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1. Introduction and Scope

At the beginning of the 21st century, electronic-structure theory has matured to a degree
that allows for accurate phase prediction and computational characterization of various kinds of
materials; in particular, elemental metals adopting whatever allotropic structure, various intermetallic
compounds, and other complex metal-rich phases. Hence, fundamental theoretical progress has
been made and is rapidly continuing in both physics and chemistry. From a more applied,
engineering-like perspective, there is an urgent need for novel metallic structural materials, such
as advanced steels, to address future challenges arising in both mechanical and civil engineering as
well as energy production and conversion. While it is clear that different microstructural features
influence the macroscopic behavior, modern techniques for simulation and modeling of metals and
intermetallic phases at the atomic scale may enormously accelerate and guide the entire development
process. In particular, atomistic understanding is a key issue because it allows for the generation
of (spin-dependent) structural models of crystalline phases and the calculation of enthalpies and
other free energies as a function of pressure and temperature. In combination with evolutionary
algorithms and advanced thermochemical and phase-field approaches, these methods provide a
solid ground for a novel methodological approach to the physics, chemistry, and engineering of
metals and metal-rich materials. Furthermore, fundamental insights obtained in this manner may
be incorporated, either as input parameters or key assumptions, into larger-scale models, whether
purely theoretical or computational, rendering atomistic simulations essential for the development
of multiscale approaches. Thus, this Special Issue focusing on first-principles approaches to metals,
alloys, and metallic compounds tries to follow that train of thought, and it also aims at allowing for a
wider perspective on metallic materials, to be studied by physicists, chemists and materials scientists,
as well as engineers.

2. Content

To begin with, and as a timely object, high-strength high-manganese steels are at the very core
of modern metal engineering, so Sevsek and Bleck [1] demonstrate an ab initio-based modelling of
high-manganese steels depending on first-principles calculations of short-range ordering energies,
a question of paramount importance for the Collaborative Research Centre 761 (“Steel ab initio”)
funded by the German Research Foundation (DFG). Both configurational structures and the impact
of alloying elements are analyzed, finally providing good agreement with experimental data. In a
somewhat similar manner, Song et al. [2] provide a combined small-angle neutron scattering and
ab initio investigation on the Mn–C short-range ordering in an X60Mn18 steel. Not only does the
experiment prove the presence of such ordering upon recrystallization, theory provides evidence for
cluster formation and its evolution, which also translates into a stress-strain curve. The role of carbon,
in particular carbon precipitates, is covered in the contribution by Sawada et al. [3] using the examples
of titanium and niobium carbide. While the interface energy between carbide and iron is obtained via
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large-scale first-principles theory, the estimated coherent-semi-coherent TiC transition diameter agrees
with experiment.

The aforementioned three papers already allude to bridging the gap between atomistic and
continuum levels, directly covered in the contribution by Korbmacher et al. [4] who utilize Ni–H
as a reasonable system to model phase equilibria. By considering various effects, they arrive at a
fully quantitative agreement for the chemical potential without adjustable parameters. Likewise,
Weikamp et al. [5] present a selection of scale-transfer approaches from the electronic to the continuum
regime for topics relevant to hydrogen embrittlement. Eventually, they develop an approximative
scheme to estimate grain-boundary energies for varying C and H contents, and they consider the
dependence of hydride formation on the grain-boundary stiffness. When it comes to time evolution and
dynamical phenomena, the paper by Zhang and Jiang [6] deals with molecular-dynamics simulations
of crack propagation in nanoscale polycrystalline nickel. The strain rate has an important effect on the
mechanism of crack propagation, and for higher strain rates local, non-3D-crystalline atoms show up,
and Lomer–Cottrell locks are formed.

If we ignore nonmetallic elements for the moment and focus on intermetallic binaries,
Herrig et al. [7] show how to perform low-temperature syntheses of smooth face-centered FeMn
thin films provided proper guidance by ab initio theory. The latter indicates very strong interfacial
bonding of the Cu nucleation layer to an alumina substrate and between fcc FeMn and Cu, hence local
epitaxial growth is enabled. With respect to binary phases such as HfOs, HfIr, and HfPt, Li et al. [8]
study their structural, electronic, and elastic properties using first-principles theory and confirm the
order of thermodynamic stability as HfPt > HfIr > HfOs. On the other side, the calculated bulk moduli
follow the order HfOs > HfIr > HfPt, and the anisotropy of acoustic velocities, Debye temperatures,
and thermal conductivities are obtained.

Coming back to the critical role of hydrogen, Hüter et al. [9] present a multiscale modelling of H
transport and segregation in polycrystalline steels from a chemo-mechanical model taking into account
stress gradients as well as microstructural trapping sites; the energetic parameters are determined
from ab initio calculations. A scale-bridging description of dislocation-induced H aggregation is
accessible, but there are limitations hindering a quantitative comparison to experimental data. Likewise,
Timmerscheidt et al. [10] investigate possible H-trapping effects connected to the presence of Al in the
grain interior by employing density-functional theory, and they aim at understanding the relevance of
short-range ordering effects because of the occurrence of Fe3AlC κ-carbides. The individual H–H/C–H
interactions are repulsive, but Mn enhances H trapping. All that can be expressed mathematically,
such as to numerically describe hydrogen embrittlement. And yet, full hydrogen content bridges the
gap to inorganic chemistry as shown by Gong and Shao [11] who model stability, electronic structure,
and dehydrogenation of pristine and doped 2D MgH2 from first principles. The study has implications
regarding dynamical stability and dehydrogenation, and it shows that the Mn-doped system exhibits
good performance for hydrogen storage and dehydrogenation kinetics.

That being said, this Special Volume includes 11 original contributions, and 7 of them deal with
high-manganese steels which have come to light within CRC 761 (“Steel ab initio”). In particular,
the research deals with short-range ordering from experiment and theory, and the contributions also
highlight carbide-like precipitates. In addition, the authors of this volume bridge the gap between
atomistic and continuum levels, in the spirit of scale-transfer approaches, in particular for hydrogen
embrittlement. Then, molecular-dynamics simulations play their role in terms of crack propagation.
First-principles theory is helpful for growing better intermetallic thin films, and such approaches
predict structural and elastic properties of metallic binaries, too. Also, multiscale modelling of
hydrogen transport is provided, and the chemical reasons for H-trapping κ-carbides are highlighted.
Eventually, stability and dehydrogenation of metal hydrides are looked at. Indeed, first-principles
theory has acquired a firm and supportive role in the fundamental and applied research of metals,
alloys, and metallic compounds. What a wonderful evolution to witness and also to be part of!
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Abstract: Since the addition of Al to high-Mn steels is known to reduce their sensitivity to
hydrogen-induced delayed fracture, we investigate possible trapping effects connected to the presence
of Al in the grain interior employing density-functional theory (DFT). The role of Al-based precipitates
is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC
κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions
as C in these precipitates, the interaction and competition between both interstitials is also investigated
via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally
repulsive, the tendency of interstitials to increase the lattice parameter can yield a net increase of
the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive
short-range interactions. Favorable short-range ordering is expected to occur at the interface between
an Fe matrix and the E21-Fe3AlC κ-carbides, which is identified as a particularly attractive trapping
site for H. At the same time, accumulation of H at sites of this type is observed to yield decohesion
of this interface, thereby promoting fracture formation. The interplay of these effects, evident in
the trapping energies at various locations and dependent on the H concentration, can be expressed
mathematically, resulting in a term that describes the hydrogen embrittlement.

Keywords: steel research; κ-carbides; short-range ordering; hydrogen trapping; hydrogen embrittlement;
carbide-austenite interfaces; ab initio calculations; density-functional theory

1. Introduction

Fe-Mn-Al-C quaternary alloys form an important class of modern advanced high-strength
steels (AHSS). Synthetic variations of the Mn, Al, and C contents accompanied by sophisticated
steel-processing techniques have led to the availability of different phases and microstructures
such as ferrite (body-centered cubic, bcc), martensite (body-centered tetragonal, bct), austenite
(face-centered cubic, fcc), or a mixture of those as observed in dual-phase (ferrite/martensite), duplex
(ferrite/austenite), or triplex (ferrite/austenite/carbide) steels. In particular, so-called high-Mn steels,
comprising a broad spectrum of Fe-based alloys with Mn contents in the range of 20–30 wt % and
Al and C contents in the ranges of 0–10 wt % and 0–2 wt %, respectively, have attracted attention [1].
These steels exhibit particular deformation mechanisms, such as transformation-induced plasticity
(TRIP), twinning-induced plasticity (TWIP), or microband-induced plasticity (MBIP) [2], thereby
yielding extraordinarily high strength and ductility. Steels containing considerable amounts of Al
in addition to Mn have raised recent interest due to the precipitation of ordered carbides, both from

Metals 2017, 7, 264; doi:10.3390/met7070264 www.mdpi.com/journal/metals4
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ferritic and austenitic matrices [1]. These κ-carbides have the stoichiometry Fe3AlC and crystallize in
the perovskite structure type (also commonly labeled as E21 or L1’2) as visualized in Figure 1. Such
phases have been shown to have an additional strengthening effect on these steels [3–5].

Figure 1. Crystal structure of Fe3AlC, a κ-carbide crystallizing in the E21 type, shown as a 2 × 1 × 1
supercell. Grey, red, and black spheres denote Al, Fe, and C atoms, respectively. Green translucent
spheres indicate the unoccupied octahedral sublattice sites.

A critical aspect with respect to the application of high-Mn steels is their large susceptibility to
hydrogen-induced delayed fracture (HIDF) [6]. Hydrogen, which is in contact with steels during the
production and/or the application process, may dissolve into the material, followed by migration and
preferred enrichment in critical regions, such as grain boundaries or dislocations. As a consequence,
local embrittlement occurs, which can finally lead to crack formation and propagation, resulting in
eventual failure of the material. It has been empirically observed that the presence of small amounts
of Al lowers the tendency for hydrogen embrittlement [7]. Complete prevention, however, cannot
be ensured. While an alleviation of local stress due to a change in stacking fault energy (SFE) with
Al inclusion has been proposed as one possible factor [8], this behavior may also be attributed to
the presence of homogeneously distributed nano-sized κ-carbides or short-range ordering of similar
atomic configurations which can serve as H traps, often at a precipitate/matrix interface.

For instance, experimental studies using atom probe tomography have demonstrated segregation
of hydrogen at an interface of TiC with a ferritic matrix [9]. This was later confirmed by first-principles
calculations [10], which further demonstrated that H accumulation can weaken the interface, resulting
in hydrogen-enhanced decohesion and subsequent fracture formation.

In the case of κ-carbides it is interesting to note that, in real materials where they are formed
as precipitates, their composition (Fe,Mn)3+yAl1−yCx may significantly deviate from the ideal
stoichiometry (Fe,Mn)3AlC of phase-pure κ-carbides such as the (nearly ideal) ternary Mn-rich
carbide studied in a previous work [11]. For κ precipitates, the Al content depends on its
concentration in the bulk phase, which leads to different values reported in the literature. For example,
Andryushchenko et al. [12] quoted a range of −0.2 < y < 0.2, whereas Seol et al. [13] measured much
lower Al contents with y ≈ 0.6. In recent works [14,15], the Al depletion in κ-carbide is correlated with
the reduced C content in these precipitates. The latter varies a lot and is typically between 0.4 < x <
0.72 [13,16]. We explained the C off-stoichiometry as a compromise between the gain in chemical energy
during partitioning and the elastic strains emerging in coherent microstructures. This off-stoichiometry
is relevant for the interaction with H, because the vacant C positions are favorable trapping sites.

Traps are sometimes designated beneficial or benign [17] because they may capture diffusive
hydrogen and delay its further migration to malign traps causing HIDF. By definition, the trapping
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energy Etrap is the capability of a microstructure feature to bind hydrogen better than the bulk
matrix. The usual experimental approach to determine Etrap is thermal desorption spectroscopy
(TDS) after galvanostatic or potentiostatic charging of the specimen with hydrogen. The relatively
large scattering in the Etrap values collected from different experiments can be attributed to several
causes. One particular problem is the absence of a definite reference. Measured trapping energies are
often quoted relative to solution enthalpies of hydrogen in the respective bulk matrix. Since these
depend on the crystal structure and the composition, a common reference state would ensure a better
comparability of trapping energies from different studies.

Within theoretical studies, trapping energies have been calculated for various materials. In the case
of Fe, the relevance of substitutional transition-metal atoms [18], vacancies [19], grain boundaries [20]
and some precipitate phases [10] have been discussed. To the best of our knowledge, however,
the hydrogen trapping by κ-phases has not been explicitly addressed theoretically. There are two
experimental publications which assume an irreversible hydrogen trapping at the interface between
κ-carbides and the Fe matrix [21,22], and another contribution attributing rather large activation
energies of 76 and 80 kJ/mol for hydrogen desorption in the κ-carbides [23]. The mechanistic details,
however, are not yet understood.

In the present work, the capability of κ-carbides to bind hydrogen is investigated using ab initio
electronic-structure techniques within the framework of density-functional theory. We will analyze the
role of C vacancies, as well as that of the interface between κ-carbide and Fe matrix in trapping H. In
order to reveal the chemical nature of this trapping, the C–H and H–H interactions in the L12-Fe3Al
phase are assessed. Further, the influence of manganese substitution on the trapping capability is
calculated. Finally, the suitability of the κ-carbide/austenitic Fe matrix interface as a hydrogen trap is
investigated, followed by the study of enhanced decohesion caused by the presence of hydrogen at
the interface.

2. Computational Methods

All quantum-mechanical structure optimizations and total-energy calculations were performed
with the Vienna ab initio Simulation Package (VASP, version 5.4.1, Computational Materials Physics,
University of Vienna, Vienna, Austria, 2015) [24–27], a software package employing density-functional
theory (DFT) and utilizing plane waves together with PAW/pseudopotentials, thereby especially
suited for simulations of periodic systems. The crystal orbitals were expanded in plane waves
by means of the projector-augmented wave method (PAW) [28,29] with a kinetic energy cutoff of
500 eV. Contributions from exchange and correlation interactions were approximated utilizing the
generalized-gradient approximation (GGA) functional in the parametrization by Perdew, Burke, and
Ernzerhof [30]. Brillouin zone integration was performed by the scheme of Monkhorst and Pack [31]
using k-point grids of n × n × n with n = 12, 8, 4, and 4 for the four-atom (stoichiometric compounds),
32-atom (2 × 2 × 2 fcc supercell), 108-atom (3 × 3 × 3 fcc supercell), and 128-atom (4 × 4 × 4 bcc
supercell) metal lattices, respectively. The interface (between κ-carbide and fcc-matrix) calculations
were performed for a 92-atom (2 × 2 × 5 supercell) and 108-atom (2 × 2 × 6 supercell) system, where
the total number of atoms varies with the thickness of the κ-carbide. The corresponding k-point grids
employed were 8 × 8 × 5 and 8 × 8 × 3, respectively. Partial band occupancies were considered
using the smearing scheme of Methfessel and Paxton [32] with the σ value set to 0.2 eV. The magnetic
properties of the bulk κ-phases were taken into account by performing spin-polarized computations
assuming a ferromagnetic model; nonetheless, this was restricted to ordered collinear magnetism.
Non-collinearities are known to reduce the ground state energy in Fe-Mn alloys only slightly and will
have little relevance at finite temperatures [33]. All other calculations, including interface models,
were performed for the non-magnetic case, unless otherwise indicated.

For ideal κ-structures, the formation energies were calculated using:

ΔEel = Eel(Fe3AlX) − [Eel(fcc-Al) + 3 Eel(fcc-Fe) + Eel(X)] (1)

6
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where Eel(X) is the ground-state energy of graphite (X = C) or half the energy of an H2 molecule (X = H).
We note that ΔEel is a theoretical energy, often provided in the ab initio community and used here
solely for comparisons with earlier contributions in other studies. In order to evaluate precipitation
behavior, not pure reference materials but the chemical potentials of the components as determined
by the matrix materials are relevant. For both educts, the fcc structure was used as a reference, being
the stable phase of Al and high-Mn steels, and forming a coherent interface with the perovskite-type
κ-carbide.

The trapping energies were determined by the solution enthalpy (corresponding to the local
chemical potential) of a hydrogen atom on the site in question as compared to an H atom in a γ-Fe (fcc)
matrix, which is thus the reference state:

Etrap = [Eel(κ − Al8Fe24CxH) − Eel(κ − Al8Fe24Cx)] − [Eel(fcc-Fe108H) − Eel(fcc-Fe108)] (2)

For determining the H solubility at a given site, (zero-point) vibrations can be important [34].
Our study, however, is primarily concerned with trapping energies of hydrogen, i.e., the difference
in the solution enthalpy of hydrogen for different sites and regions of steel materials comprising
ferritic and austenitic metal matrices, carbide precipitates, as well as the carbide/matrix interface.
While the (zero-point) vibrational energies of hydrogen in a gas phase of H2 molecules and of interstitial
hydrogen in a metal matrix differ substantially, the difference is negligible when various interstitial
sites are compared with each other. Thus, for the remainder of our study, the total energy of all
calculated structures is approximated as their DFT energy.

The choice of the reference state in Equation (2) does not alter the conclusions if different positions
and configurations within the same trapping phase are compared, which is the primary scope of
this work. Furthermore, the potential of a phase to trap diffusive hydrogen with respect to other
metal matrices than γ-Fe (fcc) can be obtained by adding the trapping energy for such a matrix with
respect to γ-Fe. Determining the trapping energy of solid solutions such as Al-containing ferrite or
Mn-containing austenite can, however, be exhaustive since a very large number of possible hydrogen
positions would have to be considered due to the statistically random, i.e., disordered, nature of
these alloys.

Similarly to Equation (2), the hydrogen solution enthalpy in the interface was computed using
the following expression:

Etrap(int) = [Eel(H @ κ-Al12Fe28C12/fcc-Fe56) − Eel(κ-Al12Fe28C12/fcc-Fe56)]
− [Eel(fcc-Fe108H) − Eel (fcc-Fe108)]

(3)

where the first two electronic energies on the right-hand side of the expression correspond to
the fully-relaxed energies of the supercell comprised of κ-carbide and fcc-Fe with and without
hydrogen, respectively.

3. Results and Discussion

3.1. Stoichiometric Phases of L12 and E21 Symmetry

The formation of κ-carbide requires the simultaneous partitioning of substitutional Al and
interstitial C from the solid solution. Here, we focus on the competing C and H interstitials and
consider their energetics in Fe3Al. Although we cannot confirm a previous first-principles result that
the L12 structure is the ground state of Fe3Al [35], but obtain D03 instead (Table 1), we will use L12

as a matrix phase in the upcoming considerations. This is because the small energy difference of
approx. 1 kJ/mol is compensated by the stabilization effect due to C insertion, yielding the perovskite
E21-Fe3AlC, commonly known as κ-carbide (Figure 1). Our calculations of the lattice parameter, total
energy, and the local magnetic moments as given in Table 1 agree well with other calculations [35–37].
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In particular, we confirmed earlier findings [15] that the formation of this phase out of pure elements
is exothermic.

Table 1. Lattice parameter a, magnetic saturation moments μtheo and formation energies ΔEel at T = 0
K of various compounds related to the κ-phase.

Compound Structure a0 (Å) μtheo (μB/Fe atom) ΔEel (kJ/mol)

Fe3Al BiF3, D03 5.74 2.0 −78
Fe3Al Cu3Au, L12 3.65 2.3 −77

Fe3AlC perovskite, E21 3.75 1.0 −90
Fe3AlH perovskite, E21 3.68 2.1 −85

When investigating the relevance of these κ-carbides as a trap for H, we first consider the ideal
phase with the composition Fe3AlC. The calculations confirm the finding for pure fcc-Fe [38] that the
empty octahedral sites (green spheres in Figure 1) are more favorable for H (Etrap = 0.13 eV) than the
tetrahedral ones (Etrap = 0.75 eV). Nonetheless, the absolute value is endothermic, i.e., H would not
enter this phase. The reason for this repulsion can be the local atomic configuration with two Al atoms
in nearest-neighbor positions (first coordination sphere, CS) and/or the presence of C in the adjacent
octahedral sublattices.

In order to confirm the impact of the metallic atoms, we have investigated the Al–H interaction
in an fcc-Fe matrix (Figure 2). Considering H as the central atom, the interaction turns out to be
repulsive if Al is located in the first CS, but an energetic optimum exists if Al and H are second-nearest
neighbors, Al being in the second CS. While the first configuration matches the H position in the empty
octahedral sublattice sites of κ-carbide, the second corresponds to an H atom replacing a C atom on the
central interstitial site (green and black spheres in Figure 1, respectively). Thus, the central interstitial
site is energetically preferred for H incorporation while the non-central octahedral sites are generally
assumed to be empty and, thus, not considered in the numbering of CS.

Figure 2. Hydrogen trapping energy Etrap as a function of the local atomic environment with respect to
the amount of Al atoms in the first, second, or third coordination sphere (CS) around a single interstitial
H atom in a 3 × 3 × 3 supercell of fcc-Fe. Al atoms occupy Fe sites in the host matrix. The energies are
defined according to Equation (2).

The attractive interaction between a single Al and a single H atom in the second CS lets one
expect that the central (body-centered) interstitial sites in an L12-Fe3Al matrix could be completely
occupied by H. This would result in an E21-Fe3AlH phase (κ-hydride), which has not been observed
experimentally and has also been identified as chemically unstable in a theoretical contribution [35].
In contrast to said contribution, we obtain that the formation of this phase out of the pure elements
according to Equation (1) is exothermic (−85 kJ/mol). In such a hypothetical E21-Fe3AlH phase,
the effects of H on the κ-phase formation are qualitatively similar to those of C, but quantitatively
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much smaller: the lattice parameter increases by 0.8% from 3.65 to 3.68 Å (2.7% increase for C), and the
local magnetic moments of the Fe atoms lower by 9% from 2.3 to 2.1 μB (57% for C).

We note, however, that C also prefers a local coordination with Al atoms in the second CS, as
shown in previous studies [39,40]. There is, therefore, a competition between the interstitial elements
C and H for the formation of the κ-phase. At T = 0 K, the formation energy of the κ-carbide Fe3AlC
is slightly larger (−90 kJ/mol) than the one of κ-hydride (−85 kJ/mol). More important is the fact,
however, that H already becomes too mobile to remain in the steel matrix before those temperatures
are reached at which Al can form locally-ordered structures (approx. 600 ◦C for typical annealing
times). We can, therefore, expect that the E21 phase is primarily formed as κ-carbide.

3.2. Competition of H and C in the L12 and E21 Structure

Despite the preference of κ-carbide formation, the typically observed C depletion in this phase
yields various vacancies on its sublattice, i.e., potential sites for H that are in a favorable configuration
with respect to Al. To further elaborate on this, the average trapping energy per H atom in a fully filled
κ-matrix was calculated as a function of the C concentration. Carbon concentrations of 37.5–75 at %
were taken into account in accordance with the typically experimentally observed C contents of Fe-rich
κ-carbide precipitates. The distribution of C atoms among the different positions (central interstitial
sites, referred to as κ positions) was random, while the remaining κ positions were occupied by H atoms.
The calculations were performed employing 3 × 3 × 3 supercells with full structural optimization
with respect to shape and volume. The results show, surprisingly, that the average trapping energy per
H atom is largely independent of the C concentration (Figure 3, purple, uppermost curve).

Figure 3. Average trapping energy Ētrap per H atom as a function of the C content for a 3 × 3 × 3
E21-(Fe,Mn)3Al(C,H) supercell with all κ positions filled and considering different Mn contents.

The calculations in Figure 3 have also been performed for different Mn contents, the reason being
that κ-carbides growing from Mn-rich austenitic matrices contain high amounts of manganese as a
substituent for iron. For this purpose, the aforementioned calculations were repeated for a 3 × 3 × 3
E21-(Fe,Mn)3Al(C,H) supercell with randomly-distributed Mn atoms. Upon introducing manganese,
no change can be observed with regard to the average trapping energy being independent of the
carbon content (Figure 3).

The trapping capability, however, increases (i.e., the trapping energy is lowered) with increasing
Mn content. This is consistent with previous findings that the short-range Mn–H interaction in
austenitic alloys is attractive [38]. To study said interaction in κ-carbides, a 3 × 3 × 3 L12-Fe1.5Mn1.5Al
supercell was used, where the Mn and Fe atoms were distributed randomly. The H atom was placed
on κ positions with different numbers of Mn atoms (positions with 1–5 Mn atoms are present in the
given supercell) in the surrounding octahedron. Our results show an almost linear dependence of the
trapping energy on this number (Figure 4), confirming that previous findings apply to Al-containing
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systems as well. However, the results do not fully capture the changes of trapping energies with
increased Mn content as seen in Figure 3. An important reason is that the data points in Figure 4 (for a
fixed C content) all correspond to the same volume, while each Mn concentration in Figure 3 has its
own equilibrium volume.

 
Figure 4. Trapping energy Etrap of a single H atom as a function of the number of Mn atoms in its first
CS for a 3 × 3 × 3 L12-Fe1.5Mn1.5Al supercell with C sublattice concentrations of 0% (red), 50% (blue),
and 96% (green).

To understand this effect, the trapping energy was calculated as a function of the lattice parameter
(Figure 5). The calculation was performed for the L12 configuration of Fe3Al, which has an equilibrium
lattice parameter of a(L12) = 3.65 Å as well as pure fcc-Fe with a(γ-Fe) = 3.45 Å. The matrices consisted
of 32-atom 2 × 2 × 2 supercells. In the L12-Fe3Al matrix a single H atom was again placed on an
octahedral sublattice site normally occupied by C in the κ-phase. The calculations were performed for
two different magnetic states. In all cases, the trapping capability increases with the volume. For the
nonmagnetic state the H atom clearly favors the L12-matrix over pure fcc-Fe at all lattice parameters
and, thus, volumes. If magnetism is considered, the ferromagnetic L12 matrix is, again, favored,
apart from the special case when its volume is identical to the equilibrium volume of pure fcc-Fe
(3.45 Å). Comparing both phases at the same lattice parameter, however, is only relevant in the case
of a perfectly coherent interface between the matrix and the precipitate phase. Otherwise, the larger
lattice parameter of the L12 phase will always yield a lower Etrap.

 
Figure 5. Trapping energy Etrap of a single H atom as a function of cell volume (via the lattice
parameter a) for fcc-Fe (red) and the L12-Fe3Al matrix (blue) considering different magnetic states,
with the dashed/solid lines signifying the nonmagnetic/magnetic cases.
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Additionally, the influence of carbon atoms on the Mn–H interaction was investigated (Figure 4).
For this purpose, the supercell offering 27 κ positions was filled with 0, 14, or 26 C atoms (corresponding
to a C sublattice concentration of 0, 50, or 96%), avoiding nearest-neighbor C–H configurations in the
case of 14 C atoms. We observe that the E(xMn) linearity is independent from the C content although
the attractive interaction between Mn and H seems to be reduced in the 96% C case. More importantly,
however, one observes a small shift in the trapping energy if half the cell’s κ positions are filled
with carbon, but a significantly larger shift if the entirety of these positions is filled, the latter being
attributable to the interaction between direct C–H neighbors. One may, therefore, expect that the
interaction of H with C affects the trapping energy, and this raises the question why such an effect is
not observed in Figure 3.

In the next step we, therefore, investigated the interaction of H with other C and H atoms
(Figure 6). For this purpose, we chose 3 × 3 × 3 L12-Fe3Al supercells. The trapping energy of a
hydrogen atom was first calculated as a function of the number of neighboring C atoms in the third
CS (being the nearest neighboring κ positions if other octahedral sites are unoccupied, labeled NN),
keeping the shape and volume of the supercells fixed (Figure 6a). Similar to Figure 4, we observe a
repulsive effect which results in an almost linear increase of Etrap. Furthermore, the trapping energy
depends on the configuration of the neighboring C atoms. This observation, however, is partially due
to the choice of the supercell: two C atoms in the trans isomer case are located in neighboring unit cells
of the 3 × 3 × 3 supercell (energy difference to the cis isomer is 0.06 eV), while this is not the case in a
144-atom 4 × 3 × 3 L12-Fe3Al supercell (respective energy difference is 0.04 eV).

Figure 6. Trapping energies Etrap for a single H atom in the central κ position as a function of the
number of C or H atoms in various κ positions in a 3 × 3 × 3 L12-Fe3Al supercell. (a) C atoms are
present as nearest neighbors for H in the third CS (nearest κ neighbors, NN), under consideration of
structural isomers. The lattice parameter is a = 3.69 Å. Squares signify arrangements without structural
isomers with zero, one, five, or six neighbors; open/closed diamonds signify the two isomers for two
neighbors (cis and trans); open/closed circles signify the two arrangements for three neighbors (mer
and fac). (b) As before but for H atoms in the third CS. Energetic differences between structural isomers
are negligible in this case. The lattice parameter is a = 3.65 Å. (c) C atoms are next-nearest neighbors
(NNN) located at the cell corners (dC–C = 6.4 Å), with no atoms (red diamonds), six H atoms (blue
diamonds) or six C atoms (green diamonds) located simultaneously in the third CS (NN) κ positions,
respectively. Lattice parameter as in (a). (d) As in (c), but considering H atoms as NNN neighbors.
Lattice parameter as in (b). The difference in a explains the slight energetic difference in the case of
zero NN/NNN neighbors.
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We further note that the C–H interaction for H on a κ position and C in the non-central interstitial
site coplanar to Al is attractive (not shown). Concerning H–H interactions, we observe a similar,
almost linear dependence of Etrap on the number of neighboring H atoms in the third CS (Figure 6b).
This trend is (up to four third CS H atoms) almost identical to the C–H case and has a significantly lower
dependence on the atomic configuration (rendering a distinction between the various configurations
unnecessary). The similarity of C–C and C–H interactions explains the constant behavior in Figure 3,
since the number of third CS H and C atoms is always six in this figure.

The impact of neighboring C atoms was compared to that of C atoms in other shells. In Figure 6c
the situation is exemplified for C atoms in next-nearest-neighbor (NNN) positions (corners of a
3 × 3 × 3 L12-Fe3Al supercell). Despite a rather long distance of

√
3 × 3.69 Å = 6.4 Å, a repulsive

effect is still observed (red diamonds). The slope of the C dependence, however, is smaller than for
the third CS neighbors by a factor of ≈2. It is further observed that the dependence on the number
of NNN carbon neighbors is strongly suppressed if the NN κ positions are occupied either by C or
by H. These trends can be understood as resulting from local relaxations. They indicate, once again,
that the nearest κ positions are most relevant for the value of the H solubility. The trends for distant
H–H interactions are, as in the case of the third CS interactions, qualitatively identical to the C–H case,
as seen in Figure 6d.

3.3. H at Interfaces between κ-Carbide and the fcc-Fe Matrix

The insights obtained for the Al–H and C–H interactions are used to understand chemical trends
for incorporating hydrogen in the (100) interface between κ-carbide and the fcc-Fe matrix. In this
case, however, we limit ourselves to a single H atom. Various scenarios for said incorporation are
possible. We first note that stoichiometric κ-carbide has two kinds of (100) layers, one containing Al
atoms in one of the fcc sublattices, the other containing C atoms in the central interstitial κ positions.
The considered layers for the representation of the κ-carbide in Figure 7 are indicated by a stacking
sequence, e.g., C*–Al*–C*–Al*–C*–Al*. The termination layer, which can contain C or Al, is considered
as the interface plane.

Figure 7. The 5 × 2 × 1 supercell composed of κ-carbide and fcc-Fe (assuming coherent interfaces) for
a given thickness of the κ-phase. Orange planes, labeled C*, signify (100) layers containing C and Fe
atoms, while blue planes, labeled Al*, contain Fe and Al. Layers containing Fe only are unmarked
and labeled Fe*. The translucent green spheres represent empty octahedral sites which (in addition to
C vacancies) may incorporate H atoms.

The results for three different supercells, as given in Table 2, can be interpreted as follows: on the
one hand, H tries to avoid positions with Al as closest neighbor in the first CS (compare with Figure 2),
so incorporation into an Al-containing layer is unfavorable. On the other hand, a configuration with C
in a second CS position (in contrast to the NN site shown in Figure 6a) yields an improved trapping
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behavior. The non-central octahedral sites in the C layer in a Fe–C–Al scenario (green sphere in
orange-colored C* layer, Figure 7) are, therefore, most attractive for H, because they allow for four
second CS neighbor C atoms, but only one first CS neighbor Al atom. Only slightly less favorable
are the octahedral sites in Fe layers adjacent to a C-terminated κ-carbide (green sphere in Fe* layer,
Figure 7), because in this case two second CS C atoms are available, but no first CS Al atoms are
present. These configurations already yield a trapping at the interface.

Table 2. Hydrogen trapping energies Etrap for octahedral sites at the interface layer between κ-carbide
and fcc-Fe, or one of the adjacent layers. Three kinds of stacking sequences in a 2 × 2 × 5 supercell
(SC) are provided, where layers used for H incorporation are highlighted in bold face.

Stacking Sequence of Layers in SC
Etrap (H) Adjacent Fe

Layer (eV)
Etrap (H) Interface

Layer (eV)
Etrap (H) Adjacent κ

Layer (eV)

Fe*–C*–Al*–C*–Fe*–Fe*–Fe*–Fe*–Fe*–Fe* −0.20 −0.18 (C) 0.04 (Al)
Fe*–Al*–C*–Al*–C*–Fe*–Fe*–Fe*–Fe*–Fe* 0.01 0.003 (Al) −0.05 (C)
Fe*–C*–Al*–C*–Al*–C*–Al*–Fe*–Fe*–Fe* −0.20 −0.24 (C) 0.04 (Al)

Competing with the H incorporation discussed so far, the replacement of a C atom by an H atom
should also be considered for the interface. To understand how efficiently C vacancies act as hydrogen
traps near the interface, we also compare the vacancy formation energy at different positions (Figure 8).
This energy amounts to 1.65 eV for a vacancy in the bulk of the κ-carbide phase, is almost the same
(1.75 eV) for C atoms next to Al-terminated interfaces, but is significantly lower (approx. 0.75 eV) for C
atoms at C-terminated interfaces. This is not surprising, since these C atoms have a lower number of
Al neighbors in the second CS.

 
Figure 8. C vacancy formation energy (shown in red), H trapping energy within the vacancy (shown in
blue) and their combination, i.e., the H–vacancy complex formation energy, (shown in green) for three
different positions of vacancies. Note that trapping of H by vacancies near C-terminated interfaces is
energetically the most favorable.

The differences in H trapping energies for the three different vacancy positions are less
pronounced. For C vacancies in the bulk of the κ-carbide, H has a favorable configuration with respect
to the Al atoms, but an unfavorable configuration with respect to the other C atoms. The resulting
trapping energy is −0.59 eV. (Note that this data refers to non-magnetic calculations, so that the
absolute values cannot be compared directly with Figure 4.) The situation is almost unchanged
(−0.58 eV) for the C positions next to Al-terminated interfaces. If H is incorporated into C vacancies in
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a C-terminated interface, then both the number of Al neighbors in the second CS and the number of C
atoms in NN positions are reduced from 8 to 4 and from 6 to 5, respectively. Since the change in the
number of Al neighbors is more significant, the trapping energy for H in these sites is reduced (−0.31 eV).

It should be noted, however, that C vacancies which are more likely to form near the interface are
more accessible, at least kinetically, to H atoms trapped near the interface than vacancies formed in the
interior of the precipitate phase. Another possible scenario can be the formation of percolating networks
of C vacancies which act as energetically favored pathways for hydrogen to diffuse from the interface to
the bulk of the carbide, as observed for TiC [10]. We can further define the hydrogen–vacancy complex
formation energy as the sum of the C vacancy formation energy and the H trapping energy within
this vacancy. The comparison for C vacancies at different positions (near the interface) shows that this
energy is lowest for vacancies at C-terminated interfaces and, hence, such a scenario is, energetically,
the most favorable.

3.4. H Enhanced Decohesion of Interfaces

It is a decisive follow-up question whether the trapped H in the interface causes decohesion along
the interface, which might serve as a mechanism of hydrogen embrittlement. To understand this, we
need to answer the question whether the presence of H in the interface enables or suppresses the
separation of the interface into respective free surfaces. To do so, the adsorption energy of H at the
interface was compared to the energy of H at the free surfaces of the carbide and the austenitic Fe matrix
after possible crack formation. The corresponding energy of separation is given by the expression:

Esep = [Eel(int) − Eel(κ-surf) − Eel(Fe-surf)]
+ [cH(int) Etrap(int) − cH(κ) Eads(κ-surf) − cH(Fe) Eads(Fe-surf)]

(4)

where Eel(int) is the total energy of the supercell containing the interface of κ-carbide and fcc-Fe
without H. Eel(κ-surf) and Eel(Fe-surf) are the total energies of supercells containing κ-carbide and
fcc-Fe, respectively, with a surface adjacent to a vacuum layer. cH is the concentration of H at the planar
defects, which depends on its chemical potential μH. Etrap(int) and Eads(X-surf) are the corresponding
trapping and adsorption energies of hydrogen at the interface or the surface (X = κ or Fe) given by:

Etrap(int) = Eel(H@int) − Eel(int) − μH and
Eads(X-surf) = Eel(H@X-surf) − Eel(X-surf) − μH

(5)

The tendency of trapped H to cause decohesion at the interface is indicated by the “embrittlement
term” as given by the second term in Equation (4), namely:

ε = cH(int)Etrap(int) − cH(κ)Eads(κ-surf) − cH(Fe)Eads(Fe-surf). (6)

A positive value of ε implies that it is energetically favorable to have hydrogen on free surfaces
rather than at the interface, which provides a driving force for the formation of free surfaces. On the
other hand, a negative value indicates that H prefers to stay at the interface, thereby stabilizing it.

The equilibrium concentration of hydrogen at the interface is given by its trapping energy, i.e.,
cH(int) = 1/(exp(βEtrap(int)) + 1) with β = 1/(kBT), and depends via Equation (5) on the chemical
potential μH (Figure 9). We compare an interface without C vacancies (solid line) with an interface that
contains a single C vacancy (dashed line). In the first case, a maximum concentration of 1 H atom per
2 × 2 interface area is considered (corresponding to cH = 1), to avoid strong H–H interactions. In the
second case, only the filling of the single vacancy per 2 × 2 interface area with H is considered. Due to
the lower trapping energy, the occupation of the vacancy sets in at much lower chemical potentials
than for the perfect interface. The concentration of H at the free surfaces depends on the kinetics
of the separation process. If it is very fast, then the particle conservation cH(κ) + cH(Fe) = cH(int)
can be assumed, corresponding to the canonical limit. If the diffusibility of H is faster than the
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separation, then an equilibrium H concentration cH(X) = 1/(exp(βEads(X-surf)) + 1) can also be used
for the surfaces, corresponding to the grand-canonical limit. Our result points in this limit towards
a strong driving force for H to segregate to a free κ-carbide surface with respect to a position at the
interface (Figure 9).

Figure 9. Equilibrium concentration of H at the C-terminated interface, free κ-carbide (C-terminated)
and fcc-Fe surfaces as a function of the chemical potential of hydrogen. A perfect κ-carbide (solid lines)
is compared with a κ-carbide that contains a C vacancy (dashed lines).

Based on these concentrations, the embrittlement term was determined for both limits according
to Equation (6) and plotted in Figure 10. Looking first at the results for the perfect interface in the
grand-canonical (GC) limit, we observe large positive values for all considered chemical potentials
of H. This is because the free surfaces of κ-carbide and fcc-Fe are substantially more favorable for H
than the interface. A similar effect has been observed for several other precipitate phases [41]. We note,
however, that this is a purely thermodynamic argument. It ignores the fact that the H concentration
at the perfect interface is negligibly small for μH < −0.3 eV and that kinetics would not provide
H significantly fast in order to stabilize the forming free surfaces. Therefore, we have plotted the
canonical (C) limit in addition, for which the embrittlement term is almost vanishing for these chemical
potentials. The processes in reality will occur between these two limits.

Figure 10. Embrittlement term ε and the different energy contributions in Equation (6) as a function of
μH. A perfect κ-carbide (solid lines) is compared with a κ-carbide that contains a C vacancy (dashed lines).
Furthermore, the grand-canonical (GC) and the canonical (C) limit are compared (see text for details).
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In order to come closer to reality, it is also important to consider the existence of C vacancies in
the interface. Due to the substantial trapping effect of these defects, these sites will be quickly filled
with H for chemical potentials μH > −0.5 eV. This affects the first term of Equation (6), indicated by
the red dashed line in Figure 10. At the same time, the H incorporation at the forming κ-carbide
surface, which contains this vacancy as well, also becomes even more favorable (blue dashed line in
Figure 10). Depending on the H kinetics, i.e., the grand-canonical vs. the canonical limit, the combined
embrittlement term ε increases further (purple and maroon dashed lines in Figure 10). Since in
particular the canonical line shifts substantially upwards, we can conclude that the presence of these
lattice imperfections is decisive for a destabilization of the interface if H comes into play.

4. Conclusions

The potential of κ-carbides to trap diffusive hydrogen was studied using density-functional theory.
The hydrogen analog of the κ-carbide, the κ-hydride, was shown to be a theoretically stable compound.
Its formation, however, is kinetically disadvantageous when compared to the carbide.

Substituting Mn for Fe was clearly shown to be preferable to the trapping energy, since the
chemical potential of hydrogen decreases linearly with the number of manganese atoms in the
octahedron surrounding the hydrogen atom. This effect is independent of the overall carbon
concentration although directly neighboring carbon atoms seem to reduce the Mn–H attraction.
As a result, the trapping capability of κ-carbides is proportional to the manganese content of the carbide.

The interaction of hydrogen with different metal matrices, including the L12-Fe3Al matrix,
was investigated, and it was observed that the κ-matrix is a favorable environment for H as a result of
both its chemical environment, owing to attractive Al–H interactions in κ-like arrangements, and the
increased lattice parameter. The interaction between carbon and hydrogen as well as between different
hydrogen atoms within the κ-matrix was examined. Both the C–H and the H–H interaction proved to
be repulsive, with the H–H interaction showing a stronger repulsion in the short range while C–H
repulsion is stronger in the long range. Additionally, directly neighboring C and H atoms suppress the
long-range interaction.

For κ-carbides with a carbon content of about 35–75% with respect to the stoichiometric compound,
the repulsion between the interstitials is compensated by the increase in trapping capability due to
an increase of the lattice parameter. The average trapping energy of a fully filled κ-carbide is, thus,
independent from the carbon loading of the carbide.

We conclude that the trapping efficiency of diffusive hydrogen by κ-carbides depends on its C,
as well as its Mn, content. While the C content determines the number of vacant κ positions and
thereby the capacity of the phase to trap hydrogen, the manganese content determines the overall
trapping efficiency, i.e., the average gain in energy if an H atom is removed from the matrix and stored
in the carbide precipitate. Efficient strategies to control diffusive H in steel materials should thus
consider lowering the carbon contents of κ-carbide precipitates while raising their manganese contents.

Finally, we demonstrate that hydrogen located in the interface between carbides and the matrix
material has a high solubility only in the presence of vacancies near the interface, thereby making the
carbide/austenite interface an efficient trapping center for hydrogen. Our DFT calculations further
suggest a possible hydrogen-induced separation of the interface into free surfaces of κ-carbide and
fcc-Fe, thereby leading to embrittlement caused by a hydrogen-enhanced decohesion mechanism.
Said embrittlement can be expressed via a quantitative model to assess the dependence of the interface
decohesion upon hydrogen concentration.
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Abstract: There are some precipitates that undergo transition from a coherent to semi-coherent state
during growth. An example of such a precipitate in steel is carbide with a NaCl-type structure,
such as TiC and NbC. The interface energy between carbide precipitate and iron is obtained
via large-scale first-principles electronic structure calculation. The strain energy is estimated by
structure optimization of the iron matrix with virtual carbide precipitate using the empirical potential.
The transition of the interface from a coherent to semi-coherent state was examined by comparing the
interface and strain energies between the coherent and semi-coherent interfaces. The sizes where both
the precipitates undergo this transition are smaller than those of the interfaces with minimum misfit.
The estimated transition diameter of TiC is in agreement with the experimentally obtained value.

Keywords: first-principles calculation; interface; iron; precipitate

1. Introduction

Strengthening of steel is mainly performed through four mechanisms [1]. Increasing the strength
of steels by using a solid solution of alloying elements and impurity elements is known as solid solution
strengthening. Another strengthening mechanism is dislocation strengthening. In this mechanism,
the yield strength is proportional to the square root of the dislocation density. Grain refinement is
another effective strengthening mechanism. In this process, yield strength is inversely proportional
to the square root of grain size. Precipitates are obstacles to dislocation movement, resulting in
strengthening of steel, known as precipitation strengthening. Among these four mechanisms, the most
effective mechanism is precipitation strengthening. The effect of precipitation strengthening is
expected to be 3000 MPa for the Orowan mechanism, when the volume fraction and diameter of
precipitates are assumed to be 10% and 10 nm, respectively. The strengthening effect of this process
is much larger than those of the other three mechanisms. Precipitates in steel contribute to not only
strengthening but also reduction of grain size, because grain growth is inhibited by pinning of grain
boundaries during thermal treatment [2]. This is an important technique to inhibit softening of the
heat-affected zone during welding [3]. Other important roles of precipitates include improvements of
hole expandability [4] and the hydrogen trap to prohibit the hydrogen embrittlement [5,6].

Precipitates usually have lattice constants that are dissimilar to those of the matrix, i.e., iron.
Elastic strain energy due to precipitates is proportional to the cube of the radius of the precipitate.
Therefore, the growth of precipitates substantially increases the elastic strain energy. Dislocations
due to the semi-coherent interface between precipitate and matrix can reduce the strain around the
precipitate. In steel, some precipitates are nucleated with a coherent interface between the precipitate
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and iron. Such a coherent precipitate naturally transforms to a semi-coherent precipitate during
growth, when the coherent precipitate has higher interface and strain energies than the semi-coherent
precipitate [7]. One such precipitate has a NaCl-type structure, such as TiC, NbC, and VC. These
precipitates are considered to play important roles in the strength and structure of steel. Semi-coherent
precipitates can provide a very different performance in comparison to coherent precipitates, for
example, in terms of strength and hydrogen trap. This is because it is assumed that the behavior
of dislocations and hydrogen varies according to the strain field around the precipitate. In other
words, the performance of steel can be improved by appropriate usage of coherent and semi-coherent
precipitates. Therefore, it is important to know the size at which the coherent precipitate transforms
to a semi-coherent precipitate. These carbides with nanometer size can be densely distributed in
steels. An interface relationship of {001}precipitate//{001}iron and <100>precipitate//<110>iron is reported
as a Baker–Nutting orientation relationship for carbide precipitates with an NaCl-type structure [8].
One such precipitate, TiC, is considered to exist as a coherent precipitate up to a size of 3 nm [9],
and the precipitate transforms to a semi-coherent precipitate due to growth.

The precipitate TiC has a plate-like shape with the abovementioned interface relationship between
the precipitate and the iron matrix. In other words, the precipitate grows mainly in the broad plane,
namely, the (100) plane of the precipitate. The lateral plane of the precipitate is expected to be
semi-coherent at the early stage of precipitation and have higher interface energy than the broad plane.
Therefore, the growth of the lateral plane is not dominant. In this study, we focused on the dominant
growth plane of the precipitate, namely the broad plane. The growth of the lateral plane and the
anisotropy of the growth will be the subject of our future work.

Many first-principles calculations have been performed for the interfaces between body-centered
cubic (bcc) iron and carbide or nitride precipitates with an NaCl-type structure [10–20], and the
bonding nature between these interfaces has been discussed in the literature. Hartford investigated the
chemical bond across the interface and interface energies for the coherent interface between VN and
bcc iron [10]. VN in bcc iron was observed as a plate-like precipitate with a diameter between 10 and
20 nm. The treatment as a coherent precipitate is quite reasonable because the lattice misfit between
bcc iron and VN is less than 2%. The bond between iron and VN was clarified to be a strong pdσ bond
and a weak ddσ bond. Lee et al. investigated the bond strength between iron and a precipitate by
separating the interface between bcc iron and TiC [11]. Arya et al. performed similar calculations in
order to apply steel to more reactive and corrosive environments by TiC-coating the iron surface [12].
All of their investigations concluded that the bond between Fe and C atoms strongly depends on the
short-range interaction due to the pdσ bond. In contrast, the bond among Fe atoms is stronger than
that between Fe and C atoms in terms of long-range interaction because of the difference between the
metallic bond among Fe atoms and the covalent bonds between Fe and C atoms.

The coherent interface energies between iron and a precipitate were estimated by Hartford [10]
and Jung et al. [13–16]. Johansson et al. developed a method for determining the interface energy
using a few points of γ surface [18–20]. They showed that the strain energy should be relieved by
forming a semi-coherent precipitate for thicker precipitates, since the elastic energy caused by the
coherent strain increases with the thickness of the precipitate. In their approach, the interface energy
was estimated using the extended Peierls–Nabarro framework, in which the chemical interaction
energy by the first-principles calculation is combined with the elastic energy by the continuum
description. They explained that the elastic contribution dominates the interface energy. By calculating
the interface energies of many 3d, 4d, and 5d transition metal carbides and nitrides, it was revealed that
the interface energies decrease with increase in the number of electrons of the outer-most d orbital [19].
This phenomenon was interpreted as the stronger chemical bond between the Fe atom and transition
metal atom in carbides or nitrides for the transition metal atom with more d electrons.

The computational technique by Fors et al. obtains the semi-coherent interface energy efficiently
by using the γ surface energy and elastic strain energy using the Peierls–Nabarro framework. However,
there is an ambiguity in the accuracy of the energy value because the atomic configuration around
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the misfit dislocation is not reproduced accurately. Furthermore, it is not easy for their technique to
accurately obtain the segregation properties of impurity near the interface. Previously, we tried to
obtain the interface energy of semi-coherent interfaces between NbC and bcc iron via large-scale direct
first-principles calculation at the semi-coherent interface [21]. We estimated the transition size of NbC
from coherent to semi-coherent precipitate based on the interface and strain energies obtained via the
large-scale first-principles calculation and the classical molecular dynamics simulation, respectively.
However, the dependence of the precipitate on the size at which the coherent to semi-coherent interface
transition occurs has not been clarified to date. Therefore, herein, we applied a method to estimate the
transition size of TiC and compared it with the previous results of NbC as well as the interface and
strain energies, the electronic structure, and the atomic configuration.

2. Results and Discussion

2.1. Interface Energy

The conditions of calculating coherent interface energy, which include the shape of the unit cell
shown in Figure 1, are followed according to the previous study [21]. Two cases of coherent interfaces
are examined, as performed in the previous study. In these cases, the C atom is directly connected
with the Fe atom across the interface and the Ti atom is connected with the Fe atom. The cases are
hereafter referred to as the interfaces of Fe–C–Ti and Fe–Ti–C, respectively. The interface energies are
calculated by subtracting the sum of the total energies of all the individual phases from the total energy
of the system including the interface. The lattice parameter of the reference state of iron is chosen as
follows in order to eliminate the contribution of strain energy in the estimation of the interface energy.
The lattice parameter c0 is optimized to minimize the total energy with the a0 value fixed to the length
of a unit cell of TiC. This procedure is conducted for both the coherent and semi-coherent interfaces.
The lattice parameter a0 of iron for a coherent interface is a0(TiC), while that for semi-coherent interface
is (n/m)a0(TiC). In Figure 2, the calculated interface energies are shown with the previously obtained
interface energies between the NbC and bcc iron. In the previous study, two coherent interfaces were
treated. One is an interface where a C atom is connected with an Fe atom across the Fe–NbC interface;
the other is one where a Nb atom is connected with an Fe atom across the Fe–NbC interface. These two
interfaces are referred as Fe–C–Nb and Fe–Nb–C, respectively, in this paper. The horizontal and
vertical axes denote the interface distance d and interface energy, respectively. The interface distance is
defined as the optimized length of c0 of Fe7Ti7C7 by subtracting the optimized lengths of c0 of Fe and
TiC with a0 of TiC as follows:

d = {c0(Fe7Ti7C7)− c0(Fe6)− c0(Ti6C6)}/2. (1)

The division operation in this expression is performed because of the inclusion of two interfaces
in the unit cell. The interface of Fe–C–Ti is more stable than that of Fe–Ti–C. The same applies for the
interface between NbC and bcc iron, which is explained as the energy of the atom at the interface of
Fe–C–Nb is lower than that of Fe–Nb–C in the previous study [21]. The local density of states (DOSs)
of the C atom of the interface between TiC and bcc iron are plotted in Figure 3. The phenomenon
that occurs in the interface between TiC and bcc iron is similar to that between the NbC and bcc iron.
The local DOS of the C atom at the interface is shifted to a higher energy relative to that at the middle
of the TiC region in the interface of Fe–Ti–C, while the energy region of local DOS of the C atom at the
interface is close to that at the middle of the TiC region in the interface of Fe–C–Ti. The mechanism
of the energy shift of the local DOS of the C atom at the interface of Fe–Ti–C can be related to the
number of surrounding atoms of the C atom. In TiC with an NaCl-type structure, the C atom is
surrounded by six Ti atoms. However, the C atom at the interface of Fe–Ti–C has only five surrounding
atoms, i.e., the C atom has a dangling bond that destabilizes the C atom. Conversely, the C atom at
the interface has six surrounding atoms at the interface of Fe–C–Ti. The local DOS of the Ti atom at
the interface of Fe–Ti–C also shows the energy shift in Figure 3d, but the shift is more clearly seen
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in the DOS of the C atom. Thus, the electronic effect for the interface bonding is dominated by the
electrons around C rather than Ti. The states of the C atom in TiC are mainly located from −6 to
0 eV in Figure 3a,b, while those in NbC are from −7 to −2 eV, as shown in the previous paper [21].
In other words, the energy band of TiC is wider than that of NbC. This is due to the difference of lattice
constants between TiC and NbC. The smaller lattice constant of TiC gives a wider energy band of the
C atom in comparison with NbC. This spread electron of C atom in TiC reduces the difference of the
local DOS of the C atom between the interfaces of Fe–C–Ti and Fe–Ti–C compared to that between the
interfaces of Fe–C–Nb and Fe–Nb–C, because the energy shift originates from the local covalent bond
character of the C atom at the interface.
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Figure 1. Arrangement of atoms in the coherent interface with 14 layers along the c-axis.
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Figure 2. The interface distance dependence on the interface energies of the coherent and semi-coherent
interfaces between the TiC and bcc iron and those between the NbC and body-centered cubic (bcc) iron.

The minimum of interface energy of Fe–Nb–C is much lower than that of Fe–Ti–C. In the transition
metal carbide the transition metal d states hybridize with the 2p states of carbon, and the bonding and
anti-bonding states are separated distinctly (Figure 3). For the interfaces of Fe–Ti–C and Fe–Nb–C,
the bond across the interface is attributed to the metallic bond between the transition metal d states
and Fe d states. In such a case, the increase in filling of the transition metal d states increases the
strength of the interface bond [19]. Basically, Nb has one more electron than Ti in the outer-most d
orbital. Furthermore, the number of electrons in the Nb atom at the interface increases compared with
that at the middle of the NbC region by approximately 0.1 due to the electron donation from the Fe
atom, while the number of electrons of Ti at the interface is almost the same as that at the middle
of the TiC region. The deeper electronic states of Nb in comparison to Ti cause this phenomenon.
Therefore, the interface bond of Fe–Nb–C should be stronger than that of Fe–Ti–C, and the interface of
Fe–Nb–C has lower interface energy than that of Fe–Ti–C. In contrast, the minimum of interface energy
of Fe–C–Ti does not differ from that of Fe–C–Nb. The bond across the interface should be derived from
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the strong covalent bond between the Fe and C atoms for both interfaces. Therefore, there is no large
deviation in the interface energy between Fe–C–Nb and Fe–C–Ti. In addition, as shown in Figure 2,
the interface separation in the interface of Fe–C–Ti is shorter than that of Fe–Ti–C, and the interface
separation in the interface of Fe–C–Nb is shorter than that of Fe–Nb–C. The shorter interface separation
of Fe–C–Ti in comparison with that of Fe–Ti–C originates from the strong covalent bond between the
Fe and C atoms across the interface of Fe–C–Ti.
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Figure 3. Local density of states (DOS) of the C atoms (a,b) and Ti atoms (c,d) located at the interface
and the middle of TiC. For the atomic arrangement at the interface, (a,c) correspond to the case that the
C atom is directly connected with the Fe atom across the interface; and (b,d) correspond to the case
that the Ti atom is connected with the Fe atom. The solid red lines and blue dashed lines denote the
local DOS at the interface and the middle of TiC, respectively. The Fermi level is set as 0.

In general, m units of bcc iron face n units of TiC at the interface. The interface with the same
m and n is coherent, while that with different m and n is semi-coherent. In many cases, m and n
cannot be expressed by a ratio of integers, i.e., an incoherent interface. As aforementioned, precipitate
nanometer sizes of TiC in iron have a flat interface represented by the Baker–Nutting orientation
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relationship and reveal the semi-coherent interface [9]. It is possible to find the minimum of misfit Δa
by searching m and n with lattice constant of iron a0(Fe) and that of TiC a0(TiC). a0(TiC) is 1/sqrt(2)
of the conventional lattice constant.

Δa = |m × a0(Fe)− n × a0(TiC)|. (2)

For the interface between bcc iron and TiC, m = 15 and n = 14 afford a minimum misfit
Δa. Large-scale first-principles calculations are performed for m:n = 15:14, 14:13, 13:12, 12:11, 11:10.
The interface energies calculated for m = 15 and n = 14 are shown in Figure 2.

The interface distance of the semi-coherent interface is defined as the same analogy of Equation (1).
The interface distance of the semi-coherent interface between the TiC and bcc iron is close to that of the
coherent interface of Fe–C–Ti. In contrast, the interface distance of the semi-coherent interface between
the NbC and bcc iron is closer to that of the coherent interface of Fe–Nb–C. This discrepancy occurs
for two reasons. First, the interface distance of the coherent interface between NbC and bcc iron is
underestimated compared with that between the TiC and bcc iron, because the lattice parameter of
the iron is expanded along a axis to the lattice parameter of transition metal carbides. In other words,
the unit cell length of a0 for the coherent interface between the NbC and bcc iron is longer than that
between the TiC and bcc iron by 5%. The second cause of the discrepancy comes from a difference
in the lattice constant between TiC and NbC. The difference of lattice constants between the TiC and
bcc iron is 7.2%, while that between NbC and bcc iron is 12.6%. This large difference of the lattice
constants between the TiC and NbC leads to the difference of distance between the misfit dislocations
of the semi-coherent interface. The coherent interface distance of Fe–C–Ti is much shorter than that of
Fe–Ti–C because of the different bonding character between the covalent strong Fe–C bond and the
metallic Fe–Ti bond. There are areas where a Fe atom is connected with a Ti atom across the interface
near the misfit dislocation, leading to separation of the interface. The distance between the misfit
dislocations of the semi-coherent interface between TiC and bcc iron is approximately 1.67 times longer
than that between the NbC and bcc iron. Therefore, the expansion effect of interface by the misfit
dislocation does not extend to the whole interface region for TiC.

The optimized atomic positions of the semi-coherent interface are shown in Figure 4. The Fe
atoms at the interface are connected with the C atoms across the interface except for the Fe atoms near
the misfit dislocation, which leads to the bending of lines of Fe atoms. A Fe atom can create a strong
covalent bond with a C atom, while the bond between Fe and Ti atoms is weak, as described for the
coherent interface. Therefore, the bonding character among Fe, Ti, and C atoms reflects on the atomic
transfers around the semi-coherent interface.

 Figure 4. Optimized arrangement of atoms in the semi-coherent interface with m:n = 15:14 in the (110)
plane. The Fe atoms are connected along the [001] direction using red lines for visualization.
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The semi-coherent interface can be considered as a mixture of the two coherent interfaces;
therefore, the interface energies of the semi-coherent interface are influenced by the interface energies
of the coherent interfaces. Since the C atoms at the interface are connected with the Fe atoms at the
largest part of the semi-coherent interface, the semi-coherent interface energies are mainly affected by
the coherent interface energies of Fe–C–Ti or Fe–C–Nb. Based on this coherent interface energies of
Fe–C–Ti or Fe–C–Nb, the coherent interface energies of Fe–Ti–C or Fe–Nb–C affect the semi-coherent
interface energies. Then, the semi-coherent interface energy between TiC and bcc iron is slightly larger
than that between NbC and bcc iron because the coherent interface energy between TiC and bcc iron is
larger than that between NbC and bcc iron. This same tendency was also reported by Fors et al. [19].
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Figure 5. Strain at the center of the broad plane of the precipitate along the direction perpendicular
to the broad plane of precipitate with an (a) coherent and (b) semi-coherent interface. The x- and
z-directions are parallel and perpendicular to the broad plane of the precipitate, respectively.

2.2. Strain Energy

The structure optimization using the empirical potential is performed to obtain the strain around
the precipitate in bcc iron. Figure 5 shows the strain obtained at the center of the broad plane of
the precipitate along the perpendicular direction to the broad plane of the precipitate. Coherent and
semi-coherent precipitates were assumed in Figure 5a,b, respectively. The coherent and semi-coherent
precipitates indicate much different features in the strain around the precipitates. The coherent
precipitate has a much larger strain, εxx, than the semi-coherent precipitate. Furthermore, the coherent
precipitate gives a positive εzz, i.e., tensile strain, while the semi-coherent precipitate exhibits
compressive strain. These features can be elucidated by the atomic transfers due to precipitation.
Figure 6 shows the transfers of atoms around the coherent and semi-coherent precipitate by the
structure optimization from the ideal position of Fe atoms in bcc iron due to precipitation. For the
coherent precipitate, the atoms at the side of the precipitate move toward [100] or [100], because the
lattice constant of the precipitate is longer than that of bcc iron. Then, the atoms facing the broad
plane of the precipitate also move toward [100] or [100]. Thus, atomic density decreases and the atoms
move toward the precipitate near the center of broad plane of the precipitate (Figure 6a). This is the
origin of tensile strain εzz for the coherent precipitate. Conversely, atoms at the side of semi-coherent
precipitate do not move toward [100] or [100]. Then, the decrease in atomic density does not occur
near the center of the broad plane of the precipitate, and atoms depart from the precipitate along
[001] due to the expansion of the precipitate along [001]. In this case, three layers of precipitate are
assumed. This precipitate region is constructed using four layers of iron expanded 4% along [001].
Thus, the compressive strain is generated in εzz for the semi-coherent precipitate. The strain distribution
evaluated from atomic arrangement via high angle annular dark-field scanning transmission electron
microscopy also reveals compressive strain at the matrix region near the broad plane of precipitate [22].
Therefore, the theoretically estimated strain around the precipitate is qualitatively in good agreement
with the experimental observation. The transfers of atoms along [100] for a coherent precipitate are
more prominent than those for a semi-coherent precipitate near the broad interface, which leads to
larger εxx for a coherent precipitate than a semi-coherent precipitate.
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 Figure 6. Movement of atoms around the precipitate with an (a) coherent and (b) semi-coherent

interface via structure optimization. The blue points denote atoms in the precipitate region. The red
arrows denote movements of atoms in the matrix region by the structural optimization from the ideal
position of Fe atoms in bcc iron due to precipitation. The length is elongated by five times from the
original for clarity. The tick mark spacing is 0.2 nm for both the horizontal and vertical axes.

Strain energy is estimated by comparing the potential energies of the optimized atoms in the
matrix region because of the virtual precipitate region to those with the original atom positions of bcc
iron. The obtained strain energy is confirmed to be in good agreement with the continuous model.
As mentioned above, we focus on the growth of the broad plane of the precipitate. The interface
energy is obtained for the area of the broad plane. The obtained strain energy with the same area of
the lateral plane is divided by the area of the broad plane and defined as a function of the area of
the broad plane in order to compare it with the interface energy. In Figure 7, the interface and strain
energies of NbC and TiC are shown as functions of the diameter of the precipitate. The diameter of the
plate-like rectangular parallelepiped shaped precipitate is estimated by assuming the precipitates to be
spherical. The thicknesses of the precipitates are 0.54 nm and 0.52 nm for NbC and TiC, respectively.
The strain energy strongly depends on the size of the precipitate, in contrast to the small precipitate size
dependence of interface energies. The strain energies of coherent precipitates increase proportionally
to the diameter of the equivalent sphere of the precipitate because larger strain exists around the
precipitate for larger precipitates. This linear dependence of the strain energy on the diameter of the
precipitate is consistent with the continuum mechanics. Conversely, for semi-coherent precipitates the
strain energies decrease with an increase in the size of precipitate in these regions. In Figure 7, the size
of precipitates increases from 1.97 nm (n = 10) to 2.51 nm (n = 14) for TiC and from 1.22 nm (n = 5)
to 1.73 nm (n = 9) for NbC. The misfits estimated using Equation (2) decrease with increasing size
of precipitates in these regions. From this perspective, the misfit and strain energy of semi-coherent
interface increases from n = 15 to 21 for TiC. In other words, the strain energy of the semi-coherent
interface changes in a saw-like shape. The size dependence of strain energies of NbC is much steeper
than that of TiC. This can be attributed to the larger lattice misfit between NbC and bcc iron than that
between TiC and bcc iron.
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Figure 7. The dependence of diameter of the precipitate on the interface and strain energies for the
coherent and semi-coherent precipitates of (a) NbC and (b) TiC.

2.3. Transition from the Coherent to the Semi-Coherent State

The relation between the summation of the interface and strain energies and the diameter of the
precipitate for both the coherent and semi-coherent precipitates is shown in Figure 8. Figure 8 reveals
that the coherent precipitates are more stable than the semi-coherent precipitates for smaller size of the
precipitates. The opposite size dependence of strain energy between the coherent and semi-coherent
precipitates leads to a change from the coherent to the semi-coherent state during the growth of the
precipitate at diameters of 1.5 and 2.3 nm for NbC and TiC, respectively. The misfit estimated by
Equation (2) has a minimum at diameters of 1.7 and 2.5 nm, respectively. In other words, the sizes
where both the precipitates change from coherent to semi-coherent state are smaller than the sizes with
minimum misfit in order to release the large strain energies of the coherent precipitates. The transition
sizes are examined for thicker precipitates of NbC and TiC with thicknesses of 0.89 and 0.87 nm,
respectively. The obtained transition diameters are 1.6 and 2.6 nm for NbC and TiC, respectively.
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Wei et al. observed interfacial misfit dislocations on plate-like TiC precipitate via high-resolution
transmission electron microscopy [9]. They mentioned that one of the semi-coherent precipitates has
a broad plane with a length of 6 nm. The diameter of the semi-coherent precipitate is 3–4 nm, if the
thickness of the precipitate is assumed to be 0.52 or 0.87 nm. This size is larger than the estimated
transition diameter from the coherent to the semi-coherent state. Therefore, the estimated value is
consistent with their experimental result.

Kobayashi et al. evaluated the precipitate size dependence of the interaction force on a dislocation
due to the precipitate of TiC from the amount of particle strengthening and the particle spacing [23].
They found that the precipitate size dependence of the interaction force due to the precipitate of TiC
changes at a diameter of 2.5 nm. The interaction force increases with increasing size of precipitate below
the size, but it becomes constant above the size. They speculated that there are several candidates that
cause changes in the size dependence of the interaction force. One of them is the transformation from a
coherent precipitate to a semi-coherent one. The theoretically predicted transition size from a coherent
to semi-coherent precipitate of TiC is close to the precipitate size where the size dependence of the
interaction force changes. If the change in the size dependence of the interaction force is attributed to
the change from a coherent precipitate to semi-coherent one, the prediction technique of the change
from coherent to semi-coherent precipitate gives a fairly accurate value.

3. Computational Details

The interface and strain energies due to the precipitate in the ferritic matrix should be estimated to
know the coherency of the interface between the precipitate and matrix. The previous study revealed
that the unit cell comprising seven layers each of Fe and NbC in the perpendicular direction of the
interface is sufficient to obtain adequate convergence in the interface energy between NbC and bcc
iron [21]. Herein, therefore, the same periodic boundary condition is used in the perpendicular
direction of the interface. This calculation condition can be justified for the interface between the TiC
and bcc iron because the physical properties of TiC are close to those of NbC. For example, the Young’s
moduli of TiC and NbC are 375 and 330 GPa, respectively, which are 191% and 168% of bcc iron,
respectively. Moreover, both TiC and NbC have the same a NaCl-type crystal structure with lattice
parameters of 0.433 and 0.447 nm, respectively, and the lattice misfit between TiC and bcc iron is smaller
than that between NbC and bcc iron. It is necessary, however, to treat more than 4000 atoms for the
semi-coherent interface between TiC and bcc iron because of the small lattice misfit. The first-principles
calculation of such a huge number of atoms is rather time-consuming even for materials with widely
spread electron density. Moreover, the material used in this study includes the elements with localized
electron density, namely, Ti, Fe, and C in comparison with a 3p electron system, such as Si. Thus,
it is very difficult to treat this issue using the conventional first-principles calculation. In order to
overcome this situation, we use the OpenMX package [24] in which the O(N) Krylov-subspace method
of first-principles calculation [25] is adopted. For the exchange-correlation energy in the generalized
gradient approximation, the expression proposed by Perdew et al. is used [26]. The pseudopotential
method with Troullier–Martins pseudopotential [27] is adopted. The 3p, 3d, and 4s states of Fe and Ti
and 2s and 2p states of C are treated as valence electrons. The calculations are performed using double
valence plus a single polarization function. In this study, the number of atoms in a truncated cluster
is fixed at 64, 122, and 122 for Fe, Ti, and C, respectively, to ensure that the total energy differences
between the O(N) and conventional methods are less than 0.02 eV/atom. Since the most important
quantity for the interface energy is the total energy, a convergence is checked by using the absolute
error in total energy with respect to that of the conventional method.

For estimating the strain energy around the precipitate, structure optimization is performed using
the empirical potential [28,29]. The first-principles calculation is known to give an accurate elastic
constant with the experimental value [30]. The empirical potential is fitted to the experimental elastic
constant. Thus, the compatibility between the first-principles calculation and the embedded-atom
method calculation is fairly good. The matrix and precipitate regions are set in the simulation cell.
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However, all atoms in the simulation cell are treated by the embedded-atom method potential for
Fe [28,29]. In order to express the precipitate region, the atomic positions are fixed to have the same
lattice parameters as TiC. In other words, we assume that the relaxation of atomic positions basically
occurs in bcc iron. This assumption can be justified because, as mentioned earlier, the Young’s modulus
of TiC is approximately two times larger than that of bcc iron. The semi-coherent precipitate region is
constructed by 2 × (m × m + (m − 1)× (m − 1)) atoms of Fe with an expansion of 0.7% along [001],
and it is assumed to be n × n × 3 atoms of Ti or C. On the other hand, the coherent precipitate region is
constructed by 2 × (m × m + (m − 1)× (m − 1)) atoms of Fe with expansions of 7.2% and 0.7% along
[100] and [001], respectively, and it is assumed to be m × m × 3 atoms of Ti or C. The corresponding
diameter of a precipitate is estimated by assuming precipitates to be spherical. In the matrix region,
the atomic positions are optimized to reduce the force acting on each atom. The calculation cell is set
to be 603 conventional unit cells to obtain strain energy accurately enough, because the strain energy
due to a precipitate with the diameter of 2.8 nm is estimated in error by less than 0.01 J/m2 between
the 503 and 603 conventional unit cells.

4. Summary

The interface and the strain energies of the interface between the TiC and bcc iron are calculated
using the O(N) first-principles electronic structure calculation method and the structure optimization
using the empirical potential, respectively. These calculations are performed for various precipitate
sizes and coherencies. The interface and strain energies of the semi-coherent precipitate are compared
with those of the coherent precipitate. As a result, the transition sizes from coherent to semi-coherent
precipitate are estimated to be 1.5 and 2.3 nm for NbC and TiC, respectively. These precipitates undergo
a transition from the coherent to semi-coherent state at sizes smaller than those with minimum misfit in
order to release the large strain energies of the coherent precipitates. The transition size of TiC is larger
than that of NbC, which is related to the smaller lattice misfit of TiC than that of NbC. The estimated
transition size of TiC is close to the experimentally obtained size at which the change in the size
dependence of the interaction force occurs. Therefore, the methodology presented herein provides a
fairly accurate transition size of a precipitate from the coherent to semi-coherent state.
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Abbreviations

The following abbreviations are used in this manuscript:

bcc body-centered cubic
DOS density of states
Fe–C–Ti coherent interface where a C atom is connected with a Fe atom across the Fe–TiC interface
Fe–Ti–C coherent interface where a Ti atom is connected with a Fe atom across the Fe–TiC interface
Fe–C–Nb coherent interface where a C atom is connected with a Fe atom across the Fe–NbC interface
Fe–Nb–C coherent interface where a Nb atom is connected with a Fe atom across the Fe–NbC interface
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Abstract: The structural, electronic and elastic properties of B2 structure Hafnium compounds
were investigated by means of first-principles calculations based on the density functional theory
within generalized gradient approximation (GGA) and local density approximation (LDA) methods.
Both GGA and LDA methods can make acceptable optimized lattice parameters in comparison
with experimental parameters. Therefore, both GGA and LDA methods are used to predict the
electronic and elastic properties of B2 HfX (X = Os, Ir and Pt) compounds. Initially, the calculated
formation enthalpies have confirmed the order of thermodynamic stability as HfPt > HfIr > HfOs.
Secondly, the electronic structures are analyzed to explain the bonding characters and stabilities in
these compounds. Furthermore, the calculated elastic properties and elastic anisotropic behaviors
are ordered and analyzed in these compounds. The calculated bulk moduli are in the reduced order
of HfOs > HfIr > HfPt, which has exhibited the linear relationship with electron densities. Finally,
the anisotropy of acoustic velocities, Debye temperatures and thermal conductivities are obtained
and discussed.

Keywords: Hf-based intermetallics; elastic properties; density functional theory; first-principles calculations

1. Introduction

Hafnium and Hafnium compounds can be used as the tools and parts in the nuclear power
plants due to their high neutron cross sections [1], and medical implants and other medical industry
applications owing to their excellent mechanical properties, high corrosive resistant ability and
biocompatibility [2]. With the growing importance of Hafnium compounds, the studies on the
theoretical and experimental aspects of these compounds have increased [3–9]. Levy et al. [3] performed
a comprehensive study in the structural and thermodynamic properties of binary Hf compounds
using ab initio calculations. Among them, the B2 structure is one of the most typical crystal structures
for HfX compounds. For example, Novakovic et al. [4] studied the electronic structures, cohesive
energies and formation enthalpies of B2 structure HfTM (TM = Co, Rh, Ru and Fe) compounds using
ab initio full-potential linearized augmented plane waves calculations. Iyigör et al. [5] reported
the structural, electronic, elastic and vibrational properties of HfX (X = Rh, Ru and Tc) using the
plane-wave pseudopotential density functional theory via VASP codes. Xing et al. [6] investigated
the structural phase stabilities of B2 phases and formation enthalpies of HfM (M = Ir, Os, Pd, Pt, Ru,
Rh) using VASP codes. Wu et al. [7] studied the structural, elastic and electronic properties of HfRu
compound theoretically. Although the structural features of B2 HfX (X = Os, Ir and Pt) compounds have

Metals 2017, 7, 317; doi:10.3390/met7080317 www.mdpi.com/journal/metals32



Metals 2017, 7, 317

been achieved discussed experimentally [10–12] and theoretically [6,13,14], the elastic and electronic
properties of HfX (X = Os, Ir and Pt) compounds are rarely reported and assessed to our knowledge.

Therefore, this work has been organized as the following description. In Section 2, the computational
methods of binary HfX (X = Os, Ir and Pt) compounds are presented. In Section 3, the results and discussions
are exhibited and analyzed, including structural properties, electronic structures, elastic constants, elastic
properties, elastic anisotropy, anisotropic sound velocities, Debye temperatures and thermal conductivities.
In Section 4, the conclusions are made in detail.

2. Computational Information

The first-principles calculations based on the pseudopotential plane-wave within density
functional theory (DFT) were performed using CASTEP (Cambridge Sequential Total Energy
Package) codes [15,16]. The ultrasoft pseudopotential was adopted to simulate the ion-electron
interaction [17]. Both generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) functional [18,19] and the local density approximation (LDA) functional with the form
of Ceperley-Adler parameterized by Perdew and Zunger [20] were utilized to model the
exchange-correlation. The basis sets have included atom states of Hf5d26s2, Os5s25p65d66s2,
Ir5d76s2 and Pt5d96s1. With respect to cutoff energies and k-points, a series of convergence studies
were performed. Afterwards, the cutoff energies were set at 400 eV. Besides, the special points
sampling integration over the Brillouin zone was employed using Monkhorst-Pack method [21] with
determined k-point separation of 0.02/Å in three lattice directions for each compound. Furthermore,
the minimization scheme proposed by Brodyden-Fletcher-Goldfarb-Shanno (BFGS) was used during
geometric optimization [22]. The tolerances of the geometrical optimization has to meet conditions,
including the maximum ionic displacement ≤ 5.0 × 10−4 Å, maximum ionic force ≤ 0.01 eV/Å,
maximum stress ≤ 0.02 GPa, and the difference of total energy ≤ 5.0 × 10−6 eV/atom. Followed by
geometric optimization, the total energy and electronic structure were computed using self-consistent
field tolerance of 5.0 × 10−7 eV/atom. Correspondingly, the lattice constants and atom coordinates
were optimized via minimizing the total energy. At equilibrium structures, the corrected tetrahedron
Blöchl method was utilized to derive the total energies [23].

3. Results and Discussion

3.1. Structural Properties

HfX (X = Os, Ir and Pt) compounds are in the (CsCl type) Pm3m space group, correspondingly.
In an HfX unit cell, an Hf atom locates at 1a (0, 0, 0) and an X atom stays at 1b (0.5, 0.5, 0.5).
In order to obtain structural properties of HfX compounds, the geometric optimizations are made
firstly. The equilibrium lattice constants using both GGA and LDA methods are tabulated in Table 1,
along with the available experimental [10–12] and theoretical [6,13,14] values for reference. Generally,
the qualities for structural optimizations in HfX compounds using both GGA and LDA methods are
comparable and acceptable. In detail, the optimized lattice constants for HfOs and HfIr are in good
agreement with theoretical values [6,13,14], respectively. For HfOs and HfIr, the LDA computed values
are more approaching to the experimental value. On the other aspect, the GGA method can give better
optimized values than the LDA method in HfPt. Therefore, either method shows obvious superiority
in the structural optimization of HfX compounds. Resultantly, both GGA and LDA methods are used
in the following theoretical studies for HfX compounds.

33



Metals 2017, 7, 317

Table 1. The optimized (atheo) and experimental (aexp) lattice constants, calculated deviations, bulk
moduli (B0) and its pressure derivatives (B0’), and formation enthalpies (Hf) for HfX (X = Os, Ir and Pt).

Compounds atheo (Å) aexp (Å) Calculated Deviation (%) B0 (GPa) B0‘ Hf (eV/atom)

HfOs

3.291 a 3.239 c 1.600 a 234.3 a 4.43 a −0.474 a

3.236 b - −0.083 b 266.2 b 4.47 b −0.451 b

3.294 d - - - - −0.495 d

3.257 e - - - - −0.707 f

- - - - - −0.793 g

- - - - −0.484 ± −0.052 h

HfIr

3.311 a 3.21 i 3.143 a 220.9 a 4.66 a 0.807 a

3.253 b - 1.331 b 255.6 b 4.69 b −0.769 b

3.275 g - - - - −0.977 g

- - - - - −1.016 ± −0.016 j

HfPt

3.359 a 3.3623 k −0.096 a 191.6 a 4.64 a −0.903 a

3.298 b - −1.907 b 221.7 b 4.66 b −0.900 b

- - - - −1.063 g

- - - - - −1.175 ± −0.062 j

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Experimental values from reference [10]; d Theoretical values from reference [14]; e Theoretical values from
reference [13]; f Theoretical values from reference [3]; g Theoretical values from reference [6]; h Experimental
values from reference [24]; i Experimental values from reference [11]; j Experimental values from reference [25];
k Experimental values from reference [12].

Under increasing pressures from 0 to 25 GPa with per step of 5 GPa, the relative changes of (a)
lattice constant and (b) unit cell volume for HfX compounds using GGA method are exhibited in
Figure 1. In Figure 1a, the relative change of lattice constant (a) for HfPt is alternated larger than HfIr
and HfOs under growing pressures. Similarly, the unit cell volume (V) changes larger in HfPt than
HfIr and HfOs under pressures (Figure 1b). Therefore, the obtained pressure volume curve for each
compound is formulated to a third-order Birch-Murnaghan equation of state (EOS) [26]:

P =
3
2

B0[(
V
V0

)
− 7

3 − (
V
V0

)
− 5

3
]{1 +

3
4
(B′

0 − 4)[(
V
V0

)
− 2

3 − 1]}. (1)

For HfOs, HfIr and HfPt, the fitted bulk moduli (B0) are 234.3 GPa, 220.9 GPa and 191.9 GPa,
and their pressure derivatives (B0’) are 4.43, 4.66 and 4.64, accordingly. As a result, the bulk moduli are
in the sequence of HfOs > HfIr > HfPt. Using LDA method, the bulk moduli are still in the order of
HfOs > HfIr > HfPt, as exhibited in Table 1.

  

Figure 1. The relative changes of (a) lattice constant (a); (b) unit cell volume (V) with the elevating
pressures computed by GGA method for HfX (X = Os, Ir and Pt).
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The thermodynamic stability is closely associated with formation enthalpy in binary compounds.
To evaluate the thermodynamic stability of a compound, the formation enthalpy (Hf) is expressed by
the following equation [27,28]:

HHfX
f =

EHfX
f − EHf − EX

2
, (2)

where EHfX
f is the total energy of an HfX unit cell including an Hf atom and an X atom with equilibrium

lattice parameters (X = Os, Ir and Pt); EHf and EX are the total energy per atom of pure element solids
at their ground states. Hf and Os are HCP metals, and Ir and Pt are FCC metals at ground state.

The negative formation enthalpy has denoted that the chemical process is exothermic, indicating
the stability of resulted compounds. Moreover, the larger negative formation enthalpy has signified
better stability of a compound [29]. In Table 1, the formation enthalpies of HfX compounds are
tabulated. Generally, HfX compounds should be stable owing to their negative formation enthalpies
derived from GGA and LDA methods. Furthermore, their thermodynamic stabilities are both in the
order of HfPt > HfIr > HfOs. This conclusion is the same with Xing’s work [6]. In detail, the Hf values
calculated by GGA method are typically more negative than LDA method. For HfOs, the calculated Hf
value by GGA method is in good consistency with experimental value [24] and theoretical value from
Liu’s work [14], but smaller than Xing’s [6] and Levy’s [3] reports. For HfIr and HfPt, our calculated
Hf values are both smaller than theoretical values from Xing’s work [6] and experimental values from
Gachon’s report [25]. Nevertheless, the crystal structures for HfIr and HfPt are not mentioned in this
experimental work [25], which has degraded the reference value of this experimental work.

3.2. Density of States

The analyses on the total and partial density of states (DOS) are performed to further study
the bonding characteristics and underlying mechanism of the structural stability of HfX compounds.
Therefore, the total DOS (TDOS) and partial DOS (PDOS) computed by GGA method are presented
and discussed herein. In Figure 2a, the Fermi level (EF) is plotted at zero energy in all TDOS and
PDOS spectra. Typically, there is not any energy gap identified near Fermi level for HfOs (Figure 2a),
HfIr (Figure 2b) and HfPt (Figure 2c) in the TDOS, suggesting their essence of metallicity.

In the TDOS for HfOs (Figure 2a), the bonding interactions are dominated by the hybridization of
Hfs and Oss states at −10 to −6 eV at the bonding states. Around the bonding states, the Osd states
as the major role have intensively hybridized with the Hfd states as the minor role below the Fermi
level. The two states have changed their roles in the hybridizations of above the Fermi level at the
antibonding states. Around the Fermi level, a valley referring as a pseudogap, which is symbolized as
the presence of covalent bonds [30,31], is considered to be the most observable feature in the TDOS.
The pseudogaps have existed in the TDOS for HfOs (Figure 2a), HfIr (Figure 2b) and HfPt (Figure 2c),
although their locations are different on energy scales. The pseudogap is located at the antibonding
states for HfOs (Figure 2a), at the bonding states for HfIr (Figure 2b), and at the bonding states with
the more negative energy states for HfPt (Figure 2c). Such differences should suggest HfOs has the
least bonding stability.

For the sake of judging the structural stability of HfX compounds, the number of bonding electrons
per atom is calculated based on the TDOS spectra. Since the charge interaction among bonding atoms is
the critical factor to material’s stability, the compound possessing higher number of bonding electrons
should be more structurally stable [32–35]. For HfOs, HfIr and HfPt phases, the number of bonding
electrons per atom are 6.013, 6.493 and 6.995, accordingly. Conclusively, the HfX phases have the
stability order of HfPt > HfIr > HfOs. This conclusion is in good accordance with the thermodynamic
analysis shown in Table 1.
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Figure 2. TDOS and PDOS spectra for (a) HfOs, (b) HfIr and (c) HfPt.

3.3. Elastic Properties

The elastic constants and elastic moduli are the critical information to study the mechanical
properties of compounds. A full set of elastic constant for cubic crystal, including C11, C12 and C44,
can be achieved using the stress-train method [36] (Table 2). Observably, the elastic constants obtained
by LDA method are larger than GGA method in HfX compounds. In HfOs, the elastic constants
derived from GGA method has agreed well with theoretical values from Arıkan’s [13] and Liu’s
work [14]. Meanwhile, the elastic constants for pure Hf metal are calculated and presented with the
published experimental values [37] for comparison, where the GGA computed elastic constants are in
better agreement with experimental values [37].

In order to analyze the elastic properties of HfX compounds, the elastic constants generated using
GGA method are used as the example. C11 is the symbol of compressive resistance along x axis. In each
compound, the calculated C11 has the largest value, indicating the incompressible essence of the
compound under the x direction uniaxial stress [38]. HfOs has the most incompressible ability owing
to the largest C11 (402.1 GPa). Moreover, a larger C44 (121.0 GPa) can reflect a stronger resistance to
monoclinic shear in (100) plane, suggesting HfOs also has the strongest ability to resist shear distortion
in (100) plane.
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Table 2. The elastic constants (Cij) for HfX (X = Os, Ir and Pt).

Compounds C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

HfOs

402.1 a 149.7 a - - 121.0 a

436.5 b 179.3 b - - 130.5 b

393.7 c 139.8 c - - 110.1 c

366.1 d 152.6 d - - 105.6 d

HfIr
285.7 a 239.5 a - - 103.2 a

255.7 b 202.9 b - - 90.7 b

HfPt
244.3 a 209.2 a - - 67.8 a

217.7 b 179.3 b - - 61.7 b

Hf
214.0 a 90.6 a 92.2 a 235.8 a 54.6 a

193.6 b 82.7 b 77.4 b 205.1 b 56.3 b

181.0 e 77.0 e 66.0 e 197.0 e 55.7 e

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Theoretical values from reference [13]; d Theoretical values from reference [14]; e Experimental values from
reference [37].

Furthermore, the mechanical stability is evaluated by Born’s criteria [39] for cubic crystals:

C11 > 0; C44 > 0; C11 − C12 > 0; C11 + 2C12 > 0. (3)

HfX (X = Os, Ir and Pt) compounds are all found mechanically stable at the ground state by the
successful validation of Born’s criteria.

In the engineering application, the elastic properties, i.e., bulk modulus (B), shear modulus (G),
and Young’s modulus (E), are demanded in practice. Generally, the elastic properties can be derived
from Voigt-Reuss-Hill (VRH) methods using elastic constants [40]. For cubic crystals, the equations are
expressed as following [27,41,42]:

BV = BR =
1
3
(C11 + 2C12), (4)

GV =
1
5
(C11 − C12 + 3C44), (5)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
, (6)

B =
BV + BG

2
, (7)

G =
GV + GG

2
, (8)

As soon as the bulk and shear moduli are achieved, Young’s modulus (E) and Poisson’s ratio (ν)
can be predicted:

E =
9BG

3B + G
, (9)

ν =
3B − 2G

2(3B + G)
, (10)

The calculated elastic moduli, Poisson’s ratio and B/G ratio using the VRH method at the ground
state are tabulated for HfX compounds in Table 3, including the elastic moduli for pure Hf results for
comparison. Overall, the elastic moduli obtained using GGA method are smaller than those provided
by LDA method. Comparably, the calculated elastic moduli generated by the GGA method are in good
agreement with theoretical values for HfOs. In detail, the elastic moduli are all larger than pure Hf in
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HfOs. However, HfIr has the similar shear and Young’s modulus over pure Hf, and HfPt owns the
smaller values correspondingly. Therefore, HfOs should be a credible hardening phase in pure Hf.

Table 3. The bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (ν), B/G ratio
and hardness (HV) for HfX (X = Os, Ir and Pt) and pure Hf deduced from the VRH method.

Compounds B (GPa) G (GPa) E (GPa) ν HV (GPa) B/G

HfOs

233.8 a 123.1 a 314.1 a 0.276 a 13.4a 1.900 a

265.1 b 129.7 b 334.6 b 0.290 b 12.8b 2.043 b

224.4 c 116.5 c 298.0 c 0.279 c 12.7c 1.926 c

223.8 c 106.1 c 274.8 c 0.295 c 10.7c 2.110 c

HfIr
220.5 a 55.5 a 153.5 a 0.384 a 3.3a 3.977 a

254.9 b 57.2 b 159.6 b 0.396 b 3.0b 4.458 b

HfPt
192.1 a 38.7 a 108.8 a 0.406 a 2.0a 4.962 a

220.9 b 39.6 b 112.2 b 0.415 b 1.8b 5.572 b

Hf
118.6 a 57.2 a 147.8 a 0.292 a - 2.074 a

134.8 b 59.9 b 156.5 b 0.306 b - 2.251 b

108.5 e 55.8 e 142.9 e 0.28 e - 1.944 e

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Theoretical values from reference [13]; d Theoretical values from reference [14]; e Experimental values from
reference [37].

Typically, the bulk modulus (B) suggests the resistant ability against volume change under
pressure of materials. In addition, the bulk moduli calculated by both methods using VRH principles
are in good agreement with those provided by the EOS equations (Table 1), confirming good
self-consistency of this work. From Table 3, it is seen that HfOs possesses the largest resistance to
volume change by applied pressure, while HfPt has the smallest. In order to illustrate the fundamental
factor on bulk moduli of HfX compounds, the relationship between electron densities and bulk moduli
are constructed in Figure 3a. Herein, the electron density (n) is the quotient of the bonding valence
(ZB) and the volume per atom (VM) in metal [43]. For example, the electron density (n) is evaluated
using the following equation in HfX compounds:

n(HfX) = ZB(HfX)/VM(HfX), (11)

where VM(HfX) is the volume (cm3/mol) of each HfX compound; ZB(HfX) is the bonding valence in
(el/atom) rationalized from Vegard’s law [44]:

ZB(HfX) = (ZB(Hf) + ZB(X))/2, (12)

where the bonding valence of pure element can be found in the reference [45].
In Figure 3a, the correlation between the electron density and bulk modulus can be constructed

using the computed values either by LDA or GGA method. In detail, the linear relationships between
the electron density and bulk modulus are clearly seen in HfX compounds.
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Figure 3. (a) Correlations between bulk modulus and electron density; (b) Correlations between shear
modulus and Young’s modulus for HfX (X = Os, Ir and Pt).

The shear modulus has reflected the resistance to reversible deformations under the shear
stress [27]. A larger shear modulus for HfOs suggests its higher resistance to reversible deformations.
Young’s modulus is a symbol of the stiffness of a solid [46]. The material with a larger Young’s modulus
is stiffer. Therefore, HfOs is much stiffer than any other considered HfX compounds due to its higher
Young’s modulus. Overall, Young’s modulus has linearly improved with the shear modulus in the
order of HfOs > HfIr > HfPt for both LDA and GGA methods (Figure 3b).

The B/G value [47] and Poisson’s ratio (ν) [32,48] have determined the brittleness and ductility of
the solid. A solid with B/G < 1.75 or ν < 0.26 is usually brittle. Otherwise, it is ductile. In Table 3, it is
found the HfPt is the most ductile compound with the largest B/G value and Poisson’s ratio, and HfOs
is the least ductile compound owing to the smallest B/G value and Poisson’s ratio. Notably, the HfX
compounds have similar ductile essence due to the small variations of B/G values and Poisson’s ratios
using both GGA and LDA methods.

The hardness (HV) is associated with the plastic and elastic properties of an intermetallic
compound. The hardness can be calculated by a semi-empirical equation [49]:

HV = 0.92(G/B)1.137G0.708, (13)

where B and G are the bulk modulus and shear modulus, respectively.
The hardness values (HV) of HfX (X = Os, Ir and Pt) compounds are tabulated in Table 3. Generally,

the hardness is related with the values of G/B and G that the high values of G/B and G correspond to
the high hardness. It is seen that the hardness value computed by GGA method is a bit larger than
LDA method. Overall, the hardness values (HV) have followed the order of HfPt < HfIr < HfOs in
both GGA and LDA methods.

3.4. Elastic Anisotropy

The degree of elastic anisotropy is a critical property related to the engineering application.
The universal anisotropic index (AU) [50] is a universal measure to quantify the single crystalline
elastic anisotropy in consideration of the contributions from both the bulk and the shear modulus,
i.e., [51],

AU = 5
GV

GR
+

BV

BR
− 6, (14)

where BV and GV are the symbols of the Voigt bounds for bulk and shear modulus, respectively.
BR and GR are the symbols of the Reuss bounds for bulk and shear modulus, respectively.

If AU = 0 for a crystal, the crystal should be isotropic. A larger deviation of AU from zero has
indicated a severer degree of anisotropy. In cubic crystals, BV/BR is always equal to 1. Therefore,
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the universal anisotropic index is governed by GV/GR. Therefore, the calculated universal anisotropies
by both LDA and GGA methods (Table 4) are reduced in the sequence of HfIr > HfPt > HfOs. In detail,
HfIr and HfOs have the largest and smallest universal anisotropies, respectively.

Table 4. The calculated Voigt and Reuss bounds for bulk (shear) modulus, and universal anisotropic
index (AU) for HfX (X = Os, Ir and Pt).

Compounds BV BR GV GR BV/BR GV/GR AU

GGA method

HfOs 233.8 233.8 123.1 123.0 1 1.000 0.0022
HfIr 220.5 220.5 65.0 45.9 1 1.415 2.077
HfPt 192.1 192.1 44.7 32.7 1 1.367 1.830

LDA method

HfOs 265.1 265.1 129.7 129.7 1 1.000 0.00026
HfIr 254.9 254.9 71.1 43.2 1 1.646 3.229
HfPt 220.9 220.9 47.7 31.6 1 1.494 2.470

In order to describe the elastic anisotropic behavior more directly and effectively, the three-
dimensional (3D) surface constructions of the directional dependence of reciprocal of Young’s modulus
have also been studied by following equations [52]:

1
E
= S11 − 2(S11 − S12 − S44

2
)(l2

1 l2
2 + l2

2 l3
2 + l2

1 l2
3), (15)

where Sij is the usual elastic compliance constant, which can be obtained from the inverse of the matrix
of elastic constants; l1, l2 and l3 are the direction cosines in the sphere coordination.

If the 3D directional dependence of Young’s modulus exhibits a spherical shape, the crystal is
ideal isotropic. Practically, the deviation extent from the spherical shape has reflected the degree of
anisotropy. In Figure 4a, HfOs shows a quite spherical shape, signifying its near isotropic behavior.
Furthermore, HfIr exhibits the largest deviation from the sphere shape with the strongest deviation
along the <111> directions, confirming its intensive anisotropic behavior. Generally, the degree of the
elastic anisotropy for HfX has followed the increasing order of HfOs < HfPt < HfIr. This conclusion is
in good compliance with the result generated from the universal anisotropic index.

 

Figure 4. The 3D surface construction of Young’s modulus in (a) HfOs, (b) HfIr and (c) HfPt by GGA
method. (Magnitude of Young’s modulus at different directions is presented by the contour along each
graph with the unit of GPa.)
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3.5. Anisotropy of Acoustic Velocities and Debye Temperature

In the crystalline material, the sound velocities are related to the crystal symmetry and the
propagation direction. In cubic crystals, the pure transverse and longitudinal modes can be found
in [111], [110] and [001] directions. With respect to other directions, the sound propagating modes
have included the quasi-transverse or quasi-longitudinal waves. Therefore, the sound velocities can be
derived from elastic constants using following expressions [53]:

[100]vl =
√

C11/ρ; [010]vt1 = [001]vt2 =
√

C44/ρ, (16)

[110]vl =
√
(C11 + C12 + C44)/(2ρ), (17)

[110]vt1 =
√
(C11 − C12)/ρ, [001]vt2 =

√
C44ρ, (18)

[111]v1 =
√
(C11 + 2C12 + 4C44)/(3ρ), (19)

[112]vt1 = [112]vt2 =
√
(C11 − C12 + C44)/(3ρ), (20)

where ρ is the density; vl is the longitudinal sound velocity; vt1 and vt2 refer to the first and the second
transverse mode of sound velocity, respectively.

Generally, C11 has determined the longitudinal sound velocity along [100] direction. C44 is related
to the transverse modes along [010] and [001] directions. C11, C12 and C44 can influence the longitudinal
sound velocities along [110] and [111] directions in combination.

The longitudinal and the transverse sound velocities by both LDA and GGA methods along
[100], [110] and [111] directions for HfX compounds are exhibited in Table 5. For the sound velocities
obtained from LDA method, the longitudinal sound velocity vl of each compound is reduced in the
order of [111] > [110] > [100]. The anisotropic properties of sound velocities have also confirmed the
elastic anisotropies in these cubic crystals. Meanwhile, the sound velocities derived from GGA method
have shown the similar tendencies with those from LDA method.

Table 5. The calculated anisotropic sound velocities (m/s) for HfX (X = Os, Ir and Pt).

[111] [110] [100]

Crystal
orientations [111]vl [112]vt1,2 [110]vl [110]vt1 [001]vt2 [100]vl [010]vt1 [001]vt2

GGA method

HfOs 4796.0 2691.9 4425.2 3833.6 2653.8 4838.3 2653.8 2653.8
HfIr 4487.1 1679.3 4024.3 1763.5 2313.0 3882.6 2313.0 2313.0
HfPt 4094.4 1427.9 3743.5 1531.8 1941.7 3647.2 1941.7 1941.7

LDA method

HfOs 4930.2 2674.7 4545.3 3773.4 2687.7 4916.0 2687.7 2687.7
HfIr 4684.4 1668.4 4191.3 1607.1 2401.7 3996.8 2401.7 2401.7
HfPt 4243.2 1408.4 3882.7 1424.5 1980.3 3758.8 1980.3 1980.3

The theoretically calculated structural properties (i.e., density) and elastic properties (i.e., Bulk
modulus, shear modulus and Poisson’s ratio) can be used to deduce Debye temperature (Θ), as shown
in the following equation [26,54]:

Θ =
h
k
[
3n
4π

(
NAρ

M
)]

1
3
vD, (21)

where h is Planck’s constant (h = 6.626 × 10−34 J/s); NA is Avogadro’s number (NA = 6.023 × 10−23/mol);
k is Boltzmann’s constant (k = 1.381 × 10−23 J/K); M is the molecular weight; n is the number of atoms per
formula unit.
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vD is the average sound velocity in polycrystalline materials, as exhibited using the equation:

vD = [
1
3
(

1
v3

L
+

2
v3

T
)]
− 1

3
, (22)

where vT and vL are the transverse and longitudinal sound velocities, including:

vT =

√
G
ρ

, (23)

vL =

√
B + 4

3 G
ρ

, (24)

Table 6 shows the sound velocity (m/s) and Debye temperature (K) for HfX (X = Os, Ir and Pt)
calculated by GGA and LDA methods. Generally, these values calculated by LDA method have the
larger values than those computed by GGA method. Specifically, the following reduced orders have
shown as HfOs > HfIr > HfPt in Debye temperatures.

Table 6. Sound velocity (m/s) and Debye temperature (K) for HfX (X = Os, Ir and Pt).

Compounds vL (m/s) vT (m/s) vD (m/s) Θ (K)

GGA method

HfOs 4812.7 2676.5 2978.3 339.5
HfIr 4166.6 1808.2 2040.8 231.2
HfPt 3859.0 1538.0 1741.1 194.4

LDA method

HfOs 4924.5 2679.9 2987.0 346.2
HfIr 4303.0 1788.1 2021.4 233.1
HfPt 3979.1 1514.3 1716.5 195.2

3.6. Thermal Conductivity

The thermal conductivities (k) is a useful physical parameter for practical applications.
The thermal conductivity is reduced with elevating temperature to a limiting value known as the
minimum thermal conductivity (kmin), which can be evaluated according to Cahill’s model [55]:

kmin =
k

2.48
n

2
3 (vl + vt1 + vt2), (25)

where k is Boltzmann constant; n is the number of density of atoms per volume. vl and vt are the
longitudinal and transverse sound velocities, respectively (Table 7).

Table 7 exhibits the calculated kmin values using Cahill’s model. Generally, the lattice thermal
conductivity and the electronic thermal conductivity are the main compositions to the total thermal
conductivity. At lower temperature, the effect from electron-phonon scattering is considered limited.
Therefore, the thermal conductivities of HfX (X = Os, Ir and Pt) are ascribed to the lattice thermal
conductivities at the ground state. The derived thermal conductivities are found small thereby.
Based on Callaway-Debye theory [56], the lattice thermal conductivity is proportional to Debye
temperature. It means a higher Debye temperature should correspond to a larger lattice thermal
conductivity. Therefore, HfOs has the larger thermal conductivity than HfIr and HfPt in order. It is
seen that the values offered by the GGA method are always smaller, but own the similar tendency with
the LDA method. These HfX compounds show the relatively lower thermal conductivities, indicating
that they are poor thermal conductors at the ground state.
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Cahill’s model is suitable to discuss the anisotropic behavior of compounds on the thermal
conductivity, since it has involved with treating the total thermal conductivity in association with
each acoustic branch. For instance, it is seen that the calculated thermal conductivities have exhibited
anisotropic behaviors owing to the differences of vl, vt1 and vt2 along [100], [110] and [111] directions.
In detail, kmin[111] is always smaller than kmin[100] and kmin[110], suggesting that the dependence
of thermal conductivities along [111] direction is less prominent than those along [100] and [110]
directions. Although there is lacking experimental values for comparison, our theoretical results
should prove the guidance for future studies.

Table 7. Calculated minimum thermal conductivities kmin (W/m/K) for HfX (X = Os, Ir and Pt).

Compounds n (10303) [100] kmin [110] kmin [111] kmin kmin

GGA method

HfOs 0.0561 0.828 0.890 0.391 0.829
HfIr 0.0551 0.686 0.653 0.362 0.627
HfPt 0.0528 0.590 0.565 0.321 0.543

LDA method

HfOs 0.0590 0.868 0.929 0.416 0.868
HfIr 0.0581 0.735 0.685 0.391 0.658
HfPt 0.0558 0.627 0.592 0.345 0.569

4. Conclusions

The structural, electronic and elastic properties of B2 HfX (X = Os, Ir and Pt) compounds have
been studied using first-principles calculations. Initially, the structural optimizations are comparable
and acceptable for HfX compounds using both GGA and LDA methods. The calculated formation
enthalpies by GGA and LDA methods have confirmed that the thermodynamic stability is in the order
of HfPt > HfIr > HfOs. Secondly, the calculated electronic structures are derived, and similar features
are identified in DOS spectra for HfX. The results show the sequence of structural stability should
be HfPt > HfIr > HfOs, which is in good agreement with thermodynamic analyses. Mechanically,
the elastic moduli obtained by GGA method are typically smaller than LDA method. In detail,
the calculated bulk moduli using VRH method are in good agreement with those provided by EOS
equation. Besides, the calculated bulk moduli are in the order of HfOs > HfIr > HfPt, where the bulk
moduli can be correlated with electron densities in compounds. Additionally, Young’s modulus has
augmented linearly with the shear modulus. HfOs has the Young’s modulus of 314.1 GPa and hardness
of 13.4 GPa by GGA method, which should be a credible hardening phase in pure Hf. Then, the ductile
essence is in the sequence of HfPt > HfIr > HfOs according to the analyses on Poisson’s ratio and B/G
ratio. Based the universal anisotropic indexes and 3D surface constructions, the elastic anisotropy
has followed the increasing order of HfIr > HfPt > HfOs. Finally, the anisotropy of acoustic velocities,
Debye temperatures and thermal conductivities are obtained and discussed. Our results are hoped to
inspire future experimental and theoretical investigations on these Hf-based compounds.
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Abstract: Based on the strain rates of 2 × 108 s−1 and 2 × 1010 s−1, molecular dynamics simulation
was conducted so as to study mechanisms of crack propagation in nanoscale polycrystal nickel.
The strain rate has an important effect on the mechanism of crack propagation in nanoscale
polycrystal nickel. In the case of a higher strain rate, local non-3D-crystalline atoms are induced
and Lomer-Cottrell locks are formed, which plays a critical role in crack initiation and propagation.
Orientation difference between adjacent grains leads to the slipping of dislocations along the different
directions, which results in the initiation of a void near the triple junction of grain boundaries and
further contributes to accelerating the crack propagation.

Keywords: metals; deformation; crack growth; polycrystal; molecular dynamics

1. Introduction

Fracture of engineering materials frequently leads to failure of structures and components and
thus this issue has attracted more and more attention in the engineering fields. Continuum mechanics
and theory have played a significant role in investigating the mechanisms of fracture of engineering
materials. In particular, fracture frequently takes place along with plastic deformation in metal
materials. In general, the occurrence of fracture is closely related to the initiation and propagation
of cracks or the initiation and growth of voids. In the most common circumstances, the mechanism
of crack formation in the ductile metals involves a process of nucleation, growth and coalescence
of voids. Therefore, it is of great significance to reveal the mechanism of initiation and propagation
of cracks on the basis of several length scales, such as the macroscale, mesoscale, microscale and
nanoscale (or atomic scale). So far, based on the aforementioned four scales, many researchers
have devoted themselves to revealing the mechanisms of initiation and propagation of cracks by
numerical simulation methods which principally include continuum mechanics finite element method
(CMFEM), crystal plasticity finite element method (CPFEM), discrete dislocation dynamics (DDD)
method and molecular dynamics (MD) method. These simulation methods are suitable for various
scales, where each scale can be separately used for analyzing the mechanisms of crack propagation.
Furthermore, multiscale modeling and simulation have been applied to investigate the mechanisms
of crack propagation. One approach is to deliver information from a lower scale to a higher scale by
means of the parameters involved. Another approach is to directly couple the different scales on the
basis of a single computation, such as coupling molecular dynamics with continuum plasticity [1],
coupling discrete dislocation dynamics with crystal plasticity [2], and coupling molecular dynamics
with discrete dislocation dynamics [3].

It is well known that the simulation methods based on different scales play different roles in
analyzing the mechanisms of crack propagation. In general, CMFEM is established on the basis of linear
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elastic or elastic plastic fracture mechanics. Therefore, the merit of CMFEM is that it is able to resolve
the fracture problems at the macroscopic scale, where it can be used to obtain the stress field, the strain
field, the size and shape of plastic zone around the crack tip and the stress intensity factor [4,5].
Compared with CMFEM, the main advantage of CPFEM is that it is able to tackle anisotropic
micromechanical problems in crystalline materials, where their mechanical effects are dependent
on orientation due to the underlying crystalline structure [6,7]. Therefore, CPFEM becomes a powerful
candidate for understanding the mechanisms of crack propagation when the crack propagates in
a single crystal or in a polycrystal with crystallographic texture [8,9]. Kartal et al. [10] studied the
effect of crystallographic orientation on stress state and plasticity at the crack tip in a hexagonal
close-packed (HCP) single crystal Ti through CPFEM and they found that the size and shape of the
plastic zone at the crack tip is strongly dependent on crystallographic orientation, but the stress state
at the crack tip shows little dependence on crystallographic orientation. Sabnis et al. [11] studied the
influence of secondary orientation on plastic deformation near the notch tip in a notched Ni-based
single crystal by means of CPFEM, where the slip patterns and the size and shape of plastic zone
are strongly dependent on the secondary orientation of the notch, which has an important effect
on the initiation and propagation of crack. Li et al. [12] predicted the initiation of a fatigue crack
in a polycrystalline aluminum alloy by means of CPFEM, where the grain size, grain shape and
grain orientation are considered. Lin et al. [13] studied the propagation of a transgranular crack in
a polycrystalline nickel-based superalloy by means of CPFEM and they demonstrated that plastic
deformation at the crack tip is related to the grain orientation.

Discrete dislocations play a dual role in plastic deformation at a crack tip. On one hand,
plastic deformation, which results from the motion of dislocations, enhances the resistance to crack
propagation. On the other hand, local stress concentrations induced by organized dislocation structures
contribute to crack propagation. Therefore, the advantage of the DDD method is that it is able to
simulate the plastic deformation near the crack tip or around the void according to the evolution of
discrete dislocations and hence it is capable of capturing the formation of dislocation structures at
a microscopic scale [14–16]. In particular, the DDD method has been frequently used to capture the
details of discrete dislocation evolution near the crack tip and around the void. So far, the DDD method
has been applied from a single crystal material to a polycrystalline material. Segurado and Llorca [17]
revealed the micromechanisms of plastic deformation and void growth in an isolated face-centered
cubic (FCC) single crystal by means of the DDD method. Liang et al. [18] investigated the interaction
between the blunt crack and the void in a single crystal by virtue of the DDD method, and they
focused on the crack-tip deformation, the void growth. Huang et al. [19] applied the DDD method
to simulating plastic deformation near a transgrannular crack tip under cyclic loading conditions
by taking into account both dislocation climb and dislocation-grain boundary in a polycrystalline
nickel-based superalloy.

As an atomistic simulation technique, MD simulation plays an important role in describing the
atomic behavior during plastic deformation and crack propagation of metal materials under mechanical
loading. So far, MD simulation has been extensively applied to studying the basic mechanism of
crack propagation in single crystal and bicrystal metal materials. Sung and Chen [20] studied crack
propagation in single crystal nickel via MD simulation, where they found that Shockley partial
dislocations are initiated at the crack tip, and they then propagate along the close-packed (111) plane
until the crystal is fractured. Zhang and Ghosh [21] investigated the deformation mechanisms at the
crack tip of single crystal nickel with an embedded crack by means of MD simulation and they proposed
that some lattice orientations lead to the emission of dislocation loops, whereas other lattice orientations
contribute to the formation of twins. Zhou et al. [22] investigated the intergranular crack propagation
behaviors of copper bicrystals with different symmetrical tilt grain boundaries via MD simulation.
Shimokawa and Tsuboi [23] studied the atomic-scale mechanism of plasticity at intergranular crack tip
of aluminum bicrystal with tilt grain boundary via MD simulation. Zhang et al. [24] investigated the
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mechanism for intercrystalline crack propagation at twist boundary of nanoscale bicrystal nickel by
means of MD.

To our knowledge, few papers in the literature have reported the mechanisms of crack propagation
in the polycrystal metal materials via MD simulation. In the present study, on the basis of
MD simulation, we comparatively investigate the mechanisms of crack propagation in nanoscale
polycrystal nickel in the case of the different strain rates in order to reveal the effect of strain rate on
the initiation and propagation of a crack.

2. Modeling and Methods

2.1. Simulation Model

The MD models for nanoscale polycrystal nickel is established based on the non-periodic boundary
conditions, as shown in Figure 1. In the simulation, [111], [112] and [110] directions were set as x, y
and z directions of the Cartesian reference frame, respectively. In addition, twist boundaries were
applied in all the grain boundaries. The lattice orientations for the grains are illustrated in Figure 1a.
All the models were determined as the dimension of 20 × 20 × 5 unit cells, and a notch with the
size of 5 × 1 × 5 unit cells was preset in one grain. The simulation is performed according to the
following two steps. Firstly, energy minimization was conducted on the initial configurations by fixing
the y-direction boundary. Secondly, a velocity-controlled tensile load was applied on the two ends
labeled fixed atoms in Figure 1a, where the strain rates were chosen as 2 × 108 s−1 and 2 × 1010 s−1,
respectively. All the simulations were performed at 0.01 K in order to eliminate the thermal effects.
Figure 1b,c illustrate the configurations before relaxation and after relaxation, respectively.

 

Figure 1. Models for nanoscale polycrystal nickel: (a) diagrams of grain orientations; (b) configurations
before relaxation; (c) configurations after relaxation.

2.2. Potential Function

In the current investigation, in order to describe the interactions among nickel atoms,
the embedded-atom-method (EAM) potential proposed by Foiles et al. [25] was applied, as expressed
in Equation (1).

Etotal = ∑ Fi(ρh,i) +
1
2∑

i
∑
j �=i

ϕij(Rij) (1)

where Etotal is the total energy in the system, ρh,i the host electron density at atom i due to the remaining
atoms of the system, Fi(ρ) the energy for embedding atom i into the background electron density ρ,
and ϕij(Rij) the core-core pair repulsion between atoms i and j separated by the distance Rij. In addition,
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Fi is related to the element of atom i alone and ϕij is related to the elements of atoms i and j. As stated
above, the electron density is approximated by the superposition of atomic densities, namely

ρh,i = ∑
j �=i

ρj(Rij) (2)

where ρj(Rij) is the electron density supplied by atom j.

2.3. Simulation Methods

In the current investigation, all the simulations were implemented via LAMMPS software [26].
Since only the global mechanical behaviors are considered, Virial stress for an atomic system was used.
Lagrangian virial stress has been confirmed to be the most accurate one in terms of evaluating the
stress value in dynamical simulations [26].

The centrosymmetry parameter (CSP) was used for analyzing the Shockley partial dislocations
as well as stacking faults (SFs), which are induced by tensile deformation. As for the FCC structure,
the CSP is defined as follows [27].

P = ∑
i=1,6

∣∣∣∣→Ri +
→
Ri+6

∣∣∣∣
2

(3)

where Ri and Ri+6 are the vectors which correspond to six pairs of opposite nearest neighbors in the
FCC lattice. As for atoms in a perfect nickel lattice, the CSP, P, is defined as zero. However, if the
nickel lattice is subjected to distortion, the value of P will not be zero. Instead, the specific value of the
parameter P will correspond to a particular defect. The dislocation atoms can be observed when all the
surface and perfect atoms within the simulation domain are removed.

In order to visualize the defects in the nanoscale nickel crystals, atoms were colored via common
neighbor analysis (CNA) [28]. This method is able to detect the environment which an atom is located
in, HCP environment or FCC environment. AtomEye [29], a visualization software, was applied
for identifying the deformation mechanisms during simulations. In the current investigation,
HCP atoms were displayed by light blue color, FCC atoms were expressed by dark blue color and
non-3D-crystalline atoms were exhibited by red color. In addition, VMD (Version 1.9.3, Theoretical and
Computational Biophysics Group, Urbana, IL, USA, 2016), another visualization software, was also
applied to identify the changes in grain boundaries [30].

3. Results and Discussion

Figures 2 and 3 show the process of crack propagation, along with plastic deformation,
in nanoscale polycrystal nickel in the case of 2 × 108 s−1 and 2 × 1010 s−1, respectively. It can be found
from Figures 2 and 3 that in the process of crack propagation, a void begins to occur in the interior of
the middle grain. With the progression of plastic deformation, the void gradually grows and finally
merges with the initial crack, which contributes to the rapid crack propagation. As a consequence,
at the strain of 0.48, the middle grain is subjected to fracture. In the case of high strain rate, in particular,
the void tends to be nucleated at trigeminal grain boundaries. In addition, as for different strain rates,
the direction in which the void grows exhibits a certain distinction. The phenomenon indicates that the
strain rate has an important effect on mechanism of crack propagation in nanoscale polycrystal nickel.
It can be generally accepted that the strain rate plays a critical role in the mechanical properties of
crystal since it has a predominant influence on the crack propagation. In order to further understand
the mechanical properties of nanoscale polycrystal nickel, tensile stress-strain curves are obtained,
as shown in Figure 4. It can be seen that purely elastic deformation occurs at early stage of deformation,
where the stress increases linearly with increasing strain. When the strain reaches a critical value,
the stress drops sharply with increasing strain, which is aroused by the rapid crack propagation.
Furthermore, it is evident that the yield stress of nanoscale polycrystal nickel at the strain rate of
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2 × 1010 s−1 is much higher compared with the one at the strain rate of 2 × 108 s−1, which means that
the crack propagation is sensitive to the strain rate.

 

Figure 2. Process of crack propagation in the polycrystal nickel at the strain rate of 2 × 108 s−1: (a) ε = 0;
(b) ε = 0.06; (c) ε = 0.12; (d) ε = 0.18; (e) ε = 0.24; (f) ε = 0.36; (g) ε = 0.42; (h) ε = 0.48.

 

Figure 3. Process of crack propagation in the polycrystal nickel at the strain rate of 2 × 1010 s−1:
(a) ε = 0; (b) ε = 0.06; (c) ε = 0.12; (d) ε = 0.18; (e) ε = 0.24; (f) ε = 0.36; (g) ε = 0.42; (h) ε = 0.48.

Figure 4. Tensile stress-strain curves for the polycrystal nickel at different strain rates.
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For the purpose of further clarifying the process of crack propagation in nanoscale polycrystal
nickel, the evolution of the atomic configuration along with crack propagation is captured on the basis
of CNA in the case of 2 × 108 s−1 and 2 × 1010 s−1, as shown in Figures 5 and 6. It can be found
that the dislocations which are emitted from the grain boundaries and the crack tip are capable of
moving along the slip plane in the various directions because there is the orientation difference among
the grains. In the case of the two strain rates, dislocation slip mainly appears in the middle grain,
as well as in the grain which is located to the right of the middle grain. Furthermore, the directions in
which the dislocations slip in the two grains exhibit the great discrepancy, which is responsible for the
initiation of the void. Compared to 2 × 108 s−1, HCP atoms are distributed in a more complicated way
in the nanoscale polycrystal nickel subjected to tensile deformation at the strain rate of 2 × 1010 s−1,
where more slip planes are activated.

 

Figure 5. Evolution of atomic configuration for crack propagation in polycrystal nickel at the strain
rate of 2 × 108 s−1: (a) ε = 0; (b) ε = 0.06; (c) ε = 0.12; (d) ε = 0.18; (e) ε = 0.24; (f) ε = 0.36;
(g) ε = 0.42; (h) ε = 0.48. (All the configurations are characterized by common neighbor analysis (CNA),
where hexagonal close-packed (HCP) atoms were displayed by light blue color, face-centered cubic (FCC)
atoms were expressed by dark blue color and non-3D-crystalline atoms were exhibited by red color).

 

Figure 6. Evolution of atomic configuration for crack propagation in polycrystal nickel at the strain rate
of 2 × 1010 s−1: (a) ε = 0; (b) ε = 0.06; (c) ε = 0.12; (d) ε = 0.18; (e) ε = 0.24; (f) ε = 0.36; (g) ε = 0.42;
(h) ε = 0.48. (All the configurations are characterized by CNA, where HCP atoms were displayed by
light blue color, FCC atoms were expressed by dark blue color and non-3D-crystalline atoms were
exhibited by red color).
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For the sake of further clarifying the mechanism of crack propagation in the nanoscale polycrystal
nickel, the evolution of the atomic configuration, along with the crack propagation, is captured on the
basis of CSP, as shown in Figures 7 and 8. It can be observed from Figure 7 that, with the progression
of plastic deformation, Shockley partial dislocations occur along with stacking faults. In particular,
at the tensile strain of 0.18, the stacking faults in the adjacent grains are arranged against the grain
boundary in the different directions. This phenomenon further indicates that the dislocations in the
different grains slip along the different directions in order to accommodate the plastic deformation
due to the existence of the grain boundary. It can be seen in Figure 8 that at the early stage of plastic
deformation, two Shockley partial dislocations with a Burgers vector b1 = 1/6 [112](111) are initiated
from the grain boundary and the crack tip, respectively. Subsequently, increasing Shockley partial
dislocations are emitted from the grain boundaries and move along the close-packed {111} planes in
the grains. It can be generally accepted that the polycrystal possesses more defects due to the existence
of the grain boundaries. As a consequence, more dislocations are emitted from the grain boundaries
and then they advance along the various directions due to the orientation difference among the grains.

Figure 7. Evolution of atomic configuration in nanoscale polycrystal nickel subjected to early
deformation at the strain rate of 2 × 108 s−1: (a) ε = 0; (b) ε = 0.06; (c) ε = 0.084; (d) ε = 0.096;
(e) ε = 0.12; (f) ε = 0.18. (All the configurations are characterized by centrosymmetry parameter (CSP),
where stacking faults are companied by Shockley partial dislocations).
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Figure 8. Evolution of atomic configuration in nanoscale polycrystal nickel subjected to early
deformation at the strain rate of 2 × 1010 s−1: (a) ε = 0; (b) ε = 0.06; (c) ε = 0.084; (d) ε = 0.096;
(e) ε = 0.12; (f) ε = 0.18. (All the configurations are characterized by CSP, where stacking faults are
companied by Shockley partial dislocations).

Figures 9 and 10 give a more detailed description of the evolution of the atomic configuration along
with crack propagation in the nanoscale polycrystal nickel on the basis of CSP in the case of 2 × 108 s−1

and 2 × 1010 s−1, respectively. It can be found that when the nanoscale polycrystal nickel is subjected
to plastic deformation in the case of 2 × 1010 s−1, local non-3D-crystalline atoms are induced and
Lomer-Cottrell locks are formed. However, in the case of 2 × 108 s−1, neither non-3D-crystalline atoms
nor Lomer-Cottrell locks are induced, but stacking faults are captured. The phenomena indicate that
the mechanisms of crack propagation are different from each other in the case of the two different strain
rates. It can be generally accepted that Lomer-Cottrell locks are induced by the interaction between two
Shockley partial dislocations which move along the two adjacent {111} slip planes. The Lomer-Cottrell
locks are capable of impeding the movement of dislocations, which results in pile-ups of dislocations.
As a consequence, the Lomer-Cottrell locks play a critical role in the initiation and propagation of
cracks. With the progression of plastic strain, more and more non-3D-crystalline atoms are induced
near the Lomer-Cottrell lock. Eventually, the non-3D-crystalline atoms are separated from one another
so as to relax the deformation energy, which consequently leads to the initiation and propagation of
a crack. Compared to the strain rate of 2 × 1010 s−1, when the nanoscale polycrystal nickel experiences
plastic deformation in the case of 2 × 108 s−1, the less slip systems are activated and consequently
Lomer-Cottrell locks are difficult to be formed and simultaneously the non-3D-crystalline atoms are
not easy to be induced as well. It can be concluded that in the case of the two strain rates, the initiation
of void is more attributed to the fact that the orientation difference between the two adjacent grains
leads to the slip of the dislocations along the different directions. Therefore, the occurrence of the void
is unavoidable so as to accommodate the compatibility of deformation.
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Figure 9. Detailed evolution of atomic configuration in nanoscale polycrystal nickel at the strain rate of
2 × 108 s−1: (a) ε = 0.096; (b) ε = 0.18. (All the configurations are characterized by CSP, where stacking
faults are companied by Shockley partial dislocations).

Figure 10. Detailed evolution of atomic configuration in nanoscale polycrystal nickel at the strain
rate of 2 × 1010 s−1: (a) ε = 0.096; (b) ε = 0.18. (All the configurations are characterized by CSP,
where stacking faults are companied by Shockley partial dislocations).
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4. Conclusions

Based on the strain rates of 2 × 108 s−1 and 2 × 1010 s−1, the mechanisms of crack propagation
in nanoscale polycrystal nickel are investigated by means of molecular dynamics simulation.
The following conclusions are drawn.

(1) The strain rate has an important effect on mechanisms of crack propagation in nanoscale
polycrystal nickel. The yield stress is sensitive to the strain rate, and the yield stress of nanoscale
polycrystal nickel at the strain rate of 2 × 1010 s−1 is much higher than the counterpart at the
strain rate of 2 × 108 s−1.

(2) When the nanoscale polycrystal nickel is subjected to plastic deformation in the case of
2 × 1010 s−1, local non-3D-crystalline atoms are induced and Lomer-Cottrell locks are formed.
However, in the case of 2 × 108 s−1, neither non-3D-crystalline atoms nor Lomer-Cottrell locks
are induced, but stacking faults are captured.

(3) Lomer-Cottrell locks are able to impede the movement of dislocations and thus lead to the
pile-up of dislocations. In addition, the non-3D-crystalline atoms are easy to be induced near
the Lomer-Cottrell locks. Consequently, Lomer-Cottrell locks contribute to accelerating the
propagation of crack.

(4) The orientation difference between the adjacent grains leads to slipping of dislocations along the
different directions, which results in the initiation of a void in the vicinity of the triple junction
of grain boundaries. The coalescence of the void with the crack contributes to accelerating the
propagation of cracks.
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Abstract: An ab initio-based model for the strength increase by short-range ordering of C-Mn-Al
clusters has been developed. The model is based on ab initio calculations of ordering energies.
The impact of clusters on the yield strength of high-manganese austenitic steels (HMnS) is highly
dependent on the configurational structure of the cells that carbon atoms will position themselves
as interstitial atoms. The impact of the alloying elements C, Mn, and Al on the potential and actual
increase in yield strength is analyzed. A model for the calculation of yield strengths of HMnS
is derived that includes the impact of short-range ordering, grain size refinement, and solid solution
strengthening. The model is in good agreement with experimental data and performs better than
other models that do not include strengthening by short-range ordering.

Keywords: short-range ordering; yield strength; high-manganese steel

1. Introduction

High Mn austenitic steels (HMnS) offer great combinations of hardness and ductility with
a wide range of possible applications in various industries, such as the automotive industry [1–3].
Depending on the stacking fault energy, which is a result of alloying content, temperature, deformation
grade, and other factors, HMnS exhibit a variety of different active deformation modes [4–7].
Those deformation modes include transformation induced plasticity (TRIP), twinning-induced
plasticity (TWIP) or pronounced planar glide in combination with the formation of dislocation
cells that is sometimes referred to as microband-induced plasticity (MBIP) [1,8–10]. The mode
of deformation significantly influences the level of work hardening and plays a major role in
determining the mechanical properties [7]. One of those material characteristics is the material’s
yield strength (YS). In the past, various attempts have been made to model the YS of HMnS based
on the chemical composition using linear regression [5,11–13]. However, these models often imply
negative solid-solution strengthening by some of the alloying elements, like Mn, that are usually
attributed to positive strengthening effects [2,14,15].

Interactions of carbon-metal pairs [16–18] and clusters are described by the concept of short-range
ordering (SRO) phenomena [19] in HMnS and might offer an explanation for an additional increase
in strength that might lead to a defective linear regression when using standard methods to calculate
the impact of solid solution strengthening [14,20,21]. Short-range ordered clusters are a result of local
differences in ordering energies that make particular unit cell configurations preferential to inhibit
a carbon atom [22]. Ab initio calculations employing density-functional theory (DFT) have been
shown to be suitable for calculations of ordering energies in HMnS for several chemical compositions.
For example, thermodynamic predictions of κ-phase stability [23], interface energies [24], stacking
fault energies [25], and hydrogen trap sites [26] showed good agreement with the experimental data.

Cell models [27] have been used to determine the location of carbon atoms in relation to the matrix
or substitutional alloying atoms. Other studies show that the interaction of carbon atoms with
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each other is very repulsive and, thus, influences the diffusion behavior [4,25,28–30], which also
points to a coordination of carbon atoms in octahedral sites dependent of surrounding solute atoms.
Additionally, the position of C also influences the stacking fault energy of the material [31].

Short-range ordering has also been used to explain the pronounced planar glide that HMnS exhibit
because of glide plane softening that occurs when short-range ordered C-Mn clusters are destroyed by
dislocation stresses reorienting the carbon atom from its octahedral position to a tetrahedral position.
This phenomenon also explains the serrated flow curves that can be found during tensile testing
of HMnS, as the back stresses of dislocation pile-ups lead to an increase in strength. The reorientation
of the carbon atom then leads to a temporary destruction of the short-range ordered cluster and
as a result, a rapid drop in strength because of subsequent softening of this glide plane [32]. However,
short-range ordering can be restored by short-range jumps of C back from the tetrahedral site to its
initial octahedral site [1,2]. Those short-range jumps might be activated by temperature, but already
occur at low temperatures where diffusion processes are usually negligible [1,32].

In this study, a basic cell model for the nearest-neighboring atoms of a central octahedral carbon
atom is expanded to include the corner atoms of an elementary cell of an austenitic face-centered cubic
(FCC) unit cell, which can be described as the second-nearest neighbors of the central octahedral site
in an austenitic cell [27]. Results of ab initio calculations are employed to show that the position of
Mn and Al being coordinated as a nearest neighbor or second-nearest neighbor to a central carbon
atom is of major importance to the energy level of the system [33]. It is assumed that this also holds
true in the case of a central interstitial nitrogen atom [2,33,34] but, in this work, the authors will focus
solely on carbon. Based on the calculated ordering energies, the yield strength of HMnS is a result
of a combination of short-range ordered clusters, regular solid-solution hardening, grain size effects,
and the base strength of an austenitic lattice [14,35].

2. Materials and Methods

Many models for the calculation of the yield strength of austenitic steels have been published
in the past. Those models generally employ two mechanisms to describe the yield strength:
a strengthening by grain size reduction, the Hall-Petch effect, and the alloying elements’ contribution to
the material’s strength [15,36,37]. Many of those models have used databases with significant amounts
of different alloys to employ a linear regression in order to get parameters that determine the effect of
alloying elements on the yield strength of the austenitic steel. Assuming that SRO in HMnS influences
the yield strength σY significantly, a term describing this effect has to be added to the equation [14],
resulting in:

σY= σ0+σSS+σGS+σSRO (1)

where σ0 is the base strength of a pure austenitic iron lattice and is assumed to be 90 MPa [14].
σSS is the contribution of alloying elements to the change in yield strength relative to a pure
austenitic lattice. Since this paper focuses on HMnS with the main alloying elements C, Mn, and
Al, those elements are assumed to be the main contributors to solid solution strengthening and the
contributions of other alloying elements are neglected. It is assumed that this does not lead to a large
mistake in calculating σSS because, apart from Mn and Al, no substitutional alloying element exceeds
alloying contents of more than 1 wt. %.

σSRO is the change in yield strength stemming from the existence of short-range ordered regions
in the material. Based on the work of [14], this contribution to yield strength can be calculated as:

σSRO = MτSRO = M
(

EOrder
b3

)
= M

(
Erandom−ESRO

b3

)
(2)
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where M = 3.06 is the Taylor-factor for fcc with b =
αγ√

2
being the magnitude of the Burgers vector and

the lattice parameter in austenite in Ȧ depending on the molar fractions xi of the alloying elements
and temperature in K [38]:

αγ =

(
3.5780 + 0.033xC + 0.00095xMn − 0.0002xNi

+ 0.0006xCr + 0.0056xAl + 0.0031xMo + 0.0018xV

)
×

(
1 + 2.065 × 10−9 × (T − 300)

)
(3)

Looking at Equation (3), the temperature dependence of the lattice parameter is assumed to be linear.
σGS describes the strengthening by grain refinement in accordance with the Hall-Petch effect and

can be formulated as:
σGS = kyd−1/2 (4)

Even though ky depends on the cooling procedure and the carbon content [39], the value
ky = 11.3 MPa mm1/2 seems to be a reasonable assumption for HMnS in general, based on the findings
in the literature [1,2,14,39–41].

As can be seen in Figure 1, one unit cell consists of 14 atoms situated on the lattice positions of
the FCC bracket and one central octahedral interstitial site, where a single carbon atom can be situated.

 

Figure 1. FCC-unit cell with 14 lattice positions for matrix atoms and one central interstitial atom.

First-nearest neighbors (1NN) are the six direct neighbors of the carbon atom. In Figure 1, they are
shown in green. Second-nearest neighbors (2NN) in this model are the grey atoms on the corners of
the FCC lattice. Although third-nearest neighbors (3NN) can be included in first-principle calculations,
a recent study has shown that neither 3NN Al atoms nor 3NN Mn atoms have a positive impact
o the ordering energy [33]. To reduce the complexity of the calculations and limit the amount of
possible cell configurations, the presence of 3NN alloying atoms is not accounted for in the analysis
carried out in this paper. Instead, it is assumed that the material is the sum of FCC-unit cells that
do not impact each other. This is obviously not true in reality, but for the purposes of this study,
which is aimed at providing a basic model to connect ab initio calculations with experimental results,
it is suitable, since it leads to reduced mathematical complexities. The term “cell configuration” is used
to describe the combination of alloying atoms and matrix atoms in the cell. “Coordination sphere”
is used throughout this paper to refer to the position of atoms relative to the central carbon atom.

The configurations of the cells based on the alloying contents for this 14-cell model are calculated
according to [27]:

nkl =
14!

(14 − k − l)!k!l!
θ
(14 − k − l)
Fe θk

Mnθ
l
Al (5)
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where nkl is the fraction of all cells that have a configuration with k Mn atoms and l Al atoms
with θi being the molar fraction of Fe, Mn, and Al, denying the existence of other substitutional
alloying elements and ignoring C, since carbon is an interstitial alloying element. Since diffusion
rates of substitutional atoms in austenitic steels are very low, it is assumed that the distribution of
substitutional elements according to Equation (5) is fixed and that the carbon atom is distributed in
accordance with a minimum ordering energy. For clusters of nitrogen and chromium, this approach
has been shown to be a realistic approximation, since the presence of nitrogen does not negatively
influence the homogeneous distribution of chromium [34]. Cells of type nkl that contain a carbon
atom are classified as nCkl . It should be noted that the assumption that substitutional atoms are
distributed according to minimum ordering energies with respect to the presence of a central carbon
atom is a very strong assumption, which is unlikely to be true in reality. However, without this
assumption, the calculation of ordering energies ΔECkl is not possible since ab initio results are
presently not available for those unfavorable configurations.

The ordering energy ΔECkl of a cell with k Mn atoms, l Al atoms and a central carbon atom
is the combination of two energy contributions in comparison to a FCC-unit cell consisting only of Fe
atoms and a central interstitial carbon atom. First, the energy required to bring a carbon atom in
solution ΔESol in a FCC-unit cell with respect to the presence of k Mn atoms and l Al atoms in the first
two coordination spheres. The second factor is the change in energy level ΔELat resulting from a lattice
distortion due to the presence of Mn and Al:

ΔECkl = ΔESol + ΔELat (6)

Ab initio calculations show that Al is preferentially situated in the second coordination sphere and
Mn has a positive effect on the ordering energy level if it sits on a lattice position as a 1NN [22,25,33].
According to those studies, this means that the difference in ordering energy is so profound that
the likelihood of a cell configuration that contains 1NN Al atoms instead of 2NN Al atoms or 2NN Mn
atoms instead of 1NN Mn atoms is very low. Accordingly, for further calculations in this work and to
reduce the model’s complexity, it is assumed that for any number of Mn atoms up to six, they will
always be 1NN and for any number of Al atoms up to 8, they will always be 2NN.

Using the calculated ordering energies ΔECkl from [33], the six cells with the lowest ordering
energies are listed in Table 1 and shown in Figure 2.

Table 1. Cell configurations of lowest ordering energy ΔECkl .

Cell Name nCkl k Mn Atoms l Al Atoms ΔECkl [eV]

nC08 0 8 −1.2867
nC18 1 8 −1.1524
nC28 2 8 −1.0559
nC07 0 7 −0.9304
nC68 6 8 −0.9287
nC38 3 8 −0.9233
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Figure 2. Energetically most favorable cell configurations.

In Equation (2), Erandom describes the energy state of an unordered alloying system. In this case,
a single carbon atom is situated in the central octahedral sites of a randomly chosen FCC-unit cell.
This distribution is based on the assumption that there are no preferential octahedral sites, so neither
the presence of Mn nor Al influences the position of carbon atoms. Thus, it can be assumed that,
for the calculation of Erandom, the likelihood of the presence of carbon is the same for each type of cell.

Using the random C distribution for Erandom, Erandom is calculated according to:

Erandom =
14

∑
k=0

14

∑
l=0

nCkl,randomΔECkl , for k + l ≤ 14 and k, l ≥ 0 (7)
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nCkl,random = nkl×θC (8)

Since ∑ nkl = 1, this method of determining nCkl,random ensures that carbon is distributed
homogeneously in the material, as well as ensuring that every available carbon atom is situated
in an octahedral site of a cell.

Contrary to the homogeneous distribution of carbon for Erandom, the distribution of C for
the calculation of ESRO is based on the calculated ordering energies [33]. Since the differences in
ordering energy between different cell configurations are significant, as is shown in Table 1, it is
assumed that carbon is always situated in the most favorable cell that has not already been assigned
a carbon atom. Assuming that at higher temperatures, for example during recrystallization annealing,
the diffusion of carbon as an interstitial alloying element is possible, carbon will diffuse to positions
with minimal ordering energy in order to minimize the system’s Gibbs energy. This means that the
cells selected for saturation with carbon are the cells with the lowest ΔECkl until nCkl,SRO = θC.

The calculation of ordering energies in the model presented within this work was performed via ab
initio simulations based on quantum-mechanical structure optimizations employing density-functional
theory (DFT) within the Vienna ab initio Simulation Package (VASP) [33]. The quantum-mechanical
structure optimizations are performed based on calculations of lowest-energy states of the electron
structure and thus, are conducted at 0 K. Results from ab initio approaches employing DFT have offered
good results that are in line with experimental evidence. For example, Mössbauer spectroscopy [17],
atom-probe tomography (APT) [42], in situ synchrotron X-ray diffraction measurements [23],
and correlative TEM/APT approaches [43] have shown that results from ab initio simulations
employing DFT are applicable to systems containing nano-sized κ-carbides that are usually formed
during isothermal annealing at temperatures of 600 ◦C and above. Generally speaking, the effect
of temperature changes on the lattice parameter and on intrinsic material properties that derive from
electron effects like electrical conductivity is often approximated to be linear [44]. The serrated flow
curves of many high-manganese TWIP steels usually occur at temperatures of up to about 200 ◦C.
At higher temperatures, this dynamic strain aging-like effect is either very small or is not detected at all [2,7].

In order to model the temperature dependence of σSRO, the ab initio results are fitted using a linear
approximation of a decrease in σSRO between 0 K and 500 K. For this purpose, it is assumed that the
fact that no serrated flow curve is expected at 500 K can be interpreted as a result of no significant
strength increase by short-range ordered clusters.

Based on those assumptions and equations, σY,calc in MPa was calculated using Equations (2), (3),
and (7) for 13 different HMnS with known average grain sizes dm in μm, listed in Table 2. The alloying
contents are given in wt. %.

Table 2. Chemical composition of HMnS used in this study in wt. %; grain size dm in μm;
experimentally determined and calculated yield strength σY,exp and σY,calc in MPa, experimental data
of alloys marked with * are taken from [14].

Alloy C Mn Al dm σY,exp σY,calc

X60MnAl17-1 0.56 17.00 1.35 8 328 356
X50MnAl15-1 * 0.49 15.40 1.30 27 294 281
X30MnAl22-1 0.33 22.46 1.21 18 277 275
X30MnAl17-1 0.32 16.80 1.47 17 255 276

X70Mn24 0.71 23.50 0.01 16 334 334
X60Mn23 0.57 23.21 0.01 10 328 334

X50Mn30 * 0.50 30.00 0.00 30 276 273
X50Mn22 0.54 21.95 0.00 14 328 311

X50Mn18 * 0.53 17.90 0.01 8 356 341
X30Mn28 0.28 28.00 0.00 9 291 294
X30Mn23 0.32 22.79 0.01 10 284 291

X30Mn22 * 0.31 22.28 0.00 3 381 384
X30Mn13 * 0.30 12.74 0.01 10 266 274
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Experimental yield strength data was taken from the literature [5,14]. Additionally, quasistatic
tensile tests have been carried out using a Zwick Z250 tensile testing machine of the AllroundLine by
Zwick Roell (Ulm, Germany).

σSS has been calculated using a linear approximation to explain the differences between
experimental and calculated values for the yield strength using the following equation that is a direct
result of Equation (1):

σSS,exp = σY,exp − σγ−Fe − σGS − σSRO (9)

This way, σSS,exp was determined for all steels in Table 2. A regression analysis was performed
with respect to the alloying contents of C, Mn, and Al.

The regression analysis lead to the following equation to calculate σSS with respect to the alloying
contents χi in weight percent:

σSS = 84.55χC + 1.35χMn + 0.44χAl (10)

Overall, the lattice distortion effect of carbon is by far the strongest contribution to solid solution
hardening. This is in accordance with calculations of the misfit of C in an octahedral site using
the crystallographic correlation rOL

rFe
= 0.41. Comparing the size of the octahedral site to the size

of a carbon atom shows that a carbon atom is approximately 8% bigger than the octahedral site,
leading to a lattice distortion. Using the lattice parameter calculated according to Equation (3),
this size difference can be calculated to approximately 0.03 nm. Comparing this value with the lattice
distortion effects by Al and Mn in an austenitic steel according to [45], which are 0.000065 nm

wt. % Mn and
0.00095 nm

wt. % Al respectively, the difference in contributions between C and Mn and Al in Equation (10)
appear to be reasonable.

3. Results and Discussion

Figure 3 shows that the calculations for the yield strength σY,calc using the proposed model show
good agreement with the experimental data.
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Figure 3. Comparison of calculated and experimental values for σY .

The calculations used in this work lead to differences between σY,calc and σY,exp that are smaller
than 10%. Those small differences between σY,calc and σY,exp might be a result of a negligence of other
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alloying elements that participate in solid solution hardening, minor inaccuracies of the measurement
of the alloying contents, or dm.

Since σSRO can also be understood as a deviation from linear solid solution hardening behavior,
a close relationship between σSS and σSRO seems logical. Higher alloying contents of C, Mn, and
Al lead to a higher solid solution strengthening, but also to more carbon atoms integrated in Mn-C,
Al-C, and Mn-Al-C clusters, as well as a higher amount of cells with more Al atoms in the second
coordination sphere or Mn atoms in the first coordination sphere according to Equation (5).

The individual contributions of solid solution hardening σSS and σSRO are illustrated in Figure 4.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

σ S
S [

M
Pa

]

σSRO [MPa]

 X60MnAl17-1
 X50MnAl15-1
 X30MnAl22-1
 X30MnAl17-1
 X70Mn24
 X60Mn23
 X50Mn30
 X50Mn22
 X50Mn18
 X30Mn28
 X30Mn23
 X30Mn22
 X30Mn13

Figure 4. Contributions of σSS and σSRO to yield strength.

The strengthening effect of short-range ordered clusters σSRO is dependent on the chemical
composition. For the steel compositions analyzed within the scope of this work, σSRO at room temperature
is approximately in the range of 20 MPa for X30Mn28, containing 0.28 wt. % C and 28.00 wt. % Mn, and
65 MPa for X60MnAl17-1, containing 0.56 wt. % C, 17.00 wt. % Mn, and 1.35 wt. % Al.

Based on Figure 4, one could think, that the connection between σSS and σSRO is approximately
linear. However, it needs to be kept in mind that the calculation of σSS is based on linear approximations
as well. Additionally, it should be pointed out that although the contribution of σSS to σY is always
greater than that of σSRO, the proportion between σSS and σSRO does not seem to follow a linear trend
based on chemical composition. This is illustrated by the line in Figure 4 that represents a relation of
σSS
σSRO

= 1. To further point out the differences in the contributions to σY, the individual contributions
of σGS, σSS, and σSRO are portrayed in Figure 5.

According to Figure 5, the contribution of σSRO to σY is significant. The proportional contribution
of σSRO to σY is in the range of 7.1% for X30Mn28 up to 19.1% for X70Mn24. Since a grain size effect on
σSRO is not assumed in this work, the impact of σSRO for a given steel composition with larger grain
size is higher than for the same steel composition with finer grains. Correspondingly, the proportional
contribution of σSRO that is portrayed in Figure 5 is higher for compositions with larger grains and
thus, with smaller grain size strengthening effects σGS.

The comparison of σSS and σSRO for the steels X30Mn13 and X30Mn22 could lead to the conclusion
that an increase in Mn content does not significantly influence σSRO. On the other hand, by comparing
X30Mn22 with X30Mn28, it does appear that Mn actually reduces σSRO. Accordingly, based on these
calculations, no clear tendency of the impact of a single alloying element on σSRO can be found.
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For a more detailed analysis, the impact of C and Mn on σSRO is portrayed in Figures 6 and 7
with regards to the development of σSRO, σSS, Erandom, and ESRO for steels with and without Al.
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Figure 6 analyzes a steel with a constant Mn content of 22 wt. % with increasing C content from
0.0 wt. % up to 0.8 wt. %. Additionally, seven steels that were studied in this work were selected to
illustrate the impact of changes in Mn content and Al content.

According to Figure 6a, σSRO and σSS increase approximately linearly with C content. This can be
explained by an increasing number of cells with carbon atoms. In theory, this increase in σSRO will
only occur as long as there are cells with a preferential structure available, which leads to a decrease
in ordering energy ESRO, as can be seen in Figure 6b. If no preferential cells were available, C atoms
would have to be situated in non-preferential cells with ΔECkl > 0 eV. To a small degree, this effect is
included in the calculation of Erandom because C is assumed to be homogeneously distributed among
all cells, including those with positive and, thus, unfavorable values of ΔECkl . This explains the lower
rate of decrease of Erandom in Figure 6b compared to ESRO. However, σSRO will always remain positive
because, according to Equation (2), as long as Erandom is bigger than ESRO, σSRO will be positive.
This premise is always fulfilled by using the assumption in this work, that carbon will be situated
in the cells of lowest possible ordering energy first and that the distribution of alloying elements for
the calculation of Erandom and ESRO is the same.

Looking at Figure 6a, the steels with Al, X30MnAl22-1 and X30MnAl17-1, show positive deviations
for the calculated values of σSRO and X30MnAl17-1 shows a negative deviation for σSS. In the case
of solid solution strengthening for X30MnAl17-1, this can be explained by the low Mn content
of 16.80 wt. % compared to the 22.00 wt. % used as a basis of calculation of σSS in Figure 6.
Accordingly, X70Mn24 and X60Mn23 show slightly higher values for than σSS it would be the case for
22.00 wt. % Mn.

The increase of σSRO can be explained by the impact of the introduction of new cell configurations
containing Al atoms. According to Table 1, nC08 is the lowest possible energy configuration.
However, since the Al content of the steels in this study is very low, only very few cells with
the configuration nC08 are available. The majority of Al atoms is in cells also containing Mn atoms.
According to [33], the introduction of Al atoms as a 2NN into cells with Mn atoms as 1NN does not
necessarily lead to a lower ordering energy, but is rather dependent of the number of 1NN Mn atoms.
The molar fraction of Mn in a steel containing 22 wt. % Mn obviously depends on the wt. % of the other
alloying elements. For the X30MnAl22-1, the molar fraction of Mn is approximately 0.23. According to
Equation (5), the most common cell configuration is expected to be n30. The ordering energy of the cell
configuration nC30 is ΔEC30 = −0.0501 eV. This means that this cell configuration is preferential to
a pure iron FCC-unit cell. Increasing the number of Al atoms in this cell configuration to 1 and 2
respectively results in ΔEC31 = −0.0082 eV and ΔEC32 = 0.0338 eV. Both cell configurations are not
preferential with respect to nC30 which according to previous assumptions means that the cells nC31 and
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nC32 will not contain a carbon atom as long as there are other more preferential cell configurations like
n30 that do not already contain a carbon atom. In turn, ESRO will not be negatively influenced by cell
configurations like nC31 and nC32. However, Erandom will include the negative impact of unfavorable
cell configurations which will lead to an increase of Erandom and a total increase of σSRO.

Overall, it can be said that the positive impact of Al on σSRO is a result of an introduction
of favorable cell configurations containing Al atoms that inhibit a carbon atom and the avoidance of
cell configurations of unfavorable cell configurations.

Figure 7 analyzes a steel with a constant C content of 0.3 wt. % with increasing Mn content from
10 wt. % up to 30 wt. %. Seven steels with varying Al and C content were added to the diagram.

Contrary to the impact of C that is documented in Figure 6, a local maximum of σSRO
at approximately 16 wt. % Mn is observed. Looking at Figure 7b, this can be explained by the stagnation of
ESRO for Mn contents of 16 wt. % and higher. At the same time, Erandom is decreasing, leading to a smaller
difference between Erandom and ESRO and accordingly to a lower σSRO.

The stagnation of ESRO can be explained by considering the method of calculation for σSRO.
For Al-free steels, the energetically optimal cell is n60. As long as θC <nC60, an increase in the amount
of C atoms will decrease ESRO. This is due to the underlying assumption that C atoms will be situated
in preferential cells of lowest possible ordering energy. At θC = nC60, all C atoms are situated in
cells of optimal configuration and thus, ESRO is minimized. Due to the way Erandom is calculated in
Equation (7), Erandom continues to decrease at θC > nC60. As a result, σSRO decreases.

In accordance with Figure 6a, Figure 7a shows that additions of Al and C increase σSRO significantly.
The contribution of solid solution hardening σSS increases linearly with the Mn and C content, as it is

to be expected considering Equation (10).
To conclude, unlike for the addition of C, Mn additions do not always increase σSRO. This is

a result of a stagnation of ESRO because of a saturation of preferential cells with carbon. In theory,
the same effect should be noticeable for C and Al, as well. However, because of the comparably low
alloying contents of those elements, it is very unlikely that a point of saturation will be reached in
common alloys.

This decrease in σSRO can be understood as the impact of the deviation from linear solid solution
hardening. If the ratio of Mn atoms to Fe atoms becomes increasingly larger and the amount of cells
with randomly-distributed Mn increases, the impact of an actual ordering of Mn decreases since fewer
cells are brought into short-range ordering to minimize the ordering energy.

Overall, the change of EOrder with varying contents of alloying elements can be understood as
the effectiveness of an alloy addition of those elements with respect to the increase in strength by
short-range ordering. Since it is assumed that σSS follows a linear trend and σGS is fixed,

∣∣∣δEOrder
δχi

∣∣∣ is an

indicator for the effectiveness of an addition of an alloying element. A higher
∣∣∣δEOrder

δχi

∣∣∣ means a greater
efficiency in employing an addition of the alloying element i. Looking at Figures 6 and 7, C and Al
both appear to be more efficient than Mn in increasing the yield strength by short-range ordering.

In order to compare the accuracy of the model used in this work to calculate σY with other
descriptive models, σY,model according to models by Pickering [15], Lorenz [15], Bouaziz [11],
De Cooman [2], and Choi [46] has been calculated. The equations used for σY,model are listed in
Table 3. The coefficients used for the alloying contents are in MPa

wt. % , coefficients for grain size influence
are in MPam0.5 unless stated otherwise. It needs to be pointed out that although all of the models
are for austenitic steels, only the models of Bouaziz, De Cooman, and Choi are specifically for HMnS.
Additionally, some of the models include coefficients for the Hall-Petch effect while others neglect
them. In order to be able to compare the models, the grain size effect has been calculated according to
Equation (4) and added to the model calculations of Choi and Bouaziz.
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Table 3. Solid solution hardening models in the literature.

Model σY,model

Pickering 68 + 493N + 354C + 3.7Cr + 14Mo + 20Si + 0.22d−1/2

Lorenz 40 + 450N + 525C + 2Mn + 8.4Cr + 22Mo + 5Cu + 0.77d−1/2

Bouaziz 228 + 137C − 2Mn + σGS
De Cooman 189 + 413/

√
(d[μm])

Choi 97 + 279C − 1.5Mn + 49.6Si + 20.5Al + σGS

Figure 8 compares σY,model with σY,calc and σY,exp.
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Figure 8. Comparison of models of σY for the steels used in this paper.

Due to the difference in the steel concepts those models were developed for, significant deviations
from σY,exp can be seen. Those deviations are a result of a focus on other alloying elements. For example,
Pickering does not consider the impact of Mn on yield strength. Nevertheless, the models of Choi [46]
and De Cooman [2] offer reasonable results, but are not as close to the experimental data as the model
developed in this work. Additionally, the model by De Cooman does not take compositional variances
into account, while the model of Choi considers the impact of Mn on yield strength to be negative.

The models of Pickering and Lorenz are not applicable to HMnS based on the results
of the calculations. The model by Bouaziz tends to overestimate the yield strength.

4. Conclusions

A basic ab initio-based model for the calculation of σY has been developed. The model shows good
agreement with the experimental values. Discrepancies between experimental σY,exp and calculation
results σY,calc are smaller than 10%. While many complexity-reducing assumptions have been made
that lead to inaccuracies when calculating σSRO, this model portrays that the general concept of
combining ab initio simulations with experimental data can lead to feasible results on a macroscopic
scale. This is also shown by the calculated positive impact of Mn and Al on yield strength by solid
solution strengthening in a reasonable range.

The impact of the alloying content of C, Mn, and Al on the strengthening by short-range ordering
was analyzed. For the given steel compositions with fully austenitic microstructures in this work,
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the values for σSRO are as high as approximately 65 MPa. This significant strengthening leads
to a proportional contribution to σY of nearly 20%.

While an increase in C and Al increases σSRO as long as a sufficient number of atoms of
substitutional alloying elements are available to form preferential cell structures, a limiting factor for
the effectiveness of strength increases by Mn was found.

The impact of short-range ordered clusters during deformation needs to be evaluated. A higher
amount of more stable, energetically favorable clusters might not only lead to an increase in σSRO and σY,
it might also impact the beginning of serrations in the flow curve, as well as their amplitude if the serrations
are resulting from short-distance carbon atom jumps associated with the cutting of clusters.
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Abstract: The formation of Mn–C short-range ordering (SRO) has a great influence on the mechanical
properties of high-Mn steels. In the present work, the formation of Mn–C SRO during recrystallization
of an X60Mn18 steel was investigated by means of a combined study employing small angle neutron
scattering (SANS) and ab initio ground-state energy calculations based on density-functional theory.
The SANS measurements prove the presence of Mn–C SRO in the recrystallization annealed X60Mn18
steel and indicate the evolution of the SRO during recrystallization. The results show that with the
increase in annealing time, the mean size of the Mn–C SRO decreases, whereas the number density
increases. The ab initio calculations well describe the energetically favored condition of Mn–C SRO
and provide the theoretical explanation of the clustering formation and evolution in the X60Mn18
steel. The stress-strain curve of the X60Mn18 steel exhibits a high strain-hardening rate and the
plastic deformation is characterized with a series of serrations during a uniaxial tensile test. In the
end, the correlation between Mn–C SRO and the serrated flow of high-Mn steels is further discussed.

Keywords: high-Mn steel; short-range ordering; small angle neutron scattering; ab initio calculations;
density-functional theory; Portevin-Le Chatelier effect

1. Introduction

High-Mn (15–30 wt %) austenitic steels are well known for their high ultimate tensile strength
over 1000 MPa and total elongation over 60% at room temperature [1–4]. Due to the excellent
strain hardening of the high-Mn steels, the superior combination of high strength and ductility
makes these steel grades a good choice for the automotive industry for the manufacture of complex
body geometries, yielding improved crashworthiness and reduced weight at the same time [5–7].
A unique characteristic of high-Mn steels is the significant serration phenomenon (jerky flow)
during deformation. These serrations strongly influence the mechanical properties of the materials,
for example, they increase the flow stress, the tensile strength and the work hardening rate, etc.
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The strain-hardening behavior of high-Mn steels, particularly of the X60Mn18 steel, is mainly
explained by the dynamic Hall-Petch effect, dislocation evolution and dynamic strain aging
(DSA) [2,4,8–13]. During the deformation of high-Mn steels, the formation of twins occurs with
an increasing number of twin boundaries. As in the case of grain boundaries, the twin boundaries
behave like obstacles against the movement of dislocations, decrease the dislocation mean free path and
promote dislocation accumulation [4,14,15]. The serrated stress-strain curves are the main indicator
of the DSA mechanism. It has been suggested that DSA in Fe–Mn–C steels involves the interaction
of dislocations [4,16,17] and stacking fault regions [12,13] with point defect complexes that include
interstitial C.

The formation and motion of DSA-caused Portevin-Le Chatelier (PLC) deformation bands result
in a serrated flow and underline the deformation mechanism [13]. It is widely known that the serration
flow is correlated with the presence of Mn–C agglomerations/short-range ordering (SRO) and their
interactions with dislocations in steels. Although the serration phenomenon and DSA effect have
been discussed for a long time, little experimental work on Mn–C SRO has been reported so far.
In particular, the mechanism of formation of this type of SRO and its evolution during the annealing
process, which is very important for the explanation of the serrated stress-strain behavior of high-Mn
steels, is so far unknown. Due to the very fine scale of SRO at the atomic level and the consequent
technical difficulties in performing experimental measurements, there is very limited information on
the SRO in literature. The characterization of the Mn–C SRO using atom probe tomography (APT)
requires complicated sample preparation procedures and comes with a significant statistical error due
to the limited probe size [18,19]. Marceau et al. [18] stated the difficulties in analyzing the short-range
ordered clusters in Fe–Mn–C steels, such as the correlated field evaporation of interstitial C, detection
of C as a molecular ion species, and surface migration of C (directional walk). In contrast, small angle
neutron scattering (SANS) makes it possible to characterize the nano-sized SRO/short-range clusters
(SRC) in the mm3 volume range.

In the present work, the formation of Mn–C SRO during recrystallization of the X60Mn18 steel was
investigated by means of a combined method of SANS and ab initio ground-state energy calculations.
The Mn–C SRO was analyzed by SANS in terms of particle size, size distribution, and volume fraction.
In order to investigate the local atomic environment of C and to identify the favorable arrangements
on an atomistic level, density-functional theory (DFT) calculations were performed for a model
system with a chemical composition close to the investigated steel. The present study validates the
assumptions drawn from the generalized ab initio models of the Mn–C SRO in high-Mn steels and
compares the local and atom-resolved ordering information extracted from the experiments. In the
end, the correlation between Mn–C SRO and the serrated flow of the recrystallized X60Mn18 steel is
further discussed.

2. Material and Methods

2.1. Material

The investigated X60Mn18 high-Mn steel was cast into an ingot. Hot forging was subsequently
carried out at 1423 K (1150 ◦C). The forged ingot was then homogenized at 1423 K (1150 ◦C) for 5 h.
Then the material was hot rolled, and cold rolled with a thickness reduction of ≈50%. Table 1 lists
the chemical composition of the investigated material. The specimens used for the ex-situ SANS
measurements and mechanical testing were cut from the 1.5 mm thick cold rolled sheets. In order
to compare the impact of annealing duration on the Mn–C SRO formation, the specimens were
recrystallization annealed in a salt bath at 800 ◦C for 2 min and 30 min, followed by quenching in water
to room temperature. The tensile tests were carried out using a screw-driven ZWICK Z100 machine
(Zwick GmbH & Co. KG, Ulm, Germany) with a strain rate of 0.001 s−1. A mechanical strain gauge
with a 30 mm gauge length was used to measure the specimen strain.
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Table 1. Chemical composition of the investigated X60Mn18 steel.

Element C Si Mn P S Cr Ni Al Fe

wt % 0.594 0.05 18.40 0.007 0.009 0.02 0.04 0.005 Rest

2.2. Small Angle Neutron Scattering (SANS)

2.2.1. SANS Technique

SANS is a well-established, non-destructive method to obtain structural information about the
arrangement of atoms and magnetic moments on a mesoscopic scale, from near atomic (nanometer)
to near optical (micrometer) sizes, in condensed matter systems and materials from a wide range of
applications. Such arrangements may be macromolecules [20], self-assembled polymeric systems [21],
biomolecular aggregates [22], precipitates and SRO in metallurgical materials [23,24] or porosities
in geological and construction materials [25]. Neutrons interact with matter via short-range nuclear
interactions and, thus, detect the nuclei in a sample rather than the diffuse electron cloud observed
by X-rays. Therefore, unlike X-rays, neutrons are able to “see” light atoms in the presence of
heavier ones and distinguish neighboring elements more easily. In magnetic samples, neutrons
are additionally scattered by magnetic moments associated with the unpaired electron spins (dipoles)
and, thus, can observe magnetic structures and correlations when the samples are placed in a saturating
magnetic field.

In SANS the “visibility” of a selected constituent in a complex system depends upon the
contrast—the squared difference between its scattering length density (magnetic or nuclear) and
that of the other components [26]. Thus, the visibility of the particles, P, embedded in a matrix, M,
depends on the particles’ contrast, given by:

Δρ2
P = (ρP−ρM)2 =

(
∑atoms in P

i bP
i

νP
− ∑atoms in M

i bM
i

νM

)2

(1)

where bM
i denotes the scattering length of different atoms in M, bP

i represents those of the atoms in
P, and νM and νP are the effective volumes occupied by the objects composed of the atoms in the
respective sums.

The contrast in a multicomponent system can typically be estimated in a direct way based on
the composition information obtained during sample preparation. On the other hand, the contrast in
a complex material can be manipulated by isotopic substitution, without changing the macroscopic
properties of the material. This means that matching and variation of contrast of different components
of the material can be achieved to enable separate analysis of selected components or regions within
complex morphologies.

Finally, SANS has the advantage of being non-destructive and of providing information with
high statistical accuracy due to averaging over a macroscopic sample volume. In many cases,
the small absorption of neutrons allows for the investigation of thick samples as well as the use
of bulky ancillaries for studying the materials under special conditions, such as very low or very high
temperature, magnetic field or high pressure.

The information in SANS experiments is contained in the neutron scattering intensity measured
as a function of the momentum transfer, q, given by:

→
q =

→
k i −

→
k f ; q =

4π
λ

sin θ (2)

where
→
k i and

→
k f are the incoming and the outgoing neutron wave vectors, λ is the neutron wavelength

and θ is the half scattering angle.
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Scattering experiments explore matter in reciprocal space: large q values relate to short distances,
while small q values relate to larger structures. To observe the mesoscopic scale, SANS is optimized
at small scattering angles using long wavelength (cold) neutrons. The contribution to the scattering
intensity at angle θ from some scatterers is given by:

I(θ) = TI0
dσ
dΩ

ΔΩ (3)

where I(θ) is the intensity scattered into one detector element, ΔΩ the solid angle covered by that
element, I0 the incoming neutron flux, and T the sample transmission. The structural information
on the sample is contained in the microscopic differential cross-section dσ/dΩ, which is the Fourier
transform of the scattering length density distribution Δρ

(→
r
)

.
The scattering data are obtained as a microscopic differential cross-section dσ/dΩ on an absolute

scale, in cm−1, after normalization of the macroscopic differential cross-section by the sample volume
and a comparison with scatterers of a known absolute cross-section (standard samples).

2.2.2. SANS Experiments

Ex-situ SANS experiments were carried out in the KWS-2 beamline of the Heinz Maier-Leibnitz
Centre (MLZ) at the FRM II reactor in Garching, Munich [27]. The instrument is optimized for
the exploration of the wide momentum transfer q range between 1 × 10−3 nm−1 and 5 nm−1 by
combining classical pinhole, focusing (with lenses) and time-of-flight (with chopper) methods, while
simultaneously providing high neutron intensities with an adjustable resolution [27]. A neutron beam
with a wavelength λ of 0.5151 nm and a wavelength spread Δλ/λ = 0.2 was used. The scattering
vector q (q = 4π sin θ/λ, where θ is the half scattering angle) [28] range of 0.085 nm−1 to 4.2 nm−1 was
achieved with two different sample-to-detector distances (2 m and 8 m) and 8 m collimation length.
This q range allows the characterization of the scatterer size D (D ≈ 2π/q) which ranges between
approximately 1 nm and 70 nm. The total measurement durations were set as 30 min and 60 min
at 2 m and 8 m sample-to-detector distances, respectively. These experiment durations enabled the
achievement of a total number of scattering counts in excess of 1 million. The transmission values
were measured at 20 m collimation and 8 m sample-to-detector distances for 60 s.

2.3. Structural Models and Ab Initio Computational Details

To approximate the experimental composition as closely as possible, Fe88Mn20C3 was chosen as
the model system for the ab initio calculations. This structure was modeled as a 3 × 3 × 3 supercell of
fcc (face-centered cubic)-Fe (space group Fm3m), resulting in an fcc-Fe matrix consisting of 108 atoms,
with 20 of the Fe-atoms then replaced by Mn. The three C atoms occupy interstitial sites that correspond
to the central octahedral void in the original fcc-Fe unit cell, thus increasing the total atomic count
to 111. Employing this model, the composition of the system arrives at approximately 79.3 at % Fe,
18.0 at % Mn and 2.7 at % C, corresponding to respective values of approx. 81.2 wt %, 18.2 wt % and
0.6 wt %, reflecting sample composition reasonably well.

Four distinct structural models (further referred to as STM) were considered in respect to the
Mn distribution, and they are shown in Figure 1: a “disordered” structure approximating a random
Mn distribution (STM 1) and three different “ordered” structures. In the latter case, Mn6 octahedra
coordinate the interstitial sites serving as potential carbon locations, the Mn6C element being an
energetically favorable structural motif [29,30] corresponding to the aforementioned Mn–C SRO.
This octahedral arrangement of Mn as the nearest neighbor to C, located in the 1st coordination
shell (CS) of the latter, has been shown to be energetically favored in prior studies [30]. On the
other hand, the cubic arrangement of Mn as a second-nearest neighbor to C, i.e., in the 2nd CS,
is disfavored, while arrangements with Mn located in further shells have no energetic impact. Taking
these considerations into account, the models for the three “ordered” STMs were restricted to the
favored octahedral 1st CS arrangement. Said ordered STMs differ in the spatial arrangement of Mn
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atoms: in the first case, four Mn6 octahedra are located in one plane in the individual corners of
the unit cell (STM 2). In the second case, two groups of two octahedral units each are diagonally
opposed to each other, with one group comprising Mn6 octahedra and the other actually consisting
of Mn5Fe octahedra due to stoichiometry constraints (STM 3). In the third case, three corner-sharing
octahedra propagate along the [100] direction, with a fourth corner-sharing Mn6 octahedron located
orthogonally to that axis, forming a rough “Γ” shape (STM 4). Considering translational symmetry,
the ordered structures thus model closely packed groups of Mn6 octahedra (corner-sharing tetramers)
with several “layers” of Fe between them (STM 2), more evenly distributed groups of chemically
slightly distinct dimers (2 × Mn6 and 2 × Mn5Fe) (STM 3) and linear chains of Mn6 octahedra along
one crystallographic direction with regular “branches” (STM 4), respectively. It should be noted that
these models were selected under the constraint of computational feasibility, based on known data
on attractive Mn–C and repulsive C–C interactions [30,31], in which inter-atom distance, and thus
distribution, is a key factor. A full sampling of statistically possible configurations requires a multitude
of different environments, larger cells and usage of mesoscopic methods, and this is presently outside
the scope of an atomistic ab initio approach.

Figure 1. The four different structural models (STM) of the Fe88Mn20C3 system differing in Mn
arrangement, each showing one exemplary configuration. Fe atoms are red, Mn atoms beige, C atoms
black. Darker grey polyhedra are shown to identify the Mn6 units in the three ordered systems, with
lighter grey polyhedra in structure (3) signifying Mn5Fe.

Full structural optimizations of all systems were performed via density-functional theory (DFT)
calculations using the Vienna ab initio Simulation Package (VASP, version 5.4.1, Computational
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Materials Physics, University of Vienna, Vienna, Austria, 2015) [32,33], employing the projector-
augmented wave (PAW) method [34,35] for basis set representation, with the energy cut-off set to
Ecut = 500 eV. Exchange and correlation effects were accounted for using the generalized gradient
approximation (GGA) within DFT as parametrized in the well-established functional by Perdew,
Burke and Ernzerhof (PBE) [36]. The generation of the k-mesh for partitioning and integration of the
Brillouin zone was performed with the Monkhorst-Pack scheme [37], employing a 4 × 4 × 4 grid.
Partial occupancies were considered using the Methfessel-Paxton scheme [38] of order 2 with the
smearing width set to σ = 0.15 eV. The disordered structural model was generated using the special
quasirandom structure (SQS) method [39] as implemented in the Alloy Theoretic Automated Toolkit
(ATAT, version 3.36, Axel van de Walle, 2017) package [40,41]. All simulations were performed for
a non-spin-polarized case, which approximates a paramagnetic model under standard conditions
reasonably well [42]; while approaches explicitly modeling paramagnetism such as the disordered local
moment (DLM) model [43] are somewhat more accurate, they are typically much more demanding
in terms of computation and thus were not employed here due to the system size involved. Both
fcc-Fe and all allotropes of Mn are antiferromagnetic in the ground state, but their respective Néel
temperatures lie well below room temperature [44,45]; thus, the non-spin-polarized case is a very
good approximation for the purposes of this study. Nevertheless, it must be pointed out that magnetic
effects, which may be relevant in the ground state, are, by necessity, neglected here. While their
relevance is difficult to quantify, independent calculations on related Fe–Mn–Al–C κ carbides [46]
suggest that the effect of magnetism on structural properties is limited, especially if qualitative trends
are considered.

3. Results

3.1. Small Angle Neutron Scattering (SANS)

The model-based analysis of the ex-situ SANS scattering patterns using SASfit [47] reveals the
presence of Mn–C SRO a few nanometers in size. The evolution of the mean cluster radius and
number density of clusters per cubic centimeter was analyzed. The results showed that with the
increase in recrystallization annealing time from 2 min to 30 min, the size of the Mn–C SRO decreased,
while the number density increased. Figure 2 shows the SANS scattering curves of the X60Mn18 steel
recrystallization annealed at 800 ◦C for 2 min and 30 min. The average cluster radius decreased from
2.10 nm (2 min) to 1.77 nm at the end of 30 min recrystallization annealing.

 
Figure 2. The small angle neutron scattering (SANS) curves of the X60Mn18 steel recrystallization
annealed at 800 ◦C for 2 min and 30 min.
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The evolution of the Mn–C SRO volume fraction distributions for the 2 min and 30 min annealed
samples is shown in Figure 3. An increment in the annealing duration of non-deformed samples
caused: (i) a shift of the cluster volume distribution curves to areas with smaller cluster sizes and (ii) a
rise in the volume distribution peak height. With 30 min annealing, the clusters coarser than ≈2.15 nm
disappeared, and the cluster mean radius, i.e., a cluster radius where the volume fraction reached
its maximum, decreased from ≈2.10 nm (2 min) to ≈1.77 nm (30 min). The cluster volume fraction
increased with the increase in recrystallization annealing time from 2 min to 30 min. The longer
annealing time, i.e., 30 min annealing, brought an increment in the number density of clusters from
2.82 × 1014 cm−3 (2 min) to 7.43 × 1014 cm−3 (30 min).

 
Figure 3. The evolution of Mn–C short-range ordering (SRO) volume fraction distribution of the
X60Mn18 steel recrystallization annealed at 800 ◦C for 2 min and 30 min.

The annealing of an alloy system containing precipitations mostly resulted in a diffusion-
controlled growth. However, in the present study, an increase in the duration during recrystallization
annealing at 800 ◦C from 2 min to 30 min led to a decrease in mean particle size, and an increment in
particle number density and volume fraction, which indicated new clustering formation and a finer
distribution of the particles with smaller size. This new clustering response to the increasing annealing
duration can be attributed to the recrystallization of the deformed microstructure, and enhanced
diffusion. The deformed microstructure provided considerable defects in the material for the nucleation
of the particles. The enhanced diffusion, i.e., longer diffusion duration, allowed atomic species to
distribute within the solute solution approaching to equilibrium; in other words, it improved the
elimination of segregations. Increasing recrystallization annealing duration gives rise to the observation
of the microstructure closer to the equilibrium conditions, which was indicated by ab initio calculations
in the present study.

3.2. Ab Initio Calculations

As a full sampling of all possible distributions of three C atoms among the 27 interstitial sites of
the supercell is extremely demanding in terms of sheer computation, even when considering symmetry,
a constraint for selection of the probable C positions had to be introduced. This was done under
the justified assumption that the immediate chemical environment of the surrounding metal matrix,
including the 1st and 2nd CS, is the driving criterion for the selection of a site, with C–C interactions
among neighboring interstitials playing only a secondary role. While this is an approximation, it was
considered to be reasonable based on prior results [29,30] and known length scales for atomistic SRO
phenomena. Furthermore, carbon-vacancy interactions were not considered, as the modeled metal
lattice is defect-free, thus containing no vacancies, whereas for the interstitial sites, the carbon/empty
site fraction is 3/27 = 1/9, so that empty voids are always present as 3rd CS neighbors for C in any case,
rendering a distinction meaningless. Thus, in a first step, the 27 individual interstitial positions of each
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of the four structural models were occupied with only one C atom per cell to identify the energetically
most favorable arrangement depending on local ordering in relation to the metal matrix, resulting in
4 × 27 distinct systems.

Figure 4 shows the total energies for each possible configuration averaged for configurations
with similar ordering, Etot, in each STM as a function of the amount of Mn neighbors in the 1st CS,
i.e., the surrounding octahedron, for the C atom, at a distance of roughly rC–Mn,1CS ≈ 1.90 Å on
average. This directly related to the choice of interstitial site as detailed above and was a sensible
method of grouping the total energies, which are in general comparable for two systems with similar
local ordering. However, for a random, disordered structure, a broader variation in energy could be
expected due to the irregularity of the surrounding matrix, resulting in many different configurations
if the occupation of the 2nd CS, with a distance of roughly rC–Mn,2CS ≈ 3.05 Å on average, was also
considered. While not shown in Figure 4a, which displays the averaged energies, a comparatively
broad scattering of the individual energy values occurred, up to ΔE ≈ 0.1 eV for the same amount of
Mn neighbors in both the 1st and 2nd CS. Because of that, identifying evident trends was difficult for
the disordered case but, generally speaking, both the increasing amount of Mn neighbors in the 1st CS
and, conversely, their decrease in number in the 2nd CS seem to be favorable energetically (a lower
energy signifies a favored system per convention in chemistry). This agrees with results from previous
studies on Mn in the 1st and 2nd CS of C in pure Fe matrices [30].

 

Figure 4. Averaged total energies Etot as a function of the amount of Mn in the 1st coordination sphere
(CS) of a single C atom in Fe88Mn20C ( rC–Mn,1CS ≈ 1.90 Å). Lines between symbols are shown for better
readability and are color-coded. (a) Etot in the disordered structural model (STM) (1) with varying
amounts of Mn atoms in the 2nd CS of C ( rC–Mn,2CS ≈ 3.05 Å); (b) Etot in the ordered STMs (2), (3)
and (4), with 0 and 1 Mn atoms in the 2nd CS for (3) and 0 for (2) and (4).

For the ordered STMs, these trends were more evident, as shown in Figure 4b. The decrease in
Etot with increasing Mn content in the 1st CS was valid for all three ordered variants. In contrast to the
disordered STM, the individual energies (not shown) are much more narrowly distributed, in most
cases with ΔE ≈ 1 meV, with the highest difference being ΔE ≈ 0.04 eV. An outlier was prominent:
in STM (3), a system containing two direct Mn–C contacts was disfavored, contrary to the general
trend (as the only system with two Mn atoms as 1st CS neighbors and zero Mn atoms in the 2nd CS for
STM (3), it was represented individually in the figure). In said system, C occupies a bridging position
between two full Mn6 octahedra. Apart from this case, the entire dataset showed good agreement with
the aforementioned results.

Due to the ordering constraint, there was limited data for higher Mn contents in the 2nd CS,
with only eight systems, all in STM (3), out of the 81 distinct ordered cases (3 × 27, for all structures
and individual C positions) containing one Mn in the 2nd CS. All of these eight systems contain two
Mn atoms in the 1st CS, converging to a single data point in Figure 4b. Contrary to the disordered case,
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this led to a decrease in energy when compared to systems in STM (3) with zero Mn neighbors in the 2nd
CS. However, due to the limited data mentioned above, this was not a statistically relevant observation
and was likely caused by an interplay of other ordering effects for this particular arrangement.

In summary, the general trends (attractive Mn–C interactions for contacts in the 1st CS of C,
repulsive interactions for those in the 2nd CS) were much less clearly present than in an ideally
“diluted” system with an isolated Mn6C octahedron in a Fe matrix, but could still be identified.
The larger scattering of energy values for STM (1) suggested that longer-range interactions beyond
the first two CS, which are especially present in the disordered STM due to a more homogenous
distribution of Mn atoms throughout the host matrix, play a role as well. While these results generally
agreed with earlier findings, the evident differences did stress both the importance of a large statistical
sampling of different configurations when “realistic” models are employed (which was not fully
realized in this study) and the limitations of the prior idealized model.

After this general analysis, the most energetically favorable arrangements were used to construct
the Fe88Mn20C3 structure approximating the real sample. While the total energy of the system was
the primary selection criterion, the distance between C positions was also considered, resulting in
the construction of several variants of Fe88Mn20C3 systems for each of the four main STMs: four each
for (1) and (2), and three each for (3) and (4). In order to investigate the magnitude of the repulsive
C–C interaction, in several of these variants an energetically less favored position was nonetheless
selected as a C site if the C–C distance increased as a result. The total energy of these systems was
then evaluated.

Figure 5 shows the averaged total energies Etot of the various Fe88Mn20C3 systems as a function
of the smallest C–C distance rC–C,min present in the respective structure. It is evident that a larger C–C
distance is energetically favorable, which is shown clearly for STMs (1) and (2). The strong increase in
energy for rC–C,min ≈ 3.55 Å in structure (2) in particular confirmed this general trend. For structures
(3) and (4), the smallest rC–C,min is always approx. 3.77 Å, making a comparison difficult. However,
the three variants for these structures each differ in C distribution, enabling an analysis of the C–C
radial distribution functions (RDF) performed via the wxDragon package [48].

 
Figure 5. Averaged total energies Etot as a function of the smallest C–C distance rC–C,min in the
Fe88Mn20C3 systems for all four structural models (STM). Lines between symbols are shown for better
readability and are color-coded.

The respective RDF for the individual variant systems of structures (3) and (4) are shown in
Figure 6. Two factors are evident: first, in the energetically favored structures, the number of Mn
contacts in the 1st CS of C was higher than in the less favored ones, as expected due to Mn–C attraction.
Second, the energetically favored arrangement in (3) exhibited a more homogenous distribution with
C–C distances of approx. 3.77 Å, 4.89 Å, and 6.2 Å distributed roughly evenly (if differences in weight
due to binning are considered), while the disfavored arrangement showed closer groupings of C atoms
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with rC–C ≈ 3.77 Å and 4.89 Å. However, as this was observed in one structure only, it conceivably
might be a statistical artifact, and is in any case difficult to separate from the effect of the Mn–C
interactions as outlined.

 

Figure 6. Radial distribution functions (RDF) for Mn–C (red) and C–C (green) contacts in Fe88Mn20C3.
(a) RDF for structural model (STM) (3), with a and b being the least and most energetically favored
structures, respectively; (b) RDF for STM (4), likewise.

These combined findings conclusively demonstrated that a larger C–C distance is favorable and,
in comparison, may compete with and even outweigh the effect of increasing the amount of Mn–C
contacts in the 1st CS. This was reinforced by the fact that none of the energetically most favored
arrangements for the Fe88Mn20C3 variants corresponded to the selection of the respective three “best”
single C positions obtained in the first step of the ab initio study. This suggests that, while Mn6C
octahedra were energetically preferred, they would not be located adjacent to each other, but rather
distributed evenly. Thus, in real samples at the macroscopic scale, C atoms will preferably agglomerate
in Mn-rich regions, but keep a minimal C–C distance of >5 Å at least, with an even spatial distribution.
It should be noted that for more detailed quantification of these effects, follow-up studies with larger
models and a broader statistical sampling are necessary, which have a low tractability for atomistic ab
initio methods and are outside the scope of this mainly qualitative work.

3.3. Microstructure and Mechanical Properties

The microstructure of the X60Mn18 steel at different states is shown in Figure 7. The heavily
deformed austenitic microstructure after cold rolling is shown in Figure 7a. The steel was fully
recrystallized at 800 ◦C, both for 2 min and 30 min, as shown in Figure 7b,c. The austenitic grain size
in the 2 min and 30 min samples was 8 μm and 15 μm, respectively. The DSA effect as manifested by
the serrations in the stress-strain curves is shown in Figure 8a. These type-A serrations, which are
characterized by a steep rise in stress alternating with plateau-like features, were observed in the
stress-strain curves in the X60Mn18 steel recrystallization annealed for 2 min and 30 min in Figure 8.
The type-A serrations occur as a result of the generation and propagation of a PLC band [16]. As an
indicator of the DSA effect, jerky flow is found as a distinct feature of the tensile curves. The observation
of each serration peak in the stress-strain curve results from a new-born PLC band. The X60Mn18 steel
recrystallization annealed for 2 min exhibited higher yield strength (368.92 MPa) and ultimate tensile
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strength (1010.38 MPa) than those in the 30 min annealed sample. The elongation of the X60Mn18 steel
annealed for 2 min and 30 min at 800 ◦C was 42.13% and 52.02%, respectively.

Figure 7. Microstructure of X60Mn18 steel (a) cold rolled; (b) recrystallization annealed at 800 ◦C for
2 min; (c) recrystallization annealed at 800 ◦C for 30 min.

Figure 8. (a) Engineering stress-strain curves of 2 min (black) and 30 min (blue) annealed specimens;
(b) The enlargement of the boxed segment of the strain-stress curve exhibiting type-A serrations,
showing the serration with a steep rise in stress alternating by plateau-like features.

The partial magnified engineering stress-strain curves in Figure 8b revealed the serration
behaviors of the steel. Compared with the 2 min annealed sample, the engineering stress-strain
curve of the 30 min annealed sample comprised a higher number of serration peaks, i.e., a shorter
peak-to-peak distance, with lower step heights. Within the deformation strain range from 23% to 28%,
the peak-to-peak distance of the 2 min annealed sample was approximately 2.4% with a serration step
height of 16.75 MPa, whereas the average peak-to-peak distance of the 30 min annealed sample was
about 0.9% and the average serration step height was 8.70 MPa.

4. Discussion

Both the SANS measurements and the ab initio calculations reveal that, with an increase in
the duration of recrystallization annealing of the X60Mn18 steel, the Mn–C units exhibiting SRO
tend to keep distance towards each other and are more evenly distributed throughout the material,
while exhibiting smaller size. The SANS results show that an increase in the duration of recrystallization
annealing at 800 ◦C from 2 min to 30 min leads to a decrease in mean particle size and an increment of
both particle number density and volume fraction, which indicates new clustering formation and a finer
distribution of the particles with smaller size. The ab initio calculations show that thermodynamically,
individual Mn6C octahedra preferably keep minimum distances from each other (approximately 5 Å at
least). The repulsive C–C interaction is an important effect, which can counteract the Mn–C attraction
responsible for the formation of Mn6C units in the first place, resulting in the above-mentioned
units being evenly distributed rather than closely grouped. The DFT calculations thus explain the
interactions for nearest-neighbor and second-nearest-neighbor Mn–C pairs and illustrate their SRO,
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while also clarifying the role of the C–C interaction on the atomic level. However, in reality, Mn and C
do not form isolated octahedra only, but may also form clusters on a larger (nanometer) scale, as the
SRO and SRC measured by SANS reveal. This suggests that the particles tend to show a dispersed, even
distribution over long time annealing, explaining why, during recrystallization annealing, the Mn–C
SRO tend to be more homogenously distributed with smaller particle size, higher number density and
higher volume fraction. All in all, the SANS measurements and ab initio calculations of the Mn–C
ordering, while examining different size scales, show good agreement with each other and suggest a
possible underlying atomistic cause for cluster dispersion.

As shown in Figure 8, the serration phenomenon of investigated high-Mn steel underlines the
DSA effect during plastic deformation. It was reported that the DSA in C-enriched high-Mn steels is
attributed to the formation of Mn–C SRO [17,49,50]. Dastur and Leslie [17] claimed that the Mn–C
octahedral clusters may reorient themselves in the stress field near a dislocation core, which strongly
pins the dislocations and causes them to pile up. However, the pinning force is not strong enough to
lock the mobile dislocations solidly and the pinned dislocations are released from the Mn–C SRO at
once and propagate. This clustering leads to a higher lattice resistance to the dislocation glide, as the
passage of a partial dislocation will in general change the local position of both substitutional and
interstitial atoms [4]. The 2D composition-dependent stacking fault energy (SFE) map in Figure 9a
summarizes the reported steels in the Fe–Mn–C system that exhibit serration flow during deformation.
One can see that serration flow occurs in the high-Mn TRIP/TWIP steels of the Fe–Mn–C system that
cover a wide range of chemical compositions [3,8,50–59].

Figure 9. Two-dimensional (2D) composition-dependent stacking fault energy (SFE) maps
summarizing the chemical composition of high-Mn steels with serration flow: (a) Fe–Mn–C system
(b) Fe–Mn–1.5Al–C system.

The occurrence of serration requires the deformation level of the materials to meet a critical strain
and the critical strain (εc) must first be achieved before serrated flow is observed. The critical strain
for triggering serrations is influenced by SFE, deformation temperature, strain rate and elemental
content (i.e., Al). The critical strain for the onset of the serrations shows an increasing trend with
increasing SFE. An increase in the temperature promotes the serrations in the early stages of the
deformation [16], the same as a lowered strain rate. The critical strain increases with increasing
Al content. Al addition shifts the occurrence of DSA-related serrations towards higher strains or
eliminates the serrations [11,60,61]. The steels in the Fe–Mn–1.5Al–C system that show serration flow
during deformation are summarized in the 2D composition-dependent SFE map (Figure 9b). In the
Fe–Mn–1.5Al–C steel system, the serrations reported in the literature occur mainly in the steels with
0.6 wt % carbon content. In the compositional range for high-Mn steels in the Fe–Mn–Al–C system,
the serrations take place at higher deformation levels, which yields the required activation energy for
C reorientation [13]. On the one hand, it was reported that Al reduces the activity and diffusivity of
C [62,63] and delays the occurrence of serrations during deformation. On the other hand, ab initio
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calculations suggest that Al has a strong impact on the Mn–C SRO formation [30]. Al is preferable as a
second-nearest neighbor to carbon; however, the attractive interaction of Mn–C pairs is affected by
the presence of Al [30]. Because of high Al content in the system, the formation of Mn–C pairs is not
preferred any longer [30]. In other words, the addition of a certain amount of Al suppresses the Mn–C
SRO formation in high-Mn steels. This might be the reason for the delay or absence of the serration
phenomenon in Al-alloyed high-Mn steels.

5. Conclusions

The ex-situ small angle neutron scattering (SANS) investigations prove the presence of Mn–C
SRO in the recrystallization annealed X60Mn18 steel.

(1) With an increase in annealing time from 2 min to 30 min, the size of the Mn–C SRO decreases,
whereas their number density increases. The material exhibits a more evenly dispersed
distribution of smaller clusters at longer annealing time during recrystallization.

(2) The ab initio calculations qualitatively demonstrate that an increase in Mn neighbors of C in the
1st coordination sphere, resulting in a Mn6C octahedron, is energetically favorable, confirming
prior studies on the Mn–C interaction. However, in non-idealized, “realistic” models, these effects
are far less pronounced and energetic scattering is higher.

(3) The repulsive C–C interaction is an equally important effect, which can counteract the Mn–C
attraction, resulting in the formation of Mn6C units that are distributed evenly rather than being
closely grouped, and they keep minimum distances from each other. This confirms and expands
upon the results of prior studies, which were restricted to idealized model systems and did not
investigate the competition between the two effects.

(4) The ab initio calculations well describe the energetically favored condition of Mn–C clustering
and provide a theoretical explanation on an atomistic scale of the clustering formation and
evolution in the X60Mn18 steel.
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Abstract: We present a selection of scale transfer approaches from the electronic to the continuum
regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related
hydrogen embrittlement, we discuss the scale transfer for the dependence of the carbon solution
behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on
Al content. We introduce an approximative scheme to estimate grain boundary energies for varying
carbon and hydrogen population. We employ this approach for a discussion of the suppressing
influence of Al on the substitution of carbon with hydrogen at grain boundaries, which is an assumed
mechanism for grain boundary hydrogen embrittlement. Finally, we discuss the dependence of
hydride formation on the grain boundary stiffness.

Keywords: hydrogen embrittlement; ab initio; scale bridging

1. Introduction

One of the challenges for the modeling of materials, like metals and steel, is that a description
on a single length scale is not sufficient in many cases. The bridging of scales, however, is not
a routine task and requires to accurately link expressions of the different modeling levels. Nowadays,
ab initio methods are able to deliver a large variety of material parameters and process routes with
high accuracy, but are confined to systems with about ∼100 atoms at most. At the other extreme,
continuum methods are able to capture e.g., long ranged elastic effects, but they require material
parameters from the lower scales. In between, statistical and thermodynamic perspectives can help to
bridge the scales, and to link also equilibrium to out-of-equilibrium regimes. Often, the parameters
to be transferred across the scales involve some aspects of coarse graining, as the level of detailed
(atomistic) information is lost on the higher scales.

Here, we demonstrate how selected scale transitions between the atomic and continuum scale
can be performed, also in a quantitative manner. All these aspects are related to failure mechanisms
in high and medium manganese steel, with a special focus on hydrogen. Especially during the last
20 years, while isolated scale bridging investigations on this topic have been conducted, the general
need for a comprising scale bridging approach became increasingly clear when light could be shed
onto the complex interplay of effects on multiple length and time scales [1–3]. Nevertheless, we keep
some aspects more generic and discuss e.g., also carbon as interstitial element. The following four
features are discussed within this article:

• We demonstrate that volume dependent solution enthalpies of carbon in iron are fully consistent
with the theory of linear elasticity.

• We show how solution enthalpies of hydrogen can be used for statistical considerations, and how
aluminum affects the occupation of octahedral sites in austenitic steel.
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• We introduce a simple mean field scheme to estimate energies of a grain boundary populated
with hydrogen and carbon and use that to discuss hydrogen enrichment at carbon saturated grain
boundaries in ferrite and the role of aluminum as protective agent.

• We propose a simple model for grain boundary stiffening or weakening, which affects the
probability for hydride formation near grain boundaries in comparison to the bulk.

These applications cover different aspects of importance to hydrogen embrittlement and illustrate
how to establish a quantitative link between ab initio simulations, statistical descriptions and
continuum theories.

2. Scale Bridging for Strain Dependent Solution Enthalpies in Fe-C

In this section, we demonstrate how data, which is obtained from ab initio or empirical potential
calculations, can be transferred to the continuum level. Usually, this transfer is not straightforward,
and we use here a particularly simple case to demonstrate this.

The starting point is published data on the solution enthalpy of carbon in bcc iron [4]. This paper
contains a rich collection of strain dependent energies for different interatomic potential descriptions,
and it is useful to compare the predictions to a continuum perspective, which allows using the
computed data also for larger scale modeling.

First, we note that C in bcc iron occupies octahedral positions in equilibrium, and induces
a tetragonal distortion. This effect is considered in the careful ab initio based computations of
Hristova et al. [4]. They additionally considered the situation where they neglect this anisotropy
and assumed a cubic symmetry. It turns out that the results do not change significantly, if the full
relaxation is considered. For the present purpose, it has the advantage that we can use the simpler cubic
symmetry for the comparison, which leads to more compact analytical expressions on the continuum
scale. In the end, we briefly discuss the transfer to the more general situation. In addition, we note that
hydrogen in austenite, which is discussed in the other parts of this manuscript from the perspective of
a scale bridging, does not exhibit such tetragonal distortions, and therefore the expressions can directly
be transferred to this case.

For the calculation of hydrogen solution enthalpies, the authors of [4] use a 3 × 3 × 3 supercell
consisting of 54 iron atoms. For the numerical parameters related to the ab initio calculations,
we refer to the description in [4]. One of the octahedral positions is occupied by a carbon atom.
From the arising energy differences, the solution enthalpy is defined as

Hexc(V) = EFe54C(V)− EFe54(V)− EC. (1)

Here, all energies are T = 0 K bare energies from the underlying simulations. EFe54C(V) is the
volume dependent energy of the system with an additional carbon atom and EFe54(V) the same
without the carbon. Notice that both expressions are taken at the same volume. We note that
carbon wants to expand the lattice, therefore the first situation has a higher compressive strain
as the latter. For a handshaking to continuum methods, it is important to take into account such
effects, as we will see below. Finally, EC is a reference potential from a “carbon reservoir”. For the
data related to density functional theory calculations (DFT), Hristova et al. use diamond as carbon
reservoir [4]. As we are mainly interested here in the elastic rather than the chemical contributions,
this reference term turns out to be of minor importance, but in general it is important to consider it
e.g., for thermodynamic considerations.

On the continuum level, a natural approach for the total energy of the system is an additive
decomposition into chemical and elastic contributions,

E(εij, c) = Eel(εij, c) + Ec(c), (2)

where c is the carbon concentration, and εij the strain tensor components, as defined below. A central
difference between the discrete and continuum energies is that for large scale applications it is often
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more convenient to normalize the energy per volume rather than per particle. The reason is that,
in more complex situations, where inhomogeneous strain and concentration distributions occur in
non-equilibrium states, e.g., phase field approaches can be a versatile approach for modeling the
time dependent microstructural evolution. For that, a generating energy functional is written as
space-integral over an energy density, which is therefore defined with dimension energy per volume.

For the isotropic expansion (under the constraints mentioned above), the elastic energy can be
expressed as

Eel(εij, c) =
9
2

BV0(εij − ε0
ij(c))

2, (3)

using the linear theory of elasticity and an isotropic volume expansion, as explained in detail below.
Here, V0 is the undeformed volume in the Lagrangian reference state, B the bulk modulus, and εij are
the linear elastic strain tensor components

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, (4)

expressed through the displacement field components ui. Here, the strain is diagonal with εij = εδij
and δij = 1 for i = j and 0 otherwise. The eigenstrain ε0

ij(c) expresses the stress-free expansion of
the lattice through the presence of a finite carbon concentration c. As long as the concentration is
not too high, it is appropriate to assume Vegard’s law, hence the eigenstrain scales linearly with c.
In addition, if we neglect the tetragonal distortion, the expansion is uniform, hence the eigenstrain
takes the tensorial form

ε0
ij = χcδij = ε0δij, (5)

with the Vegard coefficient χ. For the definition of the concentration, we can use c being the ratio of
populated and total number of octahedral positions, hence c is in the range from 0 to 1.

In general, the bulk modulus is also concentration dependent. However, for low concentrations,
this effect can typically be neglected. This is supported by the DFT data in [4]. Both with and without
one carbon atom the bulk modulus is reported to be B = 189 GPa. Conceptually, a concentration
dependence of the elastic constants leads to a higher order correction of the leading terms.

According to [4], the single carbon atom in the 54 atom host matrix leads to a volume increase
of 1.7%, hence the strain in each direction is 1/3 of this value, ε0 = 0.0047. The volume of the reference
cell is 11.42 Angstrom3 per iron atom.

The corresponding expression to the solution enthalpy (1) is in continuum representation

Hexc = E(ε, c)− E(ε, 0)− EC ≈ ∂Eel(ε, c)
∂c

∣∣∣∣
c=0

c + E′
c(0)c − EC (6)

after Taylor expansion. This gives

Hexc = −9BV0εχc + E′
c(0)c − EC = −9BV0εε0 + E′

c(0)c − EC. (7)

Under isotropic volume change the strain becomes ε = 1
3 (V/V0 − 1), and, according to the above

expression, the solution enthalpy should be a linear function of the strain or volume and decay with
increasing volume. Interestingly, this behavior is qualitatively satisfied by the DFT data in [4], but not
at all by several of the used empirical potentials (see Figure 1). The authors argue that these potentials
are therefore unsuitable for describing the strain effects of hydrogen in iron. Here, we confirm this
statement from a continuum perspective, as apparently these potentials disagree with predictions from
elasticity theory. We can furthermore perform a quantitative comparison using the slope Hexc ′(V),
which in the continuum picture becomes

dEexc

dV
= −3Bε0. (8)
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Inserting the material parameters given above gives the prediction Hexc ′(V) =

−0.0201 eV/Angstrom3, which is in perfect agreement with the DFT value (identical to the given
accuracy, see Table 3 in [4]), and deviates from the empirical potentials, as expected. The continuum
result for the strain dependence of the solution enthalpy is depicted in Figure 1. Only for large strains,
where linear theory of elasticity is no longer applicable [5], deviations occur with the DFT results.

Figure 1. Solution (excess) enthalpy of carbon in bcc iron as function of volume. The continuum theory
prediction is compared to DFT and empirical potential data. See [4] for details of the atomic scale
simulations and the different empirical potentials.

Finally, we mention that consideration of tetragonality is a rather straightforward extension of the
preceding discussion. For that, one uses the more general expression

Eel =
1
2

VCijkl(εij − ε0
ij)(εkl − ε0

kl) (9)

for the elastic energy, and the eigenstrain depends then on the carbon concentrations in the
different sublattices. In practise, ε0

ij becomes a superposition of the tetragonal expansions in the
different directions.

Overall, this example shows how the transfer from discrete atomistic descriptions to continuum
pictures involving elastic effects can be done. From this, one can obtain a closed analytical expression
with all material parameters, which can subsequently be used for higher scale modeling.

3. Hydrogen in Fe-Mn-Al Alloys

In this section, we discuss certain thermodynamic aspects of hydrogen in austenitic Fe-Mn-Al
alloys. The starting point is the work by von Appen et al. on hydrogen solubility in Fe-Mn alloys [6].
Figure 2 shows a collection of the solution enthalpy of hydrogen. Similarly to the discussion above,
it is defined as

H = EFe1−xMnx H − EFe1−xMnx − μH, (10)

where the reference chemical potential μH is half of the energy of an isolated H2 molecule. Notice that
the calculations were obtained for fully relaxed configurations, hence in particular the pressure
vanishes, and consequently the volumes of the two energy terms with and without hydrogen differ.
However, from the considerations above, we can conclude that the Legendre transformation between
fixed volume and fixed pressure can be performed using theory of elasticity, without computationally
expensive additional ab initio simulations. Obviously, the energy essentially depends linearly on the
number of manganese neighbors around the H occupied octahedral site (see Figure 2). We note that
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the same linear energy trend is even more pronounced if the solution enthalpy is plotted versus the
Voronoi volume. We can therefore conclude that the leading contribution is due to elastic effects.

Figure 2. Hydrogen solution enthalpy as function of the number of Mn neighbors. For some cases,
there are different energy values, which are due to different atomic arrangements, e.g., trans or cis
configurations (see [6] for a detailed discussion). The dashed curve is a linear fit. The black arrow
points to the trans configuration with two neighboring Mn atoms at opposite ends of the octahedron
surrounding the H atom. This configuration is the reference for the Fe-Mn-Al-H system.

We can use this information to obtain some insights into the equilibrium occupation of the
different octahedral sites by hydrogen. For an alloy with the composition Fe1−xMnx, we assume a
random distribution of Fe and Mn atoms, which ignores potential near ordering effects. Therefore,
the probability for an octahedral site to have exactly n manganese neighbors is given by

p(n) =

(
6
n

)
(1 − x)6−nxn. (11)

The occupation of a single octahedral site follows a Fermi-Dirac distribution,

c(E) =
1

1 + exp(β[E(n)− μ])
, (12)

where 0 < c(E) < 1 is the probability of the site to be populated with hydrogen, β = 1/kT is the
inverse temperature, μ the equilibrium chemical potential of hydrogen (not to be confused with μH

above), and E is the solution enthalpy for the given atomic environment. Therefore, the equilibrium
hydrogen concentration in the Fe-Mn system becomes

c =
6

∑
n=0

(
6
n

)
(1 − x)6−nxn 1

1 + exp(β[E(n)− μ])
. (13)

As the concentrations are typically low, the additional consideration of more than one hydrogen
atom in the supercell should not be necessary. With the linear approximation E(n) = a − bn
(see Figure 2, using a = 66 meV and b = 29 meV), we can relate the average concentration c to
the chemical potential. If we consider (here, for example, for x = 0.2) c = 0.5 ppm at room temperature,
which is a concentration that may already trigger hydrogen embrittlement, the equilibrium chemical
potential is around μ = −351 meV. An octahedron with 8 Mn neighbors is rare within such an alloy,
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but energetically most favorable. Its average population with hydrogen is around c(n = 6) ≈ 60 ppm,
which is two orders of magnitude higher than the average concentration c. Similarly, the energetically
most unfavorable configuration, where hydrogen is surrounded by Fe only, has an expected H
occupation of c(n = 0) ≈ 0.06 ppm, which is one order of magnitude lower than the average
value. The octahedral positions with a large number of Mn atoms may therefore be considered
as hydrogen traps, in particular as their energy is about 130 meV lower than the average site. However,
in equilibrium, even these sites have only a minute H occupation, and therefore these sites cannot
trap a large amount of hydrogen. This is a general feature of hydrogen with such low concentrations.
The chemical potential is very low, and hence all site occupations are in the tail E − μ � −kT of the
Fermi-Dirac distribution. Typical trap depths are not sufficient to provide a significant increase of the
hydrogen concentration beyond a dilute limit, which would require reaching the regime E − μ ∼ −kT.

Aluminum changes the energy landscape rather strongly, as worked out for specific atomic
arrangements in [7,8]. Both author groups use different concentrations of their alloys, which is captured
by a 32 atom fcc supercell. Song et al. use Fe26Mn5Al1, Hüter et al. Fe23Mn8Al1, and both groups come
to similar conclusions despite the different stoichiometry, which suggests that the situation is more
general. We follow the notation in [8], where x-y-z denotes an octahedral environment with x iron,
y manganese and z aluminum atoms; this notation, however, cannot distinguish between different
atomic arrangements, but we stay with it for convenience. In the following discussion, we focus on the
Fe23Mn8Al supercell. This system allows for distinguishing 6-0-0, 5-0-1, 4-2-0 and 3-2-1 neighbourhood
configurations for the hydrogen atom.

The starting point is the trans (high energy) 4-2-0 configuration in Figure 2 (notice that the simple
notation 4-2-0 does not reflect whether Al is present in a next-to-nearest neighbor position, therefore
this information needs to be provided additionally). In contrast to the Fe-Mn alloys discussed above,
the energy is here not only determined by the nearest neighbor configuration. A 4-2-0 neighborhood,
where an Al atom occupies a next-to-nearest neighbor position, diminishes the hydrogen solution
enthalpy by about 60 meV [7]. It is therefore speculated that this octahedral configuration may act as
an H trap; in view of our discussion above, we stress that this effect is however rather weak.

More pronounced, however, is the effect that a direct neighborhood of Al to an H atom is
energetically highly unfavorable. Configurations like 3-2-1 or 5-0-1 are about 130–140 meV less
favorable than the potential 4-2-0 “trap” site. These octahedra are populated with a concentration that
is about two orders of magnitude lower than the average concentration at room temperature; we may
therefore effectively say that such sites are blocked.

Compared to the Fe-Mn system, Al therefore leads to strong alternations of the entire energy
landscape. Changes of atomic neighborhoods by replacing one Fe atom by Al raises the energy in
several cases by around 80 meV. In contrast, only one extreme case in the Fe-Mn system, for a transition
between the trans 4-2-0 to the mere 3-3-0 environment, leads to a comparable shift of about −80 meV.
In all other cases, the energetic shifts are much milder in the Fe-Mn system. Altogether, we can
therefore conclude that the entire solution enthalpy landscape becomes significantly rougher in the
Fe-Mn-Al case by the addition of rather small amounts of Al. Already for about 3 at% of Al almost 20%
of all octahedral cages are neighboring an aluminum atom and are therefore energetically unfavorable
for hydrogen.

4. Ferritic Grain Boundary Hydrogen Embrittlement: Estimates From Ab Initio Datasets

In this section, we discuss a possible phase separation into hydrogen enriched regions and
hydrogen depleted regions at ferritic grain boundaries, and the function of aluminum as protective
agent against grain boundary related hydrogen embrittlement.

An important contribution to the macroscopic interpretation of hydrogen embrittlement is the
phase formation based on available ab initio data. Especially in the case of hydrogen in steel,
this approach becomes complex, as at least carbon, hydrogen and iron need to be considered,
and the required amount of ab initio data quickly becomes large. Especially for grain boundaries,
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which require rather expensive electronic scale simulations, the data set is sparse. Therefore,
the development of possible approximative schemes can be helpful in this context.

Our first approach employs a mean field approximation for grain boundary energies, based on
data published in [4,9,10] for varying carbon and hydrogen populations. The most investigated grain
boundary in these publications is Σ5(310)[001] in bcc iron, and the authors present—amongst other
results—segregation and grain boundary energies for carbon and hydrogen at grain boundaries, where
the most attractive type of grain boundary site is populated. In the considered supercell, four of these
sites exist per grain boundary, i.e., any combination of altogether four hydrogen or carbon atoms per
grain boundary corresponds to a fully saturated grain boundary with respect to this site. For details
about the determination of the most attractive sites in a grain boundary state of minimal energy,
we refer to [4,9–11]. The grain boundary energies reported in [9] are defined as

γnX
GB =

EFe+2nX
GB − EFe

bulk − 2nμX

2A
, (14)

where γnX
GB is the energy of a grain boundary with interfacial area A and n atoms of type X in it.

EFe+2nX
GB is the absolute energy of the used simulation cell, which includes two grain boundaries of

the simulated type due to periodicity constraints. By EFe
bulk, the absolute energy of a simulation cell

with the same number of iron atoms is defined. Note that all simulations were relaxed using zero
stress boundary conditions for the supercell, i.e., the only elastic contributions of the resulting energies
are those confined to atomistic length scales around the grain boundary. μX is the reference chemical
potential, for hydrogen that corresponds to H2 molecules, for carbon to diamond, as discussed also in
the preceding sections.

The scheme to estimate grain boundary energies for various hydrogen and carbon populations of
the reported Σ5(310)[001] grain boundaries is a summation of the averaged energetic contributions per
atom relative to the fully saturated grain boundary for each pure population, which can be understood
as a mean field approach. This can be expressed as

γnH+mC
GB =

n
4

γ4H
GB +

m
4

γ4C
GB +

4 − n − m
4

γGB, (15)

where the required grain boundary energies reported in [9] are γGB = 1.55 Jm−2, γ4H
GB = 1.27 Jm−2,

and γ4C
GB = 0.58 Jm−2. Besides the reported grain boundary energies for zero to four sites occupied

by carbon or hydrogen, also a co-segregated grain boundary energy is provided, for two hydrogen
atoms and one carbon atom. This co-segregated grain boundary energy is an interesting test data
point for the approximative scheme, which would predict the grain boundary energy for the reported
population as 1/4 of a carbon saturated grain boundary, 2/4 of a hydrogen saturated grain boundary
and 1/4 of an empty grain boundary. In Table 1 below, we see the comparison of predicted mean field
grain boundary energies and ab initio calculated grain boundary energies for the testable data points
in [9].

Apparently, the mean field description works excellently for hydrogen, while the discrepancies
for carbon can reach up to 0.09 J/m2. This has to be put in context of the variance in reported ab initio
results for grain boundary energies that correspond to identical definitions and therefore should give
identical numbers. We provide here the grain boundary energies reported for two grain boundaries.
The reporting references include [9–15], and the reported grain boundary energies range from 1.49 Jm−2

to 1.63 Jm−2 (Σ5(310)) and from 0.43 Jm−2 to 0.47 Jm−2 (Σ3(112)).
While the approximative scheme can be tested for the Σ5(310)[001] grain boundary in the

especially interesting regime of co-segregated grain boundaries, we are currently not aware of grain
boundary energies for co-segregated sites for any other grain boundary. Consequently, we continue
with a focus on the Σ5(310)[001] grain boundary.
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Table 1. Comparison of calculated and estimated grain boundary energies.

Grain Boundary Calculated Value/(Jm−2) Estimated Value/(Jm−2) Error/(Jm−2)

γ1H
GB 1.49 1.48 0.01

γ2H
GB 1.42 1.41 0.01

γ3H
GB 1.34 1.34 <0.01

γ1C
GB 1.25 1.31 0.06

γ2C
GB 0.90 0.93 0.03

γ3C
GB 0.73 0.82 0.09

γ2H1C
GB 1.08 1.17 0.09

The calculated grain boundary energies reported in [9] and their estimated values based on the mean field
approximation. We do not compare the energies for four carbon and four hydrogen atoms as they coincide by
definition of the approximation.

As the next step, we obtain the energies required for the determination of grain boundary phase
separation. From the findings reported in [9], we know that the ground state of the grain boundary
is carbon saturated with respect to the most attractive sites. These sites are also most attractive to
hydrogen, thus the phase equilibrium in the ternary Fe-C-H system at the grain boundary reduces to
the coexistence of regions in the grain boundary with varying hydrogen and carbon fractions, where
all attractive sites are occupied by one of those species.

When the mixture of carbon saturated (hydrogen free) phase (α) and hydrogen saturated phase
(β) forms, the averaged Gibbs energy per host atom is given as

g(xH , T) = (1 − v)gα(xα, T) + vgβ(xβ, T), (16)

where gα is the averaged Gibbs energy per host atom in the hydrogen-free phase, gβ is the averaged
Gibbs energy per host atom in the hydride phase, xH , xα, xβ are the averaged hydrogen concentration,
hydrogen concentration in the carbon-saturated phase and hydrogen concentration in the hydride
phase. We assume that we have an ideal statistical distribution of the hydrogen atoms along the
available sites, and restrict the description to the configurational entropy contribution. The Gibbs
energies of pure iron (α), xα = 0 and a pure hydride phase (β, fully saturated, xβ = 1) are

gα,β = g0
α,β(xα,β) + gc(xα,β, T), (17)

where, in the low concentration regime,

gc ∼ kTxH ln(xH/x0) (18)

is the dominant contribution. We require equal chemical potentials for the heterogenous mixture of
hydrogen saturated and carbon saturated grain boundary phases and the α-phase, so we obtain for
low temperatures [

−gα(0) + gβ(x0
β)x

]
xβ

≈ ∂gα(0)
∂x0

α
+ kT ln(xH/x0), (19)

where we used v ≈ xH/x0
β, with x0

α,β denoting the respective phase equilibrium concentration. For the
solulibility limit, we get

xH ≈ x0 exp
(
−ΔG

kT

)
, (20)
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with ΔG =
[−gα(0) + gβ(xβ))

]
/x0

β + ∂gα/∂xx=0. The derivative of the Gibbs energy at zero
concentration of hydrogen, ∂gα/∂xx=0, is obtained as finite difference approximation from the available
ab initio data. The expression for the enthalpy difference ΔG becomes more familiar when we rewrite
it in terms of classical defect energies E f

α,β, and we identify the relevant contributions for ΔG,

ΔG = E f
α − E f

β, (21)

E f
α = Etot;3C:1H

GB;NM
− Etot;4C

GB;NM
− μ

re f
H + μ

re f
C ,

E f
β = Etot;1H

GB;1/x0β
− Etot;1C

GB − 1μ
re f
H + 1μ

re f
C ,

E f
β =

1
4

[
Etot;4H

GB;NM
− Etot;4C

GB − 4μ
re f
H + 4μ

re f
C

]
.

In the last line, we took advantage of the scaling behaviour of the energy with respect to the
particle numbers. By Etot;nC:mH

GB;NM
, we define the total energy of the grain boundary simulation cell

including n carbon atoms and m hydrogen atoms at the attractive sites at each of the two grain
boundaries, and NM host atoms. To calculate the differences in energies per atom from the differences
in grain boundary energies, ΔE = 3.207 eV m2J−1ΔγGB +Δμre f holds for the given grain boundary area
of A = 51.371 × 10−20 m2. The values obtained here for a separation in the considered Σ5(310)[001]
grain boundary into fully carbon saturated and fully hydrogen saturated phases lead to a hydrogen
solubility at the interface governed by the enthalpy difference (ΔG ≈ 0.06 eV), where the reference
chemical potentials correspond to diamond and H2.

When we relate the enthalpy difference to the bulk solution energies in the preferred octahedral
site for carbon, at 0.74 eV [12], and the preferred tetrahedral site for hydrogen, at 0.25 eV [11], we can
estimate that the grain boundary will be co-segregated by hydrogen and carbon without separation
into hydrogen-free and carbon-free regions. The reason is a relative shift in the chemical potentials of
about 0.49 eV in favor of a partial substitution of carbon with hydrogen at the grain boundary.

From this perspective, it is interesting to consider the influence of aluminum, which is known as
protective agent against hydrogen embrittlement. The ab initio data we use to estimate the influence
of aluminum has been published in [16]. In this publication, there were no grain boundary or bulk
solution energies for hydrogen in Fe-Al reported, but the diffusion barriers of hydrogen in carbide-free
bainite have been calculated. Since Fe-(Al)-H was chosen as a representative system, we use the
reported results as the upper limit for the repulsive interaction of Al with hydrogen in the direct
neighborhood. Depending on the Al fraction in the supercell, the shift in the hydrogen solution energy
at the transition point along the tetrahedral-tetrahedral path varies and reaches up to 350 meV.

We choose an intermediate value of 150 meV that reflects two aspects: the transition point shift due
to Al alloying—at least in fcc Fe—is around twice as high as the shift of the low energy occupied sites
solution energies due the Al alloying [8], and even with Al segregating to ferritic grain boundaries [17],
we do not assume a local peaking to 50 atomic percent of Al. However, even with 150 meV shift per
hydrogen atom, the preference of hydrogen to segregate to the grain boundaries is suppressed.

Besides this thermodynamic picture, we briefly consider possible kinetic scenarios for the
substitution of carbon with hydrogen in grain boundaries. While the carbon atoms act as a
strengthening element in grain boundaries, as reported in detail in [4], they also increase the local
electronic density. Specifically, as reported also in [9], the carbon atom in the grain boundary shows
overlapping bands with its adjacent Fe atoms and a spherically symmetric local increase of the charge
density distribution (see Figure 3 in [9]). It is possible that the hydrogen atoms in the metallic matrix,
which are partially negatively polarised, lead to a local charge redistribution at these spots of increased
electronic density, providing access to a substitution of the carbon by hydrogen. We note that this
mechanism will require a more detailed quantum mechanical study of the dynamic bonding behavior
at this site.
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5. Hydride Precipitation near Grain Boundaries

As described in Section 2, the application of a tensile strain can lower the solution enthalpy of
interstitial elements and therefore favor segregation. If the material is homogeneously deformed,
also the shift of the solution enthalpy is the same everywhere. For a grand canonical ensemble,
the hydrogen concentration raises uniformly. In contrast, for a canonical ensemble with a fixed total
amount of hydrogen, the concentration distribution is unaffected. This is different for non-uniform
deformation, e.g., localized tensile strains near crack tips or dislocations, where the equilibrium
hydrogen concentration can strongly increase and eventually lead to localized hydride formation.

As we have worked out recently, solubility limits can also be affected by the proximity of surfaces
and interfaces even in the absence of external stresses [18]. At the solubility limit, a secondary
phase (hydride) forms, which typically has an elastic mismatch with the parent phase. This induces
long-ranged coherency stresses, which tend to suppress the phase separation. If free surfaces are
close to the potentially forming precipitate, the stresses can partially be released, and therefore the
elastic energy penalty for two-phase situations is reduced. Consequently, there is a preference for
phase separation near surfaces, or, in other words, the solubility limit for hydrogen is reduced in
these regions.

We have worked out a scale bridging description of these processes, where all relevant material
parameters are derived from density functional theory, and the long-ranged elastic distortions are
treated on the continuum level. Both descriptions are linked by a statistical mechanics and phase field
perspective for the prediction of stress and surface affected solubility limits. A particular finding is
that, in the low concentration and low temperature regime, which is most relevant for hydrogen in
metals and steel, the solubility limits between bulk and surface differ by a factor

s = exp

(
γΔGbulk

el
kT

)
. (22)

This expression is independent of chemical bonding effects and only depends on elastic
parameters. It contains the bulk elastic energy

ΔGbulk
el = − E

1 − ν
χ2 Ω

N0
c0

β, (23)

with Young’s modulus E, Poisson ratio ν, Vegard coefficient χ and low temperature hydrogen
concentration c0

β in the precipitate phase. In Equation (22), γ is a dimensionless geometrical factor
of order unity, which describes the near surface relaxation (for 0 < γ < 1), which can be obtained
e.g., by finite element simulations [19]. We note that this prediction is based in particular on a
strain dependent energy including hydrogen, analogous to carbon in Fe as analyzed in Section 2.
For a detailed discussion, we refer to [18].

We can use these results to discuss the possibility of precipitation, in particular hydride formation,
near grain boundaries. For that, we assume that the grain boundary appears on mesoscopic scales
as a layer with a locally different mechanical strength. The inclusion is assumed to have a diagonal
eigenstrain relative to the matrix phase, and the elastic constants are taken as equal. A sketch of the
geometry is shown in Figure 3.

A spherical precipitate is placed at a certain distance from either a free surface or a grain boundary.
If the precipitate is neither close to the free surface nor to the grain boundary, the elastic energy reaches
the bulk value, which can be calculated analytically under the given conditions (see [18] for details).
For different distances of the precipitate to a free surface or the grain boundary and different elastic
properties of the grain boundary, the elastic energy of the system is calculated with the finite element
method. Close to the free surface, the elastic energy drops with the distance of the precipitate’s center
of mass to the surface h (see Figure 4).
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Figure 3. Spherical precipitate in the vicinity of a free surface or grain boundary. The Young’s modulus
of the grain boundary is effectively either higher or lower than the value in the bulk. The sketch shows
a two-dimensional cut through the three-dimensional system.

Figure 4. Elastic energy of the two-phase system with a precipitate near a free surface, in the bulk,
or close to a hard or soft grain boundary. The energy is shown relative to the bulk energy value.
The location of the grain boundary is at h/R = 6, and we use a grain boundary thickness d/R = 0.8.

When the precipitate approaches the grain boundary, the elastic energy can either increase or
decrease, depending on whether the elastic constant Egb in the grain boundary layer is effectively higher
or lower than in the bulk. In the limit that Egb/E tends to zero, the grain boundary acts effectively as a
free surface, and we recover the same elastic energy relaxation. On the contrary, for Egb 
 E, the grain
boundary becomes rigid, and we receive the same situation as for nucleation near a fully confined
surface, as discussed in detail in [18].

We note that, due to the computational expense, limited datasets of usable mechanical data for
grain boundaries are available. In [9], the dependence of the theoretical strength σth of the Σ5(310)[001]
grain boundary on the hydrogen and carbon population is reported. By varying the carbon and
hydrogen content of this grain boundary, σth varies by 10–50 percent when the empty grain boundary
is populated with hydrogen or carbon. In particular, an energetic preference is reported in [9] for a
segregation of hydrogen to the carbon saturated grain boundary to replace carbon, and an associated
decrease of the theoretical strength by about 20 percent is determined. We note that this value
is subject to variations arising due to orientational changes and elastic anisotropy in real samples.
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We assume that these effects lead effectively to a local alternation of the ratio Egb/E in the spirit of our
continuum picture.

The energy modification 1 − γ = Gel/Gbulk
el can then be inserted into Equation (22) to obtain the

increase or decrease of the solubility limit. Near a stiff grain boundary, hydride formation is less likely.
In conjunction with the role of Al as a protective agent against grain boundary embrittlement

discussed in the previous section, the findings in this section suggest the possibility of an increased
weakness against hydride formation close to grain boundaries when the segregation of Al to grain
boundaries prevents the substitution of carbon by hydrogen. However, we mention that a detailed
understanding of the role of Al on carbon population of attractive grain boundary sites is presently
lacking to give a more complete estimate here. In particular, the possible configurations of Al that
range from a disperse distribution to highly localised concentrations require further investigations on
the quantum mechanical scale.

We remark that one can interpret the Boltzmann factor in Equation (22) as a kinetic modification
of the energy barrier for a hydride nucleation process. Apart from phase separation triggered by
nucleation events, for higher concentrations, also barrierless transformations driven by spinodal
decomposition are conceivable. The mixing enthalpy (per unit volume) is given by

gmix(c) = α
N0

Ω
c(1 − c) (24)

as a function of the hydrogen concentration c, using the number of metal atoms N0 per unit cell of
volume Ω and the interaction strength parameter α that can be obtained by ab initio simulations.
The dominant configurational contribution to the lattice gas entropy is in the low concentration regime

μc = kT ln c. (25)

According to the seminal work by Cahn and Hilliard [20,21], the chemical spinodal is determined
by the condition μ′(c) = 0. Asymptotically for T → 0 and for the low concentration branch,

c ∼ kT
2α

. (26)

In contrast, the coherent spinodal, which is comparable to the bulk elastic solubility limit,
is determined by the condition [20]

μ′(c) + 2
Eχ2Ω

(1 − ν)N0
= 0. (27)

In the low temperature limit for the low concentration branch, we get

c ∼ kT
(

2α − 2
Eχ2Ω

(1 − ν)N0

)−1

. (28)

Surface spinodal modes have been discussed [22], and they can appear in between the coherent
and the surface spinodal in the vicinity of a free surface. From these expressions, we can conclude
that, for hydrogen related problems in steel, the required concentrations for spinodal decomposition
are typically too high, and phase separation should therefore be initiated by nucleation, as discussed
above.

Within this section, we have focused on the influence of mechanical characteristics of grain
boundaries on the hydride formation in the vicinity of a grain boundary. Analogously to the
thermodynamic description of the influence of elastic relaxation close to free surfaces in [18],
the stiffness of the grain boundary can lead to a local decrease or increase of the hydrogen solubility
limit, hence favoring or suppressing hydride precipitation from the host matrix.
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6. Discussion

We have presented several interlinked scenarios for the continuum level interpretation of ab initio
data on hydrogen in steel in the context of hydrogen embrittlement, also in competition with carbon.
The connecting motif is the high complexity of the hydrogen embrittlement process at grain boundaries,
which requires understanding of all the presented phenomena in a scale-bridging fashion to develop a
quantitative connection to macroscale transport and mechanical phenomena.

The connection of ab initio data on the dependence of the solution enthalpy of carbon on the strain
state to a continuum scale description supports the discussion of the influence of grain boundaries
on hydride formation (or precipitation in the vicinity of grain boundaries in general), also depending
on the mechanical properties of the grain boundary. Here, we recognise that, depending on the
hydrogen segregation at the grain boundary, a change of the stiffness by about 20 percent can be
expected—and this implies a possible competitive embrittlement mechanism either in the vicinity of
the grain boundary or in the grain boundary by hydride formation or enrichment. A more conclusive
prediction will require more ab initio data, especially since energies can significantly depend on the
type of grain boundary, misorientation, etc.

Furthermore, we have described the statistical connection of the ab initio data on the influence
of Al on hydrogen solution energies to its local concentration in steel. This also contributes to the
discussion of the protective influence of Al against hydrogen embrittlement at grain boundaries.
We have introduced an approximative scheme to estimate the energies of grain boundaries for varying
levels of co-segregation by hydrogen and carbon, with an accuracy that is comparable to the variation
within published ab initio data. We note that, in a carbon saturated ground state of the considered grain
boundary, the hydrogen enrichment is driven by a segregation energy. It gives a relative preference to
hydrogen instead of carbon by about 100 meV, and we estimate the repulsive effect of Al on H in the
grain boundary to be about 150 meV at sufficiently high Al concentrations. From this, a suppressive
effect of Al on the hydrogen accumulation at the grain boundary can be expected. For higher Al
concentrations, competing phases may form that can also affect the intergranular fracture behavior.

7. Materials and Methods

All numerical approaches for obtaining the simulation data have been obtained using approaches that
are explained in detail in the main cited references. In particular, the Vienna ab initio simulation package
(VASP, version 5.4.1, Computational Materials Physics, University of Vienna, Vienna, Austria, 2015) has
been used for density functional theory calculations [23–25]. Finite element method calculations have been
performed with the open source software FreeFEM++ (FreeFEM++, version 3.59) [19].

8. Conclusions

To conclude, we mention that the possibilities to connect available ab initio data sets to continuum
descriptions require more data from the ab initio side. Especially for grain boundary hydrogen
embrittlement, a comprising study would benefit from data on the dependence of carbon and hydrogen
solution energies in at least two different grain boundaries on the presence of aluminum and the
strain state. However, these kinds of calculations are computationally expensive, though certain
synergy effects are accessible—the theoretical strength can be considered as a byproduct of such
simulations. Still, the configurational complexity of the corresponding simulation cells due to the
distribution of Al as a substituting element and carbon and hydrogen as interstitials creates a vast set
of configurations to be covered. For sure, such data will help to shed light on the complex interplay
of different mechanisms, which may contribute to the understanding and prevention of hydrogen
embrittlement in the future.
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Abstract: In this paper, we present a model which allows bridging the atomistic description
of two-phase systems to the continuum level, using Ni-H as a model system. Considering
configurational entropy, an attractive hydrogen–hydrogen interaction, mechanical deformations
and interfacial effects, we obtained a fully quantitative agreement in the chemical potential, without
the need for any additional adjustable parameter. We find that nonlinear elastic effects are crucial for
a complete understanding of constant volume phase coexistence, and predict the phase diagram with
and without elastic effects.

Keywords: phase equilibrium; Monte Carlo modeling; thermodynamics; elasticity

1. Introduction

The understanding of phase equilibria and transitions is essential for the comprehension of many
processes in nature as well for a theory guided search for novel materials with superior properties.
The modeling of two-phase coexistence in binary alloys is based on the common tangent construction:
In equilibrium, the chemical potentials of each species in the two phases of interest have to be equal.
As shown in pioneering work by several authors [1–3], elastic effects can significantly modify the
phase coexistence behavior, especially in solid phases, e.g., due to density differences.

For a true multi-scale modeling of phase equilibria and transitions in complex materials, ranging
from macroscopic dimensions down to the nanoscale, an efficient and accurate matching between the
atomistic simulations and formal thermodynamic and continuum concepts is critical. However, despite
significant progress, there is still a substantial gap between these two levels. The purpose of the present
article is therefore to seamlessly connect the atomistic and continuum scale, illustrated for the Ni-H
system. This system is used as a prototype in atomistic simulations for the understanding of hydrogen
embrittlement phenomena [4] and rechargeable batteries [5–7]. Mechanical deformations play a crucial
role, and thus a careful thermodynamic inspection is essential for a thorough understanding. In previous
work [8], we connected ab initio modeling of coherent phase equilibria in the presence of lattice strains
and interfacial proximity effects to continuum descriptions. Here, in contrast, the focus is on a matching
between Monte Carlo (MC) simulations using empirical potentials and bulk effects on the continuum
level. Additionally, we consider interfacial energy contributions, which were neglected in [8].

Experimentally, it is known that metallic nickel absorbs very limited amounts of hydrogen
under ordinary conditions, but is known to form a nearly stoichiometric hydride NiH at high
hydrogen fugacities. Fukai et al. performed in situ measurements of the lattice parameter of
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Ni-H alloys over a wide range of hydrogen partial pressures. This way they constructed a
pressure–composition–temperature diagram, encompassing the region of two-phase coexistence [9,10].

One of the central outcomes of the present study is the importance on nonlinear elastic effects in
constant volume simulations, as large stresses can arise [11]. Moreover, our approach also provides
important fundamental insights into the theory of phase equilibria in coherent solid-state systems, as it
elucidates quantitatively the role of different energetic and entropic contributions.

The present work is complementary to atomistic modeling [12] and cluster expansion
approaches [13,14], which aim at a description on the atomic level. Cluster expansion approaches
are based on an energy description of an Ising-like model of alloys and are powerful methods for
predicting phase diagrams and ordering phenomena; long-ranged elastic effects, however, are difficult
to capture in such approaches. Therefore, in the present work, we focused on the bridging between a
hybrid molecular static and Monte Carlo approach for finding the equilibrium configurations on the
one hand and long-wavelength continuum theories on the other hand. This link across the scales is
needed to capture in a closed description both microscopic effects related to H–H interactions as well
as long-ranged elastic effects due to phase separation. The derived scale bridging energy functional can
then serve as a direct input e.g., to phase field simulations. The resulting quantitative scale-bridging is
the major outcome of this paper. Step by step, we introduce the various contributions on the continuum
scale to match the atomistically determined chemical potential of hydrogen, which is a key quantity in
the description of phase coexistence.

2. Methods

The starting point of our study is the determination of the equilibrium spatial distribution of
the interstitial H atoms in the metallic matrix, employing grand canonical Monte-Carlo simulations
and molecular statics. The simulations are performed within a periodic 10 × 10 × 10 fcc supercell
containing 4000 Ni atoms at constant volume (corresponding to the equilibrium volume of pure
Ni) and temperature. H atoms are introduced on the octahedral interstitial sites according to the
Metropolis algorithm [15]. The energies of the trial steps are determined by relaxing the ionic degrees of
freedom—thus fully capturing elastic interactions—using the LAMMPS simulation package [16,17] in
conjunction with a modified version [4] of the Ni-H EAM potential by Angelo et al. [18,19]. The effects
of temperature are thus only considered to account for the configurational entropy contributions to
the free energy, while vibrational contributions are disregarded. This description has previously been
used to model hydrogen mediated dislocation–dislocation interaction [4].

The continuum modeling involves the construction of a free energy functional, which is derived
step by step in the following section. This partly requires solving continuum mechanics problems,
for which we used in particular finite element modeling using ABAQUS.

3. Results

3.1. Monte Carlo Modeling

In the grand canonical simulations, the chemical potential is prescribed, and the number of
hydrogen atoms can vary. Depending on the H chemical potential dilute or condensed H distributions
are obtained. The condensed hydride precipitates remain coherent and adopt characteristic shapes
depending on the bulk H concentration, as shown in Figure 1.

A peculiarity, which motives the present scale bridging investigations, is the functional form of
the hydrogen chemical potential μH as function of the average H concentration, see dots in Figure 2,
which will be discussed in detail below. Classically, we would expect (in a strain free situation) the
chemical potential to be constant in the entire two-phase region as a consequence of the common
tangent construction. Obviously, this is not the case here, and it is one of the goals of this paper to shed
light on this effect.
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Figure 1. Selected atomistic simulation results for different hydrogen concentrations with fixed volume
at T = 300 K. The Ni matrix is not shown, and the hydrogen atoms are visualized by the dots.
The equilibrium shape of the precipitates in a periodic system depends on the H concentrations.
First, hydride spheres appear at low concentrations, here for c = 0.22 (a); followed by a hydride tube
(b) with c = 0.23. For higher saturations (here c = 0.78), slabs are observed (c). Beyond c = 0.5, the
situation is inverted and Ni precipitates form inside the hydride matrix. Snapshot (d) shows a Ni tube
for c = 0.85. The last possible shape—a Ni sphere inside a hydride matrix—is not shown.

Figure 2. Chemical potential of hydrogen as function of H concentration at T = 300 K. The S-shaped
curve is the single phase prediction, the horizontal dashed line the Maxwell construction. For them,
elastic effects are not taken into account, in contrast to the Monte Carlo data, which is for fixed
volume (lattice constant of pure Ni). For high concentrations, compressive elastic effects become
dominant. Apart from the dilute regions c � 1 and 1 − c � 1, the Monte Carlo data correspond to
two-phase configurations.
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3.2. Free Energy Formulation

Our starting point for transferring the atomic scale behavior to the continuum level is the free
energy for the single phase material,

F = μ0NH + Fc + FH-H + Fel (1)

with the number of hydrogen atoms NH and the elastic free energy Fel, the configurational free energy
Fc and the H–H interaction FH-H. μ0 is the solvation energy needed to insert an isolated hydrogen
atom into the (empty) matrix, in contrast to the aforementioned chemical potential μH, which also
includes mutual interactions, elastic effects, etc.

3.3. Solvation Energy and H–H Interaction

For the formation of a hydride phase, it is essential to include a description of the lattice mediated
interaction between the hydrogen atoms [4]. We use the Margules model [5], FH-H/NNi = −αc2/2 +
βc3/3, where NNi is the number of nickel atoms and c = NH/NNi the (homogeneous) hydrogen
concentration; it is normalized to 1 for a crystal where all interstitial octahedral sites are occupied.
The parameters are determined from the Monte Carlo calculations by averaging over several random
mixtures of fully relaxed homogeneous solutions. We point out that, for this matching, we only consider
homogeneous “lattice gas” configurations and not phase separated states, which involve additionally
(coherency) elastic and interfacial effects, and which will be parametrized below. These reference
calculations are performed under constant pressure conditions, P = 0, to suppress (external) stress
effects. The resulting curve F(c) is shown in Figure 3. It is fitted by a polynomial Ff it/NNi =

a0 + a1c + a2c2 + a3c3. Identification with the above parameters therefore uniquely gives μ0 = a1,
α = −2a2 and β = 3a3 (a0 is an irrelevant zero-point energy). Hence, we obtain μ0 = −2.148 eV
relative to monatomic hydrogen in vacuum, α = 0.751 eV and β = 0.355 eV. These numbers differ
slightly from those given in Ref. [5] due to a different pair potential cutoff to stabilize the hydride,
as this leads to a positive value of the elastic constant C44, see Ref. [4] for details. The positive sign of α

favors an increase of the local hydrogen concentration, thus leading to the hydride formation.

Figure 3. Energy as function of the H concentration for a homogeneous and pressure free system,
to determine the solvation energy μ0 and the H–H interaction. Notice that neither entropic effects
are present at T = 0, nor elastic or interfacial effects. The Monte Carlo data is averaged over
several configurations.
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The chemical potential is defined in the usual way,

μH =

(
∂F

∂NH

)
T,V,NNi

, (2)

and is split into additive contributions analogous to the free energy in Equation (1). We therefore
get for the chemical potential contribution by the H–H interaction μH-H = −αc + βc2. It is shown in
Figure 4 for both the present fitting parameters and the ones given in Ref. [5], exhibiting only small
differences between the predictions.

Figure 4. The chemical potential contribution μH-H as function of the hydrogen concentration in a
homogeneous system.

3.4. Configurational Entropy

The configurational free energy Fc stems from the different possibilities to occupy the interstitial
sites with hydrogen (or the hydride with vacancies), and is therefore given by

Fc = kBTNNi[(1 − c) ln(1 − c) + c ln c] (3)

under the assumption of equal occupation probability for all octahedral sites [20]. In the low
concentration regime, it gives the dominant nontrivial contribution, as elastic and interaction effects
are negligible there, see Figure 5.

We note that the configurational term is the only temperature dependent one in the present
description. To verify this dependence we also computed in the Monte Carlo simulations cases with
different temperatures, and the results are shown in Figure 6, showing very good agreement.

3.5. Maxwell Construction

Thus far, the system is described for a single phase state only, and elastic effects are suppressed
by a free volume expansion. Due to homogeneity, elastic stresses as well as interfacial contributions do
not appear, and the description is therefore complete on this level.

According to the usual thermodynamic picture, a single phase state is unstable in regions where
the slope of the chemical potential is negative, μ′

H(c) < 0, and phase separation should occur there.
As can be seen in Figure 6, this is the case for a wide concentration regime for low temperatures,
whereas for high temperatures the hydrogen solubility limit is significantly larger.
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Figure 5. Dilute limit of the chemical potential, which is dominated by the configurational entropy.
The data are for T = 300 K and for fixed volume with the equilibrium lattice constant of pure Ni.
The chemical potential is (apart from the offset μ0) dominated by the configurational contribution
μc, whereas elastic and H–H interaction terms, μel and μH-H are negligible there. The accuracy of the
continuum description in comparison to the Monte Carlo data are finally about 20 meV per atom in the
entire concentration range 0 < c < 1.

Figure 6. Chemical potential in the single phase state for different temperatures. The curves are
the analytical descriptions based on the expression μ0 + μH-H + μc using the parameters of the H–H
interaction and the solvation energy. The points are the data from the grand canonical Monte Carlo
simulations of homogeneous, single-phase states. At low temperatures, the solubility is very low,
and therefore the concentration range of the single phase equilibrium states limited to the dilute regions.

Phase coexistence on this level is described by Maxwell’s equal area rule, which states that phase
separation sets in at the intersection points of a horizontal line with the S-shaped van der Waals loop,
cutting it into two equal areas above and below this Maxwell line. This is shown in Figure 2 for
T = 300 K. From this, we get the constant chemical potential in the two-phase region, μM = −2.405 eV
for T = 300 K. In equilibrium, the system therefore enters the two-phase region at the first intersection
of the horizontal Maxwell line with the S-shaped single phase curve. Apparently, this happens already
for very low concentrations in the ppm range. Nevertheless, on the following ascending part of
the curve μH(c), the system is still metastable. We point out that, according to the principles of the
two-phase construction, the dual phase hydrogen chemical potential should be constant and equal to
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μM until the phase transformation is completed. Obviously, this is not the case for the atomistic data
with the fixed volume constraint.

3.6. Elastic Effects

Before entering into a detailed analysis of elastic effects, let us briefly discuss them in relation to
the H–H interaction term. The latter is sometimes also introduced as long-range elastic interaction, and
we want to stress that we do not double count effects here. The H–H interaction term expresses that an
H atom locally deforms the lattice, and therefore makes the placement of another H atom in the vicinity
energetically favorable. In a mean field context, this is expressed by the term ∼−c2 in FH-H. If the site
occupancy gets higher and the octahedral sites more and more filled, the energy for placing more H
atoms into the lattice increases again, as expressed by the +c3 term. Although this consideration makes
reference to elastic deformations, this is distinct from the elastic effects considered in the following.
To make this point more explicit, we consider the following two situations, for simplicity both with
homogeneous hydrogen distributions, i.e., spatially constant concentration c:

First, for fixed pressure P = 0, we increase the hydrogen concentration. This leads to a widening
of the lattice, as discussed in the following and shown in Figure 7. However, since the system remains
stress free on a mesoscopic or macroscopic level, σij = 0, the elastic energy (see Equation (5)) in the
continuum mechanics sense remains zero. Nevertheless, the total energy of the system is changed due to
the H–H interaction, and this is expressed through FH-H, which is independent of the elastic stress state.

Second, for fixed concentration (and total number of hydrogen atoms), we change the external
pressure of the system. Then, the H–H interaction term does not change, but the mesoscopic elastic
energy does.

The difference between the H–H interaction term and the explicit elastic term becomes most
prominent in two-phase situations. Then, the hydride has a larger equilibrium lattice constant and
therefore distorts the surrounding, coherently connected matrix phase. This leads to long-ranged
elastic deformations, and the range of these interactions of the order of the precipitate size, which is
captured by the mesoscopic elastic energy term introduced below, but not by the H–H interaction term.
For further discussion of this separation of microscopic and mesoscopic elastic contributions, we refer
to [8]. There, it was shown that the elastic energy due to microscopic deformations around individual
H atoms and long ranged strains resulting from the formation of mesoscopic precipitates decompose
additively into microscopic and mesoscopic contributions without the appearance of a cross term.

The large deviations between the atomistic data and the continuum model clearly indicate
that elastic and interfacial effects are critical and cannot be neglected. We remind that the basis
for the Maxwell construction—or here equivalently the common tangent construction—is based on
the assumption that the two-phase energy in a macroscopic system decomposes additively into the
contributions of the two phases, which do not influence each other. This means, that they are described
by free energy densities, which depend only on the local concentration. This condition, however,
is violated in the presence of elastic effects. Here, e.g., a density variation in one phase also influences
the other, as the global pressure in the system changes.

In the following, we discuss the modeling mainly from the continuum perspective. The technical
aspects of the parameter matching between the scales are given in the appendices.

We focus first on the low-temperature regime, where the hydrogen solubility limit is low (see
Figure 13), and higher temperatures will be discussed later. In the present regime, the phases are
almost stoichiometric, and the chemical potential of the hydrogen in the two-phase region is modified.
From a minimization of the total free energy in the two-phase region, we obtain the modified chemical
potential (see Appendix A)

μH(c) = μM + μel(c) + μs(c). (4)

In contrast to the Maxwell term μM, the elastic and interfacial contributions, μel and μs,
respectively, do depend on the concentration, and therefore the chemical potential is no longer constant
in the two-phase region, as observed in the Monte Carlo simulations (see Figure 2).
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3.6.1. Linear Elastic Effects

The pure nickel and the hydride exhibit a substantial lattice mismatch, and therefore, in the
two-phase region, elastic stresses arise. The linear elastic free energy density per unit volume is given by

fel =
1
2

Cijkl(εij − ε0
ij)(εkl − ε0

kl), (5)

where εij = (∂iuj + ∂jui)/2 is the strain derived from the displacements ui, and the eigenstrain
ε0

ij = ε0δij represents the isotropic volume expansion of the hydride [21]. It is concentration dependent,
and we extracted it again from T = 0 K simulations of homogeneous states with P = 0; it is well
described by ε0(c) = b1c + b2c2 + b3c3 with fitting parameters b1 = 0.1027, b2 = −0.0598 and
b3 = 0.0189, going beyond a linear dependence in the spirit of Vegard’s law. The eigenstrain is directly
related to the concentration dependent lattice constants with aNi = 3.520 and aNi−H = 3.738 via
ε0(c) = [a(c)− aNi]/aNi, since we use here the relaxed, hydrogen-free nickel as reference configuration
(see Figure 7).

Figure 7. Lattice constant as function of the hydrogen concentration. The Monte Carlo results are
obtained from homogeneous free volume simulations, averaged over several configurations. The fit
describes the nonlinear concentration dependence, in contrast to a linear interpolation (Vegard’s law).

The elastic constants for the pure phases are listed in Table 1. We note that all values are
given with respect to Ni as reference configuration; see Appendix B for a discussion of this issue.
The determination of the elastic constants from the Monte Carlo simulations is described in detail in
Appendix C.

Table 1. Elastic constants of pure nickel and the fully saturated hydride, as obtained from the EAM
potential (see Appendix C for details). We note that the relaxed configuration of Ni is used as
reference state.

Cij Ni Ni-H

C11 250.7 GPa 295.3 GPa
C12 145.5 GPa 197.3 GPa
C44 134.3 GPa 33.5 GPa

To better understand the role of the elastic effects, it is instructive to inspect an analytical isotropic
linear elastic model, where we assume for simplicity the elastic constants to be equal in both phases.
We use a spherical sample of radius R consisting of nickel, with a hydride inclusion of radius RH in its
center. The radial displacement component is continuous at the coherent interface and vanishes at
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the outer boundary due to the volume constraint. At low temperatures, the concentration is in good
approximation c = 0 in Ni and c = 1 in the hydride. This gives (see Appendix D)

μlin.el =
a3

Ni(3λ + 2G)[2G + c(3λ + 2G)](Δε0)
2

(λ + 2G)N0
, (6)

where N0 = 4 is the number of octahedral sites per unit cell, Δε0 = ε0(1)− ε0(0), and λ and G are
Lamé coefficient and shear modulus respectively. In this approximation, the elastic contribution in
Equation (6) is a linear function of the concentration, and it depends quadratically on the eigenstrain
difference Δε0. Since the material is relaxed for c = 0, the elastic effects therefore give only an additive
constant for c = 0, which is related to the elastic hysteresis due to the internal stresses that arise upon
precipitate formation. For the isotropic elastic constants we use the values for nickel and λ = C12 and
G = (C11 − C12)/2 for the solid curve μM + μlin.el in Figure 8.

Figure 8. Elastic contribution to the chemical potential in various approximations: The solid curve
expresses the isotropic prediction by Equation (6), using equal elastic constants for both phases (we
use the values of pure Ni). The long-dashed curve is the same isotropic model, but this time using
the different elastic constants of both phases. This prediction is almost identical to a numerically
calculated expression based on cubic elasticity, which assumes a spherical inclusion in a cubic box with
periodic boundary conditions (short-dashed curve). In contrast to all these linear elastic approximations,
the dotted line also considers elastic nonlinearities. Its prediction is very close to the Monte Carlo data.

The calculation can also be done using the elastic constants of the individual phases, leading to
the long-dashed curve shown in the same graph (see Appendix D). A numerical finite element solution
with ABAQUS for spherical precipitates in a cubic box with fixed volume, taking into account the full
cubic elasticity and periodic boundary conditions, leads to the short-dashed curve shown in Figure 8.
It is very close to the analytical results. Since we still observe a significant discrepancy to the Monte
Carlo data, we conclude that the consideration of linear elasticity is not sufficient to explain the slope
of the chemical potential in the two-phase region.

3.6.2. Nonlinear Elastic Effects

The reason for the discrepancy between the atomistic data and the continuum modeling involving
linear elasticity is the appearance of large compressive stresses for higher hydrogen concentrations
(at fixed volume), and therefore the linear elastic approximation breaks down. Instead, we have to take
into account nonlinear elastic effects; they include nonlinearities in the stress-strain relationship,
leading effectively to expressions Cijkl({εmn}) in the elastic free energy density. Additionally,
geometrical nonlinearities appear due to the volume deformation and the nonlinear strain tensor [11],
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εij =
1
2

(
∂uj

∂xi
+

∂ui
∂xj

+
∂uk
∂xi

∂uk
∂xj

)
. (7)

We have estimated that these effects are small in comparison to the change in the constitutive law,
and therefore effectively captured them in the modified elastic constants. However, it turns out to be
important to carefully use consistently the same reference configuration for the Lagrangian formulation
of elasticity for both phases. We note that the chemical potential contains now also a contribution due
to the strain dependence of the elastic constants. We mention in passing that we do not observe plastic
deformations in the atomistic simulations. From a careful analysis of the Monte Carlo simulations
we find that the nonlinear corrections depend only on the volume change and not on shear effects,
thus the elastic constants depend only on the trace of the (local) strain tensor, which simplifies the
expressions. We therefore write them as series expansion

C = C0
[
1 + dC

1 tr(ε − ε0) + dC
2 [tr(ε − ε0)]2 + . . .

]
(8)

for all elastic constants or combinations of them. From the atomistic simulations we find the coefficients
of the nonlinearities for C11 −C12, C44 and the bulk modulus K, see Table 2 and Appendix C. From them,
all elastic constants can be expressed using the relation 3K = C11 + 2C12. We note that for the present
geometry bulk compression is the dominant effect, and the material becomes stiffer in this regime of
negative strain (compression). Including the nonlinear contributions the continuum chemical potential
shows now a very satisfactory agreement with the Monte Carlo data, see the dotted line in Figure 8.

Table 2. Coefficients for the nonlinear elastic corrections. If higher order coefficients are missing, the
expansion is truncated already at lower order.

Elastic Constant Material d1 d2 d3 d4 d5

C44 Ni −3.25 −7.04 – – –
C11 − C12 Ni −2.01 −12.51 – – –

K Ni −1.00 0.53 −4.49 2.57 50.03
C44 Ni-H −22.80 −47.20 – – –

C11 − C12 Ni-H −9.77 −14.69 – – –
K Ni −2.25 3.37 11.51 3.55 −51.00

3.7. Interfacial Effects

In a final step, we take into account interfacial effects. As already visible from the agreement of
the Monte Carlo data and the nonlinear elastic curve, their contribution is obviously small. In isotropic
approximation, the surface energy for a spherical inclusion is given by Fs = 4πγR2

H with the surface
energy γ. From planar interface calculations, we obtain γ = 0.11 Jm−2 for (100) interfaces and
γ = 0.17 Jm−2 for (111) interfaces. From the fitting of two-phase data, we independently get an
excellent agreement using γ = 0.17 Jm−2 for the spherical inclusion.

The magnitude of interfacial terms should be compared to bulk contributions to see their influence
and to get an impression on the dimension of critical nuclei. For an order of magnitude estimate, we
compare elastic bulk contributions in the approximation in Equation (6) to interfacial contributions for
spherical precipitates for small concentrations in Equation (A42), where the influence of interfacial
terms is largest. For c � 1 the elastic and interfacial contributions are comparable for

NH � 4γ3(2G + λ)3n0π

3a3
Ni(Δε0)6G3(2G + 3λ)3

, (9)

which is the case for about 23 H atoms. This indicates that interfacial contributions are indeed small
for the present scenario in comparison to the elastic bulk terms.
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For a linear isotropic material with equal elastic constants in both phases and a purely dilatational
eigenstrain, the elastic energy does not depend on the shape of the inclusion but only on its volume
fraction [22]. Although the conditions for this rigorous statement are not exactly fulfilled here,
we find only a small dependence of the elastic energy on the precipitate shape in the Monte Carlo
data, as exemplarily shown for spherical hydride inclusions in a Nickel matrix and vice versa in
Figure 9. Consequently, the shape of the precipitate is determined by the interfacial energy terms
alone, see Appendix E for explicit calculations. This means, that for each given average concentration
c, which is related to a precipitate size, the equilibrium shape with the minimum interfacial energy
appears. For isotropic surface energy we expect spherical inclusions for c < 4π/81 ≈ 0.16, followed by
tubes up to c = 1/π ≈ 0.32, and slabs thereafter. The situation is symmetric for c > 0.5 with then the
hydride being the matrix phase. Thus we expect nickel tubes in the range 1− 1/π < c < 1− 4π/81 and
spheres beyond this concentration. In our Monte Carlo calculations, we indeed find all these structures
in the correct ordering (see Figures 1 and 10), but the transition points differ slightly due to anisotropy
and nonlinear elastic effects. Based on the observed structures and the calculated interfacial energy we
added this contribution to the nonlinear elastic chemical potential in Figure 10. The transitions between
different precipitate shapes explain the small discontinuities in the chemical potential, as computed
from the Monte Carlo simulations. Apparently, with all the aforementioned effects taken together,
we get an excellent agreement with the Monte Carlo data in the entire two-phase region.

Figure 9. Energy per Ni atom as function of the hydrogen concentration. The atomistic data
are calculated at T = 0 K without Monte Carlo steps but atomic relaxation for fixed volume.
A spherical precipitate is placed in the center to the simulation cell (with periodic boundary conditions).
The irrelevant integration constant E0 for pure Ni is subtracted, as well as the trivial term μ0, thus only
the H–H interaction, elasticity and surface contributions remain. The shape of the precipitate is not
important for the elastic energy; we used both Ni-H and Ni inclusions in the atomistic simulation,
visualized by open and filled spheres.

Finally, we briefly comment on the role of surface stress. In isotropic approximation, the surface
energy for a spherical inclusion is given by Fs = 4πγ0R2

H with the surface energy γ0. The surface
stress contribution is Fβ = 4πR2

H β(εθθ + εφφ) in spherical coordinates, with the scalar surface stress
coefficient β [23,24]. We obtain—in the same approximation as for Equation (6)—due to the additional
pressure difference between the precipitate and the matrix Δσrr = 2β/RH also a contribution from the
elastic bulk energy ΔFel [25]

Fβ + ΔFel =
8
3

π
3λ + 2μ

λ + 2μ
βΔε0 R2

H , (10)
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where we have neglected a small destabilizing term proportional to β2 for |β| � 3KΔε0RH (we have
estimated from the atomistic data β to be of the order −1 Jm−2, thus this condition is fulfilled), and also
assumed c � 1, since spherical precipitates appear for small concentrations only, as discussed below.
Consequently, these terms have the same radius scaling as the surface energy term ∼R2

H , and despite
their partial origin from a bulk energy, they appear effectively as surface term; therefore, we treat them
via a renormalized interfacial energy density γ.

With this, the parametrization of the continuum model is completed, and it is used in the
following for predicting hydrogen partial pressures, volume relaxation effects, and for the prediction
of phase diagrams.

Figure 10. The chemical potential of hydrogen at T = 300 K. The dots are the data from the Monte
Carlo simulations. The chemical potential including nonlinear elastic effects is very close to the Monte
Carlo data, and, together with interfacial effects, the agreement is excellent. The contribution from
the interfacial terms is largest for low concentrations, as there the precipitates are small and therefore
have the largest surface-to-volume ratio. The dotted curves near c = 0 and c = 1 are the analytical
predictions for the single phase dilute limits. The H2 partial pressure is based on an ideal gas model,
which is not realistic for higher pressures and only serves for illustrational purposes.

3.8. High Concentration Limit

We can also correctly describe the limit of high hydrogen concentrations, where almost all
octahedral sites are filled with H. For 1 − c � 1, the system is again in a single phase state, with a
dilute distribution of vacancies, thus the steep divergency of the chemical potential is due to the
configurational degrees of freedom. Nevertheless, the central difference to the dilute limit c � 1 is
that the material is here severely under (nonlinear) stress (as we focus on fixed volume situations,
where pure Ni is stress free, hence stresses are maximized for c = 1) , thus elastic effects play a major
role here. In contrast to the phase separated region we need precise knowledge of the concentration
dependence of the elastic constants, their nonlinearities and the eigenstrain. Consideration of all
these effects leads to the good agreement between the Monte Carlo data and the continuum picture,
as shown in Figure 10.

3.9. Conversion to Partial Pressures

To relate the chemical potentials to experimentally accessible quantities, it is useful to translate
them to hydrogen (H2) partial pressures. In the following, we use a subscript H2 to discriminate
between quantities related to the gaseous hydrogen molecules and the monatomic hydrogen in solid
solution. From the ideal gas equation and the Maxwell relation
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(
∂μH2

∂pH2

)
T,NH2

=

(
∂V

∂NH2

)
T,pH2

=
kBT
pH2

(11)

we obtain by integration the chemical potential of H2 up to an additive term μ0
H2

,

μH2(T, pH2) = μ0
H2

(T) + kBT ln
pH2

pref
(12)

with an arbitrary reference pressure pref. From the equilibrium between H2 and dissociated
hydrogen follows

μH2 = 2μH. (13)

This leads to

pH2 = pref exp

(
2μH − μ0

H2
(T)

kBT

)
. (14)

We therefore need an expression for μ0
H2

(T) to link the chemical potential to a hydrogen
partial pressure.

In the dilute limit c � 1, the chemical potential is (see also Figure 5)

μH = μ0 + kBT ln c. (15)

In combination with Equations (12) and (13), we therefore get Sievert’s law

c =
(

pH2

pref

)1/2
exp

(
−μ0 − 1

2 μ0
H2

(T)

kBT

)
. (16)

This is in agreement with experimental findings [26] for the solubility of H2 in Ni

c = 2c0

(
pH2

p0

)1/2
exp

[
−1485.167 K

T
+ 3.9881

]
, (17)

expressed in terms of the quantities used here, with c0 = 5.8694 · 10−7 and p0 = 133.3224 Pa (the
prefactor 2 stems from the dissociation of a H2 molecule in two H atoms). This allows to identify an
expression for the offset potential μ0

H2
(T)

μ0
H2

(T) = 2μ0 − kB · 2970.334 K + 7.9762 kBT

= −4.552 eV + T · 6.873 · 10−4 eV K−1, (18)

where we have chosen pref = p0/(4c2
0). With these identifications, Equation (14) is the desired relation,

which is shown in Figure 10. Apparently, the H2 partial pressures needed for the higher concentrations
are extremely high and not reachable in experiments under normal conditions, making computer
simulations particularly useful there. In addition, we note that for such high pressures the used ideal
gas description of H2 breaks down. On the other hand, the H2 partial pressures needed for formation
of a hydride are much lower for free volume situations, which will be discussed below (see Figure 11).
We can therefore conclude that volumetric constraints, or—more generally—compressive stresses can
suppress the formation of hydrides, which can be responsible for the embrittlement of the metal.
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Figure 11. Comparison of the chemical potential for fixed volume and in a stress-free situation, P = 0,
T = 300 K. The volume constraint leads to a positive slope of the chemical potential in the two-phase
region, thus stabilizing phase separation of given chemical potential. In contrast, two phase states are
unstable for given μH , as shown here using the continuum prediction.

3.10. Volume Relaxation

Instead of a fixed volume constraint, one may also consider a situation with free expansion, P = 0.
This does not mean that elastic effects disappear, because in the two-phase region internal coherency
stresses still arise. Thus, the same elastic barrier appears for the first nucleation of the precipitate,
but thereafter the elastic contribution to the chemical potential decreases with concentration, see
Figure 11. Since the stress effects are much lower, elastic nonlinearities are negligible here, and the
curve is calculated in linear isotropic approximation. The qualitatively different behavior shows the
important role of external boundary conditions. In contrast to scenarios with free expansion, the
volume constraint stabilizes two-phase equilibria. This behavior can intuitively be understood as
follows: When a precipitate is inserted into the matrix, coherency stresses arise, which increase the
elastic energy. If the precipitate grows and finally fills the whole sample, the freely expanding material
is homogeneous and therefore stress free. This implies that the elastic energy decays with the hydride
volume fraction, and therefore the elastic contribution to the chemical potential appears with negative
sign. Therefore, we get a hydrogen chemical potential with a negative slope in the two-phase region,
which corresponds to an unstable situation. We have verified this prediction using Monte Carlo
simulations for fixed and free volume at T = 300 K, see Figure 12.

We note that volume constraints can therefore stabilize precipitates. In a simulation, this is
useful for probing situations with phase coexistence, which would otherwise not appear, as either the
system is homogeneously in the dilute state or fully saturated with H for given chemical potential.
This is expressed here by a negative slope of the chemical potential of H. The present physically
motivated approach is therefore an alternative to bias potentials [12] to probe configurations with
phase coexistence.

3.11. Phase Diagram

Based on the temperature dependence of Fc, we can predict the entire bulk phase diagram without
elastic effects via the Maxwell construction, see Figure 13. We note that this phase diagram is derived
solely from T = 0 K data for the H–H interaction. To verify it also for higher temperatures, we
have compared the analytical expression for the chemical potential to the single-phase data from
grand-canonical Monte Carlo simulations with free volume relaxation, where elastic and interfacial
effects do not appear, and find an excellent agreement (see Figure 6). We note that the purpose of the
present work is to match a continuum description of Ni-H to Monte Carlo simulations based on an
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empirical interatomic potential. The agreement between the two theoretical approaches is excellent.
Compared to experimental values, however, the description is less suitable for high temperatures,
and therefore it is not accurate in this regime. The reason is—apart from potential limitations of the
interatomic potential—the use of the (lattice) Monte Carlo molecular statics description, which neglects
in particular phonon excitations.

Figure 12. Evolution of the hydrogen concentration as function of the number of Monte Carlo steps
for T = 300 K. Grand-canconical simulations with given chemical potential μH are used. (Top) Fixed
volume using the equilibrium lattice constant of Ni. Due to the positive slope of the chemical potential
in the two-phase region (solid curve and data points in Figure 11) stable two phase states with
arbitrary average concentrations can be obtained in thermodynamic equilibrium. (Bottom) For free
volume, the miscibility gap is inaccessible for the given chemical potential in the grand canonical
simulations, and instead the equilibrium state is almost free of hydrogen or almost fully saturated,
as the solubilities are low at low temperatures (see phase diagram Figure 13). The reason for this
behavior (which is accompanied by a hysteresis) is the negative slope of the chemical potential in the
two-phase region (see Figure 11), which implies that these configurations are unstable. All simulations
are started as a hydrogen free system, and formation of the hydride therefore demands to overcome a
nucleation barrier.
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Figure 13. Phase diagram of the Ni-H systems, based on parameters extracted from Monte Carlo
simulations. The solid line is the binodal without consideration of elastic effects, whereas the
dash-dotted line is the same with elastic effects for fixed volume.

An application that we can readily extract from the above results is the phase diagram taking
into account elastic effects. In particular, we consider the situation of fixed volume and determine
the two-phase region by minimization of the total free energy. For the sake of simplicity, we assume
a slab geometry with the phase normal in [100] direction (see Figure 14), which is the most relevant
pattern in the medium concentration regime, as discussed above in Figure 10. In contrast to other
geometries, homogeneity implies the constancy of concentrations in each phase. We neglect the elastic
nonlinearities, which allows for a straightforward solution of the underlying one-dimensional elastic
problem. As the elastic constants were determined mainly for c = 0 and c = 1, we assume additionally
that they interpolate linearly for arbitrary concentrations 0 < c < 1. This is mainly relevant for higher
temperatures, where the appearing phases have larger solubilities for hydrogen or vacancies, thus they
appear with intermediate concentrations. As will be discussed below, it turns out that the concentration
dependence of the elastic constants is not important, and therefore this approximation is legitimate.

Figure 14. Sketch of the hydride phase (light grey) forming as a slab in the nickel matrix with fixed
volume. Due to translational invariance, we can assume the hydride phase to be located in the left part
of the cube, starting at x = 0.

We inspect the case of a constant total volume which is stress free for pure nickel, i.e., the
lattice constant for a homogeneous system is aNi. Consequently, for the two-phase system with cubic
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symmetry, the only non-vanishing displacement component is ux, which is a linear function of x
in each phase, u(i)

x = aix + b (the phases are enumerated by i). Hence, the only nontrivial strain
component is ε

(i)
xx = ai; stresses follow from Hooke’s law with cubic symmetry,

σ
(i)
xx = C11(ci)(ai − ε0(ci))− 2C12(ci)ε0(ci), (19)

σ
(i)
yy = σ

(i)
zz = C12(ci)[ai − 2ε0(ci)]− C11(ci)ε0(ci). (20)

Because the concentration is homogeneous in each phase for this effectively one-dimensional
situation, the linear bulk elastic equations are automatically fulfilled by the above ansatz. The coefficients
a1, b1, a2, b2 are determined by the boundary and matching conditions, u(2)

x (x = 0) = 0, u(1)
x (x = L) = 0,

u(1)
x (x0) = u(2)

x (x0) and σ
(1)
xx (x0) = σ

(2)
xx (x0). The elastic energy density is in each phase

f (i)el = 2C12(ci)ε0(ci)[−2ai + 3ε0(ci)] + C11(ci)[a2
i − 2aiε0(ci) + 3ε0(ci)

2]. (21)

From that, we can calculate the elastic energy per unit area,

Fel = f (1)el (L − x0) + f (2)el x0. (22)

The total free energy is then F = μ0NH + Fc + FH-H + Fel. Additionally, the concentrations c1 and
c2 in the two phases are related to the (fixed) average concentration c via the lever rule,

Lc = (L − x0)c1 + x0c2. (23)

We can therefore investigate F/L as function of c1, c2 for given values of T, c, and the phase
fractions are determined by the lever rule. The concentration domain can be restricted to c1 < c < c2,
and the free energy is minimized with respect to c1 and c2 in equilibrium. Whenever the minimum
is located inside this domain, the system is in a two-phase state, whereas the minimum is located on
the border c1 = c or c2 = c for a single phase state. By performing this minimization in the entire c, T
plane one obtains the elastic phase diagram.

Already at this level we see the tremendous influence of the elastic effects in Figure 13, with
an enlargement of the two-phase region towards higher temperatures and the hydrogen rich side.
This unusual behavior—one would intuitively expect the suppression of phase separation since
coherency stresses are energetically unfavorable—is due to the fact that the eigenstrain is a concave
function of the concentration, ε′′0(c) < 0 (see Figure 7), thus volumetric deviations from Vegard’s law
play the dominant role here.

To investigate this peculiarity in more detail, we look at the elastic energy depending on the
phase concentrations. We start with a situation which differs from the true Ni-H problem. Instead, we
assume a linear dependence of the eigenstrain on concentration (see Figure 7) (Vegard’s law). Here, we
find that single-phase states have the lowest elastic energy in a wide region of the phase diagram and
are therefore energetically favorable. Thus, phase separation is suppressed by elastic effects in this
fictitious situation, leading to an increased H solubility limit, and this is shown in Figure 15. In contrast,
for the true concentration dependence of the lattice constant on the H concentration in Figure 7,
we obtain a reduced solubility limit of hydrogen in the nickel matrix. As mentioned above, this is
a counterintuitive result, as the appearance of phase separation should usually increase the elastic
energy and therefore make this state thermodynamically unfavorable, in contrast to our observation.
Here, the situation is opposite: Single-phase states are more expensive from point of view of elastic
energy, and the hydrogen solubility limit is therefore reduced. The explanation is that the single-phase
case has a higher average eigenstrain, and therefore the mechanical volume work is higher than for the
phase separated case for the anticipated fixed volume ensemble.
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Figure 15. The phase diagram depending on the eigenstrain is shown. The binodal and elastic binodal
curves are the same as in Figure 13. The other two curves show the tremendous influence of the
concentration dependence of the eigenstrain or lattice constant. If, instead of the concave dependence
ε′′0(c) < 0, a linear relationship is assumed (Vegard’s law), the solubility of hydrogen is drastically
enhanced. In contrast, the concentration dependence of the elastic constants plays only a minor role:
The case of different elastic constants anticipates a linear interpolation of the elastic constants between
the values for Ni and Ni-H, whereas, for equal constants, both phases are assumed to have the same
elastic constants (using values for Ni).

As a result, we find that the ε0(c) dependence has a tremendous influence on the phase diagram.
This effect is much more pronounced that the concentration dependence of the elastic constant. If we
assume, instead of the linear interpolation between the values for Ni and Ni-H, just concentration
independent constants using the values of Ni, we find only a small shift of the binodal (see Figure 15).
We can therefore conclude that the concentration dependence of the lattice constant is the most relevant
quantity for the influence of elastic effects on hydrogen solubility limits.

4. Discussion and Conclusions

Understanding the thermodynamics of phase separation across the scales is a key for deriving
macroscopic material properties from fundamental microscopic descriptions. Often, such a transfer
is not straightforward, but, with careful descriptions, it is possible to obtain not only macroscopic
parameters but also describe energy functionals in agreement with the underlying behavior on atomic
scales. We demonstrated such an approach for the Ni-H system with a special focus not only on
classical thermodynamics but also strong mechanical and interfacial effects.

In detail, we have seamlessly matched the results of hybrid molecular static and Monte-Carlo
simulations in a binary system with full consideration of elastic effects to a continuum description for
large scale simulations. The accurate identification of configurational, interaction, nonlinear elastic and
surface effects allows for a thorough understanding, which will be equally useful and applicable to
other mechanisms or material systems. Presently, the description is most useful for the low temperature
regime below the Debye temperature. The consideration of vibrational degrees of freedom and defect
formation, as well as the consideration of more complex phase diagrams will be the subject of future
investigations. It should be pointed out that the accuracy of the predictions is limited by the atomic
scale description, to which the continuum energy functional is tailored. The inclusion of the effects
mentioned before will presumably require the consideration of additional energy terms and variables
such as defect concentration.

The determination of phase diagrams demonstrates the opportunities arising from the transfer of
atomistic data to the mesoscale: The quantitative determination of the free energy allows for example
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to construct the entire phase diagram in Figure 13 computationally much more efficiently than using
atomistic simulations which require large system sizes and long relaxation times, especially in the room
temperature regime. Moreover, the description serves as an accurate basis for mesoscale simulation
methods such as phase field [27].
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The following abbreviation is used in this manuscript:

MC Monte Carlo

Appendix A. Thermodynamic Framework

To understand the influence of elastic effects on the phase diagram and the chemical potential,
we start with considering the free energy of the system. We use the following notations: NNi is the
total number of nickel atoms, Nd

Ni is the number of Ni atoms in the dilute phase, Nh
Ni = NNi − Nd

Ni
is the number of Ni atoms in the hydride, and n0 is the number of nickel atoms per unit cell (4 for
fcc). Similarly, NH is the total number of hydrogen atoms, with Nd

H of them being in the dilute phase
and Nh

H = NH − Nd
H in the hydride. In the fully saturated hydride, we have N0 hydrogen atoms per

unit cell (here, N0 = 4), which corresponds to the normalization c = 1. Thus, we define the hydrogen
concentration in the dilute phase cd = Nd

Hn0/(Nd
NiN0), and in the hydride, ch = Nh

Hn0/(Nh
NiN0).

The average concentration is c = NHn0/(NNiN0).
The free energy of the system is

F = Nd
Ni f d(cd) + Nh

Ni f h(ch) + Fel(Nd
Ni, Nh

Ni, cd, ch). (A1)

Here, f d is the free energy density (per host atom) of the dilute phase, and f h is the same for
the hydride. The elastic energy depends on the volume fractions and the concentrations in each
phase. Here, we already suppressed the degree of freedom of the shape of the hydride inclusion and
assume that the free energy is already minimized with respect to it. Notice that we consider here
only situations with fixed global strain (i.e., fixed volume), therefore the free energy is the appropriate
thermodynamic functional.

As a further approximation of the elastic energy for low temperatures, we take into account that
the dilute phase is almost free of hydrogen (Nd

H ≈ 0), whereas the hydride is almost fully saturated
(Nh

H ≈ Nh
NiN0/n0). This implies Nh

H ≈ NH. Therefore, we obtain the simplification Fel ≈ NNi fel(c)
with the intensive elastic energy density fel.

For the determination of the two-phase equilibrium, we proceed in the usual way: The free energy
has to be minimized with respect to the phase fractions and the partitioning. Therefore, we get

(
∂F

∂Nd
H

)
NH,NNi,Nd

Ni

= μd(cd)− μh(ch) = 0, (A2)

where we defined the chemical potentials

μd/h =
n0

N0

d
dcd/h f d/h(cd/h). (A3)
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The equality of grand potentials becomes

(
∂F

∂Nd
Ni

)
NH,NNi,Nd

H

= f d(cd)− cdμd − f h(ch) + chμh = 0. (A4)

Notice that the elastic terms do not appear in the common tangent construction in the framework
of the above approximations, since the concentration is assumed to be fixed in this approximation,
which holds here for low temperatures.

Next, we calculate the chemical potential of the hydrogen in the two-phase region. It is given by

μH =

(
dF

dNH

)
NNi

=

(
∂F

∂NH

)
NNi,Nd

Ni,N
d
H

+

(
∂F

∂Nd
Ni

)
NNi,NH,Nd

H

(
dNd

Ni
dNH

)
NNi

+

(
∂F

∂Nd
H

)
NNi,NH,Nd

Ni

(
dNd

H
dNH

)
NNi

(A5)

=

(
∂F

∂NH

)
NNi,Nd

Ni,N
d
H

,

since the last two terms vanish by the equilibrium conditions in Equations (A2) and (A4). Here,
we obtain

μH = μh +
n0

N0

(
∂ fel
∂c

)
, (A6)

which corresponds to Equation (4) in the main text. Interfacial effects can be considered in a similar way.

Appendix B. Reference State

For the elastic problem, we describe the material in the Lagrangian reference frame of the
stress-free nickel. The eigenstrain of the hydride is therefore ε0

ij = [aNi−H − aNi]/aNiδij; notice
that also for the hydride the (eigen-)strain is defined relative to the lattice constant of the relaxed
Ni. To make this point more transparent, we denote all quantities with Ni-H as reference state
by a tilde, e.g., a dilatational strain by ε̃ij = [a − aNi−H]/aNi−H, thus apart from an additive
eigenstrain contribution εij = ε̃ij × aNi−H/aNi. Since stresses are defined as force per area in the
reference configuration, we have the transformation rule σij = σ̃ij × (aNi−H/aNi)

2. From Hooke’s law,
σij = Cijklεkl and σ̃ij = C̃ijkl ε̃kl , we therefore conclude Cijkl = C̃ijkl × aNi−H/aNi. This means that that
the elastic constants of the hydride relative to nickel as reference state appear by a factor aNi−H/aNi

higher than their nominal values for Ni-H reference configuration.

Appendix C. Elastic Constants

Here, we briefly explain the extraction of the elastic constants from the Monte Carlo simulations.
Notice that in the absence of vibrational contributions the elastic constants are temperature independent
and are therefore calculated at T = 0 K. In all cases, the relaxed equilibrium configuration of pure Ni is
taken as reference state, see Appendix B.

Appendix C.1. Bulk Modulus

To get the bulk modulus K for the phases, we strain the system isotropically with εxx = εyy =

εzz = ε. The resulting energies are represented in Figure A1. In linear elasticity, the energy increases
quadratically with the strain,

fel =
9
2

Kε2, (A7)
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and we determine the bulk modulus K from the curvature of the measured energy–volume curves.
Hence, we get for pure Nickel KNi = 180.5 GPa and for the fully saturated hydride KNi-H = 230.0 GPa.

Figure A1. Energy density as function of the external hydrostatic strain ε. With the relation in
Equation (A7), we get the bulk modulus K in quadratic approximation. The atomistic data are taken
from simulations at T = 0 K. For high strains deviations from the linear elastic response can be seen.

Appendix C.2. Monoclinic Distortion

The monoclinic distortion describes shear effects to get the elastic constant C44 both for Ni and
the hydride. One gets the translational movement of an atom from the original location�r =�r(x, y, z)
to the new position �r′ = �r′(x′, y′, z′),

�r′ =

⎛
⎜⎝ x + αy/2

αx/2 + y[
1 + α2/(1 − α2)

]
z

⎞
⎟⎠ (A8)

with a deformation parameter α. With the displacement �u = �r′ −�r and the linear strain tensor
εij = (∂iuj + ∂jui)/2, we obtain

εxy =
α

2
and εzz =

α2

1 − α2 = O(α2), (A9)

whereas all other strains are zero and the quadratic term in α can be neglected in a linear approximation.
Thus, the elastic energy is

fel =
1
2

σijεij =
1
2

C44α2. (A10)

Figure A2 shows the energy density of both phases depending on the strain εxy for the monoclinic
distortion, and the elastic constant C44 is obtained from the curvature at the origin. We obtain a value
of C44 = 134.3 GPa for Nickel and C44 = 33.5 GPa for the hydride. Notice that for pure shear the
quadratic energy–deformation dependence holds up to several percent of strain.
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Figure A2. The results for the monoclinic distortion are shown. The atomistic data is fitted via a
quadratic ansatz.

Appendix C.3. Orthorhombic Distortion

The orthorhombic distortion delivers the result for the term C11 − C12 for both phases. It is
described by

�r′ =

⎛
⎜⎝ (1 + α)x

(1 − α)y[
1 + α2/(1 − α2)

]
z

⎞
⎟⎠ , (A11)

hence

εxx = α, εyy = −α and εzz =
α2

1 − α2 , (A12)

where εzz can be neglected again with the same argument as above. Consequently, the elastic energy is

f =
1
2

σijεij = (C11 − C12)α
2. (A13)

The elastic constants C11and C12 are

C11 = K +
2
3
(C11 − C12), (A14)

C12 = K − 1
3
(C11 − C12). (A15)

From the quadratic fit in Figure A3, we get for nickel C11 = 250.7 GPa, C12 = 145.5 GPa, and for
the hydride C11 = 295.3 GPa, C12 = 197.3 GPa.
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Figure A3. The results for the orthorhombic distortion are shown. The atomistic data are fitted via a
quadratic ansatz.

Appendix C.4. Nonlinear Elastic Coefficients

To demonstrate the extraction of the elastic nonlinearities, we inspect the mechanical response of
pure Ni under bulk compression or expansion, as shown in Figure A4.

For larger strains, we see deviations from the linear response, i.e., a quadratic energy–strain
relationship. For tensile stresses the material appears effectively softer, whereas it is stiffer under
compression. In the strain regime shown in the plot, the elastic response is well described by

fel =
9
2

Kε2
(

1 + dK
1 trε + dK

2 (trε)2 + dK
3 (trε)3 + . . .

)
, (A16)

in the spirit of Equation (8). The coefficients dK
i are given in Table 2.

For pure shear during a monoclinic transformation, the energy is well described by a quadratic
strain dependence, as shown before in Figure A2, and the same holds for the volume preserving
orthorhombic transformation (see Figure A3). This demonstrates that the nonlinearities depend only
on the trace of the strain tensor. We have performed monoclinic and orthorhombic transformations
at different lattice units (i.e., bulk compression or expansion), to extract the coefficients in the spirit
of Equation (8). This is exemplarily shown in Figure A5 for the monoclinic deformation of pure Ni.
This allows to extract the elastic constants, here e.g., C44 as function of the trace of the strain tensor.
This dependence is shown in Figure A6. The resulting data for both phases are then described by
Equation (8) with the coefficients in Table 2. The corresponding plot for the orthorhombic deformation
is shown in Figure A7.
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Figure A4. The free energy density as a function of the external strain ε for the pure Nickel.
The quadratic ansatz is only true for small strains, whereas for higher strain we have to use a nonlinear
function to fit the Monte Carlo data.

Figure A5. Monoclinic deformation of pure nickel for different bulk lattice constants. The fits (curves)
are parabolic, and the data (points) are well described without further nonlinear corrections, in
agreement with the statement that corrections depend only on trε. The latter is contained in the
lattice constant dependence of the curvatures, leading to strain-dependent elastic constants C44(trε).
The energy of the bulk compression is subtracted in the plots.

Figure A6. The elastic constant C44 as function of the trace of the strain trε for Nickel and the hydride
is shown. For trε = 0, we obtain the values: C44,Ni = 134.3 GPa and C44,H = 33.5 GPa.
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Figure A7. The difference C11 − C12 depending on the trace of strain tr ε for Nickel and the hydride
is shown.

Appendix D. The Isotropic Model

We assume that the material is isotropic, and that a spherical nucleus of the hydride with radius
RH forms within the dilute matrix. To simplify the geometry, we assume that the system is also
spherical with radius R, thus the entire problem is rotational invariant. Hence, the displacement field
depends only on the radius coordinate and has only a radial component. We note that we treat here
only the linear elastic case, where corrections due to higher order terms in the strain as introduced in
Equation (8) are not considered. Nevertheless, we note that the nonlinear case can also be treated in a
similar way. However, for going beyond the one-dimensional case for an inclusion inside a cubic cell,
we use finite element simulations instead.

In the outer dilute phase, the displacement is given by

ud
r = adr + bd/r2, (A17)

with constants ad and bd. This ansatz satisfies the linear elastic bulk equations. In the hydride (inner
phase), we use similarly

uh
r = ahr. (A18)

The strains are given in spherical coordinates by

ε
(i)
rr = u(i)

r
′
, ε

(i)
θθ = ε

(i)
φφ = u(i)

r /r, (A19)

and all non-diagonal terms vanish. The stresses in the dilute phase are

σd
ij = λdεd

kkδij + 2Gdεd
ij, (A20)

and in the hydride
σh

ij = λh(εh
kk − 3Δε0)δij + 2Gh(εh

ij − Δε0δij) (A21)

with the eigenstrain Δε0δij.
At the interface coherency and stress balance demands

ud
r (RH) = uh

r (RH), σd
rr(RH) = σh

rr(RH). (A22)

At the outer boundary, the fixed volume condition implies

ud
r (R) = 0. (A23)

128



Metals 2018, 8, 280

These are altogether three conditions to determine the constants ad, bd and ah. The elastic energy
densities (per unit volume) are

f d
el =

1
2

λdεd
kk

2
+ Gdεd

ij
2

(A24)

and
f h
el =

1
2

λh(εh
kk − 3Δε0)

2 + Gh(εh
ij − Δε0δij)

2. (A25)

The total free energy is

Fel = 4π
∫ RH

0
r2 f h

el dr + 4π
∫ R

RH

r2 f d
el dr, (A26)

which is a lengthy expression. Using the conversions

4
3

πR3 =
NNi

n0
a3, c =

(
RH
R

)3
(A27)

with the lattice unit aNi, we can calculate the elastic contribution to the chemical potential

μel =
n0

N0

(
∂ fel
∂c

)
. (A28)

In the general case, it becomes

μel = (3a3
Ni(Δε0)

2(3λh + 2Gh)(c2(3λd + 2Gd)× (3λd − 3λh + 2Gd − 2Gh)

+4Gd(3λh + 4Gd + 2Gh) + 2c(3λd + 2Gd)(3λh + 4Gd + 2Gh))) (A29)

/[2(3λh + 4Gd + c(3λd − 3λh + 2Gd − 2Gh) + 2Gh)2N0].

In particular for equal elastic constants (λd = λh = λ, Gh = Gd = G)

μel =
a3

Ni(Δε0)
2(3λ + 2G)(2G + c(3λ + 2G))

(λ + 2G)N0
. (A30)

Appendix E. Interfacial Effects

The shape of the precipitate forming in the two-phase region is mainly determined by interfacial
energy. For isotropic surface energy, a spherical inclusion minimizes the interfacial energy for small
radii RH � L, with L being the edge length of the enclosing box with periodic boundary conditions.
However, for RH ∼ L, the formation of other interface contours is energetically favorable, since we use
periodic boundary conditions in the atomistic and FEM simulations.

To find the different ranges and the limiting concentrations at which the forms change, we have
to compute the minimum surface energy. The surface energy is defined as

Fs = γS (A31)

where S defines the size of the interfaces and γ the surface energy coefficient.
First, we look for the spherical inclusion of the hydride with the radius RH . In this case, the

surface energy is
Fs = γS = γ4πR2

H . (A32)

The concentration (volume fraction) is given as

c =
4πR3

H
3L3 , (A33)
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so the surface energy is
Fs(c) = γL2(36c2π)1/3. (A34)

The surface energy for a hydride tube with radius r and length L is

Fs = γ2πrL. (A35)

with the respective concentration

c =
πr2L

L3 (A36)

we obtain
Fs(c) = 2γL2(cπ)1/2. (A37)

In the case of slabs, the surface energy is independent of the concentration c:

Fs = 2γL2. (A38)

The cases with c > 1/2 are analogous, with the role of the matrix and the hydride being exchanged.
Figure A8 shows the surface energy depending on the concentration for the respective case. Up to c =
4π/81 ≈ 0.16, it should be a spherical inclusion of the hydride in the nickel matrix. For 4π/81 ≤ c ≤
1/π, the inclusion of the hydride should be a tube followed by plates up to c = 1− 1/π. The analytical
results predict a symmetric behavior for concentrations c > 0.5, so for concentrations 1 − 1/π ≤ c ≤
1 − 4π/81 there should be a tube and for c > 1 − 4π/81 we expect a nickel sphere.fPhaseDiagram3

Figure A8. Surface energy depending on the concentration for different geometric cases. The thick line
segments indicate the lowest energy configurations.

With the calculated surface energy Fs, we compute now the chemical potential with μs = dFs/dNH.
Then, we have to rewrite the surface energy in an expression which depends on the number of hydrogen
atoms NH. For the first case, the hydride sphere inclusion, the radius can be expressed as

RH = aNi

(
3NH

N04π

)1/3
, (A39)

so

Fs(NH) = a2
Niγπ1/3

(
6NH

N0

)2/3
. (A40)
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The chemical potential then becomes

μs(N) =
2 · 22/3a2

Niγ (π/3)1/3

N0 (NH/N0)
1/3 , (A41)

and finally with c = NHn0/(NNiN0)

μs(c) =
2 · 22/3a2

Niγ (π/3)1/3

N0 (cNNi/n0)
1/3 . (A42)

Similarly, for tubes, we get

μS =
a2

Ni
√

πγ√
c (NNi/n0)

2/3N0

, (A43)

for slabs
μS = 0, (A44)

for inverse tubes

μS = − a2
Ni
√

πγ

N0

√
(1 − c) (NNi/n0)

2/3
, (A45)

and for inverse spheres

μS = − 4a2
Niπ

1/3γ

N0 [6(1 − c)NNi/n0]
1/3 . (A46)
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Abstract: The sputter deposition of FeMn thin films with thicknesses in the range of hundred
nanometres and beyond requires relatively high growth temperatures for the formation of the
face-centred cubic (fcc) phase, which results in high thin film roughness. A low temperature synthesis
strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation
layer on an α-Al2O3 substrate at 160 ◦C, enables roughness values (Ra) as low as ~0.6 nm, which
is in the same order of magnitude as the pristine substrate (~0.1 nm). The synthesis strategy is
guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer
to an α-Al2O3 substrate (work of separation 5.48 J/m2)—which can be understood based on the
high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m2). Accompanied by
small lattice misfits between these structures, the strong interfacial bonding is proposed to enable
the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis
strategy, the implementation of fcc FeMn based thin film model systems for materials with interface
dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases
appears meaningful.

Keywords: interphase; FeMn; density-functional theory

1. Introduction

The material combination FeMn in its face-centred cubic (fcc) phase plays an important role in
structural materials such as high manganese steels, which exhibit excellent mechanical properties [1–4].
FeMn thin films can serve as model systems to gain fundamental understanding required for the
design of those steels: Single phase model systems—deposited with the highly efficient combinatorial
thin film composition-spread method and combined with ab initio calculations—were shown to be
a powerful tool to rationalize composition-structure-property relationships [5]; Multiphase model
systems with multilayers separated by flat (2D) interfaces are expected to render fundamental and
systematic insights required for the design of materials with interface dominated properties, for
example, FeMn steels containing κ-carbide precipitates [6,7]. Furthermore, FeMn thin films offer
antiferromagnetic properties and are used in magnetic thin film devices, for example, combined with
at least one ferromagnetic layer in a multilayer thin film exhibiting the so-called exchange bias (EB)
effect [8–13].

The multi-layered FeMn based thin film model systems as well as magnetic devices require sharp
interfaces for a meaningful determination and understanding of interface dominated properties like
coherency effects [14] or EB [15]. The sputter deposition of FeMn based model systems on rigid oxide
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substrates requires relatively high deposition temperatures of up to 450 ◦C for the fcc phase formation,
which is reported to be accompanied by high thin film roughness of up to 170 nm for film thicknesses
in the order of 2 μm [16–19]. Due to the high surface roughness, the implementation of fcc FeMn
thin films in layered thin film model systems did not yet appear meaningful. On the other hand,
(ultra) thin fcc FeMn layers in magnetic devices with high quality interfaces are accomplished by
stabilizing the fcc lattice by epitaxial thin film growth on metallic nucleation layers at low deposition
temperatures [20–24] but layer thicknesses are restricted to several nm [22]. The template effect
necessitates a low lattice mismatch between FeMn and the nucleation layer and thus a similar
arrangement of the atoms at the interface [20,25]. The lattice parameter of fcc Cu (aCu = 3.615 Å [26])
is very similar to the lattice parameter of fcc FeMn (aFeMn ≈ 3.59–3.74 Å [27]), whereby the latter
is determined by the Fe to Mn ratio, giving rise to a low lattice mismatch <4% depending on the
Mn content in a cube-on-cube oriented Cu/FeMn interface arrangement. If Cu were used as (bulk)
substrate material, its mechanical properties (plastic deformation) would preclude analysis techniques
such as nanoindentation. However, nanoindentation is possible if a thin Cu nucleation layer on a rigid
(oxide) substrate material is employed. Schmidt et al. used MgO (aMgO = 4.210 Å [28]) substrates for
the molecular beam epitaxy (MBE) synthesis of the EB FeMn/Co. thin-films due to its cubic structure
and lattice mismatch of about 16% for cube-on-cube orientation on FeMn [15]. Sapphire (α-Al2O3)
substrates (aα-Al2O3 = 4.759 Å [29]) possess a hexagonal structure but exhibit a lattice mismatch of
about 8% in (0001) stacking with Cu(111). Cu was shown to grow epitaxially on both oxide substrates:
Cu(100) on MgO(100) [30] as well as Cu(111) on MgO(111) [30] or α-Al2O3 (0001) [31]. Moreover,
Sigumonrong et al. have suggested that a small lattice misfit accompanied by strong interfacial
bonding—characterized by a large work of separation—enables local epitaxial thin film growth and
this notion was verified experimentally by the local epitaxial growth of 1.5 μm thick sputter deposited
V2AlC thin films on α-Al2O3(1120) [32]. Further examples for local epitaxial growth are Ti1−xAlxN [33]
and Ti1−xAlxN/Ti1−yAlyN multilayer [34] thin films on ferritic steel substrates or α-(Cr,Al)2O3 thin
films on α-Al2O3 substrates [35].

Thus, the goal of our paper is to develop a low temperature synthesis strategy based on local
epitaxial growth on a Cu nucleation layer to enable the growth of smooth fcc FeMn films with surface
roughness values in the order of magnitude of the pristine substrate. This development is guided by
ab initio calculations identifying a layer system comprising a rigid substrate material, Cu nucleation
layer and fcc FeMn thin film that is characterized by strong interfacial bonding across both interfaces.
The work of separation for each interface in the layer systems MgO(001)/Cu(001)/Fe0.6Mn0.4(001)
and α-Al2O3(0001)/Cu(111)/Fe0.6Mn0.4(111) is determined as a measure for the interfacial strength.
The layer system α-Al2O3(0001)/Cu(111) will be demonstrated to exhibit the highest interfacial
strength across the substrate/nucleation layer interface. Furthermore, the low temperature growth
of a combinatorially deposited 100 nm thick FeMn layer onto the Cu nucleation layer is employed.
This thin film exhibits a continuous Fe-Mn concentration gradient parallel to the substrate surface
and thus allows to determine the Mn concentration range for the formation of fcc FeMn on the Cu
nucleation layer.

2. Materials and Methods

To determine the work of separation between different layers of the systems MgO/Cu/FeMn
and α-Al2O3/Cu/FeMn, density functional theory [36] was used. Vienna ab initio simulation
package (VASP 5.4.1, Computational Materials Physics, University of Vienna, Vienna, Austria)
and projector augmented wave potentials [37–39] were employed. The augmented wave potential
parametrization was performed within the generalized-gradient approximation by Perdew, Burke
and Ernzerhof [40]. The Blöchl approach [41] was applied for the total energy. The integration in
the reciprocal space was carried out on 9 × 9 × 1 k-point Monkhorst-Pack mesh [42]. Fe0.6Mn0.4

was randomized using special quasirandom structures (SQS) [43], whereby locally self-consistent
Green’s function (LSGF) package [44,45] was employed. In particular, the Warren-Cowley short-range
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order parameter [46] within seven coordination shells was applied to treat randomness in these
SQS configurations. The cells obtained from the LSGF code were used as input in the VASP code.
Fe0.6Mn0.4 was spin polarized (antiferromagnetic ordering). Full structural optimization was made
for each configuration employing the convergence criterion for the total energy of 0.01 meV and
a 400 eV cut-off. Two interface configurations were studied: MgO(001)/Cu(001)/Fe0.6Mn0.4(001)
and α-Al2O3(0001)/Cu(111)/Fe0.6Mn0.4(111). The interfaces were characterized by the work of
separation [32,47], calculated from the total energy change per unit area upon separation of a slab from
the remaining layered structure, for example, Fe0.6Mn0.4(001) separation from MgO(001)/Cu(001).
MgO(001)/Cu(001)/Fe0.6Mn0.4(001) was constructed by 6 layers of MgO(001), 6 layers of Cu(001) and
6 layers of Fe0.6Mn0.4(001), accounting for 48 atoms. The layer thickness convergence was performed by
considering 6 additional layers of Cu(001). The work of separation differed by only 0.02 J/m2 between
6 and 12 layer Cu configurations so that 6 layers were henceforth considered. The stacking sequence
for MgO(001)/Cu(001) was adopted from literature [48]. α-Al2O3(0001)/Cu(111)/Fe0.6Mn0.4(111) was
span by 7 layers of O terminated α-Al2O3(0001), 6 layers of Cu(111) and 6 layers of Fe0.6Mn0.4(111).
Cu(111) and Fe0.6Mn0.4(111) were constructed by A-B-C-A-B-C(111) stacking of the corresponding
cubic lattice. The stacking of α-Al2O3(0001)/Cu(111) was implemented based on a previous work
by Hashibon et al. [49]. The number of layers implemented for the oxide substrates is assumed to be
sufficient based on ab initio studies on the surface energy of the binary oxides by Lazar et al. [50] and
Sigumonrong et al. [51]. All interfaces were constrained to the corresponding 0 K lattice parameters of
the substrates (MgO and α-Al2O3) obtained herein.

The combinatorial Fe-Mn thin films on Cu nucleation layers were deposited in a laboratory-scale
sputtering system by direct current magnetron sputtering. The base pressure was below 2.2 × 10−5 Pa
and the Ar deposition pressure was 0.75 Pa. A Cu target (power density 0.86 W/cm2) was facing the
substrate for the deposition of the nucleation layers. A Fe target (power density 1.23 W/cm2) and a
Mn target (power density 0.36 W/cm2) with inclination angles of 45◦ with respect to the substrate
normal were used in order to achieve the desired Fe-Mn gradient. Fast acting target shutters (actuation
time of 200 ms) ensured the deposition of defined Cu nucleation layers and the FeMn films directly
followed by each other. Polished single-crystalline α-Al2O3(0001) substrates in a target-to-substrate
distance of 10 cm were kept at floating potential and heated to 160 ◦C during deposition.

The chemical composition of the combinatorial FeMn thin film was determined by energy
dispersive X-ray analysis (EDX) in a JEOL JSM-6480 scanning electron microscope (JEOL Ltd., Tokyo,
Japan) equipped with an EDAX Genesis 2000 EDX system (EDAX Inc., Mahwah, NJ, USA). Spatially
resolved, high-throughput X-ray diffraction (XRD) measurements were used to evaluate the local
crystal structure of the combinatorial Fe-Mn thin films using a Bruker AXS D8 Discover XRD (Bruker
Corporation, Billerica, MA, USA) equipped with a General Area Detector Diffraction System (GADDS).
The diffractometer was operated at a current of 40 mA and a voltage of 40 kV with Cu Kα radiation at a
fixed incident angle ω of 8◦. φ-scans are performed with a frame width of 3◦ at 2θ = 43.39◦, ω = 21.70◦

and χ = 20◦. The primary beam was collimated with a 0.5 mm pinhole. For Bragg-Brentano XRD
measurements with a step size of 0.02◦, a Siemens D5000 (Siemens, Munich, Germany) diffractometer
was employed and operated at a current of 40 mA and a voltage of 40 kV with Cu Kα radiation.

The surface roughness (Ra) of the FeMn thin film and a pristine α-Al2O3(0001) substrate was
determined using a Hysitron TI-950 TriboIndenter (Hysitron Inc., Eden Prairie, MN, USA) by scanning
the film surface with a cube corner diamond tip and average the Ra values from ten areas of
10 × 10 μm2 or six areas of 5 × 5 μm2, respectively.

Site-specific lift-outs for microstructural characterization of the interface were carried out in
a FEI Helios Nanolab 660 (FEI Company, Hillsboro, OR, USA) dual-beam focused ion beam (FIB)
microscope. Lamellae were extracted in growth direction of the thin films and Ga ions were used
at an acceleration voltage of 30 kV. First, a 1 μm thick Pt protection layer was applied, followed by
trench milling, extraction of the lamella with a manipulation needle and application of the lamella on a
Cu Omniprobe grid. Final lamella thicknesses were <100 nm. The lamellae were investigated using
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EDX analysis in a JEOL JSM-2200FS field emission gun transmission electron microscope (TEM) (JEOL
Ltd., Tokyo, Japan) in scanning TEM (STEM) mode, with a 30 mm diameter silicon drift detector from
JEOL. In addition, selected area electron diffraction (SAED) investigations in the TEM were utilized to
disclose the orientation dependency between the substrate and the Cu and FeMn layers. The results of
the SAED were evaluated using the Java electron microscopy software (JEMS) (Version 3.8224U2012,
JEMS-SAAS, Saas-Fee, Switzerland).

3. Results and Discussion

3.1. Ab Initio Interface Design

For the ab initio design of a suitable layer system, Figure 1 depicts the structural models as
well as the corresponding electron density distributions, which are used to explore the electronic
structure analysis. For MgO(001)/Cu(001)/Fe0.6Mn0.4(001), the calculated work of separation
value is 0.85 J/m2 for the substrate/Cu interface, which is consistent with literature [48] and
3.89 J/m2 for the Cu/FeMn interface. For α-Al2O3(0001)/Cu(111)/Fe0.6Mn0.4(111), the work
of separation value is 5.48 J/m2 for the substrate/Cu interface, which is in line with previous
studies [49] and 3.45 J/m2 for the Cu/FeMn interface. Hence, striking differences occur
for the considered substrate/Cu interfaces. MgO(001)/Cu(001) reveals a rather low work of
separation, which is still by one order of magnitude higher compared to a weak interface, for
example, ideal polypropylene/Ti0.5Al0.5N(002) [52] but smaller than medium strong interfaces like
V2AlC/α-Al2O3 [32] or Pt/NbO2 [53]. The α-Al2O3(0001)/Cu(111) interface exhibits a more than six
times higher work of separation which is in the range of strong interfaces such as Nb/α-Al2O3 [54],
TiO2/α-Al2O3 [55], or Al/diamond [56]. On the other hand, the work of separation for the
Cu/Fe0.6Mn0.4 interface in both layer systems is comparable and differs by 0.44 J/m2. The values are
in the range of other medium strong interfaces such as Ir/Ir3Zr [57].

  
(a) (b) 

Figure 1. Structural models of (a) MgO(001)/Cu(001)/Fe0.6Mn0.4(001) and (b) α-Al2O3(0001)/Cu(111)/
Fe0.6Mn0.4(111), each with corresponding electron density distribution in a (1120) plane of the substrate.
The work of separation (WS) and bond length (d) at the interfaces are also provided.
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The distinct differences in the calculated work of separation for the substrate/Cu interface can
be understood based on the Cu coordination at the interface, which is 1 between Cu and O for
MgO(001)/Cu(001) but 3 for α-Al2O3(0001)/Cu(111) with Cu being bonded to O via (short and strong)
ionic-covalent bonds. The origin of the difference in interfacial bonding can then be explained by
the different electronic structures of MgO and α-Al2O3: The Mg-O bonds are predominantly ionic
in character with significant charge transfer from Mg to O, while the Al-O bonds are characterized
by (ionic) charge transfer as well as some localization (hybridization; consistent with literature on
isostructural oxides [58]). For the O terminated α-Al2O3, the bond distance between Cu and O is 2.10 Å
and the shared charge between Cu and O provides only Cu-O bonds in the interface. Compared to
that, MgO is terminated by both O and Mg so that the weaker Cu-O interaction is characterized by less
near neighbours and hence the lower coordination and a bond distance Cu-O of 2.25 Å.

The comparable work of separation values for the Cu/FeMn interfaces in both systems can be
explained by the rather similar bonding conditions. The bond distance between Cu and Fe is 2.55 Å for
Cu(001)/Fe0.6Mn0.4(001) compared to 2.56 Å for the Cu(111)/Fe0.6Mn0.4(111) interface exhibiting a 13%
lower work of separation for the considered Fe0.6Mn0.4 lattice with its Mn content dependent lattice
constant. As the nature of both the Cu as well as the Fe-Mn bonds are mainly metallic offering itinerant
change with some localization between the atoms and there are no coordination modulations across
the interface, hence, the bonding conditions at the Cu/FeMn interface are maintained throughout
both layers.

Hence, the interfacial bonding between rigid substrate and Cu nucleation layer is theoretically
shown to be extraordinary high for α-Al2O3(0001)/Cu(111), which may facilitate the epitaxial
growth of Cu(111) on α-Al2O3(0001). The subsequent Cu(111)/Fe0.6Mn0.4(111) interface exhibits
high interfacial strength as well and may thus allow for the continuation of the epitaxial growth
throughout the interface between nucleation layer and FeMn thin film. Consequently, the layer system
α-Al2O3(0001)/Cu(111)/Fe0.6Mn0.4(111) is selected to be appraised experimentally.

3.2. Experimental Validation

A 10 nm layer of Cu subsequently followed by a 100 nm combinatorial FeMn layer was synthesized
on an α-Al2O3(0001) substrate and evaluated by EDX and spatially resolved XRD to identify the Mn
content range, in which the desired fcc FeMn forms. Figure 2a shows the XRD scans (2θ-scans
at fixed incidence angle ω) for Mn contents between 16 and 49 at. %. For Mn contents above
39 at. % the formation of phase pure fcc FeMn is observed. Lower Mn contents appear to facilitate the
formation of an additional bcc phase and are thus excluded from further analysis. Figure 2b shows
the Bragg-Brentano XRD scan of the fcc region of the α-Al2O3/Cu/FeMn sample, which is selected
for TEM analysis (TEM-EDX: ~42 at. % Mn). For comparison, the XRD scan of a sole 10 nm Cu
thin film (α-Al2O3/Cu)—deposited and measured under the same conditions—is included. Both
Bragg-Brentano scans solely exhibit the (111) peak of the fcc structure. The intensity difference is caused
by the difference in thin film thickness (110 nm for α-Al2O3/Cu/FeMn and 10 nm for α-Al2O3/Cu)
and thus measured volume. Hence, the fcc FeMn layer as well as the Cu layer are highly (111) oriented
and exhibit a very similar d111-value of about 2.08 Å. The presence of a (111) fibre texture was excluded
by φ-scans (2θ = 43.39◦, ω = θ◦, χ = 20◦) in the fcc region at ~42 at. % Mn. Figure S1 (Supplementary
Material) shows the maximum intensities plotted in dependence of φ, exhibiting maximum intensities
every 60◦ φ but minimum intensities in-between and thus refuting a fibre texture. Hence, XRD analysis
indicates local epitaxial growth, which will be confirmed by high resolution techniques.

The surface roughness of the FeMn thin film is determined to be as low as Ra = 0.6 nm with
a calculated standard deviation of 4% (based on ten individual measurements of 10 × 10 μm2;
a representative surface area scan can be found in the Supplementary Material, Figure S2). Hence, the
surface roughness is on the same order of magnitude as the one measured for the pristine α-Al2O3

substrate (Ra = 0.1 nm). Thus, a significant reduction of the surface roughness compared to the
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high temperature synthesis strategy resulting in surface roughness values of Ra = 58 nm [19] and
larger [16,17] (film thickness ~2 μm) could be obtained.

The STEM high angle annular dark field (HAADF) image of the layer system
α-Al2O3/Cu/Fe0.58Mn0.42 with the corresponding EDX line scan shown in Figure 3 confirms the
chemical stacking of the layer system: The α-Al2O3 substrate is characterized by high Al K and O
K intensities, while the nucleation layer shows a peak in Cu K intensity for a length of about 10 nm.
The Cu layer is directly followed by the ~100 nm thick FeMn layer with correspondingly high Fe K
and Mn K intensities. The uppermost region of the FeMn layer already shows significant intensities of
Pt M and Ga K, which is an effect of the FIB preparation necessitating the deposition of a Pt protection
layer in order to reduce Ga implantation. Spot EDX measurements of the Fe and Mn content in the
thin film layer result in 58 ± 1 at. % and 42 ± 1 at. % Mn, respectively, which is close to the calculated
Fe0.6Mn0.4 composition.

 
(a) (b) 

Figure 2. (a) X-ray diffraction (XRD) scans (2θ-scans at fixed incidence angle ω) of α-Al2O3/Cu/FeMn
in dependence of the Mn content of the FeMn layer; (b) XRD scan (Bragg-Brentano) of
α-Al2O3/Cu/Fe0.58Mn0.42, which is chosen for transmission electron microscopy (TEM) analysis
(comparison: α-Al2O3/Cu without FeMn layer).

The SAED of the α-Al2O3/Cu/Fe0.58Mn0.42 layer system confirms that the α-Al2O3(0001)
substrate is a chemically ordered structure and thus provides superstructure diffraction spots, as
shown in the indexed diffraction pattern in Figure 4a. Figure 4b shows the diffraction pattern and
an evaluation of the Cu/Fe0.58Mn0.42 layer. The Cu and the FeMn layer are not distinguishable
and offer the same diffraction spots, confirming that they exhibit the same fcc structure as well as
non-distinguishable lattice parameters. This was already indicated by the (macroscopic) XRD analysis
discussed above, see Figure 2b. The fcc Fe0.58Mn0.42 is a chemically disordered solid solution, which is
consistent with literature [25]. The orientation relationship between the α-Al2O3 substrate and the fcc
Cu/Fe0.58Mn0.42 suggests (local) epitaxial growth and is determined as follows:

• α-Al2O3(0006) || Cu/Fe0.58Mn0.42
(
111

)
[or

(
111

)
] and

• α-Al2O3
(
0330

)
|| Cu/Fe0.58Mn0.42

(
220

)
[or

(
220

)
]

The possibilities in square brackets are due to the rotational symmetry for a 180◦ rotation of the
diffraction pattern. Furthermore, the inverted diffraction pattern of the layer system in Figure 4c
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reveals that the (small, focused) diffraction spots of the α-Al2O3 substrate are not positioned at the
exact same positions as the (broad, unfocused) spots of the fcc Cu/Fe0.58Mn0.42 layer, indicating on the
one hand that the (local) epitaxial growth is realized but also that the slightly different lattice plane
spacing of α-Al2O3 and fcc Cu/Fe0.58Mn0.42 result in strain relaxation in the probed volume. Hence,
we have demonstrated that fcc Fe0.58Mn0.42(111) can be grown epitaxially on fcc Cu(111) which in turn
grows epitaxially on α-Al2O3(0001).

The low surface roughness of the 100 nm thick FeMn thin film, achieved by the local epitaxial
growth on the Cu nucleation layer, allows for the formation of a flat (2D) interface between the fcc
FeMn if another layer is deposited on top. This is a necessary step towards realizing the deposition of
a bi- or multi-layered (multiphase) thin film model systems to allow for the systematic evaluation of
interface dominated properties. These model systems are relevant to explore for example FeMn steels
containing precipitates or secondary phases. The single phase model systems can benefit from the low
surface roughness in terms of for example, a more accurate determination of mechanical properties by
nanoindentation or other roughness-sensitive analysis techniques.

Figure 3. Scanning transmission electron microscopy (STEM) high angle annular dark field (HAADF)
image of the layer system α-Al2O3/Cu/Fe0.58Mn0.42 with corresponding energy dispersive X-ray
(EDX) line scan including the Al K, O K, Cu K, Fe K, Mn K, Pt M and Ga K intensities. The intensity
signal is not corrected for peak overlapping.
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(a) (b) 

 
(c) 

Figure 4. Indexed diffraction pattern of (a) α-Al2O3 substrate (zone axis
[
2110

]
); (b) fcc Cu/Fe0.58Mn0.42

layer (zone axis [112]); (c) Diffraction pattern of the layer system α-Al2O3/Cu/Fe0.58Mn0.42 (fcc and
α-Al2O3 diffraction spots are labelled with red circles and blue squares, respectively).

4. Conclusions

In conclusion, a low temperature deposition strategy for the growth of smooth fcc FeMn thin
films was developed. Ab initio calculations suggest that the layer structure α-Al2O3(0001)/Cu(111)
exhibits higher interfacial strength than MgO(001)/Cu(001) and is thus chosen as substrate/nucleation
layer combination to enable (local) epitaxial growth of fcc Cu(111) on α-Al2O3(0001) as well as (local)
epitaxial growth of fcc FeMn(111) on fcc Cu(111). The work of separation between Cu and Fe0.6Mn0.4

does not differ significantly between the two configurations studied, and, as such, is not decisive
regarding the selection of the substrate system. However, the α-Al2O3(0001)/Cu(111) interface exhibits
a more than six times higher work of separation (5.48 J/m2) than the MgO(001)/Cu(001) interface
(0.85 J/m2) and hence strong interfacial bonding. This distinct difference in the calculated work of
separation can be understood based on the Cu coordination at the interface, which is 1 between Cu
and O for MgO(001)/Cu(001) but 3 for α-Al2O3(0001)/Cu(111).
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The low temperature deposition strategy for the growth of smooth fcc FeMn thin films was
critically appraised by synthesizing a 100 nm thick (combinatorial) FeMn thin film on a 10 nm Cu
nucleation layer which was in turn deposited on an α-Al2O3(0001) substrate (α-Al2O3/Cu/FeMn).
XRD confirms the phase formation of fcc FeMn for Mn contents above 39 at. %. The (local) epitaxial
growth of fcc Fe0.58Mn0.42(111) on fcc Cu(111) on α-Al2O3(0001) is verified by TEM/SAED with the
following orientation relationship: α-Al2O3(0006) || Cu/Fe0.58Mn0.42

(
111

)
and α-Al2O3

(
0330

)
||

Cu/Fe0.58Mn0.42
(
220

)
. The thin film exhibits the desired low surface roughness with Ra values as low

as 0.6 nm, which is on the same order of magnitude as the α-Al2O3 substrate (Ra ~0.1 nm) and at least
two orders of magnitude lower than the fcc FeMn based thin films deposited at high temperatures (Ra ≥
58 nm). Thus, the introduced synthesis strategy opens the possibility of the successful implementation
of thin film model systems for materials with interface dominated properties such as FeMn based
steels containing κ-carbide precipitates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/8/6/384/s1.
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Abstract: A key issue in understanding and effectively managing hydrogen embrittlement in
complex alloys is identifying and exploiting the critical role of the various defects involved.
A chemo-mechanical model for hydrogen diffusion is developed taking into account stress gradients
in the material, as well as microstructural trapping sites such as grain boundaries and dislocations.
In particular, the energetic parameters used in this coupled approach are determined from ab initio
calculations. Complementary experimental investigations that are presented show that a numerical
approach capable of massive scale-bridging up to the macroscale is required. Due to the wide range
of length scales accounted for, we apply homogenisation schemes for the hydrogen concentration
to reach simulation dimensions comparable to metallurgical process scales. Via a representative
volume element approach, an ab initio based scale bridging description of dislocation-induced
hydrogen aggregation is easily accessible. When we extend the representative volume approach
to also include an analytical approximation for the ab initio based description of grain boundaries,
we find conceptual limitations that hinder a quantitative comparison to experimental data in the
current stage. Based on this understanding, the development of improved strategies for further
efficient scale bridging approaches is foreseen.

Keywords: hydrogen embrittlement; multi-scale; multiscale modelling; chemo-mechanics

1. Introduction

Hydrogen embrittlement (HE) can be defined as the structural degradation of materials resulting
from exposure to hydrogen and often leading to abrupt and premature failure [1–7]. HE in complex
engineering materials is increasingly commonplace in key application areas, such as hydrogen-based
energy conversion cycles [8,9], high strength materials synthesis and coatings [10], marine and deep
sea technology as well as structural components in the oil and gas industries [11]. While there is a
critical need for such technologies to meet increasing worldwide energy demands, the damage risks
associated with HE has become a substantial bottleneck for further development.

Despite considerable effort, the mechanistic causes for HE are not yet completely understood
owing to its complex nature [12–14]. The competition of different defects for aggregating hydrogen,
especially between dislocations and grain boundaries, poses a crucial as well as intricate subject
of investigation in hydrogen embrittlement. Especially for dislocations and grain boundaries,
the competitive picture is complemented by possibly cooperative damage facilitation, as hydrogen
transport to grain boundaries via slip transfer. Currently, some viable mechanisms proposed in the
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literature are: (i) hydrogen enhanced de-cohesion (HEDE), (ii) hydrogen enhanced localized plasticity
(HELP), (iii) hydride-induced embrittlement, and (iv) hydrogen induced super-abundant vacancy
(HISAV) formation. In the HEDE mechanism, hydrogen diffusion to and its subsequent interaction
with the strained atomic bonds at the crack tip, result in a lowering of the cohesive energy of the
material [15], thus making it easier to form a Griffith crack [16–18]. The HELP mechanism was
proposed to account for observations of localized plasticity at the crack tip in a range of metallic
systems [2,19]. It is based on the influence of hydrogen in reducing the mobility of dislocations
by screening their interaction stress fields [20,21]. The corresponding increase in plasticity is highly
localized owing to the heterogeneous hydrogen distribution due to stress concentrations in the material,
and thus culminates prematurely in ductile fracture.

These failure mechanisms and failure-inducing effects depend on localised chemistry, stress and
deformation state, and the defects accessible to damage initiation. We therefore aim at the development
of an efficient, massively scale-bridging approach that allows for catching process-relevant states of
steel products, including massive deformations, high defect densities and varying chemical loadings.
The approach of choice is a coupled crystal plasticity finite element (CPFEM) phase field model that is
implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK) [22]. It operates on the
macroscale and therefore employs representative volume element (RVE) descriptions that allow for
including electronic and atomistic scale information about the system via efficient averaging in terms
of composite models.

The manuscript is organised as follows: in Section 2, our recent experimental findings in ferritic
steels, which exhibit grain boundary related hydrogen embrittlement, are presented. Hereby, we
motivate the subsequent theoretical considerations. In Section 3, the continuum model is introduced,
followed by a brief description of the implementation and the ab initio-based parametrisation.
In Section 4, the analytic ab initio based approximations for the influence of dislocations on hydrogen
aggregation are introduced and we compare the analytic composite model and the fully numerically
resolved full-field simulation results. Based on the excellent agreement, we extend the composite
model by an efficient, ab initio based description of grain boundaries. We recognise the conceptual
difficulties to include grain boundaries in terms of a composite model in an RVE spirit. Finally,
in Section 5, we summarise the insights gained and relate them to potential future approaches to the
inherently massively scale bridging problem of hydrogen embrittlement.

2. Experimental Findings

Our theoretical considerations are complemented by experimental measurements of hydrogen-
charged martensitic steel samples, focusing on fracture strength and hydrogen saturation. As we
are interested in a qualitative estimate for the difference in hydrogen concentration in steel due to
defects relative to a basic Sievert’s law estimate, a cold rolled martensitic stainless steel X20Cr13 is
chosen. Here, we expect a high dislocation density and a pronounced effect of defect-mediated
hydrogen aggregation.

Figure 1 shows an example of hydrogen induced cracking in a cold rolled martensitic stainless
steel X20Cr13 with the chemical composition 0.2% C and 13% Cr in weight percent. The material was
pre-charged with hydrogen in 0.05 M H2SO4 and 1.4 g/L Thiourea at the overpotential of −800 mVSCE
from 0–24 h to bring in different amounts of hydrogen into the material. Hydrogen charging was
carried out with potentiostat High-Power 96 from Bank GmbH, Pohlheim, Germany . A Calomel
electrode was used as a reference electrode and a platinum net was used as the counter electrode.
Before charging, the specimen surfaces were ground sequentially from #320 to #800 SiC grit paper
and finally polished with 6 μm diamond paste on canvas. After charging, the material was stored
in liquid N2 before hydrogen measurement by hot extraction with the hydrogen analysis equipment
LECO RH402. Figure 1a shows the evolution of hydrogen contents according to the charging period.
It reveals the material obtained as high as 27 ppm hydrogen after 24 h hydrogen charging. According
to the Sievert’s law, the solid solubility of hydrogen in pure iron under hydrogen pressure of 100 bar at
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room temperature accounts for 2 × 10−7, which is extremely low compared to the amount of hydrogen
measured in this experiment [23]. Therefore, it is assumed the oversaturated hydrogen due to the
hydrogen charging is associated with hydrogen at dislocations and grain boundaries. Figure 1a also
reveals the sharp reduction of fracture strength due to the charged hydrogen after a slow strain rate
test at the strain rate of 10−6 s−1, which is reduced from 1046 MPa to 432 MPa when the amount of
hydrogen is raised from 1.5 ppm to 20 ppm. Slow strain rate tests were performed with a constant
extension machine from Zwick, Ulm, Germany, with a maximum load of 30 kN. The tensile specimens
are in dog-bone shape with the geometry A25. Figure 1b illustrates the fracture surface from the failed
slow strain rate specimens. The as delivered X20Cr13 has the initial hydrogen content of 1.5 ppm,
which exhibits fully ductile (D) fracture feature with very fine dimple sizes. After charging with 5 ppm
hydrogen, the fracture surface changes to mixed transgranular (TG) and intergranular (IG) cleavage
and a few ductile islands. The cracks are propagating through the prior austenite grain boundaries
as well as the martensite lath. By further increasing the charged hydrogen, the TG and IG fractures
become more prominent. In association with the sharp reduction in fracture strength, the high amount
of charged hydrogen is assumed to be accumulating at the prior austenite grain boundaries and
reduces the grain boundary cohesion force.

Figure 1. Hydrogen induced cracking in a cold rolled X20Cr13 martensitic stainless steel. (a) the
evolution of hydrogen contents according to the hydrogen charging time and the fracture strength
according to the hydrogen charging time determined by a slow strain rate test at the strain rate
of 10−6 s−1; (b) fracture surfaces from the failed slow strain rate specimens with different amounts of
pre-charged hydrogen.

The complexity of the possible interpretation of the reported observations suggests a theoretical
approach that reaches the experimental dimensions. On the other hand, it also needs to catch
essential aspects of atomistic and electronic interaction of the hydrogen with the dominant species,
here presumably dislocations and grain boundaries. In the following section, the ab initio informed
crystal plasticity model is introduced, which we extend to include the effective description of these
defect species in the context of hydrogen aggregation.

3. Model Formulation

The description of the entire model covers several aspects on multiple length scales. For an
extended discussion of the model, see [24]. Following the continuum picture of the crystal plasticity
model and hydrogen transport, the numerical implementation is briefly introduced. Based on the
continuum picture, we explain which insights and parameters from the quantum mechanical level we
use for the scale-bridging approach, and briefly discuss the ab initio model.

147



Metals 2018, 8, 430

3.1. Continuum Model Formulation

Let B0 ⊂ R3 be a microstructural domain of interest, with boundary ∂B0. The deformation
resulting from an applied loading defines a field, χ(x) : x ∈ B0 → y ∈ B, mapping points x in the
reference configuration B0 to points y in the deformed configuration B and a concentration field,
cH(x) : x ∈ B0 → [0, 1], of the fraction of interstitial lattice positions occupied by hydrogen. The total
free energy density of this system is composed of mechanical, chemical and gradient contributions:

ftotal = fmech + fchem + fgrad. (1)

The constitutive model for the mechanical free energy density is presented first. Here, the total
deformation gradient, F = grad χ, is multiplicatively decomposed into an elastic, chemical interstitial
and plastic component as

F = FeFiFp. (2)

The elastic deformation gradient, Fe, determines the stress at a material point, where an anisotropic
elastic stiffness, C, relates the elastic GREEN–LAGRANGE strain measure [25], E, to the second
PIOLA–KIRCHHOFF stress measure, S [25]:

E =
1
2
(Fe

TFe − I), and S = CE. (3)

The chemical deformation gradient, Fi, is determined from the hydrogen concentration, cH,

Fi = εHcHI (4)

and results from the interstitial volumetric change associated with solute hydrogen occupancy, εH.
As we explain in more detail in Section 3.2, the concentration field cH will be evaluated based
on different equilibrium approximations. These distinguish whether no defects, dislocations or
dislocations and grain boundaries are present in the system. The plastic deformation gradient evolves
according to the flow rule

Ḟp = LpFp, (5)

where the plastic velocity gradient, Lp, is driven by the stress through the plasticity model. The crystal
plasticity model used in the present study, is an adoption of the phenomenological description of
Peirce et al. [26] for face-centered cubic crystals. The plastic velocity gradient Lp is composed of the
slip rates γ̇α on each of the 12 BCC {1 1 0}〈1 1 1〉 slip systems, which are indexed by α = 1, . . . , 12.

Lp = ∑
α

γ̇α bα ⊗ nα, (6)

where bα and nα are unit vectors along the slip direction and slip plane normal, respectively. The slip
rates are given by

γ̇α = γ̇0

∣∣∣∣τα

gα

∣∣∣∣
n

sgn (τα) (7)

in terms of the resolved shear stress, τα = S · (bα ⊗ nα). The slip resistances on each slip system, gα,
evolve asymptotically towards g∞ with shear γβ (β = 1, . . . , 12) according to the relationship

ġα = γ̇β h0

∣∣∣1 − gβ/g∞

∣∣∣a
sgn

(
1 − gβ/g∞

)
hαβ (8)

with parameters h0 and a. The interaction between different slip systems is captured by the hardening
matrix hαβ.
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The constitutive model represents an implicit system of equations to be solved for a consistent
elastic and plastic deformation gradient (for details see [27]). The mechanical free energy density is
then given by

fmech =
1
2

S · E (9)

and its minimization results in mechanical equilibrium in terms of the first Piola–Kirchhoff stress
measure, P,

δ fmech
δχ

= Div P = 0. (10)

The chemical free energy density for this system is based on the regular solution model

fchem =
1
Ω

[
EHcH + kBT[cH ln cH + (1 − cH) ln(1 − cH)]

]
, (11)

where Ω is the atomic volume, kB is the BOLTZMANN constant, T is the temperature and EH is
a hydrogen enthalpy. Though EH belongs to bulk Fe, the development of the hydrogen energy
description given in the subsequent part of this publication will also include dislocations and grain
boundaries.

Following [28], the free energy of the interface is given by

fgrad = κ|Grad cH|2, (12)

where κ is the surface energy parameter associated with the diffuse pore–matrix interface.
The evolution of the conserved concentration field is then given by the modified Cahn–
Hilliard equation

˙cH = Grad · MH Grad μH, (13)

where MH is the mobility of the hydrogen solute. Their chemical potential μH is thermodynamically
determined from the free energy density

μH =
δ ftotal
δcH

=
δ fmech

δcH
+

EH

Ω
+

kBT
Ω

ln
(

cH

1 − cH

)
, (14)

where the mechanical coupling with μH is obtained through Equation (4).

3.2. Numerical Implementation of the Continuum Model

For the numerical implementation of the chemoelastoplastic model, the Düsseldorf Advanced
Material Simulation Kit (DAMASK) [22] is used, an open source crystal plasticity finite element library.
For the sake of simplicity, we exemplarily introduce here representative volume elements (RVEs) used
for simulations of fcc materials. The respective numerical parameters will be described correspondingly
in the results part.

RVEs belong to the group of statistical approaches to achieve a representative homogenization
of a material’s microstructure for a macroscopic model. For plasticity models, the varying quantity
typically is the dislocation density. In Figure 2, an example of the RVE for a dislocation density of
ρ = 1 × 1015 m−2 is shown. The dislocation density ρ is given as ρ = Nd/V, where N is the number
of dislocations, d the circumference of the dislocation line, modeled as ellipse, and V the volume of
the simulation box. The semi major-axis is labelled a, the semi minor-axis b. The dimensions of the
dislocation lines are a = 15 nm ± 3 nm and b = 7 nm ± 3 nm, where ±3 nm here means that, for each
individual dislocation line, a value from the interval (−3 : 3) is randomly added to the corresponding
basic value of a and b. The dislocations are equally distributed on all 12 slip systems, i.e., on all
12 slip planes, only one dislocation is initially set, and the two additional dislocations are randomly
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distributed to a slip system. These dislocations are randomly positioned on the corresponding slip
systems. Such an RVE thus includes 25 different microstructural phases, i.e., 12 phases enclosed by the
dislocations, the 12 dislocations and the matrix phase.

Figure 2. Here, the inner of a dislocation and the dislocation line are shown separately.
top: the microstructure index 2–13 refers to the inner of dislocations, bottom: the microstructure
index 14–25 refers to dislocation loops. Microstructure index 1 refers to the matrix and is not shown.

3.3. Atomistic Parameterisation

A key aim of the present work has been to determine the parameters of the continuum model
from atomistic simulation. One important parameter is the effective binding energy of H in the vicinity
of a dislocation. Evaluating such a binding energy is challenging for a number of reasons. Firstly,
the long-range strain field around an ideal straight-line dislocation leads to the requirement of large
simulation cells to avoid elastic artifacts. Moreover, care must be taken to avoid interactions between
the interstitial H and its periodic images in the direction of the dislocation line. A third issue is that a
large number of possible configurations must be considered in order to obtain reliable sampling of the
potential energy surfce for hydrogen around such a dislocation.

In order to solve these issues, we utilise the environmental tight-binding (ETB) approach [29,30],
which enables the rapid evaluation of energies and forces for systems of arbitrary chemistry, within a
quantum-mechanical framework. The current approach requires the full eigenvalue spectrum of a
one-electron Hamiltonian matrix, thus solving the one-electron Schrödinger equation within a local
atomic-orbital basis set. Due to the cubic scaling of the eigenvalue problem, the present implementation
is limited to systems of the order of 103 atoms. The reliability of the approach for the Fe-H system has
been demonstrated by examining the H segregation behaviour at a selection of grain boundaries in
α-Fe [30].
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The chosen dislocation is the a/2〈111〉 screw dislocation in α-Fe, the behaviour of which is
highly relevant for plastic deformation of iron at low temperatures. In order to circumvent the
problem of long-range strain fields around a dislocation, and to avoid electronic surface effects arising
from the application of elastic boundary conditions, the well-known quadrupole construction [31] is
used, which allows for the study of dislocations within a periodic cell. In this approach, sketched
schematically in Figure 3, a periodic arrangement of dislocations of opposite Burgers vectors is
made, such that the long-range strain field is eliminated. One must take care that the distance
between dislocation pairs is sufficiently large so that their mutual interaction (which is of course
long-ranged) does not overshadow the effect under scrutiny. In these simulations, a rectangular
arrangement of periodic dislocations is chosen, which allows for the computationally convenient use
of an orthorhombic unit cell in the simulations; we found that a cell of 672 atoms is necessary to avoid
significant augmentation of the core structures of the dislocations.

[112]

[110]

[111]

_

__

Figure 3. Schematic images of the quadrupole dislocation construction used in the simulation. The blue
arrows indicate the helicity of the dislocations, with “up” and “down” arrows corresponding to screw
dislocations of Burgers vectors b = a/2〈111〉 and −b, respectively. The red circles indicate the effective
binding range.

Having obtained the relaxed dislocation configuration, the next stage is to assess the binding
energy of hydrogen to this dislocation. In order to avoid interactions between H atoms and their
periodic images, the simulation cell is extended by doubling the number of atomic planes along the
direction of the Burgers vector, thus resulting in a H-free simulation cell of 1344 atoms. By numerical
simulation, we find that the dislocation has an effective binding range of ∼5 Å from the centre of the
core. Within this radius, 72 plausible interstitial sites for H are found (per Burgers vector), and the
binding energy of each of these is evaluated (see Figure 4). The maximum value of the binding energy
(with respect to a single H atom in a tetrahedral site in bulk α-Fe) is found to be 0.34 eV at the core of
the dislocation. The median value of the binding energies is Ēbind = 0.14 eV, for a core radius rc = 5 Å.
To account for the entropic contribution of the dislocations, Ēbind is shifted by kBT ln(Vdislocation/Vvoxel)

in the scale bridging simulations.
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Figure 4. Each vertical line corresponds to one data point (due to symmetry, some points overlap).
The colors correspond to the distances from the dislocation core, measured by the radius R. The red
circles correspond to the 24 points closest to the dislocation core (R < 2.87 Å), the green squares are in
the “intermediate range” (2.87 Å < R < 4.04 Å), with the blue points belong are the outermost 24 points.
The density of states (DOS) curve is generated by broadening the delta functions by a Lorentzian
function of width kBT/2 (T = 300 K), with the integral under the DOS curve being normalised to 1.

While it would be possible to resolve the detailed picture presented in Figure 4 on a continuum
level when we stick to small simulation volumina or low defect complexities, see the results
reported [20,21], reaching process-relevant simulation boxes in the CPFEM approach requires further
homogenziation. Therefore, to make a connection to the continuum picture, we choose the binding
energies over a representative volume, such that the average H concentration within that volume
corresponds to the expected density of occupied interstitial sites with respect to the bulk H chemical
potential. The occupation of all interstitial sites within the dislocation line region will be one-half;
this choice corresponds to selecting the median value of the binding energy distribution function.
We note that, from the results obtained in terms of such comprisingly homogenised models, it is still
possible to reconstruct the distinct site occupations, but this is restricted to fully relaxed states.

For the parametrisation of grain boundaries, we refer to the results published in [15] for α Fe.
They show the dependence of the binding energy of hydrogen at an interstitial site on the spatial
distance to the grain boundary. Precisely, we refer to the calculations for a Σ3 [11̄0](112) grain boundary.
The resulting binding energy shows a pronounced attraction with binding energies from 150 to 330 meV
in a distance of about 2 Angstroms, while in distances from 2 to 7 Angstroms from the grain boundary
plane, the binding energy ranges from 10 to 40 meV.

4. Results and Discussion

Here, the results of our investigations are presented and it is discussed how they can be interpreted
in the context of grain boundary hydrogen embrittlement. On the phenomenological side, our main
interest is in the competition between dislocation and grain boundaries in the aggregation of hydrogen.
On the methodological side, the main goal is a quantitative scale transfer from the quantum mechanical
description of hydrogen at dislocations and grain boundaries to an elastoplastic deformation model
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on the macroscale that reflects hydrogen aggregation. Apparently, one of the core challenges in
such approaches is the reduction of complexity of the model while still catching the essential effects.
We reduce the complexity step by step, which allows us to consider in each stage of simplification the
loss of accuracy we inevitably tolerate in the description.

4.1. Modelling Hydrogen Aggregation Considering Dislocation Effects

We aim at the introduction of a composite model for the chemical potential and hydrogen
concentration in the RVEs. This approach introduces an analytic approximation for the non-mechanical
contributions to the hydrogen chemical potential, leading to a decrease of the computational expense
of the simulations. Therefore, we begin with the comparison of the corresponding analytical
approximations for the hydrogen distribution in volume elements with and without dislocations
to results from analoguous simulations. These approximations are valid for a single volume element.
The most basic approximation excludes also the influence of dislocations, leading to an average
concentration profile

〈c(μ, E)〉 =
exp

(
μ−E
kBT

)
1 + exp

(
μ−E
kBT

) (15)

with an average chemical potential μ = 〈μ〉 and formation energy E = E0 for the bulk description.
To include the dependence on the dislocation density in the model, the average concentration is split
into bulk and dislocation contributions:

〈c〉 = cbulk + νdis (cdis − cbulk) . (16)

Here, νdis is the volume fraction of the dislocation cores and νbulk the volume fraction of the bulk,
which are defined as νdis = πr2

c ρ and νbulk = 1− νdis, whereby rc describes the radius of the dislocation
core and, therefore, πr2

c describes the cross-sectional area of the dislocation line. The system is
described in a stationary state ċ = 0, and mechanical contributions are neglected. Equality of the
chemical potentials then provides expression for the concentration for the bulk and the dislocations
as cbulk = 〈c(〈μ〉, E0)〉 and cdis = 〈c(〈μ〉, Edis)〉 where we can, based on the calculations in Section 3.3,
set Edis = Ēbind.

When comparing the predictions based on the composite analytical model, Equation (15),
to the full field simulation results in Figure 5, we see that just the inclusion of the averaged
dislocation densities is a strict requirement for the accuracy of the approximation. While the
performance of the analytical approximation is convincing when dislocations are included, the situation
becomes much more complex as soon as we introduce grain boundaries in the system to simulate
polycrystalline samples.

Figure 5. Cont.
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Figure 5. Comparison of the numerical solution (blue) with the old analytical solution (red),
which includes no dislocation density and the new analytical solution (green) for different
dislocation densities. Including the dislocation density substantially improves the accuracy of the
analytically approximation.

4.2. Modelling Hydrogen Aggregation Considering Dislocation and Grain Boundary Effects

We distinguish two contributions to the hydrogen aggregation at grain boundaries here: on the
one side, the stress concentration at the grain boundaries when the system is subjected to mechanical
load and, on the other hand, the binding energies and binding length scales to the grain boundaries
when the system is free from external stresses. For the latter, we introduce a voxel averaging scheme
that allows us to include results from the ab initio calculations that are reported in [15] (see Figure 6).

Figure 6. Illustration of grain boundary and dislocation volume voxel averaging.

Here, Lvoxel is the length of the voxel and lGB the range of attractive sites associated with the grain
boundary. Then, the volume fraction of the grain boundary is defined as

νGB =
lGB

Lvoxel
. (17)

The average hydrogen concentration in this voxel can then be expressed as

〈c〉 = 〈c(〈μ〉, E0)bulk〉+ νdis

(
〈cdis(〈μ〉, Ebind)〉 − (〈cbulk(〈μ〉, E0)〉

)
+ νGB

(
〈cGB〉 − 〈cbulk(〈μ〉, E0)〉

)
. (18)
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Via the ab initio results from [15], the concentration becomes dependent on the distance to the
grain boundary as EGB = EGB(r) when r is the distance from the grain boundary, thus

〈cGB〉 =
1

lGB

∫ lGB

0
〈cGB(r)〉 dr. (19)

However, the grain boundary fraction we introduce via this scheme is then fixed for a given
voxel length, which leads to undesirable effects. When the voxel length is set to Lvoxel = 1 μm,
we obtain a hydrogen concentration profile as shown in Figure 7, corresponding to an estimated
grain boundary fraction of ∼10−3. This scenario shows basically no remaining hydrogen segregation
at the dislocations in the grains. To reduce the grain boundary fraction to values that show less
dominant hydrogen aggregation at the grain boundaries, a voxel length of about 100 micrometres has
to be chosen (see the simulation result obtained for that case in Figure 8). However, in that case, the
numerical parametrisation implies a solution of the elastoplastic equations on an undesirably large
spatial scale.

At this point, we have to recognise that defining a representative grain boundary binding energy,
which can be used to obtain a composite model, i.e., analytical description, is a rather ineffective
approach in comparison to the composite model for the dislocations. The spatial distribution
of dislocations can be assumed to suffice the requirements to be fulfilled for a representative
volume element definition, but the distribution of grain boundaries is subject to complex geometric
constraints. Furthermore, the characteristic length scale of the grain boundary distribution is typically
several orders of magnitude larger than the characteristic length scale of the dislocation distribution.
This comparably small density requires larger representative volumes for the composite model,
which would introduce further inaccuracies to the model.

To reflect the simulation results, we relate them to classical McLean [32] segregation profiles based
on the same ab initio data sets. This includes estimates for the hydrogen segregation from dislocations
to grain boundaries and the effect of hydrogen enrichment at the grain boundaries on segregation to
further increased concentration levels.

Figure 7. Simulation of a polycrystal containing dislocations with a binding energy to grain boundaries
and a voxel size of Lvoxel = 1 μm.

We estimate the influence of a locally hydrogen enriched grain boundary region on the segregation
behaviour of additional hydrogen to those remaining attractive sites at the grain boundary. For this
sake, we assume that the work of volume expansion due to the hydrogen is the dominant contribution
to the solution energies. Furthermore, we assume that the change in the work of volume expansion
under hydrogen solution with increasing hydrogen content is dominated by the change of the bulk
modulus of the region at the grain boundary.
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Figure 8. Simulation of a polycrystal containing dislocations with a binding energy to grain boundaries
and a voxel size of Lvoxel = 100 μm.

Therefore, we consider the following two limiting cases. First, when no other hydrogen atoms
are present at the GB, the resulting segregation profile in a simple McLean picture is just based on
the energies reported in [15]. In the second limiting case, we assume that half of all locally available,
attractive sites, i.e., with a formation enthalpy ≤ 0.25 eV, are populated. For the Σ3[11̄0](112) bcc grain
boundary, this corresponds to a minimum of three hydrogen atoms per volume V ≤ 10−28 m3, which is
in the order of 10% at hydrogen at the grain boundary. To estimate the difference in the segregation
energy, assume ΔEel = νΔB0 is assumed, with bulk modulus contrast ΔB0 and partial molar volume
of hydrogen ν. The exact elastic grain boundary data we need is not available, but the change of the
bulk modulus due to the hydrogen aggregation at the grain boundary is estimated based on the bulk
results reported in [33]. The resulting change ΔB0 is approximated as 15 GPa. For the partial molar
volume of hydrogen, we refer to the comprising studies summarized in [34], which suggest a constant
value of 1.7 × 10−6 m3/mol of atomic hydrogen (half of a H2 molecule) over wide temperature and
pressure ranges. The shift for the segregation energy then amounts to ΔEel ≈ 15 × 1.7 × 103/NA eV/J,
i.e., ΔEel ≈ 255 meV.

This value certainly represents a grain boundary that is very densely populated by hydrogen.
As the most attractive sites are restricted to a distance of 1–2 Angstroms away from the grain boundary,
we assume that the elastic shift of the segregation energies only affects those sites that lie in this
area. For the Σ3 grain boundary investigated in [15], this corresponds to the four sites within
approx. 2 Angstroms distance.

The resulting segregation profiles are shown in Figure 9, and the effect of the local elastic softening
on the segregation profile is partially compensated when also dislocations as hydrogen traps are taken
into account. While the detailed data presented in Figure 4 shows a maximal attraction of 0.34 eV
in the area close to the dislocation core, we use here the averaged dislocation binding energy of
0.14 eV, corrected by an entropic contribution about kBT ln (Vdislocation/Vvoxel). This is consistent as it
reproduces an occupation of the dislocation-associated sites, which is reasonable for hydrogen enriched
regions, and we make a similar assumption for the estimate of the occupation shift due to the hydrogen
induced elastic softening. For an interpretation in the context of macroscopic metallurgical processes,
a more detailed description of the ambient hydrogen chemical potential is required. Apart from the
surface properties of the samples, especially surface roughness and surface porosity, the humidity of
the atmosphere is also essential. When the samples are subjected to large thermal gradients due to
heat treatment, the distribution of hydrogen at grain boundaries and dislocations close to the surface
will change depending on the distance to the surface.
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Figure 9. Segregation profiles for the sites in the vicinity of the grain boundary. The curves with
cross symbols correspond to a temperature of 300 K, the curves with box symbols correspond to a
temperature of 800 K. For both temperatures, the solid lines correspond to the segregation from a bcc
bulk site with formation enthalpy ΔE = 0.25 eV to the sites with energies and spatial distance to the
grain boundary plane as reported in [15]. The dashed curves assume that the segregating hydrogen
atom moves into a hydrogen enriched region which is limited to those sites within 2 Angstroms
distance to the grain boundary plane. The hydrogen enriched zone has a reduced bulk modulus,
and the resulting shift is about 255 meV. The dotted lines correspond to data that takes account that
high local plasticity densities act as effective traps and that the hydrogen has to overcome the binding
energy of about 140 meV. We note that the hydrogen is absorbed into the dislocations both for 300 K and
800 K from those sites that are more than 2 Angstroms away, expressed by positive segregation energies.
This leads to a weak depopulation of this region at 800 K and a pronounced depopulation at 300 K.

This resulting effect of hydrogen binding to dislocations and hydrogen enrichment due to reduced
mechanical resistance to hydrogen aggregation is a high local hydrogen density at the grain boundary.
Though these results are based on estimates for the bulk modulus contrast and an effective dislocation
binding energy, which result from a site occupation median, they exhibit the weakness of ferritic grain
boundaries to hydrogen accumulation. For increasingly high levels of hydrogen aggregation to the
grain boundary, as they are required for hydrogen embrittlement, a kinetic transport of hydrogen is
required in addition to thermodynamically driven transport. As recently pointed out in [35], hydrogen
shielded slip transfer to grain boundaries might offer not only a source for grain boundary stress
concentration, but also this non-thermodynamical hydrogen transport process.

At this point, it is worth discussing the effect of the presence of hydrogen atoms along the grain
boundaries on the plastic behavior on the polycrystalline metals. Recent simulations [35] show that
hydrogen atoms have multiple effects of the dislocation–GB interactions. First of all, the segregated
hydrogen atoms can develop stress field around the grain boundaries. These stress fields which stem
from the misfit volumetric strain of the H atoms can attract/repel the dislocations. Thus, the average
slip along the GBs can change [35]. This change promotes the accumulation of slip in local regions
along the boundary that can lead to the formation of nano-cracks and voids.

Moreover, the presence of H atoms can not only significantly increase the critical shear stress
needed for resolving the lattice dislocation in the grain boundaries, but it can also change the nature
of the GB–dislocation interaction. The presence of H atoms can block the dissociation of the lattice
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dislocations into GB-dislocation. Thus, the slip either remains along the grain boundary or is transited
to the adjacent grain at significantly higher stresses. This leads to the formation of more populated
pile-ups and eventually leads to intergranular fracture of the grain boundary surfaces. The dislocations
that are present in the pile ups can attract hydrogen atoms and deliver it to the grain boundary.
As shown in previous studies in nickel, these extra hydrogen atoms can reduce the fracture energy
significantly [36] and make brittle fracture favourable. This intergranular fracture cannot be achieved
by considering only the equilibrium segregation hydrogen atoms along the boundary [37]. However,
clarification of the kinetic aspects of this process needs further investigation.

5. Conclusions

Within our attempt to find efficient and predictive models for hydrogen segregation based
on ab initio data, we present an analytic composite model for dislocation RVEs. Due to the
comparably homogeneous distribution of dislocations, the length scales of defect separation and
defect extent are unproblematic for the representative volume approach for dislocations and we
can introduce an effective binding energy that leads to good agreement in the efficient composite
model and full field simulations. When extended to also include grain boundaries in an RVE
spirit, also based on ab initio determined binding energies, we recognise a conceptual difficulty
of the analytical model. This challenge originates from the strong seperation of the length scales
describing defect extent and defect distribution in the case of grain boundaries. A thorough approach
to this problem would first demand a comprising analysis of the limitations of scale transfers
between the description of grain boundaries on the ab initio scale and within the crystal plasticity
picture, which models grain boundaries indirectly. Therefore, one of the key challenges is the vast
combinatorical complexity of compositional and structural degrees of freedom in grain boundaries.
On the one hand, the computational expense of state-of-the-art grain boundary calculations, which still
exhibit substantial discrepancies to experimental measurements, is enormous. On the other hand,
there are few approximative schemes available to interpolate or extrapolate data sets to differing grain
boundaries, even if such data sets are available. Consequently, any comparability to experiments is
limited to well defined model systems at the moment.

Apart from this methodological challenge, the simulations and theoretical considerations predict
a strong hydrogen segregation in atomic distance from grain boundaries well in competition with
dislocation based aggregation when local hydrogen occupation is elevated at the grain boundary.
This competition between hydrogen segregation at dislocation and grain boundaries is also observed
in the experimental measurements. In the low hydrogen concentration condition, the cleavage
fracture indicates weak interaction between diffusive hydrogen and grain boundary, whereas the
interaction becomes intensified with a higher amount of hydrogen. Therefore, there is still a challenge
to quantitatively define the critical hydrogen contents leading to grain boundary decohesion for
different material groups.
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Abstract: Based on first principles calculations, we theoretically predict the new two-dimensional (2D)
MgH2. The thermodynamic stability, partial density of states, electron localization function, and Bader
charge of pure and the transition metal (Ti, V, and Mn) doped 2D MgH2 are investigated. The results
show that all the systems are dynamically stable, and the dehydrogenation properties indicate that
the decomposition temperature can be reduced by introducing the transition metal, and the Mn
doped system exhibits good performance for better hydrogen storage and dehydrogenation kinetics.

Keywords: 2D MgH2; hydrogen storage; first principles; dehydrogenation kinetics

1. Introduction

Hydrogen energy is considered to be the most promising alternative because it is lightweight,
environmentally friendly, highly efficient, renewable, and abundant on earth. However, the storage
limits the application of hydrogen. Metal hydrides are considered as the most promising materials
for hydrogen storage and have been widely investigated in the past decades [1]. Among them,
magnesium-based alloys and magnesium hydrides can achieve the hydrogen storage capacity of
7.6 wt % [2–8]. However, the high thermodynamic stability (the heat of formation is around
−75.99 kJ/mol·H2), high desorption temperatures (above 573 K), and slow dehydrogenation kinetics
seriously limit the practical applications [3,9,10]. Therefore, it is always a central task to design
new materials or adopt efficient strategies for achieving lower desorption temperatures and good
dehydrogenation performances.

Previous studies show that the bonding nature of MgH2 is a mixture of strong ionic and weak
covalent bonding [11], and weakening the interactions may be an effective strategy to improve
dehydrogenation performance. It has been reported that doping with transition metal elements or their
oxides mixtures with MgH2 can effectively reduce its stability and improve the hydrogen desorption
thermodynamics [3,12–17]. Oelerich [15] et al. have reported that MgH2 milled with Fe3O4, V2O5,
Mn2O3, or Cr2O3, etc. can accelerate the hydrogen desorption kinetics. Shang [3] et al. have studied the
hydrogen storage performance of (MgH2 + M) systems (M = Al, Ti, Fe, Ni, Cu, and Nb) experimentally
and theoretically, and they found that MgH2 mixed with those metals can reduce the stability and
improve the hydrogen desorption kinetics. Nonetheless, the MgH2 systems still have a high desorption
temperature around 500 K. It is noted that the bulk MgH2 has been extensively investigated, however,
the single-layer magnesium hydrides have been largely ignored. Motivated by the above mentioned
details, we focus on exploring new structures with good dehydrogenation performance in this work.

In this paper, the new two-dimensional (2D) MgH2 structure is theoretically predicted and studied
by first principles calculations. The stabilities of pure and Ti/V/Mn doped MgH2 are discussed by the
phonon spectra and heat of formation. The calculated heat of formation for pure and Ti/V/Mn doped
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2D MgH2 are −37.57, −25.67, −18.14, and −23.90 kJ/mol·H2, respectively, which are significantly
lower than that of −75.99 kJ/mol·H2 of bulk MgH2. The electronic structure and hydrogen desorption
kinetics results show that the predicted two-dimensional magnesium hydride are promising candidates
for hydrogen storage.

2. Computational Details

The structural optimization and electronic property calculations were performed using the
projector augmented plane-wave method (PAW) based on the density functional theory (DFT) in
the Vienna ab initio simulation package (VASP) [18,19]. The exchange-correlation potential was
approximated by generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)
form [20,21]. To avoid the interlayer effects of the c-axis, the vacuum region around 15 Å was set in all
the systems. The energy cutoff of 600 eV and the 9 × 9 × 1 Γ-centered Monkhorst-Pack k-points [22]
were employed for all calculations. The atomic positions were fully relaxed and the force tolerance
between each atom was less than 0.01 eV/Å for the structural optimization. The convergence criteria of
10−6 eV per atom was applied to be self-consistent. Meanwhile, for calculation of electronic structures,
we also applied the local density approximation (LDA) [23] and HSE06 [24] was functional. The kinetic
stability was discussed using the phonon spectra calculations in PHONOPY code coupled with VASP
using the density functional perturbation theory (DFPT) method [25–27].

3. Results and Discussion

Figure 1 shows the fully relaxed structure of the top and side view of pure 2D MgH2 of the
hexagonal structure with space group P-3m1 (D3

3d). The primitive cell has the lattice constant
of a = b = 3.01 Å, the Mg-H bond length of l = 1.97 Å, and the buckled height of d = 1.86 Å.
The next calculations were performed for the 3 × 3 × 1 supercell of 2D MgH2, named Mg9H18.
The corresponding lattice parameters, Wyckoff [28] and atomic positions, are shown in Table 1. As is
seen, there are nine Mg atoms located at 1b (Mg1), 6h (Mg2), and 2d (Mg3) sites, while the eighteen H
atoms are located in three identical Wyckoff positions, i.e., 6i, as shown in Figure 1.

Figure 1. The relaxed unit cell of Mg9H18. The primate cell is marked with a red dashed box.
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Table 1. The relaxed structural parameters and atomic positions of Mg9H18.

Lattice Parameters Atom
Wyckoff Atomic Positions (Fractional)

Positions x y z

164(P-3m1) Mg1 1b 0 0 0.5
a = b = 9.033 Å Mg2 6h 0 0.33333 0.5

c = 15 Å Mg3 2d 0.33333 0.66667 0.5
d = 1.86 Å H1 6i 0.11111 0.22222 0.43783
α = β = 90◦ H2 6i 0.22222 0.44444 0.56217

γ = 120◦ H3 6i 0.11111 0.55556 0.43783

In this work, three different Mg sites are considered as possible positions for substitution
doping. Meanwhile, defects are inevitable in synthesis or processing and can usually affect their
properties [29–33]. The most common types of defect are vacancy defects, so we also considered
the vacancies of Mg (Mg8H18) for comparison to the doped systems. The formation energies were
calculated to determine the favorable positions of doping elements of Ti/V/Mn, which is defined
as ΔE = Etot(Mg8H18Xn) − Etot(Mg9H18) − n Etot(X) + Etot(Mg), where Etot is the total energy of the
system, the parameter n = 0/1 represents Mg vacancy, and X (X = Ti, V, and Mn) doped. The energies
are listed in Table 2. It is noticed that the Mg8H18 and Ti/V/Mn doped systems have positive energy,
indicating that the stability of all the systems are lower than that of pure Mg9H18. In addition, for the
three high symmetry sites of Mg1 (1b), Mg2 (6h), and Mg3 (2d), the ΔE are nearly identical, therefore,
we assume that all the doped-sites are located at the Mg1 site in the following work. The relaxed
parameters and bond lengths of Mg9H18 and Mg8H18X (X = Ti, V, and Mn) are listed in Table 2, and for
the detailed lattice parameters, see Table A1 (Appendix A). As is seen, the bond length of Mg-H is
changed, which indicates that the doped X atoms break the symmetry of the 2D MgH2 structure.

Table 2. The energy (ΔE), the lattice parameter (a), and bond length of Mg9H18, Mg8H18 and Mg8H18X
(X = Ti, V, and Mn).

Hydride
ΔE (eV) Parameter Bond Length (Å)

Mg1 Mg2 Mg3 a (Å) Sub-H1 Mg2-H1 Mg2-H2 Mg2-H3 Mg3-H2 Mg3-H3

Mg9H18 0 0 0 9.033 1.972 1.972 1.972 1.972 1.972 1.972
Mg8H18 2.968 2.968 2.968 9.062 - 1.894 2.043 1.976 1.947 1.992

Mg8H18Ti 1.113 1.114 1.114 9.027 1.915 1.997 1.964 1.982 1.946 1.990
Mg8H18V 1.818 1.818 1.819 8.951 1.822 1.999 1.945 1.992 1.939 1.983
Mg8H18Mn 1.279 1.279 1.279 8.815 1.691 2.028 1.911 2.008 1.937 1.965

Structural stability is discussed by the phonon spectra calculations using the DFPT method, as is
shown in Figure 2. Clearly, there are no imaginary frequencies in the whole Brillouin zone, indicating
that all the systems are dynamically stable. Meanwhile, the heat of formation (ΔH) [7,34–36] is one of
the most fundamentally thermodynamic properties. The heat of formation can be obtained directly
from the equation ΔH = [Etot(Mg9-nH18Xn+m) − (n + m) Etot(X) − (9-n) Etot(Mg) − 9 Etot(H2)]/9,
where the parameters (n = 0, m = 0), (n = 1, m = −1), and (n = 1, m = 0), represent pure, Mg vacancy,
and X (X = Ti, V and Mn) doped Mg9H18, respectively. The value of Etot(H2) of −6.762 eV in a
10 × 10 × 10 Å3 cubic cell is very close to −6.773 eV reported in Ref. [37].
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Figure 2. The phonon spectra of Mg9H18 (a); Mg8H18Ti (b); Mg8H18V (c); and Mg8H18Mn (d).

The estimated heats of formation are listed in Table 3. As is seen, the heat of formation
of Mg9H18, Mg8H18, Mg8H18Ti, Mg8H18V, and Mg8H18Mn are −37.57, 31.71, −25.67, −18.14,
and −23.90 kJ/mol·H2, respectively. The results show that the stability decreased for the doped
2D MgH2, followed by Mg8H18Ti, Mg8H18Mn, and Mg8H18V, and Mg8H18 is the most unstable.
In comparison, we also obtained the heat of formation of the bulk MgH2 of ΔH = −54.56 kJ/mol·H2,
which is close to the theoretical values −54.4 in Ref. [36] and −53.85 kJ/mol·H2 in Ref. [38]. At the
same time, we estimated the decomposition temperature according to the following relationship:
ln P

P0
= ΔH

RT − ΔS
R , where P, P0, R, T, and ΔS represent the pressure, the standard pressure, the gas

constant, the decomposition temperature, and the entropy change, respectively. At the standard
pressure, the ΔH is defined as ΔH = TΔS [39,40]. For most of the dehydrogenation reactions of simple
metal hydrides, the ΔS is in the range of 95 J/mol·K < ΔS(H2) < 140 J/mol·K [41]. Consequently,
the decomposition temperatures are 268 K < T(Mg9H18) < 396 K, 183 K < T(Mg8H18Ti) < 270 K, 130 K <
T(Mg8H18V) < 191 K, 171 K < T(Mg8H18Mn) < 252 K, which are significantly lower than that of 573~673
K of bulk MgH2. The discussions mentioned above show that 2D MgH2 has better dehydrogenation
thermodynamic properties than that of bulk MgH2, and doping with Ti, V, and Mn elements can
reduce the stability and improve the dehydrogenation thermodynamics properties of 2D MgH2.
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Table 3. The heat of formation (ΔH), the decomposition temperature (T), Bader charge of Mg and H
atoms, and the dehydrogenation energies (Ed) of Mg9H18, Mg8H18, and Mg8H18X (X = Ti, V, and Mn).

Hydride
ΔH T Bader Charge (e) Ed

(kJ/mol·H2) (K) Mg X H (eV)

Mg9H18 −37.57 268~396 +2.000 - −0.997 1.589
Mg8H18 31.71 - +2.000 - −0.886 −1.931

Mg8H18Ti −25.67 183~270 +2.000 +1.825 −0.988 1.305
Mg8H18V −18.14 130~191 +2.000 +1.523 −0.971 1.044

Mg8H18Mn −23.90 171~252 +2.000 +0.975 −0.940 0.853

To understand the effect of Ti/V/Mn-doped 2D MgH2 well, we analyzed the electronic structures.
The band structures were obtained using PBE, LDA, and HSE06 functionals and are shown in
Figure A1. It can be seen that the pure Mg9H18 with the energy gap is 4.87 eV, which is smaller
than the experimental values 5.16 eV [42] or 5.6 eV [43] of bulk MgH2. For comparison, we found
that the bandgaps using HSE06 functional are larger than those using PBE and LDA functionals,
and the bandgaps using LDA functional are close to those of the PBE functional for pure and vacancies
of Mg9H18. For the doped systems, there are few energy bands across the Fermi level due to the
d orbitals of the dopants. Figure 3 shows the total and partial density of states (PDOS) of Mg9H18

and Mg8H18, which are calculated using the PBE functional. We can see the stronger hybridization
between H and Mg atoms near the Fermi level, which indicates the strong interaction between H and
Mg atoms. For the Mg8H18X, the electronic structure is different from that of the pure Mg9H18, as is
shown in Figure 4. We can see that the d orbitals of Ti/V/Mn are mainly located near the Fermi level
in doped-2D MgH2, and there are few H-s orbitals and states of Mg atoms at the Fermi level, which
indicates that the interactions between Ti/V/Mn and H/Mg atoms are relatively weaker. Meanwhile,
since the H-s orbitals are reduced at the Fermi level, the hybridization between H and Mg atoms is
weaker compared to pure Mg9H18.

 

Figure 3. The total and partial densities of states of pure (a) and defective (b) Mg9H18.
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Figure 4. The total and partial densities of states of Mg8H18Ti (a); Mg8H18V (b); and Mg8H18Mn (c).

In order to analyze the chemical bond of all the systems, the electron localization function (ELF)
was calculated and is shown in Figure 5 with the isosurfaces of 0.6 e/Å3. As shown in Figure 5b–f,
all the systems have similar features in that the ELF values are lower between Mg and H atoms.
These suggest that the ionic bonds exist between Mg and H atoms, and the Mg atoms act as the charge
donor, according well with the discussions of PDOS and ELF of bulk MgH2. The Bader charges were
also calculated (see Table 3), and it can be seen that Mg atoms contributed two electrons, and H atoms
acquired electrons to form anions. Meanwhile, the H atoms obtained fewer electrons due to the Mg
vacancy and doping with Ti/V/Mn elements, thereby weakening the interactions between H and the
metal atoms.

Figure 5. (a) Structural representation of considered systems. The big (small) ball represents Mg
(H) and the red ball site is the doped site; (b–f) represent the electron localization function (ELF) of
Mg9H18, Mg8H18, Mg8H18Ti, Mg8H18V, and Mg8H18Mn, respectively. The color bar represents the
values of ELF.
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As mentioned above, doping with Ti/V/Mn elements reduces the stability of 2D MgH2 and
weakens the interactions between H and metal atoms, which facilitates the release of hydrogen.
To further understand the dehydrogenation behavior, the dehydrogenation energy was estimated
by the formula: Ed = Etot(Mg9-nH17Xn+m) − Etot(Mg9-nH18Xn+m) + 1/2 Etot(H2), where (n = 0, m = 0),
(n = 1, m = −1), and (n = 1, m = 0) represent the pure, Mg vacancy, and X (X = Ti, V, and Mn) doped
Mg9H18, respectively. The dehydrogenation energies are listed in Table 3. The results show that the
dehydrogenation energy of the Mg8H18 was significantly reduced compared to the pure and doped
Mg9H18, while there are high ΔE of 2.968 eV and positive ΔH of 31.71 kJ/mol·H2, indicating that
it is almost impossible to steadily occur. For doped systems, their dehydrogenation energies are
significantly smaller than 1.589 eV of pure Mg9H18, especially Mg8H18Mn with the dehydrogenation
energy of 0.853 eV. Therefore, doping with Ti/V/Mn elements can improve the dehydrogenation
thermodynamic properties of 2D MgH2.

4. Conclusions

In summary, we theoretically predicted two-dimensional MgH2 and studied the electronic and
dehydrogenation properties of pure and Ti/VMn doped 2D MgH2. The phonon spectra calculations
indicate that all the systems are dynamically stable. The results of heat of formation suggests
that Ti/V/Mn doping can reduce the thermodynamic stability, followed by Mg8H18Ti, Mg8H18Mn,
and Mg8H18V, and Mg8H18 is the most unstable. Importantly, the dehydrogenation temperatures for
all the systems are significantly lower than that of bulk MgH2 at 573~673 K. Especially, Mg8H18Ti
(183~270 K), Mg8H18V (130~191 K), and Mg8H18Mn (171~252 K) have much lower decomposition
temperature than that of pure 2D MgH2 (268~396 K), which is important for practical applications.
The partial densities of states, electron localization function, and Bader charge calculation results show
that Ti, V, and Mn elements can weaken the interaction between H and the metal atoms, which is
favorable to dehydrogenation and better than that of the bulk MgH2.
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Appendix A

Table A1. The relaxed structure parameters of pure, vacancies, and doped Mg9H18 using
Perdew-Burke-Ernzerhof (PBE) and local density approximation (LDA) functionals.

Hydride
PBE LDA

a (Å) α (◦) β (◦) γ (◦) a (Å) α (◦) β (◦) γ (◦)

Mg9H18 9.033 90.0 90.0 120.0 8.894 90.0 90.0 120.0
Mg8H18 9.062 90.0 90.0 120.0 8.888 90.0 90.0 120.0

Mg8H18Ti 9.027 90.0 90.0 120.0 8.883 90.0 90.0 120.0
Mg8H18V 8.951 90.0 90.0 120.0 8.803 90.0 90.0 120.0

Mg8H18Mn 8.815 90.0 90.0 120.0 8.662 90.0 90.0 120.0
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Figure A1. Band structures of Mg9H18 (a); Mg8H18 (b); Mg8H18Ti (c); Mg8H18V (d); and Mg8H18Mn (e)
calculated using PBE (black line), LDA (red dot line), and HSE06 (blue dot line) functionals, respectively.
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