
Recurrent Neural Networks
Edited by Xiaolin Hu and P. Balasubramaniam

Edited by Xiaolin Hu and P. Balasubramaniam

The concept of neural network originated from neuroscience, and one of its primitive
aims is to help us understand the principle of the central nerve system and related

behaviors through mathematical modeling. The first part of the book is a collection of
three contributions dedicated to this aim. The second part of the book consists of seven

chapters, all of which are about system identification and control. The third part of
the book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are
discussed, respectively.The fourth part of the book comprises four chapters focusing

on optimization problems. Doing optimization in a way like the central nerve systems
of advanced animals including humans is promising from some viewpoints.

Photo by Rost-9D / iStock

ISBN 978-953-7619-08-4

Recurrent N
eural N

etw
orks

Recurrent Neural Networks

Edited by

Xiaolin Hu and P. Balasubramaniam

I-Tech

Recurrent Neural Networks

Edited by

Xiaolin Hu and P. Balasubramaniam

I-Tech

Recurrent Neural Networks
http://dx.doi.org/10.5772/68
Edited by Xiaolin Hu and P. Balasubramaniam

© The Editor(s) and the Author(s) 2008
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2008 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Recurrent Neural Networks
Edited by Xiaolin Hu and P. Balasubramaniam

p. cm.

ISBN 978-953-7619-08-4

eBook (PDF) ISBN 978-953-51-5795-3

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,400+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

118,000+
International authors and editors

130M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Preface

The research of neural networks has experienced several ups and downs in the 20th
century. The last resurgence is believed to be initiated by several seminal works of Hopfield
and Tank in the 1980s, and this upsurge has persisted for three decades. The Hopfield
neural networks, either discrete type or continuous type, are actually recurrent neural
networks (RNNs). The hallmark of an RNN, in contrast to feedforward neural networks, is
the existence of connections from posterior layer(s) to anterior layer(s) or connections
among neurons in the same layer. Because of these connections, the networks become
dynamic systems, which bring many promising capabilities that the feedforward
counterparts do not possess. One of the obvious capabilities of RNNs is that they can handle
temporal information directly and naturally, whereas feedforward networks have to convert
the patterns from temporal domain into spatial domain first for further processing. Other
two distinguished capabilities possessed by RNNs refer to associative memory and
optimization, which were initially revealed by Hopfield and Tank.

The field of RNNs has evolved rapidly in recent years. It has become a fusion of a
number of research areas in engineering, computer science, mathematics, artificial
intelligence, operations research, systems theory, biology, and neuroscience. RNNs have
been widely applied for control, optimization, pattern recognition, image processing, signal
processing, etc. The aim of the book is to bring together reputable researchers from different
countries in order to provide a comprehensive coverage of advanced and modern topics in
RNNs not yet reflected by other books. This collective product comprises 18 contributions
submitted by 51 authors from 16 different countries and areas. It covers most of the current
main streams of RNN researches, ranging from human cognitive behavior modeling,
dynamic system identification and control, temporal pattern recognition and classification,
optimization, and stability analysis. According to these themes, the 18 contributions are
grouped into five categories, corresponding to five parts of the book.

The concept of neural network originated from neuroscience, and one of its primitive
aims is to help us understand the principle of the central nerve system and related behaviors
through mathematical modeling. The first part of the book is a collection of three
contributions dedicated to this aim. Both Chapter 1 and Chapter 2 address neurodynamics
in RNNs that are used to model cognitive processes. It is well-known that nonlinear
dynamic systems may possess a variety of properties such as attractors, bifurcations, chaos,
etc., which are useful in different circumstances. For modeling continuous thread of natural
behaviors of humans, a neural system converging to a small region of the state space such as
equilibria or limit circles appears not to be competent, though such a property is desirable in
other situations (e.g., see Chapters 13-16). In Chapter 1, adaptive thresholds are proposed to
model neural homeostasis into the basic formulation of RNN to produce chaotic behavior,
which can be used as a source of behavioral exploration and novelty in embodied neural
agents. To understand how the brain controls the human movements, Chapter 2 presents a
dynamic recurrent neural network modeling approach. In contrast to Chapter 1, this chapter
deals with more practical and concrete problems: oculomotor and arm movements. Chapter

Preface

The research of neural networks has experienced several ups and downs in the 20th
century. The last resurgence is believed to be initiated by several seminal works of Hopfield
and Tank in the 1980s, and this upsurge has persisted for three decades. The Hopfield
neural networks, either discrete type or continuous type, are actually recurrent neural
networks (RNNs). The hallmark of an RNN, in contrast to feedforward neural networks, is
the existence of connections from posterior layer(s) to anterior layer(s) or connections
among neurons in the same layer. Because of these connections, the networks become
dynamic systems, which bring many promising capabilities that the feedforward
counterparts do not possess. One of the obvious capabilities of RNNs is that they can handle
temporal information directly and naturally, whereas feedforward networks have to convert
the patterns from temporal domain into spatial domain first for further processing. Other
two distinguished capabilities possessed by RNNs refer to associative memory and
optimization, which were initially revealed by Hopfield and Tank.

The field of RNNs has evolved rapidly in recent years. It has become a fusion of a
number of research areas in engineering, computer science, mathematics, artificial
intelligence, operations research, systems theory, biology, and neuroscience. RNNs have
been widely applied for control, optimization, pattern recognition, image processing, signal
processing, etc. The aim of the book is to bring together reputable researchers from different
countries in order to provide a comprehensive coverage of advanced and modern topics in
RNNs not yet reflected by other books. This collective product comprises 18 contributions
submitted by 51 authors from 16 different countries and areas. It covers most of the current
main streams of RNN researches, ranging from human cognitive behavior modeling,
dynamic system identification and control, temporal pattern recognition and classification,
optimization, and stability analysis. According to these themes, the 18 contributions are
grouped into five categories, corresponding to five parts of the book.

The concept of neural network originated from neuroscience, and one of its primitive
aims is to help us understand the principle of the central nerve system and related behaviors
through mathematical modeling. The first part of the book is a collection of three
contributions dedicated to this aim. Both Chapter 1 and Chapter 2 address neurodynamics
in RNNs that are used to model cognitive processes. It is well-known that nonlinear
dynamic systems may possess a variety of properties such as attractors, bifurcations, chaos,
etc., which are useful in different circumstances. For modeling continuous thread of natural
behaviors of humans, a neural system converging to a small region of the state space such as
equilibria or limit circles appears not to be competent, though such a property is desirable in
other situations (e.g., see Chapters 13-16). In Chapter 1, adaptive thresholds are proposed to
model neural homeostasis into the basic formulation of RNN to produce chaotic behavior,
which can be used as a source of behavioral exploration and novelty in embodied neural
agents. To understand how the brain controls the human movements, Chapter 2 presents a
dynamic recurrent neural network modeling approach. In contrast to Chapter 1, this chapter
deals with more practical and concrete problems: oculomotor and arm movements. Chapter

VIII

3 attempts to construct RNNs to learn languages. It might be thought that RNNs are suitable
for such a task considering that a sentence is a sequence of words and RNNs are good at
learning sequences. However, things are often not as easy as they look to be. For instance,
the linguistic productivity, a key property of any natural language, is notoriously hard to
tackle. In the chapter, the authors discuss the modeling of two features of languages that
support linguistic productivity, recursiveness and systamaticity, by means of RNNs.
Though building an intelligent agent capable of learning natural languages still seems to be
a far away goal, we have at least opened a door with the RNN key allowing further
exploration.

The second part of the book consists of seven chapters, all of which are about system
identification and control. The success of these approaches largely relies on the RNN’s
ability of recalling history and predicting future. Chapter 4 proposes a new Kalman filter
closed loop topology of RNN for identification and modeling of an unknown hydrocarbon
degradation process carried out in a biopile system and a rotating drum. Then, an indirect
sliding mode controller and a direct recurrent feedback-feedforward neural controller are
designed. In Chapter 5, a neural controller is proposed to approximate an ideal tracking
controller, which is capable of both structure learning and parameter learning. Based on
that, a robust controller is designed to attenuate the effects of the approximation error on the
tracking performance. Fuzzy logic is an efficient method to process imprecise, uncertain and
noisy information, which is often encountered in the real world. Integrating fuzzy logic and
neural networks may foster powerful schemes that combine their respective advantages.
Chapter 6 and Chapter 7 provide two examples. The major difference between them is that
the former adopts the conventional fuzzy logic system while the latter adopts an extended
version, so-called type-2 fuzzy logic system. Chapter 8 presents an adaptive recurrent neural
network controller to prevent rollover in heavy vehicles. The control scheme is composed of
a recurrent neural identifier and a controller, where the former is used to build an on-line
model for the unknown plant, and the latter to force the unknown plant to track the
reference trajectory. For a training algorithm, the stability and convergence speed are two
major indicators of performance evaluation, but they are often like two sides of a coin and
can not be reconciled. Chapter 9 attempts to seek a tradeoff between them by introducing a
robust adaptive gradient descent training algorithm. The proposed algorithm is applied to
three quite practical problems including time series prediction, system identification, and
attractor learning for pattern association. Good results have been obtained. Chapter 10
introduces a deterministic linearized RNN and its application to rainfall-runoff processes.
One of the remarkable merits of the proposed RNN is that, its special structure allows a
direct interpretation of the network weights in the language of hydrology, considering that
most other neural networks are black-box models that lack physical meaning of weights.

The third part of the book is composed of Chapter 11 and Chapter 12, where two
interesting RNNs are discussed, respectively. One is called Elman RNN, which is in
principle a regular feedforward network but with a hidden layer holding the output of
another hidden layer. The other is called locally recurrent probabilistic neural network
(LRPNN) coupling with swarm intelligence algorithms and concepts. The two networks also
take advantage of RNN’s ability of processing temporal information, similar as the networks
presented in the previous parts of the book. However, here the networks are used for
(temporal) pattern classification and recognition instead of system parameter identification
or system behavior prediction. Specifically, Chapter 11 presents applications of the Elman

 VII

RNN in biomedical engineering and nuclear engineering, and Chapter 12 presents
applications of the LRPNN in speech recognition and classification.

The fourth part of the book comprises four chapters focusing on optimization problems.
Doing optimization in a way like the central nerve systems of advanced animals including
humans is promising from some viewpoints. On one hand, it may help us understand more
about the working principle of nerve systems, and on the other hand, the inherent dynamics
of resulting RNNs makes it possible for analog circuit implementation, which would
tremendously accelerate the computing tasks, which is favored in many engineering
applications. Chapter 13 proposes a general framework for solving various optimization
problems including combinatorial optimization problems, linear programming problems
and nonlinear programming problems, by using RNNs. For every problem, two energy
functions associated with the objective function and constraints are separately defined and
minimized by modified Hopfield-type neural networks. The simulation results are given to
demonstrate the effectiveness of the proposed method among the specialized methods. The
latter two chapters achieve this desirable feature by making use of optimality conditions
such as primal-dual conditions or Karush-Kuhn-Tucker conditions. In particular, Chapter 14
describes several RNN models for linear programming problems, quadratic programming
problems, nonlinear programming problems, and variational inequalities. As all of the
optimization problems considered in the chapter are convex, and variational inequalities are
monotone, it is possible to devise globally convergent RNNs for solving them, which is
actually the case for the models presented in this chapter. However, the situation gets
complicated when the problems become nonconvex or nonmonotone. In this aspect,
progresses made in recent years have been reviewed in Chapter 15. It is found that based on
similar ideas one could at best devise locally stable and convergent RNNs for most of such
problems, though in some particular cases globally convergent models can be needed. The
results are obtained without using the penalty parameters. Chapter 16 presents an
interesting application of an RNN for optimization. It is found that under certain conditions,
the optimal control of a dynamic system can be transformed into a linear programming
problem. An annealing RNN is then applied to solve the problem. As this problem is not
specific for the proposed network; it can also be tested to other RNNs in the literature.

The last part of the book consists of two chapters, and each presents stability analysis of
a variant of the original Hopfield continuous-time neural network. Chapter 17 considers a
class of uncertain stochastic high-order neural networks with time varying delays. Based on
the Lyapunov stability theory, some new global asymptotic stability criteria are obtained.
Chapter 18 considers a discrete-time Hopfield-type neural network with delays. A complete
bifurcation analysis is presented for the two neurons case, uncovering the structure of the
stability domain of the null solution, as well as the types of bifurcations occurring at its
boundary.

As mentioned in the beginning, RNN has a rather broad coverage of applications and
we admit there must be some topics that the book does not address. One of the missing
topics refers to associative memory, an important capability of RNNs, though there is a case
study in Chapter 9. Anyway, this collective product complements other salient books in the
same line.

We would like to express our sincere gratitude to all chapter authors for the time and
effort they generously gave to the book. We would also like to thank the publisher, I-Tech
Education and Publishing, for cooperation in publication. Special thanks go to Dr. Vedran

VI

3 attempts to construct RNNs to learn languages. It might be thought that RNNs are suitable
for such a task considering that a sentence is a sequence of words and RNNs are good at
learning sequences. However, things are often not as easy as they look to be. For instance,
the linguistic productivity, a key property of any natural language, is notoriously hard to
tackle. In the chapter, the authors discuss the modeling of two features of languages that
support linguistic productivity, recursiveness and systamaticity, by means of RNNs.
Though building an intelligent agent capable of learning natural languages still seems to be
a far away goal, we have at least opened a door with the RNN key allowing further
exploration.

The second part of the book consists of seven chapters, all of which are about system
identification and control. The success of these approaches largely relies on the RNN’s
ability of recalling history and predicting future. Chapter 4 proposes a new Kalman filter
closed loop topology of RNN for identification and modeling of an unknown hydrocarbon
degradation process carried out in a biopile system and a rotating drum. Then, an indirect
sliding mode controller and a direct recurrent feedback-feedforward neural controller are
designed. In Chapter 5, a neural controller is proposed to approximate an ideal tracking
controller, which is capable of both structure learning and parameter learning. Based on
that, a robust controller is designed to attenuate the effects of the approximation error on the
tracking performance. Fuzzy logic is an efficient method to process imprecise, uncertain and
noisy information, which is often encountered in the real world. Integrating fuzzy logic and
neural networks may foster powerful schemes that combine their respective advantages.
Chapter 6 and Chapter 7 provide two examples. The major difference between them is that
the former adopts the conventional fuzzy logic system while the latter adopts an extended
version, so-called type-2 fuzzy logic system. Chapter 8 presents an adaptive recurrent neural
network controller to prevent rollover in heavy vehicles. The control scheme is composed of
a recurrent neural identifier and a controller, where the former is used to build an on-line
model for the unknown plant, and the latter to force the unknown plant to track the
reference trajectory. For a training algorithm, the stability and convergence speed are two
major indicators of performance evaluation, but they are often like two sides of a coin and
can not be reconciled. Chapter 9 attempts to seek a tradeoff between them by introducing a
robust adaptive gradient descent training algorithm. The proposed algorithm is applied to
three quite practical problems including time series prediction, system identification, and
attractor learning for pattern association. Good results have been obtained. Chapter 10
introduces a deterministic linearized RNN and its application to rainfall-runoff processes.
One of the remarkable merits of the proposed RNN is that, its special structure allows a
direct interpretation of the network weights in the language of hydrology, considering that
most other neural networks are black-box models that lack physical meaning of weights.

The third part of the book is composed of Chapter 11 and Chapter 12, where two
interesting RNNs are discussed, respectively. One is called Elman RNN, which is in
principle a regular feedforward network but with a hidden layer holding the output of
another hidden layer. The other is called locally recurrent probabilistic neural network
(LRPNN) coupling with swarm intelligence algorithms and concepts. The two networks also
take advantage of RNN’s ability of processing temporal information, similar as the networks
presented in the previous parts of the book. However, here the networks are used for
(temporal) pattern classification and recognition instead of system parameter identification
or system behavior prediction. Specifically, Chapter 11 presents applications of the Elman

 IX

RNN in biomedical engineering and nuclear engineering, and Chapter 12 presents
applications of the LRPNN in speech recognition and classification.

The fourth part of the book comprises four chapters focusing on optimization problems.
Doing optimization in a way like the central nerve systems of advanced animals including
humans is promising from some viewpoints. On one hand, it may help us understand more
about the working principle of nerve systems, and on the other hand, the inherent dynamics
of resulting RNNs makes it possible for analog circuit implementation, which would
tremendously accelerate the computing tasks, which is favored in many engineering
applications. Chapter 13 proposes a general framework for solving various optimization
problems including combinatorial optimization problems, linear programming problems
and nonlinear programming problems, by using RNNs. For every problem, two energy
functions associated with the objective function and constraints are separately defined and
minimized by modified Hopfield-type neural networks. The simulation results are given to
demonstrate the effectiveness of the proposed method among the specialized methods. The
latter two chapters achieve this desirable feature by making use of optimality conditions
such as primal-dual conditions or Karush-Kuhn-Tucker conditions. In particular, Chapter 14
describes several RNN models for linear programming problems, quadratic programming
problems, nonlinear programming problems, and variational inequalities. As all of the
optimization problems considered in the chapter are convex, and variational inequalities are
monotone, it is possible to devise globally convergent RNNs for solving them, which is
actually the case for the models presented in this chapter. However, the situation gets
complicated when the problems become nonconvex or nonmonotone. In this aspect,
progresses made in recent years have been reviewed in Chapter 15. It is found that based on
similar ideas one could at best devise locally stable and convergent RNNs for most of such
problems, though in some particular cases globally convergent models can be needed. The
results are obtained without using the penalty parameters. Chapter 16 presents an
interesting application of an RNN for optimization. It is found that under certain conditions,
the optimal control of a dynamic system can be transformed into a linear programming
problem. An annealing RNN is then applied to solve the problem. As this problem is not
specific for the proposed network; it can also be tested to other RNNs in the literature.

The last part of the book consists of two chapters, and each presents stability analysis of
a variant of the original Hopfield continuous-time neural network. Chapter 17 considers a
class of uncertain stochastic high-order neural networks with time varying delays. Based on
the Lyapunov stability theory, some new global asymptotic stability criteria are obtained.
Chapter 18 considers a discrete-time Hopfield-type neural network with delays. A complete
bifurcation analysis is presented for the two neurons case, uncovering the structure of the
stability domain of the null solution, as well as the types of bifurcations occurring at its
boundary.

As mentioned in the beginning, RNN has a rather broad coverage of applications and
we admit there must be some topics that the book does not address. One of the missing
topics refers to associative memory, an important capability of RNNs, though there is a case
study in Chapter 9. Anyway, this collective product complements other salient books in the
same line.

We would like to express our sincere gratitude to all chapter authors for the time and
effort they generously gave to the book. We would also like to thank the publisher, I-Tech
Education and Publishing, for cooperation in publication. Special thanks go to Dr. Vedran

X

Kordic, who initiated this project. The first editor would like to acknowledge the support
from the National Natural Science Foundation of China under the grant No. 60621062 and
60605003, the National Key Foundation R&D Projects under the grant No. 2003CB317007,
2004CB318108 and 2007CB311003, and the Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology (TNList).

July 31, 2008

Editors

Xiaolin Hu
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Computer Science and Technology

Tsinghua University, Beijing 100084,
China

P. Balasubramaniam
Department of Mathematics,

Gandhigram Rural University
Tamilnadu,

India

Contents

 Preface V

1. Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of
Behavior Novelty: Theory and Applications

001

Jorge Simão

2. Biological Signals Identification by a Dynamic Recurrent Neural Network:
from Oculomotor Neural Integrator to Complex Human Movements and
Locomotion

021

Guy Cheron, Françoise Leurs, Ana Bengoetxea, Ana Maria Cebolla,
Jean-Philippe Draye, Pablo D’alcantara and Bernard Dan

3. Linguistic Productivity and Recurrent Neural Networks 043
Akito Sakurai and Yoshihisa Shinozawa

4. Recurrent Neural Network Identification and Adaptive Neural Control of
Hydrocarbon Biodegradation Processes

061

Ieroham Baruch, Carlos Mariaca-Gaspar and Josefina Barrera-Cortes

5. Design of Self-Constructing Recurrent-Neural-Network-Based
Adaptive Control

089

Chun-Fei Hsu and Chih-Min Lin

6. Recurrent Fuzzy Neural Networks and Their Performance Analysis 107
R.A. Aliev, B. Fazlollahi, B.G. Guirimov and R.R. Aliev

7. Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric
Membership Functions

127

Ching-Hung Lee and Tzu-Wei Hu

8. Rollover Control in Heavy Vehicles via Recurrent High Order
Neural Networks

151

Luis J. Ricalde, Edgar N. Sanchez, Reza Langari and Danial Shahmirzadi

9. A New Supervised Learning Algorithm of Recurrent Neural Networks
and L2 Stability Analysis in Discrete-Time Domain

169

Wu Yilei, Yang Xulei and Song Qing

VIII

Kordic, who initiated this project. The first editor would like to acknowledge the support
from the National Natural Science Foundation of China under the grant No. 60621062 and
60605003, the National Key Foundation R&D Projects under the grant No. 2003CB317007,
2004CB318108 and 2007CB311003, and the Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology (TNList).

July 31, 2008

Editors

Xiaolin Hu
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Computer Science and Technology

Tsinghua University, Beijing 100084,
China

P. Balasubramaniam
Department of Mathematics,

Gandhigram Rural University
Tamilnadu,

India

Contents

 Preface VII

1. Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of
Behavior Novelty: Theory and Applications

001

Jorge Simão

2. Biological Signals Identification by a Dynamic Recurrent Neural Network:
from Oculomotor Neural Integrator to Complex Human Movements and
Locomotion

021

Guy Cheron, Françoise Leurs, Ana Bengoetxea, Ana Maria Cebolla,
Jean-Philippe Draye, Pablo D’alcantara and Bernard Dan

3. Linguistic Productivity and Recurrent Neural Networks 043
Akito Sakurai and Yoshihisa Shinozawa

4. Recurrent Neural Network Identification and Adaptive Neural Control of
Hydrocarbon Biodegradation Processes

061

Ieroham Baruch, Carlos Mariaca-Gaspar and Josefina Barrera-Cortes

5. Design of Self-Constructing Recurrent-Neural-Network-Based
Adaptive Control

089

Chun-Fei Hsu and Chih-Min Lin

6. Recurrent Fuzzy Neural Networks and Their Performance Analysis 107
R.A. Aliev, B. Fazlollahi, B.G. Guirimov and R.R. Aliev

7. Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric
Membership Functions

127

Ching-Hung Lee and Tzu-Wei Hu

8. Rollover Control in Heavy Vehicles via Recurrent High Order
Neural Networks

151

Luis J. Ricalde, Edgar N. Sanchez, Reza Langari and Danial Shahmirzadi

9. A New Supervised Learning Algorithm of Recurrent Neural Networks
and L2 Stability Analysis in Discrete-Time Domain

169

Wu Yilei, Yang Xulei and Song Qing

XII

10. Application of Recurrent Neural Networks to Rainfall-runoff Processes 203
Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu

11. Recurrent Neural Approach for Solving Several Types
of Optimization Problems

229

Ivan N. da Silva, Wagner C. Amaral, Lucia V. Arruda and Rogerio A. Flauzino

12. Applications of Recurrent Neural Networks to Optimization Problems 255
Alaeddin Malek

13. Neurodynamic Optimization: Towards Nonconvexity 289
Xiaolin Hu

14. An Improved Extremum Seeking Algorithm Based on the Chaotic
Annealing Recurrent Neural Network and Its Application

309

Yun-an Hu, Bin Zuo and Jing Li

15. Stability Results for Uncertain Stochastic High-Order Hopfield Neural
Networks with Time Varying Delays

323

P. Balasubramaniam and R. Rakkiyappan

16. Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield
Neural Networks

343

Eva Kaslik and Ştefan Balint

17. Case Studies for Applications of Elman Recurrent Neural Networks 357
Elif Derya Übeyli and Mustafa Übeyli

18. Partially Connected Locally Recurrent Probabilistic Neural Networks 377
Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis
and Nikos D. Fakotakis

1

Aperiodic (Chaotic) Behavior in RNN with
Homeostasis as a Source of Behavior Novelty:

Theory and Applications
Jorge Simão

Computer Science Department, Faculty of Sciences, University of Porto
Center for the Sciences of Computation, Cognition and Complexity

Portugal

1. Introduction
One way to understand cognitive system is to think in terms of dependency relationships
between the neural controller or micro level, and the agent’s body configuration or macro
level. Neural dynamics, as modeled in Recurrent Neural Networks (RNN), is determined by
units and connections self-organization rules. This micro dynamics guides body
configuration as it commands muscular action. On the other hand, an agent’s self-perception
causes the body configuration state to influence neural dynamics. Cognitive agents thus
work in a multi-level causality loop.
An apparent limitation of RNN to model neural controllers for cognitive agents is that the
dynamics may converge to a small region of neural state space. In the extreme case, this
includes convergence to a fixed point or to limit cycles where only a few neural states are
visited. Since agent’s body configuration is mostly determined by neural activity, limited
neural dynamics also implies a limited dynamic in an agent’s body — as being completely
“frozen” or keep doing the the same thing over and over again.
Because natural cognitive agents, understood as animals and humans, maintain an almost
continuous thread of behavior while they are awake, one can suggest that neural controllers
for cognitive modeling and engineering should also allow for this kind of behavior. RNN
with adaptive thresholds, modeling neural homeostasis, provide one possible answer. When
units in a RNN are endowed with a rule for dynamically changing units thresholds the
neural network as a whole behaves in a complex manner, ranging from a close to periodic
behavior to aperiodic (or chaotic) behavior. When coupled to an agent’s body the neural
dynamics can be used to produce variability in body configuration dynamics — this is the
cognitive agent’s behavior at the macro level. This variability is a key requisite to allow
agents the unaided discovery of possibilities of action (affordances) of their body in the
context of their environment. Behavior habituation to instantaneous body-environment
configurations resulting from neural homeostasis, keeps agent continuously exploring the
configuration space, thus producing novel body postures and/or move the agent to new
locations in the environment.
This mechanism while essential for the production of creative or novel behavior, may not be
enough. Without sensors to perceive their body and environment neural activity can not be

X

10. Application of Recurrent Neural Networks to Rainfall-runoff Processes 203
 Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu

11. Recurrent Neural Approach for Solving Several Types
of Optimization Problems

229

 Ivan N. da Silva, Wagner C. Amaral, Lucia V. Arruda and Rogerio A. Flauzino

12. Applications of Recurrent Neural Networks to Optimization Problems 255
 Alaeddin Malek

13. Neurodynamic Optimization: Towards Nonconvexity 289

 Xiaolin Hu

14. An Improved Extremum Seeking Algorithm Based on the Chaotic
Annealing Recurrent Neural Network and Its Application

309

 Yun-an Hu, Bin Zuo and Jing Li

15. Stability Results for Uncertain Stochastic High-Order Hopfield Neural
Networks with Time Varying Delays

323

 P. Balasubramaniam and R. Rakkiyappan

16. Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield
Neural Networks

343

 Eva Kaslik and Ştefan Balint

17. Case Studies for Applications of Elman Recurrent Neural Networks 357
 Elif Derya Übeyli and Mustafa Übeyli

18. Partially Connected Locally Recurrent Probabilistic Neural Networks 377

 Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis
 and Nikos D. Fakotakis

1

Aperiodic (Chaotic) Behavior in RNN with
Homeostasis as a Source of Behavior Novelty:

Theory and Applications
Jorge Simão

Computer Science Department, Faculty of Sciences, University of Porto
Center for the Sciences of Computation, Cognition and Complexity

Portugal

1. Introduction
One way to understand cognitive system is to think in terms of dependency relationships
between the neural controller or micro level, and the agent’s body configuration or macro
level. Neural dynamics, as modeled in Recurrent Neural Networks (RNN), is determined by
units and connections self-organization rules. This micro dynamics guides body
configuration as it commands muscular action. On the other hand, an agent’s self-perception
causes the body configuration state to influence neural dynamics. Cognitive agents thus
work in a multi-level causality loop.
An apparent limitation of RNN to model neural controllers for cognitive agents is that the
dynamics may converge to a small region of neural state space. In the extreme case, this
includes convergence to a fixed point or to limit cycles where only a few neural states are
visited. Since agent’s body configuration is mostly determined by neural activity, limited
neural dynamics also implies a limited dynamic in an agent’s body — as being completely
“frozen” or keep doing the the same thing over and over again.
Because natural cognitive agents, understood as animals and humans, maintain an almost
continuous thread of behavior while they are awake, one can suggest that neural controllers
for cognitive modeling and engineering should also allow for this kind of behavior. RNN
with adaptive thresholds, modeling neural homeostasis, provide one possible answer. When
units in a RNN are endowed with a rule for dynamically changing units thresholds the
neural network as a whole behaves in a complex manner, ranging from a close to periodic
behavior to aperiodic (or chaotic) behavior. When coupled to an agent’s body the neural
dynamics can be used to produce variability in body configuration dynamics — this is the
cognitive agent’s behavior at the macro level. This variability is a key requisite to allow
agents the unaided discovery of possibilities of action (affordances) of their body in the
context of their environment. Behavior habituation to instantaneous body-environment
configurations resulting from neural homeostasis, keeps agent continuously exploring the
configuration space, thus producing novel body postures and/or move the agent to new
locations in the environment.
This mechanism while essential for the production of creative or novel behavior, may not be
enough. Without sensors to perceive their body and environment neural activity can not be

 Recurrent Neural Networks

2

influenced by the body-configuration. Thus, neural chaos by itself can not guarantee that the
agent performs adequately. For example, it may lunch the agent as whole to enter in a self-
destructive non-viable biological, psychological, or social region. Introducing sensors that
perturb individual neurons and collective dynamics, offers an additional mechanism to
develop structured behavior. At the formal level, one can infer that by having sensors for
self and environment perception an agent can change the probability distribution of the
neural state space. This change, in turn, changes the dynamics and probability distribution
of the agent body configuration, possibly steering the agent into more interesting regions.
To illustrate the application of this principles, we show with concrete examples of simple
articulated agents how chaos in neural controllers can be used to generate novel behavior
and how self-perception can be used to change neural dynamics. Target applications,
included muscular control and visual attention. To make the principles general, we also
present a conceptual framework for embodied neural agents as models for cognitive
systems.
We divide this article into four main parts: in section 2, we make an abstract theoretical
characterization of cognitive systems that is useful for the remaining parts of the discussion.
In section 3, we describe and discuss the proposed Recurrent Neural Network model that
uses units with adaptive thresholds to model homeostasis. In section 4, we use this neural
model to build a particular model of a minimalist cognitive agent, endowed with a single
link and a joint with only one-degree-of-freedom. The experimental results obtained with
this cognitive agent are used study muscular control and to illustrate the application of
RNN with homeostasis. In particular, we compare the behavior of agent at the micro and
macro level when neural units have or do not have adaptive thresholds and self-perception.
In section 5, we describe another model that uses RNN with homeostasis, this time modeling
visual attention. In section 6, we present our conclusions and relate our results with others.

2. A meta-model for cognitive systems
For improved understanding of cognitive system, one needs to have a meta-model or meta-
theory that allows one to think in abstract terms and helps to identify the relevant entities and
concepts specific to the problem domain of cognition. In particular, the relation between
agents and the environments in which they live, and the relation between its neural controller
dynamics and body configuration dynamics needs to be put in appropriate perspective. If this
is achieved, we are better equipped to see what are the relevant elements that models of
neural networks need to take into consideration to work effectively as models of cognition.
In this section, we present such a meta-model organizing the components sub-sections as
follows: section 2.1 presents the concepts needed to begin understanding cognition; section 2.2
further develops the relation between neural controllers and behavior of agents; section 2.3
formally characterizes cognitive systems as complex dynamical systems.

2.1 Situated cognitive agents and environments
We characterize cognitive agents as complex systems that can be studied at two different
complexity levels: the macro-level and the micro-level. The macro-level is defined by the
configuration state — a formal description of the agents body posture in space and time, as
seen by an external observer or as made apparent to the agent itself through self-perception.
A small number of degrees-of-freedom is often required to describe an agent at this level

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

3

(e.g., the variables of the joint angles plus the parameters of link geometry, as is often used
in robotics).
The micro-level is a characterization of the state of agent neural controller. In simple neural
models, this may include the activation level of neural units, units’ thresholds, and neural
connections’ weights. Usually, the micro-level requires a much higher number of degrees-of-
freedom to be fully described than the macro-level, since an agent with few links and joints
may have a controller with many neural units. Interfacing the micro and macro-levels, agent
descriptions include the way the neural controller is connected to the agents’ body — both
in muscular connections (efferent) and in the way sensation-perception cells/inputs
impinge on the neural controller. In complex articulated agents, the number of macro-level
variables and parameters needed may be in high number (e.g., on the order of dozens), but
we always assume that the micro-level requires a much high number of variables and
parameters to be described. A physical (non-cognitive) systems analogy of this, would be a
rigid body (object) described at the macro-level by a few variable and parameters (e.g., for
geometry, location and orientation in space, and material properties), and that at the micro-
level requires much more variables if one wanted to describe in detail where all its
constituent particles/elements are located in space at a given time, assuming, for illustration
purposes, that this could be done in practice.

Figure 1. Conceptual diagram of a cognitive agent, its environment and the external
observer

Real and virtual agents are often situated in some environment, in such a way that its
behavior and interaction with the environment can be observed by an external observer. As
pointed out by many classical thinkers and researcher in the AI community, the agent’s own
perception of the environment may be quite different from an external observer’s
perspective [10]. Namely, external observers can not make easily educate guesses about the
subjective perspective of the observed agent own perception (e.g., the perspective a human
and another animal, such as a dog or frog, might have from the same environment, say a
tree, might be quite different — assuming for illustrations purposes, that the two of them
could somehow be compared). In Figure 1, we make a sketch representation of the
relationship between the agent, its environment, the external observer, and the two levels of
description. Below, we postulate that an agent can be sensitive to its own actions by means
of self-perception, and we use this to provide a causal account of how such self-generated
information can be used to guide autonomously the behavior development of the agent
through learning at the micro-level.
The activity of neural units often dictates the generation of body movements, by
commanding internal force to be made by muscular-like structures. Given this, the
dynamics of body movements as captured by the formal configuration definitions, is a

 Recurrent Neural Networks

2

influenced by the body-configuration. Thus, neural chaos by itself can not guarantee that the
agent performs adequately. For example, it may lunch the agent as whole to enter in a self-
destructive non-viable biological, psychological, or social region. Introducing sensors that
perturb individual neurons and collective dynamics, offers an additional mechanism to
develop structured behavior. At the formal level, one can infer that by having sensors for
self and environment perception an agent can change the probability distribution of the
neural state space. This change, in turn, changes the dynamics and probability distribution
of the agent body configuration, possibly steering the agent into more interesting regions.
To illustrate the application of this principles, we show with concrete examples of simple
articulated agents how chaos in neural controllers can be used to generate novel behavior
and how self-perception can be used to change neural dynamics. Target applications,
included muscular control and visual attention. To make the principles general, we also
present a conceptual framework for embodied neural agents as models for cognitive
systems.
We divide this article into four main parts: in section 2, we make an abstract theoretical
characterization of cognitive systems that is useful for the remaining parts of the discussion.
In section 3, we describe and discuss the proposed Recurrent Neural Network model that
uses units with adaptive thresholds to model homeostasis. In section 4, we use this neural
model to build a particular model of a minimalist cognitive agent, endowed with a single
link and a joint with only one-degree-of-freedom. The experimental results obtained with
this cognitive agent are used study muscular control and to illustrate the application of
RNN with homeostasis. In particular, we compare the behavior of agent at the micro and
macro level when neural units have or do not have adaptive thresholds and self-perception.
In section 5, we describe another model that uses RNN with homeostasis, this time modeling
visual attention. In section 6, we present our conclusions and relate our results with others.

2. A meta-model for cognitive systems
For improved understanding of cognitive system, one needs to have a meta-model or meta-
theory that allows one to think in abstract terms and helps to identify the relevant entities and
concepts specific to the problem domain of cognition. In particular, the relation between
agents and the environments in which they live, and the relation between its neural controller
dynamics and body configuration dynamics needs to be put in appropriate perspective. If this
is achieved, we are better equipped to see what are the relevant elements that models of
neural networks need to take into consideration to work effectively as models of cognition.
In this section, we present such a meta-model organizing the components sub-sections as
follows: section 2.1 presents the concepts needed to begin understanding cognition; section 2.2
further develops the relation between neural controllers and behavior of agents; section 2.3
formally characterizes cognitive systems as complex dynamical systems.

2.1 Situated cognitive agents and environments
We characterize cognitive agents as complex systems that can be studied at two different
complexity levels: the macro-level and the micro-level. The macro-level is defined by the
configuration state — a formal description of the agents body posture in space and time, as
seen by an external observer or as made apparent to the agent itself through self-perception.
A small number of degrees-of-freedom is often required to describe an agent at this level

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

3

(e.g., the variables of the joint angles plus the parameters of link geometry, as is often used
in robotics).
The micro-level is a characterization of the state of agent neural controller. In simple neural
models, this may include the activation level of neural units, units’ thresholds, and neural
connections’ weights. Usually, the micro-level requires a much higher number of degrees-of-
freedom to be fully described than the macro-level, since an agent with few links and joints
may have a controller with many neural units. Interfacing the micro and macro-levels, agent
descriptions include the way the neural controller is connected to the agents’ body — both
in muscular connections (efferent) and in the way sensation-perception cells/inputs
impinge on the neural controller. In complex articulated agents, the number of macro-level
variables and parameters needed may be in high number (e.g., on the order of dozens), but
we always assume that the micro-level requires a much high number of variables and
parameters to be described. A physical (non-cognitive) systems analogy of this, would be a
rigid body (object) described at the macro-level by a few variable and parameters (e.g., for
geometry, location and orientation in space, and material properties), and that at the micro-
level requires much more variables if one wanted to describe in detail where all its
constituent particles/elements are located in space at a given time, assuming, for illustration
purposes, that this could be done in practice.

Figure 1. Conceptual diagram of a cognitive agent, its environment and the external
observer

Real and virtual agents are often situated in some environment, in such a way that its
behavior and interaction with the environment can be observed by an external observer. As
pointed out by many classical thinkers and researcher in the AI community, the agent’s own
perception of the environment may be quite different from an external observer’s
perspective [10]. Namely, external observers can not make easily educate guesses about the
subjective perspective of the observed agent own perception (e.g., the perspective a human
and another animal, such as a dog or frog, might have from the same environment, say a
tree, might be quite different — assuming for illustrations purposes, that the two of them
could somehow be compared). In Figure 1, we make a sketch representation of the
relationship between the agent, its environment, the external observer, and the two levels of
description. Below, we postulate that an agent can be sensitive to its own actions by means
of self-perception, and we use this to provide a causal account of how such self-generated
information can be used to guide autonomously the behavior development of the agent
through learning at the micro-level.
The activity of neural units often dictates the generation of body movements, by
commanding internal force to be made by muscular-like structures. Given this, the
dynamics of body movements as captured by the formal configuration definitions, is a

 Recurrent Neural Networks

4

reflection of the dynamics of the neural units (plus whatever mechanical external
perturbations the environment might impose in the agent at a given time). This is micro-
macro causality mechanism. Moreover, selforganizing mechanisms at the micro-level (e.g.,
learning and homeostasis) may change the probability distribution of states of the micro-
level, and these can also leave a trace at the observed behavior. This macro behavior is
emergent from the micro-level activity.
An additional consequence of the above characterization, is that the mapping from the
(micro) neural level to the (macro) configuration level is not one-toone, since the number of
degrees-of-freedom are different. Many different neural states may mandate the same body
configuration. Moreover, since body limbs are pulled by several muscular structures each
with possibly many different force generating components (e.g., muscular micro-fibers), the
coordinated action of a large number of neurons and muscular cells is usually required to
generate strong and high-amplitude body movements. We also explore these aspects below.

Figure 2. Block diagram of cognitive agents.

Since agents have component units sensitive to the environment (the sensationperception
inputs), agents can receive feedback of the “world-state” (as inferred by their sensorial
apparatus). This is interpreted as a macro-micro (downward) causality mechanism.
Moreover, because agent’s sensitivity of the macro world also applies to its own body state,
agents can sense the effects of their own actions (e.g., using input from proprio-perceptive
cells in muscles and tendons, by visually looking at body limbs — such as hands, or by
listing the sounds produced by itself). Below, we call this type of macro-micro causality
mechanism as self-perturbation or self-perception.

2.2 Multi-level causality
Once we make a micro–macro characterization of cognitive systems, we need to focus on the
causal relations between the two levels. Figure 2, represents these causal relation in agent
behavior according to the presented meta-model. X represents the (activation) state of the
neural controller of the agent (part of micro-level or internal state), and Cag represents the
body configuration of the agent (the macro-level or external state). The self-loop in X
represents the internal dynamics of the controller, such as modeled in recurrent neural
network models. The arrow from X to the motor units Mc represent the commanding of
muscular contraction/distention causing the generation or cessation of internal force. The
connection from Mc to Cag, represents the actual changes made in body configuration
caused by changes in internal state (if any).
Due to self-perturbation (in any sensorial modality) the agent configuration Cag generates
input or perturbation to the neural dynamics — represented as Π. This represents part of the
macro-micro causality. As a “side-effect” of the controller internal dynamics, changes in
body configuration may change the state or configuration of the environment, in the

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

5

diagram represented as Cenv (e.g., as in a manipulation task). Changes to environment state
trigger additional perturbation to the neural controller. For individual neural units, the two
types of perturbation (self-generated and other) should be considered (mechanistically)
indistinguishable. Additionally, in a complex task-environment, environments may also
have complicated dynamics of their own (e.g., gravity, dumping, reaction force, etc.) —
represented as a self-loop in the box labeled Cenv in Figure 2. The environment may also
impose macro-perturbation in the configuration of the agent, abstracted as mechanical
external forces Fext. We represent this as an additional arrow in Figure 2 from Cenv to Cag. We
aggregate the agent configuration Cag and environment configuration Cag, and call it the
global configuration or just configuration for short. We represent this as: C = Cag · Cenv.
Changes in neural activity often (but not necessarily always), create body limb movements
because they command muscular-like structures that create internal mechanical forces on
the body. In most natural situations, body limb movements are also dependent on other
mechanical external perturbations on the agent that combine to self-generate internal forces.
This may include forces such as gravity, object contact reaction-force, and physical
manipulation by social other. This aspects of agent-environment interaction are not
developed in the chapter.

Figure 3. Diagrammatic representation of multi-level causality with two types of
perturbation: X is the micro state and C is the macro state as seen by an external observer or
by the agent itself. Πμ represents the micro-perturbations, mostly due to input to sensorial-
perception units/cells, and Fext represents macroscopic/mechanical perturbations, also
represented as ΠM.

Since agents have component units sensitive to the environment (the sensationperception
inputs), agents can receive feedback of the “world-state”. This input may change internal
neural dynamics, and in turn change the internal forces that cause body limb movements.
Agents may also have perception of their own body state (e.g. thought proprio-perception of
limb displacement, visual perception of own body, or self-produced sounds). In the model
presented below, we focus our attention on studies of a simple form of proprioceptive
muscular input.
Given this characterization, we see that micro and macro level are connected in a two-way
causality loop. The state of the micro-level determines/influences body configuration, and
the body configuration perturbs the internal dynamics of the neural controller due to self-
perturbation. Figure 3, further illustrates the notion multi-level causality in cognitive systems.
An upward arrow is used to represent emergence or upward causality, and an downward
arrow represents downward causality due to self-perception and perception of the
environment.
This characterization of embodied neural agents relates to Ashby classical characterization
of adaptive agents and agent-environment couplings as dynamical systems [2], further
explored in mainstream situated AI literature [3]. The above presentation, although similar

 Recurrent Neural Networks

4

reflection of the dynamics of the neural units (plus whatever mechanical external
perturbations the environment might impose in the agent at a given time). This is micro-
macro causality mechanism. Moreover, selforganizing mechanisms at the micro-level (e.g.,
learning and homeostasis) may change the probability distribution of states of the micro-
level, and these can also leave a trace at the observed behavior. This macro behavior is
emergent from the micro-level activity.
An additional consequence of the above characterization, is that the mapping from the
(micro) neural level to the (macro) configuration level is not one-toone, since the number of
degrees-of-freedom are different. Many different neural states may mandate the same body
configuration. Moreover, since body limbs are pulled by several muscular structures each
with possibly many different force generating components (e.g., muscular micro-fibers), the
coordinated action of a large number of neurons and muscular cells is usually required to
generate strong and high-amplitude body movements. We also explore these aspects below.

Figure 2. Block diagram of cognitive agents.

Since agents have component units sensitive to the environment (the sensationperception
inputs), agents can receive feedback of the “world-state” (as inferred by their sensorial
apparatus). This is interpreted as a macro-micro (downward) causality mechanism.
Moreover, because agent’s sensitivity of the macro world also applies to its own body state,
agents can sense the effects of their own actions (e.g., using input from proprio-perceptive
cells in muscles and tendons, by visually looking at body limbs — such as hands, or by
listing the sounds produced by itself). Below, we call this type of macro-micro causality
mechanism as self-perturbation or self-perception.

2.2 Multi-level causality
Once we make a micro–macro characterization of cognitive systems, we need to focus on the
causal relations between the two levels. Figure 2, represents these causal relation in agent
behavior according to the presented meta-model. X represents the (activation) state of the
neural controller of the agent (part of micro-level or internal state), and Cag represents the
body configuration of the agent (the macro-level or external state). The self-loop in X
represents the internal dynamics of the controller, such as modeled in recurrent neural
network models. The arrow from X to the motor units Mc represent the commanding of
muscular contraction/distention causing the generation or cessation of internal force. The
connection from Mc to Cag, represents the actual changes made in body configuration
caused by changes in internal state (if any).
Due to self-perturbation (in any sensorial modality) the agent configuration Cag generates
input or perturbation to the neural dynamics — represented as Π. This represents part of the
macro-micro causality. As a “side-effect” of the controller internal dynamics, changes in
body configuration may change the state or configuration of the environment, in the

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

5

diagram represented as Cenv (e.g., as in a manipulation task). Changes to environment state
trigger additional perturbation to the neural controller. For individual neural units, the two
types of perturbation (self-generated and other) should be considered (mechanistically)
indistinguishable. Additionally, in a complex task-environment, environments may also
have complicated dynamics of their own (e.g., gravity, dumping, reaction force, etc.) —
represented as a self-loop in the box labeled Cenv in Figure 2. The environment may also
impose macro-perturbation in the configuration of the agent, abstracted as mechanical
external forces Fext. We represent this as an additional arrow in Figure 2 from Cenv to Cag. We
aggregate the agent configuration Cag and environment configuration Cag, and call it the
global configuration or just configuration for short. We represent this as: C = Cag · Cenv.
Changes in neural activity often (but not necessarily always), create body limb movements
because they command muscular-like structures that create internal mechanical forces on
the body. In most natural situations, body limb movements are also dependent on other
mechanical external perturbations on the agent that combine to self-generate internal forces.
This may include forces such as gravity, object contact reaction-force, and physical
manipulation by social other. This aspects of agent-environment interaction are not
developed in the chapter.

Figure 3. Diagrammatic representation of multi-level causality with two types of
perturbation: X is the micro state and C is the macro state as seen by an external observer or
by the agent itself. Πμ represents the micro-perturbations, mostly due to input to sensorial-
perception units/cells, and Fext represents macroscopic/mechanical perturbations, also
represented as ΠM.

Since agents have component units sensitive to the environment (the sensationperception
inputs), agents can receive feedback of the “world-state”. This input may change internal
neural dynamics, and in turn change the internal forces that cause body limb movements.
Agents may also have perception of their own body state (e.g. thought proprio-perception of
limb displacement, visual perception of own body, or self-produced sounds). In the model
presented below, we focus our attention on studies of a simple form of proprioceptive
muscular input.
Given this characterization, we see that micro and macro level are connected in a two-way
causality loop. The state of the micro-level determines/influences body configuration, and
the body configuration perturbs the internal dynamics of the neural controller due to self-
perturbation. Figure 3, further illustrates the notion multi-level causality in cognitive systems.
An upward arrow is used to represent emergence or upward causality, and an downward
arrow represents downward causality due to self-perception and perception of the
environment.
This characterization of embodied neural agents relates to Ashby classical characterization
of adaptive agents and agent-environment couplings as dynamical systems [2], further
explored in mainstream situated AI literature [3]. The above presentation, although similar

 Recurrent Neural Networks

6

in general form, makes additional distinctions. In particular, it makes explicit and gives
theoretical significance to the difference between the typical number of degrees-of-freedom
at the micro or neural level, and the macro or configuration-level. Namely, |X| >> |Cag|.

2.3 Characterization as complex dynamical system
From a formal point of view, the agent body, neural controller, and environment represent a
(complex) dynamical system that can be summarized with two (vectorial) coupled
differential equations:

where fa is the neural units activation function, fΠ some (possibly complicated) function that
maps agent and world configuration to a particular value of individual units perturbation,
and fC and Mc are functions that relate changes in internal state with changes in agent body
and world configuration. We are ignoring here and until the next section, second-order
dynamics in the neural controller, such as learning and/or homeostasis.
When we make the assumption that the neural state fully determines body posture (e.g. due
to lack of body inertia), than the differential equation above for the configuration can be
simplified to a functional equation: C = fC[Mc(X)]. That is the neural state fully determines
the instantaneous body configuration. When no confusion in caused, we abbreviate the
above equation to: C = fC(X).
For simplicity sake, we leave ambiguous whether the information about configuration state
the agent uses is the same or comparable with the information a particular external observer
might use to characterize the agent and its environment state. For purposes of neural
control, the relevant information is the information the agent uses.

3. A model of RNN with homeostasis
In previous section, we made an abstract characterization of embodied cognitive agents that
is independent of the controller and neural model used to generate its behavior. In this
section, we propose a model of Recurrent Neural Networks with adaptive threshold
capturing homoeostasis behavior in natural neural cell [16]. In section 3.1, we present the
equation for neural dynamics. This is a variation of the continuous Hopfield RNN model [7],
where units threshold changes to push activation back to a resting value. In section 3.2, we
discuss how the non-embodied RNN model can be extended to control an embodied system
as is the case of cognitive agents with a body living in some environment.

3.1 Equations for neural dynamics
The neural model consist of a set of units whose activation levels is described b a vector X =
[x1, . . . , xi, . . . , xN], with |X|as the number of units. Neural units activation xi is constrained
to lie in the interval range [xmin, xmax], where xmax is the saturation value and xmin is the
lowest/depression value. Units are also assumed to have a rest or natural activation value
x0. In computer simulation we make neural units start in this rest/natural activation state.
Neural units are assumed to be connected in a network/graph as a fully recurrent neural
network (all units connect to all) [7]. Connection strengths are represented by a connectivity
matrix M, where element cij represents the connection strength or weight between unit i and

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

7

j. In the simulation results presented below we experiment mostly with fixed connection
weights. Neural units are assumed to be initially connected with random weights, using a
normal distribution with mean value 0 and variance 2(M).
Neural units have an adaptive threshold that is used to maintain units in a sensitive state.
This is equivalent to cellular homeostasis mechanisms in biological neural networks [16].
For unit i we represent its threshold as θi. When a unit’s activation is very high, a slow
adaptation process takes place that gradually moves the activation value to a rest or natural
activation value x0. Likewise, when a unit’s activation value is low the same adaptation
process takes place to raise the activation level to x0.
The operation of units is formally defined using two ordinary first-order differential
equations [approximated by the Euler method in the simulations below]. The first equation
below describes the (fast) dynamics of individual unit’s activation. The second equation
describes the (slower) dynamics of homeostasis.

above τ1, τ2, with τ 1 << τ 2, are constants for the characteristic times of the neural processes
modelled. x0 is the resting or natural activation of units. f is an activation gain function. The
simplest case is to have f a linear function with a constant gain G = 1. ξ is some (optional)
random noise value.
Solving for equilibrium in the first equation, τ 1 x i = 0, shows that at rest xi = x0 + f(Σj cjixi − θi)
+ ξ, which is a fast quiescent/rest state. Solving for equilibrium for the second equation, τ 2

θ i = 0, show that at rest xi = x0, which is a slow quiescent/rest state (since τ 1 << τ 2).
Simulation results presented below show that full equilibrium (that is, xi = x0 for all units) is
often not reached due to units’ interconnections.
Neural connections can be made to have weights changed similarly to Hopfield networks by
using a Hebb-like learning rule. This level of plasticity allow neural agents to have more
adaptation possibilities since it introduces a second-order dynamics in the system. In this
chapter, we will focus in networks without learning.

3.2 Embodiment neural agents
A straightforward way to give an embodiment to a RNN (with or without homestasic units),
is to postulate that each agent actuator is controlled by a sub-set of units. Formally, if agent
configuration state and state space is defined by vector C = [ψ1, . . . , ψi, . . . , ψN ’], with |C|
the number-of-degree of freedom of the configuration, then we make each degree-of-
freedom ψi to be a function of a sub-set of neural units X|i. In mathematical notation: ψi =
f(X|i). Due to this functional relations, movement in neural state space may produce some
kind of movement at the configuration level. On the other hand, since |X|>> |C|, neural
dynamics may be sufficiently confined to make changes in agent configuration minimal.
To make the neural units to receive feedback about behavioral consequence of neural
dynamics sensorial mechanisms need to be used. One way to model this is to think that each
agent sensor has the ability to produce a perturbation πi that adds to a units input, with a
gain ci. This slightly changes the equation for neural dynamics, as follows:

 Recurrent Neural Networks

6

in general form, makes additional distinctions. In particular, it makes explicit and gives
theoretical significance to the difference between the typical number of degrees-of-freedom
at the micro or neural level, and the macro or configuration-level. Namely, |X| >> |Cag|.

2.3 Characterization as complex dynamical system
From a formal point of view, the agent body, neural controller, and environment represent a
(complex) dynamical system that can be summarized with two (vectorial) coupled
differential equations:

where fa is the neural units activation function, fΠ some (possibly complicated) function that
maps agent and world configuration to a particular value of individual units perturbation,
and fC and Mc are functions that relate changes in internal state with changes in agent body
and world configuration. We are ignoring here and until the next section, second-order
dynamics in the neural controller, such as learning and/or homeostasis.
When we make the assumption that the neural state fully determines body posture (e.g. due
to lack of body inertia), than the differential equation above for the configuration can be
simplified to a functional equation: C = fC[Mc(X)]. That is the neural state fully determines
the instantaneous body configuration. When no confusion in caused, we abbreviate the
above equation to: C = fC(X).
For simplicity sake, we leave ambiguous whether the information about configuration state
the agent uses is the same or comparable with the information a particular external observer
might use to characterize the agent and its environment state. For purposes of neural
control, the relevant information is the information the agent uses.

3. A model of RNN with homeostasis
In previous section, we made an abstract characterization of embodied cognitive agents that
is independent of the controller and neural model used to generate its behavior. In this
section, we propose a model of Recurrent Neural Networks with adaptive threshold
capturing homoeostasis behavior in natural neural cell [16]. In section 3.1, we present the
equation for neural dynamics. This is a variation of the continuous Hopfield RNN model [7],
where units threshold changes to push activation back to a resting value. In section 3.2, we
discuss how the non-embodied RNN model can be extended to control an embodied system
as is the case of cognitive agents with a body living in some environment.

3.1 Equations for neural dynamics
The neural model consist of a set of units whose activation levels is described b a vector X =
[x1, . . . , xi, . . . , xN], with |X|as the number of units. Neural units activation xi is constrained
to lie in the interval range [xmin, xmax], where xmax is the saturation value and xmin is the
lowest/depression value. Units are also assumed to have a rest or natural activation value
x0. In computer simulation we make neural units start in this rest/natural activation state.
Neural units are assumed to be connected in a network/graph as a fully recurrent neural
network (all units connect to all) [7]. Connection strengths are represented by a connectivity
matrix M, where element cij represents the connection strength or weight between unit i and

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

7

j. In the simulation results presented below we experiment mostly with fixed connection
weights. Neural units are assumed to be initially connected with random weights, using a
normal distribution with mean value 0 and variance 2(M).
Neural units have an adaptive threshold that is used to maintain units in a sensitive state.
This is equivalent to cellular homeostasis mechanisms in biological neural networks [16].
For unit i we represent its threshold as θi. When a unit’s activation is very high, a slow
adaptation process takes place that gradually moves the activation value to a rest or natural
activation value x0. Likewise, when a unit’s activation value is low the same adaptation
process takes place to raise the activation level to x0.
The operation of units is formally defined using two ordinary first-order differential
equations [approximated by the Euler method in the simulations below]. The first equation
below describes the (fast) dynamics of individual unit’s activation. The second equation
describes the (slower) dynamics of homeostasis.

above τ1, τ2, with τ 1 << τ 2, are constants for the characteristic times of the neural processes
modelled. x0 is the resting or natural activation of units. f is an activation gain function. The
simplest case is to have f a linear function with a constant gain G = 1. ξ is some (optional)
random noise value.
Solving for equilibrium in the first equation, τ 1 x i = 0, shows that at rest xi = x0 + f(Σj cjixi − θi)
+ ξ, which is a fast quiescent/rest state. Solving for equilibrium for the second equation, τ 2

θ i = 0, show that at rest xi = x0, which is a slow quiescent/rest state (since τ 1 << τ 2).
Simulation results presented below show that full equilibrium (that is, xi = x0 for all units) is
often not reached due to units’ interconnections.
Neural connections can be made to have weights changed similarly to Hopfield networks by
using a Hebb-like learning rule. This level of plasticity allow neural agents to have more
adaptation possibilities since it introduces a second-order dynamics in the system. In this
chapter, we will focus in networks without learning.

3.2 Embodiment neural agents
A straightforward way to give an embodiment to a RNN (with or without homestasic units),
is to postulate that each agent actuator is controlled by a sub-set of units. Formally, if agent
configuration state and state space is defined by vector C = [ψ1, . . . , ψi, . . . , ψN ’], with |C|
the number-of-degree of freedom of the configuration, then we make each degree-of-
freedom ψi to be a function of a sub-set of neural units X|i. In mathematical notation: ψi =
f(X|i). Due to this functional relations, movement in neural state space may produce some
kind of movement at the configuration level. On the other hand, since |X|>> |C|, neural
dynamics may be sufficiently confined to make changes in agent configuration minimal.
To make the neural units to receive feedback about behavioral consequence of neural
dynamics sensorial mechanisms need to be used. One way to model this is to think that each
agent sensor has the ability to produce a perturbation πi that adds to a units input, with a
gain ci. This slightly changes the equation for neural dynamics, as follows:

 Recurrent Neural Networks

8

Figure 4. Body configuration of a minimalist articulated agent with a single link and
rotational joint in 2D plane (one degree-of-freedom), controlled by an artificial muscle
composed of a set of muscular units: left): abstract design; right): visualization in the
developed neural agent simulator.

4. A minimalist embodied neural agent
In this section, we present a model of an embodied neural agent that relies on a RNN with
homeostasis to control its behavior. In particular, we show that the homeostasis introduces
aperiodic (chaotic) behavior in the system preventing the agent to ever reach a stationary
regime. This is argued to be useful for characterizing cognitive systems, since behavioral
exploration and continuous novelty is a distinguishing feature of this type of systems.

4.1 Model
We consider an embodied articulated agent with a single link and a single joint. The joint
angle fully defines the body configuration of the agent. The joint angle is determined by the
contraction of a simplified muscle that works like a mechanical lever. The muscle has a large
number of muscular units mi. The contraction/ extension of a muscular unit mi produces a
spatial displacement Δsi, and the summation of all displacements determines the joint angle.
Formally, ψ = f(Σi Δsi), where f is a function of the detailed geometry of the agent. We
assume that the contraction of a single neural units produces a relatively small link
displacement. Therefore, the simultaneous contraction of a large proportion of muscular
units is required to generate maximum displacement of the link. Additionally, the joint
angle ψ is always constrained to lie within a maximum amplitude interval [− ,]. The
agent also contains proprioceptive mechanisms for muscle contraction/distention or link
angular position (discussed below). In Figure 4, we show the abstract design of the agent.
We also show the graphical design of the agent as visualized in a developed simulator.
Muscle contraction (and thus body configuration) is controlled by a neural population with
N units. We make a simple attachment between this neural population and the muscle units,
by making the number of muscular units equal to the number of neural units, and
connecting them one-to-one (unidirectional). Muscular contraction is thus proportional to
the total activation of the network. When all units are in a rest/natural activation value, φ
takes value 0 (the link is horizontal).

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

9

A fixed proportion fπ of neural units is sensitive to the angular position of the link. Namely,
we define a preferred angular position φ * and cause that sub-set of units to receive
additional excitation the closer the link is to that preferred position/angle. Thus, this units
work as proprio-perceptive (proprioceptive) neural cells. The concrete equation we use to
model this is:

where πi is the external perturbation to the cell due to proprioceptive input, K1 is a parameter
for maximum perturbation value, (φ − φ*)2 is the squared difference of the link’s current
angular position and the preferred angle φ*, and K2 is a parameter for how slow perturbation
decreases as the current angle moves away from the preferred angle φ*. (K2 is also represents
the variance of a Gaussian curve.) In the simulation results presented below, fπ is always set
to .3, φ* always set to 80°.

4.2 Experimental results
We have performed several experiments to study the behavior of the previous presented
model. In these experiments, we generate neural controllers with random connections
according to the weight matrix M, using mean 0 and variance 2(M) = 1. For the presented
results, we made connection weights fixed (no learning), and removed internal noise.
Parameters for unit’s activation were set as follows: x0 = 1, xmax = 3, xmin = .1. Perturbation
parameters where set as K1 = 5xmax, and K2 = 2. Neural activation levels xi at time t = 0 are
always set to x0. In studying model behavior, we look both at the neural (micro) and link
configuration (macro) levels. We also look both at the dynamical and the stochastic aspects
of model behavior.
Neural Dynamics without Homeostasis
When units homeostasis is not put in the model’s operation (τ2 = +∞), the neural activation
state and the configuration angle converges in most simulation runs to a fixed point. In
fixed points, a large proportion of units are either fully saturated (xi = xmax) or fully
depressed (xi = xmin). In some simulation runs, some units converge to intermediary values
(closer to x0). Simulation runs with different random connection matrices produce different
fixed points. Figure 5 shows the evolution in neural state space and link-configuration state
spaces, along side with corresponding probability distributions, for a particular simulation
run during 200 time steps. (High activation of units is coded as red in color plates, low
activation as blue, and values near x0 as green.) This is a similar behavior to that observed in
recurrent neural networks with symmetric connections, as in Hopfield RNN [7]. In a small
proportion of simulation runs with different connection weight matrices, neural dynamics
converges to a small region of state space usually in the form of a periodic cycle. In these
scenarios, most neural units are either in fully depressed or saturated regime, as in fixed
points solutions, but a proportion of cells oscillates due to non -symmetric and opposite sign
connections. In Figure 6 we show the evolution of the configuration state for one of such
simulation run, showing a small periodic cycle that corresponds to an oscillation of low
amplitude in configuration space. In a set of 10 consecutive runs with the same settings (but
different weight matrices), the results obtained were qualitatively similar — following one
of these two cases. The results (either fixed points or periodic cycle) also appeared in
controllers and networks with different number of neural units, from 5 to 50. Previous work
also showed that the introduction of considerable noise is (most of the times) not enough to
take the system away from fixed-points or small-regions of state space [14, 13]. Formally,

 Recurrent Neural Networks

8

Figure 4. Body configuration of a minimalist articulated agent with a single link and
rotational joint in 2D plane (one degree-of-freedom), controlled by an artificial muscle
composed of a set of muscular units: left): abstract design; right): visualization in the
developed neural agent simulator.

4. A minimalist embodied neural agent
In this section, we present a model of an embodied neural agent that relies on a RNN with
homeostasis to control its behavior. In particular, we show that the homeostasis introduces
aperiodic (chaotic) behavior in the system preventing the agent to ever reach a stationary
regime. This is argued to be useful for characterizing cognitive systems, since behavioral
exploration and continuous novelty is a distinguishing feature of this type of systems.

4.1 Model
We consider an embodied articulated agent with a single link and a single joint. The joint
angle fully defines the body configuration of the agent. The joint angle is determined by the
contraction of a simplified muscle that works like a mechanical lever. The muscle has a large
number of muscular units mi. The contraction/ extension of a muscular unit mi produces a
spatial displacement Δsi, and the summation of all displacements determines the joint angle.
Formally, ψ = f(Σi Δsi), where f is a function of the detailed geometry of the agent. We
assume that the contraction of a single neural units produces a relatively small link
displacement. Therefore, the simultaneous contraction of a large proportion of muscular
units is required to generate maximum displacement of the link. Additionally, the joint
angle ψ is always constrained to lie within a maximum amplitude interval [− ,]. The
agent also contains proprioceptive mechanisms for muscle contraction/distention or link
angular position (discussed below). In Figure 4, we show the abstract design of the agent.
We also show the graphical design of the agent as visualized in a developed simulator.
Muscle contraction (and thus body configuration) is controlled by a neural population with
N units. We make a simple attachment between this neural population and the muscle units,
by making the number of muscular units equal to the number of neural units, and
connecting them one-to-one (unidirectional). Muscular contraction is thus proportional to
the total activation of the network. When all units are in a rest/natural activation value, φ
takes value 0 (the link is horizontal).

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

9

A fixed proportion fπ of neural units is sensitive to the angular position of the link. Namely,
we define a preferred angular position φ * and cause that sub-set of units to receive
additional excitation the closer the link is to that preferred position/angle. Thus, this units
work as proprio-perceptive (proprioceptive) neural cells. The concrete equation we use to
model this is:

where πi is the external perturbation to the cell due to proprioceptive input, K1 is a parameter
for maximum perturbation value, (φ − φ*)2 is the squared difference of the link’s current
angular position and the preferred angle φ*, and K2 is a parameter for how slow perturbation
decreases as the current angle moves away from the preferred angle φ*. (K2 is also represents
the variance of a Gaussian curve.) In the simulation results presented below, fπ is always set
to .3, φ* always set to 80°.

4.2 Experimental results
We have performed several experiments to study the behavior of the previous presented
model. In these experiments, we generate neural controllers with random connections
according to the weight matrix M, using mean 0 and variance 2(M) = 1. For the presented
results, we made connection weights fixed (no learning), and removed internal noise.
Parameters for unit’s activation were set as follows: x0 = 1, xmax = 3, xmin = .1. Perturbation
parameters where set as K1 = 5xmax, and K2 = 2. Neural activation levels xi at time t = 0 are
always set to x0. In studying model behavior, we look both at the neural (micro) and link
configuration (macro) levels. We also look both at the dynamical and the stochastic aspects
of model behavior.
Neural Dynamics without Homeostasis
When units homeostasis is not put in the model’s operation (τ2 = +∞), the neural activation
state and the configuration angle converges in most simulation runs to a fixed point. In
fixed points, a large proportion of units are either fully saturated (xi = xmax) or fully
depressed (xi = xmin). In some simulation runs, some units converge to intermediary values
(closer to x0). Simulation runs with different random connection matrices produce different
fixed points. Figure 5 shows the evolution in neural state space and link-configuration state
spaces, along side with corresponding probability distributions, for a particular simulation
run during 200 time steps. (High activation of units is coded as red in color plates, low
activation as blue, and values near x0 as green.) This is a similar behavior to that observed in
recurrent neural networks with symmetric connections, as in Hopfield RNN [7]. In a small
proportion of simulation runs with different connection weight matrices, neural dynamics
converges to a small region of state space usually in the form of a periodic cycle. In these
scenarios, most neural units are either in fully depressed or saturated regime, as in fixed
points solutions, but a proportion of cells oscillates due to non -symmetric and opposite sign
connections. In Figure 6 we show the evolution of the configuration state for one of such
simulation run, showing a small periodic cycle that corresponds to an oscillation of low
amplitude in configuration space. In a set of 10 consecutive runs with the same settings (but
different weight matrices), the results obtained were qualitatively similar — following one
of these two cases. The results (either fixed points or periodic cycle) also appeared in
controllers and networks with different number of neural units, from 5 to 50. Previous work
also showed that the introduction of considerable noise is (most of the times) not enough to
take the system away from fixed-points or small-regions of state space [14, 13]. Formally,

 Recurrent Neural Networks

10

this means that fixed points are either attracting or Lyapunov stable (neural states tend to
stay within a small distance of a fixed point when perturbed [15]).

Figure 5. Dynamics without homeostasis with convergence to a fixed point (τ2 = +∞, N = 16).
left-to-right) neural activation history [in (blue, green, red) color code for depressed, rest,
and saturated activation levels]; probability distribution of neural state space mapped to
two dimensions (X|1 is the total activation of units index [1 :], and X|2 is the total units
activation index [+1,N])); time series for agent-link configuration angle ; probability
distribution for angle configuration angle ψ.

Figure 6. Dynamics without homeostasis — convergence to a small region of state space or
periodic cycle (τ2 = +∞, N = 16).
Neural Dynamics with Homeostasis
When units have homeostasis, the behavior of the system changes considerably. The
proportion of time that units are not saturated or depressed increases, as inspection of the
differential equation for the threshold above suggests. However, most units do not remain
with an activation value near x0 all the time since they are taken away from homeostasis due to
interconnection with other units. Figure 7 and figure 8 shows two qualitatively typical
simulation runs. [Noise is absent, 2(ξ) = 0.] The system state does not converge to a fixed point
or some simple attractor, but exhibits behavior that qualitatively can be categorized between
non-periodic behavior and nearly periodic, due to threshold adjustments [15]. When the
number of units is small, the behavior of systems tends to be closer to periodic behavior
(nearly periodic), and when the number of units increases the behavior tends to be more
aperiodic. Following Langton [8], such class of qualitative behaviors may be designated as
complex behavior. This is explained considering that although first-order neural dynamics
cause the system to move to a small region of state space, individual units’ homeostasis
(modeled as threshold adjustments) take the system away from this regions (fixed-points or
periodic cycles). This creates the conditions for a wider exploration of state space, when
compared with setting where the neural controller as only a first-order dynamics.

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

11

Figure 7. Dynamics with Homeostasis: convergence to aperiodic/chaotic regime (τ2 = 1

−τ 1, N =16).

Figure 8. Dynamics with Homeostasis: convergence to a nearly periodic regime (τ2 = 1

−τ 1, N = 8).

Figure 9. The effects of proprioceptive input in probability distribution of neural and
configuration state spaces: top) with proprioceptive input the probability distribution become
bi-modal, with one high activation region (link up), and one low activation or depressed
region (link down); bottom)) without proprioceptive input probability distribution become
uni-modal, with the region near ψ = 0 of highest probability due to homeostasis.

 Recurrent Neural Networks

10

this means that fixed points are either attracting or Lyapunov stable (neural states tend to
stay within a small distance of a fixed point when perturbed [15]).

Figure 5. Dynamics without homeostasis with convergence to a fixed point (τ2 = +∞, N = 16).
left-to-right) neural activation history [in (blue, green, red) color code for depressed, rest,
and saturated activation levels]; probability distribution of neural state space mapped to
two dimensions (X|1 is the total activation of units index [1 :], and X|2 is the total units
activation index [+1,N])); time series for agent-link configuration angle ; probability
distribution for angle configuration angle ψ.

Figure 6. Dynamics without homeostasis — convergence to a small region of state space or
periodic cycle (τ2 = +∞, N = 16).
Neural Dynamics with Homeostasis
When units have homeostasis, the behavior of the system changes considerably. The
proportion of time that units are not saturated or depressed increases, as inspection of the
differential equation for the threshold above suggests. However, most units do not remain
with an activation value near x0 all the time since they are taken away from homeostasis due to
interconnection with other units. Figure 7 and figure 8 shows two qualitatively typical
simulation runs. [Noise is absent, 2(ξ) = 0.] The system state does not converge to a fixed point
or some simple attractor, but exhibits behavior that qualitatively can be categorized between
non-periodic behavior and nearly periodic, due to threshold adjustments [15]. When the
number of units is small, the behavior of systems tends to be closer to periodic behavior
(nearly periodic), and when the number of units increases the behavior tends to be more
aperiodic. Following Langton [8], such class of qualitative behaviors may be designated as
complex behavior. This is explained considering that although first-order neural dynamics
cause the system to move to a small region of state space, individual units’ homeostasis
(modeled as threshold adjustments) take the system away from this regions (fixed-points or
periodic cycles). This creates the conditions for a wider exploration of state space, when
compared with setting where the neural controller as only a first-order dynamics.

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

11

Figure 7. Dynamics with Homeostasis: convergence to aperiodic/chaotic regime (τ2 = 1

−τ 1, N =16).

Figure 8. Dynamics with Homeostasis: convergence to a nearly periodic regime (τ2 = 1

−τ 1, N = 8).

Figure 9. The effects of proprioceptive input in probability distribution of neural and
configuration state spaces: top) with proprioceptive input the probability distribution become
bi-modal, with one high activation region (link up), and one low activation or depressed
region (link down); bottom)) without proprioceptive input probability distribution become
uni-modal, with the region near ψ = 0 of highest probability due to homeostasis.

 Recurrent Neural Networks

12

Neural Dynamics with Proprioceptive Input
To investigate the behavior of the system when proprioceptive input is used, we compared
the behavior of the systems with and without proprioception perturbation for neural
controllers with the same connection matrices. In particular, we want to see if increasing
neural activity when body configuration angle is near a preferred position would increase
the probability of the agent to staying near that region. Figure 9 shows diagrams for the
probability distribution of the configuration (left) and neural state spaces (right), for one
particular neural network with and without (top and bottom) proprioceptive perturbation.
The results show that proprioception cause the link angle distribution to become bimodal;
with the region slightly above the preferred angle, at 1.4 rad. (marked with a red vertical bar
in the probability distribution graph on the left), to have highest probability, corresponding
to a saturated region, and another high probability region corresponding to a region of
neural depression (with higher entropy than the saturated region). In contrast to this, for the
same connection weights matrix, the neural dynamics without proprioceptive perturbation
causes the link distribution to be uni-modal. In this case, the region near ψ = 0 (link at
horizontal position) is the highest probability region. (Previous work, suggests that this
distribution can be characterized by a (symmetric) power-law distribution [14]).

Figure 10. Comparing probability of regions in configuration state space across 10 different
simulation runs.
Testing for Robustness
Because, the system’s behavior changes considerable with different connection weight
matrices, we wanted to test the robustness of these findings across multiple runs with
different controllers. For this purpose, we divided the total link-configuration state space,
ψ∈ [− ,], in three regions: a depressed region, corresponding to a interval range of ψ∈

[− ,−], a resting region with ψ∈ [− ,], and a saturated and high amplitude region, ψ∈
[,]. Figure 10 shows the probability distribution of link angle for each of these three
intervals (mean and variance) for 10 different simulation runs. The left-hand graph
correspond to the settings with proprioceptive input, and in right-hand the graph represents
the setting without proprioceptive input. The results confirm the initial observation that
introducing proprioceptive input with higher intensity near a preferred region tends to
make that region of higher probability.
The bi-modality, induced by proprioception, arrives because positive perturbations tends to
increase neural excitation. This can be understood by looking at the equations governing
system behavior (here in vector form): X = F(X, Π; M), which can be linearized to
X ≈ F(X;M)+G· Π, if most units are in linear (non-saturated, non-depressed regime), a

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

13

condition ensured by homeostasis. Thus, higher input |Π| increases the value of first-
derivative X , and higher values of X correspond to higher configuration angles ψ.

Formally, we can say that in the linear regime > 0. For link states ψ = ψ*, the first

derivative X is still positive, so the highest probability angle tends to be higher than ψ*.

5. Other applications: visual attention
To further illustrate the use of RNN endowed with homeostasis, we describe in this section
an additional model this time targeting visual attention. It is a variant of the previous model
for muscular control, but now the agent-link as a sensor apparatus for visual perturbation.

5.1 Model
As previously, our agent model description consist of two parts: the description of the agent
body and the description of the neural controller. The body of the agent consists of a single
link with a tip with visual-input sensitive cells (figure 11). The link position or body
configuration is controlled by an antagonistic muscle pair (the left and right muscle), and
their contraction-extension depends on the activation of the motor units ml and mr, directly
connected to them. Activity of motor units fully defines the body configuration of the agent,
and consequently the angular position of his visual axes. Formally, we specify the link angle
to be:

where Km is a proportionality constant. Therefore, the link will turn to the left when ml > mr
and to the right when mr > ml. The link is always constrained to lie within a maximum
amplitude interval [− ,].
The visual tip of the agent detects external visual stimuli, modeled here as punctual particles
fixed or moving in a direction parallel to the horizontal baseline of the link. The particle
position is defined by the angle Φ*, which is constrained to a maximum amplitude interval
[− ,]. The presence of the particle imposes a visual input to the neural controller, that
includes Nv visual units. A visual unit has a maximum activation value when the stimulus is
located at a particular angular position in relation to a preferred position. Formally, visual
input is defined as:

where k1 and k2 are two visual input constants. Δ Φ = Φ − Φ* represents the difference
between link and particle orientations. '

iΦ corresponds the preferential angle for each visual
unit. With the settings above, Δ Φ is constrained to be in the interval [− ,], with limits
representing the two extreme situations where the particle and the link are as far away as
possible.
We made a simple attachment between the visual input units and a neural control
population, by making the number of units of each population equal and connecting them
one-to-one (unidirectionally). Control units are connected as a fully recurrent neural
network — all units connect to all. The control population is connected to the neural motor
population such that half of the Nc units connect to the motor unit ml, and the other half
connects to the motor unit mr. That is:

 Recurrent Neural Networks

12

Neural Dynamics with Proprioceptive Input
To investigate the behavior of the system when proprioceptive input is used, we compared
the behavior of the systems with and without proprioception perturbation for neural
controllers with the same connection matrices. In particular, we want to see if increasing
neural activity when body configuration angle is near a preferred position would increase
the probability of the agent to staying near that region. Figure 9 shows diagrams for the
probability distribution of the configuration (left) and neural state spaces (right), for one
particular neural network with and without (top and bottom) proprioceptive perturbation.
The results show that proprioception cause the link angle distribution to become bimodal;
with the region slightly above the preferred angle, at 1.4 rad. (marked with a red vertical bar
in the probability distribution graph on the left), to have highest probability, corresponding
to a saturated region, and another high probability region corresponding to a region of
neural depression (with higher entropy than the saturated region). In contrast to this, for the
same connection weights matrix, the neural dynamics without proprioceptive perturbation
causes the link distribution to be uni-modal. In this case, the region near ψ = 0 (link at
horizontal position) is the highest probability region. (Previous work, suggests that this
distribution can be characterized by a (symmetric) power-law distribution [14]).

Figure 10. Comparing probability of regions in configuration state space across 10 different
simulation runs.
Testing for Robustness
Because, the system’s behavior changes considerable with different connection weight
matrices, we wanted to test the robustness of these findings across multiple runs with
different controllers. For this purpose, we divided the total link-configuration state space,
ψ∈ [− ,], in three regions: a depressed region, corresponding to a interval range of ψ∈

[− ,−], a resting region with ψ∈ [− ,], and a saturated and high amplitude region, ψ∈
[,]. Figure 10 shows the probability distribution of link angle for each of these three
intervals (mean and variance) for 10 different simulation runs. The left-hand graph
correspond to the settings with proprioceptive input, and in right-hand the graph represents
the setting without proprioceptive input. The results confirm the initial observation that
introducing proprioceptive input with higher intensity near a preferred region tends to
make that region of higher probability.
The bi-modality, induced by proprioception, arrives because positive perturbations tends to
increase neural excitation. This can be understood by looking at the equations governing
system behavior (here in vector form): X = F(X, Π; M), which can be linearized to
X ≈ F(X;M)+G· Π, if most units are in linear (non-saturated, non-depressed regime), a

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

13

condition ensured by homeostasis. Thus, higher input |Π| increases the value of first-
derivative X , and higher values of X correspond to higher configuration angles ψ.

Formally, we can say that in the linear regime > 0. For link states ψ = ψ*, the first

derivative X is still positive, so the highest probability angle tends to be higher than ψ*.

5. Other applications: visual attention
To further illustrate the use of RNN endowed with homeostasis, we describe in this section
an additional model this time targeting visual attention. It is a variant of the previous model
for muscular control, but now the agent-link as a sensor apparatus for visual perturbation.

5.1 Model
As previously, our agent model description consist of two parts: the description of the agent
body and the description of the neural controller. The body of the agent consists of a single
link with a tip with visual-input sensitive cells (figure 11). The link position or body
configuration is controlled by an antagonistic muscle pair (the left and right muscle), and
their contraction-extension depends on the activation of the motor units ml and mr, directly
connected to them. Activity of motor units fully defines the body configuration of the agent,
and consequently the angular position of his visual axes. Formally, we specify the link angle
to be:

where Km is a proportionality constant. Therefore, the link will turn to the left when ml > mr
and to the right when mr > ml. The link is always constrained to lie within a maximum
amplitude interval [− ,].
The visual tip of the agent detects external visual stimuli, modeled here as punctual particles
fixed or moving in a direction parallel to the horizontal baseline of the link. The particle
position is defined by the angle Φ*, which is constrained to a maximum amplitude interval
[− ,]. The presence of the particle imposes a visual input to the neural controller, that
includes Nv visual units. A visual unit has a maximum activation value when the stimulus is
located at a particular angular position in relation to a preferred position. Formally, visual
input is defined as:

where k1 and k2 are two visual input constants. Δ Φ = Φ − Φ* represents the difference
between link and particle orientations. '

iΦ corresponds the preferential angle for each visual
unit. With the settings above, Δ Φ is constrained to be in the interval [− ,], with limits
representing the two extreme situations where the particle and the link are as far away as
possible.
We made a simple attachment between the visual input units and a neural control
population, by making the number of units of each population equal and connecting them
one-to-one (unidirectionally). Control units are connected as a fully recurrent neural
network — all units connect to all. The control population is connected to the neural motor
population such that half of the Nc units connect to the motor unit ml, and the other half
connects to the motor unit mr. That is:

 Recurrent Neural Networks

14

5.2 Experimental results
In this section, we present simulation results for basic experimental settings. We focus on
experiments with a single particle with a fixed position or simple movements. For more
elaborated experimental settings see [1].

Figure 11. Diagram of a minimalist embodied neural agent with one degree-offreedom for
visual attention tasks, subject to a variety of simple visual stimuli (point particles). The agent
consists of a single link and joint, representing the orientation of a visual axes, a tip sensitive
to visual stimuli, and an antagonistic muscle pair. left): Graphical visualization in the
developed neural agent simulator. right): Abstract design representing the agent’s body and
the set of units controlling muscular contraction-distension, and receiving visual input. The
body configuration is defined by the link angle _ as commanded by left and right muscles,
whose contraction/extension is set by two motor units ml and mr. The motor units are
connected to a set of control neural units. Control units are connected in a fully recurrent
way (complete connection graph), and each control unit receives input from a
corresponding visual input unit.
Neural Dynamics without Homeostasis
The experiments described in this section were used to analyze the effect of homeostasic
mechanisms in the visual system, with and without visual perturbation. This study was
performed with 8 control units (Nc = 8), and then with different sizes of neural populations,
Nc ∈ {4, 8, 16, 32, 64}.
In the first trials, the neural control population was setup with eight units. Units in the
motor population were always set with two units (controlling the left and right muscles).

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

15

We set as visual stimulus a point particle situated at a fixed distance from the horizontal
basis of the agent. Different simulation runs select a different (randomly selected) angular
position for the particle. The weight matrices also take different random values for each
simulation run with Vc = 1.
Figure 12 shows the system’s behavior during 500 time-steps of a particular run, when there
is no visual stimuli present in the agent’s environment. Here, neural homeostasis is turn off
(τ2 = +∞). The left-handed side of figure 12 depicts the time-series for configuration angle Φ,
with the vertical axes representing time and the horizontal axes representing angular
displacement of the link. In the right-handed side is represented the history of neural
activation using codes (blue for depression, red for saturation and green for intermediate
values). This is represented with the symbol Xc_. The results show that the body
configuration/visual orientation quickly converge to a fixed-point. The same happens with
the neural network dynamics. When equilibrium is reached (around t = 20) a variety of
individual neural states can be observed. Some cells are in depressed state, some in
saturated state (in this run, only one), and some take intermediate activation values. The
initial state fluctuation corresponds to a transient period which can be interpreted as a
“relaxation” of neural state. The potential energy of the network tends to decrease during
this period [7]. Different simulation runs would produce different equilibrium states.

Figure 12. Time-series for the link configuration angle Φ, and control units’ activation state
Xc over 500 time-steps. Neural controller has 8 units without homeostasis.
Neural Dynamics with Perception but without Homeostasis
In figure 13 we show the behavior of the visual system for two simulation run when a point
particle is present in the visual field. The figure includes the time-series for the configuration
state and the time-series for the neural state, and also (in the middle) the time-series for the
angular difference between link and particle orientations (Δ Φ). The position of the particle
is highlighted as a vertical red line in the plot for Φ. The results show that for the first
presented simulation run the angular position of the link is close to the position of the
particle. This can also be seen by looking at the data plot for Δ Φ which shows that the
angular distance to the particle quickly converges to a value close to zero. The second row in
the figure 13, shows that this is not always the case. In this second run the link converges to
a position far away from the particle position.
The left-handed side of figure 14 shows the time-series of Δ Φ for 10 consecutive simulation
runs when the neural controller is configured without homeostasis. The plots confirm the
previous observations. Although for an important fraction of simulation runs the angular
differences are reduced (6), for several of the simulation runs the link converges to positions
far away from the particle. This occurs because the relaxation of the neural state takes the
link to certain positions before the visual input is able to significantly influence the neural
dynamics.

 Recurrent Neural Networks

14

5.2 Experimental results
In this section, we present simulation results for basic experimental settings. We focus on
experiments with a single particle with a fixed position or simple movements. For more
elaborated experimental settings see [1].

Figure 11. Diagram of a minimalist embodied neural agent with one degree-offreedom for
visual attention tasks, subject to a variety of simple visual stimuli (point particles). The agent
consists of a single link and joint, representing the orientation of a visual axes, a tip sensitive
to visual stimuli, and an antagonistic muscle pair. left): Graphical visualization in the
developed neural agent simulator. right): Abstract design representing the agent’s body and
the set of units controlling muscular contraction-distension, and receiving visual input. The
body configuration is defined by the link angle _ as commanded by left and right muscles,
whose contraction/extension is set by two motor units ml and mr. The motor units are
connected to a set of control neural units. Control units are connected in a fully recurrent
way (complete connection graph), and each control unit receives input from a
corresponding visual input unit.
Neural Dynamics without Homeostasis
The experiments described in this section were used to analyze the effect of homeostasic
mechanisms in the visual system, with and without visual perturbation. This study was
performed with 8 control units (Nc = 8), and then with different sizes of neural populations,
Nc ∈ {4, 8, 16, 32, 64}.
In the first trials, the neural control population was setup with eight units. Units in the
motor population were always set with two units (controlling the left and right muscles).

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

15

We set as visual stimulus a point particle situated at a fixed distance from the horizontal
basis of the agent. Different simulation runs select a different (randomly selected) angular
position for the particle. The weight matrices also take different random values for each
simulation run with Vc = 1.
Figure 12 shows the system’s behavior during 500 time-steps of a particular run, when there
is no visual stimuli present in the agent’s environment. Here, neural homeostasis is turn off
(τ2 = +∞). The left-handed side of figure 12 depicts the time-series for configuration angle Φ,
with the vertical axes representing time and the horizontal axes representing angular
displacement of the link. In the right-handed side is represented the history of neural
activation using codes (blue for depression, red for saturation and green for intermediate
values). This is represented with the symbol Xc_. The results show that the body
configuration/visual orientation quickly converge to a fixed-point. The same happens with
the neural network dynamics. When equilibrium is reached (around t = 20) a variety of
individual neural states can be observed. Some cells are in depressed state, some in
saturated state (in this run, only one), and some take intermediate activation values. The
initial state fluctuation corresponds to a transient period which can be interpreted as a
“relaxation” of neural state. The potential energy of the network tends to decrease during
this period [7]. Different simulation runs would produce different equilibrium states.

Figure 12. Time-series for the link configuration angle Φ, and control units’ activation state
Xc over 500 time-steps. Neural controller has 8 units without homeostasis.
Neural Dynamics with Perception but without Homeostasis
In figure 13 we show the behavior of the visual system for two simulation run when a point
particle is present in the visual field. The figure includes the time-series for the configuration
state and the time-series for the neural state, and also (in the middle) the time-series for the
angular difference between link and particle orientations (Δ Φ). The position of the particle
is highlighted as a vertical red line in the plot for Φ. The results show that for the first
presented simulation run the angular position of the link is close to the position of the
particle. This can also be seen by looking at the data plot for Δ Φ which shows that the
angular distance to the particle quickly converges to a value close to zero. The second row in
the figure 13, shows that this is not always the case. In this second run the link converges to
a position far away from the particle position.
The left-handed side of figure 14 shows the time-series of Δ Φ for 10 consecutive simulation
runs when the neural controller is configured without homeostasis. The plots confirm the
previous observations. Although for an important fraction of simulation runs the angular
differences are reduced (6), for several of the simulation runs the link converges to positions
far away from the particle. This occurs because the relaxation of the neural state takes the
link to certain positions before the visual input is able to significantly influence the neural
dynamics.

 Recurrent Neural Networks

16

Figure 13. Time-series for the link configuration angle Φ, the difference between link and
particle positions Δ Φ, and control units activation state Xc over 50 time-steps. Neural
controller has 8 units without homeostasis. The visual stimulus is represented as a vertical
red line. Positions were set randomly and were invariant during the simulation time.

Figure 14. Time-series of Δ Φ over 200 time-steps for 10 consecutive simulation runs. A
different particle position was set for each simulation run. (Nc = 8) left): Neural controllers
without homeostasis; right): Neural controllers with homeostasis.
Neural Dynamics with Homeostasis
The introduction of an adaptive mechanism in the form of homeostasis completely changes
the agent’s internal and external dynamics. Figure 15 shows that when homeostasic
mechanisms are used (= 0.5), the body configuration of the agent exhibits a non-periodic
or chaotic behavior [15]. This means that while the equations for neural dynamics are
completely deterministic both the link angle and the neural state seems to move erratically
as if a stochastic process is involved. Note that in this trial the point particle is not present
yet. Additionally, it can be seen that individual neural units hardly stabilize in particular
activation values. This occurs because homeostasis slowly pushes unit’s activation to resting

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

17

value x0. However, due to unit’s interconnections a global equilibrium is never reached [13].
Therefore, the proportion of cells not saturated or depressed at a given time is much less
than when homeostasis is not used. Consequently, the activation state of the neural
population does not converge to a fixed point. Instead, we can observe complex oscillating
patterns of neural activity.
Neural Dynamics with Perception and Homeostasis
In figure 16, we present data plots for two simulation runs with neural controllers working
with homeostasis and a point particle is present in two slightly different positions. The
results show that in both simulation runs the link orientation converges to a region close to
the particle position. This is confirmed in the middle plot of figure 16 where is shown that
Δ Φ converges to values close to zero. Most importantly, the link orientation does not
converge to a fixed-point. Instead, it performs small oscillatory movements.
Experimentation with model variations, showed that the use of an antagonistic muscle pair,
as apposed to a single muscle, is very useful to give robustness to the model’s behavior.
Model variations with a single muscle requires parameters to be carefully selected to
achieve effective visual fixation behavior. It is interesting to note that while homeostasis
tends to move the neural state away from particular regions (e.g. a fixed-point) [14, 13], this
does not cause the system to loose track of the particle and increase error. This happens
because there is redundancy in the neural state–configuration state mapping, with the
number of degrees-of-freedom in the former being much higher than the number of degree-
of-freedom in the later (|X| >> 1). This explains why in the righthand plots of figure 16 the
neural state moves between several states and yet the orientation of the visual axes changes
little.

Figure 15. Time-series for the link configuration angle Φ, and control units activation state
Xc over 500 time-steps. Neural controller has 8 homeostasic units.

The right-handed side of figure 14 shows time-series of Δ Φ for 10 consecutive simulation
runs when the neural controller is configured with homeostasis. The plot shows that the
behavior of the system is qualitatively different from the behavior when no homeostasis is
used (left-handed side of figure 14). In a significant proportion of runs the link orientation
approximately matches the particle orientation (Δ Φ ≈ 0), although we can identify
continuous aperiodic oscillations of the link around the particle position. This happens
because homeostasis prevents neural state to reach a long-term equilibrium and makes
unit’s activation to oscillate. On the other hand, the presence of the particle promotes the
selection of neural states that corresponds to configuration states of high visual stimulation.
Thus, changes at the macro-level are limited while changes in the micro-level can occur. For
another important proportion of runs the link orientation moves away from the particle
position some proportion of the total number of simulation time-steps (in the case, 200).

 Recurrent Neural Networks

16

Figure 13. Time-series for the link configuration angle Φ, the difference between link and
particle positions Δ Φ, and control units activation state Xc over 50 time-steps. Neural
controller has 8 units without homeostasis. The visual stimulus is represented as a vertical
red line. Positions were set randomly and were invariant during the simulation time.

Figure 14. Time-series of Δ Φ over 200 time-steps for 10 consecutive simulation runs. A
different particle position was set for each simulation run. (Nc = 8) left): Neural controllers
without homeostasis; right): Neural controllers with homeostasis.
Neural Dynamics with Homeostasis
The introduction of an adaptive mechanism in the form of homeostasis completely changes
the agent’s internal and external dynamics. Figure 15 shows that when homeostasic
mechanisms are used (= 0.5), the body configuration of the agent exhibits a non-periodic
or chaotic behavior [15]. This means that while the equations for neural dynamics are
completely deterministic both the link angle and the neural state seems to move erratically
as if a stochastic process is involved. Note that in this trial the point particle is not present
yet. Additionally, it can be seen that individual neural units hardly stabilize in particular
activation values. This occurs because homeostasis slowly pushes unit’s activation to resting

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

17

value x0. However, due to unit’s interconnections a global equilibrium is never reached [13].
Therefore, the proportion of cells not saturated or depressed at a given time is much less
than when homeostasis is not used. Consequently, the activation state of the neural
population does not converge to a fixed point. Instead, we can observe complex oscillating
patterns of neural activity.
Neural Dynamics with Perception and Homeostasis
In figure 16, we present data plots for two simulation runs with neural controllers working
with homeostasis and a point particle is present in two slightly different positions. The
results show that in both simulation runs the link orientation converges to a region close to
the particle position. This is confirmed in the middle plot of figure 16 where is shown that
Δ Φ converges to values close to zero. Most importantly, the link orientation does not
converge to a fixed-point. Instead, it performs small oscillatory movements.
Experimentation with model variations, showed that the use of an antagonistic muscle pair,
as apposed to a single muscle, is very useful to give robustness to the model’s behavior.
Model variations with a single muscle requires parameters to be carefully selected to
achieve effective visual fixation behavior. It is interesting to note that while homeostasis
tends to move the neural state away from particular regions (e.g. a fixed-point) [14, 13], this
does not cause the system to loose track of the particle and increase error. This happens
because there is redundancy in the neural state–configuration state mapping, with the
number of degrees-of-freedom in the former being much higher than the number of degree-
of-freedom in the later (|X| >> 1). This explains why in the righthand plots of figure 16 the
neural state moves between several states and yet the orientation of the visual axes changes
little.

Figure 15. Time-series for the link configuration angle Φ, and control units activation state
Xc over 500 time-steps. Neural controller has 8 homeostasic units.

The right-handed side of figure 14 shows time-series of Δ Φ for 10 consecutive simulation
runs when the neural controller is configured with homeostasis. The plot shows that the
behavior of the system is qualitatively different from the behavior when no homeostasis is
used (left-handed side of figure 14). In a significant proportion of runs the link orientation
approximately matches the particle orientation (Δ Φ ≈ 0), although we can identify
continuous aperiodic oscillations of the link around the particle position. This happens
because homeostasis prevents neural state to reach a long-term equilibrium and makes
unit’s activation to oscillate. On the other hand, the presence of the particle promotes the
selection of neural states that corresponds to configuration states of high visual stimulation.
Thus, changes at the macro-level are limited while changes in the micro-level can occur. For
another important proportion of runs the link orientation moves away from the particle
position some proportion of the total number of simulation time-steps (in the case, 200).

 Recurrent Neural Networks

18

Again this happens due to homeostasis, but at particular occasions the neural state moves to
regions of the neural states space that do not correspond to a configuration state where the
link is aligned with the visual particle. Only in one simulation run (plotted in a blue line) the
link is unable to fixate the particle.

Figure 16 Time-series for the link configuration angle Φ, the difference between link and
particle positions Δ Φ and control units activation state Xc over 500 time-steps. Neural
controller with 8 homeostasic units. The particle is represented as a vertical red line and is
located in random positions.

6. Summary discussion, related work, and conclusions
Research in Recurrent Neural Networks since Hopfield initial contribution [7] as received
very much attention specially in exploring its properties as a model for associative memory.
Additionally, theoretical and experimental advances in artificial intelligence and robotics
research have identified complexity theory as a promising tool to understand how neural
agents can self-organize to produce adaptive behavior [11]. Combining RNN models and
behavioral research is thus a promising approach to understand cognitive systems and the
role played by recurrent connection in the nervous system.
In this article, we make a characterization of cognitive agents that is suggestive of how RNN
can control embodied agents, and extend the basic formulation of RNN to include adaptive
thresholds to model neural homeostasis. In the proposed approach, adaptive thresholds
make neural units to move to a resting activation value although at a slower pace than main
activation dynamics. Experimental results show that homeostasis make neural dynamics to
produce aperiodic (chaotic) behavior and, for small networks, nearly periodic behavior. We
showed that this can be used as a source of behavioral exploration and novelty in embodied
neural agents.

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

19

Homeostasic mechanisms have been identified in the biological neural networks literature
[16], and its behavioral relevance is being explored by other researchers [12]. The emergence
of aperiodic behavior in recurrent neural networks as been previously advanced in literature
[5], and fits known empirical data about animal and human brain activity [4]. Classical
cybernetics has also identified homeostasic behavior as a key characteristic of natural and
artificial adaptive/intelligent systems [2]. Experimental methods have been applied to study
the role of proprioceptors in neuro-muscular control in animals and humans [6]. The
situated AI and ALife community as also identified proprioception as an important
mechanism in agent’s sensoriomotor coordination [9].
The applicability of the framework and experimental results presented in this chapter are
wide. We have provided concrete examples in the domain of muscular control and visual
attention, and reported some promising results. Other problem domains in cognitive
modeling should also be considered, to see to what extent embodied neural agents and
RNN with homeostasis provide a good experimental grounding for research in cognitive
modeling.

7. References
R. Abreu and J. P. Simão. Visual attention in embodied RR-ANN without learning. In Proc.

of the EPIA 2007, Workshop on Computational Methods in Bioinformatics and Systems
Biology. 2007.

W. R. Ashby. Introduction to Cybernetics. Methuen, London, UK, 1956.
R. D. Beer. Computational and dynamical languages for autonomous agents. In Mind as

motion: explorations in the dynamics of cognition table of contents, pages 121–147.
Bradford Book: The MIT Press, 1996.

W. J. Freeman. How Brains Make Up Their Minds. Columbia University Press, 2001.
D. Harter and R. Kozma. Aperiodic dynamics and the self-organization of cognitive maps in

autonomous agents. International Jounral on Artificial Intelligence Tools, 21(9):955–971,
2005.

Z. Hasan. Role of proprioceptors in neural control. Current Opinion in Neurobiology, 2:824–
829, 1992.

J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 70:2554–2558, 1982.

C. G. Langton. Life at the edge of chaos. In Artificial Life II, SFI Studies in Sciences of
Complexity, vol. X, pages 41–91. Addison-Wesley, 1991.

M. Maillard, O. Gapenne, L. Hafemeister, and P. Gaussier. Perception as a dynamical
sensorio-motor attraction basin. Advances in Artificial Life (ECAL), LNAI 3630, pages
37–46, 2005.

H. R. Maturana and F. J. Varela. Autopoiesis and Cognition: the Realization of the Living. D.
Reidel Publishing, 1980.

S. Nolfi. Behaviour as a complex adaptive system: On the role of selforganization in the
development of individual and collective behaviour. ComplexUs, 2(3–4):195–203,
2004/2005.

E. A. D. Paolo. Organismically-inspired robotics: Homeostatic adaptation and natural
teleology beyond the closed sensorimotor loop. In Dynamical Systems Approach to
Embodiment and Sociality, Advanced Knowledge International, International Series on

 Recurrent Neural Networks

18

Again this happens due to homeostasis, but at particular occasions the neural state moves to
regions of the neural states space that do not correspond to a configuration state where the
link is aligned with the visual particle. Only in one simulation run (plotted in a blue line) the
link is unable to fixate the particle.

Figure 16 Time-series for the link configuration angle Φ, the difference between link and
particle positions Δ Φ and control units activation state Xc over 500 time-steps. Neural
controller with 8 homeostasic units. The particle is represented as a vertical red line and is
located in random positions.

6. Summary discussion, related work, and conclusions
Research in Recurrent Neural Networks since Hopfield initial contribution [7] as received
very much attention specially in exploring its properties as a model for associative memory.
Additionally, theoretical and experimental advances in artificial intelligence and robotics
research have identified complexity theory as a promising tool to understand how neural
agents can self-organize to produce adaptive behavior [11]. Combining RNN models and
behavioral research is thus a promising approach to understand cognitive systems and the
role played by recurrent connection in the nervous system.
In this article, we make a characterization of cognitive agents that is suggestive of how RNN
can control embodied agents, and extend the basic formulation of RNN to include adaptive
thresholds to model neural homeostasis. In the proposed approach, adaptive thresholds
make neural units to move to a resting activation value although at a slower pace than main
activation dynamics. Experimental results show that homeostasis make neural dynamics to
produce aperiodic (chaotic) behavior and, for small networks, nearly periodic behavior. We
showed that this can be used as a source of behavioral exploration and novelty in embodied
neural agents.

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:
Theory and Applications

19

Homeostasic mechanisms have been identified in the biological neural networks literature
[16], and its behavioral relevance is being explored by other researchers [12]. The emergence
of aperiodic behavior in recurrent neural networks as been previously advanced in literature
[5], and fits known empirical data about animal and human brain activity [4]. Classical
cybernetics has also identified homeostasic behavior as a key characteristic of natural and
artificial adaptive/intelligent systems [2]. Experimental methods have been applied to study
the role of proprioceptors in neuro-muscular control in animals and humans [6]. The
situated AI and ALife community as also identified proprioception as an important
mechanism in agent’s sensoriomotor coordination [9].
The applicability of the framework and experimental results presented in this chapter are
wide. We have provided concrete examples in the domain of muscular control and visual
attention, and reported some promising results. Other problem domains in cognitive
modeling should also be considered, to see to what extent embodied neural agents and
RNN with homeostasis provide a good experimental grounding for research in cognitive
modeling.

7. References
R. Abreu and J. P. Simão. Visual attention in embodied RR-ANN without learning. In Proc.

of the EPIA 2007, Workshop on Computational Methods in Bioinformatics and Systems
Biology. 2007.

W. R. Ashby. Introduction to Cybernetics. Methuen, London, UK, 1956.
R. D. Beer. Computational and dynamical languages for autonomous agents. In Mind as

motion: explorations in the dynamics of cognition table of contents, pages 121–147.
Bradford Book: The MIT Press, 1996.

W. J. Freeman. How Brains Make Up Their Minds. Columbia University Press, 2001.
D. Harter and R. Kozma. Aperiodic dynamics and the self-organization of cognitive maps in

autonomous agents. International Jounral on Artificial Intelligence Tools, 21(9):955–971,
2005.

Z. Hasan. Role of proprioceptors in neural control. Current Opinion in Neurobiology, 2:824–
829, 1992.

J. J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA, 70:2554–2558, 1982.

C. G. Langton. Life at the edge of chaos. In Artificial Life II, SFI Studies in Sciences of
Complexity, vol. X, pages 41–91. Addison-Wesley, 1991.

M. Maillard, O. Gapenne, L. Hafemeister, and P. Gaussier. Perception as a dynamical
sensorio-motor attraction basin. Advances in Artificial Life (ECAL), LNAI 3630, pages
37–46, 2005.

H. R. Maturana and F. J. Varela. Autopoiesis and Cognition: the Realization of the Living. D.
Reidel Publishing, 1980.

S. Nolfi. Behaviour as a complex adaptive system: On the role of selforganization in the
development of individual and collective behaviour. ComplexUs, 2(3–4):195–203,
2004/2005.

E. A. D. Paolo. Organismically-inspired robotics: Homeostatic adaptation and natural
teleology beyond the closed sensorimotor loop. In Dynamical Systems Approach to
Embodiment and Sociality, Advanced Knowledge International, International Series on

 Recurrent Neural Networks

20

Advanced Intelligence, pages 19–42. Magill, Australia: Advanced Knowledge
International Press, 2003.

J. P. Simão. Measuring entropy in embodied neural agents with homeostasic units: A link
between complexity and cybernetics. 9th European Conference on Artificial Life, 2007.

J. P. Simão. Self-perturbation and homeostasis in embodied recurrent neural networks: A
meta-model and some explorations with mechanisms for sensorimotor
coordination. International Conference on Artificial Neural Networks, 2007.

S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering. Perseus Books Group, 1994.

G. Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous system.
Nature Reviews Neuroscience, pages 97–101, 2004.

2

Biological Signals Identification by a Dynamic
Recurrent Neural Network: from Oculomotor

Neural Integrator to Complex Human
Movements and Locomotion

Guy CHERONa,b, Françoise LEURSa, Ana BENGOETXEAa, Ana Maria
CEBOLLAa, Jean-Philippe DRAYEa, Pablo D’ALCANTARAa

and Bernard DANa,c
aLaboratory of Neurophysiology and Movement Biomechanics,

bLaboratory of Electrophysiology, Université de Mons-Hainaut,
cDepartment of Neurology, Hopital Universitaire des Enfants reine Fabiola,

 Université Libre de Bruxelles,
Belgium

1. Introduction
The recent advances in the application of artificial neural networks in the biological field
have been inspired by the functional organization of real biological structures (Draye et
al.,1997a; Anastasio & Gad, 2007). The fascination exerted by the oculomotor system upon
both engineers and neuroscientists have played an important role in this issue. In particular,
since the definitive evidence of the existence of a neural integrator in the brainstem (Cheron
et al., 1986a; Cannon & Robinson, 1987; Robinson, 1989 for a review) performing
mathematical integration of the eye velocity into eye position signals, numerous artificial
networks have been developed allowing a better understanding of the fundamental
question of how the brain control movement. Such bio-mimetic strategy has recently
permitted to elaborate different dynamic recurrent neural networks (DRNN) specifically
dedicated to the command of humanoid robot (Tani et al., 2008). Hierarchical neural-
inspired modules have also been proposed forming cascades of forward dynamics models
(Jordan & Rumelhart, 1992; Kawato et al., 1987; Tani, 2003) in which top-down and bottom-
up influences allowed generating behavioural primitives. This Chapter describes the main
steps performed in the development of our DRNN from the neural integrator models to
those applied in the field of human movement control.

2. DRNN simulation of the oculomotor neural integrator
The interest for neural integrator models outpaces the oculomotor field because the
processes involved in the maintenance of eye position presents an analogy with the
information held in short-term or working memory (Aksay et al., 2001, 2003; McCormick et
al., 2003). When the neuron of the neural integrator persistently discharge for encoding the

 Recurrent Neural Networks

20

Advanced Intelligence, pages 19–42. Magill, Australia: Advanced Knowledge
International Press, 2003.

J. P. Simão. Measuring entropy in embodied neural agents with homeostasic units: A link
between complexity and cybernetics. 9th European Conference on Artificial Life, 2007.

J. P. Simão. Self-perturbation and homeostasis in embodied recurrent neural networks: A
meta-model and some explorations with mechanisms for sensorimotor
coordination. International Conference on Artificial Neural Networks, 2007.

S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry
and Engineering. Perseus Books Group, 1994.

G. Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous system.
Nature Reviews Neuroscience, pages 97–101, 2004.

2

Biological Signals Identification by a Dynamic
Recurrent Neural Network: from Oculomotor

Neural Integrator to Complex Human
Movements and Locomotion

Guy CHERONa,b, Françoise LEURSa, Ana BENGOETXEAa, Ana Maria
CEBOLLAa, Jean-Philippe DRAYEa, Pablo D’ALCANTARAa

and Bernard DANa,c
aLaboratory of Neurophysiology and Movement Biomechanics,

bLaboratory of Electrophysiology, Université de Mons-Hainaut,
cDepartment of Neurology, Hopital Universitaire des Enfants reine Fabiola,

 Université Libre de Bruxelles,
Belgium

1. Introduction
The recent advances in the application of artificial neural networks in the biological field
have been inspired by the functional organization of real biological structures (Draye et
al.,1997a; Anastasio & Gad, 2007). The fascination exerted by the oculomotor system upon
both engineers and neuroscientists have played an important role in this issue. In particular,
since the definitive evidence of the existence of a neural integrator in the brainstem (Cheron
et al., 1986a; Cannon & Robinson, 1987; Robinson, 1989 for a review) performing
mathematical integration of the eye velocity into eye position signals, numerous artificial
networks have been developed allowing a better understanding of the fundamental
question of how the brain control movement. Such bio-mimetic strategy has recently
permitted to elaborate different dynamic recurrent neural networks (DRNN) specifically
dedicated to the command of humanoid robot (Tani et al., 2008). Hierarchical neural-
inspired modules have also been proposed forming cascades of forward dynamics models
(Jordan & Rumelhart, 1992; Kawato et al., 1987; Tani, 2003) in which top-down and bottom-
up influences allowed generating behavioural primitives. This Chapter describes the main
steps performed in the development of our DRNN from the neural integrator models to
those applied in the field of human movement control.

2. DRNN simulation of the oculomotor neural integrator
The interest for neural integrator models outpaces the oculomotor field because the
processes involved in the maintenance of eye position presents an analogy with the
information held in short-term or working memory (Aksay et al., 2001, 2003; McCormick et
al., 2003). When the neuron of the neural integrator persistently discharge for encoding the

 Recurrent Neural Networks

22

time-integral of the eye velocity signals during the saccade, this tonic activity may be
interpreted as an internal memory of the eye position in space (Godaux & Cheron, 1996;
Chan & Galiana, 2005). The analogy with working memory was thus easily accomplished
(McCormick, 2001).
The first neural network approach of the neural integrator was made by Cannon et al. (1983,
1985). Their hard-wired model in which the synaptic weights were explicitly specified can
integrate a push-pull input signal without integrating the background rates and has the
appealing property that localized artificial lesions produced a decrease in the time constant
of the whole network. Later, Anastasio & Robinson (1991) proposed the first learning model
for the neural integrator. In this context, we have upgraded the Anastasio-Robinson model
in order to work in the continuous-time domain (in opposition to the discrete-time domain).
Additionally, we improved the biologically plausible features by (1) the introduction of a
strong constraint on the synaptic weight and (2) the introduction of an artificial distance
between the neurons by generating delays proportional to the proximity.

2.1 The basic DRNN models
The basic model is a dynamic recurrent neural network governed by the following
equations:

 i
i i i

dy
T -y () I

dt iF x= + + (1)

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit
i, It is an external input (or bias), and xi is given by:

 i ij j
j

x w y= ∑ (2)

which is the propagation equation of the network (xi is called the total or effective input of
the neuron, Wij is the synaptic weight between units i and j). The time constants Ti will act
like a relaxation process. The correction of the time constants will be included in the
learning process in order to increase the dynamical features of the model. Introduction of Ti
allows more complex frequential behaviour, improves the non-linearity effect of the sigmoid
function and the memory effect of time delays (Draye et al., 1996; 1997a).

2.2 Fixed-sign connection weights
Traditionally, artificial network represent the synaptic weight by a real number. This
number is modified by the learning process (often a gradient-descent kind of minimization)
which frequently leads to a sign change at different location. This sign change is in conflict
with biological reality and Dale’s Principle. Thus we fixed the sign of all connections by the
introduction of a variable sij associated with every weight unit wij. The variable sij take their
value in the set {-1,0,+1}, and in the classical network propagation equation (2), the weights
wij are replaced by the equation:

 ijij ws . (3)

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

23

The architecture of the network is consistent with the neuroanatomy of the brainstem
circuitry of the neural integrator devoted to saccade and vestibulo-ocular systems for the
horizontal movements. The figure 1 illustrates the neural integrator DRNN comprising a
fully connected hidden layer of 16 inhibitory units, two output units representing the
motoneurons of the median and lateral rectus muscle of the left eye and two afferents inputs
from the horizontal canal (for the vestibulo-ocular reflex) or from the eye-velocity saccade
generator.

Figure 1. Architecture of the DRNN dedicated to the neural integrator. (A) The 16
interneurons of the hidden layer are divided into two groups of 8 and are fully connected

 Recurrent Neural Networks

22

time-integral of the eye velocity signals during the saccade, this tonic activity may be
interpreted as an internal memory of the eye position in space (Godaux & Cheron, 1996;
Chan & Galiana, 2005). The analogy with working memory was thus easily accomplished
(McCormick, 2001).
The first neural network approach of the neural integrator was made by Cannon et al. (1983,
1985). Their hard-wired model in which the synaptic weights were explicitly specified can
integrate a push-pull input signal without integrating the background rates and has the
appealing property that localized artificial lesions produced a decrease in the time constant
of the whole network. Later, Anastasio & Robinson (1991) proposed the first learning model
for the neural integrator. In this context, we have upgraded the Anastasio-Robinson model
in order to work in the continuous-time domain (in opposition to the discrete-time domain).
Additionally, we improved the biologically plausible features by (1) the introduction of a
strong constraint on the synaptic weight and (2) the introduction of an artificial distance
between the neurons by generating delays proportional to the proximity.

2.1 The basic DRNN models
The basic model is a dynamic recurrent neural network governed by the following
equations:

 i
i i i

dy
T -y () I

dt iF x= + + (1)

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit
i, It is an external input (or bias), and xi is given by:

 i ij j
j

x w y= ∑ (2)

which is the propagation equation of the network (xi is called the total or effective input of
the neuron, Wij is the synaptic weight between units i and j). The time constants Ti will act
like a relaxation process. The correction of the time constants will be included in the
learning process in order to increase the dynamical features of the model. Introduction of Ti
allows more complex frequential behaviour, improves the non-linearity effect of the sigmoid
function and the memory effect of time delays (Draye et al., 1996; 1997a).

2.2 Fixed-sign connection weights
Traditionally, artificial network represent the synaptic weight by a real number. This
number is modified by the learning process (often a gradient-descent kind of minimization)
which frequently leads to a sign change at different location. This sign change is in conflict
with biological reality and Dale’s Principle. Thus we fixed the sign of all connections by the
introduction of a variable sij associated with every weight unit wij. The variable sij take their
value in the set {-1,0,+1}, and in the classical network propagation equation (2), the weights
wij are replaced by the equation:

 ijij ws . (3)

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

23

The architecture of the network is consistent with the neuroanatomy of the brainstem
circuitry of the neural integrator devoted to saccade and vestibulo-ocular systems for the
horizontal movements. The figure 1 illustrates the neural integrator DRNN comprising a
fully connected hidden layer of 16 inhibitory units, two output units representing the
motoneurons of the median and lateral rectus muscle of the left eye and two afferents inputs
from the horizontal canal (for the vestibulo-ocular reflex) or from the eye-velocity saccade
generator.

Figure 1. Architecture of the DRNN dedicated to the neural integrator. (A) The 16
interneurons of the hidden layer are divided into two groups of 8 and are fully connected

 Recurrent Neural Networks

24

with inhibitory connections (only the connections from interneuron 1 are depicted). Each
interneuron is connected to both motoneurons (output of the network) with a connection
whose sign is indicated in the figure. The signals inputs are represented by pulses
representing eye-velocity commands of opposite signs. (B) 3D surface plots of the weights
distribution. The 16 X 16 weights surface were treated with cubic splines for better
visualization. Values of the weights are plotted versus indexes i and j. Even if the lateral
layer has inhibitory connections (except for c), the weights are plotted as positives values. a,
b Two clustered structures of the weights distribution. c, The weights distribution of the
Arnold-Robinson network trained with the general supervisor without any constraints on
the weight signs. d, The weights distribution in which each interneuron has its own muscle.
(modified from Draye et al. 1997a Biol Cybern)

2.3 Artificial distance between neurons
Classically, the distances between an artificial neuron labelled 6 and two other neurons
labelled 7 and 16 are the same. In order to introduce a real notion of distance in our device
(between digits that are memorized in computer memory) we generate delays between
these units. The delay between neurons Ni and Nj is defined in order to keep the
proportionality to the difference of index i j− . By this way, the information is artificially

delayed during its propagation in the network. It will take i j− time steps for the

information from neuron Ni to reach the neuron Nj.

2.4 Numerical discretization of the continuous-time model
The discrete-time model with a step Δt was defined as:

 () (1) () (())i i i

t ty t t y t F x t
T T
Δ Δ

+ Δ = − ⋅ + ⋅ (4)

where

 () ()i ij j
j

x t t w y t+ Δ = ⋅∑ (5)

where we assume that the terms Ii(t)[see (1)] has been replaced by adaptative weights w0i
connected to a fixed input which is set to 1. The discretized equation (5) becomes:

tan

() ()i ji ji j
j

Artificialdis ceFixedsign

x t t s w y t i j t∗+ Δ = ⋅ ⋅ ⎡ − − ⋅Δ ⎤⎣ ⎦∑ (6)

For the learning we introduced a general supervisor responsible for the modifications of the
network weights wij. In this particular case of the oculomotor integrator simulation, the sign
of the connections must be take into account and strictly conserved. This general supervisor
continuously computes the amount of the positional deviation (corresponding to the retinal
slip) and uses it as an error signal to minimize. The Levenberg-Marquardt minimization
technique has been used. The training of the network was done with pulse signals of 50 ms

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

25

of duration. After this phase the network produces a position signal compatible with the
physiological behavior of the oculomotor neural integrator presenting a time constant of 20s.

2.5 Emergence of clusters
The DRNN was trained a great number of times and each time a clustered structure of the
type illustrated in the 3D weights distribution map has emerged (Fig. 1B). A cluster is a
region of large weights between a particular group of neurons of index i centred on i* and
another group of neurons j centred on j*, where the point [i*, j*] is considered as the “centre”
of the cluster. The interpretation of a cluster is the following: if the connection weight wij
between two hidden units Ni and Nj is high, the probability is high that the connection weight
wj(i+1) between one of the neighbours of the source neuron Ni+1 and Nj is large. The same
conclusion can be made for the weight w(j+i)I between Ni and one of the neighbours of the
destination neuron Nj+1. The mathematical description of the cluster was developed in Draye
et al., 1997a. The process of emergence of such clusters during the training phase remains
unknown. However, we have studied the conditions for this emergence. Clusters appeared
when (1) the sign of the connections was fixed, (2) a lateral inhibitory layer of interneurons,
(3) the introduction of an artificial distance between these units and (4) a convergence of
information from the hidden layer to the motoneurons. Indeed, when there are no
constraints on the weights sign and no delay between the units, there is no clustering
structure in the weight distribution (Fig. 1B,c). When we suppressed the convergence of the
hidden units on the 2 motoneurons (each interneuron was in this case linked to a muscle),
organization in clusters did not appeared anymore (Fig. 1B,d). As we have found that the
behaviour (represented by their phase value when sinusoidal input were used) of the units
participating to a same cluster was the same (e.g. units presenting eye position sensitivity)
(Draye et al., 1997a), an interesting analogy between the artificial DRNN integrator and the
electrophysiological recordings can be made. For example, clusters of position neurons have
been found in the neural integrator of the cat (Delgado-Garcia et al., 1989; Escudero et al.,
1992, 1996; Godaux & Cheron, 1996). We can thus conclude that emergence of clusters in a
DRNN performing a well-defined mathematical task (here a temporal integration) is due to
computational constraints with a restricted space of solutions. This also suggests that
information processing constraints could be a plausible factor inducing the emergence of
iterated patterns in biological neural networks.

3. The DRNN application in the field of human movement control
3.1 Introduction
In human, the electromyographic activity (EMG) is the only non-invasively accessible signal
directly related to the final command of movement. EMG signal, though not ideal, is a
reasonable reflection of the firing rate of a motoneuronal pool (Soechting & Flanders, 1997),
and the analysis of rectified EMG envelopes of multiple muscles may reveal the basic motor
coordination dynamics (Scholz & Kelso, 1990; Cheron et al., 1996; Bengoetxea et al., 2008).
Our DRNN approach has been firstly applied to the problem of identification of the
relationship between EMG signals of the shoulder muscles and the corresponding
kinematics of the arm. This identification task is quite complex because the state variables of
the system are unknown and identification has to be carried out using only input–output

 Recurrent Neural Networks

24

with inhibitory connections (only the connections from interneuron 1 are depicted). Each
interneuron is connected to both motoneurons (output of the network) with a connection
whose sign is indicated in the figure. The signals inputs are represented by pulses
representing eye-velocity commands of opposite signs. (B) 3D surface plots of the weights
distribution. The 16 X 16 weights surface were treated with cubic splines for better
visualization. Values of the weights are plotted versus indexes i and j. Even if the lateral
layer has inhibitory connections (except for c), the weights are plotted as positives values. a,
b Two clustered structures of the weights distribution. c, The weights distribution of the
Arnold-Robinson network trained with the general supervisor without any constraints on
the weight signs. d, The weights distribution in which each interneuron has its own muscle.
(modified from Draye et al. 1997a Biol Cybern)

2.3 Artificial distance between neurons
Classically, the distances between an artificial neuron labelled 6 and two other neurons
labelled 7 and 16 are the same. In order to introduce a real notion of distance in our device
(between digits that are memorized in computer memory) we generate delays between
these units. The delay between neurons Ni and Nj is defined in order to keep the
proportionality to the difference of index i j− . By this way, the information is artificially

delayed during its propagation in the network. It will take i j− time steps for the

information from neuron Ni to reach the neuron Nj.

2.4 Numerical discretization of the continuous-time model
The discrete-time model with a step Δt was defined as:

 () (1) () (())i i i

t ty t t y t F x t
T T
Δ Δ

+ Δ = − ⋅ + ⋅ (4)

where

 () ()i ij j
j

x t t w y t+ Δ = ⋅∑ (5)

where we assume that the terms Ii(t)[see (1)] has been replaced by adaptative weights w0i
connected to a fixed input which is set to 1. The discretized equation (5) becomes:

tan

() ()i ji ji j
j

Artificialdis ceFixedsign

x t t s w y t i j t∗+ Δ = ⋅ ⋅ ⎡ − − ⋅Δ ⎤⎣ ⎦∑ (6)

For the learning we introduced a general supervisor responsible for the modifications of the
network weights wij. In this particular case of the oculomotor integrator simulation, the sign
of the connections must be take into account and strictly conserved. This general supervisor
continuously computes the amount of the positional deviation (corresponding to the retinal
slip) and uses it as an error signal to minimize. The Levenberg-Marquardt minimization
technique has been used. The training of the network was done with pulse signals of 50 ms

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

25

of duration. After this phase the network produces a position signal compatible with the
physiological behavior of the oculomotor neural integrator presenting a time constant of 20s.

2.5 Emergence of clusters
The DRNN was trained a great number of times and each time a clustered structure of the
type illustrated in the 3D weights distribution map has emerged (Fig. 1B). A cluster is a
region of large weights between a particular group of neurons of index i centred on i* and
another group of neurons j centred on j*, where the point [i*, j*] is considered as the “centre”
of the cluster. The interpretation of a cluster is the following: if the connection weight wij
between two hidden units Ni and Nj is high, the probability is high that the connection weight
wj(i+1) between one of the neighbours of the source neuron Ni+1 and Nj is large. The same
conclusion can be made for the weight w(j+i)I between Ni and one of the neighbours of the
destination neuron Nj+1. The mathematical description of the cluster was developed in Draye
et al., 1997a. The process of emergence of such clusters during the training phase remains
unknown. However, we have studied the conditions for this emergence. Clusters appeared
when (1) the sign of the connections was fixed, (2) a lateral inhibitory layer of interneurons,
(3) the introduction of an artificial distance between these units and (4) a convergence of
information from the hidden layer to the motoneurons. Indeed, when there are no
constraints on the weights sign and no delay between the units, there is no clustering
structure in the weight distribution (Fig. 1B,c). When we suppressed the convergence of the
hidden units on the 2 motoneurons (each interneuron was in this case linked to a muscle),
organization in clusters did not appeared anymore (Fig. 1B,d). As we have found that the
behaviour (represented by their phase value when sinusoidal input were used) of the units
participating to a same cluster was the same (e.g. units presenting eye position sensitivity)
(Draye et al., 1997a), an interesting analogy between the artificial DRNN integrator and the
electrophysiological recordings can be made. For example, clusters of position neurons have
been found in the neural integrator of the cat (Delgado-Garcia et al., 1989; Escudero et al.,
1992, 1996; Godaux & Cheron, 1996). We can thus conclude that emergence of clusters in a
DRNN performing a well-defined mathematical task (here a temporal integration) is due to
computational constraints with a restricted space of solutions. This also suggests that
information processing constraints could be a plausible factor inducing the emergence of
iterated patterns in biological neural networks.

3. The DRNN application in the field of human movement control
3.1 Introduction
In human, the electromyographic activity (EMG) is the only non-invasively accessible signal
directly related to the final command of movement. EMG signal, though not ideal, is a
reasonable reflection of the firing rate of a motoneuronal pool (Soechting & Flanders, 1997),
and the analysis of rectified EMG envelopes of multiple muscles may reveal the basic motor
coordination dynamics (Scholz & Kelso, 1990; Cheron et al., 1996; Bengoetxea et al., 2008).
Our DRNN approach has been firstly applied to the problem of identification of the
relationship between EMG signals of the shoulder muscles and the corresponding
kinematics of the arm. This identification task is quite complex because the state variables of
the system are unknown and identification has to be carried out using only input–output

 Recurrent Neural Networks

26

data. Moreover, the EMG–motion relationship identification task is highly nonlinear. This
latter fact complicates the task because it is well known that even in the linear case where
the state variables are unknown, a unique parameterization of the system no longer exists
(Kalman et al., 1969). The success of nonlinear identification techniques therefore strongly
depends upon specific parameterizations used (Wang, 1993).

3.2 Methodological adaptations
The network defined by (1) can be trained using different learning algorithms; the learning
algorithm tunes the free parameters to minimize an error measure which is computed as the
temporal integration between the real curve and the learned curve. The most famous ones
are the real-time recurrent learning algorithm presented by Williams & Zipser (1989) and
the time-dependent recurrent backpropagation algorithm derived by Pearlmutter (1989,
1995). The reader can find more details about the learning algorithm in Pearlmutter (1995),
Draye et al. (1996, 1997a,c).
In order to make the temporal behaviour of the network explicit, an error function is defined
as:

1

0

t

t

 q((t),t) dtE = ∫ y (7)

where t0 and t1 give the time interval during which the correction process occurs. The
function q(y(t), t) is the cost function at time t which depends on the vector of the neurone
activations y and on time. We then introduce new variables pi (called adjoint variables) that
will be determined by the following system of differential equations:

 '
i i ij j j

ji i

1 1 p - e - w F (x) p
T T

idp
dt

= ∑ (8)

with boundary conditions pi (t1)=0. After the introduction of these new variables, we can
derive the learning equations:

1

0

t
'

i j
ti

1 y F () p dt
T j

ij

E x
w
δ
δ

= ∫ (9)

1

0

t
i

i
ti

dy1 p
T dti

E
T

δ
δ

= ∫ (10)

The training is supervised; involving learning rule adaptations of synaptic weights and time
constant of each unit (see for more details, Draye et al., 1996). Due to the integration of the
system of (8) backward through time, this algorithm is sometimes called ‘backpropagation
through time’. In order to reduce the time of the learning process, the acceleration method of
Silva & Almeida, (1990) was used, where each weight and time constant has its own
adaptative learning rate.

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

27

Figure 2. Input-output organization of the DRNN. In this configuration the inputs consist of
seven full-wave rectified EMG signals (four of them are depicted). The outputs are the Y and
Z coordinates of the index marker during the drawing of the figure eight. The position of the
subject and the reference axis are shown on the upper right side. This figurative movement
is characterized by two main components in the vertical direction (Y axis-down and up) and
by four main components in the horizontal direction (Z axis-right, left, right, and left). In the
upper-right inset, superimposition of the experimental trajectory recorded by the ELITE
system (thin line) and the simulated curve generated by the DRNN (thick lines). (Adapted
from Cheron et al., 1996 IEEE)

 Recurrent Neural Networks

26

data. Moreover, the EMG–motion relationship identification task is highly nonlinear. This
latter fact complicates the task because it is well known that even in the linear case where
the state variables are unknown, a unique parameterization of the system no longer exists
(Kalman et al., 1969). The success of nonlinear identification techniques therefore strongly
depends upon specific parameterizations used (Wang, 1993).

3.2 Methodological adaptations
The network defined by (1) can be trained using different learning algorithms; the learning
algorithm tunes the free parameters to minimize an error measure which is computed as the
temporal integration between the real curve and the learned curve. The most famous ones
are the real-time recurrent learning algorithm presented by Williams & Zipser (1989) and
the time-dependent recurrent backpropagation algorithm derived by Pearlmutter (1989,
1995). The reader can find more details about the learning algorithm in Pearlmutter (1995),
Draye et al. (1996, 1997a,c).
In order to make the temporal behaviour of the network explicit, an error function is defined
as:

1

0

t

t

 q((t),t) dtE = ∫ y (7)

where t0 and t1 give the time interval during which the correction process occurs. The
function q(y(t), t) is the cost function at time t which depends on the vector of the neurone
activations y and on time. We then introduce new variables pi (called adjoint variables) that
will be determined by the following system of differential equations:

 '
i i ij j j

ji i

1 1 p - e - w F (x) p
T T

idp
dt

= ∑ (8)

with boundary conditions pi (t1)=0. After the introduction of these new variables, we can
derive the learning equations:

1

0

t
'

i j
ti

1 y F () p dt
T j

ij

E x
w
δ
δ

= ∫ (9)

1

0

t
i

i
ti

dy1 p
T dti

E
T

δ
δ

= ∫ (10)

The training is supervised; involving learning rule adaptations of synaptic weights and time
constant of each unit (see for more details, Draye et al., 1996). Due to the integration of the
system of (8) backward through time, this algorithm is sometimes called ‘backpropagation
through time’. In order to reduce the time of the learning process, the acceleration method of
Silva & Almeida, (1990) was used, where each weight and time constant has its own
adaptative learning rate.

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

27

Figure 2. Input-output organization of the DRNN. In this configuration the inputs consist of
seven full-wave rectified EMG signals (four of them are depicted). The outputs are the Y and
Z coordinates of the index marker during the drawing of the figure eight. The position of the
subject and the reference axis are shown on the upper right side. This figurative movement
is characterized by two main components in the vertical direction (Y axis-down and up) and
by four main components in the horizontal direction (Z axis-right, left, right, and left). In the
upper-right inset, superimposition of the experimental trajectory recorded by the ELITE
system (thin line) and the simulated curve generated by the DRNN (thick lines). (Adapted
from Cheron et al., 1996 IEEE)

 Recurrent Neural Networks

28

3.3 EMG and movements recordings
In all experimental situations explored by our group, the DRNN was trained to reproduce
the movement performed by the subject in response to the EMG signals as depicted in Fig. 2.
In a first set of studies (Cheron et al., 1996; Draye et al., 2002; Bengoetxea et al., 2005), the
subjects were asked to draw as fast as possible figures ‘eight’ with the right extended arm in
free space (the initial directions of the movements were up–right, up–left, down–left, and
down–right, in that order). We have to note that in this case the kinematics data are given by
the position signals of the index finger (the outputs of the DRNN were the vertical and the
horizontal position of the index).
In a second set of studies (Cheron et al., 2007) the subjects were asked to perform ‘as fast as
possible’ flexion movements of the elbow in the vertical plane. In this case the angular
acceleration of the elbow was used as the output. In the third set of experiments the subjects
locomotion was recorded (Cheron et al., 2003; Leurs et al., 2005) and the DRNN presented 3
different output signals corresponding to the kinematics (elevation angle) of the thigh,
shank and foot.
These different movements were recorded and analyzed using the optoelectronic ELITE
system including two to six TV cameras working at a sampling rate of 100 Hz (BTS, Milano,
Italy). Surface EMG patterns were recorded using pairs of silver–silver-chloride surface
electrode and measured using telemetry. Raw EMG signals (differential detection) were
amplified (1000 times) and band-pass filtered (10–2000 Hz). After this, the EMGs were
digitized at 2 kHz, full-wave rectified and smoothed by means of a third-order averaging
filter with a time constant of 20 ms. The following muscles were recorded during the figure-
eight movement and the elbow flexion: posterior deltoid external and internal (PDE and
PDI), anterior deltoid (AD), median deltoid (MD), pectoralis major superior and inferior
(PMS and PMI), latissimus dorsi (LD), biceps and triceps brachii. For the locomotion: rectus
femoris (RF), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius
lateral (GL), soleus (SOL). The basic mapping between EMG signals input and kinematics
output is illustrated in the figure 2 during the execution of the figure eight movement. The
superimposition of the real (experimental) and simulated movement well illustrated the
DRNN performance.

3.4 From DRNN performance to biological plausibility
For each type of the movement studied, the DRNN has successfully learned the task and
was able to reproduce correct output signals with the same type of unlearned EMG signals
as input. The learning performance was firstly examined on-line by inspection of the error
curve as those illustrated in the case of walking movement (Fig. 3A) (Cheron et al., 2003).
Successful learning was commonly ascertained on the basis of the comparison between the
DRNN output and the actual output (provided by experimental data). Figure 3 illustrates
the superimposition of these data (Fig. 3B-D) when the training has reached an error value
of 0.001. The learning process (performed in this case by means of 35 fully connected units)
was carried out for 5000 iterations which takes about 5 min on a Intel Core2 at 2 GHz
In order to test the physiological plausibility of the DRNN identification, the basic idea was
to compare the angular directional change induced by artificial EMG suppression or
potentiation of a single muscle with the physiological knowledge of the pulling direction of
the muscle. This method is illustrated for the figure eight movement where a small artificial
lesion was performed on the first burst of the PMI muscle. In this case, the last part of this

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

29

Figure. 3. Assessment of successful learning. (A) Error curve of one learning trial reaching
an error value of 0.001 after 5000 iterations. (B, C and D) Superimposition of experimental
(continuous line) and DRNN (pointed line) output signals when training reaches an error
value of 0.001. (with permission of Elsevier, Cheron et al. 2003 J Neurosci Meth)

burst (Fig. 4 a) has been cut off during 50 ms. This altered signal, and the six other unaltered
EMG signals are fed to the DRNN previously trained with the normal one. The resulting
trajectory is compared to the normal one (Fig. 4 b). This shows that in this case the arm is not
able to reach the lower part of the normal trajectory, which is compatible with the
physiological action of the PMI acting as extensor-flexor of the shoulder. The quantification
of these effects was performed by the computation of the error vector of the arm velocity
(Fig. 4 c). For the majority of these lesion experiments performed in the EMG signals of
different muscles the direction of the error vector coincided with the preferential field of
activation of the corresponding muscle (Cheron et al., 1996). In this context the treatment of
the EMG signals by means of different biological filters (Hill-type muscle model) including

 Recurrent Neural Networks

28

3.3 EMG and movements recordings
In all experimental situations explored by our group, the DRNN was trained to reproduce
the movement performed by the subject in response to the EMG signals as depicted in Fig. 2.
In a first set of studies (Cheron et al., 1996; Draye et al., 2002; Bengoetxea et al., 2005), the
subjects were asked to draw as fast as possible figures ‘eight’ with the right extended arm in
free space (the initial directions of the movements were up–right, up–left, down–left, and
down–right, in that order). We have to note that in this case the kinematics data are given by
the position signals of the index finger (the outputs of the DRNN were the vertical and the
horizontal position of the index).
In a second set of studies (Cheron et al., 2007) the subjects were asked to perform ‘as fast as
possible’ flexion movements of the elbow in the vertical plane. In this case the angular
acceleration of the elbow was used as the output. In the third set of experiments the subjects
locomotion was recorded (Cheron et al., 2003; Leurs et al., 2005) and the DRNN presented 3
different output signals corresponding to the kinematics (elevation angle) of the thigh,
shank and foot.
These different movements were recorded and analyzed using the optoelectronic ELITE
system including two to six TV cameras working at a sampling rate of 100 Hz (BTS, Milano,
Italy). Surface EMG patterns were recorded using pairs of silver–silver-chloride surface
electrode and measured using telemetry. Raw EMG signals (differential detection) were
amplified (1000 times) and band-pass filtered (10–2000 Hz). After this, the EMGs were
digitized at 2 kHz, full-wave rectified and smoothed by means of a third-order averaging
filter with a time constant of 20 ms. The following muscles were recorded during the figure-
eight movement and the elbow flexion: posterior deltoid external and internal (PDE and
PDI), anterior deltoid (AD), median deltoid (MD), pectoralis major superior and inferior
(PMS and PMI), latissimus dorsi (LD), biceps and triceps brachii. For the locomotion: rectus
femoris (RF), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius
lateral (GL), soleus (SOL). The basic mapping between EMG signals input and kinematics
output is illustrated in the figure 2 during the execution of the figure eight movement. The
superimposition of the real (experimental) and simulated movement well illustrated the
DRNN performance.

3.4 From DRNN performance to biological plausibility
For each type of the movement studied, the DRNN has successfully learned the task and
was able to reproduce correct output signals with the same type of unlearned EMG signals
as input. The learning performance was firstly examined on-line by inspection of the error
curve as those illustrated in the case of walking movement (Fig. 3A) (Cheron et al., 2003).
Successful learning was commonly ascertained on the basis of the comparison between the
DRNN output and the actual output (provided by experimental data). Figure 3 illustrates
the superimposition of these data (Fig. 3B-D) when the training has reached an error value
of 0.001. The learning process (performed in this case by means of 35 fully connected units)
was carried out for 5000 iterations which takes about 5 min on a Intel Core2 at 2 GHz
In order to test the physiological plausibility of the DRNN identification, the basic idea was
to compare the angular directional change induced by artificial EMG suppression or
potentiation of a single muscle with the physiological knowledge of the pulling direction of
the muscle. This method is illustrated for the figure eight movement where a small artificial
lesion was performed on the first burst of the PMI muscle. In this case, the last part of this

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

29

Figure. 3. Assessment of successful learning. (A) Error curve of one learning trial reaching
an error value of 0.001 after 5000 iterations. (B, C and D) Superimposition of experimental
(continuous line) and DRNN (pointed line) output signals when training reaches an error
value of 0.001. (with permission of Elsevier, Cheron et al. 2003 J Neurosci Meth)

burst (Fig. 4 a) has been cut off during 50 ms. This altered signal, and the six other unaltered
EMG signals are fed to the DRNN previously trained with the normal one. The resulting
trajectory is compared to the normal one (Fig. 4 b). This shows that in this case the arm is not
able to reach the lower part of the normal trajectory, which is compatible with the
physiological action of the PMI acting as extensor-flexor of the shoulder. The quantification
of these effects was performed by the computation of the error vector of the arm velocity
(Fig. 4 c). For the majority of these lesion experiments performed in the EMG signals of
different muscles the direction of the error vector coincided with the preferential field of
activation of the corresponding muscle (Cheron et al., 1996). In this context the treatment of
the EMG signals by means of different biological filters (Hill-type muscle model) including

 Recurrent Neural Networks

30

tension-length and force-velocity relationships of muscle-tendon actuators can provide a
good approximation of muscle force and facilitate the DRNN learning (Draye et al., 1997b).
However, contamination of the original neuronal input (raw EMG) by output kinematics-
related data (muscle length changes) would bias the spontaneous emergence of multiple
attractor states linked to the basic input–output mapping.

Figure 4. Artificial lesion of the EMG input in order to test the physiological plausibility of
the DRNN. (a) Small lesion of 50 ms of duration on the EMG signal recorded on the PMI. (b)
Superimposition of the normal and altered trajectories. (c) Velocity vectors of the normal
and altered trajectories. The error velocity vectors are obtained by the difference between
the preceding ones. (From Cheron et al.,1996 IEEE).

The physiological plausibility of our DRNN methods has recently be tested for the
identification of the triphasic EMG patterns sub serving the execution of ballistic movements
(Cheron & Godaux, 1986b). This pattern comprise a first burst of activity in agonist muscle
(AG1) followed by a burst in the antagonist muscle (ANT) and again by second burst in the
agonist (AG2). Figure 5 shows that the DRNN is able to perfectly reproduce the acceleration
profile of the ballistic movements. The physiological plausibility was tested on all the
networks that reached an error level below 0.001 by selectively increasing the amplitude of
each burst of the triphasic pattern and evaluating the effects on the simulated accelerating
profile. Nineteen percent of these simulations reproduced the physiological action
classically attributed to the 3 EMG bursts: AG1 increase showed an increase of the first
accelerating pulse, ANT an increase of the braking pulse and AG2 an increase of the

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

31

clamping pulse. Another important result was that the DRNN also recognized the
physiological function of the time interval between AG1 and ANT, reproducing the linear
relationship between this time interval and movement amplitude (Fig. 6). Experimental
(Cheron & Godaux, 1986b) and clinical evidence from cerebellar patients (Manto et al., 1995)
demonstrated that this time interval is one of the main parameters underlying hypermetria,
the other parameter being impaired control of ANT amplitude when inertia is increased.

D
R
N
N

100 ms

100 ms

10
 m

V

30
00

 °/
s²

I

II

H1

H2

H3

H4

H5 H6

H7

H8

H9

H10
OUT1 ACC

A

B

EMG

BI

TRI

EMG
BI

TRI

ACC

Figure 5. A, Input-output configuration of the DRNN, symbolised by the ring in the central
box, with the triphasic EMG pattern as the input and the angular acceleration of the elbow
(ACC) used as output. The experimental (grey) and simulated (black) acceleration curves
are superimposed. B, DRNN fully connected architecture is represented in case of only 13
artificial neurons (10 hidden neurons, H1-H10; 2 input neurons, I and II, and one output
neuron, OUT1).(Modified from Cheron et al., 2007 Neurosci. Let)

If the biomechanical knowledge about effect of artificial modifications of the EMG profiles is
easily accessible for mono-articular muscles, it is less straightforward for the pluri-articular
muscles. In the latter, the muscle force can be involved in a force regulation process for
which the directional action is not directly defined by the pulling direction of the muscle.
Moreover, dynamical coupling between the three joint segments can be implicated in the
evoked movement. For example, in the figure 7 we illustrates the effect of SOL and TA
artificial potentiation applied throughout the walking sequence on the sagittal lower limb
kinogram over two steps. Whereas the former results in digitigrade gait (explained by the
pulling action of SOL) with increased knee flexion (explained by a coupling action) more
marked during the swing phase, the latter results in increased ankle dorsiflexion (walking
on the heel explained by the pulling action of TA) and knee hyperextension (coupling

 Recurrent Neural Networks

30

tension-length and force-velocity relationships of muscle-tendon actuators can provide a
good approximation of muscle force and facilitate the DRNN learning (Draye et al., 1997b).
However, contamination of the original neuronal input (raw EMG) by output kinematics-
related data (muscle length changes) would bias the spontaneous emergence of multiple
attractor states linked to the basic input–output mapping.

Figure 4. Artificial lesion of the EMG input in order to test the physiological plausibility of
the DRNN. (a) Small lesion of 50 ms of duration on the EMG signal recorded on the PMI. (b)
Superimposition of the normal and altered trajectories. (c) Velocity vectors of the normal
and altered trajectories. The error velocity vectors are obtained by the difference between
the preceding ones. (From Cheron et al.,1996 IEEE).

The physiological plausibility of our DRNN methods has recently be tested for the
identification of the triphasic EMG patterns sub serving the execution of ballistic movements
(Cheron & Godaux, 1986b). This pattern comprise a first burst of activity in agonist muscle
(AG1) followed by a burst in the antagonist muscle (ANT) and again by second burst in the
agonist (AG2). Figure 5 shows that the DRNN is able to perfectly reproduce the acceleration
profile of the ballistic movements. The physiological plausibility was tested on all the
networks that reached an error level below 0.001 by selectively increasing the amplitude of
each burst of the triphasic pattern and evaluating the effects on the simulated accelerating
profile. Nineteen percent of these simulations reproduced the physiological action
classically attributed to the 3 EMG bursts: AG1 increase showed an increase of the first
accelerating pulse, ANT an increase of the braking pulse and AG2 an increase of the

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

31

clamping pulse. Another important result was that the DRNN also recognized the
physiological function of the time interval between AG1 and ANT, reproducing the linear
relationship between this time interval and movement amplitude (Fig. 6). Experimental
(Cheron & Godaux, 1986b) and clinical evidence from cerebellar patients (Manto et al., 1995)
demonstrated that this time interval is one of the main parameters underlying hypermetria,
the other parameter being impaired control of ANT amplitude when inertia is increased.

D
R
N
N

100 ms

100 ms

10
 m

V

30
00

 °/
s²

I

II

H1

H2

H3

H4

H5 H6

H7

H8

H9

H10
OUT1 ACC

A

B

EMG

BI

TRI

EMG
BI

TRI

ACC

Figure 5. A, Input-output configuration of the DRNN, symbolised by the ring in the central
box, with the triphasic EMG pattern as the input and the angular acceleration of the elbow
(ACC) used as output. The experimental (grey) and simulated (black) acceleration curves
are superimposed. B, DRNN fully connected architecture is represented in case of only 13
artificial neurons (10 hidden neurons, H1-H10; 2 input neurons, I and II, and one output
neuron, OUT1).(Modified from Cheron et al., 2007 Neurosci. Let)

If the biomechanical knowledge about effect of artificial modifications of the EMG profiles is
easily accessible for mono-articular muscles, it is less straightforward for the pluri-articular
muscles. In the latter, the muscle force can be involved in a force regulation process for
which the directional action is not directly defined by the pulling direction of the muscle.
Moreover, dynamical coupling between the three joint segments can be implicated in the
evoked movement. For example, in the figure 7 we illustrates the effect of SOL and TA
artificial potentiation applied throughout the walking sequence on the sagittal lower limb
kinogram over two steps. Whereas the former results in digitigrade gait (explained by the
pulling action of SOL) with increased knee flexion (explained by a coupling action) more
marked during the swing phase, the latter results in increased ankle dorsiflexion (walking
on the heel explained by the pulling action of TA) and knee hyperextension (coupling

 Recurrent Neural Networks

32

action) more marked during the stance phase. The implications of such complex dynamical
simulations of biomechanics and muscle coordination in human walking have been recently
revisited by Zajac et al. (2003).

10
 m

V

70 ms

100 ms

30
00

 °
/s

²

A

C

B

20°
100ms

A
ng

ul
ar

 a
m

pl
itu

de
 (°

)

+20 ms

+40 ms
+60 ms

60 ms

20 60 100 140

20

40

60

80

100

180
BI TRI onset latency interval (ms)

Figure 6. Simulation of AG1-ANT time interval increase on movement amplitude. A,
example of a time shift of ANT burst (delayed from 60 ms, grey shading of ANT burst
superimposed to the experimental pattern). In the left side, the corresponding ACC curves
are superimposed (simulated curve in pointed line and experimental curve in continuous
line). B, progressive increase of angular amplitude when the AG1-ANT interval is increased
from 20 ms. C, AG1-ANT time interval and the related movement amplitude.
Superimposition of the experimental relationship (the mean and SD are represented by the
centre and the borders of the grey area, respectively) and the DRNN simulated data (open
circles). (From Cheron et al., 2007 Neurosci. Let)

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

33

Figure 7. (A–C) Sagittal stick diagrams of the lower limb kinematics obtained after DRNN
learning of normal locomotion (A) and after artificial EMG potentiation of SOL (B) and TA
(C) muscles. (From Cheron et al., 2003 J Neurosc Meth, copyright Elsevier)

4. DRNN with modular architecture
4.1 Introduction of position and inertial subnetworks
We modified the structure of our neural network in order to cope with one of the main
drawbacks of trained neural networks: the ‘‘solution’’ appears as a black box from which it
is difficult to retrieve any information. For this we modified the network architecture in
order to include two distinct sets of output neurons: one set related to posture and the other
one related to inertia. The postural–output neurons were trained to produce position
reference signals, i.e., postural-related data. The inertial–output neurons were trained to
produce inertial related data: acceleration signals. The input neurons remain unchanged:
they feed the network with the EMG signals. Postural output neurons are fed by 20 fully
connected neurons which form a subnetwork that will be called ‘‘the postural subnetwork’’
(its neurons are labeled ‘‘1’’ to ‘‘20’’ in Fig. 2). Similarly, inertial–output neurons are fed by
another set of 20 fully connected neurons which form the ‘‘inertial subnetwork’’ (its neurons
are labeled ‘‘21’’ to ‘‘40’’ on Fig. 8).
We imposed a communication channel between both ‘‘sub-networks’’ This consists of 40
interconnections between corresponding neural units. In other words, the learning
algorithm is allowed to adapt the interconnection weights between neurons 1 and 21 (and
accordingly between 21 and 1), 2 and 22 (22 and 2), . . ., 19 and 39 (39 and 19), and finally 20
and 40 (40 and 20). These weights are shown as dashed lines in Fig. 8. In this configuration,
the entire network has 1172 free parameters (interconnection weights and time constants).
The modified architecture as presented above is trained as a single homogeneous network
which includes seven input neurons (EMGs) and four output neurons (postural Y and Z,
inertial Y and Z). The error evaluation criterion is the same for all four output neurons.

 Recurrent Neural Networks

32

action) more marked during the stance phase. The implications of such complex dynamical
simulations of biomechanics and muscle coordination in human walking have been recently
revisited by Zajac et al. (2003).

10
 m

V

70 ms

100 ms

30
00

 °
/s

²

A

C

B

20°
100ms

A
ng

ul
ar

 a
m

pl
itu

de
 (°

)

+20 ms

+40 ms
+60 ms

60 ms

20 60 100 140

20

40

60

80

100

180
BI TRI onset latency interval (ms)

Figure 6. Simulation of AG1-ANT time interval increase on movement amplitude. A,
example of a time shift of ANT burst (delayed from 60 ms, grey shading of ANT burst
superimposed to the experimental pattern). In the left side, the corresponding ACC curves
are superimposed (simulated curve in pointed line and experimental curve in continuous
line). B, progressive increase of angular amplitude when the AG1-ANT interval is increased
from 20 ms. C, AG1-ANT time interval and the related movement amplitude.
Superimposition of the experimental relationship (the mean and SD are represented by the
centre and the borders of the grey area, respectively) and the DRNN simulated data (open
circles). (From Cheron et al., 2007 Neurosci. Let)

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

33

Figure 7. (A–C) Sagittal stick diagrams of the lower limb kinematics obtained after DRNN
learning of normal locomotion (A) and after artificial EMG potentiation of SOL (B) and TA
(C) muscles. (From Cheron et al., 2003 J Neurosc Meth, copyright Elsevier)

4. DRNN with modular architecture
4.1 Introduction of position and inertial subnetworks
We modified the structure of our neural network in order to cope with one of the main
drawbacks of trained neural networks: the ‘‘solution’’ appears as a black box from which it
is difficult to retrieve any information. For this we modified the network architecture in
order to include two distinct sets of output neurons: one set related to posture and the other
one related to inertia. The postural–output neurons were trained to produce position
reference signals, i.e., postural-related data. The inertial–output neurons were trained to
produce inertial related data: acceleration signals. The input neurons remain unchanged:
they feed the network with the EMG signals. Postural output neurons are fed by 20 fully
connected neurons which form a subnetwork that will be called ‘‘the postural subnetwork’’
(its neurons are labeled ‘‘1’’ to ‘‘20’’ in Fig. 2). Similarly, inertial–output neurons are fed by
another set of 20 fully connected neurons which form the ‘‘inertial subnetwork’’ (its neurons
are labeled ‘‘21’’ to ‘‘40’’ on Fig. 8).
We imposed a communication channel between both ‘‘sub-networks’’ This consists of 40
interconnections between corresponding neural units. In other words, the learning
algorithm is allowed to adapt the interconnection weights between neurons 1 and 21 (and
accordingly between 21 and 1), 2 and 22 (22 and 2), . . ., 19 and 39 (39 and 19), and finally 20
and 40 (40 and 20). These weights are shown as dashed lines in Fig. 8. In this configuration,
the entire network has 1172 free parameters (interconnection weights and time constants).
The modified architecture as presented above is trained as a single homogeneous network
which includes seven input neurons (EMGs) and four output neurons (postural Y and Z,
inertial Y and Z). The error evaluation criterion is the same for all four output neurons.

 Recurrent Neural Networks

34

These four identical error signals are used by the TDRBP algorithm to adapt all the free
parameters of the network. This type of modular DRNN has been used for the figure eight
movement and for the straightening-up movement. The architecture of the network in the
latter case is slightly different since the network exhibits eight EMG input signals (versus
seven) and three output neurons (versus two). Each subnetwork still consists of 20 neurons.
The postural subnetwork generates the angular position signals of the three joints, whereas
the inertial subnetwork provides their angular acceleration signals. This network has 1192
free parameters.

Figure 8. Modular neural architecture with two subnetworks: the first one is related to
posture and generates position signals, the second one is related to inertia and generates
acceleration signals. The network shows the simulation network for the figure-eight
movement case (seven EMG input signals and two kinematics output signals). Note that
only some representative connections are depicted (e.g., the input connections are only
depicted from input neurons 1 to 7 to neuron 1; the same connections exist between all the
input neurons and neurons 2–40). The dashed lines show the interconnections
corresponding to the communication channels between both subnetworks. Pos, position;
Acc, acceleration. (From Draye et al., 2002 Biol. Cyber)

In order to quantify the efficiency of the 40-neuron modular architecture, we compared its
performance with the same network without communication channels (in this case, the error
signals measured on the postural output signals only affect the postural subnet, and the
error signals measured on the inertial output only affect the inertial subnet). We trained this
network for 20 times (each new training process started with a new initial random weight
distribution). The corresponding error curves were averaged over these 20 learning phases.
We have found that the modular network (40-neuron with two communicating
subnetworks) gives much better results than the two independent 20 neurons (Fig. 9).

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

35

Figure 9. Averaged error curve for the 40-neuron modular architecture (solid line) compared
to the cumulative averaged error curves of two independently trained 20-neuron networks
(dashed line).
4.2. A Gaussian factor for the artificial distance
In order to improve the biologically plausible features and as previously explained, we
decided to introduce a notion of distance in the network using a Gaussian factor αG that
modulates all the interconnection weights (from neuron i to j) is replaced by αGwij where αG
is computed using the absolute value of the difference between the indexes i and j (see
Draye et al., 2002 for more details). The impact of a particular neuron is greater for neurons
with close indexes. We assumed that the hidden neurons were distributed along a
circumference; this means that the last hidden neuron (neuron 18) has two nearest
neighbors: neurons 17 and 1. Thus, the largest distance between two neurons is 9. In contrast
to the artificial distance presented in the simulation of the neural integrator (Draye et al.,
1997a) which is based on temporal concepts, the distance presented for the identification of
EMGs-movement simulation was based on spatial aspects.

4.2 Emergence of a reduced modular architecture
Following the introduction of an artificial distance a reduced modular architecture has
emerged. When only the free parameters that were set to a nonzero value by the learning
algorithm have been taken into account, a reduced architecture appeared. It has 524 free
parameters (compared with the original configuration of 1172 parameters). Moreover, after

 Recurrent Neural Networks

34

These four identical error signals are used by the TDRBP algorithm to adapt all the free
parameters of the network. This type of modular DRNN has been used for the figure eight
movement and for the straightening-up movement. The architecture of the network in the
latter case is slightly different since the network exhibits eight EMG input signals (versus
seven) and three output neurons (versus two). Each subnetwork still consists of 20 neurons.
The postural subnetwork generates the angular position signals of the three joints, whereas
the inertial subnetwork provides their angular acceleration signals. This network has 1192
free parameters.

Figure 8. Modular neural architecture with two subnetworks: the first one is related to
posture and generates position signals, the second one is related to inertia and generates
acceleration signals. The network shows the simulation network for the figure-eight
movement case (seven EMG input signals and two kinematics output signals). Note that
only some representative connections are depicted (e.g., the input connections are only
depicted from input neurons 1 to 7 to neuron 1; the same connections exist between all the
input neurons and neurons 2–40). The dashed lines show the interconnections
corresponding to the communication channels between both subnetworks. Pos, position;
Acc, acceleration. (From Draye et al., 2002 Biol. Cyber)

In order to quantify the efficiency of the 40-neuron modular architecture, we compared its
performance with the same network without communication channels (in this case, the error
signals measured on the postural output signals only affect the postural subnet, and the
error signals measured on the inertial output only affect the inertial subnet). We trained this
network for 20 times (each new training process started with a new initial random weight
distribution). The corresponding error curves were averaged over these 20 learning phases.
We have found that the modular network (40-neuron with two communicating
subnetworks) gives much better results than the two independent 20 neurons (Fig. 9).

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

35

Figure 9. Averaged error curve for the 40-neuron modular architecture (solid line) compared
to the cumulative averaged error curves of two independently trained 20-neuron networks
(dashed line).
4.2. A Gaussian factor for the artificial distance
In order to improve the biologically plausible features and as previously explained, we
decided to introduce a notion of distance in the network using a Gaussian factor αG that
modulates all the interconnection weights (from neuron i to j) is replaced by αGwij where αG
is computed using the absolute value of the difference between the indexes i and j (see
Draye et al., 2002 for more details). The impact of a particular neuron is greater for neurons
with close indexes. We assumed that the hidden neurons were distributed along a
circumference; this means that the last hidden neuron (neuron 18) has two nearest
neighbors: neurons 17 and 1. Thus, the largest distance between two neurons is 9. In contrast
to the artificial distance presented in the simulation of the neural integrator (Draye et al.,
1997a) which is based on temporal concepts, the distance presented for the identification of
EMGs-movement simulation was based on spatial aspects.

4.2 Emergence of a reduced modular architecture
Following the introduction of an artificial distance a reduced modular architecture has
emerged. When only the free parameters that were set to a nonzero value by the learning
algorithm have been taken into account, a reduced architecture appeared. It has 524 free
parameters (compared with the original configuration of 1172 parameters). Moreover, after

 Recurrent Neural Networks

36

several attempts, we found out that the minimal architecture to solve the first identification
task (figure–eight movement) is composed of 20 neurons (two ten-neuron subnetworks).
This model includes 244 free parameters. The same network (with eight input neurons and
three output units) can solve the second task (standing-up movement); it consists of 274 free
parameters. In summary, we showed that with the minimal architecture, the analysis of the
network is much easier; there was less redundancy in the network and the number of free
parameters has decreased drastically (a factor of about 5!).

4.3 Emergence of inhibitory feedback connections
We have demonstrated that the reduced architecture always exhibited strong feedback
inhibitory interconnections between the two sub-network units. The signs of these feedback
connection weights have been selected by the learning algorithm. We also noticed that the
learning algorithm was more efficient when we initialized the feedback connection weights
with negative values prior to the training phase. The emergence of a reduced lateral
inhibitory output layer between both subnetworks is consistent with the model proposed by
Cannon & Robinson (1983, 1985) to simulate the neural integrator of the human oculomotor
system. It is interesting to point out the fact that in our case, the lateral inhibitory
connections appeared during the learning process (and was not forced analytically as in
Cannon & Robinson (1983, 1985).

4.4 Time-constant and tonic-phasic behaviour of the hidden neurons
The minimal aspect of the reduced DRNN organization allowed studying the distribution of
the time constant and the temporal evolutions of the hidden neurons’ output. A clear
distinction has appeared between the time constants of the position subnetwork units and
the inertial subnetwork ones.
This bimodal distribution of the time constants is depicted in Fig. 10 A,B for the figure eight
and the straightening-up movement, respectively. These values were averaged over ten
different trained networks for each task. The difference between the values of the
subnetwork’s time constants proves that the individual role of each subnetwork (postural
and inertial) has been clearly identified. A higher time-constant mean value in the postural
subnetwork is compatible with the task assigned to this subnetwork. In the same line of
evidence, we noticed that some the hidden neurons exhibited a phasic behavior (Fig. 10C)
while others present a tonic behavior (Fig. 10D). This result is in accordance with the
existence of tonic and phasic neurons found in different brain nuclei (such as in the
oculomotor system). For example, in the paramedian reticular formation, the eye velocity
signal (excitatory or inhibitory burst neurons, Henn et al., 1982) are phasic neurons whereas
a group of tonic neurons encode a pure position-related signal in the prepositus hypoglossi
nucleus (Escudero & Delgado-Garcia, 1988; Escudero et al., 1992; Godaux & Cheron, 1996).
The coding of movement parameters of the premotoneuronal cells recorded in the motor
cortex of behaving animals (Fetz et al. 1989) and in the red nucleus revealed that they exhibit
at least a pure tonic, a phasic-tonic, or a pure phasic discharge pattern during a ramp-and-
hold movement (Fetz, 1992). It is interesting to note that a comparable separation of phasic
and tonic drives was obtained by principal component analysis of raw EMG signals
(Flanders, 1991). Although, the phasic and tonic EMG patterns are mixed in the raw EMG
signals, they might be implemented by distinct neural subnetworks as suggested by Pelligrini

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

37

 Recurrent Neural Networks

36

several attempts, we found out that the minimal architecture to solve the first identification
task (figure–eight movement) is composed of 20 neurons (two ten-neuron subnetworks).
This model includes 244 free parameters. The same network (with eight input neurons and
three output units) can solve the second task (standing-up movement); it consists of 274 free
parameters. In summary, we showed that with the minimal architecture, the analysis of the
network is much easier; there was less redundancy in the network and the number of free
parameters has decreased drastically (a factor of about 5!).

4.3 Emergence of inhibitory feedback connections
We have demonstrated that the reduced architecture always exhibited strong feedback
inhibitory interconnections between the two sub-network units. The signs of these feedback
connection weights have been selected by the learning algorithm. We also noticed that the
learning algorithm was more efficient when we initialized the feedback connection weights
with negative values prior to the training phase. The emergence of a reduced lateral
inhibitory output layer between both subnetworks is consistent with the model proposed by
Cannon & Robinson (1983, 1985) to simulate the neural integrator of the human oculomotor
system. It is interesting to point out the fact that in our case, the lateral inhibitory
connections appeared during the learning process (and was not forced analytically as in
Cannon & Robinson (1983, 1985).

4.4 Time-constant and tonic-phasic behaviour of the hidden neurons
The minimal aspect of the reduced DRNN organization allowed studying the distribution of
the time constant and the temporal evolutions of the hidden neurons’ output. A clear
distinction has appeared between the time constants of the position subnetwork units and
the inertial subnetwork ones.
This bimodal distribution of the time constants is depicted in Fig. 10 A,B for the figure eight
and the straightening-up movement, respectively. These values were averaged over ten
different trained networks for each task. The difference between the values of the
subnetwork’s time constants proves that the individual role of each subnetwork (postural
and inertial) has been clearly identified. A higher time-constant mean value in the postural
subnetwork is compatible with the task assigned to this subnetwork. In the same line of
evidence, we noticed that some the hidden neurons exhibited a phasic behavior (Fig. 10C)
while others present a tonic behavior (Fig. 10D). This result is in accordance with the
existence of tonic and phasic neurons found in different brain nuclei (such as in the
oculomotor system). For example, in the paramedian reticular formation, the eye velocity
signal (excitatory or inhibitory burst neurons, Henn et al., 1982) are phasic neurons whereas
a group of tonic neurons encode a pure position-related signal in the prepositus hypoglossi
nucleus (Escudero & Delgado-Garcia, 1988; Escudero et al., 1992; Godaux & Cheron, 1996).
The coding of movement parameters of the premotoneuronal cells recorded in the motor
cortex of behaving animals (Fetz et al. 1989) and in the red nucleus revealed that they exhibit
at least a pure tonic, a phasic-tonic, or a pure phasic discharge pattern during a ramp-and-
hold movement (Fetz, 1992). It is interesting to note that a comparable separation of phasic
and tonic drives was obtained by principal component analysis of raw EMG signals
(Flanders, 1991). Although, the phasic and tonic EMG patterns are mixed in the raw EMG
signals, they might be implemented by distinct neural subnetworks as suggested by Pelligrini

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

37

 Recurrent Neural Networks

38

Figure 10. Histograms of the time constants in both postural and inertial subnetworks in the
cases of the figure-eight movement (top) and of the standing-up movement (bottom).
Temporal evolutions of the hidden neurons output: a,b The output signals of a t phasic
hidden neuron and a tonic neuron.

& Flanders (1996). This idea is indirectly confirmed by the present result: The fact that the
DRNN mapping between raw EMG signals and the related human movements gives rise to
phasic and tonic artificial neuronal substrates is consistent with the neurophysiology of
movement control.
In conclusion, the physiological plausibility obtained by our DRNN approach in different
aspect of movement control might be of benefit for the potential use of the DRNN in
prosthetic control (Craelius, 2002). In particular, the emergence of artificial structures within
the DRNN architecture resembling to biological network could be used as a dynamically

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

39

adaptive interface between EMG signals from residual muscles and artificial actuators
(Cheron et al., 2003). New DRNNs would be dedicated to a larger repertoire of learned
movements with generalized properties for the building of a patient-specific dynamical
memory of motor actions.

5. References
Aksay, E.; Gamkrelidze, G.; Seung, H.S.; Baker, R. & Tank, D.W. (2001). In vivo intracellular

recording and perturbation of persistent activity in a neural integrator. Nat
Neurosci., 4(2),184-93.

Aksay, E.; Baker, R.; Seung, H.S.& Tank, D.W. (2003). Correlated discharge among cell pairs
within the oculomotor horizontal velocity-to-position integrator. J Neurosci., 23(34),
10852-8.

Anastasio, T.J. & Robinson, D.A. (1991). Failure of the oculomotor neural integrator from a
discrete midline lesion between the abducens nuclei in the monkey. Neurosci Lett.,
127(1), 82-6.

Anastasio, T.J. & Gad, Y.P. (2007). Sparse cerebellar innervation can morph the dynamics of
a model oculomotor neural integrator. J Comput Neurosci., 22(3), 239-54.

Bengoetxea A, Leurs F, Cebolla A, Wellens S, Draye Jp, Cheron G.(2005) A dynamic
recurrent neural network for drawing multi-directional trajectories.Comput Methods
Biomech Biomed Engin. Supp. 8:29-30.

Bengoetxea, A., Dan, B., Pozzo, T., Gillis, P., Leurs, F. And Cheron, G. (2008) Fast drawing
movements: reciprocal muscle patterns encoded in a figure-centered coordinate
frame (submitted)

Cannon, S.C.; Robinson, D.A. & Shamma, S. (1983) A proposed neural network for the
integrator of the oculomotor system. Biol Cybern., 49, 127–36.

Cannon, S.C. & Robinson, D.A. (1985). An improved neural-network model for the neural
integrator of the oculomotor system: more realistic neuron behavior. Biol Cybern.,
53, 93–108.

Cannon, S.C. & Robinson, D.A. (1987). Loss of the neural integrator of the oculomotor
system from brain stem lesions in monkey. J Neurophysiol., 57, 1383–409.

Chan, W.W. & Galiana, H.L. (2005). Integrator function in the oculomotor system is
dependent on sensory context. J Neurophysiol., 93(6), 3709-17.

Cheron, G.; Godaux, E.; Laune, J.M. & Vanderkelen, B. (1986a). Lesions in the cat prepositus
complex: Effects on the vestibulo-ocular reflex and saccades. J Physiol., 372, 75–94.

Cheron, G. & Godaux, E. (1986b). Self-terminated fast movement of the forearm in man :
amplitude dependence of the triple burst pattern. J. Biophys. Biom., 10, 109-17.

Cheron, G.; Draye, J.P.; Bourgeois, M. & Libert, G. (1996) Dynamical neural network
identification of electromyography and arm trajectory relationship during complex
movements. IEEE Trans Biomed Eng., 43, 552–8.

Cheron, G.; Leurs, F.; Bengoetxea, A.; Draye, J.P.; Destree, M. & Dan, B. (2003). A dynamic
recurrent neural network for multiple muscles electromyographic mapping to

 Recurrent Neural Networks

38

Figure 10. Histograms of the time constants in both postural and inertial subnetworks in the
cases of the figure-eight movement (top) and of the standing-up movement (bottom).
Temporal evolutions of the hidden neurons output: a,b The output signals of a t phasic
hidden neuron and a tonic neuron.

& Flanders (1996). This idea is indirectly confirmed by the present result: The fact that the
DRNN mapping between raw EMG signals and the related human movements gives rise to
phasic and tonic artificial neuronal substrates is consistent with the neurophysiology of
movement control.
In conclusion, the physiological plausibility obtained by our DRNN approach in different
aspect of movement control might be of benefit for the potential use of the DRNN in
prosthetic control (Craelius, 2002). In particular, the emergence of artificial structures within
the DRNN architecture resembling to biological network could be used as a dynamically

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

39

adaptive interface between EMG signals from residual muscles and artificial actuators
(Cheron et al., 2003). New DRNNs would be dedicated to a larger repertoire of learned
movements with generalized properties for the building of a patient-specific dynamical
memory of motor actions.

5. References
Aksay, E.; Gamkrelidze, G.; Seung, H.S.; Baker, R. & Tank, D.W. (2001). In vivo intracellular

recording and perturbation of persistent activity in a neural integrator. Nat
Neurosci., 4(2),184-93.

Aksay, E.; Baker, R.; Seung, H.S.& Tank, D.W. (2003). Correlated discharge among cell pairs
within the oculomotor horizontal velocity-to-position integrator. J Neurosci., 23(34),
10852-8.

Anastasio, T.J. & Robinson, D.A. (1991). Failure of the oculomotor neural integrator from a
discrete midline lesion between the abducens nuclei in the monkey. Neurosci Lett.,
127(1), 82-6.

Anastasio, T.J. & Gad, Y.P. (2007). Sparse cerebellar innervation can morph the dynamics of
a model oculomotor neural integrator. J Comput Neurosci., 22(3), 239-54.

Bengoetxea A, Leurs F, Cebolla A, Wellens S, Draye Jp, Cheron G.(2005) A dynamic
recurrent neural network for drawing multi-directional trajectories.Comput Methods
Biomech Biomed Engin. Supp. 8:29-30.

Bengoetxea, A., Dan, B., Pozzo, T., Gillis, P., Leurs, F. And Cheron, G. (2008) Fast drawing
movements: reciprocal muscle patterns encoded in a figure-centered coordinate
frame (submitted)

Cannon, S.C.; Robinson, D.A. & Shamma, S. (1983) A proposed neural network for the
integrator of the oculomotor system. Biol Cybern., 49, 127–36.

Cannon, S.C. & Robinson, D.A. (1985). An improved neural-network model for the neural
integrator of the oculomotor system: more realistic neuron behavior. Biol Cybern.,
53, 93–108.

Cannon, S.C. & Robinson, D.A. (1987). Loss of the neural integrator of the oculomotor
system from brain stem lesions in monkey. J Neurophysiol., 57, 1383–409.

Chan, W.W. & Galiana, H.L. (2005). Integrator function in the oculomotor system is
dependent on sensory context. J Neurophysiol., 93(6), 3709-17.

Cheron, G.; Godaux, E.; Laune, J.M. & Vanderkelen, B. (1986a). Lesions in the cat prepositus
complex: Effects on the vestibulo-ocular reflex and saccades. J Physiol., 372, 75–94.

Cheron, G. & Godaux, E. (1986b). Self-terminated fast movement of the forearm in man :
amplitude dependence of the triple burst pattern. J. Biophys. Biom., 10, 109-17.

Cheron, G.; Draye, J.P.; Bourgeois, M. & Libert, G. (1996) Dynamical neural network
identification of electromyography and arm trajectory relationship during complex
movements. IEEE Trans Biomed Eng., 43, 552–8.

Cheron, G.; Leurs, F.; Bengoetxea, A.; Draye, J.P.; Destree, M. & Dan, B. (2003). A dynamic
recurrent neural network for multiple muscles electromyographic mapping to

 Recurrent Neural Networks

40

elevation angles of the lower limb in human locomotion. J. Neurosci. Methods., 30,
95-104.

Cheron, G.; Cebolla, A.M.; Bengoetxea, A.; Leurs, F. & Dan. B, (2007). Recognition of the
physiological actions of the triphasic EMG pattern by a dynamic recurrent neural
network. Neurosci Lett., 414(2), 192-6.

Craelius, W. (2002). The bionic man: restoring mobility. Science, 295(5557), 1018-21.
Delgado-Garcia, J.M.; Vidal, P.P.; Gomez, C. & Berthoz, A. (1989). A neurophysiological

study of prepositus hypoglossi neurons projecting to oculomotor and
preoculomotor nuclei in the alert cat. Neuroscience, 29(2), 291-307.

Draye, J.P.; Pavisic, D.; Cheron G. & Libert G. (1996). Dynamic recurrent neural networks: a
dynamical analysis. IEEE Transactions on Systems Man, and Cybernetics., 26, 692-706.

Draye, J.P.; Cheron, G.; Libert, G. & Godaux, E. (1997a) Emergence of clusters in the hidden
layer of a dynamic recurrent neural network. Biol Cybern., 76, 365–74.

Draye, J.P.; Cheron, G.; Pavisic, D. & Libert, G. (1997b). Improved identification of the human
shoulder kinematics with muscle biological filters. Lecture Note Series in Computer
Science., 1211, 417-28.

Draye J.P.; Pavisic D.; Cheron G. & Libert G. (1997c) An inhibitory weight initialization
improves the speed and quality of recurrent neural networks learning.
Neurocomputing, 16, 207–24.

Draye, J.P.; Winters, J.M.; & Cheron, G. (2002). Self-selected modular recurrent neural
networks with postural and inertial subnetworks applied to complex movements.
Biol. Cybern., 87, 27-39.

Escudero, M.; de la Cruz, R.R. & Delgado-Garcia, J.M. (1992). A physiological study of
vestibular and prepositus hyglossi neurones projecting to the abducens nucleus in
the alert cat. J Physiol., 458, 539–60.

Escudero, M.; Cheron, G. & Godaux, E. (1996). Discharge properties of brain stem neurons
projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus.J
Neurophysiol., 76(3), 1775-85.

Escudero, M. & Delgado-Garcia, J.M., (1988). Behaviour of reticular, vestibular and
prepositus neurons terminating in the abducens nucleus of the alert cat. Exp Brain
Res., 71, 218–22.

Fetz, E.E.; Cheney, P.D.; Mewes, K. & Palmer, S. (1989). Control of forelimb activity by
populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res.,
80, 437–49.

Fetz, E.E. (1992). Are movement parameters recognizably coded in the activity of single
neurons? Behav Brain Sci, 15, 679–90.

Flanders, M. (1991). Temporal patterns of muscle activation for arm movements in the three-
dimensional space. J Neurosci., 11, 2680–93.

Godaux, E. & Cheron, G. (1996). The hypothesis of the uniqueness of the oculomotor
integrator: direct experimental evidence in the cat. J. Physiol., 492: 517–27.

Henn, V.; Hepp, K. & Buttner-Ennever, J.A. (1982) The primate oculomotor system. II.
Premotor system. Hum Neurobiol., 1, 87–95.

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

41

Jordan, M. I. & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal
teacher. Cognitive Science, 16, 307–54.

Kalman, R.E.; Falb, P.L. & Arbib, M.A. (1969). Topics in mathematical system theory, McGraw-
Hill, New York.

Kawato, M.; Furukawa, K. & Suzuki, R. (1987). A hierarchical neural network model for the
control and learning of voluntary movement. Biol Cybern., 57, 169–85.

Leurs, F.; Bengoetxea, A.; Cebolla, A. & Cheron, G. (2005). Reproducibility of the
identification process of stump muscle EMG in prosthetic gait by a dynamic
recurrent neural network, Comput. Methods Biomech. Biomed. Engin. Supp 1, 181.

Manto, M.; Jacquy, J.; Hildebrand, J. & Godaux, E. (1995). Recovery of hypermetria after a
cerebellar stroke occurs as a multistage process. Ann Neurol., 38, 437-45.

McCormick, D.A. (2001). Brain calculus: neural integration and persistent activity. Nat.
Neurosci., 4(2), 113-4.

McCormick, D.A.; Shu, Y.; Hasenstaub, A.; Sanchez-Vives, M.; Badoual, M. & Bal, T. (2003).
Persistent cortical activity: mechanisms of generation and effects on neuronal
excitability. Cereb Cortex., 13(11), 1219-31.

Pearlmutter B.A. (1989). Learning state space trajectories in recurrent neural networks.
Neural Comput., 1, 263–69.

Pearlmutter B.A. (1995). Gradient calculations for dynamic recurrent neural networks: a
survey. IEEE Trans Neural Netw., 6, 1212–28.

Pelligrini, J.J. & Flanders, M. (1996). Force path curvature and conserved features of muscle
activation. Exp Brain Res, 110, 80–90.

Robinson, D.A. (1989). Integrating with neurons. Annu Rev Neurosci., 12, 33–45.
Scholz J.P. & Kelso J.A. (1990). Intentional switching between patterns of bimanual

coordination depends on the intrinsic dynamics of the patterns. J Mot Behav., 22(1),
98-124.

Silva, F.M. & Almeida, L.B. (1990). Speeding up backpropagation, In: Advanced Neural
Computers, R. Eckmiller, 151-158, Elsevier, Amsterdam.

Soechting, J.F. & Flanders, M. (1997). Evaluating an integrated musculoskeletal model of the
human arm. J Biomech Eng., 119, 93– 102.

Tani J. (2003). Learning to generate articulated behaviour through the bottom-up and the
top-down interaction processes. Neural Netw., 16(1), 11-23.

Tani, J.; Nishimoto, R.; Namikawa, J. & Ito, M. (2008). Codevelopmental learning between
human and humanoid robot using a dynamic neural-network model. IEEE Trans
Syst Man Cybern B Cybern., 38(1), 43-59.

Wada, Y. & Kawato, M. (1992). A neural network model for arm trajectory formation using
forward and inverse dynamics models. Neural Netw., 6, 919–932.

Wang, L. (1993). Singular value decomposition based space modelling and Kalman filtering
techniques. PhD thesis, Faculté Polytechnique de Mons, Mons, Belgium.

Williams, R.J. & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Comput., 1, 270–80.

 Recurrent Neural Networks

40

elevation angles of the lower limb in human locomotion. J. Neurosci. Methods., 30,
95-104.

Cheron, G.; Cebolla, A.M.; Bengoetxea, A.; Leurs, F. & Dan. B, (2007). Recognition of the
physiological actions of the triphasic EMG pattern by a dynamic recurrent neural
network. Neurosci Lett., 414(2), 192-6.

Craelius, W. (2002). The bionic man: restoring mobility. Science, 295(5557), 1018-21.
Delgado-Garcia, J.M.; Vidal, P.P.; Gomez, C. & Berthoz, A. (1989). A neurophysiological

study of prepositus hypoglossi neurons projecting to oculomotor and
preoculomotor nuclei in the alert cat. Neuroscience, 29(2), 291-307.

Draye, J.P.; Pavisic, D.; Cheron G. & Libert G. (1996). Dynamic recurrent neural networks: a
dynamical analysis. IEEE Transactions on Systems Man, and Cybernetics., 26, 692-706.

Draye, J.P.; Cheron, G.; Libert, G. & Godaux, E. (1997a) Emergence of clusters in the hidden
layer of a dynamic recurrent neural network. Biol Cybern., 76, 365–74.

Draye, J.P.; Cheron, G.; Pavisic, D. & Libert, G. (1997b). Improved identification of the human
shoulder kinematics with muscle biological filters. Lecture Note Series in Computer
Science., 1211, 417-28.

Draye J.P.; Pavisic D.; Cheron G. & Libert G. (1997c) An inhibitory weight initialization
improves the speed and quality of recurrent neural networks learning.
Neurocomputing, 16, 207–24.

Draye, J.P.; Winters, J.M.; & Cheron, G. (2002). Self-selected modular recurrent neural
networks with postural and inertial subnetworks applied to complex movements.
Biol. Cybern., 87, 27-39.

Escudero, M.; de la Cruz, R.R. & Delgado-Garcia, J.M. (1992). A physiological study of
vestibular and prepositus hyglossi neurones projecting to the abducens nucleus in
the alert cat. J Physiol., 458, 539–60.

Escudero, M.; Cheron, G. & Godaux, E. (1996). Discharge properties of brain stem neurons
projecting to the flocculus in the alert cat. II. Prepositus hypoglossal nucleus.J
Neurophysiol., 76(3), 1775-85.

Escudero, M. & Delgado-Garcia, J.M., (1988). Behaviour of reticular, vestibular and
prepositus neurons terminating in the abducens nucleus of the alert cat. Exp Brain
Res., 71, 218–22.

Fetz, E.E.; Cheney, P.D.; Mewes, K. & Palmer, S. (1989). Control of forelimb activity by
populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res.,
80, 437–49.

Fetz, E.E. (1992). Are movement parameters recognizably coded in the activity of single
neurons? Behav Brain Sci, 15, 679–90.

Flanders, M. (1991). Temporal patterns of muscle activation for arm movements in the three-
dimensional space. J Neurosci., 11, 2680–93.

Godaux, E. & Cheron, G. (1996). The hypothesis of the uniqueness of the oculomotor
integrator: direct experimental evidence in the cat. J. Physiol., 492: 517–27.

Henn, V.; Hepp, K. & Buttner-Ennever, J.A. (1982) The primate oculomotor system. II.
Premotor system. Hum Neurobiol., 1, 87–95.

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural
Integrator to Complex Human Movements and Locomotion

41

Jordan, M. I. & Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal
teacher. Cognitive Science, 16, 307–54.

Kalman, R.E.; Falb, P.L. & Arbib, M.A. (1969). Topics in mathematical system theory, McGraw-
Hill, New York.

Kawato, M.; Furukawa, K. & Suzuki, R. (1987). A hierarchical neural network model for the
control and learning of voluntary movement. Biol Cybern., 57, 169–85.

Leurs, F.; Bengoetxea, A.; Cebolla, A. & Cheron, G. (2005). Reproducibility of the
identification process of stump muscle EMG in prosthetic gait by a dynamic
recurrent neural network, Comput. Methods Biomech. Biomed. Engin. Supp 1, 181.

Manto, M.; Jacquy, J.; Hildebrand, J. & Godaux, E. (1995). Recovery of hypermetria after a
cerebellar stroke occurs as a multistage process. Ann Neurol., 38, 437-45.

McCormick, D.A. (2001). Brain calculus: neural integration and persistent activity. Nat.
Neurosci., 4(2), 113-4.

McCormick, D.A.; Shu, Y.; Hasenstaub, A.; Sanchez-Vives, M.; Badoual, M. & Bal, T. (2003).
Persistent cortical activity: mechanisms of generation and effects on neuronal
excitability. Cereb Cortex., 13(11), 1219-31.

Pearlmutter B.A. (1989). Learning state space trajectories in recurrent neural networks.
Neural Comput., 1, 263–69.

Pearlmutter B.A. (1995). Gradient calculations for dynamic recurrent neural networks: a
survey. IEEE Trans Neural Netw., 6, 1212–28.

Pelligrini, J.J. & Flanders, M. (1996). Force path curvature and conserved features of muscle
activation. Exp Brain Res, 110, 80–90.

Robinson, D.A. (1989). Integrating with neurons. Annu Rev Neurosci., 12, 33–45.
Scholz J.P. & Kelso J.A. (1990). Intentional switching between patterns of bimanual

coordination depends on the intrinsic dynamics of the patterns. J Mot Behav., 22(1),
98-124.

Silva, F.M. & Almeida, L.B. (1990). Speeding up backpropagation, In: Advanced Neural
Computers, R. Eckmiller, 151-158, Elsevier, Amsterdam.

Soechting, J.F. & Flanders, M. (1997). Evaluating an integrated musculoskeletal model of the
human arm. J Biomech Eng., 119, 93– 102.

Tani J. (2003). Learning to generate articulated behaviour through the bottom-up and the
top-down interaction processes. Neural Netw., 16(1), 11-23.

Tani, J.; Nishimoto, R.; Namikawa, J. & Ito, M. (2008). Codevelopmental learning between
human and humanoid robot using a dynamic neural-network model. IEEE Trans
Syst Man Cybern B Cybern., 38(1), 43-59.

Wada, Y. & Kawato, M. (1992). A neural network model for arm trajectory formation using
forward and inverse dynamics models. Neural Netw., 6, 919–932.

Wang, L. (1993). Singular value decomposition based space modelling and Kalman filtering
techniques. PhD thesis, Faculté Polytechnique de Mons, Mons, Belgium.

Williams, R.J. & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Comput., 1, 270–80.

 Recurrent Neural Networks

42

Zajac, F.E.; Neptune, R.R. & Kautz, S.A. (2003). Biomechanics and muscle coordination of
human walking: part II: lessons from dynamical simulations and clinical
implications. Gait Posture., 17(1), 1-17.

3

Linguistic Productivity and
Recurrent Neural Networks

Akito Sakurai 1, 2 and Yoshihisa Shinozawa 1
1 Keio University, and

2 CREST, JST
Japan

1. Introduction
Productivity is the defining property of a natural language. Any native speaker of a natural
language utters a sentence that has never been heard and understands a sentence that has
been heard for the first time. Chomsky claimed that the purpose of linguistics is to account
for the productivity of natural languages (Chomsky, 1980).
The learnability of a productive language by computational mechanisms is hindered by the
inherent nature of the language. For many years, researchers have attempted to devise a
learning mechanism by which productive languages can be learnt in a manner similar to
that adopted by a child learning from scratch or a student learning a second language.
However, there are many problems resisted to be solved. Productivity is one of their causes.
This chapter is devoted to efforts undertaken to understand productivity in terms of
language learning by means of simple but powerful methods such as neural networks,
because neural networks are the simplest (maybe over-simplified) models of our brain
mechanism we have obtained thus far.
It is natural to expect that a recurrent neural network (RNN) among them is capable of
learning languages, specifically a subset of a natural language, because a sentence is a
sequence of words and an RNN is capable of learning sequences.
The chapter consists of two parts, each of which is devoted to one of the two unmatched
features of human languages—the recursive or self-embedding structure of human
languages, and the syntactic or combinatorial systematicity of human languages. Both these
features constitute the syntactic productivity of human languages.

2. Linguistic productivity and learnability
The difference between a natural language and other discrete symbolic systems is that a
natural language is productive (Chomsky, 1959). The productivity of a language entails that
a language is an infinite set of sentences; theoretically, the fact that a language is infinite
refutes the learnability of a language. Strangely enough, any natural language can be
learned by humans simply by hearing a finite number of, sometimes a very limited number
of, sentences; furthermore, sometimes the sentences are ungrammatical (hence, they are not
sentences linguistically), and it may not be indicated that they are ungrammatical (for
example, refer (Pinker, 1984)).

 Recurrent Neural Networks

42

Zajac, F.E.; Neptune, R.R. & Kautz, S.A. (2003). Biomechanics and muscle coordination of
human walking: part II: lessons from dynamical simulations and clinical
implications. Gait Posture., 17(1), 1-17.

3

Linguistic Productivity and
Recurrent Neural Networks

Akito Sakurai 1, 2 and Yoshihisa Shinozawa 1
1 Keio University, and

2 CREST, JST
Japan

1. Introduction
Productivity is the defining property of a natural language. Any native speaker of a natural
language utters a sentence that has never been heard and understands a sentence that has
been heard for the first time. Chomsky claimed that the purpose of linguistics is to account
for the productivity of natural languages (Chomsky, 1980).
The learnability of a productive language by computational mechanisms is hindered by the
inherent nature of the language. For many years, researchers have attempted to devise a
learning mechanism by which productive languages can be learnt in a manner similar to
that adopted by a child learning from scratch or a student learning a second language.
However, there are many problems resisted to be solved. Productivity is one of their causes.
This chapter is devoted to efforts undertaken to understand productivity in terms of
language learning by means of simple but powerful methods such as neural networks,
because neural networks are the simplest (maybe over-simplified) models of our brain
mechanism we have obtained thus far.
It is natural to expect that a recurrent neural network (RNN) among them is capable of
learning languages, specifically a subset of a natural language, because a sentence is a
sequence of words and an RNN is capable of learning sequences.
The chapter consists of two parts, each of which is devoted to one of the two unmatched
features of human languages—the recursive or self-embedding structure of human
languages, and the syntactic or combinatorial systematicity of human languages. Both these
features constitute the syntactic productivity of human languages.

2. Linguistic productivity and learnability
The difference between a natural language and other discrete symbolic systems is that a
natural language is productive (Chomsky, 1959). The productivity of a language entails that
a language is an infinite set of sentences; theoretically, the fact that a language is infinite
refutes the learnability of a language. Strangely enough, any natural language can be
learned by humans simply by hearing a finite number of, sometimes a very limited number
of, sentences; furthermore, sometimes the sentences are ungrammatical (hence, they are not
sentences linguistically), and it may not be indicated that they are ungrammatical (for
example, refer (Pinker, 1984)).

 Recurrent Neural Networks

44

If a natural language is learnable, it should be generated by some set of rules, which must be
finite; otherwise, the language can never be learned. Gold’s well-known theorems (Gold,
1967) state that even if the generating rules are finite, we would not be able to learn the
language without negative examples (ungrammatical sentences).
Although productivity is the defining property of a natural language, a language should be
characterized better by its learnability. Productive systems are easily built by, for example,
rewriting systems; however, a learnable productive system is prohibitively difficult to build.
Our natural language is, though, a proof of existence of the learnable productive system.
We could mention two key factors that consist the productivity of a language. One of the
factors is systematicity and the other is recursiveness. Systematicity is related to the lexical
category and recursiveness is related to the phrasal category.
Syntactic systematicity is a property by which a valid sentence remains valid when a word
in it is replaced with another word belonging to the same lexical category. Since a lexical
category is one of the syntactic categories and is defined as a group of words that are
replaceable with each other in a sentence without invalidating the grammaticality of the
sentence, the claim is a tautology. Therefore, syntactic systematicity can be better defined as
a property by which the syntax is described using lexical categories. The merit of having
systematicity is that the number of categories is maintained far fewer than the size of the
lexicon, and therefore the rules are simpler. Since a word, specifically a noun, is coined quite
easily and infinitely, systematicity ensures that an infinite number of new sentences are
obtained from a sentence.
In general, systematicity is a wider concept, which has been under argument for years (for
example, refer (Fodor & Pylyshyn, 1988) and the literatures citing it). We consider only
syntactic systematicity, specifically weak systematicity and strong systematicity, as defined
by Hadley (Hadley, 1994).
Recursiveness is a property by which a syntax is (exactly or approximately) modelled by a
set of rewriting rules in which some phrasal category is directly or indirectly defined by
itself. By the recursive rules, we can obtain an infinite number of different and valid
sentences from a set of finite rules and lexicons. It must be noted that in recursive function
theory or computational theory, the concept of recursiveness includes or is equivalent to
that of repetition, which is easily observed from the definitions of recursive functions or
Turing machines. Recursive rules of the form A→aA or A→Aa are called regular rules; they
are not fully qualified “recursive” rules because the rules A→aA or A→Aa represent
repetitions. Recursive rules generally refer to rules such as A→aAb, which requires more
than simply a finite state machine to parse the resultant sentences.
For language generation, when we use a symbolic representation of grammar, systematicity
and recursiveness are easy to implement, and we can observe the variety or postulated
infiniteness of the resultant languages.
For language learning or grammatical inference, systematicity and recursiveness pose
challenges. We will first consider recursiveness, specifically the possibility or impossibility
of representing recursive rules by RNNs; then, we will study recursiveness, specifically the
possibility or impossibility of representing recursive rules by RNNs.

3. Recursion
In this section, we state a necessary condition: a simple RNN with two sigmoidal hidden
units is a recognizer of the language {anbn|n > 0}, whose grammar is expressed by {S→aSb,

Linguistic Productivity and Recurrent Neural Networks

45

S→ab}. Further, we show that there exists a set of parameters that satisfy the above
condition. Then, we realize the language recognizer for the type of language mentioned
above, although the stated condition implies the instability in learning, as has been reported
in previous studies. Furthermore, the condition, contrary to its success in implementing the
recognizer, implies the difficulty in obtaining a recognizer for more complicated languages.

3.1 Background
The researches conducted on the induction of a grammar that includes a recursive or self-
embedding rule by neural networks have employed the following features:
• simple recurrent neural networks (SRN) adopted as the basic or core mechanism
• languages such as {anbn|n>0}, {anbncn|n>0}, which are clearly the results of, although not

a representative of, recursive rules, adopted as target languages.
Here, an denotes a string of n-times repetition of a character a; the language {anbn|n > 0} is
generated by a context-free grammar {S→aSb, S→ab}, and {anbncn|n > 0} is generated by a
context-sensitive grammar. The adoption of these simple languages as target languages is
inevitable because it is not easy to determine whether or not sufficient generalization is
achieved by the learning, if realistic grammars are used.
Although these target languages were simple, it has been pointed out that they were learned
but their grammars were not, because sufficient generalization by the learned network was
not observed and the resultant network appeared to be almost similar to the result of rote
learning. Further, the resultant networks were unstable in the sense that when they were
given new training sentences, which were longer than the ones they had learned, the
learned network changed to completely new networks that were more than simple
refinements of the learned network.
Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; Bodén & Blair, 2003), Rodriguez et al.
(Rodriguez et al., 1999; Rodriguez, 2001), Chalup (Chalup & Blair, 2003), and others
conducted investigations during exploration for the possibility of network learning of the
languages. However, they have not succeeded in clearly stating the conditions that the
learned networks should satisfy.
In this section, we state a property describing SRNs with two hidden units that learned to
recognize a language {anbn|n>0}, that is, a necessary condition for an SRN to be qualified as
a successful language recognizer. The stated condition implies the instability in learning. We
also show the realization of the condition and obtain the recognizer for the language.
However, the question— if there really exists a solution—remains unanswered.

3.2 Preliminaries
A recurrent neural network (RNN) is a network that has recurrent connections added to a
feed-forward network. The calculation proceeds at first for the feed-forward part and after a
single time-unit delay for the recurrent connection part; hence, the inputs for the
calculations in the feed-forward part are supplemented with the outputs of the recurrent
connections.
An RNN is considered to be a discrete time system. Starting with an initial state (initial
outputs of the feed-forward part, i.e., outputs without external inputs), the network
proceeds to accept the subsequent character in a string given to the external inputs, reaches
the final state, and obtains the final external output from the final state.
A simple recurrent network (SRN) is a simple type of RNN and has only one layer of hidden
units in its feed-forward part.

 Recurrent Neural Networks

44

If a natural language is learnable, it should be generated by some set of rules, which must be
finite; otherwise, the language can never be learned. Gold’s well-known theorems (Gold,
1967) state that even if the generating rules are finite, we would not be able to learn the
language without negative examples (ungrammatical sentences).
Although productivity is the defining property of a natural language, a language should be
characterized better by its learnability. Productive systems are easily built by, for example,
rewriting systems; however, a learnable productive system is prohibitively difficult to build.
Our natural language is, though, a proof of existence of the learnable productive system.
We could mention two key factors that consist the productivity of a language. One of the
factors is systematicity and the other is recursiveness. Systematicity is related to the lexical
category and recursiveness is related to the phrasal category.
Syntactic systematicity is a property by which a valid sentence remains valid when a word
in it is replaced with another word belonging to the same lexical category. Since a lexical
category is one of the syntactic categories and is defined as a group of words that are
replaceable with each other in a sentence without invalidating the grammaticality of the
sentence, the claim is a tautology. Therefore, syntactic systematicity can be better defined as
a property by which the syntax is described using lexical categories. The merit of having
systematicity is that the number of categories is maintained far fewer than the size of the
lexicon, and therefore the rules are simpler. Since a word, specifically a noun, is coined quite
easily and infinitely, systematicity ensures that an infinite number of new sentences are
obtained from a sentence.
In general, systematicity is a wider concept, which has been under argument for years (for
example, refer (Fodor & Pylyshyn, 1988) and the literatures citing it). We consider only
syntactic systematicity, specifically weak systematicity and strong systematicity, as defined
by Hadley (Hadley, 1994).
Recursiveness is a property by which a syntax is (exactly or approximately) modelled by a
set of rewriting rules in which some phrasal category is directly or indirectly defined by
itself. By the recursive rules, we can obtain an infinite number of different and valid
sentences from a set of finite rules and lexicons. It must be noted that in recursive function
theory or computational theory, the concept of recursiveness includes or is equivalent to
that of repetition, which is easily observed from the definitions of recursive functions or
Turing machines. Recursive rules of the form A→aA or A→Aa are called regular rules; they
are not fully qualified “recursive” rules because the rules A→aA or A→Aa represent
repetitions. Recursive rules generally refer to rules such as A→aAb, which requires more
than simply a finite state machine to parse the resultant sentences.
For language generation, when we use a symbolic representation of grammar, systematicity
and recursiveness are easy to implement, and we can observe the variety or postulated
infiniteness of the resultant languages.
For language learning or grammatical inference, systematicity and recursiveness pose
challenges. We will first consider recursiveness, specifically the possibility or impossibility
of representing recursive rules by RNNs; then, we will study recursiveness, specifically the
possibility or impossibility of representing recursive rules by RNNs.

3. Recursion
In this section, we state a necessary condition: a simple RNN with two sigmoidal hidden
units is a recognizer of the language {anbn|n > 0}, whose grammar is expressed by {S→aSb,

Linguistic Productivity and Recurrent Neural Networks

45

S→ab}. Further, we show that there exists a set of parameters that satisfy the above
condition. Then, we realize the language recognizer for the type of language mentioned
above, although the stated condition implies the instability in learning, as has been reported
in previous studies. Furthermore, the condition, contrary to its success in implementing the
recognizer, implies the difficulty in obtaining a recognizer for more complicated languages.

3.1 Background
The researches conducted on the induction of a grammar that includes a recursive or self-
embedding rule by neural networks have employed the following features:
• simple recurrent neural networks (SRN) adopted as the basic or core mechanism
• languages such as {anbn|n>0}, {anbncn|n>0}, which are clearly the results of, although not

a representative of, recursive rules, adopted as target languages.
Here, an denotes a string of n-times repetition of a character a; the language {anbn|n > 0} is
generated by a context-free grammar {S→aSb, S→ab}, and {anbncn|n > 0} is generated by a
context-sensitive grammar. The adoption of these simple languages as target languages is
inevitable because it is not easy to determine whether or not sufficient generalization is
achieved by the learning, if realistic grammars are used.
Although these target languages were simple, it has been pointed out that they were learned
but their grammars were not, because sufficient generalization by the learned network was
not observed and the resultant network appeared to be almost similar to the result of rote
learning. Further, the resultant networks were unstable in the sense that when they were
given new training sentences, which were longer than the ones they had learned, the
learned network changed to completely new networks that were more than simple
refinements of the learned network.
Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; Bodén & Blair, 2003), Rodriguez et al.
(Rodriguez et al., 1999; Rodriguez, 2001), Chalup (Chalup & Blair, 2003), and others
conducted investigations during exploration for the possibility of network learning of the
languages. However, they have not succeeded in clearly stating the conditions that the
learned networks should satisfy.
In this section, we state a property describing SRNs with two hidden units that learned to
recognize a language {anbn|n>0}, that is, a necessary condition for an SRN to be qualified as
a successful language recognizer. The stated condition implies the instability in learning. We
also show the realization of the condition and obtain the recognizer for the language.
However, the question— if there really exists a solution—remains unanswered.

3.2 Preliminaries
A recurrent neural network (RNN) is a network that has recurrent connections added to a
feed-forward network. The calculation proceeds at first for the feed-forward part and after a
single time-unit delay for the recurrent connection part; hence, the inputs for the
calculations in the feed-forward part are supplemented with the outputs of the recurrent
connections.
An RNN is considered to be a discrete time system. Starting with an initial state (initial
outputs of the feed-forward part, i.e., outputs without external inputs), the network
proceeds to accept the subsequent character in a string given to the external inputs, reaches
the final state, and obtains the final external output from the final state.
A simple recurrent network (SRN) is a simple type of RNN and has only one layer of hidden
units in its feed-forward part.

 Recurrent Neural Networks

46

Rodriguez et al. (Rodriguez et al., 1999) showed that an SRN learns languages {anbn|n > 0}
and {anbncn|n > 0}. For {anbn|n > 0}, an SRN successfully accepted a language {anbn|0 < n ≤
16} after processing sentences language {anbn|0 < n ≤ 11}. They analyzed and described the
manner in which the input sentences were processed by the SRN. However, the analysis
was limited to the results obtained by simulations and did not proceed into indicating how
and when the learning is possible. Moreover, the existence of the language recognizers was
not yet shown.
Siegelmann (Siegelmann, 1999) showed that the computational ability of an RNN is superior
to that of a Turing machine, thereby implying that the recoginizers for the languages
{anbn|n>0} and {anbncn| n>0} exist. However, based on unsatisfactory generalization
obtained by the learning experiments, we would state that the possibility of learning and
existence of realization is different or it might be the case that the solution does not exist
seemingly contradictive to Siegelmann’s result because there is a difference in formulation:
the output functions of the units are piecewise linear functions; the inversibility of the
function is utilized in Siegelmann’s case and sigmoidal functions are utilized in standard
SRN cases. It must be noted that piecewise linear functions have non-differentiable points,
which makes them infeasible to utilize error-backpropagation algorithm.
On the other hand, Casey (Casey, 1998) and Maass (Maass & Orponen, 1998) showed that in
noisy environments, an RNN is as powerful as finite automaton. The results suggest that we
should consider infinite precision computation when we have to search the possibility of
computations by an RNN or specifically an SRN.
In summary, the learnability of RNN and SRN recognizers for the language {anbn| n > 0} is
not yet demonstrated, and moreover the existence of the recognizers is not yet proved. To
conduct further research, we need to suppose that the computations performed by the RNN
and SRN should be formulated with infinite precision, and the units should use sigmoidal
functions. Therefore, in this research, we have adopted RNN models with infinite precision
calculations and the sigmoidal function (tanh(x)) as the output function for the units.
On the basis of the viewpoints mentioned above, we discuss two points in this section: a
necessary condition for an SRN with two hidden units to be a recognizer for the language
{anbn|n>0}, and whether or not the stated condition is sufficient to guide us to build an SRN
language recognizer.

3.3 Symbols and terminology
An SRN is a simple type of RNN and its function is expressed as follows:

 sn+1 = σ(ws ⋅ sn + wx ⋅ xn) (1)

 Nn(sn) = wos ⋅ sn + woc (2)

Here, σ is a standard sigmoid function (tanh(x) = (1 – exp(–x))/(1 + exp(–x))), which is
applied componentwise.
A counter is a device that stores an integer and allows +1 or −1 operation and answers yes or
no to an inquiry if the content is 0 (0-test). A stack is a device that allows the operations push i
(store i) and pop up (recover the last-stored content, discard it and restore the device to its
state immediately before the corresponding push operation). Clearly, a stack is a more
powerful device as compared to a counter; hence, if a counter is not implementable, a stack,
too, is not implementable.

Linguistic Productivity and Recurrent Neural Networks

47

To represent an input or output word, we adopt a localist representation or one-hot vector, a
vector representation in which a single element is 1 and the other elements are 0. The
network is trained so that the sum of the squared error (difference between the actual
output and desired output) is minimized.
In learning experiments of languages, it is natural to assume there is no negative, i.e.,
ungrammatical sentence; therefore, we have to devise some teaching information from the
sentences. Elman proposed to train an SRN as a predictor, i.e., to teach the network to
predict a word when it sees a sub-string of words up to the word (refer (Elman, 1991)). By
this method, if two possible outputs with the same frequency of occurrence for the same
input exist in a training data, the network would learn to output the same value for two
elements in the output with those for the other elements being 0; this is because the output
vector should provide the minimum value of the sum of the squared error.
For the language {anbn|n>0}, when an SRN is trained to predict the subsequent word, it
behaves internally as a counter. Clearly, if SRN could count the number of as and bs, it
would be able to recognize {anbn|n>0}. In fact, Rodriguez et al. (Rodriguez et al., 1999) and
others analyzed trained networks and found that they behave like counters.
It is clear that if a network correctly predicts the subsequent character in a string in the
language {anbn|n>0}, we could see it as a counter, although its capability is limited. Let us
add an auxiliary network output whose value is positive if the original network predicts
only “a” (which happens only when the input string up to the time was anbn for some n) and
is negative otherwise.
The modified network behaves as if it counts up for a character “a” and counts down for
“b,” because it outputs positive values when the number of “a”s and “b”s coincide and
outputs negative values otherwise. However, the counting capability of the network may be
limited because it would output any value when “a” is fed before the due number of “b”s
are fed, that is, when a counting up action is required before the counter returns back to the
0-state.
As suggested by Rodriguez et al. (Rodriguez et al., 1999), we consider an SRN to be a
dynamical system. For the terminology related to dynamical systems, specifically terms
such as ω-limit set and stable/unstable manifold, we suggest that the readers refer to (Katok
& Hasselblatt, 1996) or (Guckenheimer & Holmes, 1997). Concise definitions are provided in
the Appendix of (Rodriguez et al., 1999).
A (discrete-time) dynamical system is represented as the iteration of a function application:
si+1 = f(si), where i∈N, si∈Rn. A point s is called a fixed point of f if f(s) = s. A point s is an
attracting fixed point of f if s is a fixed point and there exists a neighbourhood Us around s
such that limi→∞f i (x) = s for all x∈Us. A point s is a repelling fixed point of f if s is an
attracting fixed point of f −1. A point s is called a periodic point of f if fn(s) = s for some n.
A point s is a ω-limit point of x for f if limi→∞fni(x) = s for limi→∞ni = ∞. A fixed point x of f is
hyperbolic if all of the eigenvalues of Df at x have absolute values other than one, where Df
= ∂fi/∂xj is the Jacobian matrix of the first partial derivatives of the function f. A set D is
invariant under f if for any s∈D, f(s)∈D.
Theorem 1 (Stable Manifold Theorem for a Fixed Point (Guckenheimer & Holmes, 1997))
Let f: Rn → Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point x. Then there exist
local stable and unstable manifolds Ws,floc(x), Wu,floc(x), tangent to the eigenspaces Es,fx, Eu,fx of
Df at x and of corresponding dimension. Ws,floc(x) and Wu,floc(x) are as smooth as the map f,
i.e., of class Cr.

 Recurrent Neural Networks

46

Rodriguez et al. (Rodriguez et al., 1999) showed that an SRN learns languages {anbn|n > 0}
and {anbncn|n > 0}. For {anbn|n > 0}, an SRN successfully accepted a language {anbn|0 < n ≤
16} after processing sentences language {anbn|0 < n ≤ 11}. They analyzed and described the
manner in which the input sentences were processed by the SRN. However, the analysis
was limited to the results obtained by simulations and did not proceed into indicating how
and when the learning is possible. Moreover, the existence of the language recognizers was
not yet shown.
Siegelmann (Siegelmann, 1999) showed that the computational ability of an RNN is superior
to that of a Turing machine, thereby implying that the recoginizers for the languages
{anbn|n>0} and {anbncn| n>0} exist. However, based on unsatisfactory generalization
obtained by the learning experiments, we would state that the possibility of learning and
existence of realization is different or it might be the case that the solution does not exist
seemingly contradictive to Siegelmann’s result because there is a difference in formulation:
the output functions of the units are piecewise linear functions; the inversibility of the
function is utilized in Siegelmann’s case and sigmoidal functions are utilized in standard
SRN cases. It must be noted that piecewise linear functions have non-differentiable points,
which makes them infeasible to utilize error-backpropagation algorithm.
On the other hand, Casey (Casey, 1998) and Maass (Maass & Orponen, 1998) showed that in
noisy environments, an RNN is as powerful as finite automaton. The results suggest that we
should consider infinite precision computation when we have to search the possibility of
computations by an RNN or specifically an SRN.
In summary, the learnability of RNN and SRN recognizers for the language {anbn| n > 0} is
not yet demonstrated, and moreover the existence of the recognizers is not yet proved. To
conduct further research, we need to suppose that the computations performed by the RNN
and SRN should be formulated with infinite precision, and the units should use sigmoidal
functions. Therefore, in this research, we have adopted RNN models with infinite precision
calculations and the sigmoidal function (tanh(x)) as the output function for the units.
On the basis of the viewpoints mentioned above, we discuss two points in this section: a
necessary condition for an SRN with two hidden units to be a recognizer for the language
{anbn|n>0}, and whether or not the stated condition is sufficient to guide us to build an SRN
language recognizer.

3.3 Symbols and terminology
An SRN is a simple type of RNN and its function is expressed as follows:

 sn+1 = σ(ws ⋅ sn + wx ⋅ xn) (1)

 Nn(sn) = wos ⋅ sn + woc (2)

Here, σ is a standard sigmoid function (tanh(x) = (1 – exp(–x))/(1 + exp(–x))), which is
applied componentwise.
A counter is a device that stores an integer and allows +1 or −1 operation and answers yes or
no to an inquiry if the content is 0 (0-test). A stack is a device that allows the operations push i
(store i) and pop up (recover the last-stored content, discard it and restore the device to its
state immediately before the corresponding push operation). Clearly, a stack is a more
powerful device as compared to a counter; hence, if a counter is not implementable, a stack,
too, is not implementable.

Linguistic Productivity and Recurrent Neural Networks

47

To represent an input or output word, we adopt a localist representation or one-hot vector, a
vector representation in which a single element is 1 and the other elements are 0. The
network is trained so that the sum of the squared error (difference between the actual
output and desired output) is minimized.
In learning experiments of languages, it is natural to assume there is no negative, i.e.,
ungrammatical sentence; therefore, we have to devise some teaching information from the
sentences. Elman proposed to train an SRN as a predictor, i.e., to teach the network to
predict a word when it sees a sub-string of words up to the word (refer (Elman, 1991)). By
this method, if two possible outputs with the same frequency of occurrence for the same
input exist in a training data, the network would learn to output the same value for two
elements in the output with those for the other elements being 0; this is because the output
vector should provide the minimum value of the sum of the squared error.
For the language {anbn|n>0}, when an SRN is trained to predict the subsequent word, it
behaves internally as a counter. Clearly, if SRN could count the number of as and bs, it
would be able to recognize {anbn|n>0}. In fact, Rodriguez et al. (Rodriguez et al., 1999) and
others analyzed trained networks and found that they behave like counters.
It is clear that if a network correctly predicts the subsequent character in a string in the
language {anbn|n>0}, we could see it as a counter, although its capability is limited. Let us
add an auxiliary network output whose value is positive if the original network predicts
only “a” (which happens only when the input string up to the time was anbn for some n) and
is negative otherwise.
The modified network behaves as if it counts up for a character “a” and counts down for
“b,” because it outputs positive values when the number of “a”s and “b”s coincide and
outputs negative values otherwise. However, the counting capability of the network may be
limited because it would output any value when “a” is fed before the due number of “b”s
are fed, that is, when a counting up action is required before the counter returns back to the
0-state.
As suggested by Rodriguez et al. (Rodriguez et al., 1999), we consider an SRN to be a
dynamical system. For the terminology related to dynamical systems, specifically terms
such as ω-limit set and stable/unstable manifold, we suggest that the readers refer to (Katok
& Hasselblatt, 1996) or (Guckenheimer & Holmes, 1997). Concise definitions are provided in
the Appendix of (Rodriguez et al., 1999).
A (discrete-time) dynamical system is represented as the iteration of a function application:
si+1 = f(si), where i∈N, si∈Rn. A point s is called a fixed point of f if f(s) = s. A point s is an
attracting fixed point of f if s is a fixed point and there exists a neighbourhood Us around s
such that limi→∞f i (x) = s for all x∈Us. A point s is a repelling fixed point of f if s is an
attracting fixed point of f −1. A point s is called a periodic point of f if fn(s) = s for some n.
A point s is a ω-limit point of x for f if limi→∞fni(x) = s for limi→∞ni = ∞. A fixed point x of f is
hyperbolic if all of the eigenvalues of Df at x have absolute values other than one, where Df
= ∂fi/∂xj is the Jacobian matrix of the first partial derivatives of the function f. A set D is
invariant under f if for any s∈D, f(s)∈D.
Theorem 1 (Stable Manifold Theorem for a Fixed Point (Guckenheimer & Holmes, 1997))
Let f: Rn → Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point x. Then there exist
local stable and unstable manifolds Ws,floc(x), Wu,floc(x), tangent to the eigenspaces Es,fx, Eu,fx of
Df at x and of corresponding dimension. Ws,floc(x) and Wu,floc(x) are as smooth as the map f,
i.e., of class Cr.

 Recurrent Neural Networks

48

Local stable/unstable manifolds for f are defined as follows (Corollary 6.2.5 in (Katok &
Hasselblatt, 1996)):

Ws,floc(q) = { y ∈ Uq | limm→∞ dist(f m (y), q) = 0 }

 Wu,floc(q) = { y ∈ Uq | limm→∞ dist(f −m (y), q) = 0 }
where Uq represents the neighbourhood of q, and dist is the distance function. Then, the
global stable and unstable manifolds for f are defined as follows:

Ws,f(q) = ∪i ≥ 0 f −i (Ws,floc(q))

Wu,f(q) = ∪i ≥ 0 f i (Wu,floc(q))
As defined, an SRN is a pair of a discrete-time dynamical system sn+1 = σ(ws⋅sn+wx⋅xn;) and
an external output part Nn(sn) = wos⋅sn+woc. We simply express the former (dynamical
system part) as sn+1 = f(sn,xn) and the external output part as h(sn).
When an RNN (or SRN) is considered to be a counter, an input x+ plays the role of the “+1”
count-up operation and another input x− performs the “−1” or count-down operation. For
simplicity, hereafter, let f+ = f(⋅,x+) denote the “+1” operation and f− = f(⋅,x−) denote the “−1”
operation. It must be noted that when the network is used as a recognizer of the language
{anbn|n>0}, the input character “a” corresponds to x+ and “b” corresponds to x−. Further, f− is
undefined for the point outside and on the border of the square I[−1,+1] × I[−1,+1], where
I[−1,+1] is the closed interval [−1,+1]; however, we do not mention it for simplicity.
D0 is a set {s|h(s) ≤ 0}, that is, a region where the counter value is 0 and which is simply
connected when the network is an SRN because h is effectively a linear function. Let Di =
f−−i(D0), that is, a region where the counter value is i.
We postulate that f+(Di)⊆Di+1. This means that any point in Di is eligible for a state which
designates that the counter content is i. This may appear to be rather demanding. An
alternative approach would be that in which the point p corresponds to counter content c if
and only if p = f−m1 f+p1⋅⋅⋅f−mi f+pi (s0) for a predefined s0, some mj ≥ 0 and pj ≥ 0 for 1 ≤ j ≤ i, and
i ≥ 0 such that ∑j = 1i (pj − mj) = c. However, this approach has not resulted in a fruitful result.
We also postulate that the closures of Di are disjoint. Since we defined Di as a closed set, the
postulate is natural. Our consideration was to select Di to be closed. The postulate requires
that we should maintain a margin between D0 and D1 and any other Dis.

3.4 Necessary condition
In this subsection, we consider only an SRN with two hidden units, i.e., all the vectors
concerning s such as ws, sn, wos are two-dimensional vectors.
Definition 2. Dω is the set of the accumulation points of {Di|i > 0}, i.e., s ∈ Dω iff s = limi→∞ski
for some ski∈Dki.
Definition 3. Pω is the set of ω-limit points of points in D0 for f+, i.e., s∈Pω iff s = limi→∞f+ki (s0)
for some ki and s0∈D0. Qω is the set of ω-limit points of points in D0 for f−−1, i.e., s∈Qω iff s =
limi→∞ f−−k (s0) for some ki and s0∈D0.
With regard to the results obtained by Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000;
Bodén & Blair, 2003), Rodriguez et al. (Rodriguez et al., 1999; Rodriguez, 2001), Chalup
(Chalup & Blair, 2003), it is natural, at least during the first consideration, to postulate that
for any x, f+i (x) and f−i (x) do not wonder and therefore will converge to periodic points.

Linguistic Productivity and Recurrent Neural Networks

49

Therefore, Pω and Qω are postulated as finite sets of hyperbolic periodic points for f+ and f−,
respectively. For simplicity in presentation, we postulate that Pω and Qω are finite sets of
hyperbolic fixed points for f+ and f−, respectively.
Moreover, the points in Qω are saddle points for f−; hence, we further postulate that Wu,f−loc(q)
for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional space and their existence is
guaranteed by Theorem 1.
Postulate 4. We postulate that f+ (Di) ⊆ Di+1, the closures of Di are disjoint, Pω and Qω are
finite sets of hyperbolic fixed points for f+ and f−, respectively, and Wu,f−loc(q) for q ∈ Qω and
Ws,f−loc(q) for q ∈ Qω are one-dimensional spaces.
Lemma 5. f−−1°f+(Dω) = Dω, f−−1(Dω∩I(-1,1) × I(-1,1)) = Dω and Dω∩I(-1,1) × I(-1,1) = f−(Dω), and
f+(Dω)⊆Dω. Pω⊆Dω and Qω⊆Dω.
Definition 6. Wu,−1(q) is the global unstable manifold at q ∈ Qω for f−−1, i.e., Wu,−1(q) =
Wu,(f−)−1(q) = Ws,f−(q) .
Lemma 7. For any p ∈ Dω, any accumulation point of { f−i (p) | i > 0 } lies in Qω
Proof. Since p lies in Dω, there exist pki∈Dki such that p = limi→∞f+ki(pki). Suppose q in Dω is the
accumulation point stated in the theorem statement, i.e., q = limj→∞f−hj(p). We set ki to be
sufficiently large for any hj so that pki exists in any neighbourhood of q with f−hj (p). Then, q =
limj→∞f−hj (pki) = limj→∞ f−hj−ki (ski), where ki is a function of hj with ki > hj. Let ski = f−−ki(pki)∈D0
and s0∈D0 be an accumulation point of {ski }. Then, since f−−1 is continuous, by setting nj = −hj
+ ki > 0, we get q = limj→∞ f−nj(s0), i.e., q∈Qω.
Lemma 8. Dω = ∪q∈Qω Wu,−1(q)
Proof. Let p be any point in Dω. Since f−(Dω)⊆I[−1,1] × I[−1,1] where I[−1,1] is the closed
interval [−1,1], i.e., f−(Dω) is bounded, and f−(Dω)⊆Dω, f−n(p) has an accumulation point q in
Dω, which is, by Lemma 7, in Qω. Then, q is expressed as q = limj→∞f−nj(p). Since Qω is a finite
set of a hyperbolic fixed point, q = limn→∞ f−n (p), i.e., p∈Ws,f(q) = Wu,f−1(q)=Wu,−1(q).
Since Pω ⊆ Dω, the next theorem holds.
Theorem 9. A point in Pω is either a point in Qω or in Wu,−1(q) for some q ∈ Qω.
It must be noted that since q∈Wu,−1(q), the theorem statement simply states that “If p∈Pω,
then p∈Wu,−1(q) for some q∈Qω.”

3.5 An Example of a recognizer
To construct an SRN recognizer for { anbn | n>0 }, the SRN should satisfy the conditions
stated in Theorem 9 and Postulate 4, which are summarized as follows:
1. f+ (Di) ⊆ Di+1,
2. the closures of Di are disjoint,
3. Pω and Qω are finite sets of hyperbolic fixed points for f+ and f−, respectively,
4. Wu,f−loc(q) for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional spaces, and
5. if p ∈ Pω then p ∈ Wu,−1(q) for some q ∈ Qω.
To find a solution as simply as possible, let us try to suppose that p ∈ Pω and q ∈ Qω, that is,
f+(p) = p and f−(q) = q. Since p cannot be the same point as q (because f−−1°f+(p) = p+
ws

−1⋅wx⋅(x+-x−)≠p), we have to find a way to cause p∈Wu,−1(q).
Since it is generally very difficult to calculate stable or unstable manifolds from a function
and its fixed point, we attempt to allow Wu,−1(q) to be a “simple” manifold; if Wu,−1(q) is
simple, it is easy to define D0 = {x|h(x)≥0}; on the other hand, if Wu,−1(q) is not simple, a
suitable h may not exist.

 Recurrent Neural Networks

48

Local stable/unstable manifolds for f are defined as follows (Corollary 6.2.5 in (Katok &
Hasselblatt, 1996)):

Ws,floc(q) = { y ∈ Uq | limm→∞ dist(f m (y), q) = 0 }

 Wu,floc(q) = { y ∈ Uq | limm→∞ dist(f −m (y), q) = 0 }
where Uq represents the neighbourhood of q, and dist is the distance function. Then, the
global stable and unstable manifolds for f are defined as follows:

Ws,f(q) = ∪i ≥ 0 f −i (Ws,floc(q))

Wu,f(q) = ∪i ≥ 0 f i (Wu,floc(q))
As defined, an SRN is a pair of a discrete-time dynamical system sn+1 = σ(ws⋅sn+wx⋅xn;) and
an external output part Nn(sn) = wos⋅sn+woc. We simply express the former (dynamical
system part) as sn+1 = f(sn,xn) and the external output part as h(sn).
When an RNN (or SRN) is considered to be a counter, an input x+ plays the role of the “+1”
count-up operation and another input x− performs the “−1” or count-down operation. For
simplicity, hereafter, let f+ = f(⋅,x+) denote the “+1” operation and f− = f(⋅,x−) denote the “−1”
operation. It must be noted that when the network is used as a recognizer of the language
{anbn|n>0}, the input character “a” corresponds to x+ and “b” corresponds to x−. Further, f− is
undefined for the point outside and on the border of the square I[−1,+1] × I[−1,+1], where
I[−1,+1] is the closed interval [−1,+1]; however, we do not mention it for simplicity.
D0 is a set {s|h(s) ≤ 0}, that is, a region where the counter value is 0 and which is simply
connected when the network is an SRN because h is effectively a linear function. Let Di =
f−−i(D0), that is, a region where the counter value is i.
We postulate that f+(Di)⊆Di+1. This means that any point in Di is eligible for a state which
designates that the counter content is i. This may appear to be rather demanding. An
alternative approach would be that in which the point p corresponds to counter content c if
and only if p = f−m1 f+p1⋅⋅⋅f−mi f+pi (s0) for a predefined s0, some mj ≥ 0 and pj ≥ 0 for 1 ≤ j ≤ i, and
i ≥ 0 such that ∑j = 1i (pj − mj) = c. However, this approach has not resulted in a fruitful result.
We also postulate that the closures of Di are disjoint. Since we defined Di as a closed set, the
postulate is natural. Our consideration was to select Di to be closed. The postulate requires
that we should maintain a margin between D0 and D1 and any other Dis.

3.4 Necessary condition
In this subsection, we consider only an SRN with two hidden units, i.e., all the vectors
concerning s such as ws, sn, wos are two-dimensional vectors.
Definition 2. Dω is the set of the accumulation points of {Di|i > 0}, i.e., s ∈ Dω iff s = limi→∞ski
for some ski∈Dki.
Definition 3. Pω is the set of ω-limit points of points in D0 for f+, i.e., s∈Pω iff s = limi→∞f+ki (s0)
for some ki and s0∈D0. Qω is the set of ω-limit points of points in D0 for f−−1, i.e., s∈Qω iff s =
limi→∞ f−−k (s0) for some ki and s0∈D0.
With regard to the results obtained by Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000;
Bodén & Blair, 2003), Rodriguez et al. (Rodriguez et al., 1999; Rodriguez, 2001), Chalup
(Chalup & Blair, 2003), it is natural, at least during the first consideration, to postulate that
for any x, f+i (x) and f−i (x) do not wonder and therefore will converge to periodic points.

Linguistic Productivity and Recurrent Neural Networks

49

Therefore, Pω and Qω are postulated as finite sets of hyperbolic periodic points for f+ and f−,
respectively. For simplicity in presentation, we postulate that Pω and Qω are finite sets of
hyperbolic fixed points for f+ and f−, respectively.
Moreover, the points in Qω are saddle points for f−; hence, we further postulate that Wu,f−loc(q)
for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional space and their existence is
guaranteed by Theorem 1.
Postulate 4. We postulate that f+ (Di) ⊆ Di+1, the closures of Di are disjoint, Pω and Qω are
finite sets of hyperbolic fixed points for f+ and f−, respectively, and Wu,f−loc(q) for q ∈ Qω and
Ws,f−loc(q) for q ∈ Qω are one-dimensional spaces.
Lemma 5. f−−1°f+(Dω) = Dω, f−−1(Dω∩I(-1,1) × I(-1,1)) = Dω and Dω∩I(-1,1) × I(-1,1) = f−(Dω), and
f+(Dω)⊆Dω. Pω⊆Dω and Qω⊆Dω.
Definition 6. Wu,−1(q) is the global unstable manifold at q ∈ Qω for f−−1, i.e., Wu,−1(q) =
Wu,(f−)−1(q) = Ws,f−(q) .
Lemma 7. For any p ∈ Dω, any accumulation point of { f−i (p) | i > 0 } lies in Qω
Proof. Since p lies in Dω, there exist pki∈Dki such that p = limi→∞f+ki(pki). Suppose q in Dω is the
accumulation point stated in the theorem statement, i.e., q = limj→∞f−hj(p). We set ki to be
sufficiently large for any hj so that pki exists in any neighbourhood of q with f−hj (p). Then, q =
limj→∞f−hj (pki) = limj→∞ f−hj−ki (ski), where ki is a function of hj with ki > hj. Let ski = f−−ki(pki)∈D0
and s0∈D0 be an accumulation point of {ski }. Then, since f−−1 is continuous, by setting nj = −hj
+ ki > 0, we get q = limj→∞ f−nj(s0), i.e., q∈Qω.
Lemma 8. Dω = ∪q∈Qω Wu,−1(q)
Proof. Let p be any point in Dω. Since f−(Dω)⊆I[−1,1] × I[−1,1] where I[−1,1] is the closed
interval [−1,1], i.e., f−(Dω) is bounded, and f−(Dω)⊆Dω, f−n(p) has an accumulation point q in
Dω, which is, by Lemma 7, in Qω. Then, q is expressed as q = limj→∞f−nj(p). Since Qω is a finite
set of a hyperbolic fixed point, q = limn→∞ f−n (p), i.e., p∈Ws,f(q) = Wu,f−1(q)=Wu,−1(q).
Since Pω ⊆ Dω, the next theorem holds.
Theorem 9. A point in Pω is either a point in Qω or in Wu,−1(q) for some q ∈ Qω.
It must be noted that since q∈Wu,−1(q), the theorem statement simply states that “If p∈Pω,
then p∈Wu,−1(q) for some q∈Qω.”

3.5 An Example of a recognizer
To construct an SRN recognizer for { anbn | n>0 }, the SRN should satisfy the conditions
stated in Theorem 9 and Postulate 4, which are summarized as follows:
1. f+ (Di) ⊆ Di+1,
2. the closures of Di are disjoint,
3. Pω and Qω are finite sets of hyperbolic fixed points for f+ and f−, respectively,
4. Wu,f−loc(q) for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional spaces, and
5. if p ∈ Pω then p ∈ Wu,−1(q) for some q ∈ Qω.
To find a solution as simply as possible, let us try to suppose that p ∈ Pω and q ∈ Qω, that is,
f+(p) = p and f−(q) = q. Since p cannot be the same point as q (because f−−1°f+(p) = p+
ws

−1⋅wx⋅(x+-x−)≠p), we have to find a way to cause p∈Wu,−1(q).
Since it is generally very difficult to calculate stable or unstable manifolds from a function
and its fixed point, we attempt to allow Wu,−1(q) to be a “simple” manifold; if Wu,−1(q) is
simple, it is easy to define D0 = {x|h(x)≥0}; on the other hand, if Wu,−1(q) is not simple, a
suitable h may not exist.

 Recurrent Neural Networks

50

We have decided that Wu,−1(q) is a line (if possible). Considering the function form f−(s) =
σ(ws⋅s + wx⋅x−), it is not difficult to observe that the line could be one of the axes or one of
the bisectors of the right angles at the origin (i.e., one of the lines y = x and y = −x). We have
selected the bisector in the first (and the third) quadrant (i.e., the line y = x). q is selected as
the origin, and p is selected arbitrarily as (0.8, 0.8).
The condition stated in Item 4 in the above is satisfied by setting one of the two eigenvalues
of Df− at the origin to be greater than 1 and the other eigenvalue smaller than 1. We have
selected 1/0.6 and 1/μ for the two eigenvalues so that the conditions stated in Item 1 and 2
in the above are satisfied by considering the eigenvalues of Df+ at p for f+.
The design consideration that we have ignored is the design of D0 = {x|h(x)≥0}. A simple
method is to make the boundary h(x) = 0 parallel to Wu,−1(q) for our intended q∈Qω; if we do
so, by setting the largest eigenvalue of Df− at q to be equal to the inverse of the eigenvalue of
Df+ at p along the normal to Wu,−1, we can obtain the points s ∈ D0, f−°f+(s), f−2°f+2 (s),…,
f−i°f+i(s),… that belong to {anbn|n>0} and reside at approximately equal distances from Wu,−1.
It is apparent that the points belonging to, say, {an+1bn|n > 0} have approximately equal
distances from Wu,−1, and this distance is different from that for {anbn|n>0}
Let f−(x) = σ(Ax + B0), f+(x) = σ(Ax + B1). We plan to set Qω = {(0,0)}, Pω = {(0.8,0.8)}, Wu,−1 =
{(x,y)|y = x}; the eigenvalues of the tangent space of f−−1 at (0,0) are 1/λ = 1/0.6 and 1/μ
(where the eigenvector on y = x is expanding), and the eigenvalues of the tangent space of f+
at (0.8,0.8) are 1/μ and any value. Then, considering the derivatives at (0,0) and (0.8,0.8), it is
easy to determine that

()μ
μ

πρ
μ

λπρ 28.011,
40

0
42

1
−=⎟

⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=A

where ρ(θ) is a rotation by θ. Then

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−+

=
μλμλ
μλμλ

A

Next from σ(B0) = (0,0)T and σ((0.8λ, 0.8λ) T + B1) = (0.8,0.8) T, we get

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

λσ
λσ

8.0)8.0(
8.0)8.0(

,
0
0

1

1

10 BB

These give us μ=5/3, λ=0.6, B1 ≈ (1.23722, 1.23722)T.
In Fig. 1, the left-hand side image shows the vector field of f+, where the arrows starting at
the x end at f+(x) and the right image shows the vector field of f−. In the left-hand pane of
Fig.2, the group of points at the centre (red) correspond to {anbn|n>0}, those at the top (blue)
correspond to {an+1bn|n > 0}, and those at the bottom (green) correspond to {anbn+1|n > 0}.
The initial point is set to p = (0.5,0.95) in Fig. 2. All the points correspond to n = 1 to n = 40,
and when n grows, the points group together to points on y = −x, forming narrow stripes,
i.e., Dn, for some n. As shown in the right-hand pane of Fig. 2, numerical computations of
f−n°f+n are sensitive to small truncation errors. In the case of Mathematica, the points start
straying away for n ≥ 47.

Linguistic Productivity and Recurrent Neural Networks

51

Fig. 1. Vector field representation of f+ (left) and f− (right)

Fig. 2. On the left-hand side, { f−n°f+n(p) | 40 ≥ n ≥ 1} (middle; red), { f−n+1°f+n(p)|40 ≥ n ≥ 1}
(top; blue), and { f−n° f+n+1(p)|40 ≥ n ≥ 1} (bottom; green), where p = (0.5,0.95) are plotted. On
the right side, the plots are identical to those on the left-hand side, except for 70 ≥ n ≥ 1.

-1 -0.75 -0.5 -0.25 0.25 0.5

0.2

0.4

0.6

0.8

1

Fig. 3. Points of {(f−°f+)n(p)|11 ≥ n ≥ 1}, where p = (0.5,0.95) are plotted over the left-hand pane
of Fig. 2, which shows that the points do not stay in D0. The points start from p and converge
at around (–0.8595, 0.8984).

-0.4 -0.3 -0.2 -0.1 0.1 0.2

-0.1

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0.1 0.2

-0.1

0.1

0.2

0.3

0.4

0.5

 Recurrent Neural Networks

50

We have decided that Wu,−1(q) is a line (if possible). Considering the function form f−(s) =
σ(ws⋅s + wx⋅x−), it is not difficult to observe that the line could be one of the axes or one of
the bisectors of the right angles at the origin (i.e., one of the lines y = x and y = −x). We have
selected the bisector in the first (and the third) quadrant (i.e., the line y = x). q is selected as
the origin, and p is selected arbitrarily as (0.8, 0.8).
The condition stated in Item 4 in the above is satisfied by setting one of the two eigenvalues
of Df− at the origin to be greater than 1 and the other eigenvalue smaller than 1. We have
selected 1/0.6 and 1/μ for the two eigenvalues so that the conditions stated in Item 1 and 2
in the above are satisfied by considering the eigenvalues of Df+ at p for f+.
The design consideration that we have ignored is the design of D0 = {x|h(x)≥0}. A simple
method is to make the boundary h(x) = 0 parallel to Wu,−1(q) for our intended q∈Qω; if we do
so, by setting the largest eigenvalue of Df− at q to be equal to the inverse of the eigenvalue of
Df+ at p along the normal to Wu,−1, we can obtain the points s ∈ D0, f−°f+(s), f−2°f+2 (s),…,
f−i°f+i(s),… that belong to {anbn|n>0} and reside at approximately equal distances from Wu,−1.
It is apparent that the points belonging to, say, {an+1bn|n > 0} have approximately equal
distances from Wu,−1, and this distance is different from that for {anbn|n>0}
Let f−(x) = σ(Ax + B0), f+(x) = σ(Ax + B1). We plan to set Qω = {(0,0)}, Pω = {(0.8,0.8)}, Wu,−1 =
{(x,y)|y = x}; the eigenvalues of the tangent space of f−−1 at (0,0) are 1/λ = 1/0.6 and 1/μ
(where the eigenvector on y = x is expanding), and the eigenvalues of the tangent space of f+
at (0.8,0.8) are 1/μ and any value. Then, considering the derivatives at (0,0) and (0.8,0.8), it is
easy to determine that

()μ
μ

πρ
μ

λπρ 28.011,
40

0
42

1
−=⎟

⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=A

where ρ(θ) is a rotation by θ. Then

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−+

=
μλμλ
μλμλ

A

Next from σ(B0) = (0,0)T and σ((0.8λ, 0.8λ) T + B1) = (0.8,0.8) T, we get

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−

−

λσ
λσ

8.0)8.0(
8.0)8.0(

,
0
0

1

1

10 BB

These give us μ=5/3, λ=0.6, B1 ≈ (1.23722, 1.23722)T.
In Fig. 1, the left-hand side image shows the vector field of f+, where the arrows starting at
the x end at f+(x) and the right image shows the vector field of f−. In the left-hand pane of
Fig.2, the group of points at the centre (red) correspond to {anbn|n>0}, those at the top (blue)
correspond to {an+1bn|n > 0}, and those at the bottom (green) correspond to {anbn+1|n > 0}.
The initial point is set to p = (0.5,0.95) in Fig. 2. All the points correspond to n = 1 to n = 40,
and when n grows, the points group together to points on y = −x, forming narrow stripes,
i.e., Dn, for some n. As shown in the right-hand pane of Fig. 2, numerical computations of
f−n°f+n are sensitive to small truncation errors. In the case of Mathematica, the points start
straying away for n ≥ 47.

Linguistic Productivity and Recurrent Neural Networks

51

Fig. 1. Vector field representation of f+ (left) and f− (right)

Fig. 2. On the left-hand side, { f−n°f+n(p) | 40 ≥ n ≥ 1} (middle; red), { f−n+1°f+n(p)|40 ≥ n ≥ 1}
(top; blue), and { f−n° f+n+1(p)|40 ≥ n ≥ 1} (bottom; green), where p = (0.5,0.95) are plotted. On
the right side, the plots are identical to those on the left-hand side, except for 70 ≥ n ≥ 1.

-1 -0.75 -0.5 -0.25 0.25 0.5

0.2

0.4

0.6

0.8

1

Fig. 3. Points of {(f−°f+)n(p)|11 ≥ n ≥ 1}, where p = (0.5,0.95) are plotted over the left-hand pane
of Fig. 2, which shows that the points do not stay in D0. The points start from p and converge
at around (–0.8595, 0.8984).

-0.4 -0.3 -0.2 -0.1 0.1 0.2

-0.1

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0.1 0.2

-0.1

0.1

0.2

0.3

0.4

0.5

 Recurrent Neural Networks

52

3.6 Discussion for recursiveness
We obtained a necessary condition for an SRN to be used as a recognizer for the language
{anbn |n > 0} by analyzing its proper behavior from the viewpoint of discrete dynamical
systems. The stated condition supposes that the closures of Di are disjoint, f+(Di)⊆Di+1, and
Qω is finite.
This suggests a possibility for the implementation of the recognizer; in fact, we have
successfully built a recognizer for the language, thereby showing that the learning problem
of the language has at least one solution. However, it is worthwhile to be cautious. As
shown in Fig. 3, f−°f+(p) does not return to around p unless there is no proper setting for D0 to
which p belongs. This means that we have to “reset” the counter when it returns to the 0-
state in order to reuse it. The experimental setting used, for example, (Elman, 1990), i.e., a
setting where a string aabbaaaabbbbab… is used is not appropriate to obtain the recognizer.
It is suggested (but not logically derived) that the instability of any solution for learning
occurs due to the necessity of Pω being in an unstable manifold Wu,−1(q) for some q∈Qω. Since
Pω is an attractive fixed point in the above example, f+n(s0) for s0∈D0 approaches
exponentially close to Pω for n. Even a small fluctuation in the position of Pω, since f+n(s0),
too, is close to Wu,−1(q), f−n(f+n(s0)), which should be in D0, is significantly disturbed. This
means that even if an temporary solution is close to a correct solution, due to a small
fluctuation in the position of Pω caused by a new training data, f−n(f+n(s0)) may easily be
pushed out of D0.
Since Rodriguez et al. (Rodriguez, 2001) showed that the languages that do not belong to the
context-free class could be learned to some degree, we have to conduct further study on the
discrepancies.
These instabilities of grammar learning by SRN mentioned above might not be visible in our
natural language learning; this suggests that an SRN might not be appropriate for a model
of language learning.

4. Systematicity
Hadley defines three degrees of syntactic systamaticity (Hadley, 1994). We focus on two of
the degrees, namely weak systematicity and strong systematicity. According to Hadley,
supposing that a training corpus is “representative” in the sense that every word (noun,
verb, etc.) that occurs in some sentence of the corpus also occurs (at some point) in every
permissible syntactic position, if a set of test sentences is the one that contains only
grammatical sentences which are syntactically isomorphic to sentences in the training
corpus, and that no new vocabulary is present, and a network is capable of successfully
processing (by recognizing or interpreting) novel test sentences, then the network is said to
be (at least) weakly systematic. Hadley defines that a system is strongly systematic if (i) it
can exhibit weak systematicity and (ii) it can accurately process a variety of novel simple
sentences and novel embedded sentences containing previously learned words in positions
where they do not appear in the training corpus (i.e., the word within the novel sentence
does not appear in that same syntactic position within any simple or embedded sentence in
the training corpus). For subtleties in the above definition, refer to (Christiansen & Chater,
1994).
It is clear that if a training set is sufficiently large and syntactic sentence patterns are limited
(for example, the length of the sentences is limited to at most ten words), we could state that

Linguistic Productivity and Recurrent Neural Networks

53

a Bayesian method with lexical categories as a latent variable would provide a satisfactory
result. In fact, many researches have targeted unsupervised language learning thus far.
(Schütze, 1993) is an early research conducted on unsupervised language learning.
These researches show that the lexical categories could be induced from an unlabeled
corpus if we adopt an approach based on symbolic paradigm and statistics. A question
remains: is it possible for a simple method such as an RNN to induce lexical categories with,
for example, an error-backpropagation algorithm?
If an SRN or RNN is able to learn the grammar of a language, they would be able to learn
the lexical categories. However, since a large lexicon implies a large number of connections
and possibly the necessity for a large number of internal nodes, it might make learning
difficult for a network. Therefore, we must develop some mechanism, other than the SRN or
RNN, to group similar words into clusters, which are input to the SRN or RNN. The
clustering algorithm to be used may be explicit or implicit; here, “explicit” means that a
clustering mechanism other than SRN or RNN is used, whereas “implicit” means that a sub-
network is added to the SRN or RNN and is trained with the main SRN or RNN. (Elman,
1991) adopts the latter approach, whereas (Farkaš & Crocker, 2008) adopts the former one.
Frank adopts an approach that does not use additional networks (Frank, 2006).
Farkaš and Crocker approached the problem by adding a type of self-organizing map
(SOM). By means of the SOM, they successfully constructed a distributional representation
of words, as done explicitly in probabilistic approaches (e.g. (Schütze, 1993)). The SOM is
used not only for mapping from an input word to its distributional representation (a type of
category) but also vise versa. The success of their approach clearly shows the possibility of
existence of two types of networks, i.e., networks for clustering and networks for grammar.
One of the problems that remains is that since an SOM provides graded responses, it may be
the case that frequency-related information creeps in the SOM output and SRN is trained
not only on categories but also on frequency. Since we may not know how much of the
result depends on the frequency-related information, we would be a little hesitant to say
that the SRN has learned the grammar described in the lexical categories
One of the issues that we have to consider when we adopt the approach of “graded
responses” such as statistics and neural networks with real value outputs is the performance
criteria for the results. In this chapter, we consider an RNN with linear input functions and
sigmoidal activation functions, which assume values between 0 and 1. Although the words
are represented by localist representation or one-hot vector and therefore for an input,
exactly one node is 1 and others are 0, the outputs assume real values, that is, possibly all
the nodes have graded predictions for words.
Networks are trained so that an output designates the subsequent word. A training data set
may be ambiguous in a sense that the possible number of subsequent words after a
sequence may exceed one. Then, as usual, the output values are considered to be a
distributional representation of the subsequent words or the likelihood of the network
prediction. Suppose that there are training sequences that consist of a common prefix for a
string of words but more than one word comes after the prefix. If a network is properly
trained, we could expect that the network’s output prediction is uniform for the subsequent
words after the common prefix string. If some word appears more often than another word,
the output activation for the former word must be higher than that for the latter word,
although the activations may not be proportional to their frequency.
Consequently, in a manner different from many neural network classification researches,
which employ the sum of errors for each training samples, we must measure the
distributional differences.

 Recurrent Neural Networks

52

3.6 Discussion for recursiveness
We obtained a necessary condition for an SRN to be used as a recognizer for the language
{anbn |n > 0} by analyzing its proper behavior from the viewpoint of discrete dynamical
systems. The stated condition supposes that the closures of Di are disjoint, f+(Di)⊆Di+1, and
Qω is finite.
This suggests a possibility for the implementation of the recognizer; in fact, we have
successfully built a recognizer for the language, thereby showing that the learning problem
of the language has at least one solution. However, it is worthwhile to be cautious. As
shown in Fig. 3, f−°f+(p) does not return to around p unless there is no proper setting for D0 to
which p belongs. This means that we have to “reset” the counter when it returns to the 0-
state in order to reuse it. The experimental setting used, for example, (Elman, 1990), i.e., a
setting where a string aabbaaaabbbbab… is used is not appropriate to obtain the recognizer.
It is suggested (but not logically derived) that the instability of any solution for learning
occurs due to the necessity of Pω being in an unstable manifold Wu,−1(q) for some q∈Qω. Since
Pω is an attractive fixed point in the above example, f+n(s0) for s0∈D0 approaches
exponentially close to Pω for n. Even a small fluctuation in the position of Pω, since f+n(s0),
too, is close to Wu,−1(q), f−n(f+n(s0)), which should be in D0, is significantly disturbed. This
means that even if an temporary solution is close to a correct solution, due to a small
fluctuation in the position of Pω caused by a new training data, f−n(f+n(s0)) may easily be
pushed out of D0.
Since Rodriguez et al. (Rodriguez, 2001) showed that the languages that do not belong to the
context-free class could be learned to some degree, we have to conduct further study on the
discrepancies.
These instabilities of grammar learning by SRN mentioned above might not be visible in our
natural language learning; this suggests that an SRN might not be appropriate for a model
of language learning.

4. Systematicity
Hadley defines three degrees of syntactic systamaticity (Hadley, 1994). We focus on two of
the degrees, namely weak systematicity and strong systematicity. According to Hadley,
supposing that a training corpus is “representative” in the sense that every word (noun,
verb, etc.) that occurs in some sentence of the corpus also occurs (at some point) in every
permissible syntactic position, if a set of test sentences is the one that contains only
grammatical sentences which are syntactically isomorphic to sentences in the training
corpus, and that no new vocabulary is present, and a network is capable of successfully
processing (by recognizing or interpreting) novel test sentences, then the network is said to
be (at least) weakly systematic. Hadley defines that a system is strongly systematic if (i) it
can exhibit weak systematicity and (ii) it can accurately process a variety of novel simple
sentences and novel embedded sentences containing previously learned words in positions
where they do not appear in the training corpus (i.e., the word within the novel sentence
does not appear in that same syntactic position within any simple or embedded sentence in
the training corpus). For subtleties in the above definition, refer to (Christiansen & Chater,
1994).
It is clear that if a training set is sufficiently large and syntactic sentence patterns are limited
(for example, the length of the sentences is limited to at most ten words), we could state that

Linguistic Productivity and Recurrent Neural Networks

53

a Bayesian method with lexical categories as a latent variable would provide a satisfactory
result. In fact, many researches have targeted unsupervised language learning thus far.
(Schütze, 1993) is an early research conducted on unsupervised language learning.
These researches show that the lexical categories could be induced from an unlabeled
corpus if we adopt an approach based on symbolic paradigm and statistics. A question
remains: is it possible for a simple method such as an RNN to induce lexical categories with,
for example, an error-backpropagation algorithm?
If an SRN or RNN is able to learn the grammar of a language, they would be able to learn
the lexical categories. However, since a large lexicon implies a large number of connections
and possibly the necessity for a large number of internal nodes, it might make learning
difficult for a network. Therefore, we must develop some mechanism, other than the SRN or
RNN, to group similar words into clusters, which are input to the SRN or RNN. The
clustering algorithm to be used may be explicit or implicit; here, “explicit” means that a
clustering mechanism other than SRN or RNN is used, whereas “implicit” means that a sub-
network is added to the SRN or RNN and is trained with the main SRN or RNN. (Elman,
1991) adopts the latter approach, whereas (Farkaš & Crocker, 2008) adopts the former one.
Frank adopts an approach that does not use additional networks (Frank, 2006).
Farkaš and Crocker approached the problem by adding a type of self-organizing map
(SOM). By means of the SOM, they successfully constructed a distributional representation
of words, as done explicitly in probabilistic approaches (e.g. (Schütze, 1993)). The SOM is
used not only for mapping from an input word to its distributional representation (a type of
category) but also vise versa. The success of their approach clearly shows the possibility of
existence of two types of networks, i.e., networks for clustering and networks for grammar.
One of the problems that remains is that since an SOM provides graded responses, it may be
the case that frequency-related information creeps in the SOM output and SRN is trained
not only on categories but also on frequency. Since we may not know how much of the
result depends on the frequency-related information, we would be a little hesitant to say
that the SRN has learned the grammar described in the lexical categories
One of the issues that we have to consider when we adopt the approach of “graded
responses” such as statistics and neural networks with real value outputs is the performance
criteria for the results. In this chapter, we consider an RNN with linear input functions and
sigmoidal activation functions, which assume values between 0 and 1. Although the words
are represented by localist representation or one-hot vector and therefore for an input,
exactly one node is 1 and others are 0, the outputs assume real values, that is, possibly all
the nodes have graded predictions for words.
Networks are trained so that an output designates the subsequent word. A training data set
may be ambiguous in a sense that the possible number of subsequent words after a
sequence may exceed one. Then, as usual, the output values are considered to be a
distributional representation of the subsequent words or the likelihood of the network
prediction. Suppose that there are training sequences that consist of a common prefix for a
string of words but more than one word comes after the prefix. If a network is properly
trained, we could expect that the network’s output prediction is uniform for the subsequent
words after the common prefix string. If some word appears more often than another word,
the output activation for the former word must be higher than that for the latter word,
although the activations may not be proportional to their frequency.
Consequently, in a manner different from many neural network classification researches,
which employ the sum of errors for each training samples, we must measure the
distributional differences.

 Recurrent Neural Networks

54

Measuring the degree of systematicity in a trained network is a problem.
Elman did not conduct a direct test to observe whether the trained network exhibited weak
systematicity or equivalent property, because Elman’s pioneering study was conducted
before Hadley’s proposal of weak systematicity. However, Elman showed the result of
analysis on activations of hidden units, which effectively showed the categorization of
words. The dendrogram in (Elman, 1991) shows the hierarchical structure among words and
the similarity between word groups, although it is constructed on the basis of activations
summed over all the contexts before the target word. Therefore, there remains the question
whether the network really learned the hierarchy or the result is simply a result of statistical
analysis of the network’s behaviour. In other words, although the network was trained to
predict a word, it had not acquired the capability to predict a category (or distribution of
possibilities of words) of the subsequent word.
Frank, in (Frank, 2006), adopted a criterion that compares the sum of activations for words
in the expected category and the unexpected category. However, a malicious network may
not predict a word in an incorrect category but predict only one word among many words
in the correct category.
One and only one alternative is to measure the distributional responses in terms of, for
example, χ2 distance or KL divergence.
We have another problem concerning training data. To examine the systematicity of an
RNN, Frank selected a rather difficult problem. In (Frank, 2006), the training data include
data of type N1 V1 N1 and N2 V2 N2, where N1 and N2 represent the noun categories and
V1 and V2 verb category, whereas the test data is of N2 V1 N2 and N1 V2 N2, requiring that
a network should induce that words in N1 and N2 are in the same category. The
requirement appears to be rather demanding, because no suggestion of equating the
position of N1 in the first sentence and N2 in the second and that of V1 and V2 is provided.
Since the network inevitably learns the frequencies of words, it may learn to predict N2 after
V2, irrespective of the first N1, or to predict N2 in the third place when N2 appears in the
first place regardless of V1 in the second place.
It is better to select simpler settings for the training data and test data.
In this section, we examine the learnability of systematicity in a simpler situation. It is
hypothesized that the systems of categories exist a priori; hence, learners need to only select
the best one among them. Suppose that SRNs are furnished with an input conversion sub-
network that converts an input word into its category and undergoes learning to predict the
subsequent word. We found that an SRN with a conversion sub-network consistent with the
grammatical categories of words in input sentences has the smallest learning error in terms
of predicting frequency. Consequently, we can recover correct categorization of words by
observing the SRN outputs, calculating learning errors, and selecting the SRN with the least
learning error.

4.1 Experimental settings: network architecture
In systematicity experiments, SRNs are augmented with a new input layer (Fig. 4 (left))
which corresponds to the primary networks in (Bodén, 2004). The connection weights
between the first and second input layers are fixed during learning with 0 (disconnected) or
1 (connected). The activation function of the second input layer is linear and that of the
hidden and output units is the standard sigmoid function 1/(1 + exp(−x))

Linguistic Productivity and Recurrent Neural Networks

55

 .

Fig. 4. Architecture experimented (left) and categorization examples (right).

A localist representation or the so-called one-hot vector (a binary vector with a single 1) is
adopted for input words as well as categories. The connections between Input Layer 1 and
Input Layer 2 convert the former to the latter. These connections are set and fixed to 1 or 0
according to the conversion, because a word belongs to a category or not (the corresponding
weight is 1 or 0, respectively). As shown in Fig. 4 (left), the information that the SRN part of
the network would know is limited to the categories of the input words.
In the current experiment, the category refers to a mutually exclusive partition of words.
Since words and categories are represented by localist representation, each node in Input
Layer 1 has exactly one outgoing connection to Input Layer 2, and each node in Input Layer
2 has incoming connections from the nodes designating words of the category. In other
words, in this experiment, we suppose that the word in the example sentences belongs to
only one category or is derived from at most one non-terminal symbol in derivation.
Examples of the categorization are shown in Fig. 4 (right).
As many networks as the possible categorizations were prepared. Then, all the networks
were trained while observing their learning errors. It must be noted that the network is
robust to overtraining and that a network with the least learning error might possibly be a
network with the least generalization error because the networks accept only categorized
inputs so that a network with incorrect categorization connections receives inconsistent
learning data.

4.2 Experimental settings: target language and learning method
In the current experiments, the task is to learn a diversified centre-embedded language
(DCEL) {abt, aabbt, aaabbbt|a = a1 or a2, b = b1 or b2} (Bodén, 2004), where “t” is the
terminal of a string and “a” and “b” correspond to categories. Hereafter, the terms character
and string are used instead of word and sentence; further, the density of a category is the
number of terminal symbols derived from a non-terminal symbol or equivalently the
number of elements or characters belonging to the category; for example, the density of “a”
in the above example is 2. The length of the language is the length of the longest sequence in
the language (excluding the termination symbol “t”); hence, the length of the language in
the above example is 6.
A simple error-backpropagation algorithm with the squared error function is adopted for
the learning as in SRN experiments. The learning rate is 0.10 and no acceleration is used.

a1 a2 b1 b2 t

c1 c2 c3

1 1 1 1 1

a1 a2 b1 b2 t

c c2 c3

1 1 1 1 1

{a1, a2}, {b1, b2}, {t}
Correct categorization

a1 a 2 b 1 b 2 t

c1 c c 3

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3

1 1 1 1 1

{a1, b1}, {a2, b2}, {t}
Wrong categorization

a1 a2 b1 b2 t

c4

1

a1 a2 b1 b2 t

c4

1

c2

1 1

c3

1 1

c1 c2

1 1

c1 c2

1 1

{a1}, {a2}, {b1, b2}, {t}
Correct subcategorization

a1 a 2 b 1 b 2 t

c1 c 2 c 3 c 4 c 5

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3 c 4 c 5

1 1 1 1 1

{a1}, {a2}, {b1}, {b2}, {t}
The finest categorization

Context Layer

Output Layer

Hidden Layer

Input Layer 2

Input Layer 1

 Recurrent Neural Networks

54

Measuring the degree of systematicity in a trained network is a problem.
Elman did not conduct a direct test to observe whether the trained network exhibited weak
systematicity or equivalent property, because Elman’s pioneering study was conducted
before Hadley’s proposal of weak systematicity. However, Elman showed the result of
analysis on activations of hidden units, which effectively showed the categorization of
words. The dendrogram in (Elman, 1991) shows the hierarchical structure among words and
the similarity between word groups, although it is constructed on the basis of activations
summed over all the contexts before the target word. Therefore, there remains the question
whether the network really learned the hierarchy or the result is simply a result of statistical
analysis of the network’s behaviour. In other words, although the network was trained to
predict a word, it had not acquired the capability to predict a category (or distribution of
possibilities of words) of the subsequent word.
Frank, in (Frank, 2006), adopted a criterion that compares the sum of activations for words
in the expected category and the unexpected category. However, a malicious network may
not predict a word in an incorrect category but predict only one word among many words
in the correct category.
One and only one alternative is to measure the distributional responses in terms of, for
example, χ2 distance or KL divergence.
We have another problem concerning training data. To examine the systematicity of an
RNN, Frank selected a rather difficult problem. In (Frank, 2006), the training data include
data of type N1 V1 N1 and N2 V2 N2, where N1 and N2 represent the noun categories and
V1 and V2 verb category, whereas the test data is of N2 V1 N2 and N1 V2 N2, requiring that
a network should induce that words in N1 and N2 are in the same category. The
requirement appears to be rather demanding, because no suggestion of equating the
position of N1 in the first sentence and N2 in the second and that of V1 and V2 is provided.
Since the network inevitably learns the frequencies of words, it may learn to predict N2 after
V2, irrespective of the first N1, or to predict N2 in the third place when N2 appears in the
first place regardless of V1 in the second place.
It is better to select simpler settings for the training data and test data.
In this section, we examine the learnability of systematicity in a simpler situation. It is
hypothesized that the systems of categories exist a priori; hence, learners need to only select
the best one among them. Suppose that SRNs are furnished with an input conversion sub-
network that converts an input word into its category and undergoes learning to predict the
subsequent word. We found that an SRN with a conversion sub-network consistent with the
grammatical categories of words in input sentences has the smallest learning error in terms
of predicting frequency. Consequently, we can recover correct categorization of words by
observing the SRN outputs, calculating learning errors, and selecting the SRN with the least
learning error.

4.1 Experimental settings: network architecture
In systematicity experiments, SRNs are augmented with a new input layer (Fig. 4 (left))
which corresponds to the primary networks in (Bodén, 2004). The connection weights
between the first and second input layers are fixed during learning with 0 (disconnected) or
1 (connected). The activation function of the second input layer is linear and that of the
hidden and output units is the standard sigmoid function 1/(1 + exp(−x))

Linguistic Productivity and Recurrent Neural Networks

55

 .

Fig. 4. Architecture experimented (left) and categorization examples (right).

A localist representation or the so-called one-hot vector (a binary vector with a single 1) is
adopted for input words as well as categories. The connections between Input Layer 1 and
Input Layer 2 convert the former to the latter. These connections are set and fixed to 1 or 0
according to the conversion, because a word belongs to a category or not (the corresponding
weight is 1 or 0, respectively). As shown in Fig. 4 (left), the information that the SRN part of
the network would know is limited to the categories of the input words.
In the current experiment, the category refers to a mutually exclusive partition of words.
Since words and categories are represented by localist representation, each node in Input
Layer 1 has exactly one outgoing connection to Input Layer 2, and each node in Input Layer
2 has incoming connections from the nodes designating words of the category. In other
words, in this experiment, we suppose that the word in the example sentences belongs to
only one category or is derived from at most one non-terminal symbol in derivation.
Examples of the categorization are shown in Fig. 4 (right).
As many networks as the possible categorizations were prepared. Then, all the networks
were trained while observing their learning errors. It must be noted that the network is
robust to overtraining and that a network with the least learning error might possibly be a
network with the least generalization error because the networks accept only categorized
inputs so that a network with incorrect categorization connections receives inconsistent
learning data.

4.2 Experimental settings: target language and learning method
In the current experiments, the task is to learn a diversified centre-embedded language
(DCEL) {abt, aabbt, aaabbbt|a = a1 or a2, b = b1 or b2} (Bodén, 2004), where “t” is the
terminal of a string and “a” and “b” correspond to categories. Hereafter, the terms character
and string are used instead of word and sentence; further, the density of a category is the
number of terminal symbols derived from a non-terminal symbol or equivalently the
number of elements or characters belonging to the category; for example, the density of “a”
in the above example is 2. The length of the language is the length of the longest sequence in
the language (excluding the termination symbol “t”); hence, the length of the language in
the above example is 6.
A simple error-backpropagation algorithm with the squared error function is adopted for
the learning as in SRN experiments. The learning rate is 0.10 and no acceleration is used.

a1 a2 b1 b2 t

c1 c2 c3

1 1 1 1 1

a1 a2 b1 b2 t

c c2 c3

1 1 1 1 1

{a1, a2}, {b1, b2}, {t}
Correct categorization

a1 a 2 b 1 b 2 t

c1 c c 3

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3

1 1 1 1 1

{a1, b1}, {a2, b2}, {t}
Wrong categorization

a1 a2 b1 b2 t

c4

1

a1 a2 b1 b2 t

c4

1

c2

1 1

c3

1 1

c1 c2

1 1

c1 c2

1 1

{a1}, {a2}, {b1, b2}, {t}
Correct subcategorization

a1 a 2 b 1 b 2 t

c1 c 2 c 3 c 4 c 5

1 1 1 1 1

a1 a 2 b 1 b 2 t

c1 c 2 c 3 c 4 c 5

1 1 1 1 1

{a1}, {a2}, {b1}, {b2}, {t}
The finest categorization

Context Layer

Output Layer

Hidden Layer

Input Layer 2

Input Layer 1

 Recurrent Neural Networks

56

The generalization capability of the learned networks is evaluated by the Kullback-Leibler
divergence (KLd) between two distributions: expectation and realized network output. The
former distribution is obtained by supposing the uniform distribution for the above three
strings and the characters in the same categories (e.g. {a1,a2}). {1/4, 1/4, 1/4, 1/4, 0} is an
example distribution for {a1,a2,b1,b2,t} that appears after a string a1a2 or a2a1. The latter
distribution is obtained by normalizing the network outputs to 1. It must be noted that KLd
is used only for evaluation and never used for learning.
The learning data were obtained by first randomly generating a set of strings of terminal
symbols, and then randomly re-sampling from the set until the due number of strings is
obtained. 90,000 strings were used for each run of training and 10,000 strings were used to
calculate the resultant learning error and the generalization error.
15 training sessions for each network were conducted by changing the learning data and its
presentation order; the average and the standard deviation of the resultant learning and
generalization errors were obtained. Categorizations were varied for each network.
The parameters were varied; the length of the language was 6, 8, and 10; the number of
training data was 30 and 60; the density of category was 2, 3, 4, and 5.

4.3 Results
Figs. 5 and 6 summarize some of the results obtained; L denotes the length of the language
and D denotes the density of the correct category for “a” and “b” (set equal); Nc denotes the
number of categories including “t”; N denotes the number of learning examples. An error
bar shows the standard deviation averaged over experiments.

0.09

0.1

0.11

0.12

Correct Wrong1 Wrong2
0

0.2

0.4

0.6

0.8

1

Correct Wrong1 Wrong2

Le
ar

ni
ng

er
ro

r

G
en

er
al

iz
at

io
n

er
ro

r

0

0.4

0.8

1.2

1.6

Correct1 Correct2 Wrong1 Wrong2

G
en

er
al

iz
at

io
n

er
ro

r

0.065

0.07

0.075

0.08

0.085

Correct1 Correct2 Wrong1 Wrong2

Le
ar

ni
ng

er
ro

r

0.065

0.07

0.075

0.08

0.085

0.065

0.07

0.075

0.08

0.085

Fig. 5. Top two figures. L = 6, D = 2, Nc = 3, and N = 60. On the horizontal axis, Correct is
{a1,a2}, {b1,b2}, {t}, Wrong1 is {a1}, {a2,b1,b2}, {t} and Wrong2 is {a1,b1}, {a2,b2}, {t}. Bottom two
figures. L = 8, D = 4, Nc = 4, and N = 60. On the horizontal axis, Correct1 is {a1,a2,a3,a4},
{b1,b2}, {b3,b4}, {t}, Correct2 is {a1,a2,a3,a4}, {b1,b2,b3}, {b4}, {t}, Wrong1 is {a1,a2,b1}, {a3,a4,b2},
{b3,b4}, {t} and Wrong2 is {a1,a2,b3,b4}, {a1,b1}, {a2,b2}, {t}

Linguistic Productivity and Recurrent Neural Networks

57

The correct categorization consistently gives the smallest of the resultant learning and
generalization errors. The correct sub-categorization also gives the smallest values as shown
in Fig. 5 (bottom). It is observed that the two different sub-categorizations give the similar
learning errors and generalization errors.
In Fig. 6, some results of the experiments for categories with higher density are shown. The
difference between the correct categories and the wrong categories in these cases is clearer
than that that found in the cases in Fig. 5.

0

0.2

0.4

0.6

0.8

1

Correct Wrong1 Wrong2 Wrong3 Wrong4 Wrong5

G
en

er
al

iz
at

io
n

er
ro

r

0.06

0.065

0.07

0.075

0.08

Correct Wrong1 Wrong2 Wrong3 Wrong4 Wrong5

Le
ar

ni
ng

er
ro

r

Fig. 6. L = 10, D = 5, Nc = 3, and N = 60. On the horizontal axis, Correct is {a1,a2,a3,a4,a5},
{b1,b2,b3,b4,b5}, {t}; Wrong1 is {a1,a2,a3,b1,b2,b3}, {a4,a5,b4,b5}, {t}; Wrong2 is {a1,a2,b3,b4,b5},
{a3,a4,a5,b1,b2}, {t}; Wrong3 is {a1,a2,b1,b2}, {a3,a4,a5,b3,b4,b5}, {t}; Wrong4 is {a1,a2},
{a3,a4,a5,b1,b2,b3,b4,b5}, {t}; Wrong5 is {a1,b1}, {a2,a3,a4,a5,b2,b3,b4,b5}, {t}.

4.4 Discussion on systematicity
Networks with systematicity that conforms to the systematicity in the target language can be
differentiated from the networks without it, because networks with correct categorizations
or sub-categorizations can be found by referring to their learning error, simple and
observable quantity, as stated in the previous section.
To acquire word meanings (or the extent of category of objects/movements/events that a
word means), it has been argued that humans use a lot of tactics that constrain
generalizations to an appropriate level (e.g., (Markman, 1990)). It is noteworthy that no
workable model is possible if we require that humans should interact with external
environments to use the tactics.
Acquisition of grammatical categories of word is a different problem than acquisition of
word meanings, because grammatical categories exist only for grammars, which suggests
that humans use different tactics. Pinker suggests that humans utilize bootstrapping
interactions between syntax and semantics development as a key factor (Pinker, 1984).
However, if the semantics should concern with external environments, no workable model
is possible.
Conventional approaches have not yet provided satisfactory results. For example, although
distributional clustering is one of the promising approaches, the clusters corresponding to
grammatical categories that the algorithm provides are unsatisfactory (Clark, 2000).
However, if we could utilize the fact that grammatical categories exist only for grammars, as
in the case, it may be possible to induce grammatical categories solely from written texts.
In the current experiments, based on these observations, we proposed to hypothesize the
existence of innate systems of categorizations. Although the method and results reported
here are still very primitive, they suggest that the hypothesis is promising.

 Recurrent Neural Networks

56

The generalization capability of the learned networks is evaluated by the Kullback-Leibler
divergence (KLd) between two distributions: expectation and realized network output. The
former distribution is obtained by supposing the uniform distribution for the above three
strings and the characters in the same categories (e.g. {a1,a2}). {1/4, 1/4, 1/4, 1/4, 0} is an
example distribution for {a1,a2,b1,b2,t} that appears after a string a1a2 or a2a1. The latter
distribution is obtained by normalizing the network outputs to 1. It must be noted that KLd
is used only for evaluation and never used for learning.
The learning data were obtained by first randomly generating a set of strings of terminal
symbols, and then randomly re-sampling from the set until the due number of strings is
obtained. 90,000 strings were used for each run of training and 10,000 strings were used to
calculate the resultant learning error and the generalization error.
15 training sessions for each network were conducted by changing the learning data and its
presentation order; the average and the standard deviation of the resultant learning and
generalization errors were obtained. Categorizations were varied for each network.
The parameters were varied; the length of the language was 6, 8, and 10; the number of
training data was 30 and 60; the density of category was 2, 3, 4, and 5.

4.3 Results
Figs. 5 and 6 summarize some of the results obtained; L denotes the length of the language
and D denotes the density of the correct category for “a” and “b” (set equal); Nc denotes the
number of categories including “t”; N denotes the number of learning examples. An error
bar shows the standard deviation averaged over experiments.

0.09

0.1

0.11

0.12

Correct Wrong1 Wrong2
0

0.2

0.4

0.6

0.8

1

Correct Wrong1 Wrong2

Le
ar

ni
ng

er
ro

r

G
en

er
al

iz
at

io
n

er
ro

r

0

0.4

0.8

1.2

1.6

Correct1 Correct2 Wrong1 Wrong2

G
en

er
al

iz
at

io
n

er
ro

r

0.065

0.07

0.075

0.08

0.085

Correct1 Correct2 Wrong1 Wrong2

Le
ar

ni
ng

er
ro

r

0.065

0.07

0.075

0.08

0.085

0.065

0.07

0.075

0.08

0.085

Fig. 5. Top two figures. L = 6, D = 2, Nc = 3, and N = 60. On the horizontal axis, Correct is
{a1,a2}, {b1,b2}, {t}, Wrong1 is {a1}, {a2,b1,b2}, {t} and Wrong2 is {a1,b1}, {a2,b2}, {t}. Bottom two
figures. L = 8, D = 4, Nc = 4, and N = 60. On the horizontal axis, Correct1 is {a1,a2,a3,a4},
{b1,b2}, {b3,b4}, {t}, Correct2 is {a1,a2,a3,a4}, {b1,b2,b3}, {b4}, {t}, Wrong1 is {a1,a2,b1}, {a3,a4,b2},
{b3,b4}, {t} and Wrong2 is {a1,a2,b3,b4}, {a1,b1}, {a2,b2}, {t}

Linguistic Productivity and Recurrent Neural Networks

57

The correct categorization consistently gives the smallest of the resultant learning and
generalization errors. The correct sub-categorization also gives the smallest values as shown
in Fig. 5 (bottom). It is observed that the two different sub-categorizations give the similar
learning errors and generalization errors.
In Fig. 6, some results of the experiments for categories with higher density are shown. The
difference between the correct categories and the wrong categories in these cases is clearer
than that that found in the cases in Fig. 5.

0

0.2

0.4

0.6

0.8

1

Correct Wrong1 Wrong2 Wrong3 Wrong4 Wrong5
G

en
er

al
iz

at
io

n
er

ro
r

0.06

0.065

0.07

0.075

0.08

Correct Wrong1 Wrong2 Wrong3 Wrong4 Wrong5

Le
ar

ni
ng

er
ro

r

Fig. 6. L = 10, D = 5, Nc = 3, and N = 60. On the horizontal axis, Correct is {a1,a2,a3,a4,a5},
{b1,b2,b3,b4,b5}, {t}; Wrong1 is {a1,a2,a3,b1,b2,b3}, {a4,a5,b4,b5}, {t}; Wrong2 is {a1,a2,b3,b4,b5},
{a3,a4,a5,b1,b2}, {t}; Wrong3 is {a1,a2,b1,b2}, {a3,a4,a5,b3,b4,b5}, {t}; Wrong4 is {a1,a2},
{a3,a4,a5,b1,b2,b3,b4,b5}, {t}; Wrong5 is {a1,b1}, {a2,a3,a4,a5,b2,b3,b4,b5}, {t}.

4.4 Discussion on systematicity
Networks with systematicity that conforms to the systematicity in the target language can be
differentiated from the networks without it, because networks with correct categorizations
or sub-categorizations can be found by referring to their learning error, simple and
observable quantity, as stated in the previous section.
To acquire word meanings (or the extent of category of objects/movements/events that a
word means), it has been argued that humans use a lot of tactics that constrain
generalizations to an appropriate level (e.g., (Markman, 1990)). It is noteworthy that no
workable model is possible if we require that humans should interact with external
environments to use the tactics.
Acquisition of grammatical categories of word is a different problem than acquisition of
word meanings, because grammatical categories exist only for grammars, which suggests
that humans use different tactics. Pinker suggests that humans utilize bootstrapping
interactions between syntax and semantics development as a key factor (Pinker, 1984).
However, if the semantics should concern with external environments, no workable model
is possible.
Conventional approaches have not yet provided satisfactory results. For example, although
distributional clustering is one of the promising approaches, the clusters corresponding to
grammatical categories that the algorithm provides are unsatisfactory (Clark, 2000).
However, if we could utilize the fact that grammatical categories exist only for grammars, as
in the case, it may be possible to induce grammatical categories solely from written texts.
In the current experiments, based on these observations, we proposed to hypothesize the
existence of innate systems of categorizations. Although the method and results reported
here are still very primitive, they suggest that the hypothesis is promising.

 Recurrent Neural Networks

58

5. Conclusion
Productivity is the key property of a natural language. Learnability is an equally important
property, since productivity without learnability will not help the transfer of a language
beyond generations. Linguistic productivity is supported by recursiveness described in
terms of phrasal categories and systamaticity described in terms of lexical categories.
Recursiveness is realizable by an SRN; however, the realized function is limited to a counter
capable of counting up and down just once. Hence, for example, parsing consecutive
embedded sentential phrases requires a reset of counters or stacks. The difficulty of learning
of recursiveness is observed experimentally and theoretically.
Human learns recursive grammar in his/her first language which requires stacks to parse.
We have to determine an alternative mechanism or appropriate a priori knowledge along
with an additional method that embeds the knowledge in the learning mechanism.
Systematicity is learnable with an RNN by using added sub-networks, which is equivalent
to one-stage learning algorithms composed of clustering of words into categories and
learning of grammars written in lexical (and phrasal) categories. Learnability is observed
when frequency information that exist in training corpus and influence learning results is
not transferred to the SRN; this shows the possibility of grammatical induction when
systematicity exists.
The difficulty in learning systematicity in more realistic situations is rooted in ambiguous
words and varied contexts. An ambiguous word is a word, for example, which could be a
noun in a sentence but a verb in another sentence. Varied contexts are contexts which induce
the same category but have very different forms, for example, a noun could be followed by
almost any lexical category.
Research is being conducted on the learnability of productive grammars.

6. References
Bodén, M.; Wiles, J.; Tonkes, B. & Blair, A. D. (1999). Learning to predict a context-free

language: Analysis of dynamics in recurrent hidden units, Proceedings of ICANN'99,
pp. 359-364, Edinburgh, 1999

Bodén, M. & Wiles, J. (2000). Context-free and context-sensitive dynamics in recurrent
neural networks, Connection Science, Vol. 12, No. 3-4, (Dec. 2000), pp. 197-210

Bodén, M. & Blair, A. (2003). Learning the dynamics of embedded clauses, Applied
Intelligence, Vol. 19, No. 1-2, (July 2003), pp. 51-63

Bodén, M. (2004). Generalization by symbolic abstraction in cascaded recurrent networks,
Neurocomputing, Vol. 57, pp. 87-104

Casey, M. (1998). Correction to proof that recurrent neural networks can robustly recognize
only regular languages, Neural Computation, Vol. 10, No. 5, (July 1998), pp. 1067-
1069

Chalup, S. K.. & Blair, A. D. (2003). Incremental training of first order recurrent neural
networks to predict a context-sensitive language, Neural Networks, Vol. 16, pp. 955-
972

Chomsky, N. (1959a). A Review of B.F. Skinners verbal behavior, Language, Vol. 35, pp. 26-
58, Reprinted in: Chomsky, N. (1965). Aspects of the theory of syntax, M.I.T. Press,
Cambridge, Mass

Linguistic Productivity and Recurrent Neural Networks

59

Chomsky, N. (1959b). On certain formal properties of grammars, Information and Control,
Vol. 2, pp. 137–167

Chomsky, N. (1980). Rules and representations, Columbia University Press, New York
Christiansen, M. H. & Chater, N. (1994). Generalization and connectionist language

learning, Mind and Language, Vol. 9, pp. 273-287
Clark, A. (2000). Inducing syntactic categories by context distribution clustering, Proceedings

of CoNLL-2000 and LLL-2000, Lisbon, Portugal, (Sept., 2000)
Elman, J. L. (1990). Finding structure in time, Cognitive Science, Vol. 14, pp. 179-211
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical

structure, Machine Learning, Vol. 7, pp. 195-224
Elman, J. L. (1995). Language as a dynamical system, In: Mind as Motion: Explorations in the

Dynamics of Cognition, Port, R. F. & van Gelder, T. (Eds.), pp. 195—223, MIT Press,
Cambridge, MA

Farkaš, I. & Crocker, M. W. (2008). Syntactic systematicity in sentence processing with a
recurrent self-organizing network, Neurocomputing, Vol. 71, No. 7-9, pp. 1172-1179

Fodor, J. A. & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical
analysis, Cognition, Vol. 28, pp. 3-71

Frank, S. L. (2006). Learn more by training less: Systematicity in sentence processing by
recurrent networks, Connection Science, Vol. 18, pp. 287-302

Gers, F. A. & Schmidhuber, J. (2001). LSTM Recurrent Networks Learn Simple Context Free
and Context Sensitive Languages, IEEE Transactions on Neural Networks, Vol. 12, No.
6, pp. 1333-1340

Gold, E. M. (1967). Language identification in the limit, Information and Control, Vol. 10, No.
5, pp. 447-474.

Guckenheimer, J. & Holmes, P. (1997). Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Corr. 5th print., Applied Mathematical Sciences, 42,
Springer

Hadley, R. (1994). Systematicity in connectionist language learning, Mind and Language, Vol.
9, No. 3, pp. 247–272

Hopcroft, J. & Ullman, J. (1979). Introduction to Automata Theory, Languages and Computation,
Addison-Wesley

Iwata, A.; Shinozawa, Y. & Sakurai, A. (2007). A Characterization of simple recurrent neural
networks as a language recognizer, Proceedings of 14th International Conference on
Neural Information Processing, (Nov. 2007), Kitakyushu, Japan

Katok, A. & Hasselblatt, B. (1996). Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press

Maass, W. & Orponen, P. (1998). On the effect of analog noise in discrete-time analog
computations, Neural Computation, vol. 10, pp. 1071-1095

Markman, E. M. (1990). Constraints children place on word meanings, Cognitive Science, Vol.
14, pp. 154-173

Pinker, S. (1984). Language learnability and language development, Harvard University Press,
(1984), Cambridge

Rodriguez P.; Wiles J. & Elman J. L. (1999). A Recurrent neural network that learns to count,
Connection Science, Vol. 11, No. 1, (March 1999), pp. 5-40

Rodriguez, P. (2001). Simple recurrent networks learn context-free and context-sensitive
languages by counting, Neural Computation, Vol. 13, No. 9, pp. 2093–2118

 Recurrent Neural Networks

58

5. Conclusion
Productivity is the key property of a natural language. Learnability is an equally important
property, since productivity without learnability will not help the transfer of a language
beyond generations. Linguistic productivity is supported by recursiveness described in
terms of phrasal categories and systamaticity described in terms of lexical categories.
Recursiveness is realizable by an SRN; however, the realized function is limited to a counter
capable of counting up and down just once. Hence, for example, parsing consecutive
embedded sentential phrases requires a reset of counters or stacks. The difficulty of learning
of recursiveness is observed experimentally and theoretically.
Human learns recursive grammar in his/her first language which requires stacks to parse.
We have to determine an alternative mechanism or appropriate a priori knowledge along
with an additional method that embeds the knowledge in the learning mechanism.
Systematicity is learnable with an RNN by using added sub-networks, which is equivalent
to one-stage learning algorithms composed of clustering of words into categories and
learning of grammars written in lexical (and phrasal) categories. Learnability is observed
when frequency information that exist in training corpus and influence learning results is
not transferred to the SRN; this shows the possibility of grammatical induction when
systematicity exists.
The difficulty in learning systematicity in more realistic situations is rooted in ambiguous
words and varied contexts. An ambiguous word is a word, for example, which could be a
noun in a sentence but a verb in another sentence. Varied contexts are contexts which induce
the same category but have very different forms, for example, a noun could be followed by
almost any lexical category.
Research is being conducted on the learnability of productive grammars.

6. References
Bodén, M.; Wiles, J.; Tonkes, B. & Blair, A. D. (1999). Learning to predict a context-free

language: Analysis of dynamics in recurrent hidden units, Proceedings of ICANN'99,
pp. 359-364, Edinburgh, 1999

Bodén, M. & Wiles, J. (2000). Context-free and context-sensitive dynamics in recurrent
neural networks, Connection Science, Vol. 12, No. 3-4, (Dec. 2000), pp. 197-210

Bodén, M. & Blair, A. (2003). Learning the dynamics of embedded clauses, Applied
Intelligence, Vol. 19, No. 1-2, (July 2003), pp. 51-63

Bodén, M. (2004). Generalization by symbolic abstraction in cascaded recurrent networks,
Neurocomputing, Vol. 57, pp. 87-104

Casey, M. (1998). Correction to proof that recurrent neural networks can robustly recognize
only regular languages, Neural Computation, Vol. 10, No. 5, (July 1998), pp. 1067-
1069

Chalup, S. K.. & Blair, A. D. (2003). Incremental training of first order recurrent neural
networks to predict a context-sensitive language, Neural Networks, Vol. 16, pp. 955-
972

Chomsky, N. (1959a). A Review of B.F. Skinners verbal behavior, Language, Vol. 35, pp. 26-
58, Reprinted in: Chomsky, N. (1965). Aspects of the theory of syntax, M.I.T. Press,
Cambridge, Mass

Linguistic Productivity and Recurrent Neural Networks

59

Chomsky, N. (1959b). On certain formal properties of grammars, Information and Control,
Vol. 2, pp. 137–167

Chomsky, N. (1980). Rules and representations, Columbia University Press, New York
Christiansen, M. H. & Chater, N. (1994). Generalization and connectionist language

learning, Mind and Language, Vol. 9, pp. 273-287
Clark, A. (2000). Inducing syntactic categories by context distribution clustering, Proceedings

of CoNLL-2000 and LLL-2000, Lisbon, Portugal, (Sept., 2000)
Elman, J. L. (1990). Finding structure in time, Cognitive Science, Vol. 14, pp. 179-211
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical

structure, Machine Learning, Vol. 7, pp. 195-224
Elman, J. L. (1995). Language as a dynamical system, In: Mind as Motion: Explorations in the

Dynamics of Cognition, Port, R. F. & van Gelder, T. (Eds.), pp. 195—223, MIT Press,
Cambridge, MA

Farkaš, I. & Crocker, M. W. (2008). Syntactic systematicity in sentence processing with a
recurrent self-organizing network, Neurocomputing, Vol. 71, No. 7-9, pp. 1172-1179

Fodor, J. A. & Pylyshyn, Z. (1988). Connectionism and cognitive architecture: a critical
analysis, Cognition, Vol. 28, pp. 3-71

Frank, S. L. (2006). Learn more by training less: Systematicity in sentence processing by
recurrent networks, Connection Science, Vol. 18, pp. 287-302

Gers, F. A. & Schmidhuber, J. (2001). LSTM Recurrent Networks Learn Simple Context Free
and Context Sensitive Languages, IEEE Transactions on Neural Networks, Vol. 12, No.
6, pp. 1333-1340

Gold, E. M. (1967). Language identification in the limit, Information and Control, Vol. 10, No.
5, pp. 447-474.

Guckenheimer, J. & Holmes, P. (1997). Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Corr. 5th print., Applied Mathematical Sciences, 42,
Springer

Hadley, R. (1994). Systematicity in connectionist language learning, Mind and Language, Vol.
9, No. 3, pp. 247–272

Hopcroft, J. & Ullman, J. (1979). Introduction to Automata Theory, Languages and Computation,
Addison-Wesley

Iwata, A.; Shinozawa, Y. & Sakurai, A. (2007). A Characterization of simple recurrent neural
networks as a language recognizer, Proceedings of 14th International Conference on
Neural Information Processing, (Nov. 2007), Kitakyushu, Japan

Katok, A. & Hasselblatt, B. (1996). Introduction to the Modern Theory of Dynamical Systems,
Cambridge University Press

Maass, W. & Orponen, P. (1998). On the effect of analog noise in discrete-time analog
computations, Neural Computation, vol. 10, pp. 1071-1095

Markman, E. M. (1990). Constraints children place on word meanings, Cognitive Science, Vol.
14, pp. 154-173

Pinker, S. (1984). Language learnability and language development, Harvard University Press,
(1984), Cambridge

Rodriguez P.; Wiles J. & Elman J. L. (1999). A Recurrent neural network that learns to count,
Connection Science, Vol. 11, No. 1, (March 1999), pp. 5-40

Rodriguez, P. (2001). Simple recurrent networks learn context-free and context-sensitive
languages by counting, Neural Computation, Vol. 13, No. 9, pp. 2093–2118

 Recurrent Neural Networks

60

Schmidhuber, J.; Gers, F. & Eck D. (2002). Learning nonregular languages: a comparison of
simple recurrent networks and LSTM, Neural Computation, Vol. 14, No. 9, (Sept.
2002), pp. 2039-2041

Schütze, H. (1993). Part-of-speech induction from scratch. Proceedings of ACL 31, pp. 251–258,
Ohio State University

Siegelmann, H. T. (1998). Neural Networks and Analog Computation: Beyond the Turing Limit,
Birkhauser, ISBN 0-8176-3949-7, Boston

Suhara, Y. & Sakurai, A. (2006). Generalization by categorical nodes in recurrent neural
networks, In: International Congress Series, Vol. 1291, pp. 161-164

Van derVelde, F.; Van derVoort van der Kleij, G. T. & De Kamps, M. (2004). Lack of
combinatorial productivity in language processing with simple recurrent networks,
Connection Science, Vol. 16, pp. 21–46

Wiles, J.; Blair, A. D. & Bodén, M. (2001). Representation beyond finite states: alternatives to
push-down automata. In: A Field Guide to Dynamical Recurrent Networks, Kolen,
J.F. & Kremer, S.C. (Eds.), pp. 129-142, IEEE Press, New York

4

Recurrent Neural Network Identification and
Adaptive Neural Control of Hydrocarbon

Biodegradation Processes
Ieroham Baruch1, Carlos Mariaca-Gaspar1, and Josefina Barrera-Cortes2

CINVESTAV-IPN, Mexico City, 1Department of Automatic Control,
2Department of Biotechnology & Bioengineering,

Mexico

1. Introduction
The Recent advances in understanding of the working principles of artificial neural
networks has given a tremendous boost to identification, prediction and control tools of
nonlinear systems, (Narendra & Parthasarathy, 1990; Chen & Billings, 1992; Hunt et al.,
1992; Miller III et al., 1992; Pao et al., 1992; Su et al., 1992; Narendra & Mukhopadhyay, 1994;
Boskovic & Narendra, 1995; Ku & Lee, 1995; Baruch et al., 1996; Jin & Gupta, 1999, Haykin,
1999; Mastorocostas & Theocharis, 2006; Kazemy et all., 2007). The main network property
namely the ability to approximate complex non-linear relationships without prior
knowledge of the model structure makes them a very attractive alternative to the classical
modeling and control techniques. This property has been proved by the universal
approximation theorem, (Haykin, 1999). Among several possible network architectures the
ones most widely used are the feedforward and the recurrent neural networks. In a feed-
forward neural network the signals are transmitted only in one direction, starting from the
input layer, subsequently through the hidden layers to the output layer, which requires
applying a tap delayed global feedbacks and a tap delayed inputs to achieve a nonlinear
autoregressive moving average neural dynamic plant model. A recurrent neural network
has local feedback connections to some of the previous layers. Such a structure is suitable
alternative to the first one when the task is to model dynamic systems, and the universal
approximation theorem has been proved for the recurrent neural networks too. The
preferences given to recurrent neural network identification with respect to the classical
methods of process identification are clearly demonstrated in the solution of the “bias-
variance dilemma”, (Haykin, 1999). Furthermore, the derivation of an analytical plant
model, the parameterization of that model and the Least Square solution for the unknown
parameters have the following disadvantages: (a) the analytical model did not include all
factors having influence to the process behavior; (b) the analytical model is derived taking
into account some simplifying suppositions which not ever match; (c) the analytical model
did not described all plant nonlinearities, time lags and time delays belonging to the process
in hand; (d) the analytical model did not include all process and measurement noises which
are sensor and actuator dependent. In (Sage, 1968) the method of invariant imbedding has
been described. This method seemed to be a universal tool for simultaneous state and

 Recurrent Neural Networks

60

Schmidhuber, J.; Gers, F. & Eck D. (2002). Learning nonregular languages: a comparison of
simple recurrent networks and LSTM, Neural Computation, Vol. 14, No. 9, (Sept.
2002), pp. 2039-2041

Schütze, H. (1993). Part-of-speech induction from scratch. Proceedings of ACL 31, pp. 251–258,
Ohio State University

Siegelmann, H. T. (1998). Neural Networks and Analog Computation: Beyond the Turing Limit,
Birkhauser, ISBN 0-8176-3949-7, Boston

Suhara, Y. & Sakurai, A. (2006). Generalization by categorical nodes in recurrent neural
networks, In: International Congress Series, Vol. 1291, pp. 161-164

Van derVelde, F.; Van derVoort van der Kleij, G. T. & De Kamps, M. (2004). Lack of
combinatorial productivity in language processing with simple recurrent networks,
Connection Science, Vol. 16, pp. 21–46

Wiles, J.; Blair, A. D. & Bodén, M. (2001). Representation beyond finite states: alternatives to
push-down automata. In: A Field Guide to Dynamical Recurrent Networks, Kolen,
J.F. & Kremer, S.C. (Eds.), pp. 129-142, IEEE Press, New York

4

Recurrent Neural Network Identification and
Adaptive Neural Control of Hydrocarbon

Biodegradation Processes
Ieroham Baruch1, Carlos Mariaca-Gaspar1, and Josefina Barrera-Cortes2

CINVESTAV-IPN, Mexico City, 1Department of Automatic Control,
2Department of Biotechnology & Bioengineering,

Mexico

1. Introduction
The Recent advances in understanding of the working principles of artificial neural
networks has given a tremendous boost to identification, prediction and control tools of
nonlinear systems, (Narendra & Parthasarathy, 1990; Chen & Billings, 1992; Hunt et al.,
1992; Miller III et al., 1992; Pao et al., 1992; Su et al., 1992; Narendra & Mukhopadhyay, 1994;
Boskovic & Narendra, 1995; Ku & Lee, 1995; Baruch et al., 1996; Jin & Gupta, 1999, Haykin,
1999; Mastorocostas & Theocharis, 2006; Kazemy et all., 2007). The main network property
namely the ability to approximate complex non-linear relationships without prior
knowledge of the model structure makes them a very attractive alternative to the classical
modeling and control techniques. This property has been proved by the universal
approximation theorem, (Haykin, 1999). Among several possible network architectures the
ones most widely used are the feedforward and the recurrent neural networks. In a feed-
forward neural network the signals are transmitted only in one direction, starting from the
input layer, subsequently through the hidden layers to the output layer, which requires
applying a tap delayed global feedbacks and a tap delayed inputs to achieve a nonlinear
autoregressive moving average neural dynamic plant model. A recurrent neural network
has local feedback connections to some of the previous layers. Such a structure is suitable
alternative to the first one when the task is to model dynamic systems, and the universal
approximation theorem has been proved for the recurrent neural networks too. The
preferences given to recurrent neural network identification with respect to the classical
methods of process identification are clearly demonstrated in the solution of the “bias-
variance dilemma”, (Haykin, 1999). Furthermore, the derivation of an analytical plant
model, the parameterization of that model and the Least Square solution for the unknown
parameters have the following disadvantages: (a) the analytical model did not include all
factors having influence to the process behavior; (b) the analytical model is derived taking
into account some simplifying suppositions which not ever match; (c) the analytical model
did not described all plant nonlinearities, time lags and time delays belonging to the process
in hand; (d) the analytical model did not include all process and measurement noises which
are sensor and actuator dependent. In (Sage, 1968) the method of invariant imbedding has
been described. This method seemed to be a universal tool for simultaneous state and

 Recurrent Neural Networks

62

parameter estimation of nonlinear plants but it suffer for the same drawbacks because a
complete nonlinear plant model description is needed.
So, the unknown nonlinear technological processes needed a new tool for modeling and
identification capable to correlate experimental data and to estimate parameters and states
in the same time, processing noisy measurements. Such efficient tool is the recurrent neural
Kalman filter, where the estimated parameters and states could be used directly for control.

2. Description of the recurrent neural Kalman filter
2.1 Topology and learning of the recurrent trainable neural network
The Recurrent Trainable Neural Network (RTNN) topology, given on Fig. 1, is a hybrid one.
It has one recurrent hidden layer and one feedforward output layer. This topology is
inspired from the Jordan canonical form of the state-space representation of linear dynamic
systems (Baruch et al., 1996) adding activation functions to the state and the output
equations so to convert it to recurrent neural network named Recurrent Trainable Neural
Network described by the equations:

 X(k+1) = AX(k) + BU(k) (1)

 B = [B1 ; B0]; UT = [U1T ; U2T] (2)

 A = block-diag (Ai), |Ai | < 1 (3)

 Z1(k) = G[X(k)] (4)

 C = [C1 ; C0]; ZT = [Z1T ; Z2T] (5)

 V(k) = CZ(k) (6)

 Y(k) = F[V(k)] (7)

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L,
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer,
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of
the output layer; the super-index T means vector transpose; A is (NxN) block-diagonal
weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight matrices; B0 and
C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; F[.], G[.] are
vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding dimensions.
The RTNN topology has been derived independently of the hybrid Diagonal Recurrent
Neural Network (DRNN) (see Ku & Lee, 1995) with which it have the following differences:
(a) the state equation (1) of the RTNN is linear and the state equation of the DRNN is
nonlinear (the activation functions are in the closed loop). This made the RTNN completely
controllable and the state, and parameter information X, A, B of RTNN directly applicable
for state-space control purposes. On the other side, the controllability of the DRNN depends
on the type of the activation functions (see Sontag & Sussmann, 1997); (b) the state weight
matrix A of the RTNN is defined as block- diagonal (3) and some stability bounds have been
imposed to it which preserved the RTNN stability during the learning. The DRNN was
defined as block-diagonal later (Mastorocostas & Theocharis, 2006; Kazemy et al., 2007) and

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

63

some algorithmic measures have been taken to maintained the stability of DRNN during the
learning. For the RTNN the learning of the Jordan blocks is resolved in universal manner,
defining diagonal and full-matrix Backpropagation (BP) learning options; (c) the RTNN
include thresholds in the inputs of both layers which facilitated the nonlinear systems
identification, especially in lack of a-priory information about the approximated nonlinear
plant. The DRNN did not apply thresholds; (d) the output layer of the DRNN is linear, and
that of the RTNN is nonlinear, which permitted it to perform better approximation of
nonlinear plants. Furthermore, depending on the plant structure, the topology of the RTNN
could be extended with additional feedforward output or input layers which augmented the
approximation ability of the RTNN. The observability of the DRNN has been proved by
(Albertini & Sontag, 1994). The observability of the RTNN is assumed and it is fulfilled
when the reference signal entered in the limits of the activation functions. The dynamic BP
algorithm of RTNN learning is derived using the adjoint RTNN topology, predicting the
output error (see Fig. 2). The adjoint RTNN is built applying the Separation theorem (Sage,
1968) and the diagrammatic method of (Wan & Beaufays, 1996). The BP algorithm is:

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (8)

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (9)

 F’[Y(k)] = [1-Y2(k)] (10)

 ΔC(k) = E1(k) ZT(k) (11)

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (12)

 G’[Z(k)] = [1-Z2(k)] (13)

 ΔB(k) = E3(k) UT(k) (14)

 ΔA(k) = E3(k) XT(k) (15)

 Vec(ΔA(k)) = E3(k)▫X(k) (16)

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting
each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), is the
weight correction of W; Yd is an L-dimensional output of the approximated plant taken as a
reference for RTNN learning; η, α are learning rate parameters; ΔC is a weight correction of
C; ΔB is a weight correction of B; ΔA is a weight correction of A; the diagonal of the matrix A
is denoted by Vec (A(k)) where (16) represents its learning as an element-by-element vector
product; E, E1, E2, E3, are error vectors (see Fig. 2).

Fig. 1. Block diagram of the RTNN model

 Recurrent Neural Networks

62

parameter estimation of nonlinear plants but it suffer for the same drawbacks because a
complete nonlinear plant model description is needed.
So, the unknown nonlinear technological processes needed a new tool for modeling and
identification capable to correlate experimental data and to estimate parameters and states
in the same time, processing noisy measurements. Such efficient tool is the recurrent neural
Kalman filter, where the estimated parameters and states could be used directly for control.

2. Description of the recurrent neural Kalman filter
2.1 Topology and learning of the recurrent trainable neural network
The Recurrent Trainable Neural Network (RTNN) topology, given on Fig. 1, is a hybrid one.
It has one recurrent hidden layer and one feedforward output layer. This topology is
inspired from the Jordan canonical form of the state-space representation of linear dynamic
systems (Baruch et al., 1996) adding activation functions to the state and the output
equations so to convert it to recurrent neural network named Recurrent Trainable Neural
Network described by the equations:

 X(k+1) = AX(k) + BU(k) (1)

 B = [B1 ; B0]; UT = [U1T ; U2T] (2)

 A = block-diag (Ai), |Ai | < 1 (3)

 Z1(k) = G[X(k)] (4)

 C = [C1 ; C0]; ZT = [Z1T ; Z2T] (5)

 V(k) = CZ(k) (6)

 Y(k) = F[V(k)] (7)

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L,
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer,
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of
the output layer; the super-index T means vector transpose; A is (NxN) block-diagonal
weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight matrices; B0 and
C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; F[.], G[.] are
vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding dimensions.
The RTNN topology has been derived independently of the hybrid Diagonal Recurrent
Neural Network (DRNN) (see Ku & Lee, 1995) with which it have the following differences:
(a) the state equation (1) of the RTNN is linear and the state equation of the DRNN is
nonlinear (the activation functions are in the closed loop). This made the RTNN completely
controllable and the state, and parameter information X, A, B of RTNN directly applicable
for state-space control purposes. On the other side, the controllability of the DRNN depends
on the type of the activation functions (see Sontag & Sussmann, 1997); (b) the state weight
matrix A of the RTNN is defined as block- diagonal (3) and some stability bounds have been
imposed to it which preserved the RTNN stability during the learning. The DRNN was
defined as block-diagonal later (Mastorocostas & Theocharis, 2006; Kazemy et al., 2007) and

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

63

some algorithmic measures have been taken to maintained the stability of DRNN during the
learning. For the RTNN the learning of the Jordan blocks is resolved in universal manner,
defining diagonal and full-matrix Backpropagation (BP) learning options; (c) the RTNN
include thresholds in the inputs of both layers which facilitated the nonlinear systems
identification, especially in lack of a-priory information about the approximated nonlinear
plant. The DRNN did not apply thresholds; (d) the output layer of the DRNN is linear, and
that of the RTNN is nonlinear, which permitted it to perform better approximation of
nonlinear plants. Furthermore, depending on the plant structure, the topology of the RTNN
could be extended with additional feedforward output or input layers which augmented the
approximation ability of the RTNN. The observability of the DRNN has been proved by
(Albertini & Sontag, 1994). The observability of the RTNN is assumed and it is fulfilled
when the reference signal entered in the limits of the activation functions. The dynamic BP
algorithm of RTNN learning is derived using the adjoint RTNN topology, predicting the
output error (see Fig. 2). The adjoint RTNN is built applying the Separation theorem (Sage,
1968) and the diagrammatic method of (Wan & Beaufays, 1996). The BP algorithm is:

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (8)

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (9)

 F’[Y(k)] = [1-Y2(k)] (10)

 ΔC(k) = E1(k) ZT(k) (11)

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (12)

 G’[Z(k)] = [1-Z2(k)] (13)

 ΔB(k) = E3(k) UT(k) (14)

 ΔA(k) = E3(k) XT(k) (15)

 Vec(ΔA(k)) = E3(k)▫X(k) (16)

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting
each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), is the
weight correction of W; Yd is an L-dimensional output of the approximated plant taken as a
reference for RTNN learning; η, α are learning rate parameters; ΔC is a weight correction of
C; ΔB is a weight correction of B; ΔA is a weight correction of A; the diagonal of the matrix A
is denoted by Vec (A(k)) where (16) represents its learning as an element-by-element vector
product; E, E1, E2, E3, are error vectors (see Fig. 2).

Fig. 1. Block diagram of the RTNN model

 Recurrent Neural Networks

64

Fig. 2. Block diagram of the adjoint RTNN model

The dimension of the state vector X of the RTNN is chosen using the simple rule of thumb
which is: N=L+M. The initial values of the weight matrices during the learning are chosen as
arbitrary numbers inside a small range. The stability of the RTNN model is assured by the
activation functions [-1, 1] bounds and by the local stability weight bound conditions given
by (3), (8). The stability of the RTNN movement around the optimal weight point will be
proven extending the proof of (Nava et al., 2004), as it is stated below.
Theorem of stability of the RTNN. Let the RTNN with Jordan Canonical Structure is given
by equations (1)-(7) (see Fig.1) and the nonlinear plant model, is as follows:

 Xd.(k+1) = G[Xd (k), U(k)] (17)

 Yd (k) = F[Xd (k)] (18)

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with dimensions L, Nd, M,
respectively; F(.), G(.) are vector valued nonlinear functions with respective dimensions.
Under the assumption of RTNN identifiability made, the application of the BP learning
algorithm for A(.), B(.), C(.), in general matricial form, described by equation (8)-(16), and
the learning rates η (k), α (k) (here they are considered as time-dependent and normalized
with respect to the error) are derived using the following Lyapunov function:

 () () ()1 2L k = L k +L k (19)

Where: 1L (k) and 2L (k) are given by:

 () ()211 2L k = e k

 () () () ()T T T
2 A B CBA CL k = tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

Where:

 − − −* * *
A B Cˆ ˆˆW (k) = A(k) A ,W (k) = B(k) B ,W (k) = C(k) C

are vectors of the parameter estimation error and * * *(A ,B ,C) and ˆ ˆˆ(A(k),B(k),C(k)) denote
the ideal neural weight and the estimate of the neural weight at the k-th step, respectively,
for each case.
Then the identification error is bounded, i.e.:

() () ()
() () ()

<
Δ + = +

1 2L k+1 = L k+1 +L k+1 0
L k 1 L k 1 – L k

 (20)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

65

Where the condition for 1L (k+1)<0 is that:

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠< <max

max max

1 11- 1+
2 2η

ψ ψ

and for 2L (k+1)<0 we have:

() () () ()< − −2 2
2 max maxΔL k+1 η e k+1 α e k +d k+1

Note that maxη changes adaptively during the RTNN learnig and:

{ }
3

max i
i=1

η =max η

Where all: the unmodelled dynamics, the approximation errors and the perturbations, are
represented by the d-term, and the complete proof of that theorem, is given in Apendix A.
The Rate of Convergence Lemma, used, is given in (Nava et al., 2004).

2.2 Topology and learning of the Kalman filter recurrent neural network
Let us consider the linearized plant model (17), (18), represented in a state-space form:

 Xd.(k+1) = Ad (k) Xd (k) + Bd (k) U(k) + Θ1(k) (21)

 Yd (k) = Cd (k) Xd (k) + Θ2 (k) (22)

Where: E [.] means mathematical expectation; the process and measurement noises Θ1 (.),
Θ2 (.) are white, with Θ1(k), Θ2 (s) and the initial state Xd (k0) independent and zero mean for
all k, s, with known variances E [Xd (k) XdT (k)] = P0 , E[Θ1(k) Θ1T (k)] = Q(k) δ (k-τ), E[Θ2(k)
Θ2T (k)] = R(k) δ (k-τ), where δ (k-τ)=1 if k= τ, and 0 otherwize. The optimal Kalman filter
theory is completely described in (Sage, 1968) and we would not repeated it here.
For us the Kalman Filter (KF) is a full rank optimal state estimator capable to estimate the
systems state, to filter the process and measurement noises taking in hand all plant
information available like: input/output plant data, all parameters of the plant model (21),
(22), and the given up noise and initial state statistics (mean and variance). The basic
Kalman filter equations for the estimated state and output variables are given by:

 Xe.(k+1) = Ae (k) Xe (k) + Ke (k) Yd (k) + Bd (k) U(k) (23)

 Ae (k) = Ad (k) - Ke (k) Cd (k) (24)

 Ye (k) = Cd (k) Xe (k) (25)

Where: Xe (k) is the estimated state vector with dimension Ne; Ae (k) is a (Ne x Ne) closed-
loop KF state matrix; Ye (k) is the estimated plant output vector variable with dimension L;
Ke(k) is the optimal Kalman filter gain matrix with dimension (Ne x L). This gain matrix is
computed applying the optimal Kalman filtering methodology given in (Sage, 1968). So, the
KF performed noise filtration by means of an optimal closed-loop feedback which has the
drawback that the feedback amplified the noise components of the error, especialy when the

 Recurrent Neural Networks

64

Fig. 2. Block diagram of the adjoint RTNN model

The dimension of the state vector X of the RTNN is chosen using the simple rule of thumb
which is: N=L+M. The initial values of the weight matrices during the learning are chosen as
arbitrary numbers inside a small range. The stability of the RTNN model is assured by the
activation functions [-1, 1] bounds and by the local stability weight bound conditions given
by (3), (8). The stability of the RTNN movement around the optimal weight point will be
proven extending the proof of (Nava et al., 2004), as it is stated below.
Theorem of stability of the RTNN. Let the RTNN with Jordan Canonical Structure is given
by equations (1)-(7) (see Fig.1) and the nonlinear plant model, is as follows:

 Xd.(k+1) = G[Xd (k), U(k)] (17)

 Yd (k) = F[Xd (k)] (18)

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with dimensions L, Nd, M,
respectively; F(.), G(.) are vector valued nonlinear functions with respective dimensions.
Under the assumption of RTNN identifiability made, the application of the BP learning
algorithm for A(.), B(.), C(.), in general matricial form, described by equation (8)-(16), and
the learning rates η (k), α (k) (here they are considered as time-dependent and normalized
with respect to the error) are derived using the following Lyapunov function:

 () () ()1 2L k = L k +L k (19)

Where: 1L (k) and 2L (k) are given by:

 () ()211 2L k = e k

 () () () ()T T T
2 A B CBA CL k = tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

Where:

 − − −* * *
A B Cˆ ˆˆW (k) = A(k) A ,W (k) = B(k) B ,W (k) = C(k) C

are vectors of the parameter estimation error and * * *(A ,B ,C) and ˆ ˆˆ(A(k),B(k),C(k)) denote
the ideal neural weight and the estimate of the neural weight at the k-th step, respectively,
for each case.
Then the identification error is bounded, i.e.:

() () ()
() () ()

<
Δ + = +

1 2L k+1 = L k+1 +L k+1 0
L k 1 L k 1 – L k

 (20)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

65

Where the condition for 1L (k+1)<0 is that:

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠< <max

max max

1 11- 1+
2 2η

ψ ψ

and for 2L (k+1)<0 we have:

() () () ()< − −2 2
2 max maxΔL k+1 η e k+1 α e k +d k+1

Note that maxη changes adaptively during the RTNN learnig and:

{ }
3

max i
i=1

η =max η

Where all: the unmodelled dynamics, the approximation errors and the perturbations, are
represented by the d-term, and the complete proof of that theorem, is given in Apendix A.
The Rate of Convergence Lemma, used, is given in (Nava et al., 2004).

2.2 Topology and learning of the Kalman filter recurrent neural network
Let us consider the linearized plant model (17), (18), represented in a state-space form:

 Xd.(k+1) = Ad (k) Xd (k) + Bd (k) U(k) + Θ1(k) (21)

 Yd (k) = Cd (k) Xd (k) + Θ2 (k) (22)

Where: E [.] means mathematical expectation; the process and measurement noises Θ1 (.),
Θ2 (.) are white, with Θ1(k), Θ2 (s) and the initial state Xd (k0) independent and zero mean for
all k, s, with known variances E [Xd (k) XdT (k)] = P0 , E[Θ1(k) Θ1T (k)] = Q(k) δ (k-τ), E[Θ2(k)
Θ2T (k)] = R(k) δ (k-τ), where δ (k-τ)=1 if k= τ, and 0 otherwize. The optimal Kalman filter
theory is completely described in (Sage, 1968) and we would not repeated it here.
For us the Kalman Filter (KF) is a full rank optimal state estimator capable to estimate the
systems state, to filter the process and measurement noises taking in hand all plant
information available like: input/output plant data, all parameters of the plant model (21),
(22), and the given up noise and initial state statistics (mean and variance). The basic
Kalman filter equations for the estimated state and output variables are given by:

 Xe.(k+1) = Ae (k) Xe (k) + Ke (k) Yd (k) + Bd (k) U(k) (23)

 Ae (k) = Ad (k) - Ke (k) Cd (k) (24)

 Ye (k) = Cd (k) Xe (k) (25)

Where: Xe (k) is the estimated state vector with dimension Ne; Ae (k) is a (Ne x Ne) closed-
loop KF state matrix; Ye (k) is the estimated plant output vector variable with dimension L;
Ke(k) is the optimal Kalman filter gain matrix with dimension (Ne x L). This gain matrix is
computed applying the optimal Kalman filtering methodology given in (Sage, 1968). So, the
KF performed noise filtration by means of an optimal closed-loop feedback which has the
drawback that the feedback amplified the noise components of the error, especialy when the

 Recurrent Neural Networks

66

feedback gain is high. The second draback is that the KF design needs a complete plant
parameter and noise information, which means that if the plant data are incomplete the
process noise level is augmented. To overcome this we need to take special measures like to
augment the filtering capabilities of the KF.
So, the Kalman filter could not estimate parameters and states in the same time processing
noisy measuremets with unknown noise statistics, and it will be our task. To resolve this
task we need to derive the topology and the BP learning algorithm of a new recurrent
Kalman filter neural network. First of all we could rewrite the equation (23) defining a new
extended input vector, containing all available input/output information issued by the
plant, and second – we could modify the output equation (25) so to convert it to an output
noise filter. After that we obtain:

 Xe.(k+1) = Ad (k) Xe (k) - Ke (k) Ye (k) + B2 (k) Ue(k) (26)

 B2 = [Bd ; Ke]; UeT = [U ; Yd] (27)

 Z(k) = Cd (k) Xe (k) (28)

 Ye (k+1) = A2 Ye (k) + Z(k) (29)

Now comparing the equations (26)-(29) with the RTNN topology (1)-(7) we decided to
extend the RTNN topology adding local and global feedbacks so that to fulfil KF
requirements. The obtained new Kalman Filter Recurrent Neural Network (KF RNN)
topology is given on Fig. 3, where the first layer represented the plant model, the second
layer represented the output noise filtering model, and it has also a global output feedback.
The KF RNN topology is described by the equations:

 X(k+1) = A1X(k) + BU(k) - DY(k) (30)

 B = [B1 ; B0]; UT = [U1 ; U2] (31)

 A1= block-diag (A1,i), | A1,i | < 1 (32)

 Z1(k) = G[X(k)] (33)

 C = [C1 ; C0]; ZT = [Z1 ; Z2] (34)

 V1(k) = CZ(k) (35)

 V(k+1) = V1(k) + A2V(k) (36)

 A2 = block-diag (A2,i), |A2,i | < 1 (37)

 Y(k) = F[V(k)] (38)

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L,
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer,
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of
the output layer; the super-index T means vector transpose; A1, A2 are (NxN) and (LxL)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

67

block-diagonal weight matrices; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight
matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers;
F[.], G[.] are vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding
dimensions. Here the input vector U and the input matrix B of the KF RNN are augmented
so to fulfill the specifications (27) and the matrix D corresponded to the feedback gain
matrix of the KF. So the KF RNN topology corresponded functionally to the KF definition
(26)-(29) and ought to be learnt applying the BP learning algorithm which is in fact an
unrestricted optimization procedure, derived using the adjoint KF RNN (see Fig.4) for KF
RNN topology, applying the Separation theorem (Sage, 1968) and the diagrammatic method
(Wan & Beaufays, 1996). The BP learning algorithm, expressed in vector-matricial form is:

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (39)

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (40)

 F’[Y(k)] = [1-Y2(k)] (41)

 ΔC(k) = E1(k) ZT(k) (42)

 ΔA2(k) = E1(k) VT(k) (43)

 Vec(ΔA2(k)) = E1(k)▫X(k) (44)

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (45)

Fig. 3. Block diagram of the KF RNN model

Fig. 4. Block diagram of the adjoint KF RNN model

 Recurrent Neural Networks

66

feedback gain is high. The second draback is that the KF design needs a complete plant
parameter and noise information, which means that if the plant data are incomplete the
process noise level is augmented. To overcome this we need to take special measures like to
augment the filtering capabilities of the KF.
So, the Kalman filter could not estimate parameters and states in the same time processing
noisy measuremets with unknown noise statistics, and it will be our task. To resolve this
task we need to derive the topology and the BP learning algorithm of a new recurrent
Kalman filter neural network. First of all we could rewrite the equation (23) defining a new
extended input vector, containing all available input/output information issued by the
plant, and second – we could modify the output equation (25) so to convert it to an output
noise filter. After that we obtain:

 Xe.(k+1) = Ad (k) Xe (k) - Ke (k) Ye (k) + B2 (k) Ue(k) (26)

 B2 = [Bd ; Ke]; UeT = [U ; Yd] (27)

 Z(k) = Cd (k) Xe (k) (28)

 Ye (k+1) = A2 Ye (k) + Z(k) (29)

Now comparing the equations (26)-(29) with the RTNN topology (1)-(7) we decided to
extend the RTNN topology adding local and global feedbacks so that to fulfil KF
requirements. The obtained new Kalman Filter Recurrent Neural Network (KF RNN)
topology is given on Fig. 3, where the first layer represented the plant model, the second
layer represented the output noise filtering model, and it has also a global output feedback.
The KF RNN topology is described by the equations:

 X(k+1) = A1X(k) + BU(k) - DY(k) (30)

 B = [B1 ; B0]; UT = [U1 ; U2] (31)

 A1= block-diag (A1,i), | A1,i | < 1 (32)

 Z1(k) = G[X(k)] (33)

 C = [C1 ; C0]; ZT = [Z1 ; Z2] (34)

 V1(k) = CZ(k) (35)

 V(k+1) = V1(k) + A2V(k) (36)

 A2 = block-diag (A2,i), |A2,i | < 1 (37)

 Y(k) = F[V(k)] (38)

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L,
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer,
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of
the output layer; the super-index T means vector transpose; A1, A2 are (NxN) and (LxL)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

67

block-diagonal weight matrices; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight
matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers;
F[.], G[.] are vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding
dimensions. Here the input vector U and the input matrix B of the KF RNN are augmented
so to fulfill the specifications (27) and the matrix D corresponded to the feedback gain
matrix of the KF. So the KF RNN topology corresponded functionally to the KF definition
(26)-(29) and ought to be learnt applying the BP learning algorithm which is in fact an
unrestricted optimization procedure, derived using the adjoint KF RNN (see Fig.4) for KF
RNN topology, applying the Separation theorem (Sage, 1968) and the diagrammatic method
(Wan & Beaufays, 1996). The BP learning algorithm, expressed in vector-matricial form is:

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (39)

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (40)

 F’[Y(k)] = [1-Y2(k)] (41)

 ΔC(k) = E1(k) ZT(k) (42)

 ΔA2(k) = E1(k) VT(k) (43)

 Vec(ΔA2(k)) = E1(k)▫X(k) (44)

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (45)

Fig. 3. Block diagram of the KF RNN model

Fig. 4. Block diagram of the adjoint KF RNN model

 Recurrent Neural Networks

68

 G’[Z(k)] = [1-Z2(k)] (46)

 ΔB(k) = E3(k) UT(k) (47)

 ΔD(k) = E3(k) YT(k) (48)

 ΔA1(k) = E3(k) XT(k) (49)

 Vec(ΔA1(k)) = E3(k)▫X(k) (50)

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting
each weight matrix (C, A1, A2, B, D) in the KF RNN model, to be updated; ΔW (ΔC, ΔA1,
ΔA2, ΔB, ΔD), is a weight correction of W; Yd is an L-dimensional output of the
approximated plant taken as a reference for KF RNN learning; η, α are learning rate
parameters; ΔC is a weight correction of C; ΔB is a weight correction of B; ΔD is a weight
correction of D, ΔA1 is a weight correction of A1 , ΔA2 is a weight correction of A2; the
diagonals of the matrices A1, A2 are denoted by Vec (A1(k)), Vec (A2(k)), respectively, where
(44), (50) represented their learning as an element-by-element vector products; E, E1, E2, E3,
are error vectors (see Fig. 4), predicted by the adjoint KF RNN model.
So, the KF RNN is capable to issue parameter and state estimations for control purposes,
thanks to the optimization capabilities of the BP learning algorithm, applying the
“correction for error” delta rule of learning (see Haykin, 1999). The stability of the KF RNN
model is assured by the activation functions [-1, 1] bounds and by the local stability weight
bound conditions given by (32), (37). The stability of the KF RNN movement around the
optimal weight point has been proved by one theorem and the Rate of Convergence Lemma
(see Nava et al., 2004), following the same way as for the RTNN. It is stated below.
Theorem of stability of the KF RNN. Let the KF RNN is given by equations (30)-(38) (see
Fig.3) and the nonlinear plant model, is given by equations (17), (18). Under the assumption
of KF RNN identifiability made, the application of the BP learning algorithm for C, A1, A2, B,
D, in general matricial form, described by equation (39)-(50), and the learning rates η (k), α
(k) (here they are considered as time-dependent and normalized with respect to the error)
are derived using the following Lyapunov function:

 () () ()1 2L k = L k +L k (51)

Where: 1L (k) and 2L (k) are given by:

() ()211 2L k = e k ;

() () () () ()
()

1 21 2
T T T T

2 A A B CB CA A

T
D D

L k = tr W (k)W (k) + tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

 +tr W (k)W (k)

Where:
* * * * *

A1 1 1 A2 2 B C D2ˆ ˆ ˆˆ ˆW (k) = A (k)-A ,W (k) = A (k)-A ,W (k) = B(k)-B ,W (k) = C(k)-C ,W (k) = D(k)-D
are vectors of the estimation error and * * * * *

1 2(A ,A ,B ,C ,D) and 1 2ˆ ˆ ˆˆ ˆ(A (k),A (k),B(k),C(k),D(k))
denote the ideal optimal neural weight and the estimate of the neural weight at the k-th
step, respectively, for each case.

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

69

Then the identification error is bounded, i.e.:

 () () ()
() () ()

1 2L k+1 = L k+1 +L k+1 <0
ΔL k+1 = L k+1 – L k

 (52)

Where the condition for 1L (k+1)<0 is that

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max
max max

1 11- 1+
2 2<η <

ψ ψ

and for 2L (k+1)<0 we have:

() () () ()− −2 2
2 max maxΔL k+1 < η e k+1 α e k +d k+1

Note that maxη changes adaptively during learnig process of the network and

{ }
5

max i
i=1

η =max η

Where all: the unmodeled dynamics, the approximation errors and the perturbations, are
represented by the d-term, and the complete proof of that theorem can be easily obtained
following the same procedure detailed in Appendix A derived for the RTNN.

3. Description of the adaptive control schemes
3.1 Indirect adaptive control scheme (sliding mode control)
The indirect adaptive control using the RTNN as plant identifier has been described in
(Baruch et al., 2001a; Baruch et al., 2001b; Baruch et al., 2005). Later the proposed indirect
control has been derived as a Sliding Mode Control (SMC) and some preliminary results of
SMC of unknown hydrocarbon biodegradation processes have been reported (see Baruch et
al., 2007a; Baruch et al., 2007b). The block diagram of the indirect adaptive control scheme is
shown on Fig. 5. It contained identification and state estimation KF RNN and a sliding mode
controller. The stable nonlinear plant is identified by a KF RNN model with topology, given
by equations (30)-(38) learned by the stable BP-learning algorithm, given by equations (39)-
(50), where the identification error tends to zero. The simplification and linearization of the
neural identifier equations (30)-(33), omitting the DY(.) and KeYd(.), (27) parts, leads to the
next local linear plant model, extracted from the complete KF RNN model:

 X(k+1) = A1X(k) + BU(k) (53)

 Z(k) = H X(k); H = C G’(Z) (54)

Where G’(.) is the derivative of the activation function and L = M, is supposed.
In (Young et al., 1999), the sliding surface is defind with respect to the state variables and
the SMC objective is to move the states form an arbitrary space position to the sliding
surface in finite time. In (Levent, 2003), the sliding surface is also defined with respect to the
states but the states of a SISO systems are obtained from the plant outputs by differentiation.
In (Eduards et al., 2003), the sliding surface definition and the control objectives are the
same. The equivalent control systems design is done with respect to the plant output, but

 Recurrent Neural Networks

68

 G’[Z(k)] = [1-Z2(k)] (46)

 ΔB(k) = E3(k) UT(k) (47)

 ΔD(k) = E3(k) YT(k) (48)

 ΔA1(k) = E3(k) XT(k) (49)

 Vec(ΔA1(k)) = E3(k)▫X(k) (50)

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting
each weight matrix (C, A1, A2, B, D) in the KF RNN model, to be updated; ΔW (ΔC, ΔA1,
ΔA2, ΔB, ΔD), is a weight correction of W; Yd is an L-dimensional output of the
approximated plant taken as a reference for KF RNN learning; η, α are learning rate
parameters; ΔC is a weight correction of C; ΔB is a weight correction of B; ΔD is a weight
correction of D, ΔA1 is a weight correction of A1 , ΔA2 is a weight correction of A2; the
diagonals of the matrices A1, A2 are denoted by Vec (A1(k)), Vec (A2(k)), respectively, where
(44), (50) represented their learning as an element-by-element vector products; E, E1, E2, E3,
are error vectors (see Fig. 4), predicted by the adjoint KF RNN model.
So, the KF RNN is capable to issue parameter and state estimations for control purposes,
thanks to the optimization capabilities of the BP learning algorithm, applying the
“correction for error” delta rule of learning (see Haykin, 1999). The stability of the KF RNN
model is assured by the activation functions [-1, 1] bounds and by the local stability weight
bound conditions given by (32), (37). The stability of the KF RNN movement around the
optimal weight point has been proved by one theorem and the Rate of Convergence Lemma
(see Nava et al., 2004), following the same way as for the RTNN. It is stated below.
Theorem of stability of the KF RNN. Let the KF RNN is given by equations (30)-(38) (see
Fig.3) and the nonlinear plant model, is given by equations (17), (18). Under the assumption
of KF RNN identifiability made, the application of the BP learning algorithm for C, A1, A2, B,
D, in general matricial form, described by equation (39)-(50), and the learning rates η (k), α
(k) (here they are considered as time-dependent and normalized with respect to the error)
are derived using the following Lyapunov function:

 () () ()1 2L k = L k +L k (51)

Where: 1L (k) and 2L (k) are given by:

() ()211 2L k = e k ;

() () () () ()
()

1 21 2
T T T T

2 A A B CB CA A

T
D D

L k = tr W (k)W (k) + tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

 +tr W (k)W (k)

Where:
* * * * *

A1 1 1 A2 2 B C D2ˆ ˆ ˆˆ ˆW (k) = A (k)-A ,W (k) = A (k)-A ,W (k) = B(k)-B ,W (k) = C(k)-C ,W (k) = D(k)-D
are vectors of the estimation error and * * * * *

1 2(A ,A ,B ,C ,D) and 1 2ˆ ˆ ˆˆ ˆ(A (k),A (k),B(k),C(k),D(k))
denote the ideal optimal neural weight and the estimate of the neural weight at the k-th
step, respectively, for each case.

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

69

Then the identification error is bounded, i.e.:

 () () ()
() () ()

1 2L k+1 = L k+1 +L k+1 <0
ΔL k+1 = L k+1 – L k

 (52)

Where the condition for 1L (k+1)<0 is that

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max
max max

1 11- 1+
2 2<η <

ψ ψ

and for 2L (k+1)<0 we have:

() () () ()− −2 2
2 max maxΔL k+1 < η e k+1 α e k +d k+1

Note that maxη changes adaptively during learnig process of the network and

{ }
5

max i
i=1

η =max η

Where all: the unmodeled dynamics, the approximation errors and the perturbations, are
represented by the d-term, and the complete proof of that theorem can be easily obtained
following the same procedure detailed in Appendix A derived for the RTNN.

3. Description of the adaptive control schemes
3.1 Indirect adaptive control scheme (sliding mode control)
The indirect adaptive control using the RTNN as plant identifier has been described in
(Baruch et al., 2001a; Baruch et al., 2001b; Baruch et al., 2005). Later the proposed indirect
control has been derived as a Sliding Mode Control (SMC) and some preliminary results of
SMC of unknown hydrocarbon biodegradation processes have been reported (see Baruch et
al., 2007a; Baruch et al., 2007b). The block diagram of the indirect adaptive control scheme is
shown on Fig. 5. It contained identification and state estimation KF RNN and a sliding mode
controller. The stable nonlinear plant is identified by a KF RNN model with topology, given
by equations (30)-(38) learned by the stable BP-learning algorithm, given by equations (39)-
(50), where the identification error tends to zero. The simplification and linearization of the
neural identifier equations (30)-(33), omitting the DY(.) and KeYd(.), (27) parts, leads to the
next local linear plant model, extracted from the complete KF RNN model:

 X(k+1) = A1X(k) + BU(k) (53)

 Z(k) = H X(k); H = C G’(Z) (54)

Where G’(.) is the derivative of the activation function and L = M, is supposed.
In (Young et al., 1999), the sliding surface is defind with respect to the state variables and
the SMC objective is to move the states form an arbitrary space position to the sliding
surface in finite time. In (Levent, 2003), the sliding surface is also defined with respect to the
states but the states of a SISO systems are obtained from the plant outputs by differentiation.
In (Eduards et al., 2003), the sliding surface definition and the control objectives are the
same. The equivalent control systems design is done with respect to the plant output, but

 Recurrent Neural Networks

70

Fig. 5. Block diagram of the closed-loop system containing KF RNN identifier and a SMC

the reachability of the stable output control depended on the plant structure. In (Baruch et
al., 2007a; Baruch et al., 2007b), the sliding surface is derived directly with respect to the
plant outputs which facilitated the equivalent SMC systems design.
Let us define the following Sliding Surface (SS) as an output tracking error function:

 S(k+1)=E(k+1)+
1

P

i
i=
γ∑ E(k-i+1); |γi | < 1 (55)

Where: S(.) is the Sliding Surface Error Function (SSEF) defined with respect to the plant
output; E(.) is the systems output tracking error; γi are parameters of the desired stable SSEF;
P is the order of the SSEF. The tracking error and its iterate are defined as:

 E(k) = R(k) − Z(k); E(k+1) = R(k+1) − Z(k+1) (56)

Where R(k), Z(k) are L-dimensional reference and output vectors of the local linear plant
model. The objective of the sliding mode control systems design is to find a control action
which maintains the systems error on the sliding surface which assure that the output
tracking error reaches zero in P steps, where P < N. So, the control objective is fulfilled if:

 S(k+1) = 0 (57)

Now, let us to iterate (54) and to substitute (53) in it so to obtain the input/output local plant
model, which yields:

 Z(k+1) = H X(k+1) = H [AX(k) + BU(k)] (58)

From (55), (56), and (57) it is easy to obtain:

 R(k+1) – Z(k+1) +
1

P

i
i=
γ∑ E(k-i+1) = 0 (59)

The substitution of (58) in (59) gives:

 R(k+1) – HAX(k) – HBU(k) +
1

P

i
i=
γ∑ E(k-i+1) = 0 (60)

As the local approximation plant model (53), (54), is controllable, observable and stable, (see
the proofs of the preceeding paragraph), the matrix A1 is diagonal, and L = M, then the
matrix product (HB), representing the plant model static gain, is nonsingular, and the plant

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

71

states X(k) are smooth non-increasing functions. Now, from (60) it is easy to obtain the
equivalent control capable to lead the system to the sliding surface which yields:

 Ueq(k) = (HB)-1 [– HAX(k) + R(k+1) +
1

P

i
i=
γ∑ E(k-i+1)] (61)

Following (Young et al., 1999), the SMC avoiding chattering is taken using a saturation
function instead of sign one. Here the saturation level Uo is chosen with respect to the load
level perturbation. So the SMC takes the form:

0

*

0 0

U (), if U () U

U ()

U U () / U () , if U () U

eq eq

eq eq eq

k k

k

k k k

⎧ <
⎪⎪= ⎨
⎪− ≥⎪⎩

 (62)

It is easy to see that the substitution of the equivalent control (61) in the linear plant model
(53), (54) show an exact complete plant dynamics compensation which avoided oscillations,
so that the chattaring effect is not observed. Furthermore, the designed plant output sliding
mode equivalent control substituted the multi-input multi-output coupled high order
dynamics of the linearized plant with desired decoupled low order one.

3.2 Direct adaptive neural control scheme
The Direct Adaptive Neural Control (DANC) using the RTNN as plant identifier and plant
controller has been described in (Baruch et al., 2001b; Flores et al., 2001; Baruch et al., 2004;
Baruch et al., 2005). The block-diagram of the control system is given on Fig. 6. It contains a
recurrent neural identifier, and two recurrent neural controllers (feedback and feedforward).
Let us to write the following z-transfer- function representations of the plant, the state
estimation part of the KF RNN, the feedback and the feedforward controllers:

 Wp(z) = Cp (zI – Ap)-1 Bp (63)

 Pi(z) = (zI – Ai)-1 Bi (64)

 Q1(z) = Ccfb (zI – Acfb)-1 Bcfb (65)

 Q2(z) = Ccff (zI – Acff)-1 Bcff (66)

The control systems z-transfer functions (63)-(66) are connected by the following equation,
derived from the Fig. 6, and given in z-operational form:

 Y p(z) = Wp(z) [I + Q1(z) Pi(z)] -1 Q2(z) R(z) + θ(z) (67)

 θ(z) = Wp(z) θ1(z) + θ2(z) (68)

Where θ(z) is a noise term. The RTNN and the KF RNN topologies are controllable and
observable. The BP algorithm of learning is convergent (Baruch et al., 2002; Nava et al.,
2004). Then the identification and control errors tend to zero.

 Recurrent Neural Networks

70

Fig. 5. Block diagram of the closed-loop system containing KF RNN identifier and a SMC

the reachability of the stable output control depended on the plant structure. In (Baruch et
al., 2007a; Baruch et al., 2007b), the sliding surface is derived directly with respect to the
plant outputs which facilitated the equivalent SMC systems design.
Let us define the following Sliding Surface (SS) as an output tracking error function:

 S(k+1)=E(k+1)+
1

P

i
i=
γ∑ E(k-i+1); |γi | < 1 (55)

Where: S(.) is the Sliding Surface Error Function (SSEF) defined with respect to the plant
output; E(.) is the systems output tracking error; γi are parameters of the desired stable SSEF;
P is the order of the SSEF. The tracking error and its iterate are defined as:

 E(k) = R(k) − Z(k); E(k+1) = R(k+1) − Z(k+1) (56)

Where R(k), Z(k) are L-dimensional reference and output vectors of the local linear plant
model. The objective of the sliding mode control systems design is to find a control action
which maintains the systems error on the sliding surface which assure that the output
tracking error reaches zero in P steps, where P < N. So, the control objective is fulfilled if:

 S(k+1) = 0 (57)

Now, let us to iterate (54) and to substitute (53) in it so to obtain the input/output local plant
model, which yields:

 Z(k+1) = H X(k+1) = H [AX(k) + BU(k)] (58)

From (55), (56), and (57) it is easy to obtain:

 R(k+1) – Z(k+1) +
1

P

i
i=
γ∑ E(k-i+1) = 0 (59)

The substitution of (58) in (59) gives:

 R(k+1) – HAX(k) – HBU(k) +
1

P

i
i=
γ∑ E(k-i+1) = 0 (60)

As the local approximation plant model (53), (54), is controllable, observable and stable, (see
the proofs of the preceeding paragraph), the matrix A1 is diagonal, and L = M, then the
matrix product (HB), representing the plant model static gain, is nonsingular, and the plant

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

71

states X(k) are smooth non-increasing functions. Now, from (60) it is easy to obtain the
equivalent control capable to lead the system to the sliding surface which yields:

 Ueq(k) = (HB)-1 [– HAX(k) + R(k+1) +
1

P

i
i=
γ∑ E(k-i+1)] (61)

Following (Young et al., 1999), the SMC avoiding chattering is taken using a saturation
function instead of sign one. Here the saturation level Uo is chosen with respect to the load
level perturbation. So the SMC takes the form:

0

*

0 0

U (), if U () U

U ()

U U () / U () , if U () U

eq eq

eq eq eq

k k

k

k k k

⎧ <
⎪⎪= ⎨
⎪− ≥⎪⎩

 (62)

It is easy to see that the substitution of the equivalent control (61) in the linear plant model
(53), (54) show an exact complete plant dynamics compensation which avoided oscillations,
so that the chattaring effect is not observed. Furthermore, the designed plant output sliding
mode equivalent control substituted the multi-input multi-output coupled high order
dynamics of the linearized plant with desired decoupled low order one.

3.2 Direct adaptive neural control scheme
The Direct Adaptive Neural Control (DANC) using the RTNN as plant identifier and plant
controller has been described in (Baruch et al., 2001b; Flores et al., 2001; Baruch et al., 2004;
Baruch et al., 2005). The block-diagram of the control system is given on Fig. 6. It contains a
recurrent neural identifier, and two recurrent neural controllers (feedback and feedforward).
Let us to write the following z-transfer- function representations of the plant, the state
estimation part of the KF RNN, the feedback and the feedforward controllers:

 Wp(z) = Cp (zI – Ap)-1 Bp (63)

 Pi(z) = (zI – Ai)-1 Bi (64)

 Q1(z) = Ccfb (zI – Acfb)-1 Bcfb (65)

 Q2(z) = Ccff (zI – Acff)-1 Bcff (66)

The control systems z-transfer functions (63)-(66) are connected by the following equation,
derived from the Fig. 6, and given in z-operational form:

 Y p(z) = Wp(z) [I + Q1(z) Pi(z)] -1 Q2(z) R(z) + θ(z) (67)

 θ(z) = Wp(z) θ1(z) + θ2(z) (68)

Where θ(z) is a noise term. The RTNN and the KF RNN topologies are controllable and
observable. The BP algorithm of learning is convergent (Baruch et al., 2002; Nava et al.,
2004). Then the identification and control errors tend to zero.

 Recurrent Neural Networks

72

Fig. 6. Block - diagram of the control system containing neural identifier and two adaptive
neural controllers.

 Ei(k) = Y p(k) – Y(k) → 0; k → ∞ (69)

 Ec(k) = R(k) - Y p(k) → 0; k → ∞ (70)

This means that each transfer function given by equations (63)-(66) is stable with minimum
phase. The closed-loop system is stable and the RTNN-1 feedback controller compensates
the plant dynamics. The RTNN-2 feedforward controller dynamics is an inverse dynamics
of the closed-loop system one, which assure a precise reference tracking in spite of the
presence of process and measurement noises.

4. Experimental and simulation results
A time ago the KF RNN has been applied for prediction of various bioprocesses like the
Fed-Batch fermentation kinetics of Bacillus Thuringiensis (Valdes-Castro et al., 2003), the
osmotic dehydration process (Baruch et al., 2005), and the hydrocarbon degradation profiles
in a biopile system (De la Torre-Sanchez et al., 2006). Some preliminary results of application
of the KF RNN used as systems identifier in a sliding mode controlled bioremediation
processes have been presented in various scientific conferences like (Baruch et al., 2007 a;
Baruch et al., 2007b). In this part those results would be described with more details. The
bioremediation process at hand is considered as completely unknown and represented by
input/output records of normalized noisy data.

4.1 Experimental and simulation results obtained for the biopile system
Description of the Process and the Experiment. Biological treatment is attractive as a
potentially low-cost technology, which converts toxic organic contaminants into CO2 and
biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation,
and today, it is considered as the best alternative to cleanup polluted soils. Bioremediation
in biopile system is an ex-situ Solid Substrate Fermentation (SSF) technology, based on the
ability of micro-organisms to degrade pollutant hydrocarbon compounds (Alexander, 1994).
The often used bio-stimulation technique consists on the activation of the native soil micro-
organisms by addition of nutrients, water, oxygen (for aerobic process) and a bulking agent
that let it to improve the oxygen supplied to the microorganisms. The Solid Substrate

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

73

Fermentation takes place in the absence of free water, so it offers the advantage of reducing
the place and cost requirements. The SSF disadvantage consists of the complexity and
heterogeneity of the solid matrix, which makes quite difficult the measurement and control
of process variables. The interest of the biopile technology is an inherent temperature
increase inside the biopile - from the centre to the surface, which favors the sequential
development of a microbial population growth associated to the temperature profile and
residual pollution. Temperature increase can reach 60ºC, so it is frequently controlled by an
air flux supplied to the biopile columns. Besides, controlling the temperature, the air flux is
a source of fresh oxygen to the microorganisms. The next environmental conditions are
recommended for an adequate hydrocarbon biodegradation in biopile system: pH ≈ 7;
humidity at 50-60% of the water holding capacity of soil; average temperature of 30ºC. It is
important to supply an adequate air flux, since a low one could not be enough for satisfying
the microbial requirements, but a high air one could dry the solid matrix. In this study, it is
used a crumb-limose soil from a site polluted near a refinery in México. The pollution of
165000 ppm, consist on different residues of crude oil process and refining. The soil was
dried and blended with ocorn used as a bulking agent 10:1 (% v/v), which was milled and
sterilized. The moisture was adjusted at 60% of water retention capacity, and C:N:P ratio at
100:10:1 according to analyses done. Tergitol 1% (p/p) was used as surfactant to enhance
contaminant desorption from soil. The equipment used is shown on Fig. 7a, and the
Input/Output full KF RNN learning pattern in shown on Fig. 7b. The biopile system
consists of twenty one columns (1.0 m height x 3.81 cm i.d.), constructed to allow the
monitoring through 28 days, almost each other day. Each column has sample ports located
at the sites every 25 cm, and was fitted with water vessels to humidify the air entering the
columns. The columns were housed in a chamber provided with temperature control, and
the air was supplied at a constant pressure via a manifold. The experiment consists of seven
sets of fermentation data taken for different air flux (180, 360, 450 and 540 ml/min) and
different temperature (20 and 40oC). The duration of the bioremediation process depends on
the volume of the soil under treatment and the type and concentration of the contaminants
in it. In our case 28 days are sufficient to degrade 60% of the contaminants which is
considered sufficient for our experiment. The evolution of the hydrocarbon removal was
evaluated from solid samples periodically extracted from the biopile for analysis of pH
(potentiometer), humidity (gravimetric method), oxygen consumption and carbon dioxide
production - by gas chromatography, Total Petroeum Hydrocarbons (TPH) - by infrared
spectroscopy, following soxhlet extraction with dichloromethane (EPA Method 3540C).
Process Identification. The graphical results of the experimental neural biodegradation
process identification are given on Fig. 8 a – for KF RNN learning, and on Fig. 8 b – for KF
RNN generalization. The Input Learning Pattern (ILP) proposed is conformed by the:
ILP(AF, TEMP, pH, HU, O2, CO2, TPH). The Output Learning Pattern (OLP) includes:
OLP(pH, HU, O2, CO2, TPH). The KF RNN used for modeling and identification of the
hydrocarbon degradation process in biopile system has seven inputs, twelve neurons in the
hidden layer and five outputs. The number of neurons (twelve) in the hidden layer was
determined in an experimental way, applying the rule of thumb and according to the Mean
Square Error (MSE%) of learning. The learning algorithm is a version of the dynamic BP
one, specially designed for this KF RNN topology. The described above learning algorithm
is applied simultaneously to 7 degradation kinetic data sets (patterns), realized below
different conditions of air flow and temperature in the ranges 180-540 mi/min and 25-50oC,

 Recurrent Neural Networks

72

Fig. 6. Block - diagram of the control system containing neural identifier and two adaptive
neural controllers.

 Ei(k) = Y p(k) – Y(k) → 0; k → ∞ (69)

 Ec(k) = R(k) - Y p(k) → 0; k → ∞ (70)

This means that each transfer function given by equations (63)-(66) is stable with minimum
phase. The closed-loop system is stable and the RTNN-1 feedback controller compensates
the plant dynamics. The RTNN-2 feedforward controller dynamics is an inverse dynamics
of the closed-loop system one, which assure a precise reference tracking in spite of the
presence of process and measurement noises.

4. Experimental and simulation results
A time ago the KF RNN has been applied for prediction of various bioprocesses like the
Fed-Batch fermentation kinetics of Bacillus Thuringiensis (Valdes-Castro et al., 2003), the
osmotic dehydration process (Baruch et al., 2005), and the hydrocarbon degradation profiles
in a biopile system (De la Torre-Sanchez et al., 2006). Some preliminary results of application
of the KF RNN used as systems identifier in a sliding mode controlled bioremediation
processes have been presented in various scientific conferences like (Baruch et al., 2007 a;
Baruch et al., 2007b). In this part those results would be described with more details. The
bioremediation process at hand is considered as completely unknown and represented by
input/output records of normalized noisy data.

4.1 Experimental and simulation results obtained for the biopile system
Description of the Process and the Experiment. Biological treatment is attractive as a
potentially low-cost technology, which converts toxic organic contaminants into CO2 and
biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation,
and today, it is considered as the best alternative to cleanup polluted soils. Bioremediation
in biopile system is an ex-situ Solid Substrate Fermentation (SSF) technology, based on the
ability of micro-organisms to degrade pollutant hydrocarbon compounds (Alexander, 1994).
The often used bio-stimulation technique consists on the activation of the native soil micro-
organisms by addition of nutrients, water, oxygen (for aerobic process) and a bulking agent
that let it to improve the oxygen supplied to the microorganisms. The Solid Substrate

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

73

Fermentation takes place in the absence of free water, so it offers the advantage of reducing
the place and cost requirements. The SSF disadvantage consists of the complexity and
heterogeneity of the solid matrix, which makes quite difficult the measurement and control
of process variables. The interest of the biopile technology is an inherent temperature
increase inside the biopile - from the centre to the surface, which favors the sequential
development of a microbial population growth associated to the temperature profile and
residual pollution. Temperature increase can reach 60ºC, so it is frequently controlled by an
air flux supplied to the biopile columns. Besides, controlling the temperature, the air flux is
a source of fresh oxygen to the microorganisms. The next environmental conditions are
recommended for an adequate hydrocarbon biodegradation in biopile system: pH ≈ 7;
humidity at 50-60% of the water holding capacity of soil; average temperature of 30ºC. It is
important to supply an adequate air flux, since a low one could not be enough for satisfying
the microbial requirements, but a high air one could dry the solid matrix. In this study, it is
used a crumb-limose soil from a site polluted near a refinery in México. The pollution of
165000 ppm, consist on different residues of crude oil process and refining. The soil was
dried and blended with ocorn used as a bulking agent 10:1 (% v/v), which was milled and
sterilized. The moisture was adjusted at 60% of water retention capacity, and C:N:P ratio at
100:10:1 according to analyses done. Tergitol 1% (p/p) was used as surfactant to enhance
contaminant desorption from soil. The equipment used is shown on Fig. 7a, and the
Input/Output full KF RNN learning pattern in shown on Fig. 7b. The biopile system
consists of twenty one columns (1.0 m height x 3.81 cm i.d.), constructed to allow the
monitoring through 28 days, almost each other day. Each column has sample ports located
at the sites every 25 cm, and was fitted with water vessels to humidify the air entering the
columns. The columns were housed in a chamber provided with temperature control, and
the air was supplied at a constant pressure via a manifold. The experiment consists of seven
sets of fermentation data taken for different air flux (180, 360, 450 and 540 ml/min) and
different temperature (20 and 40oC). The duration of the bioremediation process depends on
the volume of the soil under treatment and the type and concentration of the contaminants
in it. In our case 28 days are sufficient to degrade 60% of the contaminants which is
considered sufficient for our experiment. The evolution of the hydrocarbon removal was
evaluated from solid samples periodically extracted from the biopile for analysis of pH
(potentiometer), humidity (gravimetric method), oxygen consumption and carbon dioxide
production - by gas chromatography, Total Petroeum Hydrocarbons (TPH) - by infrared
spectroscopy, following soxhlet extraction with dichloromethane (EPA Method 3540C).
Process Identification. The graphical results of the experimental neural biodegradation
process identification are given on Fig. 8 a – for KF RNN learning, and on Fig. 8 b – for KF
RNN generalization. The Input Learning Pattern (ILP) proposed is conformed by the:
ILP(AF, TEMP, pH, HU, O2, CO2, TPH). The Output Learning Pattern (OLP) includes:
OLP(pH, HU, O2, CO2, TPH). The KF RNN used for modeling and identification of the
hydrocarbon degradation process in biopile system has seven inputs, twelve neurons in the
hidden layer and five outputs. The number of neurons (twelve) in the hidden layer was
determined in an experimental way, applying the rule of thumb and according to the Mean
Square Error (MSE%) of learning. The learning algorithm is a version of the dynamic BP
one, specially designed for this KF RNN topology. The described above learning algorithm
is applied simultaneously to 7 degradation kinetic data sets (patterns), realized below
different conditions of air flow and temperature in the ranges 180-540 mi/min and 25-50oC,

 Recurrent Neural Networks

74

120 cm

185 cm

AIR SUPPLY

75 cm
PI

WATER

CHAMBER WITH CONTROLLED TEMPERATURE

PI: Pressure indicator

120 cm

185 cm

AIR SUPPLY

75 cm
PI

75 cm
PI

WATER

CHAMBER WITH CONTROLLED TEMPERATURE

PI: Pressure indicator

RNN

AF: air flux
TEMP: temperature
pH: hydrogen potential

AF: air flux
TEMP: temperature
pH: hydrogen potential

O2: oxygen available
HU: humidity

TPH: percentage concentration of TPHs

CO2: carbon dioxide concentration
O2: oxygen available
HU: humidity

TPH: percentage concentration of TPHs

CO2: carbon dioxide concentration

AF

TEMP

pH

HU

O2

CO2

TPH

pH

HU

O2

CO2

TPH

a) b)

Fig. 7. a) Sketch of the biopile system; b) Learning pattern of the full KF RNN model

a) b)

Fig. 8. Graphical results of experimental biodegradation process identification; a) graphical
results of KF RNN learning (%TPH, pH, CO2, O2, HU, and MSE%); b) graphical results of
KF RNN generalization (%TPH, pH, CO2, O2, HU, and MSE%)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

75

and containing 8 points each one. The experimental data were normalized in the range 0-1
due to the great difference in magnitude between them. The 7 data sets are considered as an
epoch of learning, containing 56 points. After each epoch of learning, the 7 pattern sets are
interchanged in an arbitrary manner from one epoch to another. An unknown kinetic data
set, repeated 7 times, is used as a generalization data set. The learning is stopped when the
MSE% of learning and generalization reached values below 2%, and the relationship
|ΔWij(k)|/|Wij(k)|*100% reached values below or equal of 2% for all updated parameters.
This error was attained after 131 epochs of learning. The graphical results shown on Fig. 8 a.
compared the experimental data for the 7 degradation kinetics with the outputs of the KF
RNN during the last epoch of learning. The variables compared and plotted subsequently
for the last epoch of learning are % degradation in TPH, pH, carbon dioxide (CO2), oxygen
available (O2), % of humidity (HU) and the mean square error (MSE%) given for 131 epochs
of learning. The learning rate is 0.9, the momentum rate is 0.8, the epoch size contains 56
points, the convergence is obtained after 131 epochs of learning. The final MSE% of learning
is below 2%. The generalization of the KF RNN was carried out reproducing a degradation
kinetics which is not included in the training process. This degradation process was carried
out at AF = 360 ml/min and temperature of 20ºC. The operational conditions of this
degradation process are in the range of operational conditions studied. The generalization
results shown on Fig. 8 b. compare the experimental data for the one unknown degradation
kinetics (repeated 7 times so to maintain the epoch size) with the output of the KF RNN. The
same experimental data %TPH, pH, CO2, O2, HU, MSE% (continuous line) are compared
with the KF RNN outputs (pointed line) and are plotted subsequently for the last epoch of
generalization. The final MSE% of KF RNN generalization is below 2%.
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive
Neural Control. The graphical simulation results of the controlled system with both controls
are given on Fig. 9a,b and the MSE% of control is given in Table 1, Table 2 for 20 runs of the
control program (SMC and DANC) with data mixed with 10% measurement Gaussian noise
with different variance for each run. A simplified RTNN process model, extracted from the
complete KF RNN model has been used to design both control systems and to issue the state
vector. The RTNN particular model used as a feedforward controller has 2 inputs or
references (%TPH, CO2), two outputs as control signals (AF, HU) and 9 states. The RTNN
feedback controller has the topology (12, 9, 2). The RTNN particular plant model has 2
inputs (AF, HU), two outputs (%TPH, CO2) and 12 states. In that reduced model, depending
on the available measurements, the input and output patterns are chosen as: ILP(AF, HU,
CO2, TPH); OLP(CO2, TPH). For both control schemes, the two system set points
(continuous line) are compared with the two plant outputs (%TPH, CO2) (pointed line) and
are plotted subsequently for seven sets of set point data. The control variables shown are:
AF, HU. However the lost of water is pretended to be compensated by the wet saturated air
flux with controlled humidity introduced, which could accelerate the bioremediation
process in the biopile system. The obtained MSE% of control in the end of the process for
both control schemes is below 1%. The behaviour of the control system in the presence of
10% white Gaussian noise (with different SEED parameter at each run) added to the plant
outputs could be studied acumulating some statistics of the final MSE% (ξav) for multiple
run of the control program (see Table 1 for SMC and Table 2 for DANC). The mean average
cost for all runs (ε) of control, the standard deviation (σ) with respect to the mean value and
the deviation (Δ) are computed by means of the following formulas:

 Recurrent Neural Networks

74

120 cm

185 cm

AIR SUPPLY

75 cm
PI

WATER

CHAMBER WITH CONTROLLED TEMPERATURE

PI: Pressure indicator

120 cm

185 cm

AIR SUPPLY

75 cm
PI

75 cm
PI

WATER

CHAMBER WITH CONTROLLED TEMPERATURE

PI: Pressure indicator

RNN

AF: air flux
TEMP: temperature
pH: hydrogen potential

AF: air flux
TEMP: temperature
pH: hydrogen potential

O2: oxygen available
HU: humidity

TPH: percentage concentration of TPHs

CO2: carbon dioxide concentration
O2: oxygen available
HU: humidity

TPH: percentage concentration of TPHs

CO2: carbon dioxide concentration

AF

TEMP

pH

HU

O2

CO2

TPH

pH

HU

O2

CO2

TPH

a) b)

Fig. 7. a) Sketch of the biopile system; b) Learning pattern of the full KF RNN model

a) b)

Fig. 8. Graphical results of experimental biodegradation process identification; a) graphical
results of KF RNN learning (%TPH, pH, CO2, O2, HU, and MSE%); b) graphical results of
KF RNN generalization (%TPH, pH, CO2, O2, HU, and MSE%)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

75

and containing 8 points each one. The experimental data were normalized in the range 0-1
due to the great difference in magnitude between them. The 7 data sets are considered as an
epoch of learning, containing 56 points. After each epoch of learning, the 7 pattern sets are
interchanged in an arbitrary manner from one epoch to another. An unknown kinetic data
set, repeated 7 times, is used as a generalization data set. The learning is stopped when the
MSE% of learning and generalization reached values below 2%, and the relationship
|ΔWij(k)|/|Wij(k)|*100% reached values below or equal of 2% for all updated parameters.
This error was attained after 131 epochs of learning. The graphical results shown on Fig. 8 a.
compared the experimental data for the 7 degradation kinetics with the outputs of the KF
RNN during the last epoch of learning. The variables compared and plotted subsequently
for the last epoch of learning are % degradation in TPH, pH, carbon dioxide (CO2), oxygen
available (O2), % of humidity (HU) and the mean square error (MSE%) given for 131 epochs
of learning. The learning rate is 0.9, the momentum rate is 0.8, the epoch size contains 56
points, the convergence is obtained after 131 epochs of learning. The final MSE% of learning
is below 2%. The generalization of the KF RNN was carried out reproducing a degradation
kinetics which is not included in the training process. This degradation process was carried
out at AF = 360 ml/min and temperature of 20ºC. The operational conditions of this
degradation process are in the range of operational conditions studied. The generalization
results shown on Fig. 8 b. compare the experimental data for the one unknown degradation
kinetics (repeated 7 times so to maintain the epoch size) with the output of the KF RNN. The
same experimental data %TPH, pH, CO2, O2, HU, MSE% (continuous line) are compared
with the KF RNN outputs (pointed line) and are plotted subsequently for the last epoch of
generalization. The final MSE% of KF RNN generalization is below 2%.
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive
Neural Control. The graphical simulation results of the controlled system with both controls
are given on Fig. 9a,b and the MSE% of control is given in Table 1, Table 2 for 20 runs of the
control program (SMC and DANC) with data mixed with 10% measurement Gaussian noise
with different variance for each run. A simplified RTNN process model, extracted from the
complete KF RNN model has been used to design both control systems and to issue the state
vector. The RTNN particular model used as a feedforward controller has 2 inputs or
references (%TPH, CO2), two outputs as control signals (AF, HU) and 9 states. The RTNN
feedback controller has the topology (12, 9, 2). The RTNN particular plant model has 2
inputs (AF, HU), two outputs (%TPH, CO2) and 12 states. In that reduced model, depending
on the available measurements, the input and output patterns are chosen as: ILP(AF, HU,
CO2, TPH); OLP(CO2, TPH). For both control schemes, the two system set points
(continuous line) are compared with the two plant outputs (%TPH, CO2) (pointed line) and
are plotted subsequently for seven sets of set point data. The control variables shown are:
AF, HU. However the lost of water is pretended to be compensated by the wet saturated air
flux with controlled humidity introduced, which could accelerate the bioremediation
process in the biopile system. The obtained MSE% of control in the end of the process for
both control schemes is below 1%. The behaviour of the control system in the presence of
10% white Gaussian noise (with different SEED parameter at each run) added to the plant
outputs could be studied acumulating some statistics of the final MSE% (ξav) for multiple
run of the control program (see Table 1 for SMC and Table 2 for DANC). The mean average
cost for all runs (ε) of control, the standard deviation (σ) with respect to the mean value and
the deviation (Δ) are computed by means of the following formulas:

 Recurrent Neural Networks

76

No 1 2 3 4 5
MSE% 1.106 1.0035 1.001 1.0951 0.93454

No 6 7 8 9 10
MSE% 1.146 1.3214 1.225 1.4721 1.1206

No 11 12 13 14 15
MSE% 1.3185 1.1544 1.1821 1.0316 1.1267

No 16 17 18 19 20
MSE% 1.1295 1.3268 1.1842 1.2858 1.1993

Table 1. Final MSE (%) of control (ξav) for 20 runs of the SMC control program

a) b)

Fig. 9. a) Graphical results of the biodegradation process SMC; b) Graphical results of the
biodegradation process DANC; for both schemes the variables shown are (%TPH, CO2, AF,
HU, MSE%)

No 1 2 3 4 5
MSE% 0.9805 0.8207 1.0421 0.8148 0.8813

No 6 7 8 9 10
MSE% 0.8227 1.0959 0.8990 0.8100 1.0881

No 11 12 13 14 15
MSE% 1.0551 0.9569 0.8227 1.0619 1.0891

No 16 17 18 19 20
MSE% 1.0518 1.1173 0.8045 1.0454 1.1012

Table 2. Final MSE (%) of control (ξav) for 20 runs of the DANC control program

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

77

1

1
k

n

avkn
ε ξ

=
= Σ ; 2

1

1
n

n

ii
σ

=
= Σ Δ ; Δ =ξ av – ε (71)

Where k is the run number and n is equal to 20. The mean and standard deviation values of
process error, obtained for the SMC, are respectively: ε = 1.1682%; σ= 0.1276 %. The mean
and standard deviation values of process control, obtained for DANC, are respectively: ε =
0.9680 %; σ= 0.0583 % which is a little bit smaller that the results, obtained for the SMC due
to the nonlinearity and adaptivity of the DANC, which contained two RTNN controllers.

4.2 Simulation results obtained for the rotating drum
Description of the Process and the Experiment. For the bioremediation process one
challenge is to provide enough O2 and nutrients to enable rapid conversion of contaminants
by either indigenous microorganisms or inoculated species (Alexander, 1994). Another
challenge is to achieve efficient contact between the active micro-organisms and the
contaminants, which may represented a problem with in-situ treatment. An attractive
alternative to overcome this problem is to apply a biological treatment in slurry phase using
Horizontal Rotating Drum (HRD) (see the schematic diagram given on Fig. 10a). The HRD
can effectively mix heterogeneous blends of a wide range of particle sizes and high solid
concentration (more than 60 %), (Alexander, 1994). The HRD operated with oxygen supply
or aeration. Independently of the type of HRD operation (open or close), the insufficiency of
water decreased the efficiency of hydrocarbon degradation in HRD favouring the formation
of hydrocarbon balls (Alexander, 1999). So one objective of the process control is to maintain
the humidity at 60%, which is the maximal solid concentration determined as the best for
hydrocarbon removal from polluted soils treated in open rotating slurry bioreactors.
Nowadays, semi empirical models, based on the Monod equation, have been developed to
predict micro-organism growth as a function of available contaminants concentration.
However, as the application of such models requires experimental work for calculating the
kinetics parameters involved, so an alternative modelling technique is required. The KF
RNN model offers many advantages as the possibility to approximate complex non linear
high order multivariable processes, as the biodegradation process is. The bioremediation of
polluted soils selected for modelling purpose was carried out by bio-stimulation in slurry
phase using an open HRD. A silt loam (sand 36.5%w/w, silt 62.5% w/w and clay 1% w/w)
soil of an average diameter of 15 μm, particle diameter in the range 2 - 75 μm, was used. The
soil was contaminated with 50000 ppm of crude oil collected from a contaminated zone
located near from a petroleum refinery. The slurry was prepared with 40% weight of soil
(715 g) and 60% weight of a mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; KH2PO4, 1.7;
MgSO4, 1; CaCl2⋅2H2O, 0.005; FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 0.5%). The
slurry was added to a HRD of 4 litters (13 cm diameter by 30 cm long), which was opened,
on the flat faces, for a natural air supply (see Fig. 10a). The drum was operated during 19
days at a fix turning in the interval 3.5-20 RPM. During this time, the reactor was daily
weighted in order to replace the water lost, so to maintain constant the water concentration.
Samples were removed each day for analysis of residual hydrocarbons, pH, water
concentration and slurry viscosity. The hydrocarbon concentration was determined by an
infrared spectrometer; the pH was measured with a Beckman Φ potentiometer; water
concentration was calculated by difference of two sequence data of the drum weight; finally,
slurry viscosity was measured with an AND Vibro-viscometer SV-10 (MED BY A&D LTD).

 Recurrent Neural Networks

76

No 1 2 3 4 5
MSE% 1.106 1.0035 1.001 1.0951 0.93454

No 6 7 8 9 10
MSE% 1.146 1.3214 1.225 1.4721 1.1206

No 11 12 13 14 15
MSE% 1.3185 1.1544 1.1821 1.0316 1.1267

No 16 17 18 19 20
MSE% 1.1295 1.3268 1.1842 1.2858 1.1993

Table 1. Final MSE (%) of control (ξav) for 20 runs of the SMC control program

a) b)

Fig. 9. a) Graphical results of the biodegradation process SMC; b) Graphical results of the
biodegradation process DANC; for both schemes the variables shown are (%TPH, CO2, AF,
HU, MSE%)

No 1 2 3 4 5
MSE% 0.9805 0.8207 1.0421 0.8148 0.8813

No 6 7 8 9 10
MSE% 0.8227 1.0959 0.8990 0.8100 1.0881

No 11 12 13 14 15
MSE% 1.0551 0.9569 0.8227 1.0619 1.0891

No 16 17 18 19 20
MSE% 1.0518 1.1173 0.8045 1.0454 1.1012

Table 2. Final MSE (%) of control (ξav) for 20 runs of the DANC control program

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

77

1

1
k

n

avkn
ε ξ

=
= Σ ; 2

1

1
n

n

ii
σ

=
= Σ Δ ; Δ =ξ av – ε (71)

Where k is the run number and n is equal to 20. The mean and standard deviation values of
process error, obtained for the SMC, are respectively: ε = 1.1682%; σ= 0.1276 %. The mean
and standard deviation values of process control, obtained for DANC, are respectively: ε =
0.9680 %; σ= 0.0583 % which is a little bit smaller that the results, obtained for the SMC due
to the nonlinearity and adaptivity of the DANC, which contained two RTNN controllers.

4.2 Simulation results obtained for the rotating drum
Description of the Process and the Experiment. For the bioremediation process one
challenge is to provide enough O2 and nutrients to enable rapid conversion of contaminants
by either indigenous microorganisms or inoculated species (Alexander, 1994). Another
challenge is to achieve efficient contact between the active micro-organisms and the
contaminants, which may represented a problem with in-situ treatment. An attractive
alternative to overcome this problem is to apply a biological treatment in slurry phase using
Horizontal Rotating Drum (HRD) (see the schematic diagram given on Fig. 10a). The HRD
can effectively mix heterogeneous blends of a wide range of particle sizes and high solid
concentration (more than 60 %), (Alexander, 1994). The HRD operated with oxygen supply
or aeration. Independently of the type of HRD operation (open or close), the insufficiency of
water decreased the efficiency of hydrocarbon degradation in HRD favouring the formation
of hydrocarbon balls (Alexander, 1999). So one objective of the process control is to maintain
the humidity at 60%, which is the maximal solid concentration determined as the best for
hydrocarbon removal from polluted soils treated in open rotating slurry bioreactors.
Nowadays, semi empirical models, based on the Monod equation, have been developed to
predict micro-organism growth as a function of available contaminants concentration.
However, as the application of such models requires experimental work for calculating the
kinetics parameters involved, so an alternative modelling technique is required. The KF
RNN model offers many advantages as the possibility to approximate complex non linear
high order multivariable processes, as the biodegradation process is. The bioremediation of
polluted soils selected for modelling purpose was carried out by bio-stimulation in slurry
phase using an open HRD. A silt loam (sand 36.5%w/w, silt 62.5% w/w and clay 1% w/w)
soil of an average diameter of 15 μm, particle diameter in the range 2 - 75 μm, was used. The
soil was contaminated with 50000 ppm of crude oil collected from a contaminated zone
located near from a petroleum refinery. The slurry was prepared with 40% weight of soil
(715 g) and 60% weight of a mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; KH2PO4, 1.7;
MgSO4, 1; CaCl2⋅2H2O, 0.005; FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 0.5%). The
slurry was added to a HRD of 4 litters (13 cm diameter by 30 cm long), which was opened,
on the flat faces, for a natural air supply (see Fig. 10a). The drum was operated during 19
days at a fix turning in the interval 3.5-20 RPM. During this time, the reactor was daily
weighted in order to replace the water lost, so to maintain constant the water concentration.
Samples were removed each day for analysis of residual hydrocarbons, pH, water
concentration and slurry viscosity. The hydrocarbon concentration was determined by an
infrared spectrometer; the pH was measured with a Beckman Φ potentiometer; water
concentration was calculated by difference of two sequence data of the drum weight; finally,
slurry viscosity was measured with an AND Vibro-viscometer SV-10 (MED BY A&D LTD).

 Recurrent Neural Networks

78

a) b)

Fig. 10. a) Schematic diagram of a rotating drum system. b) Learning pattern

The biodegradation process was repeated at a different turning value (3.5, 5, 7.5, 10, 15, 20
RPM) in order to vary the oxygen available into the HRD. The learning pattern (see Fig. 10b)
used for KF RNN training is composed by six input variables and three output variables. In
order to avoid saturation problems in the RNNM training, the variables of the learning
pattern are normalized in the interval 0-1. The measured variables are: Residual
Hydrocarbon Concentration (RH), Evaporated Water (EW); Soil Viscosity (VISC), Added
Water (AW); Temperature (T); Velocity of Agitation (VA). The RNNM outputs are: OUT
(RH, EW, VISC). Depending on the available measurements and the control objectives, this
model could be simplified, where the input- output pattern is chosen as: ILP (RH, EW, AW,
VA); OLP (RH, EW). This reduced model will be used for SMC and DANC system design.
Process Identification. The described above learning algorithm is applied simultaneously to
four fermentation kinetic data, represented by its input/output learning data patterns, and
containing 19 points each (one per day). The total time of learning is 200 epochs, where the
epoch size, corresponding to the number of data, is 76 iterations. After each epoch of
training, the 4 sets are interchanged in an arbitrary manner from one epoch to another. The
learning is stopped when the MSE% of learning reached values below 1.5%, the MSE% of
generalization reached valued below 2%, and the relationship |ΔWij(k)|/|Wij(k)|*100%
reached values below or equal of 2% for all updated parameters. Graphical results of RNNM
training are given in Fig. 11a for the last epoch of learning. In the graphics, the output
variables of the KF RNN are compared with the experimental data. The Fig. 11a compared
the 4 kinetics experimental data with those, issued by the KF RNN. The output process data
of 76 points are the hydrocarbon residual, the water requirements and the soil viscosity
(EW, RH, VISC). The last figure in Fig. 11a represents the evolution of the mean squared
error of approximation (MSE%) for whole learning process of 200 epochs. An unknown set
of kinetic data, containing 19 points and repeated 4 times, so to maintain the same 76-points
epoch size, is used as a validation (generalization) set, and these results are given on Fig.
11b. The obtained graphical results of KF RNN training and generalization shows a good
convergence with an MSE% below 1.5% for the training and 2% for the generalization.
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive
Neural Control. A simplified RTNN process model extracted from the KFRNN complete
identified model has been used to design SMC and DANC systems. The RTNN particular
model has two inputs (AW, VA), two outputs (EW, RH) and nine states. The SMC SSEF is
chosen as a first order one (P=1) with parameters Uo=1, γ=0.07, L=M=2. The DANC RTNN
particular model used as a feedforward controller has two reference inputs (EW, RH), two
outputs as control signals (VA, AW) and six states. The feedback RTNN controller has
topology (12, 6, 2). The graphical simulation results of the controlled system outputs (EW,

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

79

a)

b)

Fig. 11. Graphical results of experimental biodegradation process identification; a) graphical
results of KF RNN learning (EW, RH, VISC, and MSE%.); b) graphical results of KF RNN
generalization (EW, RH, VISC, and MSE%.)
RH), and the control variables (AW, VA) for both control schemes are given on Fig. 12 a,b
for 76 points (one epoch of learning). For both control schemes, the two system set points
(continuous line) are compared with the plant outputs (EW, RH) (data point line) and are
plotted subsequently for four sets of set point data. The MSE% of control is given also in Fig.
12 a,b for all 200 epochs of learning. For both control schemes, the obtained MSE% of control
at the end of the process is below 1%. The behaviour of the control system in the presence of
5% white Gaussian noise (with different SEED parameter at each run) added to the plant
output has been studied accumulating some statistics of the final MSE% (ξav) for multiple
run of the control program (SMC and DANC), which results are given on Table 3, Table 4
for 20 runs. The mean average cost for all runs (ε) of control, the standard deviation (σ) with
respect to the mean value and the deviation (Δ) are computed using the formulas (71). The
mean and standard deviation values of process error, obtained for the SMC are respectively:
ε = 0.6663 %; σ= 0.0593 %. The mean and standard deviation values of process control,
obtained for the DANC are respectively: ε = 0.5456 %; σ= 0.0124 %, which is slightly smaller
with respect to the SMC, due to the nonlinearity and the adaptivity of the DANC, which
contained two RTNN controllers.

5. Conclusion
The chapter proposes a new Kalman filter closed loop topology of recurrent neural network
for identification and modeling of an unknown hydrocarbon degradation process carried
out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent
neural plant model, a recurrent neural output plant filter and posses global and local
feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation
one derived using the adjoint KF RNN topology by means of the diagramatic method. The
obtained KF RNN model issued parameters and states information appropriate for control
systems design purposes.

 Recurrent Neural Networks

78

a) b)

Fig. 10. a) Schematic diagram of a rotating drum system. b) Learning pattern

The biodegradation process was repeated at a different turning value (3.5, 5, 7.5, 10, 15, 20
RPM) in order to vary the oxygen available into the HRD. The learning pattern (see Fig. 10b)
used for KF RNN training is composed by six input variables and three output variables. In
order to avoid saturation problems in the RNNM training, the variables of the learning
pattern are normalized in the interval 0-1. The measured variables are: Residual
Hydrocarbon Concentration (RH), Evaporated Water (EW); Soil Viscosity (VISC), Added
Water (AW); Temperature (T); Velocity of Agitation (VA). The RNNM outputs are: OUT
(RH, EW, VISC). Depending on the available measurements and the control objectives, this
model could be simplified, where the input- output pattern is chosen as: ILP (RH, EW, AW,
VA); OLP (RH, EW). This reduced model will be used for SMC and DANC system design.
Process Identification. The described above learning algorithm is applied simultaneously to
four fermentation kinetic data, represented by its input/output learning data patterns, and
containing 19 points each (one per day). The total time of learning is 200 epochs, where the
epoch size, corresponding to the number of data, is 76 iterations. After each epoch of
training, the 4 sets are interchanged in an arbitrary manner from one epoch to another. The
learning is stopped when the MSE% of learning reached values below 1.5%, the MSE% of
generalization reached valued below 2%, and the relationship |ΔWij(k)|/|Wij(k)|*100%
reached values below or equal of 2% for all updated parameters. Graphical results of RNNM
training are given in Fig. 11a for the last epoch of learning. In the graphics, the output
variables of the KF RNN are compared with the experimental data. The Fig. 11a compared
the 4 kinetics experimental data with those, issued by the KF RNN. The output process data
of 76 points are the hydrocarbon residual, the water requirements and the soil viscosity
(EW, RH, VISC). The last figure in Fig. 11a represents the evolution of the mean squared
error of approximation (MSE%) for whole learning process of 200 epochs. An unknown set
of kinetic data, containing 19 points and repeated 4 times, so to maintain the same 76-points
epoch size, is used as a validation (generalization) set, and these results are given on Fig.
11b. The obtained graphical results of KF RNN training and generalization shows a good
convergence with an MSE% below 1.5% for the training and 2% for the generalization.
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive
Neural Control. A simplified RTNN process model extracted from the KFRNN complete
identified model has been used to design SMC and DANC systems. The RTNN particular
model has two inputs (AW, VA), two outputs (EW, RH) and nine states. The SMC SSEF is
chosen as a first order one (P=1) with parameters Uo=1, γ=0.07, L=M=2. The DANC RTNN
particular model used as a feedforward controller has two reference inputs (EW, RH), two
outputs as control signals (VA, AW) and six states. The feedback RTNN controller has
topology (12, 6, 2). The graphical simulation results of the controlled system outputs (EW,

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

79

a)

b)

Fig. 11. Graphical results of experimental biodegradation process identification; a) graphical
results of KF RNN learning (EW, RH, VISC, and MSE%.); b) graphical results of KF RNN
generalization (EW, RH, VISC, and MSE%.)
RH), and the control variables (AW, VA) for both control schemes are given on Fig. 12 a,b
for 76 points (one epoch of learning). For both control schemes, the two system set points
(continuous line) are compared with the plant outputs (EW, RH) (data point line) and are
plotted subsequently for four sets of set point data. The MSE% of control is given also in Fig.
12 a,b for all 200 epochs of learning. For both control schemes, the obtained MSE% of control
at the end of the process is below 1%. The behaviour of the control system in the presence of
5% white Gaussian noise (with different SEED parameter at each run) added to the plant
output has been studied accumulating some statistics of the final MSE% (ξav) for multiple
run of the control program (SMC and DANC), which results are given on Table 3, Table 4
for 20 runs. The mean average cost for all runs (ε) of control, the standard deviation (σ) with
respect to the mean value and the deviation (Δ) are computed using the formulas (71). The
mean and standard deviation values of process error, obtained for the SMC are respectively:
ε = 0.6663 %; σ= 0.0593 %. The mean and standard deviation values of process control,
obtained for the DANC are respectively: ε = 0.5456 %; σ= 0.0124 %, which is slightly smaller
with respect to the SMC, due to the nonlinearity and the adaptivity of the DANC, which
contained two RTNN controllers.

5. Conclusion
The chapter proposes a new Kalman filter closed loop topology of recurrent neural network
for identification and modeling of an unknown hydrocarbon degradation process carried
out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent
neural plant model, a recurrent neural output plant filter and posses global and local
feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation
one derived using the adjoint KF RNN topology by means of the diagramatic method. The
obtained KF RNN model issued parameters and states information appropriate for control
systems design purposes.

 Recurrent Neural Networks

80

a)

b)

Fig. 12. a) Graphical results of the biodegradation process SMC; b) Graphical results of the
biodegradation process DCD; for both schemes the variables shown are (VA, AW, EW, RH,
MSE%)

No 1 2 3 4 5
MSE% 0.6434 0.6577 0.7669 0.6805 0.6662

No 6 7 8 9 10
MSE% 0.5757 0.5835 0.7043 0.7040 0.6350

No 11 12 13 14 15
MSE% 0.6602 0.7759 0.7732 0.6566 0.6408

No 16 17 18 19 20
MSE% 0.6481 0.6061 0.7240 0.6514 0.5725

Table 3. Final MSE (%) of control (ξav) for 20 runs of the control program

The obtained complete KF RNN model is simplified and used to design an indirect sliding
mode control and a direct recurrent feedback-feedforward neural control. The simulation
results obtained with the recurrent neural model learning and control exhibited a good
convergence and precise reference tracking. The MSE% of the KF RNN learning and
generalization is below 2% and the MSE% of the indirect and direct control is below 1%.

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

81

No 1 2 3 4 5
MSE% 0.5187 0.5449 0.5788 0.5738 0.5496

No 6 7 8 9 10
MSE% 0.5208 0.5732 0.5418 0.5672 0.5576

No 11 12 13 14 15
MSE% 0.5619 0.5040 0.5468 0.5471 0.5029

No 16 17 18 19 20
MSE% 0.5752 0.5744 0.5228 0.5065 0.5440

Table 4. Final MSE (%) of control (ξav) for 20 runs of the control program

Some statistical results of multiple run of the control program with noisy data, obtained
with both control schemes are also given. The results show a slight priority of the DANC
with respect to the SMC due to the better adaptation abilities to the first one.

6. References
Albertini, F. & Sontag, E. (1994). State observability in recurrent neural networks. System and

Control Letters, Vol. 22, No 4, (April 1994) page numbers (235-244), ISSN 0167-6911
Alexander, M. (1999). Biodegradation and Bioremediation. Academic Press, ISBN 0-12-049861,

New York
Baruch, I.S.; Stoyanov, I.P. & Gortcheva, E. (1996). Topology and learning of a class RNN,

ELEKTRIK (Turkish Journal of Electrical Engineering and Computer Sciences), Vol. 4
Supplement, No 1, (January 1996) page numbers (35-42), ISSN: 1300-0632

Baruch, I.S.; Gortcheva, E. & Garrido, R. (1999). Redes neuronales recurrentes para la
identificacion de objetos no lineales (in spanish). Cientifica, (The Mexican Journal of
Electromechanical Engineering, ESIME-IPN), Vol. 3, No 14, (March-April 1999) page
numbers (39-45), ISSN 1665-0654

Baruch, I.S.; Flores, J.M.; Thomas, F. & Garrido, R. (2001). Adaptive neural control of
nonlinear systems. In: Artificial Neural Networks-ICANN 2001, LNCS 2130, Dorffner,
G., Bischof, H., Hornik, K. (Eds.), page numbers (930-936), Springer, ISBN 3-540-
42486-5, Berlin

Baruch, I.S.; Flores, J.M. & Nenkova, B. (2001). Design of indirect adaptive neural control
systems. Cybernetics and Information Technologies (Bulgarian Academy of Sciences), Vol.
1, No 1, (January 2001) page numbers (81- 94), ISSN 1311-9702

Baruch, I.S.; Flores, J.M.; Nava, F.; Ramirez, I.R. & Nenkova, B. (2002). An Advanced neural
network topology and learning applied for identification and control of a D.C.
motor, Proceedings of the First International IEEE Symposium on Intelligent Systems, pp.
289-295, ISBN 0-7803-7601-3, Varna Bulgaria, September 2002, IEEE Inc., New York

Baruch, I.S.; Barrera-Cortes, J. & Hernandez, L.A. (2004). A fed-batch fermentation process
identification and direct adaptive neural control with integral term. In: MICAI 2004:
Advances in Artificial Intelligence, LNAI 2972, Monroy, R., Arroyo-Figueroa, G.,
Sucar, L.E., Sossa, H. (Eds.), page numbers (764-773), Springer-Verlag, ISBN 3-540-
21459-3, Berlin Heidelberg New York

Baruch, I.S.; Georgieva, P.; Barrera-Cortes, J. & Feyo de Azevedo, S. (2005). Adaptive
recurrent neural network control of biological wastewater treatment. International

 Recurrent Neural Networks

80

a)

b)

Fig. 12. a) Graphical results of the biodegradation process SMC; b) Graphical results of the
biodegradation process DCD; for both schemes the variables shown are (VA, AW, EW, RH,
MSE%)

No 1 2 3 4 5
MSE% 0.6434 0.6577 0.7669 0.6805 0.6662

No 6 7 8 9 10
MSE% 0.5757 0.5835 0.7043 0.7040 0.6350

No 11 12 13 14 15
MSE% 0.6602 0.7759 0.7732 0.6566 0.6408

No 16 17 18 19 20
MSE% 0.6481 0.6061 0.7240 0.6514 0.5725

Table 3. Final MSE (%) of control (ξav) for 20 runs of the control program

The obtained complete KF RNN model is simplified and used to design an indirect sliding
mode control and a direct recurrent feedback-feedforward neural control. The simulation
results obtained with the recurrent neural model learning and control exhibited a good
convergence and precise reference tracking. The MSE% of the KF RNN learning and
generalization is below 2% and the MSE% of the indirect and direct control is below 1%.

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

81

No 1 2 3 4 5
MSE% 0.5187 0.5449 0.5788 0.5738 0.5496

No 6 7 8 9 10
MSE% 0.5208 0.5732 0.5418 0.5672 0.5576

No 11 12 13 14 15
MSE% 0.5619 0.5040 0.5468 0.5471 0.5029

No 16 17 18 19 20
MSE% 0.5752 0.5744 0.5228 0.5065 0.5440

Table 4. Final MSE (%) of control (ξav) for 20 runs of the control program

Some statistical results of multiple run of the control program with noisy data, obtained
with both control schemes are also given. The results show a slight priority of the DANC
with respect to the SMC due to the better adaptation abilities to the first one.

6. References
Albertini, F. & Sontag, E. (1994). State observability in recurrent neural networks. System and

Control Letters, Vol. 22, No 4, (April 1994) page numbers (235-244), ISSN 0167-6911
Alexander, M. (1999). Biodegradation and Bioremediation. Academic Press, ISBN 0-12-049861,

New York
Baruch, I.S.; Stoyanov, I.P. & Gortcheva, E. (1996). Topology and learning of a class RNN,

ELEKTRIK (Turkish Journal of Electrical Engineering and Computer Sciences), Vol. 4
Supplement, No 1, (January 1996) page numbers (35-42), ISSN: 1300-0632

Baruch, I.S.; Gortcheva, E. & Garrido, R. (1999). Redes neuronales recurrentes para la
identificacion de objetos no lineales (in spanish). Cientifica, (The Mexican Journal of
Electromechanical Engineering, ESIME-IPN), Vol. 3, No 14, (March-April 1999) page
numbers (39-45), ISSN 1665-0654

Baruch, I.S.; Flores, J.M.; Thomas, F. & Garrido, R. (2001). Adaptive neural control of
nonlinear systems. In: Artificial Neural Networks-ICANN 2001, LNCS 2130, Dorffner,
G., Bischof, H., Hornik, K. (Eds.), page numbers (930-936), Springer, ISBN 3-540-
42486-5, Berlin

Baruch, I.S.; Flores, J.M. & Nenkova, B. (2001). Design of indirect adaptive neural control
systems. Cybernetics and Information Technologies (Bulgarian Academy of Sciences), Vol.
1, No 1, (January 2001) page numbers (81- 94), ISSN 1311-9702

Baruch, I.S.; Flores, J.M.; Nava, F.; Ramirez, I.R. & Nenkova, B. (2002). An Advanced neural
network topology and learning applied for identification and control of a D.C.
motor, Proceedings of the First International IEEE Symposium on Intelligent Systems, pp.
289-295, ISBN 0-7803-7601-3, Varna Bulgaria, September 2002, IEEE Inc., New York

Baruch, I.S.; Barrera-Cortes, J. & Hernandez, L.A. (2004). A fed-batch fermentation process
identification and direct adaptive neural control with integral term. In: MICAI 2004:
Advances in Artificial Intelligence, LNAI 2972, Monroy, R., Arroyo-Figueroa, G.,
Sucar, L.E., Sossa, H. (Eds.), page numbers (764-773), Springer-Verlag, ISBN 3-540-
21459-3, Berlin Heidelberg New York

Baruch, I.S.; Georgieva, P.; Barrera-Cortes, J. & Feyo de Azevedo, S. (2005). Adaptive
recurrent neural network control of biological wastewater treatment. International

 Recurrent Neural Networks

82

Journal of Intelligent Systems, Special issue on Soft Computing for Modelling, Simulation
and Control of Nonlinear Dynamical Systems, (O.Castillo, and P.Melin - guest editors),
Vol. 20, No 2, (February 2005) page numbers (173-194), ISSN 0884-8173

Baruch, I.S.; Genina-Soto, P. & Barrera-Cortes, J. (2005). Predictive neural model of an
osmotic dehydration process. Journal of Intelligent Systems, Special Issue on Hybrid
Intelligent Systems for Time Series Prediction, (O.Castillo, and P.Melin - guest editors),
Vol. 14, No 2-3, (February-March 2005) page numbers (143-155), ISSN 0334-1860

Baruch, I.S.; Mariaca-Gaspar, C.R. & Barrera-Cortes, J. (2007). Neural modelling and sliding
mode control of bio-degradation process in a rotating bioreactor, In: Preprints of the
8-th IFAC International Symposium on Dynamics and Control of Process Systems,
DYCOPS, vol. 2, Foss, B., Alvarez, J. (Eds.), pp. 261-266, Cancun Mexico, June 6-8,
2007, IFAC

Baruch, I.S.; Mariaca-Gaspar, C.R.; Cruz-Vega, I. & Barrera-Cortes, J. (2007). Sliding mode
control of a hydrocarbon degradation in biopile system using recurrent neural
network model, In: MICAI 2007: Advances in Artificial Intelligence, LNAI 4827,
Gelbukh, A., Kuri-Morales, A.F. (Eds.), page numbers (1184-1194), Springer, ISBN-
10 3-540-76630-8, Berlin Heidelberg New York

Boskovic, J.D. & Narendra, K. S. (1995). Comparison of linear, nonlinear and neural-
network-based adaptive controllers for a class of fed-batch fermentation processes.
Automatica, Vol. 31, No 6, (June 1995) page numbers (817-840), ISSN 0005-1098

Chen, S. & Billings, S.A. (1992). Neural networks for nonlinear dynamics system modeling
and identification. International Journal of Control, Vol. 56, No 2, (August 1992) page
numbers (319-346), ISSN 0020-7179

De la Torre-Sanchez, R.; Baruch, I.S. & Barrera –Cortes, J. (2006). Neural prediction of
hydrocarbon degradation profiles developed in a biopile. Expert Systems with
Applications, Vol. 31, No 3 (April 2006) page numbers (283-389), ISSN 0957-4174

Eduards, C.; Spurgeon, S.K. & Hebden, R.G. (2003). On the design of sliding mode output
feedback controllers. International Journal of Control, Special Issue Dedicated to Vadim
Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman), Vol. 76,
No 9/10, (15 June/10 July 2003) page numbers (893-905), ISSN 0020-7179

Flores, J. M.; Baruch, I. S. & Garrido, R. (2001). Red neuronal recurrente para identificación
y control de sistemas no lineales (in spanish). Científica, (The Mexican Journal of
Electromechanical Engineering, ESIME-IPN), Vol. 5, No 1, (January-March 2001) page
numbers (11-20), ISSN 1665-0654

Haykin, S. (1999). Neural Networks, a Comprehensive Foundation. Second Edition. Section 2.13,
pp. 84-89; Section 4.13, pp. 208-213. Prentice-Hall, ISBN 0-13-273350-1, Upper
Saddle River New Jersey

Hunt, K. J.; Sbarbaro, D.; Zbikowski, R., & Gawthrop, P. J. (1992). Neural network for control
systems - a survey. Automatica, Vol. 28, No 6 (December 1992) page numbers (1083-
1112), ISSN 0095-0963

Jin, L. & Gupta, M. (1999). Stable dynamic backpropagation learning in recurrent neural
networks. IEEE Transactions on Neural Networks, Vol. 10, No 6, (November 1999)
page numbers (1321-1334), ISSN 1045-9227

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

83

Kazemy, A.; Hosseini, S.A. & Farrokhi, M. (2007) Second order diagonal recurrent neural
network, Proceedings of the IEEE International Symposium on Industrial Electronics,
ISIE, pp. 251-256, ISBN 978-1-4244-0755-2, 4-7 June 2007, Vigo, Spain, IEEE Inc.,
New York

Ku, C.C. & Lee, K.Y. (1995). Diagonal recurrent neural networks for dynamic systems
control. IEEE Transactions on Neural Networks, Vol. 6, No 1, (January 1995) page
numbers (144-156), ISSN 1045-9227

Levent, A. (2003). Higher order sliding modes, differentiation and output feedback control.
International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion
of his 65th Birthday (Guest editor: Leonid M. Fridman), Vol. 76, No 9/10, (15 June/10
July 2003) page numbers (924-941), ISSN 0020-7179

Mastorocostas, P.A. & Theocharis, J.B. (2006). A stable learning algorithm for block-diagonal
recurrent neural networks: application to the analysis of lung sounds. IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 36, No 2
(April 2006) page numbers (242-254), ISSN 1083-4419

Miller, W.T., III; Sutton, R.S. & Werbos, P.J. (1990). Neural Networks for Control, A Bradford
Book, MIT Press, ISBN 0-262-13261-3, Cambridge, Massachusetts, London, England

Narendra, K.S. & Parthasarathy, K. (1990). Identification and control of dynamic systems
using neural networks. IEEE Transaction on Neural Networks, Vol. 1, No. 1, (January
1990) page numbers (4-27), ISSN 1045-9227

Narendra, K.S. & Mukhopadhyay, S. (1994). Adaptive control of nonlinear multivariable
systems using neural networks. Neural Networks, Vol. 7, No 5, (May 1994) page
numbers (737-752), ISSN 0893-6080

Nava, F.; Baruch, I.S.; Poznyak, A. & Nenkova, B. (2004). Stability proofs of advanced
recurrent neural networks topology and learning. Comptes Rendus (Proceedings of the
Bulgarian Academy of Sciences), Vol. 57, No 1, (January 2004) page numbers (27-32),
ISSN 0861-1459

Pao, S.A.; Phillips, S.M. & Sobajic, D. J. (1992). Neural net computing and intelligent control
systems. International Journal of Control, Special Issue on Intelligent Control, Vol. 56,
No 3, (August 1992) page numbers (263-289), ISSN 0020-7179

Sage, A.P. (1968) Optimum Systems Control. Prentice-Hall Inc., Library of Congress Catalog
Number 68-20862, Englewood Cliffs, New Jersey

Sontag, E. & Sussmann, H. (1997). Complete controlability of continuos time recurrent
neural network. System and Control Letters, Vol. 30, No 4, (May 1997) page numbers
(177-183), ISSN 0167-6911

Su, Hong-Te; McAvoy, Th. J. & Werbos, P. (1992). Long-term predictions of chemical
processes using recurrent neural networks: a parallel training approach. Industrial
Engineering Chemical Research, Vol. 31, No 5, (May 1992) page numbers (1338-1352),
ISSN 0888-5885

Valdez-Castro, L.; Baruch, I.S. & Barrera-Cortes, J. (2003). Neural networks applied to the
prediction of fed-batch fermentation kinetics of Bacillus Thuringiensis. Bioprocess
and Biosystems Engineering, Vol. 25, No 4, (January 2003) page numbers (229-233),
ISSN: 1615-7591

 Recurrent Neural Networks

82

Journal of Intelligent Systems, Special issue on Soft Computing for Modelling, Simulation
and Control of Nonlinear Dynamical Systems, (O.Castillo, and P.Melin - guest editors),
Vol. 20, No 2, (February 2005) page numbers (173-194), ISSN 0884-8173

Baruch, I.S.; Genina-Soto, P. & Barrera-Cortes, J. (2005). Predictive neural model of an
osmotic dehydration process. Journal of Intelligent Systems, Special Issue on Hybrid
Intelligent Systems for Time Series Prediction, (O.Castillo, and P.Melin - guest editors),
Vol. 14, No 2-3, (February-March 2005) page numbers (143-155), ISSN 0334-1860

Baruch, I.S.; Mariaca-Gaspar, C.R. & Barrera-Cortes, J. (2007). Neural modelling and sliding
mode control of bio-degradation process in a rotating bioreactor, In: Preprints of the
8-th IFAC International Symposium on Dynamics and Control of Process Systems,
DYCOPS, vol. 2, Foss, B., Alvarez, J. (Eds.), pp. 261-266, Cancun Mexico, June 6-8,
2007, IFAC

Baruch, I.S.; Mariaca-Gaspar, C.R.; Cruz-Vega, I. & Barrera-Cortes, J. (2007). Sliding mode
control of a hydrocarbon degradation in biopile system using recurrent neural
network model, In: MICAI 2007: Advances in Artificial Intelligence, LNAI 4827,
Gelbukh, A., Kuri-Morales, A.F. (Eds.), page numbers (1184-1194), Springer, ISBN-
10 3-540-76630-8, Berlin Heidelberg New York

Boskovic, J.D. & Narendra, K. S. (1995). Comparison of linear, nonlinear and neural-
network-based adaptive controllers for a class of fed-batch fermentation processes.
Automatica, Vol. 31, No 6, (June 1995) page numbers (817-840), ISSN 0005-1098

Chen, S. & Billings, S.A. (1992). Neural networks for nonlinear dynamics system modeling
and identification. International Journal of Control, Vol. 56, No 2, (August 1992) page
numbers (319-346), ISSN 0020-7179

De la Torre-Sanchez, R.; Baruch, I.S. & Barrera –Cortes, J. (2006). Neural prediction of
hydrocarbon degradation profiles developed in a biopile. Expert Systems with
Applications, Vol. 31, No 3 (April 2006) page numbers (283-389), ISSN 0957-4174

Eduards, C.; Spurgeon, S.K. & Hebden, R.G. (2003). On the design of sliding mode output
feedback controllers. International Journal of Control, Special Issue Dedicated to Vadim
Utkin on the Occasion of his 65th Birthday (Guest editor: Leonid M. Fridman), Vol. 76,
No 9/10, (15 June/10 July 2003) page numbers (893-905), ISSN 0020-7179

Flores, J. M.; Baruch, I. S. & Garrido, R. (2001). Red neuronal recurrente para identificación
y control de sistemas no lineales (in spanish). Científica, (The Mexican Journal of
Electromechanical Engineering, ESIME-IPN), Vol. 5, No 1, (January-March 2001) page
numbers (11-20), ISSN 1665-0654

Haykin, S. (1999). Neural Networks, a Comprehensive Foundation. Second Edition. Section 2.13,
pp. 84-89; Section 4.13, pp. 208-213. Prentice-Hall, ISBN 0-13-273350-1, Upper
Saddle River New Jersey

Hunt, K. J.; Sbarbaro, D.; Zbikowski, R., & Gawthrop, P. J. (1992). Neural network for control
systems - a survey. Automatica, Vol. 28, No 6 (December 1992) page numbers (1083-
1112), ISSN 0095-0963

Jin, L. & Gupta, M. (1999). Stable dynamic backpropagation learning in recurrent neural
networks. IEEE Transactions on Neural Networks, Vol. 10, No 6, (November 1999)
page numbers (1321-1334), ISSN 1045-9227

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

83

Kazemy, A.; Hosseini, S.A. & Farrokhi, M. (2007) Second order diagonal recurrent neural
network, Proceedings of the IEEE International Symposium on Industrial Electronics,
ISIE, pp. 251-256, ISBN 978-1-4244-0755-2, 4-7 June 2007, Vigo, Spain, IEEE Inc.,
New York

Ku, C.C. & Lee, K.Y. (1995). Diagonal recurrent neural networks for dynamic systems
control. IEEE Transactions on Neural Networks, Vol. 6, No 1, (January 1995) page
numbers (144-156), ISSN 1045-9227

Levent, A. (2003). Higher order sliding modes, differentiation and output feedback control.
International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion
of his 65th Birthday (Guest editor: Leonid M. Fridman), Vol. 76, No 9/10, (15 June/10
July 2003) page numbers (924-941), ISSN 0020-7179

Mastorocostas, P.A. & Theocharis, J.B. (2006). A stable learning algorithm for block-diagonal
recurrent neural networks: application to the analysis of lung sounds. IEEE
Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 36, No 2
(April 2006) page numbers (242-254), ISSN 1083-4419

Miller, W.T., III; Sutton, R.S. & Werbos, P.J. (1990). Neural Networks for Control, A Bradford
Book, MIT Press, ISBN 0-262-13261-3, Cambridge, Massachusetts, London, England

Narendra, K.S. & Parthasarathy, K. (1990). Identification and control of dynamic systems
using neural networks. IEEE Transaction on Neural Networks, Vol. 1, No. 1, (January
1990) page numbers (4-27), ISSN 1045-9227

Narendra, K.S. & Mukhopadhyay, S. (1994). Adaptive control of nonlinear multivariable
systems using neural networks. Neural Networks, Vol. 7, No 5, (May 1994) page
numbers (737-752), ISSN 0893-6080

Nava, F.; Baruch, I.S.; Poznyak, A. & Nenkova, B. (2004). Stability proofs of advanced
recurrent neural networks topology and learning. Comptes Rendus (Proceedings of the
Bulgarian Academy of Sciences), Vol. 57, No 1, (January 2004) page numbers (27-32),
ISSN 0861-1459

Pao, S.A.; Phillips, S.M. & Sobajic, D. J. (1992). Neural net computing and intelligent control
systems. International Journal of Control, Special Issue on Intelligent Control, Vol. 56,
No 3, (August 1992) page numbers (263-289), ISSN 0020-7179

Sage, A.P. (1968) Optimum Systems Control. Prentice-Hall Inc., Library of Congress Catalog
Number 68-20862, Englewood Cliffs, New Jersey

Sontag, E. & Sussmann, H. (1997). Complete controlability of continuos time recurrent
neural network. System and Control Letters, Vol. 30, No 4, (May 1997) page numbers
(177-183), ISSN 0167-6911

Su, Hong-Te; McAvoy, Th. J. & Werbos, P. (1992). Long-term predictions of chemical
processes using recurrent neural networks: a parallel training approach. Industrial
Engineering Chemical Research, Vol. 31, No 5, (May 1992) page numbers (1338-1352),
ISSN 0888-5885

Valdez-Castro, L.; Baruch, I.S. & Barrera-Cortes, J. (2003). Neural networks applied to the
prediction of fed-batch fermentation kinetics of Bacillus Thuringiensis. Bioprocess
and Biosystems Engineering, Vol. 25, No 4, (January 2003) page numbers (229-233),
ISSN: 1615-7591

 Recurrent Neural Networks

84

Wan, E. & Beaufays, F. (1996). Diagrammatic method for deriving and relating temporal
neural networks algorithms. Neural Computation, Vol. 8, No 2, (February 1996) page
numbers (182-201), ISSN 0899-7667

Young, K.D.; Utkin, V.I. & Ozguner, U. (1999). A control engineer’s guide to sliding mode
control. IEEE Trans. on Control Systems Technology, Vol. 7, No 3, (May 1999) page
numbers (328-342), ISSN 1063-6536

7. Appendix: Proof of the Theorem of RTNN Stability
Let the Recurrent Trainable Neural Network with Jordan Canonical Structure given by (1),
(2), (3), (4), (5), (6), (7) and the nonlinear plant model as follows:

 () () ()[]x k+1 =g x k ,u k (A.1)

 () ()[]y k =f x k (A.2)

and the plant and activation functions fulfill the following assumptions:
Assumption 1: The plant dynamics is locally Lipchitz, so the functions ⋅g() , ⋅f() are as:

(){ }≤ 0 1f:= f|f=σ+Δf, Δf f +f x k

(){ }≤ 0 1g:= g|g=σ+Δg, Δg +g x kg

andΔg , Δf are modeling errors, which reflex the effect of unmodeled dynamics.
Assumption 2: The activation function has the following Taylor approximation:

() ()
() ()∂

−
∂

σ θ
σ θ =σ θ + θ θ +ς

θ

with the approximation error bound given by:

≤ −
22 Lς θ θ

2

and the signal error defined by:

() () ()ˆe k =y k -y k

() () () () ()[] () ()[]− = − −⎡ ⎤⎣ ⎦
*ˆ ˆˆe k+1 =y k+1 y k+1 C k x k C x k Δf x kF F

Now, let us define the state estimation error, add and subtract the RTNN to the last equation
and apply the Assumption 2, then:

() () ()ˆΔ k =x k -x k

() () () () () () ()[] () () () ()[]= ⎡ ⎤⎣ ⎦
* *ˆ ˆ ˆΔ k+1 =x k+1 -x k+1 A k x k +B k u k -G A x k +B u k -Δg x k ,u kG

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

85

Let us now define the output identification error and put it in terms of the state estimation
error as:

() () () () () () () ()()[] () () ()()
() ()()

⎡ ⎤⎣ ⎦
* * *

3 F 4

1 2

ˆe k+1 =F' k δC k G' k δA k x k +δB k u k +Θ +F' k δC G' k A Δ k -B O +Θ
 +Θ +Θ -Δf x k ,u k

Where: the term () () Fu k =u k +O ; the 1,2,3,4Θ are the higher order terms in the Taylor series
approximation; () ()()Δf x k ,u k is the unmodeled dynamics; FO is an offset.
 If Assumptions 1 and 2 fulfil, the learning algorithm for the RTNN is given by (8) and the
learning parameters kη , kα are normalized and depended on the output error structure.
Then, the approximation error is bounded.
Consider a Lyapunov candidate function as

 () () ()1 2k =L k +L kL (A.3)

In which ()1L k and ()2L k are given by:

 () ()2
1

1k = e k
2

L (A.4)

 () () () ()T T T
2 A B CBA Ck =tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)L (A.5)

Where:

* * *
A B C1 ˆ ˆˆW (k)=A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C

are vectors of the estimation error and * * *(A ,B ,C) and k k kˆ ˆˆ(A ,B ,C) denote the ideal neural
weight and the estimate of neural weight at the k-th step, respectively, for each case.
Let us consider the equation (A.4). The change of the Lyapunov function in two consecutive
samples due of the training process is obtained by:

 () () () () ()[] () () ()[]− = − −1 11 1 1 2 2ΔL k =L k+1 L k e k+1 e k e k + e k+1 e k (A.6)

Then, defining ()Δe k as the difference between two consecutive error samples, the
equation (A.6) becomes:

 () () () ()[]11 2ΔL k =Δe k e k + Δe k (A.7)

Where: ()Δe k can be defined as:

 () ()∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

e kΔe k = ΔW
W

 (A.8)

Putting all weights into one vector as

 Recurrent Neural Networks

84

Wan, E. & Beaufays, F. (1996). Diagrammatic method for deriving and relating temporal
neural networks algorithms. Neural Computation, Vol. 8, No 2, (February 1996) page
numbers (182-201), ISSN 0899-7667

Young, K.D.; Utkin, V.I. & Ozguner, U. (1999). A control engineer’s guide to sliding mode
control. IEEE Trans. on Control Systems Technology, Vol. 7, No 3, (May 1999) page
numbers (328-342), ISSN 1063-6536

7. Appendix: Proof of the Theorem of RTNN Stability
Let the Recurrent Trainable Neural Network with Jordan Canonical Structure given by (1),
(2), (3), (4), (5), (6), (7) and the nonlinear plant model as follows:

 () () ()[]x k+1 =g x k ,u k (A.1)

 () ()[]y k =f x k (A.2)

and the plant and activation functions fulfill the following assumptions:
Assumption 1: The plant dynamics is locally Lipchitz, so the functions ⋅g() , ⋅f() are as:

(){ }≤ 0 1f:= f|f=σ+Δf, Δf f +f x k

(){ }≤ 0 1g:= g|g=σ+Δg, Δg +g x kg

andΔg , Δf are modeling errors, which reflex the effect of unmodeled dynamics.
Assumption 2: The activation function has the following Taylor approximation:

() ()
() ()∂

−
∂

σ θ
σ θ =σ θ + θ θ +ς

θ

with the approximation error bound given by:

≤ −
22 Lς θ θ

2

and the signal error defined by:

() () ()ˆe k =y k -y k

() () () () ()[] () ()[]− = − −⎡ ⎤⎣ ⎦
*ˆ ˆˆe k+1 =y k+1 y k+1 C k x k C x k Δf x kF F

Now, let us define the state estimation error, add and subtract the RTNN to the last equation
and apply the Assumption 2, then:

() () ()ˆΔ k =x k -x k

() () () () () () ()[] () () () ()[]= ⎡ ⎤⎣ ⎦
* *ˆ ˆ ˆΔ k+1 =x k+1 -x k+1 A k x k +B k u k -G A x k +B u k -Δg x k ,u kG

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

85

Let us now define the output identification error and put it in terms of the state estimation
error as:

() () () () () () () ()()[] () () ()()
() ()()

⎡ ⎤⎣ ⎦
* * *

3 F 4

1 2

ˆe k+1 =F' k δC k G' k δA k x k +δB k u k +Θ +F' k δC G' k A Δ k -B O +Θ
 +Θ +Θ -Δf x k ,u k

Where: the term () () Fu k =u k +O ; the 1,2,3,4Θ are the higher order terms in the Taylor series
approximation; () ()()Δf x k ,u k is the unmodeled dynamics; FO is an offset.
 If Assumptions 1 and 2 fulfil, the learning algorithm for the RTNN is given by (8) and the
learning parameters kη , kα are normalized and depended on the output error structure.
Then, the approximation error is bounded.
Consider a Lyapunov candidate function as

 () () ()1 2k =L k +L kL (A.3)

In which ()1L k and ()2L k are given by:

 () ()2
1

1k = e k
2

L (A.4)

 () () () ()T T T
2 A B CBA Ck =tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)L (A.5)

Where:

* * *
A B C1 ˆ ˆˆW (k)=A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C

are vectors of the estimation error and * * *(A ,B ,C) and k k kˆ ˆˆ(A ,B ,C) denote the ideal neural
weight and the estimate of neural weight at the k-th step, respectively, for each case.
Let us consider the equation (A.4). The change of the Lyapunov function in two consecutive
samples due of the training process is obtained by:

 () () () () ()[] () () ()[]− = − −1 11 1 1 2 2ΔL k =L k+1 L k e k+1 e k e k + e k+1 e k (A.6)

Then, defining ()Δe k as the difference between two consecutive error samples, the
equation (A.6) becomes:

 () () () ()[]11 2ΔL k =Δe k e k + Δe k (A.7)

Where: ()Δe k can be defined as:

 () ()∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

e kΔe k = ΔW
W

 (A.8)

Putting all weights into one vector as

 Recurrent Neural Networks

86

 ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
TT TT

W= A B C (A.9)

Where:

 ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
T TTT T T T T TT T T

1 2 1 2 m 1 2 nnA= A A L A ,B= B B L B ,C= C C L C

which represents the weight vectors constructed by their columns. Also let:

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A A

B B

C C

η α
η η , α α

η α
 (A.10)

Where: A B C(η ,η ,η) and A B C(α ,α ,α) represented the learning rate matrix, the momentum

rate matrix corresponding to (A,B,C) , respectively, and A
1 Aη =η I , B

2 Bη =η I , C
3 Cη =η I ,

A
1 Aα =α I , B

2 Bα =α I , C
3 Cα =α I . Moreover, ()iη i=1,...,3 and ()iα i=1,...,3 are two positive

constants, and ZI is an identity matrix with Z representing A,B,C , respectively. Now, we
could define ΔW and derive an expression for ()1ΔL k :

 () ()−ΔW=ηΔW k +αΔW k 1 (A.11)

() () () () () ()

() () () ()

() () () ()

∂ ∂ − ∂ − ∂ −
− − − − −

∂ ∂ ∂ ∂
⎡ ⎤

∂ ∂ ∂⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

∂ − ∂ − ∂ −⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

1 1

A
TT T T

B

C

A
TT T T

B

C

k k 1 e k 1 e k 1ΔW= η α = e k η e k 1 α
W W W W
η

e k e k e k = e k η ×
A B C

η

α
e k 1 e k 1 e k 1 e k 1 α ×

A B C
α

L L

 (A.12)

() ()

() () () ()

() () () ()

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

⎛ ⎞∂ ∂ ∂
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ − ∂ − ∂ −
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

T

2 2 2

1 2 3

2 2 2

1 2 3

e kΔe k = ΔW
W

e k e k e k = e k × η +η +η
A B C

e k 1 e k 1 e k 1 e k-1 × α +α +α
A B C

 (A.13)

() () ()

() () ()

∂ ∂ ∂
∂ ∂ ∂

∂ − ∂ − ∂ −
∂ ∂ ∂

2 2 2

1 2 3

2 2 2

1 2 3

e k e k e kγ=η +η +η
A B C

e k 1 e k 1 e k 1λ=α +α +α
A B C

 (A.14)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

87

 () () ()− −Δe k+1 = γe k+1 λe k (A.15)

() () () ()[]

() () ()[] ()
=

= − − −⎡ ⎤⎣ ⎦

11 2
2 2 2 21 1

2 2

ΔL k+1 Δe k+1 e k+1 + Δe k+1

 e k+1 2γ γ +e k+1 e k γ 1 λ+ λ e k
 (A.16)

Proposing: −λ=γ 1 , then:

 () () ()[]= − − − −⎡ ⎤⎣ ⎦
22 2 21 11 2 2ΔL k+1 e k+1 2γ +4γ 1 λ Δe k (A.17)

According to the Lyapunov’s stability theory, the convergence could be be guaranteed, if
()ΔL k+1 <0 , thus − −22γ +4γ 1>0 , and

 ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 11 <γ< 1+
2 2

 (A.18)

That is :

 () () ()∂ ∂ ∂⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

2 2 2

1 2 3
1 e k e k e k 11 <η +η +η < 1+

A B C2 2
 (A.19)

Let { }
3

max i
i=1

η =max η ; thus, as long as:

() () () () () ()

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

max2 2 2 2 2 2

1 11 1+
2 2<η <

e k e k e k e k e k e k+ + + +
A B C A B C

 (A.20)

Note that ⋅ is the Euclidean norm, therefore:

 () () () ()∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

2 2 2 2e k e k e k e k+ + =
A B C W

 (A.21)

Now let : () () ()∂∂
∂ ∂= − y ke k
W Wψ k = and ()max kψ =max ψ k , then:

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max
max max

1 11- 1+
2 2<η <

ψ ψ
 (A.22)

Now, working with equation (A.5), we have:

 () () () ()= T T T
2 A B CBA CL k tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k) (A.23)

Considering the change of the Lyapunov function in two consecutive samples of the training
process, and substituting the quantities: ()

* * *
B CA k ˆ ˆˆW =A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C , we get:

 Recurrent Neural Networks

86

 ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
TT TT

W= A B C (A.9)

Where:

 ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦
T TTT T T T T TT T T

1 2 1 2 m 1 2 nnA= A A L A ,B= B B L B ,C= C C L C

which represents the weight vectors constructed by their columns. Also let:

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A A

B B

C C

η α
η η , α α

η α
 (A.10)

Where: A B C(η ,η ,η) and A B C(α ,α ,α) represented the learning rate matrix, the momentum

rate matrix corresponding to (A,B,C) , respectively, and A
1 Aη =η I , B

2 Bη =η I , C
3 Cη =η I ,

A
1 Aα =α I , B

2 Bα =α I , C
3 Cα =α I . Moreover, ()iη i=1,...,3 and ()iα i=1,...,3 are two positive

constants, and ZI is an identity matrix with Z representing A,B,C , respectively. Now, we
could define ΔW and derive an expression for ()1ΔL k :

 () ()−ΔW=ηΔW k +αΔW k 1 (A.11)

() () () () () ()

() () () ()

() () () ()

∂ ∂ − ∂ − ∂ −
− − − − −

∂ ∂ ∂ ∂
⎡ ⎤

∂ ∂ ∂⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

∂ − ∂ − ∂ −⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

1 1

A
TT T T

B

C

A
TT T T

B

C

k k 1 e k 1 e k 1ΔW= η α = e k η e k 1 α
W W W W
η

e k e k e k = e k η ×
A B C

η

α
e k 1 e k 1 e k 1 e k 1 α ×

A B C
α

L L

 (A.12)

() ()

() () () ()

() () () ()

∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

⎛ ⎞∂ ∂ ∂
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ − ∂ − ∂ −
− ⎜ ⎟∂ ∂ ∂⎝ ⎠

T

2 2 2

1 2 3

2 2 2

1 2 3

e kΔe k = ΔW
W

e k e k e k = e k × η +η +η
A B C

e k 1 e k 1 e k 1 e k-1 × α +α +α
A B C

 (A.13)

() () ()

() () ()

∂ ∂ ∂
∂ ∂ ∂

∂ − ∂ − ∂ −
∂ ∂ ∂

2 2 2

1 2 3

2 2 2

1 2 3

e k e k e kγ=η +η +η
A B C

e k 1 e k 1 e k 1λ=α +α +α
A B C

 (A.14)

Recurrent Neural Network Identification and Adaptive Neural Control
of Hydrocarbon Biodegradation Processes

87

 () () ()− −Δe k+1 = γe k+1 λe k (A.15)

() () () ()[]

() () ()[] ()
=

= − − −⎡ ⎤⎣ ⎦

11 2
2 2 2 21 1

2 2

ΔL k+1 Δe k+1 e k+1 + Δe k+1

 e k+1 2γ γ +e k+1 e k γ 1 λ+ λ e k
 (A.16)

Proposing: −λ=γ 1 , then:

 () () ()[]= − − − −⎡ ⎤⎣ ⎦
22 2 21 11 2 2ΔL k+1 e k+1 2γ +4γ 1 λ Δe k (A.17)

According to the Lyapunov’s stability theory, the convergence could be be guaranteed, if
()ΔL k+1 <0 , thus − −22γ +4γ 1>0 , and

 ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 11 <γ< 1+
2 2

 (A.18)

That is :

 () () ()∂ ∂ ∂⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

2 2 2

1 2 3
1 e k e k e k 11 <η +η +η < 1+

A B C2 2
 (A.19)

Let { }
3

max i
i=1

η =max η ; thus, as long as:

() () () () () ()

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

max2 2 2 2 2 2

1 11 1+
2 2<η <

e k e k e k e k e k e k+ + + +
A B C A B C

 (A.20)

Note that ⋅ is the Euclidean norm, therefore:

 () () () ()∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

2 2 2 2e k e k e k e k+ + =
A B C W

 (A.21)

Now let : () () ()∂∂
∂ ∂= − y ke k
W Wψ k = and ()max kψ =max ψ k , then:

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

max
max max

1 11- 1+
2 2<η <

ψ ψ
 (A.22)

Now, working with equation (A.5), we have:

 () () () ()= T T T
2 A B CBA CL k tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k) (A.23)

Considering the change of the Lyapunov function in two consecutive samples of the training
process, and substituting the quantities: ()

* * *
B CA k ˆ ˆˆW =A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C , we get:

 Recurrent Neural Networks

88

() () ()
⎛ ⎞− −
⎜ ⎟= =
⎜ ⎟− −⎝ ⎠

− −

− −

T T T

T T

T T T

T

T * * * *

2 2 2
T * * T * *

T * * * *

T * * T *

ˆ ˆ ˆ ˆA(k+1)A (k+1) A(k+1)A A A (k+1)+A A
ΔL k L k+1 -L k tr

ˆ ˆ ˆ ˆA(k)A (k)+A(k)A (k)+A A (k) A A
ˆ ˆ ˆ ˆB(k+1)B (k+1) B(k+1)B B B (k+1)+B B

 +tr
ˆ ˆ ˆ ˆB(k)B (k)+B(k)B +B B (k) B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞− −
⎜ ⎟
⎜ ⎟− −⎝ ⎠

T

T T T

T T

*

T * * * *

T * * T * *

B
ˆ ˆ ˆ ˆC(k+1)C (k+1) C(k+1)C C C (k+1)+C C

 +tr
ˆ ˆ ˆ ˆC(k)C (k)+C(k)C +C C (k) C C

 (A.24)

Applying the learning law (8) and the trace properties we obtained:

()

()
()

⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦

2 2 2 22 22 2
2 max max

T T T
max

T T T
max

ˆ ˆ ˆ ˆˆ ˆΔL k η ΔA(k) + ΔB(k) + ΔC(k) +α ΔA(k-1) + ΔB(k-1) + ΔC(k-1)

ˆ ˆˆ +2η tr A(k)ΔA (k)+B(k)ΔB (k)+C(k)ΔC (k)
ˆ ˆˆ +2α tr A(k)ΔA (k-1)+B(k)ΔB (k-1)+C(k)ΔC (k-1)

()T T T
max max ˆ ˆ ˆ ˆˆ ˆ +2α η tr ΔA(k)ΔA (k-1)+ΔB(k)ΔB (k-1)+ΔC(k)ΔC (k-1)

 (A.25)

Substituting the learning values and errors (9)-(15), we obtained terms like:

 2
max max2η e(k) -2η ξ(k)e(k) ; 2

max max2η e(k-1) -2η ξ(k-1)e(k-1) (A.26)

Applying the following inequality: () ≤
TT T T T -1X Y+ X Y X ΛX+Y Λ Y , which is valid for any

∈ℜn×mX,Y , and for any positive definite matrix ×< Λ = Λ ∈ℜ0 T n n , we obtained:

 () () ≤ -11 1

2 22
max max max max Λ Λ2η e(k)ξ(k)= η e(k) ξ(k)+ξ(k) η e(k) η e(k) + ξ(k) ;

 () () ≤ -12 2

2 22
max max max max Λ Λ2α e(k-1)ξ(k-1)= α e(k-1) ξ(k-1)+ξ(k-1) α e(k-1) α e(k-1) + ξ(k-1) (A.27)

Analyzing (A.27) term by term and applying the Rayleigh inequality:
() ()≤ ≤2 2T

min maxλ Λ x x Λx λ Λ x we obtained a statement for ()2ΔL k . Making inner terms
equal to one as in the unit circle condition for discrete time, at last we get the final condition:

 () () () ()≤ 2 2
2 max maxΔL k -η e k -α e k-1 +d k (A.28)

 () -1 -1
1 2

2 2
Λ Λd k = ξ(k) + ξ(k-1) (A.29)

Where ()d k represented the unmodeled dynamics and/or perturbations term. Applying
the Rate of Convergence Lemma (Nava et al., 2004) for the result (A.28) we could conclude
that: the d(k) - term must be bounded by the weight matrices and the learning parameter in
order to obtain the final result: () ∞∈2ΔL k L . As a consequence we get :

() () ()∞ ∞ ∞∈ ∈ ∈k k kA L ,B L ,C L . From equations (A.22) and (A.28) we easily could get the
inequality (A.20). Therefore the boundedness of L(k) , +∈ 0k Z is guaranteed.

5

Design of Self-Constructing Recurrent-Neural-
Network-Based Adaptive Control

Chun-Fei Hsu 1 and Chih-Min Lin 2

Chung Hua University 1, Yuan Ze University 2

Taiwan, Republic of China

1. Introduction
Recently, neural-network-based adaptive control technique has attracted increasing
attentions, because it has provided an efficient and effective way in the control of complex
nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu,
2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the
approximation capabilities of the neural networks. The parameterized neural networks can
approximate the unknown system dynamics or the ideal tracking controller after learning.
One must distinguish between two classes of control applications – open-loop identification
and closed-loop feedback control. Identification applications are similar to signal
processing/classification, so that the same open-loop algorithms may often be used.
Therefore, a tremendous amount of training data must be used and considerable training
time undertaken is required. On the other hand, in closed-loop feedback applications the
neural network is inside the control loop, so that special steps must be taken to ensure that
the tracking error and the neural network weights remain bounded in the closed-loop
system. The basic issues in neural network closed-loop feedback control are to provide on-
line learning algorithms that do not require preliminary off-line tuning. Some of these
learning algorithms are based on the backpropagation algorithm. However, these
approaches have difficulties to guarantee the stability and robustness of closed-loop system
(Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the
Lyapunov stability theorem. The tuning laws have been designed to guarantee the system
stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004).
However, these neural networks are feedforward neural networks; they belong to static
mapping networks. Without aid of tapped delay, a feedforward neural network is unable to
represent a dynamic mapping. The recurrent neural network (RNN) has superior
capabilities as compared to feedforward neural networks, such as their dynamic response
and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has
an internal feedback loop, it captures the dynamic response of a system with external
feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic
characteristic and relatively simple architecture, the recurrent neural network is a useful tool
for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et
al. 2004).
Although the neural-network-based adaptive control performances are acceptable in above
literatures; however, the learning algorithm only includes the parameter learning, and they

 Recurrent Neural Networks

88

() () ()
⎛ ⎞− −
⎜ ⎟= =
⎜ ⎟− −⎝ ⎠

− −

− −

T T T

T T

T T T

T

T * * * *

2 2 2
T * * T * *

T * * * *

T * * T *

ˆ ˆ ˆ ˆA(k+1)A (k+1) A(k+1)A A A (k+1)+A A
ΔL k L k+1 -L k tr

ˆ ˆ ˆ ˆA(k)A (k)+A(k)A (k)+A A (k) A A
ˆ ˆ ˆ ˆB(k+1)B (k+1) B(k+1)B B B (k+1)+B B

 +tr
ˆ ˆ ˆ ˆB(k)B (k)+B(k)B +B B (k) B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞− −
⎜ ⎟
⎜ ⎟− −⎝ ⎠

T

T T T

T T

*

T * * * *

T * * T * *

B
ˆ ˆ ˆ ˆC(k+1)C (k+1) C(k+1)C C C (k+1)+C C

 +tr
ˆ ˆ ˆ ˆC(k)C (k)+C(k)C +C C (k) C C

 (A.24)

Applying the learning law (8) and the trace properties we obtained:

()

()
()

⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦

2 2 2 22 22 2
2 max max

T T T
max

T T T
max

ˆ ˆ ˆ ˆˆ ˆΔL k η ΔA(k) + ΔB(k) + ΔC(k) +α ΔA(k-1) + ΔB(k-1) + ΔC(k-1)

ˆ ˆˆ +2η tr A(k)ΔA (k)+B(k)ΔB (k)+C(k)ΔC (k)
ˆ ˆˆ +2α tr A(k)ΔA (k-1)+B(k)ΔB (k-1)+C(k)ΔC (k-1)

()T T T
max max ˆ ˆ ˆ ˆˆ ˆ +2α η tr ΔA(k)ΔA (k-1)+ΔB(k)ΔB (k-1)+ΔC(k)ΔC (k-1)

 (A.25)

Substituting the learning values and errors (9)-(15), we obtained terms like:

 2
max max2η e(k) -2η ξ(k)e(k) ; 2

max max2η e(k-1) -2η ξ(k-1)e(k-1) (A.26)

Applying the following inequality: () ≤
TT T T T -1X Y+ X Y X ΛX+Y Λ Y , which is valid for any

∈ℜn×mX,Y , and for any positive definite matrix ×< Λ = Λ ∈ℜ0 T n n , we obtained:

 () () ≤ -11 1

2 22
max max max max Λ Λ2η e(k)ξ(k)= η e(k) ξ(k)+ξ(k) η e(k) η e(k) + ξ(k) ;

 () () ≤ -12 2

2 22
max max max max Λ Λ2α e(k-1)ξ(k-1)= α e(k-1) ξ(k-1)+ξ(k-1) α e(k-1) α e(k-1) + ξ(k-1) (A.27)

Analyzing (A.27) term by term and applying the Rayleigh inequality:
() ()≤ ≤2 2T

min maxλ Λ x x Λx λ Λ x we obtained a statement for ()2ΔL k . Making inner terms
equal to one as in the unit circle condition for discrete time, at last we get the final condition:

 () () () ()≤ 2 2
2 max maxΔL k -η e k -α e k-1 +d k (A.28)

 () -1 -1
1 2

2 2
Λ Λd k = ξ(k) + ξ(k-1) (A.29)

Where ()d k represented the unmodeled dynamics and/or perturbations term. Applying
the Rate of Convergence Lemma (Nava et al., 2004) for the result (A.28) we could conclude
that: the d(k) - term must be bounded by the weight matrices and the learning parameter in
order to obtain the final result: () ∞∈2ΔL k L . As a consequence we get :

() () ()∞ ∞ ∞∈ ∈ ∈k k kA L ,B L ,C L . From equations (A.22) and (A.28) we easily could get the
inequality (A.20). Therefore the boundedness of L(k) , +∈ 0k Z is guaranteed.

5

Design of Self-Constructing Recurrent-Neural-
Network-Based Adaptive Control

Chun-Fei Hsu 1 and Chih-Min Lin 2

Chung Hua University 1, Yuan Ze University 2

Taiwan, Republic of China

1. Introduction
Recently, neural-network-based adaptive control technique has attracted increasing
attentions, because it has provided an efficient and effective way in the control of complex
nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu,
2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the
approximation capabilities of the neural networks. The parameterized neural networks can
approximate the unknown system dynamics or the ideal tracking controller after learning.
One must distinguish between two classes of control applications – open-loop identification
and closed-loop feedback control. Identification applications are similar to signal
processing/classification, so that the same open-loop algorithms may often be used.
Therefore, a tremendous amount of training data must be used and considerable training
time undertaken is required. On the other hand, in closed-loop feedback applications the
neural network is inside the control loop, so that special steps must be taken to ensure that
the tracking error and the neural network weights remain bounded in the closed-loop
system. The basic issues in neural network closed-loop feedback control are to provide on-
line learning algorithms that do not require preliminary off-line tuning. Some of these
learning algorithms are based on the backpropagation algorithm. However, these
approaches have difficulties to guarantee the stability and robustness of closed-loop system
(Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the
Lyapunov stability theorem. The tuning laws have been designed to guarantee the system
stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004).
However, these neural networks are feedforward neural networks; they belong to static
mapping networks. Without aid of tapped delay, a feedforward neural network is unable to
represent a dynamic mapping. The recurrent neural network (RNN) has superior
capabilities as compared to feedforward neural networks, such as their dynamic response
and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has
an internal feedback loop, it captures the dynamic response of a system with external
feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic
characteristic and relatively simple architecture, the recurrent neural network is a useful tool
for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et
al. 2004).
Although the neural-network-based adaptive control performances are acceptable in above
literatures; however, the learning algorithm only includes the parameter learning, and they

 Recurrent Neural Networks

90

have not considered the structure learning of the neural network. If the number of hidden
neurons is chosen too large, the computation load is heavy so that they are not suitable for
practical applications. If the number of hidden neurons is chosen too small, the learning
performance may be not good enough to achieve desired control performance. To tackle this
problem, several self-structuring neural networks, consisting of structure and parameter
learning phases, have been proposed (Huang et al., 2004; Leung & Tsoi, 2005; Lin et al,
2005). These learning phases not only decide the structure of neural network but also adjust
the parameters of neural network. Recently, some self-structuring neural networks have
been applied to solve several control problems (Lin et al., 2001; Gao & Er, 2003; Park et al.,
2005). Lin et al. (2001) used a similarity measure method to avoid the newly generated
membership function being too similar to the existing ones; however, the structure would
grow large as the input data has large variations. Gao & Er (2003) proposed an error
reduction ratio with QR decomposition to prune the hidden neurons; however, the design
procedure is overly complex. Park et al. (2005) proposed a self-structuring neural network
which can create new hidden neurons to increase the learning ability; unfortunately, the
proposed approach can not avoid the structure of neural network growing unboundedly.
This paper proposes a recurrent-neural-network-based adaptive control (RNNAC) method,
which combines neural-network-based adaptive control, robust control and self-structuring
approach, for a class of unknown nonlinear systems. The proposed RNNAC system is
composed of a neural controller and a robust controller. The neural controller uses a self-
structuring recurrent neural network (SRNN) to approximate an ideal tracking controller.
The learning process of SRNN includes the structure learning and parameter learning. In the
structure learning, the SRNN can online create new hidden neurons as the incoming data is
far away the existing hidden neurons, and cancel hidden neurons as the hidden neurons is
inappropriate. Thus the learning capability and flexibility can be upgraded. In the parameter
learning, the controller parameters can be online tuned based on the Lyapunov function, so
that the stability of the closed-loop system can be guaranteed. The robust controller is
designed to recover the residual of the approximation error to achieve 2L tracking
performance with desired attenuation level. Finally, the proposed RNNAC system is
applied to control a nonlinear dynamic system. Simulation results are performed to
demonstrate the effectiveness of the proposed design method.

2. Problem statement and ideal tracking control
The model of many practical nonlinear systems can be expressed in the nth-order form as

 ufx n +=)()(x (1)

where Tnxxx],,,[)1(−= …�x is the state vector of the system, which is assumed to be available
for measurement,)(xf is the nonlinear system dynamics which can be unknown, and u is
the input of the system. The tracking control problem of the system is to find a control law
so that the state trajectory x can track a reference command cx closely. The tracking error is
defined as

 xxe c −= . (2)

If the exact model of the controlled system is well known, there exists an ideal tracking
controller to achieve favorable control performance by possible canceling all the system

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

91

uncertainties (Slotine and Li, 1991). Assume that the parameters of the controlled system in
(1) are well known, there exits an ideal tracking controller

 EKx Tn
cxfu ++−=)(*)((3)

where Tneee],,,[)1(−= …�E and T
n kkk],,,[12�=K . Applying the ideal tracking controller (3) to

system (1) results in the following error dynamics

 0)1(
1

)(=+++ − ekeke n
nn � . (4)

If ik , ni ,,2,1 �= are chosen such that all roots of the polynomial n
nn kskssh +++Δ − �1

1)(

lie strictly in the open left half of the complex plane, then it implies that 0lim =
∞→

e
t

 for any

starting initial conditions. The error dynamics (4) can be rewritten in a vector form as

 AEE =� (5)

where

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

− 11

100
0
0010

kkk nn �
�

����
�

A . However, since the system dynamics)(xf may be

unknown or perturbed in practical applications, the ideal tracking controller (3) can not be
precisely obtained.

3. Design of RNNAC
For achieving a favorable tracking performance and a specified attenuation level
simultaneously, the developed recurrent-neural-network-based adaptive control (RNNAC)
system with structure adaptation algorithm shown in Fig. 1 is assumed to take the following
form

 rcncanc uuu += (6)

where ncu is the neural controller and rcu is the robust controller. The neural controller
using a self-structuring recurrent neural network (SRNN) to approximate the ideal tracking
controller is the principal controller; and the robust controller is designed to achieve a
specified 2L robust tracking performance. The detail will be described as follows:

3.1 Description of SRNN
Radial basis function (RBF) networks have gained much popularity due to their ability to
approximate complex nonlinear mappings directly from the input-output data with a
simple topological structure. RBF is different from neural network with sigmoidal activation
functions utilizing basis functions, which are locally responsive to input stimulus. Each
output of RBF has a radially symmetrical response around the center vector. Although the
RBF neural-network-based adaptive control performances are acceptable, the structure of
the RBF network is determined by trial-and-error, and RBF network is unable to represent a
dynamic mapping. To tackle this problem, a three-layer SRNN is shown in Fig. 2, which
comprises of an input layer, a hidden layer with a feedback unit, and an output layer.

 Recurrent Neural Networks

90

have not considered the structure learning of the neural network. If the number of hidden
neurons is chosen too large, the computation load is heavy so that they are not suitable for
practical applications. If the number of hidden neurons is chosen too small, the learning
performance may be not good enough to achieve desired control performance. To tackle this
problem, several self-structuring neural networks, consisting of structure and parameter
learning phases, have been proposed (Huang et al., 2004; Leung & Tsoi, 2005; Lin et al,
2005). These learning phases not only decide the structure of neural network but also adjust
the parameters of neural network. Recently, some self-structuring neural networks have
been applied to solve several control problems (Lin et al., 2001; Gao & Er, 2003; Park et al.,
2005). Lin et al. (2001) used a similarity measure method to avoid the newly generated
membership function being too similar to the existing ones; however, the structure would
grow large as the input data has large variations. Gao & Er (2003) proposed an error
reduction ratio with QR decomposition to prune the hidden neurons; however, the design
procedure is overly complex. Park et al. (2005) proposed a self-structuring neural network
which can create new hidden neurons to increase the learning ability; unfortunately, the
proposed approach can not avoid the structure of neural network growing unboundedly.
This paper proposes a recurrent-neural-network-based adaptive control (RNNAC) method,
which combines neural-network-based adaptive control, robust control and self-structuring
approach, for a class of unknown nonlinear systems. The proposed RNNAC system is
composed of a neural controller and a robust controller. The neural controller uses a self-
structuring recurrent neural network (SRNN) to approximate an ideal tracking controller.
The learning process of SRNN includes the structure learning and parameter learning. In the
structure learning, the SRNN can online create new hidden neurons as the incoming data is
far away the existing hidden neurons, and cancel hidden neurons as the hidden neurons is
inappropriate. Thus the learning capability and flexibility can be upgraded. In the parameter
learning, the controller parameters can be online tuned based on the Lyapunov function, so
that the stability of the closed-loop system can be guaranteed. The robust controller is
designed to recover the residual of the approximation error to achieve 2L tracking
performance with desired attenuation level. Finally, the proposed RNNAC system is
applied to control a nonlinear dynamic system. Simulation results are performed to
demonstrate the effectiveness of the proposed design method.

2. Problem statement and ideal tracking control
The model of many practical nonlinear systems can be expressed in the nth-order form as

 ufx n +=)()(x (1)

where Tnxxx],,,[)1(−= …�x is the state vector of the system, which is assumed to be available
for measurement,)(xf is the nonlinear system dynamics which can be unknown, and u is
the input of the system. The tracking control problem of the system is to find a control law
so that the state trajectory x can track a reference command cx closely. The tracking error is
defined as

 xxe c −= . (2)

If the exact model of the controlled system is well known, there exists an ideal tracking
controller to achieve favorable control performance by possible canceling all the system

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

91

uncertainties (Slotine and Li, 1991). Assume that the parameters of the controlled system in
(1) are well known, there exits an ideal tracking controller

 EKx Tn
cxfu ++−=)(*)((3)

where Tneee],,,[)1(−= …�E and T
n kkk],,,[12�=K . Applying the ideal tracking controller (3) to

system (1) results in the following error dynamics

 0)1(
1

)(=+++ − ekeke n
nn � . (4)

If ik , ni ,,2,1 �= are chosen such that all roots of the polynomial n
nn kskssh +++Δ − �1

1)(

lie strictly in the open left half of the complex plane, then it implies that 0lim =
∞→

e
t

 for any

starting initial conditions. The error dynamics (4) can be rewritten in a vector form as

 AEE =� (5)

where

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

− 11

100
0
0010

kkk nn �
�

����
�

A . However, since the system dynamics)(xf may be

unknown or perturbed in practical applications, the ideal tracking controller (3) can not be
precisely obtained.

3. Design of RNNAC
For achieving a favorable tracking performance and a specified attenuation level
simultaneously, the developed recurrent-neural-network-based adaptive control (RNNAC)
system with structure adaptation algorithm shown in Fig. 1 is assumed to take the following
form

 rcncanc uuu += (6)

where ncu is the neural controller and rcu is the robust controller. The neural controller
using a self-structuring recurrent neural network (SRNN) to approximate the ideal tracking
controller is the principal controller; and the robust controller is designed to achieve a
specified 2L robust tracking performance. The detail will be described as follows:

3.1 Description of SRNN
Radial basis function (RBF) networks have gained much popularity due to their ability to
approximate complex nonlinear mappings directly from the input-output data with a
simple topological structure. RBF is different from neural network with sigmoidal activation
functions utilizing basis functions, which are locally responsive to input stimulus. Each
output of RBF has a radially symmetrical response around the center vector. Although the
RBF neural-network-based adaptive control performances are acceptable, the structure of
the RBF network is determined by trial-and-error, and RBF network is unable to represent a
dynamic mapping. To tackle this problem, a three-layer SRNN is shown in Fig. 2, which
comprises of an input layer, a hidden layer with a feedback unit, and an output layer.

 Recurrent Neural Networks

92

adaptive
laws

neural
controller

+

−
ncucx e

recurrent-neural-network-based
adaptive control

robust
controller

nth-order
nonlinear
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

adaptive
laws

neural
controller

+

−
ncucx e

recurrent-neural-network-based
adaptive control

robust
controller

nth-order
nonlinear
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

Fig. 1 Block diagram of self-constructing RNNAC system.

lx

…

G

G

G

G

y

1w

mΘ

G

Z-1

Σ

…
1x

1Θ

2Θ

3Θ

1r

2w

3w

mw

2r

3r

mr

1r

max

)(τ−e

maxΘ

cancel the k-th neuron

add a new neuron

ρ

growing process

pruning process

kI
thk II ≤

thΘ>Θmax

Yes

Yes

No

No

)(tm

11
11, sc

1212 , sc

13

13 , s
c

m
m s

c
1

1 ,

1
1
, l

l
s

c

2
2
, l

l
s

c 3
3, n

n
s

c

lm
lm sc ,

lx

…

G

G

G

G

y

1w

mΘ

G

Z-1

G

Z-1

G

Z-1

Σ

…
1x

1Θ

2Θ

3Θ

1r

2w

3w

mw

2r

3r

mr

1r

max

)(τ−e

maxΘ

cancel the k-th neuron

add a new neuron

ρ

growing process

pruning process

kI
thk II ≤

thΘ>Θmax

Yes

Yes

No

No

)(tm

11
11, sc 11
11, sc

1212 , sc
1212 , sc

13

13 , s
c

13

13 , s
c

m
m s

c
1

1 ,
m

m s
c

1
1 ,

1
1
, l

l
s

c
1

1
, l

l
s

c

2
2
, l

l
s

c
2

2
, l

l
s

c 3
3, n

n
s

c
3

3, n
n

s
c

lm
lm sc ,

lm
lm sc ,

Fig. 2 The structure of self-structuring recurrent neural network.

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

93

The recurrent feedback is embedded in the network by adding feedback connections in the
hidden layer. Then, the developed SRNN captures the dynamic response with external
feedback through delays. The output of SRNN with m neurons for an input vector

T
lxxx],...,,[21=x is given by

 ∑
=

−Θ=
m

k
kkkkk rwy

1

),,(scx (7)

where Tl
kkkk ccc]....[21=c and Tl

kkkk sss]....[21=s are the center and width vectors of RBF,
respectively; kr is the internal feedback gain of RBF; kw represents the connection weights
between the hidden layer; and),,(kkkk rscx −Θ represents the firing weight of the k-th
hidden neuron which is given as

 ∏
=

−Θ+−=−Θ
l

i

i
k

i
kkkpikkkk scrxr

1

22]/)(exp[),,(scx (8)

where i
kc and i

ks are the center and width of RBF in the k-th term of the i-th input variable

ix , respectively; and kpΘ is the output signal of the k-th hidden neuron in the previous time.
Define the vectors c , s and r collecting all parameters of the hidden layer as

 TT
m

TT]....[21 cccc = (9)

 TT
m

TT]....[21 ssss = (10)

 T
mrr][1=r . (11)

Then, the output of the SRNN can be represented in a vector form

),,,(),,,,(rscxΘwwrscx Ty = (12)

where T
mwww]...[21=w and T

m]...[21 ΘΘΘ=Θ .
If the number of the hidden neurons m is chosen too large, the computation load is heavy
so that they are not suitable for online practical applications. If the number of the hidden
neurons m is chosen too small, the learning performance may be not good enough to
achieve desired performance.
To solve this problem, this paper proposes an online structuring learning algorithm. The
first step of the structure learning is to determine whether or not to add a new hidden
neuron (Lin et al., 2001). In the growing process, the firing weight of a hidden neuron for
each incoming data ix can be represented as the degree to which the incoming data belong

to the existing hidden neurons. According to the degree measure, the criterion of generating
a new hidden neuron for new incoming data is described as follows. Find the maximum
degree maxΘ defined as

 ktmk
Θ=Θ

≤≤)(1max max (13)

 Recurrent Neural Networks

92

adaptive
laws

neural
controller

+

−
ncucx e

recurrent-neural-network-based
adaptive control

robust
controller

nth-order
nonlinear
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

adaptive
laws

neural
controller

+

−
ncucx e

recurrent-neural-network-based
adaptive control

robust
controller

nth-order
nonlinear
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

Fig. 1 Block diagram of self-constructing RNNAC system.

lx

…

G

G

G

G

y

1w

mΘ

G

Z-1

Σ

…

1x

1Θ

2Θ

3Θ

1r

2w

3w

mw

2r

3r

mr

1r

max

)(τ−e

maxΘ

cancel the k-th neuron

add a new neuron

ρ

growing process

pruning process

kI
thk II ≤

thΘ>Θmax

Yes

Yes

No

No

)(tm

11
11, sc

1212 , sc

13

13 , s
c

m
m s

c
1

1 ,

1
1
, l

l
s

c

2
2
, l

l
s

c 3
3, n

n
s

c

lm
lm sc ,

lx

…

G

G

G

G

y

1w

mΘ

G

Z-1

G

Z-1

G

Z-1

Σ

…

1x

1Θ

2Θ

3Θ

1r

2w

3w

mw

2r

3r

mr

1r

max

)(τ−e

maxΘ

cancel the k-th neuron

add a new neuron

ρ

growing process

pruning process

kI
thk II ≤

thΘ>Θmax

Yes

Yes

No

No

)(tm

11
11, sc 11
11, sc

1212 , sc
1212 , sc

13

13 , s
c

13

13 , s
c

m
m s

c
1

1 ,
m

m s
c

1
1 ,

1
1
, l

l
s

c
1

1
, l

l
s

c

2
2
, l

l
s

c
2

2
, l

l
s

c 3
3, n

n
s

c
3

3, n
n

s
c

lm
lm sc ,

lm
lm sc ,

Fig. 2 The structure of self-structuring recurrent neural network.

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

93

The recurrent feedback is embedded in the network by adding feedback connections in the
hidden layer. Then, the developed SRNN captures the dynamic response with external
feedback through delays. The output of SRNN with m neurons for an input vector

T
lxxx],...,,[21=x is given by

 ∑
=

−Θ=
m

k
kkkkk rwy

1

),,(scx (7)

where Tl
kkkk ccc]....[21=c and Tl

kkkk sss]....[21=s are the center and width vectors of RBF,
respectively; kr is the internal feedback gain of RBF; kw represents the connection weights
between the hidden layer; and),,(kkkk rscx −Θ represents the firing weight of the k-th
hidden neuron which is given as

 ∏
=

−Θ+−=−Θ
l

i

i
k

i
kkkpikkkk scrxr

1

22]/)(exp[),,(scx (8)

where i
kc and i

ks are the center and width of RBF in the k-th term of the i-th input variable

ix , respectively; and kpΘ is the output signal of the k-th hidden neuron in the previous time.
Define the vectors c , s and r collecting all parameters of the hidden layer as

 TT
m

TT]....[21 cccc = (9)

 TT
m

TT]....[21 ssss = (10)

 T
mrr][1=r . (11)

Then, the output of the SRNN can be represented in a vector form

),,,(),,,,(rscxΘwwrscx Ty = (12)

where T
mwww]...[21=w and T

m]...[21 ΘΘΘ=Θ .
If the number of the hidden neurons m is chosen too large, the computation load is heavy
so that they are not suitable for online practical applications. If the number of the hidden
neurons m is chosen too small, the learning performance may be not good enough to
achieve desired performance.
To solve this problem, this paper proposes an online structuring learning algorithm. The
first step of the structure learning is to determine whether or not to add a new hidden
neuron (Lin et al., 2001). In the growing process, the firing weight of a hidden neuron for
each incoming data ix can be represented as the degree to which the incoming data belong

to the existing hidden neurons. According to the degree measure, the criterion of generating
a new hidden neuron for new incoming data is described as follows. Find the maximum
degree maxΘ defined as

 ktmk
Θ=Θ

≤≤)(1max max (13)

 Recurrent Neural Networks

94

where)(tm is the number of the existing hidden neurons at the time t. It can be observed
that if the maximum degree maxΘ is small as the incoming data is far away the existing
hidden neurons. If thΘ≤Θmax is satisfied, where)1,0(∈Θ th is a pre-given threshold, then a
new hidden neuron is generated. The thΘ denotes the adding threshold value. If thΘ is
chosen to be large, the hidden neurons of SRNN can be easily created; on the other hand, if

thΘ is chosen to be small, the hidden neurons of SRNN can be difficulty created. For the
practical implement, as the unknown control system dynamics are too complex, the thΘ
should be chosen as a large value so that more hidden neurons can be created to increase the
learning ability. The number)(tm is incremented

 1)()1(+=+ tmtm . (14)
The parameters associated with the new hidden neuron are given by

 (1)
new
i m ic x+ = (15)

 (1)
new
i ms σ+ = (16)

 (1) (1) 0new new
m mw r+ += = (17)

where ix is the new incoming data and σ is the width of a radial basis function.
Then, to prevent the structure growing unboundedly, the structure learning considers
whether or not to prune the existing hidden neurons which are inappropriate. A significance
of the k-th hidden neuron is defined as (Hsu, 2007)

⎩
⎨
⎧

≥Θ
<Θ−

=+
δ
δτ

kk

kk

k iftI
iftI

tI
,)(
),exp()(

)1(,)(,...,2,,1 tmk = (18)

where the initial value of kI is 1; δ is the threshold value; and τ is the elimination speed
constant. The pruning algorithm is derived from the observation that if the significance gets
fading when the firing weight kΘ is smaller than the threshold value δ . If thk II ≤ is
satisfied, where thI a pre-given threshold, then the k-th hidden neuron is cancelled. thI
denotes the significance threshold value. If thI is chosen to be large, the neurons of SRNN
can be easily canceled. For practical implement, as the computation load is the important
issue, thI should be chosen as a large value so that more hidden neurons can be pruned.
Hence, the computation load can be decreased. In summary, the flow chart of the structure
learning algorithm is shown in Fig. 3. The major contribution of SRNN is that it can operate
directly without spending much time on pre-determining the structuring of neural network.

3.2 SRNN approximation
Let the number of optimal hidden neurons be *m and can divide into two parts. The first
part contains m hidden neurons which are the activated part, and the secondary part
contains mm −* hidden neurons which do not exist yet. Thus, by the universal
approximation theorem, an optimal SRNN approximator can be designed to approximate
y , such that (Park et al., 2005)

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

95

Start

Determine the pre-defined
parameters

Calculate the firing strength of
each hidden node

thΘ≤Θmax
Generate a new

hidden node

thk II ≤
YesEliminate the k-

th hidden node

Yes

No

End learning ?

Yes

No

End

No

Calculate the significance
factor of each hidden node

Start

Determine the pre-defined
parameters

Calculate the firing strength of
each hidden node

thΘ≤Θmax
Generate a new

hidden node

thk II ≤
YesEliminate the k-

th hidden node

Yes

No

End learning ?

Yes

No

End

No

Calculate the significance
factor of each hidden node

Fig. 3 The flow chart of the structure learning algorithm for SRNN.

 y Δ++=),,,(),,,(**********
uuuuu rscxΘwrscxΘw TT (19)

where *w , *Θ , *c , *s and *r are activated parts of optimal weights; *
uw , *

uΘ , *
uc , *

us and *
ur

are inactivated parts of optimal weights; and Δ is the approximation error. Since these
optimal parameters are unobtainable, a SRNN estimator ŷ is defined as

)ˆ,ˆ,ˆ,(ˆˆˆ rscxΘwTy = (20)

where ŵ , Θ̂ , ĉ , ŝ and r̂ are the estimated values of *w , *Θ , *c , *s and *r , respectively.
Define the estimated error y~ as

 Recurrent Neural Networks

94

where)(tm is the number of the existing hidden neurons at the time t. It can be observed
that if the maximum degree maxΘ is small as the incoming data is far away the existing
hidden neurons. If thΘ≤Θmax is satisfied, where)1,0(∈Θ th is a pre-given threshold, then a
new hidden neuron is generated. The thΘ denotes the adding threshold value. If thΘ is
chosen to be large, the hidden neurons of SRNN can be easily created; on the other hand, if

thΘ is chosen to be small, the hidden neurons of SRNN can be difficulty created. For the
practical implement, as the unknown control system dynamics are too complex, the thΘ
should be chosen as a large value so that more hidden neurons can be created to increase the
learning ability. The number)(tm is incremented

 1)()1(+=+ tmtm . (14)
The parameters associated with the new hidden neuron are given by

 (1)
new
i m ic x+ = (15)

 (1)
new
i ms σ+ = (16)

 (1) (1) 0new new
m mw r+ += = (17)

where ix is the new incoming data and σ is the width of a radial basis function.
Then, to prevent the structure growing unboundedly, the structure learning considers
whether or not to prune the existing hidden neurons which are inappropriate. A significance
of the k-th hidden neuron is defined as (Hsu, 2007)

⎩
⎨
⎧

≥Θ
<Θ−

=+
δ
δτ

kk

kk

k iftI
iftI

tI
,)(
),exp()(

)1(,)(,...,2,,1 tmk = (18)

where the initial value of kI is 1; δ is the threshold value; and τ is the elimination speed
constant. The pruning algorithm is derived from the observation that if the significance gets
fading when the firing weight kΘ is smaller than the threshold value δ . If thk II ≤ is
satisfied, where thI a pre-given threshold, then the k-th hidden neuron is cancelled. thI
denotes the significance threshold value. If thI is chosen to be large, the neurons of SRNN
can be easily canceled. For practical implement, as the computation load is the important
issue, thI should be chosen as a large value so that more hidden neurons can be pruned.
Hence, the computation load can be decreased. In summary, the flow chart of the structure
learning algorithm is shown in Fig. 3. The major contribution of SRNN is that it can operate
directly without spending much time on pre-determining the structuring of neural network.

3.2 SRNN approximation
Let the number of optimal hidden neurons be *m and can divide into two parts. The first
part contains m hidden neurons which are the activated part, and the secondary part
contains mm −* hidden neurons which do not exist yet. Thus, by the universal
approximation theorem, an optimal SRNN approximator can be designed to approximate
y , such that (Park et al., 2005)

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

95

Start

Determine the pre-defined
parameters

Calculate the firing strength of
each hidden node

thΘ≤Θmax
Generate a new

hidden node

thk II ≤
YesEliminate the k-

th hidden node

Yes

No

End learning ?

Yes

No

End

No

Calculate the significance
factor of each hidden node

Start

Determine the pre-defined
parameters

Calculate the firing strength of
each hidden node

thΘ≤Θmax
Generate a new

hidden node

thk II ≤
YesEliminate the k-

th hidden node

Yes

No

End learning ?

Yes

No

End

No

Calculate the significance
factor of each hidden node

Fig. 3 The flow chart of the structure learning algorithm for SRNN.

 y Δ++=),,,(),,,(**********
uuuuu rscxΘwrscxΘw TT (19)

where *w , *Θ , *c , *s and *r are activated parts of optimal weights; *
uw , *

uΘ , *
uc , *

us and *
ur

are inactivated parts of optimal weights; and Δ is the approximation error. Since these
optimal parameters are unobtainable, a SRNN estimator ŷ is defined as

)ˆ,ˆ,ˆ,(ˆˆˆ rscxΘwTy = (20)

where ŵ , Θ̂ , ĉ , ŝ and r̂ are the estimated values of *w , *Θ , *c , *s and *r , respectively.
Define the estimated error y~ as

 Recurrent Neural Networks

96

 yyy ˆ~ −= ΘwΘwΘw uu
ˆˆ**** TTT −Δ++= Δ++++= **~~~ˆˆ~

uu ΘwΘwΘwΘw TTTT (21)

where www ˆ~ * −= and ΘΘΘ ˆ~ * −= . In this study, a method is proposed to guarantee the
closed-loop stability and perfect tracking performance, and to tune the center and the width
of the radial basis function and the recurrent weight on line. For achieving this goal,
linearization technique is employed to transform the nonlinear functions into partially linear
form so that the expansion of Θ~ in a Taylor series to obtain (Lin and Chen, 2006)

 hrTsTcTΘ rsc +++= ~~~~ TTT (22)

where ccc ˆ~ * −= , sss ˆ~ * −= ; rrr ˆ~ * −= ; ccc cc
T ˆ

1 | =⎥
⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ; sss ss
T ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ;

rrr rr
T ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ; and h is a vector of higher-order terms. Substituting (22) into (21), it

is obtained that

y~ Δ+++++++= **~~)~~~(ˆˆ~
uursc ΘwΘwhrTsTcTwΘw TTTTTTT

 ε++++= wTrwTswTcΘw rsc
ˆ~ˆ~ˆ~ˆ~ TTTT (23)

where wTccTw cc
ˆ~~ˆ TTT = , wTssTw ss

ˆ~~ˆ TTT = and wTrrTw rr
ˆ~~ˆ TTT = are used since they are scales;

and the uncertain term Δ+++≡ **~~ˆ
uu ΘwΘwhw TTTε .

3.3 RNNAC design
By substituting (6) into (1) and using (3) and (23), the tracking error dynamic equation can
be obtained as follows

)(*
rcnc uuu −−+= bAEE�

)ˆ~ˆ~ˆ~ˆ~(rc
TTTT u−+++++= εwTrwTswTcΘwbAE rsc (24)

where T]100[…=b . In case of the existence of ε , consider a specified 2L tracking
performance (Lee et al., 2005; Lin and Lin 2002; Wang et al., 2002)

 ++++≤∫
321

0

)0(~)0(~)0(~)0(~)0(~)0(~
)0()0(

ηηη
ssccwwPEEQEE

TTT
T

T
T dt ∫+

TT

dt

0

22

4

)0(~)0(~
ερ

η
rr (25)

where 1η , 2η , 3η and 4η are the positive constants,],0[∞∈T and 2L∈ε . The κ is a design
gain, ρ is a prescribed attenuation level, and the positive definite matrices P and Q
satisfy the following Riccati-like equation

 0PbPbQPAPA =−+++ TT

κρ
)21(

2
 (26)

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

97

with κρ ≥22 . The design objective is to tune the parameters of SRNN to specify an
adequate control law so that the worst effect of approximation error ε on tracking error
vector E is guaranteed to be less than or equal to prescribed attenuation level ρ . If the
system starts with initial conditions 0)0(=E , 0)0(~ =w , 0)0(~ =c , 0)0(~ =s and 0)0(~ =r , then
the 2L tracking performance in (25) can be rewritten as

 ρ
εε

≤

∫
∫

∈
T

T
T

TL dt

dt

0

2

0

],0[

sup

2

QEE
. (27)

where the 2L -gain from ε to the tracking error E must be equal to or less than ρ . The
following theorem can be stated and proved.
Theorem 1: Consider an nth-order nonlinear system expressed by (1). The control system is
designed as (6), in which the adaptation laws of the neural controller are designed as

 ΘPbEww ˆ~ˆ
1

Tη=−= (28)

 wPbTEcc c
ˆ~ˆ

2
Tη=−= (29)

 wPbTEss s
ˆ~ˆ

3
Tη=−= (30)

 wPbTErr r
ˆ~ˆ

4
Tη=−= (31)

and the robust controller is designed as

 PEbT
rcu

κ
1

= (32)

then the stability of the system can be guaranteed.
Proof:
Consider a Lyapunov function in the following form

4321 2

~~

2

~~

2

~~

2

~~

2
1)~~~~(

ηηηη
rrssccwwPEEr,s,c,wE,

TTTT
TV ++++= . (33)

Differentiating (33) with respect to time and using (24) and (28) ~ (31), it can be obtained
that

4321

~~~~~~~~

2
1

2
1)~,~,~,~,(

ηηηη
rrssccwwEPEPEErscwE

TTTT
TTV +++++=  

    EPAPAE )(
2
1

+= TT )ˆ~ˆ~ˆ~ˆ~( rc
TTTTT u−+++++ εwTrwTswTcΘwPbE rsc  

                         
4321

~~~~~~~~

ηηηη
rrssccww TTTT

++++

 Recurrent Neural Networks

96

 yyy ˆ~ −= ΘwΘwΘw uu
ˆˆ**** TTT −Δ++= Δ++++= **~~~ˆˆ~

uu ΘwΘwΘwΘw TTTT (21)

where www ˆ~ * −= and ΘΘΘ ˆ~ * −= . In this study, a method is proposed to guarantee the
closed-loop stability and perfect tracking performance, and to tune the center and the width
of the radial basis function and the recurrent weight on line. For achieving this goal,
linearization technique is employed to transform the nonlinear functions into partially linear
form so that the expansion of Θ~ in a Taylor series to obtain (Lin and Chen, 2006)

 hrTsTcTΘ rsc +++= ~~~~ TTT (22)

where ccc ˆ~ * −= , sss ˆ~ * −= ; rrr ˆ~ * −= ; ccc cc
T ˆ

1 | =⎥
⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ; sss ss
T ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ;

rrr rr
T ˆ

1 |
=⎥

⎦

⎤
⎢
⎣

⎡
∂
Θ∂

∂
Θ∂

= m� ; and h is a vector of higher-order terms. Substituting (22) into (21), it

is obtained that

y~ Δ+++++++= **~~)~~~(ˆˆ~
uursc ΘwΘwhrTsTcTwΘw TTTTTTT

 ε++++= wTrwTswTcΘw rsc
ˆ~ˆ~ˆ~ˆ~ TTTT (23)

where wTccTw cc
ˆ~~ˆ TTT = , wTssTw ss

ˆ~~ˆ TTT = and wTrrTw rr
ˆ~~ˆ TTT = are used since they are scales;

and the uncertain term Δ+++≡ **~~ˆ
uu ΘwΘwhw TTTε .

3.3 RNNAC design
By substituting (6) into (1) and using (3) and (23), the tracking error dynamic equation can
be obtained as follows

)(*
rcnc uuu −−+= bAEE�

)ˆ~ˆ~ˆ~ˆ~(rc
TTTT u−+++++= εwTrwTswTcΘwbAE rsc (24)

where T]100[…=b . In case of the existence of ε , consider a specified 2L tracking
performance (Lee et al., 2005; Lin and Lin 2002; Wang et al., 2002)

 ++++≤∫
321

0

)0(~)0(~)0(~)0(~)0(~)0(~
)0()0(

ηηη
ssccwwPEEQEE

TTT
T

T
T dt ∫+

TT

dt

0

22

4

)0(~)0(~
ερ

η
rr (25)

where 1η , 2η , 3η and 4η are the positive constants,],0[∞∈T and 2L∈ε . The κ is a design
gain, ρ is a prescribed attenuation level, and the positive definite matrices P and Q
satisfy the following Riccati-like equation

 0PbPbQPAPA =−+++ TT

κρ
)21(

2
 (26)

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

97

with κρ ≥22 . The design objective is to tune the parameters of SRNN to specify an
adequate control law so that the worst effect of approximation error ε on tracking error
vector E is guaranteed to be less than or equal to prescribed attenuation level ρ . If the
system starts with initial conditions 0)0(=E , 0)0(~ =w , 0)0(~ =c , 0)0(~ =s and 0)0(~ =r , then
the 2L tracking performance in (25) can be rewritten as

 ρ
εε

≤

∫
∫

∈
T

T
T

TL dt

dt

0

2

0

],0[

sup

2

QEE
. (27)

where the 2L -gain from ε to the tracking error E must be equal to or less than ρ . The
following theorem can be stated and proved.
Theorem 1: Consider an nth-order nonlinear system expressed by (1). The control system is
designed as (6), in which the adaptation laws of the neural controller are designed as

 ΘPbEww ˆ~ˆ
1

Tη=−= (28)

 wPbTEcc c
ˆ~ˆ

2
Tη=−= (29)

 wPbTEss s
ˆ~ˆ

3
Tη=−= (30)

 wPbTErr r
ˆ~ˆ

4
Tη=−= (31)

and the robust controller is designed as

 PEbT
rcu

κ
1

= (32)

then the stability of the system can be guaranteed.
Proof:
Consider a Lyapunov function in the following form

4321 2

~~

2

~~

2

~~

2

~~

2
1)~~~~(

ηηηη
rrssccwwPEEr,s,c,wE,

TTTT
TV ++++= . (33)

Differentiating (33) with respect to time and using (24) and (28) ~ (31), it can be obtained
that

4321

~~~~~~~~

2
1

2
1)~,~,~,~,(

ηηηη
rrssccwwEPEPEErscwE

TTTT
TTV +++++=  

    EPAPAE )(
2
1

+= TT )ˆ~ˆ~ˆ~ˆ~( rc
TTTTT u−+++++ εwTrwTswTcΘwPbE rsc  

                         
4321

~~~~~~~~

ηηηη
rrssccww TTTT

++++

 Recurrent Neural Networks

98

)
~

ˆ(~)
~

 ˆ(~)(
2
1

21 ηη
cwPbTEcwΘPbEwEPAPAE c +++++= TTTTTT

)()
~

ˆ(~)
~

ˆ(~
43

T
rc

TTTT u−+++++ ε
ηη

PbErwPbTErswPbTEs rs

)()(
2
1

rc
TTT u−++= εPbEEPAPAE . (34)

Using (26) and (32), equation (34) can be rewritten as

εε PbEPEbEPPbbPAPAErsmwE TTTTT

κ
V

2
1

2
1)2(

2
1)~,~,~,~,(T ++−+=

 εε PbEPEbEPPbbQE TTTTT

ρ 2
1

2
1)1(

2
1

2
++−−=

 22

2
1)1()1(

2
1

2
1 ερρεε +−−−−= PEbPEbQEE TTTT

ρ
ρ

ρ

 22

2
1

2
1

ερ+−≤ QEET (35)

where 0)1()1(≥−− ρεε PEbPEb TTT

ρ
ρ

ρ
 and εε PbEPEb TTT = are used. Integrating the above

equation from 0=t to Tt = , yields

 ∫∫ +−≤−
TT

T dtdtVTV
0

22

0

2
1

2
1)0()(ερQEE (36)

Since 0)(≥TV , the above inequality implies the following inequality

 ∫∫ +≤
T

T
T

T dtVdt

0

2

0

2
1)0(

2
1

εερQEE (37)

Using (34), this inequality is equivalent to inequality (25). Since)0(V is finite if the

approximation error 2L∈ε , that is ∞<∫
T

d
0

2 τε , it implies that 0lim =
∞→

E
t

.

In the following, the design algorithm of RNNAC with structure adaptation algorithm is
summarized as follows:
Step 1: Initialize the pre-defined parameters of RNNAC.
Step 2: The tracking error is given in (2).
Step 3: The neural controller is given as (20), where the parameter are estimated by (28)-(31),
respectively.
Step 4: The robust controller is given as (32).
Step 5: The control law is given as (6).

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

99

Step 6: Determine whether or not to add a new hidden neuron by thΘ≤Θmax condition, and
determine whether or not to cancel a existing node by a significance index kI .
Step 7: Return to Step 2.

4. Simulation results
Consider a second-order chaotic system such as the Duffing’s equation describing a special
nonlinear circuit or a pendulum moving in a viscous medium (Chen and Dong, 1993; Jiang,
2002)

 ufx +=)(x (38)

where =)(xf)cos(3
21 tqxpxpxp ω+−−− is the system dynamics, t is the time variable, ω is

the frequency, u is the control effort and p , 1p , 2p and q are real constants. The chaotic
dynamic system can be observed in many nonlinear circuits and mechanical systems.

q=1.65

(a)
x

x

q=1.65

(a)
x

xx

q=5.35

(b)
x

x

q=5.35

(b)
x

xx

Fig. 4 Phase plane of uncontrolled chaotic system.

Recently, control of the chaotic dynamic system has become a significant research topic in
the physics, mathematics and engineering communities. Chaotic dynamic system is a
nonlinear deterministic system that displays complex, noisy-like and unpredictable
behavior. Depending on the choice of these constants, it is known that the solutions of (38)
may exhibit periodic, almost periodic and chaotic behavior. For observing the chaotic
unpredictable behavior, the open-loop system behavior with 0=u was simulated with

 Recurrent Neural Networks

98

)
~

ˆ(~)
~

 ˆ(~)(
2
1

21 ηη
cwPbTEcwΘPbEwEPAPAE c +++++= TTTTTT

)()
~

ˆ(~)
~

ˆ(~
43

T
rc

TTTT u−+++++ ε
ηη

PbErwPbTErswPbTEs rs

)()(
2
1

rc
TTT u−++= εPbEEPAPAE . (34)

Using (26) and (32), equation (34) can be rewritten as

εε PbEPEbEPPbbPAPAErsmwE TTTTT

κ
V

2
1

2
1)2(

2
1)~,~,~,~,(T ++−+=

 εε PbEPEbEPPbbQE TTTTT

ρ 2
1

2
1)1(

2
1

2
++−−=

 22

2
1)1()1(

2
1

2
1 ερρεε +−−−−= PEbPEbQEE TTTT

ρ
ρ

ρ

 22

2
1

2
1

ερ+−≤ QEET (35)

where 0)1()1(≥−− ρεε PEbPEb TTT

ρ
ρ

ρ
 and εε PbEPEb TTT = are used. Integrating the above

equation from 0=t to Tt = , yields

 ∫∫ +−≤−
TT

T dtdtVTV
0

22

0

2
1

2
1)0()(ερQEE (36)

Since 0)(≥TV , the above inequality implies the following inequality

 ∫∫ +≤
T

T
T

T dtVdt

0

2

0

2
1)0(

2
1

εερQEE (37)

Using (34), this inequality is equivalent to inequality (25). Since)0(V is finite if the

approximation error 2L∈ε , that is ∞<∫
T

d
0

2 τε , it implies that 0lim =
∞→

E
t

.

In the following, the design algorithm of RNNAC with structure adaptation algorithm is
summarized as follows:
Step 1: Initialize the pre-defined parameters of RNNAC.
Step 2: The tracking error is given in (2).
Step 3: The neural controller is given as (20), where the parameter are estimated by (28)-(31),
respectively.
Step 4: The robust controller is given as (32).
Step 5: The control law is given as (6).

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

99

Step 6: Determine whether or not to add a new hidden neuron by thΘ≤Θmax condition, and
determine whether or not to cancel a existing node by a significance index kI .
Step 7: Return to Step 2.

4. Simulation results
Consider a second-order chaotic system such as the Duffing’s equation describing a special
nonlinear circuit or a pendulum moving in a viscous medium (Chen and Dong, 1993; Jiang,
2002)

 ufx +=)(x (38)

where =)(xf)cos(3
21 tqxpxpxp ω+−−− is the system dynamics, t is the time variable, ω is

the frequency, u is the control effort and p , 1p , 2p and q are real constants. The chaotic
dynamic system can be observed in many nonlinear circuits and mechanical systems.

q=1.65

(a)
x

x

q=1.65

(a)
x

xx

q=5.35

(b)
x

x

q=5.35

(b)
x

xx

Fig. 4 Phase plane of uncontrolled chaotic system.

Recently, control of the chaotic dynamic system has become a significant research topic in
the physics, mathematics and engineering communities. Chaotic dynamic system is a
nonlinear deterministic system that displays complex, noisy-like and unpredictable
behavior. Depending on the choice of these constants, it is known that the solutions of (38)
may exhibit periodic, almost periodic and chaotic behavior. For observing the chaotic
unpredictable behavior, the open-loop system behavior with 0=u was simulated with

 Recurrent Neural Networks

100

4.0=p , 1.11 −=p , 0.12 =p and 8.1=ω . The phase plane plots from an initial condition
point (0, 0) are shown in Figs. 4(a) and 4(b) for 65.1=q (chaotic) and 35.5=q (period 1),
respectively (Chen and Dong, 1993). It is shown that the uncontrolled chaotic dynamic
system has different chaotic trajectories with different q values. The interest in the chaotic
equation is the problem of how to design a controller to drive a chaotic trajectory to track a
reference command closely.
The proposed RNNAC with structure adaptation algorithm is applied to control a nonlinear
dynamic system. It should be emphasized that the development of the proposed control
method does not need to know the system dynamics of the control system. A SRNN
approximator is used to online estimate an ideal tracking controller with the online
structuring and parameter learning algorithms. The structure learning possesses the ability
of both adding and pruning hidden neurons, and the parameter learning adjusts the
interconnection weights of neural network to achieve favorable approximation performance.
The parameters of RNNAC are selected as 11 =k , 22 =k , 501 =η , 10432 === ηηη , 0.2=σ ,

5.0=Θ th , 01.0=τ , 2.0=δ , and 1.0=thI . The choices of these values are through some trials
to achieve satisfactory control performance considering the requirement of stability and
possible operating conditions. Properly choosing the values of 1k and 2k , the desired
system dynamics such as rise time, overshoot, and settling time can be easily designed by
the second-order system shown in (4). The parameters 1η , 2η , 3η and 4η are the leaning
rates of the interconnection weights. If the leaning rates are chosen to be small, then the
parameters convergence of RNNAC will be easily achieved; however, this will result in slow
learning speed. On the other hand, if the leaning rates are chosen to be large, then the
learning speed will be fast; however, the RNNAC system may become more unstable for the
parameter convergence. For a choice of IQ = , solve the Riccati-like equation (26) with

κρ =22 , then

 ⎥
⎦

⎤
⎢
⎣

⎡
=

5.05.0
5.05.1

P . (39)

The simulation results of the RNNAC system with 0.1=κ for 65.1=q and 35.5=q are
shown in Figs. 5 and 6, respectively. The tracking responses of state x are shown in Figs.
5(a) and 6(a); the tracking responses of state x are shown in Figs. 5(b) and 6(b); the
associated control efforts are shown in Figs. 5(c) and 6(c); and the numbers of hidden
neurons are shown in Figs. 5(d) and 6(d), respectively. Simulation results show that the
robust tracking performance of the proposed RNNAC system has been achieved. To
attenuate an arbitrarily desired level via 2L tracking design technique as small as possible.
The simulation results of the proposed RNNAC system with 1.0=κ for 65.1=q and

35.5=q are shown in Figs. 7 and 8, respectively. The tracking responses of state x are
shown in Figs. 7(a) and 8(a); the tracking responses of state x are shown in Figs. 7(b) and
8(b); the associated control efforts are shown in Figs. 7(c) and 8(c); and the numbers of
hidden neurons are shown in Figs. 7(d) and 8(d), respectively. From these simulation
results, it can be seen that robust tracking performance can be also achieved without any
knowledge of system dynamic functions; moreover, better system performance can be
achieved as soon as the robust gain κ is decreased.

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

101

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 5 Simulation results for 65.1=q with 0.1=κ .

 Recurrent Neural Networks

100

4.0=p , 1.11 −=p , 0.12 =p and 8.1=ω . The phase plane plots from an initial condition
point (0, 0) are shown in Figs. 4(a) and 4(b) for 65.1=q (chaotic) and 35.5=q (period 1),
respectively (Chen and Dong, 1993). It is shown that the uncontrolled chaotic dynamic
system has different chaotic trajectories with different q values. The interest in the chaotic
equation is the problem of how to design a controller to drive a chaotic trajectory to track a
reference command closely.
The proposed RNNAC with structure adaptation algorithm is applied to control a nonlinear
dynamic system. It should be emphasized that the development of the proposed control
method does not need to know the system dynamics of the control system. A SRNN
approximator is used to online estimate an ideal tracking controller with the online
structuring and parameter learning algorithms. The structure learning possesses the ability
of both adding and pruning hidden neurons, and the parameter learning adjusts the
interconnection weights of neural network to achieve favorable approximation performance.
The parameters of RNNAC are selected as 11 =k , 22 =k , 501 =η , 10432 === ηηη , 0.2=σ ,

5.0=Θ th , 01.0=τ , 2.0=δ , and 1.0=thI . The choices of these values are through some trials
to achieve satisfactory control performance considering the requirement of stability and
possible operating conditions. Properly choosing the values of 1k and 2k , the desired
system dynamics such as rise time, overshoot, and settling time can be easily designed by
the second-order system shown in (4). The parameters 1η , 2η , 3η and 4η are the leaning
rates of the interconnection weights. If the leaning rates are chosen to be small, then the
parameters convergence of RNNAC will be easily achieved; however, this will result in slow
learning speed. On the other hand, if the leaning rates are chosen to be large, then the
learning speed will be fast; however, the RNNAC system may become more unstable for the
parameter convergence. For a choice of IQ = , solve the Riccati-like equation (26) with

κρ =22 , then

 ⎥
⎦

⎤
⎢
⎣

⎡
=

5.05.0
5.05.1

P . (39)

The simulation results of the RNNAC system with 0.1=κ for 65.1=q and 35.5=q are
shown in Figs. 5 and 6, respectively. The tracking responses of state x are shown in Figs.
5(a) and 6(a); the tracking responses of state x are shown in Figs. 5(b) and 6(b); the
associated control efforts are shown in Figs. 5(c) and 6(c); and the numbers of hidden
neurons are shown in Figs. 5(d) and 6(d), respectively. Simulation results show that the
robust tracking performance of the proposed RNNAC system has been achieved. To
attenuate an arbitrarily desired level via 2L tracking design technique as small as possible.
The simulation results of the proposed RNNAC system with 1.0=κ for 65.1=q and

35.5=q are shown in Figs. 7 and 8, respectively. The tracking responses of state x are
shown in Figs. 7(a) and 8(a); the tracking responses of state x are shown in Figs. 7(b) and
8(b); the associated control efforts are shown in Figs. 7(c) and 8(c); and the numbers of
hidden neurons are shown in Figs. 7(d) and 8(d), respectively. From these simulation
results, it can be seen that robust tracking performance can be also achieved without any
knowledge of system dynamic functions; moreover, better system performance can be
achieved as soon as the robust gain κ is decreased.

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

101

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 5 Simulation results for 65.1=q with 0.1=κ .

 Recurrent Neural Networks

102

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x cx

x

Time (sec)
(b)

st
at

e,
xx cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 6 Simulation results for 35.5=q with 0.1=κ .

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

103

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 7. Simulation results for 65.1=q with 1.0=κ .

 Recurrent Neural Networks

102

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x cx

x

Time (sec)
(b)

st
at

e,
xx cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 6 Simulation results for 35.5=q with 0.1=κ .

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

103

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 7. Simulation results for 65.1=q with 1.0=κ .

 Recurrent Neural Networks

104

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 8 Simulation results for 35.5=q with 1.0=κ .

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

105

5. Conclusions
This paper develops a recurrent-neural-network-based adaptive control (RNNAC) system
with structure adaptation algorithm, which is composed of a neural controller and a robust
controller. In the neural controller design, a self-structuring recurrent neural network
(SRNN) is utilized to mimic an ideal tracking controller. In the SRNN approximator, a
dynamic generating and pruning mechanism of the neural stricture is developed to cope
with the tradeoff between the approximation accuracy and computation load. The robust
controller is designed to attenuate the effects of the approximation error on the tracking
performance using 2L tracking technique. Finally, the developed RNNAC system is used to
control a nonlinear chaotic dynamic system to demonstrate its effectiveness. Simulation
results indicate that a small attenuation level can be achieved if the magnitude of weighting
factor κ is chosen small.

6. Acknowledgment
The authors appreciate the partial financial support from the National Science Council of
Republic of China under grant NSC 95-2622-E-155-004-CC3.

7. References
Chen G, Dong X (1993) On feedback control of chaotic continuous-time systems. IEEE Trans

Circuits Syst I 40 (9): 591-601
Duarte-Mermoud MA, Suarez AM, Bassi DF (2005) Multivariable predictive control of a

pressurized tank using neural networks. Neural Comput Appl 15 (1): 18-25
Gao Y, Er MJ (2003) Online adaptive fuzzy neural identification and control of a class of MIMO

nonlinear systems. IEEE Trans Fuzzy Syst 11 (4): 462-477
Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning

algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst
Man Cybern B Cybern 34 (6): 2284-2292

Hsu CF, Lin CM, and Lee TT (2006) Wavelet adaptive backstepping control for a class of
nonlinear systems. IEEE Trans Neural Netw 17 (5): 1175-1183

Hsu CF (2007) Self-organizing adaptive fuzzy neural control for a class of nonlinear systems.
IEEE Trans Neural Netw 18 (4): 1232-1241

Jiang ZP (2002) Advanced feedback control of the chaotic Duffing equation. IEEE Trans
Circuits Syst I 49 (2): 244-249

Lee CH, Teng CC (2000) Indentification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Trans Fuzzy Syst 8 (4): 349-366

Lee TS, Lin CH, Lin FJ (2005) An adaptive ∞H controller design for permanent magnet
synchronous motor drives. Control Eng Pract 13 (4): 425-439

Leung CS, Tsoi AC (2005) Combined learning and pruning for recurrent radial basis
function networks based on recursive least square algorithms. Neural Comput
Appl 15 (1): 62-78

Lin CL, Lin TY (2002) Approach to adaptive neural net-based ∞H control design. IEE Proc
Control Theory Appl 149 (4): 331-342

Lin CM, Hsu CF (2003) Neural network hybrid control for antilock braking systems. IEEE
Trans Neural Netw 14 (2): 351-359

 Recurrent Neural Networks

104

Time (sec)
(a)

st
at

e,
x

cx

x

Time (sec)
(a)

st
at

e,
xx

cx

x

Time (sec)
(b)

st
at

e,
x

cx

x

Time (sec)
(b)

st
at

e,
xx

cx

x

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(c)

co
nt

ro
l e

ff
or

t,
u

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Time (sec)
(d)

nu
m

be
r o

f h
id

de
n

ne
ur

on
s,

m

Fig. 8 Simulation results for 35.5=q with 1.0=κ .

Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control

105

5. Conclusions
This paper develops a recurrent-neural-network-based adaptive control (RNNAC) system
with structure adaptation algorithm, which is composed of a neural controller and a robust
controller. In the neural controller design, a self-structuring recurrent neural network
(SRNN) is utilized to mimic an ideal tracking controller. In the SRNN approximator, a
dynamic generating and pruning mechanism of the neural stricture is developed to cope
with the tradeoff between the approximation accuracy and computation load. The robust
controller is designed to attenuate the effects of the approximation error on the tracking
performance using 2L tracking technique. Finally, the developed RNNAC system is used to
control a nonlinear chaotic dynamic system to demonstrate its effectiveness. Simulation
results indicate that a small attenuation level can be achieved if the magnitude of weighting
factor κ is chosen small.

6. Acknowledgment
The authors appreciate the partial financial support from the National Science Council of
Republic of China under grant NSC 95-2622-E-155-004-CC3.

7. References
Chen G, Dong X (1993) On feedback control of chaotic continuous-time systems. IEEE Trans

Circuits Syst I 40 (9): 591-601
Duarte-Mermoud MA, Suarez AM, Bassi DF (2005) Multivariable predictive control of a

pressurized tank using neural networks. Neural Comput Appl 15 (1): 18-25
Gao Y, Er MJ (2003) Online adaptive fuzzy neural identification and control of a class of MIMO

nonlinear systems. IEEE Trans Fuzzy Syst 11 (4): 462-477
Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning

algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst
Man Cybern B Cybern 34 (6): 2284-2292

Hsu CF, Lin CM, and Lee TT (2006) Wavelet adaptive backstepping control for a class of
nonlinear systems. IEEE Trans Neural Netw 17 (5): 1175-1183

Hsu CF (2007) Self-organizing adaptive fuzzy neural control for a class of nonlinear systems.
IEEE Trans Neural Netw 18 (4): 1232-1241

Jiang ZP (2002) Advanced feedback control of the chaotic Duffing equation. IEEE Trans
Circuits Syst I 49 (2): 244-249

Lee CH, Teng CC (2000) Indentification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Trans Fuzzy Syst 8 (4): 349-366

Lee TS, Lin CH, Lin FJ (2005) An adaptive ∞H controller design for permanent magnet
synchronous motor drives. Control Eng Pract 13 (4): 425-439

Leung CS, Tsoi AC (2005) Combined learning and pruning for recurrent radial basis
function networks based on recursive least square algorithms. Neural Comput
Appl 15 (1): 62-78

Lin CL, Lin TY (2002) Approach to adaptive neural net-based ∞H control design. IEE Proc
Control Theory Appl 149 (4): 331-342

Lin CM, Hsu CF (2003) Neural network hybrid control for antilock braking systems. IEEE
Trans Neural Netw 14 (2): 351-359

 Recurrent Neural Networks

106

Lin CM, Hsu CF (2004) Supervisory recurrent fuzzy neural network control of wing rock for
slender delta wings. IEEE Trans Fuzzy Syst 12 (5): 733-742

Lin CM, Chen, CH (2006) Adaptive RCMAC sliding mode control for uncertain nonlinear
systems. Neural Comput Appl 15 (3): 253-267

Lin CT, Cheng WC, Liang SF (2005) An on-line ICA-mixture-model-based self-constructing fuzzy
neural network. IEEE Trans Circuits Syst I 52 (1): 207-221

Lin FJ, Hwang WJ, Wai RJ (1999) A supervisory fuzzy neural network control system for
tracking periodic inputs. IEEE Trans Fuzzy Syst 7 (1): 41-52

Lin FJ, Lin CH, Shen PH (2001) Self-constructing fuzzy neural network speed controller for
permanent-magnet synchronous motor drive. IEEE Trans Fuzzy Syst 9 (5): 751-759

Park JH, Huh SH, Kim SH, Seo SJ, Park GT (2005) Direct adaptive controller for nonaffine
nonlinear systems using self-structuring neural networks. IEEE Trans Neural Netw
16 (2): 414-422

Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and
adaptive CMAC neural network control for linear piezoelectric ceramic motor.
IEEE Trans Ind Electron 51 (1): 35-48

Tian L; Wang J, Mao Z (2004) Constrained motion control of flexible robot manipulators based on
recurrent neural networks. IEEE Trans Syst Man Cybern B Cybern 34 (3): 1541-1552

Slotine J-JE, Li WP (1991) Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ
Wai RJ, Lin CM, Peng YF (2004) Adaptive hybrid control for linear piezoelectric ceramic

motor drive using diagonal recurrent CMAC network. IEEE Trans Neural Netw 15
(6): 1491-1506

Wang WY, Chan ML, Hsu CCJ, Lee TT (2002) ∞H tracking-based sliding mode control for
uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Trans
Syst Man Cybern B Cybern 32 (4): 483-492

6

Recurrent Fuzzy Neural Networks and
Their Performance Analysis

R.A. Aliev1, B. Fazlollahi2, B.G. Guirimov3 and R.R. Aliev4
1,3Azerbaijan,

 2USA,
 4North Cyprus

1. Introduction
There are many papers that consider different structure and training algorithms of FNN.
Within their structural range, the networks may differ by type of signals (singleton, interval,
general fuzzy, triangle shaped or other), topology (layered, fully-connected, with or without
feed-back connections, feed-back connections in all or some of the layers etc), type of
neurons (transfer function, same type in all layers or different depending on layer).
Note also that FNN is further complicated when we deal with applications of temporal
character such as dynamic control, forecasting, identification, recognition of temporal
sequences (e.g. voice recognition). It is obvious that in this case classical FNN with feed-
forward structure, operable mainly for memory-less problems, would be ineffective. In this
respect there is a strong demand for recurrent fuzzy neural networks (RFNN) with dynamic
mapping capability, temporal information storage, dynamic fuzzy inference, and as a result,
capable of solving temporal problems [7,24,27].
Paper [48] discusses delay feedback neuro-fuzzy networks and their usability to effectively
tackle dynamic systems. This is a simplified version of recurrent network with feedback
connections at only one layer of the network. To train unknown parameters of RFNN the
author of [1] uses a supervised learning algorithm that requires differentiability of the
membership functions that is not always possible.
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main
characteristic of this system is the ability to deal with temporal problems including dynamic
fuzzy inference. The system with on-line learning feature is capable also of building the
structure and (crisp) parameters of the network. The learning algorithm is based on the use
of the ordered derivative (partial derivative) produced with the use of an ordered set of
equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of
various simulations on benchmark temporal problems, including time-sequence prediction,
adaptive noise cancellation, dynamic plant identification, and non-linear plant control.
In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using
dynamic fuzzy rules is presented. The paper distinguishes as containing good
methodological support encompassing important aspects of neuro-fuzzy systems class. The
back-propagation algorithm is used as the learning algorithm minimizing the cost function
to achieve necessary connection weights and biases. As in [25], several examples and

 Recurrent Neural Networks

106

Lin CM, Hsu CF (2004) Supervisory recurrent fuzzy neural network control of wing rock for
slender delta wings. IEEE Trans Fuzzy Syst 12 (5): 733-742

Lin CM, Chen, CH (2006) Adaptive RCMAC sliding mode control for uncertain nonlinear
systems. Neural Comput Appl 15 (3): 253-267

Lin CT, Cheng WC, Liang SF (2005) An on-line ICA-mixture-model-based self-constructing fuzzy
neural network. IEEE Trans Circuits Syst I 52 (1): 207-221

Lin FJ, Hwang WJ, Wai RJ (1999) A supervisory fuzzy neural network control system for
tracking periodic inputs. IEEE Trans Fuzzy Syst 7 (1): 41-52

Lin FJ, Lin CH, Shen PH (2001) Self-constructing fuzzy neural network speed controller for
permanent-magnet synchronous motor drive. IEEE Trans Fuzzy Syst 9 (5): 751-759

Park JH, Huh SH, Kim SH, Seo SJ, Park GT (2005) Direct adaptive controller for nonaffine
nonlinear systems using self-structuring neural networks. IEEE Trans Neural Netw
16 (2): 414-422

Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and
adaptive CMAC neural network control for linear piezoelectric ceramic motor.
IEEE Trans Ind Electron 51 (1): 35-48

Tian L; Wang J, Mao Z (2004) Constrained motion control of flexible robot manipulators based on
recurrent neural networks. IEEE Trans Syst Man Cybern B Cybern 34 (3): 1541-1552

Slotine J-JE, Li WP (1991) Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ
Wai RJ, Lin CM, Peng YF (2004) Adaptive hybrid control for linear piezoelectric ceramic

motor drive using diagonal recurrent CMAC network. IEEE Trans Neural Netw 15
(6): 1491-1506

Wang WY, Chan ML, Hsu CCJ, Lee TT (2002) ∞H tracking-based sliding mode control for
uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Trans
Syst Man Cybern B Cybern 32 (4): 483-492

6

Recurrent Fuzzy Neural Networks and
Their Performance Analysis

R.A. Aliev1, B. Fazlollahi2, B.G. Guirimov3 and R.R. Aliev4
1,3Azerbaijan,

 2USA,
 4North Cyprus

1. Introduction
There are many papers that consider different structure and training algorithms of FNN.
Within their structural range, the networks may differ by type of signals (singleton, interval,
general fuzzy, triangle shaped or other), topology (layered, fully-connected, with or without
feed-back connections, feed-back connections in all or some of the layers etc), type of
neurons (transfer function, same type in all layers or different depending on layer).
Note also that FNN is further complicated when we deal with applications of temporal
character such as dynamic control, forecasting, identification, recognition of temporal
sequences (e.g. voice recognition). It is obvious that in this case classical FNN with feed-
forward structure, operable mainly for memory-less problems, would be ineffective. In this
respect there is a strong demand for recurrent fuzzy neural networks (RFNN) with dynamic
mapping capability, temporal information storage, dynamic fuzzy inference, and as a result,
capable of solving temporal problems [7,24,27].
Paper [48] discusses delay feedback neuro-fuzzy networks and their usability to effectively
tackle dynamic systems. This is a simplified version of recurrent network with feedback
connections at only one layer of the network. To train unknown parameters of RFNN the
author of [1] uses a supervised learning algorithm that requires differentiability of the
membership functions that is not always possible.
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main
characteristic of this system is the ability to deal with temporal problems including dynamic
fuzzy inference. The system with on-line learning feature is capable also of building the
structure and (crisp) parameters of the network. The learning algorithm is based on the use
of the ordered derivative (partial derivative) produced with the use of an ordered set of
equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of
various simulations on benchmark temporal problems, including time-sequence prediction,
adaptive noise cancellation, dynamic plant identification, and non-linear plant control.
In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using
dynamic fuzzy rules is presented. The paper distinguishes as containing good
methodological support encompassing important aspects of neuro-fuzzy systems class. The
back-propagation algorithm is used as the learning algorithm minimizing the cost function
to achieve necessary connection weights and biases. As in [25], several examples and

 Recurrent Neural Networks

108

performance comparisons with the existing works are presented including time sequence
prediction, identification of non-linear dynamic system, identification of a chaotic system,
and adaptive control of a non-linear system.
It should be noted that in [27] feedback links in the second layer only are added to the fuzzy
feed-forward neural network. This rather simplified version of neuro-fuzzy network has
crisp feed-forward connection weights and non-adjustable recurrent connection weights in
the second layer. These simplifications undoubtedly lead to some decrease in the efficiency
of the proposed neuro-fuzzy network.
In [35] a dynamic neuro-fuzzy system consisting of recurrent TSK rules is investigated. The
suggested network is trained by dynamic fuzzy neural constrained optimization method
based on the concept of constrained optimization. The proposed dynamic neuro-fuzzy
system is tested on two temporal examples and the noise cancellation problem.
In [31] a hybrid supervisory control system using a recurrent neuro-fuzzy network, with the
network output feeding back to the network input through time-delay units, is proposed.
An on-line training methodology which is based on Lyapunov stability theorem and the
gradient descent method is proposed. Some simulated and experimental results are
provided to demonstrate the efficiency of the proposed neuro-fuzzy system.
Recurrent neuro-fuzzy systems for implementation of long-range prediction fuzzy model is
investigated in [54]. In this recurrent neuro-fuzzy model the network output is fed back to
the network input through one or more time delay units. Levenberg-Marquardt algorithm
with regularization is used for adjusting crisp weights and biases of the feed-forward and
feed-back connections of the recurrent neuro-fuzzy network. The suggested neuro-fuzzy
network is applied to modeling and control of a neutralization process.
In [50] a direct adaptive iterative learning control system based recurrent neuro-fuzzy
network is presented. The analysis of stability and learning is studied. A computer
simulation for an inverted pendulum system and Chua’s chaotic circuit is demonstrated.
A sliding mode recurrent neuro-fuzzy network based control system is proposed in [30] to
control the mover of a permanent-magnet linear synchronous motor. The learning algorithm
used is the same as in [31].
Interesting design methods and applications of FRNN are discussed in [18,26,29,34,55]. In
paper [34] a discrete mathematical model of RFNN is constructed and a learning algorithm
adopting a recursive least square approach is used to identify the unknown parameters in
the model. In [18] the authors propose an efficient algorithm for determination of structure
of model and identification of its parameters with the aim of producing improved predictive
performance for NARMAX (nonlinear autoregressive moving average with exogenous
inputs) time series models. A fuzzified TSK (Takagi-Sugeno-Kang) type recurrent fuzzy
network is developed in paper [26] for one-dimensional and two-dimensional fuzzy
temporal sequence prediction. Paper [29] considers a design method of recurrent fuzzy
neural network based adaptive hybrid control for multi-input multi-output linearized
dynamic systems. The proposed control system is applied to aircraft flight control system.
Paper [55] deals with adaptive nonlinear noise control systems using recurrent fuzzy neural
networks, the feedback connections of which are used to create dynamic fuzzy rules trained
using dynamic back-propagation learning algorithm. The learning of fuzzy weights of
FRNN is not considered in these works as all the papers assume network weights to be crisp
numbers.
In [20] a self-organizing adaptive fuzzy neural network for nonlinear systems is proposed.
The identifier is used to estimate the controlled system’s dynamic with the learning of fuzzy

Recurrent Fuzzy Neural Networks and Their Performance Analysis

109

neural network. The parameter learning algorithms are derived based on Lyapunov
function candidate.
A very important role in designing fuzzy neural networks takes its learning method and the
problem of how to train fuzzy neural networks (FNN) has great scientific and practical
interest and is becoming challenging and important research area.
The training methods for neural networks can be divided into two large categories:
gradient-based algorithms and evolutionary algorithms. The overview of the works on
training methods for fuzzy feed-forward neural networks is given in [10]. Work [32] needs
special note as presenting some methodological support from the viewpoint of fuzzy neural
networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient
(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy
numbers. The authors use GA for determination of optimal learning rate at each iteration
step of fuzzy CG algorithm. Some real simulations realizing non-dynamic fuzzy inference
rules and fuzzy functions are demonstrated.
The evolutionary algorithms based approach to training of FNN involves application of
genetic algorithms and other population-based natural evolution inspired algorithms to
minimize error function and determine the fuzzy connection weights and biases [10,28]. In
contrast to BP and other supervised learning algorithms, evolutionary algorithms do not use
the derivative information, and hence, they are most effective in case where the derivative is
very difficult to obtain or even unavailable. Moreover, the calculation complexity of BP
algorithms is high due to the need for computing complex Hessian or Jacobian matrices.
In [47] nonlinear neural network predictive control strategy based on chaotic particle swarm
optimization is presented. It is shown that since the back-propagation algorithm is easily
trapped in local minima and its convergence performance greatly depends on its learning
rate parameter and initial conditions, the weights and biases of the neural network are
optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is
considered in this work.
TSK-type recurrent neuro-fuzzy system trained by GA is proposed in [24]. In this network
internal variables, derived from fuzzy firing strengths are fed back to both network input
and output layers. To train the proposed TSK-type recurrent neuro-fuzzy network, a GA
based method is developed. The recurrent neuro-fuzzy network with genetic learning is
applied to dynamic system control problem. The research in this field is at its infancy and
many fundamental problems such as choosing the most efficient error function, coding
technique, and genetic strategies remain to be solved [33].
Unfortunately, little progress has been made in the development of recurrent fuzzy neural
networks processing directly fuzzy information and using fuzzy weights and biases as
adjustable parameters. For the first time some attempts were made in [5,6,8-10,22] to
develop an efficient RFNN with fuzzy inputs, fuzzy weights expressed as fuzzy numbers,
and fuzzy outputs. In this study we consider the structure, operation, and DE-based training
algorithm for multi-layer recurrent fuzzy neural network processing fuzzy signals and
demonstrate its efficiency on a number of benchmark and application problems.
The rest of this paper is organized as follows. In section 2 we cover prerequisite material
(such as fuzzy function, Hamming distance, fuzzy neural networks, differential evolution
optimization, etc.) to be used in the study. Section 3 formulates the statement of problem of
creating RFNN with efficient learning algorithm. Section 4 illustrates the structure and

 Recurrent Neural Networks

108

performance comparisons with the existing works are presented including time sequence
prediction, identification of non-linear dynamic system, identification of a chaotic system,
and adaptive control of a non-linear system.
It should be noted that in [27] feedback links in the second layer only are added to the fuzzy
feed-forward neural network. This rather simplified version of neuro-fuzzy network has
crisp feed-forward connection weights and non-adjustable recurrent connection weights in
the second layer. These simplifications undoubtedly lead to some decrease in the efficiency
of the proposed neuro-fuzzy network.
In [35] a dynamic neuro-fuzzy system consisting of recurrent TSK rules is investigated. The
suggested network is trained by dynamic fuzzy neural constrained optimization method
based on the concept of constrained optimization. The proposed dynamic neuro-fuzzy
system is tested on two temporal examples and the noise cancellation problem.
In [31] a hybrid supervisory control system using a recurrent neuro-fuzzy network, with the
network output feeding back to the network input through time-delay units, is proposed.
An on-line training methodology which is based on Lyapunov stability theorem and the
gradient descent method is proposed. Some simulated and experimental results are
provided to demonstrate the efficiency of the proposed neuro-fuzzy system.
Recurrent neuro-fuzzy systems for implementation of long-range prediction fuzzy model is
investigated in [54]. In this recurrent neuro-fuzzy model the network output is fed back to
the network input through one or more time delay units. Levenberg-Marquardt algorithm
with regularization is used for adjusting crisp weights and biases of the feed-forward and
feed-back connections of the recurrent neuro-fuzzy network. The suggested neuro-fuzzy
network is applied to modeling and control of a neutralization process.
In [50] a direct adaptive iterative learning control system based recurrent neuro-fuzzy
network is presented. The analysis of stability and learning is studied. A computer
simulation for an inverted pendulum system and Chua’s chaotic circuit is demonstrated.
A sliding mode recurrent neuro-fuzzy network based control system is proposed in [30] to
control the mover of a permanent-magnet linear synchronous motor. The learning algorithm
used is the same as in [31].
Interesting design methods and applications of FRNN are discussed in [18,26,29,34,55]. In
paper [34] a discrete mathematical model of RFNN is constructed and a learning algorithm
adopting a recursive least square approach is used to identify the unknown parameters in
the model. In [18] the authors propose an efficient algorithm for determination of structure
of model and identification of its parameters with the aim of producing improved predictive
performance for NARMAX (nonlinear autoregressive moving average with exogenous
inputs) time series models. A fuzzified TSK (Takagi-Sugeno-Kang) type recurrent fuzzy
network is developed in paper [26] for one-dimensional and two-dimensional fuzzy
temporal sequence prediction. Paper [29] considers a design method of recurrent fuzzy
neural network based adaptive hybrid control for multi-input multi-output linearized
dynamic systems. The proposed control system is applied to aircraft flight control system.
Paper [55] deals with adaptive nonlinear noise control systems using recurrent fuzzy neural
networks, the feedback connections of which are used to create dynamic fuzzy rules trained
using dynamic back-propagation learning algorithm. The learning of fuzzy weights of
FRNN is not considered in these works as all the papers assume network weights to be crisp
numbers.
In [20] a self-organizing adaptive fuzzy neural network for nonlinear systems is proposed.
The identifier is used to estimate the controlled system’s dynamic with the learning of fuzzy

Recurrent Fuzzy Neural Networks and Their Performance Analysis

109

neural network. The parameter learning algorithms are derived based on Lyapunov
function candidate.
A very important role in designing fuzzy neural networks takes its learning method and the
problem of how to train fuzzy neural networks (FNN) has great scientific and practical
interest and is becoming challenging and important research area.
The training methods for neural networks can be divided into two large categories:
gradient-based algorithms and evolutionary algorithms. The overview of the works on
training methods for fuzzy feed-forward neural networks is given in [10]. Work [32] needs
special note as presenting some methodological support from the viewpoint of fuzzy neural
networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient
(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy
numbers. The authors use GA for determination of optimal learning rate at each iteration
step of fuzzy CG algorithm. Some real simulations realizing non-dynamic fuzzy inference
rules and fuzzy functions are demonstrated.
The evolutionary algorithms based approach to training of FNN involves application of
genetic algorithms and other population-based natural evolution inspired algorithms to
minimize error function and determine the fuzzy connection weights and biases [10,28]. In
contrast to BP and other supervised learning algorithms, evolutionary algorithms do not use
the derivative information, and hence, they are most effective in case where the derivative is
very difficult to obtain or even unavailable. Moreover, the calculation complexity of BP
algorithms is high due to the need for computing complex Hessian or Jacobian matrices.
In [47] nonlinear neural network predictive control strategy based on chaotic particle swarm
optimization is presented. It is shown that since the back-propagation algorithm is easily
trapped in local minima and its convergence performance greatly depends on its learning
rate parameter and initial conditions, the weights and biases of the neural network are
optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is
considered in this work.
TSK-type recurrent neuro-fuzzy system trained by GA is proposed in [24]. In this network
internal variables, derived from fuzzy firing strengths are fed back to both network input
and output layers. To train the proposed TSK-type recurrent neuro-fuzzy network, a GA
based method is developed. The recurrent neuro-fuzzy network with genetic learning is
applied to dynamic system control problem. The research in this field is at its infancy and
many fundamental problems such as choosing the most efficient error function, coding
technique, and genetic strategies remain to be solved [33].
Unfortunately, little progress has been made in the development of recurrent fuzzy neural
networks processing directly fuzzy information and using fuzzy weights and biases as
adjustable parameters. For the first time some attempts were made in [5,6,8-10,22] to
develop an efficient RFNN with fuzzy inputs, fuzzy weights expressed as fuzzy numbers,
and fuzzy outputs. In this study we consider the structure, operation, and DE-based training
algorithm for multi-layer recurrent fuzzy neural network processing fuzzy signals and
demonstrate its efficiency on a number of benchmark and application problems.
The rest of this paper is organized as follows. In section 2 we cover prerequisite material
(such as fuzzy function, Hamming distance, fuzzy neural networks, differential evolution
optimization, etc.) to be used in the study. Section 3 formulates the statement of problem of
creating RFNN with efficient learning algorithm. Section 4 illustrates the structure and

 Recurrent Neural Networks

110

computational procedure of the investigated recurrent fuzzy neural network. In section 5
the recurrent fuzzy neural network learning algorithm using DEO is described. Simulations
and experimental results are discussed in section 6. Section 7 gives the conclusion of this
paper.

2. Preliminaries
In this section, we briefly review some prerequisite material which will be of help in the
development of the concepts of evolutionary computing based learning of RFNN. While the
reader may find some of the definitions in the literature, we augment them with some
interpretation which could be useful in the context of our considerations.

2.1 Fuzzy function
Briefly speaking, by a fuzzy function we mean a function, whose values are fuzzy numbers.
Let f be a fuzzy function,

() f xμ denotes the membership function of the fuzzy number

()f x , and for 0 1α< ≤ , ()f xα
+

 will denote sup
(){ () :∈ f xz dom μ

() () }≥f x zμ α and ()f x−
α

will denote inf (){ () :∈ f xz dom μ () () }≥f x zμ α . Functions ()f x−
α and ()f x+

α are level

functions of f.
A fuzzy subset A of Rn is defined in terms of its membership function () : [0,1]n

A x Rμ →

For each (0,1]α ∈ the α -level set [()]A x αμ of a fuzzy set A is the subset of points x∈ Rn

with membership values ()A xμ of at least α , that is [()] = { : () }n
A Ax x R xαμ μ α∈ ≥ .

2.2 Distance
Formally, the distance d(x,y) between x and y in Rn is considered to be a two-argument
function satisfying the conditions: d(x,y) ≥ 0, for every x and y; d(x,x)=0, for every x;

(,) (,) (,)d x z d x y d y z≥ + for every pattern x, y and z. In the case of continuous variables
we have a long list of distance functions [7, 40].
Let us consider the space En of all fuzzy subsets of Rn which satisfy the conditions of
normality, convexity and are upper semicontinuous with compact supports 0[()]A x αμ = . For

fuzzy sets A and B in En, in general, the Minkowski distance defined as follows

(,) () () , 1p
p A Bd A B x x dx pμ μ
Χ

= − ≥∫ , (1)

where X - is a universe of discourse. This distance satisfies the above mentioned conditions.
In particular, when 1p = we get Hamming distance.

2.3 Fuzzy neural networks and neuro-fuzzy systems
Fuzzy neural network (FNN) approach has become a powerful tool for solving real-world
problems in the area of forecasting, identification, control, image recognition and others that
are associated with high level of uncertainty [2,7,10,11,14,23,24,23]. This is related with the

Recurrent Fuzzy Neural Networks and Their Performance Analysis

111

fact that the FNN paradigm combines the capability of fuzzy reasoning in handling
uncertain information and the capability of pure neural networks in learning from
experiments [48]. An advantage of FNN is that it allows automation of design of fuzzy rules
and combined learning of numerical data as well as expert knowledge expressed as fuzzy
IF-THEN rules [7]. FNN may have smaller network size and be faster in convergence speed
as compared with ordinary NN.
There are two different approaches in academic literature. First approach is neuro-fuzzy
systems whose main task is to process numerical relationships [27]. Many papers, including
papers [31,37,48] combine features of neural and fuzzy approaches into Neuro-Fuzzy
systems. Second approach is fuzzy neural systems with the objective to process both
numerical (measurement based) information and perception based information. The FNN of
this (second) class are oriented for real-world problems that are inherently uncertain and
imprecise [10,19,32]. It is necessary to point out that neuro-fuzzy systems cannot replace
fuzzy neural systems because unlike the former which perform mapping from non-fuzzy
input signals to non-fuzzy outputs, the latter process linguistic information directly.
When we deal with linguistic information, i.e. work at a higher data abstraction level, we
should employ fuzzy neural networks, not neuro-fuzzy networks, to solve the considered
problem approximately [21].

2.4 Differential evolution optimization method
Recently many heuristic algorithms have been proposed for global optimization of
nonlinear, non-convex, and non-differential functions [3,12,41,51]. These methods are more
flexible than classical as they do not require differentiability, continuity, or other properties
to hold for optimizing functions. Some of such methods are genetic algorithm, evolutionary
strategy, particle swarm optimization, and differential evolution (DE) optimization. In this
study we consider the use of the DE algorithm.
As a stochastic method, DE algorithm uses initial population randomly generated by
uniform distribution, differential mutation, probability crossover, and selection operators
[42]. The population with ps individuals are maintained with each generation. A new vector
is generated by mutation which in this case is randomly selecting from the population 3
individuals: 321 rrr ≠≠ and adding a weighted difference vector between two individuals

to a third individual (population member).
The mutated vector is then undergone crossover operation with another vector generating
new offspring vector.
The selection process is done as follows. If the resulting vector yields a lower objective
function value than a predetermined population member, the newly generated vector will
replace the vector with which it was compared in the following generation.
Extracting distance and direction information from the population to generate random
deviations results in an adaptive scheme with excellent convergence properties. DE has been
successfully applied to solve a wide range of problems such as image classification,
clustering, optimization etc.
Figure 1 shows the process of generation new trial solution vector from randomly selected
population members. Here we assume that the solution vectors are of dimension 2 (i.e. 2
optimization parameters).

 Recurrent Neural Networks

110

computational procedure of the investigated recurrent fuzzy neural network. In section 5
the recurrent fuzzy neural network learning algorithm using DEO is described. Simulations
and experimental results are discussed in section 6. Section 7 gives the conclusion of this
paper.

2. Preliminaries
In this section, we briefly review some prerequisite material which will be of help in the
development of the concepts of evolutionary computing based learning of RFNN. While the
reader may find some of the definitions in the literature, we augment them with some
interpretation which could be useful in the context of our considerations.

2.1 Fuzzy function
Briefly speaking, by a fuzzy function we mean a function, whose values are fuzzy numbers.
Let f be a fuzzy function,

() f xμ denotes the membership function of the fuzzy number

()f x , and for 0 1α< ≤ , ()f xα
+

 will denote sup
(){ () :∈ f xz dom μ

() () }≥f x zμ α and ()f x−
α

will denote inf (){ () :∈ f xz dom μ () () }≥f x zμ α . Functions ()f x−
α and ()f x+

α are level

functions of f.
A fuzzy subset A of Rn is defined in terms of its membership function () : [0,1]n

A x Rμ →

For each (0,1]α ∈ the α -level set [()]A x αμ of a fuzzy set A is the subset of points x∈ Rn

with membership values ()A xμ of at least α , that is [()] = { : () }n
A Ax x R xαμ μ α∈ ≥ .

2.2 Distance
Formally, the distance d(x,y) between x and y in Rn is considered to be a two-argument
function satisfying the conditions: d(x,y) ≥ 0, for every x and y; d(x,x)=0, for every x;

(,) (,) (,)d x z d x y d y z≥ + for every pattern x, y and z. In the case of continuous variables
we have a long list of distance functions [7, 40].
Let us consider the space En of all fuzzy subsets of Rn which satisfy the conditions of
normality, convexity and are upper semicontinuous with compact supports 0[()]A x αμ = . For

fuzzy sets A and B in En, in general, the Minkowski distance defined as follows

(,) () () , 1p
p A Bd A B x x dx pμ μ
Χ

= − ≥∫ , (1)

where X - is a universe of discourse. This distance satisfies the above mentioned conditions.
In particular, when 1p = we get Hamming distance.

2.3 Fuzzy neural networks and neuro-fuzzy systems
Fuzzy neural network (FNN) approach has become a powerful tool for solving real-world
problems in the area of forecasting, identification, control, image recognition and others that
are associated with high level of uncertainty [2,7,10,11,14,23,24,23]. This is related with the

Recurrent Fuzzy Neural Networks and Their Performance Analysis

111

fact that the FNN paradigm combines the capability of fuzzy reasoning in handling
uncertain information and the capability of pure neural networks in learning from
experiments [48]. An advantage of FNN is that it allows automation of design of fuzzy rules
and combined learning of numerical data as well as expert knowledge expressed as fuzzy
IF-THEN rules [7]. FNN may have smaller network size and be faster in convergence speed
as compared with ordinary NN.
There are two different approaches in academic literature. First approach is neuro-fuzzy
systems whose main task is to process numerical relationships [27]. Many papers, including
papers [31,37,48] combine features of neural and fuzzy approaches into Neuro-Fuzzy
systems. Second approach is fuzzy neural systems with the objective to process both
numerical (measurement based) information and perception based information. The FNN of
this (second) class are oriented for real-world problems that are inherently uncertain and
imprecise [10,19,32]. It is necessary to point out that neuro-fuzzy systems cannot replace
fuzzy neural systems because unlike the former which perform mapping from non-fuzzy
input signals to non-fuzzy outputs, the latter process linguistic information directly.
When we deal with linguistic information, i.e. work at a higher data abstraction level, we
should employ fuzzy neural networks, not neuro-fuzzy networks, to solve the considered
problem approximately [21].

2.4 Differential evolution optimization method
Recently many heuristic algorithms have been proposed for global optimization of
nonlinear, non-convex, and non-differential functions [3,12,41,51]. These methods are more
flexible than classical as they do not require differentiability, continuity, or other properties
to hold for optimizing functions. Some of such methods are genetic algorithm, evolutionary
strategy, particle swarm optimization, and differential evolution (DE) optimization. In this
study we consider the use of the DE algorithm.
As a stochastic method, DE algorithm uses initial population randomly generated by
uniform distribution, differential mutation, probability crossover, and selection operators
[42]. The population with ps individuals are maintained with each generation. A new vector
is generated by mutation which in this case is randomly selecting from the population 3
individuals: 321 rrr ≠≠ and adding a weighted difference vector between two individuals

to a third individual (population member).
The mutated vector is then undergone crossover operation with another vector generating
new offspring vector.
The selection process is done as follows. If the resulting vector yields a lower objective
function value than a predetermined population member, the newly generated vector will
replace the vector with which it was compared in the following generation.
Extracting distance and direction information from the population to generate random
deviations results in an adaptive scheme with excellent convergence properties. DE has been
successfully applied to solve a wide range of problems such as image classification,
clustering, optimization etc.
Figure 1 shows the process of generation new trial solution vector from randomly selected
population members. Here we assume that the solution vectors are of dimension 2 (i.e. 2
optimization parameters).

 Recurrent Neural Networks

112

Figure 1

3. Statement of problem
Assume that an unknown nonlinear system is expressed as follows [4]:

())(~),...,1(~),(~),...,1(~~)(~ mtutuntytygty −−−−= , (2)

where)(~ ty and)(~ tu are the output and input of the system, respectively, represented as
fuzzy valued function, (.)~g is an unknown nonlinear fuzzy mapping to be estimated by
RFNN, n and m are order of the system. It is required to design RFNN such that its output

)(~ tyN determined as

()θ~,~,~),1(~),1(~~)(~ VWtutygty NN −−= , (3)

will be as close as possible to)(~ ty (1), where θ~,~,~ VW collectively define the structure and
set of parameters of RFNN: forward connection weights, backward (recurrent) connection
weights, and biases, respectively.
As measure of closeness between)(~ ty and)(~ tyN we need to define a suitable error
function serving as a distance (metric). For continuous variables there is a long list of
distance functions [4,40]. In this paper we will use the well-known and commonly used
Hamming distance. Therefore the problem of learning of FRNN is an optimization problem
with the purpose of adjusting fuzzy parameters }~{~

lijwW = , }~{~
lijvV = , and }~{~

liθθ = to

minimize the error function

X1

X2

Xr2

Xr1

Xr3
Xr4

Xnew

Xr1-Xr2

Recurrent Fuzzy Neural Networks and Their Performance Analysis

113

∑∑ −= Npipi yyE ~~~ ,
(4)

where piy~ is the desired value and Npiy~ is the actual value of RFNN output layer’s neuron i

when applied training patter p, E~ is hamming distance.
Training algorithm is critical to RFNN as it will affect RFNN approximation capability. Due
to the type of error function, we cannot use here the BP algorithm. Another problem with
the BP is that it is easily trapped in local minimima and its convergence performance greatly
depends on its learning rate parameter and the initial conditions. As optimization strategy
for training RFNN we will use an evolutionary computing strategy, namely, DEO method.
During the training, the weights of feed-forward and feed-back connections and biases of
RFNN are optimized by the differential evolution algorithm which would lead to the
minimum of error function (4).
It is worth to note that using clustering based differential evolution algorithm for training of
RFNN may give a higher performance [51]. Such an approach will be used on considering a
petrol production forecasting example.

4. Recurrent fuzzy neural network structure and computation
The general structure of a recurrent fuzzy neural network is presented in Figure 2. The box
elements represent memory cells that store values of activation of neurons at previous time
step, which is fed back to the input at the next time step.

Figure 2. The structure of RFNN

Layer 0 (input) Layer 1 (hidden) Layer L (output)

)(0
1 tx

)(0 tx j

)(1
1 ty

)1(1
1 −ty

)(1 tyi

)1(1 −tyi

)(1 txl

)(txl
i

)(1 ty L

)(ty L
N L

)1(1 −ty L

)(1
1

tyN

 Recurrent Neural Networks

112

Figure 1

3. Statement of problem
Assume that an unknown nonlinear system is expressed as follows [4]:

())(~),...,1(~),(~),...,1(~~)(~ mtutuntytygty −−−−= , (2)

where)(~ ty and)(~ tu are the output and input of the system, respectively, represented as
fuzzy valued function, (.)~g is an unknown nonlinear fuzzy mapping to be estimated by
RFNN, n and m are order of the system. It is required to design RFNN such that its output

)(~ tyN determined as

()θ~,~,~),1(~),1(~~)(~ VWtutygty NN −−= , (3)

will be as close as possible to)(~ ty (1), where θ~,~,~ VW collectively define the structure and
set of parameters of RFNN: forward connection weights, backward (recurrent) connection
weights, and biases, respectively.
As measure of closeness between)(~ ty and)(~ tyN we need to define a suitable error
function serving as a distance (metric). For continuous variables there is a long list of
distance functions [4,40]. In this paper we will use the well-known and commonly used
Hamming distance. Therefore the problem of learning of FRNN is an optimization problem
with the purpose of adjusting fuzzy parameters }~{~

lijwW = , }~{~
lijvV = , and }~{~

liθθ = to

minimize the error function

X1

X2

Xr2

Xr1

Xr3
Xr4

Xnew

Xr1-Xr2

Recurrent Fuzzy Neural Networks and Their Performance Analysis

113

∑∑ −= Npipi yyE ~~~ ,
(4)

where piy~ is the desired value and Npiy~ is the actual value of RFNN output layer’s neuron i

when applied training patter p, E~ is hamming distance.
Training algorithm is critical to RFNN as it will affect RFNN approximation capability. Due
to the type of error function, we cannot use here the BP algorithm. Another problem with
the BP is that it is easily trapped in local minimima and its convergence performance greatly
depends on its learning rate parameter and the initial conditions. As optimization strategy
for training RFNN we will use an evolutionary computing strategy, namely, DEO method.
During the training, the weights of feed-forward and feed-back connections and biases of
RFNN are optimized by the differential evolution algorithm which would lead to the
minimum of error function (4).
It is worth to note that using clustering based differential evolution algorithm for training of
RFNN may give a higher performance [51]. Such an approach will be used on considering a
petrol production forecasting example.

4. Recurrent fuzzy neural network structure and computation
The general structure of a recurrent fuzzy neural network is presented in Figure 2. The box
elements represent memory cells that store values of activation of neurons at previous time
step, which is fed back to the input at the next time step.

Figure 2. The structure of RFNN

Layer 0 (input) Layer 1 (hidden) Layer L (output)

)(0
1 tx

)(0 tx j

)(1
1 ty

)1(1
1 −ty

)(1 tyi

)1(1 −tyi

)(1 txl

)(txl
i

)(1 ty L

)(ty L
N L

)1(1 −ty L

)(1
1

tyN

 Recurrent Neural Networks

114

s

F(s)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3. The activation function F(s)

In general, the network may have virtually any number of layers. We number the layers
successively from 0 (the first or input layer) to L (last or output layer). The neurons in the
input layer (layer 0) only distribute the input signals without modifying their values.

)(~)(~ 00 txty ii = (5)

The neurons in the remaining layers (layer 1 to layer L-1) are dynamic and compute their
output signals as follows:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑∑

j

l
ij

l
j

j

l
ij

l
j

l
i

l
i vtywtxFty ~)1(~~)(~~)(~ θ , (6)

where)(~ tx l
j is j-th fuzzy input to the neuron i at layer l at the time step t,)(~ ty l

i is the

computed output signal of the neuron at the time step t, ijw~ is the fuzzy weight of the

connection to neuron i from neuron j located at the previous layer, iθ
~

 is the fuzzy bias of

neuron i, and)1(~ −ty l
j is the activation of neuron j at the time step (t-1), ijv~ is the recurrent

connection weight to neuron i from neuron j at the same layer.
The neurons at the last layer (layer L) are linear and their outputs are calculated as:

 ∑∑ −++=
j

L
ij

L
j

j

L
ij

L
j

L
i

L
i vtywtxty)1()()(θ (7)

The activation F for a total input to the neuron s (figure 3) is calculated as:

||1

)(
s

ssF
+

= (8)

Recurrent Fuzzy Neural Networks and Their Performance Analysis

115

So, the output of neuron i at layer l (1,1 −= Ll) is calculated as follows:

∑∑

∑∑

−+++

−++
=

j

l
ij

l
j

j

l
ij

l
j

l
i

j

l
ij

l
j

j

l
ij

l
j

l
i

l
i

vtywtx

vtywtx
ty

~)1(~~)(~~1

~)1(~~)(~~

)(
θ

θ
 (9)

The total number of connections (including forward, recurrent, and biases) is equal to
22)1()1(OHOHHI NNNNNN +++++ ,

where IN is number of inputs (here we use 1 input for simplicity), HN is the number of

neurons in the second (hidden) layer of RFNN and ON is the number of outputs. Thus, for
a network with 1 input, 3 hidden neurons, and 1 output, there will be 20 connections overall.
Every forward connection weight, recurrent connection weight, and bias value are
represented as a triangular fuzzy number [16,17,37-39]:),,(~ l

Rij
l
Aij

l
Lij

l
ij wwwTw = ,

),,(~ l
Rij

l
Aij

l
Lij

l
ij vvvTv = ,),,(~ l

Ri
l
Ai

l
Li

l
i T θθθθ = , respectively. Note that the forward

connection is from neuron j at layer (l-1) to neuron i at layer l, while the recurrent
connections are between the outputs and inputs of the neurons at the same layer. Triangle
fuzzy numbers are described as T(a,b,c), where [a,c] is the fuzzy number support and b is the
value with membership equal to 1 (the average value).
Inputs to RFNN ix can accept system outputs at previous stages,

)(),...,2(),1(21 rtyxtyxtyx NrNN −=−=−= , etc., as well as exogenous signals

),...2(),1(),(321 −=−== +++ tuxtuxtux rrr .

For example, for constructing a RFNN based time series predictor (NNF̂)

),,...,,,...,,(ˆˆ 11111 +−−+−−+ = mtttntttNNt uuuyyyFy , where ty is the value of time series data

at time interval t, tu is the value of an additional (second) factor at time interval t, the above
presented structure could be modified as given in Figure 4.
In case the original learning patterns are crisp, we need to sample data into fuzzy terms, i.e.
to fuzzify the learning patterns. The fuzzifiers can be created independently for specific
problems. A different approach that is used in this paper is to convert the numeric data into
information granules by fuzzy clustering [40]. In this case the receptive fields forming the
input layer of RFNN are constructed using clustering. Fuzzy clusters fully reflect the
character of the data.

5. Differential evolution optimization based learning of RFNN
The considered RFNN requires the global parameter optimization method suitable for
nonlinear, non-convex, and non-differentiable mapping functions. Ideally, we want to find
the global minimum of (4) and this requires more careful selection of the optimization
engine. Despite the fact that the gradient descent based methods are predominant, they are
not global optimizers. Most suitable are population based optimization techniques including

 Recurrent Neural Networks

114

s

F(s)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3. The activation function F(s)

In general, the network may have virtually any number of layers. We number the layers
successively from 0 (the first or input layer) to L (last or output layer). The neurons in the
input layer (layer 0) only distribute the input signals without modifying their values.

)(~)(~ 00 txty ii = (5)

The neurons in the remaining layers (layer 1 to layer L-1) are dynamic and compute their
output signals as follows:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑∑

j

l
ij

l
j

j

l
ij

l
j

l
i

l
i vtywtxFty ~)1(~~)(~~)(~ θ , (6)

where)(~ tx l
j is j-th fuzzy input to the neuron i at layer l at the time step t,)(~ ty l

i is the

computed output signal of the neuron at the time step t, ijw~ is the fuzzy weight of the

connection to neuron i from neuron j located at the previous layer, iθ
~

 is the fuzzy bias of

neuron i, and)1(~ −ty l
j is the activation of neuron j at the time step (t-1), ijv~ is the recurrent

connection weight to neuron i from neuron j at the same layer.
The neurons at the last layer (layer L) are linear and their outputs are calculated as:

 ∑∑ −++=
j

L
ij

L
j

j

L
ij

L
j

L
i

L
i vtywtxty)1()()(θ (7)

The activation F for a total input to the neuron s (figure 3) is calculated as:

||1

)(
s

ssF
+

= (8)

Recurrent Fuzzy Neural Networks and Their Performance Analysis

115

So, the output of neuron i at layer l (1,1 −= Ll) is calculated as follows:

∑∑

∑∑

−+++

−++
=

j

l
ij

l
j

j

l
ij

l
j

l
i

j

l
ij

l
j

j

l
ij

l
j

l
i

l
i

vtywtx

vtywtx
ty

~)1(~~)(~~1

~)1(~~)(~~

)(
θ

θ
 (9)

The total number of connections (including forward, recurrent, and biases) is equal to
22)1()1(OHOHHI NNNNNN +++++ ,

where IN is number of inputs (here we use 1 input for simplicity), HN is the number of

neurons in the second (hidden) layer of RFNN and ON is the number of outputs. Thus, for
a network with 1 input, 3 hidden neurons, and 1 output, there will be 20 connections overall.
Every forward connection weight, recurrent connection weight, and bias value are
represented as a triangular fuzzy number [16,17,37-39]:),,(~ l

Rij
l
Aij

l
Lij

l
ij wwwTw = ,

),,(~ l
Rij

l
Aij

l
Lij

l
ij vvvTv = ,),,(~ l

Ri
l
Ai

l
Li

l
i T θθθθ = , respectively. Note that the forward

connection is from neuron j at layer (l-1) to neuron i at layer l, while the recurrent
connections are between the outputs and inputs of the neurons at the same layer. Triangle
fuzzy numbers are described as T(a,b,c), where [a,c] is the fuzzy number support and b is the
value with membership equal to 1 (the average value).
Inputs to RFNN ix can accept system outputs at previous stages,

)(),...,2(),1(21 rtyxtyxtyx NrNN −=−=−= , etc., as well as exogenous signals

),...2(),1(),(321 −=−== +++ tuxtuxtux rrr .

For example, for constructing a RFNN based time series predictor (NNF̂)

),,...,,,...,,(ˆˆ 11111 +−−+−−+ = mtttntttNNt uuuyyyFy , where ty is the value of time series data

at time interval t, tu is the value of an additional (second) factor at time interval t, the above
presented structure could be modified as given in Figure 4.
In case the original learning patterns are crisp, we need to sample data into fuzzy terms, i.e.
to fuzzify the learning patterns. The fuzzifiers can be created independently for specific
problems. A different approach that is used in this paper is to convert the numeric data into
information granules by fuzzy clustering [40]. In this case the receptive fields forming the
input layer of RFNN are constructed using clustering. Fuzzy clusters fully reflect the
character of the data.

5. Differential evolution optimization based learning of RFNN
The considered RFNN requires the global parameter optimization method suitable for
nonlinear, non-convex, and non-differentiable mapping functions. Ideally, we want to find
the global minimum of (4) and this requires more careful selection of the optimization
engine. Despite the fact that the gradient descent based methods are predominant, they are
not global optimizers. Most suitable are population based optimization techniques including

 Recurrent Neural Networks

116

genetic algorithms, evolutionary strategy, particle swarm optimization, DEO, etc. In this
paper we use DEO method which has many advantages over other evolutionary algorithms
and GA [3,42,51]. There are some reasons for using DEO in RFNN learning problem. First,
DEO supports a search mechanism of global nature. DEO is useful when dealing with
different distance functions including Hamming distance, Tschebyshev distance (gradient
descent based methods require distance functions be differentiable, e.g. Euclidean distance
function).

Figure 4. The structure of a simple FRNN

For application of an evolutionary algorithm for learning RFNN we consider the population
individ to represent a whole combination of weights (}~{~

lijwW = , }~{~
lijvV =) and biases

(}~{~
liθθ =) (i.e. parameters of RFNN) defining the input/output mapping (3). The

population maintains a number of popential parameter sets defining different RFNN
solutions and recognizes one of these solutions to be the best solution. This best solution is
the one with minimum training error. After a series of generations, the best solution may
converge to a near-optimum solution, which would represent in our case a RFNN with the
required accuracy.
To apply an evolutionary population based optimization algorithm we first should identify
the optimized parameter vector. For training RFNN we need to optimize values of: forward
connection weights, processing (hidden and output) neuron biases, and recurrent weights.
According to the structure of RFNN given in section 2, the number of all parameters to be
adjusted during the learning process and therefore the dimension of the optimized
parameter vector (for a FRNN with one hidden layer) is

Recurrent Fuzzy Neural Networks and Their Performance Analysis

117

 22)1()1(OHOHHIpar NNNNNNN +++++= . (10)

Before starting training all the parameters are initialized by randomly chosen values,
usually not beyond the interval [-1,1]. This constraint is further enforced to the parameters
associated to backward connections. It means that during further training steps the values of
forward weights and biases can go beyond the interval [-1,1] while the values of backward
connection are kept within this interval. This additional constraint is added to make RFNN
stable which means that under the constant input the value of output will converge to a
constant value (either crisp or fuzzy).
Prior launching the optimization we set parameter f of DEO to a positive value (typically
about 0.9), define the DEO cost function to be the RFNN error function (4), and choose the
population size (typically ten times the number of optimization parameters, i.e. parN10).

Then the differential evolution optimization is started.
DEO based RFNN training algorithm can be summarized as follows:
Step 0. Initialize DE

Step 0.0 Define the structure of RFNN: Ni, Nh, No
Step 0.1.Construct template parameter vector X of dimension Npar according (10) for

holding RFNN weights and biases: X={ θ~,~,~ VW }
Step 0.2.Set algorithm parameters: f (mutation rate), cr (crossover rate), and ps (size

of population)
Step 0.3.Define the cost function as function of error function of current RFNN

parameters: ∑∑ −= Npipi yyE ~~~

Step 1. Randomly generate ps parameter vectors (from respective parameter spaces (e.g. in
the range [-1, 1]) and form a population P={X1, X2, ..., Xps}

Step 2. While Termination condition (number of predefined generations reached or required
error level obtained) is not met generate new parameter sets:
Step 2.1.Choose a next vector Xi (i=1,...,ps)
Step 2.2.Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of which is

different from current Xi
Step 2.3.Generate trial vector Xt=Xr1+f(Xr2-Xr3)
Step 2.4.Generate new vector from trial vector Xt. Individual vector parameters of Xt

are inherited with probability cr into the new vector Xnew. If the cost function
from Xnew is better (lower) than the cost function from Xi, current Xi is
replaced in population P by Xnew

 Next i
Step 3. Select the parameter vector Xbest (RFNN parameter set) with best cost (training error

E~) function from population P. Extract from Xbest vectors θ~,~,~ VW defining weights
and thresholds for RFNN

Step 4. Stop the algorithm
If the obtained total error performance index or the behavior of the obtained network is not
desired, we can restructure the network by adding new hidden neurons, or do better
granulation of the learning patterns.
During the DE optimization process the solutions resulting in lower cost values have more
chances to survive and be saved into a new population for participation in future

 Recurrent Neural Networks

116

genetic algorithms, evolutionary strategy, particle swarm optimization, DEO, etc. In this
paper we use DEO method which has many advantages over other evolutionary algorithms
and GA [3,42,51]. There are some reasons for using DEO in RFNN learning problem. First,
DEO supports a search mechanism of global nature. DEO is useful when dealing with
different distance functions including Hamming distance, Tschebyshev distance (gradient
descent based methods require distance functions be differentiable, e.g. Euclidean distance
function).

Figure 4. The structure of a simple FRNN

For application of an evolutionary algorithm for learning RFNN we consider the population
individ to represent a whole combination of weights (}~{~

lijwW = , }~{~
lijvV =) and biases

(}~{~
liθθ =) (i.e. parameters of RFNN) defining the input/output mapping (3). The

population maintains a number of popential parameter sets defining different RFNN
solutions and recognizes one of these solutions to be the best solution. This best solution is
the one with minimum training error. After a series of generations, the best solution may
converge to a near-optimum solution, which would represent in our case a RFNN with the
required accuracy.
To apply an evolutionary population based optimization algorithm we first should identify
the optimized parameter vector. For training RFNN we need to optimize values of: forward
connection weights, processing (hidden and output) neuron biases, and recurrent weights.
According to the structure of RFNN given in section 2, the number of all parameters to be
adjusted during the learning process and therefore the dimension of the optimized
parameter vector (for a FRNN with one hidden layer) is

Recurrent Fuzzy Neural Networks and Their Performance Analysis

117

 22)1()1(OHOHHIpar NNNNNNN +++++= . (10)

Before starting training all the parameters are initialized by randomly chosen values,
usually not beyond the interval [-1,1]. This constraint is further enforced to the parameters
associated to backward connections. It means that during further training steps the values of
forward weights and biases can go beyond the interval [-1,1] while the values of backward
connection are kept within this interval. This additional constraint is added to make RFNN
stable which means that under the constant input the value of output will converge to a
constant value (either crisp or fuzzy).
Prior launching the optimization we set parameter f of DEO to a positive value (typically
about 0.9), define the DEO cost function to be the RFNN error function (4), and choose the
population size (typically ten times the number of optimization parameters, i.e. parN10).

Then the differential evolution optimization is started.
DEO based RFNN training algorithm can be summarized as follows:
Step 0. Initialize DE

Step 0.0 Define the structure of RFNN: Ni, Nh, No
Step 0.1.Construct template parameter vector X of dimension Npar according (10) for

holding RFNN weights and biases: X={ θ~,~,~ VW }
Step 0.2.Set algorithm parameters: f (mutation rate), cr (crossover rate), and ps (size

of population)
Step 0.3.Define the cost function as function of error function of current RFNN

parameters: ∑∑ −= Npipi yyE ~~~

Step 1. Randomly generate ps parameter vectors (from respective parameter spaces (e.g. in
the range [-1, 1]) and form a population P={X1, X2, ..., Xps}

Step 2. While Termination condition (number of predefined generations reached or required
error level obtained) is not met generate new parameter sets:
Step 2.1.Choose a next vector Xi (i=1,...,ps)
Step 2.2.Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of which is

different from current Xi
Step 2.3.Generate trial vector Xt=Xr1+f(Xr2-Xr3)
Step 2.4.Generate new vector from trial vector Xt. Individual vector parameters of Xt

are inherited with probability cr into the new vector Xnew. If the cost function
from Xnew is better (lower) than the cost function from Xi, current Xi is
replaced in population P by Xnew

 Next i
Step 3. Select the parameter vector Xbest (RFNN parameter set) with best cost (training error

E~) function from population P. Extract from Xbest vectors θ~,~,~ VW defining weights
and thresholds for RFNN

Step 4. Stop the algorithm
If the obtained total error performance index or the behavior of the obtained network is not
desired, we can restructure the network by adding new hidden neurons, or do better
granulation of the learning patterns.
During the DE optimization process the solutions resulting in lower cost values have more
chances to survive and be saved into a new population for participation in future

 Recurrent Neural Networks

118

generations. The process is repeated iteratively. During succeeding generations we keep into
the population the solution that produced the lowest value of cost function of all previous
generations. The farther we go with generations the higher is the chance to find a better
solution.

6. Experiments and application
In this section, we report on the results of simulation of the suggested RFNN with DEO
learning and compare the performance of RFNN and existing approaches. The performance
of the proposed algorithm is examined on 3 benchmark problems in literature [13,27,46].

6.1 Non-linear system identification
We start with non-linear system studied in [13,28,32,45] as a benchmark identification
problem.
The dynamic system is described by the equation:

 y(k)=g(y(k-1), y(k-2))+u(k) (11)

where:

)2()1(1

)5.0)1()(2()1())2(),1((22 −+−+
−−−−

=−−
kyky

kykykykykyg (12)

The system output depends on both its past values and current input. The goal is to
approximate the model (11)-(12) by RFNN.
The RFNN for this example has 2 input neurons, 6 neurons at layer 1 and one output
neuron. The number of all connections (including forward, backward, and biases) was 62.
On the basis of (12) 400 data were created using random (in interval [-1,1] signal u and used
for training. The trained network was tested on the basis of 200 test data created using (12)
by applying sinusoidal signal)25/2sin(ku π= .
DE Optimization progress (MSE vs. successful iterations) is shown in Figure 5.
Table 1 shows a fragment of results (reached MSE) from intensive simulation experiments.

Experiment MSE on train data MSE on test data
1 0.0000818477 0.000342153
2 0.000116419 0.000738948
3 0.0000761331 0.000361591
4 0.0000235756 0.0000656312
5 0.000373168 0.00105125
6 0.000103995 0.000215761
7 0.0000696317 0.000204256

Table 1. RFNN training simulations for non-linear system identification

The final reached MSE at the best experiment was 0.000024 on training data and 0.000066 on
test data. Table 2 presents comparative results obtained by different methods given in
literature.

Recurrent Fuzzy Neural Networks and Their Performance Analysis

119

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Figure 5. RFNN error convergence

Reference fuzzy model MSE on training
set MSE on test set

[53] - 0.00080
[45] 0.00075 0.00035
[13] 0.00010 0.00032

RFNN (our approach) 0.000024 0.000066

Table 2. Comparative results by different methods

The comparison of the actual and identified curves for y(k) is illustrated in Figure 6.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 50 100 150 200

actual
identified

Figure 6. RFNN identification performance

 Recurrent Neural Networks

118

generations. The process is repeated iteratively. During succeeding generations we keep into
the population the solution that produced the lowest value of cost function of all previous
generations. The farther we go with generations the higher is the chance to find a better
solution.

6. Experiments and application
In this section, we report on the results of simulation of the suggested RFNN with DEO
learning and compare the performance of RFNN and existing approaches. The performance
of the proposed algorithm is examined on 3 benchmark problems in literature [13,27,46].

6.1 Non-linear system identification
We start with non-linear system studied in [13,28,32,45] as a benchmark identification
problem.
The dynamic system is described by the equation:

 y(k)=g(y(k-1), y(k-2))+u(k) (11)

where:

)2()1(1

)5.0)1()(2()1())2(),1((22 −+−+
−−−−

=−−
kyky

kykykykykyg (12)

The system output depends on both its past values and current input. The goal is to
approximate the model (11)-(12) by RFNN.
The RFNN for this example has 2 input neurons, 6 neurons at layer 1 and one output
neuron. The number of all connections (including forward, backward, and biases) was 62.
On the basis of (12) 400 data were created using random (in interval [-1,1] signal u and used
for training. The trained network was tested on the basis of 200 test data created using (12)
by applying sinusoidal signal)25/2sin(ku π= .
DE Optimization progress (MSE vs. successful iterations) is shown in Figure 5.
Table 1 shows a fragment of results (reached MSE) from intensive simulation experiments.

Experiment MSE on train data MSE on test data
1 0.0000818477 0.000342153
2 0.000116419 0.000738948
3 0.0000761331 0.000361591
4 0.0000235756 0.0000656312
5 0.000373168 0.00105125
6 0.000103995 0.000215761
7 0.0000696317 0.000204256

Table 1. RFNN training simulations for non-linear system identification

The final reached MSE at the best experiment was 0.000024 on training data and 0.000066 on
test data. Table 2 presents comparative results obtained by different methods given in
literature.

Recurrent Fuzzy Neural Networks and Their Performance Analysis

119

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Figure 5. RFNN error convergence

Reference fuzzy model MSE on training
set MSE on test set

[53] - 0.00080
[45] 0.00075 0.00035
[13] 0.00010 0.00032

RFNN (our approach) 0.000024 0.000066

Table 2. Comparative results by different methods

The comparison of the actual and identified curves for y(k) is illustrated in Figure 6.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 50 100 150 200

actual
identified

Figure 6. RFNN identification performance

 Recurrent Neural Networks

120

6.2 Dynamic plant identification
This example is taken from [25,27] in which a nonlinear plant with multiple time-delay is
identified. The nonlinear plant is described as follows:

 (1) ((), (1), (2), (), (1))p p p py k f y k y k y k u k u k+ = − − − (13)

where

 1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

(1)(, , , ,)
1

x x x x x xf x x x x x
x x

− +
=

+ +
 (14)

In this example the output depends on three previous outputs and two previous inputs. For
better results 2000 data were used for training generated by applying random)(ku in
interval [-1, 1].
For the testing signal u(k) the following equation was used:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

<≤−
<≤

<≤⎟
⎠
⎞

⎜
⎝
⎛

=

1000750 ,
10

sin6.0
32

sin1.0
25

sin3.0

750500 ,1
500250 ,1

2500 ,
25

sin

)(

kkkk
k

k

kk

ku

πππ

π

 (15)

Figure 7 shows the comparison of the desired test and RFNN output curves of the
considered dynamic system.

Figure 7. Comparison of output of RFNN with the desired output

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

Desired RFNN

Recurrent Fuzzy Neural Networks and Their Performance Analysis

121

The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons
(y(k), y(k-1), y(k-2), u(t-1)) and 1 output neuron (y(k+1)). In comparison with a regular FNN,
the use of RFNN allows significant simplification of the network structure. Table 3 below
shows the comparison of characteristics of fuzzy neural networks suggested in [27] and our
RFNN.

 RFNN [27] FNN [27] RFNN (our approach)
No of inputs 2 5 2

No of outputs 1 1 1
Nodes 51 112 11

Parameters 112 (crisp) 176 (crisp) 96 (fuzzy triangle
numbers)

MSE 0.00013 0.003 0.00004048

Table 3. Comparison performance of different FNN models for dynamic plant identification

In addition, RFNN is more accurate. The simulation using the suggested RFNN
demonstrates that the identification error (MSE) is less than the error with other approaches
(Table 3).
It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27]
exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN
model has lower number of nodes than the models presented in [27].

6.3 Sun-spot prediction
The performance of FRNN was also tested on a well-known problem of sun-spot prediction
[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately
11 years. In addition to this, there are variations over longer periods. The recent trend is
upward from 1900 to the 1960s, then somewhat downward. The historical data for this
problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data
used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets
used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.
The comparison of performance of the FRNN approach with other existing methods for two
different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean
Square Error measure is used in these experiments). The last two rows in Table 4 were
obtained by two networks trained on the same data sets by two different persons
independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the
total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of
connections for RFNN-1 and RFNN-2 were 148 and 179, respectively.
Table 4 presents comparative results on performance of different forecasting methods for
sun-spot prediction problem.
As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1
input neuron) than other models. The identification error of the RFNN is less than that of
existing models applied to sun-spot forecasting problem.

 Recurrent Neural Networks

120

6.2 Dynamic plant identification
This example is taken from [25,27] in which a nonlinear plant with multiple time-delay is
identified. The nonlinear plant is described as follows:

 (1) ((), (1), (2), (), (1))p p p py k f y k y k y k u k u k+ = − − − (13)

where

 1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

(1)(, , , ,)
1

x x x x x xf x x x x x
x x

− +
=

+ +
 (14)

In this example the output depends on three previous outputs and two previous inputs. For
better results 2000 data were used for training generated by applying random)(ku in
interval [-1, 1].
For the testing signal u(k) the following equation was used:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

<≤−
<≤

<≤⎟
⎠
⎞

⎜
⎝
⎛

=

1000750 ,
10

sin6.0
32

sin1.0
25

sin3.0

750500 ,1
500250 ,1

2500 ,
25

sin

)(

kkkk
k

k

kk

ku

πππ

π

 (15)

Figure 7 shows the comparison of the desired test and RFNN output curves of the
considered dynamic system.

Figure 7. Comparison of output of RFNN with the desired output

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

Desired RFNN

Recurrent Fuzzy Neural Networks and Their Performance Analysis

121

The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons
(y(k), y(k-1), y(k-2), u(t-1)) and 1 output neuron (y(k+1)). In comparison with a regular FNN,
the use of RFNN allows significant simplification of the network structure. Table 3 below
shows the comparison of characteristics of fuzzy neural networks suggested in [27] and our
RFNN.

 RFNN [27] FNN [27] RFNN (our approach)
No of inputs 2 5 2

No of outputs 1 1 1
Nodes 51 112 11

Parameters 112 (crisp) 176 (crisp) 96 (fuzzy triangle
numbers)

MSE 0.00013 0.003 0.00004048

Table 3. Comparison performance of different FNN models for dynamic plant identification

In addition, RFNN is more accurate. The simulation using the suggested RFNN
demonstrates that the identification error (MSE) is less than the error with other approaches
(Table 3).
It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27]
exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN
model has lower number of nodes than the models presented in [27].

6.3 Sun-spot prediction
The performance of FRNN was also tested on a well-known problem of sun-spot prediction
[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately
11 years. In addition to this, there are variations over longer periods. The recent trend is
upward from 1900 to the 1960s, then somewhat downward. The historical data for this
problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data
used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets
used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.
The comparison of performance of the FRNN approach with other existing methods for two
different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean
Square Error measure is used in these experiments). The last two rows in Table 4 were
obtained by two networks trained on the same data sets by two different persons
independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the
total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of
connections for RFNN-1 and RFNN-2 were 148 and 179, respectively.
Table 4 presents comparative results on performance of different forecasting methods for
sun-spot prediction problem.
As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1
input neuron) than other models. The identification error of the RFNN is less than that of
existing models applied to sun-spot forecasting problem.

 Recurrent Neural Networks

122

Author (Method) Number of
inputs PR1 PR2

Rementeria (AR) [44] 12 0.126 0.36
Tong (TAR) [49] 12 0.099 0.28

Subba Rao (Bilinear) [43] 9 0.079 -
DeGroot (ANN)[15] 4 0.092 -

Nowland (ANN) [36] 12 0.077 -
Rementeria (ANN) [44] 12 0.079 0.34
Waterhouse (HME) [52] 12 0.089 0.27

(RFNN-1) 1 0.066 0.22
(RFNN-2) 1 0.074 0.21

Table 4. MSE obtained by different models for sun-spot prediction

6.4 Application of RFNN to forecast demand for petrol
In this example the problem is to forecast demand for petrol (A92) for optimal scheduling of
an oil refinery plant [56]. In our fuzzy forecasting model we assumed the relationship:

 y(k+1)=F(y(k-2), y(k-1) ,y(k)) (16)

For this example we used actual daily data from existing oil refinery plant for a month
period. Approximately 80% of the data (chosen randomly) were used for clustering and
training and the remaining data were used for testing of RFNN.
Usually, the structure of RFNN is determined by trial-and-error in advance for the reason
that it is difficult to consider the balance between the number of rules and desired
performance [20]. In this study, to determine the structure of RFNN, first we convert
numeric data into information granules by fuzzy clustering. The number of clusters defines
the number of fuzzy rules. By applying the fuzzy C-means clustering method [13,40] on the
training data and checking the validity measure suggested in [13] it was identified that an
adequate number of clusters is 4. Therefore 4 fuzzy rules were used for the basis for training
and further refining. The clustering algorithm identified the following cluster centers for the
presented data.

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1
IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2
IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3
IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4

(17)

Initial fuzzy terms A1, A2, A3, A4 were created from the component y(t-2) of the cluster
vectors 1, 2, 3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – from y(t-1), C1, C2, C3,
C4 – from y(t), and D1, D2, D3, D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, C2,...D1,
D2, ... are described linguistically.
DEO based training allowed to further decrease MSE of output (forecasting of petrol) after
clustering making it ten times lower. The final MSE after training was 0.0008.

6.5 Application of RFNN to control battery charging process
The FRRN designed for battery charging control has 4 inputs, 20 hidden neurons, and 1
output. The four used inputs represent temperature (T), change of temperature (dT), voltage

Recurrent Fuzzy Neural Networks and Their Performance Analysis

123

(U) and change of voltage (dU). The output of the controller is the current (I) applied for
charging the battery.
The network has been trained on the basis of the data base (collected by a separate work
group over a year period) contained data series formed of measured temperature, voltage,
and current readings from many charging experiments with different batteries.
The proposed control system allows very quick and effective charge of the battery: the
charging time is reduced from more than 2000 seconds (with applied constant charge
current 2A) to 860 seconds (or even less, if the temperature limit is set higher than 25ºC)
with dynamically changed (under the control of the proposed intelligent controller) input
current. Also the battery is protected from overheating and a long utilization time of the
battery can be provided by adequately adjusting the fuzzy rules describing the desired
charging process. The results of proposed charging controller compared with other battery
chargers for a particular charging experiment (with the same initial conditions) are given in
Table 5. The value of decrease in charging time and heating level was %2.20.18 ± and

%6.05 ± , respectively, compared to other methods.

Charging controller Time (sec) Tend-Tstart
Proposed approach 860 2,85

FL [4] (no data) 35-60
FG [14] 959 9

ANFIS [9] 900 50
NeuFuz [16] 1200-1800 5

Table 5. Comparison of different charging controllers

7. Conclusions
In spite of great importance of fuzzy neural networks for solving wide range of real-world
problems, unfortunately, little progress has been made in their development.
In this study we have discussed recurrent neural networks with fuzzy weights and biases as
adjustable parameters and internal feedback loops, which allows capturing dynamic
response of a system without using external feedback through delays. In this case all the
nodes are able to process linguistic information.
As the main problem regarding fuzzy and recurrent fuzzy neural networks that limits their
application range is the difficulty of proper adjustment of fuzzy weights and biases, we put
an emphasize on the RFNN training algorithm.
We have proposed the standard DEO-based method for learning of recurrent fuzzy neural
network. The optimization method, customized for RFNN training, compares favorably
with the existing gradient-based error minimization method as it is less complex and is
more likely to locate the global minimum of network error. As the method does not require
derivative information, it is very effective in case when dealing with different distance
functions. Also, the considered global optimization algorithm can provide high accuracy of
fuzzy mapping with relatively smaller network size.
The RFNN was tested on a number of benchmark identification and time-series forecasting
problems well-known in the literature as well as on application problems. Experimental
results demonstrated very good performance on all considered problems.

 Recurrent Neural Networks

122

Author (Method) Number of
inputs PR1 PR2

Rementeria (AR) [44] 12 0.126 0.36
Tong (TAR) [49] 12 0.099 0.28

Subba Rao (Bilinear) [43] 9 0.079 -
DeGroot (ANN)[15] 4 0.092 -

Nowland (ANN) [36] 12 0.077 -
Rementeria (ANN) [44] 12 0.079 0.34
Waterhouse (HME) [52] 12 0.089 0.27

(RFNN-1) 1 0.066 0.22
(RFNN-2) 1 0.074 0.21

Table 4. MSE obtained by different models for sun-spot prediction

6.4 Application of RFNN to forecast demand for petrol
In this example the problem is to forecast demand for petrol (A92) for optimal scheduling of
an oil refinery plant [56]. In our fuzzy forecasting model we assumed the relationship:

 y(k+1)=F(y(k-2), y(k-1) ,y(k)) (16)

For this example we used actual daily data from existing oil refinery plant for a month
period. Approximately 80% of the data (chosen randomly) were used for clustering and
training and the remaining data were used for testing of RFNN.
Usually, the structure of RFNN is determined by trial-and-error in advance for the reason
that it is difficult to consider the balance between the number of rules and desired
performance [20]. In this study, to determine the structure of RFNN, first we convert
numeric data into information granules by fuzzy clustering. The number of clusters defines
the number of fuzzy rules. By applying the fuzzy C-means clustering method [13,40] on the
training data and checking the validity measure suggested in [13] it was identified that an
adequate number of clusters is 4. Therefore 4 fuzzy rules were used for the basis for training
and further refining. The clustering algorithm identified the following cluster centers for the
presented data.

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1
IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2
IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3
IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4

(17)

Initial fuzzy terms A1, A2, A3, A4 were created from the component y(t-2) of the cluster
vectors 1, 2, 3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – from y(t-1), C1, C2, C3,
C4 – from y(t), and D1, D2, D3, D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, C2,...D1,
D2, ... are described linguistically.
DEO based training allowed to further decrease MSE of output (forecasting of petrol) after
clustering making it ten times lower. The final MSE after training was 0.0008.

6.5 Application of RFNN to control battery charging process
The FRRN designed for battery charging control has 4 inputs, 20 hidden neurons, and 1
output. The four used inputs represent temperature (T), change of temperature (dT), voltage

Recurrent Fuzzy Neural Networks and Their Performance Analysis

123

(U) and change of voltage (dU). The output of the controller is the current (I) applied for
charging the battery.
The network has been trained on the basis of the data base (collected by a separate work
group over a year period) contained data series formed of measured temperature, voltage,
and current readings from many charging experiments with different batteries.
The proposed control system allows very quick and effective charge of the battery: the
charging time is reduced from more than 2000 seconds (with applied constant charge
current 2A) to 860 seconds (or even less, if the temperature limit is set higher than 25ºC)
with dynamically changed (under the control of the proposed intelligent controller) input
current. Also the battery is protected from overheating and a long utilization time of the
battery can be provided by adequately adjusting the fuzzy rules describing the desired
charging process. The results of proposed charging controller compared with other battery
chargers for a particular charging experiment (with the same initial conditions) are given in
Table 5. The value of decrease in charging time and heating level was %2.20.18 ± and

%6.05 ± , respectively, compared to other methods.

Charging controller Time (sec) Tend-Tstart
Proposed approach 860 2,85

FL [4] (no data) 35-60
FG [14] 959 9

ANFIS [9] 900 50
NeuFuz [16] 1200-1800 5

Table 5. Comparison of different charging controllers

7. Conclusions
In spite of great importance of fuzzy neural networks for solving wide range of real-world
problems, unfortunately, little progress has been made in their development.
In this study we have discussed recurrent neural networks with fuzzy weights and biases as
adjustable parameters and internal feedback loops, which allows capturing dynamic
response of a system without using external feedback through delays. In this case all the
nodes are able to process linguistic information.
As the main problem regarding fuzzy and recurrent fuzzy neural networks that limits their
application range is the difficulty of proper adjustment of fuzzy weights and biases, we put
an emphasize on the RFNN training algorithm.
We have proposed the standard DEO-based method for learning of recurrent fuzzy neural
network. The optimization method, customized for RFNN training, compares favorably
with the existing gradient-based error minimization method as it is less complex and is
more likely to locate the global minimum of network error. As the method does not require
derivative information, it is very effective in case when dealing with different distance
functions. Also, the considered global optimization algorithm can provide high accuracy of
fuzzy mapping with relatively smaller network size.
The RFNN was tested on a number of benchmark identification and time-series forecasting
problems well-known in the literature as well as on application problems. Experimental
results demonstrated very good performance on all considered problems.

 Recurrent Neural Networks

124

8. References
R.H. Abiyev, “Recurrent Neural Network Based Fuzzy Inference System for Identification

and Control of Dynamic Plants”, in: Proceedings of International XII Turkish
Symposium on Artificial Intelligence and Neural Networks, Vol. 1, No. 1, 2003, 31-
39.

D.F. Akhmetov, Y. Dote, S. Ovaska, “Fuzzy Neural Network with General Parameter
Adapation for Modelig of Nonlinear Time-Series”. IEEE Transactions on Neural
Networks, Vol. 12, No. 1, (2001).

F.S.Al-Anzi, A.Allahverdi, “A self-adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times”,
European Journal of Operational Research, 182 (2007), 80-94.

R.A.Aliev, R.R.Aliev, “Soft Computing and Its Applications”, World Scientific, 2001, 465 p.
R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Dynamic Data Mining Technique for Battery

Charging Rules Extraction”, Applied Soft Computing Journal (2006),
http://dx.doi.org/10.1016/j.asoc.2007.02.015.

R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Reccurent Neural Network Based System for
Battery Charging”, Lecture Notes in Computer Science, Springer Berlin, Volume
4492 (2007), 307-316.

R.A. Aliev, B. Fazlollahi, R.R. Aliev, “Soft Computing and Its Applications in Business and
Economics”, Springer Verlag, 2004, 420 p.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.G.Gurimov, “Fuzzy Time Series prediction Method
Based on Fuzzy Recurrent Neural Network”, Lecture Notes in Computer Science
(2006), 860-869.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.Gurimov, “Linguistic time series forecasting using
fuzzy recurrent neural network”, International Soft Computing Journal, Volume 12,
Issue 2 (2007), 183-190.

R.A.Aliev, B.Fazlollahi, R.Vahidov, “Genetic Algorithm-Based Learning of Fuzzy Neural
Networks. Part 1: Feed-Forward Fuzzy Neural Networks”, Fuzzy Sets and Systems
118 (2001), 351-358.

G. Bortolan, “An Architecture of Fuzzy Neural Networks for Linguistic Processing”, Fuzzy
Sets and Systems, 100 (1998), 197-215.

W.-D. Chang, “Nonlinear system identification and control using a real-coded genetic
algorithm”, Applied mathematical Modeling 31 (2007), 541-550.

M.-Y. Chen, D.A.Linkens, “Rule-base self-generation and simplification for data-driven
fuzzy models”, Fuzzy Sets and Systems 142 (2004), 243-265.

O. Cordon, F. Herrera, M. Lozano, “On the Combination of Fuzzy Logic and Evolutionary
Computation: a Short Review and Bibliography”, in: W.Pedrycz (Ed.), Fuzzy
Evolutionary Computation, Kluwer Academic Publishers, Dordrecht, 1997, 33-56.

W.D.DeGroot, “Analysis of Univariate Time Series with Connectionist Nets: A Case Study
of Two Classical Examples”, Neurocomput., Vol. 3, (1991), 177-192.

D. Dubois, H. Prade (Eds.), “The Handbooks of Fuzzy Sets Series”, Kluwer Acad. Publ.,
2000.

D. Dubois, H. Prade, R.R. Yager (Eds.), “Fuzzy Information Engineering: A Guided Tour of
Applications”, Wiley, New York.

Y.Gao, M.J.Er, “NARMAX time series model prediction: Feedforward and recurrent fuzzy
neural network approaches”, Fuzzy Sets and Systems, Vol. 150, Issue 2 (2005), 331-
350.

Recurrent Fuzzy Neural Networks and Their Performance Analysis

125

Y. Hayashi, J. Buckley, E. Czogola, “Fuzzy Neural Networks with Fuzzy Signals and
Weights”, Internat. J. Intell. Systems 8 (1993), 527-537.

C.-F.Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems”,
IEEE Trans. on Neural Networks, Vol. 18, No. 4 (2007), 1232-1241.

J.-R. Hwang, S.-M. Chan, C.-H. Lee, “Handling Forecasting Problems Using Fuzzy Time
Series”, Fuzzy Sets and Systems 100 (1998), 217-228.

P.D. Ionescu, M. Moscalu, A. Moscalu, “Intelligent Charger with Fuzzy Logic”, in: Proc. of
Int. Symp. on Signals, Circuits and Systems, 2003.

H.Ishubuchi, K.Morioka, H.Tanaka, “A Fuzzy Neural Network with Trapezoid Fuzzy
Weights”, IEEE, New York, 1994, 228-233.

C-F.Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by
Neural Network and Genetic Algorithms”, IEEE Transactions on Fuzzy Systems,
Vol. 10, No. 2 (2002), 155-170.

C.-F. Juang, C.-T. Lin. “A Recurrent Self-Organizing Neural Fuzzy Inference Network”,
IEEE Transactions on Neural Networks, Vol. 10, No. 4 (1999).

C.-F. Juang, K.-C. Ku, “A recurrent network for fuzzy temporal sequence processing and
gesture recognition”, IEEE Trans. On Systems, Man, and Cybernetics, Part. B:
Cybernetics, Vol. 35, Issue 4 (2005), 646-658

C.-H. Lee, C.-C. Teng, “Identification and Control of Dynamic Systems Using Recurrent
Fuzzy Neural Networks”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4
(2000), 349-366.

F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, “Tuning of the Structure and Parameters of
a Neural Network Using an Improved Genetic Algorithm”, IEEE Transactions on
Neural Networks, Vol. 14, No. 1 (2003).

C.M. Lin, C.H. Chen, Y.F.Lee, “Recurrent fuzzy neural network adaptive hybrid control for
linearized multivariable systems”, Journal of Intelligent and Fuzzy Systems, Vol.
17, Number 5 (2006), 479-491.

F.-J.Lin, P.-K.Huang, “Recurrent fuzzy neural network controller design using sliding-mode
control for linear synchronous motor drive”, IEE Proc.-Control Theory Appl., Vol.
151, No. 4 (2004).

F.-J.Lin, R.-J. Wai, C.-M. Hong, “Hybrid Supervisory Control Using Recurrent Fuzzy Neural
Network for Tracking Periodic Inputs”, IEEE Transactions on Neural Networks,
Vol. 12, No. 1 (2000).

P.Liu, H. Li. “Efficient Learning Algorithms for Three-Layer Regular Feedforward Fuzzy
Neural Network”, IEEE Transactions on Neural Networks, Vol. 15, No 3, (2004),
545-558.

P.Liu, H.Li, “Fuzzy neural network theory and applications”, World Scientific, Singapore
(2004), 376 p.

C.-H. Lu, C.-C Tsai, “Generalized predictive control using recurrent fuzzy neural networks
for industrial purposes”, Journal of Process Control 17 (2007), 83-92

P.Mastorocostas, “A Recurrent Fuzzy Neural Model for Dynamic System Identification”,
IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, Vol. 32,
No. 2 (2002) 176-190.

S.Nowland., G.Hinton, “Simplifying Neural Networks by Soft Weight-Sharing”, Neural
Comput., Vol. 4, No. 4 (1992), 473-493.

B.-J.Park, S.-K. Oh, W. Pedrycz, H.-K. Kim, “Design of Evolutionary Optimized Rule-Based
Fuzzy Neural Networks Based on Fuzzy Relation and Evolutionary Optimization”,
in: International Conference on Computational Science (3), 2005, 1100-1103.

W.Pedrycz, “Computational Intelligence. An Introduction”, CRC Press, 1997.

 Recurrent Neural Networks

124

8. References
R.H. Abiyev, “Recurrent Neural Network Based Fuzzy Inference System for Identification

and Control of Dynamic Plants”, in: Proceedings of International XII Turkish
Symposium on Artificial Intelligence and Neural Networks, Vol. 1, No. 1, 2003, 31-
39.

D.F. Akhmetov, Y. Dote, S. Ovaska, “Fuzzy Neural Network with General Parameter
Adapation for Modelig of Nonlinear Time-Series”. IEEE Transactions on Neural
Networks, Vol. 12, No. 1, (2001).

F.S.Al-Anzi, A.Allahverdi, “A self-adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times”,
European Journal of Operational Research, 182 (2007), 80-94.

R.A.Aliev, R.R.Aliev, “Soft Computing and Its Applications”, World Scientific, 2001, 465 p.
R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Dynamic Data Mining Technique for Battery

Charging Rules Extraction”, Applied Soft Computing Journal (2006),
http://dx.doi.org/10.1016/j.asoc.2007.02.015.

R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Reccurent Neural Network Based System for
Battery Charging”, Lecture Notes in Computer Science, Springer Berlin, Volume
4492 (2007), 307-316.

R.A. Aliev, B. Fazlollahi, R.R. Aliev, “Soft Computing and Its Applications in Business and
Economics”, Springer Verlag, 2004, 420 p.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.G.Gurimov, “Fuzzy Time Series prediction Method
Based on Fuzzy Recurrent Neural Network”, Lecture Notes in Computer Science
(2006), 860-869.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.Gurimov, “Linguistic time series forecasting using
fuzzy recurrent neural network”, International Soft Computing Journal, Volume 12,
Issue 2 (2007), 183-190.

R.A.Aliev, B.Fazlollahi, R.Vahidov, “Genetic Algorithm-Based Learning of Fuzzy Neural
Networks. Part 1: Feed-Forward Fuzzy Neural Networks”, Fuzzy Sets and Systems
118 (2001), 351-358.

G. Bortolan, “An Architecture of Fuzzy Neural Networks for Linguistic Processing”, Fuzzy
Sets and Systems, 100 (1998), 197-215.

W.-D. Chang, “Nonlinear system identification and control using a real-coded genetic
algorithm”, Applied mathematical Modeling 31 (2007), 541-550.

M.-Y. Chen, D.A.Linkens, “Rule-base self-generation and simplification for data-driven
fuzzy models”, Fuzzy Sets and Systems 142 (2004), 243-265.

O. Cordon, F. Herrera, M. Lozano, “On the Combination of Fuzzy Logic and Evolutionary
Computation: a Short Review and Bibliography”, in: W.Pedrycz (Ed.), Fuzzy
Evolutionary Computation, Kluwer Academic Publishers, Dordrecht, 1997, 33-56.

W.D.DeGroot, “Analysis of Univariate Time Series with Connectionist Nets: A Case Study
of Two Classical Examples”, Neurocomput., Vol. 3, (1991), 177-192.

D. Dubois, H. Prade (Eds.), “The Handbooks of Fuzzy Sets Series”, Kluwer Acad. Publ.,
2000.

D. Dubois, H. Prade, R.R. Yager (Eds.), “Fuzzy Information Engineering: A Guided Tour of
Applications”, Wiley, New York.

Y.Gao, M.J.Er, “NARMAX time series model prediction: Feedforward and recurrent fuzzy
neural network approaches”, Fuzzy Sets and Systems, Vol. 150, Issue 2 (2005), 331-
350.

Recurrent Fuzzy Neural Networks and Their Performance Analysis

125

Y. Hayashi, J. Buckley, E. Czogola, “Fuzzy Neural Networks with Fuzzy Signals and
Weights”, Internat. J. Intell. Systems 8 (1993), 527-537.

C.-F.Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems”,
IEEE Trans. on Neural Networks, Vol. 18, No. 4 (2007), 1232-1241.

J.-R. Hwang, S.-M. Chan, C.-H. Lee, “Handling Forecasting Problems Using Fuzzy Time
Series”, Fuzzy Sets and Systems 100 (1998), 217-228.

P.D. Ionescu, M. Moscalu, A. Moscalu, “Intelligent Charger with Fuzzy Logic”, in: Proc. of
Int. Symp. on Signals, Circuits and Systems, 2003.

H.Ishubuchi, K.Morioka, H.Tanaka, “A Fuzzy Neural Network with Trapezoid Fuzzy
Weights”, IEEE, New York, 1994, 228-233.

C-F.Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by
Neural Network and Genetic Algorithms”, IEEE Transactions on Fuzzy Systems,
Vol. 10, No. 2 (2002), 155-170.

C.-F. Juang, C.-T. Lin. “A Recurrent Self-Organizing Neural Fuzzy Inference Network”,
IEEE Transactions on Neural Networks, Vol. 10, No. 4 (1999).

C.-F. Juang, K.-C. Ku, “A recurrent network for fuzzy temporal sequence processing and
gesture recognition”, IEEE Trans. On Systems, Man, and Cybernetics, Part. B:
Cybernetics, Vol. 35, Issue 4 (2005), 646-658

C.-H. Lee, C.-C. Teng, “Identification and Control of Dynamic Systems Using Recurrent
Fuzzy Neural Networks”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4
(2000), 349-366.

F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, “Tuning of the Structure and Parameters of
a Neural Network Using an Improved Genetic Algorithm”, IEEE Transactions on
Neural Networks, Vol. 14, No. 1 (2003).

C.M. Lin, C.H. Chen, Y.F.Lee, “Recurrent fuzzy neural network adaptive hybrid control for
linearized multivariable systems”, Journal of Intelligent and Fuzzy Systems, Vol.
17, Number 5 (2006), 479-491.

F.-J.Lin, P.-K.Huang, “Recurrent fuzzy neural network controller design using sliding-mode
control for linear synchronous motor drive”, IEE Proc.-Control Theory Appl., Vol.
151, No. 4 (2004).

F.-J.Lin, R.-J. Wai, C.-M. Hong, “Hybrid Supervisory Control Using Recurrent Fuzzy Neural
Network for Tracking Periodic Inputs”, IEEE Transactions on Neural Networks,
Vol. 12, No. 1 (2000).

P.Liu, H. Li. “Efficient Learning Algorithms for Three-Layer Regular Feedforward Fuzzy
Neural Network”, IEEE Transactions on Neural Networks, Vol. 15, No 3, (2004),
545-558.

P.Liu, H.Li, “Fuzzy neural network theory and applications”, World Scientific, Singapore
(2004), 376 p.

C.-H. Lu, C.-C Tsai, “Generalized predictive control using recurrent fuzzy neural networks
for industrial purposes”, Journal of Process Control 17 (2007), 83-92

P.Mastorocostas, “A Recurrent Fuzzy Neural Model for Dynamic System Identification”,
IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, Vol. 32,
No. 2 (2002) 176-190.

S.Nowland., G.Hinton, “Simplifying Neural Networks by Soft Weight-Sharing”, Neural
Comput., Vol. 4, No. 4 (1992), 473-493.

B.-J.Park, S.-K. Oh, W. Pedrycz, H.-K. Kim, “Design of Evolutionary Optimized Rule-Based
Fuzzy Neural Networks Based on Fuzzy Relation and Evolutionary Optimization”,
in: International Conference on Computational Science (3), 2005, 1100-1103.

W.Pedrycz, “Computational Intelligence. An Introduction”, CRC Press, 1997.

 Recurrent Neural Networks

126

W.Pedrycz, “Fuzzy Control and Fuzzy Systems” (second, extended, edition). John Wiley
and Sons, New York, 2003.

W.Pedrycs, “Knowledge-Based Clustering: From Data to Information Granules”, John Wiley
& Sons (2005), 316 p.

W.Pedrycz, K.Hirota, “Fuzzy vector quantization with particle swarm optimization: A study
in fuzzy granulation-degranulation information processing”, Signal Process (2007),
doi:10.1016/j.sigpro.2007.02.001.

K.Price, R.Storn, J.Lampinen, “Differential evolution – a practical approach to global
optimization, Springer, Berlin (2005).

S.Rao., M.M.Gabr, “An Introduction to Bispectral Analysis and Bilinear Time Series
Models”, in Lecture Notes in Statistics. Springer-Verlag, Vol. 24 (1984).

S.Rementeria., X.Olabe, “Predicting Sunspots with a Self-Configuring Neural System”, in
Proc. 8th Int. Conf. Information Processing Management Uncertainty Knowledge-
Based Systems, 2000.

M. Setnes, H. Roubos, “GA-fuzzy modeling and classi&cation: complexity and
performance”, IEEE Trans. Fuzzy Systems 8 (5) (2000) 509–522.

A.Sfetsos, C.Siriopoulos, “Time Series Forecasting with Hybrid Clustering Scheme and
Pattern Recognition”, IEEE Trans. on Systems, Man, and Cybernetics – part A:
Systems and Humans, Vol. 34, No. 3 (2004), 399-405.

Y.Song, Z.Chen, Z.Yuan, “New chaotic PSO-based neural network predictive control for
nonlinear process”, IEEE Trans. on Neural Networks, Vol. 18, No. 2 (2007), 595-600.

S.-F.Su, F.-Y. P. Yang, “On the Dynamic Modeling with Neural Fuzzy Networks”, IEEE
Transactions on Neural Networks, Vol. 13, No. 6 (2002).

H.Tong, K.S.Lim, “Threshold Autoregression, Limit Cycle and Cyclical Data”, Int. Rev.
Statist. Soc. B, Vol. 42 (1980).

Y.-C. Wang, C.-J. Chien, and C.-C. Teng, “Direct Adaptive Iterative Learning Control of
Nonlinear Systems Using an Output-Recurrent Fuzzy Neural Networks”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, No. 3
(2004), 1348-1359.

Y.-J.Wang, J.-S.Zhang, G.-Y. Zhang, “A dynamic clustering based differential evolution
algorithm for global optimization”, European Journal of Operational Research 183
(2007), 56-73.

S.R.Waterhouse, A.J.Robinson, “Non-Linear Prediction of Acoustic Vectors Using
Hierarchical Mixtures of Experts”, in Advances of Neural Information Processing
Systems. Cambridge, MA: MIT Press, Vol. 7 (1995).

S.Wu, M.J.Er, “Dynamic fuzzy neural networks—a novel approach to function
approximation”, IEEE Trans. SMC-B 30 (2) (2000) 358–364.

J. Zhang, “Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling”, IEEE
Transactions on Neural Networks, Vol. 10, No. 2 (1999), 313-325.

Q.-Z. Zhang, W.-S. Gan, Y.-L. Zhou, “Adaptive recurrent fuzzy neural networks for active
noise control”, Journal of Sound and Vibration, Vol. 296, Issue 4-5 (2006), 935-948.

Sh.Mehdi, “Fuzzy time series forecasting”, Fourth World Conference on Intelligent Systems
for Industrial Automation, 2006, 342-347.

7

Recurrent Interval Type-2 Fuzzy Neural Network
Using Asymmetric Membership Functions

Ching-Hung Lee and Tzu-Wei Hu
Department of Electrical Engineering

Yuan-Ze University
Taiwan

1. Introduction
The fuzzy systems and control are regarded as the most widely used application of fuzzy
logic systems in recent years (Jang, 1993; John & Coupland, 2007; Lin & Lee, 1006; Mendel,
2001; Wang, 1994). The structure of traditional fuzzy system models that is characterized by
using type 1 fuzzy sets, which are defined on a universe of discourse, map an element of the
universe of discourse onto a precise number in the unit interval [0, 1]. The concept of type-2
fuzzy sets was initially proposed by Zadeh as an extension of typical fuzzy sets (called type-
1) (Zadeh, 1975). Mendel and Karnik developed a complete theory of interval type-2 fuzzy
logic systems (iT2FLSs) (Karnik et al, 1999; Liang & Mendel, 2000; Mendel, 2001). Recently,
T2FLSs have attracted more attention in many literatures and special issue of IEEE
Transactions on Fuzzy systems (Baldwin & Karake, 2003; John & Coupland, 2007; Lee & Lin,
2005; Liang & Mendel, 2000; Mendel, 2001, Hagras, 2007; Ozen & Garibaldi, 2004; Pan et al,
2007; Wang et al, 2004).
T2FLSs are more complex than type-1 ones, the major difference being the present of type- is
their antecedent and consequent sets. T2FLSs result better performance than type-1 Fuzzy
Logic Systems (T1FLSs) on the applications of function approximation, modeling, and
control. In addition, neural networks have found numerous practical applications, especially
in the areas of prediction, classification, and control (Lee & Teng, 2000; Lin & Lee, 1996;
Narendra & Parthasarathy, 1990). The main aspect of neural networks lies in the connection
weights which are obtained by training process. Based on the advantages of T2FLSs and
neural networks, the type-2 neural fuzzy systems are presented to handle the system
uncertainty and reduce the rule number and computation (Castillo & Melin, 2004; Lee & Lin,
2005; Mendel, 2001; Pan et al, 2007; Wang et al, 2004). Besides, recurrent neural network has
the advantages of store past information and speed up convergence (Lee & Teng, 2000).
The design of a fuzzy partition and rules engine normally affects system performance. To
simplify the design procedure, we usually use the symmetric and fixed membership
functions (MFs), such as Gaussian, triangular. However, a large rule number should be used
to achieve the specified approximation accuracy (or result larger approximated error) (Lee &
Teng, 2001; Lotfi & Tsoi, 1996). Several approaches have been introduced to optimize fuzzy
MFs and choose an efficient scheme for structure and parameter learning. Nevertheless,
asymmetric fuzzy MFs (AFMFs) has been discussed and analyzed for this problem (Baldwin

 Recurrent Neural Networks

126

W.Pedrycz, “Fuzzy Control and Fuzzy Systems” (second, extended, edition). John Wiley
and Sons, New York, 2003.

W.Pedrycs, “Knowledge-Based Clustering: From Data to Information Granules”, John Wiley
& Sons (2005), 316 p.

W.Pedrycz, K.Hirota, “Fuzzy vector quantization with particle swarm optimization: A study
in fuzzy granulation-degranulation information processing”, Signal Process (2007),
doi:10.1016/j.sigpro.2007.02.001.

K.Price, R.Storn, J.Lampinen, “Differential evolution – a practical approach to global
optimization, Springer, Berlin (2005).

S.Rao., M.M.Gabr, “An Introduction to Bispectral Analysis and Bilinear Time Series
Models”, in Lecture Notes in Statistics. Springer-Verlag, Vol. 24 (1984).

S.Rementeria., X.Olabe, “Predicting Sunspots with a Self-Configuring Neural System”, in
Proc. 8th Int. Conf. Information Processing Management Uncertainty Knowledge-
Based Systems, 2000.

M. Setnes, H. Roubos, “GA-fuzzy modeling and classi&cation: complexity and
performance”, IEEE Trans. Fuzzy Systems 8 (5) (2000) 509–522.

A.Sfetsos, C.Siriopoulos, “Time Series Forecasting with Hybrid Clustering Scheme and
Pattern Recognition”, IEEE Trans. on Systems, Man, and Cybernetics – part A:
Systems and Humans, Vol. 34, No. 3 (2004), 399-405.

Y.Song, Z.Chen, Z.Yuan, “New chaotic PSO-based neural network predictive control for
nonlinear process”, IEEE Trans. on Neural Networks, Vol. 18, No. 2 (2007), 595-600.

S.-F.Su, F.-Y. P. Yang, “On the Dynamic Modeling with Neural Fuzzy Networks”, IEEE
Transactions on Neural Networks, Vol. 13, No. 6 (2002).

H.Tong, K.S.Lim, “Threshold Autoregression, Limit Cycle and Cyclical Data”, Int. Rev.
Statist. Soc. B, Vol. 42 (1980).

Y.-C. Wang, C.-J. Chien, and C.-C. Teng, “Direct Adaptive Iterative Learning Control of
Nonlinear Systems Using an Output-Recurrent Fuzzy Neural Networks”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, No. 3
(2004), 1348-1359.

Y.-J.Wang, J.-S.Zhang, G.-Y. Zhang, “A dynamic clustering based differential evolution
algorithm for global optimization”, European Journal of Operational Research 183
(2007), 56-73.

S.R.Waterhouse, A.J.Robinson, “Non-Linear Prediction of Acoustic Vectors Using
Hierarchical Mixtures of Experts”, in Advances of Neural Information Processing
Systems. Cambridge, MA: MIT Press, Vol. 7 (1995).

S.Wu, M.J.Er, “Dynamic fuzzy neural networks—a novel approach to function
approximation”, IEEE Trans. SMC-B 30 (2) (2000) 358–364.

J. Zhang, “Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling”, IEEE
Transactions on Neural Networks, Vol. 10, No. 2 (1999), 313-325.

Q.-Z. Zhang, W.-S. Gan, Y.-L. Zhou, “Adaptive recurrent fuzzy neural networks for active
noise control”, Journal of Sound and Vibration, Vol. 296, Issue 4-5 (2006), 935-948.

Sh.Mehdi, “Fuzzy time series forecasting”, Fourth World Conference on Intelligent Systems
for Industrial Automation, 2006, 342-347.

7

Recurrent Interval Type-2 Fuzzy Neural Network
Using Asymmetric Membership Functions

Ching-Hung Lee and Tzu-Wei Hu
Department of Electrical Engineering

Yuan-Ze University
Taiwan

1. Introduction
The fuzzy systems and control are regarded as the most widely used application of fuzzy
logic systems in recent years (Jang, 1993; John & Coupland, 2007; Lin & Lee, 1006; Mendel,
2001; Wang, 1994). The structure of traditional fuzzy system models that is characterized by
using type 1 fuzzy sets, which are defined on a universe of discourse, map an element of the
universe of discourse onto a precise number in the unit interval [0, 1]. The concept of type-2
fuzzy sets was initially proposed by Zadeh as an extension of typical fuzzy sets (called type-
1) (Zadeh, 1975). Mendel and Karnik developed a complete theory of interval type-2 fuzzy
logic systems (iT2FLSs) (Karnik et al, 1999; Liang & Mendel, 2000; Mendel, 2001). Recently,
T2FLSs have attracted more attention in many literatures and special issue of IEEE
Transactions on Fuzzy systems (Baldwin & Karake, 2003; John & Coupland, 2007; Lee & Lin,
2005; Liang & Mendel, 2000; Mendel, 2001, Hagras, 2007; Ozen & Garibaldi, 2004; Pan et al,
2007; Wang et al, 2004).
T2FLSs are more complex than type-1 ones, the major difference being the present of type- is
their antecedent and consequent sets. T2FLSs result better performance than type-1 Fuzzy
Logic Systems (T1FLSs) on the applications of function approximation, modeling, and
control. In addition, neural networks have found numerous practical applications, especially
in the areas of prediction, classification, and control (Lee & Teng, 2000; Lin & Lee, 1996;
Narendra & Parthasarathy, 1990). The main aspect of neural networks lies in the connection
weights which are obtained by training process. Based on the advantages of T2FLSs and
neural networks, the type-2 neural fuzzy systems are presented to handle the system
uncertainty and reduce the rule number and computation (Castillo & Melin, 2004; Lee & Lin,
2005; Mendel, 2001; Pan et al, 2007; Wang et al, 2004). Besides, recurrent neural network has
the advantages of store past information and speed up convergence (Lee & Teng, 2000).
The design of a fuzzy partition and rules engine normally affects system performance. To
simplify the design procedure, we usually use the symmetric and fixed membership
functions (MFs), such as Gaussian, triangular. However, a large rule number should be used
to achieve the specified approximation accuracy (or result larger approximated error) (Lee &
Teng, 2001; Lotfi & Tsoi, 1996). Several approaches have been introduced to optimize fuzzy
MFs and choose an efficient scheme for structure and parameter learning. Nevertheless,
asymmetric fuzzy MFs (AFMFs) has been discussed and analyzed for this problem (Baldwin

 Recurrent Neural Networks

128

& Karake, 2003; Kim et al, 2003; Lee & Teng, 2001; Li et al, 2005; Lin & Ho, 2005; Ozen &
Garibaldi, 2004; Pan et al, 2007). The results showed that using AFMFs can improve the
approximation capability. According to the results above, our purpose is to introduce a
recurrent interval type-2 fuzzy neural network with asymmetric membership functions
(RiT2FNN-A). The asymmetric Gaussian function is a new type of membership function due
to excellent approximation results. It also provides a fuzzy-neural network with higher
flexibility to easily approach the optimum result more accurately. Literature (Lee & Pan,
2007; Pan et al, 2007) proposed that a T2FNN with AFMFs (T2FNN-A) can improve the
system performance and obtain better approach ability. However, the structure of network
was a static model. In this article, we proposed a combining interval type-2 fuzzy
asymmetric membership functions with recurrent neural network system, called
RiT2FNNA. The proposed RiT2FNN-A is a modified version of the T2FNN (Lee & Lin, 2005;
Lee et al, 2003; Lee & Pan, 2007; Pan et al, 2007; Wang et al, 2004), which provides memory
elements to capture system dynamic information (Lee & Teng, 2000). The RiT2FNN-A
system capability for temporarily storing information allowed us to extend the application
domain to include temporal problem. Simulations are shown to illustrate the effectiveness of
the RiT2FNN-A system.
This article is organized as follows. Section 2 introduces the interval type-2 fuzzy neural
systems and construction of interval type-2 AFMFs. The proposed RiT2FNN-A system is
described in Section 3. Simulation results about handling nonlinear system identification is
done and introduced in Section 4. Finally, conclusion is given.

Figure1, Diagram of MISO T2FNN system with M fuzzy rules (Lee & Lin, 2005).

2. Interval type-2 fuzzy neural systems
The concept of type-2 fuzzy set was initially proposed as an extension of ordinary one
(called type-1) by Zadeh (Zadeh 1975). In recent years, Mendel and Karnik have developed a

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

129

complete theory of T2FLSs (John & Coupland, 2007; Karnik et al, 1999; Lee & Lin, 2005;
Mendel, 2001). These systems are as an extension of general FLSs (called type-1) which is
characterized by IF-THEN rules (Lin & Lee, 1996). The computation of iT2FLSs is more
complex than the T1FLSs because of the antecedent and consequent type-2 fuzzy sets (John
& Coupland, 2007; Karnik et al, 1999; Mendel, 2001). In our previous results, we successfully
constructed the T2FNN to identify the nonlinear system (Lee & Lin, 2005; Lee et al, 2003; Lee
& Pan, 2007). They perform as well as the general T1FNNs, even better. In this section, we
first introduce the interval type-2 fuzzy neural network (iT2FNN) systems, a type of fuzzy
inference system in neural network structures, followed by the construction of interval type-
2 AFMFs (iT2AFMFs) which is used to develop the recurrent interval type-2 fuzzy neural
network (RiT2FNN).

Figure 2. Symmetric interval type-2 fuzzy MFs: (a) Gaussian MF with uncertain mean and
(b) Gaussian MF with uncertain variance.

2.1 Interval type-2 fuzzy neural network systems
In general, given an system input data set xi , i=1, 2, …, n, and the desired output yp , p=1, 2,
…, m, the jth type-2 fuzzy rule has the form

(1)

where j is the number of rules, j
iG represents the linguistic term of the antecedent part, j

pw
represents the real number of the consequent part; n and m are the numbers of the input and
output dimensions, respectively. Based on the iT2FLSs, the construction of multi-
inputsingle- output (MISO) type of the iT2FNN system is shown in Fig. 1 (Lee & Lin, 2005).
Obviously, it is a static model and the structure uses interval type-2 fuzzy sets (G and w).
Figure 2 shows a commonly used two-dimensional interval type-2 Gaussian MF. Figure 2(a)
is an interval type-2 Gaussian MF with an interval mean in [m1,m2] and fixed variance σ,
and Fig. 2(b) is an interval type-2 Gaussian MF with an interval variance in [σ1, σ2] and fixed
mean m.
It can be found that the iT2FNN uses the interval type-2 fuzzy sets and it implements the
FLS in a four layer neural network structure. Layer-1 nodes are input nodes representing

 Recurrent Neural Networks

128

& Karake, 2003; Kim et al, 2003; Lee & Teng, 2001; Li et al, 2005; Lin & Ho, 2005; Ozen &
Garibaldi, 2004; Pan et al, 2007). The results showed that using AFMFs can improve the
approximation capability. According to the results above, our purpose is to introduce a
recurrent interval type-2 fuzzy neural network with asymmetric membership functions
(RiT2FNN-A). The asymmetric Gaussian function is a new type of membership function due
to excellent approximation results. It also provides a fuzzy-neural network with higher
flexibility to easily approach the optimum result more accurately. Literature (Lee & Pan,
2007; Pan et al, 2007) proposed that a T2FNN with AFMFs (T2FNN-A) can improve the
system performance and obtain better approach ability. However, the structure of network
was a static model. In this article, we proposed a combining interval type-2 fuzzy
asymmetric membership functions with recurrent neural network system, called
RiT2FNNA. The proposed RiT2FNN-A is a modified version of the T2FNN (Lee & Lin, 2005;
Lee et al, 2003; Lee & Pan, 2007; Pan et al, 2007; Wang et al, 2004), which provides memory
elements to capture system dynamic information (Lee & Teng, 2000). The RiT2FNN-A
system capability for temporarily storing information allowed us to extend the application
domain to include temporal problem. Simulations are shown to illustrate the effectiveness of
the RiT2FNN-A system.
This article is organized as follows. Section 2 introduces the interval type-2 fuzzy neural
systems and construction of interval type-2 AFMFs. The proposed RiT2FNN-A system is
described in Section 3. Simulation results about handling nonlinear system identification is
done and introduced in Section 4. Finally, conclusion is given.

Figure1, Diagram of MISO T2FNN system with M fuzzy rules (Lee & Lin, 2005).

2. Interval type-2 fuzzy neural systems
The concept of type-2 fuzzy set was initially proposed as an extension of ordinary one
(called type-1) by Zadeh (Zadeh 1975). In recent years, Mendel and Karnik have developed a

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

129

complete theory of T2FLSs (John & Coupland, 2007; Karnik et al, 1999; Lee & Lin, 2005;
Mendel, 2001). These systems are as an extension of general FLSs (called type-1) which is
characterized by IF-THEN rules (Lin & Lee, 1996). The computation of iT2FLSs is more
complex than the T1FLSs because of the antecedent and consequent type-2 fuzzy sets (John
& Coupland, 2007; Karnik et al, 1999; Mendel, 2001). In our previous results, we successfully
constructed the T2FNN to identify the nonlinear system (Lee & Lin, 2005; Lee et al, 2003; Lee
& Pan, 2007). They perform as well as the general T1FNNs, even better. In this section, we
first introduce the interval type-2 fuzzy neural network (iT2FNN) systems, a type of fuzzy
inference system in neural network structures, followed by the construction of interval type-
2 AFMFs (iT2AFMFs) which is used to develop the recurrent interval type-2 fuzzy neural
network (RiT2FNN).

Figure 2. Symmetric interval type-2 fuzzy MFs: (a) Gaussian MF with uncertain mean and
(b) Gaussian MF with uncertain variance.

2.1 Interval type-2 fuzzy neural network systems
In general, given an system input data set xi , i=1, 2, …, n, and the desired output yp , p=1, 2,
…, m, the jth type-2 fuzzy rule has the form

(1)

where j is the number of rules, j
iG represents the linguistic term of the antecedent part, j

pw
represents the real number of the consequent part; n and m are the numbers of the input and
output dimensions, respectively. Based on the iT2FLSs, the construction of multi-
inputsingle- output (MISO) type of the iT2FNN system is shown in Fig. 1 (Lee & Lin, 2005).
Obviously, it is a static model and the structure uses interval type-2 fuzzy sets (G and w).
Figure 2 shows a commonly used two-dimensional interval type-2 Gaussian MF. Figure 2(a)
is an interval type-2 Gaussian MF with an interval mean in [m1,m2] and fixed variance σ,
and Fig. 2(b) is an interval type-2 Gaussian MF with an interval variance in [σ1, σ2] and fixed
mean m.
It can be found that the iT2FNN uses the interval type-2 fuzzy sets and it implements the
FLS in a four layer neural network structure. Layer-1 nodes are input nodes representing

 Recurrent Neural Networks

130

input linguistic variables, and layer-4 nodes are output nodes. The nodes in layer 2 are term
nodes that act as T2MFs. All of the layer-3 nodes together formulate a fuzzy rule basis, and
the links between layers 3 and 4 function as a connectionist inference engine. Herein, we
introduce the iT2FNN system.
Layer 1: Input Layer
For the ith node of layer 1, the net input and the net output are represented as:

 (2)

where (1)
ix represents the ith input to the ith node of layer 1. The subscript i denotes the ith

input and the super-script (1) denotes the first layer.

Layer 2: Membership Layer
In this layer, each node performs a type-2 membership function (T2MF). Two kinds of T2MF
are introduced (Liang & Mendel, 2000; Mendel, 2001). For case 1- Gaussian MFs with
uncertain mean, shown in Fig. 2(a), we have

(3)

Case 2- Gaussian MFs with uncertain variance, shown in Fig. 2(b), we have

(4)

where mij and σ ij represent the center (or mean) and the width (or variance), respectively
The subscript ij indicates the jth term of the ith input (1)

iO , where j=1, …, M, and the

superscript (2) means the secondary layer. Therefore, the output (2)
ijO is represented as

[(2)
ijO (2)

ijO].
Layer 3: Rule Layer
In this layer, the operation is chosen as simple PRODUCT operation, i.e.,

(5)

where the weights (3)
ijw are assumed to be unity, and the subscript j indicates the jth rule, j =

1,…,M, and the super-script (3) means the third layer. Thus, the output (3)
ijO is represented as

Layer 4: Output Layer
Links in this layer are used to implement the consequence matching, type-reduction and
defuzzification (Lee & Lin, 2005; Mendel, 2001). Thus,

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

131

(6)

where

(7)

(8)

and

In order to get (4)

LO and (4)
RO , we first need to find coefficients R and L. Without loss of

generality, we assume that the pre-computed (4)
jw and (4)

jw are arranged in ascending order,
i.e., and (Mendel, 2001). Then,

Subsequently, the computation of (4)

LO is similar to the above procedure.

This five-step iterative procedure is called the Karnik-Mendel procedure (Liang & Mendel,
2000; Mendel, 2001).Thus, the input/output representation of iT2FNN system with
uncertain mean is

(9)

 Recurrent Neural Networks

130

input linguistic variables, and layer-4 nodes are output nodes. The nodes in layer 2 are term
nodes that act as T2MFs. All of the layer-3 nodes together formulate a fuzzy rule basis, and
the links between layers 3 and 4 function as a connectionist inference engine. Herein, we
introduce the iT2FNN system.
Layer 1: Input Layer
For the ith node of layer 1, the net input and the net output are represented as:

 (2)

where (1)
ix represents the ith input to the ith node of layer 1. The subscript i denotes the ith

input and the super-script (1) denotes the first layer.

Layer 2: Membership Layer
In this layer, each node performs a type-2 membership function (T2MF). Two kinds of T2MF
are introduced (Liang & Mendel, 2000; Mendel, 2001). For case 1- Gaussian MFs with
uncertain mean, shown in Fig. 2(a), we have

(3)

Case 2- Gaussian MFs with uncertain variance, shown in Fig. 2(b), we have

(4)

where mij and σ ij represent the center (or mean) and the width (or variance), respectively
The subscript ij indicates the jth term of the ith input (1)

iO , where j=1, …, M, and the

superscript (2) means the secondary layer. Therefore, the output (2)
ijO is represented as

[(2)
ijO (2)

ijO].
Layer 3: Rule Layer
In this layer, the operation is chosen as simple PRODUCT operation, i.e.,

(5)

where the weights (3)
ijw are assumed to be unity, and the subscript j indicates the jth rule, j =

1,…,M, and the super-script (3) means the third layer. Thus, the output (3)
ijO is represented as

Layer 4: Output Layer
Links in this layer are used to implement the consequence matching, type-reduction and
defuzzification (Lee & Lin, 2005; Mendel, 2001). Thus,

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

131

(6)

where

(7)

(8)

and

In order to get (4)

LO and (4)
RO , we first need to find coefficients R and L. Without loss of

generality, we assume that the pre-computed (4)
jw and (4)

jw are arranged in ascending order,
i.e., and (Mendel, 2001). Then,

Subsequently, the computation of (4)

LO is similar to the above procedure.

This five-step iterative procedure is called the Karnik-Mendel procedure (Liang & Mendel,
2000; Mendel, 2001).Thus, the input/output representation of iT2FNN system with
uncertain mean is

(9)

 Recurrent Neural Networks

132

Similarly, the iT2FNN using T2MFs with uncertain variance can be simplified as (Lee & Lin,
2005)

(10)

 (a) (b)

(c)

Figure 3. Construction of a type-2 AFMF: (a) upper MF (solid line), (b) lower MF (solid line),
and (c) constructed iT2AFMF.

2.2 Construction of interval type-2 asymmetric fuzzy membership functions
The interval T2MFs of the precondition part discussed in this article are of asymmetric type,
iT2AFMFs, as described below (see Fig. 3). Each MF is replaced by an asymmetric one
constructed from parts of four Gaussian functions; that is, each upper and lower MF is
constructed by two Gaussian MFs and one segment. Here we use the superscripts (l) and (r)
to denote the left and right curves of a Gaussian MF. The parameters of lower and upper
MFs are denoted by an underline (_) and bar (¯), respectively. Thus, the upper MF is
constructed as

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

133

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

≤≤

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

xmmx

mxm

mxmx

x

r
r

r

rl

l
l

l

G

)(
2

)(

)(

)()(

)(
2

)(

)(

~

for ,
2
1exp

for , 1

for ,
2
1exp

)(

σ

σ

μ

(11)

where ()lm and ()rm denote the means of two Gaussian MFs satisfying ()lm ≤ ()rm , and
()lσ and ()rσ denotes the deviation (i.e., width) of two Gaussian MFs. Figure 3(a) shows the

upper iT2AFMF constructed using ()lm , ()rm , ()lσ , and ()rσ . Similarly, the lower
asymmetric MF is defined as

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

≤≤

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

=

xmmxr

mxmr

mxmxr

x

r
r

r

rl

l
l

l

G

)(
2

)(

)(

)()(

)(
2

)(

)(

~

for ,
2
1exp

for ,

for ,
2
1exp

)(

σ

σ

μ

(12)

where ()lm ≤ ()rm and 0.5 ≤ r ≤ 1 . The corresponding widths of the MFs are ()lσ and ()rσ . To
avoid unreasonable MFs, the following constrains are added:

(13)

Figure 3(b) sketches the lower type-2 AFMF. The corresponding constructed iT2AFMF is
shown in Fig. 3(c). This introduces the properties of uncertain mean and variance (Karnik et
al, 1999). Additionally, we can construct other iT2AFMFs by tuning the parameters. The
corresponding tuning algorithm is derived to improve system accuracy and approximation
ability.

3. RiT2FNN-A system and learning
3.1 Network structure of RiT2FNN-A system
In this section, the structure of RiT2FNN-A system is introduced. The MISO case I
considered here for convenience. The proposed RiT2FNN-A is modified and extended from
previous results of literature (Juang, 2002; Karnik et al, 1999; Lee & Lin, 2005; Lee & Pan,
2007; Lin & Ho, 2005). It uses the interval asymmetric type-2 fuzzy sets and it implements
the FLS in a five-layer neural network structure which contains four-layer forward network
and a feedback layer. Layer-1 nodes are input nodes representing input linguistic variables,

 Recurrent Neural Networks

132

Similarly, the iT2FNN using T2MFs with uncertain variance can be simplified as (Lee & Lin,
2005)

(10)

 (a) (b)

(c)

Figure 3. Construction of a type-2 AFMF: (a) upper MF (solid line), (b) lower MF (solid line),
and (c) constructed iT2AFMF.

2.2 Construction of interval type-2 asymmetric fuzzy membership functions
The interval T2MFs of the precondition part discussed in this article are of asymmetric type,
iT2AFMFs, as described below (see Fig. 3). Each MF is replaced by an asymmetric one
constructed from parts of four Gaussian functions; that is, each upper and lower MF is
constructed by two Gaussian MFs and one segment. Here we use the superscripts (l) and (r)
to denote the left and right curves of a Gaussian MF. The parameters of lower and upper
MFs are denoted by an underline (_) and bar (¯), respectively. Thus, the upper MF is
constructed as

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

133

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

≤≤

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

xmmx

mxm

mxmx

x

r
r

r

rl

l
l

l

G

)(
2

)(

)(

)()(

)(
2

)(

)(

~

for ,
2
1exp

for , 1

for ,
2
1exp

)(

σ

σ

μ

(11)

where ()lm and ()rm denote the means of two Gaussian MFs satisfying ()lm ≤ ()rm , and
()lσ and ()rσ denotes the deviation (i.e., width) of two Gaussian MFs. Figure 3(a) shows the

upper iT2AFMF constructed using ()lm , ()rm , ()lσ , and ()rσ . Similarly, the lower
asymmetric MF is defined as

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

≤≤

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

=

xmmxr

mxmr

mxmxr

x

r
r

r

rl

l
l

l

G

)(
2

)(

)(

)()(

)(
2

)(

)(

~

for ,
2
1exp

for ,

for ,
2
1exp

)(

σ

σ

μ

(12)

where ()lm ≤ ()rm and 0.5 ≤ r ≤ 1 . The corresponding widths of the MFs are ()lσ and ()rσ . To
avoid unreasonable MFs, the following constrains are added:

(13)

Figure 3(b) sketches the lower type-2 AFMF. The corresponding constructed iT2AFMF is
shown in Fig. 3(c). This introduces the properties of uncertain mean and variance (Karnik et
al, 1999). Additionally, we can construct other iT2AFMFs by tuning the parameters. The
corresponding tuning algorithm is derived to improve system accuracy and approximation
ability.

3. RiT2FNN-A system and learning
3.1 Network structure of RiT2FNN-A system
In this section, the structure of RiT2FNN-A system is introduced. The MISO case I
considered here for convenience. The proposed RiT2FNN-A is modified and extended from
previous results of literature (Juang, 2002; Karnik et al, 1999; Lee & Lin, 2005; Lee & Pan,
2007; Lin & Ho, 2005). It uses the interval asymmetric type-2 fuzzy sets and it implements
the FLS in a five-layer neural network structure which contains four-layer forward network
and a feedback layer. Layer-1 nodes are input nodes representing input linguistic variables,

 Recurrent Neural Networks

134

and layer-4 nodes are output nodes representing output linguistic variables. The nodes in
layer 2 are term nodes that act as MFs, where each membership node is responsible for
mapping an input linguistic variable into a corresponding linguistic value for that variable.
All of the layer-3 nodes together formulate a fuzzy rule basis, and the links between layers 3
and 4 function as a connectionist inference engine. The rule nodes reside in layer 3, and
layer 5 is the recurrent part in type-2 fuzzy sets.
In general, given system input data xi , i = 1, 2,…, n, the internal variables g j , j = 1, 2,…, M,
and the desired output y p , p = 1, 2,…, m, the jth type-2 fuzzy rule for RiT2FNN-A has the
form:

(14)

where G represents the linguistic term of the antecedent part, w and a represents the
interval real number of the consequent part; and M is the total rule number. Here the fuzzy
MFs of the antecedent part G are of iT2AFMFs, which represent the different from typical
Gaussian MFs. The diagram of RiT2FNN-A is shown in Fig. 4. Below we indicate the signal
propagation and the operation functions of the nodes in each layer. In the following
description, ()l

iO denotes the ith output of a node in the lth layer.

Fig. 4. Diagram of the proposed RiT2FNN-A system.
Layer 1: Input Layer
For the ith node of layer 1, the net input and output are represented as

 (15)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

135

where (1)
ix represents the ith input to the jth node. Obviously, the nodes in this layer only

transmit input values to the next layer directly.

Layer 2: Membership Layer
In layer 2, each node performs an iT2AFMF introduced by (11)–(13) (shown in Fig. 3). The
following simplified notation is adopted

)(~)1(
~

)2(
iGij OO j

i
μ= (16)

It is clear that there are two parts in this layer, regular nodes and feedback nodes. Their
input are (1)

jO and g j (k). Therefore, for network input x i , the output is

(17)

For internal or feedback variable g j ,

(18)

where the subscript ij indicates the jth term of the ith input (1)
iO . The superscript F indicates

the feedback layer.

Layer 3: Rule Layer
The links in layer 3 are used to implement the antecedent matching, and these are equal to
the work in the rule layer. Using the product t-norm, the firing strength associated with the
jth rule is

1
1

() () ()
j j jF

n j

j

nG G G
f x xμ μ μ= ∗ ∗ ∗ ⋅ (19)

1
1

() () ()
j j jF

n j

j

nG G G
f x xμ μ μ= ∗ ∗ ∗ ⋅ (20)

where μ (⋅) and μ (⋅) are the lower and upper membership grades of G (⋅), respectively.
Therefore, a simple product operation is used. Then, for the jth input rule node:

(21)

where weights (3)
ijw are assumed to be unity and

(22)

Layer 4: Output Layer
Without loss of generality, the consequent part of the iT2FLS is
The vector notations and are used for clarity. The

 Recurrent Neural Networks

134

and layer-4 nodes are output nodes representing output linguistic variables. The nodes in
layer 2 are term nodes that act as MFs, where each membership node is responsible for
mapping an input linguistic variable into a corresponding linguistic value for that variable.
All of the layer-3 nodes together formulate a fuzzy rule basis, and the links between layers 3
and 4 function as a connectionist inference engine. The rule nodes reside in layer 3, and
layer 5 is the recurrent part in type-2 fuzzy sets.
In general, given system input data xi , i = 1, 2,…, n, the internal variables g j , j = 1, 2,…, M,
and the desired output y p , p = 1, 2,…, m, the jth type-2 fuzzy rule for RiT2FNN-A has the
form:

(14)

where G represents the linguistic term of the antecedent part, w and a represents the
interval real number of the consequent part; and M is the total rule number. Here the fuzzy
MFs of the antecedent part G are of iT2AFMFs, which represent the different from typical
Gaussian MFs. The diagram of RiT2FNN-A is shown in Fig. 4. Below we indicate the signal
propagation and the operation functions of the nodes in each layer. In the following
description, ()l

iO denotes the ith output of a node in the lth layer.

Fig. 4. Diagram of the proposed RiT2FNN-A system.
Layer 1: Input Layer
For the ith node of layer 1, the net input and output are represented as

 (15)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

135

where (1)
ix represents the ith input to the jth node. Obviously, the nodes in this layer only

transmit input values to the next layer directly.

Layer 2: Membership Layer
In layer 2, each node performs an iT2AFMF introduced by (11)–(13) (shown in Fig. 3). The
following simplified notation is adopted

)(~)1(
~

)2(
iGij OO j

i
μ= (16)

It is clear that there are two parts in this layer, regular nodes and feedback nodes. Their
input are (1)

jO and g j (k). Therefore, for network input x i , the output is

(17)

For internal or feedback variable g j ,

(18)

where the subscript ij indicates the jth term of the ith input (1)
iO . The superscript F indicates

the feedback layer.

Layer 3: Rule Layer
The links in layer 3 are used to implement the antecedent matching, and these are equal to
the work in the rule layer. Using the product t-norm, the firing strength associated with the
jth rule is

1
1

() () ()
j j jF

n j

j

nG G G
f x xμ μ μ= ∗ ∗ ∗ ⋅ (19)

1
1

() () ()
j j jF

n j

j

nG G G
f x xμ μ μ= ∗ ∗ ∗ ⋅ (20)

where μ (⋅) and μ (⋅) are the lower and upper membership grades of G (⋅), respectively.
Therefore, a simple product operation is used. Then, for the jth input rule node:

(21)

where weights (3)
ijw are assumed to be unity and

(22)

Layer 4: Output Layer
Without loss of generality, the consequent part of the iT2FLS is
The vector notations and are used for clarity. The

 Recurrent Neural Networks

136

remaining works are type reduction and defuzzification. For type reduction, we should
calculate the lower and upper bounds [yl, yr] (Karnik et al, 1999; Mendel, 2001). Modifying
from the Karnik-Mendel procedure (Karnik et al, 1999; Mendel, 2001), let

 (23)

Note that the normalization (1

M
ii f

=∑) is removed here to simplify the type reduction
procedure, computation, and the derivation of the learning algorithm by the gradient
method. We denote the maximum and minimum of 1

M
i ii f w

=∑ as (4)O and (4)O ,

(24)

(25)

where

(26)

(27)

It is obvious that R and L should be calculated first. The weights are arranged in order as
and . According to the Karnik-Mendel procedure (Karnik et

al, 1999; Liang & Mendel, 2000; Mendel, 2001), L and R are

(28)

According to the above introduction, only the minimum of (4)O and the maximum of
(4)O should be calculated; which therefore simplifies the type-reduction computation.

Finally, the crisp output is

(29)

Layer 5: Feedback Layer
This layer contains the context nodes, which is used to produce the internal variable (5)

jO .

Each rule is associated with a particular internal variable. Hence, the number of the context

nodes is equal to the number of rules. The same operations (type-reduction and
defuzzifcation) as layer 4 are performed here.

(30)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

137

(31)

(32)

(33)

(34)

Note that the delayed value of g j is fed into layer 2, and it acts as an input variable to the
precondition part of a rule. Each fuzzy rule has the corresponding internal variable g j which
is used to decide the influence degree of temporal history to the current rule.

3.2 Learning algorithm for RiT2FNN-A
The gradient descent method is adopted to derive learning algorithm of the RiT2FNN-A
system. For clarification, we consider the single-output system and define the error cost
function as

(35)

where yd is the desired output and ŷ is the RiT2FNN-A’s output. Using the gradient
descent algorithm, the parameters updated law is

(36)

in which η is the learning rate (0 <η ≤ 1). are the
adjustable parameters, where W w is consequent weights, W and WF are parameters of lower
MFs, W and W F are upper MFs parameters, W a is parameter in feedback layer, and r and
 r F are the column vectors, i.e.,

 (37)

 (38)

 (39)

 (40)

 Recurrent Neural Networks

136

remaining works are type reduction and defuzzification. For type reduction, we should
calculate the lower and upper bounds [yl, yr] (Karnik et al, 1999; Mendel, 2001). Modifying
from the Karnik-Mendel procedure (Karnik et al, 1999; Mendel, 2001), let

 (23)

Note that the normalization (1

M
ii f

=∑) is removed here to simplify the type reduction
procedure, computation, and the derivation of the learning algorithm by the gradient
method. We denote the maximum and minimum of 1

M
i ii f w

=∑ as (4)O and (4)O ,

(24)

(25)

where

(26)

(27)

It is obvious that R and L should be calculated first. The weights are arranged in order as
and . According to the Karnik-Mendel procedure (Karnik et

al, 1999; Liang & Mendel, 2000; Mendel, 2001), L and R are

(28)

According to the above introduction, only the minimum of (4)O and the maximum of
(4)O should be calculated; which therefore simplifies the type-reduction computation.

Finally, the crisp output is

(29)

Layer 5: Feedback Layer
This layer contains the context nodes, which is used to produce the internal variable (5)

jO .

Each rule is associated with a particular internal variable. Hence, the number of the context

nodes is equal to the number of rules. The same operations (type-reduction and
defuzzifcation) as layer 4 are performed here.

(30)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

137

(31)

(32)

(33)

(34)

Note that the delayed value of g j is fed into layer 2, and it acts as an input variable to the
precondition part of a rule. Each fuzzy rule has the corresponding internal variable g j which
is used to decide the influence degree of temporal history to the current rule.

3.2 Learning algorithm for RiT2FNN-A
The gradient descent method is adopted to derive learning algorithm of the RiT2FNN-A
system. For clarification, we consider the single-output system and define the error cost
function as

(35)

where yd is the desired output and ŷ is the RiT2FNN-A’s output. Using the gradient
descent algorithm, the parameters updated law is

(36)

in which η is the learning rate (0 <η ≤ 1). are the
adjustable parameters, where W w is consequent weights, W and WF are parameters of lower
MFs, W and W F are upper MFs parameters, W a is parameter in feedback layer, and r and
 r F are the column vectors, i.e.,

 (37)

 (38)

 (39)

 (40)

 Recurrent Neural Networks

138

 (41)

 (42)

Considering the term of ∂E(k)/∂W(k) , we have

(43)

Thus, (36) can be rewritten as

(44)

where e(k) = yd (k) - ŷ (k). The remaining work involves finding the corresponding partial
derivatives with respect to each parameter.

Observing equation (24) and if j≤L, only the term of should be considered, and

only consider if j>L. Moreover, we consider if j≤R in (25), as well

as where j>R. Thus, we should notice the values of j, R, and L in deriving the
update laws.
In order to avoid the unnecessary tuning, we must also consider the firing regions of MFs
for input variable xi. For example, considering an upper MF as shown in Fig. 5, region
(I)- xi ≤ , only and are updated; region (II)- ≤ xi , only and must be
updated as well. Finally, region (III)- < xi < , nothing should be done. Therefore, we
can tune one side of MF for each training pattern. The results of lower MFs are the same as
above discussion. Besides, parameter r must be updated for all three regions. Owing the
recurrent property, the real time recurrent learning algorithm (RTRL) is used.

Fig. 5. Definitions of firing regions of input variable xi (upper MF).

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

139

By the gradient method, we derive the parameters update laws. Consider equations (24),
(25), and (29), the output of RiT2FNN-A is rewritten as

(45)

From equations (36) and (44), our major work is to find the partial derivation of RiT2FNN-A
with respect to each parameter which can be obtained using the chain rule. We will show
the update rule of Ww and W only. Other parameter’s updated rule can be derived the same
way and are omitted.
-Parameters Ww

(46)

where f L j , and f R j , are introduced previously in (26) and (27), and ηw is the corresponding
learning rate.
-Parameters W
Region (I): xi ≤

(47)

where η denotes the corresponding learning rate,

 Recurrent Neural Networks

138

 (41)

 (42)

Considering the term of ∂E(k)/∂W(k) , we have

(43)

Thus, (36) can be rewritten as

(44)

where e(k) = yd (k) - ŷ (k). The remaining work involves finding the corresponding partial
derivatives with respect to each parameter.

Observing equation (24) and if j≤L, only the term of should be considered, and

only consider if j>L. Moreover, we consider if j≤R in (25), as well

as where j>R. Thus, we should notice the values of j, R, and L in deriving the
update laws.
In order to avoid the unnecessary tuning, we must also consider the firing regions of MFs
for input variable xi. For example, considering an upper MF as shown in Fig. 5, region
(I)- xi ≤ , only and are updated; region (II)- ≤ xi , only and must be
updated as well. Finally, region (III)- < xi < , nothing should be done. Therefore, we
can tune one side of MF for each training pattern. The results of lower MFs are the same as
above discussion. Besides, parameter r must be updated for all three regions. Owing the
recurrent property, the real time recurrent learning algorithm (RTRL) is used.

Fig. 5. Definitions of firing regions of input variable xi (upper MF).

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

139

By the gradient method, we derive the parameters update laws. Consider equations (24),
(25), and (29), the output of RiT2FNN-A is rewritten as

(45)

From equations (36) and (44), our major work is to find the partial derivation of RiT2FNN-A
with respect to each parameter which can be obtained using the chain rule. We will show
the update rule of Ww and W only. Other parameter’s updated rule can be derived the same
way and are omitted.
-Parameters Ww

(46)

where f L j , and f R j , are introduced previously in (26) and (27), and ηw is the corresponding
learning rate.
-Parameters W
Region (I): xi ≤

(47)

where η denotes the corresponding learning rate,

 Recurrent Neural Networks

140

Region (II):

(48)

where

Region (III):

(49)

Note that are recurrent factors and equal to zero initially and are

reset to zero after a period of time. is the recurrent weighting factor.
By using the Lyapunov stability approach, we have the following convergence theorem.

Theorem 1: Let be the learning rates of the tuning parameters for RiT2FNNA
The asymptotic convergence of RiT2FNN-A is guaranteed if proper learning rates

 are chosen satisfying the following condition

 (50)

where

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

141

Proof:
First, we define the Lyapunov function as follows:

(51)

where ŷ (k) is RIT2FNN-A’s system output, yd(k) is desired output and e(k) denotes the
approximated error. Thus, the change of V(k) is

(52)

The error difference due to the learning can be represented by

(53)

where

 Recurrent Neural Networks

140

Region (II):

(48)

where

Region (III):

(49)

Note that are recurrent factors and equal to zero initially and are

reset to zero after a period of time. is the recurrent weighting factor.
By using the Lyapunov stability approach, we have the following convergence theorem.

Theorem 1: Let be the learning rates of the tuning parameters for RiT2FNNA
The asymptotic convergence of RiT2FNN-A is guaranteed if proper learning rates

 are chosen satisfying the following condition

 (50)

where

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

141

Proof:
First, we define the Lyapunov function as follows:

(51)

where ŷ (k) is RIT2FNN-A’s system output, yd(k) is desired output and e(k) denotes the
approximated error. Thus, the change of V(k) is

(52)

The error difference due to the learning can be represented by

(53)

where

 Recurrent Neural Networks

142

Therefore, the change in the Lyapunov function is

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

143

(54)

where

Let

 Recurrent Neural Networks

142

Therefore, the change in the Lyapunov function is

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

143

(54)

where

Let

 Recurrent Neural Networks

144

The convergence of RiT2FNN-A is guaranteed if ΔV (k) < 0 , i.e., λ > 0 , and

This completes the proof.

Fig. 7. Series-parallel identification scheme using RiT2FNN-A.

(a)

(b)

Fig. 8. Phase plane plot of chaotic system; (a) the chaotic system, (b) identification result of
RiT2FNN-A.

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

145

4. System identification using RiT2FNN-A system
Consider the following non-linear system

 (55)

where u and yd are systematic input and output; function f(.) is the unknown function which
is approximated by the RiT2FNN-A. And then m and n are all positive integer number.
Here, the series-parallel training scheme is adopted, as shown in Fig. 7. The approximated
error is defined as follows

 (56)

where ŷ (k) denotes the RiT2FNN-A’s output. Clearly, the inputs of RiT2FNN-A are contro
input u and system past input yd(k-1). If a static network system (or feed-forward neural
network) is used, such as, neural network, fuzzy neural network, T2FNN, T2FNN-A, the
input number of n+m should be used. This is due to the dynamic property (feedback layer)
of RiT2FNN-A system.
In general, the following Training-Mean-Square-Error (TMSE) is adopted to be the
performance index.

(57)

where N is the number of training pattern.
In this article, the following nonlinear chaotic system is considered

 (58)

where P=1.4 and Q=0.3.
The feed-forward type-2 fuzzy neural network- T2FNN and T2FNN-A, are used to have
comparisons in nonlinear system identification for illustrating the performance of
RiT2FNNA. It is clear that the feed-forward T2FNN with three input nodes for feeding
appropriate past values of yd and u were used. In this article, only two values, yd(k-1) and
u(k), are fed into the RiT2FNN-A to predict the system output. In training the RiT2FNN-A,
we first randomly choose the training data (1000 pairs) from system over the interval
[-1.5 1.5]. Then, the RiT2FNN-A is used to approximate the chaotic system. In this
simulation, we use 3 rules to construct the RiT2FNN-A. Learning rate is selected as 0.1.
The simulation results are described in Figs. 8 and 9. Figure 8(a) shows the phase plane of
this chaotic system, whereas Fig. 8(b) shows the result of RiT2FNN-A system after training
(10 epochs). The initial point is [yd(1), yd(0)]T=[0.4, 0.4]T and the TMSE is 0.00019886, which
is less than the results of T2FNN-A and T2FNN (as shown in Fig. 9). The initial interval
T2MFs for input and internal variables x and g are empirically designed as Figs. 10(a) and
10(b), respectively. After training, the final iT2AFMFs are shown in Figs. 10(c) and 10(d).
Obviously, the iT2AFMFs are obtained for better performance.
In order to make sure RiT2FNN-A system to be stable in training, we need to check the
condition (50). Figure 11 shows the values of

 Recurrent Neural Networks

144

The convergence of RiT2FNN-A is guaranteed if ΔV (k) < 0 , i.e., λ > 0 , and

This completes the proof.

Fig. 7. Series-parallel identification scheme using RiT2FNN-A.

(a)

(b)

Fig. 8. Phase plane plot of chaotic system; (a) the chaotic system, (b) identification result of
RiT2FNN-A.

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

145

4. System identification using RiT2FNN-A system
Consider the following non-linear system

 (55)

where u and yd are systematic input and output; function f(.) is the unknown function which
is approximated by the RiT2FNN-A. And then m and n are all positive integer number.
Here, the series-parallel training scheme is adopted, as shown in Fig. 7. The approximated
error is defined as follows

 (56)

where ŷ (k) denotes the RiT2FNN-A’s output. Clearly, the inputs of RiT2FNN-A are contro
input u and system past input yd(k-1). If a static network system (or feed-forward neural
network) is used, such as, neural network, fuzzy neural network, T2FNN, T2FNN-A, the
input number of n+m should be used. This is due to the dynamic property (feedback layer)
of RiT2FNN-A system.
In general, the following Training-Mean-Square-Error (TMSE) is adopted to be the
performance index.

(57)

where N is the number of training pattern.
In this article, the following nonlinear chaotic system is considered

 (58)

where P=1.4 and Q=0.3.
The feed-forward type-2 fuzzy neural network- T2FNN and T2FNN-A, are used to have
comparisons in nonlinear system identification for illustrating the performance of
RiT2FNNA. It is clear that the feed-forward T2FNN with three input nodes for feeding
appropriate past values of yd and u were used. In this article, only two values, yd(k-1) and
u(k), are fed into the RiT2FNN-A to predict the system output. In training the RiT2FNN-A,
we first randomly choose the training data (1000 pairs) from system over the interval
[-1.5 1.5]. Then, the RiT2FNN-A is used to approximate the chaotic system. In this
simulation, we use 3 rules to construct the RiT2FNN-A. Learning rate is selected as 0.1.
The simulation results are described in Figs. 8 and 9. Figure 8(a) shows the phase plane of
this chaotic system, whereas Fig. 8(b) shows the result of RiT2FNN-A system after training
(10 epochs). The initial point is [yd(1), yd(0)]T=[0.4, 0.4]T and the TMSE is 0.00019886, which
is less than the results of T2FNN-A and T2FNN (as shown in Fig. 9). The initial interval
T2MFs for input and internal variables x and g are empirically designed as Figs. 10(a) and
10(b), respectively. After training, the final iT2AFMFs are shown in Figs. 10(c) and 10(d).
Obviously, the iT2AFMFs are obtained for better performance.
In order to make sure RiT2FNN-A system to be stable in training, we need to check the
condition (50). Figure 11 shows the values of

 Recurrent Neural Networks

146

which were introduced previously in (50), the stable condition hold if β<2. Obviously,
condition (50) holds in training epochs.

Fig. 9. Simulation results of system identification; (a) system output, (b) learning curves of
the T2FNN (dotted-line), T2FNN-A (dashed-line) and RiT2FNN-A (solid-line).

(a)

(b)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

147

(c)

(d)

Fig. 10. Membership functions; (a) initial MFs for x1, (b) initial MFs for g1, g2, and g3, (c) MFs
for x1 after training, and (d) MFs for g1, g2, and g3 after training.

Fig. 11. Condition checking of (50).

 Recurrent Neural Networks

146

which were introduced previously in (50), the stable condition hold if β<2. Obviously,
condition (50) holds in training epochs.

Fig. 9. Simulation results of system identification; (a) system output, (b) learning curves of
the T2FNN (dotted-line), T2FNN-A (dashed-line) and RiT2FNN-A (solid-line).

(a)

(b)

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

147

(c)

(d)

Fig. 10. Membership functions; (a) initial MFs for x1, (b) initial MFs for g1, g2, and g3, (c) MFs
for x1 after training, and (d) MFs for g1, g2, and g3 after training.

Fig. 11. Condition checking of (50).

 Recurrent Neural Networks

148

This simulation demonstrates that the RiT2FNN-A has the smaller network structure for
identification. In addition, we observe that the identification error of the RiT2FNN-A is less
than that of T2FNN-A for each epoch.

Table 1. Comparison results of network structure, rule number, parameter number, and
TMSE.

Table 1 shows the comparison results of network structure, rule number, parameter number,
and TMSE. Obviously, the asymmetric MFs improve the approximation accuracy of the
iT2FLSs. On the other hand, for a given approximation accuracy, RiT2FNN-A can achieve
by using less fuzzy rules and tuning parameters with simplified structure.

5. Conclusion
This article has introduced a novel recurrent interval type-2 fuzzy neural network with
asymmetric membership functions, which utilizes Lyapunov stability theorem to prove the
stability of the system. The novel RiT2FNN-A use the interval asymmetric type-2 fuzzy sets
implements the FLS in a five-layer neural network structure which contains four layer
forward network and a feedback layer. According to the Lyapunov theorem and gradient
descent method, the convergence of RiT2FNN-A is guaranteed and the corresponding
learning algorithm is derived. Moreover, the RIT2FNN-A capability to temporarily store
information allowed us to extend the application domain to include temporal problem. In
application, We have found that the proposed RiT2FNN-A can use a smaller network
structure and a small number of tuning parameters than the feed-forward fuzzy neural
networks to obtain similar or better performance. It can successfully also approximate to a
dynamic system mapping as accurately as desired.

6. References
Baldwin, J. F. & Karake, S. B. (2003). Asymmetric Triangular Fuzzy Sets for Classification

Models, Lecture Notes in Artificial Intelligence, Vol. 2773, pp. 364-370, 2003.
Castillo, O. & Melin, P. (2004). Adaptive Noise Cancellation Using Type-2 Fuzzy Logic and

Neural Networks, IEEE International Conf. on Fuzzy Systems, Vol. 2, pp. 1093-1098,
2004.

Jang, J. S. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. on
Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, 1993.

John, R. & Coupl, S. (1999). Geometric Type-1 and Type-2 Fuzzy Logic Systems, IEEE Trans.
on Fuzzy Systems, Special Issue on Type-2 Fuzzy Systems, Vol. 15, No. 1, pp. 3-15, 2007.

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

149

Juang, C. F. (2002), A TSK-type recurrent fuzzy network for dynamic systems processingby
neural network and genetic algorithms, IEEE trans. on Fuzzy Systems, Vol. 10, No. 2,
pp. 155- 170, 2002.

Karnik, N. N., Mendel, J. & Liang, Q. (1999). Type-2 Fuzzy Logic Systems, IEEE Trans. on
Fuzzy Systems, Vol. 7, No. 6, pp. 643-658, 1999.

Kim, M. S., Kim, C. H. & Lee, J. J. (2003). Evolutionary Optimization of Fuzzy Models with
Asymmetric RBF Membership Functions Using Simplified Fitness Sharing, Lecture
Notes in Artificial Intelligence, Vol. 2715, pp. 628-635, 2003.

Lee, C. H. & Lin, Y. C. (2005). An Adaptive Type-2 Fuzzy Neural Controller for Nonlinear
Uncertain Systems, International Journal of Control and Intelligent, Vol. 12, No. 1, pp.
41-50, 2005.

Lee, C. H. & Teng, C. C. (2000). Identification and Control of Dynamic Systems Using
Recurrent Fuzzy Neural Networks, IEEE Trans. on Fuzzy Systems, Vol. 8, No. 4, pp.
349-366, 2000.

Lee, C. H. & Teng, C. C. (2001).Fine Tuning of Membership Functions for Fuzzy Neural
Systems, Asian Journal of Control, Vol. 3, No. 3, pp. 216-225, 2001.

Lee, C. H. Lin, Y. C. & Lai, W. Y. (2003). Systems Identification Using Type-2 Fuzzy Neural
Network (Type-2 FNN) Systems, IEEE International Sym. on Computational
Intelligence in Robotics and Automation, Vol. 3, pp. 1264-1269, 2003.

Lee, C. H. & Pan, H. Y. (2007). Enhancing the Performance of Neural Fuzzy Systems Using
Asymmetric Membership Functions, Revised in Fuzzy Sets and Systems, 2007.

Li, C. Cheng, K. H. & Lee, J. D. (2005). Hybrid Learning Neuro-fuzzy Approach for Complex
Modeling Using Asymmetric Fuzzy Sets, Proc. of the 17th IEEE International Conf. on
Tools with Artificial Intelligence, pp. 397-401, 2005.

Li, C. & Lee, C. Y. (2003). Self-organizing Neuro-fuzzy System for Control of Unknown
Plants, IEEE Trans. on Fuzzy Systems, Vol. 11, No. 1, pp. 135-150, 2003.

A. Q. Liang & J. M. Mendel, Interval Type-2 Fuzzy Logic Systems: Theory and Design, IEEE
Trans. on Fuzzy Systems, Vol. 8, No. 5, pp. 535-550, 2000.

Lin, C. T. & Lee, C. S. G. Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems,
Prentice-Hall, Englewood Cliffs, 1996.

Lin, C. J. & Ho, W. H. (2005). An Asymmetric-similarity-measure-based Neural Fuzzy
Inference System, Fuzzy Sets and Systems, Vol. 152, pp. 535-551, 2005.

Lotfi, A. & Tsoi, A. C. (1996). Learning Fuzzy Inference Systems Using An Adaptive
Membership Function Scheme, IEEE Trans. on Systems, Man, and Cybernetics, Part-B,
Vol. 26, No. 2, pp. 326-331, 1996.

Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions, Upper Saddle River, Prentice-Hall, NJ, 2001.

Hagras, H. (2007). Type-2 FLCs: A New Generation of Fuzzy Controllers, IEEE
Computational Intelligence Magazine, Vol. 2, No. 1, pp. 30-43, 2007.

Narendra, K. S. & Parthasarathy, K. (1990). Identification and Control of Dynamical Systems
Using Neural Networks, IEEE Trans. on Neural Networks, Vol. 1, No. 1, pp. 4-27,
1990.

Ozen, T. & Garibaldi, J. M. (2004). Effect of Type-2 Fuzzy Membership Function Shape on
Modeling Variation in Human Decision Making, IEEE International Conf. on Fuzzy
Systems, Vol.2, pp. 971-976, 2004.

 Recurrent Neural Networks

148

This simulation demonstrates that the RiT2FNN-A has the smaller network structure for
identification. In addition, we observe that the identification error of the RiT2FNN-A is less
than that of T2FNN-A for each epoch.

Table 1. Comparison results of network structure, rule number, parameter number, and
TMSE.

Table 1 shows the comparison results of network structure, rule number, parameter number,
and TMSE. Obviously, the asymmetric MFs improve the approximation accuracy of the
iT2FLSs. On the other hand, for a given approximation accuracy, RiT2FNN-A can achieve
by using less fuzzy rules and tuning parameters with simplified structure.

5. Conclusion
This article has introduced a novel recurrent interval type-2 fuzzy neural network with
asymmetric membership functions, which utilizes Lyapunov stability theorem to prove the
stability of the system. The novel RiT2FNN-A use the interval asymmetric type-2 fuzzy sets
implements the FLS in a five-layer neural network structure which contains four layer
forward network and a feedback layer. According to the Lyapunov theorem and gradient
descent method, the convergence of RiT2FNN-A is guaranteed and the corresponding
learning algorithm is derived. Moreover, the RIT2FNN-A capability to temporarily store
information allowed us to extend the application domain to include temporal problem. In
application, We have found that the proposed RiT2FNN-A can use a smaller network
structure and a small number of tuning parameters than the feed-forward fuzzy neural
networks to obtain similar or better performance. It can successfully also approximate to a
dynamic system mapping as accurately as desired.

6. References
Baldwin, J. F. & Karake, S. B. (2003). Asymmetric Triangular Fuzzy Sets for Classification

Models, Lecture Notes in Artificial Intelligence, Vol. 2773, pp. 364-370, 2003.
Castillo, O. & Melin, P. (2004). Adaptive Noise Cancellation Using Type-2 Fuzzy Logic and

Neural Networks, IEEE International Conf. on Fuzzy Systems, Vol. 2, pp. 1093-1098,
2004.

Jang, J. S. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. on
Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, 1993.

John, R. & Coupl, S. (1999). Geometric Type-1 and Type-2 Fuzzy Logic Systems, IEEE Trans.
on Fuzzy Systems, Special Issue on Type-2 Fuzzy Systems, Vol. 15, No. 1, pp. 3-15, 2007.

Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions

149

Juang, C. F. (2002), A TSK-type recurrent fuzzy network for dynamic systems processingby
neural network and genetic algorithms, IEEE trans. on Fuzzy Systems, Vol. 10, No. 2,
pp. 155- 170, 2002.

Karnik, N. N., Mendel, J. & Liang, Q. (1999). Type-2 Fuzzy Logic Systems, IEEE Trans. on
Fuzzy Systems, Vol. 7, No. 6, pp. 643-658, 1999.

Kim, M. S., Kim, C. H. & Lee, J. J. (2003). Evolutionary Optimization of Fuzzy Models with
Asymmetric RBF Membership Functions Using Simplified Fitness Sharing, Lecture
Notes in Artificial Intelligence, Vol. 2715, pp. 628-635, 2003.

Lee, C. H. & Lin, Y. C. (2005). An Adaptive Type-2 Fuzzy Neural Controller for Nonlinear
Uncertain Systems, International Journal of Control and Intelligent, Vol. 12, No. 1, pp.
41-50, 2005.

Lee, C. H. & Teng, C. C. (2000). Identification and Control of Dynamic Systems Using
Recurrent Fuzzy Neural Networks, IEEE Trans. on Fuzzy Systems, Vol. 8, No. 4, pp.
349-366, 2000.

Lee, C. H. & Teng, C. C. (2001).Fine Tuning of Membership Functions for Fuzzy Neural
Systems, Asian Journal of Control, Vol. 3, No. 3, pp. 216-225, 2001.

Lee, C. H. Lin, Y. C. & Lai, W. Y. (2003). Systems Identification Using Type-2 Fuzzy Neural
Network (Type-2 FNN) Systems, IEEE International Sym. on Computational
Intelligence in Robotics and Automation, Vol. 3, pp. 1264-1269, 2003.

Lee, C. H. & Pan, H. Y. (2007). Enhancing the Performance of Neural Fuzzy Systems Using
Asymmetric Membership Functions, Revised in Fuzzy Sets and Systems, 2007.

Li, C. Cheng, K. H. & Lee, J. D. (2005). Hybrid Learning Neuro-fuzzy Approach for Complex
Modeling Using Asymmetric Fuzzy Sets, Proc. of the 17th IEEE International Conf. on
Tools with Artificial Intelligence, pp. 397-401, 2005.

Li, C. & Lee, C. Y. (2003). Self-organizing Neuro-fuzzy System for Control of Unknown
Plants, IEEE Trans. on Fuzzy Systems, Vol. 11, No. 1, pp. 135-150, 2003.

A. Q. Liang & J. M. Mendel, Interval Type-2 Fuzzy Logic Systems: Theory and Design, IEEE
Trans. on Fuzzy Systems, Vol. 8, No. 5, pp. 535-550, 2000.

Lin, C. T. & Lee, C. S. G. Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems,
Prentice-Hall, Englewood Cliffs, 1996.

Lin, C. J. & Ho, W. H. (2005). An Asymmetric-similarity-measure-based Neural Fuzzy
Inference System, Fuzzy Sets and Systems, Vol. 152, pp. 535-551, 2005.

Lotfi, A. & Tsoi, A. C. (1996). Learning Fuzzy Inference Systems Using An Adaptive
Membership Function Scheme, IEEE Trans. on Systems, Man, and Cybernetics, Part-B,
Vol. 26, No. 2, pp. 326-331, 1996.

Mendel, J. M. (2001). Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New
Directions, Upper Saddle River, Prentice-Hall, NJ, 2001.

Hagras, H. (2007). Type-2 FLCs: A New Generation of Fuzzy Controllers, IEEE
Computational Intelligence Magazine, Vol. 2, No. 1, pp. 30-43, 2007.

Narendra, K. S. & Parthasarathy, K. (1990). Identification and Control of Dynamical Systems
Using Neural Networks, IEEE Trans. on Neural Networks, Vol. 1, No. 1, pp. 4-27,
1990.

Ozen, T. & Garibaldi, J. M. (2004). Effect of Type-2 Fuzzy Membership Function Shape on
Modeling Variation in Human Decision Making, IEEE International Conf. on Fuzzy
Systems, Vol.2, pp. 971-976, 2004.

 Recurrent Neural Networks

150

Pan, H. Y., Lee, C. H., Chang, F. K., & Chang, S. K. (2007). Construction of Asymmetric
Type-2 Fuzzy Membership Functions and Application in Time Series Prediction,
International Conf. on Machine Learning and Cybernetics, Vol. 4, pp. 2024-2030, 2007.

Wang, C. H. Cheng, C. S. & Lee, T. T. (2004). Dynamical Optimal Training for Interval Type-
2 Fuzzy Neural Network (T2FNN), IEEE Trans. on Systems, Man, Cybernetics Part-B,
Vol. 34, No. 3, pp. 1462-1477, 2004.

Wang, L. X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice
-Hall, Englewood Cliffs, NJ, 1994.

Zadeh, L. A. (1975). The Concept of A Linguistic Variable and Its Application to
Approximate Reasoning, Information Sciences, Vol. 8, No.3, pp. 199-249, 1975.

8

Rollover Control in Heavy Vehicles via
Recurrent High Order Neural Networks

Luis J. Ricalde¹, Edgar N. Sanchez2, Reza Langari3 and Danial Shahmirzadi3

1 Universidad Autonoma de Yucatan, Faculty of Engineering, Merida, Yuc.,
2 CINVESTAV, Unidad Guadalajara, Guadalajara, Jalisco,

3 Texas A&M University, College Station, TX,
 1,2Mexico

3USA

1. Introduction
Heavy vehicles, such as tractor-semitrailers, play an important role in transportation
systems. They present more complex dynamical behavior than passenger cars, due to their
high centers of gravity, which can vary depending on the load conditions, and are highly
susceptible to rollover during cornering. Heavy vehicle rollover on highways occurs as a
result of cornering with excessively high speed, cornering on a small radius curve or sudden
lane change. However, if rollover threat is predicted using an appropriate algorithm, then
the accident can be prevented by the driver's corrective maneuvers. For situations where
rollover warning is ineffective, active rollover control is necessary.
Most of the rollover warning algorithms use instantaneous rollover-threat index to identify
the rollover threat. Since a rollover warning may be issued at 75 % of the rollover threshold
acceleration, the time from warning to rollover is too short for the driver to respond
effectively. However, if the rollover threat is predicted using the expected maneuvers, a
warning can be issued sufficiently in advance of the event. This fact implies that warning
systems based on predicted rollover threat can be more effective.
Many control strategies have been designed to prevent rollover, most of them based on
active speed control and active roll control. However, active roll control is ineffective for
sharp turns, since it does not reduce the lateral acceleration, and requires hydraulic
actuators which increase the cost considerably. On the other hand, the use of differential
braking prevent jack-knifing and loss of direction generated by sudden braking during
cornering.
Different loading configurations produce different reaction forces on each wheel. This
motivates the use of nonlinear robust controllers which have to be able to deal with
parametric uncertainties, but most controllers are based on reduced models, in order to
lessen the computational requirements. Many mathematical models for tractor semitrailers
have been developed in order to derive active control algorithms. The Automotive Research
Center of the University of Michigan developed the 33 degrees-of-freedom ArcSim model
(UMTRI, 1997) to study the acceleration/braking and handling responses of an US Army 6-
axle tractor-semitrailer. In (Hyun & Langari, 2003), the vehicle model for single-unit heavy

 Recurrent Neural Networks

150

Pan, H. Y., Lee, C. H., Chang, F. K., & Chang, S. K. (2007). Construction of Asymmetric
Type-2 Fuzzy Membership Functions and Application in Time Series Prediction,
International Conf. on Machine Learning and Cybernetics, Vol. 4, pp. 2024-2030, 2007.

Wang, C. H. Cheng, C. S. & Lee, T. T. (2004). Dynamical Optimal Training for Interval Type-
2 Fuzzy Neural Network (T2FNN), IEEE Trans. on Systems, Man, Cybernetics Part-B,
Vol. 34, No. 3, pp. 1462-1477, 2004.

Wang, L. X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice
-Hall, Englewood Cliffs, NJ, 1994.

Zadeh, L. A. (1975). The Concept of A Linguistic Variable and Its Application to
Approximate Reasoning, Information Sciences, Vol. 8, No.3, pp. 199-249, 1975.

8

Rollover Control in Heavy Vehicles via
Recurrent High Order Neural Networks

Luis J. Ricalde¹, Edgar N. Sanchez2, Reza Langari3 and Danial Shahmirzadi3

1 Universidad Autonoma de Yucatan, Faculty of Engineering, Merida, Yuc.,
2 CINVESTAV, Unidad Guadalajara, Guadalajara, Jalisco,

3 Texas A&M University, College Station, TX,
 1,2Mexico

3USA

1. Introduction
Heavy vehicles, such as tractor-semitrailers, play an important role in transportation
systems. They present more complex dynamical behavior than passenger cars, due to their
high centers of gravity, which can vary depending on the load conditions, and are highly
susceptible to rollover during cornering. Heavy vehicle rollover on highways occurs as a
result of cornering with excessively high speed, cornering on a small radius curve or sudden
lane change. However, if rollover threat is predicted using an appropriate algorithm, then
the accident can be prevented by the driver's corrective maneuvers. For situations where
rollover warning is ineffective, active rollover control is necessary.
Most of the rollover warning algorithms use instantaneous rollover-threat index to identify
the rollover threat. Since a rollover warning may be issued at 75 % of the rollover threshold
acceleration, the time from warning to rollover is too short for the driver to respond
effectively. However, if the rollover threat is predicted using the expected maneuvers, a
warning can be issued sufficiently in advance of the event. This fact implies that warning
systems based on predicted rollover threat can be more effective.
Many control strategies have been designed to prevent rollover, most of them based on
active speed control and active roll control. However, active roll control is ineffective for
sharp turns, since it does not reduce the lateral acceleration, and requires hydraulic
actuators which increase the cost considerably. On the other hand, the use of differential
braking prevent jack-knifing and loss of direction generated by sudden braking during
cornering.
Different loading configurations produce different reaction forces on each wheel. This
motivates the use of nonlinear robust controllers which have to be able to deal with
parametric uncertainties, but most controllers are based on reduced models, in order to
lessen the computational requirements. Many mathematical models for tractor semitrailers
have been developed in order to derive active control algorithms. The Automotive Research
Center of the University of Michigan developed the 33 degrees-of-freedom ArcSim model
(UMTRI, 1997) to study the acceleration/braking and handling responses of an US Army 6-
axle tractor-semitrailer. In (Hyun & Langari, 2003), the vehicle model for single-unit heavy

 Recurrent Neural Networks

152

vehicles and tractor-semitrailers was derived using Lagrange's equations and Newtonian
mechanics; this model was validated by examining its steady-state response characteristics
and comparing it with ArcSim obtaining similar results but with less computational
complexity. Then, an algorithm to identify the rollover threshold, the measure of roll
stability, in terms of vehicle lateral acceleration or roll angle is established. In this paper we
used the model presented in (Hyun & Langari, 2003) for simulations.
On the other hand, since the seminal paper (Narendra & Parthasarathy, 1990), there has
been continually increasing interest in applying neural networks to identification and
control of nonlinear systems. Lately, the use of recurrent neural networks is being
developed, which allows more efficient modeling of the underlying dynamical systems
(Poznyak et al. 1999). Three representative books (Poznyak et al. 2000), (Rovitahkis &
Christodoulou, 2000) and (Suykens et al., 1996) have reviewed the application of recurrent
neural networks for nonlinear system identification and control. In particular, (Suykens et
al., 1996) uses off-line learning, while (Rovitahkis & Christodoulou, 2000) analyzes adaptive
identification and control by means of on-line learning, where stability of the closed-loop
system is established based on the Lyapunov function method. In (Rovitahkis &
Christodoulou, 2000), the trajectory tracking problem is reduced to a linear model following
problem, with application to DC electric motors. In (Poznyak et al. 2000), analysis of
Recurrent Neural Networks for identification, estimation and control are developed, with
applications on chaos control, robotics and chemical processes.

Fig. 1. Recurrent neural control scheme

Control methods which are applicable to general nonlinear systems have been intensely
developed since the early 1980's. Recently, the passivity approach has generated increasing
interest for synthesizing control laws (Hill & Moylan, 1996). An important problem for these
approaches is how to achieve robust nonlinear control in the presence of unmodelled
dynamics and external disturbances. In this direction, there exists the so-called H∞ nonlinear
control approach (Basar & Bernhard, 1995). One major difficulty with this approach,
alongside its possible system structural instability, seems to be the requirement of solving
some resulting partial differential equations. In order to alleviate this computational
problem, the so-called inverse optimal control technique was recently developed, based on

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

153

the input-to-state stability concept (Krstic & Deng, 1999). In (Sanchez et al., 2002), a robust
adaptive neural controller for nonlinear systems with uncertainties is considered, in order to
guarantee stability and trajectory tracking; a direct control approach is considered, where a
recurrent neural network is assumed to model the unknown system and a control law is
designed using the Lyapunov methodology and the inverse optimal control approach
(Krstic & Deng, 1999).
In this article we use Recurrent Neural Networks for applications to rollover prevention on
heavy vehicles where we consider the presence of uncertainties and unmodeled dynamics.
An active control algorithm is developed to prevent rollover if corrective actions from the
driver are not done after receiving alarm signals for rollover threats. The proposed adaptive
control scheme, as shown in Fig. 1, is composed of a recurrent neural identifier and a
controller, where the former is used to build an on-line model for the unknown plant, and
the latter to force the unknown plant to track the reference trajectory. An update law for the
high order recurrent neural network weights is proposed via the Lyapunov methodology.
The control law is synthesized using the Lyapunov methodology and the inverse optimal
control approach. The algorithm is tested, via simulations, for prevention of rollover of the
tractor semitrailer model developed in (Hyun & Langari, 2003). Speed only control and
Speed-Yaw rate control are applied in order to reduce the lateral acceleration and roll angle
of the trailer. The list of symbols that appear in this chapter are presented in Table 1 and
Table 2.

A Lipschitz matrix in the Recurrent Neural Network system

y ta Lateral acceleration rollover threshold

e Tracking error
()pf ⋅ , ()rf ⋅ Vector field for the vehicle and reference dynamics

T iF Normal tire forces for wheel i-th

()pg ⋅ Input vector field for the vehicle dynamics

k Sigmoid slope parameter

L Number of high order connections
,f rL L Front and rear segments of tractor wheelbase

,f gL V L V Lie derivatives of the Lyapunov function respect of ()pf ⋅ and ()pg ⋅

()l ⋅ Positive semidefinite function for Hamilton-Jacobi-Bellman system

()R ⋅ Positive definite function for cost function evaluation

()S ⋅ Sigmoid function

u Applied input

xv Longitudinal speed

yv Lateral acceleration

Table 1. List of symbols

 Recurrent Neural Networks

152

vehicles and tractor-semitrailers was derived using Lagrange's equations and Newtonian
mechanics; this model was validated by examining its steady-state response characteristics
and comparing it with ArcSim obtaining similar results but with less computational
complexity. Then, an algorithm to identify the rollover threshold, the measure of roll
stability, in terms of vehicle lateral acceleration or roll angle is established. In this paper we
used the model presented in (Hyun & Langari, 2003) for simulations.
On the other hand, since the seminal paper (Narendra & Parthasarathy, 1990), there has
been continually increasing interest in applying neural networks to identification and
control of nonlinear systems. Lately, the use of recurrent neural networks is being
developed, which allows more efficient modeling of the underlying dynamical systems
(Poznyak et al. 1999). Three representative books (Poznyak et al. 2000), (Rovitahkis &
Christodoulou, 2000) and (Suykens et al., 1996) have reviewed the application of recurrent
neural networks for nonlinear system identification and control. In particular, (Suykens et
al., 1996) uses off-line learning, while (Rovitahkis & Christodoulou, 2000) analyzes adaptive
identification and control by means of on-line learning, where stability of the closed-loop
system is established based on the Lyapunov function method. In (Rovitahkis &
Christodoulou, 2000), the trajectory tracking problem is reduced to a linear model following
problem, with application to DC electric motors. In (Poznyak et al. 2000), analysis of
Recurrent Neural Networks for identification, estimation and control are developed, with
applications on chaos control, robotics and chemical processes.

Fig. 1. Recurrent neural control scheme

Control methods which are applicable to general nonlinear systems have been intensely
developed since the early 1980's. Recently, the passivity approach has generated increasing
interest for synthesizing control laws (Hill & Moylan, 1996). An important problem for these
approaches is how to achieve robust nonlinear control in the presence of unmodelled
dynamics and external disturbances. In this direction, there exists the so-called H∞ nonlinear
control approach (Basar & Bernhard, 1995). One major difficulty with this approach,
alongside its possible system structural instability, seems to be the requirement of solving
some resulting partial differential equations. In order to alleviate this computational
problem, the so-called inverse optimal control technique was recently developed, based on

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

153

the input-to-state stability concept (Krstic & Deng, 1999). In (Sanchez et al., 2002), a robust
adaptive neural controller for nonlinear systems with uncertainties is considered, in order to
guarantee stability and trajectory tracking; a direct control approach is considered, where a
recurrent neural network is assumed to model the unknown system and a control law is
designed using the Lyapunov methodology and the inverse optimal control approach
(Krstic & Deng, 1999).
In this article we use Recurrent Neural Networks for applications to rollover prevention on
heavy vehicles where we consider the presence of uncertainties and unmodeled dynamics.
An active control algorithm is developed to prevent rollover if corrective actions from the
driver are not done after receiving alarm signals for rollover threats. The proposed adaptive
control scheme, as shown in Fig. 1, is composed of a recurrent neural identifier and a
controller, where the former is used to build an on-line model for the unknown plant, and
the latter to force the unknown plant to track the reference trajectory. An update law for the
high order recurrent neural network weights is proposed via the Lyapunov methodology.
The control law is synthesized using the Lyapunov methodology and the inverse optimal
control approach. The algorithm is tested, via simulations, for prevention of rollover of the
tractor semitrailer model developed in (Hyun & Langari, 2003). Speed only control and
Speed-Yaw rate control are applied in order to reduce the lateral acceleration and roll angle
of the trailer. The list of symbols that appear in this chapter are presented in Table 1 and
Table 2.

A Lipschitz matrix in the Recurrent Neural Network system

y ta Lateral acceleration rollover threshold

e Tracking error
()pf ⋅ , ()rf ⋅ Vector field for the vehicle and reference dynamics

T iF Normal tire forces for wheel i-th

()pg ⋅ Input vector field for the vehicle dynamics

k Sigmoid slope parameter

L Number of high order connections
,f rL L Front and rear segments of tractor wheelbase

,f gL V L V Lie derivatives of the Lyapunov function respect of ()pf ⋅ and ()pg ⋅

()l ⋅ Positive semidefinite function for Hamilton-Jacobi-Bellman system

()R ⋅ Positive definite function for cost function evaluation

()S ⋅ Sigmoid function

u Applied input

xv Longitudinal speed

yv Lateral acceleration

Table 1. List of symbols

 Recurrent Neural Networks

154

, gW W Estimated weights matrices
* *, gW W Optimal weights matrices

, gW W Weight error matrices

x Plant state to be identified

px Unknown nonlinear state

rx Reference signal state

, ,p p px y z Longitudinal, lateral and vertical position for tractor sprung mass

,N Nx y Longitudinal and lateral reference coordinates

rz Vertical position of the tractor unsprung mass

(), ()gz z⋅ ⋅ Sigmoid high order vectors

()α ⋅r Applied input forces for reference tracking of the neural network

β Positive parameter for cost function

, gΓ Γ Learning rate matrices

δ Steer input

ε Relative pitch angle of the fifth wheel

ζ Sigmoid function parameter

η Relative yaw angle of the trailer

θ Tractor pitch

λ HORNN system parameter
μ Gain matrix for the control law

ϖ Vector of tractor states

τ Parameter for sigmoid function

φ Tractor roll angle

tφ Roll angle rollover threshold

χ Neural network state
ψ Tractor yaw angle

dϕ Reference yaw angle

iω Wheel i spin i =1,…,6

Table 2. List of symbols

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

155

2. System model description
In this paper, we consider as the simulation tool, the tractor-semitrailer model presented in
(Hyun & Langari, 2003), which has 14 degrees of freedom:

, ,N N rx y z Longitudinal, lateral and vertical position with respect to a coordinate
system fixed to the ground

ψ Tractor yaw angle
θ Tractor pitch angle
φ Tractor roll angle
ε Relative pitch angle of the fifth wheel with respect to the tractor sprung

mass coordinates (), ,p p px y z
η Relative yaw angle of the trailer with respect to the tractor sprung mass

coordinates (), ,p p px y z

iω Wheel i spin i=1,...,6
This model is derived using Lagrange's equations as well as Newtonian mechanics.
Nonlinear suspension and tire-force models are considered in the vehicle model. Fig. 2 and
Fig. 3 display side, rear and yaw plane view of the trailer under consideration.

Fig. 2. Side view of the tractor-semitrailer

Fig. 3. Rear view and Yaw-plane view of the tractor-semitrailer.

 Recurrent Neural Networks

154

, gW W Estimated weights matrices
* *, gW W Optimal weights matrices

, gW W Weight error matrices

x Plant state to be identified

px Unknown nonlinear state

rx Reference signal state

, ,p p px y z Longitudinal, lateral and vertical position for tractor sprung mass

,N Nx y Longitudinal and lateral reference coordinates

rz Vertical position of the tractor unsprung mass

(), ()gz z⋅ ⋅ Sigmoid high order vectors

()α ⋅r Applied input forces for reference tracking of the neural network

β Positive parameter for cost function

, gΓ Γ Learning rate matrices

δ Steer input

ε Relative pitch angle of the fifth wheel

ζ Sigmoid function parameter

η Relative yaw angle of the trailer

θ Tractor pitch

λ HORNN system parameter
μ Gain matrix for the control law

ϖ Vector of tractor states

τ Parameter for sigmoid function

φ Tractor roll angle

tφ Roll angle rollover threshold

χ Neural network state
ψ Tractor yaw angle

dϕ Reference yaw angle

iω Wheel i spin i =1,…,6

Table 2. List of symbols

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

155

2. System model description
In this paper, we consider as the simulation tool, the tractor-semitrailer model presented in
(Hyun & Langari, 2003), which has 14 degrees of freedom:

, ,N N rx y z Longitudinal, lateral and vertical position with respect to a coordinate
system fixed to the ground

ψ Tractor yaw angle
θ Tractor pitch angle
φ Tractor roll angle
ε Relative pitch angle of the fifth wheel with respect to the tractor sprung

mass coordinates (), ,p p px y z
η Relative yaw angle of the trailer with respect to the tractor sprung mass

coordinates (), ,p p px y z

iω Wheel i spin i=1,...,6
This model is derived using Lagrange's equations as well as Newtonian mechanics.
Nonlinear suspension and tire-force models are considered in the vehicle model. Fig. 2 and
Fig. 3 display side, rear and yaw plane view of the trailer under consideration.

Fig. 2. Side view of the tractor-semitrailer

Fig. 3. Rear view and Yaw-plane view of the tractor-semitrailer.

 Recurrent Neural Networks

156

3. Mathematical preliminaries
3.1 Artificial neural networks
Artificial neural networks have become an useful tool for control engineering thanks to their
applicability on modelling, state estimation and control of complex dynamic systems. Using
neural networks, control algorithms can be developed to be robust to uncertainties and
modelling errors.
Neural Networks consist of a number of interconnected processing elements or neurons.
The way in which the neurons are interconnected determines its structure. For identification
and control, the most used structures are:
Feedforward networks. In feedforward networks, the neurons are grouped into layers. Signals
flow from the input to the output via unidirectional connections. The network exhibits high
degree of connectivity, contains one or more hidden layers of neurons and the activation
function of each neuron is smooth, generally a sigmoid function.
Recurrent networks. In a recurrent neural network, the outputs of the neuron are fed back to
the same neuron or neurons in the preceding layers. Signals flow in forward and backward
directions.

3.2 Recurrent higher-order neural networks
Artificial Recurrent Neural Networks are mostly based on the Hopfield model (Hopfield,
1984). These networks are considered as good candidates for nonlinear systems applications
which deal with uncertainties and are attractive due to their easy implementation, relatively
simple structure, robustness and the capacity to adjust their parameters on line.
In (Kosmatopoulos, et al. 1997), Recurrent Higher-Order Neural Networks (RHONN) are
defined as

 ()

1
, 1,...,j

k

L
d k

i i i ik j
k j I

y i nχ α χ ω
= ∈

= − + =∑ ∏ (1)

where iχ is the ith neuron state, L is the number of higher-order connections, { }1 2, ,..., LI I I is

a collection of non-ordered subsets of{ }1,2,...,m n+ , 0ia > , ikw are the adjustable weights

of the neural network, ()jd k are nonnegative integers, and y is a vector defined by

[] () () () ()1 1 1 1,..., , ,..., ,..., , ,...,
TT

n n n m n my y y y y S S S u S uχ χ+ += = ⎡ ⎤⎣ ⎦ , with []1 2, ,..., T
mu u u u= being

the input to the neural network, and ()S • a smooth sigmoid function formulated by

1()
1 exp()

S χ ζ
τχ

= +
+ −

. For the sigmoid function, τ is a positive constant and ζ is a small

positive real number. Hence, []() , 1S χ ζ ζ∈ + .
As can be seen, (1) allows the inclusion of higher-order terms.
By defining a vector

 () () ()
1

(1) ()
1, ,, , ,....,j j

L

TT d d L
L j I j j I jz u z u z u y yε εχ χ χ ⎡ ⎤= ⎡ ⎤ = Π Π⎣ ⎦ ⎣ ⎦

(1) can be rewritten as

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

157

 1
(,) , 1,...,

(,) ,

L

i i i ik k
k

i i i i

z u i n

z u

χ α χ ω χ

χ α χ ω χ
=

= − + =

= − +

∑ (2)

where ,1 ,.....
T

i i i Lw w w= ⎡ ⎤⎣ ⎦ .

In this paper, terms as [] () ()1 1 1,... , 1,...., ,..., , ,..,
TT

n n n m n ny y y y y S S u uχ χ+= + = ⎡ ⎤⎣ ⎦ are
considered. This means that the same number of inputs and states is used. We also assume
that the RHONN is affine in the control, so that (2) can be rewritten as

 () ,T
i i i i gi iz uχ α χ ω χ ω= − + + (3)

Reformulating (3) in matrix form yields

 ()i gA Wz W uχ χ χ= + + (4)

where , , , () , , and , 0.n n L n n L n
gW W z x u A Iχ λ λ× ×∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ = − >

4. Adaptive recurrent neural control for tractor-semitrailer
4.1 Problem formulation

The nonlinear system (tractor-semitrailer) model can be described as

 () ()p p p px f x g x u= + (5)

We propose to model the unknown nonlinear plant by the recurrent neural network

 * *() ()
p per

p g

x

A W z x W u

χ ω

χ χ χ

= +

= + + − +
 (6)

where , , , () , , , n n L nxL nxm m
p g gA x x z x W W uλχ ∗ ∗= − ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ and per pxω χ= −

represents the modelling error, with * *, gW W being the unknown values of the neural
network weights which minimize the modelling error.
We will design a robust controller which enforces asymptotic stability of the tracking error
between the plant and the reference signal

 (,)r r r rx f x u= (7)

namely,

 p re x x= − (8)
Its time derivative is

 * *() () (,)p g r r re A W z x W u f x uχ χ χ= + + − + − (9)

Now, we proceed to add and subtract the terms ˆ (), , , and r r rWz x Ae Ax x Ae , so that

 Recurrent Neural Networks

156

3. Mathematical preliminaries
3.1 Artificial neural networks
Artificial neural networks have become an useful tool for control engineering thanks to their
applicability on modelling, state estimation and control of complex dynamic systems. Using
neural networks, control algorithms can be developed to be robust to uncertainties and
modelling errors.
Neural Networks consist of a number of interconnected processing elements or neurons.
The way in which the neurons are interconnected determines its structure. For identification
and control, the most used structures are:
Feedforward networks. In feedforward networks, the neurons are grouped into layers. Signals
flow from the input to the output via unidirectional connections. The network exhibits high
degree of connectivity, contains one or more hidden layers of neurons and the activation
function of each neuron is smooth, generally a sigmoid function.
Recurrent networks. In a recurrent neural network, the outputs of the neuron are fed back to
the same neuron or neurons in the preceding layers. Signals flow in forward and backward
directions.

3.2 Recurrent higher-order neural networks
Artificial Recurrent Neural Networks are mostly based on the Hopfield model (Hopfield,
1984). These networks are considered as good candidates for nonlinear systems applications
which deal with uncertainties and are attractive due to their easy implementation, relatively
simple structure, robustness and the capacity to adjust their parameters on line.
In (Kosmatopoulos, et al. 1997), Recurrent Higher-Order Neural Networks (RHONN) are
defined as

 ()

1
, 1,...,j

k

L
d k

i i i ik j
k j I

y i nχ α χ ω
= ∈

= − + =∑ ∏ (1)

where iχ is the ith neuron state, L is the number of higher-order connections, { }1 2, ,..., LI I I is

a collection of non-ordered subsets of{ }1,2,...,m n+ , 0ia > , ikw are the adjustable weights

of the neural network, ()jd k are nonnegative integers, and y is a vector defined by

[] () () () ()1 1 1 1,..., , ,..., ,..., , ,...,
TT

n n n m n my y y y y S S S u S uχ χ+ += = ⎡ ⎤⎣ ⎦ , with []1 2, ,..., T
mu u u u= being

the input to the neural network, and ()S • a smooth sigmoid function formulated by

1()
1 exp()

S χ ζ
τχ

= +
+ −

. For the sigmoid function, τ is a positive constant and ζ is a small

positive real number. Hence, []() , 1S χ ζ ζ∈ + .
As can be seen, (1) allows the inclusion of higher-order terms.
By defining a vector

 () () ()
1

(1) ()
1, ,, , ,....,j j

L

TT d d L
L j I j j I jz u z u z u y yε εχ χ χ ⎡ ⎤= ⎡ ⎤ = Π Π⎣ ⎦ ⎣ ⎦

(1) can be rewritten as

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

157

 1
(,) , 1,...,

(,) ,

L

i i i ik k
k

i i i i

z u i n

z u

χ α χ ω χ

χ α χ ω χ
=

= − + =

= − +

∑ (2)

where ,1 ,.....
T

i i i Lw w w= ⎡ ⎤⎣ ⎦ .

In this paper, terms as [] () ()1 1 1,... , 1,...., ,..., , ,..,
TT

n n n m n ny y y y y S S u uχ χ+= + = ⎡ ⎤⎣ ⎦ are
considered. This means that the same number of inputs and states is used. We also assume
that the RHONN is affine in the control, so that (2) can be rewritten as

 () ,T
i i i i gi iz uχ α χ ω χ ω= − + + (3)

Reformulating (3) in matrix form yields

 ()i gA Wz W uχ χ χ= + + (4)

where , , , () , , and , 0.n n L n n L n
gW W z x u A Iχ λ λ× ×∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ = − >

4. Adaptive recurrent neural control for tractor-semitrailer
4.1 Problem formulation

The nonlinear system (tractor-semitrailer) model can be described as

 () ()p p p px f x g x u= + (5)

We propose to model the unknown nonlinear plant by the recurrent neural network

 * *() ()
p per

p g

x

A W z x W u

χ ω

χ χ χ

= +

= + + − +
 (6)

where , , , () , , , n n L nxL nxm m
p g gA x x z x W W uλχ ∗ ∗= − ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ and per pxω χ= −

represents the modelling error, with * *, gW W being the unknown values of the neural
network weights which minimize the modelling error.
We will design a robust controller which enforces asymptotic stability of the tracking error
between the plant and the reference signal

 (,)r r r rx f x u= (7)

namely,

 p re x x= − (8)
Its time derivative is

 * *() () (,)p g r r re A W z x W u f x uχ χ χ= + + − + − (9)

Now, we proceed to add and subtract the terms ˆ (), , , and r r rWz x Ae Ax x Ae , so that

 Recurrent Neural Networks

158

 ()* * ˆ() (,) ()

ˆ ()

g r r r r r r p

r r r

e Ae W z W u f x u Ax Wz x x x

Ae Wz x Ax x A

χ

χ χ

= + Γ + + − + + + −

− − − − + +
 (10)

where Ŵ is the estimated value for the unknown weight matrix *W .
Let us assume that there exists a function ˆ ˆ(, ,)r gt W Wα such that

 ()1ˆ ˆˆ(,) () (,) () ()r g r r r r r r pt W f x u Ax W z x x xWα −= − − Γ − − (11)

where ˆ
gW is the estimated value for the unknown weight matrix *

gW .

Then, adding and subtracting to (10) the term ˆ ˆ ˆ(, ,)g r gW t W Wα and simplifying we obtain

 * * ˆ ˆ ˆ ˆ() (, ,) () () ()()g g r g p r r re Ae W z W u W t W W A x x Wz x A I xχ α χ= + + − − − − + + − (12)

Next, let us define

()

ˆ ˆ

ˆ ˆ

ˆ,

g g g

r

W W W

W W W

u u t Wα

∗

∗

= −

= −

= −

so that (12) is reduced to

ˆ ˆ ˆ ˆ ˆ ˆ() () () (, ,) () ()
()()

ˆ ˆ() (() ()) () ()()

g g g r g p r r

r

r g g p r r

e Ae W W z W W u W t W W A x x Wz x
A I x

e Ae Wz W z z x W u W u A x x A I x

χ α

χ

χ χ χ

= + + + + − − − −

+ + −

= + + − + + − − + + −

 (13)

Adding and subtracting to (13) the terms ()pz x and px , we obtain

ˆ ˆ() (() () () ())

() ()()
p p r g g

p r p p r

e Ae Wz W z z x z x z x W u W u
A x x A I x x x

χ χ

χ

= + + − + − + +

− − + + − + −
 (14)

Then, by defining

 1 2u u u= + (15)
with

 ()1
1

ˆ ˆ() (() ()) ()()g p pu W W z z x A I xχ χ−= − − − + − (16)

equation (14) reduces to

 2
ˆ ˆ() () (() ())p r g ge A I e Wz W z x z x W u W uχ= + + + − + + (17)

Therefore, the tracking problem reduces to a stabilization problem for the error dynamics
(17). To solve this problem, we next apply the inverse optimal control approach.

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

159

4.2 Tracking error stabilization
Once (17) is obtained, we proceed to study its stabilization. Note that ˆ ˆ0, 0, 0ge W W= = = is
an equilibrium point for the system without disturbances.
In order to perform the stability analysis for the system, the following Lyapunov function is
formulated

 { } { }
{ } { }

11
2

1 1

1
2 2 2

,..., , ,...,

T Tg
g g

n g g gn

V e tr W W tr W W

diag diagγ γ γ γ

−− ΓΓ
= + +

Γ = Γ =
 (18)

Its time derivative, along the trajectories of (17), is

 { } { }
2

1 1
2

ˆ ˆ() () (() ()))

ˆ

T T T
p r g

T TT
g g g g

V A I e e Wz e W z x z x e e W u

e W u tr W W tr W W

χ

− −

= + + + − + +

+ + Γ + Γ
 (19)

Replacing the learning laws

{ }

{ }

()

ˆ ()

ˆ

T T

ij i j

T T
g g g g

gij ig i j

tr W W e Wz x

ez x

tr W W e W u

e u

ω γ

ω γ

= −Γ

= −

= −Γ

= −

 (20)

in (19), we obtain

 2
2

ˆ ˆ(1) (,)T T
z r gV e e W e x e W uλ φ= − − + + (21)

where

 (,) () () () ()z r p r r re x z x z x z e x z xφ = − = + − (22)

Next, we consider the following inequality (Poznyak et al., 1999),

 1T T T TX Y Y X X X Y Y−+ ≤ Λ + Λ (23)

which holds for all matrices , and with 0n k n nX Y × × Τ∈ℜ Λ∈ℜ Λ = Λ > .

Applying (23) to ˆ (,) with re W e x IφΤ Λ = , we obtain

22 2

2
1 1 ˆ ˆ(1) (,)
2 2

T T
z r gV e e e W e x e W uλ φ= − − + + + (24)

where Ŵ , is any matrix norm for Ŵ .

Since (,)z re xφ is Lipschitz with respect to e , then, there exists a positive constant Lφ such
that

 Recurrent Neural Networks

158

 ()* * ˆ() (,) ()

ˆ ()

g r r r r r r p

r r r

e Ae W z W u f x u Ax Wz x x x

Ae Wz x Ax x A

χ

χ χ

= + Γ + + − + + + −

− − − − + +
 (10)

where Ŵ is the estimated value for the unknown weight matrix *W .
Let us assume that there exists a function ˆ ˆ(, ,)r gt W Wα such that

 ()1ˆ ˆˆ(,) () (,) () ()r g r r r r r r pt W f x u Ax W z x x xWα −= − − Γ − − (11)

where ˆ
gW is the estimated value for the unknown weight matrix *

gW .

Then, adding and subtracting to (10) the term ˆ ˆ ˆ(, ,)g r gW t W Wα and simplifying we obtain

 * * ˆ ˆ ˆ ˆ() (, ,) () () ()()g g r g p r r re Ae W z W u W t W W A x x Wz x A I xχ α χ= + + − − − − + + − (12)

Next, let us define

()

ˆ ˆ

ˆ ˆ

ˆ,

g g g

r

W W W

W W W

u u t Wα

∗

∗

= −

= −

= −

so that (12) is reduced to

ˆ ˆ ˆ ˆ ˆ ˆ() () () (, ,) () ()
()()

ˆ ˆ() (() ()) () ()()

g g g r g p r r

r

r g g p r r

e Ae W W z W W u W t W W A x x Wz x
A I x

e Ae Wz W z z x W u W u A x x A I x

χ α

χ

χ χ χ

= + + + + − − − −

+ + −

= + + − + + − − + + −

 (13)

Adding and subtracting to (13) the terms ()pz x and px , we obtain

ˆ ˆ() (() () () ())

() ()()
p p r g g

p r p p r

e Ae Wz W z z x z x z x W u W u
A x x A I x x x

χ χ

χ

= + + − + − + +

− − + + − + −
 (14)

Then, by defining

 1 2u u u= + (15)
with

 ()1
1

ˆ ˆ() (() ()) ()()g p pu W W z z x A I xχ χ−= − − − + − (16)

equation (14) reduces to

 2
ˆ ˆ() () (() ())p r g ge A I e Wz W z x z x W u W uχ= + + + − + + (17)

Therefore, the tracking problem reduces to a stabilization problem for the error dynamics
(17). To solve this problem, we next apply the inverse optimal control approach.

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

159

4.2 Tracking error stabilization
Once (17) is obtained, we proceed to study its stabilization. Note that ˆ ˆ0, 0, 0ge W W= = = is
an equilibrium point for the system without disturbances.
In order to perform the stability analysis for the system, the following Lyapunov function is
formulated

 { } { }
{ } { }

11
2

1 1

1
2 2 2

,..., , ,...,

T Tg
g g

n g g gn

V e tr W W tr W W

diag diagγ γ γ γ

−− ΓΓ
= + +

Γ = Γ =
 (18)

Its time derivative, along the trajectories of (17), is

 { } { }
2

1 1
2

ˆ ˆ() () (() ()))

ˆ

T T T
p r g

T TT
g g g g

V A I e e Wz e W z x z x e e W u

e W u tr W W tr W W

χ

− −

= + + + − + +

+ + Γ + Γ
 (19)

Replacing the learning laws

{ }

{ }

()

ˆ ()

ˆ

T T

ij i j

T T
g g g g

gij ig i j

tr W W e Wz x

ez x

tr W W e W u

e u

ω γ

ω γ

= −Γ

= −

= −Γ

= −

 (20)

in (19), we obtain

 2
2

ˆ ˆ(1) (,)T T
z r gV e e W e x e W uλ φ= − − + + (21)

where

 (,) () () () ()z r p r r re x z x z x z e x z xφ = − = + − (22)

Next, we consider the following inequality (Poznyak et al., 1999),

 1T T T TX Y Y X X X Y Y−+ ≤ Λ + Λ (23)

which holds for all matrices , and with 0n k n nX Y × × Τ∈ℜ Λ∈ℜ Λ = Λ > .

Applying (23) to ˆ (,) with re W e x IφΤ Λ = , we obtain

22 2

2
1 1 ˆ ˆ(1) (,)
2 2

T T
z r gV e e e W e x e W uλ φ= − − + + + (24)

where Ŵ , is any matrix norm for Ŵ .

Since (,)z re xφ is Lipschitz with respect to e , then, there exists a positive constant Lφ such
that

 Recurrent Neural Networks

160

 (,)z re x L eφφ Τ ≤

Hence (24) can be rewritten as

22 22

2
1 ˆ ˆ(1) (1))
2

T
gV e L W e e W uφλ= − − + + +� (25)

To this end, we define the following control law

{ }

21 2
2

1 2

ˆ ˆ() (1)

1, ,..., , , 1,...,
2

g z

n i

u W L W e

diag i n

φμ

μ μ μ μ μ

−= − +

= > =
 (26)

which renders

 () ()22 2 * 21
2

1
(1) 1

0

n

i i
i

V e L W W eφλ μ
=

≤ − − − + − −

≤

∑��
 (27)

We now apply the Barbalat's lemma (Khalil, 1996), (Khalil, 2002). Since
0 , , 0 and () 0 i gV e W W V t> ∀ ≠ ≤� � � , V is bounded. Hence, e is bounded on []0,T , the

maximal interval of existence of the solution for any given initial state. V is nonincreasing
and bounded from below by zero, and converges as t →∞ . Integrating both sides of (27) we
obtain

 (). 2 2 * 2

10 0

1lim () lim (1) 1
2

t t n

i it t i
V d e L W W e dφτ τ λ μ τ

→∞ →∞
=

⎛ ⎞ ⎛ ⎞⎛ ⎞− ≥ − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑∫ ∫ �

which exists and is finite. Then,

 () ()22 2 * 2

1

11 1 0 as
2

n

i i
i

e L W W e tφλ μ
=

⎛ ⎞− + + − − → →∞⎜ ⎟
⎝ ⎠

∑�

which implies that 0 ase t→ →∞ .
From the learning laws (20), we have

ˆ 0 as

ˆ 0 as

ij

g ij

w t

w t

→ →∞

→ →∞

i

i

Therefore,
() 0 as

() 0 as g

W t t

W t t

→ →∞

→ →∞

��
��

then

,

,

ˆ ˆlim lim

ˆ ˆlim lim
t t

g g g gt t

W W W W

W W W W

∞ ∞→∞ →∞

∞ ∞→∞ →∞

→ →

→ →

� �

� �

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

161

where ˆ ˆ, , ,g gW W W W∞ ∞ ∞ ∞ are constant values.

Taking into account that * *, gW W are constant matrices, () ()ˆ ˆ and gW t W t are bounded

when t →∞ . Since χ and px are assumed to be bounded on []0,T , this implies that T = ∞ .
This ensures asymptotic stability of the tracking error.
Then, the control law to apply to the nonlinear system is defined by

 1 2()r ru x u uα= + + (28)

where 1 2(), ,r rx u uα are defined in equations (11), (16), (26). This control law guarantees
asymptotic stability of the error dynamics and therefore ensures the tracking of the reference
signal.

4.3 Optimization with respect to a cost function
Once the control law (26) is obtained, we proceed to analyze its optimality with respect to a
cost function which considers the tracking error and the magnitude of the applied input.
Next, we prove that the control law (26), minimizes the cost function given by (Sanchez et
al., 2002)

 ()2 2
0

ˆ ˆ ˆ ˆ() lim 2 (, ,) (, ,)
t

T
g gt

J u V l e W W u R e W W u dtβ
→∞

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ (29)

where the Lyapunov function solves the following Hamilton-Jacobi-Bellman family of
partial derivative equations parametrized with 0β >

 2 1ˆ ˆ ˆ ˆ(, ,) 2 (, ,) 0T
g f g g gl e W W L V L VR e W W L Vβ β −+ − = (30)

 Note that 2 Vβ in (30) is bounded when t →∞ , since by (25) and (26), is decreasing and
bounded from below by ()0V . Therefore, ()lim

t
V t

→∞
 exists and is finite.V

 In (Krstic & Deng, 1998), ()ˆ,l e W is required to be positive definite and radially

unbounded with respect to e . Here, from (30) we have

 2 1ˆ ˆ ˆ ˆ(, ,) 2 (, ,) T
g f g g gl e W W L V L VR e W W L Vβ β −= − + (31)

Substituting (26) into (31) and then applying (23) to the second term on the right side of
fL V , we have

 () ()
22 2 2

1

ˆ ˆ ˆ(, ,) (1) 1 1
n

g i i
i

l e W W e L W eφλ μ
=

≥ − + + −∑ (32)

Selecting 1λ > and 1iμ > , we ensure that ˆ ˆ(, ,)gl e W W satisfies the condition of being
positive definite and radially unbounded. Hence, (29) is a suitable cost function.
The integral term in (29) can be written as,

12

2 2
ˆ ˆ ˆ(,) (,) 2 () 2 () (,) ()T T

f g gl e W u R e W u L V L V R e W L Vβ β
−

⎡ ⎤+ = − + ⎣ ⎦ (33)

 Recurrent Neural Networks

160

 (,)z re x L eφφ Τ ≤

Hence (24) can be rewritten as

22 22

2
1 ˆ ˆ(1) (1))
2

T
gV e L W e e W uφλ= − − + + +� (25)

To this end, we define the following control law

{ }

21 2
2

1 2

ˆ ˆ() (1)

1, ,..., , , 1,...,
2

g z

n i

u W L W e

diag i n

φμ

μ μ μ μ μ

−= − +

= > =
 (26)

which renders

 () ()22 2 * 21
2

1
(1) 1

0

n

i i
i

V e L W W eφλ μ
=

≤ − − − + − −

≤

∑��
 (27)

We now apply the Barbalat's lemma (Khalil, 1996), (Khalil, 2002). Since
0 , , 0 and () 0 i gV e W W V t> ∀ ≠ ≤� � � , V is bounded. Hence, e is bounded on []0,T , the

maximal interval of existence of the solution for any given initial state. V is nonincreasing
and bounded from below by zero, and converges as t →∞ . Integrating both sides of (27) we
obtain

 (). 2 2 * 2

10 0

1lim () lim (1) 1
2

t t n

i it t i
V d e L W W e dφτ τ λ μ τ

→∞ →∞
=

⎛ ⎞ ⎛ ⎞⎛ ⎞− ≥ − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑∫ ∫ �

which exists and is finite. Then,

 () ()22 2 * 2

1

11 1 0 as
2

n

i i
i

e L W W e tφλ μ
=

⎛ ⎞− + + − − → →∞⎜ ⎟
⎝ ⎠

∑�

which implies that 0 ase t→ →∞ .
From the learning laws (20), we have

ˆ 0 as

ˆ 0 as

ij

g ij

w t

w t

→ →∞

→ →∞

i

i

Therefore,
() 0 as

() 0 as g

W t t

W t t

→ →∞

→ →∞

��
��

then

,

,

ˆ ˆlim lim

ˆ ˆlim lim
t t

g g g gt t

W W W W

W W W W

∞ ∞→∞ →∞

∞ ∞→∞ →∞

→ →

→ →

� �

� �

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

161

where ˆ ˆ, , ,g gW W W W∞ ∞ ∞ ∞ are constant values.

Taking into account that * *, gW W are constant matrices, () ()ˆ ˆ and gW t W t are bounded

when t →∞ . Since χ and px are assumed to be bounded on []0,T , this implies that T = ∞ .
This ensures asymptotic stability of the tracking error.
Then, the control law to apply to the nonlinear system is defined by

 1 2()r ru x u uα= + + (28)

where 1 2(), ,r rx u uα are defined in equations (11), (16), (26). This control law guarantees
asymptotic stability of the error dynamics and therefore ensures the tracking of the reference
signal.

4.3 Optimization with respect to a cost function
Once the control law (26) is obtained, we proceed to analyze its optimality with respect to a
cost function which considers the tracking error and the magnitude of the applied input.
Next, we prove that the control law (26), minimizes the cost function given by (Sanchez et
al., 2002)

 ()2 2
0

ˆ ˆ ˆ ˆ() lim 2 (, ,) (, ,)
t

T
g gt

J u V l e W W u R e W W u dtβ
→∞

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ (29)

where the Lyapunov function solves the following Hamilton-Jacobi-Bellman family of
partial derivative equations parametrized with 0β >

 2 1ˆ ˆ ˆ ˆ(, ,) 2 (, ,) 0T
g f g g gl e W W L V L VR e W W L Vβ β −+ − = (30)

 Note that 2 Vβ in (30) is bounded when t →∞ , since by (25) and (26), is decreasing and
bounded from below by ()0V . Therefore, ()lim

t
V t

→∞
 exists and is finite.V

 In (Krstic & Deng, 1998), ()ˆ,l e W is required to be positive definite and radially

unbounded with respect to e . Here, from (30) we have

 2 1ˆ ˆ ˆ ˆ(, ,) 2 (, ,) T
g f g g gl e W W L V L VR e W W L Vβ β −= − + (31)

Substituting (26) into (31) and then applying (23) to the second term on the right side of
fL V , we have

 () ()
22 2 2

1

ˆ ˆ ˆ(, ,) (1) 1 1
n

g i i
i

l e W W e L W eφλ μ
=

≥ − + + −∑ (32)

Selecting 1λ > and 1iμ > , we ensure that ˆ ˆ(, ,)gl e W W satisfies the condition of being
positive definite and radially unbounded. Hence, (29) is a suitable cost function.
The integral term in (29) can be written as,

12

2 2
ˆ ˆ ˆ(,) (,) 2 () 2 () (,) ()T T

f g gl e W u R e W u L V L V R e W L Vβ β
−

⎡ ⎤+ = − + ⎣ ⎦ (33)

 Recurrent Neural Networks

162

The Lyapunov time derivative is defined as

 f g uV L V L V= + (34)

and substituting in , we obtain

 1ˆ ˆ((, ,) ()f g g gV L V L V R e W W L V τβ −⎡ ⎤= + −⎣ ⎦

Then, multiplying V by 2β− we have

12 ˆ ˆ2 2 () 2 () (, ,) ()f g g gV L V L V R e W W L Vβ β β
−

Τ⎡ ⎤− = − + ⎣ ⎦

Hence,

 2 2
ˆ ˆ ˆ ˆ(, ,) (, ,) 2T

g gl e W W u R e W W u Vβ+ = − (35)

Replacing (35) in the cost function (29), we obtain

 { }2
0

() lim 2 2 lim 2 () 2 () 2 (0)

2 (0)

t

t t
J u V Vdt V t V t V

V

β β β β β

β

→∞ →∞
= − = − +

=

∫ (36)

The cost function optimal value is given by ()* 2 0J Vβ= . This is achieved by the control law
(26).
Selecting 1λ > and 1iμ > , we ensure that ˆ ˆ(, ,)gl e W W satisfies the condition of being
positive definite and radially unbounded. Hence, (29) is a suitable cost function.

4.4 Simulation results for rollover active control
We now apply the developed approach on rollover active control for cornering situations,
where the features of the road can be assumed to be known by means of a system such as
GPS, in order to determine the steering input for the vehicle. A prediction model can be
introduced in the control scheme in order to predict the rollover threat and to produce a
warning signal. For the cases where the driver can not respond to warning signals, active
rollover control is necessary in order to prevent rollover. We consider two control
approaches. First we develop a speed control which would be activated before cornering
using differential braking, which could be available for implementation purposes. For the
second approach, we consider the case where the road could be slippery, thus the braking
would not be the same on each wheel, so the braking process would produce undesirable
roll, yawing and lateral acceleration response, which would reduce the rollover threshold
(Hyun & Langari, 2003). The tractor roll motion is governed by its lateral acceleration, which
is generated by longitudinal speed and vehicle steering angle. In order to have reference
values for the desired yawing response, the roll threshold and lateral acceleration threshold,
we consider the values given in (Hyun & Langari, 2003).
The approach is based on building a recurrent neural network identifier which models the
longitudinal speed xv and yaw rate, which considers two inputs: longitudinal force TF and
yawing moment zT . The model is described by the following RHONN

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

163

 1 1 1* 11() g TW z W Fχ λχ χ= − + + (37)

 2 2 2* 22() g zW z W Tχ λχ χ= − + + (38)

or in matrix form

 1
ˆ () gWz W uχ λχ χ= − + + (39)

where { }2 12
11 220, , ,g g gW W diag W Wλ ×> ∈ℜ = and

2 2
1 2 1 2 1 2

2 2 3 3
1 2 1 2

3 3 4 4 4 4
1 2 1 2 1 2

() tanh ,tanh ,tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh , tanh tanh

k k k k k k

k k k k

k k k k k k

z χ χ χ χ χ χ χ

χ χ χ χ

χ χ χ χ χ χ

⎡= ⎣

⎤⎦

 (40)

where 1 1 1 2 2 2 and k kk kχ χ χ χ= = .
As in (Hyun & Langari, 2003), the reference yaw response can be obtained as a function of
the desired speed and the steer angle using the Ackermann angle (Gillespie, 1992)

 x
d

f rL L
υψ δ=
+

 (41)

where δ is the steer angle and ,f rL L are the front and rear vehicle wheelbase segments.
We consider for the tractor semitrailer model, the heavy payload condition model given in
(Hyun & Langari, 2003), with the rollover threshold values given in function of the roll
angle and lateral acceleration as

22.6 /

2.87deg
yt

t

a m s
φ

=

=

Fig. 4. Steer input for cornering maneuver

For the cornering situation given in Fig. 4, a speed reduction is desirable as given in Fig. 5.
This speed reference is arbitrarily selected only for simulation purposes.
For the speed control, we consider the simplified RHONN given by (39), and we select

 Recurrent Neural Networks

162

The Lyapunov time derivative is defined as

 f g uV L V L V= + (34)

and substituting in , we obtain

 1ˆ ˆ((, ,) ()f g g gV L V L V R e W W L V τβ −⎡ ⎤= + −⎣ ⎦

Then, multiplying V by 2β− we have

12 ˆ ˆ2 2 () 2 () (, ,) ()f g g gV L V L V R e W W L Vβ β β
−

Τ⎡ ⎤− = − + ⎣ ⎦

Hence,

 2 2
ˆ ˆ ˆ ˆ(, ,) (, ,) 2T

g gl e W W u R e W W u Vβ+ = − (35)

Replacing (35) in the cost function (29), we obtain

 { }2
0

() lim 2 2 lim 2 () 2 () 2 (0)

2 (0)

t

t t
J u V Vdt V t V t V

V

β β β β β

β

→∞ →∞
= − = − +

=

∫ (36)

The cost function optimal value is given by ()* 2 0J Vβ= . This is achieved by the control law
(26).
Selecting 1λ > and 1iμ > , we ensure that ˆ ˆ(, ,)gl e W W satisfies the condition of being
positive definite and radially unbounded. Hence, (29) is a suitable cost function.

4.4 Simulation results for rollover active control
We now apply the developed approach on rollover active control for cornering situations,
where the features of the road can be assumed to be known by means of a system such as
GPS, in order to determine the steering input for the vehicle. A prediction model can be
introduced in the control scheme in order to predict the rollover threat and to produce a
warning signal. For the cases where the driver can not respond to warning signals, active
rollover control is necessary in order to prevent rollover. We consider two control
approaches. First we develop a speed control which would be activated before cornering
using differential braking, which could be available for implementation purposes. For the
second approach, we consider the case where the road could be slippery, thus the braking
would not be the same on each wheel, so the braking process would produce undesirable
roll, yawing and lateral acceleration response, which would reduce the rollover threshold
(Hyun & Langari, 2003). The tractor roll motion is governed by its lateral acceleration, which
is generated by longitudinal speed and vehicle steering angle. In order to have reference
values for the desired yawing response, the roll threshold and lateral acceleration threshold,
we consider the values given in (Hyun & Langari, 2003).
The approach is based on building a recurrent neural network identifier which models the
longitudinal speed xv and yaw rate, which considers two inputs: longitudinal force TF and
yawing moment zT . The model is described by the following RHONN

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

163

 1 1 1* 11() g TW z W Fχ λχ χ= − + + (37)

 2 2 2* 22() g zW z W Tχ λχ χ= − + + (38)

or in matrix form

 1
ˆ () gWz W uχ λχ χ= − + + (39)

where { }2 12
11 220, , ,g g gW W diag W Wλ ×> ∈ℜ = and

2 2
1 2 1 2 1 2

2 2 3 3
1 2 1 2

3 3 4 4 4 4
1 2 1 2 1 2

() tanh ,tanh ,tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh , tanh tanh

k k k k k k

k k k k

k k k k k k

z χ χ χ χ χ χ χ

χ χ χ χ

χ χ χ χ χ χ

⎡= ⎣

⎤⎦

 (40)

where 1 1 1 2 2 2 and k kk kχ χ χ χ= = .
As in (Hyun & Langari, 2003), the reference yaw response can be obtained as a function of
the desired speed and the steer angle using the Ackermann angle (Gillespie, 1992)

 x
d

f rL L
υψ δ=
+

 (41)

where δ is the steer angle and ,f rL L are the front and rear vehicle wheelbase segments.
We consider for the tractor semitrailer model, the heavy payload condition model given in
(Hyun & Langari, 2003), with the rollover threshold values given in function of the roll
angle and lateral acceleration as

22.6 /

2.87deg
yt

t

a m s
φ

=

=

Fig. 4. Steer input for cornering maneuver

For the cornering situation given in Fig. 4, a speed reduction is desirable as given in Fig. 5.
This speed reference is arbitrarily selected only for simulation purposes.
For the speed control, we consider the simplified RHONN given by (39), and we select

 Recurrent Neural Networks

164

 { } { }3

1 2

15, 10 , 1 10

0.085, 70
gdiag diag

k k

λ −= Γ = Γ = ×

= =

For the control law (26), we choose

 30.5 10μ = ×

Fig. 5. Speed reference trajectory

The results for the speed-only control in Fig. 6 and Fig. 7 show that the speed is decreased
successfully, but the yaw response deviates from the desired one, and the trailer presents
high values of the roll angle. In order to reduce these effects we now apply a speed-yaw rate
control.

Fig. 6. Vehicle speed and yaw rate for speed only control

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

165

Fig. 7. Trailer roll angle and lateral acceleration for speed-only control

For the speed-yaw rate control, we consider the RHONN build from (37) and (38) the same
cornering situation as in the previous application.
The RHONN parameters are selected as

 { } { }4 3

1 2

15, 10,2 10 , 1 10

0.085, 70
gdiag diag

k k

λ −= Γ = × Γ = ×

= =

Fig. 8. Vehicle speed and yaw rate for speed-yaw rate control

For the control law, (26) we choose
{ }3 40.5 10 ,5 10diagμ = × ×

 Recurrent Neural Networks

164

 { } { }3

1 2

15, 10 , 1 10

0.085, 70
gdiag diag

k k

λ −= Γ = Γ = ×

= =

For the control law (26), we choose

 30.5 10μ = ×

Fig. 5. Speed reference trajectory

The results for the speed-only control in Fig. 6 and Fig. 7 show that the speed is decreased
successfully, but the yaw response deviates from the desired one, and the trailer presents
high values of the roll angle. In order to reduce these effects we now apply a speed-yaw rate
control.

Fig. 6. Vehicle speed and yaw rate for speed only control

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

165

Fig. 7. Trailer roll angle and lateral acceleration for speed-only control

For the speed-yaw rate control, we consider the RHONN build from (37) and (38) the same
cornering situation as in the previous application.
The RHONN parameters are selected as

 { } { }4 3

1 2

15, 10,2 10 , 1 10

0.085, 70
gdiag diag

k k

λ −= Γ = × Γ = ×

= =

Fig. 8. Vehicle speed and yaw rate for speed-yaw rate control

For the control law, (26) we choose
{ }3 40.5 10 ,5 10diagμ = × ×

 Recurrent Neural Networks

166

The results for trajectory tracking are shown in Fig. 8 to Fig. 10, where the tracking error is
decreased considerably. The value for the roll angle decreased compared to the speed-only
control simulation. The lateral acceleration presents an improved response. The speed-yaw
rate control scheme prevents the rollover threat by forcing the values for roll and lateral
acceleration to be far from the rollover threshold parameters.

Fig. 9. Trailer roll angle and lateral acceleration for speed-yaw rate control

Fig. 10. Applied total braking torque and yawing moment for speed-yaw rate control

5. Conclusions
In this paper an adaptive recurrent neural network controller is developed in order to
prevent rollover in heavy vehicles. The control scheme is composed of an Recurrent Neural

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

167

Network predictor which estimates the future behavior of the roll angle and lateral
acceleration. A neural identifier builds an on-line model for the trailer-semitrailer model of
14 degrees of freedom which is assumed to be unknown. A learning adaptation law is
derived using the Lyapunov methodology. Asymptotic stability of the tracking error is
ensured by means of the inverse optimal control approach. The proposed scheme is tested,
via simulations, to prevent rollover of a tractor-semitrailer. Two different control strategies
are applied: speed-only control and speed-yaw rate control. The neural controller for speed
and yaw rate presented the best performance by reducing the roll angle and lateral
acceleration of the trailer.

6. References
UMTRI (1997). ArcSim User Reference Manual, The University of Michigan Transportation

Research Institute, Ann Arbor, MI.
Basar, T. & Bernhard, P. (1995), H-Infinity Optimal Control and Related Minimax Design

Problems, Birkhauser, Boston, USA.
Gillespie, T.D. (1992). Fundamentals of Vehicle Dynamics, Society of Automotive Engineers,

Inc., Warrendale, PA.
Hill, D. J. & Moylan, P. (1996). "The Stability of nonlinear dissipative systems", IEEE Trans.

on Automatic Control, Vol. 21, 708-711.
Hopfield, J. (1984). "Neurons with graded responses have collective computational

properties like those of two state neurons", Proc. Nat. Acad. Sci., USA, Vol. 81, pp.
3088-3092.

Hyun, D. & Langari, R. (2003). "Predictive Modelling for Rollover Warning of Heavy
Vehicles," Vehicle System Dynamics, Vol. 39, No. 6, pp. 401-414.

Khalil, H. (1996), "Adaptive Output Feedback Control of Nonlinear Systems Represented by
Input-Output Models", IEEE Trans. on Automatic Control, Vol. 41, No. 2, pp. 177-188.

Khalil, H. (2002). Nonlinear Systems, 3rd Ed., Prentice Hall, Upper Saddle River, NJ, USA.
Kosmatopoulos, E. B.; Christodoulou, M. A. & Ioannou, P. A. (1997). "Dynamical neural

networks that ensure exponential identification error convergence", Neural
Networks, Vol. 10, No. 2, pp. 299-314.

Krstic, M. & Deng, H. (1998). Stabilization of Nonlinear Uncertain Systems, Springer Verlag,
New York, USA.

Narendra, K. S. & Parthasarathy, K. (1990). "Identification and control of dynamical systems
using neural networks", IEEE Trans. on Neural Networks, Vol. 1, No. 1, pp. 4-27.

Poznyak, A. S.; Yu, W.; Sanchez, E. N. & Perez, J. P. (1999). "Nonlinear adaptive trajectory
tracking using dynamic neural networks", IEEE Trans. on Neural Networks, Vol. 10,
No. 6 Nov. 1999, pp. 1402-1411.

Poznyak, A. S.; Sanchez, E. N. & Yu, W. (2000). Differential Neural Networks for Robust
Nonlinear Control, World Scientific, USA.

Rovitahkis, G. A. & Christodoulou, M. A. (2000), Adaptive Control with Recurrent High-Order
Neural Networks, Springer Verlag, New York, USA.

Sanchez, E. N.; Perez, J. P. & Ricalde, L. (2002). "Recurrent neural control for robot trajectory
tracking", Proceedings of the 15th World Congress International Federation of Automatic
Control, Barcelona Spain, July, 2002.

 Recurrent Neural Networks

166

The results for trajectory tracking are shown in Fig. 8 to Fig. 10, where the tracking error is
decreased considerably. The value for the roll angle decreased compared to the speed-only
control simulation. The lateral acceleration presents an improved response. The speed-yaw
rate control scheme prevents the rollover threat by forcing the values for roll and lateral
acceleration to be far from the rollover threshold parameters.

Fig. 9. Trailer roll angle and lateral acceleration for speed-yaw rate control

Fig. 10. Applied total braking torque and yawing moment for speed-yaw rate control

5. Conclusions
In this paper an adaptive recurrent neural network controller is developed in order to
prevent rollover in heavy vehicles. The control scheme is composed of an Recurrent Neural

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks

167

Network predictor which estimates the future behavior of the roll angle and lateral
acceleration. A neural identifier builds an on-line model for the trailer-semitrailer model of
14 degrees of freedom which is assumed to be unknown. A learning adaptation law is
derived using the Lyapunov methodology. Asymptotic stability of the tracking error is
ensured by means of the inverse optimal control approach. The proposed scheme is tested,
via simulations, to prevent rollover of a tractor-semitrailer. Two different control strategies
are applied: speed-only control and speed-yaw rate control. The neural controller for speed
and yaw rate presented the best performance by reducing the roll angle and lateral
acceleration of the trailer.

6. References
UMTRI (1997). ArcSim User Reference Manual, The University of Michigan Transportation

Research Institute, Ann Arbor, MI.
Basar, T. & Bernhard, P. (1995), H-Infinity Optimal Control and Related Minimax Design

Problems, Birkhauser, Boston, USA.
Gillespie, T.D. (1992). Fundamentals of Vehicle Dynamics, Society of Automotive Engineers,

Inc., Warrendale, PA.
Hill, D. J. & Moylan, P. (1996). "The Stability of nonlinear dissipative systems", IEEE Trans.

on Automatic Control, Vol. 21, 708-711.
Hopfield, J. (1984). "Neurons with graded responses have collective computational

properties like those of two state neurons", Proc. Nat. Acad. Sci., USA, Vol. 81, pp.
3088-3092.

Hyun, D. & Langari, R. (2003). "Predictive Modelling for Rollover Warning of Heavy
Vehicles," Vehicle System Dynamics, Vol. 39, No. 6, pp. 401-414.

Khalil, H. (1996), "Adaptive Output Feedback Control of Nonlinear Systems Represented by
Input-Output Models", IEEE Trans. on Automatic Control, Vol. 41, No. 2, pp. 177-188.

Khalil, H. (2002). Nonlinear Systems, 3rd Ed., Prentice Hall, Upper Saddle River, NJ, USA.
Kosmatopoulos, E. B.; Christodoulou, M. A. & Ioannou, P. A. (1997). "Dynamical neural

networks that ensure exponential identification error convergence", Neural
Networks, Vol. 10, No. 2, pp. 299-314.

Krstic, M. & Deng, H. (1998). Stabilization of Nonlinear Uncertain Systems, Springer Verlag,
New York, USA.

Narendra, K. S. & Parthasarathy, K. (1990). "Identification and control of dynamical systems
using neural networks", IEEE Trans. on Neural Networks, Vol. 1, No. 1, pp. 4-27.

Poznyak, A. S.; Yu, W.; Sanchez, E. N. & Perez, J. P. (1999). "Nonlinear adaptive trajectory
tracking using dynamic neural networks", IEEE Trans. on Neural Networks, Vol. 10,
No. 6 Nov. 1999, pp. 1402-1411.

Poznyak, A. S.; Sanchez, E. N. & Yu, W. (2000). Differential Neural Networks for Robust
Nonlinear Control, World Scientific, USA.

Rovitahkis, G. A. & Christodoulou, M. A. (2000), Adaptive Control with Recurrent High-Order
Neural Networks, Springer Verlag, New York, USA.

Sanchez, E. N.; Perez, J. P. & Ricalde, L. (2002). "Recurrent neural control for robot trajectory
tracking", Proceedings of the 15th World Congress International Federation of Automatic
Control, Barcelona Spain, July, 2002.

 Recurrent Neural Networks

168

Suykens, K.; Vandewalle, L. & De Moor, R. (1996). Artificial Neural Networks for Modelling and
Control of Nonlinear Systems, Kluwer Academic Publishers, Boston, USA, 1996. 9

A New Supervised Learning Algorithm of
Recurrent Neural Networks and L2 Stability

Analysis in Discrete-Time Domain
Wu Yilei, Yang Xulei and Song Qing

School of Electrical and Electronic Engineering
 Nanyang Technological University,

Singapore

1. Introduction
In the past decades, Recurrent Neural Network (RNN) has attracted extensive research
interests in various disciplines. One important motivation of these investigations is the
RNN's promising ability of modeling time-behavior of nonlinear dynamic systems. It has
been theoretically proved that RNN is able to map arbitrary input sequences to output
sequences with infinite accuracy regardless underline dynamics with sufficient training
samples [1]. Moreover, from biological point of view, RNN is more plausible to the real
neural models as compared to other adaptive methods such as Hidden Markov Models
(HMM), feed-forward networks and Support Vector Machines (SVM). From the practical
point of view, the dynamics approximation and adaptive learning capability make RNN a
highly competitive candidate for a wide range of applications. See [2] [3] [4] for examples.
Among the various applications, the realtime signal processing has constantly been one of
the active topics of RNN. In such kind of applications, the convergence speed is always an
important concern because of the tight timing requirement. For example, the conventional
training algorithms of RNN, such as the Backpropagation Through Time (BPTT) and the
Real Time Recurrent Learning (RTRL) always suffer from slow convergence speed. If a large
learning rate is selected to speed up the weight updating, the training process may become
unstable. Thus it is desirable to develop robust learning algorithms with variable or
adaptive learning coe±cients to obtain a tradeoff between the stability and fast convergence
speed.
The issue has already been extensively studied for linear adaptive filters, e.g., the famous
Normalized Least Mean Square (N-LMS) algorithm. However, for online training
algorithms of RNN this is still an open topic. Due to the inherent feedback and distributive
parallel structure, the adjustments of RNN weights can affect the entire neural network state
variables during network training. Hence it is difficult to obtain the error derivative for
gradient type updating rules, and in turn difficulty in the analysis of the underlying
dynamics of the training. So far, a great number of works have been carried out to solve the
problem. To name a few, in [5], B. Pearlmutter presented a detail survey on gradient
calculation for RNN training algorithms. In [6] [7] , M. Rupp et al introduced a robustness

 Recurrent Neural Networks

168

Suykens, K.; Vandewalle, L. & De Moor, R. (1996). Artificial Neural Networks for Modelling and
Control of Nonlinear Systems, Kluwer Academic Publishers, Boston, USA, 1996. 9

A New Supervised Learning Algorithm of
Recurrent Neural Networks and L2 Stability

Analysis in Discrete-Time Domain
Wu Yilei, Yang Xulei and Song Qing

School of Electrical and Electronic Engineering
 Nanyang Technological University,

Singapore

1. Introduction
In the past decades, Recurrent Neural Network (RNN) has attracted extensive research
interests in various disciplines. One important motivation of these investigations is the
RNN's promising ability of modeling time-behavior of nonlinear dynamic systems. It has
been theoretically proved that RNN is able to map arbitrary input sequences to output
sequences with infinite accuracy regardless underline dynamics with sufficient training
samples [1]. Moreover, from biological point of view, RNN is more plausible to the real
neural models as compared to other adaptive methods such as Hidden Markov Models
(HMM), feed-forward networks and Support Vector Machines (SVM). From the practical
point of view, the dynamics approximation and adaptive learning capability make RNN a
highly competitive candidate for a wide range of applications. See [2] [3] [4] for examples.
Among the various applications, the realtime signal processing has constantly been one of
the active topics of RNN. In such kind of applications, the convergence speed is always an
important concern because of the tight timing requirement. For example, the conventional
training algorithms of RNN, such as the Backpropagation Through Time (BPTT) and the
Real Time Recurrent Learning (RTRL) always suffer from slow convergence speed. If a large
learning rate is selected to speed up the weight updating, the training process may become
unstable. Thus it is desirable to develop robust learning algorithms with variable or
adaptive learning coe±cients to obtain a tradeoff between the stability and fast convergence
speed.
The issue has already been extensively studied for linear adaptive filters, e.g., the famous
Normalized Least Mean Square (N-LMS) algorithm. However, for online training
algorithms of RNN this is still an open topic. Due to the inherent feedback and distributive
parallel structure, the adjustments of RNN weights can affect the entire neural network state
variables during network training. Hence it is difficult to obtain the error derivative for
gradient type updating rules, and in turn difficulty in the analysis of the underlying
dynamics of the training. So far, a great number of works have been carried out to solve the
problem. To name a few, in [5], B. Pearlmutter presented a detail survey on gradient
calculation for RNN training algorithms. In [6] [7] , M. Rupp et al introduced a robustness

 Recurrent Neural Networks

170

analysis of RNN by the small gain theorem. The stability was explained from the energy
point of view that the ratio of output noise against input noise was guaranteed to be smaller
than unity. In [8], J. Liang and M. Gupta studied the stability of dynamic back-propagation
training algorithm by the Lyapunov method. An auxiliary term was appended to augment
the learning error. The convergence speed was improved by introducing an extra increment
in the updating rule. Later, A. Atiya and A. Parlos used a generalized steepest descent
method to obtain a unified error gradient algorithm [9]. Recently, Q. Song et al proposed a
simultaneous perturbation stochastic approximation training method for neural networks
and robust stability is established by the conic sector theorem [10] [11].
The work presented in this chapter investigate the stability and robustness of the gradient-
type training algorithms of RNN in the discrete-time domain. A Robust Adaptive Gradient
Descent (RAGD) training algorithm is introduced to improve the RNN training speed as
compared to those conventional algorithms, such as the BPTT, the RTRL and the
Normalized RTRL (N-RTRL). The main feature of the RAGD is the novel hybrid training
concept, which switches the training patterns between the standard online Back Propagation
(BP) and the N-RTRL algorithm via three adaptive parameters, the hybrid adaptive learning
rates, the adaptive dead zone learning rates, and the normalization factors. These
parameters allow RAGD to locate relatively deeper local attractors of the training and hence
obtain a faster transient response. Different from the N-RTRL, the RAGD uses a specifically
designed error derivatives based on the extended recurrent gradient to approximate the true
gradient for realtime learning. Also the RAGD is different from the static BP in terms that
the former uses the extended recurrent gradient to extend the instantaneous squared
estimation error minimization into recurrent mode, while the latter is strictly based on the
instantaneous squared estimation error minimization without specifically considering the
recurrent signal.
Weight convergence and robust stability of the RAGD are proved respectively based on the
Lyapunov function and the Cluett's law, which is developed from the conic sector theorem
of input- output system theory. Sufficient boundary conditions of the three adaptive
parameters are derived to guarantee the L2 stability of the training. Different from precedent
results [12], the present work employs the input-output systematic approach in analysis.
This is because the input-output theory on basis of functional analysis requires minimal
assumptions about the training statistics. Although the results are also derivable from
conventional analysis method, we emphasize that input-output systematic scheme can
provide an in-depth understanding of RNN training dynamics from different aspect.
In addition to the theoretical analysis, we carried out three case studies of the applications in
realtime signal processing via computer simulations, including time series prediction,
system identification, and attractor learning for pattern association. With these case studies,
we are able to qualify the effectiveness of the RAGD and hence justify that the algorithm
outperforms other counterparts.
The overall chapter is organized as follows: In Sections 2, we briefly introduce the structure
of the RNN and the RAGD training algorithm. In Section 3, the robustness analysis of the
RAGD is carried out for the Single-input Single-Output and Multi-input Multi-output RNN
respectively. In addition, the conic sector theorem is introduced as the theoretical
foundation of the analysis. Computer simulations are presented in Section 4 to show the
efficiency of our proposed RAGD. Section 5 draws the final conclusions.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

171

2. RAGD learning algorithm
Consider a RNN with l output nodes and m hidden neurons. In discrete-time domain, the
network output ŷ at time instant k can be written as

 (1)

where V̂ (k) ∈ Rl×m and Ŵ (k) ∈ Rm×n are output and hidden layer weights respectively (in
matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the
state vector that consists of external input u(k) and n - 1 delayed output feedback entries

 (2)

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k)
instead of Φ (Ŵ (k) x̂ (k)) hereafter. When estimating a command signal d(k), the
instantaneous modeling error of RNN can be defined by

 (3)

Note a disturbance term ε (k) ∈ Rl×1 is taken into account in (3). Without loss of generality,

there is no assumption on the prior knowledge of ε (k) and its statistics. The training
objective of RNN is to update the weight parameters step by step to minimize certain cost
function f(e(k)), with the most convenient form being the squared instantaneous error e2(k)/2.
Specifically, in an environment of time-varying signal statistics, a gradient based sequential
training algorithm can be used to recursively reduce the f(e(k)) by estimating the weights at
each time instant

(4)

where α is the learning rate of RNN, and Ŵ i(k) is the ith row of hidden layer weight matrix,
with i = 1, 2, …, m. Note subscript i denotes ith row for matrices or ith entry for vectors. As
for the above algorithm, a widely recognized problem is the slow convergence speed
because of small learning rates for purpose of preserving weight convergence. So far the
commonly accepted solution of this problem is to employ normalization, e.g., the N-RTRL
algorithm [13] [1]. Indeed, the solution can be further improved if we can find effective
boundary conditions of learning rates and normalization factors as will be shown in later
sections. Moreover, hybrid learning rates can be employed to obtain the tradeoff between
the transient and steady state response. Now based on the RNN model (1) and the gradient-
based training equation (4), we propose the RAGD learning algorithm as follows

(5)

 Recurrent Neural Networks

170

analysis of RNN by the small gain theorem. The stability was explained from the energy
point of view that the ratio of output noise against input noise was guaranteed to be smaller
than unity. In [8], J. Liang and M. Gupta studied the stability of dynamic back-propagation
training algorithm by the Lyapunov method. An auxiliary term was appended to augment
the learning error. The convergence speed was improved by introducing an extra increment
in the updating rule. Later, A. Atiya and A. Parlos used a generalized steepest descent
method to obtain a unified error gradient algorithm [9]. Recently, Q. Song et al proposed a
simultaneous perturbation stochastic approximation training method for neural networks
and robust stability is established by the conic sector theorem [10] [11].
The work presented in this chapter investigate the stability and robustness of the gradient-
type training algorithms of RNN in the discrete-time domain. A Robust Adaptive Gradient
Descent (RAGD) training algorithm is introduced to improve the RNN training speed as
compared to those conventional algorithms, such as the BPTT, the RTRL and the
Normalized RTRL (N-RTRL). The main feature of the RAGD is the novel hybrid training
concept, which switches the training patterns between the standard online Back Propagation
(BP) and the N-RTRL algorithm via three adaptive parameters, the hybrid adaptive learning
rates, the adaptive dead zone learning rates, and the normalization factors. These
parameters allow RAGD to locate relatively deeper local attractors of the training and hence
obtain a faster transient response. Different from the N-RTRL, the RAGD uses a specifically
designed error derivatives based on the extended recurrent gradient to approximate the true
gradient for realtime learning. Also the RAGD is different from the static BP in terms that
the former uses the extended recurrent gradient to extend the instantaneous squared
estimation error minimization into recurrent mode, while the latter is strictly based on the
instantaneous squared estimation error minimization without specifically considering the
recurrent signal.
Weight convergence and robust stability of the RAGD are proved respectively based on the
Lyapunov function and the Cluett's law, which is developed from the conic sector theorem
of input- output system theory. Sufficient boundary conditions of the three adaptive
parameters are derived to guarantee the L2 stability of the training. Different from precedent
results [12], the present work employs the input-output systematic approach in analysis.
This is because the input-output theory on basis of functional analysis requires minimal
assumptions about the training statistics. Although the results are also derivable from
conventional analysis method, we emphasize that input-output systematic scheme can
provide an in-depth understanding of RNN training dynamics from different aspect.
In addition to the theoretical analysis, we carried out three case studies of the applications in
realtime signal processing via computer simulations, including time series prediction,
system identification, and attractor learning for pattern association. With these case studies,
we are able to qualify the effectiveness of the RAGD and hence justify that the algorithm
outperforms other counterparts.
The overall chapter is organized as follows: In Sections 2, we briefly introduce the structure
of the RNN and the RAGD training algorithm. In Section 3, the robustness analysis of the
RAGD is carried out for the Single-input Single-Output and Multi-input Multi-output RNN
respectively. In addition, the conic sector theorem is introduced as the theoretical
foundation of the analysis. Computer simulations are presented in Section 4 to show the
efficiency of our proposed RAGD. Section 5 draws the final conclusions.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

171

2. RAGD learning algorithm
Consider a RNN with l output nodes and m hidden neurons. In discrete-time domain, the
network output ŷ at time instant k can be written as

 (1)

where V̂ (k) ∈ Rl×m and Ŵ (k) ∈ Rm×n are output and hidden layer weights respectively (in
matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the
state vector that consists of external input u(k) and n - 1 delayed output feedback entries

 (2)

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k)
instead of Φ (Ŵ (k) x̂ (k)) hereafter. When estimating a command signal d(k), the
instantaneous modeling error of RNN can be defined by

 (3)

Note a disturbance term ε (k) ∈ Rl×1 is taken into account in (3). Without loss of generality,

there is no assumption on the prior knowledge of ε (k) and its statistics. The training
objective of RNN is to update the weight parameters step by step to minimize certain cost
function f(e(k)), with the most convenient form being the squared instantaneous error e2(k)/2.
Specifically, in an environment of time-varying signal statistics, a gradient based sequential
training algorithm can be used to recursively reduce the f(e(k)) by estimating the weights at
each time instant

(4)

where α is the learning rate of RNN, and Ŵ i(k) is the ith row of hidden layer weight matrix,
with i = 1, 2, …, m. Note subscript i denotes ith row for matrices or ith entry for vectors. As
for the above algorithm, a widely recognized problem is the slow convergence speed
because of small learning rates for purpose of preserving weight convergence. So far the
commonly accepted solution of this problem is to employ normalization, e.g., the N-RTRL
algorithm [13] [1]. Indeed, the solution can be further improved if we can find effective
boundary conditions of learning rates and normalization factors as will be shown in later
sections. Moreover, hybrid learning rates can be employed to obtain the tradeoff between
the transient and steady state response. Now based on the RNN model (1) and the gradient-
based training equation (4), we propose the RAGD learning algorithm as follows

(5)

 Recurrent Neural Networks

172

where Φ’(k) is the vector of activation function derivatives, αv(k), αw(k) are adaptive dead
zone learning rates, βv(k), βw(k) are hybrid learning rates, ρv(k), ρw(k) are normalization
factors, and Â (k), B̂ (k) are residual error gradients. These variables are defined in the
following.
(a) Φ’(k) ∈ Rm×1

 (6)

(b) Â (k) ∈ R1×m and B̂ (k) ∈ R1×n

(7)

 (8)

where

are block diagonal matrices

with sub-matrix diag{Φ’ (k)} and Ŵ (k) on the diagonal respectively

are long vector versions of the weight matrices V̂ (k)

and Ŵ (k) respectively

and the Jacobian

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

173

in which are sub-matrices.

(c) β v(k) and β w(k)

 (9)

 (10)

where is a small positive constant, I is the identity matrix, and I is employed to ensure the
matrix and positive definite.
(d) ρ v(k) and ρ w(k)

 (11)

(12)

where are positive constants, μ max is the maximu value of the
activation function, and . Note we are using an inner
product induced norm, the Frobenius norm, as the norm of weight matrices in this work.
(e) αv(k) and αw(k)

(13)

(14)

where and sgn(•) function is defined by

(15)

Remark 1 The RAGD algorithm uses the specific designed derivative as shown in (5). The state
estimators are taken into account in the second terms of the partial derivatives on the right side of the
equation. Further, to make the proposed algorithm realtime adaptive and recurrent, the D̂ v(k) and
the D̂ w(k) in the partial derivatives are calculated on basis of the data from previous training steps,
which is similar to that of the N-RTRL algorithm [14]. It is noteworthy only when the convergence
and stability requirements (details will be given in Section 3) are met, they hybrid learning rate β will
be turned on. In this case, since we have estimated the best available gradient at each step k, the
combination of weights and state estimates in (5) should provide a relatively deeper local attractor of
the nonlinear iteration, and hence to speed up the training.

 Recurrent Neural Networks

172

where Φ’(k) is the vector of activation function derivatives, αv(k), αw(k) are adaptive dead
zone learning rates, βv(k), βw(k) are hybrid learning rates, ρv(k), ρw(k) are normalization
factors, and Â (k), B̂ (k) are residual error gradients. These variables are defined in the
following.
(a) Φ’(k) ∈ Rm×1

 (6)

(b) Â (k) ∈ R1×m and B̂ (k) ∈ R1×n

(7)

 (8)

where

are block diagonal matrices

with sub-matrix diag{Φ’ (k)} and Ŵ (k) on the diagonal respectively

are long vector versions of the weight matrices V̂ (k)

and Ŵ (k) respectively

and the Jacobian

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

173

in which are sub-matrices.

(c) β v(k) and β w(k)

 (9)

 (10)

where is a small positive constant, I is the identity matrix, and I is employed to ensure the
matrix and positive definite.
(d) ρ v(k) and ρ w(k)

 (11)

(12)

where are positive constants, μ max is the maximu value of the
activation function, and . Note we are using an inner
product induced norm, the Frobenius norm, as the norm of weight matrices in this work.
(e) αv(k) and αw(k)

(13)

(14)

where and sgn(•) function is defined by

(15)

Remark 1 The RAGD algorithm uses the specific designed derivative as shown in (5). The state
estimators are taken into account in the second terms of the partial derivatives on the right side of the
equation. Further, to make the proposed algorithm realtime adaptive and recurrent, the D̂ v(k) and
the D̂ w(k) in the partial derivatives are calculated on basis of the data from previous training steps,
which is similar to that of the N-RTRL algorithm [14]. It is noteworthy only when the convergence
and stability requirements (details will be given in Section 3) are met, they hybrid learning rate β will
be turned on. In this case, since we have estimated the best available gradient at each step k, the
combination of weights and state estimates in (5) should provide a relatively deeper local attractor of
the nonlinear iteration, and hence to speed up the training.

 Recurrent Neural Networks

174

3. Robust stability analysis
In this section, we present detail analysis of robust stability of the RAGD algorithm. Proofs
of weight convergence and L2 stability are derived on basis of Lyapunov function and input-
output systematic approach respectively. The boundary conditions on the three adaptive
parameters, the hybrid learning rate, the adaptive dead zone learning rates, and the
normalization factors, are obtained for the optimized transient response of the training. For
better understanding of the algorithm, a simple case of Single-input Single-output (SISO)
RNN is firstly given as an example. Then the results are extended to the more complicated
case of Multi-input Multi-output (MIMO) RNN. Before proceeding, we introduce the
Cluett's law and mathematical preliminaries.

3.1 Cluett's laws
The main concern of this work is discrete signals which are infinite sequences of real
numbers. Each signal may be considered an element of a set known as a linear vector space.
To provide a clear explanation, an immediate review is given on several mathematical
notations. Let the x(k) ∈ Rn×1 denotes the series {x(1), x(2), …}, then

i) The L2 norm of x(k) is defined as

ii) If the L2 norm of x(k) exists, the corresponding normed vector spaces are called L2 spaces;

iii) The truncation of x(k) is defined as

iv) The extension of a space L2, denoted by L2e is the space consisting of those elements x(k)
whose truncations are all lie in L2, i.e., , for all N ∈Z+ (the set of positive
integers).
Note • denotes the Euclidean norm of a vector, and • 2 for the L2 norm of a signal (could
be either a vector or a scalar). Let's consider the closed loop system shown in Figure 1

Figure 1. A general closed loop feedback system

(16)

where operators H1;H2 : L2e →L2e, discrete time signals e0(k); e(k); φ(k) ∈ L2e and ε(k) ∈ L2.
Theorem 1 (Cluett's Law-1) If the following two conditions hold

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

175

i)

ii)

for some α, β ∈ R, which are independent of k and N, and γ ≥ 0, η > 0, which are
independent of N, then the closed loop feedback system of (16) is stable in the sense of e(k),
 φ (k) ∈ L2.
Proof: By the inequality i) and using e0(k) = ε(k) -φ (k)

(17)

Combining inequality ii) and equation (17)

(18)

Using the Schwartz inequality

(19)

Assume as N→∞, then from equation (19) we derive η ≤0. This is
a contradiction. Therefore is bounded for all N ∈ Z+, i.e., φ(k), e(k) ∈ L2. ■

Theorem 2 (Cluett's Law{2) For the feedback system (16), if
i) H1 : e0(k) - e(k) satisfies

ii) H2 : e(k) - φ (k) satisfies

for some γ ≥ 0, η > 0, which are independent of N, and ∈ (0, 1], which is independent of k
and N, then the closed loop signals e(k), φ (k) ∈ L2.
Proof: See corollary 2.1 in [15]. ■
Remark 2 As a matter of fact, the operator H1 represents the nonlinear mapping and H2 is a dynamic
linear transfer function. When condition (i) and (ii) are satisfied, H2 is guaranteed to be passive and

1
1H −

 is strictly interior conic (c1, r1), where c1 = 1 and r1 = (1-)1/2, or equivalently H1 is strictly

interior the conic (c2, r2) where c2 = -1
 and r1 = -1

 (1 -)1/2 as long as < 1 holds. Hence the
feedback loop is L2-stable by the conic sector theorem. This conic relation is illustrated in Figure 2

 Recurrent Neural Networks

174

3. Robust stability analysis
In this section, we present detail analysis of robust stability of the RAGD algorithm. Proofs
of weight convergence and L2 stability are derived on basis of Lyapunov function and input-
output systematic approach respectively. The boundary conditions on the three adaptive
parameters, the hybrid learning rate, the adaptive dead zone learning rates, and the
normalization factors, are obtained for the optimized transient response of the training. For
better understanding of the algorithm, a simple case of Single-input Single-output (SISO)
RNN is firstly given as an example. Then the results are extended to the more complicated
case of Multi-input Multi-output (MIMO) RNN. Before proceeding, we introduce the
Cluett's law and mathematical preliminaries.

3.1 Cluett's laws
The main concern of this work is discrete signals which are infinite sequences of real
numbers. Each signal may be considered an element of a set known as a linear vector space.
To provide a clear explanation, an immediate review is given on several mathematical
notations. Let the x(k) ∈ Rn×1 denotes the series {x(1), x(2), …}, then

i) The L2 norm of x(k) is defined as

ii) If the L2 norm of x(k) exists, the corresponding normed vector spaces are called L2 spaces;

iii) The truncation of x(k) is defined as

iv) The extension of a space L2, denoted by L2e is the space consisting of those elements x(k)
whose truncations are all lie in L2, i.e., , for all N ∈Z+ (the set of positive
integers).
Note • denotes the Euclidean norm of a vector, and • 2 for the L2 norm of a signal (could
be either a vector or a scalar). Let's consider the closed loop system shown in Figure 1

Figure 1. A general closed loop feedback system

(16)

where operators H1;H2 : L2e →L2e, discrete time signals e0(k); e(k); φ(k) ∈ L2e and ε(k) ∈ L2.
Theorem 1 (Cluett's Law-1) If the following two conditions hold

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

175

i)

ii)

for some α, β ∈ R, which are independent of k and N, and γ ≥ 0, η > 0, which are
independent of N, then the closed loop feedback system of (16) is stable in the sense of e(k),
 φ (k) ∈ L2.
Proof: By the inequality i) and using e0(k) = ε(k) -φ (k)

(17)

Combining inequality ii) and equation (17)

(18)

Using the Schwartz inequality

(19)

Assume as N→∞, then from equation (19) we derive η ≤0. This is
a contradiction. Therefore is bounded for all N ∈ Z+, i.e., φ(k), e(k) ∈ L2. ■

Theorem 2 (Cluett's Law{2) For the feedback system (16), if
i) H1 : e0(k) - e(k) satisfies

ii) H2 : e(k) - φ (k) satisfies

for some γ ≥ 0, η > 0, which are independent of N, and ∈ (0, 1], which is independent of k
and N, then the closed loop signals e(k), φ (k) ∈ L2.
Proof: See corollary 2.1 in [15]. ■
Remark 2 As a matter of fact, the operator H1 represents the nonlinear mapping and H2 is a dynamic
linear transfer function. When condition (i) and (ii) are satisfied, H2 is guaranteed to be passive and

1
1H −

 is strictly interior conic (c1, r1), where c1 = 1 and r1 = (1-)1/2, or equivalently H1 is strictly

interior the conic (c2, r2) where c2 = -1
 and r1 = -1

 (1 -)1/2 as long as < 1 holds. Hence the
feedback loop is L2-stable by the conic sector theorem. This conic relation is illustrated in Figure 2

 Recurrent Neural Networks

176

Figure 2. Illustration of interior and exterior conic relations of H1

3.2 Output layer analysis of SISO RNN
In this and next section, we consider the RNN model of (1) with only one output node, i.e.,
l = 1. Such simplification is favorable for us to put more concentration on the basic ideas of
the proof rather than the pure mathematics. Moreover, the results for SISO RNN will also be
extended to the more general case of MIMO RNN in later sections. On the other hand, in a
multi-layered RNN, it may not be able to update all the estimated weights within a single
gradient approximation function. Hence we shall partition the training into different layers.
Now with the assumption of SISO RNN, the training for output layer can be re-written as

(20)

In order to analyze the dynamics of this training equation via input-output approach, the
first step is to restructure (20) into an error feedback loop, which should be the same as that
in Figure 1. Further, the weight estimation error must be referred as the output signal. For
this purpose, define the estimation error

 (21)

where V* ∈ R1×m and V (k) = V (k) - V* are the ideal weight vector and estimation error
vector of output layer respectively, and Φ*(k) is defined in analogous to Φ (k) as

 (22)

where x*(k) ∈ Rn×1 is the ideal input state, W* ∈ Rm×n is the ideal weight matrix of hidden
layer of the RNN. Then the training error of RNN can be expanded as

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

177

(23)

Because the term V* Φ*(k) - V* Φ (k) is temporarily constant in case of output layer training,
we can define ε v(k) = ε (k) + V* Φ*(k) - V* Φ (k). Then (23) can be transformed as

 (24)

Equation (24) has a similar form as the feedback path of the system (16), with ev(k) and e(k)
corresponding to e(k) and e0(k) in Figure 1 respectively, and here the feedback gain is unity,
i.e., H2 = 1.
There is an important implication in the relation of (24). The ev(k), e(k) and ε v(k) correspond
to the weight estimation error, the RNN modeling error and the disturbance, respectively.
Hence the training error is directly linked to the disturbance, and in turn, the parameter
estimating error of the RNN output layer. If we further establish a nonlinear mapping from
the original disturbance ε v(k) to the parameter estimation error ev(k), the relationship
between L2-stability of training algorithm and learning parameters can subsequently be
studied by imposing the conditions of Theorem 2.
Theorem 3 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm
(20), the weight V̂ (k) is guaranteed to be stable in the sense of Lyapunov

 (25)

with V (k) = V (k) - V*. Also the training will be L2-stable in the sense of ev(k) ∈ L2 if αv(k) ≠0
for all k ∈ Z+.
Proof: Subtracting V*and then squaring both sides of (20)

(26)

Regarding the first term on the right side of (26), we find that it may be easily associated
with the term ev(k) due to the explicit appearance of V (k) and Φ(k). Following this idea, we
need to apply certain transformation to β v(k) Â (k)T , such that Φ(k) can be extracted from the
summation. When it comes to this point, our first thought is to left multiply

 However, the transformation is not valid
because Φ(k) Φ(k)T is not an invertible matrix (Φ(k) is a column vector). Fortunately, inspired
by the approximation method of classical Gauss-Newton iteration algorithm [2] (pp.126-
127), we can add the term Φ(k) Φ(k)T by a small positive constant to expand it into

 Recurrent Neural Networks

176

Figure 2. Illustration of interior and exterior conic relations of H1

3.2 Output layer analysis of SISO RNN
In this and next section, we consider the RNN model of (1) with only one output node, i.e.,
l = 1. Such simplification is favorable for us to put more concentration on the basic ideas of
the proof rather than the pure mathematics. Moreover, the results for SISO RNN will also be
extended to the more general case of MIMO RNN in later sections. On the other hand, in a
multi-layered RNN, it may not be able to update all the estimated weights within a single
gradient approximation function. Hence we shall partition the training into different layers.
Now with the assumption of SISO RNN, the training for output layer can be re-written as

(20)

In order to analyze the dynamics of this training equation via input-output approach, the
first step is to restructure (20) into an error feedback loop, which should be the same as that
in Figure 1. Further, the weight estimation error must be referred as the output signal. For
this purpose, define the estimation error

 (21)

where V* ∈ R1×m and V (k) = V (k) - V* are the ideal weight vector and estimation error
vector of output layer respectively, and Φ*(k) is defined in analogous to Φ (k) as

 (22)

where x*(k) ∈ Rn×1 is the ideal input state, W* ∈ Rm×n is the ideal weight matrix of hidden
layer of the RNN. Then the training error of RNN can be expanded as

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

177

(23)

Because the term V* Φ*(k) - V* Φ (k) is temporarily constant in case of output layer training,
we can define ε v(k) = ε (k) + V* Φ*(k) - V* Φ (k). Then (23) can be transformed as

 (24)

Equation (24) has a similar form as the feedback path of the system (16), with ev(k) and e(k)
corresponding to e(k) and e0(k) in Figure 1 respectively, and here the feedback gain is unity,
i.e., H2 = 1.
There is an important implication in the relation of (24). The ev(k), e(k) and ε v(k) correspond
to the weight estimation error, the RNN modeling error and the disturbance, respectively.
Hence the training error is directly linked to the disturbance, and in turn, the parameter
estimating error of the RNN output layer. If we further establish a nonlinear mapping from
the original disturbance ε v(k) to the parameter estimation error ev(k), the relationship
between L2-stability of training algorithm and learning parameters can subsequently be
studied by imposing the conditions of Theorem 2.
Theorem 3 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm
(20), the weight V̂ (k) is guaranteed to be stable in the sense of Lyapunov

 (25)

with V (k) = V (k) - V*. Also the training will be L2-stable in the sense of ev(k) ∈ L2 if αv(k) ≠0
for all k ∈ Z+.
Proof: Subtracting V*and then squaring both sides of (20)

(26)

Regarding the first term on the right side of (26), we find that it may be easily associated
with the term ev(k) due to the explicit appearance of V (k) and Φ(k). Following this idea, we
need to apply certain transformation to β v(k) Â (k)T , such that Φ(k) can be extracted from the
summation. When it comes to this point, our first thought is to left multiply

 However, the transformation is not valid
because Φ(k) Φ(k)T is not an invertible matrix (Φ(k) is a column vector). Fortunately, inspired
by the approximation method of classical Gauss-Newton iteration algorithm [2] (pp.126-
127), we can add the term Φ(k) Φ(k)T by a small positive constant to expand it into

 Recurrent Neural Networks

178

 (27)

Such that the singular matrix problem can be avoided. On this basis, we have the following
derivations

(28)

(29)

where (29) is obtained by substituting (24) into (28). Then based on the triangular inequality
 (29) can be further deducted as

By the definition of βv(k), we may derive that
Furthermore, because that as defined in (11) which lead

to 1 - > 0, and by the definition of αv(k), the convergence of V (k) can

be derived

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

179

(30)

Next considering the case that the assumption αv(k) ≠0 holds for all k ∈ Z+, we can divide
both sides of (28) by and then sum
up to N steps

(31)

where the normalized error signals are defined as

and the cone satisfies

which prevents the vanishing radius problem, i.e., σ v is strictly smaller than one [15].
Because for each k the Lyapunov function (30) is guaranteed smaller or equal to zero, we
have

 Recurrent Neural Networks

178

 (27)

Such that the singular matrix problem can be avoided. On this basis, we have the following
derivations

(28)

(29)

where (29) is obtained by substituting (24) into (28). Then based on the triangular inequality
 (29) can be further deducted as

By the definition of βv(k), we may derive that
Furthermore, because that as defined in (11) which lead

to 1 - > 0, and by the definition of αv(k), the convergence of V (k) can

be derived

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

179

(30)

Next considering the case that the assumption αv(k) ≠0 holds for all k ∈ Z+, we can divide
both sides of (28) by and then sum
up to N steps

(31)

where the normalized error signals are defined as

and the cone satisfies

which prevents the vanishing radius problem, i.e., σ v is strictly smaller than one [15].
Because for each k the Lyapunov function (30) is guaranteed smaller or equal to zero, we
have

 Recurrent Neural Networks

180

Due to the specific selection of the normalization factor in (11), the normalized error signals
guarantee that the original signals e(k) and ev(k) are bounded according to the original
operators H v

1 and H2 [15]. Now the operator H v
1 represented by (31) satisfies the condition

(i) of Theorem 2, and condition (ii) is guaranteed to hold due to H2 = 1. Thus we conclude
that ev(k) ∈ L2. ■
Remark 3 According to the theoretical analysis, the three adaptive parameters αv(k), β v(k) and ρv(k)

play important roles in the design of the RAGD. The adaptive learning rate αv(k) is based on the
standard adaptive control system to solve the weight drift problem [10]. The normalization factor
ρ v(k) prevents the so-called vanishing cone problem of the conic sector theorem [15], which also has a
similar role to the local stability condition as in [8] to bound the gradient in (20). The specific
designed hybrid adaptive learning rate β v(k) can be further interpreted as activating the recurrent
learning fashion in case It implies that the recurrent
training of the RAGD will be active only if the second term of the derivative in (20) gives the negative
gradient direction, i.e., a relatively deeper local attractor, otherwise the RAGD training procedure
will be the same as a static BP algorithm and likely escape this undesired local attractor since it is
unfavorable in the recurrent training. This design is especially effective for accelerating the training
of the RNN when the iteration is near the bottom of basin of a local attractor, where the derivatives
are changed slowly. With β v(k) = 1, the approximation of D̂ v(k) is more accurate to meet the
convergence and stability requirements.
Remark 4 The idea of the RAGD is similar to the existing works [16] [17] [14]. If we calculate the
derivative in (20) exactly by unfolding the recurrent structure and force β v(k) = 0, i.e, pursuing all N
steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the
assumption that the model parameters do not change apparently between each iteration [16], then we
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD
and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence
and system stability.

3.3 Hidden layer analysis of SISO RNN
This section presents the stability analysis for the hidden layer training of the RAGD.
Apparently the analysis for the hidden layer is more di±cult than the one of the output
layer, because the dynamics between the weight and modeling error is nonlinear. The
derivation of error gradient must be carried out through one layer backward, which
involves the derivative of activation function. In the following analysis, we show that the
nonlinearity can actually be avoided by using the mean value theorem. On the other hand,
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the

proof, e.g., ˆ ()
F

W k . A direct benefit of this expression is that the proof and the training

equation can be presented in matrix forms, while not in a manner of row by row. However
question arises, it is difficult to derive the Jacobian in this framework. We find that it is
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified
as follows

(32)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

181

Expanding the modeling error around the hidden layer weight

(33)

where is the vector difference
between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith
nonlinear activation function, and Ψ (k) is

Defining

 (34)

then equation (33) can be simplified as

 (35)

Because the output layer weight is always updated before the hidden layer weight, and
V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error
signal ε w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone,
thus we only need to study the operator H1 to analyze the stability of the training.
Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm
(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov

with W (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense
of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+.
Proof: Subtracting W* from both sides of (32)

(36)

Squaring both sides of (36)

 Recurrent Neural Networks

180

Due to the specific selection of the normalization factor in (11), the normalized error signals
guarantee that the original signals e(k) and ev(k) are bounded according to the original
operators H v

1 and H2 [15]. Now the operator H v
1 represented by (31) satisfies the condition

(i) of Theorem 2, and condition (ii) is guaranteed to hold due to H2 = 1. Thus we conclude
that ev(k) ∈ L2. ■
Remark 3 According to the theoretical analysis, the three adaptive parameters αv(k), β v(k) and ρv(k)

play important roles in the design of the RAGD. The adaptive learning rate αv(k) is based on the
standard adaptive control system to solve the weight drift problem [10]. The normalization factor
ρ v(k) prevents the so-called vanishing cone problem of the conic sector theorem [15], which also has a
similar role to the local stability condition as in [8] to bound the gradient in (20). The specific
designed hybrid adaptive learning rate β v(k) can be further interpreted as activating the recurrent
learning fashion in case It implies that the recurrent
training of the RAGD will be active only if the second term of the derivative in (20) gives the negative
gradient direction, i.e., a relatively deeper local attractor, otherwise the RAGD training procedure
will be the same as a static BP algorithm and likely escape this undesired local attractor since it is
unfavorable in the recurrent training. This design is especially effective for accelerating the training
of the RNN when the iteration is near the bottom of basin of a local attractor, where the derivatives
are changed slowly. With β v(k) = 1, the approximation of D̂ v(k) is more accurate to meet the
convergence and stability requirements.
Remark 4 The idea of the RAGD is similar to the existing works [16] [17] [14]. If we calculate the
derivative in (20) exactly by unfolding the recurrent structure and force β v(k) = 0, i.e, pursuing all N
steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the
assumption that the model parameters do not change apparently between each iteration [16], then we
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD
and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence
and system stability.

3.3 Hidden layer analysis of SISO RNN
This section presents the stability analysis for the hidden layer training of the RAGD.
Apparently the analysis for the hidden layer is more di±cult than the one of the output
layer, because the dynamics between the weight and modeling error is nonlinear. The
derivation of error gradient must be carried out through one layer backward, which
involves the derivative of activation function. In the following analysis, we show that the
nonlinearity can actually be avoided by using the mean value theorem. On the other hand,
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the

proof, e.g., ˆ ()
F

W k . A direct benefit of this expression is that the proof and the training

equation can be presented in matrix forms, while not in a manner of row by row. However
question arises, it is difficult to derive the Jacobian in this framework. We find that it is
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified
as follows

(32)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

181

Expanding the modeling error around the hidden layer weight

(33)

where is the vector difference
between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith
nonlinear activation function, and Ψ (k) is

Defining

 (34)

then equation (33) can be simplified as

 (35)

Because the output layer weight is always updated before the hidden layer weight, and
V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error
signal ε w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone,
thus we only need to study the operator H1 to analyze the stability of the training.
Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm
(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov

with W (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense
of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+.
Proof: Subtracting W* from both sides of (32)

(36)

Squaring both sides of (36)

 Recurrent Neural Networks

182

(37)

By the definition of Frobenius norm

where Trace {•} function is defined as the sum of the entries on the main diagonal of the
associated matrix. The following equation can be derived then

(38)

Using the trace properties, the first term on the right side of (38) can be transformed as

(39)

where the third equality to the last is derived by the similar perturbation method as the one
in the output layer training (adding a small constant diagonal matrix I to to
make it invertible, see the proof in Section 3.2).

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

183

Before proceeding, let's consider a RNN with scalar weight Ŵ (k). The relation of the local
attractor basin of the instantaneous square error against the W (k) can be presented by

, as illustrated in Figure 3 [10]. Extend this result to the RNN with a matrix

weight Ŵ (k), we have a similar presentation by the local attractor basin concept

(40)

By the local attractor basin properties in (40)

(41)

The right side of (39) can be enlarged as

(42)

Figure 3. Illustration of a local attractor basin of the RNN against a scalar estimated weight Ŵ (k)

Substituting (42) into (39)

 Recurrent Neural Networks

182

(37)

By the definition of Frobenius norm

where Trace {•} function is defined as the sum of the entries on the main diagonal of the
associated matrix. The following equation can be derived then

(38)

Using the trace properties, the first term on the right side of (38) can be transformed as

(39)

where the third equality to the last is derived by the similar perturbation method as the one
in the output layer training (adding a small constant diagonal matrix I to to
make it invertible, see the proof in Section 3.2).

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

183

Before proceeding, let's consider a RNN with scalar weight Ŵ (k). The relation of the local
attractor basin of the instantaneous square error against the W (k) can be presented by

, as illustrated in Figure 3 [10]. Extend this result to the RNN with a matrix

weight Ŵ (k), we have a similar presentation by the local attractor basin concept

(40)

By the local attractor basin properties in (40)

(41)

The right side of (39) can be enlarged as

(42)

Figure 3. Illustration of a local attractor basin of the RNN against a scalar estimated weight Ŵ (k)

Substituting (42) into (39)

 Recurrent Neural Networks

184

(43)

Substituting (35) into (43)

(44)

By the definition of ρw(k) and α w(k) in (12) and (14) respectively, we can draw that

 (45)

Again, consider the extreme case with the assumption of nonzero α w(k). Dividing both sides
of (43) by

and then summing up to N steps

(46)

where the normalized error signals are
and the cone is

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

185

(47)

and ΔW is greater than zero because for each k the Lyapunov function (45) is guaranteed
smaller than or equal to zero, i.e.

(48)

Due to the specific selection of the normalization factor in (12), the original signals e(k) and
ew(k) are guaranteed to be bounded according to the original operators 1H w and H2 [11] [15].

Now the operator 1H w represented by (46) satisfies the condition (i) of Theorem 2. Thus we

conclude that ew(k) ∈ L2 in case of α w(k) ≠ 0, ∀k ∈ Z+. ■

3.4 Robustness analysis of MIMO RNN
In this section, we discuss the RAGD training for the RNN of Multi-Input Multi-Output
(MIMO) types. As mentioned in the introduction, the RNN with multiple output neurons
can be regarded as consisting of several single output RNNs. Thus the training of MIMO
RNN can be studied by decomposition. In detail, for the output layer training, we may
calculate the gradient of each output neuron with respect to weight parameters, and then
obtain the total weight updating by summing these individual gradient. As for the hidden
layer, we also use this method to take into account the influence of multi-output neurons on
total weight updating. Following this idea, the extension of the stability analysis from SISO
to MIMO is straight forward.
Theorem 5 If the RNN is trained by the adaptive normalized gradient algorithm (5)-(15), then the
weight V̂ (k) and Ŵ (k) are guaranteed to be stable in the sense of Lyapunov.
Proof: (i) Output layer analysis: To study the stability of the RAGD, we need to establish the
error dynamics of the training algorithm. First of all, define the estimation error

 (49)

where V*∈R l × m is the ideal output layer weight, and

Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as

 Recurrent Neural Networks

184

(43)

Substituting (35) into (43)

(44)

By the definition of ρw(k) and α w(k) in (12) and (14) respectively, we can draw that

 (45)

Again, consider the extreme case with the assumption of nonzero α w(k). Dividing both sides
of (43) by

and then summing up to N steps

(46)

where the normalized error signals are
and the cone is

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

185

(47)

and ΔW is greater than zero because for each k the Lyapunov function (45) is guaranteed
smaller than or equal to zero, i.e.

(48)

Due to the specific selection of the normalization factor in (12), the original signals e(k) and
ew(k) are guaranteed to be bounded according to the original operators 1H w and H2 [11] [15].

Now the operator 1H w represented by (46) satisfies the condition (i) of Theorem 2. Thus we

conclude that ew(k) ∈ L2 in case of α w(k) ≠ 0, ∀k ∈ Z+. ■

3.4 Robustness analysis of MIMO RNN
In this section, we discuss the RAGD training for the RNN of Multi-Input Multi-Output
(MIMO) types. As mentioned in the introduction, the RNN with multiple output neurons
can be regarded as consisting of several single output RNNs. Thus the training of MIMO
RNN can be studied by decomposition. In detail, for the output layer training, we may
calculate the gradient of each output neuron with respect to weight parameters, and then
obtain the total weight updating by summing these individual gradient. As for the hidden
layer, we also use this method to take into account the influence of multi-output neurons on
total weight updating. Following this idea, the extension of the stability analysis from SISO
to MIMO is straight forward.
Theorem 5 If the RNN is trained by the adaptive normalized gradient algorithm (5)-(15), then the
weight V̂ (k) and Ŵ (k) are guaranteed to be stable in the sense of Lyapunov.
Proof: (i) Output layer analysis: To study the stability of the RAGD, we need to establish the
error dynamics of the training algorithm. First of all, define the estimation error

 (49)

where V*∈R l × m is the ideal output layer weight, and

Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as

 Recurrent Neural Networks

186

 (50)

with ε v(k) = V *Φ*(k) - V *Φ(k) + ε (k). In (50), we restructure the output layer training of the
RAGD algorithm into a closed loop form same as that of (16) , by which the weight
estimation error ev(k) is referred as the output signal. Subtracting V* and squaring both sides
of the output layer training equation in (5)

(51)

By the matrix trace properties

Again, we employ the customary practice by using a small positive perturbation constant
to make I + Φ(k)Φ(k)T full rank and then apply the approximation as

 (52)

Substituting (50) and (52) into (51)

(53)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

187

(54)

(55)

where (54) is because of the triangular inequality
and (55) is due to

Combining the inequality (55) with the definition of ρ v(k) and α v(k) in (11) and (13)
respectively, the Lyapunov equation of output layer estimation error can be derived

 (56)

(ii) Hidden layer analysis: Expanding e(k) with respect to the estimation error of hidden layer
weight

(57)

where W*(k) ∈ Rm×n is the ideal hidden layer weight matrices, x*(k) ∈ Rn×1 is the ideal state
vector, μi(k) is the mean value of the ith nonlinear activation function at instant k, and
W j(k) =Ŵ j(k)- *

jW . Using the local attractor basin concept that similar to (40)

 Recurrent Neural Networks

186

 (50)

with ε v(k) = V *Φ*(k) - V *Φ(k) + ε (k). In (50), we restructure the output layer training of the
RAGD algorithm into a closed loop form same as that of (16) , by which the weight
estimation error ev(k) is referred as the output signal. Subtracting V* and squaring both sides
of the output layer training equation in (5)

(51)

By the matrix trace properties

Again, we employ the customary practice by using a small positive perturbation constant
to make I + Φ(k)Φ(k)T full rank and then apply the approximation as

 (52)

Substituting (50) and (52) into (51)

(53)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

187

(54)

(55)

where (54) is because of the triangular inequality
and (55) is due to

Combining the inequality (55) with the definition of ρ v(k) and α v(k) in (11) and (13)
respectively, the Lyapunov equation of output layer estimation error can be derived

 (56)

(ii) Hidden layer analysis: Expanding e(k) with respect to the estimation error of hidden layer
weight

(57)

where W*(k) ∈ Rm×n is the ideal hidden layer weight matrices, x*(k) ∈ Rn×1 is the ideal state
vector, μi(k) is the mean value of the ith nonlinear activation function at instant k, and
W j(k) =Ŵ j(k)- *

jW . Using the local attractor basin concept that similar to (40)

 Recurrent Neural Networks

188

(58)

Substituting W*and squaring both sides of hidden layer training equation of the RAGD in
(5), we can derive the Lyapunov function of the hidden layer weight of MIMO RNN based
upon (58) as

(59)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

189

(60)

Summarizing (56) and (60), we can conclude the proof. ■
Theorem 6 If a MIMO RNN is trained by the adaptive normalized gradient algorithm (5)-(15), and
α v(k), α w(k) are nonzero for all k ∈ Z+, then the training will be L2-stable in the sense of
e v(k), e w(k) ∈ L2.
Proof: Respectively, dividing both sides of (53) and (59) by the following two factors (since
α v(k); α w(k) ≠0)

(61)

Summing both inequalities up to N steps, then for the output layer

(62)

and for the hidden layer

(63)

where

 Recurrent Neural Networks

188

(58)

Substituting W*and squaring both sides of hidden layer training equation of the RAGD in
(5), we can derive the Lyapunov function of the hidden layer weight of MIMO RNN based
upon (58) as

(59)

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

189

(60)

Summarizing (56) and (60), we can conclude the proof. ■
Theorem 6 If a MIMO RNN is trained by the adaptive normalized gradient algorithm (5)-(15), and
α v(k), α w(k) are nonzero for all k ∈ Z+, then the training will be L2-stable in the sense of
e v(k), e w(k) ∈ L2.
Proof: Respectively, dividing both sides of (53) and (59) by the following two factors (since
α v(k); α w(k) ≠0)

(61)

Summing both inequalities up to N steps, then for the output layer

(62)

and for the hidden layer

(63)

where

 Recurrent Neural Networks

190

and the normalized signals are defined by

Due to the specific selection of the normalization factor ρv(k) and ρw(k) as in (11) and (12), the
normalized error signals e v(k), e v(k), e w(k), and e w(k) are guaranteed to be bounded.
Now, for each V̂ (k) and W (k), applying the Cluett's law, we found that the operator 1H v

and 1H w
 represented by (62) and (63) satisfy the condition (i). Further, H2 = 1 ensures

condition (ii) holds, thus ev(k)and ew(k) are L2 stable with αv(k), αw(k) ≠ 0, ∀k ∈ Z+. ■

3.5 Summary
In Section 3, we introduce a novel RAGD training algorithm of RNN. Because conventional
gradient type algorithms most likely suffer from slow convergence when dealing with
statistically non-stationary inputs, the RAGD aims at overcoming such shortcomings via a
series of new training parameters. Moreover, the robust local stability of the RAGD has been
addressed for three layer RNN based upon the Cluett's law. Theoretical analysis shows that
the proposed adaptive parameters improve the training performance in terms of a deeper
gradient descent direction updating, which leads to a better transient response. Further,
compared to BPTT, the RAGD algorithm requires limited backward unfolding, which
reduces the computational complexity. The flow chart of the overall training procedure of
the RAGD is summarized in Figure 4.

4. Applications in realtime signal processing
This section presents quantitative studies of the RAGD algorithm via computer simulations.
We choose three of the most representative applications of RNN to verify the effectiveness
of the RAGD. By default, the RNN is constructed with 50 hidden neurons and 5 input
nodes. The 5- dimensional input vector consists of current and last sample of time sequence
u(k) and RNN output feedback with 1 to 3 steps delay respectively. Both hidden and output
layer weights are initialized as uniformly distributed in the interval of (-1, 1). Sigmoid
function is chosen as activation function, which is monotonic increasing, and both first and

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

191

second order differentiable. The function and its first order derivative are given in equation
(64), including the boundaries

(64)

For the purpose of comparison, in most of the simulations we also provide the results of
other training algorithms, such as the Truncated BPTT (T-BPTT) and the N-RTRL etc.

Figure 4. Flow chart of the RAGD training algorithm for SISO RNN

4.1 Time series prediction
In the first simulation, the performance of the RAGD is evaluated via time series prediction
problems. The RNN is employed to predict the next sample (one step) of a real sequence
{y(k)}, which is generated by the following process

 Recurrent Neural Networks

190

and the normalized signals are defined by

Due to the specific selection of the normalization factor ρv(k) and ρw(k) as in (11) and (12), the
normalized error signals e v(k), e v(k), e w(k), and e w(k) are guaranteed to be bounded.
Now, for each V̂ (k) and W (k), applying the Cluett's law, we found that the operator 1H v

and 1H w
 represented by (62) and (63) satisfy the condition (i). Further, H2 = 1 ensures

condition (ii) holds, thus ev(k)and ew(k) are L2 stable with αv(k), αw(k) ≠ 0, ∀k ∈ Z+. ■

3.5 Summary
In Section 3, we introduce a novel RAGD training algorithm of RNN. Because conventional
gradient type algorithms most likely suffer from slow convergence when dealing with
statistically non-stationary inputs, the RAGD aims at overcoming such shortcomings via a
series of new training parameters. Moreover, the robust local stability of the RAGD has been
addressed for three layer RNN based upon the Cluett's law. Theoretical analysis shows that
the proposed adaptive parameters improve the training performance in terms of a deeper
gradient descent direction updating, which leads to a better transient response. Further,
compared to BPTT, the RAGD algorithm requires limited backward unfolding, which
reduces the computational complexity. The flow chart of the overall training procedure of
the RAGD is summarized in Figure 4.

4. Applications in realtime signal processing
This section presents quantitative studies of the RAGD algorithm via computer simulations.
We choose three of the most representative applications of RNN to verify the effectiveness
of the RAGD. By default, the RNN is constructed with 50 hidden neurons and 5 input
nodes. The 5- dimensional input vector consists of current and last sample of time sequence
u(k) and RNN output feedback with 1 to 3 steps delay respectively. Both hidden and output
layer weights are initialized as uniformly distributed in the interval of (-1, 1). Sigmoid
function is chosen as activation function, which is monotonic increasing, and both first and

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

191

second order differentiable. The function and its first order derivative are given in equation
(64), including the boundaries

(64)

For the purpose of comparison, in most of the simulations we also provide the results of
other training algorithms, such as the Truncated BPTT (T-BPTT) and the N-RTRL etc.

Figure 4. Flow chart of the RAGD training algorithm for SISO RNN

4.1 Time series prediction
In the first simulation, the performance of the RAGD is evaluated via time series prediction
problems. The RNN is employed to predict the next sample (one step) of a real sequence
{y(k)}, which is generated by the following process

 Recurrent Neural Networks

192

(65)

where u(k) is white Gaussian input sequence. The model of (65) is chosen from the
benchmark problem in [1] (pp.159). Two data groups are generated in simulations. One is
the training data set, and the other is for evaluation purpose. The traces of the time series for
training and evaluation are displayed in Figure 5.

Figure 5. Sequences of the time series for training and evaluation

To provide a comparative idea, we have also implemented the N-RTRL in simulations with
constant C = 0 and C = 0.2 respectively. All the simulations run for 10000 steps. In order to
present a clear illustration on both transient and steady state performance of each training
algorithm, the training errors are displayed by the first 100 steps and the full 10000 steps
separately as shown in Figure 6 and 7. Moreover, the squared training errors of the first 100

Figure 6. Squared training errors of the first 100 steps with the same set of random
initializations for different algorithms

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

193

steps are plot in logarithmic format to provide a further better comparison. The steady state
training errors are expressed in dB (20 times the logarithm of the amplitude ratio between
error and signal) such that performance difference between the RAGD and the N-RTRL can
be more explicit. The traces of the normalization factors are shown in Figure 8. The
trajectories of the Frobenius norms of RNN weights with the RAGD training are displayed
in Figure 9.

Figure 7. Squared training errors of full 3000 steps for different algorithms

Figure 8. Traces of normalization factors ρv(k) and ρw(k)

The results show that the RAGD algorithm is successfully stabilized in the sense that the
Frobenius norms of the weights converge. The convergence of the RAGD is faster than the
N- RTRL with both parameter values. Moreover, the RAGD can achieve better steady state
error (mean squared training error 5.79e-3) than the N-RTRL (mean squared training errors
6.67e-3 and 8.28e - 3 respectively).

 Recurrent Neural Networks

192

(65)

where u(k) is white Gaussian input sequence. The model of (65) is chosen from the
benchmark problem in [1] (pp.159). Two data groups are generated in simulations. One is
the training data set, and the other is for evaluation purpose. The traces of the time series for
training and evaluation are displayed in Figure 5.

Figure 5. Sequences of the time series for training and evaluation

To provide a comparative idea, we have also implemented the N-RTRL in simulations with
constant C = 0 and C = 0.2 respectively. All the simulations run for 10000 steps. In order to
present a clear illustration on both transient and steady state performance of each training
algorithm, the training errors are displayed by the first 100 steps and the full 10000 steps
separately as shown in Figure 6 and 7. Moreover, the squared training errors of the first 100

Figure 6. Squared training errors of the first 100 steps with the same set of random
initializations for different algorithms

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

193

steps are plot in logarithmic format to provide a further better comparison. The steady state
training errors are expressed in dB (20 times the logarithm of the amplitude ratio between
error and signal) such that performance difference between the RAGD and the N-RTRL can
be more explicit. The traces of the normalization factors are shown in Figure 8. The
trajectories of the Frobenius norms of RNN weights with the RAGD training are displayed
in Figure 9.

Figure 7. Squared training errors of full 3000 steps for different algorithms

Figure 8. Traces of normalization factors ρv(k) and ρw(k)

The results show that the RAGD algorithm is successfully stabilized in the sense that the
Frobenius norms of the weights converge. The convergence of the RAGD is faster than the
N- RTRL with both parameter values. Moreover, the RAGD can achieve better steady state
error (mean squared training error 5.79e-3) than the N-RTRL (mean squared training errors
6.67e-3 and 8.28e - 3 respectively).

 Recurrent Neural Networks

194

Figure 9. Traces of the Frobenius norms of RNN weights with the RAGD training
In addition to the proposed adaptive training parameters, we also investigate how the
training is affected by the number of hidden layer neurons and the exponential factor of
activation functions. The statistics with respect to various values of this two parameters are
given in Table 1 and 2 respectively. The data are obtained by averaging the results of 50 runs
(each have 10000 steps).
All simulations start with same initial weights, which can make a same starting point of the
training error such that we can make a convincing comparison. The results indicate that the
steady state performance is slightly improved as the λ increases. A possible reason is that
transition slope of linear region of activation function becomes higher (faster) with larger λ.
A similar phenomena is also observed in [7] (pp.617). In contrast, there is no obvious
influence of the neuron number on the training performance.

Table 1. Statistics of squared training errors of the RAGD with different λ

Table 2. Statistics of squared training errors of the RAGD with di®erent neurons

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

195

4.2 Output tracking of Hammerstein-Wiener model
In the second example, the RAGD is evaluated using a system identification problem. In this
simulation, the “unknown” plant consists of a dynamic linear block followed by a static
nonlinearity, which is a so-called Hammerstein-Wiener model. Furthermore, the model
dynamics is supposed to vary with time in terms of the time-varying coefficients of linear
part, which can be expressed in a polynomial form as [19]

(66)

The objective of the simulation is to model the plant's input-output behavior by the RNN.
The command signal was given by u(k), and the RNN attempts to emulate the plant output
d(k) as close as possible. The estimation error between actual plant output and reference
signal e(k) = d(k)-y(k) is fed back to RNN to adjust the weight parameters. One of the most
crucial tasks in system identification is the design of appropriate excitation signals. It is
important that the training data cover the entire range of plant operation due to non
accurate extrapolation of RNN. In this simulation, Amplitude Modulated Pseudo Random
Permutation (AMPRP) sequence are generated as training set, with the data uniformly
distributed in the range of (0, 1), see Figure 10. We have also implemented the T-BPTT
algorithm in simulations. The learning rate α = 0.05 (tuned by trial-and-error) was used for
T-BPTT.We present the squared training error of first 1000 (transient) and 1000-5000 (steady
state) steps separately in Figure 11 and 12. Results show that the RAGD converges within
200 steps while T-BPTT takes around 1000 steps. In addition, the steady state error of the
RAGD is smaller than T-BPTT. Hence we say the RAGD is capable of providing a faster
response to the changes of system dynamics. The traces of the normalization factors of the
RAGD are provided in Figure 13.

Figure 10. Trace of AMPRP input for model identification

 Recurrent Neural Networks

194

Figure 9. Traces of the Frobenius norms of RNN weights with the RAGD training
In addition to the proposed adaptive training parameters, we also investigate how the
training is affected by the number of hidden layer neurons and the exponential factor of
activation functions. The statistics with respect to various values of this two parameters are
given in Table 1 and 2 respectively. The data are obtained by averaging the results of 50 runs
(each have 10000 steps).
All simulations start with same initial weights, which can make a same starting point of the
training error such that we can make a convincing comparison. The results indicate that the
steady state performance is slightly improved as the λ increases. A possible reason is that
transition slope of linear region of activation function becomes higher (faster) with larger λ.
A similar phenomena is also observed in [7] (pp.617). In contrast, there is no obvious
influence of the neuron number on the training performance.

Table 1. Statistics of squared training errors of the RAGD with different λ

Table 2. Statistics of squared training errors of the RAGD with di®erent neurons

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

195

4.2 Output tracking of Hammerstein-Wiener model
In the second example, the RAGD is evaluated using a system identification problem. In this
simulation, the “unknown” plant consists of a dynamic linear block followed by a static
nonlinearity, which is a so-called Hammerstein-Wiener model. Furthermore, the model
dynamics is supposed to vary with time in terms of the time-varying coefficients of linear
part, which can be expressed in a polynomial form as [19]

(66)

The objective of the simulation is to model the plant's input-output behavior by the RNN.
The command signal was given by u(k), and the RNN attempts to emulate the plant output
d(k) as close as possible. The estimation error between actual plant output and reference
signal e(k) = d(k)-y(k) is fed back to RNN to adjust the weight parameters. One of the most
crucial tasks in system identification is the design of appropriate excitation signals. It is
important that the training data cover the entire range of plant operation due to non
accurate extrapolation of RNN. In this simulation, Amplitude Modulated Pseudo Random
Permutation (AMPRP) sequence are generated as training set, with the data uniformly
distributed in the range of (0, 1), see Figure 10. We have also implemented the T-BPTT
algorithm in simulations. The learning rate α = 0.05 (tuned by trial-and-error) was used for
T-BPTT.We present the squared training error of first 1000 (transient) and 1000-5000 (steady
state) steps separately in Figure 11 and 12. Results show that the RAGD converges within
200 steps while T-BPTT takes around 1000 steps. In addition, the steady state error of the
RAGD is smaller than T-BPTT. Hence we say the RAGD is capable of providing a faster
response to the changes of system dynamics. The traces of the normalization factors of the
RAGD are provided in Figure 13.

Figure 10. Trace of AMPRP input for model identification

 Recurrent Neural Networks

196

Figure 11. Squared training errors of the first 1000 steps

Figure 12. Squared training errors of steady state: 1000-5000 steps

4.3 Pattern association of binary image
In the last simulation, we study the problem of stable equilibrium point learning associated
with a discrete-time RNN using the RAGD algorithm. In the applications of visual
processing and pattern recognition, RNN plays an important role due to the feature of
associative memory. The work presented in this section is inspired by an earlier paper of
Liang and Gupta [8]. In [8], the authors considered absolute stability of BPTT for a general
class of discrete time RNN by the Lyapunov first method. In this work the RAGD will be
incorporated in place of BPTT to develop a stable learning process. To present comparison
with the precedent works [20], we implement a similar simulation case of binary pattern

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

197

Figure 13. Traces of the normalization factors ρv(k) and ρw(k)

association as well as BPTT algorithm, where the target pattern is a 10×10 binary image as
shown in the first picture of Figure 14. The training of RNN is to store the target pattern
directly as a local attractor, i.e., an equilibrium point of RNN. Since the state vector is 100
dimensional (number of pixels in target pattern) and there are no external inputs, RNN is
configured with 100 inputs and outputs. As a matter of fact, this structure is analogous to
the conventional Hopfield type network. RNN is utilized as an auto-associator and we aim
at studying self-organizing behavior with the RAGD training algorithm. In order to
demonstrate the changing of the binary image corresponding to the state of RNN during
learning process, a filter layer based on sign function is added to observe the RNN output
pattern, which represents the binary image at the iterative instant. The training process of
the RAGD is shown in Figure 14. As mentioned, we also implement the BPTT algorithm to

Figure 14. The binary patterns correspond to the state evolution of RNN during the training
process using the RAGD algorithm.

 Recurrent Neural Networks

196

Figure 11. Squared training errors of the first 1000 steps

Figure 12. Squared training errors of steady state: 1000-5000 steps

4.3 Pattern association of binary image
In the last simulation, we study the problem of stable equilibrium point learning associated
with a discrete-time RNN using the RAGD algorithm. In the applications of visual
processing and pattern recognition, RNN plays an important role due to the feature of
associative memory. The work presented in this section is inspired by an earlier paper of
Liang and Gupta [8]. In [8], the authors considered absolute stability of BPTT for a general
class of discrete time RNN by the Lyapunov first method. In this work the RAGD will be
incorporated in place of BPTT to develop a stable learning process. To present comparison
with the precedent works [20], we implement a similar simulation case of binary pattern

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

197

Figure 13. Traces of the normalization factors ρv(k) and ρw(k)

association as well as BPTT algorithm, where the target pattern is a 10×10 binary image as
shown in the first picture of Figure 14. The training of RNN is to store the target pattern
directly as a local attractor, i.e., an equilibrium point of RNN. Since the state vector is 100
dimensional (number of pixels in target pattern) and there are no external inputs, RNN is
configured with 100 inputs and outputs. As a matter of fact, this structure is analogous to
the conventional Hopfield type network. RNN is utilized as an auto-associator and we aim
at studying self-organizing behavior with the RAGD training algorithm. In order to
demonstrate the changing of the binary image corresponding to the state of RNN during
learning process, a filter layer based on sign function is added to observe the RNN output
pattern, which represents the binary image at the iterative instant. The training process of
the RAGD is shown in Figure 14. As mentioned, we also implement the BPTT algorithm to

Figure 14. The binary patterns correspond to the state evolution of RNN during the training
process using the RAGD algorithm.

 Recurrent Neural Networks

198

provide comparison. The learning rate for the BPTT is 0.028. Similar to previous sections,
this value is obtained by trial-and-error tuning method without violating stability constraint.
The changing process of the binary image corresponding to the state vector of RNN is
shown in Figure 15.

Figure 15. The binary patterns correspond to the state evolution of RNN during the training
process using the BPTT algorithm.
From Figure 14 and 15, we see that using the RAGD training method, the dynamic learning
process is completed within 300 steps, which is superior to the 500 steps of the BPTT
algorithm. Further, we provide the squared error during the dynamic learning process of
the RAGD and BPTT in Figure 16. The results indicate that the convergent process of the
BPTT (about 450 iterations) is longer than the RAGD (about 280 iterations).

Figure 16. Comparison of the squared error curves between the RAGD and BPTT training
procedures.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

199

With these training results, we evaluate the association performance upon a distorted test
pattern. The target image pattern is assumed to be disturbed by a white Gaussian noise with
the noise level about 40% pixels, as shown in the first picture of Figure 17. This image is
utilized as initial state of RNN to test the capability of recalling the associative memory. The
recovered binary images at each time instant during recalling procedure of the two RNN
trained by the RAGD and BPTT are given in Figure 17 and 18 respectively. The results show

Figure 17. The binary patterns correspond to the state evolution of association process of
RNN trained b the BPTT algorithm.

Figure 18. The binary patterns correspond to the state evolution of association process of
RNN trained b the RAGD algorithm.

 Recurrent Neural Networks

198

provide comparison. The learning rate for the BPTT is 0.028. Similar to previous sections,
this value is obtained by trial-and-error tuning method without violating stability constraint.
The changing process of the binary image corresponding to the state vector of RNN is
shown in Figure 15.

Figure 15. The binary patterns correspond to the state evolution of RNN during the training
process using the BPTT algorithm.
From Figure 14 and 15, we see that using the RAGD training method, the dynamic learning
process is completed within 300 steps, which is superior to the 500 steps of the BPTT
algorithm. Further, we provide the squared error during the dynamic learning process of
the RAGD and BPTT in Figure 16. The results indicate that the convergent process of the
BPTT (about 450 iterations) is longer than the RAGD (about 280 iterations).

Figure 16. Comparison of the squared error curves between the RAGD and BPTT training
procedures.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

199

With these training results, we evaluate the association performance upon a distorted test
pattern. The target image pattern is assumed to be disturbed by a white Gaussian noise with
the noise level about 40% pixels, as shown in the first picture of Figure 17. This image is
utilized as initial state of RNN to test the capability of recalling the associative memory. The
recovered binary images at each time instant during recalling procedure of the two RNN
trained by the RAGD and BPTT are given in Figure 17 and 18 respectively. The results show

Figure 17. The binary patterns correspond to the state evolution of association process of
RNN trained b the BPTT algorithm.

Figure 18. The binary patterns correspond to the state evolution of association process of
RNN trained b the RAGD algorithm.

 Recurrent Neural Networks

200

that the 10×10 binary pattern is successfully stored as a stable equilibrium point of the RNN
by both algorithms. And there is no obvious difference of recall duration between two
schemes (both within 10 iterations).

4.4 Summary
We have presented quantitative studies of the proposed RAGD algorithm in this section.
Computer simulations are synthesized to justify the effectiveness of the RAGD. We give
three examples which are the most frequent application areas of RNN: i) One-step
prediction of non-statistical time series, which is generated by benchmark process model;
ii) Identification of a nonlinear dynamic plant and the training data set is generated by a
time-varying Hammerstein-Wiener model; iii) Pattern association of binary images.
Further, we provide comprehensive comparisons between the RAGD and various other
algorithms such as the N-RTRL, the T-BPTT, and the BPTT. In most results of these
simulations, RNN trained by the RAGD demonstrates explicit advantages in the transient
response speed, e.g., see Figure 6, 11 and 16. Some of the results also indicates that the
RAGD can achieve better steady state responses, such as those in Figure 7 and 12. Hence
by these experiment results, we conclude that the performance of the RAGD training
algorithm of RNN is improved.

5. Conclusion
In this chapter, a Robust Adaptive Gradient Descent training algorithm of RNN with
improved convergence speed is investigated. The major feature of the RAGD is the three
adaptive parameters that switch the training patterns in a hybrid learning mode. Weight
convergence and robust stability of the algorithm are analyzed via Lyapunov and input-
output systematic approach respectively. We show how the training algorithm can be
decomposed into a nonlinear feedforward operator H1 and a linear feedback operator H2,
and thus form a closed loop (H1, H2). Then, by restricting the cone conditions of each
operator, sufficient boundary conditions of L2 stability of the training are obtained. In
addition, we obtain the knowledge in which way we can adaptively change the learning
rates of gradient training algorithms, or equivalently re-scale the corresponding error
derivatives under stability preservation, such that the learning is ensured to be within the
stable range. Such techniques are specially important for deriving a fast transient
response. Another important contribution of this work lies in that we obtain a unified
framework for the analysis of training algorithms of RNN by taking this systematic
approach. Such an approach avoids the direct analysis of nonlinear functions in the
feedforward path by applying the sector conditions. Computer simulations are also
synthesized to justify the effectiveness of the RAGD. We give three examples which are
most frequent application areas of RNN. The evaluation results indicate that with the
proposed adaptive training parameters, the RAGD can obtain better transient and steady
state responses than that of the conventional algorithms such as the BPTT, the RTRL, and
the N-RTRL etc.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

201

6. References
D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for Prediction: Learning

Algorithms, Architecture and Stability. Chichester: John Wiley & Sons, 2001.
S. Haykin, Neural Networks. Upper saddle River, NJ: Prentice-Hall, 1999.
M. Anthony and P. Bartlett, Neural Network Learning: Theoretical Foundations. Cambridge,

MA: Cambridge University Press, 1999.
Y. L. Wu, Q. Song, and X. L. Yang, “Robust recurrent neural network control of biped robot," J.

Intell. Robot. Syst., vol. 49, pp. 151-169, Jun. 2007.
B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: a survey," IEEE

Trans. Neural Networks, vol. 6, no. 5, pp. 1212-1228, 1995.
M. Rupp and A. H. Sayed, “A time-domain feedback analysis of filtered-error adaptive gradient

algorithms," IEEE Trans. Signal Process., vol. 44, no. 6, pp. 142-1439, 1996.
M. Rupp and A. H. Sayed, “Supervised learning of perceptron and output feedback dynamic

networks: a feedback analysis via the small gain theorem," IEEE Trans. Neural Networks,
vol. 8, no. 3, pp. 612-622, 1997.

J. Liang and M. M. Gupta,”Stable dynamic backpropagation learning in recurrent neural networks,"
IEEE Trans. Neural Networks, vol. 10, no. 6, pp. 1321-1334, 1999.

A. F. Atiya and A. G. Parlos, “New results on recurrent network training: unifying the algorithms
and accelerating convergence," IEEE Trans. Neural Networks, vol. 11, pp. 697-709, May
2000.

Q. Song, J. Xiao, and Y. C. Soh, “Robust backpropagation training algorithm for multi-layered
neural tracking controller," IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1133-1141,
1999.

Q. Song, J. C. Spall, and Y. C. Soh, “Robust neural network tracking controller using simultaneous
perturbation stochastic approximation," in Proc. IEEE Conf. Dec. Cont., vol. 42, pp.
6194-6199, Dec. 2003.

Y. L. Wu, Q. Song, and S. Liu, “A normalized adaptive training of recurrent neural networks
with augmented error gradient," IEEE Trans. Neural Networks, vol. 19, pp. 351-356,
Feb. 2008.

D. P. Mandic, ”Data-reusing recurrent neural adaptive filters," Neural Comput., vol. 14, pp.
2693-2707, 2002.

R. Williams and D. Zipser, ”A learning algorithm for continually running fully recurrent
neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.

V. R. Cluett, L. Shah, and G. Fisher, \Robustness analysis of discrete-time adaptive contro
systems using input-output stability theory: a tutorial," in IEE Proc. Part-D, vol. 135,
pp. 133- 141, Mar. 1988.

O. Nelles, Nonlinear System Identification: From Classic Approaches to Neural Network and Fuzzy
Models. Berlin: Springer-Velag, 2001.

D. Rumelhart, G. E. Hinton, and R. Williams, “Learning internal representation by error
propagation," Parall. Distr. Process., vol. 1, pp. 714-728, 1986.

P. J. Werbos, “Generalisation of backpropagation with application to a recurrent gas market
model," Neural Networks, vol. 1, no. 1, pp. 339-356, 1988.

 Recurrent Neural Networks

200

that the 10×10 binary pattern is successfully stored as a stable equilibrium point of the RNN
by both algorithms. And there is no obvious difference of recall duration between two
schemes (both within 10 iterations).

4.4 Summary
We have presented quantitative studies of the proposed RAGD algorithm in this section.
Computer simulations are synthesized to justify the effectiveness of the RAGD. We give
three examples which are the most frequent application areas of RNN: i) One-step
prediction of non-statistical time series, which is generated by benchmark process model;
ii) Identification of a nonlinear dynamic plant and the training data set is generated by a
time-varying Hammerstein-Wiener model; iii) Pattern association of binary images.
Further, we provide comprehensive comparisons between the RAGD and various other
algorithms such as the N-RTRL, the T-BPTT, and the BPTT. In most results of these
simulations, RNN trained by the RAGD demonstrates explicit advantages in the transient
response speed, e.g., see Figure 6, 11 and 16. Some of the results also indicates that the
RAGD can achieve better steady state responses, such as those in Figure 7 and 12. Hence
by these experiment results, we conclude that the performance of the RAGD training
algorithm of RNN is improved.

5. Conclusion
In this chapter, a Robust Adaptive Gradient Descent training algorithm of RNN with
improved convergence speed is investigated. The major feature of the RAGD is the three
adaptive parameters that switch the training patterns in a hybrid learning mode. Weight
convergence and robust stability of the algorithm are analyzed via Lyapunov and input-
output systematic approach respectively. We show how the training algorithm can be
decomposed into a nonlinear feedforward operator H1 and a linear feedback operator H2,
and thus form a closed loop (H1, H2). Then, by restricting the cone conditions of each
operator, sufficient boundary conditions of L2 stability of the training are obtained. In
addition, we obtain the knowledge in which way we can adaptively change the learning
rates of gradient training algorithms, or equivalently re-scale the corresponding error
derivatives under stability preservation, such that the learning is ensured to be within the
stable range. Such techniques are specially important for deriving a fast transient
response. Another important contribution of this work lies in that we obtain a unified
framework for the analysis of training algorithms of RNN by taking this systematic
approach. Such an approach avoids the direct analysis of nonlinear functions in the
feedforward path by applying the sector conditions. Computer simulations are also
synthesized to justify the effectiveness of the RAGD. We give three examples which are
most frequent application areas of RNN. The evaluation results indicate that with the
proposed adaptive training parameters, the RAGD can obtain better transient and steady
state responses than that of the conventional algorithms such as the BPTT, the RTRL, and
the N-RTRL etc.

A New Supervised Learning Algorithm of Recurrent Neural Networks and
L2 Stability Analysis in Discrete-Time Domain

201

6. References
D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for Prediction: Learning

Algorithms, Architecture and Stability. Chichester: John Wiley & Sons, 2001.
S. Haykin, Neural Networks. Upper saddle River, NJ: Prentice-Hall, 1999.
M. Anthony and P. Bartlett, Neural Network Learning: Theoretical Foundations. Cambridge,

MA: Cambridge University Press, 1999.
Y. L. Wu, Q. Song, and X. L. Yang, “Robust recurrent neural network control of biped robot," J.

Intell. Robot. Syst., vol. 49, pp. 151-169, Jun. 2007.
B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural networks: a survey," IEEE

Trans. Neural Networks, vol. 6, no. 5, pp. 1212-1228, 1995.
M. Rupp and A. H. Sayed, “A time-domain feedback analysis of filtered-error adaptive gradient

algorithms," IEEE Trans. Signal Process., vol. 44, no. 6, pp. 142-1439, 1996.
M. Rupp and A. H. Sayed, “Supervised learning of perceptron and output feedback dynamic

networks: a feedback analysis via the small gain theorem," IEEE Trans. Neural Networks,
vol. 8, no. 3, pp. 612-622, 1997.

J. Liang and M. M. Gupta,”Stable dynamic backpropagation learning in recurrent neural networks,"
IEEE Trans. Neural Networks, vol. 10, no. 6, pp. 1321-1334, 1999.

A. F. Atiya and A. G. Parlos, “New results on recurrent network training: unifying the algorithms
and accelerating convergence," IEEE Trans. Neural Networks, vol. 11, pp. 697-709, May
2000.

Q. Song, J. Xiao, and Y. C. Soh, “Robust backpropagation training algorithm for multi-layered
neural tracking controller," IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1133-1141,
1999.

Q. Song, J. C. Spall, and Y. C. Soh, “Robust neural network tracking controller using simultaneous
perturbation stochastic approximation," in Proc. IEEE Conf. Dec. Cont., vol. 42, pp.
6194-6199, Dec. 2003.

Y. L. Wu, Q. Song, and S. Liu, “A normalized adaptive training of recurrent neural networks
with augmented error gradient," IEEE Trans. Neural Networks, vol. 19, pp. 351-356,
Feb. 2008.

D. P. Mandic, ”Data-reusing recurrent neural adaptive filters," Neural Comput., vol. 14, pp.
2693-2707, 2002.

R. Williams and D. Zipser, ”A learning algorithm for continually running fully recurrent
neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.

V. R. Cluett, L. Shah, and G. Fisher, \Robustness analysis of discrete-time adaptive contro
systems using input-output stability theory: a tutorial," in IEE Proc. Part-D, vol. 135,
pp. 133- 141, Mar. 1988.

O. Nelles, Nonlinear System Identification: From Classic Approaches to Neural Network and Fuzzy
Models. Berlin: Springer-Velag, 2001.

D. Rumelhart, G. E. Hinton, and R. Williams, “Learning internal representation by error
propagation," Parall. Distr. Process., vol. 1, pp. 714-728, 1986.

P. J. Werbos, “Generalisation of backpropagation with application to a recurrent gas market
model," Neural Networks, vol. 1, no. 1, pp. 339-356, 1988.

 Recurrent Neural Networks

202

A. E. Nordsjo and L. H. Zetterberg, “Identification of certain time-varying nonlinear wiener
and hammerstein systems," IEEE Trans. Signal Process., vol. 49, pp. 577-592, Mar.
2001.

Y. L. Wu and Q. Song, “A frequency domain analysis for incremental gain of chaotic
recurrent neural network," in Proc. Int. Joint Conf. Neural Networks, (Vancouver, BC,
Canada), Jul. 2006.

10

Application of Recurrent Neural Networks
to Rainfall-runoff Processes

Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu
National Taiwan University

Taiwan

1. Introduction
Knowledge of the hydrological process is essential to the watershed and flood management.
Due to the complexity of the interactions among the hydrological process,
hydormeterological and geomorphological processes, a rigorous dynamic system model is
required for the modelling purpose. Among them, the rainfall-runoff modelling is always
considered as one of the most challenging part of hydrological process modelling. It has
been shown in a variety of research fields that the application of recurrent neural network
(RNN) can perform superior in dynamic system modelling (Pan and Wang, 2005). However,
Maier and Dandy (2000) reviewed 43 hydrology journal articles with modelling of artificial
neural networks (ANNs) published before 1998, where only Chow and Cho (1997) applied
RNNs to forecast rainfall.
The application of RNNs to hydrological modelling is rapidly growing these years.
Published between 2000 and 2008 spring, 14 papers in which RNNs have been used for
simulation or forecasting of water resources variables are reviewed in terms of the
modelling process. Due to the rapid increase in journals, it is unlikely that complete
coverage has been achieved. Following the form of Maier and Dandy (2000), the major
features of the models investigated are summarised in Tables 1 and 2, including background
information (variable modelled, location of application, model time step, and forecast
length), information about the data used (data type, normalization range, number of
training samples, and number of testing samples), information about network architecture
(connection type, method used to obtain optimal network geometry, and number of nodes
per layer), information about the optimization algorithm used (optimization method,
internal network parameters (hidden layer transfer function, learning rate, momentum
value, epoch size, and initial weight distribution range)) and the stopping criterion adopted.
While hydrologists have not made an effort to construe the knowledge embedded in the
trained RNN models, the recent studies strive to interpret physical significance from the
internal architecture of RNN hydrological models, like Pan et al. (2004, 2005, and 2007).
Therefore, this chapter will introduce the deterministic linearized recurrent neural network
(denoted as DLRNN) and its application to rainfall-runoff processes.

 Recurrent Neural Networks

202

A. E. Nordsjo and L. H. Zetterberg, “Identification of certain time-varying nonlinear wiener
and hammerstein systems," IEEE Trans. Signal Process., vol. 49, pp. 577-592, Mar.
2001.

Y. L. Wu and Q. Song, “A frequency domain analysis for incremental gain of chaotic
recurrent neural network," in Proc. Int. Joint Conf. Neural Networks, (Vancouver, BC,
Canada), Jul. 2006.

10

Application of Recurrent Neural Networks
to Rainfall-runoff Processes

Tsung-yi Pan, Ru-yih Wang, Jihn-sung Lai and Hwa-lung Yu
National Taiwan University

Taiwan

1. Introduction
Knowledge of the hydrological process is essential to the watershed and flood management.
Due to the complexity of the interactions among the hydrological process,
hydormeterological and geomorphological processes, a rigorous dynamic system model is
required for the modelling purpose. Among them, the rainfall-runoff modelling is always
considered as one of the most challenging part of hydrological process modelling. It has
been shown in a variety of research fields that the application of recurrent neural network
(RNN) can perform superior in dynamic system modelling (Pan and Wang, 2005). However,
Maier and Dandy (2000) reviewed 43 hydrology journal articles with modelling of artificial
neural networks (ANNs) published before 1998, where only Chow and Cho (1997) applied
RNNs to forecast rainfall.
The application of RNNs to hydrological modelling is rapidly growing these years.
Published between 2000 and 2008 spring, 14 papers in which RNNs have been used for
simulation or forecasting of water resources variables are reviewed in terms of the
modelling process. Due to the rapid increase in journals, it is unlikely that complete
coverage has been achieved. Following the form of Maier and Dandy (2000), the major
features of the models investigated are summarised in Tables 1 and 2, including background
information (variable modelled, location of application, model time step, and forecast
length), information about the data used (data type, normalization range, number of
training samples, and number of testing samples), information about network architecture
(connection type, method used to obtain optimal network geometry, and number of nodes
per layer), information about the optimization algorithm used (optimization method,
internal network parameters (hidden layer transfer function, learning rate, momentum
value, epoch size, and initial weight distribution range)) and the stopping criterion adopted.
While hydrologists have not made an effort to construe the knowledge embedded in the
trained RNN models, the recent studies strive to interpret physical significance from the
internal architecture of RNN hydrological models, like Pan et al. (2004, 2005, and 2007).
Therefore, this chapter will introduce the deterministic linearized recurrent neural network
(denoted as DLRNN) and its application to rainfall-runoff processes.

 Recurrent Neural Networks

204

Ta
bl

e
1.

 D
et

ai
ls

 o
f p

ap
er

s
re

vi
ew

ed
 (b

ac
kg

ro
un

d
in

fo
rm

at
io

n
an

d
da

ta
).

Application of Recurrent Neural Networks to Rainfall-runoff Processes

205

Table 2. Details of papers reviewed (RNN architecture and optimization).

2. Deterministic linearized recurrent neural network
The RNN introduced in this chapter is to integrate a state space form into the neural
network framework. The integration can provide not only the flexibility to represent any
nonlinear functions but also the parallel inputs/outputs (causes/effects) relationships
established between the neural model and the physical system (Pan & Wang, 2004). The
presented RNN has five layers: input layer, hidden layer S, state layer, hidden layer O, and
output layer. The input layer takes the input signals and delivers these inputs to every
neuron in the next layer, hidden layer S, which represents any function that specifies the
behaviour of states. State layer receives the signals from hidden layer S, and each neuron in
this layer represents one state whose output value is the value of the state. After hidden
layer O, which represents the features that relates the outputs of the neural network to the
states, gets the signals from state layer, output layer takes the hidden layer O signals adds
them to each output neuron. These outputs are, finally, the outputs of the RNN embedded
in a state space form as Fig. 1.
The mathematical representation of a deterministic non-linear system in state space form is:

 ()kkk uxFx ,1 =+ (1)

 Recurrent Neural Networks

204

Ta
bl

e
1.

 D
et

ai
ls

 o
f p

ap
er

s
re

vi
ew

ed
 (b

ac
kg

ro
un

d
in

fo
rm

at
io

n
an

d
da

ta
).

Application of Recurrent Neural Networks to Rainfall-runoff Processes

205

Table 2. Details of papers reviewed (RNN architecture and optimization).

2. Deterministic linearized recurrent neural network
The RNN introduced in this chapter is to integrate a state space form into the neural
network framework. The integration can provide not only the flexibility to represent any
nonlinear functions but also the parallel inputs/outputs (causes/effects) relationships
established between the neural model and the physical system (Pan & Wang, 2004). The
presented RNN has five layers: input layer, hidden layer S, state layer, hidden layer O, and
output layer. The input layer takes the input signals and delivers these inputs to every
neuron in the next layer, hidden layer S, which represents any function that specifies the
behaviour of states. State layer receives the signals from hidden layer S, and each neuron in
this layer represents one state whose output value is the value of the state. After hidden
layer O, which represents the features that relates the outputs of the neural network to the
states, gets the signals from state layer, output layer takes the hidden layer O signals adds
them to each output neuron. These outputs are, finally, the outputs of the RNN embedded
in a state space form as Fig. 1.
The mathematical representation of a deterministic non-linear system in state space form is:

 ()kkk uxFx ,1 =+ (1)

 Recurrent Neural Networks

206

 ()kk xGy = (2)

where ku , ky , and kx with m , l , and n ranks denote, respectively, the input, output, and
state vectors at time k . nmnF →×: and lnG →: are two static linear/nonlinear
mappings.

Fig. 1. The RNN embedded in a state space form.

A neural network containing a single hidden layer with bounded transfer functions in its
neurons can be used for the representation of a variety of linear/nonlinear functions
(Zarmarreño et al., 2000). Therefore, to apply the neural network for the linear/nonlinear
mappings in Eqs. (1) and (2), the mathematical form of this special RNN can be written as:

 ()h
k

i
k

rh
k BuWxWfWx +⋅+⋅⋅=+ 11

ˆ (3)

 ()22
2

ˆ h
k

ho
k BxWfWy +⋅⋅= (4)

where hW , rW , iW , oW , and 2hW are matrices with dimensions hn× , nh× , mh × ,
2hm× , and nh ×2 as the weights of the RNN, respectively. hB and 2hB are two vectors

with h and 2h elements as biases. 1f and 2f are linear/nonlinear functions depending on
the behaviour of the system.
Previous works have established that linearized neural networks suffice to capture
nonlinear systems. Botto and Costa (1998) designed a linear predictive control using a
linearized neural network model. Henriques and Kuanyi (1998) stated that control design
for linear systems has been well developed, and it is natural to make use of it in nonlinear
plants. Hence, they applied as a linearized neural model. Furthermore, Rahman and Kuanyi
(2000) studied a neural network method to linearizing control of nonlinear process plants,
and used neural networks to model the process plant and to linearize the neural network
model in a novel way. Additionally, the difference between a RNN and a linearized one is
the linearity of the active function of each neuron in the hidden layer. In fact, however, it is
not strictly necessary that a neural interpretation of the neuron contains a non-linear

Application of Recurrent Neural Networks to Rainfall-runoff Processes

207

function because the reduction of the diversity of activation functions, such as the sigmoid
function, is beneficial (Ptitchkin, 2001). Although neural networks are known to be universal
function approximators, except for unchanged the active functions, the weights and
structure of the neural network are updated or modified during the entire approximating
process. Moreover, a high-dimensional space nonlinearity problem can be suitably
approximated by modifying the weights in the linear combinations of state variables with
time. Consequently, the linear transfer function of the RNN applied herein is capable of
simulating nonlinear rainfall-runoff process.
Considering the transfer functions of the RNN applied herein are set as linear functions and
the biases are set at zero. Consequently, the Eqs. (3) and (4) are rewritten as:

 () k
i

k
rh

k uWxWWx ⋅+⋅⋅=+1
ˆ

 () () kkk
ih

k
rh uWxWuWWxWW ⋅+⋅=⋅⋅+⋅⋅= 21 (5)

 () () kk
ho

k
ho

k xWxWWxWWy ⋅=⋅⋅=⋅⋅= 3
22ˆ (6)

In the recursive equation (5), W1, W2, and W3 are unknown weights to be identified by
observed input/output sequences { }110 ,,, −Nuuu and { }110 ,,, −Nyyy . By replacing the kx
term in the observed equation (6) with the solved recursive equation (5), the output
response of the system is given as:

 ∑
=

−

−+=
k

p
pk

pk

k uWWWxWWy
2

2

1

13113 (7)

For a system initially at rest, i.e., 01 =x , Equation (7) is rewritten as:

 ∑
=

−=
k

p
pkpk uhy

1

 (8)

where the unit hydrograph (UH) of the rainfall-runoff processes can be summarized as:

21

13 ≥= − pWWWh p

p if 2

 10 == php if (9)

The impulse response terms
2

WWW p 1

13

− for 2≥p are known as the Markov parameters.

3. Calibration algorithm for DLRNN
3.1 Indirect system identification
The concept of indirect system identification algorithms is to obtain the UH ordinates first,
called the constrained deconvolution step. The linear programming is selected herein to
carry out the UH from the rainfall and runoff data. Then, the system matrices []31 ,, WWW 2
are identified from the UH ordinates via singular value decomposition (SVD), entitled the
realization step.
In the realization step, the state space model can be represented as follows if kk Txx = for
some nonsingular transformation matrix T (Romos et al., 1995):

 Recurrent Neural Networks

206

 ()kk xGy = (2)

where ku , ky , and kx with m , l , and n ranks denote, respectively, the input, output, and
state vectors at time k . nmnF →×: and lnG →: are two static linear/nonlinear
mappings.

Fig. 1. The RNN embedded in a state space form.

A neural network containing a single hidden layer with bounded transfer functions in its
neurons can be used for the representation of a variety of linear/nonlinear functions
(Zarmarreño et al., 2000). Therefore, to apply the neural network for the linear/nonlinear
mappings in Eqs. (1) and (2), the mathematical form of this special RNN can be written as:

 ()h
k

i
k

rh
k BuWxWfWx +⋅+⋅⋅=+ 11

ˆ (3)

 ()22
2

ˆ h
k

ho
k BxWfWy +⋅⋅= (4)

where hW , rW , iW , oW , and 2hW are matrices with dimensions hn× , nh× , mh × ,
2hm× , and nh ×2 as the weights of the RNN, respectively. hB and 2hB are two vectors

with h and 2h elements as biases. 1f and 2f are linear/nonlinear functions depending on
the behaviour of the system.
Previous works have established that linearized neural networks suffice to capture
nonlinear systems. Botto and Costa (1998) designed a linear predictive control using a
linearized neural network model. Henriques and Kuanyi (1998) stated that control design
for linear systems has been well developed, and it is natural to make use of it in nonlinear
plants. Hence, they applied as a linearized neural model. Furthermore, Rahman and Kuanyi
(2000) studied a neural network method to linearizing control of nonlinear process plants,
and used neural networks to model the process plant and to linearize the neural network
model in a novel way. Additionally, the difference between a RNN and a linearized one is
the linearity of the active function of each neuron in the hidden layer. In fact, however, it is
not strictly necessary that a neural interpretation of the neuron contains a non-linear

Application of Recurrent Neural Networks to Rainfall-runoff Processes

207

function because the reduction of the diversity of activation functions, such as the sigmoid
function, is beneficial (Ptitchkin, 2001). Although neural networks are known to be universal
function approximators, except for unchanged the active functions, the weights and
structure of the neural network are updated or modified during the entire approximating
process. Moreover, a high-dimensional space nonlinearity problem can be suitably
approximated by modifying the weights in the linear combinations of state variables with
time. Consequently, the linear transfer function of the RNN applied herein is capable of
simulating nonlinear rainfall-runoff process.
Considering the transfer functions of the RNN applied herein are set as linear functions and
the biases are set at zero. Consequently, the Eqs. (3) and (4) are rewritten as:

 () k
i

k
rh

k uWxWWx ⋅+⋅⋅=+1
ˆ

 () () kkk
ih

k
rh uWxWuWWxWW ⋅+⋅=⋅⋅+⋅⋅= 21 (5)

 () () kk
ho

k
ho

k xWxWWxWWy ⋅=⋅⋅=⋅⋅= 3
22ˆ (6)

In the recursive equation (5), W1, W2, and W3 are unknown weights to be identified by
observed input/output sequences { }110 ,,, −Nuuu and { }110 ,,, −Nyyy . By replacing the kx
term in the observed equation (6) with the solved recursive equation (5), the output
response of the system is given as:

 ∑
=

−

−+=
k

p
pk

pk

k uWWWxWWy
2

2

1

13113 (7)

For a system initially at rest, i.e., 01 =x , Equation (7) is rewritten as:

 ∑
=

−=
k

p
pkpk uhy

1

 (8)

where the unit hydrograph (UH) of the rainfall-runoff processes can be summarized as:

21

13 ≥= − pWWWh p

p if 2

 10 == php if (9)

The impulse response terms
2

WWW p 1

13

− for 2≥p are known as the Markov parameters.

3. Calibration algorithm for DLRNN
3.1 Indirect system identification
The concept of indirect system identification algorithms is to obtain the UH ordinates first,
called the constrained deconvolution step. The linear programming is selected herein to
carry out the UH from the rainfall and runoff data. Then, the system matrices []31 ,, WWW 2
are identified from the UH ordinates via singular value decomposition (SVD), entitled the
realization step.
In the realization step, the state space model can be represented as follows if kk Txx = for
some nonsingular transformation matrix T (Romos et al., 1995):

 Recurrent Neural Networks

208

 kkk uTWTxTTWTx][][2
1

11 += −

+ (10)

 kk TxTWy][1
3

−= (11)

By considering][1
1

−TTW as 1W ,][2TW as 2W , and][1
3

−TW as 3W , the system matrices of

the transformed system are now []31 ,, WWW 2 , and these parameter matrices []31 ,, WWW 2

are identified based on the deconvoluted impulse response sequence }ˆ{ ph . Specifically, SVD
is performed on the following Hankel matrix:

 () () kk
TT

kkkk

k

k

k

tt VSSUVSU

hhhh

hhhh
hhhh
hhhh

H co ⋅=⋅⋅⋅=⋅⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−++

+

+
2121

1221

2543

1432

321

,

ˆˆˆˆ

ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ

 (12)

where Mk ≤−12 . M is the memory of system. The transformed parameter matrices are
identified from:

∗− == 1,2,
1

11 kkTTWW cc ;

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

0
1

22 k
cTWW ; [] kTWW o0,,0,11

33 == −

where 1,kc and 2,kc denote the first and last ()1−k columns of c , and the star denotes a
pseudoinverse.

3.2 Subspace algorithm
Above indirect system identification algorithm computes the weights of a RNN from a
Hankel matrix constructed using Markov parameters. However, using the Markov
parameters as a starting point would be rather difficult to measure in some fields
(Abdelghani & Verhaegen, 1998). The subspace algorithms are the automatic structure
identification, and derive the model directly from the input-output data without estimating
the Markov parameters as an intermediate step (Gustafsson, 2001; Ramos et al., 1995).
Before description of subspace algorithm, the past and future highly rectangular
input/output Hankel matrices, H1 and H2 respectively, are defined by input-output data:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

+

−++

+

11

132

21

11

132

21

1

1
1

jiii

j

j

jiii

j

j

yyy

yyy
yyy

uuu

uuu
uuu

Y
UH for j>>i>n (13)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

209

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

++++

+++

−++

++++

+++

12122

132

21

12122

132

21

2

2
2

jiii

jiii

jiii

jiii

jiii

jiii

yyy

yyy
yyy

uuu

uuu
uuu

Y
UH for j>>i>n (14)

Two state vector sequences X1 and X2 are defined as]|||[211 jxxxX = and
]|||[212 jiii xxxX +++= . The subspace algorithm is presented as follows:

a) Compute the SVD of the concatenation of H1 and H2:

 T
H

jnlinminli

jnmiT
HHH V

uu
uu

VU
H
H

⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅⎥
⎦

⎤
⎢
⎣

⎡
=Σ=⎥

⎦

⎤
⎢
⎣

⎡

×−+×−

×+

)2()2()2(

)2(11

2221

1211

2

1

00
0

 (15)

where 11u , 12u , 21u , 22u , 11Σ , and HV are the matrices with dimensions
)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,

)2()2(nminmi +×+ , and jj × respectively.
b) Compute the SVD of 111112 ΣuuT in order to determine the system order, n:

 [] T
q

minlinnli

minq

qq
T VUUuu ⋅⎥

⎦

⎤
⎢
⎣

⎡ Σ
⋅=Σ

×−×−

×⊥

)2()(2)(2

)2(

111112 00
0

| (16)

where qU , ⊥

qU , qΣ , and qV are the matrices with dimensions nnli ×−)2(,
)(2)2(nlinli −×− , nn× , and)2()2(nminmi +×+ respectively.

c) Compute the transformed state vector sequence:

]|||[211122 jiii
TT

q xxxHuUX +++== (17)

where 2X is the matrix with dimensions jn× .
d) Compute the weights of the RNN by solving the overdetermined system of equations:

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−+++

−+++

−+++

+++

121

121

3

21

121

32

0 jiii

jiii

jiii

jiii

uuu
xxx

W
WW

yyy
xxx

 (18)

In the past few years, much attention has been paid recently to subspace algorithms when
various time domain methods for identifying dynamic models of systems from modal
experimental data appeared. However, this algorithm was seldom applied in the scope of
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data,
hourly data used herein have more uncertainty and noisy. The suitability of subspace
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real
typhoon event of the Keelung River in Taiwan as follows:

 Recurrent Neural Networks

208

 kkk uTWTxTTWTx][][2
1

11 += −

+ (10)

 kk TxTWy][1
3

−= (11)

By considering][1
1

−TTW as 1W ,][2TW as 2W , and][1
3

−TW as 3W , the system matrices of

the transformed system are now []31 ,, WWW 2 , and these parameter matrices []31 ,, WWW 2

are identified based on the deconvoluted impulse response sequence }ˆ{ ph . Specifically, SVD
is performed on the following Hankel matrix:

 () () kk
TT

kkkk

k

k

k

tt VSSUVSU

hhhh

hhhh
hhhh
hhhh

H co ⋅=⋅⋅⋅=⋅⋅=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−++

+

+
2121

1221

2543

1432

321

,

ˆˆˆˆ

ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ

 (12)

where Mk ≤−12 . M is the memory of system. The transformed parameter matrices are
identified from:

∗− == 1,2,
1

11 kkTTWW cc ;

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

0
1

22 k
cTWW ; [] kTWW o0,,0,11

33 == −

where 1,kc and 2,kc denote the first and last ()1−k columns of c , and the star denotes a
pseudoinverse.

3.2 Subspace algorithm
Above indirect system identification algorithm computes the weights of a RNN from a
Hankel matrix constructed using Markov parameters. However, using the Markov
parameters as a starting point would be rather difficult to measure in some fields
(Abdelghani & Verhaegen, 1998). The subspace algorithms are the automatic structure
identification, and derive the model directly from the input-output data without estimating
the Markov parameters as an intermediate step (Gustafsson, 2001; Ramos et al., 1995).
Before description of subspace algorithm, the past and future highly rectangular
input/output Hankel matrices, H1 and H2 respectively, are defined by input-output data:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

+

−++

+

11

132

21

11

132

21

1

1
1

jiii

j

j

jiii

j

j

yyy

yyy
yyy

uuu

uuu
uuu

Y
UH for j>>i>n (13)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

209

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
=

−++

++++

+++

−++

++++

+++

12122

132

21

12122

132

21

2

2
2

jiii

jiii

jiii

jiii

jiii

jiii

yyy

yyy
yyy

uuu

uuu
uuu

Y
UH for j>>i>n (14)

Two state vector sequences X1 and X2 are defined as]|||[211 jxxxX = and
]|||[212 jiii xxxX +++= . The subspace algorithm is presented as follows:

a) Compute the SVD of the concatenation of H1 and H2:

 T
H

jnlinminli

jnmiT
HHH V

uu
uu

VU
H
H

⋅⎥
⎦

⎤
⎢
⎣

⎡ Σ
⋅⎥
⎦

⎤
⎢
⎣

⎡
=Σ=⎥

⎦

⎤
⎢
⎣

⎡

×−+×−

×+

)2()2()2(

)2(11

2221

1211

2

1

00
0

 (15)

where 11u , 12u , 21u , 22u , 11Σ , and HV are the matrices with dimensions
)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,)2()(nmilimi +×+ ,)2()(nlilimi −×+ ,

)2()2(nminmi +×+ , and jj × respectively.
b) Compute the SVD of 111112 ΣuuT in order to determine the system order, n:

 [] T
q

minlinnli

minq

qq
T VUUuu ⋅⎥

⎦

⎤
⎢
⎣

⎡ Σ
⋅=Σ

×−×−

×⊥

)2()(2)(2

)2(

111112 00
0

| (16)

where qU , ⊥

qU , qΣ , and qV are the matrices with dimensions nnli ×−)2(,
)(2)2(nlinli −×− , nn× , and)2()2(nminmi +×+ respectively.

c) Compute the transformed state vector sequence:

]|||[211122 jiii
TT

q xxxHuUX +++== (17)

where 2X is the matrix with dimensions jn× .
d) Compute the weights of the RNN by solving the overdetermined system of equations:

 ⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−+++

−+++

−+++

+++

121

121

3

21

121

32

0 jiii

jiii

jiii

jiii

uuu
xxx

W
WW

yyy
xxx

 (18)

In the past few years, much attention has been paid recently to subspace algorithms when
various time domain methods for identifying dynamic models of systems from modal
experimental data appeared. However, this algorithm was seldom applied in the scope of
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data,
hourly data used herein have more uncertainty and noisy. The suitability of subspace
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real
typhoon event of the Keelung River in Taiwan as follows:

 Recurrent Neural Networks

210

Firstly, a sequence of 100 data is generated from a state space model that was identified
from rainfall-runoff data observed on Sep. 27, 1996. Indirect system identification algorithm
was used to check if the subspace algorithm could identify the original system. The state
space model is a 3-order system as following equations:

 kkk UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.1485-

0.2144

-0.2274

0.67720.33160.0383-

0.3317-0.83330.1087

-0.0383-0.10870.9600

1 (19)

 [] kk XY ⋅= -0.1485-0.2144-0.2274 (20)

The generated sequence was identified as Equations (21) and (22). The results show that the
system order determination in the step 2 of subspace algorithm is correct so that the impulse
response can be simulated accurately.

 kkk UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.0386

0.0716

-0.1190

0.66280.1880-0.0237

0.57040.85170.0693

-0.0944-0.18570.9559

1 (21)

 [] kk XY ⋅= 0.6034-0.6683-0.4403 (22)

The second test used the original observed data to identify a rainfall-runoff system.
However, according to the identified UHs shown in Fig. 2, the subspace algorithm
performed poorly because it was very sensitive to the noise in observed data. Therefore, the
modified system identification combined with indirect system identification and subspace
algorithm is introduced.

Comparison of unit hydrographs
UH computed by linear programming
UH realized by indirect system identification
UH realized by subspace algorithm

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

Comparison of unit hydrographs
UH computed by linear programming
UH realized by indirect system identification
UH realized by subspace algorithm

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace
algorithm.

Application of Recurrent Neural Networks to Rainfall-runoff Processes

211

3.3 Modified system identification for hydrology
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification
algorithm and subspace algorithm respectively. To compare with these two flowcharts,
indirect system identification algorithm needs to subjectively decide the system order from a
sequence of singular values in Equation (16). In practice, the singular values are not easily
classified into significant and insignificant groups when the singular values descend slowly.
Additionally, subspace algorithm can determine the system order objectively, but it is
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized
data are without noise that helps subspace algorithm to get the system order. The right part
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology.

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programmingLinear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix Singular valueObserved matrix
Controlled matrix Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Fig. 3. Flowchart of indirect system identification.

4. On-line learning algorithm for DLRNN
Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al.,
2000), such as (1) the real time recurrent learning; (2) the backpropagation through time
(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method;
and (5) the block update method. All training algorithms above are gradient-based by which
the learning trajectory is represented into the changes of weights of neurons.
The weights updated via gradient-based learning algorithms can be written as:

dW
dEWW oldnew η−= (23)

where η denotes the learning rate, and E is the sum of square errors.

 () ()∑
=

−−=
K

k
kk

T

kk dydyE
12

1 (24)

 Recurrent Neural Networks

210

Firstly, a sequence of 100 data is generated from a state space model that was identified
from rainfall-runoff data observed on Sep. 27, 1996. Indirect system identification algorithm
was used to check if the subspace algorithm could identify the original system. The state
space model is a 3-order system as following equations:

 kkk UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.1485-

0.2144

-0.2274

0.67720.33160.0383-

0.3317-0.83330.1087

-0.0383-0.10870.9600

1 (19)

 [] kk XY ⋅= -0.1485-0.2144-0.2274 (20)

The generated sequence was identified as Equations (21) and (22). The results show that the
system order determination in the step 2 of subspace algorithm is correct so that the impulse
response can be simulated accurately.

 kkk UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.0386

0.0716

-0.1190

0.66280.1880-0.0237

0.57040.85170.0693

-0.0944-0.18570.9559

1 (21)

 [] kk XY ⋅= 0.6034-0.6683-0.4403 (22)

The second test used the original observed data to identify a rainfall-runoff system.
However, according to the identified UHs shown in Fig. 2, the subspace algorithm
performed poorly because it was very sensitive to the noise in observed data. Therefore, the
modified system identification combined with indirect system identification and subspace
algorithm is introduced.

Comparison of unit hydrographs
UH computed by linear programming
UH realized by indirect system identification
UH realized by subspace algorithm

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

Comparison of unit hydrographs
UH computed by linear programming
UH realized by indirect system identification
UH realized by subspace algorithm

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

0 10 20 30 40 50
Time (hour)

-0.04

0

0.04

0.08

0.12

U
ni

t h
yd

ro
gr

ap
h

(1
/h

ou
r)

Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace
algorithm.

Application of Recurrent Neural Networks to Rainfall-runoff Processes

211

3.3 Modified system identification for hydrology
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification
algorithm and subspace algorithm respectively. To compare with these two flowcharts,
indirect system identification algorithm needs to subjectively decide the system order from a
sequence of singular values in Equation (16). In practice, the singular values are not easily
classified into significant and insignificant groups when the singular values descend slowly.
Additionally, subspace algorithm can determine the system order objectively, but it is
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized
data are without noise that helps subspace algorithm to get the system order. The right part
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology.

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Rainfall-runoff
data

Linear programming Quadratic programming Nonlinear programmingLinear programming Quadratic programming Nonlinear programming

Discrete unit hydrograph

Hankel matrix

Singular value decomposition

Observed matrix
Controlled matrix Singular valueObserved matrix
Controlled matrix Singular value

Determine
the order of the system

Estimate
the weights of DLRNN

Termination of the creation
of DLRNN

Constrained
deconvolution

step
Realization

step

Fig. 3. Flowchart of indirect system identification.

4. On-line learning algorithm for DLRNN
Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al.,
2000), such as (1) the real time recurrent learning; (2) the backpropagation through time
(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method;
and (5) the block update method. All training algorithms above are gradient-based by which
the learning trajectory is represented into the changes of weights of neurons.
The weights updated via gradient-based learning algorithms can be written as:

dW
dEWW oldnew η−= (23)

where η denotes the learning rate, and E is the sum of square errors.

 () ()∑
=

−−=
K

k
kk

T

kk dydyE
12

1 (24)

 Recurrent Neural Networks

212

where yk is the output of the model, and dk represents the desired output at time index k. The
algorithm introduced herein is based on the gradient-based learning method developed by
Atiya and Parlos (2000).

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Fig. 4. Flowchart of modified system identification.

4.1 DLRNN learning algorithm
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that
can be efficiently computed via the interchange of the roles of the network states xk and the
weight matrix W. Let the states be considered as the control variables, and the change in the
weights is determined upon the changes in xk. The details of the algorithm are as follows:
First, the network learning is formulated as constrained minimization problem, with the
objective to minimize the sum of square error, E, given by Equation (24), and the constraints.

 1,,0ˆ
1211 −==⋅+⋅≡ ++ KkxuWxWg kkkk 0,- (25)

According to the Equations (10) and (11), the error gradient can be written as follows:

111 w

x
x
y

y
E

w
E

dw
dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26a)

222 w

x
x
y

y
E

w
E

dw
dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26b)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

213

333 w

y
y
E

w
E

dw
dE

∂
∂

∂
∂

+
∂
∂

= (26c)

where
ndw

dE
 for n = 1, 2, 3 equals 0 since E is the function of y. Consequently, the updated

weights of W2 and W3 for time K can be derived ffom Equation (23), (24), (26b), and (26c) as
follows:

 () KKKKKK uWdyWW ⋅⋅−⋅−=+ ,3,21,2 η (27)

 () KKKKK xdyWW ⋅−⋅−=+ η,31,3 (28)

By taking the derivative of the Equation (25), one can get:

1

1

111

0
w
g

x
g

w
x

w
x

x
g

w
g

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
∂
∂

⇒=
∂
∂

∂
∂

+
∂
∂

−

 (29)

Solving Equations (26a) and (29), one can get:

1

1

1 w
g

x
g

x
y

y
E

dw
dE

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∂
∂

−=
−

 (30)

According to the convention that ()vu ∂∂ for two vectors u and v is the matrix whose (i, j)th
element is ()ji vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as

follows:

 () ()K
TT

K eeeWWeee
x
y

y
E ,,,,,, 213321 ⋅=⋅=
∂
∂

∂
∂ (31)

where ke is the error at time k: kkk dye −= ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=
∂
∂

IW

IW
IW

I

x
g

1

1

1

000

000
000
0000

 (32)

and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∂
∂

−1

1

0

KX

X
X

w
g (33)

where

 Recurrent Neural Networks

212

where yk is the output of the model, and dk represents the desired output at time index k. The
algorithm introduced herein is based on the gradient-based learning method developed by
Atiya and Parlos (2000).

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Compute
transformation and state

compression matrices

Compute
the transformed

state vector sequence

Compute the system matrices
by solving the overdetermined

system of equations

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Rainfall
and

runoff

Constrained deconvolution step

The quantity of neurons
in hidden layer, and

the weights of DLRNN

Generate a set of
rainfall and runoff data

via discrete unit hydrograph

Compute the SVD of
the concatenation of

H1 and H2

Determine
the system order, n

Refer to the flowchart of Fig. 3

Discrete unit hydrograph

Subspace algorithm

Realization step

Modified system identification

Fig. 4. Flowchart of modified system identification.

4.1 DLRNN learning algorithm
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that
can be efficiently computed via the interchange of the roles of the network states xk and the
weight matrix W. Let the states be considered as the control variables, and the change in the
weights is determined upon the changes in xk. The details of the algorithm are as follows:
First, the network learning is formulated as constrained minimization problem, with the
objective to minimize the sum of square error, E, given by Equation (24), and the constraints.

 1,,0ˆ
1211 −==⋅+⋅≡ ++ KkxuWxWg kkkk 0,- (25)

According to the Equations (10) and (11), the error gradient can be written as follows:

111 w

x
x
y

y
E

w
E

dw
dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26a)

222 w

x
x
y

y
E

w
E

dw
dE

∂
∂

∂
∂

∂
∂

+
∂
∂

= (26b)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

213

333 w

y
y
E

w
E

dw
dE

∂
∂

∂
∂

+
∂
∂

= (26c)

where
ndw

dE
 for n = 1, 2, 3 equals 0 since E is the function of y. Consequently, the updated

weights of W2 and W3 for time K can be derived ffom Equation (23), (24), (26b), and (26c) as
follows:

 () KKKKKK uWdyWW ⋅⋅−⋅−=+ ,3,21,2 η (27)

 () KKKKK xdyWW ⋅−⋅−=+ η,31,3 (28)

By taking the derivative of the Equation (25), one can get:

1

1

111

0
w
g

x
g

w
x

w
x

x
g

w
g

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
∂
∂

⇒=
∂
∂

∂
∂

+
∂
∂

−

 (29)

Solving Equations (26a) and (29), one can get:

1

1

1 w
g

x
g

x
y

y
E

dw
dE

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

∂
∂

−=
−

 (30)

According to the convention that ()vu ∂∂ for two vectors u and v is the matrix whose (i, j)th
element is ()ji vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as

follows:

 () ()K
TT

K eeeWWeee
x
y

y
E ,,,,,, 213321 ⋅=⋅=
∂
∂

∂
∂ (31)

where ke is the error at time k: kkk dye −= ,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=
∂
∂

IW

IW
IW

I

x
g

1

1

1

000

000
000
0000

 (32)

and

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
∂
∂

−1

1

0

KX

X
X

w
g (33)

where

 Recurrent Neural Networks

214

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
k

T
k

T
k

k

x

x
x

X

000

000
000

 (34)

I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros.
After calculating the gradient of E with respect to the states xk, a small change at the states xk
in the negative direction of that gradient can be written as:

 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=Δ
x
Ex η (35)

Replace
x
E
∂
∂ by Equation (29), and Equation (33) can be rewritten as:

 ()K
T eeWex ,,13ηη −=−=Δ (36)

Since g, given by Equation (25), equals zero, one can get:

 01

1

=Δ
∂
∂

+Δ
∂
∂

x
x
g

w
w
g

 (37)

After applying the transposition and the pseudoinverse in Equation (37), the change in
weights can be determined as:

 1

1

1

11

1 x
x
g

w
g

w
g

w
gw

TT

Δ
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=Δ

−

 (38)

where

1

1

0

1

0

1

0
1

11

00

00

00
−

−

=

−

=

−

=
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∑

∑
∑

K

k

T
kk

K

k

T
kk

K

k

T
kk

T

xx

xx

xx

w
g

w
g

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

=

−−

=

−−

=

−−

=

∑

∑

∑

11

0

11

0

11

0

00

00

00

K

k

T
kk

K

k

T
kk

K

k

T
kk

xx

xx

xx

 (39)

From Equation (36), let

Application of Recurrent Neural Networks to Rainfall-runoff Processes

215

 x
x
ge

x
g T Δ

∂
∂−

=
∂
∂

=
η

γ 1 (40)

and partition the vector γ into the K vectors as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

Kγ

γ
γ

γ 2

1

 (41)

Using Eqs. (32) and (40), γ can be evaluated by following recursions:

 Te11 −=γ (42a)

 TT eWe 1122 +−=γ (42b)

 T
K

T
KK eWe 11 −+−=γ (42c)

Let

 ∑
−

=

=′
1

0

K

k

T
kkK xxV (43)

Substituting Equations (33), (39), (40), and (43) into (38), one can get after some
manipulation.

 1

1
11

−

=
−

′⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T
kk VxW γη (44)

In order to alleviate the effect of most likelihood ill-conditioning problems caused by the
matrix inversion in Equation (44), a small matrix Iε is added to the outer product matrix

KV ′ as follows:

 ∑
−

=

+=
1

0

K

k

T
kkK xxIV ε , (45)

where ε is a small positive constant. Then Equation (44) is rewritten as follows:

 1

1
11

−

=
− ⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T
kk VxW γη (46)

Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1)
are already available to get 1,1 −Δ KW , the on-line updated change in weights KW ,1Δ based on a
new data point (uK, xK, dK) can be written as follows:

 [] 1

1111

1

1
1,1

−

−−−−

−

=
− +⋅⎥⎦

⎤
⎢⎣
⎡ +=Δ ∑ T

KKK
T
KK

K

k

T
kkK xxVxxW γγη (47)

 Recurrent Neural Networks

214

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
k

T
k

T
k

k

x

x
x

X

000

000
000

 (34)

I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros.
After calculating the gradient of E with respect to the states xk, a small change at the states xk
in the negative direction of that gradient can be written as:

 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=Δ
x
Ex η (35)

Replace
x
E
∂
∂ by Equation (29), and Equation (33) can be rewritten as:

 ()K
T eeWex ,,13ηη −=−=Δ (36)

Since g, given by Equation (25), equals zero, one can get:

 01

1

=Δ
∂
∂

+Δ
∂
∂

x
x
g

w
w
g

 (37)

After applying the transposition and the pseudoinverse in Equation (37), the change in
weights can be determined as:

 1

1

1

11

1 x
x
g

w
g

w
g

w
gw

TT

Δ
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=Δ

−

 (38)

where

1

1

0

1

0

1

0
1

11

00

00

00
−

−

=

−

=

−

=
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∑

∑
∑

K

k

T
kk

K

k

T
kk

K

k

T
kk

T

xx

xx

xx

w
g

w
g

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

=

−−

=

−−

=

−−

=

∑

∑

∑

11

0

11

0

11

0

00

00

00

K

k

T
kk

K

k

T
kk

K

k

T
kk

xx

xx

xx

 (39)

From Equation (36), let

Application of Recurrent Neural Networks to Rainfall-runoff Processes

215

 x
x
ge

x
g T Δ

∂
∂−

=
∂
∂

=
η

γ 1 (40)

and partition the vector γ into the K vectors as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

Kγ

γ
γ

γ 2

1

 (41)

Using Eqs. (32) and (40), γ can be evaluated by following recursions:

 Te11 −=γ (42a)

 TT eWe 1122 +−=γ (42b)

 T
K

T
KK eWe 11 −+−=γ (42c)

Let

 ∑
−

=

=′
1

0

K

k

T
kkK xxV (43)

Substituting Equations (33), (39), (40), and (43) into (38), one can get after some
manipulation.

 1

1
11

−

=
−

′⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T
kk VxW γη (44)

In order to alleviate the effect of most likelihood ill-conditioning problems caused by the
matrix inversion in Equation (44), a small matrix Iε is added to the outer product matrix

KV ′ as follows:

 ∑
−

=

+=
1

0

K

k

T
kkK xxIV ε , (45)

where ε is a small positive constant. Then Equation (44) is rewritten as follows:

 1

1
11

−

=
− ⋅⎥⎦
⎤

⎢⎣
⎡=Δ ∑ K

K

k

T
kk VxW γη (46)

Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1)
are already available to get 1,1 −Δ KW , the on-line updated change in weights KW ,1Δ based on a
new data point (uK, xK, dK) can be written as follows:

 [] 1

1111

1

1
1,1

−

−−−−

−

=
− +⋅⎥⎦

⎤
⎢⎣
⎡ +=Δ ∑ T

KKK
T
KK

K

k

T
kkK xxVxxW γγη (47)

 Recurrent Neural Networks

216

Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of KV
can be obtained recursively in terms of the inverse of 1−KV as follows:

 () ()()
1

1
11

1
1
11

1
11

1

1

111
1

1 −

−

−−

−

−

−−

−

−−

−

−

−−−

−

+
−=+=

KK
T
K

T

KKKK
K

T
KKKK xVx

xVxVVxxVV (48)

and let

 ∑
=

−=
K

k

T
kkK xB

1
1γ (49)

Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated
formula of W1 as follows:

[]
1

1
11

1
1
11

1
11

1
11

1,1,1 1 −

−

−−

−

−

−−

−

−−

−

−−
− +

−
+Δ=Δ

KK
T
K

T

KKKKKK
T
KK

KK xVx
xVxVBVxWW γη (50)

5. Application
5.1 Study area and data pre-processing
With a length of 86 km and an area of 501 km2, the Keelung River has a U-turn in the
northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2
surrounding the city of Taipei in northern Taiwan was chosen for evaluating the simulation
ability of the DLRNN for recognizing the transition of rainfall-runoff processes. Due to the
northeast monsoon in winter and the typhoons in summer, the mean annual precipitation,
runoff depth, and runoff coefficient are 2865 mm, 2177 mm, and 0.76, respectively. Owing to
the rugged topography of the watershed, large floods caused by the short and steep runoff
path-line arrive rapidly in the middle-to-downstream reaches of the watershed, and cause
serious damage.
According to the records of three rain gauges (Wu-tu, Jui-fang, and Huo-shao-liao) and on
discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972,
were used for calibration while the remainder events were used for validation. Through the
Kriging method to calculate the average effective rainfall based on effective rainfall
measurements from three rain gauges, current average effective rainfall (mm) and direct
hourly runoff (m3/s) are the input and output with no lead-time considered after be
normalized between 0 and 0.9.

5.2 Criteria
The performances of rainfall-runoff simulations were evaluated by four criteria as follows:
(1) Coefficient of efficiency, CE, is defined as follows:

[]

[]∑
∑

=

=

−

−
−= K

k
obskobs

K

k
kestkobs

QQ

QQ
CE

1

2

,

1

2

,,

1 (51)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

217

where kestQ , denotes the discharge of the simulated hydrograph for time index k (m3/s), kobsQ ,

is the discharge of the observed hydrograph for time index k (m3/s), and obsQ is the mean of
the discharge of the observed hydrograph during whole event period K. The better the fit,
the closer CE is to 1.

Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the
coordinates are TWD67 2-degree wide Transverse Mercator projection).

Typhoon
name

Time
(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Typhoon

name
Time

(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0
*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7
Nadine 1968/07/26 61 252.1 15.1 219.7 *Abby 1986/09/17 91 521.3 28.8 579.0
Elaine 1968/09/29 72 686.6 44.5 1037.7 Alex 1987/07/27 30 187.0 40.7 519.8
*Storm 1969/09/09 89 678.5 24.1 848.4 *Gerald 1987/09/09 33 321.2 47.2 553.9
Elsie 1969/09/26 38 288.5 38.0 662.5 *Storm 1988/09/29 101 627.3 22.7 670.2

Agnes 1971/09/18 69 411.3 31.5 466.3 *Sarah 1989/09/10 61 322.5 27.7 401.2
Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0
Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5
Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4

Wendy 1974/09/28 57 321.2 16.7 822.0 Storm 1990/09/02 26 192.8 32.2 842.5
Vera 1977/07/31 46 264.7 16.9 735.7 *Polly 1992/08/29 98 500.6 17.8 278.9

Storm 1977/11/15 72 292.2 15.2 538.4 Gladys 1994/09/01 18 184.1 31.3 434.2
Irving 1979/08/14 56 340.3 24.4 974.1 *Seth 1994/10/09 48 300.7 12.2 451.3
Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9
*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0
Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8
Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event
Table 3. Information about the 38 events selected from Wu-tu watershed.

(2) The error of peak discharge, EQp (%), is defined as follows:

 () %100%
,

,,
×

−
=

obsp

obspestp
p Q

QQ
EQ (52)

 Recurrent Neural Networks

216

Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of KV
can be obtained recursively in terms of the inverse of 1−KV as follows:

 () ()()
1

1
11

1
1
11

1
11

1

1

111
1

1 −

−

−−

−

−

−−

−

−−

−

−

−−−

−

+
−=+=

KK
T
K

T

KKKK
K

T
KKKK xVx

xVxVVxxVV (48)

and let

 ∑
=

−=
K

k

T
kkK xB

1
1γ (49)

Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated
formula of W1 as follows:

[]
1

1
11

1
1
11

1
11

1
11

1,1,1 1 −

−

−−

−

−

−−

−

−−

−

−−
− +

−
+Δ=Δ

KK
T
K

T

KKKKKK
T
KK

KK xVx
xVxVBVxWW γη (50)

5. Application
5.1 Study area and data pre-processing
With a length of 86 km and an area of 501 km2, the Keelung River has a U-turn in the
northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2
surrounding the city of Taipei in northern Taiwan was chosen for evaluating the simulation
ability of the DLRNN for recognizing the transition of rainfall-runoff processes. Due to the
northeast monsoon in winter and the typhoons in summer, the mean annual precipitation,
runoff depth, and runoff coefficient are 2865 mm, 2177 mm, and 0.76, respectively. Owing to
the rugged topography of the watershed, large floods caused by the short and steep runoff
path-line arrive rapidly in the middle-to-downstream reaches of the watershed, and cause
serious damage.
According to the records of three rain gauges (Wu-tu, Jui-fang, and Huo-shao-liao) and on
discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972,
were used for calibration while the remainder events were used for validation. Through the
Kriging method to calculate the average effective rainfall based on effective rainfall
measurements from three rain gauges, current average effective rainfall (mm) and direct
hourly runoff (m3/s) are the input and output with no lead-time considered after be
normalized between 0 and 0.9.

5.2 Criteria
The performances of rainfall-runoff simulations were evaluated by four criteria as follows:
(1) Coefficient of efficiency, CE, is defined as follows:

[]

[]∑
∑

=

=

−

−
−= K

k
obskobs

K

k
kestkobs

QQ

QQ
CE

1

2

,

1

2

,,

1 (51)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

217

where kestQ , denotes the discharge of the simulated hydrograph for time index k (m3/s), kobsQ ,

is the discharge of the observed hydrograph for time index k (m3/s), and obsQ is the mean of
the discharge of the observed hydrograph during whole event period K. The better the fit,
the closer CE is to 1.

Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the
coordinates are TWD67 2-degree wide Transverse Mercator projection).

Typhoon
name

Time
(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Typhoon

name
Time

(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0
*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7
Nadine 1968/07/26 61 252.1 15.1 219.7 *Abby 1986/09/17 91 521.3 28.8 579.0
Elaine 1968/09/29 72 686.6 44.5 1037.7 Alex 1987/07/27 30 187.0 40.7 519.8
*Storm 1969/09/09 89 678.5 24.1 848.4 *Gerald 1987/09/09 33 321.2 47.2 553.9
Elsie 1969/09/26 38 288.5 38.0 662.5 *Storm 1988/09/29 101 627.3 22.7 670.2

Agnes 1971/09/18 69 411.3 31.5 466.3 *Sarah 1989/09/10 61 322.5 27.7 401.2
Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0
Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5
Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4

Wendy 1974/09/28 57 321.2 16.7 822.0 Storm 1990/09/02 26 192.8 32.2 842.5
Vera 1977/07/31 46 264.7 16.9 735.7 *Polly 1992/08/29 98 500.6 17.8 278.9

Storm 1977/11/15 72 292.2 15.2 538.4 Gladys 1994/09/01 18 184.1 31.3 434.2
Irving 1979/08/14 56 340.3 24.4 974.1 *Seth 1994/10/09 48 300.7 12.2 451.3
Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9
*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0
Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8
Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event
Table 3. Information about the 38 events selected from Wu-tu watershed.

(2) The error of peak discharge, EQp (%), is defined as follows:

 () %100%
,

,,
×

−
=

obsp

obspestp
p Q

QQ
EQ (52)

 Recurrent Neural Networks

218

where estpQ , denotes the peak discharge of the simulated hydrograph (m3/s) and obspQ , is the
peak discharge of the observed hydrograph (m3/s).
(3) The error of the time for peak to arrive, ETp, is defined as follows:

 obspestpp TTET ,, −= (53)

where estpT , denotes the time for the simulated hydrograph peak to arrive (hours) and obspT ,
represents the time required for the observed hydrograph peak to arrive (hours).
(4) The error of total discharge volume, VER(%), is defined as follows:

 () %100%

1
,

1
,

1
,

×
⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑

∑∑

=

==

K

k
kobs

K

k
kobs

K

k
kest

Q

QQ
VER (54)

where kestQ , denotes the discharge of the simulated hydrograph for time index k (m3/s) and

kobsQ , is the discharge of the observed hydrograph for time index k (m3/s). The better the fit,
the closer EQp, ETp and VER are to 0.

6. Result and discussion
A developed DLRNN is applied to perform rainfall-runoff simulation and recognize the
transition of rainfall-runoff processes using UHs realized from the DLRNN weights. First,
the DLRNN is compared with a forward neural network to demonstrate the advantage of
RNNs. DLRNNs identified using indirect system identification and modified system
identification then are compared. Furthermore, control system theory is employed to
consider a DLRNN in canonical form and compare it with that identified using modified
system identification. Finally, rainfall-runoff processes recognition using DLRNN is
described.

6.1 Comparison between DLRNN and FNN (Pan et al., 2007)
Through the modified system identification based on the earliest 10 events, a DLRNN with 4
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information.
Therefore, it is fair to have the same control on the quantity of weights for comparing the
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs
with inputting information as a time delay pattern that constitutes the tapped delay line
information are classified as local or global RNNs according to the definition by Tsoi and
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained
using the same calibrated data via the back-propagation learning algorithm, the most
common learning algorithm for FNNs.

 ()()()()1rainfallneuron input ++−= 2/1int nk , if n is odd; (55)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

219

 ()()()2/int nk −= runoffneuron input , if n is even (56)

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f
∑

)(⋅f

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f∑)(⋅f
∑

)(⋅f

∑

)(⋅f

Fig. 6. Architecture of DLRNN identified via modified system identification.

-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f∑)(⋅f-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f

∑

)(⋅f∑)(⋅f∑)(⋅f

Fig. 7. The structure of FNNs with the tapped delay line inputs.

 Recurrent Neural Networks

218

where estpQ , denotes the peak discharge of the simulated hydrograph (m3/s) and obspQ , is the
peak discharge of the observed hydrograph (m3/s).
(3) The error of the time for peak to arrive, ETp, is defined as follows:

 obspestpp TTET ,, −= (53)

where estpT , denotes the time for the simulated hydrograph peak to arrive (hours) and obspT ,
represents the time required for the observed hydrograph peak to arrive (hours).
(4) The error of total discharge volume, VER(%), is defined as follows:

 () %100%

1
,

1
,

1
,

×
⎟
⎠
⎞

⎜
⎝
⎛ −

=
∑

∑∑

=

==

K

k
kobs

K

k
kobs

K

k
kest

Q

QQ
VER (54)

where kestQ , denotes the discharge of the simulated hydrograph for time index k (m3/s) and

kobsQ , is the discharge of the observed hydrograph for time index k (m3/s). The better the fit,
the closer EQp, ETp and VER are to 0.

6. Result and discussion
A developed DLRNN is applied to perform rainfall-runoff simulation and recognize the
transition of rainfall-runoff processes using UHs realized from the DLRNN weights. First,
the DLRNN is compared with a forward neural network to demonstrate the advantage of
RNNs. DLRNNs identified using indirect system identification and modified system
identification then are compared. Furthermore, control system theory is employed to
consider a DLRNN in canonical form and compare it with that identified using modified
system identification. Finally, rainfall-runoff processes recognition using DLRNN is
described.

6.1 Comparison between DLRNN and FNN (Pan et al., 2007)
Through the modified system identification based on the earliest 10 events, a DLRNN with 4
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information.
Therefore, it is fair to have the same control on the quantity of weights for comparing the
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs
with inputting information as a time delay pattern that constitutes the tapped delay line
information are classified as local or global RNNs according to the definition by Tsoi and
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained
using the same calibrated data via the back-propagation learning algorithm, the most
common learning algorithm for FNNs.

 ()()()()1rainfallneuron input ++−= 2/1int nk , if n is odd; (55)

Application of Recurrent Neural Networks to Rainfall-runoff Processes

219

 ()()()2/int nk −= runoffneuron input , if n is even (56)

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f
∑

)(⋅f

Input layer Hidden layer Output layer

rainfall (k) runoff (k)

∑)(⋅f∑)(⋅f
∑

)(⋅f

∑

)(⋅f

Fig. 6. Architecture of DLRNN identified via modified system identification.

-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f∑)(⋅f-1

Input layer Hidden layer Output layer

rainfall (k)

rainfall (k-1)

runoff (k-1)

rainfall (k-(int((m+1)/2)+1)

runoff (k-int(n/2))

runoff (k)…

∑

)(⋅f

∑

)(⋅f∑)(⋅f∑)(⋅f

Fig. 7. The structure of FNNs with the tapped delay line inputs.

 Recurrent Neural Networks

220

Model Form DLRNN
Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4
Number of neuraons in input layer 22 10 6 4 3 2 2 1 1
Number of neural network's weights 24 24 24 24 25 24 28 24 24
CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926
EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438
ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036
VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28
events (Pan et al., 2007).

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which
FNN(1-8-1) is the only neural network without any feedback connection. According to the
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static
system without memory and only executes mapping from rainfall to runoff. However, the
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform
superiorly. The result shows the importance of a feedback connection and using tapped
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback
connections is especially important and useful for grasping the extraordinary time-varying
characteristics of the rainfall-runoff processes. The neural network with only one rainfall
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1),
gives the feed-forward neural network the last-time-step status of the runoff, and raises the
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a
satisfactory simulation because the feedback connections in hidden layer give the DLRNN
the function to calculate the state of the rainfall-runoff process recurrently.

6.2 Comparison between DLRNNs based on two identification methods
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the
optimal form or value of most network design parameters differ for each application and
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a
deterministic solution. This chapter considers the indirect and modified system
identification for identifying DLRNNs. In the realization step of the indirect system
identification, a series of singular values is carried out through the singular value
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated
distinctly into two groups, namely the significant and the neglected groups, the number of
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig.
8, the first two singular values are relatively significant and the number of neurons in the
hidden layers are at least 2. However, the other singular values do not decrease noticeably,
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the
relation between the coefficient of efficiency and the number of neurons in the hidden layers
of the DLRNN determined using trial-and-error method is illustrated as the open dots in
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best
coefficient of efficiency (CE=0.87043).

Application of Recurrent Neural Networks to Rainfall-runoff Processes

221

0 20 40 60 80
Singular value sequence

0

0.4

0.8

1.2

S
in

gu
la

r v
al

ue

Singular Value Plot
calculated from
1966/09/06
1967/10/17
1967/11/16
1968/07/26
1968/09/29
1969/09/09
1969/09/26
1971/09/18
1971/09/22

Fig. 8. The singular value plot from the realization step of indirect system identification.

0 4 8 12 16
Quantity of nerons in hidden layer

0.68

0.72

0.76

0.8

0.84

0.88

C
oe

ffi
ci

en
t o

f e
ffi

ci
en

cy

Relation between
coefficient of efficiency and
quantity of neurons in hidden layers

Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers
of the DLRNN.

Another DLRNN (denoted as DLRNN(2)) has four neurons in the hidden layer, as
determined using modified system identification (solid dot at the left side of Fig. 9). Owing
to part of the subspace algorithm being included in modified system identification, the four
neurons in the hidden layer are chosen without any referable plot, such as singular value
plot. From Fig. 9, the CE of DLRNN(2) is just 0.00028 less than that of DLRNN(1). However,
DLRNN(2) reduces 48 weights of DLRNN(1), to 24 weights. The 50% reduction in weights
from DLRNN(2) demonstrates that the combination of modified system identification and

 Recurrent Neural Networks

220

Model Form DLRNN
Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4
Number of neuraons in input layer 22 10 6 4 3 2 2 1 1
Number of neural network's weights 24 24 24 24 25 24 28 24 24
CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926
EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438
ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036
VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28
events (Pan et al., 2007).

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which
FNN(1-8-1) is the only neural network without any feedback connection. According to the
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static
system without memory and only executes mapping from rainfall to runoff. However, the
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform
superiorly. The result shows the importance of a feedback connection and using tapped
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback
connections is especially important and useful for grasping the extraordinary time-varying
characteristics of the rainfall-runoff processes. The neural network with only one rainfall
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1),
gives the feed-forward neural network the last-time-step status of the runoff, and raises the
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a
satisfactory simulation because the feedback connections in hidden layer give the DLRNN
the function to calculate the state of the rainfall-runoff process recurrently.

6.2 Comparison between DLRNNs based on two identification methods
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the
optimal form or value of most network design parameters differ for each application and
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a
deterministic solution. This chapter considers the indirect and modified system
identification for identifying DLRNNs. In the realization step of the indirect system
identification, a series of singular values is carried out through the singular value
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated
distinctly into two groups, namely the significant and the neglected groups, the number of
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig.
8, the first two singular values are relatively significant and the number of neurons in the
hidden layers are at least 2. However, the other singular values do not decrease noticeably,
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the
relation between the coefficient of efficiency and the number of neurons in the hidden layers
of the DLRNN determined using trial-and-error method is illustrated as the open dots in
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best
coefficient of efficiency (CE=0.87043).

Application of Recurrent Neural Networks to Rainfall-runoff Processes

221

0 20 40 60 80
Singular value sequence

0

0.4

0.8

1.2

S
in

gu
la

r v
al

ue

Singular Value Plot
calculated from
1966/09/06
1967/10/17
1967/11/16
1968/07/26
1968/09/29
1969/09/09
1969/09/26
1971/09/18
1971/09/22

Fig. 8. The singular value plot from the realization step of indirect system identification.

0 4 8 12 16
Quantity of nerons in hidden layer

0.68

0.72

0.76

0.8

0.84

0.88

C
oe

ffi
ci

en
t o

f e
ffi

ci
en

cy

Relation between
coefficient of efficiency and
quantity of neurons in hidden layers

Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers
of the DLRNN.

Another DLRNN (denoted as DLRNN(2)) has four neurons in the hidden layer, as
determined using modified system identification (solid dot at the left side of Fig. 9). Owing
to part of the subspace algorithm being included in modified system identification, the four
neurons in the hidden layer are chosen without any referable plot, such as singular value
plot. From Fig. 9, the CE of DLRNN(2) is just 0.00028 less than that of DLRNN(1). However,
DLRNN(2) reduces 48 weights of DLRNN(1), to 24 weights. The 50% reduction in weights
from DLRNN(2) demonstrates that the combination of modified system identification and

 Recurrent Neural Networks

222

the advantages of indirect system identification and subspace algorithm provide an efficient
algorithm for applying DLRNN in hydrology.

6.3 Comparison between DLRNNs in different forms
The DLRNN adopted herein is a fully RNN and has full connections between neurons in
different layers. However, using a state space model is well known to over parameterize the
estimation problem, while using canonical forms, as illustrated in Fig. 10, is far more
economical for estimating the linear model. Figures 6 and 10 show that the DLRNNs have
the feed-back connections in the hidden layers that belong to the local recurrent structures.
The DLRNN in a canonical form has the same number of neurons as the original DLRNN,
but the DLRNN in a canonical form has the minimum connections and weights to achieve
the same performance. Hence, the comparison between the two DLRNNs in canonical form
is of interest in this investigation. Some experiments are designed to clarify this issue. First,
in the flowchart illustrated in Fig. 4, the original DLRNN(1) is transformed into a DLRNN in
the canonical form after identifying the quantity of neurons in hidden layer and the weights
of the DLRNN. Figure 10 shows that the DLRNN in the canonical form is clearly not a fully
RNN. 28 validated events are fed to the model, and a new on-line learning method
developed by Pan and Wang (2004), is applied to develop the DLRNN into a fully RNN via
on-line learning. Table 5 lists the average absolute criteria. The table reveals that the
canonical and non-canonical form DLRNNs do not differ significantly, and the on-line
learning algorithm always derives a fully RNN from a DLRNN in the canonical form.

Input layer Hidden layer Output layerInput layer Hidden layer Output layer
Fig. 10. The DLRNN in canonical form.

model type CE EQp (%) ETp (hour) VER (%)
original model 0.926 12.438 1.036 4.769
canonical form 0.925 12.704 1.071 4.845
original model: a DLRNN identified via modified system identification.
canonical form: a DLRNN in canonical form.

Table 5. The averages of absolute criteria of the DLRNNs in two forms.

6.4 Recognition of the transition of rainfall-runoff processes (Pan et al., 2007)
A streamflow or discharge hydrograph is a graph showing the flow rate as a function of
time at a given location on the stream. In effect, the hydrograph is “an integral expression of
the physiographic and climatic characteristics that govern the relations between rainfall and

Application of Recurrent Neural Networks to Rainfall-runoff Processes

223

runoff of a particular drainage basin” (Chow, 1959). UH is a hypothetical unit response of
the watershed to a unit input of rainfall that has been widely adopted by hydrologists to
represent the mechanism of rainfall-runoff processes. Through the visualization of the
transition of rainfall-runoff processes by UHs, the duration of a storm event, the time to
peak flow, and the peak flow can be detected from the UHs. Therefore, the DLRNN learning
algorithm is applied to modify the weights of the DLRNN on-line for detecting the
transition of UHs based on the connection between the DLRNN and UH representation by
treating the weights as Markov parameters. The structure of DLRNN can analogize the
rainfall-runoff processes in a simple manner. The number of neurons in the hidden layer
calibration by modified system identification describes the dimensions of the state space for
the rainfall-runoff processes. Each neuron in the hidden layer represents a state variable that
is controlled by rainfall and interacts with all state variables recurrently. Although the state
variables can not be measured directly, UH can be represented based on their weights to
describe the transition of rainfall-runoff processes.
Equations (8) and (9) reveal the relationship between the UH and the weights of DLRNN.
Equation (9) also illustrates the relationship between the system responses to a unit impulse
and the weights of DLRNN used herein. The time variance of the weights of a DLRNN can
be used to recognize the transition of rainfall-runoff processes. Figure 11 illustrates the
transition of UHs of the single-peak typhoon in Aug. 17, 1997, while Fig. 12 shows the
simulation of this typhoon through DLRNN with on-line learning. At the beginning of the
simulation, the weights of the DLRNN are identified from the earliest 10 events to form a
generalized model. When comparing these two figures, the change of the UHs reveals the
peak arrival is between the 15th and 30th hours. The time to peak of this typhoon is
approximately 8 hours, shown in Fig. 11. The 8-hour duration is significantly increased after
the time to peak of UH is calibrated as 3 hours. The rainfall process is fed to DLRNN to
simulate runoff, as illustrated in Fig. 12, and the simulated runoff should follow the trends
of the rainfall process. The rainfall-runoff simulations are evaluated as effective if the trends
of rainfall and runoff are identical.
Another study case, Zane typhoon, is a multi-peak rainfall-runoff process out of the 38
selected events (Table 5). Figure 14 illustrates the variation between observed rainfall and
runoff, and shows the excellent simulation performance from DLRNN. Figure 13
characterizes the transition of the rainfall-runoff process as the changes of UHs. During the
first 20 hours of Zane typhoon, the simulated runoff is slightly higher than observed runoff
(Figure 14), and this phenomenon demonstrates that the peak of the actual UH is lower than
the UH realized from DLRNN. Through the on-line learning, the peak of the UH realized
from DLRNN decays during first 20 hours. However, the largest peak of observed runoff is
higher than the simulated runoff, and this shows that the actual UH of the rainfall-runoff
process changes with time. Therefore, the peak of the UH realized from DLRNN increases
after on-line learning. Furthermore, the difference between observed and simulated runoffs
around the 60th hour demonstrates again the property of DLRNN that simulated runoff
goes with the trends of the rainfall process. Additionally, a common conceptual model,
called linear reservoir model, is introduced to compare with the DLRNN. It is an objective
comparison in which both two models consider rainfalls as inputs. Results show that
DLRNN performs better than the linear reservoir model.

 Recurrent Neural Networks

222

the advantages of indirect system identification and subspace algorithm provide an efficient
algorithm for applying DLRNN in hydrology.

6.3 Comparison between DLRNNs in different forms
The DLRNN adopted herein is a fully RNN and has full connections between neurons in
different layers. However, using a state space model is well known to over parameterize the
estimation problem, while using canonical forms, as illustrated in Fig. 10, is far more
economical for estimating the linear model. Figures 6 and 10 show that the DLRNNs have
the feed-back connections in the hidden layers that belong to the local recurrent structures.
The DLRNN in a canonical form has the same number of neurons as the original DLRNN,
but the DLRNN in a canonical form has the minimum connections and weights to achieve
the same performance. Hence, the comparison between the two DLRNNs in canonical form
is of interest in this investigation. Some experiments are designed to clarify this issue. First,
in the flowchart illustrated in Fig. 4, the original DLRNN(1) is transformed into a DLRNN in
the canonical form after identifying the quantity of neurons in hidden layer and the weights
of the DLRNN. Figure 10 shows that the DLRNN in the canonical form is clearly not a fully
RNN. 28 validated events are fed to the model, and a new on-line learning method
developed by Pan and Wang (2004), is applied to develop the DLRNN into a fully RNN via
on-line learning. Table 5 lists the average absolute criteria. The table reveals that the
canonical and non-canonical form DLRNNs do not differ significantly, and the on-line
learning algorithm always derives a fully RNN from a DLRNN in the canonical form.

Input layer Hidden layer Output layerInput layer Hidden layer Output layer
Fig. 10. The DLRNN in canonical form.

model type CE EQp (%) ETp (hour) VER (%)
original model 0.926 12.438 1.036 4.769
canonical form 0.925 12.704 1.071 4.845
original model: a DLRNN identified via modified system identification.
canonical form: a DLRNN in canonical form.

Table 5. The averages of absolute criteria of the DLRNNs in two forms.

6.4 Recognition of the transition of rainfall-runoff processes (Pan et al., 2007)
A streamflow or discharge hydrograph is a graph showing the flow rate as a function of
time at a given location on the stream. In effect, the hydrograph is “an integral expression of
the physiographic and climatic characteristics that govern the relations between rainfall and

Application of Recurrent Neural Networks to Rainfall-runoff Processes

223

runoff of a particular drainage basin” (Chow, 1959). UH is a hypothetical unit response of
the watershed to a unit input of rainfall that has been widely adopted by hydrologists to
represent the mechanism of rainfall-runoff processes. Through the visualization of the
transition of rainfall-runoff processes by UHs, the duration of a storm event, the time to
peak flow, and the peak flow can be detected from the UHs. Therefore, the DLRNN learning
algorithm is applied to modify the weights of the DLRNN on-line for detecting the
transition of UHs based on the connection between the DLRNN and UH representation by
treating the weights as Markov parameters. The structure of DLRNN can analogize the
rainfall-runoff processes in a simple manner. The number of neurons in the hidden layer
calibration by modified system identification describes the dimensions of the state space for
the rainfall-runoff processes. Each neuron in the hidden layer represents a state variable that
is controlled by rainfall and interacts with all state variables recurrently. Although the state
variables can not be measured directly, UH can be represented based on their weights to
describe the transition of rainfall-runoff processes.
Equations (8) and (9) reveal the relationship between the UH and the weights of DLRNN.
Equation (9) also illustrates the relationship between the system responses to a unit impulse
and the weights of DLRNN used herein. The time variance of the weights of a DLRNN can
be used to recognize the transition of rainfall-runoff processes. Figure 11 illustrates the
transition of UHs of the single-peak typhoon in Aug. 17, 1997, while Fig. 12 shows the
simulation of this typhoon through DLRNN with on-line learning. At the beginning of the
simulation, the weights of the DLRNN are identified from the earliest 10 events to form a
generalized model. When comparing these two figures, the change of the UHs reveals the
peak arrival is between the 15th and 30th hours. The time to peak of this typhoon is
approximately 8 hours, shown in Fig. 11. The 8-hour duration is significantly increased after
the time to peak of UH is calibrated as 3 hours. The rainfall process is fed to DLRNN to
simulate runoff, as illustrated in Fig. 12, and the simulated runoff should follow the trends
of the rainfall process. The rainfall-runoff simulations are evaluated as effective if the trends
of rainfall and runoff are identical.
Another study case, Zane typhoon, is a multi-peak rainfall-runoff process out of the 38
selected events (Table 5). Figure 14 illustrates the variation between observed rainfall and
runoff, and shows the excellent simulation performance from DLRNN. Figure 13
characterizes the transition of the rainfall-runoff process as the changes of UHs. During the
first 20 hours of Zane typhoon, the simulated runoff is slightly higher than observed runoff
(Figure 14), and this phenomenon demonstrates that the peak of the actual UH is lower than
the UH realized from DLRNN. Through the on-line learning, the peak of the UH realized
from DLRNN decays during first 20 hours. However, the largest peak of observed runoff is
higher than the simulated runoff, and this shows that the actual UH of the rainfall-runoff
process changes with time. Therefore, the peak of the UH realized from DLRNN increases
after on-line learning. Furthermore, the difference between observed and simulated runoffs
around the 60th hour demonstrates again the property of DLRNN that simulated runoff
goes with the trends of the rainfall process. Additionally, a common conceptual model,
called linear reservoir model, is introduced to compare with the DLRNN. It is an objective
comparison in which both two models consider rainfalls as inputs. Results show that
DLRNN performs better than the linear reservoir model.

 Recurrent Neural Networks

224

Fig. 11. The transition of UHs of the single-peak typhoon in Aug. 17, 1997.

0 20 40 60 80
Time (hour)

0

400

800

1200

R
un

of
f (

m
3 /

s)

0 20 40 60 80

40

30

20

10

0

R
ai

nf
al

l (
m

m
)

Aug. 17, 1997
Observed rainfall
Observed runoff
Simulation by DLRNN
Simulation by a lineaer reservoir model

Fig. 12. Simulation of Winnie typhoon in Aug. 17, 1997 via DLRNN with on-line learning
and a linear reservoir model.

Application of Recurrent Neural Networks to Rainfall-runoff Processes

225

Fig. 13. The transition of UHs of the multi-peak typhoon in Sep. 27, 1996.

0 40 80 120
Time (hour)

0

200

400

600

800

R
un

of
f (

m
3 /

s)

0 40 80 120

40

30

20

10

0

R
ai

nf
al

l (
m

m
)

Sep. 27, 1996
Observed rainfall
Observed runoff
Simulation by DLRNN
Simulation by a lineaer reservoir model

Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a
linear reservoir model.

 Recurrent Neural Networks

224

Fig. 11. The transition of UHs of the single-peak typhoon in Aug. 17, 1997.

0 20 40 60 80
Time (hour)

0

400

800

1200

R
un

of
f (

m
3 /

s)

0 20 40 60 80

40

30

20

10

0

R
ai

nf
al

l (
m

m
)

Aug. 17, 1997
Observed rainfall
Observed runoff
Simulation by DLRNN
Simulation by a lineaer reservoir model

Fig. 12. Simulation of Winnie typhoon in Aug. 17, 1997 via DLRNN with on-line learning
and a linear reservoir model.

Application of Recurrent Neural Networks to Rainfall-runoff Processes

225

Fig. 13. The transition of UHs of the multi-peak typhoon in Sep. 27, 1996.

0 40 80 120
Time (hour)

0

200

400

600

800

R
un

of
f (

m
3 /

s)

0 40 80 120

40

30

20

10

0

R
ai

nf
al

l (
m

m
)

Sep. 27, 1996
Observed rainfall
Observed runoff
Simulation by DLRNN
Simulation by a lineaer reservoir model

Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a
linear reservoir model.

 Recurrent Neural Networks

226

A generalized UH identified from multi-event rainfall-runoff records can represent the
hydrological feature of the watershed. However, due to the complex interaction with other
hydrometeorological and geomorphological processes within the hydrological cycle, the
true UH of a rainfall-runoff process can not be predetermined before the event happens.
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The
transition of the rainfall-runoff processes is visualized by the representation of UHs that
furthers the interpretation of DLRNN weights.

7. Conclusion
In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff
processes and recognize the transition of UHs in hydrology. Although most neural networks
are black-box models that lack physical meanings of weights, the DLRNN developed in this
chapter connects its weights with UHs that reveal the physical concepts from the network
based on the special structure of RNNs. Without trial and error method, the structure and
the weights of DLRNN can be quickly determined through a modified form of system
identification that combines indirect system identification with the subspace algorithm.
Then, the DLRNN learning algorithm based on the interchange of the roles of the network
state variables and the weight matrix is derived for on-line training.
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic
feature has been proven after the comparison between DLRNN and FNN. The investigation
of the connections between weights and physical meanings is an extension of neural
networks applied in hydrological field due to the linearization of the RNN. Based on the
linearization, weights of DLRNN are treated as Markov parameters to realize the transition
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation
between rainfall and runoff every time step, and the transition of rainfall-runoff processes
can be emerged based on the changes of UHs.
Furthermore, a modified system identification that combines indirect system identification
with subspace algorithm is described to calibrate the DLRNN. This method determines the
quantity of neurons in hidden layer and the weights of the network. It overcomes the
drawback of costing time by traditional trial and error search for optimum structure of
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The
results show that the performances of DLRNNs in different forms are close. Hence, the
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN.
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN
is competent to simulate dynamic systems, like rainfall-runoff processes.

8. Future research
Although feed-forward neural networks are commonly adopted to solve hydrological
problems, applying RNNs to deal with the issues of hydrology is still a novel technique
because the structure and the learning algorithm of RNN are more complex than those of
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological
problems. However, further research is necessary. As Sudheer mentioned (2005),

Application of Recurrent Neural Networks to Rainfall-runoff Processes

227

hydrologists have not endeavored to construe the knowledge embedded in the trained
ANN models, other than the recent research attempts to assign physical significance to the
internal architecture of ANN hydrological models. Therefore, how to abstract more physical
interpretations from the weights or the architectures of RNN, like the connection between
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed.

9. References
Abdelghani M. & Verhaegen M. (1998). Comparison study of subspace identification

methods applied to flexible structures. Mechanical Systems and Signal Processing, Vol.
12, No. 5, pp. 679-692, ISSN 0888-3270.

Anctil F.; Asce M. & Rat A. (2005). Evaluation of neural network streamflow forecasting on
47 watersheds. Journal of Hydrologic Engineering, Vol. 10, No. 1, pp. 85-88, ISSN
1084-0699.

Atiya A.F. & Parlos A.G. (2000). New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Transactions on Neural Networks, Vol.
11, No. 3, pp. 697-709, ISSN 1045-9227.

Boto M.A. & Costa J.S. (1998). A comparison of nonlinear predictive control techniques
using neural network models. Journal of Systems Architecture, Vol. 44, No. 8, pp. 597-
616, ISSN 1383-7621.

Chang L.C.; Chang F.J. & Chiang Y.M. (2004). A two-step-ahead recurrent neural network for
stream-flow forecasting. Hydrological Processes, Vol. 18, pp. 81-92, ISSN 0885-6087.

Chow T.W.S. & Cho S.Y. (1997). Development of a recurrent sigma-pi neural network
rainfall forecasting system in Hong Kong. Neural Computing and Applications, Vol.
51, No. 5, pp. 921-927, ISSN 0941-0643.

Chiang Y.M.; Chang L.C. & Chang F.J. (2004). Comparison of static-feedforward and
dynamic-feedback neural networks for rainfall-runoff modelling. Journal of
Hydrology, Vol. 290, pp. 297-311, ISSN 0022-1694.

Chiang Y.M.; Chang F.J.; Jou B.J.D. & Lin P.F. (2007a). Dynamic ANN for precipitation
estimation and forecasting from radar observations. Journal of Hydrology, Vol. 334,
pp. 250-261, ISSN 0022-1694.

Chiang Y.M.; Hsu K.L.; Chang F.J.; Hong Y. & Sorooshian S. (2007b) Merging multiple
precipitation sources for flash flood forecasting. Journal of Hydrology, Vol. 340, pp.
183-196, ISSN 0022-1694.

Chow V.T. (1959). Open Channel Hydraulics, McGraw Hill, ISBN 007085906X, New York.
Coulibaly P; Anctil F.; Rasmussen P. & Bobée B. (2000). A recurrent neural networks

approach using indices of low-frequency climatic variability to forecast regional
annual runoff. Hydrological Processes, Vol. 14, pp. 2755-2777, ISSN 0885-6087.

Coulibaly P.; Anctil F.; Aravena R. & Bobée B. (2001). Artificial neural network modeling of
water table depth fluctuations. Water Resources Research, Vol. 37, No. 4, pp. 885-896,
ISSN 0043-1397.

Coulibaly P. & Baldwin C.K. (2005). Nonstationary hydrological time series forecasting
using nonlinear dynamic methods. Journal of Hydrology, Vol. 307, pp. 164-174, ISSN
0022-1694.

 Recurrent Neural Networks

226

A generalized UH identified from multi-event rainfall-runoff records can represent the
hydrological feature of the watershed. However, due to the complex interaction with other
hydrometeorological and geomorphological processes within the hydrological cycle, the
true UH of a rainfall-runoff process can not be predetermined before the event happens.
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The
transition of the rainfall-runoff processes is visualized by the representation of UHs that
furthers the interpretation of DLRNN weights.

7. Conclusion
In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff
processes and recognize the transition of UHs in hydrology. Although most neural networks
are black-box models that lack physical meanings of weights, the DLRNN developed in this
chapter connects its weights with UHs that reveal the physical concepts from the network
based on the special structure of RNNs. Without trial and error method, the structure and
the weights of DLRNN can be quickly determined through a modified form of system
identification that combines indirect system identification with the subspace algorithm.
Then, the DLRNN learning algorithm based on the interchange of the roles of the network
state variables and the weight matrix is derived for on-line training.
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic
feature has been proven after the comparison between DLRNN and FNN. The investigation
of the connections between weights and physical meanings is an extension of neural
networks applied in hydrological field due to the linearization of the RNN. Based on the
linearization, weights of DLRNN are treated as Markov parameters to realize the transition
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation
between rainfall and runoff every time step, and the transition of rainfall-runoff processes
can be emerged based on the changes of UHs.
Furthermore, a modified system identification that combines indirect system identification
with subspace algorithm is described to calibrate the DLRNN. This method determines the
quantity of neurons in hidden layer and the weights of the network. It overcomes the
drawback of costing time by traditional trial and error search for optimum structure of
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The
results show that the performances of DLRNNs in different forms are close. Hence, the
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN.
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN
is competent to simulate dynamic systems, like rainfall-runoff processes.

8. Future research
Although feed-forward neural networks are commonly adopted to solve hydrological
problems, applying RNNs to deal with the issues of hydrology is still a novel technique
because the structure and the learning algorithm of RNN are more complex than those of
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological
problems. However, further research is necessary. As Sudheer mentioned (2005),

Application of Recurrent Neural Networks to Rainfall-runoff Processes

227

hydrologists have not endeavored to construe the knowledge embedded in the trained
ANN models, other than the recent research attempts to assign physical significance to the
internal architecture of ANN hydrological models. Therefore, how to abstract more physical
interpretations from the weights or the architectures of RNN, like the connection between
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed.

9. References
Abdelghani M. & Verhaegen M. (1998). Comparison study of subspace identification

methods applied to flexible structures. Mechanical Systems and Signal Processing, Vol.
12, No. 5, pp. 679-692, ISSN 0888-3270.

Anctil F.; Asce M. & Rat A. (2005). Evaluation of neural network streamflow forecasting on
47 watersheds. Journal of Hydrologic Engineering, Vol. 10, No. 1, pp. 85-88, ISSN
1084-0699.

Atiya A.F. & Parlos A.G. (2000). New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Transactions on Neural Networks, Vol.
11, No. 3, pp. 697-709, ISSN 1045-9227.

Boto M.A. & Costa J.S. (1998). A comparison of nonlinear predictive control techniques
using neural network models. Journal of Systems Architecture, Vol. 44, No. 8, pp. 597-
616, ISSN 1383-7621.

Chang L.C.; Chang F.J. & Chiang Y.M. (2004). A two-step-ahead recurrent neural network for
stream-flow forecasting. Hydrological Processes, Vol. 18, pp. 81-92, ISSN 0885-6087.

Chow T.W.S. & Cho S.Y. (1997). Development of a recurrent sigma-pi neural network
rainfall forecasting system in Hong Kong. Neural Computing and Applications, Vol.
51, No. 5, pp. 921-927, ISSN 0941-0643.

Chiang Y.M.; Chang L.C. & Chang F.J. (2004). Comparison of static-feedforward and
dynamic-feedback neural networks for rainfall-runoff modelling. Journal of
Hydrology, Vol. 290, pp. 297-311, ISSN 0022-1694.

Chiang Y.M.; Chang F.J.; Jou B.J.D. & Lin P.F. (2007a). Dynamic ANN for precipitation
estimation and forecasting from radar observations. Journal of Hydrology, Vol. 334,
pp. 250-261, ISSN 0022-1694.

Chiang Y.M.; Hsu K.L.; Chang F.J.; Hong Y. & Sorooshian S. (2007b) Merging multiple
precipitation sources for flash flood forecasting. Journal of Hydrology, Vol. 340, pp.
183-196, ISSN 0022-1694.

Chow V.T. (1959). Open Channel Hydraulics, McGraw Hill, ISBN 007085906X, New York.
Coulibaly P; Anctil F.; Rasmussen P. & Bobée B. (2000). A recurrent neural networks

approach using indices of low-frequency climatic variability to forecast regional
annual runoff. Hydrological Processes, Vol. 14, pp. 2755-2777, ISSN 0885-6087.

Coulibaly P.; Anctil F.; Aravena R. & Bobée B. (2001). Artificial neural network modeling of
water table depth fluctuations. Water Resources Research, Vol. 37, No. 4, pp. 885-896,
ISSN 0043-1397.

Coulibaly P. & Baldwin C.K. (2005). Nonstationary hydrological time series forecasting
using nonlinear dynamic methods. Journal of Hydrology, Vol. 307, pp. 164-174, ISSN
0022-1694.

 Recurrent Neural Networks

228

Coulibaly P. & Evora N.D. (2007). Comparison of neural network methods for infillin missing
daily weather records. Journal of Hydrology, Vol. 341, pp. 27-41, ISSN 0022-1694.

Gustafsson T. (2001). Subspace identification using instrumental variable techniques.
Automatica, Vol. 37, No. 12, pp. 2005-2010, ISSN 0005-1098.

Henriques J. & Dourado A. (1998). A multivariable adaptive control using a recurrent neural
network. Proceedings of international conference on engineering applications of neural
networks, engineering applications of neural networks, pp. 118-121, UK, June 1998,
Gibraltar.

Karamouz M.; Razavi S. & Araghinejad S. (2008). Long-lead seasonal rainfall forecasting
using time-delay recurrent neural networks: a case study. Hydrological Processes,
Vol. 22, pp. 229-241, ISSN 1099-1085.

Maier H.R. & Dandy G.C. (2000). Neural networks for the prediction and forecasting of
water resources variables: a review of modelling issues and applications.
Environmental Modelling & Software, Vol. 15, pp. 101-124, ISSN 1364-8152.

Nagesh Kumar D.; Srinivasa Raju K. & Sathish T. (2004). River flow forecasting using
recurrent neural networks. Water Resources Management, Vol. 18, pp. 143-161, ISSN
0920-4741.

Pan T.Y. & Wang R.Y. (2004). State space neural networks for short term rainfall-runoff
forecasting. Journal of Hydrology, Vol. 297, pp. 34-50, ISSN 0022-1694.

Pan T.Y. & Wang R.Y. (2005). Using recurrent neural networks to reconstruct rainfall-runoff
processes. Hydrological Processes, Vol. 19, pp. 3603-3619, ISSN 0885-6087.

Pan T.Y.; Wang R.Y. & Lai J.S. (2007). A deterministic linearized recurrent neural network
for recognizing the transition of rainfall-runoff processes. Advances in Water
Resources, Vol. 30, pp. 1797-1814, ISSN 0309-1708.

Parlos A.G.; Rais O.T. & Atiya A.F. (2000). Multi-step-ahead prediction using dynamic
recurrent neural networks. Neural Networks, Vol. 13, pp. 765-786, ISSN 0893-6080.

Ptitchkin V.A. (2001). Models of dynamic neural networks and automatic control systems,
Proceedings of the second international conference on neural networks and artificial
intelligence, Republic of Belarus, October 2001, Minsk.

Rahman M.H.R.F. & Kuanyi Z. (2000). Neural network approach for linearizing control of
nonlinear process plants. IEEE Transactions on Industrial Electronics, Vol. 47, No. 2,
pp. 470-477, ISSN 0278-0046.

Ramos J.; Mallants D. & Feyen J. (1995). State space identification of linear deterministic
rainfall-runoff models. Water Resources Research, Vol. 31, No. 6, pp. 1519-1531, ISSN
0043-1397.

Sudheer K.P. (2005). Knowledge extraction from trained neural network river flow models.
Journal of Hydrologic Engineering, Vol. 10, No. 4, pp. 264-269, ISSN 1084-0699.

Tsoi A.C. & Back A. (1997). Discrete time recurrent neural network architectures: a unifying
review. Neurocomputing, Vol. 15, pp. 183-223, ISSN 0925-2312.

Vos N.J. & Rientjes T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff
modeling: trade-offs in hydrological state representation and model evaluation.
Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 365-415, ISSN 1812-2108.

Walter M; Recknagel F.; Carpenter C. & Bormans M. (2001). Predicting eutrophication
effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model
SALMO and the recurrent neural network model ANNA. Ecological Modelling, Vol.
146, pp. 97-113, ISSN 0304-3800.

Zarmarreño J.M.; Vega P.; García L.D. & Francisco M. (2000). State-space neural network for
modelling, prediction and control. Control Engineering Practice, Vol. 8, pp. 1063-
1075, ISSN 0967-0661.

11

Recurrent Neural Approach for Solving Several
Types of Optimization Problems

Ivan N. da Silva, Wagner C. Amaral, Lucia V. Arruda
and Rogerio A. Flauzino

University of São Paulo, USP/EESC/SEL, CP 359, São Carlos, SP
Brazil

1. Introduction
An artificial neural network, more commonly known as neural network, is a mathematical
model for information processing based on the biological nervous system, which has a
natural propensity for storing experiential knowledge and making it available for use
(Haykin, 1999). The main advantage of a neural network is in its ability to approximate
functional relationships, particularly nonlinear relationships.
Neural networks have been applied to several classes of optimization problems and have
shown promise for solving such problems efficiently. Most of the neural architectures
proposed in the literature solve specific types of optimization problems (Dillon & O’Malley,
2002; Kakeya & Okabe, 2000; Xia et al., 2002). In contrast to these neural models, the network
proposed here is able to treat several kinds of optimization problems using a unique
network architecture.
The approach described in this chapter uses a modified Hopfield network, which has
equilibrium points representing the solution of the optimization problems. The Hopfield
network is modified by presenting an optimization process carried out in two distinct
stages, which are represented by two energy functions. The internal parameters of the
network have been computed using the valid-subspace technique (Aiyer et al., 1990; Silva et
al., 1997). This technique allows us to define a subspace, which contains only those solutions
that represent feasible solutions to the problem analyzed. It has also been demonstrated that
with appropriately set parameters, the network confines its output to this subspace, thus
ensuring convergence to a valid solution. Also in contrast to other neural approaches that
use an energy function for each constraint to be satisfied, the mapping of optimization
problems using the modified Hopfield network always consists of determining just two
energy functions, which are denoted by Econf and Eop. The function Econf is a confinement term
that groups all structural constraints associated with the problems, and Eop is an
optimization term that leads the network output to the equilibrium points corresponding to
optimal solutions.
In this chapter, the proposed approach has been applied to solve combinatorial optimization
problems, dynamic programming problems and nonlinear optimization problems. In
addition to providing a new approach for solving several classes of optimization problems
through a unique neural network architecture, the main advantages of using the modified

 Recurrent Neural Networks

228

Coulibaly P. & Evora N.D. (2007). Comparison of neural network methods for infillin missing
daily weather records. Journal of Hydrology, Vol. 341, pp. 27-41, ISSN 0022-1694.

Gustafsson T. (2001). Subspace identification using instrumental variable techniques.
Automatica, Vol. 37, No. 12, pp. 2005-2010, ISSN 0005-1098.

Henriques J. & Dourado A. (1998). A multivariable adaptive control using a recurrent neural
network. Proceedings of international conference on engineering applications of neural
networks, engineering applications of neural networks, pp. 118-121, UK, June 1998,
Gibraltar.

Karamouz M.; Razavi S. & Araghinejad S. (2008). Long-lead seasonal rainfall forecasting
using time-delay recurrent neural networks: a case study. Hydrological Processes,
Vol. 22, pp. 229-241, ISSN 1099-1085.

Maier H.R. & Dandy G.C. (2000). Neural networks for the prediction and forecasting of
water resources variables: a review of modelling issues and applications.
Environmental Modelling & Software, Vol. 15, pp. 101-124, ISSN 1364-8152.

Nagesh Kumar D.; Srinivasa Raju K. & Sathish T. (2004). River flow forecasting using
recurrent neural networks. Water Resources Management, Vol. 18, pp. 143-161, ISSN
0920-4741.

Pan T.Y. & Wang R.Y. (2004). State space neural networks for short term rainfall-runoff
forecasting. Journal of Hydrology, Vol. 297, pp. 34-50, ISSN 0022-1694.

Pan T.Y. & Wang R.Y. (2005). Using recurrent neural networks to reconstruct rainfall-runoff
processes. Hydrological Processes, Vol. 19, pp. 3603-3619, ISSN 0885-6087.

Pan T.Y.; Wang R.Y. & Lai J.S. (2007). A deterministic linearized recurrent neural network
for recognizing the transition of rainfall-runoff processes. Advances in Water
Resources, Vol. 30, pp. 1797-1814, ISSN 0309-1708.

Parlos A.G.; Rais O.T. & Atiya A.F. (2000). Multi-step-ahead prediction using dynamic
recurrent neural networks. Neural Networks, Vol. 13, pp. 765-786, ISSN 0893-6080.

Ptitchkin V.A. (2001). Models of dynamic neural networks and automatic control systems,
Proceedings of the second international conference on neural networks and artificial
intelligence, Republic of Belarus, October 2001, Minsk.

Rahman M.H.R.F. & Kuanyi Z. (2000). Neural network approach for linearizing control of
nonlinear process plants. IEEE Transactions on Industrial Electronics, Vol. 47, No. 2,
pp. 470-477, ISSN 0278-0046.

Ramos J.; Mallants D. & Feyen J. (1995). State space identification of linear deterministic
rainfall-runoff models. Water Resources Research, Vol. 31, No. 6, pp. 1519-1531, ISSN
0043-1397.

Sudheer K.P. (2005). Knowledge extraction from trained neural network river flow models.
Journal of Hydrologic Engineering, Vol. 10, No. 4, pp. 264-269, ISSN 1084-0699.

Tsoi A.C. & Back A. (1997). Discrete time recurrent neural network architectures: a unifying
review. Neurocomputing, Vol. 15, pp. 183-223, ISSN 0925-2312.

Vos N.J. & Rientjes T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff
modeling: trade-offs in hydrological state representation and model evaluation.
Hydrology and Earth System Sciences Discussions, Vol. 2, pp. 365-415, ISSN 1812-2108.

Walter M; Recknagel F.; Carpenter C. & Bormans M. (2001). Predicting eutrophication
effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model
SALMO and the recurrent neural network model ANNA. Ecological Modelling, Vol.
146, pp. 97-113, ISSN 0304-3800.

Zarmarreño J.M.; Vega P.; García L.D. & Francisco M. (2000). State-space neural network for
modelling, prediction and control. Control Engineering Practice, Vol. 8, pp. 1063-
1075, ISSN 0967-0661.

11

Recurrent Neural Approach for Solving Several
Types of Optimization Problems

Ivan N. da Silva, Wagner C. Amaral, Lucia V. Arruda
and Rogerio A. Flauzino

University of São Paulo, USP/EESC/SEL, CP 359, São Carlos, SP
Brazil

1. Introduction
An artificial neural network, more commonly known as neural network, is a mathematical
model for information processing based on the biological nervous system, which has a
natural propensity for storing experiential knowledge and making it available for use
(Haykin, 1999). The main advantage of a neural network is in its ability to approximate
functional relationships, particularly nonlinear relationships.
Neural networks have been applied to several classes of optimization problems and have
shown promise for solving such problems efficiently. Most of the neural architectures
proposed in the literature solve specific types of optimization problems (Dillon & O’Malley,
2002; Kakeya & Okabe, 2000; Xia et al., 2002). In contrast to these neural models, the network
proposed here is able to treat several kinds of optimization problems using a unique
network architecture.
The approach described in this chapter uses a modified Hopfield network, which has
equilibrium points representing the solution of the optimization problems. The Hopfield
network is modified by presenting an optimization process carried out in two distinct
stages, which are represented by two energy functions. The internal parameters of the
network have been computed using the valid-subspace technique (Aiyer et al., 1990; Silva et
al., 1997). This technique allows us to define a subspace, which contains only those solutions
that represent feasible solutions to the problem analyzed. It has also been demonstrated that
with appropriately set parameters, the network confines its output to this subspace, thus
ensuring convergence to a valid solution. Also in contrast to other neural approaches that
use an energy function for each constraint to be satisfied, the mapping of optimization
problems using the modified Hopfield network always consists of determining just two
energy functions, which are denoted by Econf and Eop. The function Econf is a confinement term
that groups all structural constraints associated with the problems, and Eop is an
optimization term that leads the network output to the equilibrium points corresponding to
optimal solutions.
In this chapter, the proposed approach has been applied to solve combinatorial optimization
problems, dynamic programming problems and nonlinear optimization problems. In
addition to providing a new approach for solving several classes of optimization problems
through a unique neural network architecture, the main advantages of using the modified

 Recurrent Neural Networks

230

Hopfield network proposed in this chapter are the following: i) the internal parameters of
the network are explicitly obtained by the valid-subspace technique of solutions, which
avoids the need to use training algorithm for their adjustments; ii) the application of the
valid-subspace technique allows feasible solutions to be found, which are derived from the
confinement of all structural constraints by Econf; iii) The optimization and confinement
terms are not weighted by penalty parameters, which could affect both precision of the
equilibrium points and their respective convergence processes; iv) for all classes of
optimization problems, the same methodology is adopted to derive the internal parameters
of the network, and v) for industrial application, the modified Hofpfield network offers
simplicity of implementation both in analogue hardware, making use of operational
amplifiers and in digital hardware by using digital signal processors.
The organization of the present chapter is as follows. In Section 2, the modified Hopfield
network is presented, and the valid-subspace technique used to design the network
parameters is described. In Section 3, the mapping of optimization problems using the
modified Hopfield network is formulated. In Section 4, simulation results are given to
demonstrate the performance of the developed approach. In Section 5, the key issues raised
in the chapter are summarized and conclusions drawn.

2. The modified Hopfield network
Hopfield networks are single-layer networks with feedback connections between nodes. In
the standard case, the nodes are fully connected, i.e., every node is connected to all others
nodes, including itself (Hopfield, 1984). The node equation for the continuous-time network
with N neurons is given by:

 ∑
=

++−=
N

j

b
ijijii itvTtutu

1

)(.)(.)(η (1)

))(()(tugtv ii = (2)

where ui(t) is the current state of the i-th neuron, vi(t) is the output of the i-th neuron, b
ii is

the offset bias of the i-th neuron, η.ui(t) is a passive decay term, Tij is the weight connecting
the j-th neuron to i-th neuron.
In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits the
output of each neuron to ensure that the network output always lies in or within a
hypercube. It is shown in Hopfield (1984) that if T is symmetric and η=0, the equilibrium
points of the network correspond to values v(t) for which the energy function (3) associated
with the network is minimized:

 bTT ttttE ivvTv .)()(..)(
2
1)(−−= (3)

Therefore, the mapping of optimization problems using the Hopfield network consists of
determining the weight matrix T and the bias vector ib to compute equilibrium points to
represent the problem to be solved.
One of the major difficulties in mapping optimization problems onto a conventional
Hopfield network involves deciding how constraints can be included. Basically, most of

Recurrent Neural Approach for Solving Several Types of Optimization Problems

231

these neural networks proposed in the literature for solving optimization problems code the
constraints as terms in the energy function that are weighted by penalty parameters. The
stable equilibrium points of these networks, which represent a solution of the optimization
problem, gave the correct solution only when those parameters are properly adjusted, and
both the accuracy and the convergence process can be affected. This weakness of penalty
and barrier function methods has, of course, been well known since 1968 when it was
discussed by Fiacco and McCormick in Fiacco & McCormick (1968). They investigated the
numerical problem associated with the change of parameters in these functions. In such
approaches, the energy function given in (3) is represented by:

)()()()()(2211 tEctEctEctEtE const
mm

constconstop ⋅++⋅+⋅+= (4)

where ci are positive constants that are weighing each one of the constraints const
iE . Thus,

the network is involved with the minimization of a single energy function (Eop)
correspondent to the objective function of the problem and subject to the several constraints

const
iE . If any of these constraints is violated then the solution is not feasible, i.e., the

multiple constraints terms const
iE tend to cancel each other out. Moreover, the convergence

processes of these networks depend on the correct adjustment of the penalty constants
associated with the energy terms.
In this chapter, we have developed a modified Hopfield network that does not depend on
penalty or weighting parameters, which overcomes shortcomings associated with the other
neural approaches. In contrast to most of the other neural models, the network proposed
here is able to treat several kinds of optimization problems using a unique network
architecture. A modified energy function Em(t), composed just by two energy terms is used
here, which is defined as follows:

 Em(t) = Eop(t) + Econf(t) (5)

where Econf(t) is a confinement term that groups the structural constraints associated with the
respective optimization problem, and Eop(t) is an optimization term that conducts the
network output to the equilibrium points corresponding to a cost constraint. Thus, the
minimization of Em(t) of the modified Hopfield network is conducted in two stages:
i) minimization of the term Econf(t):

 confTconfTconf ttttE ivvTv .)()(..)(
2
1)(−−= (6)

where v(t) is the network output, Tconf is a weight matrix and iconf is a bias vector belonging
to Econf. This results in a solution v(t) in the subspace generated from the structural
constraints imposed by the problem. This subspace has been derived from analysis of the
Hopfield network dynamics, where it is shown in Hopfield (1984) that the energy functions
Eiconst(t) given in (4), which are defined by (3), are Lyapunov functions provided matrices T
are symmetric. An investigation associating the equilibrium points of those Lyapunov
functions with respect to the eigenvalues and eigenvectors of the matrices T shows that all
feasible solutions can be grouped in a unique subspace of solutions with equation v(t+1) =
Tconf.v(t) + iconf, where Tconf is a projection matrix and iconf is a vector orthogonal to Tconf. By
analyzing the convergence process dynamics, it is revealed that v evolves first along those

 Recurrent Neural Networks

230

Hopfield network proposed in this chapter are the following: i) the internal parameters of
the network are explicitly obtained by the valid-subspace technique of solutions, which
avoids the need to use training algorithm for their adjustments; ii) the application of the
valid-subspace technique allows feasible solutions to be found, which are derived from the
confinement of all structural constraints by Econf; iii) The optimization and confinement
terms are not weighted by penalty parameters, which could affect both precision of the
equilibrium points and their respective convergence processes; iv) for all classes of
optimization problems, the same methodology is adopted to derive the internal parameters
of the network, and v) for industrial application, the modified Hofpfield network offers
simplicity of implementation both in analogue hardware, making use of operational
amplifiers and in digital hardware by using digital signal processors.
The organization of the present chapter is as follows. In Section 2, the modified Hopfield
network is presented, and the valid-subspace technique used to design the network
parameters is described. In Section 3, the mapping of optimization problems using the
modified Hopfield network is formulated. In Section 4, simulation results are given to
demonstrate the performance of the developed approach. In Section 5, the key issues raised
in the chapter are summarized and conclusions drawn.

2. The modified Hopfield network
Hopfield networks are single-layer networks with feedback connections between nodes. In
the standard case, the nodes are fully connected, i.e., every node is connected to all others
nodes, including itself (Hopfield, 1984). The node equation for the continuous-time network
with N neurons is given by:

 ∑
=

++−=
N

j

b
ijijii itvTtutu

1

)(.)(.)(η (1)

))(()(tugtv ii = (2)

where ui(t) is the current state of the i-th neuron, vi(t) is the output of the i-th neuron, b
ii is

the offset bias of the i-th neuron, η.ui(t) is a passive decay term, Tij is the weight connecting
the j-th neuron to i-th neuron.
In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits the
output of each neuron to ensure that the network output always lies in or within a
hypercube. It is shown in Hopfield (1984) that if T is symmetric and η=0, the equilibrium
points of the network correspond to values v(t) for which the energy function (3) associated
with the network is minimized:

 bTT ttttE ivvTv .)()(..)(
2
1)(−−= (3)

Therefore, the mapping of optimization problems using the Hopfield network consists of
determining the weight matrix T and the bias vector ib to compute equilibrium points to
represent the problem to be solved.
One of the major difficulties in mapping optimization problems onto a conventional
Hopfield network involves deciding how constraints can be included. Basically, most of

Recurrent Neural Approach for Solving Several Types of Optimization Problems

231

these neural networks proposed in the literature for solving optimization problems code the
constraints as terms in the energy function that are weighted by penalty parameters. The
stable equilibrium points of these networks, which represent a solution of the optimization
problem, gave the correct solution only when those parameters are properly adjusted, and
both the accuracy and the convergence process can be affected. This weakness of penalty
and barrier function methods has, of course, been well known since 1968 when it was
discussed by Fiacco and McCormick in Fiacco & McCormick (1968). They investigated the
numerical problem associated with the change of parameters in these functions. In such
approaches, the energy function given in (3) is represented by:

)()()()()(2211 tEctEctEctEtE const
mm

constconstop ⋅++⋅+⋅+= (4)

where ci are positive constants that are weighing each one of the constraints const
iE . Thus,

the network is involved with the minimization of a single energy function (Eop)
correspondent to the objective function of the problem and subject to the several constraints

const
iE . If any of these constraints is violated then the solution is not feasible, i.e., the

multiple constraints terms const
iE tend to cancel each other out. Moreover, the convergence

processes of these networks depend on the correct adjustment of the penalty constants
associated with the energy terms.
In this chapter, we have developed a modified Hopfield network that does not depend on
penalty or weighting parameters, which overcomes shortcomings associated with the other
neural approaches. In contrast to most of the other neural models, the network proposed
here is able to treat several kinds of optimization problems using a unique network
architecture. A modified energy function Em(t), composed just by two energy terms is used
here, which is defined as follows:

 Em(t) = Eop(t) + Econf(t) (5)

where Econf(t) is a confinement term that groups the structural constraints associated with the
respective optimization problem, and Eop(t) is an optimization term that conducts the
network output to the equilibrium points corresponding to a cost constraint. Thus, the
minimization of Em(t) of the modified Hopfield network is conducted in two stages:
i) minimization of the term Econf(t):

 confTconfTconf ttttE ivvTv .)()(..)(
2
1)(−−= (6)

where v(t) is the network output, Tconf is a weight matrix and iconf is a bias vector belonging
to Econf. This results in a solution v(t) in the subspace generated from the structural
constraints imposed by the problem. This subspace has been derived from analysis of the
Hopfield network dynamics, where it is shown in Hopfield (1984) that the energy functions
Eiconst(t) given in (4), which are defined by (3), are Lyapunov functions provided matrices T
are symmetric. An investigation associating the equilibrium points of those Lyapunov
functions with respect to the eigenvalues and eigenvectors of the matrices T shows that all
feasible solutions can be grouped in a unique subspace of solutions with equation v(t+1) =
Tconf.v(t) + iconf, where Tconf is a projection matrix and iconf is a vector orthogonal to Tconf. By
analyzing the convergence process dynamics, it is revealed that v evolves first along those

 Recurrent Neural Networks

232

eigenvectors of Tconf with the large eigenvalues, then along those with negative eigenvalues.
As consequence of the application of this subspace approach, which is named the valid-
subspace method, a unique energy term can be used to represent all constraints associated
with the optimization problem since Tconf to be a projection matrix (Tconf. Tconf = Tconf) and
iconf a vector orthogonal to Tconf, i. e., Tconf. iconf = 0. A more detailed analysis of the valid-
subspace method can be found in Silva et al. (1997).
ii) minimization of the term Eop(t):

 opTopTop ttttE ivvTv .)()(..)(
2
1)(−−= (7)

where Top is weight matrix and iop is bias vector belonging to Eop. This corresponds to move
v(t) towards an optimal solution (the equilibrium points). Thus, the operation of the
modified Hopfield network consists of three main steps, as shown in Fig. 1:

Fig. 1. The modified Hopfield network.

Step ((I)): Minimization of Econf, corresponding to the projection of v(t) in the valid subspace
defined by:

 confconfconfconf tt ivTvivTv +⋅←⇒+⋅=+)()1((8)

where: Tconf is a projection matrix (Tconf.Tconf = Tconf) and the vector iconf is orthogonal to the
subspace (Tconf.iconf = 0). This operation corresponds to an indirect minimization of Econf(t).
An analysis of the valid-subspace technique is presented in Aiyer et al. (1990) and Silva et al.
(1997).
Step ((II)): Application of a nonlinear ‘symmetric ramp’ activation function constraining
v(t) in a hypercube:

 if ,

 if ,

 if ,

)(
sup

i
sup

supinf

infinf

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤

<

=

ii

ii

ii

limvlim

limvlimv

limvlim

vg ii

i

ii (9)

 v ← v +Δv

vout ← v

((I))

((II))

((III))

Δv ← Δt.(Top.v + iop)

v ← Tconf.v + iconf

g(v)

v
v

Recurrent Neural Approach for Solving Several Types of Optimization Problems

233

 where] ,[)(supinf
iii limlimtv ∈ . For combinatorial optimization and dynamic programming

problems gi(vi) ∈ [0, 1] and in this case 1 and 0 supinf == ii limlim . Although v is inside a set
with particular structure, the modified
Hopfield network can represent a general problem. For example, if v ∈ ℜn for nonlinear
optimization problem, then −∞=inf

ilim and ∞=sup
ilim .

Step ((III)): Minimization of Eop, which involves updating of v(t) in direction to an optimal
solution (defined by Top and iop) corresponding to network equilibrium points, which are the
solutions for the optimization problem considered in a specific application. Using the
‘symmetric ramp’ activation function defined in (7) and given η=0, equation (2)
subsequently becomes:

 v(t) = g(u(t)) = u(t) (10)
By comparison with (1) and (6), we have:

v
vv

∂
∂)()(tE

dt
td op

−==

 Δv = – Δt.∇Eop(v) = Δt.(Top.v + iop) (11)

Therefore, minimization of Eop consists of updating v(t) in the opposite direction to the
gradient of Eop. These results are also valid when a ‘hyperbolic tangent’ activation function is
used. In this step, the process used by the modified Hopfield network for solving the
corresponding differential equations are identical to Euler’s method and in optimization
terms it represents a steepest descent algorithm with a fixed step size.
After each optimization step in ((III)), it is necessary to carry out several times the two steps
involved with the confinement of constraints in order to ensure the feasibility of the
problem is achieved, i.e., the steps ((I)) and ((II)) are continuously applied until the
convergence of the output vector v. In optimization terminology this method is therefore a
gradient restoration algorithm with a fixed step size.
Therefore, according to Fig. 1 each iteration has two distinct stages. First, as described in
Step ((III)), v is updated using the gradient of the term Eop alone. Second, after each
updating, v is projected in the valid subspace. This is an iterative process, in which v is first
orthogonally projected in the valid subspace (8), and then thresholded so that its elements
lie in the range] ,[supinf

ii limlim . The convergence process is concluded when the values of
vout during two successive loops remain practically constant, where the value of vout in
this case is equal to v.

3. Mapping optimization problems by the modified Hopfield network
In this section, the formulation of three types of optimization problems, namely
combinatorial optimization problems, dynamic programming problems and nonlinear
optimization problems, is presented.

3.1 Notation and definitions
The notation employed for vectors and matrices, which are used for mapping combinatorial
optimization problems and dynamic programming problems, is as follows.

 Recurrent Neural Networks

232

eigenvectors of Tconf with the large eigenvalues, then along those with negative eigenvalues.
As consequence of the application of this subspace approach, which is named the valid-
subspace method, a unique energy term can be used to represent all constraints associated
with the optimization problem since Tconf to be a projection matrix (Tconf. Tconf = Tconf) and
iconf a vector orthogonal to Tconf, i. e., Tconf. iconf = 0. A more detailed analysis of the valid-
subspace method can be found in Silva et al. (1997).
ii) minimization of the term Eop(t):

 opTopTop ttttE ivvTv .)()(..)(
2
1)(−−= (7)

where Top is weight matrix and iop is bias vector belonging to Eop. This corresponds to move
v(t) towards an optimal solution (the equilibrium points). Thus, the operation of the
modified Hopfield network consists of three main steps, as shown in Fig. 1:

Fig. 1. The modified Hopfield network.

Step ((I)): Minimization of Econf, corresponding to the projection of v(t) in the valid subspace
defined by:

 confconfconfconf tt ivTvivTv +⋅←⇒+⋅=+)()1((8)

where: Tconf is a projection matrix (Tconf.Tconf = Tconf) and the vector iconf is orthogonal to the
subspace (Tconf.iconf = 0). This operation corresponds to an indirect minimization of Econf(t).
An analysis of the valid-subspace technique is presented in Aiyer et al. (1990) and Silva et al.
(1997).
Step ((II)): Application of a nonlinear ‘symmetric ramp’ activation function constraining
v(t) in a hypercube:

 if ,

 if ,

 if ,

)(
sup

i
sup

supinf

infinf

⎪
⎪

⎩

⎪
⎪

⎨

⎧

>

≤≤

<

=

ii

ii

ii

limvlim

limvlimv

limvlim

vg ii

i

ii (9)

 v ← v +Δv

vout ← v

((I))

((II))

((III))

Δv ← Δt.(Top.v + iop)

v ← Tconf.v + iconf

g(v)

v
v

Recurrent Neural Approach for Solving Several Types of Optimization Problems

233

 where] ,[)(supinf
iii limlimtv ∈ . For combinatorial optimization and dynamic programming

problems gi(vi) ∈ [0, 1] and in this case 1 and 0 supinf == ii limlim . Although v is inside a set
with particular structure, the modified
Hopfield network can represent a general problem. For example, if v ∈ ℜn for nonlinear
optimization problem, then −∞=inf

ilim and ∞=sup
ilim .

Step ((III)): Minimization of Eop, which involves updating of v(t) in direction to an optimal
solution (defined by Top and iop) corresponding to network equilibrium points, which are the
solutions for the optimization problem considered in a specific application. Using the
‘symmetric ramp’ activation function defined in (7) and given η=0, equation (2)
subsequently becomes:

 v(t) = g(u(t)) = u(t) (10)
By comparison with (1) and (6), we have:

v
vv

∂
∂)()(tE

dt
td op

−==

 Δv = – Δt.∇Eop(v) = Δt.(Top.v + iop) (11)

Therefore, minimization of Eop consists of updating v(t) in the opposite direction to the
gradient of Eop. These results are also valid when a ‘hyperbolic tangent’ activation function is
used. In this step, the process used by the modified Hopfield network for solving the
corresponding differential equations are identical to Euler’s method and in optimization
terms it represents a steepest descent algorithm with a fixed step size.
After each optimization step in ((III)), it is necessary to carry out several times the two steps
involved with the confinement of constraints in order to ensure the feasibility of the
problem is achieved, i.e., the steps ((I)) and ((II)) are continuously applied until the
convergence of the output vector v. In optimization terminology this method is therefore a
gradient restoration algorithm with a fixed step size.
Therefore, according to Fig. 1 each iteration has two distinct stages. First, as described in
Step ((III)), v is updated using the gradient of the term Eop alone. Second, after each
updating, v is projected in the valid subspace. This is an iterative process, in which v is first
orthogonally projected in the valid subspace (8), and then thresholded so that its elements
lie in the range] ,[supinf

ii limlim . The convergence process is concluded when the values of
vout during two successive loops remain practically constant, where the value of vout in
this case is equal to v.

3. Mapping optimization problems by the modified Hopfield network
In this section, the formulation of three types of optimization problems, namely
combinatorial optimization problems, dynamic programming problems and nonlinear
optimization problems, is presented.

3.1 Notation and definitions
The notation employed for vectors and matrices, which are used for mapping combinatorial
optimization problems and dynamic programming problems, is as follows.

 Recurrent Neural Networks

234

• The vector p ∈ ℜn represents the solution set of an optimization problem consisted of n
nodes (neurons). Thus, the elements belonging to p have integer elements defined by:

 pi ∈ {1,...,n} where i ∈ {1..n} (12)

The vector p can be represented by a vector v, composed of ones and zeros, which
represents the output of the network. In the notation using Kronecher products (Graham,
1981), we have:
• δ is a matrix (δ ∈ ℜnxn) defined by:

⎩
⎨
⎧

≠
=

ji
ji

ij if 0,
 = if ,1

δ (13)

δ(k) ∈ ℜn is a column vector corresponding to k-th column of δ.
• v(p) is an n.m dimensional vector representing the form of the final network output

vector v, which corresponds to the problem solution denoted by p. The vector v(p) is
defined by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(

)(
)(

)(2

1

np

p
p

δ

δ
δ

�
pv (14)

• vec(U) is a function which maps the mxn matrix U to the n.m-element vector v. This
function is defined by:

 v = vec(U) = [U11 U21...Um1 U12 U22...Um2 U1n U2n ...Umn]T (15)

• V(p) is an nxn dimensional matrix defined by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
n

T

T

p

p

p

)(

)(

)(

)(2

1

δ

δ

δ

�
pV (16)

where [V(p)]ij = [δ(pi)]j .
• P⊗Q denotes the Kronecher product of two matrices. If P is an nxn matrix, and Q is an

mxm matrix, then (P⊗Q) is an (n.m)x(n.m) matrix given by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

QQQ

QQQ
QQQ

QP

nnnn

n

n

PPP

PP
PPP

P

21

22221

11211

…
���
…
…

 (17)

• w⊗h denotes the Kronecher product of two vectors. If w is an n-element vector and h an
m-element vector, then (w⊗h) is an n.m-element vector given by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

235

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

h

h
h

hw

.

.

.

2

1

nw

w
w

 (18)

The properties of the Kronecher products (Graham, 1981) utilized are:

 (λw⊗γh) = λγ(w⊗h) (19)

 (w⊗h)T(x⊗g) = (wTx)(hTg) (20)

 (P⊗Q)(w⊗h) = (Pw⊗Qh) (21)

 (P⊗Q)(E⊗F) = (PE⊗QF) (22)

 vec(Q.V.PT) = (P⊗Q).vec(V) (23)

• on and On are respectively the n-element vector and the nxn matrix of ones, that is:

 }{1.. , for 1][
1][

nji
ij

i
∈

⎪⎭

⎪
⎬
⎫

=
=

O
o

 (24)

• Rn is an nxn projection matrix (i.e., Rn.Rn = Rn) defined by:

 nnn
n
OIR 1

−= (25)

The sum of the elements of each row of a matrix is transformed to zero by post-
multiplication with Rn, while pre-multiplication by Rn has the effect of setting the sum of the
elements of each column to zero.

3.2 Formulation of combinatorial optimization problems
The combinatorial optimization problem considered in this chapter is the matching problem
in bipartite graphs. However, several other types of combinatorial optimization problems,
such as the salesman and N-queens problems, can be also solved by the proposed neural
approach.
A graph G is a pair G = (V,E), where V is a finite set of 2n nodes or vertices and E has as
elements subsets of V of cardinality two called edges (Papadimitriou & Steiglitz, 1982). A
matching M of a graph G = (V,E) is a subset of the edges with the property that no two
edges of M share the same node. The graph G = (V,E) is called bipartite if the set of vertices
V can be partitioned into two sets of n nodes, U and W, and each edge in E has one vertex in
U and one vertex in W .
For each edge [ui, wj] ∈ E is given a number Pij ≥ 0 called the connection weight of [ui , wj].
The goal of the matching problem in bipartite graphs is to find a matching of G with the
minimum total sum of weights. Several problems, such as pattern recognition in
computational vision, processes involving signal transmission, design of thin film circuits
and schedule of operation processes, can be modeled as a matching problem in bipartite
graphs.

 Recurrent Neural Networks

234

• The vector p ∈ ℜn represents the solution set of an optimization problem consisted of n
nodes (neurons). Thus, the elements belonging to p have integer elements defined by:

 pi ∈ {1,...,n} where i ∈ {1..n} (12)

The vector p can be represented by a vector v, composed of ones and zeros, which
represents the output of the network. In the notation using Kronecher products (Graham,
1981), we have:
• δ is a matrix (δ ∈ ℜnxn) defined by:

⎩
⎨
⎧

≠
=

ji
ji

ij if 0,
 = if ,1

δ (13)

δ(k) ∈ ℜn is a column vector corresponding to k-th column of δ.
• v(p) is an n.m dimensional vector representing the form of the final network output

vector v, which corresponds to the problem solution denoted by p. The vector v(p) is
defined by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(

)(
)(

)(2

1

np

p
p

δ

δ
δ

�
pv (14)

• vec(U) is a function which maps the mxn matrix U to the n.m-element vector v. This
function is defined by:

 v = vec(U) = [U11 U21...Um1 U12 U22...Um2 U1n U2n ...Umn]T (15)

• V(p) is an nxn dimensional matrix defined by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T
n

T

T

p

p

p

)(

)(

)(

)(2

1

δ

δ

δ

�
pV (16)

where [V(p)]ij = [δ(pi)]j .
• P⊗Q denotes the Kronecher product of two matrices. If P is an nxn matrix, and Q is an

mxm matrix, then (P⊗Q) is an (n.m)x(n.m) matrix given by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

QQQ

QQQ
QQQ

QP

nnnn

n

n

PPP

PP
PPP

P

21

22221

11211

…
���
…
…

 (17)

• w⊗h denotes the Kronecher product of two vectors. If w is an n-element vector and h an
m-element vector, then (w⊗h) is an n.m-element vector given by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

235

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

h

h
h

hw

.

.

.

2

1

nw

w
w

 (18)

The properties of the Kronecher products (Graham, 1981) utilized are:

 (λw⊗γh) = λγ(w⊗h) (19)

 (w⊗h)T(x⊗g) = (wTx)(hTg) (20)

 (P⊗Q)(w⊗h) = (Pw⊗Qh) (21)

 (P⊗Q)(E⊗F) = (PE⊗QF) (22)

 vec(Q.V.PT) = (P⊗Q).vec(V) (23)

• on and On are respectively the n-element vector and the nxn matrix of ones, that is:

 }{1.. , for 1][
1][

nji
ij

i
∈

⎪⎭

⎪
⎬
⎫

=
=

O
o

 (24)

• Rn is an nxn projection matrix (i.e., Rn.Rn = Rn) defined by:

 nnn
n
OIR 1

−= (25)

The sum of the elements of each row of a matrix is transformed to zero by post-
multiplication with Rn, while pre-multiplication by Rn has the effect of setting the sum of the
elements of each column to zero.

3.2 Formulation of combinatorial optimization problems
The combinatorial optimization problem considered in this chapter is the matching problem
in bipartite graphs. However, several other types of combinatorial optimization problems,
such as the salesman and N-queens problems, can be also solved by the proposed neural
approach.
A graph G is a pair G = (V,E), where V is a finite set of 2n nodes or vertices and E has as
elements subsets of V of cardinality two called edges (Papadimitriou & Steiglitz, 1982). A
matching M of a graph G = (V,E) is a subset of the edges with the property that no two
edges of M share the same node. The graph G = (V,E) is called bipartite if the set of vertices
V can be partitioned into two sets of n nodes, U and W, and each edge in E has one vertex in
U and one vertex in W .
For each edge [ui, wj] ∈ E is given a number Pij ≥ 0 called the connection weight of [ui , wj].
The goal of the matching problem in bipartite graphs is to find a matching of G with the
minimum total sum of weights. Several problems, such as pattern recognition in
computational vision, processes involving signal transmission, design of thin film circuits
and schedule of operation processes, can be modeled as a matching problem in bipartite
graphs.

 Recurrent Neural Networks

236

As an example, for a bipartite graph with four nodes (2n = 4) represented in Fig. 2, the sets
V, E, U, W and the matrix P are given by:

 V = {u1, u2, w1, w2} (26)

 E = {[u1,w1], [u1,w2], [u2,w1], [u2,w2]} (27)

 U = {u1, u2} (28)

 W = {w1, w2} (29)

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

5.33.1
8.09.2

2221

1211
PP
PP

P (30)

In this case, the minimum bipartite graph represented by the matching M will be chosen
either by the subset M1 = {[u1,w1], [u2,w2]} or M2 = {[u1,w2], [u2,w1]}. As the sum of the edges
of M2 is lower than that of M1, then the subset M2 corresponds to minimum bipartite graph,
i. e., M = M2.

Fig. 2. Bipartite graph composed by four nodes.
In order to represent the association between nodes of U and W belonging to matching M,
we have used the vector p ∈ ℜn, where the element pi ∈ {1,…,n} represents the edge linking
the i-th node of U to respective node of W, which is given by the own value of pi . Using the
definitions presented in subsection 3.1, for the matching problem illustrated in Fig. 2 the
values of p, v(p) and V(p) representing the solution given by M are defined by:

 T]12[=p (31)

 T

pp TT

]01 10[)(
)()(21 δδ

=pv (32)

 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

01
10

)(
)()(

2

1
T

T

p
p

δ
δpV (33)

WU

u1

u2

w1

w2

2.9

3.5

1.3

0.8

Recurrent Neural Approach for Solving Several Types of Optimization Problems

237

The equations of Tconf and iconf are developed to force the validity of the structural
constraints. These constraints mean that each edge in E has just one activated node in U and
one activated node in W. Using the matrix V(p) to represent the structural constraints, we
have:

[V(p)]ij ∈ {1,0}

 ∑
=

=
n

j
ij

1

1)]([pV (34)

In this case, a valid subspace for the matching problem in bipartite graphs can be
represented by the following relationship:

Iconf = V =
n
1 on.on

T
 (35)

It is now necessary to guarantee that the sum of the elements of each line of the matrix V
takes value equal to 1. This procedure is represented in the modified Hopfield network by
the projection matrix Tconf, i.e., the multiplication of Tconf by V should also guarantee these
constraints. Using the properties of the matrix Rn, we have:

 V.Rn = Tconf.V (36)

 In.V.Rn = Tconf.V (37)

Using (35) and (37) in equation of the valid subspace (V = Tconf.V + Iconf),

V = In.V.Rn +
n
1 on.on

T
 (38)

Applying operator vec(.) given by (23) in (38),

vec(V) = vec(In.V.Rn) +
n
1 vec(on.1.on

T
)

 vec(V) = (In ⊗ Rn).vec(V) +
n
1 (on ⊗ on) (39)

Changing vec(V) by v in equation (39), we have:

 v(t+1) = (In ⊗ Rn).v(t) +
n
1 (on ⊗ on) (40)

Thus, comparing (40) and (8) the parameters Tconf and iconf are given by:

 Tconf = (In ⊗ Rn) (41)

 iconf =
n
1 (on ⊗ on) (42)

 Recurrent Neural Networks

236

As an example, for a bipartite graph with four nodes (2n = 4) represented in Fig. 2, the sets
V, E, U, W and the matrix P are given by:

 V = {u1, u2, w1, w2} (26)

 E = {[u1,w1], [u1,w2], [u2,w1], [u2,w2]} (27)

 U = {u1, u2} (28)

 W = {w1, w2} (29)

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

5.33.1
8.09.2

2221

1211
PP
PP

P (30)

In this case, the minimum bipartite graph represented by the matching M will be chosen
either by the subset M1 = {[u1,w1], [u2,w2]} or M2 = {[u1,w2], [u2,w1]}. As the sum of the edges
of M2 is lower than that of M1, then the subset M2 corresponds to minimum bipartite graph,
i. e., M = M2.

Fig. 2. Bipartite graph composed by four nodes.
In order to represent the association between nodes of U and W belonging to matching M,
we have used the vector p ∈ ℜn, where the element pi ∈ {1,…,n} represents the edge linking
the i-th node of U to respective node of W, which is given by the own value of pi . Using the
definitions presented in subsection 3.1, for the matching problem illustrated in Fig. 2 the
values of p, v(p) and V(p) representing the solution given by M are defined by:

 T]12[=p (31)

 T

pp TT

]01 10[)(
)()(21 δδ

=pv (32)

 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

01
10

)(
)()(

2

1
T

T

p
p

δ
δpV (33)

WU

u1

u2

w1

w2

2.9

3.5

1.3

0.8

Recurrent Neural Approach for Solving Several Types of Optimization Problems

237

The equations of Tconf and iconf are developed to force the validity of the structural
constraints. These constraints mean that each edge in E has just one activated node in U and
one activated node in W. Using the matrix V(p) to represent the structural constraints, we
have:

[V(p)]ij ∈ {1,0}

 ∑
=

=
n

j
ij

1

1)]([pV (34)

In this case, a valid subspace for the matching problem in bipartite graphs can be
represented by the following relationship:

Iconf = V =
n
1 on.on

T
 (35)

It is now necessary to guarantee that the sum of the elements of each line of the matrix V
takes value equal to 1. This procedure is represented in the modified Hopfield network by
the projection matrix Tconf, i.e., the multiplication of Tconf by V should also guarantee these
constraints. Using the properties of the matrix Rn, we have:

 V.Rn = Tconf.V (36)

 In.V.Rn = Tconf.V (37)

Using (35) and (37) in equation of the valid subspace (V = Tconf.V + Iconf),

V = In.V.Rn +
n
1 on.on

T
 (38)

Applying operator vec(.) given by (23) in (38),

vec(V) = vec(In.V.Rn) +
n
1 vec(on.1.on

T
)

 vec(V) = (In ⊗ Rn).vec(V) +
n
1 (on ⊗ on) (39)

Changing vec(V) by v in equation (39), we have:

 v(t+1) = (In ⊗ Rn).v(t) +
n
1 (on ⊗ on) (40)

Thus, comparing (40) and (8) the parameters Tconf and iconf are given by:

 Tconf = (In ⊗ Rn) (41)

 iconf =
n
1 (on ⊗ on) (42)

 Recurrent Neural Networks

238

Equations (41) and (42) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and
Tconf.iconf = 0. In relation to example illustrated in Fig. 2 the matrix Tconf and the vector iconf are
respectively given by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

5.0 5.00 0
5.05.0 0 0

0 0 5.0 5.0
0 0 5.05.0

confT (43)

 Tconf]5.05.05.05.0[=i (44)

The energy function Eop of the modified Hopfield network for the matching problem in
bipartite graphs is projected in order to find a solution corresponding to the minimum total
sum ξ(p) referent to the values Pij associated with each edges of M, which is defined by:

 Eop = ξ(p) = trace(V(p)T.P) (45)

In this case, when Eop is minimized, the optimal solution corresponds to the minimum
energy state of the network. The parameters Top and iop are then obtained from the
corresponding cost constraint given by above equation. Using the properties of Kronecher
product in (45), we have:

 Eop = vec(V(p)T).vec(P) = v(p)T.vec(P) (46)

Comparing (46) and (7), the parameters Top and iop are given by:

 Top = 0 (47)

 iop = –vec(P) (48)

Using the definition of vec(.) provided in (15), the vector iop in relation to example illustrated
in Fig. 2 is given by:

 Tconf]5.38.03.19.2[−−−−=i (49)

To illustrate the performance of the proposed neural network, some simulation results
involving the matching problem in bipartite graphs are presented in Section 4.

3.3 Formulation of dynamic programming problems
A typical dynamic programming problem can be modeled as a set of source and destination
nodes with n intermediate stages, m states in each stage, and metric data dxi,(x+1)j, where x is
the index of the stages, and i and j are the indices of the states in each stage (Hillier &
Lieberman, 1980). The goal of the dynamic programming problem considered in this chapter
is to find a valid path which starts at the source node, visits one and only one state node in
each stage, reaches the destination node, and has a minimum total length (cost) among all
possible paths.
The equations of Tconf and iconf are developed to force the validity of the structural
constraints. These constraints, for dynamic programming problems, mean that one and only
one state in each stage can be actived. Thus, the matrix V(p) is defined by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

239

[V(p)]ij ∈ {1,0}

 ∑
=

=
m

j
ij

1

1)]([pV (50)

A valid subspace (V=Tval.V + Iconf) for the dynamic programming problem can be
represented by:

Iconf = V =
m
1 on.om

T
 (51)

Equation (51) guarantees that the sum of the elements of each line of the matrix V takes
values equal to 1. Therefore, the term Tconf.V must also guarantee that the sum of the
elements of each line of the matrix V takes value equal to zero. Using the properties of the
matrix Rn, we have:

V.Rm = Tconf.V

 In.V.Rm = Tconf.V (52)

Using (51) and (52) in equation of the valid subspace (V = Tconf .V + Iconf),

V = In.V.Rm +
m
1 on.om

T
 (53)

Applying operator vec(.) given by (23) in (53),

vec(V) = vec(In.V.Rm) +
m
1 vec(on.1.om

T
)

 vec(V) = (In ⊗ Rm).vec(V) +
m
1 (on ⊗ om) (54)

Changing vec(V) by v in equation (54), we have:

 v(t+1) = (In ⊗ Rm).v(t) +
m
1 (on ⊗ om) (55)

Thus, comparing (55) and (8) the parameters Tconf and iconf are given by:

 Tconf = (In ⊗ Rm) (56)

 Iconf =
m
1 (on ⊗ om) (57)

Equations (56) and (57) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and
Tconf.iconf = 0.
The energy function Eop of the modified Hopfield network for the dynamic programming
problem, which is defined in (58), is projected to find a minimum path among all possible
paths. In this equation, the first term defines the weight (metric cost) of the connection

 Recurrent Neural Networks

238

Equations (41) and (42) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and
Tconf.iconf = 0. In relation to example illustrated in Fig. 2 the matrix Tconf and the vector iconf are
respectively given by:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

5.0 5.00 0
5.05.0 0 0

0 0 5.0 5.0
0 0 5.05.0

confT (43)

 Tconf]5.05.05.05.0[=i (44)

The energy function Eop of the modified Hopfield network for the matching problem in
bipartite graphs is projected in order to find a solution corresponding to the minimum total
sum ξ(p) referent to the values Pij associated with each edges of M, which is defined by:

 Eop = ξ(p) = trace(V(p)T.P) (45)

In this case, when Eop is minimized, the optimal solution corresponds to the minimum
energy state of the network. The parameters Top and iop are then obtained from the
corresponding cost constraint given by above equation. Using the properties of Kronecher
product in (45), we have:

 Eop = vec(V(p)T).vec(P) = v(p)T.vec(P) (46)

Comparing (46) and (7), the parameters Top and iop are given by:

 Top = 0 (47)

 iop = –vec(P) (48)

Using the definition of vec(.) provided in (15), the vector iop in relation to example illustrated
in Fig. 2 is given by:

 Tconf]5.38.03.19.2[−−−−=i (49)

To illustrate the performance of the proposed neural network, some simulation results
involving the matching problem in bipartite graphs are presented in Section 4.

3.3 Formulation of dynamic programming problems
A typical dynamic programming problem can be modeled as a set of source and destination
nodes with n intermediate stages, m states in each stage, and metric data dxi,(x+1)j, where x is
the index of the stages, and i and j are the indices of the states in each stage (Hillier &
Lieberman, 1980). The goal of the dynamic programming problem considered in this chapter
is to find a valid path which starts at the source node, visits one and only one state node in
each stage, reaches the destination node, and has a minimum total length (cost) among all
possible paths.
The equations of Tconf and iconf are developed to force the validity of the structural
constraints. These constraints, for dynamic programming problems, mean that one and only
one state in each stage can be actived. Thus, the matrix V(p) is defined by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

239

[V(p)]ij ∈ {1,0}

 ∑
=

=
m

j
ij

1

1)]([pV (50)

A valid subspace (V=Tval.V + Iconf) for the dynamic programming problem can be
represented by:

Iconf = V =
m
1 on.om

T
 (51)

Equation (51) guarantees that the sum of the elements of each line of the matrix V takes
values equal to 1. Therefore, the term Tconf.V must also guarantee that the sum of the
elements of each line of the matrix V takes value equal to zero. Using the properties of the
matrix Rn, we have:

V.Rm = Tconf.V

 In.V.Rm = Tconf.V (52)

Using (51) and (52) in equation of the valid subspace (V = Tconf .V + Iconf),

V = In.V.Rm +
m
1 on.om

T
 (53)

Applying operator vec(.) given by (23) in (53),

vec(V) = vec(In.V.Rm) +
m
1 vec(on.1.om

T
)

 vec(V) = (In ⊗ Rm).vec(V) +
m
1 (on ⊗ om) (54)

Changing vec(V) by v in equation (54), we have:

 v(t+1) = (In ⊗ Rm).v(t) +
m
1 (on ⊗ om) (55)

Thus, comparing (55) and (8) the parameters Tconf and iconf are given by:

 Tconf = (In ⊗ Rm) (56)

 Iconf =
m
1 (on ⊗ om) (57)

Equations (56) and (57) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and
Tconf.iconf = 0.
The energy function Eop of the modified Hopfield network for the dynamic programming
problem, which is defined in (58), is projected to find a minimum path among all possible
paths. In this equation, the first term defines the weight (metric cost) of the connection

 Recurrent Neural Networks

240

linking the i-th neuron of stage x to the j-th neuron of the following stage (x+1). The second
term defines the weight of the connection linking the i-th neuron of stage x to the j-th neuron
of previous stage (x–1). The third term provides the weight of the connection linking the
source node to all others nodes of the first stage, while the fourth term provides the weight
of the connection linking the destination to all other nodes of the last stage. When Eop is
minimized, the optimal solution corresponds to the minimum energy state of the network.

]..[+

]....[
4
1

n

n=x 1 Term .4
,

1

1=x 1 Term .3
,

2 1 1 Term .2

)1(,)1(

1

1 1 1 Term .1

)1()1(,

∑∑∑∑

∑∑∑∑∑∑

==

= = =
−−

−

= = =
++

+

++=

m

i th
xindestinatioxi

m

i rd
xixisource

n

x

m

i

m

j nd

jxxixijx

n

x

m

i

m

j st

jxxijxxi
op

vdvd

vvdvvdE

�� ��� ���������

��� ���� ����� ���� ��
 (58)

Therefore, optimization of Eop corresponds to minimizing each term given by (58) in relation
to vxi. From (58), the matrix Top and vector iop can be given by:

⎪⎩

⎪
⎨

⎧

+=

=
−=

−+ yxyxxy

yjxiyjxi
xyyjxipq

op d

)1()1(

,,
,

][
2
1][

].[][][
δδQ

P
QPT (59)

]d

 0000 dd [

,ndestinatio2,ndestinatio1,

2)-.(

source,1msource,1211,

��������� ���������� �� …

�����
…������ ������� �� …

m
ndestinationmnn

nmm
source

op

dd

d−=i

 (60)

where: Top ∈ℜnmxnm; iop ∈ ℜn.m; p = m.(x – 1) + i; q = m.(y –1) + j; x, y ∈ {2..n – 1}; i, j ∈ {1..m}.
In the next subsection, the formulation of nonlinear optimization problems by the modified
Hopfield network is presented.

3.4 Formulation of nonlinear optimization problems
Consider the following general nonlinear optimization problem, with m-constraints and n-
variables, given by the following equations:

 Minimize: Eop(v) = f(v) (61)

 subject to: Econf(v): hi(v) ≤ 0 , i ∈ {1..m} (62)

 zmin ≤ v ≤ zmax (63)

where v , zmin, zmax ∈ ℜn; f(v) and hi(v) are continuous, and all first and second order partial
derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax define the
bounds on the variables belonging to the vector v. The conditions in (62) and (63) define a
bounded polyhedron. The vector v must remain within this polyhedron if it is to represent a
valid solution for the optimization problem (61). A solution can be obtained by a modified
Hopfield network, whose valid subspace guarantees the satisfaction of condition (62).
Moreover, the initial hypercube represented by the inequality constraints in (63) is directly

Recurrent Neural Approach for Solving Several Types of Optimization Problems

241

defined by the ‘symmetric ramp’ function given in (9), which is used as neural activation
function, i.e. v ∈ [zmin , zmax].
The parameters Tconf and iconf are calculated by transforming the inequality constraints in (62)
into equality constraints by introducing a slack variable w ∈ ℜn for each inequality
constraint:

 0.)(
1

=+∑
=

j

m

j
iji wh δv (64)

where wj are slack variables, treated as the variables vi , and δij is defined by the Kronecker
impulse function:

⎩
⎨
⎧

≠
=

ji
ji

ij if ,0
= if ,1

δ (65)

After this transformation, the problem defined by equations (61), (62) and (63) can be
rewritten as:

 Minimize: Eop(v+) = f(v+) (66)

 subject to: Econf(v): hi(v+) ≤ 0 , i ∈ {1..m} (67)

 max
ii

min
i zvz ≤≤ + , i ∈ {1..n} (68)

 max
ii zv ≤≤ +0 , i ∈ {n+1..N} (69)

where N = n + m, and v+ = [vT wT]T ∈ ℜN is a vector of extended variables. Note that Eop
does not depend on the slack variables w. Also an equality constraint of the form hi(.) = 0 is
incorporated in the above optimization problem by transforming into two inequalities, i.e.,
hi(.) ≤ 0 and hi(.) ≥ 0.
The projection matrix Tconf belonging to the valid-subspace equation given in (8) is obtained
from the projection of v+, which is obtained after a minimization step of Eop(v+), onto the
tangent subspace of the surface bounded by constraints given by (67). In Luenberger (1984),
it has been shown that a projection matrix to the system defined in (67) is given by:

 Tconf = I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+) (70)
where:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∇

∇

∇

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∇

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

T

T

T

N

mmm

N

N

v
h

v
h

v
h

v
h

v
h

v
h

v
h

v
h

v
h

)(

)(

)(

)()()(

)()()(

)()()(

)(2

1

21

2

2

2

1

2

1

2

1

1

1

vh

vh

vh

vvv

vvv

vvv

vh

m∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 (71)

 Recurrent Neural Networks

240

linking the i-th neuron of stage x to the j-th neuron of the following stage (x+1). The second
term defines the weight of the connection linking the i-th neuron of stage x to the j-th neuron
of previous stage (x–1). The third term provides the weight of the connection linking the
source node to all others nodes of the first stage, while the fourth term provides the weight
of the connection linking the destination to all other nodes of the last stage. When Eop is
minimized, the optimal solution corresponds to the minimum energy state of the network.

]..[+

]....[
4
1

n

n=x 1 Term .4
,

1

1=x 1 Term .3
,

2 1 1 Term .2

)1(,)1(

1

1 1 1 Term .1

)1()1(,

∑∑∑∑

∑∑∑∑∑∑

==

= = =
−−

−

= = =
++

+

++=

m

i th
xindestinatioxi

m

i rd
xixisource

n

x

m

i

m

j nd

jxxixijx

n

x

m

i

m

j st

jxxijxxi
op

vdvd

vvdvvdE

�� ��� ���������

��� ���� ����� ���� ��
 (58)

Therefore, optimization of Eop corresponds to minimizing each term given by (58) in relation
to vxi. From (58), the matrix Top and vector iop can be given by:

⎪⎩

⎪
⎨

⎧

+=

=
−=

−+ yxyxxy

yjxiyjxi
xyyjxipq

op d

)1()1(

,,
,

][
2
1][

].[][][
δδQ

P
QPT (59)

]d

 0000 dd [

,ndestinatio2,ndestinatio1,

2)-.(

source,1msource,1211,

��������� ���������� �� …

�����
…������ ������� �� …

m
ndestinationmnn

nmm
source

op

dd

d−=i

 (60)

where: Top ∈ℜnmxnm; iop ∈ ℜn.m; p = m.(x – 1) + i; q = m.(y –1) + j; x, y ∈ {2..n – 1}; i, j ∈ {1..m}.
In the next subsection, the formulation of nonlinear optimization problems by the modified
Hopfield network is presented.

3.4 Formulation of nonlinear optimization problems
Consider the following general nonlinear optimization problem, with m-constraints and n-
variables, given by the following equations:

 Minimize: Eop(v) = f(v) (61)

 subject to: Econf(v): hi(v) ≤ 0 , i ∈ {1..m} (62)

 zmin ≤ v ≤ zmax (63)

where v , zmin, zmax ∈ ℜn; f(v) and hi(v) are continuous, and all first and second order partial
derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax define the
bounds on the variables belonging to the vector v. The conditions in (62) and (63) define a
bounded polyhedron. The vector v must remain within this polyhedron if it is to represent a
valid solution for the optimization problem (61). A solution can be obtained by a modified
Hopfield network, whose valid subspace guarantees the satisfaction of condition (62).
Moreover, the initial hypercube represented by the inequality constraints in (63) is directly

Recurrent Neural Approach for Solving Several Types of Optimization Problems

241

defined by the ‘symmetric ramp’ function given in (9), which is used as neural activation
function, i.e. v ∈ [zmin , zmax].
The parameters Tconf and iconf are calculated by transforming the inequality constraints in (62)
into equality constraints by introducing a slack variable w ∈ ℜn for each inequality
constraint:

 0.)(
1

=+∑
=

j

m

j
iji wh δv (64)

where wj are slack variables, treated as the variables vi , and δij is defined by the Kronecker
impulse function:

⎩
⎨
⎧

≠
=

ji
ji

ij if ,0
= if ,1

δ (65)

After this transformation, the problem defined by equations (61), (62) and (63) can be
rewritten as:

 Minimize: Eop(v+) = f(v+) (66)

 subject to: Econf(v): hi(v+) ≤ 0 , i ∈ {1..m} (67)

 max
ii

min
i zvz ≤≤ + , i ∈ {1..n} (68)

 max
ii zv ≤≤ +0 , i ∈ {n+1..N} (69)

where N = n + m, and v+ = [vT wT]T ∈ ℜN is a vector of extended variables. Note that Eop
does not depend on the slack variables w. Also an equality constraint of the form hi(.) = 0 is
incorporated in the above optimization problem by transforming into two inequalities, i.e.,
hi(.) ≤ 0 and hi(.) ≥ 0.
The projection matrix Tconf belonging to the valid-subspace equation given in (8) is obtained
from the projection of v+, which is obtained after a minimization step of Eop(v+), onto the
tangent subspace of the surface bounded by constraints given by (67). In Luenberger (1984),
it has been shown that a projection matrix to the system defined in (67) is given by:

 Tconf = I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+) (70)
where:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∇

∇

∇

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∇

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

T

T

T

N

mmm

N

N

v
h

v
h

v
h

v
h

v
h

v
h

v
h

v
h

v
h

)(

)(

)(

)()()(

)()()(

)()()(

)(2

1

21

2

2

2

1

2

1

2

1

1

1

vh

vh

vh

vvv

vvv

vvv

vh

m∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 (71)

 Recurrent Neural Networks

242

Inserting the value of (70) in the expression of the valid subspace in (8), we have:

 v+ ← [I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+)]. v+ + iconf (72)

Results of the Lyapunov stability theory (Vidyasagar, 1993) should be used in (72) to
guarantee the stability of the nonlinear system, and consequently, to force the network
convergence to equilibrium points that represent a feasible solution to the nonlinear system.
By the definition of the Jacobean, when v leads to equilibrium point implicates in ve = 0. In
this case, the value of iconf should also be null to satisfy the equilibrium condition, i. e., ve =
v(t) = v(t + 1) = 0. Thus, h(v+) given in equation (72) can be approximated as follows:

 h(v+) ≈ h(ve) + J.(v+ – ve) (73)

where J = ∇h(v+) and h(v+) = [h1(v+) h2(v+) ... hm(v+)]T.
In the proximity of the equilibrium point ve = 0, we obtain the following equation related to
the parameters v+ and h(v+):

 0=+

+

→+ v
vh

vv

)(lim
e

 (74)

Finally, introducing the results derived from (73) and (74) in equation given by (72), we
obtain:

 v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.h(v+) (75)

Therefore, equation (75) synthesizes the valid-subspace expression for treating systems of
nonlinear equations. In this case, for nonlinear optimization problems the original valid-
subspace equation given in (8), which is represented by step ((I)) in Fig. 1, should be
substituted by equation (75). Thus, according to Fig. 1, successive applications of the step
((I)) followed by the step ((II)) make v+ convergent to a point that satisfies all constraints
imposed to the nonlinear optimization problem.
The parameters Top and iop associated to the energy function Eop, which is given by (7) and
represented in (66), should be defined so that the optimal solution corresponds to the
minimization of Eop. This procedure can be implemented by updating the vector v+ in the
opposite gradient direction that of the energy function Eop. Since conditions (66)-(69) define a
bounded polyhedron, the objective function (66) has always a minimum. Thus, the
equilibrium points of the network can be calculated by assuming the following values to Top
and iop:

T

N

op

v
f

v
f

v
f

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= +

+

+

+

+

+

∂

∂

∂

∂

∂

∂)(

)(

)(

21

vvv
i (76)

 Top = 0 (77)

According to mentioned previously, the vector v+ is composed by both vectors v and w, i. e.,
v+ = [vT wT]T, then the vector iop given in (76) can be also represented by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

243

T

mn

op
w

f
w

f
w

f
v

f
v

f
v

f
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

++++++

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂)(

)(

)(

)(

)(

)(

2121

vvvvvv
i �� (78)

As the optimization process of the cost function does not depend on the slack variables w,
equation (76) can then be replaced by the following one:

T

m
n

n

op
v

f
v

f
v

f

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=
+++

 0 0 0 0
)(

)(

)(

components-

components-
21

������� …
����� ������ ��

�
∂

∂
∂

∂
∂

∂ vvv
i (79)

To illustrate the performance of the proposed neural network, some simulation results
involving nonlinear optimizations problems are presented in the next section.

4. Simulation results
In this section, some simulation results are presented to illustrate the application of the
neural network approach developed in the previous sections for solving combinatorial
optimization problems, dynamic programming problems and nonlinear optimization
problems.

4.1 Combinatorial optimization problems
The modified Hopfield network has been used in the solution of the matching problem
proposed in Papadimitriou & Steiglitz (1982), with matrix P given by:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

84748
22497
81383
55969
49127

P

A graphical representation of this problem is illustrated in Fig. 3(a). The parameters Tconf and
iconf to be used in the modified Hopfield network illustrated in Fig. 1 are obtained using
equations given in (41) and (42), while the parameters Top and iop are defined using (47) and
(48). The elements of the vector v of the modified Hopfield network were randomly
generated between 0 and 1.
The modified Hopfield network converged after 50 iterations, which is considered
extremely fast when compared with other neural approaches used in combinatorial
optimization. In comparative terms, the simulation of this problem by the conventional
Hopfield network proposed in Hopfield & Tank (1985), using the same initial values for the
output vector v, reaches the final solution in 317 iterations. The edges set, representing the
optimal solution, is given by {[1,3];[2,5];[3,1];[4,4];[5,2]}. The vectors p and v(p), and the
matrix V(p) representing the obtained solution is provided by:

 Recurrent Neural Networks

242

Inserting the value of (70) in the expression of the valid subspace in (8), we have:

 v+ ← [I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+)]. v+ + iconf (72)

Results of the Lyapunov stability theory (Vidyasagar, 1993) should be used in (72) to
guarantee the stability of the nonlinear system, and consequently, to force the network
convergence to equilibrium points that represent a feasible solution to the nonlinear system.
By the definition of the Jacobean, when v leads to equilibrium point implicates in ve = 0. In
this case, the value of iconf should also be null to satisfy the equilibrium condition, i. e., ve =
v(t) = v(t + 1) = 0. Thus, h(v+) given in equation (72) can be approximated as follows:

 h(v+) ≈ h(ve) + J.(v+ – ve) (73)

where J = ∇h(v+) and h(v+) = [h1(v+) h2(v+) ... hm(v+)]T.
In the proximity of the equilibrium point ve = 0, we obtain the following equation related to
the parameters v+ and h(v+):

 0=+

+

→+ v
vh

vv

)(lim
e

 (74)

Finally, introducing the results derived from (73) and (74) in equation given by (72), we
obtain:

 v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.h(v+) (75)

Therefore, equation (75) synthesizes the valid-subspace expression for treating systems of
nonlinear equations. In this case, for nonlinear optimization problems the original valid-
subspace equation given in (8), which is represented by step ((I)) in Fig. 1, should be
substituted by equation (75). Thus, according to Fig. 1, successive applications of the step
((I)) followed by the step ((II)) make v+ convergent to a point that satisfies all constraints
imposed to the nonlinear optimization problem.
The parameters Top and iop associated to the energy function Eop, which is given by (7) and
represented in (66), should be defined so that the optimal solution corresponds to the
minimization of Eop. This procedure can be implemented by updating the vector v+ in the
opposite gradient direction that of the energy function Eop. Since conditions (66)-(69) define a
bounded polyhedron, the objective function (66) has always a minimum. Thus, the
equilibrium points of the network can be calculated by assuming the following values to Top
and iop:

T

N

op

v
f

v
f

v
f

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= +

+

+

+

+

+

∂

∂

∂

∂

∂

∂)(

)(

)(

21

vvv
i (76)

 Top = 0 (77)

According to mentioned previously, the vector v+ is composed by both vectors v and w, i. e.,
v+ = [vT wT]T, then the vector iop given in (76) can be also represented by:

Recurrent Neural Approach for Solving Several Types of Optimization Problems

243

T

mn

op
w

f
w

f
w

f
v

f
v

f
v

f
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

++++++

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂)(

)(

)(

)(

)(

)(

2121

vvvvvv
i �� (78)

As the optimization process of the cost function does not depend on the slack variables w,
equation (76) can then be replaced by the following one:

T

m
n

n

op
v

f
v

f
v

f

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=
+++

 0 0 0 0
)(

)(

)(

components-

components-
21

������� …
����� ������ ��

�
∂

∂
∂

∂
∂

∂ vvv
i (79)

To illustrate the performance of the proposed neural network, some simulation results
involving nonlinear optimizations problems are presented in the next section.

4. Simulation results
In this section, some simulation results are presented to illustrate the application of the
neural network approach developed in the previous sections for solving combinatorial
optimization problems, dynamic programming problems and nonlinear optimization
problems.

4.1 Combinatorial optimization problems
The modified Hopfield network has been used in the solution of the matching problem
proposed in Papadimitriou & Steiglitz (1982), with matrix P given by:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

84748
22497
81383
55969
49127

P

A graphical representation of this problem is illustrated in Fig. 3(a). The parameters Tconf and
iconf to be used in the modified Hopfield network illustrated in Fig. 1 are obtained using
equations given in (41) and (42), while the parameters Top and iop are defined using (47) and
(48). The elements of the vector v of the modified Hopfield network were randomly
generated between 0 and 1.
The modified Hopfield network converged after 50 iterations, which is considered
extremely fast when compared with other neural approaches used in combinatorial
optimization. In comparative terms, the simulation of this problem by the conventional
Hopfield network proposed in Hopfield & Tank (1985), using the same initial values for the
output vector v, reaches the final solution in 317 iterations. The edges set, representing the
optimal solution, is given by {[1,3];[2,5];[3,1];[4,4];[5,2]}. The vectors p and v(p), and the
matrix V(p) representing the obtained solution is provided by:

 Recurrent Neural Networks

244

p = [3 5 1 4 2]T

T

ppppp TTTTT

]0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0[)(
)()()()()(54321 δδδδδ

=pv

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00010
01000
00001
10000
00100

)(pV

Figure 3(b) illustrates the minimum bipartite graph representing the final solution obtained
by the modified Hopfield network. Figure 4 shows the evolution of the matrix V during the
convergence process of the network. The minimization of the energy term Eop guarantees the
minimum total sum among all edges (Eop = 15), where the value of Δt used in (11) were
assumed as 0.01.

Fig. 3. Bipartite graph composed by ten nodes (a) and minimum bipartite graph (b).

4.2 Dynamic programming problems
The first dynamic programming problem to be solved by the modified Hopfield network is
illustrated in Fig. 5, which is composed by three intermediate stages (n = 3) and two states in
each stage (m = 2). The values of the weights dxi,(x+1)j , which link the ith neuron of stage x to
the jth neuron of the following stage (x+1), are also indicated in Fig. 5. The goal is to find the
minimum path (from all possible paths), which starts at the source node and reaches the
destination node, passing by only one state node in each stage.

 u1

u2

u3

u4

u5

w1

w2

w3

w4

w5

P11

 P12 P21

(a)

 u1

u2

u3

u4

u5

w1

w2

w3

w4

w5

1

3

 5

2

4

(b)

Recurrent Neural Approach for Solving Several Types of Optimization Problems

245

1 2 3 4 5 1
2

3
4

50

0 .2

0.4

0.6

0 .8

1

V

w u

initial values

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 10

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 20

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 30

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 40

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 50

Fig. 4. Evolution of the matrix V for bipartite graph problem.

Fig. 5. The dynamic programming problem (m = 3 and n =2)
For this example the total number of possible paths is equal to 8, which is obtained by mn.
The optimal solution is given by the shaded states, i.e., state 2 in stage 1, state 1 in stage 2,
and state 2 in stage 3. The modified Hopfield network applied in this problem always
converges after three iterations. The vectors p and v(p), and the matrix V(p) representing the
obtained solution are as follows:

p = [2 1 2]T

v(p)T = [0 1 1 0 0 1]T

1

2

1

2

1

2

Source Destination

6 3

2 4

12

10
7

2

3

6

5

4

Stage 1 Stage 2 Stage 3

 Recurrent Neural Networks

244

p = [3 5 1 4 2]T

T

ppppp TTTTT

]0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0[)(
)()()()()(54321 δδδδδ

=pv

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00010
01000
00001
10000
00100

)(pV

Figure 3(b) illustrates the minimum bipartite graph representing the final solution obtained
by the modified Hopfield network. Figure 4 shows the evolution of the matrix V during the
convergence process of the network. The minimization of the energy term Eop guarantees the
minimum total sum among all edges (Eop = 15), where the value of Δt used in (11) were
assumed as 0.01.

Fig. 3. Bipartite graph composed by ten nodes (a) and minimum bipartite graph (b).

4.2 Dynamic programming problems
The first dynamic programming problem to be solved by the modified Hopfield network is
illustrated in Fig. 5, which is composed by three intermediate stages (n = 3) and two states in
each stage (m = 2). The values of the weights dxi,(x+1)j , which link the ith neuron of stage x to
the jth neuron of the following stage (x+1), are also indicated in Fig. 5. The goal is to find the
minimum path (from all possible paths), which starts at the source node and reaches the
destination node, passing by only one state node in each stage.

 u1

u2

u3

u4

u5

w1

w2

w3

w4

w5

P11

 P12 P21

(a)

 u1

u2

u3

u4

u5

w1

w2

w3

w4

w5

1

3

 5

2

4

(b)

Recurrent Neural Approach for Solving Several Types of Optimization Problems

245

1 2 3 4 5 1
2

3
4

50

0 .2

0.4

0.6

0 .8

1

V

w u

initial values

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 10

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 20

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 30

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 40

1 2 3 4 5 1
2

3
4

50

0,2

0,4

0,6

0,8

1

V

w u

iteration 50

Fig. 4. Evolution of the matrix V for bipartite graph problem.

Fig. 5. The dynamic programming problem (m = 3 and n =2)
For this example the total number of possible paths is equal to 8, which is obtained by mn.
The optimal solution is given by the shaded states, i.e., state 2 in stage 1, state 1 in stage 2,
and state 2 in stage 3. The modified Hopfield network applied in this problem always
converges after three iterations. The vectors p and v(p), and the matrix V(p) representing the
obtained solution are as follows:

p = [2 1 2]T

v(p)T = [0 1 1 0 0 1]T

1

2

1

2

1

2

Source Destination

6 3

2 4

12

10
7

2

3

6

5

4

Stage 1 Stage 2 Stage 3

 Recurrent Neural Networks

246

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10
01
10

)(pV

The minimization of the energy term Eop guarantees that the solution obtained represents the
minimum path (Eop = 21) from all possible paths.
To illustrate that the proposed network can be used efficiently, various dynamic
programming problems were simulated and the results compared with those obtained by
the network proposed by Chiu et al. (1991). In this example, the number of stages and
number of states has been increased step by step. The number of stages and number of
states in each stage for the simulated examples were established by values belonging to the
integer set defined by {2, 4, 8, 16, 32, 64}. The goal was to find a valid path, which starts at
the source node, visits one and only node in each stage, and reaches the destination node,
with the minimum possible total length. For such purposes, we have simulated both
networks using the same initial values for the output vectors v, which were randomly
generated between 0 and 1 for all instances treated in this comparison.
The weights of the connection dxi,(x+1)j linking nodes (states) of the network were randomly
selected from the integer set {1, 3, 5, 7, 9}. For those instances with n and m less than 32, each
example was simulated twenty times using random initial conditions. Examples with n and
m greater than or equal to 32 were simulated ten times.
The performance analysis for both networks was done using the average normalized path
length (D), which is given by:

)1.(+

=
nn
SD

s

c (80)

where Sc is the sum of the selected paths after network convergence; ns is the number of
simulations; n is the number of stages.
The simulation results are shown in Table 1. In this table, the DMHN and DCN columns
provide, respectively, the results of the average normalized path length for the modified
Hopfield network and the one proposed by Chiu et al. (1991). This table shows that the
modified Hopfield network presented better results with a shorter normalized path length.
For checking the results obtained by the modified Hopfield network, simulations using
conventional dynamic programming were also carried out using the same instances
described in Table 1. In all analyzed instances, the values reached to the objective functions
were practically identical in both approaches. However, the conventional method obtains
the final solutions more rapidly than the modified Hopfield network. On the other hand, the
implementation of dynamic programming problem to specialist systems in a neural network
environment can be more easily made by using the modified Hopfield network. For all
problems treated in this subsection, the values of Δt used in (11) were assumed as 0.01.
The adverse facts that can influence on the performance of the network proposed by Chiu et
al. (1991) and explain their less accurate results are the following: i) optimization and
constraint terms involved in problem mapping are treated in a single stage, ii) interference
between optimization and constraint terms affects the precision of the equilibrium points,
and iii) the convergence process of the network depend on the correct adjustment of the
weighting constants associated with the energy terms. However, the modified Hopfield

Recurrent Neural Approach for Solving Several Types of Optimization Problems

247

network presented here treats these terms in different stages. The terms Tconf and iconf
(belonging to Econf) of the modified Hopfield network were developed to force the validity of
the structural constraints associated with the dynamic programming problem, and the terms
Top and iop were projected to find a minimum path among all possible paths.

Number of stages (n) Number of states (m) DMHN DCN
2 2 3.13 3.25
4 4 2.03 3.12
8 8 1.34 2.00
16 16 1.06 1.85
32 32 1.03 1.61
64 64 1.02 1.39
16 2 3.14 3.21
16 4 1.79 2.98
16 8 1.26 1.85
16 32 1.13 1.79
2 16 1.17 1.53
4 16 1.02 1.60
8 16 1.09 1.76

Table 1. Simulation results (dynamic programming).

Thus, the main advantages of using a modified Hopfield network to solve dynamic
programming problems are i) consideration of optimization and constraint terms in distinct
stages with no interference with each other, ii) use of the unique energy term (Econf) to group
all constraints imposed on the problem, and iii) lack of need for adjustment of weighting
constants for initialization. In all examples, the network output vector v was initialized with
small random values defined between 0 and 1. It should be noticed that the increase in the
number of states and stages does not degrade the performance of the network, but rather
shows its efficiency.

4.3 Nonlinear optimization problems
In this subsection, we provide three examples to illustrate the effectiveness of the proposed
architecture to solve nonlinear optimizations problems.
Example 1. Consider the following constrained optimization problem proposed in Bazaraa
& Shetty (1979) in page 491, which is composed by inequality constraints and bounded
variables:

 0
 20
 40
 10

 255

 156 :to subject

2624=)(Min

3

2

1

3
2
2

3
1

32
4
1

3
2
1

32
2
21

2
1

2

1

≥
≤≤
≤≤

≤−+

≤+−

≤++

+−+++

v
v
v

vvv

vvv

vv

vvvvvf
v

v

e

ev

 Recurrent Neural Networks

246

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10
01
10

)(pV

The minimization of the energy term Eop guarantees that the solution obtained represents the
minimum path (Eop = 21) from all possible paths.
To illustrate that the proposed network can be used efficiently, various dynamic
programming problems were simulated and the results compared with those obtained by
the network proposed by Chiu et al. (1991). In this example, the number of stages and
number of states has been increased step by step. The number of stages and number of
states in each stage for the simulated examples were established by values belonging to the
integer set defined by {2, 4, 8, 16, 32, 64}. The goal was to find a valid path, which starts at
the source node, visits one and only node in each stage, and reaches the destination node,
with the minimum possible total length. For such purposes, we have simulated both
networks using the same initial values for the output vectors v, which were randomly
generated between 0 and 1 for all instances treated in this comparison.
The weights of the connection dxi,(x+1)j linking nodes (states) of the network were randomly
selected from the integer set {1, 3, 5, 7, 9}. For those instances with n and m less than 32, each
example was simulated twenty times using random initial conditions. Examples with n and
m greater than or equal to 32 were simulated ten times.
The performance analysis for both networks was done using the average normalized path
length (D), which is given by:

)1.(+

=
nn
SD

s

c (80)

where Sc is the sum of the selected paths after network convergence; ns is the number of
simulations; n is the number of stages.
The simulation results are shown in Table 1. In this table, the DMHN and DCN columns
provide, respectively, the results of the average normalized path length for the modified
Hopfield network and the one proposed by Chiu et al. (1991). This table shows that the
modified Hopfield network presented better results with a shorter normalized path length.
For checking the results obtained by the modified Hopfield network, simulations using
conventional dynamic programming were also carried out using the same instances
described in Table 1. In all analyzed instances, the values reached to the objective functions
were practically identical in both approaches. However, the conventional method obtains
the final solutions more rapidly than the modified Hopfield network. On the other hand, the
implementation of dynamic programming problem to specialist systems in a neural network
environment can be more easily made by using the modified Hopfield network. For all
problems treated in this subsection, the values of Δt used in (11) were assumed as 0.01.
The adverse facts that can influence on the performance of the network proposed by Chiu et
al. (1991) and explain their less accurate results are the following: i) optimization and
constraint terms involved in problem mapping are treated in a single stage, ii) interference
between optimization and constraint terms affects the precision of the equilibrium points,
and iii) the convergence process of the network depend on the correct adjustment of the
weighting constants associated with the energy terms. However, the modified Hopfield

Recurrent Neural Approach for Solving Several Types of Optimization Problems

247

network presented here treats these terms in different stages. The terms Tconf and iconf
(belonging to Econf) of the modified Hopfield network were developed to force the validity of
the structural constraints associated with the dynamic programming problem, and the terms
Top and iop were projected to find a minimum path among all possible paths.

Number of stages (n) Number of states (m) DMHN DCN
2 2 3.13 3.25
4 4 2.03 3.12
8 8 1.34 2.00
16 16 1.06 1.85
32 32 1.03 1.61
64 64 1.02 1.39
16 2 3.14 3.21
16 4 1.79 2.98
16 8 1.26 1.85
16 32 1.13 1.79
2 16 1.17 1.53
4 16 1.02 1.60
8 16 1.09 1.76

Table 1. Simulation results (dynamic programming).

Thus, the main advantages of using a modified Hopfield network to solve dynamic
programming problems are i) consideration of optimization and constraint terms in distinct
stages with no interference with each other, ii) use of the unique energy term (Econf) to group
all constraints imposed on the problem, and iii) lack of need for adjustment of weighting
constants for initialization. In all examples, the network output vector v was initialized with
small random values defined between 0 and 1. It should be noticed that the increase in the
number of states and stages does not degrade the performance of the network, but rather
shows its efficiency.

4.3 Nonlinear optimization problems
In this subsection, we provide three examples to illustrate the effectiveness of the proposed
architecture to solve nonlinear optimizations problems.
Example 1. Consider the following constrained optimization problem proposed in Bazaraa
& Shetty (1979) in page 491, which is composed by inequality constraints and bounded
variables:

 0
 20
 40
 10

 255

 156 :to subject

2624=)(Min

3

2

1

3
2
2

3
1

32
4
1

3
2
1

32
2
21

2
1

2

1

≥
≤≤
≤≤

≤−+

≤+−

≤++

+−+++

v
v
v

vvv

vvv

vv

vvvvvf
v

v

e

ev

 Recurrent Neural Networks

248

This problem has a unique optimal solution v* = [0.0 1.5 0.0]T, and the minimal value of
f(v*) at this point is equal to –3.5. Using a value of Δt = 0.01 in (11), which is corresponding
to step ((III)) in Fig. 2, the solution vector (equilibrium point) obtained by the modified
Hopfield network is given by v = [0.0002 1.5001 0.0000]T, with E(v) = f(v) = –3.499.
However, if we assume the value Δt = 0.0001 the network reaches the optimal solution v*.
Figure 6 shows the trajectories of the modified Hopfield network starting from v0 = [2.33
0.31 0.16]T and converging towards the equilibrium point.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

v2

v1

v3

iteration

ou
tp

ut
 v

ec
to

r

Fig. 6. Transient behavior of the modified Hopfield network in example 1.
To observe the global convergent behavior of the proposed network, we generated 15 initial
points randomly distributed between 0 and 5. The bound constraints represented by the last
three equations are directly mapped through the piecewise activation function defined in
(9). All simulation results obtained by the modified Hopfield network show that the
proposed architecture converges to v*. The trajectories of the objective function starting
from several initial points are illustrated in Fig. 7. All trajectories lead towards the same
theoretical minimal value provided by f(v*) = –3.5 when assumed Δt = 0.0001. These results
show the efficiency of the modified Hopfield network for solving constrained nonlinear
optimization problems.
A comparison using the SQP (Sequential Quadratic Programming) method and the
modified Hopfield network was also done for this example. Both methods have found the
same final solution. The SQP method reached the final solution in 35 iterations, whereas the
modified Hopfield network needed 1587 iterations. However, convergence time to reach the
final solution has not been directly proportional to number of iterations. For this example,
using a microcomputer Pentium IV, the SQP method and the modified Hopfield network
obtained the final solution in 3.65 and 5.86 seconds, respectively. This fact can be explained
with respect to simplicity associated with the convergence process used by the modified
Hopfield network, which consists of only three main steps as shown in Fig. 1. As well, as
observed with the dynamic programming problems, the modified Hopfield network is an
alternative method for solving constrained optimization problems and has the advantage of
offering simplicity of implementation both in analogue hardware making use of operational
amplifiers and in digital hardware by using digital signal processors.

Recurrent Neural Approach for Solving Several Types of Optimization Problems

249

0 250 500 750 1000 1250 1500 1750 2000 2250
-4

-2

0

2

4

6

8

iteration

ob
je

ct
iv

e
fu

nc
tio

n

Fig. 7. Evolution of the objective function for 15 initial points in example 1.

To provide a more consistent analysis in relation to the efficiency of the proposed
architecture, we make in the next example a comparison between the results produced by
the modified Hopfield network with those provided by the network developed in Xia et al.
(2002), and also by the topology presented in Kennedy & Chua (1988).
Example 2. Consider the following constrained optimization problem proposed in Xia et al.
(2002), which is composed by inequality constraints:

V

evvvf vv

∈

+−+ +

v

v

 :to subject

)2(=)(Min 213
21

3
1

where }1|{ 2
2

2
1

2 ≤+ℜ∈= vvV v . This problem has a unique optimal solution given by v* =
[–0.5159 0.8566]T with f(v*) = –9.8075. All simulation results provided by the modified
Hopfield network show that it is convergent to v*.
In Table 2, the results obtained by the modified Hopfield network using Δt = 0.0001 are
compared with those provided by the projection neural network proposed in Xia et al.
(2002), and also those given by the nonlinear circuit network developed in Kennedy & Chua
(1988). Six different initial points were chosen, where two points {(1, 0); (0, -1)} are located in
V and four {(-2, -2); (2, -2); (2, 2); (-2, 2)} are not in V. The results obtained by the modified
Hopfield network are very close to the exact solution. The mean error between the solutions
obtained by the network and the exact solution is less than 0.02%. We can verify that all
solutions produced by the modified Hopfield network are quite stable.
According to Table 2 the nonlinear circuit network proposed in Kennedy & Chua (1988) can
apparently approach v* in only two cases. This was also observed in simulations performed
in Xia et al. (2002). The projection neural network developed in Xia et al. (2002) produces
solutions for all cases presented in Table 1, and we can observe that the final solutions
depend on their initial values. It is also shown in table 1 that the modified Hopfield

 Recurrent Neural Networks

248

This problem has a unique optimal solution v* = [0.0 1.5 0.0]T, and the minimal value of
f(v*) at this point is equal to –3.5. Using a value of Δt = 0.01 in (11), which is corresponding
to step ((III)) in Fig. 2, the solution vector (equilibrium point) obtained by the modified
Hopfield network is given by v = [0.0002 1.5001 0.0000]T, with E(v) = f(v) = –3.499.
However, if we assume the value Δt = 0.0001 the network reaches the optimal solution v*.
Figure 6 shows the trajectories of the modified Hopfield network starting from v0 = [2.33
0.31 0.16]T and converging towards the equilibrium point.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

v2

v1

v3

iteration

ou
tp

ut
 v

ec
to

r

Fig. 6. Transient behavior of the modified Hopfield network in example 1.
To observe the global convergent behavior of the proposed network, we generated 15 initial
points randomly distributed between 0 and 5. The bound constraints represented by the last
three equations are directly mapped through the piecewise activation function defined in
(9). All simulation results obtained by the modified Hopfield network show that the
proposed architecture converges to v*. The trajectories of the objective function starting
from several initial points are illustrated in Fig. 7. All trajectories lead towards the same
theoretical minimal value provided by f(v*) = –3.5 when assumed Δt = 0.0001. These results
show the efficiency of the modified Hopfield network for solving constrained nonlinear
optimization problems.
A comparison using the SQP (Sequential Quadratic Programming) method and the
modified Hopfield network was also done for this example. Both methods have found the
same final solution. The SQP method reached the final solution in 35 iterations, whereas the
modified Hopfield network needed 1587 iterations. However, convergence time to reach the
final solution has not been directly proportional to number of iterations. For this example,
using a microcomputer Pentium IV, the SQP method and the modified Hopfield network
obtained the final solution in 3.65 and 5.86 seconds, respectively. This fact can be explained
with respect to simplicity associated with the convergence process used by the modified
Hopfield network, which consists of only three main steps as shown in Fig. 1. As well, as
observed with the dynamic programming problems, the modified Hopfield network is an
alternative method for solving constrained optimization problems and has the advantage of
offering simplicity of implementation both in analogue hardware making use of operational
amplifiers and in digital hardware by using digital signal processors.

Recurrent Neural Approach for Solving Several Types of Optimization Problems

249

0 250 500 750 1000 1250 1500 1750 2000 2250
-4

-2

0

2

4

6

8

iteration

ob
je

ct
iv

e
fu

nc
tio

n

Fig. 7. Evolution of the objective function for 15 initial points in example 1.

To provide a more consistent analysis in relation to the efficiency of the proposed
architecture, we make in the next example a comparison between the results produced by
the modified Hopfield network with those provided by the network developed in Xia et al.
(2002), and also by the topology presented in Kennedy & Chua (1988).
Example 2. Consider the following constrained optimization problem proposed in Xia et al.
(2002), which is composed by inequality constraints:

V

evvvf vv

∈

+−+ +

v

v

 :to subject

)2(=)(Min 213
21

3
1

where }1|{ 2
2

2
1

2 ≤+ℜ∈= vvV v . This problem has a unique optimal solution given by v* =
[–0.5159 0.8566]T with f(v*) = –9.8075. All simulation results provided by the modified
Hopfield network show that it is convergent to v*.
In Table 2, the results obtained by the modified Hopfield network using Δt = 0.0001 are
compared with those provided by the projection neural network proposed in Xia et al.
(2002), and also those given by the nonlinear circuit network developed in Kennedy & Chua
(1988). Six different initial points were chosen, where two points {(1, 0); (0, -1)} are located in
V and four {(-2, -2); (2, -2); (2, 2); (-2, 2)} are not in V. The results obtained by the modified
Hopfield network are very close to the exact solution. The mean error between the solutions
obtained by the network and the exact solution is less than 0.02%. We can verify that all
solutions produced by the modified Hopfield network are quite stable.
According to Table 2 the nonlinear circuit network proposed in Kennedy & Chua (1988) can
apparently approach v* in only two cases. This was also observed in simulations performed
in Xia et al. (2002). The projection neural network developed in Xia et al. (2002) produces
solutions for all cases presented in Table 1, and we can observe that the final solutions
depend on their initial values. It is also shown in table 1 that the modified Hopfield

 Recurrent Neural Networks

250

network, independently of the initial values of v, has converged to the same final values for
all simulations. To illustrate the global convergent behavior of the modified Hopfield
network, Fig. 8 shows the trajectories of v starting from several initial points.

Initial Vector Modified Hopfield
Network

Projection Neural
Network

Nonlinear Circuit
Network

v(0) = [2 2]T v = [-0.5160 0.8566]T v = [-0.5160 0.8566]T v = [-0.5195 0.8641]T

v(0) = [-2 2]T v = [-0.5160 0.8566]T v = [-0.5160 0.8566]T v = [-0.5196 0.8641]T

v(0) = [-2 -2]T v = [-0.5160 0.8566]T v = [-0.5161 0.8564]T ∝
v(0) = [2 -2]T v = [-0.5160 0.8566]T v = [-0.5162 0.8563]T ∝
v(0) = [1 0]T v = [-0.5160 0.8566]T v = [-0.5162 0.8564]T ∝
v(0) = [0 -1]T v = [-0.5160 0.8566]T v = [-0.5161 0.8564]T ∝

Table 2. Comparison of the simulation results in example 2.

 50 100 150 200 250 300 350 400
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v1

v2

iteration
Fig. 8. Trajectories of the modified Hopfield network for 20 initial points in example 2.

It is important to observe that all trajectories starting from the inside or outside of the
feasible region V converge to v*. Thus, the proposed approach always converges to the
optimal solution, independently whether the chosen initial point is located in the feasible
region or not. Therefore, we can conclude that the modified Hopfield network is of high
robustness.
A comparison using the SQP method and the modified Hopfield network was also made for
this example. The SQP method has reached the exact solution for all simulations. Table 3
shows the number of iterations and convergence time used in each approach to reach the
final solution for different initial values of the output vector v. From this table, although the
method SQP obtains the final solution in less iteration, it is verified that convergence time of
the modified Hopfield network is close to that required by the SQP method, where for v(0) =
[-2 2]T and v(0) = [1 0]T the network converged more rapidly.

Recurrent Neural Approach for Solving Several Types of Optimization Problems

251

Modified Hopfield Network SQP Method
Initial Vector

Iterations Convergence
time Iterations Convergence time

v(0) = [2 2]T 278 3.86 34 3.72
v(0) = [-2 2]T 316 2.83 24 2.87
v(0) = [-2 -2]T 297 3.19 24 2.81
v(0) = [2 -2]T 303 5.03 42 4.41
v(0) = [1 0]T 359 2.94 25 3.16
v(0) = [0 -1]T 311 4.76 39 4.15

Table 3. Comparison between SQP method and modified Hopfield network in example 2.

Example 3. Consider the following constrained optimization problem proposed in Bazaraa
& Shetty (1979) in page 418, which is composed by inequality and equality constraints:

0 , ,
22

4 :to subject

22=)(Min

321

32
2
1

2
32

2
1

33
2
2

3
1

≥
≤+−

=++

+⋅+

vvv
vvv

vvv

vvvvf v

The optimal solution for this problem is given by v* = [0.0 4.0 0.0]T, where the minimal
value of f(v*) at this point is equal to zero. Figure 9 shows the trajectories of the network
variables starting from the initial point v0 = [1.67 1.18 3.37]T. All simulation results obtained
by the modified Hopfield network using Δt = 0.001 show that the proposed architecture is
globally convergent to v*.

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

v1

v2

v3

 iteration

 o
ut

pu
t v

ec
to

r

Fig. 9. Transient behavior of the modified Hopfield network in example 3.

 Recurrent Neural Networks

250

network, independently of the initial values of v, has converged to the same final values for
all simulations. To illustrate the global convergent behavior of the modified Hopfield
network, Fig. 8 shows the trajectories of v starting from several initial points.

Initial Vector Modified Hopfield
Network

Projection Neural
Network

Nonlinear Circuit
Network

v(0) = [2 2]T v = [-0.5160 0.8566]T v = [-0.5160 0.8566]T v = [-0.5195 0.8641]T

v(0) = [-2 2]T v = [-0.5160 0.8566]T v = [-0.5160 0.8566]T v = [-0.5196 0.8641]T

v(0) = [-2 -2]T v = [-0.5160 0.8566]T v = [-0.5161 0.8564]T ∝
v(0) = [2 -2]T v = [-0.5160 0.8566]T v = [-0.5162 0.8563]T ∝
v(0) = [1 0]T v = [-0.5160 0.8566]T v = [-0.5162 0.8564]T ∝
v(0) = [0 -1]T v = [-0.5160 0.8566]T v = [-0.5161 0.8564]T ∝

Table 2. Comparison of the simulation results in example 2.

 50 100 150 200 250 300 350 400
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

v1

v2

iteration
Fig. 8. Trajectories of the modified Hopfield network for 20 initial points in example 2.

It is important to observe that all trajectories starting from the inside or outside of the
feasible region V converge to v*. Thus, the proposed approach always converges to the
optimal solution, independently whether the chosen initial point is located in the feasible
region or not. Therefore, we can conclude that the modified Hopfield network is of high
robustness.
A comparison using the SQP method and the modified Hopfield network was also made for
this example. The SQP method has reached the exact solution for all simulations. Table 3
shows the number of iterations and convergence time used in each approach to reach the
final solution for different initial values of the output vector v. From this table, although the
method SQP obtains the final solution in less iteration, it is verified that convergence time of
the modified Hopfield network is close to that required by the SQP method, where for v(0) =
[-2 2]T and v(0) = [1 0]T the network converged more rapidly.

Recurrent Neural Approach for Solving Several Types of Optimization Problems

251

Modified Hopfield Network SQP Method
Initial Vector

Iterations Convergence
time Iterations Convergence time

v(0) = [2 2]T 278 3.86 34 3.72
v(0) = [-2 2]T 316 2.83 24 2.87
v(0) = [-2 -2]T 297 3.19 24 2.81
v(0) = [2 -2]T 303 5.03 42 4.41
v(0) = [1 0]T 359 2.94 25 3.16
v(0) = [0 -1]T 311 4.76 39 4.15

Table 3. Comparison between SQP method and modified Hopfield network in example 2.

Example 3. Consider the following constrained optimization problem proposed in Bazaraa
& Shetty (1979) in page 418, which is composed by inequality and equality constraints:

0 , ,
22

4 :to subject

22=)(Min

321

32
2
1

2
32

2
1

33
2
2

3
1

≥
≤+−

=++

+⋅+

vvv
vvv

vvv

vvvvf v

The optimal solution for this problem is given by v* = [0.0 4.0 0.0]T, where the minimal
value of f(v*) at this point is equal to zero. Figure 9 shows the trajectories of the network
variables starting from the initial point v0 = [1.67 1.18 3.37]T. All simulation results obtained
by the modified Hopfield network using Δt = 0.001 show that the proposed architecture is
globally convergent to v*.

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

v1

v2

v3

 iteration

 o
ut

pu
t v

ec
to

r

Fig. 9. Transient behavior of the modified Hopfield network in example 3.

 Recurrent Neural Networks

252

The network has also been evaluated for different values of initial conditions. The
trajectories of the objective function starting from several initial points are illustrated in Fig.
10. All trajectories lead toward the same equilibrium point. These results show the ability
and efficiency of the modified Hopfield network for solving constrained nonlinear
optimization when equality and inequality constraints are simultaneously included in the
problem.
In comparison with results obtained by using the multilayer perceptron network proposed
in Bazaraa & Shetty (1979), and starting from the same initial points, it was observed that the
modified Hopfield Network not only converges more quickly, but also results in higher
accuracy.

0 150 300 450 600 750 900 1050 1200

0

2

4

6

8

10

12

 iteration

 o
bj

ec
tiv

e
fu

nc
tio

n

Fig. 10. Evolution of the objective function for 15 initial points in example 3.

In relation to the SQP method, the obtained solution was the same found by the modified
Hopfield network. For this example, the SQP method reached the final solution using 30
iterations (3.66 seconds), whereas the modified Hopfield network needed 768 iterations (3.48
seconds). So, for this example, the modified Hopfield network has converged in less time
than the SQP method.

5. Conclusions
This chapter presents an approach for solving optimization problems using artificial neural
networks. More specifically, a modified Hopfield network is developed and its internal
parameters are computed using the valid-subspace technique.
The developed approach allows to solve several classes of optimization problems through a
unique neural network architecture. The optimization problems treated in this chapter are
the combinatorial optimization problems, dynamic programming problems and nonlinear
optimization problems. An energy function Eop was designed to conduct the network output

Recurrent Neural Approach for Solving Several Types of Optimization Problems

253

to the equilibrium points corresponding to a cost constraint. All structural constraints
associated with the optimization problems can be grouped in Econf.
The simulation results demonstrate that the network is an alternative method to specialist
algorithms and has the advantage of being implementable in a neural network environment,
which can be mapped in hardware for engineering applications. The internal parameters of
the network were explicitly computed using the valid-subspace technique that guarantees
the network convergence. All simulation results show that the proposed network is
completely stable and convergent to the solutions of the optimization problems considered
in this chapter. The network has also been evaluated for different values of initial
conditions. All trajectories lead toward the same equilibrium point.

6. References
Aiyer, S. V. B.; Niranjan, M. & Fallside, F. (1990). A Theoretical investigation into the

performance of the Hopfield network. IEEE Transactions on Neural Networks, Vol.1,
204-215.

Bazaraa, M. S. & Shetty, C. M. (1979). Nonlinear Programming – Theory and Algorithms, Wiley,
New York.

Chiu, C.; Maa, C. Y. & Shanblatt, M. S. (1991). Energy function analysis of dynamic
programming neural networks. IEEE Transactions on Neural Networks, Vol. 2, 418-
426.

Dillon, J. D. & O’Malley, M. J. (2002). A Lagrangian augmented Hopfield network for mixed
integer non-linear programming problems. Neurocomputing, Vol. 42, 323-330.

Fiacco, A. V. & McCormick, G. P. (1968). Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York.

Graham, A. (1981). Kronecher Products and Matrix Calculus, Ellis Horwood Ltd., Chichester,
UK.

Haykin, S. (1999). Neural Networks – A Comprehensive Foundation, Prentice-Hall Inc., Upper
Saddle River, New Jersey.

Hillier, F. S. & Lieberman, G. J. (1980). Introduction to Operations Research, Holden Day, San
Francisco, California.

Hopfield, J. J. & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biological Cybernetics, Vol. 52, 141-152.

Hopfield, J. J. (1984). Neurons with a graded response have collective computational
properties like those of two-state neurons. Proc. of the National Academy of Science,
Vol. 81, 3088-3092.

Kakeya, H. & Okabe, Y. (2000). Fast combinatorial optimization with parallel digital
computers. IEEE Transactions on Neural Networks, Vol. 11, 1323-1331.

Kennedy, M. P. & Chua, L. O. (1988). Neural networks for nonlinear programming. IEEE
Transactions on Circuits and Systems, Vol. 35, 554-562.

Luenberger, D. G. (1984). Linear and Nonlinear Programming, Addison-Wesley, Reading, MA.
Papadimitriou, C. H. & Steiglitz, K. (1982). Combinatorial Optimization - Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

 Recurrent Neural Networks

252

The network has also been evaluated for different values of initial conditions. The
trajectories of the objective function starting from several initial points are illustrated in Fig.
10. All trajectories lead toward the same equilibrium point. These results show the ability
and efficiency of the modified Hopfield network for solving constrained nonlinear
optimization when equality and inequality constraints are simultaneously included in the
problem.
In comparison with results obtained by using the multilayer perceptron network proposed
in Bazaraa & Shetty (1979), and starting from the same initial points, it was observed that the
modified Hopfield Network not only converges more quickly, but also results in higher
accuracy.

0 150 300 450 600 750 900 1050 1200

0

2

4

6

8

10

12

 iteration

 o
bj

ec
tiv

e
fu

nc
tio

n

Fig. 10. Evolution of the objective function for 15 initial points in example 3.

In relation to the SQP method, the obtained solution was the same found by the modified
Hopfield network. For this example, the SQP method reached the final solution using 30
iterations (3.66 seconds), whereas the modified Hopfield network needed 768 iterations (3.48
seconds). So, for this example, the modified Hopfield network has converged in less time
than the SQP method.

5. Conclusions
This chapter presents an approach for solving optimization problems using artificial neural
networks. More specifically, a modified Hopfield network is developed and its internal
parameters are computed using the valid-subspace technique.
The developed approach allows to solve several classes of optimization problems through a
unique neural network architecture. The optimization problems treated in this chapter are
the combinatorial optimization problems, dynamic programming problems and nonlinear
optimization problems. An energy function Eop was designed to conduct the network output

Recurrent Neural Approach for Solving Several Types of Optimization Problems

253

to the equilibrium points corresponding to a cost constraint. All structural constraints
associated with the optimization problems can be grouped in Econf.
The simulation results demonstrate that the network is an alternative method to specialist
algorithms and has the advantage of being implementable in a neural network environment,
which can be mapped in hardware for engineering applications. The internal parameters of
the network were explicitly computed using the valid-subspace technique that guarantees
the network convergence. All simulation results show that the proposed network is
completely stable and convergent to the solutions of the optimization problems considered
in this chapter. The network has also been evaluated for different values of initial
conditions. All trajectories lead toward the same equilibrium point.

6. References
Aiyer, S. V. B.; Niranjan, M. & Fallside, F. (1990). A Theoretical investigation into the

performance of the Hopfield network. IEEE Transactions on Neural Networks, Vol.1,
204-215.

Bazaraa, M. S. & Shetty, C. M. (1979). Nonlinear Programming – Theory and Algorithms, Wiley,
New York.

Chiu, C.; Maa, C. Y. & Shanblatt, M. S. (1991). Energy function analysis of dynamic
programming neural networks. IEEE Transactions on Neural Networks, Vol. 2, 418-
426.

Dillon, J. D. & O’Malley, M. J. (2002). A Lagrangian augmented Hopfield network for mixed
integer non-linear programming problems. Neurocomputing, Vol. 42, 323-330.

Fiacco, A. V. & McCormick, G. P. (1968). Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York.

Graham, A. (1981). Kronecher Products and Matrix Calculus, Ellis Horwood Ltd., Chichester,
UK.

Haykin, S. (1999). Neural Networks – A Comprehensive Foundation, Prentice-Hall Inc., Upper
Saddle River, New Jersey.

Hillier, F. S. & Lieberman, G. J. (1980). Introduction to Operations Research, Holden Day, San
Francisco, California.

Hopfield, J. J. & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biological Cybernetics, Vol. 52, 141-152.

Hopfield, J. J. (1984). Neurons with a graded response have collective computational
properties like those of two-state neurons. Proc. of the National Academy of Science,
Vol. 81, 3088-3092.

Kakeya, H. & Okabe, Y. (2000). Fast combinatorial optimization with parallel digital
computers. IEEE Transactions on Neural Networks, Vol. 11, 1323-1331.

Kennedy, M. P. & Chua, L. O. (1988). Neural networks for nonlinear programming. IEEE
Transactions on Circuits and Systems, Vol. 35, 554-562.

Luenberger, D. G. (1984). Linear and Nonlinear Programming, Addison-Wesley, Reading, MA.
Papadimitriou, C. H. & Steiglitz, K. (1982). Combinatorial Optimization - Algorithms and

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

 Recurrent Neural Networks

254

Silva, I. N.; Arruda, L. V. R. & Amaral, W. C. (1997). Robust estimation of parametric
membership regions using artificial neural networks. International Journal of Systems
Science, Vol. 28, 447-455.

Vidyasagar, M. (1993). Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.
Xia, Y.; Leung, H. & Wang, J. (2002). A projection neural network and its application to

constrained optimization problems. IEEE Trans. on Circuits and Systems, Vol. 49,
447-458.

12

Applications of Recurrent Neural Networks to
Optimization Problems

Alaeddin Malek
Department of Applied Mathematics,
Tarbiat Modares University, Tehran,

Iran

1. Introduction
The work in this chapter presents some applications of recurrent neural networks to general
optimization problems. While particular problems presented in this research relates to
linear, quadratic and nonlinear programming, monotone variational inequalities and
complementarity problems, I fell that the methodology by which one solves these problems
are quite general and warrants attention in and of themselves. Correspondingly, I hope that
this material will be taken as both a response to a particular problem and a general method.
Constrained optimization problems are defined as the mathematical representation of real
world problems concerned with the determination of a minimum or a maximum of a
function of several variables, which are required to satisfy a number of constraints. Such
function optimization are sought in diverse fields, including mechanical, electrical and
industrial engineering, operational research, management sciences, computer sciences,
system analysis, economics, medical sciences, manufacturing, social and public planning
and image processing.
Although many classical optimization algorithms such as simplex, Karmarkar interior point,
direct and indirect techniques are given to solve linear, quadratic and nonlinear
optimization problems, in many applications, it is desire to have real-time on-line solutions
of corresponding optimization problems. However, traditional optimization algorithms are
not suitable for real-time on-line implementation on the computer. The dynamical system
approach is one of the promising approaches that can handle these difficulties.
In the recent years many artificial neural networks models developed to solve optimization
problems. Several basic and advance questions associated with these models have
motivated the studies presented in this chapter.
The goal of this chapter is twofold. The theoretical areas of interest include fundamental
methods, models and algorithms for solving general optimization problems using artificial
recurrent neural networks. On the other hand, it will try to present and discuss the
numerical analysis for the corresponding models, simulations and applications of recurrent
neural networks that solve various practical optimization problems.
Recurrent dynamical neural network is an area of neural networks which is one of the
fundamental topics of the subject, and combines many mathematical concepts like ordinary
and partial differential equations, dynamical systems, unconstrained and constrained

 Recurrent Neural Networks

254

Silva, I. N.; Arruda, L. V. R. & Amaral, W. C. (1997). Robust estimation of parametric
membership regions using artificial neural networks. International Journal of Systems
Science, Vol. 28, 447-455.

Vidyasagar, M. (1993). Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.
Xia, Y.; Leung, H. & Wang, J. (2002). A projection neural network and its application to

constrained optimization problems. IEEE Trans. on Circuits and Systems, Vol. 49,
447-458.

12

Applications of Recurrent Neural Networks to
Optimization Problems

Alaeddin Malek
Department of Applied Mathematics,
Tarbiat Modares University, Tehran,

Iran

1. Introduction
The work in this chapter presents some applications of recurrent neural networks to general
optimization problems. While particular problems presented in this research relates to
linear, quadratic and nonlinear programming, monotone variational inequalities and
complementarity problems, I fell that the methodology by which one solves these problems
are quite general and warrants attention in and of themselves. Correspondingly, I hope that
this material will be taken as both a response to a particular problem and a general method.
Constrained optimization problems are defined as the mathematical representation of real
world problems concerned with the determination of a minimum or a maximum of a
function of several variables, which are required to satisfy a number of constraints. Such
function optimization are sought in diverse fields, including mechanical, electrical and
industrial engineering, operational research, management sciences, computer sciences,
system analysis, economics, medical sciences, manufacturing, social and public planning
and image processing.
Although many classical optimization algorithms such as simplex, Karmarkar interior point,
direct and indirect techniques are given to solve linear, quadratic and nonlinear
optimization problems, in many applications, it is desire to have real-time on-line solutions
of corresponding optimization problems. However, traditional optimization algorithms are
not suitable for real-time on-line implementation on the computer. The dynamical system
approach is one of the promising approaches that can handle these difficulties.
In the recent years many artificial neural networks models developed to solve optimization
problems. Several basic and advance questions associated with these models have
motivated the studies presented in this chapter.
The goal of this chapter is twofold. The theoretical areas of interest include fundamental
methods, models and algorithms for solving general optimization problems using artificial
recurrent neural networks. On the other hand, it will try to present and discuss the
numerical analysis for the corresponding models, simulations and applications of recurrent
neural networks that solve various practical optimization problems.
Recurrent dynamical neural network is an area of neural networks which is one of the
fundamental topics of the subject, and combines many mathematical concepts like ordinary
and partial differential equations, dynamical systems, unconstrained and constrained

 Recurrent Neural Networks

256

optimization, local and global optima for a function of several variables, sigmoid functions,
error estimation, integration and gradient descent methods. Students are often familiar with
the local optima of a function with one variable before embarking on an undergraduate
course, and in practical way will have integrals which they can not express in closed
analytical form. Here we must compute the optimal solution for the constrained
optimization problem with objective function of several variables that corresponds with the
solution of a system of ordinary differential equations. From mathematical point of the view
convergence of the solution and stability of the method has quiet importance, while as an
engineer we might look for an algorithm that works for many different problems.
The troublesome problem of just what numerical optimization analysis is arises in recurrent
dynamical neural network, as it does in other branches of the field. Should the optimization
analysis part be the main aim, or is it the generation of an efficient, tested and validated
program which is important? The answer is surely that both areas are important, but at the
end of the day numerical analysis and mathematical techniques are some service industry
and what the customers want is reliable codes to solve their problems. The theoretical
analysis forms part of the reliability assessment, as it determines bounds on errors and
levels of stability. These error bounds form the basis of a theoretical justification for the
solution convergence of the corresponding numerical algorithm to the actual solution of the
original neural network model.
The chapter covers a range of topics from early undergraduate work on constrained linear
and quadratic programming through to recent research on nonlinear constrained
optimization problems and recurrent neural networks. The source of the optimization work
is the lecture notes for graduate students participated in my advance linear programming
and optimization courses. The notes have grown in sixteen years of teaching the subject. The
work on recurrent neural network models is based partly on my own research. It has taken
annual updates as new models have proposed in some of the thesis of my postgraduate
students during the last ten years. This research is enriched by the huge literature which has
grown in the last two decades.
I am grateful to the applied mathematics department here at Tarbiat Modares University
which has made available the technical equipment for the work. The novel models and
numerical programs have been tested, compared and improved using the various
computers which have been installed over the years.
In the next section we study solution methods for general optimization problems under the
assumption that there exists an optimal solution.

2. Optimization problems
In this section, we shall first consider an important class of constrained linear programming
problems and their general dual form. Second, we shall introduce primal and dual form of a
constrained convex quadratic programming problem. Then we will consider the nonlinear
convex programming problems. This, as we shall see, leads to discovering some primal-dual
relationships that exists for corresponding class of constrained optimization problems.
Among the class of constrained optimization problems, an important and richly studied
subclass of problem is that of convex programs.
Definition 1. The problem of maximizing a concave function or minimizing a convex
function over a convex set is known as convex programming.

Applications of Recurrent Neural Networks to Optimization Problems

257

2.1 Constrained linear optimization problems
A problem of the form

 (PLP)

0

TMaximize z c x
Subject to

Ax b
x

=

≥
≥

 (1)

is said to be a primal linear programming problem, where , , ,n n m n mx R c R A R b R×∈ ∈ ∈ ∈ .

Here ()ijA a= is the coefficient matrix of the inequality constraints, 1(,...,)T
mb b b= is the

vector of constants, the components of 1(,...,)nc c c= are called cost factors, 1(,...,)T
nx x x= is

the vector of variables, called the decision variables. Associated with (PLP) is the linear
programming problem (DLP), called the dual of (PLP):

 (DLP)

0

T

T

Minimize v b y
Subject to

A y C
y

=

≤
≥

 (2)

In (DLP) formulation y is the vector of m dual variables. We can define the dual of any
linear problem after writing it in the primal form (PLP), [1].
Remark 1. Primal and dual linear programs (PLP) and (DLP) are convex programs since the
set of feasible solutions to a linear program is a convex set and a linear objective function is
both convex and concave.

2.2 Constrained quadratic optimization problems
We consider a primal quadratic programming problem in

1 ()
2

T TMinimize f x x Ax c x= +

 () 0,subject to g x Dx b= − = 0,x ≥ (3)

Where A is a m m× symmetric positive semidefinite matrix, D is a n m× matrix and rank
(D) = , , , .n mm b R x c R∈ ∈ We define the dual problem (DQP) as follows:

1 ()
2

T TMinimize f x x Ax b y= − +

 () () 0,TSubject to g x D y f x= −∇ ≤ (4)

where () , nf x Ax c y R∇ = + ∈ .

 Recurrent Neural Networks

256

optimization, local and global optima for a function of several variables, sigmoid functions,
error estimation, integration and gradient descent methods. Students are often familiar with
the local optima of a function with one variable before embarking on an undergraduate
course, and in practical way will have integrals which they can not express in closed
analytical form. Here we must compute the optimal solution for the constrained
optimization problem with objective function of several variables that corresponds with the
solution of a system of ordinary differential equations. From mathematical point of the view
convergence of the solution and stability of the method has quiet importance, while as an
engineer we might look for an algorithm that works for many different problems.
The troublesome problem of just what numerical optimization analysis is arises in recurrent
dynamical neural network, as it does in other branches of the field. Should the optimization
analysis part be the main aim, or is it the generation of an efficient, tested and validated
program which is important? The answer is surely that both areas are important, but at the
end of the day numerical analysis and mathematical techniques are some service industry
and what the customers want is reliable codes to solve their problems. The theoretical
analysis forms part of the reliability assessment, as it determines bounds on errors and
levels of stability. These error bounds form the basis of a theoretical justification for the
solution convergence of the corresponding numerical algorithm to the actual solution of the
original neural network model.
The chapter covers a range of topics from early undergraduate work on constrained linear
and quadratic programming through to recent research on nonlinear constrained
optimization problems and recurrent neural networks. The source of the optimization work
is the lecture notes for graduate students participated in my advance linear programming
and optimization courses. The notes have grown in sixteen years of teaching the subject. The
work on recurrent neural network models is based partly on my own research. It has taken
annual updates as new models have proposed in some of the thesis of my postgraduate
students during the last ten years. This research is enriched by the huge literature which has
grown in the last two decades.
I am grateful to the applied mathematics department here at Tarbiat Modares University
which has made available the technical equipment for the work. The novel models and
numerical programs have been tested, compared and improved using the various
computers which have been installed over the years.
In the next section we study solution methods for general optimization problems under the
assumption that there exists an optimal solution.

2. Optimization problems
In this section, we shall first consider an important class of constrained linear programming
problems and their general dual form. Second, we shall introduce primal and dual form of a
constrained convex quadratic programming problem. Then we will consider the nonlinear
convex programming problems. This, as we shall see, leads to discovering some primal-dual
relationships that exists for corresponding class of constrained optimization problems.
Among the class of constrained optimization problems, an important and richly studied
subclass of problem is that of convex programs.
Definition 1. The problem of maximizing a concave function or minimizing a convex
function over a convex set is known as convex programming.

Applications of Recurrent Neural Networks to Optimization Problems

257

2.1 Constrained linear optimization problems
A problem of the form

 (PLP)

0

TMaximize z c x
Subject to

Ax b
x

=

≥
≥

 (1)

is said to be a primal linear programming problem, where , , ,n n m n mx R c R A R b R×∈ ∈ ∈ ∈ .

Here ()ijA a= is the coefficient matrix of the inequality constraints, 1(,...,)T
mb b b= is the

vector of constants, the components of 1(,...,)nc c c= are called cost factors, 1(,...,)T
nx x x= is

the vector of variables, called the decision variables. Associated with (PLP) is the linear
programming problem (DLP), called the dual of (PLP):

 (DLP)

0

T

T

Minimize v b y
Subject to

A y C
y

=

≤
≥

 (2)

In (DLP) formulation y is the vector of m dual variables. We can define the dual of any
linear problem after writing it in the primal form (PLP), [1].
Remark 1. Primal and dual linear programs (PLP) and (DLP) are convex programs since the
set of feasible solutions to a linear program is a convex set and a linear objective function is
both convex and concave.

2.2 Constrained quadratic optimization problems
We consider a primal quadratic programming problem in

1 ()
2

T TMinimize f x x Ax c x= +

 () 0,subject to g x Dx b= − = 0,x ≥ (3)

Where A is a m m× symmetric positive semidefinite matrix, D is a n m× matrix and rank
(D) = , , , .n mm b R x c R∈ ∈ We define the dual problem (DQP) as follows:

1 ()
2

T TMinimize f x x Ax b y= − +

 () () 0,TSubject to g x D y f x= −∇ ≤ (4)

where () , nf x Ax c y R∇ = + ∈ .

 Recurrent Neural Networks

258

Lemma 1. The primal quadratic program (PLP) and its dual (DLP) are convex programs.

This is because the quadratic forms
1
2

T Tx Ax c x+ and
1
2

T Tx Ax b y− + are convex if and

only if A is a positive semidefinite matrix (for example see [2]). Clearly the standard linear
programming problem

0

TMaximize z c x
Subject to

Dx b
x

=

=
≥

 (5)

and its dual

,

T

T

Minimize v b y
Subject to

A y c
y is free in sign

=

≥
 (6)

 are special cases of the (3) and (4) respectively, for which 0 m mA ×= .

2.3 Constrained nonlinear optimization problems
Consider the following nonlinear convex programming problem (NP) with nonlinear
constraints:

 (NP) ()Minimize f x

 Subject to g(x) ≤ 0, x ∈ Ω (7)

where
1(, ,) , : .T n n

nx x x R f R R= ∈ →… 1() ((), , ())mg x g x g x= … is m-dimensional vector-

valued continuous function of n variables. The functions f and 1 , , mg g… assumed to be
convex and twice differentiable for .nRΩ⊆
Definition 2. A vector x is called a feasible solution to (NP) if and only if x satisfies m n+
constraints of the (NP).
Definition 3. Any feasible solution x is said to be a regular point if the gradients of

(), ()i ig x g x∇ for ({ | () 0}),ji I j g x∈ = = are linearly independent.

Definition 4. The (NP) has at least one optimal solution [3] when
i. the set of all feasible solutions is nonempty and bounded,
ii. the feasible set is unbounded but ()f x has a bound level set.

 2.4 Monotone variational inequalities and complementarity problems
The problem of finding a vector point * nx R∈ such that

Applications of Recurrent Neural Networks to Optimization Problems

259

 * ,x S∈ *(),F x〈 * 0x x− 〉 ≥ for all x S∈ (8)

where 1(, ,)T n
nx x x R= ∈… , is called the monotone variational inequality problem [4]. F is

a continuous mapping from nR into itself, and { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥

where m nA R ×∈ , rank (A)= m , r nB R ×∈ , rank(B)= ,r 0 ≤ m , r n≤ , mb R∈ , rc R∈ ,

and S is a nonempty closed convex subset of nR and 〈 . , . 〉 denotes the inner product in
nR . In the special case where nS R+= , problem (8) can be rewritten as the following

nonlinear complementarity problem

 * 0,x ≥ *() 0F x ≥ , * ,x〈 *() 0F x 〉 = . (9)

For nS R= , problem (8) reduces to solving the system of nonlinear equation () 0F x = , [5].

Remark 2. For a continuously differentiable function f , if *x is a solution of the problem

Minimize{ }() | ;f x x S∈ { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥ then *x is also a solution

of (8) with () ()F x f x= ∇ , and ()1() / , , / T n
nf x f x f x R∇ = ∂ ∂ ∂ ∂ ∈… is the gradient vector of

()f x at point x .

Definition 5. [6] A mapping : n nF R R→ is said to be monotone on S if

 () (')F x F x〈 − , ' 0x x− 〉 ≥ for all , ' .x x S∈ (10)

F is strictly monotone on ,S if strict inequality holds in (10) whenever 'x x≠ .
Lemma 2. If F is continuously differentiable and the Jacobean matrix F∇ is positive
definite for all x S∈ , i.e.

, 0d Fd〈 ∇ 〉 > for all ,x S∈ nd R∈ (0)d ≠ .

then F is strictly monotone on S .
Proof. For example see [7].
The variational inequalities problems have wide variety of scientific and engineering
applications (for example see [2], [6], [8] to [11]). In many applications, real-time on-line
solutions of (8) and (9) are desired. However, traditional algorithms (see [2], [6], [8], [12] and
[13]) are not suitable for real-time on-line implementation on the computer. One promising
approach to handle these problems is to employ an artificial neural network based on circuit
implementation. Many continuous-time neural networks for constrained optimization
problems, have been developed ([14] to [18]) using network parameters. To avoid using
penalty parameters, some significant works have been done in recent years. A few primal
and dual neural networks with two-layer and one-layer structure were developed in [14],
[17] and [18]. These neural networks were proved to be globally convergent to an exact
solution.
In the next section, we discuss some general ideas about artificial neural networks.

 Recurrent Neural Networks

258

Lemma 1. The primal quadratic program (PLP) and its dual (DLP) are convex programs.

This is because the quadratic forms
1
2

T Tx Ax c x+ and
1
2

T Tx Ax b y− + are convex if and

only if A is a positive semidefinite matrix (for example see [2]). Clearly the standard linear
programming problem

0

TMaximize z c x
Subject to

Dx b
x

=

=
≥

 (5)

and its dual

,

T

T

Minimize v b y
Subject to

A y c
y is free in sign

=

≥
 (6)

 are special cases of the (3) and (4) respectively, for which 0 m mA ×= .

2.3 Constrained nonlinear optimization problems
Consider the following nonlinear convex programming problem (NP) with nonlinear
constraints:

 (NP) ()Minimize f x

 Subject to g(x) ≤ 0, x ∈ Ω (7)

where
1(, ,) , : .T n n

nx x x R f R R= ∈ →… 1() ((), , ())mg x g x g x= … is m-dimensional vector-

valued continuous function of n variables. The functions f and 1 , , mg g… assumed to be
convex and twice differentiable for .nRΩ⊆
Definition 2. A vector x is called a feasible solution to (NP) if and only if x satisfies m n+
constraints of the (NP).
Definition 3. Any feasible solution x is said to be a regular point if the gradients of

(), ()i ig x g x∇ for ({ | () 0}),ji I j g x∈ = = are linearly independent.

Definition 4. The (NP) has at least one optimal solution [3] when
i. the set of all feasible solutions is nonempty and bounded,
ii. the feasible set is unbounded but ()f x has a bound level set.

 2.4 Monotone variational inequalities and complementarity problems
The problem of finding a vector point * nx R∈ such that

Applications of Recurrent Neural Networks to Optimization Problems

259

 * ,x S∈ *(),F x〈 * 0x x− 〉 ≥ for all x S∈ (8)

where 1(, ,)T n
nx x x R= ∈… , is called the monotone variational inequality problem [4]. F is

a continuous mapping from nR into itself, and { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥

where m nA R ×∈ , rank (A)= m , r nB R ×∈ , rank(B)= ,r 0 ≤ m , r n≤ , mb R∈ , rc R∈ ,

and S is a nonempty closed convex subset of nR and 〈 . , . 〉 denotes the inner product in
nR . In the special case where nS R+= , problem (8) can be rewritten as the following

nonlinear complementarity problem

 * 0,x ≥ *() 0F x ≥ , * ,x〈 *() 0F x 〉 = . (9)

For nS R= , problem (8) reduces to solving the system of nonlinear equation () 0F x = , [5].

Remark 2. For a continuously differentiable function f , if *x is a solution of the problem

Minimize{ }() | ;f x x S∈ { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥ then *x is also a solution

of (8) with () ()F x f x= ∇ , and ()1() / , , / T n
nf x f x f x R∇ = ∂ ∂ ∂ ∂ ∈… is the gradient vector of

()f x at point x .

Definition 5. [6] A mapping : n nF R R→ is said to be monotone on S if

 () (')F x F x〈 − , ' 0x x− 〉 ≥ for all , ' .x x S∈ (10)

F is strictly monotone on ,S if strict inequality holds in (10) whenever 'x x≠ .
Lemma 2. If F is continuously differentiable and the Jacobean matrix F∇ is positive
definite for all x S∈ , i.e.

, 0d Fd〈 ∇ 〉 > for all ,x S∈ nd R∈ (0)d ≠ .

then F is strictly monotone on S .
Proof. For example see [7].
The variational inequalities problems have wide variety of scientific and engineering
applications (for example see [2], [6], [8] to [11]). In many applications, real-time on-line
solutions of (8) and (9) are desired. However, traditional algorithms (see [2], [6], [8], [12] and
[13]) are not suitable for real-time on-line implementation on the computer. One promising
approach to handle these problems is to employ an artificial neural network based on circuit
implementation. Many continuous-time neural networks for constrained optimization
problems, have been developed ([14] to [18]) using network parameters. To avoid using
penalty parameters, some significant works have been done in recent years. A few primal
and dual neural networks with two-layer and one-layer structure were developed in [14],
[17] and [18]. These neural networks were proved to be globally convergent to an exact
solution.
In the next section, we discuss some general ideas about artificial neural networks.

 Recurrent Neural Networks

260

3. Artificial neural networks
Artificial neural networks consist of a calculation unit called neuron. Every neuron has some
real valued inputs. Inside every neuron, each input is multiplied with corresponding neural
coefficient defining its value. The sum of all these products adds to a value called bias.
Finally, activation function affects this sum and determines the real valued output of the
neuron feed forwardly [19] or by some feed back [20].

3.1 Feed forward back propagation neural networks
Primary discussions regarding artificial neural networks introduced in the 40's with
presentation of the feed forward neural networks. Artificial neural networks in some extents
are modeled from the brain and neural system of the human, which are able to give
acceptable solutions based on correct information records from the problem.
The basic structure for the feed forward back propagating neural network (nets without feed
back) consists of some number of nodes in the input layer, the hidden layer, and the output
layer that has one node. The sigmoid functions approximate linear functions, yet allow the
update scheme to propagate backwards through differentiable functions. The manner in
which input data generates output data for a given neural network depends on the
interconnection weights. These weights are adjusted to reduce the error between the neural
network outputs and the actual output values. i.e.

1

1 ()
2

n actual net

ii
i

E o o
=

= −∑ (11)

where actual
iO is the actual output for the thi training point. net

iO is the estimated value from

the neural network for the thi training point from the neural network. n is the total number
of training points obtained by taking known data points for a given task. Here the objective
is to train the network so that the output from the network minimizes equation (11).

3.2 Recurrent dynamical artificial neural network
Khanna in year 1990 [21], describes associative memory as "the ability to get from one
internal representation to another or to infer a complex representation from a portion of it".
Effectively our goal in applying neural networks is to create a functional mapping from
steady optimization space to either dynamical time dependent space or some parameter
space. Two approaches to achieving this mapping have been extensively studied by Xia [14],
[15] and [22] to [25], Malek [4], [16], [26] and [27] and their coauthors.
The first approach relies on a structure with adjustable parameters. On the basis of known
input/output pairs, these parameters are selected or changed. If this approach is successful,
the appropriate selection of these parameters will yield a mapping device which will always
provide the associated output values for a given input.
The second approach uses information from the primal and dual optimization problem and
applied primarily by Malek in year 2005 [16]. The basis for such systems is a precisely
defined set of ordinary differential equations that automatically satisfy the related primal
and dual optimization problems simultaneously. These information are defined by the
cumulative designing the system and are laid out in a hierarchical fashion. The system then

Applications of Recurrent Neural Networks to Optimization Problems

261

performs a sequential set of values, using the output from the previous as the input to the
next. If successful, a system can be created which will associate input with its correlated
output. The challenge is to make the system complete enough (consistent, convergent and
stable) to always associate the correct output with a given input.
The primary difference in these two approaches is that adjustable parameters in the first are
a prior, i.e., the parameters are settled upon and maintained before data is introduced into
the system. The second approach has no adjustable parameters thus its model is simple to
use. The advantage of this approach is that in this way, we can obtain a solution for the
given real life problem, however we wish to assume a prior knowledge of relationships
between constrained optimization problem and dynamical system. Moreover the solution
for optimization problem consists of a solution for real life problem, since optimization
problem is simulated from the corresponding real life problem.
The work presented in this section applies recurrent dynamical artificial neural network. We
shall emphasize on networks that do not use network parameters or penalty parameters in
advance. This approach is a metric driven method. i.e., we establish distance between the
input and the neural network output. For a given input, the neural network outputs the
value whose distance from the given input is smallest using linear constraint least square
technique or any other related method. One manner of doing this mapping is to associate
the equilibrium points of a dynamical system with the optimal points of constraint
optimization problem. When the input is the initial condition of the dynamical system, the
system will converge to an equilibrium point. Thus this optimal solution contains a solution
that minimizes equation (11), where we use the feed back process to produce corresponding
optimal weights. This means that the artificial neural network structure is recurrent.
The structure of the recurrent dynamical artificial neural network is different from the feed
forward artificial neural network. However it is possible to make some corresponding
relations between these two neural networks (see Rumelhart 1986, [28]). i.e., there is a sense
in which the error back propagation scheme may be applied to networks that contain feed
back, (see Fig. 3.1). The feed forward network in Fig. 3.1 may be represented to simulate a
feed back network with a given set of weight and bias parameters.
Having developed the equivalent structure as shown in Fig. 3.2, it becomes proper to say
"the goal for recurrent dynamical artificial neural network, as with the back propagation
artificial neural network, is to minimize the error function given by equation (11).
Training of dynamical neural networks has received considerable attention in the last 30
years [20], [29] and [30]. The equations governing the behavior of the simplest supervised
recurrent dynamical neural network are

 () , 0initial
u u AS u Bx u
t

∂
=− + + =

∂
 (12)

 * *()u AS u Bx= + (13)

 *.Ty C u= (14)

where
1()

1 uS u
e−

=
+

 Recurrent Neural Networks

260

3. Artificial neural networks
Artificial neural networks consist of a calculation unit called neuron. Every neuron has some
real valued inputs. Inside every neuron, each input is multiplied with corresponding neural
coefficient defining its value. The sum of all these products adds to a value called bias.
Finally, activation function affects this sum and determines the real valued output of the
neuron feed forwardly [19] or by some feed back [20].

3.1 Feed forward back propagation neural networks
Primary discussions regarding artificial neural networks introduced in the 40's with
presentation of the feed forward neural networks. Artificial neural networks in some extents
are modeled from the brain and neural system of the human, which are able to give
acceptable solutions based on correct information records from the problem.
The basic structure for the feed forward back propagating neural network (nets without feed
back) consists of some number of nodes in the input layer, the hidden layer, and the output
layer that has one node. The sigmoid functions approximate linear functions, yet allow the
update scheme to propagate backwards through differentiable functions. The manner in
which input data generates output data for a given neural network depends on the
interconnection weights. These weights are adjusted to reduce the error between the neural
network outputs and the actual output values. i.e.

1

1 ()
2

n actual net

ii
i

E o o
=

= −∑ (11)

where actual
iO is the actual output for the thi training point. net

iO is the estimated value from

the neural network for the thi training point from the neural network. n is the total number
of training points obtained by taking known data points for a given task. Here the objective
is to train the network so that the output from the network minimizes equation (11).

3.2 Recurrent dynamical artificial neural network
Khanna in year 1990 [21], describes associative memory as "the ability to get from one
internal representation to another or to infer a complex representation from a portion of it".
Effectively our goal in applying neural networks is to create a functional mapping from
steady optimization space to either dynamical time dependent space or some parameter
space. Two approaches to achieving this mapping have been extensively studied by Xia [14],
[15] and [22] to [25], Malek [4], [16], [26] and [27] and their coauthors.
The first approach relies on a structure with adjustable parameters. On the basis of known
input/output pairs, these parameters are selected or changed. If this approach is successful,
the appropriate selection of these parameters will yield a mapping device which will always
provide the associated output values for a given input.
The second approach uses information from the primal and dual optimization problem and
applied primarily by Malek in year 2005 [16]. The basis for such systems is a precisely
defined set of ordinary differential equations that automatically satisfy the related primal
and dual optimization problems simultaneously. These information are defined by the
cumulative designing the system and are laid out in a hierarchical fashion. The system then

Applications of Recurrent Neural Networks to Optimization Problems

261

performs a sequential set of values, using the output from the previous as the input to the
next. If successful, a system can be created which will associate input with its correlated
output. The challenge is to make the system complete enough (consistent, convergent and
stable) to always associate the correct output with a given input.
The primary difference in these two approaches is that adjustable parameters in the first are
a prior, i.e., the parameters are settled upon and maintained before data is introduced into
the system. The second approach has no adjustable parameters thus its model is simple to
use. The advantage of this approach is that in this way, we can obtain a solution for the
given real life problem, however we wish to assume a prior knowledge of relationships
between constrained optimization problem and dynamical system. Moreover the solution
for optimization problem consists of a solution for real life problem, since optimization
problem is simulated from the corresponding real life problem.
The work presented in this section applies recurrent dynamical artificial neural network. We
shall emphasize on networks that do not use network parameters or penalty parameters in
advance. This approach is a metric driven method. i.e., we establish distance between the
input and the neural network output. For a given input, the neural network outputs the
value whose distance from the given input is smallest using linear constraint least square
technique or any other related method. One manner of doing this mapping is to associate
the equilibrium points of a dynamical system with the optimal points of constraint
optimization problem. When the input is the initial condition of the dynamical system, the
system will converge to an equilibrium point. Thus this optimal solution contains a solution
that minimizes equation (11), where we use the feed back process to produce corresponding
optimal weights. This means that the artificial neural network structure is recurrent.
The structure of the recurrent dynamical artificial neural network is different from the feed
forward artificial neural network. However it is possible to make some corresponding
relations between these two neural networks (see Rumelhart 1986, [28]). i.e., there is a sense
in which the error back propagation scheme may be applied to networks that contain feed
back, (see Fig. 3.1). The feed forward network in Fig. 3.1 may be represented to simulate a
feed back network with a given set of weight and bias parameters.
Having developed the equivalent structure as shown in Fig. 3.2, it becomes proper to say
"the goal for recurrent dynamical artificial neural network, as with the back propagation
artificial neural network, is to minimize the error function given by equation (11).
Training of dynamical neural networks has received considerable attention in the last 30
years [20], [29] and [30]. The equations governing the behavior of the simplest supervised
recurrent dynamical neural network are

 () , 0initial
u u AS u Bx u
t

∂
=− + + =

∂
 (12)

 * *()u AS u Bx= + (13)

 *.Ty C u= (14)

where
1()

1 uS u
e−

=
+

 Recurrent Neural Networks

262

is the sigmoid function. The adjustable parameters in this supervised recurrent dynamical
neural network are found in the A, B matrices and vector C. The input x of the neural
network corresponds to the input data associated with a training point. This input is then
applied to the system governed by equation (12). When equation (13) reaches an equilibrium
value u* for this input, we obtain the output of the neural network by taking the dot product
of C and u* by equation (14). This neural network output will then compare with the actual
output. To update the elements of A, B, and Cone may use gradient descent method using

ij

u
A
∂
∂

,
ij

u
B
∂
∂

, and
i

u
C
∂
∂

.

This minimization task requires that the neural network possess enough parameter freedom
to enable each input set to generate an output close to the actual value. This is not a case in
many problems. Thus in the next section we emphasize on the unsupervised recurrent
dynamical artificial neural networks.

Fig. 3.1 Equivalent structures of a two unit network; Feed forward network, and feed back
network for a given biases b1 and b2 and weights 1w and 2w .

4. Networks dynamic analysis
For many times dependent cost functions an online optimizer on the basis of an analog
circuit [31], [32] and [33]) is desirable. Dynamic solvers or analog computer, was first
proposed by Dennis [34], Rybashov [35] and [36], Karpinskaya [37], and later studied by
Kenedy and Chua [38], Rodriguez-Vazquez et al. [39], Tank and Hopfield [31]. These
dynamic solvers usually employ neural networks since they have many advantages over the

Unit 1 Unit 2

.

.

.

.

.

.

Feed back network (recurrent)

Feed forward network (back propagation)

1 1,b w

1 1,b w

1 1,b w Unit 2

Unit 2

Unit 1

Unit 1

Unit 2 Unit 1

2 2,b w

2 2,b w

2 2,b w

Time level t

Time level t-1

Time level t-2

Applications of Recurrent Neural Networks to Optimization Problems

263

traditional algorithms. Massively parallel processing and fast convergence are two of the
most important advantages of the neural networks.

4.1 Models for linear programming
Use of neural network for the solution of linear programming problems goes back to 1985,
when Hopfield and Tank [31] provide fast algorithm based on analog electrical components.
Chen and Fang [40] in 1998 examined the theoretical properties of a method proposed by
Kennedy and Chua in 1987, [38]. Malek and Yari in year 2005 proposed a fully stable
artificial recurrent neural network model for the solution of primal linear programming
problems of the type (1):

1

2

()
[()]

()
[()]

TdX t dY
C A Y

dt dt
dY t dX

A X b
dt dt

η
η η

η
η η

+
= − +

+
= + −

⎧
⎪⎪
⎨
⎪
⎪⎩

 (15)

where 1,η η and 2η are rate of learning (in the neural network dynamic). They are step sizes

in the process of optimization computation. 1,η η and 2η can stay constant or vary in each
iteration.
Model (15) transfers the linear programming problem into a dynamical system of equations
and gives approximation solution to the exact solution only for primal variables. This means
that by the recurrent neural network model (15) dual optimum value for objective function
does not coincide exactly with the optimum value obtained from primal problem.
The second model proposed by Malek in the same article is in the following form [16]:

1

2

() [()]

() [()]

T

T

dU t dVC A V
dt dt

dV t dUA U b
dt dt

η η η

η η η

+⎧ = − +⎪⎪
⎨ +⎪ = + −
⎪⎩

 (16)

where (,)U X Y= and V is the corresponding dual variable to the dual form of problem

() ()

()

0

()

0

0, 0

T T

T

T

T

dX dYMaximize Z C X b Y
dt dt

dXSubject to A X b
dt

dXC
dt

dYA Y C
dt

dYb
dt

dX dYX Y
dt dt

η η

η

η

η

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

+ ≤

− ≤

− + ≤ −

≤

+ ≥ + ≥

 (17)

 Recurrent Neural Networks

262

is the sigmoid function. The adjustable parameters in this supervised recurrent dynamical
neural network are found in the A, B matrices and vector C. The input x of the neural
network corresponds to the input data associated with a training point. This input is then
applied to the system governed by equation (12). When equation (13) reaches an equilibrium
value u* for this input, we obtain the output of the neural network by taking the dot product
of C and u* by equation (14). This neural network output will then compare with the actual
output. To update the elements of A, B, and Cone may use gradient descent method using

ij

u
A
∂
∂

,
ij

u
B
∂
∂

, and
i

u
C
∂
∂

.

This minimization task requires that the neural network possess enough parameter freedom
to enable each input set to generate an output close to the actual value. This is not a case in
many problems. Thus in the next section we emphasize on the unsupervised recurrent
dynamical artificial neural networks.

Fig. 3.1 Equivalent structures of a two unit network; Feed forward network, and feed back
network for a given biases b1 and b2 and weights 1w and 2w .

4. Networks dynamic analysis
For many times dependent cost functions an online optimizer on the basis of an analog
circuit [31], [32] and [33]) is desirable. Dynamic solvers or analog computer, was first
proposed by Dennis [34], Rybashov [35] and [36], Karpinskaya [37], and later studied by
Kenedy and Chua [38], Rodriguez-Vazquez et al. [39], Tank and Hopfield [31]. These
dynamic solvers usually employ neural networks since they have many advantages over the

Unit 1 Unit 2

.

.

.

.

.

.

Feed back network (recurrent)

Feed forward network (back propagation)

1 1,b w

1 1,b w

1 1,b w Unit 2

Unit 2

Unit 1

Unit 1

Unit 2 Unit 1

2 2,b w

2 2,b w

2 2,b w

Time level t

Time level t-1

Time level t-2

Applications of Recurrent Neural Networks to Optimization Problems

263

traditional algorithms. Massively parallel processing and fast convergence are two of the
most important advantages of the neural networks.

4.1 Models for linear programming
Use of neural network for the solution of linear programming problems goes back to 1985,
when Hopfield and Tank [31] provide fast algorithm based on analog electrical components.
Chen and Fang [40] in 1998 examined the theoretical properties of a method proposed by
Kennedy and Chua in 1987, [38]. Malek and Yari in year 2005 proposed a fully stable
artificial recurrent neural network model for the solution of primal linear programming
problems of the type (1):

1

2

()
[()]

()
[()]

TdX t dY
C A Y

dt dt
dY t dX

A X b
dt dt

η
η η

η
η η

+
= − +

+
= + −

⎧
⎪⎪
⎨
⎪
⎪⎩

 (15)

where 1,η η and 2η are rate of learning (in the neural network dynamic). They are step sizes

in the process of optimization computation. 1,η η and 2η can stay constant or vary in each
iteration.
Model (15) transfers the linear programming problem into a dynamical system of equations
and gives approximation solution to the exact solution only for primal variables. This means
that by the recurrent neural network model (15) dual optimum value for objective function
does not coincide exactly with the optimum value obtained from primal problem.
The second model proposed by Malek in the same article is in the following form [16]:

1

2

() [()]

() [()]

T

T

dU t dVC A V
dt dt

dV t dUA U b
dt dt

η η η

η η η

+⎧ = − +⎪⎪
⎨ +⎪ = + −
⎪⎩

 (16)

where (,)U X Y= and V is the corresponding dual variable to the dual form of problem

() ()

()

0

()

0

0, 0

T T

T

T

T

dX dYMaximize Z C X b Y
dt dt

dXSubject to A X b
dt

dXC
dt

dYA Y C
dt

dYb
dt

dX dYX Y
dt dt

η η

η

η

η

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

+ ≤

− ≤

− + ≤ −

≤

+ ≥ + ≥

 (17)

 Recurrent Neural Networks

264

 A is a block matrix of the form

0 0
0 0 0
0 0
0 0 0

T

T T

T

A A
C

A
A A

b

η

η

⎛ ⎞
⎜ ⎟

−⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

for , (, , ,), (,0, ,0).T T T T
m nA C C c b b b b cη η× = − − = − We shall see that, A is a (m+n+2) ×

(2 2)m n+ matrix and C is a vector with 2 2m n+ components and b is(2m n+ +)×1
vector.
The following lemma shows that this model solves both primal and dual problems of the
type (1) and (2) simultaneously.
Lemma 3. For 1 2(, ,...,)nX x x x∗ ∗ ∗ ∗= the optimum solution (,)U X Y∗ ∗ ∗= of problems in the

forms (PLP) and (DLP), is the optimum solution for (P-D) iff Z ∗ the maximum value for Z

vanishes where 0dX
dt

→ and 0dY
dt

→ .

Proof: See [16].
These models need some network parameters 1,η η and 2η that must be fixed in the starting
time.

4.2 Models for quadratic programming
 Xin-Yu Wu et al. [22] in year 1996 proposed the following neural network model to solve
problems (3) and (4)

() [()] ()
{ [()]}

T T T

T

x D y Ax c A x x D y Ax c D Dx bd
ydt Dx b D x D y Ax c x

β β
β

+

+

⎫− + + + − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − + + − − − ⎪⎝ ⎠ ⎩ ⎭
 (18)

where
2

2
()Tx x D y Ax cβ += − + − − .

Youshen Xia [14] considered the adjusted form of model (1) as follows

()[()] ()

[()]

T T

T

x I A x x D y Ax c D Dx bd
ydt D x x D y Ax c Dx b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − − + − − + − ⎪⎝ ⎠ ⎩ ⎭
 (19)

where I is the identity matrix.
Malek and Oskoei [26] proposed three novel models based on model (1) in the following
forms:

[()] ()

()

T T T

T

x D y Ax c A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫− − − − + − − − −⎧⎛ ⎞ ⎪= ⎨ ⎬⎜ ⎟ − + − − + ⎪⎝ ⎠ ⎩ ⎭
 (20)

Applications of Recurrent Neural Networks to Optimization Problems

265

Model (20) is a simplified model (18) of Xin-Yu Wu et al. Here one may concerne of
obtaining better accuracy for the final solutions, while we do not use expensive analog
multipliers of Xin-Yu Wu et al. Therefore the relative question might be: is there a simpler
neural network models in the manipulation of hardware tools. Malek & Oskoei [26] show
that for some examples model (20) converges to the exact solution with 13 exact decimal
points. While in the same conditions the solutions for neural network proposed by Xin-Yu
Wu agrees with the corresponding exact solution only up to 3 decimal points.
It is still possible to simplify model (20). Model (21) has the advantage of serious
simplification and good accuracy in the same time. It is in the form [26]:

()[()]

()

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 (21)

Let us assume that

{ }(,) , (, y) , , 0 ,n mx y x y R x R x∈ Ψ Ψ = ∈ ∈ ≥

1() () , ..., ()
T

mx x x+ + += ⎡ ⎤⎣ ⎦ and { }() max 0,i ix x+ = , for 1,..., .i m= We proposed following

model:

()

[()]

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 (22)

in [26] which appears to be more efficient than the models (20) and (21) when we investigate
the complexity, complexity of individual neurons, stability, and accuracy of the solutions,
(see Tables 1 and 2 in section 5).
Model (22) does not use any projection operator in practice thus it is different and simpler
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model
we do not use any extension of Newton's optimal descent flow equation to solve the
problem.
If we assume that ()Tx D y Ax cα += + − − and ()TD Dx bβ = − , then models (22) and (19)
are in the following forms respectively [41]:

,

.

x
xd
ydt

D b

α

α

−⎧
⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

 (23)

() () ,

.

I A x
xd
ydt

D b

α β

α

+ − −⎧
⎛ ⎞ ⎪

= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

 (24)

The network circuit implementation for solving problems (3) and (4) whose dynamics are
governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing
amplifiers) and integrators. In the Fig. 3.2, vectors c and b are external input vectors, while

 Recurrent Neural Networks

264

 A is a block matrix of the form

0 0
0 0 0
0 0
0 0 0

T

T T

T

A A
C

A
A A

b

η

η

⎛ ⎞
⎜ ⎟

−⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

for , (, , ,), (,0, ,0).T T T T
m nA C C c b b b b cη η× = − − = − We shall see that, A is a (m+n+2) ×

(2 2)m n+ matrix and C is a vector with 2 2m n+ components and b is(2m n+ +)×1
vector.
The following lemma shows that this model solves both primal and dual problems of the
type (1) and (2) simultaneously.
Lemma 3. For 1 2(, ,...,)nX x x x∗ ∗ ∗ ∗= the optimum solution (,)U X Y∗ ∗ ∗= of problems in the

forms (PLP) and (DLP), is the optimum solution for (P-D) iff Z ∗ the maximum value for Z

vanishes where 0dX
dt

→ and 0dY
dt

→ .

Proof: See [16].
These models need some network parameters 1,η η and 2η that must be fixed in the starting
time.

4.2 Models for quadratic programming
 Xin-Yu Wu et al. [22] in year 1996 proposed the following neural network model to solve
problems (3) and (4)

() [()] ()
{ [()]}

T T T

T

x D y Ax c A x x D y Ax c D Dx bd
ydt Dx b D x D y Ax c x

β β
β

+

+

⎫− + + + − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − + + − − − ⎪⎝ ⎠ ⎩ ⎭
 (18)

where
2

2
()Tx x D y Ax cβ += − + − − .

Youshen Xia [14] considered the adjusted form of model (1) as follows

()[()] ()

[()]

T T

T

x I A x x D y Ax c D Dx bd
ydt D x x D y Ax c Dx b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − − + − − + − ⎪⎝ ⎠ ⎩ ⎭
 (19)

where I is the identity matrix.
Malek and Oskoei [26] proposed three novel models based on model (1) in the following
forms:

[()] ()

()

T T T

T

x D y Ax c A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫− − − − + − − − −⎧⎛ ⎞ ⎪= ⎨ ⎬⎜ ⎟ − + − − + ⎪⎝ ⎠ ⎩ ⎭
 (20)

Applications of Recurrent Neural Networks to Optimization Problems

265

Model (20) is a simplified model (18) of Xin-Yu Wu et al. Here one may concerne of
obtaining better accuracy for the final solutions, while we do not use expensive analog
multipliers of Xin-Yu Wu et al. Therefore the relative question might be: is there a simpler
neural network models in the manipulation of hardware tools. Malek & Oskoei [26] show
that for some examples model (20) converges to the exact solution with 13 exact decimal
points. While in the same conditions the solutions for neural network proposed by Xin-Yu
Wu agrees with the corresponding exact solution only up to 3 decimal points.
It is still possible to simplify model (20). Model (21) has the advantage of serious
simplification and good accuracy in the same time. It is in the form [26]:

()[()]

()

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 (21)

Let us assume that

{ }(,) , (, y) , , 0 ,n mx y x y R x R x∈ Ψ Ψ = ∈ ∈ ≥

1() () , ..., ()
T

mx x x+ + += ⎡ ⎤⎣ ⎦ and { }() max 0,i ix x+ = , for 1,..., .i m= We proposed following

model:

()

[()]

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 (22)

in [26] which appears to be more efficient than the models (20) and (21) when we investigate
the complexity, complexity of individual neurons, stability, and accuracy of the solutions,
(see Tables 1 and 2 in section 5).
Model (22) does not use any projection operator in practice thus it is different and simpler
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model
we do not use any extension of Newton's optimal descent flow equation to solve the
problem.
If we assume that ()Tx D y Ax cα += + − − and ()TD Dx bβ = − , then models (22) and (19)
are in the following forms respectively [41]:

,

.

x
xd
ydt

D b

α

α

−⎧
⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

 (23)

() () ,

.

I A x
xd
ydt

D b

α β

α

+ − −⎧
⎛ ⎞ ⎪

= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

 (24)

The network circuit implementation for solving problems (3) and (4) whose dynamics are
governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing
amplifiers) and integrators. In the Fig. 3.2, vectors c and b are external input vectors, while

 Recurrent Neural Networks

266

x and y are the network outputs. In this diagram dynamical process of vector α is the
same as what is given in [14]. A simplified block diagram of α is illustrated in Fig. 3.3 to
show how expensive it is using vector α in the arbitrary model.
Malek & Alipour, Applied Mathematics and Computation 192 (2007) 27-39 We now
compare the network (24) with our proposed network in (23) for solving problems (2) and
(3). The network (24) is stable to exact solution and there are no parameters to set, but the
main disadvantage of it is that too many expensive analog multipliers (,α β) are required
for large scale quadratic programming problems, thus the set of hardware implementation
is expensive and therefore greatly affect the accuracy of solutions. Neural network model
(23) does not need to use β and therefore in practice needs relatively less computational
efforts. Moreover, this model is globally convergence to the corresponding exact solution
independent of where and how to choose the starting input initial values. Model (23) not
only has the same global convergence property as the model (24), but also has some more
advantages, plus simplicity. Network (23) is better than network (24) in the sense of
complexity, i.e. usage analog multipliers and hardware implementations.

Fig. 3.2. A simplified neural network diagram for model (23): Malek & Alipour, Applied
Mathematics and Computation 192 (2007) 27-39

Remark 3. Model in (23) may be used for solving general standard linear programming
problems by setting 0m mA ×= .
Simulation and numerical results are discussed in the next section.
Theorem 1. The recurrent dynamic artificial neural network (23) is globally convergent to
the solution set of the primal and dual quadratic programming problems (3) and (4).
Proof. Let in the proposed model of Qing Tao et al. [17], general projection operator to be
the identity operator. Then the proof is similar to Qing Tao's proof. (see [26] and also see
Theorem 4)
In the reminder of this subsection we will try to clarify the ideas in Theorem 1 from
theoretical point of view (see [41]).

Applications of Recurrent Neural Networks to Optimization Problems

267

Fig. 3.3. A simplified block diagram forα , where ()ijA a= and ()ijD d= :

In this section, we shall study the dynamics of network (23).We define a specific Liapunov
function and get the global convergence of network (23).We first discuss some prerequisites.
Definition 6. A continuous-time neural network is said to be globally convergent if for any
given initial point, the trajectory of the dynamic system converges to an equilibrium point.
Lemma 4. Let Ψ be a closed convex set of mR .Then

() () 0, ,
T mp p x R xν ν ν νΨ Ψ− − ≥ ∈ ∈ Ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

and () () , , mp p u u u Rν ν νΨ Ψ− ≤ − ∈

where . denote 2l norm and the projection operator ()p uΨ is defined by

() arg min .p u u
ν

νΨ ∈Ψ
= − Proof. See [42].

 Recurrent Neural Networks

266

x and y are the network outputs. In this diagram dynamical process of vector α is the
same as what is given in [14]. A simplified block diagram of α is illustrated in Fig. 3.3 to
show how expensive it is using vector α in the arbitrary model.
Malek & Alipour, Applied Mathematics and Computation 192 (2007) 27-39 We now
compare the network (24) with our proposed network in (23) for solving problems (2) and
(3). The network (24) is stable to exact solution and there are no parameters to set, but the
main disadvantage of it is that too many expensive analog multipliers (,α β) are required
for large scale quadratic programming problems, thus the set of hardware implementation
is expensive and therefore greatly affect the accuracy of solutions. Neural network model
(23) does not need to use β and therefore in practice needs relatively less computational
efforts. Moreover, this model is globally convergence to the corresponding exact solution
independent of where and how to choose the starting input initial values. Model (23) not
only has the same global convergence property as the model (24), but also has some more
advantages, plus simplicity. Network (23) is better than network (24) in the sense of
complexity, i.e. usage analog multipliers and hardware implementations.

Fig. 3.2. A simplified neural network diagram for model (23): Malek & Alipour, Applied
Mathematics and Computation 192 (2007) 27-39

Remark 3. Model in (23) may be used for solving general standard linear programming
problems by setting 0m mA ×= .
Simulation and numerical results are discussed in the next section.
Theorem 1. The recurrent dynamic artificial neural network (23) is globally convergent to
the solution set of the primal and dual quadratic programming problems (3) and (4).
Proof. Let in the proposed model of Qing Tao et al. [17], general projection operator to be
the identity operator. Then the proof is similar to Qing Tao's proof. (see [26] and also see
Theorem 4)
In the reminder of this subsection we will try to clarify the ideas in Theorem 1 from
theoretical point of view (see [41]).

Applications of Recurrent Neural Networks to Optimization Problems

267

Fig. 3.3. A simplified block diagram forα , where ()ijA a= and ()ijD d= :

In this section, we shall study the dynamics of network (23).We define a specific Liapunov
function and get the global convergence of network (23).We first discuss some prerequisites.
Definition 6. A continuous-time neural network is said to be globally convergent if for any
given initial point, the trajectory of the dynamic system converges to an equilibrium point.
Lemma 4. Let Ψ be a closed convex set of mR .Then

() () 0, ,
T mp p x R xν ν ν νΨ Ψ− − ≥ ∈ ∈ Ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

and () () , , mp p u u u Rν ν νΨ Ψ− ≤ − ∈

where . denote 2l norm and the projection operator ()p uΨ is defined by

() arg min .p u u
ν

νΨ ∈Ψ
= − Proof. See [42].

 Recurrent Neural Networks

268

Remark 4. Since { }0mR x x+ = ≥ is a closed convex and by the property of a projection on a

() () 0, , .
T m mv v x x R Rν ν+ +

+− − ≥ ∈ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Theorem 2. * *,x y are solutions of problems (3) and (4), respectively, if and only if
* *(,)x y satisfies

* * * *

* *

() ,
() .

T

T

x D y Ax c x
D x D y Ax c b

+

+

+ − − =⎧
⎨

+ − − =⎩
 (25)

Proof . By Karush-Kuhn-Tucker theorem for convex programming problem [43] we have
* *,x y are solutions of problems (3) and (4), respectively, if and only if * *(,)x y satisfies

* *

* * *

* *

, 0,
() 0,

0 .

T T

T

D x b x
x D y A x c
D y A x c

= ≥⎧
⎪ − − =⎨
⎪ − − ≤⎩

 (26)

Clearly, that (26) is equivalent to (25).
We will now prove a theorem that is a base for proving the global convergence of model (23).

Theorem 3. Let () () () 2* * *
1

1 1,
2 2

T
F x y x x A x x x x= − − + − and

 () 2*
2

1,
2

F x y y y= − and () () ()1 2, , ,F x y F x y F x y= + . Then

() () () ()
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −

Proof .

() () ()* *
1 , ()

T Td dx dxF x y A x x x x
dt dt dt

= − + −

() () () ()* *() () ()
T TT TA x x x D y Ax c x x x x D y Ax c x+ += − + − − − + − + − − −

Note that

() ()*() ()
T TA x x x D y Ax c x+− + − − −

() ()* * *() ()
T TA x x x D y Ax c x x x+= − + − − − + −

() () () ()
() ()

* * *

* *

() ()

()

T TT

TT

A x x x x x D y Ax c x Ax c

x D y Ax c x Ax c

+

+

= − − + + − − − +

− + − − − +

Applications of Recurrent Neural Networks to Optimization Problems

269

On the other hand,

()
() ()
() ()
()

*

*

*

*

() ()

() ()

() ()

()

TT

TT T T

TT T

TT T

x D y Ax c x Ax c

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x D y Ax c x D y

+

+ +

+ +

+

+ − − − +

= + − − − + − − + + − −

+ + − − − − + − −

+ + − − −

() ()
() ()
() ()
()

*

*

*

() ()

() ()

()

()

TT T T

TT T

T T

TT T

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x x x x D y Ax c

x D y Ax c x D y

+ +

+ +

+

+

= + − − − + − − + + − −

+ + − − − − + − −

+ − − + − −

+ + − − −

and

()* *() ()
TT Tx D y Ax c x Ax c+ − − − +

() ()* * *()
TT T Tx D y Ax c x Ax c D y= + − − − + − ()* *()

TT T Tx D y Ax c x D y+ + − − −

So

() () ()

() ()
() ()

() ()

* *
1

*

2 * * *

* *

, (

() ()

() ()

() .

T

TT T T

TT T T

TT T T

d F x y A x x x x
dt

x D y Ax c x Ax c D y x x D y Ax c

x x D y Ax c x D y Ax c x Ax c D y

x D y Ax c x D y D y

+ +

+ +

+

= − −

+ + − − − + − − + + − −

− − + − − − + − − − + −

+ + − − − −

Thus by (22) we have

() ()
() () ()
() ()

* * *

* * * * *

* *

()

()

() 0

TT T

TT T T T

TT T

x D y Ax c x D y Ax c

x D y Ax c D y Ax c x D y Ax c

x D y Ax c D y Ax c

+

+

+

+ − − − − −

= + − − − − − − −

= + − − − − ≤

Using lemma 4 we have

 () () () 2* *
1 , ()

T Td
F x y x x A x x x x D y Ax c

dt
+≤ − − − − − + − −

() ()* *() .
TT T Tx D y Ax c x D y D y++ + − − − −

 Recurrent Neural Networks

268

Remark 4. Since { }0mR x x+ = ≥ is a closed convex and by the property of a projection on a

() () 0, , .
T m mv v x x R Rν ν+ +

+− − ≥ ∈ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Theorem 2. * *,x y are solutions of problems (3) and (4), respectively, if and only if
* *(,)x y satisfies

* * * *

* *

() ,
() .

T

T

x D y Ax c x
D x D y Ax c b

+

+

+ − − =⎧
⎨

+ − − =⎩
 (25)

Proof . By Karush-Kuhn-Tucker theorem for convex programming problem [43] we have
* *,x y are solutions of problems (3) and (4), respectively, if and only if * *(,)x y satisfies

* *

* * *

* *

, 0,
() 0,

0 .

T T

T

D x b x
x D y A x c
D y A x c

= ≥⎧
⎪ − − =⎨
⎪ − − ≤⎩

 (26)

Clearly, that (26) is equivalent to (25).
We will now prove a theorem that is a base for proving the global convergence of model (23).

Theorem 3. Let () () () 2* * *
1

1 1,
2 2

T
F x y x x A x x x x= − − + − and

 () 2*
2

1,
2

F x y y y= − and () () ()1 2, , ,F x y F x y F x y= + . Then

() () () ()
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −

Proof .

() () ()* *
1 , ()

T Td dx dxF x y A x x x x
dt dt dt

= − + −

() () () ()* *() () ()
T TT TA x x x D y Ax c x x x x D y Ax c x+ += − + − − − + − + − − −

Note that

() ()*() ()
T TA x x x D y Ax c x+− + − − −

() ()* * *() ()
T TA x x x D y Ax c x x x+= − + − − − + −

() () () ()
() ()

* * *

* *

() ()

()

T TT

TT

A x x x x x D y Ax c x Ax c

x D y Ax c x Ax c

+

+

= − − + + − − − +

− + − − − +

Applications of Recurrent Neural Networks to Optimization Problems

269

On the other hand,

()
() ()
() ()
()

*

*

*

*

() ()

() ()

() ()

()

TT

TT T T

TT T

TT T

x D y Ax c x Ax c

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x D y Ax c x D y

+

+ +

+ +

+

+ − − − +

= + − − − + − − + + − −

+ + − − − − + − −

+ + − − −

() ()
() ()
() ()
()

*

*

*

() ()

() ()

()

()

TT T T

TT T

T T

TT T

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x x x x D y Ax c

x D y Ax c x D y

+ +

+ +

+

+

= + − − − + − − + + − −

+ + − − − − + − −

+ − − + − −

+ + − − −

and

()* *() ()
TT Tx D y Ax c x Ax c+ − − − +

() ()* * *()
TT T Tx D y Ax c x Ax c D y= + − − − + − ()* *()

TT T Tx D y Ax c x D y+ + − − −

So

() () ()

() ()
() ()

() ()

* *
1

*

2 * * *

* *

, (

() ()

() ()

() .

T

TT T T

TT T T

TT T T

d F x y A x x x x
dt

x D y Ax c x Ax c D y x x D y Ax c

x x D y Ax c x D y Ax c x Ax c D y

x D y Ax c x D y D y

+ +

+ +

+

= − −

+ + − − − + − − + + − −

− − + − − − + − − − + −

+ + − − − −

Thus by (22) we have

() ()
() () ()
() ()

* * *

* * * * *

* *

()

()

() 0

TT T

TT T T T

TT T

x D y Ax c x D y Ax c

x D y Ax c D y Ax c x D y Ax c

x D y Ax c D y Ax c

+

+

+

+ − − − − −

= + − − − − − − −

= + − − − − ≤

Using lemma 4 we have

 () () () 2* *
1 , ()

T Td
F x y x x A x x x x D y Ax c

dt
+≤ − − − − − + − −

() ()* *() .
TT T Tx D y Ax c x D y D y++ + − − − −

 Recurrent Neural Networks

270

Since

 () ()*
2 ,

Td dyF x y y y
dt dt

= −

() ()* *()
T Ty y D x D y Ax c Dx+= − − + − − +

then

 () () () ()
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −

The proof is complete.
Theorem 4. Network (4) is globally convergent to the solutions set of problems (3) and (4).
Proof . Using lemma 4, the right hand side of (23) is a Lipschitz mapping. From the existence
theory of ordinary differential equations [44], we can assume that for any 0 0(,) m nx y R R∈ ×

there exists a unique solution ()(), ()x t y t of (4) and its maximal existence interval

[)0 00, (,)x yλ .

Let * *,x y be solutions of problems (3) and (4) respectively. Let

2 2* * * *

0 0

1 1 1(,) (,) () ()
2 2 2

m n TV x y R R F x y x x A x x x x y y⎧ ⎫= ∈ × ≤ − − + − + −⎨ ⎬
⎭⎩

Using theorem 3, (,)F x y is a Liapunov function of system (23) on V. Since
* *() () 0Tx x A x x− − ≥ we have

2 2* *1 1(,)
2 2

F x y x x y y≥ − + − .

This proves that V is bounded. By the extension theory of ordinary differential equations [],
0 0(,)x yλ = +∞ .Using the LaSalle invariant principle [45], there exists a constant k, such that

() 1(), () (),x t y t M F k t−→ ∩ → +∞ , where M is the maximal invariant set in

__

(,) (,) 0, (,)dx y F x y x y V
dt

⎧ ⎫
Ω = = ∈⎨ ⎬

⎩ ⎭
.

Now we will prove that every point in set M is a solution of problems (3) and (4).

1 1(,)x y N∀ ∈ , let ()1 1(), ()x t y t be a solution of equation (23) with initial point 1 1(,)x y , its

maximal existence interval is [)1 10, (,) .x yλ By the invariant of M and bounded ness of V, we

have 1 1 1 1(,) , () .x y x t xλ = +∞ = If 1 1(,)x y is not a solution of problems (3) and (4), using

theorem 2 and 3 ()1 1 1
TD x D y Ax c b

+
+ − − ≠ . From (23)

We have 1 ()y t →∞ as t →∞ . It is contradictory to the bound ness of V. Thus 1 1(,)x y is

a solution of problems (3) and (4). Since 1 1(,)x y is arbitrary the proof is completed.

Applications of Recurrent Neural Networks to Optimization Problems

271

4.3 Models for nonlinear programming
Malek and Yashtini proposed the following recurrent dynamical artificial neural network
[46]

[() ()]

,
[()]

P x f x g x y xxd
ydt y g x y

Ω

+

−∇ −∇ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ + −⎝ ⎠ ⎝ ⎠

 (27)

for the solution of nonlinear programming problem:

 ()Minimize f x

 Subject to Ax b≤ (28)

x∈Ω

where , .m n mA R b R×∈ ∈

4.4 Models for variational inequalities
The systems governing the behavior of the recurrent dynamical artificial network
corresponding to the variational inequalities problem (8) are [4]

(())

()

T Tx x F x A y B z x
du d y y Ax b y
dt dt

z Bx c

+

+

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − + −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 (29)

* * * * *

* * *

*

(())
()

T Tx x F x A y B z
y y Ax b
Bx c

+

+

= − + +⎧
⎪ = − +⎨
⎪ =⎩

 (30)

where { }() max 0,i ix x+ = for all 1, ,i n= … and { }() max 0,j jy y+ = for all 1, ,j m= … ,

and *x is the solution of monotone variational inequalities problem (…).
Now, let (.), (.)x y and (.)z be some dependent variables to time t. We initiate 0initialu = to

the system governed by (29), when system (30) reaches an equilibrium value *u for this
input, we obtain the output of the neural network. The goal for the continuous time based
dynamical system described by two systems (29) and (30), is to minimize the error function
given by equation (11).
Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29)
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.

5. Work examples
For the following three models proposed by Xia, Malek and their coauthors solve quadratic
programming problem in Example 1.

 Recurrent Neural Networks

270

Since

 () ()*
2 ,

Td dyF x y y y
dt dt

= −

() ()* *()
T Ty y D x D y Ax c Dx+= − − + − − +

then

 () () () ()
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −

The proof is complete.
Theorem 4. Network (4) is globally convergent to the solutions set of problems (3) and (4).
Proof . Using lemma 4, the right hand side of (23) is a Lipschitz mapping. From the existence
theory of ordinary differential equations [44], we can assume that for any 0 0(,) m nx y R R∈ ×

there exists a unique solution ()(), ()x t y t of (4) and its maximal existence interval

[)0 00, (,)x yλ .

Let * *,x y be solutions of problems (3) and (4) respectively. Let

2 2* * * *

0 0

1 1 1(,) (,) () ()
2 2 2

m n TV x y R R F x y x x A x x x x y y⎧ ⎫= ∈ × ≤ − − + − + −⎨ ⎬
⎭⎩

Using theorem 3, (,)F x y is a Liapunov function of system (23) on V. Since
* *() () 0Tx x A x x− − ≥ we have

2 2* *1 1(,)
2 2

F x y x x y y≥ − + − .

This proves that V is bounded. By the extension theory of ordinary differential equations [],
0 0(,)x yλ = +∞ .Using the LaSalle invariant principle [45], there exists a constant k, such that

() 1(), () (),x t y t M F k t−→ ∩ → +∞ , where M is the maximal invariant set in

__

(,) (,) 0, (,)dx y F x y x y V
dt

⎧ ⎫
Ω = = ∈⎨ ⎬

⎩ ⎭
.

Now we will prove that every point in set M is a solution of problems (3) and (4).

1 1(,)x y N∀ ∈ , let ()1 1(), ()x t y t be a solution of equation (23) with initial point 1 1(,)x y , its

maximal existence interval is [)1 10, (,) .x yλ By the invariant of M and bounded ness of V, we

have 1 1 1 1(,) , () .x y x t xλ = +∞ = If 1 1(,)x y is not a solution of problems (3) and (4), using

theorem 2 and 3 ()1 1 1
TD x D y Ax c b

+
+ − − ≠ . From (23)

We have 1 ()y t →∞ as t →∞ . It is contradictory to the bound ness of V. Thus 1 1(,)x y is

a solution of problems (3) and (4). Since 1 1(,)x y is arbitrary the proof is completed.

Applications of Recurrent Neural Networks to Optimization Problems

271

4.3 Models for nonlinear programming
Malek and Yashtini proposed the following recurrent dynamical artificial neural network
[46]

[() ()]

,
[()]

P x f x g x y xxd
ydt y g x y

Ω

+

−∇ −∇ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ + −⎝ ⎠ ⎝ ⎠

 (27)

for the solution of nonlinear programming problem:

 ()Minimize f x

 Subject to Ax b≤ (28)

x∈Ω

where , .m n mA R b R×∈ ∈

4.4 Models for variational inequalities
The systems governing the behavior of the recurrent dynamical artificial network
corresponding to the variational inequalities problem (8) are [4]

(())

()

T Tx x F x A y B z x
du d y y Ax b y
dt dt

z Bx c

+

+

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − + −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 (29)

* * * * *

* * *

*

(())
()

T Tx x F x A y B z
y y Ax b
Bx c

+

+

= − + +⎧
⎪ = − +⎨
⎪ =⎩

 (30)

where { }() max 0,i ix x+ = for all 1, ,i n= … and { }() max 0,j jy y+ = for all 1, ,j m= … ,

and *x is the solution of monotone variational inequalities problem (…).
Now, let (.), (.)x y and (.)z be some dependent variables to time t. We initiate 0initialu = to

the system governed by (29), when system (30) reaches an equilibrium value *u for this
input, we obtain the output of the neural network. The goal for the continuous time based
dynamical system described by two systems (29) and (30), is to minimize the error function
given by equation (11).
Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29)
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.

5. Work examples
For the following three models proposed by Xia, Malek and their coauthors solve quadratic
programming problem in Example 1.

 Recurrent Neural Networks

272

(Model 1):
()(()) ()

()

T T

T

x I A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

 (Model 2):
()(())

()

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

(Model 3):
()

()

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

Example 1. Consider the following (QP) problem:

2 2
1 2 1 2 1 2 30 30Minimize x x x x x x+ + − −

 1 2 3 2Subject to x x x− + + =
 1 2 4 2x x x+ + =
 1 2 5 8x x x− + =

 1 2 6 12x x x+ + =
 1 2, 0x x ≥

x*=(1,1,2,0,8,10) z*=-57
Figs. 5.3 to 5.8 displays the transient behavior of ()x t with five feasible initial points

(5, 0, 7, -3, 3, 7)A = ,
(9, 1, 10, -12, 0, 2)B = , (8, 4, 6, -10, 4, 0)C = , (4, 6, 0, -8, 10, 2)D = and
(5, 4, 3, -7, 7, 3)E = where y=(0,-1,0-2).

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

t

(x
(t)

,y
(t)

) xo=(5,4,3,-7,7,3)
yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)
y*=(0,-27, 0,0)

Fig. 5.1. Trajectories of example 1. for the given x and y initial vectors (feasible) using (Model 3).

Applications of Recurrent Neural Networks to Optimization Problems

273

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

t

(x
(t)

,y
(t)

) xo=(-10,-15,0,8,-5,-6)
yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)
y*=(0,-27,0,0)

Fig. 5.2. Trajectories of example 1. for the given x and y initial vectors (infeasible) using
(Model 3).

-2 0 2 4 6 8 10 12
-2

-1

0

1

2

3

4

5

6

7

8

9

x1
x2

A

B

C

D

E

x*

(1,1,2,0,8,10)

Fig. 5.3. Example 1: trajectories with initial points inside the feasible region using (Model 1).

 Recurrent Neural Networks

272

(Model 1):
()(()) ()

()

T T

T

x I A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

 (Model 2):
()(())

()

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

(Model 3):
()

()

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭

Example 1. Consider the following (QP) problem:

2 2
1 2 1 2 1 2 30 30Minimize x x x x x x+ + − −

 1 2 3 2Subject to x x x− + + =
 1 2 4 2x x x+ + =
 1 2 5 8x x x− + =

 1 2 6 12x x x+ + =
 1 2, 0x x ≥

x*=(1,1,2,0,8,10) z*=-57
Figs. 5.3 to 5.8 displays the transient behavior of ()x t with five feasible initial points

(5, 0, 7, -3, 3, 7)A = ,
(9, 1, 10, -12, 0, 2)B = , (8, 4, 6, -10, 4, 0)C = , (4, 6, 0, -8, 10, 2)D = and
(5, 4, 3, -7, 7, 3)E = where y=(0,-1,0-2).

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

t

(x
(t)

,y
(t)

) xo=(5,4,3,-7,7,3)
yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)
y*=(0,-27, 0,0)

Fig. 5.1. Trajectories of example 1. for the given x and y initial vectors (feasible) using (Model 3).

Applications of Recurrent Neural Networks to Optimization Problems

273

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

t

(x
(t)

,y
(t)

) xo=(-10,-15,0,8,-5,-6)
yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)
y*=(0,-27,0,0)

Fig. 5.2. Trajectories of example 1. for the given x and y initial vectors (infeasible) using
(Model 3).

-2 0 2 4 6 8 10 12
-2

-1

0

1

2

3

4

5

6

7

8

9

x1

x2

A

B

C

D

E

x*

(1,1,2,0,8,10)

Fig. 5.3. Example 1: trajectories with initial points inside the feasible region using (Model 1).

 Recurrent Neural Networks

274

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x1

x2

A B

C

DE

F

← x

Fig. 5.4. Example 1: trajectories with initial points outside the feasible region using

(Model 1).

-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

x1

x2

A

B

C

D

E

x*x*

(1,1,2,0,8,10)

Fig. 5.5. Example 1: trajectories with initial points inside the feasible region using (Model 2).

Applications of Recurrent Neural Networks to Optimization Problems

275

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x1

x2

A B

C

DE

F

← x

Fig. 5.6. Example 1: trajectories with initial points outside the feasible region using
(Model 2).

-2 0 2 4 6 8 10 12
-2

-1

0

1

2

3

4

5

6

7

8

9

x1
x2

A

B

C

D

E

x*

(1,1,2,0,8,10)

Fig. 5.7. Example 1: trajectories with initial points inside the feasible region using (Model 3).

 Recurrent Neural Networks

274

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x1

x2

A B

C

DE

F

← x

Fig. 5.4. Example 1: trajectories with initial points outside the feasible region using

(Model 1).

-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

x1

x2

A

B

C

D

E

x*x*

(1,1,2,0,8,10)

Fig. 5.5. Example 1: trajectories with initial points inside the feasible region using (Model 2).

Applications of Recurrent Neural Networks to Optimization Problems

275

-15 -10 -5 0 5 10 15 20 25
-15

-10

-5

0

5

10

15

x1

x2

A B

C

DE

F

← x

Fig. 5.6. Example 1: trajectories with initial points outside the feasible region using
(Model 2).

-2 0 2 4 6 8 10 12
-2

-1

0

1

2

3

4

5

6

7

8

9

x1

x2

A

B

C

D

E

x*

(1,1,2,0,8,10)

Fig. 5.7. Example 1: trajectories with initial points inside the feasible region using (Model 3).

 Recurrent Neural Networks

276

Fig. 5.8. Example 1: trajectories with initial points outside the feasible region using (Model 3).
Example 2. Consider the following nonlinear programming problem:

4 2 4 2
1 1 2 2 1 2

1 1 0.5 0.5 30
4 4

Minimize x x x x x x+ + − −

1 2 2Subject to x x− ≥ − ,

 1 2

1 13
4 2

x x− ≥ − ,

 1 24 4x x− − = −
 1 2 1x x− + =
 1 2, 0x x ≥

Fig. 5.9 displays the transient behavior of ()x t with seven initial points A(-5,-5), B(5,-5),
C(15,0) D(15,10), E(5,15), F(-5,10) and G(-5,5).
Example 3. Consider the following convex nonlinear programming problem:

3

2 2 2 2 1
1 1 2 3 1 2 4 0.4 0.5 0.5

30
xMinimize x x x x x x x+ + + − + +

1 2 3 2Subject to x x x− + ≥ −

1 2 3 43 18x x x x− − + + ≥ −

1 2 4

1 2
3

x x x+ − =

1 2 3 4, , , 0x x x x ≥

Applications of Recurrent Neural Networks to Optimization Problems

277

-5 0 5 10 15
-5

0

5

10

15

x2

A B

C

D

E

F

G

Fig. 5.9. Example 2: The transient behavior of x(t)=(x1(t),x2(t)), with initial points outside the
feasible region.

-8 -6 -4 -2 0 2 4 6 8 10 12 14
-8

-6

-4

-2

0

2

4

6

8

10

12

14

x1

A B

C

D

EF

G

x*=(1,5/3,0,0)

Fig. 5.10. Example 3: The transient behavior of x(t)=(x1(t),x2(t)), using the recurrent neural
network model proposed by Yashtini and Malek [4].

 Recurrent Neural Networks

276

Fig. 5.8. Example 1: trajectories with initial points outside the feasible region using (Model 3).
Example 2. Consider the following nonlinear programming problem:

4 2 4 2
1 1 2 2 1 2

1 1 0.5 0.5 30
4 4

Minimize x x x x x x+ + − −

1 2 2Subject to x x− ≥ − ,

 1 2

1 13
4 2

x x− ≥ − ,

 1 24 4x x− − = −
 1 2 1x x− + =
 1 2, 0x x ≥

Fig. 5.9 displays the transient behavior of ()x t with seven initial points A(-5,-5), B(5,-5),
C(15,0) D(15,10), E(5,15), F(-5,10) and G(-5,5).
Example 3. Consider the following convex nonlinear programming problem:

3

2 2 2 2 1
1 1 2 3 1 2 4 0.4 0.5 0.5

30
xMinimize x x x x x x x+ + + − + +

1 2 3 2Subject to x x x− + ≥ −

1 2 3 43 18x x x x− − + + ≥ −

1 2 4

1 2
3

x x x+ − =

1 2 3 4, , , 0x x x x ≥

Applications of Recurrent Neural Networks to Optimization Problems

277

-5 0 5 10 15
-5

0

5

10

15
x2

A B

C

D

E

F

G

Fig. 5.9. Example 2: The transient behavior of x(t)=(x1(t),x2(t)), with initial points outside the
feasible region.

-8 -6 -4 -2 0 2 4 6 8 10 12 14
-8

-6

-4

-2

0

2

4

6

8

10

12

14

x1

A B

C

D

EF

G

x*=(1,5/3,0,0)

Fig. 5.10. Example 3: The transient behavior of x(t)=(x1(t),x2(t)), using the recurrent neural
network model proposed by Yashtini and Malek [4].

 Recurrent Neural Networks

278

(a)

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

x3
x4

y1

y2

z

t

x(
t),

y(
t),

z(
t)

xo=(3,2,2,1)
yo=(-1,0)
zo=-2

(b)

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

x1

x2x3

x4

y1

y2

z

t

x(
t),

y(
t),

z(
t)

xo=(5,-1,3,-2)
yo=(-5,1)
zo=-2

Fig. 5.11. Example 3: The transient behavior of the neural network model, Yashtini and
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial
points.

Applications of Recurrent Neural Networks to Optimization Problems

279

Example 4. Consider the nonlinear variational inequalities problem. The mapping F and
constraint set S defined by

1 2
2

1 2

3 4

3 4
3

14 2 1

1
() 2

2 6
1 1 2
3

x x
x

x x
F x

x x

x x
x

⎡ ⎤− + −⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
+⎢ ⎥

⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

and { }4
1 2 3 42 2, 3 2, S x R x x x x l x h= ∈ + = + ≥ ≤ ≤ where (0, 0.1, 0.3, 0)Tl = and

(8, 8, 8, 8)Th = .
In both cases trajectories converge to the x*=(0.95, 0.1, 0.3, 5.233). Here y*=0, z*=-3.5.
Example 5. Consider the following linear variational inequality problem. The mapping F
and constraint set S defined by

1 2 3

1 2 3

1 2 3

4 2 8 5
() 2 8 6 6

8 6 12 12

x x x
F x x x x

x x x

− + +⎡ ⎤
⎢ ⎥= − + − +⎢ ⎥
⎢ ⎥− + −⎣ ⎦

and

{ }4
1 2 3 1 2 3 1 22 6, 2 16, - 2 4, ,S x R x x x x x x x x l x h= ∈ + + ≥ − − − ≥ − + = ≤ ≤

where (7, 7, 7)Tl = − − − and (5, 5, 5)Th = .
Example 6. Consider the following linear complementarity problem:

0, 0, () 0,Tx Qx x Qxθ θ≥ + ≥ + =

 Where

2 6 2 3
0 3 2 6
2 3 4 9

2 6 2 6

Q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

 and .

5
6
3

4

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

This problem has one solution x*= (1.1668, 0, 1.333, 0). Fig. 5.12 depict the trajectories of
neural network model (19) with initial points (8,3,2,0)T and (3,1,2,6)T.

 Recurrent Neural Networks

278

(a)

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

x3
x4

y1

y2

z

t

x(
t),

y(
t),

z(
t)

xo=(3,2,2,1)
yo=(-1,0)
zo=-2

(b)

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

2

3

4

5

x1

x2x3

x4

y1

y2

z

t

x(
t),

y(
t),

z(
t)

xo=(5,-1,3,-2)
yo=(-5,1)
zo=-2

Fig. 5.11. Example 3: The transient behavior of the neural network model, Yashtini and
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial
points.

Applications of Recurrent Neural Networks to Optimization Problems

279

Example 4. Consider the nonlinear variational inequalities problem. The mapping F and
constraint set S defined by

1 2
2

1 2

3 4

3 4
3

14 2 1

1
() 2

2 6
1 1 2
3

x x
x

x x
F x

x x

x x
x

⎡ ⎤− + −⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
+⎢ ⎥

⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

and { }4
1 2 3 42 2, 3 2, S x R x x x x l x h= ∈ + = + ≥ ≤ ≤ where (0, 0.1, 0.3, 0)Tl = and

(8, 8, 8, 8)Th = .
In both cases trajectories converge to the x*=(0.95, 0.1, 0.3, 5.233). Here y*=0, z*=-3.5.
Example 5. Consider the following linear variational inequality problem. The mapping F
and constraint set S defined by

1 2 3

1 2 3

1 2 3

4 2 8 5
() 2 8 6 6

8 6 12 12

x x x
F x x x x

x x x

− + +⎡ ⎤
⎢ ⎥= − + − +⎢ ⎥
⎢ ⎥− + −⎣ ⎦

and

{ }4
1 2 3 1 2 3 1 22 6, 2 16, - 2 4, ,S x R x x x x x x x x l x h= ∈ + + ≥ − − − ≥ − + = ≤ ≤

where (7, 7, 7)Tl = − − − and (5, 5, 5)Th = .
Example 6. Consider the following linear complementarity problem:

0, 0, () 0,Tx Qx x Qxθ θ≥ + ≥ + =

 Where

2 6 2 3
0 3 2 6
2 3 4 9

2 6 2 6

Q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

 and .

5
6
3

4

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

This problem has one solution x*= (1.1668, 0, 1.333, 0). Fig. 5.12 depict the trajectories of
neural network model (19) with initial points (8,3,2,0)T and (3,1,2,6)T.

 Recurrent Neural Networks

280

 (a)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1
x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(1/4,3/2,4,1/3,-2,-3)

(b)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1

x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(2,-2,-1,1,2.5,3)

Fig. 5.12. Example 4: The transient behavior of the neural network model, Yashtini and
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial
points.

Applications of Recurrent Neural Networks to Optimization Problems

281

-10

-5

0

5

-4

-2

0

2
1

2

3

4

5

x=(2,-2,4)

x1

x=(-7,-4,2)

x=(-5,-2,4)

x=(-6,-2,5)

x=(-10,-4,3)

x=(-9,-3,1)

x=(-9,-1,1)

x2

x*=(-6.5,1.25,5)

x=(-9,0,1)

x3

Fig. 5.13. Example 5: Simulation results for the neural network model Yashtini and
Malek [4], with eight various initial points.

Example 7. Consider the following quadratic programming problem:

2 2
1 2 1 2 1 2 30 30 ,Minimize x x x x x x+ + − −

1 2 3

1 2 4

5 1

2 6

5 35 ,
12 12
5 35 ,
2 2

 5,
 5,
 0, 1,i

Subject to x x x

x x x

x x
x x

x i

− + =

+ + =

− =
+ =

≥ =()2,...,6 .

and its dual:

 2 2
1 2 3 4 1 2 1 2

35 35 5 5 ,
12 2

Minimize y y y y x x x x+ + + − − −

1 2 3 1 2

1 2 4 1 2

5 5 2 30,
12 2

 2 30.

Subject to y y y x x

y y y x x

+ − − − ≤ −

− + + − − ≤ −

 Recurrent Neural Networks

280

 (a)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1
x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(1/4,3/2,4,1/3,-2,-3)

(b)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1

x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(2,-2,-1,1,2.5,3)

Fig. 5.12. Example 4: The transient behavior of the neural network model, Yashtini and
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial
points.

Applications of Recurrent Neural Networks to Optimization Problems

281

-10

-5

0

5

-4

-2

0

2
1

2

3

4

5

x=(2,-2,4)

x1

x=(-7,-4,2)

x=(-5,-2,4)

x=(-6,-2,5)

x=(-10,-4,3)

x=(-9,-3,1)

x=(-9,-1,1)

x2

x*=(-6.5,1.25,5)

x=(-9,0,1)

x3

Fig. 5.13. Example 5: Simulation results for the neural network model Yashtini and
Malek [4], with eight various initial points.

Example 7. Consider the following quadratic programming problem:

2 2
1 2 1 2 1 2 30 30 ,Minimize x x x x x x+ + − −

1 2 3

1 2 4

5 1

2 6

5 35 ,
12 12
5 35 ,
2 2

 5,
 5,
 0, 1,i

Subject to x x x

x x x

x x
x x

x i

− + =

+ + =

− =
+ =

≥ =()2,...,6 .

and its dual:

 2 2
1 2 3 4 1 2 1 2

35 35 5 5 ,
12 2

Minimize y y y y x x x x+ + + − − −

1 2 3 1 2

1 2 4 1 2

5 5 2 30,
12 2

 2 30.

Subject to y y y x x

y y y x x

+ − − − ≤ −

− + + − − ≤ −

 Recurrent Neural Networks

282

This problem is solved using models (23) and (24). Numerical results are shown in tables 1
and 2. These tables show that both models (23) and (24) are converging to the exact solution
while model (23) is simpler to use and uses less expensive analog multipliers (see Malek &
Alipour 2007).

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

7

8

9

x1

x2

x3

x4

xo=(8,3,2,0)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

x1

x2

x3x4

t

x(
t)

xo=(3,-1,2,6)

Fig. 5.14. Example 6: The transient behavior of the neural network model, Yashtini and
Malek [4] using two different set of the initial points.

Applications of Recurrent Neural Networks to Optimization Problems

283

6. Exercises for the Reader
6.1 Smoothing filters:
It is often desirable to apply a smoothing filter to the measured date in order to reconstruct
the underlying smooth function, where the noise is independent of the observed variable.
We denote by 1[,...,]nf f f= and 1[,...,]ng g g= as measured data and smoothed data
respectively. For a given vector f of length n consisting of measured data corrupted by
random noise of δ =constant mean derivation, the smoothing filters problem is to find

, 1, ...,ig i n= such that i if g δ− ≤ , on average. For n samples this condition can be
written as

 2 2

1
()

n

i i
i

f g nδ
=

− ≤∑ (Noise limiting condition) (31)

Now since our filtering problem consists in requiring that the continuous filtered curve
)(xg be as smooth as possible, we would require that

 max

min

2

 ()
x

x
Minimize g x dx′′∫ (32)

A finite difference scheme for second derivative of)(xg is [47]

1 1
12

2
() , 1, ...,i i i

i i

g g g
g x x x x i i n

x
+ −

+

− +′′ = Δ = − ∀ =
Δ

Thus condition (32) is replaced by

1

2
1 1

i 2
 (2)

n

i i iMinimize g g g
−

+ −
=

− +∑ (Smoothness condition) (33)

Then, by restating the optimization problem (33) and (31) in matrix notation we will have
objective of

2
 Minimize Ag

subject to the quadratic inequality constraint
2 2
2

 Minimize g f nδ− ≤

where (2)n nA − × matrix is defined as

1 2 1
1 2 1

. . .
. . .

. . .
1 2 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

This is a quadratic optimization problem with quadratic conditions [48].

 Recurrent Neural Networks

282

This problem is solved using models (23) and (24). Numerical results are shown in tables 1
and 2. These tables show that both models (23) and (24) are converging to the exact solution
while model (23) is simpler to use and uses less expensive analog multipliers (see Malek &
Alipour 2007).

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

7

8

9

x1

x2

x3

x4

xo=(8,3,2,0)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

4

6

8

10

12

x1

x2

x3x4

t

x(
t)

xo=(3,-1,2,6)

Fig. 5.14. Example 6: The transient behavior of the neural network model, Yashtini and
Malek [4] using two different set of the initial points.

Applications of Recurrent Neural Networks to Optimization Problems

283

6. Exercises for the Reader
6.1 Smoothing filters:
It is often desirable to apply a smoothing filter to the measured date in order to reconstruct
the underlying smooth function, where the noise is independent of the observed variable.
We denote by 1[,...,]nf f f= and 1[,...,]ng g g= as measured data and smoothed data
respectively. For a given vector f of length n consisting of measured data corrupted by
random noise of δ =constant mean derivation, the smoothing filters problem is to find

, 1, ...,ig i n= such that i if g δ− ≤ , on average. For n samples this condition can be
written as

 2 2

1
()

n

i i
i

f g nδ
=

− ≤∑ (Noise limiting condition) (31)

Now since our filtering problem consists in requiring that the continuous filtered curve
)(xg be as smooth as possible, we would require that

 max

min

2

 ()
x

x
Minimize g x dx′′∫ (32)

A finite difference scheme for second derivative of)(xg is [47]

1 1
12

2
() , 1, ...,i i i

i i

g g g
g x x x x i i n

x
+ −

+

− +′′ = Δ = − ∀ =
Δ

Thus condition (32) is replaced by

1

2
1 1

i 2
 (2)

n

i i iMinimize g g g
−

+ −
=

− +∑ (Smoothness condition) (33)

Then, by restating the optimization problem (33) and (31) in matrix notation we will have
objective of

2
 Minimize Ag

subject to the quadratic inequality constraint
2 2
2

 Minimize g f nδ− ≤

where (2)n nA − × matrix is defined as

1 2 1
1 2 1

. . .
. . .

. . .
1 2 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

This is a quadratic optimization problem with quadratic conditions [48].

 Recurrent Neural Networks

284

i. Solve this problem for 0.1δ = , 1000n = by the neural network models given in this
chapter (Malek & coauthors).

ii. Compare your results with method of A. Savitzky and M.J.E Golay [49] and J. Steinier et
al. [50].

iii. Use MATLAB or MAPEL to solve this problem.

6.2 Nonlinear programming via variational inequalities
Consider the nonlinear programming problem:

3
2 2 2 2 1

1 1 2 1 2 3 4

1 2 4

1 2 3

 () 0.4 0.5 0.5
30

 -0.5 0.5,
 0.5 0.4,

xMinimize f x x x x x x x x

Subject to x x x
x x x

= + + − + + +

− + ≥ −
+ − =

1 2 3 4 , , , 0.x x x x ≥

i. Show that this is a convex nonlinear programming problem.
ii. Use MATLAB or MAPEL to show that x* = (0.257, 0.258, 0, 0)T is an optimal solution

for this problem.
iii. Show that x* In (ii) is also a solution for the monotone variational inequalities described

in section 2.4, where () ()F x f x= ∇ , and

 { }4
1 2 4 1 2 30.5 0.5, 0.5 0.4, 0S x R x x x x x x x= ∈ − − + ≥ − + − = − ≥

iv. Use the dynamical system

(())T Tx x F x A y B y x
d y y Ax b
dt

z Bx c

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = − +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

proposed in [4], in order to find the equilibrium value u*=(x*, y*, z*), starting from (a)
feasible initial point (0.2, 1, 0.3, 0.75, -0.3, -0.5,)T and (b) infeasible initial point
(0.5, 0.5, -0.1, -0.4, 0.9, -0.5)T
v. Depict the trajectories of the above dynamical system.

7. References
N. S. Kambo, Mathematical Programming Techniques, EWP LTD, New Delhi-Madras, 1984.
M.S. Bazaraa, C.M. Shetty, Nonlinear Programming, Theory and Algorithms, John Wiley

and Sons, Inc., New York (1990).
L.Z. Liao, Q. Houduo, Q. Liqun, Solving non-linear complementarity problems with neural

networks: a reformulation method approach, 1999.
M. Yashtini, A. Malek, Solving complementarity and variational inequalities problems using

neural networks. Applied Mathematic and Computation 190 (2007) 216-230.
Xing-Bao Gao, Li-Zhi Liao and Liqun Qi, A Novel Neural Network for Variational

Inequalities with Linear and Nonlinear Constraints, IEEE Trans. Neural networks
16 (6) (2005) 1305-1317.

Applications of Recurrent Neural Networks to Optimization Problems

285

M. Fukushima, Equivalent differentiable optimization problems and desent method for
asymmetric variational inequality problems, Math program. 53 (1992) 99-110.

D. Kinderlehrer, G. Stampcchia, An Introduction to Variational Inequalities and Their
Applications, New York: Academic, 1980.

M. Avriel, Nonlinear Programming: Analysis and Methods. Englewood Cliffs, NJ: Prentice-
Hall, 1976.

P.T. Harker, J.S. Pang, Finite-dimensional variational inequality and nonlinear
Complementarity problems: A survey of theory, algorithms, and applications,
Math. Program. 48B (1990) 161-220.

B.S. He, L.-Z. Liao, Improvements of some projection methods for monotone nonlinear
variational inequalities, J. Optim. Theory Appl. 112 (1) (2002) 111-128.

J.M. Ortega, W.C. Rheinboidt, Iterative Solution of Nonlinear Equation in Several Variables.
New York: Academic, 1970.

B.S. He, Solution and applications of a class of general linear variational inequalities, Science
China, ser. A, 39 (1996) 395-404.

B.S. He, A class of projection and contraction methods for monotone variational inequalities,
Appl. Math. Optim., Ser. A, 35 (1997) 69-76.

Y.S. Xia, A new neural network for solving linear and quadratic programming problems,
IEEE Transactions on Neural Networks 7(1996) 1544-1547.

Y.S. Xia , J. Wang, A general methodology for designing globally convergent optimization
neural networks. IEEE Transactions on Neural Networks 9(1998) 1331-1343.

A. Malek and A. Yari, Primal-dual solution for the linear programming problems using
neural networks, Applied Mathematics and Computation (2004) In press.

Q. Tao, J.D. Cao, M.S. Xue, H.Qiao. A high performance neural network for solving nonlinear
programming problems with hybrid constraints, Phys. Lett. A, 288 (2) (2001) 88-94.

J. Wang, Q. Hu, D. Jiang, A lagrangian neural network for kinematics control of redundant
robot manipulators, IEEE Trans. Neural Netw. 10 (5) (1999) 1123-1132.

A. Malek , R. Shekari Beidokhti, Numerical solution for high order differential equations
using a hybrid neural network—Optimization method, Applied Mathematic and
Computation 183 (2006) 260-271.

F.Pineda, "Generalization of backpropagation to recurrent neural networks," Physical
Review Letters, vol. 18,pp 2229-2232, 1988.

T. Khanna, Foundations of Neural Networks. Addison-Wesley, Reading, Massachusets, 1990.
X. Y. Wu, Y. S. Xia, J. Li and W. K. Chen, A High Performance Neural Network for Solving

Linear and Quadratic Programming Problems, IEEE Transactions on Neural
Networks 7 (3) (1996) 643-651.

Y.S. Xia, H. Leung, J. Wang, A projection neural network and its application to constrained
optimization problems, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (4)
(2002) 447-458.

Y.S. Xia, J. Wang, A recurrent neural network for solving linear projection equations,
Neural Network. 13 (2000)337-350.

Y.S. Xia, J. Wang, A dual neural network for kinemics control of redundant robot
manipulators. IEEE Transactions on System, 3(2001) 147-154.

A. Malek, H.G. Oskoei, Primal-dual solution for the linear programming problems using
neural networks, Appl. Math. Comput. 169 (2005) 451-471.

H. Ghasabi-Oskoei, A. Malek, A. Ahmadi, Novel artificial neural network with simulation
aspects for solving linear and quadratic programming problems, Computer&
Mathematics with Application, Computers and Mathematics with Applications 53
(2007) 1439-1454.

 Recurrent Neural Networks

284

i. Solve this problem for 0.1δ = , 1000n = by the neural network models given in this
chapter (Malek & coauthors).

ii. Compare your results with method of A. Savitzky and M.J.E Golay [49] and J. Steinier et
al. [50].

iii. Use MATLAB or MAPEL to solve this problem.

6.2 Nonlinear programming via variational inequalities
Consider the nonlinear programming problem:

3
2 2 2 2 1

1 1 2 1 2 3 4

1 2 4

1 2 3

 () 0.4 0.5 0.5
30

 -0.5 0.5,
 0.5 0.4,

xMinimize f x x x x x x x x

Subject to x x x
x x x

= + + − + + +

− + ≥ −
+ − =

1 2 3 4 , , , 0.x x x x ≥

i. Show that this is a convex nonlinear programming problem.
ii. Use MATLAB or MAPEL to show that x* = (0.257, 0.258, 0, 0)T is an optimal solution

for this problem.
iii. Show that x* In (ii) is also a solution for the monotone variational inequalities described

in section 2.4, where () ()F x f x= ∇ , and

 { }4
1 2 4 1 2 30.5 0.5, 0.5 0.4, 0S x R x x x x x x x= ∈ − − + ≥ − + − = − ≥

iv. Use the dynamical system

(())T Tx x F x A y B y x
d y y Ax b
dt

z Bx c

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = − +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

proposed in [4], in order to find the equilibrium value u*=(x*, y*, z*), starting from (a)
feasible initial point (0.2, 1, 0.3, 0.75, -0.3, -0.5,)T and (b) infeasible initial point
(0.5, 0.5, -0.1, -0.4, 0.9, -0.5)T
v. Depict the trajectories of the above dynamical system.

7. References
N. S. Kambo, Mathematical Programming Techniques, EWP LTD, New Delhi-Madras, 1984.
M.S. Bazaraa, C.M. Shetty, Nonlinear Programming, Theory and Algorithms, John Wiley

and Sons, Inc., New York (1990).
L.Z. Liao, Q. Houduo, Q. Liqun, Solving non-linear complementarity problems with neural

networks: a reformulation method approach, 1999.
M. Yashtini, A. Malek, Solving complementarity and variational inequalities problems using

neural networks. Applied Mathematic and Computation 190 (2007) 216-230.
Xing-Bao Gao, Li-Zhi Liao and Liqun Qi, A Novel Neural Network for Variational

Inequalities with Linear and Nonlinear Constraints, IEEE Trans. Neural networks
16 (6) (2005) 1305-1317.

Applications of Recurrent Neural Networks to Optimization Problems

285

M. Fukushima, Equivalent differentiable optimization problems and desent method for
asymmetric variational inequality problems, Math program. 53 (1992) 99-110.

D. Kinderlehrer, G. Stampcchia, An Introduction to Variational Inequalities and Their
Applications, New York: Academic, 1980.

M. Avriel, Nonlinear Programming: Analysis and Methods. Englewood Cliffs, NJ: Prentice-
Hall, 1976.

P.T. Harker, J.S. Pang, Finite-dimensional variational inequality and nonlinear
Complementarity problems: A survey of theory, algorithms, and applications,
Math. Program. 48B (1990) 161-220.

B.S. He, L.-Z. Liao, Improvements of some projection methods for monotone nonlinear
variational inequalities, J. Optim. Theory Appl. 112 (1) (2002) 111-128.

J.M. Ortega, W.C. Rheinboidt, Iterative Solution of Nonlinear Equation in Several Variables.
New York: Academic, 1970.

B.S. He, Solution and applications of a class of general linear variational inequalities, Science
China, ser. A, 39 (1996) 395-404.

B.S. He, A class of projection and contraction methods for monotone variational inequalities,
Appl. Math. Optim., Ser. A, 35 (1997) 69-76.

Y.S. Xia, A new neural network for solving linear and quadratic programming problems,
IEEE Transactions on Neural Networks 7(1996) 1544-1547.

Y.S. Xia , J. Wang, A general methodology for designing globally convergent optimization
neural networks. IEEE Transactions on Neural Networks 9(1998) 1331-1343.

A. Malek and A. Yari, Primal-dual solution for the linear programming problems using
neural networks, Applied Mathematics and Computation (2004) In press.

Q. Tao, J.D. Cao, M.S. Xue, H.Qiao. A high performance neural network for solving nonlinear
programming problems with hybrid constraints, Phys. Lett. A, 288 (2) (2001) 88-94.

J. Wang, Q. Hu, D. Jiang, A lagrangian neural network for kinematics control of redundant
robot manipulators, IEEE Trans. Neural Netw. 10 (5) (1999) 1123-1132.

A. Malek , R. Shekari Beidokhti, Numerical solution for high order differential equations
using a hybrid neural network—Optimization method, Applied Mathematic and
Computation 183 (2006) 260-271.

F.Pineda, "Generalization of backpropagation to recurrent neural networks," Physical
Review Letters, vol. 18,pp 2229-2232, 1988.

T. Khanna, Foundations of Neural Networks. Addison-Wesley, Reading, Massachusets, 1990.
X. Y. Wu, Y. S. Xia, J. Li and W. K. Chen, A High Performance Neural Network for Solving

Linear and Quadratic Programming Problems, IEEE Transactions on Neural
Networks 7 (3) (1996) 643-651.

Y.S. Xia, H. Leung, J. Wang, A projection neural network and its application to constrained
optimization problems, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49 (4)
(2002) 447-458.

Y.S. Xia, J. Wang, A recurrent neural network for solving linear projection equations,
Neural Network. 13 (2000)337-350.

Y.S. Xia, J. Wang, A dual neural network for kinemics control of redundant robot
manipulators. IEEE Transactions on System, 3(2001) 147-154.

A. Malek, H.G. Oskoei, Primal-dual solution for the linear programming problems using
neural networks, Appl. Math. Comput. 169 (2005) 451-471.

H. Ghasabi-Oskoei, A. Malek, A. Ahmadi, Novel artificial neural network with simulation
aspects for solving linear and quadratic programming problems, Computer&
Mathematics with Application, Computers and Mathematics with Applications 53
(2007) 1439-1454.

 Recurrent Neural Networks

286

Rumelhart, D. E., Hinton, G. E. And Williams, R. J. (1986) learning internal representations
by error propagation in Parallel Distributed processing vol. 1 & 2, MIT Press.

J. Hopfield, "Neurons with graded response have collective computational properties like
those of two state neurons," Proceeding of the National Academy of Science, vol.
81, pp. 3088-3092, 1984.

Grossberg, Studies of Mind and Brain: Neural Principles of Learning, Perception,
Development, Cognition, and Motor Control. Reidel, Boston, Masachussets, 1988.

D. W. Tank and J. J. Hopfield, Simple Neural Optimization Networks: An A/D Converter,
Signal Decision Network, and Linear Programming Circuit, IEEE Transactions on
Circuits and Systems CAS 33, (1986) 533-541.

L. O. Chua and G. N. Lin, Nonlinear Programming without Computation, IEEE Transaction
On Circuits and Systems CAS 31 (1984) 182-188.

G. Wilson, Quadratic programming analogs, IEEE Trans. Circuits Syst. CAS 33 (9) (1986)
907-911 1986.

J. B. Dennis, Mathematical programming and electrical networks, Chapman and Hall,
London, 1959.

M. V. Rybashov, The gradient method for solving convex programming problems on
electronic analog computers, Automation and Remote Contr. 26 (11) (1965) 1886-1898.

M. V. Rybashov, Gradient method for solving convex programming problems on electronic
analog computers, Automation and Remote Contr. 26 (12) (1965) 2079-2089.

N. N. Karpinskaya, Method of "Penalty" functions and the foundations of Pyne's method,
Automation and Remote Contr. 28, (1) (1967) 124-129.

M.P. Kennedy, L.-O. Chua, Unifying the Tank and Hopfield Linear Programming Ne- twork
and the Canonical Nonlinear Programming Circuit of Chua and Lin, IEEE Tra-
nsactions On Circuits and Systems CAS, 34: 210-214 (1997).

A. Rodriguez-Vazquez, Dominguer-Castro, A. Rueda, J. L. Huertas, and E. Sanchez-
Sinenico, Nonlinear switched-capacitor "neural" networks for optimization
problems, IEEE Trans. Circ. Syst. 37 (1990) 384-397.

Y.-H. Chen, S.-C. Fang, Solving Convex Programming Problems with Equality Const-raints
By Neural Networks, Vol. 36, No. 7: 41-68 (1998).

A. Malek, M. Alipour, Numerical solution for linear and quadratic programming problems
using a recurrent neural network, Appl. Math. Comput. 192 (2007) 27-39.

D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

D.G. Luenberger, Introduction To Linear Nonlinear Programming, Addison-Wesley, MA, (1973).
R.K. Miller, A.N. Michel, Ordinary Diffrential Equations, Newral Network: Academic, 1982.
J.P. LaSalle, The Stability of Dynamical Systems, Siam ,Philadelphia , PA, (1976).
A. Malek, M. Yashtini, Novel neural network for solving nonlinear programming problem

with nonlinear constraints, submitted.
G. D. Smith, Numerical solution of partial differential equations: finite difference methods.

3rd ed. Oxford Applied Mathematics and Computing Science series, 1986.
U. Von Matt, Large constraned Quadratic problems, Verlagder Fuchrereine, Zurich.
A. Savitzky and M. J. E. Golay, Smoothing and Differentiation of Data by simplified Least

Squares Procedures, Analytical Chemistry, 36 (1964), pp. 1627-1639.
J. Steinier, Y. Termonia and J. Deltour, Comments on Smoothing and Differentiation of Data

by Simplified least Square Procedure, Analytical Chemistry, 44 (1972), pp. 1906-
1909.

Applications of Recurrent Neural Networks to Optimization Problems

287

Table 1. Numerical results for primal and dual quadratic problems in section 5 using four
different initial points (feasible and infeasible) using model (23), proposed by Malek &
Alipour, Applied Mathematics and Computation 192 (2007) 27-39

 Recurrent Neural Networks

286

Rumelhart, D. E., Hinton, G. E. And Williams, R. J. (1986) learning internal representations
by error propagation in Parallel Distributed processing vol. 1 & 2, MIT Press.

J. Hopfield, "Neurons with graded response have collective computational properties like
those of two state neurons," Proceeding of the National Academy of Science, vol.
81, pp. 3088-3092, 1984.

Grossberg, Studies of Mind and Brain: Neural Principles of Learning, Perception,
Development, Cognition, and Motor Control. Reidel, Boston, Masachussets, 1988.

D. W. Tank and J. J. Hopfield, Simple Neural Optimization Networks: An A/D Converter,
Signal Decision Network, and Linear Programming Circuit, IEEE Transactions on
Circuits and Systems CAS 33, (1986) 533-541.

L. O. Chua and G. N. Lin, Nonlinear Programming without Computation, IEEE Transaction
On Circuits and Systems CAS 31 (1984) 182-188.

G. Wilson, Quadratic programming analogs, IEEE Trans. Circuits Syst. CAS 33 (9) (1986)
907-911 1986.

J. B. Dennis, Mathematical programming and electrical networks, Chapman and Hall,
London, 1959.

M. V. Rybashov, The gradient method for solving convex programming problems on
electronic analog computers, Automation and Remote Contr. 26 (11) (1965) 1886-1898.

M. V. Rybashov, Gradient method for solving convex programming problems on electronic
analog computers, Automation and Remote Contr. 26 (12) (1965) 2079-2089.

N. N. Karpinskaya, Method of "Penalty" functions and the foundations of Pyne's method,
Automation and Remote Contr. 28, (1) (1967) 124-129.

M.P. Kennedy, L.-O. Chua, Unifying the Tank and Hopfield Linear Programming Ne- twork
and the Canonical Nonlinear Programming Circuit of Chua and Lin, IEEE Tra-
nsactions On Circuits and Systems CAS, 34: 210-214 (1997).

A. Rodriguez-Vazquez, Dominguer-Castro, A. Rueda, J. L. Huertas, and E. Sanchez-
Sinenico, Nonlinear switched-capacitor "neural" networks for optimization
problems, IEEE Trans. Circ. Syst. 37 (1990) 384-397.

Y.-H. Chen, S.-C. Fang, Solving Convex Programming Problems with Equality Const-raints
By Neural Networks, Vol. 36, No. 7: 41-68 (1998).

A. Malek, M. Alipour, Numerical solution for linear and quadratic programming problems
using a recurrent neural network, Appl. Math. Comput. 192 (2007) 27-39.

D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

D.G. Luenberger, Introduction To Linear Nonlinear Programming, Addison-Wesley, MA, (1973).
R.K. Miller, A.N. Michel, Ordinary Diffrential Equations, Newral Network: Academic, 1982.
J.P. LaSalle, The Stability of Dynamical Systems, Siam ,Philadelphia , PA, (1976).
A. Malek, M. Yashtini, Novel neural network for solving nonlinear programming problem

with nonlinear constraints, submitted.
G. D. Smith, Numerical solution of partial differential equations: finite difference methods.

3rd ed. Oxford Applied Mathematics and Computing Science series, 1986.
U. Von Matt, Large constraned Quadratic problems, Verlagder Fuchrereine, Zurich.
A. Savitzky and M. J. E. Golay, Smoothing and Differentiation of Data by simplified Least

Squares Procedures, Analytical Chemistry, 36 (1964), pp. 1627-1639.
J. Steinier, Y. Termonia and J. Deltour, Comments on Smoothing and Differentiation of Data

by Simplified least Square Procedure, Analytical Chemistry, 44 (1972), pp. 1906-
1909.

Applications of Recurrent Neural Networks to Optimization Problems

287

Table 1. Numerical results for primal and dual quadratic problems in section 5 using four
different initial points (feasible and infeasible) using model (23), proposed by Malek &
Alipour, Applied Mathematics and Computation 192 (2007) 27-39

 Recurrent Neural Networks

288

Table 2 Numerical results for primal and dual quadratic problems in section 5 using four
different initial points (feasible and infeasible) using model (24) , proposed by Malek &
Alipour, Applied Mathematics and Computation 192 (2007) 27-39

13

Neurodynamic Optimization:
 Towards Nonconvexity

Xiaolin Hu
Tsinghua National Lab for Information Science and Technology,

State Key Lab of Intelligent Technology and Systems,
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084,
 China

1. Introduction
Optimization is a ubiquitous phenomenon in nature and an important tool in engineering.
As the counterparts of biological neural systems, properly designed artificial neural
networks can serve as goal-seeking computational models for solving various optimization
problems in many applications. In many engineering applications such as optimal control
and signal processing, obtaining real-time locally optimal solutions is more important than
taking time to search for globally optimal solutions. In such applications, recurrent neural
networks are usually more competent than numerical optimization methods because of the
inherent parallel nature.
Since the seminal work of Tank and Hopfield in 1980s (Hopfield & Tank, 1986; Tank &
Hopfield, 1986), recurrent neural networks for solving optimization problems have attracted
much attention. In the past twenty years, many models have been developed for solving
convex optimization problems, from the earlier proposals including the penalty method
based neural network (Kennedy & Chua, 1988), the switched-capacitor neural network
(Rodriģuez-Vázquez et al., 1990) and the deterministic annealing neural network (Wang,
1994), to the latest development including (Xia, 2004; Gao, 2004; Gao et al., 2005; Hu &
Wang, 2007b; Hu & Wang, 2007c; Hu & Wang, 2008). These latest models have a common
characteristic: they were all formulated based on optimality conditions of the problems and
therefore their equilibria correspond exactly to the solutions of the problems. In addition, for
ensuring this correspondence, in contrast to many earlier proposals such as the penalty-
based neural network (Kennedy & Chua, 1988), there is no need to let any parameter go
infinity. More importantly, if these neural networks are applied to solve nonconvex
optimization problems, this nice property will be retained in the sense of critical points
instead of global optima, e.g., Karush-Kuhn-Tucker (KKT) points (i.e., the equilibria will
correspond no longer to the global optima but to these critical points). Naturally, one will
ask if these models are suitable for searching for critical points, especially local optima, of
general nonconvex optimization problems.
Unfortunately, there is no guarantee that these optimality-conditions-based neural networks
can be directly adopted to solve nonconvex optimization problems. In designing recurrent
neural networks for optimization, letting the equilibria correspond to solutions is just one

 Recurrent Neural Networks

288

Table 2 Numerical results for primal and dual quadratic problems in section 5 using four
different initial points (feasible and infeasible) using model (24) , proposed by Malek &
Alipour, Applied Mathematics and Computation 192 (2007) 27-39

13

Neurodynamic Optimization:
 Towards Nonconvexity

Xiaolin Hu
Tsinghua National Lab for Information Science and Technology,

State Key Lab of Intelligent Technology and Systems,
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084,
 China

1. Introduction
Optimization is a ubiquitous phenomenon in nature and an important tool in engineering.
As the counterparts of biological neural systems, properly designed artificial neural
networks can serve as goal-seeking computational models for solving various optimization
problems in many applications. In many engineering applications such as optimal control
and signal processing, obtaining real-time locally optimal solutions is more important than
taking time to search for globally optimal solutions. In such applications, recurrent neural
networks are usually more competent than numerical optimization methods because of the
inherent parallel nature.
Since the seminal work of Tank and Hopfield in 1980s (Hopfield & Tank, 1986; Tank &
Hopfield, 1986), recurrent neural networks for solving optimization problems have attracted
much attention. In the past twenty years, many models have been developed for solving
convex optimization problems, from the earlier proposals including the penalty method
based neural network (Kennedy & Chua, 1988), the switched-capacitor neural network
(Rodriģuez-Vázquez et al., 1990) and the deterministic annealing neural network (Wang,
1994), to the latest development including (Xia, 2004; Gao, 2004; Gao et al., 2005; Hu &
Wang, 2007b; Hu & Wang, 2007c; Hu & Wang, 2008). These latest models have a common
characteristic: they were all formulated based on optimality conditions of the problems and
therefore their equilibria correspond exactly to the solutions of the problems. In addition, for
ensuring this correspondence, in contrast to many earlier proposals such as the penalty-
based neural network (Kennedy & Chua, 1988), there is no need to let any parameter go
infinity. More importantly, if these neural networks are applied to solve nonconvex
optimization problems, this nice property will be retained in the sense of critical points
instead of global optima, e.g., Karush-Kuhn-Tucker (KKT) points (i.e., the equilibria will
correspond no longer to the global optima but to these critical points). Naturally, one will
ask if these models are suitable for searching for critical points, especially local optima, of
general nonconvex optimization problems.
Unfortunately, there is no guarantee that these optimality-conditions-based neural networks
can be directly adopted to solve nonconvex optimization problems. In designing recurrent
neural networks for optimization, letting the equilibria correspond to solutions is just one

 Recurrent Neural Networks

290

issue. The other issue that cannot be neglected is to ensure the stability of the networks at
these equilibria. In fact, if the above mentioned neural networks are directly applied to
nonconvex problems, their dynamic behaviors could change drastically and become
unpredictable. This is not like the circumstance of extending penalty-based neural networks
for constrained convex optimization to solve constrained nonconvex problems. In that case,
the performances of the networks for solving nonconvex problems can be predicted easily
based on their performances in solving convex counterparts, e.g., if a network is previously
globally convergent to some points, then it is locally convergent to these points now.
So far, no much achievement in this direction has been obtained yet. In the chapter, I will
review some recent progress made by us along this route. Our primary aim is to design
locally or globally convergent recurrent neural networks (1) for solving special nonconvex
optimization problems whose local minima are also global, and (2) for seeking Karush-
Kuhn-Tucker points of general nonconvex optimization problems. The two issues are
presented in Section 3 and Section 4, respectively, after a brief introduction of some
preliminaries in Section 2. Section 5 summarizes the findings and discusses several possible
future directions related to this topic.

2. Preliminaries

Throughout the chapter, without specifications, the following notations are adopted. ℜn

denotes the n dimensional real space and n
+ℜ denotes its nonnegative quadrant. If a function

g : ℜn → ℜ, then ∇g ∈ ℜn stands for its gradient and ∇2g ∈ ℜn×n stands for its Hessian matrix.

If g(x, y) : ℜn × ℜm→ ℜ, then ∇xg(x,y) ∈ ℜn and ∇xx g(x,y) ∈ ℜn×n are viewed as respectively

the gradient and Hessian matrix of g with respect to x. If a function G : ℜn → ℜm, ∇G ∈ ℜm×n
stands for its Jacobian matrix. The transpose of a real matrix A is denoted by AT. A square
matrix A is said to be positive definite (positive semidefinite), denoted by A > 0 (A ≥ 0), if
xTAx > 0 (xTAx ≥ 0) ∀x ≠0. denotes the L2 norm of a vector x.
In many recurrent neural networks, the following projection operator is used as their
activation functions

 (1)

where Ω is a closed convex set and “arg“ stands for the solution of the minimization
problem adhering to it. In general, computing the projection of a point onto a convex set Ω is
itself an optimization problem (see (Hu & Wang, 2008) for a neurodynamic solution to such
a problem). But if Ω is a box set or a sphere set, the calculation is straight forward. For
instance, if , then PΩ (x) = (PΩ (x1),…, PΩ (xn))T

and

(2)

Neurodynamic Optimization: Towards Nonconvexity

291

Figure 1. Projection operator in one dimensional case. Reprint of Fig. 1.3 in (Hu, 2007).

Note ui might be +∞ and li might be -∞. Fig. 1 illustrates this operator in one dimensional
case, which is somewhat similar in shape to the sigmoid activation function in the Hopfield
neural network (cf. Fig. 3(A) in (Hopfield & Tank, 1986)). In particular, if l = 0 and u = ∞, the
operator becomes nP

+ℜ (x). To simplify the notation, in this case it is written as x+. And the

definition can be simplified as x+ = (1x+ ,…, nx+)T with ix+ = max(xi, 0).

For another instance, if where c ∈ ℜn and r ∈ ℜ are two
constants. Then

Definition 1 (Lipschitz Continuity) A function F: ℜn → ℜn is said to be Lipschitz continuous
with constant L on a set D if, for every pair of points x, y ∈ D,

F is said to be locally Lipschitz continuous on D if each point of D has a neighborhood
D0 ⊂ D such that the above inequality holds for every pair of points x, y ∈ D0.

Definition 2 (Convexity) A function f : ℜn → ℜ is convex over a convex set D if for all
x, y ∈ D, and 0 < α < 1

f(x) is strictly convex on D if above strict inequality holds whenever x ≠ y.
Lemma 1 A differentiable function f : ℜn → ℜ is convex on a convex set D if and only if for every
pair of distinct points x, y ∈D,

≥ ∇ Tf y f x f x y - x() ()+ () ().

f(x) is strictly convex if and only if above strict inequality holds whenever x ≠ y.

 Recurrent Neural Networks

290

issue. The other issue that cannot be neglected is to ensure the stability of the networks at
these equilibria. In fact, if the above mentioned neural networks are directly applied to
nonconvex problems, their dynamic behaviors could change drastically and become
unpredictable. This is not like the circumstance of extending penalty-based neural networks
for constrained convex optimization to solve constrained nonconvex problems. In that case,
the performances of the networks for solving nonconvex problems can be predicted easily
based on their performances in solving convex counterparts, e.g., if a network is previously
globally convergent to some points, then it is locally convergent to these points now.
So far, no much achievement in this direction has been obtained yet. In the chapter, I will
review some recent progress made by us along this route. Our primary aim is to design
locally or globally convergent recurrent neural networks (1) for solving special nonconvex
optimization problems whose local minima are also global, and (2) for seeking Karush-
Kuhn-Tucker points of general nonconvex optimization problems. The two issues are
presented in Section 3 and Section 4, respectively, after a brief introduction of some
preliminaries in Section 2. Section 5 summarizes the findings and discusses several possible
future directions related to this topic.

2. Preliminaries

Throughout the chapter, without specifications, the following notations are adopted. ℜn

denotes the n dimensional real space and n
+ℜ denotes its nonnegative quadrant. If a function

g : ℜn → ℜ, then ∇g ∈ ℜn stands for its gradient and ∇2g ∈ ℜn×n stands for its Hessian matrix.

If g(x, y) : ℜn × ℜm→ ℜ, then ∇xg(x,y) ∈ ℜn and ∇xx g(x,y) ∈ ℜn×n are viewed as respectively

the gradient and Hessian matrix of g with respect to x. If a function G : ℜn → ℜm, ∇G ∈ ℜm×n
stands for its Jacobian matrix. The transpose of a real matrix A is denoted by AT. A square
matrix A is said to be positive definite (positive semidefinite), denoted by A > 0 (A ≥ 0), if
xTAx > 0 (xTAx ≥ 0) ∀x ≠0. denotes the L2 norm of a vector x.
In many recurrent neural networks, the following projection operator is used as their
activation functions

 (1)

where Ω is a closed convex set and “arg“ stands for the solution of the minimization
problem adhering to it. In general, computing the projection of a point onto a convex set Ω is
itself an optimization problem (see (Hu & Wang, 2008) for a neurodynamic solution to such
a problem). But if Ω is a box set or a sphere set, the calculation is straight forward. For
instance, if , then PΩ (x) = (PΩ (x1),…, PΩ (xn))T

and

(2)

Neurodynamic Optimization: Towards Nonconvexity

291

Figure 1. Projection operator in one dimensional case. Reprint of Fig. 1.3 in (Hu, 2007).

Note ui might be +∞ and li might be -∞. Fig. 1 illustrates this operator in one dimensional
case, which is somewhat similar in shape to the sigmoid activation function in the Hopfield
neural network (cf. Fig. 3(A) in (Hopfield & Tank, 1986)). In particular, if l = 0 and u = ∞, the
operator becomes nP

+ℜ (x). To simplify the notation, in this case it is written as x+. And the

definition can be simplified as x+ = (1x+ ,…, nx+)T with ix+ = max(xi, 0).

For another instance, if where c ∈ ℜn and r ∈ ℜ are two
constants. Then

Definition 1 (Lipschitz Continuity) A function F: ℜn → ℜn is said to be Lipschitz continuous
with constant L on a set D if, for every pair of points x, y ∈ D,

F is said to be locally Lipschitz continuous on D if each point of D has a neighborhood
D0 ⊂ D such that the above inequality holds for every pair of points x, y ∈ D0.

Definition 2 (Convexity) A function f : ℜn → ℜ is convex over a convex set D if for all
x, y ∈ D, and 0 < α < 1

f(x) is strictly convex on D if above strict inequality holds whenever x ≠ y.
Lemma 1 A differentiable function f : ℜn → ℜ is convex on a convex set D if and only if for every
pair of distinct points x, y ∈D,

≥ ∇ Tf y f x f x y - x() ()+ () ().

f(x) is strictly convex if and only if above strict inequality holds whenever x ≠ y.

 Recurrent Neural Networks

292

3. Solving pseudoconvex optimization problems
In this section we consider solving the following problem

 (3)

where f : ℜn → ℜ is a differentiable nonconvex function and Ω ⊆ ℜn is a box set or sphere set
defined in Section 2.
To pave the way for discussion, some additional definitions are needed.
Definition 3 (Pseudoconvexity) A differentiable function f : ℜn → ℜ is pseudoconvex on a convex
set D if for every pair of distinct points x, y ∈D,

f is strictly pseudoconvex on D if for every pair of distinct points x, y ∈D,

and strongly pseudoconvex on D if there exists a constant β > 0 such that for every pair of points
x, y ∈D,

Definition 4 (Pseudomonotonicity) A function F: ℜn → ℜn is pseudomonotone on a convex set D
if, for every pair of distinct points x, y ∈D,

F is strictly pseudomonotone on D if, for every pair of distinct points x, y ∈D,

and strongly pseudomonotone on D if there exists a constant γ > 0 such that for every pair of points
x, y ∈D,

It is shown in (Karamardian & Schaible, 1990) that a differentiable function is pseudoconvex
and strictly pseudoconvex if and only if its gradient is a pseudomonotone and strictly
pseudomonotone mapping, respectively. Moreover, if its gradient is strongly
pseudomonotone, the function is strongly pseudoconvex; but the converse is not true
(Hadjisavvas & Schaible, 1993).
Lemma 2 Suppose a differentiable function f : ℜn → ℜ is pseudoconvex on Ω ⊂ ℜn. Then a point
 x *∈ Ω satisfies

if and only if x* is a minimum of f(x) in Ω.
One of the important classes of pseudoconvex optimization problems are the quadratic
fractional problems in the following form:

Neurodynamic Optimization: Towards Nonconvexity

293

(4)

where Q is an n × n symmetric matrix, a, b ∈ ℜn, a0, b0 ∈ ℜ. It is well known (e.g., Avriel et al.,
1988) that f is pseudoconvex on X when Q ≥ 0. Conditions for f being pseudoconvex on X
when Q is not positive semidefinite are discussed in (Cambini et al., 2002). Specially, when b
= 0, problem (4) reduces to the classic quadratic programming problem, and when
Q = 0 it reduces to the so-called linear fractional problem, which is of course pseudoconvex on
X (Bazaraa et al., 1993).
Throughout this section, f(x) in (3) is assumed to be pseudoconvex on Ω and ∇f is assumed
to be Lipschitz continuous on Ω. Note that if f is twice continuously differentiable in an open
set containing Ω, then the latter assumption is satisfied automatically.

3.1 Two-layer projection neural network
Consider a recurrent neural network for solving (3) whose dynamics is governed by

(5)

where λ > 0 and α > 0 are two scaling factors, PΩ : ℜn → Ω is the projection operator defined
in section 2, and F(x) stands for ∇f(x). The architecture of the network is illustrated in Fig. 2.
In contrast to the projection neural network, which has a one-layer structure and will be
discussed in next subsection, for convenience, the above network is termed two-layer
projection neural network or TLPNN for short in the chapter.

Figure 2. Architecture of the TLPNN (5). Reprint of Fig. 2.1 in (Hu, 2007).

 Recurrent Neural Networks

292

3. Solving pseudoconvex optimization problems
In this section we consider solving the following problem

 (3)

where f : ℜn → ℜ is a differentiable nonconvex function and Ω ⊆ ℜn is a box set or sphere set
defined in Section 2.
To pave the way for discussion, some additional definitions are needed.
Definition 3 (Pseudoconvexity) A differentiable function f : ℜn → ℜ is pseudoconvex on a convex
set D if for every pair of distinct points x, y ∈D,

f is strictly pseudoconvex on D if for every pair of distinct points x, y ∈D,

and strongly pseudoconvex on D if there exists a constant β > 0 such that for every pair of points
x, y ∈D,

Definition 4 (Pseudomonotonicity) A function F: ℜn → ℜn is pseudomonotone on a convex set D
if, for every pair of distinct points x, y ∈D,

F is strictly pseudomonotone on D if, for every pair of distinct points x, y ∈D,

and strongly pseudomonotone on D if there exists a constant γ > 0 such that for every pair of points
x, y ∈D,

It is shown in (Karamardian & Schaible, 1990) that a differentiable function is pseudoconvex
and strictly pseudoconvex if and only if its gradient is a pseudomonotone and strictly
pseudomonotone mapping, respectively. Moreover, if its gradient is strongly
pseudomonotone, the function is strongly pseudoconvex; but the converse is not true
(Hadjisavvas & Schaible, 1993).
Lemma 2 Suppose a differentiable function f : ℜn → ℜ is pseudoconvex on Ω ⊂ ℜn. Then a point
 x *∈ Ω satisfies

if and only if x* is a minimum of f(x) in Ω.
One of the important classes of pseudoconvex optimization problems are the quadratic
fractional problems in the following form:

Neurodynamic Optimization: Towards Nonconvexity

293

(4)

where Q is an n × n symmetric matrix, a, b ∈ ℜn, a0, b0 ∈ ℜ. It is well known (e.g., Avriel et al.,
1988) that f is pseudoconvex on X when Q ≥ 0. Conditions for f being pseudoconvex on X
when Q is not positive semidefinite are discussed in (Cambini et al., 2002). Specially, when b
= 0, problem (4) reduces to the classic quadratic programming problem, and when
Q = 0 it reduces to the so-called linear fractional problem, which is of course pseudoconvex on
X (Bazaraa et al., 1993).
Throughout this section, f(x) in (3) is assumed to be pseudoconvex on Ω and ∇f is assumed
to be Lipschitz continuous on Ω. Note that if f is twice continuously differentiable in an open
set containing Ω, then the latter assumption is satisfied automatically.

3.1 Two-layer projection neural network
Consider a recurrent neural network for solving (3) whose dynamics is governed by

(5)

where λ > 0 and α > 0 are two scaling factors, PΩ : ℜn → Ω is the projection operator defined
in section 2, and F(x) stands for ∇f(x). The architecture of the network is illustrated in Fig. 2.
In contrast to the projection neural network, which has a one-layer structure and will be
discussed in next subsection, for convenience, the above network is termed two-layer
projection neural network or TLPNN for short in the chapter.

Figure 2. Architecture of the TLPNN (5). Reprint of Fig. 2.1 in (Hu, 2007).

 Recurrent Neural Networks

294

It is proved in (Xia & Wang, 1998) that x*∈ Ω is a solution of (3) if and only if it is an
equilibrium point of the neural network (5). The dynamic behavior of the system was first
discussed in (Xia & Wang, 1998), and later in (Xia & Wang, 2000) with different convexity
assumptions. In (Hu & Wang, 2006a) we have shown that the corresponding results are still
valid when the neural network is employed to solve pseudoconvex optimization problems
in the form of (3) (of course with some additional assumptions). The results are contained in
the following theorem, which is a restatement of Theorems 2 and 3 in (Hu & Wang, 2006a).
Theorem 1 Assume that ∇f(x) is Lipschitz continuous in ℜn with a constant L.
• The TLPNN is globally convergent to a solution of (3) with α < 1/L. In particular, if (3) has a

unique solution, the neural network is globally asymptotically stable.
• If ∇f(x) is strongly pseudomonotone on Ω with constant γ, where γ > 4L, then the TLPNN is

globally exponentially stable with α < (γ - 4L)/ γL.

Remark 1 Note that the Lipschitz continuity of ∇f(x) in ℜn is a stronger condition than the
Lipschitz continuity in Ω.

Figure 3. Transient behavior of the TLPNN (5) in Example 1.

Example 1 We now use the TLPNN to solve a quadratic fractional programming problem (4) with

It is easily verified that Q is symmetric and positive definite in ℜ4, and consequently f is

pseudoconvex on X = {x ∈ ℜ 4|bT x + b0 > 0}. We minimize f over Ω = {x ∈ ℜ 4|1 ≤ xi ≤ 10,

 i = 1,…, 4}⊂ X by using the TLPNN with

Neurodynamic Optimization: Towards Nonconvexity

295

This problem has a unique solution x* = (1, 1, 1, 1)T in Ω. Simulations show that the TLPNN (5) is
globally asymptotically stable at x* with any initial point if α is appropriately selected. For instance,
Fig. 3 shows that the trajectories of the neural network with λ = 100, α= 0.01 and the initial point x0
= (0, 3, 6, 10)T converge to x*.

Figure 4. Architecture of the PNN (6). Reprint of Fig. 3.1 in (Hu, 2007).

3.2 One-layer projection neural network
Consider a simpler neural network, called the projection neural network or PNN, for solving
problem (3) whose dynamic behavior is governed by the following equation

(6)

where the notations are the same as in (5). According to (Kinderlehrer & Stampcchia, 1980),
x* is a solution of (3) if and only if it is an equilibrium point of the PNN. One of the merits of
this neural network is its simplicity compared with the TLPNN. The architecture of the
network is illustrated in Fig. 4. Its stability results were presented in (Hu & Wang, 2006b,
Corollary 3) which is restated as follows.
Theorem 2 Assume that f(x) is twice continuously differentiable on an open set containing Ω. Then
the PNN (6) is stable in the sense of Lyapunov and globally convergent to a solution of (3). Moreover,

 Recurrent Neural Networks

294

It is proved in (Xia & Wang, 1998) that x*∈ Ω is a solution of (3) if and only if it is an
equilibrium point of the neural network (5). The dynamic behavior of the system was first
discussed in (Xia & Wang, 1998), and later in (Xia & Wang, 2000) with different convexity
assumptions. In (Hu & Wang, 2006a) we have shown that the corresponding results are still
valid when the neural network is employed to solve pseudoconvex optimization problems
in the form of (3) (of course with some additional assumptions). The results are contained in
the following theorem, which is a restatement of Theorems 2 and 3 in (Hu & Wang, 2006a).
Theorem 1 Assume that ∇f(x) is Lipschitz continuous in ℜn with a constant L.
• The TLPNN is globally convergent to a solution of (3) with α < 1/L. In particular, if (3) has a

unique solution, the neural network is globally asymptotically stable.
• If ∇f(x) is strongly pseudomonotone on Ω with constant γ, where γ > 4L, then the TLPNN is

globally exponentially stable with α < (γ - 4L)/ γL.

Remark 1 Note that the Lipschitz continuity of ∇f(x) in ℜn is a stronger condition than the
Lipschitz continuity in Ω.

Figure 3. Transient behavior of the TLPNN (5) in Example 1.

Example 1 We now use the TLPNN to solve a quadratic fractional programming problem (4) with

It is easily verified that Q is symmetric and positive definite in ℜ4, and consequently f is

pseudoconvex on X = {x ∈ ℜ 4|bT x + b0 > 0}. We minimize f over Ω = {x ∈ ℜ 4|1 ≤ xi ≤ 10,

 i = 1,…, 4}⊂ X by using the TLPNN with

Neurodynamic Optimization: Towards Nonconvexity

295

This problem has a unique solution x* = (1, 1, 1, 1)T in Ω. Simulations show that the TLPNN (5) is
globally asymptotically stable at x* with any initial point if α is appropriately selected. For instance,
Fig. 3 shows that the trajectories of the neural network with λ = 100, α= 0.01 and the initial point x0
= (0, 3, 6, 10)T converge to x*.

Figure 4. Architecture of the PNN (6). Reprint of Fig. 3.1 in (Hu, 2007).

3.2 One-layer projection neural network
Consider a simpler neural network, called the projection neural network or PNN, for solving
problem (3) whose dynamic behavior is governed by the following equation

(6)

where the notations are the same as in (5). According to (Kinderlehrer & Stampcchia, 1980),
x* is a solution of (3) if and only if it is an equilibrium point of the PNN. One of the merits of
this neural network is its simplicity compared with the TLPNN. The architecture of the
network is illustrated in Fig. 4. Its stability results were presented in (Hu & Wang, 2006b,
Corollary 3) which is restated as follows.
Theorem 2 Assume that f(x) is twice continuously differentiable on an open set containing Ω. Then
the PNN (6) is stable in the sense of Lyapunov and globally convergent to a solution of (3). Moreover,

 Recurrent Neural Networks

296

• If rf is strongly pseudomonotone on Ω and there exists δ > 0 such that f(x) ≤ δ║x - x*║2, where
x* is the unique solution of (3), then the neural network is globally exponentially stable;

• If ∇f is strongly pseudomonotone on Ω and ║∇f(x)║ has an upper bound on Ω, then the neural
network is globally asymptotically stable at the unique solution of (3), while the convergence rate
is upper bounded by

 where a, b are two positive constants.
Example 2 We now use the PNN to solve the pseudoconvex optimization problem in Example 1.
Simulations show that the PNN (6) is globally asymptotically stable at x* with any α, λ and any

initial point. For instance, Fig. 5 shows that the trajectories of the neural network with λ = α = 1 and
the initial point x0 = (0, 3, 6, 10)T converge to x*.

Figure 5. Transient behavior of the PNN (6) in Example 2. Reprint of Fig. 6 in (Hu & Wang,
2006b).

4. Solving general nonconvex optimization problems
Pseudoconvex optimization problems in the form of (3) represent a very special case in the
family of nonconvex optimization problems. In this section let's consider solving the
following generally constrained nonconvex optimization problem:

(7)

where f : ℜn→ℜ, g(x) = [g1(x),…,gm(x)]T is an m-dimensional vector-valued function of n
variables, and X is a box set or a sphere set defined in Section 2. In what follows, the

Neurodynamic Optimization: Towards Nonconvexity

297

functions f, g1(x),…,gm(x) are assumed to be twice continuously differentiable. If all functions
f(x) and gj(x) are convex over ℜn, the problem is called a convex optimization problem;
otherwise, it is called a nonconvex optimization problem, which is what we are interested in
here. Equation (7) represents a wide variety of optimization problems. For example, it is
well known that if a problem has equality constraints h(x) = 0, then this constraint can be
expressed as h(x) ≤ 0 and - h(x) ≤ 0.
For solving general nonconvex optimization problems (including pseudoconvex
optimization problems (3) where Ω is a general convex set instead of box set or sphere set),
no much progress has been made in the neural network community. This is mainly due to
the difficulty in characterizing global optimality of nonconvex optimization problems by
means of explicit equations. From the optimization context, it is known that under fairly
mild conditions an optimum of the problem must be a Karush-Kuhn-Tucker (KKT) point,
while the KKT points are easier to characterize. In terms of developing neural networks for
global optimization, it is very hard to find global optima at the very beginning; and a more
attainable goal at present is to design neural networks for seeking local optima first with the
aid of KKT conditions.
To pave the way for discussion, some additional notations and definitions are needed in this
section. In what follows, let I = {1, … ,n}, J = {1, … ,m}. If u ∈ ℜn, then up = (1

pu ,… , p
nu)T

where p is an integer; Γ(u) = diag(u1,…, un). intS denotes the interior of a set S.
Definition 5 A solution x satisfying the constraints in (7) is called a feasible solution. A feasible
solution x is said to be a regular point if the gradients of gj(x), ∇gj(x), ∀j ∈ { j ∈ J|gj(x) = 0}, are
linearly independent.
Definition 6 A point x* is said to be a strict minimum of the problem in (7) if f(x*) < f(x),
 ∀x ∈ K(x*) ∩ S, where K(x*) is a neighborhood of x* and S is the feasible region of the problem.
According to (Kinderlehrer & Stampcchia, 1980), the Karush-Kuhn-Tucker (KKT) condition
(Bazaraa et al., 1993) for problem (7) can be expressed as

(8)

where α > 0, y ∈ ℜ m and
The classical Lagrangian function associated with problem (7) is defined as

(9)

Note that the Hessian of the Lagrangian function is calculated as

(10)

Lemma 3 (Second-order sufficiency conditions (Bazaraa et al., 1993)) Suppose that x* is a
feasible point to problem (7) and x* ∈ int X. If there exists y* ∈ ℜ m, such that (x*, y*) is a KKT point

pair and the Hessian matrix ∇xxL(x*, y*) in (10) is positive definite on the tangent subspace:

 Recurrent Neural Networks

296

• If rf is strongly pseudomonotone on Ω and there exists δ > 0 such that f(x) ≤ δ║x - x*║2, where
x* is the unique solution of (3), then the neural network is globally exponentially stable;

• If ∇f is strongly pseudomonotone on Ω and ║∇f(x)║ has an upper bound on Ω, then the neural
network is globally asymptotically stable at the unique solution of (3), while the convergence rate
is upper bounded by

 where a, b are two positive constants.
Example 2 We now use the PNN to solve the pseudoconvex optimization problem in Example 1.
Simulations show that the PNN (6) is globally asymptotically stable at x* with any α, λ and any

initial point. For instance, Fig. 5 shows that the trajectories of the neural network with λ = α = 1 and
the initial point x0 = (0, 3, 6, 10)T converge to x*.

Figure 5. Transient behavior of the PNN (6) in Example 2. Reprint of Fig. 6 in (Hu & Wang,
2006b).

4. Solving general nonconvex optimization problems
Pseudoconvex optimization problems in the form of (3) represent a very special case in the
family of nonconvex optimization problems. In this section let's consider solving the
following generally constrained nonconvex optimization problem:

(7)

where f : ℜn→ℜ, g(x) = [g1(x),…,gm(x)]T is an m-dimensional vector-valued function of n
variables, and X is a box set or a sphere set defined in Section 2. In what follows, the

Neurodynamic Optimization: Towards Nonconvexity

297

functions f, g1(x),…,gm(x) are assumed to be twice continuously differentiable. If all functions
f(x) and gj(x) are convex over ℜn, the problem is called a convex optimization problem;
otherwise, it is called a nonconvex optimization problem, which is what we are interested in
here. Equation (7) represents a wide variety of optimization problems. For example, it is
well known that if a problem has equality constraints h(x) = 0, then this constraint can be
expressed as h(x) ≤ 0 and - h(x) ≤ 0.
For solving general nonconvex optimization problems (including pseudoconvex
optimization problems (3) where Ω is a general convex set instead of box set or sphere set),
no much progress has been made in the neural network community. This is mainly due to
the difficulty in characterizing global optimality of nonconvex optimization problems by
means of explicit equations. From the optimization context, it is known that under fairly
mild conditions an optimum of the problem must be a Karush-Kuhn-Tucker (KKT) point,
while the KKT points are easier to characterize. In terms of developing neural networks for
global optimization, it is very hard to find global optima at the very beginning; and a more
attainable goal at present is to design neural networks for seeking local optima first with the
aid of KKT conditions.
To pave the way for discussion, some additional notations and definitions are needed in this
section. In what follows, let I = {1, … ,n}, J = {1, … ,m}. If u ∈ ℜn, then up = (1

pu ,… , p
nu)T

where p is an integer; Γ(u) = diag(u1,…, un). intS denotes the interior of a set S.
Definition 5 A solution x satisfying the constraints in (7) is called a feasible solution. A feasible
solution x is said to be a regular point if the gradients of gj(x), ∇gj(x), ∀j ∈ { j ∈ J|gj(x) = 0}, are
linearly independent.
Definition 6 A point x* is said to be a strict minimum of the problem in (7) if f(x*) < f(x),
 ∀x ∈ K(x*) ∩ S, where K(x*) is a neighborhood of x* and S is the feasible region of the problem.
According to (Kinderlehrer & Stampcchia, 1980), the Karush-Kuhn-Tucker (KKT) condition
(Bazaraa et al., 1993) for problem (7) can be expressed as

(8)

where α > 0, y ∈ ℜ m and
The classical Lagrangian function associated with problem (7) is defined as

(9)

Note that the Hessian of the Lagrangian function is calculated as

(10)

Lemma 3 (Second-order sufficiency conditions (Bazaraa et al., 1993)) Suppose that x* is a
feasible point to problem (7) and x* ∈ int X. If there exists y* ∈ ℜ m, such that (x*, y*) is a KKT point

pair and the Hessian matrix ∇xxL(x*, y*) in (10) is positive definite on the tangent subspace:

 Recurrent Neural Networks

298

where J(x*) is defined by

 (11)

then x*is a strict minimum point of problem (7).
In what follows, let Ω = X × n

+ℜ and Ω* denote the KKT point set of (7) or the solution set of
(8).

4.1 Local convergence of the extended projection neural network
In a series of papers (Xia & Wang, 2004; Xia, 2004; Xia & Feng, 2005; Xia et al., 2007), a
recurrent neural network, termed extended projection neural network (or EPNN for short),
was developed for solving the convex optimization problems in the form of (7) with the
following dynamical equation:

(12)

where α > 0. According to the projection formulation (8), the equilibria of the above EPNN
correspond to the KKT points of problem (7) exactly. If problem (7) is convex, then the KKT
points correspond to the global optima, and the EPNN solves the problem. One wonders
what will happen if (12) is used to solve a nonconvex program in the form of (7). Contrary to
our expectation, in the nonconvex case, the EPNN can not be guaranteed to converge to any
KKT point (which may not correspond to a global optimum), even locally, as will be shown
by numerical examples later on. It is thus demanded to find some necessary and/or
sufficient conditions that guarantee the local convergence of the neural network. The
following theorem provides such a set of sufficient conditions, which is an improved
version of Theorem 9.4 in (Hu, 2007).
Theorem 3 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T)T be the
corresponding KKT point of the problem. If the Hessian matrix ∇xxL(x*; y*) in (10) is positive
definite, then the EPNN (12) is asymptotically stable at u*, and x* is a strict local minimum of the
problem.
Remark 2 In Theorem 9.4 of (Hu, 2007) there is an additional requirement on u*: it should satisfy
the second-order sufficiency conditions in Lemma 3. This requirement is actually unnecessary as it
can be covered by the positive definiteness of ∇xxL(x*; y*).

4.2 Augmented Lagrange networks
Theorem 3 reveals that if the Hessian matrix of the Lagrangian function is positive definite
at a local minimum solution, the EPNN (12) may be locally convergent to that local
optimum. But in many cases, this condition fails to exist. Fortunately, there exist ways to
generate this condition, and one popular technique is to utilize the augmented Lagrangian
functions (Li & Sun, 2000).
In 1992, Zhang and Constantinides proposed a neural network based on the augmented
Lagrangian function for seeking local minima of the following equality constrained
optimization problem (Zhang & Constantinides, 1992):

Neurodynamic Optimization: Towards Nonconvexity

299

where f : ℜn→ ℜ, h : ℜn → ℜm and both f and h are assumed twice continuously differentiable.
The dynamic equation of the network is as follows

where c > 0 is a control parameter. Under the second-order sufficiency conditions, the neural
network can be shown convergent to local minima with appropriate choice of c. The
disadvantage of the neural network lies in that it handles equality constraints only. Though
in theory inequality constraints can be converted to equality constraints by introducing slack
variables, the dimension of the neural network will inevitably increase, which is usually not
deemed a good strategy in terms of model complexity.
An alternative extension of the neural network in (Zhang & Constantinides, 1992) for
handling inequality constraints in (7) directly can be found in (Huang, 2005) and its dynamic
system is as follows (the bound constraint x ∈ X is not considered explicitly in that paper):

The local convergence of the neural network to its equilibrium set, denoted by ˆ eΩ , was
proved by using the linearization techniques, and moreover, Ω* ⊂ ˆ eΩ . However, it is clear

that ˆ eΩ ≠Ω*. For example, any critical point x of the objective function, which makes ∇f(x) =
0, and y = 0 constitute an equilibrium point of the neural network, but in rare cases such an
equilibrium corresponds to a KKT point.
Other augmented Lagrangians associated with problem (7) could be tested from the
viewpoint of recurrent neural networks. But whether a particular Lagrangian is suited for
the design of recurrent neural networks does not have a straightforward answer. For
example, the essentially quadratic augmented Lagrangian discussed in (Sun et al., 2005) might
be a candidate, but its Hessian matrix is not continuous which lays difficulties for analyzing
the convergence of the resulting neural networks. On the other hand, the exponential-type
augmented Lagrangian does have a continuous Hessian matrix, but as the reformulation raises
the constraints to exponents of some exponential functions which causes numerical
difficulties, that method rarely works in practice. In what follows, we discuss about two
promising augmented Lagrangians without these difficulties. For convenience, the resulting
neural networks are termed Augmented Lagrange Networks.

4.2.1 Partial p-power augmented Lagrangian
Problem (7) can be written as

(13)

where ĝ (x) = g(x) + b. Consider the partial p-power transformation of (13):

 Recurrent Neural Networks

298

where J(x*) is defined by

 (11)

then x*is a strict minimum point of problem (7).
In what follows, let Ω = X × n

+ℜ and Ω* denote the KKT point set of (7) or the solution set of
(8).

4.1 Local convergence of the extended projection neural network
In a series of papers (Xia & Wang, 2004; Xia, 2004; Xia & Feng, 2005; Xia et al., 2007), a
recurrent neural network, termed extended projection neural network (or EPNN for short),
was developed for solving the convex optimization problems in the form of (7) with the
following dynamical equation:

(12)

where α > 0. According to the projection formulation (8), the equilibria of the above EPNN
correspond to the KKT points of problem (7) exactly. If problem (7) is convex, then the KKT
points correspond to the global optima, and the EPNN solves the problem. One wonders
what will happen if (12) is used to solve a nonconvex program in the form of (7). Contrary to
our expectation, in the nonconvex case, the EPNN can not be guaranteed to converge to any
KKT point (which may not correspond to a global optimum), even locally, as will be shown
by numerical examples later on. It is thus demanded to find some necessary and/or
sufficient conditions that guarantee the local convergence of the neural network. The
following theorem provides such a set of sufficient conditions, which is an improved
version of Theorem 9.4 in (Hu, 2007).
Theorem 3 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T)T be the
corresponding KKT point of the problem. If the Hessian matrix ∇xxL(x*; y*) in (10) is positive
definite, then the EPNN (12) is asymptotically stable at u*, and x* is a strict local minimum of the
problem.
Remark 2 In Theorem 9.4 of (Hu, 2007) there is an additional requirement on u*: it should satisfy
the second-order sufficiency conditions in Lemma 3. This requirement is actually unnecessary as it
can be covered by the positive definiteness of ∇xxL(x*; y*).

4.2 Augmented Lagrange networks
Theorem 3 reveals that if the Hessian matrix of the Lagrangian function is positive definite
at a local minimum solution, the EPNN (12) may be locally convergent to that local
optimum. But in many cases, this condition fails to exist. Fortunately, there exist ways to
generate this condition, and one popular technique is to utilize the augmented Lagrangian
functions (Li & Sun, 2000).
In 1992, Zhang and Constantinides proposed a neural network based on the augmented
Lagrangian function for seeking local minima of the following equality constrained
optimization problem (Zhang & Constantinides, 1992):

Neurodynamic Optimization: Towards Nonconvexity

299

where f : ℜn→ ℜ, h : ℜn → ℜm and both f and h are assumed twice continuously differentiable.
The dynamic equation of the network is as follows

where c > 0 is a control parameter. Under the second-order sufficiency conditions, the neural
network can be shown convergent to local minima with appropriate choice of c. The
disadvantage of the neural network lies in that it handles equality constraints only. Though
in theory inequality constraints can be converted to equality constraints by introducing slack
variables, the dimension of the neural network will inevitably increase, which is usually not
deemed a good strategy in terms of model complexity.
An alternative extension of the neural network in (Zhang & Constantinides, 1992) for
handling inequality constraints in (7) directly can be found in (Huang, 2005) and its dynamic
system is as follows (the bound constraint x ∈ X is not considered explicitly in that paper):

The local convergence of the neural network to its equilibrium set, denoted by ˆ eΩ , was
proved by using the linearization techniques, and moreover, Ω* ⊂ ˆ eΩ . However, it is clear

that ˆ eΩ ≠Ω*. For example, any critical point x of the objective function, which makes ∇f(x) =
0, and y = 0 constitute an equilibrium point of the neural network, but in rare cases such an
equilibrium corresponds to a KKT point.
Other augmented Lagrangians associated with problem (7) could be tested from the
viewpoint of recurrent neural networks. But whether a particular Lagrangian is suited for
the design of recurrent neural networks does not have a straightforward answer. For
example, the essentially quadratic augmented Lagrangian discussed in (Sun et al., 2005) might
be a candidate, but its Hessian matrix is not continuous which lays difficulties for analyzing
the convergence of the resulting neural networks. On the other hand, the exponential-type
augmented Lagrangian does have a continuous Hessian matrix, but as the reformulation raises
the constraints to exponents of some exponential functions which causes numerical
difficulties, that method rarely works in practice. In what follows, we discuss about two
promising augmented Lagrangians without these difficulties. For convenience, the resulting
neural networks are termed Augmented Lagrange Networks.

4.2.1 Partial p-power augmented Lagrangian
Problem (7) can be written as

(13)

where ĝ (x) = g(x) + b. Consider the partial p-power transformation of (13):

 Recurrent Neural Networks

300

(14)

with p≥1. If we assume that b1,…,bm are positive constants and g1(x),…,gm(x) are nonnegative
over X, then problem (13) is equivalent to (14). This assumption does not impose a strict
restriction on problem (13) as we can always apply some suitable equivalent transformation
on the problem if necessary. Correspondingly, the standard Lagrangian function of problem
(14) is defined as

where yj ≥0; j ∈ J, which can be regarded as an augmented Lagrangian function associated
with the original problem (7). Then, from (12), the neural network for solving (14) becomes

(15)

where It is easy to calculate

Problem (14) is termed partial p-power transformation of the problem (13) (Li & Sun, 2000).
The following lemma reveals one of the advantages of the transformation.
Lemma 4 (Li & Sun, 2000) Let x* be a local optimal solution of (13) and x* ∈ intX. Assume that x*

is a regular point and satisfies the second-order sufficiency conditions. If J(x*) ≠ ∅in (11), then there

exists a q > 0 such that the Hessian of the partial p-power Lagrangian function, ∇xxLp(x*, y*), is
positive definite when p > q.
Hence we have the following stability results about neural network (15), which follows from
Theorem 3 and Lemma 4.
Theorem 4 Let x* be a feasible and regular point of problem (13), and u* = ((x*)T ; (y*)T)T be the
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma
3. Then there exists p > 0 such that the neural network (15) is asymptotically stable at u*, and x* is a
strict local minimum of the problem.
Example 3 Consider the following nonconvex programming problem in (Li & Sun, 2000)

This problem has only one local solution x*= (0.5, 0.125)T, thus also the global solution. The solution
is located on the boundary of the feasible region (see Fig. 6). It can be verified that

The Hessian of the Lagrangian function is

Neurodynamic Optimization: Towards Nonconvexity

301

which is indefinite.
Now consider the partial p-power formulation (14) of the problem. When p = 3, a direct calculation
yields the new optimal Lagrangian multiplier y* = 0.0417 and the Hessian of the new Lagrangian

which is a positive definite matrix. We simulate the neural network (15) to solve the problem. Fig. 7
shows the transient behavior of the neural network (15) with the initial point u(t0) = (0.5, 0.2, 0.125)T

that is very close to u*. When p = 1, the neural network is identical to (12) and it does not converge to
u*. But when p≥1.5, the neural network converges. When p = 3, Fig. 8 displays the transient behavior
of x(t) with several initial points u(t0) = (x(t0), y(t0)) chosen as follows: y(t0) is random chosen and
x(t0) is chosen as P1(0.8, 0.1), P2(0.3, 0.5), P3(0, 0.2), P4(0.4,-0.3). From Fig. 8, it is observed that all
four trajectories converges to x* eventually, although the trajectory started from P2 exhibits obvious
instability at its earlier evolving stage.
Moreover, all simulations show that the neural network does not converge to the other KKT points
corresponding to the maximum solution x *= (0, 0)T, even after the partial p-power transformation.
This is because

is not positive semidefinite.

Figure 6. Isometric view of the objective function and constraints in Example 3. Reprint of
Fig. 9.1 in (Hu, 2007).

4.2.2 A new augmented Lagrangian
Consider the following augmented Lagrangian function associated with problem (7) slightly
differing from that in (Huang, 2005):

 Recurrent Neural Networks

300

(14)

with p≥1. If we assume that b1,…,bm are positive constants and g1(x),…,gm(x) are nonnegative
over X, then problem (13) is equivalent to (14). This assumption does not impose a strict
restriction on problem (13) as we can always apply some suitable equivalent transformation
on the problem if necessary. Correspondingly, the standard Lagrangian function of problem
(14) is defined as

where yj ≥0; j ∈ J, which can be regarded as an augmented Lagrangian function associated
with the original problem (7). Then, from (12), the neural network for solving (14) becomes

(15)

where It is easy to calculate

Problem (14) is termed partial p-power transformation of the problem (13) (Li & Sun, 2000).
The following lemma reveals one of the advantages of the transformation.
Lemma 4 (Li & Sun, 2000) Let x* be a local optimal solution of (13) and x* ∈ intX. Assume that x*

is a regular point and satisfies the second-order sufficiency conditions. If J(x*) ≠ ∅in (11), then there

exists a q > 0 such that the Hessian of the partial p-power Lagrangian function, ∇xxLp(x*, y*), is
positive definite when p > q.
Hence we have the following stability results about neural network (15), which follows from
Theorem 3 and Lemma 4.
Theorem 4 Let x* be a feasible and regular point of problem (13), and u* = ((x*)T ; (y*)T)T be the
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma
3. Then there exists p > 0 such that the neural network (15) is asymptotically stable at u*, and x* is a
strict local minimum of the problem.
Example 3 Consider the following nonconvex programming problem in (Li & Sun, 2000)

This problem has only one local solution x*= (0.5, 0.125)T, thus also the global solution. The solution
is located on the boundary of the feasible region (see Fig. 6). It can be verified that

The Hessian of the Lagrangian function is

Neurodynamic Optimization: Towards Nonconvexity

301

which is indefinite.
Now consider the partial p-power formulation (14) of the problem. When p = 3, a direct calculation
yields the new optimal Lagrangian multiplier y* = 0.0417 and the Hessian of the new Lagrangian

which is a positive definite matrix. We simulate the neural network (15) to solve the problem. Fig. 7
shows the transient behavior of the neural network (15) with the initial point u(t0) = (0.5, 0.2, 0.125)T

that is very close to u*. When p = 1, the neural network is identical to (12) and it does not converge to
u*. But when p≥1.5, the neural network converges. When p = 3, Fig. 8 displays the transient behavior
of x(t) with several initial points u(t0) = (x(t0), y(t0)) chosen as follows: y(t0) is random chosen and
x(t0) is chosen as P1(0.8, 0.1), P2(0.3, 0.5), P3(0, 0.2), P4(0.4,-0.3). From Fig. 8, it is observed that all
four trajectories converges to x* eventually, although the trajectory started from P2 exhibits obvious
instability at its earlier evolving stage.
Moreover, all simulations show that the neural network does not converge to the other KKT points
corresponding to the maximum solution x *= (0, 0)T, even after the partial p-power transformation.
This is because

is not positive semidefinite.

Figure 6. Isometric view of the objective function and constraints in Example 3. Reprint of
Fig. 9.1 in (Hu, 2007).

4.2.2 A new augmented Lagrangian
Consider the following augmented Lagrangian function associated with problem (7) slightly
differing from that in (Huang, 2005):

 Recurrent Neural Networks

302

(a) p = 1.0 (b) p = 1.2

(c) p = 1.5 (d) p = 3.0

Figure 7. Transient behavior of the neural network (15) with u(t0) = (0.5, 0.2, 0.125)T and
different values of p in Example 3. Reprint of Fig. 9.2 in (Hu, 2007).

Figure 8: State trajectories (x1(t), x2(t)) of the neural network (15) with p = 3 and four initial
points in Example 3. Reprint of Fig. 9.3 in (Hu, 2007).

Neurodynamic Optimization: Towards Nonconvexity

303

where L(x, y) is the regular Lagrangian function defined in (9) and c > 0 is a scalar. Let Ωe

denote the solution set of the following equations

where α > 0. We have the following theorem.
Theorem 5 Ω* = Ωe.
Consider a recurrent neural network with its dynamic behavior governed by

(16)

where α > 0, c > 0 are two contents. Note that the term ∇f(x) + ∇g(x)y + c∇g(x)Γ(y2)g(x) on

the right-hand-side is the expansion of ∇xLc(x, y). Therefore the equilibrium set of the neural

network is actually Ωe, which is equal to Ω* as claimed in Theorem 5.
Theorem 6 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T)T be the
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma
3. Then there exists c > 0 such that the neural network (16) is asymptotically stable at u*, and x* is a
strict local minimum of the problem.
The proofs of Theorems 5 and 6 can be found in (Hu & Wang, 2007a) and (Hu, 2007).
Example 4 Consider the problem in Example 3 again. This time we use the new augmented Lagrange
network (16) to solve it. Fig. 9 shows the transient behavior of the neural network (16) with the initial
point u(t0) = (0.5, 0.2, 0.125)T (same as in Example 3). When c ≤ 1.5, the neural network does not
converge, and when c ≥ 2 the neural network converges to u*. When c = 5, Fig. 10 displays the
transient behavior of x(t) with four initial points chosen in a similar way as in Example 3. It is
observed that all four trajectories converges to x* eventually.
Example 5 Consider the following problem

As both f(x) and g1(x) are concave, the problem is a nonconvex optimization problem. Fig. 11 shows
the contour of the objective function and the solutions to g1(x) = 0 and g2(x) = 0 on the x1-x2 plane.
The feasible region is the nonconvex area enclosed by the bold curves. Simple calculations yield

 Recurrent Neural Networks

302

(a) p = 1.0 (b) p = 1.2

(c) p = 1.5 (d) p = 3.0

Figure 7. Transient behavior of the neural network (15) with u(t0) = (0.5, 0.2, 0.125)T and
different values of p in Example 3. Reprint of Fig. 9.2 in (Hu, 2007).

Figure 8: State trajectories (x1(t), x2(t)) of the neural network (15) with p = 3 and four initial
points in Example 3. Reprint of Fig. 9.3 in (Hu, 2007).

Neurodynamic Optimization: Towards Nonconvexity

303

where L(x, y) is the regular Lagrangian function defined in (9) and c > 0 is a scalar. Let Ωe

denote the solution set of the following equations

where α > 0. We have the following theorem.
Theorem 5 Ω* = Ωe.
Consider a recurrent neural network with its dynamic behavior governed by

(16)

where α > 0, c > 0 are two contents. Note that the term ∇f(x) + ∇g(x)y + c∇g(x)Γ(y2)g(x) on

the right-hand-side is the expansion of ∇xLc(x, y). Therefore the equilibrium set of the neural

network is actually Ωe, which is equal to Ω* as claimed in Theorem 5.
Theorem 6 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T)T be the
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma
3. Then there exists c > 0 such that the neural network (16) is asymptotically stable at u*, and x* is a
strict local minimum of the problem.
The proofs of Theorems 5 and 6 can be found in (Hu & Wang, 2007a) and (Hu, 2007).
Example 4 Consider the problem in Example 3 again. This time we use the new augmented Lagrange
network (16) to solve it. Fig. 9 shows the transient behavior of the neural network (16) with the initial
point u(t0) = (0.5, 0.2, 0.125)T (same as in Example 3). When c ≤ 1.5, the neural network does not
converge, and when c ≥ 2 the neural network converges to u*. When c = 5, Fig. 10 displays the
transient behavior of x(t) with four initial points chosen in a similar way as in Example 3. It is
observed that all four trajectories converges to x* eventually.
Example 5 Consider the following problem

As both f(x) and g1(x) are concave, the problem is a nonconvex optimization problem. Fig. 11 shows
the contour of the objective function and the solutions to g1(x) = 0 and g2(x) = 0 on the x1-x2 plane.
The feasible region is the nonconvex area enclosed by the bold curves. Simple calculations yield

 Recurrent Neural Networks

304

Evidently, ∇xxL(x, y) is not positive definite over the entire real space, and the neural network (12)
can not be applied to solve the problem. Now we check if the neural network (16) can be used to search
for the KKT points. There are four KKT points associated with the problem: *

1u = (-1.272, 2.618,

4.013, 1.395)T , *
2u = (1.272, 2.618, 4.013, 1.395)T , *

3u = (0, 0, 0, 0)T , *
4u = (0, 1, 1, 0)T , but only the

first two correspond to local minima. Moreover, it is verified that at either *
1u or *

2u , J(x*) defined in

Lemma 3 is equal to {1, 2}, and ∇g1(x*), ∇g2(x*) are linearly independent, which indicates M(x*) =
0. So the second-order sufficiency conditions holds trivially at either point. According to Theorem 6,
the neural network (16) can be made asymptotically stable at *

1u and *
2u by choosing appropriate c > 0.

Fig. 12 displays the state trajectories of the neural network with different values of c started from the
same initial point (-2, 3, 0, 0)T . When c = 0, the neural network reduces to the neural network (12). It
is seen from Fig. 12(a) that some trajectories diverge to infinity. When c = 0.1, the neural network is
not convergent, either, as shown in Fig. 12(b). However, when c ≥ 0.2, in Figs. 12(c) and 12(d) we
observe that the neural network converges to *

1u asymptotically.

(a) c = 1.0 (b) c = 1.2

(c) p = 1.5 (d) p = 3.0

Figure 10. State trajectories (x1(t), x2(t)) of the neural network (16) with c = 5 and four initial
points in Example 4.

Neurodynamic Optimization: Towards Nonconvexity

305

Figure 11. Contour of the objective function and the feasible region in Example 5. Reprint of
Fig. 1 in (Hu & Wang, 2007a).

5. Concluding remarks
5.1 Summary of contents
This chapter summarizes our recent work in designing recurrent neural networks for
solving nonconvex optimization problems. It is required that the designed neural networks
should converge, either locally or globally, to exact local or global solutions of the problems,
which is different from the principle of simple penalty-based methods. (Here, the words
“locally” and “globally” characterize the convergence behavior of recurrent neural networks
while the words “local” and “global” characterize the inherent property of a solution to the
problem; they are in general uncorrelated with each other.) First, a special class of
nonconvex optimization problems, pseudoconvex optimization problems, were considered.
Because any local solution of such a problem is global as well, it is possible to design neural
networks which can globally converge to the global solutions. We have revealed that two
existing neural networks, called TLPNN and PNN, are capable of accomplishing this task
with appropriate conditions.
Second, general nonconvex optimization problems were discussed from the viewpoint of
designing neural networks to search for their Karush-Kuhn-Tucker (KKT) points especially
the corresponding local solutions. The extended projection neural network (EPNN),
originated from solving convex optimization problems in the literature, was studied in this
context. The local convergence of the EPNN to KKT points was studied and a set of
sufficient conditions was given. Since in many cases these conditions fail to exist, an
effective method, augmented Lagrangian techniques were proposed to conquer this
difficulty. Two augmented Lagrangian function methods were investigated: one is the
partial p-power Lagrangian function existing in the literature and the other is new. Two
prominent augmented Lagrange networks were then obtained. For both neural networks, a
nice property is that their equilibria are in exact correspondence with the KKT points.
Another nice property lies in that by choosing an appropriate control parameter each neural
network can be made asymptotically stable at those KKT points associated with local optima
under some standard assumptions in the optimization context, although locally. This can be

 Recurrent Neural Networks

304

Evidently, ∇xxL(x, y) is not positive definite over the entire real space, and the neural network (12)
can not be applied to solve the problem. Now we check if the neural network (16) can be used to search
for the KKT points. There are four KKT points associated with the problem: *

1u = (-1.272, 2.618,

4.013, 1.395)T , *
2u = (1.272, 2.618, 4.013, 1.395)T , *

3u = (0, 0, 0, 0)T , *
4u = (0, 1, 1, 0)T , but only the

first two correspond to local minima. Moreover, it is verified that at either *
1u or *

2u , J(x*) defined in

Lemma 3 is equal to {1, 2}, and ∇g1(x*), ∇g2(x*) are linearly independent, which indicates M(x*) =
0. So the second-order sufficiency conditions holds trivially at either point. According to Theorem 6,
the neural network (16) can be made asymptotically stable at *

1u and *
2u by choosing appropriate c > 0.

Fig. 12 displays the state trajectories of the neural network with different values of c started from the
same initial point (-2, 3, 0, 0)T . When c = 0, the neural network reduces to the neural network (12). It
is seen from Fig. 12(a) that some trajectories diverge to infinity. When c = 0.1, the neural network is
not convergent, either, as shown in Fig. 12(b). However, when c ≥ 0.2, in Figs. 12(c) and 12(d) we
observe that the neural network converges to *

1u asymptotically.

(a) c = 1.0 (b) c = 1.2

(c) p = 1.5 (d) p = 3.0

Figure 10. State trajectories (x1(t), x2(t)) of the neural network (16) with c = 5 and four initial
points in Example 4.

Neurodynamic Optimization: Towards Nonconvexity

305

Figure 11. Contour of the objective function and the feasible region in Example 5. Reprint of
Fig. 1 in (Hu & Wang, 2007a).

5. Concluding remarks
5.1 Summary of contents
This chapter summarizes our recent work in designing recurrent neural networks for
solving nonconvex optimization problems. It is required that the designed neural networks
should converge, either locally or globally, to exact local or global solutions of the problems,
which is different from the principle of simple penalty-based methods. (Here, the words
“locally” and “globally” characterize the convergence behavior of recurrent neural networks
while the words “local” and “global” characterize the inherent property of a solution to the
problem; they are in general uncorrelated with each other.) First, a special class of
nonconvex optimization problems, pseudoconvex optimization problems, were considered.
Because any local solution of such a problem is global as well, it is possible to design neural
networks which can globally converge to the global solutions. We have revealed that two
existing neural networks, called TLPNN and PNN, are capable of accomplishing this task
with appropriate conditions.
Second, general nonconvex optimization problems were discussed from the viewpoint of
designing neural networks to search for their Karush-Kuhn-Tucker (KKT) points especially
the corresponding local solutions. The extended projection neural network (EPNN),
originated from solving convex optimization problems in the literature, was studied in this
context. The local convergence of the EPNN to KKT points was studied and a set of
sufficient conditions was given. Since in many cases these conditions fail to exist, an
effective method, augmented Lagrangian techniques were proposed to conquer this
difficulty. Two augmented Lagrangian function methods were investigated: one is the
partial p-power Lagrangian function existing in the literature and the other is new. Two
prominent augmented Lagrange networks were then obtained. For both neural networks, a
nice property is that their equilibria are in exact correspondence with the KKT points.
Another nice property lies in that by choosing an appropriate control parameter each neural
network can be made asymptotically stable at those KKT points associated with local optima
under some standard assumptions in the optimization context, although locally. This can be

 Recurrent Neural Networks

306

regarded as a meaningful progress for designing neural networks for completely solving
nonconvex optimization problems.
During discussion, numerical examples were provided to illustrate as well as validate the
theoretical results.

(a) c = 0 (b) c = 0.1

(c) c = 0.2 (d) c = 0.5

Figure 12. Transient behavior the neural network (16) with different values of c in Example
5. Reprint of Fig. 2 in (Hu & Wang, 2007a).

5.2 Future directions
If we classify the nonconvex optimization problems into two categories Type-I and Type-II,
referring to those whose local optima are also global optima and those otherwise,
respectively, our primary goal at current stage is to devise some neural networks that can
converge globally to the solutions of Type-I problems and can converge globally to local
optima sets of Type-II problems. Towards this goal, there is still a long way to walk. Related
to the contents of this chapter, some meaningful future directions are as follows. Notice that
in Section 4.1 it was shown that the EPNN is locally asymptotically stable at a KKT point (x*,
y*) (corresponding to a local solution) of the Type-II problem provided that the Hessian of
the Lagrange function ∇LxxL(x, y) > 0 at this point. The main idea of the proof of this result
(see Hu, 2007, Chapter 9.2) is to construct a neighborhood Ωc(x*, y*) around this KKT point
in which ∇LxxL(x, y) > 0. Then the trajectory originated in it will converge to the KKT point.
Hence, for the size of the neighborhood, the larger the better. This condition is actually
somewhat too strong. For ensuring the local convergence, it is required ∇LxxL(x, y) > 0 on
the trajectory of the network in Ωc(x*, y*) only, not necessarily on the entire Ωc(x*, y*). This

Neurodynamic Optimization: Towards Nonconvexity

307

new condition can be utilized to state global convergence of the EPNN to a KKT point, while
the original one cannot. The reason is that it is impossible for a nonconvex optimization
problem that ∇LxxL(x, y) > 0 over the entire space, but it is possible that this inequality holds
over a particular trajectory. This is one of the main ideas of a most recent article (Xia et al.,
2007). Obviously, this idea can be also applied to the two augmented Lagrange networks
discussed in the chapter.
For solving optimization problems with general constraints, the EPNN and its variants play
the dominant roles in the community. Recently, a notable progress has been made in (Xia &
Feng, 2007) where a much different model was proposed for solving convex optimization
problems. It deserves further investigation from the viewpoint of nonconvex optimization.

6. Acknowledgement
The work was supported by the National Natural Science Foundation of China under Grant
60621062 and by the National Key Foundation R&D Project under Grants 2003CB317007,
2004CB318108 and 2007CB311003. It has been partially presented in (Hu, 2007; Hu & Wang,
2006b; Hu & Wang, 2006a; Hu & Wang, 2007a).

7. References
Avriel, M., Diewert, W. E., Schaible, S. and Zang, I. (1988). Generalized concav ity,

Mathematical Concepts and Methods in Science and Engineering, Plenum
Publishing Corporation, New York.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993). Nonlinear Programming: Theory and
Algorithms, 2nd edn, Wiley, New York.

Cambini, A., Crouzeix, J. P. and Martein, L. (2002). On the pseudoconvexity of a quadratic
fractional function, Optimization 51(4): 677-687.

Gao, X. (2004). A novel neural network for nonlinear convex programming, IEEE Trans.
Neural Netw. 15(3): 613-621.

Gao, X., Liao, L. and Qi, L. (2005). A novel neural network for variational inequalities with
linear and nonlinear constraints, IEEE Trans. Neural Netw. 16(6): 1305- 1317.

Hadjisavvas, N. and Schaible, S. (1993). On strong pseudomonotonicity and (semi)strict
quasimonotonicity, Journal of Optimization Theory and Applications 79(1): 139-155.

Hopfield, J. J. and Tank, D. W. (1986). Computing with neural circuits: a model, Scienc
233(4764): 625-633.

Hu, X. (2007). Solving Variational Inequalities and Related Problems Using Recurrent Neural
Networks, PhD thesis, The Chinese University of Hong Kong, Hong Kong, China.

Hu, X. andWang, J. (2006a). Global stability of a recurrent neural network for solving
pseudomonotone variational inequalities, Proc. IEEE International Symposium on
Circuits and Systems, Island of Kos, Greece, pp. 755-758.

Hu, X. and Wang, J. (2006b). Solving pseudomonotone variational inequalities and
pseudoconvex optimization problems using the projection neural network, IEEE
Trans. Neural Netw. 17(6): 1487-1499.

Hu, X. and Wang, J. (2007a). Convergence of a recurrent neural network for nonconvex
optimization based on an augmented lagrangian function, Proc. 4th International
Symposium on Neural Networks, Vol. 4493 of Lecture Notes in Computer Science,
Nanjing, China, pp. 194-203.

 Recurrent Neural Networks

306

regarded as a meaningful progress for designing neural networks for completely solving
nonconvex optimization problems.
During discussion, numerical examples were provided to illustrate as well as validate the
theoretical results.

(a) c = 0 (b) c = 0.1

(c) c = 0.2 (d) c = 0.5

Figure 12. Transient behavior the neural network (16) with different values of c in Example
5. Reprint of Fig. 2 in (Hu & Wang, 2007a).

5.2 Future directions
If we classify the nonconvex optimization problems into two categories Type-I and Type-II,
referring to those whose local optima are also global optima and those otherwise,
respectively, our primary goal at current stage is to devise some neural networks that can
converge globally to the solutions of Type-I problems and can converge globally to local
optima sets of Type-II problems. Towards this goal, there is still a long way to walk. Related
to the contents of this chapter, some meaningful future directions are as follows. Notice that
in Section 4.1 it was shown that the EPNN is locally asymptotically stable at a KKT point (x*,
y*) (corresponding to a local solution) of the Type-II problem provided that the Hessian of
the Lagrange function ∇LxxL(x, y) > 0 at this point. The main idea of the proof of this result
(see Hu, 2007, Chapter 9.2) is to construct a neighborhood Ωc(x*, y*) around this KKT point
in which ∇LxxL(x, y) > 0. Then the trajectory originated in it will converge to the KKT point.
Hence, for the size of the neighborhood, the larger the better. This condition is actually
somewhat too strong. For ensuring the local convergence, it is required ∇LxxL(x, y) > 0 on
the trajectory of the network in Ωc(x*, y*) only, not necessarily on the entire Ωc(x*, y*). This

Neurodynamic Optimization: Towards Nonconvexity

307

new condition can be utilized to state global convergence of the EPNN to a KKT point, while
the original one cannot. The reason is that it is impossible for a nonconvex optimization
problem that ∇LxxL(x, y) > 0 over the entire space, but it is possible that this inequality holds
over a particular trajectory. This is one of the main ideas of a most recent article (Xia et al.,
2007). Obviously, this idea can be also applied to the two augmented Lagrange networks
discussed in the chapter.
For solving optimization problems with general constraints, the EPNN and its variants play
the dominant roles in the community. Recently, a notable progress has been made in (Xia &
Feng, 2007) where a much different model was proposed for solving convex optimization
problems. It deserves further investigation from the viewpoint of nonconvex optimization.

6. Acknowledgement
The work was supported by the National Natural Science Foundation of China under Grant
60621062 and by the National Key Foundation R&D Project under Grants 2003CB317007,
2004CB318108 and 2007CB311003. It has been partially presented in (Hu, 2007; Hu & Wang,
2006b; Hu & Wang, 2006a; Hu & Wang, 2007a).

7. References
Avriel, M., Diewert, W. E., Schaible, S. and Zang, I. (1988). Generalized concav ity,

Mathematical Concepts and Methods in Science and Engineering, Plenum
Publishing Corporation, New York.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993). Nonlinear Programming: Theory and
Algorithms, 2nd edn, Wiley, New York.

Cambini, A., Crouzeix, J. P. and Martein, L. (2002). On the pseudoconvexity of a quadratic
fractional function, Optimization 51(4): 677-687.

Gao, X. (2004). A novel neural network for nonlinear convex programming, IEEE Trans.
Neural Netw. 15(3): 613-621.

Gao, X., Liao, L. and Qi, L. (2005). A novel neural network for variational inequalities with
linear and nonlinear constraints, IEEE Trans. Neural Netw. 16(6): 1305- 1317.

Hadjisavvas, N. and Schaible, S. (1993). On strong pseudomonotonicity and (semi)strict
quasimonotonicity, Journal of Optimization Theory and Applications 79(1): 139-155.

Hopfield, J. J. and Tank, D. W. (1986). Computing with neural circuits: a model, Scienc
233(4764): 625-633.

Hu, X. (2007). Solving Variational Inequalities and Related Problems Using Recurrent Neural
Networks, PhD thesis, The Chinese University of Hong Kong, Hong Kong, China.

Hu, X. andWang, J. (2006a). Global stability of a recurrent neural network for solving
pseudomonotone variational inequalities, Proc. IEEE International Symposium on
Circuits and Systems, Island of Kos, Greece, pp. 755-758.

Hu, X. and Wang, J. (2006b). Solving pseudomonotone variational inequalities and
pseudoconvex optimization problems using the projection neural network, IEEE
Trans. Neural Netw. 17(6): 1487-1499.

Hu, X. and Wang, J. (2007a). Convergence of a recurrent neural network for nonconvex
optimization based on an augmented lagrangian function, Proc. 4th International
Symposium on Neural Networks, Vol. 4493 of Lecture Notes in Computer Science,
Nanjing, China, pp. 194-203.

 Recurrent Neural Networks

308

Hu, X. and Wang, J. (2007b). Design of general projection neural networks for solving
monotone linear variational inequalities and linear and quadratic optimization
problems, IEEE Trans. Syst., Man, Cybern. B 37(5): 1414-1421.

Hu, X. and Wang, J. (2007c). Solving generally constrained generalized linear variational
inequalities using the general projection neural networks, IEEE Trans. Neural Netw.
18(6): 1697-1708.

Hu, X. and Wang, J. (2008). An improved dual neural network for solving a class of
quadratic programming problems and its k-winners-take-all application, IEEE
Trans. Neural Netw. accepted.

Huang, Y. (2005). Lagrange-type neural networks for nonlinear programming problems
with inequality constraints, Proc. 44th IEEE Conference on Decision and Control and the
European Control Conference, Seville, Spain, pp. 4129-4133.

Karamardian, S. and Schaible, S. (1990). Seven kinds of monotone maps, Journal of
Optimization Theory and Applications 66(1): 37-46.

Kennedy, M. P. and Chua, L. O. (1988). Neural networks for nonlinear programming, IEEE
Trans. Circuits Syst. 35: 554-562.

Kinderlehrer, D. and Stampcchia, G. (1980). An Introduction to Variational Inequalities and
Their Applications, Academic, New York.

Li, D. and Sun, X. L. (2000). Local convexification of the lagrangian function in nonconvex
optimization, Journal of Optimization Theory and Applications 104(1): 109-120.

Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., Huertas, J. L. and Sánchez-
Sinencio, E. (1990). Nonlinear switched-capacitor neural networks for optimization
problems, IEEE Trans. Circuits Syst. 37: 384-397.

Sun, X. L., Li, D. and Mckinnon, K. I. M. (2005). On saddle points of augmented lagrangians
for constrained nonconvex optimization, SIAM J. Optim. 15(4): 1128- 1146.

Tank, D. W. and Hopfield, J. J. (1986). Simple neural optimization networks: an A/D
converter, signal decision circuit, and a linear programming circuit, IEEE Trans.
Circuits Syst. 33(5): 533-541.

Wang, J. (1994). A deterministic annealing neural network for convex programming, Neural
Networks 7(4): 629-641.

Xia, Y. (2004). An extended projection neural network for constrained optimization, Neural
Computation 16(4): 863-883.

Xia, Y. and Feng, G. (2005). On convergence conditions of an extended projection neural
network, Neural Computation 17(3): 515-525.

Xia, Y. and Feng, G. (2007). A new neural network for solving nonlinear projection
equations, Neural Networks 20: 577-589.

Xia, Y., Feng, G. and Kamel, M. (2007). Development and analysis of a neural dynamical
approach to nonlinear programming problems, IEEE Trans. Automatic Control
52(11): 2154-2159.

Xia, Y. and Wang, J. (1998). A general methodology for designing globally convergent
optimization neural networks, IEEE Trans. Neural Netw. 9(6): 1331-1343.

Xia, Y. and Wang, J. (2000). Global exponential stability of recurrent neural networks for
solving optimization and related problems, IEEE Trans. Neural Netw. 11(4): 1017-1022.

Xia, Y. and Wang, J. (2004). A recurrent neural network for nonlinear convex optimization
subject to nonlinear inequality constraints, IEEE Trans. Circuits Syst. I 51(7): 1385-
1394.

Zhang, S. and Constantinides, A. G. (1992). Lagrange programming neural networks, IEEE
Trans. Circuits Syst. II 39: 441-452.

14

An Improved Extremum Seeking Algorithm
Based on the Chaotic Annealing Recurrent

Neural Network and Its Application
Yun-an Hu, Bin Zuo and Jing Li

Department of Control Engineering, Naval Aeronautical and Astronautical University
P. R. China

1. Introduction
Extremum seeking problem deals with the problem of minimizing or maximizing a plant
over a set of decision variables[1]. Extremum seeking problems represent a class of
widespread optimization problems arising in diverse design and planning contexts. Many
large-scale and real-time applications, such as traffic routing and bioreactor systems, require
solving large-scale extremum seeking problem in real time. In order to solve this class of
extremum seeking problems, a novel extremum seeking algorithm was proposed in the
1950’s. Early work on performance improvement by extremum seeking can be found in
Tsien. In the 1950s and the 1960s, Extremum seeking algorithm was considered as an
adaptive control method[2]. Until 1990s sliding mode control for extremum seeking has not
been utilized successfully[3]. Subsequently, a method of adding compensator dynamics in
ESA was proposed by Krstic, which improved the stability of the controlled extremum
control system[4]. Although those methods improved tremendously the performance of
ESA, the “chatter” problem of the output and the switching of the control law and
incapability of escaping from the local minima limit the application of ESA.
In order to solve those problems in the conventional ESA and improve the capability of
global searching, an improved chaotic annealing recurrent neural network (CARNN) is
proposed in the paper. The method of introducing a chaotic annealing recurrent neural
network into ESA is proposed in the paper. First, an extremum seeking problem is
converted into the process of seeking the global extreme point of the plant where the slope
of cost function is zero. Second, an improved CARNN is constructed; and then we can apply
the CARNN to finding the global extreme point and stabilizing the plant at that point. The
CARNN proposed in the paper doesn’t make use of search signals such as sinusoidal
periodic signals, so the method can solve the “chatter” problem of the output and the
switching of the control law in the general ESA and improve the dynamic performance of
extremum seeking system. At the same time, CARNN utilizes the randomicity and the
property of global searching of chaos system to improve the capability of global searching of
the system[5-6], During the process of optimization, chaotic annealing is realized by
decaying the amplitude of the chaos noise and the accepting probability continuously.
Adjusting the probability of acceptance could influence the rate of convergence. The process
of optimization was divided into two phases: the coarse search based on chaos and the

 Recurrent Neural Networks

308

Hu, X. and Wang, J. (2007b). Design of general projection neural networks for solving
monotone linear variational inequalities and linear and quadratic optimization
problems, IEEE Trans. Syst., Man, Cybern. B 37(5): 1414-1421.

Hu, X. and Wang, J. (2007c). Solving generally constrained generalized linear variational
inequalities using the general projection neural networks, IEEE Trans. Neural Netw.
18(6): 1697-1708.

Hu, X. and Wang, J. (2008). An improved dual neural network for solving a class of
quadratic programming problems and its k-winners-take-all application, IEEE
Trans. Neural Netw. accepted.

Huang, Y. (2005). Lagrange-type neural networks for nonlinear programming problems
with inequality constraints, Proc. 44th IEEE Conference on Decision and Control and the
European Control Conference, Seville, Spain, pp. 4129-4133.

Karamardian, S. and Schaible, S. (1990). Seven kinds of monotone maps, Journal of
Optimization Theory and Applications 66(1): 37-46.

Kennedy, M. P. and Chua, L. O. (1988). Neural networks for nonlinear programming, IEEE
Trans. Circuits Syst. 35: 554-562.

Kinderlehrer, D. and Stampcchia, G. (1980). An Introduction to Variational Inequalities and
Their Applications, Academic, New York.

Li, D. and Sun, X. L. (2000). Local convexification of the lagrangian function in nonconvex
optimization, Journal of Optimization Theory and Applications 104(1): 109-120.

Rodríguez-Vázquez, A., Domínguez-Castro, R., Rueda, A., Huertas, J. L. and Sánchez-
Sinencio, E. (1990). Nonlinear switched-capacitor neural networks for optimization
problems, IEEE Trans. Circuits Syst. 37: 384-397.

Sun, X. L., Li, D. and Mckinnon, K. I. M. (2005). On saddle points of augmented lagrangians
for constrained nonconvex optimization, SIAM J. Optim. 15(4): 1128- 1146.

Tank, D. W. and Hopfield, J. J. (1986). Simple neural optimization networks: an A/D
converter, signal decision circuit, and a linear programming circuit, IEEE Trans.
Circuits Syst. 33(5): 533-541.

Wang, J. (1994). A deterministic annealing neural network for convex programming, Neural
Networks 7(4): 629-641.

Xia, Y. (2004). An extended projection neural network for constrained optimization, Neural
Computation 16(4): 863-883.

Xia, Y. and Feng, G. (2005). On convergence conditions of an extended projection neural
network, Neural Computation 17(3): 515-525.

Xia, Y. and Feng, G. (2007). A new neural network for solving nonlinear projection
equations, Neural Networks 20: 577-589.

Xia, Y., Feng, G. and Kamel, M. (2007). Development and analysis of a neural dynamical
approach to nonlinear programming problems, IEEE Trans. Automatic Control
52(11): 2154-2159.

Xia, Y. and Wang, J. (1998). A general methodology for designing globally convergent
optimization neural networks, IEEE Trans. Neural Netw. 9(6): 1331-1343.

Xia, Y. and Wang, J. (2000). Global exponential stability of recurrent neural networks for
solving optimization and related problems, IEEE Trans. Neural Netw. 11(4): 1017-1022.

Xia, Y. and Wang, J. (2004). A recurrent neural network for nonlinear convex optimization
subject to nonlinear inequality constraints, IEEE Trans. Circuits Syst. I 51(7): 1385-
1394.

Zhang, S. and Constantinides, A. G. (1992). Lagrange programming neural networks, IEEE
Trans. Circuits Syst. II 39: 441-452.

14

An Improved Extremum Seeking Algorithm
Based on the Chaotic Annealing Recurrent

Neural Network and Its Application
Yun-an Hu, Bin Zuo and Jing Li

Department of Control Engineering, Naval Aeronautical and Astronautical University
P. R. China

1. Introduction
Extremum seeking problem deals with the problem of minimizing or maximizing a plant
over a set of decision variables[1]. Extremum seeking problems represent a class of
widespread optimization problems arising in diverse design and planning contexts. Many
large-scale and real-time applications, such as traffic routing and bioreactor systems, require
solving large-scale extremum seeking problem in real time. In order to solve this class of
extremum seeking problems, a novel extremum seeking algorithm was proposed in the
1950’s. Early work on performance improvement by extremum seeking can be found in
Tsien. In the 1950s and the 1960s, Extremum seeking algorithm was considered as an
adaptive control method[2]. Until 1990s sliding mode control for extremum seeking has not
been utilized successfully[3]. Subsequently, a method of adding compensator dynamics in
ESA was proposed by Krstic, which improved the stability of the controlled extremum
control system[4]. Although those methods improved tremendously the performance of
ESA, the “chatter” problem of the output and the switching of the control law and
incapability of escaping from the local minima limit the application of ESA.
In order to solve those problems in the conventional ESA and improve the capability of
global searching, an improved chaotic annealing recurrent neural network (CARNN) is
proposed in the paper. The method of introducing a chaotic annealing recurrent neural
network into ESA is proposed in the paper. First, an extremum seeking problem is
converted into the process of seeking the global extreme point of the plant where the slope
of cost function is zero. Second, an improved CARNN is constructed; and then we can apply
the CARNN to finding the global extreme point and stabilizing the plant at that point. The
CARNN proposed in the paper doesn’t make use of search signals such as sinusoidal
periodic signals, so the method can solve the “chatter” problem of the output and the
switching of the control law in the general ESA and improve the dynamic performance of
extremum seeking system. At the same time, CARNN utilizes the randomicity and the
property of global searching of chaos system to improve the capability of global searching of
the system[5-6], During the process of optimization, chaotic annealing is realized by
decaying the amplitude of the chaos noise and the accepting probability continuously.
Adjusting the probability of acceptance could influence the rate of convergence. The process
of optimization was divided into two phases: the coarse search based on chaos and the

 Recurrent Neural Networks

310

elaborate search based on RNN. At last, CARNN will stabilize the system to the global
extreme point, which is validated by simulating a simplified UAV tight formation flight
model and a typical Schaffer Function. At the same time, the stability analysis of ESA can be
simplified by the proposed method.

2. Annealing recurrent neural network description
2.1 Problem formulation
Consider a general nonlinear system:

() ()()
()()

x f x t ,u t

y F x t

=

=
 (1)

Where n mx R ,u R∈ ∈ and y R∈ are the states, the system inputs and the system output,
respectively. ()F x is also defined as the cost function of the system (1). ()f x,u and

()F x are smooth functions. If the nonlinear system (1) is an extremum seeking system, then
it must satisfy the following assumptions.
Assumption 1: There is a smooth control law[7]:

 () ()()u t x t ,α θ= (2)

to stabilize the nonlinear system(1), where []()1 2 12
T

i p, , , , , i , , ,pθ θ θ θ θ⎡ ⎤= ∈⎣ ⎦ is a parameter

vector of p dimension which determines a unique equilibrium vector.
With the control law (2), the closed-loop system of the nonlinear system (1) can be written
as:

()()x f x, x,α θ=

Assumption 2: There is a smooth function p n
ex : R R→ such that:

()() ()0 ef x, x, x xα θ θ= ↔ =

Assumption 3: The static performance map at the equilibrium point ()ex θ from θ to y
represented by:

 ()() ()ey F x Fθ θ= = (3)

is smooth and has a unique global maximum or minimum vector

1 2

Tp
pR , , , ,θ θ θ θ θ∗ ∗ ∗ ∗ ∗⎡ ⎤∈ = ⎣ ⎦ such that:

() ()0 1 2
i

F
, i , , , p

θ
θ

∗∂
= =

∂

at the same time
()2

2 0
i

F θ
θ

∗∂
<

∂
 or

()2

2 0
i

F θ
θ

∗∂
>

∂

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

311

Differentiating (3) with respect to time yields the relation between θ and ()y t .

 ()() () ()t t y tθ θ∂ = (4)

Where ()() () () ()
1 2

T

p

F F F
t , , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
and () 1 2

T

pt , , ,θ θ θ θ= ⎡ ⎤⎣ ⎦ .

Based on Assumption 3, once the seeking vector θ of the extremum seeking system (1)

converges to the global extreme vectorθ ∗ , then () () () ()
1 2

T

p

F F F
, , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
must

also converge to zero. A CARNN is introduced into ESA in order to minimize ()θ∂ in
finite time. Certainly the system (1) is subjected to (4).
Then, the extremum seeking problem can be written as follows.

()ˆarg minθ θθ θ∗
∈

= ∂

 Subject to: ()() () ()T t t y tθ θ∂ = (5)

The optimization (5) is then equivalent to

Minimize: ()1
Tf cυ υ=

 Subject to: ()1 0p A bυ υ= − = (6)

Where, ()T θ∂ denotes the transpose of ()θ∂ . () () ()
T

tυ θ θ θ⎡ ⎤= ∂ ∂⎣ ⎦ ,

1 1 10 1 0
T

p p pc × × ×⎡ ⎤= ⎣ ⎦ ,
()()

()
()

1 1

1 1

1 1

1 0

0 0
0 0

T
p p

T
p p

T
p p

sign

A t

θ

θ
θ

× ×

× ×

× ×

⎡ ⎤− ∂
⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

, ()
()

0
y tb
y t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

, and ()
1 0

sign 0 0
1 0

x
x x

x

>⎧
⎪= =⎨
⎪− <⎩

.

By the dual theory, the dual program corresponding to the program (6) is

Maximize: ()2
Tf bω ω=

 Subject to: ()2 0Tp A cω ω= − = (7)

Where, ω denotes the dual vector of υ , []1 2 3 1 3
Tω ω ω ω

×
= .

Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7).

2.2 Annealing Recurrent Neural Network (ARNN) design
In view of the primal and dual programs (6) and (7), define the following energy function:

 () () () ()() () ()2 22
1 2 1 2

1 1 1,
2 2 2

E T t f f p pυ ω υ ω υ ω= − + + (8)

 Recurrent Neural Networks

310

elaborate search based on RNN. At last, CARNN will stabilize the system to the global
extreme point, which is validated by simulating a simplified UAV tight formation flight
model and a typical Schaffer Function. At the same time, the stability analysis of ESA can be
simplified by the proposed method.

2. Annealing recurrent neural network description
2.1 Problem formulation
Consider a general nonlinear system:

() ()()
()()

x f x t ,u t

y F x t

=

=
 (1)

Where n mx R ,u R∈ ∈ and y R∈ are the states, the system inputs and the system output,
respectively. ()F x is also defined as the cost function of the system (1). ()f x,u and

()F x are smooth functions. If the nonlinear system (1) is an extremum seeking system, then
it must satisfy the following assumptions.
Assumption 1: There is a smooth control law[7]:

 () ()()u t x t ,α θ= (2)

to stabilize the nonlinear system(1), where []()1 2 12
T

i p, , , , , i , , ,pθ θ θ θ θ⎡ ⎤= ∈⎣ ⎦ is a parameter

vector of p dimension which determines a unique equilibrium vector.
With the control law (2), the closed-loop system of the nonlinear system (1) can be written
as:

()()x f x, x,α θ=

Assumption 2: There is a smooth function p n
ex : R R→ such that:

()() ()0 ef x, x, x xα θ θ= ↔ =

Assumption 3: The static performance map at the equilibrium point ()ex θ from θ to y
represented by:

 ()() ()ey F x Fθ θ= = (3)

is smooth and has a unique global maximum or minimum vector

1 2

Tp
pR , , , ,θ θ θ θ θ∗ ∗ ∗ ∗ ∗⎡ ⎤∈ = ⎣ ⎦ such that:

() ()0 1 2
i

F
, i , , , p

θ
θ

∗∂
= =

∂

at the same time
()2

2 0
i

F θ
θ

∗∂
<

∂
 or

()2

2 0
i

F θ
θ

∗∂
>

∂

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

311

Differentiating (3) with respect to time yields the relation between θ and ()y t .

 ()() () ()t t y tθ θ∂ = (4)

Where ()() () () ()
1 2

T

p

F F F
t , , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
and () 1 2

T

pt , , ,θ θ θ θ= ⎡ ⎤⎣ ⎦ .

Based on Assumption 3, once the seeking vector θ of the extremum seeking system (1)

converges to the global extreme vectorθ ∗ , then () () () ()
1 2

T

p

F F F
, , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
must

also converge to zero. A CARNN is introduced into ESA in order to minimize ()θ∂ in
finite time. Certainly the system (1) is subjected to (4).
Then, the extremum seeking problem can be written as follows.

()ˆarg minθ θθ θ∗
∈

= ∂

 Subject to: ()() () ()T t t y tθ θ∂ = (5)

The optimization (5) is then equivalent to

Minimize: ()1
Tf cυ υ=

 Subject to: ()1 0p A bυ υ= − = (6)

Where, ()T θ∂ denotes the transpose of ()θ∂ . () () ()
T

tυ θ θ θ⎡ ⎤= ∂ ∂⎣ ⎦ ,

1 1 10 1 0
T

p p pc × × ×⎡ ⎤= ⎣ ⎦ ,
()()

()
()

1 1

1 1

1 1

1 0

0 0
0 0

T
p p

T
p p

T
p p

sign

A t

θ

θ
θ

× ×

× ×

× ×

⎡ ⎤− ∂
⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

, ()
()

0
y tb
y t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

, and ()
1 0

sign 0 0
1 0

x
x x

x

>⎧
⎪= =⎨
⎪− <⎩

.

By the dual theory, the dual program corresponding to the program (6) is

Maximize: ()2
Tf bω ω=

 Subject to: ()2 0Tp A cω ω= − = (7)

Where, ω denotes the dual vector of υ , []1 2 3 1 3
Tω ω ω ω

×
= .

Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7).

2.2 Annealing Recurrent Neural Network (ARNN) design
In view of the primal and dual programs (6) and (7), define the following energy function:

 () () () ()() () ()2 22
1 2 1 2

1 1 1,
2 2 2

E T t f f p pυ ω υ ω υ ω= − + + (8)

 Recurrent Neural Networks

312

Clearly, the energy function (8) is convex and continuously differentiable. The first term in
(8) is the squared of the difference between two objective functions of the programs (6) and
(7), respectively. The second and the third terms are for the equality constraints of (6) and
(7). ()T t denotes a time-varying annealing parameter.
With the energy function defined in (8), the dynamics for CARNN solving (6) and (7) can be
defined by the negative gradient of the energy function as follows.

 ()d E
dt
σ μ σ= − ∇ (9)

Where, ()T,σ υ ω= , ()E σ∇ is the gradient of the energy function ()E σ defined in (9), and μ
is a positive scalar constant, which is used to scale the convergence rate of annealing
recurrent neural network.
The dynamical equation (9) of annealing recurrent neural network can be expressed as:

() () () () ()() () ()1 11
1 2 1

,E f pdu T t f f p
dt

υ ω υ υ
μ μ υ ω υ

υ υ υ
∂ ⎡ ∂ ∂ ⎤

= − = − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

 () () ()T T TT t c c b A A bμ υ ω υ⎡ ⎤= − − + −⎣ ⎦ (10)

() () () () ()() () ()2 22
1 2 2

,E f pdu T t f f p
dt

υ ω ω ω
μ μ υ ω ω

ω ω ω
∂ ⎡ ∂ ∂ ⎤

= − = − − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

 () () ()T T TT t b c b A A cμ υ ω ω⎡ ⎤= − − − + −⎣ ⎦ (11)

 ()1q uυ = (12)

 ()2q uω = (13)

Where, ()q is a sigmoid activation function, ()
1 1

1 1
1 11 u

b aq u a
e ευ −

−
= = +

+
 and

()
2 2

2 2
2 21 u

b aq u a
e εω −

−
= = +

+
. 1a and 1b denote the upper bound and the below bound of υ . 2a

and 2b denote the upper bound and the below bound of ω . 1 0ε > and 2 0ε > .

The annealing recurrent neural network is described as the equations (10)～(13), which are
determined by the number of decision variables such as (),υ ω , ()1 2u ,u is the column vector

of instantaneous net inputs to neurons, (),υ ω is the column output vector of neurons. The

lateral connection weight matrix is defined as ()() ()
() ()()

11 12

21 22

T T T

T T T

T t cc A A T t cbw w
w w T t bc T t bb AA

μ μ

μ μ

⎡ ⎤− +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

, the

biasing threshold vector of the neurons is defined as 1

2

TA b
Ac

ϑ μ
ϑ μ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

313

3. Convergence analysis
In this section, analytical results on the stability of the proposed annealing recurrent neural
network and feasibility and optimality of the steady-state solutions to the programs
described in (6) and (7) are presented.

3.1 Solution feasibility
Theorem 1. Assume that the Jacobian matrices ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ exist and are

positive semidefinite. If the temperature parameter ()T t is nonnegative, strictly monotone

decreasing for 0t ≥ , and approaches zero as time approaches infinity, then the annealing
recurrent neural network (10)～(13) is asymptotically stable.
Proof: Consider the following Lyapunov function.

 () () () ()() () ()2 22
1 2 1 2

1 1 1,
2 2 2

L E T t f f p pυ ω υ ω υ ω= = − + + (14)

Apparently, () 0L t > . The difference of L along time trajectory of (14) is as follows:

() () () () ()() () ()1 2 1
1 2 1

f f pdL d d dT t f f p
dt dt dt dt

υ ω υυ ω υυ ω υ
υ ω υ

⎡∂ ∂ ⎤ ∂
= ⋅ − ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

() () () () ()()22
2 1 2

1
2

p dT td p f f
dt dt

ω ω ω υ ω
ω

∂
+ ⋅ ⋅ + −

∂

() () () ()() () ()1 1
1 2 1

f p dT t f f p
dt

υ υ υυ ω υ
υ υ

⎡ ∂ ∂ ⎤
= ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

() () () ()() () ()2 2
1 2 2

f p dT t f f p
dt

ω ω ωυ ω ω
ω ω

⎡ ∂ ∂ ⎤
+ − ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 () () ()()2
1 2

1
2

dT t
f f

dt
υ ω+ − (15)

According to the equations (10) and (11), and the following equations

 () 1
1

d duJ q u
dt dt
υ
= ⎡ ⎤ ⋅⎣ ⎦ (16)

 () 2
2

d duJ q u
dt dt
ω
= ⎡ ⎤ ⋅⎣ ⎦ (17)

We can have:

 () () () () ()()21 1 2 2
1 2 1 2

1 1 1
2

dT tdL du du du duJ q u J q u f f
dt dt dt dt dt dt

υ ω
μ μ

=− ⋅ ⋅ ⎡ ⎤⋅ − ⋅ ⋅ ⎡ ⎤⋅ + −⎣ ⎦ ⎣ ⎦ (18)

 Recurrent Neural Networks

312

Clearly, the energy function (8) is convex and continuously differentiable. The first term in
(8) is the squared of the difference between two objective functions of the programs (6) and
(7), respectively. The second and the third terms are for the equality constraints of (6) and
(7). ()T t denotes a time-varying annealing parameter.
With the energy function defined in (8), the dynamics for CARNN solving (6) and (7) can be
defined by the negative gradient of the energy function as follows.

 ()d E
dt
σ μ σ= − ∇ (9)

Where, ()T,σ υ ω= , ()E σ∇ is the gradient of the energy function ()E σ defined in (9), and μ
is a positive scalar constant, which is used to scale the convergence rate of annealing
recurrent neural network.
The dynamical equation (9) of annealing recurrent neural network can be expressed as:

() () () () ()() () ()1 11
1 2 1

,E f pdu T t f f p
dt

υ ω υ υ
μ μ υ ω υ

υ υ υ
∂ ⎡ ∂ ∂ ⎤

= − = − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

 () () ()T T TT t c c b A A bμ υ ω υ⎡ ⎤= − − + −⎣ ⎦ (10)

() () () () ()() () ()2 22
1 2 2

,E f pdu T t f f p
dt

υ ω ω ω
μ μ υ ω ω

ω ω ω
∂ ⎡ ∂ ∂ ⎤

= − = − − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

 () () ()T T TT t b c b A A cμ υ ω ω⎡ ⎤= − − − + −⎣ ⎦ (11)

 ()1q uυ = (12)

 ()2q uω = (13)

Where, ()q is a sigmoid activation function, ()
1 1

1 1
1 11 u

b aq u a
e ευ −

−
= = +

+
 and

()
2 2

2 2
2 21 u

b aq u a
e εω −

−
= = +

+
. 1a and 1b denote the upper bound and the below bound of υ . 2a

and 2b denote the upper bound and the below bound of ω . 1 0ε > and 2 0ε > .

The annealing recurrent neural network is described as the equations (10)～(13), which are
determined by the number of decision variables such as (),υ ω , ()1 2u ,u is the column vector

of instantaneous net inputs to neurons, (),υ ω is the column output vector of neurons. The

lateral connection weight matrix is defined as ()() ()
() ()()

11 12

21 22

T T T

T T T

T t cc A A T t cbw w
w w T t bc T t bb AA

μ μ

μ μ

⎡ ⎤− +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

, the

biasing threshold vector of the neurons is defined as 1

2

TA b
Ac

ϑ μ
ϑ μ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

313

3. Convergence analysis
In this section, analytical results on the stability of the proposed annealing recurrent neural
network and feasibility and optimality of the steady-state solutions to the programs
described in (6) and (7) are presented.

3.1 Solution feasibility
Theorem 1. Assume that the Jacobian matrices ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ exist and are

positive semidefinite. If the temperature parameter ()T t is nonnegative, strictly monotone

decreasing for 0t ≥ , and approaches zero as time approaches infinity, then the annealing
recurrent neural network (10)～(13) is asymptotically stable.
Proof: Consider the following Lyapunov function.

 () () () ()() () ()2 22
1 2 1 2

1 1 1,
2 2 2

L E T t f f p pυ ω υ ω υ ω= = − + + (14)

Apparently, () 0L t > . The difference of L along time trajectory of (14) is as follows:

() () () () ()() () ()1 2 1
1 2 1

f f pdL d d dT t f f p
dt dt dt dt

υ ω υυ ω υυ ω υ
υ ω υ

⎡∂ ∂ ⎤ ∂
= ⋅ − ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

() () () () ()()22
2 1 2

1
2

p dT td p f f
dt dt

ω ω ω υ ω
ω

∂
+ ⋅ ⋅ + −

∂

() () () ()() () ()1 1
1 2 1

f p dT t f f p
dt

υ υ υυ ω υ
υ υ

⎡ ∂ ∂ ⎤
= ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

() () () ()() () ()2 2
1 2 2

f p dT t f f p
dt

ω ω ωυ ω ω
ω ω

⎡ ∂ ∂ ⎤
+ − ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 () () ()()2
1 2

1
2

dT t
f f

dt
υ ω+ − (15)

According to the equations (10) and (11), and the following equations

 () 1
1

d duJ q u
dt dt
υ
= ⎡ ⎤ ⋅⎣ ⎦ (16)

 () 2
2

d duJ q u
dt dt
ω
= ⎡ ⎤ ⋅⎣ ⎦ (17)

We can have:

 () () () () ()()21 1 2 2
1 2 1 2

1 1 1
2

dT tdL du du du duJ q u J q u f f
dt dt dt dt dt dt

υ ω
μ μ

=− ⋅ ⋅ ⎡ ⎤⋅ − ⋅ ⋅ ⎡ ⎤⋅ + −⎣ ⎦ ⎣ ⎦ (18)

 Recurrent Neural Networks

314

We know that the Jacobian matrices of ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ both exist and are positive
semidefinite and μ is a positive scalar constant. If the time-varying annealing parameter
()T t is nonnegative, strictly monotone decreasing for 0t ≥ , and approaches zero as time

approaches infinity, then dL dt is negative definite. Because ()T t represents the annealing

effect, the simple examples of ()T t can described as follows.

 () tT t ηβα −= (19)

 () ()1T t t ηβ −= + (20)
Where 1α > , 0β > and 0η > are constant parameters. Parameters β and η can be used to
scale the annealing parameter.
Because ()L t is positive definite and radially unbounded, and dL dt is negative definite.
According to the Lyapunov’s theorem, the designed annealing recurrent neural network is
asymptotically stable.
Theorem 2. Assume that the Jacobian matrices ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ exist and are

positive semidefinite. If () 0T t ≥ , () 0dT t dt < and ()lim 0
t

T t
→∞

= , then the steady state of the

annealing neural network represents a feasible solution to the programs described in
equations (6) and (7).
Proof: The proof of Theorem 1 shows that the energy function (),E υ ω is positive definite

and strictly monotone decreasing with respect to time t , which implies ()()lim , , 0
t

E T tυ ω
→∞

= .

Because ()lim 0
t

T t
→∞

= , then we have

 ()() () () ()() () ()2 22
1 2 1 2

1 1 1lim , , lim
2 2 2t t

E T t T t f f p pυ ω υ ω υ ω
→∞ →∞

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (21)

 ()() ()()2 2

1 2
1 1lim 0
2 2t

p t p tυ ω
→∞

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (22)

Because ()()1p tυ and ()()2p tω are continuous, ()() ()() ()()
22 2

1 2 1
1 1 1lim lim
2 2 2t t

p t p t p tυ ω υ
→∞ →∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

()() () ()
2 2 2

2 1 2
1 1 1lim 0
2 2 2t

p t p pω υ ω
→∞

+ = + = , so we have ()1 0p υ = and ()2 0p ω = , where υ

and ω are the stable solutions of υ and ω .

3.2 Solution optimality

Firstly, Let ()
()()
()()
()()

()()
1

1 1 3 1 1

1

f

F f I f

f

υ

υ υ υ

υ
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and ()
()()
()()
()()

()()
2

2 2 3 1 2

2

f

F f I f

f

ω

ω ω ω

ω
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 be the augmented

vector.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

315

Theorem 3. Assume that the Jacobian matrices ()1 0J q u⎡ ⎤ ≠⎣ ⎦ and ()2 0J q u⎡ ⎤ ≠⎣ ⎦ and are

positive semidefinite, 0t∀ ≥ , and ()()1 0f υ∇ ≠ and ()()2 0f ω∇ ≠ . If () 0dT t dt < ,

()lim 0
t

T t
→∞

= and

()
() () () () () () () ()

() () () () ()() () () () () ()()

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

max 0, ,

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎧ ⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎪ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎪ ⎝ ⎠≥ ⎨

⎛ ∂ ∂ ⎞⎪ ∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ∂ ∂⎝ ⎠⎩

() () () () () () () ()

() () () () ()() () () () () ()()

2 2
2 2 2 2 2 2

2 2
2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

f f
F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎫⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ ⎪⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ⎪⎝ ⎠

⎬
⎛ ∂ ∂ ⎞⎪∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪∂ ∂⎝ ⎠⎭

 (23)

then the steady states υ and ω of the annealing neural network represents the optimal
solutions υ∗ and ω∗ to the programs described in equations (6) and (7).
Proof: According to the equation (23), we know

()
() () () () () () () ()

() () () () ()() () () () () ()()

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

The above equation implies

() () () () () () () ()()1
1 1 1 1 1 2

T T f
T t F t J q u p t J q u f f

υ
μ υ υ υ ω

υ
∂⎡ ⎤∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ∂

() () () () () () () ()1 1
1 1 1 1 1 1

T Tp p
p t J q u p F t J q u p

υ υ
μ υ υ μ υ υ

υ υ
∂ ∂

≥ ∇ ⎡ ⎤ ⎡ ⎤ − ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

Rearranging the above inequality, we have

() () () () () ()() () () () ()1 1
1 1 1 2 1 1 1

T Tf p
T t F t J q u f f F t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

∇ ⎡ ⎤ ⎡ ⎤ − + ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

() () () () () ()() () () () ()1 1
1 1 1 2 1 1 1 0

T Tf p
T t p t J q u f f p t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

− ∇ ⎡ ⎤ ⎡ ⎤ − − ∇ ⎡ ⎤ ⎡ ⎤ ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

That is also

() () () () () ()() () ()1 1
1 1 1 2 1

T f p
F t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 Recurrent Neural Networks

314

We know that the Jacobian matrices of ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ both exist and are positive
semidefinite and μ is a positive scalar constant. If the time-varying annealing parameter
()T t is nonnegative, strictly monotone decreasing for 0t ≥ , and approaches zero as time

approaches infinity, then dL dt is negative definite. Because ()T t represents the annealing

effect, the simple examples of ()T t can described as follows.

 () tT t ηβα −= (19)

 () ()1T t t ηβ −= + (20)
Where 1α > , 0β > and 0η > are constant parameters. Parameters β and η can be used to
scale the annealing parameter.
Because ()L t is positive definite and radially unbounded, and dL dt is negative definite.
According to the Lyapunov’s theorem, the designed annealing recurrent neural network is
asymptotically stable.
Theorem 2. Assume that the Jacobian matrices ()1J q u⎡ ⎤⎣ ⎦ and ()2J q u⎡ ⎤⎣ ⎦ exist and are

positive semidefinite. If () 0T t ≥ , () 0dT t dt < and ()lim 0
t

T t
→∞

= , then the steady state of the

annealing neural network represents a feasible solution to the programs described in
equations (6) and (7).
Proof: The proof of Theorem 1 shows that the energy function (),E υ ω is positive definite

and strictly monotone decreasing with respect to time t , which implies ()()lim , , 0
t

E T tυ ω
→∞

= .

Because ()lim 0
t

T t
→∞

= , then we have

 ()() () () ()() () ()2 22
1 2 1 2

1 1 1lim , , lim
2 2 2t t

E T t T t f f p pυ ω υ ω υ ω
→∞ →∞

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (21)

 ()() ()()2 2

1 2
1 1lim 0
2 2t

p t p tυ ω
→∞

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (22)

Because ()()1p tυ and ()()2p tω are continuous, ()() ()() ()()
22 2

1 2 1
1 1 1lim lim
2 2 2t t

p t p t p tυ ω υ
→∞ →∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

()() () ()
2 2 2

2 1 2
1 1 1lim 0
2 2 2t

p t p pω υ ω
→∞

+ = + = , so we have ()1 0p υ = and ()2 0p ω = , where υ

and ω are the stable solutions of υ and ω .

3.2 Solution optimality

Firstly, Let ()
()()
()()
()()

()()
1

1 1 3 1 1

1

f

F f I f

f

υ

υ υ υ

υ
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and ()
()()
()()
()()

()()
2

2 2 3 1 2

2

f

F f I f

f

ω

ω ω ω

ω
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 be the augmented

vector.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

315

Theorem 3. Assume that the Jacobian matrices ()1 0J q u⎡ ⎤ ≠⎣ ⎦ and ()2 0J q u⎡ ⎤ ≠⎣ ⎦ and are

positive semidefinite, 0t∀ ≥ , and ()()1 0f υ∇ ≠ and ()()2 0f ω∇ ≠ . If () 0dT t dt < ,

()lim 0
t

T t
→∞

= and

()
() () () () () () () ()

() () () () ()() () () () () ()()

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

max 0, ,

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎧ ⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎪ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎪ ⎝ ⎠≥ ⎨

⎛ ∂ ∂ ⎞⎪ ∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ∂ ∂⎝ ⎠⎩

() () () () () () () ()

() () () () ()() () () () () ()()

2 2
2 2 2 2 2 2

2 2
2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

f f
F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎫⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ ⎪⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ⎪⎝ ⎠

⎬
⎛ ∂ ∂ ⎞⎪∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪∂ ∂⎝ ⎠⎭

 (23)

then the steady states υ and ω of the annealing neural network represents the optimal
solutions υ∗ and ω∗ to the programs described in equations (6) and (7).
Proof: According to the equation (23), we know

()
() () () () () () () ()

() () () () ()() () () () () ()()

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

The above equation implies

() () () () () () () ()()1
1 1 1 1 1 2

T T f
T t F t J q u p t J q u f f

υ
μ υ υ υ ω

υ
∂⎡ ⎤∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ∂

() () () () () () () ()1 1
1 1 1 1 1 1

T Tp p
p t J q u p F t J q u p

υ υ
μ υ υ μ υ υ

υ υ
∂ ∂

≥ ∇ ⎡ ⎤ ⎡ ⎤ − ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

Rearranging the above inequality, we have

() () () () () ()() () () () ()1 1
1 1 1 2 1 1 1

T Tf p
T t F t J q u f f F t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

∇ ⎡ ⎤ ⎡ ⎤ − + ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

() () () () () ()() () () () ()1 1
1 1 1 2 1 1 1 0

T Tf p
T t p t J q u f f p t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

− ∇ ⎡ ⎤ ⎡ ⎤ − − ∇ ⎡ ⎤ ⎡ ⎤ ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

That is also

() () () () () ()() () ()1 1
1 1 1 2 1

T f p
F t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 Recurrent Neural Networks

316

() () () () () ()() () ()1 1
1 1 1 2 1 0

T f p
p t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

− ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅ ≥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

Substituting equations (10), (11), (16) and (17) into the above inequality, we have

() () () () () ()1 1
1 1 1 1

T Tdu t du t
F t J q u p t J q u

dt dt
υ υ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ − ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () () ()() ()()1 1
1 1 0

T T dF t dp td t d t
F t p t

dt dt dt dt
υ υυ υ

υ υ∇ ⎡ ⎤ ⋅ −∇ ⎡ ⎤ ⋅ = − ≤⎣ ⎦ ⎣ ⎦

Therefore, we have ()() ()()1 1dF t dt dp t dtυ υ≤ , which implies ()() ()()1 1F t F tυ υ′′ ′− ≤

()() ()()1 1p t p tυ υ′′ ′− for any t t′ ′′≤ . Let t∗ be the time associated with an optimal

 solution υ∗ . We have ()() ()() ()() ()()1 1 1 1F F t p p tυ υ υ υ∗ ∗∞ − ≤ ∞ − ; that is

() () () ()1 1 1 1F F p pυ υ υ υ∗ ∗− ≤ − . Because () ()1 1 0p pυ υ∗= = , () ()1 1F Fυ υ∗≤ . At last, we have

() ()1 1f fυ υ∗≤ . Also, because ()ˆ 1arg min V fυυ υ∗
∈

= , () ()1 1f fυ υ∗≥ by definition of υ∗ .

Consequently, () () ()ˆ1 1 1min Vf f f
υ

υ υ υ∗
∈

= = , where V̂ denotes the feasible region of the

optimal solution υ∗ .
Next, according to the equation (23), we also know

()
() () () () () () () ()

() () () () ()() () () () () ()()

2 2
2 2 2 2 2 2

2 2
2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

By the same reasoning, we know
()() ()()2 2dF t dp t

dt dt
ω ω

≥ , which implies ()() ()()2 2F t F tω ω′′ ′−

()() ()()2 2p t p tω ω′′ ′≥ − for any t t′ ′′≤ . Let t∗ be the time associated with an optimal solution

ω∗ . We have ()() ()() ()() ()()2 2 2 2F F t p p tω ω ω ω∗ ∗∞ − ≥ ∞ − ; that is () () () ()2 2 2 2F F p pω ω ω ω∗ ∗− ≥ − .

Because () ()2 2 0p pω ω∗= = , () ()2 2F Fω ω∗≥ . At last, we have () ()2 2f fω ω∗≥ . Also, because

()ˆ 2arg max U fωω ω∗
∈

= , () ()2 2f fω ω∗ ≥ by definition of ω∗ . Consequently, () ()2 2f fω ω∗= =

()ˆ 2max U fω ω
∈

, where Û denotes the feasible region of the optimal solution ω∗ .

4. A chaotic annealing recurrent neural network description
In order to improve the global searching performance of the designed annealing recurrent
neural network, we introduce chaotic factors into the designed neural network. Therefore,
the structure of a chaotic annealing recurrent neural network is described as follows.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

317

() () () ()() () () ()() ()

() () () ()() () () otherwise

1 1
1 2 1 1 1 1 1 1 1

1

1 1
1 2 1

f p
T t f f p b a a random P t

du
dt f p

T t f f p

υ υ
μ υ ω υ η χ

υ υ

υ υ
μ υ ω υ

υ υ

⎧ ⎡ ∂ ∂ ⎤
− ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(24)

() () () ()() () () ()() ()

() () () ()() () () otherwise

2 2
1 2 2 2 2 2 2 2 2

2

2 2
1 2 2

f p
T t f f p b a a random P t

du
dt f p

T t f f p

ω ω
μ υ ω ω η χ

ω ω

ω ω
μ υ ω ω

ω ω

⎧ ⎡ ∂ ∂ ⎤
− − ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(25)

 ()
1 1

1 1
1 11 u

b aq u a
e ευ −

−
= = +

+
 (26)

 ()
2 2

2 2
2 21 u

b aq u a
e εω −

−
= = +

+
 (27)

 () () ()1 1i it tη κ η+ = − 1,2i = (28)

 () () ()
otherwise

0
1

0
i i

i
P t P t

P t
δ⎧ − >

+ = ⎨
⎩

 (29)

 () () ()()1 1i i it t tχ γχ χ+ = − (30)

Where 4γ = , ()0 0iP > , 0 1κ< < , 0 1δ< < , ()0 0iη > , 1 0ε > and 2 0ε > . We know that
equation (30) is a Logistic map, when 4γ = , the chaos phenomenon will happen in the
system.
As time approaches infinity, the chaotic annealing recurrent neural network will evolve into
the annealing recurrent neural network (10)～(13). Therefore, we must not repeatedly
analyze the stability and solution feasibility and solution optimality of the chaotic annealing
recurrent neural network (24)～(30).

5. Simulation analysis
5.1 A simplified tight formation flight model simulation
Consider a simplified tight formation flight model consisting of two Unmanned Aerial
Vehicles[8].

1 1

2 2 1

3 3 2

4 4

0 1 0 0 0 0
20 9 0 0 1 0
0 0 0 1 0 0
0 0 35 15 0 1

x x
x x u
x x u
x x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (31)

with a cost function given by

 Recurrent Neural Networks

316

() () () () () ()() () ()1 1
1 1 1 2 1 0

T f p
p t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

− ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅ ≥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

Substituting equations (10), (11), (16) and (17) into the above inequality, we have

() () () () () ()1 1
1 1 1 1

T Tdu t du t
F t J q u p t J q u

dt dt
υ υ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ − ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

() () () () ()() ()()1 1
1 1 0

T T dF t dp td t d t
F t p t

dt dt dt dt
υ υυ υ

υ υ∇ ⎡ ⎤ ⋅ −∇ ⎡ ⎤ ⋅ = − ≤⎣ ⎦ ⎣ ⎦

Therefore, we have ()() ()()1 1dF t dt dp t dtυ υ≤ , which implies ()() ()()1 1F t F tυ υ′′ ′− ≤

()() ()()1 1p t p tυ υ′′ ′− for any t t′ ′′≤ . Let t∗ be the time associated with an optimal

 solution υ∗ . We have ()() ()() ()() ()()1 1 1 1F F t p p tυ υ υ υ∗ ∗∞ − ≤ ∞ − ; that is

() () () ()1 1 1 1F F p pυ υ υ υ∗ ∗− ≤ − . Because () ()1 1 0p pυ υ∗= = , () ()1 1F Fυ υ∗≤ . At last, we have

() ()1 1f fυ υ∗≤ . Also, because ()ˆ 1arg min V fυυ υ∗
∈

= , () ()1 1f fυ υ∗≥ by definition of υ∗ .

Consequently, () () ()ˆ1 1 1min Vf f f
υ

υ υ υ∗
∈

= = , where V̂ denotes the feasible region of the

optimal solution υ∗ .
Next, according to the equation (23), we also know

()
() () () () () () () ()

() () () () ()() () () () () ()()

2 2
2 2 2 2 2 2

2 2
2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

By the same reasoning, we know
()() ()()2 2dF t dp t

dt dt
ω ω

≥ , which implies ()() ()()2 2F t F tω ω′′ ′−

()() ()()2 2p t p tω ω′′ ′≥ − for any t t′ ′′≤ . Let t∗ be the time associated with an optimal solution

ω∗ . We have ()() ()() ()() ()()2 2 2 2F F t p p tω ω ω ω∗ ∗∞ − ≥ ∞ − ; that is () () () ()2 2 2 2F F p pω ω ω ω∗ ∗− ≥ − .

Because () ()2 2 0p pω ω∗= = , () ()2 2F Fω ω∗≥ . At last, we have () ()2 2f fω ω∗≥ . Also, because

()ˆ 2arg max U fωω ω∗
∈

= , () ()2 2f fω ω∗ ≥ by definition of ω∗ . Consequently, () ()2 2f fω ω∗= =

()ˆ 2max U fω ω
∈

, where Û denotes the feasible region of the optimal solution ω∗ .

4. A chaotic annealing recurrent neural network description
In order to improve the global searching performance of the designed annealing recurrent
neural network, we introduce chaotic factors into the designed neural network. Therefore,
the structure of a chaotic annealing recurrent neural network is described as follows.

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

317

() () () ()() () () ()() ()

() () () ()() () () otherwise

1 1
1 2 1 1 1 1 1 1 1

1

1 1
1 2 1

f p
T t f f p b a a random P t

du
dt f p

T t f f p

υ υ
μ υ ω υ η χ

υ υ

υ υ
μ υ ω υ

υ υ

⎧ ⎡ ∂ ∂ ⎤
− ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(24)

() () () ()() () () ()() ()

() () () ()() () () otherwise

2 2
1 2 2 2 2 2 2 2 2

2

2 2
1 2 2

f p
T t f f p b a a random P t

du
dt f p

T t f f p

ω ω
μ υ ω ω η χ

ω ω

ω ω
μ υ ω ω

ω ω

⎧ ⎡ ∂ ∂ ⎤
− − ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(25)

 ()
1 1

1 1
1 11 u

b aq u a
e ευ −

−
= = +

+
 (26)

 ()
2 2

2 2
2 21 u

b aq u a
e εω −

−
= = +

+
 (27)

 () () ()1 1i it tη κ η+ = − 1,2i = (28)

 () () ()
otherwise

0
1

0
i i

i
P t P t

P t
δ⎧ − >

+ = ⎨
⎩

 (29)

 () () ()()1 1i i it t tχ γχ χ+ = − (30)

Where 4γ = , ()0 0iP > , 0 1κ< < , 0 1δ< < , ()0 0iη > , 1 0ε > and 2 0ε > . We know that
equation (30) is a Logistic map, when 4γ = , the chaos phenomenon will happen in the
system.
As time approaches infinity, the chaotic annealing recurrent neural network will evolve into
the annealing recurrent neural network (10)～(13). Therefore, we must not repeatedly
analyze the stability and solution feasibility and solution optimality of the chaotic annealing
recurrent neural network (24)～(30).

5. Simulation analysis
5.1 A simplified tight formation flight model simulation
Consider a simplified tight formation flight model consisting of two Unmanned Aerial
Vehicles[8].

1 1

2 2 1

3 3 2

4 4

0 1 0 0 0 0
20 9 0 0 1 0
0 0 0 1 0 0
0 0 35 15 0 1

x x
x x u
x x u
x x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (31)

with a cost function given by

 Recurrent Neural Networks

318

 () ()() ()()2 2
1 310 0 5 9 590y t x t x t= − + − + + (32)

Where 1x is the vertical separation of two Unmanned Aerial Vehicles, 2x is the differential
of 1x , 3x is the lateral separation of two Unmanned Aerial Vehicles, 4x is the differential of

3x and y is the upwash force acting on the wingman. It is clear that the global maximum
point is 1 0x∗ = and 3 9x∗ = − , where the cost function ()y t reaches its maximum 590y∗ = .
A control law based on sliding mode theory is given by:

() ()

() ()

1 1 1 2

1 1 1 2 1 1 1 1

2 2 3 4

2 3 2 4 2 2 2 2

20 9

35 15

s x x
u x s x k sign s

s x x
u x s x k sign s

σ
σ θ

σ
σ θ

= +⎧
⎪ = + − − −⎪
⎨ = +⎪
⎪ = + − − −⎩

 (33)

Where 1 2,σ σ are two sliding mode surfaces, 1 1 2 2s ,k ,s ,k are positive scalar constants,

[]1 2,θ θ θ= are an extremum seeking vector.
Remark: The control law is given in (33), which is based on sliding mode theory. We
choose ()i i isign sσ θ− , ()1 2i ,= so that 1x and 3x entirely traces 1θ and 2θ in the sliding mode

surfaces respectively, and the system will be stable at 1θ
∗ and 2θ

∗ finally.
The initial conditions of the system (31) are given as ()1 0 2x = − , ()2 0 0x = , ()3 0 4x = − ,

()4 0 0x = , ()1 0 2θ = − , ()2 0 4θ = − . Choose () tT t ηβα −= , where 0 01.β = , eα = , 5η = .
Applying CARNN to system (31), the parameters are given as: 23.5μ = , 4γ = ,
() ()1 20 0 1P P= = , 0.01κ = , 0.01δ = , 1 10ε = , 2 10ε = , ()1 0 0.912χ = , ()2 0 0.551χ = ,

() []1 0 10 1 5 Tη = − − , () []2 0 3 10 5 Tη = , 1 2 0.5b b= = , 1 2 0.5a a= = − . The simulation results
are shown from figure 1 to figure 3.

 Fig. 1. The simulation result of the state 1x Fig. 2. The simulation result of the state 3x

1x 3x

t/s t/s

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

319

Fig. 3. The simulation result of the output y

Certainly, μ is a main factor of scaling the convergence rate of CARNN, if it is too big, the
error of the output will be introduced. On the contrary, if it is too small, the convergence
rate of the system will be slow. In conclusion, the values of those parameters should be
verified by the system simulation.
In those simulation results, solid lines are the results applying CARNN to ESA; dash lines
are the results applying ESA with sliding mode[9]. Comparing those simulation results, we
know the dynamic performance of the method proposed in the paper is superior to that of
ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in figure 1 and
2, which is very harmful in practice. Moreover the convergence rate of ESA with CARNN
can be scaled by adjusting the chaotic annealing parameter ()T t .

5.2 Schaffer function simulation
In order to exhibit the capability of global searching of the proposed CARNN, the typical
Schaffer function (34) is defined as the testing function[10].

 ()
()()

2 2 2
1 2

1 2 22 2
1 2

sin 0.5
, 0.5, 10, 1,2

1 0.001
i

x x
f x x x i

x x

+ −
= − ≤ =

+ +
 (34)

When 1 2 0x x= = , the schaffer function ()1 2,f x x will obtain the global minimum

()0,0 1f = − . There are numerous local minimums and maximums among the range of 3.14
away from the global minimum.
Now, we define 1 1xθ = and 2 2xθ = . Choose () tT t ηβα −= , where 0 01.β = , eα = , 3η = , and

apply the CARNN to search the global minimum of the function (34). The neural network
parameters are given as: 35μ = , 4γ = , () ()1 20 0 1P P= = , 0.01κ = , 0.001δ = , 1 10ε = , 2 10ε = ,

()1 0 0.912χ = , ()2 0 0.551χ = , () []1 0 200 20 50 Tη = − − , () []2 0 100 300 50 Tη = ,

1 2 0.5b b= = , 1 2 0.5a a= = − . When the initial conditions of the function (34) are given
as 1 2x = − and 2 3.5x = , the simulation results are shown from figure 4 to figure 6.

y

t/s

 Recurrent Neural Networks

318

 () ()() ()()2 2
1 310 0 5 9 590y t x t x t= − + − + + (32)

Where 1x is the vertical separation of two Unmanned Aerial Vehicles, 2x is the differential
of 1x , 3x is the lateral separation of two Unmanned Aerial Vehicles, 4x is the differential of

3x and y is the upwash force acting on the wingman. It is clear that the global maximum
point is 1 0x∗ = and 3 9x∗ = − , where the cost function ()y t reaches its maximum 590y∗ = .
A control law based on sliding mode theory is given by:

() ()

() ()

1 1 1 2

1 1 1 2 1 1 1 1

2 2 3 4

2 3 2 4 2 2 2 2

20 9

35 15

s x x
u x s x k sign s

s x x
u x s x k sign s

σ
σ θ

σ
σ θ

= +⎧
⎪ = + − − −⎪
⎨ = +⎪
⎪ = + − − −⎩

 (33)

Where 1 2,σ σ are two sliding mode surfaces, 1 1 2 2s ,k ,s ,k are positive scalar constants,

[]1 2,θ θ θ= are an extremum seeking vector.
Remark: The control law is given in (33), which is based on sliding mode theory. We
choose ()i i isign sσ θ− , ()1 2i ,= so that 1x and 3x entirely traces 1θ and 2θ in the sliding mode

surfaces respectively, and the system will be stable at 1θ
∗ and 2θ

∗ finally.
The initial conditions of the system (31) are given as ()1 0 2x = − , ()2 0 0x = , ()3 0 4x = − ,

()4 0 0x = , ()1 0 2θ = − , ()2 0 4θ = − . Choose () tT t ηβα −= , where 0 01.β = , eα = , 5η = .
Applying CARNN to system (31), the parameters are given as: 23.5μ = , 4γ = ,
() ()1 20 0 1P P= = , 0.01κ = , 0.01δ = , 1 10ε = , 2 10ε = , ()1 0 0.912χ = , ()2 0 0.551χ = ,

() []1 0 10 1 5 Tη = − − , () []2 0 3 10 5 Tη = , 1 2 0.5b b= = , 1 2 0.5a a= = − . The simulation results
are shown from figure 1 to figure 3.

 Fig. 1. The simulation result of the state 1x Fig. 2. The simulation result of the state 3x

1x 3x

t/s t/s

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

319

Fig. 3. The simulation result of the output y

Certainly, μ is a main factor of scaling the convergence rate of CARNN, if it is too big, the
error of the output will be introduced. On the contrary, if it is too small, the convergence
rate of the system will be slow. In conclusion, the values of those parameters should be
verified by the system simulation.
In those simulation results, solid lines are the results applying CARNN to ESA; dash lines
are the results applying ESA with sliding mode[9]. Comparing those simulation results, we
know the dynamic performance of the method proposed in the paper is superior to that of
ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in figure 1 and
2, which is very harmful in practice. Moreover the convergence rate of ESA with CARNN
can be scaled by adjusting the chaotic annealing parameter ()T t .

5.2 Schaffer function simulation
In order to exhibit the capability of global searching of the proposed CARNN, the typical
Schaffer function (34) is defined as the testing function[10].

 ()
()()

2 2 2
1 2

1 2 22 2
1 2

sin 0.5
, 0.5, 10, 1,2

1 0.001
i

x x
f x x x i

x x

+ −
= − ≤ =

+ +
 (34)

When 1 2 0x x= = , the schaffer function ()1 2,f x x will obtain the global minimum

()0,0 1f = − . There are numerous local minimums and maximums among the range of 3.14
away from the global minimum.
Now, we define 1 1xθ = and 2 2xθ = . Choose () tT t ηβα −= , where 0 01.β = , eα = , 3η = , and

apply the CARNN to search the global minimum of the function (34). The neural network
parameters are given as: 35μ = , 4γ = , () ()1 20 0 1P P= = , 0.01κ = , 0.001δ = , 1 10ε = , 2 10ε = ,

()1 0 0.912χ = , ()2 0 0.551χ = , () []1 0 200 20 50 Tη = − − , () []2 0 100 300 50 Tη = ,

1 2 0.5b b= = , 1 2 0.5a a= = − . When the initial conditions of the function (34) are given
as 1 2x = − and 2 3.5x = , the simulation results are shown from figure 4 to figure 6.

y

t/s

 Recurrent Neural Networks

320

When the initial conditions of the function (34) are given as ()1 0 1x = − and 2 9.59x = , the
simulation results are shown as from figure 7 to figure 9.

 Fig. 4. The simulation result of ()1 2f x ,x Fig. 5. The simulation result of 1x

 Fig. 6. The simulation result of 2x Fig. 7. The simulation result of ()1 2f x ,x

 Fig. 8. The simulation result of 1x Fig. 9. The simulation result of 2x

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

321

We have accomplished a great deal of computer simulations in different initial conditions.
The ESA based on the chaotic annealing recurrent neural network can find the global
minimum of Schaffer function under different conditions of the simulation.

6. Referring
The method of introducing CARNN into ESA greatly improves the dynamic performance
and the global searching capability of the system. Two phases of the coarse search based on
chaos and the elaborate search based on ARNN guarantee that the system could fully carry
out the chaos searching and find the global extremum point and accordingly converge to
that point. At the same time, the disappearance of the “chatter” of the system output and the
switching of the control law are beneficial to engineering applications.

7. Acknowledgements
This research was supported by the Natural Science Foundation of P.R.China (No.
60674090).

8. References
Natalia I. M. (2003). Applications of the Adaptive Extremum Seeking Control Techniques to

Bioreactor Systems. A dissertation for the degree of Master of Science. Ontario:
Queen’s University.

Pan, Y., Ozguner, U., and Acarman, T. (2003). Stability and Performance Improvement of
Extremum Seeking Control with Sliding Mode. International Journal of Control, Vol.
76, pp. 968-985. ISSN 0020-7179.

Drakunov, S., Ozguner, U., Dix, P., and Ashrafi, B. (1995). ABS Control Using Optimum
Search via Sliding Mode., IEEE Transactions on Control Systems Technology, Vol. 3,
No. 1, pp. 79-85. ISSN 1063-6536.

Krstic, M. (1999). Toward Faster Adaptation in Extremum Seeking Control. Proceeding of the
38th IEEE Conference on Decision and Control, pp. 4766-4771, ISBN 0-7803-5250-5,
Phoenix, USA, Decemeber 1999.

Ying Tan, Baoyun Wang, Zhenya He. (1998). Neural Networks with Transient Chaos and
Time-variant gain and Its Application to Optimization Computations. ACTA
ELECTRONICA SINICA, Vol. 26, No. 7, pp. 123-127. ISBN 0372-2112.

Wang Ling, Zheng Dazhong. (2000). A Kind of Chaotic Neural Network Optimization
Algorithm Based on Annealing Strategy. Control Theory ＆ Applications, Vol. 17, No.
1, pp. 139-142. ISSN 1000-8152.

Y A Hu, B Zuo. (2005). An Annealing Recurrent Neural Network for Extremum Seeking
Control. International Journal of Information Technology, Vol. 11, No. 6, pp. 45-52.
ISSN 1305-2403.

B. Zuo, and Y. A. Hu. (2004). Optimizing UAV Close Formation Flight via Extremum
Seeking. Proceedings of WCICA2004, Vol. 4, pp. 3302-3305. ISBN 0-7803-8273-0,
Hangzhou, China, June, 2004.

 Recurrent Neural Networks

320

When the initial conditions of the function (34) are given as ()1 0 1x = − and 2 9.59x = , the
simulation results are shown as from figure 7 to figure 9.

 Fig. 4. The simulation result of ()1 2f x ,x Fig. 5. The simulation result of 1x

 Fig. 6. The simulation result of 2x Fig. 7. The simulation result of ()1 2f x ,x

 Fig. 8. The simulation result of 1x Fig. 9. The simulation result of 2x

An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing
Recurrent Neural Network and Its Application

321

We have accomplished a great deal of computer simulations in different initial conditions.
The ESA based on the chaotic annealing recurrent neural network can find the global
minimum of Schaffer function under different conditions of the simulation.

6. Referring
The method of introducing CARNN into ESA greatly improves the dynamic performance
and the global searching capability of the system. Two phases of the coarse search based on
chaos and the elaborate search based on ARNN guarantee that the system could fully carry
out the chaos searching and find the global extremum point and accordingly converge to
that point. At the same time, the disappearance of the “chatter” of the system output and the
switching of the control law are beneficial to engineering applications.

7. Acknowledgements
This research was supported by the Natural Science Foundation of P.R.China (No.
60674090).

8. References
Natalia I. M. (2003). Applications of the Adaptive Extremum Seeking Control Techniques to

Bioreactor Systems. A dissertation for the degree of Master of Science. Ontario:
Queen’s University.

Pan, Y., Ozguner, U., and Acarman, T. (2003). Stability and Performance Improvement of
Extremum Seeking Control with Sliding Mode. International Journal of Control, Vol.
76, pp. 968-985. ISSN 0020-7179.

Drakunov, S., Ozguner, U., Dix, P., and Ashrafi, B. (1995). ABS Control Using Optimum
Search via Sliding Mode., IEEE Transactions on Control Systems Technology, Vol. 3,
No. 1, pp. 79-85. ISSN 1063-6536.

Krstic, M. (1999). Toward Faster Adaptation in Extremum Seeking Control. Proceeding of the
38th IEEE Conference on Decision and Control, pp. 4766-4771, ISBN 0-7803-5250-5,
Phoenix, USA, Decemeber 1999.

Ying Tan, Baoyun Wang, Zhenya He. (1998). Neural Networks with Transient Chaos and
Time-variant gain and Its Application to Optimization Computations. ACTA
ELECTRONICA SINICA, Vol. 26, No. 7, pp. 123-127. ISBN 0372-2112.

Wang Ling, Zheng Dazhong. (2000). A Kind of Chaotic Neural Network Optimization
Algorithm Based on Annealing Strategy. Control Theory ＆ Applications, Vol. 17, No.
1, pp. 139-142. ISSN 1000-8152.

Y A Hu, B Zuo. (2005). An Annealing Recurrent Neural Network for Extremum Seeking
Control. International Journal of Information Technology, Vol. 11, No. 6, pp. 45-52.
ISSN 1305-2403.

B. Zuo, and Y. A. Hu. (2004). Optimizing UAV Close Formation Flight via Extremum
Seeking. Proceedings of WCICA2004, Vol. 4, pp. 3302-3305. ISBN 0-7803-8273-0,
Hangzhou, China, June, 2004.

 Recurrent Neural Networks

322

Yu, H., and Ozguner, U. (2002). Extremum-Seeking Control via Sliding Mode with Periodic
Search Signals. Proceeding of the 41st IEEE Conference on Decision and Control, pp. 323-
328. ISBN 0-7803-7516-5, Las Vegas, USA, December 2002.

Wang Ling. (2004). Intelligent Optimization Algorithms with Application, Tsinghua University
Press and Springer, ISBN 7-302-04499-6, Beijing, China.

15

Stability Results for Uncertain Stochastic
 High-Order Hopfield Neural Networks

with Time Varying Delays1
P. Balasubramaniam and R. Rakkiyappan

Department of Mathematics, Gandhigram Rural University
Tamilnadu,

India

1. Introduction
Neural networks have been widely applied in image processing, pattern recognition,
optimization solvers, fixed-point computation and other engineering areas. It has been
known that these applications heavily depend on the dynamic behaviors of neural
networks. The stability of neural networks has been extensively studied over the past years
because it is one of the most important behaviors of neural networks. On the other hand,
time delays are frequently encountered in neural networks due to the finite switching speed
of amplifiers and the inherent communication time of neurons. Since the existence of time
delay is often a source of instability for neural networks, the stability study for delayed
neural networks is of both theoretical and practical importance.
Hopfield [9, 10] has proposed Hopfield neural networks (HNNs) which have found
applications in a broad range of disciplines where the targeted problems can reduce to
optimization problems. In recent years, HNNs and their various generalizations have
attracted the great attention of many scientists including mathematicians, physicists,
computer scientists due to their potential for the tasks of classification, associative memory,
parallel computation and their ability to solve difficult optimization problems, see for
example [4, 10, 13]. HNNs characterized by first-order interactions, [1, 14] presented their
intrinsic limitations. Recently, the study of high-order neural networks has received much
attention due to that they have stronger approximation property, faster convergence rate,
greater storage capacity and higher fault tolerance than lower-order neural networks [17]. In
[3, 5, 6, 8, 11, 12, 15, 16, 18, 19, 22], the authors have been studied the stability analysis of
high-order neural networks with constant time delays or time varying delays. In this paper,
we are concerned with the global stability for a class of uncertain stochastic high-order
neural networks with time varying delays. The structure of the stochastic neural networks
under consideration is more general than some previous ones existed in the literature. Based
on the Lyapunov stability theory, new global asymptotic stability criteria are presented in

1 The work of the authors was supported by UGC, New Delhi under SAP(DRS) sanctioned
No. F510/6/DRS/2004 (SAP-1).

 Recurrent Neural Networks

322

Yu, H., and Ozguner, U. (2002). Extremum-Seeking Control via Sliding Mode with Periodic
Search Signals. Proceeding of the 41st IEEE Conference on Decision and Control, pp. 323-
328. ISBN 0-7803-7516-5, Las Vegas, USA, December 2002.

Wang Ling. (2004). Intelligent Optimization Algorithms with Application, Tsinghua University
Press and Springer, ISBN 7-302-04499-6, Beijing, China.

15

Stability Results for Uncertain Stochastic
 High-Order Hopfield Neural Networks

with Time Varying Delays1
P. Balasubramaniam and R. Rakkiyappan

Department of Mathematics, Gandhigram Rural University
Tamilnadu,

India

1. Introduction
Neural networks have been widely applied in image processing, pattern recognition,
optimization solvers, fixed-point computation and other engineering areas. It has been
known that these applications heavily depend on the dynamic behaviors of neural
networks. The stability of neural networks has been extensively studied over the past years
because it is one of the most important behaviors of neural networks. On the other hand,
time delays are frequently encountered in neural networks due to the finite switching speed
of amplifiers and the inherent communication time of neurons. Since the existence of time
delay is often a source of instability for neural networks, the stability study for delayed
neural networks is of both theoretical and practical importance.
Hopfield [9, 10] has proposed Hopfield neural networks (HNNs) which have found
applications in a broad range of disciplines where the targeted problems can reduce to
optimization problems. In recent years, HNNs and their various generalizations have
attracted the great attention of many scientists including mathematicians, physicists,
computer scientists due to their potential for the tasks of classification, associative memory,
parallel computation and their ability to solve difficult optimization problems, see for
example [4, 10, 13]. HNNs characterized by first-order interactions, [1, 14] presented their
intrinsic limitations. Recently, the study of high-order neural networks has received much
attention due to that they have stronger approximation property, faster convergence rate,
greater storage capacity and higher fault tolerance than lower-order neural networks [17]. In
[3, 5, 6, 8, 11, 12, 15, 16, 18, 19, 22], the authors have been studied the stability analysis of
high-order neural networks with constant time delays or time varying delays. In this paper,
we are concerned with the global stability for a class of uncertain stochastic high-order
neural networks with time varying delays. The structure of the stochastic neural networks
under consideration is more general than some previous ones existed in the literature. Based
on the Lyapunov stability theory, new global asymptotic stability criteria are presented in

1 The work of the authors was supported by UGC, New Delhi under SAP(DRS) sanctioned
No. F510/6/DRS/2004 (SAP-1).

 Recurrent Neural Networks

324

terms of LMIs . Finally, we also provide a numerical example to demonstrate the
effectiveness of the proposed stability results.

2. Problem description and preliminaries
Throughout this chapter we will use the notation A > 0 (or A < 0) to denote that the matrix A
is a symmetric and positive definite (or negative definite) matrix. The notation AT and A−1

mean the transpose of A and the inverse of a square matrix. If A,B are symmetric matrices A
> B (A ≥ B) means that A − B is positive definite (positive semi-definite).
Consider the following high-order Hopfield neural networks with time varying delays
described by

(1)

where i ∈ {1, 2, , ..., n}, t ≥ t0, xi(t) is the neuron state; ci is positive constant, it denotes the rate
with which the cell resets its potential to the resting state; aij, bij are the first-order synaptic
weights of the neural networks; Tijl is the second-order synaptic weights of the neural
networks; τj(t) (j = 1, 2, ..., n) is the transmission delay of the jth neuron such that
0 < τj(t) ≤ τj* and ,

jτ (t) ≤ ηj < 1, where τj*, ηj are constants; the activation function fj is

continuous on [t0 − τ ∗,+∞); Ji is the external input.
Assume that
(H1) In the neuron activation function f(y) = (f1(y1), f2(y2),…, fn(yn))T , each function fi is
continuously differentiable with fi(0) = 0 and there exists a positive scalars Li and X i such

that for any αi, βi ∈ R,

Due to the boundedness of the activation function fi, by employing the well known
Brouwer’s fixed point theorem, we can easily obtain that there exists an equilibrium point of
the system (1). The uniqueness of the equilibrium point can be deduced from the asymptotic
stability which will be proved subsequently.
Let x* be an equilibrium point of (1) and y(t) = x(t) − x*. Set gj(yj(t)) = fj(xj(t)) − fj(x*j),
gj(yj(t − τj(t))) = fj(xj(t − τj(t))) − fj(x*j). Apparently, for each i = 1, 2, ..., n, we have

Consider the following high-order HNNs with time varying delay is given by

 (2)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

325

where

In this paper the following high-order HNN with parameter uncertainties and stochastic
perturbations is considered

 (3)

where w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional Brownian motion defined on a
complete probability space (Ω,F, P) with a natural filtration {Ft}t≥0. Let σ(t, x, y) : R+×Rn×Rn →

Rn×m is locally Lipschitz continuous and satisfies the linear growth condition. The

uncertainties ΔC(t), ΔA(t), ΔB(t) are defined by

where ΔC(t) is a diagonal matrix and M, NC, NA and NB are known real constant matrices
with appropriate dimensions, which characterize how the deterministic uncertain parameter
in F(t) enters the nominal matrices C, A and B. The matrix F(t), which is time varying
unknown and satisfies

 Recurrent Neural Networks

324

terms of LMIs . Finally, we also provide a numerical example to demonstrate the
effectiveness of the proposed stability results.

2. Problem description and preliminaries
Throughout this chapter we will use the notation A > 0 (or A < 0) to denote that the matrix A
is a symmetric and positive definite (or negative definite) matrix. The notation AT and A−1

mean the transpose of A and the inverse of a square matrix. If A,B are symmetric matrices A
> B (A ≥ B) means that A − B is positive definite (positive semi-definite).
Consider the following high-order Hopfield neural networks with time varying delays
described by

(1)

where i ∈ {1, 2, , ..., n}, t ≥ t0, xi(t) is the neuron state; ci is positive constant, it denotes the rate
with which the cell resets its potential to the resting state; aij, bij are the first-order synaptic
weights of the neural networks; Tijl is the second-order synaptic weights of the neural
networks; τj(t) (j = 1, 2, ..., n) is the transmission delay of the jth neuron such that
0 < τj(t) ≤ τj* and ,

jτ (t) ≤ ηj < 1, where τj*, ηj are constants; the activation function fj is

continuous on [t0 − τ ∗,+∞); Ji is the external input.
Assume that
(H1) In the neuron activation function f(y) = (f1(y1), f2(y2),…, fn(yn))T , each function fi is
continuously differentiable with fi(0) = 0 and there exists a positive scalars Li and X i such

that for any αi, βi ∈ R,

Due to the boundedness of the activation function fi, by employing the well known
Brouwer’s fixed point theorem, we can easily obtain that there exists an equilibrium point of
the system (1). The uniqueness of the equilibrium point can be deduced from the asymptotic
stability which will be proved subsequently.
Let x* be an equilibrium point of (1) and y(t) = x(t) − x*. Set gj(yj(t)) = fj(xj(t)) − fj(x*j),
gj(yj(t − τj(t))) = fj(xj(t − τj(t))) − fj(x*j). Apparently, for each i = 1, 2, ..., n, we have

Consider the following high-order HNNs with time varying delay is given by

 (2)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

325

where

In this paper the following high-order HNN with parameter uncertainties and stochastic
perturbations is considered

 (3)

where w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional Brownian motion defined on a
complete probability space (Ω,F, P) with a natural filtration {Ft}t≥0. Let σ(t, x, y) : R+×Rn×Rn →

Rn×m is locally Lipschitz continuous and satisfies the linear growth condition. The

uncertainties ΔC(t), ΔA(t), ΔB(t) are defined by

where ΔC(t) is a diagonal matrix and M, NC, NA and NB are known real constant matrices
with appropriate dimensions, which characterize how the deterministic uncertain parameter
in F(t) enters the nominal matrices C, A and B. The matrix F(t), which is time varying
unknown and satisfies

 Recurrent Neural Networks

326

Let x(t; ξ) denote the state trajectory of the neural network (3) from the initial data x(θ) = ξ(θ)
on −τ * ≤ θ ≤ 0 in

0

2LF ([−τ*, 0],Rn). It can be easily seen that the system (3) admits a trivial
solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0, see [2, 7].

3. Main results

Let C2,1(Rn × R+ : R+) denote the family of all non-negative functions V (y, t) on Rn × R+

which are continuously twice differentiable in x and once differentiable in t. For each
V ∈ C2,1([−τ*, ∞] × Rn, R+), define an operator LV (y(t), t) associated with stochastic high

order neural networks (3) from R+ × C([−τ*, 0]; Rn) to R by

where

and

where i, j = 1, 2, ..., n. In order to prove our results, we need to state the following definitions
and Lemma.
Lemma 3.1. Given any real matrices Σ1, Σ2, Σ3 of appropriate dimensions and a scalar ∈ > 0 such
that 0 < Σ3 = 3

T∑ . Then, the following inequality holds:

We also recall some basic facts about norms of vectors and matrices. Let y = (y1, y2, ..., yn)T ∈

Rn. Three commonly used vector norms are given as 2 1/2
1 11 2

, ()n n
i i i i= == =∑ ∑y y y y and

1max i n i≤ ≤∞
=y y . It is also known that

1∞
≤y y . The vector |y| will denote |y| =

(|y1|, |y2|, ..., |yn|)T . For any matrix V = (vij)n×n, λm(V) and λM(V) will denote respectively
the minimum and maximum eigenvalues of V . For the matrix V ,

2

2
V = λM(V T V).

Now we will prove the following theorem on global asymptotic stability in the mean square
for equation (3).
Theorem 3.2. Assume that there exist matrices P >0, D0 ≥ 0 and D1 ≥ 0 such that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

327

System (3) is globally asymptotically stable in the mean square, if there exist positive definite
matrices Σ1, Σ2 and the scalars ∈k > 0 (k = 1, 2) such that

(4)

Proof: We use the following Lyapunov functional to derive the stability result

By Ito’s formula, we can calculate along the trajectories of the
system (3), then we have

 (5)

 (6)

From (5)-(6), we get

 (7)

 Recurrent Neural Networks

326

Let x(t; ξ) denote the state trajectory of the neural network (3) from the initial data x(θ) = ξ(θ)
on −τ * ≤ θ ≤ 0 in

0

2LF ([−τ*, 0],Rn). It can be easily seen that the system (3) admits a trivial
solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0, see [2, 7].

3. Main results

Let C2,1(Rn × R+ : R+) denote the family of all non-negative functions V (y, t) on Rn × R+

which are continuously twice differentiable in x and once differentiable in t. For each
V ∈ C2,1([−τ*, ∞] × Rn, R+), define an operator LV (y(t), t) associated with stochastic high

order neural networks (3) from R+ × C([−τ*, 0]; Rn) to R by

where

and

where i, j = 1, 2, ..., n. In order to prove our results, we need to state the following definitions
and Lemma.
Lemma 3.1. Given any real matrices Σ1, Σ2, Σ3 of appropriate dimensions and a scalar ∈ > 0 such
that 0 < Σ3 = 3

T∑ . Then, the following inequality holds:

We also recall some basic facts about norms of vectors and matrices. Let y = (y1, y2, ..., yn)T ∈

Rn. Three commonly used vector norms are given as 2 1/2
1 11 2

, ()n n
i i i i= == =∑ ∑y y y y and

1max i n i≤ ≤∞
=y y . It is also known that

1∞
≤y y . The vector |y| will denote |y| =

(|y1|, |y2|, ..., |yn|)T . For any matrix V = (vij)n×n, λm(V) and λM(V) will denote respectively
the minimum and maximum eigenvalues of V . For the matrix V ,

2

2
V = λM(V T V).

Now we will prove the following theorem on global asymptotic stability in the mean square
for equation (3).
Theorem 3.2. Assume that there exist matrices P >0, D0 ≥ 0 and D1 ≥ 0 such that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

327

System (3) is globally asymptotically stable in the mean square, if there exist positive definite
matrices Σ1, Σ2 and the scalars ∈k > 0 (k = 1, 2) such that

(4)

Proof: We use the following Lyapunov functional to derive the stability result

By Ito’s formula, we can calculate along the trajectories of the
system (3), then we have

 (5)

 (6)

From (5)-(6), we get

 (7)

 Recurrent Neural Networks

328

By Lemma 3.1 we get,

 (8)

 (9)

 (10)

(11)

(12)

(13)

Since , it is clear that

Since , and from (7)-(13), it follows that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

329

Then we have LV (y(t), t) < 0 when Π 1 < 0, that is the inequality (4) holds, which completes
the proof of the theorem.
By constructing another Lyapunov functional, we can obtain the following result.
Theorem 3.3. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if there exist positive definite matrices
Σ1 and the scalars ∈k > 0 (k = 1, 2, 3) such that

(14)

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

where Define

which satisfies

 Recurrent Neural Networks

328

By Lemma 3.1 we get,

 (8)

 (9)

 (10)

(11)

(12)

(13)

Since , it is clear that

Since , and from (7)-(13), it follows that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

329

Then we have LV (y(t), t) < 0 when Π 1 < 0, that is the inequality (4) holds, which completes
the proof of the theorem.
By constructing another Lyapunov functional, we can obtain the following result.
Theorem 3.3. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if there exist positive definite matrices
Σ1 and the scalars ∈k > 0 (k = 1, 2, 3) such that

(14)

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

where Define

which satisfies

 Recurrent Neural Networks

330

and (0) 0, () ()G G G= =y y , for n
+∈x R . We have

which gives a lower by a positive radially unbounded function.
It is to verify that

By Ito’s formula, we can calculate LV1(y(t), t),LV2(y(t), t) along the trajectories of the system
(3), then we have

(15)

(16)

Then it follows from Lemma 3.1 that

(17)

(18)

 (19)

 (20)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

331

 (21)

Since , and from (15)-(21) it follows that

Then we have LV (y(t), t) < 0 when Π2 < 0, that is the inequality (14) holds, which completes
the proof of the theorem.
Theorem 3.4. Assume that there exist matrices C > 0, D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is
satisfied and there exists positive constants β, ∈i, i = 4, 5, 6 such that

(22)

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

 Recurrent Neural Networks

330

and (0) 0, () ()G G G= =y y , for n
+∈x R . We have

which gives a lower by a positive radially unbounded function.
It is to verify that

By Ito’s formula, we can calculate LV1(y(t), t),LV2(y(t), t) along the trajectories of the system
(3), then we have

(15)

(16)

Then it follows from Lemma 3.1 that

(17)

(18)

 (19)

 (20)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

331

 (21)

Since , and from (15)-(21) it follows that

Then we have LV (y(t), t) < 0 when Π2 < 0, that is the inequality (14) holds, which completes
the proof of the theorem.
Theorem 3.4. Assume that there exist matrices C > 0, D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is
satisfied and there exists positive constants β, ∈i, i = 4, 5, 6 such that

(22)

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

 Recurrent Neural Networks

332

where W = B + ΓT TH and Q = (qij)n×n = (∈ 1
3
− +α∈ 1

6
−)N T

B NB + L−1D1L−1. By Ito’s formula, we can
calculate LV1,LV2,LV3,LV4 and LV5along the trajectories of the system (3), then we have

 (23)

Using the inequality technique, we have

 (24)

 (25)

From Lemma 3.1, it follows that

 (26)

 (27)

 (28)

Since the first term of the equations (24) and (25) are non-positive, we can write the
following inequalities:

 (29)

(30)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

333

Substitute (26)-(30) in (23), we get

 (31)

Also,

Adding and subtracting in the above equation, then we have

 (32)

From Lemma 3.1, it follows that

 (33)

 (34)

 (35)

 Recurrent Neural Networks

332

where W = B + ΓT TH and Q = (qij)n×n = (∈ 1
3
− +α∈ 1

6
−)N T

B NB + L−1D1L−1. By Ito’s formula, we can
calculate LV1,LV2,LV3,LV4 and LV5along the trajectories of the system (3), then we have

 (23)

Using the inequality technique, we have

 (24)

 (25)

From Lemma 3.1, it follows that

 (26)

 (27)

 (28)

Since the first term of the equations (24) and (25) are non-positive, we can write the
following inequalities:

 (29)

(30)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

333

Substitute (26)-(30) in (23), we get

 (31)

Also,

Adding and subtracting in the above equation, then we have

 (32)

From Lemma 3.1, it follows that

 (33)

 (34)

 (35)

 Recurrent Neural Networks

334

and

 (36)

Using the inequality technique, we have

Since the first term of the above equation is non-positive, we can write the following
inequality

 (37)

Substitute (33)-(37) in (32), we get

 (38)

(39)

(40)

(41)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

335

From (31) and (38)-(41), it follows that

Since

Therefore,

 Recurrent Neural Networks

334

and

 (36)

Using the inequality technique, we have

Since the first term of the above equation is non-positive, we can write the following
inequality

 (37)

Substitute (33)-(37) in (32), we get

 (38)

(39)

(40)

(41)

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

335

From (31) and (38)-(41), it follows that

Since

Therefore,

 Recurrent Neural Networks

336

The choice

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0. Thus, for ensuring negativity of LV (y(t), t) for

any possible state, it suffices to require Ω be a negative definite matrix. This implies that the
equilibrium point of system (3) is globally asymptotically stable in the mean square. The
proof is completed.
Theorem 3.5. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is
satisfied and if the following condition hold:

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

where α and β are some positive constants to be determined later. Let W = B + ΓT TH, by Ito’s
formula, we can calculate LV1(y(t), t),LV2(y(t), t),LV3(y(t), t) and LV4(y(t), t) along the
trajectories of the system (3), then we have

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

337

 (42)

Using the inequality technique, we have

 (43)

 (44)

Since the first terms of the equations (43) and (44) are non-positive, we can write the
following inequalities

 (45)

 (46)

From Lemma 3.1, it follows that

 (47)

 (48)

 (49)

From (45)-(49), we get

 Recurrent Neural Networks

336

The choice

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0. Thus, for ensuring negativity of LV (y(t), t) for

any possible state, it suffices to require Ω be a negative definite matrix. This implies that the
equilibrium point of system (3) is globally asymptotically stable in the mean square. The
proof is completed.
Theorem 3.5. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that

System (3)is globally asymptotically stable in the mean square, if the condition (H1) is
satisfied and if the following condition hold:

Proof: We use the following positive definite Lyapunov functional to derive the stability
result,

where α and β are some positive constants to be determined later. Let W = B + ΓT TH, by Ito’s
formula, we can calculate LV1(y(t), t),LV2(y(t), t),LV3(y(t), t) and LV4(y(t), t) along the
trajectories of the system (3), then we have

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

337

 (42)

Using the inequality technique, we have

 (43)

 (44)

Since the first terms of the equations (43) and (44) are non-positive, we can write the
following inequalities

 (45)

 (46)

From Lemma 3.1, it follows that

 (47)

 (48)

 (49)

From (45)-(49), we get

 Recurrent Neural Networks

338

 (50)

 (51)

From Lemma 3.1, it follows that

 (52)

 (53)

 (54)

(55)

(56)

Using the inequality technique, we have

Since the first term of the above equation is non-positive, we can write the following
inequality,

 (57)

From (42)-(57), it follows that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

339

Since 1min i
i n

i

c
r

L≤ ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, we have

Let Thus, in the light of
the above inequality, LV can now be written as

 Recurrent Neural Networks

338

 (50)

 (51)

From Lemma 3.1, it follows that

 (52)

 (53)

 (54)

(55)

(56)

Using the inequality technique, we have

Since the first term of the above equation is non-positive, we can write the following
inequality,

 (57)

From (42)-(57), it follows that

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

339

Since 1min i
i n

i

c
r

L≤ ≤

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, we have

Let Thus, in the light of
the above inequality, LV can now be written as

 Recurrent Neural Networks

340

Since

the choice

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0, where

and

Thus, for ensuring negativity of LV (y(t), t) for any possible state, it suffices to require Ω1 be
a positive definite matrix. This implies that the equilibrium point of system (3) is globally
asymptotically stable in the mean square. The proof is completed.
Remark 3.6. In [12], stability of equilibrium point of High-order Hopfield neural networks with time
varying delays has been considered by means of Lyapunov functional and LMI techniques. We extend
this technique to study the stochastic high-order neural networks with time-varying uncertain
parameters. In view of this, our results in this chapter extend the results in [12].
Remark 3.7. In [20], the authors studied the global stability of stochastic high-order neural networks
with discrete and distributed delays. Similarly in [21], the authors studied stability results of
stochastic high-order Markovian jumping neural networks with mixed time delays. It should be noted
that the uncertain stochastic neural network studied in this chapter is time-varying delays. Therefore,
our results and those established in [20, 21] are complementary each other.

4. An illustrative example.
The effectiveness of the theories will be demonstrated through the following example.
Consider the following high-order stochastic Hopfield neural network with time varying
delays

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

341

 (58)

where g1(y1) = tanh(0.95y1), g2(y2) = tanh(y2),

Thus we have L = I,

2
X = 1. Now, solving the LMI in Theorem 3.2, using Matlab LMI

Control toolbox, we get the following feasible solution

∈1 = 5.5014, ∈2 = 0.2838, ∈3 = 21.7583
It follows from Theorem 3.2 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.
Now, solving the LMI in Theorem 3.3, using Matlab LMI Control toolbox, we get the
following feasible solution

Therefore, from Theorem 3.3 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.

Now we let

Again solving the LMI in Theorem 3.4, using Matlab

LMI Control toolbox, we get the following feasible solution

Therefore, from Theorem 3.4 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.

 Recurrent Neural Networks

340

Since

the choice

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0, where

and

Thus, for ensuring negativity of LV (y(t), t) for any possible state, it suffices to require Ω1 be
a positive definite matrix. This implies that the equilibrium point of system (3) is globally
asymptotically stable in the mean square. The proof is completed.
Remark 3.6. In [12], stability of equilibrium point of High-order Hopfield neural networks with time
varying delays has been considered by means of Lyapunov functional and LMI techniques. We extend
this technique to study the stochastic high-order neural networks with time-varying uncertain
parameters. In view of this, our results in this chapter extend the results in [12].
Remark 3.7. In [20], the authors studied the global stability of stochastic high-order neural networks
with discrete and distributed delays. Similarly in [21], the authors studied stability results of
stochastic high-order Markovian jumping neural networks with mixed time delays. It should be noted
that the uncertain stochastic neural network studied in this chapter is time-varying delays. Therefore,
our results and those established in [20, 21] are complementary each other.

4. An illustrative example.
The effectiveness of the theories will be demonstrated through the following example.
Consider the following high-order stochastic Hopfield neural network with time varying
delays

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks
 with Time Varying Delays

341

 (58)

where g1(y1) = tanh(0.95y1), g2(y2) = tanh(y2),

Thus we have L = I,

2
X = 1. Now, solving the LMI in Theorem 3.2, using Matlab LMI

Control toolbox, we get the following feasible solution

∈1 = 5.5014, ∈2 = 0.2838, ∈3 = 21.7583
It follows from Theorem 3.2 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.
Now, solving the LMI in Theorem 3.3, using Matlab LMI Control toolbox, we get the
following feasible solution

Therefore, from Theorem 3.3 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.

Now we let

Again solving the LMI in Theorem 3.4, using Matlab

LMI Control toolbox, we get the following feasible solution

Therefore, from Theorem 3.4 that the equilibrium point of the system (58) is globally
asymptotically stable in the mean square.

 Recurrent Neural Networks

342

5. References
P. Baldi, Neural networks, orientations of the hypercube, and algebric threshold functions,

IEEE Trans. Inform. Theory, 34 (1988) 523–530.
T. Burton, Stability and periodic solution of ordinary differential equation and functional differential

equations, Orlanda, FL: Academic; 1985.
Z. Chen, D. Zhao, J. Ruan, Dynamicanalysis of high-order Cohen-Grossberg neural

networks with time delays, Chaos, Solitons, Fractals, 32 (2007) 1538–1546.
L.O. Chua, L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits. Syst., 35 (1988)

1257–1272.
H. Gu, H. Jiang, Z. Teng, Stability and periodicity in high-order neural networks with

impulsive effects, Nonlin. Anal:TMA,68 (2008) 3186–3200.
Z.H. Guan, D.B. Sun, J.J. Shen, Qualitative analysis of high-order Hopfield neural networks,

Acta Electron. Sin., 28 (2000) 77–80.
J.K. Hale, Theory of functional differential equations, New York: Springer-Verlag; 1977.
D.W.C. Ho, J. Liang, J. Lam, Global exponential stability of impulsive high-order BAM

neural networks with time-varying delays, Neural Networks, 19 (2006) 1581–1590.
J. J. Hopfield, Neural networks and physical systems with emergement collective

computational abilities, Proc. Natl. Acad. Sci., 79 (1982) 2554–2558.
J. J. Hopfield, Neurons with graded response have collective computational properties like

those of two-state of neurons, Proc. Natl. Acad. Sci., 81 (1984) 3088–3092.
X. Liu, K.L. Teo, B. Xu, Exponential stability of impulsive high-oreder Hopfield type neural

networks with time varying delays, IEEE Trans. Neural Networks, 16 (2005) 1329–1339.
X. Lou, B. Cui, Novel global stability criteria for high-order Hopfield-type neural networks

with time-varying delays, J. Math. Anal. Appl., 330 (2007) 144–158.
C.M. Marcus, R.M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A,

39 (1989) 347–359.
R. McEliece, E. Posner, E. Rodemich, S. Venkatesh, The capacity of the Hopfield associative

memory, IEEE Trans. Inform. Theory, 33 (1987) 461–482.
F. Qiu, B.T. Cui, W. Wu, Global exponential stability of high order recurrent neural network

with time varying delays, Appl. Math. Model., in press.
B. Xu, X. Liu, X. Liao, Global exponential stability of high-order Hopfield-type neural

networks, Appl. Math. Comput., 174 (2006) 98–116.
B. Xu, X. Liu, X. Liao, Global asymptoticstabilit y of high-order Hopfield type neural

networks with time delays, Comput. Math. Appl., 45 (2003) 1729–1737.
B. Xu, Q. Wang, X. Liao, stability analysis of high-order Hopfield neural networks with

uncertainty, Neurocomputing, 71 (2008) 508–512.
Y. Wang, Global exponential stability analysis of bidirectional associative memory neural

networks with timevarying delays, Nonlin. Anal:RWA, in press.
Z. Wang, J. Fang,X. Liu, Global stability of stochastic high-order neural networks with

discrete and distributed delays, Chaos, Solitons, Fractals, 36 (2008) 388–396.
Y. Liu, Z. Wang, X. Liu, An LMI approach to stability analysis of stochastic high-order

Markovian jumping neural networks with mixed time delays, Nonlin. Anal: Hybrid
Systems,2 (2008) 110–120.

B. Zhang, S. Xu, Y. Li, Y. Chu, On global exponential stability of high-order neural networks
with time-varying delays, Phys. lett. A, 366 (2007) 69-78.

16

Dynamics of Two-Dimensional Discrete-Time
Delayed Hopfield Neural Networks

Eva Kaslik and Ştefan Balint
Dept. of Mathematics and Computer Science

West University of Timişoara
Romania

1. Introduction
This chapter is devoted to the analysis of the complex dynamics exhibited by two-
dimensional discrete-time delayed Hopfield-type neural networks.
Since the pioneering work of (Hopfield, 1982; Tank & Hopfield, 1986), the dynamics of
continuous-time Hopfield neural networks have been thoroughly analyzed. In
implementing the continuous-time neural networks for practical problems such as image
processing, pattern recognition and computer simulation, it is essential to formulate a
discrete-time system which is a version of the continuous-time neural network. However,
discrete-time counterparts of continuous-time neural networks have only been in the
spotlight since 2000.
One of the first problems that needed to be clarified, concerned the discretization technique
which should be applied in order to obtain a discrete-time system which preserves certain
dynamic characteristics of the continuous-time system. In (Mohamad & Gopalsamy, 2000) a
semi-discretization technique has been presented for continuous-time Hopfield neural
networks, which leads to discrete-time neural networks which faithfully preserve some
characteristics of the continuous-time network, such as the steady states and their stability
properties.
In recent years, the theory of discrete-time dynamic systems has assumed a greater
importance as a well deserved discipline. In spite of this tendency of independence, there is
a striking similarity or even duality between the theories of continuous and discrete
dynamic systems. Many results in the theory of difference equations have been obtained as
natural discrete analogs of corresponding results from the theory of differential equations.
Nevertheless, the theory of difference equations is a lot richer than the corresponding theory
of differential equations. For example, a simple difference equation resulting from a first
order differential equation may exhibit chaotic behavior which can only happen for higher
order differential equations. This is the reason why, when studying discrete-time
counterparts of continuous neural networks, important differences and more complicated
behavior may also be revealed.
The analysis of the dynamics of neural networks focuses on three directions: discovering
equilibrium states and periodic or quasi-periodic solutions (of fundamental importance in
biological and artificial systems, as they are associated with central pattern generators
(Pasemann et al., 2003)), establishing stability properties and bifurcations (leading to the

 Recurrent Neural Networks

342

5. References
P. Baldi, Neural networks, orientations of the hypercube, and algebric threshold functions,

IEEE Trans. Inform. Theory, 34 (1988) 523–530.
T. Burton, Stability and periodic solution of ordinary differential equation and functional differential

equations, Orlanda, FL: Academic; 1985.
Z. Chen, D. Zhao, J. Ruan, Dynamicanalysis of high-order Cohen-Grossberg neural

networks with time delays, Chaos, Solitons, Fractals, 32 (2007) 1538–1546.
L.O. Chua, L. Yang, Cellular neural networks: theory, IEEE Trans. Circuits. Syst., 35 (1988)

1257–1272.
H. Gu, H. Jiang, Z. Teng, Stability and periodicity in high-order neural networks with

impulsive effects, Nonlin. Anal:TMA,68 (2008) 3186–3200.
Z.H. Guan, D.B. Sun, J.J. Shen, Qualitative analysis of high-order Hopfield neural networks,

Acta Electron. Sin., 28 (2000) 77–80.
J.K. Hale, Theory of functional differential equations, New York: Springer-Verlag; 1977.
D.W.C. Ho, J. Liang, J. Lam, Global exponential stability of impulsive high-order BAM

neural networks with time-varying delays, Neural Networks, 19 (2006) 1581–1590.
J. J. Hopfield, Neural networks and physical systems with emergement collective

computational abilities, Proc. Natl. Acad. Sci., 79 (1982) 2554–2558.
J. J. Hopfield, Neurons with graded response have collective computational properties like

those of two-state of neurons, Proc. Natl. Acad. Sci., 81 (1984) 3088–3092.
X. Liu, K.L. Teo, B. Xu, Exponential stability of impulsive high-oreder Hopfield type neural

networks with time varying delays, IEEE Trans. Neural Networks, 16 (2005) 1329–1339.
X. Lou, B. Cui, Novel global stability criteria for high-order Hopfield-type neural networks

with time-varying delays, J. Math. Anal. Appl., 330 (2007) 144–158.
C.M. Marcus, R.M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A,

39 (1989) 347–359.
R. McEliece, E. Posner, E. Rodemich, S. Venkatesh, The capacity of the Hopfield associative

memory, IEEE Trans. Inform. Theory, 33 (1987) 461–482.
F. Qiu, B.T. Cui, W. Wu, Global exponential stability of high order recurrent neural network

with time varying delays, Appl. Math. Model., in press.
B. Xu, X. Liu, X. Liao, Global exponential stability of high-order Hopfield-type neural

networks, Appl. Math. Comput., 174 (2006) 98–116.
B. Xu, X. Liu, X. Liao, Global asymptoticstabilit y of high-order Hopfield type neural

networks with time delays, Comput. Math. Appl., 45 (2003) 1729–1737.
B. Xu, Q. Wang, X. Liao, stability analysis of high-order Hopfield neural networks with

uncertainty, Neurocomputing, 71 (2008) 508–512.
Y. Wang, Global exponential stability analysis of bidirectional associative memory neural

networks with timevarying delays, Nonlin. Anal:RWA, in press.
Z. Wang, J. Fang,X. Liu, Global stability of stochastic high-order neural networks with

discrete and distributed delays, Chaos, Solitons, Fractals, 36 (2008) 388–396.
Y. Liu, Z. Wang, X. Liu, An LMI approach to stability analysis of stochastic high-order

Markovian jumping neural networks with mixed time delays, Nonlin. Anal: Hybrid
Systems,2 (2008) 110–120.

B. Zhang, S. Xu, Y. Li, Y. Chu, On global exponential stability of high-order neural networks
with time-varying delays, Phys. lett. A, 366 (2007) 69-78.

16

Dynamics of Two-Dimensional Discrete-Time
Delayed Hopfield Neural Networks

Eva Kaslik and Ştefan Balint
Dept. of Mathematics and Computer Science

West University of Timişoara
Romania

1. Introduction
This chapter is devoted to the analysis of the complex dynamics exhibited by two-
dimensional discrete-time delayed Hopfield-type neural networks.
Since the pioneering work of (Hopfield, 1982; Tank & Hopfield, 1986), the dynamics of
continuous-time Hopfield neural networks have been thoroughly analyzed. In
implementing the continuous-time neural networks for practical problems such as image
processing, pattern recognition and computer simulation, it is essential to formulate a
discrete-time system which is a version of the continuous-time neural network. However,
discrete-time counterparts of continuous-time neural networks have only been in the
spotlight since 2000.
One of the first problems that needed to be clarified, concerned the discretization technique
which should be applied in order to obtain a discrete-time system which preserves certain
dynamic characteristics of the continuous-time system. In (Mohamad & Gopalsamy, 2000) a
semi-discretization technique has been presented for continuous-time Hopfield neural
networks, which leads to discrete-time neural networks which faithfully preserve some
characteristics of the continuous-time network, such as the steady states and their stability
properties.
In recent years, the theory of discrete-time dynamic systems has assumed a greater
importance as a well deserved discipline. In spite of this tendency of independence, there is
a striking similarity or even duality between the theories of continuous and discrete
dynamic systems. Many results in the theory of difference equations have been obtained as
natural discrete analogs of corresponding results from the theory of differential equations.
Nevertheless, the theory of difference equations is a lot richer than the corresponding theory
of differential equations. For example, a simple difference equation resulting from a first
order differential equation may exhibit chaotic behavior which can only happen for higher
order differential equations. This is the reason why, when studying discrete-time
counterparts of continuous neural networks, important differences and more complicated
behavior may also be revealed.
The analysis of the dynamics of neural networks focuses on three directions: discovering
equilibrium states and periodic or quasi-periodic solutions (of fundamental importance in
biological and artificial systems, as they are associated with central pattern generators
(Pasemann et al., 2003)), establishing stability properties and bifurcations (leading to the

 Recurrent Neural Networks

344

discovery of periodic solutions), and identifying chaotic behavior (with valuable
applications to practical problems such as optimization (Chen & Aihara, 1995, 1997, 2001;
Chen & Shih, 2002), associative memory (Adachi & Aihara, 1997) and cryptography (Yu &
Cao, 2006)).
We refer to (Guo & Huang, 2004; Guo et al., 2004) for the study of the existence of periodic
solutions of discrete-time Hopfield neural networks with delays and the investigation of
exponential stability properties.
In (Yuan et al., 2004, 2005) and in the most general case, in (He & Cao, 2007), a bifurcation
analysis of two dimensional discrete neural networks without delays has been undertaken.
In (Zhang & Zheng, 2005, 2007), the bifurcation phenomena have been studied, for the case
of two- and n-dimensional discrete neural network models with multi-delays obtained by
applying the Euler method to a continuous-time Hopfield neural network with no self-
connections. In (Kaslik & Balint, 2007a-b), a bifurcation analysis for discrete-time Hopfield
neural networks of two neurons with self-connections has been presented, in the case of a
single delay and of two delays. In (Guo et al., 2007), a generalization of these results was
attempted, considering three delays; however, only two delays were considered
independent (the third one is a linear combination of the first two) and the analysis can be
reduced to the one presented in (Kaslik & Balint, 2007a).
The latest results concerning chaotic dynamics in discrete-time delayed neural networks can
be found in (Huang & Zou, 2005) and (Kaslik & Balint, 2007c).
A general discrete-time Hopfield-type neural network of two neurons with finite delays is
defined by:

)k,k,k,k(maxn)(ygT)(xgTya=y
)(ygT)(xgTxa=x

22211211
22kn22221kn121n21n
12kn21211kn111n11n

≥∀
⎪⎩

⎪
⎨
⎧

++
++

−−+

−−+
 (1)

 In this system (0,1)ai ∈ are the internal decays of the neurons, 22ij)T(=T × is the

interconnection matrix, RR →:gi represent the neuron input-output activations and
N∈ijk represent the delays. The reason for incorporating delays into the model equations of

the network is that, in practice, due to the finite speeds of the switching and transmission of
signals in a network, time delays unavoidably exist in a working network.
In order to insure that delays are present, we consider 0>)k,k,k,k(max 22211211 . The non-
delayed case was extensively studied in (He & Cao, 2007). In the followings, we will denote

)k,k(max=k 21111 and)k,k(max=k 22122 .

We will suppose that the activation functions ig are of class 3C in a neighborhood of 0

and that 0=(0)gi . In the followings, let 22:g RR → be the function given by
T

21))y(g),x(g(=)y,x(g and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′
′′

2221

1211

222121

212111
bb
bb

=
(0)gT(0)gT
(0)gT(0)gT

=(0)TDg=B

We use the notations)B(tr=bb=2 2211 +β and)B(det=bbbb= 21122211 −δ .
The aim of this chapter is to present a complete stability and bifurcation analysis in a
neighborhood of the null solution of (1), choosing the characteristic parameters),(δβ for the

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

345

system. Considering equal internal decays a=a=a 21 and delays satisfying

21122211 kk=kk ++ , two complementary situations are discussed:
• 2211 k=k
• 2211 kk ≠ (with the supplementary hypothesis 2211 b=b)
To the best of our knowledge, these are generalizations of all cases considered so far in the
existing literature. This analysis allows the description of the stability domain of the null
solution and the types of bifurcation occurring at its boundary, in terms of the characteristic
parameters. By applying the center manifold theorem and the normal form theory, the
Neimark-Sacker bifurcations are analyzed. A numerical example is presented to substantiate
the theoretical findings. Moreover, the numerical example shows that the dynamics become
more and more complex as the characteristic parameters leave the stability domain,
eventually leading to the installation of chaotic behavior. The route from stability towards
chaos passes through several stages of strange attractors and periodic solutions.

2. Preliminary results
We will start by giving two results that have particular importance for the bifurcation
analysis to follow, namely for the study of the distribution of the roots of the characteristic
polynomial associated to sysem (1) with respect to the unit circle.
The first result concerns the distribution of the roots of a polynomial function with respect
to the unit circle, and can be proved using Rouché's theorem.
Proposition 1. (see (Zhang & Zheng, 2005, 2007)) Suppose that R⊂S is a compact and
connected set, and the polynomial)(p...)(p)(p=),(P m

2n
2

1n
1

m α++λα+λα+λαλ −− is
continuous on S×C . Then, as the parameter α varies, the sum of the order of the zeros of

),(P αλ out of the unit circle, i.e. 1})|>|0,=),(P:({card λαλ∈λ C , can change only if a zero
appears on or crossed the unit circle. ■
The second result concerns the existence of the roots of a special equation which plays an
important role in the analysis of the characteristic polynomial associated to system (1).
Proposition 2. (see (Kaslik & Balint, 2007b)) Let be 0m ≥ ,]m[the integer part of m and

(0,1)a∈ . The equation

 0=msina1)m(sin φ−φ+ (2)
has exactly 2]m[+ solutions in the interval][0,π . More precisely:
• 0=0φ is a solution;

• if 1m ≥ , there is one solution jφ in every interval ⎟
⎠
⎞

⎜
⎝
⎛ ππ−

⊂⎟
⎠
⎞

⎜
⎝
⎛

+
π

+
π−

m
j,

m
1)j(

1m
j,

1m2
1)j(2 ,

]}m[{1,2,...,j∈ ;
• if N∈m then πφ + =1]m[is a solution and if N∉m then there is one solution

⎟
⎠
⎞

⎜
⎝
⎛ π

π
∈φ + ,

m
]m[

1]m[. ■

3. Stability and bifurcation analysis
We transform system (1) into the following system of 2kk 21 ++ equations without delays:

 Recurrent Neural Networks

344

discovery of periodic solutions), and identifying chaotic behavior (with valuable
applications to practical problems such as optimization (Chen & Aihara, 1995, 1997, 2001;
Chen & Shih, 2002), associative memory (Adachi & Aihara, 1997) and cryptography (Yu &
Cao, 2006)).
We refer to (Guo & Huang, 2004; Guo et al., 2004) for the study of the existence of periodic
solutions of discrete-time Hopfield neural networks with delays and the investigation of
exponential stability properties.
In (Yuan et al., 2004, 2005) and in the most general case, in (He & Cao, 2007), a bifurcation
analysis of two dimensional discrete neural networks without delays has been undertaken.
In (Zhang & Zheng, 2005, 2007), the bifurcation phenomena have been studied, for the case
of two- and n-dimensional discrete neural network models with multi-delays obtained by
applying the Euler method to a continuous-time Hopfield neural network with no self-
connections. In (Kaslik & Balint, 2007a-b), a bifurcation analysis for discrete-time Hopfield
neural networks of two neurons with self-connections has been presented, in the case of a
single delay and of two delays. In (Guo et al., 2007), a generalization of these results was
attempted, considering three delays; however, only two delays were considered
independent (the third one is a linear combination of the first two) and the analysis can be
reduced to the one presented in (Kaslik & Balint, 2007a).
The latest results concerning chaotic dynamics in discrete-time delayed neural networks can
be found in (Huang & Zou, 2005) and (Kaslik & Balint, 2007c).
A general discrete-time Hopfield-type neural network of two neurons with finite delays is
defined by:

)k,k,k,k(maxn)(ygT)(xgTya=y
)(ygT)(xgTxa=x

22211211
22kn22221kn121n21n
12kn21211kn111n11n

≥∀
⎪⎩

⎪
⎨
⎧

++
++

−−+

−−+
 (1)

 In this system (0,1)ai ∈ are the internal decays of the neurons, 22ij)T(=T × is the

interconnection matrix, RR →:gi represent the neuron input-output activations and
N∈ijk represent the delays. The reason for incorporating delays into the model equations of

the network is that, in practice, due to the finite speeds of the switching and transmission of
signals in a network, time delays unavoidably exist in a working network.
In order to insure that delays are present, we consider 0>)k,k,k,k(max 22211211 . The non-
delayed case was extensively studied in (He & Cao, 2007). In the followings, we will denote

)k,k(max=k 21111 and)k,k(max=k 22122 .

We will suppose that the activation functions ig are of class 3C in a neighborhood of 0

and that 0=(0)gi . In the followings, let 22:g RR → be the function given by
T

21))y(g),x(g(=)y,x(g and

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′
′′

2221

1211

222121

212111
bb
bb

=
(0)gT(0)gT
(0)gT(0)gT

=(0)TDg=B

We use the notations)B(tr=bb=2 2211 +β and)B(det=bbbb= 21122211 −δ .
The aim of this chapter is to present a complete stability and bifurcation analysis in a
neighborhood of the null solution of (1), choosing the characteristic parameters),(δβ for the

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

345

system. Considering equal internal decays a=a=a 21 and delays satisfying

21122211 kk=kk ++ , two complementary situations are discussed:
• 2211 k=k
• 2211 kk ≠ (with the supplementary hypothesis 2211 b=b)
To the best of our knowledge, these are generalizations of all cases considered so far in the
existing literature. This analysis allows the description of the stability domain of the null
solution and the types of bifurcation occurring at its boundary, in terms of the characteristic
parameters. By applying the center manifold theorem and the normal form theory, the
Neimark-Sacker bifurcations are analyzed. A numerical example is presented to substantiate
the theoretical findings. Moreover, the numerical example shows that the dynamics become
more and more complex as the characteristic parameters leave the stability domain,
eventually leading to the installation of chaotic behavior. The route from stability towards
chaos passes through several stages of strange attractors and periodic solutions.

2. Preliminary results
We will start by giving two results that have particular importance for the bifurcation
analysis to follow, namely for the study of the distribution of the roots of the characteristic
polynomial associated to sysem (1) with respect to the unit circle.
The first result concerns the distribution of the roots of a polynomial function with respect
to the unit circle, and can be proved using Rouché's theorem.
Proposition 1. (see (Zhang & Zheng, 2005, 2007)) Suppose that R⊂S is a compact and
connected set, and the polynomial)(p...)(p)(p=),(P m

2n
2

1n
1

m α++λα+λα+λαλ −− is
continuous on S×C . Then, as the parameter α varies, the sum of the order of the zeros of

),(P αλ out of the unit circle, i.e. 1})|>|0,=),(P:({card λαλ∈λ C , can change only if a zero
appears on or crossed the unit circle. ■
The second result concerns the existence of the roots of a special equation which plays an
important role in the analysis of the characteristic polynomial associated to system (1).
Proposition 2. (see (Kaslik & Balint, 2007b)) Let be 0m ≥ ,]m[the integer part of m and

(0,1)a∈ . The equation

 0=msina1)m(sin φ−φ+ (2)
has exactly 2]m[+ solutions in the interval][0,π . More precisely:
• 0=0φ is a solution;

• if 1m ≥ , there is one solution jφ in every interval ⎟
⎠
⎞

⎜
⎝
⎛ ππ−

⊂⎟
⎠
⎞

⎜
⎝
⎛

+
π

+
π−

m
j,

m
1)j(

1m
j,

1m2
1)j(2 ,

]}m[{1,2,...,j∈ ;
• if N∈m then πφ + =1]m[is a solution and if N∉m then there is one solution

⎟
⎠
⎞

⎜
⎝
⎛ π

π
∈φ + ,

m
]m[

1]m[. ■

3. Stability and bifurcation analysis
We transform system (1) into the following system of 2kk 21 ++ equations without delays:

 Recurrent Neural Networks

346

 N∈∀

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∀

++

∀

++

−
+

+

−
+

+

n

k1,=jy=y
)y(gT)x(gTya=y

k1,=jx=x
)y(gT)x(gTxa=x

2
1)j(

n
)j(

1n

)22k(
n222

)21k(
n121

(0)
n2

(0)
1n

1
1)j(

n
)j(

1n

)12k(
n212

)11k(
n111

(0)
n1

(0)
1n

 (3)

where R∈)j(x , 1k0,=j and R∈)j(y , 2k0,=j .

Let be the function 22k1k22k1k:F ++++ →RR given by the right hand side of system (3). The

jacobian matrix of system (3) at the fixed point 22k1k0 ++∈R is)0(DF=Â .
The following characteristic equation is obtained:

 0=zbb)zbaz)(zbaz()21k12k(
211222k

22211k
111

+−−− −−−−− (4)

Studying the stability and bifurcations occurring at the origin in system (1) reduces to the
analysis of the distribution of the roots of the characteristic equation (4) with respect to the
unit circle. The difficulty of this analysis is due to the large number of parameters appearing
in the characteristic equation.
In the followings, considering equal internal decays a=a=a 21 and delays satisfying

21122211 kk=kk ++ , we will analyze the roots of equation (4) in two particular situations,
depicting information about the stability and bifurcations occurring at the origin in system
(1).

3.1 Situation 1: 2211 k=k
We will denote k=k=k 2211 and therefore, we have k2=kk 2112 + .
A particular case of this situation is the one studied in (Kaslik & Balint, 2007a), where in
addition, it was considered that k=k=k 2112 , that is, all four delays are equal. Another
particular case of this situation is the one analyzed in (Guo et al., 2007), considering the
supplementary hypothesis 2211 b=b (but without assuming that all four delays are equal).
In this situation, the characteristic equation (4) can be written as:

 0=)az(z2)az(z k2k2 δ+−β−− (5)

The distribution of the roots of the characteristic equation (5) has been thoroughly analyzed
in (Kaslik & Balint, 2007a). This analysis provides us with the following results concerning
the stability and bifurcations occurring at the origin in system (1):
Considering the following notations and associated basic results:
• 1φ the unique solution of the equation 0=ksina1)k(sin φ−φ+ from the interval

)
1k

(0,
+
π ;

• the strictly decreasing function R→φ][0,:c 1 , θ−θ+θ kcosa1)k(cos=)(c ;

• 0<)cosa21a(=)(c 2
1

1
2

1 φ−+−φ ;

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

347

• the strictly decreasing function)(0,]a),1(c[:U 1 ∞→−φ defined by

))(c(cosa2a1=)(U 12 β−+β − ;

• the function RR →λ :0 , 2
0)a(1)a2(1=)(−−β−βλ ;

• the function RR →λ :1 , 2
111)(c)(c2=)(φ−βφβλ ;

• the function R→−φ]a),1(c[:L 1 , (){0,1}j)/(max=)(L j ∈βλβ ;

•]a1)(c[
2
1= 10 −+φβ ;

The following theorem holds:
Theorem 1. The null solution of (1) is asymptotically stable if and only if β and δ satisfy the
following inequalities:

).(U<<)(Landa1<<)(c 1 βδβ−βφ (6)

On the boundary of the set)}(U<<)(Landa1<<)(c:),{(=D 1
2

S βδβ−βφ∈δβ R the
following bifurcation phenomena causing the loss of asymptotical stability of the null
solution of (1) take place:
i. Let be)a,1(0 −β∈β . When)(=)(L= 0 βλβδ system (1) has a Fold bifurcation at the

origin.
ii. Let be)),(c(01 βφ∈β . When)(=)(L= 1 βλβδ a Neimark-Sacker bifurcation occurs in

system (1), i.e. a unique closed invariant curve bifurcates from the origin near)(= 1 βλδ .
iii. Let be)a),1(c(1 −φ∈β . When)(U= βδ , system (1) has a Neimark-Sacker bifurcation at

the origin. That is, system (1) has a unique closed invariant curve bifurcating from the
origin near)(U= βδ .

iv. For 0= ββ and)a)(1(c=)(L= 10 −φβδ a Fold-Neimark-Sacker bifurcation occurs at the
origin in system (1).

v. For)(c= 1φβ and 2
1)(c= φδ , the null solution of (1) is a double Neimark-Sacker

bifurcation point.
vi. For)a(1= −β and 2)a(1= −δ , the system (1) has a strong 1:1 resonant bifurcation at

the origin. ■
The set SD given by Theorem 1 is the stability domain of the null solution of (1) with
respect to the characteristic parameters β and δ .

3.2 Situation 2: 2211 kk ≠ and 2211 b=b
A particular case of this situation has been studied in (Kaslik & Balint, 2007b), where in
addition, it was considered that 2111 k=k and 2212 k=k .
In this situation, the characteristic equation (4) can be written as:

 0=)az(z)az(z)az(z 11k22k222k11k δ+−β−−β−−+ (7)

This equation is the same as the one obtained and analyzed in (Kaslik & Balint, 2007b). The
conclusions of this analysis will be presented below.

 Recurrent Neural Networks

346

 N∈∀

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∀

++

∀

++

−
+

+

−
+

+

n

k1,=jy=y
)y(gT)x(gTya=y

k1,=jx=x
)y(gT)x(gTxa=x

2
1)j(

n
)j(

1n

)22k(
n222

)21k(
n121

(0)
n2

(0)
1n

1
1)j(

n
)j(

1n

)12k(
n212

)11k(
n111

(0)
n1

(0)
1n

 (3)

where R∈)j(x , 1k0,=j and R∈)j(y , 2k0,=j .

Let be the function 22k1k22k1k:F ++++ →RR given by the right hand side of system (3). The

jacobian matrix of system (3) at the fixed point 22k1k0 ++∈R is)0(DF=Â .
The following characteristic equation is obtained:

 0=zbb)zbaz)(zbaz()21k12k(
211222k

22211k
111

+−−− −−−−− (4)

Studying the stability and bifurcations occurring at the origin in system (1) reduces to the
analysis of the distribution of the roots of the characteristic equation (4) with respect to the
unit circle. The difficulty of this analysis is due to the large number of parameters appearing
in the characteristic equation.
In the followings, considering equal internal decays a=a=a 21 and delays satisfying

21122211 kk=kk ++ , we will analyze the roots of equation (4) in two particular situations,
depicting information about the stability and bifurcations occurring at the origin in system
(1).

3.1 Situation 1: 2211 k=k
We will denote k=k=k 2211 and therefore, we have k2=kk 2112 + .
A particular case of this situation is the one studied in (Kaslik & Balint, 2007a), where in
addition, it was considered that k=k=k 2112 , that is, all four delays are equal. Another
particular case of this situation is the one analyzed in (Guo et al., 2007), considering the
supplementary hypothesis 2211 b=b (but without assuming that all four delays are equal).
In this situation, the characteristic equation (4) can be written as:

 0=)az(z2)az(z k2k2 δ+−β−− (5)

The distribution of the roots of the characteristic equation (5) has been thoroughly analyzed
in (Kaslik & Balint, 2007a). This analysis provides us with the following results concerning
the stability and bifurcations occurring at the origin in system (1):
Considering the following notations and associated basic results:
• 1φ the unique solution of the equation 0=ksina1)k(sin φ−φ+ from the interval

)
1k

(0,
+
π ;

• the strictly decreasing function R→φ][0,:c 1 , θ−θ+θ kcosa1)k(cos=)(c ;

• 0<)cosa21a(=)(c 2
1

1
2

1 φ−+−φ ;

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

347

• the strictly decreasing function)(0,]a),1(c[:U 1 ∞→−φ defined by

))(c(cosa2a1=)(U 12 β−+β − ;

• the function RR →λ :0 , 2
0)a(1)a2(1=)(−−β−βλ ;

• the function RR →λ :1 , 2
111)(c)(c2=)(φ−βφβλ ;

• the function R→−φ]a),1(c[:L 1 , (){0,1}j)/(max=)(L j ∈βλβ ;

•]a1)(c[
2
1= 10 −+φβ ;

The following theorem holds:
Theorem 1. The null solution of (1) is asymptotically stable if and only if β and δ satisfy the
following inequalities:

).(U<<)(Landa1<<)(c 1 βδβ−βφ (6)

On the boundary of the set)}(U<<)(Landa1<<)(c:),{(=D 1
2

S βδβ−βφ∈δβ R the
following bifurcation phenomena causing the loss of asymptotical stability of the null
solution of (1) take place:
i. Let be)a,1(0 −β∈β . When)(=)(L= 0 βλβδ system (1) has a Fold bifurcation at the

origin.
ii. Let be)),(c(01 βφ∈β . When)(=)(L= 1 βλβδ a Neimark-Sacker bifurcation occurs in

system (1), i.e. a unique closed invariant curve bifurcates from the origin near)(= 1 βλδ .
iii. Let be)a),1(c(1 −φ∈β . When)(U= βδ , system (1) has a Neimark-Sacker bifurcation at

the origin. That is, system (1) has a unique closed invariant curve bifurcating from the
origin near)(U= βδ .

iv. For 0= ββ and)a)(1(c=)(L= 10 −φβδ a Fold-Neimark-Sacker bifurcation occurs at the
origin in system (1).

v. For)(c= 1φβ and 2
1)(c= φδ , the null solution of (1) is a double Neimark-Sacker

bifurcation point.
vi. For)a(1= −β and 2)a(1= −δ , the system (1) has a strong 1:1 resonant bifurcation at

the origin. ■
The set SD given by Theorem 1 is the stability domain of the null solution of (1) with
respect to the characteristic parameters β and δ .

3.2 Situation 2: 2211 kk ≠ and 2211 b=b
A particular case of this situation has been studied in (Kaslik & Balint, 2007b), where in
addition, it was considered that 2111 k=k and 2212 k=k .
In this situation, the characteristic equation (4) can be written as:

 0=)az(z)az(z)az(z 11k22k222k11k δ+−β−−β−−+ (7)

This equation is the same as the one obtained and analyzed in (Kaslik & Balint, 2007b). The
conclusions of this analysis will be presented below.

 Recurrent Neural Networks

348

First, a list of notations will be introduced and some mathematical results will be presented,
which can be proved using basic mathematical tools:

•)kk(
2
1=m 2211 + and |kk|

2
1=l 2211 − ; remark:

2
1l ≥ , 1>m ;

• },...,,0,={=S 1]m[2101 +φφφφ the set of all solutions of the equation (2) from the interval
][0,π ;

• }
2

1l2{1,2,...,j/
l2
1)j(2={=S j2 ⎥⎦

⎤
⎢⎣
⎡ +

∈
π−

ψ ;

•),(min= 111 ψφθ ;
• the function R→π][0,:c , θ−θ+θ mcosa1)m(cos=)(c ;
• the function R→π][0,:s , θ−θ+θ msina1)m(sin=)(s ;
• the strictly decreasing function R→θ)[0,:h 1 ,)l(sec)(c=)(h θθθ ;

•
⎩
⎨
⎧

ψ≥φ∞−
ψφφφ

θα
θ→θ 11

1111

1
if

<if0<)l(sec)(c
=)(hlim=

•)[0,]a,1(:h 1
1 θ→−α− the inverse of the function h ;

• the strictly decreasing function)(0,]a,1(:U ∞→−α ,))(h(cosa2a1=)(U 12 β−+β − ;

• the functions RR →λ :j , 2
jjjj)(c)l(cos)(c2=)(φ−βφφβλ ;

• the function R→−α]a,1(:L , ()1}]m[{0,1,...,j)/(max=)(L j +∈βλβ ;

• ijβ the solution of the equation)(=)(ji βλβλ , ji ≠ ;

• 0)<1},]m[{1,2,...,j/(max= j0j00 β+∈ββ ;

• remark: 2
0)a(1)a2(1=)(=)(L −−β−βλβ for any]a,1[0 −β∈β ;

• if the equation)(L=)(U ββ has some roots in the interval),(0βα , then 1β is the largest
of these roots; otherwise, αβ =1 .

We will consider the following two cases:
(c1) At least one of the delays 11k or 22k is odd.
(c2) Both delays 11k and 22k are even.
Theorem 2. The null solution of (1) is asymptotically stable if β and δ satisfy the following
inequalities:

).(U<<)(Landa1<<1 βδβ−ββ (8)

On the boundary of the set)}(U<<)(Landa1<<:),{(=D 1
2

S βδβ−ββ∈δβ R the following
bifurcation phenomena causing the loss of asymptotical stability of the null solution of (1)
take place:
i. Let be)a,1(1 −β∈β . When)(U= βδ , system (1) has a Neimark-Sacker bifurcation at the

origin. That is, system (1) has a unique closed invariant curve bifurcating from the
origin near)(U= βδ .

ii. Let be),(01 ββ∈β such that the function L is differentiable at β . When)(L= βδ :

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

349

 (c1) system (1) has a Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a Flip or a Neimark-Sacker bifurcation at the origin.
iii. Let be)a,1(0 −β∈β . When 2)a(1)a2(1=)(L= −−β−βδ system (1) has a Fold

bifurcation at the origin.
iv. For)a(1= −β and 2)a(1= −δ , system (1) has a strong 1:1 resonant bifurcation at the

origin.
v. For 0= ββ and 2

00)a(1)a2(1=)(L= −−β−βδ , system (1) has a Fold-Neimark-Sacker
bifurcation at the origin.

vi. For 1= ββ and)(U= 1βδ :
 (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the
 origin.
vii. If there exists),(01 ββ∈β∗ such that the function L is not differentiable at ∗β , then for

∗ββ = and)(L= ∗βδ :
 (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the
 origin. ■
We underline that Theorems 1 and 2 completely characterize the stability domain (in the

),(δβ -plane) of the null solution of (1) and the bifurcations occurring at its boundary, in the
considered situations.

4. Direction and stability of Neimark-Sacker bifurcations

Let be the function 22k1k22k1k:F ++++ →RR given by the right hand side of system (3). Let

be the operators)0(DF=Â ,)0(FD=B̂ 2 and)0(FD=Ĉ 3 .
In the cases ii. and iii. of Theorem 1 and i. and ii. of Theorem 2, Neimark-Sacker bifurcations
occur at the origin in system (1). That is, matrix Â has a simple pair)z,z(of eigenvalues on
the unit circle, such that z is not a root of order 1,2,3,4 of the unity.
The restriction of system (3) to its two dimensional center manifold at the critical parameter
values can be transformed into the normal form written in complex coordinates (see
(Kuznetsov, 2004)):

 C∈++ w),|w(|O)|w|d
2
1(1zww 42 (9)

with

〉−+−+〈 −−))q,q(B̂)ÂIz(,q(B̂))q,q(B̂)ÂI(,q(B̂2)q,q,q(Ĉ,pz=d 121

where zq=qÂ , pz=pÂT and 1=q,p 〉〈 (with qp=q,p T〉〈)
Direct computations provide the following result:

 Recurrent Neural Networks

348

First, a list of notations will be introduced and some mathematical results will be presented,
which can be proved using basic mathematical tools:

•)kk(
2
1=m 2211 + and |kk|

2
1=l 2211 − ; remark:

2
1l ≥ , 1>m ;

• },...,,0,={=S 1]m[2101 +φφφφ the set of all solutions of the equation (2) from the interval
][0,π ;

• }
2

1l2{1,2,...,j/
l2
1)j(2={=S j2 ⎥⎦

⎤
⎢⎣
⎡ +

∈
π−

ψ ;

•),(min= 111 ψφθ ;
• the function R→π][0,:c , θ−θ+θ mcosa1)m(cos=)(c ;
• the function R→π][0,:s , θ−θ+θ msina1)m(sin=)(s ;
• the strictly decreasing function R→θ)[0,:h 1 ,)l(sec)(c=)(h θθθ ;

•
⎩
⎨
⎧

ψ≥φ∞−
ψφφφ

θα
θ→θ 11

1111

1
if

<if0<)l(sec)(c
=)(hlim=

•)[0,]a,1(:h 1
1 θ→−α− the inverse of the function h ;

• the strictly decreasing function)(0,]a,1(:U ∞→−α ,))(h(cosa2a1=)(U 12 β−+β − ;

• the functions RR →λ :j , 2
jjjj)(c)l(cos)(c2=)(φ−βφφβλ ;

• the function R→−α]a,1(:L , ()1}]m[{0,1,...,j)/(max=)(L j +∈βλβ ;

• ijβ the solution of the equation)(=)(ji βλβλ , ji ≠ ;

• 0)<1},]m[{1,2,...,j/(max= j0j00 β+∈ββ ;

• remark: 2
0)a(1)a2(1=)(=)(L −−β−βλβ for any]a,1[0 −β∈β ;

• if the equation)(L=)(U ββ has some roots in the interval),(0βα , then 1β is the largest
of these roots; otherwise, αβ =1 .

We will consider the following two cases:
(c1) At least one of the delays 11k or 22k is odd.
(c2) Both delays 11k and 22k are even.
Theorem 2. The null solution of (1) is asymptotically stable if β and δ satisfy the following
inequalities:

).(U<<)(Landa1<<1 βδβ−ββ (8)

On the boundary of the set)}(U<<)(Landa1<<:),{(=D 1
2

S βδβ−ββ∈δβ R the following
bifurcation phenomena causing the loss of asymptotical stability of the null solution of (1)
take place:
i. Let be)a,1(1 −β∈β . When)(U= βδ , system (1) has a Neimark-Sacker bifurcation at the

origin. That is, system (1) has a unique closed invariant curve bifurcating from the
origin near)(U= βδ .

ii. Let be),(01 ββ∈β such that the function L is differentiable at β . When)(L= βδ :

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

349

 (c1) system (1) has a Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a Flip or a Neimark-Sacker bifurcation at the origin.
iii. Let be)a,1(0 −β∈β . When 2)a(1)a2(1=)(L= −−β−βδ system (1) has a Fold

bifurcation at the origin.
iv. For)a(1= −β and 2)a(1= −δ , system (1) has a strong 1:1 resonant bifurcation at the

origin.
v. For 0= ββ and 2

00)a(1)a2(1=)(L= −−β−βδ , system (1) has a Fold-Neimark-Sacker
bifurcation at the origin.

vi. For 1= ββ and)(U= 1βδ :
 (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the
 origin.
vii. If there exists),(01 ββ∈β∗ such that the function L is not differentiable at ∗β , then for

∗ββ = and)(L= ∗βδ :
 (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.
 (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the
 origin. ■
We underline that Theorems 1 and 2 completely characterize the stability domain (in the

),(δβ -plane) of the null solution of (1) and the bifurcations occurring at its boundary, in the
considered situations.

4. Direction and stability of Neimark-Sacker bifurcations

Let be the function 22k1k22k1k:F ++++ →RR given by the right hand side of system (3). Let

be the operators)0(DF=Â ,)0(FD=B̂ 2 and)0(FD=Ĉ 3 .
In the cases ii. and iii. of Theorem 1 and i. and ii. of Theorem 2, Neimark-Sacker bifurcations
occur at the origin in system (1). That is, matrix Â has a simple pair)z,z(of eigenvalues on
the unit circle, such that z is not a root of order 1,2,3,4 of the unity.
The restriction of system (3) to its two dimensional center manifold at the critical parameter
values can be transformed into the normal form written in complex coordinates (see
(Kuznetsov, 2004)):

 C∈++ w),|w(|O)|w|d
2
1(1zww 42 (9)

with

〉−+−+〈 −−))q,q(B̂)ÂIz(,q(B̂))q,q(B̂)ÂI(,q(B̂2)q,q,q(Ĉ,pz=d 121

where zq=qÂ , pz=pÂT and 1=q,p 〉〈 (with qp=q,p T〉〈)
Direct computations provide the following result:

 Recurrent Neural Networks

350

Proposition 3. Suppose that 21122211 kk=kk ++ and a=a=a 21 . Consider

]b)az(z][b)az(z[=)z(P 2222k
1111k −−−− . The vectors q and p of 22k1k ++C which verify

1=q,p;pz=pÂ;zq=qÂ T 〉〈

are given by:

T
222

12k
22k

111
11k

11k)q,zq,...,qz,qz,q,zq,...,qz,qz(=q −−

T
2

12k
2221

11k
111)p)az(z,...,p)az(z,p)az(,p,p)az(z,...,p)az(z,p)az(,p(=p −−−−−− −−

where
)z(Pb
)az(z=p;

)z(P
1=p;b=q;)az(z=q

21

11k

2121222k
1 ′

β−−
′

β−− .■

The following result gives us information about the direction and stability of Neimark-
Sacker bifurcations.
Proposition 4. (see (Kuznetsov, 2004)) The direction and stability of the Neimark-Sacker
bifurcation is determined by the sign of)d(Re . If 0<)d(Re then the bifurcation is
supercritical, i.e. the closed invariant curve bifurcating from the origin is asymptotically
stable. If 0>)d(Re , the bifurcation is subcritical, i.e. the closed invariant curve bifurcating
from the origin is unstable. ■

5. Example
In the following example, we will consider the delays 1=k11 , 5=k22 , 4=k12 and

2=k21 . We will also choose 0.5=a and β=b=b 2211 . In this case, using Mathematica, we
compute:

• }2.28703,1,1.44928,{0,0.66756=S1 π (rad), }
4

3,
4

{=S2
ππ ;

• 0.667561== 11 φθ (rad), 2.91934= −α , 0.723816=1 −β , 0.162831=0 −β ;

• 0.380779.= −β∗
The bifurcations occurring at the boundary of SD (provided by Theorem 2) are:
• For),(01 ββ∈β and)(U= βδ a Neimark-Sacker bifurcation occurs, with the multipliers

)(1ihe β−± ;
• For)a,1(0 −β∈β and 2

0)a(1)a2(1=)(= −−β−βλδ a Fold bifurcation occurs;

• For),(1
∗ββ∈β and)(=)(L= 2 βλβδ a Neimark-Sacker bifurcation occurs, with the

multipliers 2ie φ± ;
• For),(0ββ∈β ∗ and)(=)(L= 1 βλβδ a Neimark-Sacker bifurcation occurs, with the

multipliers 1ie φ± ;
• For a1= −β and 2)a(1= −δ a 1:1 resonant bifurcation occurs;
• For 1= ββ and)(U= 1βδ a double Neimark-Sacker bifurcation occurs;

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

351

• For 0= ββ and)(=)(L= 000 βλβδ a Fold-Neimark-Sacker bifurcation occurs.

• For ∗ββ = and)(L= ∗βδ a double Neimark-Sacker bifurcation occurs.
The stability domain in the),(δβ -plane for this network is the one presented in Figure 1.
More precisely, we consider the delayed discrete-time Hopfield neural network:

 5n
)y(sin)x(tanh)(y0.5=y

)y(sin)x(tanhx0.5=x

5n2n
2

n1n

4n1nn1n ≥∀
⎩
⎨
⎧

β+β−δ+
−β+

−−+

−−+ (10)

Choosing 0.25= −β , we obtain that the origin is asymptotically stable if
.324255)0.385082,0(−∈δ and supercritical Neimark-Sacker bifurcations occur at

0.385082=)(L= −βδ and 0.324255=)(U= βδ respectively (see Figures 4-5). The bifurcation
diagram for 2.5,2.5)(−∈δ is presented in Figure 2 and the values of the Largest Lyapunov
Characteristic Exponent are presented in Figure 3. It can be seen that as δ leaves the
stability domain SD , the dynamics in a neighborhood of the origin become more and more
complex, eventually leading to the occurrence of chaotic behavior. The phase portraits presented
in Figures 6-7 sillustrate the changes which appear on the route from stable dynamics to chaotic
dynamics, in a neighborhood of the origin, as ||δ increases from 0 to 2.5.

Fig. 1. Stability domain for the null solution when 1=k11 , 5=k22 , 4=k12 , 2=k21

Fig. 2. Bifurcation diagram for system (10) with 0.25= −β , in the (,x) -plane, for ∈(-2.5,2.5)
(with the step size of 0.02 for). For this bifurcation diagram, for each value, the initial
conditions were reset to (x0,y0)=(0.01,0.01) and 105 time steps were iterated before plotting
the data (which consists of 102 points per value).

 Recurrent Neural Networks

350

Proposition 3. Suppose that 21122211 kk=kk ++ and a=a=a 21 . Consider

]b)az(z][b)az(z[=)z(P 2222k
1111k −−−− . The vectors q and p of 22k1k ++C which verify

1=q,p;pz=pÂ;zq=qÂ T 〉〈

are given by:

T
222

12k
22k

111
11k

11k)q,zq,...,qz,qz,q,zq,...,qz,qz(=q −−

T
2

12k
2221

11k
111)p)az(z,...,p)az(z,p)az(,p,p)az(z,...,p)az(z,p)az(,p(=p −−−−−− −−

where
)z(Pb
)az(z=p;

)z(P
1=p;b=q;)az(z=q

21

11k

2121222k
1 ′

β−−
′

β−− .■

The following result gives us information about the direction and stability of Neimark-
Sacker bifurcations.
Proposition 4. (see (Kuznetsov, 2004)) The direction and stability of the Neimark-Sacker
bifurcation is determined by the sign of)d(Re . If 0<)d(Re then the bifurcation is
supercritical, i.e. the closed invariant curve bifurcating from the origin is asymptotically
stable. If 0>)d(Re , the bifurcation is subcritical, i.e. the closed invariant curve bifurcating
from the origin is unstable. ■

5. Example
In the following example, we will consider the delays 1=k11 , 5=k22 , 4=k12 and

2=k21 . We will also choose 0.5=a and β=b=b 2211 . In this case, using Mathematica, we
compute:

• }2.28703,1,1.44928,{0,0.66756=S1 π (rad), }
4

3,
4

{=S2
ππ ;

• 0.667561== 11 φθ (rad), 2.91934= −α , 0.723816=1 −β , 0.162831=0 −β ;

• 0.380779.= −β∗
The bifurcations occurring at the boundary of SD (provided by Theorem 2) are:
• For),(01 ββ∈β and)(U= βδ a Neimark-Sacker bifurcation occurs, with the multipliers

)(1ihe β−± ;
• For)a,1(0 −β∈β and 2

0)a(1)a2(1=)(= −−β−βλδ a Fold bifurcation occurs;

• For),(1
∗ββ∈β and)(=)(L= 2 βλβδ a Neimark-Sacker bifurcation occurs, with the

multipliers 2ie φ± ;
• For),(0ββ∈β ∗ and)(=)(L= 1 βλβδ a Neimark-Sacker bifurcation occurs, with the

multipliers 1ie φ± ;
• For a1= −β and 2)a(1= −δ a 1:1 resonant bifurcation occurs;
• For 1= ββ and)(U= 1βδ a double Neimark-Sacker bifurcation occurs;

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

351

• For 0= ββ and)(=)(L= 000 βλβδ a Fold-Neimark-Sacker bifurcation occurs.

• For ∗ββ = and)(L= ∗βδ a double Neimark-Sacker bifurcation occurs.
The stability domain in the),(δβ -plane for this network is the one presented in Figure 1.
More precisely, we consider the delayed discrete-time Hopfield neural network:

 5n
)y(sin)x(tanh)(y0.5=y

)y(sin)x(tanhx0.5=x

5n2n
2

n1n

4n1nn1n ≥∀
⎩
⎨
⎧

β+β−δ+
−β+

−−+

−−+ (10)

Choosing 0.25= −β , we obtain that the origin is asymptotically stable if
.324255)0.385082,0(−∈δ and supercritical Neimark-Sacker bifurcations occur at

0.385082=)(L= −βδ and 0.324255=)(U= βδ respectively (see Figures 4-5). The bifurcation
diagram for 2.5,2.5)(−∈δ is presented in Figure 2 and the values of the Largest Lyapunov
Characteristic Exponent are presented in Figure 3. It can be seen that as δ leaves the
stability domain SD , the dynamics in a neighborhood of the origin become more and more
complex, eventually leading to the occurrence of chaotic behavior. The phase portraits presented
in Figures 6-7 sillustrate the changes which appear on the route from stable dynamics to chaotic
dynamics, in a neighborhood of the origin, as ||δ increases from 0 to 2.5.

Fig. 1. Stability domain for the null solution when 1=k11 , 5=k22 , 4=k12 , 2=k21

Fig. 2. Bifurcation diagram for system (10) with 0.25= −β , in the (,x) -plane, for ∈(-2.5,2.5)
(with the step size of 0.02 for). For this bifurcation diagram, for each value, the initial
conditions were reset to (x0,y0)=(0.01,0.01) and 105 time steps were iterated before plotting
the data (which consists of 102 points per value).

 Recurrent Neural Networks

352

Fig. 3. Largest Lyapunov Characteristic Exponent for system (10) with 0.25= −β . For the
computation of the Lyapunov spectrum, for each δ value (step size 0.02 for δ), the initial
conditions were reset and 510 time-steps were iterated before calculating the LCEs (which
were computed over the next 510 time steps). The Lyapunov spectrum was computed
using the Householder QR based (HQRB) method presented in (Bremen et al., 1997).

Fig. 4. Supercritical Neimark-Sacker bifurcation at 0.324255=δ . For 0.32=δ , the null
solution is asymptotically stable, and the trajectory converges to the origin. For 0.33=b , an
asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle.

Fig. 5. Supercritical Neimark-Sacker bifurcation at 0.385082= −δ . For 0.38= −δ , the null
solution is asymptotically stable, and the trajectory converges to the origin. For 0.39=b − ,
an asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle.

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

353

Fig. 6. Phase portraits for various values of (0,2.5)∈δ , at the first step towards chaos. The
route towards chaos passes through several stages: 0.6=δ , 1=δ , 1.5=δ : 1-toruses
(0=LLCE); 1.55=δ : 2-torus (0=LLCE); 1.6=δ : strange attractor (0LLCE ≈); 1.7=δ :
chaos (LLCE>0). For each plot, considering the initial conditions (x0,y0)=(0.01,0.01), the first 106
iterations of system (10) have been dropped, and the next 104 iterations have been plotted.

 Recurrent Neural Networks

352

Fig. 3. Largest Lyapunov Characteristic Exponent for system (10) with 0.25= −β . For the
computation of the Lyapunov spectrum, for each δ value (step size 0.02 for δ), the initial
conditions were reset and 510 time-steps were iterated before calculating the LCEs (which
were computed over the next 510 time steps). The Lyapunov spectrum was computed
using the Householder QR based (HQRB) method presented in (Bremen et al., 1997).

Fig. 4. Supercritical Neimark-Sacker bifurcation at 0.324255=δ . For 0.32=δ , the null
solution is asymptotically stable, and the trajectory converges to the origin. For 0.33=b , an
asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle.

Fig. 5. Supercritical Neimark-Sacker bifurcation at 0.385082= −δ . For 0.38= −δ , the null
solution is asymptotically stable, and the trajectory converges to the origin. For 0.39=b − ,
an asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle.

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

353

Fig. 6. Phase portraits for various values of (0,2.5)∈δ , at the first step towards chaos. The
route towards chaos passes through several stages: 0.6=δ , 1=δ , 1.5=δ : 1-toruses
(0=LLCE); 1.55=δ : 2-torus (0=LLCE); 1.6=δ : strange attractor (0LLCE ≈); 1.7=δ :
chaos (LLCE>0). For each plot, considering the initial conditions (x0,y0)=(0.01,0.01), the first 106
iterations of system (10) have been dropped, and the next 104 iterations have been plotted.

 Recurrent Neural Networks

354

Fig. 7: Phase portraits for various values of 2.5,0)(−∈δ , at the first step towards chaos. The
route towards chaos passes through several stages: 0.6= −δ , 1.5= −δ : 1-toruses
(0=LLCE); 1.55= −δ : stable period-9 orbit (0<LLCE); 1.6= −δ : 1-torus (0=LLCE);

1.8= −δ : 2-torus (0=LLCE), 2= −δ : strange attractor (0LLCE ≈). For each plot,
considering the initial conditions)(0.01,0.01=)y,x(00 , the first 610 iterations of system (10)
have been dropped, and the next 104 iterations have been plotted.

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

355

6. Conclusions
A complete bifurcation analysis has been presented for a discrete-time Hopfield-type neural
network of two neurons with several delays, uncovering the structure of the stability
domain of the null solution, as well as the types of bifurcations occurring at its boundary.
The numerical example illustrated the theoretical results and suggested some routes
towards chaos as the characteristic parameters of the system leave the stability domain.
A generalization of these results to more complicated networks of two or more neurons may
constitute a direction for future research.

7. Acknowledgements
This work has been supported by the Romanian National Authority for Research under the
contract PN-II-11028/14.09.2007 (NatComp - New Natural Computing Models in the Study
of Complexity).

8. References
Adachi, M. & Aihara, K. (1997). Associative dynamics in a chaotic neural network. Neural

Networks, 10(1):83-98.
Bremen, H. F.; Udwadia, F.E. & Proskurowski, W. (1997). An efficient QR based method for

the computation of Lyapunov exponents. Physica D: Nonlinear Phenomena, 101(1-
2):1-16.

Chen, L. & Aihara, K. (1995). Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks, 8:915--930.

Chen, L. & Aihara, K. (1997). Chaos and asymptotical stability in discrete-time neural
networks. Physica D: Nonlinear Phenomena, 104(3-4):286-325.

Chen, L. & Aihara K. (2001). Chaotic dynamics of neural networks ans its application to
combinatorial optimization. Journal of Dynamical Systems and Differential Equations,
9(3):139-168.

Chen, S.S. & Shih, C.W. (2002). Transversal homoclinic orbits in a transiently chaotic neural
network. Chaos, 12:654-671.

Guo, S. & Huang, L. (2004). Periodic oscillation for discrete-time Hopfield neural networks.
Physics Letters A, 329(3):199-206.

Guo, S.; Huang, L. & Wang, L. (2004). Exponential stability of discrete-time Hopfield neural
networks. Computers and Mathematics with Applications, 47:1249-1256.

Guo, S.; Tang, X. & Huang, L. (2007). Stability and bifurcation in a discrete system of two
neurons with delays. Nonlinear Analysis: Real World Applications, DOI:
10.1016/j.nonrwa.2007.03.002, in press.

He, W. & Cao, J. (2007). Stability and bifurcation of a class of discrete-time neural networks.
Applied Mathematical Modelling, 31(10):2111-2122.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Nat. Acad. Sci., 79:2554-2558.

Huang, Y. & Zou, X. (2005). Co-Existence of Chaos and Stable Periodic Orbits in a Simple
Discrete Neural Network. Journal of Nonlinear Science, 15:291-303.

Kaslik, E. & Balint, St. (2007a). Bifurcation analysis for a two-dimensional delayed discrete-
time Hopfield neural network. Chaos, Solitons and Fractals, 34(4):1245-1253, 2007.

 Recurrent Neural Networks

354

Fig. 7: Phase portraits for various values of 2.5,0)(−∈δ , at the first step towards chaos. The
route towards chaos passes through several stages: 0.6= −δ , 1.5= −δ : 1-toruses
(0=LLCE); 1.55= −δ : stable period-9 orbit (0<LLCE); 1.6= −δ : 1-torus (0=LLCE);

1.8= −δ : 2-torus (0=LLCE), 2= −δ : strange attractor (0LLCE ≈). For each plot,
considering the initial conditions)(0.01,0.01=)y,x(00 , the first 610 iterations of system (10)
have been dropped, and the next 104 iterations have been plotted.

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

355

6. Conclusions
A complete bifurcation analysis has been presented for a discrete-time Hopfield-type neural
network of two neurons with several delays, uncovering the structure of the stability
domain of the null solution, as well as the types of bifurcations occurring at its boundary.
The numerical example illustrated the theoretical results and suggested some routes
towards chaos as the characteristic parameters of the system leave the stability domain.
A generalization of these results to more complicated networks of two or more neurons may
constitute a direction for future research.

7. Acknowledgements
This work has been supported by the Romanian National Authority for Research under the
contract PN-II-11028/14.09.2007 (NatComp - New Natural Computing Models in the Study
of Complexity).

8. References
Adachi, M. & Aihara, K. (1997). Associative dynamics in a chaotic neural network. Neural

Networks, 10(1):83-98.
Bremen, H. F.; Udwadia, F.E. & Proskurowski, W. (1997). An efficient QR based method for

the computation of Lyapunov exponents. Physica D: Nonlinear Phenomena, 101(1-
2):1-16.

Chen, L. & Aihara, K. (1995). Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks, 8:915--930.

Chen, L. & Aihara, K. (1997). Chaos and asymptotical stability in discrete-time neural
networks. Physica D: Nonlinear Phenomena, 104(3-4):286-325.

Chen, L. & Aihara K. (2001). Chaotic dynamics of neural networks ans its application to
combinatorial optimization. Journal of Dynamical Systems and Differential Equations,
9(3):139-168.

Chen, S.S. & Shih, C.W. (2002). Transversal homoclinic orbits in a transiently chaotic neural
network. Chaos, 12:654-671.

Guo, S. & Huang, L. (2004). Periodic oscillation for discrete-time Hopfield neural networks.
Physics Letters A, 329(3):199-206.

Guo, S.; Huang, L. & Wang, L. (2004). Exponential stability of discrete-time Hopfield neural
networks. Computers and Mathematics with Applications, 47:1249-1256.

Guo, S.; Tang, X. & Huang, L. (2007). Stability and bifurcation in a discrete system of two
neurons with delays. Nonlinear Analysis: Real World Applications, DOI:
10.1016/j.nonrwa.2007.03.002, in press.

He, W. & Cao, J. (2007). Stability and bifurcation of a class of discrete-time neural networks.
Applied Mathematical Modelling, 31(10):2111-2122.

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Nat. Acad. Sci., 79:2554-2558.

Huang, Y. & Zou, X. (2005). Co-Existence of Chaos and Stable Periodic Orbits in a Simple
Discrete Neural Network. Journal of Nonlinear Science, 15:291-303.

Kaslik, E. & Balint, St. (2007a). Bifurcation analysis for a two-dimensional delayed discrete-
time Hopfield neural network. Chaos, Solitons and Fractals, 34(4):1245-1253, 2007.

 Recurrent Neural Networks

356

Kaslik, E. & Balint, St. (2007b). Bifurcation analysis for a discrete-time Hopfield neural
network of two neurons with two delays and self-connections. Chaos, Solitons and
Fractals, DOI 10.1016/j.chaos.2007.01.126, in press.

Kaslik, E. & Balint, St. (2007c). Chaotic dynamics of a delayed discrete-time Hopfield
network of two nonidentical neurons with no self-connections. Journal of Nonlinear
Science, DOI 10.1007/s00332-007-9015-5, in press.

Kuznetsov, Yu. A. (2004). Elements of applied bifurcation theory. Springer-Verlag, ISBN 0-387-
21906-4, New York.

Mohamad, S. & Gopalsamy, K. (2000). Dynamics of a class of discrete-time neural networks
and their continuous-time counterparts. Mathematics and Computers in Simulation,
53(1-2):1-39.

Pasemann, F.; Hild, M. & Zahedi, K. (2003). SO(2)-Networks as Neural Oscillators. Lecture
Notes in Computer Science: Computational Methods in Neural Modeling, pp. 1042-1050,
ISBN 978-3-540-40210-7, Springer Berlin/Heidelberg.

Tank, D.W. & Hopfield, J.J. (1986). Simple neural optimization networks: an A/D converter,
signal decision circuit and a linear programming circuit. IEEE Transactions on
Circuits and Systems, 33:533-541.

Yu, W. & Cao, J. (2006) Cryptography based on delayed chaotic neural networks. Physics
Letters A, 356(4-5):333-338.

Yuan, Z.; Hu, D. & Huang, L. (2004). Stability and bifurcation analysis on a discrete-time
system of two neurons. Applied Mathematical Letters, 17:1239-1245.

Yuan, Z.; Hu, D. & Huang, L. (2005). Stability and bifurcation analysis on a discrete-time
neural network. Journal of Computational and Applied Mathematics, 177:89-100.

Zhang, C. & Zheng, B. (2005). Hopf bifurcation in numerical approximation of a n-
dimension neural network model with multi-delays. Chaos, Solitons & Fractals,
25(1):129-146.

Zhang, C. & Zheng, B. (2007). Stability and bifurcation of a two-dimension discrete neural
network model with multi-delays. Chaos, Solitons & Fractals, 31(5):1232-1242.

17

Case Studies for Applications of Elman
Recurrent Neural Networks

Elif Derya Übeyli1 and Mustafa Übeyli2

1Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB
Ekonomi ve Teknoloji Üniversitesi, Ankara,

2Department of Mechanical Engineering, Faculty of Engineering, TOBB Ekonomi ve
Teknoloji Üniversitesi, 06530 Söğütözü, Ankara,

Turkey

1. Introduction
Artificial neural networks (ANNs) are computational modeling tools that have recently
emerged and found extensive acceptance in many disciplines for modeling complex real-
world problems. ANN-based models are empirical in nature, however they can provide
practically accurate solutions for precisely or imprecisely formulated problems and for
phenomena that are only understood through experimental data and field observations.
ANNs produce complicated nonlinear models relating the inputs (the independent variables
of a system) to the outputs (the dependent predictive variables). ANNs have been widely
used for various tasks, such as pattern classification, time series prediction, nonlinear
control, and function approximation. ANNs are desirable because (i) nonlinearity allows
better fit to the data, (ii) noise-insensitivity provides accurate prediction in the presence of
uncertain data and measurement errors, (iii) high parallelism implies fast processing and
hardware failure-tolerance, (iv) learning and adaptivity allow the system to modify its
internal structure in response to changing environment, and (v) generalization enables
application of the model to unlearned data (Fausett, 1994; Haykin, 1994; Hassoun, 1995).
The idea of using ANNs for pattern classification purposes has encountered, for a long time,
the favour of many researchers (Miller et al., 1992; Wright et al., 1997; Wright & Gough,
1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 2008a; 2008b; 2008c). Feedforward neural
networks are a basic type of neural networks capable of approximating generic classes of
functions, including continuous and integrable ones. One of the most frequently used
feedforward neural network for pattern classification is the multilayer perceptron neural
network (MLPNN) which is trained to produce a spatial output pattern in response to an
input spatial pattern (Fausett, 1994; Haykin, 1994; Hassoun, 1995). The mapping performed
is static, therefore, the network is inherently not suitable for processing temporal patterns.
Attempts have been made to use the MLPNN to classify temporal patterns by transforming
the temporal domain into a spatial domain.
An alternate neural network approach is to use recurrent neural networks (RNNs) which
have memory to encode past history. Several forms of RNNs have been proposed and they
may be classified as partially recurrent or fully recurrent networks (Saad et al., 1998; Gupta

 Recurrent Neural Networks

356

Kaslik, E. & Balint, St. (2007b). Bifurcation analysis for a discrete-time Hopfield neural
network of two neurons with two delays and self-connections. Chaos, Solitons and
Fractals, DOI 10.1016/j.chaos.2007.01.126, in press.

Kaslik, E. & Balint, St. (2007c). Chaotic dynamics of a delayed discrete-time Hopfield
network of two nonidentical neurons with no self-connections. Journal of Nonlinear
Science, DOI 10.1007/s00332-007-9015-5, in press.

Kuznetsov, Yu. A. (2004). Elements of applied bifurcation theory. Springer-Verlag, ISBN 0-387-
21906-4, New York.

Mohamad, S. & Gopalsamy, K. (2000). Dynamics of a class of discrete-time neural networks
and their continuous-time counterparts. Mathematics and Computers in Simulation,
53(1-2):1-39.

Pasemann, F.; Hild, M. & Zahedi, K. (2003). SO(2)-Networks as Neural Oscillators. Lecture
Notes in Computer Science: Computational Methods in Neural Modeling, pp. 1042-1050,
ISBN 978-3-540-40210-7, Springer Berlin/Heidelberg.

Tank, D.W. & Hopfield, J.J. (1986). Simple neural optimization networks: an A/D converter,
signal decision circuit and a linear programming circuit. IEEE Transactions on
Circuits and Systems, 33:533-541.

Yu, W. & Cao, J. (2006) Cryptography based on delayed chaotic neural networks. Physics
Letters A, 356(4-5):333-338.

Yuan, Z.; Hu, D. & Huang, L. (2004). Stability and bifurcation analysis on a discrete-time
system of two neurons. Applied Mathematical Letters, 17:1239-1245.

Yuan, Z.; Hu, D. & Huang, L. (2005). Stability and bifurcation analysis on a discrete-time
neural network. Journal of Computational and Applied Mathematics, 177:89-100.

Zhang, C. & Zheng, B. (2005). Hopf bifurcation in numerical approximation of a n-
dimension neural network model with multi-delays. Chaos, Solitons & Fractals,
25(1):129-146.

Zhang, C. & Zheng, B. (2007). Stability and bifurcation of a two-dimension discrete neural
network model with multi-delays. Chaos, Solitons & Fractals, 31(5):1232-1242.

17

Case Studies for Applications of Elman
Recurrent Neural Networks

Elif Derya Übeyli1 and Mustafa Übeyli2

1Department of Electrical and Electronics Engineering, Faculty of Engineering, TOBB
Ekonomi ve Teknoloji Üniversitesi, Ankara,

2Department of Mechanical Engineering, Faculty of Engineering, TOBB Ekonomi ve
Teknoloji Üniversitesi, 06530 Söğütözü, Ankara,

Turkey

1. Introduction
Artificial neural networks (ANNs) are computational modeling tools that have recently
emerged and found extensive acceptance in many disciplines for modeling complex real-
world problems. ANN-based models are empirical in nature, however they can provide
practically accurate solutions for precisely or imprecisely formulated problems and for
phenomena that are only understood through experimental data and field observations.
ANNs produce complicated nonlinear models relating the inputs (the independent variables
of a system) to the outputs (the dependent predictive variables). ANNs have been widely
used for various tasks, such as pattern classification, time series prediction, nonlinear
control, and function approximation. ANNs are desirable because (i) nonlinearity allows
better fit to the data, (ii) noise-insensitivity provides accurate prediction in the presence of
uncertain data and measurement errors, (iii) high parallelism implies fast processing and
hardware failure-tolerance, (iv) learning and adaptivity allow the system to modify its
internal structure in response to changing environment, and (v) generalization enables
application of the model to unlearned data (Fausett, 1994; Haykin, 1994; Hassoun, 1995).
The idea of using ANNs for pattern classification purposes has encountered, for a long time,
the favour of many researchers (Miller et al., 1992; Wright et al., 1997; Wright & Gough,
1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 2008a; 2008b; 2008c). Feedforward neural
networks are a basic type of neural networks capable of approximating generic classes of
functions, including continuous and integrable ones. One of the most frequently used
feedforward neural network for pattern classification is the multilayer perceptron neural
network (MLPNN) which is trained to produce a spatial output pattern in response to an
input spatial pattern (Fausett, 1994; Haykin, 1994; Hassoun, 1995). The mapping performed
is static, therefore, the network is inherently not suitable for processing temporal patterns.
Attempts have been made to use the MLPNN to classify temporal patterns by transforming
the temporal domain into a spatial domain.
An alternate neural network approach is to use recurrent neural networks (RNNs) which
have memory to encode past history. Several forms of RNNs have been proposed and they
may be classified as partially recurrent or fully recurrent networks (Saad et al., 1998; Gupta

 Recurrent Neural Networks

358

& McAvoy, 2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). RNNs can
perform highly non-linear dynamic mappings and thus have temporally extended
applications, whereas multilayer feedforward networks are confined to performing static
mappings. RNNs have been used in a number of interesting applications including
associative memories, spatiotemporal pattern classification, control, optimization,
forecasting and generalization of pattern sequences (Saad et al., 1998; Gupta & McAvoy,
2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). In partially recurrent
networks, partial recurrence is created by feeding back delayed hidden unit outputs or the
outputs of the network as additional input units. The partially recurrent networks, whose
connections are mainly feedforward were used, but they include a carefully chosen set of
feedback connections. One example of such a network is an Elman RNN which in principle
is set up as a regular feedforward network (Elman, 1990). Architecture of Elman RNNs, case
studies for biomedical engineering, case study for nuclear engineering are presented in the
subtitles of this chapter. The results of the case studies for biomedical engineering and
nuclear engineering are presented. These conclusions will assist to the readers in gaining
intuition about the performance of the Elman RNNs used in biomedical engineering and
nuclear engineering problems.

2. Architecture of Elman recurrent neural networks
RNNs have been used in pattern classification, control, optimization, forecasting and
generalization of pattern sequences (Petrosian et al., 2000; Petrosian et al., 2001; Shieh et al.,
2004; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). Fully recurrent networks use
unconstrained fully interconnected architectures and learning algorithms that can deal with
time-varying input and/or output in non-trivial ways. In spite of several modifications of
learning algorithms to reduce the computational expense, fully recurrent networks are still
complicated when dealing with complex problems. Therefore, the partially recurrent
networks, whose connections are mainly feedforward, were used but they include a
carefully chosen set of feedback connections. The recurrence allows the network to
remember cues from the past without complicating the learning excessively. The structure
proposed by Elman (1990) is an illustration of this kind of architecture. Elman RNNs were
used in these applications and therefore in the following the Elman RNN is presented.
An Elman RNN is a network which in principle is set up as a regular feedforward network.
This means that all neurons in one layer are connected with all neurons in the next layer. An
exception is the so-called context layer which is a special case of a hidden layer. Figure 1
shows the architecture of an Elman RNN. The neurons in the context layer (context neurons)
hold a copy of the output of the hidden neurons. The output of each hidden neuron is
copied into a specific neuron in the context layer. The value of the context neuron is used as
an extra input signal for all the neurons in the hidden layer one time step later. Therefore,
the Elman network has an explicit memory of one time lag (Elman, 1990).
Similar to a regular feedforward neural network, the strength of all connections between
neurons are indicated with a weight. Initially, all weight values are chosen randomly and
are optimized during the stage of training. In an Elman network, the weights from the
hidden layer to the context layer are set to one and are fixed because the values of the
context neurons have to be copied exactly. Furthermore, the initial output weights of the
context neurons are equal to half the output range of the other neurons in the network. The
Elman network can be trained with gradient descent backpropagation and optimization

Case Studies for Applications of Elman Recurrent Neural Networks

359

methods, similar to regular feedforward neural networks (Pineda, 1987). The
backpropagation has some problems for many applications. The algorithm is not guaranteed
to find the global minimum of the error function since gradient descent may get stuck in
local minima, where it may remain indefinitely. In addition to this, long training sessions
are often required in order to find an acceptable weight solution because of the well known
difficulties inherent in gradient descent optimization (Haykin, 1994; Chaudhuri &
Bhattacharya, 2000). Therefore, a lot of variations to improve the convergence of the
backpropagation were proposed. Optimization methods such as second-order methods
(conjugate gradient, quasi-Newton, Levenberg-Marquardt) have also been used for neural
networks training in recent years. The Levenberg-Marquardt algorithm combines the best
features of the Gauss-Newton technique and the steepest-descent algorithm, but avoids
many of their limitations. In particular, it generally does not suffer from the problem of slow
convergence (Battiti, 1992; Hagan & Menhaj, 1994) and can yield a good cost function
compared with the other training algorithms.

2.1. Levenberg-Marquardt algorithm
Essentially, the Levenberg-Marquardt algorithm is a least-squares estimation algorithm
based on the maximum neighborhood idea. Let ()E w be an objective error function made

up of m individual error terms 2 ()ie w as follows:

22

1
() () ()

m

i
i

E e f
=

= =∑w w w , (1)

where ()22 () y yi di ie = −w and ydi is the desired value of output neuron i , yi is the actual
output of that neuron.
It is assumed that function ()f ⋅ and its Jacobian J are known at point w. The aim of the
Levenberg-Marquardt algorithm is to compute the weight vector w such that ()E w is

minimum. Using the Levenberg-Marquardt algorithm, a new weight vector 1+kw can be

obtained from the previous weight vector kw as follows:

 kkk www δ+=+1 , (2)

where kwδ is defined as

 1)))(((−+−= Iww λδ k
T

kk
T

kk JJfJ . (3)

In equation (3), kJ is the Jacobian of f evaluated at kw , λ is the Marquardt parameter,

I is the identity matrix (Battiti, 1992; Hagan & Menhaj, 1994). The Levenberg-Marquardt
algorithm may be summarized as follows:
i. compute)(kE w ,

ii. start with a small value of λ (01.0=λ),

 Recurrent Neural Networks

358

& McAvoy, 2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). RNNs can
perform highly non-linear dynamic mappings and thus have temporally extended
applications, whereas multilayer feedforward networks are confined to performing static
mappings. RNNs have been used in a number of interesting applications including
associative memories, spatiotemporal pattern classification, control, optimization,
forecasting and generalization of pattern sequences (Saad et al., 1998; Gupta & McAvoy,
2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). In partially recurrent
networks, partial recurrence is created by feeding back delayed hidden unit outputs or the
outputs of the network as additional input units. The partially recurrent networks, whose
connections are mainly feedforward were used, but they include a carefully chosen set of
feedback connections. One example of such a network is an Elman RNN which in principle
is set up as a regular feedforward network (Elman, 1990). Architecture of Elman RNNs, case
studies for biomedical engineering, case study for nuclear engineering are presented in the
subtitles of this chapter. The results of the case studies for biomedical engineering and
nuclear engineering are presented. These conclusions will assist to the readers in gaining
intuition about the performance of the Elman RNNs used in biomedical engineering and
nuclear engineering problems.

2. Architecture of Elman recurrent neural networks
RNNs have been used in pattern classification, control, optimization, forecasting and
generalization of pattern sequences (Petrosian et al., 2000; Petrosian et al., 2001; Shieh et al.,
2004; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). Fully recurrent networks use
unconstrained fully interconnected architectures and learning algorithms that can deal with
time-varying input and/or output in non-trivial ways. In spite of several modifications of
learning algorithms to reduce the computational expense, fully recurrent networks are still
complicated when dealing with complex problems. Therefore, the partially recurrent
networks, whose connections are mainly feedforward, were used but they include a
carefully chosen set of feedback connections. The recurrence allows the network to
remember cues from the past without complicating the learning excessively. The structure
proposed by Elman (1990) is an illustration of this kind of architecture. Elman RNNs were
used in these applications and therefore in the following the Elman RNN is presented.
An Elman RNN is a network which in principle is set up as a regular feedforward network.
This means that all neurons in one layer are connected with all neurons in the next layer. An
exception is the so-called context layer which is a special case of a hidden layer. Figure 1
shows the architecture of an Elman RNN. The neurons in the context layer (context neurons)
hold a copy of the output of the hidden neurons. The output of each hidden neuron is
copied into a specific neuron in the context layer. The value of the context neuron is used as
an extra input signal for all the neurons in the hidden layer one time step later. Therefore,
the Elman network has an explicit memory of one time lag (Elman, 1990).
Similar to a regular feedforward neural network, the strength of all connections between
neurons are indicated with a weight. Initially, all weight values are chosen randomly and
are optimized during the stage of training. In an Elman network, the weights from the
hidden layer to the context layer are set to one and are fixed because the values of the
context neurons have to be copied exactly. Furthermore, the initial output weights of the
context neurons are equal to half the output range of the other neurons in the network. The
Elman network can be trained with gradient descent backpropagation and optimization

Case Studies for Applications of Elman Recurrent Neural Networks

359

methods, similar to regular feedforward neural networks (Pineda, 1987). The
backpropagation has some problems for many applications. The algorithm is not guaranteed
to find the global minimum of the error function since gradient descent may get stuck in
local minima, where it may remain indefinitely. In addition to this, long training sessions
are often required in order to find an acceptable weight solution because of the well known
difficulties inherent in gradient descent optimization (Haykin, 1994; Chaudhuri &
Bhattacharya, 2000). Therefore, a lot of variations to improve the convergence of the
backpropagation were proposed. Optimization methods such as second-order methods
(conjugate gradient, quasi-Newton, Levenberg-Marquardt) have also been used for neural
networks training in recent years. The Levenberg-Marquardt algorithm combines the best
features of the Gauss-Newton technique and the steepest-descent algorithm, but avoids
many of their limitations. In particular, it generally does not suffer from the problem of slow
convergence (Battiti, 1992; Hagan & Menhaj, 1994) and can yield a good cost function
compared with the other training algorithms.

2.1. Levenberg-Marquardt algorithm
Essentially, the Levenberg-Marquardt algorithm is a least-squares estimation algorithm
based on the maximum neighborhood idea. Let ()E w be an objective error function made

up of m individual error terms 2 ()ie w as follows:

22

1
() () ()

m

i
i

E e f
=

= =∑w w w , (1)

where ()22 () y yi di ie = −w and ydi is the desired value of output neuron i , yi is the actual
output of that neuron.
It is assumed that function ()f ⋅ and its Jacobian J are known at point w. The aim of the
Levenberg-Marquardt algorithm is to compute the weight vector w such that ()E w is

minimum. Using the Levenberg-Marquardt algorithm, a new weight vector 1+kw can be

obtained from the previous weight vector kw as follows:

 kkk www δ+=+1 , (2)

where kwδ is defined as

 1)))(((−+−= Iww λδ k
T

kk
T

kk JJfJ . (3)

In equation (3), kJ is the Jacobian of f evaluated at kw , λ is the Marquardt parameter,

I is the identity matrix (Battiti, 1992; Hagan & Menhaj, 1994). The Levenberg-Marquardt
algorithm may be summarized as follows:
i. compute)(kE w ,

ii. start with a small value of λ (01.0=λ),

 Recurrent Neural Networks

360

iii. solve equation (3) for kwδ and compute)(kkE ww δ+ ,

iv. if)()(kkk EE www ≥+δ , increase λ by a factor of 10 and go to (iii),

v. if)()(kkk EE www <+δ , decrease λ by a factor of 10, update

kkkk wwww δ+←: and go to (iii).

3. Case studies for biomedical engineering
Automated biomedical signals classification algorithms can be divided into three steps: pre-
processing, feature extraction/selection, and classification. The techniques developed for
automated biomedical signals classification transform the mostly qualitative diagnostic
criteria into a more objective quantitative signal feature classification problem (Miller et al.,
1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 2007a; 2007b;
2008a; 2008b; 2008c). For pattern processing problems to be tractable requires the conversion
of patterns to features, which are condensed representations of patterns, ideally containing
only salient information. Selection of the neural network inputs has two meanings: 1) which
components of a pattern, or 2) which set of inputs best represent a given pattern. Different
diverse feature vectors can be extracted from the biomedical signals under study by using
different spectral analysis methods. The features are then used in representation and/or
discrimination of the biomedical signals, i.e., wavelet coefficients and Lyapunov exponents
(Miller et al., 1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli,
2007a; 2007b; 2008a; 2008b; 2008c). Therefore, the RNNs employing single feature vector or
composite features can be implemented for automated classification of biomedical signals.

3.1 Elman recurrent neural networks for analysis of Doppler ultrasound signals
The implementation of Elman RNNs with the Lyapunov exponents for Doppler ultrasound
signals classification is presented. This study is based on the consideration that Doppler
ultrasound signals are chaotic signals. This consideration was tested successfully using the
nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making
was performed in two stages: computation of Lyapunov exponents as representative
features of the Doppler ultrasound signals and classification using the RNNs trained on the
extracted features (Übeyli, 2008a).
Doppler ultrasound is widely used as a noninvasive method for the assessment of blood
flow in both the central and peripheral circulation. It may be used to estimate blood flow, to
image regions of blood flow and to locate sites of arterial disease as well as flow
characteristics and resistance of ophthalmic and internal carotid arteries (Evans et al., 1989).
Doppler systems are based on the principle that ultrasound, emitted by an ultrasonic
transducer, is returned partially towards the transducer by the moving targets, thereby
inducing a shift in frequency proportional to the emitted frequency and the velocity along
the ultrasound beam. Studies in the literature have shown that Doppler ultrasound
evaluation can give reliable information on both systolic and diastolic blood velocities of
arteries and is useful in screening certain hemodynamic alterations in arteries (Evans et al.,
1989; Wright et al., 1997; Wright & Gough, 1999; Übeyli, 2008a).
The objective of the present study in the field of automated diagnosis of arterial diseases is
to extract the representative features of the ophthalmic arterial (OA) and internal carotid

Case Studies for Applications of Elman Recurrent Neural Networks

361

arterial (ICA) Doppler ultrasound signals and to present the accurate classification model.
As in traditional pattern recognition systems, the model consists of three main modules: a
feature extractor that generates a feature vector from the raw Doppler ultrasound signals,
feature selection that composes composite features (Lyapunov exponents), and a feature
classifier that outputs the class based on the composite features (recurrent neural networks –
RNNs). A significant contribution of the present work was the composition of composite
features which were used to train novel classifier (RNNs trained on computed Lyapunov
exponents) for the OA and ICA Doppler ultrasound signals. To evaluate performance of the
RNNs trained with the Levenberg-Marquardt algorithm, the classification accuracies and
the central processing unit (CPU) times of training were considered.
The technique used in the computation of Lyapunov exponents was related with the Jacobi-
based algorithms. For each OA and ICA Doppler segment (256 discrete data), 128 Lyapunov
exponents were computed. The computed Lyapunov exponents samples of OA and ICA
Doppler signals are shown in Figures 2 and 3. High-dimension of feature vectors increased
computational complexity and therefore, in order to reduce the dimensionality of the
extracted feature vectors (feature selection), statistics over the set of the Lyapunov
exponents were used. The following statistical features were used in reducing the
dimensionality of the extracted feature vectors representing the signals under study:
1. Maximum of the Lyapunov exponents of each Doppler ultrasound signal segment.
2. Minimum of the Lyapunov exponents of each Doppler ultrasound signal segment.
3. Mean of the Lyapunov exponents of each Doppler ultrasound signal segment.
4. Standard deviation of the Lyapunov exponents of each Doppler ultrasound signal

segment.
The feature vectors were computed by the usage of the MATLAB software package. The
RNNs proposed for classification of the Doppler ultrasound signals were implemented by
using the MATLAB software package (MATLAB version 7.0 with neural networks toolbox).
The key design decisions for the neural networks used in classification are the architecture
and the training process. Different network architectures were experimented and the results
of the architecture studies confirmed that for the OA Doppler signals, networks with one
hidden layer consisting of 20 recurrent neurons results in higher classification accuracy. The
RNNs with one hidden layer were superior to models with two hidden layers for the ICA
Doppler signals. The most suitable network configuration found was 15 recurrent neurons
for the hidden layer.
Classification results of the classifiers were displayed by a confusion matrix. In a confusion
matrix, each cell contains the raw number of exemplars classified for the corresponding
combination of desired and actual network outputs. The confusion matrices showing the
classification results of the classifiers used for classification of the OA and ICA Doppler
signals are given in Tables 1 and 2. From these matrices one can tell the frequency with
which a Doppler signal is misclassified as another. As it is seen from Table 1, healthy
subjects are most often confused with subjects suffering from OA stenosis, likewise subjects
suffering from ocular Behcet disease with subjects suffering from OA stenosis. From Table 2,
one can see that healthy subjects are most often confused with subjects suffering from ICA
stenosis, likewise subjects suffering from ICA stenosis with subjects suffering from ICA
occlusion.
The test performance of the classifiers can be determined by the computation of specificity,
sensitivity and total classification accuracy. The specificity, sensitivity and total classification
accuracy are defined as:

 Recurrent Neural Networks

360

iii. solve equation (3) for kwδ and compute)(kkE ww δ+ ,

iv. if)()(kkk EE www ≥+δ , increase λ by a factor of 10 and go to (iii),

v. if)()(kkk EE www <+δ , decrease λ by a factor of 10, update

kkkk wwww δ+←: and go to (iii).

3. Case studies for biomedical engineering
Automated biomedical signals classification algorithms can be divided into three steps: pre-
processing, feature extraction/selection, and classification. The techniques developed for
automated biomedical signals classification transform the mostly qualitative diagnostic
criteria into a more objective quantitative signal feature classification problem (Miller et al.,
1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 2007a; 2007b;
2008a; 2008b; 2008c). For pattern processing problems to be tractable requires the conversion
of patterns to features, which are condensed representations of patterns, ideally containing
only salient information. Selection of the neural network inputs has two meanings: 1) which
components of a pattern, or 2) which set of inputs best represent a given pattern. Different
diverse feature vectors can be extracted from the biomedical signals under study by using
different spectral analysis methods. The features are then used in representation and/or
discrimination of the biomedical signals, i.e., wavelet coefficients and Lyapunov exponents
(Miller et al., 1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli,
2007a; 2007b; 2008a; 2008b; 2008c). Therefore, the RNNs employing single feature vector or
composite features can be implemented for automated classification of biomedical signals.

3.1 Elman recurrent neural networks for analysis of Doppler ultrasound signals
The implementation of Elman RNNs with the Lyapunov exponents for Doppler ultrasound
signals classification is presented. This study is based on the consideration that Doppler
ultrasound signals are chaotic signals. This consideration was tested successfully using the
nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making
was performed in two stages: computation of Lyapunov exponents as representative
features of the Doppler ultrasound signals and classification using the RNNs trained on the
extracted features (Übeyli, 2008a).
Doppler ultrasound is widely used as a noninvasive method for the assessment of blood
flow in both the central and peripheral circulation. It may be used to estimate blood flow, to
image regions of blood flow and to locate sites of arterial disease as well as flow
characteristics and resistance of ophthalmic and internal carotid arteries (Evans et al., 1989).
Doppler systems are based on the principle that ultrasound, emitted by an ultrasonic
transducer, is returned partially towards the transducer by the moving targets, thereby
inducing a shift in frequency proportional to the emitted frequency and the velocity along
the ultrasound beam. Studies in the literature have shown that Doppler ultrasound
evaluation can give reliable information on both systolic and diastolic blood velocities of
arteries and is useful in screening certain hemodynamic alterations in arteries (Evans et al.,
1989; Wright et al., 1997; Wright & Gough, 1999; Übeyli, 2008a).
The objective of the present study in the field of automated diagnosis of arterial diseases is
to extract the representative features of the ophthalmic arterial (OA) and internal carotid

Case Studies for Applications of Elman Recurrent Neural Networks

361

arterial (ICA) Doppler ultrasound signals and to present the accurate classification model.
As in traditional pattern recognition systems, the model consists of three main modules: a
feature extractor that generates a feature vector from the raw Doppler ultrasound signals,
feature selection that composes composite features (Lyapunov exponents), and a feature
classifier that outputs the class based on the composite features (recurrent neural networks –
RNNs). A significant contribution of the present work was the composition of composite
features which were used to train novel classifier (RNNs trained on computed Lyapunov
exponents) for the OA and ICA Doppler ultrasound signals. To evaluate performance of the
RNNs trained with the Levenberg-Marquardt algorithm, the classification accuracies and
the central processing unit (CPU) times of training were considered.
The technique used in the computation of Lyapunov exponents was related with the Jacobi-
based algorithms. For each OA and ICA Doppler segment (256 discrete data), 128 Lyapunov
exponents were computed. The computed Lyapunov exponents samples of OA and ICA
Doppler signals are shown in Figures 2 and 3. High-dimension of feature vectors increased
computational complexity and therefore, in order to reduce the dimensionality of the
extracted feature vectors (feature selection), statistics over the set of the Lyapunov
exponents were used. The following statistical features were used in reducing the
dimensionality of the extracted feature vectors representing the signals under study:
1. Maximum of the Lyapunov exponents of each Doppler ultrasound signal segment.
2. Minimum of the Lyapunov exponents of each Doppler ultrasound signal segment.
3. Mean of the Lyapunov exponents of each Doppler ultrasound signal segment.
4. Standard deviation of the Lyapunov exponents of each Doppler ultrasound signal

segment.
The feature vectors were computed by the usage of the MATLAB software package. The
RNNs proposed for classification of the Doppler ultrasound signals were implemented by
using the MATLAB software package (MATLAB version 7.0 with neural networks toolbox).
The key design decisions for the neural networks used in classification are the architecture
and the training process. Different network architectures were experimented and the results
of the architecture studies confirmed that for the OA Doppler signals, networks with one
hidden layer consisting of 20 recurrent neurons results in higher classification accuracy. The
RNNs with one hidden layer were superior to models with two hidden layers for the ICA
Doppler signals. The most suitable network configuration found was 15 recurrent neurons
for the hidden layer.
Classification results of the classifiers were displayed by a confusion matrix. In a confusion
matrix, each cell contains the raw number of exemplars classified for the corresponding
combination of desired and actual network outputs. The confusion matrices showing the
classification results of the classifiers used for classification of the OA and ICA Doppler
signals are given in Tables 1 and 2. From these matrices one can tell the frequency with
which a Doppler signal is misclassified as another. As it is seen from Table 1, healthy
subjects are most often confused with subjects suffering from OA stenosis, likewise subjects
suffering from ocular Behcet disease with subjects suffering from OA stenosis. From Table 2,
one can see that healthy subjects are most often confused with subjects suffering from ICA
stenosis, likewise subjects suffering from ICA stenosis with subjects suffering from ICA
occlusion.
The test performance of the classifiers can be determined by the computation of specificity,
sensitivity and total classification accuracy. The specificity, sensitivity and total classification
accuracy are defined as:

 Recurrent Neural Networks

362

Specificity: number of true negative decisions / number of actually negative cases
Sensitivity: number of true positive decisions / number of actually positive cases
Total classification accuracy: number of correct decisions / total number of cases
A true negative decision occurs when both the classifier and the physician suggested the
absence of a positive detection. A true positive decision occurs when the positive detection
of the classifier coincided with a positive detection of the physician.
In order to demonstrate performance of the classifiers used for classification of the OA and
ICA Doppler signals, the classification accuracies (specificity, sensitivity, total classification
accuracy) on the test sets and the CPU times of training (for Pentium 4, 3.00 GHz) of the
RNNs are presented in Table 3. The present research demonstrated that the Lyapunov
exponents are the features which well represent the Doppler ultrasound signals and the
RNNs trained on these features achieved high classification accuracies (Übeyli, 2008a).

3.2 Elman recurrent neural networks for detection of electrocardiographic changes in
partial epileptic patients
The aim of this study is to evaluate the diagnostic accuracy of the RNNs with composite
features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG)
signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-
BIH database (Al-Aweel et al., 1999). Decision making was performed in two stages:
computing composite features which were then input into the classifiers and classification
using the classifiers trained on the extracted features (Übeyli, 2008c).
Epileptic seizures are associated with several changes in autonomic functions, which may
lead to cardiovascular, respiratory, gastrointestinal, cutaneous, and urinary manifestations
(Leutmezer et al., 2003; Rocamora et al., 2003).Cardiovascular changes have received the
most attention, because of their possible contribution to sudden unexplained death. Studies
have reported the importance of monitoring the ECG signal during epileptic seizures, since
the seizures can trigger high risk cardiac arrhythmias. Since seizures can occur at any time
in an epileptic patient, the ECG may need to be recorded for several hours or days at a time,
leading to an enormous quantity of data to be studied by physicians. To reduce the time and
possibility of errors, automatic computer-based algorithms have been proposed to support
or replace the diagnosis and analysis performed by the physician (Miller et al., 1992; Saxena
et al., 2002; Übeyli, 2007a; 2007b; 2008c). From the hours of ECG data, these algorithms can
flag the periods when the patient is having a seizure and, eventually, determine from these
periods if any cardiac arrhythmias occured. This study provides a highly accurate algorithm
for classifying non-arrhythmic ECG waveforms as normal or partial epileptic.
The evaluation of the classification capabilities of the Elman RNNs trained with Levenberg-
Marquardt algorithm was performed on the ECG signals (normal and partial epilepsy ECG
beats) from the MIT-BIH database (Al-Aweel et al., 1999). As in traditional pattern
recognition systems, the model consists of three main modules: a feature extractor that
generates a feature vector from the ECG signals, feature selection that composes composite
features (wavelet coefficients and Lyapunov exponents), and a feature classifier that outputs
the class based on the composite features. A significant contribution of the work was the
composition of composite features which were used to train novel classifier (RNN trained
on composite feature) for the ECG signals. To evaluate performance of the classifiers, the
classification accuracies, the CPU times of training and the receiver operating characteristic
(ROC) curves of the classifiers were examined (Übeyli, 2008c).

Case Studies for Applications of Elman Recurrent Neural Networks

363

The detail wavelet coefficients at the first decomposition level of the two types of ECG beats
are presented in Figures 4(a) and (b), respectively. From these figures it is obvious that the
detail wavelet coefficients of the two types of ECG beats are different from each other and
therefore they can serve as useful parameters in discriminating the ECG signals. A smaller
number of parameters called wavelet coefficients are obtained by the wavelet transform
(WT). These coefficients represent the ECG signals and therefore, they are particularly
important for recognition and diagnostic purposes. The Lyapunov exponents of the two
types of ECG beats are shown in Figures 5(a) and (b), respectively. One can see that the
Lyapunov exponents of the two types of ECG beats differ significantly from each other so
they can be used for representing the ECG signals. As it is seen from Figures 5(a) and (b),
there are positive Lyapunov exponents, which confirm the chaotic nature of the ECG
signals. Lyapunov exponents are a quantitative measure for distinguishing among the
various types of orbits based upon their sensitive dependence on the initial conditions, and
are used to determine the stability of any steady-state behavior, including chaotic solutions.
The reason why chaotic systems show aperiodic dynamics is that phase space trajectories
that have nearly identical initial states will separate from each other at an exponentially
increasing rate captured by the so-called Lyapunov exponent.
The following statistical features were used in reducing the dimensionality of the extracted
diverse feature vectors representing the ECG signals:
1. Maximum of the wavelet coefficients in each subband, maximum of the Lyapunov

exponents in each beat.
2. Minimum of the wavelet coefficients in each subband, minimum of the Lyapunov

exponents in each beat.
3. Mean of the wavelet coefficients in each subband, mean of the Lyapunov exponents in

each beat.
4. Standard deviation of the wavelet coefficients in each subband, standard deviation of

the Lyapunov exponents in each beat.
Different network architectures were tested and the architecture studies confirmed that for
the ECG signals, RNN with one hidden layer consisting of 20 recurrent neurons trained on a
composite feature vector results in higher classification accuracy. In order to compare
performance of the different classifiers, for the same classification problem the MLPNN,
which is the most commonly used feedforward neural networks was also implemented. The
single hidden layered (25 hidden neurons) MLPNN was used to classify the ECG signals
based on a composite feature vector.
The values of the statistical parameters (specificity, sensitivity and total classification
accuracy) and the CPU times of training (for Pentium 4, 3.00 GHz) of the two classifiers are
presented in Table 4. ROC plots provide a view of the whole spectrum of sensitivities and
specificities because all possible sensitivity/specificity pairs for a particular test are graphed.
The performance of a test can be evaluated by plotting a ROC curve for the test and
therefore, ROC curves were used to describe the performance of the classifiers. A good test
is one for which sensitivity rises rapidly and 1-specificity hardly increases at all until
sensitivity becomes high. ROC curves which are shown in Figure 6 demonstrate the
performances of the classifiers on the test files. The classification results presented in Table 4
and Figure 6 (classification accuracies, CPU times of training, ROC curves) denote that the
RNN trained on composite feature vectors obtains higher accuracy than that of the MLPNN
(Übeyli, 2008c).

 Recurrent Neural Networks

362

Specificity: number of true negative decisions / number of actually negative cases
Sensitivity: number of true positive decisions / number of actually positive cases
Total classification accuracy: number of correct decisions / total number of cases
A true negative decision occurs when both the classifier and the physician suggested the
absence of a positive detection. A true positive decision occurs when the positive detection
of the classifier coincided with a positive detection of the physician.
In order to demonstrate performance of the classifiers used for classification of the OA and
ICA Doppler signals, the classification accuracies (specificity, sensitivity, total classification
accuracy) on the test sets and the CPU times of training (for Pentium 4, 3.00 GHz) of the
RNNs are presented in Table 3. The present research demonstrated that the Lyapunov
exponents are the features which well represent the Doppler ultrasound signals and the
RNNs trained on these features achieved high classification accuracies (Übeyli, 2008a).

3.2 Elman recurrent neural networks for detection of electrocardiographic changes in
partial epileptic patients
The aim of this study is to evaluate the diagnostic accuracy of the RNNs with composite
features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG)
signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-
BIH database (Al-Aweel et al., 1999). Decision making was performed in two stages:
computing composite features which were then input into the classifiers and classification
using the classifiers trained on the extracted features (Übeyli, 2008c).
Epileptic seizures are associated with several changes in autonomic functions, which may
lead to cardiovascular, respiratory, gastrointestinal, cutaneous, and urinary manifestations
(Leutmezer et al., 2003; Rocamora et al., 2003).Cardiovascular changes have received the
most attention, because of their possible contribution to sudden unexplained death. Studies
have reported the importance of monitoring the ECG signal during epileptic seizures, since
the seizures can trigger high risk cardiac arrhythmias. Since seizures can occur at any time
in an epileptic patient, the ECG may need to be recorded for several hours or days at a time,
leading to an enormous quantity of data to be studied by physicians. To reduce the time and
possibility of errors, automatic computer-based algorithms have been proposed to support
or replace the diagnosis and analysis performed by the physician (Miller et al., 1992; Saxena
et al., 2002; Übeyli, 2007a; 2007b; 2008c). From the hours of ECG data, these algorithms can
flag the periods when the patient is having a seizure and, eventually, determine from these
periods if any cardiac arrhythmias occured. This study provides a highly accurate algorithm
for classifying non-arrhythmic ECG waveforms as normal or partial epileptic.
The evaluation of the classification capabilities of the Elman RNNs trained with Levenberg-
Marquardt algorithm was performed on the ECG signals (normal and partial epilepsy ECG
beats) from the MIT-BIH database (Al-Aweel et al., 1999). As in traditional pattern
recognition systems, the model consists of three main modules: a feature extractor that
generates a feature vector from the ECG signals, feature selection that composes composite
features (wavelet coefficients and Lyapunov exponents), and a feature classifier that outputs
the class based on the composite features. A significant contribution of the work was the
composition of composite features which were used to train novel classifier (RNN trained
on composite feature) for the ECG signals. To evaluate performance of the classifiers, the
classification accuracies, the CPU times of training and the receiver operating characteristic
(ROC) curves of the classifiers were examined (Übeyli, 2008c).

Case Studies for Applications of Elman Recurrent Neural Networks

363

The detail wavelet coefficients at the first decomposition level of the two types of ECG beats
are presented in Figures 4(a) and (b), respectively. From these figures it is obvious that the
detail wavelet coefficients of the two types of ECG beats are different from each other and
therefore they can serve as useful parameters in discriminating the ECG signals. A smaller
number of parameters called wavelet coefficients are obtained by the wavelet transform
(WT). These coefficients represent the ECG signals and therefore, they are particularly
important for recognition and diagnostic purposes. The Lyapunov exponents of the two
types of ECG beats are shown in Figures 5(a) and (b), respectively. One can see that the
Lyapunov exponents of the two types of ECG beats differ significantly from each other so
they can be used for representing the ECG signals. As it is seen from Figures 5(a) and (b),
there are positive Lyapunov exponents, which confirm the chaotic nature of the ECG
signals. Lyapunov exponents are a quantitative measure for distinguishing among the
various types of orbits based upon their sensitive dependence on the initial conditions, and
are used to determine the stability of any steady-state behavior, including chaotic solutions.
The reason why chaotic systems show aperiodic dynamics is that phase space trajectories
that have nearly identical initial states will separate from each other at an exponentially
increasing rate captured by the so-called Lyapunov exponent.
The following statistical features were used in reducing the dimensionality of the extracted
diverse feature vectors representing the ECG signals:
1. Maximum of the wavelet coefficients in each subband, maximum of the Lyapunov

exponents in each beat.
2. Minimum of the wavelet coefficients in each subband, minimum of the Lyapunov

exponents in each beat.
3. Mean of the wavelet coefficients in each subband, mean of the Lyapunov exponents in

each beat.
4. Standard deviation of the wavelet coefficients in each subband, standard deviation of

the Lyapunov exponents in each beat.
Different network architectures were tested and the architecture studies confirmed that for
the ECG signals, RNN with one hidden layer consisting of 20 recurrent neurons trained on a
composite feature vector results in higher classification accuracy. In order to compare
performance of the different classifiers, for the same classification problem the MLPNN,
which is the most commonly used feedforward neural networks was also implemented. The
single hidden layered (25 hidden neurons) MLPNN was used to classify the ECG signals
based on a composite feature vector.
The values of the statistical parameters (specificity, sensitivity and total classification
accuracy) and the CPU times of training (for Pentium 4, 3.00 GHz) of the two classifiers are
presented in Table 4. ROC plots provide a view of the whole spectrum of sensitivities and
specificities because all possible sensitivity/specificity pairs for a particular test are graphed.
The performance of a test can be evaluated by plotting a ROC curve for the test and
therefore, ROC curves were used to describe the performance of the classifiers. A good test
is one for which sensitivity rises rapidly and 1-specificity hardly increases at all until
sensitivity becomes high. ROC curves which are shown in Figure 6 demonstrate the
performances of the classifiers on the test files. The classification results presented in Table 4
and Figure 6 (classification accuracies, CPU times of training, ROC curves) denote that the
RNN trained on composite feature vectors obtains higher accuracy than that of the MLPNN
(Übeyli, 2008c).

 Recurrent Neural Networks

364

4. Case study for nuclear engineering
Considerable interest has been developed to modeling of dynamic systems with ANNs in
recent years. The basic motivation is the ability of neural networks to create data driven
representations of the underlying dynamics with less reliance on accurate mathematical or
physical modeling. There exist many problems for which such data-driven representations
offer more advantages over more traditional modeling techniques, such as availability of
fast hardware implementations, ability to cope with noisy or incomplete data and ability to
very fast data generation by using ordinary digital computers (Narendra & Parthasarathy,
1990; Boroushaki et al., 2002; Choi et al., 2004; Übeyli & Übeyli, 2007).
Recently, data processing algorithms based on artificial intelligence gained popularity in
nuclear technology. In particular, ANNs found their application in a wide range of
problems (Uhrig & Tsoukalas, 1999), such as diagnostics (Bartlett & Uhrig, 1992; Kim et al.,
1992), signal validation (Fantoni & Mazzola, 1996a; 1996b), anomalies detection (Ogha &
Seki, 1991; Kozma & Nabeshima, 1995; Reifman, 1997) and core monitoring (Kozma et al.,
1995). ANNs allow modeling of complex systems without requiring an explicit knowledge
or formulation of the relationship existing among the variables, and they can constitute a
valuable alternative to structured models or empirical correlations (Thibault & Grandjean,
1991).

4.1. Elman recurrent neural networks for neutronic parameters of a thorium fusion
breeder
RNNs are capable to represent arbitrary nonlinear dynamical systems (Narendra &
Parthasarathy, 1990; Boroushaki et al., 2002). Learning and generalization ability, fast real
time operation and ease of implementation features have made RNNs popular in the last
decade. Recent works by nuclear engineering researchers demonstrated the ability of RNNs
in identification of complex nonlinear plants like nuclear reactor cores (Boroushaki et al.,
2002; Adal et al., 1997; Boroushaki et al., 2003; Şeker et al., 2003; Ortiz & Requena, 2004).
Übeyli & Übeyli (2007) used the Elman RNNs for the estimation of the neutronic parameters
of a thorium fusion breeder.
The inputs of the implemented nine RNNs (for three types of coolant and three outputs) are
atomic densities of the components used in the investigated reactor (Übeyli & Übeyli, 2007).
The outputs of the computations are the main neutronic parameters; tritium breeding ratio,
energy multiplication factor and net 233U production. Figure 7 shows the RNNs model used
in neural computation of the main neutronic parameters.
In calculations by Scale4.3, atomic densities of the blanket zone components, thicknesses and
materials of the zones and reaction cross section types are entered to the prepared inputs.
Then, outputs are generated by running these inputs in a personal computer. In the outputs,
the reaction cross sections with respect to neutron energy groups required to compute
neutronic parameters of the reactor are derived from the library. After that, these outputs
are processed with a computer code to get neutronic parameters of the reactor for an
operation period of 48 months (Übeyli & Acr, 2007).
The nine RNNs proposed for computation of the main neutronic parameters (tritium
breeding ratio computation, energy multiplication factor and net 233U production) were
implemented by using the MATLAB software package (MATLAB version 7.0 with neural
networks toolbox). Different network architectures were experimented and the results of the
architecture studies confirmed that, networks with one hidden layer results in higher
computation accuracy. The Scale 4.3 was used to generate data (Übeyli & Acr, 2007). For

Case Studies for Applications of Elman Recurrent Neural Networks

365

neural computation of the tritium breeding ratio, energy multiplication factor and net 233U
production 49 data, consisting of input parameters and the corresponding computed values
of the tritium breeding ratio, energy multiplication factor and net 233U production, were
generated for each RNN.
The test results of the RNNs implemented for three types of coolant are compared with the
results of Scale 4.3 in Figures 8-10 for the tritium breeding ratio (TBR) computation, the
energy multiplication factor (M) and the net 233U production, respectively. It can be clearly
seen from these Figures that the results of the RNNs presented in this study are in very good
agreement with the results of Scale 4.3. The difference between the output of the network
and the desired output (computed using Scale 4.3) is referred to as the error and can be
measured in different ways. In this study, mean square error (MSE), mean absolute error
(MAE), and correlation coefficient (r) were used for the measuring error of the RNNs
during test process. The correlation coefficient is limited with the range [-1,1]. When 1r =
there is a perfect positive linear correlation between network output and desired output,
which means that they vary by the same amount. When 1r = − there is a perfectly linear
negative correlation between network output and desired output, that means they vary in
opposite ways. When 0r = there is no correlation between network output and desired
output. Intermediate values describe partial correlations. In Table 5, performance evaluation
parameters of the RNNs implemented for three types of coolant are given for the tritium
breeding ratio computation, the energy multiplication factor and the net 233U production
during test process. The values of performance evaluation parameters and the very good
agreement between the results of the RNNs and the results of Scale 4.3 support the validity
of the RNNs trained with the Levenberg-Marquardt algorithm presented in this study
(Übeyli & Übeyli, 2007).

5. Conclusions
ANNs may offer a potentially superior method of biomedical signal analysis to the spectral
analysis methods. In contrast to the conventional spectral analysis methods, ANNs not only
model the signal, but also make a decision as to the class of signal. Another advantage of
ANN analysis over existing methods of biomedical signal analysis is that, after an ANN has
trained satisfactorily and the values of the weights and biases have been stored, testing and
subsequent implementation is rapid. The proposed combined Lyapunov exponents/RNN
approach can be evaluated in discrimination of other Doppler ultrasound signals or time-
varying biomedical signals. Preprocessing, feature extraction methods and ANN
architectures are the main modules of an automated diagnostic systems and therefore they
play important roles in determining the classification accuracies. Thus, further work can be
performed for improving the classification accuracies by the usage of different
preprocessing (different filtering methods), feature extraction methods (different spectral
analysis methods) and ANN architectures (self-organizing map, radial basis function,
mixture of experts, etc.) (Übeyli, 2008a).
The research demonstrated that the wavelet coefficients and the Lyapunov exponents are
the features which well represent the ECG signals and the RNN trained on these features
achieved high classification accuracies. The overall results of the RNN were better when
they were trained on the computed composite features for each ECG beat. The results
demonstrated that significant improvement can be achieved in accuracy by using the RNNs
compared to the feedforward neural network models (MLPNNs). This may be attributed to
several factors including the training algorithms, estimation of the network parameters and
the scattered and mixed nature of the features. The results of the present study

 Recurrent Neural Networks

364

4. Case study for nuclear engineering
Considerable interest has been developed to modeling of dynamic systems with ANNs in
recent years. The basic motivation is the ability of neural networks to create data driven
representations of the underlying dynamics with less reliance on accurate mathematical or
physical modeling. There exist many problems for which such data-driven representations
offer more advantages over more traditional modeling techniques, such as availability of
fast hardware implementations, ability to cope with noisy or incomplete data and ability to
very fast data generation by using ordinary digital computers (Narendra & Parthasarathy,
1990; Boroushaki et al., 2002; Choi et al., 2004; Übeyli & Übeyli, 2007).
Recently, data processing algorithms based on artificial intelligence gained popularity in
nuclear technology. In particular, ANNs found their application in a wide range of
problems (Uhrig & Tsoukalas, 1999), such as diagnostics (Bartlett & Uhrig, 1992; Kim et al.,
1992), signal validation (Fantoni & Mazzola, 1996a; 1996b), anomalies detection (Ogha &
Seki, 1991; Kozma & Nabeshima, 1995; Reifman, 1997) and core monitoring (Kozma et al.,
1995). ANNs allow modeling of complex systems without requiring an explicit knowledge
or formulation of the relationship existing among the variables, and they can constitute a
valuable alternative to structured models or empirical correlations (Thibault & Grandjean,
1991).

4.1. Elman recurrent neural networks for neutronic parameters of a thorium fusion
breeder
RNNs are capable to represent arbitrary nonlinear dynamical systems (Narendra &
Parthasarathy, 1990; Boroushaki et al., 2002). Learning and generalization ability, fast real
time operation and ease of implementation features have made RNNs popular in the last
decade. Recent works by nuclear engineering researchers demonstrated the ability of RNNs
in identification of complex nonlinear plants like nuclear reactor cores (Boroushaki et al.,
2002; Adal et al., 1997; Boroushaki et al., 2003; Şeker et al., 2003; Ortiz & Requena, 2004).
Übeyli & Übeyli (2007) used the Elman RNNs for the estimation of the neutronic parameters
of a thorium fusion breeder.
The inputs of the implemented nine RNNs (for three types of coolant and three outputs) are
atomic densities of the components used in the investigated reactor (Übeyli & Übeyli, 2007).
The outputs of the computations are the main neutronic parameters; tritium breeding ratio,
energy multiplication factor and net 233U production. Figure 7 shows the RNNs model used
in neural computation of the main neutronic parameters.
In calculations by Scale4.3, atomic densities of the blanket zone components, thicknesses and
materials of the zones and reaction cross section types are entered to the prepared inputs.
Then, outputs are generated by running these inputs in a personal computer. In the outputs,
the reaction cross sections with respect to neutron energy groups required to compute
neutronic parameters of the reactor are derived from the library. After that, these outputs
are processed with a computer code to get neutronic parameters of the reactor for an
operation period of 48 months (Übeyli & Acr, 2007).
The nine RNNs proposed for computation of the main neutronic parameters (tritium
breeding ratio computation, energy multiplication factor and net 233U production) were
implemented by using the MATLAB software package (MATLAB version 7.0 with neural
networks toolbox). Different network architectures were experimented and the results of the
architecture studies confirmed that, networks with one hidden layer results in higher
computation accuracy. The Scale 4.3 was used to generate data (Übeyli & Acr, 2007). For

Case Studies for Applications of Elman Recurrent Neural Networks

365

neural computation of the tritium breeding ratio, energy multiplication factor and net 233U
production 49 data, consisting of input parameters and the corresponding computed values
of the tritium breeding ratio, energy multiplication factor and net 233U production, were
generated for each RNN.
The test results of the RNNs implemented for three types of coolant are compared with the
results of Scale 4.3 in Figures 8-10 for the tritium breeding ratio (TBR) computation, the
energy multiplication factor (M) and the net 233U production, respectively. It can be clearly
seen from these Figures that the results of the RNNs presented in this study are in very good
agreement with the results of Scale 4.3. The difference between the output of the network
and the desired output (computed using Scale 4.3) is referred to as the error and can be
measured in different ways. In this study, mean square error (MSE), mean absolute error
(MAE), and correlation coefficient (r) were used for the measuring error of the RNNs
during test process. The correlation coefficient is limited with the range [-1,1]. When 1r =
there is a perfect positive linear correlation between network output and desired output,
which means that they vary by the same amount. When 1r = − there is a perfectly linear
negative correlation between network output and desired output, that means they vary in
opposite ways. When 0r = there is no correlation between network output and desired
output. Intermediate values describe partial correlations. In Table 5, performance evaluation
parameters of the RNNs implemented for three types of coolant are given for the tritium
breeding ratio computation, the energy multiplication factor and the net 233U production
during test process. The values of performance evaluation parameters and the very good
agreement between the results of the RNNs and the results of Scale 4.3 support the validity
of the RNNs trained with the Levenberg-Marquardt algorithm presented in this study
(Übeyli & Übeyli, 2007).

5. Conclusions
ANNs may offer a potentially superior method of biomedical signal analysis to the spectral
analysis methods. In contrast to the conventional spectral analysis methods, ANNs not only
model the signal, but also make a decision as to the class of signal. Another advantage of
ANN analysis over existing methods of biomedical signal analysis is that, after an ANN has
trained satisfactorily and the values of the weights and biases have been stored, testing and
subsequent implementation is rapid. The proposed combined Lyapunov exponents/RNN
approach can be evaluated in discrimination of other Doppler ultrasound signals or time-
varying biomedical signals. Preprocessing, feature extraction methods and ANN
architectures are the main modules of an automated diagnostic systems and therefore they
play important roles in determining the classification accuracies. Thus, further work can be
performed for improving the classification accuracies by the usage of different
preprocessing (different filtering methods), feature extraction methods (different spectral
analysis methods) and ANN architectures (self-organizing map, radial basis function,
mixture of experts, etc.) (Übeyli, 2008a).
The research demonstrated that the wavelet coefficients and the Lyapunov exponents are
the features which well represent the ECG signals and the RNN trained on these features
achieved high classification accuracies. The overall results of the RNN were better when
they were trained on the computed composite features for each ECG beat. The results
demonstrated that significant improvement can be achieved in accuracy by using the RNNs
compared to the feedforward neural network models (MLPNNs). This may be attributed to
several factors including the training algorithms, estimation of the network parameters and
the scattered and mixed nature of the features. The results of the present study

 Recurrent Neural Networks

366

demonstrated that the RNN can be used in classification of the ECG beats by taking into
consideration the misclassification rates (Übeyli, 2008c).
ANNs have recently been introduced to the nuclear engineering applications as a fast and
flexible vehicle to modeling, simulation and optimization. A new approach based on RNNs
was presented for the neutronic parameters of a thorium fusion breeder. The results of the
RNNs implemented for the tritium breeding ratio computation, energy multiplication factor
and net 233U production in a thorium fusion breeder and the results available in the
literature obtained by using Scale 4.3 were compared. The drawn conclusions confirmed
that the proposed RNNs could provide an accurate computation of the tritium breeding
ratio computation, the energy multiplication factor and the net 233U production of the
thorium fusion breeder (Übeyli & Übeyli, 2007).

6. References
Adal, T., Bakal, B., Sönmez, M.K., Fakory, R. & Tsaoi, C.O. (1997). Modeling nuclear reactor

core dynamics with recurrent neural networks. Neurocomputing, Vol. 15, 363-381.
Al-Aweel, I.C., Krishnamurthy, K.B., Hausdorff, J.M., Mietus, J.E., Ives, J.R., Blum, A.S.,

Schomer, D.L. & Goldberger, A.L. (1999). Postictal heart rate oscillations in partial
epilepsy. Neurology, Vol. 53, No. 7, 1590-1592.

Bartlett, E.B. & Uhrig, R.E. (1992). Nuclear power plant status diagnostics using artificial
neural networks. Nuclear Technology, Vol. 97, 272-281.

Battiti, R. (1992). First- and second-order methods for learning: between steepest descent
and Newton’s method. Neural Computation, Vol. 4, 141-166.

Boroushaki, M., Ghofrani, M.B. & Lucas, C. (2002). Identification of a nuclear reactor core
(VVER) using recurrent neural networks. Annals of Nuclear Energy, Vol. 29, 1225-1240.

Boroushaki, M., Ghofrani, M.B., Lucas, C. & Yazdanpanah, M.J. (2003). An intelligent
nuclear reactor core controller for load following operations, using recurrent neural
networks and fuzzy systems. Annals of Nuclear Energy, Vol. 30, 63-80.

Chaudhuri, B.B. & Bhattacharya, U. (2000). Efficient training and improved performance of
multilayer perceptron in pattern classification. Neurocomputing, Vol. 34, 11-27.

Choi, Y.J., Kim, H.K., Baek, W.P., Chang, S.H. (2004). Hybrid accident simulation
methodology using artificial neural networks for nuclear power plants. Information
Sciences, Vol. 160, 207-224.

Elman, J.L. (1990). Finding structure in time. Cognitive Science, Vol. 14, No. 2, 179-211.
Evans, D.H., McDicken, W.N., Skidmore, R. & Woodcock, J.P. (1989). Doppler Ultrasound:

Physics, Instrumentation and Clinical Applications, Wiley, Chichester.
Fantoni, P.F. & Mazzola, A. (1996a). Multiple-failure signal validation in nuclear power

plants using artificial neural networks. Nuclear Technology, Vol. 113, 368-374.
Fantoni, P.F. & Mazzola, A. (1996b). A pattern recognition-artificial neural networks based

model for signal validation in nuclear power plants. Annals of Nuclear Energy, Vol.
23, No. 13, 1069-1076.

Fausett, L. (1994). Fundamentals of Neural Networks Architectures, Algorithms, and Applications,
Prentice Hall, Inc., Englewood Cliffs, NJ.

Gupta, L. & McAvoy, M. (2000). Investigating the prediction capabilities of the simple
recurrent neural network on real temporal sequences. Pattern Recognition, Vol. 33,
No. 12, 2075-2081.

Gupta, L., McAvoy, M. & Phegley, J. (2000). Classification of temporal sequences via
prediction using the simple recurrent neural network. Pattern Recognition, Vol. 33,
No. 10, 1759-1770.

Case Studies for Applications of Elman Recurrent Neural Networks

367

Hagan, M.T. & Menhaj, M.B. (1994). Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks, Vol. 5, No. 6, 989-993.

Hassoun, M.H. (1995). Fundamentals of Artificial Neural Networks, Massachusetts Institute of
Technology Press, London.

Haykin, S. (1994). Neural networks: A Comprehensive Foundation, Macmillan, New York.
Kim, K., Aljundi, T.L. & Bartlett, E.B. (1992). Confirmation of artificial neural networks:

nuclear power plant fault diagnostics. Transactions of the American Nuclear Society,
Vol. 66, 112.

Kozma, R. & Nabeshima, K. (1995). Studies on the detection of incipient coolant boiling in nuclear
reactors using artificial neural networks. Annals of Nuclear Energy, Vol. 22, No. 7, 483-496.

Kozma, R., Sato, S., Sakuma, M., Kitamura, M. & Sugiyama, T. (1995). Generalization of
knowledge acquired by a reactor core monitoring system based on a neuro-fuzzy
algorithm. Progress in Nuclear Energy, Vol. 29, No. 3-4, 203-214.

Leutmezer, F., Schernthaner, C., Lurger, S., Pötzelberger, K. & Baumgartner, C. (2003).
Electrocardiographic changes at the onset of epileptic seizures. Epilepsia, Vol. 44,
No. 3, 348-354.

Miller, A.S., Blott, B.H., & Hames, T.K. (1992). Review of neural network applications in
medical imaging and signal processing. Medical & Biological Engineering &
Computing, Vol. 30, 449-464.

Narendra, K.S. & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, Vol. 1, No. 1, 4-27.

Ogha, Y. & Seki, H. (1991). Using a neural network for abnormal event identification in
BWRs. Transactions of the American Nuclear Society, Vol. 63, 110-111.

Ortiz, J.J. & Requena, I. (2004). Using a multi-state recurrent neural network to optimize
loading patterns in BWRs. Annals of Nuclear Energy, Vol. 31, 789-803.

Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R. & Wunsch II, D. (2000). Recurrent
neural network based prediction of epileptic seizures in intra- and extracranial
EEG. Neurocomputing, Vol. 30, 201-218.

Petrosian, A.A., Prokhorov, D.V., Lajara-Nanson, W. & Schiffer, R.B. (2001). Recurrent
neural network-based approach for early recognition of Alzheimer’s disease in
EEG. Clinical Neurophysiology, Vol. 112, No. 8, 1378-1387.

Pineda, F.J. (1987). Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, Vol. 59, No. 19, 2229-2232.

Reifman, J. (1997). Survey of artificial intelligence methods for detection and identification of
component faults in nuclear power plants. Nuclear Technology, Vol. 119, 76-97.

Rocamora, R., Kurthen, M., Lickfett, L., von Oertzen, J. & Elger, C.E. (2003). Cardiac asystole in
epilepsy: Clinical and neurophysiologic features. Epilepsia, Vol. 44, No. 2, 179-185.

Saad, E.W., Prokhorov, D.V. & Wunsch II, D.C. (1998). Comparative study of stock trend
prediction using time delay, recurrent and probabilistic neural networks. IEEE
Transactions on Neural Networks, Vol. 9, No. 6, 1456-1470.

Saxena, S.C., Kumar, V. & Hamde, S.T. (2002). Feature extraction from ECG signals using
wavelet transforms for disease diagnostics. International Journal of Systems Science,
Vol. 33, No. 13, 1073-1085.

Shieh, J-S., Chou, C-F., Huang, S-J. & Kao, M-C. (2004). Intracranial pressure model in
intensive care unit using a simple recurrent neural network through time.
Neurocomputing, Vol. 57, 239-256.

Şeker, S., Ayaz, E. & Türkcan, E. (2003). Elman’s recurrent neural network applications to
condition monitoring in nuclear power plant and rotating machinery. Engineering
Applications of Artificial Intelligence, Vol. 16, 647-656.

 Recurrent Neural Networks

366

demonstrated that the RNN can be used in classification of the ECG beats by taking into
consideration the misclassification rates (Übeyli, 2008c).
ANNs have recently been introduced to the nuclear engineering applications as a fast and
flexible vehicle to modeling, simulation and optimization. A new approach based on RNNs
was presented for the neutronic parameters of a thorium fusion breeder. The results of the
RNNs implemented for the tritium breeding ratio computation, energy multiplication factor
and net 233U production in a thorium fusion breeder and the results available in the
literature obtained by using Scale 4.3 were compared. The drawn conclusions confirmed
that the proposed RNNs could provide an accurate computation of the tritium breeding
ratio computation, the energy multiplication factor and the net 233U production of the
thorium fusion breeder (Übeyli & Übeyli, 2007).

6. References
Adal, T., Bakal, B., Sönmez, M.K., Fakory, R. & Tsaoi, C.O. (1997). Modeling nuclear reactor

core dynamics with recurrent neural networks. Neurocomputing, Vol. 15, 363-381.
Al-Aweel, I.C., Krishnamurthy, K.B., Hausdorff, J.M., Mietus, J.E., Ives, J.R., Blum, A.S.,

Schomer, D.L. & Goldberger, A.L. (1999). Postictal heart rate oscillations in partial
epilepsy. Neurology, Vol. 53, No. 7, 1590-1592.

Bartlett, E.B. & Uhrig, R.E. (1992). Nuclear power plant status diagnostics using artificial
neural networks. Nuclear Technology, Vol. 97, 272-281.

Battiti, R. (1992). First- and second-order methods for learning: between steepest descent
and Newton’s method. Neural Computation, Vol. 4, 141-166.

Boroushaki, M., Ghofrani, M.B. & Lucas, C. (2002). Identification of a nuclear reactor core
(VVER) using recurrent neural networks. Annals of Nuclear Energy, Vol. 29, 1225-1240.

Boroushaki, M., Ghofrani, M.B., Lucas, C. & Yazdanpanah, M.J. (2003). An intelligent
nuclear reactor core controller for load following operations, using recurrent neural
networks and fuzzy systems. Annals of Nuclear Energy, Vol. 30, 63-80.

Chaudhuri, B.B. & Bhattacharya, U. (2000). Efficient training and improved performance of
multilayer perceptron in pattern classification. Neurocomputing, Vol. 34, 11-27.

Choi, Y.J., Kim, H.K., Baek, W.P., Chang, S.H. (2004). Hybrid accident simulation
methodology using artificial neural networks for nuclear power plants. Information
Sciences, Vol. 160, 207-224.

Elman, J.L. (1990). Finding structure in time. Cognitive Science, Vol. 14, No. 2, 179-211.
Evans, D.H., McDicken, W.N., Skidmore, R. & Woodcock, J.P. (1989). Doppler Ultrasound:

Physics, Instrumentation and Clinical Applications, Wiley, Chichester.
Fantoni, P.F. & Mazzola, A. (1996a). Multiple-failure signal validation in nuclear power

plants using artificial neural networks. Nuclear Technology, Vol. 113, 368-374.
Fantoni, P.F. & Mazzola, A. (1996b). A pattern recognition-artificial neural networks based

model for signal validation in nuclear power plants. Annals of Nuclear Energy, Vol.
23, No. 13, 1069-1076.

Fausett, L. (1994). Fundamentals of Neural Networks Architectures, Algorithms, and Applications,
Prentice Hall, Inc., Englewood Cliffs, NJ.

Gupta, L. & McAvoy, M. (2000). Investigating the prediction capabilities of the simple
recurrent neural network on real temporal sequences. Pattern Recognition, Vol. 33,
No. 12, 2075-2081.

Gupta, L., McAvoy, M. & Phegley, J. (2000). Classification of temporal sequences via
prediction using the simple recurrent neural network. Pattern Recognition, Vol. 33,
No. 10, 1759-1770.

Case Studies for Applications of Elman Recurrent Neural Networks

367

Hagan, M.T. & Menhaj, M.B. (1994). Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks, Vol. 5, No. 6, 989-993.

Hassoun, M.H. (1995). Fundamentals of Artificial Neural Networks, Massachusetts Institute of
Technology Press, London.

Haykin, S. (1994). Neural networks: A Comprehensive Foundation, Macmillan, New York.
Kim, K., Aljundi, T.L. & Bartlett, E.B. (1992). Confirmation of artificial neural networks:

nuclear power plant fault diagnostics. Transactions of the American Nuclear Society,
Vol. 66, 112.

Kozma, R. & Nabeshima, K. (1995). Studies on the detection of incipient coolant boiling in nuclear
reactors using artificial neural networks. Annals of Nuclear Energy, Vol. 22, No. 7, 483-496.

Kozma, R., Sato, S., Sakuma, M., Kitamura, M. & Sugiyama, T. (1995). Generalization of
knowledge acquired by a reactor core monitoring system based on a neuro-fuzzy
algorithm. Progress in Nuclear Energy, Vol. 29, No. 3-4, 203-214.

Leutmezer, F., Schernthaner, C., Lurger, S., Pötzelberger, K. & Baumgartner, C. (2003).
Electrocardiographic changes at the onset of epileptic seizures. Epilepsia, Vol. 44,
No. 3, 348-354.

Miller, A.S., Blott, B.H., & Hames, T.K. (1992). Review of neural network applications in
medical imaging and signal processing. Medical & Biological Engineering &
Computing, Vol. 30, 449-464.

Narendra, K.S. & Parthasarathy, K. (1990). Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, Vol. 1, No. 1, 4-27.

Ogha, Y. & Seki, H. (1991). Using a neural network for abnormal event identification in
BWRs. Transactions of the American Nuclear Society, Vol. 63, 110-111.

Ortiz, J.J. & Requena, I. (2004). Using a multi-state recurrent neural network to optimize
loading patterns in BWRs. Annals of Nuclear Energy, Vol. 31, 789-803.

Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R. & Wunsch II, D. (2000). Recurrent
neural network based prediction of epileptic seizures in intra- and extracranial
EEG. Neurocomputing, Vol. 30, 201-218.

Petrosian, A.A., Prokhorov, D.V., Lajara-Nanson, W. & Schiffer, R.B. (2001). Recurrent
neural network-based approach for early recognition of Alzheimer’s disease in
EEG. Clinical Neurophysiology, Vol. 112, No. 8, 1378-1387.

Pineda, F.J. (1987). Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, Vol. 59, No. 19, 2229-2232.

Reifman, J. (1997). Survey of artificial intelligence methods for detection and identification of
component faults in nuclear power plants. Nuclear Technology, Vol. 119, 76-97.

Rocamora, R., Kurthen, M., Lickfett, L., von Oertzen, J. & Elger, C.E. (2003). Cardiac asystole in
epilepsy: Clinical and neurophysiologic features. Epilepsia, Vol. 44, No. 2, 179-185.

Saad, E.W., Prokhorov, D.V. & Wunsch II, D.C. (1998). Comparative study of stock trend
prediction using time delay, recurrent and probabilistic neural networks. IEEE
Transactions on Neural Networks, Vol. 9, No. 6, 1456-1470.

Saxena, S.C., Kumar, V. & Hamde, S.T. (2002). Feature extraction from ECG signals using
wavelet transforms for disease diagnostics. International Journal of Systems Science,
Vol. 33, No. 13, 1073-1085.

Shieh, J-S., Chou, C-F., Huang, S-J. & Kao, M-C. (2004). Intracranial pressure model in
intensive care unit using a simple recurrent neural network through time.
Neurocomputing, Vol. 57, 239-256.

Şeker, S., Ayaz, E. & Türkcan, E. (2003). Elman’s recurrent neural network applications to
condition monitoring in nuclear power plant and rotating machinery. Engineering
Applications of Artificial Intelligence, Vol. 16, 647-656.

 Recurrent Neural Networks

368

Thibault, J. & Grandjean, B.P.A. (1991). A neural network methodology for heat transfer
data analysis. International Journal of Heat Mass Transfer, Vol. 34, No. 8, 2063-2070.

Uhrig, R.E. & Tsoukalas, L.H. (1999). Soft computing technologies in nuclear engineering
applications. Progress in Nuclear Energy, Vol. 34, No. 1, 13-75.

Übeyli, M. & Acr, A. (2007). Utilization of thorium in a high power density hybrid reactor
with innovative coolants. Energy Conversion and Management, Vol. 48, 576-582.

Übeyli, E.D. & Übeyli, M. (2007). Investigating neutronic parameters of a Thorium fusion breeder
with recurrent neural networks. Journal of Fusion Energy, Vol. 26, No. 4, 323-330.

Übeyli, E.D. (2007a). Comparison of different classification algorithms in clinical decision-
making. Expert Systems, Vol. 24, No. 1, 17-31.

Übeyli, E.D. (2007b). ECG beats classification using multiclass support vector machines with
error correcting output codes. Digital Signal Processing, Vol.17, No. 3, 675-684.

Übeyli, E.D. (2008a). Recurrent neural networks employing Lyapunov exponents for
analysis of Doppler ultrasound signals. Expert Systems with Applications, Vol. 34, No.
4, 2538-2544.

Übeyli, E.D. (2008b). Wavelet/mixture of experts network structure for EEG signals
classification. Expert Systems with Applications, Vol. 34, No. 3, 1954-1962.

Übeyli, E.D. (2008c). Recurrent neural networks with composite features for detection of
electrocardiographic changes in partial epileptic patients. Computers in Biology and
Medicine, Vol. 38, No. 3, 401-410.

Wright, I.A., Gough, N.A.J., Rakebrandt, F., Wahab, M. & Woodcock, J.P. (1997). Neural
network analysis of Doppler ultrasound blood flow signals: A pilot study.
Ultrasound in Medicine & Biology, Vol. 23, 683-690.

Wright, I.A., & Gough, N.A.J. (1999). Artificial neural network analysis of common femoral
artery Doppler shift signals: Classification of proximal disease. Ultrasound in
Medicine & Biology, Vol. 24, 735-743.

Figure 1. A schematic representation of an Elman recurrent neural network. z-1 represents a
one time step delay unit.

z-1 z-1 z-1

x1 x2 xn

y1 y2 yn

Output
layer

Hidden
layer

Input
layer

Context
layer

Case Studies for Applications of Elman Recurrent Neural Networks

369

0 20 40 60 80 100 120 140
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

Healthy
Stenosis
Ocular Behcet disease

Figure 2. Lyapunov exponents of the OA Doppler signals: healthy subject (subject no: 12);
subject suffering from OA stenosis (subject no: 27); subject suffering from ocular Behcet
disease (subject no: 38)

0 20 40 60 80 100 120 140
-1.5

-1

-0.5

0

0.5

1

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

Healthy
Stenosis
Occlusion

Figure 3. Lyapunov exponents of the ICA Doppler signals obtained from: a healthy subject
(subject no: 15); a subject suffering from ICA stenosis (subject no: 32); a subject suffering
from ICA occlusion (subject no: 43)

 Recurrent Neural Networks

368

Thibault, J. & Grandjean, B.P.A. (1991). A neural network methodology for heat transfer
data analysis. International Journal of Heat Mass Transfer, Vol. 34, No. 8, 2063-2070.

Uhrig, R.E. & Tsoukalas, L.H. (1999). Soft computing technologies in nuclear engineering
applications. Progress in Nuclear Energy, Vol. 34, No. 1, 13-75.

Übeyli, M. & Acr, A. (2007). Utilization of thorium in a high power density hybrid reactor
with innovative coolants. Energy Conversion and Management, Vol. 48, 576-582.

Übeyli, E.D. & Übeyli, M. (2007). Investigating neutronic parameters of a Thorium fusion breeder
with recurrent neural networks. Journal of Fusion Energy, Vol. 26, No. 4, 323-330.

Übeyli, E.D. (2007a). Comparison of different classification algorithms in clinical decision-
making. Expert Systems, Vol. 24, No. 1, 17-31.

Übeyli, E.D. (2007b). ECG beats classification using multiclass support vector machines with
error correcting output codes. Digital Signal Processing, Vol.17, No. 3, 675-684.

Übeyli, E.D. (2008a). Recurrent neural networks employing Lyapunov exponents for
analysis of Doppler ultrasound signals. Expert Systems with Applications, Vol. 34, No.
4, 2538-2544.

Übeyli, E.D. (2008b). Wavelet/mixture of experts network structure for EEG signals
classification. Expert Systems with Applications, Vol. 34, No. 3, 1954-1962.

Übeyli, E.D. (2008c). Recurrent neural networks with composite features for detection of
electrocardiographic changes in partial epileptic patients. Computers in Biology and
Medicine, Vol. 38, No. 3, 401-410.

Wright, I.A., Gough, N.A.J., Rakebrandt, F., Wahab, M. & Woodcock, J.P. (1997). Neural
network analysis of Doppler ultrasound blood flow signals: A pilot study.
Ultrasound in Medicine & Biology, Vol. 23, 683-690.

Wright, I.A., & Gough, N.A.J. (1999). Artificial neural network analysis of common femoral
artery Doppler shift signals: Classification of proximal disease. Ultrasound in
Medicine & Biology, Vol. 24, 735-743.

Figure 1. A schematic representation of an Elman recurrent neural network. z-1 represents a
one time step delay unit.

z-1 z-1 z-1

x1 x2 xn

y1 y2 yn

Output
layer

Hidden
layer

Input
layer

Context
layer

Case Studies for Applications of Elman Recurrent Neural Networks

369

0 20 40 60 80 100 120 140
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

Healthy
Stenosis
Ocular Behcet disease

Figure 2. Lyapunov exponents of the OA Doppler signals: healthy subject (subject no: 12);
subject suffering from OA stenosis (subject no: 27); subject suffering from ocular Behcet
disease (subject no: 38)

0 20 40 60 80 100 120 140
-1.5

-1

-0.5

0

0.5

1

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

Healthy
Stenosis
Occlusion

Figure 3. Lyapunov exponents of the ICA Doppler signals obtained from: a healthy subject
(subject no: 15); a subject suffering from ICA stenosis (subject no: 32); a subject suffering
from ICA occlusion (subject no: 43)

 Recurrent Neural Networks

370

0 20 40 60 80 100 120 140
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Number of detail wavelet coefficients

D
et

ai
l w

av
el

et
 c

oe
ffi

ci
en

ts

(a)

0 20 40 60 80 100 120 140
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of detail wavelet coefficients

D
et

ai
l w

av
el

et
 c

oe
ffi

ci
en

ts

(b)

Figure 4. The detail wavelet coefficients at the first decomposition level of the ECG beats: (a)
normal beat, (b) partial epilepsy beat

Case Studies for Applications of Elman Recurrent Neural Networks

371

0 20 40 60 80 100 120 140
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

(a)

0 20 40 60 80 100 120 140
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

(b)
Figure 5. Lyapunov exponents of the ECG beats: (a) normal beat, (b) partial epilepsy beat

 Recurrent Neural Networks

370

0 20 40 60 80 100 120 140
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Number of detail wavelet coefficients

D
et

ai
l w

av
el

et
 c

oe
ffi

ci
en

ts

(a)

0 20 40 60 80 100 120 140
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of detail wavelet coefficients

D
et

ai
l w

av
el

et
 c

oe
ffi

ci
en

ts

(b)

Figure 4. The detail wavelet coefficients at the first decomposition level of the ECG beats: (a)
normal beat, (b) partial epilepsy beat

Case Studies for Applications of Elman Recurrent Neural Networks

371

0 20 40 60 80 100 120 140
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

(a)

0 20 40 60 80 100 120 140
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Lyapunov exponents

Ly
ap

un
ov

 e
xp

on
en

ts

(b)

Figure 5. Lyapunov exponents of the ECG beats: (a) normal beat, (b) partial epilepsy beat

 Recurrent Neural Networks

372

Figure 6. ROC curves of the classifiers used for classification of the ECG beats

Figure 7. Implemented RNNs for various coolant type (a) Natural Lithium (b) Li20S80 (c) Flinabe

Case Studies for Applications of Elman Recurrent Neural Networks

373

0 5 10 15 20 25 30 35 40 45 50
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Operation period (month)

TB
R

SCALE 4.3
RNN

Figure 8. TBR variation in the blanket cooled with natural Li obtained by Scale 4.3 (Übeyli &
Acr, 2007) and RNN

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Operation period (month)

M

SCALE 4.3
RNN

Figure 9. Change in M with respect to time in the blanket using Li20Sn80 obtained by Scale
4.3 (Übeyli & Acr, 2007) and RNN

 Recurrent Neural Networks

372

Figure 6. ROC curves of the classifiers used for classification of the ECG beats

Figure 7. Implemented RNNs for various coolant type (a) Natural Lithium (b) Li20S80 (c) Flinabe

Case Studies for Applications of Elman Recurrent Neural Networks

373

0 5 10 15 20 25 30 35 40 45 50
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Operation period (month)

TB
R

SCALE 4.3
RNN

Figure 8. TBR variation in the blanket cooled with natural Li obtained by Scale 4.3 (Übeyli &
Acr, 2007) and RNN

0 5 10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Operation period (month)

M

SCALE 4.3
RNN

Figure 9. Change in M with respect to time in the blanket using Li20Sn80 obtained by Scale
4.3 (Übeyli & Acr, 2007) and RNN

 Recurrent Neural Networks

374

0 5 10 15 20 25 30 35 40 45 50
-500

0

500

1000

1500

2000

2500

3000

3500

4000

Operation period (month)

N
et

 U

 p
ro

du
ct

io
n

[g
/M

W
yr

]
SCALE 4.3
RNN

23
3

Figure 10. Net 233U production in the blanket using Flinabe obtained by Scale 4.3 (Übeyli &
Acr, 2007) and RNN

Output Result
Desired Result

Healthy OA stenosis Ocular Behcet disease

Healthy 41 0 0

OA stenosis 2 32 1

Ocular Behcet disease 0 0 33

Table 1. Confusion matrix of the RNN used for classification of the OA Doppler signals

Output Result
Desired Result

Healthy ICA stenosis ICA occlusion

Healthy 31 0 0

ICA stenosis 1 40 0

ICA occlusion 0 2 36

Table 2. Confusion matrix of the RNN used for classification of the ICA Doppler signals

Case Studies for Applications of Elman Recurrent Neural Networks

375

Classifiers CPU time
(min:s) Classification Accuracies Values (%)

Specificity 95.35

Sensitivity
(OA stenosis) 100.00

Sensitivity
(Ocular Behcet disease) 97.06

RNN implemented for
OA Doppler signals 8:23

Total classification accuracy 97.25

Specificity 96.88

Sensitivity
(ICA stenosis) 95.24

Sensitivity
(ICA occlusion) 100.00

RNN implemented for
ICA Doppler signals 7:41

Total classification accuracy 97.27

Table 3. The classification accuracies and the CPU times of training of the classifiers used for
classification of the OA and ICA Doppler signals

Statistical Parameters (%)
Classifiers

Specificity Sensitivity Total classification
accuracy

CPU time
(min:s)

RNN 98.89 97.78 98.33 12:34

MLPNN 92.22 93.33 92.78 17:05

Table 4. The values of the statistical parameters and the CPU times of training of the
classifiers used for classification of the ECG beats

 Recurrent Neural Networks

374

0 5 10 15 20 25 30 35 40 45 50
-500

0

500

1000

1500

2000

2500

3000

3500

4000

Operation period (month)

N
et

 U

 p
ro

du
ct

io
n

[g
/M

W
yr

]

SCALE 4.3
RNN

23
3

Figure 10. Net 233U production in the blanket using Flinabe obtained by Scale 4.3 (Übeyli &
Acr, 2007) and RNN

Output Result
Desired Result

Healthy OA stenosis Ocular Behcet disease

Healthy 41 0 0

OA stenosis 2 32 1

Ocular Behcet disease 0 0 33

Table 1. Confusion matrix of the RNN used for classification of the OA Doppler signals

Output Result
Desired Result

Healthy ICA stenosis ICA occlusion

Healthy 31 0 0

ICA stenosis 1 40 0

ICA occlusion 0 2 36

Table 2. Confusion matrix of the RNN used for classification of the ICA Doppler signals

Case Studies for Applications of Elman Recurrent Neural Networks

375

Classifiers CPU time
(min:s) Classification Accuracies Values (%)

Specificity 95.35

Sensitivity
(OA stenosis) 100.00

Sensitivity
(Ocular Behcet disease) 97.06

RNN implemented for
OA Doppler signals 8:23

Total classification accuracy 97.25

Specificity 96.88

Sensitivity
(ICA stenosis) 95.24

Sensitivity
(ICA occlusion) 100.00

RNN implemented for
ICA Doppler signals 7:41

Total classification accuracy 97.27

Table 3. The classification accuracies and the CPU times of training of the classifiers used for
classification of the OA and ICA Doppler signals

Statistical Parameters (%)
Classifiers

Specificity Sensitivity Total classification
accuracy

CPU time
(min:s)

RNN 98.89 97.78 98.33 12:34

MLPNN 92.22 93.33 92.78 17:05

Table 4. The values of the statistical parameters and the CPU times of training of the
classifiers used for classification of the ECG beats

 Recurrent Neural Networks

376

Coolant
type Performance

RNNs for
tritium

breeding
ratio

RNNs for energy
multiplication

factor

RNNs for net
233U production

MSE 0.009 0.005 0.008

MAE 0.008 0.004 0.008
Natural
Lithium

r 0.892 0.921 0.945

MSE 0.089 0.006 0.007

MAE 0.008 0.005 0.008 Li20S80

r 0.899 0.934 0.905

MSE 0.009 0.005 0.006

MAE 0.088 0.005 0.007 Flinabe

r 0.895 0.924 0.936

Table 5. Performance evaluation parameters of the RNNs implemented for the estimation of
the neutronic parameters of a thorium fusion breeder

18

Partially Connected Locally Recurrent
Probabilistic Neural Networks

Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis,
 and Nikos D. Fakotakis

University of Patras
Greece

1. Introduction
In this chapter, we review existing locally recurrent neural networks and introduce a novel
artificial neural network architecture that merges the locally recurrent probabilistic neural
networks (LRPNN) with swarm intelligence algorithms and concepts.
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with
which it communicates through interconnections. The locality that determines the
neighbourhoods is defined based on existing neighbourhood and communication schemes
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more
general scheme, in which the fully connected LRPNN can be considered as a particular case,
where all links in the recurrent layer are implemented.
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm
intelligence, since swarms with dynamic communication schemes among individuals have
been shown to achieve remarkably better results than swarms with static communication
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful
in cases where better fit to unknown data is required. In the present chapter we will limit
our exposition to the static neighbourhoods, which are defined once during training, and
remain unchanged during the operation of the PC-LRPNN. However, the concepts that we
introduce here can be extended further to the dynamic counterparts.
The aforementioned local neighbourhoods and communications schemes facilitate the
optimization of the recurrent layer linkage, which leads to much faster operation of the
neural network, when compared to the fully linked structure. Furthermore, it significantly
reduces the computational load for the overall training of the recurrent layer, which is
performed at each case using the Particle Swarm Optimization (PSO) algorithm. Equipping
the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the
virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN),
swarm intelligence concept, and that can tackle successfully real-life classification problems
that assume temporal or spatial correlations among subsequent events.

 Recurrent Neural Networks

376

Coolant
type Performance

RNNs for
tritium

breeding
ratio

RNNs for energy
multiplication

factor

RNNs for net
233U production

MSE 0.009 0.005 0.008

MAE 0.008 0.004 0.008
Natural
Lithium

r 0.892 0.921 0.945

MSE 0.089 0.006 0.007

MAE 0.008 0.005 0.008 Li20S80

r 0.899 0.934 0.905

MSE 0.009 0.005 0.006

MAE 0.088 0.005 0.007 Flinabe

r 0.895 0.924 0.936

Table 5. Performance evaluation parameters of the RNNs implemented for the estimation of
the neutronic parameters of a thorium fusion breeder

18

Partially Connected Locally Recurrent
Probabilistic Neural Networks

Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis,
 and Nikos D. Fakotakis

University of Patras
Greece

1. Introduction
In this chapter, we review existing locally recurrent neural networks and introduce a novel
artificial neural network architecture that merges the locally recurrent probabilistic neural
networks (LRPNN) with swarm intelligence algorithms and concepts.
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with
which it communicates through interconnections. The locality that determines the
neighbourhoods is defined based on existing neighbourhood and communication schemes
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more
general scheme, in which the fully connected LRPNN can be considered as a particular case,
where all links in the recurrent layer are implemented.
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm
intelligence, since swarms with dynamic communication schemes among individuals have
been shown to achieve remarkably better results than swarms with static communication
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful
in cases where better fit to unknown data is required. In the present chapter we will limit
our exposition to the static neighbourhoods, which are defined once during training, and
remain unchanged during the operation of the PC-LRPNN. However, the concepts that we
introduce here can be extended further to the dynamic counterparts.
The aforementioned local neighbourhoods and communications schemes facilitate the
optimization of the recurrent layer linkage, which leads to much faster operation of the
neural network, when compared to the fully linked structure. Furthermore, it significantly
reduces the computational load for the overall training of the recurrent layer, which is
performed at each case using the Particle Swarm Optimization (PSO) algorithm. Equipping
the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the
virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN),
swarm intelligence concept, and that can tackle successfully real-life classification problems
that assume temporal or spatial correlations among subsequent events.

 Recurrent Neural Networks

378

2. Locally recurrent neural networks
A large number of recurrent and locally recurrent neural networks (LRNNs) have been
studied in the literature. All they posses the valuable virtue to learn temporal dependences
among the training data, which allows for context awareness, and thus, for improved
recognition capabilities when compared to their non-recurrent counterparts. This advantage
has proved useful in numerous applications of the LRNNs on real-life problems, which
among others include: nonlinear system identification (Back & Tsoi, 1992; Lin et al., 1998);
grammatical inference (Lin et al., 1998); weather prediction (Aussem et al., 1995); speech
recognition (Kasper et al., (1995, 1996)); protection of power systems (Cannas et al., 1998);
speaker verification (Ganchev et al., (2003, 2004, 2007)); wind speed prediction (Barbounis &
Theocharis, (2007a, 2007b)), etc.
The locally recurrent global feedforward architecture was originally proposed by Back and
Tsoi (Back & Tsoi, 1991), who considered an extension of the Multilayer Perceptron (MLP)
neural network to exploit contextual information. In their work, they introduced the Infinite
Impulse Response (IIR) and Finite Impulse Response (FIR) synapses, able to utilize temporal
dependencies in the input data. The FIR synapse has connections to its own, current and
delayed, inputs, while the IIR synapse has also connections to its past outputs.
Ku and Lee (Ku & Lee, 1995) proposed Diagonal Recurrent Neural Networks (DRNN) for
the task of system identification in real-time control applications. Their approach is based
on the assumption that a single feedback from the neuron’s own output is sufficient. Thus,
they simplify the fully connected neural network to render training easier.
A comprehensive study of several MLP-based Locally Recurrent Neural Networks is
available in (Campolucci et al., 1999). They introduced a unifying framework for the
gradient calculation techniques, called Causal Recursive Back-Propagation. All
aforementioned approaches consider gradient-based training techniques for neural
networks, which, as it is well known, require differentiable transfer functions.
From the abundance of LRNN, in the present work, we will consider primary architectures
originating from the family of the Probabilistic Neural Network (PNN). Specifically in the
present section we will briefly outline the Locally Recurrent Probabilistic Neural Network
(LRPNN), which was introduced (Ganchev et al., 2003) as an extension of the feed-forward
Probabilistic Neural Network (PNN) architecture (Specht, (1988, 1990)). This structure is
used as basis for the novel partially connected LRPNN (PC-LRPNN), which we will discuss
in the next sections.
In brief, the LRPNN was derived from the original PNN by incorporating an additional
hidden layer, referred to as recurrent layer, between the summation layer and the output
competitive layer of the PNN structure. The recurrent layer consists of neurons possessing
feedbacks from all other neurons in that layer. Due to this recurrent layer, the LRPNN, in
contrast to the original PNN, is sensitive to the context in which the individual input data
appear, and thus, it is capable to learn temporal regularities and the sequence of occurrence
of events. Specifically, in the frame of speech processing this new capability of the LRPNN
enables detecting and exploiting the abundance of correlations among speech features
vectors estimated for successive speech frames. Exploiting these correlations was found
important for improving the classification accuracy in the speaker verification task (Ganchev
et al., (2003, 2004, 2007)).
As presented in earlier studies (Ganchev et al., (2003, 2004)) in the LRPNN architecture each
neuron in the recurrent layer receives as input not only current values of its inputs, but also

Partially Connected Locally Recurrent Probabilistic Neural Networks

379

the N previous outputs of all neurons in that layer. Broadly speaking, the input, acting on
a recurrent neuron located in the recurrent hidden layer of an LRPNN, is a sum of two
differences: The first difference is between the weighted probability of the given class and
the sum of weighted probabilities computed for all other classes. These probabilities are
computed at the output of the summation layer of the LRPNN. The second difference is
between the weighted past output values of the given unit and the sum of the weighted past
output values of all other neurons in this layer. Thus, in the proposed architecture, the
probability of belonging to a specific class is combined with the probabilities computed for
the other classes, and more importantly with the past values of the outputs of the recurrent
units for all classes. This incorporation of previous information enables the LRPNN network
to take advantage of the temporal context, which results in producing smoother in the time
output scores, improved confidence levels, and consequently more accurate final decisions.
In the present chapter, we elaborate further on the LRPNN architecture by studying ways to
optimize the recurrent layer linkage. In contrast to LRPNN, where the recurrent layer
consists of a set of fully connected neurons, the introduced here new PC-LRPNN
architecture assumes a swarm of neurons in the recurrent layer. Each neuron of the swarm
presumes a neighbourhood of neurons with which it communicates through
interconnections. The locality that determines the neighbourhoods is defined based on
existing neighbourhood and communication schemes proposed in the swarm intelligence
literature. When compared to the original LRPNN architecture, the PC-LRPNN has a
greater capacity to adapt (its recurrent layer linkage) to the training dataset. This is due to
the additional degree of freedom provided by the recurrent layer linkage selection that can
be controlled for a fine-tuning of the neural network to the problem at hand. Obviously, the
fully connected LRPNN architecture can be regarded as a particular case of the PC-LRPNN,
which implements the full linkage in the recurrent layer.

3. Particle swarms and particle swarm optimization
The particle swarm is a community of individual performers, known as particles, which
communicate/share information and collaborate on finding optimal regions in the search
space. In the literature, the particle swarm is synonym to Particle Swarm Optimization
(PSO) algorithm, which has become an attractive alternative to other optimization
techniques (Clerc and Kennedy, 2002).
In brief, PSO is a stochastic optimization, population-based algorithm. It was introduced in
1995 by Kennedy and Eberhart (Kennedy & Eberhart, 1995), inspired by social behaviour
simulation models. Features such as information exchange and neighbour alignment are
inherent in such models, allowing the emergence of intelligent behaviour in swarms of
simple agents with limited field of action. Similarly to evolutionary algorithms, PSO exploits
a population, called a swarm, of potential solutions, called particles, which adapt their
position stochastically at each iteration of the algorithm.
In contrast to standard evolutionary approaches, PSO promotes cooperativeness rather than
competition among the solutions. More specifically, instead of using explicit mutation and
selection operators in order to modify the population and favour the best performing
individuals, PSO uses an adaptable position shift, called velocity, to move each particle to a
new position at each iteration of the algorithm. The particles are moving towards promising
regions of the search space by exploiting information springing from their own experience
during the search as well as from the experience of other particles. For this purpose, a
memory of the best position ever visited by each particle in the search space is retained.

 Recurrent Neural Networks

378

2. Locally recurrent neural networks
A large number of recurrent and locally recurrent neural networks (LRNNs) have been
studied in the literature. All they posses the valuable virtue to learn temporal dependences
among the training data, which allows for context awareness, and thus, for improved
recognition capabilities when compared to their non-recurrent counterparts. This advantage
has proved useful in numerous applications of the LRNNs on real-life problems, which
among others include: nonlinear system identification (Back & Tsoi, 1992; Lin et al., 1998);
grammatical inference (Lin et al., 1998); weather prediction (Aussem et al., 1995); speech
recognition (Kasper et al., (1995, 1996)); protection of power systems (Cannas et al., 1998);
speaker verification (Ganchev et al., (2003, 2004, 2007)); wind speed prediction (Barbounis &
Theocharis, (2007a, 2007b)), etc.
The locally recurrent global feedforward architecture was originally proposed by Back and
Tsoi (Back & Tsoi, 1991), who considered an extension of the Multilayer Perceptron (MLP)
neural network to exploit contextual information. In their work, they introduced the Infinite
Impulse Response (IIR) and Finite Impulse Response (FIR) synapses, able to utilize temporal
dependencies in the input data. The FIR synapse has connections to its own, current and
delayed, inputs, while the IIR synapse has also connections to its past outputs.
Ku and Lee (Ku & Lee, 1995) proposed Diagonal Recurrent Neural Networks (DRNN) for
the task of system identification in real-time control applications. Their approach is based
on the assumption that a single feedback from the neuron’s own output is sufficient. Thus,
they simplify the fully connected neural network to render training easier.
A comprehensive study of several MLP-based Locally Recurrent Neural Networks is
available in (Campolucci et al., 1999). They introduced a unifying framework for the
gradient calculation techniques, called Causal Recursive Back-Propagation. All
aforementioned approaches consider gradient-based training techniques for neural
networks, which, as it is well known, require differentiable transfer functions.
From the abundance of LRNN, in the present work, we will consider primary architectures
originating from the family of the Probabilistic Neural Network (PNN). Specifically in the
present section we will briefly outline the Locally Recurrent Probabilistic Neural Network
(LRPNN), which was introduced (Ganchev et al., 2003) as an extension of the feed-forward
Probabilistic Neural Network (PNN) architecture (Specht, (1988, 1990)). This structure is
used as basis for the novel partially connected LRPNN (PC-LRPNN), which we will discuss
in the next sections.
In brief, the LRPNN was derived from the original PNN by incorporating an additional
hidden layer, referred to as recurrent layer, between the summation layer and the output
competitive layer of the PNN structure. The recurrent layer consists of neurons possessing
feedbacks from all other neurons in that layer. Due to this recurrent layer, the LRPNN, in
contrast to the original PNN, is sensitive to the context in which the individual input data
appear, and thus, it is capable to learn temporal regularities and the sequence of occurrence
of events. Specifically, in the frame of speech processing this new capability of the LRPNN
enables detecting and exploiting the abundance of correlations among speech features
vectors estimated for successive speech frames. Exploiting these correlations was found
important for improving the classification accuracy in the speaker verification task (Ganchev
et al., (2003, 2004, 2007)).
As presented in earlier studies (Ganchev et al., (2003, 2004)) in the LRPNN architecture each
neuron in the recurrent layer receives as input not only current values of its inputs, but also

Partially Connected Locally Recurrent Probabilistic Neural Networks

379

the N previous outputs of all neurons in that layer. Broadly speaking, the input, acting on
a recurrent neuron located in the recurrent hidden layer of an LRPNN, is a sum of two
differences: The first difference is between the weighted probability of the given class and
the sum of weighted probabilities computed for all other classes. These probabilities are
computed at the output of the summation layer of the LRPNN. The second difference is
between the weighted past output values of the given unit and the sum of the weighted past
output values of all other neurons in this layer. Thus, in the proposed architecture, the
probability of belonging to a specific class is combined with the probabilities computed for
the other classes, and more importantly with the past values of the outputs of the recurrent
units for all classes. This incorporation of previous information enables the LRPNN network
to take advantage of the temporal context, which results in producing smoother in the time
output scores, improved confidence levels, and consequently more accurate final decisions.
In the present chapter, we elaborate further on the LRPNN architecture by studying ways to
optimize the recurrent layer linkage. In contrast to LRPNN, where the recurrent layer
consists of a set of fully connected neurons, the introduced here new PC-LRPNN
architecture assumes a swarm of neurons in the recurrent layer. Each neuron of the swarm
presumes a neighbourhood of neurons with which it communicates through
interconnections. The locality that determines the neighbourhoods is defined based on
existing neighbourhood and communication schemes proposed in the swarm intelligence
literature. When compared to the original LRPNN architecture, the PC-LRPNN has a
greater capacity to adapt (its recurrent layer linkage) to the training dataset. This is due to
the additional degree of freedom provided by the recurrent layer linkage selection that can
be controlled for a fine-tuning of the neural network to the problem at hand. Obviously, the
fully connected LRPNN architecture can be regarded as a particular case of the PC-LRPNN,
which implements the full linkage in the recurrent layer.

3. Particle swarms and particle swarm optimization
The particle swarm is a community of individual performers, known as particles, which
communicate/share information and collaborate on finding optimal regions in the search
space. In the literature, the particle swarm is synonym to Particle Swarm Optimization
(PSO) algorithm, which has become an attractive alternative to other optimization
techniques (Clerc and Kennedy, 2002).
In brief, PSO is a stochastic optimization, population-based algorithm. It was introduced in
1995 by Kennedy and Eberhart (Kennedy & Eberhart, 1995), inspired by social behaviour
simulation models. Features such as information exchange and neighbour alignment are
inherent in such models, allowing the emergence of intelligent behaviour in swarms of
simple agents with limited field of action. Similarly to evolutionary algorithms, PSO exploits
a population, called a swarm, of potential solutions, called particles, which adapt their
position stochastically at each iteration of the algorithm.
In contrast to standard evolutionary approaches, PSO promotes cooperativeness rather than
competition among the solutions. More specifically, instead of using explicit mutation and
selection operators in order to modify the population and favour the best performing
individuals, PSO uses an adaptable position shift, called velocity, to move each particle to a
new position at each iteration of the algorithm. The particles are moving towards promising
regions of the search space by exploiting information springing from their own experience
during the search as well as from the experience of other particles. For this purpose, a
memory of the best position ever visited by each particle in the search space is retained.

 Recurrent Neural Networks

380

In the context of single-objective optimization, the PSO can be outlined formally as follows:
Let S be an n-dimensional search space, f : S → be the objective function, and N be the
number of particles that comprise the swarm,

 S = {x1, x2,…, xN}. (1)

Then, the ith particle is a point in the search space,

 xi = (xi1, xi2,…, xin) ∈ S, (2)

as well as its best position,

 pi = (pi1, pi2,…, pin) ∈ S, (3)

which is the best position ever visited by xi during the search. The velocity of xi is also an n-
dimensional vector,

 vi = (vi1, vi2,…, vin). (4)

In order to avoid biasing the swarm in specific parts of the search space, the particles as well
as their velocities are randomly initialized in the search space.
Let NGi ⊆ S be a set of particles that exchange information with xi. This set is called the

neighbourhood of xi and it will be discussed later. Let also, g, be the index of the best particle
in NGi, i.e.,

 f(pg) ≤ f(pl), for all l with xl ∈ NGi, (5)

and t denote the iteration counter. Then, the swarm is manipulated according to the
equations (Eberhart & Shi, 2000),

 vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t)), (6)

 xij(t+1) = xij(t) + vij(t+1), (7)

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive parameter called inertia weight; c1 and c2 are
two positive constants called cognitive and social parameter, respectively; and r1, r2, are
realizations of two independent random variables that assume the uniform distribution in
the range [0, 1]. The best position of each particle is updated at each iteration by setting

 pi(t+1) = xi(t+1), if f(xi) < f(pi), (8)

otherwise it remains unchanged. Obviously, an update of the index g is also required at each
iteration.
The inertia weight was not used in early PSO versions. However, experiments showed that
the lack of mechanism for controlling the velocities could result in swarm explosion, i.e., an
unbounded increase in the magnitude of the velocities, which resulted in swarm divergence.
For this purpose, a boundary, vmax, was imposed on the absolute value of the velocities, such
that, if vij > vmax then vij = vmax, and if vij < -vmax then vij = -vmax. In later, more sophisticated
versions, the new parameter was incorporated in the velocity update equation, in order to
control the impact of the previous velocity on the current one, although the use of vmax was
not abandoned.

Partially Connected Locally Recurrent Probabilistic Neural Networks

381

Intelligent search algorithms, such as PSO, must demonstrate an ability to combine
exploration, i.e., visiting new regions of the search space, and exploitation, i.e., performing
more refined local search, in a balanced way in order to solve problems effectively
(Parsopoulos & Vrahatis, (2002, 2004, 2007)). Since larger values of w promote exploration,
while smaller values promote exploitation, it was proposed and experimentally verified that
declining values of the inertia weight can provide better results than fixed values. Thus, an
initial value of w around 1.0 and a gradually decline towards 0.0 are considered a good
choice. On the other hand, the parameters c1 and c2 are usually set to fixed and equal values
such that the particle is equally influenced by its own best position, pi, as well as the best
position of its neighbourhood, pg, unless the problem at hand implies a different setting.
An alternative velocity update equation was proposed by Clerc & Kennedy, (2002),

 vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t))], (9)

where χ is a parameter called constriction factor. This version is algebraically equivalent with
the inertia weight version of (6). However, the parameter selection in this case is based on
the stability analysis due to Clerc and Kennedy (2002), which expresses χ as a function of c1
and c2. Different promising models were derived through the analysis of the algorithm, with
the setting χ = 0.729, c1 = c2 =2.05, providing the most promising results and robust
behaviour, rendering it the default PSO parameter setting.
Regardless of the PSO version used, it is clear that its performance is heavily dependent on
the information provided by the best positions, pi and pg, since they determine the region of
the search space that will be visited by the particle. Therefore, their selection, especially for
pg, which is related to information exchange, plays a central role in the development of
effective and efficient PSO variants. Moreover, the concept of neighbourhood mentioned
earlier in this section, raises efficiency issues. A neighbourhood has been already defined as
a subset of the swarm. The most straightforward choice would be to consider as neighbours
of the particle xi, all particles enclosed in a sphere with centre xi and a user-defined radius in
the search space. Despite its simplicity, this approach increases significantly the
computational burden of the algorithm, since it requires the computation of all distances
among particles at each iteration. This deficiency has been addressed by defining
neighbourhoods in the space of particles’ indices instead of the actual search space.
Thus, the neighbours of xi are determined based solely on the indices of the particles,
assuming different neighbourhood topologies, i.e., orderings of the particles’ indices. The most
common neighbourhood is the ring topology, depicted in Fig. 1 (left), where the particles are
arranged on a ring, with xi-1 and xi+1 being the immediate neighbours of xi, and x1 following
immediately after xN. Based on this topology, a neighbourhood of radius r of xi is defined as

 NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r}, (10)

Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO

 Recurrent Neural Networks

380

In the context of single-objective optimization, the PSO can be outlined formally as follows:
Let S be an n-dimensional search space, f : S → be the objective function, and N be the
number of particles that comprise the swarm,

 S = {x1, x2,…, xN}. (1)

Then, the ith particle is a point in the search space,

 xi = (xi1, xi2,…, xin) ∈ S, (2)

as well as its best position,

 pi = (pi1, pi2,…, pin) ∈ S, (3)

which is the best position ever visited by xi during the search. The velocity of xi is also an n-
dimensional vector,

 vi = (vi1, vi2,…, vin). (4)

In order to avoid biasing the swarm in specific parts of the search space, the particles as well
as their velocities are randomly initialized in the search space.
Let NGi ⊆ S be a set of particles that exchange information with xi. This set is called the

neighbourhood of xi and it will be discussed later. Let also, g, be the index of the best particle
in NGi, i.e.,

 f(pg) ≤ f(pl), for all l with xl ∈ NGi, (5)

and t denote the iteration counter. Then, the swarm is manipulated according to the
equations (Eberhart & Shi, 2000),

 vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t)), (6)

 xij(t+1) = xij(t) + vij(t+1), (7)

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive parameter called inertia weight; c1 and c2 are
two positive constants called cognitive and social parameter, respectively; and r1, r2, are
realizations of two independent random variables that assume the uniform distribution in
the range [0, 1]. The best position of each particle is updated at each iteration by setting

 pi(t+1) = xi(t+1), if f(xi) < f(pi), (8)

otherwise it remains unchanged. Obviously, an update of the index g is also required at each
iteration.
The inertia weight was not used in early PSO versions. However, experiments showed that
the lack of mechanism for controlling the velocities could result in swarm explosion, i.e., an
unbounded increase in the magnitude of the velocities, which resulted in swarm divergence.
For this purpose, a boundary, vmax, was imposed on the absolute value of the velocities, such
that, if vij > vmax then vij = vmax, and if vij < -vmax then vij = -vmax. In later, more sophisticated
versions, the new parameter was incorporated in the velocity update equation, in order to
control the impact of the previous velocity on the current one, although the use of vmax was
not abandoned.

Partially Connected Locally Recurrent Probabilistic Neural Networks

381

Intelligent search algorithms, such as PSO, must demonstrate an ability to combine
exploration, i.e., visiting new regions of the search space, and exploitation, i.e., performing
more refined local search, in a balanced way in order to solve problems effectively
(Parsopoulos & Vrahatis, (2002, 2004, 2007)). Since larger values of w promote exploration,
while smaller values promote exploitation, it was proposed and experimentally verified that
declining values of the inertia weight can provide better results than fixed values. Thus, an
initial value of w around 1.0 and a gradually decline towards 0.0 are considered a good
choice. On the other hand, the parameters c1 and c2 are usually set to fixed and equal values
such that the particle is equally influenced by its own best position, pi, as well as the best
position of its neighbourhood, pg, unless the problem at hand implies a different setting.
An alternative velocity update equation was proposed by Clerc & Kennedy, (2002),

 vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t))], (9)

where χ is a parameter called constriction factor. This version is algebraically equivalent with
the inertia weight version of (6). However, the parameter selection in this case is based on
the stability analysis due to Clerc and Kennedy (2002), which expresses χ as a function of c1
and c2. Different promising models were derived through the analysis of the algorithm, with
the setting χ = 0.729, c1 = c2 =2.05, providing the most promising results and robust
behaviour, rendering it the default PSO parameter setting.
Regardless of the PSO version used, it is clear that its performance is heavily dependent on
the information provided by the best positions, pi and pg, since they determine the region of
the search space that will be visited by the particle. Therefore, their selection, especially for
pg, which is related to information exchange, plays a central role in the development of
effective and efficient PSO variants. Moreover, the concept of neighbourhood mentioned
earlier in this section, raises efficiency issues. A neighbourhood has been already defined as
a subset of the swarm. The most straightforward choice would be to consider as neighbours
of the particle xi, all particles enclosed in a sphere with centre xi and a user-defined radius in
the search space. Despite its simplicity, this approach increases significantly the
computational burden of the algorithm, since it requires the computation of all distances
among particles at each iteration. This deficiency has been addressed by defining
neighbourhoods in the space of particles’ indices instead of the actual search space.
Thus, the neighbours of xi are determined based solely on the indices of the particles,
assuming different neighbourhood topologies, i.e., orderings of the particles’ indices. The most
common neighbourhood is the ring topology, depicted in Fig. 1 (left), where the particles are
arranged on a ring, with xi-1 and xi+1 being the immediate neighbours of xi, and x1 following
immediately after xN. Based on this topology, a neighbourhood of radius r of xi is defined as

 NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r}, (10)

Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO

 Recurrent Neural Networks

382

and the search is influenced by the particle’s own best position, pi, as well as the best
position of its neighbourhood. This topology promotes exploration, since the information
carried by the best positions is communicated slowly through the neighbours of each
particle. A different topology is the star topology, depicted in Fig. 1 (right) where all particles
communicate only with a single particle, which is the overall best position, pg, of the swarm,
i.e., NGi ≡ S. This topology promotes exploitation, since all particles share the same
information. This is also called the global variant of PSO, denoted as gbest in the relative
literature, while all other topologies with NGi ⊂ S, define local variants, usually denoted as
lbest. Different topologies have also been investigated with promising results (Kennedy,
1999; Janson & Middendorf, 2005).

4. The partially connected locally recurrent probabilistic neural network
The LRPNN was derived (Ganchev et al., 2003) from the original PNN (Specht, 1988) by
incorporating an additional hidden layer, referred to as recurrent layer, between the
summation layer and the output competitive layer of the PNN structure. This recurrent
layer consists of neurons possessing feedbacks with all other neurons in that layer.
Elaborating on the LRPNN, here, we introduce the Partially Connected LRPNN (PC-LRPNN)
architecture. Fig. 2 presents the simplified structure of a PC-LRPNN for classification in
K classes. In contrast to the fully connected LRPNN, where each neuron in the recurrent
layer communicates with all other neurons in that layer (i.e. global communication is enabled),
in the PC-LRPNN the recurrent layer linkage is implemented only partially, depending on
the problem at hand and the actual training data. This is illustrated in Fig. 2, where the

Fig. 2. Structure of the Partially Connected Locally Recurrent Probabilistic Neural Network

Partially Connected Locally Recurrent Probabilistic Neural Networks

383

dashed line indicates that the linkage between neurons 1y , 2y and yK might not be
implemented. In general, the concept of partially connected recurrent layer can be regarded
as defining local neighbourhoods for each of the recurrent layer neurons. This can be
viewed as establishing a swarm of neurons which cooperate (i.e. exchange information) in
order to categorize more precisely a given unknown input. However, in contrast to the
classic particle swarms that are utilized in the PSO schemes, here the local neural
neighbours are not defined by the specific values of the neurons’ indexes but the swarm
members are selected during training, on a competitive basis, and in data-dependent
manner, with respect to certain predefined criterion. In practice, the size of neighbourhood
and the recurrence depth (i.e. the depth of memory) in the recurrent layer are specified
depending on a priori knowledge about the specific problem at hand, or are identified
heuristically after some experimentation with a representative dataset.
However, before describing any specific strategy for implementing the (partial) linkage of
the recurrent layer, for comprehensiveness of exposition we briefly outline the PC-LRPNN
architecture. In brief, the first two hidden layers the PC-LRPNNs, as their predecessor —
the PNNs, implement the Parzen window estimator (Parzen, 1962) by using a mixture of
Gaussian basis functions. If a PC-LRPNN for classification in K classes is considered, the
class conditional probability density function (|)i p ip kx is defined as:

 2 2
1

1 1 1(|) f () exp () ()
2(2)

iM
T

i p i i p p ij p ijd d
ji ii

p k
M σπ σ =

⎛ ⎞
= = ⋅ − − −⎜ ⎟

⎝ ⎠
∑x x x x x x , 1,2,..., ,i K= (11)

where for simplicity of further notations (|)i p ip kx is replaced by f ()i px . Here ijx is the j th
training vector from class iκ , px belonging to the set { },p=X x with 1,2,..., ,p P= is the p th
input vector, d is the dimension of the input vectors, and iM is the number of training
patterns in class iκ . Each training vector ijx is assumed a centre of a kernel function, and
consequently the number of pattern units in the first hidden layer of the neural network is
given by the sum of the pattern units for all the classes. The standard deviation iσ acts as a
smoothing factor, which softens the surface defined by the multiple Gaussian functions.
Instead of the simple covariance matrix, { }2

i Iσ , where I represents the identity matrix, the

full covariance matrix can be computed using the Expectation Maximization algorithm, as
proposed in (Yang & Chen, 1998; Mak & Kung, 2000) and elsewhere. Since the computation
of the covariance matrix, or the optimization of the smoothing factor iσ , does not interfere
with the development of the PNN we discuss, for simplicity of exposition, we consider here
the simple case, where the value of the standard deviation is identical for all pattern units
belonging to a specific class. Moreover, iσ can be the same for all pattern units, irrespective
of their class belonging, as it was originally proposed (Specht, 1990).
Next, the class conditional probability density functions f ()i px for each class iκ , estimated
through (11), act as inputs for the recurrent layer. In general, the recurrent layer can be
considered as a form of Infinite Impulse Response (IIR) filter that smoothes the probabilities
generated for each class, by incorporating information about the probabilities computed for
all other classes, and more importantly, by exploiting one or more past values of the outputs
for all classes.

 Recurrent Neural Networks

382

and the search is influenced by the particle’s own best position, pi, as well as the best
position of its neighbourhood. This topology promotes exploration, since the information
carried by the best positions is communicated slowly through the neighbours of each
particle. A different topology is the star topology, depicted in Fig. 1 (right) where all particles
communicate only with a single particle, which is the overall best position, pg, of the swarm,
i.e., NGi ≡ S. This topology promotes exploitation, since all particles share the same
information. This is also called the global variant of PSO, denoted as gbest in the relative
literature, while all other topologies with NGi ⊂ S, define local variants, usually denoted as
lbest. Different topologies have also been investigated with promising results (Kennedy,
1999; Janson & Middendorf, 2005).

4. The partially connected locally recurrent probabilistic neural network
The LRPNN was derived (Ganchev et al., 2003) from the original PNN (Specht, 1988) by
incorporating an additional hidden layer, referred to as recurrent layer, between the
summation layer and the output competitive layer of the PNN structure. This recurrent
layer consists of neurons possessing feedbacks with all other neurons in that layer.
Elaborating on the LRPNN, here, we introduce the Partially Connected LRPNN (PC-LRPNN)
architecture. Fig. 2 presents the simplified structure of a PC-LRPNN for classification in
K classes. In contrast to the fully connected LRPNN, where each neuron in the recurrent
layer communicates with all other neurons in that layer (i.e. global communication is enabled),
in the PC-LRPNN the recurrent layer linkage is implemented only partially, depending on
the problem at hand and the actual training data. This is illustrated in Fig. 2, where the

Fig. 2. Structure of the Partially Connected Locally Recurrent Probabilistic Neural Network

Partially Connected Locally Recurrent Probabilistic Neural Networks

383

dashed line indicates that the linkage between neurons 1y , 2y and yK might not be
implemented. In general, the concept of partially connected recurrent layer can be regarded
as defining local neighbourhoods for each of the recurrent layer neurons. This can be
viewed as establishing a swarm of neurons which cooperate (i.e. exchange information) in
order to categorize more precisely a given unknown input. However, in contrast to the
classic particle swarms that are utilized in the PSO schemes, here the local neural
neighbours are not defined by the specific values of the neurons’ indexes but the swarm
members are selected during training, on a competitive basis, and in data-dependent
manner, with respect to certain predefined criterion. In practice, the size of neighbourhood
and the recurrence depth (i.e. the depth of memory) in the recurrent layer are specified
depending on a priori knowledge about the specific problem at hand, or are identified
heuristically after some experimentation with a representative dataset.
However, before describing any specific strategy for implementing the (partial) linkage of
the recurrent layer, for comprehensiveness of exposition we briefly outline the PC-LRPNN
architecture. In brief, the first two hidden layers the PC-LRPNNs, as their predecessor —
the PNNs, implement the Parzen window estimator (Parzen, 1962) by using a mixture of
Gaussian basis functions. If a PC-LRPNN for classification in K classes is considered, the
class conditional probability density function (|)i p ip kx is defined as:

 2 2
1

1 1 1(|) f () exp () ()
2(2)

iM
T

i p i i p p ij p ijd d
ji ii

p k
M σπ σ =

⎛ ⎞
= = ⋅ − − −⎜ ⎟

⎝ ⎠
∑x x x x x x , 1,2,..., ,i K= (11)

where for simplicity of further notations (|)i p ip kx is replaced by f ()i px . Here ijx is the j th
training vector from class iκ , px belonging to the set { },p=X x with 1,2,..., ,p P= is the p th
input vector, d is the dimension of the input vectors, and iM is the number of training
patterns in class iκ . Each training vector ijx is assumed a centre of a kernel function, and
consequently the number of pattern units in the first hidden layer of the neural network is
given by the sum of the pattern units for all the classes. The standard deviation iσ acts as a
smoothing factor, which softens the surface defined by the multiple Gaussian functions.
Instead of the simple covariance matrix, { }2

i Iσ , where I represents the identity matrix, the

full covariance matrix can be computed using the Expectation Maximization algorithm, as
proposed in (Yang & Chen, 1998; Mak & Kung, 2000) and elsewhere. Since the computation
of the covariance matrix, or the optimization of the smoothing factor iσ , does not interfere
with the development of the PNN we discuss, for simplicity of exposition, we consider here
the simple case, where the value of the standard deviation is identical for all pattern units
belonging to a specific class. Moreover, iσ can be the same for all pattern units, irrespective
of their class belonging, as it was originally proposed (Specht, 1990).
Next, the class conditional probability density functions f ()i px for each class iκ , estimated
through (11), act as inputs for the recurrent layer. In general, the recurrent layer can be
considered as a form of Infinite Impulse Response (IIR) filter that smoothes the probabilities
generated for each class, by incorporating information about the probabilities computed for
all other classes, and more importantly, by exploiting one or more past values of the outputs
for all classes.

 Recurrent Neural Networks

384

y()i px

1y ()i p−x

2y ()i p−x

y ()i p N−x

1f ()px f ()i px f ()K px

1y ()j i p≠ −x
y ()j i p N≠ −x

...

...
...

y ()K p N−x

y ()i px

......

1y ()i p−x

2y ()i p−x

y ()i p N−x

...

y ()j i p≠′ x

y ()i p′ x

The recurrent layer is composed of recurrent neurons, which in addition to the inputs
coming from the summation layer also possess feedbacks from their own past outputs and
from current and past outputs of the neurons of the other classes. Fig. 3 illustrates the
linkage of a single neuron belonging to the hidden recurrent layer. As shown in the figure,
beside the PDFs from all classes, f (), 1,2,..., ,i p i K=x this neuron also receives feedbacks
from its past outputs, y (), 1,2,..., ,i p t t N− =x with i denoting the current neuron number, as
well as from current y (), 1,2,...,j i p j K≠′ =x and past y (),j i p t≠ −x 1,2,..., , 1,2,..., ,j K t N= =
outputs from all other neurons belonging to that layer. Here, the subscript p stands for the
serial number of the input vector px . On its own side, the current neuron provides to the
other neurons of the recurrent layer its current y ()i px and past y (),i p t−x 1,2,...,t N=
outputs, again with p standing for the specific input vector.

Fig. 3. Linkage of a neuron that belongs to the recurrent layer
A detailed structure of the recurrent neurons is provided in Fig. 4. As the figure presents,
the inputs f (), 1,2,..., ,i p i K=x denoting the class conditional PDFs, are weighted by the
coefficients ,i jb . The two indexes of the weights of ,i jb with 1,2,...,i K= and 1,2,...,j K=
stand for the current recurrent neuron and for the class to which the corresponding input
belongs. The first two indexes of the weights , ,i j ta have the same meaning as for the
weights ,i jb , and the third index 1,2,...,t N= shows the time delay of the specific output
before it appear as an input.
All feedbacks y ()i p t−x , 1,2,...,t N= that originate from the present neuron i , and the links
y (),j i p t≠ −x 1,2,..., ,j K= 1,2,...,t N= coming from the other neurons j i≠ of the recurrent
layer are weighted by the coefficients , , , 1,2,...,i i ta t N= and , , ,i j i ta ≠ 1,2,..., ,j K=

1,2,...,t N= , respectively.

Partially Connected Locally Recurrent Probabilistic Neural Networks

385

The summation units’ output y ()i px of the locally recurrent layer is computed by:

 , , , , , ,
1 1 1

1,2,..., ,y () f () f () y () y () ,
K N K

i p i i i p i k k p i i t i p t i k t k p t
k t k
i k i k

i Kb b a a− −
= = =
≠ ≠

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑x x x x x (12)

where f ()i px is the probability density function of each class iκ , px is the p th input vector,
K is the number of classes, N is the recurrence depth, ()yi p t−x is the normalized past
output for class iκ that has been delayed on t time steps, and , ,i j ta and ,i jb are weight
coefficients. The output y ()i px of each summation unit from the recurrent layer is subject to
the regularization transformation:

()
()

1

sgm y ()
y ()

sgm y ()

i p
i p K

j p
j=

=
∑

x
x

x
, 1, 2,..., ,i K= (13)

which retains the probabilistic interpretation of the output of the recurrent layer. Here, the
designation sgm refers to the sigmoid activation function.

∑

1f ()px

...

f ()K px

y ()i p′ x

y ()i px

y ()i px

1

y ()

y ()

i p
K

j p
j=

′

′∑

x

x

0

1
y ()

1 exp i p

Q
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

x

,1ib ,i Kb

1y ()j i p≠ −x

y ()j i p N≠ −x...
...

y ()K p N−x

y ()j i p≠′ x

, ,i K Na

, ,i j i Na ≠

, ,1i j ia ≠

1y ()i p−x2y ()i p−xy ()i p N−x

, ,i i Na

, , 2i ia
, ,1i ia

...

Sigmoid
activation
function

Output
regularization

Summation
unit

Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN

 Recurrent Neural Networks

384

y()i px

1y ()i p−x

2y ()i p−x

y ()i p N−x

1f ()px f ()i px f ()K px

1y ()j i p≠ −x
y ()j i p N≠ −x

...

...
...

y ()K p N−x

y ()i px

......

1y ()i p−x

2y ()i p−x

y ()i p N−x

...

y ()j i p≠′ x

y ()i p′ x

The recurrent layer is composed of recurrent neurons, which in addition to the inputs
coming from the summation layer also possess feedbacks from their own past outputs and
from current and past outputs of the neurons of the other classes. Fig. 3 illustrates the
linkage of a single neuron belonging to the hidden recurrent layer. As shown in the figure,
beside the PDFs from all classes, f (), 1,2,..., ,i p i K=x this neuron also receives feedbacks
from its past outputs, y (), 1,2,..., ,i p t t N− =x with i denoting the current neuron number, as
well as from current y (), 1,2,...,j i p j K≠′ =x and past y (),j i p t≠ −x 1,2,..., , 1,2,..., ,j K t N= =
outputs from all other neurons belonging to that layer. Here, the subscript p stands for the
serial number of the input vector px . On its own side, the current neuron provides to the
other neurons of the recurrent layer its current y ()i px and past y (),i p t−x 1,2,...,t N=
outputs, again with p standing for the specific input vector.

Fig. 3. Linkage of a neuron that belongs to the recurrent layer
A detailed structure of the recurrent neurons is provided in Fig. 4. As the figure presents,
the inputs f (), 1,2,..., ,i p i K=x denoting the class conditional PDFs, are weighted by the
coefficients ,i jb . The two indexes of the weights of ,i jb with 1,2,...,i K= and 1,2,...,j K=
stand for the current recurrent neuron and for the class to which the corresponding input
belongs. The first two indexes of the weights , ,i j ta have the same meaning as for the
weights ,i jb , and the third index 1,2,...,t N= shows the time delay of the specific output
before it appear as an input.
All feedbacks y ()i p t−x , 1,2,...,t N= that originate from the present neuron i , and the links
y (),j i p t≠ −x 1,2,..., ,j K= 1,2,...,t N= coming from the other neurons j i≠ of the recurrent
layer are weighted by the coefficients , , , 1,2,...,i i ta t N= and , , ,i j i ta ≠ 1,2,..., ,j K=

1,2,...,t N= , respectively.

Partially Connected Locally Recurrent Probabilistic Neural Networks

385

The summation units’ output y ()i px of the locally recurrent layer is computed by:

 , , , , , ,
1 1 1

1,2,..., ,y () f () f () y () y () ,
K N K

i p i i i p i k k p i i t i p t i k t k p t
k t k
i k i k

i Kb b a a− −
= = =
≠ ≠

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑x x x x x (12)

where f ()i px is the probability density function of each class iκ , px is the p th input vector,
K is the number of classes, N is the recurrence depth, ()yi p t−x is the normalized past
output for class iκ that has been delayed on t time steps, and , ,i j ta and ,i jb are weight
coefficients. The output y ()i px of each summation unit from the recurrent layer is subject to
the regularization transformation:

()
()

1

sgm y ()
y ()

sgm y ()

i p
i p K

j p
j=

=
∑

x
x

x
, 1, 2,..., ,i K= (13)

which retains the probabilistic interpretation of the output of the recurrent layer. Here, the
designation sgm refers to the sigmoid activation function.

∑

1f ()px

...

f ()K px

y ()i p′ x

y ()i px

y ()i px

1

y ()

y ()

i p
K

j p
j=

′

′∑

x

x

0

1
y ()

1 exp i p

Q
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

x

,1ib ,i Kb

1y ()j i p≠ −x

y ()j i p N≠ −x...
...

y ()K p N−x

y ()j i p≠′ x

, ,i K Na

, ,i j i Na ≠

, ,1i j ia ≠

1y ()i p−x2y ()i p−xy ()i p N−x

, ,i i Na

, , 2i ia
, ,1i ia

...

Sigmoid
activation
function

Output
regularization

Summation
unit

Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN

 Recurrent Neural Networks

386

Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision
rule (14) is applied to distinguish class iκ , to which the input vector px is categorized:

 { }D() argmax y () , 1,2,..., ,p i i i p
i

h c i K= =x x (14)

where ih is a priori probability of occurrence of a pattern from class iκ , and ic is the cost
function associated with the misclassification of a vector belonging to class iκ .
Finally, provided that all classes are mutually exclusive and exhaustive, we can compute the
Bayesian confidence for every decision D()px by applying the Bayes’ theorem:

1

y ()
(|) , 1,2,..., .

y ()
i i p

i p K
j j pj

h
P k i K

h=

= =
∑

x
x

x
 (15)

The posterior probability (|)i pP k x for the p th input vector belonging to class iκ is

computed by relying on the a priori probabilities ih and the temporally smoothed PDFs
y ()i px .

The decision D()px , and the confidence for every decision (|)i pP k x , are computed for

every input vector. However, in many practical applications (such as speaker verification,
speaker identification, emotion detection, etc) every test trial (usually a speech utterance)
consists of multiple feature vectors. Therefore, the probability (|)iP k X all test vectors
originating from a given test trial { },p=X x 1,2,...,p P= to belong to class iκ , can be

computed by:

 1

1 1

D()
(|) , 1,2,..., ,

D()

P
p ip

i K P
p jj p

k
P k i K

k
=

= =

⎡ ⎤=⎣ ⎦= =
⎡ ⎤=⎣ ⎦

∑
∑ ∑

x
X

x
 (16)

where 1 D()P
p ip k=

⎡ ⎤=⎣ ⎦∑ x is the number of vectors px classified by the Bayesian decision rule

(14) as belonging to class iκ . In applications that assume an exhaustive taxonomy any of

the inputs px falls in one of the classes iκ , and therefore the equality:

 1 1 D() ,K P
p jj pP k= =

⎡ ⎤= =⎣ ⎦∑ ∑ x (17)

where P is the number of test vectors in the given trial X , is always preserved.
However, in many real-world applications computing the probability (|)iP k X is not
sufficient as a final outcome from the PC-LRPNN. In such cases, a final decision is made by
applying the Bayesian decision rule:

 { }() argmax (|) ,i
i

D P k=X X 1,2,..., ,i K= (18)

or alternatively, the outcome of (16) is assessed with respect to a predefined threshold θ :

Partially Connected Locally Recurrent Probabilistic Neural Networks

387

 decision #1

(|)
 decision #2iP k

θ
θ

>⎧
⎨≤⎩

X . (19)

Most often, the threshold θ is computed on a data set, referred to as development or
validation data, which is independent from the training and testing data. A necessary
requirement for obtaining a reasonable estimate of θ is the development data to be
representative, i.e., they have to bear a resemblance to the real-world data on which the PC-
LRPNN will operate within the corresponding application.

5. Training the PC-LRPNN
In general, the training of the PC-LRPNNs is similar to the three-step training procedure of
the original fully connected LRPNNs (Ganchev et al, 2004) except for one extra step that is
PC-LRPNN specific. Specifically, in the LRPNN, the first two steps implement the usual
strategy for training PNNs, while the third step adjusts the weights in the recurrent layer. In
the PC-LRPNN the third training step is preceded by procedure which selects the actual
linkage that will be implemented in the recurrent layer, i.e. the PC-LRPNN are trained in
four steps. In the following we provide a concise description of the entire training process
of the PC-LRPNN.
STEP 1: In brief, by analogy to the original PNN, the first training step creates the actual

topology of the network. In the first hidden layer, a pattern unit for each training
vector is created by setting its weight vector equal to the corresponding training vector.
In order to reduce the amount of neurons, i.e. the computational load during operation,
the training data can be compressed by performing some sort of clustering (for instance,
k-means) as pre-processing of the training dataset. An alternative approach could be to
employ pruning and discard redundant neurons, or to build the first layer in multistep
manner by adding a new neuron only when there is compelling need this to be done.
The outputs of the pattern units associated with the class iκ are then connected to one
of the second hidden layer summation units. The number of summation units is equal
to the number of target classes K . The outputs of the summation units can be fed to
some or all neurons of the recurrent layer, depending on the implemented linkage.

STEP 2: The second training step is the computation of the smoothing parameter iσ for each
class. To this end, various approaches (Meisel, 1972; Cain, 1990; Specht, 1992; Musavi et
al., 1992; Specht & Romsdahl, 1994; Masters, 1993; Georgiou et al., (2006, 2008), etc) have
been proposed. Although other methods can be employed, here we will mention only
the one (Cain, 1990) due to its simplicity. According to that approach, any iσ is
proportional to the mean value of the minimum distances among the training vectors in
class iκ :

 { }2
, , 21

1 min
iM

i i j i j i
jiM

σ λ ≠
=

= −∑ x x (20)

where ,i jx is the j th pattern unit (located in the pattern layer) for class iκ ; 2 .

corresponds to the 2-norm on dR (reminding that ,i jx are the stored training data, and

therefore, ,
d

i j ∈x R); d is the dimensionality of the input data; the expression

 Recurrent Neural Networks

386

Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision
rule (14) is applied to distinguish class iκ , to which the input vector px is categorized:

 { }D() argmax y () , 1,2,..., ,p i i i p
i

h c i K= =x x (14)

where ih is a priori probability of occurrence of a pattern from class iκ , and ic is the cost
function associated with the misclassification of a vector belonging to class iκ .
Finally, provided that all classes are mutually exclusive and exhaustive, we can compute the
Bayesian confidence for every decision D()px by applying the Bayes’ theorem:

1

y ()
(|) , 1,2,..., .

y ()
i i p

i p K
j j pj

h
P k i K

h=

= =
∑

x
x

x
 (15)

The posterior probability (|)i pP k x for the p th input vector belonging to class iκ is

computed by relying on the a priori probabilities ih and the temporally smoothed PDFs
y ()i px .

The decision D()px , and the confidence for every decision (|)i pP k x , are computed for

every input vector. However, in many practical applications (such as speaker verification,
speaker identification, emotion detection, etc) every test trial (usually a speech utterance)
consists of multiple feature vectors. Therefore, the probability (|)iP k X all test vectors
originating from a given test trial { },p=X x 1,2,...,p P= to belong to class iκ , can be

computed by:

 1

1 1

D()
(|) , 1,2,..., ,

D()

P
p ip

i K P
p jj p

k
P k i K

k
=

= =

⎡ ⎤=⎣ ⎦= =
⎡ ⎤=⎣ ⎦

∑
∑ ∑

x
X

x
 (16)

where 1 D()P
p ip k=

⎡ ⎤=⎣ ⎦∑ x is the number of vectors px classified by the Bayesian decision rule

(14) as belonging to class iκ . In applications that assume an exhaustive taxonomy any of

the inputs px falls in one of the classes iκ , and therefore the equality:

 1 1 D() ,K P
p jj pP k= =

⎡ ⎤= =⎣ ⎦∑ ∑ x (17)

where P is the number of test vectors in the given trial X , is always preserved.
However, in many real-world applications computing the probability (|)iP k X is not
sufficient as a final outcome from the PC-LRPNN. In such cases, a final decision is made by
applying the Bayesian decision rule:

 { }() argmax (|) ,i
i

D P k=X X 1,2,..., ,i K= (18)

or alternatively, the outcome of (16) is assessed with respect to a predefined threshold θ :

Partially Connected Locally Recurrent Probabilistic Neural Networks

387

 decision #1

(|)
 decision #2iP k

θ
θ

>⎧
⎨≤⎩

X . (19)

Most often, the threshold θ is computed on a data set, referred to as development or
validation data, which is independent from the training and testing data. A necessary
requirement for obtaining a reasonable estimate of θ is the development data to be
representative, i.e., they have to bear a resemblance to the real-world data on which the PC-
LRPNN will operate within the corresponding application.

5. Training the PC-LRPNN
In general, the training of the PC-LRPNNs is similar to the three-step training procedure of
the original fully connected LRPNNs (Ganchev et al, 2004) except for one extra step that is
PC-LRPNN specific. Specifically, in the LRPNN, the first two steps implement the usual
strategy for training PNNs, while the third step adjusts the weights in the recurrent layer. In
the PC-LRPNN the third training step is preceded by procedure which selects the actual
linkage that will be implemented in the recurrent layer, i.e. the PC-LRPNN are trained in
four steps. In the following we provide a concise description of the entire training process
of the PC-LRPNN.
STEP 1: In brief, by analogy to the original PNN, the first training step creates the actual

topology of the network. In the first hidden layer, a pattern unit for each training
vector is created by setting its weight vector equal to the corresponding training vector.
In order to reduce the amount of neurons, i.e. the computational load during operation,
the training data can be compressed by performing some sort of clustering (for instance,
k-means) as pre-processing of the training dataset. An alternative approach could be to
employ pruning and discard redundant neurons, or to build the first layer in multistep
manner by adding a new neuron only when there is compelling need this to be done.
The outputs of the pattern units associated with the class iκ are then connected to one
of the second hidden layer summation units. The number of summation units is equal
to the number of target classes K . The outputs of the summation units can be fed to
some or all neurons of the recurrent layer, depending on the implemented linkage.

STEP 2: The second training step is the computation of the smoothing parameter iσ for each
class. To this end, various approaches (Meisel, 1972; Cain, 1990; Specht, 1992; Musavi et
al., 1992; Specht & Romsdahl, 1994; Masters, 1993; Georgiou et al., (2006, 2008), etc) have
been proposed. Although other methods can be employed, here we will mention only
the one (Cain, 1990) due to its simplicity. According to that approach, any iσ is
proportional to the mean value of the minimum distances among the training vectors in
class iκ :

 { }2
, , 21

1 min
iM

i i j i j i
jiM

σ λ ≠
=

= −∑ x x (20)

where ,i jx is the j th pattern unit (located in the pattern layer) for class iκ ; 2 .

corresponds to the 2-norm on dR (reminding that ,i jx are the stored training data, and

therefore, ,
d

i j ∈x R); d is the dimensionality of the input data; the expression

 Recurrent Neural Networks

388

 { }2
, , 2

min i j i j i≠−x x (21)

represents the smallest Euclidean distance computed between j th pattern unit of class

iκ and all other pattern units from the same class; and iM is the number of training
patterns in class iκ . The constant λ , which controls the degree of overlapping among
the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the
smoothing parameter is common for all classes, either it is chosen empirically, or it is
computed by applying (20) on the entire training data set.

Step 3: For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be
implemented. This linkage could be static, i.e. defined once during training, or
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input
sequences. Furthermore, it could be expected that many of the recurrent layer neurons
will participate in multiple class-specific neighbourhoods, which are then combined to
assemble the recurrent layer linkage, but there could be neurons that do not participate
in any swarms and are left detached from their neighbours. Usually, the linkage
selection is performed in a data-dependent manner but it could be also based on the
indexes of the individual neurons, if there is such necessity they to be pre-specified or
bounded.

In fact, the linkage selection consists in identifying a sufficient subset of connections which
typically is much smaller than the size of the full linkage. An assortment of strategies can be
applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm,
and the neighbourhood for each target class. For instance, examples could be strategies
based on identifying the Top-C competitor classes for a given input sequence, and
implementing the linkage only for the recurrent neurons corresponding to these classes.
The linkage to the less-promising competitors, which are not members of the Top-C club, is
not implemented. An alternative strategy could be to perform pruning of the connections,
starting from the fully connected LRPNN and iteratively identifying and discarding links
which are not contributing for maximizing the overall performance. Yet, another strategy
could be to start from the simplest reasonable topology and continue adding connections
until the performance of the PC-LRPNN increases, or predefined limits are reached. Other
strategies might involve optimization of the linkage of each particular recurrent neuron or
the amount of memory it possesses, and then organize teams of super-neurons, etc.
Obviously, the most successful strategies should exploit any a priori knowledge about the
problem at hand and be able to interpret properly the information available in the training
dataset.
At this point, we need to remember that in the PC-LRPNNs we deal with classification
scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent
layer are in fact the probabilities computed by the summation units in the previous layer.
These probabilities compete for distinguishing the winning class, and in non-trivial multi-
class problems there exist more than one probability bigger than zero. For this type of
classification scheme, we can consider a straightforward but efficient and effective strategy
that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent
neuron in terms of its closest competitors for the prise. In such a strategy, we follow a two
stage procedure:

Partially Connected Locally Recurrent Probabilistic Neural Networks

389

1. Firstly, we identify the Top-C competitors for each target class, by feeding the original
non-compressed training data for that class at the input of the already trained pattern
layer. At the output of the class-specific summation units (residing in the summation
layer), the outcome will be a set of xiM K probabilities, with iM indicating the number
of feature vectors in the training dataset for class iκ and K the total number of target
classes. Having computed the matrix xiM K for a specific class iκ , we can identify the
Top-C competitors by computing the average score per class, and sorting these values.

2. Subsequently, we implement symmetric connections only among these Top-C recurrent
neurons. Here, symmetric stands for the case where each neuron that receives
information form another neuron also supplies back to this neuron the equivalent
information about its own class. Thus, the relationship between the two neurons is
symmetric in terms of linkage. However, in the general case symmetry might not be
reasonable or desirable and should not be imposed unless the properties of the
underlying training data indicate such necessity, or there exists some a priori
knowledge about the problem at hand.

Eventually, the recurrent layer linkage is formed as union of all class-specific
neighbourhoods. This can be expressed as follows: Let 0L be the xK K matrix which
represents the connections originating form the output of the summation layer to the inputs
of the recurrent layer neurons, and 0(,) 1l i j = indicates that the specific connection from the
summation unit corresponding to class iκ is connected to the recurrent neuron for class jκ .
Alternatively, the value 0(,) 0l i j = would indicate that the specific connection was not
implemented. The individual elements of the 0L matrix, i.e. 0(,)l i j , can be referred to as the
mask which determines if the specific coefficients ,i jb (refer to (12)) will be present or not.
Obviously, it is mandatory for the diagonal elements of 0L to have non-zero values, i.e.

0(,) 1l i i = , for any 1,2,..., ,i K= so a connection between the summation and recurrent layer
in class jκ is always guaranteed. As explained earlier, the rest of the linkage 0(,) i jl i j

≠
can

be identified in a data-dependent manner (for instance, by following the Top-C strategy), or
by utilizing a priori knowledge.
By analogy, let the xK K matrixes nL , with 1,2,..., ,n N= stand for the links that originate
from the past outputs of the recurrent layer neurons to the inputs of neurons in the same
layer. Here n is the index of delay, and the elements of nL serve as a mask, which
determines if the coefficients , ,i j na (refer to (12)) will exist, or not. Again, let the elements of

1 ,L 1(,) 1l i j = , indicate that there exists a connection between the past output at time 1t − of
the recurrent neuron for class iκ and the input of the recurrent neuron for class jκ , and

1(,) 0l i j = indicate for lack of connection. The same logic applies for the other matrixes nL ,
but in contrast with 0L there are no restrictions about the values of their elements, (,)nl i j ,
i.e. there could be a case where all (,) 0nl i j = . In such a case, all recurrent feedbacks from
past states as well as the connections between the recurrent neurons are dismissed, which is
equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all
coefficients , 1i ib =), the PC-LRPNN becomes functionally identical to the original PNN. On

 Recurrent Neural Networks

388

 { }2
, , 2

min i j i j i≠−x x (21)

represents the smallest Euclidean distance computed between j th pattern unit of class

iκ and all other pattern units from the same class; and iM is the number of training
patterns in class iκ . The constant λ , which controls the degree of overlapping among
the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the
smoothing parameter is common for all classes, either it is chosen empirically, or it is
computed by applying (20) on the entire training data set.

Step 3: For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be
implemented. This linkage could be static, i.e. defined once during training, or
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input
sequences. Furthermore, it could be expected that many of the recurrent layer neurons
will participate in multiple class-specific neighbourhoods, which are then combined to
assemble the recurrent layer linkage, but there could be neurons that do not participate
in any swarms and are left detached from their neighbours. Usually, the linkage
selection is performed in a data-dependent manner but it could be also based on the
indexes of the individual neurons, if there is such necessity they to be pre-specified or
bounded.

In fact, the linkage selection consists in identifying a sufficient subset of connections which
typically is much smaller than the size of the full linkage. An assortment of strategies can be
applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm,
and the neighbourhood for each target class. For instance, examples could be strategies
based on identifying the Top-C competitor classes for a given input sequence, and
implementing the linkage only for the recurrent neurons corresponding to these classes.
The linkage to the less-promising competitors, which are not members of the Top-C club, is
not implemented. An alternative strategy could be to perform pruning of the connections,
starting from the fully connected LRPNN and iteratively identifying and discarding links
which are not contributing for maximizing the overall performance. Yet, another strategy
could be to start from the simplest reasonable topology and continue adding connections
until the performance of the PC-LRPNN increases, or predefined limits are reached. Other
strategies might involve optimization of the linkage of each particular recurrent neuron or
the amount of memory it possesses, and then organize teams of super-neurons, etc.
Obviously, the most successful strategies should exploit any a priori knowledge about the
problem at hand and be able to interpret properly the information available in the training
dataset.
At this point, we need to remember that in the PC-LRPNNs we deal with classification
scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent
layer are in fact the probabilities computed by the summation units in the previous layer.
These probabilities compete for distinguishing the winning class, and in non-trivial multi-
class problems there exist more than one probability bigger than zero. For this type of
classification scheme, we can consider a straightforward but efficient and effective strategy
that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent
neuron in terms of its closest competitors for the prise. In such a strategy, we follow a two
stage procedure:

Partially Connected Locally Recurrent Probabilistic Neural Networks

389

1. Firstly, we identify the Top-C competitors for each target class, by feeding the original
non-compressed training data for that class at the input of the already trained pattern
layer. At the output of the class-specific summation units (residing in the summation
layer), the outcome will be a set of xiM K probabilities, with iM indicating the number
of feature vectors in the training dataset for class iκ and K the total number of target
classes. Having computed the matrix xiM K for a specific class iκ , we can identify the
Top-C competitors by computing the average score per class, and sorting these values.

2. Subsequently, we implement symmetric connections only among these Top-C recurrent
neurons. Here, symmetric stands for the case where each neuron that receives
information form another neuron also supplies back to this neuron the equivalent
information about its own class. Thus, the relationship between the two neurons is
symmetric in terms of linkage. However, in the general case symmetry might not be
reasonable or desirable and should not be imposed unless the properties of the
underlying training data indicate such necessity, or there exists some a priori
knowledge about the problem at hand.

Eventually, the recurrent layer linkage is formed as union of all class-specific
neighbourhoods. This can be expressed as follows: Let 0L be the xK K matrix which
represents the connections originating form the output of the summation layer to the inputs
of the recurrent layer neurons, and 0(,) 1l i j = indicates that the specific connection from the
summation unit corresponding to class iκ is connected to the recurrent neuron for class jκ .
Alternatively, the value 0(,) 0l i j = would indicate that the specific connection was not
implemented. The individual elements of the 0L matrix, i.e. 0(,)l i j , can be referred to as the
mask which determines if the specific coefficients ,i jb (refer to (12)) will be present or not.
Obviously, it is mandatory for the diagonal elements of 0L to have non-zero values, i.e.

0(,) 1l i i = , for any 1,2,..., ,i K= so a connection between the summation and recurrent layer
in class jκ is always guaranteed. As explained earlier, the rest of the linkage 0(,) i jl i j

≠
can

be identified in a data-dependent manner (for instance, by following the Top-C strategy), or
by utilizing a priori knowledge.
By analogy, let the xK K matrixes nL , with 1,2,..., ,n N= stand for the links that originate
from the past outputs of the recurrent layer neurons to the inputs of neurons in the same
layer. Here n is the index of delay, and the elements of nL serve as a mask, which
determines if the coefficients , ,i j na (refer to (12)) will exist, or not. Again, let the elements of

1 ,L 1(,) 1l i j = , indicate that there exists a connection between the past output at time 1t − of
the recurrent neuron for class iκ and the input of the recurrent neuron for class jκ , and

1(,) 0l i j = indicate for lack of connection. The same logic applies for the other matrixes nL ,
but in contrast with 0L there are no restrictions about the values of their elements, (,)nl i j ,
i.e. there could be a case where all (,) 0nl i j = . In such a case, all recurrent feedbacks from
past states as well as the connections between the recurrent neurons are dismissed, which is
equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all
coefficients , 1i ib =), the PC-LRPNN becomes functionally identical to the original PNN. On

 Recurrent Neural Networks

390

the other hand, when all (,) 1nl i j = and 0(,) 1l i j = the structure of the PC-LRPNN coincides
with the one of the fully connected LRPNN.
Eventually, the overall linkage of the recurrent layer is the composite matrix

 []0 1 n NL L L L L= , 1,2,..., ,n N= (22)

with dimensionality ()+ 1 x xN K K , where K is the total number of target classes, and N is
the recurrence depth.
In general, the linkage defined by the matrixes nL and 0L can be identified using different
strategies, or yet the same Top-C strategy. Furthermore, in the simplest scenario, the
matrixes nL could be duplicates of 0L , so L to have a repeating structure, however, this is
not a requisite by any means. Once the proper linkage L is identified the weight of each
connection needs to be estimated.
STEP 4: Finally, the forth training step consists in computation of the recurrent layer weights,

using the uncompressed training data exploited at step three. In previous work
(Ganchev et al, (2003, 2004)), we studied training strategies that aim at adjusting the
weights in the recurrent layer in a manner that maximizes the classification accuracy on
the training data set. Here we rely on another more successful strategy that was
developed recently (Ganchev, in-press-2008). In brief, this new training strategy does
not rely on a quantitative measure accounting for the classification performance on the
training dataset, but merely aims at maximizing the probability for the target class and
simultaneously minimizing the probabilities computed for the non-target classes over
the training dataset. This leads to a simplification of the error function and reduction in
the number of steps necessary for evaluating the goodness of the recurrent layer
weights at each iteration.

Specifically, the new error function that is subject to minimization here involves the
complementary to one value of the probability (|)

ik iP kX , and the compound probability for

ikX belonging to any other class:

 ()
1 1 1

1E() 1 (|) () (|) ()
1i i

K K K

i k i i j k j j
i i j

j i

m P k P k m P k P k
K= = =

≠

= − +
−∑ ∑∑w X X . (23)

Here
ikX are the training data for class iκ , and ()iP k are the a priori probability of class iκ .

Finally, the constants im and jm determine the relative importance of (or alternatively the
significance of misclassification of an input belonging to) the corresponding class iκ or

j iκ ≠ , respectively.
The first term in equation (23) estimates the distance between the probability (|)

ik iP kX and
one, i.e. the error with respect to the probability computed for a perfect match to the model.
This term causes the output for class iκ of the trained recurrent layer to strive towards
value one for input vectors that resemble the training dataset for that class. The second
term in equation (23) is the cumulative error of

ikX being acknowledged as belonging to any
of the competitive classes j iκ ≠ . This second term contributes towards restraining the output
values produced by the competitive classes for input data that belong to class iκ .

Partially Connected Locally Recurrent Probabilistic Neural Networks

391

The minimization of total error E()w is performed by employing a PSO algorithm Type 1
(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005).

6. Numerical evaluation
The experimentations reported in the present section aim at illustrating the operation of the
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.
Specifically, for the purpose of experimentations, we selected two interesting problems of
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant
attention by the speech processing community. The first one is the text-independent
speaker identification task, which is of moderate difficulty, and the second one is the
speaker-independent emotion recognition task, which is well-known as an extremely
challenging problem. In the following paragraphs we offer a brief outline of these tasks:
Task 1: Text-independent speaker identification
Speaker identification is multiple-class decision problem where the identity of a given
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models. The outcome of this process is either a decision about the identity of the
speaker or a notice that the present input cannot be categorized as any of the known
speakers. In the closed set speaker identification that we consider here, the input speech
utterances always belong to someone of the known speakers. Here, text-independence
referrers to the specific aspect that no explicit modelling of the linguistic contents of the
input utterance is performed. Thus, the outcome of the identification process is not
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity
between the input speech signal and the predefined speaker models.
Task 2: Speaker-independent emotion recognition
The emotion classification task is a multiple-class decision problem, where the emotional
state of a given speaker is judged based on comparison of an input (typically a speech
utterance) against multiple pre-defined models for the emotional states of interest. Here, the
notion for speaker-independency refers to the fact that the models for the emotional states of
interest are general for a large population of people, and were built utilizing the speech of
people who do not present in the test datasets. Emotion recognition from speech is a very
challenging task mainly due to the inherent speaker-dependency of emotion expression but
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).

6.1 Experimental protocol
Common training and testing protocols were followed in all experiments. All classifiers
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with
common task-specific train datasets, and trials were performed with common task-specific
test datasets.
For the purpose of the speaker identification task, ten female speakers, extracted from the
PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were
modelled as authorized users. The training data, comprised of ten utterances, containing

 Recurrent Neural Networks

390

the other hand, when all (,) 1nl i j = and 0(,) 1l i j = the structure of the PC-LRPNN coincides
with the one of the fully connected LRPNN.
Eventually, the overall linkage of the recurrent layer is the composite matrix

 []0 1 n NL L L L L= , 1,2,..., ,n N= (22)

with dimensionality ()+ 1 x xN K K , where K is the total number of target classes, and N is
the recurrence depth.
In general, the linkage defined by the matrixes nL and 0L can be identified using different
strategies, or yet the same Top-C strategy. Furthermore, in the simplest scenario, the
matrixes nL could be duplicates of 0L , so L to have a repeating structure, however, this is
not a requisite by any means. Once the proper linkage L is identified the weight of each
connection needs to be estimated.
STEP 4: Finally, the forth training step consists in computation of the recurrent layer weights,

using the uncompressed training data exploited at step three. In previous work
(Ganchev et al, (2003, 2004)), we studied training strategies that aim at adjusting the
weights in the recurrent layer in a manner that maximizes the classification accuracy on
the training data set. Here we rely on another more successful strategy that was
developed recently (Ganchev, in-press-2008). In brief, this new training strategy does
not rely on a quantitative measure accounting for the classification performance on the
training dataset, but merely aims at maximizing the probability for the target class and
simultaneously minimizing the probabilities computed for the non-target classes over
the training dataset. This leads to a simplification of the error function and reduction in
the number of steps necessary for evaluating the goodness of the recurrent layer
weights at each iteration.

Specifically, the new error function that is subject to minimization here involves the
complementary to one value of the probability (|)

ik iP kX , and the compound probability for

ikX belonging to any other class:

 ()
1 1 1

1E() 1 (|) () (|) ()
1i i

K K K

i k i i j k j j
i i j

j i

m P k P k m P k P k
K= = =

≠

= − +
−∑ ∑∑w X X . (23)

Here
ikX are the training data for class iκ , and ()iP k are the a priori probability of class iκ .

Finally, the constants im and jm determine the relative importance of (or alternatively the
significance of misclassification of an input belonging to) the corresponding class iκ or

j iκ ≠ , respectively.
The first term in equation (23) estimates the distance between the probability (|)

ik iP kX and
one, i.e. the error with respect to the probability computed for a perfect match to the model.
This term causes the output for class iκ of the trained recurrent layer to strive towards
value one for input vectors that resemble the training dataset for that class. The second
term in equation (23) is the cumulative error of

ikX being acknowledged as belonging to any
of the competitive classes j iκ ≠ . This second term contributes towards restraining the output
values produced by the competitive classes for input data that belong to class iκ .

Partially Connected Locally Recurrent Probabilistic Neural Networks

391

The minimization of total error E()w is performed by employing a PSO algorithm Type 1
(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005).

6. Numerical evaluation
The experimentations reported in the present section aim at illustrating the operation of the
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.
Specifically, for the purpose of experimentations, we selected two interesting problems of
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant
attention by the speech processing community. The first one is the text-independent
speaker identification task, which is of moderate difficulty, and the second one is the
speaker-independent emotion recognition task, which is well-known as an extremely
challenging problem. In the following paragraphs we offer a brief outline of these tasks:
Task 1: Text-independent speaker identification
Speaker identification is multiple-class decision problem where the identity of a given
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models. The outcome of this process is either a decision about the identity of the
speaker or a notice that the present input cannot be categorized as any of the known
speakers. In the closed set speaker identification that we consider here, the input speech
utterances always belong to someone of the known speakers. Here, text-independence
referrers to the specific aspect that no explicit modelling of the linguistic contents of the
input utterance is performed. Thus, the outcome of the identification process is not
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity
between the input speech signal and the predefined speaker models.
Task 2: Speaker-independent emotion recognition
The emotion classification task is a multiple-class decision problem, where the emotional
state of a given speaker is judged based on comparison of an input (typically a speech
utterance) against multiple pre-defined models for the emotional states of interest. Here, the
notion for speaker-independency refers to the fact that the models for the emotional states of
interest are general for a large population of people, and were built utilizing the speech of
people who do not present in the test datasets. Emotion recognition from speech is a very
challenging task mainly due to the inherent speaker-dependency of emotion expression but
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).

6.1 Experimental protocol
Common training and testing protocols were followed in all experiments. All classifiers
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with
common task-specific train datasets, and trials were performed with common task-specific
test datasets.
For the purpose of the speaker identification task, ten female speakers, extracted from the
PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were
modelled as authorized users. The training data, comprised of ten utterances, containing

 Recurrent Neural Networks

392

both numbers and sentences, obtained from the first session of each speaker. In average,
about 17 seconds of voiced speech per speaker were available for training each user model.
The test dataset consisted of 450 target trials, including 45 utterances per speaker. Each test
trial involved approximately 3 seconds of speech. All speech recordings are of telephone
bandwidth, sampled at 8 kHz, and A-law compressed.
For the purpose of the experimentations with the emotion classification task, we utilized the
recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts
database (LDC, 2002). All recordings were split in utterances, with respect to the provided
annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality
bandwidth.
In the specific experimental setup considered here, we carry out recognition of three
emotional states: neutral, anger, and panic. This combination is of particular interests for
practical applications, but also has proved as a very challenging set, since the members of
the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic
characteristics.
The training dataset consist of the available recordings for the seven speakers and the
recordings of the remaining speaker were used as the test dataset. Since one of the speakers
had only neutral recordings, the training data for the anger and panic models were built
from the recordings of six speakers. The amount of available data for training the speaker-
independent models for the three emotional categories of interest was much different:
approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic,
respectively. For the purpose of fair training of the emotion models, we performed k-means
clustering as a pre-processing of the training dataset. The resultant codebooks, one per
speaker, one per emotion category, were of size 256 feature vectors. Subsequently, these
codebooks were used to train the neural network-based classifiers.
On the other hand, the GMM-based classifier was trained directly from the uncompressed
dataset, for achieving a higher precision of the emotion models. The diagonal covariance
GMM emotion models were trained via a standard version of the Expectation Maximization
algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations. Training
termination criterion was applied, and training process was interrupted if there was no error
reduction among subsequent iterations.
The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger
and panic, respectively. Each test trial consisted of approximately 3 seconds of speech.
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency
cepstral coefficients (MFCC) with a rate of 100 feature vectors per second. We utilized the
MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8
kHz. This resulted in a filter-bank of thirty-two filters, which cover the frequency range
[133, 3954] Hz, from which we computed 29 cepstral coefficients. In all experiments, we
excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to
avoid dependence on the recording setup (distance to the microphone, communication
channel and handset mismatch, etc). Finally, in all experiments we considered a common
feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}. All parameters
of the feature vector were normalized to fit in a common dynamic range.

Partially Connected Locally Recurrent Probabilistic Neural Networks

393

6.2 Experimental results
In this section, we study the performance of the PC-LRPNN for different connectivity range
of the neighbourhood, Top-C, and different recurrence depth, ,N of the recurrent layer.
Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows:
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected
LRPNN. On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same
number of weights in the recurrent layer as the number of connections between the
summation and competitive layers in the PNN. However, there is no equivalence between
these two structures, mainly because the weights of the connections between the summation
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they
are all equal. This gives to the PC-LRPNN the capability to model better the training data.
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task,
and in Table 1, we show the number of recurrent layer weights for different values of the
recurrence depth, N , and different values of the neighbourhood, Top-C. As the figure
presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the

90

92

94

96

98

100

A
cc

ur
ac

y
[%

]

pcLRPNN(N=0) 93.1 93.6 93.6 92.2 94.0 91.6

pcLRPNN(N=1) 94.0 93.3 93.1 91.8 92.2 92.9

pcLRPNN(N=2) 94.2 93.8 93.6 93.3 93.3 93.1

PNN 91.6

TopC=1 TopC=2 TopC=3 TopC=5 TopC=7 TopC=10

Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for
different values of the recurrence depth, ,N and different size of the recurrent layer
neighbourhoods, Top-C.

Number of recurrent
layer weights N=0 N=1 N=2

Top-C=1 10 20 30
Top-C=2 30 60 90
Top-C=3 46 92 138
Top-C=5 68 136 204
Top-C=7 90 180 270

Top-C=10 100 200 300

Table 1. The number of recurrent layer weights to be trained, for different recurrence depth,
,N and different size of the recurrent layer neighbourhood, Top-C

 Recurrent Neural Networks

392

both numbers and sentences, obtained from the first session of each speaker. In average,
about 17 seconds of voiced speech per speaker were available for training each user model.
The test dataset consisted of 450 target trials, including 45 utterances per speaker. Each test
trial involved approximately 3 seconds of speech. All speech recordings are of telephone
bandwidth, sampled at 8 kHz, and A-law compressed.
For the purpose of the experimentations with the emotion classification task, we utilized the
recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts
database (LDC, 2002). All recordings were split in utterances, with respect to the provided
annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality
bandwidth.
In the specific experimental setup considered here, we carry out recognition of three
emotional states: neutral, anger, and panic. This combination is of particular interests for
practical applications, but also has proved as a very challenging set, since the members of
the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic
characteristics.
The training dataset consist of the available recordings for the seven speakers and the
recordings of the remaining speaker were used as the test dataset. Since one of the speakers
had only neutral recordings, the training data for the anger and panic models were built
from the recordings of six speakers. The amount of available data for training the speaker-
independent models for the three emotional categories of interest was much different:
approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic,
respectively. For the purpose of fair training of the emotion models, we performed k-means
clustering as a pre-processing of the training dataset. The resultant codebooks, one per
speaker, one per emotion category, were of size 256 feature vectors. Subsequently, these
codebooks were used to train the neural network-based classifiers.
On the other hand, the GMM-based classifier was trained directly from the uncompressed
dataset, for achieving a higher precision of the emotion models. The diagonal covariance
GMM emotion models were trained via a standard version of the Expectation Maximization
algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations. Training
termination criterion was applied, and training process was interrupted if there was no error
reduction among subsequent iterations.
The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger
and panic, respectively. Each test trial consisted of approximately 3 seconds of speech.
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency
cepstral coefficients (MFCC) with a rate of 100 feature vectors per second. We utilized the
MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8
kHz. This resulted in a filter-bank of thirty-two filters, which cover the frequency range
[133, 3954] Hz, from which we computed 29 cepstral coefficients. In all experiments, we
excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to
avoid dependence on the recording setup (distance to the microphone, communication
channel and handset mismatch, etc). Finally, in all experiments we considered a common
feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}. All parameters
of the feature vector were normalized to fit in a common dynamic range.

Partially Connected Locally Recurrent Probabilistic Neural Networks

393

6.2 Experimental results
In this section, we study the performance of the PC-LRPNN for different connectivity range
of the neighbourhood, Top-C, and different recurrence depth, ,N of the recurrent layer.
Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows:
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected
LRPNN. On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same
number of weights in the recurrent layer as the number of connections between the
summation and competitive layers in the PNN. However, there is no equivalence between
these two structures, mainly because the weights of the connections between the summation
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they
are all equal. This gives to the PC-LRPNN the capability to model better the training data.
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task,
and in Table 1, we show the number of recurrent layer weights for different values of the
recurrence depth, N , and different values of the neighbourhood, Top-C. As the figure
presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the

90

92

94

96

98

100

A
cc

ur
ac

y
[%

]

pcLRPNN(N=0) 93.1 93.6 93.6 92.2 94.0 91.6

pcLRPNN(N=1) 94.0 93.3 93.1 91.8 92.2 92.9

pcLRPNN(N=2) 94.2 93.8 93.6 93.3 93.3 93.1

PNN 91.6

TopC=1 TopC=2 TopC=3 TopC=5 TopC=7 TopC=10

Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for
different values of the recurrence depth, ,N and different size of the recurrent layer
neighbourhoods, Top-C.

Number of recurrent
layer weights N=0 N=1 N=2

Top-C=1 10 20 30
Top-C=2 30 60 90
Top-C=3 46 92 138
Top-C=5 68 136 204
Top-C=7 90 180 270

Top-C=10 100 200 300

Table 1. The number of recurrent layer weights to be trained, for different recurrence depth,
,N and different size of the recurrent layer neighbourhood, Top-C

 Recurrent Neural Networks

394

baseline. It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-
C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection
between the summation layer and recurrent layer neurons is implemented only for the top
scoring candidates, is higher than the baseline, PNN, although the number of weights is
equal. As explained above, this advantage of the PC-LRPNN comes from the fact that the
values of these weights are trained in a data-dependent manner, while in the original PNN,
these weight are equal. Furthermore, for recurrence depth 0N = , the PC-LRPNN with
neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully
connected LRPNN. The last can be explained with the smaller number of weights to be
adjusted for the case of Top-C=7, and the limited amount of training data.
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for
the PC-LRPNN with 2,N = and Top-C=1. The top performance here illustrates both the
importance of the recurrence depth (i.e. the memory about past states) and the capability of
the PC-LRPNN to implement partial linkage in the recurrent layer. As the figure presents,
the second best performance is shared between the PC-LRPNN with 1,N = and Top-C=1,
and the already discussed 0,N = and Top-C=7. It is interesting to note that the recurrent
PC-LRPNN (1N =) achieves this performance with only 20 weights, while the non-
recurrent PC-LRPNN (0N =) needs 90 (please refer to Table 1.)
Speaking generally, we can conclude that the presented example on the speaker
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition
accuracy than the baseline PNN. This advantage is mainly due to the exploitation of
information from the competitive classes, which the recurrent layer neurons utilize for
proper selection of the class belonging of a given input sequence. Furthermore, we
observed that the PC-LRPNNs show performance even better than the one of the fully
connected LRPNN. This superiority is due mainly to the additional degree of freedom that
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the
recurrent layer linkage to the available training data. Finally, it is worth mentioning that
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster
than the fully connected LRPNN.
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based
classifier to identify the maximum performance that can be obtained (for a context-blind
classifier) in our experimental setup. In Fig. 6, we present the identification accuracy
obtained for different number of components in a Gaussian mixture. As the figure presents,

50

52

54

56

58

60

A
cc

ur
ac

y
[%

]

Accuracy [%] 51.1 51.1 53.9 53.7 54.3 56.0 56.3 59.1 59.4 56.8 55.4 56.7 54.5 54.1 56.1 54.6

8 16 24 30 31 32 33 34 35 36 37 38 39 40 48 64

Fig. 6. Performance of the GMM classifier for different number of components on the
speaker-independent emotion recognition task

Partially Connected Locally Recurrent Probabilistic Neural Networks

395

the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with
35 components. This performance will be considered as the baseline.
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the
LRPNN for different values of the recurrence depth, ,N and different size of the recurrent
layer neighbourhoods, Top-C. Table 2 presents the number of weights in the recurrent layer
that need to be trained for the PC-LRPNN and LRPNN. Since in the present experimental
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the
fully connected LRPNN.

50

55

60

65

70

75

A
cc

ur
ac

y
[%

]

GMM 59.4

PNN 58.5

pcLRPNN(Top-1) 60.5 68.2 69.0 70.7 69.3 68.0 67.6 64.9

pcLRPNN(Top-2) 61.6 70.1 69.0 66.3 65.3 62.0 60.5 63.0

pcLRPNN(Top-3) 62.7 68.4 69.2 62.1 64.6 60.4 64.2 63.5

0 1 2 3 4 5 6 7

Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for
different values of the recurrence depth, ,N and different size of the recurrent layer
neighbourhoods, Top-C.
As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one
for the GMM classifier. The difference in performance of approximately 1% can be
explained by the fact that here we employ the original homoscedastic PNN, which utilizes
uniform smoothing factor iσ for all classes, while the diagonal GMM employed here adjusts
the variance for each class and thus is able to adapt better to the underlying distribution of
the training data.

Number of recurrent
layer weights N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7

Top-C=1 3 6 9 12 15 18 21 24
Top-C=2 7 14 21 28 35 42 49 56
Top-C=3 9 18 27 36 45 54 63 72

Table 2. The number of recurrent layer weights to be trained, for different recurrence depth,
,N and different size of the recurrent layer neighbourhood, Top-C

As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully
connected LRPNN is superior to the one observed for the GMM and the PNN. Inspecting
the recognition accuracy presented on the figure and the number of weights in the recurrent
layer, presented in Table 2, we can notice that there are some relations among the
performance results for similar number of coefficients. Furthermore, the general trend of
the plots for different neighbourhood size, Top-C, seems to agree with respect to the

 Recurrent Neural Networks

394

baseline. It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-
C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection
between the summation layer and recurrent layer neurons is implemented only for the top
scoring candidates, is higher than the baseline, PNN, although the number of weights is
equal. As explained above, this advantage of the PC-LRPNN comes from the fact that the
values of these weights are trained in a data-dependent manner, while in the original PNN,
these weight are equal. Furthermore, for recurrence depth 0N = , the PC-LRPNN with
neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully
connected LRPNN. The last can be explained with the smaller number of weights to be
adjusted for the case of Top-C=7, and the limited amount of training data.
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for
the PC-LRPNN with 2,N = and Top-C=1. The top performance here illustrates both the
importance of the recurrence depth (i.e. the memory about past states) and the capability of
the PC-LRPNN to implement partial linkage in the recurrent layer. As the figure presents,
the second best performance is shared between the PC-LRPNN with 1,N = and Top-C=1,
and the already discussed 0,N = and Top-C=7. It is interesting to note that the recurrent
PC-LRPNN (1N =) achieves this performance with only 20 weights, while the non-
recurrent PC-LRPNN (0N =) needs 90 (please refer to Table 1.)
Speaking generally, we can conclude that the presented example on the speaker
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition
accuracy than the baseline PNN. This advantage is mainly due to the exploitation of
information from the competitive classes, which the recurrent layer neurons utilize for
proper selection of the class belonging of a given input sequence. Furthermore, we
observed that the PC-LRPNNs show performance even better than the one of the fully
connected LRPNN. This superiority is due mainly to the additional degree of freedom that
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the
recurrent layer linkage to the available training data. Finally, it is worth mentioning that
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster
than the fully connected LRPNN.
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based
classifier to identify the maximum performance that can be obtained (for a context-blind
classifier) in our experimental setup. In Fig. 6, we present the identification accuracy
obtained for different number of components in a Gaussian mixture. As the figure presents,

50

52

54

56

58

60

A
cc

ur
ac

y
[%

]

Accuracy [%] 51.1 51.1 53.9 53.7 54.3 56.0 56.3 59.1 59.4 56.8 55.4 56.7 54.5 54.1 56.1 54.6

8 16 24 30 31 32 33 34 35 36 37 38 39 40 48 64

Fig. 6. Performance of the GMM classifier for different number of components on the
speaker-independent emotion recognition task

Partially Connected Locally Recurrent Probabilistic Neural Networks

395

the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with
35 components. This performance will be considered as the baseline.
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the
LRPNN for different values of the recurrence depth, ,N and different size of the recurrent
layer neighbourhoods, Top-C. Table 2 presents the number of weights in the recurrent layer
that need to be trained for the PC-LRPNN and LRPNN. Since in the present experimental
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the
fully connected LRPNN.

50

55

60

65

70

75

A
cc

ur
ac

y
[%

]

GMM 59.4

PNN 58.5

pcLRPNN(Top-1) 60.5 68.2 69.0 70.7 69.3 68.0 67.6 64.9

pcLRPNN(Top-2) 61.6 70.1 69.0 66.3 65.3 62.0 60.5 63.0

pcLRPNN(Top-3) 62.7 68.4 69.2 62.1 64.6 60.4 64.2 63.5

0 1 2 3 4 5 6 7

Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for
different values of the recurrence depth, ,N and different size of the recurrent layer
neighbourhoods, Top-C.
As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one
for the GMM classifier. The difference in performance of approximately 1% can be
explained by the fact that here we employ the original homoscedastic PNN, which utilizes
uniform smoothing factor iσ for all classes, while the diagonal GMM employed here adjusts
the variance for each class and thus is able to adapt better to the underlying distribution of
the training data.

Number of recurrent
layer weights N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7

Top-C=1 3 6 9 12 15 18 21 24
Top-C=2 7 14 21 28 35 42 49 56
Top-C=3 9 18 27 36 45 54 63 72

Table 2. The number of recurrent layer weights to be trained, for different recurrence depth,
,N and different size of the recurrent layer neighbourhood, Top-C

As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully
connected LRPNN is superior to the one observed for the GMM and the PNN. Inspecting
the recognition accuracy presented on the figure and the number of weights in the recurrent
layer, presented in Table 2, we can notice that there are some relations among the
performance results for similar number of coefficients. Furthermore, the general trend of
the plots for different neighbourhood size, Top-C, seems to agree with respect to the

 Recurrent Neural Networks

396

increase of the recurrence depth, .N On the present experimental setup, the PC-LRPNN
outperforms entirely the fully connected LRPNN, due to its better capacity to adapt to the
training data. Exception here is the case for recurrence depth 6N = , where the LRPNN
outperforms significantly the partially connected counterpart.
Finally, the significant advantage of the PC-LRPNN and LRPNN over the PNN and GMM
can be summarized as follows:
1. LRPNNs and PC-LRPNNs process the information coming from the competitive classes

(for Top-C > 1) and the target class;
2. the recurrent structures are capable to capture temporal dependences among

subsequent feature vectors, and thus, are capable to exploit the context in which a given
input appears;

3. the recurrent layer is trained in a constructive manner to maximize the probability
generated for the target class and to minimize to probabilities generated by the
competitive classes, which favours resolving ambiguous situations.

The smoothing factor iσ , the PC-LRPNN vs. the PNN
Utilizing the experimental setup of the emotion recognition task, and the best performing
locally recurrent neural network, i.e. PC-LRPNN (Top-C=1, N =3), we would like to discuss
an interesting phenomenon concerning the optimal value of the smoothing factor, iσ .
Extensive experimentations with the PNN, PC-LRPNNs and fully connected LRPNNs,
demonstrated that the estimation of the smoothing factor iσ on the training dataset does not
lead to optimal performance on the test dataset. This was especially topical in the emotion
recognition task. To illustrate this phenomenon, in Fig. 8, we plot the performance of the
PNN and the best performing PC-LRPNN for different values of the smoothing factor, iσ .
For comprehensiveness of exposition we computed the recognition accuracy obtained on the
training dataset, presented in the figure with dashed line, and on the test datasets, presented
with solid line.

Fig. 8. Performance of the PNN and PC-LRPNN (Top-C=1, N =3), for different values of
the smoothing factor iσ

As the figure presents, for both the PNN and PC-LRPNN there was a significant gap
between the recognition accuracy obtained on the training dataset and on the test data.
Looking at the plots for the PNN, we can see that the trend of this difference in performance
is a relatively smooth monotonically decreasing function. However, for the PC-LRPNN, the
initial difference, for small values of iσ , tends to decrease when iσ increases. Furthermore,

Partially Connected Locally Recurrent Probabilistic Neural Networks

397

the best performance for the PNN was obtained for iσ =0.6, and the best performance for the
various PC-LRPNN and LRPNN in the different experiment was for iσ in the range [1.2,
2.0], even though the recognition performance for the training dataset was significantly
lower, when compared to the optimal iσ computed through (Cain, 1990), or any other
method. Although the degree of learning for the training dataset varied greatly in the
experiments with different PC-LRPNNs, and mostly ranged between 75% and 100%, the
best performance on the test dataset was observed always for significantly higher values of

iσ , when compared to the best one for the training dataset. The last indicates that in
challenging problems, for which it is known that there is significant mismatch between the
training and operational conditions, the computation of the value of iσ should be
performed on another independent dataset, referred to as development or validation data.
The development data are independent from the training and test datasets and serve for
fine-tuning of the overall performance.

7. Conclusion and future research directions
Although the research on locally recurrent neural networks has a long record of history, the
potential of development has not been exhausted. Moreover, in the last few years, there is a
resumption of interest to the field, and recently some new paradigms appeared. These new
architectures are in anticipation of further in depth studies, and further improvements and
elaboration.
Speaking specifically for the family of LRPNNs, there is a compelling need for further
studies that will investigate comprehensively how the recurrent layer linkage can be
optimized for specific problem on specific dataset. Perhaps, new strategies for automatic
selection of neighbourhood size and the specific neighbours of each recurrent neuron that
arise directly from the training data will appear. It will be particularly interesting to study
new algorithms for developing dynamically varying neighbourhoods, which depend on the
input during operation of the neural network, and which go beyond the predefined during
training look-up tables.
Finally, despite the progress made during the past decades, we deem that the locally
recurrent neural networks still await for their golden time, when they will have significantly
better biological plausibility. The human brain is still a source of inspiration, and we are
looking forward to see how the development of the neuroscience will contribute further for
the progress in the field of recurrent neural networks.

8. References
Aussem, A.; Murtagh, F. & Sarazin, M. (1995). Dynamical recurrent neural networks —

towards environmental time series prediction, International Journal of Neural
Systems, No.6, June 1995, pp.145–170.

Back, A.D. & Tsoi, A.C. (1991). FIR and IIR Synapses, a new neural network architecture for
time series modelling, Neural Computation, Vol.3, 1991, pp.375–385.

Back, A.D. & Tsoi, A.C. (1992). Nonlinear system identification using multilayer perceptrons
with locally recurrent synaptic structure, Proceedings of 1992 IEEE-SP Workshop on
Neural Networks for Signal Processing II, 1992, pp.444–453.

 Recurrent Neural Networks

396

increase of the recurrence depth, .N On the present experimental setup, the PC-LRPNN
outperforms entirely the fully connected LRPNN, due to its better capacity to adapt to the
training data. Exception here is the case for recurrence depth 6N = , where the LRPNN
outperforms significantly the partially connected counterpart.
Finally, the significant advantage of the PC-LRPNN and LRPNN over the PNN and GMM
can be summarized as follows:
1. LRPNNs and PC-LRPNNs process the information coming from the competitive classes

(for Top-C > 1) and the target class;
2. the recurrent structures are capable to capture temporal dependences among

subsequent feature vectors, and thus, are capable to exploit the context in which a given
input appears;

3. the recurrent layer is trained in a constructive manner to maximize the probability
generated for the target class and to minimize to probabilities generated by the
competitive classes, which favours resolving ambiguous situations.

The smoothing factor iσ , the PC-LRPNN vs. the PNN
Utilizing the experimental setup of the emotion recognition task, and the best performing
locally recurrent neural network, i.e. PC-LRPNN (Top-C=1, N =3), we would like to discuss
an interesting phenomenon concerning the optimal value of the smoothing factor, iσ .
Extensive experimentations with the PNN, PC-LRPNNs and fully connected LRPNNs,
demonstrated that the estimation of the smoothing factor iσ on the training dataset does not
lead to optimal performance on the test dataset. This was especially topical in the emotion
recognition task. To illustrate this phenomenon, in Fig. 8, we plot the performance of the
PNN and the best performing PC-LRPNN for different values of the smoothing factor, iσ .
For comprehensiveness of exposition we computed the recognition accuracy obtained on the
training dataset, presented in the figure with dashed line, and on the test datasets, presented
with solid line.

Fig. 8. Performance of the PNN and PC-LRPNN (Top-C=1, N =3), for different values of
the smoothing factor iσ

As the figure presents, for both the PNN and PC-LRPNN there was a significant gap
between the recognition accuracy obtained on the training dataset and on the test data.
Looking at the plots for the PNN, we can see that the trend of this difference in performance
is a relatively smooth monotonically decreasing function. However, for the PC-LRPNN, the
initial difference, for small values of iσ , tends to decrease when iσ increases. Furthermore,

Partially Connected Locally Recurrent Probabilistic Neural Networks

397

the best performance for the PNN was obtained for iσ =0.6, and the best performance for the
various PC-LRPNN and LRPNN in the different experiment was for iσ in the range [1.2,
2.0], even though the recognition performance for the training dataset was significantly
lower, when compared to the optimal iσ computed through (Cain, 1990), or any other
method. Although the degree of learning for the training dataset varied greatly in the
experiments with different PC-LRPNNs, and mostly ranged between 75% and 100%, the
best performance on the test dataset was observed always for significantly higher values of

iσ , when compared to the best one for the training dataset. The last indicates that in
challenging problems, for which it is known that there is significant mismatch between the
training and operational conditions, the computation of the value of iσ should be
performed on another independent dataset, referred to as development or validation data.
The development data are independent from the training and test datasets and serve for
fine-tuning of the overall performance.

7. Conclusion and future research directions
Although the research on locally recurrent neural networks has a long record of history, the
potential of development has not been exhausted. Moreover, in the last few years, there is a
resumption of interest to the field, and recently some new paradigms appeared. These new
architectures are in anticipation of further in depth studies, and further improvements and
elaboration.
Speaking specifically for the family of LRPNNs, there is a compelling need for further
studies that will investigate comprehensively how the recurrent layer linkage can be
optimized for specific problem on specific dataset. Perhaps, new strategies for automatic
selection of neighbourhood size and the specific neighbours of each recurrent neuron that
arise directly from the training data will appear. It will be particularly interesting to study
new algorithms for developing dynamically varying neighbourhoods, which depend on the
input during operation of the neural network, and which go beyond the predefined during
training look-up tables.
Finally, despite the progress made during the past decades, we deem that the locally
recurrent neural networks still await for their golden time, when they will have significantly
better biological plausibility. The human brain is still a source of inspiration, and we are
looking forward to see how the development of the neuroscience will contribute further for
the progress in the field of recurrent neural networks.

8. References
Aussem, A.; Murtagh, F. & Sarazin, M. (1995). Dynamical recurrent neural networks —

towards environmental time series prediction, International Journal of Neural
Systems, No.6, June 1995, pp.145–170.

Back, A.D. & Tsoi, A.C. (1991). FIR and IIR Synapses, a new neural network architecture for
time series modelling, Neural Computation, Vol.3, 1991, pp.375–385.

Back, A.D. & Tsoi, A.C. (1992). Nonlinear system identification using multilayer perceptrons
with locally recurrent synaptic structure, Proceedings of 1992 IEEE-SP Workshop on
Neural Networks for Signal Processing II, 1992, pp.444–453.

 Recurrent Neural Networks

398

Barbounis, T.G. & Theocharis, J.B. (2007a). A locally recurrent fuzzy neural network with
application to the wind speed prediction using spatial correlation, Neurocomputing,
Vol.70, No. 7–9, 2007, pp.1525–1542.

Barbounis, T.G. & Theocharis, J.B. (2007b). Locally recurrent neural networks for wind speed
prediction using spatial correlation, Information Sciences, Vol. 177, No. 24, December
2007, pp.5775–5797.

Batliner, A. & Huber, R. (2007). Speaker characteristics and emotion classification, In: Speaker
Classification I, LNAI 4343, C. Műller (Ed.), Springer, 2007, pp.138–151.

Cain, B.J. (1990). Improved probabilistic neural network and its performance relative to the
other models, Proceedings of the SPIE, Applications of Artificial Neural Networks,
Vol.1294, 1990, pp.354–365.

Cannas, B.; Celli, G.; Marchesi, M. & Pilo F. (1998). Neural networks for power system
condition monitoring and protection, Neurocomputing, Vol.23, 1998, pp.111–123.

Clerc, M. & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in
a multidimensional complex space, IEEE Transactions on Evolutionary Computation,
2002, Vol.6, pp.58–73.

Eberhart, R.C. & Shi, Y. (2000). Comparing inertia weights and constriction factors in
particle swarm optimization, Proceedings of the Congress on Evolutionary Computing,
2000, pp.84–88.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2003). Locally recurrent
probabilistic neural network for text-independent speaker verification, Proceedings
of 8th European Conference on Speech Communication and Technology, EUROSPEECH
2003, September 1-4, 2003, Vol. 3, pp.1673–1676.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2004). Locally recurrent
probabilistic neural networks with application to speaker verification, GESTS
International Transaction on Speech Science and Engineering, December 2004, Vol.1,
No.2, pp.1–13.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2007). Generalized locally
recurrent probabilistic neural networks with application to text-independent
speaker verification, Neurocomputing, Vol.70, No.7–9, 2007, pp. 1424–1438.

Ganchev, T. (in-press-2008). Enhanced training for the locally recurrent probabilistic neural
networks, to apear in International Journal on Artificial Intelligence Tools, 2008.

Georgiou, V.L.; Pavlidis, N.G.; Parsopoulos, K.E.; Alevizos, Ph.D. & Vrahatis, M.N. (2006).
New self-adaptive probabilistic neural networks in bioinformatic and medical
tasks, International Journal of Artificial Intelligence Tools, 2006, Vol. 15, No. 3, pp. 371–
396.

Georgiou, V.L.; Alevizos, Ph.D. & Vrahatis, M.N. (2008). Novel approaches to probabilistic
neural networks through bagging and evolutionary estimating of prior
probabilities, Neural Processing Letters, Vol. 27, No. 2, pp. 153–162.

Janson, S. & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its
adaptive variant, IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics, Vol.35, No.6, December 2005, pp.1272–1282.

Hennebert, J.; Melin, H.; Petrovska, D. & Genoud, D. (2000). POLYCOST: A telephone-
speech database for speaker recognition, Speech Communication, Vol.31, No.2-3, pp.
265–270.

Partially Connected Locally Recurrent Probabilistic Neural Networks

399

Kasper, K.; Reininger, H.; Wolf, D. & Wust, H. (1995). A speech recognizer based on locally
recurrent neural networks, Proceedings of the International Conference on Artificial
Neural Networks, 1995, Vol. 2, pp.15–20.

Kasper, K.; Reininger, H. & Wust, H. (1996). Strategies for reducing the complexity of a
RNN-based speech recognizer, Proceedings of the IEEE Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1996, Vol.6, pp.3354–3357.

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, Proceedings of the 1999 Congress on Evolutionary
Computation, CEC’99, Vol.3, pp.1931–1938.

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, ICNN 1995, Vol.4, pp.1942–1948.

LDC (2002). University of Pennsylvania, Linguistic Data Consortium, Emotional prosody
speech and transcripts (LDC2002S28), Available at: www.ldc.uppen.edu/Catalog/
CatalogEntry.jsp?cataloId=LDC2002S28

Liang, J.J.; Qin, A.K.; Suganthan, P.N. & Baskir, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation, 2006, Vol.10, No.3, pp.281–295.

Lin, T.; Horne, B.G. & Giles, C.L. (1998). How embedded memory in recurrent neural
network architectures helps learning long-term temporal dependencies, Neural
Networks, 1998, Vol.11, pp.861–868.

Mak, M.W. & Kung, S.Y. (2000). Estimation of elliptical basis function parameters by the EM
algorithm with application to speaker verification, IEEE Transactions on Neural
Networks, Vol.11, No.4, 2000, pp. 961–969.

McLachlan, G.J. & Krishnan, T. (1997). The EM algorithm and extensions. Wiley Series in
Probability and Statistics. New York: Wiley, 1997.

Meisel, W. (1972). Computer-oriented approaches to pattern recognition. Academic Press, New
York, 1972.

Parsopoulos, K.E. & Vrahatis, M.N. (2002). Recent approaches to global optimization
problems through particle swarm optimization, Natural Computing, Vol.1, No.2-3,
pp.235-306.

Parsopoulos, K.E. & Vrahatis, M.N. (2004). On the computation of all global minimizers
through particle swarm optimization, IEEE Transactions on Evolutionary
Computation, Vol.8, No. 3, pp.211–224.

Parsopoulos, K.E. & Vrahatis, M.N. (2005). Unified particle swarm optimization for tackling
operations research problems, Proceedings of the IEEE Swarm Intelligence Symposium,
SIS 2005, June 2005, pp.53–59.

Parsopoulos, K.E. & Vrahatis, M.N. (2007). Parameter selection and adaptation in unified
particle swarm optimization, Mathematical and Computer Modelling, Vol.46, No.1-2,
pp.198–213.

Slaney, M. (1998). Auditory toolbox. Version 2. Technical Report #1998-010, Interval
Research Corporation.

Specht, D.F. (1988). Probabilistic neural networks for classification, mapping, or associative
memory, Proceedings of the IEEE Conference on Neural Networks, 1988, Vol.1, pp.525–
532.

Specht, D.F. (1990). Probabilistic neural networks, Neural Networks, 1990, Vol.3, No.1,
pp.109–118.

 Recurrent Neural Networks

398

Barbounis, T.G. & Theocharis, J.B. (2007a). A locally recurrent fuzzy neural network with
application to the wind speed prediction using spatial correlation, Neurocomputing,
Vol.70, No. 7–9, 2007, pp.1525–1542.

Barbounis, T.G. & Theocharis, J.B. (2007b). Locally recurrent neural networks for wind speed
prediction using spatial correlation, Information Sciences, Vol. 177, No. 24, December
2007, pp.5775–5797.

Batliner, A. & Huber, R. (2007). Speaker characteristics and emotion classification, In: Speaker
Classification I, LNAI 4343, C. Műller (Ed.), Springer, 2007, pp.138–151.

Cain, B.J. (1990). Improved probabilistic neural network and its performance relative to the
other models, Proceedings of the SPIE, Applications of Artificial Neural Networks,
Vol.1294, 1990, pp.354–365.

Cannas, B.; Celli, G.; Marchesi, M. & Pilo F. (1998). Neural networks for power system
condition monitoring and protection, Neurocomputing, Vol.23, 1998, pp.111–123.

Clerc, M. & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in
a multidimensional complex space, IEEE Transactions on Evolutionary Computation,
2002, Vol.6, pp.58–73.

Eberhart, R.C. & Shi, Y. (2000). Comparing inertia weights and constriction factors in
particle swarm optimization, Proceedings of the Congress on Evolutionary Computing,
2000, pp.84–88.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2003). Locally recurrent
probabilistic neural network for text-independent speaker verification, Proceedings
of 8th European Conference on Speech Communication and Technology, EUROSPEECH
2003, September 1-4, 2003, Vol. 3, pp.1673–1676.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2004). Locally recurrent
probabilistic neural networks with application to speaker verification, GESTS
International Transaction on Speech Science and Engineering, December 2004, Vol.1,
No.2, pp.1–13.

Ganchev, T.; Tasoulis, D.K.; Vrahatis, M.N. & Fakotakis, N. (2007). Generalized locally
recurrent probabilistic neural networks with application to text-independent
speaker verification, Neurocomputing, Vol.70, No.7–9, 2007, pp. 1424–1438.

Ganchev, T. (in-press-2008). Enhanced training for the locally recurrent probabilistic neural
networks, to apear in International Journal on Artificial Intelligence Tools, 2008.

Georgiou, V.L.; Pavlidis, N.G.; Parsopoulos, K.E.; Alevizos, Ph.D. & Vrahatis, M.N. (2006).
New self-adaptive probabilistic neural networks in bioinformatic and medical
tasks, International Journal of Artificial Intelligence Tools, 2006, Vol. 15, No. 3, pp. 371–
396.

Georgiou, V.L.; Alevizos, Ph.D. & Vrahatis, M.N. (2008). Novel approaches to probabilistic
neural networks through bagging and evolutionary estimating of prior
probabilities, Neural Processing Letters, Vol. 27, No. 2, pp. 153–162.

Janson, S. & Middendorf, M. (2005). A hierarchical particle swarm optimizer and its
adaptive variant, IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics, Vol.35, No.6, December 2005, pp.1272–1282.

Hennebert, J.; Melin, H.; Petrovska, D. & Genoud, D. (2000). POLYCOST: A telephone-
speech database for speaker recognition, Speech Communication, Vol.31, No.2-3, pp.
265–270.

Partially Connected Locally Recurrent Probabilistic Neural Networks

399

Kasper, K.; Reininger, H.; Wolf, D. & Wust, H. (1995). A speech recognizer based on locally
recurrent neural networks, Proceedings of the International Conference on Artificial
Neural Networks, 1995, Vol. 2, pp.15–20.

Kasper, K.; Reininger, H. & Wust, H. (1996). Strategies for reducing the complexity of a
RNN-based speech recognizer, Proceedings of the IEEE Conference on Acoustics,
Speech, and Signal Processing, ICASSP 1996, Vol.6, pp.3354–3357.

Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on
particle swarm performance, Proceedings of the 1999 Congress on Evolutionary
Computation, CEC’99, Vol.3, pp.1931–1938.

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, ICNN 1995, Vol.4, pp.1942–1948.

LDC (2002). University of Pennsylvania, Linguistic Data Consortium, Emotional prosody
speech and transcripts (LDC2002S28), Available at: www.ldc.uppen.edu/Catalog/
CatalogEntry.jsp?cataloId=LDC2002S28

Liang, J.J.; Qin, A.K.; Suganthan, P.N. & Baskir, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE
Transactions on Evolutionary Computation, 2006, Vol.10, No.3, pp.281–295.

Lin, T.; Horne, B.G. & Giles, C.L. (1998). How embedded memory in recurrent neural
network architectures helps learning long-term temporal dependencies, Neural
Networks, 1998, Vol.11, pp.861–868.

Mak, M.W. & Kung, S.Y. (2000). Estimation of elliptical basis function parameters by the EM
algorithm with application to speaker verification, IEEE Transactions on Neural
Networks, Vol.11, No.4, 2000, pp. 961–969.

McLachlan, G.J. & Krishnan, T. (1997). The EM algorithm and extensions. Wiley Series in
Probability and Statistics. New York: Wiley, 1997.

Meisel, W. (1972). Computer-oriented approaches to pattern recognition. Academic Press, New
York, 1972.

Parsopoulos, K.E. & Vrahatis, M.N. (2002). Recent approaches to global optimization
problems through particle swarm optimization, Natural Computing, Vol.1, No.2-3,
pp.235-306.

Parsopoulos, K.E. & Vrahatis, M.N. (2004). On the computation of all global minimizers
through particle swarm optimization, IEEE Transactions on Evolutionary
Computation, Vol.8, No. 3, pp.211–224.

Parsopoulos, K.E. & Vrahatis, M.N. (2005). Unified particle swarm optimization for tackling
operations research problems, Proceedings of the IEEE Swarm Intelligence Symposium,
SIS 2005, June 2005, pp.53–59.

Parsopoulos, K.E. & Vrahatis, M.N. (2007). Parameter selection and adaptation in unified
particle swarm optimization, Mathematical and Computer Modelling, Vol.46, No.1-2,
pp.198–213.

Slaney, M. (1998). Auditory toolbox. Version 2. Technical Report #1998-010, Interval
Research Corporation.

Specht, D.F. (1988). Probabilistic neural networks for classification, mapping, or associative
memory, Proceedings of the IEEE Conference on Neural Networks, 1988, Vol.1, pp.525–
532.

Specht, D.F. (1990). Probabilistic neural networks, Neural Networks, 1990, Vol.3, No.1,
pp.109–118.

 Recurrent Neural Networks

400

Specht, D.F. (1992). Enhancements to probabilistic neural networks, Proceedings of the IEEE
International Joint Conference on Neural Networks, IJCNN 1992, Vol.1, pp. 761–768.

Specht, D.F. & Romsdahl, H. (1994). Experience with adaptive PNN and adaptive GRNN,
Proceedings of the IEEE International Conference on Neural Networks, ICNN 1994, Vol.2,
pp.1203–1208.

Yang, Z.R. & Chen, S. (1998). Robust maximum likelihood training of heteroscedastic
probabilistic neural networks, Neural Networks, 1998, Vol.11, No.4, pp.739–748.

 Recurrent Neural Networks

400

Specht, D.F. (1992). Enhancements to probabilistic neural networks, Proceedings of the IEEE
International Joint Conference on Neural Networks, IJCNN 1992, Vol.1, pp. 761–768.

Specht, D.F. & Romsdahl, H. (1994). Experience with adaptive PNN and adaptive GRNN,
Proceedings of the IEEE International Conference on Neural Networks, ICNN 1994, Vol.2,
pp.1203–1208.

Yang, Z.R. & Chen, S. (1998). Robust maximum likelihood training of heteroscedastic
probabilistic neural networks, Neural Networks, 1998, Vol.11, No.4, pp.739–748.

Recurrent Neural Networks
Edited by Xiaolin Hu and P. Balasubramaniam

Edited by Xiaolin Hu and P. Balasubramaniam

The concept of neural network originated from neuroscience, and one of its primitive
aims is to help us understand the principle of the central nerve system and related

behaviors through mathematical modeling. The first part of the book is a collection of
three contributions dedicated to this aim. The second part of the book consists of seven

chapters, all of which are about system identification and control. The third part of
the book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are
discussed, respectively.The fourth part of the book comprises four chapters focusing

on optimization problems. Doing optimization in a way like the central nerve systems
of advanced animals including humans is promising from some viewpoints.

Photo by Rost-9D / iStock

ISBN 978-953-7619-08-4

Recurrent N
eural N

etw
orks

ISBN 978-953-51-5795-3

	Recurrent Neural Networks
	Contents
	 Preface
	1. Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty: Theory and Applications
	2. Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural Integrator to Complex Human Movements and Locomotion
	3. Linguistic Productivity and Recurrent Neural Networks
	4. Recurrent Neural Network Identification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes
	5. Design of Self-Constructing Recurrent-Neural-Network-Based Adaptive Control
	6. Recurrent Fuzzy Neural Networks and Their Performance Analysis
	7. Recurrent Interval Type-2 Fuzzy Neural Network Using Asymmetric Membership Functions
	8. Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks
	9. A New Supervised Learning Algorithm of Recurrent Neural Networks and Stability Analysis in Discrete-Time Domain
	10. Application of Recurrent Neural Networks to Rainfall-runoff Processes
	11. Recurrent Neural Approach for Solving Several Types of Optimization Problems
	12. Applications of Recurrent Neural Networks to Optimization Problems
	13. Neurodynamic Optimization: Towards Nonconvexity
	14. An Improved Extremum Seeking Algorithm Based on the Chaotic Annealing Recurrent Neural Network and Its Application
	15. Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks with Time Varying Delays
	16. Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks
	17. Case Studies for Applications of Elman Recurrent Neural Networks
	18. Partially Connected Locally Recurrent Probabilistic Neural Networks

