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Preface to “Hybrid Advanced Optimization 
Methods with Evolutionary Computation 
Techniques in Energy Forecasting” 

More accurate and precise energy demand forecasts are required when energy decisions 
are made in a competitive environment. Particularly in the Big Data era, forecasting models are 
always based on a complex function combination, and energy data are always complicated. 
Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These 
forecasting models have resulted in an over-reliance on the use of informal judgment and 
higher expenses when lacking the ability to determine data characteristics and patterns. The 
hybridization of optimization methods and superior evolutionary algorithms can provide 
important improvements via good parameter determinations in the optimization process, 
which is of great assistance to actions taken by energy decision-makers. 

This book contains articles from the Special Issue titled “Hybrid Advanced Optimization 
Methods with Evolutionary Computation Techniques in Energy Forecasting”, which aimed to 
attract researchers with an interest in the research areas described above. As Fan et al. [1] 
indicate, the research direction of energy forecasting in recent years has concentrated on 
proposing hybrid or combined models: (1) hybridizing or combining these artificial intelligence 
models with each other; (2) hybridizing or combining with traditional statistical tools; and (3) 
hybridizing or combining with those superior evolutionary algorithms. Therefore, this Special 
Issue sought contributions towards the development of any hybrid optimization methods (e.g., 
quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum 
computing, etc.) with superior evolutionary algorithms (e.g., genetic algorithms, ant colony 
optimization, particle swarm optimization algorithm, and so on) that have superior capabilities 
over the traditional optimization approaches to overcome some embedded drawbacks, and the 
application of these advanced hybrid approaches to significantly improve forecasting accuracy. 

The 11 articles in this compendium all display a broad range of cutting-edge topics in 
hybrid optimization methods and superior hybrid evolutionary algorithms. The preface author 
believes that the hybridization of the advanced optimization methods and evolutionary 
computation techniques will play an important role in energy forecasting accuracy 
improvements, such as hybrid different evolutionary algorithms/models to overcome some 
critical shortcomings of single evolutionary algorithms/models or direct improvement of the 
shortcomings by innovative theoretical arrangements. 

For Hybridizing Different Evolutionary Algorithms/Models  

(1) Hybrid different evolutionary algorithms: It is known that the evolutionary algorithms 
have their theoretical drawbacks, such as a lack of knowledge, memory, or storage functions; 
they are time consuming in training; and become trapped in local optima. Therefore, the goal of 
hybridizing optimization methods to adjust their internal parameters (e.g., mutation rate, 
crossover rate, annealing temperature, etc.) is to overcome these shortcomings. For example, 
simulated annealing (SA) is a generic probabilistic search technique that simulates the material 
physical process of heating and controlled cooling. Each step of SA attempts to replace the 
current state by a random move. The new state can then be accepted with a probability that 
depends both on the difference between the corresponding function values and on a global 
parameter (temperature). Thus, SA can reach more ideal solutions. However, SA costs a great 
deal of computation time in the annealing process. To improve premature convergence and to 
receive more suitable objective function values, it is necessary to find an effective approach to 



 x 

overcome these drawbacks of genetic algorithm (GA) and SA. The hybridization of a genetic 
algorithm with a simulated annealing (GA-SA) algorithm [2] is an innovative trial applying the 
superior capability of the SA algorithm to reach more ideal solutions, employing the mutation 
process of GA to enhance the search process. 

(2) Different hybrid models: Each single model has its own drawbacks. For example, in 
Box–Jenkins’ ARIMA model, the worst disadvantage is the inability to predict changes that are 
not clear in historical data, particularly for the nonlinearity of data patterns. The support vector 
regression (SVR) model cannot provide accurate forecasting performance when the data set 
reveals a cyclical (seasonal) tendency (e.g., caused by cyclic economic activities or seasonal 
nature hour to hour, day to day, week to week, month to month, and season to season), such as an 
hourly peak in a working day, a weekly peak in a business week, and a monthly peak in a 
demand-planned year. Therefore, the concepts of combined or hybrid models deserve 
consideration. Note that the term “hybrid” means that some process of the former model is 
integrated into the process of the later one. For example, hybrid A and B implies some processes of A 
are controlled by A, and some are controlled by B. On the other hand, for the so-called 
combined models, the output of the former model becomes the input of the latter one. 
Therefore, the classification results from combined models will be superior to a single model. 
Combined models are employed to further capture more data pattern information from the 
analyzed data series. For the mentioned shortcoming of the original SVR model, it is necessary to 
estimate this seasonal component (i.e., applying the seasonal mechanism to accomplish the goal of 
highly accurate forecasting performance). The preface author proposed a seasonal 
mechanism [3–5] with two steps for convenience in implementation: the first step is calculating 
the seasonal index (SI) for each cyclic point in a cycle length peak period; the second step is 
computing the forecasting value by multiplying the seasonal index (SI). 

Another model hybridization example can be found in artificial neural network models. 
Inspired by the concept of recurrent neural networks (RNNs) where every unit is considered as an 
output of the network and the provision of adjusted information as input in a training 
process [6], the recurrent learning mechanism framework is also combined into the original 
analyzed model. For a feed-forward neural network, links can be established within layers of a 
neural network. These types of networks are called recurrent neural networks. RNNs include 
an additional information source from the output layer or the hidden layer. Therefore, they 
mainly use past information to capture detailed information, then improve their performances.  

For Improvement by Innovative Theoretical Arrangements 

Several disadvantages embedded in these evolutionary algorithms, such as their tendency to 
become trapped in local optima and evolutionary mechanism failure, can be improved by 
innovative theoretical arrangements to obtain more satisfactory performance.  

(1) Chaotization of decision variables: Chaos is a ubiquitous phenomenon in nonlinear 
systems. Chaotic behaviors have characteristics such as high sensitivity to initial value, 
ergodicity, and randomness of motion trail, and can traverse each trail within a certain range 
according to its rule. Therefore, chaotic variables may be adopted by utilizing these 
characteristics of chaotic phenomena for global search and optimization to increase the particle 
diversity. Due to easy implementation process and a special mechanism to escape from local 
optima, chaos and chaos-based searching algorithms have received intense attention [7]. Any 
decision variable in an optimization problem can be chaotized by the chaotic sequence as a 
chaotic variable to carefully expand its search space (i.e., variables are allowed to travel 
ergodically over the search space). The critical factor influencing the performance improvement is 
the chaotic mapping function. There are several commonly adopted chaotic mapping 
functions for the chaotic sequence generator, such as the logistic mapping function, the tent 
mapping function, the An mapping function, and the cat mapping function. 
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(2) Adjustments by cloud theory: for example, based on the operation procedure of SA, 
subtle and skillful adjustment in the annealing schedule is required (e.g., the size of the 
temperature steps during annealing). Particularly, the temperature of each state is discrete and 
unchangeable, which does not meet the requirement of continuous decrease in temperature in 
actual physical annealing processes. In addition, SA easily accepts deteriorated solutions with 
high temperature, and it is difficult to escape from local minimum traps at low temperature [3]. 
To overcome these drawbacks of SA, cloud theory is considered. Cloud theory is a model of the 
uncertainty transformation between quantitative representation and qualitative concept using 
language value [3]. Based on the SA operation procedure, subtle and skillful adjustment in the 
annealing schedule is required (e.g., the size of the temperature steps during annealing, the 
temperature range, the number of re-starts and re-direction of the search). The annealing 
process is like a fuzzy system in which the molecules move from large-scale to small-scale 
randomly as the temperature decreases. In addition, due to its Monte Carlo scheme and lack of 
knowledge memory functions, its time-consuming nature is another problem. It is deserved to 
employ a chaotic simulated annealing (CSA) algorithm [3] to overcome these shortcomings.  

In this, the transiently chaotic dynamics are temporarily generated for foraging and self-
organizing. They are then gradually vanished with autonomous decrease of the temperature, 
and are accompanied by successive bifurcations and converged to a stable equilibrium. 
Therefore, CSA significantly improves the randomization of the Monte Carlo scheme, and 
controls the convergent process by bifurcation structures instead of stochastic ‘‘thermal” 
fluctuations, eventually performing efficient searching including a global optimum state. 
However, as mentioned above, the temperature of each state is discrete and unchangeable, 
which does not meet the requirement of continuous decrease in temperature in actual physical 
annealing processes. Even if some temperature annealing functions are exponential in general, 
the temperature gradually falls with a fixed value in every annealing step and the changing 
process of temperature between two neighbor steps is not continuous. This phenomenon also 
appears when other types of temperature update functions are implemented (e.g., arithmetical, 
geometrical, or logarithmic). In cloud theory, by introducing the Y condition normal cloud 
generator to the temperature generation process, it can randomly generate a group of new 
values that distribute around the given value like a ‘‘cloud’’. The fixed temperature point of 
each step becomes a changeable temperature zone in which the temperature of each state 
generation in every annealing step is chosen randomly, the course of temperature change in the 
whole annealing process is nearly continuous, and fits the physical annealing process better. 
Therefore, based on chaotic sequence and cloud theory, the chaotic cloud simulated annealing 
algorithm (CCSA) is employed to replace the stochastic ‘‘thermal” fluctuations control from 
traditional SA to enhance the continuous physical temperature annealing process from CSA. 
Cloud theory can realize the transformation between a qualitative concept in words and its 
numerical representation. It can be employed to avoid the problems mentioned above. 

This discussion of the work by the author of this preface highlights work in an emerging area 
of hybrid optimization methods with superior evolutionary algorithms that has come to the 
forefront over the past decade. The articles collected in this text span many cutting-edge areas 
that are truly interdisciplinary in nature. 

Wei-Chiang Hong 
Guest Editor 
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Abstract: Providing accurate load forecasting plays an important role for effective management
operations of a power utility. When considering the superiority of support vector regression (SVR)
in terms of non-linear optimization, this paper proposes a novel SVR-based load forecasting model,
namely EMD-PSO-GA-SVR, by hybridizing the empirical mode decomposition (EMD) with two
evolutionary algorithms, i.e., particle swarm optimization (PSO) and the genetic algorithm (GA).
The EMD approach is applied to decompose the load data pattern into sequent elements, with higher
and lower frequencies. The PSO, with global optimizing ability, is employed to determine the three
parameters of a SVR model with higher frequencies. On the contrary, for lower frequencies, the GA,
which is based on evolutionary rules of selection and crossover, is used to select suitable values of the
three parameters. Finally, the load data collected from the New York Independent System Operator
(NYISO) in the United States of America (USA) and the New South Wales (NSW) in the Australian
electricity market are used to construct the proposed model and to compare the performances among
different competitive forecasting models. The experimental results demonstrate the superiority of
the proposed model that it can provide more accurate forecasting results and the interpretability
than others.

Keywords: support vector regression; empirical mode decomposition (EMD); particle swarm
optimization (PSO); genetic algorithm (GA); load forecasting

1. Introduction

Due to the difficult-reserved property of electricity, providing accurate load forecasting plays an
important role for the effective management operations of a power utility, such as unit commitment,
short-term maintenance, network power flow dispatched optimization, and security strategies. On the
other hand, inaccurate load forecasting will increase operating costs: over forecasted loads lead to
unnecessary reserved costs and an excess supply in the international energy networks; under forecasted
loads result in high expenditures in the peaking unit. Therefore, it is essential that every utility can
forecast its demands accurately.

There are lots of approaches, methodologies, and models proposed to improve forecasting
accuracy in the literature recently. For example, Li et al. [1] propose a computationally efficient
approach to forecast the quantiles of electricity load in the National Electricity Market of Australia.
Arora and Taylor [2] present a case study on short-term load forecasting in France, by incorporating
a rule-based methodology to generate forecasts for normal and special days, and by a seasonal
autoregressive moving average (SARMA) model to deal with the intraday, intraweek, and intrayear
seasonality in load. Takeda et al. [3] propose a novel framework for electricity load forecasting by
combining the Kalman filter technique with multiple regression methods; Zhao and Guo [4] propose a

Energies 2017, 10, 1713; doi:10.3390/en10111713 www.mdpi.com/journal/energies1
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hybrid optimized grey model (Rolling-ALO-GM (1,1)) to improve the accurate level of annual load
forecasting. For those applications of neural networks in load forecasting, the authors of references [5–9]
have proposed several useful short-term load forecasting models. For these applications of hybridizing
popular methods with evolutionary algorithms, the authors of references [10–14] have demonstrated
that the forecasting performance improvements can be made successfully. These proposed methods
could receive obvious forecasting performance improvements in terms of accurate level in some
cases, however, the issue of modeling with good interpretability should also be taken into account,
as mentioned in [15]. Furthermore, these proposed models are almost embedded with strong
intra-dependency association to experts’ experiences, as well as, they often could not guarantee
to receive satisfied accurate forecasting results. Therefore, it is essential to propose some kind of
combined model, which hybridizes popular methods with advanced evolutionary algorithms, also
combining expert systems and other techniques, to simultaneously receive high accuracy forecasting
performances and interpretability.

Due to advanced higher dimensional mapping ability of kernel functions, support vector
regression (SVR) is drastically applied to deal with the forecasting problem, which is with small
but high dimensional data size. SVR has been an empirically popular model to provide satisfied
performances in many forecasting problems [16–18]. As it is known that the biggest disadvantage
of a SVR model is the premature problem, i.e., suffering from local minimum when evolutionary
algorithms are used to determine its parameters. In addition, its robustness also could not receive a
satisfied stable level. To look for effective novel algorithms or hybrid algorithms to avoid trapping into
local minimum, and to simultaneously receive satisfied robustness is still the very hot point in the SVR
modeling research fields [19]. In the meanwhile, to improve the forecasting accurate level, it is essential
to extract the original data set with nonlinear or nonstationary components [20] and transfer them
into single and conspicuous ones. The empirical mode decomposition (EMD) is dedicated to provide
extracted components to demonstrate high accurate clustering performances, and it has also received
lots of attention in relevant applications fields, such as communication, economics, engineering, and
so on [21–23]. As aforementioned, the EMD could be applied to decompose the data set into some
high frequency detailed parts and the low frequent approximate part. Therefore, it is easy to reduce
the interactions among those singular points, thereby increasing the efficiency of the kernel function.
It becomes a useful technique to help the kernel function to deal well with the tendencies of the data set,
including the medium trends and the long term trends. For determining the values of the parameters
in a SVR model well, it attracts lots of relevant researches during two past decades. The most effective
approach is to employ evolutionary algorithms, such as GA [24,25], PSO [26,27], and so on [28,29].
Based on the authors’ empirical experiences in applying the evolutionary algorithms, PSO is more
suitable for solving real problems (with more details of data set), it is simple to be implemented, its
shortcoming is trapped in the local optimum. For GA, it is more suitable for solving discrete problems
(data set reveals stability), however one of its drawbacks is Hamming cliffs. In this paper, the data
set will be divided into two parts by EMD (i.e., higher frequent detail parts and the lower frequent
part), the higher frequency part is the so-called shock data which demonstrates the details of the data
set, thus, SVR’s parameters for this part are suitable to be determined by PSO due to its suitable for
solving real problems. The lower frequency part is the so-called contour trend data which reveals its
stability, thus, SVR’s parameters for this part could be selected by GA due to its suitable for solving
discrete problems.

Therefore, in this paper, the mentioned two parts divided by EMD are conducted by SVR-PSO and
SVR-GA, respectively; eventually the improved forecasting performances of proposed model (namely
EMD-PSO-GA-SVR model) would be demonstrated. The comprehensive framework could be shown
in the following illustrations: (1) the data set is divided by EMD technique into high frequency part
with more detailed information and low frequency part with more tendency information, respectively;
(2) for the high frequency part, PSO is used to determine the SVR’s parameters, i.e., SVR-PSO is
implemented to forecast to receive higher accurate level; (3) for the low frequency part, due to

2
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stationary characteristics of tendency information, GA is employed to select suitable parameters in a
SVR model, i.e., SVR-GA is implemented to forecast; and, (4) the final forecasting results are obtained
from steps (2) and (3). There are also several advantages of the proposed EMD-PSO-GA-SVR model:
(1) the proposed model is able to smooth and reduce the noise effects due to inheriting them from
from EMD technique; (2) the proposed model is capable to filter data set with detail information and
improve microscopic forecasting accurate level due to applying the PSO with the SVR model; and,
(3) the proposed model is also capable of capturing the macroscopic outline and to provide accurate
forecasting in future tendencies due to inherited from GA. The forecasting processes and superior
results would be demonstrated in the next sections.

To demonstrate the advantages and suitability of the proposed model, 30-min electricity loads
(i.e., 48 data collected daily) from New South Wales are selected to construct model and to compare
the forecasted accurate level with other competitive models, namely, original SVR model, SVR-PSO
model (SVR parameters determined by PSO), SVR-GA (SVR parameters selected by GA), and the
AFCM model (an adaptive fuzzy model based on a self-organizing map). The second example is from
the New York Independent System Operator (NYISO, New York, NY, USA), similarly, 1-h electricity
loads (i.e., only 24 data collected daily) are collected to model and to compare the forecasting accurate
level. The results demonstrate that the proposed EMD-PSO-GA-SVR model could receive a higher
forecasting accuracy level and more comprehensive interpretability. In addition, due to employing the
EMD technique, the proposed model could consider more information during the modeling process;
thus, it is able to provide more generalization in modeling.

The remainder of this paper is organized as follows. Section 2 provide the modeling details of the
proposed EMD-PSO-GA-SVR model. Section 3 provides the description of the data set and relevant
modeling design. Section 4 investigates the forecasting results and compares with other competitive
models, some insightful discussions are also provided. Section 5 concludes the study.

2. The EMD-PSO-GA-SVR Model

2.1. The Empirical Mode Decomposition (EMD) Technique

The principal assumption of the EMD technique is that any data set contains several simple
intrinsic modes of fluctuations. For every linear or non-linear mode, it would have only one extreme
value among continuous zero-crossings. Thereby, each data set is theoretically able to be decomposed
into several intrinsic mode functions (IMFs) [30]. The decomposition steps of a data set (x(t)) are
briefed as follows.

Step 1 Identify. Determine all of the local extremes (including all maxima and minima) of the
data set.

Step 2 Produce Envelope. Connect all of the local maxima and minima by two cubic spline lines as
the upper envelope and lower envelope, respectively. The mean envelope, m1, is set by the
mean of upper envelope and lower envelope.

Step 3 IMF Decomposition. Define the first component, h1, as the difference between the data set
x(t) and m1, and is displayed in Equation (1),

h1 = x(t)− m1 (1)

Notice that h1 does not have to be a standard IMF, thus, it is unnecessary with the conditions of
the IMF. m1 would be approximated to zero after k times evolutions, then, the kth component, h1k,
could be shown as Equation (2),

h1k = h1(k−1) − m1k (2)

3
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where h1k is the kth component after k times evolutions; h1(k−1) is the (k − 1)th component after k − 1
times evolutions. The standard deviation (SD) for the kth component is given in Equation (3),

SD =
L

∑
k=1

∣∣∣h1(k−1)(t)− h1k(t)
∣∣∣2

h2
1(k−1)(t)

∈ (0.2, 0.3) (3)

where L is the total number of the data set.

Step 4 New IMF Component. If h1k reaches the conditions of SD, then, the first IMF component, c1,
could be obtained, i.e., c1 = h1k. A new series, r1, could be decomposed after deleting the first
IMF, as shown in Equation (4),

r1 = x(t)− c1 (4)

Step 5 IMF Composition. Repeat steps 1–4 until no any new IMF component could be decomposed.
The process is demonstrated in Equation (5). The series, rn, is the remainder of the original
data set x(t), as Equation (6).

r1 = x(t)− c1

r2 = r1 − c2

· · · · · ·
rn = rn−1 − cn

(5)

x(t) =
n

∑
i=1

ci + rn (6)

2.2. The Support Vector Regression Model

By introducing the concept of ε-insensitive loss function, support vector machines have
successfully been applied to deal with nonlinear regression problems [31], the so-called support
vector regression (SVR). The principal idea of SVR is mapping the non-linear data set into a higher
dimensional feature space to receive more satisfied forecasting performances. Thus, given a data set,
G = {(xi, ai)}N

i=1, with total N input data, xi, and actual values, ai, the SVR function could be shown as
Equation (7),

f (x) = wT ϕ(x) + b (7)

where ϕ(x) is the so-called feature mapping function, which is capable to conduct nonlinear mapping
to feature space from the input space x. The w and b are coefficients that are estimated by optimizing
the regularized risk function, as shown in Equation (8),

R(C) =
C
N

N

∑
i=1

Lε(di, yi) +
‖w2‖

2
(8)

where

Lε(d, y) =

{
0 i f |d − y| ≤ ε

|d − y| − ε otherwise
(9)

In Equation (8), Lε(d, y) is the so-called ε-insensitive loss function, the loss could be viewed as

zero only if the forecasted value is within the defined ε-tube (refer Equation (9)); the second term, ‖w2‖
2 ,

could be used to measure the flatness of the function. Obviously, parameter C is used to determine
the trade-off between the loss function (empirical risk) and the flatness of the function. Two positive
slack variables, ξ and ξ∗, which measure the distance from actual values to the associate boundary of
ε-tube, are employed to help in solving the problem. Then, Equation (8) could be transformed to the
optimization problem with inequality constraints as Equation (10),
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Minimize R(w, ξ, ξ∗) =
‖w2‖

2
+ C

N

∑
i=1

(ξi + ξ∗i ) (10)

with the constraints,
wϕ(xi) + bi − di ≤ ε + ξ∗i
di − wϕ(xi)− bi ≤ ε + ξi

ξi, ξ∗i ≥ 0

i = 1, 2 . . . , N

After solving Equation (10), the solution of the weight, w, in Equation (7) is calculated as
Equation (11),

w∗ =
N

∑
i=1

(βi − β∗
i )ϕ(x) (11)

Hence, the SVR function has been constructed as Equation (12),

f (x, β, β∗) =
l

∑
i=1

(βi − β∗
i )K(x, xi) + b (12)

K(x,xi) is the so-called kernel function. The value of the kernel is equal to the inner product of
two vectors x and xi in the feature space ϕ(x) and ϕ(xi), i.e., K(x, xi) = ϕ(x)× ϕ(xi). It is difficult to
decide which type of kernel functions is suitable for which specific data pattern. However, only if the
function satisfies Mercer’s condition [31], it can be employed as the kernel function. Due to its easiness

to implement and the non-linear mapping capability, the Gaussian function, K(x, xi) = e−
‖xi−x2‖

2σ2 , is
used in this paper. The selection of three parameters, ε, σ, and C, in a SVR model would influence the
forecasting accurate level. Authors have conducted a series researches to test the suitability of different
evolutionary algorithms hybridizing with a SVR model. Based on authors’ research results, in this
paper, two evolutionary algorithms, PSO and GA, are applied to determine the parameters of SVR
models from high frequency and low frequency, respectively.

2.3. Particle Swarm Optimization (PSO) Algorithm

Due to its simple framework and easy fulfillment, particle swarm optimization [32] has become a
famous optimization algorithm [33]. While PSO modeling, each particle adjusts its searching direction
not only based on its search experiences (local search), but also on its social learning experiences from
neighboring particles (global search) to eventually find out the global best position of the system, i.e.,
successful the exploration-exploitation trade off would guarantee to succeed in position searching.

In the meanwhile, during the PSO modeling process, the degree of inertia also plays the critical
role in terms of the speed of convergence. With a larger inertia, it would facilitate implementation
of the global exploration, the convergent speed would be hence slowed down; on the contrary, with
a smaller inertia, it would lead well to asearch for the current range, the convergence is speedy but
might be suffering from a local optimum. There are several novel approaches to well tune the inertia
weight in literature [34,35].

The procedure of SVR-PSO is briefly demonstrated as following steps. Interested readers could
refer to [25] for more detail.

Step 1 Initialization. Initialize the population of three particles (σ, ε, C), the random positions
and velocities.

Step 2 Compute Initial Objective Values. Compute the objective values by using the three particles.
Set the local initial objective values, f besti, based on their own best position, and set the global
initial objective values, f globalbesti, based on their global best position.
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Step 3 Update Inertia, Velocity, and Position. According to Equations (13)–(15) to update the inertia,
velocity, and position for these three particles. Evaluate the objective values by using these
particles. By the way, the inertia weight is employed the most popular linear decreasing
function [34], as shown in Equation (13).

li = α ∗ li−1 (13)

where α is a constant, its value is less than but closed to 1; i = 1, 2, . . . , N.

Vi = li × Vi−1 + q1 × rand(·)× (pi−1 − Xi−1) + q2 × Rand(·)× (Pi−1 − Xi−1) (14)

where q1 and q2 are positive acceleration constants; rand(·) and Rand(·) are independent
random distributed within range [0, 1]; pi is the best position for each particle itself; Pi is the
global best position; Xi is the position for each particle itself; i = 1, 2, . . . , N.

Xi = Xi−1 + Vi (15)

Step 4 Update Objective Values. For each iteration, by using its current position of the three particles
to compare the current objective value with f besti. If the current objective value is better
(i.e., with smaller forecasting errors), then, update its objective value. In this paper, mean
absolute percentage error (MAPE) and the root mean square error (RMSE), as shown in
Equations (16) and (17), respectively, are used to measure the forecasting errors. In the
meanwhile, a switching between MAPE and RSME is employed once found the error of
MAPE is less than those of RMSE and vice versa, to ensure the smallest objective values that
could be selected.

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ai − fi
ai

∣∣∣∣× 100% (16)

RMSE =

√
∑N

i=1(ai − fi)
2

N
(17)

where N is the total number of data; ai is the actual load value at point i; fi is the forecasted
load value at point i.

Step 5 Determine Best Particles. If the current objective value is also smaller than f globalbesti, then
the best particles could be determined in this iteration.

Step 6 Stopping Criteria. If the stopping criteria (forecasting error) are reached, the final f globalbesti
would be the solution; otherwise, go back to Step 3.

The detail procedure of the SVR-PSO is illustrated in Figure 1.

2.4. Genetic Algorithm (GA)

Genetic algorithm is the most famous evolutionary algorithm. Its primary concept is its elitist
selection principle to keep best gene to be well survival from generation to generation during the
evolutionary process in the natural systems. GA has several important operations, including selection,
crossover, and mutation, to generate new individuals. It is able to effectively avoid trapping into local
optima if more satisfied objective values could be successfully found. GA has been applied in many
optimization problems.

The procedure of SVR-GA is briefly demonstrated as following steps and illustrated in Figure 2.
Interested readers could refer to [27] for more detail.

Step 1 Initialization. Randomly generate the initial population of chromosomes.
Step 2 Fitness Evaluation. The fitness values of each chromosome would be evaluated by the fitness

function. Similarly, in SVR-GA modeling process, MAPE and RMSE are used to measure the
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fitness (i.e., forecasting errors), and a switching between MAPE and RSME is also employed
to ensure the smallest objective values could be selected.

Step 3 Selection. Elitism policy is employed while selecting good chromosomes, which receive
satisfied fitness values for yielding new offspring in the next generation. Practically,
the useful roulette wheel selection technique is applied to choose chromosomes for yielding
new offspring.

Step 4 Mutation and Crossover. For crossover operation, this paper uses the single point technique,
i.e., any paired chromosomes are exchanged at the same breaking points. For mutation
operation, it is implemented randomly. The both techniques in GA, i.e., (a) crossover
followed by mutation, and (b) mutation followed by crossover are tested in both of the
series. In this paper, the rates of crossover and mutation operations are set as 0.8 and 0.05,
as Hong et al. [26] suggested, respectively.

Step 5 New Generation. Generate new population for next new generation.
Step 6 Stopping Criterion. If the number of generation meets the stopping criterion, the current

chromosome should be the best solution; otherwise, get back to Step 2 and repeat
the procedure.

 

Figure 1. Support vector regression (SVR)- particle swarm optimization (PSO) algorithm flowchart.

7



Energies 2017, 10, 1713

 

Figure 2. SVR- genetic algorithm (GA) algorithm flowchart.

2.5. The Complete Processes of the Proposed Model

The complete processes of the proposed EMD-PSO-GA-SVR model is indicated as follows,
the associate total flowchart is demonstrated in Figure 3.

C C

Figure 3. The total flowchart of the proposed empirical mode decomposition (EMD)-PSO-GA-SVR model.
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Step 1 Data Decomposed. Apply the EMD technique to decompose the load data (training data)
into intrinsic mode functions (IMFs) with higher and lower frequency parts, respectively.
The details could be found in Section 2.1.

Step 2 Higher Frequency IMFs Modeling (by SVR-PSO). Higher frequency IMFs are modeled by
an SVR model, and, as abovementioned that its parameters are determined by the PSO
algorithm. Most suitable parameter combinations will be finalized with only the smallest
forecasting errors (i.e., smallest MAPE value). The modeling details could be found in the
relevant Sections 2.2 and 2.3, and Figure 1.

Step 3 Lower Frequency IMFs Modeling (by SVR-GA). On the contrary, lower frequency IMFs
are modeled by an SVR model, and, its parameters are determined by the GA algorithm.
Similarly, only with smallest MAPE value, the associate parameters in the SVR model will
be determined to be the most suitable combination. The relevant details could be referred
Section 2.4 and Figure 2.

Step 4 EMD-PSO-GA-SVR Modeling. While the forecasting values for higher and lower frequencies
IMFs have been calculated, respectively, then, the final forecasting results will also
be performed.

3. Experimental Examples

Two experimental examples are used to demonstrate the advantages of the proposed model
in terms of applicability, superiority, and generality. The data of the first example (Example 1, in
Section 3.1) is obtained from Australian New South Wales (NSW) electricity market; the data of
the second example (Example 2, in Section 3.2) is from American New York Independent System
Operator (NYISO). Furthermore, to demonstrate the overtraining effect for different data sizes, in this
paper, two kinds of data sizes, i.e., small data size and large data size, are employed to modeling and
analysis, respectively.

To ensure the feasibility of employing EMD to decompose the target data sets (both Examples 1
and 2) into higher and lower frequent parts, it is necessary to verify whether they are nonlinear
and non-stationary. This paper applies the recurrence plot (RP) theory [36,37] to analyze these two
characteristics. As it is known that RP reveals all of the times when the phase space trajectory of the
dynamical system visits roughly the same area in the phase space, therefore, it is suitable to analyze
the nonlinear and non-stationary characteristics of a data set. The RP analysis for Examples 1 and 2,
as shown in Figure 4a,b, indicate: (1) it is clearly to see the parallel diagonal lines in both figures, i.e.,
both data sets reveal periodicity and deterministic, and this is the reason that authors could use these
data sets to conduct forecasting; (2) it is also clearly to see the checkerboard structures in both figures,
i.e., both data sets reveal that, after a transient, they go into slow oscillations that are superimposed
on the chaotic motion; and, (3) it obviously demonstrates that vertical and horizontal lines cross
at the cross, both data sets reveal laminar states, i.e., non-stationary characteristics. The relevant
recurrence rate (the lower rate implies the nonlinear characteristic) and laminarity (the smaller value
represents the non-stationary characteristic) for these two data sets also support the abovementioned
RP analysis results. Based on the RP analysis, both the electricity load data set demonstrate macroscopic
periodicity tendency (i.e., lower frequent part) and the microscopic chaotic oscillations tendency (i.e.,
higher frequent part), therefore, it is useful to employ EMD to decompose these two data sets into
higher and lower frequent part, respectively.
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(a) (b)

Figure 4. The recurrence plot for Examples 1 and 2. (a) Example 1 embedding dimensions = 4;
time delays = 13; recurrence rate = 33.3%; laminarity = 51.0% (Small data size from Australian New
South Wales, NSW); (b) Example 2 embedding dimensions = 4; time delays = 4; recurrence rate = 38.1%;
laminarity = 54.7% (Small data size from American New York Independent System Operator, NYISO).

3.1. The Forecasting Results of Example 1

3.1.1. Data Sets for Small and Large Sizes

In Example 1, for small data size, there are totally 336 electricity load data per 30 min for seven
days, i.e., from 2 to 8 May 2007. In which, the former 288 load data are used as the training data set,
the latter 48 load data are as testing data set. The original data set is shown in Figure 5a.
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Figure 5. The 30-min based original data, Data-I, Data-II (Example 1). (a) Small data size
(2–8 May 2007); (b) Large data size (2–24 May 2007).
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On the other hand, for large data size, there are totally 1104 electricity load data from 2 to
24 May 2007, based on 30-min scale. In which, the former 768 load data (i.e., from 2 to 17 May 2007) are
used as the training data set, the remainder 336 load data are used as the testing data set. The original
data set is shown in Figure 5b.

3.1.2. Decomposition Results by EMD

The EMD is employed to decompose the original data set into higher and lower frequency items.
For small data size, it could be divided into eight groups, as demonstrated in Figure 6a–h. In the
meanwhile, the time delay of the data set in RP analysis (which value is 4) is simultaneously considered
to select the higher and lower frequent parts. Consequently, the former four groups with much more
frequency are classified as higher frequency items; the continued four groups with less frequency are
classified as lower frequency items. The latest figure represents the original data; by the way, Figure 6h
represents the trend term (i.e., residuals). As also shown in Figure 5a,b, the fluctuation characteristics
of higher frequency item (namely Data-I) are almost the same with the original data, on the contrary,
the macrostructure of lower frequency item (namely Data-II) is more stable. Data-I and Data-II will be
further analyzed by SVR-PSO and SVR-GA models, respectively, to receive satisfied regression results.
The details are illustrated in the next sub-section.

 
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 6. The decomposed different items for small data size (Example 1). (a) IMF (intrinsic modulo
function) 1; (b) IMF 2; (c) IMF 3; (d) IMF 4; (e) IMF 5; (f) IMF 6; (g) IMF 7; (h) residuals; (i) the raw data.
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3.1.3. SVR-PSO for Data-I

As shown in Figure 5, Data-I almost presents as periodical stability every 24 h, which is consistent
with people’s production and life. It also reflects the details of continuous changes. In this sub-section,
SVR model is employed to conduct forecasting of Data-I, and as it is known that SVR requires
evolutionary algorithms to appropriately determine its parameters to improve its forecasting accurate
level. When considering that PSO is capable of solving the parameter determination problem from the
data set with mentioned continuous change details, therefore, PSO is applied to be hybridized with
the SVR model to forecast Data-I.

Firstly, the higher frequency items (i.e., Data-I) from small and large data sizes are both used
for SVR-PSO modeling. Then, the best modeled results in training and testing stages are received,
as shown in Figure 7a,b, respectively. As demonstrated in Figure 7, it is obvious to learn about the
forecasting accuracy improvements from the hybridization of PSO.

The parameters settings of the SVR model for small and large data sizes are shown in Table 1.
The determined parameters of the SVR-PSO model are shown in Table 2.

(a) (b) 

Figure 7. Comparison of forecasting results by SVR-PSO model for Data-I (Example 1). (a) One-day
ahead forecasting on 8 May 2007; (b) One-week ahead forecasting from 18 to 24 May 2007.

Table 1. The parameters settings of SVR-PSO model for original data and Data-I (Examples 1 and 2).

Data Types
Number

of Particle
Length of
Particle

Constant
q1

Constant
q2

Maximum of
Iteration

Cmin Cmax σmin σmax

Original data 30 3 2 2 300 0 200 0 200
Small data size 20 3 2 2 50 0 200 0 200
Large data size 5 3 2 2 20 0 200 0 200

Table 2. The SVR-PSO’s parameters for Data-I (Example 1).

Data Size σ C ε Testing MAPE Testing RMSE

Samall data size 0.15 91 0.0025 9.14 101.76
Large data size 0.20 99 0.0012 4.15 102.57

3.1.4. SVR-GA for Data-II

As shown in Figure 6e–h, the lower frequency item has not only less frequency, but also
demonstrates more stability, particularly for the residuals, Figure 6h. In addition, in the long term, there
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would suffer from nonlinear mechanical changes, which are relatively discrete. In this sub-section,
the SVR model is also used to conduct forecasting of Data-II, and also requires appropriate algorithm
to well determine its three parameters. Therefore, it is more suitable to apply GA, while the SVR model
is modeling. As abovementioned, GA is familiar to solve discrete problems, thus, the parameters
settings of the SVR model for small and large data sizes are the same as shown in Table 3.

Table 3. The parameters settings of SVR-GA model for original data and Data-II (Examples 1 and 2).

Data Types
Population

Size
Mutation

Rate
Crossover

Rate
Maximum of
Generation

Cmin Cmax σmin σmax

Original data 100 0.05 0.8 200 0 100 0 1000
Small data size 100 0.05 0.8 200 0 100 0 1000
Large data size 100 0.05 0.8 200 0 100 0 1000

Similarly, the lower frequency items (i.e., Data-II) from small and large data sizes are used for
SVR-GA modeling. Then, the best modeled results in training and testing stages are received, as shown
in Figure 8a,b, respectively. In which, it has demonstrated the superiority from the hybridization of
GA. The determined parameters of the SVR-GA model are shown in Table 4.

(a) (b)

Figure 8. Comparison of forecasting results by SVR-GA model for Data-II (Example 1). (a) One-day
ahead forecasting on 8 May 2007; (b) One-week ahead forecasting from 18 to 24 May 2007.

Table 4. The SVR-GA’s parameters for Data-II (Example 1).

Data Size σ C ε Testing MAPE Testing RMSE

Samall data size 0.15 90 0.0022 8.70 69.79
Large data size 0.20 95 0.0015 3.83 98.79

3.2. The Forecasting Results of Example 2

3.2.1. Data Sets for Small and Large Sizes

In Example 2, small data size, also totaling 336 hourly load data for 14 days (from 1 to 14 January
2015) are collected. In which, the former 288 load data are used as the training data set, the latter 48
load data are as testing data set. The original data set is shown in Figure 9a.
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For large data size, totally 1104 hourly load data for 46 days (from 1 January to 15 February
2015) are collected to model. The former 768 load data are employed as the training data set, and the
remainder 336 load data are used as the testing data set. The original data set is illustrated in Figure 9b.
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Figure 9. The hour based original data, Data-I, Data-II (Example 2). (a) Small data size (1–14 January
2015); (b) Large data size (1 January–15 February 2015).

3.2.2. Decomposition Results by EMD

Similar as in Example 1, EMD is used to decompose the original data set into higher and lower
frequency items. For small data size, it could be divided into nine groups, as shown in Figure 10a–i.
In the meanwhile, the time delay of the data set in RP analysis (which value is 4) is simultaneously
considered to select the higher and lower frequent parts. Consequently, the former five groups with
much more frequency are classified as higher frequency items; the continued four groups with less
frequency are classified as lower frequency items. Figure 10i also represents the trend term (i.e.,
residuals). The fluctuation characteristics of Data-I are also obviously the same as the original data,
as demonstrated in Figure 9a,b. On the contrary, the macrostructure of Data-II is more stable. Data-I
and Data-II will also be further analyzed by SVR-PSO and SVR-GA models, respectively, to receive
satisfied regression results.

 
(a) (b) (c) 

Figure 10. Cont.
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(d) (e) (f) 

 
(g) (h) (i) 

Figure 10. The decomposed different items for the small data size (Example 2). (a) IMF (intrinsic
modulo function) 1; (b) IMF 2; (c) IMF 3; (d) IMF 4; (e) IMF 5; (f) IMF 6; (g) IMF 7; (h) IMF 8; (i) residuals.

3.2.3. SVR-PSO for Data-I

As shown in Figure 9, Data-I also presents as periodical stability every 24 h, which is the same
with the original data. Therefore, it is as similar as in Example 1, PSO is applied to be hybridized with
the SVR model to forecast the Data-I.

Firstly, the higher frequency items (i.e., Data-I) from small and large data sizes are both used
for SVR-PSO modeling. The best modeled results in the training and testing stages are received, as
shown in Figure 11a,b, respectively. In which, it is obvious to observe that the forecasting accuracy
improvements from the hybridization of PSO. The parameters settings of the SVR model for small and
large data sizes are as the same as in Example 1, i.e., as shown in Table 1; the determined parameters
of the SVR-PSO model are illustrated Table 5.

(a) (b)

Figure 11. Comparison of forecasting results by SVR-PSO model for Data-I (Example 2). (a) One-day
ahead forecasting from 13 to 14 January 2015; (b) One-week ahead forecasting from 2 to 15 February 2015.
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Table 5. The SVR-PSO’s parameters for Data-I (Example 2).

Data Size σ C ε Testing MAPE Testing RMSE

Small data size 0.12 80 0.0021 7.21 110.04
Large data size 0.24 89 0.0012 4.70 115.63

3.2.4. SVR-GA for Data-II

As shown in Figure 10f–i, the lower frequency item (i.e., Data-II) has less frequency and stability.
Therefore, it is as the same as in Example 1, GA is also hybridized with the SVR model to forecast the
Data-II. The parameters settings of the SVR model for small and large data sizes are also as the same
as shown in Table 3. The best modeled results in training and testing stages are received, as shown in
Figure 12a,b, respectively. In which, it has demonstrated the superiority from the hybridization of GA.
The determined parameters of the SVR-GA model are shown in Table 6.

(a) (b)

Figure 12. Comparison of forecasting results by SVR-GA model for Data-II (Example 2). (a) One-day
ahead forecasting from 13 to 14 January 2015; (b) One-week ahead forecasting from 2 to 15 February 2015.

Table 6. The SVR-GA’s parameters for Data-II (Example 2).

Data Size σ C ε Testing MAPE Testing RMSE

Samall data size 0.15 90 0.0023 7.02 82.11
Large data size 0.22 98 0.0012 4.41 96.83

4. Forecasting Results and Analyses

This section will completely address the forecasting results of these two employed examples
with two data sizes and associate higher and lower frequency items (Data-I and Data-II), to further
demonstrate the efficiency of the proposed EMD-PSO-GA-SVR model in terms of forecasting accuracy
and interpretability.

4.1. Forecasting Accuracy Evaluation Indexes

To completely reflect the forecasting performances of the proposed model, three representative
forecasting accuracy evaluation indexes are employed to conduct the evaluation. Except the
mean absolute percentage error (MAPE) and the root mean square error (RMSE), as introduced
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in Equations (16) and (17), the other one is the mean absolute error (MAE), which is calculated by
Equation (18),

MAE =
∑N

i=1|ai − fi|
N

(18)

where ai is the actual load value at point i; fi is the forecasted load value at point i; and, N is the total
number of data.

In addition, two famous criteria for model selection among a finite set of models, i.e., Akaike
information criterion (AIC) [38,39] and Bayesian information criterion (BIC) [39,40], are employed
to further compare which model performs (fits) better. The AIC estimates the quality of each of the
collected models for fitting the data, relative to each of the other models. The AIC value of the selected
model is calculated as Equation (19). During the model fitting processes, it is possible to increase the
accuracy by adding parameters, and it eventually results in overfitting problems. The BIC value of the
selected model is calculated as Equation (20).

The model with the lowest AIC and BIC is preferred. They both attempt to resolve the overfitting
problem by introducing a penalty term for the number of parameters in the model.

AIC = N ln(RMSE) + 2N(k + 1) ln(N) (19)

BIC = N ln(RMSE) + (k + 1) ln(N)− N ln(N) (20)

where N is the total number of data; k is the number of parameters in a model.

4.2. Forecasting Performances

In Example 1, the forecasting performances of the proposed EMD-PSO-GA-SVR model for small
data size and large data size are illustrated in Figure 13, in which other competitive models are also
shown, such as the original SVR model, SVR-PSO model, and SVR-GA model. Figure 13 demonstrates
clearly that the proposed model provides better fitness than other competitive models for both small
and large data sizes.
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Figure 13. Forecasting performances comparisons (Example 1). (a) One-day ahead forecasting on
8 May 2007; (b) One-week ahead forecasting from 18 to 24 May 2007.

In Example 2, for both small and large data sizes, the forecasting performances of the proposed
model and other competitive models are shown in Figure 14. Once again, the proposed model
also receives better fitness, particularly within the period peak loads occurs, i.e., the proposed
EMD-PSO-GA-SVR model demonstrates a better generalization capability than other competitive
models. To verify this result clearly, the local enlargement around the period of peak load in
Figure 14a,b are enlarged in Figure 15a,b, respectively. It is shown that the extraction of microscopic
detail can express its periodic characteristics very well, and the macroscopic structure is also in the
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lower frequency range. The discretization characteristic is expressed by GA, especially at the sharp
point; in addition, 24-h periodicity has also been reflected. It is clearly to learn that the forecasting
curve of the proposed model can fit closer to the actual load curve than other competitive models. It is
powerful to capture the changing tendency of the data, including the nonlinear fluctuation tendency.
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Figure 14. Forecasting performance comparisons (Example 2). (a) One-day ahead forecasting from
13 to 14 January 2015; (b) One-week ahead forecasting from 2 to 15 February 2015.
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Figure 15. The local enlargement (peak) comparisons (Example 2). (a) One-day ahead forecasting from
13 to 14 January 2015; (b) One-week ahead forecasting from 2 to15 February 2015.

The forecasting detail results in both Examples 1 and 2 are listed in Tables 7 and 8, respectively.
When comparing the proposed EMD-PSO-GA-SVR model with other competitive models, it could be
found that the proposed model is superior in terms of all of the forecasting performance evaluation
indexes. Therefore, it could be concluded that the proposed model performs with effectiveness and
efficiency more than other competitive models, and eventually, the proposed hybrid model could
receive better forecasting accuracy levels and statistical interpretation. Particularly, as illustrated in
Figure 15, the proposed model demonstrates a higher fitness capability and excellent flexibility during
the period of peak point or inflection point, due to capturing redundant information by GA in the
modeling process, and by significantly increasing the forecasting accurate level.

Some advantages of the proposed model could be concluded based on the forecasting
performances, as abovementioned. The first one should be that the proposed model is superior
to other competitive models based on the comparisons (Figures 14 and 15, Tables 7 and 8). Secondly,
based on Figures 14 and 15 in Example 2, the proposed EMD-PSO-GA-SVR model has been trained
to receive a better generalization ability while dealing with different input patterns. In addition,
based on the forecasting performance comparisons from small and large data sizes in Examples 1
and 2, the proposed model is capable learning about more redundant information and to successfully
model the model with large data size. Eventually, as illustrated in Tables 7 and 8, the proposed model

18



Energies 2017, 10, 1713

performance satisfied forecasting accuracy and well interpretability parameters, i.e., the robustness
and effectiveness are received. Thus, the proposed model is a remarkable approach to easily forecast
electricity load. Particularly, in terms of AIC and BIC criteria, the proposed model also receives smallest
values of AIC and BIC than the other competitive models, it indicates that the proposed model fits
better and avoid overfitting problems.

Table 7. Forecasting performances of competitive models for both small and large data sizes (Example 1).

Models MAPE RMSE MAE AIC BIC

Small Data Size

Original SVR 11.70 145.87 10.92 −79.76 −68.71
SVR-PSO 11.41 145.69 10.67 −79.94 −68.89
SVR-GA 13.52 150.38 11.88 −75.31 −64.26

AFCM [35] 9.95 125.32 9.26 −101.92 −90.87
EMD-PSO-GA-SVR 9.09 123.38 9.19 −104.19 −93.14

Large Data Size

Original SVR 12.88 181.62 12.05 −823.32 −812.27
SVR-PSO 13.50 271.43 13.07 −630.68 −619.63
SVR-GA 14.31 183.57 15.31 −818.20 −807.15

AFCM [35] 11.10 158.75 10.44 −887.85 −876.80
EMD-PSO-GA-SVR 3.92 142.41 9.04 −939.93 −928.88

Table 8. Forecasting performances of competitive models for both small and large data sizes (Example 2).

Models MAPE RMSE MAE AIC BIC

Small Data Size

Original SVR 19.43 220.92 22.33 −19.19 −8.14
SVR-PSO 18.76 200.53 21.19 −33.32 −22.27
SVR-GA 17.98 201.74 22.58 −32.44 −21.39

AFCM [35] 14.31 158.11 17.44 −68.00 −56.95
EMD-PSO-GA-SVR 7.15 137.30 14.44 −88.59 −77.54

Large Data Size

Original SVR 33. 72 321.44 32.05 −549.60 −538.55
SVR-PSO 37.51 300.32 31.39 −582.18 −571.13
SVR-GA 34.20 298.11 26.31 −585.73 −574.68

AFCM [35] 11.29 289.21 20.76 −600.26 −589.21
EMD-PSO-GA-SVR 4.63 150.82 15.20 −912.42 −901.37

Finally, to ensure the significance of forecasting accuracy improvements among the proposed
model and other competitive models, a statistical test, namely Wilcoxon signed-rank test, is
implemented at the 0.05 significant level under one-tail-test. The test results are illustrated in Table 9.
Obviously, the proposed model outperforms the other competitive models significantly.

Table 9. Wilcoxon signed-rank test.

Examples Compared Models Wilcoxon Signed-Rank Test α = 0.05; W = 6

Example 1

EMD-PSO-GA-SVR vs. Original SVR 3 a

EMD-PSO-GA-SVR vs. SVR-PSO 2 a

EMD-PSO-GA-SVR vs. SVR-GA 2 a

EMD-PSO-GA-SVR vs. AFCM 2 a

Example 2

EMD-PSO-GA-SVR vs. Original SVR 2 a

EMD-PSO-GA-SVR vs. SVR-PSO 2 a

EMD-PSO-GA-SVR vs. SVR-GA 2 a

EMD-PSO-GA-SVR vs. AFCM 2 a

a Denotes that the proposed EMD-PSO-GA-SVR model is significantly superior to other competitive models.
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5. Conclusions

This paper proposes a novel SVR-based electricity load forecasting model, by hybridizing EMD to
decompose the time series data set into higher and lower frequency parts, and, by hybridizing PSO and
GA algorithms to determine the three parameters of the SVR models for these two parts, respectively.
Via two experimental examples from Australian and American electricity market open data sets,
the proposed EMD-PSO-GA-SVR model receives significant forecasting performances rather than
other competitive forecasting models in published papers, such as original SVR, SVR-PSO, SVR-GA,
and AFCM models.

The most significant contribution of this paper is to overcome the practical drawbacks of an
SVR model: the SVR model could only provide poor forecasting for other data patterns, if it is over
trained to some data pattern with overwhelming size. Authors firstly apply EMD to decompose
the data set into two sub-sets with different data patterns, the higher frequency part and the
lower frequency part, to take into account both the accuracy and interpretability of the forecast
results. Secondly, authors employ two suitable evolutionary algorithms to reduce the performance
volatility of an SVR model with different parameters. PSO and GA are implemented to determine
the parameter combination during the SVR modeling process. The results indicate that the proposed
EMD-PSO-GA-SVR model demonstrates a better generalization capability than the other competitive
models in terms of forecasting capability. It is shown that the extraction of microscopic detail can
express its periodic characteristics well, and the macroscopic structure is also in the lower frequency
range. The discretization characteristic is expressed by GA, especially at the sharp point, i.e., GA can
effectively capture the exact sharp characteristics while the embedded effects of noise and the other
factors intertwined. Eventually receiving more satisfying forecasting performances than the other
competitive models.
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Abstract: Stable and accurate forecasting of icing thickness is of great significance for the
safe operation of the power grid. In order to improve the robustness and accuracy of such
forecasting, this paper proposes an innovative combination forecasting model using a modified
Back Propagation Neural Network-Support Vector Machine-Extreme Learning Machine with Kernel
(BPNN-SVM-KELM) based on the variance-covariance (VC) weight determination method. Firstly,
the initial weights and thresholds of BPNN are optimized by mind evolutionary computation (MEC)
to prevent the BPNN from falling into local optima and speed up its convergence. Secondly, a bat
algorithm (BA) is utilized to optimize the key parameters of SVM. Thirdly, the kernel function is
introduced into an extreme learning machine (ELM) to improve the regression prediction accuracy of
the model. Lastly, after adopting the above three modified models to predict, the variance-covariance
weight determination method is applied to combine the forecasting results. Through performance
verification of the model by real-world examples, the results show that the forecasting accuracy of
the three individual modified models proposed in this paper has been improved, but the stability is
poor, whereas the combination forecasting method proposed in this paper is not only accurate, but
also stable. As a result, it can provide technical reference for the safety management of power grid.

Keywords: icing forecasting; back propagation neural network; mind evolutionary computation;
bat algorithm; support vector machine; extreme learning machine with kernel; variance-covariance

1. Introduction

Transmission line icing has a significant impact on the safe operation of power systems. In severe
cases, it can even cause trips, disconnections, tower collapses, insulator ice flashovers, communication
interruptions and other problems, which bring about great economic losses [1]. For example, a large
cold wave area occurred in southeastern Canada and the northeastern United States in 1998, resulting
in the collapse of more than 1000 power transmission towers, 4.7 million people couldn’t use electricity
properly and the direct economic losses reached $5.4 billion [2]. In 2008, severe line icing accidents
happened in South China, and caused forced-outages of 7541 10 KV lines and the power shortfall
reached 14.82 GW [3]. The construction of a reasonable and scientific transmission line icing prediction
model would be helpful for the power sector to deal with icing accidents in advance so as to effectively
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reduce the potential accident losses. Therefore, the study of icing prediction is of great practical
significance and value.

In recent years, many scholars have been carrying out research on transmission line icing
prediction. Some experts have developed sensor systems for direct measurement of icing events
on transmission lines and they obtained real-time and intuitive icing thickness monitoring
information [4–6]. However, the prediction accuracy of this method is poor, and this method is
more suitable for collection equipment as raw data for it often needs icing model algorithms to predict
the future icing trends. As a result, it is necessary to study model algorithms to predict icing thickness.
Generally, the icing forecasting models can be divided into two categories, which include traditional
models and modern intelligent models. Traditional models are further divided into two methods:
physical models and statistical models. The physical prediction models are based on heat transmission
science and fluid mechanics and other physics theories to analyze the icing thickness, such as Imai
model [7], Goodwin model [8], Lenhard model [9], and hydrodynamic model [10]. However, icing is
caused by many factors with too many uncertainties, which leads to the fact that the final forecasts
provided by physical prediction models cannot live up to expectations. The statistical prediction
models use the notion of mathematical statistics to predict the icing thickness based on icing records
and extreme value theory. They include the time series model [11], extreme value model [12] and so
on. However the application of statistical forecasting models needs to meet a variety of statistical
assumptions, and they cannot consider the factors that influence icing thickness, which greatly limits
the scope of application of the statistical models and improvement of the forecasting accuracy.

Therefore, it is more important to adopt the modern intelligent prediction models to predict
transmission line icing with the development of big data, further research on artificial intelligence and
constantly emerging optimization algorithms. Modern intelligent prediction models can handle
nonlinear and uncertain problems scientifically and efficiently with computer technology and
mathematical tools to improve prediction accuracy and speed. The back propagation neural network
model and the support vector machine model are commonly-used intelligent models in the field of
transmission line icing prediction. Li et al. [13] proposed a model based on BP neural networks for
forecasting the ice thickness and the forecasting results showed that this model had good accuracy
of prediction whether in the same icing process or in a different one. Wang et al. [14] put forward a
prediction model of icing thickness and weight based on a BP neural network. The orthogonal least
squares (OLS) method was used for the number of network hidden layer units and center vector
so that the forecasting error could be controlled in a smaller range. However, the BP algorithm
has a very slow convergence speed and it falls into local minima easily, so some scholars use the
genetic algorithm and the particle swarm optimization to optimize the BP neural network. Zheng
and Liu [15] proposed a forecast model based on genetic algorithm (GA) and BP, and the predication
results proved that the GA-BP model was more effective than BP to forecast transmission line icing.
Wang [16] structured a prediction model which used improved particle swarm optimization algorithm
to optimize a normalized radial basis function (NRBF) neural network, and the training speed of the
network was improved. In addition, some scholars used SVM to avoid the selection of neural network
structure and local optimization problems, [17] and [18] built the icing prediction model based on
a SVM algorithm with better accuracy, but the SVM algorithm is hard to implement for large-scale
training samples, and there are difficulties in solving multiple classification problems, so some scholars
have addressed these defects of SVM using the ant colony (ACO) [19], particle swarm (PSO) [19],
fireworks algorithm (FA) [20] and quantum fireworks algorithm (QFA) [21]. Xu et al. [19] introduced a
weighted support vector machine regression model that was optimized by the particle swarm and ant
colony algorithms, and the proposed method obtained a higher forecasting accuracy. Ma and Niu [20]
combined a weighted least squares support vector machine (W-LSSVM) with a fireworks algorithm
to forecast icing thickness, which improved the prediction accuracy and robustness. Ma et al. [21]
proposed a combination model based on the wavelet support vector machine (w-SVM) and the
quantum fireworks algorithm (QFA) for icing forecasting.
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GA, PSO, ACO and other algorithms are applied to advance the performance of BP neural
networks and SVM, but these algorithms require a large initial population to solve large-scale
optimization problems, and the solving efficiency and the ability to solve local optimization problems
are still relatively general. Both the mind evolutionary computation (MEC) [22] and the bat algorithm
(BA) [23] have high solving efficiency and strong competence in global optimization. Two new
operators are added to MEC on the basis of genetic algorithm: convergence and dissimilation. They are
responsible for local and global optimization, respectively, which greatly enhances the overall search
efficiency and global optimization algorithm ability. The BA algorithm is a meta-heuristic algorithm
proposed by Yang in 2010. Many scholars at home and abroad have studied the proposed algorithm,
indicating that this algorithm takes into account both local and global aspects of solving a problem
compared with other algorithms. In the search process, both of them can be interconverted into each
other so that they can avoid falling into local optimal solutions and achieve better convergence.

As a new feed forward neural network, ELM can overcome the shortcomings of the traditional BP
neural network and SVM. The algorithm not only reduces the risk of falling into a local optimum but
also greatly improves the learning speed and generalization ability of the network. It has been applied
in several prediction fields and obtained relatively accurate prediction results [24–26]. However, its
prediction robustness is relatively poor due to the random initialization of the input weights and hidden
layer bias characteristics, so Huang [27] proposed the kernel extreme learning machine algorithm
(KELM) and thus overcame the weakness of poor stability and improved the algorithm precision.

The different forecasting methods reflect the change tendency of the object and its influencing
factors from different aspects, respectively, and provide different information because of the respective
principles, so any single forecasting method confronts the obstacle that the information is not
comprehensive and the fluctuation of prediction accuracy is larger. Based on this, Bates and
Granger [28] put forward the combination forecasting method for the first time in 1969 and it has
achieved good results in many fields. For example, Liang et al. [29] proposed the optimal combination
forecasting model combined the extreme learning machine and the multiple regression forecasting
model to predict the power demand. The result indicated that this method effectively combined the
advantages of the single forecasting models, thus its global instability was reduced and the prediction
precision was satisfactory. Reference [30] introduced a combination model that included five single
prediction models for probabilistic short-term wind speed forecasting and the proposed combination
model generated a more reliable and accurate forecast. Few scholars have applied combination
prediction methods in the field of the transmission line icing forecasting, so in this paper, we decided
to adopt the combination forecasting method to predict line icing thickness. How to determine the
weighted average coefficients of individual methods is the key problem. Compared to the arithmetic
mean method [31] and induced ordered weighted averaging (IOWA) [32], the biggest advantage of the
variance-covariance combined method [33] is that it can improve the robustness of prediction, which
is more suitable for forecasting icing thickness.

In summary, this paper adopts three models, including the BPNN optimized by the mind
evolutionary algorithm (MEC-BPNN), the SVM optimized by the bat algorithm (BA-SVM) and the
extreme learning machine with kernel based on single-hidden layer feed-forward neural network,
to predict icing thickness using the historical icing thickness data and related meteorological
data. The weighted average coefficients of individual forecasting methods are determined by a
variance-covariance combined method to solve the problem of dynamic weight distribution. Then a
modified BP-SVM-KELM combination forecasting model based on the VC combined method solving
the problem of dynamic weight distribution method is constructed. The reason why we combine
the three modified models is that their individual robustness is still poor, especially the BA-SVM
and KELM. Furthermore, MEC-BPNN and KELM have the defects of underfitting and overfitting,
respectively, and BA-SVM has difficulties dealing with large-scale training samples. Therefore, the
combination model can give full play to the advantages of various prediction models, complement
each other, and offer better robustness, stronger adaptability and higher prediction accuracy.
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The rest of this paper is organized as follows: in Section 2, the MEC-BP, BA-SVM, KELM and VC
combined method are presented in detail. Also, in this section, the integrated prediction framework is
built. In Section 3, several real-world cases are selected to verify the robustness and accuracy of this
model. In Section 4, another case is used to test the prediction performance of the proposed model.
Section 5 concludes this paper.

2. Methodology

2.1. Mind Evolutionary Computation (MEC) to Optimize BPNN

MEC is a new evolutionary algorithm aiming at solving the defects of genetic algorithm and
imitating the evolutionary process of human thinking. It inherits some ideas from the genetic algorithm
and introduces two new operation operators, namely convergence and dissimilation, which are
responsible for local and global optimization. The two operators are independent and coordinated,
so improvement of any one can increase the whole search efficiency of the algorithm. Besides, there is
strong ability of global optimization with a directed learning and memory mechanism. Using MEC to
optimize the initial weights and thresholds of BPNN can make up for the defects that BPNN often
falls into local optima and converges slowly. At present, MEC-BPNN is still rare in the field of the
transmission line icing prediction though it has been widely used in other fields. The steps of using
MEC to optimize the initial weights and thresholds of BPNN for forecasting are as follows:

(1) Select the training set and test set. The training set is not only used for BPNN but also serves for
the initialization of MEC. The test dataset is used for examining the model prediction accuracy. In
order to make MEC-BPNN have good generalization performance, the training samples should
be enough and representative.

(2) MEC initialization. Set the population size of MEC, the number of superior races, the number of
temporary population, the size of the sub-population, the number of iterations and the parameters
of the BPNN interface.

(3) Population generation. The initial population, superior sub-population and temporary sub-
population are generated here serving for the convergent operation and dissimilation operation.

(4) Convergence operation. The process of individuals’ competition for winners within a sub-
population is called convergence. The end of the convergence process is the absence of winners
within the population. That's a process of iteration.

(5) Dissimilation operation. In the course of global competition among the sub-populations, if the
score of a temporary sub-population is higher than that of a mature dominant population, the
latter will be replaced and dissolved, or the former will be eliminated and disbanded. The new
sub-population will be supplied with constant iteration.

(6) Get the best individual. The MEC stops optimizing when the terminate condition of the iteration
is reached. Then the optimal individual is parsed according to the encoding rules so that the
weights and thresholds of the corresponding BPNN are obtained.

(7) BPNN training. Set the initial input layer, hidden layer and output layer neuron number in initial
settings of BPNN, and use the training set samples to train BP neural network with the optimized
initial weights and thresholds.

(8) Simulation prediction. Carry out the transmission lines icing forecasting if the simulation testing
of the training result meets the expected goal, and to analyze the results.

2.2. Bat Algorithm (BA) to Optimize SVM

SVM is a machine learning algorithm based on statistical learning theory that can avoid the lack of
learning ability of BPNN. SVM maps linear non-separable low dimensional space data into a linearly
separable high-dimensional feature space by introducing a nonlinear inner product kernel function
and the classification or regression fitting is carried out in this space. The regression fitting of SVM
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is called support vector regression (SVR). In this paper, ε-SVR is used to study the nonlinear icing
thickness prediction. The nonlinear SVR needs to map the raw data into high-dimensional feature
space by kernel function, and then apply linear regression in high-dimensional feature space. The
specific algorithm flow of ε-SVR refers to the reference [34].

The selections of the penalty parameter c, kernel function parameter g and ε loss function
parameter p are crucial because the prediction performance of SVM is influenced by these key
parameters. Compared with other algorithms, the global optimization ability of BA is stronger,
and it can avoid falling into local optimization. Therefore, this paper adopts BA algorithm to optimize
the three key parameters.

The bat algorithm is a new intelligent optimization algorithm inspired by the echo localization of
micro bats in nature. In nature, most bats use echolocation method to hunt their prey, and they can
emit dozens of sounds at up to 110 dB ultrasonic pulses per second. When the bats come near the prey,
the pulse intensity decreases and frequency increases. Bats usually produce higher frequency sound
waves and wider bands for hunting prey in complex environments. If the bat is simulated as agent
in the search space, the good or bad of the agent’s position is measured by the quality of objective
functions, and the process of bats finding prey is just like the process of searching for the optimal
solution in solution space. Then the behavior of bats using ultrasonic positioning can be described
using the following equations. Suppose the bat population is n, the speed and position of the bat i are
updated according to Equations (2) and (3):

fi = fmin + ( fmax − fmin)α (1)

vt
i = vt−1

i + (lt−1
i − l∗) fi (2)

lt
i = lt−1

i + vt
i (3)

where fi is the frequency of sound waves generated by the i bat; f min and f max are the minimum and
maximum frequency of sound waves respectively; α is a random number within [0, 1]; vt−1

i and vt
i are

the velocity at time t–1 and the time t of the i bat; lt−1
i and lt

i are the position at time t–1 and the time t
of the i bat; l∗ is the position of the bat when the target function is optimal in the current global search.
In the initialization process, each bat should be assigned a random frequency, but the frequency should
be within the set range. In the local search, the position of the bat is updated according to the new
formula if a solution is selected from the optimal set:

lnew = lold + εAt (4)

where ε is a random number within [0, 1]; At is the average loudness of all bats at time t; lold is a
solution that is randomly selected from the set of optimal solutions.

The pulse loudness Ai and frequency Ri emitted by i bat will change continuously. During
searching, for example, Amin = 0 indicates that the bat has discovered the prey at this time and pauses
the ultrasonic wave; Amax = 10 indicates that bats increase the pulse loudness as much as possible
to obtain more information in order to search for prey. Pulse loudness and pulse frequency can be
updated by Equations (5) and (6):

At+1
i = τAt

i (5)

Rt+1
i = R0

i [1 − e−γt] (6)

where the value of the pulse loudness increasing coefficient τ and pulse frequency attenuation
coefficient are selected according to the subjects. The range of τ is in [0, 1]; γ > 0. The optimal
solution is similar to the prey of the bat in BA algorithm, and the variation of pulse loudness and
frequency represents, to some extent, the closeness to the optimal solution.

The fitness function used by the BA algorithm is the root-mean-square error (RMSE) under k-fold
cross validation (K-CV). The RMSE can be obtained by Equation (22). K-CV randomly divides the
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training samples into k disjoint subsets, each of which is roughly equal in size. Using k-1 training
subsets, a regression model is established for a given set of parameters, and the RMSE of the remaining
last subset is used to evaluate the performance of the parameters. Repeat the procedure K times, and
each subset has the opportunity to be tested. The accuracy of cross validation is the average value of
the percentage of data correctly predicted for K times. The expected generalization error is estimated
according to the average value of RMSE obtained after the K iteration, and finally a set of optimal
parameters is selected [35].

2.3. Extreme Learning Machine with Kernel (KELM)

ELM was put forward by Huang et al. in 2006. Based on this theory, the basic extreme learning
machines, online sequential extreme learning machines and KELM algorithms have been derived [36].
KELM is a single layer feedforward neural network algorithm. Compared with ELM, its ability to solve
regression prediction is stronger, and compared with BPNN and SVM, its calculation speed is faster
when the prediction accuracy is better or similar, which greatly improve the generalization ability of
network [37]. The KELM algorithm has been proved to have excellent forecasting performance in
many fields.

First, the neural network construction mechanism of the basic ELM algorithm is briefly described,
and its neural network function is shown as follows:

g(x) = hi(x) · βi (7)

where g(x) is the network output value, hi(x) is the output of the i hidden layer neurons which
corresponds to the input x; βi is the connection weights between the i hidden layer neurons and the
output neurons.

ELM’s precision of regression forecasting is guaranteed by minimizing the output error as follows:

lim
L→∞

‖g(x)− gO(x)‖ = lim
L→∞

‖
L

∑
i=1

βihi(x)−gO(x)‖ = 0 (8)

where L is the number of neurons in the hidden layer; gO(x) is the predictive function of the target value.
At the same time, the ELM algorithm guarantees the generalization ability of neural networks

by minimizing the output weight β. The β usually takes its least square solution, and the calculation
method is shown as follows:

β = H+O = HT(HHT)
−1

O

= HT( 1
C + HHT)

−1
O

(9)

where H is the hidden layer matrix of neural network; H+ is the generalized inverse matrix of H matrix;
O is predictive target vector. According to ridge regression theory, the results will be more stable and
provide better generalization ability by increasing the normal number 1/C.

The KELM algorithm introduces the kernel function for obtaining better regression prediction
accuracy. The kernel matrix is defined by applying Mercer' s condition as follows:{

ΩELM = HHT

Ωi,j = h(xi) · h(xj) = K(xi, xj)
(10)

The random matrix HHT of ELM is replaced by the kernel matrix Ω, then all the input samples
are mapped from the n-dimensional input space to a high dimensional implicit feature space by kernel
function. The mapping value of the kernel matrix Ω is fixed after setting the nuclear parameter. The
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kernel functions include Radical Basis Function (RBF) kernel functions, linear kernel functions and
polynomial kernel functions. It is usually set as RBF kernel, and the formula is as follows:

K(μ, ν) = exp[−(μ − ν2/σ)] (11)

The parameter 1/C is added to the main diagonal of the unit diagonal HHT so that the eigenvalues
is not 0, and then the weight vector β* is obtained. It makes ELM more stable and has better
generalization. The output weight of the ELM network here is as follows:

β∗ = HT(I/C + HHT)
−1

O (12)

where I is diagonal matrix; C is penalty coefficient for weighing the proportion between structural risk
and empirical risk; HHT is generated by mapping input samples from kernel functions.

From the above formulas, the output of the KELM model is described as follows:

f (x) = h(x)HT(I/C + HHT)
−1

O

=

⎡⎢⎣ K(x, x1)
...

K(x, xN)

⎤⎥⎦
T

(I/C + ΩELM)−1O
(13)

In the KELM algorithm based on kernel, the specific form of feature mapping function h(x) of
hidden nodes is not given specially, and the output function value can be obtained only by the concrete
form of kernel function. In addition, since the kernel function uses the inner product directly, it is
unnecessary to set the number of hidden layer nodes when solving the output function value, so the
initial weight and bias of hidden layer needn’t be set.

2.4. VC Combined Method Solved the Problem of Dynamic Weight Distribution

The combination forecasting model can integrate the advantages of each single model and improve
the prediction precision. The merit of VC combined method solved the problem of dynamic weight
distribution is that the optimum combination weight coefficient can be found, so the robustness and
accuracy can be improved.

The variance of each prediction model is calculated by the following formula:

δi =
1
n
·
[
(e1 − e)2 + (e2 − e)2 + · · ·+ (en − e)2

]
i = 1, 2, 3 (14)

where n is the number of training samples; e1, e2, . . . , en are the absolute percentage error for each
training sample; e is the average absolute percentage error of the n training sample.

The weights are derived from the variance according to the following formula:

ω1 = 1/[δ1(1/δ1 + 1/δ2 + 1/δ3)] (15)

ω2 = 1/[δ2(1/δ1 + 1/δ2 + 1/δ3)] (16)

ω3 = 1/[δ3(1/δ1 + 1/δ2 + 1/δ3)] (17)

The weights are multiplied by the corresponding prediction results, and the combined prediction
results are shown as follows:

g = ω1g1 + ω2g2 + ω3g3 (18)

where g is the combined forecasting result; g1, g2 and g3 are the individual prediction results of each
model. The result of the combination is that the corresponding weights are adjusted dynamically with
the different training and test results for better adaptability.

29



Energies 2017, 10, 1196

2.5. Combination Forecasting Model

Firstly, the original relevant data is selected and preprocessed, after which the data is divided
into test samples and training samples. Then, three single modified models are utilized to forecast
respectively, including MEC-BP, BA-SVM and KELM. Finally, the forecasting results are combined by
VC combined method solving the problem of dynamic weight distribution. The proposed combination
forecasting model is shown in Figure 1.
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Figure 1. Combination forecasting model.

3. Case Study and Results Analysis

3.1. Data Selection

There are many factors affecting the transmission line icing thickness. According to [38], the
temperature, relative air humidity, wind speed and wind direction are the major factors. The
temperature must be less than or equal to 0 ◦C. If the relative air humidity is above 85%, it is easier for
icing to occur on transmission lines. When the icing temperature and vapor conditions are present the
wind plays an important role in the icing of the wires. It can deposit large amounts of supercooled
water droplets continuously onto the lines, and then collide with the wire and gradually increase these
deposits to cause icing phenomens. It is observed that icing first grows on the windward side of the
line, and the wire is twisted due to gravity when the windward side reaches a certain icing thickness,
so a new windward surface appears. In this way, the icing gradually increases by constantly twisting,
and eventually circular or elliptical icing is formed, so the wind speed should exceed 1 m/s in the
process. In addition, the wind direction also affects the lines’ icing. The angle of wind direction is
measured by taking the direction of the wire as the benchmark, i.e., the direction of the wire is set to
be horizontal 0◦. When the wind rotates counterclockwise around the wire, if the angle between the
wind and the wire is in the range of [0◦, 180◦), the closer the angle is to 0◦ or 180◦, the lighter the icing
degree is, and the closer the angle is to 90◦, the more serious the degree of icing is, or the closer the
angle is to 180◦ or 360◦, the lighter the icing degree is, and the closer the angle is to 270◦, the more
serious the degree of icing.
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Affected by the abnormal atmospheric circulation and La Niña weather patterns, cold air entered
Hunan in 11 January 2008 making the area cool rapidly. The strength of the frontal inversion formed by
the confluence of cold and warm air was great. What’s more, the terrain in Hunan is lower in the north
and higher in the south, which made the strength of the frontal inversion greater. The stronger the
strength of the frontal inversion, the stronger the strength of the rain and snow, so a continuous glaze
was formed with the continuous supplement of warm wet air, and Hunan power grid suffered a record
disaster accompanied by a large area of rain and snow, freezing rain incidents and large scale icing of
transmission lines and substations. During the freezing disaster, the number of collapsed transmission
towers reached 2242 and the number of deformed transmission towers reached 692, causing serious
damage to the power grid. Therefore, we selected the “Dong-Chao line” of Hunan, which was the
hardest-hit area during the Chinese icing incident in 2008 as a case study to verify the effectiveness of
the proposed model. The example chooses some data including the transmission lines icing thickness,
regional temperature, relative air humidity, wind speed and wind direction from 0:00 12 January 2008
to 24:00 6 February 2008. Here we take 2 h as the data collection frequency, and each indicator collects
312 sets of data where the first 192 are used as the training samples and the latter 120 are test samples
in Case 1.

The original data is shown in Figure 2. All of the data were provided by Key Laboratory of
Disaster Prevention and Mitigation of Power Transmission and Transformation Equipment (Changsha,
Hunan Province, China), where all the data are collected by professional instruments and can reflect
the state changes during the icing process. As we can see from Figure 2, the temperature and wind
speed data present a cyclical downward trend, while the relative air humidity data present a cyclical
upward trend. In addition, there is no exceptional data or missing data. Hence these data can be used
directly as data sources.

Figure 2. Original data chart of icing thickness, temperature, humidity, wind speed, and wind direction.
Note: (a) represents the original data of icing thickness; (b) represents the original data of temperature;
(c) represents the original data of humidity; (d) represents the original data of wind speed; (e) represents
the original data of wind direction.

In addition to the icing thickness, the data of temperature, relative air humidity, wind speed and
wind direction at the forecast point T was selected as input data. However, ice accretion phenomenon
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is a continuous process and the prior T-z’s icing thickness can influence the transmission lines icing
thickness at the forecast point T. When selecting the different prior T-z’s icing thickness as input data,
the forecasting effectiveness is different. Hence this paper selects different prior T-z’s icing thicknesses
as input data. For example, when z equals 3, the input icing thickness data includes the icing thickness
at T-1, T-2, and T-3. After selecting the input data, the proposed model is applied to check the exact
input icing thickness by using the training samples, whose experimental results are shown in Table 1.

From Table 1, it can be found that the proposed model obtains different error values when the
icing thickness values are selected at different time points. However when z equals 4, the RMSE of
proposed model reaches the minimum value, thus the input icing thickness data includes the icing
thickness at T-1, T-2, T-3 and T-4, while the other input data includes the temperature, relative air
humidity, wind speed and wind direction at the forecast point T.

Table 1. RMSE of proposed model when selecting the input icing thickness data at different time point.

z 1 2 3 4 5

RMSE of Proposed Model 0.0321 0.0201 0.0156 0.0115 0.0115

z 6 7 8 9 10

RMSE of Proposed Model 0.0115 0.0115 0.0115 0.0115 0.0115

3.2. Data Pretreatment

The data preprocessing steps are as follows:

(1) Wind direction data clustering processing

The large fluctuation range of wind direction data will reduce the accuracy of prediction results,
and the clustering of wind direction data can make the fluctuation smaller which can improve the
prediction accuracy. Thus, the paper uses clustering to process wind direction data according to the
degree of influence of wind direction on icing thickness; which formula is as follows:

J =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ceil(0.1θ), 0 ≤ θ < 90
ceil(18 − 0.1θ), 90 ≤ θ < 180
ceil(0.1θ − 18), 180 ≤ θ < 270
ceil(36 − 0.1θ), 270 ≤ θ < 360

(19)

where J is the result value of clustering process for wind direction; θ is the angle between the wind and
the wire when the wind rotates counterclockwise around the wire, i.e., the direction of the transmission
line is set to be horizontal 0◦; Ceil is the bracket function. The wind direction processing data for
“Dong-Chao line” is shown in Figure 3.

(2) Standardized processing of all data

Due to the different nature of each evaluation index, and they usually have different dimensions
and orders of magnitude. In order to ensure the accuracy of the prediction results, it is necessary to
standardize the original index data. The data are processed by the following equation:

Z = {zi} =
xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (20)

where xi is actual value and the actual value of wind direction data is the result of clustering; xmin and
xmax are the minimum and maximum values of the sample data.
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Figure 3. The wind direction processing data of "Dong-Chao line".

3.3. Performance Evaluation Index

The evaluation index of the icing prediction result used in this paper are:

(1) Relative error (RE):

RE =
xi − x̂i

xi
× 100% (21)

(2) Root-mean-square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
xi − x̂i

xi
)

2
(22)

(3) Mean Absolute Percentage Error (MAPE):

MAPE =
1
n

n

∑
i=1

|(xi − x̂i)/xi| · 100% (23)

(4) Average absolute error (AAE):

AAE =
1
n
(

n

∑
i=1

|xi − x̂i|)/( 1
n

n

∑
i=1

xi) (24)

where x is the actual value of the icing thickness; x̂ is the forecasting value; n is groups of data.
The smaller the above index value is, the higher the prediction accuracy is.

3.4. Modified BPNN-SVM-KELM for Icing Forecasting

The paper’s experiment and modeling platform is Matlab R2014a, and the operating environment
is an Intel Core i5-6300U CPU with 4G memory and a 500 G hard disk. The topology structure
of BPNN in MEC-BPNN is 9-7-1. The transfer function of the hidden layer uses the expression
f (x) = 2/(1 + e−2x) − 1 which is a tansig function. The output layer transfer function takes the
form f (x) = x which is a purelin function. The maximum training time is 100, the training target
minimum error is 0.0001, and the training speed is 0.1. In addition, the population size of MEC is 200,
the sub-population is 20, the dominant sub-population’s number is 5, the quantity of the temporary
population is 5, the number of iterations is 10. The parameters of the BA algorithm in the BA-SVM
prediction are set as follows: the dimension of search space is 7; the size of the bat population is
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30; the pulse frequency Ri of bats is 0.5; loudness Ai is 0.25; the acoustic frequency range is [0, 2];
the termination condition of the algorithm is when the calculation reaches the maximum number
of iterations (300). In SVM, the penalty parameter that needs to be optimized is C whose range of
variation is [0.01, 100]; the range of kernel parameter g is [0.01, 100]; the range of the ε loss function
parameter p is set as [0.01, 100]. The SVM optimal penalty parameter c is 1.971, the kernel parameter g
is 0.010 and the ε loss function parameter p is 0.01 by BA optimization. The kernel function of KELM
algorithm uses RBF kernel function whose input and output data processing interval is [−1, 1].

In order to show whether the forecasting results of the three modified models were a local optimal
or global optimal location and whether these models can be generalized to other unseen data, a
K-CV test is conducted here. According to the K-CV method described in Section 2.2, the data set is
substituted into the model for testing and analysis. The 312 sets of data are randomly divided into
12 datasets, each of which has 26 groups of data and do not intersect each other. After 12 operations,
each sub-data set is tested and the RMSE of the sample is obtained, which can be seen in the Table 2.

Table 2. Results of the k-fold cross validation.

Fold Number
RMSE of

MEC-BPNN
RMSE of BA-SVM RMSE of KELM

1 0.0126 0.0132 0.0136
2 0.0131 0.0205 0.0142
3 0.0126 0.0141 0.0135
4 0.0112 0.0126 0.0128
5 0.0118 0.0139 0.0142
6 0.0139 0.0149 0.0151
7 0.0143 0.0152 0.0137
8 0.0125 0.0133 0.0132
9 0.0101 0.0124 0.0152
10 0.0117 0.0128 0.0139
11 0.0109 0.0151 0.0149
12 0.0102 0.0118 0.0122

Average Value 0.0121 0.0142 0.0139
Standard Deviation 0.00129 0.00219 0.00087

From Table 2, it can be known that the average RMSE values of MEC-BPNN, BA-SVM and KELM
are 0.0121, 0.0142 and 0.0139, respectively. The RMSE standard deviations of MEC-BPNN, BA-SVM
and KELM are 0.00129, 0.00219 and 0.00087, respectively. It is indicated that the validation error of the
each modified model proposed in this paper can obtain its global minimum.

After the prediction of the three individual improved models, the VC combined method to solve
the problem of dynamic weight distribution is adopted to combine these models. The result of the
combination is that the corresponding weights are adjusted dynamically according to the different
training results whose adaptability is better. The combination weights of three individual models of
MEC-BPNN, BA-SVM and KELM are 0.42, 0.34 and 0.24, respectively.

The paper uses the mature BP neural network model and SVM model to do a comparative
experiment based on the sample data mentioned in Section 3.1 in order to verify the performance of the
proposed combination forecasting model. The initial weights and thresholds of a single BPNN model
are obtained by their own training, and other parameter settings are consistent with the MEC-BPNN.
Besides, in the single SVM model, the penalty parameter c is 9.063, the kernel function parameter g is
0.256, and the ε loss function parameter p is 3.185.

The forecasting values and original values of BPNN, SVM, MEC-BPNN, BA-SVM, KELM, and
improved BP-SVM-KELM based on VC, part of which are given in Table 3, are shown in Figure 4. The
relative forecasting error of each model is revealed in Figure 5. This paper divides the test set samples
into four groups to show the forecasting effect of each model owing to the large model quantities and
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sample points. Figures 4 and 5 therefore consist of three sub-graphs, respectively. The RMSE, MAPE
and AAE of models are demonstrated in Figure 6.

The deviation between the icing thickness forecasting value and the original value of BPNN
and SVM is large by contrasting the results of the six forecasting methods in Figure 4. In addition,
the curves of forecasting value and original value are suddenly far or suddenly near, indicating that
the forecasting accuracy and robustness of these two methods are poor. Besides, the deviations of
MEC-BPNN, BA-SVM and KELM are smaller than the above two models so that the precision is
improved, but the curves are still like those with poor stability. However, the deviation which is
obtained from improved BP-SVM-KELM based on VC is smaller and it is between the most accurate
and the most inaccurate single improvement model. The value is the closest to the most precise
model which indicates the accuracy of the combined forecasting model is guaranteed. Then the
curves distance between the forecasting value and the actual value of the composite model is basically
distributed near the actual value curve, indicating that the combination forecasting model has the
strongest robustness.

Table 3. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM MEC-BPNN BA-SVM KELM Proposed Model

Forecast
Value

Error %
Forecast

Value
Error %

Forecast
Value

Error %
Forecast

Value
Error %

Forecast
Value

Error %
Forecast

Value
Error %

1 50.01 50.5 0.98 50.38 −0.74 50.17 −0.32 50.18 −0.34 50.11 −0.20 50.16 −0.30
2 50.08 50.45 −0.74 50.38 −0.60 50.2 −0.24 50.2 −0.24 50.25 −0.34 50.21 −0.26
3 50.11 49.61 1.00 50.47 −0.72 50 0.22 50 0.22 50.27 −0.32 50.07 0.09
4 50.35 49.85 0.99 50 0.70% 50.5 −0.30 50.16 0.38 50.11 0.48 50.29 0.12
5 50.89 51.34 −0.88 50.53 0.71 51 −0.22 50.7 0.37 50.69 0.39 50.82 0.13
6 51.01 50.51 0.98 51.46 −0.88 50.87 0.27 51.18 −0.33 51.21 −0.39 51.06 −0.09
7 50.35 49.85 0.99 50 0.70% 50.25 0.20 50.5 −0.30 50.15 0.40 50.31 0.08
8 49.67 50.12 −0.91 50.05 −0.77 49.8 −0.26 49.8 −0.26 49.53 0.28 49.73 −0.13
9 49.53 50 −0.95 49.91 −0.77 49.43 0.20 49.43 0.20 49.64 −0.22 49.48 0.10
10 48.87 48.37 1.02% 49.25 −0.78 49 −0.27 49 −0.27 48.77 0.20 48.94 −0.15

 

Figure 4. The forecasting values of different methods: (a) the forecasting value from 1 to 40 sample
point; (b) the forecasting value from 41 to 80 sample point; (c) the forecasting value from 81 to 120
sample point.
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Figure 5. The relative errors curve of each method: (a) the relative error from 1 to 40 sample point;
(b) the relative error from 41 to 80 sample point; (c) the relative error from 81 to 120 sample point.

Figure 6. Values of root-mean-square error (RMSE), mean absolute percentage error (MAPE) and
average absolute error (AAE).

Figure 5 compares the relative errors of the six forecasting methods. By counting the maximum
and minimum relative errors, it can be found that the maximum relative errors of BPNN, SVM,
MEC-BPNN, BA-SVM, KELM and the combined forecasting model are 5.910%, 1.186%, 1.003%,
0.551%, 0.545% and 0.543%, the minimum values are 0.611%, 0.170%, 0.135%, 0.119% and 0.002%. The
maximum and minimum values in the three improved models are less than the two basic models,
which shows that the prediction accuracy is better than the BPNN model and the SVM model. The
maximum and minimum values in combined forecasting model are less than the three individual
improved models, indicating that its prediction value is the nearest to optimal single improved model.
The fluctuation ranges of the RE curves of the two basic models are the largest showing their stabilities
are the poorest, and the stabilities of the three improved models have improved with a relatively small
range of fluctuation. However, compared with the combination forecasting model, the fluctuation
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range is still large, which shows that the combination forecasting model plays a role in avoiding the
weaknesses and improves the stability of prediction under the premise of ensuring the accuracy.

As we can see from Figure 6, the RMSE value of the combination forecasting model is 0.86%,
and the RMSE values of the BPNN, SVM, MEC-BPNN, BA-SVM and KELM models are 4.44%, 3.68%,
1.04% and 1.32%, respectively. The proposed combination forecasting model has a lower error and
a higher accuracy than the other models which makes the accuracy of single points be higher than
the worst though the VC combined method solved the problem of dynamic weight distribution. The
value is infinitely close to the most accurate single model at this point, so its stability and accuracy
can be fully guaranteed. The prediction results of the three improved models are better than SVM
and BPNN models indicating that their prediction performance has been improved by intelligent
algorithms. The MAPE values of the BPNN, SVM, MEC-BPNN, BA-SVM, KELM and the combination
forecasting models are 2.71%, 1.83%, 0.70%, 0.81%,0.84% and 0.50%. The evaluation index also shows
that the combination forecasting method has the best overall prediction effect, the three improved
models are second, and the two basic models have the worst prediction performance. The AAE value
of the combination forecasting method is the smallest which enough shows the overall prediction
performance of the proposed model is the best.

In conclusion, the prediction accuracy of the three improved models is advanced through the
improvement of the basic model, but the robustness is still poor. The combination prediction model
is not the most accurate at each point, but it is the closest to the most accurate predictions because
the weights tend to the model with the highest accuracy according to the weight distribution. In the
unknown prediction, the combination method can make best use of the advantages and bypass the
disadvantages, so the flexibility, adaptability and accuracy are guaranteed.

4. Further Simulation

This paper now selects another line in Hunan, the “Tianshang line”, as a case to further verify
the performance of the proposed model. The data of “Tianshang line” are from 17 January 2008 to 15
February 2008, and have a total of 360 data groups. The first 240 are training samples and the latter 120
are test samples. All data of icing thickness, temperature, humidity, wind speed and wind direction
clustering are shown in Figure 7. Like Case 1, all of the data were provided by the Key Laboratory of
Disaster Prevention and Mitigation of Power Transmission and Transformation Equipment (Changsha,
China), where all the data are collected by professional instruments and can reflect the state changes
in the icing process. As we can see from Figure 7, the temperature data first decreases periodically,
then rises periodically. The data of relative air humidity and wind speed present a cyclical upward
trend. What’s more, there is no exception data or missing data. Hence these data can be used directly
as data sources.

BPNN, SVM, MEC-BPNN, BA-SVM, KELM and thw improved BP-SVM-KELM combination
model based on VC are utilized to compare and analyze in this section. The parameter setting of BPNN,
MEC-BPNN, and KELM are consistent with the previous case. In the single SVM model, the penalty
parameter c is 10.307, the kernel function parameter g is 0.328, and the ε loss function parameter p is
2.261. For the same case, the SVM optimal penalty parameter c is 2.083, the kernel parameter g is 0.012
and the ε loss function parameter p is 0.011 by BA optimization. The combination weights of the three
individual models of MEC-BPNN, BA-SVM and KELM are 0.40, 0.25 and 0.35, respectively, through
the VC combined method that solved the problem of dynamic weight distribution.

The results of the k-fold cross validation for the three modified models proposed in this paper
are described in Table 4. A part of the forecasting values and relative errors of each model is listed
in Table 5. The forecasting results of each model are described in Figure 8, and the relative errors are
shown in Figure 9. The RMSE, MAPE and AAE are shown in Figure 10.
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Figure 7. Original data of icing thickness, temperature, humidity, wind speed, and the processing data
of wind direction. Note: (a) represents the original data of icing thickness; (b) represents the original
data of temperature; (c) represents the original data of humidity; (d) represents the original data of
wind speed; (e) represents the processing data of wind direction.

Table 4. Results of the k-fold cross validation.

Fold Number RMSE of MEC-BPNN RMSE of BA-SVM RMSE of KELM

1 0.0178 0.0217 0.0182
2 0.0156 0.0233 0.0181
3 0.0182 0.0202 0.0192
4 0.0166 0.0193 0.0169
5 0.0167 0.0205 0.0175
6 0.0198 0.0202 0.0196
7 0.0202 0.0192 0.0185
8 0.0186 0.0178 0.0179
9 0.0191 0.0191 0.0192

10 0.0182 0.0203 0.0197
11 0.0175 0.0195 0.0186
12 0.0190 0.0212 0.0192

Average Value 0.0181 0.0202 0.0186
Standard Deviation 0.00130 0.00136 0.00083

Table 5. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM MEC-BPNN BA-SVM KELM Proposed Model

Forecast
Value

Error %
Forecast

Value
Error %

Forecast
Value

Error %
Forecast

Value
Error %

Forecast
Value

Error %
Forecast

Value
Error %

1 26.38 26.729 −1.32 26.02 1.36 26.54 −0.61 26.37 0.04 26.51 −0.49 26.49 −0.40
2 26.97 27.426 −1.69 26.62 1.30 26.86 0.41 26.86 0.41 27.16 −0.70 26.96 0.02
3 27.32 27.801 −1.76 26.969 1.28 27.21 0.40 27.432 −0.41 27.43 −0.40 27.34 −0.09
4 27.68 28.136 −1.65 27.37 1.12 27.47 0.76 27.8 −0.43 27.87 −0.69 27.69 −0.05
5 28.01 27.55 1.64 28.37 −1.29 27.9 0.39 28.14 −0.46 28.09 −0.29 28.03 −0.06
6 28.32 27.86 1.62 28.68 −1.27 28.05 0.95 28.14 0.64 28.18 0.49 28.12 0.71
7 27.87 27.33 1.94 28.176 −1.10 27.8 0.25 27.69 0.65 27.71 0.57 27.74 0.46
8 25.51 25.12 1.53 25.84 −1.29 25.68 −0.67 25.38 0.51 25.36 0.59 25.49 0.07
9 23.65 23.22 1.82 24.01 −1.52 23.82 −0.72 23.53 0.51 23.54 0.47 23.65 0.01
10 22.35 21.92 1.92 22.74 −1.74 22.57 −0.98 22.17 0.81 22.51 −0.72 22.45 −0.43
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Figure 8. The forecasting values of different methods: (a) the forecasting value from 1 to 40 sample
point; (b) the forecasting value from 41 to 80 sample point; (c) the forecasting value from 81 to 120
sample point.

 

Figure 9. The relative errors curve of each method: (a) the relative error from 1 to 40 sample point;
(b) the relative error from 41 to 80 sample point; (c) the relative error from 81 to 120 sample point.
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Figure 10. Values of root-mean-square error (RMSE), mean absolute percentage error (MAPE) and
average absolute error (AAE).

As is shown in Table 4, the average RMSE values of MEC-BPNN, BA-SVM and KELM are 0.0181,
0.0202 and 0.0186, respectively. In addition, the RMSE standard deviations of MEC-BPNN, BA-SVM
and KELM are 0.00130, 0.00136 and 0.00083, respectively. These data illustrate the fact again that the
generalization performance of the three modified models has been improved.

As we see from Figure 8 and Table 5, compared with the BPNN and SVM models, the forecasting
values of the three improved models are closer to the original values, which shows that the prediction
accuracy of the modified model is better. The forecasting value of combination model is between
the forecasting values of the three modified models. Although the proposed model is not the most
accurate, the change range of the distance between the prediction and the actual value curves is the
smallest. Besides, the result of the combination forecast model is closer to the most accurate single
model predictive value which further shows that the combination forecasting model greatly improves
the stability of prediction under the premise of ensuring accurate prediction.

The relative errors of the BPNN model and the SVM model are at a high level and the fluctuation
range is large by observing Figure 9, where the relative forecasting error of the six models are displayed,
indicating that the two models’ accuracy and robustness are poor. As we can see from Figure 9 and
Table 5, the relative errors of MEC-BPNN, BA-SVM and KELM are lower than those of the two basic
models with greater volatility, and the value at some points is still large, which shows that its accuracy
has been improved while the stability is still not guaranteed. It can be found that the relative errors of
the three modified models constantly change their ranking at various points, which can be classified
into three cases. For instance, in the first case, the relative errors of MEC-BPNN, BA-SVM and KELM
are 1.13%, 1.64% and −1.01%, respectively, at the 60th sample point, where the forecasting accuracy of
KELM is the highest. In the second case, the relative errors of MEC-BPNN, BA-SVM and KELM are
1.35%, −3.04% and 2.14%, respectively, at the 80th sample point, where the forecasting accuracy of
MEC-BPNN is the highest. In the third case, the relative errors of MEC-BPNN, BA-SVM and KELM are
−5.81%, 3.10% and 6.20%, respectively, at the 120th sample point, where the forecasting accuracy of
BA-SVM is the highest. However, the relative error curve of the proposed combination model is among
the three curves of MEC-BPNN, BA-SVM and KELM and it is close to the most accurate prediction in
almost every sample point. In addition, its fluctuation range is also narrower. This indicates that the
combination model can obtain both accurate and stable forecasting results.

As is shown in Figure 10, the RMSE, MAPE and AAE of the proposed combination forecasting
model are the minimum at 1.20%, 0.63% and 0.34%. This indicates that its whole predictive performance
is optimal. By observing these values of the three improved model, it can be found that the whole
prediction accuracy of MEC-BPNN is better than KELM’s, and KELM’s is superior to BA-SVM’s. When
adopting the VC combined method to solve the problem of dynamic weight distribution to assign
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weights, MEC-BPNN’s weight is the highest, KELM’s is the second and BA-SVM’s is the minimum. It
shows that weight assignation of the proposed combination forecasting method leans toward the most
precise model, which enhances the robustness of prediction and also guarantees the accuracy.

By comparing the case with the previous one, it is clear that the weights of the three individual
improvement models differ from those of the previous case. The prediction accuracy of BA-SVM
is better than that of KELM and its weight is higher than KELM’s in the Case 1 according to the
calculation results of performance evaluation index. However, the Case 2 is just the opposite. The
difference indicates that the VC combined method solved the problem of dynamic weight distribution
can adjust the weights according to the prediction accuracy of each individual model. It is so flexible
that the overall accuracy of the prediction is improved.

In summary, the paper introduces the MEC-BP model, the BA-SVM model and the KELM model
to improve the prediction performance of the individual models. The VC combined method solved
the problem of dynamic weight distribution combines these models’ advantages, and the weights are
flexibly assigned, so the overall instability of the model is reduced and satisfactory prediction results
are obtained.

5. Conclusions

In order to obtain better accuracy and stability of icing forecasting, an innovative
combination forecasting model using a modified Back Propagation Neural Network-Support
Vector Machine-Extreme Learning Machine with Kernel (BPNN-SVM-KELM) based on the
variance-covariance (VC) weight determination method is proposed in this paper. First of all, BPNN
is optimized by a mind evolutionary algorithm (MEC) to solve the problem that BPNN often falls
into local optima and converges slowly. Second, a bat algorithm (BA) is used to optimize SVM, and
the problem of choosing SVM key parameters is solved. Third, the kernel function is introduced into
ELM to improve the regression forecasting accuracy of the model. Finally, by the dynamic allocation
method of VC weights, three improved models of MEC-BPNN, BA-SVM and KELM are combined to
obtain the combination forecasting model. In the simulation process, this paper takes into account
the strong fluctuation of wind direction data, which will have a negative impact on the accuracy
of forecasting. Therefore, according to the influence degree of wind direction on icing thickness, a
clustering processing is carried out. Through the simulation of two examples, it is clear that three
individual modified models utilize various optimization algorithms to take advantage of the core
advantages of the forecasting model, avoiding the defects of the model itself and optimizing the
performance of the model. Furthermore, the VC weighted combination method is used to dynamically
assign weights, and the forecasting results tend to the best single prediction model. It is proved that the
combination method complements the shortcomings of each model and has a strong comprehensive
response ability. In summary, the research content of this paper is expected to provide a useful reference
for the power sector to deal with icing accidents in advance.
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Abstract: With the increase in energy demand, extreme climates have gained increasing attention.
Ice disasters on transmission lines can cause gap discharge and icing flashover electrical failures,
which can lead to mechanical failure of the tower, conductor, and insulators, causing significant
harm to people’s daily life and work. To address this challenge, an intelligent combinational model
is proposed based on improved empirical mode decomposition and support vector machine for
short-term forecasting of ice cover thickness. Firstly, in light of the characteristics of ice cover
thickness data, fast independent component analysis (FICA) is implemented to smooth the abnormal
situation on the curve trend of the original data for prediction. Secondly, ensemble empirical mode
decomposition (EEMD) decomposes data after denoising it into different components from high
frequency to low frequency, and support vector machine (SVM) is introduced to predict the sequence
of different components. Then, some modifications are performed on the standard SVM algorithm
to accelerate the convergence speed. Combined with the advantages of genetic algorithm and
tabu search, the combination algorithm is introduced to optimize the parameters of support vector
machine. To improve the prediction accuracy, the kernel function of the support vector machine is
adaptively adopted according to the complexity of different sequences. Finally, prediction results for
each component series are added to obtain the overall ice cover thickness. A 220 kV DC transmission
line in the Hunan Region is taken as the case study to verify the practicability and effectiveness of
the proposed method. Meanwhile, we select SVM optimized by genetic algorithm (GA-SVM) and
traditional SVM algorithm for comparison, and use the error function of mean absolute percentage
error (MAPE), root mean square error (RMSE) and mean absolute error (MAE) to compare prediction
accuracy. Finally, we find that these improvements facilitate the forecasting efficiency and improve
the performance of the model. As a result, the proposed model obtains more ideal solutions and has
higher accuracy and stronger generalization than other algorithms.

Keywords: ice cover prediction; adaptive support vector machine (ASVM); genetic tabu search
(GATS); two-stage data processing; ensemble empirical mode decomposition; fast independent
component analysis

1. Introduction

As the terrain and landforms in China are complex and diverse, and the characteristics of micro
topography and micro meteorology are extensive, grid transmission lines in these regions are often
affected by extreme weather conditions. Ice disasters are one of the most serious natural disasters that
affect safe and stable operation of power systems [1]. In recent years, with the increasingly frequent
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occurrence of extreme weather, icing accidents on transmission lines have occurred more frequently
and have attracted the attention of researchers. Transmission lines are important components of power
transmission, of which normal and safe operation is an important guarantee to avoid major accidents in
the power grid. Severe ice cover will lead to a sharp decline of the mechanical and electrical properties
in the transmission line, causing downed transmission line poles, conductor galloping, and broken
line accidents. Those accidents will lead to power outages and pose a grave threat to safe and stable
operation of the power system [2]. Moreover, the distribution of energy resources in China is uneven,
for example, the demand for electricity in the central and eastern regions is vigorous, while the energy
resources are mainly distributed in the west. As a result, our country needs to vigorously promote
construction of the outgoing channel of the power base to enhance the reliability when transmission
lines go through extremely harsh and complex areas of contamination, high altitude, snow, strong acid
rain, and fog [3,4].

According to incomplete statistics, since the 1950s, transmission lines in China have suffered
from thousands of ice disaster accidents, and the impact of the accidents is increasing [5]. In 2008,
the southern part of the country suffered the most severe ice disaster on meteorological record.
Disconnections, downed rods, and tripping incidents of large areas resulted in partial grid
disaggregation and a large area outage, causing a great loss of more than 1000 billion yuan to the State
Grid Corporation [6–8]. The annual maximum thickness of ice cover in some transmission lines shows
an increasing trend, as shown in Figure 1. Especially in 2008, the ice cover thickness was the highest
during the recent ten years. Along with the promotion of the West–East electricity transmission project
and ultra-high voltage transmission project, more and more AC/DC ultra-high voltage transmission
lines cross the icing areas. The ice cover becomes one of the main factors influencing safe operation of
a power system. Thus, prediction and early warning of the ice cover on transmission line are heated
research topics. How to effectively predict the degree of transmission line ice cover thickness has
become an important research subject.

Figure 1. Maximum ice cover thickness data of a transmission line in Hunan Province from 2000
to 2015.

According to different stages of development, physical methods, empirical methods,
and intelligent methods are introduced to predict ice cover thickness [9–12]. Some parameters in
the physical methods are difficult to measure in real circumstances, which limits the feasibility of
these methods. It is very difficult to directly apply physical methods to the forecasting of ice cover on
transmission lines [10–12]. Empirical methods do not take the physical mechanism of the real process
of icing into consideration. The ice cover model can be directly established through the operation
and the experimental summary of the law of the model. The principle of empirical model is simple
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and clear, and the data are accessible. The most common empirical models are the Lenhard model
and Chaine-Skeates model. However, the overall empirical models are rough and cannot be applied
to other transmission lines in the geographical environment with large diversity. The generalization
ability of the model is not strong. The comparison of the common prediction modeles for the ice cover
thickness of transmission lines is shown in Table 1 [13].

Table 1. Comparison of common prediction model for ice cover thickness of transmission line.

Model Characteristic of Model
Applicable

Type

Physics
models

Imai model
The model is correct in principle, but the assumption
is not constant in practice. Therefore, it may cause a
large deviation of the ice cover thickness. Short term

Goodwin model
The model assumes that the conductor icing is a
circular ice cover and the coefficient is 1, which are
not reasonable.

Empirical
models

Growth model This two models have a large dependence on the
regularity of the sample and need large quantity of
sample data. Meanwhile, the impact of outliers on
the prediction results is large.

Short term
& medium

term

Extremum model Medium
term

Intelligent models are popular in the study of ice cover prediction [14–23]. Due to their nonlinear
approximation ability, neural networks are widely used in icing prediction [14–17]. Reference [15]
used the genetic algorithm to optimize the back propagation (BP) neural network to speed up
the convergence rate and reduce the system error, which improves the accuracy of the model.
Reference [16] determined the key factors that affect ice cover and used the radial basis function
(RBF) neural network for prediction to control the occurrence of error within an acceptable range.
However, the neural network algorithm has the disadvantages of local optima, low efficiency, and poor
generalization ability, and it is difficult to guarantee the accuracy of the model [18].

Support vector machine (SVM), as one of the most commonly used machine learning algorithms,
which can overcome the defects of a neural network. SVM has the advantages of repeated training,
fast convergence speed and it can solve real problems with the characteristics of small samples,
non-linearity and local extrema. SVM is suitable for ice cover prediction, which is influenced
by climate [19–23]. To improve the prediction accuracy, the wavelet method [19], particle swarm
optimization algorithm [20], and other algorithms are used to optimize the parameters of SVM.
The prediction results are improved to a certain degree. As the single optimization algorithm has some
defects of slow convergence rate, local optimum and low accuracy, it does not significantly improve
the prediction accuracy. The optimization algorithm combination has been introduced in many fields
for prediction. It can complement single algorithms and use their respective advantages to avoid the
defects of the algorithm itself. Satisfactory results are achieved in many areas [24–26].

The ice cover of transmission lines is affected by many natural factors and has certain randomness.
Therefore, the non-linear and non-stationary characteristics of the collected data of ice thickness
are important factors affecting the accuracy of ice thickness predictions. Therefore, in this paper,
the original data is denoised firstly, and then decomposed into a certain scale to reduce the
non-stationarity of the signal. SVM can make comprehensive consideration of multiple factors on the
coefficient, with good non-linear mapping ability and generalization ability. It can also be repeated
by training and the convergence speed is fast. In the SVM regression prediction model, the kernel
parameter g and the penalty coefficient C have a great influence on the accuracy of the model. In this
paper, we use a hybrid algorithm of a genetic arglothm-tabu search (GATS) to optimize the parameters
g and C, finding optimal parameters to improve the prediction accuracy of the model. In view of
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this, this paper presents a hybrid intelligent prediction model. It is applicable to non-linear and
non-stationary data signals. Through data denoising and decomposition, the non-stationarity of the
data can be better reduced. The hybrid algorithm combines single optimization algorithms, which can
make up for the defects of each single algorithm, achieve global search and improve the convergence
speed. The combination algorithm is used to optimize the SVM parameters, which can further improve
the prediction accuracy. Therefore, the hybrid model proposed in this paper can not only solve the
problem of rough and unstable raw signals, but also achieve better prediction results.

The innovations and contributions of this study are further explained as follows:

(a) As a new topic, the current research on the prediction of thickness of ice cover is not often seen.
As ice cover on transmission lines will bring many dangers to the safety of power supply, accurate
forecasting results are helpful for power grid enterprises to prepare for and control and control
their aftermaths in advance.

(b) The method of fast independent component analysis (FICA) has the characteristics of fast
convergence and good stability. It can weaken all kinds of interference information while
protecting the useful signal. It has a wide application prospect in signal processing field. The FICA
method is proposed for the original data to minimize the impact of the extreme conditions on the
shock of the original sequence.

(c) Ensemble empirical mode decomposition (EEMD) is a noise-aided data analysis method. This
method avoids the difficulty of selecting wavelet bases in wavelet transform. Besides, it inherits
the advantages of the empirical mode decomposition (EMD) method and also effectively solves
the modal aliasing problem existing in the EMD process. As the thickness of ice cover is greatly
affected by climatic factors, the regularity of the original data is not strong, and the sequence has
non-stationary characteristics. To better reflect the internal structure of the original sequence,
the data after denoising are decomposed by ensembling empirical mode decomposition (EEMD)
into a high frequency and low frequency component.

(d) The SVM is based on the principle of structural risk minimization. It can find the best compromise
between the complexity and learning ability of the prediction model according to the information
of the icing thickness sequence sample to obtain the best generalization ability. EEMD decomposes
raw data into high-frequency and low-frequency component sequences with different complexity.
In this paper, the optimal model parameters and kernel functions are selected according to the
characteristics and complexity of each component, the SVM prediction model suitable for itself
are established to improve the accuracy of single prediction model. The support vector machine
model used in this paper is called the adaptive support vector machine model (ASVM).

(e) A new hybrid algorithm, which is named of GATS, is presented by combining the genetic
algorithm and tabu search. The hybrid algorithm effectively combines the parallel search
capability of the genetic algorithm (GA) and the local search capability of the TS algorithm.
The combined method can enhance the global search ability and improve the search speed.

(f) The empirical results validate that the proposed model is suitable for ice cover prediction.
The model can obtain higher accuracy and satisfactory results. The establishment of the model
has important practical significance for the power grid enterprise to effectively confront ice
disasters and ensure the safe and reliable operation of the power network [27].

2. Two-Stage Data Pre-Processing Method

2.1. Data De-Noising Processing by Fast Independent Component Analysis (FICA)

Independent component analysis (ICA) is a signal processing method developed in the 1990s.
Initially, it was developed for the solution of blind signal separation. Recently, ICA has become a
powerful tool for signal processing and data analysis [28,29].

ICA is essentially an optimization algorithm, namely, how to make the separating independent
component close to each source signal. The standard ICA problem can be defined as:
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Assuming that x(t) = [x1(t), x2(t), · · · , xm(t)]
T is an M dimensional observation signal vector.

It is linearly mixed with N unknown and independent source signals s(t) = [s1(t), s2(t), · · · , sn(t)]
T ,

where t is a discrete time and its value is 0, 1, 2 . . .. According to [28], the formula can be expressed as:

x(t) = As(t) (1)

where A is an m × n dimensional matrix, called the mixed matrix.
The basic idea of ICA is descriped as follows and seen in Figure 2.
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Figure 2. Basic principle diagram of independent component analysis (ICA).

In Figure 2, s(t) is the source signals, A is unknown mixed matrix, x(t) is observed signal, and W
is separation matrix. The observed signal x(t) is obtained by mixing the source signal s(t) with the
matrix A. In the case of the unknown mixed matrix A and the source signals s(t), the separation matrix
W is determined according to only the observed data vector x(t), so that the output signal y(t) =

[y1(t), y2(t), · · · , yn(t)]
T is the estimation of the source signal s(t), and W is an n × m dimensional

matrix. According to [29], the formula can be expressed as:

y(t) = Wx(t) = WAs(t) (2)

The core of the ICA algorithm is to update W to bring the estimation closer to the source signal.
FICA is commonly used for the task. The FICA algorithm is also known as the fixed-point algorithm,
uses the Newton iteration method to batch a large number of sampling points of the observed signal.
An independent component is separated from the observation signal, which makes the convergence
more rapid and stead, and the efficiency of the calculation is improved [30].

2.2. Data Decomposition by Ensemble Empirical Mode Decomposition (EEMD)

Empirical mode decomposition (EMD) is an adaptive signal processing method proposed by
Huang in 1998. The method is used for non-linear and non-steady sequences and is directly aimed at
data without determining the decomposition basis. EMD is relatively simple and easy to implement.
The main idea is to use the Hilbert-Huang transform (HHT) conversion method to transform the
non-linear and non-steady time sequence data into a steady sub-time sequence. The method is
characterized by the introduction of the concept of the intrinsic mode functions (IMFs). The fluctuation
or trend of different scales in the signal is decomposed into a series of data sequence with different
feature scales, and each sequence is called an intrinsic mode function. IMF can be linear or non-linear,
and each component has practical physical meaning [30]. However, they all have the same number of
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extreme points and zero crossing points, and there is only one extreme point between two adjacent
zero crossing points. Additionally, any two IMF components are independent of each other.

Each IMF is superimposed, and residual component rn is the source signal. Compared to the
method of frequency domain and time domain analysis, EMD is more suitable for the analysis of
non-linear and non-steady signals [31].

For the traditional wavelet decomposition algorithm, empirical mode decomposition reduces the
influence of human factors on the decomposition results, and has a certain advanced nature. However,
in some cases, the algorithm shows the mode mixing phenomenon [32]. Ensemble empirical mode
decomposition (EEMD) is a noise-assisted data analysis method aimed at eliminating the disadvantage
of the mode mixing of EMD. EEMD includes the white Gaussian noise signals, which are continuous
on different time scales, and can eliminate the noise effect by calculating the average of multiple noise
processing results. The method solves the EMD mode mixed stack effectively. The basic principle of
the EEMD method is as follows:

With the original signal x(t), the EMD algorithm will decompose x(t) into a set of IMF components
ci and residual r, which is [32]:

x(t) =
n

∑
i=1

ci + r (3)

EEMD methods add Gaussian white noise to the original signal, using the uniform distribution
characteristics of the Gaussian white noise frequency to make the signal in different time scales
continuous to eliminate the frequency aliasing phenomenon. Gaussian white noise is subject to the
normal distribution of (0, (αε)2), where ε is the standard deviation of the signal and α is the strength
parameter of the noise. The specific steps are as follows.

Gaussian white noise ni(t) with zero mean and constant standard deviation is added to the
original signal x(t). According to [33], the formula can be expressed as:

xi(t) = x(t) + k × ni(t) (4)

ni(t) is the noise added for the ith time, and xi(t) is the signal after adding the noise the ith time.
k is proportionality coefficient. It is generally believed that the standard deviation of the white noise
added is 0.2 times of the standard deviation of the signal [34].

The following formula is obtained after decomposing noise signals [33]:

xi(t) =
n

∑
j=1

cij + ri (5)

cij is the jth IMF component after EMD decomposition for the ith, and ri is the remainder after
EMD decomposition for the ith.

Repeat the above steps for the Nth EMD decomposition, calculate the IMF component and the
remainder, and obtain the final IMF component cj and the residual. The formula can be expressed
as [34]:

cj =
N

∑
i=1

cij

N
(6)

r =
N

∑
i=1

ri
N

(7)

The final result of the EEMD decomposition is [34]:

x(t) =
n

∑
j=1

cj + r (8)
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2.3. Ensemble Empirical Mode Decomposition Based on Independent Component Analysis

The formation of ice cover is affected by climatic factors, such as wind direction, wind speed,
temperature, humidity, etc. Therefore, collected ice thickness data is non-linear and non-steady, which
will be the main factor affecting forecasting results. The effective denoising and decomposition of
the ice thickness samples can reduce the non-stationarity of the signals. Independent component
analysis belongs to the neural network category. The feature extraction method is not affected
by strong background noise or strong interference signals. Fast independent component analysis
(FICA) is applied to the signal decomposition to weaken the noise to signal interference, thereby the
accuracy of signal decomposition and decomposition efficiency is improved. Ensemble empirical mode
decomposition (EEMD) has a great improvement on the traditional empirical mode decomposition
method [34]. It effectively solves the problem of mode superposition in traditional empirical mode,
which makes the real signal get the maximum reservation. Combining the advantages of the two
methods, the paper presents a new feature extraction method based on fast independent component
analysis and empirical mode decomposition (FICA-EEMD). Firstly, the signals are separated into
statistical independent components by FICA, and then the autocorrelation components of these
statistical independent components are analyzed to eliminate the influence of environmental noise [35].
Next, the statistical independent components after denoised are decomposed by EEMD. The same
frequency eigenmode function of each statistical independent component is cumulative reconstruction.
Finally, extract the intrinsic mode function of ice thickness and constitute a new set of IMFs for the
following predictions.

3. Improved Support Vector Machine Prediction Model

3.1. Adaptive Support Vector Machine (ASVM)

The basic idea of SVM is to use the non-linear mapping algorithm to convert the linear
undecomposed samples in the low-dimensional space into the high-dimensional feature space,
and then it can be divided into linear samples and analyzed by a linear method. SVM regression is
used to build a non-linear mapping. The data will be mapped into a high dimensional feature space
and a linear regression will be used for analysis [22–24]. Traditional modeling process for support
vector machine is seen in [22–24].

An adaptive support vector machine (ASVM) model is proposed in this paper to improve the
accuracy of the support vector machine prediction. The selection of the kernel function has a great
impact on the veracity of prediction results of the model. By analyzing the complexity of the sample
sequence, the kernel functions and parameters of different components are selected to improve the
authenticity of the model. The SVM prediction model is established to obtain the final predictive value
through component superposition.

3.2. Hybrid Optimization Algorithm of Genetic Algorithm and Tube Search

Genetic algorithm (GA) sets all individuals in the group as objects, and completes the adaptive
search of the optimal solution of the problem through biological genetic and evolutionary selection,
crossover and mutation mechanism simulation, complete the problem of the optimal solution of the
adaptive search. It has the ability of parallel search, and can search for the optimal solution to solve the
problem of multi-point departure from a solution space, which can preserve the historical information
to a certain extent. It is applicable for the global optimization problem of large-scale arbitrary objective
functions. However, GA also has shortcomings of poor local search ability and precocious termination
phenomenon. If the algorithm has a small mutation probability, the introduction of new chromosomes
is rare. On the contrary, the traditional mutation operator will lead to greater algorithmic randomness
and make the search process too blind.

Similarly, due to its flexible memory function and contempt rules, the tube search (TS) algorithm
can accept inferior solutions and a strong climbing capabilities in the process of searching. It can jump
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out of a local optimal solution to search the solution space in other fields, which increase the possibility
of obtaining a better global optimal solution. However, the TS algorithm has over-reliance on the initial
solution. The convergence rate of the algorithm will be affected by the poor initial solution, and the
probability of obtaining the global optimal solution can be reduced due to move from one solution to
another during the iterative search.

To improve the computing efficiency, the two algorithms are combined. First, the genetic algorithm
is used for global search, which results in individual distribution in the solution space in most regions.
Then, the TS search is performed for each individual to improve the quality of the group. The hybrid
algorithm effectively combines the parallel search capability of the GA and the local search capability
of the TS algorithm. Through the combination of the optimization algorithm, horizontal and vertical
can combine to achieve global search. The specific calculation process is shown in Section 3.3. The basic
theories and rules of the TS algorithm are found in [36], and the specific GA optimization process is
described in [37,38]. We will not repeat those narrations in this paper.

3.3. Modeling Process of the Adaptive Support Vector Machine Model Optimized by Genetic Tabu Search
(GATS-ASVM)

Combining the characteristics of different intelligent algorithms, this paper optimizes the
parameters of SVM based on the advantages of GA and tabu search (TS). Due to many uncertain
natural climatic factors, the data of ice sheet thickness has great volatility and instability. Before
forecasting, the original signal was decomposed by ensemble empirical mode decomposition, and the
IMF components from high frequency to low frequency are obtained. According to the complexity of
each component, different kernel functions of the support vector machine are selected for prediction.
To improve the accuracy of the empirical mode decomposition, fast independent component analysis
is adopted to perform the data preprocessing. As shown in Figure 2, the concrete forecasting
steps include:

Step 1: Data preprocessing by FICA. Collect the real-time ice sheet sequences and use the FICA
method based on the negative entropy to denoise the original signals. For y(t) = Wx(t), x is the
original signal collected, and W is the solution mixing matrix, which can separate the independent
components y in turn. For the multi-independent component decomposed, the useful signal and the
noise signal are identified according to the prior knowledge of the signal time and frequency domain.
Set the noise signal channels in the independent component to zero and reverse the original signal by
the equation of x̂(t) = W−1y(t), where x̂(t) is the signal after denoising.

Step 2: Data decomposition by EEMD. Use the EEMD to decompose the ice cover sequence x̂(t) and
obtain the IMF components ci(t) and the remainder rn. Add the white noise sequence, which obeys
normal distribution of (0, (αε)2). Extract extreme points of the sequence, fit envelope and calculate
its mean curve m(t). After x(t) minus m(t), get a new signal h(t). Then take the next step until
h(t) satisfies the IMF condition after screening k times. The IMF component h(t) is separated from
the original signal, and the residual component r(t)(r(t) = x(t) − h(t)) is obtained. The residual
component r(t) is used as the new raw data. Repeat the above steps and get the rest of the IMF
component and 1 residual component.

Step 3: Normalization and initialization. Normalize the component data and initialize the
evolutionary algebra l = 0.

Step 4: Genetic tabu operation. Select the individuals based on the selection probability and selection
mechanism. Cross-operation based on cross-probability and crossover operator. Perform the genetic
tabu mutation operation according to the variation probability and tabu mutation operator.

Step 5: Convergence condition. The new individuals obtained by Step 4 are set to a new generation,
the convergence conditions are determined: if the evolution algebra is less than the maximum number
of iterations, then let l = l + 1 and go back to Step 4; otherwise, terminate the network training, select
the optimal individual, and continue to Step 6.
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Step 6: Component prediction. Contract the SVM regression model for the IMF components ci(t)
and rn, select the best parameters and kernel functions, input the forecasting samples and the predicted
values of each sequence are obtained.

Step 7: Final prediction. Superimpose each component forecast value to obtain the prediction value
of the ice thickness.

In Figure 3, the graphics in the middle show the overall flow, the graph on the left shows the flow
of ensemble empirical mode decomposition (EEMD) and the graph on the right shows optimization of
support vector machines based on Genetic Tabu Search.
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Figure 3. Model structure diagram for ice cover thickness forecasting.

4. Case Study and Results Analysis

In this paper, a 220 kV DC transmission line in Hunan Province is used to verify the proposed
model. The transmission line is an important transmission channel in Hunan with a total length of
more than 80 km. Line monitoring data include leakage currents, ambient temperature, humidity, wind
direction, rainfall and wind speed. Due to the influence of many factors, the time series of ice thickness
of transmission line icing is disordered. According to the historical data, the prediction accuracy of the
original data is determined, and other forecasting techniques are introduced for comparison.

4.1. Data Preparation

Among the numerous factors influencing the power grid icing and meteorological factors is the
most important factor, such as temperature, humidity, wind speed, wind direction and other external
climate. A lot of scholars have studied the impact factors preliminary. Reference [39] summarizes
the three necessary conditions for the formation of icing by reviewing the results of research of
predecessors: Air relative humidity must be above 85%; wind speed should be greater than 1 m/s;
the temperature has to reach 0 ◦C and below.
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Analysis of the historical data shows that the most severe seasonal ice cover occurs in December,
January, February, and March. On this basis, the main factors considered here are the temperature,
relative humidity, and wind speed. Consequently, we choose the typical data for analysis. Per hour
icing thickness and meteorological factors from 1 February 2014 to 19 March 2014 for the 220 kV
transmission line are selected for the sample data. The raw data trend chart of ice cover thickness,
temperature, relative humidity and wind speed are shown in Figure 4.

It can be seen from Figure 4 that the regularity of the ice cover thickness and the influencing
factors are weak. There are more noises in the primitive sequence and the trend of the overall data is
not strong. In general, the relative humidity fluctuates at 80%, the wind speed is greater than 0, while
the temperature is lower than 0 degrees. On this basis, with the decrease of temperature, the increase
of wind speed and relative humidity, the ice cover thickness shows an increasing trend. There is a
strong correlation between the ice cover thickness and the selected three factors.

Figure 4. Original data of ice cover thickness, temperature, wind speed and relative humidity from
1 February to 19 March 2014.

The figure above shows that the original sequence of ice thickness is out of order and has some
fluctuations. The reprocessing of the original data is needed. Thus, before training samples, we must
screen the raw data, adjust the missing data, and remove obvious errors. Finally, we retain 1128 sample
points, of which the first 1000 sample points are selected as the training set and the remaining 128
sample points are used as the testing set to prove the validity of the model.

The forecasting model is solved through Matlab on a single core of a 32-bit Lenovo workstation
running Windows 7 with 2 dual-core 2.60 GHz CPUs and 4.0 GB of RAM. We extract rules from the
past information to forecast the ice cover thickness.

Due to the length limitations of the manuscript, the denoising and decomposition process of the
influencing factors in Sections 4.2 and 4.3 are not shown below. We just take ice cover thickness data as
an example to show.

4.2. Data Preprocessing and Decomposition

Because the original data have large noise due to the abnormal points, the fast independent
component analysis method is used to process with the original data to improve the model’s recognition
before the decomposition of the EEMD model. Ice thickness data after denoising are decomposed into
different sub-time series by the EEMD model, and the IMF component of a series of different scales is
generated to achieve the stability sequences of the ice cover.
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The EEMD method needs to determine the appropriate value of the strength parameters of noise α

and decomposition number n. Reference [40] proved that we can gain greater results when n = 100 and
the α values range from 0.1 to 0.3. Thus, this paper selects n = 100 and α = 0.2. EEMD decomposition
of the time series of ice cover thickness is obtained by seven intrinsic mode components (from IMF1
to MF7) and a residual sequence. The results are shown in Figure 5. The EEMD decomposition
process selects the intrinsic volatility components in the original sequence from high frequency to low
frequency. The high-frequency components of high-frequency fluctuations are frequent and chaotic.
In some places, the amplitude changes dramatically. The low-frequency components of the periodic
law are relatively clear and have strong fluctuation.
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Figure 5. Fast Independent Component Analysis and Ensemble Empirical Mode Decomposition
(FICA-EEMD) of the ice thickness.

4.3. Single Prediction

4.3.1. Selection of the Kernel Function

According to the characteristics of each component, the optimal model parameters and kernel
functions are selected to establish the SVM model optimized by the genetic tabu search. The selection
of the kernel function and its parameters are chosen to improve the accuracy of the sub-models by
analyzing the complexity of the sample sequence, as seen in Table 2.

Table 2. Complexity analysis of each component.

Mode PE Values Complexity

IMF1 0.99 High level
IMF2 0.782 High level
IMF3 0.573 High level
IMF4 0.441 Low level
IMF5 0.348 Low level
IMF6 0.254 Low level
IMF7 0.219 Low level

Residual 0.155 Low level

To capture the complexity features, the Permutation Entropy (PE) measurement is proposed [41].
It is a method to measure the complexity of time series. The value of permutation entropy represents
the stochastic degree of time series. Generally speaking, the smaller the value, the more regular the

54



Energies 2017, 10, 1862

time series. Otherwise, the time series is of more randomness. From IMF1 to the residue, the PE
values gradually decrease from 1.0 to 0.1. Assuming that the threshold is 0.5, the PE values of
IMF1 to IMF3 are all above the threshold value, indicating that the three modes have comparatively
high-level complexity. In contrast, IMF4 to IMF7 and the residue have relatively low-level complexity
because their PE values are all below the threshold. The radial basis kernel function (RBF) with better
generalization capability and better processing nonlinear sequence is used for the intrinsic mode
components IMF1, IMF2, and IMF3, which have large fluctuation frequency and high complexity;
The polynomial kernel function is selected for IMF4, IMF5, IMF6 and IMF7, which have medium- and
low-frequency components with the stable change. The residual component is predicted by the linear
kernel function [42].

4.3.2. Single Prediction Results

The combined intelligent optimization algorithm of GA and TS is adopted to optimize the
parameters g and C to determine an optimal parameter to improve the prediction accuracy of the
model. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE) are set for the prediction effect evaluation of each model. The predictive value and the
actual value of the model are, respectively, ŷi and yi.

The corresponding formulas are as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (11)

where n represents the sample number.
Set the corresponding components of temperature, humidity and wind speed as input factors,

corresponding components of ice thickness sequence as output factors, and put them into the SVM
model, we can get the prediction results of each sub-sequence for the testing data as shown in Figure 6.
The results of estimated errors in the predictions are given in Figure 7.
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Figure 6. Prediction results of each component for the testing data.
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Figure 7. Prediction error of each component for the testing data.

The instantaneous frequency of each IMF component has significant importance at any point.
Different IMFs have different meanings, for instance, the low frequency band IMFn represents the
trends of the data, whereas the highest frequency band IMF1 mainly contains noises. Figure 8 shows
that the prediction error of IMF1, which contains the signal of noises, is relatively large. The value
of MAPE is close to 200%, and the value of RMSE and MAE is much higher than those of other
components. Thus, to improve the overall prediction accuracy and to retain the most important
information, we remove the interference term IMF1 to achieve the purpose of the second-time
denoising. The prediction results from IMF2 to IMF7 and the residual can be added to form the
final prediction results.

4.4. Overall Forecasting Results and Error Analysis

Based on the above analysis, the predicted values of the components are superimposed to obtain
the predicted values of the thickness of ice cover. The average percentage error MAPE of the forecast
value and the actual value are taken as the objective function to search the minimum value of the
objective function as the target. The global minimum corresponding to the best fitness function value
is the kernel parameter g and penalty factor C of the SVM model when the iteration terminates.
The optimized parameters are used in the SVM prediction model to predict the ice thickness.

To investigate the performance of the intelligent model, four algorithms (non-preprocessing
adaptive support vector machine optimized by genetic algorithm and tabu search (GATS-ASVM),
support vector machine optimized by genetic algorithm (GA-SVM), and standard support vector
machine (SVM)) are established for comparison to evaluate the effect of the intelligent model in ice
cover thickness prediction. The prediction results of the comparison algorithms are shown in Figure 8.

Figures 8–10 show the results of the four prediction models for forecasting of the thickness of ice
cover and the actual measurement of the ice cover thickness. In general, the overall forecasting trends
of the four models are close to the real value. The GATS-ASVM algorithm is the closest to the real
curve, whereas the standard SVM prediction curves have some deviation.
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Figure 8. Curves of the proposed model forecasting results and the actual ice thickness.
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Figure 9. Curves of proposed model forecasting results without data processing. Note: “non- adaptive
support vector machine optimized by genetic algorithm and tabu search (GATS-ASVM) prediction”
means prediction results of the proposed method without data processing (including fast independent
component analysis (FICA) and and ensemble empirical mode decomposition (EEDM)).
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Figure 10. Curves of the comparison model forecasting results.
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Various error metrics between the real and forecasting data have been defined to assess the
forecasting performance. In our experiments, MAPE and RMSE are introduced to appraise and
compare the different simulation results. Table 3 and Figure 11 show the error distribution of the
different models.

Figure 11. Frequency histogram of the error distribution for the GATS-ASVM algorithm.

Table 3. Error comparison of different algorithms.

Algorithm MAPE (%) RMSE (mm)

GATS-ASVM 5.22 1.81
Non-GATS-SVM 6.12 2.5

GA-SVM 6.47 3.51
SVM 7.78 4.68

From Table 3 and Figures 8–11, the following conclusions can be drawn:

(1) The results in Figures 8 and 9 and Table 3 indicate that the model proposed in this paper with
the processed data has significant advantages compared to the model with untreated data. Both
the error metrics of MAPE and RMSE of the GATS-ASVM with data processing are less than the
GATS-ASVM with untreated data because the EEMD method can separate different periods of
the fluctuation signal from the original data to make the sub sequence data relatively orderly for
higher forecast accuracy. At the same time, FICA denoising is necessary to make the processed
data smoother.

(2) Comparing the GATS-ASVM model and GA-SVM model, the former has more advantages.
The hybrid optimization algorithm makes up for the defects of the single algorithm, and the
adaptive support vector machine takes into account the morphological characteristics of different
sub-sequences and selects appropriate kernel functions, which improve the accuracy and the
generalization ability of the model and result in better predictions.

(3) From Figures 8–11 and Table 3, the forecasting precision of the combined model is higher than
that of the single model. The combined forecasting model uses the complementary advantages of
different algorithms to improve the accuracy of the algorithm. The prediction of the single model
has large limitations.

(4) Figure 11 and Table 3 show less error in the proposed model. This model has a powerful function
in the processing of non-stationary series. Figure 11 shows that the prediction error is controlled
within 20%. Most of the errors are distributed between [0, 10%], and the error values greater than
10% are less common. The algorithm has a stable forecasting effect. The error evaluation results
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and the frequency histogram of the error distribution show that the adaptive support vector
machine optimized by genetic tabu search based on ensemble empirical mode decomposition
has higher prediction accuracy than other algorithms. Compared with the other three methods,
the proposed GATS-ASVM method has obvious advantages and can be used for the prediction of
the thickness of ice on transmission lines.

5. Conclusions

In this paper, an intelligent model is proposed to predict the thickness of ice cover on a
transmission line. The model is useful for the power grid enterprise to effectively control the ice
cover. It has great significance for the safe operation of power networks. Through the analysis and
summary, this paper reaches the following conclusions:

Firstly, the raw data are processed by fast independent component analysis to remove the
abnormal data in the extreme cases and gets great denoising results. The ensemble empirical mode
decomposition decomposes data after denoising into different time frequencies from high frequency to
low frequency so that the complex signal is decomposed into a finite intrinsic mode function.

Secondly, SVM model optimized by the genetic tabu search algorithm is presented to forecast each
sub-sequence function after decomposition. The final icing prediction results are obtained by summing
up the total sub-sequence forecasting results. Empirical analysis proves that the model proposed in this
paper has strong robustness and generalization ability and can effectively overcome the shortcomings
of the premature convergence of the genetic algorithm and the initial value dependence of tabu search.
The SVM model is more stable, and the prediction accuracy is improved after optimization of the
combined method.

To further improve the accuracy of the prediction, for different sub-sequence functions,
the appropriate kernel functions are adaptively selected according to the complexity of the sample
sequence to make the model more reliable. After comprehensive analysis of the situation of the
transmission line icing on the 220 kV DC transmission line in Hunan Province, a numerical example is
given to calculate the cover thickness of the ice cover in this transmission line from 1 February 2014 to
19 March 2014. The simular results of several different combinational algorithms demonstrate that the
GATS-ASVM model is ideal for short-term ice cover thickness forecasting for grid transmission lines
because it achieved better prediction accuracy.
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Abstract: Hybridizing evolutionary algorithms with a support vector regression (SVR) model to
conduct the electric load forecasting has demonstrated the superiorities in forecasting accuracy
improvements. The recently proposed bat algorithm (BA), compared with classical GA and PSO
algorithm, has greater potential in forecasting accuracy improvements. However, the original BA
still suffers from the embedded drawbacks, including trapping in local optima and premature
convergence. Hence, to continue exploring possible improvements of the original BA and to receive
more appropriate parameters of an SVR model, this paper applies quantum computing mechanism
to empower each bat to possess quantum behavior, then, employs the chaotic mapping function to
execute the global chaotic disturbance process, to enlarge bat’s search space and to make the bat jump
out from the local optima when population is over accumulation. This paper presents a novel load
forecasting approach, namely SVRCQBA model, by hybridizing the SVR model with the quantum
computing mechanism, chaotic mapping function, and BA, to receive higher forecasting accuracy.
The numerical results demonstrate that the proposed SVRCQBA model is superior to other alternative
models in terms of forecasting accuracy.

Keywords: support vector regression; chaos theory; quantum behavior; bat algorithm (BA);
load forecasting

1. Introduction

Electric load forecasting plays an essential role in making optimal action plans for decision makers,
such as load unit commitment, energy transfer scheduling, contingency planning load shedding,
energy generation, load dispatch, power system operation security, hydrothermal coordination, and so
on [1]. Indicated by Bunn and Farmer [2], an 1% increase in electric load forecasting error may lead
to a £10 million additional expenditure in operations. Thus, it is important to look for high accurate
forecasting models or to develop novel approaches to receive satisfied load forecasting accuracy,
which can help decision makers optimize adjust the electricity price/supply and load plan based
on the forecasted results, i.e., improve the electricity system operations more efficient, and reduce
system operating risks successfully. Unfortunately, affected by several exogenous factors, such as
policy, economic production, industrial activities, weather conditions, population, holidays, etc. [3],
the electric load data demonstrate seasonality, non-linearity, volatility, randomness and chaos in nature,
which increase the difficulty for electric demand forecasting [4].

In the past few decades, lots of electric load forecasting models have been developed to
improve load forecasting accuracy. These forecasting methods include two classical types: traditional
statistical models and artificial intelligent models. The traditional statistical models are easily to be
applied, which include the ARIMA model [5], Kalman filtering/linear quadratic estimation model [6],
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exponential smoothing model [7], regression model [8], Bayesian estimation model [9], and other time
series technologies [10]. However, most of the traditional statistical models are theoretically to deal
with the linear relationships among electric loads and other factors; these methods are difficult to well
handle the characteristics of non-linearity, volatility, and randomness among historical electric loads
and exogenous factors. Thus, they cannot easily receive satisfied electric load forecasting accuracy.

Due to the strong nonlinear fitting ability, various artificial intelligence (AI) based methods have
been applied to forecast electric load, to improve the accuracy of load forecasting models since 1980s,
such as artificial neural networks (ANNs) [11], expert system-based model [12], and fuzzy inference
methodology [13]. To further improve the forecasting performance, these AI methods have been
hybridized or combined with each other to obtain new novel forecasting approaches or frameworks,
for example, RBF neural network combined with adaptive network-based fuzzy inference system [14],
multi-layer perceptron artificial neural network hybridized with knowledge-based feedback tuning
fuzzy system (MLPANN) [15], the Bayesian neural network with the hybrid Monte Carlo algorithm [16],
fuzzy behavior neural network (WFNN) [17], hybrid artificial bee colony algorithm hybridized with
extreme learning machine [18], the random fuzzy variables with ANNs [19], and so on. However,
these AI-based approaches still suffer from some embedded drawbacks. The defects of these models
include difficulty to set the structural parameters of network [20], time consuming to extract functional
approximation, and easily to trapped in local optimal value. More systematic analysis about AI-based
models used in load forecasting are shown in references [21].

Support vector machine (SVM) is based on the statistical learning theory and kernel computing
techniques, the so-called kernel based neural networks, to effectively deal with small sample size
problem, non-linear problem, and high dimensional pattern identification problems. Moreover,
it could also be applied to well solve other machine learning problems, such as function approximation,
probability density estimation, and so on [22,23]. Rather than by implementing the empirical risk
minimization (ERM) principle to minimize the training error, which causes the overfitting problem
in the ANNs modeling process, SVM employs the structural risk minimization (SRM) principle to
minimize an upper bound on the generalization error, and allow learning any training set without
error. Thus, SVMs could theoretically guarantee to achieve the global optimum than ANNs models.
In addition, while dealing with the nonlinear problem, SVM firstly maps the data into a higher
dimensional space, then, it employs the kernel function to replace the complicate inner product in
the high dimensional space. In the other words, it can easily avoid too complex computations with high
dimensions, i.e., the so-called dimension disaster problem. This enables SVMs to be a feasible choice
for solving a variety of problems in lots of fields which are non-linear in nature. For more detailed
mechanisms introduction of SVMs, it is referred to Vaplink [22,23] and Scholkopf and Sloma [24],
among others. Along with the introduction of Vapnik’s ε-insensitive loss function, SVM also has
been extended to solve nonlinear regression estimation problems, which are so-called support vector
regression (SVR) [25]. Compared with AI methods, SVR model has the embedded characteristics of
small sample learning and generalization ability, which can avoid learning, local minimal point and
dimension disaster problem effectively. SVR have been successfully employed to solve forecasting
problems in many fields, such as solar irradiation forecasting [26], rainfall/flood hydrological
forecasting [27–29], industrial wastewater quality forecasting [30], and so on. Meanwhile, SVR model
had also been successfully applied to forecast electric load [31,32]. To improve the forecasting accuracy,
Hong and his colleagues propose a series of SVR-based forecasting models via hybridizing with
different evolutionary algorithms [33–36]. Based on Hong’s series research results, well determining
parameters of an SVR model is critical to improve the forecasting performance. Henceforth, Hong and
his successors have employed chaotic mapping functions (including logistic function and cat mapping
function) to enrich diversity of population over the whole space, and also have applied cloud theory
to execute the three parameters selection carefully to receive significant improvements in terms of
forecasting accuracy.
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Bat algorithm [37] is a new swarm intelligent optimization proposed by Yang in 2010. It is
originated from the simulation of bat’s prey detection and obstacle avoidance by sonar. This algorithm
is a simulation technology based on iteration. The population is initialized randomly, then the optimal
resolution is searched through iteration, finally the local new resolutions are found around the optimal
resolution by random flying, hence, the local search is strengthened. Compared with other algorithms,
BA has the advantages of parallelism, quick convergence, distribution and less parameter adjusted.
It has been proved that BA is superior to PSO in terms of convergent rate and stability [38]. Nowadays,
BA is widely applied in natural science, such as PFSP dispatch problem [39], K-means clustering
optimization [40], engineering optimization [41], and multi-objective optimization [42], etc. Comparing
with other evolutionary algorithms, such as, PSO and GA, BA has greater improving potential.
However, similar to those optimization algorithms which are based on population iterative searching
mechanism, standard BA also suffers from slow convergent rate in the later searching period, weak
local search ability and premature convergence tendency [41].

On the other hand, quantum computing technique is an important research hotspot in the field
of intelligent computing. The principle of qubit and superposition of states in quantum computing
is used. The units are represented by qubit coding, and the revolution is updated by quantum gate,
which expands its ergodic ability in solution space. Recently, it has received some hot attention that
quantum computing concepts could be theoretically hybridized with those evolutionary algorithms
to improve their searching performances. Huang [43] proposes an SVR-based forecasting model by
hybridizing the quantum computing concepts and the cat mapping function with the PSO algorithm
into an SVR model, namely SVRCQPSO forecasting model, and receives satisfied forecasting accurate
levels. Lee and Lin [44,45] also hybridize the quantum computing concepts and cat mapping function
with tabu search algorithm and genetic algorithm to propose SVRCQTS and SVRCQGA models,
respectively, and also receive higher forecasting accuracy. Li et al. [46] also applied quantum non-gate to
realize quantum mutation to avoid premature convergence. Their experiments on classical complicated
functions also reveal that the improved algorithm could effectively avoid local optimal solutions.
However, due to the population diversity decline along with iterative time increasing, the BA and
QBA still suffers from the very problem that trapping into local optima and premature convergence.

Considering the core drawback of the BA and QBA, i.e., trapping into local optima, causing
unsatisfied forecasting accuracy, this paper would continue to explore the feasibility of hybridizing
quantum computing concepts with BA, to overcome the premature problem of BA, eventually,
to determine more suitable parameter combination of an SVR model. Therefore, this paper employs
quantum computing concepts to empower each bat to expand the search space during the searching
processes of BA; in the meanwhile, also applies the chaotic mapping function to execute global
perturbation operation to help the bats jump from the local optima when the diversity of the population
is poor; then, receive more suitable parameter combination of an SVR model. Finally, a new load
forecasting model, via hybridizing cat mapping function, quantum computing concepts and BA
with an SVR model, namely SVRCQBA model, is proposed. Furthermore, the forecasting results of
SVRCQBA model are used to compare with that of other alternatives proposed by Huang [43] and Lee
and Lin [44,45] to test its superiority in terms of forecasting accuracy. The main innovative contribution
of this paper is continuing to hybridize the SVR model with the quantum computing mechanism,
chaotic mapping theory and evolutionary algorithms, to well explore the load forecasting model with
higher accurate levels.

The remainder of this article is organized as follows. The basic formulation of an SVR model,
the proposed CQBA and the implementation details of the proposed SVRCQBA model are illustrated
in Section 2. Section 3 presents a numerical example and achieves the compared analysis among
the proposed model and published alternative models. Finally, Section 4 concludes this paper.
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2. Methodology of SVRCQBA Model

2.1. Support Vector Regression (SVR) Model

The brief ideas of SVR are demonstrated. A non-linear mapping function, ϕ(x), is defined to
map the input data set, {(xi, yi)}N

i=1, into a high dimensional feature space. Then, there theoretically
exists a linear function, f, to formulate the non-linear relationships between input data and output data.
The linear function, f, is the so-called the SVR function, and is shown as Equation (1),

f (x) = wT ϕ(x) + b (1)

where f (x) represents the forecasting values; ϕ(x) is the feature mapping function, non-linearly
mapping the input space, x, into the feature space; the coefficients, w and b, are determined by
minimizing the empirical risk, as shown in Equation (2),

Remp( f ) =
1
N

N

∑
i=1

Lε(yi, wT ϕ(xi) + b) (2)

where Lε(y, f (x)) is the ε-insensitive loss function as shown in Equation (3),

Lε(y, f (x)) =

{
| f (x)− y| − ε i f | f (x)− y| ≥ ε

0 otherwise
(3)

In addition, Lε(y, f (x)) is used to look for an optimum hyper plane in the feature space,
to maximize the distance separating the training data into two subsets. Thus, the SVR focuses
on looking for the optimum hyper plane, and minimizing the training errors between the training
data and the ε-insensitive loss function.

Therefore, the SVR modeling problem could be illustrated as minimizing the overall errors,
shown in Equation (4),

min
w,b,ξ∗ ,ξ

Rε(w, ξ∗, ξ) =
1
2

wTw + C
N

∑
i=1

(ξ∗i + ξi) (4)

with the constraints,
yi − wT ϕ(xi)− b ≤ ε + ξ∗i ,
−yi − wT ϕ(xi)− b ≤ ε + ξi,

ξ∗i ≥ 0
ξi ≥ 0

i = 1, 2, . . . , N

The first term of Equation (4), representing the concept that maximizes the distance within
two separated training data, is used to penalize large weights, in the meanwhile, to maintain the flatness
of f (x). The second term penalizes training errors via the ε-insensitive loss function. C is a parameter
to trade off of f (x) and y. Training errors under ε are denoted as ξ∗i , whereas training errors above
ε are denoted as ξi.

After solving the quadratic optimization problem with inequality constraints, the parameter
vector w in Equation (1) is computed as Equation (5),

w =
N

∑
i=1

(α∗i − αi)ϕ(xi) (5)
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where α∗i , αi are computed and named as Lagrangian multipliers. Finally, the SVR regression function
is obtained as Equation (6) in the dual space,

f (x) =
N

∑
i=1

(α∗i − αi)K(xi, x) + b (6)

where K
(
xi, xj

)
is the so-called kernel function, and its value could be calculated via the inner product

of two vectors, xi and xj, in the feature space, ϕ(xi) and ϕ
(
xj
)
, respectively, i.e., K

(
xi, xj

)
= ϕ(xi)·ϕ

(
xj
)
.

Any function that satisfies Mercer’s condition [25] could be used as the kernel function.
The most famous kernel functions are the Gaussian RBF with a width of σ, and the polynomial

kernel with an order of d and constants a1 and a2, as shown in Equations (7) and (8), respectively.
If the value of σ is large enough, the RBF kernel function would approximate to the linear kernel
(i.e., polynomial with an order of 1). In addition, the Gaussian RBF kernel function is not only easier to
implement, but also capable to non-linearly map the data into the higher dimensional space, thus, it is
suitable to deal with non-linear problems. Therefore, the Gaussian RBF kernel function (Equation (7))
is used in this paper.

K
(
xi, xj

)
= e−

||xi−xj ||2
2σ2 (7)

K
(
xi, xj

)
=

(
a1xixj + a2

)d (8)

The selection of the three parameters, σ, C, and ε of an SVR model influence the accuracy of
forecasting. For parameter, ε, it represents the parameter of the ε-insensitive loss function. It controls
the width of insensitive area (i.e., low noise of the data set) from data set, thus, it determines the amount
of support vectors. If ε is too large, the amount of support vectors would be few, thus, the forecasting
model would become relative simple and with low accuracy; on the contrary, if ε is very small,
the regression accuracy could be enhanced, however, the forecasting model would become relatively
complicate and with low general adoptions.

For parameter, C, it represents the penalty for those data outside the ε-tube. It determines
the complexity and stability of the forecasting model. If C is very small, the penalty is mall,
i.e., the training errors are large; on the contrary, if C is too large, the learning accuracy would
also be enhanced, however, the forecasting model would be with low general adoptions. In addition,
the values of C would also affect the fatness of the forecasting model, i.e., the arrangements of outliers.
For a suitable C, it could deal with the disturbance of these outliers, and hence, it could guarantee
the stability of the forecasting model. Therefore, the suitable parameter determination of C and ε,
it could receive more accurate and more stable forecasting model.

For parameter, σ, it not only represents the basic capability of the Gaussian RBF kernel function to
deal with nonlinear relationships among data, but also reflects the correlations among support vectors.
For example, if σ is very small, the correlation among those support vectors is weak, then, the process
of machine learning is relatively complex, i.e., it cannot guarantee to receive general adoptions;
on the contrary, if σ is too large, the correlation among those support vectors is too strong to receive
sufficient accuracy. Therefore, in the modeling processes, if σ is approximating smaller, it is suggested
set a larger value of C.

Based on the above analysis of these three parameters, the complexity and general adoptions of
an SVR model are determined by these three parameters and their interactions. Therefore, too look
for a novel algorithm to optimize the parameter combination is an important issue to improve
the forecasting accuracy of an SVR model.
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2.2. Chaotic Quantum Bat Algorithm (CQBA)

2.2.1. Bat Algorithm (BA)

Bats detect preys and avoid obstacles with sonar. According to echolocation in acoustic theory,
bats judge preys’ size through adjusting phonation frequency. By the variation of echolocation,
bats would detect the distance, direction, velocity, size, etc. of objects, which guarantees bats’ accurate
flying and hunting [47]. While searching for preys, they change the volume, A(i), and emission velocity,
R(i), of impulse automatically. During the prey-searching period, the ultrasonic volume that they send
out is high, while the emission velocity is relatively low. Once the prey is locked, the impulse volume
turns down and emission velocity increases with the distance between bat and prey being shortened.

The bat algorithm is a meta heuristic algorithm for intelligent search. The theory is as followings,
(1) Bat’s position and velocity are initialized, and are treated as the solution in problem space;
(2) The optimal fitness function value of the problem is calculated; (3) The volume and velocity of
bat units are adjusted, and are transformed towards optimal unit; (4) The optimal solution is finally
received. The bat algorithm involves global search and local search.

In global search, suppose that the search space is with d dimensions, at the time, t, the ith bat has
its position, xt

i , and velocity, vt
i . At the time, t + 1, its position, xt+1

i , and velocity, vt+1
i , are updated as

Equations (9) and (10), respectively,
xt+1

i = xt
i + vt+1

i (9)

vt+1
i = vt

i +
(
xt

i − x∗
)

Fi (10)

where x∗ is the current global optimal solution; Fi is the sonic wave frequency, as shown in Equation (11),

Fi = Fmin + (Fmax − Fmin)β (11)

where β ∈ [0, 1] is a random number; Fmax and Fmin are respectively the sonic wave max frequency
and min frequency of the ith bat at this moment. In the process of practice, according to the scope that
this problem needs to search, the initialization of each bat is assigned one random frequency following
uniform distribution in [Fmin, Fmax].

In local search, once a solution is selected in the current global optimal solution, each bat would
produce new alternative solution in the mode of random walk according to Equation (12),

xnew(i) = xold + λ At (12)

where xold is a solution randomly chosen in current optimal disaggregation; At is the average of
volume in current bat population; λ is a D dimensional vector in [−1, 1].

The bat’s velocity and position update steps are similar to that in standard PSO. In PSO, Fi actually
dominates the moving range and space of the particle swarm. To a certain degree, BA could
be treated as the balance and combination between standard PSO and augmented local search.
The balance is dominated by impulse volume, A(i), and impulse emission rate, R(i). When the bat locks
the prey, the volume, A(i), is reduced and the emission rate, R(i), is increased. The impulse volume,
A(i), and impulse emission rate, R(i), are updated as Equations (13) and (14), respectively,

At+1(i) = γ At(i) (13)

Rt+1(i) = R0(i)
[
1 − e−δt

]
(14)

where, 0 < γ < 1, δ > 0, are both constants. It is obviously that as t → ∞ , then, At(i) → 0 and
Rt(i) = R0(i). In the practice process, γ = δ = 0.95.
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2.2.2. Quantum Computing for BA

a. Quantum Bat Population Initialization

In quantum bat algorithm, the probability amplitude of qubit is applied as the code of bat in
current position. Considering the randomness of code in population initialization, the coding program
of the bat Bi in this paper is given as Equation (15),

Bi =

[
cos θi

1 cos θi
2 · · · cos θi

j · · · cos θi
d

sin θi
1 sin θi

2 · · · sin θi
j · · · sin θi

d

]
(15)

where, θi
j = 2π × rand(·), rand(·) is the random number in (0,1); i = 1, 2, . . . , N; j = 1, 2, . . . , d; d is

the space dimensionality.
Thus, it can be seen that each bat occupies 2 positions in the ergodic space. The probability amplitudes

of each corresponding to the quantum state of |0〉 and |1〉 are defined as Equations (16) and (17),
respectively. For convenience, Bi

c is called cosinusoidal position, Bi
s is called sinusoidal position.

Bi
c =

(
cos θi

1, cos θi
2, . . . , cos θi

j, . . . , cos θi
d

)
(16)

Bi
s =

(
sin θi

1, sin θi
2, . . . , sin θi

j, . . . , sin θi
d

)
(17)

b. Quantum Bat Global Search and Local Search

In QBA, the move of bat’s position is actualized by quantum revolving gate. Thus, in standard BA,
the update of bat’s moving velocity transforms into the update of quantum revolving gate, the update
of bat’s position transforms into the update of bat’s qubit probability amplitude. The optimal positions
of the current population are set as Equations (18) (for quantum state of |0〉) and (19) (for quantum
state of |1〉), respectively,

Bg
c =

(
cos θ

g
1 , cos θ

g
2 , . . . , cos θ

g
d

)
(18)

Bg
s =

(
sin θ

g
1 , sin θ

g
2 , . . . , sin θ

g
d

)
(19)

Based on the assumption above, the update rule of bats’ state is as followings.
In global search, the update rule of the qubit probability amplitude increment of bat Bi is as

Equation (20),
Δθi

j(t + 1) = Δθi
j(t) + FiΔθg (20)

where Δθg is defined as Equation (21),

Δθg =

⎧⎪⎪⎨⎪⎪⎩
2π + θ

g
j − θi

j, θ
g
j − θi

j < −π

θ
g
j − θi

j, −π ≤ θ
g
j − θi

j ≤ π

θ
g
j − θi

j − 2π, θ
g
j − θi

j > π

(21)

In local search, the update rule of the qubit probability amplitude corresponding to the current
optimal phase increment of bat Bi is defined as Equation (22),

Δθi
j(t + 1) = e−

ω·gen
gen_max ·average(A)·ρ (22)

where, ω is constant; gen is the current iteration number; gen_max is the maximal iteration number;
average(A) is the average of current amplitude of each bat; ρ is the random integer in [−1, 1].
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c. Quantum bat location updating

Based on quantum revolving gate, the quantum probability amplitude is updated as Equation (23),⎡⎣ cos
(

θi
j(t + 1)

)
sin

(
θi

j(t + 1)
) ⎤⎦ =

⎡⎣ cos
(

Δθi
j(t + 1)

)
− sin

(
Δθi

j(t + 1)
)

sin
(

Δθi
j(t + 1)

)
cos

(
Δθi

j(t + 1)
) ⎤⎦×

⎡⎣ cos
(

θi
j(t)

)
sin

(
θi

j(t)
) ⎤⎦

=

⎡⎣ cos
(

θi
j(t) + Δθi

j(t + 1)
)

sin
(

θi
j(t) + Δθi

j(t + 1)
) ⎤⎦ (23)

The two new updated positions (for the quantum state of |0〉 and |1〉) of bat Bi are shown as
Equations (24) and (25), respectively,

Pi
c(t + 1) =

(
cos(θi

1(t) + Δθi
1(t + 1)), . . . , cos

(
θi

d(t) + Δθi
d(t + 1)

))
(24)

Pi
s(t + 1) =

(
sin(θi

1(t) + Δθi
1(t + 1)), . . . , sin

(
θi

d(t) + Δθi
d(t + 1)

))
(25)

It demonstrates that quantum revolving gate actualizes the simultaneous movements of bat’s
two positions by updating qubit phase which depicts the bat’s position. Thus, under the condition of
unchanging total population size, the qubit encoding can enhance ergodicity, which helps improving
the efficiency of the algorithm.

2.2.3. Chaotic Quantum Global Perturbation

As a bionic evolutionary algorithm, with the increasing number of iterations, the diversity of
the population will decline, which leads to premature convergence during optimization processes.
As mentioned, the chaotic variable can be used to maintain diversity of the population to
avoid premature convergence. Many scholars have published papers using improved chaotic
algorithm [48,49]. Authors also have used cat map to the improve GA and PSO algorithm [50,51],
the results of numerical experiments show that the searching ability of new GA and PSO improved
by chaos is enhanced. Hence, in this paper, the cat mapping function is employed to be the global
chaotic perturbation strategy (GCPS), i.e., the so-called CQBA, based on the QBA to adopt GCPS while
suffering from premature convergence problem in the iterative searching processes.

The two-dimensional cat mapping function is shown as Equation (26),{
yt+1 = f rac

(
yt + zt)

zt+1 = f rac
(
yt + 2zt) (26)

where frac function is employed for the fractional parts of a real number y by subtracting
an appropriate integer.

The global chaotic perturbation strategy (GCPS) is illustrated as followings.

(1) Generate N
2 chaotic disturbance bats. For each Bati(i = 1, 2, . . . , N), apply Equation (26) to

generate d random numbers, zj (j = 1, 2, . . . , d). Then, the Equations (27) and (28) are used to map
these numbers, zj, into yj (with valued from −1 to 1). Set yj as the qubit (with quantum state, |0〉)
amplitude, cos θi

j, of Bati.
zj − 0
1 − 0

=
yj − (−1)
1 − (−1)

(27)

cos θi
j = yj = 2zj − 1 (28)
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(2) Determine the N
2 bats with better fitness. Calculate fitness value of each bat from current QBA,

and arrange these bats to be a sequence in the order of fitness values. Then, select the bats with
the N

2 th ranking ahead in the fitness values.
(3) Form the new CQBA population. Mix the N

2 chaotic perturbation bats with the N
2 bats which

are with better fitness selected from current QBA, and form a new population that contains new
N bats, and named it as CQBA population.

(4) Complete global chaotic perturbation. After obtaining the new CQBA population, take the new
CQBA population as the new population of QBA, and continue to execute the QBA process.

2.2.4. Implementation Steps of CQBA

The procedure of the hybrid CQBA with an SVR model is detailed as followings and the associate
flowchart is provided as Figure 1.

Step 1 Parameter Setting. Initialize the population size, N; maximal iteration, gen_max; expected
criteria, ϑ ; pulse emission rate, R(i); maximum and minimum of emission frequencies,
Fmax and Fmin, respectively.

Step 2 Population Initialization of Quantum Bats. According to quantum bat population initialization
strategy, initialize quantum bat population randomly.

Step 3 Evaluate Fitness. Evaluate the objective fitness by employing the coding information of
quantum bats. Each probability amplitude of qubit is corresponding to an optimization

variable in solution space. Assumed that the jth qubit of the bat Bi is

[
ηi

j
ζ i

j

]
, the element’s

value of the qubit is between the interval, [−1, 1]; the solution space variable corresponding

to that is

[
(Xi

j)c

(Xi
j)s

]
, set the element’s value be between the interval, [aj, bj]. Then, the solution

could be calculated by the equal proportion relationship (i.e., Equations (29) and (30)),

(Xi
j)c

− aj

bj − aj
=

ηi
j − (−1)

1 − (−1)
(29)

(Xi
j)s

− aj

bj − aj
=

ζ i
j − (−1)

1 − (−1)
(30)

Eventually, the solution

[
(Xi

j)c

(Xi
j)s

]
is obtained as shown in Equations (31) and (32).

(Xi
j)c

=
1
2

[
bj

(
1 + ηi

j

)
+ aj

(
1 − ηi

j

)]
(31)

(Xi
j)s

=
1
2

[
bj

(
1 + ζ i

j

)
+ aj

(
1 − ζ i

j

)]
(32)

Each bat corresponds to 2 solutions of the optimal problem, the probability amplitude ηi
j of

the quantum state of |0〉 corresponds to (Xi
j)c

; the probability amplitude ζ i
j of the quantum state of |1〉

corresponds to (Xi
j)s

, where i = 1, 2, . . . , N; j = 1, 2, . . . , d.
After the transformation of solution space, the parameter combination (σ, C, ε) for each bat is obtained.

The forecasting values could also be received, then, the forecasting error is calculated as the fitness value
for each bat by the mean absolute percentage error (MAPE), as shown in Equation (33).

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ fi(x)− f̂i(x)
fi(x)

∣∣∣∣∣× 100% (33)
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where N is the total number of data; fi(x) is the actual load value at point i; f̂i(x) is the forecasted load
value at point i.

Step 4 Quantum Global Search. According to quantum bat global search strategy, employ
Equations (20) and (23) to implement the global search process of quantum bats, update
the optimal location and fitness of the population.

Step 5 Quantum Local Search. This step considers two situations to implement quantum local search.
Step 5.1 If rand(·) > R(i), use Equations (22) and (23), around the optimal bat of the current

population, to implement quantum local search, and obtain the new position; else, go to
Step 6.

Step 5.2 If rand(·) < A(i) and the new position is superior to the original position, then, update
the bat’s position, and employ Equations (13) and (14) to update A(i) and R(i), respectively,
go to Step 5.3; else, go to Step 6.

Step 5.3 Update the optimal location and fitness of the population. Go to Step 6.
Step 6 Premature Convergence Test. To improve the global disturbance efficiency, set the expected

criteria ϑ , when the population aggregation degree is higher, the global chaotic disturbance for
population should be executed once. The mean square error (MSE), as shown in Equation (34),
is used to evaluate the premature convergence status,

MSE =
1
N

N

∑
i=1

(
fi(x)− favg(x)

f (x)

)2

(34)

where, N is the number of forecasting samples, fi(x) is the actual value of the ith period;
favg(x) is average objective value of the current status; f (x) can be obtained by Equation (35),

f (x) = max
{

1, max
∀i∈N

{∣∣ fi(x)− favg(x)
∣∣}} (35)

If the value of MSE is less than δ, the individual aggregation degree of population is higher,
it can be seen that premature convergence appears, go to Step 7, else go to Step 8.

Step 7 Chaotic Global Perturbation. Based on cat mapping, i.e., the GCPS as illustrated Section 2.2.1,
generate N

2 chaotic perturbation bats, sort bats obtained from QBA according to fitness values,
and select the N

2 th bats with better fitness. Then, form the new population which includes
the N

2 chaotic perturbation bats and the N
2 bats with better fitness selected from current QBA.

After forming the new population, the QBA is implemented continually.
Step 8 Stop Criteria. If the number of search steps is greater than a given maximum search step,

gen_max, then, the coded information of the best bat among the current population is
determined as parameters (σ, C, ε) of an SVR model; otherwise, go back to Step 4 and
continue searching the next generation.
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Figure 1. Chaotic quantum bat algorithm flowchart.

3. Experimental Examples

3.1. Data Set of Numerical Examples

To compare the performances of the proposed SVRCQBA model and other hybrid chaotic
quantum SVR-based models, this paper uses the hourly load data provided in 2014 Global Energy
Forecasting Competition [52]. The load data totally contains 744-h load values, i.e., from 00:00
1 December 2011 to 00:00 1 January 2012. To be based on the same comparison conditions, the data set
is divided based on the same means as shown in the previous papers [43–45]. Therefore, the load
data are also divided into three sub-sets, the training set with 552-h load values (i.e., from 01:00
1 December 2011 to 00:00 24 December 2011), the validation set with 96-h load values (i.e., from 01:00
24 December 2011 to 00:00 28 December 2011), and the testing set al.so with 96-h load values (i.e., from 01:00
28 December 2011 to 00:00 1 January 2012).
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The rolling-based procedure, proposed by Hong [32], is employed to help CQBA searching
suitable parameter’s value of an SVR model in the training process. In the course of specific training,
the training set is further divided into two subsets, namely the fed-in and the fed-out, respectively.
Firstly, for each pair of parameters (σ, C, ε) determined by CQBA, the preceding n load values are
used as the fed-in vector; then, one-step-ahead forecasted load is computed by the SVR model,
i.e., the (n + 1)th forecasted load. Secondly, the next n load data, i.e., from 2nd to (n + 1)th load values,
are set as the new fed-in vector and similarly the second one-step-ahead forecasted load is received,
namely the (n + 2)th forecasted load. Repeat this procedure until the 552nd forecasted load is computed.
The training error can be simultaneously calculated in each iteration, and the validation error would
be also calculated.

The adjusted parameter combination only with the smallest validation and testing errors will be
selected as the most appropriate parameter combination. Special emphasis is that the testing data set is
never used in parameter search and model training, it is only employed for examining the forecasting
accurate level. Eventually, the 96 h load data are forecasted by the SVRCQBA model.

3.2. The SVRCQBA Load Forecasting Model

3.2.1. Parameters Setting in CQBA Algorithm

Experiences have indicated that the parameter setting of a model would affect significantly
the forecasting accuracy. The parameters of CQBA for the experimental example are set as follows:
The population size, N, is set to be 200; the maximal iteration, gen_max, is set as 1000; expected criteria,
δ, is set to 0.01; the minimal and maximal values of the pulse frequencies, Fmin and Fmax are set as
−1 and 1, respectively.

In the process of parameter optimization, for the SVR model, the feasible regions of three parameters
are set practically, σ ∈ [0, 10], ε ∈ [0, 100], and C ∈ [0, 3 × 103]. Considering that the influence of
iterative time would affect performances of models, and, to ensure the reliability of forecasting results,
the optimization time of each algorithm is set at the same as far as possible.

3.2.2. Forecasting Accuracy Evaluation Index

This article selects the MAPE mentioned above (Equation (33)), the root mean square error (RMSE),
and the mean absolute error (MAE) as performance criteria to test the forecasting performance of each
model. The RMSE and MAE are calculated by Equations (36) and (37), respectively,

RMSE =

√√√√∑N
i=1

(
fi(x)− f̂i(x)

)2

N
(36)

MAE =
1
N

N

∑
i=1

| fi(x)− f̂i(x)| (37)

where N is the total number of data; fi(x) is the actual load value at point i; f̂i(x) is the forecasted load
value at point i.

3.2.3. Forecasting Performance Improvement Tests

To ensure the forecasting performance improvement of the proposed model is significant, it is
essential to conduct some statistical test. Based on Diebold and Mariano’s [53] and Derrac et al. [54]
suggestions, Wilcoxon signed-rank test [55] is conducted in this paper. The Wilcoxon signed-rank test
is used to detect the significance of a difference in the central tendency of two data series when the size
is equal. Let di be the difference between the forecasting errors from any two compared forecasting
models on ith forecasting value. The differences would be ranked based on their absolute values;
if the differences are tied, the use of average ranks for dealing with ties is recommended, for example,
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if two differences are tied in the assignation of ranks 1 and 2, assign rank 1.5 to both differences. Let R+

be the sum of ranks that the first model outperforms the second, on the contrary, R− the sum of ranks
that the second model outperforms the first. If ranks of di = 0, then, exclude the compared and reduce
sample size. The statistic W is represented as Equation (38),

W = min
{

R+, R−}
(38)

If W is smaller than or equal to the value of Wilcoxon distribution under n degrees of freedom,
then, the null hypothesis of performance equality from two compared forecasting models is rejected;
this implies that the proposed forecasting model outperforms the other alternative. Furthermore, along
with the comparing size increasing, the sampling distribution of W converges to a normal distribution,
thus, the associate p-value could also be calculated.

3.2.4. Forecasting Results and Analysis

Considering the GEFCOM 2014 load data set is also used for analysis in references [43–45],
therefore, those proposed models are also employed to compare with the proposed model.
These alternative models include, SVRBA, SVRQBA, SVRCQBA, SVRQPSO (SVR with chaotic
particle swarm optimization algorithm) [43], SVRCQPSO (SVR with chaotic quantum particle swarm
optimization algorithm) [43], SVRQTS (SVR with quantum tabu search algorithm) [44], SVRCQTS
(SVR with chaotic quantum tabu search algorithm) [44], SVRQGA (SVR with quantum genetic
algorithm) [45], SVRCQGA (SVR with chaotic quantum genetic algorithm) [45].

The parameter combinations of SVR are eventually determined by the BA, QBA, CQBA, QTS,
CQTS, QPSO, CQPSO, QGA, and CQGA, respectively. The details of the most appropriate parameters
of all employed compared models for GEFCOM 2014 data set are shown in Table 1. It is clearly to learn
about that the proposed SVRCQBA model receives the smallest forecasting accuracy, and computation
time savings.

Table 1. Parameters combination of SVR determined by CQBA and other algorithms.

Optimization Algorithms
Parameters

MAPE of Testing (%) Computation Time (Seconds)
σ C ε

SVRQPSO [43] 9.000 42.000 0.180 1.960 635.73
SVRCQPSO [43] 19.000 35.000 0.820 1.290 986.46

SVRQTS [44] 25.000 67.000 0.090 1.890 489.67
SVRCQTS [44] 12.000 26.000 0.320 1.320 858.34
SVRQGA [45] 5.000 79.000 0.380 1.750 942.82

SVRCQGA [45] 6.000 54.000 0.620 1.170 1327.24
SVRBA 8.000 37.000 0.750 3.160 326.87

SVRQBA 13.000 61.000 0.560 1.744 549.68
SVRCQBA, 11.000 76.000 0.670 1.098 889.36

Based on the parameters combiation of each compared SVR-based model, use the training data set
to conduct the training work, and receive the well trained SVR model. These trained models are
further employed to forecast the load. The forecasting comparison curves of nine models mentioned
above and actual values are shown as in Figure 2. Table 2 illustrates the forecasting accurate indexes
for the proposed SVRCQBA and other alternative compared models.

Figure 2 clearly demonstrates that the proposed SVRCQBA model achieves results closer to
the actual load values than other alternative compared models. In Table 2, the MAPE, RMSE and MAE
of the proposed SVRCQBA model are 1.0982%, 1.4835, and 1.4372, respectively, which are smaller
than that of other eight compared models. It also indicates that the proposed SVRCQBA model
provides very contributions of improvements in terms of load forecasting accuracy. The concrete
analysis results are as follows.
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Figure 2. Forecasting values of SVRCQBA and other alternative compared models.

Table 2. Forecasting indexes of SVRCQBA and other alternative compared models.

Indexes SVRQPSO [43] SVRCQPSO [43] SVRQTS [44] SVRCQTS [44] SVRQGA [45] SVRCQGA [45]

MAPE (%) 1.9600 1.3200 1.8900 1.2900 1.7500 1.1700
RMSE 2.9358 1.9909 2.8507 1.9257 1.6584 1.4927
MAE 2.8090 1.8993 2.7181 1.8474 1.6174 1.4522

Indexes SVRBA SVRQBA SVRCQBA

MAPE (%) 3.1600 1.7442 1.0982
RMSE 4.7312 2.5992 1.4835
MAE 4.5234 2.4968 1.4372

For forecasting performance comparison between SVRQBA and SVRBA models, the values of RMSE,
MAPE and MAE for the SVRQBA model are smaller than that of the SVRBA model. It demonstrates
that empowering the bats to have quantum behaviors, i.e., using quantum revolving gate (Equation (23))
in the BA to let any bats have comprehensive flying direction choices, which is an appropriate method
to improve the solution, then, to improve the forecasting accuracy while the BA is hybridized with
an SVR model. For example, in Table 2, the introduction of the quantum computing mechanism changes
the forecasting performances (MAPE = 3.1600%, RMSE = 4.7312, MAE = 4.5234) of SVRBA model to much
better performances (MAPE = 1.7442%, RMSE = 2.5992, MAE = 2.4968) of SVRQBA model. Employing
the quantum revolving gate could improve almost 1.5% (=3.1600% − 1.7442%) forecasting accuracy in
terms of MAPE, which plays the critical role in forecasting accuracy improvement contributions. Therefore,
it is important to look for any more advanced quantum gates to empower more selection choices for any
bats in the searching processes.

Meanwhile, comparing the RMSE, MAPE, MAE of SVRCQBA model with that of SVRQBA model,
the forecasting accuracy of SVRCQBA model is superior to that of SVRQBA model. It reveals that
the CQBA determines more appropriate parameters combination for an SVR model by introducing cat
mapping function, which has a critical role in looking for an improved solution when the QBA
algorithm are trapped in local optima or requires a long time to solve the problem of interest.
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For example, as shown in Table 2, searching parameters for an SVR model by CQBA instead of
by QBA is excellently to shift the performances (MAPE = 1.7442%, RMSE = 2.5992, MAE = 2.4968) of
the SVRQBA model to much better performances (MAPE = 1.0982%, RMSE = 1.4835, MAE = 1.4372)
of the SVRCQBA model. Applying cat mapping function could improve almost 0.7% (=1.7442%
− 1.0982%) forecasting accuracy in terms of MAPE, which also reveals the very contributions in
forecasting accuracy improvement. Therefore, it is also an interesting issue to use other novel chaotic
mapping functions to effectively enrich the diversity of population while searching iterations reach to
a large scale.

In addition, the forecasting indexes results in Table 2 also illustrate that employing the CQPSO,
CQTS, and CQGA, it could receive the best solution, (σ, C, ε) = (19.000, 35.000, 0.820), (σ, C, ε) =
(12.000, 26.000, 0.320), and (σ, C, ε) = (6.000, 54.000, 0.620), with forecasting error, (MAPE = 1.3200%,
RMSE = 1.9909, MAE = 1.8993), (MAPE = 1.2900%, RMSE = 1.9257, MAE = 1.8474), and
(MAPE = 1.1700%, RMSE = 1.4927, MAE = 1.4522), respectively. As mentioned above that it is
superior to classical TS, PSO, and GA algorithms. However, the solution still could be further
improved by the CQBA algorithm to (σ, C, ε) = (11.000, 76.000, 0.670) with more accurate forecasting
performance, (MAPE = 1.0982%, RMSE = 1.4835, MAE = 1.4372). It illustrates that hybridizing
the cat mapping function and quantum computing mechanism with BA to select suitable parameters
combination of an SVR model is a more powerful approach to receive satisfied the forecasting
accuracy. Therefore, hybridizing CQBA with an SVR model could only improve at most 0.22%
(=1.3200% − 1.0982%) forecasting accuracy in terms of MAPE, which also reveals the selection
of advanced evolutionary algorithms could also contribute to forecasting accuracy improvements,
however, along with the mature development of evolutionary algorithms, the contributions seem to be
minor. Therefore, it should be a valuable remark that hybridizing other optimization approaches (such
as chaotic mapping functions, quantum computing mechanism, cloud theory, and so on) to targeted
overcome some embedded drawbacks of existed evolutionary algorithms is with much contributions
to forecasting accuracy improvements. Based on the remark, it indicates that hybridizing novel
optimization techniques with novel evolutionary algorithms could be the most important research
tendency in the SVR-based load forecasting work.

Finally to ensure the significant contribution in terms of forecasting accuracy improvement for
the proposed SVRQBA and SVRCQBA models the Wilcoxon signed-rank test is then implemented.
In this paper the test is conducted under two significant levels α = 0.025 and α = 0.005 by one-tail test.
The test results are demonstrated in Table 3 which indicate that the proposed SVRCQBA model has
received significant forecasting performance than other alternative compared models.

Table 3. Results of Wilcoxon signed-rank test.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 2328 α = 0.005; W = 2328 p-Value

SVRCQBA vs. SVRQPSO 1087 T 1087 T 0.00220 **
SVRCQBA vs. SVRCQPSO 1184 T 1184 T 0.00156 **

SVRCQBA vs. SVRQTS 1123 T 1123 T 0.00143 **
SVRCQBA vs. SVRCQTS 1246 T 1246 T 0.00234 **
SVRCQBA vs. SVRQGA 1207 T 1207 T 0.00183 **

SVRCQBA vs. SVRCQGA 1358 T 1358 T 0.00578 *
SVRCQBA vs. SVRBA 874 T 874 T 0.00278 **

SVRCQBA vs. SVRQBA 1796 T 1796 T 0.00614 *
T Denotes that the SVRCQGA model significantly outperforms the other alternative compared models; * represents
that the test has rejected the null hypothesis under α = 0.025; ** represents that the test has rejected the null
hypothesis under α = 0.005.
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4. Conclusions

This paper proposes an electric demand forecasting by hybridizing SVR model with the cat
mapping function quantum computing mechanism and the BA. The experimental results illustrate
that the proposed model demonstrates significant forecasting performance than other hybrid chaotic
quantum evolutionary algorithm SVR-based forecasting models in the literature. This paper continues
to extend the search space with the limitations from conventional Newtonian dynamics by using
quantum computing mechanism and to enhance ergodicity of population and to enrich the diversity
of the searching space by using cat mapping function. Consequently, quantum computing mechanism
is applied to endow bits to act as quantum behaviors hence to extend the searching space of BA and
eventually to improve forecasting accuracy. Cat mapping function is further used to avoid premature
convergence while the QBA is modeling and also contribute to accurate forecasting performances.

This paper also provides some important conclusions and indicates some valuable research
directions for future research. Firstly, empowering the bats to have quantum behaviors by using
quantum revolving gate could contribute most accuracy improvements. Therefore, in the future
the successive researchers could consider constructing an n-dimensional quantum gate where n is
the dimensions of employed data set i.e., for each bat in the modeling process it has n probability
amplitudes instead of only one amplitude. Based on this new design it is expected to look for more
abundant search results via those bats with n probability amplitudes.

Secondly applying chaotic mapping functions could also improve forecasting accuracy. Therefore,
in the future any approaches which could enrich the diversity of population during modeling process
are deserved to employ to receive more satisfied forecasting accuracy such as other novel chaotic
mapping functions or novel design of mutation or crossover operations and so on.

Finally, only hybridizing different evolutionary algorithms could contribute minor forecasting
accuracy improvements. Therefore, hybridizing different novel optimization techniques with novel
evolutionary algorithms could contribute most in terms of forecasting accuracy improvements and
would be the most important research tendency in the SVR-based load forecasting work in the future.
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Abstract: Wind power time series data always exhibits nonlinear and non-stationary features,
making it very difficult to accurately predict. In this paper, a novel hybrid wind power time
series prediction model, based on ensemble empirical mode decomposition-permutation entropy
(EEMD-PE), the least squares support vector machine model (LSSVM), and gravitational search
algorithm (GSA), is proposed to improve accuracy of ultra-short-term wind power forecasting.
To process the data, original wind power series were decomposed by EEMD-PE techniques into a
number of subsequences with obvious complexity differences. Then, a new heuristic GSA algorithm
was utilized to optimize the parameters of the LSSVM. The optimized model was developed for wind
power forecasting and improved regression prediction accuracy. The proposed model was validated
with practical wind power generation data from the Hebei province, China. A comprehensive error
metric analysis was carried out to compare the performance of our method with other approaches.
The results showed that the proposed model enhanced forecasting performance compared to other
benchmark models.

Keywords: wind power prediction; ensemble empirical mode decomposition-permutation entropy
(EEMD-PE); least squares support vector machine (LSSVM); heuristic algorithm

1. Introduction

As a clean renewable energy, wind energy is regarded as a good alternative to deal with
environmental problems and energy crises [1,2]. According to a report published by the World
Wind Energy Association (WWEA), worldwide wind capacity reached 54 GW by the end of 2017,
with a growth rate of 11.8% [3]. The total installed capacity is reported in Figure 1. The intermittent
nature of wind power generation has posed a big challenge for maximizing the utilization of the wind
power industry [4]. It is of practical significance to optimize the wind power prediction algorithm and
make it more suitable for the operation and wind conditions of a specific wind farm.
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Figure 1. Total installed wind power from 2005 to 2017 worldwide.

Wind power forecasting is difficult to achieve due to its intermittency and stochastic fluctuation,
which brings great challenges to power system operation and control [5,6]. Over the past few
decades, a large amount of research has been devoted to the development of effective and reliable
wind speed/power forecasting methods, models, and tools [7]. Generally, these methods can be
broadly divided into four major models [8–11]: (a) physical models, (b) statistical models, (c) hybrid
models, and (d) spatial correlation models. Physical models take into account parameters such as
topography, temperature, and pressure, at the location of the wind farm, which are often utilized
in short-term forecasting 6–72 h ahead and long-term forecasting with multiple weather variables.
Typical physical wind power forecasting systems, among others, are the Prediktor system, developed
by the Risoe National Laboratory in Denmark [12]; Previento, developed by the University of
Oldenburg in Germany [13]; and eWind, developed by AWS True Wind Inc. (New York, NY, USA) [14].
Statistical models are built based on historical power/speed time series data, which establishes a
functional relationship between historical data and forecast data [15]. These models analyze the
relationship between various explanatory variables and online measurements. The well-known pure
statistical models are the autoregressive (AR) model [16], autoregressive moving average (ARMA)
model [17], autoregressive integrated moving average (ARIMA) model [18], seasonal autoregressive
integrated moving average (SARIMA) model [19], and the autoregressive integrated moving average
with exogenous variables (ARMAX) model [20]. However, statistical models based on the assumption
that linear structures exist among time series data cannot capture non-linear patterns very well.

Individual models lack the ability to deal with big data and fail to capture the majority
of the complex characteristics of the original wind power series data [21]. To make use of the
advantages of statistical and physical models, a number of hybrid models with data pre-processing
techniques, error post-processing techniques, and parameter selection and optimization techniques,
have been proposed.

Data pre-processing techniques involve analyzing and processing data make original time series
into multiple sequences or matrices, which have more obvious characteristics. Therefore, to some
extent, pre-processing techniques can improve forecasting accuracy. Wavelet decomposition [22–26]
and empirical mode decomposition [27–29] are the prevailing data pre-processing techniques,
which can analyze the original wind power series in time and frequency domains. De et al. [25]
compared the hybrid artificial neural networks (ANN) method. Case studies show that wavelet
decomposition (WD)-LSSVM performs better than WD-ANN. Zhang et al. [29] used variational mode
decomposition (VMD) to process original wind power series, then established a novel combined
model based on machine learning methods. Zhao et al. [30] analyzed the characteristics of the
outliers caused by wind curtailment, then, a data-driven outlier elimination approach, combining
quartile method and density-based clustering method was proposed; however, variational mode
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decomposition (VMD) is prone to mode mixing problems. Niu et al. [31] used empirical mode
decomposition (EMD) to decompose original wind speed data, then, a novel hybrid forecasting
model based on the general regression neural network (GRNN) method, optimized by the fruit fly
optimization algorithm (FOA), was proposed. Ye et al. [32] discussed EMD, EEMD, complementary
ensemble empirical mode decomposition (CEEMD), and complete empirical mode decomposition
with adaptive noise (CEEMDAN). Their results showed that the proposed CEEMDAN-support vector
regression (CEEMDAN-SVR) model out-performed the other models.

Error post-processing (EP-P) techniques use estimated error, which is obtained from a forecasting
model, to correct final forecasting results. Huang et al. [33] proposed a new, real-time decomposition
model based on the feature selection and error correction of wind speed forecasting, which improved
prediction accuracy. Platon et al. [34] used an advanced technique to estimate surface wind gusts, then,
combined dynamic and statistical techniques into the wind power forecasting model. Liang et al. [35]
improved wind speed forecasting performance using a correlation analysis method to analyze
multi-step forecast errors and proposed a novel hybrid wind speed prediction model based on error
forecast correction. Federica et al. [36] employed a principal component analysis (PCA), combined
with post-processing, to reduce computational costs and forecast errors. Li et al. [37] proposed a
new combined approach based on Extreme Learning Machine (ELM) and an error correction model,
which improved prediction accuracy over a short-term time scale (6–72 h).

Parameter selection and optimization techniques can improve prediction accuracy and reduce
prediction time through the training model. Xiao et al. [38] employed a new hybrid prediction
model based on a modified bat algorithm (BA) with the conjugate gradient (CG) method to
multi-step wind speed prediction, which optimized the initial weights of the neural networks.
Wang et al. [39] proposed a novel combined forecasting model based on a multi-objective bat
algorithm (MOBA), multi-step-ahead wind speed forecasting. Huang et al. [40] proposed a novel
forecasting model, using a quantum particle swarm optimization (PSO) algorithm, to receive
higher forecast accuracy levels. Chang et al. [41] compared the persistence method, the back
propagation artificial neural network (BP) model, and radial basis neural network (RBF) model.
Case studies showed that the proposed forecasting method was more accurate and reliable than
the other three models. The clonal selection algorithm (CSA) [42], gravitational search algorithm
(GSA) [43], particle swarm optimization (PSO) [44,45], simplified swarm optimization (SSO) [46],
and cuckoo search algorithm (CS) [47], among others, are the prevailing methods to optimize the
parameters of wind power/speed forecasting models.

Spatial correlation models characterize the relationship between the wind power or speed of a
target wind farm and a reference wind farm at different spatial locations. Zhou et al. [48] proposed a
spatial and temporal correlation model and it was found that this model could improve ultra-short-term
wind power forecasting accuracy. Tascikaraoglu et al. [49] proposed a novel method, which first utilized
a Wavelet Transform (WT) method to decompose the wind speed data into more stationary components
and then used a spatio-temporal model on each of the subseries to incorporate both the temporal and
spatial information for wind speed forecasting. Ye et al. [50] analyzed uncertainty and dependence in
wind power output, and employed a physical spatio-temporal correlation model. They found that this
method outperformed statistical models.

In this paper, a novel combine model is proposed based on ensemble empirical mode
decomposition, permutation entropy, least squares support vector machine, and gravitational search
algorithm for ultra-short wind power forecasting. To investigate the effectiveness of the model,
the proposed method will be thoroughly tested and benchmarked on real wind power data from Hebei,
China. The main contributions of this research will be as follows:

(1) Using pre-processing techniques to deal with the complex wind power time series.

The ensemble empirical mode decomposition-permutation entropy will be used to analyze the
original wind power series, by which the original wind power time series will be translated into some
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new, relatively stable subsequences. Ensemble empirical mode decomposition can decompose original
wind power time series into a series of intrinsic mode functions (IMF) with different characteristic
scales; however, it fails to capture weak changes in time series. Permutation entropy will be used to
reconstitute subsequences by similar principles, which can promote weak time signals.

(2) Employing the LSSVM forecasting model, optimized by GSA.

LSSVM will be employed as the basic forecasting model, due to the features of regression
for wind power prediction. To improve the forecasting accuracy and stability of LSSVM directly,
the hyper-parameters of LSSVM will, firstly, be optimized by GSA to obtain the best hyper-parameters.

(3) Using comprehensive error metrics to assess the performance of the proposed model.

The error indicators, in this paper, will include the normalized mean absolute of errors (NMAE),
normalized root mean square error (NRMSE), and Pearson correlation coefficient (R). In this paper,
we will also introduce two improvement percentage error indexes, ξNMAE(%) and ξNRMSE(%).

The remainder of the paper will be organized as follows: the details of the proposed hybrid
model based on EMD-PE-LSSVM-GSA for wind power forecasting will be illustrated in Section 2.
Forecasting performance evaluation indicators will be described in Section 3. Experimental examples
will be presented in Section 4. The resulting analysis and forecasting performance of the proposed
method, compared with other methods, will be given in Section 5. Finally, conclusions will be given in
Section 6.

2. Proposed Methodology

The approaches used, including ensemble empirical mode decomposition, permutation entropy,
the least squares support vector machine model, and gravity search algorithm, are described in this
section. The EEMD-PE-LSSVM-GSA wind power prediction process is shown in Figure 2.

 Original wind power  time series

Ensemble Empirical Mode 
Decomposition

Permutation entropy to analyze

Reconstitute 
subsequences1

Reconstitute 
subsequences 2

Reconstitute 
subsequences K

Optimized-LSSVM 
forecasting model 1

Optimized-LSSVM 
forecasting model 2

Optimized-LSSVM 
forecasting model K

Merger all the forecasting model

Final forecasts  

Figure 2. The procedure of the new proposed prediction model.
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2.1. Ensemble Empirical Mode Decomposition (EEMD)

EMD is frequently subject to a mode mixing problem, where a portion of the IMF may have
properties that are quite similar to adjacent IMFs. EEMD is based on EMD and is an algorithm-based
method of processing signals, which can be used to developed to solve the mode mixing problem [51].
White noise is added to the wind power time series at different scales. In order to solve the EMD mode
mixing problem, a detailed explication is given in [52], as follows:

(1) Add white noise series to the original wind power series:

xnew,i(t) = x(t) + wi(t) (1)

where x(t) is the original wind power series, and wi(t) is the white noise series. Then, find the
corresponding EMD components.

(2) Find the local maxima and minima of xnew,i(t).
(3) Find the upper envelope xnew,iu(t) and lower envelope xnew,il(t).
(4) Calculate the mean of the wind power time series with white noise and the difference between

xnew,iu(t) and xnew,il(t).

m(i) =
xnew,iu(t) + xnew,il(t)

2
(2)

di(i) = xnew,i(t)− m(i) (3)

(5) Repeat Steps 1–3 with d(i) instead of xnew,i(t), until m(i) ≤ δ (where δ is the acceptable error).
Then, take c1

i (i) = di(i) as the first EMD component of xnew,i(t), and the residual is as follows:

w1
i = xnew,i(t)− c1

i (i) (4)

(6) The wind power time series x(t) can be decomposed as follows:

x(t) =
n

∑
i=1

cm
i + wn

i (5)

where cm
i represents the IMFs, and wn

i is the final residue.

2.2. Permutation Entropy (PE)

In the case of nonlinear analysis, the complexity of the signal can be effectively determined
according to its entropy values [53], such as scale entropy, sample entropy, and multi-scale entropy.
Permutation entropy is widely used in sequence complexity and nonlinear analysis because of its high
robustness, efficiency, and simplicity.

This method’s motivation is the classification of the complex system. The larger the permutation
entropy value, the higher the time series randomness of the sequence and the more likely another
pattern will occur. Conversely, the smaller the permutation entropy value, the lower the time
series randomness of the subsequence and the less likely another pattern will occur. The algorithm
implementation process of PE is given below.

For L time series samples, { x(i), i = 1, 2, 3, . . . , K} , the time series are reconstructed by
m-dimension phase space.

X(i) = [x(i), x(i + τ), . . . , x(i + (m − 1)τ)] (6)

where m is the embed dimension of the wind power time series, and τ is the delay time.

[x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤, . . . ,≤ x(i + (jm − 1)τ)] (7)
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where j1, j2, . . . , jm represents the index number of the column in which each element in the
reconstruction vector resides. Each vector can be mapped to a set of symbols.

S(g) = [j1, j2, . . . , jm] (8)

where g = 1, 2, . . . , k, k ≤ m!
We calculated the probability of occurrence for each symbol sequence,

P1, P2, . . . , Pk, ∑k
l=1 Pl , where:

k

∑
l=1

Pl = 1 (9)

In the form of Shannon entropy, the permutation entropy of the wind power time series can be
expressed as:

Hp(m) = −
k

∑
l=1

Pl ln Pl (10)

When Pl = 1
m! , Hp(m) reaches the maximum ln(m!), the standardized processing can be

achieved by:

Hp =
Hp(m)

ln(m!)
(11)

Permutation entropy values were used to evaluate the complexity of each IMFs signal, and the
adjacent entropy values were used to reconstitute IMFs into new subsequences (RS).

2.3. Least Squares Support Vector Machine (LSSVM)

The support vector machine (SVM) is an effective machine algorithm for data classification and
regression [54]. SVM can overcome data over-fitting problems and improve generalization performance
by minimizing structural risk instead of empirical risk. The standard SVM uses nonnegative errors
in the cost function and inequality constraints, while the LSSVM uses square errors and equality
constraints. Therefore, LSSVM is a variation of the standard SVM.

Considering the wind power training dataset, (xi, yj), i = 1, . . . , NL, NL is the number of training
datasets, xi ∈ Rd is the input vector, yi ∈ R is the corresponding output, and d is the dimension of xi.
The optimal decision function can be constructed by mapping the input space into the high-dimension
feature space as follows:

f (x) = ωT ϕ(x) + b (12)

where ϕ(x) is the nonlinear function, ω is the weight, and b is the bias.

R =
1
2
‖ω‖2 + γRe (13)

where ‖ω‖ is the model complexity, γ is the regularization parameter to balance the complex degree
and approximation accuracy of the model, and Re is the empirical risk function. The objective function
of LSSVM can be framed:

minZ(ω, ξ) =
1
2
‖ω‖2 + γ

t

∑
i=1

ξ2
i (14)

s.t.yi = ωϕ(xi) + ξi + b i = 1, 2, . . . , N (15)

L(ω, b, ξ, λ) =
1
2
‖ω‖2 + γ

t

∑
i=1

ξ2
i −

t

∑
i=1

λi(ωϕ(xi) + ξi + b − yi) (16)

where λi(1, 2, . . . , N) represents the Lagrange multipliers.
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Based on the Karush-Kuhn-Tucker (KKT) conditions, Equation (15) is given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω − ∑t

i=1 λiξ
2
i = 0

∑t
i=1 λi = 0

λi − λiξi = 0
ωϕ(xi) + ξi + b − yi = 0

(17)

Based on Equation (15) the following expression can be derived:[
0 IT

I J + I/γ

][
b
λ

]
=

[
0
y

]
(18)

where I = [1, 1, . . . , 1]T is a t × 1 dimensional vector, λ = [λ1, λ2, . . . , λt]
T is the coefficient matrix,

y = [y1, y2, . . . , yt]
T is the output matrix, K(xi, yj) = ϕ(xi)

T ϕ(xj), and K is the kernel function on the
basis of Mercer’s condition. The regression function of the LSSVM model can be described as:

f (x) =
t

∑
i=1

λiK(xi, yi) + b (19)

The radial basis function is selected as the kernel function, which is given as follows:

K(xi, yj) = exp

[
−‖xi − yi‖2

2σ2

]
(20)

where σ is the kernel parameter.

2.4. Gravitational Search Algorithm (GSA)

The GSA was first proposed in 2009 [55] and is a population optimization algorithm based on
the law of gravity and Newton’s second law. The algorithm searches for the optimal solution by
moving the particle position of the population. That is, as the algorithm iterates, the particles move
continuously in the search space by the gravitation between them.

Assuming that the optimization problem can be given in (14) and (15), the particle’s position is
the solution. The position of particle i is defined as:

Xi = (x1
i , . . . , xd

i , . . . , xn
i ) (21)

Step 1: Initialize the speed and position of random particles and calculate the fitness of
each particle.

Step 2: Calculate the gravitational constant G(t) and the inertia mass of each particle:

G(t) = G0 × e−α/T (22)

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(23)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(24)

where G0 is the initial gravitational constant, α is the decay rate, T is the maximum generation, and

best(t) = min
j∈(1,...,n)

f itj(t), worst(t) = max
j∈(1,...,n)

f itj(t).
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Step 3: Calculate the resultant particle force, which can be given as:

Fd
ij(t) = G(t)

Mpi(t)× Maj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (25)

where Fd
ij(t) is gravitation with the particles i and j, with dimension, d, at the t generation; Mpi(t) is the

passive gravitational mass related to particle i; ε is the small constant; xd
i (t) and xd

j (t) is the position of
dimension, d, of particles i and j at the t generation; Rij(t) = ‖xi(t), xi(t)‖2 is the Euclidean distance
between particles i and j.

Step 4: Calculate accelerated speed. According to Newton’s second law, the acceleration is
obtained as follows:

ad
i (t) =

Fd
i (t)

Mii(t)
(26)

Step 5: Update speed and position:

vd
i (t + 1) = rand · vd

i (t) + ad
i (t) (27)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (28)

where randj is a random number with a uniform distribution [0,1].
Step 6: Check the termination condition. Terminate the optimization if the stopping criteria

requirements are met, and, if not, repeat the procedure from step 2 to 5 until the termination condition
requirements are met.

2.5. The Proposed Method for Wind Power Forecasting

The flowchart of the proposed hybrid model based on EEMD-PE-LSSVM-GSA is illustrated in
Stage 1: EEMD process
To build an effective prediction model, the features of the original wind power datasets must be

fully analyzed and considered. EEMD techniques can be used to decompose the original wind power
time series, x(t), into new, relatively stable subsequences, xi(t), (i = 1, 2, 3, . . .).

Stage 2: PE process
PE techniques can be used to analyze the intrinsic mode signals, xi(t), (i = 1, 2, 3, . . .),

and reconstitute subsequences by combination stacking, to give reconstituted subsequences,
RS =

[
x1j, x2j, . . . , xnj

]
+ · · ·+ [x1m, x2m, . . . , xnm], (j, m < i = 1, 2, . . .).

Stage 3: Optimize parameters in the LSSVM process
The LSSVM forecasting model can be employed to forecast the reconstituted subsequences,

RS =
[
x1j, x2j, . . . , xnj

]
+ · · ·+ [x1m, x2m, . . . , xnm], (j, m < i = 1, 2, . . .), and the RBF kernel functions

can be chosen to initialize the LSSVM.
(1): Initialize: Setting the parameters of GSA, the particle number is L, gravitational constant is

G0, attenuation rate is α, and the dimensions of GSA are d.
(2): Calculate: Calculate the fitness function Ff itness as follows:

Ff itness =

√√√√ 1
N

N

∑
i=1

(xi − x̂i )
2 (29)

where xi is the real wind power value, x̂i is the forecasting value, and N is the number of samples.
(3): Update: The states are updated as follows:{

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

(30)
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where xd
i (t) is the position of the particle, vd

i (t) is the speed of search, and randi is a uniform random
variable, with a value in the range of [0, 1].

(4): Selection: If the iteration reaches its maximum, or the Ff itness reaches its minimum, the best
hyper parameters (σ and γ) and corresponding kernel parameters can be found.

(5): Validation: Output wind power prediction values for every new subsequence. The wind
power forecasting errors, in terms of different criteria, are computed to validate the method. The results
are compared with that of other methods. The best parameters of the optimized model will be obtained.

Stage 4: Hybrid process
Combine all the reconstituted subsequences of forecasting results and output the final

forecasting results.
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Figure 3. The overall framework of the proposed model.

3. Performance Criterion

In this paper, the error indexes include the normalized mean absolute of errors (NMAE),
which reflects actual prediction error, normalized root mean square errors (NRMSE), which reflects
large forecasting deviations, and the Pearson correlation coefficient. They are defined, respectively,
as follows:

NMAE =
1
N

N

∑
i=1

|xi − x̂i |
PInst

× 100% (31)

NRMSE =
1

PInst

√√√√ 1
N

N

∑
i=1

(xi − x̂i )
2 × 100% (32)

R =
N∑ xi x̂i − ∑ xi∑ x̂i√

∑ xi
2 − (∑ xi)

2
√

∑ x̂i
2 − (∑ x̂i )

2
(33)

where xi is the actual wind power value, x̂i is the forecasting value, PInst is the installed wind power
capacity, and N is the number of samples.

Additionally, this paper introduces two percentage error indexes, which are defined as follows:

ξNMAE(%) =
NMAE2 − NMAE1

NMAE1
× 100% (34)
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ξNRMSE(%) =
NRMSE2 − NRMSE1

NRMSE1
× 100% (35)

where a negative value of ξNMAE(%) means model 2 decreases |ξNMAE|% NMAE value relative to
model 1, and a positive value of ξNRMSE(%) means model 2 increases |ξNRMSE|% NRMSE value relative
to model 1.

4. Experimental Examples

4.1. Dataset Description

In this paper, a total of 5760 samples were collected from a wind farm in Hebei, China.
Considering the influence of seasonal factors, the whole dataset was divided into four parts, Datasets
A, B, C, and D, which were independently used to verify the effectiveness of the proposed method.
Dataset A was from 1–15 January 2016, Dataset B was from 1–15 April, Dataset C was from 1–15 July,
and Dataset D was from 1–13 October. Wind power generation data were 15 min averaged values.
The forecasting methods were applied over very short time horizons, of up to 4 steps (i.e., 1 h) ahead,
with each step being 15 min. The samples are shown in Figure 4.

Figure 4. Time samples from Hebei, China.
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4.2. Data Processing

EEMD-PE was used to analyze the wind power series, by which the wind power time series
could be translated into new, relatively stable subsequences. EEMD was also used to decompose the
wind power time series into a series of IMFs with different characteristic scales. Then, PE was used to
analyze the IMFs.

There were two important EEMD parameters: the number of the ensemble and the amplitude
of the added white noise. In this experiment, 200 groups of white noise signals were added, with a
standard deviation was 0.2. There were twelve independent IMF compositions. Decomposition results
are shown in Figure 5.

Figure 5. Decomposition by EEMD of wind power series.

The PE parameters (m and τ) have an impact on simulation time and prediction accuracy; if the
parameter m is too large, prediction accuracy will be reduced, and if the parameter τ is too small,
the simulation time will become longer. Therefore, we discuss the processing of the two parameters.

A number of different parameter values were chosen to forecast the series. It is known that the
higher the embedded dimensions, the more complex the structure will be and the more modeling
time will be spent. Considering the forecast time and model complexity, m = 3, 4, 5, 6, 7 and
τ = 0.1, 0.5, 1 models are discussed for (1–4)-step-ahead wind power forecasting, and the errors are
shown in Table 1.

In Table 1, the NRMSE of m = 3 and τ = 1 are the smallest among all parameters; then,
error increases slowly with the dimension of embedding. Performance evaluation, using NMAE and
NRMSE, shows that m = 3 and τ = 1 is better than other parameters. When m = 7 and τ = 1,
the NRMSE of the testing sample is 3.0773, which is the largest level of error, and the modeling time is
10.9929. Comparative analysis shows that increasing the embedded dimension and computation time
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impacts on the prediction at different time scales. Considering prediction accuracy and simulation
time, m = 3 and τ = 1 are selected to predict wind power.

Table 1. The NRMSE and NMAE of the testing sample with different values of m and τ.

τi τ=0.1 τ=0.5 τ=1

Indicator NRMSE NMAE
Modeling
Time (s)

NRMSE NMAE
Modeling
Time (s)

NRMSE NMAE
Modeling
Time (s)

3 2.9778 1.9901 9.9635 2.9813 1.9601 10.1566 2.9738 1.9601 10.7045
4 2.9886 1.9783 10.3289 3.0112 1.9605 10.2562 3.0685 1.9978 10.0467
5 3.0137 1.9644 10.5294 2.9867 1.9384 10.3086 3.0334 1.9824 11.7248
6 3.0152 1.9735 10.4951 2.9863 1.9583 10.3605 2.9744 1.9463 10.5937
7 3.0548 2.0172 11.0421 3.1121 1.9858 11.6372 3.3363 2.0956 11.8948

average 3.0100 1.9847 10.4718 3.0078 1.9606 10.5434 3.0773 1.9964 10.9929

Wind power time series data has nonlinear and non-stationary features. It can be seen from
Figure 5 that there are a lot of IMF components after decomposition. If the LSSVM model is used to
build each component respectively, the computing time will increase significantly. PE technology can
be used to evaluate complexity of each IMF signal.

In order to forecast ultra-short-term wind power effectively, this paper used PE technology to
analyze the complexity features of each IMF component. The PE values of all IMFs are shown in
Figure 6. In Figure 6, the IMF component frequency decreases from high to low, and the PE value also
decreases, which verifies that the PE theory is effective. The PE value indicates the stochastic degree of
the time series, where a smaller PE value means more regular time series, and a larger PE value means
more randomness. To reduce the computing complexity of the proposed method, according to the PE
values, the IMFs were classified and merged to reconstituted subsequences. From IMF 1 to IMF 11
and residue (r), the PE values gradually decreased from 1.7916 to 0.6320. IMF 1 was assigned to RS I,
since it had the highest frequency. IMF 2 and IMF 3 PE value differences were about 0.2~0.3, so they
could be set as RS II. IMF 4 and IMF 5 PE value differences were about 0.1, and, thus, could be set as RS
III. IMF 5~IMF 11+r PE value differences were about 0.02~0.06, and were set as RS IV. The reconstituted
subsequences processed by PE are shown in Figure 7.

 

Figure 6. The permutation entropy values of IMFs.
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4.3. Parameter and Training Dataset Settings

4.3.1. The Parameter Setting of the Forecasting Models

The simulation was done on a Windows 7 PC with a 64-bit, 2.20 GHz Intel Core i3 2330M CPU,
and 6 GB of memory. The wind power forecasting experiments were employed in MATLAB R2014a.

The experimental parameters [43] are shown in Table 2.

Figure 7. Decomposition results by EEMD-PE.

Table 2. Setting the experimental parameters.

Model Experimental Parameters Default Value

GSA

particle number 30
maximum evolutionary generation number 30

gravitational constant 100
attenuation rate 10

range of the test function [0.01, 100]
dimension of the test function 2

LSSVM
value range of kernel parameter c [0.01, 10]

value range of parameter γ [0.1, 1200]

RBFNN

training precision 0.0001
neuron number of the input layer 1

neuron number of the hidden layer 3
neuron number of the output layer 1

The optimal parameters, which result from using RBF kernel functions in the LSSVM model,
is shown in Table 3.

Table 3. Optimal kernel function parameters.

Types of Kernel Function Penalty Factor Kernel Function Parameters

RBF γ = 101.628 σ = 0.1184
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4.3.2. Length of Training Datasets

The length of training datasets is an important factor affecting prediction accuracy.
The 1-step-ahead NRMSE of different forecasting methods, with training Datasets A and B,
are presented in Figure 8.

 

Figure 8. The NRMSE of 1-step-ahead forecasting by different models with two training datasets.

In Figure 8, for Datasets A and B, the NRMSE values for six models tended to decrease with the
length of the training dataset.

For Dataset A, the NRMSE of each method varied irregularly when the length of the training
dataset increased from 100 to 700. The values in this interval could not be selected as the length of
the training dataset. In the range of 700–1400, the trend of NRMSE became flat. The proposed model
was most insensitive to training dataset length, and the NRMSE of the proposed approach remained
almost unchanged as the dataset length was greater than 700, which shows the proposed model was a
simple, but powerful forecasting method.

For Dataset B, the NRMSE for each method varied irregularly when the length of training dataset
increased from 100 to 600. Similarly, the values in this interval could not be selected as the length of the
training dataset. In the range of 600–1400, the trend of NRMSE became flat, and the other five methods
remained unchanged after 1000. However, the EEMD-PE-LSSVM model kept decreasing at 1000.

Taking into account the sensitivity of each method to the data, 1000 data points, as the length of
the training set, was appropriate.

5. Results and Discussion

The proposed hybrid model was employed to forecast ultra-short-term wind power, and the
corresponding results from the proposed model and other contrast models are discussed in the
following section.

5.1. Experiment 1: The Comparison Results of the Proposed Model and Other Models

Ultra-short-term wind power for 1-step, 2-step, 3-step and 4-step-ahead prediction was
implemented for Datasets A, B, C, and D. Results from the analyses will be clearly demonstrated in
Tables 4–7 to reveal the effectiveness of each model.

To further verify the applicability, performance, and superiority of the proposed hybrid model,
the wind power data from Datasets A, B, C, and D were employed for modeling, with five
alternative forecasting models (the SVM model, RBF model, LSSVM model, EEMD-LSSVM model,
and EEMD-PE-LSSVM model) that were compared with the proposed hybrid model. The results are
shown in Figures 9–12 and Tables 4–7.
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In Figures 9–12, it can be seen that the error of prediction results for the proposed model was much
smaller than the SVM model, RBF model, LSSVM model, EEMD-LSSVM model, and EEMD-PE-LSSVM,
which implies that the proposed method performs much better than other five models. The prediction
results of the EEMD-PE-LSSVM model lagged behind the proposed model for all forecasting time
horizons. The forecasting results of the RBF model were the worst compared to the other models.

 
Dataset A

(a) (b)
 

Figure 9. Comparison between the forecast and real values for Dataset A. (a) 1-step-ahead result;
(b) 4-step-ahead result.

Dataset B

(a) (b)
 

Figure 10. Comparison between the forecast and real values for Dataset B. (a) 1-step-ahead result;
(b) 4-step-ahead result.
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Dataset C

(a) (b)
 

Figure 11. Comparison between the forecast and real values for Dataset C. (a) 1-step-ahead result;
(b) 4-step-ahead result.

Dataset D

(a) (b)
 

Figure 12. Comparison between the forecast and real values for Dataset D. (a) 1-step-ahead result;
(b) 4-step-ahead result.

In order to test the accuracy of wind power forecasting, NRMSE, NMAE, R, ξNMAE(%),
and ξNRMSE(%) were used in this paper, for Datasets A, B, C, and D with 1-step-ahead and 4-steps-ahead.
Detailed numerical analysis is given in Tables 4–7.

It can be observed from Tables 4–7 that the NRMSE and NMAE values of the proposed method
were the lowest and the R values were the highest, compared with other models for (1–4)-step-ahead
prediction during the entire evaluation period, which demonstrates the superior performance of
the proposed method. For all the forecasting horizons investigated in this paper, the proposed
method always reached the minimum values of NRMSE and NMAE and the maximum value
of R. This indicates that the proposed model significantly outperforms benchmark models. Thus,
the proposed model is an effective tool for wind power forecasting.
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5.2. Experiment II: Comparison Results of Improvement Percentage Error Indexes and Modeling Time

In order to compare performance differences between the combined model and other benchmark
models, ξNMAE(%) and ξNRMSE(%) were utilized in this study. By using this type of criterion,
the improvement percentage values of the proposed model and benchmark models are given in
Figure 13.

The histogram of ξNMAE(%) and ξNRMSE(%) for all models regarding Datasets A, B, C, and D
for (1–4)-step-ahead wind power forecasting are shown in Figure 13. For Dataset A, except for
the 1- and 4-step-ahead forecasting, the ξNRMSE(%) values of the proposed method compared with
EEMD-PE-LSSVM were positive, which shows that the performance of the proposed model was
worse than the EEMD-PE-LSSVM model. In the 1-step-ahead forecasting, the negative value of
ξNRMSE(%) for the proposed method, compared with the RBF model, was minimal, which indicates
that the forecasting performance of the proposed model was powerful. In the 2-, 3- and 4-step-ahead
forecasting, the proposed method, compared with the EEMD-LSSVM model, performed best.

In (1–3)-step-ahead forecasting, the proposed method had a positive value of ξNMAE(%) compared
with EEMD-PE-LSSVM, which shows that the proposed model was worse than the EEMD-PE-LSSVM
model. In the 4-step ahead forecasting, the proposed model was slightly worse than the RBF, SVM,
and LSSVM models.

There were similar results for Datasets B, C, and D, which shows that the proposed model was
effective for ultra-short-term wind power prediction.

As demonstrated in Figure 13, we can derive the following conclusions: (a) heuristic algorithms
have good optimization capabilities in wind power forecasting; (b) hybrid models obtain better
performance compared with individual and other combined models without optimization; and (c) the
proposed model performed the best among all of the studied models.

The simulation time of the 4-step-ahead wind power forecasting, with regard to Datasets A, B, C,
and D, for all methods, is given in Table 8. Although the simulation time of the proposed method had
higher time consumption than the other prediction models, it achieved the best prediction accuracy,
and this simulation time is acceptable in practical implementation.

Table 8. The simulation time for all methods.

Approaches Proposed EEMD-PE-LSSVM EEMD-LSSVM LSSVM SVM RBF

Dataset A 158.4554 130.6064 129.5019 30.4655 12.5090 14.5357
Dataset B 158.1473 130.3876 129.4410 30.3430 11.6306 13.1059
Dataset C 159.9275 132.2656 129.4538 28.4974 12.6486 14.9028
Dataset D 154.4916 127.4774 126.4261 27.3058 11.4950 12.6474
Average 157.75545 130.18425 128.7057 29.152925 12.0708 13.79795
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6. Conclusions

A new hybrid prediction method of ultra-short-term wind power forecasting, based on EEMD-PE
and LSSVM optimization by GSA, was proposed in this paper. The EEMD method was used to
decompose raw wind power data time series into a series of IMFs with different scales to solve
the mode mixing problem. To effectively reduce the computational complexity of the combined
forecasting method, PE was introduced into the complexity assessment of each IMF component,
based on the PE value, then the IMF components were recombined to generate new subsequences
with significant differences in complexity. The GSA model was utilized to optimize the parameters
of LSSVM, which avoided the choice of parameters; then, the optimized model was used in wind
power forecasting, which improved regression prediction accuracy. For a fair, clear, comparative
study, the proposed method was tested on a practical wind farm (in Hebei, China) and compared
with several other models, including the EEMD-PE-LSSVM, EEMD-LSSVM, LSSVM, SVM, and RBF
models. The results of the experiments indicated that the proposed model satisfactorily forecasted
ultra-short-term wind power for the different datasets.
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Abbreviations

x(t) the original wind power series NRMSE the normalized root mean square error
wi(t) the white noise series NMAE the normalized mean absolute error
xnew,i(t) the wind power series with white noise R pearson correlation coefficient
N the total number of data EMD empirical mode decomposition
S(g) a set of symbols EEMD ensemble empirical mode decomposition
Pk the probability of each symbol sequence VMD variational mode decomposition
Hp(m) the permutation entropy WT wavelet Transform
RS reconstitute subsequences WD wavelet decomposition
ϕ(x) is the nonlinear function SVM support vector machine
ω the weight LSSVM least squares support vector machine
b the bias RBF radial basis neural network
Re the empirical risk function GA genetic algorithm
G(t) the gravitational constant SSO simplified swarm optimization
G0 the initial gravitational constant CSA clonal selection algorithm
α the decay rate PSO particle swarm optimization
T the maximum generation FFA firefly optimization algorithm
ad

i (t) acceleration GSA gravitational search algorithm
vd

i the speed of particle ith in dimension MOBA multi-objective bat algorithm
xd

i the position of particle ith in dimension BP back propagation artificial neural network
xi the actual wind power value BA bat algorithm
x̂i the forecasting value
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Abstract: In a smart grid, several optimization techniques have been developed to schedule load
in the residential area. Most of these techniques aim at minimizing the energy consumption cost
and the comfort of electricity consumer. Conversely, maintaining a balance between two conflicting
objectives: energy consumption cost and user comfort is still a challenging task. Therefore, in this
paper, we aim to minimize the electricity cost and user discomfort while taking into account the peak
energy consumption. In this regard, we implement and analyse the performance of a traditional
dynamic programming (DP) technique and two heuristic optimization techniques: genetic algorithm
(GA) and binary particle swarm optimization (BPSO) for residential load management. Based on
these techniques, we propose a hybrid scheme named GAPSO for residential load scheduling, so as
to optimize the desired objective function. In order to alleviate the complexity of the problem, the
multi dimensional knapsack is used to ensure that the load of electricity consumer will not escalate
during peak hours. The proposed model is evaluated based on two pricing schemes: day-ahead and
critical peak pricing for single and multiple days. Furthermore, feasible regions are calculated and
analysed to develop a relationship between power consumption, electricity cost, and user discomfort.
The simulation results are compared with GA, BPSO and DP, and validate that the proposed hybrid
scheme reflects substantial savings in electricity bills with minimum user discomfort. Moreover,
results also show a phenomenal reduction in peak power consumption.

Keywords: demand side management; demand response; home energy management system;
meta-heuristic techniques

1. Introduction

It has been observed that the residential area is a major cause of energy consumption and
greenhouse gas (GHG) emissions. In China, it is considered the second highest sector which is
responsible for energy consumption and GHG emission. Around 40% of energy is consumed by the
residential sectors in Arabian countries. While, In Palestine 60% of energy is consumed [1]. With
the emergence of new types of demand (i.e., electric vehicles, smart appliances etc.) and economic
development in the past couple of decades, a drastic increase in the energy consumption by the
residential area has been noticed [2]. This shows that the residential sector has a significant role in
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energy consumption which in turn threatens the reliability and efficiency of the power grid. To fulfil
the increasing demand, there is a need to install bulk generation and transmission infrastructure,
which is a very cumbersome and expensive process. The electricity market has also increased the
electricity prices in response to increased user demand. The concept of smart grid (SG) has emerged
which introduces information and communication technology in the traditional grid infrastructure.

A smart home plays a very vital role to overcome the above mentioned challenges. It is equipped
with smart appliances, smart meter and an energy management controller (EMC). Basically, the main
motives behind the utilization of energy management programs include environmental concerns,
capacity limits and reliability of utility infrastructure systems, maintainance and operation, and to
meet the financial needs of consumers. The energy management in entire electrical network is classified
into two categories: supply side management (SSM) and demand side management (DSM). The SSM is
responsible for generating and delivering reliable energy to the consumers. Conversely, DSM utilizes
the potential of advance communication and control infrastructure. It is one of the key components
of the SG that aims at utilizing the available energy effectively and optimally. DSM designs demand
response (DR) programs which entice the consumers to actively participate in load shifting mechanism
in response to time varying prices. By shifting laod from on-peak to off-peak hours, the electricity
consumer achieves significant reduction in cost but has to tolerate the discomfort in the form of delayed
operation of appliances [3].

In the literature, a lot of efforts have been done to tackle the above mentioned challenges.
We categorise the literature review into two main threads. In the first thread, we will discuss the
concerns related to the minimization of electricity cost, peak load and users’ discomfort. Rastegar et al.
in [4] proposed an idea of cost minimization along with the value of lost load (VOLL). The idea
behind VOLL is to enhance the consumers’ priorities and minimize the difference between the actual
and the predetermined energy consumption of appliances. Authors in [5,6] considered energy cost
as an objective function to be optimized by efficiently utilizing the available energy. The trade-off
analysis between privacy and cost is addressed in [7], whereas [8] demonstrated a trade-off between
consumers’ comfort and operation delay of devices. In [9], Vardakas et al. uses the recursive process
for peak load calculation. The authors develop four control scenarios under real-time pricing (RTP)
environment. Ref. [10] considered user satisfaction in the proposed approach while restricting the total
cost under the predefined budget. However, in this approach, devices with high power ratings are
neglected. The results validate that the proposed models have efficiently and optimally reduced the
electricity consumption cost of the consumers. In [11,12], the proposed techniques aim to minimize
the energy consumption cost while taking into account the users’ convenience. Thermal comfort
is taken as a metric of users’ satisfaction in the proposed work. Muralitharan et al. in [13] aim
to minimize the consumption cost while considering the waiting time of consumers. ToU pricing
mechanism is used in the proposed scheme. The results validate the trade-off between cost and
waiting time of consumers. In [14], the authors developed a novel concept of cost efficiency (CE):
the ratio of total energy consumption benefits to the total electricity payments. CE is considered
as an indicator for consumers to adjust their energy consumption pattern. Moreover, the effects of
DERs and service fee on CE are analyzed. The performance results show that CE is increased with
increasing DERs and decreased with increasing service fee. Authors in [15] designed a model to
minimize the consumption cost and balance the energy consumption under ToU pricing scheme.
Moreover, renewable and storage systems are efficiently addressed, so in this way the surplus energy
can be sold back to the grid. Zhang et al. [16] proposed a model to minimize the electricity cost
and reduce carbon emission. A cluster of 30 houses is taken under consideration and each house
having 12 devices subjected to control. In [17] authors deal with the problem of unanticipated
peaks. In [18–22], electricity consumption cost and operational delay of devices are addressed as
an optimization problem. Minimization of end users’ electricity consumption cost and comfort
maximization are the two conflicting objectives to achieve, simultaneously.
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While in the second thread, we discuss the scheduling techniques used for managing energy
in the smart homes. In DSM, several optimization techniques exist to efficiently manage the energy
consumption behavior of consumers. Many researchers focused at both mathematical and heuristic
optimization techniques which are capable to optimally schedule the consumers’ load. In [10,23,24],
the authors applied genetic algorithm (GA) as an optimization technique, in which electricity cost
is taken as a primary objective function to be minimized. The MINLP along with dynamic pricing
scheme is used in [25] to manage energy in a smart home. Bahrami et al. in [26] approximate the users’
optimal scheduling policy by using Markov perfect equilibrium (MPE). The authors have developed
an online load scheduling learning (LSL) algorithm which helps to determine the users’ MPE policy.
Samadi et al. in [27] propose a novel real-time pricing algorithm for the future smart grid by creating
an interaction between smart meters and energy providers and exchanging the real-time price and
energy consumption information of subscribers’. In [28,29], residential load scheduling problem is
solved by using MINLP. In [30], the authors used game theoretic approach for cost minimization
problem, whereas in [31], a variant of ant colony optimization (ACO) is used to solve the energy
management problem. Yi et al. in [18] proposed an opportunistic based optimal stopping rule (OSR)
for scheduling of home appliances. Chakraborty et al. [32] devised a system for energy optimization by
the integration of Photovoltaic (PV) and a wind turbine as renewable energy sources (RESs) In order to
address uncertainties occurred by RESs integration fuzzy logic is considered. For optimal scheduling
and dispatching of energy, an efficient quantum evolutionary algorithm (EA) is implemented while
considering the economic and environmental impacts. Moreover, scheduling is performed optimally
in order to alleviate the cost of production and carbon emission resource. In [33], the authors have
used the optimization techniques: teacher learning based optimization (TLBO) and shuffled frog
leap (SFL) to efficiently manage energy in smart home. MILP is applied in [34] and [35] for efficient
utilization of available energy. Gupta et al. in [34] proposed a model based on cost minimization
problem. MILP is used for problem formulation, whereas, load scheduling is performed via genetic
algorithm (GA). Authors in [36] developed a dynamic model for home energy management system
(HEMS). The developed model employs the game theoretic approach for efficient scheduling of
residential load. Safdarian et al. in [37] categorized DSM infrastructure into two stages. In first stage,
decentralized system is considered and the aim is to minimize the electricity cost of consumers. MILP
is used to formulate the problem and is solved by using general algebraic modeling system (GAMS).
In second stage, the aim of the proposed model is to benefice the utility by modifying the load profile
while preserving the constraints of cost and comfort. Mixed integer quadratic programming is used to
achieve the objective of modifying load profile curve. In [38], the authors proposed a model based on
a large number of residential appliances. PL-Generalized Bender’s technique is used for scheduling
the residential load and protecting the private information of the consumers. This model efficiently
handled the consumption cost of the residential consumers along with the protection of privacy. The
interval number optimization technique is proposed in [39] to handle residential load scheduling
problem, thermostatically controlled and interruptible loads are considered in this scheme. Moreover,
BPSO combined with integer linear programming (ILP) is used for load scheduling.

In the literature, as discussed earlier, zillion of methods are introduced for efficient utilization of
available energy by using DSM infrastructure. The entire electrical network can be made well balanced
and reliable, by managing the energy consumption, electricity cost, peak to average ration (PAR) and
users’ satisfaction. The work discussed above addresses the challenges of electricity consumption cost,
consumers’ convenience and peak demand reduction. However, some of the challenges are yet to be
addressed by the research community; both by industry and academia. The real time implementation
of the current system still requires a lot of advanced research efforts. Dynamic and adaptive control
systems should be developed to predict and monitor the energy consumption behavior of occupants,
comfort level of consumers and more importantly, stability of the entire grid. In [40,41], authors
proposed a model for the scheduling of large number of devices with an objective of cost minimization
and reduction of peak power consumption. Load scheduling strategy is applied in order to achieve
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an optimal energy consumption pattern. Evolutionary algorithm (EA) is implemented to apportion
the consumers’ load aptly over the time horizon. The proposed models perform well in terms of cost
minimization and peak demand reduction, however, consumers’ comfort is not addressed, which is
a key component for end users’ to participate in DR programs. In [42], minimization of electricity
consumption cost and user discomfort are considered as an objective function. Time flexible and
power flexible appliances are considered for efficient utilization of energy. The scheduling problem is
formulated as convex optimization and electricity price is defined by the utility on day ahead basis.
The simulations results show that the proposed technique achieved a desire trade-off between both the
parameters of an objective function. However, by increasing the size of problem the computational
complexity also increases. In order to address these challenges: cost and discomfort minimization
along with peak demand reduction, a hybrid technique is proposed. The contributions of this paper
are as follows:

• GAPSO: In this paper, we focus on designing a load shifting technique with day-ahead pricing
(DAP) mechanism. We demonstrate the performance of a traditional optimization technique
and two heuristic optimization techniques. After analyzing GA and BPSO, it is observed that
these techniques show pre mature convergence when dealing with high dimension problems.
So, there is a need to develop such an optimization method which can improve search efficiency
and precision and adequate to handle multiple constraints. Based on these heuristic techniques,
a hybrid technique is proposed with the objectives of cost and discomfort minimization. Extensive
simulations are conducted to validate the results. The efficiency of the proposed technique is
validated by analyzing the performance metrics, which show high cost savings with minimum
user discomfort. Furthermore, our proposed model has less computational complexity and
more generality.

• We formulate the binary optimization problem through multiple knapsack problem (MKP). MKP
helps in the effort of finding an optimal solution while employing GAPSO and respecting the
total capacity of available amount of power.

The rest of the paper is organized as follows. Section 2 elaborates the system model. The problem
formulation is briefly discussed in Section 3. Heuristic optimization techniques used in this work is
given in Section 4. In Section 5 proposed technique is discussed. Section 6 contains simulations and
discussions. Section 7 concludes the work.

2. System Model

In this research work, we consider multiple smart homes in a residential area where the appliances
in each smart home have low energy consumption ratings and short length of operation. There are
2604 controllable appliances available in this sector from 14 different types of appliances. All types of
appliances have different energy consumption pattern and operation time. As in this area consumers
have low priorities regarding the time when the energy has to be utilized, so more savings can be
achieved in residential sector. The amount of incentives given to consumers depend on how much
discomfort the consumer is willing to undergo. In the proposed model, we considered shiftable
appliances. However, devices fulfill their length of operation time without exceeding the maximum
allowable delay. Additionally, in the proposed model comfort level of consumer is incorporated, as a
result of which the consumption cost is increased. Moreover, half an hour time slot is considered in the
proposed model. The power ratings of appliances and their length of operation are given in Table 1.

The system model comprises of energy management controller, smart homes, communication
networks and pricing model. The system model is demonstrated in Figure 1.
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Figure 1. An Overview of Home Energy Management System Model.

Table 1. Appliances parameters.

Appliance’s Type Power Rating (kW) Length of Operation Time (hours) Total Devices

Dryer 1.2 4.0 189
Dish Washer 0.7 3.0 288

Washing Machine 2.0 2.5 268
Oven 1.3 3.0 279
Iron 1.0 2.0 340

Vacuum Cleaner 2.0 2.0 158
Fan 0.2 24 288

Kettle 2.0 4.0 406
Toaster 0.9 3.0 048

Rice Cooker 0.85 4.0 059
Hair Dryer 1.5 2.0 058

Blender 0.3 1.5 066
Frying Pan 1.1 1.5 101

Coffee Maker 0.8 1.5 056
Total - - 2604

2.1. Energy Management Controller

In this model, DSM focuses on efficient utilization of energy in residential sector. The power
utility is directly connected to EMC and exchanges bidirectional information and unidirectional power
flow in real time.The central EMC receives the price information from the power utility and performs
the appropriate action. At the same time it contains the information from the consumer’s end. It acts as
a gate way between power utility and several homes. The main functionalities of EMC are monitoring,
controlling and managing the residential load. In this case DSM uses load shifting as a basic scheme
that can be implemented by using the central EMC. In this way EMC is capable to handle large number
of residential appliances in well informed and organized manner. The residential devices send their
arrival requests to the EMC and then requests are processed based on the availability of time slot.
The scheduling mechanism is performed on day ahead basis.

2.2. Communication Network

The communication network includes wide area networks (WANs), neighbourhood area networks
(NANs) and home area networks (HANs). The residential appliances are connected to smart meter via
HANs. The residential appliances share their information to the smart meter and then this information
is forwarded to the central EMC. The smart meters of different homes are connected to the central EMC
via NANs. Through NANs the collective information is reached to the main EMC. The EMC exchanges
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the received information to the power utility via WANs. Through WANs the demand response and
the price information is exchanged between power utility and the main EMC.

2.3. Pricing Schemes

In this work two pricing schemes are used, and based on these schemes we analyzed the
performance of our proposed model.

2.3.1. DAP Model

The basic purpose of providing the pricing model on day ahead basis is to facilitate the consumers
to take well-informed decisions. In this way consumers can adjust their electricity consumption pattern
while taking care of comfort level. This helps consumers to reduce their electricity bills and these
pricing models are readily available to consumers via advanced metering infrastructure. In this work,
DAP is used similar to [41], and is shown in Figure 2. The pricing signal portrays three main regions:
on-peak, off-peak and shoulder-peak hours. The load can be altered by observing the pricing signal
offered by the utility.
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Figure 2. Electricity Price-DAP.

2.3.2. CPP Model

To validate and generalize the performance of the proposed model, we extend our approach by
implementing the critical peak pricing (CPP) for load scheduling purpose. In CPP, depending upon
the utility policies, electricity prices are double or even higher at critical peak hours. More specifically
in this case we have considered a hot summer day, having critical peak hours from 12:00 p.m. to 3:00
p.m. where prices are almost double than usual. Critical events occurred very rarely in entire season
or a year due to intense hot or cold weather. Figure 3 portrays the CPP pricing signal.
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Figure 3. Electricity Price-CPP.

3. Problem Formulation

In this section, energy scheduling problem is formulated for an objective function and constraints.
The aim is to minimize the consumption cost and maximize the users’ comfort while respecting all the
constraints. In objective function we formulate the maximization of user comfort as minimization of
user discomfort, so both the terms are used interchangeably.

3.1. Multiple Knapsack Problem

The energy scheduling is one of the core issues in energy management system. In this work,
multiple knapsack problem (MKP) is used to address the scheduling problem of a residential load.
Knapsack is a combinatorial problem in which a number of objects, each having weight and value, must
be packed in a bin of a specific capacity, in such a way that the total profit inside the bin is maximum.
MKP is a resource allocation problem, and every resource has a specific capacity constraint. In this way,
the system finds an optimal combination of household appliances operation modes while respecting
the total capacity of available amount of power [43]. The reasons for using MKP are as follows,

1. It can be referred as a simplest integer linear programming (LP).
2. It can be viewed as subproblems in many complex problems.
3. It may represent the great practical situations.

For the sake of simplicity the abbreviations used in mathematical formulation are given in Table 2.
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Table 2. Abbreviations.

Variables Description

T Time period of a day
Tt

u User defined time
Tt

s Scheduler defined time
EMC Energy Management Controller

λi Electricity price
Ti

OTI Operation time interval of appliance i
αi Start time of an appliance i
βi End time of an appliance

Ti
LoT Length of operation time of device i

CapT Maximum allowable energy that can be used for each hour of the day

3.2. MKP in Energy Management System

The relation between the key terms used in MKP and energy management system can be
developed as in [44] and is given below,

1. m knapsacks = m time interval.
2. n objects = n appliances.
3. w weight of an object = Ei Energy consumed by an appliance i.
4. value of an object = consumption cost of an appliance at time t.
5. Capacity of knapsack = user demand with respect to the maximum amount of energy that can be

drawn from the grid at time t.

The mathematical formulation of an objective function and constraints is performed and the
performance metrics of the considered problem are computed.

The electricity consumption cost, consumers’ discomfort, total energy consumption and PAR
are calculated and based on these equations we modelled the proposed approach and addressed the
challenges of residential load.

The energy consumed by a single residential device over 24 h time horizon can be calculated by
using the following equation,

E =
m

∑
t=1

Pi
r × Δi,t (1)

where Pi
r is power rating of a device i and Δi,t is status of device i at time slot t which can be given as,

Δi,t =

{
1 if device of type i at time t is ON;

0 otherwise.
(2)

The total residential energy consumed by n number of smart devices can be calculated as follows,

Er
e =

m

∑
t=1

(
n

∑
i=1

Pi
r × Δi,t

)
(3)

Similarly, the total energy consumption cost of all the devices is given by

Cr
c =

m

∑
t=1

n

∑
i=1

Pi
r(Δi,t × λt) (4)

As maximizing the user comfort and minimizing the user discomfort can be used alternatively.
So, for simplicity of our objective function i.e., Equation (7) , we used “minimization” for both the
parameters collectively.

The consumers’ discomfort is represented as Γ and calculated by using Equation (5) similar
to [42], similarly Equation (5) also demonstrates that ρ and k are the real numbers that represent the
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operational characteristics of devices, and Tst
i and Tut

i are the operational time of appliances set by the
scheduler and consumer respectively.

Γ =
n

∑
i=1

ρ(Tst
i − Tut

i)
k (5)

where,

0 < ρ < 1 , k ≥ 1

The value of ρ lies between this interval because we aim to minimize the discomfort caused by
delaying the operation of appliances. In case of violation of this limit, the electricity consumer will
be suffered with more discomfort in the form of more delay in the operation of appliances. Where,
the real number k represents the behaviour of appliance.

PAR can be calculated as follows

PAR =

maxt∈T
( n

∑
i=1

(Pi
r × Δi,t)

)
1
m
( m

∑
t=1

n
∑

i=1
(Pi

r × Δi,t)
) ∀ T = {1, 2, ..., m} (6)

We have used the linear weighted sum method (scalarization approach) in which both parameters;
cost and discomfort get normalized values, range between 0 and 1. So, both cost and discomfort are
comparable. Furthermore, we have assigned equal weights (i.e., 0.5) to both cost and discomfort and
their sum is equal to 1, ω1 + ω2 = 1.

The mathematical formulation of an objective function and constraints can be given as,

Minimize
(

ω1 × Cr
t + ω2 × Γ

)
(7)

Subject to
n

∑
i=1

(Pi
r × Δi,t) ≤ CapT ∀ t = {1, 2, ..., m} (7a)

PAR with EMC ≤ PAR without EMC (7b)
m

∑
t=1

Δi,t = Ti
LoT ∀ i = {1, 2, ..., n} (7c)

αi ≤ Ti
OTI ≤ βi (7d)

Cr with EMC
c ≤ Cr without EMC

c (7e)

Er with EMC
e = Er without EMC

e (7f)

Equation (7) shows an objective function to be minimized and comprises of electricity cost and
discomfort of consumers. Equations (7a)–(7f) define the constraint functions. In Equation (7), the cost
and user discomfort are assigned equal weights ω1 and ω2 respectively. However, the values of
weights can be varied in the range between [0, 1] or ω1 + ω2 = 1. In Equation (7a), limit shows
the maximum allowable capacity that can be utilized at any hour of the day. The boundary limit
ensures the stability of a grid by restricting the consumers to a limited amount of energy consumption.
In Equation (7b), PAR is addressed to avoid the peaks creation at any hour of the day so that stability
of a grid remains un-jeopardized.

Equation (7c) shows that length of the operation time of each device must be completed to avoid
the users’ frustration. Equation (7d) depicts that device must fulfill operation time after its start time
and before end time in order to mitigate the user discomfort. In Equation (7e), it is depicted that
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the total consumption cost with EMC must be less than the total consumption cost without EMC.
Equation (7f) illustrates that the total energy consumption with and without EMC must be the same.

4. Optimization Techniques

The optimization techniques used in this work are briefly discussed.

4.1. Heuristic Optimization Techniques

We have considered two heuristic optimization techniques. On the basis of these techniques we
have proposed our own technique.

4.1.1. Brief Description of GA

GA has been successfully used in problems such as scheduling job shops and travelling salesman.
It is a robust adaptive optimization technique which is based on biological paradigm. It performs
efficient search on-poorly defined spaces which motivates the application of this technique to solve
the binary optimization problem. It aims at finding the best candidates from the entire population.
The fittest candidates are ranked higher in the population, whereas the least fit candidates are ranked
lower in the population. In the end, one fittest candidate is selected which is called global best.
The entire chronological process is followed as, random generation of population, fitness evaluation,
elitism, selection, crossover and mutation. The population is updated by using the aforementioned
parameters, the fittest chromosomes are survived and least fit candidates are weeded out in the next
population. More detailed knowledge about GA can be found in [45,46].

4.1.2. Brief Description of BPSO

BPSO is an established version of PSO, it is a heuristic optimization technique inspired by the
social behavior of bird flocking and fish schooling. This technique has been extensively used for a
variety of binary optimization problems which motivated us to solve our binary optimization problem
employing this technique. BPSO aims at finding the best possible solution to a problem from entire
search space. The velocity and position of particles are randomly initialized, then updated by using
their respective equations. The particles traverse through the entire space so that an optimal solution
can be found. The evaluation of all the particles are performed and the global best and personal best
positions are updated if required. At the end of stipulated iterations one global best is opted which is
considered as a solution to the problem [47]. Each particle is associated with its position and velocity.
The position of particle at any point in search space can be determined as follows:

�Xk(t) = �Xk(t − 1) + �Vk(t) (8)

Each particle is associated with the velocity vector, containing the information of local and global
best positions achieved so far. The updated velocity of a particle can be given as,

�Vk(t) = ϕ�Vk(t − 1) + Ω1.rand1.(�Pk − �Xk(t − 1))

+Ω2.rand2.(�Pg − �Xk(t − 1))
(9)

where ϕ is the inertia constant or weight of the particles, k ∈ 1, 2, ..., M is the number of particles,
Ω1 and Ω2 are constant numbers and Ω1 + Ω2 = 4. �Pk and �Pg are local and global best solutions
achieved so far. �Xk(t − 1) and �Xk(t) are previous and current positions of particle in the search space.

The velocity update expression composed of three main components.

• The first component is often known as “inertia” or “momentum”, it tends to move a particle in
the same direction as it was travelling in. The inertia component can be scaled with a constant
factor known as inertia constant. The inertia constant controls the velocity of a particle so that the
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particle cannot move beyond or below the scope of optimal search space. Mathematically inertia
constant can be given as,

ϕ = ϕ f + (ϕ f − ϕi)×
( kthiteration

maximum iterations

)
(10)

• The second component represents the local best solution found for the first time in search space.
It tends to converge the solution toward local optima.

• The third component can be referred as the linear attraction towards the global best solution from
the entire search space. It tends to fetch the optimum solution by using group knowledge of all
the particles.

If the value of velocity exceeds the maximum or minimum limits, then it can be written as follows:

�Vk(t) =

{
�Vmax if �Vk(t) > �Vmax;
�Vmin if �Vk(t) < �Vmin.

(11)

The position of each member of particle is updated by using the following equation,

�Xk(t) =

{
1 if sig(�Vk(t) > rand);
0 otherwise.

(12)

where, sig(�Vk(t)) = 1
(1+exp(�Vk(t))).

Sigmoid function converts the value of velocity to a binary format by comparing it with randomly
generated number in range between [0, 1]. The maximum and minimum extremes of velocity
are [�Vmax and �Vmin].

4.2. Deterministic Optimization Technique

The description of deterministic technique is given as follows:

Brief Description of DP

The dynamic programming is used in order to solve the knapsack problem. DP was basically
introduced by Bellman [48] to solve the knapsack problem. It has the ability to divide a problem into
sub-problems and memorizing. DP allows the knapsack problem to be divided into n sub problems.
The solution of each problem is maintained in a table. In this work, small items having largest values
i.e., electricity cost are selected for Off-peak hours, where large item with small values are used to
represent On-peak hours.

5. Proposed Technique

Residential sector has large number of appliances of different types, and all the appliances have
different power ratings and consumption patterns. DSM needs such a technique that can efficiently
handle these complexities. In literature, mathematical techniques such as linear programming (LP)
and DP are used for this purpose, these techniques require more computational time and additionally,
inadequate to handle multiple constraints [41,49–51]. Evolutionary heuristic techniques have shown
capabilities to cope with such complex scenarios.

GAPSO

In the beginning, two heuristic optimization techniques: GA and BPSO are implemented and their
performance is analyzed. Both the heuristic optimization techniques are briefly discussed in Section 4.
After analyzing the performance of these algorithms, it is observed that the two above mentioned
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techniques both show pre mature convergence when dealing with high dimension problems. As a
result of pre mature convergence, it is difficult and even impractical to solely rely on such optimization
criteria. So, there is a need to develop such an optimization method which can improve search efficiency
and precision and adequate to handle multiple constraints. In this work, therefore, GAPSO is proposed
so as to obviate the problem of pre mature convergence. The proposed technique is intended to solve
the residential load scheduling problem in more accurate and economic way. Moreover, in comparison
to traditional optimization methods, the proposed model has lower computational complexity.

The positive traits of each technique are merged together to overcome the problem of convergence
at local optima. The proposed technique is then capable of searching feasible space more effectively.
The steps involve in the proposed hybrid model are given as; in the beginning a random population
is generated, and then evaluation of the fitness function is performed by using 7. Tournament base
selection criteria is used for selecting the parents from the population. Binary crossover and two bits
mutation is used in this work. The crossover and mutation is done on selected parents to modify
the population. Crossover, mutation and fitness evaluation are performed similar to [52]. Elitism is
the process of remembering the good solution achieved so far. At this stage, position and velocity
of particles are further updated by using Equations (8) and (9) respectively. While updating the
velocity, sigmoid function which is discussed in Section 4 is used to convert the values in binary
format. The evolution of population by using the innate traits of BPSO: position and velocity, further
explores the search space. This results in mitigating the problem of pre mature convergence. The entire
process is repeated until the termination criteria is reached. The termination criteria depends on the
stipulated number of iterations or when the variations in fitness are not more than a predefined limit
(i.e., 10−10) for numerous (i.e., 50) successive generations. Algorithm 1 shows the working of the
proposed technique.

In this way, the proposed scheme has significantly affected the desired performance parameters.
The user comfort in term of waiting time is also taken into consideration, since it is of great importance.
User comfort along with reimbursement is the only factor which enticed the consumers to actively
participate in DR program. So, the proposed technique is considered to manage electricity cost and
user comfort along with peak consumption. The parameters used in the proposed technique are given
in Table 3.

Table 3. Variables used in proposed technique.

Variables Values

Probability of crossover 0.9
Probability of mutation 0.1

Insite 1.0
Vmax 4.0
Vmin −4

Ω1 2.0
Ω2 2.0

Population size 200
Maximum Iterations 600

ρ 0.001
k 3.0
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Algorithm 1: GAPSO
Input- Initialize population size, length of chromosome, selection criteria, crossover and
mutation rates (pc, pm), maximum and minimum velocities, maximum number of iterations,
local and global pulls, inertia constant

Initialization - Generate initial population
while stopping criteria is not met do

end

Evaluate the fitness of population
Perform elitism to save the best chromosome
Apply tournament base selection criteria to select two parents from the population
if pc ≤ 0.9 then

Select crossover point of both the selected parents
Reproduce the offsprings by applying crossover operation

end

if pm ≤ 0.1 then
Select a chromosome after crossover operation
Randomly invert a bit of selected individual

end

Calculate velocity of particles as,
�Vk(t) = ϕ�Vk(t − 1) + Ω1.rand1.(�Pk − �Xk(t − 1)) + Ω2.rand2.(�Pg − �Xk(t − 1))
Sigmoid Function:
sig(�Vk(t)) = 1

(1+exp(�Vk(t)))
Update position of particles as,
�Xk(t) = �Xk(t − 1) + �Vk(t)
Evaluate Fitness using Equation (7)
if current fitness value is better than previous then

Set current value as local best (�Pk)

end

Choose the particle with best fitness value of all the particles as global best (�Pg)

Return Best

6. Simulations and Discussions

In this section, the performance of GA, BPSO, and GAPSO is discussed in detail.
While implementing the heuristic optimization techniques for scheduling of residential load,
various factors are observed regarding cost minimization, efficient power consumption, peak reduction
and user comfort.

6.1. Performance Parameters Definitions

The cost minimization can be referred to as the amount of reduction in electricity bills of consumers.
The consumers pay this amount to the utility on hourly consumption basis at the completion of a
predefined period. The efficient power consumption can be defined as intelligent utilization of
available power in such a way that the total demand never exceeds the generation capacity. Due to
synchronization among consumers’ energy utilization pattern, peaks are formed which may damage
the stability of a grid. The user comfort of consumers can be defined as the minimum electricity cost
and minimum interruption of devices in daily routine life.

6.2. Peak Power Consumption

Figures 4 and 5 show the power consumption behavior under four optimization techniques
with DAP mechanism on daily and monthly basis respectively. The energy consumption depends
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on power rating and length of the operation time of devices. The performance of GA in term of
peak power consumption is analyzed. It is demonstrated and validated that GA is less efficient when
dealing with peak power consumption. This is due to the global exploration mode of GA which
always focuses on minimum electricity price offered by the utility. This resulted in peaks formation at
off-peak hours while user satisfaction is not taken under consideration. In this way GA scheduled
most of the residential devices at hours where electricity prices are low regardless of taking peak
power consumption into account. Whereas, BPSO performed well in term of reducing peak power
consumption, because BPSO scheduled less number of devices at off-peak hours as compared to that
of GA, this results in significant reduction in peak power consumption. In GAPSO, the peak power
consumption is analyzed and it is observed that peak consumption is reduced to a significant amount.
Additionally, the results of DP are also analyzed, and it is observed that DP performed better in term of
peak demand reduction. It is observed that GA, BPSO, GAPSO and DP have hourly peak consumption
of 1572.3 kW, 1232.3 kW, 1085.3 kW and 1108.8 kW respectively. Results validated that the proposed
technique has efficient response for time varying price signal.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Time (slots)

0

200

400

600

800

1000

1200

1400

1600

1800

P
ow

er
 (

kW
)

Without EMC
GA
BPSO
GAPSO
DP

Figure 4. Daily Power Consumption-DAP.
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Figure 5. Monthly Power Consumption-DAP.
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Figures 6 and 7 show that the proposed scenario is implemented for CPP. For CPP, it is observed
that during a hot or cold day, most of residents consume energy during critical peak hours as a result of
which more peaks are created during this time. The overall residential energy consumption behavior
is demonstrated in Tables 4 and 6.
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Figure 6. Daily Power Consumption-CPP.
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Figure 7. Monthly Power Consumption-CPP.
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Table 4. Daily Energy Consumption Cost and Peak Load.

Technique Parameters Without EMC With EMC Reduction (%)

GA Cost ($) 1581.9 1480.7 29.9702
Peak-Load (kW) 1706.3 1572.3 7.8532

BPSO Cost ($) 1581.9 1591.2 24.0470
Peak-Load (kW) 1706.3 1232.3 27.7794

GAPSO Cost ($) 1581.9 1181.8 25.2923
Peak-Load (kW) 1706.3 1085.3 36.39

DP Cost ($) 1581.9 1297.2 25.6467
Peak-Load (kW) 1706.3 1108.8 35.0172

6.3. Electricity Cost

Electricity consumption cost under different techniques is demonstrated in Figures 8 and 9 for
DAP mechanism. It is observed from the figures that the performance of GA shows substantial
savings in electricity bills. The results validate that GA achieved 29.9702% reduction in electricity
consumption cost. Whereas, BPSO achieved the reduction of 24.0470% in electricity consumption cost.
Because both the techniques shifted the residential load from on-peak hours to off-peak hours where
prices are minimum regardless of waiting time, and hence results in reduction in electricity cost.
Through out the ample simulations it is shown that GAPSO successfully managed to reduce the
consumption cost up to 25.2923% with minimum waiting time. Although the proposed technique
is less efficient than GA in term of cost reduction, however, with optimized consumers’ satisfaction.
The reason associated with this fact is the inverse relationship between electricity bills and user
satisfaction. The performance of the proposed model is also compared with DP. The results demonstrate
that the proposed model has comparable performance with DP, however, with less computational
complexity and storage space.

Since GA finds an optimal or near optimal solution from the entire search space and schedules the
residential devices where consumers pay minimum electricity expenses. It is an inherent trait of GA
that it can deal with complexities and non-linearities. It is capable of fulfilling the length of operation
time of all the devices. Due to all these characteristics GA efficiently manages to reduce the electricity
consumption cost. The performance of BPSO in term of cost minimization is analyzed and in this
work it is shown that BPSO achieved less savings in electricity bill as compared to that of GA. It is
attributed to the fact that BPSO uniformly scheduled the residential load over the time period to avoid
the peaks creation. Although BPSO shifted the load at off-peak hours, however, the shifted load is
comparatively less than that of GA. It is worth mentioning that by delaying an operation of devices,
more reduction in electricity cost can be achieved at end consumers’. While analyzing the performance
of the proposed model in terms of cost minimization, it is observed that GAPSO has optimally achieved
the objective of cost minimization. The results show that GAPSO achieved 4.6779% less reduction in
electricity consumption cost as compared to that of GA. Moreover, it is also observed that GAPSO
achieved 1.2453% more reduction in electricity cost than BPSO, because in proposed technique both
the parameters: consumption cost and user discomfort are taken into consideration. It results in fewer
savings in electricity bills with improved consumers’ lifestyle. To substantiate the performance of
the proposed work, results are compared with DP. It is observed that both the techniques performed
efficiently while reducing the energy consumption cost. DP achieved a bit higher savings because it
converges to the optimal results, however, at the expense of time and storage space.

Figures 10 and 11 show the energy consumption cost for CPP signal on daily and monthly basis.
It is noted that during critical hours consumers are charged with high electricity prices. It is also
observed that in case of CPP energy consumption cost is significantly increased as compared to that
of DAP, because utility offers maximum electricity prices during critical hours (i.e., 12 p.m.–3 p.m.).
Energy consumption cost is analyzed for both the scenarios in Tables 4 and 6.
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Figure 8. Daily Electricity Cost-DAP.
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Figure 9. Monthly Electricity Cost-DAP.
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Figure 10. Daily Electricity Cost-CPP.
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Figure 11. Monthly Electricity Cost-CPP.

6.4. PAR

The stability and reliability of a grid can be ensured by analyzing the PAR. Figures 12 and 13
depict PAR on daily and monthly basis when considering DAP as a pricing scheme. Figures infer that
GA and BPSO achieved 7.8532% and 27.7794% reduction in peak power consumption respectively.
Both heuristic techniques scheduled residential load from on-peak hours to off-peak hours. It is
validated from the results that these heuristic techniques scheduled the load where electricity price
is minimum. Whereas, GAPSO reduced 36.39% peak power consumption. This is due to the fact
that GAPSO managed to distribute the entire residential load over 24 h time horizon. The load is

120



Energies 2017, 10, 1546

distributed in such a manner that no peaks are created while respecting the waiting time of devices.
Moreover, the performance of DP is also analyzed and compared with the proposed approach, it is
observed that DP performed better in terms of peak demand reduction.

For CPP, Figures 14 and 15 show the PAR for a day and a month respectively. It is deduced
that for a single day, the BPSO performed well as compared to other techniques, however, GAPSO
outperformed rest of the techniques when compared with rest of the techniques for a month. It is due
to the fact that, GAPSO scheduled the most prior load at critical hours. So as to maintain the stability
of entire electrical network during critical peak hours, while taking into account the users’ discomfort.
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Without EMC GA BPSO GAPSO DP
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
A

R

Figure 15. Monthly PAR-CPP.

6.5. User Comfort

The user comfort is associated with minimum consumption cost, minimum waiting time for the
operation of devices, maintaining desired indoor temperature level, illuminance level, air quality
and humidity etc. In this work, waiting time is considered as user comfort and thus to be optimized.
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While implementing the GA for the residential load scheduling problem, user comfort is not taken
into consideration. It results in maximum load scheduled at end hours and reduced maximum
consumption cost. Similarly, in BPSO user comfort is not taken into consideration, and operation time
of most of the devices are shifted to later hours. User comfort in terms of user discomfort and waiting
time can be given as follows:

1. Since in this model, the maximization of user comfort is considered equivalent to the minimization
of user discomfort, so both the terms can be used interchangeably. Figure 16 portrays the user
discomfort of all the residential devices over the 24 h time horizon. Through performing extensive
simulations it has been noticed that by minimizing the user discomfort, electricity cost is increased.
The waiting time associated with discomfort is also analyzed and discussed.

2. Figure 17 demonstrates the waiting time of all the appliances. The average waiting time of 5 h is
considered in the proposed scheme. Moreover, in this work, the length of operation time of fan
is 24 h and it is demonstrated that the associated waiting time is zero for this device. Generally,
by delaying the appliance’s operation time more monetary benefits are achieved at consumers’
end. It is also observed in the proposed technique, that with the incorporation of user comfort,
comparatively less savings are achieved. In the proposed scenario half an hour is considered as
an operational time slot of appliances (i.e., 1 slot = 30 min).

3. Figure 16 shows the discomfort faced by each corresponding residential device. Whereas,
Figure 17 shows that average waiting time for each device. No comparison is being made
in these figures, as the purpose of these figures is to demonstrate the user discomfort and average
waiting for each corresponding residential device.
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Figure 16. User Discomfort (Dr: Dryer, D.W: Dish Washer, W.M: Washing Machine, Ov: Oven, Ir: Iron,
V.C: Vacuum, Ket: Kettle, To: Toaster, R.C: Rice Cooker, H.D: Hair Dryer, Bl: Blender, F.P: Frying Pan,
C.M: Coffee Maker).
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Figure 17. Average Waiting Time (Dr: Dryer, D.W: Dish Washer, W.M: Washing Machine, Ov: Oven,
Ir: Iron, V.C: Vacuum, Ket: Kettle, To: Toaster, R.C: Rice Cooker, H.D: Hair Dryer, Bl: Blender,
F.P: Frying Pan, C.M: Coffee Maker).

6.6. Feasible Region

A region comprises a set of points having a possible solution for a problem is known as a
feasible region. Generally, feasible region is associated with the concept of optimization. In this work,
feasible region is considered as an area containing all the possible solutions for an optimization problem.
The evaluated performance parameters are analyzed graphically with the help of feasible region.

6.6.1. Feasible Region for Consumption Cost and Power

Electricity cost and power consumption are two directly linked parameters, varying consumption
behavior and electricity price affect the electricity cost. A region bounded by a set of four points:
P1(57.6, 4.6656), P2(57.6, 15.7536), P3(1706.3, 138.2103) and P4(1706.3, 466.67) represents a feasible
region for electricity consumption cost and is shown in Figure 18. Point P1(57.6, 4.6656) denotes a
minimum power consumption at minimum electricity cost over the entire day. Whereas, P2(57.6,
15.7536) shows minimum power consumption at maximum electricity cost offered by the utility. In
P3(1706.3, 138.2103), it is demonstrated that the maximum consumption at minimum electricity cost.
Whereas, P4(17063, 466.67) depicts an extreme point in a feasible region where both electricity cost
and power consumption are maximum. However, P5(1706.3, 207.6448) shows maximum power
consumption and electricity cost for our proposed model. Feasible region infers that by tailoring the
consumption behavior consumers can minimize the consumption cost.
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Figure 18. Feasible Region: Cost and Power Consumption.

6.6.2. Feasible Region for Cost and Waiting Time

In our proposed scenario, the user discomfort is discussed in term of waiting time of devices.
The maximum allowable waiting time for residential devices is 10 slots (i.e., 5 h). Figure 19 portrays
the trade-off between the consumption cost and waiting time. User discomfort and electricity cost
are inversely proportion to each other, by decreasing user discomfort electricity cost increases and
vice versa. P1(0, 4.6656) and P2(0, 207.6448) show minimum and maximum consumption cost at zero
waiting time. Consumers achieve maximum comfort at zero delay for the operational time of their
devices. Whereas, P3(10, 4.6656) and P4(10, 97.23) denote minimum and maximum consumption at
maximum waiting time.

-2 0 2 4 6 8 10
Waiting Time (slots)

-50

0

50

100

150

200

250

C
o

st
 (

$
)

P
2
(0, 207.6448)

P
1
(0, 4.6656)

P
3
(10, 4.6656)

P
4
(10, 97.23)

Figure 19. Feasible Region: Cost and Waiting Time.

6.7. Performance Trade-Off

It is deduced from the results that with the incorporation of user comfort in term of waiting
time, the performance parameters are also affected. It can be viewed vividly from the same figure
(i.e., GA and BPSO) that the user has achieved maximum monetary benefits, however, compromised
on consumers’ convenience. Similarly, it is shown that GAPSO achieved comparatively less savings
in electricity bills with maximum comfort level. In this way, electricity cost and user comfort both
are efficiently addressed in the proposed model. The savings in electricity bills are decreased by
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4.6779%, this decrement in savings is due to the fact that electricity cost and user comfort are inversely
proportional to each other. By increasing the user comfort, savings in electricity bills are decreased
and vice versa. The tradeoff between user comfort and cost is obvious since without sacrificing the
convenience consumers are incapable of achieving the reduction in consumption cost.

In this work, we have considered uncontrolled parameters (without EMC) as bench mark;
however, the results of the proposed technique are also compared with DP. The performance of
the proposed approach is analyzed and is demonstrated in Table 5. Table shows the upper and lower
ranges of energy consumption cost, user discomfort and peak demand reduction. By analyzing the
deviations between upper and lower values, it is deduced that the proposed model achieved the
desired objective with 95% confidence interval. Moreover, optimality of the proposed model is also
analyzed, as the DP provides optimal results. The difference between the performance parameters
of proposed technique and that of DP provides the optimality gap. Table 6 provides the monthly
energy consumption cost and the peak load. It is clear from the figures provided in this table that
as compared to GA and BPSO, GAPSO benefits the consumers by reducing their cost significantly.
We have noticed that there is no significant difference between cost reduction by GAPSO and DP;
however, we still prefer GAPSO over DP due to its computational efficiency which is clear from Table 7.
The computational time of the proposed technique for 112 residential devices is also analyzed and
compared with other considered techniques. Moreover, Table 7 portrays the time analysis of the
proposed heuristic technique with DP, thus depicting the efficiency of the proposed technique with the
deterministic approach in terms of computational time. The results clearly elucidate that our proposed
technique; GAPSO solves the formulated problem with least amount of time.

Table 5. The Comparison of Performance Metrics for a Day.

Technique Parameters Lower Value Upper Value

GA
Cost ($) 1106.7 1116.0

Discomfort 0.1240 0.8941
PAR 5.8204 6.1599

BPSO
Cost ($) 1201.4 1205.2

Discomfort 0.2310 0.8421
PAR 4.5706 4.7336

GAPSO
Cost ($) 1179.6 1182.8

Discomfort 0.1102 0.8100
PAR 4.4858 4.5283

DP
Cost ($) 1175.6 1175.6

Discomfort 0.1102 0.8100
PAR 4.2350 4.2315

Table 6. Monthly Energy Consumption Cost and Peak Load.

Technique Parameters Without EMC With EMC Reduction (%)

GA Cost ($) 57,584 45,771 20.5143
Peak-Load (kW) 41,088 32,136 21.7873

BPSO Cost ($) 57,584 48,550.5 15.6883
Peak-Load (kW) 41,088 26,928 34.4626

GAPSO Cost ($) 57,584 43,765 23.9979
Peak-Load (kW) 41,088 27,476 33.1288

DP Cost ($) 57,584 43,840 23.8677
Peak-Load (kW) 41,088 27,400 33.331
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Table 7. Computational Time of Employed Heuristic Techniques.

Techniques Computation Time (Seconds)

GA 0.68
BPSO 0.59

GAPSO 0.55
DP 0.7

7. Conclusions

In this paper, we have modelled a residential energy management system proposing a hybrid
technique for residential load scheduling. The scheduling problem is formulated through MKP mainly
focusing on achieving the objectives of minimizing the electricity cost and consumers’ discomfort.
We analysed the performance of our proposed model under four different parameters: power
consumption, electricity cost, PAR and user discomfort. Furthermore, the performance of the proposed
technique is analysed and compared with GA, BPSO and DP. Results demonstrate that the performance
of the proposed model is comparable to that of DP. However, the proposed model is efficient as
it requires less computational time and storage. The proportional relation between performance
parameters is calculated and shown with the help of feasible regions. Simulation results show that
the proposed hybrid scheme, GAPSO, performed better in terms of cost and occupants’ discomfort
minimization along with reduction of peak power consumption compared to its counterpart schemes
GA and BPSO.
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Abstract: Wind speed forecasting has an unsuperseded function in the high-efficiency operation
of wind farms, and is significant in wind-related engineering studies. Back-propagation (BP)
algorithms have been comprehensively employed to forecast time series that are nonlinear, irregular,
and unstable. However, the single model usually overlooks the importance of data pre-processing
and parameter optimization of the model, which results in weak forecasting performance. In this
paper, a more precise and robust model that combines data pre-processing, BP neural network,
and a modified artificial intelligence optimization algorithm was proposed, which succeeded
in avoiding the limitations of the individual algorithm. The novel model not only improves
the forecasting accuracy but also retains the advantages of the firefly algorithm (FA) and overcomes
the disadvantage of the FA while optimizing in the later stage. To verify the forecasting performance
of the presented hybrid model, 10-min wind speed data from Penglai city, Shandong province, China,
were analyzed in this study. The simulations revealed that the proposed hybrid model significantly
outperforms other single metaheuristics.

Keywords: back propagation (BP); forecasting accuracy; modified firefly algorithm; wind speed;
singular spectrum analysis

1. Introduction

Wind power is one of the most significant recycled energy resources presently being applied [1].
Recently, due to the pollution of the global environment, recyclable energy [2] and non-polluting
sources such as wind energy have been gaining extensive attention [3]. Wind energy, which is one of
the most promising and active recyclable sources, is providing an increasingly strong supplement to
traditional energy sources [4]. When it comes to the accurate forecasting of wind speed and its wide
use in wind power, we encounter great challenges, because the wind is a periodical phenomenon [5]
with a nonlinear, anomalistic, and stochastic nature. Wind speed forecasting is applied in several
domains, for instance, target tracking, shipping, weather forecasting, agricultural production, and
electric load forecasting. To dispatch wind energy before wind power grid integration, it is very
important for a wind farm operator to accurately determine the wind speed. This is because the local
wind speed is always the foremost factor affecting wind power generation, and can be used for wind
turbine selection and for wind farm layout [6]. In addition, wind speed can enhance the power
system’s schedule and strengthen resource configuration, promoting the reliability of the power grid.
Predictions made with higher precision can allow power system operators to dispatch power efficiently
in order to properly meet the demands of consumers [7].
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Given a more precise wind speed value, the power operator is able to forecast power delivery.
This is extremely helpful for power systems in terms of optimizing storage capacity, making sensible
and proper programs, and dispatching electric energy well. Because of the wind’s irregularity and
complex fluctuations, variations in wind speed forecasting may result in quick changes in the prediction
results of wind power. This feature indicates that accurate wind speed forecasting is highly important.
The wind speed forecast plays a vital role in utilizing wind power appropriately and efficiently. Various
methods have been proposed to promote the accuracy of wind speed prediction. Three of the most
extensively used methods are the physical forecasting method, the conventional statistical method, and
the artificial intelligence method. Given a series of meteorological parameters, the physical forecasting
method uses physical variables to derive a time series forecast. Therefore, higher prediction accuracy
can be obtained using this method [8]. However, their extremely intricate computations always
lead to it being largely a waste of time. Numerical weather forecasting is one of the most widely
used physical forecasting methods, consisting of a computer program that aims to solve questions
through meteorological data processing and describe how the atmosphere changes as time goes on [9].
In addition, the traditional approaches include the regression analysis method, the auto-regressive
integrated moving average (ARIMA) [10] model, the non-parametric estimation method, exponential
smoothing [11], the state-space model [12], Box-Jenkins models [13], the spatial correlation model,
and the difference method. Furthermore, support vector machines (SVMs) [14] such as non-neural
networks are also frequently applied in wind speed forecasting.

Among the above methods, artificial neural networks (ANNs) have been frequently and widely
applied. By imitating the human brain in handling information with a sequence of neurons, ANNs
obtain a distinguished capacity for mapping, and their complex and highly nonlinear input and output
modes with making nothing of the type of real model can establish some simple models and compose
different networks depending on different connections. Therefore, ANNs demonstrate the following
advantages: high adaptability, excellent ability to learn using cases, and ability to summarize. It is well
known that the multi-layered perceptron (MLP) is one of the most broadly used ANN methods.
The vast majority of available methods that can be used to train ANNs pay close attention only to
the alteration of connection weights in a certain topology, which usually leads to defective results.

MLPs are prosperously applied in many fields, such as pattern classification [15], digit recognition [16],
image processing, coal price prediction [17], function approximation, measurement of object shape [18],
and adaptation control. The back-propagation (BP) algorithm [19] performs most effectively of all
training algorithms for MLP methods. The selection of a suitable structure for the forecasting question
and the alteration of connection weights of the network constitute the two parts of training MLPs for
the problem. Several studies have been successfully used to solve these issues.

A great deal of research has been conducted to precisely forecast the wind energy and the local
value of wind speed. Wind power and speed forecast is a fundamental problem for wind farm
operation, best power flow between the electric system and wind power plant, market price,
electric power system dispatching, and wind power resource reserve, and storage programming
and dispatching. Over the last few decades, the ANN [20,21] has been the superior model, and has
frequently been applied to forecast time series.

The ANN is a pragmatic calculation method, similar to the human biological neuron.
Various improvable neural networks exist, of which the following two are the most frequently
employed: feed forward neural networks and feedback neural networks. Feed forward neural
networks have no feedback. On the contrary, feedback neural networks possess a feedback.
Back-propagation (BP) neural networks, perceptrons, and radial basis function (RBF) networks play
an important role in feed forward networks. Recurrent Neural Networks (RNNs) [22] and pulsed
neural networks are two important models of feedback networks. The feedback networks mainly
consist of RNN and spiking neural networks [23]. In this paper, we pay more attention to feed forward
neural networks [24].
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The BP algorithm has various significant advantages; for example, it can help to roughly estimate
a great many functions, it is relatively simple to implement, and it can be used as a reference method.
In addition, its most effective characteristic is that the momentum parameter and the learning rate
factor can be altered, thereby enhancing the innovation speed of the traditional BP algorithm.

To gain good forecasting accuracy and low deviation, many studies [25–32] have been
conducted to determine the optimal weights of neural networks. However, an original hybrid
model system—a traditional hybrid method based on the rapid searching theory developed by
Xiao et al. [33]—has been put into use. An extensive study was conducted by Xiao et al. [33] using
four test functions to evaluate the optimization algorithm’s capacity for development, searching,
avoiding partial optima, and convergence velocity, and the results of this experiment demonstrated
that the modified method is more sufficient and excellent than the original algorithm. In recent
years, a number of developmental optimization algorithms have been applied to help confirm
the threshold values of a prediction method. Particle swarm optimization (PSO) was applied
by Liu et al. [25] to optimize the parameters of the prediction technique for short-term electric
load prediction in micro-grids. Wang et al. [26] employed a modified PSO to optimize the weight
distribution of their proposed combined model developed for electric load prediction. The cuckoo
search (CS) algorithm [27–29] was applied to determine the parameters of the proposed model for
electric load forecasting. Wang et al. [30] modified the CS method to optimize the parameters of
multi-step-ahead wind speed forecasting models. Xiao et al. [31] applied the genetic algorithm (GA)
to optimize the parameters of the proposed model. In the present paper, a highly valid optimization
method, the Broyden-Fletcher-Goldfarb-Shanno-Firefly Algorithm (BFGS-FA), is used to determine
the parameters of the proposed hybrid model.

Recently, numerous continuous and novel improvements have been made to promote
the effectiveness of the FA for optimizing neural networks, including the binary, Gaussian, firefly,
high-dimensional firefly, Lévy flight, simultaneous firefly, and chaos-based FA [34,35]. Though most
of these improvements to the FA enhance its performance successfully, few of them have been
introduced to optimize the parameters of hybrid models. This paper intends not only to enhance
the research and development abilities of the FA, but also to minimize the drawback of the partial
optima seeking capacity, which appeared in the CS algorithm. On the basis of the BFGS quasi-Newton
method, an original improvement of the FA was proposed to enhance the diversity of species of
fireflies. Obviously, increasing the convergence standard may result in individual fireflies likely
being caught in partial optima; however, it decreased when this optimized algorithm was used.
Of course, the decomposition of the original wind sequence is a significant process for data filtering.
This can always effectively promote the prediction accuracy of the model to obtain better forecast
results [36]. Important techniques, such as empirical mode decomposition (EMD) [37], wavelet
decomposition (WD) [38], and singular spectrum analysis (SSA) are often applied to remove the noise
series. However, the wavelet de-noising algorithm is sensitive to the determination of the threshold,
and the EMD may lead to mode confusion [39], which may result in a badly decomposed performance.
In addition, SSA has many advantages, and overcomes the disadvantages of EMD and WD in terms
of decomposition. Moreover, we analyzed some articles in the literature [40–44] that deal with wind
forecasting by applying neural networks, and that are in line with the theme of the present paper.
From these studies, we found that some data preprocessing or optimization algorithms are insufficient,
and the details are listed in Table 1. Therefore, based on the discussed limitations, this manuscript
proposes a characteristic hybrid model that unites the BP algorithm, SSA theory, and BFGS-FA.
Ten-minute wind speed values collected from Penglai city, Shandong province, China, were applied to
verify the unique hybrid model. The results of tests and practices in this study indicate that the hybrid
model considerably outperformed the other three models. This demonstrates that the hybrid method
could be applied to calculate wind speeds, which would be beneficial for enabling wind power system
to make optimal decisions, such as providing better sites of wind power, taking early measures to
reduce losses that can be caused due to bad weather, reducing production costs, and minimizing energy
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consumption (coal, etc.). This model is also useful for helping wind power companies to make correct
decisions in real life. Thus, the hybrid forecasting method with high accuracy represents a model that
will have potential application in the near future. Furthermore, the practical hybrid model can also be
applied to other forecasting domains, such as target tracking, stock index forecasting, environment
forecasting, shipping, weather forecasting, agricultural production, and electric load forecasting.

The primary contributions and novelties of this manuscript are listed as follows: (a) The BFGS-FA
method, back propagation neural network (BPNN), and the concept of the de-noising algorithm
were combined to form two new models: singular spectrum analysis-back propagation
(SSA-BP), and singular spectrum analysis-Broyden-Fletcher-Goldfarb-Shanno-Firefly Algorithm-back
propagation (SSA-BFGS-FA-BP). (b) This paper evaluates the developed models on the basis of two
aspects: forecasting accuracy and stability. The results indicate that BFGS-FA-BP is a better model
when considering accuracy only, but the hybrid SSA-BFGS-FA-BP is a better model overall: even with
the low cost of calculation, the accuracy remained high. (c) The novel combined BFGS-FA algorithm
successfully avoids the shortcomings of FA while optimizing, during the later period, the low velocity
and the poor convergence performance. (d) The proposed hybrid approach integrates the advantages
of other individual models. (e) A time sequence pre-processing method was applied to de-noise
the raw data successfully.

The remainder of this paper is designed as follows. Section 2 presents the single prediction
method developed according to the BPNN and the hybrid forecasting method theory. This section also
describes the optimization algorithms BFGS, FA, and their combination BFGS-FA, which are applied
to confirm the parameters of the hybrid forecasting model. SSA theory and the Diebold-Mariano
(DM) test, which can help to determine the forecasting effectiveness of the developed hybrid method,
are introduced at the end of Section 2. In Section 3, the wind speed time sequences collected from
three separate sites are used to test the proposed hybrid model. Subsequently, the wind resources and
the evaluation criteria of the forecasting model are described. In Section 4, we give a discussion about
this study. In the end, Section 5 concludes this paper.
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2. Methodology

Since McCulloch and Pitts [45] proposed the neural network mathematical model in 1943, ANNs
have been applied in numerous fields, including signal processing, market analysis and forecasting,
pattern recognition, and automatic control. In this part, separate theories of this innovative hybrid
model will be introduced in detail.

2.1. BP Algorithm

In mathematically simulating the human brain system, the BP algorithm benefits from its
underlying processes, fuzzy information processing, and chaotic performance. On account of the error
BP algorithm and the multilayer neural network, the BP neural network performs excellently in training
ANNs. An input layer, one or more hidden layers, and an output layer constitute a representative
BP network. The BP algorithm is always applied to adjust the thresholds, in which the errors from
the output are propagated back into the network, transforming the thresholds as it goes, in order to
keep the error [46] from emerging again. Its topology and flow structure are as follows:

The main procedures of the BP algorithm can be generalized as follows:

Step 1. We obtain the wind speed time sequence and corresponding parameter values from
the wind power plant. The inputs have exhaustive information on historical values. The input value
is often affected by the site, surrounding temperature, air pressure, time, and even the collectors.
Our primary task is to make full use of four different parameters collected from the wind power plant.

Step 2. We transform the original value into the requested form (0 to 1). The normalization
method is summarized as follows:

(Value)normalized = [(Value)actual − (Value)min)]/[(Value)max − (Value)min]

Step 3. We build the BP algorithm and set its parameters, which include the number of neurons
in the input layer, hidden layer, and output layer; the learning rate; the maximum training times;
and training requirement accuracy. The training can be summarized as learning from the historical
values to discover the implied information among the previous time series data, which can be applied
to forecast the future wind speed.

Step 4. We use the testing set to assess the effectiveness of the trained BP network.
Step 5. In the end, the future wind speed value (output) is forecast by the neural network.

The key parameters that emerged in this study are not sensitive in small intervals; therefore,
the key parameters of these algorithms are determined by repeated trails. The corresponding
experimental parameters of the method are summarized in Tables 2 and 3.

Table 2. The experimental set points of BP.

Experimental Set Point Default Value

The number of units in the input layer 6
The number of units in the hidden layer 7
The number of units in the output layer 1

The learning rate 0.1
The maximum training time 1000

Required accuracy of training 0.00001

2.2. Broyden-Fletcher-Goldfarb-Shanno

The BFGS [47] algorithm is an excellent method, and one of the most useful nonlinear
quasi-Newton procedures.
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Definition 1. Let xt be the consequence at the representative iteration t and xt+1 = xt + λtdt be a recursive
function in which λt is the step size. The hunting path is dt = −Dt∇ f

(
xt) , in which Dt is an n × n positive

certain symmetric matrix as a proximity of the inverse matrix of the real Hessian matrix at xt.

Definition 2. The new path of BFGS can be designed as follows:

Dt+1 =
(

I − ρtptq
T
t

)
Dt

(
I − ρtqtp

T
t

)
+ ρtptp

T
t ;ρt = 1/pT

t qt (1)

where
pt = λtdt = xt+1 − xt (2)

qt = ∇ f
(

xt+1
)
−∇ f

(
xt) (3)

In addition, the primary BFGS algorithm is generalized in Appendix A.

2.3. Firefly Algorithm

The FA was first proposed by Xin-She Yang in 2008 [48]. The FA was inspired by the flashing
nature of fireflies [49,50]. The firefly will be shining while flying, which can be regarded as a signal to
attract other companions. The method has three regulations:

(1) All fireflies are unisexual; in addition, any firefly can be attracted by others.
(2) Attraction is directly proportional to their brightness; that is, for any two fireflies, the less bright

one will be attracted by the brighter one, and will move towards it; the brightness will decrease
as the distance between them increases.

(3) If there are no brighter fireflies around a known firefly, it will fly at random. The brightness of
the firefly must be tightly related to the objective function.

The experimental set points of the FA are described in Table 3.

Table 3. The experimental set points of FA.

Experimental Set Point FA

Maximum iteration 1000
Population size 20

Alpha 0.25
Beta 0.2

Gamma 1
Convergence tolerance 0.00001

The FA is a developed computational method that is also used to optimize controller parameters.
Each firefly in the FA indicates a solution to the problem, which is defined on the basis of
position. In a d-dimensional vector space, the present location of the ith firefly is acquired by
xi = (xi1, . . . , xin, . . . , xid). The random positions of m fireflies are initialized within the specified
range. The position updating equation for the ith firefly, which is attracted to move to a brighter firefly
j, is given as follows:

xi(t + 1) = xi(t) + β0 exp(−γr2
ij)(xj − xi) + α(rand − 0.5) (4)

In addition, the position updating equation for the brightest firefly is given as follows:

xbesti(t + 1) = xbesti(t) + α(rand − 0.5) (5)
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where the first terms xi(t) and xbesti(t) of Equations (4) and (5) are the current positions of a less bright
firefly and the brightest firefly, respectively. The second term in Equation (4) is the firefly’s attraction
to light intensity. β0 is the original attraction at r = 0, γ is the absorption parameter in the range [0,
1], and rij is the distance between any two fireflies i and j, at position xi and xj, respectively, and can
be formulated as a Cartesian or Euclidean distance as follows:

rij =

√√√√ d

∑
n=1

(xin − xjn)
2 (6)

where xi and xj are the position vectors for fireflies i and j, respectively, with xin representing
the position value for the dimension, and the third term in Equation (4) and the second term
in Equation (5) are used to reduce the randomness; that is, the movement of the fireflies is gradually
reduced according to α = α0δt, where α0 is in the range [0, 1]. δ is the random reduction parameter
where 0 < δ <1, and t is the iteration number. Every new position must be evaluated by a fitness
function, which is assumed to be integral square error. The flow chart of the FA is presented in Figure 1,
and the original FA algorithm is summarized in Appendix B.

 
Figure 1. Topology structure and flow chart of BP neural network and the flow chart and structure of
the combined BFGS-FA Algorithm.

2.4. BFGS-FA

FA possesses good global optimization and development capacities; however, it will usually
be manifest a low velocity and poor convergence performance while optimizing in the later stage.
Therefore, as shown in Figure 1, the BFGS is applied while FA renews the answers after a generation to
search for a sub-optimization solution, which can be used to promote the partial optimization capacity
and the rate of partial convergence of the total method. The primary method of BFGS-FA is generalized
in Appendix C.
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2.5. Singular Spectrum Analysis (SSA)

In America and England, SSA has been exploited separately based on singular spectrum analysis,
whereas in Russia, it was proposed under the name Caterpillar-SSA [51]. SSA possesses the superiority
of statistics and probability theory; meanwhile, it assimilates the knowledge of power systems and
signal processing ideas.

Suppose that y = [y1, y2, . . . , yT ] is a time sequence with T elements. The SSA method contains
two parts: decomposition and reconstruction [52,53].

2.5.1. Decomposition

In decomposition, an observed unidimensional time series data y = [y1, y2, . . . , yT ] is converted
into its trajectory matrix. Subsequently, XXT and its corresponding singular value decomposition
(SVD) are computed. This can be divided into two steps: embedding and SVD.

Step 1. The primary aim of this step is to propose the concept of the trajectory matrix or deferred
edition of the initial time sequence y. The main purpose of this step is to propose the concept of a trajectory
matrix or a hysteretic version of the initial time sequence y. The resulting matrix has a window width
W (W ≤ T/2), which is usually determined by the operator. Suppose that P = T − W + 1, the trajectory
matrix is denoted as follows:

X = [X1, . . . , XP] =

⎛⎜⎜⎜⎜⎜⎝
y1 y2 y3 . . . yP
y2 y3 y4 . . . yP+1

y3 y4 . . . . . . . . .
. . . . . . . . . . . . . . .
yW yW+1 yW+2 . . . yT

⎞⎟⎟⎟⎟⎟⎠ (7)

In fact, this trajectory matrix is a Hankel matrix; that is, all the elements of the diagonal i + j = const
are equal [54].

Step 2. We obtain the covariance matrix XXt from X. XXt processed by the SVD will result
in a group of L eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and their corresponding eigenvectors U1, U2, . . . ,
UL, which are often defined by empirical orthogonal functions. Therefore, the SVD of the trajectory
matrix could be denoted as X = E1 + E2 + . . . + Ed, where Ei =

√
λiUiVi

t, d is the rank of XXt

(the total amount of non-zero characteristic values) and V1, V2, . . . ,Vd are the corresponding principal
components, which are denoted by Vi = XtUi/

√
λi. The set (

√
λi, Ui, Vi) is the ith eigenvalue of

the matrix X. Suppose that T =
d
∑

i=1
λi, then λi/T—the ratio of the variance of X—which is defined by

Ei:E1, has the highest contribution [55], and Ed has the minimum contribution. The SVD will consume
more elapsed time if the length of the time sequence is long enough (i.e., T > 1000).

2.5.2. Reconstruction

We compute XXT and its SVD to obtain its L eigenvalues:λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 and its
corresponding eigenvectors. Each signal, as represented by the eigenvalue, is analyzed and assembled
to reconstruct the new time series. This section can be resolved into two steps: grouping and averaging.

Step 1. Here, the designer chooses r out of d eigenvalues. Define I = {i1, i2, . . . , ir} to be a set of r
chosen eigenvalues and XI = Xi1 + Xi2 + . . . + Xir, in which XI is connected to the “information” of y;
nevertheless, the remaining (d–r) eigenvalues, which are not selected, represent the error term ε.

Step 2. The set of r elements chosen from the foregoing section is then applied to regroup
the definitive elements of the time sequence. The fundamental concept is to convert each of the terms
Xi1, Xi2, . . . , Xir into the reconstructed data time series yi1, yi2, . . . , yir by using the Hankelization process
H(Z) or diagonal averaging: assume Zij is an element of the ordinary matrix Z, then the kth term
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of the rebuilt time sequence could be acquired by averaging Zij, on the precondition of i + j = k + 1.
Obviously, H(Z) is a time sequence with T elements rebuilt by matrix Z.

After averaging, we can obtain the approximation of y, which is the regrouped time series,
and is given as follows:

y = H(Xi1) + H(Xi2) + . . . + H(Xir) + ε (8)

From the whole time series, a singular eigenvalue will be reconstructed as suggested by
Alexandrov and Golyandina. This indicates that SSA is not an awkward algorithm, and is therefore
strong to abnormal values.

In addition, as shown in Figure 2, the original wind speed preprocessed by SSA is forecast by
the BP algorithm, and its parameters are optimized by BFGS-FA.

 

Figure 2. The flow chart of the hybrid SSA-BFGS-FA-BP model.

2.6. Proposed Hybrid Model

The BP algorithm is selected as the forecasting method to forecast the wind speed time series
in this paper. However, because of its unstable structure, we could not obtain more accurate forecasting
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results with minor error; therefore, it is important to determine the optimal parameters and threshold
values of the BP network to promote the predictive effectiveness. BFGF-FA is proposed to determine
the weight and threshold. In addition, large amounts of noise present in the original wind sequence
will lead to a poor forecasting performance. Therefore, we choose the SSA to remove the noise from
the raw time sequence. The corresponding basic procedures are presented as follows, and are depicted
in Figure 2.

Step 1. SSA is used to remove the noise from the raw data. It also aims to remove the high
frequency of the original sequence after decomposing, and then reconstructs them into new
experimental data.

Step 2. BFGS-FA is used to determine the weight and threshold of the BP neural network. Thus,
the ability of the global optimization of the BP algorithm is greatly promoted.

Step 3. The optimized BP neural network is applied to predict the wind speed time sequence.
Step 4. The proposed hybrid model indeed outperforms the single models in forecasting time

sequences based on historical values. Multi-step forecasting also proves that the proposed hybrid
method has a higher effectiveness, and their forms can be described as follows:

(1). One-step prediction: The predictive value p̂(t + 1) is calculated on the basis of the past
time sequence {p(1), p(2), . . . , p(t − 1), p(t)}, where t is the sample size of the wind speed
time sequence.

(2). Two-step prediction: The predictive value p̂(t + 2) is calculated on the basis of the past time
sequence {p(1), p(2), . . . , p(t − 1), p(t)} and the former predictive value p̂(t + 1).

(3). Three-step prediction: The predictive value p̂(t + 3) is calculated on the basis of the past time
sequence {p(1), p(2), . . . , p(t − 1), p(t)} and the former predictive value p̂(t + 1) and p̂(t + 2).

(4). Higher-step forecasting value will be obtained on the basis of the above form.

2.7. Testing Method

In this paper, we also employed a testing method called the Diebold-Mariano (DM) test to estimate
the proposed model.

The Diebold-Mariano (DM) test [56], which is focused on predictive accuracy, compares and
evaluates the predictive effectiveness of the proposed hybrid method with other simple models.
In practical applications, there will be two or more time sequence models available for predicting
a specific variable of interest.

Real values:
{cn; m = 1, · · · , t + l} (9)

Two predictions: {
ĉ(1)m ; m = 1, · · · , t + l

}
;

{
ĉ(2)m ; m = 1, · · · , t + l

}
(10)

The prediction errors according to the two models can be described as follows:

ϕ
(1)
t+g = ct+g − ĉ(1)t+g, g = 1, 2, · · · , l. (11)

and:
ϕ
(2)
t+g = ct+g − ĉ(2)t+g, g = 1, 2, · · · , l. (12)

The precision of each forecasting model is evaluated by an appropriate loss function,
L
(

ϕ
(i)
t+g

)
; i = 1, 2.

The most widespread and available loss function is square error loss, and its formulation
is as follows:
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Square error loss:

L
(

ϕ
(i)
t+g

)
=

(
ϕ
(i)
t+g

)2
(13)

The DM test statistic assesses the prediction according to the random loss function L(p):

DM =

l
∑

g=1
kg

l
√

S2/l
s2 (14)

where S2 is the estimated value of the variance of kg = L
(
]ϕ

(1)
t+g

)
− L

(
ϕ
(2)
t+g

)
, and the null hypothesis is:

H0 : E
(
kg

)
= 0 ∀m (15)

in contrast, the alternative hypothesis is:

H1 : E
(
kg

) �= 0 (16)

Under the null hypothesis, the two predictions possess uniform precision. In contrast,
the alternative hypothesis has different standards, namely, the two predictions differ in accuracy.
If the null hypothesis is right, the Diebold-Mariano statistic will be an asymptotically standard
normal distribution N(0,1). The null hypothesis should not be refused if the calculation of DM
statistic falls inside the interval [−Zα/2, Zα/2], otherwise we must reject it; that is, the reject region
is (−∞,−Zα/2)&(Zα/2,+∞), which is defined as follows:

|DM| > Zα/2 (17)

where Zα/2 is the positive Z-value from the standard normal table according to half of the confidence
level α of the experiment.

3. Experimental Design and Results

In this section, the wind speed data gathered from three sites are forecast by the developed hybrid
method. The data location and effectiveness of the prediction estimation standard are also presented.
All the experiments in this paper were conducted in MATLAB R2014b on Windows 7 with 3.30 GHz
Intel (R) Core (TM) i5 4590 CPU, 64 bit and 8 GB RAM.

3.1. Data Sets

The hybrid SSA-BFGS-FA-BP method was tested using data from experiments of wind speed
prediction time sequences at three sites. A data set gathered at 10-min intervals from Penglai city,
Shandong province, China, was used. Figure 3a displays the geographical position of Penglai city
in China.

In this study, wind speeds are taken from three different sites, and we chose 1728 of them as
observation values. Of these, 1440 values were used to train the network, and the remaining 288 values
were selected as the testing set for each station.

The original data from the three sites are shown in Figure 3b, which illustrates the inordinance,
wave, and mutability of the original time series.
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Figure 3. Geographical position of the survey regions and actual values of three stations.

3.2. Forecast Error Metrics

Forecasting errors are applied to assess the ability of the applied forecasting approaches and to
evaluate the effectiveness of the proposed method on account of on-site/true measures.

The metric equations in Table 4 show us the universal error index applied to most forecasting
models for renewables. The mean absolute error (MAE), the root mean square error (RMSE) [57],
and the mean absolute percentage error (MAPE) are used to estimate the forecasting effectiveness of
the proposed method. They are denoted as follows:

pt and p̂t are the true value and the predicted value, respectively. T is the total number of elements
in this data array. The MAE depends on pt and p̂t, the RMSE depends on pt and p̂t, and furthermore,
the MAPE gives the relative error between |pt − p̂t| and pt. Quantified by these three frequently
used indices, we can clearly and concisely perceive the difference between the predicted and exact
wind speed values. A smaller difference value indicates that the forecasting method has a better
performance. Nevertheless, MAPE, a unit-free estimator, has better sensitivity for small-scale variation,
does not reveal some weak characteristics of data, such as asymmetry, and has lower abnormal value
protection. Therefore, a better MAPE will be chosen as the standard in this paper.
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Table 4. The metric equations.

Error Index Definition Formula

MAE The mean absolute error of T times
predictive results

1
T

T
∑

t=1
|pt − p̂t|

RMSE The root mean square error

√
1
T

T
∑

t=1
(pt − p̂t)

2

MAPE The mean absolute percentage error 1
T

T
∑

t=1

∣∣∣ pt− p̂t
pt

∣∣∣× 100%

3.3. Comparison Method and Its Corresponding Results

Our main contribution is not only to provide an optimization algorithm, but also to propose
a novel hybrid wind speed forecasting model. Experimental results prove that the proposed method
can be perfectly used for short-term wind speed forecasting, and that it has considerable practical value
and strong operability in wind farms and grid management. In addition, we performed a comparative
experiment to compare the proposed model with other forecasting approaches, and the corresponding
results are presented in Table 5, revealing that the proposed hybrid method achieves higher forecasting
accuracy than the other methods.

Table 5. The results of the hybrid model, ARIMA and SVM model at three sites.

Model
Site 1 Site 2 Site 3

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 0.5210 0.6832 7.9275 0.4496 0.5995 6.8094 0.5404 0.7606 10.4179
SVM 0.5069 0.6789 7.5806 0.4526 0.6118 6.8365 0.5379 0.7573 10.3284

Hybrid model 0.1849 0.2461 4.8496 0.2337 0.2465 4.5512 0.2407 0.2851 6.7548

3.4. Case Studies

This study consists of three classic experiments. Each of them is grouped into two sections,
one of which uses the primary wind speed data and the other applies data preprocessed by the SSA
approach. Original data are forecast by the single BP algorithm, and the BP algorithm is optimized
using combined BFGS-FA (BFGS-FA-BP); decomposed data are also predicted by the single BP and
BFGS-FA (BFGS-FA-BP).

The two model aim to compare the single BP with the optimized BFGS-FA-BP to determine
the performance of the hybrid method. The parameters of SSA are presented in Table 6.

Table 6. The experimental parameters of singular spectrum analysis (SSA).

Experimental Parameters SSA

Embedding dimension 50
Components 10

Method of calculating the covariance matrix
Unbiased (N-K weighted)

Biased (N-weighted or Yule-Walker)
BK(Broomhead/King type estimate)

3.4.1. Case Study 1

In this section, all results will be clearly demonstrated in the figures and tables to reveal
the effectiveness of each model. First, the predicted values of wind speed in the three locations
are presented in Tables 7–9. Considering the random disturbances of the forecasts, it is necessary
to repeat each experiment many times to ensure the reliability of results. Therefore, in our study,
we performed each experiment 20 times and then used the average values as the final results, to make
sure that the results are dependable.
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Figure 4a shows the data of the estimated performance with and without using the SSA approach
at site 1. The effectiveness of the experiment that used real values is displayed at the top left side
of the chart, and was forecast by models without using the SSA approach. The effectiveness of
the experiment that used processed data is described at the bottom left side of the Figure, and was
forecast by models using the SSA approach. We can conclude from the Figure that the SSA-BP model
predicts values close to the true values, especially SSA-BFGS-FA-BP. In other words, the experiment
that used processed data showed better performance than the other.

Figure 4b shows the difference between the forecast values and the exact values collected from
site 1, and their corresponding errors. We can clearly see that the error of the SSA-BFGS-FA-BP
model is much lower than that of the BP, BFGS-FA-BP, and SSA-BP models, which implies that the
SSA-BFGS-FA-BP method performs much better than other models.

 

Figure 4. The forecast results for wind speed collected from site 1 at 10-min intervals. (a) The forecast
effect without SSA algorithm and with SSA algorithm; (b) The comparison between the forecast values
and raw data and their corresponding errors.

3.4.2. Results of Analysis

In this section, another two samples are described in Figures 5a and 6a, whose predictive
performance with and without using the SSA method are compared. Furthermore, Figures 5b and 6b
illustrate the difference between the forecast values and the real values collected from the other two
sites and their corresponding errors.

Similar to what was described above, and as shown in Figures 5a and 6a, the BP and BFGS-FA-BP
models closely approached the actual values, but the SSA-BP model and especially the SSA-BFGS-FA-BP
model performed much better in forecasting. Therefore, we can conclude that the experiment using
the SSA approach outperforms the other. As revealed in Figures 5b and 6b, the deviations of
the SSA-BFGS-FA-BP model are much smaller than those of the BP, BFGS-FA-BP, and SSA-BP models.
In particular, it is very clear that the SSA-BFGS-FA-BP model gets extremely close to the exact wind
speed, and has higher performance than the other three models.
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To test the accuracy of the experiment and guarantee the practicability and feasibility of
the developed method, we performed another three experiments. As shown in Table 10, data were taken
during four seasons (spring, summer, autumn, and winter) from a fixed location to verify the stability
of the model. The results presented in this indicate that (1) the variance of the proposed hybrid
SSA-BFGS-FA-BP method is minimal; and (2) the predicted value of the hybrid SSA-BFGS-FA-BP
model is closer to the true value, having higher stability than the other three models.

In another experiment, the new predicted value based on historical data was used as the new
real value to test. Using this, we performed three-step iterative, six-step iterative, and twelve-step
iterative experiments. The final experimental results are shown in Table 10. The results indicate that the
variance of the hybrid SSA-BFGS-FA-BP model is smaller, and that the predicted value within six steps
of hybrid SSA-BFGS-FA-BP model is closer to the true value, having higher stability than the other
three models. However, in the 12-step iterative experiment, the proposed SSA-BFGS-FA-BP model did
not show better accuracy than the other three models. This indicates that the optimal results will be
worse with an increase in the number of iterations beyond a certain extent, because of the increase
in randomness. This also verifies that, with an increase in the number of iterations, the accuracy of
prediction is low and the deviation is high.

Finally, we collected data at different time intervals (10, 30 and 60-min intervals) from a fixed
location to conduct an experiment, and the results of the experiment are shown in Table 11. We can
conclude from the table that the effects of the optimization method will run into a bottleneck when the
time interval of the data becomes too great. The hybrid SSA-BFGS-FA-BP model did not show a better
performance. The error of forecasting reached a high value when the time interval was so long.

In conclusion, the SSA-BFGS-FA-BP has much higher effectiveness than the single BP, BFGS-FA-BP,
and SSA-BP models. We can confirm that the hybrid SSA-BFGS-FA-BP model can make a more accurate
prediction on account of the original time sequence.

 

Figure 5. The forecast results for wind speed collected from site 2 at 10-min intervals. (a) The forecast
effect without SSA algorithm and with SSA algorithm; (b) The comparison between the forecast values
and the raw data and their corresponding errors.
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Figure 6. The forecast results for wind speed collected from site 3 at 10-min intervals. (a) The forecast
effect without SSA algorithm and with SSA algorithm; (b) The comparison between the forecast values
and the raw data and their corresponding errors.

3.5. The Results of the DM Test

The DM test was employed to verify the levels of accuracy forecasted by the proposed hybrid
method and the other three single models. Table 12 shows that the values of the DM statistics between
the proposed hybrid model and the BP, SSA-BP and BFGS-FA-BP models are 8.1064, 8.0468 and
8.1696, respectively. Under a 1% confidence level, the upper limit value is much smaller than these
DM statistics; therefore, we cannot accept the null hypothesis and we have to admit the alternative
hypothesis. Thus, we can conclude that the hybrid method outperforms the other single methods.

Remark. We could learn from the results in terms of estimations on the basis of the DM test that the novel
hybrid method achieves a more precise and stable prediction capacity than the other three models, and that
the forecasting effectiveness of the hybrid method differs from that of the BP, SSA-BP, and BFGS-FA-BP models.
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Table 12. Results of the DM test and operational time (s).

Performance Metric Compared Model Average Value

DM-test

BP 8.1064 *
SSA-BP 8.0468 *

BFGS-FA-BP 8.1696 *

Operational time

BP 0.3
SSA-BP 0.6

BFGS-FA-BP 490.3
Hybrid model 157.1

Note: * Indicates the 1% significance level.

4. Discussion

In this section, we initially discuss the application of SSA in preprocessing the original data, which
influences the forecasting performance. We also examine the MAPEs of decreased relative percentage
(DRP) between the proposed model and other forecasting approaches. Furthermore, we present and
discuss variations of the data selection.

4.1. Data Pre-Processing

In general, plenty of noise and high-frequency time series lie in the raw wind speed time
sequence. Therefore, the decomposition of the original data sequence is a significant process in data
filtering. This can always effectively enhance the prediction accuracy of the model to obtain better
forecast results. Through the comparison between BP and SSA-BP, we can assess the effectiveness of
the data pre-processing using a new metric called DRP (%), and its corresponding defining equation
is summarized as follows:

DRP =
MAPEi − MAPEj

MAPEi
× 100 (17)

The experimental results show that the method significantly enhances the forecasting effectiveness:
it decreases the MAPE by 32.8%, 29.3% and 30.7% for site 1, site 2 and site 3, respectively.

4.2. Neural Networks

In the field of practical engineering, the quality of a model depends on its effectiveness, rather
than its complexity. However, the question of how to seek an effective forecasting method to enhance
performance is not only a problem that is in urgent need of a solution, but also a critical problem
in the field of forecasting. The relevant study [58] showed that there was no one unified model for
forecasting time series, and model effectiveness under different circumstances should be analyzed
and understood, with incremental improvements being made on the basis of the knowledge gained;
therefore, it is impossible to find one model to solve all forecasting problems.

Thus, our attention should be more focused on the DRP of the error forecast by different
approaches using different data sets, in order to find a relatively good model for forecasting wind
speed time series. Through analyzing the difference between the proposed model and the other
comparative models, we can find that the proposed model improves effectiveness by 38.4654%, 35.5391
and 37.9645% for site 1, site 2 and site 3, respectively. The detailed results are presented in Table 13.
From the Table, we can see that the developed method has a very good performance in decreasing
wind speed forecasting error.
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Table 13. The DRP of MAPE of the proposed model and comparison models.

Cases
DRP of MAPE (%)

ENN WNN PSO/FA Elman Proposed Model

case 1 15.6250 10.2506 13.9158 38.4654
case 2 24.0000 32.1063 12.7855 35.5391
case 3 47.8261 - 15.4897 37.9645
case 4 35.2941 - - -

4.3. Data Selection

According to the forecast results, the 10-min interval data sequence achieves the best forecasting
effectiveness for all three observation sites, with an MAPE of approximately 6%; therefore, the proposed
hybrid model shows excellent performance in forecasting the wind speed time sequence at 10-min
intervals. The 10-min interval time series at each observation site decreases the forecasting error by
12.59%, 10.14% and 11.41%, respectively.

For the time series data with a 60-min interval, the forecast results are good for all three observation
sites, while the forecasting performance is worse than for the data with a 10-min interval. Therefore,
the SSA-BFGS-FA-BP is more applicable to forecasting the wind speed time sequence with a 10-min
interval, and the data selection will have a serious effect on forecasting effectiveness. However,
regardless of the time interval, the forecasting effectiveness is in an acceptable range. Many works
apply the wind speed series with time resolutions including 10, 30 and 60 min for the purpose of
the forecast, which is representative for studying wind speed forecasting. The detailed comparison
results are presented in Table 14.

Table 14. Comparison results of three observation sites with different time intervals.

Observation Sites 10-min 30-min 60-min

Site 1 4.8496 5.4780 17.4441
Site 2 4.5512 9.8730 14.6964
Site 3 6.7548 12.9558 18.1605

5. Conclusions and Future Work

As a kind of non-polluting and renewable energy source, wind energy has been increasingly
applied in the development of industry and agriculture, and its forecasting is becoming increasingly
important for wind farms. Recently, academia and wind farm projects have been gradually paying
more attention to wind speed forecasting. Perfect prediction can not only reduce costs and enhance
personal safety, but also help wind farm management develop more effective programs. The accuracy
of a model is as important as its stability in forecasting. It is of great interest to propose an outstanding
method for wind speed prediction with high accuracy and long-term stability. Nevertheless, wind
speed prediction has been generally considered a challenging task in terms of the effects of various
intangible factors, such as temperature, location, tides, atmospheric pressure, and other factors. In this
paper, to overcome these difficulties, a hybrid model that combines the SSA approach, BFGS-FA
algorithm, and BP method is presented.

The results based on evaluation criteria such as the MAE, RMSE, MAPE and a statistical test
are shown in a sequence of charts, in which the superior qualities of the developed hybrid method
are revealed most vividly. From the data in the tables and figures, we can draw the conclusion
that the proposed hybrid method achieves the best forecasting effectiveness and a higher stability
and reliability.

SSA is a practical decomposition approach, which can remove the noise from the raw data, leaving
the principal component for forecasting. The BP model, based on feed forward neural networks,
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has increasingly turned into a fairly distinguished tool. It is shown that the BP model can get its final
predictive results in a remarkably short time.

In brief, the hybrid model always has the lowest MAPE value compared with other single
forecasting methods, which implies that the hybrid method has the best performance and higher
reliability. Improvements in forecasting accuracy and stability can not only help to save large amounts
of energy and money, but also help to reduce the time the system requires. The experiments performed
in the present study show that the developed hybrid method is a potential algorithm with high
accuracy. In addition, the hybrid method could be applied to other fields of practical engineering,
such as electric load forecasting, stock price prediction, and solar resource forecasting.
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Abbreviations

ARIMA auto-regressive integrated moving average Genmax
the maximum number of
iterations

BFGS Broyden-Fletcher-Goldfarb-Shanno MAPE mean absolute percentage error
MLP multi-layer perceptron MAE mean absolute error
BP back propagation RMSE root mean square error
RBF radial basis function betamin minimum value of beta
RNN Recurrent Neural Networks gamma absorption coefficient
BPA back propagation algorithm DM Diebold-Mariano
PSO particle swarm optimization SVM Support Vector Machine
ANN artificial neural network T the length of time series
FA firefly algorithm Valuemin the minimum real value
BPNN back propagation neural network K the length of the trajectory matrix
CS cuckoo search SVD singular value decomposition
MCS modified cuckoo search GA genetic algorithm
Valueactual real value H0 the null hypothesis
SSA singular spectrum analysis H continuous function
EMD empirical mode decomposition WD wavelet decomposition
Valuenormalized data after linear transformation H1 the alternative hypothesis
Valuemax the maximum real value Zα/2 upper (or positive) Z-value
Zij an element of a generic matrix Z DRP decreased relative percentage
ENN Elman neural network WNN Wavelet neural network

Appendix A

Algorithm A1. BFGS.

Parameters:

δ–the tolerance of convergence. t –present iterative times.
Genmax–the max iterative times.
1: /*Initialize the convergence tolerance δ and present iterative times.*/
2: Set the convergence tolerance δ > 0, t ← 0
3: Assess the inverse matrix of Hessian matrix at an initial value x◦

4: WHILE (t < Genmax) RUN

5: /* Compute search path.*/
6: dt = −Dt∇ f (xt)
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Algorithm A1. Cont.

7: /* Compute step size.*/

8: λt = argmin
λ≥0

f (xt + λdt)

9: /*Obtain the new iteration.*/
10: xt+1 = xt + λtdt

11: IF(xP
t+1 > xP

up) WELL

12: Xp
t+1 = xp

up

13: ELSE IF(xp
t+1 < xp

l◦) WELL

14: Xp
t+1 = xp

l◦

15: END

16: Compute Dt+1

17: Set t←t+1
18: END

Appendix B

Algorithm A2. FA.

Input:

x0
h = (x0(1), x0(2), . . . , x0(k))–a series of data for training.

x0
m = (x0(k + 1), x0(k + 2), . . . , x0(k + d))–a series of data for verifying.

Output:

xb−the corresponding value of x when it acquires the optimal fitness among all fireflies.
Parameters:

Genmax–the max iterative times. n–the total number of fireflies.
Fp–the fitness function according to firefly p. xp–nest p. g–the present number of iterations.
Lp–the brightness of firefly p. d–the dimension of the parameter.
1:: /* Define all the parameters related to FA.*/
2: /* Initialize the species of fireflies xp(p = 1, 2, . . . , n) at random.*/
3: FOR p = 1:n RUN

4: Assess the relevant fitness function Fp

5: END

6: /* Confirm light intensity. */
7: FOR p = 1:n RUN

8: Confirm the brightness Lp through F(xp)
9: END

10: WHILE (g < Genmax) RUN

11: FOR p = 1:n RUN

12: FOR q = 1:n RUN

13: /* Adjust the firefly from p to q in any direction.*/
14: IF (Lq > Lp) WELL

15: rpq =
∣∣xp − xq

∣∣ = √
∑d

t=1 (xp,t − xq,t)
2

16: xp = xp + β0e−γr2
(xq − xp) + α(rand − 0.5)

17: END

18: Attraction changes with the distance r via e−r2

19: END

20: END

21: /*Renew the best nest xm of the d generation*/
22: FOR p = 1:n RUN

23: IF (Fm < Fb) WELL

24: xb ← xm;
25: END

26: END

27: END

28: RETURN xb
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Appendix C

Algorithm A3. BFGS-FA.

Input:

x(0)h = (x(0)(1), x(0)(2), . . . , x(0)(k)) –a series of data for training.

x(0)m = (x(0)(k + 1), x(0)(k + 2), . . . , x(0)(k + d))–a series of data for verifying
Output:

xb–the corresponding value of x when it acquires the optimal fitness among all fireflies.
Parameters:

Genmax–the max iterative times. n–the total number of fireflies.
Fp–the fitness function according to firefly p. xp–nest p. g–the present number of iterations.
Lp–the brightness of firefly p. d–the dimension of the parameter.

1: /*Define all the parameters related to FA and BFGS.*/
2: /* Initialize population of n fireflies xp(p = 1, 2, . . . , n) at random.*/
3: FORp = 1:nRUN

4: Assess the relevant fitness function Fp

5: END

6: /* Confirm light intensity*/
7: FOR p = 1:n RUN

8: Confirm brightness Lp through F(xp)
9: END

10: WHILE (g < Genmax ) RUN

11: FOR p = 1:n RUN

12: FOR q = 1:n RUN

13: /* Adjust the firefly from p to q in any direction */
14: IF(Lq > Lp) WELL

15: rpq =
∣∣xp − xq

∣∣ = √
∑d

t=1 (xp,t − xq,t)
2

16: xp = xp + β0e−γr2
(xq − xp) + α(rand − 0.5)

17: END

18: Attraction changes with the distance r via e−r2

19: Apply BFGS to help to renew the new site of fireflies xp(p = 1, 2, . . . , n) quickly.
20: /*Assess the new position and renew the new light intensity Lp.*/
21: FOR p = 1:n RUN

22: Assess the relevant fitness function Fp

23: END

24: /* Update the brightness*/
25: FOR p = 1:n RUN

26: Confirm the brightness Lp through F(xp)
27: END

28: END

29: END

30: /*Update best nest xm of the d generation.*/
31: FOR p = 1:nRUN

32: IF(Fm < Fb)WELL

33: xb ← xm

34: END

35: END

36: END

37: RETURN xb
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Abstract: As a kind of clean and renewable energy, wind power is winning more and more attention
across the world. Regarding wind power utilization, safety is a core concern and such concern has led
to many studies on predicting wind speed. To obtain a more accurate prediction of the wind speed,
this paper adopts a new hybrid forecasting model, combing empirical mode decomposition (EMD)
and the general regression neural network (GRNN) optimized by the fruit fly optimization algorithm
(FOA). In this new model, the original wind speed series are first decomposed into a collection of
intrinsic mode functions (IMFs) and a residue. Next, the inherent relationship (partial correlation) of
the datasets is analyzed, and the results are then used to select the input for the forecasting model.
Finally, the GRNN with the FOA to optimize the smoothing factor is used to predict each sub-series.
The mean absolute percentage error of the forecasting results in two cases are respectively 8.95%
and 9.87%, suggesting that the hybrid approach outperforms the compared models, which provides
guidance for future wind speed forecasting.

Keywords: wind speed forecasting; empirical mode decomposition; general regression neural
network; fruit fly optimization algorithm

1. Introduction

Wind power, as a type of sustainable and clean energy, is one of the most widely used,
technologically mature, and commercially produced renewable sources [1,2]. According to the
Global Wind Energy Council (GWEC), the cumulative wind generating installed capacity has reached
486,790 MW at the end of 2016 with the share of 34.7% donated by China [3]. The goal that
grid-connected wind power installed capacity should reach 200 GW by 2020 [4] indicates that, during
the “13th Five-Year Plan” period, China needs to put into operation more than 20 GW of wind power
annually. This means that the targets and tasks of wind power development are basically clear, and the
wind power industry will maintain a rapid growth for a long period of time. Concerning the benefits
of wind power, a prediction system installed in grid-connected wind farms becomes important to
effectively reduce the volatility of the voltage and frequency caused by a sudden cut of wind turbines,
and to improve the security, reliability, and controllability of an electric power system to realize the
economic dispatch. In this sense, an accurate forecast of wind speed is an essential prerequisite, which
helps guarantee the construction and operation of the wind power prediction system.

The commonly used methods in terms of wind speed prediction are mainly divided into two
categories: statistical analysis models, such as autoregressive moving average (ARMA) models [5] and
autoregressive integrated moving average (ARIMA) models [6–8]; and machine learning methods,
including artificial neural networks (ANNs) [9–12] and the support vector machine (SVM) [13,14].
Weron [15] explained the complexity of the available solutions, their strengths and weaknesses, and the
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opportunities and threats that the forecasting tools offer or that may be encountered. Cincotti, et al. [16]
proposed and compared three different methods to model prices time series. Amjady and Keynia [17]
applied an improved neural network to day-ahead electricity price forecasting. Here, the back
propagation neural network (BPNN) is a typical instance of an ANN. Guo [18] introduced a new
strategy based on seasonal exponential adjustment and a BPNN to forecast wind speed, where the
BPNN was established to predict the wind speed. Liu [19] put forward a BPNN model with empirical
mode decomposition (EMD) to forecast hourly wind speed. The experiment was repeated 30 times
and took the mean value as the final results to avoid randomness, which indicated that the model
performed well. However, the BPNN has a problem with many parameters to set, and it is easy to
fall into over-fitting or a local optimum. Compared with a BPNN, the radial basis function neural
network (RBFNN) shows a stronger approximation and anti-interference capability with a simple
structure. Zhang [20] exploited a novel method based on the wavelet transform (WT) and an RBFNN
with the consideration of seasonal factors. The general regression neural network (GRNN) has strong
non-linear mapping capabilities and a flexible network structure as well as a high degree of fault
tolerance and robustness, which is suitable for solving nonlinear problems. Moreover, it has more
advantages than the RBFNN in approach ability and learning speed. Liu [21] proposed a GRNN model
on the basis of an integration of a WT and spectral clustering (SC), which presented a high operation
efficiency and prediction accuracy. Thus, a GRNN is considered as the forecasting model in this paper.

The selection of the smoothing factor in the GRNN model has an influence on its performance.
Intelligent optimization algorithms, such as the genetic algorithm (GA) [22–24] and particle swarm
optimization (PSO) [25–28], are usually taken to select the parameters for forecasting models. PSO is
designed by simulating the feeding behavior of birds. Assuming that there is only one piece of food in
the area (that is, the optimal solution in question), the task of the flock is to find the food source. During
the entire search process, members of the flock pass on their own messages to each other so that other
birds know their place. Through such collaborations, they can determine whether they are finding the
optimal solution or not and at the same time pass the information of the optimal solution to the entire
flock. Eventually, the whole flock can gather around the food source, which means that the optimal
solution is found. Ren [29] developed an improved PSO-BPNN model with input parameter selection
for wind speed prediction. The study showed that the model optimized by PSO had better results than
a single BPNN and an ARIMA model. The PSO effectively improved the forecasting accuracy but also
showed the malpractice that, under the condition of convergence, since all the particles fly towards
the direction of the optimal solution, the particles tend to be the same, which makes the convergence
speed of the latter part slow down significantly. Meanwhile, PSO converges to a certain precision, and
cannot be further optimized, thus the accuracy is not high. In order to overcome these drawbacks,
the fruit fly optimization algorithm (FOA) based on the behaviors of food finding was proposed by
Pan in 2011 [30]. This method needs to set less parameters, performs at a relatively high speed for
searching for the optimum, and has a wide application [31–33]. Here, the FOA is utilized to adjust the
appropriate smoothing factor in the GRNN model.

The strong randomness and volatility of wind speed add difficulties to its accurate prediction,
therefore its inherent characteristics must be taken into account. The original wind speed series can
be regarded as a combination of sub-series with different frequency which show more regularities.
EMD [34,35] decomposes the signal according to the time-scale characteristics of the data itself without
any pre-setting basis function, which is essentially different from the Fourier decomposition and
wavelet decomposition methods that are based on the priori harmonic basis functions and wavelet
basis functions. Precisely because of this characteristic, EMD can theoretically be applied to any type
of signal decomposition and has very obvious advantages for processing nonstationary and nonlinear
data. In reference [36], an ANN model integrated with EMD was proposed, where EMD was utilized to
decompose the original wind speed series to eliminate its irregular fluctuations. Wang [37] hybridized
an Elman Neural Network (ENN) method with EMD. The results showed that it indicated a higher
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prediction accuracy than the single ENN model. Therefore, EMD is applied to decompose the original
datasets in this study.

According to the above research, a GRNN model integrated with EMD and FOA is proposed.
It is the first time that these three models have been combined in wind speed forecasting, and several
comparing methods are utilized to validate the effectiveness of the proposed hybrid model. The paper
is organized as follows. Section 2 introduces the implementation process of EMD and the GRNN
optimized using the FOA. Section 3 presents the evaluation criteria of the results. Section 4 provides a
case to validate the proposed model. Section 5 analyzes another case in a different place at another time
to prove the generalization of the forecasting method. Section 6 obtains the conclusion in this paper.

2. Methodology

2.1. EMD

EMD is an adaptive time series decomposition technique proposed by Norden E. Huang [38].
The principle of this signal processing method is to decompose the original time series with various
fluctuations into a stationary one with different characteristics. Each series that is obtained after
decomposition is treated as an intrinsic mode function (IMF), which satisfies the following two
conditions: (1) in the whole time range, the number of local extremal points and over zero must be
equal, or the maximum difference is one; and (2) the mean value of the two envelopes formed by the
local maxima and local minima, respectively, is zero at any point.

For the original time series s(t), the procedures of EMD are shown as follows:

(1) Apply cubic spline interpolation to connect all the local maxima and minima after identification in
the time series s(t) so that the upper envelope xmax(t) and lower envelope xmax(t) are accordingly
formed. Calculate the mean value n(t) of the two envelopes and the difference between n(t) and
the original signal s(t):

n(t) =
xmax(t) + xmin(t)

2
(1)

p(t) = s(t)− n(t) (2)

(2) Identify whether p(t) satisfies the two conditions of IMFs. If it conforms, p(t) can be considered
as the first IMF; then, calculate the difference between the original signal s(t) and c1(t):

c1(t) = p(t) (3)

r1(t) = s(t)− c1(t) (4)

If not, repeat the above procedure until it meets the two conditions.
(3) The sifting process above will be repeated n times until rn is a monotone function. The original

signal s(t) can be reconstructed as follows:

s(t) =
n

∑
i=1

ci + rn (5)

where ci represents the IMFs, and rn is the final residue.

2.2. GRNN

The GRNN model was proposed by the American scholar Donald F.Specht in 1991 [39].
The GRNN model has strong nonlinear mapping capabilities and flexible network structure as well
as a high degree of fault tolerance and robustness, which is suitable for solving nonlinear problems.
Moreover, it has more advantages than an RBFNN in approach ability and learning speed. The GRNN
model is structurally similar to an RBFNN. It consists of four layers, as shown in Figure 1, which are

161



Energies 2017, 10, 2001

the input layer, the pattern layer, the summation layer, and the output layer. Corresponding to the
network input is X = [X1, X2, · · · , Xn]

T , and its output is Y = [Y1, Y2, · · · , Yk]
T .

Input Layer Pattern Layer Summation Layer Output Layer

X1

X2

Xn

. . . . . .

y1

p1

p2

pn
yk

. . . . . .

SD

SN1

SNT

Figure 1. The structure of the general regression neural network (GRNN).

(1) input layer. The number of neurons is equal to the dimension of the input vector in the learning
sample. Each neuron is a simple distribution unit that passes the input variable directly to the
pattern layer.

(2) pattern layer. The number of neurons is equal to the number of learning samples. Each neuron
corresponds to a different sample, and the neuron transfer function is:

pi = exp

[
− (X − Xi)

T(X − Xi)

2σ2

]
, i = 1, 2, · · · , n (6)

where X represents the network input variable, Xi is the corresponding learning sample of
neuron i, and σ belongs to the width coefficient of the Gaussian function, which is called the
smoothing factor.

(3) summation layer. Two types of neurons are used for summation.

One kind of calculation formula is
n
∑

i−1
exp

[
− (X−Xi)

T(X−Xi)
2σ2

]
, which sums up the output of all

neurons in pattern layer, and the connection weight between the pattern layer and each neuron
equals 1. The transfer function is

SD =
n

∑
i=1

Pi (7)

Another calculation formula is
n
∑

i−1
Yi exp

[
− (X−Xi)

T(X−Xi)
2σ2

]
, which performs weighted summation

on all the neurons in the pattern layer. The connection weight between the ith neuron in the
pattern layer and the jth molecule in the summation layer is the jth element of ith output sample
Yi. The transfer function is

SNj =
n

∑
i=1

yijPi, j = 1, 2, · · · , k (8)

(4) output layer. The number of neurons is equal to the dimension k of the output vector in the
sample. Each neuron will divide the output of the summation layer, and the output of neuron j
corresponds to the jth element of the estimated result Ŷ(X), namely

yj =
SNj

SD
, j = 1, 2, · · · , k (9)
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When the smooth factor σ is very large, Ŷ(X) is approximately the mean of all the
sample-dependent variables. On the contrary, when the smooth factor tends to 0, Ŷ(X) is very
close to the training sample. When the point to be predicted is included in the training sample set,
the forecasting value of the dependent variable will be very close to the corresponding dependent
variable in the sample. Once encountered, the sample cannot be included in the point, and it
is possible to predict a very poor performance, which indicates that the network has a poor
generalization ability. When the value of σ is moderate, the dependent variable of all of the
training samples is considered in the estimation Ŷ(X), and the dependent variable corresponding
to the forecasting point distance is added to the larger weight. Therefore, the value of σ has a
great influence on the forecasting results of the GRNN, and the FOA is used to find the optimal
processing of σ.

2.3. A GRNN Based on the FOA with Parameter Selection

The FOA is a new global optimization method based on foraging behaviors. The fruit flies
themselves are superior in smell and vision to other species; specifically, they can collect all kinds
of smells in the air and fly in the direction of the food or gather with companions. Thus, there are
two steps for searching for food of a fruit fly swarm [30]: (1) use an olfactory organ to collect odors
floating in the air and fly towards the food location; and (2) use vision to find food and other fruit flies’
gathering position and fly to that direction. The iterative food searching process of a fruit fly swarm is
shown in Figure 2. Compared with PSO, the FOA has strong robustness as a result of the algorithm’s
operation not involving multiple loops and complicated functions. An optimization problem with
only one parameter can achieve very good results. In this paper, the FOA is utilized to select the best
value of the smoothing factor σ in the GRNN.

Fruit fly group
X,Y)

Fruit fly1
X1,Y1)

Fruit fly2
X2,Y2)

Fruit fly3
X3,Y3)

Distance2

Distance1

Distance3

Food

Iterative 
evolution path

 

Figure 2. Iterative food searching process of a fruit fly swarm.

The wind speed forecasting model combining EMD, the FOA, and the GRNN are constructed as
illustrated in Figure 3.
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EMD

A Collection of IMFs
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Initialization the 
parameters of FOA

Set gen=0
Give the random flight direction and the distance 

for food finding of an individual fruit fly

Calculate the distance of the food location 
to the origin(Dist(i))and the smell 

concentration judgement value(S(i))

Input S(i) into the GRNN model for wind 
speed forecasting.Calculate the fitness 
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Gen>maximum interative 
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Training data Test data

Obtain the optimal 
parameters of GRNN

GRNN
Wind speed 
forecasting 

results

Fruit fly swarm fly 
towards the location 

(X_axis,Y_axis) by 
using vision.Set 

gen=gen+1

NO

YES

Wind speed 
series

End

Start

Figure 3. The flow chart of EMD-FOA-GRNN. EMD: empirical mode decomposition; IMF: intrinsic
mode function; PACF: partial autocorrelation coefficient function; FOA: fruit fly optimization algorithm.

The specific steps for wind speed prediction are listed as follows:
Step 1: Decompose the original wind series into a collection of IMFs by EMD. In order to choose

a proper input, the partial autocorrelation coefficient function (PACF) is applied to each of the IMFs
to select the elements for the training set. For the stationary time series {Yt}, the so-called k-order
lag PACF refers to the correlation between yt−k and yt under the condition of a given middle random
variable yt−1, yt−2, · · · , yt−k+1, or after eliminating the interference of the middle random variable
yt−1, yt−2, · · · , yt−k+1.

Step 2: Initialize the parameters: after many attempts, the optimal population size and the
maximum iteration number are respectively proposed as 20 and 50. The initial position of the fruit
fly swarm is set as X_axis = rand(), Y_axis = rand(), where rand() represents the random number
generation function. Here, according to general value range of the smoothing factor σ, the range of
random flight distance is set as (–10,10). To avoid overtraining, the samples are divided into two
groups to carry out the cross-training.

Step 3: Start searching for the optimum: according to the operation mechanism of the FOA [29],
set the number of iterations gen = 0, and let [X(i), Y(i)] be the random direction and distance that an
individual fruit fly follows to look for food.

X(i) = X_axis + 20 × rand()− 10 (10)

Y(i) = Y_axis + 20 × rand()− 10 (11)
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Step 4: Evaluate the population: firstly, calculate the distance Dist(i) from the location of the fruit
fly to the origin and take the reciprocal of Dist(i) as the smell concentration judgment value S(i).

Dist(i) =
(

X(i)2 + Y(i)2
) 1

2 (12)

S(i) =
1

Dist(i)
(13)

Secondly, set S(i) as the value of the smoothing factor in the GRNN to predict the wind speed.
Thirdly, select the root mean square error as the fitness function (Function()) to evaluate the disparity
between the actual value and forecasting result, and record the corresponding value as the smell
concentration Smell(i). Finally, the fruit fly with the minimal smell concentration can be found out.

Smell(i) = Function(S(i)) (14)[
bestSmell bestIndex

]
= min(Smell(i)) (15)

Step 5: Record the optimal value. The best smell concentration value Smellbest, smell
concentration judgment bestS(i), and the x and y coordinates need to be kept as follows. Then,
the fruit flies utilize vision to fly towards that location.

Smellbest = bestSmell (16)

bestS(i) = S(bestIndex) (17)

X_axis = X(bestIndex) (18)

Y_axis = Y(bestIndex) (19)

Step 6: Implement iteration optimization. Repeat Step 3 and Step 4 to determine whether the
smell concentration is better than the previous one. If it is, go to Step 5 and set gen = gen + 1.

Step 7: Stop optimization and start prediction. Circulation ends at the maximum number of
iterations. Here, the best value of the smoothing factor can be substituted into the GRNN model for
wind speed forecasting.

3. Evaluation Criteria of Forecasting Performance

It is the primary issue to determine which forecasting model outperforms the other models,
and the performance of the prediction models is usually assessed by statistical criteria: the mean
absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error (RMSE),
and the index of agreement (IoA). For the first three indexes, the smaller the values are, the better
the forecasting performance is. For the IoA, the closer the value is to 1, the better the forecasting
performance is. In addition, an MAPE <10% indicates high prediction accuracy, 10% ≤ MAPE ≤ 20%
indicates good prediction, 20% ≤ MAPE ≤ 50% implies acceptable prediction, and an MAPE ≥ 50%
implies inaccurate prediction [9]. These four error indexes are defined as follows:

MAE =
1
N

N

∑
t=1

|yt − y∗t | (20)

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − y∗t
yt

∣∣∣∣× 100% (21)

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − y∗t )
2 (22)
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IoA = 1 − ∑N
t=1(y

∗
t − yt)

2

∑N
t=1(|y∗t − yt| − |yt − yt|)2 (23)

where yt and y∗t are the actual and forecast wind speeds at time period t, respectively; N is the
forecasting period; and yt represents the mean value of the actual wind speed at time period t.

Additionally, in order to show the improvement degree of forecasting errors for different models,
ξ is defined as follows:

ξ =

⎧⎨⎩
ξcompared−ξ proposed

ξcompared × 100% suitable for MAE, MAPE and RMSE
ξ proposed−ξcompared

ξcompared × 100% suitable for IoA
(24)

where ξ proposed and ξcompared represent the MAE, MAPE, RMSE, and IoA generated by the proposed
model and other compared models, respectively.

4. Case Study

4.1. Wind Speed Data

Gansu province, with a wealth of wind energy resources, is one of the top seven
10-million-kilowatt wind power bases heavily invested for construction in China. Located in Jiuquan
City, Guazhou is known as “the World Storehouse of Wind Energy”, whose geographical position
is shown in Figure 4. In recent years, a series of favorable policies have been issued to promote the
further development of wind power generation in this area. The installed wind capacity is expected
to reach 6.45 million kW and the annual generating capacity will come to 14 billion kWh in 2015 for
the Guazhou region. According to preliminary planning, by 2020, the total installed wind capacity
will exceed 10 million kW. Therefore, accurate wind speed forecasting is not only the basis for wind
power prediction, but also has profound significance for planning and designing a wind farm, making
a schedule for operating the generator, ensuring the safe operation of the electric power system, and
improving economic benefits, etc.

The wind speed data every 20 min from 28 October 2011 to 1 December 2011 were collected from
a wind farm in the northwest of Guazhou, totaling 2520 records. Here, the data from 28 October 2011
to 28 November 2011 are selected as the training set and the remaining 216 data are utilized as the test
set. Figure 5 shows the original wind speed time series (including 2304 samplings) with its nonlinear
and nonstationary characteristics.

 

Figure 4. The geographical location of Guazhou Region.
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Figure 5. Original wind speed series from 28 October 2011 to 28 November 2011.

4.2. Forecasting Steps

Step 1: Wind speed decomposition. EMD is applied to decompose the original wind speed series
into several IMFs to eliminate the nonstationarity of the data, which may have an impact on prediction
accuracy. From Figure 6, it can be observed that until eight independent IMFs and one residue R0 are
decomposed, the wind speed time series in this case satisfies the condition of EMD.

 

Figure 6. The EMD results of original wind speed series.

Step 2: Input variables selection based on PACF. Since the weather variables that may affect wind
speed cannot be easily collected, and the wind speed shows certain time series characteristics, the wind
speed data values before the forecast wind speed point are considered as the input variables of the
GRNN, and the PACF is applied to determine the specific input variable number of each of the IMFs
and R0. Figure 7 is the plot of the partial correlation analysis of the wind speed, where PACF1~PACF8
stand for IMFs (PACF1~PACF8), respectively, and PACF9 represents the residue (R0). Setting each
decomposition wind speed time series xi as the output variable, if the PACF at lag k is out of the 95%
confidence interval, xi−k is applied as one of the input variables.
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Figure 7. The PACFs of the IMFs and R0.

So, it is obvious that the input variables of these nine series for the FOA-GRNN are the ones
shown as follows.

• IMF1: (xt−1)

• IMF2: (xt−1, xt−2, xt−3, xt−4)

• IMF3: (xt−1, xt−2, xt−3)

• IMF4: (xt−1, xt−2, xt−3, xt−4, xt−5)

• IMF5: (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6)

• IMF6: (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9)

• IMF7: (xt−1)

• IMF8: (xt−1)

• R0: (xt−1)

Step 3: Wind speed forecasting. The FOA-GRNN is utilized to predict the corresponding sub-series
with the selected input variables in Step 2. The final forecasting results for the wind speed from
29 November 2011 to 1 December 2011 are obtained by aggregating the prediction results of each
sub-series. The values of the smoothing factor in the GRNN optimized by the FOA are recorded in
Table 1 for these IMFs and R0.

Table 1. The values of the smoothing factor for each FOA-GRNN trained by the IMFs and R0.

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 R0

Smoothing factor 0.0652 0.0330 0.0076 0.0128 0.0109 0.0273 0.0031 0.0023 0.0023

Step 4: Comparative analysis of different models. From Figure 8, eight models are presented to
predict the wind speed. The ARIMA, BPNN, and GRNN models are three different basic forecasting
models. Since PSO and the FOA both belong to the class of swarm intelligent optimization algorithms,
there are similarities in the operating mechanism. Thus, the PSO-GRNN and the FOA-GRNN are
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utilized to test whether the optimization part donates to the prediction accuracy. The EMD-GRNN,
the EMD-PSO-GRNN, and the EMD-FOA-GRNN can be applied to explore the effectiveness of EMD.
After many attempts, the proper parameters settings in each algorithm are displayed in Table 2. The
wind speed actual and forecasting values for different models are shown in Figures 9 and 10.

Wind speed forecasting
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Figure 8. Comparison framework for wind speed forecasting models. ARIMA: autoregressive
integrated moving average.

Table 2. The parameters settings in each of the comparison models.

Algorithm
Affiliated Comparison

Model
Parameter Name Value Setting

BPNN BPNN
maximum iteration number 50

learning rate 0.1
minimum error 0.001

GRNN

GRNN
PSO-GRNN
EMD-GRNN

EMD-PSO-GRNN

smoothing factor 0.05

PSO PSO-GRNN
EMD-PSO-GRNN

population size 20
maximum iteration number 50

learning factor c1, c2 0.8, 0.8
maximum velocity 1

minimum error 0.001

BPNN: back propagation neural network; PSO: particle swarm optimization.

169



Energies 2017, 10, 2001

Time (20 min)

W
in

d 
sp

ee
d 

(m
/s

) 

Figure 9. Prediction results of wind speed from 29 November 2011 to 1 December 2011 (I).
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Figure 10. Prediction results of wind speed from 29 November 2011 to 1 December 2011 (II).

4.3. Results Analysis

Figure 11 displays the degree of correlation between the actual value and predicted values of the
wind speed. It can be seen that the forecasted wind speed obtained by the EMD-FOA-GRNN model
most correlates to the actual one compared with the FOA-GRNN and EMD-GRNN models.

As is presented in Figure 12, the absolute value of error by the EMD-FOA-GRNN model is
relatively stable and there are only five error points out of 4 m/s, which means that the forecasting
results can be accepted. The accuracy estimation of the predicted wind speed by different models is
shown in Table 3. It can be observed that the relative errors in the hybrid models mainly concentrate
on the level of less than 10%. Moreover, the number of errors less than 10% generated by the
EMD-FOA-GRNN, EMD-PSO-GRNN, and EMD-GRNN models is more than 120, which shows
a good performance in wind speed forecasting.
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Figure 11. The correlation between forecasting and actual wind speed. (a) EMD-FOA-GRNN and
FOA-GRNN; (b) EMD-FOA-GRNN and EMD-GRNN.
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Figure 12. The absolute value of error by the EMD-FOA-GRNN model.

Table 3. Accuracy estimation of forecasting models for the test samples.

Forecasting
Models

<10% 10–20% >20%

Number Percentage Number Percentage Number Percentage

EMD-FOA-GRNN 140 64.81% 65 30.09% 11 5.09%
EMD-PSO-GRNN 139 64.35% 60 27.78% 17 7.87%
EMD-GRNN 126 58.33% 61 28.24% 29 13.43%
FOA-GRNN 118 54.63% 59 27.31% 39 18.06%
PSO-GRNN 105 48.61% 80 37.04% 31 14.35%

GRNN 80 37.04% 73 33.80% 63 29.17%
BPNN 73 33.80% 57 26.39% 86 39.81%

ARIMA 49 22.69% 55 25.46% 112 51.85%
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From Table 4, it can be analyzed that: (a) based on the four evaluation criteria MAE, MAPE,
RMSE, and IoA, the proposed model EMD-FOA-GRNN shows the best forecasting performance
among the eight models. The MAE, MAPE, RMSE, and IoA of the proposed model is 1.286 m/s, 8.95%,
0.124 m/s, and 0.9070, respectively. (b) by comparing the three single models, the GRNN and the
BPNN have higher accuracy than the ARIMA model. Therefore, it can be concluded that intelligent
models can obtain better forecasting results than statistical models. Additionally, the GRNN presents
more satisfactory performance than the BPNN. The prediction accuracy of the BPNN is closely related
to typical training samples and network structure, and it is easy to fall into a local extreme. However,
the GRNN, with only one parameter to be optimized, is more suitable for forecasting nonlinear and
non-stationary wind speed series. (c) when comparing the EMD-FOA-GRNN with the FOA-GRNN,
the EMD-PSO-GRNN with the PSO-GRNN, and the EMD-GRNN with the GRNN, EMD improves the
forecasting performance in terms of lower MAE, MAPE, RMSE, and a higher IoA, which proves it can
effectively decompose the volatile signals to promote the forecasting capacity. (d) the two optimized
models PSO-GRNN and FOA-GRNN produce better results than the single GRNN model. Here, the
FOA and the PSO algorithm are utilized to select the appropriate value of the smoothing factor for the
GRNN. These two optimization algorithms can effectively enhance the training and learning process
so as to avoid falling into a local optimum and improve the global searching ability of the GRNN.
Moreover, as seen from these four indexes’ values, the FOA made a better optimal performance than
that of PSO, which verified the optimization mechanism of the FOA.

Table 4. Statistical error measures of prediction methods in Case One.

Forecasting
Models

Indexes

MAE (m/s) MAPE (%) RMSE (m/s) IoA

EMD-FOA-GRNN 1.286 8.95 0.124 0.9070
EMD-PSO-GRNN 1.320 9.45 0.135 0.8921

EMD-GRNN 1.593 10.99 0.151 0.8195
FOA-GRNN 1.657 11.38 0.146 0.8354
PSO-GRNN 1.739 11.57 0.145 0.8124

GRNN 2.265 14.50 0.171 0.7310
BPNN 2.461 18.26 0.231 0.7257

ARIMA 3.197 23.52 0.285 0.6618

MAE: mean absolute error; MAPE: mean absolute percentage error; RMSE: root mean square error; IoA: Index
of Agreement.

From Table 5, it can be found that: (a) the forecasting performance of the EMD-GRNN combined
with the PSO algorithm and the FOA have been effectively improved. It can be seen that the FOA
performs better than the PSO algorithm in improving prediction accuracy, mainly because it is easier to
use the FOA to fulfill a global optimization goal with less parameters to be optimized. (b) For the basic
EMD-GRNN model, it can be analyzed that the FOA enhances the forecasting accuracy and the MAPE
promoted percentage is 18.56%. Similarly, owing to EMD, the promoted percentage of MAPE is 21.35%.
(c) The EMD part makes more of a contribution than the FOA part in the EMD-FOA-GRNN model.

Table 5. Promoted percentage of errors in Case One.

Forecasting Models
Promoted Percentage of Errors (%)

ξMAE ξMAPE ξRMSE ξIoA

EMD-FOA-GRNN versus EMD-GRNN 19.27 18.56 17.88 10.68
EMD-FOA-GRNN versus FOA-GRNN 22.39 21.35 15.07 8.57
EMD-PSO-GRNN versus EMD-GRNN 17.14 14.01 10.60 8.86
EMD-PSO-GRNN versus PSO-GRNN 24.09 18.32 6.90 9.81
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5. Case Two

In order to verify that the proposed model has good adaptability in different times and places,
another case which selects the wind speed data in a wind farm located in the middle of Inner Mongolia
(shown in Figure 13) is provided in this paper. The study is carried out with the data from 18 February
2012 to 22 March 2012 as the training set and data from 23 March 2012 to 25 March 2012 as the test set.
The forecasting results are displayed in Figures 14 and 15. The error analyses are shown in Tables 5
and 6.

Figure 13. The geographical location of Xilinguolemeng City.
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Figure 14. Prediction results of wind speed from 23 March 2012 to 25 March 2012 (III).
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Figure 15. Prediction results of wind speed from 23 March 2012 to 25 March 2012 (IV).
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Table 6. Statistical error measures of prediction methods in Case Two.

Forecasting
Models

Indexes

MAE (m/s) MAPE (%) RMSE (m/s) IoA

EMD-FOA-GRNN 1.677 9.87 0.137 0.9288
EMD-PSO-GRNN 1.880 10.16 0.142 0.8941

EMD-GRNN 2.037 10.91 0.147 0.8671
FOA-GRNN 2.300 12.47 0.164 0.8334
PSO-GRNN 2.459 13.53 0.183 0.8264

GRNN 3.164 16.38 0.194 0.7453
BPNN 3.505 18.85 0.226 0.7518

ARIMA 3.594 25.19 0.382 0.6258

As demonstrated in Tables 6 and 7: (a) intelligent algorithms have higher accuracy in wind speed
forecasting than statistical models. (b) the hybrid models show better performance than the single one.
(c) EMD improves the performance compared with the corresponding forecasting models that directly
utilize the original wind speed series to make predictions. (d) The EMD-FOA-GRNN presents the best
forecasting results among the models, and the EMD part donates much more than the FOA part in
improving prediction precision. In all, the results in Case Two once again verify the feasibility and
effectiveness of the proposed model.

Table 7. Promoted percentage of errors in Case Two.

Forecasting Models
Promoted Percentage of Errors (%)

ξMAE ξMAPE ξRMSE ξIoA

EMD-FOA-GRNN vs. EMD-GRNN 19.27 18.56 17.88 10.68
EMD-FOA-GRNN vs. FOA-GRNN 22.39 21.35 15.07 8.57
EMD-PSO-GRNN vs. EMD-GRNN 17.14 14.01 10.60 8.86
EMD-PSO-GRNN vs. PSO-GRNN 24.09 18.32 6.90 9.81

6. Conclusions

This paper presents a hybrid intelligent algorithm for wind speed forecasting. Firstly, EMD is
proposed to preprocess the original wind speed signals to eliminate the random fluctuations of the
wind speed data. Then, the GRNN model, which is improved by the FOA, is used to forecast the set
of IMFs obtained by EMD. The PACF is used to select the arguments of the GRNN and choose the
lags of the historical speeds. Major conclusions are summarized as follows: (a) the EMD effectively
improves the forecasting performance; (b) the optimization algorithms FOA and PSO increase the
strong global searching capability of the model, and the FOA shows better performance; (c) the EMD
part contributes more than the FOA in increasing the accuracy of the EMD-FOA-GRNN model; and (d)
the error valuation criteria shows that the EMD-FOA-GRNN is a very promising methodology, which
can provide a new idea for short-term wind speed forecasting. In addition, with the development of
signal processes and intelligent algorithms, there will be more advanced models applied to predict
wind speed, which is our study direction in the future.
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Abstract: As one of the most promising kinds of the renewable energy power, wind power has
developed rapidly in recent years. However, wind power has the characteristics of intermittency
and volatility, so its penetration into electric power systems brings challenges for their safe and
stable operation, therefore making accurate wind power forecasting increasingly important, which
is also a challenging task. In this paper, a new hybrid wind power forecasting method, named
the BND-ALO-RVM forecaster, is proposed. It combines the Beveridge-Nelson decomposition
method (BND), relevance vector machine (RVM) and ant lion optimizer (ALO). Considering the
nonlinear and non-stationary characteristics of wind power data, the wind power time series were
firstly decomposed into deterministic, cyclical and stochastic components using BND. Then, these
three decomposed components were respectively forecasted using RVM. Meanwhile, to improve
the forecasting performance, the kernel width parameter of RVM was optimally determined by
ALO, a new Nature-inspired meta-heuristic algorithm. Finally, the wind power forecasting result
was obtained by multiplying the forecasting results of those three components. The proposed
BND-ALO-RVM wind power forecaster was tested with real-world hourly wind power data from
the Xinjiang Uygur autonomous region in China. To verify the effectiveness and feasibility of the
proposed forecaster, it was compared with single RVM without time series decomposition and
parameter optimization, RVM with time series decomposition based on BND (BND-RVM), RVM
with parameter optimization (ALO-RVM), and Generalized Regression Neural Network with data
decomposition based on Wavelet Transform (WT-GRNN) using three forecasting performance criteria,
namely MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and RMSE (Root
Mean Square Error). The results indicate the proposed BND-ALO-RVM wind power forecaster has
the best forecasting performance of all the tested options, which confirms its validity.

Keywords: wind power forecasting; Beveridge-Nelson decomposition method; relevance vector
machine; ant lion optimizer; parameter intelligent optimization

1. Introduction

Facing the unfavorable situation of fossil energy resource depletion and environmental
deterioration, people are increasingly focusing on the exploitation and utilization of renewable energy
resources, such as wind power and solar photovoltaic power [1]. Nowadays, wind power has become
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one of the fastest growing and most promising renewable energy power sources, and the share of wind
power generation in the total electricity output has been increasing yearly [2,3]. According to the data
released by the Global Wind Energy Council, by the end of 2016, the installed wind power capacity
around the world reached 486.7 GW. The cumulative installed wind power capacity in China amounts
to 168.7 GW, which accounts for 34.7% of the world total.

Wind power is environmentally friendly. However, wind power output has the characteristics of
stochastic fluctuation, intermittency and uncertainty [4]. When a wind generator is connected to the
power grid, it will impose new requirements and challenges on electric power systems, such as efficient
scheduling of power resources and continuing guarantee of smooth power system operation [5].
With the increase of wind power penetration, it is necessary to increase operation costs to deal with the
electric energy unbalance issues due to the stochastic fluctuation of wind power [6]. Meanwhile, to
coordinate with wind generators, thermal power generating units have no choice but to frequently
adjust their power output, which will reduce the operational efficiency and increase running costs [7].
Accurate wind power forecasting is an effective and important way to alleviate the abovementioned
adverse effects.

In past years, many researchers have developed models and methods for wind power/speed
forecasting, which have made great achievements [8,9]. Currently, there are mainly two kinds of
forecasting techniques related to wind power/speed, which are physical-based forecasting techniques
and statistical-based forecasting techniques. Physical forecasting techniques represent a traditional
forecasting approach, which needs detailed physical descriptions related to the on-site conditions of
wind farms, such as the wind farm layout, wind turbines, and atmospheric conditions [10]. The main
representatives are Prediktor developed by the Risoe National Laboratory in Denmark [11], Previento
developed by University of Oldenburg in Germany [12], and eWind developed by AWS True Wind
Inc. (New York, NY, USA) [13]. In the past few years, statistical forecasting techniques, which conduct
wind power/speed forecasting based on historical power/speed data and other meteorological data
have been developed greatly. This kind of forecasting technique includes two kinds of approaches,
namely conventional statistical approaches and emerging artificial intelligent approaches. Among
conventional statistical approaches, the auto-regressive moving average (ARMA) model [14,15] and
auto-regressive integrated moving average (ARIMA) model [16] have been widely used to forecast
wind speed and wind power. The conventional statistical approaches hold the assumption that
wind power and wind speed have linear relationships with their influencing factors. However,
in fact, the relationships between wind power/speed and their influencing factors are non-linear.
Therefore, the conventional statistical approaches fall short of obtaining high forecasting accuracy
and satisfactory forecasting results. The other statistical forecasting techniques, namely the emerging
artificial intelligence approaches, do not assume a linear relationship between wind power/speed
and their influencing factors can effectively cover the abovementioned shortcomings of conventional
statistical approaches. Currently, there are several emerging artificial intelligence approaches which
have been employed to forecast wind power and wind speed, such as artificial neural networks [17,18],
support vector machine [19], and extreme learning machine [20,21].

When emerging artificial intelligence approaches are employed to forecast wind power/speed,
there are several parameters that must be set first, such as neuron number of artificial neural networks
and kernel parameters of support vector machines. This is very difficult for practitioners. To tackle this
issue, an intelligent optimization algorithm is usually introduced to determine the optimal parameters
of emerging artificial intelligence approaches. Ren, et al. [22] applied particle swam optimization
(PSO) to automatically determine the parameters of a back propagation neural network (BPNN) for
short-term wind speed forecasting. Amjady, et al. [23] used enhanced particle swarm optimization
to optimize a modified neural network for wind power prediction. Jursa and Rohrig [24] employed
PSO and differential evolution (DE) to optimize artificial neural networks for short-term wind power
forecasting. Liu, et al. [25] used a genetic algorithm to select the optimal parameters of support
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vector machines for short-term wind speed forecasting. Salcedo-Sanz, et al. [26] used a coral reefs
optimization algorithm to optimize an extreme learning machine for wind speed prediction.

Generally speaking, wind power time series have both nonlinear and nonstationary characteristics,
so the decomposition of wind power time series is often needed to improve wind power forecasting
accuracy [27]. Currently, there are mainly two kinds of wind power time series decomposition methods,
which are the wavelet transform (WT) [28,29] and empirical mode decomposition (EMD) [30,31].
The Beveridge-Nelson decomposition (BND) method, proposed by researchers Stephen Beveridge
and Charles Nelson in 1981, is a kind of non-stationary time series decomposition technique [32],
which has been widely applied in economic fields, such as business cycle analysis [33], GNP and stock
prices [34], and regional income fluctuations [35]. As an effective time series decomposition method,
it is very regretful to find that the BND has not been used for wind power time series. To fill this
gap, in this paper the BND technique is employed to decompose wind power time series, which is a
new application.

In this paper, relevance vector machine (RVM), a kind of sparse and supervised learning
probabilistic method, is also used for wind power forecasting. RVM has some merits compared
with other machine learning methods, such as better adaptability, a need for fewer sample data,
sparsity, and simplified parameter setting [36]. Nowadays, RVM is employed in many practical issues,
such as silent speech classification [37], battery health monitoring [38], canal flow prediction [39],
daily potential evapotranspiration forecast [40], and system fault diagnosis [41]. However, the RVM
technique has rarely been used for wind power forecasting. To improve RVM-based forecasting
performance of wind power, a new Nature-inspired meta-heuristic algorithm, named the ant lion
optimizer (ALO) [42] is also employed in this paper to automatically determine the optimal parameters
of RVM. Therefore, a new hybrid BND-ALO-RVM method for wind power forecasting is proposed
in this paper. To verify the effectiveness and applicability of this proposed method, real-world
hourly wind power data from the Xinjiang Uygur autonomous region in China is selected as our
empirical analysis example, and the forecasting results are compared with other forecasting methods,
including single RVM, BND-RVM, ALO-RVM, and WT-GRNN. The main contributions of this paper
are as follows:

(1) A new hybrid BND-ALO-RVM method for wind power forecasting is proposed, which combines
Beveridge-Nelson decomposition (BND), relevance vector machine (RVM) and ant lion optimizer
(ALO). Empirical results indicate that the proposed method can improve wind power forecasting
accuracy and shows superiority over other compared methods. The proposed method in this
paper can be a promising alternative forecasting technique for wind power, which enriches the
current wind power forecasting method toolbox.

(2) The Beveridge-Nelson decomposition (BND) method, which has been frequently and widely
used for economic issues, is employed in energy issues for the first time. In this paper, the wind
power time series are decomposed into three components, namely the deterministic, cyclical
and stochastic component. Empirical results show the wind power forecasting accuracy can be
improved after decomposing wind power time series by using BND, which indicates BND is
an effective method for wind power time series decomposition. It can be said that this paper
expands the application domains of the BND method, and enriches the data decomposition
library for wind power time series.

(3) Relevance vector machine (RVM) technique is employed to forecast the different decomposed
components of wind power time series. To improve the forecasting performance of RVM, a new
Nature-inspired meta-heuristic algorithm, namely the ant lion optimizer (ALO), is used to
optimally determine the kernel width parameter of RVM model. Forecasting results reveal the
ALO is effective, which can determine the optimal kernel width parameter of RVM and improve
the RVM-based wind power forecasting accuracy. In our previous study [43], has was verified
that the ALO can improve GM (1,1)-based power load forecasting accuracy. Therefore, ALO, as a
new intelligent optimization algorithm, can be promising with a good development foreground.
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This paper makes a new attempt to use ALO for parameter optimization of RVM, which also
enlarges the application scope of the ALO algorithm.

The reminder of this paper is organized as follow: Section 2 gives a brief introduction of the
basic methods and algorithms used, including the Beveridge-Nelson decomposition (BND) method,
relevance vector machine (RVM), and ant lion optimizer (ALO); the proposed hybrid BND-ALO-RVM
forecaster for wind power is described in Section 3; Section 4 conducts an empirical analysis, and the
forecasting performance of the proposed method is compared with other methods. The main
conclusions are drawn in Section 5.

2. Brief Introduction of the Beveridge-Nelson Decomposition Method, Relevance Vector Machine
and Ant Lion Optimizer

2.1. Beveridge-Nelson Decomposition Method (BND)

In 1981, two researchers Stephen Beveridge and Charles Nelson proposed a new general procedure
for non-stationary time series decomposition, named the Beveridge-Nelson decomposition (BND)
method [32]. The BND method decomposes the stationary first-order difference of original time series
with first-order co-integration characteristics into permanent components and transitory (cyclical)
components [44]. The permanent component is a random walk process with drift, which includes
deterministic component and stochastic component. The deterministic component can be estimated
using ARIMA technique, and the transitory (cyclical) component is a stationary process with a zero
average value.

The first step of the BND method is to determine whether the first-order difference of a
non-stationary wind power time series is stationary or not [45]. If yes, the detailed steps of wind power
time series decomposition by using BND method are as follows:

The wind power time series are represented as WP. According to the Wold theorem, under the
the condition of first-order stationarity, the natural logarithm of the wind power time series at time t
(denoted as lnWPt) satisfies:

Δ ln WPt = μ + εt +
∞

∑
i=1

λiεt−i (1)

where WPt is the wind power at time t; μ is the long-run mean value of ΔlnWPt; εt ∼ i.i.d.N
(
0, σ2)

(i.i.d. represents independently and identically distribute); λi is the coefficient; and Δ ln WPt =

ln WPt − ln WPt−1.
Taking the expectation on both sides of Equation (1), we can obtain:

E(Δ ln WPt) = E(μ) + E(εt) + E

(
∞

∑
i=1

λiεt−i

)
= E(μ) (2)

where E(•) represents the expected computation on variables.
According to the Beveridge-Nelson decomposition theorem, the deterministic component

(represented as Dt) of the wind power time series can be decomposed as:

Dt = ln WP0 + μt (3)

where Dt represents the deterministic component of the wind power time series at time t; and lnWP0 is
the natural logarithm value of the initial wind power data.

According to Morley [44], the time series can be forecasted by using first-order difference AR(1)
model, namely:

(Δ ln WPt − μ) = φ(Δ ln WPt−1 − μ) + εt (4)

where |φ| < 1, and εt ∼ i.i.d.N
(
0, σ2).
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According to the Wold theorem, the expected value of minimum mean squared error (MMSE) of
first-order difference ΔlnWPt at next j period under the assumption of normality is:

Et

[(
Δ ln WPt+j − μ

)]
= φj(Δ ln WPt − μ) (5)

The BN trend of wind power time series, denoted as Tt, is defined as the MMSE forecast of time
series long-term level, namely:

Tt = lim
j→∞

Et

[(
ln WPt+j − jμ

)]
= ln WPt + lim

j→∞
Et

[(
Δ ln WPt+j − μ

)]
(6)

Thus, substituting Equation (5) into Equation (6), the BN trend of lnWPt for the case AR (1) can be
obtained as:

Tt = ln WP +
φ

1 − φ
(Δ ln WPt − μ) (7)

Meanwhile, the cyclical component Ct of wind power time series can be calculated by:

Ct = − φ

1 − φ
(Δ ln WPt − μ) (8)

Finally, the stochastic component Tt of wind power time series can be computed as:

Tt = ln WP +
φ

1 − φ
(Δ ln WPt − μ)− (ln WP0 + μt) (9)

2.2. Relevance Vector Machine (RVM)

Relevance vector machine (RVM), proposed by Tipping, is a kind of sparse and supervised
learning probabilistic method [46]. Compared with traditional supervised learning algorithms, RVM
under a Bayesian framework has a better non-linear mapping capability, which can be used in the case
of a small number of samples and can also obtain a good generalization performance.

Given a training sample set {pi, vi}N
i=1, pi is a two-dimensional input vector, and vi is a

one-dimensional target value. The RVM model can be formulated as:

y(p, w) =
N

∑
i=1

wiK(p, pi) + w0 (10)

where N is the number of training sample; wi is the weight; and K(p, pi) is a kernel function.
There are several kinds of kernel functions, and the Gaussian kernel function is usually

employed, namely:

K(p, pi) = exp
(−‖p − pi‖

2σ2

)
(11)

where σ is the width of kernel function.
Suppose that the noise εi obeys normal distribution with mean of 0 and variance σ2. Then:

vi = y(pi, w) + εi (12)

Since vi is independent and identically distributed, the likelihood function of the training
sample is:

P
(

v|w, σ2
)
=

1√
2πσ

exp

(
−‖v − Φw‖2

2σ2

)
(13)

where v = (v1, v2, · · · , vN)
T ; w = (w0, w1, · · · , wn)

T ; ΦN×(N+1) = [φ(p1), φ(p2), · · · , φ(pN)]
T ; and

φ(pi) = [1, K(pi, p1), · · · , K(pi, pN)].
To avoid the issues of too many relevance vectors, over-fitting and poor generalization capability,

the weight w should obey normal distribution, namely:

P(w|α) =
N

∏
i=0

αi√
2π

exp

(
− αiw2

i
2

)
(14)
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According to the Bayesian criterion, it can be inferred that the a posteriori distributions of w and t
are both normal distributions, namely:

P
(

v|α, σ2
)
=

1√
(2π)N

(
σ2 I + ΦA−1ΦT

) exp

⎛⎝− vTv

2
(

σ2 I + ΦA−1ΦT
)
⎞⎠ (15)

P
(

w|v, α, σ2
)
=

P
(

v|w, σ2)P(w|α)
P( v|α, σ2)

=
i√

(2π)N+1 ∑1
exp

{
− (w − μ)T(w − μ)

2 ∑1

}
(16)

where μ = σ−2
(

σ2 I + ΦA−1ΦT
)

ΦTv; ∑1 =
(

σ−2ΦTΦ + A
)−1

; A = diag(α0, α1, · · · , αN).

To maximize the hyper-parameter likelihood distribution P
(

v|α, σ2), the optimal values of αbest

and σ2
best can be obtain according to the following iterations, namely:

αbest
i =

1 − αi Nii

μ2
i

(17)

σ2
best =

‖v − Φμ‖2

N − N
∑

i=0
(1 − αi Nii)

(18)

where αbest
i is the ith value of optimal parameter αbest; μi is the ith posterior mean value of μ; and Nii is

the ith diagonal element of posterior variance matrix.
When the new input data p∗ is given, the corresponding probability distribution of forecasting

output can be obtained as:

P
(

v∗|v, αbest, σ2
best

)
=

∫
P
(

v∗|w, σ2
best

)
P
(

w|v, αbest, σ2
best

)
dw (19)

The forecasting variance is:

σ2∗ = σ2
best + φ(p∗)T

1

∑ φ(p∗) (20)

The mean value of the forecasting output is:

y∗ = μTφ(p∗) (21)

During the parameter estimation process, most αi will tend to ∞, and then the corresponding wi
will equal 0. This means that many terms of the kernel matrix will not participate in the forecasting
process, and this is why RVM can achieve sparsity [36]. Compared with the support vector machine
(SVM) technique, there is only one parameter which needs to be set for RVM, namely the kernel width
parameter σ [36].

2.3. Ant Lion Optimizer (ALO)

In 2015, Mirjalili proposed a new Nature-inspired meta-heuristic algorithm, namely the ant lion
optimizer (ALO) [42]. The ALO was put forward by the inspiration of intelligence behavior of ant
lions hunting for ants. The detailed steps of the ALO algorithm are as follows:

Step 1: Set initial parameters.

When ALO is used, the initial values of five parameters need to be set, which are the number of
ants and ant lions Agents_no; maximum iteration number Max_iteration; variables number dim; lower
bound lb = [lb1, lb2, · · ·] and upper bound ub = [ub1, ub2, · · ·] of variables.

Step 2: Initialize the positions of ants and antlions.

The positions of ants and antlions need to be initialized, which can be represented by
Equations (22) and (23).

182



Energies 2017, 10, 922

MAnt =

⎡⎢⎢⎢⎢⎣
A11 A12 · · · A1d
A21 A22 · · · A2d

...
...

...
...

An1 An2 · · · And

⎤⎥⎥⎥⎥⎦ (22)

MAntlion =

⎡⎢⎢⎢⎢⎣
AL11 AL12 · · · AL1d
AL21 AL22 · · · AL2d

...
...

...
...

ALn1 ALn2 · · · ALnd

⎤⎥⎥⎥⎥⎦ (23)

where MAnt represents each ant position; Aij represents the j-th parameter’s value of the i-th ant;
MAntlion represents each antlion position; ALij represents the j-th parameter’s value of the i-th antlion;
i = 1, 2, · · · , n, j = 1, 2, · · · , d.

The positions of ants and antlions are generated at random. Therefore, the entry of position matrix
of ant and antlion can be obtained according to Equation (24):

A∗j or AL∗j = rand ×
(

ubj − lbj

)
+ lbj (24)

where A∗j and AL∗j are the j-th column values of position matrix; rand represents the generated
random number with uniform distribution in the interval [0, 1]; lbj and ubj respectively, represent the
lower and upper boundary of the j-th variable.

Step 3: Select initial elite.

The elite refers to the best antlion obtained in the iteration process. The best antlion can be
determined according to fitness function, and the antlion with the maximal fitness value is elite, which
is also called as the fittest antlion. In ALO, the fitness function of antlion is represented by f [∗],
and matrix MOAL is used to store fitness values of antlions, namely:

MOAL =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
[(

AL11 AL12 · · · AL1d

)]
f
[(

AL21 AL22 · · · AL2d

)]
...

f
[(

ALn1 ALn2 · · · ALnd

)]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(25)

where MOAL is the fitness matrix of antlions.
According to Equation (25), the fitness values of antlions can be calculated, and then the initial

elite can be selected.

Step 4: Start iteration.

In ALO, the ant position is influenced by both the antlion and the selected elite. The ants randomly
walk around the selected elite and antlions are selected by a roulette wheel algorithm. According to
this rule, the i-th ant position at the t-th iteration can be obtained by:

Antt
i =

Rt
E + Rt

A
2

(26)

where Antt
i is the i-th ant position at the t-th iteration, Rt

E represents the random walk around the
selected elite at the t-th iteration, and Rt

A represents the random walk around the antlion selected by
the roulette wheel algorithm.

Random walk is an important strategy for modelling the positions and movements of ants and
antlions in the ALO algorithm. For a detailed interpretation related to random walk in ALO readers
can refer to [42,43].

In the iteration process, the ants update their positions according to Equation (26). In order to
keep the random walk inside the search space, the ant position needs to be normalized at each iteration
as follows:
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X̃t
j =

(
Xt

j − aj

)
×

(
dt

j − ct
j

)
(

bj − aj

) + ct
j (27)

where X̃t
j represents the normalized value of the j-th variable at the t-th iteration; aj and bj respectively

represent the minimum and maximum of random walk of the j-th variable; ct
j and dt

j are the minimum
and maximum of random walk of the j-th variable at t-th iteration, respectively.

In the ALO algorithm, the random walk of ants is influenced by the traps of antlions, which can
be modeled as follows: {

ct
i = Antliont

i + ct

dt
i = Antliont

i + dt (28)

where ct
i and dt

i respectively represent the minimum and maximum of variables related to the i-th
ant at t-th iteration; ct and dt respectively represent the minimum and maximum of variables at t-th
iteration; and Antliont

i represents the i-th antlion position at the t-th iteration.
During the iteration and optimization process, antlions build their pits proportional to their

fitness values. The antlions with better fitness values have larger pits, which indicate these antlions
have better chances of catching ants. When the antlions find that ants are trapped, they will throw
sand outwards the centers of pits. Therefore, the random walk range is set to decrease adaptively to
simulate the movement behavior of ants sliding towards antlions, which can be modelled as follows:

ct =
ct

I
(29)

dt =
dt

I
(30)

where I is a decreased ratio as follows:

I =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

102 × t
T , t

T > 0.1
103 × t

T , t
T > 0.5

104 × t
T , t

T > 0.75
105 × t

T , t
T > 0.9

106 × t
T , t

T > 0.95

(31)

Step 5: Select the optimal antlion (final elite).

The antlion will catch an ant when ant reaches the bottom of the cone-shaped pit, and then it pulls
the ant into the sand and consumes it. To improve the probability of catching a new ant, the antlion
will update its position according to the position of the latest caught ant and then build a new pit
for catching prey. In the ALO algorithm, when the ant is fitter than the antlion, it will be caught.
The position of the antlion can be updated by:

Antliont
i = Antt

i i f f
(

Antt
i
)
> f

(
Antliont

i
)

(32)

For each iteration, the fitness and position of antlions can be updated according to Equation (32),
and then the new elite can be redetermined. When the stopping criteria for iteration (such as maximum
iteration number) is satisfied, the ALO algorithm will end. At this time, the final elite, namely the
optimal antlion can be obtained.

3. The Proposed Hybrid BND-ALO-RVM Forecaster for Wind Power

In this paper, a new hybrid BND-ALO-RVM forecaster is proposed for wind power. Considering
the non-stationary characteristics of wind power time series, the BND method is firstly employed
to decompose the initial wind power time series into three components: the deterministic, cyclical
and stochastic component. Then, the RVM technique is used to forecast these three components,
respectively. To improve the forecasting performance, the kernel width parameter σ of the RVM model
is optimally determined using a new swarm intelligent algorithm ALO. Finally, the forecasted wind
power can be obtained by multiplying the forecasting results of three decomposed components.
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The detailed procedures of the proposed hybrid BND-ALO-RVM method for wind power
forecasting are elaborated as below:

Step 1: Perform unit root test.

When the Beveridge-Nelson decomposition method is used, the first thing is to examine whether
the logarithmic sequence of initial wind power time series is first-order stationary or not. If the
first-order difference of logarithmic sequence of initial wind power time series is stationary, then we
can proceed to the next step. In this paper, the Augmented Dickey-Fuller (ADF) method is used to
perform unit root tests.

Step 2: Decompose wind power time series.

Once the condition that the first-order difference of logarithmic sequence of initial wind power
data is stationary is confirmed, the wind power time series can be decomposed into the deterministic,
cyclical and stochastic components by using the BND method.

Step 3: Set initial parameters.

For the ALO algorithm, five parameters, namely ants and antlion numbers Agents_no, variables
number dim, maximum iteration number Max_iteration, lower boundary lb = [lb1, lb2, · · ·] and upper
boundary ub = [ub1, ub2, · · ·] need to be initially set. In this paper, these five parameters are set as
follows: Agents_no = 10, dim = 1, Max_iteration = 100, lb = 0.001, and ub = 100.

Step 4: Start optimization search.

The fitness function f [∗] needs to be determined firstly when the ALO is used to optimize the
kernel width parameter of RVM. In this study, the root mean square error (RMSE) between actual wind
power data and forecasted wind power data is employed to build the fitness function, namely:

RMSE =

√
1
n

n

∑
k=1

(x(k)− ∧
x(k))

2
(33)

where x(k) is actual wind power data at time k; and x̂(k) is the where forecasted wind power value at
time k.

The kernel width parameter of RVM is represented by the antlion’s position MAntlion, namely
each column of MAntlion. The optimal position of antlions will be updated at each iteration, and then
the optimal kernel width parameter of RVM can be also updated so far. Suppose that the actual wind
power decomposition data {x(0)(1), x(0)(2), ..., x(0)(n)} is used in the first iteration, the forecasted
wind power decomposition value {x̂(0)(1), x̂(0)(2), ..., x̂(0)(n)} can be calculated using the optimized
RVM model. At this time, the fitness function and optimization object can be built at this iteration by
minimizing RMSE as follows:

f = min

√
1
n

n

∑
k=1

(
x(k)− ∧

x(k)
)2

(34)

Step 5: Determine the optimal parameter of RVM.

During the iteration and optimization process, different RMSEs will be obtained with different
kernel width parameters of RVM. When the iteration reaches a maximum, the minimum RMSE can be
found, and then the optimal kernel width parameter σ of RVM can be determined, which will be used
for three components forecasting of wind power time series by using the RVM technique.

Step 6: Integrate three components forecasting results and forecast wind power.

After the initial wind power time series are decomposed into three components and the optimal
kernel width parameter of RVM is determined, the RVM optimized by ALO will be employed
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to respectively forecast the three decomposed components, namely the deterministic, cyclical and
stochastic component. Then, the forecasting results of these three components are integrated. Finally,
the forecasting result of wind power can be obtained by multiplying the forecasting results of the
corresponding deterministic, cyclical and stochastic components.

The procedure of the proposed BND-ALO-RVM method used for wind power forecasting in this
paper is shown in Figure 1.

 

Figure 1. Flowchart of the proposed BND-ALO-RVM wind power forecaster.
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4. Empirical Analysis

In this paper, hourly wind power from the Xinjiang Uygur autonomous region in China collected
during June 2015 was employed for empirical analysis to validate the proposed BND-ALO-RVM
forecaster. The Xinjiang Uygur autonomous region, which has plentiful wind resources, is located in
the northwest of China, as shown in Figure 2. The sample set in this paper includes 408 hourly wind
power points from 14 June to 30 June, which are shown in Figure 3. It can be seen that the wind power,
which ranges from about 5 MW to 164 MW, fluctuates greatly. No apparent variation pattern of the
wind power time series can be seen.

 

Figure 2. Geographical location of Xinjiang and its wind resources.

Figure 3. Wind power time series from 14 June to 30 June (408 sample points).
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4.1. Wind Power Time Series Decomposition Using BND Method

The BND method is applied to decompose the original wind power time series. Before data
decomposition, the unit root test based on the ADF test is necessary to judge whether the logarithmic
sequence of wind power time series is first-order stationary. The ADF test results are listed in Table 1,
where it can be seen that the wind power time series are stable after first-order difference. Then,
the BND method can be used to decompose the wind power time series. The decomposition result of
the original wind power time series is shown in Figure 4, which includes the deterministic, cyclical
and stochastic components.

Table 1. ADF test result of wind power time series.

Sequence Test Form (C,T,K) ADF Test Value P Value Conclusion

ln P (N,N,1) −2.5705 0.1098 Unstable
Δ ln P (N,N,0) −11.5359 0.0000 stable

Figure 4. Decomposed deterministic component, cyclical component and stochastic component of the
original wind power time series.

4.2. Forecasting Results

After the original wind power time series are decomposed, the deterministic, cyclical and
stochastic components will be respectively forecasted using ALO-RVM, which means the kernel
width parameter of RVM will be respectively optimized and determined by ALO. The sample set of
wind power from 14 June to 30 June is divided into a training sample set and a testing sample set.
Two hundred and sixteen (216) sample data points of hourly wind power from 14 June to 23 June are
used as training sample, and the remaining 168 sample data points from 24 June to 30 June are treated
as testing sample.

The inputs of ALO-RVM model are historical hourly wind power 1 h ahead and hourly wind
power at the same time yesterday. For example, for forecasting the deterministic component of wind
power time series at the 1st hour of 24 June, the deterministic component of wind power time series at
1 h ahead (i.e., deterministic component of the 24th hour wind power data at 23 June) and deterministic
component of wind power time series at the same time yesterday (i.e., deterministic component
of the 1st hour wind power data at 23 June) will be employed as the input variables. In this way,
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the deterministic components of wind power time series from the 2nd hour of 24 June to the 24th
hour of 30 June can be forecasted. Meanwhile, the cyclical components and stochastic components
of the wind power time series from the 1st hour of 24 June to the 24th hour of 30 June can also be
forecasted. Finally, the wind power from the 1st hour of 24 June to the 24th hour of 30 June can
be respectively obtained by conducting the multiplication of forecasted deterministic components,
cyclical components and stochastic components from the 1st hour of 24 June to the 24th hour of 30 June.
For the training period, the same way is taken in this paper. The training sample data and testing
sample data will be respectively normalized before training and testing by using ALO-RVM method,
and the normalization method is as follows:

x̃ =
x − xmin

xmax − xmin
(35)

where x and x̃ are the original and normalized wind power data, respectively; xmax and xmin

respectively represent the maximum and minimum value of each input wind power time series.
During the training period, the kernel width parameter of RVM will be optimally determined

using the ALO algorithm for the deterministic, cyclical and stochastic components, respectively.
The optimal values of RVM kernel width parameter σ for the deterministic, cyclical and stochastic
components are respectively 29.2504, 0.0137 and 11.8443, which are also the RVM kernel widths for
the deterministic, cyclical and stochastic component during the testing period. The forecasting results
of the deterministic, cyclical and stochastic component of the hourly wind power from 24 June to
30 June are shown in Figure 5. Then, the hourly wind power from 24 June to 30 June can be forecast by
multiplying the forecasted deterministic, cyclical and stochastic components from 24 June to 30 June,
which are shown in Figure 6.

Figure 5. Forecasted deterministic component, cyclical component and stochastic component of the
wind power time series from 24 June to 30 June.

4.3. Forecasting Performance Evaluation

To evaluate the forecasting performance of the proposed BND-ALO-RVM forecaster for wind
power, four comparison methods are selected, which are single RVM without data decomposition
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and parameter optimization (referred to as RVM), RVM only with data decomposition using BND
(referred to as BND-RVM), RVM only with parameter optimization (referred to as ALO-RVM),
and generalized regression neural network with data decomposition using wavelet transform (referred
to as WT-GRNN). The input variables and output variable of these four comparing forecasting methods
are the same as those of the BDN-ALO-RVM method.

Figure 6. Forecasting result of wind power from 24 June to 30 June.

For RVM and BND-RVM, the kernel width parameter is set as 3. For ALO-RVM, through training,
the optimal kernel width parameter of RVM is determined as 7.4645. For WT-GRNN, a fast discrete
wavelet transform based on four filters developed by Mallat [47] is employed, and the spread parameter
value of GRNN is selected as 3. The forecasted hourly wind powers from 24 June to 30 June using
RVM, BND-RVM, ALO-RVM, and WT-GRNN are shown in Figure 7. The relative errors of forecasted
hourly wind power using BND-ALO-RVM, RVM, BND-RVM, ALO-RVM, and WT-GRNN methods
are shown in Figure 8. From Figure 8, it can be roughly seen that the proposed BND-ALO-RVM
method has the best forecasting performance due to its much smaller relative errors, and RVM without
data decomposition and parameter optimization has the poorest forecasting capacity due to its larger
relative errors.

Figure 7. Forecasting results of hourly wind power by using different comparison methods.
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Figure 8. Relative errors of the forecasted hourly wind power of different methods.

To further compare the forecasting performances of the different methods, three forecasting error
criteria are selected to evaluate the forecasting performances of the different models, which are Mean
Absolute Percentage Error (MAPE, see Equation (36)), Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE, see Equation (37)):

MAPE =
1
n

n

∑
k=1

∣∣∣∣ x(k)− x̂(k)
x(k)

∣∣∣∣× 100% (36)

MAE =
1
n

n

∑
k=1

|x(k)− x̂(k)| × 100% (37)

The MAPEs, RMSEs and MAEs of different forecasting methods, namely BND-ALO-RVM,
RVM, BND-RVM, ALO-RVM, and WT-GRNN at each forecasted day are listed in Table 2. From the
perspective of average forecasting performance from 24 June to 30 June, the proposed BND-ALO-RVM
has the best forecasting performance because it has the minimum MAPE, RMSE and MAE,
which are 8.95%, 8.79 MW and 6.86 MW, respectively. The MAPE of BND-ALO-RVM model is
(29.20 − 8.95)/29.20 = 69.35%, (11.01 − 8.95)/11.01 = 18.75%, (10.74 − 8.95)/10.74 = 16.66%, and
(11.07 − 8.95)/11.07 = 19.15% lower than that of RVM, BND-RVM, ALO-RVM, and WT-GRNN,
respectively. The RMSE of BND-ALO-RVM model is (33.64 − 8.79)/33.64 = 73.89%, (10.29 − 8.79)/10.29
= 14.58%, (11.10 − 8.79)/11.10 = 20.81%, and (10.46 − 8.79)/10.46 = 15.97% lower than that of
RVM, BND-RVM, ALO-RVM, and WT-GRNN, respectively. The MAE of BND-ALO-RVM model
is (26.79 − 6.86)/26.79 = 74.39%, (8.08 − 6.86)/8.08 = 15.07%, (8.37 − 6.86)/8.37 = 18.05%, and
(8.13 − 6.86)/8.13 = 15.62% lower than that of RVM, BND-RVM, ALO-RVM, and WT-GRNN, respectively.
Therefore, it can be seen that the proposed BDN-ALO-RVM method has the best forecasting
performance in terms of short-term wind power, and the single RVM has the worst forecasting
performance. The MAPE of BND-RVM is larger than that of ALO-RVM, but smaller than that of
WT-GRNN. The RMSE and MAE of BND-RVM are both smaller than that of ALO-RVM and WT-GRNN.
Therefore, it can be said that the forecasting performance of BND-RVM is better than that of WT-GRNN,
but it is hard to say which is better between BND-RVM and ALO-RVM. The MAPE of ALO-RVM
is smaller than that of WT-GRNN, but the RMSE and MAE of ALO-RVM are larger than that of
ALO-RVM, so for ALO-RVM and WT-GRNN, we cannot decide in this paper which one is better in
term of wind power forecasting.
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From the perspective of forecasting performance during each day, the proposed BDN-ALO-RVM
method obtains the smallest MAPEs, RMSEs and MAEs among all five forecasting models on 24 June,
25 June, 27 June, 28 June, 29 June and 30 June. On 26 June, the BND-RVM obtains the smallest MAPE,
RMSE, and MAE. The RVM model gets the largest MAPE, RMSE, and MAE on each day between
24 June and 30 June, which indicates it has the worst forecasting performance again. This is because
the RVM without data decomposition and parameter optimization cannot grasp the characteristics
of wind power time series. The forecasting performance of BND-RVM method is better than single
RVM because BND-RVM method obtains smaller MAPEs, RMSEs and MAEs, which indicates BND is
an effective wind power time series decomposition method to improve the wind power forecasting
accuracy. Meanwhile, the forecasting performance of the ALO-RVM method is better than single RVM,
which indicates the ALO is an effective algorithm for kernel width parameter optimization of RVM to
improve the wind power forecasting accuracy. For BND-RVM and ALO-RVM methods, the BND-RVM
method has better forecasting performance than ALO-RVM on 24 June, 25 June, 26 June and 30 June,
and the ALO-RVM has better forecasting performance than BND-RVM on 27 June. It is hard to
judge which one has better forecasting performance between BND-RVM and ALO-RVM because the
different rankings related to MAPEs, RMSEs, and MAEs on 28 June and 29 June. For BND-RVM and
WT-GRNN methods, except the MAE criterion on 24 June and 28 as well as MAPE criterion on 28 June,
the BND-RVM shows better forecasting performance than WT-GRNN. On the whole, the BND-RVM
has better forecasting performance than WT-GRNN, which indicates the BND employed in this paper
is an effective technique for wind power time series decomposition.

To sum up the above analysis, we can conclude that the proposed BDN-ALO-RVM forecaster is an
effective and applicable technique, which can improve the forecasting accuracy of hourly wind power.
Meanwhile, the BND method is a valid wind power time series decomposition technique, and ALO is
an efficient meta-heuristic algorithm for kernel width parameter determination of RVM in the field of
wind power forecasting.

5. Conclusions

Wind power is a kind of environmentally friendly renewable energy power, which has developed
rapidly in recent years. However, the large-scale penetration of wind power with its stochastic
and intermittent characteristics into electric power systems will pose some threats to the stable and
safe operation of these systems. Improving wind power forecasting accuracy can alleviate these
threats. Therefore, a new hybrid BND-ALO-RVM forecaster for wind power is proposed in this paper,
which combines the Beveridge-Nelson decomposition method, relevance vector machine and ant
lion optimizer. The wind power time series are firstly decomposed into deterministic, cyclical and
stochastic components. Then, these three decomposed components are respectively forecasted by using
ALO-RVM method, which mean that the kernel width parameter of RVM is optimally determined
by the ALO algorithm. Finally, the wind power forecasting results can be obtained by multiplying
the forecasted deterministic, cyclical and stochastic components. Taking hourly wind power from
the Xinjiang Uygur autonomous region in China as an example, the empirical results indicate the
proposed BND-ALO-RVM forecaster obtains the best forecasting performance compared with the
single RVM, BND-RVM, ALO-RVM, and WT-GRNN methods. The proposed BND-ALO-RVM method
has the minimum MAPE, RMSE and MAE, which are 8.95%, 8.79 MW and 6.86 MW, respectively.
However, MAPE, RMSE and MAE of single RVM method are respectively 29.20%, 33.64 MW and
26.79 MW; MAPE, RMSE and MAE of BND-RVM method are respectively 11.01%, 10.29 MW and 8.08
MW; MAPE, RMSE and MAE of ALO-RVM method are respectively 10.74%, 11.10 MW and 8.37 MW;
and MAPE, RMSE and MAE of BND-RVM method are respectively 11.07%, 10.46 MW and 8.13 MW.
The proposed BND-ALO-RVM method is effective and practical for short-term wind power forecasting.
The BND method is a valid wind power time series decomposition technique, and ALO is an attractive
meta-heuristic algorithm for RVM parameter determination. This paper enriches the methodology
library related to wind power forecasting, and also extends the application domains of BDN and ALO.
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In future research, the proposed BND-ALO-RVM method may also be employed for other issues, such
as photovoltaic power forecasting and power load forecasting.
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Abstract: Accurate and stable prediction of icing thickness on transmission lines is of great
significance for ensuring the safe operation of the power grid. In order to improve the accuracy and
stability of icing prediction, an innovative prediction model based on the generalized regression
neural network (GRNN) and the fruit fly optimization algorithm (FOA) is proposed. Firstly, a feature
selection method based on the data inconsistency rate (IR) is adopted to select the optimal feature,
which aims to reduce redundant input vectors. Then, the fruit FOA is utilized for optimization of
smoothing factor for the GRNN. Lastly, the icing forecasting method FOA-IR-GRNN is established.
Two cases in different locations and different months are selected to validate the proposed model.
The results indicate that the new hybrid FOA-IR-GRNN model presents better accuracy, robustness,
and generality in icing forecasting.

Keywords: icing prediction; general regression neural network (GRNN); fruit fly optimization
algorithm (FOA); data inconsistency rate (IR)

1. Introduction

The transmission line ice coating can cause many types of accidents, including those related to
flashover performance of the ice-covered insulator, breakage of the ground line, and the collapse of
the tower [1]. They seriously affect the stability and security of power system operation. Since the
recording of icing accidents began, cases of transmission line ice coating causing the fall of high voltage
(HV) transmission line towers as well as wire breakages have been reported at home and abroad. Some
accidents are serious. In January 1998, a week-long ice disaster occurred in Canada, which caused a
blackout for one million users [2]. January 2008 witnessed four successive large-scale rainy and snowy
storms in the south of China. The electricity grid was seriously iced and the power line was repeatedly
broken, resulting in a direct economic loss of 10.45 billion CNY [3]. Therefore, establishing a prediction
model of icing thickness and predicting the icing thickness of transmission lines accurately are of great
significance for ensuring the security and stability of the power grid.

Currently, some scholars at home and abroad are researching icing thickness prediction of the
transmission line. They have put forward a variety of forecasting models, which mainly include
mathematical physics prediction models, statistical prediction models, and intelligent prediction
models. The mathematical physics prediction model mostly predicts the icing thickness of the
transmission line, based on the fluid motion law and the heat transfer mechanism of the wire icing [4].
The authors of [5], from the view of aerodynamics and thermodynamics, establish an icing forecasting
model including the super-cooled water drop and the heat transfer process on ice. The authors
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of [6] point out that the icing of transmission lines is the result of coupling effect of thermodynamics,
hydromechanics, and the electric current and field. On this basis, the physics prediction model of icing
thickness is built. In addition, typical mathematical physics prediction methods for icing thickness
include the Imai model [7], the Goodwin model [8] and the Lenhard model [9]. However, due to
the fact that some of the parameters in the mathematical physics prediction model are difficult to
obtain through the measurement in the actual line, such models are more difficult to apply directly
to the ice prediction of the actual transmission lines. The statistical prediction model is based on the
statistical laws of icing thickness of transmission lines [10], mainly including the extrema prediction
model [11], Markov chain prediction model [12], and so on. However, the icing thickness prediction
model based on the data statistics method cannot be extended to other transmission lines with different
geographical environments, so the desired effect of this model is not satisfactory.

Therefore, under the background of rapid development of artificial intelligence technology, it
is more significant to predict the icing thickness of transmission lines by using intelligent prediction
methods. Intelligent prediction methods mainly include artificial neural networks (ANNs) [13] and the
support vector machine (SVM) [14]. Here, the back-propagation neural network (BPNN) is typical of
ANNs. Luo et al. [15] presented an icing forecasting model of BPNN based on Levenberg–Marquardt
and obtained a higher prediction accuracy than the statistical forecasting model. However, the BPNN
has the problem of many parameters to set, and can easily to fall into over-fitting or local optimum.
For avoiding the local optimum problem, some scholars began to adopt the SVM model in the field
of icing prediction. Li et al. [16] proposed a model based on the SVM for icing forecasting and
its generalization ability is better than the model based on the BPNN. Ma et al. [17] introduced a
short-term prediction model of icing thickness based on grey SVM, and it was pointed out that the
model can achieve better prediction effect in ice-prone areas. However, it is difficult for the SVM model
to deal with large-scale training samples, so it cannot obtain ideal prediction accuracy. The generalized
regression neural network (GRNN) is a kind of radial basis function neural network proposed by
Specht, which has a strong ability for nonlinear mapping [18]. Compared with the BPNN and the
SVM, the GRNN has fewer adjustment parameters, does not easily fall into local minima, and is good
at processing large-scale training samples. In addition, the GRNN has an advantage in forecasting
volatile data. Therefore, the GRNN has been widely employed in the field of prediction, such as
electricity price forecasting [19], energy consumption forecasting [20], and traffic flow forecasting [21].
Zhang et al. [19] introduced a novel hybrid forecasting model using the GRNN combined with wavelet
transform for electricity price forecasting, and this model obtained better forecasting performance
compared with the BPNN and SVM. Zhao et al. [20] utilized the GRNN model to forecast the annual
energy consumption due to its good ability for dealing with the nonlinear problems. Leng et al. [21]
established a short-term forecasting model of traffic flow based on the GRNN and it has stronger
approximation capability and higher forecasting accuracy than the forecasting models of the radial
basis function (RBF) and back-propagation (BP) neural network.

However, it is difficult to determine the smoothing factor in the GRNN model exactly and the
selection of this parameter has a significant influence on its forecasting performance. Intelligent
optimization algorithms such as the genetic algorithm (GA) [22] and particle swarm optimization
(PSO) [23] are usually taken to select parameters for forecasting models. Gao et al. [22] proposed the GA
to optimize the initial weights and thresholds of BPNN for housing price prediction, which accelerated
the convergence rate of BPNN and improved the prediction accuracy of house prices. Ye [23] presented
a kernel extreme learning machine model based on particle swarm optimization (PSO-KELM) to
predict the power interval of wind power. PSO algorithm is utilized to optimize the output weights of
KELM, and satisfactory prediction results are obtained. The above algorithms effectively improved the
forecasting accuracy but also presented the malpractice of easily falling into local optimum. In order
to overcome the drawbacks, the fruit fly optimization algorithm (FOA) [24], based on the behaviors
of food finding, was proposed by Pan in 2011. This method only needs to set a few parameters and
performs at a relatively high speed for optimum searching with wide applications [25]. Sun et al. [26]
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introduced a new model based on wavelet transform and the least-squares support vector machine
(LSSVM) optimized by the FOA for short-term load forecasting and compared the forecasting results
between the proposed model and least-squares SVM optimized by PSO, which demonstrated that the
FOA performed better than PSO. In addition, Li et al. [27] presented an LSSVM-based annual electric
load forecasting model optimized by the FOA, and the proposed model obtained better forecasting
effectiveness than the LSSVM optimized by the coupled simulated annealing algorithm (CSA). Hence,
the FOA is utilized to adjust the appropriate smoothing factor in the GRNN model.

In addition, many factors can influence the formation of icing on the transmission line. If all the
influencing factors are used as input indicators of the forecasting model, there will be a lot of redundant
data [28]. Hence, the feature selection is also of great significance. Feature selection is about identifying
and selecting the appropriate input vector in the prediction model to reduce redundant data and
improve computational efficiency. The inconsistency rate (IR) model refers to dividing the feature set
into many feature subsets and calculating the minimum inconsistency under this partition mode, so as
to determine the optimal feature subsets and complete the feature selection [29]. Ma et al. [30] employed
the IR model to select the input features of the short-term load forecasting model, whose simulation
result demonstrated that the IR model gave the input vector of the strong pertinence of the prediction
model, and reduced the redundancy of the input information, thus improving the accuracy of load
forecasting. Liu et al. [31] also selected the optimal features for forecasting power load by adopting the
IR model so as to reduce the redundancy of input vectors, and the IR model obtained an ideal feature
selection effect. Using the IR model for feature selection can not only eliminate redundancy features
by utilizing the inconsistency of the data set, but also take the correlative characteristics among the
features into consideration, which does not ignore the relationship among features so that all the
statistical information can be perfectly expressed by the selected optimal feature. Hence, this paper
adopts the IR model for feature selection.

According to the above research, a GRNN model-integrated IR with the FOA is proposed. It is
the first time these three models are combined for icing thickness forecasting and several comparing
methods are utilized to validate the effectiveness of the proposed hybrid model. This paper is organized
as follows: Section 2 introduces the implementation process of the IR and GRNN optimized by the
FOA. Section 3 presents the evaluation criteria of the results. Section 4 provides a case to validate
the proposed model. Section 5 analyzes another case in a different place at another time to prove the
generalization of the forecasting method. Section 6 presents the conclusions in this paper.

2. Methodology

2.1. Fruit Fly Optimization Algorithm

The FOA is a new global optimization method based on foraging behaviors. There are two steps
for searching food of fruit fly swarm: (1) use the olfactory organ to collect odors floating in the air
and fly towards the food location; and (2) adopt a view to find food and other fruit flies’ gathering
positions and fly towards that direction. The iterative food searching process of the fruit fly swarm is
presented in Figure 1.

The steps of looking for the optimal features are as follows:

(1) Initialize the population size Sizepop, the iterations Maxgen, and the position coordinates (X0, Y0)
of the random fruit fly population.

(2) Give the individual fruit flies’ random flight direction and step size so that they can find food by
using the smell:

Where i = 1, 2, · · ·
Xi = X0 + Random Value (1)

Yi = Y0 + Random Value (2)
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(3) Since the fruit flies cannot obtain the food position, the distance Disti between the individual
and the origin of the flies is estimated first, and the taste concentration determination value Si
is calculated:

Disti =
√

Xi
2 + Yi

2 (3)

Si = 1/Disti (4)

(4) Put the taste concentration determination value Si into the adaptation function Fitness to
determine the taste concentration Smelli of the individual position.

Smelli = Fitness(Si) (5)

(5) Identify the individual of the highest concentration among the fruit fly populations including the
concentration and coordinates:

[bestSmell bestIndex] = max(Smelli) (6)

(6) Retain the maximum taste concentration value best Smell and its individual coordinates. The fruit
fly population uses vision to fly in that direction:

Smellbest = bestSmell (7)

X0 = X(bestIndex) (8)

Y0 = Y(bestIndex) (9)

Then, the stage of iterative refinement is entered; repeat steps (2)~(5), and judge that whether the
maximum taste concentration is superior to the previous generation, and whether the current iteration
is less than the maximum number of iteration Maxgen, and if so, then execute step (6).

Fruit fly group
X,Y)

Fruit fly1
X1,Y1)

Fruit fly2
X2,Y2)

Fruit fly3
X3,Y3)

Distance2

Distance1

Distance3

Food

Iterative 
evolution path

 

Figure 1. Iterative food searching process of the fruit fly swarm.

2.2. Data Inconsistency Rate

The aim of feature selection under large amounts of historical data of transmission line icing is to
distinguish the data characteristics of the strongest correlation with respect to the icing thickness, so
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as to ensure that the input vector of the icing prediction model has strong pertinence, reducing the
redundancy of input information and consequently improving the accuracy of icing prediction of the
transmission lines. The inconsistent rate of the data can accurately describe the discrete characteristics
of the input feature. Different feature patterns can be obtained by different division modes and
different frequency distributions can be obtained by different partition patterns. The calculation of IR
can be used to distinguish the distinguishing ability of the data category. The smaller the data IR is,
the stronger the classification ability of the eigenvector is.

It is necessary to know the computing methods of the inconsistent rate if we want
to perform feature selection by using the inconsistency method. Therefore, assuming that
the collected icing thickness data has g characteristics (such as temperature, humidity, wind
speed, etc.), which are respectively expressed as G1, G2, . . . , Gg, Γ stands for feature set
and L stands for the feature subset of Γ. Then, it is stipulated that qualification M has
c categories and N data instances according to the degree of severity of the lines’ icing.
Zji stands for the eigenvalue which corresponds to the feature Fi, and M stands for the value λi,
so the data instances can be expressed as [zj, λi]. Thereinto, Zj = [Zj1, Zj2, Zj3, Λ, Zjg]. Therefore, the
calculation formula of the data inconsistency rate is:

τ =

p
∑

k=1

(
c
∑

l=1
fkl − max

l
{ fkl}

)
N

(10)

In the formula, fkl is the number of data instances in the feature subset of the XK mode in the data
set; and Xk means that there are in total P patterns of feature partition range (k = 1, 2, . . . , p; p ≤ N).
The steps for using the inconsistent rate to perform the feature selection are as follows:

(1) Initialize the optimal feature subset as null set Γ = {}.
(2) Calculate the inconsistent rate of the data sets G1, G2, ..., Gg in the feature subsets which are made

up with the remaining feature of each subset.
(3) Select the feature Gi which corresponds to the minimum inconsistent rate as the optimum feature,

and then update the optimum feature subset to Γ = {Γ, Gi}.
(4) Calculate the inconsistent rate statistics table of the feature subsets and arrange them from small

to large.
(5) Select the feature subsets L with the smallest number of features, which can be selected as the

optimal feature subsets if they satisfy the condition that τL ≈ τΓ or τL′/τL is the minimum of the
inconsistent rate of all adjacent feature subsets. L′ is an adjacent feature subset of L.

Using calculating inconsistent rate can not only eliminate redundancy features by utilizing
the inconsistency of the data set, but also take the correlative characteristics among the features
into consideration, which does not ignore the relationship among features so that all the statistic
information can be perfectly expressed by the selected optimal feature.

2.3. Generalized Regression Neural Network

The general regression neural network (GRNN) was proposed by the American scholar Donald F.
Specht in 1991, with the theoretical basis of nonlinear regression analysis. As shown in Figure 2, the
GRNN constitutes four components:

(1) The input layer: the original variables enter the network which correspond to the neurons one by
one and are submitted to the next layer.

(2) The pattern layer: nonlinear transformation is applied to the values received from the input layer.
The transfer function of the ith neuron in the pattern layer is:

Pi = exp[−(X − Xi)
T(X − Xi)/2σ2] i = 1, 2, · · · n, (11)
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where X represents input variable, Xi is the learning sample corresponding to the ith neuron; and
σ is the smoothing parameter.

(3) The summation layer: calculate the sum and weighted sum of the pattern outputs.
The summation layer contains two types of neurons, in which one neuron SA makes arithmetic
summation of the output of all pattern layer neurons, and the connection weight of each neuron
in the pattern layer to this neuron is 1. Its transfer function is:

SA =
n

∑
i=1

Pi (12)

The outputs of all neurons in the pattern layer were weighted and summed to gain the other
neurons SNj in the summation layer. The transfer function of the other neurons in the summation
layer is:

SNj =
n

∑
i=1

yijPi j = 1, 2, · · · , k, (13)

where yij is the connection weight between the ith neuron in the pattern layer and the jth neuron
in the summation layer. yij is the jth element in the ith output sample yi.

(4) The output layer: the forecasting results can be derived. The output of each neuron is:

yj =
SNj

sA
j = 1, 2, · · · , k, (14)

where yj is the output of the jth neuron.

x1

x2

xn

Input Layer Onput LayerPattern Layer Summation Layer

y1

yk

... ... ... ...

P1

P2

Pn

SA

SN1

SNk

......

Figure 2. The structure of the generalized regression neural network (GRNN).

2.4. The Forecasting Model of FOA-IR-GRNN

The icing thickness forecasting model combining FOA, IR, and GRNN are constructed as
illustrated in Figure 3. It can be seen from the figure that the model of icing prediction proposed in
this paper mainly includes three parts: The first part is the feature selection based on the inconsistent
rate, the second part is the sample training based on the GRNN model, and the third part is the
icing prediction based on the GRNN model. When the established feature subset L cannot satisfy the
algorithm stopping criteria, the program will continue to cycle until reaching the expected precision
and then output the optimal feature subset. Therefore, in the model of icing prediction proposed
in this paper, the purpose of the first part is to find the optimal feature subset and the best value of
smoothing factor in the GRNN by iterative calculation. The purpose of the second part is to calculate
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the prediction accuracy of the training samples in every process of iteration, so that the fitness function
can be calculated. In the third part, we will utilize the optimum feature subsets and parameters
obtained from the above two parts and perform the final prediction of the icing thickness of the test
samples by retraining the GRNN model.

Enter the current 
optimal feature subset 

and the optimal 
smoothing factor

Initialize the optimal feature subset as 
empty set 

Initialize the population size of the 
FOA and other parameters

Calculate fitness function value
Calculate the taste concentration 

determination value

Identify the individual of the highest 
concentration, including the 

concentration and coordinates

Obtain the current optimal smoothing 
factor in the GRNN model

Stop criteria?

Select the optimum 
feature Gi by IR model 

and update the 
optimum feature 

subset to 

Original  data collection

Data pretreatment

Training sample Testing sample

Input the current optimal feature 
subset and smoothing factor for 

training 

Utilize the final optimal feature 
subset for testing 

Calculate the prediction accuracy 
of training sample

Outout the selected optimal 
feature subset

Retrain the GRNN model with 
selected features

Test the GRNN with 
testing set

Employ RE, RMSE, MAPE and AAE 
to evaluate the prediction effect

Part 1
Feature Selection

Part 2
Data Training

Part 3
Data Testing

No

Yes

 

Figure 3. The flow chart of FOA-IR-GRNN. FOA: fruit fly optimization algorithm; IR: inconsistency
rate; RE: relative error; RMSE: root mean square error; MAPE: mean absolute percentage error; AAE:
average absolute error.

The specific steps for icing thickness prediction are listed as follows:

(1) Determine the initial candidate feature. In this paper, we choose ambient temperature,
relative humidity, wind speed, wind direction, light intensity, atmospheric pressure, altitude,
condensation height, conductor direction, the height of conductor suspension, load current,
precipitation, and conductor surface temperature, all of which are selected as the candidate
features of the factors that influence icing. In addition, when it reaches the point t-i (i = 1, 2, 3, 4),
thickness value, temperature, relative humidity and wind speed are also selected as the main
influencing factors of line icing. All the initial candidate features are shown in Table 1. In the IR
algorithm, the optimal feature subset needs to be initialized as an empty set Γ = {}.

(2) Initialize the parameters of FOA. Suppose the population size is 20, the maximum iteration
number is 200 and the range of random flight distance is set as [−10, 10].

(3) Calculate the inconsistent rate. After completing steps (1) and (2), put the candidate features into
the IR feature selection model gradually. Calculate the inconsistent rate of the data sets G1, G2,
. . . , Gg in the feature subsets which are made up of the remaining features of each subset and
then select the feature Gi which corresponds to the minimum inconsistent rate as the optimum
feature, and update the optimum feature as Γ = {Γ, Gi}.
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(4) Get the optimal feature subset and the best value of smoothing factor in GRNN. Put the current
feature subsets into the GRNN model, and calculate the prediction accuracy during the learning
process of the circular training samples. Then, the fitness function Fitness(j) can be worked
out. We can get the optimum feature subset by comparing the fitness function among each
generation and judge whether all iterations have achieved the algorithm stopping conditions.
If not, re-initialize a new feature subset and put it into a new circulation until the optimum feature
subset which meets all the conditions is obtained. It should be noted that the smoothing factor of
the GRNN also needs to be optimized, and the initial value of smoothing factor will be assigned
randomly. In this paper, a fitness function is established based on the two factors of prediction
accuracy and feature selection:

Fitness(j) = −(a + r(j) + b × 1
Num f eature(j)

) (15)

In the formula, Numfeature(xi) is the number of optimum feature which is selected by each
iteration and both a and b are constants between [0, 1]; r(j) represents the prediction accuracy of
ice cover thickness at each iteration. The optimal number of features is proportional to the fitness
function for all iterations, and the accuracy of the icing prediction is inversely proportional to the
fitness function. Different smoothing factors will result in different forecasting results and lead to
different prediction accuracy, indicating that the smoothing factor of the GRNN also influences
the value of fitness function Fitness(j). Hence the optimal feature subset and the best value of
smoothing factor in the GRNN will be obtained at the same time in this step.

(5) Stop optimization and start prediction. Circulation ends at the maximum number of iteration.
Here, the optimum feature subset and the best value of smoothing factor can be substituted into
the GRNN model for icing thickness forecasting.

Table 1. The full candidate features.

C1, . . . , C4 ITt-i, i = 1, 2, 3, 4 represent the t-ith time point’s icing thickness
C5, . . . , C9 Tt-i, i = 0, 1, 2, 3, 4 represent the t-ith time point’s ambient temperature

C10, . . . , C14 Ht-i, i = 0, 1, 2, 3, 4 represent the t-ith time point’s relative air humidity
C15, . . . , C19 WSt-i, i = 0, 1, 2, 3, 4 represent the t-ith time point’s wind speed

C20 WDt represents the tth time point’s wind direction
C21 SIt represents the tth time point’s sunlight intensity
C22 APt represents the tth time point’s air pressure
C23 AL represents the altitude
C24 CH represents the condensation height
C25 LD represents the transmission line direction
C26 LSH represents the transmission line suspension height
C27 LC represents the load current
C28 R represents the rainfall
C29 ST represents the surface temperature on the transmission line

3. Performance Evaluation Index

The primary issue is to determine which forecasting model outperforms the other models, and
the performance of the prediction models is usually assessed by statistical criteria: the relative error
(RE), root mean square error (RMSE), mean absolute percentage error (MAPE) and average absolute
error (AAE). The smaller the values of these four indicators are, the better the forecasting performance
is. Furthermore, the indicators named RMSE, MAPE, and AAE can reflect the overall error of the
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prediction model and the degree of error dispersion. The smaller the values of these three indicators
are, the more concentrated the distribution of errors is. These four error indexes are defined as follows:

RE =
yt − y∗t

yt
× 100% (16)

RMSE =

√√√√ 1
N

N

∑
t=1

(
yt − y∗t

yt

)2
(17)

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − y∗t
yt

∣∣∣∣× 100% (18)

AAE =
1
N
(

N

∑
i=1

|yt − y∗t |)/(
1
N

N

∑
i=1

yt) (19)

where yt and y∗t are the actual and forecast icing thickness at the time point t, respectively. N refers to
the groups of data.

4. Empirical Analysis

4.1. Data Collection and Pretreatment

In 2008, China was hit by a disaster of frozen rain and snow rarely seen in history. It brought
huge losses to life, and seriously affected the national economy. Hunan Province was one of the worst
hit provinces in this icing disaster. During the frozen period, the icing accident led to 182 towers
with 500-kV power transmission lines falling down, 633 towers with 220-kV power transmission
lines falling down, 1427 towers with 110-kV power transmission lines falling down, 1064 towers with
35-kV power transmission lines falling down, and 63,036 towers with 10-kV power transmission lines
falling down. As for 10-kV and above, 50,000 wires were broken. Yueyang and Loudi (cities in Hunan
Province) as well as other areas had large-area power outages. The Hunan power grid suffered the
most serious threat in history, and the direct economic losses were up to more than 1 billion CNY.
Therefore, this paper chooses the transmission line of the Hunan Province power grid to carry on the
empirical analysis.

In this paper, the power transmission line, named “Kunxia line” in YueYang of Hunan Province is
selected as the case to verify the effectiveness of the proposed model. All the data are provided by
the Key Laboratory of Disaster Prevention and Mitigation of Power Transmission and Transformation
Equipment (Changsha, China).

The data from the “Kunxia line” are from 10 January 2008 to 12 January 2008, and include
288 data groups. Here, taking 15 min as the data collection frequency, the first 230 groups are adopted
as the training samples and the latter 58 are utilized as the testing samples in Case 1. The main
micro-meteorology data, including temperature, wind speed, and humidity are shown in Figure 4.

In order to better train the proposed model and ensure the prediction accuracy, it is of significance
to normalize all the original data in the range of [0, 1], and the processing equation is as follows:

Z = {zi} =
xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (20)

where xi is the actual value; xmin and xmax are the minimum and maximum values of the sample data
respectively; and zi represents the value of the adjusted ith sample point.
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Figure 4. Original data chart of icing thickness, temperature, wind speed and humidity. Note:
(a) represents the original data of icing thickness; (b) represents the original data of temperature;
(c) represents the original data of wind speed; and (d) represents the original data of humidity.

4.2. Feature Selection

Based on the IR model, this section is about the selection of the optimal feature subset, and
the determination of the input index of the prediction model. This paper uses Matlab R2014b for
programming, and as for the test platform environment, we use the Intel Core i5-6300U, with 4G
memory and the Windows 10 Professional Edition system.

Figure 5 presents the iteration process of the FOA-IR-GRNN model for training sample feature
extraction. The accuracy curve shown in the figure describes the prediction accuracy of the training
samples which were made by the GRNN in different iterations. The fitness curve describes the fitness
function values calculated during the process of iteration. The number of selected features indicates
the optimal number of features calculated by the IR model in the convergence process. The number of
feature reductions is the number of features that the FOA eliminates during the convergence process.

It can be seen from Figure 5 that the FOA converges when the number of iterations is 51, and
the optimal fitness function is −0.88; at this time the prediction accuracy of the training sample is up
to 98.6%. This shows that through the learning and training of the algorithm, the fitting ability of
the GRNN is strengthened, and the prediction accuracy of training samples is the highest. Moreover,
when the FOA runs the 51st time, the number of selected features also tends to be stable. It can be
concluded that the algorithm eliminates 23 redundant features from 29 candidate features, and the
final input features are the tth time point’s ambient temperature, relative air humidity, wind speed and
t − 1th time point’s icing thickness, ambient temperature, relative air humidity.
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Figure 5. The curve of convergence for feature selection. Note: (a) represents the fitness value;
(b) represents the forecasting accuracy; (c) represents the reduced number of candidate feature; and
(d) represents the selected number of optimization feature.

4.3. The GRNN for Icing Forecasting

After the optimal feature subset is obtained, put the input vector into the model proposed in this
paper to train and test. The smoothing factor of the GRNN model is 0.0031, which is calculated by the
running program.

A k-fold cross validation (K-CV) test is conducted here, so as to show whether the forecasting
results of the proposed model is obtained at local optimal or global optimal location and whether this
proposed model can be generalized to other unseen data. The K-CV test method divides the samples
into k disjoint subsets randomly, each of which is roughly equal in size. Using k − 1 subsets, a model
is established for a given set of parameters, and the RMSE of the remaining last subset is employed to
evaluate the performance of the parameters. Repeat the procedure K times, and each subset has the
opportunity to be tested. Hence, the 288 sets of data are randomly divided into 12 datasets, each of
which has 24 groups of data, and they do not intersect with each other. After 12 operations, each sub
data set is tested and the RMSE of the sample is obtained, which can be seen in Table 2.

Table 2. Results of the k-fold cross-validation.

Fold
Number

1 2 3 4 5 6 7 8 9 10 11 12 Average
Standard
Deviation

RMSE 0.0126 0.0127 0.0128 0.0121 0.0103 0.0101 0.0123 0.0133 0.0128 0.0126 0.013 0.0115 0.0122 0.0010

From Table 2, it can be found that the average RMSE value and the RMSE standard deviation of
the proposed model is 0.0122 and 0.0010, respectively. It is indicated that the validation error of the
icing prediction model proposed in this paper can obtain its global minimum.

In order to verify the performance of the proposed model, this paper employs the GRNN model
which is not optimized by FOA. The mature BP neural network model and SVM model do the
contrast experiments, supported by the test sample data in Section 4.1. In addition, the FOA-GRNN
model without considering IR model for feature selection is also utilized for icing forecasting so as to
demonstrate the effects of the IR and the FOA. The smoothing factor of the single GRNN model is 0.2,
while the smoothing factor of the FOA-GRNN model without considering the IR model is 0.1026. The
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topological structure of the BPNN model is 9-7-1, and the hidden layer transfer function is expressed by
the tansig function. The output layer transfer function is expressed as purelin function. The maximum
number of trainings is 100 and the minimum error of the training target is 0.0001. The training rate
is 0.1. The initial weights and thresholds are obtained by their own training. In the SVM model, the
penalty parameter c is 9.236 which is obtained by the training, the kernel function parameter g is 0.0026,
and the ε loss function parameter p is 2.3572.

The actual values and forecasting values of the GRNN, BPNN, SVM, FOA-GRNN and the model
presented in this paper are presented in Figure 6. The relative error of each model is shown in Figure 7.
Figure 8 displays the RMSE, MAPE, and AAE of each prediction model. Table 3 displays part of the
predicted values and errors.

Figure 6 and Table 3 describe the forecasting results of the five prediction models and the actual
icing thickness. It can be seen from Figure 6 that the relative distance between the predicted and actual
values of each prediction model. In general, the overall forecasting trends of the five models are close
to the actual values. The forecasting curve of the proposed model is the closest to the actual curve,
whereas the other prediction curves have some deviation. The forecasting curve of the FOA-GRNN is
closer than that of the GRNN alone, demonstrating that the FOA makes the GRNN forecast better than
the GRNN model without the FOA. However, the prediction accuracy of the FOA-GRNN model is not
as good as the FOA-IR-GRNN model, indicating that feature selection method named the IR model
can further improve the forecasting effectiveness of the GRNN. In addition, it can be found that the
forecasting curve of the GRNN model is closer than the BPNN model and SVM model, indicating that
the GRNN performs better than the BPNN and SVM for icing forecasting.

 

Figure 6. The forecasting values of the proposed method and the comparison methods. Note: (a) the
forecasting value from sample points 1–20; (b) the forecasting value from sample points 20–40; (c) the
forecasting values from sample points 41–58. BPNN: back-propagation neural network; SVM: support
vector machine.

Figure 7 reflects the relative error distribution of the four models. From Figure 7, the difference
of prediction effect among different models can be seen more clearly. The RE ranges [−3%, 3%] and
[−1%, 1%] are popularly regarded as a standard to evaluate the performance of a prediction model [32].
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From Figure 7, we can obtain that: (1) there are only nine relative error values of BPNN model in the
range of [−3%, 3%] and only one value in the range of [−1%, 1%]; the maximum relative error is 4.99%
at the 24th sample point, while the minimum is −4.98% at the sixth sample point; (2) the relative error
of the SVM model has 35 forecasting points belonging to the range of [−3%, 3%], and there exist three
forecasting points in the range of [−1%, 1%]; the maximum relative error value is 3.48% at the 15th
sample point, and the minimum is −4.41% at the 51st point; (3) in the GRNN model, the relative errors
of 43 sample points are in the range of [−3%, 3%], and the relative errors of five sample points are in
the range of [−1%, 1%]; the maximum value is 3.38% at the 40th predicted point, while the minimum
is −3.95% at the 23rd point; (4) there are 52 relative error values of the FOA-GRNN model in the range
of [−3%, 3%] and seven values in the range of [−1%, 1%]; the maximum relative error is 3.25% at the
34th sample point, while the minimum is −3.57% at the 51st sample point; and (5) the relative errors
of the FOA-IR-GRNN model are all in the range of [−3%, 3%], and there exist 12 relative errors in
the range of [−1%, 1%]; the maximum relative error is 2.17% at the 42nd point, while the minimum
value is −1.89% at the sixth sample point. We can also find from Figure 7 that the RE curve of the
FOA-IR-GRNN model is the most stable and its values are all distributed within [−2%, 2%]. Moreover,
the RE curve of the FOA-GRNN model is more stable than the GRNN’s; the RE curve of the GRNN
model is more stable than the SVM’s; and the RE curve of the SVM model is more stable than the
BPNN’s. Based on the above analysis of relative error data, it can be concluded that the prediction
accuracy and stability of the FOA-IR-GRNN model is the best. The input indexes obtained by IR model
can help satisfactorily predict when the relative errors of the FOA-GRNN and the FOA-IR-GRNN are
compared. It is also demonstrated that the FOA enhances the training and learning process effectively
so as to avoid falling into a local optimum and improves the global searching ability of the GRNN
by comparing the relative errors of the FOA-GRNN and GRNN. Hence, both the IR model and the
FOA are significant for improving the forecasting performance of the GRNN. Additionally, the GRNN
presents more satisfactory performance than the SVM and BPNN. This result indicates that the GRNN
with only one parameter to be adjusted and fast calculation is more suitable for forecasting nonlinear
and non-stationary icing thickness.

Figure 7. The relative error curve of each method.

The RMSE, MAPE, and AAE of BPNN, SVM, GRNN, FOA-GRNN, and FOA-IR-GRNN are shown
in Figure 8. From Figure 8, we can conclude that the RMSE, MAPE, and AAE of the proposed model
are 1.2326%, 1.2006%, and 1.2059%, respectively, which are all the smallest among the above four
models. In addition, the RMSE, MAPE, and AAE of the FOA-GRNN model are 2.0485%, 1.9462%,
and 1.9994% respectively; the RMSE, MAPE, and AAE of the GRNN model are 2.6514%, 2.5375%, and
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2.5086% respectively; the RMSE, MAPE, and AAE of the SVM model are 2.8999%, 2.8295%, and 2.8200%
respectively; and the RMSE, MAPE, and AAE of the BPNN model are 3.6889%, 3.5612% and 3.5252%
respectively. These indicators can reflect the overall error of the prediction model and the degree of
error dispersion. Hence it can be further proved that the overall prediction effect of the GRNN model
is better than that of the SVM model and the BPNN model, while the overall prediction effect of the
SVM model is better than that of the BPNN model. The prediction accuracy of the FOA-GRNN model
is better than that of the GRNN model, which demonstrates that adopting the FOA to choose the
smoothing parameter in the GRNN model has achieved a satisfactory optimization effect. Meanwhile,
the FOA-IR-GRNN model obtains better overall forecasting accuracy than the FOA-GRNN model.
This result proves that the IR model not only reduces the redundant data, but also ensures the integrity
of the input information, thus obtaining the ideal prediction results.

 

Figure 8. Values of root-mean-square error (RMSE), mean absolute percentage error (MAPE) and
average absolute error (AAE).

Table 3. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM GRNN FOA-GRNN Proposed Model

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

1 3.45 3.33 3.48 3.55 −2.86 3.37 2.23 3.50 −1.3410 3.40 1.43
2 3.06 3.01 1.54 3.16 −3.22 3.12 −2.15 3.15 −3.0763 3.03 1.01
3 2.78 2.86 −2.58 2.69 3.29 2.75 1.16 2.77 0.7042 2.76 0.75
4 2.85 2.76 3.13 2.76 2.87 2.90 −2.05 2.76 3.1303 2.82 0.77
5 2.53 2.45 3.09 2.55 −0.85 2.61 −3.19 2.46 2.8785 2.56 −1.10
6 2.22 2.33 −4.98 2.28 −2.83 2.27 −2.32 2.24 −0.9358 2.26 −1.89
7 2.25 2.17 3.49 2.32 −3.40 2.20 2.21 2.30 −2.4674 2.22 0.99
8 2.13 2.06 3.15 2.10 1.61 2.09 2.05 2.19 −2.7489 2.10 1.43
9 1.68 1.75 −3.73 1.74 −2.99 1.74 −3.08 1.74 −3.0226 1.67 1.10
10 1.57 1.64 −4.32 1.62 −2.99 1.62 −2.71 1.64 −3.9586 1.59 −0.85
11 1.46 1.50 −2.75 1.42 2.57 1.49 −2.19 1.41 3.4128 1.45 0.72
12 1.37 1.36 1.10 1.41 −2.66 1.34 2.09 1.33 2.9047 1.35 1.38
13 1.37 1.43 −4.26 1.33 2.68 1.34 2.05 1.36 0.4503 1.39 −1.31
14 1.33 1.27 3.89 1.29 2.53 1.36 −2.59 1.29 2.3738 1.34 −1.47
15 1.28 1.34 −4.21 1.24 3.48 1.33 −3.91 1.32 −2.9158 1.30 −1.36

5. Case Study 2

In order to verify the proposed model has good adaptability in different time and places, another
case which selects the relevant data of the “Tianshang line” located in Loudi, Hunan Province,
is provided in this paper. The study is carried out with data from 17 January 2008 to 10 February 2008
as the training set and data from 11 February 2008 to 15 February 2008 as the testing set. Here, we take
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2 h as data collection frequency, and there are 360 data groups in total. The icing thickness data and
the main micro-meteorology data are shown in Figure 9.

 

Figure 9. Original data chart of icing thickness, temperature, wind speed and humidity. Note:
(a) represents the original data of icing thickness; (b) represents the original data of temperature;
(c) represents the original data of wind speed; and (d) represents the original data of humidity.

The iterative process of sample data of “Tianshang line” by employing the FOA-IR-GRNN model
is presented in Figure 10. From Figure 10, we can conclude that the optimal fitness function calculated
by the IR model is −0.91. When the FOA achieves the optimum in the 47th iteration, the prediction
accuracy of the sample reaches 98.3%. It can also be seen that 25 redundant features are eliminated from
29 candidate features, and the final input features include the tth time point’s ambient temperature,
relative air humidity, wind speed and the t − 1th time point’s icing thickness. In addition, the
smoothing factor of the GRNN was 0.0056, optimized by the FOA.

 

Figure 10. The curve of convergence for feature selection. Note: (a) represents the fitness value;
(b) represents the forecasting accuracy; (c) represents the reduced number of candidate feature; and
(d) represents the selected number of optimization feature.
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The results of the k-fold cross-validation for the icing prediction model proposed in this paper are
described in Table 4. The forecasting results are displayed in Figure 11 and Table 5. The error analyses
are presented in Figures 12 and 13.

Table 4. Results of the k-fold cross-validation.

Fold
Number

1 2 3 4 5 6 7 8 9 10 11 12 Average
Standard
Deviation

RMSE 0.0115 0.0128 0.0117 0.0125 0.0133 0.011 0.0129 0.0102 0.0105 0.0132 0.0103 0.0122 0.0118 0.0011

Figure 11. The forecasting values of the proposed method and the comparison methods. Note: (a) the
forecasting value from sample points 1–20; (b) the forecasting value from sample points 21–40; and
(c) the forecasting value from sample points 41–60.

Table 5. Part of the forecasting value and relative errors of each model.

Data
Point

Number

Actual
Value
(mm)

BPNN SVM GRNN FOA-GRNN Proposed Model

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error
(%)

Forecast
Value
(mm)

Error (%)

1 14.56 13.71 5.81 15.01 −3.07 14.16 2.75 14.79 −1.59 14.66 −0.67
2 16.21 16.56 −2.16 15.92 1.77 15.96 1.55 16.76 −3.40 16.00 1.30
3 16.02 15.20 5.12 16.50 −2.99 16.44 −2.62 15.67 2.16 15.80 1.40
4 15.35 14.79 3.65 15.82 −3.05 15.18 1.12 15.06 1.88 15.54 −1.21
5 13.87 13.58 2.08 14.32 −3.27 13.59 2.05 13.59 2.00 14.00 −0.96
6 13.55 14.33 −5.74 13.14 3.02 13.98 −3.18 13.86 −2.26 13.77 −1.62
7 13.01 13.48 −3.60 12.65 2.75 13.31 −2.32 13.13 −0.92 13.15 −1.07
8 12.98 13.52 −4.17 13.43 −3.46 13.29 −2.38 13.28 −2.31 12.83 1.19
9 12.35 11.65 5.66 11.99 2.89 12.66 −2.51 12.77 −3.36 12.28 0.55
10 12.01 11.54 3.91 11.50 4.24 12.36 −2.93 11.79 1.84 11.86 1.22
11 11.21 10.72 4.34 10.93 2.46 11.55 −3.05 10.97 2.10 11.31 −0.92
12 10.56 10.97 −3.88 10.84 −2.63 10.81 −2.38 10.79 −2.17 10.70 −1.35
13 10.02 9.70 3.17 10.32 −3.00 9.70 3.21 10.19 −1.69 9.91 1.13
14 9.89 10.45 −5.66 10.21 −3.22 9.60 2.93 10.05 −1.63 9.80 0.93
15 10.21 10.70 −4.76 9.78 4.22 9.89 3.16 10.30 −0.92 10.06 1.47
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As is shown in Table 4, the average RMSE value and RMSE standard deviation of the proposed
model are 0.0118 and 0.0011, respectively. These data illustrate the fact again that the generalization
performance of the icing prediction model proposed in this paper has been improved.

Figure 12. The relative error curves of each method.

 
Figure 13. Values of root-mean-square error (RMSE), mean absolute percentage error (MAPE) and
average absolute error (AAE).

It can be concluded from Figure 11 and Table 5 that the predicted value of the FOA-IR-GRNN
model is the closest to the actual value, which demonstrates that the proposed model is not only
accurate but also has robustness. When comparing the forecasting curves of the FOA-IR-GRNN model
and the FOA-GRNN model, we can conclude that adopting the IR model for feature selection can
significantly improve the prediction accuracy, in that this feature selection method can enhance the
effectiveness of input information. Furthermore, the forecasting curve of the FOA-GRNN model is
closer than that of the GRNN model, indicating that in addition to the IR model, the FOA also makes
a significant contribution to the improvement of GRNN prediction accuracy. Compared with SVM
and BPNN, the forecasting value of the GRNN model is closer to the actual ice thickness, which
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demonstrates once again that the approximation and classification ability of the GRNN model is better
than that of the SVM model and the BPNN model, and the GRNN emerges with better performance in
dealing with unstable data.

Figure 12 presents the relative error of the four models. As the calculation results shown, we can
conclude that: (1) the fitting and learning ability of the FOA-IR-GRNN model is the strongest, in that
its relative errors are all in the range of [−3%, 3%] and there exist 16 sample points belonging to the
range of [−1%, 1%]; the maximum relative error is 2.21% at the 24th point, and the minimum value
is −1.85% at the 33rd point; (2) there exist 55 relative error values of the FOA-GRNN model in the
range of [−3%, 3%] and nine values in the range of [−1%, 1%]; the maximum relative error is 3.37% at
the 33rd sample point, while the minimum is −3.70% at the 41st sample point; (3) the GRNN model
emerges with 49 sample points in the range of [−3%, 3%], while seven sample points are in the range
of [−1%, 1%]; the maximum value is 3.84% at the 39th point, and the minimum is −4.19% at the 35th
point; (4) the SVM model emerges with 27 sample points in the range of [−3%, 3%], and there are
five sample points in the scope of [−1%, 1%]; the maximum value is 4.24% at the tenth point, while
the minimum is −5.82% at the 25th point; and (5) the BPNN model has nine points belonging to the
range of [−3%, 3%], and there are only two points in the scope of [−1%, 1%]; the maximum value is
5.94% at the 45th point, while the minimum is −5.89% at the 23rd point. This further demonstrates
that the nonlinear fitting ability of the proposed model is the strongest so that its prediction accuracy
and robustness are both the most satisfactory.

The RMSE, MAPE and AAE of the four prediction models are shown in Figure 13. It can be
concluded that the RMSE, MAPE, and AAE values of the FOA-IR-GRNN model are still the lowest,
which are 1.2016%, 1.1534% and 1.1535%, respectively. It is proved that the proposed model can obtain
the highest prediction accuracy and the best stability under different conditions. This model can
eliminate the interference of redundant factors through feature selection, so as to ensure the accuracy
and stability of prediction. This result is consistent with the results obtained in Section 4.3.

In summary, the proposed model optimizes the GRNN model with the FOA, and obtains
the appropriate smoothing parameter in the GRNN model, which can effectively reduce the icing
prediction error. The IR model can not only reduce the noise data of the input variables to improve
the effectiveness of input information, but also ensure the integrity of the input information, thus
improving the accuracy and robustness of icing prediction. The validity of the proposed ice prediction
model is proved by the data calculation results.

6. Conclusions

This paper presents a hybrid icing forecasting model that combines IR with GRNN optimized
by FOA. First, in order to predict the icing thickness, the IR combined with the FOA is employed to
select the input feature. Furthermore, the FOA is adopted to optimize the smoothing factor of the
GRNN. Finally, after obtaining the optimized feature subset and the best value of smoothing factor,
the proposed model is utilized for icing forecasting. Several conclusions based on the studies can be
obtained as follows: (1) by the utilization of IR, the influence of unrelated noises can be reduced and
the forecasting performance can be effectively improved; (2) the optimization algorithm FOA adds
strong global searching capability to the model, and the GRNN model optimized by FOA shows good
performance; (3) based on the error valuation criteria, the FOA-IR-GRNN model is a more promising
methodology in icing forecasting as compared with the three classical icing forecasting models (SVM,
BPNN, and GRNN); and (4) according to the empirical analysis of two cases, it is found that the model
proposed in this paper still has good prediction performance for forecasting the icing thickness of
transmission lines at different times and places. Hence, the proposed icing forecasting method of
the FOA-IR-GRNN model is effective and feasible, and it may be an effective alternative for icing
forecasting in the electric-power industry.
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Abstract: Accurate electricity forecasting is still the critical issue in many energy management
fields. The applications of hybrid novel algorithms with support vector regression (SVR) models to
overcome the premature convergence problem and improve forecasting accuracy levels also deserve
to be widely explored. This paper applies chaotic function and quantum computing concepts to
address the embedded drawbacks including crossover and mutation operations of genetic algorithms.
Then, this paper proposes a novel electricity load forecasting model by hybridizing chaotic function
and quantum computing with GA in an SVR model (named SVRCQGA) to achieve more satisfactory
forecasting accuracy levels. Experimental examples demonstrate that the proposed SVRCQGA model
is superior to other competitive models.

Keywords: chaotic mapping function; support vector regression (SVR); quantum genetic algorithm
(QGA); electricity demand forecasting

1. Introduction

With rapid economic development, accurate electricity load forecasting has become essential for
many energy applications, such as energy generation, power system operation security, load unit
commitment, and energy marketing. For example, power system decision makers can optimize load
dispatch and adjust the electricity supply/price based on the forecasted loads, i.e., improve the power
system management efficiency. As indicated in Xiao et al. [1], in China, there would be a year-long
operational benefit with a 1% increase in the forecasting accuracy level. In addition, accurate load
forecasting could also help managers set up well electrical power scheduling and successfully reduce
system management risks. On the customer side, accurate load forecasting also facilitates the power
usage decisions of customers to avoid load usage during the peak times and paying higher electricity
prices. This usage balance between peak and bottom periods would lead to reliable power system
operation of a utility. On the contrary, inaccurate forecast results would lead to inefficient power
system operations and increased operating costs. As mentioned in the literature, a 1% increase in load
forecasting error can lead to a loss of millions of dollars [2]. Therefore, as electricity prices also play
a critical role in electricity production decisions, there are also several scholars who have proposed
electricity price forecasting models in the literature [3,4]. Readers may refer to Weron [5] for more
comprehensive overviews.

The electricity load data are influenced by lots of factors, such as socio-economical activities,
population, weather conditions, holidays, policy, and so on [6]. Therefore, the electric load data reveal
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nonlinearity, seasonality, and chaos in nature, so finding a robust load forecasting model with superior
performance would be an important issue in the power load management field.

Researchers have developed and proposed lots of electricity load forecasting models.
These forecasting models are often classified into two categories: traditional statistical models and
artificial intelligence models. The first one are also called stochastic time series approach models, i.e.,
only historical data is used, which is easily to apply. These various famous time series models include
the well-known Box–Jenkins’ ARIMA models [7], regression models [8], exponential smoothing
models [9], Kalman filtering models [10], Bayesian estimation models [11], and so on. However,
the embedded drawbacks of those models are that they are defined theoretically to deal with
linear relationships among electricity load and other stochastic factors such as socio-economical
activities and policy effects, thus, they have difficulties to effectively capture the complicate nonlinear
relationships among load data and these factors, eventually, producing high unpredictable load
forecasting performance errors [12].

The artificial intelligence models such as artificial neural networks (ANNs) [12], expert system
models [13], and fuzzy methodologies [14] have been well explored to improve the accuracy of load
forecasting since the 1980s. In recent years, the development of artificial intelligence approaches has
focused on novel hybrid or combined models, obtained by hybridizing or combining these models with
each other [15], with traditional statistical tools [16], and with superior evolutionary algorithms [17].
However, similarly, these artificial intelligence models also suffer from some shortcomings during
the modeling processes, such as the fact they are very dependent on the collected data, and often
are unstable. Thus, it is difficult to determine the network structural parameters [18]. It is also time
consuming to extract knowledge from data sets [19], and they are easily trapped in local minima [20],
for more insightful discussions of AI approaches in load forecasting readers may refer to [21].

Due to the superiority in modeling nonlinear data by mapping into the high dimensional feature
space, support vector regression (SVR) [22] has been applied to solve forecasting issues many research
fields in the late 1990s. For load forecasting problems, Hong [23,24] proposed a valuable series
exploration by integrating advanced algorithms and chaotic function with an SVR-based model to
determine its three parameters, and thus achieved satisfactory forecasting performance. According to
Hong’s series research conclusions, good determination of parameters for the SVR model is important
to achieve high forecasting accuracy levels and overcome the drawbacks of the hybrid evolutionary
algorithms, such as becoming trapped in local optima, and this will ensure achieving more suitable
parameter combinations. In the meanwhile, Bhunia [25] indicated that quantum computing principles
can be embedded in intelligent systems to improve their performance; moreover, Dey et al. [26] also
concluded that the use of both of quantum approaches and soft computing techniques in a combined
form can provide a new computer science and engineering paradigm. Huang [27] proposed a novel
forecasting model by hybridizing a chaotic function and a quantum PSO algorithm to receive higher
forecast accuracy levels. Recently, Lee and Lin [28] also applied quantum concepts to propose the
hybrid tabu search algorithm with the SVR model to adjust the three parameters and eventually obtain
more accurate load forecasting performances.

The genetic algorithm (GA) is a famous algorithm which generates new offspring by finite iterative
operations, including selection, crossover, mutation, and so on. It has attracted lots of attention to
find satisfactory solutions and is applied in many fields. However, along with the increase of the data
scale and more complicated problem, it often suffers from similar problem of becoming trapped in
local optima and slow convergence to the global optimum. Dey et al. [26] claimed that an efficient
quantum-based GA can be modeled to solve NP-hard problems and others. To continue exploring the
feasibility of hybrid quantum-behaved approaches with advanced algorithms, and to overcome the
embedded drawbacks of genetic algorithm mentioned above, this paper would like to apply quantum
computing concepts to propose hybridizing chaotic function and quantum GA (namely CQGA) with
the SVR model, creating the so-called SVRCQGA model to achieve more satisfactory load forecasting
accuracy levels, by comparing the forecasts with other alternative models proposed in Huang [27] and
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Lee and Lin [28]. The main innovative contribution of this paper is hybridizing the chaotic mapping
function and quantum computing technique with GA into a SVR model, to improve the problems as
mentioned above, and thus achieve improved forecasting accuracy levels.

The remainder of this paper is organized as follows: the implementation details of the proposed
SVRCQGA model are demonstrated in Section 2. Brief illustrations of the SVR model and the proposed
CQGA are also clearly addressed. Section 3 demonstrates an experimental example and provides a
statistical comparison among other benchmarking models proposed in existing papers. Conclusions
are provided in Section 4.

2. The Proposed SVRCQGA Model

2.1. Brief Description of the SVR Model

The principal modeling processes of the SVR model are briefly summarized as follows: the training
data set, {(xi, yi)}N

i=1, is mapped to a feature space, �nh , by the defined function, ϕ(x) : �n → �nh .
The SVR function, f, is employed to linearly formulate the relationship between feature values
(i.e., training data, xi) and forecast values (yi), and it is shown as Equation (1):

f (x) = wT ϕ(x) + b (1)

where, f (x) is the forecasted values; the weight, w (w ∈ �nh ) and coefficient, b (b ∈ �), could be
determined during the minimization process of the empirical risk function, Equation (2):

R( f ) = C
1
N

N

∑
i=1

Lε(yi, wT ϕ(xi) + b) +
1
2

wTw (2)

Lε(yi, f (x)) =

{
0, i f | f (x)− yi| ≤ ε

| f (x)− yi| − ε, otherwise
(3)

where, Lε(yi, f (x)) represents the main empirical risk, it is also the so-called ε-insensitive loss function;
C and ε are the essential parameters. When the forecasting error is smaller than ε, the loss would be
zero (refer to Equation (3)). The second term, 1

2 wTw, is the weight of the SVR function as mentioned,
it determines the steepness. Therefore, C represents a trade-off role to balance the empirical risk and
the steepness. For quadratic programming, two slack variables, ξ and ξ∗, are introduced to measure
the length between the actual values and the edge values of ε-tube. Then, Equation (2) could be
transformed to the standard programming form with constraints, as shown in Equation (4):

Min R(w, ξ, ξ∗) = 1
2 wTw + C

N
∑

i=1
(ξi + ξ∗i )

yi − wT ϕ(xi)− b ≤ ε + ξ∗i ,
−yi + wT ϕ(xi) + b ≤ ε + ξi,

ξ∗i ≥ 0,
ξi ≥ 0,

i = 1, 2, . . . , N

(4)

The solution weight vector, w, in the quadratic programming problem (Equation (4) is optimized
by using the Lagrange multipliers method, as shown in Equation (5):

w∗ =
N

∑
i=1

(γ∗
i − γi)ϕ(xi) (5)

where γ∗
i and γi are the Lagrangian multipliers and satisfy the equality γ∗

i × γi = 0. Eventually,
the SVR function is formulated as Equation (6):

f (x) =
N

∑
i=1

(γ∗
i − γi)K(xi, xj) + b (6)
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where, K(xi, xj) is the so-called kernel function, its value could be calculated by the inner product
of ϕ(xi) and ϕ(xj), i.e., K(xi, xj) = ϕ(xi) · ϕ(xj). There are several kinds of kernel function, the most
widely used kernel function is Gaussian function, K(xi, xj) = exp (−0.5‖xi − xj‖2/σ2), due to its
excellence in complex nonlinear relationships mapping capability. Therefore, this paper employs a
Gaussian function as the kernel function.

The most important job for improving the performance of an SVR model is adjusting well the
parameter values, i.e., the three parameters, C, ε, and σ. However, there are no structural methods to
efficiently set up the SVR parameters. This paper will continue exploring the feasibility of a chaotic
quantum-behaved approach to overcome the disadvantages of genetic algorithms, namely CQGA;
and, hybridizing CQGA with the SVR model, producing the SVRCQGA model, to determine the three
parameters to improve the forecasting accuracy level.

2.2. Chaotic Quantum Genetic Algorithm (CQGA)

2.2.1. Introduction of QGA

GA generates new individuals by its advanced operations, including selection, crossover,
and mutation operations. Particularly, the mutation operation is effective for making individuals
have more satisfactory fitness values, and plays a critical role in maintaining the evolution quality for
the population. Therefore, it has been applied to deal with many optimization problems. However,
the population diversity would be reduced after repeated iterative computations and this leads to
several major drawbacks, such as being time consuming, slow convergence, and becoming trapped in
local optima.

Recently, quantum computing techniques have been hybridized with genetic algorithms, i.e.,
QGA [29]. By applying the main computing techniques of quantum computing, including qubit,
quantum superposition, and quantum entanglement, the chromosomes in QGA have been presented
by qubit coding. In addition, quantum rotation gate operation for the chromosomes is employed
during the whole evolutionary process. Therefore, it has lots of superior advantages during searching,
such as speedy convergence, time saving, little population scale, and robustness. The applications
of QGA also receive attentions in recent years, including traveling salesmen problems, personal
scheduling problems, and dynamic economic dispatch problems, as well as improvements [30].
For more application details of QGA, readers should refer to Lahoz-Beltra [31].

2.2.2. Quantum Computing Concepts

The quantum computing concepts are briefly described as follows: a quantum bit, abbreviated as
qubit, is defined as the smallest information unit. In the quantum system, a qubit may be in the state
“0”, in the state “1”, or in any superposition of these two states. The state of a qubit can be shown as
Equation (7):

|ψ〉 = α1|0〉+ α2|1〉 (7)

where |0〉 and |1〉 are the values of traditional bits 0 and 1, respectively; α1 and α2 are the probability of
their associate states and meet the normalization condition, as illustrated in Equation (8):

|α1|2 + |α2|2 = 1 (8)

where |α1|2 is the probability that the qubit is in “0” state, and |α2|2 is the probability that the qubit is in
“1” state. For generalization, if a system has n qubits and totally 2n states, then, the linear superposition
of all states can be presented as shown in Equation (9):

|ψi〉 =
2n

∑
k=1

pk|Sk〉 (9)
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where pk is the probability of its associate state, Sk, and meets the normalization condition,
|p1|2 + |p2|2 + . . . + |p2n |2 = 1.

The probability of a qubit individual as a string with n qubits is presented as Equation (10):

q =

[
α1

β1

∣∣∣∣∣ α2

β2

∣∣∣∣∣ · · ·
· · ·

∣∣∣∣∣ αi
βi

∣∣∣∣∣ · · ·
· · ·

∣∣∣∣∣ αn

βn

]
(10)

where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , n.
Therefore, in QGA, the chromosome, with n qubits, could be presented as, P = (q1, q2, . . . , qn),

where qj (j = 1, 2, . . . , n) is an individual qubit of population as shown in Equation (10).
The quantum gate is an operator for qubits to implement unitary transformations, in which,

the operation is represented by matrices. The basic quantum gates with a single qubit are the identity
gate I and Pauli gates X, Y, and Z, as shown in Equation (11):

I =

[
1 0
0 1

]
; X =

[
0 1
1 0

]
; Y =

[
0 −i
i 0

]
; Z =

[
1 0
0 −1

]
(11)

The identity gate I keeps a qubit unchanged, i.e., I·|0〉 = |0〉 and I·|1〉 = |1〉 (Equation (12)); Pauli X

gate performs a Boolean NOT operation, i.e., X·|0〉 = |1〉 and X·|1〉 = |0〉 (Equation (13)); Pauli Y gate
maps |0〉 → i·|1〉 and |1〉 → −i·|0〉 (Equation (14)); and Pauli Z gate changes the phase of a qubit, i.e.,
|0〉 → |0〉 and |1〉 → −1·|1〉 (Equation (15)):

I·|0〉 =
[

1 0
0 1

][
1
0

]
=

[
1
0

]
= |0〉 ; I·|1〉 =

[
1 0
0 1

][
0
1

]
=

[
0
1

]
= |1〉 (12)

X·|0〉 =
[

0 1
1 0

][
1
0

]
=

[
0
1

]
= |1〉; X·|1〉 =

[
0 1
1 0

][
0
1

]
=

[
1
0

]
= |0〉 (13)

Y·|0〉 =
[

0 −i
i 0

][
1
0

]
=

[
0
i

]
= i·|1〉; Y·|1〉 =

[
0 −i
i 0

][
0
1

]
=

[
−i
0

]
= −i·|0〉 (14)

Z·|0〉 =
[

1 0
0 −1

][
1
0

]
=

[
1
0

]
= |0〉; Z·|1〉 =

[
1 0
0 −1

][
0
1

]
=

[
0
−1

]
= −1·|1〉 (15)

To obtain more results, it is feasible to use the trigonometric function with a phase angle θ, i.e.,
the so-called quantum rotation gate. The quantum rotation gate (cf. Equation (16)), is employed to
update as the better solution in its current state:

P′ =
[

cos θ − sin θ

sin θ cos θ

]
P (16)

where P′ is the updated chromosome; θ is the designate angle to be used in the quantum rotation gate.

2.2.3. Implementation Steps of CQGA

The outstanding property of QGA is using quantum mechanics, such as qubits and their state
superposition as mentioned above to represent the chromosomes (instead of traditional binary strings).
The chromosome is represented as the superposition of all possible states. In the meanwhile, to keep
the diversity of the population to avoid premature convergence is also an important issue. Chaos has
two advantages: (1) it is sensitive to the initial conditions, i.e., minute changes in initial conditions
steer subsequent simulations towards radically different final states; and (2) any variable in the
chaotic space can travel ergodically over the whole space of interest, i.e., the so-called ergodicity
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property. Therefore, employing chaotic sequences to keep the diversity of population in the whole
optimization procedures, will lead to very different future solution-finding behaviors, due to the
ergodicity property. Eventually, chaotic sequences can help to enrich the search behavior and to avoid
premature convergence. Considering the above mentioned statements, this paper also applies the
chaotic variable to be hybridized with QGA (namely CQGA) to prevent the premature convergence
problem. Furthermore, for the better chaotic distribution characteristics of cat function, it is used
to generate the chaotic sequence. The two-dimensional cat function [32] is commonly used and is
employed in this paper, as shown in Equation (17):{

xn+1 = f rac(xn + yn)

yn+1 = f rac(xn + 2yn)
(17)

where frac function is used to keep the decimal parts of a real number x by reducing an approximate
integer. The complete processes of the proposed CQGA model is demonstrated in what follows and a
brief flowchart is shown in Figure 1.

 

Figure 1. Quantum genetic algorithm flowchart.
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Step 1. Set up quantum chromosomes. In this paper, the quantum chromosome is composed
of a string of m qubits (superposition of all possible states), as shown in Figure 2. These SVR’s
three parameters, C, ε, and σ, are presented into the quantum qubit superposition format, i.e., each
chromosome has three genes to represent it. Based on the authors’ practical trials and experience,
choosing a gene with 40 bits could produce more satisfactory results, thus, a chromosome in total
contains 120 qubits (i.e., m = 120). A gene that contains more qubits would be associated with better
partitioning around the space.

Figure 2. Quantum chromosome structure for three parameters.

Step 2. Initialize population. The population of the quantum chromosome is initialized by setting
all the amplitudes of qubits as 1√

2
[30], i.e., all superposition states has equal probability in the

initial population.
Step 3. Evaluate fitness (forecasting errors). Evaluate the objective fitness (forecasting errors) by using

the values of each quantum chromosome. The mean absolute percentage error (MAPE), illustrated in
Equation (18), is employed to measure the forecasting errors:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (18)

where N is the total number of forecasting results; yi is the actual value at each forecasting point i; fi is
the forecasted value at each forecasting point i.

Step 4. Selection. In each generation, an elitist selection mechanism is used to select the best
chromosome (with smallest MAPE value), i.e., the competition strategy is applied and as mentioned
the best chromosome with the smallest MAPE value is recorded as the elitist and is reproduced as the
initial chromosome for the next generation.

Step 5. Quantum crossover. To keep the population diversity, a quantum crossover operation is
employed. Based on predefined crossover probability, Pcr (set as 0.9 [26]), the single-point-crossover
principle is applied to randomly select two chromosomes to conduct crossover operation at any
random position. For each generation, a new chromosomes pool would be generated after the
quantum crossover operation is finished. Figure 3 illustrates the processed results of the quantum
crossover operation.

Step 6. Quantum mutation. This is a useful approach to ensure population diversity. In this
operation, each selected position of the participated quantum chromosome would be mutated with
other real numbers according to the designate mutation probability, Pm (set as 0.1 [26]). Figure 4 shows
an example of the quantum mutation operation.
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Figure 3. Example of the chromosome form of the parameters for the quantum crossover operation.

Figure 4. Example of the chromosome form of the parameter for the quantum mutation operation.

Step 7. Quantum rotation gate. This operation modifies the oscillation ranges of individuals to
improve the performance by changing the state of each qubit. It is performed by using a quantum
rotation gate (as shown in Equation (16)), in which the rotation angle θ is a function of the oscillation
amplitudes (αi,βi), and the value of the individual qubit located at the position i would also be modified
accordingly [33]. The rotation angle θ is updated by Equation (19):

θ = 0.005π+ (0.1π− 0.005π)

∣∣ fi − favg
∣∣

max
{

fi, favg
} (19)

where fi is the current forecasting error; favg is the average value of all previous forecasting errors.
Based on quantum genetic algorithm performance, a general criterion to set θ values between 0.1π and
0.005π [31].
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Step 8. Premature convergence test. Compute the mean square error (MSE), given by Equation (20),
to test the level of premature convergence [34], and set up the criterion value, δ:

MSE =
1
S

S

∑
i=1

(
fi − favg

f

)2

(20)

where f is given by Equation (21):

f = max
{

1, max
∀i∈S

{∣∣ fi − favg
∣∣}} (21)

If the value of the calculated MSE is less than δ, it implies premature convergence occurs. Hence,
the chaotic cat function (Equation (17)) is employed to escape the local optimum, i.e., finding out new
optimum, and set the new optimum as the best solution.

Step 9. Stop criteria. If the number of generations is greater than a given scale, then, the best
solution could be the presented quantum chromosomes; otherwise, go back to Step 3 and continue
searching the next generation.

3. Experimental Examples

3.1. Data Sets of Experimental Examples

To compare the performances from the hybrid quantum-behaved evolutionary algorithms with
an SVR model, this paper employs the same experimental examples used in Huang [27] and Lee and
Lin [28]. These three experimental examples are: (1) the regional electricity load data in Taiwan from a
published paper [23]; (2) the annual electricity load data in Taiwan from a published paper [23]; and
(3) the electricity load data per hour from the 2014 Global Energy Forecasting Competition [35]. The
data setting details for each examples are summarized in the following. The data characteristics of
these three examples are summarized in Table 1.

Table 1. Data characteristics summary of three examples.

Examples Data Type Data Length Data Size Data Characteristics

Example 1 Regional and
annual From 1981 to 2000 4 regions and

20 years
Increment with fluctuation caused by some

accidental event (921 earthquake)

Example 2 Annual From 1945 to 2003 59 years Increment with the continuous economic
development in Taiwan

Example 3 Hourly From 1 December 2011
to 1 January 2012 744 h Cyclic fluctuation

3.1.1. Regional Electricity Load Data in Taiwan: Example 1

For Example 1, there are in total 20 years of regional electricity load values (from 1981 to 2000)
for four regions in Taiwan. Based on the same forecasting performance comparison conditions,
the modeling sub-data set division is the same as in a previous paper [23]. Thus, three subsets are
obtained: a training subset (12 years of load data in total, from 1981 to 1992), a validation subset (a total
of 4 years of data, from 1993 to 1996), and a testing subset (a total of 4 years of data, from 1997 to
2000). The well-known window-rolling procedure is employed during the whole process including the
electricity load forecasts produced. For details of the window-rolling forecasting procedure readers
should refer to Hong [23] and Lee and Lin [28]. Three parameters are determined by CQGA, while the
validation error is also calculated. The most suitable parameters are finalized only when the smallest
validation errors occur. Finally, the four-step (year) load forecasting for each region in Taiwan is
implemented by the proposed SVRCQGA model.
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3.1.2. Annual Electricity Load Data in Taiwan: Example 2

For Example 2, there are in total 59 annual electricity load values (from 1945 to 2003). Similarly,
to make sure the same forecasting performance comparison conditions are used, the modeling
sub-dataset division is the same as in a previous paper [23], i.e., a training subset (40 years of data, from
1945 to 1984), a validation subset (10 years of data, from 1985 to 1994), and a testing subset (9 years
of data, from 1995 to 2003). The modeling processing details are almost as the same as in Example 1:
the window-rolling procedure is applied, then, three parameters are also selected by CQGA. The most
suitable parameters are finalized only based on the smallest validation errors. Eventually, the one-step
(year) load forecasting in Taiwan is implemented using the proposed model.

3.1.3. 2014 Global Energy Forecasting Competition (GEFCOM 2014) Electricity Load Data: Example 3

For Example 3, there are a total of 744 h of electricity load data (from 00:00 1 December 2011 to 00:00
1 January 2012). Similarly, to be based on the same forecasting performance comparison conditions,
the modeling sub-data set division is the same as in a previous paper [27,28]. Thus, we have a training
subset (552 h of load data, from 01:00 1 December 2011 to 00:00 24 December 2011), a validation subset
(96 h of load data, from 01:00 24 December 2011 to 00:00 28 December 2011), and a testing subset (96 h
of load data, from 01:00 28 December 2011 to 00:00 1 January 2012). The modeling processing details
are almost as the same as in the two previous examples: a window-rolling procedure is still used,
and the most suitable three parameters must be finalized based only on the smallest validation errors.
Finally, the one-step (hour) load forecasting results are obtained using the proposed model.

3.2. Parameters Setting & Forecasting Results and Analysis

3.2.1. Setting the CQGA Parameters

The parameters of CQGA for the three experimental examples are set practically: the population
scale (Pscale) is set to be 200; the generations of the population (qmax) are no larger than 500; the qubit
string length of a quantum chromosome (m) is set as 120; the probabilities of quantum crossover (Pcr)
and quantum mutation (Pm) are set as 0.5 and 0.1 [26], respectively. Some controlled parameters during
the modeling procedure are set as follows: the maximal iteration for each example is all set as 10,000 in
each generation; σ ∈ [0, 5], ε ∈ [0, 100] in all examples, C ∈ [0, 20, 000] in Example 1, C ∈ [0, 3 × 1010]

in Examples 2 and 3; δ is fixed as 0.001.

3.2.2. Forecasting Accuracy Indexes

To comprehensively compare the forecasting accuracy for each models, the mean absolute
percentage error (MAPE; as shown in Equation (18)), the root mean squared error (RMSE; as shown in
Equation (22)), and the mean absolute error (MAE; as shown in Equation (23)) are employed:

RMSE =

√
∑N

i=1 (yi − fi)
2

N
(22)

MAE =
∑N

i=1|yi − fi|
N

(23)

where N is the total number of forecasting results; yi is the actual value at each forecasting point i; fi is
the forecasted value at each forecasting point i.

3.2.3. Forecasting Performance Superiority Tests

To ensure the forecasting superiority of the proposed model is statistically significant, it is
necessary to conduct some statistical tests to verify the significance of the proposed model. Based on
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Diebold and Mariano’s [36] and Derrac et al.’s [37] suggestions, two tests are conducted in this paper,
they are Wilcoxon signed-rank test [38] and Friedman test [39].

(A) Wilcoxon Signed-rank Test

The Wilcoxon signed-rank test is used to detect the significance of a difference in the central
tendency of two data series when the size of the two data series is equal. The statistic W is represented
as Equation (24):

W = min{S+, S−} (24)

where:

S+ =
N

∑
i=1

I+(di) (25)

S− =
N

∑
i=1

I−(di) (26)

I+(di) =

{
1 i f di > 0
0 otherwise

(27)

I−(di) =

{
1 i f di < 0
0 otherwise

(28)

di = (forecasting series I)i − (forecasting series II)i (29)

where N is the total number of forecasting results.

(B) Friedman test

The Friedman test is used to measure the ANOVA in nonparametric statistical procedures; thus,
it is a multiple comparisons test that aims to detect significant differences between the behaviors of
two or more algorithms. The statistic F is represented as Equation (30):

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(30)

where N is the total number of forecasting results; k is the number of compared models; Rj is the
average rank sum obtained in each forecasting value for each algorithm as shown in Equation (31):

Rj =
1
N

N

∑
i=1

rj
i (31)

where rj
i is the rank sum from 1 (the smallest forecasting error) to k (the worst forecasting error) for ith

forecasting result, for jth compared model.
The null hypothesis for Friedman’s test is that equality of forecasting errors among compared

models. The alternative hypothesis is defined as the negation of the null hypothesis.

3.2.4. Results and Analysis: Example 1

For Example 1, SVR’s three parameter values determine the most suitable model for each region,
which are computed by the QGA algorithm and CQGA algorithm, respectively, and with the smallest
testing error (MAPE value). These determined parameters for each region are illustrated in Table 2.

For forecasting results comparison details, Table 3 demonstrates the forecasting accuracy indexes
of the proposed SVRCQGA and other competitive models [27,28] for each region. Figure 5 illustrates
the cumulative differences of MAE for each competitive models in four regions. The competitive
models include SVRCQPSO (hybrid SVR with chaotic quantum PSO) [27], SVRQPSO (hybrid SVR
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with quantum PSO) [27], SVRCQTS (hybrid SVR with chaotic quantum tabu search) [28], and SVRQTS
(hybrid SVR with quantum tabu search) [28] models.

Table 2. Determined parameters of SVRCQGA and SVRQGA models (Example 1).

Regions
SVRCQGA Parameters

MAPE of Testing (%)
σ C ε

Northern 4.0000 0.6 × 1010 0.6500 1.0760
Central 6.0000 0.9 × 1010 0.3500 1.2130

Southern 8.0000 1.2 × 1010 0.4800 1.1650
Eastern 12.0000 1.0 × 1010 0.2800 1.5180

Regions
SVRQGA Parameters

MAPE of Testing (%)
σ C ε

Northern 3.0000 1.2 × 1010 0.3400 1.3150
Central 10.0000 1.8 × 1010 0.4800 1.6830

Southern 6.0000 0.9 × 1010 0.3500 1.3640
Eastern 4.0000 0.5 × 1010 0.6800 1.9680

Table 3. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 1).

Indexes SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

Northern region

MAPE (%) 1.0760 1.3150 1.0870 1.3260 1.1070 1.3370
RMSE 131.48 159.26 132.79 159.43 142.62 160.28
MAE 130.00 157.50 141.00 158.50 132.25 159.00

Central region

MAPE (%) 1.2130 1.6830 1.2650 1.6870 1.2840 1.6890
RMSE 64.46 90.18 67.69 90.67 67.70 89.87
MAE 64.00 89.25 67.00 89.75 67.50 89.25

Southern region

MAPE (%) 1.1650 1.3640 1.1720 1.3670 1.1840 1.3590
RMSE 75.44 87.82 75.57 88.84 76.03 88.05
MAE 74.75 87.50 75.25 88.00 75.75 87.25

Eastern region

MAPE (%) 1.5180 1.9680 1.5430 1.9720 1.5940 1.9830
RMSE 6.12 7.86 6.38 7.95 6.30 7.79
MAE 6.00 7.75 6.00 7.75 6.25 7.75

From Table 3 and Figure 5, it is obvious from the comparison that the proposed SVRCQGA model
outperforms the other quantum-SVR-based models. Thus, it once again demonstrates the superiority
of an SVR model in that it could obtain a more satisfactory forecasting performance by hybridizing
quantum computing mechanics with a genetic algorithm. In the same time, the super capability of the
cat mapping function in looking for a closer solution to the theoretical global optimum while suffering
from premature convergence is noted. The QGA almost has done its best to look for the best solutions
for each region, however, these solutions are still unsatisfactory by comparison with the performances
of other alternatives. These solutions could be improved by employing a chaotic mapping function
(this paper uses the cat mapping function), i.e., the CQGA, to achieve satisfactory solutions.
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(a) (b)

(c) (d)

Figure 5. The cumulative differences of MAE for each competitive models in four regions (Example 1).
(a) Northern region; (b) Central Region; (c) Southern region; (d) Eastern region.

Then, two forecasting performance superiority tests are conducted. Table 4 shows the test results
under a one-tail-test at α = 0.05 significance level, which point out that the proposed model achieves
significantly better performance, except versus the SVRCQTS model.

Table 4. Wilcoxon signed-rank test and Friedman test (Example 1).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.05; Wilcoxon W Statistic = 0
Friedman Test α = 0.05

Northern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 12.46;

p = 0.028 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Central region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 13.43;

p = 0.021 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Southern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 15.57;

p = 0.013 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

Eastern region

H0: e1 = e2 = e3 = e4 = e5 = e6
F = 11.34;

p = 0.035 (reject H0)

SVRCQGA vs. SVRQPSO W = 0 *
SVRCQGA vs. SVRCQPSO W = 0 *

SVRCQGA vs. SVRQTS W = 0 *
SVRCQGA vs. SVRCQTS W = 1
SVRCQGA vs. SVRQGA W = 0 *

* Denotes that the SVRCQGA model significantly outperforms other competitive models.
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3.2.5. Results and Analysis: Example 2

For Example 2, similarly, with the smallest MAPE values in the testing set, the SVR’s parameters
are determined by the QGA algorithm and CQGA algorithm, respectively. These most suitable
parameter values for the annual electricity load data are listed in Table 5. To benchmark the results with
other research approaches, Table 5 also provides the forecasting index values from other competitive
models [27,28].

Table 5. Determined parameters of SVRCQGA and SVRQGA models (Example 2).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

QPSO algorithm [27] 12.0000 0.8 × 1011 0.380 1.3460
CQPSO algorithm [27] 10.0000 1.5 × 1011 0.560 1.1850

QTS algorithm [28] 5.0000 1.3 × 1011 0.630 1.3210
CQTS algorithm [28] 6.0000 1.8 × 1011 0.340 1.1540

QGA algorithm 9.0000 1.4 × 1011 0.480 1.3180
CQGA algorithm 12.0000 1.2 × 1011 0.650 1.1160

The forecasting accuracy indexes values, MAPE and RMSE, are shown in Table 6. Figure 6
illustrates the cumulative differences of MAE for each competitive model. The competitive
models also include the SVRCQPSO [27], SVRQPSO [27], SVRCQTS [28], and SVRQTS [28] models.
Similarly, the proposed model receives an outstanding performance among other competitive models.
The contributions of the quantum computing concepts and the chaotic cat mapping capability are
again excellent. It is obviously that the CQGA algorithm excels at finding another better solution.

Table 6. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 2).

Years SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

MAPE (%) 1.1160 1.3180 1.1540 1.3210 1.1850 1.3460
RMSE 1502.66 1774.62 1631.48 1778.74 1618.34 1812.51
MAE 1466.33 1731.78 1554.89 1735.78 1575.67 1768.78

 

Figure 6. The cumulative differences of MAE for each competitive model (Example 2).
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In Example 2, similarly, a Wilcoxon signed-rank test and Friedman test are also conducted to test
the significance of the proposed model against the other competitive models. Both tests results are
illustrated in Table 7, and demonstrate clearly that the proposed model significantly outperforms the
other quantum-behaved algorithms with SVR-based forecasting models.

Table 7. Wilcoxon signed-rank test and Friedman test (Example 2).

Compared Models
Wilcoxon Signed-Rank Test α =

0.05; Wilcoxon W Statistic = 8
Friedman Test α = 0.05

SVRCQGA vs. SVRQPSO W = 4 *
H0: e1 = e2 = e3 = e4 = e5 = e6

F = 13.35;
p = 0.022 (reject H0)

SVRCQGA vs. SVRCQPSO W = 2 *
SVRCQGA vs. SVRQTS W = 4 *

SVRCQGA vs. SVRCQTS W = 4 *
SVRCQGA vs. SVRQGA W = 4 *

* Denotes that the SVRCQGA model significantly outperforms other competitive models.

3.2.6. Results and Analysis: Example 3

For Example 3, based on the similar modeling processes, the SVR’s three parameters are eventually
selected by the QGA algorithm and CQGA algorithm, respectively. The details of the most suitable
parameters of all employed compared models for GEFCOM 2014 data set are shown in Table 8. Because
references [27,28] also use GEFCOM 2014 load data set for analysis, therefore, those models shown
in [27,28] are also compared with the proposed models.

Table 8. Determined parameters of SVRCQGA, SVRQGA, and other models (Example 3).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

QPSO algorithm [27] 9.000 42.000 0.1800 1.9600
CQPSO algorithm [27] 19.000 35.000 0.8200 1.2900

QTS algorithm [28] 25.000 67.000 0.0900 1.8900
CQTS algorithm [28] 12.000 26.000 0.3200 1.3200

QGA algorithm 5.000 79.000 0.3800 1.7500
CQGA algorithm 6.000 54.000 0.6200 1.1700

To achieve a meaningful comparison, the authors only selected three quantum- and SVR-based
forecasting models, i.e., the SVRCQGA, SVRCQTS, and SVRCQPSO models, to compare with each
other. Table 9 provides the forecasting accuracy indexes of the proposed SVRCQGA and other
competitive models [27,28], and clearly illustrates that the proposed SVRCQGA model achieves results
closer to the actual load values than the SVRCQTS and SVRCQPSO models.

Table 9. Forecasting indexes of SVRCQGA, SVRQGA, and other models (Example 3).

Indexes SVRCQGA SVRQGA SVRCQTS SVRQTS SVRCQPSO SVRQPSO

MAPE (%) 1.1700 1.7500 1.3200 1.8900 1.2900 1.9600
RMSE 1.4927 1.6584 1.9909 2.8507 1.9257 2.9358
MAE 1.4522 1.6174 1.8993 2.7181 1.8474 2.8090

Figure 7 also provides a good illustration of the cumulative differences of MAE for each
competitive model. The competitive models also include the SVRCQPSO [27], SVRQPSO [27],
SVRCQTS [28], and SVRQTS [28] models.

Finally, Table 10 illustrates both the Wilcoxon signed-rank test and Friedman test results for
Example 3, which demonstrate that the proposed approach significantly, with a critical p-value,
outperforms the other competitive models proposed in [27,28].
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Figure 7. The cumulative differences of MAE for each competitive model (Example 3).

Table 10. Wilcoxon signed-rank test and Friedman test (Example 3).

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.05; Wilcoxon W
Statistic = 2328

p-Value α = 0.05

SVRCQGA vs. SVRQPSO W = 1278.0 * 0.00012
H0: e1 = e2 = e3 = e4 = e5 = e6

F = 71.266;
p = 0.000 (reject H0)

SVRCQGA vs. SVRCQPSO W = 1152.5 * 0.00000
SVRCQGA vs. SVRQTS W = 1256.0 * 0.00000

SVRCQGA vs. SVRCQTS W = 1263.0 * 0.00010
SVRCQGA vs. SVRQGA W = 2134.5 * 0.00720

* Denotes that the SVRCQGA model significantly outperforms the other competitive models.

4. Conclusions

This paper proposes a novel electricity load forecasting model created by hybridizing a
quantum-behaved algorithm with an SVR-based model. The results have completely shown that
the proposed CQGA has superiority to address the embedded drawbacks of the original GA and
quantum GA algorithms that suffer from getting trapped into local optima. This paper uses quantum
computing mechanics to enrich the diversity of the population during the GA modeling processes,
which eventually improves the forecasting accuracy level. The cat function is employed to avoid
premature convergence while the QGA algorithm is processing. This paper provides support to
continue the exploration of integrating quantum computing concepts and chaotic mapping techniques
to enrich the search space with the limitations from conventional Newtonian dynamics, and a more
effective approach to solve the trapping in local optima problem.
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