

Pride and Paradev
a collection of agile software testing
contradictions

Alister Scott

This book is for sale at http://leanpub.com/pride-and-paradev

This version was published on 2015-03-02

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight
tools and many iterations to get reader feedback, pivot until
you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution
3.0 Unported License

http://leanpub.com/pride-and-paradev
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Contents

Acknowledgments . i

About this book . ii

Before we start: what’s a paradev? v

All about agile software development vii

A typical agile software development process x

A collection of software testing contradictions . . 1

Your role as an agile software tester 2

Do agile teams even need a software tester? 3

Do agile software testers need technical skills? 6

Are software testers the gatekeepers or guardians of
quality? . 11

Should agile testers fix the bugs they find? 13

CONTENTS

Should testers write the acceptance criteria? 15

Software testing as a career choice 17

Is software testing a good career choice? 18

Is it beneficial to attend software testing conferences? 21

Should testers get a testing certification? 24

Defining Acceptance Criteria for user stories . . . 25

Should acceptance criteria be implicit or explicit? . . . 26

Should your acceptance criteria be specified asGiven/When/Then
or checklists? . 29

Are physical or virtual story walls better? 32

Testing Techniques 34

Which is better: manual or automated testing? 35

Can we just test it in production? 37

What type of test environment should we test in? . . 40

Should you use test controllers for testing? 42

Should you use production data or generate test data
for testing? . 45

CONTENTS

Should you test in old versions of Internet Explorer? . 48

Should you use a tool to track bugs? 50

Should you raise trivial bugs? 55

Should you involve real users in testing? 57

Automated Acceptance Testing 59

Do you need an automated acceptance testing frame-
work? . 60

Who should write your automated acceptance tests? . 62

What language should you use for your automated
acceptance tests? . 64

Should you use the Given/When/Then format to spec-
ify automated acceptance tests? 66

Should your element selectors be text or value based? 69

Three non-contradictions 72

Acknowledgments
This book began as a series of blog posts on my WatirMelon¹
blog.

This was great, as I was able to get feedback on each article as I
wrote it. I would like to thank my blog readers for the plentiful
feedback I received; it has no doubt shaped the final release of
this book.

I would also like to thankmywonderful wife Clarewho reviewed
this book and, despite having no prior knowledge of the subject
matter, was able to provide a lot of excellent feedback and polish.

Finally, I’d like to thank² my family: Clare, Finley, Orson and
Winston: you guys mean the world to me.

¹http://watirmelon.com
²or retroactively apologize for spending all my time writing this, but at least I wrote

your names at the start of my book!

http://watirmelon.com
http://watirmelon.com

About this book

Who is it for?

This book for anyone who does or wants to do software testing
on an agile³ team.

Full of Quotes

“One must never miss an opportunity of quoting
things by others which are always more interesting
than those one thinks up oneself.”

∼Marcel Proust

“Quotations when engraved upon the memory give
you good thoughts.”

∼Winston Churchill

Why contradictions?

“The test of a first rate intelligence is the ability to
hold two opposed ideas in the mind at the same
time, and still retain the ability to function.”

∼ F. Scott Fitzgerald, The Crack Up⁴

³http://en.wikipedia.org/wiki/Agile_software_development
⁴http://www.esquire.com/features/the-crack-up

http://en.wikipedia.org/wiki/Agile_software_development
http://www.esquire.com/features/the-crack-up
http://en.wikipedia.org/wiki/Agile_software_development
http://www.esquire.com/features/the-crack-up

About this book iii

Most software testing books are a verbose collection of best
practices: what you should do as tester to be successful, often
in a traditional ‘lessons learned’ format.

Best practices are often sold, particularly by consultants, as silver
bullets⁵. I have particular disdain for best practices, they’re not
contextual and too black andwhite for me. I tend to see the world
in shades of gray, a best practice in one context makes no sense
in another.

“The color of truth is gray.”

∼ André Gide

Writing books in shades of gray isn’t easy: it’s much easier to
write a best practices book with strongly held views about what
you consider to be the right approach, and dispel ideas that
contradict your own.

In thinking of books in the middle of two views, one approach is
to write a book sufficiently nebulous or generalist that it could
appear to work in various contexts. But the outcome is weak as
people prefer reading stronger views.

Instead I’ve decided to write a collection of contradictory claims
about software testing; the practical implications lie somewhere
in between.

I see this book as a bit of an experiment: I’ve certainly never
seen a book following this format before, but who knows, it
may create a whole collection of books with contradictions about
software development.

⁵A silver bullet is a metaphor for any solution of extreme effectiveness.

About this book iv

The biggest benefit I have found in this approach is that it’s par-
ticularly difficult for a reader to argue with me about something,
because I am essentially arguing with myself!

So, what lies ahead is essentially a book of what George Orwell
dubbed doublethink, the act of simultaneously accepting two
mutually contradictory beliefs as correct.

“To know and not to know, to be conscious of
complete truthfulness while telling carefully con-
structed lies, to hold simultaneously two opinions
which canceled out, knowing them to be contra-
dictory and believing in both of them, to use logic
against logic, to repudiate morality while laying
claim to it, to believe that democracy was impos-
sible… to apply the same process to the process
itself – that was the ultimate subtlety; consciously
to induce unconsciousness, and then, once again,
to become unconscious of the act of hypnosis you
had just performed. Even to understand the word
‘doublethink’ involved the use of doublethink.”

∼ George Orwell, 1984

Enjoy.

Before we start: what’s a
paradev?
What do you think of when you hear the word paradev?

I’ll try to explain my meaning of the term with a true story.

A couple of years ago now, just after I started at ThoughtWorks⁶,
I read a tweet from a fellow programmer here in Brisbane along
the lines of “the paradevs at work enjoyed my lunchtime session
on networking”. My ears pricked: “what’s a paradev?” I asked.
“It’s someone who helps the developers develop” she replied.
“Oh” I thought.

I admit my initial reaction was shock, what does that term even
mean? The first things that came to mind when thinking ‘para’
were parasites, paraplegics, paralysis, paranoia, but theseweren’t
related at all to software development. She told me she came
up with the term to describe non-programmers who work in
software from professions such as paramedics and paralegals,
basically jobs that function to support a higher paid, higher level
profession such as doctors and lawyers. I was offended, how dare
she call me that.

But that was then and this is now. I’ve since reappropriated⁷ the
term, much like the termQueer⁸ was reappropriated two decades

⁶http://thoughtworks.com
⁷http://en.wikipedia.org/wiki/Reappropriation
⁸http://en.wikipedia.org/wiki/Queer

http://thoughtworks.com
http://en.wikipedia.org/wiki/Reappropriation
http://en.wikipedia.org/wiki/Queer
http://thoughtworks.com
http://en.wikipedia.org/wiki/Reappropriation
http://en.wikipedia.org/wiki/Queer

Before we start: what’s a paradev? vi

ago. I’m happy to be seen as someone who helps the devs: “if I’m
going to be a paradev: I’m going to be the best darn paradev there
is!”

The story gets even better though. Very recently I was telling this
story to a fellow paradev who, like everyone else I tell the story
to, hadn’t heard of the term. I saw him embark on some quick
etymology to discover that para⁹ is also used to indicate “beyond,
past, by” (think paradox: which translates to beyond belief). This
same reasoning translates paradev into beyond dev or past dev.
How apt!

He joked with me that paradevs are the people on the team
that don’t box themselves into a narrow definition, happy to
be flexible, and actually are happy to work on different things.
Amen to that.

So to answer my original question: a paradev is anyone on a
software team that doesn’t just do programming. This book is
for paradevs who do, or would like to do, software testing on an
agile team.

⁹http://dictionary.reference.com/browse/para-

http://dictionary.reference.com/browse/para-
http://dictionary.reference.com/browse/para-

All about agile software
development
This book is all about agile software development¹⁰. I will briefly
discuss what agile software development is and why it’s impor-
tant (and fun).

Agile software development is all
about delivering business value
sooner

That’s why we work in short iterations, seek regular business
feedback, are accountable for our work and change course before
it’s too hard.

Agile software development is all
about breaking things down

“The secret of getting ahead is getting started. The
secret of getting started is breaking your complex
overwhelming tasks into small manageable tasks,
and then starting on the first one.”

∼Mark Twain

¹⁰http://en.wikipedia.org/wiki/Agile_software_development

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

All about agile software development viii

• A problem is too big so let’s break it down into a project
• A project is too big so let’s break it down into iterations
• An iteration is too big so let’s break it down into user
stories

• A user story is too big so let’s break it down into accep-
tance criteria

• An acceptance criterion is too big so let’s break it down
into some tests

• Let’s write a failing test and make it pass

Agile software development is all
about automated testing

Delivering software everyday is easy. Delivering working soft-
ware everyday is hard.

The only way an agile team can deliver working software daily
is to have a solid suite of automated tests that tells us it’s still
working.

The only way to have reliable, up-to-date automated tests is to
develop them alongside your software application and run them
against every build.

Agile software development is all
about communication and flexibility

You must be extremely flexible to work well on an agile team.
You can’t be hung up about your role’s title. Constantly deliver-
ing business value means doing what is needed, and a team of

All about agile software development ix

people with diverse skills thrives as they constantly adapt to get
things done. Most importantly flexibility means variety which is
fun!

A typical agile software
development process

Some context

This is not a book about how to do agile software development.

The purpose of this chapter is to provide some information
on the basics of agile software development using a fictional
example project. Most of the terminology I use originates from
the Extreme Programming (XP)¹¹ methodology. If you are after
more in depth information on agile software development I
recommend reading Jonathan Rasmusson’s excellent book The
Agile Samurai¹².

..

Beautiful Tea
Janet and Dave own Beautiful Tea: a boutique tea estate in
the Byron Bay hinterland in Australia. They grow and sell
organic loose leaf tea direct to tea connoisseurs by email
and telephone.

Janet and Dave can no longer sustainably grow their busi-
ness using email and telephone alone and have recently
initiated a project to establish a bespoke online sales plat-

¹¹http://en.wikipedia.org/wiki/Extreme_programming
¹²http://pragprog.com/book/jtrap/the-agile-samurai

http://en.wikipedia.org/wiki/Extreme_programming
http://pragprog.com/book/jtrap/the-agile-samurai
http://pragprog.com/book/jtrap/the-agile-samurai
http://en.wikipedia.org/wiki/Extreme_programming
http://pragprog.com/book/jtrap/the-agile-samurai

A typical agile software development process xi

..

form.

Project Inception

A typical agile software project often begins with a project in-
ception workshopwhere stakeholders get together for a couple of
days to plan the project and make sure everyone is in agreement
with scope and priority.

The output of a project inception is a master story list, which is
essentially a prioritized to-do list for your project broken into
high level features and further broken down into user stories
which have estimated effort against each.

..

Beautiful Tea Project Inception
Beautiful Tea recently held a two day project inception
workshop where they spent time with their recently hired
technical staff to incept the project by developing, among
other materials, a Master Story List of features and user
stories for their online ordering application. Each of the
high level features was decomposed into user stories each
with estimated effort in days (d).

1. Domestic Sales (20d)
• List Products (5d)
• Manage Inventory (4d)
• Select Products (4d)

A typical agile software development process xii

..

• Shipping Selection (2d)
• Credit Card Payment (3d)
• Paypal Payment (1d)
• Tracking (1d)

2. International Sales (7d)
• Product Currencies (4d)
• Shipping Selection (2d)
• Tracking (1d)

3. Account Mgmt (13d)
• Create (5d)
• Edit (3d)
• Delete (3d)
• Newsletter (2d)

4. Reseller Ordering (10d)
• Discount rates (5d)
• Invoicing (3d)
• Returns (2d)

Agile Iterations

The Master Story List produced in an inception can be used to
plan an agile project. An agile project is typically broken into
iterations, which are typically 1-2 week blocks of time to deliver
a number of user stories to the business. A showcase is delivered
at the end of each iteration that showcases working, fully tested
software to the business. The velocity of the project is the number
of user stories delivered per iteration.

As the user stories are prioritized, the team can identify a mile-
stone which marks the bare necessary functionality to release

A typical agile software development process xiii

to production - this has become known as the minimum viable
product or MVP¹³.

..

Beautiful Tea Project Iterations
Beautiful Tea split their agile project into five two-week
iterations (10 days per iteration), with a Production re-
lease planned after the second, fourth and fifth iterations.
It was determined by the team that the Domestic Sales
feature was the minimum viable product as International
Sales, Account Management and Reseller Ordering could
be released later to enhance the online ordering experi-
ence and would impede the release of Domestic Sales.

¹³http://en.wikipedia.org/wiki/Minimum_viable_product

http://en.wikipedia.org/wiki/Minimum_viable_product
http://en.wikipedia.org/wiki/Minimum_viable_product

A typical agile software development process xiv

A user story

A user story consists of a narrative (background) and acceptance
criteria (plus supporting material such as screen designs or
necessary database information).

Typically a business analyst works with the product owner to
define the acceptance criteria. If there is no business analyst on
the team, the tester often takes on this role.

When a programmer or pair of programmers start work on a
story, often they will have a quick story kick-off to discuss the
acceptance criteria to make sure they are clearly defined and able
to be developed.

The programmers write automated unit and integration tests
alongside delivering the production code, and once complete,
conduct a story handover at their workstation to demonstrate all
acceptance criteria have been met by what has been developed.
Depending on the team, the programmers may also write the
automated acceptance tests.

The tester then tests the story against the acceptance criteria and
in different browsers/devices/operating systems as needed. The
tester may also conduct some exploratory testing and review any
automated tests to ensure there’s sufficient business and code
coverage. Once testing is complete, the story is moved to done
and is ready to showcase to the business. Once the necessary
number of stories have been finished and showcased, these can
be released into Production.

A typical agile software development process xv

..

Life Cycle of a User Story at Beautiful Tea

The user story life cycle begins with definition of the user
story and acceptance criteria which involves the business
analyst and tester. Once these are complete, a pair of
programmers begin the story with a kick off which is a
tenminute discussion between the BA, tester and program-
mers to discuss the story and acceptance criteria to ensure
everything is clear and correct.

Coding takes place using test driven development, mean-
ing a failing unit test is written before each piece of func-
tionality is developed. The programmers also are respon-

A typical agile software development process xvi

..

sible for developing automated integration and acceptance
tests.

Once coding is complete, a story handover takes place
between the programmers and the tester and optionally
the BA. This happens at the programmers machine and is
a quick ten minute demo of the functionality working on
a local environment.

Story testing is conducted by the tester who tests all
acceptance criteria and edge cases in an integrated envi-
ronment against various browsers. The tester also conducts
exploratory testing to ensure requirements weren’t over-
looked and existing functionality still functions appropri-
ately.

Any bugs are written on pink sticky notes and discussed
with the programmers who promptly fix them. The user
story remains in test as this happens.

Once the tester is complete, the story is added to the done
column on their story wall ready to be showcased to the
business representatives.

A collection of
software testing
contradictions

“It was the best of times, it was the worst of times”

∼ Charles Dickens: A Tale of Two Cities

Your role as an agile
software tester

“Do not worry about holding high position; worry
rather about playing your proper role.”

∼ Confucius

Do agile teams even need
a software tester?
I admit this topic is a little strange to have in a book about
software testing. But I thought I would include it nonetheless
as it’s relevant to our industry and it’s good for you to have
some background information about the reasoning behind hiring
testers.

Agile teams don’t need a software
tester

You’ve probably heard the story. Facebook, of the most popular
sites on the whole Internet (as of writing) has no testers. The
Facebook engineer responsible for the feature is responsible for
the testing.

This is because Facebook, by and large, does not need to produce
high quality software.¹⁴ They ship quickly and as a result, they
ship bugs. Sure, they’ve got a lot of automated tests, but we all
know there is still a need for human testing.

Evan Priestley, an ex-Facebook engineer, explains¹⁵ that Face-
book get around having no testers by doing a few things:

¹⁴Whether this will always be the case is another matter.
¹⁵http://www.quora.com/Is-it-true-that-Facebook-has-no-testers#

http://www.quora.com/Is-it-true-that-Facebook-has-no-testers
http://www.quora.com/Is-it-true-that-Facebook-has-no-testers#

Do agile teams even need a software tester? 4

• They rely on extensive dogfooding¹⁶ by internal engineers;
• They have extensive real time production monitoring for
faults;

• They release code to a beta site 24 hours before release
where major clients are forced to do QA testing (to avoid
integration problems); and

• They provide channels for ex-employees to report bugs.

What can we learn from this? If you don’t particularly care about
quality, have good production monitoring, and can get internal
engineers and major partners to do your QA then you may be
able to get away with not having a tester on your agile team.

Agile teams definitely need a software
tester

Most agile teams and product companies sooner or later realize
they need a software tester.

Software testers provide a unique questioning perspective which
is critical to finding problems before go-live. Even with solid
automated testing in place: nothing can replicate the human eye
and human judgment.

I’ve noticed that a lot of organizations that typically didn’t have
any software testers have started to hire or dedicate staff as
testers as they begun to see the benefits of testers, or have starting
feeling the pain of their absence.

¹⁶A term which means a company who uses its own products to demonstrate the
quality and capabilities of the product.

Do agile teams even need a software tester? 5

Take 37signals¹⁷, the web development company founded in
1999, who only in 2013 created a dedicated QA role. This news
was fairly well hidden in a 37signals blog post introducing a new
support member:

“You may have noticed a picture of Michael’s new
working environment¹⁸ a few months ago. We re-
cently integrated QA testing into our development
process, with Michael taking the lead. His effort has
prevented potential problems and bugs in every new
feature in Basecamp. Look for more details about
this in the future.”

∼ Joan Stewart, 37signals

Another example of relatively new introduction of testing roles
is the Wikimedia Foundation who only recently hired a tester
(or three) into their organization to take the lead on testing
Wikimedia products including Wikipedia.

If your team is too small to support a full time dedicated tester,
then look for somebody who can do both software testing and
business analysis. That way you still have somebody who can be
responsible for advocating quality, but you don’t have to grow
your team size unnecessarily.

¹⁷http://37signals.com
¹⁸http://37signals.com/svn/posts/3359

http://37signals.com
http://37signals.com/svn/posts/3359
http://37signals.com/svn/posts/3359
http://37signals.com
http://37signals.com/svn/posts/3359

Do agile software testers
need technical skills?

By technical skills I mean things like the ability to:

• read, understand and construct XML;
• read and write SQL scripts to query a
database;

• understand the DOM of a browser;
• understand and construct regular expres-
sions;

• understand basic coding principles and
structures; and

• use version control systems.

Software Testers Need Technical Skills

“Man is a tool-using animal. Without tools he is
nothing, with tools he is all.”

∼ Thomas Carlyle, Sartor Resartus

You’re testing software day in and day out, so it makes sense
to have an idea about the internals of how that software works.

Do agile software testers need technical skills? 7

That requires a deep technical understanding of the application.
The better your understanding of the application is, the better
the bugs you raise will be. If you can understand what a stack
trace is and why it’s happening, the more effective you’ll be
in communicating what has happened and why, which makes
fixing it easier.

“Most good testers have some measure of technical
skill such as system administration, databases, net-
works, etc. that lends itself to gray box testing.”

∼ Elizabeth Hendrickson, Do Testers Have to Write
Code?¹⁹

As you’re testing, you can easily dive into the database and run
some SQL queries to make sure things actually did what they
weremeant to, or discover and test an exposedweb-service using
different combinations as it’ll be quicker than testing the user
interface and provides the same results.

You’ll know IE7 JavaScript quirks and will be able to com-
municate these to a programmer and work on a solution that
gracefully degrades²⁰.

Gone are the days where you’d be emailed a link to a test
environment somewhere that you’ll use to conduct somemanual
testing and provide some feedback. More often than not, you’ll
start by setting up your own integrated development environ-
ment on your own machine so that you can get all the latest

¹⁹http://testobsessed.com/2010/10/testers-code/
²⁰“Graceful degradation means that your Web site continues to operate even when

viewed with less-than-optimal software in which advanced effects don’t work”∼ Peter-
Paul Koch, Fluid Thinking

http://testobsessed.com/2010/10/testers-code/
http://testobsessed.com/2010/10/testers-code/
http://testobsessed.com/2010/10/testers-code/
http://www.digital-web.com/articles/fluid_thinking/

Do agile software testers need technical skills? 8

changes as they’re committed by programmers and find issues
sooner than during a testing phase.

You’ll also probably be asked to build a test environment that
other people can use, and a continuous deployment pipeline to
automatically update that environment when appropriate.

Without technical skills you’re going to struggle with this, as it’s
not just a matter of testing’ the functionality of the application,
but testing the entire system: that it can be built, deployed,
internationalized, scaled etc.

Soon you’ll start coming across other testing challenges such as
how to test internationalization and localization²¹, accessibility²²
and how to locate or generate appropriate test data. This may
involve writing your own SQL scripts that take field labels and
translate them to a test locale²³ to check screens for hard coded
data. Again, these activities require technical skills.

Often programmers will show disdain for testers without any
technical skills as theywon’t understand the technical challenges
a programmer faces, and the timeframes needed to deal with
complex issues. Testers without technical skills may struggle
communicating issues in a technical way to programmers.

The more technical skills you have in your toolbelt, the more
effective you can be as a software tester.

But having strong technical skills and wanting to do nothing but
programming as the sole tester on a small agile team is a recipe

²¹http://watirmelon.com/2013/05/30/internationalization-and-localization-testing/
²²http://watirmelon.com/2013/02/12/automated-local-accessibility-testing-using-

wave-and-webdriver/
²³a test locale is a specific language for testing that the correct elements of your

application have been internationalized appropriately.

http://watirmelon.com/2013/05/30/internationalization-and-localization-testing/
http://watirmelon.com/2013/02/12/automated-local-accessibility-testing-using-wave-and-webdriver/
http://watirmelon.com/2013/05/30/internationalization-and-localization-testing/
http://watirmelon.com/2013/02/12/automated-local-accessibility-testing-using-wave-and-webdriver/
http://watirmelon.com/2013/02/12/automated-local-accessibility-testing-using-wave-and-webdriver/

Do agile software testers need technical skills? 9

for disaster.

Software Testers Don’t Need Technical
Skills

“A particularly terrible idea is to offer testing jobs
to the programmers who apply for jobs at your
company and aren’t good enough to be program-
mers. Testers don’t have to be programmers, but
if you spend long enough acting like a tester is
just an incompetent programmer, eventually you’re
building a team of incompetent programmers, not a
team of competent testers.”

∼ Joel on Software on Testers²⁴

Hiring testers with technical skills over having a testing mindset
is a commonmistake. A tester who primarily spends his/her time
writing automated tests will spend more time getting his/her
own code working instead of testing the functionality that your
customers will use.

In a small agile team of say seven programmers and one tester,
the tester will spend nearly all his/her time conducting ex-
ploratory and story testing so there will be no time to spend as
a tester writing automated tests, it will need to be done by the
programmers as part of developing a story. Hiring a tester who
expects to predominantly write code on a small agile team is a
big mistake.

²⁴http://www.joelonsoftware.com/items/2010/01/26.html

http://www.joelonsoftware.com/items/2010/01/26.html
http://www.joelonsoftware.com/items/2010/01/26.html

Do agile software testers need technical skills? 10

“Since testing can be taught on the job, but general
intelligence can’t, you really need very smart people
as testers, even if they don’t have relevant experi-
ence.”

∼ Joel on Software on Testers²⁵

What technical skills a tester lacks can be made up for with
intelligence and curiosity. Even if a tester has no deep underlying
knowledge of a system, they can still be very effective at finding
bugs through skilled exploratory and story testing. Often non
technical testers have better shoshin²⁶: a lack of preconceptions,
when testing a system. A technical tester may take technical
limitations into consideration but a non technical can be better
at questioning why things are they way they are and rejecting
technical complacency²⁷.

Often non-technical testers will have a better understanding of
the subject matter and be able to communicate with business
representatives more effectively about issues.

You can be very effective as a non-technical tester, but it’s harder
work and you’ll need to develop strong collaboration skills with
the development team to provide support and guidance for more
technical tasks such as automated testing and test data discovery
or creation.

²⁵http://www.joelonsoftware.com/items/2010/01/26.html
²⁶http://en.wikipedia.org/wiki/Shoshin
²⁷This is really what I consider the core role of a tester to be: always questioning

whether the system or functionality does what it actually should do.

http://www.joelonsoftware.com/items/2010/01/26.html
http://en.wikipedia.org/wiki/Shoshin
http://www.joelonsoftware.com/items/2010/01/26.html
http://en.wikipedia.org/wiki/Shoshin

Are software testers the
gatekeepers or guardians
of quality?
Software Testers are the Guardians
and Gatekeepers of Quality

“Quality is value to some person.”

∼ Jerry Weinberg

Working as a sole tester in a small agile team, you are the
guardian of quality. You care about quality and it’s your job to
fight the right fight to ensure it prevails. As Jerry Weinberg said
‘quality is value to some person’ and you need to ensure that
value is realized.

User stories aren’t done until you’ve tested each of them, which
means you get to provide information to the business about each
of them. You define the quality bar and you work closely with
your team and the business representative(s) to strive for it.

You’ll soon realize that’s it’s better to start building quality in
rather than testing it in, so make sure there are clearly defined
acceptance criteria which have beenmarked as completed so that
testing is more focused: efficient and effective. You’ll work with
the programmers to make sure that as many acceptance tests

Are software testers the gatekeepers or guardians of quality? 12

are automated along side the code so that the regression testing
burden is lessened each time a story is delivered.

Whilst the business ultimately wants a great product, you’re
working with the programmers closely in your team to ensure
this happens on a day to day basis. You are the guardian of
quality and they’ll ultimately respect you for making them look
good.

Software Testers aren’t the Guardians
and Gatekeepers of Quality

Whilst you think you may determine the quality of the system,
it’s actually the development team as a whole that does that.
Programmers are the ones whowrite the good/poor quality code.

Whilst you can provide information and suggestions about prob-
lems: the business can and should overrule you: it’s their product
for their business that you’re building: you can’t always get what
you consider to be important as business decisions often trump
technical ones.

You’re not perfect. Everyone is under pressure to deliver and
if you act like an unreasonable gatekeeper of quality, you’ll
quickly gain enemies, whether that be business representatives
or programmers, and people will simply go around or above you.

You can still be an advocate of quality in your teamwithout being
a gatekeeper: you just need to do it in a gentler way.

Should agile testers fix the
bugs they find?

Software testers should fix the bugs
they find

I admit it, I often fix bugs I find. I can’t help it.

After being on a project for a couple of months you start to notice
the same trivial bugs being found again and again. If you know
how to fix it, why not fix it?

An example is a trailing comma in a JavaScript array²⁸, it’ll go
berserk in IE7, and it’s easy enough to fix (remove the trailing
comma) so I’ll just fix it if I find it. Another is an button in IE7
that is meant to submit a form but won’t²⁹. To support IE7 you
need an input type=submit to work. Again, I’ll change it so that
it works.

The benefits are that user stories will move to ‘done’ faster as it
doesn’t require programmer involvement, and it’s less disruptive
to the programmer who will be working on another story and
will need to context-switch.

²⁸http://stackoverflow.com/questions/7246618/trailing-commas-in-javascript
²⁹http://stackoverflow.com/questions/4020187/ie7-button-does-not-submit-form

http://stackoverflow.com/questions/7246618/trailing-commas-in-javascript
http://stackoverflow.com/questions/4020187/ie7-button-does-not-submit-form
http://stackoverflow.com/questions/7246618/trailing-commas-in-javascript
http://stackoverflow.com/questions/4020187/ie7-button-does-not-submit-form

Should agile testers fix the bugs they find? 14

Software testers should not fix the
bugs they find

You’ll often be tempted to do a quick bug fix when you know
why something is broken, but you should avoid it. If you quickly
fix it, the programmer who created the bug doesn’t get the
feedback that they made a mistake, and will repeat the same
mistake over again.

Over time, if the programmers know that you’ll fix bugs, they’ll
naturally start providing you with buggier code as they know
that you’ll just fix it as needed.

Programmers crave feedback, both positive and negative, that’s
why it’s good having a tester on an agile team. But fixing
bugs yourself means there’s less feedback being given, and less
communication happening.

There’s also a small chance that you may introduce some re-
gression bugs when fixing a bug by yourself, but this can be
countered by adding an automated regression test.

Another minor reason is that it may look like you’re not finding
bugs, but this again shouldn’t be reason alone because testers
shouldn’t be measured on how many bugs they find.

Should testers write the
acceptance criteria?

Testers should write the acceptance
criteria

The main benefit of having a tester write acceptance criteria is
that they are more likely to be measurable and testable as whilst
writing them the tester will be asking themselves: how will I be
able to test this?

It also encourages a good working relationship between business
representatives and testers, and programmers and testers, which
can come in very handy when conducting testing if there are
issues with implementation, as they will have the background
knowledge of what was originally required.

Testers will also be able to think of unusual edge cases in the
acceptance criteria which can be considered from the start.

Theremay not be a business analyst on your team and in this case
it makes sense for a tester to take on the responsibility for writing
the acceptance criteria, so that the programmers can focus on
implementing them.

Should testers write the acceptance criteria? 16

Testers shouldn’t write the
acceptance criteria

Testers like to think of how things shouldn’t work more than
how they should work. Sometimes testers will be more pedantic
about the acceptance criteria and can get carried awaywith them
– adding niche edge cases which might not be applicable to the
real world, or just not a priority to the business, who is trying to
get the thing out the door and delivering business value.

More often than not a bandwidth limitation will stop a tester
fromwriting acceptance for user stories. Working as a solo tester
on an agile team, having to bothwrite the acceptance criteria and
test the acceptance criteria, often in multiple browsers and/or
devices, can be a time consuming thing, so in this case it would be
advisable to get someone else to focus on writing the acceptance
criteria so that they can be properly tested.

Software testing as a
career choice

“A career is wonderful, but you can’t curl up with it
on a cold night.”

∼Marilyn Monroe

Is software testing a good
career choice?

Software Testing is the Worst Career
on the Planet

It’s amazing how quickly you tire of testing the same thing over
again in Internet Explorer 7 because the programmers don’t use
Internet Explorer and hadn’t thought to test it in that.

The harder you work at finding bugs the lazier the developers
become at letting them through.

People constantly question you about why you’re still a software
tester and haven’t turned into a programmer yet as though
technical specialism is a natural career progression.

Lots of people call themselves software testers because they’ve
played with software over a couple of years and attended a
testing certification course over a couple of days. You’re grouped
into the same category as those people.

Just when you think you’ve got a user story tested in three
different operating systems, four devices and eight browsers, the
programmer decides to ‘refactor’ their code, or switch to a more
in vogue JavaScript framework, rendering all your testing work
void because every screen you have tested no longer functions.

Is software testing a good career choice? 19

And they expect you to test it by the end of the iteration which
happens to be today.

Despite what iterative development brings testing always gets
squeezed and you’re expected to constantly go above and beyond
to get things done, in minimal time, with an emphasis on high
quality and you’ll often ultimately get the blame when things go
wrong.

Career progression means either becoming a specialist ‘auto-
mated tester’ or a test manager, one involves writing code,
that no one ever sees, the other usually involves writing wordy
template driven test strategies, again, that no one ever sees.

But the absolutel worst thing about being a software tester is the
distrust you develop in software. You constantly see software at
its worst: it’s hard to believe that any software can be developed
that actually works without any issues. This means you hold a
deep breath every time you hit submit on a credit card form,
praying that it will actually work and not crash and charge your
credit card three times.

Software Testing is the Best Career on
the Planet

Some days I am amazed at how much fun my job is. I get to play
with cool gadgets: I have four smart phones and an iPad on my
desk, use three operating systems and eight browsers on a daily
basis.

I get to look at software from all different angles: from a user’s
point of view, from the business/marketing view, from a techni-
cal viewpoint and try all kinds of crazy things on it.

Is software testing a good career choice? 20

I get to really know and understand how a system works from
end-to-end, and get to know its quirks and pitfalls. Finding bugs
prevents them from being released into Production and causing
someone else a great inconvenience.

I develop great relationships with programmers who value the
feedback I give, and business people who I work with to develop
acceptance criteria and discuss issues in business terms and how
they will be effected.

I get to understand code, database schema, servers and browsers.
I am involved in automating acceptance tests. I get to go to
awesome software testing conferences around the world³⁰ to
meet other testers.

I get to tell³¹ my family about all the cool things I’ve tested and
they get excited to occasionally see things I have worked on in
the media etc.

It’s a really cool career.

³⁰http://watirmelon.com/2013/02/18/going-to-gtac-in-nyc/
³¹and show them the cool stuff I have worked on when it is a public facing

application.

http://watirmelon.com/2013/02/18/going-to-gtac-in-nyc/
http://watirmelon.com/2013/02/18/going-to-gtac-in-nyc/

Is it beneficial to attend
software testing
conferences?

You should attend software testing
conferences

Software testing conferences are a fantastic opportunity to meet
other testers in person and discuss challenges you face and come
up with ideas on how to do things better. You may get to know
other testers online and if you get to meet them in person at a
conference it will strengthen your working relationship.

Your employer may have a training budget for each staff mem-
ber, and if you’re a self-motivated learner like me, instead of
using your training budget to attend actual training, or a testing
certification, you can instead use it to attend a software testing
conference where you’ll learn a great deal more real world
knowledge. I use my training budget each year to attend one
overseas conference, so I am selective in which one I attend.

One of the biggest benefits of attending a software testing confer-
ence is realizing that you and your organization are not unique
in the testing problems that you face by hearing from others in
similar situations, and hearing of suggestions to overcome them.

Is it beneficial to attend software testing conferences? 22

You don’t need to attend software
testing conferences

Conferences are expensive to attend as often they’re in a differ-
ent city/country to you and you have to pay for travel and hotel
costs, as well as tickets. It will often mean time off work also,
which can be a challenge to arrange as a contractor, if you’re
casually employed or a consultant working on a client site with
a deadline.

Lots of conferences now stream their talks live for free, and most
speakers publish slides or videos afterwards, so you don’t need to
specifically attend to capture the knowledge the speaker presents,
but dedicating some time to do this is critical, otherwise it’ll just
remain on your to-do list.

A lot of software testing conferences fill slots with ‘serial speak-
ers’ who speak at every conference they can, often with recycled
material that youmay have seen in some form or another at some
point elsewhere. If you read the blog of one of these speakers,
chances are the content of their talk will already be available in
a slightly different form.

The worst part of attending a software testing conference is
having to put up with potential bad behavior of other attendees.
As we all know, people at conferences can be in bad form,
which has led to many conferences now having a explicit code
of conduct³² for attendees, which makes the sensible people feel
like children.

Many conferences are also drinking parties in disguise, so if

³²http://confcodeofconduct.com/

http://confcodeofconduct.com/
http://confcodeofconduct.com/
http://confcodeofconduct.com/

Is it beneficial to attend software testing conferences? 23

you’re a teetotaler like me then you’ll often feel out of place,
and bored, as soon as the partying/drinking begins.

Should testers get a
testing certification?
There are numerous software testing certifications available to
certify the skills of software testers. These typically involve some
training followed by a multiple choice examination.

Some examples are ISTQB³³ and ISEB³⁴

By testing certifications I mean any of these.

So, should testers get a testing certification?

Get a testing certification

Get a testing certification if you feel like getting a testing
certification will be useful.

Don’t get a testing certification

Don’t get a testing certification if you don’t feel like you need a
testing certification.

³³http://www.istqb.org/
³⁴http://certifications.bcs.org/

http://www.istqb.org/
http://certifications.bcs.org/
http://www.istqb.org/
http://certifications.bcs.org/

Defining Acceptance
Criteria for user
stories

“Happiness can exist only in acceptance.”

∼ George Orwell

Should acceptance criteria
be implicit or explicit?

“Understanding is the knowing of misunderstand-
ing”

∼ Zivarnna Smithies

Acceptance criteria should be implicit

All things in life are implicit. When my wife asks ‘can you go to
the shop and get me some milk’, she doesn’t also have to tell me
‘and don’t buy anything else in the store’, ‘and make sure it’s 2
liters of 2% fat pasteurized non-homogenized cow milk’, ‘make
sure it’s refrigerated’ and ‘pay with cash and use our Flybuys
card’. These are implied criteria from our shared understanding.

Acceptance criteria are the same. If I had to explicitly state every
acceptance criterion for every story; writing acceptance criteria
would be a never ending task.

Recently I have, reluctantly, started including acceptance criteria
that really should be implied: ‘page has page title’, ‘page passes
WAVE³⁵ accessibility’ etc. But where do you draw the line? Next
I’ll be writing “works in a web browser”, and “works on the
Internet”.

³⁵http://wave.webaim.org

http://wave.webaim.org
http://wave.webaim.org

Should acceptance criteria be implicit or explicit? 27

Keep acceptance criteria focused on what is required, not what
is obvious.

Acceptance criteria should be explicit

“It pays to be obvious, especially if you have a
reputation for subtlety.”

∼ Isaac Asimov

“The obvious is that which is never seen until some-
one expresses it simply.”

∼ Kahlil Gibran

If you don’t have explicit acceptance criteria then it can be very
hard to determine whether what has been developed is actually
completed.

The more effort you put into writing clear, explicit acceptance
criteria is well rewarded by receiving a story that has all required
functionality included in it. This means less rework because each
time you find an acceptance criterion induced bug it means the
programmer has to context-switch to fix it which is less time
spent working on a new story.

Conducting a user story initiation with the programmer before
development, and a developer-tester dev-box walk-through as
soon as development is finished is a great way to ensure that
the acceptance criteria you have written is explicit, and has been
implemented exactly as intended.

Should acceptance criteria be implicit or explicit? 28

Even though some things are obvious requirements (eg ‘page
passes WAVE³⁶ accessibility’), these are often forgotten so it pays
to have a standard list of common acceptance criteria and include
them on every user story.

³⁶http://wave.webaim.org

http://wave.webaim.org
http://wave.webaim.org

Should your acceptance
criteria be specified as
Given/When/Then or
checklists?

You should specify your acceptance
criteria as Given/When/Then

Given/When/Then is almost a ubiquitous³⁷ way to specify user
scenarios:

1 Given some precondition

2 When I do some action

3 Then I expect some result

If you write your acceptance criteria in this format, it not only
provides a consistent structure, but if your automated acceptance
tests are also specified in the Given/When/Then format then it
makes translation from acceptance criteria to acceptance tests
very efficient.

³⁷This format was first written about by Dan North in 2007, and is sometimes
(incorrectly) referred to as the Gherkin language, which is specific to the Cucumber
software tool.

http://dannorth.net/whats-in-a-story/

Should your acceptance criteria be specified as Given/When/Then or
checklists? 30

Your acceptance criteria are less likely to be nebulous as thought
has gone into making them follow this consistent format with a
precondition, action and expectation.

You should specify your acceptance
criteria as checklists

Having acceptance criteria specified against a user story in
checklist format makes the acceptance criteria clear and concise
as there is nothing more needed. Given/When/Then scenarios
can be verbose and hard to read on a user story card.

It also means these are easy to individually mark as complete by
programmers as they implement the functionality (in a tool such
as Trello³⁸).

But the biggest benefit is that acceptance criteria checklists can’t
be transferred directly from the user story to an automated ac-
ceptance test. This is important because acceptance test features
shouldn’t replicate user stories: a user story is a change to a
system, a feature is a collection of things that it does. So having a
feature for every user story is a disaster, which is more likely to
happen if your acceptance criteria are in the Given/When/Then
format.

Having your acceptance criteria in checklist form also means
there’s some human thought about how to implement an ac-
ceptance test for these. It might be that one acceptance test
scenario covers three acceptance criteria checklist items, which
is how it should be done, not simply a one to one mapping

³⁸http://trello.com

http://trello.com
http://trello.com

Should your acceptance criteria be specified as Given/When/Then or
checklists? 31

which can happen when using Given/When/Then format for
both acceptance criteria and tests.

Are physical or virtual
story walls better?

Physical story walls are better than
virtual story walls

There’s nothing like seeing the status of an iteration using a large
story wall: several columns and colored index cards that move
across as the iteration progresses. Avatars are stuck against cards
as people work on them (which can limit WIP³⁹) and it’s very
easy to see from a glance any bottlenecks as the cards literally
pile up.

The act of moving a physical index card (representing a story)
into the ‘done’ column is refreshing, as is ripping up a card when
it decided that it will provide no value.

You can stick colored sticky notes to each user story in test to
represent bugs which are squashed as they are fixed.

Daily stand ups are held around the story wall, and the physical
story wall can be ‘walked’ during stand up to ensure that
everything is up to date and nothing will be missed.

³⁹http://en.wikipedia.org/wiki/Work_in_process

http://en.wikipedia.org/wiki/Work_in_process
http://en.wikipedia.org/wiki/Work_in_process

Are physical or virtual story walls better? 33

Online story walls are better than
physical story walls

Physical story walls aren’t good for capturing what is actually
required to deliver user stories (writing notes on the back can be
very nebulous and hidden). Online storywalls (such as Trello⁴⁰ or
Mingle⁴¹) are great at both displaying the status of an iteration,
as well as storing details and artifacts about each story. These
include acceptance criteria that can be marked off when done, as
well as a list of bugs against each user story which are marked
off when fixed. Prototype designs can be attached and referred to
by the programmer/designer/tester who is working on the user
story.

If you have remote team members you can’t solely rely on a
physical story wall, and even if you don’t, if team members
choose to work from home (for example – late at night) then
an online story wall makes a lot more sense as it is accessible
from anywhere you have an internet connection.

A large screen 27″ iMac makes a great machine to have located
centrally in your team to display the always on online story wall
for all to see and update, plus you could hold your daily stand
up around it.

⁴⁰http://trello.com
⁴¹http://www.thoughtworks-studios.com/mingle-agile-project-management

http://trello.com
http://www.thoughtworks-studios.com/mingle-agile-project-management
http://trello.com
http://www.thoughtworks-studios.com/mingle-agile-project-management

Testing Techniques

“No one tests the depth of a river with both feet”

∼ African Proverb

Which is better: manual or
automated testing?

Manual Testing is better than
Automated Testing

Manual testing is better than automated testing. Even when
automating a test scenario, you have to manually test it at least
once anyway to automate it, so automated testing can’t be done
without manual testing. And you have to manually check the
automated test results also.

Automated tests can be stopped from working by something as
simple as an unexpected pop-up dialog which can be quickly
analyzed and dismissed when manually testing.

Manual testing is a sapient⁴² activity: one that requires human
judgement. As you are testing you are using implicit knowledge
to judge whether or not something is working as expected. This
enables you to find extra bugs that automated tests would never
find. It also allows you to follow smells you find to explore areas
that may not have been tested or required.

Manual testing is also helpful for finding layout issues and trivial
bugs which wouldn’t be found by an automated test, as you’re
fully observing the application as you’re using it. Usability issues

⁴²http://en.wikipedia.org/wiki/Sapience#Sapience

http://en.wikipedia.org/wiki/Sapience#Sapience
http://en.wikipedia.org/wiki/Sapience#Sapience

Which is better: manual or automated testing? 36

are also identifiable by manual testing but can’t be discovered
through writing and running automated test scripts.

Automated Testing is better than
Manual Testing

Automated testing is better than manual testing. Automated
tests are very explicit (black and white) so you have a much
higher chance of reproducing a bug if found by an automated
test by knowing what the automated test executed to achieve the
result. Because the automated tests are explicit, they also execute
consistently as they don’t get tired and/or lazy like us humans,
as we’re more prone to human error.

Automated tests are quicker to run than manual tests as there’s
no lag time between input and checking, and this means you can
run more tests in more browsers more quickly. Manually testing
the same functionality in, for example, 8 browsers and 4 devices
is tiring, but can easily be achieved with automated tests.

Automated tests also allow you to test things that aren’t manu-
ally possible. For example, answering a question like ‘what if I
had 200 accounts’, or ‘what if I processed ten transactions simul-
taneously’ can only be answered efficiently by using automated
tests.

Can we just test it in
production?
With continuous deployment, it is common to release new
software into production multiple times a day. A regression
test suite, no matter how well designed, may still take over
10 minutes to run, which can lead to bottlenecks in releasing
changes to production.

So, do you even need to test before going live? Why not just test
changes in production?

Test changes in production

The website for The Guardian⁴³, the UK’s third largest newspa-
per, deploys on average 11 times a day, of which all changes are
tested in production.

“Once the code is in production, QA can really start.”

“Sometimes deployments go wrong.We expect that;
and we accept it, because people (and machines) go
wrong. But the key to dealing with these kind of
mistakes is not to lock down the process or extend
the breadth, depth and length of regression tests.

⁴³http://en.wikipedia.org/wiki/The_Guardian

http://en.wikipedia.org/wiki/The_Guardian
http://en.wikipedia.org/wiki/The_Guardian

Can we just test it in production? 38

The solution is to enable people to fix their mistakes
quickly, learn, and get back to creating value as soon
as possible.”

∼ Andy Hume on Real-time QA⁴⁴ at The Guardian
Developer Blog

The key to testing changes as soon as they hit production is to
have real time, continuous real user experience monitoring⁴⁵.
This includes metrics like page views and page load time, which
directly correlate to advertising revenue, an incentive to keep
these healthy.

More comprehensive automated acceptance tests can be writ-
ten in a non-destructive style that means they can be run
in production. This means that these can be run immediately
following a fresh production deployment, and as feedback about
the tests is received, any issues can be remedied immediately into
production and tested again.

This also means you don’t need to own and manage test envi-
ronments which can be costly and time-consuming, especially
if you’re constantly trying to keep them as production like as
possible.

Test changes before production

There are a limited number of businesses that are able to release
software without any form of testing into production: whether

⁴⁴http://www.guardian.co.uk/info/developer-blog/2012/dec/06/real-time-qa-
confident-code

⁴⁵http://en.wikipedia.org/wiki/Real_user_monitoring

http://www.guardian.co.uk/info/developer-blog/2012/dec/06/real-time-qa-confident-code
http://en.wikipedia.org/wiki/Real_user_monitoring
http://www.guardian.co.uk/info/developer-blog/2012/dec/06/real-time-qa-confident-code
http://www.guardian.co.uk/info/developer-blog/2012/dec/06/real-time-qa-confident-code
http://en.wikipedia.org/wiki/Real_user_monitoring

Can we just test it in production? 39

there be legislative requirements requiring testing, or the risk of
introducing errors is too high for its target market.

Whilst automated regression tests do take longer to run than unit
or integration tests, there are ways to manage these to ensure the
quickest path into production. These strategies include running
tests in parallel, only running business critical tests, only running
against the single most popular browser, or only running tests
that are directly related to your changes.

You can set up a deployment pipeline that runs a selected
subset of tests before deploying into production then running
the remaining tests (in a test environment). Any of the issues
found in subsequent tests are judged to see whether they warrant
another immediate release or whether they can be included in
the next set of changes being deployed into production.

Whilst you definitely should run tests before deploying to pro-
duction, it doesn’t mean that this has to drastically hinder your
ability to continuously deploy.

What type of test
environment should we
test in?

Use a local test environment

If you’re working on automated tests as a tester then chances are
you’ve got your application’s code-base checked out and running
locally on your machine.

It’s easy to use this locally running code base to conduct your
story testing. The benefits are that it’ll be very up to date, and as
a programmer commits a change, you can grab the changes and
you’ll be working on a fresh copy.

As part of your testing, you can change what you wish, like
application settings and database configuration to see what
happens as you test without having to worry about impacting
anyone else using the test environment.

You can even fix some bugs as you find them (if you choose to).

This reduces the overheads of having multiple test environments
for story testing, as test environments need to be configured and
managed.

What type of test environment should we test in? 41

Use an integrated test environment

You should always test your user stories in an integrated test
environment: that is, an environment that is centrally managed
and integrated with other systems.

One reason is that when you’re testing; you’re not only testing
your application, but that your application can be deployed and
work in a dedicated environment. This means you’ll find issues
that don’t appear locally – like forgetting to include a file to be
deployed, which will not show when testing locally.

You also test that you can access your application over the net-
work using an external IP address, rather than using localhost,
and iron out any connectivity issues.

You’re also testing how your application performs under more
realistic hardware than on just your development machine.

It’s relatively easy to set up an automated continuous delivery
pipeline to deploy automatically to a test environment so you
can test stories as they are completed by the programmers.

Should you use test
controllers for testing?

A test controller is a way to directly access func-
tionality in your web application without follow-
ing the standard web application flow: for exam-
ple, you may want to directly access the credit
card details screen, so what you do is develop
a ‘credit card details controller’ which sets the
desired state (an order and a customer) and shows
the credit card details screen to you. The test
controller is hit via a test URL which sets the state
and redirects to the appropriate page. These test
controllers are either not deployed to production,
or are disallowed via routing in production

You should use test controllers for
testing

Test controllers make for very efficient and easy to read auto-
mated acceptance tests. Instead of something like:

Should you use test controllers for testing? 43

Given I am on the home page

When I add some products to my basket

And I provide my customer details

And I select express shipping

Then I should see the customer details screen

When I submit an invalid credit card number

Then I should see an error

And the credit card details are empty and need to be \

reentered

This can simply become:

Given I am on the credit card details page

When I submit an invalid credit card number

Then I should see an error

And the credit card details are empty and need to be \

reentered

The Given step simply calls the test controller that sets up
required state and provides the screen. The scenario is focused
on testing one thing and isn’t reliant on a process flow to set up
the state.

Test Controllers also allow you to test something before other
things are developed. For example, in the above case you could
test the credit card details screen even though the shipping
selection page was not developed. As long as the controller sets
things up correctly, it allows you to test stories in isolation
without having dependencies on other user stories, which can
result in a faster team velocity.

Should you use test controllers for testing? 44

You shouldn’t use test controllers for
testing

Test Controllers set up state in your web application, which may
be different to the state set up by using the application itself.
For example, a test controller for credit card details may set the
shippingmethod, but it may set it differently to how the shipping
method screen does it, which results in inconsistent behavior in
your application, and potentially false positives. This leads to
failures where you are not sure whether there is an bug in your
application, or just in the test controller itself.

User’s don’t use test controllers so neither should you. It may be
convenient to jump into testing a certain page but testing is as
much about the journey as the destination, so jumping straight
in may mean you miss important bugs along the way.

Should you use production
data or generate test data
for testing?

You should generate test data for
testing

Generating test data is the only reliable way to accurately run
tests repeatedly and consistently knowing that the input test data
hasn’t changed.

Some applications rely upon specific data which is either hard
to find, or hard to fake. For example, the web application I am
working on displays different promotions based upon which day
of the week you are using the system, and also changes prices
depending on the day of week and time of day.

If you were using production data for testing, you would either
have to run tests at specific dates/times to test different promo-
tions/prices, or you would have to change the server date/time
to test these. Changing the date/time on the server will effect
anyone else using that server, so should be avoided. It also means
that as you run your automated tests continuously against new
check-ins, if you don’t use a known set of generated test data,
you will get different results depending on time of day.

Should you use production data or generate test data for testing? 46

When developing an entirely new feature, there won’t be pro-
duction data that you can use for testing, so you will need to
generate some in this case.

Generating specific test data will often take longer than sourcing
production data, but will retrieve results over time as tests are run
very consistently against a known data set.

You should use production data for
testing

When you’re testing a web application, you’re as much testing
the data as testing the application behavior. Using production
data will ensure that what you are testing will be as close as
possible to the actual behavior once the feature is released to
production users.

If you generate test data and use it to test, who is to say that this
test data is actually valid. If you generate test data through lower
level means (such as SQL insert scripts), you may introduce test
data that isn’t representative of that in production that may
either introduce errors in functionality when actually running
against production data, or errors in test that won’t actually exist
in production. As your database schema updates and evolves,
you will need to also keep your data generation scripts up to
date so they are reflective of production at all times.

If you do use production data, you need to be clever about how
to source data. Querying the database using SQL scripts is an
effective approach as it will enable you to quickly find real
data that you can use to verify a story has been implemented
correctly.

Should you use production data or generate test data for testing? 47

It will also allow you to identify outliers and edge cases that
can be tested using real production data against the system in
development.

If there any privacy concerns about using production data for
testing, these can be mitigated by obfuscating⁴⁶ the data so that
it has no identifying features.

⁴⁶this means to scramble the data which may include randomizing names, or
changing dates of births and addresses etc.

Should you test in old
versions of Internet
Explorer?

Test everything in IE7

IE7 is a bug magnet: seriously, I find more bugs in IE7 than any
other browser. Why? It’s the least forgiving of browsers. If it
works in IE7 it’ll most likely work in a more modern browser.
It’s like a fussy relative: if they like a gift you give them, chances
are your less fussy relatives will also like the same gift.

Even though only 2% of customers use IE7, in a high volume
business such as Amazon or eBay this still equates to millions of
dollars.

It’s very easy to test in IE7. First you’ll need Windows XP:
set up a VirtualBox⁴⁷ Virtual Machine (VM) with Windows XP
installed and immediately disable automatic Windows Updates
(otherwise your IE7 machine will quickly become your IE8
machine).

I recommend using a real IE7 browser over a IE7 mode in IE9 or
IE10. Why? IE7 mode in IE9 or IE10 is a simulator and doesn’t
behave exactly the same as a real IE7 browser.

⁴⁷https://www.virtualbox.org/

https://www.virtualbox.org/
https://www.virtualbox.org/

Should you test in old versions of Internet Explorer? 49

I don’t expect programmers to use Windows XP, so I just add
a “works in IE7 mode” acceptance criteria to every story so
that each programmer will test locally in IE7 mode on their
development machine: this saves me time testing each story.

Don’t test anything in IE7

Many organizations use current production browser statistics to
determine which browsers to support and hence test against.

But you shouldn’t base your browser on current usage: it should
be based upon expected future usage, determined by studying
browser usage trends. Using this method it’s pretty clear that
usage of IE7 is continuing to fall: so why bother testing in it at
all?

Customers who use IE7 are probably the sort of customers who
aren’t going to spend a lot of money on your web application:
otherwise they would’ve got a more modern computer by now.

Besides, using IE7 is a pain. You need a separate VM as you can
only use it on Windows XP. It doesn’t contain any developer
tools and there’s no JavaScript console: particularly handy for
debugging nasty bugs.

Programmers will get annoyed with you when you raise an IE7
bug that doesn’t repro in IE7 mode in IE9 or 10, as they can’t
debug it locally.

Is it worth testing anything in IE7? I say no.

Should you use a tool to
track bugs?

Don’t use a tool to track bugs

When working in a collaborative, co-located agile team working
in a iterative manner, it’s often more efficient to fix bugs as
they’re found than spend time raising them and tracking them
using a bug tracking tool. The time spent to raise and manage a
bug is often higher than actually fixing the bug, so in this case
it’s better avoided.

Most testers aren’t comfortable with this approach, initially at
least, because it may look like they’re not raising bugs. But a
tester should never be measured on how many bugs they
have raised. Doing so encourages testers to game the system
by raising insignificant bugs and splitting bugs which is a
waste of everyone’s time. And this further widens the tester vs
programmer divide.

Once a tester realizes their job isn’t to record bugs but instead
deliver bug free stories: they will be a lot more comfortable
not raising and tracking bugs. The only true measurement of
the quality of testing performed is bugs missed, which aren’t
recorded anyway.

One approach I have taken is to simply record bugs on sticky
notes or index cards stuck to the team’s story wall. This is a

Should you use a tool to track bugs? 51

lightweight approach as the only time taken is to write the sticky
note and once resolved, it can be scrunched into a ball: a symbolic
act of squashing the bug.

Use a tool to track bugs

“What’s measured improves”

∼ Peter Drucker

If you’ve got remote team members, you can’t really avoid
using a tool to track bugs. It ensures you’re communicating and
tracking the progress effectively across geographic borders.

Without some form of bug tracking tool in place on your project,
it’s difficult to keep a historical track of bugs and how they are
resolved. Without this, it may lead to some of the nastiest bugs
reappearing: I call these cane toads.

Should you use a tool to track bugs? 52

If you weren’t aware, cane toads⁴⁸ are a highly invasive species
of toad in Australia that were introduced to control native cane
beetles, but have ended up threatening natural wildlife. They
have two notable characteristics:

1. They secrete toxic poison affecting their surroundings; and
2. They have an uncanny ability to survive even the harshest

of conditions (here in Queensland there are competitions
to kill cane toads but they’re amazingly hard to kill: just
when you think you’re done with one it’ll bounce back to
life).

⁴⁸http://en.wikipedia.org/wiki/Cane_toads_in_Australia

http://en.wikipedia.org/wiki/Cane_toads_in_Australia
http://en.wikipedia.org/wiki/Cane_toads_in_Australia

Should you use a tool to track bugs? 53

Therefore, I see a cane toad on a software project as an issue that:

1. Causes other issues by secreting toxic poison; and/or
2. Seems to come back to life even though you’re sure you’ve

already killed and buried it before.

Without tracking these cane toads, and how you killed/fixed
them, you’ll see these reemerge. You can easily look up when
it last happened, what you did then, and why it shouldn’t be
happening again.

This is also why it’s really important to have automated regres-
sion tests.

You must keep bug tracking tools as lightweight as possible.
These should allow rapid recording and resolution of bugs. Avoid
the temptation to introduce ‘defect workflow’ of any description:
empower people to do the right thing in regards to tracking and
resolving bugs, don’t make it harder than it should be.

An even better approach is to incorporate bug tracking into your
existing user story tracking tool. Trello⁴⁹ allows checklists on user
story cards: these are a great way to track bugs in a lightweight,
flexible manner.

⁴⁹http://trello.com

http://trello.com
http://trello.com

Should you use a tool to track bugs? 54

Trello Bug Tracking

Should you raise trivial
bugs?

You should raise trivial bugs

Some of the world’s best companies have become that way
through attention to detail.

There are lots of famous stories about Steve Jobs when he was in
charge of Apple about his pedantic nature. For example, how he
would debate for half an hour about the shade of grey⁵⁰ for the
bathroom signs in Apple Stores.

Another example is how he rang Google’s Vic Gundotra⁵¹ at
home early on Sunday morning to let him know the shade of
yellow of Google’s logo was wrong on the iPhone but Steve had
put an Apple engineer immediately on it.

All seemingly trivial things add together to create a broader
perception of a company to consumers.

Raising trivial bugs is paying close attention to detail. Whilst
customers might not notice something so little that is wrong;
from little things big things grow.

⁵⁰http://au.businessinsider.com/steve-jobs-attention-to-detail-2011-10?op=1#he-
agonized-over-the-way-the-title-bars-at-the-top-of-files-and-windows-looked-1

⁵¹http://www.macrumors.com/2011/08/25/steve-jobs-called-googles-vic-gundotra-
on-a-sunday-about-this-icon/

http://au.businessinsider.com/steve-jobs-attention-to-detail-2011-10?op=1#he-agonized-over-the-way-the-title-bars-at-the-top-of-files-and-windows-looked-1
http://www.macrumors.com/2011/08/25/steve-jobs-called-googles-vic-gundotra-on-a-sunday-about-this-icon/
http://au.businessinsider.com/steve-jobs-attention-to-detail-2011-10?op=1#he-agonized-over-the-way-the-title-bars-at-the-top-of-files-and-windows-looked-1
http://au.businessinsider.com/steve-jobs-attention-to-detail-2011-10?op=1#he-agonized-over-the-way-the-title-bars-at-the-top-of-files-and-windows-looked-1
http://www.macrumors.com/2011/08/25/steve-jobs-called-googles-vic-gundotra-on-a-sunday-about-this-icon/
http://www.macrumors.com/2011/08/25/steve-jobs-called-googles-vic-gundotra-on-a-sunday-about-this-icon/

Should you raise trivial bugs? 56

You should raise trivial bugs even if you choose not to fix them,
that way you can keep a list of known bugs you will release into
production should you choose to fix them one day.

You shouldn’t raise trivial bugs

The problem with raising trivial bugs is that it slows your ve-
locity and takes focus away from other things: namely building
new functionality to release to customers.

“You heard me right: An obsessive focus on quality
can be a bad thing.”

∼ Jason Fried on the importance of quick and dirty⁵²

If you focused your effort on fixing 100% of every issue ever
identified with your application you will never actually ship the
thing but continually try to perfect it. Fixing a trivial bug may
then further highlight other trivial bugs and so the cycle begins.

By the time you release your application, a trivial bug may not
even matter that much as it may be on a feature that won’t even
be used: but you can only find out this by releasing your product
into production: trivial bugs and all.

⁵²http://www.inc.com/magazine/201305/jason-fried/the-importance-of-quick-and-
dirty.html

http://www.inc.com/magazine/201305/jason-fried/the-importance-of-quick-and-dirty.html
http://www.inc.com/magazine/201305/jason-fried/the-importance-of-quick-and-dirty.html
http://www.inc.com/magazine/201305/jason-fried/the-importance-of-quick-and-dirty.html

Should you involve real
users in testing?

Yes, involve real users in testing

Unless you involve real users you risk releasing something into
production that is not user friendly. User testing doesn’t need
to be expensive; you can conduct it in house with a focus
on simplicity by reading Steve Krugg’s excellent how-to guide
Rocket Surgery Made Easy⁵³.

The caveat is that you need to conduct user testing as earlier as
possible: there is no point doing user testing if it doesn’t result in
useful change, and the earlier you do it the more likely you are
able to change.

You don’t even need to have high-fidelity screens to conduct
user testing: low fidelity screens are often enough to get critical
usability and concept feedback from real users.

No, don’t involve real users in testing

The problem with involving real users in testing is the risk that
your organizationwill use this as an opportunity to listen towhat
users want.

⁵³http://www.sensible.com/rsme.html

http://www.sensible.com/rsme.html
http://www.sensible.com/rsme.html

Should you involve real users in testing? 58

Listening to what users want is dangerous. This is because
users think of things in incremental rather than revolutionary
terms. Users don’t know how to ask for something they’ve
never conceived of. Listening to feedback from users is going to
yield incremental improvements (‘make that button green’), but
this does in no way correlate to releasing something that users
actually want.

In my pre-MP3 university days, I had a very large collection
of audio CDs. I worked hard in a casual job and saved up and
bought a Pioneer 25 CD stacker: it was amazing, I could listen to
25 CDs on shuffle! If I was asked what could have made listening
to music better I would have said a 100 CD stacker: I could store
four times as many CDs! A few years later Apple released a
new thing called an iPod, a small pocket sized device capable
of holding 1000 albums. If Apple had listened to users like me
they would have built a faster, larger, better CD player. Instead
they designed something I had no capability of thinking could
even exist, I was thinking incrementally, Apple were thinking
revolutionary.

You are better off understanding what users motivations are and
then building something to satisfy that than involving them in
user testing.

Automated
Acceptance Testing

“As machines become more and more efficient and
perfect, so it will become clear that imperfection is
the greatness of man.”

∼ Ernst Fischer

Do you need an
automated acceptance
testing framework?

Yes, you need an automated
acceptance testing framework

If you’re starting off with automated acceptance testing and you
don’t have some kind of framework, eg, page object models, in
place then you can quickly develop a mess. If your automated
acceptance tests are being written by various people on your
project, then having a framework in place that people can follow
will make for the most consistent approach.

There are certain operations that you can abstract to a base
page class to ensure consistency across pages, and you can write
helper methods for automated test drivers so that the same
functionality is being repeated across your code base.

Without some kind of framework in place you’re likely to have
various approaches implemented which will eventually cause a
maintenance overhead as your automated test suite expands.

Do you need an automated acceptance testing framework? 61

No, you don’t need an automated
acceptance testing framework

There’s an old saying in extreme programming: YAGNI⁵⁴: you
ain’t gonna need it, which means a programmer shouldn’t add
functionality until absolutely necessary.

An automated acceptance testing framework violates this prin-
ciple, there is a strong risk of developing functionality in your
framework which you ain’t gonna need.

Over-engineered automated acceptance test frameworks are harm-
ful for a team as they dictate certain ways of doing things which
means the team can be less efficient in developing what they
need to deliver.

Developing a framework before any functionality is delivered
is particularly inefficient, as it is not until you start using a
framework you will understand what you require it to do and
what it shouldn’t do.

Pair programming on the automated acceptance tests can ensure
a consistent approach is taken to development and knowledge
across functional areas is shared.

⁵⁴http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it
http://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it

Who should write your
automated acceptance
tests?

Programmers should write your
automated acceptance tests

If you’re a solo tester in an agile team, like me, you really have
no choice but to have the programmers take responsibility for
writing and maintaining automated acceptance tests. You’ll be
so busy with acceptance criteria, story and exploratory testing,
you just won’t have time.

The benefits of having the programmers in your team writing
and maintaining these tests is that they will be maintained and
executed as soon as any change occurs, so they’ll be kept more
up to date and less likely to go stale. They’ll also be more useful
in providing fast feedback to a programmer working on a change
to a specific screen as the programmer can run the relevant
acceptance tests, make a change and then ensure the acceptance
tests still pass. If a tester were responsible for the automated
acceptance tests, there is a lag between updating your application
and your tests, which, if not properly managed, can lead of many
tests repeatedly failing and spurious test results.

There will also be less tester vs programmer conflict as the

Who should write your automated acceptance tests? 63

programmers will be able to identify regression bugs as they’re
created.

Programmers will have a better understanding of the architec-
ture of your application and will be able to build testability
features in so that the automated acceptance tests are more
efficient and reliable.

Testers should write your automated
acceptance tests

Software testers are particularly good at building automated
acceptance tests that cover an end-to-end process in the system;
often called user journeys. This is because they have a good
understanding of the journey whereas a programmer may only
understand the logic behind a particular screen. Testers should
be involved in writing this style of acceptance tests so they are
representative of real usage.

Some software testers are particularly good at knowing how to
automate a web browser. Understanding how browsers work
from an automation perspective is a highly developed skill that
many testers have and having this skill leads to a more resilient
automated acceptance test suite that wait for enough, but not too
much, time for elements to appear and update.

Software testers are also very good at interpreting automated
acceptance test results and investigating whether a bug exists or
whether the tests need updating. If the tester is doing this work,
then it makes sense for them to update the automated acceptance
tests as needed.

What language should you
use for your automated
acceptance tests?

Use the programmer’s language for
your automated acceptance tests

Automated acceptance tests shouldn’t be developed in isolation,
so having these written in the same language as your application
(usually C# or Java) will ensure that the programmers are fully
engaged and will maximize the liklihood of having these tests
maintained alongside your application code.

Even if the software testers are responsible for writing and
maintaining the automated acceptance tests, having them in
the same language the programmers use will mean that the
programmers can provide support for any issues the testers have,
and are more likely to collaborate with the testers on these. The
testers also pick up knowledge of the language used for the core
application which means they are more likely to be able to fix
bugs that they find.

Strongly typed languages, like C# or Java, may at first seem
daunting to software testers, because they’re more verbose than
dynamic languages, but they are actually surprisingly easy to
learn due to the excellent support provided by IDEs such as

What language should you use for your automated acceptance tests? 65

Visual Studio⁵⁵ or IntelliJIDEA⁵⁶.

Let the testers choose a language for
your automated acceptance tests

If your software testers are responsible for writing andmaintain-
ing your automated acceptance tests then it makes sense to allow
the testers to write these in whatever language they choose.

Dynamic scripting languages like Ruby⁵⁷ and Python⁵⁸ are par-
ticularly popular with testers as they are lightweight to install
and easy to learn with an interactive prompt such as Interactive
RuBy Shell (IRB)⁵⁹.

The benefit of a tester choosing a dynamic language like Ruby
is that there are no licensing costs (unlike C# which requires
Microsoft Visual Studio) and that means all testers have uncon-
strained access to these, as well as an unlimited number of build
agents to run these tests as part of continuous integration.

As testers develop their skills in these languages they can quickly
create throwaway scripts to perform repetitive setup tasks re-
quired for their story or exploratory testing: such as creating
multiple records or rebuilding a database.

⁵⁵http://www.microsoft.com/visualstudio/eng
⁵⁶http://www.jetbrains.com/idea/
⁵⁷http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
⁵⁸http://en.wikipedia.org/wiki/Python_%28programming_language%29
⁵⁹http://en.wikipedia.org/wiki/Interactive_Ruby_Shell

http://www.microsoft.com/visualstudio/eng
http://www.jetbrains.com/idea/
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Interactive_Ruby_Shell
http://en.wikipedia.org/wiki/Interactive_Ruby_Shell
http://www.microsoft.com/visualstudio/eng
http://www.jetbrains.com/idea/
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Interactive_Ruby_Shell

Should you use the
Given/When/Then format
to specify automated
acceptance tests?

You should use Given/When/Then
scenarios to specify automated
acceptance tests

The Given/When/Then format provides a high level domain
specific language to specify the intention of automated accep-
tance tests separate to the implementation of your automated
acceptance tests. This separation allows changing the test imple-
mentation method (eg. moving from testing the UI to testing a
service) without changing the intention of the test and how it is
written.

There are tools in nearly every programming language that
allow you to specify tests this way: for example, Cucumber⁶⁰,
SpecFlow⁶¹ and JBehave⁶² all use this format, and this format
has become quite ubiquitous in automating acceptance tests.

⁶⁰http://cukes.info
⁶¹http://www.specflow.org/specflownew/
⁶²http://jbehave.org/

http://cukes.info
http://www.specflow.org/specflownew/
http://jbehave.org/
http://cukes.info
http://www.specflow.org/specflownew/
http://jbehave.org/

Should you use the Given/When/Then format to specify automated
acceptance tests? 67

If the acceptance criteria on your user stories are specified in the
Given/When/Then format then these are very easily transferred
from a user story to an automated acceptance test.

You don’t need the Given/When/Then
format to specify automated
acceptance tests

Writing automated tests in the Given/When/Then format creates
an overhead ofmaintaining a collection of step definitions so that
the plain language specifications are machine executable.

One of the biggest selling points of writing automated acceptance
tests in the Given/When/Then format is that they are readable by
non-technical members of your business. But in reality, business
will seldom, if ever, read your Given/When/Then specifications,
so it makes no sense to invest in the overhead required to
implement these tests if they provide no extra communication
benefit.

You are better off spending this effort on collaborating on non-
executable story acceptance criteria that is fully understood
between the business and your development team. These can
be implemented however the team choose to do so without
considering the need for business to access these.

Other domain specific frameworks such as RSpec⁶³ allow read-
able automated test specifications without the overhead asso-
ciated with implementing the Given/When/Then format, and

⁶³http://rspec.info/

http://rspec.info/
http://rspec.info/

Should you use the Given/When/Then format to specify automated
acceptance tests? 68

these frameworks are often a better choice than aGiven/When/Then
based one when it is not needed.

Should your element
selectors be text or value
based?
When writing automated acceptance tests for a web application,
there are a couple of different ways of identifying and interacting
with web elements, two of the most common are using strings
or values.

Take this simple select list of tea:

1 <html>

2 <select id="tea">

3 <option value="bop">Broken Orange Pekoe</option>

4 <option value="eg">Earl Grey</option>

5 <option value="eb">English Breakfast</option>

6 <option value="darl">Darjeeling</option>

7 </select>

8 </html>

This renders as:

Should your element selectors be text or value based? 70

Select List Rendered

There are two ways to automate choosing something from this
select list: by string, like “Broken Orange Pekoe” or by value, like
‘bop’.

Use strings to interact with elements

The benefit of using strings to identify and interact with elements
is that it’s how a user uses your web application: a user will
select “Darjeeling” from your drop down so why shouldn’t your
automated tests do the same.

If your web application is internationalized and you wish to run
your automated tests in a different locale, you will also need to
translate your selection as this will change with your locale that
you set.

Modern JavaScript frameworks like Knockout⁶⁴ often don’t gen-
erate values for select lists, so in this case you need to use strings
to interact

⁶⁴http://knockoutjs.com/

http://knockoutjs.com/
http://knockoutjs.com/

Should your element selectors be text or value based? 71

Use values to interact with elements

The benefit of using values to interact with elements is that
values are the most resilient to change. For example, if “Earl
Grey” was changed to “Earl Gray” and you are automating based
upon value, then your automated acceptance tests will continue
to work as they will use the value ‘eg’.

This is also the best option if your web application is interna-
tionalized and you run your automated acceptance tests against
a different locale: whilst “English Breakfast” may display “Petit
Déjeuner Anglais” in French, it’ll still happily be selected by
using the value ‘eb’.

Three
non-contradictions

There’s a few things I believe you can’t contradict.

You can only grow by changing your
mind

“I would never die for my beliefs because I might be
wrong.”

∼ Bertrand Russell

“Thosewho cannot change theirminds cannot change
anything.”

∼ George Bernard Shaw

“Themeasure of intelligence is the ability to change.

∼ Albert Einstein

73

I used to believe that changing yourmindwas a sign ofweakness,
inconsistency; after all we’re trained to hunt down inconsisten-
cies as testers.

I now believe it’s not only healthy to change your mind⁶⁵, but
you can only grow as a person by changing your mind. Society
is not accepting of this and the value of it is often overlooked.

What do you want to change your mind about today?

Everything is contextual

“Taken out of context I must seem so strange.”

∼ Ani Defranco

Everything in life is contextual. What is okay in one context,
makes no sense in another. I can swear to my mates, but never
my Mum. Realizing the value of context will get you a long way.

You can always choose your reaction

“Life is 10% what happens to you and 90% how you
react to it.”

∼ Charles R. Swindoll

Probably the best thing I have ever learned in life is that no
matter what life throws at you, no matter what people do to you

⁶⁵I gave a lightning talk at the Test Automation Bazaar in Austin, Texas in 2012 titled
‘I used to believe in the tooth fairy’ that is about this topic.

http://watirmelon.com/2012/07/31/i-used-to-believe-in-the-tooth-fairy/

74

or how they treat you, the only thing you can truly control is
your response.

Once you understand that you are capable of controlling your
destiny by choosing your reaction, it will set you free.

“Today you are You, that is truer than true. There is
no one alive who is Youer than You.”

∼ Dr. Seuss

All the best, may you wear your paradev title with pride.

Alister Scott

June 2013

	Table of Contents
	Acknowledgments
	About this book
	Before we start: what's a paradev?
	All about agile software development
	A typical agile software development process
	A collection of software testing contradictions
	Your role as an agile software tester
	Do agile teams even need a software tester?
	Do agile software testers need technical skills?
	Are software testers the gatekeepers or guardians of quality?
	Should agile testers fix the bugs they find?
	Should testers write the acceptance criteria?

	Software testing as a career choice
	Is software testing a good career choice?
	Is it beneficial to attend software testing conferences?
	Should testers get a testing certification?

	Defining Acceptance Criteria for user stories
	Should acceptance criteria be implicit or explicit?
	Should your acceptance criteria be specified as Given/When/Then or checklists?
	Are physical or virtual story walls better?

	Testing Techniques
	Which is better: manual or automated testing?
	Can we just test it in production?
	What type of test environment should we test in?
	Should you use test controllers for testing?
	Should you use production data or generate test data for testing?
	Should you test in old versions of Internet Explorer?
	Should you use a tool to track bugs?
	Should you raise trivial bugs?
	Should you involve real users in testing?

	Automated Acceptance Testing
	Do you need an automated acceptance testing framework?
	Who should write your automated acceptance tests?
	What language should you use for your automated acceptance tests?
	Should you use the Given/When/Then format to specify automated acceptance tests?
	Should your element selectors be text or value based?

	Three non-contradictions

