the capture band and the settling time in the dual-ring SPS ((a) p = —0.1;
(b) = 0.1;(c) my = 0; (d) m1 = 0.5).

An analysis of the average time for the frequency settling in a dual-ring SPS (Figure 6b—d)
suggested a qualitative coincidence with the results of the model analysis [6,8].

In particular, there is was a fairly wide range of parameters (shown in the Figure for gains),
where the frequency setting time was rather small and almost invariable. It confirmed the stabilizing
effect of mutual bonds (the results are given to establish the frequency with an accuracy of 0.01 F).
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A certain range shift to the left was explained by an increase in the equivalent gain due to the variable
sampling period. According to the above results, for filter parameters that provided suppression at a
sampling frequency close to 10 dB (m = 0.5, a® = 0.5-1.0), the time for setting the frequency did not
exceed 10 samples of the output ring in a wide range of gains.

7. Conclusions

Based on the general provisions of the theory of bifurcations, the directions for analyzing the
conditions for the occurrence of periodic and quasiperiodic motions in a third order DCS with a
piecewise linear characteristic of the detector are defined. As in the case of the second order DCS,
the basis for the occurrence and loss of stability of k-multiple fixed points is the condition that the
linear sections fall on the boundaries of linear sections. The mandatory requirement for the occurrence
of quasiperiodic motions is the contact of the incoming and outgoing separatrix manifolds by a
saddle point. The difference from the second order systems is in a large number of different types of
saddle points and, accordingly, the number of possible scenarios of motions in the neighborhood of
separatrix manifolds.

The method of estimating the bifurcation parameters of piecewise linear mappings of the
third order has been developed. This makes it possible to find the boundaries of areas of the
existence of various types of periodic and quasiperiodic motions. The method is based on the
mandatory and sufficient conditions for the occurrence of a k-multiple fixed point through the
formation of an intermediate complex point node-saddle or focus-saddle and the conditions for
tangency of the incoming and outgoing separatrix manifolds at the boundaries of the linear sections of
the characteristics.
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Abstract: The main aim of the paper is to give the crossing number of the join product G 4 D, for
the disconnected graph G of order five consisting of one isolated vertex and of one vertex incident
with some vertex of the three-cycle, and D, consists of # isolated vertices. In the proofs, the idea of
the new representation of the minimum numbers of crossings between two different subgraphs that
do not cross the edges of the graph G by the graph of configurations Gp in the considered drawing
D of G + D,, will be used. Finally, by adding some edges to the graph G, we are able to obtain the
crossing numbers of the join product with the discrete graph D,, and with the path P, on n vertices
for three other graphs.

Keywords: graph; good drawing; crossing number; join product; cyclic permutation

1. Introduction

The investigation of the crossing number of graphs is a classical and very difficult problem
provided that computing of the crossing number of a given graph in general is an NP-complete
problem. It is well known that the problem of reducing the number of crossings in the graph has been
studied in many areas, and the most prominent area is very large-scale integration technology.

In the paper, we will use notations and definitions of the crossing numbers of graphs like
in [1]. We will often use Kleitman’s result [2] on crossing numbers of the complete bipartite graphs.
More precisely, he proved that:

atkun = 2] (21252 mze

Using Kleitman’s result [2], the crossing numbers for join of two paths, join of two cycles, and
for join of path and cycle were studied in [1]. Moreover, the exact values for crossing numbers of
G + Dy and G + Py, for all graphs G of order at most four are given in [3]. Furthermore, the crossing
numbers of the graphs G + D,, are known for a few graphs G of order five and six in [4-10]. In all of
these cases, the graph G is connected and contains at least one cycle. Further, the exact values for the
crossing numbers G + P, and G + C,, have been also investigated for some graphs G of order five and
sixin [5,7,11,12].

The methods presented in the paper are new, and they are based on multiple combinatorial
properties of the cyclic permutations. It turns out that if the graph of configurations is used like
a graphical representation of the minimum numbers of crossings between two different subgraphs,
then the proof of the main theorem will be simpler to understand. Similar methods were partially
used for the first time in the papers [8,13]. In [4,9,10,14], the properties of cyclic permutations were
also verified with the help of software in [15]. In our opinion, the methods used in [3,5,7] do not allow
establishing the crossing number of the join product G + D,,.
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2. Cyclic Permutations and Configurations

Let G be the disconnected graph of order five consisting of one isolated vertex and of one vertex
incident with some vertex of the three-cycle. We will consider the join product of the graph G with the
discrete graph on n vertices denoted by D;. The graph G + D, consists of one copy of the graph G
and of n vertices ty,...,t,, where any vertex t;, i = 1,...,n, is adjacent to every vertex of G. Let T,
1 <i < n, denote the subgraph induced by the five edges incident with the vertex t;. Thus, the graph
T'U---UT" is isomorphic with the complete bipartite graph K5, and:

n
G+Dn:GUK5,,1:GU<UTi>, 1)
i=1

In the paper, we will use the same notation and definitions for cyclic permutations and the
corresponding configurations for a good drawing D of the graph G + Dj, like in [9,14]. Let D be
a drawing of the graph G + D,. The rotation rotp(;) of a vertex f; in the drawing D like the
cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t;
has been defined by Herndndez-Vélez, Medina, and Salazar [13]. We use the notation (12345) if
the counter-clockwise order the edges incident with the vertex t; is t;v1, tjvp, t;v3, tjvy, and t;vs.
We have to emphasize that a rotation is a cyclic permutation. In the paper, each cyclic permutation
will be represented by the permutation with one in the first position. Let rotp (;) denote the inverse
permutation of rotp (t;). We will deal with the minimal necessary number of crossings between the
edges of T' and the edges of T/ in a subgraph T’ U T/ depending on the rotations rotp (t;) and rotp (#;).

We will separate all subgraphs T*,i = 1,...,n, of the graph G 4 D,, into three mutually-disjoint
subsets depending on how many of the considered T’ cross the edges of G in D. Fori = 1,...,n,
let Rp = {T" : crp(G, T?) = 0} and Sp = {T' : crp(G, T") = 1}. Every other subgraph T' crosses
the edges of G at least twice in D. Moreover, let F' denote the subgraph G U T' for T' € Rp,
wherei € {1,...,n}. Thus, for a given subdrawing of G, any subgraph Fiis exactly represented
by rotp (#;).

Let us suppose first a good drawing D of the graph G + D, in which the edges of G do not
cross each other. In this case, without loss of generality, we can choose the vertex notation of the
graph in such a way as shown in Figure 1la. Our aim is to list all possible rotations rotp(t;) that
can appear in D if the edges of T! do not cross the edges of G. Since there is only one subdrawing
of F'\ {v,vs} represented by the rotation (143), there are two possibilities for how to obtain the
subdrawing of F' \ v5 depending on in which region the edge ;v is placed. Of course, the vertex vs
can be placed in one of four regions of the subdrawing F' \ vs with the vertex t; on their boundaries.
These 2 x 4 = 8 possibilities under our consideration will be denoted by Ay and B, for k = 1,2 and
I =1,...,6. The configuration is of type A or B in the considered drawing D, if the vertex vs is placed
in the quadrangular or in the triangular region in the subdrawing D(F' \ vs), respectively. As for our
considerations, it does not play a role in which of the regions is unbounded; assume the drawings
shown in Figure 2. Thus, the configurations Ay, Ay, By, By, B3, By, Bs, and B¢ are represented by
the cyclic permutations (15432), (12435), (14532), (12453), (14325), (15243), (12543), and (14352),
respectively. In a fixed drawing of the graph G + D,;, some configurations from M need not appear.
We denote by M the subset of M = { A1, Ay, By, By, B3, By, Bs, Bs } consisting of all configurations
that exist in the drawing D.

We remark that if two different subgraphs F and F/ with their configurations from Mp cross in
a considered drawing D of the graph G + Dj;, then the edges of T! are crossed only by the edges of Ti.
Let X, Y be the configurations from M p. We briefly denote by crp(X, Y) the number of crossings in D
between T' and T/ for two different T?, T/ € Rp such that [!, F/ have configurations X, Y, respectively.
Finally, let cr(X, Y) = min{crp(X, Y)} over all good drawings of the graph G + D, with X,Y € Mp.
Our aim shall be to establish cr(X, Y) for all pairs X,Y € M.
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V4 V, Vv,
vz V3 Vz V3
@)
vl VS OVS
(a) (b)
Figure 1. Two good drawings of the graph G. (a): the planar drawing of G; (b): the drawing of G with
crp(G) =1.
Vs
sz % :: >
VvV, Vs
Ay
Va
V2
5
Vi
Bs By Bs Be

Figure 2. Drawings of eight possible configurations from M of the subgraph F'.

The configurations A; and A; are represented by the cyclic permutations (15432) and (12435),
respectively. Since the minimum number of interchanges of adjacent elements of (15432) required
to produce cyclic permutation (12435) = (15342) is one, any subgraph T/ with the configuration
A, of F/ crosses the edges of T' at least once, i.e., cr(Aj, Ay) > 1. Details have been worked out by
Woodall [16]. The same reason gives cr(Aj, By) > 2, cr(Ay, By) > 2, cr(Ay, Bg) > 2, cr(Ay, By) > 2,
cr(Ay, Bs) > 2, cr(Ay, Bs) > 2, cr(B;, B]-) > 2, and Cr(A,‘,B]') > 3 fori = j (mod 2). Moreover,
by a discussion of possible subdrawings, we can verify that cr(By, Bs) > 4, cr(Bs, Bs) > 4, cr(Ba, Bg) > 4,
and cr(By, Bg) > 4. Let F be the subgraph having the configuration Bs, and let T/ be a subgraph from
Rp with j # i. Using Woodall’s result crp (T, T/) = Q(rotp (t;), rotp (t;)) + 2k for some nonnegative
integer k, let us also suppose that Q(rotp(t;), rotp(t;)) = 2. Of course, any subgraph F/ having the
configuration By or Bj satisfies the mentioned condition. One can easily see thatif t; € wp Uws 4 U
w123, then er(T', T/) > 2. If t; € wy 45 and cr (T, T/) = 2, then the subdrawing D(F/) induced by the
edges incident with the vertices v; and v3 crosses the edges of T' exactly once, and once, respectively.
Thus, rotp (¢ /-) = (12435), i.e., the subgraph F/ has the configuration A,. This forces cr(Bs, By) > 4
and cr(Bs, B3) > 4. Similar arguments are applied for cr(Bg, By) > 4 and cr(Bg, By) > 4. Clearly,
also cr(Ay, Ay) > 4 and cr(B;,B;) > 4forany k = 1,2 and [ = 1,...,6. Thus, all lower bounds of
the number of crossing of configurations from M are summarized in the symmetric Table 1 (here,
Xy and Y are configurations of the subgraphs F' and F/, where k, I are integers from {1,2} or {1,...,6},
and X,Y € {A, B}).
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Table 1. The necessary number of crossings between T and T/ for the configurations X, Y;.

|
FS
fley
S
9
o
=
=)
N
jor}
)
o)
I
jor}
B
jor}
ES

Al 4 1 3 2 3 2 3 2
A, 1 4 2 3 2 3 2 3
B, 3 2 4 3 2 3 4 3
B, 2 3 3 4 3 2 3 4
B, 3 2 2 3 4 3 4 3
By, 2 3 3 2 3 4 3 4
Bs 3 2 4 3 4 3 4 3

2 3 3 4 3 4 3 4

Assume a good drawing D of the graph G + D, with one crossing among edges of the graph
G (in which there is a subgraph T e Rp). In this case, without loss of generality, we can choose
also the vertex notations of the graph in such a way as shown in Figure 1b. Since there is only one
subdrawing of F' \ {vs} represented by the rotation (1324), we have four possibilities for how to
obtain the subdrawing of F! depending on in which region the vertex vs is placed. Thus, there are
four different possible configurations of the subgraph Fi denoted as A1, Ay, A3, and Ay, with the
corresponding rotations (13245), (13524), (13254), and (15324 ), respectively. We denote by A the
subset of N' = { A1, Ay, A3, A4} consisting of all configurations that exist in the drawing D. The same
way as above can be applied for the verification of the lower bounds of the number of crossings of
two different configurations from A. Thus, all lower bounds of the numbers of crossings of two
configurations from N are summarized in the symmetric Table 2 (here, Ay and A; are configurations
of the subgraphs F! and F/, where k, I € {1,2,3,4}).

Table 2. The necessary number of crossings between T' and T/ for the configurations Ay, A;.

- A1 A2 Az A4

A, 4 2 3 3
A, 2 4 3 3
A; 3 3 4 2
Ay 3 3 2 4

3. The Graph of Configurations Gp

In general, the low possible number of crossings between two different subgraphs in a good
subdrawing of G + Dj, is one of the main problems in the proofs on the crossing number of the join of
the graph G with the discrete graphs Dj,. The lower bounds of the numbers of crossings between two
subgraphs, which do not cross the edges of G, were summarized in the symmetric Table 1. Since some
configurations from the set M need not appear in the fixed drawing of G + D,,, we will first deal with
the smallest possible values in Table 1 as with the worst possible case in the mentioned proofs. Thus,
a new graphical representation of Table 1 by the graph of configurations will be useful.

Let us suppose that D is a good drawing of the graph G + D, with crp(G) = 0, and let
Mp be the nonempty set of all configurations that exist in the drawing D belonging to the set
M = {A1, A, By, By, B3, B4, Bs, Bg }. A graph of configurations Gp is an ordered triple (Vp, Ep, wp),
where Vp is the set of vertices, Ep is the set of edges, which is formed by all unordered pairs of distinct
vertices, and a weight function w : Ep — N that associates with each edge of Ep an unordered pair
of two vertices of Vp. The vertex x; € Vp for some x € {a,b} if the corresponding configuration
X; € Mp forsome X € {A, B}, wherek € {1,2} ork € {1,...,6}. The edge e = xiy; € Ep if xx and
y; are two different vertices of the graph Gp. Finally, wp(e) = m € N for the edge e = xy;, if m is
the associated lower bound between two different configurations Xy, and Y; in Table 1. Of course,
Gp is the simple undirected edge-weighted graph uniquely determined by the drawing D. Moreover,
if we define the graph G = (V, E, w) in the same way over the set M, then Gp is the subgraph of G
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induced by Vp, for the considered drawing D. Since the graph G = (V, E, w) can be represented like
the edge-weighted complete graph Kg, it will be more transparent to follow the subcases in the proof
of the main theorem; see Figure 3.

—— edge weight 1T —— edge weight 3
—— edge weight 2 —— edge weight 4

Figure 3. Representation of the lower bounds of Table 1 by the graph G = (V, E, w).
4. The Crossing Number of G + D,

Two vertices t; and t; of G + D, are antipodal in a drawing of G + Dj, if the subgraphs T' and
T7 do not cross. A drawing is antipodal-free if it has no antipodal vertices. In the rest of the paper,
each considered drawing of the graph G + D, will be assumed antipodal-free. In the proof of the main
theorem, the following lemma related to some restricted subdrawings of the graph G + Dy, is helpful.

Lemma 1. Let D be a good and antipodal-free drawing of G + D, n > 2. If T!, T/ € Rp are different
subgraphs such that F!, F/ have different configurations from any of the sets { A1, B2}, {A1,Be}, {A2, B1},
and {Az, Bs}, then:

crp(GUT UT, TF) > 4 for any TF € Sp.

Proof of Lemma 1. Let us suppose the configuration A; of the subgraph F, and note that it is exactly
represented by rotp (t;) = (15432). The unique drawing of the subgraph F contains four regions with
the vertex t; on their boundaries (Figure 2). If there is a Tk € Sp with ch(Tf, T* ) = 1, then one can
easily see that t € wj45. Of course, the edge t,v3 must cross one edge of the graph G. If t,v3 crosses
the edge v10;, then the subgraph F¥ is represented by rotp (t;) = (13245). If the edge t,v3 crosses the
edge v;v4, then there are only three possibilities for the considered subdrawing of F¥, i.e., the subgraph
F¥ can be represented by three possible cyclic permutations (13452), (15234), or (12354).

For the remaining configurations Ay, By, By, Bs, and Bg of F i using the same arguments, one can
easily verify that the rotations of the vertex f are from the sets {(15324), (12534), (13425), (13542) },
{(12345), (14235)}, {(15342), (15423)}, {(12345)}, and {(15342)}, respectively. This forces that there
is no subgraph T% € Sp with crp(T? U T/, T¥) = 2, where the subgraph F/ has the configuration
By or Bg. The same reason is given for the case of A, with the configurations By and Bs. Finally,
crp(GUT UTI, TF) > 1+ 3 = 4 for any TX € Sp. This completes the proof. []

We have to emphasize that we cannot generalize Lemma 1 for all pairs of different configurations
from M. Let us assume the configurations A; of Fiand By of F/. For T¥ € Sp, the reader can easily
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find a subdrawing of G U T' U T/ U T in which crp (T, T¥) = crp(T/, T¥) = 1. The same remark holds
for pairs A, with Bs, By with B3, and B, with By.

Theorem 1. cr(G + D,) = 4{% {%J + {%J forn > 1.

Proof of Theorem 1. The drawing in Figure 4b shows that cr(G + D) < 4[4 || "51| + |4 ]. We prove
the reverse inequality by contradiction. The graph G + D is planar; hence, cr(G + D) = 0. Since the
graph G + D, contains a subdivision of the complete bipartite graph K3 3, we have cr(G + D;) > 1.
Thus, cr(G + Dy) = 1 by the good drawing of G + D, in Figure 4a. Suppose now that for n > 3,
there is a drawing D with:

oG+ <[5+ [3), @

and let
m—1

cr(G+Dy) > 4{%J { 5

J + {%J for any integer m < n. (3)

(@) (b)

Figure 4. The good drawings of G + D; and of G + D;,. (a): the drawing of G + D, with one crossing;
(b): the drawing of G + D,, with 4 L%J L%J + [%J crossings.

Let us first show that the considered drawing D must be antipodal-free. As a contradiction, suppose
that, without loss of generality, crp(T", T"~!) = 0. Using positive values in Tables 1 and 2, one can
easily verify that both subgraphs T" and T"~! are not from the set Rp, i.e., crp(G, T" U T""1) > 1.
The known fact that cr(Ks3) = 4 implies thatany TX, k = 1,...,n — 2, crosses the edges of the subgraph
T" U T" ! at least four times. Therefore, for the number of crossings in the considered drawing D,
we have:

cap(G+ Dy) =crp (G+ Dy—2) +crp(G, T" U T" Y +erp(TPUT 1) + crp (Ks—2, T"U 1)

24{”72J Vi*ﬂ + V;ZJ +14+0+4(n~2) =47 | Vl*lJ +|5]-

2 2 2 2 2
This contradiction with the assumption (2) confirms that D must be an antipodal-free drawing.
Moreover, if ¥ = |Rp| and s = |Sp|, the assumption (3) together with the well-known fact

cr(Ksy,) =4 {%J V%J imply that in D, there are at least [ 4] + 1 subgraphs T', which do not cross the
edges of G. More precisely:
n

cap(G) +ap(G,Ksy) <cap(G)+0r+1s+2(n—r—s) < bJ ,
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ie.,

s+2(n—r—s)<{%J. 4

This forces that » > 2, and r > (%1 +1. Now, for T! € Rp, we will discuss the existence of

possible configurations of subgraphs F = G U T' in the drawing D.

Case 1. crp(G) = 0. Without loss of generality, we can choose the vertex notation of the graph G in

such a way as shown in Figure 1a. Thus, we will deal with the configurations belonging to the nonempty
set Mp. According to the minimum value of the weights of edges in the graph Gp = (Vp, Ep, wp),
we will fix one, or two, or three subgraphs with a contradiction with the condition (2) in the

following subcases:

i.

M

{A1,A2} € Mp, ie, wp(ajay) = 1. Without loss of generality, let us consider two different
subgraphs T", T"~! € Rp such that F* and F"~! have configurations A; and Ay, respectively.
Then, crp(GUT" U ™1 Ti) > 5 for any T! € Rp with i # n —1,n by summing the values in
all columns in the considered two rows of Table 1. Moreover, crp(T" U -1 Ti ) > 3 for any
subgraph T! with i # n — 1,1 due to the properties of the cyclic permutations. Hence, by fixing
the graph GUT" U T" 1,

HEZJ {n;i’)

24" |7 e ([3]+1) oz a3 |5+ [5)

{A1, A2} € Mp,ie.,wp(e) >2foranye € Ep.

J+5(r—2)+4(n—r)+1:4{”72J{”73J FAn+r—9

ch(G+Dn)24L B :

Let us assume that {A1, By, By} C Mp or {Ay, By, B3} C Mp, ie., there is a three-cycle in
the graph Gp with weights of two of all its edges. Without loss of generality, let us consider
three different subgraphs T", T"-1 T"=2 ¢ Rp such that F", F"'m and F" 2 have different
configurations from { Ay, By, B4}. Then, crp(GU T U T" 1 U T"~2, T) > 8 for any T' € Rp with
i # n—1,nby Table 1, and crp(GU T" U T*1 U T"~2,T!) > 5 for any subgraph T' € Sp by
Lemma 1. Thus, by fixing the graph GU T" U T"~1 U T2,

crp(G + Dy) 24{";3H”;4J +8(r—3)+5(n—r)+624[”;3J L”;}J 451+ 3r — 18
2o "2 |1 e ea([5] +1) ~1s a5 "+ |5

In the next part, let us suppose that { Ay, By, B4} € Mp and {Az, By, B3} € Mp,

{Aj, By} € Mp forsomek =j+1 (mod 2) or {Bj, Bj;2} € Mp, where j € {1,2}. Without loss
of generality, let us consider two different subgraphs T", T"~! € Rp such that F" and F"~! have
configurations A; and B, respectively. Then, crp(G U T" U T"1, T?) > 6 for any T' € Rp with
i # n—1,n by Table 1. Moreover, crp(T" U T"~1, T!) > 2 for any subgraph T? withi # n —1,n
due to properties of the cyclic permutations. Hence, if we fix the graph GU T" U "1

N2 03] ) s 2= ] 2|25

crp(G + Dy) 24[ . .

vanersrso 0275 752 e 2] w0zl 75 )
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(2 {Aj; B} £ Mpforanyk=j+1 (mod 2) and {Bj, Bj;2} £ Mp, wherej=1,2,ie,wp(e) >3
for any e € Ep. Without loss of generality, we can assume that T" € Rp. Then, crp(T", T') > 3
for any T' € Rp with i # n. Thus, by fixing the graph GU T",

n;lJ {11;2

24" [ e (3] e n) ezl 1) + 5]
Case 2. crp(G) = 1. Without loss of generality, we can choose the vertex notation of the graph

G in such a way as shown in Figure 1b. Thus, we will deal with the configurations belonging to the
nonempty set N in the following two cases:

nflJ szZ

crp(G + Dy) 24{ 5 5

|+30r=1)+20—r)+0=4] |+2n+7r-3

i {A;, A1} C Np for some i € {1,2}. Without loss of generality, let us consider two different
subgraphs T", T"~! € Rp such that F* and F"~! have different configurations from the set
{A1,Az}. Then, crp(GUT" U T”*l,T") > 6 for any T € Rp withi # n—1,n by Table 2.
Moreover, crp (T U T"~1, T?) > 2 for any subgraph T’ with i # n — 1,1 due to the properties of
the cyclic permutations. Hence, by fixing the graph GU T" U ™1

anJ Vlff‘)

ch(G+D,,)24{ 3 3

J+6(1‘—2)+35+4(n_r_5)+2+1:4{71;2J Vlgf‘)J

n—211n-3 n nyn—1 n

=z —9>4|— =z

T [grer-oz a3 |5 5
If F" and F"~! have different configurations from the set { A3, A4}, then the same argument can
be applied.

ii. {A;, A1} € Np for any i = 1,2. Without loss of generality, we can assume that T" € Rp.
Then, crp(T", T?) > 3 for any T € Rp with i # n. Thus, by fixing the graph G U T",

+4n+r+r—s—924{

crp(G + Dy) zqnglj ["gzj +3(r—1)+2(n—r)+1:4{”;1J{”EZJ Fon4r—2

I R (R IS

Thus, it was shown that there is no good drawing D of the graph G + D, with less than
42| %51 ] + | 2] crossings. This completes the proof of Theorem 1. [J

5. Three Other Graphs

Finally, in Figure 4b, we are able to add the edges v3v5 and v;v5 to the graph G without additional
crossings, and we obtain three new graphs H; for i = 1,2,3 in Figure 5. Therefore, the drawing of
the graphs Hy + D, H, + D;;, and H3 + D, with 4L%J L%J + L%J crossings is obtained. On the
other hand, G + D,, is a subgraph of each H; + D,,, and therefore, cr(H; + D,,) > cr(G + D) for any
i =1,2,3. Thus, the next results are obvious.

Corollary 1. cr(H;+ Dy) = 4| 4] | 251 | + | 4| for n > 1, wherei = 1,2,3.
We remark that the crossing numbers of the graphs Hy 4 D, and H3z + D, were already obtained
by Berezny and Stas [4], and Kles¢ and Schrotter [7], respectively. Moreover, into the drawing in

Figure 4b, it is possible to add 1 edges, which form the path P,, n > 2 on the vertices of D, without
another crossing. Thus, the next results are also obvious.

Theorem 2. cr(G + P,) = cr(Hy + Py) = 4{% VTJJ + {%J forn > 2.
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The crossing number of the graph Hj + P, has been investigated in [12].

H; H, H;
Figure 5. Three graphs Hj, Hy, and H3 by adding new edges to the graph G.
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Abstract: Edge Even Graceful Labelingwas first defined byElsonbaty and Daoud in 2017. An edge
even graceful labeling of a simple graph G with p vertices and g edges is a bijection f from the edges
of the graph to the set {2,4,...,2q} such that, when each vertex is assigned the sum of all edges
incident to it mod2r where r = max{p, q}, the resulting vertex labels are distinct. In this paper we
proved necessary and sufficient conditions for the polar grid graph to be edge even graceful graph.

Keywords: graceful labeling; edge graceful labeling; edge even graceful labeling; polar grid graph

1. Introduction

The field of Graph Theory plays an important role in various areas of pure and applied sciences.
One of the important areas in graph theory is Graph Labeling of a graph G which is an assignment of
integers either to the vertices or edges or both subject to certain conditions. Graph labeling is a very
powerful tool that eventually makes things in different fields very ease to be handled in mathematical
way. Nowadays graph labeling has much attention from different brilliant researches ingraph theory
which has rigorous applications in many disciplines, e.g., communication networks, coding theory,
x-raycrystallography, radar, astronomy, circuit design, communication network addressing, data base
management and graph decomposition problems. More interesting applications of graph labeling can
be found in [1-10].

Let G = (V(G),E(G)) with p = |V(G)| and q = |E(G)| be a simple, connected, finite,
undirected graph.

A function f is called a graceful labeling of a graph Gif f: V(G) — {0,1,2,...,4} is injective
and the induced function f* : E(G) — {1,2,...,q} defined as f*(e = uv) = |f(u) — f(v)] is bijective.
This type of graph labeling first introducedby Rosa in 1967 [11] as a B— valuation, later on Solomon W.
Golomb [12] called as graceful labeling.

A function f is called an odd graceful labeling of a graph G if f: V(G) — {0,1,2,...,2g — 1}
is injective and the induced function f*:E(G) — {1,3,...,29 — 1} defined as f*(e = uv) =
|f(u) — f(v)]| is bijective. This type of graph labeling first introducedby Gnanajothi in 1991 [13].
For more results on this type of labeling see [14,15].

A function f is called an edge graceful labeling of a graph G if f : E(G) — {1,2,...,q} is bijective
and the induced function f*: V(G) — {0,1,2,...,p — 1} defined as f*(u) = Y,  f(e)modpis

e=uveE(G
bijective. This type of graph labeling first introducedby Lo in 1985 [16]. For more( r)esults on this
labeling see [17,18].

A function f is called an edge odd graceful labeling of a graph G if f : E(G) — {1,3,...,2g — 1}

is bijective and the induced function f*:V(G)— {0,1,2,...,29—1} defined as f*(u) =

Y. f(e)mod2q is injective. This type of graph labeling first introducedby Solairaju and Chithra
e=uveE(G)
in 2009 [19]. See also Daoud [20].

Symmetry 2019, 11, 38; doi:10.3390/sym11010038 125 www.mdpi.com/journal /symmetry
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A function f is called an edge even graceful labeling of a graph G if f: E(G) — {2,4,...,2q}
is bijective and the induced function f*:V(G) — {0,2,4,...,29—2} defined as f*(u) =

Y. f(e)mod2r, where r = max{p,q} is injective. This type of graph labeling first introduced by
e=uveE(G)

Elsonbaty and Daoud in 2017 [21].

For a summary of the results on these five types of graceful labels as well as all known labels so
far, see [22].

2. Polar Grid Graph Py,

The polargrid graph P, is the graph consists of 1 copies of circles C;; which will be numbered
from the inner most circle to the outer circle as Cfnl >, Cy(,,z),A .., C,(nn 71), C,(,f') and m copies of paths

. . . (1) (2) (m=1) p(m)
P, ;1 intersected at the center vertex vp which will be numbered as P, ey P, TRy P, e P, Iy See
Figure 1.
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Figure 1. Polar grid graph P, .

Theorem 1. If m and n are even positive integes such that m > 4 and n > 2, then the polar grid graph Py, ;, is
an edge even graceful graph.

Proof. Using standard notation p = |V (Py,,)| = mn+1, g = |E(Py,u)| = 2mn and r = max{p,q} =
2mn Let the polar grid graph Py, , be labeled as in Figure 2. Let f : E(G) — {2,4,...,2q}. O

First we label the edges of paths P,S}jr)l, < k < m begin with the edges of the
path P,S?l to the edges of the path sz)] as follows: Move clockwise to label the edges

1
VU1, VU2, - ., V0Um—1,00Um by 2,4, ..., 2m — 2, 2m, then move anticlockwise to label the edges
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V1041, Vm 02 Um—102m—1, « - - » V3043, V2042 by 2m + 2, 2m + 4,2m + 6, ..., 4m — 2, 4m, then
move clockwise to label the edges vy +1U2m+1, Um+202m+2, Um+302m+3, -« - V2m—193m—1, Um¥3m DY
dm +2,4m +4,4m +6,...,6m —2,6m and so on. Finally move anticlockwise to label the
edges Uin(n—2)+1Cm(n—1)+17 Om(n—1)—19mns Vni(n-1)-1%mn—1, -+ - Vn(n—2)+2Vm(n—1)+2 by 2m(n — 1) +
2,2m(n —1) +4, 2m(n — 1) + 6, ..., 2mn — 2, 2mn. Second we label the edges of the circles
C,(,f ), 1 <k < nbegin with the edges of the inner most circle C,(”1 ) to the edges of the circle C,(n%), then
the edges of the outer circle C,(,? ). Finally the edges of circles C,(,?H), C,(,,% +2) PR C,(,flfl) respectively
as follows: f(vm(kfl)JriUm(kfl)ﬁ»H»l) = 2mn + Zm(k — 1) + 2i, f(vkmvm(k—1)+1) = 2mn +2mk, 1 <
i<m-11<k< %; f(vm(n71)+ivm(n71)+i+l) =3mn+2i,1 <i<m— 1;f(vk”'vﬁl(k*1)+1) -
2mn+ (2k+1)m, 5 +1<k<n-1.

@n i Tim T

Figure 2. Labeling ofthe polar grid graph Py, , when n is even, n > 2.

Now the corresponding labels of vertices mod4mn are assigned as follows:
Case (1) m = 4kmod4n, 1 < k < n—1and m = 2mod4n.

The labels of the vertices of the inner most circle anl ) to the circle Cfn%) are givenby f*(v(x_1)p4i) =

d4m(2k —1) +4i, 1 <k < %, 1 < i < m, the labels of the vertices of the outre circle C,(n" ) are given by
F @m—1ymsi) =2i +2,1 < i < mand the labels of the vertices of the circles C,(n%H), S C,(ﬂnfl) are
givenby f*(vg_1ympi) =8m(k—3) +4i +2,1<i<m,5+1 <k<n-1

The label of the center vertex vy is assigned as follows: when m = 4kmod4n, 1 < k < n -1,
f(vo) = % (2m +2) = m? + m, since m = 4kmod4n then m = 4nh + 4k, thus f*(vg) = m(4k + 1) and
when m = 2mod4n, we have f*(vg) = 3m.
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Case (2) m = (8k —2)moddn,1 < k < 5. In this case the vertex Vg (m32) in the
circle C,(,lf) will repeat with the center vertex vy. To avoid this problem we replace the labels

of the two edges Uk (252 ) V(112 and Ok (1=2) Vg — (16 - That is f(vkmi(,n%z)vkmi(%)) =

2mn + m(2k — 1) + "2 and f(o,,, (12) V(=6 6y) = 2mn+m(2k —1) + 222 and we obtain the

labels of the correspondmg vertices as follows f*(v,,, (mz»Z)) m(8k — 1) + 2, f *(vkm m— 2)) =
m(8k — 1) +4, f* (v, (=t 6)) = m(8k — 1) + 6 and the label of the center vertex vy is a551gened as

f*(vg) = m(8k — 1).The rest vertices are labeled as in case(1).

Case (3) m = (8k +2)mod4n, 1 < k < § — 1. In this case the vertex v, (m42) in the circle C,(nﬂ )

will repeat with the center vertex vy. To aV01d this problem we replace the labels of the two edges

Vtom— (22 Pk (%) and vy (2)0y,, (m2)- That is f(vkmi(m%z)vkm,(%)) = 2mn + m(2k + 1) + "f2

and f (v, —(m ) Vg (2 z)) = 2mn +m(2k + 1) + 32 and we obtain the labels of the corresponding
vertices as follows (v, (m+2)) = m(8k+3) +2, f*(0m—(g)) = m(8k+3) +4, f* (0, (n z>) =

m(8k + 3) + 6 and the label of the center vertex vy is assigened f*(vg) = m(8k —29) as. The rest
vertices are labeled as in case(1).

Case (4) m = Omod4n. In this case the vertex v, (m52) in the outer circle will repeat with the
center vertex vg. To avoid this problem we replace the labels of the two edges v,, i (243 U — (142
(wrz)) = m(3n +2) and f(VmnVp(n-1)41) = 3mn +
m — 4 and we obtain the labels of the corresponding vertices as follows f *(vmni( s )) = 2m +
2, f (0, m+2)) =2m +4, f*(vyn) = m —2and f*(0y(y—1)41) = 4mn —m and the label of the

center vertex vy is assigened as f*(vg) = m. The rest vertices are labeled as in case (1).

and Uyn¥y(y—1)41- Thatis f(v,, (252 Dy

Ilustration. The edge even graceful labeling of the polar grid graphs Piae, Pigs, Pise, Pase and Prse
respectively are shown in Figure 3.

Remark 1. In case m = 2 and n is even, n > 2.

Let the label of edges of the polar grid graph be as in Figure 4. Thus we have the label of the
corresponding vertices are as follows:

() =4n+12; f*(v;) =16i—2,2<i < 5 fH(ogy) =16i+6,1<i< 7 -1
fron) =4 fF)=16i+2,1<i< 5 -1 f(v'y ) =2 (Vg ) =16i+10,1<i< 5 -2
FH (1) =4n — 4 f*(0'y) = 4n+8and f*(vy) = 4n + 4.
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n+3

Figure 4. Labeling of the polar grid graph P, ,,, 1 is even integer greater than 2.

Note that P, is an edge even graceful graph but not follow this rule. See Figure 5.
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Figure 5. The polar grid graph P ».

Theorem 2. If m is an odd positive integer greater than 1 and n an is even positive integer greater than or equal
2, then the polar grid graph Py, , is an edge even graceful graph.

Proof. Let the edges of the polar grid graph Py, ,, be labeled as in Figure 2. [J

Now the corresponding labels of vertices mod4mn are assigned as follows: There are four cases
Case (1): m = (4k — 1)mod4n, 1 <k <n
The labels of the vertices of the inner most circle Cj;, ) to the circle C,Sl ?) are givenby f*(v(_1ym1i) =

4m(2k —1) +4i+2,1 <k < 5,1 <i<m,thelabels of the vertices of the outer circle C,(n ") are given

by f*(v(n—1)m+i) =2i+2,1 < i < mand the labels of the vertices of the circles Cf,, ),. . C,(,,”_l) are

glvenbyf( Ok—1ymri) =8m(k—3)+4i+2,1<i<m 5+1<k<n-1
The center vertex v is labeled as f*(vo) = 4mk, and if k = n, we have f*(vy) = 0.
Case (2): m = (8k —3)mod4n, 1 <k < 4.
(k)

In this case the vertex Vpo(m41) in the circle C,,” will repeat with the center vertex vy. To avoid this
2

problem we replace the labels of the two edges v, (mgt
fOp (252 Vo — (1 1)) =2mn+m(2k —1) + 1 and f(vkm o1y Opy (3 ) =2mn+m(2k—1) —1
and we obtain the labels of the corresponding vertices as follows f (vkm (m+l)) = 2m(4k — 1) +
2, f* (vkmi(mzq)) = 2m(4k — 1) +4 and f* (Ukmf("’T*)) = 2m(4k — 1) + 6. The center vertex vy is
labeled as f*(vg) = 2m(4k — 1). The rest vertices are labeled as in case (1).
Case (3): m = (8k+1)mod4n, 1 <k <5 —1.
(5+k)

In this case the vertex V(i) (2 in the circle C,2 will repeat with the center vertex
2 2

) Vkm—(m51) and g (51 ) Uk — (3 That is

vp. To avoid this problem we replace the labels of the two edges Unn(48)— (1) O (3 4k) (1) and

U (4K)— (m51)? m(ﬂ+k) (m 3)- That is f(v, (3+k)— (T+1)vm(%+k)7<m7£1)) = 3mn+ m(2k — 1) + 1 and
f (vm (8K — () (g +h) — (m53) ) =3mn+ m(2k +1) — 1 and we obtain the labels of the corresponding

vertices as followsf (v (k) — (5 )) =2m(dk+1)+2, f*(v,, (34k)— (,,,2,1)) = 2m(4k +1) +4, and
o U3 4+k)— (153) ) = 2m(4k +1) + 6 and in this case the center vertex vy is labeled as f*(vy) =
2m(4k + 1). The rest vertices are labeled as in case (1).

Case (4): m = 1lmod4n

In this case the vertex v,,,,,_1 in the outer circle C,<:> will repeat with the center vertex vy. To avoid this
problem we replace the labels of the two edges v,,,—20;,,,—1 and Umn¥pn(n—1)+1- Thatis f(vmun—20mn—1) =

m(3n +2) and f(VpnVy(n—1y41) = m(3n +2) — 4 and we obtain the labels of the corresponding vertices

as follows f*(vyy—2) = 2m+2 f(Omn-1) = 2m+4, f*(vpn) = 2m —2and f*(vy,(,-1)41) = 0, the
center vertex vy is labeled as f*(vg) = 2m. The rest vertices are labeled as in case (1).
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Ilustration. The edge even graceful labeling of the polar grid graphs P36, Pis6, Pi76 and Pos ¢ respectively
are shown in Figure 6.
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Figure 6. Cont.
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Figure 6. The edge even graceful labeling of the polar grid graphs Pj36, Pi5¢, Pi76 and Pasp.

Theorem 3. If m is an even positive integer greater than or equal 4 and n is an odd positive integer greater than
or equal 3. Then the polar grid graph Py, , is an edge even graceful graph.

Proof. Let the polar grid graph Py, , be labeled as in Figure 7. Let f : E(G) — {2,4,...,2q}. O
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First we label the edges of the circles C,(f ), 1 < k < n begin with the edges of the inner most circle

(m)

C,(n1 ) to edges of the outer circle C;,’ as follows:
FOn(e-1)+iVmk-1)+i+1) = 2m(k = 1) + 21, f(OmO(k—1)mt1) =2km, 1 <i<m—1,1<k <n.

Second we label the edges of paths Pyjr)l, 1 < k < m begin with the edges of the
path P,ii_)l as follows: Move anticlockwise to label the edges vyv1, VoV, VoUm—1, - .-, VU3, Vo2
by 2mn + 2, 2mn + 4,2mn + 6, ..., 2m(n + 1) — 2, 2m(n + 1), then move clockwise to label the
edges 1041, V2Umt2, V3Ums3, .-, Up—102m—1, UmV2m by 2m(n +1) +2,2m(n +1) +4,2m(n+1) +
6,...,2m(n +2) —2,2m(n + 2), then move anticlockwise to label the edges vy;1102m+1, V2m¥3m,
V2m—193m—1s -+ +» Om+302m+3, OUm+202m+2 by 2?1’1(1’1 + 2) + 2, 2711(1’1 + 2) + 4, 2m(n + 2) +6,...,
2m(n + 3) — 2,2m(n + 3) and so on.  Finally move anticlockwise to label the edges

Um(n—2)41%m(n—1)+17 Ym(n-1)419mn, Um(n—1)—-1%mn—1,- - Vm(n—2)43%m(m—1)+3s Um(n—2)+2Vm(m—-1)+2 by
2m(2n — 1) +2,2m(2n — 1) +4,2m(2n — 1) +6,...,4mn — 2,4mn.

Imin -1 +6

2min-2+6

mn-1

Figure 7. Labeling of the polar grid graph P, , when n is odd and n > 3.

The corresponding labels of vertices mod4mn are assigned as follows: There are four cases

Case (1) m = 4kmoddn, 1 < k <n —2; m = (4n — 2)mod4n and m = Omod4n

F @g—rymgi) = 4m(2k—1) +4i+2,1 < i < m, 1 < k < n—1. That is the labels of the
vertices in the most inner circle C,(nl ) are assigned by f*(v;) = 4m +4i+2,1 < i < m, the labels of
the vertices in the circle C,(n2 ) are assigned by f*(v,,1;) = 12m + 4i + 2, the labels of vertices of the

n—1
circle C,(ﬂ ) are assigned by f* (W +1) = 4mn — 8m + 4i + 2, the labels of vertices of the circle
n+l

n+3
C,(,, ) are assigned by f *(vm(z#” +1) = 4i + 2, the labels of vertices of the circle C,(,, ) are assigned
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by f*(% +1i) = 8m+4i+2, ..., the labels of the vertices in the circle C,(nnfl) are assigned by
F Omn—2)4i) = 4mn —12m+4i +2,1 < i < m and the labels of the vertices of the outer circle
C,(n) are assigned by f*(0;,(,— 1)+1) =4mn —4m+2i+2,1 < i < m. The labels of the center vertex
v is assigned by f*(vg) = m?(2n + 1) when m = 4kmod4n, we have f*(vg) = m(4k + 1), when
m = (4n — 2) mod 4n, f*(vy) = 4mn — m and when m = 0mod4n, f*(vy) = m.

Case (2) m = (8k — 2)mod 4n, 1 < k < 51,

In this case the vertex v, (ms2) in the circle Cy,

(k)

will repeat with the center vertex vy. To avoid
this problem we replace the label of two edges v, (mz»2>vk"17(mT—2) and Ukm—(%)vkmf(’"gé)' That is
F @ (22O n2)) = m(2k = 1) + 732 and f(0),_(m2) 0y, (ne)) = m(2k 1) + "7 and
we obtain the labels of the correspondmg vertices as follows f*(v,, <m+2)) = m(Bk—1)+2,
f* (v, (m42)) =m(8k—1)+4and f*(vkmi(mz—é)) = m(8k — 1) + 6. In this case the center vertex vy is

labeled as f*(vg) = m(2mn +m + 1) = m(8k — 1). The rest vertices are labeled as in case (1).
Case 3) m = (8 — 6)moddn,1 < k < ”T_l andm # 2. In this case the

( n+22k—1 )

vertexX v uizk-1y (mi2, in the circle Cy will repeat with the center vertex vy. To avoid
m(*z*) (T)

this problem we replace the labels of the two edges Um(p1+22k—l)_(miz)vm(wﬁ»zzkfl)_(msz) and

Um(n+22k—1)_(mT—2)vm(n+22k—l)_(mT—ﬁ) That is f( n+2k 1) (m+2>v (n+2k 1) (m—Z)) = mn +2m(k_ 1) +

4
’”TH and f(v, (et (m2) Uy ) (e (,)) = mn +2m(k — 1) + "3= 2 and we obtain the labels of

the correspondmg Vertlces as follows f*( (12 (2 ) = m(8k — 5) +2, f* (v, (2ol (2 )=
m(*y=)— (") m(y=)— (")
m(8k —5) +4and f*(v,, (m=1)_(ms )) m(8k — 5) + 6 and in this case the center vertex v is labeled
4
as f*(vg) = m(8k —5). The rest vertices are labeled as in case (1).

Case (4) m = (4n — 4)mod4n. In this case the vertex Upn—(m42) in the outer circle C,(f)
will repeat with the center vertex vy. To avoid this problem we replace the labels of the
two edges U (256 Ui — (252 and Umn¥y(n1)41- That is f(v,,,_ m+6)vmn7<mT+2)) = 2mn and
f(Omn0y(u—1y41) = m(2n — 1) — 4 and we obtain the labels of the corresponding vertices as follows
F (0 m+6)) 4mn —2m +2, f*(v,, m+2)) = 4mn —2m + 8, f*(Uyy) = 4mn —3m — 2 and
F(Omn—1)+1) = 4mn —5m and in thls case the center vertex vy is labeled as f*(vg) = m(4n — 3).
The rest vertices are labeled as in case (1).

Ilustration. The edge even graceful labeling of the polar grid graphs Pios, P25, Pias, Pies, Pigs and Py
respectively are shown in Figure 8.

Remark 2. In case m = 2, nis odd, n > 3.

Let the label of edges of the polar grid graph P, , be as in Figure 9. Thus we have the labels
of the corresponding vertices as follows: f*(v;) = 12; f*(v;) = 16i —2,2 <i < ”T_l; f (Vnia) =
2
16i —10,1 <i < L f*(v,) =81 —2; f*(v;) =161 +2,1 < i < L, f*(v’%) =2 f*(v’,ﬁzz,-fl) =
16i —6,2 < i < 7L, f*(¢/;) =0and f*(vg) = 4.
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Figure 8. Cont.
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Figure 8. The edge even graceful labeling of the polar grid graphs Pio5, Pio5, Pias, Pies, Pigs and Pas.
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v, 2 n+1 4n+ﬁm-‘m+i
) V- ’ U}: )

4n +2

Figure 9. The labeling of the polar grid graph P, ,, n > 3.

Illustration. The edge even graceful labeling of the polar grid graphs P, 5 is shown in Figure 10.

Figure 10. The labeling of the polar grid graph P, 5.

Theorem 4. If m and n are odd positive integers greater than 1. Then the polar grid graph Py, ,, is an edge even
graceful graph.

Proof. Let the polar grid graph Py, , be labeled as in Figure 7. Let f : E(G) — {2,4,...,2q}. O

The corresponding labels of vertices mod4mn are assigned as follows: There are two cases:
Case (1) n = 1 mod4, this case contains five subcases as follows:

SubCase (i) m = (4k —3)mod 4n, 2 <k <n

F @g—rymgi) = 4m(2k —1) +4i+2,1 <k <n—-1,1 <i < m. That is the labels of vertices

of the most inner circle C,(n1 ) are assigned by f*(v;) = 4m + 4i + 2, the labels of vertices of the
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circle C,(n2 ) are assigned by f*(v,,1;) = 12m + 4i + 2, the labels of the vertices of the circle Cy, ()

n1
2
i
are assigned by f*(v (-3 +i) = 4mn — 8m + 4i + 2, the labels of the vertices of the circle C,, (*5%)
2
43
are assigned by f*(v ,,,(,,,1)+7,) = 4i + 2, the labels of the vertices of the circle Cfn ) are assigned
2

by f*(v ,,,(Hl L ) = 8m+4i+2,..., the labels of the vertices of the circle C,(,,"_U are assigned by

f*(vmw,z)“) =4mn —12m +4i+2, 1 < i < m and the labels of the vertices of the outer circle c,(,;“)
are assigned by f*(v,,(y_1)14) = 4mn —12m +2i+2,1 < i < m. The label of the center vertex vy is
assigned by f*(vg) = 2mn + 2m(2k — 1), when k = 1, we have f*(vg) = 0.

SubCase (i) m = (8k —5)mod4n,1 < k < ”erl, m # 3. In this subcase the

(rz%zkfl)

vertex Uy (et ) _ (sl in the circle Cy, will repeat with the center vertex vy. To avoid
4 2

this problem we replace the labels of the two edges V() (1) Ok y (mo1 and

vm(n#ik—l)7(mz—l)vm(ix+ik—l)7(n12—3) That is f( n+4k l) (mz»l)vm()w-ik—l)i(%)) = m[Zk + 712;3} + 1 and

f(vm("*%f“l )= (250 ) Uy etk )7(%%3)) = m[2k + ” 3] — 1 and we obtain the labels of the corresponding

vertices as follows f*( (L) (st 1)) = 2mn +4m(2k — 1) +2, f*(v,, (nidee1) (no1)) = 2mn+
2

4m(2k — 1) +4, f*(v, (ntiet)_(m=3)) = 2mn + 4m(2k — 1) + 6, and in thls case the center vertex

v is labeled as f* (Uo) = 2mn + 4m(2k — 1). The rest vertices will be labeled as in subCase (i).

(74)

Remark 3. When n = 1mod4 and m = 3, in this case the vertex Vg(n=1y 41 in the circle Cy will repeat

with the center vertex vy. To avoid this problem we replace the labels of the two edges 31 4903143 and
1 —
Os(agt) 41732 o THOHS F (Og(2) 503001 1) = B070) 6 (0301 4Py 15) =307 +
and we obtain the labels of the corresponding vertices as follows f*(v, (n5) 41) =6n+10, f*(0v, 71)+2)
4
6n+ 18, f*(v3(ﬂ)+3) = 6n + 16 and the center vertex vy is labeld as f*( 0) = 6n+12.
4

SubCase (iii) m = (8k — 1)mod4n, 1 < k < ”4;5. In this subcase the vertex Uy (b ) (i1
4 2

+4k—1
4

) will repeat with the center vertex vg. To avoid this problem we replace
the labels of the two edges vm(S)x+4k+l )—( m+1 )Um( 3n+3k+1 )7(mT—l) and U n( 3n+4k+l )— ( m—1 ) (3n+4k+1 )7(m7—3) .

1)) 2mn + m[2k — "'H] + 1 and f(v,, (k1) (1)

] — 1 and we obtain the labels of the correspondmg

in the circle C,(ﬂ

™|

That is f( 3n+4k+l) (nH»l)U (3n+4k+1) (
n+

Uy (Bt ) (sz)) = 2mn + m[2k —
vertices as follows f*(v,, (Brsdke) (%Q = 2mn + 8km +2, f*(v, (it (%)) = 2mn + 8km +
4, f*(v,, (Bndkaty <mz3)) = 2mn + 8km + 6, and in this case the center vertex vy is labeled as f*(vg) =
2mn + 8km The rest vertices will be labeled as in subCase (i).

SubCase (iv) m = (8k — 1)mod4n, ”+3 < k < ”T_l In this case the vertex
Upn(dhmps) (gl in the circle C,(nH <)

will repeat with the center vertex vg. To avoid
this problem we replace the labels of the two edges vm(zyj,ﬂ)7(,,%1)%1(“,4,“)7(,,,271> and

vm(4k—ix+1)7(mT—l>vm(4k—4n+l)7(mz—3) That is f( 4k n+1) (m2+1)vm<4k—1+1)7<m7—1)) = m[Zk - ”TH} + 1 and
f(vm(4k—4n+1)7(%)0m(4k—r—1)7(1n53)) = m[2k — "“] — 1 and we obtain the labels of the corresponding

vertices as follows f*(vm(4k,4,+1)7(m7+1)) 2mn + 8km + 2, f*(v, (gt (rrxgl)) = 8km — 2mn +

4, f*(v, (dmnty ("’E3>) = 8km — 2mn + 6, and in this case the center vertex v is labeled as f*(vg) =
8km — Zmn The rest vertices will be labeled as in subCase (i).

SubCase (v) m = (2n — 3) mod4n. In this case the vertex v,,,_1 in the outer circle Cﬁ: ) will repeat
with the center vertex vy. To avoid this problem we replace the labels of the two edges v;,,,—2v,,—1 and
OmnUpi(n—1)+1- Thatis f(Vpn—2 Vmn—1) = 2mn — 4, f(Vmn0yy(y—1)+1) = 2mn and we obtain the labels
of the corresponding vertices are as follows f*(vy,_2) = 4mn —2m + 2, f*(vyy—1) = 4mn —2m + 4,
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f*(Omn) = 4mn —2m — 2 and f*(0,,(y_1)41) = 4mn — 4m, and in this case the center vertex vy is
labeled as f*(vg) = 4mn — 2m. The rest vertices will be labeled as in subCase (i).

Ilustration. The edge odd graceful labeling of the polar grid graphs P35, Pi35, Pi15, P79, Pis5 and Prs
respectively are shown in Figure 11.

Case (2) n = 3mod4. This case contains also five subcases as follows:
SubCase (i) m = (4k —3)mod4n, 2 <k <n
FOg—1ymsi) = 4m(2k = 1) +4i+2,1 < k < n—1,1 < i < m. That is the labels of vertices

of the most inner circle Cr(,,l) are assigned by f*(v;) = 4m + 4i + 2, the label of vertices of the circle

n—1
C,(n2 ) are assigned by f*(vy4) = 12m + 4i + 2, the labels of vertices of the circle Cﬁ,, ) are assigned
n+l
by f* (V-1 +i) = 4mn — 8m + 4i + 2, the labels of vertices of the circle Cﬁn ) are assigned by
LIS
n ) =
8m +4i+2,..., the labels of vertices of the circle C("fl) are assigned by f*(0,,(,_2)4i) = 4mn —12m +

n+3
FH(Vmn—s) +i) = 4i + 2, the labels of vertices of the circle C,(,, ) are assigned by f* (v, ()
2

4i+2,1 <i < mand the labels of the vertices of the outer circle C,(n) are assigned by f*(vy,(y—1)44) =
4mn —12m +2i+2,1 < i < m. The label of the center vertex vy is assigned by f*(vg) = 2mn +
2m(2k — 1), when k = 1, we have f*(v;) = 0.

SubCase (ii) m = (8k — 5)mod4n, 1 <k < "T’3, m#3

( 3n+;1k—1 )

In this subcase the vertex v (L) (m in the circle Cy, will repeat with the center vertex

vg. To avoid this problem we replace the labels of the two edges v (Bl (1)U, Stk mt)

4 2 4 2
and v (3n+4k l) (m l)vm(31x+4k—l>7(m2—3) That is f( 3n+4k l) (mZLl)Um(SnJr;lk—l)i(%)) =2mn + m[Zk -
23]+ 1 and f(v,, (Bt (&;)vm(swqu)f(ﬂ?)) = 2mn + m[2k — £3] — 1 and we obtain the
labels of the Correspondmg vertices as follows f*(v (3”*’4}‘*1)_("’17“)) = 2mn + 4m(2k — 1) +
2
2, f*(0, 3n+2k—1)_(mT—1)) = 2mn +4m(2k — 1) + 4, f*(v,, (amttt) (,,,2,3)) = 2mn + 4m(2k — 1) + 6,
and the label of the center vertex vy is assigned by f*(vg) = 2mn + 4m(2k — 1). That rest vertices will
be labeled as in subcase (i).

Figure 11. Cont.
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Figure 11. The polar grid graphs P35, Pi35, Pi15, P79, Pi55and P7s.

-1
Remark 4. When n = 3 mod4 and m = 3, we have the vertex U3ty 41 in the circle C,(ﬂ Y will repeat

with the center vertex vy. To avoid this problem we replace the labels of the two edges Us(3nc1) 53301 43

; _ a(3n—1 _
and U3(3-1) 4103311 ) 43 That is f(vs(%)ﬂ%(%)-;-a) = 3(*%5=) +6and f(vs<3n4;1)+103(%)+3) =

3(3%L) + 4 and we obtain the labes of the corresponding vertices mod4dmn are as follows: f* (Us(% ) 1) =
6n + 10, f*(v3(%)+2) =6n+18, f* (03(%)+3) = 61 + 20 and the label of the center vertex vy is assigned
by f*(v) = 6n +12.

Note that P33 is an edge even graceful grapg but not follow this rule. See Figure 12.

20

Figure 12. The polar grid graphs Ps 3.
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SubCase (iii) m = (8k — 1)moddn, %5 <k < 1

In this subcase the vertex Upy(p=1y _ (mi1) in the circle C,(:kifnil) will repeat with the center vertex
vp. To avoid this problem we replace the labels of the two edges Upy(Bhon=t)(me1y Oy dhonet ) (moty
andvm(4k,4n,1) 1) Oy =y (23 Thatis f(v,, (th=n=ty (%)DM(%)*(%)) = (2k—1)m+1and
f(v"l(%%)i(ﬂr])v J(Hmp=l) (3 3)) 2k —1)m — 1 and we obtain the labels of the corresponding
vertices as follows: f*(vm(y{#)f(,%l)) = 2m(4k — 1) +2, f*(v,, (dk=p=)_ (m%l)) =2m(4k—1)+4
and f*(v,, (epely (,,,2,3)) = 2m(4k — 1) + 6. The label of the center Vertex v is assigned by f*(vg) =

2m(4k — 1) The rest vertices will be labeled as in subCase (i).
SubCase (iv) m = (8k — 1)mod4n, 1 < k < ”2;1

(n+4k+l>

In this subcase the vertex Uy (et y _ (st in the circle C;, * * will repeat with the center vertex
4 2

vp. To avoid this problem we replace the labels of the two edges Upy(edsty (ma1) Oy nadhsty  (mo1y and
Unl('l“ik*l),(%)vm(”*“ik*l) (m 3) That is f( n+4k+l) (ﬂl;l)vnl(ﬂ‘f’i}(‘f*l)i(%)) = (2k + L 1)1’]’[ + 1 and
flo, (1) (1) Uy e ) (mT4)) (2k + 2 l) — 1 and we obtain the labels of the corresponding
vertices as follows f (v, (idkee1)_ (mg1 )) = 2mn +8km +2, f*(v,, (nedie1) (%)) = 2mn + 8km +
4, f*(v ( (et (%)) = 2mn + 8km + 6 and the label of the center vertex vy is labeled as f*(vg) =
2mn + 8km The rest vertices will be labeled as in subCase (i).

Remark 5. Ifk = "1 we have f*(v,, (nedki1) (mp1)) = 8km —2mn +2, f*(o, (et (mjj)) = 8km —
2

2mn +4, f*(v, (k) <,,,2,3)) = 8km 2mn + 6 and the center vertex vy is labeled as f*(vg) = 8km —
2mn.

SubCase (v) m = (2n — 3)mod4n

In this subcase the vertex v,,;,,_1 in the outer circle C,(n" ) will repeat with the center vertex vy.
To avoid this problem we replace the labels of the two edges v;,—20,,,,—1 and OpinUpy(n—1)+1- That is
f(Omn—2Vmn—1) = 2mn —4, f(Omn0y(y—1)11) = 2mn and we obtain the labes of the corresponding
vertices as follows:

f(Omn—2) = 4mn —2m +2, f*(vyp_1) = 4mn —2m +4, f*(vn) = 4mn —2m — 2 and
F*(Omn—1)41) = 4m(n — 1) and the label of the center vertex vy is assigned by f*(v) = 2m(2n — 1).

The rest vertices will be labeled as in subCase (i).

Iustration. The edge odd graceful labeling of the polar grid graphs P37, P37, P9y, P11y and Pisy
respectively are shown in Figure 13.
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Figure 13. The polar grid graphs P37, P13 7, Pi97, P11,7 Pi57.

3. Conclusions

This paper gives some basic knowledge about the application of Graph labeling and Graph Theory
in real life which is the one branch of mathematics. It is designed for the researcher who research in
graph labeling and graph Theory. In this paper, we give necessary and sufficient conditions for a polar
grid graph to admit edge even labeling. In future work we will study the necessary and sufficient
conditions for the cylinder P, x C,, torus C;; X C, and rectangular P, x P, grid graphs to be edge
even graceful.

Funding: This work was supported by the deanship of Scientific Research, Taibah University, Al-Madinah
Al-Munawwarah, Saudi Arabia.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
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Abstract: Topological indices are graph invariants computed by the distance or degree of vertices of
the molecular graph. In chemical graph theory, topological indices have been successfully used in
describing the structures and predicting certain physicochemical properties of chemical compounds.
In this paper, we propose a definition of generalized bridge molecular graphs that can model more
kinds of long chain polymerization products than the bridge molecular graphs, and provide some
results of the edge versions of atom-bond connectivity (ABC,) and geometric arithmetic (GA,)
indices for some generalized bridge molecular graphs, which have regular, periodic and symmetrical
structures. The results of this paper offer promising prospects in the applications for chemical and
material engineering, especially in chemical industry research.

Keywords: atom-bond connectivity index; geometric arithmetic index; line graph; generalized bridge
molecular graph

1. Introduction

Let G be an undirected simple graph without loops or multiple edges. We denote by V(G) the
vertex set of G and we denote by E(G) the edge set of G. We denote by e = uv the edge connect vertices
1 and v or vertices u and v adjacent. We denote by P,;, C;;, and S, the path, cycle, and star of n vertices,
respectively. We denote by N(v) the open neighborhood of vertex v, i.e., N(v) = {ujuv € E(G)}.
We denote by d(v) or dg(v) the degree of a vertex v of a graph G, i.e., d(v) = |[{u € N(v)}|. Let L(G)
or G be a line graph of G, so each vertex of L(G) corresponds an edge of G. Two vertices of L(G)
are adjacent if and only if a common endpoint is shared by their corresponding edges in G [1].
The degree of edge e in G is denoted by d (¢ (e), which is the number of edges that share common
endpoint with edge e in G; it is also the degree of vertex ¢ in L(G). We give simple a illustration to
explain the relationship of original graph and corresponding line graph in Figure 1. We can see u, v, w
denote corresponding vertexes, and ¢, f, g, h, i, j denote corresponding edges in original graph G and

Symmetry 2018, 10, 751; doi:10.3390/sym10120751 151 www.mdpi.com/journal /symmetry
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denote corresponding vertices in line graph L(G). We get d(u) = d(v) = 3,d(w) = 2. d ) (e), which
is the degree of vertex e in L(G), is also the degree of edge e in G, thus d () (e) = 4 in Figure 1.

G L(G)

Figure 1. The original graph G and corresponding line graph L(G).

Topological indices are graph invariants, which are obtained by performing some numerical
operations on the distance or degree of vertices of the molecular graph. In chemical graph theory,
topological indices are the molecular descriptors. They have been successfully used in describing the
structures and predicting certain physicochemical properties of chemical compounds. To study the
relationship between molecular structure and physical properties of saturated hydrocarbons, Wiener
index was first published in 1947 [2], and the edge version of Wiener index, which can be considered as
the Wiener index of line graph of G, was proposed by Iranmanesh et al. in 2009 [3]. As the important
role of topological indices in chemical research has been confirmed, more topological indices appeared,
which include atom-bond connectivity index and geometric arithmetic index.

In chemical graph theory, hydrogen atoms are usually ignored when the topological indices are
calculated, which is very similar to how organic chemists usually simply write a benzene ring as a
hexagon [4]. Now, three types of graphs of Cy4Hpg are illustrated in Figure 2.

(@) ®) (@)

Figure 2. (a) Co4Hpg ball and stick model graph in 3D; (b) Cp4 Hog chemical structure graph; and (c)
Cy4Hpg model graph in chemical graph theory.

To explore the properties of simple short chain compound products, Gao et al. [5] defined some
join graphs such as P, + Cyy, Py + S, Cip + Py + Ciity Sy + Py + Sy, and Gy + Py + Sy, created by Py, Cyy
and S;; and obtained the ABC, and G A, indices of these graphs. In another paper, Gao et al. [6] defined
the bridge molecular structures, which can be used to research some long chain polymerization
products, and the forgotten indices (F(G)) formulae of some simple bridge molecular structures
constructed by Py, Cg or K3 are presented. The forgotten index is defined as F(G) = Y. (d(v)?) [7].

veV(G
In this paper, we define generalized bridge molecular graphs that could cover more kinds(o; long chain
polymerization products, and the edge-version atom-bond connectivity and geometric arithmetic
indices of generalized bridge molecular graphs are calculated.

To facilitate the reader, the topological indices discussed in this thesis are all given in Table 1.
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Table 1. The definition of topological indices.

Index Name Definition Proposed Recent Studied
atom-bond connection index ABC(G) = % % [8] [9-11]
uveE(G)
. . _ dc)(e)+dyc)y(e2) -2
edge version of ABC index ABC,(G) = elez€l§L(G)) Ty ey (@) [12] [5,13,14]
geometric arithmetic index GA(G)= Y mem [15] [16-18]
uveE(G) ¢ ¢
edgeversionof GAindex  GA.(G)= ¥  Nualig(®) [19] [5,12,19-21]

eercE(L(G) i) (er)+Hc) (e2)

InTable 1, dg(u) and dg(v) are the degrees of the vertices u and vin G, and dj(¢)(e1) and d () (e2)
are the degrees of the edges e; and e; in G.

2. Main Results and Proofs

2.1. Definition of the Generalized Bridge Molecular Graph

Before we start a discussion, we give the definition of the generalized bridge molecular graph as
follows. For a positive integer d, d pairwise disjoint molecular graphs {G(1), G®@), .., G} with () €
V(G(i)) foreachi =1,2,---,d,and d — 1 pairwise disjoint path molecular graphs P(l), P(Z), s, pld-1)
(called bridges), the generalized bridge molecular graph GBG(G(U, o), G2 @), ... G y@),pd)
P@), ..., pld=1)) js the graph obtained by connecting the vertices o") and v(**1) by a path P() for
which two end vertices are identified with v() and v(*D) fori = 1,2,..,d — 1 (See Figure 3). When
G :=GW, P:= P, v := o) for each i, we simplify GBG(G), v(1), G?), v, ... G, (@), p(D),
p@ ... P(d‘l)) to be GBG(G, v; P;d). In this paper, if G is a star, then v is the central vertex and
if G is a cycle, v is considered as any vertex. In such cases, we further simplify GBG(G, v; P;d) to
be GBG(G, P;d). The bridge molecular graph’s bridge is strictly P, in [6], which limits the scope of
modeling objects. The generalized bridge molecular graphs can model more kinds of long chain
polymerization products than the bridge molecular graphs, because the bridge can be either P, or P,
and n > 3.

P(l) P(dfl)
/—‘ﬁ e o /—‘ﬁ
V(a'—l)
G(dfl)

Figure 3. The generalized bridge molecular graph GBG(G(),0(), 6,0, .. G, v(); p() p@), _ pld-1))
2.2. Results and Discussion

In the following, we discuss the edge-version atom-bond connectivity and geometric arithmetic
indices of some generalized bridge molecular graph. The line graph GBGE (Sm, Pu;d) of GBG(Sy, Py; d)
is illustrated in Figure 4.
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S(]:

S{d*l)
"

S{di

GBG(S,, P d) GBG*(S,, P:d)
Figure 4. The generalized bridge molecular graph of GBG(Sy, Py;d) and GBGE (S, Py;d).

Theorem 1. Let GBG(S,,, Py; d) be the generalized bridge molecular graph for n > 4, d > 2 and m > 2
(see Figure 4), then the ABC, and GA, of GBG(S,, Py; d) are

ABC.(GBG(Sy, Py;d)) = §(d_1)(n_2)+d;+21@
2(m = 1)/ 22 4 a(d - 2)m - 1)y 25—
—1)(m —2)v2m -2

+(m—2)V2m — 4+ (d =2)(m

7

2m

W MA=DVIED gy 4 d—2)

GA:(GBG(Sp, Py;d)) = mai2 m+3
JiE—m Vi m
F(m —1) = —= +4(d = 2)(m — 1)W

+g(m —1)(m—2).

Proof. This line graph has 2 — 2m — n + 4 2(m? 4+ m+2n — 4) edges. If dp(c)(e1) and dp (g (e2) are the
degree of edge of ¢ and e, then there are2edges of typedy(c)(e1) = m,dyg(e2) = 2 Z(d 2) edges of
typedp)ler) = m+1,dyg(e) =2, (d—1)(n— )edgeSOftYPech)( 1) =dpc)(e2) =2,d -2
edges of type d (y(e1) = dp(g)(e2) = m +1,2(m — 1) edges of type d; (¢)(e1) = dL(G)( ) =m—1,
2(d — 2)(m — 1) edges of type dygy(e1) = m, dyg)(e2) = m+1, (m—1)(m—2) edges of type
drc)ler) = dp(e2) = m—1, and %(m —1)(m — 2) edges of type dj(g)(e1) = dp(g)(e2) = m.

Hence, we get
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m+2—2 m41+2-2
ABC.(GBG(Su, Py;d)) = 2< s >+2(d72)< W)

+(d71)(n74)< Z;i;2>

+(d_2)< m+1+m+1—2>

(m+1)x (m+1)

m+m+1-2
mx (m+1)

m—1+m—1-2
*W‘”W‘”(<m—nxm—n>

+2(d —2)(m — 1)(

i ()
- ?(d—l)(n—z)—i-%\/ﬂ

+2(m—1),/im 3+2(d 2)(m —1) fn’f;;

(m—2)vam—dy @B Dim=2)y2m =2

2m

GAe(GBG(Sy, Pi;d)) = 2<2m>+2(d 2 <2W>

m+2 m+1+2

+d=1)(n 74)(%?)

+u_@c m+nxw+n)

m+1l+m+1
- (LT
o (WD)
+(m—1)(m— 2<2V 71+m7171)

42m  4(d —2)/2m+2

S M @ - -4+ (- 2)
2

+4(m )VZZ’; 1’”+4(d72)( —1) VZ’ZZL’“

+ - 1)(m~2)

The proof is complete. ]
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For Example 1, in Figure 5, 2,7,7,12 — tetramethyltridecane can be modeled by GBG(Ss, Ps; 3),
s0 ABC,(GBG(S3, Pg;3)) ~ 13.76052 and GA.(GBG(S3, Ps;3)) ~ 19.72337.

(@ ® ©)

Figure 5. (a) 2,7,7,12-tetramethyltridecane ball and stick model graph in 3D; (b)
2,7,7,12-tetramethyltridecane chemical structure graph; and (c) 2,7,7,12-tetramethyltridecane
model graph in chemical graph theory.

Theorem 2. Let GBG(S,,, P5;d) be the generalized bridge molecular graph forn = 3,d > 3 and m > 2
(see Figure 6), then the ABC, and GA, of GBG(Sy,, P5; d) are

2m—1 2d—5 2m —3
ABC.(GBG(S, P5;d)) = 2 m2+m+m\/2m+2(m—1) P m
2m —1
+2(d—2)(m—1) m2+m+(m—2)\/2m—4
+(d—2)(m—1)(m—2) 3,
2m
4
GA.(GBG(Sp, P3;d)) = 2m+1\/m2+m+(2d75)
+L(m—1)\/m2—m
2m —1
4
_ —1Dvm?
+2m+1(d 2)(m—1)vVm?>+m
d
+§(m—1)(m—2).
m—1
S(i)
)
L e
S«gup
m—1
()
S 1:1(‘” u;u’)
GBG(S,, P,; d) GBG™(S,, P, d)

Figure 6. The generalized bridge molecular graph of GBG(Sy, P3;d) and GBGL (S, P3; d).
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Proof. This line graph has %(m2 +m+2) —2m — 1 edges. If d(¢)(e1) and d ) (e2) are the degree of
edge of ¢; and ey, then there are 2 edges of type d;(g)(e1) = d L(c)(e2) = m+1,2d — 5 edges of
type dpgy(e1) = m+1, dy)(e) = m+1,2(m —1) edges of type dpg)(e1) = m, dyg)(e2) =
m—1,2(d —2)(m — 1) edges of type d(¢)(e1) = mdp(g)(e2) = m+1, (m —1)(m — 2) edges of type
drc)(er) = dpg)(e2) = m—1, and d%Z(m —1)(m — 2) edges of type dj(g)(e1) = dp(g)(e2) = m.
Hence, we get

ABC,(GBG(Sy, P3;d))

2( m+m+1—)2>+(2d75)< m+1+m+1—2>

mx (m+1 (m+1)x (m+1)
+2(m—l)< 7mm+xn1(n:i1)2>
+2(d72)(m71)< %)

= n=2 (4 5 )

_ 2m —1 2d 5\/—+2( 1) 2m —3

m2+m m+1 m2 —m
+2(d —2)(m—1) :Z;; + (m—2)V2m —4
=2 -1m=2) s

2m

GA(GBG(Sy, Py;d)) = 2<@>+(2¢1 5 <2\/m>

m+m-+1 m+1+m+1

2 (2\/m>

m+m—1

+2(d—2)(m — <2\/m>< m+1>

m—+m+1

+(m—1)(m— 2(2V m=1) _1>

—1+m—1
—2( B 72)<2\/m>

d
+—2 m—1)(m -

4
— 2 _
7 Tvm +m+ (2d —5)

+ 4 (m—1)vVm?—m

2m —1

2 d—m-1)tm

2m+1

+g(m —1)(m—2).

The proof is complete. [

For Example 2, in Figure 7, 2,4,4,6 — tetramethylheptane can be modeled by GBG(S3, P5;3),
s0 ABC.(GBG(S3, P5;3)) ~ 9.394663 and GA.(GBG(S3, P5;3)) ~ 13.85764.
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}\}‘:‘lﬁ;& M
(a) )] (©)

Figure 7. (a) 2,4, 4, 6-tetramethylheptane ball and stick model graph in 3D; (b) 2,4, 4, 6-tetramethylheptane
chemical structure graph; and (c) 2, 4, 4, 6-tetramethylheptane model graph in chemical graph theory.

0]

Theorem 3. Let GBG(S,,, P; d) be the generalized bridge molecular graph forn = 2,d > 4 and m > 2
(see Figure 8), then the ABC, and GA, of GBG(Sy,, Pa; d) are

3m—4 3m—3

L S VO VY
2m2—3m—‘,-1+ (m=1) 2m2 —m

Jrz(d*:%)ﬂ(;”*1),/37"272 + (m —2)v/2m — 4
L@=2)m-1)m=2) s

ABC,(GBG(Sy, Py;d)) = 2(m—1)

2m
4m —3 d—4
T2\ 2 —am T o VA2
GA(GBG(Sy, Py;d)) = % 2m2—3m+1+%\/2m2—m
4v/2 d
+Tf(d73)(m71)+§(m71)(m72)

+4(\/4m2 —2m)

yo— +(d—4).

GBG(S,, P, d) GBG* (S

m’

Bd)

Figure 8. The generalized bridge molecular graph of GBG(S, P; d) and GBGE (S, Pp; d).
Proof. This line graph has 1m(dm +d — 4) edges. If dp(c)(er) and dp () (e2) are the degree of edge of e
and ¢y, then there are 2(m — 1) edges of type d () (e1) = 2m — Ld (g (e2) = m —1,2(m — 1) edges of
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type d (g (e1) =2m — Ldp () (e2) = m, 2(d —3)(m — 1) edges of type dr(c) (e1) = 2m,dL(G>(ez) =m,
(m —1)(m — 2) edges of type dj(g)(e1) = dy)(e2) = m—1, 2 (m — 1)(m — 2) edges of type
drc)(er) = dyg(e2) = m, 2 edges of type dy (g (e1) = 2m — Ldy(g)(e2) = 2m, and d — 4 edges of
type dygy(e1) = dpg)(e2) = 2m. Hence, we get

ABC(GBG (S, Pyd)) = 20m—1) (2= LHI AR
2m—1+m—2
*2("1*1)( m)

+aw73xm7n(M5%§§iE)

m—1+m—1-2
+(m—1)(m_2)( W)

2m—1+2m—2
+2( u)

(2m—1) x2m
2m+2m —2
Jr(di4>< 2m x 2m >
3m—4 3m—3
= 2m—1)/=————+2(m—1
(m—1) 2;11273111+1Jr (m—1) 2m? —m
=D JIN 22 g —a
L@=2)m=1)(m-2) s
2m
4m —3 d—4
2 ——4dm — 2
+ 4711272111Jr 2m "

GA(GBG (S, Pid)) = 2(m—1)<2 (2m*1)X(m71)>

2m—1+m—1

+%m_DG @m7UXm>

2m—1+m
+2(d —3)(m — 1)(227m>

+m7nmfnc—%i%%@§3)

IR Ly

2 m+m
2/ (2m —1) x 2m
S I e —
+ ( 2m —1+2m )

- (B

2m+2m
= 4<m71)\/2m273m+1+4(271)\/2m27m

3m —2 3 1

+$?m—@m—m+d

5(
2

4(V4m? —2m)
* 4m—1

m—1)(m—2)

+(d—4).
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The proof is complete. [

For Example 3, in Figure 9, 2,3,3,4-tetramethylpentane can be modeled by GBG(S3, P»;4),
s0 ABC,(GBG(S3, Py;4)) ~ 11.69568 and GA,(GBG(S3, Ps; 4)) ~ 17.24996952.

(@) (®) ()

Figure 9. (a) 2,3,3,4-tetramethylpentane ball and stick model graph in 3D; (b)
2,3,3,4-tetramethyl pentane chemical structure graph; and (c) 2, 3, 3, 4-tetramethyl pentane model graph
in chemical graph theory.

Theorem 4. Let GBG(Cy,, Py; d) be the generalized bridge molecular graph forn > 4,d > 2 and m > 3
(see Figure 10), then the ABC, and GA, of GBG(Cy, Py; d) are

ABC.(GBG(Co Puid)) = “2(d(m—3) + (@~ 1)(n—4) + 22+ Lo
—V2-3V6+4,
GA((GBG(Cw, Py;d)) = d(m—3)+(d—1)(n—4)
(i—&-@(d 2)+E+5

2
02
C(l)
.
C{Z)
" 2
0
c-n pl(""“:‘
p(d 1)
. Q7
(R N G W gl . P il
n-1 g 2
(d) 1
Cm p;d ) |,;c:r)
GBG(C,, P; d) GBG(C,, P, d)

Figure 10. The generalized bridge molecular graph of GBG(Cy;, Py; d) and GBGL(Cy, Pu; d).
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Proof. In Figure 10, the degrees of vertices in line graph GX(Gy(Cyy + P,)) are displayed near by
the corresponding vertices. This line graph has d(m + n + 3) —n — 4 edges. In addition, there are
d(m —3) + (d —1)(n — 4) edges of type d;(¢)(e1) = dp(c)(e2) = 2, 6 edges of type d ()(e1) = 2 and
dp(c)(e2) = 3, 6 edges of type dy (g (e1) = dL y(e2) = 3, 4(d — 2) edges of type dj(c)(e1) = 2 and
dp(c)(e2) =4, and 6(d — 2) edges of type d; ( 1) = dg)(e2) = 4. Hence, we have

ABC,(GBG(Cyy, Pyi;d)) = <d(mf3)+(d*1)(”’4)> (@)
o) 55)
+4(d 4)@/%) +6(d-2) (\/%)

= ?(d(m*'i)Jr(dfl)(n 1)+ (2vV2+ f)
—V2-3V6+4,
GAL(GBG(Cp, Pud)) = (d(m*3)+(d*1)(n—4)>(2\2/?>
2\2x3 23%3
+6< 243 >+6< 343 )
= d(m—3)+(d—1)(n—4)
(&-&-6)0{ z)+ﬂ+5

The proof is complete. [J

For Example 4, in Figure 2, C4 Hpg is (cyclohexa-2, 4-diene-1, 1-diylbis(propane-3, 1-diyl) )dibenzene,
which can be modeled by GBG(Cs, P5;3), so ABC.(GBG(Cg, P5;3)) =~ 22.52347702 and
GA.(GBG(Cs, P5;3)) ~ 31.65001155.

Theorem 5. Let GBG(Cyy, Ps; d) be the generalized bridge molecular graph forn = 3,d > 3, and m > 3
(see Figure 11), then the ABC, and GA, of GBG(Cy, P3; d) are

ABC.(GBG(Cy, P3;d)) = L2d(m —3) + (V24 7¥8)d + 4+ Y5 — 15/6

GAc(GBG(Cy, P3;d)) = d(m —3) + (A2 +7)d + 86 46+ 83 _ 82 _ 15,

Proof. In Figure 11, the degrees of vertices in line graph GL(GBG(Cy,, P3;d)) are displayed near by
the corresponding vertices. This line graph has d(m + 6) — 7 edges. In addition, there are d(m — 3)
edges of type dj(c)(e1) = dy(g)(e2) = 2, 4 edges of type d y(e1) = 2 and d;)(e2) = 3, 2(d — 2)
edges of type dj(g)(e1) = 2 and d; ) (e2) = 4, 6 edges of type d; )(e1) = dp(g)(e2) = 3,2 edges of
type dp(g)(e1) = 3 and dj()(e2) = 4, and 7d — 15 edges of type d (¢ (e1) = djc)(e2) = 4. Hence,
we have
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ABC,(GBG(Cy, P3;d))

d(m 4)(@) +4<\/¥)

= %?ﬂm—3y+bﬁ+7%%d+4
V15 15V6
T

GA(GBG(Cn, P5;d))

d(m —3) (Nm) + 4(2‘/273)

242 243
22 x4 2y/3x3
+2(d72)< 214 >+6< 313 )

+2 (zM) +(7d —15) (Nm)

344 414
42 8v6
= d(m—3)+(;—f+7)d+%+6
2
L8382y

7 3

The proof is complete. [J

GBG(C,, P;: d) GBG*(C,, P: d)
Figure 11. The generalized bridge molecular graph of GBG(Cy,, P3;d) and GBG(Cy,, P3; d).

For Example 5, in Figure 12, (cyclohexane-1,1-diylbis(methylene))dicyclohexane can be modeled
by GBG(Cé, P3;3), s0 ABCo(GBG(Ce, P3;3)) ~ 19.57183078 and GA.(GBG(C, P3;3)) ~ 28.78428831.
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& oo OUT

Figure 12. (a) (cyclohexane-1,1-diylbis(methylene))dicyclohexane ball and stick model graph
in 3D; (b) (cyclohexane-1,1-diylbis(methylene))dicyclohexane chemical structure graph; and (c)
(cyclohexane-1,1-diylbis(methylene))dicyclohexane model graph in chemical graph theory.

Theorem 6. Let GBG(Cyy, Po; d) be the generalized bridge molecular graph forn = 2, d > 4, and m > 3
(see Figure 13), then the ABC, and GA, of GBG(Cy, P2; d) are

V2 Ve 43 V10 3v2

ABCGBG(Co Pud)) = Ydm (v2+ Y0 22 VI0_3V2,
+3 +4\f+2\[+2\/>_7_4\/_£
GA(GBG(Cy, Pyid)) = dm +(i+i_1)d \F+ﬂ+£
l6v6 8v2
5 s 0t

(2)
Cm

GBG(C,, P: d) GBG(C,, P d)
Figure 13. The generalized bridge molecular graph of GBG(Cyy, P2;d) and GBG(Cy,, Py; d).
Proof. In Figure 13, the degrees of vertices in line graph GL(GBG(Cy,, P2;d)) are displayed near by
the corresponding vertices. This line graph has d(m — 5) — 6 edges. In addition, there are d(m — 3)
edges of type dy(gy(e1) = dyc)(e2) = 2, 4 edges of type d;(c)(e1) = 2, dyg)(e) = 3,2(d - 2)
edges of type dp(g)(e1) = 2,dp(c)(e2) = 4, 2 edges of type dy(gy(e1) = dyg)(e2) = 3, 4 edges of
type dcy(e1) = 3, dpg)(e2) = 5,d — 2 edges of type d;()(e1) = dp(g)(e2) = 4, 4 edges of type
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drcyler) = 4, dycy(ea) = 5, 4(d — 3) edges of type dj(g)(e1) = 4, d;c)(e2) = 6, 2 edges of type
dp(c)(e1) = 5,dp(c)(e2) = 6, and d — 4 edges of type dp () (e1) = dp(g) (e ) = 6. Hence, we have

ABC(GBG(Cy, Py;d)) = d(’"‘3)(\/¥)+4<\/¥>
+2<d—2)(\/¥>”(\/¥>
(222 ra-a( )
(522 raa-a(H22)
() ra-a( 522

= fd +(f+£+4f+£—¥)

+= +4\[+2\[+2f 4f—£

GA.(GBG(Cy, Pp;d)) = d(m*3)<2m)+4<2m>

242 243
2v/2 x4 24/3 %3
+2(d—2)< v >+2( e )

+4(2*/375> +(d-2) (Nm)

3+5 4+4
24 %5 2VA % 6
+4( i >+4(d73)( e )
25 %6 26 x 6
+2< 5+6 >+(d_4)< 6+6 )
= dm +(M+BT\/871)¢1+\F+16[ \HF
16v6 82
5 3

The proof is complete.y;(C¢sJC,) O

For Example 6, in Figure 14, 2'H,2"H-1,1" : 1/,1” : 1”,1"”-quaterphenyl can be modeled by
GBG(C(), P5;4),s0 ABC.(GBG(Cs, P2;4)) =~ 25.00131406 and GA@(GBG(Cé, Py;4)) &~ 37.44953704.

&/{ﬁf’@o@@m

Figure 14. (a) 2'H,2"H-1,1" : 1/,1” : 1”,1"”-quaterphenyl ball and stick model graph in 3D; (b)
2'H,2"H-1,1 : 1',1" : 1,1 -quaterphenyl chemical structure graph; and (c) 2'H,2"H-1,1" : 1/,1" :
1”,1"-quaterphenyl model graph in chemical graph theory.
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3. Conclusions

Topological indices are proven to be very helpful to test the chemical properties of new chemical
or physical materials. To describe more kinds of long chain polymerization products than the bridge
molecular graphs, we propose the generalized bridge molecular graph structures. In this paper,
we focus on some generalized bridge molecular graphs such as GBG(Sy,, Py;d) and GBG(Cy, Py; d)
and give the formulas of the edge version ABC and GA indices of these generalized bridge molecular
graphs. By demonstrating the calculation of real molecules, we find that some long chain molecular
graphs can be quickly modeled and their topological indices can be calculated using generalized
bridge molecular graphs. The results of this paper also offer promising prospects in the applications
for chemical and material engineering, especially in chemical industry research.
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Abstract: The convexity in triangular norm (for short, ® —convexity) is a generalization of Zadeh’s
quasiconvexity. The aggregation of two ®—convex sets is under the aggregation operator ® is
also ®—convex, but the aggregation operator ® is not unique. To solve it in complexity, in the
present paper, we give some sufficient conditions for aggregation operators preserve ® —convexity.
In particular, when aggregation operators are triangular norms, we have that several results such
as arbitrary triangular norm preserve ®p—convexity and ®,—convexity on bounded lattices, @
preserves @y —convexity in the real unite interval [0, 1].

Keywords: aggregation operator; triangular norm; ® —convex set

1. Introduction

Fuzzy set theory introduced by Zadeh in 1965, as an mathematical tool to deal with uncertainty
in information system and knowledge base, has been widely used in various fields of science and
technology. By applying fuzzy set theory, Zadeh in [1] proposed the concept of quasiconvex fuzzy set,
and has attracted wide attention of researchers and practitioners from many different areas such as
fuzzy mathematics, optimization and engineering. Subsequently, Zadeh’s quasiconvex fuzzy set was
generalized with a lattice L instead of the interval [0, 1]. A fuzzy set y : R" — L is quasiconvex if for
any x,y € R" and all A € [0, 1] the inequality

pAx + (1= A)y) > p(x) Aply) (1)

holds.
A quasiconvex fuzzy set has an important property: intersection of quasiconvex fuzzy sets is a
quasiconvex fuzzy set, i.e., let X C R", for any fuzzy sets y and v,

u and v are quasiconvex = min{u,v} is quasiconvex. )

The above condition is called intersection preserving quasiconvexity. This property is also true
for lattice valued fuzzy sets.

The theory of aggregation operators [2], has been successfully used in mathematics, complex
networks and decision making etc (e.g., see [3—6]). The arithmetic mean, the ordered weighted
averaging operator and the probabilistic aggregation are widely used examples. In reference [7]
Janis, Krél and Rencova pointed that the intersection of fuzzy sets is not the only operator preserving
quasiconvexity in general, and they gave someconditions in order that an aggregation operator
preserves quasiconvexity.

Symmetry 2018, 10, 729; doi:10.3390/sym10120729 167 www.mdpi.com/journal /symmetry
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Triangular norms are kinds of binary aggregation operations that become an essential tool in
fuzzy logic, information science and computer sciences. By using triangular norms, properties of
fuzzy convexity and various generalizations of fuzzy convexity were considered by many authors
(for example, see [8-11]). Suppose @ : [0,1]> — [0, 1] is a triangular norm, Nourouzi [10] given the
concept of ®—convex set which generalized Zadeh’s quasiconvex fuzzy set. A ®—convex set as
defined in [10] can also be generalized as being lattice-valued in the following sense. Let L be a lattice
and let ® : L? — L be a triangular norm. A fuzzy set y : R* — L is called ® —convex if for any
x,y € R"and all A € [0, 1] the inequality

pAx+ (1= A)y) > pu(x) @ pu(y) ®3)

holds.

Following [7,10], in the present paper, we continue to study sufficient conditions for aggregation
operators and triangular norms that preserve ®—convexity on a bounded lattice. In Section 3,
we give some sufficient conditions for aggregation operator preserving ® —convexity, those results are
generalizations of Propositions 2 and 3 (in [7]). Triangular norm is a kind of important aggregation
operator, we give some sufficient conditions for triangular norm preserving ® —convexity in Section 4.
And Section 5 is conclusion.

2. Preliminaries

We first give the basic definitions and results from the existing literature. In following, we use L
denote a bounded lattice (L <,0r,1p).

Definition 1. [2] An aggregation operation is a function A : L™ — L which satisfies

(i) Alay,ay,...,a,) < Ady,ah, ..., a,) whenever a; < al for1 <i<n.
(ii) A(OL,OL,...,OL) = OL and A(lL,lL,...,lL) = 1L-

A binary aggregation operation is said to be symmetric if for any aq,a, € L, A(ay,a2) = A(ap, a7).
A special aggregation function is a triangular norm defined as following.

Definition 2. [12] A map ® : L> — L is called a triangular norm if

(T1) a®b=b®a.

(T2) ;1 @b < ay®@bifa; <ay.
(T3) a®@ (b®c) =(@®b)@c.
(T4) a® 1, = a.

Example 1. The two basic triangular norms @ and ®p defined as the following are the strongest and the
weakest triangular norms on L, respectively.

a@pmb=aANb,
_Janb, abe{lL},
a®Dh_{ 0, otherwise.

Example 2. Suppose H = (0,A) C [0,1) and let x : H> — H be an operation on H which satisfies
(T1)—(T3) and

axb < min{a,b},
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axb, (a,b) € H%;
a®pb=
min{a,b} otherwise.

Then &y is a kind of triangular norms on [0, 1] follows from Proposition 3.60 in [13].

3. Sufficient Conditions for an Aggregation Operator Preserving ® —Convexity

In this Section, we generalize Propositions 2 and 3 (in [7]), and give some sufficient conditions for
an aggregation operator which preserves @ —convexity.

Theorem 1. Let A : L? — L be an aggregation operator on L, let y,v : R" — L be arbitrarily ®—convex
fuzzy sets. If A(a®@b,c®@d) = A(a,c) ® A(b,d) for each a,b,c,d € L, then A(p,v) is @—convex.

Proof. Let y,v: R" — L be arbitrarily ®—convex fuzzy sets, and x,y € R". Then we see

A(pv)(Ax+ (1= A)y)

A(u(Ax+ (1= A)y),v(Ax+ (1= A)y))

A(p(x) @ u(y), v(x) ®v(y))
Ap(x),v(x)) @ Au(y), v(y))

= A, v)(x) ® A(p,v)(y).

v

Thus, A(y,v) is ®—convex. [
The converse of Theorem 1, however, is in general not true. For example,
Example 3. Consider a lattice L = (0r,a,b,1y), where 0p, < a <1p,0p < b < 1, and a,b are incomparable

elements and the aggregation operator defined in Table 1. Let y, v : R" — L be arbitrarily ® p—convex fuzzy
sets. Forany x,y € R" and all A € [0,1]

Al v)(Ax + (1= A)y)
= A(p(Ax+ (1= Ay),v(Ax+ (1= AN)y))
> A(pu(x)@p u(y),v(x) ®pv(y))

Aluy),v(y)), wnlx)=v(x) =1z
Auy),v(x)), pulx)=v(y) =1z,
= Au(x),v(x)), uly) =vy) =1L,
Ap(x),v(y), uly) =v(x) =1z,
0, otherwise,
we have
(1,v)(x) ®p A(p, v)(y)

)
Alpy),v(y), Al v)(x) =1z,
u(x),v(x), Apv)(y) =1.
O, otherwise,
A(u(y),v(y)), plx)=v(x) =1,
= A(p(x),v(x)), uly) =v(y) =1L,

0, otherwise.

Hence, A(u,v) is @ p—convex. And A(l, @pb,a®p 1) = A(b,a) = a, A(1y,a) @p A(b, 1) =
a®pb=0j.
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Table 1. Aggregation operator A.

A OL a b lL
0p 0 0L 0. Op

a OL 0 b b
b 0, a b b
1L OL a b 1L

Theorem 2. Let A : L2 — L be an aggregation operator on L, let y,v : R" — L be arbitrary @ —convex fuzzy
sets. If A(p,v) is @—convex, then A(a @ b,c @d) > A(a,c) @ A(b,d) foreach a,b,c,d € L. Moreover if the
triangular norm ® is idempotent, then A(a ®b,c @ d) = A(a,c) @ A(b,d) for each a,b,c,d € L.

Proof. Suppose that A(y,v) is ®—convex. Let a,b, ¢, d be arbitrary elements of L. For x,y € R"” and
z = Ax + (1 — M)y, define

a, t=z+6(y—2z),0<0; c, t=z+0(y—2z2),0<0;
a®b, t=z; c®d, t=z
t) = t) =
k() b, t=z+0(y—2z),0>0; v(t) d, t=z+60(y—2z),0>0;

0r, otherwise, 0, otherwise.
Clearly y, v are @ —convex. And

A(a,c), t=z+6(y—2z),0<0;

(
) A@®bced), t=z
A(p,v)(t) = Alb,d), b=z+0(y—z),0>0;
0, otherwise.

As A(p,v) has to be a @ —convex fuzzy set, we have
Ala®@b,c®d) > A(a,c) ® A(b,d).

From the monotonicity of A it follows that A(a ® b,c®d) < A(a,c) and A(@a®@ b,c®d) <
A(b,d). Hence

Ala@b,c@d) @ A(a®b,cd) < A(a,c) @ A(b,d).
Therefore, since the operator ® is idempotent it follows that
Ala®b,c®d) < A(a,c) @ A(b,d).

O

Since the triangular norm a @y b = a A b is idempotent, Proposition 2 (in [7]) follows from
Theorems 1 and 2.

Theorem 3. Let A : L? — L be an aggregation operator on L, and let y,v : R" — L be arbitrary @ —convex
fuzzy sets. If A(a,b) = A(a,a) @ A(b,b) = A(a®b,a®Db) foreach a,b € L, then A(p,v) is @ —convex.
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Proof. Let y1, v : R" — L be arbitrary ®—convex fuzzy sets. For any x,y € R” and all A € [0,1]

A(pv)(Ax+(1-A)y)
= A(uAx+1-A)y)v(Ax+(1-AN)y))
= ApAx+ 1 =MNy),u(Ax+ (1= Ny)) @ A(v(Ax+ (1= A)y),v(Ax + (1 - N)y))
= A(p(x) @ py), n(x) © puy)) ® A(v(x) @ v(y),v(x) @ v(y))
= A(u(x),u(y) ® Av(x),v(y))
= (A(u(x), p(x) @ A(u(y), n(y))) ® (A(v(x),v(x)) ® A(v(y),v(y)))
= (A(u(x), p(x) ® A(v(x),v(x))) ® (A(uy), u(y) @ A(v(y),v(y)))
= A(uv)(x) @ A(p,v)(y).

Thus, A(y,v) is ®—convex. [

The following shows that the converse of Theorem 3 is in general not true.

Example 4. Consider a lattice L = (0r,a,b,11), where 0p, < a <1p,0p < b < 1, and a,b are incomparable
elements and the binary symmetric aggregation operator A defined in Table 2. Let p,v : R" — L be arbitrary
®@p—convex fuzzy sets. For any x,y € R" and all A € [0,1], can prove that A(u,v) is @ p—convex.
And A(b,a) = a, A(b,b) ®p A(a,a) =a®pa =0, and A(b®@pb,a®pa) = A(0.,0) = 0f.

Table 2. Aggregation operator A.

A 0 a b 1r

O0p O O 0 O
a 0, a a a
b 0, a a b
1L OL a b 1L

Theorem 4. Let A : L2 — L be an symmetric aggregation operator on L, let y,v : R* — L be arbitrary
®—convex fuzzy sets. If A(u,v) is ® —convex, then A(a,b) > A(a,a) ® A(b,b) for each a,b € L. Moreover
if the triangular norm & is idempotent, then A(a,b) = A(a,a) ® A(b,b) = A(a®@b,a®Db) foreach a,b € L.

Proof. Suppose that A(p,v) is ®—convex. Let a,b be arbitrary elements of L, and put, for x,y € R"
and 0 < A <1,z =Ax+ (1 — A)y. We define

a, t=z+06(y—z),0<0; a, t=z+0(y—z),0<0;
ut)y=4 b, t=z+0y—z),0>0; vit)=¢ b, t=z+0(@y—2),0>0;
0p, otherwise, 0y, otherwise.

Clearly y, v are ® —convex and as A preserves ® —convexity, then we have
Ala,b) > A(a,a) ® A(b,D).

Suppose that the triangular norm ® is idempotent. Let x,y € R"” and z = Ax + (1 — A)y, define

a, t=z+06(y—z),0<0; a, t=z+0(y—z),0<0;
ut)y=4 1, t=z+0(y—2z),0 >0; v(it)=¢ 1, t=z+0(@y—2),0>0;
0p, otherwise, 0y, otherwise.

Clearly y, v are ® —convex. Since, in addition, A preserves ®—convexity this can be combined
with the fact that the triangular norm ® is idempotent, we deduce

A(a,a) > Aa, 1) @ A(1p,a) = A(1p,a) @ A(1p,a) = A(1L,a).
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From the monotony of A it follows that A(a,a) < A(1,a). Hence

A(a,a) = A(1,a).

Therefore
A(a,b) < A(1r,b) = A(b,b), A(a,b) < A(1,a) = A(a,a).
Hence
A(a,b) = A(a,b) @ A(a,b) < A(a,a) @ A(b,b).
Thus

A(a,b) = A(a,a) @ A(b,b).
Letc = a,d = b, from Theorem 2 we have
A(a,b) =A(a®@b,a®Db).
O

Then Proposition 3 (in [7]) follows from Theorems 3 and 4 due to a @1 b = a A b is idempotent.
Since the triangular norm a ®1 b = min{a, b} is the strongest triangular norm on [0, 1], from the
definition of ® —convexity we can prove the following theorem.

Theorem 5. If f1, f> : [0,1] — [0, 1] are both nondecreasing, min{ f1(0), f2(0)} = 0, f1(1) = fo(1) = 1.
Let A : [0,1]% — [0,1] defined by A(a,b) = min{f1(a), f2(b)}, then A(u,v) preserves @—convexity for any
triangular norm on [0,1]. But the converse statement is in general not true.

Example 5. Suppose L = [0,1], A(a,b) = 3(a+b). Then A(p,v)(Ax + (1 —A)y) > A(w,v)(x) ®p
A, v)(y). ie., A(pu,v) is @ p—convex. And A(a,b) = %(a +b) # min{fi(a), f2(b) }.

4. Sufficient Conditions for Triangular Norm Preserving ® —Convexity

In this section we give some sulfficient conditions which guarantee that a triangular norm preserves
®—convexity. The following theorem is obvious.

Theorem 6. Let ® : L2 — L be a triangular norm on L. If y,v : R"* — L are arbitrary @ —convex fuzzy sets,
then y ® v is ® —convex.

Theorem 7. Let ® : L2 — L be a triangular norm on L. If u,v : R" — L are arbitrary ®p—convex fuzzy
sets, then HRV is ®p—convex.
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Proof. Let yi,v : R" — L be arbitrary ®p—convex fuzzy sets. For any x,y € R" and all A € [0, 1]

(r@v)(Ax+(1—A)y)
pAx+ (1 =A)y)@v(Ax+ (1 —A)y)

> (u(x)@ppy)) @ v(x)@pv(y))
ux)@v(x), uly)=v(y) =1
wy)@v(y), plx)=v(x)=1,

= ux)evly), wuly) =v(x) =1z
uy)@v(x), plx)=v(y) =1
0r, otherwise.

Then we see
(nev)(x)®@p (pev)(y)
= (p(x)@v(x))@p (1y) @v(y))

)
ux)ov(x), uly)ov(y) =1z

= uy)@v(y), ux)evix) =1z
0, otherwise,

ux)@v(x), uly)=v(y) =1

H(x) = U(x) = 1L/
0r, otherwise.

Il
-
~
<
=

®
<
~
<
=

Hence

(Hov)(Ax+(1-Ay) = (pev)(x) @p (KO V)(y).

Thus, y ® v is ® p—convex.
|

Let ® be a triangular norm on L. Li in [14] given a family triangular norms (®,),¢r, as follows

Ry = 0Or, x®@y<aand x,y #1p;
ay = X®y, otherwise.

Theorem 8. Let ® : L? — L bea triangular normon L,and a € L. If y,v : R" — L are arbitrary ®q—convex
fuzzy sets, then y @ v is @, —convex.

Proof. Let y,v : R" — L be arbitrary ®,—convex fuzzy sets. For any x,y € R” and all A € [0,1]
(m@v)(Ax+(1-A)y)
pAx+ (1= A)y) @v(Ax+ (1 - A)y)

(1(x) ©a 1(y)) @ (v(x) @av(y)
_ { 0L, H() @ ply) <aor v(x) @ v(y) <a,

%

u(x)@uly) @v(x)@v(y), otherwise.
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Then we have

(n@v)(x) @a (V) (y)
= (n(x) ©@v(x)) @ (p(y) @v(y))
_ { 0, H(x) @ v(x) @ p(y) @v(y) <a,
®@v(x)®@v(y), otherwise.
Since p(x) @ u(y) < aorv(x) @v(y) < aimplies pu(x) @ v(x) ® u(y) @ v(y) < a, we have

(mev)(Ax+ 1 =A)y) > (4 ©v)(x) @ (p@V)(y)-

Thus, y ® v is ®;—convex.
]

Example 6. Consider the lattice (L = {0r,a,b,c,d, 11}, <,0,1) given in Figure 1. Consider the function ®,
on L defined by

a A\ B, otherwise,

< .
¢X®b5—{OL’ aNB<Dband af #1p;

then ®y, is a triangular norm and ®y, is described in Table 3.
Hence, for any ®@j,-convex sets p, v : R" — L, 4 @p v = p A v is also a @j,-convex set.

Table 3. Triangular norm ®,.

Tb OL a b c d 1L

0

Figure 1. The order < on L.

Theorem 9. Let y,v : R" — [0,1] be arbitrary & y—convex fuzzy sets. Then min{p, v} is a & y—convex
fuzzy set.
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Proof. Let yt,v : R" — L be arbitrary ® y—convex fuzzy sets. For any x,y € R" and all A € [0,1]

min{y, v}(Ax+ (1 —A)y)

min{p(Ax+ (1= A)y),v(Ax+ (1 —A)y)}

min{y(x) @p p(y), v(x) @ v(y)}
min{p(x) * p(y),v(x) xv(y)},  (u(x),u(y)) € H* and (v(x),v(y)) € H?,
min{p(x) * pu(y), v(x),v(y)},  (u(x), py)) € H* and (v(x),v(y)) & H,
min{p(x), p(y),v(x) xv(y)},  (u(x),u(y)) € H* and (v(x),v(y)) € H?,
min{p(x), u(y),v(x),v(y)}, otherwise.

v

Then we deduce

min{y, v}(x) @ min{p, v}(y)
= min{pu(x),v(x)} @p min{u(y),v(y)}

v(
_ ] min{p(x),v(x)} # min{p(y),v(y)}, (min{p(x),v(x)}, min{u(y),v(y)}) € H,
min{u(x), u(y),v(x),v(y)}, otherwise.

Since min{pu(x), u(y)} > w(x) * u(y) > min{u(x),v(x)} * min{pu(y), v(y)}, min{v(x),v(y)} >
v(x) *v(y) = min{p(x),v(x)} *min{p(y) we have

min{y, v} (Ax + (1 — A)y) > min{y, v}(x) @y min{y, v}(y).

Thus, min{y, v} is a ® y—convex fuzzy set.
O

Example 7. Suppose H = (0, 1) and the triangular norm ®y is

ab 2
_) 2 (a,) € (0,3)%
a©nb { min{a, b} otherwise,

then, min{y, v} is a @ y—convex fuzzy set.

5. Conclusions

The authors of the paper [7] discuss properties which are preserved under aggregation for arbitrary
lattices and arbitrary pairs of mappings Results in this paper are also discussed under aggregation for
an arbitrary lattice and an arbitrary pair of mappings. However, this does not mean that even without
these conditions the aggregation of SOME quasiconvex (® —convex) mappings to SOME lattices need
not be quasiconvex (®—convex). Which are the properties of a lattice L and an aggregation A (weaker
than those from the paper by Janis, Kral and Rencova in [7]), such that A preserves quasiconvexity
(®—convex) for mappings into L? We hope to solve this problem in future work.
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Abstract: In this paper, an edge detection method based on the regularized Laplacian operation is
given. The Laplacian operation has been used extensively as a second-order edge detector due
to its variable separability and rotation symmetry. Since the image data might contain some
noises inevitably, regularization methods should be introduced to overcome the instability of
Laplacian operation. By rewriting the Laplacian operation as an integral equation of the first kind,
a regularization based on partial differential equation (PDE) can be used to compute the Laplacian
operation approximately. We first propose a novel edge detection algorithm based on the regularized
Laplacian operation. Considering the importance of the regularization parameter, an unsupervised
choice strategy of the regularization parameter is introduced subsequently. Finally, the validity of the
proposed edge detection algorithm is shown by some comparison experiments.

Keywords: edge detection; Laplacian operation; regularization; parameter selection; performance
evaluation

1. Introduction

In a digital image, edges can be defined as abrupt changes of the image intensity. Edge is one
of the most essential features contained in an image. The result of edge detection not only retains
the main information of an image, but also reduces the amount of data to be processed drastically.
Therefore, edge detection has been used as a front-end step in many image processing and computer
vision applications [1].

Since the abrupt changes in an image can be reflected by their derivatives, differentiation-based
methods are widely used in edge detection. Generally, edges can be detected by finding the maximum
of first-order derivatives or the zero-crossing of second-order derivatives of the image intensity. From
the original contribution of Roberts in 1965, there have been a large number of works concerning
this topic. Some researchers have paid attention to constructing optimal filters according to some
reasonable hypotheses and criteria (see [2-5]), while some others are interested in designing discrete
masks, such as the well-known Prewitt, Sobel and Laplacian of Gaussian (LoG) operators. Some
recently developed methods can be found in [6-8].

The differentiation-based edge detection methods need to calculate derivatives numerically. As we
know, numerical differentiations are unstable since a small perturbation of the data may cause huge
errors in its derivatives [9]. In real applications, the image is often corrupted by noise during the
processes of collection, acquisition and transmission. In order to calculate derivatives of the noisy
data stably, some regularization methods should be introduced. There have been much work into
this over the past years, such as the Tikhonov regularization [10], the Lavrentiev regularization [11],
the Lanczos method [12], the mollification method [9] and the total variation method [13]. Some of the
regularization methods for computing the first-order numerical differentiation have been applied to
detecting image edges (see [10,13]).
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Compared with the first-order numerical differentiation, the computation of second-order
derivatives is more unstable and more likely to be influenced by noises. However, the edge
detection based on second-order derivatives has higher localization accuracy and a stronger response
to final details [14]. The most common second-order derivative used in edge detection is the
Laplacian operation due to its variable separability and rotation invariance. In order to overcome the
instability of Laplacian operation, one of the existing works is the LoG [2]. Since the image data is
discrete, the sampled representation of the LoG and some related issues have been discussed in [15].
The performance of a LoG detector depends mainly on the choice of the scale parameter. For larger
scales, the zero-crossings deviate from the true edges, which may cause poor localization. For small
scales, there would be many false zero-crossings produced by noises. Besides the LoG detector, a model
for designing a discrete mask of the Laplacian operator is introduced in [7].

In view of the above-mentioned facts, a natural idea is to compute the Laplacian operation by the
regularization method and construct a novel edge detection algorithm based on this. By rewriting the
Laplacian operation as an integral equation of the first kind, a PDE-based regularization for computing
the Laplacian operation has been proposed in [16]. In this paper, the PDE-based regularization method
will be generalized to edge detection. Based on the objective parameter selection for edge detection
given in [17], we will introduce a new choice strategy of the regularization parameter. Comparative
experiments with the LoG detector and the Laplacian-based mask given in [7] are considered.

The paper is organized as follows. In Section 2, the PDE-based regularization method for
computing the Laplacian operation of image data is given. The novel edge detection algorithm
based on the regularized Laplacian operation is given in Section 3. Comparative experiments are
shown in Section 4. Finally, the main conclusions are summarized in Section 5.

2. Regularized Laplacian Operation

Considering the image intensity as a function f(r), r = (x,y) of two variables, the Laplacian
operation can be defined as

2 2
u=Af= % +g—yjzr, (x,y) € Q:=[0,a] x [0,b].

Without loss of generality, we assume the value of f(x,y) on the boundary of Q) is zero, i.e.,
flaa = 0. Otherwise, denote fj as the solution of

Afo=0, inQ
f():f, on 0Q) !

and replace f by f — fy. Since the latter satisfies

Af=fo) =Af =u, (f = fo)lan =0,
it has

{ Af =u, inQ M)

f=0, onoQ) "’

Problem (1) is the Dirichlet problem of the Poisson equation. According to the classic theory of
the Poisson equation, the relationship between f and u can be expressed as

Alu] :== /Q G(r, ") u(r)dr' = —f, 2)
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where G(r, ") is the Green function of the Dirichlet problem (see [18]). Since Q) is a rectangular domain,
the Green function has the explicit expression

G(r,r/) = Z plk1, ko) u(r;ky, ko) u(r/;kl,kz),
k1 ko=1

where " ' dab
x| kamy a

=2, p(k1,ky) = 555
o Pk = ot g

u(r;ky, ky) = sin b
The calculation of Laplacian operation u = Af is equivalent to solving the integral Equation (2), which
can be simplified in the following.

Denote f° as the noise data of f; the calculation of the Laplacian operation A f? is unstable, which
means the noise may be amplified. A stabilized strategy is to solve the equivalent Equation (2) by the
regularization method. Solving the integral Equation (2) by the Lavrentiev regularization method,
an efficient method is given in [16]. The Laplacian operation can be computed approximately by
solving the regularization equation

au®™® + Al = —f°, 3)

where a > 0 is the regularization parameter, and u** is the regularized Laplacian operation. Assuming
that 1%° is a function satisfying

AR =% in Q

et =, onadQ) ’

then it has A[u®’] = —h*%. Equation (3) can be rewritten as
aAR — ol = —f‘s, in O @)
Bt =0, on 0Q)

This boundary value problem of PDE can be solved by classic numerical methods, and then the
regularized Laplacian operation u*° can be expressed as

W (r) = AR (r) = S~ ()], re Q. )

From the above rewriting, we can see that (4) and (5) are equivalent to the integral Equation (3).
Compared with solving the regularization Equation (3) directly, the computational burden of solving
(4) and (5) is reduced drastically.

The work of [16] mainly focuses on the choice of the regularization parameter a and the error
estimate of the regularized Laplacian operation u*9. Unfortunately, the choice strategy given in [16]
depends on the noise level of the noise data, which is unknown in practice. Since the choice strategy of
the regularization parameter plays an important role in the regularization method, as the authors stated
in [16], the selection of parameter « in the edge detection algorithm should be considered carefully.

3. The Edge Detection Algorithm

In this section, we will construct the novel edge detection algorithm based on the regularized
Laplacian operation given in Section 2.

The first thing we are concerned with is the weakness of the Lavrentiev regularization. Notice that
W8 (r) =0, r € 9Q, ithas u™*(r) = —1 f3(r), r € 9Q. The parameter a > 0 is usually a small number,
which means the error of the regularized Laplacian operation on the boundary can be amplified %
times. Thus, the computation is meaningless on 0Q). In fact, the validity of the regularized Laplacian
operation 1u%°(r) has been weakened when 7 is close to the boundary. Experiments in [16] have shown
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that the weakness only affects the points very close to the boundary. Hence, except a few pixels
which are as close as possible to the boundary of the image domain, the edge detection results will
be acceptable.

The second thing we are concerned with is the choice strategy of the regularization parameter a.
Since the noise level of an image data is unknown, the choice strategy given in [16] cannot be carried
out. Considering only the edge detection problem, the objective parameter selection given in [17] can
be adopted to choose the regularization parameter.

Once the regularization parameter  is chosen, the regularized Laplacian operation u*? can be
obtained by solving Equations (4) and (5), where Equation (4) can be solved by the standard finite
difference method or finite element method.

Combined with the objective parameter selection given in [17], the main framework of the choice
strategy is summarized as follows:

Step 1: Regularization parameters &;, j € {1,2,...,n} are used to generate N different edge
maps D;, j € {1,2,...,n} by the proposed edge detection algorithm. Then, N potential ground truths
(PGTs) are constructed, and each PGT; includes pixels which have been identified as edges by at least i
different edge maps.

Step 2: Each PGT; is compared with each edge map D;, and it generates four different
probabilities:TPpgr,, D;/ FPpcr,, p;, TNpGr,, b, FNpGr, D;- Among them, TP 4 p (true positive) means
the probability of pixels which have been determined as edges in both edge maps A and B; FP4 p
(false positive) means the probability of pixels determined as edges in A, but non-edges in B; TN, g
(true negative) means the probability of pixels determined as non-edges in both A and B; and FNy4 g
(false negative) means the probability of pixels determined as edges in B, but non-edges in A.

Step 3: For each PGT;, we average the four probabilities over all edge maps D/, and get

_ _ _ — - N

TPpgr,, FPpcr;, TNpGT,, FNpGT,, Where TPpgr, = % Y TPPGT,-,D,r and the expressions of other
=

probabilities are similar. Then, a statistical measurement of each PGT,; is given by the Chi-square test:

, _TPR-Q (1-FPR)-(1-Q)
XPGT{f 1_Q Q 4

(6)

where - o
TPpar, B FPpgr,

— T FPR= T
TPpgr; + FNpGr, FPpgr,; + TNpgr,

Q = TPpgr, + FPpcr,, TPR =

The PGT; with the highest X%’GT,- is considered as the estimated ground truth (EGT).

Step 4: Each edge map’s D; is then matched to the EGT by four new probabilities:
TPD,,EGT/ FPD/-,EGT/ TND/»,EGT/ FND/»,EGT~ The Chi-square measurements XZDj are obtained by the same
way as in Step 3. Then, the best edge map is the one which gives the highest XZD,' and the corresponding
regularization parameter a; is the one we want.

The Chi-square measure (6) can reflect the similarity of two edge maps, and the bigger the value
of the Chi-square measurement, the better. As Lopez-Molina et al. stated in [19], the Chi-square
measurement can evaluate the errors caused by spurious responses (false positives, FPs) and missing
edges (false negatives, FNs), but it cannot work on the localization error when the detected edges
deviate from their true position. For example, a reference edge image and three polluted edge maps
are given in Figure 1. Compared with the reference edge (Figure 1a), the Chi-square measurements of
the three polluted edge maps are the same, yet their localization accuracies are different. In order to
reflect the localization error in these edge maps, distance-based error measures should be introduced.
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(@ (b) (c) (d)

Figure 1. The reference edge image and three polluted edge maps: (a) reference edge Eg; (b) polluted
edge map Ej; (c) polluted edge map Ey; (d) polluted edge map E3.

The Baddeley’s delta metric (BDM) is one of the most common distance-based measures [20].
It has been proven to be an ideal measure for the comparison of edge detection algorithms [19,21].
Let A and B be two edge maps with the same resolution M x N,and P = {1,...,M} x {1,...,N} be
the set of pixels in the image. The value of BDM between A and B is defined as

1/k

2(A,8) = | g D leld(p. A) —o(@(p )| @)
pe

where d(p, A) is the Euclidean distance from p € P to the closest edge points in A, the parameter k
is a given positive integer and w(d(p, A)) = min(d(p, A), c) for a given constant ¢ > 0. Compared
with the reference edge Eg in Figure 1, the BDMs of the three polluted edge maps E; (i = 1,2,3)
are given in Table 1 with different parameters c and k. The smaller the value of BDM, the better.
As we can see from Table 1, localization errors of the three edge maps are apparently distinguished.
Therefore, the Chi-square measure (6) will be replaced by the BDM (7) in the choice strategies of the
regularization parameter.

Table 1. The Baddeley’s delta metrics (BDMs) between the reference edge image Er and the polluted
edge maps E; (i = 1,2,3) with the different choices of parameters ¢ and k.

Parameter Sets A¥(ER,Ep) A*(ER,E) A*(Eg,E3)
k=1,c=2 0.0566 0.0937 0.1256
k=1,c=3 0.0950 0.1879 0.2461
k=1,c=4 0.1397 0.2614 0.3305
k=2,c=2 0.2182 0.3307 0.3637
k=2,c=3 0.2753 0.4925 0.6313
k=2,c=4 0.3317 0.6159 0.8021

4. Experiments and Results

In order to show the validity of the proposed edge detection algorithm, some comparative
experiments are given in this section. In the experiments, our regularized edge detector (RED) will be
compared with the LoG detector and the Laplacian-based edge detector (LED) proposed in [7].

As Yitzhaky and Peli said in [17], the parameter selection for edge detection depends mainly on
the set of parameters used to generate the initial detection results. In order to reduce this influence
properly, the range of the parameter is set to be large enough that instead of forming a very sparse
edge map it forms a very dense one. The scale parameter of the LoG detector is set from 1.5 to 4 in
steps of 0.25. The regularization parameter of the regularized edge detector is set from 0.01 (=0) to
0.1 in steps of 0.01. The images we used are taken from [22], and some of them are shown in Figure 2.
The optimal edge maps given in [22] will be seen as the ground truth in our quantitative comparisons.
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Let us first consider the choice strategy of the regularization parameter a, where the parameters
in BDM are set as k = 1, ¢ = 2. Taking the airplane image as an example, the BDM of each
PGT;, i € {1,2,...11} is shown in Figure 3a, from which we can see the EGT is PGTs. Compared
with the EGT, the BDM of each edge map D; is shown in Figure 3b, from which we can see the best
edge map is Dg. Hence, the regularization parameter is chosen as « = 0.05. The choice of the scale
parameter in the LoG detector is carried out similarly. It does not need any parameters in the LED.

For the airplane image, the ground truth and edges detected by the three edge detectors are shown
in Figure 4. From Figure 4b, we can see that the influence of the Lavrentiev regularization’s weakness
on the RED is negligible. From Figure 4b,c, we can see that the RED is better than the LoG detector
for noise suppression and maintaining continuous edges. Comparing Figure 4d with Figure 4b,c,
we can see the superiority of the parameter-dependent edge detector. Similar results for the elephant
image are shown in Figure 5. For some images taken from [22], quantitative comparisons of the edges
detected by the LoG detector, the RED and the LED against the ground truth are given in Table 2. Since
the smaller the value of BDM, the better, this shows that the RED has better performance than the LoG
detector and the LED in most cases.

(b)

Figure 2. Some images taken from [22]: (a) airplane; (b) elephant.

0.2
0.15
0.15
'_‘ ~
~g 01 -0 01
<
0.05 ) 0.05
e o o] . T
2 4 6 8 10 2 4 6 8 10
i J
(a) (b)

Figure 3. The figure of BDMs: (a) the BDM of A11°GT;/ i € {1,2,...,11}; (b) the BDM of
Ab, i€ {1,2,...,11}.
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(d)

Figure 4. Edge detection results of the airplane image: (a) the ground truth; (b) the edge detected by
the regularized edge detector (RED); (c) the Laplacian of Gaussian (LoG); (d) the Laplacian-based edge
detector (LED).

(d)

Figure 5. Edge detection results of the elephant image: (a) the ground truth; (b) the edge detected by
the RED; (c) the LoG; (d) the LED.
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Table 2. Quantitative comparison of the edges detected by the LoG, the RED and the LED.

Images LED LoG RED
Airplane 0.7515 0.1270 0.1232
Elephant 0.6619 0.3041 0.2593

Turtle 0.4430 0.1226 0.1323
Brush 0.5790 0.1883 0.1673
Tiger 0.9239 0.2854 0.2748

Grater 0.5537 0.2353 0.2143

Pitcher 0.5032 0.2584 0.2296

5. Conclusions

In this paper, a novel edge detection algorithm is proposed based on the regularized Laplacian
operation. The PDE-based regularization enables us to compute the regularized Laplacian operation
in a direct way. Considering the importance of the regularization parameter, an objective choice
strategy of the regularization parameter is proposed. Numerical implementations of the regularization
parameter and the edge detection algorithm are also given. Based on the image database and ground
truth edges taken from [22], the superiority of the RED against the LED and the LoG detector has been
shown by the edge images and quantitative comparison.
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related to various areas of mathematics and physics, have been inspected by many mathematicians
and physicists. In this work, we defined some classes of pyramid graphs created by a gear graph
then we developed the Kirchhoff’s matrix tree theorem method to produce explicit formulas for
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knowledge of Chebyshev polynomials. Finally, we gave some numerical results for the number of
spanning trees of the studied graphs.
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1. Introduction

The graph theory is a theory that combines computer science and mathematics, which can
solve considerable problems in several fields (telecom, social network, molecules, computer network,
genetics, etc.) by designing graphs and facilitating them through idealistic cases such as the spanning
trees, see [1-10].

A spanning tree of a finite connected graph G is a maximal subset of the edges that contains
no cycle, or equivalently a minimal subset of the edges that connects all the vertices. The history of
enumerating the number of spanning trees T (G) of a graph G dates back to 1842 when the physicist
Kirchhoff [11] offered the matrix tree theorem established on the determinants of a certain matrix
gained from the Laplacian matrix L defined by the difference between the degree matrix D and
adjacency matrix A, where D is a diagonal matrix, D = dig (dy, da, .. .,dy) corresponding to a graph
G with n vertices that has the vertex degree of d; in the ith position of a graph G and A is a matrix with
rows and columns labeled by graph vertices, with a 1 or 0 in position (u;, u;) according to whether u;
and u; are adjacent or not. That is

aj; ifi:j
Lij=4 —1 ifi#jandiis adjacenttoj ,

0 otherwise

where a; denotes the degree of the vertex i.
This method allows beneficial results for a graph comprising a small number of vertices, but is not
feasible for large graphs. There is one more method for calculating T(G). Let Ay > Ay > ... > A =0
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denote the eigenvalues of the matrix L of a graph G with n vertices. “Kelmans” and “Chelnokov” [12]
have derived that

7(G) =

==

k-1
T
i=1

One of the favorite methods of calculating the complexity is the contraction-deletion theorem.
For any graph G, the complexity T(G) of G is equal to T(G) = T(G —e) + 7(G/e), where e is any edge
of G, and where G — ¢ is the deletion of e from G, and G/e is the contraction of e in G. This gives a
recursive method to calculate the complexity of a graph [13,14].

Another important method is using electrically equivalent transformations of networks. Yilun
Shang [15] derived a closed-form formula for the enumeration of spanning trees the subdivided-line
graph of a simple connected graph using the theory of electrical networks.

Many works have conceived techniques to derive the number of spanning trees of a graph, some
of which can be found at [16-18].

Now, we give the following Lemma:

Lemma1[19]. 7 (G) = klzdet (kI — D+ A°) where A® and D¢ are the adjacency and degree matrices of G,
the complement of G, respectively, and 1 is the k x k identity matrix.

The characteristic of this formula is to express T (G) straightway as a determinant rather than in
terms of cofactors as in Kirchhoff theorem or eigenvalues as in Kelmans and Chelnokov formula.

2. Chebyshev Polynomial

In this part we insert some relations regarding Chebyshev polynomials of the first and second
types which we use in our calculations.

We start from their definitions, see Yuanping, et al. [20].

Let A, (x) be n X n matrix such that

2x -1 0 0
-1 2x -1

An(x) = 0o 0
: . . o=
o -~ 0 -1 2x

Furthermore, we render that the Chebyshev polynomials of the first type are defined by
T, (x) = cos(n cos ! x) 1)

The Chebyshev polynomials of the second type are defined by

Up(0) = 7, ) = S0 o8 ) ®
It is easily confirmed that
Up(x) — 2xUy—1(x) + Uy—2(x) = 0 (©)
It can then be shown from this recursion that by expanding detA, (x) one obtains
Uy, (x) = det(An(x)), n>1 (4)

Moreover, by solving the recursion (3), one gets the straightforward formula
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(x + m)n+l - (x Va2 1)n+l
2Vxr -1
where the conformity is valid for all complex x (except at x = £1, where the function can be taken as
the limit).
The definition of U, (x) easily yields its zeros and it can therefore be confirmed that

Uy (x) = , n>1, (@)

11171 ]‘7.[
U,—1(x) =2"" ]11 (x — cos 7) 6)
One further notes that
U1 (=x) = (=1)" U1 (x) @)

From Equations (6) and (7), we have:
n—1 jn.
Uy?(x) = 4" (x* —cos? ) ®)
=1

Finally, straightforward manipulation of the above formula produces the following formula (9),
which is highly beneficial to us later:

1

U 2 55 2) =TT (x - 2008 27 ©)
=1 "

Moreover, one can see that

1-Ty(x)  1-T,(2x%—1)

Unr?(x) = 20—x2)  2(1—22) (10)
Tn(x):%[(x+\/x2—1)”+((x— 2-1)] a1

Now we introduce the following important two Lemmas.

Lemma 2 [21]. Let B, (x) be n x n Circulant matrix such that

x 0 1 -~ 1 0
0 .o
1 .
Bu(x) = X
1
1 0
0 1 1 0 «x

Then forn > 3, x > 4, one has

2(x+n—23) x—1
x—3 [Tn( 2 )_1]-

det(By(x)) =

Lemma 3 [22]. If A € F**", B € F"*™,C € F"*"and D € F"*™. Suppose that A and D are nonsingular
matrices, then:

det( ’é g ) = det(A — BD~'C)detD = detAdet(D — CA~'B).

This Lemma gives a type of symmetry for some matrices which simplify our calculations of the complexity
of graphs studied in this paper.
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3. Main Results

Definition 1. The pyramid graph A" is the graph created from the gear graph

Gmy1  with  vertices  {ug; uq,ua, ..., ty; Wy, Wy, ..., wy} and m sets of vertices, say,
{v%,vi,...,v%}, {v%,v%,...,v%},...,{vﬁ",vﬁ",...,v’n”}, such that for all i = 1,2,...,n the vertex
vf is adjacent to U and uj+1,wherej =1,2,...,m—1,and v} is adjacent to u; and u,. See Figure 1.

Figure 1. The pyramid graph AE,3).

Theorem 1. Forn > 0, m > 3, T(Affn)) = 2" (n424+V2n+3)" + (n+2—2n+3)" -
2(n+1)"].

Proof. Using Lemma 1, we have

T(As’m)) - (wn+21m+l)z x det((mn +2m +1)1 - D + A%) = (nm+21m+l)2 X
(m+1) 0 0 . - o1 - 11 - - . . IR 1
0 2n+2) 1 - 10 1 100 01 1 1 101 10 0
: 1 : 0 10 0 0 0 1 1 1 11 1
: : 1 : 1 10 0 0 0 1 1 1 1
: : 1 101 10 0 0 0 1 1
. 1 R .
0 1 . 1 2n+2) 1 10 01 101 1 1 10 0 0 0
1 0 0 1 o e 1031 1 101 1 11 1
1 : 1 1 101 1 1 11 1
SR S S SO S : 1
D U U EOURE S S A
1 0 P11 1 1 11 1
1 0 1 1 [ 131 1 1 1 1 11 1
1 0 0 1 1 011 LT T T P 1
: : 1
det 0 01 1 11 11
1 0 0 1 101 101
1 0 0 1 101 101
1 10 :
1 10 1
1 :
1
1 101 0
1 1 0 11 101
0 101 0 11 11
: : 1
1 0 11 0 11 e S T TP 103
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Letj = (1---1) be the 1 x n matrix with all one, and ], be the n x n matrix with all one. Set
a=2n+4and b = mn + 2m + 1. Then we obtain:

MAT O e e e o 01 1 j
0 a4 1 o oo i 10 1 100 j j 0
1 f0 00 10 i
1 0 | :
1 0 0 1 j
0 1 1 a1 1 0 0 j j 0 0
1 0 0 1 13 1 EER ]
1 0 11
T (Asf"]> = i x det
1
1 0 1
10 1 1 01 1 3 j i
/'l 0 0 /t . ]'t ,'t ]‘;‘
Coio .
: 2hnn + Jmn
/t
]t 0
i it i
b0 - 01 - 1 ]
b a 1 10 1 100 j j 0
1 0 0 10 j
1 0 ]
1 0 0 1 j
b1 1 a1 10 0 j i 0 0
b 0 0 1 1 3 1 e 1 i
1 0 11
— 1
= gz x det
1
1 0 1
b 001 - - 1 01 1 37 ]
bt 0 0 o gt -t
S0 .o .
. 2L+ Jmn
]'.‘
: ]' N . . .0 . . . .o
hj’ 0 /'f /'f 0 ,'f ]'f
10 ... 01 1 j
1 a 1 10 1 100 j i 0
1 0 0 10 j
1 0 D
: 1 0 0 1 j
11 1 a1 1 0 0 j j 00
1 0 0 1 13 1 19 j
1 0 11
:%xdet
1
1 0 : 1
1 0 1 1 01 1 3 j
17» 0 0 /f ) /-z ]-r ]l
S0 .
: 2+ Jmn
]'[
/.‘ 0
oo foof it

190



Symmetry 2018, 10, 689

10 0 1 1 g
0 a 1 1 -1 0 0 -1 0 0 -
1 -1 -1 0 —j 0
0 P
: 1 -1 0 0
01 1 a 0 0 -1 -1 0 0 —j —j
00 0 1 -1 2 0 0 0 0
10 10
=} x det
1
1 0 0
00 1 1.0 0 0 2 0 0
00 o0 S0 0
/oo :
E 2y
]'.‘
J 0
00 0 0 0
a 1 1 -1 0 0 -1 —j 0 0 —j
1 -1 -1 0 o 0
0 P0
1 -1 0 0
1 1 a 0 0 -1 -1 0 0 —j —j
00 1 1 2 0 0 0 0
10 10
=} x det
1
1 0 0
0 1 1.0 0 0 2 0 0
0o o oo 0
jtoo :
N 2Ln
/'l
]f N . L0 . . . . :
0 ]'f j' 0 0 or coi vee e 0
Using Lemma 3, yields
(m)y _ 1 A B\ _ 1 g mn
T(Ay) = 4 x det C o, |70 x det(A — By~ C) x 2
2a n+2  2n+1) 2n+1) n4+2 -2 0 - - 0 -2
n+2 2a n+2  2mn+1) 2(n+1) -2 . . o o0
2n+1) n+2 : 0 :
: ’ ’ 2(n+1)
2(n+1) - . n+2 oo
_lomn o omom n42 2n+1) o 2n41) nt2 2a 0 - oo 0 —2 =2
=32" x2 x det 0 0 2 2 4 0 v o e 0
2
2 0 0
0 2 2 0 0 0 4
Using Lemma 3 again, yields
mn—2m mn
m 2 D E 2 1
T(AM) =2 X det =% xdet(D—E-— F)
b F 41, b 41,
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2a (n+3) 2(n+2) 2(n+2) (n+3)
(n+3) 2a (n+3) 2(n+2)
T(As,m)) = * x det 2(n.+2) ' ' ' '
: 2(n+2)
2(n+2) - B - (n+3)
(n+3) 2(n+2) 2(n+2) (n+3) 2a

Straightforward inducement using the properties of determinants, one can obtain

(20 —n—3) 0 (n+1) -+ (n+1) 0
0 (2a—n—3) 0 (n+1)
T e T
: (n+1)
(n+1) . - - . 0
0 (n+1) e (n41) 0 (2a —n—3)
(2a-n-3)
(5Y 0 L | 0
(2a—n-3) B
0 o) 0 . . 1
g n+1 1" 1 .
= ot x det ]
1
1 . 0
(2a—n-3)
0 1 1 0 (n+1)
Using Lemma 2, yields

20-n-3 2a—-n-3
(m)y _ 1 ()" 2(FEr+m—3) 1
T (An ) =2mn X mnrmi2 Znatn—3 -3 X [Tm( n+2 ) - 1]

n+1
=2m4 s (n+ 1) x [T (243) — 1]

Using Equation (11), yields the result. (]

Definition 2.  The pyramid graph B,(,m) is the graph created from the gear graph G,,1 with
vertices {ug; Ui, Uy, ..., Uy ; W1,W,..., Wy} with double internal edges and m sets of vertices, say,
{U%,U%,...,’U}Z}, {U%,U%,...,’U%},...,{Z}T,UE”,...,Z},T}, such that for all i = 1,2,...,n the vertex v{ is
adjacent to uj and Uji1, wherej=1,2,...,m —1,and v}" is adjacent to uy and uy,. See Figure 2.

u,

Figure 2. The pyramid graph BS,S).
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Theorem 2. Forn > 0, m > 3, T(B{") = 2m[(n+3+2vn+2)" + (n+3-2vn+2)" —
2(n+1)"].

Proof. Using Lemma 1, we get:

m
T(BM") = — L sdet((mn+2m+1)1 — D + A9) = — L x
(mn+2m+1) (mn+2m+1)
(2m+1) 1 1. T e e 11 . 1
“1 @145 1 e o 10 1 e e 100 [ 1o 1 11 10 0
1 R o0 10 0 0 0 1 1 1 101 1
1 S 10 0 0 01 1 1 1
: 1 11 10 0 0 0 1 1
. . 1 : A e H
-1 1 e 1 @45 1 e e 10 01 e T T e T e s 1 - 1 0 - 0 0 - 0
1 0 0 1 10301 11 101 1 1 101 1
1 1 1 11 1 1 11 1
1
1 : :
1 0 1 11 R 1 101 1
1 0 1 1 0o 1 131 101 1 1 101 1
1 0 0 1 1 0 11 T 1 3 1 cee oo e e e e e e 1
: : 1
det 0 0o 1 1 11 101
1 0 0 1 11 101
1 0 0 1 11 11
1 10
1 10 1
1
: 1 :
1 11 0 :
1 1 0 11 101
0 11 0 11 11
1 0 11 0 11 111 103

Letj = (1---1) be the 1 x n matrix with all one, and ], be the n x n matrix with all one. Set
a=2n+5and b = mn + 2m + 1. Then we get:

P I B U B 15 - j
1 4 1 e e e 10 1 100 j j 0
1 0 0 10 ° j
. 1 0 j N
: 1 0 0 1 j
-1 1 1 a1 1 0 0 j i 00
1 0 0 1 13 1 1 j
1 0 11
(m)\ _ 1
T(Bn )—pxdet
1
1 0 1
1 0o 1 .- 1 0 1 1 3 j
jt 0o o J it
]'t 0 .
: : 2Lyn+ Jmn
i :
it .. 0 :
fooo oo i
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=} xdet

x det

1
5 x det

=3
[SISE

1t

1t 0

(a+1)

(SN

-

2t

2j

2jt

= o o=

Lo o —

-

1
1 10
0 1
0

0 0 1

10 0

1 1
1

13

]'f

/:t

|

1 10

0 1

0
0 0 1
1 0 0
1 1
1
13
]‘;‘
jt

1 ...

-1 0 0

-1 -1
0

R

0 0 -1
2 0
0
0 0
0
0

j
0
0

[N}

2w+ Jmn

2lnn+ Jmn

2lmn

-

-

—j
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(@+1) 2 oo e s 2 -1 0 - - 0 -1 —j 0 B |
2 : -1 -1 0 —j 0
0 10
2 oo e 10 oo e
2 2 (a+1) 0 0 -1 -1 0 0 —j —j
1 1 2 2 2 0 0 0 0
2 1 2 0
=} x det
2
2 1 w0
1 2 2 1 0 - o o 0 2 0 0
]'f ]f zl'f 2]‘f L0 O
¥ P :
: : 2
; 2jt
2t B it : T
j‘ 2t Zj‘ ]‘( [0 R |
Using Lemma 3, yields
(m)y _ 1 A B 1 1 mn
T(By') = 4 x det c o1 =j xdet(A—By—C)x2
mn
(2a +2n+2) 3n+4 4(n+1) 4(n+1) 3n+4 -2 0 - - 0 -2
3n+4 (2a+2n+2) 3n+4 4(n+1) 4(n+1) -2 . s 0
4(n+1) 3n+4 : 0 :
: ' ’ 4n+1)
4(n+1) . . - . 3n+4 Do s s 0
- 3n+4 4(n+1) 4(n+1) 3n+4 (2a+2n+2) 0 -+ -2 0 -2 =2
_ Lomn 2m
= 3§21 x 2 x det 2 2 4 4 4 0 i e e 0
4 : 0 :
4
4 2 B . . . 0
2 4 4 2 0 v e o 0 4

Using Lemma 3 again, yields

T(B") = %72"‘ ><det< b E ) = 2% xdet(D— Eqf- F)

F 4l
(20 +2n+4) (Bn+7) 4(n+2) 4(n+2) (Bn+7)
(Bn+7) (2a+2n+4) (Bn+7) 4(n+2)
arOEEr SR |
: 4(n+2)
4(n+2) . . - (Bn+7)
(Bn+7) 4(n+2) 4(n+2) (Bn+7) (2a+2n+4)

With a straightforward inducement using properties of determinants, we obtain

(2a —n—3) 0 (n+1) - (n+1) 0
0 (2a—n—3) 0 (n+1)
i ) n+1 ' ’ :
T(B) = 2t e (D)
: (n+1)
(n+1) . . . . 0
0 (n+1) (n+1) 0 (2a —n—3)
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(2a—n—3)
(n+1) 0 11 0
(2a—n—3) .. ..
0 (n+1) 0 : ) 1
a2y (pg)" 1 .
m 711"74»4 . det .
1
1 0
(2a—n-3)
0 1 1 0 G T)
Using Lemma 2, yields
(m) 2 n+1)" 2(2n3 gy 3) 20-n-3_4
T (B = 2 G < M o [T () — 1
n+

=2 (n4+1)" x [T (28) —1).

Using Equation (11), yields the result. (]
Definition 3. The pyramid graph cf{”) is the graph created from the gear graph Gy.1 with
vertices {ug; Uy, Up, ..., Uy; W1, W, ..., Wy} with double external edges and m sets of vertices, say,
{U%,Ué,...,v},}, {U%,u%,...,v%},...,{v’l”,v?,...,v,’;’}, such that for all i = 1,2,...,n the vertex v? is
adjacent to uj and Uji1, wherej=1,2,...,m — 1, and v" is adjacent to uy and u,,. See Figure 3.

u

Figure 3. The pyramid graph Cf?) .
Theorem 3. Forn > 0, m > 3, T(C,(f")) = 2"[(n+44+2n+7 )m +(n+4—V2n+7 )m =
2(n+3)"].
Proof. Using Lemma 1, we have:

(m)y _ 1 _ e ¢y — 1
T(Cn ) - (mn+2m+1)2 X det((mn+2m+1)[ Df+A ) - (mn+2m+l)2 x
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(m+1) 0 0 o e 0 1 e - TR o o 1
0 2m+3) 0 1 o 1 o0 1 . 100 - 0 1 - 1 - 1 -1 1 - 10 0
0 1 0 10 0 0 01 1o e 1 101 1
1 1 1 10 0 0 0 1 1 1 1
1 111 10 0 0 0 1 1
1 0 | . -
0 0 1 o 10 2m+3) 1 e e 10 01 - 1 1 1 . 1 - 1 0 - 0 0 - 0
1 0 0 1 1 301 11 11 1 1 101 1
1 - : 1 1 11 T 1 1 1
H R 1
1
1 0 E 11 1 1 101 1
1 0 1 1 0 1 131 11 1 1 101 1
1 0 0 1 1 0o 11 T 1 3 1 e e e e 1
: tq o
det 0 0 1 1 101 1
1 00 1 11 1
1 0 0 1 11 11
1 10
1 10 1
1
: 1
1 11 0
1 1 0 11 11
0 11 0 11 11
1 0 101 0 101 111 103

Letj = (1---1) be the 1 x n matrix with all one, and ], be the n x n matrix with all one. Set
a=2n+6and b = mn + 2m + 1. Then we have:

m+1 0 -0 e e e 001 LA j
0 a 0 1 - 1 00 1 100 | i 0
0 . . . 1.0 o0 10 - j
1 10 j :
. .
I 0 0 0 1 j
0 0 1 1 0 a1 1 0 0 j j 0 0
10 0 1 13 1 1 j
10 11 :
T (CE{")) = i x det
1
1 0 1
10 1 10 1 13 j
o0 0 S j
H ]-t 0 N
: 2+ Jmn
]‘A‘
/' o0
]} 0 ]l ]'f 0 /“ ]‘
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2L+ Jmn

x det

R
I

—_— — -

2lnn + Jmn

1
7 < det

=

=

2mn

x det

1
~ b
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a0 1 10 -1 0 - - 0 -1 —j 0 0 —j
0 1 -1 -1 0 —j 0
1 P00 P00
1 :
1 0 -1 0 0
0 1 10 a 0 - - 0 -1 -1 0 0 —j —j
000 1 oo oo 12 0 oo e e 0 0 oo e 0
10 10
=} x det :
: 1
1 0 0
0 1 -0 vn- 1 0 0 oo eee enn 0 2 0 oo eee e e 0
000 oo oo 0
oo :
: 2Un
/'t
i 0
0 /1 ...... ]V 0 0 0
Using Lemma 3, yields
(m)y _ 1 A B 1 1 mn
T(Cy )7E><det< C 2L, =3 xdet(A—By— C)x2
2a n 2(n+1) 2(n+1) n -2 0
n 2a n+2 2n+1) 2(n+1) -2
2(n+1) n : 0
: ’ 2(n+1)
2(n+1) e B B n :
1 i Zom n 2(n+1) e 2(n+1) n 2a 0o .-
=5 x2™Mx2 x det 0 0 9 N 4 0
2 0
2
0 2 2 0 0

Using Lemma 3 again, yields

T(CM) = 22 det( b E ) = 2" xdet(D — Eql- F)

F 41,
2a (n+1) 2(n+2) 2(n+2) (n+1)
(n+1) 2a (n+3) 2(n+2)
() = 2 x det 2(7’1‘4’2) b ' ' :
: 2(n+2)
2(n+2) - - (n+1)
(n+1) 2(n+2) 2(n+2) (n+1) 2a

Using properties of determinants, we have:
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(2a—n—1) 0 (n+3) - (n+3) 0
0 (2a—n—1) 0 (n+3)
n n+3 ' :
T(Cﬁm)):%xﬁxdet ( ' )
: (n+3)
(n+3) . - - - 0
0 (n+3) e (n+3) 0 (2a—n—-1)
(2a—n-1)
) 0 1 -1 0
(2a—-n-1) R
0 ‘(Inl‘S) 0 . . 1
ZHHH»l 3 m 1 N N N
T n+(3y::+2) x det i
1
1 0
(2a—n—1)
0 1 1 0 i 3)
Using Lemma 2, yields:
Clmy —omns1 o (3" 2EEAm=3) o BEE-1
T( n ) - X mn+3m+2 ZHVTJC;l -3 X [ m( 2 )_ ]
_ 1 mo +4
=2mntl s (n43)" x (T (53) — 1]

Using Equation (11), yields the result. [J

Definition 4. The pyramid graph D,(1m> is the graph created from the gear graph G, with vertices

{ug; uy,up, ... Uy; w1, Wy, ..., wy} with double internal and external edges and m sets of vertices, say,
{U%,v%,...,v,lj}, {v%,v%,...,v,% ,...,{v’ln,vg”,...,v}’f}, such that for all i = 1,2,...,n the vertex vf is
adjacent to uj and Uj1, wherej=1,2,...,m — 1, and 0" is adjacent to uy and uy,. See Figure 4.

L

Figure 4. The pyramid graph D£,3).
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Theorem 4. Forn > 0, m > 3, (D) = 2" [(n+5+2vn+4)" + (n+5-2vn+4)" —
2(n+3)"].

Proof. Applying Lemma 1, we have:

(D) = — L xdet((mn+2m+1)[— D+ A) = — L x
(mn+2m+1) (mn+2m+1)
(2m+1) 1 1. T e e 11 P T L 1
-1 (@i+7) 0 1 1 0 0 1 s 100 0 01 e 1 e 1T 1 1 10 0
0 10 10 0o 0 0 1 1 1 101 1
1 1 1 10 0 0 01 1 1 1
1 . . I T ! 10 0 0 0 1 1
1 e 0 T T e G H
-1 0 T 10 @7 1 e 10 00T e 1T e T e 1 -1 0 - 0 0 0
1 0 0 1 10301 11 101 1 1 101 1
1 1 1 11 1 1 11 1
1
: 1 :
1 1 0 1 11 1o 1 1 1
1 0 1 1 0o 1 131 11 1 1 101 1
0 0 1 1 011 113 1 e 1
: 1
det 0 0 1 1 11 11
1 0 0 1 11 11
1 0 0 1 11 11
1 10 :
1 10 1
1
: 1
1 11 0 :
1 1 0 11 11
0 11 0 11 101
1 0 11 0 11 o111 U o I 103

Letj = (1---1) be the 1 x n matrix with all one, and J, the n x n matrix with all one. Set
a=2n+7andb = mn+2m+ 1. Then we have:

D41 =1 oo e e e 211 15 - j
-1 a2 0 1 -~ 1 0 0 1 1 00 j j o
: 0 10 0 10 ° i
1 10 j :
1 -
1 0 0 0 1 j
-1 0 1 10 a 1 10 0 j i 0 0
1 0 0 1 1 3 1 1 j
1 0 11 :
T (DE,"’)) = ﬁdet
1
1 0 1
1 0 1 10 1 1 3 j
jt 0 o it it
i :
: : : 2Ly + Jmn
: jt :
: it 0 :
j 0 jt o e o0 j
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= Flzdet
= %det
1
0
0
0
= %det
0
0
0

bjt

bt

1t

(SN

[SISI

SIS

—

oo~

2t

2t

2jt

- =3 o

oo ~ = —, a0 ~

-

= o om

= o o=
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(a+1) 1 2 2 1 -1 0 0 -1 —j 0 0 -
1 K : 2 -1 -1 : 0o - : 0
2 : 0 10 :
: 2 : :
2 1 210 o0
102 . 2 1 (a¥1) 0 - 0 -1 -1 0 0 —j —j
1 1 2 o .. 2 2 0 PR 0 0 ]
2 1 2 0o - . :
“pea| . f f
2 : : :
2 . - 1 : L0 :
12 21 0 0 2 0 0
it it . 2jt 0 o0
2t : : :
: : : 2lnn
: 27t : :
27t - . it : :
i 2 o 0
Using Lemma 3, yields
(m)y _ 1 A B —1 1 mn
T (Dy, )7E><det< C 20 =3 xdet(A—By— C) x2
(2a +2n+2) 3n+2 4(n+1) 4(n+1) 3n+2 -2 0 0
3n+42 (2a42n+2) 3n+2 4(n+1) 4n+1) -2 -
4(n+1) 3n+4 ’ N : 0
: : 4(n+1) :
4(n+1) . . - . 3n+2 : . Lo
oo 3n+2 4n+1 S 4(n+1) Bn42 (e+2m+2) 0 .- 0 -2
=g e S
. . . 0 -
4 :
4 2 :
2 4 4 2 0 0
Using Lemma 3, yields
(m)y _ qmn—2m A B o 1
T(Dy') = S5— X det( Coap, |~ det(A — By~ C)
(2a+2n+4) (Bn+5) 4(n+2) 4(n+2) (Bn+5)
(Bn+5) (2a+2n+4) (3n+5) 4(n+2)
T(Df,m)):¥><det 4n+2) . .
: 4(n+2)
4(n+2) 2 g (3n+5)
(Bn+5) 4(n+2) 4(n+2) (Bn+5) (2a+2n+4)
Straightforward inducement using properties of determinants, we get:
(2a—n-1) 0 (n+3) (n+3) 0
0 (2a—n—1) 0 (n+3)
i n+3 :
T(Dﬁm)):%xﬁxdet ( k )
: (n+3)
(n+3) . - . 0
0 (n+3) (n+3) 0 (2a—n—1)
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(2a—n—1)

e 0 1 0
(2a—n-1)
0 w0 1
_ qmn +2 +3)m 1 N
= T x det
1
1 0
20-n-1)
0 1 e 1 i3]
Using Lemma 2, yields:
m o(2=n=l g 2 1
T(DYM) = 22 e I A ) [T (—EE) — 1] = 2 (1 43)" x [T (225) — 11.
n+3

Using Equation (11), yields the result. [

4. Numerical Results

The following Table 1 illustrates some values of the number of spanning trees of studied

pyramid graphs.

Table 1. Some values of the number of spanning trees of studied pyramid graphs.

m n = (P™) T (A") = (B{") (™)

3 0 50 196 242 676

3 1 1024 3200 3136 8192

3 2 15,488 43,264 36,992 92,416

3 3 200,704 524,288 409, 600 991,232

3 4 2,367,488 5,914,624 4,333,568 10,240,000

3 5 26,214,400 63,438,848 44,302,336 102,760,448

4 0 192 1152 1792 6400

4 1 11,520 49,152 57,600 184,320

4 2 458,752 1,638,400 1,622,016 4,816,896

4 3 14,745,600 47,185,920 41,746,432 117,440,512

4 4 415,236,096 1,233,125,376 1,006, 632,960 2,717,908,992
4 5 10, 687,086,592 30,064,771,072 23,102,226,432 60,397,977,600
5 0 722 6724 12,482 58,564

5 1 123,904 739,328 984, 064 3,964,928

5 2 12,781,568 59,969, 536 65,619,968 237,899,776

5 3 1,007, 681,536 4,060,086,272 3,901,751,296 13,088,325,632
5 4 67,194,847,232 243,609, 370,624 213,408,284,672 674,448,277,504
5 5 3,995,393,327,104 243,609, 370,624 10,953,240,346,624  33,019,708,571,648

5. Conclusions

The number of spanning trees 7(G) in graphs (networks) is an important invariant.
The computation of this number is not only beneficial from a mathematical (computational) standpoint,
but it is also an important measure of the reliability of a network and electrical circuit layout.
Some computationally laborious problems such as the traveling salesman problem can be resolved
approximately by using spanning trees. In this paper, we define some classes of pyramid graphs
created by a gear graph and we have studied the problem of computing the number of spanning trees

of these graphs.
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Abstract: The existing construction methods of granularity importance degree only consider the
direct influence of single granularity on decision-making; however, they ignore the joint impact from
other granularities when carrying out granularity selection. In this regard, we have the following
improvements. First of all, we define a more reasonable granularity importance degree calculating
method among multiple granularities to deal with the above problem and give a granularity reduction
algorithm based on this method. Besides, this paper combines the reduction sets of optimistic and
pessimistic multi-granulation rough sets with intuitionistic fuzzy sets, respectively, and their related
properties are shown synchronously. Based on this, to further reduce the redundant objects in each
granularity of reduction sets, four novel kinds of three-way decisions models with multi-granulation
rough intuitionistic fuzzy sets are developed. Moreover, a series of concrete examples can demonstrate
that these joint models not only can remove the redundant objects inside each granularity of the
reduction sets, but also can generate much suitable granularity selection results using the designed
comprehensive score function and comprehensive accuracy function of granularities.

Keywords: three-way decisions; intuitionistic fuzzy sets; multi-granulation rough intuitionistic fuzzy
sets; granularity importance degree

1. Introduction

Pawlak [1,2] proposed rough sets theory in 1982 as a method of dealing with inaccuracy
and uncertainty, and it has been developed into a variety of theories [3-6]. For example,
the multi-granulation rough sets (MRS) model is one of the important developments [7,8]. The MRS
can also be regarded as a mathematical framework to handle granular computing, which is proposed
by Qian et al. [9]. Thereinto, the problem of granularity reduction is a vital research aspect of MRS.
Considering the test cost problem of granularity structure selection in data mining and machine
learning, Yang et al. constructed two reduction algorithms of cost-sensitive multi-granulation
decision-making system based on the definition of approximate quality [10]. Through introducing
the concept of distribution reduction [11] and taking the quality of approximate distribution as
the measure in the multi-granulation decision rough sets model, Sang et al. proposed an a-lower
approximate distribution reduction algorithm based on multi-granulation decision rough sets, however,
the interactions among multiple granularities were not considered [12]. In order to overcome the
problem of updating reduction, when the large-scale data vary dynamically, Jing et al. developed an
incremental attribute reduction approach based on knowledge granularity with a multi-granulation
view [13]. Then other multi-granulation reduction methods have been put forward one after
another [14-17].

Symmetry 2018, 10, 662; doi:10.3390/sym10110662 207 www.mdpi.com/journal /symmetry
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The notion of intuitionistic fuzzy sets (IFS), proposed by Atanassov [18,19], was initially developed
in the framework of fuzzy sets [20,21]. Within the previous literature, how to get reasonable
membership and non-membership functions is a key issue. In the interest of dealing with fuzzy
information better, many experts and scholars have expanded the IFS model. Huang et al. combined
IFS with MRS to obtain intuitionistic fuzzy MRS [22]. On the basis of fuzzy rough sets, Liu et al.
constructed covering-based multi-granulation fuzzy rough sets [23]. Moreover, multi-granulation
rough intuitionistic fuzzy cut sets model was structured by Xue et al. [24]. In order to reduce the
classification errors and the limitation of ordering by single theory, they further combined IFS with
graded rough sets theory based on dominance relation and extended them to a multi-granulation
perspective. [25]. Under the optimistic multi-granulation intuitionistic fuzzy rough sets, Wang et al.
proposed a novel method to solve multiple criteria group decision-making problems [26]. However,
the above studies rarely deal with the optimal granularity selection problem in intuitionistic fuzzy
environments. The measure of similarity between intuitionistic fuzzy sets is also one of the hot areas
of research for experts, and some similarity measures about IFS are summarized in references [27-29],
whereas these metric formulas cannot measure the importance degree of multiple granularities in the
same IFS.

For further explaining the semantics of decision-theoretic rough sets (DTRS), Yao proposed
a three-way decisions theory [30,31], which vastly pushed the development of rough sets. As a
risk decision-making method, the key strategy of three-way decisions is to divide the domain
into acceptance, rejection, and non-commitment. Up to now, researchers have accumulated a vast
literature on its theory and application. For instance, in order to narrow the applications limits of
three-way decisions model in uncertainty environment, Zhai et al. extended the three-way decisions
models to tolerance rough fuzzy sets and rough fuzzy sets, respectively, the target concepts are
relatively extended to tolerance rough fuzzy sets and rough fuzzy sets [32,33]. To accommodate
the situation where the objects or attributes in a multi-scale decision table are sequentially updated,
Hao et al. used sequential three-way decisions to investigate the optimal scale selection problem [34].
Subsequently, Luo et al. applied three-way decisions theory to incomplete multi-scale information
systems [35]. With respect to multiple attribute decision-making, Zhang et al. study the inclusion
relations of neutrosophic sets in their case in reference [36]. For improving the classification correct
rate of three-way decisions, Zhang et al. proposed a novel three-way decisions model with DTRS by
considering the new risk measurement functions through the utility theory [37]. Yang et al. combined
three-way decisions theory with IFS to obtain novel three-way decision rules [38]. At the same time,
Liu et al. explored the intuitionistic fuzzy three-way decision theory based on intuitionistic fuzzy
decision systems [39]. Nevertheless, Yang et al. [38] and Liu et al. [39] only considered the case of a
single granularity, and did not analyze the decision-making situation of multiple granularities in an
intuitionistic fuzzy environment. The DTRS and three-way decisions theory are both used to deal
with decision-making problems, so it is also enlightening for us to study three-way decisions theory
through DTRS. An extension version that can be used to multi-periods scenarios has been introduced by
Liang et al. using intuitionistic fuzzy decision- theoretic rough sets [40]. Furthermore, they introduced
the intuitionistic fuzzy point operator into DTRS [41]. The three-way decisions are also applied in
multiple attribute group decision making [42], supplier selection problem [43], clustering analysis [44],
cognitive computer [45], and so on. However, they have not applied the three-way decisions theory to
the optimal granularity selection problem. To solve this problem, we have expanded the three-way
decisions models.

The main contributions of this paper include four points:

(1) The new granularity importance degree calculating methods among multiple granularities
(ie., si g/;ﬁ (Aj, A1,D) and si gl'aﬁ ((Aj, A1,D)) are given respectively, which can generate more
discriminative granularities.

(2) Optimistic optimistic multi-granulation rough intuitionistic fuzzy sets (OOMRIFS)
model, optimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (OIMRIFS) model,
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pessimistic optimistic multi-granulation rough intuitionistic fuzzy sets (IOMRIFS) model and
pessimistic pessimistic multi-granulation rough intuitionistic fuzzy sets (IIMRIFS) model are
constructed by combining intuitionistic fuzzy sets with the reduction of the optimistic and pessimistic
multi-granulation rough sets. These four models can reduce the subjective errors caused by a single
intuitionistic fuzzy set.

(3) We put forward four kinds of three-way decisions models based on the proposed four
multi-granulation rough intuitionistic fuzzy sets (MRIFS), which can further reduce the redundant
objects in each granularity of reduction sets.

(4) Comprehensive score function and comprehensive accuracy function based on MRIFS are
constructed. Based on this, we can obtain the optimal granularity selection results.

The rest of this paper is organized as follows. In Section 2, some basic concepts of MRS, IFS,
and three-way decisions are briefly reviewed. In Section 3, we propose two new granularity importance
degree calculating methods and a granularity reduction Algorithm 1. At the same time, a comparative
example is given. Four novel MRIFS models are constructed in Section 4, and the properties of the
four models are verified by Example 2. Section 5 proposes some novel three-way decisions models
based on above four new MRIFS, and the comprehensive score function and comprehensive accuracy
function based on MRIFS are built. At the same time, through Algorithm 2, we make the optimal
granularity selection. In Section 6, we use Example 3 to study and illustrate the three-way decisions
models based on new MRIFS. Section 7 concludes this paper.

2. Preliminaries

The basic notions of MRS, IFS, and three-way decisions theory are briefly reviewed in this section.
Throughout the paper, we denote U as a nonempty object set, i.e., the universe of discourse and
A={Ay, Ay, ---, Ay} is an attribute set.

Definition 1 ([9]). Suppose IS =< U,A,V,f > is a consistent information system,
A={Ay, Ay, ---, A} is an attribute set. And Ry, is an equivalence relation generated by A. MA, is
the equivalence class of Ra,, VX C U, the lower and upper approximations of optimistic multi-granulation
rough sets (OMRS) of X are defined by the following two formulas:

m O

.ZAi (X)={x¢€ UHX]A1 QX\/[X]AZ - X\/[JC]A3 gX...v[x]Am C X};
11140 m O

Ear 0=~ (£ (~x).

m O T ©

m
where \ is a disjunction operation, ~ X is a complement of X, if Y. A; (X) # Y A; (X), the pair
i=1 i=1

m ¢} m %
(XA (X), LA (X)) is referred to as an optimistic multi-granulation rough set of X.
i=1 i=1

Definition 2 ([9]). Let IS =< U, A, V, f > be an information system, where A = {A1, Aa, -+, Am} isan
attribute set, and R 4, is an equivalence relation generated by A. [x] 5 is the equivalence class of Ra, ¥X C U,
the pessimistic multi-granulation rough sets (IMRS) of X with respect to A are defined as follows:

Pal ()= (xe Ul[x]4, € XA x4, € XA x4, © XA A[x]4, € X);

i=1 "
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I

m

where [x] 4 (1 < i < m) is equivalence class of x for A;, A is a conjunction operation, if Y, A; (X) #
i=1

i

1 I 1

m m m

YA (X), the pair (Y A; (X), Y A; (X)) is referred to as a pessimistic multi-granulation rough set of X.
i=1 i=1 i=1

Definition 3 ([18,19]). Let U be a finite non-empty universe set, then the IFS E in U are denoted by:
E={<x, pp(x),ve(x) > |x € U},

where pg(x): U — [0,1] and ve(x) : U — [0,1]. pp(x) and ve(x) are called membership and non-mem-
bership functions of the element x in E with 0 < ug(x) +vg(x) < 1. ForV x € U, the hesitancy degree function
is defined as mg(x) = 1 — pg(x) — ve(x), obviously, mg(x): U — [0,1]. Suppose V E1, E; € IFS(U),
the basic operations of Ey and E, are given as follows:

(1) E1 CExy & pg (%) < pg,(x), vg (x) > vg,(x), Vx € U;

(20 A=B<& pua(x) =pup(x), va(x) =vp(x), Vx e U;

(3) E1UE, = {< x, max{ug, (x), g, (x)}, min{vg, (x), vg,(x)} > |x € U};

@) (&) E\NE = {< x, min{ug, (x), p, (1)}, max{ve, (x), ve,(0)} > | € U};
(®) (5) ~E1={<x, vg(x), pg,(x) > |x € U}.

Definition 4 ([30,31]). Let U = {xq,x2,- - -, xn} be a universe of discourse, & = {wp,wn, wp} represents
the decisions of dividing an object x into receptive POS(X), rejective NEG(X), and boundary regions BND(X),
respectively. The cost functions App, Anp and Agp are used to represent the three decision- making costs of
Vx € U, and the cost functions Apn, AN and Apy are used to represent the three decision-making costs of
Vx & U, as shown in Table 1.

Table 1. Cost matrix of decision actions.

Decision Functions

Decision Actions

X ~X
wp App ApN
wp App ABN
wN ANp ANN

According to the minimum-risk principle of Bayesian decision procedure, three-way decisions
rules can be obtained as follows:

(P): If P(X|[x]) > &, then x € POS(X);

(N):If P(X|[x]) < B, then x € NEG(X);

(B):If B < P(X|[x]) < «, then x € BND(X).

Here «, B and <y represent respectively:

o ApN — ABN .
(Apn — AgN) + (Agp — App)’
B— ABN — ANN )
(Apn — ANN) + (Anp — Agp)”
Apn — A
y PN — ANN

" (ApN — Ann) + (Anp — App)’
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3. Granularity Reduction Algorithm Derives from Granularity Importance Degree

Definition 5 ([10,12]). Let DIS = (U,CUD,V, f) be a decision information system, A = {A;1, Ay,
<o+, Aw} are m sub-attributes of condition attributes C. U/D = {Xy, Xy, - - - , Xs } is the partition induced
by the decision attributes D, then approximation quality of U/ D about granularity set A is defined as:

m A
U Y A; (Xf)‘l <t<s
i=1
ul

IY(ArD) =

where | X| denotes the cardinal number of set X. A € {O, I'} represents two cases of optimistic and pessimistic
multi-granulation rough sets, the same as the following.

Definition 6 ([12]). Let DIS = (U,CUD, V, f) be a decision information system, A = {Aq, Az, -+, Am}
are m sub-attributes of C, A1 C A, X € U/D,
A

m A m
I r A (X)# Y A; (X), then A’ is important in A for X;
i=1,A€A

i=1,A;€A-A!
m A m A
@I T A (X)= Y A; (X)), then A is not important in A for X.
i=1,A;€A i=1,A;€A—A'

Definition 7 ([10,12]). Suppose DIS = (U,CUD, V, f) is a decision information system, A = {A1, Ay, -+ -,
A} are m sub-attributes of C, Al C A. VA; € Al, on the granularity sets Al, the internal importance degree
of A; for D can be defined as follows:

sigh (Aj, A1,D) = |y(A1,D) — y(Ar— {A;},D)|.

Definition 8 ([10,12]). Let DIS = (U,CU D, V, f) be a decision information system, A = {Ay, Aa, -+,
Ap } are m sub-attributes of C, A1 C A. VA; € A — Al, on the granularity sets Al, the external importance
degree of A; for D can be defined as follows:

sigout (Ai, A1, D) = |7(A;U A1, D) — (A1, D)|.

Theorem 1. Let DIS = (U,CU D, V, f) be a decision information system, A = {A1, Aa,---, A} arem
sub-attributes of C, Al C A.

(1) For YA; € A1, on the basis of attribute subset family A’, the granularity importance degree of A; in A/
with respect to D is expressed as follows:

) 1 ) )
sigiy(Ai, A1, D) = - — ) [sighy ({ Ak, Ai}, A1, D) — sigfy (A, A7 = {A}, D).

where 1 < k < m, k # i, the same as the following.

(2) For VA; € A — A1, on the basis of attribute subset family A’, the granularity importance degree of A;
in A — Al with respect to D, we have:

. 1 . .
Slg?ut(A,‘,A/, D) = mz |szgaAut({Ak/ Ai}/ {A1} U AI'D) - SlgnAut(Ak/ Al, D)‘
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Proof. (1) According to Definition 7, then

sigy (Ai, A1,D) = |7(A1,D) —y(Ar - {4A;},D)|
= 2=19(A1,D) — 7(A1— {A;},D)| + T |7(Ar — {Ay, A;}, D) — y(Ar - { Ay, A}, D)
= X (17(A7, D) — y(Ar = { Ay, A}, D) — (v(Ar = { A}, D) — v(A1 — { A, A}, D)|)
= X lsigy, ({Ax A}, A1, D) —sig;, (Ay, A1 — { A}, D).

(2) According to Definition 8, we can get:

sigou(Ai, AL,D) = |7({A;} U A1, D) — 4(A1,D)|
= 21| ({A;} UAI,D) — 7(A1,D)| - ¥ |y(Ar — {Ag}, D) — v (A1 — {4}, D)
= 7L (IW({Ai} U A1, D) — 4 (A1 — { A}, D)| — |(7v(Ar — { A}, D) — 7(A1,D)|)
= X Isigo, ({ Ak, Ai}, {Ai} U A1, D) — sigy . (Ay, A1, D).

O

In Definitions 7 and 8, only the direct effect of a single granularity on the whole granularity sets
is given, without considering the indirect effect of the remaining granularities on decision-making.
The following Definitions 9 and 10 synthetically analyze the interdependence between multiple
granularities and present two new methods for calculating granularity importance degree.

Definition 9. Let DIS = (U,CU D, V, f) be a decision information system, A = {Aq, Ay, -+, Ap} are
m sub-attributes of C, A1 C A. VA;, Ay € Al, on the attribute subset family, A, the new internal importance
degree of A; relative to D is defined as follows:

. . 1 . .
sigr®(A;, A1, D) = sigh, (A;, A1,D) + ﬁz |sigh (Ax, A7 — {A;}, D) — sigh (Ag, A1, D)|.

sigh (A;, A1, D) and -15Y" |sigh (Ay, A1 — {A;}, D) — sigh (Ay, A1, D)| respectively indicate the direct
and indirect effects of granularity A; on decision-making. When \sigiAn (Ay, A1 —{A;},D) — sig;(Ak, A1,D)|
> 0 is satisfied, it is shown that the granularity importance degree of Ay is increased by the addition of A;
in attribute subset A1 — {A;}, so the granularity importance degree of Ay should be added to A;. Therefore,
when there are m sub-attributes, we should add 1Y [sigh (A, A1 — {A;}, D) — sigh (Ay, A1,D)| to the
granularity importance degree of A;.

If \sigiAn(Ak, Ar—{A;},D) — sigiAn(Ak, A1,D)| = 0and k # i, then it shows that there is no interaction

between granularity A; and other granularities, which means sig/;ﬁ(Ai, A1,D) = sz'gi(Ah A1,D).

Definition 10. Let DIS = (U,CU D, V, f) be a decision information system, A = {Aq1, Aa,---, A} bem
sub-attributes of C, A1 C A. VA; € A — Al, the new external importance degree of A; relative to D is defined
as follows:

. . 1 . :
Slg/bit(Ai/ A/,D) = Slgtéut(Ai/A// D) + mz ‘SlgnAut(Ak/ Al, D) - Slgtéut(Akl {Ai} UA/, D) ‘

Similarly, the new external importance degree calculation formula has a similar effect.

Theorem 2. Let DIS = (U,CUD,V, f) be a decision information system, A = {Ay, Ap,-++, An} bem
sub-attributes of C, A1 C A, VA; € Al. The improved internal importance can be rewritten as:

. 1 LA
szg/;ﬁ(Ai,A/,D) = mngin(A,',Al —{Ax}, D).
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Proof.

sigliy(Ai, A, D) = sigy, (Ai, A1, D) + 511X [sigy, (Av, A1 — {A;}, D) — sigy, (Ag, A1, D))
= #=H7(A1, D) = 7(A1 = {A:}, D) + 75X ||v(Ar — {A;}, D)~
(A1 = { Ay, A}, D)| - |7(A1, D) = y(Ar = { A}, D)|
= 7L E (A1 = {Ak}, D) = y(Ar = {A, A}, D)|
= s Lsigy, (Ai, A1 = {A}, D).

O

Theorem 3. Let DIS = (U,CU D, V, f) be a decision information system, A = {Aq, A, -+, A} arem
sub-attributes of C, A1 C A. The improved external importance can be expressed as follows:

. 1 LA
sig/auy(Ai, A1, D) = ——=3 sigou(Aj, { A} U A1, D).

Proof.

sigr® (Ay, A1,D) = sigh(Ay, A1, D) + - 10% |(sigpy (Ar, A1, D) — sigy, (Ar, {A;} U A, D))
= =11y ({A;} UA, D) — (A1, D)| + 725 L ||7(A1, D) — v({Ax} U A1, D) | —
lv({Ai} v AL D)|
= Ly |v({Ai, A UALD) — y({A;} U AL D)
= S Esign (A {A} U AL D).

O

Theorems 2 and 3 show that when sigh (4;, A7 — {A}, D) = 0 (sigh.(Ai, {Ac} U A1, D) = 0)
is satisfied, having sig/;.ﬁ(A,', Al, D) =0 (sigr™ (A;, A1, D) = 0). And each granularity importance
degree is calculated on the basis of removing Ay from A/, which makes it more convenient for us to
choose the required granularity.

According to [10,12], we can get optimistic and pessimistic multi-granulation lower
approximations L? and L!. The granularity reduction algorithm based on improved granularity

importance degree is derived from Theorems 2 and 3, as shown in Algorithm 1.
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Algorithm 1. Granularity reduction algorithm derives from granularity importance degree

Input: DIS = (U, CUD,V, f), A={A1, Ay, ---, Ap} are m sub-attributes of C, A1 C A,VA; € Al,
U/D={Xy,Xp, -+, Xs};

Output: A granularity reduction set AiA of this information system.

1: set up A,.A —¢,1<h<m

2: compute U/ D, optimistic and pessimistic multi-granulation lower approximations L*;
3:forVA; € A

4:  compute sigl;,ﬁ(Ai, A, D) via Definition 9;

5. if (sigi(A;, A1, D) > 0) then A; = A; U A;;

6: end

7. forVA; € A—A;
8 if 'y(A;\, D) = (A, D) then compute sig//5 (A;, A1, D) via Definition 10;
9

: end
10: if sigr,(Ay, A, D) = max{sigr’,(Ay, A1, D)} then A; = A; U Ay;
11: end
12: end
13: forVA; € A;,
14: if (A} — A;, D) = 7(A,D) then A; = A} — A;;
15: end
16: end
17: return granularity reduction set A?;
18: end

Therefore, we can obtain two reductions by utilizing Algorithm 1.

Example 1. This paper calculates the granularity importance of 10 on-line investment schemes given in
Reference [12]. After comparing and analyzing the obtained granularity importance degree, we can obtain the
reduction results of 5 evaluation sites through Algorithm 1, and the detailed calculation steps are as follows.

According to [12], we can get A = {A, Ay A3 Ay, A5}, A C A U/D =
{{x1, %2, x4, x6, x5}, {X3, X5, %7, %9, X10} }

(1) Reduction set of OMRS

First of all, we can calculate the internal importance degree of OMRS by Theorem 2 as shown in
Table 2.

Table 2. Internal importance degree of optimistic multi-granulation rough sets (OMRS).

Ay Az A Ayg As
sig0(A, ALD) 0 0.15 0.05 0 0.05
sigrQ(A;, A,D) 0025 0375 0.225 0 0

Then, according to Algorithm 1, we can deduce the initial granularity set is {A;, A2, As}.
Inspired by Definition 5, we obtain r0({A3, A3}, D) = r°(A,D) = 1. So, the reduction set of the
OMRS is AP = {A, As}.

As shown in Table 2, when using the new method to calculate internal importance degree,
more discriminative granularities can be generated, which are more convenient for screening out the
required granularities. In literature [12], the approximate quality of granularity A in the reduction set
is different from that of the whole granularity set, so it is necessary to calculate the external importance
degree again. When calculating the internal and external importance degree, References [10,12] only
considered the direct influence of the single granularity on the granularity A, so the influence of the
granularity A, on the overall decision-making can’t be fully reflected.
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(2) Reduction set of IMRS

Similarly, by using Theorem 2, we can get the internal importance degree of each site under IMRS,
as shown in Table 3.

Table 3. Internal importance degree of pessimistic multi-granulation rough sets (IMRS).

Aq Ay Az Ay As
sigh (A;, A,D) 0 0.05 0 0 0
sighl (A;, AL,D) 0 0.025 0 0.025 0.025

According to Algorithm 1, the sites 2, 4, and 5 with internal importance degrees greater than 0,
which are added to the granularity reduction set as the initial granularity set, and then the approximate
quality of it can be calculated as follows:

r1({Ay, A4}, D) = r1({A4, As}, D) = r'(A, D) = 0.2.

Namely, the reduction set of IMRS is A/ = {45, A;} or Al = {A,, As} without calculating the
external importance degree.

In this paper, when calculating the internal and external importance degree of each granularity,
the influence of removing other granularities on decision-making is also considered. According to
Theorem 2, after calculating the internal importance degree of OMRS and IMRS, if the approximate
quality of each granularity in the reduction sets are the same as the overall granularities, it is
not necessary to calculate the external importance degree again, which can reduce the amount
of computation.

4. Novel Multi-Granulation Rough Intuitionistic Fuzzy Sets Models

In Example 1, two reduction sets are obtained under IMRS, so we need a novel method to obtain
more accurate granularity reduction results by calculating granularity reduction.

In order to obtain the optimal determined site selection result, we combine the optimistic and
pessimistic multi-granulation reduction sets based on Algorithm 1 with IFS, respectively, and construct
the following four new MRIFS models.

Definition 11 ([22,25]). Suppose IS = (U, A, V, f) is an information system, A = {A1, Az,---, An}.
VE C U, E are IFS. Then the lower and upper approximations of optimistic MRIFS of A; are respectively
defined by:

" o
YRa (E)={<x,p,, o (x)v, o (x)>|xel};
i=1 ElRAi (E) ElRAi (E)
m O
Y Ra, (E)={<x, poro0 (x),v—0 (x)>|xeU}.
i=1 LRa; (E) LRa; (E)
where " "
Hw o (x)=V inf pp(y), v, o (x)= A sup ve(y);
Ery 60 ey B @ Sy,
o (x)= A sup pe(y), v—o (¥) =V _inf ve(y).
Y. Ra (E) =lyela],, Y. R4 (E) i=1y€[x] o,
K i P’ i

where Ry, is an equivalence relation of x in A, [x], is the equivalence class of Ra,and V is a
i
disjunction operation.
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Definition 12 ([22,25]). Suppose IS =< U, A, V, f > is an information system, A = {Ay, Ay, -+, Am}.
VE C U, E are IFS. Then the lower and upper approximations of pessimistic MRIFS of A; can be described

as follows:
m I
YRa, (E)=A<x, p,, 1+ (x),v, 1 (x)>[xelU}
i=1 LR, (B) LRy, (E)
, =
m
YRy, (E) ={<x, poe (x), 00— (x) > [x € U}.
i=1 ‘:LlRAi (E) ElRA,- (E)
where . "
P 1 (x)=A inf pp(y), v, 1 (x)=V sup ve(y);
LRa; (E) i=lyelda, LR (E) Hlyely),
poy—t ()= V sup pe(y), vt (x) = A inf ve(y).
YRy, (E) =lyelx],. YRy, (E) i=lyeld,,
i LRa;

where [x] 5, is the equivalence class of x about the equivalence relation R a,, and A is a conjunction operation.

Definition 13. Suppose IS =< U, A, V, f > is an information system, AO = {Ay, Ay, -+ , A/} C A,
A={Ay, Ay, An}. And R 4,0 is an equivalence relation of x with respect to the attribute reduction set

AP under OMRS, [x] 2,0 is the equivalence class of Ry 0. Let E be IFS of U and they can be characterized by a

pair of lower and upper approximations:

o)
LR (E)={<xpu, o (x)v, o (x)>xel}
= B B Bl
r
YRpo (E)={<xp— 0 (x)v o (x)>|xeU}.
=1 YR,0 (E) YR,0 (E)
i=1 i i=1 "
where . .
pe o ()=V inf pey)v, o (¥)=A sup ve(y);
ERap E) Flvellao LR @ - yellyo
- r r
py—o (¥)=A sup pp(y),vo—o (x)=V inf ve(y).
R0 (E) = velrl,0 LR,0 (E) i=lyelxl 0
o 7 o
(E), then E can be called OOMRIFS.

Definition 14. Suppose IS =< U, A,V,f > is an information system, YVE C U, E are IFS. A?
{A1, As,-++, Aw}. where AD is an optimistic multi-granulation

{A1, Ay, A} C A A =
attribute reduction set. Then the lower and upper approximations of pessimistic MRIFS under optimistic

multi-granulation environment can be defined as follows:

1
YRy (Ey={<x,u, 1+ (x)v, 1 (x)>lxelU};
i=1 LRy () ERyo (E)
. I
Y R0 (E)={<xu 1 (x),v- (x) > |x e U}.
= zElRAtQ (E) 1)::1RA1‘O (E)
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where
r r
p, o ()= A inf pp(y),v, 1 (x)=V sup vg(y);
LR B Slyeblao ERap (E) IZIyEMA,‘O
r r
Pyt () =V sup pp(y),vo—— (x)= A inf ve(y).
R0 (E) Slyeld, 0 R0 (E) i=lyelxl 4 0
1 1 I I

The pair (LR 40 (E), ¥R 40 (E)) are called OIMRIFS, if ¥ R ,0 (E) # YR 40 (E).
i=1 i=1 i=1 i=1
According to Definitions 13 and 14, the following theorem can be obtained.

Theorem 4. Let IS =< U, A,V, f > be an information system, A? = {A, Ay, A} CA A=
{A1,Az, -+, An}, and Eq, Ep be IFS on U. Comparing with Definitions 13 and 14, the following proposition
is obtained.

r o r

(1) 'Z1RA'O (El):ileAg)O(El)?
= —1 AT
r r—0

2 _ZlRAio (E1) = N Ryo (Ev);
= -
P F

©) —1RAiO (Er) = iglRAxQ (Ex);

i=

1

r

@ YRy (E1) = URuo!(Er);
i=1 i 1= i
r I r o

©®) 'ZIRAQ (E1) € ZlRAo (Ev);
i= i i= i

r o 14 1
(6) 1RAO (E1) C ZIRAO (E1);
— i i= i

1

r o r o r o r I 7 1 P 1
7) vleAo (E1NEy) = )leAo (E1)N leAQ (Ez),leAo (EyNEy) = leAp (E1)N leAQ (Ep);
i= i i= i i= i i= i i= i i= B

O O 0] 1 1 1
r r r r r r

8) vleAo (EfUEy) = )leAo (E1) U leAQ (Ez),leAo (EfUE) = leAp (E1)u leAQ (Ep);
i— i i— i i= i i= i i= i i= ‘

. o . o . o . I . I . I
) XlRAo (E1UE) 2 ):1RAO (E1) U ZlRAo (E2), Z1RAO (E1UE) 2 ZlRAo (E1)U ZlRAo (E2);
= i=1 =1 = =1 =1

O 0 I 1

——O0 1 — —_—
r r r r r r

(10) LRy (E1NE) S ERyo (E)N ERyo (E2) LRyo (E1NE) € LRyo (E1)N ERyo (En):
i=1 1 i=1 "1 i=1 " i=1 1 i=1 " i=1 i

Proof. It is easy to prove by the Definitions 13 and 14.

Definition 15. Let IS =< U, A, V, f > be an information system, and E be IFS on U. A{ ={A, Ay,
A} CA A={Ay, Ay, -+, Ay}, where AII is a pessimistic multi-granulation attribute reduction set. Then,
the pessimistic optimistic lower and upper approximations of E with respect to equivalence relation R , 1 are
defined by the following formulas:

YRy (E)={<xu, o (v, o (x)>[xell
=L ERa ® ERa B

O
YRy (E)={<xpu o (x),v—o0 (x)>[xeU}.
=1 YR, (E) YR, (E)
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where . .
po oo (x)=Vo inf pp(y),v, o (x)= A sup ve(y);

yE[X]AX_I

po—o (x)= A sup pp(y),v—o (x)=V inf vg(y).
LR, (E) Slyelx, LR, (E) =lyelxa

" o -0
If YRy (E)# YRy (E), then E can be called IOMRIFS.
i=1 ! i=1 !

Definition 16. Let IS =< U, A, V, f > be an information system, and E be IFS on U. AI! ={A1, Ay,
A} CA A={Ay, Ay, An}, where AiI is a pessimistic multi-granulation attribute reduction set. Then,
the pessimistic lower and upper approximations of E under IMRS are defined by the following formulas:

YRy (E)={<xu, 1 (v, IE)(x)>\x€U};

i=1 ! glRA{ (E) glRA{ (E)
where . .
w, 1 ()= A inf up(y),v, 1 (x)=V sup ve(y);
LRar (B) el LZRar (B) Zzlye[ﬂA;I
p—1 () =V sup pp(y),v— (x)= A inf vg(y).
YR, (E) =yl YR, (E) i=lyeld
i=1 i 1 i=1 i

where R 41 is an equivalence relation of x about the attribute reduction set Al under IMRS, [x] a0 is the
equivalence class of R, 1.

I 1 I I
If YR, (E) # LR (E), then the pair (¥ R (E), ¥R, (E)) is said to be IMRIFS.
i=1 ! i=1 ! i=1 ! i=1 !

According to Definitions 15 and 16, the following theorem can be captured.

Theorem 5. Let IS =< U, A, V, f > be an information system, AII ={A1, Ay, A} CA A={4,
Ay, -+, A}, and Eq, Ep be IFS on U. Then IOMRIFS and IIOMRIFS models have the following properties:

r 0 r o
M) TRy (E)= ORyO(E);
i= ! =l__1

@ LRy (E)= 0Ra(E1);

® LRy (E) = URy!(E);

@ LRy (B)= DRy (E);

() LRy (E1)C LRy (Er);

(©) ﬁRA! (E1) € ,_iRA{ (E1).

v ) ) roo 1 ro 1 roo
(7) ZIRAI (E1NEy) )ZIRA! (E1)N ZlRA! (Ez)zleAt (E1NEp) = ZlRAz (E1)N )ZIRA! (E2);
! L Bl =0l Bl P=pt

i

-0 ; 10} - 10} - 1 - 1 ; 1
8) _leA, (EfUE) = )%RA, (E1)U )leA, (Ez),leAg (EfUE) = )leA, (E1) U Z1RA, (E2);
i= ! i= B i= B i= B i= B i= B
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, O ., 0 ., 0 .ol .o ;o1

) 'ZIRAI (E1UEp) 2 ):lRAI (E1)U ZlR,ﬂ (Ez)zleAt (E1UEp) 2 ZlRAz (E1)U )ZIRA! (E2);
= = = oA = =
—O0 O O I

r r r r ° r I r 1
(10) _leA, (E1NEy) C ):1RA, (E1)N )leA, (Ez),[leAg (E1NEy) C )leA, (E1)N ):1RA, (E2).
i= ! i= B i= B i= B i= B i= B

Proof. It can be derived directly from Definitions 15 and 16. [J
The characteristics of the proposed four models are further verified by Example 2 below.

Example 2. (Continued with Example 1). From Example 1, we know that these 5 sites are evaluated by
10 investment schemes respectively. Suppose they have the following IFS with respect to 10 investment schenes

F— [1025043] [051028) [0540.38] [0.37,059] [049,035] [092,0.04] [0.09,086] [015046]
- xx /  x / x3 7 xx 7 x5 /  x ' x 7 xz
0.72,0.12] [0.67,0.23]
X9 7 X1 '

(1) In OOMRIFS, the lower and upper approximations of OOMRIFS can be calculated as follows:

p o

R (E) o [0.25,0.59] [0.49,0.38] [0.49,0.38] [0.25,0.59] [0.49,0.38] [0.25,0.46] [0.09,0.86]
= A‘O - X1 4 X ’ X3 4 Xy 4 X5 4 X6 4 Xy 4
[0.15,0.46] [0.15,0.46] [0.67,0.23]
xg X9 7 Xy 4
-0
R (E) _ [0.51,0.28] [0.51,0.28] [0.54,0.35] [0.51,0.28] [0.54,0.35] [0.92,0.04] [0.54,0.35]
= A‘O X1 4 X ’ X3 4 Xy 4 X5 4 X6 4 Xy 4

[0.15,0.46] [0.72,0.12] [0.67,0.23]
xg X9 7 X0

(2) Similarly, in OIMRIFS, we have:

I

iR (E) = [0.25,0.59] [0.25,0.59] [0.09,0.86] [0.25,0.59] [0.09,0.86] [0.15,0.59] [0.09,0.86]
= A9 - x1 7 xx 7 x 7 xy /x5 7 x5  x7 7
i=
[0.15,046] [0.09,0.86] [0.09,0.86]
xg X9 7 Xi0 4

—

i R0 (E) = [0.92,0.04] [0.54,028] [0.540.28] [0.92,0.04] [0.54028] [0.92,0.04] [0.72,0.12]
= AS X X X3/ Xy 7 x5 7 Xe X7 7
i—

[0.92,0.04] [0.92,0.04] [0.72,0.12]
xg X9 7 X0 !

From the above results, Figure 1 can be drawn as follows:

1.0

0.9
08
07
06 fe.
05 K

0.4

03 b/

02

Membership and nonmembership of the lower and
upper approximations of OOMRIFS and OIMRIFS

Figure 1. The lower and upper approximations of OOMRIFS and OIMRIFS.

Note that
m = p09(

pa = pO0(x;) and vy = vOO(x;) represent the upper approximation of OOMRIFS;

x;) and vy voo(xj) represent the lower approximation of OOMRIFS;
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uz = pu° (x]) and v3 = v° (x]) represent the lower approximation of OIMRIFS;

Hy = yOI(x]) and vy = vOI (x x;) represent the upper approximation of OIMRIFS.
Regarding Figure 1, we can get,

#OI(xj) > uO0 (x)) > 10 (xj) > pO' (xj); vO(xj) > 199(x;) > vOO(x;) > vOI(x;).

As shown in Figure 1, the rules of Theorem 4 are satisfied. By constructing the OOMRIFS and OIMRIFS
models, we can reduce the subjective scoring errors of experts under intuitionistic fuzzy conditions.
(3) Similar to (1), in IOMRIFS, we have:

O
"R F)= {02043 [025043) [025043) [0370.59] [025043] [025046] [0.09086]
r Al ( - X X x3 Xy X5 X6 Xz

[0.15046] [0.67,023] [0.67,0.23]
xg X9 7 X10 4

- ©
R, (E)— [l051028 (051028 [054035) [037,059] [049035] [052004] [051035)
LRy - X1’ x2  / x3 7 X5 X6 7 x7 7

i=1

[0.49,0.35) [0.72,0.12] [0.67,0.23]
xg X9 7 X0

(4) The same as (1), in IIMRIFS, we can get:

i RAgI(E) _ {[0,25,0.59] 0.09,0.86] [0.09/0.86], [0250.59] 0.09,0.86] [009,086] [0.09,0.86]

X1 4 X2 4 X3 X4 X5 X6 4 X7 4

[0.09,0.86] [0.15,0.46] [0.67,0.23]
xg 7 LR ST} ’

1

i R, (E)= [092,0.04] [0.54,028] [0.92,0.04] [0.92,0.04] [0.54,0.28] [0.92,0.04] [0.92,0.04]
) Al X1/ x /  x3 /x4 /x5 ' x5 / x7
i—=

(0.92,0.04] [0.92,0.04] [0.72,0.12]
xg 7 X9 7 X1

From (3) and (4), we can obtain Figure 2 as shown:

1.0

9 @ @ -m B ittt}
%Eo.g‘ 2778 DA . S g
=R —o— vy
2 -
5 & o7 Y
&8 o,
|
z % 06 °
_E 3 R T
ué«i 0.5 <G— v,
s &
S % 04 SR T]
=
gé 0.3 —e—
£ 2
E go2[
2 5
E £ oa
= 5

0.0 4

X1 X2 X3 Xa Xs X6 X7 Xs Xo *10

Figure 2. The lower and upper approximations of IOMRIFS and IIMRIFS.

Note that
ps = ulo(x i)
He = yﬁ(x]) and vg = T(x]) represent the upper approximation of IOMRIFS;
Uy = y”(x]) and v; = v (x 7) represent the lower approximation of IMRIFS;

) )

ps = pll(x;) and vg = vI1(x;) represent the upper approximation of IIMRIFS.
For Figure 2, we can get,

i) and vs = vIO(x;) represent the lower approximation of [IOMRIFS;

u(xj) > plO(x;) > 'O (x)) > p'l(x)); v (xj) > v/O(x)) > vIO(x;) > vI(x;).
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As shown in Figure 2, the rules of Theorem 5 are satisfied.

Through the Example 2, we can obtain four relatively more objective MRIFS models, which are
beneficial to reduce subjective errors.

5. Three-Way Decisions Models Based on MRIFS and Optimal Granularity Selection

In order to obtain the optimal granularity selection results in the case of optimistic and pessimistic
multi-granulation sets, it is necessary to further distinguish the importance degree of each granularity
in the reduction sets. We respectively combine the four MRIFS models mentioned above with three-way
decisions theory to get four new three-way decisions models. By extracting the rules, the redundant
objects in the reduction sets are removed, and the decision error is further reduced. Then the optimal
granularity selection results in two cases are obtained respectively by constructing the comprehensive
score function and comprehensive accuracy function measurement formulas of each granularity of the
reduction sets.

5.1. Three-Way Decisions Model Based on OOMRIFS

Suppose A is the reduction set under OMRS. According to reference [46], the expected loss
function ROO (w.|[x] 40)(x = P, B, N) of object x can be obtained:

ROO(wp|[x] o) = App - pOO(x) + Apn - vOO(x) + App - 09 (x);
RO9(wn[x] 40) = Anp - 199 (x) + Ann - vO9(x) 4+ Anp - 109 (x);
ROO(‘UBHX]A,_O) = Agp - 190 (x) + Agn - vO0(x) + Agg - 190 (x).

where
v v

WOW=p, o (®=Y inf w v P@=v, o @=A swp vy 0W=1-p, o @-v, o ()
LR (B  Fwelyo LR (B)  Tlyeld, o LR, (E) TR0 (B)
i=1 A i=1 A i i=1 A i=1 Af

or

KOW =0 W= A s g ) W= o (=Y it @) AW =10 () =ro——0 ()
‘EIRAO (E) y&MAio ’zlron (E) ve 4,0 1):1RAD (E) ,ZIRAO (E)
= i = i = 1 = i

The minimum-risk decision rules derived from the Bayesian decision process are as follows:
(P'): If R’(a}p\[x}AIQ) < R’(wg\[x]A?) and R’(wp|[x]Alg) < R’(wN|[x]A,Q), then x € POS(X);
(N7): I R’(wNHx]AIQ) < R’(wP\[x}AIQ) and RI(WNHX]AP) < R’(wg\[x]A‘o), then x € NEG(X);
(B/): If R'(wa|[x] o) < R'(wn]|[x] 40) and R’ (wp|[x] 40) < R'(wp|[x] 40), then x € BND(X).
Thus, the decision rules (Pr)-(Br) can be re-expressedlconcisely ast

(P7) rule satisfies:

00 __00(.). ANN — ApN 00 00 . AN — Apn .
#() < 4= m@) (App = Anp) + (Apn — ANN) YA G < (1 =m ) (App = App) + (Apn — AbN) )

(N/) rule satisfies:

00 00 ) Apn — ANN 00 00 ) AN — ANN .
@) < Q=) (Anp = App) + (Apn _)‘NN))/\ ) < A =7) (Anp = Agp) + (AN — ANN) )

(Br) rule satisfies:

00 00y . Apn — Apn 00 __00(.y. ABN — ANN
() > 4 =7 ) (Apn = ApN) + (App *APP))/\ #(x) 2 A=) (ABN — Ann) + (Anp *}\BP)>.
Therefore, the three-way decisions rules based on OOMRIFS are as follows:
(P1): If 4909 (x) > (1 — 199 (x)) - &, then x € POS(X);
(N1): If 490 (x) < (1 — 199(x)) - B, then x € NEG(X);
(B1): If (1 — 199(x)) - B < u99(x) and u°(x) < (1 — 99 (x)) - @, then x € BND(X).
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5.2. Three-Way Decisions Model Based on OIMRIFS

Suppose A? is the reduction set under OMRS. According to reference [46], the expected loss
functions ROC(w. |[x] 40)(* = P, B, N) of an object x are presented as follows:

RON(wp|[x] jo) = App - pOt(x) + Apn - vOI (x) + App - O (x);
ROI(WNHX]A,_O) = Anp - uON(x) + Anw - vO (x) + Ang - 107 (x);
RO (ws|[x] o) = App - pOl(x) + Apn - vO (x) + App - 1O (x).

where
ro r
@ =k 1 W= A )@ =, 1 0= s o) w0 =1 0 e ()
51 A9 ® T = ! yG[X]A,O 51 A9 51 A9 o
or
r o
HONx) = 1 (¥) =V sup (), v () = v () = A inf ve(y), mON(@) =T () v (%)
):lRAO (E) =lyely 40 ‘):1RAO (E) i .'/EMAIO LR,0 (E) LR,0 (E)
i=1 A i=1 Af = =

Therefore, the three-way decisions rules based on OIMRIFS are as follows:

(P2): Tf 491 (x) > (1 — 79! (x)) - &, then x € POS(X);

(N2): If 401 (x) < (1 — 7O1(x)) - B, then x € NEG(X);

(B2): If (1 — 1% (x)) - B < pO(x) and uO'(x) < (1 — 9 (x)) - @, then x € BND(X).

5.3. Three-Way Decisions Model Based on IOMRIFS
Suppose A! is the reduction set under IMRS. According to reference [46], the expected loss

functions RIO(w,|[x] ;1) (* = P, B, N) of an object x are as follows:

RIO(wpl[x] o1) = App - w19 (x) + Apn - vIO(x) + App - 1O (x);
RIO(wy|[x] 41) = Anp - pO(x) + Ann - vIO(x) + Anp - 10 (x);
RIO(wg|[x] 1) = Agp - u1O(x) + Apn - vIO(x) + App - 71O (x).

where
v v
W) =p, o ()= v, inf pe(y), Vo) =v, o (0= A sup ve(y), o) =1-p, o (¥)-v, o (x);
’ElRA’I (E) i=1yelx] Al ,ElRA,I (E) = y([x]A’l iElRA,I (E) r:leAzI (E)
or
v ’
o) =p—o0 ()= A sup pe(y), vO(x)=v—0 (¥)=V inf vp(y), 700x)=1-p—0 (x)=v0—u0o (2).
ERy ® el 1 LR, () =lyelly Ry (B LR, (®
i=1 4 i=1 4 i=1 4 i=1 %

Therefore, the three-way decisions rules based on IOMRIFES are as follows:

(P3): Tf O (x) > (1 — 119(x)) - , then x € POS(X);

(N3): If w0 (x) < (1 — 7'9(x)) - B, then x € NEG(X);

(B3): If (1 — 71O(x)) - B < u'©(x) and 1O (x) < (1 — 7'O(x)) - @, then x € BND(X).

5.4. Three-Way Decisions Model Based on IIMRIFS

Suppose All is the reduction set under IMRS. Like Section 5.1, the expected loss functions
RM(w,|[x] o1)(* = P, B, N) of an object x are as follows:

R”(WPHX]A,!) = App - ! (x) + Apy - v (x) + App - T (x);

RY(wn|[x] 1) = Anp - o (x) + Ann v (%) + Ang - ' (x);

R (wpl[x] a1) = App - ! (x) + Ay 0! () + App - 7' ().

where
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v L@, )
R, (E =lye LR, (E) TR
= ® Yellgt 5 Al ) i=1

P =p, 1 W=A inf g, V) =v, 1 )=V sup ve(y), 7)) =1-p,
LR, (E) =lyell
i=1 4

or

P = )=V sup pe(y), V) = ()= A inf owey), 7M@) =1 () ().
LR, (E) Slyel, LR, (E) i=lyeld 1 LR, (E) LR, (E)
i=1 Aj i i=1 4 ! i=1 A i=1 4

Therefore, the three-way decisions rules based on IIMRIFS are captured as follows:

(P4): Tf T (x) > (1 — 7'l(x)) - @, then x € POS(X);

(N4): If u!l(x) < (1 — 7'l(x)) - B, then x € NEG(X);

(B4): If (1 — ' (x)) - B < p'T(x) and p!T(x) < (1 - 7'T(x)) - &, then x € BND(X).

By constructing the above three decision models, the redundant objects in the reduction sets can
be removed, which is beneficial to the optimal granular selection.

5.5. Comprehensive Measuring Methods of Granularity

Definition 17 ([40]). Let an intuitionistic fuzzy number E(f;) = (ng(f1),vg(f1)), fi € U, then the score
function of E(fy) is calculated as:

S(E(f1)) = ng(fi) —ve(fr)-
The accuracy function of E(fy) is defined as:

H(E(f1)) = ug(f1) + vg(fr)-
where —1 < S(E(f1)) <1and 0 < H(E(fy)) < 1.

Definition 18. Let DIS = (U, C U D) be a decision information system, A = {Ay, Ay, -+, A} arem
sub-attributes of C. Suppose E are IFS on the universe U = {x1,%x2, -, Xu }, defined by p a,(x;) and v4,(x;),
where pa, (x;) and va,(x;) are their membership and non-membership functions respectively. |[x;] Ai‘ is the
number of equivalence classes of x; on granularity A;, U/D = {X1, Xa, - -+ , X} is the partition induced by
the decision attributes D. Then, the comprehensive score function of granularity A; is captured as:
S SO I C R C |

$ j:],ne[xl-]Ai ij]A,»'

The comprehensive accuracy function of granularity A; is captured as:

CAFa.(E) =

©» | =

y i ‘.”A,v(xj)‘f‘VA,-(xj”.
:1,n€[x]-]Ai

] BN

where —1 < CSF4,(E) < 1and 0 < CAF4,(E) < 1.
With respect to Definition 19, according to references [27,39], we can deduce the following rules.

Definition 19. Let two granularities A, Ay, then we have:

(1) If CSFa,(E) > CSFy,(E), then A; is smaller than Ay, expressed as Ay > Ay;
(2)  If CSFx,(E) < CSFa,(E), then Ay is smaller than A,, expressed as Ay < Ap;
(3) If CSFa, (E) = CSFg,(E), then

(i) If CSFa,(E) = CSFa,(E), then Ay is equal to Ay, expressed as Ay = Ay;
(ii) If CSFa,(E) > CSFa,(E), then Ay is smaller than Ay, expressed as Ay > Ay;
(iii)  If CSFa,(E) < CSFa,(E), then Ay is smaller than A,, expressed as A1 < Aj.
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5.6. Optimal Granularity Selection Algorithm to Derive Three-Way Decisions from MRIFS

Suppose the reduction sets of optimistic and IMRS are AP and Al respectively. In this
section, we take the reduction set under OMRS as an example to make the result A9’ of optimal
granularity selection.

Algorithm 2. Optimal granularity selection algorithm to derive three-way decisions from MRIFS

Input: DIS = (U,CUD,V,f), A={Ay, Ay, -+, A} be m sub-attributes of condition attributes C,VA; € A,
U/D = {X1,Xp,--,Xs}, IFSE;

Output: Optimal granularity selection result AiO' .

1: compute via Algorithm 1;

2:if [AP| > 1

3: forVA; € A,O

4: computepr, o (%), v, a (%), p—n (¥p)andv_——n (x;);
LRy0 (E) LRy0 (E) YR,0 (E) YR,0 (E)
i=1 i i=1 i [ =1

5: according (P1)-(B1) and (P2)-(B2), compute POS(X94), NEG(X92), BND(XC4), POS(XOB),
NEG(XO3), BND(X03);

6:  if NEG(XO%) # U or NEG(XO8) £ U

7: compute U/ A9, CSFon(E), CAFj0s(E) or (u/APH), (CSTAj(E), CA%(E);
8: according to Definition 19 to get A,o’ ;

9: return A9’ = A;;

10: end

11: else

12: return NULL;

13: end

14: end

15: end

16: else

17: return A?’ = AZ.O;

18: end

6. Example Analysis 3 (Continued with Example 2)

In Example 1, only site 1 can be ignored under optimistic and pessimistic multi-granulation
conditions, so it can be determined that site 1 does not need to be evaluated, while sites 2 and 3 need
to be further investigated under the environment of optimistic multi-granulation. At the same time,
with respect to the environment of pessimistic multi-granulation, comprehensive considera- tion site
3 can ignore the assessment and sites 2, 4 and 5 need to be further investigated.

According to Example 1, we can get that the reduction set of OMRS is { A3, A3}, but in the case of
IMRS, there are two reduction sets, which are contradictory. Therefore, two reduction sets should be
reconsidered simultaneously, so the joint reduction set under IMRS is { A, A4, As}.

Where the corresponding granularity structures of sites 2, 3, 4 and 5 are divided as follows:

U/ Ay = {{x1,x2, x4}, {x3, x5, %7}, {x6, X8, X0}, {X10} },
U/As = {{x1,x4,%6},{x2, %3, %5}, {x5}, {x7, %0, X10} },
U/ Ay = {{x1,%2,x3, x5}, {xa}, {x6, 7, x8}, {X0,x10} },
U/ As = {{x1,x3,x4, %6}, {x2, X7}, {x5, x8 }, {x9, 10} }

According to reference [11], we can get:

_ 8-2 _ 7 -0 B
X = B2+ (2-0) =075 p= Z=0)16-2) =0.33.
The optimal site selection process under optimistic and IMRS is as follows:

(1) Optimal site selection based on OOMRIFS
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According to the Example 2, we can get the values of evaluation functions 4“9 (x;), (1 — 799 (x;)) -
a, (1— noo(xj)) B, 190(xj), (1 = 90 (xj)) - wand (1 — 7790 (x;)) - B of OOMRIFS, as shown in Table 4.

Table 4. The values of evaluation functions for OOMRIFS.

19 (x)) (1-m%0) e (1-72x))-B u%(x)  (1-m%0(x)a (1-79(x))-p
x 0.25 0.63 0.2772 0.51 0.5925 0.2607
X 0.49 0.6525 0.2871 0.51 0.5925 0.2607
X3 0.49 0.6525 0.2871 0.54 0.6675 0.2937
x4 0.25 0.63 0.2772 0.51 0.5925 0.2607
x5 0.49 0.6525 0.2871 0.54 0.6675 0.2937
X6 0.25 05325 0.2343 0.92 0.72 0.3168
X7 0.09 07125 0.3135 0.54 0.6675 0.2937
xg 0.15 04575 0.2013 0.15 0.4575 0.2013
Xg 0.15 04575 0.2013 0.72 0.63 02772
x10 0.67 0.675 0297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of OOMRIFS by three-way
decisions of the Section 5.1, as follows:

POS(X%9) = ¢,

NEG(X99) = {x1,x4,%7,X8,%9},

BND(X99) = {7, x3, x5, %6, X10};

POS(XO0) = {x¢,x0},

NEG(X99) = {xs},

BND(XO0) = {x3,x3,%5}.

In the light of three-way decisions rules based on OOMRIFS, after getting rid of the objects in
the rejection domain, we choose to fuse the objects in the delay domain with those in the acceptance
domain for the optimal granularity selection. Therefore, the new granularities A, A3 are as follows:

U/ A" = {{x2}, {x3, x5}, {x6}, {x10}},
U/A:é” = {{x2,x3,x5}, {x6}, {x10} };
U/AzOI = {{x1,x2, x4}, {x3, x5, 27}, {x6, %9}, {x10} },

U/ AT = {{x1, x4, %6}, {x2,x3, x5}, {x7, %9, X170} }
Then, according to Definition 18, we can get:

n N (x:
CSFgo(E) =1x .  aGroas)
2 j:l,ne[x,-]Av 14
1 10 \#Ago(x/)*VAgo(Xj)\
=z X [ D S
* j:l,ne[xj]Ago ij]ﬂl
=1 x ((0.49 — 0.38) 4 (©49=038)+(049-038) | () o5 0.46) + (0.67 — 0.23
4 2
—0.1125,
n o) — .
CSFypo(E) =1x y ~ [raliioals)
=3 j=l,n6[x]»]A‘ 1A
_1y g \VAgo(xj)*Vﬁ(x])\
-3

) I[x] j00!
j=1nely] 00 TA

= 1% ((025-0.46) + (0.4970.38)+(o449go438)+(0.4970.38) +(0.81—0.14))
=0.1133;

Similarly, we have:
2 3
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From the above results, in OOMRIFS, we can see that we can’t get the selection result of sites
2 and 3 only according to the comprehensive score function of granularities Ay and A3. Therefore,
we need to further calculate the comprehensive accuracies to get the results as follows:
n .
CAF,00(E) =1x Y M
A7 S %141
1_1’nE[XJ]Ai i
10 \;tAgo(Xf)HAgo(xi)\
=1X L TRl
J*lrne[x/]Ago A
— 15 ((049 4 0.38) + QA0 LO91038) | (025 4 0.46) 4 (0.67 4 0.23))
= 0.8375,

|

1 |14, (xj)+va, (%))

CAFQ(E) =:x X I

j:l,ne[xj]Ai

@ =

10 \}lAg)o(xj)JrVAg)o(X/)\

) ler"GZ['):(j]Asoo
= 1 ((0.25 +0.46) 4 Q420 +049038)10494038) | (0 g7 4 14))
= 0.8267;

@I

X
H]]Ag)o\

Analogously, we have:

CAFAT(E) =0.87, CAFA?(E) = 0.86.

Through calculation above, we know that the comprehensive accuracy of the granularity Aj is
higher, so the site 3 is selected as the selection result.

(2) Optimal site selection based on OIMRIFS
The same as (1), we can get the values of evaluation functions LOI (xj), (1— ﬂ(xj)) o, (1—

91(x;)) - B, uOI(x;), (1 — 7O (x;)) - aand (1 — O (x;)) - B of OIMRIFS listed in Table 5.

Table 5. The values of evaluation functions for OIMRIFS.

1% (x;) (1-m%x) e  (1-7%x))p 19l (x;) (1= (x))-a (1= (x))-B
v 025 0.63 02772 0.92 0.72 0.3168
x, 025 0.63 02772 0.54 0.615 0.2706
x5 0.09 0.7125 03135 0.54 0.615 0.2706
xy 025 0.63 02772 0.92 0.72 03168
x5 0.09 0.7125 03135 0.54 0.615 0.2706
X 015 0.555 0.2442 0.92 0.72 03168
X, 0.09 0.7125 03135 0.72 0.63 02772
xs 015 0.4575 0.2013 0.92 0.72 0.3168
xg 0.9 0.7125 03135 0.92 0.72 0.3168
xp  0.09 0.7125 03135 0.72 0.63 02772

We can get decision results of the lower and upper approximations of OIMRIFS by three-way
decisions in the Section 5.2, as follows:

POS(X%!) = ¢,

NEG(X9) = U,

BND(X)) = ¢;

POS(XOT) = {x1, x4, X6, X7, X3, X0, X10},

NEG(XOI) = ¢,

BND(W) = {Xz, X3, XS}.

Hence, in the upper approximations of OIMRIFS, the new granularities A, A3 are as follows:
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U/LZOI = {{x1, %2, x4}, {x3,%5,x7}, {x6, %8, X9}, {x10} },
U/ A" = {{x1, x4, %6}, {x2, %3, x5}, {x8}, {x7, %9, x10} }.
According to Definition 18, we can calculate that
CSFim(E) = CSFAio;(E) =0
CAFQ(E) = CAFASOI(E) =0
CSF or(E) = 0.6317, CSF o (E) = 0.6783;
2 3
CAF5r(E) = 0.885, CAF57(E) = 0.905.
2
In OIMRIFS, the comprehensive score and comprehensive accuracy of the granularity Az are both
higher than the granularity A;. So, we choose site 3 as the evaluation site.

In reality, we are more inclined to select the optimal granularity in the case of more stringent
requirements. According to (1) and (2), we can find that the granularity Aj is a better choice when
the requirements are stricter in four cases of OMRS. Therefore, we choose site 3 as the optimal
evaluation site.

(3) Optimal site selection based on IOMRIFS
Similar to (1), we can obtain the values of evaluation functions ﬁ (%)), (1= i (x})) - &,

(1— Llo(xj)) - B, yﬁ(x]-), (1- m(xj)) ~acand (1 — m(xj)) - B of IOMRIFS, as described in Table 6.

Table 6. The values of evaluation functions for IOMRIFS.

#(x) (1-mO0) e  (1-m90x))p O (xj) (1-79%x;))-e  (1-7'0(x;))-B
x 025 0.51 0.2244 0.51 0.5925 0.2607
x, 025 0.51 0.2244 0.51 0.5925 0.2607
x3 025 0.51 0.2244 0.54 0.6675 0.2937
Xy 037 0.72 0.3168 037 0.72 0.3168
x5 025 0.51 0.2244 0.49 0.63 02772
xg 025 0.5325 0.2343 0.92 0.72 0.3168
X, 0.09 0.7125 03135 0.51 0.645 0.2838
xg 015 0.4575 02013 0.49 0.63 02772
xg 067 0.675 0.297 0.72 0.63 02772
X9 067 0.675 0.297 0.67 0.675 0.297

We can get decision results of the lower and upper approximations of IOMRIFES by three-way
decisions in the Section 5.3, as follows:

POS(XI) = g,

NEG(LIO) = {X7,Xg},

BND(LM) = {x1, %2, X3, X4, X5, X6, X9, X10 };

POS(XI0) = {x¢,x9},

NEG(XI0) = ¢,

BND(X0) = {x1,x2, X3, X4, X5, X7, X3, X10 }-

Therefore, the granularities Ay, A4, As can be rewritten as follows:

U/Aiéo = {{X1, X2, X4}, {x3/ X5}, {x6/ x9}/ {xlﬂ}}’

U/AL = {{x1,x2,x3, x5}, {x4}, {x6}, {x0, 210} },

U/AL = {{x1,x3, x4, %6}, {x2}, {x5}, {x0, 210} };

U/AL = {{x1,x2, x4}, {x3, x5, %7}, {6, %5, %0}, {x10} },

U/ AL = {{x1,x2,x3, x5}, {x4}, {x6, %7, 8}, {x0, 10} },

U/ AL = {{x1,x3,x4, %6}, {x2, %7}, {x5, %8}, {x9, %10} }.

According to Definition 18, one can see that the results are captured as follows:

CSFAéo(E) = 0.0454, CSFAio(E) = —0.0567, CSFAéo(E) = —0.0294;

CSFo(E) = 0.3058, CSF5(E) = 0.2227, CSF,5(E) = 0.2813.
2 4 5
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In summary, the comprehensive score function of the granularity A is higher than the granularity
Az in IOMRIFS, so we choose site 2 as the result of granularity selection.

(4) Optimal site selection based on IIMRIFS
In the same way as (1), we can get the values of evaluation functions LH (xj), (1= ! (x})) - a,

(1—7n(x;)) - B, u(x;), (1 — 7l(x;)) - and (1 — 7!I(x;)) - B of IIMRIFS, as shown in Table 7.

Table 7. The values of evaluation functions for IIMRIFS.

! (x) (1-rl(x))e  (1-ml(x))-B (%) (-r(xj)«  (A-m"(x;))-B
x 025 0.63 02772 0.92 0.72 03168
X2 0.09 0.7125 03135 0.54 0.615 0.2706
x5 009 0.7125 03135 0.92 0.72 0.3168
xy 025 0.63 02772 0.92 0.72 0.3168
x5 0.09 0.7125 03135 0.54 0.615 0.2706
Xo  0.09 0.7125 03135 0.92 0.72 0.3168
x; 009 0.7125 03135 0.92 0.72 0.3168
xg 0.9 0.7125 03135 0.92 0.72 03168
xg 015 0.4575 02013 0.92 0.72 03168
X9 067 0.675 0.297 0.72 0.63 02772

We can get decision results of the lower and upper approximations of IIMRIFS by three-way
decisions in the Section 5.4, as follows:

POS(X'1) = ¢,

NEG(X™) = {x1, xp, x3, X4, X5, X, X7, X8, X9 },

BND(X) = {x10};

POS(W) = {x1,x3, X4, X¢, X7, X8, X9, X10},

NEG(XT) = g,

BND(X') = {x3,x5}.

Therefore, the granularity structures of Ay, A4, As can be rewritten as follows:

u/All=u/All =u/All = {x0};

U/ Ay = {{x1,x2, x4}, {x3,x5, %7}, {x6, X5, X0}, {x10} },

U/Ay = {{x1,x2,x3, x5}, {x4}, {x6, x7, x5}, {x0, 10} },

U/ AL = {{x1, 3,24, %6}, {x2, %7}, {x5, %8}, {x0, x10}}-

According to Definition 18, one can see that the results are captured as follows:
CSFAg(E) = CSI—"Aﬁz(E) = CSFAéz(E) = 0.44;

CAFAéz(E) = CAFAiI(E) = CAFAéz(E) =0.9;

CSF1(E) = 0.7067, CSF11(E) = 0.7675, CSF;r(E) = 0.69;

Al All All
CAFAﬁ(E) = 0.9067, CAF/W(E) = 0.9275, CA%(E) =091

2 4 5
In IIMRIFS, the values of the comprehensive score and comprehensive accuracy of granularity Ay

are higher than A; and As, so site 4 is chosen as the evaluation site.

Considering (3) and (4) synthetically, we find that the results of granularity selection in IOMRIFS
and IIMRIFES are inconsistent, so we need to further compute the comprehensive accuracies of IIMRIFS.

CAFAéo (E) =0.7896, CAFAio (E) =0.8125, CAFAéo (E) = 0.7544;

CAI%(E) = 0.8725, CA%(E) = 0.886, CATATT(E) = 0.8588.

Through the above calculation results, we can see that the comprehensive score and
comprehensive accuracy of granularity A4 are higher than A; and As in the case of pessimistic
multi- granulation when the requirements are stricter. Therefore, the site 4 is eventually chosen as the

optimal evaluation site.
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7. Conclusions

In this paper, we propose two new granularity importance degree calculating methods among
multiple granularities, and a granularity reduction algorithm is further developed. Subsequently,
we design four novel MRIFS models based on reduction sets under optimistic and IMRS, i.e., OOMRIFS,
OIMRIFS, IOMRIFS, and IIMRIFS, and further demonstrate their relevant properties. In addition,
four three-way decisions models with novel MRIFS for the issue of internal redundant objects
in reduction sets are constructed. Finally, we designe the comprehensive score function and the
comprehensive precision function for the optimal granularity selection results. Meanwhile, the validity
of the proposed models is verified by algorithms and examples. The works of this paper expand the
application scopes of MRIFS and three-way decisions theory, which can solve issues such as spam
e-mail filtering, risk decision, investment decisions, and so on. A question worth considering is how to
extend the methods of this article to fit the big data environment. Moreover, how to combine the fuzzy
methods based on triangular or trapezoidal fuzzy numbers with the methods proposed in this paper is
also a research problem. These issues will be investigated in our future work.
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Abstract: The definition of a Detour-Harary index is wH(G) = %Z”,vev(c)m, where G is a

simple and connected graph, and I(u, v|G) is equal to the length of the longest path between vertices
u and v. In this paper, we obtained the maximum Detour-Harary index about unicyclic graphs,
bicyclic graphs, and cacti, respectively.
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1. Introduction

In recent years, chemical graph theory (CGT) has been fast-growing. It helps researchers to
understand the structural properties of a molecular graph, for example, References [1-3].

A simple graph is an undirected graph without multiple edges and loops. Let G be a simple and
connected graph, and V(G) and E(G) be the vertex set and edge set of G, respectively. For vertices
u,v0f G, dg(v1,v2) (or d(vy,v2) for short) is the distance between v; and v,, which equals to the length
of the shortest path between v1 and v; in G; I(v1,02|G) (or I(v1,v;) for short) is the detour distance
between v; and v, which equals to the longest path of a shortest path between v; and v; in G.

G|S] is an induced subgraph of G, the vertex set is S, and the edge set is the set of edges of G and
both endsin S. G — S is the induced subgraph G[V(G) \ S]; when S = {w}, we write G — w for short.

In 1947, Wiener introduced the first molecular topological index-Wiener index. The Wiener index
has applications in many fields, such as chemistry, communication, and cryptology [4-7]. Moreover,
the Wiener index was studied from a purely graph-theoretical point of view [8-10]. In Reference [11],
Wiener gave the definition of the Wiener index:

W(G)z% Y d(uo).

ueV(G)

The Harary index was independently introduced by Plavsi¢ et al. [12] and by Ivanciuc et al. [13]
in 1993. In References [12,13], they gave the definition of the Harary index:

1
d(u,v)’

HG =5 Y

uveV(G)
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In Reference [13], Ivanciuc gave the definition of the Detour index:

w(G) =2 Y Iu0|G).

u,veV(G)

Lukovits [14] investigated the use of the Detour index in quantitative structure-activity
relationship (QSAR) studies. Trinajsti¢ and his collaborators [15] analyzed the use of the Detour index,
and compared its application with Wiener index. They found that the Detour index in combination
with the Wiener index is very efficient in the structure-boiling point modeling of acyclic and cyclic
saturated hydrocarbons.

In this paper, we introduce a new graph invariant reciprocal to the Detour index, namely,
the Detour-Harary index, as

H(G) = B
WHC) =5 e Tu,00)

Let G be a simple and connected graph, V(G) = nand E(G) = m. If m = n — 1, then G is a tree;
if m = n, then G is a unicyclic graph; if m = n + 1, then G is a bicyclic graph.

Suppose U, (By, respectively) is the set of unicyclic (bicyclic, respectively) graphs set with n
vertices. Any bicyclic graph G can be obtained from 6(p, 4,1)-graph or 6(p, q,1)-graph Gy by attaching
trees to the vertices, where p,g,1 > 1, and at most one of them is equal to 1. We denote Gy be the kernel
of G (Figure 1).

If each block of G is either a cycle or an edge, then we called graph G a cactus graph. Suppose C¥
be the set of all cacti with n-vertices and k cycles. Obviously, CJ are trees, C} are unicyclic graphs, and
C2 are bicyclic graphs with exactly two cycles.

U1 U

oo(p, q,1) 0(p. q.1)
Figure 1. co-graph and 6-graph.

There are more results about cacti and bicyclic graphs [16-25]. More results about Harary
index can be found in References [26-34], and more results about Detour index can be found in
References [14,35-39].

Note that the Detour-Harary index is the same as Harary index for a tree graph; we study the
Detour-Harary index of topological structures containing cycles. In this paper, we gave the maximum
Detour—Harary index among U,,,3,, and C’,ﬁ (k > 3), respectively.

2. Preliminaries

In this section, we introduce useful lemmas and graph transformations.

Lemma 1. [40] Let G be a connected graph, x be a cut-vertex of G, and u and v be vertices occurring in different
components that arise upon the deletion of vertex x. Then

I(1,v|G) = I(u, x|G) + I(x,v|G).
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2.1. Edge-Lifting Transformation

The edge-lifting transformation [41]. Let G; and G, be two graphs with n; > 2 and n; > 2
vertices. uy € V(Gy) and vy € V(Gy), G is the graph obtained from G; and G, by adding an edge
between 19 and vy. G’ is the graph obtained by identifying 1 to vy and adding a pendent edge to
1g(vp). We called graph G’ the edge-lifting transformation of graph G (see Figure 2).

Edge-lifting transformation

a o
Figure 2. Edge-lifting transformation.

Lemma 2. Let graph G’ be the edge-lifting transformation of graph G. Then wH(G) < wH(G').

Proof. By the definition of wH(G) and Lemma 1,

1 1

WH(G) = wH(Gy) + wH(Gy) + 1(00,21G)

xeV(Gi)\{uo}
L1 1
1(uo,v9|G) wo} I(x,y|G)

Z -
yev(Go\ (oo} (0 ¥IG)

xeV(Gy)\{
yeV(G)\{vo}
1 1
= wH(G1) + wH(Gy) + Y — I
xeV(Gy)\{uo} 1+ 1(up, x|G) yeV(Ga)\{vo} 1+ 1(vo,y|G)
1
ey ,
eV g L (#0,X[G) + 1+ 1 (20, y[G)

yeV(Gy)\{vo}

1 1
H(G/) = (UH(G{) -+ wH(Gé) -+ Y EWIV=TIY +
V(G fup} | (@0 X|GT)

1 1

* I(uo, wo|G") *

T aTaY
VeV G\ (uo} (@0 Y|GT)

eV (G () [ Y1G)
VeV(GH\ uo)

= wH(G}) + wH(G)) + Yy
x'eV(Gy)\{uo}

1
+1+ ) S .
VeV(E\ (upy {40 X'|G") + (0, y'|G")

y'eV(Gy)\{uo}

1 1

e — + -
110, X1G)) ey (68 gy 1+ 10, ¥1G)

Obviously,

wH(G1) = wH(Gy);

H(Gy) = wH(Gy);

(uo,x\G) (uo, x'|G"), where x € V(Gy) \ {up} and x’ € V(G}) \ {uo};
)=

I(vo,y|G I(uo,y'|G"), wherey € V(Gy) \ {vo} and y' € V(G5) \ {uo}
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Then
1
H —wH(G) =
wH(G) - wH(G) L iculC) + 1510 I0)

1

- Z T w[C) + 1w, 1C) ~

=
s
=

O

2.2. Cycle-Edge Transformation

Suppose G € Cl, is a cactus as shown in Figure 3. Cp = v102 -+ - vpoy is a cycle of G; G; is a cactus,
and v; € V(G;),1 <i < p; Wy, = Ng(v;) NV(G;), 1 < i < p. G is the graph obtained from G by
deleting the edges from v; to Wy, (2 < i < p), while adding the edges from vy to Wy, (2 < i < p).

We called graph G’ the cycle-edge transformation of graph G (see Figure 3).

‘I e
@ @ Cycle edge transformation
A — Up

G

el
Figure 3. Cycle-edge transformation.

Lemma 3. Suppose G € C!, is a cactus, p > 3, and G' is the cycle-edge transformation of G (see Figure 3).
Then, wH(G) < wH(G'), and the equality holds if and only if G = G'.

Proof. Let V; = V(G; —v;), 1 <i < p. By the definition of wH(G) and Lemma 1,

1 1 rpr P 1
wH(G) = wH(Cy) + ZZ jral L L R I rrevre)
25 v, l(x,y|G 21:1] 1r€ley‘G i=1 xev; 1(x,y1G)
er yeV(Cp)
i#]
—GHG) 3N X e Nl L 1
2 & = l(x,y|G 21:1] 1. 1(x,vi|G) +1(v;,v;1G) 4+ 1(v},y|G)
yEV
i#j
P 1
+ ’
1.:21 xezv, I(x,v;|G) + (v, y|G)
yeV(Cp)
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1L 1 P 1
wH(G') = wH(Cy) + = + = -4 -
2 IZ;WZE:V I(x, y\G’ 2 5 1};3{% I(x,y|G") l; XEZV:,_ I(x,y|G)
yev; yev(Cy)
i#]
= wH(Cy) + = Z Y +1iz Y 1
2 25,5y I(x, y\G’ 2559, I(x,01|G") + I(v1,y|G")
er
i
a 1
+ .
L L Tule)+ i yio)
yeV(Cy)
Obviously,
L r 3Py
i=1xy€eV; l x y‘G) i=1xy€eV; l(x y‘G/
I(x,v;|G) = I(x,v1|G"), where x € V;;
1(v,y|G) = I(v1,y|G'), wherey € V;
Y Y ! -y ¥ RN
= .5 xvlG)+1oylG)  H &5 x0]G)+1(o,y]G)
yeV(Cy) yev(Cy)
Then
WH(G)—wH(E) = 1y Y ¥ 1
Zizljzlxev,l("'vi|G)+l(viij\G)+Z(U/ry\G)
yey;
i#]
Yy Yy : <0
2555 xul6) +i(v,yl6)
yey;
i#]

The proof is completed. [

2.3. Cycle Transformation

Suppose G € C}, is a cactus, as shown in Figure 4. C, = v10; - - - vpv; is a cycle of G, and Gy is a

simple and connected graph, v; € V(G;). G’ is the graph obtained from G by deleting the edges from
v; to v;11(2 < i < p — 1), meanwhile, adding the edges from vy to v;(3 <i < p—1).
We called graph G’ is the cycle transformation of G (see Figure 4).

(%)

U3 .
Cycle transformation
Up
V3 Vg Up—1

G/

Figure 4. Cycle transformation.
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Lemma 4. Suppose graph G is a simple and connected graph with p > 4, and G' is the cycle transformation of
G(see Figure 4). Then, wH(G) < wH(G').

Proof. Let V(Cp) = {v1,v2,- - ,vp}, Vi = V(Cp — v1), Vo = V(G — v1). By the definition of wH(G),

1 1
wH(G) = wH(Gy) + xﬁ% (,y‘G)JVX;ﬂl(x,y\G)

yeV2
1 1
Gi) + + ,
wH(Gy) Xyg 1(x,y]G) xgl,l(x,vl\G)+l(v1,y\G)
yeV2

wH(G) = wH(G)+ Y ! I

Jr
swevicy [ yIG) & HxylG')

yeVL
wH(Gy) + 2 L Y !
Y e, [EyIG) T S 1 0i]G) + (0, y]G)
yeEVL
Obviously,
I(x,y|G) > I(x,y|G"), where x,y € V;;
I(x,01|G) > 2> l(x,vl|G/),wherex A%y
I(v1,y|G) = I(v1,y|G'), wherey € V5.
Then
, 1 1
wH(G)—wH(G' )= ()

e D T
iy TEI8) B TG

1 1
< 0.
YGZV I(x,01|G) +1(v1,y|G) ezvl/l(x,vﬂG’)+l(vl,y|G’))
erZ yeVs

O

3. Maximum Detour-Harary Index of Unicyclic Graphs

For any unicyclic graph G € Uy, by repeating edge-lifting transformations, cycle-edge

transformations, cycle transformations, or any combination of these on G, we get U; from G, where
graph U is defined in Figure 5.

(%)

U1
} n—3

U3

Uy

Figure 5. Unicyclic graph Uj.
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Theorem 1. Let U; be defined as Figure 5. Then, Uy is the unique gmph that attains the maximum
Detour-Harary index among all graphs in U, (n > 3), and wH(U;) = 3”172”6
Proof. By Lemmas 2-4, U, is the unique graph which attains the maximum Detour-Harary index of
all graphs in U,,. We then calculate the value wH (U ).

Let V(Uy) = {v1,v2,- -+ ,vn}. It can be checked directly that

1 1
——=n-2;
,-:ZZZ(ULUdUl)
1 1 1 1 n-3 =n
- = — = 4+ + = _;
1<i<n,i#2 l(vz, '01'|U]) 1§j§271,j7é3 1(7}3, v]\lll) 2 2 3 3
2 1 n—4 2_31172
1§[§n,i#4l(?}4,7]i|ul) 2 3 6
Then
wHU) = 2y L v ! NI D
1 = - —_— 37 117 N
25 (v, i Uh) 1§i§n,i;ézl(vz'vf|u1) = lv4,v,|ll1)
_3n27n76
N 12 ’

The proof is completed. [J

4. Maximum Detour-Harary Index of Bicyclic Graphs

For any bicyclic graph G € oo(p,q,1) with exactly two cycles, by repeating edge-lifting
transformations, cycle-edge transformations, cycle transformations, or any combination of these
on G, we get By from G, where graph B is defined in Figure 6.

For any bicyclic graph G € 6(p, q,1) with n vertices, by repeating edge-lifting transformations on
G, we get By from G, where graph B, is defined in Figure 7.

Figure 6. Bicyclic graph Bj.
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Up I
S>l Up—l uq—l l<
Vt+1 Ut Ut
By(t>2)

Figure 7. Bicyclic graph By (t > 2).

Theorem 2. Let By, Bs be defined as Figures 7 and 8. Then, wH (By) < wH(B3), and the equality holds if and
only if By = Bs.

n—4

(%) us

U3
Figure 8. Bicyclic graph By(t > 2).

Proof. Case 1. B, = Bs. Obviously, wH(B;) = wH(B3).

Case 2. By # Bz and p = q = 3,t = 2(see Figures 7 and 8).

Let Vi = {v1,v0,v3,u3}, Wo, = {w | wv; € E(By) and dp,(w) = 1} and |Wy,| = k;,
Wi, = {w | wuz € E(By) and dp,(w) =1} and [Wy,| = I3,k + 3 =n—4for1 <i <3

1 1

- o
Xy;v I( x,yIBz) xe% I(x,y|B2) wEV(ZBZ)_Vl 1(x,y|B2)
yeV(By)—Vi
1 1
- 4 1
xyZG:V1 I(x, y|B3) XGZVB’ I(x,y|B3) xer(EBs) 10x,y[B3)”
yeV(B3)—Vi
Easily,
1)
X/Z€:V1 l(x,y|Bz) xyZE:\/ll (x, y\Bg,
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1 1 1

[ — -+ - -
XEZVE, l(x,lez) l(Ul,w‘Bz) l(Uz,w‘Bz)

yeV(By)—Vi

weV(By) -V, weV(By)—-V;

1 1

+ — T
I(v3, w|By) I(u3,w|By)

weV(By)-V; weV(By)—V;

1 1 1 1 1 1
(1-k]+Z-k2+§~k3+i-l3)+(1-k1+l-k2+1~k3+1-13)

1 1 1 1 1 1
+(§'k1+1'k2+1-k3+1'l3)+(1-k1+1'k2+1'k3+1-l3)

11(k1 + k3) 4 7(k2 + 13)
6 4 !

1 1 1

—_— = _ 4 -
xe%, I(x,y|Bs3) I(vq, w|B3) I(v2, w|B3)

A weV(B3)—V;
Y 3)—V1

weV(B3)—V;

1 1

+ — 4
I(v3,w|Bs)

weV(B;)—Vy weV(B3)—V;

1 1
= 1~(n—4)+1-(n—4)+§~(n—4)+
ll(l’l*4)
6
11(k1+k2 +k3+l3)

= 3 , (sincek; +13=n—4forl <i<3)

Then,
1 1
L o L wamn
yeV(B2)—Vp yeV(B3)-V1

(k2 +13) >0, (2

the equality holds if and only ifky = 13 =0.

On the other hand % where x,y € V(B,) — Vi, then

Ty < Tals) =

1 1

Y —e< Y ®3)
xyeV(Bs) -V, , [(x,y|B2) xyeV(By) -V I(x,y|B3)

the equality holdsifky =n —4orky =n—4orkz=n—4orlz =n—4.
By (1)-(3) and B, # B3, we have wH(B;) < wH(Bs).
Case3. By #Bzand p+q—t > 4.
It can be checked directly that

WH(By) € (141 4+ -+ 1) H} 77 + 3 — (0= p—q+0) = (757,

| S —

n—p—q+t

wH(B3) = (14 1+ -+ 1) +3[1+ ("] + 35+ (n — 4)] + 1[2(n — 4)].

N—

n—4
By, B3 are bicyclic graphs and | V(B,) |=| V(B3) |=n.Since p+q—t >4, thenn —p —q+1t <
n—5and ("7 < (";*), we have wH(B,) < wH(B3).

The proof is completed. [J

Theorem 3. Let By, B3 be defined as Figures 6 and 8. Then,

wH(Bs) = 3, ifn =4,

max{wH ()} = {wH(Bl) = wH(Bs) = 232, ifn>5.
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Proof. Let G € co(p, q,1), by Lemmas 24, we have wH(G) < wH(B;), and the equality holds if and
only if G = By.

For any bicyclic graph with G € 6(p,q,1), by Lemmas 24 and Theorem 2, we have
wH(G) < wH(B3), and the equality holds if and only if G = Bs. Thus, max{wH(B,)} =
max{wH (By),wH(B3)}.

It can be checked directly that

wH(Bl):(n—S)-i-%[(n;S) +6]+%[4(n—5)]+1~4: —n

— 1 1 3n% —5n—2
WH(B3) = (1 — 4) +%(” ) 4) +3-9+ -9 =22 sy
Therefore

wH(B;) = 1, ifn=4,

max{wH(B,)} =
{wH(By)} {wH(Bl)wH(B3)3"21§”2, ifn > 5.

The proof is completed. [

5. Maximum Detour—Harary Index of Cacti

For any cactus graph G € CX(k > 3), by repeating edge-lifting transformations, cycle-edge
transformations, cycle transformations, or any combination of these on G, we get C; from G,
where graph C; is defined in Figure 9.

Us

V2k+2 Un

Figure 9. Cactus graph C; (k > 3).

Theorem 4. Let Cy be defined as Figure 9. Then, Cy is the unique cactus graph in C(k > 3) that attains the
2 2
maximum Detour—Harary index, and wH(Cy) = w.

Proof. By Lemmas 2—4, C; is the unique graph that attains the maximum Detour—Harary index of all
graphs in CX(k > 3).
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Let V(C1) = {v1,0v2, - ,vn}, and it can be checked directly that

n
1
2 vl,v,\Cl 1-(n—2k—1)+§~2k7n—k—1,

i=2

1 1 1 1 11, 1
= 224 (n=2k—1D+--(2k=2)=n—k+=>;
lgign'i#zl(vz,vi‘cl) 2 3 ( ) 4 ( ) 3 6 6

n=l 1 1 1 1 1

————=1+--(n—-2k—-2)+ - -2k=-n— =k

]; l(vn,vj\Cl) 2 ( ) 3 2 3

Then,

WH(C) = S[(n—k—1)+ 2k (30— Skt 1)+ (n—2k—1)- (31— 2]

3n? +2k? — 4nk +3n — 2k — 6
12 ’

The proof is completed. [
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Abstract: The concept of quantum B-algebra was introduced by Rump and Yang, that is, unified
algebraic semantics for various noncommutative fuzzy logics, quantum logics, and implication logics.
In this paper, a new notion of g-filter in quantum B-algebra is proposed, and quotient structures
are constructed by g-filters (in contrast, although the notion of filter in quantum B-algebra has been
defined before this paper, but corresponding quotient structures cannot be constructed according to
the usual methods). Moreover, a new, more general, implication algebra is proposed, which is called
basic implication algebra and can be regarded as a unified frame of general fuzzy logics, including
nonassociative fuzzy logics (in contrast, quantum B-algebra is not applied to nonassociative fuzzy
logics). The filter theory of basic implication algebras is also established.

Keywords: fuzzy implication; quantum B-algebra; g-filter; quotient algebra; basic implication algebra

1. Introduction

For classical logic and nonclassical logics (multivalued logic, quantum logic, t-norm-based fuzzy
logic [1-6]), logical implication operators play an important role. In the study of fuzzy logics, fuzzy
implications are also the focus of research, and a large number of literatures involve this topic [7-16].
Moreover, some algebraic systems focusing on implication operators are also hot topics. Especially
with the in-depth study of noncommutative fuzzy logics in recent years, some related implication
algebraic systems have attracted the attention of scholars, such as pseudo-basic-logic (BL) algebras,
pseudo- monoidal t-norm-based logic (MTL) algebras, and pseudo- B, C, K axiom (BCK)/ B, C, I axiom
(BCI) algebras [17-23] (see also References [5-7]).

For formalizing the implication fragment of the logic of quantales, Rump and Yang proposed the
notion of quantum B-algebras [24,25], which provide a unified semantic for a wide class of nonclassical
logics. Specifically, quantum B-algebras encompass many implication algebras, like pseudo-BCK/BCI
algebras, (commutative and noncommutative) residuated lattices, pseudo- MV /BL/MTL algebras,
and generalized pseudo-effect algebras. New research articles on quantum B-algebras can be found in
References [26-28]. Note that all hoops and pseudo-hoops are special quantum B-algebras, and they
are closely related to L-algebras [29].

Although the definition of a filter in a quantum B-algebra is given in Reference [30], quotient
algebraic structures are not established by using filters. In fact, filters in special subclasses of quantum
B-algebras are mainly discussed in Reference [30], and these subclasses require a unital element. In
this paper, by introducing the concept of a g-filter in quantum B-algebras, we establish the quotient
structures using q-filters in a natural way. At the same time, although quantum B-algebra has generality,
it cannot include the implication structure of non-associative fuzzy logics [31,32], so we propose a wider
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concept, that is, basic implication algebra that can include a wider range of implication operations,
establish filter theory, and obtain quotient algebra.

2. Preliminaries

Definition 1. Let (X, <) be partially ordered set endowed with two binary operations — and ~» [24,25]. Then,
(X, =, ~, <) is called a quantum B-algebra if it satisfies: Vx, y, z€X,

(1) y—z < (x—=y)—=(x—z);
(2)  y~z < (xoy) ~ (xoz2);
3) y<z=x-y<x—z
4) x<y—z<=y<xoz

If ueX exists, such that u—x = u~»x = x for all x in X, then u is called a unit element of X. Obviously, the
unit element is unique. When a unit element exists in X, we call X unital.

Proposition 1. An algebra structure (X, —, ~, <) endowed with a partially order < and two binary operations
— and ~ is a quantum B-algebra if and only if it satisfies [4]: Vx, y, z€X,

(1) x—=(y~z) =y~(x—2z);
2) y<z=x—y<x—z
(B) x<y—z<=y<xoz

Proposition 2. Let (X, —, ~, <) be a quantum B-algebra [24-26]. Then, (¥ x, y, z€X)

(1) y<z=xvy<xoz

(2) y<z=zvwx<y-ox

3) y<z=z=x<y—=x

4 x < (x~y) =y, x < (x=y)oy;

(5)  x—=y = ((x=y)oy)—=y, xoy = (x~y)—=y)oy;

(6) x—y < (y—=z)o(x—2z);

(7)  x~y < (yoz)—=(xvz);

(8)  assume that u is the unit of X, then u < x~y <= x <y <= u < x=y;

(9)  if 0eX exists, such that 0 < x for all x in X, then 0 = 0~0 = 0—0 is the greatest element (denote by 1),
and x—1 = x~1=1 for all x€X;

(10) if X is a lattice, then (x V y)—z = (x=2z)A(y—2z), (xNVy)~z = (x~~2) V(y~2z).

Definition 2. Let (X, <) be partially ordered set and YC X [24]. If x > y€Y implies x€Y, then Y is called to be
an upper set of X. The smallest upper set containing a given x€X is denoted by Tx. For quantum B-algebra X,
the set of upper sets is denoted by U(X). For A, BeU(X), define

A-B={xeX| 3beB: b—xcAJ.

We can verify that A-B = {xeX|3a€A: a~x€B} = {xeX|3acA, beB: a<b—x}={xcX|3acA, beB: b
< g~ox).

Definition 3. Let A be an empty set, < be a binary relation on A [17,18], — and ~» be binary operations on
A, and 1 be an element of A. Then, structure (A, —,~, <, 1) is called a pseudo-BCI algebra if it satisfies the
following axioms: ¥ x, y, zEA,

(1) x—=y < (y—=2)~(x—z2), xoy < (yoz)—=(xoz),
(2)  x < (xoy) =y x < (x=y~y;
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3) x<x
4) x<yy<x=x=y
(5) x<y<=x—=y=1<=xvy=1

If pseudo-BCI algebra A satisfies: x—1 =1 (or x~1 = 1) for all x€A, then A is called a pseudo-BCK
algebra.

Proposition 3. Let (A, —, ~, <, 1) be a pseudo-BCI algebra [18-20]. We have (Vx, y, z€A)

(1) ifl1<x thenx=1;

(2)  ifx <y, then y—z < x—z and y~z < x~z;

(3) ifx<yandy <z thenx <z

4 x=(y~z) =y~(x—2);

(5) x<y—zi=y<xoz

(6)  x—y < (z=x)—=(z=y); xoy < (zox)o(zoy);
(7) ifx <y, then z—x < z—y and z~x < z~oy;

(8) 1—x=1vx=x;

9)  y—=x=((y—=x)ox)—=x, yox = (Yox)—=x)~ X;
(10) x—=y < (y—=x)~1, x~y < (y~x)—1;

(11) (x=y)—1=(x—=1D~y—1), (x~y~1 = (x~1)=(y~1);
(12) x—1=x~1.

Proposition 4. Let (A, —, ~, <, 1) be a pseudo-BCK algebra [17], then (Vx, ycA): x < y—x, x < y~x.

Definition 4. Let X be a unital quantum B-algebra [24]. If there exists x€X, such that x—u = x~>u = u, then
we call that x integral. The subset of integral element in X is denoted by 1(X).

Proposition 5. Let X be a quantum B-algebra [24]. Then, the following assertions are equivalent:

(1)  Xis a pseudo-BCK algebra;
(2)  Xis unital, and every element of X is integral;
(3) X has the greatest element, which is a unit element.

Proposition 6. Every pseudo-BCI algebra is a unital quantum B-algebra [25]. And, a quantum B-algebra is a
pseudo-BCI algebra if and only if its unit element u is maximal.

Definition 5. Let (A, =, ~, <, 1) be a pseudo-BCI algebra [20,21]. When the following identities are satisfied,
we call X an antigrouped pseudo-BCI algebra:

Vx€eA, (x—1)—1=xor (x~1)~1=x.

Proposition 7. Let (A, —, ~, <, 1) be a pseudo-BCI algebra [20]. Then, A is antigrouped if and only if the
following conditions are satisfied:

(G1) forall x,y, z€A, (x—=y)—=(x—z) = y—z, and
(G2) forall x,y, zEA, (x~>y)(x~oz) = Y~oz.

Definition 6. Let (A, —, ~, <, 1) be a pseudo-BCI algebra and F C X [19,20]. When the following conditions
are satisfied, we call F a pseudo-BCl filter (briefly, filter) of X:

(F1) 1€eF;
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(F2) x€F, x—y€eF = y€eF;
(F3) x€F, x~yeF = y€eF.

Definition 7. Let (A, —, ~, <, 1) be a pseudo-BCI algebra and F be a filter of X [20,21]. When the following
condition is satisfied, we call F an antigrouped filter of X:

(GF) VxeX, (x—1)—1€F or (x~1)~1€F —> xcF.

Definition 8. A subset F of pseudo-BCI algebra X is called a p-filter of X if the following conditions are
satisfied [20,21]:

(P1) 1€F,
(P2) (x—y)~(x—z)eF and yeF imply z<F,
(P3) (x~y)—(x~z)€F and yeF imply zF.

3. Q-Filters in Quantum B-Algebra

In Reference [30], the notion of filter in quantum B-algebra is proposed. If X is a quantum
B-algebra and F is a nonempty set of X, then F is called the filter of X if FEU(X) and F-F C F. That is,
Fis afilter of X, if and only if: (1) F is a nonempty upper subset of X; (2) (z€X, yeF, y—z€cF) = z€F.
We denote the set of all filters of X by F(X).

In this section, we discuss a new concept of g-filter in quantum B-algebra; by using g-filters,
we construct the quotient algebras.

Definition 9. A nonempty subset F of quantum B-algebra X is called a q-filter of X if it satisfies:

(1)  Fisan upper set of X, that is, FEU(X);

(2)  forall xeF, x—x€F and x~x€F;

(3) «x€F yeX, x—yeF = y€F.

(4) A g-filter of X is normal if x—y€F <= x~y&€F.

Proposition 8. Let F be a g-filter of quantum B-algebra X. Then,

(1)  xeF yeX, x~ycF = y€F.
(2)  x€Fand yeX = (x~y)—y€F and (x—y)~ycF.
(3)  if X is unital, then Condition (2) in Definition 9 can be replaced by ucF, where u is the unit element of X.

Proof. (1) Assume that x€F, y€X, and x~y€F. Then, by Proposition 2 (4), x < (x~y)—y. Applying
Definition 9 (1) and (3), we get that ycF.

(2) Using Proposition 2 (4) and Definition 9 (1), we can get (2).

(3) If X is unital with unit #, then u—u = u. Moreover, applying Proposition 2 (8), # < x~»x and u
< x—x from x < x, for all x€X. Therefore, for unital quantum B-algebra X, Condition (2) in Definition
8 can be replaced by condition “ucF”. [

By Definition 6, and Propositions 6 and 8, we get the following result (the proof is omitted).

Proposition 9. Let (A, —, ~, <, 1) be a pseudo-BCI algebra. Then, an empty subset of A is a q-filter of A (as a
quantum B-algebra) if and only if it is a filter of A (according to Definition 6).

Example 1. Let X = {a, b, ¢, d, e, fl. Define operations — and ~» on X as per the following Cayley Tables 1
and 2; the order on X is defined as follows: b < a < f;e < d < c. Then, X is a quantum B-algebra (we can verify
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it with the Matlab software (The MathWorks Inc., Natick, MA, USA)), but it is not a pseudo-BCI algebra. Let
F1 =1fl, F» ={a, b, fl; then, Fy is a filter but not a g-filter of X, and F; is a normal g-filter of X.

Table 1. Cayley table of operation —.

— a b c d e f
a f a c c c f
b f a c c c f
c c c f a b c
d c c f f a c
e c c f f a c
f a b c d e f
Table 2. Cayley table of operation ~.
~ a b c d e f
a f a c c d f
b f f c c c f
c c c f a a c
d c c f a a c
e c c f f a c
f a b c d e f

Theorem 1. Let X be a quantum B-algebra and F a normal g-filter of X. Define the binary ~p on X as follows:
x ~r y <= x—y€F and y—x&F, where x, yeX.
Then,

(1) = is an equivalent relation on X;
(2) = is a congruence relation on X, that is, x~r y = (z—x) =p (z—=y), (x—=2) =f (y—2), (z~~x) =
(z~>y), (x~z) = (y~~z), for all zeX.

Proof. (1) For any x€X, by Definition 9 (2), x—x€F, it follows that x ~F x.
For all x, yeX, if x = y, we can easily verify that y ~r x.
Assume that x ~f y, y = z. Then, x—y€F, y—x€F, y—z€F, and z—y€F, since

y—z < (x—=y)—(x—z) by Definition 1 (1).

From this and Definition 9, we have x—z¢cF. Similarly, we can get z—x¢&F. Thus, x ~f z.
Therefore, ~r is an equivalent relation on X.
(2) If x ~F y, then x—y€F, y—x€F. Since

x—y < (z—x)—(z—y), by Definition 1 (1).

y—x < (z—y)—(z—x), by Definition 1 (1).

Using Definition 9 (1), (z—x)—(z—y)€F, (z—y)—(z—x)€F. It follows that (z—x) =~ (z—).
Moreover, since
x—y < (y—z)~(x—z), by Proposition 2 (6).

y—x < (x—z)~(y—z), by Proposition 2 (6).
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Then, form x—y€F and y—xcF; using Definition 9 (1), we have (y—z)~(x—z)€F,
(x—z)~(y—z)€F. Since F is normal, by Definition 9 we get (y—z)—(x—z)€EF, (x—z)—(y—z)€F.
Thus, (x—z) ~f (y—2).

Similarly, we can get that x ~p y = (z~~x) ~ (z~~y) and (x~z) =~ (y~z). O

Definition 10. A quantum B-algebra X is considered to be perfect, if it satisfies:

(1) for any normal q-filter F of X, x, y in X, (there exists ancX, such that [x—ylr = [a—alp ) <= (there
exists beX, such that [x~ylr = [b~b]F ).

(1) for any normal g-filter F of X, (X/~p —, ~, <) is a quantum B-algebra, where quotient operations —
and ~ are defined in a canonical way, and < is defined as follows:

[x]p < [ylp <= (there exists ac X such that [x]p—[ylr = [a—a]F)
<= (there exists be X such that [x]p~~[y]lr = [b~b]F).

Theorem 2. Let (A, =, ~, <, 1) be a pseudo-BCI algebra, then A is a perfect quantum B-algebra.

Proof. By Proposition 6, we know that A is a quantum B-algebra.
(1) For any normal g-filter F of A, x, y€A, if there exists acA, such that [x—y]r = [1—a]F, then

[x—=ylF = [a—alr = [1]F.
It follows that (x—y)—1€F, 1—(x—y) = x—y<F. Applying Proposition 3 (11) and (12), we have
(x—=1)~(@y—1) = (x—=y)—1€F.
Since F is normal, from (x—1)~(y—1)€F and x—y<cF we get that
(x—=1)—=(y—1)eF and x~y€cF.
Applying Proposition 3 (11) and (12) again, (x~y)—1 = (x—1)—(y—1). Thus,
(x~y)—1 = (x—=1)=(y—1)€F and 1—(x~y) = x~ycF.

This means that [x~y]r = [1]r = [1~>1]f. Similarly, we can prove that the inverse is true. That is,
Definition 10 (1) holds for A.

(2) For any normal qg-filter F of pseudo-BCI algebra A, binary < on A/~ is defined as the
following;:

x]lr < [ylp <= [xlr—=lyle = [1]e.

We verify that < is a partial binary on A/~r.

Obviously, [x]r < [x]F for any x€A.

If [x]r < [ylr and [yl < [x]g, then [x]p—[yle = [x=yle = [, [ylr—[x]r = [y—x]p = [1]r. By the
definition of equivalent class, x—y = 1—(x—vy) €F, y—x = 1—(y—x)€F. It follows that x ~f y; thus,
[x]r = [ylp-

If [x]p < [y]r and [y]r < [z]F, then [x]r—=[y]F = [x=ylr = [(1F, [ylr—=[z]F = [y—2]F = [1]f. Thus,

x—y =1=(x—y)eF, (x—y)—1€F;

y—z = 1=(y—2)€F, (y—z)—1€F.

Applying Definition 3 and Proposition 3,

y—z < (x=y)—(x—z2),
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(x=y)—=1 = (=D =1 < (—=D~-E=D]=[x—=D~z=D)) = [y=2)=1]—=[(x—2)—1].

By Definition 9,
1—=(x—z) = x—z€F, (x—z)—1€F.

This means that (x—z) ~f 1, [x—z]r = [1]p. That is, [x]p—[z]r =[x—z]F = [1]F, [x]F < [z]E.

Therefore, applying Theorem 1, we know that (A/~f —, ~, [1]) is a quantum B-algebra and
pseudo-BCI algebra. That is, Definition 10 (2) holds for A.

Hence, we know that A is a perfect quantum B-algebra. [J

The following examples show that there are some perfect quantum B-algebras that may not be a
pseudo-BCI algebra.

Example 2. Let X ={a, b, ¢, d, e, 1}. Define operations — and ~ on X as per the following Cayley Tables 3
and 4, the order on X is defined as the following: b < a < 1;e < d < c. Then, X is a pseudo-BCI algebra (we can
verify it with Matlab). Denote F1 = {1}, F) ={a, b, 1}, F3 = X, then F; (i = 1, 2, 3) are all normal q-filters of X,
and quotient algebras (X/~p; —, ~, [1];) are pseudo-BCI algebras. Thus, X is a perfect quantum B-algebra.

Table 3. Cayley table of operation —.

— a b c d e 1
a 1 a c c c 1
b 1 1 c c c 1
c c c 1 a b c
d c c 1 1 a c
e c c 1 1 1 c
1 a b c d e 1
Table 4. Cayley table of operation ~.
~ a b c d e 1
a 1 a c c d 1
b 1 1 c c c 1
c c c 1 a a c
d c c 1 1 a c
e c c 1 1 1 c
1 a b c d e 1

Example 3. Let X ={a, b, ¢, d, e, fl. Define operations — and ~» on X as per the following Cayley Tables 5
and 6, the order on X is defined as follows: b < a < f;e < d < c. Then, X is a quantum B-algebra (we can verify
it with Matlab), but it is not a pseudo-BCI algebra, since e~e# e—e. Denote F = {a, b, fl, then F, X are all
normal q-filters of X, quotient algebras (X/~p —, ~, <), (X/~x —, ~, <) are quantum B-algebras, and X is a
perfect quantum B-algebra.

Table 5. Cayley table of operation —.

— a b c d e f
a f a c c c f
b f f c c c f
c c c f a b c
d c c f f a c
e c c f f f c
f a b c d e f
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Table 6. Cayley table of operation ~.

~ a b c d e f
a f a c c d f
b f f c c c f
c c c f a a c
d c c f f a c
e c c f f a c
f a b c d e f

4. Basic Implication Algebras and Filters

Definition 11. Let (A, V, A, Q, —, 0, 1) be a type-(2, 2, 2, 2, 0, 0) algebra [32]. A is called a nonassociative
residuated lattice, if it satisfies:

(A1) (A, V, A, 0,1)is a bounded lattice;
(A2) (A, ®, 1) is a commutative groupoid with unit element 1;
(A3) Vx,y,z€A, xQy < z <= x < y—z.

Proposition 10. Let (A, V, A, ®, —, 0, 1) be a nonassociative residuated lattice [32]. Then, (¥ x, y, z€A)

(1) x<y<=ax—y=1;

2) x<y=1xQz<yQz

(B3) x<y=y—z<x—z

4 x<y=zox<zoy;

(5)  x@yVz) = (xQy)V(xRz);
(6) x—=(yAz) = (x—=y)\(x—z);
(7)  (yVz)—x = (y—=x)A(z—x);
) (x—=yYQx<xy;

9 (x—=y)—=y>xy.

Example 4. Let A = [0, 1], operation @ on A is defined as follows:
xQy = 0.5xy + 0.5max{0, x + y — 1}, x, yEA.

Then, @ is a nonassociative t-norm on A (see Example 1 in Reference [32]). Operation — is defined as
follows:
x—y = max{z€[0, 111 z(RQ)x <y}, x, yeA.

Then, (A, max, min, @, —, 0, 1) is a nonassoiative residuated lattice (see Theorem 5 in Reference [32]).
Assume that x = 0.55,y = 0.2,z = 0.1, then

5

=0.2 1= 1 2 <01} =-—.
y—z=02—01=max{ac[0,1a@02 < 0.1} G
17

x =y =055 02=max{a € [0,1ja@0.5 < 02} = 7.

4
= 0. .1 = A < 0. = —.
x =z =055 0.1=max{a €[0,1]a)0.55 < 0.1} i
17 4 17 4 67
- L =2 e 2y 2
(x—=y) = (x—>z) TRRT! max{ae[0,1|a®31 < 11} 58

Therefore,
y—zE (x—=y) = (x = z2).
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Example 4 shows that Condition (1) in Definition 1 is not true for general non-associative
residuated lattices, that is, quantum B-algebras are not common basic of non-associative fuzzy logics.
So, we discuss more general implication algebras in this section.

Definition 12. A basic implication algebra is a partially ordered set (X, <) with binary operation —, such that
the following are satisfied for x, y, and z in X:

(1) x<y=z—=x<z=y
(2) x<y=y—z<x—z

A basic implication algebra is considered to be normal, if it satisfies:
(3)  forany x, yeX, x—x =y—y;
(4)  forany x, yeX, x <y <= x—y = e, where e = Xx—x = y—.

We can verify that the following results are true (the proofs are omitted).

Proposition 11. Let (X, —, <) be a basic implication algebra. Then, for all x, y, z€X,

(1) x<y=y—=x<x—=x<x-y
(2) x<y=y—=x<y—=y<x-oy
3B) x<yadu <v=y—u<x-vy;
4) x<yandu <v=v—=x <u—y.

Proposition 12. Let (X, —, <, e) be a normal basic implication algebra. Then for all x, y, z€X,

(1) x—x=¢;

(2) x=y=y—=x=e=x=y;

3) x<y=y—=x<e

(4)  ifeis unit (that is, for all x in X, e—x = x), then e is a maximal element (that is, e < x = e = x).

Proposition 13. (1) If (X, —, ~, <) is a a quantum B-algebra, then (X, —, <) and (X, ~, <) are basic
implication algebras; (2) If (A, =, ~, <, 1) is a pseudo-BCI algebra, then (A, =, <, 1) and (A, ~, <, 1) are
normal basic implication algebras with unit 1; (3) If (A, V, A\, ®, —, 0, 1) is a non-associative residuated lattice,
then (A, —, <, 1) is a normal basic implication algebra.

The following example shows that element e may not be a unit.

Example 5. Let X ={a, b, c, d, 1}. Definea < b < c <d <1 and operation — on X as per the following Cayley
Table 7. Then, X is a normal basic implication algebra in which element 1 is not a unit. (X, —, <) is not a
commutative quantum B-algebra, since

c=1—ctb = (c—d) —(1—d).

Table 7. Cayley table of operation —.

— a b c d 1
a 1 1 1 1 1
b d 1 1 1 1
c d d 1 1 1
d b c d 1 1
1 b b c b 1

The following example shows that element ¢ may be not maximal.
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Example 6. Let X ={a, b, ¢, d, 1}. Definea <b <c¢ <d,a <b <c <1 and operation — on X as per the
following Cayley Table 8. Then, X is a normal basic implication algebra, and element 1 is not maximal and is not
a unit.

Table 8. Cayley table of operation —.

— a b c d 1
a 1 1 1 1 1
b c 1 1 1 1
c c c 1 1 1
d a c a 1 c
1 a b b c 1

Definition 13. A nonempty subset F of basic implication algebra (X, —, <) is called a filter of X if it satisfies:

(1) Fisan upper set of X, that is, x€F and x < yeX = y€F;
(2)  forall x€F, x—x€F;

(3) xeF yeX, x—ycF = y€F;

(4) xeX, y—zeF = (x—=y)—(x—z)€F;

(5)  xeX,y—z€F = (z—x)—=(y—x)EF.

For normal basic implication algebra (X, —, <, e), a filter F of X is considered to be reqular, if it satisfies:
(6) xeX, (x—y)—ecF and (y—z)—ecF = (x—z)—ecF.

Proposition 14. Let (X, —, <, e) be a normal basic implication algebra and F C X. Then, F is a filter of X if
and only if it satisfies:

(1) ecF;

(2) xeFyeX, x—yceF = ycF;

(3)  xeX, y—zeF = (x—=y)—(x—z)EF;
(4) xeX, y—zeF = (z—x)—(y—x)€F.

Obviously, if e is the maximal element of normal basic implication algebra (X, —, <, e), then any
filter of X is regular.

Theorem 3. Let X be a basic implication algebra and F a filter of X. Define binary ~p on X as follows:
x~r Y <= x—y€F and y—xcF, where x, yeX.

Then

(1) ~f is a equivalent relation on X;
(2) = is a congruence relation on X, that is, x~p y = (z—x) =f (z—Y), (x—2z) ~p (y—z), for all zeX.

Proof (1) Vx€X, from Definition 13 (2), x—x€F, thus x =~ x. Moreover, Vx, yeX, if x ~r y, then y ~f x.
If x ~f y and y ~F z. Then x—y€F, y—x€F, y—z€F, and z—y€F. Applying Definition 13 (4) and
(5), we have
(x—=y)—(x—2z)€F, (z—Yy)—(z—x)€F.

From this and Definition 13 (3), we have x—z€F, z—x€F. Thus, x ~f z.
Hence, ~F is a equivalent relation on X.
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(2) Assume x ~r y. By the definition of bianary relation ~, we have x—y€F, y—x€F. Using
Definition 13 (4),
(z—x)—=(z—Yy)€EF, (z—y)—(z—x)€EF.

This means that (z—x) ~r (z—¥). Moreover, using Definition 13 (5), we have
(y—z)—(x—2z)E€F, (x—z)—=(y—z)€EF.
Hence, (x—z) =~ (y—z). O

Theorem 4. Let (X, —, <, e) be a normal basic implication algebra and F a regular filter of X. Define quotient
operation — and binary relation < on X/~ as follows:

[xIp=lylF = [xIp—1ylF, Y%, yeX;
[x]p< lylr <= [x]r —=[ylr = [elr, Vx, yeX.

Then, (X/~p, —, <, lelr) is a normal basic implication algebra, and (X, —, <, e) ~ (X/~p, —, <, [elp).

Proof. Firstly, we prove that binary relation < on X/~ is a partial order.
(1) YxeX, obviously, [x]r < [x]F.
(2) Assume that [x]r < [y]r and [y]r < [x]F, then

[r=[yle = [x—=ylr = [elr, [yle—[x]F = [y—x]F = [e]p.

It follows that e— (x—y)€F, e— (y—x)EF. Applying Proposition 14 (1) and (2), we get that (x—y)€F
and (y—x)€F. This means that [x]r = [y]F.
(3) Assume that [x]r < [y]r and [y]r < [z]F, then

[XIF—=[ylr = [x—=ylr = [elp, [YlF—[z]F = [y—z]F = [e]f.
Using the definition of equivalent relation ~, we have
e—(x—=y)€F, (x—=y)—ecF; e—(y—z)€F, (y—z)—ecF.

From e—(x—y)€F and e—(y—z)€F, applying Proposition 14 (1) and (2), (x—y)€F and (y—z)<F.
By Proposition 14 (4), (x—y)—(x—z)€F. It follows that (x—z)cF. Hence, (x—x)—(x—z)€F, by
Proposition 14 (4). Therefore,
e—(x—z) = (x—=x)—=(x—z)€F.

Moreover, from (x—y)—e€F and (y—z)—ecF, applying regularity of F and Definition 13 (6), we
get that (x—z)—e€F.

Combining the above e—(x—z)€F and (x—z)—ecF, we have x—z = ¢, that is, [x—z]r = [e]F.
This means that [x]r < [z]r. It follows that the binary relation < on X/~ is a partially order.

Therefore, applying Theorem 3, we know that (X/~r —, <, [e]r) is a normal basic implication
algebra, and (X, —, <, e) ~ (X/~r —, <, [e]r) in the homomorphism mapping f: X—X/~r; f(x) = [x]r.
a

Example 7. Let X ={a, b, c, d, 1}. Define operations — on X as per the following Cayley Table 9, and the order
binary on X is defined as follows: a <b < ¢ <1,b <d <1. Then (X, —, <, 1) is a normal basic implication
algebra (it is not a quantum B-algebra). Denote F = {1}, then F is regular filters of X, and the quotient algebras
(X, —, <, 1) is isomorphism to (X/~p, —, [1]F).
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Table 9. Cayley table of operation —.

— a b c d 1
a 1 1 1 1 1
b d 1 1 1 1
c b d 1 d 1
d a c c 1 1
1 a b c d 1

Example 8. Denote X ={a, b, ¢, d, 1}. Define operations — on X as per the following Cayley Table 10, and
the order binary on X is defined as follows: a <b <c <1,b <d <1. Then (X, =, <, 1) is a normal basic
implication algebra (it is not a quantum B-algebra). Let F = {1, d}, then F is a regular filters of X, and the
quotient algebras (X/~p, —, [1]) is presented as the following Table 11, where X/~ = {{a}, {b, c}, [1]r = {1,
d}}. Moreover, (X, —, <, 1) ~ (X/~ —, [1]F).

Table 10. Cayley table of operation —.

— a b c d 1
a 1 1 1 1 1
b c 1 1 1 1
c b d 1 d 1
d a c c 1 1
1 a b c d 1

Table 11. Quotient algebra (X/~f, —, [1]).

- {a)} {b,c} [1]¢
{a} [1]f [1]g [1]F
{b,c} {b,c} [1]F [1]F
[1]¢ {a} {b,c} [1]F

5. Conclusions

In this paper, we introduced the notion of a g-filter in quantum B-algebras and investigated
quotient structures; by using g-filters as a corollary, we obtained quotient pseudo-BCI algebras by
their filters. Moreover, we pointed out that the concept of quantum B-algebra does not apply to
non-associative fuzzy logics. From this fact, we proposed the new concept of basic implication algebra,
and established the corresponding filter theory and quotient algebra. In the future, we will study in
depth the structural characteristics of basic implication algebras and the relationship between other
algebraic structures and uncertainty theories (see References [33-36]). Moreover, we will consider the
applications of g-filters for Gentzel’s sequel calculus.
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Abstract: In this paper, the concept of fuzzy normed ring is introduced and some basic properties
related to it are established. Our definition of normed rings on fuzzy sets leads to a new structure,
which we call a fuzzy normed ring. We define fuzzy normed ring homomorphism, fuzzy normed
subring, fuzzy normed ideal, fuzzy normed prime ideal, and fuzzy normed maximal ideal of a
normed ring, respectively. We show some algebraic properties of normed ring theory on fuzzy sets,
prove theorems, and give relevant examples.
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1. Introduction

Normed rings attracted attention of researchers after the studies by Naimark [1], a generalization
of normed rings [2] and commutative normed rings [3]. Naimark defined normed rings in an algebraic
fashion, while Gel’fand addressed them as complex Banach spaces and introduced the notion of
commutative normed rings. In Reference [4], Jarden defined the ultrametric absolute value and studied
the properties of normed rings in a more topological perspective. During his invaluable studies,
Zadeh [5] presented fuzzy logic theory, changing the scientific history forever by making a modern
definition of vagueness and using the sets without strict boundaries. As, in almost every aspect of
computational science, fuzzy logic also became a convenient tool in classical algebra. Zimmermann [6]
made significant contributions to the fuzzy set theory. Mordeson, Bhutani, and Rosenfeld [7] defined
fuzzy subgroups, Liu [8], Mukherjee, and Bhattacharya [9] examined normal fuzzy subgroups. Liu [8]
also discussed fuzzy subrings and fuzzy ideals. Wang, Ruan and Kerre [10] studied fuzzy subrings
and fuzzy rings. Swamy and Swamy [11] defined and proved major theorems on fuzzy prime
ideals of rings. Gupta and Qi [12] are concerned with T-norms, T-conorms and T-operators. In this
study, we use the definitions of Kolmogorov, Silverman, and Formin [13] on linear spaces and norms.
Ulugay, Sahin, and Olgun [14] worked out on normed Z-Modules and also on soft normed rings [15].
Sahin, Olgun, and Ulugay [16] defined normed quotient rings while Sahin and Kargin [17] presented
neutrosophic triplet normed space. In Reference [18], Olgun and Sahin investigated fitting ideals of
the universal module and while Olgun [19] found a method to solve a problem on universal modules.
Sahin and Kargin proposed neutrosophic triplet inner product [20] and Florentin, Sahin, and Kargin
introduced neutrosophic triplet G-module [21]. Sahin and et al defined isomorphism theorems for
soft G-module in [22]. Fundamental homomorphism theorems for neutrosophic extended triplet
groups [23] were introduced by Mehmet, Moges, and Olgun in 2018. In Reference [24], Bal, Moges,
and Olgun introduced neutrosophic triplet cosets and quotient groups, and deal with its application
areas in neutrosophic logic.

This paper anticipates a normed ring on R and fuzzy rings are defined in the previous studies.
Now, we use that norm on fuzzy sets, hence a fuzzy norm is obtained and by defining our fuzzy norm
on fuzzy rings, we get fuzzy normed rings in this study. The organization of this paper is as follows.

Symmetry 2018, 10, 515; doi:10.3390/sym10100515 258 www.mdpi.com/journal /symmetry
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In Section 2, we give preliminaries and fuzzy normed rings. In Section 3, consists of further definitions
and relevant theorems on fuzzy normed ideals of a normed ring. Fuzzy normed prime and fuzzy
normed maximal ideals of a normed ring are introduced in Section 4. The conclusions are summarized
in Section 5.

2. Preliminaries

In this section, definition of normed linear space, normed ring, Archimedean strict T-norm and
concepts of fuzzy sets are outlined.

Definition 1. [13] A functional |||| defined on a linear space L is said to be a norm (in L) if it has the following

properties:
N1: ||x|| > 0 forall x € L, where ||x|| = 0 if and only if x = 0;
N2: |la - x|| = |a|.||x||; (and hence ||x|| = ||—x||), for all x € L and for all «;

N3: Triangle inequality: ||x + y|| < ||x|| + |ly|| for all x,y € L.
A linear space L, equipped with a norm is called a normed linear space.

Definition 2. [3] A ring A is said to be a normed ring if A possesses a norm |||, that is, a non-negative
real-valued function |||| : A — R such that for any a,b € A,

1. Ja|=0&a=0,

2. la+0ll < llall + o],

3. ||—all = lla||, (and hence ||14|| = 1 = ||—1|| if identity exists), and
4. |labl| < lal|[b]|-

Definition 3. [12] Let « : [0,1] x [0,1] — [0,1]. * is an Archimedean strict T-norm iff for all x,y,z € [0,1]:

(1) = is commutative and associative, that is, * (x,y) = * (y,x) and % (x,* (y,z)) = = (x (x,v),2),
(2)  *is continuous,

(3) *(x,1)=x,

(4)  * is monotone, which means * (x,y) < = (x,z) if y < z,

(5) = (x,x) <x forx e (0,1),and

(6) whenx <zandy <t * (x,y) < *(z,t) forall x,y,z,t € (0,1).

For convenience, we use the word t-norm shortly and show it as x x y instead of * (x,y). Some examples
of t-norms are x x y = min{x, y}, x *y = max{x +y — 1,0} and x xy = x.y.
Definition 4. [12] Let ¢ : [0,1] x [0,1] — [0, 1]. * is an Archimedean strict T-conorm iff for all x,y,z € [0,1]:

(1) < is commutative and associative, that is, o (x,y) = o (y,x) and o (x,0 (y,z)) = < (¢ (x,¥),2),
(2) < is continuous,
(3) ©o(x,0)=x,
(4) o is monotone, which means o (x,y) < o (x,z) if y < z,
(5) o (x,x)>x forx € (0,1),and
(6) whenx <zandy <t o (z,t) <o (xy)forallx,y,zt e (0,1).
For convenience, we use the word s-norm shortly and show it as x o y instead of © (x,y). Some examples
of s-norms are x oy = max{x,y}, x *xy =min{x +y,1} and xoy = x +y — x.y.

Definition 5. [6] The fuzzy set B on a universal set X is a set of ordered pairs

B={(x,up(x):x € X)}
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Here, ug(x) is the membership function or membership grade of x in B. For all x € X, we have
0 < wup(x) <1.If x ¢ B, up(x) = 0, and if x is entirely contained in B, ug(x) = 1. The membership grade
of x in B is shown as B(x) in the rest of this paper.

Definition 6. [6] For the fuzzy sets A and B, the membership functions of the intersection, union and
complement are defined pointwise as follows respectively:

(ANB)(x) = min{A(x),B(x)},

(AUB)(x) = max{A(x), B(x)},
A(x) =1— A(x).

Definition 7. [10] Let (R, +,.) be a ring and F(R) be the set of all fuzzy subsets of R. As A € F(R), Ais
the fuzzy intersection and \ is the fuzzy union functions, for all x,y € R, if A satisfies (1) A(x —y) >
A(x) NA(y) and (2) A(x.y) > A(x) N A(y) then A is called a fuzzy subring of R. If A is a subring of R for
all a € A, then A is itself a fuzzy ring.

Definition 8. [11] A non-empty fuzzy subset A of R is said to be an ideal (in fact a fuzzy ideal) if and only if,
forany x,y € R, A(x —y) > A(x) A A(y) and A(x.y) > A(x) V A(y).

Note: The fuzzy operations of the fuzzy subsets A,B € F(R) on the ring R can be extended to the
operations below by t-norms and s-norms:

Forall z € R,

X+

(A=B)(z) = o (A(x)*B(y));

(AB)(2) = o (A(x)*B(y)).

(A+B)(z) = o (A(x)*B(y))

3. Fuzzy Normed Rings and Fuzzy Normed Ideals

In this section, there has been defined the fuzzy normed ring and some basic properties related to
it. Throughout the rest of this paper, R is the set of real numbers, R will denote an associative ring
with identity, NR is a normed ring and F(X) is the set of all fuzzy subsets of the set X.

Definition 9. Let * be a continuous t-norm and ¢ a continuous s-norm, NR a normed ring and let A be a
fuzzy set. If the fuzzy set A = {(x, ua(x)) : x € NR} over a fuzzy normed ring F(NR) satisfy the following
conditions then A is called a fuzzy normed subring of the normed ring (NR, +,.):

Forall x,y € NR,

D Alx—y) = Alx) * Aly)
(i) A(x.y) > A(x) * A(y).

Let 0 be the zero of the normed ring NR. For any fuzzy normed subring A and for all x € NR, we have
A(x) < A(0), since A(x —x) > A(x) * A(x) = A(0) > A(x).

Example 1. Let A fuzzy set and R = (Z,+,.) be the ring of all integers. Define a mapping
f:A— F(NR(Z)) where, foranya € Aand x € Z,

0if x is odd
Af(x) = {

% if x is even
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Corresponding t-norm (x) and t-conorm (o) are defined as a x b = min{a, b}, a b = max{a,b}; then,
A'is a fuzzy set as well as a fuzzy normed ring over [(Z,+,.), Al.

Lemma 1. A € F(NR) is a fuzzy normed subring of the normed ring NR if and only if A — A C A and
AACA.

Proof. Let A be a fuzzy normed subring of NR. By [10], it is clear that A is a fuzzy group under
additionand so A — A C A. Also forall z € NR,

(AA)E) = o (AR +AW) < o Alwy) = Az) = AAC A

Now we suppose A — A C Aand A.A C A. Forall x,y € NR,

Ax—y) 2 (A-A)x—y) = o (Als)xA(t)) = A(x) x Ay)-

s—t=x—y

Similarly,

Alxy) 2 (AA)xy) = o (A(s)x A1) = A(x) = Ay).

Thus, A is a fuzzy normed subring of NR. [J

Lemma 2.

i.  Let Abea fuzzy normed subring of the normed ring NR and let f : NR — NR/ be a ring homomorphism.
Then, f(A) is a fuzzy normed subring of NR/.

ii. ~ Let f: NR — NR/ be a normed ring homomorphism. If B is a fuzzy normed subring of NR/, then
F~Y(B) is a fuzzy normed subring of NR.

Proof. (i) Take u,v € NR/. As f is onto, there exists x,y € NR such that f(x) = uand f(y) = v. So,

G Fane = (e @) (o aw)

v)
= o A(x)* A
=gy me A % AW))
< o (A(x — 1)) (as A is a fuzzy normed subring of NR)
flx)=ufy)=v
< <o
T ) f(y)=u- v( (x=v))
= o (A(x —y)) (since f is a homomorphism)
fle—y)=u—v
= o Az
f(z)=u—ov
= (f(A)(u—0)

Similarly, it is easy to see that

(f(A)(w0) = (f(A)(u) * f(A)(0)).

Therefore, f(A) is a fuzzy normed subring of NR/.
(ii) Proof is straightforward and similar to the proof of (i). [J

Definition 10. Let Ay and A; be two fuzzy normed rings over the normed ring NR. Then Ay is a fuzzy
normed subring of Ay if
Aq(x) < Az(x)

forall x € NR.
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Definition 11. Let NR be a normed ring, A € F(NR) and let A # @. If forall x,y € NR

(i) Alx—y) > A(x) = A(y) and
(i) A(xy) > Aly) (A(xy) > A(x)),

then A'is called a fuzzy left (right) normed ideal of NR.

Definition 12. If the fuzzy set A is both a fuzzy normed right and a fuzzy normed left ideal of NR, then A is
called a fuzzy normed ideal of NR; i.e., if for all x,y € NR

(i) Alx—y) > A(x) = A(y) and
(i)  A(xy) > A(x) o A(y),

then A € F(NR) is a fuzzy normed ideal of NR.

Remark 1. Let the multiplicative identity of NR (if exists) be 1Nr. As A(x.y) > A(x) o A(y) for all
¥,y € NR, A(x.1ngr) > A(x) o A(1ngr) and therefore for all x € NR, A(x) > A(1ng)-

Example 2. Let A and B be two (fuzzy normed left, fuzzy normed right) ideals of a normed ring NR. Then,
AN B is also a (fuzzy normed left, fuzzy normed right) ideal of NR.

Solution: Let x,y € NR.

(ANB)(x—y) =min{A(x—y),B(x —y)}
> min{A(x) * A(y), B(x) * B(y)}
> min{(ANB)(x), (ANB)(y)}.

On the other hand, as A and B are fuzzy normed left ideals, using A(x.y) > A(y) and B(x.y) >
B(y) we have

(ANB)(xy) = min{A(x.y), B(x.y)} > min{A(y),B(y)} = (AN B)(y).

So A N B is a fuzzy normed left ideal. Similarly, it is easy to show that A N B is a fuzzy normed
right ideal. As a result A N B is an fuzzy normed ideal of NR.

Example 3. Let A be a fuzzy ideal of NR. The subring A® = {x: pa(x) = ua(ONR)} is a fuzzy normed
ideal of NR, since for all x € NR, A%(x) < A%(0).

Theorem 1. Let A be a fuzzy normed ideal of NR, X = {a1,az,...,a,} C NR, x,y € NRand let FN(X)
be the fuzzy normed ideal generated by the set X in NR. Then,
(i) weFN(X)= Aw) > * (Aa)),

1<i<m

(i) x€(y)=Alx) = Ay),
(iii) A(0) > A(x) and
(iv) if 1 is the multiplicative identity of NR, then A(x) > A(1).

Proof. (ii), (iii), and (iv) can be proved using (i). The set FN(X) consists of the finite sums in the form
ra+ as+ uav+na wherea € X, r,s,u,v € NR and # is an integer. Let w € FN(X). So there exists an
integer n and 7,s,1,v € NR such that w = ra; + a;s + ua;v + na; where 1 <i < m. As A is a fuzzy
normed ideal,

A(ra; + a;s + uao + na;) > A(ra;) * A(a;s) x A(ua;jo) x A(na;) > A(a;).
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Therefore

4. Fuzzy Normed Prime Ideal and Fuzzy Normed Maximal Ideal

In this section, fuzzy normed prime ideal and fuzzy normed maximal ideal are outlined.

Definition 13. Let A and B be two fuzzy subsets of the normed ring NR. We define the operation A o B

as follows:

o (A(y) *B(z , if x can be defined as x = yz
pob(n) - | 5 AW BED y
0 , otherwise .
If the normed ring NR has a multiplicative inverse, namely if NR.NR = NR, then the second case
does not occur.

Lemma 3. If A and B are a fuzzy normed right and a fuzzy normed left ideal of a normed ring NR, respectively,
AoB C ANBandhence (AoB)(x) < (AN B)(x) forall x € NR.

Proof. It is shown in Example 2 that if A and B are fuzzy normed left ideals of NR, then AN Bis also a
fuzzy normed left ideal. Now, let A and B be a fuzzy normed right and a fuzzy normed left ideal of
NR, respectively. If A o B(x) = 0, the proof is trivial.

Let

(AoB)(x) = o (A(y)*B(2)).

x=yz

As A is a fuzzy normed right ideal and B is a fuzzy normed left ideal, we have

Aly) < A(yz) = A(x)

and
B(y) < B(yz) = B(x)
Thus,
(AoB)(x) = o (A()*B())
< min(A(x), B(x))
= (ANB)(x)
d

Definition 14. Let A and B be fuzzy normed ideals of a normed ring NR and let FNP be a non-constant
function, which is not an ideal of NR. If

AoBCFNP = ACFNPorBCFNP,
then FNP is called a fuzzy normed prime ideal of NR.

Example 4. Show that if the fuzzy normed ideal I (I # NR) is a fuzzy normed prime ideal of NR, then the
characteristic function Ay is also a fuzzy normed prime ideal.

Solution: As I # NR, A is a non-constant function on NR. Let A and B be two fuzzy normed

ideals on NR such that A o B C Aj, but AAj and BA;. There exists x,y € NR such that A(x) < Aj(x)
and B(y) < Aj(y). In this case, A(x) # 0 and B(y) # 0, but A;(x) = 0 and A;(y) = 0. Therefore
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x ¢ I,y ¢ I. As I is a fuzzy normed prime ideal, there exists an » € NR, such that xry ¢ I. This is
obvious, because if I is fuzzy normed prime, Ao B(xry) C I = A(x) C I or B(ry) C I and therefore
as (NRxNR)(NRryNR) = (NRxNR)(NRyNR) C I, we have either NRxNR C [ or NRyNR C I.
Assume NRxNR C I. Then xxx = (x)°> € I = x C I, but this contradicts with the fact that A;(x) = 0.
Now leta = xry. Aj(a) = 0. Thus, A o B(a) = 0. On the other hand,

AoB(a) = ° (A(c

This is a contradiction, since A o B(a) = 0. Therefore if A and B are fuzzy normed ideals of a
normed ring NR, then Ao B C A; = A C Ajor B C A;. Asaresult, the characteristic function Ay is a
fuzzy normed prime ideal.

Theorem 2. Let FNP be a fuzzy normed prime ideal of a normed ring NR. The ideal defined by FNP° =
{x:x € NR,FNP(x) = FNP(0)} and is also a fuzzy normed prime ideal of NR.

Proof: Let x,y € FNPY. As FNP is an fuzzy normed ideal, FNP(x —y) > FNP(x) * FNP(y) =
FNP(0). On the other hand, by Theorem 1, we have FNP(0) > FNP(x —y).So, FNP(x —y) = FNP(0)
and x —y € FNP. Now, let x € FNP? and r € NR. In this case, FNP(rx) > FNP(x) = FNP(0)
and thus FNP(rx) = FNP(0). Similarly, FNP(xr) = FNP(0). Now, for all x € FNP? and r € NR,
rx,xr € FNPY. Therefore, FNPY is a fuzzy normed ideal of NR. Let I and | be two ideals of NR,
such that I] C FNP?. Now, we define fuzzy normed ideals A = FNP°\; and B = FNPA 7. We
will show that (Ao B)(x) < FNP(x) for all x € NR. Assume (AoB)(x) # 0. Recall AoB =
N gyZ(A(y) * B(z)), so we only need to take the cases of A(y) * B(z) # 0 under consideration. However,

in all these cases, A(y) = FNP(0) or A(y) = 0 and similarly B(z) = FNP(0) or B(z) = 0 and hence
A(y) = B(z) = FNP(0). Now, A;(y) = 1and Aj(z) = limpliesy € I,z € Jand x € I] C FNP°.
Thus, FNP(x) = FNP(0) and for all x € NR, we get (AoB)(x) < FNP(x). As FNP is a fuzzy
normed prime ideal and A and B are fuzzy normed ideals, either A C FNP or B C FNP. Assume
A = FNPY)\; C FNP. We need to show that I C ENP?. Let IFNP. Then, there exists an a € I, such
thata ¢ FNPY;i.e.,, FNP(a) # FNP(0). It is evident that FNP(0) > FNP(a). Thus, ENP(a)<FNP(0).
However, A(a) = FNP°A;(a) = FNP(0)>FNP(a) and this is a contradiction to the assumption
A C FNP. So, I € FNPY. Similarly, one can show that B C FNP and | C FNP°. Thus, FNP? is a
fuzzy normed prime ideal. [

Definition 15. Let A be a fuzzy normed ideal of a normed ring NR. If A is non-constant and for all fuzzy
normed ideals B of NR, A C B implies A = B® or B = Ay, A is called a fuzzy normed maximal ideal of the
normed ring NR. Fuzzy normed maximal left(right) ideals are defined similarly.

Example 5. Let A be a fuzzy normed maximal left (right) ideal of a normed ring NR. Then, A =
{x € NR: A(x) = A(0)} is a fuzzy normed maximal left (right) ideal of NR.

Theorem 3. If A is a fuzzy normed left(right) maximal ideal of a normed ring NR, then A(0) = 1.

Proof. Assume A(0) # 1. Let A(0) < t < 1 and let B be a fuzzy subset of NR such that B(x) = ¢t
for all x € NR. B is trivially an ideal of NR. Also it is easy to verify that A C B, B # Ang and
BY = {x € NR: B(x) = B(0)} = NR. But, despite the fact that A C B, A° # B and B # Ayg isa
contradiction to the fuzzy normed maximality of A. Thus, A(0) = 1. O
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5. Conclusions

In this paper, we defined a fuzzy normed ring. Here we examine the algebraic properties of

fuzzy sets in ring structures. Some related notions, e.g., the fuzzy normed ring homomorphism, fuzzy
normed subring, fuzzy normed ideal, fuzzy normed prime ideal and fuzzy normed maximal ideal are
proposed. We hope that this new concept will bring a new opportunity in research and development
of fuzzy set theory. To extend our work, further research can be done to study the properties of fuzzy
normed rings in other algebraic structures such as fuzzy rings and fuzzy fields.
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Abstract: Symmetric graphs have non-trivial automorphism groups. This article starts with the proof
that all partition comparison measures we have found in the literature fail on symmetric graphs,
because they are not invariant with regard to the graph automorphisms. By the construction of a
pseudometric space of equivalence classes of permutations and with Hausdorff’s and von Neumann’s
methods of constructing invariant measures on the space of equivalence classes, we design three
different families of invariant measures, and we present two types of invariance proofs. Last,
but not least, we provide algorithms for computing invariant partition comparison measures as
pseudometrics on the partition space. When combining an invariant partition comparison measure
with its classical counterpart, the decomposition of the measure into a structural difference and a
difference contributed by the group automorphism is derived.

Keywords: graph partitioning; graph clustering; invariant measures; partition comparison; finite
automorphism groups; graph automorphisms

1. Introduction

Partition comparison measures are routinely used in a variety of tasks in cluster analysis:
finding the proper number of clusters, assessing the stability and robustness of solutions of cluster
algorithms, comparing different solutions of randomized cluster algorithms or comparing optimal
solutions of different cluster algorithms in benchmarks [1], or in competitions like the 10th DIMACS
graph-clustering challenge [2]. Their development has been for more than a century an active area of
research in statistics, data analysis and machine learning. One of the oldest and still very well-known
measure is the one of Jaccard [3]; more recent approaches were by Horta and Campello [4] and
Romano et al. [5]. For an overview of many of these measures, see Appendix B. Besides the need to
compare clustering partitions, there is an ongoing discussion of what actually are the best clusters [6,7].
Another problem often addressed is how to measure cluster validity [8,9].

However, the comparison of graph partitions leads to new challenges because of the need to
handle graph automorphisms properly. The following small example shows that standard partition
comparison measures have unexpected results when applied to graph partitions: in Figure 1, we show
two different ways of partitioning the cycle graph C, (Figure 1a,d). Partitioning means grouping the
nodes into non-overlapping clusters. The nodes are arbitrarily labeled with 1 to 4 (Figure 1b,e), and
then, there are four possibilities of relabeling the nodes so that the edges stay the same. One possibility
is relabeling 1 by 2, 2 by 3, 3 by 4 and 4 by 1, and the images resulting from this relabeling are shown in
Figure 1c,f. The relabeling corresponds to a counterclockwise rotation of the graph by 90°, and formal
details are given in Section 2. The effects of this relabeling on the partitions P; and Q; are different:

1. Partition P; = {{1,2},{3,4}} is mapped to the structurally equivalent partition P, = {{1,4},{2,3}}.
2. Partition Q1 = {{1,3},{2,4}} is mapped to the identical partition Q.

Symmetry 2018, 10, 504; doi:10.3390/sym10100504 266 www.mdpi.com/journal /symmetry
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(@)

(d) (e) & (f) 2,

Figure 1. Two structurally different partitions of the cycle graph Cy4: grouping pairs of neighbors (a) and
grouping pairs of diagonals (d). Equally-colored nodes represent graph clusters, and the choice of colors
is arbitrary. Adding, again arbitrary, but fixed, node labels impacts the node partitions and results in the
failure to recognize the structural difference when comparing these partitions with partition comparison
measures (see Table 1). The different images (b,c) (P; = {{1,2},{3,4}}, P» = {{1,4},{2,3}}) and
(ef) (Q1 = Q» = {{1,3},{2,4}}) emerge from the graph’s symmetry.

Table 1 illustrates the failure of partition comparison measures (here, the Rand Index (RI)) to
recognize structural differences:

1. Because P; and P, are structurally equivalent, the RI should be one (as for Cases 1, 2 and 3)
instead of 1/3.

2. Comparisons of structurally different different partitions (Cases 4 and 5) and comparisons of
structurally equivalent partitions (Case 6) should not result in the same value.

Table 1. The Rand index is RI = x— 1N Ny indicates the number of nodes that are in both
Ni1+Nig+No1 +Noo

partitions together in a cluster; Njg and Np; are the number of nodes that are together in a cluster
in one partition, but not in the other; and Ny are the number of nodes that are in both partitions in
different clusters. See Appendix B for the formal definitions. Partitions 7, and P, are equivalent (yet
not equal, denoted “~"), and partitions Q1 and Q, are identical (thus, also equivalent, denoted “="

However, the comparison of the structurally different partitions (denoted “#”) P; and Q; yields the
same result as the comparison between the equivalent partitions P; and P,. This makes the recognition

of structural differences impossible.

]

Case Compared Partitions Relation N33 Njg Nopi Noo
1 Py, Py = 2 0 0 4
P2, P2
Q1,Qq0r @y, Qr0r Qo, QD
P1, Q1 or Py, Q
P2, Q1 0r Pp, Q
P1, P2

N U1 = W DN
o O © NN
N N N O O
N NN OO
N N N B
QI Q= Q= = e

I4ED NI N
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One may argue that graphs in real applications contain symmetries only rarely. However, recent
investigations of graph symmetries in real graph datasets show that a non-negligible proportion of
these graphs contain symmetries. MacArthur et al. [10] state that “a certain degree of symmetry is
also ubiquitous in complex systems” [10] (p. 3525). Their study includes a small number of biological,
technological and social networks. In addition, Darga et al. [11] studied automorphism groups in very
large sparse graphs (circuits, road networks and the Internet router network), with up to five million
nodes with eight million links with execution times below 10 s. Katebi et al. [12] reported symmetries
in 268 of 432 benchmark graphs. A recent large-scale study conducted by the authors of this article
for approximately 1700 real-world graphs revealed that about three quarters of these graphs contain
symmetries [13].

The rather frequent occurrence of symmetries in graphs and the obvious deficiencies of classic
partition comparison measures demonstrated above have motivated our analysis of the effects of graph
automorphisms on partition comparison measures.

Our contribution has the following structure: Permutation groups and graph automorphisms are
introduced in Section 2. The full automorphism group of the butterfly graph serves as a motivating
example for the formal definition of stable partitions, stable with regard to the actions of the
automorphism group of a graph. In Section 3, we first provide a definition that captures the property
that a measure is invariant with regard to the transformations in an automorphism group. Based on
this definition, we first give a simple proof by counterexample for each partition comparison measure
in Appendix B, that these measures based on the comparison of two partitions are not invariant to the
effects of automorphisms on partitions. The non-existence of partition comparison measures for which
the identity and the invariance axioms hold simultaneously is proven subsequently. In Section 4, we
construct three families of invariant partition comparison measures by a two-step process: First, we
define a pseudometric space by defining equivalence classes of partitions as the orbit of a partition
under the automorphism group Aut(G). Second, the definitions of the invariant counterpart of a
partition comparison measure are given: we define them as the computation of the maximum, the
minimum and the average of the direct product of the two equivalence classes. The section also contains
a proof of the equivalence of several variants of the computation of the invariant measures, which—by
exploiting the group properties of Aut(G)—differ in the complexity of the computation. In Section 5,
we introduce the decomposition of the measures into a structurally stable and unstable part, as well as
upper bounds for instability. In Section 6, we present an application of the decomposition of measures
for analyzing partitions of the Karate graph. The article ends with a short discussion, conclusion and
outlook in Section 7.

2. Graphs, Permutation Groups and Graph Automorphisms

We consider connected, undirected, unweighted and loop-free graphs. Let G = (V, E) denote
a graph where V is a finite set of nodes and E is a set of edges. An edge is represented as {u,v} €
{{x,y} | (xv,y) € Vx V Ax # y}. Nodes adjacent to u € V (there exists an edge between 1 and those
nodes) are called neighbors. A partition P of a graph G is a set of subsets C;,i = 1,. ..,k of V with the
usual properties: (i) C; N C; = @ (i # j), (i) U; C; = V and (iii) C; # @. Each subset is called a cluster,
and it is identified by its labeled nodes.

As a partition quality criterion, we use the well-known modularity measure Q of Newman and
Girvan [14] (see Appendix A). It is a popular optimization criterion for unsupervised graph clustering
algorithms, which try to partition the nodes of the graph in a way that the connectivity within the
clusters is maximized and the number of edges connecting the clusters is minimized. For a fast and
efficient randomized state-of-the-art algorithm, see Ovelgoénne and Geyer-Schulz [15].

Partitions are compared by comparison measures, which are functions of the form m : P(V) x
P(V) — R where P(V) denotes the set of all possible partitions of the set V. A survey of many of these
measures is given in Appendix B.
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A permutation on V is a bijection g : V — V. We denote permutations by the symbols f, g and
h. Each permutation can be written in cycle form: for a permutation with a single cycle of length 7,
we write ¢ = (0102 ... vy). cmaps v; to v;q (i =1,...,7 — 1), v, to v and leave all other nodes fixed.
Permutations with more than one cycle are written as a product of disjoint cycles (i.e., no two cycles
have a common element). (vx) means that the element v, remains fixed, and for brevity, these elements
are omitted.

Permutations are applied from the right: The image of 1 under the permutation g is ug. The
composition of ¢ and /1 is h o g, with o being the permutation composition symbol. For brevity, h o g
is written as gh, so that u(gh) = (ug)h holds. Computer scientists call this a postfix notation; in
prefix notation, we have h(g(u)). Often, we also find 48, which we will use in the following. For k
compositions gogogo... we write g and g0 = id.

A set of permutation functions forms a permutation group H, if the usual group axioms hold [16]:

1. Closure:Vg,he H:gohe H

Unit element: The identity function id € H acts as the neutral element: Vg € H :idog = goid = ¢

3. Inverse element: For any g in H, the inverse permutation function ¢~ € H is the inverse of g:
VgeH:gog l=glog=id

4. Associativity: The associative law holds: Vf,g,h € H: fo(goh) = (fog)oh

N

If H; is a subset of H and if H; is a group, H; is a subgroup of H (written H; < H). The set of
all permutations of V is denoted by Sym(V). Sym(V) is a group, and it is called the symmetric group
(see [17]). Sym(V) ~ Sym(V') iff |V| = |V'| with ~ denoting isomorphism. A generator of a finite
permutation group H is a subset of the permutations of H from which all permutations in H can be
generated by application of the group axioms [18].

An action of H on V (H acts on V) is called the group action of a set [19] (p. 5):

1. ul=uyVueVv
2. (ug)h =ush Yuev, Vg, he H

Groups acting on a set V also act on combinatorial structures defined on V [20] (p. 149), for
example the power set 2V, the set of all partitions P(V) or the set of graphs G(V). We denote
combinatorial structures as capital calligraphic letters; in the following, only partitions (P) are of
interest because they are the results of graph cluster algorithms. The action of a permutation g on a
combinatorial structure is performed by pointwise application of g. For instance, for P, the image of ¢
isP$={{u¢ |ueC}|CecP}

Let H be a permutation group. When H acts on V, a node u is mapped by the elements of H onto
other nodes. The set of these images is called the orbit of 1 under H:

uH:{uh\heH}.
The group of permutations H,, that fixes u is called the stabilizer of u under H:
Hy={heH|u"=u}.

The orbit stabilizer theorem is given without proof [16]. It links the order of a permutation group
with the cardinality of an orbit and the order of the stabilizer:

Theorem 1. The relation:
[H| = [u"]- |Hy|

holds.

The action of H on V induces an equivalence relation on the set: for uy, 1y € V,let uy ~ uy iff
there exists i € H so that u; = ug. All elements of an orbit are equivalent, and the orbits of a group
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partition the set V. An orbit of length one (in terms of set cardinality) is called trivial. Analogously, for
a partition P, the definition is:

Definition 1. The image of the action of H on a partition P (or the orbit of P under H) is the set of all equivalent
partitions of partition P under H

PH = {P"|heH}.
A graph automorphism f is a permutation that preserves edges, i.e., {uf,o/} € E & {u,v} € E,
Yu,ve V.
The automorphism group of a graph contains all permutations of vertices that map edges to edges
and non-edges to non-edges. The automorphism group of G is defined as:
Aut(G) = {f € Sym(V) | Ef = E}
where Ef = {{uf,vf} [ {u,0} e E}A Of course, Aut(G) < Sym(V).

Example 1. Let Gy be the butterfly graph (Figure 2, e.g., Erdds et al. [21], Burr et al. [22]) whose full
automorphism group is given in Table 2 (first column). The permutation (25) is not an automorphism, because
it does not preserve the edges from 1 to 2 and from 5 to 4. The butterfly graph has the two orbits {1,2,4,5} and
{3}. The group H = {id, g1,82,83} is a subgroup of Aut(Gyy).

Figure 2. The butterfly graph (five nodes, with two node pairs connected by the bridging node 3).

Table 2. The full automorphism group Aut(Gys) = {id, g1,...,g7} of the butterfly graph in Figure 2
and its effect on three partitions. Bold partitions are distinct. A possible generator is {g1,g4}-

Permutation P1, Q=0 Py, Q= % P3, Q= _11?
id=(1)(2)3)(4)5) {12},{3},{45} {1.23},{45} {1234} {5}
g1 =1(12) {21}, {3}, {45} {213}, {45} {2,1,3,4},{5}
g2 = (45) {12}, {3}, {54} {123}{54} {1,235} {4}
g3 = (12)(45) {21}, {3}, {54} {213}, {54} {2,1,3,5}, {4}
g1 = (14)(25) {45}, {3} {12} {453}{12} {4531}, {2}
g5 = (15)(24) {54}, 31, {21}  {543}{21} {5432} {1}
g6 = (1425) {4,5},{3},{2,1} {4,5,3},{2,1} {4,5,3,2},{1}
g7 = (1524) {5,4},{3},{1,2}  {5,4,3},{1,2} {5,4,3,1},{2}

Definition 2. Let G = (V,E) be a graph. A partition P is called stable, if |[PA*(C)| = 1, otherwise it is
called unstable.

Stability here means that the automorphism group of the graph does not affect the given partition
by tearing apart clusters.
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Example 2. Only Py in Table 2 is stable because its orbit is trivial. The two modularity optimal partitions
(e.g., P4 and P§*) are not stable because |732Aut<cbf)| = 2. Furthermore, |P;“t(cl’f)| =4,

For the evaluation of graph clustering solutions, the effects of graph automorphisms on graph
partitions are of considerable importance:

1. Automorphisms may lead to multiple equivalent optimal solutions as