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This	is	a	book	on	the	functional	paradigm	in	general.	We'll	use	the	world's	most	popular	functional	programming	language:
JavaScript.	Some	may	feel	this	is	a	poor	choice	as	it's	against	the	grain	of	the	current	culture	which,	at	the	moment,	feels
predominately	imperative.	However,	I	believe	it	is	the	best	way	to	learn	FP	for	several	reasons:

You	likely	use	it	every	day	at	work.

This	makes	it	possible	to	practice	and	apply	your	acquired	knowledge	each	day	on	real	world	programs	rather	than	pet
projects	on	nights	and	weekends	in	an	esoteric	FP	language.

We	don't	have	to	learn	everything	up	front	to	start	writing	programs.

In	a	pure	functional	language,	you	cannot	log	a	variable	or	read	a	DOM	node	without	using	monads.	Here	we	can
cheat	a	little	as	we	learn	to	purify	our	codebase.	It's	also	easier	to	get	started	in	this	language	since	it's	mixed
paradigm	and	you	can	fall	back	on	your	current	practices	while	there	are	gaps	in	your	knowledge.

About	this	book
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The	language	is	fully	capable	of	writing	top	notch	functional	code.

We	have	all	the	features	we	need	to	mimic	a	language	like	Scala	or	Haskell	with	the	help	of	a	tiny	library	or	two.
Object-oriented	programming	currently	dominates	the	industry,	but	it's	clearly	awkward	in	JavaScript.	It's	akin	to
camping	off	of	a	highway	or	tap	dancing	in	galoshes.	We	have	to		bind		all	over	the	place	lest		this		change	out	from
under	us,	we	don't	have	classes(Yet),	we	have	various	work	arounds	for	the	quirky	behavior	when	the		new		keyword	is
forgotten,	private	members	are	only	available	via	closures.	To	a	lot	of	us,	FP	feels	more	natural	anyways.

That	said,	typed	functional	languages	will,	without	a	doubt,	be	the	best	place	to	code	in	the	style	presented	by	this	book.
JavaScript	will	be	our	means	of	learning	a	paradigm,	where	you	apply	it	is	up	to	you.	Luckily,	the	interfaces	are
mathematical	and,	as	such,	ubiquitous.	You'll	find	yourself	at	home	with	swiftz,	scalaz,	haskell,	purescript,	and	other
mathematically	inclined	environments.

Read	it	online
Download	EPUB
Download	Mobi	(Kindle)

git	clone	https://github.com/DrBoolean/mostly-adequate-guide.git

cd	mostly-adequate-guide/

npm	install	gitbook-cli	-g

gitbook	init

brew	update

brew	cask	install	calibre

gitbook	mobi	.	./functional.mobi

See	SUMMARY.md

See	CONTRIBUTING.md

See	TRANSLATIONS.md

Part	1	is	a	guide	to	the	basics.	I'm	updating	as	I	find	errors	since	this	is	the	initial	draft.	Feel	free	to	help!
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Hi	I'm	Professor	Franklin	Risby,	pleased	to	make	your	acquaintance.	We'll	be	spending	some	time	together	as	I'm
supposed	to	teach	you	a	bit	about	functional	programming.	But	enough	about	me,	what	about	you?	I'm	hoping	you're
familiar	with	the	JavaScript	language,	have	a	teensy	bit	of	Object-Oriented	experience,	and	fancy	yourself	a	working	class
programmer.	You	don't	need	to	have	a	Ph.D	in	Entomology,	you	just	need	to	know	how	to	find	and	kill	some	bugs.

I	won't	assume	any	previous	functional	programming	knowledge	because	we	both	know	what	happens	when	you	assume,
but	I	will	expect	you	to	have	run	into	some	of	the	unfavorable	situations	that	arise	from	working	with	mutable	state,
unrestricted	side	effects,	and	unprincipled	design.	Now	that	we've	been	properly	introduced,	let's	get	on	with	it.

The	purpose	of	this	chapter	is	to	give	you	a	feel	for	what	we're	after	when	we	write	functional	programs.	We	must	have
some	idea	about	what	makes	a	program	functional	or	we'll	find	ourselves	scribbling	aimlessly,	avoiding	objects	at	all	costs	-
a	clumsy	endeavor	indeed.	We	need	a	bullseye	to	hurl	our	code	toward,	some	celestial	compass	for	when	the	waters	get
rough.

Now	there	are	some	general	programming	principles,	various	acronymic	credos	that	guide	us	through	the	dark	tunnels	of
any	application:	DRY	(don't	repeat	yourself),	loose	coupling	high	cohesion,	YAGNI	(ya	ain't	gonna	need	it),	principle	of	least
surprise,	single	responsibility,	and	so	on.

I	won't	belabor	listing	each	and	every	guideline	I've	heard	throughout	the	years...	the	point	is	that	they	hold	up	in	a
functional	setting,	though	they're	merely	tangential	to	our	goal.	What	I'd	like	you	to	get	a	feel	for	now,	before	we	get	any
further,	is	our	intention	when	we	poke	and	prod	at	the	keyboard;	our	functional	Xanadu.

Let's	start	with	a	touch	of	insanity.	Here	is	a	seagull	application.	When	flocks	conjoin	they	become	a	larger	flock	and	when
they	breed	they	increase	by	the	number	of	seagulls	with	whom	they're	breeding.	Now	this	is	not	intended	to	be	good
Object-Oriented	code,	mind	you,	it	is	here	to	highlight	the	perils	of	our	modern,	assignment	based	approach.	Behold:

var	Flock	=	function(n)	{

		this.seagulls	=	n;

};

Flock.prototype.conjoin	=	function(other)	{

		this.seagulls	+=	other.seagulls;

		return	this;

};

Flock.prototype.breed	=	function(other)	{

		this.seagulls	=	this.seagulls	*	other.seagulls;

		return	this;

};

var	flock_a	=	new	Flock(4);

var	flock_b	=	new	Flock(2);

var	flock_c	=	new	Flock(0);

var	result	=	flock_a.conjoin(flock_c)

				.breed(flock_b).conjoin(flock_a.breed(flock_b)).seagulls;

//=>	32

Who	on	earth	would	craft	such	a	ghastly	abomination?	It	is	unreasonably	difficult	to	keep	track	of	the	mutating	internal
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state.	And,	good	heavens,	the	answer	is	even	incorrect!	It	should	have	been		16	,	but		flock_a		wound	up	permanently
altered	in	the	process.	Poor		flock_a	.	This	is	anarchy	in	the	I.T.!	This	is	wild	animal	arithmetic!

If	you	don't	understand	this	program,	it's	okay,	neither	do	I.	The	point	is	that	state	and	mutable	values	are	hard	to	follow
even	in	such	a	small	example.

Let's	try	again	with	a	more	functional	approach:

var	conjoin	=	function(flock_x,	flock_y)	{	return	flock_x	+	flock_y	};

var	breed	=	function(flock_x,	flock_y)	{	return	flock_x	*	flock_y	};

var	flock_a	=	4;

var	flock_b	=	2;

var	flock_c	=	0;

var	result	=	conjoin(

		breed(flock_b,	conjoin(flock_a,	flock_c)),	breed(flock_a,	flock_b)

);

//=>16

Well,	we	got	the	right	answer	this	time.	There's	much	less	code.	The	function	nesting	is	a	tad	confusing...(we'll	remedy	this
situation	in	ch5).	It's	better,	but	let's	dig	deeper.	There	are	benefits	to	calling	a	spade	a	spade.	Had	we	done	so,	we	might
have	seen	we're	just	working	with	simple	addition	(	conjoin	)	and	multiplication	(	breed	).

There's	really	nothing	special	at	all	about	these	two	functions	other	than	their	names.	Let's	rename	our	custom	functions	to
reveal	their	true	identity.

var	add	=	function(x,	y)	{	return	x	+	y	};

var	multiply	=	function(x,	y)	{	return	x	*	y	};

var	flock_a	=	4;

var	flock_b	=	2;

var	flock_c	=	0;

var	result	=	add(

		multiply(flock_b,	add(flock_a,	flock_c)),	multiply(flock_a,	flock_b)

);

//=>16

And	with	that,	we	gain	the	knowledge	of	the	ancients:

//	associative

add(add(x,	y),	z)	==	add(x,	add(y,	z));

//	commutative

add(x,	y)	==	add(y,	x);

//	identity

add(x,	0)	==	x;

//	distributive

multiply(x,	add(y,z))	==	add(multiply(x,	y),	multiply(x,	z));

Ah	yes,	those	old	faithful	mathematical	properties	should	come	in	handy.	Don't	worry	if	you	didn't	know	them	right	off	the
top	of	your	head.	For	a	lot	of	us,	it's	been	a	while	since	we've	reviewed	this	information.	Let's	see	if	we	can	use	these
properties	to	simplify	our	little	seagull	program.

//	Original	line

add(multiply(flock_b,	add(flock_a,	flock_c)),	multiply(flock_a,	flock_b));
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//	Apply	the	identity	property	to	remove	the	extra	add

//	(add(flock_a,	flock_c)	==	flock_a)

add(multiply(flock_b,	flock_a),	multiply(flock_a,	flock_b));

//	Apply	distributive	property	to	achieve	our	result

multiply(flock_b,	add(flock_a,	flock_a));

Brilliant!	We	didn't	have	to	write	a	lick	of	custom	code	other	than	our	calling	function.	We	include		add		and		multiply	
definitions	here	for	completeness,	but	there	is	really	no	need	to	write	them	-	we	surely	have	an		add		and		multiply		provided
by	some	previously	written	library.

You	may	be	thinking	"how	very	strawman	of	you	to	put	such	a	mathy	example	up	front".	Or	"real	programs	are	not	this
simple	and	cannot	be	reasoned	about	in	such	a	way".	I've	chosen	this	example	because	most	of	us	already	know	about
addition	and	multiplication	so	it's	easy	to	see	how	math	can	be	of	use	to	us	here.

Don't	despair,	throughout	this	book,	we'll	sprinkle	in	some	category	theory,	set	theory,	and	lambda	calculus	to	write	real
world	examples	that	achieve	the	same	simplicity	and	results	as	our	flock	of	seagulls	example.	You	needn't	be	a
mathematician	either,	it	will	feel	just	like	using	a	normal	framework	or	api.

It	may	come	as	a	surprise	to	hear	that	we	can	write	full,	everyday	applications	along	the	lines	of	the	functional	analog
above.	Programs	that	have	sound	properties.	Programs	that	are	terse,	yet	easy	to	reason	about.	Programs	that	don't
reinvent	the	wheel	at	every	turn.	Lawlessness	is	good	if	you're	a	criminal,	but	in	this	book,	we'll	want	to	acknowledge	and
obey	the	laws	of	math.

We'll	want	to	use	the	theory	where	every	piece	tends	to	fit	together	so	politely.	We'll	want	to	represent	our	specific	problem
in	terms	of	generic,	composable	bits	and	then	exploit	their	properties	for	our	own	selfish	benefit.	It	will	take	a	bit	more
discipline	than	the	"anything	goes"	approach	of	imperative(We'll	go	over	the	precise	definition	of	imperative	later	in	the
book,	but	for	now	it's	anything	other	than	functional	programming)	programming,	but	the	payoff	of	working	within	a
principled,	mathematical	framework	will	astound	you.

We've	seen	a	flicker	of	our	functional	north	star,	but	there	are	a	few	concrete	concepts	to	grasp	before	we	can	really	begin
our	journey.

Chapter	2:	First	Class	Functions
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When	we	say	functions	are	"first	class",	we	mean	they	are	just	like	everyone	else...	so	normal	class(coach?).	We	can	treat
functions	like	any	other	data	type	and	there	is	nothing	particularly	special	about	them	-	store	them	in	arrays,	pass	them
around,	assign	them	to	variables,	what	have	you.

That	is	JavaScript	101,	but	worth	a	mention	as	a	quick	code	search	on	github	will	show	the	collective	evasion,	or	perhaps
widespread	ignorance	of	the	concept.	Shall	we	go	for	a	feigned	example?	We	shall.

var	hi	=	function(name){

		return	"Hi	"	+	name;

};

var	greeting	=	function(name)	{

		return	hi(name);

};

Here,	the	function	wrapper	around		hi		in		greeting		is	completely	redundant.	Why?	Because	functions	are	callable	in
JavaScript.	When		hi		has	the		()		at	the	end	it	will	run	and	return	a	value.	When	it	does	not,	it	simply	returns	the	function
stored	in	the	variable.	Just	to	be	sure,	have	a	look-see:

hi;

//	function(name){

//		return	"Hi	"	+	name

//	}

hi("jonas");

//	"Hi	jonas"

Since		greeting		is	merely	turning	around	and	calling		hi		with	the	very	same	argument,	we	could	simply	write:

var	greeting	=	hi;

greeting("times");

//	"Hi	times"

In	other	words,		hi		is	already	a	function	that	expects	one	argument,	why	place	another	function	around	it	that	simply	calls
	hi		with	the	same	bloody	argument?	It	doesn't	make	any	damn	sense.	It's	like	donning	your	heaviest	parka	in	the	dead	of
July	just	to	blast	the	air	and	demand	an	ice	lolly.

It	is	obnoxiously	verbose	and,	as	it	happens,	bad	practice	to	surround	a	function	with	another	function	merely	to	delay
evaluation.	(We'll	see	why	in	a	moment,	but	it	has	to	do	with	maintenance.)

A	solid	understanding	of	this	is	critical	before	moving	on,	so	let's	see	a	few	more	fun	examples	excavated	from	npm
modules.

//	ignorant

var	getServerStuff	=	function(callback){

		return	ajaxCall(function(json){

				return	callback(json);

Chapter	2:	First	Class	Functions
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		});

};

//	enlightened

var	getServerStuff	=	ajaxCall;

The	world	is	littered	with	ajax	code	exactly	like	this.	Here	is	the	reason	both	are	equivalent:

//	this	line

return	ajaxCall(function(json){

		return	callback(json);

});

//	is	the	same	as	this	line

return	ajaxCall(callback);

//	so	refactor	getServerStuff

var	getServerStuff	=	function(callback){

		return	ajaxCall(callback);

};

//	...which	is	equivalent	to	this

var	getServerStuff	=	ajaxCall;	//	<--	look	mum,	no	()'s

And	that,	folks,	is	how	it	is	done.	Once	more	then	we'll	see	why	I'm	so	insistent.

var	BlogController	=	(function()	{

		var	index	=	function(posts)	{

				return	Views.index(posts);

		};

		var	show	=	function(post)	{

				return	Views.show(post);

		};

		var	create	=	function(attrs)	{

				return	Db.create(attrs);

		};

		var	update	=	function(post,	attrs)	{

				return	Db.update(post,	attrs);

		};

		var	destroy	=	function(post)	{

				return	Db.destroy(post);

		};

		return	{

				index:	index,	show:	show,	create:	create,	update:	update,	destroy:	destroy

		};

})();

This	ridiculous	controller	is	99%	fluff.	We	could	either	rewrite	it	as:

var	BlogController	=	{

		index:	Views.index,

		show:	Views.show,

		create:	Db.create,

		update:	Db.update,

		destroy:	Db.destroy

};

...or	scrap	it	altogether	as	it	does	nothing	other	than	bundle	our	Views	and	Db	together.
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Okay,	let's	get	down	to	the	reasons	to	favor	first	class	functions.	As	we	saw	in	the		getServerStuff		and		BlogController	
examples,	it's	easy	to	add	layers	of	indirection	that	have	no	actual	value	and	only	increase	the	amount	of	code	to	maintain
and	search	through.

In	addition,	if	a	function	we	are	needlessly	wrapping	does	change,	we	must	also	change	our	wrapper	function.

httpGet('/post/2',	function(json){

		return	renderPost(json);

});

If		httpGet		were	to	change	to	send	a	possible		err	,	we	would	need	to	go	back	and	change	the	"glue".

//	go	back	to	every	httpGet	call	in	the	application	and	explicitly	pass	err

//	along.

httpGet('/post/2',	function(json,	err){

		return	renderPost(json,	err);

});

Had	we	written	it	as	a	first	class	function,	much	less	would	need	to	change:

//	renderPost	is	called	from	within	httpGet	with	however	many	arguments	it	wants

httpGet('/post/2',	renderPost);

Besides	the	removal	of	unnecessary	functions,	we	must	name	and	reference	arguments.	Names	are	a	bit	of	an	issue,	you
see.	We	have	potential	misnomers	-	especially	as	the	codebase	ages	and	requirements	change.

Having	multiple	names	for	the	same	concept	is	a	common	source	of	confusion	in	projects.	There	is	also	the	issue	of
generic	code.	For	instance,	these	two	functions	do	exactly	the	same	thing,	but	one	feels	infinitely	more	general	and
reusable:

//	specific	to	our	current	blog

var	validArticles	=	function(articles)	{

		return	articles.filter(function(article){

				return	article	!==	null	&&	article	!==	undefined;

		});

};

//	vastly	more	relevant	for	future	projects

var	compact	=	function(xs)	{

		return	xs.filter(function(x)	{

				return	x	!==	null	&&	x	!==	undefined;

		});

};

By	naming	things,	we've	seemingly	tied	ourselves	to	specific	data	(in	this	case		articles	).	This	happens	quite	a	bit	and	is	a
source	of	much	reinvention.

I	must	mention	that,	just	like	with	Object-Oriented	code,	you	must	be	aware	of		this		coming	to	bite	you	in	the	jugular.	If	an
underlying	function	uses		this		and	we	call	it	first	class,	we	are	subject	to	this	leaky	abstraction's	wrath.

var	fs	=	require('fs');

//	scary

Why	favor	first	class?
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fs.readFile('freaky_friday.txt',	Db.save);

//	less	so

fs.readFile('freaky_friday.txt',	Db.save.bind(Db));

Having	been	bound	to	itself,	the		Db		is	free	to	access	its	prototypical	garbage	code.	I	avoid	using		this		like	a	dirty	nappy.
There's	really	no	need	when	writing	functional	code.	However,	when	interfacing	with	other	libraries,	you'll	have	to	acquiesce
to	the	mad	world	around	us.

Some	will	argue		this		is	necessary	for	speed.	If	you	are	the	micro-optimization	sort,	please	close	this	book.	If	you	cannot
get	your	money	back,	perhaps	you	can	exchange	it	for	something	more	fiddly.

And	with	that,	we're	ready	to	move	on.

Chapter	3:	Pure	Happiness	with	Pure	Functions
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One	thing	we	need	to	get	straight	is	the	idea	of	a	pure	function.

A	pure	function	is	a	function	that,	given	the	same	input,	will	always	return	the	same	output	and	does	not	have	any
observable	side	effect.

Take		slice		and		splice	.	They	are	two	functions	that	do	the	exact	same	thing	-	in	a	vastly	different	way,	mind	you,	but	the
same	thing	nonetheless.	We	say		slice		is	pure	because	it	returns	the	same	output	per	input	every	time,	guaranteed.
	splice	,	however,	will	chew	up	its	array	and	spit	it	back	out	forever	changed	which	is	an	observable	effect.

var	xs	=	[1,2,3,4,5];

//	pure

xs.slice(0,3);

//=>	[1,2,3]

xs.slice(0,3);

//=>	[1,2,3]

xs.slice(0,3);

//=>	[1,2,3]

//	impure

xs.splice(0,3);

//=>	[1,2,3]

xs.splice(0,3);

//=>	[4,5]

xs.splice(0,3);

//=>	[]

In	functional	programming,	we	dislike	unwieldy	functions	like		splice		that	mutate	data.	This	will	never	do	as	we're	striving
for	reliable	functions	that	return	the	same	result	every	time,	not	functions	that	leave	a	mess	in	their	wake	like		splice	.

Let's	look	at	another	example.

//	impure

var	minimum	=	21;

var	checkAge	=	function(age)	{

		return	age	>=	minimum;

};

//	pure

var	checkAge	=	function(age)	{

		var	minimum	=	21;

		return	age	>=	minimum;

};

In	the	impure	portion,		checkAge		depends	on	the	mutable	variable		minimum		to	determine	the	result.	In	other	words,	it
depends	on	system	state	which	is	disappointing	because	it	increases	the	cognitive	load	by	introducing	an	external
environment.

Chapter	3:	Pure	Happiness	with	Pure	Functions
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It	might	not	seem	like	a	lot	in	this	example,	but	this	reliance	upon	state	is	one	of	the	largest	contributors	to	system
complexity(http://www.curtclifton.net/storage/papers/MoseleyMarks06a.pdf).	This		checkAge		may	return	different	results
depending	on	factors	external	to	input,	which	not	only	disqualifies	it	from	being	pure,	but	also	puts	our	minds	through	the
ringer	each	time	we're	reasoning	about	the	software.

Its	pure	form,	on	the	other	hand,	is	completely	self	sufficient.	We	can	also	make		minimum		immutable,	which	preserves	the
purity	as	the	state	will	never	change.	To	do	this,	we	must	create	an	object	to	freeze.

var	immutableState	=	Object.freeze({

		minimum:	21

});

Let's	look	more	at	these	"side	effects"	to	improve	our	intuition.	So	what	is	this	undoubtedly	nefarious	side	effect	mentioned
in	the	definition	of	pure	function?	We'll	be	referring	to	effect	as	anything	that	occurs	in	our	computation	besides	the
calculation	of	a	result.

There's	nothing	intrinsically	bad	about	effects	and	we'll	be	using	them	all	over	the	place	in	the	chapters	to	come.	It's	that
side	part	that	bears	the	negative	connotation.	Water	alone	is	not	an	inherent	larvae	incubator,	it's	the	stagnant	part	that
yields	the	swarms,	and	I	assure	you,	side	effects	are	a	similar	breeding	ground	in	your	own	programs.

A	side	effect	is	a	change	of	system	state	or	observable	interaction	with	the	outside	world	that	occurs	during	the
calculation	of	a	result.

Side	effects	may	include,	but	are	not	limited	to

changing	the	file	system
inserting	a	record	into	a	database
making	an	http	call
mutations
printing	to	the	screen	/	logging
obtaining	user	input
querying	the	DOM
accessing	system	state

And	the	list	goes	on	and	on.	Any	interaction	with	the	world	outside	of	a	function	is	a	side	effect,	which	is	a	fact	that	may
prompt	you	to	suspect	the	practicality	of	programming	without	them.	The	philosophy	of	functional	programming	postulates
that	side	effects	are	a	primary	cause	of	incorrect	behavior.

It	is	not	that	we're	forbidden	to	use	them,	rather	we	want	to	contain	them	and	run	them	in	a	controlled	way.	We'll	learn	how
to	do	this	when	we	get	to	functors	and	monads	in	later	chapters,	but	for	now,	let's	try	to	keep	these	insidious	functions
separate	from	our	pure	ones.

Side	effects	disqualify	a	function	from	being	pure	and	it	makes	sense:	pure	functions,	by	definition,	must	always	return	the
same	output	given	the	same	input,	which	is	not	possible	to	guarantee	when	dealing	with	matters	outside	our	local	function.

Let's	take	a	closer	look	at	why	we	insist	on	the	same	output	per	input.	Pop	your	collars,	we're	going	to	look	at	some	8th
grade	math.

Side	effects	may	include...

8th	grade	math
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From	mathisfun.com:

A	function	is	a	special	relationship	between	values:	Each	of	its	input	values	gives	back	exactly	one	output	value.

In	other	words,	it's	just	a	relation	between	two	values:	the	input	and	the	output.	Though	each	input	has	exactly	one	output,
that	output	doesn't	necessarily	have	to	be	unique	per	input.	Below	shows	a	diagram	of	a	perfectly	valid	function	from		x		to
	y	;

(http://www.mathsisfun.com/sets/function.html)

To	contrast,	the	following	diagram	shows	a	relation	that	is	not	a	function	since	the	input	value		5		points	to	several	outputs:

(http://www.mathsisfun.com/sets/function.html)

Functions	can	be	described	as	a	set	of	pairs	with	the	position	(input,	output):		[(1,2),	(3,6),	(5,10)]	(It	appears	this
function	doubles	its	input).

Or	perhaps	a	table:

Input Output

1 2

2 4

3 6

Or	even	as	a	graph	with		x		as	the	input	and		y		as	the	output:
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There's	no	need	for	implementation	details	if	the	input	dictates	the	output.	Since	functions	are	simply	mappings	of	input	to
output,	one	could	simply	jot	down	object	literals	and	run	them	with		[]		instead	of		()	.

var	toLowerCase	=	{"A":"a",	"B":	"b",	"C":	"c",	"D":	"d",	"E":	"e",	"D":	"d"};

toLowerCase["C"];

//=>	"c"

var	isPrime	=	{1:false,	2:	true,	3:	true,	4:	false,	5:	true,	6:false};

isPrime[3];

//=>	true

Of	course,	you	might	want	to	calculate	instead	of	hand	writing	things	out,	but	this	illustrates	a	different	way	to	think	about
functions.(You	may	be	thinking	"what	about	functions	with	multiple	arguments?".	Indeed,	that	presents	a	bit	of	an
inconvenience	when	thinking	in	terms	of	mathematics.	For	now,	we	can	bundle	them	up	in	an	array	or	just	think	of	the
	arguments		object	as	the	input.	When	we	learn	about	currying,	we'll	see	how	we	can	directly	model	the	mathematical
definition	of	a	function.)

Here	comes	the	dramatic	reveal:	Pure	functions	are	mathematical	functions	and	they're	what	functional	programming	is	all
about.	Programming	with	these	little	angels	can	provide	huge	benefits.	Let's	look	at	some	reasons	why	we're	willing	to	go	to
great	lengths	to	preserve	purity.

For	starters,	pure	functions	can	always	be	cached	by	input.	This	is	typically	done	using	a	technique	called	memoization:

var	squareNumber		=	memoize(function(x){	return	x*x;	});

squareNumber(4);

//=>	16

squareNumber(4);	//	returns	cache	for	input	4

//=>	16

squareNumber(5);

//=>	25

The	case	for	purity

Cacheable

mostly-adequate-guide

16Chapter	3:	Pure	Happiness	with	Pure	Functions



squareNumber(5);	//	returns	cache	for	input	5

//=>	25

Here	is	a	simplified	implementation,	though	there	are	plenty	of	more	robust	versions	available.

var	memoize	=	function(f)	{

		var	cache	=	{};

		return	function()	{

				var	arg_str	=	JSON.stringify(arguments);

				cache[arg_str]	=	cache[arg_str]	||	f.apply(f,	arguments);

				return	cache[arg_str];

		};

};

Something	to	note	is	that	you	can	transform	some	impure	functions	into	pure	ones	by	delaying	evaluation:

var	pureHttpCall	=	memoize(function(url,	params){

		return	function()	{	return	$.getJSON(url,	params);	}

});

The	interesting	thing	here	is	that	we	don't	actually	make	the	http	call	-	we	instead	return	a	function	that	will	do	so	when
called.	This	function	is	pure	because	it	will	always	return	the	same	output	given	the	same	input:	the	function	that	will	make
the	particular	http	call	given	the		url		and		params	.

Our		memoize		function	works	just	fine,	though	it	doesn't	cache	the	results	of	the	http	call,	rather	it	caches	the	generated
function.

This	is	not	very	useful	yet,	but	we'll	soon	learn	some	tricks	that	will	make	it	so.	The	takeaway	is	that	we	can	cache	every
function	no	matter	how	destructive	they	seem.

Pure	functions	are	completely	self	contained.	Everything	the	function	needs	is	handed	to	it	on	a	silver	platter.	Ponder	this
for	a	moment...	How	might	this	be	beneficial?	For	starters,	a	function's	dependencies	are	explicit	and	therefore	easier	to
see	and	understand	-	no	funny	business	going	on	under	the	hood.

//impure

var	signUp	=	function(attrs)	{

		var	user	=	saveUser(attrs);

		welcomeUser(user);

};

//pure

var	signUp	=	function(Db,	Email,	attrs)	{

		return	function()	{

				var	user	=	saveUser(Db,	attrs);

				welcomeUser(Email,	user);

		};

};

The	example	here	demonstrates	that	the	pure	function	must	be	honest	about	its	dependencies	and,	as	such,	tell	us	exactly
what	it's	up	to.	Just	from	its	signature,	we	know	that	it	will	use	a		Db	,		Email	,	and		attrs		which	should	be	telling	to	say	the
least.

We'll	learn	how	to	make	functions	like	this	pure	without	merely	deferring	evaluation,	but	the	point	should	be	clear	that	the
pure	form	is	much	more	informative	than	its	sneaky	impure	counterpart	which	is	up	to	God	knows	what.

Portable	/	Self-Documenting
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Something	else	to	notice	is	that	we're	forced	to	"inject"	dependencies,	or	pass	them	in	as	arguments,	which	makes	our	app
much	more	flexible	because	we've	parameterized	our	database	or	mail	client	or	what	have	you(Don't	worry,	we'll	see	a	way
to	make	this	less	tedious	than	it	sounds).	Should	we	choose	to	use	a	different	Db	we	need	only	to	call	our	function	with	it.
Should	we	find	ourselves	writing	a	new	application	in	which	we'd	like	to	reuse	this	reliable	function,	we	simply	give	this
function	whatever		Db		and		Email		we	have	at	the	time.

In	a	JavaScript	setting,	portability	could	mean	serializing	and	sending	functions	over	a	socket.	It	could	mean	running	all	our
app	code	in	web	workers.	Portability	is	a	powerful	trait.

Contrary	to	"typical"	methods	and	procedures	in	imperative	programming	rooted	deep	in	their	environment	via	state,
dependencies,	and	available	effects,	pure	functions	can	be	run	anywhere	our	hearts	desire.

When	was	the	last	time	you	copied	a	method	into	a	new	app?	One	of	my	favorite	quotes	comes	from	Erlang	creator,	Joe
Armstrong:	"The	problem	with	object-oriented	languages	is	they’ve	got	all	this	implicit	environment	that	they	carry	around
with	them.	You	wanted	a	banana	but	what	you	got	was	a	gorilla	holding	the	banana...	and	the	entire	jungle".

Next,	we	come	to	realize	pure	functions	make	testing	much	easier.	We	don't	have	to	mock	a	"real"	payment	gateway	or
setup	and	assert	the	state	of	the	world	after	each	test.	We	simply	give	the	function	input	and	assert	output.

In	fact,	we	find	the	functional	community	pioneering	new	test	tools	that	can	blast	our	functions	with	generated	input	and
assert	that	properties	hold	on	the	output.	It's	beyond	the	scope	of	this	book,	but	I	strongly	encourage	you	to	search	for	and
try	Quickcheck	-	a	testing	tool	that	is	tailored	for	a	purely	functional	environment.

Many	believe	the	biggest	win	when	working	with	pure	functions	is	referential	transparency.	A	spot	of	code	is	referentially
transparent	when	it	can	be	substituted	for	its	evaluated	value	without	changing	the	behavior	of	the	program.

Since	pure	functions	always	return	the	same	output	given	the	same	input,	we	can	rely	on	them	to	always	return	the	same
results	and	thus	preserve	referential	transparency.	Let's	see	an	example.

var	Immutable	=	require("immutable");

var	decrementHP	=	function(player)	{

		return	player.set("hp",	player.get("hp")-1);

};

var	isSameTeam	=	function(player1,	player2)	{

		return	player1.get("team")	===	player2.get("team");

};

var	punch	=	function(player,	target)	{

		if	(isSameTeam(player,	target))	{

				return	target;

		}	else	{

				return	decrementHP(target);

		}

};

var	jobe	=	Immutable.Map({name:"Jobe",	hp:20,	team:	"red"});

var	michael	=	Immutable.Map({name:"Michael",	hp:20,	team:	"green"});

punch(jobe,	michael);

//=>	Immutable.Map({name:"Michael",	hp:19,	team:	"green"})

	decrementHP	,		isSameTeam		and		punch		are	all	pure	and	therefore	referentially	transparent.	We	can	use	a	technique	called
equational	reasoning	wherein	one	substitutes	"equals	for	equals"	to	reason	about	code.	It's	a	bit	like	manually	evaluating

Testable

Reasonable
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the	code	without	taking	into	account	the	quirks	of	programmatic	evaluation.	Using	referential	transparency,	let's	play	with
this	code	a	bit.

First	we'll	inline	the	function		isSameTeam	.

var	punch	=	function(player,	target)	{

		if	(player.get("team")	===	target.get("team"))	{

				return	target;

		}	else	{

				return	decrementHP(target);

		}

};

Since	our	data	is	immutable,	we	can	simply	replace	the	teams	with	their	actual	value

var	punch	=	function(player,	target)	{

		if	("red"	===	"green")	{

				return	target;

		}	else	{

				return	decrementHP(target);

		}

};

We	see	that	it	is	false	in	this	case	so	we	can	remove	the	entire	if	branch

var	punch	=	function(player,	target)	{

		return	decrementHP(target);

};

And	if	we	inline		decrementHP	,	we	see	that,	in	this	case,	punch	becomes	a	call	to	decrement	the		hp		by	1.

var	punch	=	function(player,	target)	{

		return	target.set("hp",	target.get("hp")-1);

};

This	ability	to	reason	about	code	is	terrific	for	refactoring	and	understanding	code	in	general.	In	fact,	we	used	this	technique
to	refactor	our	flock	of	seagulls	program.	We	used	equational	reasoning	to	harness	the	properties	of	addition	and
multiplication.	Indeed,	we'll	be	using	these	techniques	throughout	the	book.

Finally,	and	here's	the	coup	de	grâce,	we	can	run	any	pure	function	in	parallel	since	it	does	not	need	access	to	shared
memory	and	it	cannot,	by	definition,	have	a	race	condition	due	to	some	side	effect.

This	is	very	much	possible	in	a	server	side	js	environment	with	threads	as	well	as	in	the	browser	with	web	workers	though
current	culture	seems	to	avoid	it	due	to	complexity	when	dealing	with	impure	functions.

We've	seen	what	pure	functions	are	and	why	we,	as	functional	programmers,	believe	they	are	the	cat's	evening	wear.	From
this	point	on,	we'll	strive	to	write	all	our	functions	in	a	pure	way.	We'll	require	some	extra	tools	to	help	us	do	so,	but	in	the
meantime,	we'll	try	to	separate	the	impure	functions	from	the	rest	of	the	pure	code.

Parallel	Code

In	Summary
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Writing	programs	with	pure	functions	is	a	tad	laborious	without	some	extra	tools	in	our	belt.	We	have	to	juggle	data	by
passing	arguments	all	over	the	place,	we're	forbidden	to	use	state,	not	to	mention	effects.	How	does	one	go	about	writing
these	masochistic	programs?	Let's	acquire	a	new	tool	called	curry.

Chapter	4:	Currying
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My	Dad	once	explained	how	there	are	certain	things	one	can	live	without	until	one	acquires	them.	A	microwave	is	one	such
thing.	Smart	phones,	another.	The	older	folks	among	us	will	remember	a	fulfilling	life	sans	internet.	For	me,	currying	is	on
this	list.

The	concept	is	simple:	You	can	call	a	function	with	fewer	arguments	than	it	expects.	It	returns	a	function	that	takes	the
remaining	arguments.

You	can	choose	to	call	it	all	at	once	or	simply	feed	in	each	argument	piecemeal.

var	add	=	function(x)	{

		return	function(y)	{

				return	x	+	y;

		};

};

var	increment	=	add(1);

var	addTen	=	add(10);

increment(2);

//	3

addTen(2);

//	12

Here	we've	made	a	function		add		that	takes	one	argument	and	return	a	function.	By	calling	it,	the	returned	function
remembers	the	first	argument	from	then	on	via	the	closure.	Calling	it	with	both	arguments	all	at	once	is	a	bit	of	a	pain,
however,	so	we	can	use	a	special	helper	function	called		curry		to	make	defining	and	calling	functions	like	this	easier.

Let's	setup	a	few	curried	functions	for	our	enjoyment.

var	curry	=	require('lodash.curry');

var	match	=	curry(function(what,	str)	{

		return	str.match(what);

});

var	replace	=	curry(function(what,	replacement,	str)	{

		return	str.replace(what,	replacement);

});

var	filter	=	curry(function(f,	ary)	{

		return	ary.filter(f);

});

var	map	=	curry(function(f,	ary)	{

		return	ary.map(f);

});

The	pattern	I've	followed	is	a	simple,	but	important	one.	I've	strategically	positioned	the	data	we're	operating	on	(String,
Array)	as	the	last	argument.	It	will	become	clear	as	to	why	upon	use.

match(/\s+/g,	"hello	world");

//	[	'	'	]

Chapter	4:	Currying

Can't	live	if	livin'	is	without	you
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match(/\s+/g)("hello	world");

//	[	'	'	]

var	hasSpaces	=	match(/\s+/g);

//	function(x)	{	return	x.match(/\s+/g)	}

hasSpaces("hello	world");

//	[	'	'	]

hasSpaces("spaceless");

//	null

filter(hasSpaces,	["tori_spelling",	"tori	amos"]);

//	["tori	amos"]

var	findSpaces	=	filter(hasSpaces);

//	function(xs)	{	return	xs.filter(function(x)	{	return	x.match(/\s+/g)	})	}

findSpaces(["tori_spelling",	"tori	amos"]);

//	["tori	amos"]

var	noVowels	=	replace(/[aeiou]/ig);

//	function(replacement,	x)	{	return	x.replace(/[aeiou]/ig,	replacement)	}

var	censored	=	noVowels("*");

//	function(x)	{	return	x.replace(/[aeiou]/ig,	"*")	}

censored("Chocolate	Rain");

//	'Ch*c*l*t*	R**n'

What's	demonstrated	here	is	the	ability	to	"pre-load"	a	function	with	an	argument	or	two	in	order	to	receive	a	new	function
that	remembers	those	arguments.

I	encourage	you	to		npm	install	lodash	,	copy	the	code	above	and	have	a	go	at	it	in	the	repl.	You	can	also	do	this	in	a
browser	where	lodash	or	ramda	is	available.

Currying	is	useful	for	many	things.	We	can	make	new	functions	just	by	giving	our	base	functions	some	arguments	as	seen
in		hasSpaces	,		findSpaces	,	and		censored	.

We	also	have	the	ability	to	transform	any	function	that	works	on	single	elements	into	a	function	that	works	on	arrays	simply
by	wrapping	it	with		map	:

var	getChildren	=	function(x)	{

		return	x.childNodes;

};

var	allTheChildren	=	map(getChildren);

Giving	a	function	fewer	arguments	than	it	expects	is	typically	called	partial	application.	Partially	applying	a	function	can
remove	a	lot	of	boiler	plate	code.	Consider	what	the	above		allTheChildren		function	would	be	with	the	uncurried		map		from
lodash(note	the	arguments	are	in	a	different	order):

var	allTheChildren	=	function(elements)	{

		return	_.map(elements,	getChildren);

};

We	typically	don't	define	functions	that	work	on	arrays,	because	we	can	just	call		map(getChildren)		inline.	Same	with		sort	,
	filter	,	and	other	higher	order	functions(Higher	order	function:	A	function	that	takes	or	returns	a	function).

More	than	a	pun	/	special	sauce
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When	we	spoke	about	pure	functions,	we	said	they	take	1	input	to	1	output.	Currying	does	exactly	this:	each	single
argument	returns	a	new	function	expecting	the	remaining	arguments.	That,	old	sport,	is	1	input	to	1	output.

No	matter	if	the	output	is	another	function	-	it	qualifies	as	pure.	We	do	allow	more	than	one	argument	at	a	time,	but	this	is
seen	as	merely	removing	the	extra		()	's	for	convenience.

Currying	is	handy	and	I	very	much	enjoy	working	with	curried	functions	on	a	daily	basis.	It	is	a	tool	for	the	belt	that	makes
functional	programming	less	verbose	and	tedious.

We	can	make	new,	useful	functions	on	the	fly	simply	by	passing	in	a	few	arguments	and	as	a	bonus,	we've	retained	the
mathematical	function	definition	despite	multiple	arguments.

Let's	acquire	another	essential	tool	called		compose	.

Chapter	5:	Coding	by	Composing

A	quick	word	before	we	start.	We'll	use	a	library	called	ramda	which	curries	every	function	by	default.	Alternatively	you	may
choose	to	use	lodash-fp	which	does	the	same	and	is	written/maintained	by	the	creator	of	lodash.	Both	will	work	just	fine
and	it	is	a	matter	of	preference.

ramda	lodash-fp

There	are	unit	tests	to	run	against	your	exercises	as	you	code	them,	or	you	can	just	copy-paste	into	a	javascript	REPL	for
the	early	exercises	if	you	wish.

Answers	are	provided	with	the	code	in	the	repository	for	this	book

var	_	=	require('ramda');

//	Exercise	1

//==============

//	Refactor	to	remove	all	arguments	by	partially	applying	the	function

var	words	=	function(str)	{

		return	_.split('	',	str);

};

//	Exercise	1a

//==============

//	Use	map	to	make	a	new	words	fn	that	works	on	an	array	of	strings.

var	sentences	=	undefined;

//	Exercise	2

//==============

//	Refactor	to	remove	all	arguments	by	partially	applying	the	functions

var	filterQs	=	function(xs)	{

		return	_.filter(function(x){	return	match(/q/i,	x);		},	xs);

};

//	Exercise	3

//==============

//	Use	the	helper	function	_keepHighest	to	refactor	max	to	not	reference	any

//	arguments

In	summary

Exercises
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//	LEAVE	BE:

var	_keepHighest	=	function(x,y){	return	x	>=	y	?	x	:	y;	};

//	REFACTOR	THIS	ONE:

var	max	=	function(xs)	{

		return	_.reduce(function(acc,	x){

				return	_keepHighest(acc,	x);

		},	-Infinity,	xs);

};

//	Bonus	1:

//	============

//	wrap	array's	slice	to	be	functional	and	curried.

//	//[1,2,3].slice(0,	2)

var	slice	=	undefined;

//	Bonus	2:

//	============

//	use	slice	to	define	a	function	"take"	that	takes	n	elements	from	the	beginning	of	the	string.	Make	it	curried

//	//	Result	for	"Something"	with	n=4	should	be	"Some"

var	take	=	undefined;
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Here's		compose	:

var	compose	=	function(f,g)	{

		return	function(x)	{

				return	f(g(x));

		};

};

	f		and		g		are	functions	and		x		is	the	value	being	"piped"	through	them.

Composition	feels	like	function	husbandry.	You,	breeder	of	functions,	select	two	with	traits	you'd	like	to	combine	and	mash
them	together	to	spawn	a	brand	new	one.	Usage	is	as	follows:

var	toUpperCase	=	function(x)	{	return	x.toUpperCase();	};

var	exclaim	=	function(x)	{	return	x	+	'!';	};

var	shout	=	compose(exclaim,	toUpperCase);

shout("send	in	the	clowns");

//=>	"SEND	IN	THE	CLOWNS!"

The	composition	of	two	functions	returns	a	new	function.	This	makes	perfect	sense:	composing	two	units	of	some	type	(in
this	case	function)	should	yield	a	new	unit	of	that	very	type.	You	don't	plug	two	legos	together	and	get	a	lincoln	log.	There	is
a	theory	here,	some	underlying	law	that	we	will	discover	in	due	time.

In	our	definition	of		compose	,	the		g		will	run	before	the		f	,	creating	a	right	to	left	flow	of	data.	This	is	much	more	readable
than	nesting	a	bunch	of	function	calls.	Without	compose,	the	above	would	read:

var	shout	=	function(x){

		return	exclaim(toUpperCase(x));

};

Instead	of	inside	to	outside,	we	run	right	to	left,	which	I	suppose	is	a	step	in	the	left	direction(boo).	Let's	look	at	an	example
where	sequence	matters:

var	head	=	function(x)	{	return	x[0];	};

var	reverse	=	reduce(function(acc,	x){	return	[x].concat(acc);	},	[]);

var	last	=	compose(head,	reverse);

last(['jumpkick',	'roundhouse',	'uppercut']);

//=>	'uppercut'

	reverse		will	turn	the	list	around	while		head		grabs	the	initial	item.	This	results	in	an	effective,	albeit	inefficient,		last	
function.	The	sequence	of	functions	in	the	composition	should	be	apparent	here.	We	could	define	a	left	to	right	version,
however,	we	mirror	the	mathematical	version	much	more	closely	as	it	stands.	That's	right,	composition	is	straight	from	the
math	books.	In	fact,	perhaps	it's	time	to	look	at	a	property	that	holds	for	any	composition.

//	associativity

Chapter	5:	Coding	by	Composing

Functional	husbandry
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var	associative	=	compose(f,	compose(g,	h))	==	compose(compose(f,	g),	h);

//	true

Composition	is	associative,	meaning	it	doesn't	matter	how	you	group	two	of	them.	So,	should	we	choose	to	uppercase	the
string,	we	can	write:

compose(toUpperCase,	compose(head,	reverse));

//	or

compose(compose(toUpperCase,	head),	reverse);

Since	it	doesn't	matter	how	we	group	our	calls	to		compose	,	the	result	will	be	the	same.	That	allows	us	to	write	a	variadic
compose	and	use	it	as	follows:

//	previously	we'd	have	to	write	two	composes,	but	since	it's	associative,	we	can	give	compose	as	many	fn's	as	we	like	and	let	it	decide	how	to	group	them.

var	lastUpper	=	compose(toUpperCase,	head,	reverse);

lastUpper(['jumpkick',	'roundhouse',	'uppercut']);

//=>	'UPPERCUT'

var	loudLastUpper	=	compose(exclaim,	toUpperCase,	head,	reverse)

loudLastUpper(['jumpkick',	'roundhouse',	'uppercut']);

//=>	'UPPERCUT!'

Applying	the	associative	property	gives	us	this	flexibility	and	peace	of	mind	that	the	result	will	be	equivalent.	The	slightly
more	complicated	variadic	definition	is	included	with	the	support	libraries	for	this	book	and	is	the	normal	definition	you'll	find
in	libraries	like	lodash,	underscore,	and	ramda.

One	pleasant	benefit	of	associativity	is	that	any	group	of	functions	can	be	extracted	and	bundled	together	in	their	very	own
composition.	Let's	play	with	refactoring	our	previous	example:

var	loudLastUpper	=	compose(exclaim,	toUpperCase,	head,	reverse);

//	or

var	last	=	compose(head,	reverse);

var	loudLastUpper	=	compose(exclaim,	toUpperCase,	last);

//	or

var	last	=	compose(head,	reverse);

var	angry	=	compose(exclaim,	toUpperCase);

var	loudLastUpper	=	compose(angry,	last);

//	more	variations...

There's	no	right	or	wrong	answers	-	we're	just	plugging	our	legos	together	in	whatever	way	we	please.	Usually	it's	best	to
group	things	in	a	reusable	way	like		last		and		angry	.	If	familiar	with	Fowler's	"Refactoring",	one	might	recognize	this
process	as	"extract	method"...except	without	all	the	object	state	to	worry	about.

Pointfree	style	means	never	having	to	say	your	data.	Excuse	me.	It	means	functions	that	never	mention	the	data	upon
which	they	operate.	First	class	functions,	currying,	and	composition	all	play	well	together	to	create	this	style.

Pointfree

mostly-adequate-guide

26Chapter	5:	Coding	by	Composing

https://lodash.com/
http://underscorejs.org/
http://ramdajs.com/
http://martinfowler.com/books/refactoring.html
http://refactoring.com/catalog/extractMethod.html


//not	pointfree	because	we	mention	the	data:	word

var	snakeCase	=	function	(word)	{

		return	word.toLowerCase().replace(/\s+/ig,	'_');

};

//pointfree

var	snakeCase	=	compose(replace(/\s+/ig,	'_'),	toLowerCase);

See	how	we	partially	applied		replace	?	What	we're	doing	is	piping	our	data	through	each	function	of	1	argument.	Currying
allows	us	to	prepare	each	function	to	just	take	its	data,	operate	on	it,	and	pass	it	along.	Something	else	to	notice	is	how	we
don't	need	the	data	to	construct	our	function	in	the	pointfree	version,	whereas	in	the	pointful	one,	we	must	have	our		word	
available	before	anything	else.

Let's	look	at	another	example.

//not	pointfree	because	we	mention	the	data:	name

var	initials	=	function	(name)	{

		return	name.split('	').map(compose(toUpperCase,	head)).join('.	');

};

//pointfree

var	initials	=	compose(join('.	'),	map(compose(toUpperCase,	head)),	split('	'));

initials("hunter	stockton	thompson");

//	'H.	S.	T'

Pointfree	code	can	again,	help	us	remove	needless	names	and	keep	us	concise	and	generic.	Pointfree	is	a	good	litmus	test
for	functional	code	as	it	let's	us	know	we've	got	small	functions	that	take	input	to	output.	One	can't	compose	a	while	loop,
for	instance.	Be	warned,	however,	pointfree	is	a	double	edge	sword	and	can	sometimes	obfuscate	intention.	Not	all
functional	code	is	pointfree	and	that	is	O.K.	We'll	shoot	for	it	where	we	can	and	stick	with	normal	functions	otherwise.

A	common	mistake	is	to	compose	something	like		map	,	a	function	of	two	arguments,	without	first	partially	applying	it.

//wrong	-	we	end	up	giving	angry	an	array	and	we	partially	applied	map	with	god	knows	what.

var	latin	=	compose(map,	angry,	reverse);

latin(["frog",	"eyes"]);

//	error

//	right	-	each	function	expects	1	argument.

var	latin	=	compose(map(angry),	reverse);

latin(["frog",	"eyes"]);

//	["EYES!",	"FROG!"])

If	you	are	having	trouble	debugging	a	composition,	we	can	use	this	helpful,	but	impure	trace	function	to	see	what's	going
on.

var	trace	=	curry(function(tag,	x){

		console.log(tag,	x);

		return	x;

});

var	dasherize	=	compose(join('-'),	toLower,	split('	'),	replace(/\s{2,}/ig,	'	'));

dasherize('The	world	is	a	vampire');

Debugging
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//	TypeError:	Cannot	read	property	'apply'	of	undefined

Something	is	wrong	here,	let's		trace	

var	dasherize	=	compose(join('-'),	toLower,	trace("after	split"),	split('	'),	replace(/\s{2,}/ig,	'	'));

//	after	split	[	'The',	'world',	'is',	'a',	'vampire'	]

Ah!	We	need	to		map		this		toLower		since	it's	working	on	an	array.

var	dasherize	=	compose(join('-'),	map(toLower),	split('	'),	replace(/\s{2,}/ig,	'	'));

dasherize('The	world	is	a	vampire');

//	'the-world-is-a-vampire'

The		trace		function	allows	us	to	view	the	data	at	a	certain	point	for	debugging	purposes.	Languages	like	haskell	and
purescript	have	similar	functions	for	ease	of	development.

Composition	will	be	our	tool	for	constructing	programs	and,	as	luck	would	have	it,	is	backed	by	a	powerful	theory	that
ensures	things	will	work	out	for	us.	Let's	examine	this	theory.

Category	theory	is	an	abstract	branch	of	mathematics	that	can	formalize	concepts	from	several	different	branches	such	as
set	theory,	type	theory,	group	theory,	logic,	and	more.	It	primarily	deals	with	objects,	morphisms,	and	transformations,	which
mirrors	programming	quite	closely.	Here	is	a	chart	of	the	same	concepts	as	viewed	from	each	separate	theory.

Sorry,	I	didn't	mean	to	frighten	you.	I	don't	expect	you	to	be	intimately	familiar	with	all	these	concepts.	My	point	is	to	show
you	how	much	duplication	we	have	so	you	can	see	why	category	theory	aims	to	unify	these	things.

In	category	theory,	we	have	something	called...	a	category.	It	is	defined	as	a	collection	with	the	following	components:

Category	theory
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A	collection	of	objects
A	collection	of	morphisms
A	notion	of	composition	on	the	morphisms
A	distinguished	morphism	called	identity

Category	theory	is	abstract	enough	to	model	many	things,	but	let's	apply	this	to	types	and	functions,	which	is	what	we	care
about	at	the	moment.

A	collection	of	objects	The	objects	will	be	data	types.	For	instance,		String	,		Boolean	,		Number	,		Object	,	etc.	We	often
view	data	types	as	sets	of	all	the	possible	values.	One	could	look	at		Boolean		as	the	set	of		[true,	false]		and		Number		as
the	set	of	all	possible	numeric	values.	Treating	types	as	sets	is	useful	because	we	can	use	set	theory	to	work	with	them.

A	collection	of	morphisms	The	morphisms	will	be	our	standard	every	day	pure	functions.

A	notion	of	composition	on	the	morphisms	This,	as	you	may	have	guessed,	is	our	brand	new	toy	-		compose	.	We've
discussed	that	our		compose		function	is	associative	which	is	no	coincidence	as	it	is	a	property	that	must	hold	for	any
composition	in	category	theory.

Here	is	an	image	demonstrating	composition:

Here	is	a	concrete	example	in	code:

var	g	=	function(x){	return	x.length;	};

var	f	=	function(x){	return	x	===	4;	};

var	isFourLetterWord	=	compose(f,	g);

A	distinguished	morphism	called	identity	Let's	introduce	a	useful	function	called		id	.	This	function	simply	takes	some
input	and	spits	it	back	at	you.	Take	a	look:

var	id	=	function(x){	return	x;	};

You	might	ask	yourself	"What	in	the	bloody	hell	is	that	useful	for?".	We'll	make	extensive	use	of	this	function	in	the	following
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chapters,	but	for	now	think	of	it	as	a	function	that	can	stand	in	for	our	value	-	a	function	masquerading	as	every	day	data.

	id		must	play	nicely	with	compose.	Here	is	a	property	that	always	holds	for	every	unary(unary:	a	one	argument	function)
function	f:

//	identity

compose(id,	f)	==	compose(f,	id)	==	f;

//	true

Hey,	it's	just	like	the	identity	property	on	numbers!	If	that's	not	immediately	clear,	take	some	time	with	it.	Understand	the
futility.	We'll	be	seeing		id		used	all	over	the	place	soon,	but	for	now	we	see	it's	a	function	that	acts	as	a	stand	in	for	a	given
value.	This	is	quite	useful	when	writing	pointfree	code.

So	there	you	have	it,	a	category	of	types	and	functions.	If	this	is	your	first	introduction,	I	imagine	you're	still	a	little	fuzzy	on
what	a	category	is	and	why	it's	useful.	We	will	build	upon	this	knowledge	throughout	the	book.	As	of	right	now,	in	this
chapter,	on	this	line,	you	can	at	least	see	it	as	providing	us	with	some	wisdom	regarding	composition	-	namely,	the
associativity	and	identity	properties.

What	are	some	other	categories,	you	ask?	Well,	we	can	define	one	for	directed	graphs	with	nodes	being	objects,	edges
being	morphisms,	and	composition	just	being	path	concatenation.	We	can	define	with	Numbers	as	objects	and		>=		as
morphisms(actually	any	partial	or	total	order	can	be	a	category).	There	are	heaps	of	categories,	but	for	the	purposes	of	this
book,	we'll	only	concern	ourselves	with	the	one	defined	above.	We	have	sufficiently	skimmed	the	surface	and	must	move
on.

Composition	connects	our	functions	together	like	a	series	of	pipes.	Data	will	flow	through	our	application	as	it	must	-	pure
functions	are	input	to	output	after	all	so	breaking	this	chain	would	disregard	output,	rendering	our	software	useless.

We	hold	composition	as	a	design	principle	above	all	others.	This	is	because	it	keeps	our	app	simple	and	reasonable.
Category	theory	will	play	a	big	part	in	app	architecture,	modelling	side	effects,	and	ensuring	correctness.

We	are	now	at	a	point	where	it	would	serve	us	well	to	see	some	of	this	in	practice.	Let's	make	an	example	application.

Chapter	6:	Example	Application

var	_	=	require('ramda');

var	accounting	=	require('accounting');

//	Example	Data

var	CARS	=	[

				{name:	"Ferrari	FF",	horsepower:	660,	dollar_value:	700000,	in_stock:	true},

				{name:	"Spyker	C12	Zagato",	horsepower:	650,	dollar_value:	648000,	in_stock:	false},

				{name:	"Jaguar	XKR-S",	horsepower:	550,	dollar_value:	132000,	in_stock:	false},

				{name:	"Audi	R8",	horsepower:	525,	dollar_value:	114200,	in_stock:	false},

				{name:	"Aston	Martin	One-77",	horsepower:	750,	dollar_value:	1850000,	in_stock:	true},

				{name:	"Pagani	Huayra",	horsepower:	700,	dollar_value:	1300000,	in_stock:	false}

		];

//	Exercise	1:

//	============

//	use	_.compose()	to	rewrite	the	function	below.	Hint:	_.prop()	is	curried.

var	isLastInStock	=	function(cars)	{

		var	last_car	=	_.last(cars);

		return	_.prop('in_stock',	last_car);

In	Summary

Exercises
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};

//	Exercise	2:

//	============

//	use	_.compose(),	_.prop()	and	_.head()	to	retrieve	the	name	of	the	first	car

var	nameOfFirstCar	=	undefined;

//	Exercise	3:

//	============

//	Use	the	helper	function	_average	to	refactor	averageDollarValue	as	a	composition

var	_average	=	function(xs)	{	return	_.reduce(_.add,	0,	xs)	/	xs.length;	};	//	<-	leave	be

var	averageDollarValue	=	function(cars)	{

		var	dollar_values	=	_.map(function(c)	{	return	c.dollar_value;	},	cars);

		return	_average(dollar_values);

};

//	Exercise	4:

//	============

//	Write	a	function:	sanitizeNames()	using	compose	that	returns	a	list	of	lowercase	and	underscored	car's	names:	e.g:	sanitizeNames([{name:	"Ferrari	FF",	horsepower:	660,	dollar_value:	700000,	in_stock:	true}])	//=>	["ferrari_ff"].

var	_underscore	=	_.replace(/\W+/g,	'_');	//<--	leave	this	alone	and	use	to	sanitize

var	sanitizeNames	=	undefined;

//	Bonus	1:

//	============

//	Refactor	availablePrices	with	compose.

var	availablePrices	=	function(cars)	{

		var	available_cars	=	_.filter(_.prop('in_stock'),	cars);

		return	available_cars.map(function(x){

				return	accounting.formatMoney(x.dollar_value);

		}).join(',	');

};

//	Bonus	2:

//	============

//	Refactor	to	pointfree.	Hint:	you	can	use	_.flip()

var	fastestCar	=	function(cars)	{

		var	sorted	=	_.sortBy(function(car){	return	car.horsepower	},	cars);

		var	fastest	=	_.last(sorted);

		return	fastest.name	+	'	is	the	fastest';

};
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We	are	going	to	switch	our	mindset.	From	here	on	out,	we'll	stop	telling	the	computer	how	to	do	its	job	and	instead	write	a
specification	of	what	we'd	like	as	a	result.	I'm	sure	you'll	find	it	much	less	stressful	than	trying	to	micromanage	everything	all
the	time.

Declarative,	as	opposed	to	imperative,	means	that	we	will	write	expressions,	as	opposed	to	step	by	step	instructions.

Think	of	SQL.	There	is	no	"first	do	this,	then	do	that".	There	is	one	expression	that	specifies	what'd	like	from	the	database.
We	don't	decide	how	to	do	the	work,	it	does.	When	the	database	is	upgraded	and	the	SQL	engine	optimized,	we	don't	have
to	change	our	query.	This	is	because	there	are	many	ways	to	interpret	our	specification	and	achieve	the	same	result.

For	some	folks,	myself	included,	it's	hard	to	grasp	the	concept	of	declarative	coding	at	first	so	let's	point	out	a	few	examples
to	get	a	feel	for	it.

//	imperative

var	makes	=	[];

for	(i	=	0;	i	<	cars.length;	i++)	{

		makes.push(cars[i].make);

}

//	declarative

var	makes	=	cars.map(function(car){	return	car.make;	});

The	imperative	loop	must	first	instantiate	the	array.	The	interpreter	must	evaluate	this	statement	before	moving	on.	Then	it
directly	iterates	through	the	list	of	cars,	manually	increasing	a	counter	and	showing	its	bits	and	pieces	to	us	in	a	vulgar
display	of	explicit	iteration.

The		map		version	is	one	expression.	It	does	not	require	any	order	of	evaluation.	There	is	much	freedom	here	for	how	the
map	function	iterates	and	how	the	returned	array	may	be	assembled.	It	specifies	what,	not	how.	Thus,	it	wears	the	shiny
declarative	sash.

In	addition	to	being	clearer	and	more	concise,	the	map	function	may	be	optimized	at	will	and	our	precious	application	code
needn't	change.

For	those	of	you	who	are	thinking	"Yes,	but	it's	much	faster	to	do	the	imperative	loop",	I	suggest	you	educate	yourself	on
how	the	JIT	optimizes	your	code.	Here's	a	terrific	video	that	may	shed	some	light

Here	is	another	example.

//	imperative

var	authenticate	=	function(form)	{

		var	user	=	toUser(form);

		return	logIn(user);

};

//	declarative

var	authenticate	=	compose(logIn,	toUser);

Though	there's	nothing	necessarily	wrong	with	the	imperative	version,	there	is	still	an	encoded	step-by-step	evaluation
baked	in.	The		compose		expression	simply	states	a	fact:	Authentication	is	the	composition	of		toUser		and		logIn	.	Again,	this
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leaves	wiggle	room	for	support	code	changes	and	results	in	our	application	code	being	a	high	level	specification.

Because	we	are	not	encoding	order	of	evaluation,	declarative	coding	lends	itself	to	parallel	computing.	This	coupled	with
pure	functions	is	why	FP	is	a	good	option	for	the	parallel	future	-	we	don't	really	need	to	do	anything	special	to	achieve
parallel/concurrent	systems.

We	will	now	build	an	example	application	in	a	declarative,	composable	way.	We'll	still	cheat	and	use	side	effects	for	now,
but	we'll	keep	them	minimal	and	separate	from	our	pure	codebase.	We	are	going	to	build	a	browser	widget	that	sucks	in
flickr	images	and	displays	them.	Let's	start	by	scaffolding	the	app.	Here's	the	html:

<!DOCTYPE	html>

<html>

		<head>

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.11/require.min.js"></script>

				<script	src="flickr.js"></script>

		</head>

		<body></body>

</html>

And	here's	the	flickr.js	skeleton:

requirejs.config({

		paths:	{

				ramda:	'https://cdnjs.cloudflare.com/ajax/libs/ramda/0.13.0/ramda.min',

				jquery:	'https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'

		}

});

require([

				'ramda',

				'jquery'

		],

		function	(_,	$)	{

				var	trace	=	_.curry(function(tag,	x)	{

						console.log(tag,	x);

						return	x;

				});

				//	app	goes	here

		});

We're	pulling	in	ramda	instead	of	lodash	or	some	other	utility	library.	It	includes		compose	,		curry	,	and	more.	I've	used
requirejs,	which	may	seem	like	overkill,	but	we'll	be	using	it	throughout	the	book	and	consistency	is	key.	Also,	I've	started	us
off	with	our	nice		trace		function	for	easy	debugging.

Now	that	that's	out	of	the	way,	on	to	the	spec.	Our	app	will	do	4	things.

1.	 Construct	a	url	for	our	particular	search	term
2.	 Make	the	flickr	api	call
3.	 Transform	the	resulting	json	into	html	images
4.	 Place	them	on	the	screen

There	are	2	impure	actions	mentioned	above.	Do	you	see	them?	Those	bits	about	getting	data	from	the	flickr	api	and
placing	it	on	the	screen.	Let's	define	those	first	so	we	can	quarantine	them.

var	Impure	=	{

		getJSON:	_.curry(function(callback,	url)	{

				$.getJSON(url,	callback);

A	flickr	of	functional	programming
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		}),

		setHtml:	_.curry(function(sel,	html)	{

				$(sel).html(html);

		})

};

Here	we've	simply	wrapped	jQuery's	methods	to	be	curried	and	we've	swapped	the	arguments	to	a	more	favorable
position.	I've	namespaced	them	with		Impure		so	we	know	these	are	dangerous	functions.	In	a	future	example,	we	will	make
these	two	functions	pure.

Next	we	must	construct	a	url	to	pass	to	our		Impure.getJSON		function.

var	url	=	function	(term)	{

		return	'https://api.flickr.com/services/feeds/photos_public.gne?tags='	+

				term	+	'&format=json&jsoncallback=?';

};

There	are	fancy	and	overly	complex	ways	of	writing		url		pointfree	using	monoids(we'll	learn	about	these	later)	or
combinators.	We've	chosen	to	stick	with	a	readable	version	and	assemble	this	string	in	the	normal	pointful	fashion.

Let's	write	an	app	function	that	makes	the	call	and	places	the	contents	on	the	screen.

var	app	=	_.compose(Impure.getJSON(trace("response")),	url);

app("cats");

This	calls	our		url		function,	then	passes	the	string	to	our		getJSON		function,	which	has	been	partially	applied	with		trace	.
Loading	the	app	will	show	the	response	from	the	api	call	in	the	console.

We'd	like	to	construct	images	out	of	this	json.	It	looks	like	the	srcs	are	buried	in		items		then	each		media	's		m		property.
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Anyhow,	to	get	at	these	nested	properties	we	can	use	a	nice	universal	getter	function	from	ramda	called		_.prop()	.	Here's	a
homegrown	version	so	you	can	see	what's	happening:

var	prop	=	_.curry(function(property,	object){

		return	object[property];

});

It's	quite	dull	actually.	We	just	use		[]		syntax	to	access	a	property	on	whatever	object.	Let's	use	this	to	get	at	our	srcs.

var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

var	srcs	=	_.compose(_.map(mediaUrl),	_.prop('items'));

Once	we	gather	the		items	,	we	must		map		over	them	to	extract	each	media	url.	This	results	in	a	nice	array	of	srcs.	Let's
hook	this	up	to	our	app	and	print	them	on	the	screen.

var	renderImages	=	_.compose(Impure.setHtml("body"),	srcs);

var	app	=	_.compose(Impure.getJSON(renderImages),	url);

All	we've	done	is	make	a	new	composition	that	will	call	our		srcs		and	set	the	body	html	with	them.	We've	replaced	the
	trace		call	with		renderImages		now	that	we	have	something	to	render	besides	raw	json.	This	will	crudely	display	our	srcs
directly	in	the	body.

Our	final	step	is	to	turn	these	srcs	into	bonafide	images.	In	a	bigger	application,	we'd	use	a	template/dom	library	like
Handlebars	or	React.	For	this	application	though,	we	only	need	an	img	tag	so	let's	stick	with	jQuery.

var	img	=	function	(url)	{

		return	$('<img	/>',	{	src:	url	});

};

jQuery's		html()		method	will	accept	an	array	of	tags.	We	only	have	to	transform	our	srcs	into	images	and	send	them	along
to		setHtml	.

var	images	=	_.compose(_.map(img),	srcs);

var	renderImages	=	_.compose(Impure.setHtml("body"),	images);

var	app	=	_.compose(Impure.getJSON(renderImages),	url);

And	we're	done!
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Here	is	the	finished	script:

requirejs.config({

		paths:	{

				ramda:	'https://cdnjs.cloudflare.com/ajax/libs/ramda/0.13.0/ramda.min',

				jquery:	'https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'

		}

});

require([

				'ramda',

				'jquery'

		],

		function	(_,	$)	{

				////////////////////////////////////////////

				//	Utils

				var	Impure	=	{

						getJSON:	_.curry(function(callback,	url)	{

								$.getJSON(url,	callback);

						}),

						setHtml:	_.curry(function(sel,	html)	{

								$(sel).html(html);

						})

				};

				var	img	=	function	(url)	{

						return	$('<img	/>',	{	src:	url	});

				};

				var	trace	=	_.curry(function(tag,	x)	{

						console.log(tag,	x);

						return	x;

				});

				////////////////////////////////////////////

				var	url	=	function	(t)	{

						return	'http://api.flickr.com/services/feeds/photos_public.gne?tags='	+

								t	+	'&format=json&jsoncallback=?';

				};
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				var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

				var	srcs	=	_.compose(_.map(mediaUrl),	_.prop('items'));

				var	images	=	_.compose(_.map(img),	srcs);

				var	renderImages	=	_.compose(Impure.setHtml("body"),	images);

				var	app	=	_.compose(Impure.getJSON(renderImages),	url);

				app("cats");

		});

Now	look	at	that.	A	beautifully	declarative	specification	of	what	things	are,	not	how	they	come	to	be.	We	now	view	each	line
as	an	equation	with	properties	that	hold.	We	can	use	these	properties	to	reason	about	our	application	and	refactor.

There	is	an	optimization	available	-	we	map	over	each	item	to	turn	it	into	a	media	url,	then	we	map	again	over	those	srcs	to
turn	them	into	img	tags.	There	is	a	law	regarding	map	and	composition:

//	map's	composition	law

var	law	=	compose(map(f),	map(g))	==	map(compose(f,	g));

We	can	use	this	property	to	optimize	our	code.	Let's	have	a	principled	refactor.

//	original	code

var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

var	srcs	=	_.compose(_.map(mediaUrl),	_.prop('items'));

var	images	=	_.compose(_.map(img),	srcs);

Let's	line	up	our	maps.	We	can	inline	the	call	to		srcs		in		images		thanks	to	equational	reasoning	and	purity.

var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

var	images	=	_.compose(_.map(img),	_.map(mediaUrl),	_.prop('items'));

Now	that	we've	lined	up	our		map	's	we	can	apply	the	composition	law.

var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

var	images	=	_.compose(_.map(_.compose(img,	mediaUrl)),	_.prop('items'));

Now	the	bugger	will	only	loop	once	while	turning	each	item	into	an	img.	Let's	just	make	it	a	little	more	readable	by
extracting	the	function	out.

var	mediaUrl	=	_.compose(_.prop('m'),	_.prop('media'));

var	mediaToImg	=	_.compose(img,	mediaUrl);

var	images	=	_.compose(_.map(mediaToImg),	_.prop('items'));

A	Principled	Refactor

mostly-adequate-guide

37Chapter	6:	Example	Application



We	have	seen	how	to	put	our	new	skills	into	use	with	a	small,	but	real	world	app.	We've	used	our	mathematical	framework
to	reason	about	and	refactor	our	code.	But	what	about	error	handling	and	code	branching?	How	can	we	make	the	whole
application	pure	instead	of	merely	namespacing	destructive	functions?	How	can	we	make	our	app	safer	and	more
expressive?	These	are	the	questions	we	will	tackle	in	part	2.

Chapter	7:	Hindley-Milner	and	Me

In	Summary
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If	you're	new	to	the	functional	world,	it	won't	be	long	before	you	find	yourself	knee	deep	in	type	signatures.	Types	are	the
meta	language	that	enables	people	from	all	different	backgrounds	to	communicate	succinctly	and	effectively.	For	the	most
part,	they're	written	with	a	system	called	"Hindley-Milner",	which	we'll	be	examining	together	in	this	chapter.

When	working	with	pure	functions,	type	signatures	have	an	expressive	power	to	which	the	English	language	cannot	hold	a
candle.	These	signatures	whisper	in	your	ear	the	intimate	secrets	of	a	function.	In	a	single,	compact	line,	they	expose
behaviour	and	intention.	We	can	derive	"free	theorems"	from	them.	Types	can	be	inferred	so	there's	no	need	for	explicit
type	annotations.	They	can	be	tuned	to	fine	point	precision	or	left	general	and	abstract.	They	are	not	only	useful	for	compile
time	checks,	but	also	turn	out	to	be	the	best	possible	documentation	available.	Type	signatures	thus	play	an	important	part
in	functional	programming	-	much	more	than	you	might	first	expect.

JavaScript	is	a	dynamic	language,	but	that	does	not	mean	we	avoid	types	all	together.	We're	still	working	with	strings,
numbers,	booleans,	and	so	on.	It's	just	that	there	isn't	any	language	level	integration	so	we	hold	this	information	in	our
heads.	Not	to	worry,	since	we're	using	signatures	for	documentation,	we	can	use	comments	to	serve	our	purpose.

There	are	type	checking	tools	available	for	JavaScript	such	as	Flow	or	the	typed	dialect,	TypeScript.	The	aim	of	this	book	is
to	equip	one	with	the	tools	to	write	functional	code	so	we'll	stick	with	the	standard	type	system	used	across	FP	languages.

From	the	dusty	pages	of	math	books,	across	the	vast	sea	of	white	papers,	amongst	casual	saturday	morning	blog	posts,
down	into	the	source	code	itself,	we	find	Hindley-Milner	type	signatures.	The	system	is	quite	simple,	but	warrants	a	quick
explanation	and	some	practice	to	fully	absorb	the	little	language.

//		capitalize	::	String	->	String

var	capitalize	=	function(s){

		return	toUpperCase(head(s))	+	toLowerCase(tail(s));

}

capitalize("smurf");

//=>	"Smurf"

Here,		capitalize		takes	a		String		and	returns	a		String	.	Never	mind	the	implementation,	it's	the	type	signature	we're
interested	in.

In	HM,	functions	are	written	as		a	->	b		where		a		and		b		are	variables	for	any	type.	So	the	signatures	for		capitalize		can	be
read	as	"a	function	from		String		to		String	".	In	other	words,	it	takes	a		String		as	its	input	and	returns	a		String		as	its
output.

Let's	look	at	some	more	function	signatures:

//		strLength	::	String	->	Number

var	strLength	=	function(s){

		return	s.length;

}

//		join	::	String	->	[String]	->	String

var	join	=	curry(function(what,	xs){

		return	xs.join(what);

Hindley-Milner	and	Me
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Tales	from	the	cryptic
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});

//		match	::	Regex	->	String	->	[String]

var	match	=	curry(function(reg,	s){

		return	s.match(reg);

});

//		replace	::	Regex	->	String	->	String	->	String

var	replace	=	curry(function(reg,	sub,	s){

		return	s.replace(reg,	sub);

});

	strLength		is	the	same	idea	as	before:	we	take	a		String		and	return	you	a		Number	.

The	others	might	perplex	you	at	first	glance.	Without	fully	understanding	the	details,	you	could	always	just	view	the	last	type
as	the	return	value.	So	for		match		you	can	interpret	as:	It	takes	a		Regex		and	a		String		and	returns	you		[String]	.	But	an
interesting	thing	is	going	on	here	that	I'd	like	to	take	a	moment	to	explain	if	I	may.

For		match		we	are	free	to	group	the	signature	like	so:

//		match	::	Regex	->	(String	->	[String])

var	match	=	curry(function(reg,	s){

		return	s.match(reg);

});

Ah	yes,	grouping	the	last	part	in	parenthesis	reveals	more	information.	Now	it	is	seen	as	a	function	that	takes	a		Regex		and
returns	us	a	function	from		String		to		[String]	.	Because	of	currying,	this	is	indeed	the	case:	give	it	a		Regex		and	we	get	a
function	back	waiting	for	its		String		argument.	Of	course,	we	don't	have	to	think	of	it	this	way,	but	it	is	good	to	understand
why	the	last	type	is	the	one	returned.

//		match	::	Regex	->	(String	->	[String])

//		onHoliday	::	String	->	[String]

var	onHoliday	=	match(/holiday/ig);

Each	argument	pops	one	type	off	the	front	of	the	signature.		onHoliday		is		match		that	already	has	a		Regex	.

//		replace	::	Regex	->	(String	->	(String	->	String))

var	replace	=	curry(function(reg,	sub,	s){

		return	s.replace(reg,	sub);

});

As	you	can	see	with	the	full	parenthesis	on		replace	,	the	extra	notation	can	get	a	little	noisy	and	redundant	so	we	simply
omit	them.	We	can	give	all	the	arguments	at	once	if	we	choose	so	it's	easier	to	just	think	of	it	as:		replace		takes	a		Regex	,	a
	String	,	another		String		and	returns	you	a		String	.

A	few	last	things	here:

//		id	::	a	->	a

var	id	=	function(x){	return	x;	}

//		map	::	(a	->	b)	->	[a]	->	[b]

var	map	=	curry(function(f,	xs){

		return	xs.map(f);

});

The		id		function	takes	any	old	type		a		and	returns	something	of	the	same	type		a	.	We're	able	to	use	variables	in	types	just
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like	in	code.	Variable	names	like		a		and		b		are	convention,	but	they	are	arbitrary	and	can	be	replaced	with	whatever	name
you'd	like.	If	they	are	the	same	variable,	they	have	to	be	the	same	type.	That's	an	important	rule	so	let's	reiterate:		a	->	b	
can	be	any	type		a		to	any	type		b	,	but		a	->	a		means	it	has	to	be	the	same	type.	For	example,		id		may	be		String	->
String		or		Number	->	Number	,	but	not		String	->	Bool	.

	map		similarly	uses	type	variables,	but	this	time	we	introduce		b		which	may	or	may	not	be	the	same	type	as		a	.	We	can
read	it	as:		map		takes	a	function	from	any	type		a		to	the	same	or	different	type		b	,	then	takes	an	array	of		a	's	and	results	in
an	array	of		b	's.

Hopefully,	you've	been	overcome	by	the	expressive	beauty	in	this	type	signature.	It	literally	tells	us	what	the	function	does
almost	word	for	word.	It's	given	a	function	from		a		to		b	,	an	array	of		a	,	and	it	delivers	us	an	array	of		b	.	The	only	sensible
thing	for	it	to	do	is	call	the	bloody	function	on	each		a	.	Anything	else	would	be	a	bold	face	lie.

Being	able	to	reason	about	types	and	their	implications	is	a	skill	that	will	take	you	far	in	the	functional	world.	Not	only	will
papers,	blogs,	docs,	etc,	become	more	digestible,	but	the	signature	itself	will	practically	lecture	you	on	its	functionality.	It
takes	practice	to	become	a	fluent	reader,	but	if	you	stick	with	it,	heaps	of	information	will	become	available	to	you	sans
RTFMing.

Here's	a	few	more	just	to	see	if	you	can	decipher	them	on	your	own.

//		head	::	[a]	->	a

var	head	=	function(xs){	return	xs[0];	}

//		filter	::	(a	->	Bool)	->	[a]	->	[a]

var	filter	=	curry(function(f,	xs){

		return	xs.filter(f);

});

//		reduce	::	(b	->	a	->	b)	->	b	->	[a]	->	b

var	reduce	=	curry(function(f,	x,	xs){

		return	xs.reduce(f,	x);

});

	reduce		is	perhaps,	the	most	expressive	of	all.	It's	a	tricky	one,	however,	so	don't	feel	inadequate	should	you	struggle	with
it.	For	the	curious,	I'll	try	to	explain	in	English	though	working	through	the	signature	on	your	own	is	much	more	instructive.

Ahem,	here	goes	nothing....looking	at	the	signature,	we	see	the	first	argument	is	a	function	that	expects	a		b	,	an		a	,	and
produces	a		b	.	Where	might	it	get	these		a	s	and		b	s?	Well,	the	following	arguments	in	the	signature	are	a		b		and	an	array
of		a	s	so	we	can	only	assume	that	the		b		and	each	of	those		a	s	will	be	fed	in.	We	also	see	that	the	result	of	the	function	is
a		b		so	the	thinking	here	is	our	final	incantation	of	the	passed	in	function	will	be	our	output	value.	Knowing	what	reduce
does,	we	can	state	that	the	above	investigation	is	accurate.

Once	a	type	variable	is	introduced,	there	emerges	a	curious	property	called
parametricity(http://en.wikipedia.org/wiki/Parametricity).	This	property	states	that	a	function	will	act	on	all	types	in	a	uniform
manner.	Let's	investigate:

//	head	::	[a]	->	a

Looking	at		head	,	we	see	that	it	takes		[a]		to		a	.	Besides	the	concrete	type		array	,	it	has	no	other	information	available
and,	therefore,	its	functionality	is	limited	to	working	on	the	array	alone.	What	could	it	possibly	do	with	the	variable		a		if	it
knows	nothing	about	it?	In	other	words,		a		says	it	cannot	be	a	specific	type,	which	means	it	can	be	any	type,	which	leaves
us	with	a	function	that	must	work	uniformly	for	every	conceivable	type.	This	is	what	parametricity	is	all	about.	Guessing	at

Narrowing	the	possibility
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the	implementation,	the	only	reasonable	assumptions	are	that	it	takes	the	first,	last,	or	a	random	element	from	that	array.
The	name		head		should	tip	us	off.

Here's	another	one:

//	reverse	::	[a]	->	[a]

From	the	type	signature	alone,	what	could		reverse		possibly	be	up	to?	Again,	it	cannot	do	anything	specific	to		a	.	It	cannot
change		a		to	a	different	type	or	we'd	introduce	a		b	.	Can	it	sort?	Well,	no,	it	wouldn't	have	enough	information	to	sort	every
possible	type.	Can	it	re-arrange?	Yes,	I	suppose	it	can	do	that,	but	it	has	to	do	so	in	exactly	the	same	predictable	way.
Another	possibility	is	that	it	may	decide	to	remove	or	duplicate	an	element.	In	any	case,	the	point	is,	the	possible	behaviour
is	massively	narrowed	by	its	polymorphic	type.

This	narrowing	of	possibility	allows	us	to	use	type	signature	search	engines	like	Hoogle	to	find	a	function	we're	after.	The
information	packed	tightly	into	a	signature	is	quite	powerful	indeed.

Besides	deducing	implementation	possibilities,	this	sort	of	reasoning	gains	us	free	theorems.	What	follows	are	a	few
random	example	theorems	lifted	directly	from	Wadler's	paper	on	the	subject.

//	head	::	[a]	->	a

compose(f,	head)	==	compose(head,	map(f));

//	filter	::	(a	->	Bool)	->	[a]	->	[a]

compose(map(f),	filter(compose(p,	f)))	==	compose(filter(p),	map(f));

You	don't	need	any	code	to	get	these	theorems,	they	follow	directly	from	the	types.	The	first	one	says	that	if	we	get	the
	head		of	our	array,	then	run	some	function		f		on	it,	that	is	equivalent	to,	and	incidentally,	much	faster	than,	if	we	first		map(f)	
over	every	element	then	take	the		head		of	the	result.

You	might	think,	well	that's	just	common	sense.	But	last	I	checked,	computers	don't	have	common	sense.	Indeed,	they
must	have	a	formal	way	to	automate	these	kind	of	code	optimizations.	Maths	has	a	way	of	formalizing	the	intuitive,	which	is
helpful	amidst	the	rigid	terrain	of	computer	logic.

The		filter		theorem	is	similar.	It	says	that	if	we	compose		f		and		p		to	check	which	should	be	filtered,	then	actually	apply
the		f		via		map		(remember	filter,	will	not	transform	the	elements	-	its	signature	enforces	that		a		will	not	be	touched),	it	will
always	be	equivalent	to	mapping	our		f		then	filtering	the	result	with	the		p		predicate.

These	are	just	two	examples,	but	you	can	apply	this	reasoning	to	any	polymorphic	type	signature	and	it	will	always	hold.	In
JavaScript,	there	are	some	tools	available	to	declare	rewrite	rules.	One	might	also	do	this	via	the		compose		function	itself.
The	fruit	is	low	hanging	and	the	possibilities	are	endless.

One	last	thing	to	note	is	that	we	can	constrain	types	to	an	interface.

//	sort	::	Ord	a	=>	[a]	->	[a]

What	we	see	on	the	left	side	of	our	fat	arrow	here	is	the	statement	of	a	fact:		a		must	be	an		Ord	.	Or	in	other	words,		a		must

Free	as	in	theorem
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implement	the		Ord		interface.	What	is		Ord		and	where	did	it	come	from?	In	a	typed	language	it	would	be	a	defined	interface
that	says	we	can	order	the	values.	This	not	only	tells	us	more	about	the		a		and	what	our		sort		function	is	up	to,	but	also
restricts	the	domain.	We	call	these	interface	declarations	type	constraints.

//	assertEqual	::	(Eq	a,	Show	a)	=>	a	->	a	->	Assertion

Here,	we	have	two	constraints:		Eq		and		Show	.	Those	will	ensure	that	we	can	check	equality	of	our		a	s	and	print	the
difference	if	they	are	not	equal.

We'll	see	more	examples	of	constraints	and	the	idea	should	take	more	shape	in	later	chapters.

Hindley-Milner	type	signatures	are	ubiquitous	in	the	functional	world.	Though	they	are	simple	to	read	and	write,	it	takes	time
to	master	the	technique	of	understanding	programs	through	signatures	alone.	We	will	add	type	signatures	to	each	line	of
code	from	here	on	out.

Chapter	8:	Tupperware

In	Summary
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We've	seen	how	to	write	programs	which	pipe	data	through	a	series	of	pure	functions.	They	are	declarative	specifications
of	behaviour.	But	what	about	control	flow,	error	handling,	asynchronous	actions,	state	and,	dare	I	say,	effects?!	In	this
chapter,	we	will	discover	the	foundation	upon	which	all	of	these	helpful	abstractions	are	built.

First	we	will	create	a	container.	This	container	must	hold	any	type	of	value;	a	ziplock	that	holds	only	tapioca	pudding	is
rarely	useful.	It	will	be	an	object,	but	we	will	not	give	it	properties	and	methods	in	the	OO	sense.	No,	we	will	treat	it	like	a
treasure	chest	-	a	special	box	that	cradles	our	valuable	data.

var	Container	=	function(x)	{

		this.__value	=	x;

}

Container.of	=	function(x)	{	return	new	Container(x);	};

Here	is	our	first	container.	We've	thoughtfully	named	it		Container	.	We	will	use		Container.of		as	a	constructor	which	saves
us	from	having	to	write	that	god	awful		new		keyword	all	over	the	place.	There's	more	to	the		of		function	than	meets	the	eye,
but	for	now,	think	of	it	as	the	proper	way	to	place	values	into	our	container.

Let's	examine	our	brand	new	box...

Tupperware

The	Mighty	Container
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Container.of(3)

//=>	Container(3)

Container.of("hotdogs")

//=>	Container("hotdogs")

Container.of(Container.of({name:	"yoda"}))

//=>	Container(Container({name:	"yoda"	}))

If	you	are	using	node,	you	will	see		{__value:	x}		even	though	we've	got	ourselves	a		Container(x)	.	Chrome	will	output	the
type	properly,	but	no	matter;	as	long	as	we	understand	what	a		Container		looks	like,	we'll	be	fine.	In	some	environments
you	can	overwrite	the		inspect		method	if	you'd	like,	but	we	will	not	be	so	thorough.	For	this	book,	we	will	write	the
conceptual	output	as	if	we'd	overwritten		inspect		as	it's	much	more	instructive	than		{__value:	x}		for	pedagogical	as	well
as	aesthetic	reasons.

Let's	make	a	few	things	clear	before	we	move	on:

	Container		is	an	object	with	one	property.	Lots	of	containers	just	hold	one	thing,	though	they	aren't	limited	to	one.
We've	arbitrarily	named	its	property		__value	.

The		__value		cannot	be	one	specific	type	or	our		Container		would	hardly	live	up	to	the	name.

Once	data	goes	into	the		Container		it	stays	there.	We	could	get	it	out	by	using		.__value	,	but	that	would	defeat	the
purpose.

The	reasons	we're	doing	this	will	become	clear	as	a	mason	jar,	but	for	now,	bear	with	me.

Once	our	value,	whatever	it	may	be,	is	in	the	container,	we'll	need	a	way	to	run	functions	on	it.

//	(a	->	b)	->	Container	a	->	Container	b

Container.prototype.map	=	function(f){

		return	Container.of(f(this.__value))

}

Why,	it's	just	like	Array's	famous		map	,	except	we	have		Container	a		instead	of		[a]	.	And	it	works	essentially	the	same	way:

Container.of(2).map(function(two){	return	two	+	2	})

//=>	Container(4)

Container.of("flamethrowers").map(function(s){	return	s.toUpperCase()	})

//=>	Container("FLAMETHROWERS")

Container.of("bombs").map(_.concat('	away')).map(_.prop('length'))

//=>	Container(10)

We	can	work	with	our	value	without	ever	having	to	leave	the		Container	.	This	is	a	remarkable	thing.	Our	value	in	the
	Container		is	handed	to	the		map		function	so	we	can	fuss	with	it	and	afterward,	returned	to	its		Container		for	safe	keeping.
As	a	result	of	never	leaving	the		Container	,	we	can	continue	to		map		away,	running	functions	as	we	please.	We	can	even
change	the	type	as	we	go	along	as	demonstrated	in	the	latter	of	the	three	examples.

My	First	Functor
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Wait	a	minute,	if	we	keep	calling		map	,	it	appears	to	be	some	sort	of	composition!	What	mathematical	magic	is	at	work
here?	Well	chaps,	we've	just	discovered	Functors.

A	Functor	is	a	type	that	implements		map		and	obeys	some	laws

Yes,	Functor	is	simply	an	interface	with	a	contract.	We	could	have	just	as	easily	named	it	Mappable,	but	now,	where's	the
fun	in	that?	Functors	come	from	category	theory	and	we'll	look	at	the	maths	in	detail	toward	the	end	of	the	chapter,	but	for
now,	let's	work	on	intuition	and	practical	uses	for	this	bizarrely	named	interface.

What	reason	could	we	possibly	have	for	bottling	up	a	value	and	using		map		to	get	at	it?	The	answer	reveals	itself	if	we
choose	a	better	question:	What	do	we	gain	from	asking	our	container	to	apply	functions	for	us?	Well,	abstraction	of	function
application.	When	we		map		a	function,	we	ask	the	container	type	to	run	it	for	us.	This	is	a	very	powerful	concept,	indeed.

	Container		is	fairly	boring.	In	fact,	it	is	usually	called		Identity		and	has	about	the	same	impact	as	our		id		function(again
there	is	a	mathematical	connection	we'll	look	at	when	the	time	is	right).	However,	there	are	other	functors,	that	is,	container-
like	types	that	have	a	proper		map		function,	which	can	provide	useful	behaviour	whilst	mapping.	Let's	define	one	now.

var	Maybe	=	function(x)	{

		this.__value	=	x;

}

Maybe.of	=	function(x)	{

		return	new	Maybe(x);

}

Maybe.prototype.isNothing	=	function()	{

		return	(this.__value	===	null	||	this.__value	===	undefined);

}

Maybe.prototype.map	=	function(f)	{

		return	this.isNothing()	?	Maybe.of(null)	:	Maybe.of(f(this.__value));

}

Now,		Maybe		looks	a	lot	like		Container		with	one	minor	change:	it	will	first	check	to	see	if	it	has	a	value	before	calling	the
supplied	function.	This	has	the	effect	of	side	stepping	those	pesky	nulls	as	we		map	(Note	that	this	implementation	is
simplied	for	teaching).

Maybe.of("Malkovich	Malkovich").map(match(/a/ig));

//=>	Maybe(['a',	'a'])

Maybe.of(null).map(match(/a/ig));

//=>	Maybe(null)

Maybe.of({name:	"Boris"}).map(_.prop("age")).map(add(10));

//=>	Maybe(null)

Schrödinger's	Maybe
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Maybe.of({name:	"Dinah",	age:	14}).map(_.prop("age")).map(add(10));

//=>	Maybe(24)

Notice	our	app	doesn't	explode	with	errors	as	we	map	functions	over	our	null	values.	This	is	because		Maybe		will	take	care
to	check	for	a	value	each	and	every	time	it	applies	a	function.

This	dot	syntax	is	perfectly	fine	and	functional,	but	for	reasons	mentioned	in	Part	1,	we'd	like	to	maintain	our	pointfree	style.
As	it	happens,		map		is	fully	equipped	to	delegate	to	whatever	functor	it	receives:

//		map	::	Functor	f	=>	(a	->	b)	->	f	a	->	f	b

var	map	=	curry(function(f,	any_functor_at_all)	{

		return	any_functor_at_all.map(f);

});

This	is	delightful	as	we	can	carry	on	with	composition	per	usual	and		map		will	work	as	expected.	This	is	the	case	with
ramda's		map		as	well.	We'll	use	dot	notation	when	it's	instructive	and	the	pointfree	version	when	it's	convenient.	Did	you
notice	that?	I've	sneakily	introduced	extra	notation	into	our	type	signature.	The		Functor	f	=>		tells	us	that		f		must	be	a
Functor.	Not	that	difficult,	but	I	felt	I	should	mention	it.

In	the	wild,	we'll	typically	see		Maybe		used	in	functions	which	might	fail	to	return	a	result.

//		safeHead	::	[a]	->	Maybe(a)

var	safeHead	=	function(xs)	{

		return	Maybe.of(xs[0]);

};

var	streetName	=	compose(map(_.prop('street')),	safeHead,	_.prop('addresses'));

streetName({addresses:	[]});

//	Maybe(null)

streetName({addresses:	[{street:	"Shady	Ln.",	number:	4201}]});

//	Maybe("Shady	Ln.")

	safeHead		is	like	our	normal		_.head	,	but	with	added	type	safety.	A	curious	thing	happens	when		Maybe		is	introduced	into	our
code;	we	are	forced	to	deal	with	those	sneaky		null		values.	The		safeHead		function	is	honest	and	up	front	about	its	possible
failure	-	there's	really	nothing	to	be	ashamed	of	-	and	so	it	returns	a		Maybe		to	inform	us	of	this	matter.	We	are	more	than
merely	informed,	however,	because	we	are	forced	to		map		to	get	at	the	value	we	want	since	it	is	tucked	away	inside	the
	Maybe		object.	Essentially,	this	is	a		null		check	enforced	by	the		safeHead		function	itself.	We	can	now	sleep	better	at	night
knowing	a		null		value	won't	rear	its	ugly,	decapitated	head	when	we	least	expect	it.	Apis	like	this	will	upgrade	a	flimsy
application	from	paper	and	tacks	to	wood	and	nails.	They	will	guarantee	safer	software.

Sometimes	a	function	might	return	a		Maybe(null)		explicitly	to	signal	failure.	For	instance:

//		withdraw	::	Number	->	Account	->	Maybe(Account)

var	withdraw	=	curry(function(amount,	account)	{

		return	account.balance	>=	amount	?

				Maybe.of({balance:	account.balance	-	amount})	:		

					Maybe.of(null);

});

//		finishTransaction	::	Account	->	String

var	finishTransaction	=	compose(remainingBalance,	updateLedger);		//	<-	these	composed	functions	are	hypothetical,	not	implemented	here...

//		getTwenty	::	Account	->	Maybe(String)

Use	cases
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var	getTwenty	=	compose(map(finishTransaction),	withdraw(20));

getTwenty({	balance:	200.00});

//	Maybe("Your	balance	is	$180.00")

getTwenty({	balance:	10.00});

//	Maybe(null)

	withdraw		will	tip	its	nose	at	us	and	return		Maybe(null)		if	we're	short	on	cash.	This	function	also	communicates	its
fickleness	and	leaves	us	no	choice,	but	to		map		everything	afterwards.	The	difference	is	that	the		null		was	intentional	here.
Instead	of	a		Maybe(String)	,	we	get	the		Maybe(null)		back	to	signal	failure	and	our	application	effectively	halts	in	its	tracks.
This	is	important	to	note:	if	the		withdraw		fails,	then		map		will	sever	the	rest	of	our	computation	since	it	doesn't	ever	run	the
mapped	functions,	namely		finishTransaction	.	This	is	precisely	the	intended	behaviour	as	we'd	prefer	not	to	update	our
ledger	or	show	a	new	balance	if	we	hadn't	successfully	withdrawn	funds.

One	thing	people	often	miss	is	that	there	will	always	be	an	end	of	the	line;	some	effecting	function	that	sends	JSON	along,
or	prints	to	the	screen,	or	alters	our	filesystem,	or	what	have	you.	We	cannot	deliver	the	output	with		return	,	we	must	run
some	function	or	another	to	send	it	out	into	the	world.	We	can	phrase	it	like	a	Zen	Buddhist	koan:	"If	a	program	has	no
observable	effect,	does	it	even	run?".	Does	it	run	correctly	for	its	own	satisfaction?	I	suspect	it	merely	burns	some	cycles
and	goes	back	to	sleep...

Our	application's	job	is	to	retrieve,	transform,	and	carry	that	data	along	until	it's	time	to	say	goodbye	and	the	function	which
does	so	may	be	mapped,	thus	the	value	needn't	leave	the	warm	womb	of	its	container.	Indeed,	a	common	error	is	to	try	to
remove	the	value	from	our		Maybe		one	way	or	another	as	if	the	possible	value	inside	will	suddenly	materialize	and	all	will	be
forgiven.	We	must	understand	it	may	be	a	branch	of	code	where	our	value	is	not	around	to	live	up	to	its	destiny.	Our	code,
much	like	Schrödinger's	cat,	is	in	two	states	at	once	and	should	maintain	that	fact	until	the	final	function.	This	gives	our
code	a	linear	flow	despite	the	logical	branching.

There	is,	however,	an	escape	hatch.	If	we	would	rather	return	a	custom	value	and	continue	on,	we	can	use	a	little	helper
called		maybe	.

//		maybe	::	b	->	(a	->	b)	->	Maybe	a	->	b

var	maybe	=	curry(function(x,	f,	m)	{

		return	m.isNothing()	?	x	:	f(m.__value);

});

//		getTwenty	::	Account	->	String

var	getTwenty	=	compose(

		maybe("You're	broke!",	finishTransaction),	withdraw(20)

);

getTwenty({	balance:	200.00});

//	"Your	balance	is	$180.00"

getTwenty({	balance:	10.00});

//	"You're	broke!"

We	will	now	either	return	a	static	value	(of	the	same	type	that		finishTransaction		returns)	or	continue	on	merrily	finishing	up
the	transaction	sans		Maybe	.	With		maybe	,	we	are	witnessing	the	equivalent	of	an		if/else		statement	whereas	with		map	,	the
imperative	analog	would	be:		if	(x	!==	null)	{	return	f(x)	}	.

The	introduction	of		Maybe		can	cause	some	initial	discomfort.	Users	of	Swift	and	Scala	will	know	what	I	mean	as	it's	baked
right	into	the	core	libraries	under	the	guise	of		Option(al)	.	When	pushed	to	deal	with		null		checks	all	the	time	(and	there

Releasing	the	value
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are	times	we	know	with	absolute	certainty	the	value	exists),	most	people	can't	help,	but	feel	it's	a	tad	laborious.	However,
with	time,	it	will	become	second	nature	and	you'll	likely	appreciate	the	safety.	After	all,	most	of	the	time	it	will	prevent	cut
corners	and	save	our	hides.

Writing	unsafe	software	is	like	taking	care	to	paint	each	egg	with	pastels	before	hurling	it	into	traffic;	like	building	a
retirement	home	with	materials	warned	against	by	three	little	pigs.	It	will	do	us	well	to	put	some	safety	into	our	functions	and
	Maybe		helps	us	do	just	that.

I'd	be	remiss	if	I	didn't	mention	that	the	"real"	implementation	will	split		Maybe		into	two	types:	one	for	something	and	the
other	for	nothing.	This	allows	us	to	obey	parametricity	in		map		so	values	like		null		and		undefined		can	still	be	mapped	over
and	the	universal	qualification	of	the	value	in	a	functor	will	be	respected.	You'll	often	see	types	like		Some(x)	/	None		or
	Just(x)	/	Nothing		instead	of	a		Maybe		that	does	a		null		check	on	its	value.

It	may	come	as	a	shock,	but		throw/catch		is	not	very	pure.	When	an	error	is	thrown,	instead	of	returning	an	output	value,
we	sound	the	alarms!	The	function	attacks,	spewing	thousands	of	0's	and	1's	like	shields	&	spears	in	an	electric	battle
against	our	intruding	input.	With	our	new	friend		Either	,	we	can	do	better	than	to	declare	war	on	input,	we	can	respond	with
a	polite	message.	Let's	take	a	look:

var	Left	=	function(x)	{

		this.__value	=	x;

}

Left.of	=	function(x)	{

		return	new	Left(x);

}

Left.prototype.map	=	function(f)	{

		return	this;

}

var	Right	=	function(x)	{

		this.__value	=	x;

}

Right.of	=	function(x)	{

		return	new	Right(x);

}

Right.prototype.map	=	function(f)	{

		return	Right.of(f(this.__value));

}

	Left		and		Right		are	two	subclasses	of	an	abstract	type	we	call		Either	.	I've	skipped	the	ceremony	of	creating	the		Either	
superclass	as	we	won't	ever	use	it,	but	it's	good	to	be	aware.	Now	then,	there's	nothing	new	here	besides	the	two	types.
Let's	see	how	they	act:

Pure	Error	Handling
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Right.of("rain").map(function(str){	return	"b"+str;	});

//	Right("brain")

Left.of("rain").map(function(str){	return	"b"+str;	});

//	Left("rain")

Right.of({host:	'localhost',	port:	80}).map(_.prop('host'));

//	Right('localhost')

Left.of("rolls	eyes...").map(_.prop("host"));

//	Left('rolls	eyes...')

	Left		is	the	teenagery	sort	and	ignores	our	request	to		map		over	it.		Right		will	work	just	like		Container		(a.k.a	Identity).	The
power	comes	from	the	ability	to	embed	an	error	message	within	the		Left	.

Suppose	we	have	a	function	that	might	not	succeed.	How	about	we	calculate	an	age	from	a	birth	date.	We	could	use
	Maybe(null)		to	signal	failure	and	branch	our	program,	however,	that	doesn't	tell	us	much.	Perhaps,	we'd	like	to	know	why	it
failed.	Let's	write	this	using		Either	.

var	moment	=	require('moment');

//		getAge	::	Date	->	User	->	Either(String,	Number)

var	getAge	=	curry(function(now,	user)	{

		var	birthdate	=	moment(user.birthdate,	'YYYY-MM-DD');

		if	(!birthdate.isValid())	return	Left.of("Birth	date	could	not	be	parsed");

		return	Right.of(now.diff(birthdate,	'years'));

});

getAge(moment(),	{birthdate:	'2005-12-12'});

//	Right(9)

getAge(moment(),	{birthdate:	'20010704'});

//	Left("Birth	date	could	not	be	parsed")

Now,	just	like		Maybe(null)	,	we	are	short	circuiting	our	app	when	we	return	a		Left	.	The	difference,	is	now	we	have	a	clue
as	to	why	our	program	has	derailed.	Something	to	notice	is	that	we	return		Either(String,	Number)	,	which	holds	a		String	
as	its	left	value	and	a		Number		as	its		Right	.	This	type	signature	is	a	bit	informal	as	we	haven't	taken	the	time	to	define	an
actual		Either		superclass,	however,	we	learn	a	lot	from	the	type.	It	informs	us	that	we're	either	getting	an	error	message	or
the	age	back.

//		fortune	::	Number	->	String

var	fortune		=	compose(concat("If	you	survive,	you	will	be	"),	add(1));

//		zoltar	::	User	->	Either(String,	_)

var	zoltar	=	compose(map(console.log),	map(fortune),	getAge(moment()));

zoltar({birthdate:	'2005-12-12'});

//	"If	you	survive,	you	will	be	10"

//	Right(undefined)

zoltar({birthdate:	'balloons!'});

//	Left("Birth	date	could	not	be	parsed")

When	the		birthdate		is	valid,	the	program	outputs	its	mystical	fortune	to	the	screen	for	us	to	behold.	Otherwise,	we	are
handed	a		Left		with	the	error	message	plain	as	day	though	still	tucked	away	in	its	container.	That	acts	just	as	if	we'd
thrown	an	error,	but	in	a	calm,	mild	manner	fashion	as	opposed	to	losing	its	temper	and	screaming	like	a	child	when
something	goes	wrong.

In	this	example,	we	are	logically	branching	our	control	flow	depending	on	the	validity	of	the	birth	date,	yet	it	reads	as	one
linear	motion	from	right	to	left	rather	than	climbing	through	the	curly	braces	of	a	conditional	statement.	Usually,	we'd	move
the		console.log		out	of	our		zoltar		function	and		map		it	at	the	time	of	calling,	but	it's	helpful	to	see	how	the		Right		branch
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differs.	We	use		_		in	the	right	branch's	type	signature	to	indicate	it's	a	value	that	should	be	ignored(In	some	browsers	you
have	to	use		console.log.bind(console)		to	use	it	first	class).

I'd	like	to	take	this	opportunity	to	point	out	something	you	may	have	missed:		fortune	,	despite	its	use	with		Either		in	this
example,	is	completely	ignorant	of	any	functors	milling	about.	This	was	also	the	case	with		finishTransaction		in	the
previous	example.	At	the	time	of	calling,	a	function	can	be	surrounded	by		map	,	which	transforms	it	from	a	non-functory
function	to	a	functory	one,	in	informal	terms.	We	call	this	process	lifting.	Functions	tend	to	be	better	off	working	with	normal
data	types	rather	than	container	types,	then	lifted	into	the	right	container	as	deemed	necessary.	This	leads	to	simpler,	more
reusable	functions	that	can	be	altered	to	work	with	any	functor	on	demand.

	Either		is	great	for	casual	errors	like	validation	as	well	as	more	serious,	stop	the	show	errors	like	missing	files	or	broken
sockets.	Try	replacing	some	of	the		Maybe		examples	with		Either		to	give	better	feedback.

Now,	I	can't	help,	but	feel	I've	done		Either		a	disservice	by	introducing	it	as	merely	a	container	for	error	messages.	It
captures	logical	disjunction	(a.k.a		||	)	in	a	type.	It	also	encodes	the	idea	of	a	Coproduct	from	category	theory,	which	won't
be	touched	on	in	this	book,	but	is	well	worth	reading	up	on	as	there's	properties	to	be	exploited.	It	is	the	canonical	sum	type
(or	disjoint	union	of	sets)	because	its	amount	of	possible	inhabitants	is	the	sum	of	the	two	contained	types(I	know	that's	a
bit	hand	wavy	so	here's	a	great	article.	There	are	many	things		Either		can	be,	but	as	a	functor,	it	is	used	for	its	error
handling.

Just	like	with		Maybe	,	we	have	little		either	,	which	behaves	similarly,	but	takes	two	functions	instead	of	one	and	a	static
value.	Each	function	should	return	the	same	type:

//		either	::	(a	->	c)	->	(b	->	c)	->	Either	a	b	->	c

var	either	=	curry(function(f,	g,	e)	{

		switch(e.constructor)	{

				case	Left:	return	f(e.__value);

				case	Right:	return	g(e.__value);

		}

});

//		zoltar	::	User	->	_

var	zoltar	=	compose(console.log,	either(id,	fortune),	getAge(moment()));

zoltar({birthdate:	'2005-12-12'});

//	"If	you	survive,	you	will	be	10"

//	undefined

zoltar({birthdate:	'balloons!'});

//	"Birth	date	could	not	be	parsed"

//	undefined

Finally,	a	use	for	that	mysterious		id		function.	It	simply	parrots	back	the	value	in	the		Left		to	pass	the	error	message	to
	console.log	.	We've	made	our	fortune	telling	app	more	robust	by	enforcing	error	handling	from	within		getAge	.	We	either
slap	the	user	with	a	hard	truth	like	a	high	five	from	a	palm	reader	or	we	carry	on	with	our	process.	And	with	that,	we're
ready	to	move	on	to	an	entirely	different	type	of	functor.

Old	McDonald	had	Effects...
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In	our	chapter	about	purity	we	saw	a	peculiar	example	of	a	pure	function.	This	function	contained	a	side-effect,	but	we
dubbed	it	pure	by	wrapping	its	action	in	another	function.	Here's	another	example	of	this:

//		getFromStorage	::	String	->	(_	->	String)

var	getFromStorage	=	function(key)	{

		return	function()	{

				return	localStorage[key];

		}

}

Had	we	not	surrounded	its	guts	in	another	function,		getFromStorage		would	vary	its	output	depending	on	external
circumstance.	With	the	sturdy	wrapper	in	place,	we	will	always	get	the	same	output	per	input:	a	function	that,	when	called,
will	retrieve	a	particular	item	from		localStorage	.	And	just	like	that	(maybe	throw	in	a	few	Hail	Mary's)	we've	cleared	our
conscience	and	all	is	forgiven.

Except,	this	isn't	particularly	useful	now	is	it.	Like	a	collectable	action	figure	in	its	original	packaging,	we	can't	actually	play
with	it.	If	only	there	were	a	way	to	reach	inside	of	the	container	and	get	at	its	contents...	Enter		IO	.

var	IO	=	function(f)	{

		this.__value	=	f;

}

IO.of	=	function(x)	{

		return	new	IO(function()	{

				return	x;

		});

}

IO.prototype.map	=	function(f)	{

		return	new	IO(_.compose(f,	this.__value));

}

	IO		differs	from	the	previous	functors	in	that	the		__value		is	always	a	function.	We	don't	think	of	its		__value		as	a	function,
however	-	that	is	an	implementation	detail	and	we	best	ignore	it.	What	is	happening	is	exactly	what	we	saw	with	the
	getFromStorage		example:		IO		delays	the	impure	action	by	capturing	it	in	a	function	wrapper.	As	such,	we	think	of		IO		as
containing	the	return	value	of	the	wrapped	action	and	not	the	wrapper	itself.	This	is	apparent	in	the		of		function:	we	have
an		IO(x)	,	the		IO(function(){	return	x	})		is	just	necessary	to	avoid	evaluation.

Let's	see	it	in	use:
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//		io_window_	::	IO	Window

var	io_window	=	new	IO(function(){	return	window;	});

io_window.map(function(win){	return	win.innerWidth	});

//	IO(1430)

io_window.map(_.prop('location')).map(_.prop('href')).map(split('/'));

//	IO(["http:",	"",	"localhost:8000",	"blog",	"posts"])

//		$	::	String	->	IO	[DOM]

var	$	=	function(selector)	{

		return	new	IO(function(){	return	document.querySelectorAll(selector);	});

}

$('#myDiv').map(head).map(function(div){	return	div.innerHTML;	});

//	IO('I	am	some	inner	html')

Here,		io_window		is	an	actual		IO		that	we	can		map		over	straight	away,	whereas		$		is	a	function	that	returns	an		IO		after	its
called.	I've	written	out	the	conceptual	return	values	to	better	express	the		IO	,	though,	in	reality,	it	will	always	be		{	__value:
[Function]	}	.	When	we		map		over	our		IO	,	we	stick	that	function	at	the	end	of	a	composition	which,	in	turn,	becomes	the
new		__value		and	so	on.	Our	mapped	functions	do	not	run,	they	get	tacked	on	the	end	of	a	computation	we're	building	up,
function	by	function,	like	carefully	placing	dominoes	that	we	don't	dare	tip	over.	The	result	is	reminiscent	of	Gang	of	Four's
command	pattern	or	a	queue.

Take	a	moment	to	channel	your	functor	intuition.	If	we	see	past	the	implementation	details,	we	should	feel	right	at	home
mapping	over	any	container	no	matter	its	quirks	or	idiosyncrasies.	We	have	the	functor	laws,	which	we	will	explore	toward
the	end	of	the	chapter,	to	thank	for	this	pseudo-psychic	power.	At	any	rate,	we	can	finally	play	with	impure	values	without
sacrificing	our	precious	purity.

Now,	we've	caged	the	beast,	but	we'll	still	have	to	set	it	free	at	some	point.	Mapping	over	our		IO		has	built	up	a	mighty
impure	computation	and	running	it	is	surely	going	to	disturb	the	peace.	So	where	and	when	can	we	pull	the	trigger?	Is	it
even	possible	to	run	our		IO		and	still	wear	white	at	our	wedding?	The	answer	is	yes,	if	we	put	the	onus	on	the	calling	code.
Our	pure	code,	despite	the	nefarious	plotting	and	scheming,	maintains	its	innocence	and	it's	the	caller	who	gets	burdened
with	the	responsibility	of	actually	running	the	effects.	Let's	see	an	example	to	make	this	concrete.

//////	Our	pure	library:	lib/params.js	///////

//		url	::	IO	String

var	url	=	new	IO(function()	{	return	window.location.href;	});

//		toPairs	=		String	->	[[String]]

var	toPairs	=	compose(map(split('=')),	split('&'));

//		params	::	String	->	[[String]]

var	params	=	compose(toPairs,	last,	split('?'));

//		findParam	::	String	->	IO	Maybe	[String]

var	findParam	=	function(key)	{

		return	map(compose(Maybe.of,	filter(compose(eq(key),	head)),	params),	url);

};

//////	Impure	calling	code:	main.js	///////

//	run	it	by	calling	__value()!

findParam("searchTerm").__value();

//	Maybe([['searchTerm',	'wafflehouse']])

Our	library	keeps	its	hands	clean	by	wrapping		url		in	an		IO		and	passing	the	buck	to	the	caller.	You	might	have	also
noticed	that	we	have	stacked	our	containers;	it's	perfectly	reasonable	to	have	a		IO(Maybe([x]))	,	which	is	three	functors
deep(	Array		is	most	definitely	a	mappable	container	type)	and	exceptionally	expressive.
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There's	something	that's	been	bothering	me	and	we	should	rectify	it	immediately:		IO	's		__value		isn't	really	its	contained
value,	nor	is	it	a	private	property	as	the	underscore	prefix	suggests.	It	is	the	pin	in	the	grenade	and	it	is	meant	to	be	pulled
by	a	caller	in	the	most	public	of	ways.	Let's	rename	this	property	to		unsafePerformIO		to	remind	our	users	of	its	volatility.

var	IO	=	function(f)	{

		this.unsafePerformIO	=	f;

}

IO.prototype.map	=	function(f)	{

		return	new	IO(_.compose(f,	this.unsafePerformIO));

}

There,	much	better.	Now	our	calling	code	becomes		findParam("searchTerm").unsafePerformIO()	,	which	is	clear	as	day	to
users	(and	readers)	of	the	application.

	IO		will	be	a	loyal	companion,	helping	us	tame	those	feral	impure	actions.	Next,	we'll	see	a	type	similar	in	spirit,	but	has	a
drastically	different	use	case.

Callbacks	are	the	narrowing	spiral	staircase	to	hell.	They	are	control	flow	as	designed	by	M.C.	Escher.	With	each	nested
callback	squeezed	in	between	the	jungle	gym	of	curly	braces	and	parenthesis,	they	feel	like	limbo	in	an	oubliette(how	low
can	we	go!).	I'm	getting	claustrophobic	chills	just	thinking	about	them.	Not	to	worry,	we	have	a	much	better	way	of	dealing
with	asynchronous	code	and	it	starts	with	an	"F".

The	internals	are	a	bit	too	complicated	to	spill	out	all	over	the	page	here	so	we	will	use		Data.Task		(previously		Data.Future	)
from	Quildreen	Motta's	fantastic	Folktale.	Behold	some	example	usage:

//	Node	readfile	example:

//=======================

var	fs	=	require('fs');

//		readFile	::	String	->	Task	Error	String

var	readFile	=	function(filename)	{

		return	new	Task(function(reject,	result)	{

				fs.readFile(filename,	'utf-8',	function(err,	data)	{

						err	?	reject(err)	:	result(data);

				});

		});

};

readFile("metamorphosis").map(split('\n')).map(head);

//	Task("One	morning,	as	Gregor	Samsa	was	waking	up	from	anxious	dreams,	he	discovered	that

//	in	bed	he	had	been	changed	into	a	monstrous	verminous	bug.")

//	jQuery	getJSON	example:

//========================

//		getJSON	::	String	->	{}	->	Task	Error	JSON

var	getJSON	=	curry(function(url,	params)	{

		return	new	Task(function(reject,	result)	{

				$.getJSON(url,	params,	result).fail(reject);

		});

});

getJSON('/video',	{id:	10}).map(_.prop('title'));

//	Task("Family	Matters	ep	15")

//	We	can	put	normal,	non	futuristic	values	inside	as	well

Task.of(3).map(function(three){	return	three	+	1	});

//	Task(4)

Asynchronous	Tasks
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The	functions	I'm	calling		reject		and		result		are	our	error	and	success	callbacks,	respectively.	As	you	can	see,	we	simply
	map		over	the		Task		to	work	on	the	future	value	as	if	it	was	right	there	in	our	grasp.	By	now		map		should	be	old	hat.

If	you're	familiar	with	promises,	you	might	recognize	the	function		map		as		then		with		Task		playing	the	role	of	our	promise.
Don't	fret	if	you	aren't	familiar	with	promises,	we	won't	be	using	them	anyhow	because	they	are	not	pure,	but	the	analogy
holds	nonetheless.

Like		IO	,		Task		will	patiently	wait	for	us	to	give	it	the	green	light	before	running.	In	fact,	because	it	waits	for	our	command,
	IO		is	effectively	subsumed	by		Task		for	all	things	asynchronous;		readFile		and		getJSON		don't	require	an	extra		IO	
container	to	be	pure.	What's	more,		Task		works	in	a	similar	fashion	when	we		map		over	it:	we're	placing	instructions	for	the
future	like	a	chore	chart	in	a	time	capsule	-	an	act	of	sophisticated	technological	procrastination.

To	run	our		Task	,	we	must	call	the	method		fork	.	This	works	like		unsafePerformIO	,	but	as	the	name	suggests,	it	will	fork	our
process	and	evaluation	continues	on	without	blocking	our	thread.	This	can	be	implemented	in	numerous	ways	with	threads
and	such,	but	here	it	acts	as	a	normal	async	call	would	and	the	big	wheel	of	the	event	loop	keeps	on	turning.	Let's	look	at
	fork	:

//	Pure	application

//=====================

//	blogTemplate	::	String

//		blogPage	::	Posts	->	HTML

var	blogPage	=	Handlebars.compile(blogTemplate);

//		renderPage	::	Posts	->	HTML

var	renderPage	=	compose(blogPage,	sortBy('date'));

//		blog	::	Params	->	Task	Error	HTML

var	blog	=	compose(map(renderPage),	getJSON('/posts'));

//	Impure	calling	code

//=====================

blog({}).fork(

		function(error){	$("#error").html(error.message);	},

		function(page){	$("#main").html(page);	}

);

$('#spinner').show();

Upon	calling		fork	,	the		Task		hurries	off	to	find	some	posts	and	render	the	page.	Meanwhile,	we	show	a	spinner	since
	fork		does	not	wait	for	a	response.	Finally,	we	will	either	display	an	error	or	render	the	page	onto	the	screen	depending	if
the		getJSON		call	succeeded	or	not.

Take	a	moment	to	consider	how	linear	the	control	flow	is	here.	We	just	read	bottom	to	top,	right	to	left	even	though	the
program	will	actually	jump	around	a	bit	during	execution.	This	makes	reading	and	reasoning	about	our	application	simpler
than	having	to	bounce	between	callbacks	and	error	handling	blocks.

Goodness,	would	you	look	at	that,		Task		has	also	swallowed	up		Either	!	It	must	do	so	in	order	to	handle	futuristic	failures
since	our	normal	control	flow	does	not	apply	in	the	async	world.	This	is	all	well	and	good	as	it	provides	sufficient	and	pure
error	handling	out	of	the	box.

Even	with		Task	,	our		IO		and		Either		functors	are	not	out	of	a	job.	Bear	with	me	on	a	quick	example	that	leans	toward	the
more	complex	and	hypothetical	side,	but	is	useful	for	illustrative	purposes.

//	Postgres.connect	::	Url	->	IO	DbConnection

//	runQuery	::	DbConnection	->	ResultSet

//	readFile	::	String	->	Task	Error	String

//	Pure	application

//=====================
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//		dbUrl	::	Config	->	Either	Error	Url

var	dbUrl	=	function(c)	{

		return	(c.uname	&&	c.pass	&&	c.host	&&	c.db)

				?	Right.of("db:pg://"+c.uname+":"+c.pass+"@"+c.host+"5432/"+c.db)

				:	Left.of(Error("Invalid	config!"));

}

//		connectDb	::	Config	->	Either	Error	(IO	DbConnection)

var	connectDb	=	compose(map(Postgres.connect),	dbUrl);

//		getConfig	::	Filename	->	Task	Error	(Either	Error	(IO	DbConnection))

var	getConfig	=	compose(map(compose(connectDb,	JSON.parse)),	readFile);

//	Impure	calling	code

//=====================

getConfig("db.json").fork(

		logErr("couldn't	read	file"),	either(console.log,	map(runQuery))

);

In	this	example,	we	still	make	use	of		Either		and		IO		from	within	the	success	branch	of		readFile	.		Task		takes	care	of	the
impurities	of	reading	a	file	asynchronously,	but	we	still	deal	with	validating	the	config	with		Either		and	wrangling	the	db
connection	with		IO	.	So	you	see,	we're	still	in	business	for	all	things	synchronous.

I	could	go	on,	but	that's	all	there	is	to	it.	Simple	as		map	.

In	practice,	you'll	likely	have	multiple	asynchronous	tasks	in	one	workflow	and	we	haven't	yet	acquired	the	full	container
apis	to	tackle	this	scenario.	Not	to	worry,	we'll	look	at	monads	and	such	soon,	but	first,	we	must	examine	the	maths	that
make	this	all	possible.

As	mentioned	before,	functors	come	from	category	theory	and	satisfy	a	few	laws.	Let's	first	explore	these	useful	properties.

//	identity

map(id)	===	id;

//	composition

compose(map(f),	map(g))	===	map(compose(f,	g));

The	identity	law	is	simple,	but	important.	These	laws	are	runnable	bits	of	code	so	we	can	try	them	on	our	own	functors	to
validate	their	legitimacy.

var	idLaw1	=	map(id);

var	idLaw2	=	id;

idLaw1(Container.of(2));

//=>	Container(2)

idLaw2(Container.of(2));

//=>	Container(2)

You	see,	they	are	equal.	Next	let's	look	at	composition.

var	compLaw1	=	compose(map(concat("	world")),	map(concat("	cruel")));

var	compLaw2	=	map(compose(concat("	world"),	concat("	cruel")));

compLaw1(Container.of("Goodbye"));

//=>	Container('	world	cruelGoodbye')

A	Spot	of	Theory
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compLaw2(Container.of("Goodbye"));

//=>	Container('	world	cruelGoodbye')

In	category	theory,	functors	take	the	objects	and	morphisms	of	a	category	and	map	them	to	a	different	category.	By
definition,	this	new	category	must	have	an	identity	and	the	ability	to	compose	morphisms,	but	we	needn't	check	because
the	aforementioned	laws	ensure	these	are	preserved.

Perhaps	our	definition	of	a	category	is	still	a	bit	fuzzy.	You	can	think	of	a	category	as	a	network	of	objects	with	morphisms
that	connect	them.	So	a	functor	would	map	the	one	category	to	the	other	without	breaking	the	network.	If	an	object		a		is	in
our	source	category		C	,	when	we	map	it	to	category		D		with	functor		F	,	we	refer	to	that	object	as		F	a		(If	you	put	it	together
what	does	that	spell?!).	Perhaps,	it's	better	to	look	at	a	diagram:

For	instance,		Maybe		maps	our	category	of	types	and	functions	to	a	category	where	each	object	may	not	exist	and	each
morphism	has	a		null		check.	We	accomplish	this	in	code	by	surrounding	each	function	with		map		and	each	type	with	our
functor.	We	know	that	each	of	our	normal	types	and	functions	will	continue	to	compose	in	this	new	world.	Technically,	each
functor	in	our	code	maps	to	a	sub	category	of	types	and	functions	which	makes	all	functors	a	particular	brand	called
endofunctors,	but	for	our	purposes,	we'll	think	of	it	as	a	different	category.

We	can	also	visualize	the	mapping	of	a	morphism	and	its	corresponding	objects	with	this	diagram:

In	addition	to	visualizing	the	mapped	morphism	from	one	category	to	another	under	the	functor		F	,	we	see	that	the	diagram
commutes,	which	is	to	say,	if	you	follow	the	arrows	each	route	produces	the	same	result.	The	different	routes	means
different	behavior,	but	we	always	end	at	the	same	type.	This	formalism	gives	us	principled	ways	to	reason	about	our	code	-
we	can	boldly	apply	formulas	without	having	to	parse	and	examine	each	individual	scenario.	Let's	take	a	concrete	example.
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//		topRoute	::	String	->	Maybe	String

var	topRoute	=	compose(Maybe.of,	reverse);

//		bottomRoute	::	String	->	Maybe	String

var	bottomRoute	=	compose(map(reverse),	Maybe.of);

topRoute("hi");

//	Maybe("ih")

bottomRoute("hi");

//	Maybe("ih")

Or	visually:

We	can	instantly	see	and	refactor	code	based	on	properties	held	by	all	functors.

Functors	can	stack:

var	nested	=	Task.of([Right.of("pillows"),	Left.of("no	sleep	for	you")]);

map(map(map(toUpperCase)),	nested);

//	Task([Right("PILLOWS"),	Left("no	sleep	for	you")])

What	we	have	here	with		nested		is	a	future	array	of	elements	that	might	be	errors.	We		map		to	peel	back	each	layer	and	run
our	function	on	the	elements.	We	see	no	callbacks,	if/else's,	or	for	loops;	just	an	explicit	context.	We	do,	however,	have	to
	map(map(map(f)))	.	We	can	instead	compose	functors.	You	heard	me	correctly:

var	Compose	=	function(f_g_x){

		this.getCompose	=	f_g_x;

}

Compose.prototype.map	=	function(f){

		return	new	Compose(map(map(f),	this.getCompose));

}

var	tmd	=	Task.of(Maybe.of("Rock	over	London"))

var	ctmd	=	new	Compose(tmd);

map(concat(",	rock	on,	Chicago"),	ctmd);

//	Compose(Task(Maybe("Rock	over	London,	rock	on,	Chicago")))

ctmd.getCompose;

//	Task(Maybe("Rock	over	London,	rock	on,	Chicago"))

There,	one		map	.	Functor	composition	is	associative	and	earlier,	we	defined		Container	,	which	is	actually	called	the
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	Identity		functor.	If	we	have	identity	and	associative	composition	we	have	a	category.	This	particular	category	has
categories	as	objects	and	functors	as	morphisms,	which	is	enough	to	make	one's	brain	perspire.	We	won't	delve	too	far	into
this,	but	it's	nice	to	appreciate	the	architectural	implications	or	even	just	the	simple	abstract	beauty	in	the	pattern.

We've	seen	a	few	different	functors,	but	there	are	infinitely	many.	Some	notable	omissions	are	iterable	data	structures	like
trees,	lists,	maps,	pairs,	you	name	it.	eventstreams	and	observables	are	both	functors.	Others	can	be	for	encapsulation	or
even	just	type	modelling.	Functors	are	all	around	us	and	we'll	use	them	extensively	throughout	the	book.

What	about	calling	a	function	with	multiple	functor	arguments?	How	about	working	with	an	order	sequence	of	impure	or
async	actions?	We	haven't	yet	acquired	the	full	tool	set	for	working	in	this	boxed	up	world.	Next,	we'll	cut	right	to	the	chase
and	look	at	monads.

Chapter	9:	Monadic	Onions

require('../../support');

var	Task	=	require('data.task');

var	_	=	require('ramda');

//	Exercise	1

//	==========

//	Use	_.add(x,y)	and	_.map(f,x)	to	make	a	function	that	increments	a	value

//	inside	a	functor

var	ex1	=	undefined

//Exercise	2

//	==========

//	Use	_.head	to	get	the	first	element	of	the	list

var	xs	=	Identity.of(['do',	'ray',	'me',	'fa',	'so',	'la',	'ti',	'do']);

var	ex2	=	undefined

//	Exercise	3

//	==========

//	Use	safeProp	and	_.head	to	find	the	first	initial	of	the	user

var	safeProp	=	_.curry(function	(x,	o)	{	return	Maybe.of(o[x]);	});

var	user	=	{	id:	2,	name:	"Albert"	};

var	ex3	=	undefined

//	Exercise	4

//	==========

//	Use	Maybe	to	rewrite	ex4	without	an	if	statement

var	ex4	=	function	(n)	{

		if	(n)	{	return	parseInt(n);	}

};

var	ex4	=	undefined

//	Exercise	5

//	==========

//	Write	a	function	that	will	getPost	then	toUpperCase	the	post's	title

In	Summary

Exercises
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//	getPost	::	Int	->	Future({id:	Int,	title:	String})

var	getPost	=	function	(i)	{

		return	new	Task(function(rej,	res)	{

				setTimeout(function(){

						res({id:	i,	title:	'Love	them	futures'})		

				},	300)

		});

}

var	ex5	=	undefined

//	Exercise	6

//	==========

//	Write	a	function	that	uses	checkActive()	and	showWelcome()	to	grant	access

//	or	return	the	error

var	showWelcome	=	_.compose(_.add(	"Welcome	"),	_.prop('name'))

var	checkActive	=	function(user)	{

	return	user.active	?	Right.of(user)	:	Left.of('Your	account	is	not	active')

}

var	ex6	=	undefined

//	Exercise	7

//	==========

//	Write	a	validation	function	that	checks	for	a	length	>	3.	It	should	return

//	Right(x)	if	it	is	greater	than	3	and	Left("You	need	>	3")	otherwise

var	ex7	=	function(x)	{

		return	undefined	//	<---	write	me.	(don't	be	pointfree)

}

//	Exercise	8

//	==========

//	Use	ex7	above	and	Either	as	a	functor	to	save	the	user	if	they	are	valid	or

//	return	the	error	message	string.	Remember	either's	two	arguments	must	return

//	the	same	type.

var	save	=	function(x){

		return	new	IO(function(){

				console.log("SAVED	USER!");

				return	x	+	'-saved';

		});

}

var	ex8	=	undefined
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Before	we	go	any	further,	I	have	a	confession	to	make:	I	haven't	been	fully	honest	about	that		of		method	we've	placed	on
each	of	our	types.	Turns	out,	it	is	not	there	to	avoid	the		new		keyword,	but	rather	to	place	values	in	what's	called	a	default
minimal	context.	Yes,		of		does	not	actually	take	the	place	of	a	constructor	-	it	is	part	of	an	important	interface	we	call
Pointed.

A	pointed	functor	is	a	functor	with	an		of		method

What's	important	here	is	the	ability	to	drop	any	value	in	our	type	and	start	mapping	away.

IO.of("tetris").map(concat("	master"));

//	IO("tetris	master")

Maybe.of(1336).map(add(1));

//	Maybe(1337)

Task.of([{id:	2},	{id:	3}]).map(_.prop('id'));

//	Task([2,3])

Either.of("The	past,	present	and	future	walk	into	a	bar...").map(

		concat("it	was	tense.")

);

//	Right("The	past,	present	and	future	walk	into	a	bar...it	was	tense.")

If	you	recall,		IO		and		Task	's	constructors	expect	a	function	as	their	argument,	but		Maybe		and		Either		do	not.	The
motivation	for	this	interface	is	a	common,	consistent	way	to	place	a	value	into	our	functor	without	the	complexities	and
specific	demands	of	constructors.	The	term	"default	minimal	context"	lacks	precision,	yet	captures	the	idea	well:	we'd	like	to
lift	any	value	in	our	type	and		map		away	per	usual	with	the	expected	behaviour	of	whichever	functor.

One	important	correction	I	must	make	at	this	point,	pun	intended,	is	that		Left.of		doesn't	make	any	sense.	Each	functor
must	have	one	way	to	place	a	value	inside	it	and	with		Either	,	that's		new	Right(x)	.	We	define		of		using		Right		because	if
our	type	can		map	,	it	should		map	.	Looking	at	the	examples	above,	we	should	have	an	intuition	about	how		of		will	usually
work	and		Left		breaks	that	mold.

You	may	have	heard	of	functions	such	as		pure	,		point	,		unit	,	and		return	.	These	are	various	monikers	for	our		of	
method,	international	function	of	mystery.		of		will	become	important	when	we	start	using	monads	because,	as	we	will	see,
it's	our	responsibility	to	place	values	back	into	the	type	manually.

To	avoid	the		new		keyword,	there	are	several	standard	JavaScript	tricks	or	libraries	so	let's	use	them	and	use		of		like	a
responsible	adult	from	here	on	out.	I	recommend	using	functor	instances	from		folktale	,		ramda		or		fantasy-land		as	they
provide	the	correct		of		method	as	well	as	nice	constructors	that	don't	rely	on		new	.

Monadic	Onions

Pointy	Functor	Factory

Mixing	Metaphors
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You	see,	in	addition	to	space	burritos	(if	you've	heard	the	rumors),	monads	are	like	onions.	Allow	me	to	demonstrate	with	a
common	situation:

//	Support

//	===========================

var	fs	=	require('fs');

//		readFile	::	String	->	IO	String

var	readFile	=	function(filename)	{

		return	new	IO(function()	{

				return	fs.readFileSync(filename,	'utf-8');

		});

};

//		print	::	String	->	IO	String

var	print	=	function(x)	{

		return	new	IO(function()	{

				console.log(x);

				return	x;

		});

}

//	Example

//	===========================

//		cat	::	String	->	IO	(IO	String)

var	cat	=	compose(map(print),	readFile);

cat(".git/config")

//	IO(IO("[core]\nrepositoryformatversion	=	0\n"))

What	we've	got	here	is	an		IO		trapped	inside	another		IO		because		print		introduced	a	second		IO		during	our		map	.	To
continue	working	with	our	string,	we	must		map(map(f))		and	to	observe	the	effect,	we	must
	unsafePerformIO().unsafePerformIO()	.

//		cat	::	String	->	IO	(IO	String)

var	cat	=	compose(map(print),	readFile);

//		catFirstChar	::	String	->	IO	(IO	String)

var	catFirstChar	=	compose(map(map(head)),	cat);

mostly-adequate-guide

62Chapter	9:	Monadic	Onions



catFirstChar(".git/config")

//	IO(IO("["))

While	it	is	nice	to	see	that	we	have	two	effects	packaged	up	and	ready	to	go	in	our	application,	it	feels	a	bit	like	working	in
two	hazmat	suits	and	we	end	up	with	an	uncomfortably	awkward	API.	Let's	look	at	another	situation:

//		safeProp	::	Key	->	{Key:	a}	->	Maybe	a

var	safeProp	=	curry(function(x,	obj)	{

		return	new	Maybe(obj[x]);

});

//		safeHead	::	[a]	->	Maybe	a

var	safeHead	=	safeProp(0);

//		firstAddressStreet	::	User	->	Maybe	(Maybe	(Maybe	Street)	)

var	firstAddressStreet	=	compose(

		map(map(safeProp('street'))),	map(safeHead),	safeProp('addresses')

);

firstAddressStreet(

		{addresses:	[{street:	{name:	'Mulburry',	number:	8402},	postcode:	"WC2N"	}]}

);

//	Maybe(Maybe(Maybe({name:	'Mulburry',	number:	8402})))

Again,	we	see	this	nested	functor	situation	where	it's	neat	to	see	there	are	three	possible	failures	in	our	function,	but	it's	a
little	presumptuous	to	expect	a	caller	to		map		three	times	to	get	at	the	value	-	we'd	only	just	met.	This	pattern	will	arise	time
and	time	again	and	it	is	the	primary	situation	where	we'll	need	to	shine	the	mighty	monad	symbol	into	the	night	sky.

I	said	monads	are	like	onions	because	tears	well	up	as	we	peel	back	layer	of	the	nested	functor	with		map		to	get	at	the	inner
value.	We	can	dry	our	eyes,	take	a	deep	breath,	and	use	a	method	called		join	.

var	mmo	=	Maybe.of(Maybe.of("nunchucks"));

//	Maybe(Maybe("nunchucks"))

mmo.join();

//	Maybe("nunchucks")

var	ioio	=	IO.of(IO.of("pizza"));

//	IO(IO("pizza"))

ioio.join()

//	IO("pizza")

var	ttt	=	Task.of(Task.of(Task.of("sewers")));

//	Task(Task(Task("sewers")));

ttt.join()

//	Task(Task("sewers"))

If	we	have	two	layers	of	the	same	type,	we	can	smash	them	together	with		join	.	This	ability	to	join	together,	this	functor
matrimony,	is	what	makes	a	monad	a	monad.	Let's	inch	toward	the	full	definition	with	something	a	little	more	accurate:

Monads	are	pointed	functors	that	can	flatten

Any	functor	which	defines	a		join		method,	has	an		of		method,	and	obeys	a	few	laws	is	a	monad.	Defining		join		is	not	too
difficult	so	let's	do	so	for		Maybe	:

Maybe.prototype.join	=	function()	{

		return	this.isNothing()	?	Maybe.of(null)	:	this.__value;

}
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There,	simple	as	consuming	one's	twin	in	the	womb.	If	we	have	a		Maybe(Maybe(x))		then		.__value		will	just	remove	the
unnecessary	extra	layer	and	we	can	safely		map		from	there.	Otherwise,	we'll	just	have	the	one		Maybe		as	nothing	would
have	been	mapped	in	the	first	place.

Now	that	we	have	a		join		method,	let's	sprinkle	some	magic	monad	dust	over	the		firstAddressStreet		example	and	see	it
in	action:

//		join	::	Monad	m	=>	m	(m	a)	->	m	a

var	join	=	function(mma){	return	mma.join();	}

//		firstAddressStreet	::	User	->	Maybe	Street

var	firstAddressStreet	=	compose(

		join,	map(safeProp('street')),	join,	map(safeHead),	safeProp('addresses')

);

firstAddressStreet(

		{addresses:	[{street:	{name:	'Mulburry',	number:	8402},	postcode:	"WC2N"	}]}

);

//	Maybe({name:	'Mulburry',	number:	8402})

We	added		join		wherever	we	encountered	the	nested		Maybe	's	to	keep	them	from	getting	out	of	hand.	Let's	do	the	same
with		IO		to	give	us	a	feel	for	that.

IO.prototype.join	=	function()	{

		return	this.unsafePerformIO();

}

Again,	we	simply	remove	one	layer.	Mind	you,	we	have	not	thrown	out	purity,	but	merely	removed	one	layer	of	excess
shrink	wrap.

//		log	::	a	->	IO	a

var	log	=	function(x)	{

		return	new	IO(function()	{	console.log(x);	return	x;	});

}

//		setStyle	::	Selector	->	CSSProps	->	IO	DOM

var	setStyle	=	curry(function(sel,	props)	{

		return	new	IO(function()	{	return	jQuery(sel).css(props);	});

});

//		getItem	::	String	->	IO	String

var	getItem	=	function(key)	{

		return	new	IO(function()	{	return	localStorage.getItem(key);	});

};

//		applyPreferences	::	String	->	IO	DOM

var	applyPreferences	=	compose(

		join,	map(setStyle('#main')),	join,	map(log),	map(JSON.parse),	getItem

);

applyPreferences('preferences').unsafePerformIO();

//	Object	{backgroundColor:	"green"}

//	<div	style="background-color:	'green'"/>

	getItem		returns	an		IO	String		so	we		map		to	parse	it.	Both		log		and		setStyle		return		IO	's	themselves	so	we	must		join		to
keep	our	nesting	under	control.

My	chain	hits	my	chest
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You	might	have	noticed	a	pattern.	We	often	end	up	calling		join		right	after	a		map	.	Let's	abstract	this	into	a	function	called
	chain	.

//		chain	::	Monad	m	=>	(a	->	m	b)	->	m	a	->	m	b

var	chain	=	curry(function(f,	m){

		return	m.map(f).join();	//	or	compose(join,	map(f))(m)

});

We'll	just	bundle	up	this	map/join	combo	into	a	single	function.	If	you've	read	about	monads	previously,	you	might	have
seen		chain		called		>>=		(pronounced	bind)	or		flatMap		which	are	all	aliases	for	the	same	concept.	I	personally	think
	flatMap		is	the	most	accurate	name,	but	we'll	stick	with		chain		as	it's	the	widely	accepted	name	in	JS.	Let's	refactor	the	two
examples	above	with		chain	:

//	map/join

var	firstAddressStreet	=	compose(

		join,	map(safeProp('street')),	join,	map(safeHead),	safeProp('addresses')

);

//	chain

var	firstAddressStreet	=	compose(

		chain(safeProp('street')),	chain(safeHead),	safeProp('addresses')

);

//	map/join

var	applyPreferences	=	compose(

		join,	map(setStyle('#main')),	join,	map(log),	map(JSON.parse),	getItem

);

//	chain

var	applyPreferences	=	compose(

		chain(setStyle),	chain(log),	map(JSON.parse),	getItem

);

I	swapped	out	any		map/join		with	our	new		chain		function	to	tidy	things	up	a	bit.	Cleanliness	is	nice	and	all,	but	there's
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more	to		chain		than	meets	the	eye	-	it's	more	of	tornado	than	a	vacuum.	Because		chain		effortlessly	nests	effects,	we	can
capture	both	sequence	and	variable	assignment	in	a	purely	functional	way.

//	getJSON	::	Url	->	Params	->	Task	JSON

//	querySelector	::	Selector	->	IO	DOM

getJSON('/authenticate',	{username:	'stale',	password:	'crackers'})

		.chain(function(user)	{

				return	getJSON('/friends',	{user_id:	user.id});

});

//	Task([{name:	'Seimith',	id:	14},	{name:	'Ric',	id:	39}]);

querySelector("input.username").chain(function(uname)	{

		return	querySelector("input.email").chain(function(email)	{

				return	IO.of(

						"Welcome	"	+	uname.value	+	"	"	+	"prepare	for	spam	at	"	+	email.value

				);

		});

});

//	IO("Welcome	Olivia	prepare	for	spam	at	olivia@tremorcontrol.net");

Maybe.of(3).chain(function(three)	{

		return	Maybe.of(2).map(add(three));

});

//	Maybe(5);

Maybe.of(null).chain(safeProp('address')).chain(safeProp('street'));

//	Maybe(null);

We	could	have	written	these	examples	with		compose	,	but	we'd	need	a	few	helper	functions	and	this	style	lends	itself	to
explicit	variable	assignment	via	closure	anyhow.	Instead	we're	using	the	infix	version	of		chain		which,	incidentally,	can	be
derived	from		map		and		join		for	any	type	automatically:		t.prototype.chain	=	function(f)	{	return	this.map(f).join();	}	.
We	can	also	define		chain		manually	if	we'd	like	a	false	sense	of	performance,	though	we	must	take	care	to	maintain	the
correct	functionality	-	that	is,	it	must	equal		map		followed	by		join	.	An	interesting	fact	is	that	we	can	derive		map		for	free	if
we've	created		chain		simply	by	bottling	the	value	back	up	when	we're	finished	with		of	.	With		chain	,	we	can	also	define
	join		as		chain(id)	.	It	may	feel	like	playing	Texas	Hold	em'	with	a	rhinestone	magician	in	that	I'm	just	pulling	things	out	of
my	behind,	but,	as	with	most	mathematics,	all	of	these	principled	constructs	are	interrelated.	Lots	of	these	derivations	are
mentioned	in	the	fantasyland	repo,	which	is	the	official	specification	for	algebraic	data	types	in	JavaScript.

Anyways,	let's	get	to	the	examples	above.	In	the	first	example,	we	see	two		Task	's	chained	in	a	sequence	of	asynchronous
actions	-	first	it	retrieves	the		user	,	then	it	finds	the	friends	with	that	user's	id.	We	use		chain		to	avoid	a
	Task(Task([Friend]))		situation.

Next,	we	use		querySelector		to	find	a	few	different	inputs	and	create	a	welcoming	message.	Notice	how	we	have	access	to
both		uname		and		email		at	the	innermost	function	-	this	is	functional	variable	assignment	at	its	finest.	Since		IO		is	graciously
lending	us	its	value,	we	are	in	charge	of	putting	it	back	how	we	found	it	-	we	wouldn't	want	to	break	its	trust	(and	our
program).		IO.of		is	the	perfect	tool	for	the	job	and	it's	why	Pointed	is	an	important	prerequisite	to	the	Monad	interface.
However,	we	could	choose	to		map		as	that	would	also	return	the	correct	type:

querySelector("input.username").chain(function(uname)	{

		return	querySelector("input.email").map(function(email)	{

				return	"Welcome	"	+	uname.value	+	"	prepare	for	spam	at	"	+	email.value;

		});

});

//	IO("Welcome	Olivia	prepare	for	spam	at	olivia@tremorcontrol.net");

Finally,	we	have	two	examples	using		Maybe	.	Since		chain		is	mapping	under	the	hood,	if	any	value	is		null	,	we	stop	the
computation	dead	in	its	tracks.
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Don't	worry	if	these	examples	are	hard	to	grasp	at	first.	Play	with	them.	Poke	them	with	a	stick.	Smash	them	to	bits	and
reassemble.	Remember	to		map		when	returning	a	"normal"	value	and		chain		when	we're	returning	another	functor.

As	a	reminder,	this	does	not	work	with	two	different	nested	types.	Functor	composition	and	later,	monad	transformers,	can
help	us	in	that	situation.

Container	style	programming	can	be	confusing	at	times.	We	sometimes	find	ourselves	struggling	to	understand	how	many
containers	deep	a	value	is	or	if	we	need		map		or		chain		(soon	we'll	see	more	container	methods).	We	can	greatly	improve
debugging	with	tricks	like	implementing		inspect		and	we'll	learn	how	to	create	a	"stack"	that	can	handle	whatever	effects
we	throw	at	it,	but	there	are	times	when	we	question	if	it's	worth	the	hassle.

I'd	like	to	swing	the	fiery	monadic	sword	for	a	moment	to	exhibit	the	power	of	programming	this	way.

Let's	read	a	file,	then	upload	it	directly	afterward:

//	readFile	::	Filename	->	Either	String	(Task	Error	String)

//	httpPost	::	String	->	Task	Error	JSON

//		upload	::	String	->	Either	String	(Task	Error	JSON)

var	upload	=	compose(map(chain(httpPost('/uploads'))),	readFile);

Here,	we	are	branching	our	code	several	times.	Looking	at	the	type	signatures	I	can	see	that	we	protect	against	3	errors	-
	readFile		uses		Either		to	validate	the	input	(perhaps	ensuring	the	filename	is	present),		readFile		may	error	when
accessing	the	file	as	expressed	in	the	first	type	parameter	of		Task	,	and	the	upload	may	fail	for	whatever	reason	which	is
expressed	by	the		Error		in		httpPost	.	We	casually	pull	off	two	nested,	sequential	asynchronous	actions	with		chain	.

All	of	this	is	achieved	in	one	linear	left	to	right	flow.	This	is	all	pure	and	declarative.	It	holds	equational	reasoning	and
reliable	properties.	We	aren't	forced	to	add	needless	and	confusing	variable	names.	Our		upload		function	is	written	against
generic	interfaces	and	not	specific	one-off	apis.	It's	one	bloody	line	for	goodness	sake.

For	contrast,	let's	look	at	the	standard	imperative	way	to	pull	this	off:

//		upload	::	String	->	(String	->	a)	->	Void

var	upload	=	function(filename,	callback)	{

		if	(!filename)	{

				throw	"You	need	a	filename!";

		}	else	{

				readFile(filename,	function(err,	contents)	{

						if	(err)	throw	err;

						httpPost(contents,	function(err,	json)	{

								if	(err)	throw	err;

								callback(json);

						});

				});

		}

}

Well	isn't	that	the	devil's	arithmetic.	We're	pinballed	through	a	volatile	maze	of	madness.	Imagine	if	it	were	a	typical	app	that
also	mutated	variables	along	the	way!	We'd	be	in	the	tar	pit	indeed.

The	first	law	we'll	look	at	is	associativity,	but	perhaps	not	in	the	way	you're	used	to	it.

Power	trip

Theory
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		//	associativity

		compose(join,	map(join))	==	compose(join,	join)

These	laws	get	at	the	nested	nature	of	monads	so	associativity	focuses	on	joining	the	inner	or	outer	types	first	to	achieve
the	same	result.	A	picture	might	be	more	instructive:

Starting	with	the	top	left	moving	downward,	we	can		join		the	outer	two		M	's	of		M(M(M	a))		first	then	cruise	over	to	our
desired		M	a		with	another		join	.	Alternatively,	we	can	pop	the	hood	and	flatten	the	inner	two		M	's	with		map(join)	.	We	end
up	with	the	same		M	a		regardless	of	if	we	join	the	inner	or	outer		M	's	first	and	that's	what	associativity	is	all	about.	It's	worth
noting	that		map(join)	!=	join	.	The	intermediate	steps	can	vary	in	value,	but	the	end	result	of	the	last		join		will	be	the
same.

The	second	law	is	similar:

		//	identity	for	all	(M	a)

		compose(join,	of)	==	compose(join,	map(of))	==	id

It	states	that,	for	any	monad		M	,		of		and		join		amounts	to		id	.	We	can	also		map(of)		and	attack	it	from	the	inside	out.	We
call	this	"triangle	identity"	because	it	makes	such	a	shape	when	visualized:

If	we	start	at	the	top	left	heading	right,	we	can	see	that		of		does	indeed	drop	our		M	a		in	another		M		container.	Then	if	we
move	downward	and		join		it,	we	get	the	same	as	if	we	just	called		id		in	the	first	place.	Moving	right	to	left,	we	see	that	if
we	sneak	under	the	covers	with		map		and	call		of		of	the	plain		a	,	we'll	still	end	up	with		M	(M	a)		and		join	ing	will	bring	us
back	to	square	one.

I	should	mention	that	I've	just	written		of	,	however,	it	must	be	the	specific		M.of		for	whatever	monad	we're	using.
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Now,	I've	seen	these	laws,	identity	and	associativity,	somewhere	before...	Hold	on,	I'm	thinking...Yes	of	course!	They	are
the	laws	for	a	category.	But	that	would	mean	we	need	a	composition	function	to	complete	the	definition.	Behold:

		var	mcompose	=	function(f,	g)	{

				return	compose(chain(f),	chain(g));

		}

		//	left	identity

		mcompose(M,	f)	==	f

		//	right	identity

		mcompose(f,	M)	==	f

		//	associativity

		mcompose(mcompose(f,	g),	h)	==	mcompose(f,	mcompose(g,	h))

They	are	the	category	laws	after	all.	Monads	form	a	category	called	the	"Kleisli	category"	where	all	objects	are	monads	and
morphisms	are	chained	functions.	I	don't	mean	to	taunt	you	with	bits	and	bobs	of	category	theory	without	much	explanation
of	how	the	jigsaw	fits	together.	The	intention	is	to	scratch	the	surface	enough	to	show	the	relevance	and	spark	some
interest	while	focusing	on	the	practical	properties	we	can	use	each	day.

Monads	let	us	drill	downward	into	nested	computations.	We	can	assign	variables,	run	sequential	effects,	perform
asynchronous	tasks,	all	without	laying	one	brick	in	a	pyramid	of	doom.	They	come	to	the	rescue	when	a	value	finds	itself
jailed	in	multiple	layers	of	the	same	type.	With	the	help	of	the	trusty	sidekick	"pointed",	monads	are	able	to	lend	us	an
unboxed	value	and	know	we'll	be	able	to	place	it	back	in	when	we're	done.

Yes,	monads	are	very	powerful,	yet	we	still	find	ourselves	needing	some	extra	container	functions.	For	instance,	what	if	we
wanted	to	run	a	list	of	api	calls	at	once,	then	gather	the	results?	We	can	accomplish	this	task	with	monads,	but	we'd	have	to
wait	for	each	one	to	finish	before	calling	the	next.	What	about	combining	several	validations?	We'd	like	to	continue
validating	to	gather	the	list	of	errors,	but	monads	would	stop	the	show	after	the	first		Left		entered	the	picture.

In	the	next	chapter,	we'll	see	how	applicative	functors	fit	into	the	container	world	and	why	we	prefer	them	to	monads	in
many	cases.

Chapter	10:	Applicative	Functors

//	Exercise	1

//	==========

//	Use	safeProp	and	map/join	or	chain	to	safely	get	the	street	name	when	given

//	a	user

var	safeProp	=	_.curry(function	(x,	o)	{	return	Maybe.of(o[x]);	});

var	user	=	{

		id:	2,

		name:	"albert",

		address:	{

				street:	{

						number:	22,

						name:	'Walnut	St'

				}

		}

};

var	ex1	=	undefined;

In	Summary

Exercises

mostly-adequate-guide

69Chapter	9:	Monadic	Onions



//	Exercise	2

//	==========

//	Use	getFile	to	get	the	filename,	remove	the	directory	so	it's	just	the	file,

//	then	purely	log	it.

var	getFile	=	function()	{

		return	new	IO(function(){	return	__filename;	});

}

var	pureLog	=	function(x)	{

		return	new	IO(function(){

				console.log(x);

				return	'logged	'	+	x;

		});

}

var	ex2	=	undefined;

//	Exercise	3

//	==========

//	Use	getPost()	then	pass	the	post's	id	to	getComments().

//

var	getPost	=	function(i)	{

		return	new	Task(function	(rej,	res)	{

				setTimeout(function	()	{

						res({	id:	i,	title:	'Love	them	tasks'	});

				},	300);

		});

}

var	getComments	=	function(i)	{

		return	new	Task(function	(rej,	res)	{

				setTimeout(function	()	{

						res([

								{post_id:	i,	body:	"This	book	should	be	illegal"},

								{post_id:	i,	body:	"Monads	are	like	smelly	shallots"}

						]);

				},	300);

		});

}

var	ex3	=	undefined;

//	Exercise	4

//	==========

//	Use	validateEmail,	addToMailingList,	and	emailBlast	to	implement	ex4's	type

//	signature.

//		addToMailingList	::	Email	->	IO([Email])

var	addToMailingList	=	(function(list){

		return	function(email)	{

				return	new	IO(function(){

						list.push(email);

						return	list;

				});

		}

})([]);

function	emailBlast(list)	{

		return	new	IO(function(){

				return	'emailed:	'	+	list.join(',');

		});

}

var	validateEmail	=	function(x){

		return	x.match(/\S+@\S+\.\S+/)	?	(new	Right(x))	:	(new	Left('invalid	email'));

}

//		ex4	::	Email	->	Either	String	(IO	String)

var	ex4	=	undefined;
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The	name	applicative	functor	is	pleasantly	descriptive	given	its	functional	origins.	Functional	programmers	are	notorious
for	coming	up	with	names	like		mappend		or		liftA4	,	which	seem	perfectly	natural	when	viewed	in	the	math	lab,	but	hold	the
clarity	of	an	indecisive	darth	vader	at	the	drive	thru	in	any	other	context.

Anyhow,	the	name	should	spill	the	beans	on	what	this	interface	gives	us:	the	ability	to	apply	functors	to	each	other.

Now,	why	would	a	normal,	rational	person,	such	as	yourself,	want	such	a	thing?	What	does	it	even	mean	to	apply	one
functor	to	another?

To	answer	these	questions,	we'll	start	with	a	situation	you	may	have	already	encountered	in	your	functional	travels.	Let's
say,	hypothetically,	that	we	have	two	functors	(of	the	same	type)	and	we'd	like	to	call	a	function	with	both	of	their	values	as
arguments.	Something	simple	like	adding	the	values	of	two		Container	s.

//	we	can't	do	this	because	the	numbers	are	bottled	up.

add(Container.of(2),	Container.of(3));

//NaN

//	Let's	use	our	trusty	map

var	container_of_add_2	=	map(add,	Container.of(2));

//	Container(add(2))

We	have	ourselves	a		Container		with	a	partially	applied	function	inside.	More	specifically,	we	have	a		Container(add(2))		and
we'd	like	to	apply	its		add(2)		to	the		3		in		Container(3)		to	complete	the	call.	In	other	words,	we'd	like	to	apply	one	functor	to
another.

Now,	it	just	so	happens	that	we	already	have	the	tools	to	accomplish	this	task.	We	can		chain		and	then		map		the	partially
applied		add(2)		like	so:

Container.of(2).chain(function(two)	{

		return	Container.of(3).map(add(two));

});

The	issue	here	is	that	we	are	stuck	in	the	sequential	world	of	monads	wherein	nothing	may	be	evaluated	until	the	previous
monad	has	finished	its	business.	We	have	ourselves	two	strong,	independent	values	and	I	should	think	it	unnecessary	to
delay	the	creation	of		Container(3)		merely	to	satisfy	the	monad's	sequential	demands.

In	fact,	it	would	be	lovely	if	we	could	succinctly	apply	one	functor's	contents	to	another's	value	without	these	needless
functions	and	variables	should	we	find	ourselves	in	this	pickle	jar.

Applicative	Functors

Applying	Applicatives

Ships	in	bottles
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	ap		is	a	function	that	can	apply	the	function	contents	of	one	functor	to	the	value	contents	of	another.	Say	that	5	times	fast.

Container.of(add(2)).ap(Container.of(3));

//	Container(5)

//	all	together	now

Container.of(2).map(add).ap(Container.of(3));

//	Container(5)

There	we	are,	nice	and	neat.	Good	news	for		Container(3)		as	it's	been	set	free	from	the	jail	of	the	nested	monadic	function.
It's	worth	mentioning	again	that		add	,	in	this	case,	gets	partially	applied	during	the	first		map		so	this	only	works	when		add		is
curried.

We	can	define		ap		like	so:

Container.prototype.ap	=	function(other_container)	{

		return	other_container.map(this.__value);

}

Remember,		this.__value		will	be	a	function	and	we'll	be	accepting	another	functor	so	we	need	only		map		it.	And	with	that	we
have	our	interface	definition:

An	applicative	functor	is	a	pointed	functor	with	an		ap		method

Note	the	dependence	on	pointed.	The	pointed	interface	is	crucial	here	as	we'll	see	throughout	the	following	examples.

Now,	I	sense	your	skepticism	(or	perhaps	confusion	and	horror),	but	keep	an	open	mind;	this		ap		character	will	prove
useful.	Before	we	get	into	it,	let's	explore	a	nice	property.

F.of(x).map(f)	==	F.of(f).ap(F.of(x))

In	proper	English,	mapping		f		is	equivalent	to		ap	ing	a	functor	of		f	.	Or	in	properer	English,	we	can	place		x		into	our
container	and		map(f)		OR	we	can	lift	both		f		and		x		into	our	container	and		ap		them.	This	allows	us	to	write	in	a	left-to-right
fashion:
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Maybe.of(add).ap(Maybe.of(2)).ap(Maybe.of(3));

//	Maybe(5)

Task.of(add).ap(Task.of(2)).ap(Task.of(3));

//	Task(5)

One	might	even	recognise	the	vague	shape	of	a	normal	function	call	if	viewed	mid	squint.	We'll	look	at	the	pointfree	version
later	in	the	chapter,	but	for	now,	this	is	the	preferred	way	to	write	such	code.	Using		of	,	each	value	gets	transported	to	the
magical	land	of	containers,	this	parallel	universe	where	each	application	can	be	async	or	null	or	what	have	you	and		ap		will
apply	functions	within	this	fantastical	place.	It's	like	building	a	ship	in	a	bottle.

Did	you	see	there?	We	used		Task		in	our	example.	This	is	a	prime	situation	where	applicative	functors	pull	their	weight.
Let's	look	at	a	more	in-depth	example.

Say	we're	building	a	travel	site	and	we'd	like	to	retrieve	both	a	list	of	tourist	destinations	and	local	events.	Each	of	these	are
separate,	stand-alone	api	calls.

//	Http.get	::	String	->	Task	Error	HTML

var	renderPage	=	curry(function(destinations,	events)	{	/*	render	page	*/		});

Task.of(renderPage).ap(Http.get('/destinations')).ap(Http.get('/events'))

//	Task("<div>some	page	with	dest	and	events</div>")

Both		Http		calls	will	happen	instantly	and		renderPage		will	be	called	when	both	are	resolved.	Contrast	this	with	the	monadic
version	where	one		Task		must	finish	before	the	next	fires	off.	Since	we	don't	need	the	destinations	to	retrieve	events,	we
are	free	from	sequential	evaluation.

Again,	because	we're	using	partial	application	to	achieve	this	result,	we	must	ensure		renderPage		is	curried	or	it	will	not	wait
for	both		Tasks		to	finish.	Incidentally,	if	you've	ever	had	to	do	such	a	thing	manually,	you'll	appreciate	the	astonishing
simplicity	of	this	interface.	This	is	the	kind	of	beautiful	code	that	takes	us	one	step	closer	to	the	singularity.

Let's	look	at	another	example.

//	Helpers:

//	==============

//		$	::	String	->	IO	DOM

var	$	=	function(selector)	{

		return	new	IO(function(){	return	document.querySelector(selector)	});

}

//		getVal	::	String	->	IO	String

var	getVal	=	compose(map(_.prop('value')),	$);

//	Example:

//	===============

//		signIn	::	String	->	String	->	Bool	->	User

var	signIn	=	curry(function(username,	password,	remember_me){	/*	signing	in	*/		})

IO.of(signIn).ap(getVal('#email')).ap(getVal('#password')).ap(IO.of(false));

//	IO({id:	3,	email:	"gg@allin.com"})

	signIn		is	a	curried	function	of	3	arguments	so	we	have	to		ap		accordingly.	With	each		ap	,		signIn		receives	one	more
argument	until	it	is	complete	and	runs.	We	can	continue	this	pattern	with	as	many	arguments	as	necessary.	Another	thing
to	note	is	that	two	arguments	end	up	naturally	in		IO		whereas	the	last	one	needs	a	little	help	from		of		to	lift	it	into		IO		since
	ap		expects	the	function	and	all	its	arguments	to	be	in	the	same	type.

Coordination	Motivation
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Let's	examine	a	pointfree	way	to	write	these	applicative	calls.	Since	we	know		map		is	equal	to		of/ap	,	we	can	write	generic
functions	that	will		ap		as	many	times	as	we	specify:

var	liftA2	=	curry(function(f,	functor1,	functor2)	{

		return	functor1.map(f).ap(functor2);

});

var	liftA3	=	curry(function(f,	functor1,	functor2,	functor3)	{

		return	functor1.map(f).ap(functor2).ap(functor3);

});

//liftA4,	etc

	liftA2		is	a	strange	name.	It	sounds	like	one	of	the	finicky	freight	elevators	in	a	rundown	factory	or	a	vanity	plate	for	a
cheap	limo	company.	Once	enlightened,	however,	it's	self	explanatory:	lift	these	pieces	into	the	applicative	functor	world.

When	I	first	saw	this	2-3-4	nonsense	it	struck	me	as	ugly	and	unnecessary,	after	all,	we	can	check	arity	of	functions	in
JavaScript	and	build	this	up	dynamically.	However,	it	is	often	useful	to	partially	apply		liftA(N)		itself,	so	it	cannot	vary	in
argument	length.

Let's	see	this	in	use:

//	checkEmail	::	User	->	Either	String	Email

//	checkName	::	User	->	Either	String	String

//		createUser	::	Email	->	String	->	IO	User

var	createUser	=	curry(function(email,	name)	{	/*	creating...	*/	});

Either.of(createUser).ap(checkEmail(user)).ap(checkName(user));

//	Left("invalid	email")

liftA2(createUser,	checkEmail(user),	checkName(user));

//	Left("invalid	email")

Since		createUser		takes	two	arguments,	we	use	the	corresponding		liftA2	.	The	two	statements	are	equivalent,	but	the
	liftA2		version	has	no	mention	of		Either	.	This	makes	it	more	generic	and	flexible	since	we	are	no	longer	married	to	a
specific	type.

Let's	see	the	previous	examples	written	this	way:

liftA2(add,	Maybe.of(2),	Maybe.of(3));

//	Maybe(5)

liftA2(renderPage,	Http.get('/destinations'),	Http.get('/events'))

//	Task("<div>some	page	with	dest	and	events</div>")

liftA3(signIn,	getVal('#email'),	getVal('#password'),	IO.of(false));

//	IO({id:	3,	email:	"gg@allin.com"})

In	languages	like	haskell,	scala,	PureScript,	and	swift,	where	it	is	possible	to	create	your	own	infix	operators	you	may	see
syntax	like	this:

Bro,	do	you	even	lift?

Operators
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--	haskell

add	<$>	Right	2	<*>	Right	3

//	JavaScript

map(add,	Right(2)).ap(Right(3))

It's	helpful	to	know	that		<$>		is		map		(aka		fmap	)	and		<*>		is	just		ap	.	This	allows	for	a	more	natural	function	application	style
and	can	help	remove	some	parenthesis.

We	haven't	spoken	much	about	derived	functions.	Seeing	as	all	of	these	interfaces	are	built	off	of	each	other	and	obey	a
set	of	laws,	we	can	define	some	weaker	interfaces	in	terms	of	the	stronger	ones.

For	instance,	we	know	that	an	applicative	is	first	a	functor,	so	if	we	have	an	applicative	instance,	surely	we	can	define	a
functor	for	our	type.

This	kind	of	perfect	computational	harmony	is	possible	because	we're	working	within	a	mathematical	framework.	Mozart
couldn't	have	done	better	even	if	he	had	torrented	ableton	as	a	child.

I	mentioned	earlier	that		of/ap		is	equivalent	to		map	.	We	can	use	this	knowledge	to	define		map		for	free:

//	map	derived	from	of/ap

X.prototype.map	=	function(f)	{

		return	this.constructor.of(f).ap(this);

}

Monads	are	at	the	top	of	the	food	chain,	so	to	speak,	so	if	we	have		chain	,	we	get	functor	and	applicative	for	free:

Free	can	openers
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//	map	derived	from	chain

X.prototype.map	=	function(f)	{

		var	m	=	this;

		return	m.chain(function(a)	{

				return	m.constructor.of(f(a));

		});

}

//	ap	derived	from	chain/map

X.prototype.ap	=	function(other)	{

		return	this.chain(function(f)	{

				return	other.map(f);

		});

};

If	we	can	define	a	monad,	we	can	define	both	the	applicative	and	functor	interfaces.	This	is	quite	remarkable	as	we	get	all
of	these	can	openers	for	free.	We	can	even	examine	a	type	and	automate	this	process.

It	should	be	pointed	out	that	part	of		ap	's	appeal	is	the	ability	to	run	things	concurrently	so	defining	it	via		chain		is	missing
out	on	that	optimization.	Despite	that,	it's	good	to	have	an	immediate	working	interface	while	one	works	out	the	best
possible	implementation.

Why	not	just	use	monads	and	be	done	with	it,	you	ask?	It's	good	practice	to	work	with	the	level	of	power	you	need,	no
more,	no	less.	This	keeps	cognitive	load	to	a	minimum	by	ruling	out	possible	functionality.	For	this	reason,	it's	good	to	favor
applicatives	over	monads.

Monads	have	the	unique	ability	to	sequence	computation,	assign	variables,	and	halt	further	execution	all	thanks	to	the
downward	nesting	structure.	When	one	sees	applicatives	in	use,	they	needn't	concern	themselves	with	any	of	that
business.

Now,	on	to	the	legalities...

Like	the	other	mathematical	constructs	we've	explored,	applicative	functors	hold	some	useful	properties	for	us	to	rely	on	in
our	daily	code.	First	off,	you	should	know	that	applicatives	are	"closed	under	composition",	meaning		ap		will	never	change
container	types	on	us(yet	another	reason	to	favor	over	monads).	That's	not	to	say	we	cannot	have	multiple	different	effects
-	we	can	stack	our	types	knowing	that	they	will	remain	the	same	during	the	entirety	of	our	application.

To	demonstrate:

		var	tOfM	=	compose(Task.of,	Maybe.of);

		liftA2(_.concat,	tOfM('Rainy	Days	and	Mondays'),	tOfM('	always	get	me	down'));

		//	Task(Maybe(Rainy	Days	and	Mondays	always	get	me	down))

See,	no	need	to	worry	about	different	types	getting	in	the	mix.

Time	to	look	at	our	favorite	categorical	law:	identity:

//	identity

A.of(id).ap(v)	==	v

Laws

Identity
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Right,	so	applying		id		all	from	within	a	functor	shouldn't	alter	the	value	in		v	.	For	example:

var	v	=	Identity.of("Pillow	Pets");

Identity.of(id).ap(v)	==	v

	Identity.of(id)		makes	me	chuckle	at	its	futility.	Anyway,	what's	interesting	is	that,	as	we've	already	established,		of/ap		is
the	same	as		map		so	this	law	follows	directly	from	functor	identity:		map(id)	==	id	.

The	beauty	in	using	these	laws	is	that,	like	a	militant	kindergarten	gym	coach,	they	force	all	of	our	interfaces	to	play	well
together.

//	homomorphism

A.of(f).ap(A.of(x))	==	A.of(f(x))

A	homomorphism	is	just	a	structure	preserving	map.	In	fact,	a	functor	is	just	a	homomorphism	between	categories	as	it
preserves	the	original	category's	structure	under	the	mapping.

We're	really	just	stuffing	our	normal	functions	and	values	into	a	container	and	running	the	computation	in	there	so	it	should
come	as	no	surprise	that	we	will	end	up	with	the	same	result	if	we	apply	the	whole	thing	inside	the	container	(left	side	of	the
equation)	or	apply	it	outside,	then	place	it	in	there	(right	side).

A	quick	example:

Either.of(_.toUpper).ap(Either.of("oreos"))	==	Either.of(_.toUpper("oreos"))

The	interchange	states	that	it	doesn't	matter	if	we	choose	to	lift	our	function	into	the	left	or	right	side	of		ap	.

//	interchange

v.ap(A.of(x))	==	A.of(function(f)	{	return	f(x)	}).ap(v)

Here	is	an	example:

var	v	=	Task.of(_.reverse);

var	x	=	'Sparklehorse';

v.ap(Task.of(x))	==	Task.of(function(f)	{	return	f(x)	}).ap(v)

And	finally	composition	which	is	just	a	way	to	check	that	our	standard	function	composition	holds	when	applying	inside	of
containers.

//	composition

A.of(compose).ap(u).ap(v).ap(w)	==	u.ap(v.ap(w));

Homomorphism

Interchange

Composition
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var	u	=	IO.of(_.toUpper);

var	v	=	IO.of(_.concat("&	beyond"));

var	w	=	IO.of("blood	bath	");

IO.of(_.compose).ap(u).ap(v).ap(w)	==	u.ap(v.ap(w))

A	good	use	case	for	applicatives	is	when	one	has	multiple	functor	arguments.	They	give	us	the	ability	to	apply	functions	to
arguments	all	within	the	functor	world.	Though	we	could	already	do	so	with	monads,	we	should	prefer	applicative	functors
when	we	aren't	in	need	of	monadic	specific	functionality.

We're	almost	finished	with	container	apis.	We've	learned	how	to		map	,		chain	,	and	now		ap		functions.	In	the	next	chapter,
we'll	learn	how	to	work	better	with	multiple	functors	and	disassemble	them	in	a	principled	way.

Chapter	11:	Traversable/Foldable	Functors

require('./support');

var	Task	=	require('data.task');

var	_	=	require('ramda');

//	fib	browser	for	test

var	localStorage	=	{};

//	Exercise	1

//	==========

//	Write	a	function	that	add's	two	possibly	null	numbers	together	using	Maybe	and	ap()

//		ex1	::	Number	->	Number	->	Maybe	Number

var	ex1	=	function(x,	y)	{

		//	write	me

};

//	Exercise	2

//	==========

//	Now	write	a	function	that	takes	2	Maybe's	and	adds	them.	Use	liftA2	instead	of	ap().

//		ex2	::	Maybe	Number	->	Maybe	Number	->	Maybe	Number

var	ex2	=	undefined;

//	Exercise	3

//	==========

//	Run	both	getPost(n)	and	getComments(n)	then	render	the	page	with	both.	(the	n	arg	is	arbitrary)

var	makeComments	=	_.reduce(function(acc,	c){	return	acc+"<li>"+c+"</li>"	},	"");

var	render	=	_.curry(function(p,	cs)	{	return	"<div>"+p.title+"</div>"+makeComments(cs);	});

//		ex3	::	Task	Error	HTML

var	ex3	=	undefined;

//	Exercise	4

//	==========

//	Write	an	IO	that	gets	both	player1	and	player2	from	the	cache	and	starts	the	game

localStorage.player1	=	"toby";

localStorage.player2	=	"sally";

var	getCache	=	function(x)	{

		return	new	IO(function()	{	return	localStorage[x];	});

In	Summary

Exercises
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}

var	game	=	_.curry(function(p1,	p2)	{	return	p1	+	'	vs	'	+	p2;	});

//		ex4	::	IO	String

var	ex4	=	undefined;

//	TEST	HELPERS

//	=====================

function	getPost(i)	{

		return	new	Task(function	(rej,	res)	{

				setTimeout(function	()	{	res({	id:	i,	title:	'Love	them	futures'	});	},	300);

		});

}

function	getComments(i)	{

		return	new	Task(function	(rej,	res)	{

				setTimeout(function	()	{

						res(["This	book	should	be	illegal",	"Monads	are	like	space	burritos"]);

				},	300);

		});

}
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