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Efficient clearance of apoptotic cells and cell-remnants is indispensable for normal tissue turnover. 
Nevertheless, it can be mis-used by transformed cells to foster malignancy. The characterization of 
various signalling pathways that regulate this complex and evolutionary conserved process has shed 
light on new pathogenetic mechanisms of many diseases. Impaired clearance not only promotes 
initiation of autoimmunity and the perpetuation of chronic inflammation, but also may foster  
anti-tumor immunity. Besides the autoimmune phenotype of chronic inflammatory rheumatoid 
disorders a plethora of pathologies have been associated with defects in genes involved in clearance.

Figure by Luis Munoz, Christian Berens, Udo Gaipl, Kirsten Lauber and Martin Herrmann.
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In multicellular organisms, states with a high degree of tissue turnover like embryogenesis, 
development, and adult tissue homeostasis need an instantaneous, tightly regulated and 
immunologically silent clearance of these dying cells to ensure appropriate development of 
the embryo and adult tissue remodelling. The proper and swift clearance of apoptotic cells 
is essential to prevent cellular leakage of damage associated molecular patterns (DAMPs) 
which would lead to the stimulation of inflammatory cytokine responses. In addition to the 
clearance of apoptotic cells (efferocytosis), backup mechanisms are required to cope with 
DAMPs (HMGB-1, DNA, RNA, S100 molecules, ATP and adenosine) and other intracellular 
material (uric acid, intracellular proteins and their aggregates) released from cells, that were 
not properly cleared and have entered the stage of secondary necrosis. Furthermore, under 
certain pathologic conditions (e.g. gout, cancer, diabetes) non-apoptotic cell death may 
transiently occur (NETosis, necroptosis, pyroptosis) which generates material that also has  
to be cleared to avoid overloading tissues with non-functional cellular waste.

Efficient efferocytosis is therefore indispensable for normal tissue turnover and homeostasis. 
The characterization of various signalling pathways that regulate this complex and 
evolutionary conserved process has shed light on new pathogenetic mechanisms of many 
diseases. Impaired clearance promotes initiation of autoimmunity as well as the perpetuation 
of chronic inflammation, but may also foster anti-tumor immunity under certain 
microenvironmental conditions. Immunological tolerance is continuously being challenged 
by the presence of post-apoptotic remnants in peripheral lymphoid tissues. Besides the 
autoimmune phenotype of chronic inflammatory rheumatoid disorders a plethora of 
pathologies have been associated with defects in genes involved in clearance,  
e.g. atherosclerosis, cancer, gout, diabetes, some forms of blindness, neuropathy, 
schizophrenia and Alzheimer’s disease.

The main goal of this research topic is to collect contributions from various disciplines 
committed to studying pathogenetic mechanisms of the aforementioned disorders and 
dealing with alterations in the clearance of dying and dead cells, their remnants, and their 
constituents that leak out after membrane rupture. Integrating the combined collection 
of knowledge on efferocytosis and clearance of dead cells and their derived waste from 
different fields of research in physiology and pathophysiology could improve the molecular 
understanding of these increasingly prevalent diseases and may ultimately result in new 
therapeutic strategies.
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During normal tissue turnover, innate immune sentinels swiftly
clear dying cells in an immunologically silent manner. Large
amounts of nuclear chromatin are meticulously kept away from
the immune system to prevent inflammation and, eventually,
autoimmunity from developing. In case this highly efficient sur-
veillance system is derailed, the unanticipated presence of post-
mortem remnants in tissues can challenge the otherwise nor-
mally ensuing immunological tolerance. Apoptotic cell death is
the most natural way to preserve this precious tissue homeosta-
sis. Early recognition and swift clearance of cells undergoing
apoptosis ensures the prevention of tissue damage and autoim-
mune reactions (1). Kimani et al. thoroughly review in this
Research Topic, the most recent evidence linking autoimmune
diseases and the recognition of apoptotic cells via surface-exposed
phosphatidylserine (2).

Besides the autoimmune phenotype of chronic inflammatory
rheumatoid disorders, a plethora of pathologies have been asso-
ciated with defects in genes involved in the clearance of cell
remnants from tissues (3, 4). This Research Topic bundles a set
of manuscripts describing various ways of how such “uncleared”
cell remnants participate in the pathogenesis of chronic inflam-
matory diseases and also cancer. Improving our knowledge of
the immune modulatory language(s) spoken by dying and dead
cells and their constituents may prove essential for understand-
ing the key processes involved. Ultimately and hopefully, this
may lead to the development of new classes of therapeutic and
disease-modifying agents (5).

For example, González and Hidalgo emphasize that it is now
possible to take advantage of the huge amount of published evi-
dence on therapeutic modulation of the liver X receptor activity in
clearance-associated diseases (6). Notably, pharmacological regu-
lation of such nuclear factors, which are activated upon recog-
nition of dying cells, may enhance the ability of macrophages to
clear dead cells and thereby provide additional beneficial effects for
treating clearance-related diseases like osteoporosis, rheumatoid
arthritis, atherosclerosis, diabetes, and Alzheimer’s disease (7–10).

Upon recruitment to sites of acute inflammation, neutrophils
respond either with phagocytosis of the inflammatory trigger,
degranulation, or with the formation of neutrophil-extracellular-
traps (NETs) (11) exposing modified chromatin at the site of
the initial injury (12). The nature of this material implies the

massive death of neutrophils, and this response is important for
both the inactivation of the aggressor and the resolution of the
initial inflammation (13). However, how this battlefield is finally
cleaned up and cleared has not been studied yet and may surely
provide new therapeutic options for autoimmune diseases (12,
14). Intense current research on the immunobiology of this spe-
cial way of dying called NETosis also promises new therapeutic
targets for ameliorating autoinflammation (15, 16). Severe and
standard treatment resistant forms of pulmonary inflammation
may also profit by novel dual interventions targeting both cell sur-
vival and promotion of apoptotic cell clearance by phagocytes as
Felton et al. and Szondy et al. summarize in this issue (17, 18).
Although one of the multiple mechanisms of action of glucocorti-
coids is to enhance apoptotic cell clearance by macrophages (19),
their long-term use has many side effects that strongly burden
chronically diseased patients leading to higher rates of morbidity.
Alternatives to classic therapies and specific pathogenesis-targeted
therapies are therefore very much welcome.

The many different signals expressed or secreted by apop-
totic cells noticeably determine the reaction of the organism
to the event triggering death. Any shortcomings in phagocytic
clearance, either by impaired clearance, excessive death or any
other reason, are invariably related to continuous stimulation
of the organism by either pro-inflammatory/destructive or anti-
inflammatory/healing signaling. Many chronic inflammatory dis-
eases are driven and somehow modulated by metabolites released
from dying cells. For example, Chen et al. present an overview of
the various sites of action of nucleotides in inflammatory condi-
tions (20). Intervention at this level may shift the balance toward
anti-inflammation, thereby achieving the therapeutic goal more
effectively.

In the case of solid tumors, the metabolites and, especially, the
danger signals released may serve as biomarkers. Gehrmann et al.
nicely demonstrate in this Research Topic that stress response pro-
teins are released already by premalignant conditions of the liver as
well as by hepatocellular carcinoma (21). This can be important for
prognosis, prediction, and monitoring. The tumor microenviron-
ment, especially directly after anti-cancer treatment, is overflowing
with mediators and signals from dead and dying cells. To obtain
an efficient anti-tumor immune response, an immune-suppressive
microenvironment has to be shifted to an activating one. The
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latter might be achieved by rendering the tumor cells immuno-
genic, namely, by inducing immunogenic tumor cell death forms
by standard treatments such as radio- and/or chemotherapy (22).
Furthermore, short range danger signals foster leukocyte infiltra-
tion into the tumor and initiate an inflammatory response, which
is afterwards supplanted by long-range healing and regenerative
signals, which then, in contrast, may support tumor proliferation.
The review from Willems summarizes evidence documenting the
dark side of apoptosis in modulating anti-tumor responses (23).
A delicate balance exists between anti-tumor reactions and coun-
teracting immune suppression. In this scenario, the role of tumor
associated macrophages as sensors and central orchestrators of
tumor-promoting reparatory and anti-inflammatory signals has
recently been highlighted by Ford et al. (24). In addition, avoid-
ing tumor repopulation after anti-cancer therapy by considering
the immune-suppressive consequences of apoptotic cell clearance
should be taken into account as a cautionary premise for each
and every anti-cancer treatment (25–28). Of note, inflamma-
tory reactions, DNA damage responses, and cell death forms are
highly interconnected (29). Alterations in the clearance of dying
and dead cells, their remnants, and their constituents that leak
out after membrane rupture are therefore central elements in all
inflammatory conditions, starting from its origin and ending in
its resolution.
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The rapid and efficient clearance of apoptotic cells results in the elimination of auto-antigens
and provides a strong anti-inflammatory and immunosuppressive signal to prevent autoim-
munity. While professional and non-professional phagocytes utilize a wide array of surface
receptors to recognize apoptotic cells, the recognition of phosphatidylserine (PS) on apop-
totic cells by PS receptors on phagocytes is the emblematic signal for efferocytosis in meta-
zoans. PS-dependent efferocytosis is associated with the production of anti-inflammatory
factors such as IL-10 andTGF-β that function, in part, to maintain tolerance to auto-antigens.
In contrast, when apoptotic cells fail to be recognized and processed for degradation, auto-
antigens persist, such as self-nucleic acids, which can trigger immune activation leading to
autoantibody production and autoimmunity. Despite the fact that genetic mouse models
clearly demonstrate that loss of PS receptors can lead to age-dependent auto-immune
diseases reminiscent of systemic lupus erythematosus (SLE), the link between PS and
defective clearance in chronic inflammation and human autoimmunity is not well delin-
eated. In this perspective, we review emerging questions developing in the field that may
be of relevance to SLE and human autoimmunity.

Keywords: phosphatidylserine, apoptotic cells, scramblases, apoptotic versus non-apoptotic PS externalization,
autoimmunity

INTRODUCTION
The clearance of apoptotic cells by phagocytic cells (a process now
called efferocytosis to distinguish the processing of apoptotic cells
from other phagocytic processes) is critically important to main-
tain homeostasis in multicellular organisms. Efficient efferocytosis
not only allows for the removal and degradation of effete and dam-
aged cells, but has an equally important function in the resolution
of inflammation by protecting tissue from harmful exposure to
the inflammatory and immunogenic contents of dying cells (1–4).
There is now considerable genetic evidence supported by mouse
knockout studies that failed or delayed efferocytosis results in the
release of auto-antigens that can contribute to the etiology of auto-
immune diseases such as systemic lupus erythematosus (SLE) (5).
In addition, macrophages derived from SLE patients also exhibit
defects in efferocytosis (6, 7). Elucidating the genetic basis for
defective clearance in relation to human autoimmunity is clearly
a topical and important area of research.

Concomitant with caspase activation and cell death, apoptotic
cells display a wide array of nascent and modified molecular deter-
minants on their plasma membranes that act as “eat-me” signals
for phagocytes. While these determinants result from a combina-
tion of re-localized proteins, modified carbohydrates, and from
collapse of phospholipid asymmetry at the plasma membrane, the
externalization of phosphatidylserine (PS) is arguably the most
emblematic event associated with the early phase of apoptotic
program (8–10). If apoptotic cells escape immediate clearance,

a second wave of late apoptotic cells clearance is mediated by
opsonins that includes nuclear materials (11), C1q (12), ficolins
(13), and pentraxins (14–16). The late apoptotic cells bound by
these opsonins are then recognized and cleared via phagocytic
receptors including FcγRIIA, C1q receptor, CR1, CD91, and cal-
reticulin (CRT), helping to avoid inflammation (17, 18). Although
our discussion here focuses on cross-interactions between differ-
ent PS receptors and opsonins, the crosstalk between different
recognition systems (such as PS and modified carbohydrates and
PS and protein neoepitopes) is likely equally important.

The fact that blockage of PS on the apoptotic cell prevents
many of the anti-inflammatory consequences of efferocytosis,
combined with observations that knockout of several PS receptors
and PS opsonins (soluble factors that link PS on apoptotic cells to
receptors) lead to failed efferocytosis, chronic inflammation, and
age-dependent autoimmunity (4) has led many investigators to a
conceptual framework that externalized PS functions as a damp-
ening platform for negative immune regulation. In this capacity,
externalized PS functions both as an “eat-me” signal for efferocy-
tosis, but also as an “inflammo-suppression” signal that promotes
tolerance for both immune cells and non-immune bystander cells
that come in direct contact with PS externalized membranes (2, 19,
20). Despite convincing evidence as gleaned from knockout stud-
ies in mouse, identifying links between defective PS recognition
and/or signaling and human autoimmunity has been surprisingly
enigmatic (Table 1).
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Table 1 | Summary of PS receptors and soluble PS binding proteins and their relationship to autoimmunity in mouse and human systems.

Molecule Function Mouse Human

PS BRIDGING MOLECULES

GAS-6 Bridging molecule between PS and TAM

receptor

Deficiency causes platelet dysfunction and

protects against thrombosis (21)

Polymorphism positively

associated with cutaneous

vasculitis in SLE patients (22)

Protein S Bridging molecule between PS and TAM

receptors

Knockout is embryonic lethal (23) SLE patients have reduced level

of circulating protein S (24, 25)

MGF-E8 Bridging molecule between PS and

αvβ3/β5 integrins

Deficient mice develops auto-immune disease (26) Polymorphisms and aberrant

splicing reported in some SLE

patients (27, 28)

C1q Acts as PS bridging molecule to SCARF1

and CD91/LRP1. C1q also binds annexin

A2, A5, and CRT

Deficiency leads to auto-immune diseases (29) Ninety percent of C1q-deficient

individuals develop SLE (30)

MBL Bridging molecule between PS and

CD91/LRP1

Deficiency leads to defective clearance of

apoptotic cells but no auto-immune phenotype (31)

Polymorphisms are SLE risk

factors (32, 33)

High molecular

weight kininogen

Bridging molecule between PS and uPAR NR NR

Thrombospondin Bridging molecule between PS and CD36 NR NR

CRT Binds to PS in a complex with C1q Knockout is embryonic lethal (34) NR

PS RECEPTORS

TAM receptors Indirectly recognize PS via protein S or

GAS-6

Tyro-3KO/AxlKO/MerKO triple knockout mice develop

auto-immune diseases (35). MerKO single knockout

mice develop progressive SLE-like autoimmunity

(36)

Polymorphisms in Mer gene

associated with multiple

sclerosis susceptibility (37).

Increased sMertk in advanced

atheromata (38) and SLE (39)

Tim-4 Directly recognize PS Administration of anti-Tim4 mAb into mice caused

auto-antibodies production (40)

NR

CD300f Directly recognize PS Deficient mice develop a SLE-like disease (41) NR

SCARF1 Indirectly recognize PS via binding to C1q Deficient mice developed SLE-like disease (42) NR

Stabilin-1/2 Directly recognize PS Deficient mice do not show any SLE-related

phenotype (43)

NR

BAI-1 Directly recognize PS NR NR

RAGE Directly recognize PS Deficiency causes impaired phagocytosis but no

SLE-related phenotype (44)

Polymorphism associated with

SLE and disease severity in

lupus nephritis (45)

CD91/LRP1 Indirectly recognize PS via binding to C1q

and/or collectins (MBL, SP-A, SP-D)

Deficient mice are embryonic lethal (46) SLE patients have significantly

increased levels of circulating

soluble CD91/LRP1 (47)

NR, not reported.

MICE LACKING PS RECEPTORS ARE PRONE TO LUPUS-LIKE
AUTO-IMMUNE CONDITIONS
Over the past decade, a diverse array of PS receptors and solu-
ble PS bridging proteins that link apoptotic cells to phagocytes
have been identified (48–50) (Table 1). Although this suggests
significant redundancy at the biochemical level, PS receptors do

not appear to act in a compensatory capacity by loss-of-function.
For example, on certain genetic backgrounds, single knockouts of
Mer (36), Tim-1 (51), Tim-4 (40), SCARF1 (42), and CD300f (41)
all have a common phenotype that include defective apoptotic cell
clearance, the subsequent production of auto-antibodies, and SLE-
like autoimmunity. Similarly, a knockout of MFG-E8 (26), a PS
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opsonin that bridges apoptotic cells to αvβ5 and αvβ3 integrin, also
produces a strong SLE-like phenotype. While in some cases dual
targeting of PS receptors can compound phenotypic outcomes
[for example Tim-4 and MFG-E8 (52) develop autoimmunity at
an earlier age, or triple knockout of TAM (Tyro3, Axl, and Mer)
(35) have a more potent onset of disease than Mer alone), collec-
tively these data suggest, at least in the mouse, that PS receptors
are not functionally redundant. One possible interpretation is that
PS receptors, analogously to the immunological synapse for T cell
signaling, comprise a multi-protein signaling receptor complex,
perhaps akin to a PS phagocytic synapse, where loss-of-function
of any single component disrupts the higher order functional unit
(53, 54). Several of the known PS receptors, such as αvβ5 integrin
and Mertk, are known to synergize in order to activate intracellular
signaling pathways such as Rac1 (55, 56) also supporting the idea
of receptor crosstalk. However, while attractive to speculate, such
a multi-protein structure (aka, the “engulfosome”) has not been
identified at a biochemical level.

Clearly then, an obvious question is whether the aforemen-
tioned PS circuitry fails, or is a genetic risk factor for human
auto-immune disease such as SLE. Presently, the answer is still
not clear, although of the major PS recognition receptors that give
rise to autoimmunity in mice (Mer, Tim-1, Tim-4, SCARF1, and
CD300f), their involvement in human autoimmunity is not yet
obvious from genetic linkage analysis. Although MFG-E8 muta-
tions have been identified in a small subset of lupus patients
(28), and a case-control study of MFG-E8 genetic polymorphisms
showed some genetic linkage (27), these events appear to be rare.
Likewise in the case of TAMs (Mer) and their ligands, it was shown
that in SLE patients, TAM levels do not appear to be compromised
(57, 58), and in some patients, serum levels of Mer and TAM
ligands actually appear to be elevated (59–61).

The recent studies by Ramirez-Ortiz and colleagues, identifying
the scavenger receptor SCARF1 (SREC1, CED-1) as a PS receptor
that recognizes a PS in the context of complement component C1q
(42) might have relevance to human SLE. In vivo, SCARF1 (−/−)
mice in develop systemic SLE-like disease, including the generation
of auto-antibodies and glomerulonephritis that closely mimics
human SLE (42). Interestingly, while SCARF1 was shown to bind
via PS, apoptotic cells deficient in C1q were notably impaired in
their ability to bind to and activate SCARF1, suggesting the C1q
acts as a requisite bridging molecule for PS. In addition to SCARF1,
C1q also binds to PS-opsonized CRT (62) on the surface of apop-
totic cells (a ligand for CD91/LRP1 on the phagocyte), as well as
other PS-binding proteins that include Annexin A5 and Annexin
A2 (63). Although genetic deficiency of C1q is quite rare (<100
known cases have been reported), over 90% of these individu-
als develop SLE (30), and monocytes (64, 65) derived from these
patients have impaired ability to clear apoptotic cells suggesting a
defect in the apoptotic cell clearance machinery. In addition, apop-
totic cells derived from SLE patients also show greatly diminished
capacity to bind C1q (66) suggesting one or more of the deter-
minants on the apoptotic cell that bind C1q is also deficient in
SLE. Although monocytes isolated from SLE patients showed only
a modest decrease in CD91/LRP1 levels, patients with rheuma-
toid arthritis or SLE showed significantly elevated levels of soluble
CD91/LRP1 cleaved by ADAM17 in response to inflammation

(47). Possibly related, excessive protease cleavage of Mertk from
macrophages has also been linked to inefficient clearance in the
development of advanced atheromata (38) and SLE (39). Clearly,
it will be of interest to ascertain at the genetic level whether loss-of-
function mutations occur at CD91/LRP1 or SCARF1 receptor loci
that result in risk associations for human auto-immune diseases.

Taken together, while loss-of-function genetic ablation studies
in mouse models clearly show a link between systemic autoimmu-
nity and loss-of-function of PS receptors, translating this biology
into human SLE pathology still remains somewhat of a mys-
tery. Future studies should address whether PS receptor biology
is arranged differently in humans in comparison to mice PS recep-
tors, allowing for more redundancy, or whether defective PS signal-
ing in human is part of a multi-genic signature that acts as a cohort
with other risk factors. Another caveat on relying on expression
analysis is that many SLE and auto-immune patients are chroni-
cally treated with glucocorticoids and steroids, which may affect
the levels of PS receptors or PS-opsonins. For example, Lauber
and colleagues showed that MFG-E8 is transcriptionally regulated
by dexamethasone, a steroid used to treat the chronic inflamma-
tion associated with lupus (67). In addition to MFG-E8, the TAM
receptors are also subject to acute regulation by glucocorticoids
but in a reciprocal fashion; Mer is up-regulated while Axl is down-
regulated following dexamethasone treatment (68). This could
also induce a feed-forward mechanism, where dexamethasone-
induced increase in Mer levels could increase efferocytosis, which
itself further increases Mer by the increased uptake of apoptotic
cargo. Internalized apoptotic cells increase ingested cholesterol,
which can activate LXR and activate the Mer promoter (69, 70).
This idea that corticosteroids mediate their effects by manipulat-
ing PS biology might be interrogated via the development of more
specific therapeutics for SLE.

Another possible reason for the discrepancy between the stud-
ies in mice and the observations in human autoimmunity is that
defects in PSR signaling (generated in mouse models) may not be
manifested as defects in PSRs or PS-opsonins in human autoim-
munity but by mutations in genes involved in the mechanisms
upstream such as PS externalization or modification. We explore
facets of this hypothesis in the following three sections.

SCRAMBLASES, FLIPPASES, AND UPSTREAM MECHANISMS
OF PS EXPOSURE
While the past decade has shown great strides in elucidating the
repertoire of PS receptors that bind to and rely signals from PS on
the apoptotic cell to phagocytic receptors, in recent years, there has
also been a much greater appreciation for the genes and regulatory
circuits that control PS externalization, including the realization
that mutations in these genes can lead to pathologies related to dys-
functional PS biology. Novel scramblases and flippases responsible
for PS externalization have been enumerated, opening up the pos-
sibility that genes that control externalization, and defects therein,
may also contribute to chronic inflammation and autoimmunity.

Similar to other lipids, PS is synthesized in the endoplasmic
reticulum and golgi apparatus and then transported to the plasma
membrane by carrier proteins. Once PS reaches the plasma mem-
brane, it is actively excluded from the extracellular milieu by
several complementary enzymes. These enzymes, in part, maintain
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membrane asymmetry, with the choline-containing phospho-
lipids; PC and SM predominantly maintained in the outer leaflet,
and the amino-phospholipids; PS, PE, and PI predominately on
the inner leaflet (71). To maintain PS asymmetry under homeosta-
tic conditions, three main types of enzymes operate at equilibrium,
but each can be perturbed during apoptosis and during cell stress.
Flippases and Floppases translocate phospholipids from the outer
surface to the inner surface and from the inner surface to the outer
surface, respectively, and both require ATP for this activity (72).
A third, and least understood class of lipid transporters that regu-
late PS topology are called scramblases, and as their name implies,
when activated, collapse membrane asymmetry, and in the context
of PS biology, promote the accumulation of PS to the external side
of the membrane.

Although phospholipid scramblases do not show selectivity for
the phospholipid species or for the direction of movement, the
scramblase-mediated exposure of PS has important consequences
for several biological events that include coagulation, neurotrans-
mitter release, sperm capacitation, and apoptosis (73). While PS is
externalized during both platelet activation and during apoptosis,
the recent characterization of two scramblases, Transmembrane
protein 16F (TMEM16F) (74, 75) and Xkr8 (76), provide some
conceptual relief to this field, highlighting that cells externalize
PS through different activation and regulatory mechanisms, but
of equal significance, that not all externalized PS has the same
biological function.

Transmembrane protein 16F is an eight-transmembrane span-
ning aminophospholipid scramblase that is critical for the
calcium-dependent externalization of PS in activated platelets.
In the studies from Nagata and colleagues, these investigators
developed a clever FACS sorting approach to characterize a Ba/F3
pro-B cell sub-line that can be trained to respond to sub-threshold
concentrations of calcium. After repetitive sorting of PS-positive
cells, a Ba/F3 sub-clone that contained a mutated TMEM16F and
constitutively scrambled PS was identified (74). Further stud-
ies showed that loss of TMEM16F function, either via knockout
or through mutation, impairs calcium-dependent PS scramblase
activity, and when occurring in platelets, results in their inability
to recruit and activate hemostasis factors that include factor V,
factor X, and prothrombin to the platelet membrane (75). DNA
sequence analysis further showed that Scott syndrome patients,
which are characterized by a rare bleeding disorder that have
defects on calcium-dependent phospholipid scrambling, carry
loss-of-function mutations in both Tmem16 alleles. Functionally,
other members of TMEM16 family, including 16C, 16D, 16F, 16G,
and 16J are also capable of scrambling PS, but further studies
will be required to ascertain whether different family members are
specific for different cell types (77).

Notably, the above-mentioned Ca2+-stimulated PS externaliza-
tion induced by TMEM16F is readily reversible upon restoration
of Ca2+ homeostasis, while the PS externalized during caspase-
mediated apoptosis is distinct and separable from TMEM16F,as PS
externalization is maintained in apoptotic TMEM16F (−/−) cells
treated with Fas-L to induce apoptosis (77). Remarkably, when a
mutant TMEM16F was introduced into a mouse lymphoma cell
(W3-Ildm) to achieve constitutive PS exposure, these PS-positive
tumor cells were not targets of efferocytosis, even by professional

DCs, and only became phagocytic competent after treatment with
Fas-L to activate caspase 3 (78). These data offer a molecular expla-
nation as to why activated cells, such as during platelet aggregation,
T cell activation, and during mast cell degranulation, externalize
PS but fail to be engulfed. Conceptually, these data suggest that PS
externalization, per se, while necessary, is not sufficient to promote
clearance (Figure 1).

FIGURE 1 | Different modes of PS externalization by lipid scramblases.
Under basal resting conditions, the amino-phospholipids (PE and PS) are
restricted to the inner surface of the plasma membrane (A). During
conditions of cell stress or platelet activation (B) or during apoptosis (C),
membrane asymmetry is lost and PS is externalized to the extrafacial
surface (depicted in red). Under basal conditions (A), plasma membrane
asymmetry is maintained by the combined activity of cellular flippases and
floppases. During cell stress or during platelet activation, intracellular
calcium levels rise, resulting in the activation of TMEM16F, and PS exposure
to the extracellular leaflet (B). During apoptosis and the activation of
caspases, executioner caspases are able to cleave and activate Xkr8, as
well as cleave and inactivate ATP11C, resulting in PS exposure to the
extracellular leaflet. Since PS externalized PS via TMEM16F and
Xkr8/ATP11C are differentially recognized as eat-me signals, it is likely that
the density of PS, or the oxidation state of the PS, provide assurance
signals for efferocytosis. Key: PE, phosphatidylethanolamine; PC,
phosphatidylcholine; PI, phosphatidylinositol; PS, phosphatidylserine;
Oxidized PS, oxidized phosphatidylserine.
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To identify scramblases associated with apoptosis, Nagata and
colleagues used expression cloning to identify scramblases strictly
dependent on caspase activity (i.e., inhibited by zFAD-fmk but
not dependent on calcium). Based on these screens, a novel
scramblase called Xkr8 was identified. Analogous to TMEM16F,
over-expression of Xkr8 significantly increased PS exposure, but
in stark contrast to TMEM16F, Xkr8 cells that express PS were
recognized as an eat-me signal and engulfed. At the molecular
level, Xkr8 is cleaved at a DEVD site near its C-termini by cas-
pase 3 and caspase 7 during apoptosis, to activate a PS scramblase
activity (76). Xkr8 is a mammalian homolog of the CED8 in
Caenorhabditis elegans (79) and has an evolutionarily conserved
function and is cleaved by CED-3, the homolog of caspase 3,during
developmental apoptosis.

Adding complexity to the issue of PS externalization during
apoptosis, new studies indicate that a net accumulation of exter-
nalized PS is also achieved by a dynamic and systematic interplay
between PS scramblases (such as Xkr8) and specific flippases,
such as ATP11C (a member of the P4-type ATPase family that
redirects PS from the outer membrane back to the inner mem-
brane) (80). Analogous to Xkr8, ATP11C also contains a caspase
cleavage site, but when ATP11C is cleaved by active caspases, the
Flippase activity is inactivated preventing the return of PS to
the inner membrane. Interestingly, when cells express ATP11C
with a mutated caspase recognition site, cellular flippase activity
remains high, and cells expressing mutant ATP11C do not sus-
tain PS externalization or retain their ability to be engulfed. This
presents a highly intricate scenario, whereby caspases can activate
Xkr8 and inactivate ATP11C, to increase the steady-state density
of externalized PS (Figure 1). In contrast, in the non-apoptotic
context, high concentration of calcium activates TMEM16, but
does not inactivate ATP11C, possibly explaining the reversibility
of TMEM16-mediated PS externalization.

Using an LC MS/MS labeling approach to derivatize primary
amines on externalized amino-phospholipids (PE and PS), recent
studies by Clark et al. found that different molecular species of
amino-phospholipids (according to their fatty acyl composition,
saturation, length,and oxidative status) were simultaneously exter-
nalized during platelet activation versus apoptosis, and revealed an
optimal PE fatty acyl chain length that supported coagulation (81).
Similar types of MS-based characterization have been reported
to define the molecular species of oxidized PS (oxPS) driven by
cytochrome c/H202 (82). These kinds of analyses might be reveal-
ing to accesses changes in the PS lipidome in SLE patients, or which
species of PS are targets of anti-PS or anti-phospholipid anti-
bodies in SLE. Moreover, the recent development of PS reporter
lines, such as the generation of chimeric reporter cells to study
the PS-dependent dimerization and activation of TAM recep-
tors (Tyro3-γR1, Axl-γR1, and Mer-γR1 cells) (83), or the use
of SCARF1 chimeric receptors to access the contribution of PS to
C1q signaling (42), would be very useful to explore the functional
analysis for PS receptors and to screen apoptotic cells from differ-
ent cells undergoing apoptosis (normal versus SLE patients). By
expanding this kind of analysis, it might be possible to identify if
(and how) PS signaling fails during different externalization itiner-
aries. Together, these studies indicate that not all PS externalization
is phenotypically equivalent, and relevant to the thesis developed

in this perspective, whether the Xkr8/TMEM16F/ATP11c circuit
is compromised or genetically linked to SLE or other human auto-
immune disorders is an important and timely question in the
field.

OXIDATIVELY MODIFIED PS MAY PROVIDE AN ASSURANCE
SIGNAL FOR EFFEROCYTOSIS
The aforementioned discussion between the PS externalization
mechanisms of TMEM16F and Xkr8 is instructive, and highlights
the fact that PS externalization, per se, is not sufficient for efferocy-
tosis. Efferocytosis therefore must require an additional assurance
signal, affirming that the cell has passed a caspase-dependent
checkpoint and is ready to be engulfed and processed for degra-
dation (84, 85). Although it is likely that other plasma membrane
markers act in concert with externalized PS on apoptotic cell, one
idea that has gained traction in recent years is that oxPS, generated
in a caspase-dependent manner, provides a death-specific marker
for PS receptors, marking cells for engulfment (86). oxPS might be
expected to change the distribution of PS in the plasma membrane
rendering the cell more palatable, or conversely, PS oxidation could
serve as a better substrate for PS receptors (i.e., the “altered self”
idea) (2).

Although both ideas appear plausible, in support of the latter,
it has long been realized that antibodies specific to oxidized phos-
pholipids can block macrophage efferocytosis (87). Moreover, in
macrophages, the recognition of apoptotic cells via the scavenger
receptor CD36 occurs almost exclusively through interactions with
oxPS, and to a lesser extent oxidized PC (oxPC), but not non-oxPS.
Interestingly, the specificity of CD36 to oxPS within the apoptotic
membranes appears to be mediated by a structurally conserved
recognition motif for CD36 that comprises a “sn-2 acyl group
with a terminal γ-hydroxy (or oxo)-α, β-unsaturated carbonyl”
whereas, the reduction of this acyl chain prevents the oxPS/CD36
receptor activation (88). Other scavenger receptors implicated in
apoptotic cell clearance that includes; SRB1, SRA, LOX-1, CD68,
and CD14 (2, 89) also appear to selectively recognize the oxidized
sn-2 acyl group, suggesting this may be a conserved and universal
epitope in the apoptotic program.

In addition to scavenger receptors, recent studies also show
that some of the conventional PS-binding proteins and recep-
tors, such as GAS-6 and BAI-1, preferentially interact with oxPS,
although in the same study, it was also shown that non-oxPS pref-
erentially bound CXCL16 and Tim-4 (90), suggesting variations
on this theme. Although previous studies showed that the per-
oxidase function of caspase 3 could directly oxidize PS, PS can
be oxidized during inflammation as a result of enhanced lipid
peroxidation (88). The fact that various oxPS species may alter
the repertoire and/or change the affinities of PS toward scav-
enger receptors and PS receptors provides an impetus to better
understand the molecular basis of PS oxidation.

It is also noteworthy that oxysterols and oxPS can also indirectly
impinge on efferocytosis. For example, the engulfment of apop-
totic cells brings in large amounts of cellular lipids, including the
oxidized lipids alluded to above, into the intracellular compart-
ments of the phagocyte. Elegant studies have shown that these
internalized lipids can activate PPAR-δ receptors (91) and the
nuclear receptor LXR in macrophages (69), to induce engulfment
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receptors such as Mer and C1q. In mice, genetic ablation of PPAR-
δ results in impaired apoptotic cell clearance and SLE-like disease
(92), although the significance to human lupus still remains to be
determined.

LYSO-PS, A UNIQUE FORM OF PS, BINDS DISTINCT
RECEPTORS AND IS INVOLVED IN THE CLEARANCE OF
NON-APOPTOTIC NEUTROPHILS
Finally, in addition to (i) the modes of externalization, (ii) whether
PS is covalently oxidized, and (iii) whether a PS receptor is avail-
able to bind exposed PS on the surface of the apoptotic cell, under
certain circumstances PS can also be hydrolyzed under oxida-
tive conditions by a PS-specific phospholipase (PS-PLA1) (93–95)
to generate lyso-PS, a deacylated form of PS that serves as an
endogenous anti-inflammatory mediator. Although lyso-PS can
stimulate efferocytosis under certain conditions (96), this form
of PS remarkably also stimulates the uptake of live cells, and
has been implicated in the clearance of activated and aged live
neutrophils in anticipation for the resolution of inflammation.
Despite that PS and lyso-PS have the same anionic head group,
lyso-PS does not bind conventional PS receptors such as TAMs and
TIMs, but instead interacts with two G-protein coupled receptors,
GPR34 and G2A (97), which are linked to novel anti-inflammatory
molecules such as PGE2.

LESSONS FROM BLOCKING PS IN CANCER MODELS
In recent years, the idea that PS serves as a tolerogenic and global
immunosuppressive checkpoint has been therapeutically exploited
by the generation of anti-PS antibodies for cancer immunother-
apy. These studies show that systemic treatment of Bavitux-
imab (which recognizes a complex of β2-glycoprotein and PS),
can activate immune checkpoints, and drive the polarization of
macrophages from M2 to M1 and the activation of immature DCs
to antigen presenting cells, while decreasing MDSCs and Tregs in
tumor-bearing mice (98). As such, this pre-clinical finding has an
unanticipated consequence to ask whether blocking PS is sufficient
to induce autoimmunity. While the answers are not completely
clear, the available pre-clinical and clinical biosafety studies using
acute rather than chronic dosing regiments of Bavituximab (anti-
PS antibodies), suggest that anti-PS antibodies are well tolerated
and do not produce systemic autoimmunity or pulmonary throm-
bosis (99). Furthermore, vaccinating mice with apoptotic RMA
lymphoma cells pre-treated with Annexin-V attenuated the ability
of mice to reject a challenge with live RMA lymphoma cells (100).
Whether systemic anti-PS treatment exacerbates auto-immune
responses in lupus-prone individuals, or in individuals with anti-
phospholipid antibody (syndrome), has not been investigated.
It will be of interest to identify if patients that develop anti-
PS antibodies in SLE might have naturally occurring decreased
metastatic burden. Together, these data suggest that blockage of
PS, per se, may not be causal for the development of lupus, but
nonetheless re-activates specific arms of the immune response,
which may be fortuitously exploited where immunosuppressive
mechanisms operate within the tumor microenvironment. Future
studies, in mice, should be aimed to test whether anti-PS anti-
bodies augment lupus-like autoimmunity in genetic strains with a
propensity toward disease progression, and conversely whether PS

liposomes might also have unexpected therapeutic value. Finally,
several enveloped viruses such as Dengue, HIV, and Ebola virus
employ apoptotic (PS) mimicry to gain entry to host cells, and
blocking PS may also offer therapeutic prospects to block viral
entry and immune suppression (101–104).

CONCLUDING REMARKS
While the link between defective efferocytosis and auto-immune
disease and advanced atherosclerosis has been made, and validated
in experimental animal models, where and when this circuitry fails
in human disease has not been firmly established by genetic cau-
sation studies. In recent years, new developments have emerged
concerning the mechanisms of PS externalization, and the once
seemingly simple paradigm that externalized PS provides a signal
for efferocytosis and actively drives a resolution in acute inflam-
mation has been refined by the fact that externalized PS can exist in
different functional states. A challenging problem in the field will
be to decode the different biological fates of externalized PS, and
whether its ability to actively transmit signals is compromised in
human autoimmunity. Once the specific conditions can be identi-
fied, how exactly PS negatively impinges on chronic inflammation
can be elucidated further. These data would be helpful to under-
stand what components of the PS pathways fail during chronic
inflammation and autoimmunity.
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Clearance of apoptotic cells by macrophages occurs as a coordinated process to ensure
tissue homeostasis. Macrophages play a dual role in this process; first, a rapid and efficient
phagocytosis of the dying cells is needed to eliminate uncleared corpses that can promote
inflammation. Second, after engulfment, macrophages exhibit an anti-inflammatory phe-
notype, to avoid unwanted immune reactions against cell components. Several nuclear
receptors, including liver X receptor and proliferator-activated receptor, have been linked to
these two important features of macrophages during apoptotic cell clearance. This review
outlines the emerging implications of nuclear receptors in the response of macrophages to
cell clearance. These include activation of genes implicated in metabolism, to process the
additional cellular content provided by the engulfed cells, as well as inflammatory genes,
to maintain apoptotic cell clearance as an “immunologically silent” process. Remarkably,
genes encoding receptors for the so-called “eat-me” signals are also regulated by activated
nuclear receptors after phagocytosis of apoptotic cells, thus enhancing the efficiency of
macrophages to clear dead cells.

Keywords: macrophages, nuclear receptors, liver X receptors, apoptotic cell clearance, inflammation

APOPTOTIC CELL RECOGNITION AND CLEARANCE
Macrophages are professional phagocytes that clear unwanted
cells both in the steady-state and during the resolution phase of
the immune response. Phagocytosis of apoptotic cells is crucial
for development and reproduction. It is also important for the
regulation of the immune system because, unlike other phago-
cytic processes such as phagocytosis of necrotic cells or bacteria,
clearance of apoptotic cells does not lead to a pro-inflammatory
response in macrophages (1). Apoptotic cell clearance occurs in
four steps: sensing of the apoptotic cell, recognition, engulfment
of the corpse, and processing of the engulfed material (2). In the
last few years, many novel molecules and signaling pathways have
been described as key regulators of these steps. In the first step,
recognition of the target cell occurs via the so-called “find-me”
signals that are released by the apoptotic cell and promote the
migration of the phagocyte (3). Examples of these soluble “find-
me” signals are the nucleotides ATP and UTP (4), fraktalkine
(CX3CL1) (5), and lysophosphatidylcholine (LPC) (6). Apoptotic
cells exhibit “eat-me” signals in their surface that are recognized
by the phagocyte, either directly or through bridging molecules.
The best described “eat-me” signal is phosphatidylserine (PtdSer)
exposed in the outer leaflet of the membrane of apoptotic cells
(7). Scavenger receptors such as CD36; tyrosine kinases, such as
Mertk; or immunoglobulin and mucine domain-containing mol-
ecules, such as TIM-4, are membrane receptors that recognize
PtdSer (8–10). This recognition may be direct or through soluble

factors, such as MFG-E8, Gas6, ProteinS, or the C1q opsonin. The
signaling pathways triggered during engulfment then lead to reor-
ganization of the cytoskeleton, and promote internalization of the
dying cell (2).

In order to maintain homeostasis, the engulfed material needs
to be processed by the phagocyte. When apoptosis occurs, the
number of dying cells is typically higher than the number of
phagocytes present in the tissue. This disproportion is evident
during the resolution phase of inflammation, during the negative
selection in the thymus or during germinal center reactions (9,
11–14). However, in all these cases very few if any apoptotic cells
can be detected because tissue-resident and recruited macrophages
are extremely efficient at clearing up all dying cells, and efficiently
processing the extra cargo ingested to prevent the generation of
an inflammatory response. This processing entails production of
anti-inflammatory cytokines, such as IL-10 and TGF-β1, which
are important to initiate the resolution phase or to maintain the
process immunologically silent (1, 15, 16). In support of this con-
cept, deficiency in the phagocytosis of apoptotic cells is one of
the hallmarks of patients with systemic lupus erythematosus (17).
However, the transcriptional regulators of the inflammatory routes
triggered by apoptotic cell clearance have only recently begun to
be elucidated.

In order to maintain a normal metabolic rate the engulfing
phagocyte must process the extra metabolites provided by the
ingested apoptotic cells, as excessive metabolite accumulation may
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be noxious. Cholesterol efflux is induced in phagocytes by apop-
totic cells exposure, and is dependent on phosphatidylserine recog-
nition (18). Expression of genes implicated in cholesterol efflux,
such as ATP-binding cassette (ABC) transporter genes, is fur-
ther up-regulated via activation of nuclear receptors (15, 18–20).
This metabolic response is thought to maintain cholesterol lev-
els within the phagocyte. However, macrophages generally ingest
more than one apoptotic cell and phagocytosis further enhances
recognition and engulfment of apoptotic targets (15, 19). Thus,
the extra load of cellular components within the phagocyte might
also have energetic benefits for the cell, as it needs energy to con-
tinue phagocytizing more cells. Park and collaborators defined an
inverse relationship between mitochondrial membrane potential
and phagocytosis, in which macrophages with low mitochon-
drial membrane potential are prone to engulf apoptotic cells.
The authors showed that the mitochondrial membrane potential
increases in the phagocyte after engulfment of apoptotic cells, to
later return to baseline levels. Restoration of baseline potentials is
ensured by Ucp2, a mitochondrial membrane protein whose levels
also increase after engulfment. Ucp2 therefore acts as a“sensor” for
phagocytosis that, by maintaining the mitochondrial membrane
potential at basal levels, allows continued phagocytosis (21).

Nuclear receptors are a superfamily of ligand-activated tran-
scription factors implicated in metabolic and inflammatory path-
ways (22). Their key roles in macrophage biology led us and
others to explore their activity in apoptotic cell clearance. This
review discusses the importance of nuclear receptors during
the phagocytosis of apoptotic cells. We will emphasize how the
processing of apoptotic cells, through regulation of metabolic
genes and anti-inflammatory pathways, is essential to maintain
homeostasis.

NUCLEAR RECEPTORS AT THE INTERFACE OF METABOLISM
AND IMMUNITY
Nuclear receptors share a highly conserved amino-terminal acti-
vation domain, a carboxy-terminal ligand binding domain, a zinc-
finger DNA-binding domain, and a second activation C-terminal
domain (22). Since Mangelsdorf and collaborators first proposed
in 1995 a classification of nuclear receptors based on their lig-
ands and DNA-binding modalities (23), several categories have
been proposed (24, 25). A simplistic classification of two types
of nuclear receptors is described in the Nuclear Receptors Signal-
ing Atlas resource, NURSA (for more detailed information visit
NURSA website: www.nursa.org). In the type I category, hormone
receptors undergo nuclear translocation upon ligand activation
and bind as homodimers to inverted DNA repeat sequences. This
category includes estrogen, glucocorticoid, progesterone, miner-
alocorticoid, and androgen receptors. Type II nuclear receptors
are retained in the nucleus and bind as heterodimers with a differ-
ent nuclear receptor, the retinoid X receptors (RXR), to direct DNA
repeats. Thyroid hormone receptor, Liver X Receptors (LXRs),
Peroxisome proliferator-activated receptors (PPARs), or Vitamin
D receptors (VDRs), among others, fall into this category. Glu-
cocorticoid receptors, LXRs and PPARs have been linked to the
phagocytic capacity and phenotypic polarization of macrophages
in vitro (26–29). However, the mechanism by which gene reg-
ulation by these nuclear receptors impacts tissue homeostasis

in vivo during apoptotic cell clearance is only now starting to be
uncovered.

Proliferator-activated receptors are comprised of three iso-
forms (PPARα, PPARγ, and PPARδ), and are expressed in multiple
cell types and tissues. Their endogenous ligands are lipids, such as
unsaturated fatty acids, VLDL, and LDL (22). They are essential
for fatty acid metabolism by controlling the expression of genes
involved in transport, synthesis, activation, and oxidation of fatty
acids (30). PPARα activity is mostly restricted to the metabolism
of fatty acids, although remarkable immune-regulating properties
have been attributed to PPARα due to its capacity to regulate Cpt1,
a gene involved in T cell function (31).

PPARδ and PPARγ, like other lipid-activated nuclear recep-
tors, are involved in the regulation of inflammatory genes
in macrophages. PPARδ is ubiquitously expressed and exhibit
pleiotropic functions that range from metabolism, development,
and reproduction to inflammation (32). PPARδ represses the
expression of inflammatory genes through sequestration of the
transcriptional repressor BCL-6 (33). It has been implicated in
the phagocytosis of apoptotic cells and prevention of systemic
autoimmune diseases (19). Analogous functions in apoptotic cell
clearance and autoimmune processes have been described for
PPARγ in macrophages (20). Its importance in lipid metabolism is
underlined by the variety and function of its target genes, includ-
ing the scavenger receptor CD36, lipoprotein lipase (LPL), and the
nuclear receptor LXRα (34, 35).

LXRα and LXRβ, the two isoforms of LXR, are physiologically
activated by oxidized forms of cholesterol. LXRβ is ubiquitously
expressed, whereas LXRα is expressed mainly in myeloid cells,
intestine, adipose tissue, adrenal glands, and liver. Both isoforms
regulate a variety of genes implicated in cholesterol efflux, includ-
ing the ABC transporters ABCA1 and ABCG1. Accordingly, they
have been shown to be important in the prevention of metabolic
diseases such as atherosclerosis (22). LXRs can also be pharma-
cologically activated by potent synthetic agonists that functionally
mimic their endogenous ligands.

Elegant studies in the last 10 years have shown that in
macrophages previously challenged with inflammatory stimuli,
LXRs can act as trans-repressors of pro-inflammatory genes,
by binding to other transcription factors and promoting their
deactivation (36–39). Thus, like PPARs, LXRs generate cross-talk
between inflammation and metabolism. Several studies have now
uncovered important roles for these receptors beyond the regula-
tion of inflammatory gene expression and innate immunity. LXRβ

has been implicated in the proliferation of T cells, thus influenc-
ing adaptive immunity (40). In addition, we have demonstrated
that LXRα is essential for the development of two populations of
macrophages in the marginal zone of the spleen that are important
for immune responses against T cell-independent antigens (41).

The above described pleiotropic functions of PPARs and LXRs
position them as excellent candidates to influence macrophage
responses during apoptotic cell clearance, in which regulation of
metabolic and inflammatory genes is crucial.

PPARs AND AUTOIMMUNITY
Initial evidence implicating PPARγ in apoptotic cell clear-
ance was obtained in the context of reactive oxygen species
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(ROS) production by macrophages (27). In PMA-stimulated
macrophages, the production of ROS was attenuated when fed
with apoptotic cells. This anti-inflammatory effect was linked
to the activity of PPARγ after apoptotic cell clearance. Elec-
trophoretic mobility shift assays revealed transient activation
of this nuclear receptor after apoptotic cell recognition (27).
Although Mukundan and collaborators later showed that PPARγ

transcripts in bone marrow-derived macrophages were not reg-
ulated upon phagocytosis (19), several subsequent reports have
confirmed a role for PPARγ activation in apoptotic cell clear-
ance (20, 42). In support of the relevance of PPARγ in apop-
totic cell phagocytosis by macrophages in vivo, mice with condi-
tional deficiency in the receptor in macrophages show a delay in
phagocytosis of apoptotic cells and develop autoimmune kidney
glomerulopathy (20).

Mice deficient in PPARδ, either globally or restricted to
macrophages, also develop a lupus-like autoimmune phenotype
characterized by increased levels of autoantibodies in serum
and glomerulonephritis (19). This inflammatory phenotype was
associated with defective clearance of apoptotic cells by PPARδ-
deficient macrophages. Genomic analysis uncovered a number of
target genes that were regulated after phagocytosis in a PPARδ-
dependent manner. These genes included the C1qb opsonin,which
mediates binding of PtdSer to its receptor on the membrane of the
phagocyte, and was described as a direct target of PPARδ–RXRα

heterodimers. Through this mechanism, phagocytosis is promoted
by clearance itself, as double feeding experiments demonstrated
that macrophages increased their phagocytic capacity following
successive rounds of apoptotic cell feeding (19).

Similarly, RXRα- and PPARγ-deficient macrophages showed
impaired apoptotic cell clearance. In addition, engulfment of
apoptotic cells failed to down-regulate inflammatory cytokines in
LPS-stimulated macrophages derived from RXRα- and PPARγ-
deficient mice. As noted above, these mice develop glomeru-
lopathy and proteinuria, both hallmarks of kidney autoimmune
disease (20). As with PPARδ, the activity of these nuclear recep-
tors is induced after phagocytosis of apoptotic cells, thereby
promoting the transcription of genes encoding membrane recep-
tors and opsonins required for further recognition and engulf-
ment of apoptotic cells. These studies underscore the importance
of nuclear receptors in phagocytosis, in part by priming the
macrophage for continued engulfment of apoptotic targets.

LXRs AND APOPTOTIC CELL CLEARANCE: BEYOND
MACROPHAGE HOMEOSTASIS
In human macrophages, LXR activation regulates the expression
of LXRα (43) and PPARγ (44), thereby creating a positive feed-
back loop that enhances the phagocytic capacity of macrophages.
However, this is not the only role of LXRs in apoptotic cell
clearance in human macrophages. Though not a direct target gene
of LXRα, Transglutaminase 2 (Tgm-2), which encodes a protein-
crosslinking enzyme implicated in the phagocytosis of apoptotic
cells (45), is regulated in human macrophages after engulfment of
apoptotic targets in an LXRα-dependent manner (29). Together
with the activity of PPARs during apoptotic cell clearance, these
observations establish LXRs and PPARs as molecules that influence
the “appetite” of macrophages.

As described above, LXRs are physiologically activated by oxi-
dized forms of cholesterol and are key regulators of cholesterol
metabolism by controlling the expression of genes responsible
for cholesterol efflux, such as ABCA1. This raises the question
of what is the significance of LXR activation during apoptotic
cell clearance. When a macrophage ingests an apoptotic cell, the
amount of cellular content within the macrophage significantly
increases, and the extra cellular material has to be processed. A
potential solution to this dilemma is the up-regulated expres-
sion of a gene responsible for cholesterol efflux, Abca1, upon
engulfment of apoptotic cells (18, 46). LXR activation appears
to be required for this upregulation of Abca1 because, in peri-
toneal macrophages obtained from mice deficient in both LXR
isoforms (LXRαβ−/−), changes in Abca1 mRNA expression were
blunted after apoptotic cell clearance when compared to control
macrophages (46). Moreover,Kiss and collaborators demonstrated
that Abca1 expression and cholesterol efflux were induced upon
PtdSer recognition by the macrophage, implying that engulfment
is dispensable for LXR activation. In support of a role for nuclear
receptors in cholesterol processing, LXRs and PPARγ antagonists
inhibited upregulation of Abca1 and cholesterol efflux mediated
by apoptotic cell clearance (18).

At the time of these studies, LXR activation had been exclusively
linked to the metabolic response of the phagocyte during apop-
totic cell clearance. Using LXR knock-out mice we observed an
impaired phagocytic capacity in LXR-deficient macrophages both
in vivo and in vitro, and this impairment was associated to the
development of autoimmunity in these mice (15). Apoptotic cells
promote the expression of a number of genes in macrophages after
clearance. Some of these genes are regulated in an LXR-dependent
manner, such as genes implicated in cholesterol metabolism, glu-
cose transport, and other genes identified as LXR target genes
in other studies. Similarly, the expression of Mertk, a membrane
receptor for apoptotic cells, was also up-regulated by LXRs during
phagocytosis or after activation with synthetic LXR ligands, and
was identified in these studies as a novel direct target of LXR (15).
Together, the responses triggered by LXR activation contribute to
enhancing recognition and further engagement of apoptotic tar-
gets as evidenced by the observation that the phagocytic capacity
in LXRαβ−/− macrophages does not increase after several rounds
of apoptotic cell feeding. Notably, by modulating the expression of
inflammation-related genes, LXR also participates in the polariza-
tion of the macrophage toward an anti-inflammatory phenotype
after engulfment of dying cells. This activity essentially contributes
to avoidance of unwanted inflammation, which is illustrated by the
lupus-like autoimmune disease developed by LXRαβ−/− mice as
they age (15).

Liver X receptors nuclear receptors have more recently emerged
as regulators of neutrophil homeostasis (47, 48). Due to their
short half-life (estimated in 12.5 h in mice), neutrophils must
be efficiently cleared on a daily basis. LXR-deficient mice dis-
play neutrophilia in blood and accumulation of neutrophils in
the spleen and liver, a phenotype that was accounted for by the
impaired capacity of LXR-deficient macrophages to engulf apop-
totic neutrophils. Production of IL-23 by macrophages and den-
dritic cells is a critical signal that controls the levels of neutrophils
in blood by acting upstream of IL-17 and G-CSF (49). Importantly,
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activation of LXRs upon neutrophil engulfment strongly represses
IL-23 transcription (47). Extending these studies, we have recently
shown that clearance of aged neutrophils in the bone marrow
modulates the size and activity of the hematopoietic niche through
LXR activation (48). We found that neutrophils cleared from blood
enter the bone marrow and are engulfed by macrophages, leading
to reductions in the number of niche cells and mobilization of
hematopoietic progenitors into the bloodstream. In addition, the
transcript levels of LXR target genes in the bone marrow spon-
taneously increase at the time when neutrophils are cleared in
this organ, and mice in which macrophages have been elimi-
nated lacked the normal oscillations in Abca1 expression. Further,
regulation of niche cells and progenitor release are impaired in
LXR-deficient mice. Together, these findings uncovered new func-
tions for the homeostatic clearance of dying cells in regulating
hematopoietic niches in the bone marrow, and a central role for
LXR receptors in coordinating these functions (48).

These recent advances in the field provide examples of the
multitude of processes and tissues that are likely regulated by the
clearance of apoptotic cells by macrophages, and by the receptors
involved in this fundamental process.

FUTURE DIRECTIONS
Liver X receptors and PPARs are now recognized regulators of
the anti-inflammatory response in macrophages after clearance of

apoptotic cells. Moreover, these receptors are key players in the
recognition and engagement of apoptotic cells by further enhanc-
ing phagocytosis through transcriptional regulation of various
receptors and bridging molecules. The exact pathways by which
LXRs and PPARs are activated during the phagocytosis of apop-
totic cells remain an open question in the field (Figure 1). We
and others postulated that lipids derived from the engulfed cell
might provide ligands for PPARs and LXRs, as demonstrated by
the lack of LXR activation when macrophages are fed with sterol-
free apoptotic thymocytes (15). Because recognition of PtdSer by
macrophages is sufficient to activate an LXR-dependent meta-
bolic program without engulfment (18), additional routes of
recognition and engulfment can activate these nuclear receptors.

These novel roles of lipid-activated nuclear receptors in phago-
cytosis of apoptotic cells raise an interesting issue regarding cell
metabolism and bioenergetics. The enhancement of phagocytosis
of apoptotic cells mediated by nuclear receptors, might respond to
a necessity of generating more energy to continue phagocytizing.
Mitochondria provide the majority of the energy supply by oxida-
tive phosphorylation in the respiratory chain. In fact, macrophages
with low mitochondrial membrane potential are more prone to
phagocyte apoptotic cells (21). Whether nuclear receptors and
mitochondria cross-talk during apoptotic cell clearance to enhance
phagocytosis arises as an interesting possibility. Supporting this
idea, the activity of several nuclear receptors have been defined

FIGURE 1 | Activation of nuclear receptors in phagocytes during
apoptotic cell clearance. Apoptotic cell recognition and engulfment promote
the transcriptional activity of nuclear receptors LXRs and PPARs. Recognition
of phosphatidylserine in the outer leaflet membrane of the apoptotic cell
leads to transcriptional activation of ABCA1 and cholesterol efflux. Nuclear

receptor activation upon apoptotic cell phagocytosis also leads to
upregulation of phagocytic receptors (e.g., Mer, CD36, and Axl) and opsonins
(e.g., MFG-E8 and C1qb). Lipids derived from the engulfed apoptotic cells
may also serve as source of endogenous ligands to activate PPARs (fatty
acids) and LXRs (oxysterols).
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in mitochondria, regulating gene expression, coordinated with
nuclear gene expression, in situations of high energy demand (50).
For example, PPARγ co-activator 1α, PGC-1α, collaborates with
PPARs to regulate expression of mitochondrial enzymes involved
in fatty acid transport and oxidation (51). However, the specific
role of nuclear receptors in mitochondrial metabolism during
apoptotic cell clearance remains unclear.

An important outcome of this research topic will be the
potential therapeutic implications of apoptotic cell clearance
in a wide range of inflammatory and metabolic diseases. It
has been shown that enhancing engulfment of apoptotic neu-
trophils in situ accelerates the resolution of bacterial infection
and lung inflammation (52–54). However, the exogenous admin-
istration of apoptotic cells could also lead to autoimmunity, so
the therapeutic approaches need to be finely controlled to avoid
deleterious effects (55). Targeting nuclear receptors by activa-
tion through synthetic ligands, have been proven to amelio-
rate inflammation in mouse models of autoimmunity (15) and
atherosclerosis (56). Though some PPAR agonists have already
been approved for clinical use to treat metabolic diseases, a bet-
ter understanding of nuclear receptor activation during apop-
totic cell clearance may pave the way for the development of
novel treatments for infectious, inflammatory, and metabolic
diseases.
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INTRODUCTION
Apoptosis and NETosis, two important
pathways of programed cell death, differ
in their morphologic features and their
effects on the immune system. In apop-
tosis, nuclear chromatin compacts as it
is packaged into nuclear fragments and
apoptotic blebs (1), and uptake of apop-
totic cells by phagocytes generally sup-
presses the immune response (2). In NETo-
sis, named after neutrophil extracellular
traps (NETs), nuclear chromatin relaxes
and forms a fibrous meshwork upon release
from the cell (3). In general, NETosis is
induced by infection, inflammation, or
trauma and represents a mechanism of
innate immune activation (4). Neutrophils,
the most abundant type of white blood
cells, migrate toward a stimulus in coor-
dinated fashion, and NETs may synchro-
nize such neutrophil swarms (5). Despite
the structural and functional differences
between apoptosis and NETosis, signifi-
cant aspects of their clearance pathways
likely overlap, as specific serum proteins
participate in the recognition and uptake
of remnants from either cell death path-
way. In vivo, it is likely that both cell death
pathways are concurrently present and that
apoptotic bodies and NETs entangle (6).
Yet, a third type of DNA may intertwine
with DNA from apoptotic and NETotic
cells, as certain bacteria and fungi release
extracellular DNA that is used to con-
struct biofilms (7). How apoptotic bod-
ies, NETs, and biofilm DNA (Figure 1)
are safely cleared is of great interest,
because incomplete clearance leads to
systemic inflammation and autoantibody
production.

SYSTEMIC AUTOIMMUNE DISEASES
AND AUTOANTIBODIES TO NUCLEAR
ANTIGENS
Molecular structures associated with dying
cells are targets of autoantibodies in
autoimmune diseases such as systemic
lupus (SLE) (8), antiphospholipid syn-
drome (APS) (9), as well as other muscu-
loskeletal/rheumatoid disorders (10). The
resulting autoreactivities are idiosyncratic
for each condition and thus are useful
for clinical diagnosis. However, the anti-
gens recognized by the autoantibodies are
also involved in pathogenesis, as they accu-
mulate at the sites of tissue damage and
contribute to immune complex deposi-
tion (11). Tissue damage may worsen in
the absence of serum nucleases such as
DNAse I (12). Furthermore, the interac-
tions between dying cells and the adaptive

FIGURE 1 | Self and foreign antigens that may induce autoantibodies in autoimmunity. The
potential contribution of apoptotic bodies, NETs, and bacterial biofilms to immune tolerance versus
stimulation is indicated. The distribution and content of self (green) and foreign (red) antigens is
diagrammed. In apoptotic bodies, “foreign” structures may include post-translational modifications that
are present only during late stages of apoptosis (orange). NETs, in addition to modified chromatin
(orange), may also contain bacterial adjuvants, whereas biofilms may incorporate host DNA. Short red
rods indicate bacteria in NETs and biofilms. For details, see text.

immune system strengthen over time, as
somatic mutations and antigen selection
optimize antibodies for improved bind-
ing (13). In SLE, antibodies to nuclear or
plasma membrane antigens arise in the
course of disease (14, 15). These anti-
bodies avidly bind to apoptotic cells (16).
Classical studies recognized that apoptotic
cells are far better substrates for autoanti-
body binding than viable cells (17). How-
ever, monoclonal antibodies from mouse
lupus models that bind to apoptotic blebs
(16) also tightly bind to NETs released
in response to bacterial pathogens (18).
Our laboratory showed that NETotic cells
provide suitable targets for autoantibodies
from diverse human autoimmune disor-
ders (19). Whether apoptotic or NETotic
cell death, or both, provide antigens
that induce autoantibody production is
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essential information for understanding
the etiopathogenesis of autoimmune dis-
eases (20).

APOPTOTIC AND NETotic CELL DEATH
Apoptosis is characterized by dramatic
morphologic changes that are orchestrated
by a family of specific proteases called cas-
pases (21). The chromatin in the nucleus
condenses tightly despite the fact that
caspase-activated DNAse cleaves certain
regions of genomic DNA to produce an
oligonucleosome “ladder” (22). Curiously,
the diameter (and thus the permeability) of
nuclear pores transiently increases during
this stage of apoptosis (23), and oligonu-
cleosomes pass through the pores into the
cytoplasm (16). The chromatin fragments
associate with the outer nuclear envelope,
the nucleus breaks up, and nuclear frag-
ments migrate toward the cellular plasma
membrane. These nuclear fragments form
“blebs”at the cell surface, which are charac-
teristic protrusions that give apoptotic cells
their typical “grape cluster” appearance.
Blebs display DNA,chromatin,and ribonu-
cleoproteins at the cell surface (16, 24)
such that these autoantigens become acces-
sible to antibodies and pattern recognition
receptors.

An alternative form of cell death was dis-
covered by Brinkmann et al. (18). These
authors reported that, upon exposure to
bacteria, LPS, or PMA, neutrophils dis-
solve nuclear and cytoplasmic granule
membranes, relax nuclear chromatin, asso-
ciate the chromatin with granule com-
ponents such as myeloperoxidase or elas-
tase, and release the relaxed chromatin
across the plasma membrane (4). The chro-
matin appears as disorganized fibers that
spread widely to form an extracellular net-
work. The authors named the fibers“NETs”
because this chromatin could immobilize
or “trap” bacteria. Mouse anti-chromatin
antibodies were used to demonstrate that
the NETs consisted of DNA and histones.
These results immediately suggested that a
tangle of bacteria and nuclear chromatin
should be viewed as a “dangerous liaison”
between lupus autoantigens and bacter-
ial adjuvants that, by acting as a mole-
cular complex, could trigger an adaptive
immune response (25).

Follow-up studies revealed that NETs
are not always an impediment to microbes.
Proliferation assays identified certain

species of bacteria that are resistant to any
bactericidal effects of the released neu-
trophil chromatin (26), even though NETs
organize bactericidal granule contents such
as peroxidase and serine proteases (27),
and even though histones also exhibit bac-
tericidal activity (28). In fact, NET chro-
matin has found a novel use for certain
bacteria that can incorporate NET chro-
matin into their extracellular matrix (29,
30). Such biofilms protect the microbes
from physiological and pharmaceutical
antibiotics and help to colonize various
host tissues (7). DNA gives biofilms their
structural integrity because nuclease treat-
ment efficiently dissolves biofilms (31).
The biofilms can also incorporate micro-
bial DNA, as particular bacteria and fungi
have mechanisms to release sections of
genomic DNA for use in forming biofilms.
Such DNA could be of particular signif-
icance in inducing anti-DNA responses
because bacterial DNA has hypomethy-
lated CpG motifs that directly stimulate
toll-like receptors (32) and other DNA
receptors (33) in B cells and other antigen-
presenting cells.

EVIDENCE FOR APOPTOSIS AND
NETosis IN THE INDUCTION OF
AUTOIMMUNITY
Evidence supporting apoptotic cells as the
source of autoantigens that induce and pro-
mote the development of autoimmunity
derives from a close inspection of autoan-
tibody specificities. The observation that
lupus serum IgG bind to apoptotic cells
(17) initiated an active area of research.
Because apoptotic cells externalize phos-
phatidylserine at the cell surface, bind-
ing of serum factors or lupus antibodies
to phosphatidylserine could interfere with
clearance in a way that would alter recog-
nition of apoptotic cells and potentially
induce disease. This view is consistent with
genetic defects in cell clearance that in
many instances recreate the full set of lupus
manifestations (8).

Completion of the apoptotic program
without adequate clearance may lead to the
exposure of highly modified autoantigens
(34). Autoantibodies to apoptotic cells may
be induced by unique antigenic structures
that are produced by enzymatic reactions
in apoptotic cells. Granzyme B activation
in apoptosis was identified as one possible
mechanism whereby apoptosis generates

novel self antigens that stimulate autoan-
tibody binding (35). Importantly, char-
acteristic post-translational modifications
(PTM) of histones are induced during
apoptosis. These include the acetylation of
lysine 12 in the H2B core histone, a PTM
that was shown to enhance the binding of
lupus autoantibodies (36). However, lysine
12 acetylation also occurs in NETosis, and
tri-acetylated histone H4, a specific target
of the KM-2 murine lupus autoantibody, is
more abundant in NETs from SLE patients
than in controls (37). Therefore, antibody
reactivity against any single histone PTM
may not unambiguously establish which
biological process supplies nuclear antigens
in autoimmunity (38).

The generation of apoptotic cells dur-
ing development and under conditions of
rapid cell turnover, such as exist physio-
logically in primary lymphoid organs, sug-
gests that apoptotic lymphocytes provide a
steady supply of tolerogenic autoantigens
(39). The idea that apoptosis provides self
antigens that maintain tolerance is sup-
ported by immune suppression following
injection of apoptotic cells (40). Immune
suppression by apoptotic cells can also be
recreated in vitro (41) and can be converted
to immune activation by opsonization of
apoptotic cells with antibodies (42). On
balance, NETosis is a more likely alterna-
tive source of autoantigens that stimulate
autoreactive B cells. This follows directly
from the observation that, in autoimmu-
nity, autoantibodies arise to various known
NET components (43, 44). These include
the proteases cathepsin G, proteinase 3, and
elastase, as well as granule peptides, includ-
ing LL37 and other defensins that have
bactericidal properties.

Detailed analysis revealed that neu-
trophils from autoimmune patients are
more prone to NETosis than controls and
that NETosis is associated with partic-
ular autoantigen modifications (45, 46).
Such autoantigen PTM may arise through
reactive oxygen species liberated in NETo-
sis or through enzymes that are acti-
vated during the progression of NETosis.
Amino acids such as tryptophan and tyro-
sine are modified by oxidation or reac-
tions with hypochlorous acid and perox-
ynitrite (47). NETosis also activates pep-
tidylarginine deiminases (PADs), enzymes
that convert arginine residues in proteins
to citrulline residues. Our laboratory was
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first to link deimination (also known as
“citrullination”) of nucleohistones to steps
that are set in motion during NETosis
(25). Importantly, we also showed that his-
tone deimination is independent of cas-
pase activity and that induction of apop-
tosis prevents PAD activation. Thus, deim-
ination of histones clearly distinguishes
NETosis from apoptosis.

In subsequent studies, we showed that
citrullinated histones, including core and
linker histones, are recognized in prefer-
ence over non-modified histones by anti-
bodies from patients with various autoim-
mune diseases, including SLE and Felty’s
syndrome, a more severe form of rheuma-
toid arthritis (10). In confirming our
results, others have shown that autoanti-
bodies to deiminated histones are remark-
ably useful in the diagnosis of rheuma-
toid arthritis (48). In earlier studies, it
was reported that citrullinated proteins are
frequently targets of IgG antibodies from
patients with arthritis (49), and antibodies
to citrullinated antigens have been a focus
of a growing number of research studies
(50, 51). These observations represent a
solid link between NETosis and the induc-
tion of disease-specific autoantibodies.

CLEARANCE MECHANISMS
Clearance of apoptotic cells has been a
focus of research for more than two decades
(52), and a bewildering complexity of path-
ways has emerged (53). Different cell types
participate in the uptake of apoptotic cells,
the cells employ different combinations of
receptors, and clearance may be enhanced
or suppressed by various plasma proteins.
Soluble plasma proteins that participate in
apoptotic cell clearance include members
of the pentraxin (54) and collectin fami-
lies (55), the complement protein C1q (56),
and milk fat globule epidermal growth
factor 8 (MFG-E8) (57). An important
“eat-me” signal is generated by the endo-
plasmic reticulum chaperone calreticulin.
Apoptotic cells release calreticulin from the
endoplasmic reticulum into the cytoplasm
(58). The cytoplasmic calreticulin binds to
phosphatidylserine in the inner leaflet of
the plasma membrane from where it is
externalized as the plasma membrane loses
its asymmetry. At the cell surface, calretic-
ulin combines with C1q and binds CD91
on the surface of the macrophage, leading
to the phagocytosis of the apoptotic cell

(59). Other receptors for uptake of apop-
totic cells include SCARF1, a highly con-
served receptor for C1q (60), and the inte-
grin βVα5, a receptor for MFG-E8 (61). The
importance of C1q, MFG-E8, and SCARF1
for tissue homeostasis is emphasized by the
fact that mice deficient for any of these mol-
ecules show a reduced capacity for apop-
totic cell clearance and exhibit a concomi-
tant induction of autoantibodies (60, 62,
63). In SLE, altered levels of MFG-E8 in
the serum and impaired C1q recognition
of apoptotic cells correlate with the severity
of disease manifestations (64, 65).

Additional receptors for the recognition
and clearance of apoptotic cells are the Mer,
Axl, and Tyro3 receptor tyrosine kinases
(66). Mice deficient in any of these recep-
tors manifest symptoms of autoimmune
disease (67), and patients show altered
serum levels of Mer family ligands GAS6
and protein S (68). Whereas Axl deter-
mines apoptotic cell clearance by dendritic
cells (69), Mer is induced by C1q and
serves to enhance apoptotic cell uptake by
macrophage (70). It is important to note
that several of these receptor–ligand sys-
tems are not specific for apoptotic cells but
instead participate in the clearance of infec-
tious microbes such as bacteria, fungi, and
viruses (53). Possibly, some of these clear-
ance pathways also serve to eliminate other
cellular remnants.

Little is known about the clearance of
NETotic cells, although a systematic analy-
sis of the relevant mechanisms for NET
clearance is urgently needed. Good start-
ing points would be proteins and recep-
tors that bind DNA or chromatin and that
participate in the clearance of apoptotic
cells. For example, several pentraxins (71)
and collectins (55) bind to nucleic acids
and chromatin, and calreticulin exhibits
high affinity for chromatin and nucleo-
somes (72). It is likely that these proteins
and receptors also bind NETs, although
NETs are not efficiently recognized by the
pentraxin C-reactive protein, or the com-
plement protein C3b (73). In contrast,
C1q binds NETs and activates the com-
plement cascade (74, 75). The search for
additional factors that regulate NET clear-
ance is timely because NETosis has been
linked to atherosclerosis (76), small vessel
vasculitis (77), deep vein thrombosis (78),
and various autoimmune conditions (79).
Conversely, autoimmune diseases show an

aberrant persistence of NETs, and NET
clearance is impaired in APS (80), SLE
(81), and gout (82). A better knowledge
of NET clearance is expected to lead to
new treatments for autoimmune diseases,
as inhibitors of PAD4 show promise in
various animal models of autoimmune
disorders (83–86).
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Systemic lupus erythematosus (SLE) is a fairly heterogeneous autoimmune disease of
unknown etiology that mainly affects women in the childbearing age. SLE is a prototype
type III hypersensitivity reaction in which immune complex depositions cause inflamma-
tion and tissue damage in multiple organs.Two distinct cell death pathways, apoptosis and
NETosis, gained a great deal of interest among scientists, since both processes seem to be
deregulated in SLE.There is growing evidence that histone modifications induced by these
cell death pathways exert a central role in the induction of autoimmunity. In the current
review, we discuss how abnormalities in apoptosis, NETosis, and histone modifications
may lead to a break of immunological tolerance in SLE.
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INTRODUCTION
Autoimmune disorders are disturbances of the immune system
that arise when the immune system responds to self. Immuno-
logical tolerance to self relies on the immune system to discrim-
inate self from non-self. Systemic lupus erythematosus (SLE) is a
systemic autoimmune disorder, in which primarily nuclear con-
stituents, i.e., DNA, histones, and ribonucleoproteins, are targeted
(1). In a substantial subset of SLE patients, autoantibodies also
target proteins from the cytoplasm of neutrophils (2). Since these
nuclear self-antigens are normally shielded from the extracellu-
lar space by the nuclear membrane and the cell membrane, the
key question is how these nuclear self-antigens are released and
become exposed to the immune system. Anno 2014 abnormalities
in two pathways of cell death, apoptosis and NETosis, are recog-
nized as central processes that provide nuclear autoantigens and
drive the autoimmune response in SLE (3).

TWO SOURCES OF AUTOANTIGENS IN SLE
For over 20 years, apoptosis has been considered as the major
source of autoantigens in SLE (4). Apoptosis is a highly orga-
nized and immunologically silent cell death pathway that plays an
important role in tissue homeostasis. In processes characterized
by a high-rate of tissue turnover, such as embryogenesis in human
development, apoptosis is a crucial mechanism that allows tissues
to remodel without triggering inflammation. Many cellular path-
ways and signals can activate proteolytic caspases to break down
the cell in a strictly controlled and fine-tuned manner that dis-
tinguishes apoptosis from any other form of cell death. Apoptosis
can be induced actively through ligation of cell surface receptors
such as Fas or TNFR or passively through lack of essential survival
signals. Apoptotic cells undergo a series of distinct morphological
changes, including cytoskeletal disruption, cell shrinkage, DNA

fragmentation, and plasma membrane blebbing (5). It has been
shown that many of the nuclear autoantigens targeted in SLE are
concentrated within apoptotic blebs (6, 7).

A specialized form of neutrophil cell death, termed NETosis,
has been described a decade ago (8). NETosis has been linked to
SLE as an additional source of autoantigens (9). During NETosis,
neutrophils extrude fibrillary networks composed of DNA, citrul-
linated histones, and granule peptides such as neutrophil elastase,
myeloperoxidase, and cathepsin G. These structures are termed
neutrophil extracellular traps (NETs) and serve to entrap and dis-
mantle not only extracellular bacteria, but also viruses, fungi, and
parasites (10–12). In addition to pathogens, sterile inflammatory
mediators such as monosodium urate (MSU) crystals, IL-8, IL-1β,
platelet-activating factor (PAF), and TNF-α have been reported to
induce NETosis (13). NETosis requires a very rapid disintegration
of the nuclear envelope, translocation of granule peptides to the
nucleus, PAD4-mediated citrullination of the chromatin, binding
of granule peptides to citrullinated chromatin, and finally rupture
of the plasma membrane (14). Where apoptosis is organized and
planned, NETosis seems much faster and less well-coordinated.

INCREASED CELL DEATH
MRL/lpr mice, the most commonly studied murine model for
lupus-like disease, develop an autoimmune disease that reflects
pathologies of human SLE, including lymph node enlarge-
ment, increased IgG levels, antinuclear autoantibody production,
glomerulonephritis, proteinuria, and development of skin lesions
(15). MRL/lpr mice express a defective form of the Fas receptor
that under physiological conditions stimulates cells to undergo
apoptosis. This initially led to the belief that SLE patients have a
similar defect in Fas-mediated apoptosis that underlies the failure
of self-tolerance. However, it has become clear that SLE is quite
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the opposite from being a disease with impaired apoptosis. Sub-
stantially, evidence correlates increased lymphocyte, neutrophil,
macrophage, and monocyte apoptosis directly to SLE disease
activity (16–19). It has been demonstrated that SLE serum has
a strong apoptosis-inducing capacity in macrophages, monocytes,
and lymphocytes from healthy donors (20). In addition, it has been
reported that autoreactive T cells show an increased expression
of the apoptotic ligands TRAIL, TWEAK, and FasL that directly
mediate the apoptosis of monocytes (21).

Since various bactericidal NET proteins were found to be
present at much higher levels in blood from patients with SLE com-
pared to healthy donor blood, enhanced NETosis is also implicated
in the genesis and/or amplification of the autoimmune response
in SLE (22–24). The pro-inflammatory cytokines IL-17A, TNF-
α, IL-1β, and IL-8 have all been reported to induce NETosis,
suggesting that NETs are extensively formed in an inflammatory
environment such as in SLE (25–27). Elevated levels of interferon-
alpha (IFN-α), a cytokine that under physiological conditions is
important for antiviral responses and immune activation, have
been correlated with disease activity in SLE (28). Recent evidence
indicates that NETosis is enhanced in SLE due to priming of neu-
trophils by IFN-α (29). Certain autoantibodies that are highly
present in the majority of SLE patients, such as anti-LL-37, anti-
HNP, and anti-RNP, can also stimulate neutrophils to produce
NETs in a FcγRIIa-dependent manner (30–32). Furthermore, a
distinct subset of neutrophils in SLE patients, so called low-density
granulocytes (LDGs), have been described with an increased NET-
releasing capacity due to their ability to synthesize IFN-α in an
autocrine manner (33).

Taken together, it is presumed that both apoptosis and NETo-
sis occur excessively in patients with SLE, which results in an
increased load of nuclear autoantigens. However, can this excessive
release of nuclear autoantigens explain the break of immunolog-
ical tolerance to nuclear antigens in SLE? Apoptosis and NETosis
are physiological forms of cell death. In our daily battle against
pathogens, we release NETs and between 50 and 70 billion cells die
daily due to apoptosis. Humans evolved redundant mechanisms
to clear apoptotic material and NETs. This clearance is usually
accompanied by secretion of anti-inflammatory cytokines (34).
Multiple groups tried to immunize mice with apoptotic cells/blebs
or NETs, but this never lead to considerable immune activation
(35, 36). Therefore, it can be concluded that increased apoptosis
or NETosis on its own is not sufficient to break immunological tol-
erance to nuclear autoantigens in SLE, and that additional factors
are required to turn apoptotic material or NETs into dangerous
triggers of autoimmunity.

CLEARANCE DEFICIENCY IN SLE
In 1980, it was for the first time described that macrophages
from SLE patients show an impaired phagocytic activity for yeast
(37). Later, it was described that the phagocytosis of autologous
apoptotic material by monocyte-derived macrophages is also dis-
turbed in about 50% of the SLE patients (38). This finding was
confirmed by other groups (18, 39). Interestingly, macrophages
differentiated from CD34 positive stem cells of SLE patients show
a different morphology than those generated from healthy donors;
they are relatively small and poorly ingest apoptotic material (40).

Furthermore, the amount of tingible body macrophages (TBMs)
found in germinal centers appears to be strongly reduced in SLE
patients (41). Apoptotic material in germinal centers is normally
internalized by TBMs. In SLE patients with a reduced number
of TBMs, apoptotic material was observed to be directly associ-
ated with the surface of follicular dendritic cells (FDCs), which
may provide survival signals for autoreactive B cells. Monocytes
and granulocytes from SLE patients display a reduced phagocytic
activity as well (42), which may be explained by the relative low
expression of the phagocytic receptor CD44 on both cell types (43).

In addition to well-functioning healthy phagocytes, serum
proteins have an important impact on the clearance of apop-
totic cells as well. Adequate removal requires a clear recogni-
tion of apoptotic cells, which is, in addition to the exposure of
phosphatidylserine on the outer leaflet of its plasma membrane,
strongly dependent on opsonizing proteins such as immunoglob-
ulin M (IgM), mannose-binding lectin (MBL), serum amyloid
P (SAP), C-reactive protein (CRP), and C1q. Numerous stud-
ies ascribe a role for these opsonins in the defective clearance of
apoptotic material in SLE. It has been shown that decreased IgM
levels and increased MBL levels correlate with an increased dis-
ease activity in SLE (44, 45), that administration of SAP and CRP
significantly delays disease onset and alleviates disease symptoms
(46, 47) and that C1q-deficient mice rapidly develop autoanti-
bodies against nuclear autoantigens (48). Polymorphisms at the
loci of the genes encoding these opsonins as well as the forma-
tion of autoantibodies against these opsonins are considered to
be the underlying cause for their absence or defective functioning
in SLE (49–52). Lastly, autoantibodies against pentraxin-related
protein PTX3, a cytokine-induced protein that is homologous to
CRPs and SAPs, appear to be frequently present in SLE patients
as well (53). In contrast to anti-CRP or anti-SAP autoantibodies,
anti-PTX3 autoantibodies are not associated with disease activity
but with the absence of glomerulonephritis and antiphospholipid
antibodies. The authors of this article suggest that PTX3 inhibits
the clearance of apoptotic material, which is counteracted by the
autoantibodies directed against them.

There is also evidence for an impaired clearance of NETs.
Deoxyribonuclease I (DNase I) plays a crucial role in the degrada-
tion of NETs, which is not surprising since the backbone of NETs
is composed of nuclear DNA. The relevance of proper DNase I
activity is reflected by the fact that DNase I-deficient mice develop
a syndrome that closely resembles to SLE (54). A considerable
number of SLE patients display a reduced DNase I activity (55).
These patients develop relative high titers of anti-dsDNA autoan-
tibodies and suffer from more severe symptoms. Low DNase I
activity in SLE may have a genetic cause (56) but can also be the
result of inhibitory molecules or anti-DNase I autoantibodies. In
a Taiwanese cohort, 62% of the SLE patients appeared to be pos-
itive for anti-DNase I autoantibodies compared to only 8% of
normal controls (57). Comparing sera from healthy donors and
patients with SLE in their capability of degrading NETs in vitro
revealed that 98.1% of the healthy donor sera degraded NETs nor-
mally, whereas a significant percentage of the SLE sera did not
(36.1%) (58). Interestingly, those patients who could not degrade
NETs developed lupus nephritis significantly more frequently than
those who could degrade NETs. Depleting autoantibodies from
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SLE sera considerably enhanced NET degradation, suggesting that
NET-bound autoantibodies inhibit NET degradation, most likely
by preventing the access for DNase I to the NET. In addition,
it was shown that NET-bound C1q also inhibits NET degrada-
tion (59) via the same mechanism. However, C1q seems to be a
double-edged sword in the removal of NETs: both recombinant
C1q and endogenous C1q derived from human serum were found
to opsonize NETs for their immunologically silent clearance by
macrophages (60). Lastly, it has been shown that the antimicrobial
peptides LL-37 and HMGB1 prevent NET degradation (61). This
latter observation is interesting, since it has been described that
these antimicrobial peptides are highly present in NETs from SLE
patients but not in those from healthy donors (32).

The contribution of intrinsic phagocyte defects and
absent/deficient serum factors to the impaired clearance of apop-
totic material and/or NETs in SLE seems clear. However, it is
believed that there are numerous additional factors and path-
ways that could play a role in the complex pathogenesis of SLE.
Although many different pathways may be deregulated, that all
lead to a comparable SLE phenotype, it is assumed that accumu-
lation of apoptotic material and NETs in tissues is the common
denominator between all patients with SLE (42). Nevertheless, the
question remains how such an accumulation of apoptotic mate-
rial and NETs can break immunological tolerance. After all, it
involves an accumulation of endogenous material that is not sup-
posed to elicit an autoimmune response. An important hypothesis
that gains growing support states that biochemical reactions, for
example cleavage by caspases or protein modifications by protein
modifying enzymes, lead to enrichment of protein modifications
in not efficiently cleared NETs or apoptotic cells (62). Certain
(combinations of) protein modifications may give rise to proteins
with neoantigens that behave as danger signals as well and thereby
are no longer perceived as endogenous and therefore have the
ability to initiate an autoimmune response. Neoantigens/danger
signals in NETs are directly exposed to the immune system, but
apoptotic blebs require to undergo secondary necrosis, a late apop-
totic stage characterized by loss of membrane integrity and leakage
of cellular constituents, for exposure of these neoantigens/danger
signals to the immune system (63). Neoantigens/danger signals
may be ingested, digested, and presented in an immunogenic
way by antigen-presenting cells in MHC class II to autoreactive
CD4+ T cells, who subsequently instruct autoreactive B cells to
produce autoantibodies against them. Alternatively, extracellular
autoantigens may be presented in MHC class I, via the mecha-
nism of cross-presentation, to autoreactive CD8+ T cells (64).
The concept of epitope spreading may ultimately lead to the wide
arsenal of autoantibodies that are characteristic for SLE. An impor-
tant group of proteins in which post-translational modifications
(PTMs) seem to play an important role in (the induction of)
autoimmune responses in SLE are histones (65).

HISTONE MODIFICATIONS RELATED TO SLE
Histones are a group of chromatin proteins that are abundantly
present in apoptotic blebs as well as in NETs. Anti-histone autoan-
tibodies are frequently found in SLE and are disease-specific (66).
Under physiological conditions, histones play a critical role in the
packaging of nuclear DNA. Eukaryotic cells possess five major

families of histones: H1/H5, H2A, H2B, H3, and H4. Histones
H2A, H2B, H3, and H4 are known as the core histones: two copies
of each of the four core histones assemble and are wrapped with
~146 bp of DNA to form the fundamental unit of chromatin
known as the nucleosome. Histones were originally thought to
solely function as a static scaffold for DNA packaging. Nowadays,
it is evident that histones are highly dynamic proteins, undergoing
multiple types of PTMs that regulate vital processes within the
cell such as transcription, replication, recombination, and DNA
repair. PTMs on histones mainly occur at the N-terminal tails and
include (but are not limited to) acetylation, methylation, ubiqui-
tination, poly(ADP-ribosyl)ation, and citrullination. These PTMs
are described below, with a focus on modifications associated with
cell death, which have been specifically related to autoimmune
situations such as SLE (Figure 1).

ACETYLATION
Acetylation and deacetylation of lysine residues at the N-terminal
tails of histones play an important role in the regulation of tran-
scription. Acetylation removes positive charges, thereby reducing
the affinity between histones and DNA and maintaining an open
and accessible conformation of DNA that is available for the bind-
ing of factors of the transcriptional machinery. Acetylation and
deacetylation reactions are catalyzed by enzymes with respectively
histone acetyltransferase (HAT) or histone deacetylase (HDAC)
activity. Various studies have investigated the significance of his-
tone acetylation in SLE. Hypoacetylation of histones H3 and H4
has been found in CD4+ T cells from SLE patients and spleno-
cytes from MRL/lpr mice (67, 68). Treatment of these MRL/lpr
mice with HDAC inhibitor trichostatin A reset the hypoacety-
lation of histones H3 and H4 and lead to an improved disease
phenotype. In addition, it has been shown that mice deficient
in HAT p300 develop an autoimmune disease similar to SLE in
its pathological manifestations (69). Altered histone acetylation
in unstimulated disease-relevant cells has been primarily linked
to an altered gene expression. In contrast to unstimulated cells,
apoptotic blebs or NETs from SLE patients contain hyperacety-
lated histones when compared to healthy donors (submitted data
of our group). Hyperacetylation of histones appears to occur early
during cell death. In the past, our group showed that hyper-
acetylated nucleosomes and acetylated histone peptides display an
enhanced capability in activating the immune system (70). Hyper-
acetylated nucleosomes were able to mature bone marrow-derived
DCs in vitro, which produced increased levels of IL-6 and TNF-α
compared with DCs cultured in the presence of normally acety-
lated nucleosomes. In addition, DCs cultured in the presence of
hyperacetylated nucleosomes were able to activate syngeneic T
cells. Furthermore, subcutaneous administration of a specific tri-
acetylated H4 peptide to pre-diseased MRL/lpr mice significantly
enhanced mortality, proteinuria, skin lesions, and glomerular IgG
depositions. In addition to a direct immunogenic affect, it is spec-
ulated that hyperacetylated histones in apoptotic blebs or NETs
enhance the recruitment and binding of“dangerous”antimicrobial
peptides such as LL-37, HMGB1, and HNPs. It has been shown that
these antimicrobial peptides display a high immunogenic poten-
tial in NETs (61). Our group showed that autoantibodies in SLE
patients frequently target acetylated epitopes in the N-terminal
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FIGURE 1 | Impaired clearance of apoptotic cells and/or NETs leads
to an enduring exposure of modified histones to the immune
system – insufficiently cleared apoptotic cells by macrophages
undergo secondary necrosis (SNe), thereby externalizing modified
autoantigens such as histones that become recognized as foreign
and dangerous by receptors of the innate immune system such as
toll-like receptors (TLR). Modified histones are also highly present in

NETs, that are also not properly cleared in SLE due to polymorphisms in
the DNase I gene (not shown), inhibitory anti-DNase I autoantibodies, or
NET-bound proteins such as HMGB1, LL-37, C1q (not shown), and
anti-chromatin autoantibodies that prevent the accessibility for DNase I
to the NET. The PTMs that are shown are associated with apoptosis
(blue), NETosis, or both (green) and are linked to the autoimmune
response in SLE.

tails of histones H2A, H2B, and H4. We characterized two mono-
clonal autoantibodies derived from a MRL/lpr mouse, KM-2 and
LG11-2, that recognize tri-acetylated H4 at lysines 8, 12, and 16
and acetylated H2B (K12), respectively (70, 71). Both autoanti-
bodies showed an increased reactivity with histones isolated from
apoptotic cells and also from NETs (submitted data of our group),
suggesting that these modifications are associated with apoptosis
and NETosis. Another study also showed that IgG autoantibodies
from histone-reactive SLE patients show high reactivity for acety-
lated H2B, whereas an increase in H4 acetylated at lysine 5 in NETs
was demonstrated as well (36).

METHYLATION
Histone methylation is the process by which methyl groups are
transferred by histone methyltransferases (HMTs) to lysine or argi-
nine residues of histones. Similar to acetylation, histone methyla-
tion regulates transcription and silencing of genes, depending on
the target sites. Di-methylation of H3 at lysine 9 and mono-, di-
, and tri-methylation of H4 at lysine 20 increases upon NETosis
(36). Methylation of histone H4 at lysine 20 has also been associ-
ated with apoptosis (72). Our group recently demonstrated that
autoantibodies present in the plasma from SLE mice and patients
preferentially recognize tri-methylated H3 at lysine 27 (73). This
latter reactivity was specific for SLE as there was hardly any reac-
tivity in plasma samples from patients with rheumatoid arthritis
(RA) or systemic sclerosis and healthy controls. Tri-methylation
of H3 at lysine 27 also increases upon NETosis, as demonstrated

by Liu et al. in ATRA-differentiated HL-60 cells (36). In our hands,
this epitope is also highly present in NETs formed by primary neu-
trophils (submitted data of our group). Methylation of histones
seems to be associated with an increased immunogenic poten-
tial of chromatin, similar to the aforementioned acetylation of
histones, but additional research is required to unravel the exact
mechanisms.

UBIQUITINATION
The process of ubiquitination involves the conjugation of ubiq-
uitin to other cellular proteins, thereby regulating a broad range
of eukaryotic cell functions such as apoptosis, antigen process-
ing, DNA transcription and repair, cell division, and immune
responses. Ubiquitination may signal proteins for their degrada-
tion via the proteasome, alter their cellular location, affect their
activity, and promote or prevent protein–protein interactions. In
human, 10% of all H2A proteins is monoubiquitinated at lysine
119 (UH2A) (74). Autoantibodies against UH2A are frequently
found in SLE and appear to be disease-specific (75). Between 60
and 70% of SLE patients are positive for anti-UH2A autoantibod-
ies, compared to 10% of patients with systemic sclerosis. In RA,
juvenile chronic arthritis, or Sjögren’s syndrome, these autoanti-
bodies are virtually absent. Deposits of UH2A have been identified
in more than 50% of the renal biopsies from SLE patients with
glomerulonephritis (76). Disappearance of UH2A (deubiquiti-
nation) is linked to late apoptotic processes and is likely to be
disturbed in SLE (77, 78). Polymorphisms in the TNFAIP3 gene,
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the gene that encodes for the deubiquitinating enzyme A20, are
highly associated with SLE (79). These polymorphisms lead to a
reduced expression of A20 and result in increased ubiquitination,
as demonstrated by Jury et al. in T cells from SLE patients (80).
Due to the inhibitory effect of A20 on the NFκB signaling pathway,
TNFAIP3 polymorphisms also cause hyperactive NFκB signaling.
The ribonucleoprotein SSA/Ro is, in addition to UH2A, also a
ubiquitinated protein that is frequently target of SLE autoantibod-
ies (81). Hyperubiquitinated histones released from late apoptotic
cells or NETs are likely to display an increased antigenicity and
immunogenicity, but the underlying mechanisms are not fully
elucidated yet.

POLY(ADP-RIBOSYL)ATION
Poly(ADP-ribosyl)ation of proteins involves the addition of
poly(ADP-ribose) moieties (PARs), mediated by poly(ADP-
ribose) polymerases (PARPs). These reactions are involved in cell
signaling and the control of many cell processes, including DNA
repair, telomere maintenance, and apoptosis. Autoantibodies that
bind to PARs or to the two zinc finger motifs of PARPs are fre-
quently found in patients with autoimmune rheumatic and bowel
diseases, and SLE (82–84). Anti-PARP autoantibodies do not sig-
nificantly affect the enzyme activity of PAPRs, but prevent the
cleavage of PARPs by caspase-3 (85). This cleavage is important in
the proper execution of apoptosis. Inefficient cleavage of PARPs
has shown to prolong cell survival ex vivo and may therefore
cause failure to eliminate autoreactive lymphocytes and sustain
autoimmune stimulation. Anti-PARP autoantibodies can pene-
trate cells in relative late stages of apoptosis, thereby neutralizing
PARP activity. As a result of energy depletion, prolongation of
cell survival may ultimately result in necrosis, thereby releasing
poly(ADP-ribosyl)ated proteins that may possess high antigenic
and immunogenic potential. It has been shown that oligo(ADP-
ribosyl)ated histones are involved in the production of anti-PARP
autoantibodies in SLE patients (86). Lysine 13 of H2A, lysine 30 of
H2B, lysine 37 of H3, and lysine 16 of H4 have all been identified
as ADP-ribose acceptor sites (87).

CITRULLINATION
Citrullination (also known as deamination) involves the conver-
sion of arginine residues into citrulline, a process catalyzed by
enzymes known as peptidylarginine deiminases (PADs). While
most of the previously discussed PTMs are reversible and asso-
ciated with reversible events involved in signal transduction, cit-
rullination is not reversible. Citrullination has an important role
in the normal function of the immune system, skin keratinization,
the insulation of neurons, and the plasticity of the central ner-
vous system including its essential role in gene regulation. In RA,
autoantibodies to citrullinated proteins (anti-CCP) is considered
a key pathogenic event. The presence of anti-CCP autoantibod-
ies is a powerful biomarker that allows the diagnosis of RA to
be made at a very early stage (88). Many groups investigated the
role of NETs in the production of anti-CCP autoantibodies in
RA- and PAD4-mediated citrullination of histones, which appear
as the essential initiator for NETosis via decondensation of the
chromatin (89). Khandpur et al. correlated accelerated NETosis in
RA with anti-CCP levels (25), but this correlation has raised the

following question: if NETosis, initiated by citrullination of his-
tones, plays a pathogenic role in both RA and SLE, then why is the
presence of anti-CCP autoantibodies highly sensitive and specific
for RA only and not for SLE? Hence, anti-CCP autoantibodies are
present in only 10–30% of SLE patients compared to 80–90% of
RA patients (90, 91). Interestingly, SLE patients with arthritis are
significantly more positive for anti-CCP than those without arthri-
tis, suggesting that these autoantibodies have a predictive value for
the development of arthritis in SLE (92). A groundbreaking pub-
lication by Romero et al. questions the contribution of NETs to
anti-CCP production (93). This group showed that proteins highly
present in RA synovial fluid cells become hypercitrullinated due
to membranolysis of these cells by perforins and the membrane
attack complex (MAC) of the complement system. This membra-
nolysis results in a massive calcium influx that activates PADs to
citrullinate various substrates, such as vimentin, fibronectin, and
α-enolase. Although it seems that citrullinated histones, present in
NETs and to a lesser extent also in apoptotic blebs, do not exert an
important role in the induction of anti-CCP autoantibody pro-
duction, they may still play a pathogenic role. To our knowledge,
studies about the immunogenic effect of citrullinated histones in
NETs or apoptotic cells have not yet been conducted. The antimi-
crobial peptide LL-37 is highly present in NETs from SLE patients
and has recently been found to be also a substrate of PADs (94).
Citrullinated LL-37 showed to be more chemotactic to PBMCs and
more pro-inflammatory compared to unmodified LL-37. Compa-
rable results may also hold for citrullinated histones, although
additional research is required.

CONCLUDING REMARKS
The exact etiopathogenesis of SLE is far from understood. Many
different environmental factors are believed to act together to
induce SLE in those who are genetically predisposed. There is a
growing body of evidence that shows that disturbances in two
cell death pathways, apoptosis and NETosis, are causative for ini-
tiating the disease and amplifying existing disease. However, the
relative contribution of apoptosis and NETosis to the genesis of
SLE is unclear and is likely to differ from patient to patient.
Regardless of this, it is assumed that disturbances in both cell
death pathways interact with each other and create multiple pos-
itive feedback loops that lead to chronification or exacerbation of
the disease (Figure 2). Despite the heterogeneity in the underly-
ing (molecular) defects and pathways that cause SLE, it appears
that accumulation of apoptotic material and NETs in tissues is
the common denominator between all patients with SLE. Enrich-
ment of protein modifications, and in particular specific histone
modifications, in not efficiently cleared apoptotic cells or NETs
may generate neoantigens/danger signals with an increased anti-
genic and immunogenic potential. In addition to PTMs, another
process to be considered in the generation of neoantigens/danger
signals is proteolytic cleavage of histones and other chromatin-
associated proteins by for example caspases, neutrophil elastase,
and/or cathepsins. It is conceivable that chromatin-derived PTMs
and/or cleavage products, related to apoptosis and/or NETosis,
specifically ligate to receptors on antigen-presenting cells, thereby
activating these cells and resulting in their immunogenic presen-
tation. Improving or intensifying the clearance of apoptotic cells
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FIGURE 2 | Positive feedback loops arising from the interaction
between apoptosis and NETosis, leading to chronification and/or
exacerbation of the disease – modified autoantigens, derived from
apoptotic cells, may be presented by antigen-presenting cells to
autoreactiveT cells, which can lead to production of autoantibodies by
B cells, including anti-dsDNA or anti-RNP antibodies. These
autoantibodies can induce NETosis or form immune complexes with their
antigen. Immune complexes deposit on basal membranes, and incite a
local inflammation (organ damage), or stimulate plasmacytoid dendritic cells
to produce IFN-α and other pro-inflammatory cytokines. Pro-inflammatory
cytokines such as IL-1β, TNF-α, or IFN-α induce NETosis or prime neutrophils
for NETosis: NETs may serve as B cell autoantigens and lead to further
autoantibody production or directly cause organ damage. Proteins from
neutrophil granules, present in NETs, have shown to be highly toxic to
glomerular structures and endothelium. Endothelial or glomerular damage
causes further production of pro-inflammatory cytokines and leads to a new
load of apoptotic cells.

and/or NETs may prevent the formation of immunogenic nuclear
autoantigens. In addition, neutralizing and tolerizing strategies
using specific chromatin-derived PTMs and/or cleavage products
related to apoptosis and/or NETosis may represent future therapies
for SLE.
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Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon diox-
ide, a controlled inflammatory response is essential for restoration of tissue homeostasis
following airway exposure to bacterial pathogens or environmental toxins. Unregulated
or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting
normal tissue architecture, and consequently compromising efficient gaseous exchange.
Failure to resolve inflammation underlies the development and/or progression of a num-
ber of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the
innate immune system, are primarily involved in defense against parasitic infections. How-
ever, the propagation of the allergic inflammatory response in chronic asthma is thought
to involve excessive recruitment and impaired apoptosis of eosinophils together with
defective phagocytic clearance of apoptotic cells (efferocytosis). In terms of therapeutic
approaches for the treatment of asthma, the widespread use of glucocorticoids is asso-
ciated with a number of adverse health consequences after long-term use, while some
patients suffer from steroid-resistant disease. A new approach for therapeutic intervention
would be to promote the resolution of inflammation via modulation of eosinophil apoptosis
and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms
underpinning eosinophil-mediated lung damage, currently available treatments and thera-
peutic targets that might in future be harnessed to facilitate inflammation resolution by the
manipulation of cell survival and clearance pathways.

Keywords: eosinophil, lung, inflammation, apoptosis, phagocytosis, allergy, airway, resolution

INTRODUCTION
In response to tissue injury or the presence of micro-organisms,
initiation of host protective mechanisms associated with the acute
inflammatory response can also cause damage to the surrounding
tissue. The release of proteases, glycosidases, and reactive oxy-
gen/nitrogen species can be particularly destructive in the lung,
where disruption of the normal tissue architecture compromises
efficient gaseous exchange. A corollary of this close relationship
between inflammation and tissue injury is that successful res-
olution of inflammation is crucial to optimal restoration and
maintenance of lung function.

The detection of pathogen-associated molecular patterns
(PAMPs) or danger-associated molecular patterns (DAMPs)
via their cognate receptors leads to the production of pro-
inflammatory mediators including tumor necrosis factor-alpha
(TNF-α), interleukin (IL)-1, and IL-6. Well characterized
chemoattractants such as complement fragments (e.g., C3a and
C5a), lipids [e.g., leukotriene B4 (LTB4) and platelet-activating fac-
tor (PAF)], and chemokines [e.g., IL-8 (CXCL8), MCP-1 (CCL2),
and eotaxin (CCL11)] act to recruit and/or activate inflammatory
cells. Together these mediators rapidly perpetuate inflammation
via the activation of vascular endothelial cells, increased vascu-
lar permeability, and edema, concurrent with the recruitment of
granulocytes at the site of injury. In this review, we will discuss the
mechanisms controlling acute lung inflammation, pathological
conditions where the regulation of inflammation has gone awry

and discuss the current and future treatments that could promote
the successful resolution of inflammation.

POLYMORPHONUCLEAR GRANULOCYTES: CRITICAL EFFECTORS OF THE
INNATE IMMUNE RESPONSE
Neutrophils and eosinophils are key immune cells in the host
defense against invading bacteria and parasites. Excessive recruit-
ment, uncontrolled activation, and defective removal of these cells
play a prominent role in the initiation and propagation of a num-
ber of chronic inflammatory conditions (1). Apoptosis, a major
form of programed cell death, is a fundamental process regulating
the tissue longevity of inflammatory cells. Apoptosis provides an
efficient non-inflammatory mechanism for the removal of poten-
tially damaging cells and cellular content from the inflamed site
by resident or recruited monocyte/macrophage populations (2) or
by “non-professional” phagocytes such as epithelial cells (3). The
observation of failed apoptotic cell clearance seen in a number
of chronic inflammatory diseases, including asthma, bronchiecta-
sis, and chronic obstructive pulmonary disease (COPD) provides
strong evidence that granulocyte apoptosis and non-inflammatory
clearance has a key role in the resolution of inflammation.

Neutrophils are continuously generated from pluripotent stem
cells in the bone marrow and are released into the circulation
in large numbers [up to 2 × 1011 cells/day (4)]. Once appropri-
ately triggered, circulating neutrophils or those mobilized from
the large marginated pools in the lungs, liver, spleen, and bone
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marrow (5, 6), can be rapidly recruited to the inflammatory site
and engage a number of effector mechanisms to destroy invading
pathogenic organisms. This distinctive machinery includes a com-
bination of reactive oxygen species (ROS) generation, the release
of a cocktail of cytotoxic and proteolytic molecules, phagocyto-
sis, and NETosis (the formation of extracellular chromatin traps)
to destroy invading pathogenic organisms. Recruited neutrophils
can undergo apoptosis which is associated with the “disabling”
of secretion of their potentially harmful granule content thereby
preventing damage to the surrounding tissues (7). The removal
of these apoptotic cells by recruited macrophages or other local
phagocytes, including airway epithelial cells (3), is believed to
facilitate the resolution of inflammation. In addition to apop-
totic cell death, a number of other forms of neutrophil cell death
have been documented, including necrosis, NETosis, autophago-
cytic cell death, necroptosis, oncosis, and pyroptosis [reviewed in
Ref. (8, 9)]. Although the impact of these alternative forms of cell
death on the resolution of inflammatory responses is less clear,
several are believed to be predominantly pro-inflammatory. As
well as local cell death recent studies have provided evidence that
recruited granulocytes can also undergo reverse migration away
from the site of inflammation (10–12), although the consequences
of this on inflammatory processes requires further investigation.

Eosinophils are also derived from granulocytic precursor pop-
ulations in the bone marrow and are readily recruited from res-
idence within hematopoietic and lymphatic organs such as the
lymph nodes, thymus, spleen, and bone marrow (13) via the vascu-
lature to the site of injury in response to parasitic or allergic inflam-
mation (14). Historically, these cells were considered to play little
role in immunoregulation, however, several lines of investigation
have now shown eosinophils to be multifunctional granulocytes
involved in the initiation and propagation of numerous inflam-
matory responses, including modulation of the adaptive immune
response (14). Once at the site of injury, eosinophil degranula-
tion contributes to both the removal of the inflammatory stimuli
and also the propagation of inflammation. Eosinophil-derived
granules contain a wide range of proteins including, major basic
protein, eosinophil cationic protein, eosinophil peroxidase, and
eosinophil-derived neurotoxin, which are known to be cytotoxic
to airway epithelial cells (15, 16). Eosinophils have also been
shown to undergo “traditional” extracellular trap formation (ETo-
sis) termed EETosis (17) as well as facilitating the extracellular
release of mitochondrial chromatin in a ROS-dependent manner
(13). Released mitochondrial DNA and eosinophil-derived gran-
ule proteins combine to form structures, which are capable of
both binding and killing invading organisms in vitro and in vivo
(13), indicating that eosinophils may play a previously unrecog-
nized role in antimicrobial defense. The fate of tissue eosinophils
includes apoptosis (18) and subsequent clearance by phagocytes,
although alternative fates have also been reported.

APOPTOTIC PATHWAYS
There are two major pathways of apoptosis. The intrinsic pathway
is characterized by a conformational change in pro-apoptotic Bcl-2
protein family members, resulting in outer mitochondrial mem-
brane pore formation. The subsequent release of cytochrome c
leads to formation of a complex with apoptotic protease-activating

factor-1 (APAF-1), which then activates the downstream cas-
pases that facilitate apoptosis. In contrast, the extrinsic pathway
is triggered by cell surface death receptor trimerization result-
ing in the activation of Fas-associated protein with death domain
(FADD) and TNF-receptor type 1-associated death domain pro-
tein (TRADD),which is responsible for the autocatalytic activation
of initiator and effector caspases leading to the synchronized
molecular alterations and morphological changes associated with
apoptosis. Thus, the result of these two divergent pathways is
the activation of intracellular caspases (a family of cysteine–
aspartic proteases), which represents a hallmark event in apoptosis
[reviewed in Ref. (8, 19, 20)].

AIRWAY INFLAMMATION
NORMAL LUNG STRUCTURE
The lung is made of up three distinctly different anatomical areas,
the proximal cartilaginous airways, distal bronchioles, and alveoli
(21). The trachea and main bronchi form the proximal cartilagi-
nous airways and are responsible for the conduction of inhaled air,
during which the proximal pseudostratified epithelium provides
defense against invading pathogens and environmental toxins.
In contrast, the epithelium of the distal airways becomes more
columnar and is populated by a large number of ciliated epithelial
cells and mucus-secreting goblet cells (22) – aiding the entrap-
ment and further removal of unwanted inhaled particles (23).
Two types of cells make up the alveolar epithelium; type 1 cells,
which facilitate gaseous exchange, and the type 2 cells produce
numerous secretory vesicles filled with surfactant material, includ-
ing surfactant-associated protein C (24). Thus, in a normal lung
the architectural structure of the tissue works to provide the most
efficient environment for gaseous exchange.

Due to the large surface area and constant barrage of pathogens
and debris found in the air, the lungs have developed efficient
mechanisms for the recognition of microbe-specific motifs. The
respiratory tract is also unique in that it has both an exter-
nal epithelial layer (the respiratory epithelium) and an inter-
nal endothelial layer in close apposition. Therefore, this unique
structure could provide difficulties when attempting to pharma-
cologically target the tissue resident eosinophils rather than the
airway-resident cells.

NEUTROPHIL-DOMINANT AIRWAY INFLAMMATION
In tissue localized infection, the exposure of neutrophils to bac-
terial products or endogenous mediators leads to “priming” of
function and facilitates chemotaxis toward the site of infection or
injury. Up regulation of surface adhesion molecules (P-selectin,
ICAM1, and VCAM1) on the vascular endothelial cells that inter-
act with adhesion molecules on the neutrophil is required for
the tethering, rolling, intravascular crawling, and transmigration
of activated neutrophils from the circulation into the tissue to
carry out their effector functions [reviewed in Ref. (4)]. Develop-
ment and progression of two neutrophil-driven airway diseases;
COPD, characterized by impaired airflow to the lungs as a result
of an abnormal inflammatory response (25), and bronchiectasis, a
chronic debilitating respiratory disease, characterized by a“vicious
cycle” of permanently dilated airways, increased mucus produc-
tion, and recurrent infections (26), have been linked to failed
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resolution of inflammation (27–29). However, despite persistent
neutrophil-driven inflammation, reduced bacterial clearance is
also seen (30). Thus, failure to clear bacterial pathogens from the
airways leads to a prolonged inflammatory response character-
izing the vicious cycle of inflammation and infection described,
with both neutrophil and bacterial derived products contributing
to damage of the surrounding epithelial cells.

Currently prescribed treatments for COPD and bronchiecta-
sis include β2-adrenergic receptor agonists (e.g., salmeterol and
formoterol), anticholinergic therapies (e.g., tiotropium bromide),
high dose inhaled glucocorticoids, theophylline and treatments
to improve mucociliary clearance, and sputum expectoration.
These drugs work to reduce symptoms, improve lung func-
tion, and exercise capacity in an attempt to return to normal
health status (26, 31–34). Furthermore, as well as traditional
anti-inflammatory effects including inhibition of ROS release,
decreased adhesion to the vascular endothelium and reduced
release of pro-inflammatory cytokines from macrophages (35),
salmeterol has also been shown to reduce adherence of bacteria
to airway epithelial cells (36, 37), demonstrating that it may be
effective at treating both the underlying infections and resultant
inflammatory response.

EOSINOPHIL DOMINANT AIRWAY INFLAMMATION
Eosinophil dominant allergic inflammation is characterized by
three distinct phases (Figure 1). On initial exposure of the air-
way to an allergen, the sensitization stage, allergens are taken up
by dendritic cells either within the airway lumen or in the sub-
mucosa after penetrating the epithelial barrier. The antigens are
then presented to naïve T cells, which differentiate and activate
local B cells to produce IgE. Secreted IgE then binds to Fcε recep-
tors on the surface of submucosal tissue resident mast cells, thus
priming the immune system. On second exposure to the allergen,
surface bound IgE becomes cross-linked leading to the activation
of the tissue resident mast cells. Inflammatory mediators are then
released and initiate the propagation of inflammation character-
ized as the second phase of allergic inflammation, the early-phase
reaction. Release of histamine, LTB4, TNF-α, IL-8, IL-13, CCL2,
and VEGFA from mast cells leads to increased vascular endothe-
lial permeability, promoting the recruitment and transmigration
of granulocytes from the circulation into the tissue. IL-13, hista-
mine and TNF-α also act directly on the goblet cells found within
the airway epithelium, causing increased mucus production.

Transendothelial migration of eosinophils to the inflamed site
marks the progression into the third stage of the inflammatory
response – the late-phase reaction. This usually develops 6–9 h
after allergen exposure. Continued secretion of eosinophil recruit-
ing cytokines (e.g., GM-CSF, IL-5, and IL-3) by mast cells leads to
the prolonged eosinophil infiltration, representing a major con-
tributory factor to the initiation and maintenance of eosinophilic
airway inflammation in asthma (19, 38) – key cytokines involved
in eosinophil recruitment are summarized in Table 1. Subsequent
eosinophil degranulation and release of intracellular cytotoxic
contents such as eosinophil basic protein results in damage to air-
way epithelial cells with increased mucus production from goblet
cells and airway bronchoconstriction as a result of IL-13 secretion
lead to reduced airflow, airway damage, goblet cell hyperplasia, and

Table 1 | Key cytokines involved in eosinophil recruitment.

KEY CYTOKINES

Eotaxin-1 (CLL11) (47, 48)

GM-CSF (49)

Interleukin-5 (IL-5) (49)

Interleukin-3 (IL-3) (38, 49)

MCP-3 (48)

Eotaxin-2 (CCL24) (47)

RANTES (CCL5) (48–50)

MIP-1α (CCL3) (48, 50)

disrupted tissue architecture and remodeling. Mast cell production
of IL-8 and TNFα also triggers the recruitment of neutrophils and
elastase release causing further tissue degradation.

Continuous exposure to allergens leads to persistent, chronic
inflammation, which is associated with changes in tissue architec-
ture and cell composition and extensive tissue remodeling. In par-
ticular, patients with chronic asthma develop increased goblet cell
hyperplasia. Persistent residence of eosinophils and neutrophils
within the submucosa results in the continuous production of
pro-inflammatory cytokines, lack of inflammatory resolution, and
a repetitive cycle of tissue injury and inflammation (Figure 1).

The most characteristic features of eosinophil dominant aller-
gic asthma is bronchial inflammation leading to non-specific
airway hyperreactivity (39), mucus plugging of airways, epithelial
cells loss, mucus gland hyperplasia, epithelial basement membrane
thickening, edema of the submucosa, smooth muscle hypertrophy,
and inflammatory cell infiltration (40). In vitro studies have shown
that eosinophil granule-derived proteins are partly responsible for
the damage seen in asthma as eosinophil cationic protein and
major basic protein are both cytotoxic to the bronchial epithelium
(16) and have been shown to affect ciliary beat and function (41)
and increase non-specific bronchial hyperreactivity (42), all of
which are classical pathological findings of asthma (40). Interest-
ingly, a number of studies using eosinophil-deficient mice (PHIL)
have shown that eosinophils enhance airway mucus accumula-
tion and hyperresponsiveness, collagen deposition, and smooth
muscle hypertrophy (43, 44). However, a significantly increased
mucus index was still observed in ovalbumin treated PHIL mice
(43) suggesting that although eosinophils contribute substantially
to airway remodeling, they are not obligatory for allergen-induced
injury (44), indicating activation of both eosinophil-dependent
and -independent mechanisms of injury after airway allergen
challenge (43).

Current treatments for asthma include inhalable bron-
chodilators (β2-adrenergic agonists and anticholinergic drugs),
leukotriene receptor antagonists, glucocorticoids, and theo-
phylline (45, 46). The possible mechanisms of actions for these
drugs are shown in Table 2.

Mast cells are known to play an important role in the prop-
agation and pathogenesis of allergen-induced inflammatory dis-
ease (51, 52), due to their involvement in the sensitization stage,
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FIGURE 1 | Allergen driven allergic inflammation: progression from the
sensitization phase, to early and late inflammatory phase. Airway
exposure results in the allergen being taken up by submucosal dendritic cells.
Antigen presentation to B cells, via T cell–dendritic cell interactions, leads to
IgE release – marking the sensitization phase. IgE binding to Fcε receptors on
the tissue resident mast cells leads to allergen-induced IgE receptor
crosslinking and mast cell degranulation – marking the early-phase of the
inflammatory response. The release of of LTB4, TNF-α, IL-8, IL-13, CCL2, and

VEGFA from mast cells results in eosinophil recruitment, increased vascular
permeability, and increased mucus secretion by goblet cells. Continued
exposure to the allergen, and infiltration of granulocytes to the inflamed
tissue marks the progression to the late phase of the inflammatory response.
Prolonged secretion of IL-13 and the release of intracellular cytotoxic granules
by recruited eosinophils (and neutrophils) lead to continual tissue damage,
mucus hypersecretion, and tissue remodeling resulting in the gradual loss of
normal lung function.
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Table 2 | Mechanisms of action of agents currently used for routine

treatment of allergic airways disease.

Mediator/drug Biological response Reference

Glucocorticoids Alter pro- and anti-inflammatory

cytokine balance

(55, 56)

Enhances phagocytic capacity of

macrophages and airway epithelial

cells

(57–59)

Promotes eosinophil apoptosis

in vitro possibly via reduction of

Mcl-1 levels

(1, 60)

β2-Adrenergic

receptor agonists

(e.g., salmeterol

and formoterol)

Highly selective bronchodilator

Reduce adherence of bacteria to

airway epithelial cells

(61–63)

(36, 37)

Anticholinergic drugs

(e.g., tiotropium

bromide)

Effective bronchodilators (32)

Leukotriene receptor

antagonists

Prevent leukotriene induced

bronchoconstriction, mucus

hyper secretion, and airway

inflammation

(64)

Increase eosinophil apoptosis

in vitro

(65)

Theophylline Bronchodilator (66, 67)

Accelerates eosinophil apoptosis

in vitro possibly by suppressing

anti-apoptotic protein Bcl-2 levels

(68, 69)

Reduced airway eosinophilia and

ECP levels in vivo

(70)

Figure 1. As these tissue resident cells are long lived and can
survive repeated activation, the modulation of their prolifera-
tion and survival has been proposed as a potential therapeutic
intervention for allergic disease (53). Recently, Wechsler et al.
showed that thymol, a monocyclic phenolic plant compound
with known antiseptic, antibiotic, antifungal, and antioxidant
properties, was able to induce mast cell apoptosis in vitro and
in vivo (54), thereby highlighting a potential pathway for modu-
lating the allergic response through the manipulation of mast cell
viability.

FAILINGS IN CURRENT TREATMENTS: WHY NEW
APPROACHES ARE NEEDED?
New approaches for the management of inflammatory airway dis-
eases are urgently needed as current treatments are associated with
a number of adverse health consequences after long-term use.
For example, the management of allergic asthma is largely based
around preventing exposure of the sensitized individuals to the
allergen and treating with therapies which are directed toward

alleviating and/or treating the symptoms of the disorder, such as
inhaled glucocorticoids. However, this often poses a problem as a
small subpopulation of asthma sufferers, often those with “neu-
trophilic”asthma, are noted to be steroid resistant (71), resulting in
increased disease severity (72). Equally the undesirable side effects
that arise from long-term use of glucocorticoids (the most com-
mon treatment prescribed for eosinophil dominant inflammatory
conditions) include osteoporosis, hypertension, muscle atrophy,
and delayed wound healing, all of which place limitations on use
of glucocorticoid-based anti-inflammatory therapies.

REGULATION OF GRANULOCYTE APOPTOSIS
As the resolution of inflammation likely depends on the apopto-
sis and phagocytosis of apoptotic granulocytes, research into the
pharmacological manipulation of these processes is increasingly
being recognized as an important area of research for the devel-
opment of novel strategies to enhance the resolution of chronic
inflammation (27, 73–76) and improve patient health.

The rates of granulocyte apoptosis are amenable to alteration
by exogenous pharmacological compounds. Both the rates of neu-
trophil and eosinophil apoptosis can be accelerated by treatment
with, soluble Fas ligand (Fas-L) (77), gliotoxin (78), and cyclin-
dependent kinase inhibitors (CDKi) (73, 74, 79). Neutrophil
apoptosis can also be delayed by pro-inflammatory cytokines
(e.g., TNF-α and IL-1) (78), bacterial products [e.g., lipopolysac-
charide (LPS), lipoteichoic acid, and peptidoglycan] (80, 81),
growth factors [e.g., granulocyte macrophage-colony stimulat-
ing factor (GM-CSF)] (75), and pharmacological agents including
dibutyryl-cAMP (82, 83) and glucocorticoids (1, 84). TNF-α has
been reported to have both pro- and anti-apoptotic effects on
neutrophils, with early apoptosis and late survival seen during
exposure of cultured cells. It is thought that at early time points
(2–8 h) during in vitro culture a subpopulation of neutrophils
undergo caspase-8 dependent apoptosis, with later survival (16–
24 h) dependent upon an NF-κB mediated anti-apoptotic signal-
ing pathway. Similarly, NF-κB inhibition in eosinophils allows
TNF-α mediated apoptosis to predominate (85).

One important difference between the two granulocyte pop-
ulations is that in vitro treatment of human granulocytes with
glucocorticoids promotes eosinophil apoptosis, whereas it delays
neutrophil apoptosis (5). It is also important to note that the
survival effect of glucocorticoids on neutrophil longevity may be
dependent on the environmental milieu (86, 87). Marwick et al.
demonstrated in vitro that the pro-survival effects of glucocorti-
coids on neutrophils are dependent on oxygen levels, with severe
hypoxia (1% oxygen) attenuating glucocorticoid-mediated neu-
trophil survival (87). This observation has important implications
for the therapeutic efficacy of glucocorticoids when prescribed
for neutrophil-dominant inflammatory conditions, due to the
relatively high oxygen concentrations found in the lung.

One way that glucocorticoids are thought to mediate their anti-
inflammatory effects is through the expression and function of
the downstream effector molecule Annexin A1 (AnxA1) (86, 88).
AnxA1 has been shown to promote human neutrophil apopto-
sis via dephosphorylation of the Bcl-2-antagonist of cell death
(BAD) promoting cell death via the intrinsic pathway of apopto-
sis (89). In vitro investigations showed that endogenous AnxA1
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was released by apoptotic neutrophils and glucocorticoid-treated
macrophages, which then acts in both a para- and autocrine man-
ner to promote the phagocytic clearance of apoptotic neutrophils
(90, 91). Increased production of AnxA1 by innate immune
cells following glucocorticoid administration reportedly leads to
decreased neutrophil endothelial transmigration, increased neu-
trophil apoptosis and increased phagocytosis of apoptotic cells
by macrophages (88, 92). This mechanism was further sup-
ported by in vivo experiments in which administration of an
anti-AnxA1 antibody prevented glucocorticoid-induced resolu-
tion of inflammation, whereas treatment with AnxA1-derived
peptides promoted the resolution of inflammation (86). Further
work is required to define the role of AnxA1 in the resolution of
eosinophilic inflammation.

A number of classically“pro-inflammatory”eosinophil recruit-
ing cytokines, IL-25 (93), IL-33 (94), IL-3, IL-5,and thymic stromal
lymphopoietin (TSLP) (95) have also been shown to delay the rate
of eosinophil apoptosis (96). Due to their key role in the recruit-
ment and activation and of eosinophils in inflammatory sites, there
is interest in developing anti-cytokine therapies, such as anti-IL-5
antibodies [reviewed in Ref. (97)], as potential therapeutic targets.
Historically, there has been a number of disappointing results sur-
rounding anti-IL-5 treatments in humans, potentially as a result
of the unique architecture of the lungs localizing their effect to the
airway resident, rather than the tissue resident, eosinophils.

NOVEL REGULATORS OF EOSINOPHIL APOPTOSIS
The regulation of cell apoptosis by pro- and anti-apoptotic Bcl-2
family members has been well documented (20). However,as gran-
ulocytes have a limited number of mitochondria (98), it was some-
what surprising when members of this protein family were found
to modulate the regulation of granulocyte apoptosis. Eosinophils
were found to express high levels of pro-apoptotic Bax molecules,
and were also found to express a number of anti-apoptotic mem-
bers of the Bcl-2 family (99). Mcl-1, an important anti-apoptotic
protein in neutrophils (27), is also thought to play a predominant
role in eosinophils, as previous work reported that Mcl-1 lev-
els decreased in glucocorticoid-treated eosinophils, whereas they
remained at a constant level in glucocorticoid-treated neutrophils
(60), which may go some way to explain their differential effect on
the two granulocyte populations.

Since granulocytes are considered to be terminally differenti-
ated cells, the central role of active cyclin-dependent kinases (key
regulators of the cell cycle) in the control of apoptosis was surpris-
ing. The structurally distinct CDKis R-roscovitine and AT7519
promoted apoptosis in a caspase-dependent manner (73, 76) by
the down-regulation of intracellular Mcl-1 levels in vivo (79, 100,
101) and prevented GM-CSF-mediated up regulation of Mcl-1
(73). R-roscovitine was also shown to have pro-resolving effects
in vivo in a number of models of inflammation (73) while AT7519
increased the percentage of apoptotic eosinophils as well as the
percentage of macrophages containing apoptotic eosinophils in
a mouse model of allergic pleurisy, indicating that AT7519 has
the potential to resolve allergic inflammation by driving both
eosinophil apoptosis and by increasing macrophage clearance of
apoptotic cells (76). Evidence suggests that these CDKIs target
CDK7 and CDK9, which are involved in transcription of key

granulocyte survival proteins such as Mcl-1 (102). Further studies
investigating the mechanisms underlying resolution of inflam-
mation have also highlighted the importance of Mcl-1 in the
regulation of granulocyte apoptosis. Flavones, polyphenolic plant-
derived compounds, rapidly induced both eosinophil (103) and
neutrophil apoptosis (101) in vitro even in the presence of pow-
erful pro-survival mediators including LTA, GM-CSF (101), and
IL-5 (103).

Another powerful driver of caspase induced eosinophil apopto-
sis is antibody crosslinking of sialic acid binding immunoglobulin-
like lectin 8 (Siglec-8), a member of the Siglec immunoglobu-
lin supergene family expressed only on the surface of human
eosinophils, basophils, and mast cells (104). Siglec-8 cross-
linking reduced eosinophil viability in a time- and concentration-
dependent manner through the induction of caspase-mediated
apoptosis. This was further confirmed by the use of pan (104)
and selective caspase inhibitors (against caspase-8 and -9) (105),
which completely inhibited Siglec-8 cross-linking induced apopto-
sis in vitro, while having no effect on spontaneous eosinophil apop-
tosis. Antibody crosslinking of the functional mouse ortholog,
Siglec-F, was also shown to significantly reduce peripheral
eosinophil number in a hypereosinophilic/chronic eosinophilic
leukemic (HES/CEL) murine model, as well as induce eosinophil
apoptosis in vivo (106). These data further highlight that regu-
lation of eosinophil apoptosis using exogenous mediators could
provide potential future therapeutic targets for eosinophilic
disorders.

Pharmacological modulation of endogenous molecules
involved in mediating the resolution of allergic inflammation is
also a key area of research. Recently, Faustino et al. showed that
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
is a major player in the resolution process, with in vivo administra-
tion of anti-TRAIL markedly reducing the number of apoptotic
cells in the BAL fluid of chronic allergy induced mice (107).
In vivo, treatment with recombinant TRAIL, in an established
mouse model of allergic airway inflammation, also significantly
augmented the number of apoptotic cells found in the BAL of
OVA treated mice, compared to control (PBS treated mice), as
well as decreasing the overall number of eosinophils found in the
BAL (107), providing further evidence that the manipulation of
eosinophil apoptosis may provide avenues for the discovery of
novel therapeutics.

LIPID MODULATION
Lipoxins, protectins, and resolvins are bioactive lipids synthe-
sized from arachidonic, docosahexaenoic, and eicosapentaenoic
acid, respectively (108, 109). They are key pro-resolution media-
tors, which act to selectively prevent granulocyte migration and
increase the recruitment of phagocytic cells (110). Both lipoxin
A4 and B4 were reported to inhibit neutrophil recruitment to
an inflammatory site and lipoxin A4 was also shown to stim-
ulate monocyte chemotaxis and promote macrophage uptake
of apoptotic neutrophils in vitro (111, 112) and in vivo (113).
Similar inhibitory effects of lipoxin A4 upon the migration
and chemotaxis of eosinophils in vivo and the local generation
of eotaxin and IL-5 have been reported (114, 115). Resolvins
also have pro-resolution effects preventing transepithelial and
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transendothelial migration of neutrophils in vivo (116), and
stimulating the non-inflammatory phagocytosis of apoptotic
neutrophils (117).

The significance of pro-resolving lipids in successful resolution
of inflammation has also been noted in a number of non-allergic
and allergic inflammatory conditions. Reduced levels of protectin
D1 and lipoxin A4 are seen in the exhaled breath of patients after
a severe and mild asthma exacerbation, respectively (118, 119).
In vivo, mouse models have also provided insight into the role of
pro-resolving lipids in the recruitment of granulocytes and aug-
mentation of macrophage phagocytic capacity – resolvin E1 and
lipoxin analogs were shown to reduce airway hyperresponsiveness
(119), eosinophil number (118), and promote inflammation res-
olution in a mouse model of allergic asthma (119, 120). Given the
pro-resolution roles of these lipid mediators, there is great inter-
est in the development of them as therapeutics. However, as these
endogenously produced molecules are traditionally locally active
and rapidly inactivated the development of exogenously admin-
istered drugs with longer half-lives, which mimic endogenous
compounds in vivo are needed to fill this pharmacological niche.
Currently, the synthetic resolvin analog RX-10045, and naturally
occurring small molecule lipid mediator RX-10001 and are under
clinical examination for their use in a number of inflammatory
diseases such as dry eye, asthma, retinal disease, and inflammatory
bowel disease (109).

MANIPULATION OF PHAGOCYTOSIS
One newly emerging approach to facilitate the resolution of
inflammation is the pharmacological manipulation of the phago-
cytosis of apoptotic granulocytes (121). As well as their effects
on granulocyte apoptosis, glucocorticoids are also known to aug-
ment macrophage phagocytic function (57), which may represent
an approach to drive clearance of apoptotic cells from inflamed
sites (122). Glucocorticoid-treated macrophages exhibit altered
cytoskeletal regulation, with increased cell motility and expression
of high levels of active Rac, a key protein involved in cell motility,
mitosis, wound healing, and phagocytosis (123).

Glucocorticoids induce phagocytosis of apoptotic cells via Mer,
a member of the Tyro-3/Axl/Mer (TAM) receptor tyrosine kinase
family (58, 124, 125). TAMs are widely expressed vertebrate-
specific receptor tyrosine kinases that confer the capacity for bind-
ing and subsequent phagocytosis of apoptotic cells, together with
initiation of signals that regulate cellular function. TAM-deficient
mice show defective clearance of apoptotic material by retinal pig-
ment epithelial cells of the eye, Sertoli cells of the testis and also
by myeloid cells. Interestingly, a number of autoimmune condi-
tions are associated with impaired or failed clearance of apoptotic
cells (126) and the absence of TAM receptors results in progres-
sive loss of vision, reduced fertility, and development of overt
autoimmunity (122, 127, 128). Recent studies demonstrate that
Mer-mediated apoptotic cell clearance has a critical importance
pathophysiologically in the lung, as inflammation in an LPS-
induced lung injury model was amplified following Mer blockade
(129), and conversely attenuated following up regulation of Mer-
signaling by use of TAPI-0 (a specific inhibitor of Mer cleavage)
(130). The expression of Mer on phagocytic populations present
at the inflammatory site could also be induced by treatment with

glucocorticoids (57) or liver X receptor agonists (131). Alterna-
tively, blockade of cytokines that actively suppress Mer expression
(e.g., interferon-gamma) could represent an alternative strategy
for promoting Mer-dependent apoptotic cell clearance (132, 133).
Recent evidence suggests that Mer is down regulated by inflamma-
tory stimuli such as LPS or bleomycin via proteolytic cleavage from
the phagocyte membrane (134). Specific inhibition of ADAM17
proteolytic activity (e.g., using KD-1X-73.5 or TAPI-0) prevents
Mer down-regulation and is associated with increased clearance of
apoptotic cells in both LPS and bleomycin models of lung injury
(135), providing a potential therapeutic approach to increase Mer-
dependent clearance mechanisms in inflammation. Definition of
the molecular mechanisms of phagocyte–apoptotic cell interac-
tions and regulation by glucocorticoids will provide opportunities
to identify novel targets for therapeutic gain.

EPITHELIAL CELL PHAGOCYTOSIS
In addition to the importance of therapies, which are able to mod-
ulate apoptotic cell phagocytic clearance, identification of the cell
types which carry out this process in inflammatory airway condi-
tions is of crucial importance. Induced death of airway epithelial
cells as a result of exposure to environmental toxins, allergens,
and pathogens has been observed and documented in patients
with asthma (3). Thus, there is a need for a large population
of local airway phagocytic cells to remove the apoptotic debris.
There is mounting evidence that a number of “non-professional”
phagocytes, including mammary epithelial (136) and microvascu-
lar endothelial cells (137) are also able to phagocytose apoptotic
cells. Work published by Walsh et al. and Sexton et al. showed that
bronchial epithelial cells are capable of recognizing and engulf-
ing apoptotic eosinophils, suggesting a non-passive role of the
airway epithelium in the resolution of eosinophilic inflammation
in asthma (138, 139). More recently, Juncadella et al. showed that
bronchial epithelial cells are also critically involved in the phagocy-
tosis of apoptotic airway epithelial cells, which subsequently alters
the production of anti-inflammatory cytokines and control of air-
way hyperresponsiveness in a murine model of allergic airway
inflammation (3). Despite the potential for providing novel ther-
apeutic approaches for the treatment of inflammatory diseases,
little work has been done to investigate the potential for manipu-
lation of the phagocytic ability of these cells in current models of
inflammatory airway diseases.

SUMMARY
In conclusion, recent research into the pharmacological manipula-
tion of apoptosis and efferocytosis of apoptotic cells has provided
novel insights into the treatment of inflammatory airway dis-
eases, notably eosinophil dominant airway inflammation. This
dual approach will open up new areas for therapeutic intervention,
allowing the successful manipulation of inflammation resolution,
as well as reducing the adverse effects associated with currently
available treatments.
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In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells
by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary
necrosis and the consequent release of pro-inflammatory cell contents that damages the
tissue environment and provokes autoimmunity. In addition, detection and removal of apop-
totic cells generally induces an anti-inflammatory response. As a consequence improper
clearance of apoptotic cells, being the result of either genetic anomalies and/or a per-
sistent disease state, contributes to the establishment and progression of a number of
human chronic inflammatory diseases such as autoimmune and neurological disorders,
inflammatory lung diseases, obesity, type 2 diabetes, or atherosclerosis. During the past
decade, our knowledge about the mechanism of efferocytosis has significantly increased,
providing therapeutic targets through which impaired phagocytosis of apoptotic cells and
the consequent inflammation could be influenced in these diseases.

Keywords: apoptotic cell, phagocytosis, inflammation, autoimmunity, atherosclerosis, obesity, type 2 diabetes,
therapy

INTRODUCTION
Efficient execution of apoptotic cell death followed by efficient
clearance mediated by professional and by non-professional neigh-
boring phagocytes, is a key mechanism in maintaining tissue
homeostasis. Every day, billions of our cells die and get cleared
without initiating inflammation and an immune response (1).
Proper clearance of dead cells also contributes to the initiation
of tissue repair processes following injury (2–4). In addition, effi-
cient removal of apoptotic neutrophils is also a key event in the
resolution of inflammation (5).

Increasing evidence suggest that improper clearance of apop-
totic cells, being the result of either genetic anomalies and/or
a persistent disease state, contributes to the establishment and
progression of a number of human diseases via affects on the main-
tenance of tissue homeostasis, tissue repair, and inflammation (6).
Autoimmune disorders, in which both animal models and human
research indicate a strong relationship between improper clearance
and the development of the disease, represent the best character-
ized example of such diseases. The regulated nature of apoptotic
cell death normally prevents the leakage of the immunogenic
intracellular contents. If, however, these cells are not promptly
cleared, they undergo secondary necrosis leading to the release of
the intracellular antigens and DNA, which in the long-term pro-
voke an auto-inflammatory response (7). Thus, in most of the
knock out mice in which efferocytosis is impaired, systemic lupus
erythematosus (SLE) like autoimmunity develops (8–13). Human
SLE is also accompanied by improper efferocytosis (7), and can
develop also as a result of a genetic deficiency of the phagocytosis
process (13).

While in SLE improper clearance of apoptotic cells affects all the
tissues, in several chronic inflammatory respiratory diseases, such
as chronic obstructive pulmonary disease (COPD), cystic fibrosis,
and asthma, increased numbers of apoptotic cells are seen only in
the sputum and lung tissue (14). Though so far no evidence was
provided for a definite linkage between genetic anomalies affect-
ing efferocytosis and lung disease, inefficient apoptotic clearance
in the lung was detected in all these respiratory diseases (15).

Macrophages play a key role in the development of atheroscle-
rosis, and impaired clearance of apoptotic macrophages character-
izes the late plaques, in which uncleared apoptotic cells undergo
secondary necrosis leading to the formation of an unstable necrotic
core and the maintenance of inflammation (16). Impaired effe-
rocytosis, however, might also contribute to the development of
the disease, as knock out mice deficient in efferocytosis are prone
to develop atherosclerosis on LDL or ApoE null genetic back-
grounds (17–20). An excess of apoptotic cells was detected in a
numerous neurodegenerative diseases as well, such as Parkinson’s,
Alzheimer’s, and Huntington’s disease (21). Though the elevated
levels of apoptotic cells might also be the result of an increased neu-
ronal cell death, in these diseases loss of signaling by fractalkine
(an apoptotic cell “find me” signal) resulted in an increase in the
number of dying cells and worsening of the disease (22).

Interestingly, type 2 diabetes and obesity were also shown to
be associated with impaired phagocytosis of apoptotic β-cells
in the pancreas in autoimmune diabetes-prone rats (23) and
in ob/ob and db/db mice (24). The phenomenon seems to be
related to an enhanced saturated and/or decreased ω-3 fatty acid
composition of the plasma membrane, which leads to a decreased
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FIGURE 1 | Mechanism of apoptotic cell clearance. For initiating
phagocytosis apoptotic cells release “find me” signals for the phagocytes.
After finding the recognition of apoptotic cells by phagocyte receptors is
mediated by the display of “eat me” signals (e.g., PS and ACAMPs) and the
disappearance of the so-called “do not eat me” signals (e.g., CD31 and
CD47) on the apoptotic cell surface. Among others, these receptors
include the PS receptors (Tim4, stabilin-2, and BAI1) and receptors such as
MerTk, SCARF1, CD36, and integrin αvβ5 together with TG2 recognizing
apoptotic cells through bridging molecules (e.g., TSP-1, C1q, Gas6,
MFG-E8, and protein S). Binding of apoptotic cells to the phagocytic

receptors triggers two evolutionary conserved signaling pathways. MerTk,
BAI1, and αvβ3/5 receptors will activate the DOCK180/CrkII/ELMO
complex, while CD91/LPR1 and stabilin-2 will activate the adaptor protein
GULP. Both pathways converge on the small GTPase Rac, which initiates
actin rearrangement and phagocytosis. Following engulfment, apoptotic
cell derived lipids (oxysterols and fatty acids) trigger the lipid-sensing LXR
and PPAR receptors leading to enhanced retinoid production. Retinoid
receptors together with LXR and PPARs upregulate a number of
phagocytic receptors to further enhance the engulfing capacity of
macrophages under conditions when the rate of apoptosis is increased.

phosphatidylinositol 3-kinase activation during the uptake of
apoptotic cells (24).

MECHANISMS CONTRIBUTING TO EFFICIENT
PHAGOCYTOSIS OF APOPTOTIC CELLS
“FIND ME” AND “EAT ME” SIGNALS
To ensure effective removal, apoptotic cells recruit phagocytes
by releasing various soluble “find me” signals. These signals
include lysophosphatidylcholine (25), CX3CL1/fractalkine (26),
sphingosine-1-phosphate (27), the nucleotides ATP and UTP (28),
thrombospondin-1 (TSP-1) (29), and cleaved human tyrosyl-
tRNA synthetase (30). Upon arrival at the target cells, phago-
cytes must distinguish between apoptotic and viable cells. Apop-
totic cells display apoptotic cell-associated molecular patterns
(ACAMPs), which includes the appearance of “eat me” signals
on their cell surface (5). These can bind either directly or through
bridging molecules to receptors on phagocytes (Figure 1). Exter-
nalization of phosphatidylserine (PS) on the outer leaflet of the

cell membrane is the best characterized “eat me” signal dur-
ing apoptosis. The T-cell immunoglobulin- and mucin-domain-
containing molecule (Tim4), stabilin-2, and brain-specific angio-
genesis inhibitor 1 (BAI1) were reported to directly recognize PS
on dying cells (31–33), while other receptors such as Mer tyrosine
kinase (MerTk), scavenger receptor SCARF1, CD36, and integrin
αv/β3/β5 together with CD36 or tissue transglutaminase (TG2)
recognize apoptotic cells through bridging molecules. Gas6 and
protein S were found to facilitate apoptotic cell clearance by rec-
ognizing PS on apoptotic cells and MerTk receptor on phagocytes
(34, 35). TSP-1 and milk-fat globulin-E8 (MFG-E8) also bind to
PS and are recognized by the integrin αv/β3/CD36 or integrin
αv/β3/TG2 receptor complexes, respectively (36–38). The collectin
family member serum protein C1q also serves as a bridging mole-
cule by recognizing annexin A2 and A5 on the apoptotic cells (39)
and binding either SCARF1 scavenger receptor or the calreticulin
associated LRP1/CD91 receptor on phagocytes (39, 40). The LPS
coreceptor CD14 can also act as a tethering receptor for apoptotic
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cells, albeit its exact ligand remains unknown (41). Distinguishing
between apoptotic and viable cells is further ensured by the“do not
eat me” signals, which inhibit the uptake of living cells. CD47, acti-
vating SIRPα receptor, is one of these signals being expressed on
living cells but altered or diminished on apoptotic cell surface (42).
Additionally, homophilic interaction between CD31 on the target
cells and macrophages was shown to mediate cell detachment from
phagocytes, thus inhibiting phagocytosis of living cells (43).

ENGULFMENT AND INGESTION OF THE APOPTOTIC CORPSES
Uptake of the apoptotic cells requires the reorganization of
the actin filament network, which drives the movement of
the cell, formation of the phagocytic cup and the phagosome.
This process is regulated by the small GTPases RhoA, Cdc42,
and Rac. While RhoA activation was found to inhibit apop-
totic cell phagocytosis, Cdc42, and Rac were shown to enhance
it (44). Phagocytic receptors activate two evolutionary con-
served pathways both converging on the activation of Rac-1,
a small GTPase (45) (Figure 1). The first pathway is initi-
ated by MerTk or integrin αv/β5 receptors (46, 47), resulting
in association of the adaptor protein ELMO with the Rac GEF
DOCK180 forming a bipartite GEF (48). Recruitment of the
ELMO/DOCK180 complex to the cell membrane might require
the adaptor protein CrkII, but binding of ELMO to the car-
boxyl terminus of BAI1 also recruits DOCK180 to the phago-
cytic membranes (33). The second pathway activating the Rac
is initiated by LRP1 (CD91) (49) or by stabilin-2 receptors fol-
lowed by recruitment of the adaptor protein GULP (50). Fur-
ther steps, resulting in the activation of Rac are still unclear.
The newly formed phagosome must fuse with lysosomes to
degrade the dead cells. Recently, several autophagic genes were
described to participate in phagosome maturation (51, 52). Fol-
lowing phagolysosomal fusion, lysosomal enzymes degrade the
content of phagolysosomes. Lysosomal cathepsin protease CPL-
1 was found to be indispensable in the digestion of apoptotic cell
derived proteins (53), while lysosomal DNase II degrades the DNA
content (54).

REPROGRAMING OF PHAGOCYTES BY APOPTOTIC CELL CONTENT
Engulfment of apoptotic cells delivers excess materials to the
phagocytes. Some of these materials can be completely degraded,
while the excess of non-digestible cholesterol is removed via ATP-
binding cassette (ABC) transporters (Figure 1). Both PS (55) and
lipid-sensing nuclear receptors (56, 57) can upregulate the levels
of the ABCA1 transporter. The ingested macromolecules provide
the extra energy required for prolonged phagocytosis. However,
if too much energy is generated, engulfing cells upregulate the
mitochondrial uncoupling protein 2 (UCP2) and dissipate H+

gradient to reduce mitochondrial membrane potential (58). UCP2
also decreases reactive oxygen species formation.

To ensure efficient long-term phagocytosis, apoptotic cells
reprogram macrophages not only by altering their metabolism
but also by increasing the expression of a number of phago-
cytic receptors via activating peroxisome proliferator-activated
receptor (PPAR)δ/γ and liver X receptor (LXR)α/β receptors by
their lipid content (59–61). This process is partially mediated via
upregulation of endogenous retinoid synthesis (62, 63).

While the phagocytosis of a variety of pathogenic targets
normally triggers a pro-inflammatory response in macrophages,
ingestion of apoptotic cells by macrophages induces an anti-
inflammatory phenotype. The earliest anti-inflammatory activity
of the apoptotic cell is manifest as an immediate-early inhibi-
tion of macrophage pro-inflammatory cytokine gene transcrip-
tion and is exerted directly upon binding to the macrophage
(64). Subsequently, both nuclear receptors (65, 66) are activated
and soluble mediators are released from macrophages, which
act in a paracrine or autocrine fashion to amplify and sustain
the anti-inflammatory response (67, 68). During the resolution
of inflammation the reprogramed macrophages appear as pro-
resolving CD11blow macrophages (69) that express immunoreg-
ulatory 12/15-lipoxygenase (70) involved in the formation of
pro-resolving lipid mediators, termination of phagocytosis, and
emigration to lymphoid organs (69) required for the proper ter-
mination of the inflammatory program. This process is regulated
by the expression of a typical chemokine receptor D6 on the surface
of apoptotic neutrophils (71).

Since improper efferocytosis might contribute to both the
initiation and the maintenance of human diseases, enhancing
phagocytosis might provide a therapeutic possibility to influence
the progression of these diseases.

THERAPEUTIC POSSIBILITIES FOR ENHANCING
EFFEROCYTOSIS IN DISEASES IN WHICH CLEARANCE OF
APOPTOTIC CELLS IS IMPAIRED
AFFECTING RECOGNITION AND BINDING OF APOPTOTIC CELLS
If lack of sufficient MFG-E8 production leading to improper
efferocytosis participates in the pathomechanism of a disease,
providing MFG-E8 in recombinant protein form to the site of
acute inflammation might enhance the efficiency of efferocytosis.
Indeed, a decreased MFG-E8 expression was found in inflamed
colons during the acute phase of murine experimental colitis, and
intrarectal treatment with recombinant MFG-E8 ameliorated col-
itis by reducing inflammation and improving disease parameters
(72). Alternatively, both prolactin (73) and glucocorticoids (74)
can enhance MFG-E8 production providing a theoretical possibil-
ity for enhancing its expression in macrophages systematically.

MFG-E8 contains a PS binding domain, as well as an arginine–
glycine–aspartic acid (RGD) motif, which enables its binding to
integrins. Opsonization of the apoptotic cells and binding to inte-
grins on the surface of phagocytic cells, mediates the engulfment
of the dead cell. Based on this observation, an RGD–anxA5 was
designed, and it was shown that introduction of RGD transformed
the annexin A5, a molecule that binds to PS of apoptotic cells,
from an inhibitor into a stimulator of efferocytosis (75). While
recombinant MFG-E8 or the RGD–anxA5 could be utilized in
acute inflammation, long-term administration of MFG-E8 leads
to obesity, because it stimulates the fatty acid uptake of adipocytes
(76). It is an open question, whether chronic administration of
RGD–anxA5 would have the same side effects.

While MFG-E8 acts as a bridging molecule for integrins, Gas6,
and protein S are bridging molecules for MerTk. Thus in cases,
where MerTk plays a driving role in efferocytosis, such as car-
diac repair after myocardial infarction (4), provision of Gas6 or
protein S could similarly accelerate phagocytosis of apoptotic
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cells and tissue repair. Glucocorticoids enhance phagocytosis by
making efferocytosis MerTK dependent (77), thus combining
glucocorticoids and Gas6 or protein S might have a synergistic
effect.

Other bridging molecules, such as collectins, were also reported
to promote efferocytosis. Macrolide antibiotics, which have wide-
ranging anti-inflammatory effects, were found to enhance effe-
rocytosis by enhancing the expression of collectins (78). The
therapeutic potential of these drugs has already been recognized,
as they are successfully used in the treatment of COPD, cystic
fibrosis, or asthma (79).

TARGETING LIPID-SENSING NUCLEAR RECEPTORS WITH THE AIM OF
INCREASING THE EXPRESSION OF PHAGOCYTIC RECEPTORS OR THEIR
BRIDGING MOLECULES
Since nuclear receptor signaling is strongly associated with
enhanced efferocytosis and suppression of inflammation, glu-
cocorticoids, PPARγ, PPARδ, and LXR agonists or retinoids are
logical therapeutic targets in diseases in which efferocytosis is
impaired.

Glucocorticoids, the most widely used anti-inflammatory
drugs, were shown to enhance phagocytosis of apoptotic cells
by increasing the expression of the phospholipid binding protein
annexin A1 and its receptor ALXR (6, 80), as well as that of MerTK
(73, 81). Long-term effects of glucocorticoids were reported to be
mediated by PPARγ (82).

LXR agonists were shown to be effective in the treatment of
mouse models of atherosclerosis and inflammation. Thus, LXR
agonists [hypocholamide, T0901317, GW3965, or N,N -dimethyl-
3β-hydroxy-cholenamide (DMHCA)] lower the serum choles-
terol, and inhibit the development of atherosclerosis in murine
models of atherosclerosis (83), while GW3965 inhibits the expres-
sion of inflammatory mediators in cultured macrophages as well
as during in vivo inflammation (84). In addition, ligation of LXR
was shown to prevent the development of SLE like autoimmunity
in lpr mice (61) and decrease the disease severity in Alzheimer
disease (85).

While all LXR ligands are effective in enhancing efferocytosis,
T0901317, and GW3965 have been reported to increase plasma
and liver triglycerides in some mouse models (86). DMHCA, how-
ever, reduced atherosclerosis in apolipoprotein E-deficient mice
without inducing hypertriglyceridemia and liver steatosis (87).
Thus, developing new potent and effective LXR agonists with-
out the undesirable side effects may be beneficial for clinical usage
(88). In this aspect, it is worth noting that we found daidzein,
which is a plant-derived diphenolic isoflavone present in a num-
ber of plants and herbs (89) and has LXR and PPARγ activating
activity (90), to enhance efferocytosis efficiently. Daidzein, similar
to LXR agonists (91) induced the expression of TG2, as well as
decreased the mitochondrial membrane potential (92).

In addition to LXR agonists, PPARγ agonists were also shown
to reduce the neutrophil numbers in rodent models of acute
inflammation, such as asthma and COPD (93) and to increase
efferocytosis and therapeutic efficacy in a mouse model of
chronic granulomatosis (94). PPARγ and PPARδ agonists were also
shown to attenuate disease severity in experimental autoimmune
encephalomyelitis, a murine model of multiple sclerosis (95, 96).

Both RAR and RXR ligands promote efferocytosis, but their
effect is more pronounced if both receptors are activated (63).
The effect of in vivo all-trans retinoic acid (ATRA) treatment on
the development of lupus nephritis has already been tested in
both mouse models (97, 98) and humans (99). Lupus nephritis
is a major cause of morbidity and mortality in patients with SLE
(100). Long-term ATRA treatment in SLE-prone mice resulted in
longer survival, significant reduction of proteinuria, renal patho-
logical findings, and glomerular IgG deposits. In humans, it also
reduced proteinuria.

AFFECTING THE Rac-1/RhoA BALANCE
Since previous studies have shown that Rac activation is required,
while RhoA activation is inhibitory for effective clearance of apop-
totic cells (44), compounds that alter the Rac-1/RhoA balance, by
either increasing the level of active Rac-1 or decreasing the levels
and/or activity of RhoA/Rho kinase, would be potential candidates
for use in therapy. Among the anti-inflammatory drugs glucocorti-
coids were shown to alter the Rac-1/RhoA balance in macrophages
(101). Another molecule that was shown to affect the Rac-1/RhoA
balance is lipoxin A4, which enhances phagocytosis via a protein
kinase A-dependent manner (102). Though lipoxin A4 activates
both Rac-2 and RhoA, its positive effect on efferocytosis sug-
gests that the ultimate balance favors Rac activation. Lipoxins have
already been shown to reduce inflammation and tissue damage in
a variety of rodent models (103), and their levels are low in cys-
tic fibrosis patients (104). In addition, exposure to daidzein also
enhances Rac activity (92).

Statins are 3-hydroxy-3-methylglutaryl coenzyme A-reductase
inhibitors with potent anti-inflammatory effects, largely due to
their ability to inhibit the prenylation of Rho GTPases, including
Rac-1 and RhoA. Since proper membrane localization of these
proteins determines their function, statins inhibit the effective-
ness of G protein signaling. Lovastatin was shown to enhance
efferocytosis in vitro both in naïve murine lung and in alveolar
macrophages taken from COPD patients (105). It was demon-
strated that its effect is related to a disproportional deactivation
of the RhoGTPases favoring the activity of Rac-1, as well as to the
activation of PPARγ (106).

During inflammation oxidant-mediated activation of RhoA
and inhibition of efferocytosis might be reversed by antioxi-
dant treatment. Thus, in an LPS-induced lung injury model,
antioxidants enhanced efferocytosis and reduced inflammation by
inhibiting RhoA activation (107).

AFFECTING PHAGOSOME MATURATION
Increasing evidence suggests that autophagy and phagocytosis
processes are interactive and co-regulated. Thus, activation of
autophagy during salivary gland cell death in the Drosophila
requires the engulfment receptor Draper (108). In addition, asso-
ciation of LC3 with intracellular membranes described origi-
nally during autophagy was observed during phagocytosis as well
(109). In line with these observations, oridonin, an active diter-
penoid isolated from Rabdosia rubesens, was able to induce both
autophagy and enhance efferocytosis in the human macrophage-
like U937 cells. Moreover, enhancing autophagy by rapamycin
also enhanced phagocytosis of apoptotic cells by U937 cells
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(110). Thus, autophagy inducers might also promote effero-
cytosis. Though rapamycin and the so-called rapalogs are the
most effective clinically used inducers of autophagy, they have
severe immunosuppressive effects (111). That is why alterna-
tive, non-toxic autophagy inducers (such as rilmenidine or car-
bamazepine) are being characterized for their pharmacological
profile in suitable preclinical models (112, 113). In addition, other
non-toxic compounds, such as resveratrol and spermidine, are also
being evaluated for their potential to induce autophagy in vivo
(114, 115). These two latter compounds were shown to induce
autophagy by distinct pathways converging on the acetylproteome
(116). Resveratrol was suggested to mediate the cardioprotective
effect of red wine (117), while spermidine was shown to prolong
the life span of various organisms in an autophagy-dependent
manner (114). Though the effect of the latter compounds on
efferocytosis has not been tested yet, it is interesting to specu-
late whether enhanced efferocytosis contributes to their observed
beneficial in vivo effects.

ALTERING THE MEMBRANE LIPID COMPOSITION OF MACROPHAGES
Finally, studies on ob/ob and db/db mice indicate that in type 2 dia-
betes, obesity, or atherosclerosis impaired efferocytosis might be
related to altered membrane lipid compositions of macrophages.
In these cases, fish oil diet had a reversal effect (24). ω-3 fatty
acids provided by fish oil are known substrates for the biosyn-
thesis of pro-resolving mediators, such as resolvins, protectins,
and maresin which, similar to glucocorticoids or opsonization of
apoptotic cells by iC3b (69, 118), act as enhancers of efferocytosis
as well as promote the formation of CD11blow macrophages (119).

CONCLUDING REMARKS
Apoptotic cell death is an integral part of the cell turnover in
many tissues. If, however, dead cells are not properly cleared, their
content is released and induces tissue damage, as well as long-
term inflammation. It is increasingly recognized that improper
phagocytosis of apoptotic cells contributes to the establishment
and progression of a number of human chronic inflammatory
diseases. During the past decade, our knowledge about the mech-
anisms involved in efferocytosis increased significantly providing
potential pharmacological targets through which the efficiency of
apoptotic clearance could be increased. Since enhanced phago-
cytosis is coupled to an enhanced anti-inflammatory response,
targeting efferocytosis might provide an additional possibility
in the treatment of a numerous human chronic inflammatory
diseases.
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Billions of cells undergo apoptosis every day in healthy individuals. A prompt removal of
dying cells prevents the release of pro-inflammatory intracellular content and progress to
secondary necrosis. Thus, inappropriate clearance of apoptotic cells provokes autoimmu-
nity and has been associated with many chronic inflammatory diseases. Recent studies
have suggested that extracellular adenosine 5′-triphosphate and related nucleotides play an
important role in the apoptotic clearance process. Here, we review the current understand-
ing of nucleotides and purinergic receptors in apoptotic cell clearance and the potential
therapeutic targets of purinergic receptor subtypes in inflammatory conditions.

Keywords: ATP, extracellular nucleotides, purinergic signaling, apoptotic cell clearance, chronic inflammation

INTRODUCTION
Apoptosis occurs in all multicellular organisms and plays a role in
getting rid of superfluous and senescent cells during the develop-
ment of an organism, tissue homeostasis, and pathogenic processes
(1). In contrast to necrosis, apoptosis is a highly organized and
fine-tuned process, and is, therefore, usually referred to as pro-
gramed cell death. Besides the physiological process, apoptotic
cells are also observed in tumors (2), atherosclerotic plaques (3,
4), and autoimmune diseases (5, 6). Under normal conditions, the
apoptotic cell removal is performed very efficiently and fast by
neighboring or recruited phagocytes and is important for main-
taining the function of tissues (6, 7). Dying cells can undergo
secondary necrosis if not cleared promptly and the release of intra-
cellular contents has been linked to many human inflammatory
diseases (8, 9). Moreover, apoptotic cells have been shown to have
anti-inflammatory and regenerative effects (10).

Damaged tissues and dying cells can release nucleotides, which
are increasingly viewed as a new class of regulators of the immune
system. The class of purinergic receptors is involved in a wide
range of phagocytic and chemotactic processes (11). Moreover,
the purinergic signaling is an important regulatory mechanism in
several inflammatory diseases (12). Several studies provide strong
evidence that nucleotides and activated purinergic receptors are
linked to the pathogenesis of many chronic inflammatory diseases.
This review will discuss the apoptotic cell clearance with special
emphasis the specific role of nucleotides and the purinergic recep-
tors in the development of chronic inflammatory diseases related
with abnormal clearance of apoptotic cells.

COMPONENTS OF PURINERGIC SIGNALING
EXTRACELLULAR ATP RELEASE AND METABOLISM
Damaged tissues and dying cells can release adenosine 5′-
triphosphate (ATP) as a danger signal that triggers a variety
of inflammatory responses. Moreover, ATP can also actively be
released from intact cells in response to mechanical deformation,
hypoxia or acetylcholine, which do not damage the cell (7, 13, 14).
For example, ATP release from intact cells was firstly reported
for neuronal cells, which release ATP into the cleft of chemi-
cal synapses (15). However, the underlying mechanism has been
shown to be very complex and includes stretch-activated channels,
voltage-dependent anion channels, P2X7 receptors, and connexin
and pannexin hemichannels (16).

Contrasting to intracellular ATP, primarily utilized as energy,
extracellular ATP is considered to be a powerful signaling mol-
ecule through the nucleotide-selective P2 receptors. Extracellu-
lar ATP is rapidly metabolized to adenosine by ectonucleoti-
dases (17). The ectonucleotidases consist of four family types
including (i) ectonucleotide pyrophosphatase/phosphodiesterase
(E-NPP) family, (ii) ectonucleoside triphosphate diphosphohy-
drolase (E-NTPDase) family, (iii) alkaline phosphatases (AP), and
(iv) ecto-5′-nucleotidase (also known as CD73) (17, 18). Extra-
cellular adenosine, an intermediate metabolite of nucleotides, can
undergo three processes: (i) conversion to inosine by adenosine
deaminase, (ii) reconversion to AMP by adenosine kinase, and
(iii) cellular reuptake through concentrative nucleoside trans-
porters (CNTs) or equilibrative nucleoside transporters (ENTs)
(17, 19, 20).
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PURINERGIC RECEPTORS
Purinergic receptors have been widely studied in signaling sys-
tems in response to extracellular ATP and related nucleotides.
Purinergic receptors consist of three major families based on
their structural and biological properties (21). The G-protein-
coupled P2Y receptors (P2YRs) recognize ATP and several other
nucleotides, including ADP, UTP, UDP, and UDP-glucose (22).
P2X receptors (P2XRs) function as ATP-gated ion channels that
facilitate the influx and efflux of extracellular cations, includ-
ing calcium ions, which only respond to ATP (22, 23). To date,
P2YRs consist of eight subtypes, a family of P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14Rs. P2XRs have seven sub-
units that may form six homomeric (P2X1–P2X5Rs and P2X7R),
and at least seven heteromeric P2X1/2, P2X1/4, P2X1/5, P2X2/3,
P2X2/5, P2X2/6, and P2X4/6Rs receptors (23–25). The conver-
sion of ATP/ADP to adenosine by ectonucleotidases terminates
P2R signaling within the extracellular compartment. Adenosine
can signal through four distinct G-protein-coupled receptors (P1
receptors): adenosine A1 receptor (A1), adenosine A2a receptor
(A2a), adenosine A2b receptor (A2b), and adenosine A3 recep-
tor (A3) (Table 1) (26–28). The purinergic receptor subtypes are
widely distributed throughout the immune cells and the central
nervous system (CNS) (Table 1) (29–31).

APOPTOTIC CELL RECOGNITION AND CLEARANCE
Apoptosis is a crucial process during development and regener-
ation of an organism. The prompt and efficient engulfment of
apoptotic cells by phagocytes is necessary to prevent inflamma-
tion resulting from uncontrolled release of intracellular contents
(34). Apoptotic cell clearance can be subdivided into four general
steps: sensing of the apoptotic cell, recognition, engulfment of the
corpse, and processing of the engulfed material (7, 35–38). Many
key molecules and several molecular pathways have been identified
to orchestrate the safe disposal of apoptotic cells. Apoptotic cells
release so-called“find me”signals, which are cell-derived chemoat-
tractants to entice phagocytes (9). To date, several proposed “find
me” signals released by dying cells have been reported. These
include the nucleotides ATP and UTP (39), lysophosphatidyl-
choline (LPC) (40), fractalkine (CX3CL1) (41), and sphingosine 1-
phosphate (S1P) (42). In addition to attracting phagocytes, apop-
totic cells are thought to release factors, referred to as “stay away”
signals, to exclude inflammatory cells such as neutrophils (43).

At the same time, apoptotic cells also expose phosphatidylserine
(PS) on the outer leaflet of the plasma membrane as an “eat-me”
signal to promote their recognition by the recruited phagocytes
(44, 45). PS can be detected directly through membrane recep-
tors, such as brain-specific angiogenesis inhibitor 1 (BAI1) (46),

Table 1 | Characteristics of purinergic receptors [Modified from Ref. (15, 29, 32, 33)].

Receptor Distribution Functions

P2Y P2Y1 Platelets, immune cells, epithelial and endothelial

cells, and osteoclasts

Platelet aggregation, smooth muscle relaxation, and bone resorption

P2Y2 Astrocytes, immune cells, epithelial and endothelial

cells, and osteoblasts

Promotes apoptotic cell removal; mediates airway surfactant secretion and

epithelial cell chloride secretion; vasodilatation through endothelium and

vasoconstriction through smooth muscle; bone remodeling; role in neutrophil

chemotaxis; and chronic inflammation

P2Y4 Endothelial and epithelial cells Epithelial chloride transport regulation; vasodilatation through endothelium

P2Y6 Activated microglia, T cells, and epithelial cells Enhances microglial phagocytic capacity; modulating cytokines release;

epithelium NaCl secretion; epithelial proliferation; and role in colitis

P2Y11 Dendritic cells, granulocytes Mediates dendritic cells maturation and migration; granulocytic differentiation

P2Y12 Platelets and glial cells Platelet aggregation; dense granule secretion

P2Y13 Spinal cord microglia, hepatocytes Regulates lipid metabolism and atherosclerosis

P2Y14 Hematopoietic cells, immune cells Hematopoietic stem cells chemotaxis; dendritic cell activation

P2X P2X1 Platelets, smooth muscle Platelet activation; smooth muscle contraction

P2X2 Autonomic and sensory ganglia, retina Sensory transmission and modulation of synaptic function

P2X3 Sensory neurons, sympathetic neurons Mediates sensory transmission; facilitates glutamate release in CNS

P2X4 Microglial cell, immune cells Modulates chronic inflammatory and neuropathic pain

P2X5 Dendritic cells Mediating cell proliferation and differentiation

P2X6 Neuron, retina, and myocardial cell Functions as a heteromeric channel in combination with P2X2 and P2X4 subunits

P2X7 Immune cells, osteoclasts, and microglia Mediates apoptosis, cell proliferation and pro-inflammatory cytokine release

P1 A1 Neurons, autonomic nerve terminals Modulates neurotransmitter release; treatment in cardiac tachycardia

A2a B cells, T cells Anti-inflammatory effect; mediates cytokines release; facilitates

neurotransmission; and smooth muscle relaxation

A2b Bronchial epithelial cells, cardiomyocytes Dampens inflammation in allergic and inflammatory disorders; vasodilatation

A3 Endothelial cells, immune cells, and cardiomyocytes Mediates anti-inflammatory, anti-ischemic, and antitumor effect
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stabilin 2 (47, 48), and members of the T cell immunoglobulin
mucin domain (TIM) protein family (including TIM1, TIM3, and
TIM4) (49–51). The recognition of apoptotic cells can also be
mediated indirectly via bridging molecules or accessory recep-
tors, such as MFG-E8, the C-reactive protein, and Gas-6 (52, 53).
Engagement of the PS receptors initiates signaling events within
the phagocytes that lead to activation of the small GTPase Rac, and
subsequent cytoskeletal reorganization, which ultimately leads to
engulfment of the apoptotic cell (54, 55).

The engulfment process is not only silent, but also actively
anti-inflammatory. Firstly, phagocytes act as “garbage collectors,”
which sequester dying cells thus preventing the release of poten-
tially dangerous or immunogenic intracellular contents. Secondly,
engulfed phagocytes actively secrete anti-inflammatory cytokines
to facilitate the “immunologically silent” clearance of apoptotic
cells. These include TGF-β and interleukin (IL)-10, which is even
potent enough to suppress LPS-induced inflammatory cytokine
release (10, 56, 57). A recent report demonstrates that 12/15-
lipoxygenase has been involved in maintaining immunologic tol-
erance (58). The uptake of apoptotic cells by 12/15-lipoxygenase
expressing, alternatively activated resident macrophages blocked
the uptake of apoptotic cells into freshly recruited inflamma-
tory Ly6Chi monocytes. Moreover, loss of 12/15-lipoxygenase
activity resulted in an aberrant phagocytosis of apoptotic cells
by inflammatory monocytes, subsequent antigen presentation of
apoptotic cell-derived antigens, and a lupus-like autoimmune
disease (58).

If apoptotic cells are not removed promptly they will undergo
secondary necrosis and display distinctive morphological changes
that can be assessed by flow cytometry (59, 60). Insufficient clear-
ance of dying cells may promote the initiation of autoimmunity
and chronic inflammation (61, 62). For example, deregulated
apoptosis and insufficient removal of apoptotic cells leads to the
release of modified chromatin into the circulation and activa-
tion of antigen-presenting cells, which play an important role
in the pathogenesis of systemic lupus erythematosus (61, 63).
Interestingly, recent studies imply that apoptosis is associated with
compensatory proliferation of neighboring cells and plays a piv-
otal role in modulating tumor cell repopulation (64, 65). For
example, Huang et al. reported that dying tumor cells produce
PGE2 in a caspase 3-dependent manner and that this has a potent
growth-stimulating effect that may stimulate tumor repopulation
after radiotherapy (66). The role of further “find me” signals
and damage-associated molecular pattern molecules (DAMPs)
released by tumor cells killed by chemo- or radiotherapy in the
repopulation of the tumor remains elusive. Here, we present a
current review that nucleotides derived from dead and dying cells
as powerful mediators with broad effects on survival of tumor cells
and on the immune system.

NUCLEOTIDES ACTING AS “FIND ME” SIGNALS
It is well established that apoptotic cells release “find me” signals to
attract phagocytes and thereby leading to the prompt clearance of
the dying cells. The nucleotides ATP and UTP have been recently
implicated as a new class of “find me” signals in vitro and in vivo
(39). However, the function of ATP and nucleotides as a find me
signal in apoptotic cell clearance is still controversial.

Elliot et al.’s study shows that small amounts of intracellu-
lar ATP and UTP are released in a regulated manner during early
apoptosis to establish a gradient for monocyte attraction (39). Pan-
nexin 1 channels opening mediate the release of ATP and UTP after
caspase-dependent cleavage of their carboxy-terminal tail during
apoptosis (67). Several other studies also seem to confirm that
nucleotides released from apoptotic cells and subsequent P2Y2
receptor activation promotes monocyte migration by regulating
adhesion molecule/chemokine expression in vascular endothe-
lial cells (68, 69). In the neural system, extracellular nucleotides
and P2YRs have been implicated in mediating the chemotaxis of
microglia toward injured neurons (70, 71).

However, the role of nucleotides in chemotaxis still remains
controversial. On the one hand, Elliot et al. could not exclude
the possibility that other chemotactic factors participate in the
observed chemoattractant effect. On the other hand, nucleotides
are unlikely to serve as long-range “find me” signals to phago-
cytes since they are readily degraded by extracellular nucleoti-
dases (72). Several recent publications do not consider ATP
any longer as a “real” direct chemoattractant for macrophages.
One study describes ATP as an indirect chemoattractant that
steers macrophages in a gradient of the chemoattractant C5a via
autocrine release of ATP, generating an amplification of gradi-
ent sensing via a “purinergic feedback loop” involving P2Y2 and
P2Y12 receptors (73). Hanley et al. confirmed that ATP and ADP
leaking from dying cells induce lamellipodial membrane protru-
sive activity and act as local short-range “touch me” (rather than
long-range “find me”) signals to promote phagocytic clearance
(74). It is more likely that ATP, together with additional find
me signals recruit phagocytes toward injured cells (75, 76). For
example, formyl peptides and mitochondrial DNA released from
the mitochondria of injured cells have been shown to induce
neutrophil activation and chemotaxis in the circulation (77).
Formyl peptides, together with chemokines and ATP, synergisti-
cally guide and localize phagocytes to sites of sterile inflammation
in long-range settings (75). HMGB1 could also synergize with
ATP stimulating P2X7 receptors to induce IL-1β release by DCs in
contact with dying tumor cells and promoting immunity against
tumors (78).

Moreover, nucleotides also play a role in modulating the phago-
cytic ability or activity of cells surrounding the apoptotic cells.
For example, extracellular nucleotides and subsequent P2 recep-
tor (P2X1R, P2X3R) signaling engagement have been reported
to enhance the ability of macrophages to bind apoptotic bodies,
internalize them and present processed antigens (79). UDP has
also been shown to enhance microglia phagocytosis toward apop-
totic corpses through the P2Y6 nucleotide receptor during neural
inflammation (80).

During tissue injury and/or infection, extracellular nucleotides
have been implicated to play a key role in the recruitment of
professional phagocytes to sites of tissue injury and/or infec-
tion. However, the underlying mechanism is still unclear and not
fully understood. It is still debating that extracellular nucleotides
act either as chemotactic “find me” signal released by dying
cells or through autocrine ATP amplifier signaling for chemo-
tactic navigation to other end-target chemoattractants, such as
complement C5a.
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P2 RECEPTORS SIGNALING IN INFLAMMATORY DISEASES
Nucleotides release from dying cells and damaged tissues and
subsequent purinergic signaling play a pivotal role in phagocytic
process and inflammatory diseases (11, 12). For example, P2X7R
activation is involved in PS expose in pseudoapoptosis and large
amounts of ATP release (81, 82). During the last decade, several
studies have highlighted fundamental roles for P2YRs in inflam-
matory and infectious diseases (Figure 1). Here in particular,
signaling events via P2Y2R, P2Y6R, and P2X7R will be discussed
thoroughly.

P2Y2R
P2Y2R has been shown to be up-regulated in a variety of tissues
in response to stress or injury and to mediate tissue regeneration
through its ability to activate multiple signaling pathways. Many
studies implicate that ATP and P2Y2R signaling appears to influ-
ence a diverse scale of biological processes such as the generation
of chemotactic signals and/or the activation of different immune
cells, causing inflammatory cells to migrate, proliferate, differen-
tiate, or release diverse inflammatory mediators (72, 83, 84).

Cystic fibrosis is a life-shortening disease in which airways of
the patients are susceptible to infection. Its pathology is character-
ized by protective and also destructive neutrophilic inflammation.
Neutrophil proteases are critical for killing engulfed bacteria, how-
ever, neutrophilic elastase accumulation in the airways of patients
with cystic fibrosis (CF) overwhelms antiprotease defenses, result-
ing in impaired ciliary function, crippling bacterial clearance, and
degrading structural proteins, eventually leading to bronchiectasis
(85). CF results from a variety of mutations in the gene encoding
the CF transmembrane conductance regulator (CFTR) protein,
a cAMP-regulated chloride channel in epithelial cells, which will
lead to sodium hyperabsorption in the airway of patients with

CF (86, 87). Mucociliary clearance in CF lung is limited by air-
way dehydration, leading to persistent bacterial infection and
inflammation. P2Y2 receptors have been shown to regulate chlo-
ride secretion and sodium absorption on epithelial cells in distal
bronchi (88). Moreover, ATP, acting through P2Y2 receptors, reg-
ulates the secretion of ions, mucin, and surfactant phospholipids
in respiratory epithelium (89). Several studies have shown that P2
receptor purinergic compounds are explored for the treatment of
CF, to bypass the defective function of CFTR, and to restore chlo-
ride secretion and/or inhibit sodium absorption through inhibit-
ing the epithelial sodium channel ENaC expression (90). P2Y2R
agonists increase the duration of mucociliary clearance stimu-
lation. The efficacy and safety of the P2Y2R agonist denufosol
has been evaluated in several clinical trials, however, long term
follow-up results do not show any improvement in pulmonary
function (91, 92).

P2Y2R is not only involved in enhancing mucociliary clear-
ance, but also plays a role in promoting wound healing (93).
Damaged fibroblasts release ATP or UTP and activate P2Y2R to
enhance the proliferation and migration of fibroblasts. Wound size
in WT mice decreases significantly compared to P2Y2R−/− mice,
and WT mice express proliferation marker Ki67 and extracellular
matrix (ECM)-related proteins VEGF. It indicates that triggering
of P2Y2R may be a potential therapeutic target to promote wound
healing (94).

Adenosine 5′-triphosphate has also been implicated to induce
chemotaxis of neutrophils via actin polymerization and direct
cell orientation by feedback signaling involving P2Y2R (95–97).
The subsequent P2Y2R activation will amplify gradient sens-
ing of chemotactic signals (e.g., N-formyl peptides and IL-8) by
stimulating F-actin to the leading edge (97–99). Chemotaxis of
neutrophils to sites of infection is critical for immune defense

FIGURE 1 | Nucleotides and activated purinergic signaling during injury resolution and chronic inflammatory diseases.
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and for the physiological downregulation of neutrophil-driven
inflammation (100).

However, excessive accumulation of neutrophils through inap-
propriate activation of P2Y2R can cause acute tissue damage
during sepsis, chronic obstructive pulmonary disease (COPD),
and hepatitis (101–104). COPD is one of the most common
inflammatory diseases and is associated with inflammation of the
small airways, which results in airway obstruction, destruction
of parenchyma, and development of emphysema (105). ATP and
activation of P2Y2R contribute to smoke-induced lung inflam-
mation and to the subsequent development of emphysema (104).
ATP acts as a“danger signal”recruiting neutrophils to the lung and
inducing inflammation. P2Y2R−/−mice show reduced pulmonary
inflammation and less emphysema development after short-term
smoke exposure. ATP enhances chemotaxis and elastase release in
blood neutrophils from patients with COPD, compared to normal
healthy subjects (103).

In asthmatic chronic airway inflammation, P2Y2R has been
indicated as a critical sensor for airway exposure to airborne
allergens by mediating ATP-triggered migration of immature
monocyte-derived DCs and eosinophils in both, mice and humans
(106, 107). This process is accompanied with the production
of pro-allergic mediators (for example, IL-33, IL-8, eosinophil
cationic protein) from different cellular sources (107, 108). More-
over, heightened expression and localization patterns of P2YR are
associated with chronic pancreatic diseases (109).

In summary,ATP and P2Y2R signaling is a double-edged sword.
On the one hand, it can protect against infections, promote wound
healing and enhance mucociliary clearance. On the other hand,
it can also lead to uncontrolled inflammation and promotion
of chronic inflammatory disease states and fibrotic remodeling
(Figure 1) (109). Indeed, P2Y2R may be a new target for therapy
of COPD and P2Y2R antagonists could be useful drugs for chronic
inflammatory diseases.

P2Y6R
Similar to P2Y2R, P2Y6R plays an ambivalent role in inflam-
matory diseases. The receptor is crucial for innate immune
responses against bacterial infection (110). Many studies show that
P2Y6R activation is involved in the release of chemokines from
immune cells, such as monocytes, DCs, eosinophils, and recruit-
ing monocytes/macrophages during inflammation or infection
(24, 110–114).

In neurodegenerative diseases, microglia are engaged in the
clearance of dead cells or dangerous debris, which is crucial for
the maintenance of brain functions. Extracellular ATP regulates
microglial motility dynamics in the intact brain, and its release
from the damaged tissues mediates a rapid microglial response
toward injury (71). Moreover, UTP and UDP released from injured
neurons have been shown to enhance microglial phagocytic capac-
ity for dying cells via activation of P2Y6R, serving as an “eat-me”
signal for microglia. This signal is considered to be an important
initiator of the clearance of dying cells or debris in the CNS (80).

However, P2Y6R signaling is relatively harmful in endothelial
or epithelial inflammation (111, 115). The idiopathic inflamma-
tory bowel diseases (IBD) comprise two types of chronic intestinal
disorders: Crohn’s disease and ulcerative colitis, which result from
an inappropriate inflammatory response to intestinal microbes

in a genetically susceptible host (116). Up-regulation of P2Y2R
and P2Y6R in intestinal epithelial cells has been reported in
experimental colitis (115).

Similarly, P2Y6R plays an important role in acute and chronic
allergic airway inflammation, and selective blocking of P2Y6R
or P2Y6R deficiency in structural cells reduces symptoms of
experimental asthma. Recently, P2Y6 receptors have not only
been found to be up-regulated in murine atherosclerotic plaques,
but also to play a key role in MSU-associated inflammatory
diseases (117, 118).

Thus, P2Y6R activation plays a role in innate immunity
against infection whereas P2Y6R over-activation can result in
harmful immune responses and chronic inflammation such as
atherosclerosis, COPD, and IBD (Figure 1).

P2X7R
P2X7R are predominantly expressed on immune cells such as mast
cells, macrophages, microglia, and dendritic cells (119). Many
evidences implicate the role of P2X7R against microbes during
inflammation and immune response (120, 121). Indeed, P2X7R
signaling plays a key role in immune responses against bacterial
and parasitic infection. It has been reported that P2X7R signal-
ing is involved in the elimination of intracellular microbes – such
as Mycobacterium tuberculosis, Chlamydia trachomatis, and Leish-
mania amazonensis – either by contributing to killing of the
pathogen or by inducing cell death of infected macrophages (121).
P2X7R is also involved in fever development via PGE2 and IL-1β

production (122).
The P2X7R is widely recognized to mediate the pro-

inflammatory effects of extracellular ATP. However, recently one
study revealed that P2X7 receptor also acts as one of the scavenger
receptor involved in the recognition and removal of apoptotic cells
in the absence of extracellular ATP and serum (123). The P2X7R
has drawn particular attention as a potential drug target due to its
broad involvement in inflammatory diseases (124).

In the CNS, P2X7R activation contributes to neuroinflamma-
tion through the release of pro-inflammatory cytokines, such as
IL-1β and TNF-α (125, 126). It also activates MAP kinases and
NF-κB, resulting in up-regulation of pro-inflammatory gene prod-
ucts, including COX-2 (127) and the P2Y2R (128). Alzheimer’s
disease (AD) is the most common form of dementia and more
than 35 million people worldwide suffer from AD (129). The
appearance of plaques consisting of extracellular β-amyloid pep-
tide (Aβ) is a neuro-pathological feature of AD, which is sur-
rounded by reactive microglial cells (129, 130). In P2X7R-/- mice,
Aβ triggered increase of intracellular Ca2+, ATP release, IL-1β

secretion, and plasma membrane permeabilization in microglia
(131). In fact, in vivo inhibition of P2X7R in mice transgenic for
mutant human amyloid precursor protein (APP) indicated a sig-
nificant decrease of the number of hippocampal amyloid plaques
(132). Thus, the identification of extracellular ATP and P2X7R as
key factors in Aβ-dependent microglia activation unveils a non-
conventional mechanism in neuroinflammation and suggests new
possible pharmacological targets.

Extracellular ATP and P2X7R signaling also contributes to
the development of smoking-induced lung inflammation and
emphysema. P2X7R-/- mice exhibit decreased inflammatory
responses, including a reduction in pulmonary fibrosis in a mouse
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model of lung inflammation (133). Inhibition of this receptor may
be a new possible therapeutic target for the treatment of COPD
(133, 134).

The purinergic P2X7R is associated with activation and release
of IL-1 and IL-18, which is strongly implicated in the multiple
inflammatory pathways involved in the pathogenesis of rheuma-
toid arthritis (RA) (135–139). P2X7R has also been shown to be
expressed by synoviocytes from RA joints and contributes to mod-
ulation of IL-6 release (140). P2X7R activation also plays a novel
and direct role in tissue damage through release of cathepsins
in joint diseases (141). Although, AZD9056, a P2X7R antagonist,
has been shown to reduce articular inflammation and erosive pro-
gression (142), clinical trials with the P2X7R antagonist in patients
with RA failed to inhibit disease progression (143, 144). Similarly,
the effect and safety of AZD9056 in Crohn’s disease is still under
clinical trial (145).

Taken together, P2X7R signaling not only plays a critical
role in mediating appropriate inflammatory and immunologi-
cal responses against invading pathogens, but also contributes to
a wide range of chronic inflammatory diseases when activated
inappropriately (Figure 1).

CONCLUSION
The interaction between dying cells and phagocytes is very com-
plex and nucleotides have been involved in orchestrating the
process of dead cell removal. On the one hand, nucleotides and
purinergic signaling have been shown to play a key role in the
apoptotic cell clearance avoiding secondary necrosis, preventing
inflammation and contributing to regeneration of injured tis-
sues. On the other hand, purinergic signaling over-activation is
involved in chronic inflammation and chronic inflammatory dis-
eases. Adenosine-mediated P1 and nucleotides-mediated P2 sig-
naling frequently have opposing effects in biological systems, and
shifting the balance between P1 and P2 signaling is an important
therapeutic concept in efforts to dampen pathological inflamma-
tion and promote healing (12). Nucleotides and purinergic sig-
naling might be used as biomarkers for various diseases and could
also provide potential novel therapeutic targets for the treatment
of chronic inflammatory diseases.
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Members of the heat shock protein 70 (HSP70) family play an important role in assisting pro-
tein folding, preventing protein aggregation and transport of proteins across membranes
under physiological conditions. Following environmental (i.e., irradiation, chemotherapy),
physiological (i.e., cell growth, differentiation), and pathophysiological (i.e., inflammation,
tumorigenesis) stress, the synthesis of heat shock proteins (HSPs) is highly up-regulated,
whereas protein synthesis in general is reduced. In contrast to normal cells, many tumor
entities including hepatocellular carcinoma (HCC) overexpress HSP70, the major-stress-
inducible member of the HSP70 family, present it on their cell surface and secrete it into
the extracellular milieu. Herein, the prognostic relevance of serum HSP70 levels in patients
with chronic hepatitis (CH; n=50), liver cirrhosis (LC; n=46), and HCC (n=47) was ana-
lyzed. Similar to other tumor entities, HSP70 is also present on the surface of primary HCC
cells. The staining intensity of intracellular HSP70 in HCC tissue is stronger compared to
control and cirrhotic liver sections. HSP70 serum levels in all HCC patients were signifi-
cantly higher compared to a control group without liver disease (n=40). No significant age-
and gender-related differences in HSP70 serum levels were observed in male and female
healthy human volunteers (n=86). Patients with CH (n=50) revealed significantly higher
HSP70 serum levels compared to the control group, however, these values were signifi-
cantly lower than those of HCC patients (n=47). Furthermore, a subgroup of patients with
LC who subsequently developed HCC (LC-HCC, n=13) revealed higher HSP70 serum lev-
els than patients with LC (n=46, p=0.05). These data indicate that serum HSP70 levels
are consecutively increased in patients with CH, LC and liver carcinomas and thus might
have a prognostic value.

Keywords: HCC, serum HSP70, prognostic biomarker, chronic hepatitis, inflammation, liver cirrhosis

INTRODUCTION
The incidence of hepatocellular carcinoma (HCC) is increasing
dramatically in the Western societies in the last years and HCC is
the third leading cause of cancer-related deaths (1). Heavy alcohol
intake, tobacco, vinyl chloride, and aflatoxin-B1 toxin can initi-
ate HCC in humans. Apart from toxins, HCC can also arise from
a dysregulated expression of small non-coding microRNAs (i.e.,
miR-122), diabetes, non-alcoholic fatty liver disease, hemochro-
matosis, liver cirrhosis (LC), and chronic hepatitis (CH) B/C viral
infections. The exact molecular mechanisms that promote the
transition of diseased liver cells into neoplastic lesions remain to
be unsolved. The production of pro-inflammatory cytokines and
chemokines, which induces a chronic inflammation in the liver
are discussed to increase the risk for a malignant transformation

(2–4). These data indicate that a multitude of different parameters
including toxins, diseases, and the microenvironment of the host
can play a role in the development of HCC (5).

At present, the histological evaluation of liver biopsies using
the Edmondson–Steiner classification is the gold standard for
the grading of HCC. For patients suffering from HCC with an
underlying LC the Barcelona Clinic Liver Cancer group (BCLC)
classification is used to describe the tumor volume, the grade of
cirrhosis and the patient performance status. Apart from morpho-
logical inspections, antibodies directed against cyclase-associated
protein 2 (CAP2) or glypican-3 are applied in immunohistochem-
istry to distinguish different tumor stages and to separate malig-
nant from non-malignant lesions (6). Several other tumor bio-
markers, such as p53, mammalian target of rapamycin (mTOR),
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c-MET, insulin-like growth factor 1 receptor (IGF-1R), histone
MacroH2A1 (7), and heat shock proteins (HSP) (8) including
HSP70 are frequently up-regulated in tumor biopsies of HCC
patients. However, the prognostic value of any of these markers
alone is limited since its reliability can be impacted by gender and
disease related parameters. Elevated mRNA levels of p53 are not
only detected in male tumor patients with undifferentiated tumor
stages but also in patients with cirrhosis (5). Similar results were
found for an increased expression of mTOR that is also associated
with other malignancies (5).

A major disadvantage of biopsy-based biomarkers is their lim-
ited availability and the risk to develop infections by the surgical
intervention. Soluble, blood-derived biomarkers are superior to
biopsies since they are easily accessible and can be taken repeat-
edly by using minimal invasive methods. In the present study, we
aim to evaluate the prognostic significance of the major stress-
inducible HSP70 in the serum of patients as a potential biomarker
to distinguish patients with chronic inflammation (i.e., patients
with CH) and LC from patients with HCC.

Members of the HSP70 family play a pivotal role in assist-
ing protein folding, preventing protein aggregation and transport
of proteins across membranes under physiological conditions.
Following environmental (i.e., irradiation, chemotherapy, oxy-
gen radicals), physiological (i.e., cell growth, differentiation), and
pathophysiological (i.e., inflammation, tumor growth) stress, the
synthesis of HSPs in general, but especially that of HSP70, is highly
up-regulated, whereas that of other proteins is down-regulated. In
contrast to normal cells, tumor cells frequently overexpress HSP70
in the cytosol (9), present it on their plasma membrane (10) and
can actively secrete it in lipid vesicles such as exosomes (8, 11).
The vesicular export of HSP70 in extracellular fluids was reported
to stimulate effector mechanisms of the immune system (11, 12).
Immunohistochemical analysis of tumor biopsies suggests that
HSP70 in combination with other markers such as glutamine syn-
thetase could serve as a putative diagnostic marker in HCC (6).
Apart from HCC (13), an elevated expression of HSP70 was also
found in patients with early-stage pancreatic cancer (14). High
cytosolic HSP70 levels can promote tumor growth, prevent apop-
totic cell death and thus are often associated resistance to therapy
and poor prognosis in many different cancer types (8).

MATERIALS AND METHODS
HEALTHY HUMAN VOLUNTEERS AND PATIENTS
Eighty-six male and female healthy human volunteers (HEALTHY,
n= 86) at different ages were enrolled into the study as well
as patients suffering from CH (CH, n= 50), LC (n= 46), HCC
(HCC, n= 47), and patients without a liver disease (n= 40)
(Table 2). Approval was obtained by the Ethics Committees of
the University Palermo, Italy, and the Klinikum rechts der Isar,
Technische Universität München, Germany. All procedures were
in accordance with the ethical standards of the responsible insti-
tutional and national committees on human experimentation and
with the Helsinki Declaration of 1975 as revised in 2008.

Serum samples were collected from human patients with and
without liver disease and healthy human volunteers at different
ages. Blood samples of patients were taken after overnight fasting.
After centrifugation (10 min, 750× g, room temperature), part of

the serum was used to assay the main parameters of liver function
by routine methods. Serum aliquots of 100–500 µl were stored at
−80°C for the measurements of HSP70. Sera were thawed only
once for testing. Serological testing for anti-HCV was performed
using a commercial third-generation enzyme-linked immunosor-
bent assay (ELISA) (Ortho Diagnostic System, Raritan, NJ, USA),
in accordance with the manufacturer’s instructions. Serum lev-
els of HCV-RNA were evaluated qualitatively by the Amplicor
HCV test, version 2.0 (Roche Diagnostics, Basel, Switzerland) and
quantitatively at baseline by the Cobas Monitor Test, version 2.0
(Roche Diagnostics). Markers of HBV were tested using the Abbott
radioimmunoassay kit (Abbott Laboratories,Abott Park, IL, USA).

TUMOR BIOPSIES
Liver biopsy samples were obtained percutaneously according to
the Menghini technique using needles of 1.0± 1.2 mm diameter
(Surecut, Hospital Service, Rome, Italy). In some cases, HCC was
diagnosed using a thin needle (20 Gage, Surecut) under ultra-
scan control, using a Toshiba SSA 240A apparatus with a 3.5-MHz
probe. Tissues from HCC and adjacent liver were obtained from
patients undergoing surgical resection. Histologically normal liver
tissue was obtained from patients during surgery for cholelithiasis.
Written informed consent was obtained in all cases; the protocol
was approved by the local Ethics Committee 1(see above). Biopsies
in the size range of a few mm were taken during tumor excision.

FLOW CYTOMETRY
Single cells from freshly isolated tumor biopsies were prepared by
mechanical disruption, as described previously (15). 1× 105 cells
were washed once with 10% FCS in phosphate buffered saline
(PBS) and incubated with a FITC-conjugated mouse monoclonal
antibody specific for membrane-bound HSP70 (cmHSP70.1,
IgG1, multimmune GmbH, Munich, Germany) (16) or a FITC-
labeled isotype-matched IgG1 negative control antibody (345815,
BD Biosciences, Franklin Lakes, NJ, USA) on ice in the dark for
30 min. After washing, propidium iodide was added and viable
cells were immediately analyzed on a FACSCalibur flow cytometer
(BD Biosciences). The percentage of cells stained with an isotype-
matched control antibody was subtracted from the percentage of
cmHSP70.1 antibody positive cells.

IMMUNOHISTOCHEMICAL STAINING
Immunohistochemical investigation was performed on specimens
fixed in formalin and embedded in paraffin. Four micrometer-
thick sections were cut, dewaxed, and hydrated, heated in a
microwave oven (three to four cycles of 5 min each) in 10 mM
citrate buffer (pH 6.0), then washed twice with PBS for 5 min.
All sections were incubated in 3% hydrogen peroxide (v/v) in
methanol for 5 min. Immunohistochemistry was performed with
the Streptavidin–biotin complex (StreptABC) using rabbit poly-
clonal antibody against HSP70 (Santa Cruz Biotechnology, Inc.,
Heidelberg, Germany) at a dilution of 1:200 for 2 h at 37°C.
Sections were then incubated for 30 min at RT with biotinylated
anti-rabbit immunoglobulin diluted in PBS, with StreptABC for
30 min at RT, and the color was developed with 3-amino-9-ethyl-
carbazole (AEC) (Dako, Copenhagen, Denmark) for 5–10 min at
RT, and counterstained with Mayer hematoxylin for 3 min. Results
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FIGURE 1 | Representative images of a high (left) and low (right)
HSP70 membrane expression on primary HCC cells. Single cell
suspensions from freshly isolated HCC biopsies derived from two different
patients were incubated with FITC-conjugated mouse monoclonal antibody
cmHSP70.1 that recognizes the membrane-bound form of HSP70 on the

surface of tumor cells. The white histogram represents the HSP70
membrane staining of the tumor cells and the gray histogram the staining
with a negative control FITC-conjugated isotype-matched control antibody.
The percentage of HSP70 membrane-positive cells was corrected by
subtraction of the isotype control.

were assessed semiquantitatively in blind by three expert patholo-
gists and by counting the proportion of positively stained cells in
10 random high power fields at a 10 and 40×magnification.

ELISA ASSAYS
Total HSP70 levels in serum samples of humans were measured
using an HSP70 immunoassay (Duoset, DYC1663, R&D Sys-
tems, Minneapolis, MN, USA), according to the manufacturer’s
instructions with modified buffers. The ELISA is designed to
detect inducible human HSP70. All serum samples were tested
in three independent ELISA experiments in duplicates. HSP70
was detected by incubation with HRP-conjugated anti-human
Ig followed by HRP-substrate staining (DY999, R&D Systems,
Minneapolis, MN, USA). Signals were determined by measuring
the absorption at 450 nm in a standard ELISA reader (BioTek,
Winooski, VT, USA) with a correction wavelength set to 540 nm.

STATISTICAL ANALYSIS
Statistical analysis was performed using SigmaPlot software deliv-
ered by Systat Software, Inc. (San Jose, CA, USA). Results of the
levels of soluble HSP70 are presented as standard box plots with
boundaries indicating the 25th and the 75th percentile. The line
inside boxes indicates the median and the whiskers indicate the
10th and 90th percentile, respectively. All outliers are shown. For
comparison between groups of data the Student’s t -test or the
Mann–Whitney Rank Sum Test were used to evaluate differences.
p-Values <0.05 are considered to be statistically significant.

RESULTS
HSP70 MEMBRANE PHENOTYPE ON BIOPSIES OF PATIENTS WITH HCC
Freshly isolated, non-fixed biopsies of patients with HCC were
minced and filtered through a sterile mesh to obtain single cell
suspensions of the tumor. Directly after washing tumor cells
were centrifuged and incubated with FITC-conjugated mouse
monoclonal antibody (mAb) cmHSP70.1 that recognizes the
membrane-bound form of HSP70 on the surface of viable tumor

Table 1 | HSP70 membrane status in single cell suspensions of HCC

tissue obtained from tumor patients.

Patient no. HSP70+ Mean fluorescence HSP70

cells (%) intensity (MFI) phenotype

1 62 429 +

2 95 1923 +

3 33 158 +

4 12 27 −

5 14 37 −

cells with an intact membrane (Figure 1, white histograms). As
a negative control, a FITC-conjugated isotype-matched control
antibody was used (Figure 1, gray histograms). The percentage
of HSP70 positively stained cells was corrected according to the
results from the staining with an isotype-matched control anti-
body. The histograms depicted in Figure 1 show a typical result
of a high (62%) and low (14%) membrane HSP70 positive tumor
biopsy. Previous studies with biopsies of normal tissues revealed
that a sample is considered as HSP70 membrane-positive if more
than 20% of the cells are stained positively with the cmHSP70.1
mAb (17). With respect to this threshold, three out of five selected
HCC patient samples were HSP70 membrane-positive (Table 1).
This finding is in line with results derived from other human
tumor entities (n= 978), showing that more than 50% of all
tested tumor samples were found to be HSP70 membrane-positive
(10, 15).

REPRESENTATIVE IMMUNOHISTOCHEMICAL ANALYSIS OF THE HSP70
PROTEIN CONTENT IN LIVER SECTIONS OF HUMAN VOLUNTEERS
WITHOUT LIVER DISEASE (CTRL) AND HCC PATIENTS WITH
UNDERLYING LC
The patient cohort consists of 183 subjects that could be divided
into four groups (Table 2). Group 1 was composed of 40
patients (CTRL) without liver disease derived from the Biomedical

www.frontiersin.org July 2014 | Volume 5 | Article 307 | 65

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


Gehrmann et al. Soluble HSP70 in liver diseases

Table 2 | Clinical and pathological features of control patients without liver diseases (CTRL) and patients with chronic hepatitis (CH), liver

cirrhosis (LC), and hepatocellular carcinoma (HCC); data are expressed as the median (range).

Characteristics Group 1 CTRL Group 2 CH Group 3 LC Group 4 HCC

Number (n) 40 50 46 47

Gender (M/F) 36/4 30/20 24/22 27/20

Age (years) 44 (23–63) 52.5 (25–85) 66.5 (30–86) 73 (45–87)

Albumin (g/dl) 4.7 (3.47–5.01) 4.66 (4.0–4.9) 3.4 (2.0–4.5) 1.03 (0.24–5.56)

Bilirubin (mg/dl) total 0.72 (0.52–1.0) 0.75 (0.34–1.1) 1.27 (0.15–5.89) 1.03 (0.24–5.56)

Aspartate amino-transferase (IU/ml) 18.7 (12.0–26.1) 55 (25.0–173.0) 70 (19.0–377.0) 56 (12.0–204.0)

Alanine amino-transferase (IU/ml) 16.2 (11.5–22.02) 85 (31.0–251.0) 57 (12.0–221.0) 45 (12.0–230.0)

International normalized ratio (INR) 0.92 (0.86–1.01) 0.97 (0.91–1.07) 1.24 (1.06–1.73) 1.06 (0.82–1.75)

HBs Ag – 2 4 3

HCV Ab – 38 32 34

Alcoholism – None 3 5

Cryptogenic – 10 7 4

Dysmetabolic – None None 1

BCLC

A – – – 21

B – – – 9

C – – – 8

D – – – 5

E – – – 4

CHILD-PUGH

A – – 26 –

B – – 16 –

C – – 4 –

BCLC, Barcelona Clinic Liver Cancer group; HBs Ag, anti-hepatitis B surface antigen; HCV Ab, anti-hepatitis antibody.

Department of Internal Medicine and Specialties, University of
Palermo, Palermo, Italy. Liver disease was excluded on the basis of
anamnestic, biochemical, and instrumental data. In this group, no
case of neoplastic disease was detected within a follow-up period of
at least 6 months. Group 2 included 50 patients with CH infections
and Group 3 included 46 patients with LC. Diagnosis was made on
the basis of liver biopsies and unequivocal biochemical and instru-
mental data. The absence of neoplasia had been verified during a
post-study follow-up period of at least 6 months. Finally, group 4
included 47 patients with HCC. Diagnosis was based on histology,
cytology, multiple concordant imaging techniques [ultrasound,
basal and lipiodol computed tomography (CT), selective angiog-
raphy], and biochemical assays (serum levels of AFP >200 ng/ml).
Some of the patients were known as liver cirrhotics and had been
enrolled in a prospective study for HCC screening.

Representative immunohistochemical images were taken from
sections of liver biopsies of human patients without liver dis-
ease (CTRL) and a patient who was diagnosed with HCC and
LC (Figure 2A). The HSP70 staining intensity was stronger in the
HCC tissue compared to that of the control liver (CTRL) and to
the cirrhotic part (LC) of the patient biopsy. These data indicate
that the intracellular HSP70 content is higher in the cancerous
compared to the cirrhotic liver tissue. A comparison of four dif-
ferent LC-HCC patients revealed different staining intensities in
the HCC and LC regions and between the different patient sections
(Figure 2B).

HSP70 PROTEIN LEVELS IN THE SERUM OF HUMAN VOLUNTEERS
(HEALTHY), PATIENTS WITHOUT LIVER DISEASE (CTRL), AND PATIENTS
WITH CHRONIC HEPATITIS, LIVER CIRRHOSIS, AND HEPATOCELLULAR
CARCINOMAS
The soluble HSP70 levels were determined in the serum of 86
male (54) and female (32) healthy human volunteers at different
ages. Irrespectively of the age and gender, the HSP70 serum lev-
els did not differ significantly in the healthy human volunteers
(HEALTHY) (Figure 3A). A comparison of the HSP70 levels in
patients without liver disease (CTRL, n= 40, 2.7± 0.9 ng/ml) and
healthy human volunteers (HEALTHY, n= 86, 2.3± 0.8 ng/ml)
also revealed no significant differences (Figure 3B). In contrast,
the HSP70 serum levels of patients with liver diseases such as
CH, LC, and HCC differed significantly from that of healthy
human volunteers and patients without liver disease. The highest
serum HSP70 levels in patients were found in HCC (HCC, n= 47,
6.5± 3.1 ng/ml) and LC patients (LC, n= 46, 6.6± 5.2 ng/ml).
The lowest HSP70 levels were found in patients with CH (n= 50,
3.9± 2.4 ng/ml). These values were significantly lower than that
of HCC and LC patients (Figure 3B).

In order to evaluate whether the HSP70 serum levels could pre-
dict the risk to develop HCC a subgroup analysis was performed.
As shown in Figure 3C, a small subgroup of HCC patients with
underlying LC revealed higher HSP70 serum levels (LC-HCC,
n= 13, 7.3± 2.2 ng/ml) than the overall group of patients with
LC (6.6± 5.2 ng/ml) with unknown HCC status. However, due to
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FIGURE 2 | (A) Representative immunohistochemical images of the
HSP70 staining in control liver tissue (CTRL) and in the tissue of a patient
with hepatocellular carcinoma (HCC) with an underlying liver cirrhosis
(LC). The HSP70 staining intensity was stronger in HCC tissue compared
to that of control liver tissue (CTRL) and in areas with liver cirrhosis (LC);
left panel 10× magnification, right panel 40× magnification.

(B) Semiquantitative analysis of the HSP70 staining intensity in sections
of LC-HCC patients (n=4) at a 10× magnification. The HSP70 staining
intensity in the HCC regions ranged from very strong (+++), via
intermediate (++) to strong (+); in the LC regions the staining intensity
ranged between strong (+), weak (±), and very weak (−) in the four
different sections.

the low number of patients (n= 13) only a trend (p= 0.05) was
determined.

DISCUSSION
Biomarkers are used to detect tumors, monitor tumor growth,
and to assess the effectiveness of anti-cancer therapies (18). A
major disadvantage of biopsy-based markers is the risk for devel-
oping infections caused by the invasive intervention. Since blood
samples can be taken by minimal invasive methods from patients
before, during, and after therapy this method is superior for tumor
detection and for monitoring the clinical outcome. In this study,
soluble HSP70 was examined for its potential prognostic signifi-
cance to serve as a blood-derived biomarker to detect HCC and
to distinguish HCC from other liver diseases such as CH and LC.

Previous studies of our group already have shown that HSP70
membrane-positive tumors actively secrete HSP70 into the extra-
cellular milieu in cell cultures (11). This result could be confirmed
in tumor bearing mice (19) and in patients with squamous cell
carcinomas of the head and neck (Ms submitted). Since the avail-
ability of tumor biopsy material is limited during the course of
disease, we addressed the question whether serum HSP70 levels
could reflect the HSP70 membrane status of the tumor cells also
in HCC patients. Comparative analysis revealed that an increased
intracellular HSP70 staining intensity of HCC cells in sections was
associated with increased serum HSP70 levels in a selected group
of patients who suffered from HCC and LC (data not shown). In
a group of patients with HCC only, the cytosolic HSP70 levels did
not correlate with soluble HSP70 levels. This is in line with the
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findings of Kang et al. (5) who showed no correlation of cytosolic
HSP70 levels with prognosis of HCC after resection. The excellent
accessibility of serum biomarkers allows repeated testing during
the course of a disease and the monitoring of clinical outcome.
Serum HSP70 levels have been discussed to provide a useful bio-
marker for testing the efficacy of an Hsp90 inhibitor-based tumor
therapy that is known to induce the expression of HSP70 (20).

It has been reported that HSP70 can be actively released by
viable tumor cells with an intact cell membrane (21). In this study,
we could show that patients with HCC exhibited significantly
higher HSP70 serum levels compared to patients with hepatic viral
infections (Figure 3). These findings might provide a hint that the
largest proportion of soluble HSP70 in the serum is produced by
viable tumor cells that actively secrete HSP70 in lipid vesicles and
not by necrosis of inflamed liver tissue. Together with the find-
ing that serum HSP70 levels correlate with the volume of viable
tumor cells in mice (19), we hypothesize that soluble HSP70 levels
might be useful to evaluate the mass of vital tumor cells in human
patients before and after therapeutic intervention.

Since membrane HSP70 is frequently present on a broad vari-
ety of different tumor entities such as colorectal, lung, pancreatic,
and prostate cancer patients (14, 20, 22, 23) and since membrane
HSP70 positive tumor cells do secrete HSP70 into the extracel-
lular milieu it is expected that soluble HSP70 levels might serve
as a useful biomarker for different tumor entities. Elevated HSP70
serum levels have been found in cardiovascular, inflammatory and
pregnancy-related diseases. In this study, we could show quantita-
tive differences in soluble HSP70 levels in inflammation, cirrhosis,
and cancer. Since the highest amount of HSP70 is actively secreted
by tumor cells and not from inflamed and virally infected tissues,
soluble HSP70 levels might provide a measure to determine the
mass of viable tumor cells in patients (24).

CONCLUSION
In the present study, the prognostic value of extracellular HSP70
was determined in the serum of patients with liver diseases such
as CH, LC, and HCC. HSP70 serum levels were found to be signif-
icantly higher in cancer patients compared to healthy individuals,
patients without liver diseases and patients with an inflammation
of the liver. Our data encourage us to hypothesize that serum
HSP70 might be a useful biomarker to differentiate HCC from
other liver diseases.
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Induction of apoptosis is one of the main
defenses of the body against cells that
have acquired malicious mutations. It may
seem counter-intuitive then, that massive
cell death is observed in many malignant
tumors (1, 2). Despite high rates of apopto-
sis, these tumors continue to grow rapidly.
Thus, tumor cell growth must outbalance
tumor cell death. Intuitively presumed only
to inhibit tumor growth, apoptotic cells
may actually promote net tumor growth (3,
4). As long ago as 1956, Revesz showed that
cell death can enhance tumor growth (5).
Moreover, new studies in progress in our
laboratory show that apoptosis in tumor
cells promotes growth rates in aggressive
B-cell lymphoma.

Cells undergoing apoptosis are dif-
ficult to observe in vivo, as they are
rapidly cleared by phagocytosis, most obvi-
ously by macrophages. Accumulation of
macrophages, sometimes engorged with
apoptotic cells, is observed in many malig-
nant tumors and is generally associ-
ated with poor prognosis (6, 7). Inflam-
matory cells, in particular macrophages,
are key elements of the tumor environ-
ment, providing support for the con-
tinually expanding “rogue” tissue. The
tumor microenvironment resembles that
of a wound that fails to heal (8), where
macrophages not only clear and repair,
but also promote tissue regeneration and
support. Tumor-associated macrophages
(TAM) display a phenotype that is reminis-
cent of wound-healing macrophages. They
have been shown to promote angiogenesis,
tissue remodeling, and anti-inflammatory
responses, which results in the support of
tumor cell growth and metastasis (9–12).

Apoptosis of tumor cells in a grow-
ing malignant tissue may therefore be

rationalized as a “sinister sacrifice” of
some cancer cells that ultimately facili-
tates cancer progression. We hypothesize
that apoptotic cells play a key role in dri-
ving oncogenesis, both through the release
of soluble and microvesicle-associated sig-
naling factors, as well as through direct
interaction with phagocytes. Here we
postulate lactoferrin (Lf) as an impor-
tant signaling factor maintaining an anti-
inflammatory tumor microenvironment,
and stress the importance of apoptotic
cell engulfment by macrophages for dri-
ving a pro-tumor phenotype in TAM
(Figure 1).

DIRECT EFFECTS OF LACTOFERRIN
Cells undergoing apoptosis release a vari-
ety of biologically active “find-me” or
“keep-out” signaling factors, including the
nucleotides ATP and UTP (13, 14), the lipid
lysophosphatidylcholine (LPC) (15), as
well as the proteins fractalkine (16), Lf (17),
and monocyte chemotactic protein (MCP-
1) (18). Some of these signaling molecules
may be associated with microvesicles, as is
the case with the chemokine, fractalkine
(16), which may support prolonged bio-
logical activity. It has been hypothesized
that these find-me signals not only affect
chemotaxis and phagocytosis, but may
also have additional pleiotropic biologi-
cal effects. Indeed, ATP released by apop-
totic cells increased binding of apoptotic
cells to macrophages (19). Furthermore,
fractalkine has been shown to stimulate
pro-survival and growth-promoting effects
(20, 21) and was found to cause the
expression of milk fat globule epidermal
growth factor (MFG-E8) on macrophages,
which leads to enhanced apoptotic cell
clearance (22).

Lactoferrin was identified in our lab-
oratory to be released from apoptotic
cells. Lf is produced de novo by a diverse
range of cells stimulated to undergo apop-
tosis in vitro (17). This 80 kDa iron-
binding glycoprotein is well-documented
to have immunomodulatory, antimicro-
bial, anti-inflammatory, and trophic activ-
ities (23–26). We propose that Lf is another
pleiotropic molecule released from apop-
totic cells that can regulate the tumor
microenvironment. Thus, since it is well-
known that apoptosis is frequent in sev-
eral types of cancer, particularly high-grade
forms (27), it is conceivable that persistence
of uncleared apoptotic cells (which may
occur through saturation) could enable
these cells to become secondarily necrotic
with the potential consequences of release
of noxious contents via cell lysis leading to
activation of pro-inflammatory responses
(28). However, most malignant tumors
maintain a phenotype that militates against
anti-tumor immune and inflammatory
responses. Given our previous findings that
Lf is released from cells undergoing apop-
tosis (17), together with our unpublished
studies showing that Lf binds to necrotic
cells, we suggest that Lf serves to dampen
down pro-inflammatory responses result-
ing from persistent secondarily necrotic
cells. In fact, it has been shown that
necrotic neutrophil lysates, which contain
large quantities of Lf from the secondary
granules, are anti-inflammatory, and are
able to inhibit the production of pro-
inflammatory cytokines, such as tumor
necrosis factor-α (TNFα), IL6, IL8, and
IL1β, by macrophages (29). The mecha-
nism through which this is achieved may
involve the “mopping up” of necrotic cell-
released pro-inflammatory contents by Lf.
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FIGURE 1 |Tumor cell apoptosis potentially activates multiple oncogenic pathways, promoting
tumor cell growth and survival, angiogenesis, remodeling, and metastasis, while inhibiting
anti-tumor immune responses. We propose that TAM interacting with apoptotic tumor cells are
central to many of these pathways. Apoptotic cells release lactoferrin (Lf) which could promote tumor
growth and progression by: (1) TAM activation, (2) modulating the inflammatory effects of necrosis, (3)
acting as a direct trophic factor, and (4) functioning as a “keep-out” signal to anti-tumor granulocytes.

Lactoferrin has a highly positively
charged N-terminal end (30), which is
capable of interacting with a variety of pro-
teins and membranes, but can also bind a
selection of metal ions as well as iron (31).
Furthermore, Lf can interact with lipid A of
lipopolysaccharide (LPS) causing the neu-
tralization of LPS-stimulated secretion of
pro-inflammatory cytokines by monocytic
cells, including TNFα, IL1β, IL6, and IL8
(32, 33). Mopping of noxious contents by
Lf may be a final safeguard system to pre-
vent pro-inflammatory responses at sites
of high rates of apoptosis. This may not
only help maintain the anti-inflammatory
environment in tumors, but could also play
a role in the resolution of inflammation,
where neutrophil activation and death may
lead to the release of large quantities of
Lf. In addition, in tumors characterized
by neutrophil infiltration, the dominant
source of biologically active Lf may be

derived from neutrophils, rather than
apoptotic tumor cells.

Lactoferrin is also known to directly
exert anti-inflammatory effects by inhibit-
ing the migration of neutrophils (17)
and also by indirectly enhancing the pro-
duction of anti-inflammatory cytokines
including IL4, IL10, and transforming
growth factor-β (TGFβ) (25, 26). Some
studies also suggest that Lf can directly
interact in the nuclear factor κB (NFκB)
pathway interfering with its binding to
DNA (33).

These findings point to a possible
direct mechanism of Lf for control-
ling pro- and anti-inflammatory cytokine
expression. In high-grade malignancies,
these effects of Lf could help moder-
ate anti-tumor inflammatory and immune
responses, allowing continued malignant
growth. The pro-tumor effects of Lf are
likely to be context dependent, however,

since Lf has been shown to have pro-
inflammatory, immunostimulatory, and
cell growth-inhibitory effects (34–36) as
well as anti-inflammatory and trophic
properties. An open, and important ques-
tion is whether Lf is released by dying
tumor cells as a consequence of anti-tumor
therapy and, if so, whether it has properties
which could ultimately confound – or alter-
natively facilitate – long-term therapeutic
efficacy. Again, the significance of Lf may
be tissue context dependent.

EFFECTS OF PHAGOCYTES
INTERACTING WITH APOPTOTIC
TUMOR CELLS
In addition to the release of signaling fac-
tors, interaction of apoptotic cells with
phagocytes also provides opportunities for
regulating tumor cell growth. TAM are
the most important phagocytes of apop-
totic tumor cells in most cancers, and often
prominently display engulfed remnants of
apoptotic cells (2, 37, 38). Current work
in our laboratory indicates that the TAM
of aggressive B-cell lymphoma show up-
regulated expression of receptors involved
in the recognition and engulfment of apop-
totic cells. Furthermore, recent studies in
mice have shown that radiotherapy, one of
the most important anti-cancer treatment
strategies, can enhance tumor cell repop-
ulation in vivo, through the induction of
apoptosis (4). Such effects may be mediated
via responses of macrophages that accumu-
late as a result of the massive radiation-
induced apoptosis as previously proposed
(39). Apart from preventing the build-up
of free apoptotic cells, removal of apoptotic
cells by phagocytosis may therefore drive
the pro-tumor activation status of TAM.

Engulfment of apoptotic cells by
macrophages has been found to acti-
vate downstream signaling pathways that
cause the up-regulation and secretion of
anti-inflammatory mediators such as IL10,
and TGFβ, and the down-regulation of
pro-inflammatory mediators such as IL6,
IL8, IL12, and TNFα (40–43). Further-
more, incubation of phagocytes with apop-
totic cells reduces the effects of LPS,
increasing release of IL10, while reduc-
ing TNFα, IL1β, and IL12 release. Block-
ing apoptotic cell engulfment can prevent
these responses (44). As well as enhancing
anti-inflammatory effects, apoptotic cells
have also been shown to promote tumor
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growth and angiogenesis. Phagocytes can
release growth factors upon engulfment of
apoptotic cells, including VEGF (45), and
apoptotic cells can induce angiogenesis via
electrostatic effects (46).

Given the abilities of apoptotic cells
to induce anti-inflammatory signaling,
angiogenesis, and the release of growth
factors by TAM, it will be important to
determine to what extent they influence
additional pro-tumor macrophage proper-
ties such as matrix remodeling, invasion,
and metastasis.

CONCLUSION
We propose that the apoptotic cell con-
tributes markedly to the conditioning of
the tumor microenvironment. Here, we
suggest that Lf released from apoptotic cells
could contribute to the anti-inflammatory
state of the tumor microenvironment. Fur-
thermore, engagement of apoptotic cells by
macrophages may also inhibit anti-tumor
inflammatory and immune responses, as
well as promote tumor cell growth, angio-
genesis, and tissue remodeling. These nor-
mal, physiological effects of apoptosis
endow this fundamental cell death process
with regulated and homeostatic properties
that permit tissue turnover, organogenesis,
and wound healing. However, these prop-
erties may be hijacked in malignant disease
in order to facilitate cancer progression.

Understanding the complexity of the
signaling of apoptotic tumor cells to viable
tumor cells, macrophages, and other ele-
ments of the tumor environment will be
key to improving tumor treatment out-
comes and to prevent metastasis, by tar-
geting the interaction of the host with
apoptotic cancer cells. This is especially
important since most anti-cancer thera-
pies are designed to induce apoptosis of
malignant cells, which, without inhibi-
tion of these interactions, could ultimately
facilitate tumor repopulation.
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