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The concept of neural network originated from neuroscience, and one of its primitive 
aims is to help us understand the principle of the central nerve system and related 

behaviors through mathematical modeling. The first part of the book is a collection of 
three contributions dedicated to this aim. The second part of the book consists of seven 

chapters, all of which are about system identification and control. The third part of 
the book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are 
discussed, respectively.The fourth part of the book comprises four chapters focusing 

on optimization problems. Doing optimization in a way like the central nerve systems 
of advanced animals including humans is promising from some viewpoints.
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Preface 
 

The research of neural networks has experienced several ups and downs in the 20th 
century. The last resurgence is believed to be initiated by several seminal works of Hopfield 
and Tank in the 1980s, and this upsurge has persisted for three decades. The Hopfield 
neural networks, either discrete type or continuous type, are actually recurrent neural 
networks (RNNs). The hallmark of an RNN, in contrast to feedforward neural networks, is 
the existence of connections from posterior layer(s) to anterior layer(s) or connections 
among neurons in the same layer. Because of these connections, the networks become 
dynamic systems, which bring many promising capabilities that the feedforward 
counterparts do not possess. One of the obvious capabilities of RNNs is that they can handle 
temporal information directly and naturally, whereas feedforward networks have to convert 
the patterns from temporal domain into spatial domain first for further processing. Other 
two distinguished capabilities possessed by RNNs refer to associative memory and 
optimization, which were initially revealed by Hopfield and Tank.  

The field of RNNs has evolved rapidly in recent years. It has become a fusion of a 
number of research areas in engineering, computer science, mathematics, artificial 
intelligence, operations research, systems theory, biology, and neuroscience. RNNs have 
been widely applied for control, optimization, pattern recognition, image processing, signal 
processing, etc. The aim of the book is to bring together reputable researchers from different 
countries in order to provide a comprehensive coverage of advanced and modern topics in 
RNNs not yet reflected by other books. This collective product comprises 18 contributions 
submitted by 51 authors from 16 different countries and areas. It covers most of the current 
main streams of RNN researches, ranging from human cognitive behavior modeling, 
dynamic system identification and control, temporal pattern recognition and classification, 
optimization, and stability analysis. According to these themes, the 18 contributions are 
grouped into five categories, corresponding to five parts of the book.    

The concept of neural network originated from neuroscience, and one of its primitive 
aims is to help us understand the principle of the central nerve system and related behaviors 
through mathematical modeling. The first part of the book is a collection of three 
contributions dedicated to this aim. Both Chapter 1 and Chapter 2 address neurodynamics 
in RNNs that are used to model cognitive processes. It is well-known that nonlinear 
dynamic systems may possess a variety of properties such as attractors, bifurcations, chaos, 
etc., which are useful in different circumstances. For modeling continuous thread of natural 
behaviors of humans, a neural system converging to a small region of the state space such as 
equilibria or limit circles appears not to be competent, though such a property is desirable in 
other situations (e.g., see Chapters 13-16). In Chapter 1, adaptive thresholds are proposed to 
model neural homeostasis into the basic formulation of RNN to produce chaotic behavior, 
which can be used as a source of behavioral exploration and novelty in embodied neural 
agents. To understand how the brain controls the human movements, Chapter 2 presents a 
dynamic recurrent neural network modeling approach. In contrast to Chapter 1, this chapter 
deals with more practical and concrete problems: oculomotor and arm movements. Chapter 
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3 attempts to construct RNNs to learn languages. It might be thought that RNNs are suitable 
for such a task considering that a sentence is a sequence of words and RNNs are good at 
learning sequences. However, things are often not as easy as they look to be. For instance, 
the linguistic productivity, a key property of any natural language, is notoriously hard to 
tackle. In the chapter, the authors discuss the modeling of two features of languages that 
support linguistic productivity, recursiveness and systamaticity, by means of RNNs. 
Though building an intelligent agent capable of learning natural languages still seems to be 
a far away goal, we have at least opened a door with the RNN key allowing further 
exploration.  

The second part of the book consists of seven chapters, all of which are about system 
identification and control. The success of these approaches largely relies on the RNN’s 
ability of recalling history and predicting future. Chapter 4 proposes a new Kalman filter 
closed loop topology of RNN for identification and modeling of an unknown hydrocarbon 
degradation process carried out in a biopile system and a rotating drum. Then, an indirect 
sliding mode controller and a direct recurrent feedback-feedforward neural controller are 
designed. In Chapter 5, a neural controller is proposed to approximate an ideal tracking 
controller, which is capable of both structure learning and parameter learning. Based on 
that, a robust controller is designed to attenuate the effects of the approximation error on the 
tracking performance. Fuzzy logic is an efficient method to process imprecise, uncertain and 
noisy information, which is often encountered in the real world. Integrating fuzzy logic and 
neural networks may foster powerful schemes that combine their respective advantages. 
Chapter 6 and Chapter 7 provide two examples. The major difference between them is that 
the former adopts the conventional fuzzy logic system while the latter adopts an extended 
version, so-called type-2 fuzzy logic system. Chapter 8 presents an adaptive recurrent neural 
network controller to prevent rollover in heavy vehicles. The control scheme is composed of 
a recurrent neural identifier and a controller, where the former is used to build an on-line 
model for the unknown plant, and the latter to force the unknown plant to track the 
reference trajectory. For a training algorithm, the stability and convergence speed are two 
major indicators of performance evaluation, but they are often like two sides of a coin and 
can not be reconciled. Chapter 9 attempts to seek a tradeoff between them by introducing a 
robust adaptive gradient descent training algorithm. The proposed algorithm is applied to 
three quite practical problems including time series prediction, system identification, and 
attractor learning for pattern association. Good results have been obtained. Chapter 10 
introduces a deterministic linearized RNN and its application to rainfall-runoff processes. 
One of the remarkable merits of the proposed RNN is that, its special structure allows a 
direct interpretation of the network weights in the language of hydrology, considering that 
most other neural networks are black-box models that lack physical meaning of weights.  

The third part of the book is composed of Chapter 11 and Chapter 12, where two 
interesting RNNs are discussed, respectively. One is called Elman RNN, which is in 
principle a regular feedforward network but with a hidden layer holding the output of 
another hidden layer. The other is called locally recurrent probabilistic neural network 
(LRPNN) coupling with swarm intelligence algorithms and concepts. The two networks also 
take advantage of RNN’s ability of processing temporal information, similar as the networks 
presented in the previous parts of the book. However, here the networks are used for 
(temporal) pattern classification and recognition instead of system parameter identification 
or system behavior prediction. Specifically, Chapter 11 presents applications of the Elman 
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RNN in biomedical engineering and nuclear engineering, and Chapter 12 presents 
applications of the LRPNN in speech recognition and classification.  

The fourth part of the book comprises four chapters focusing on optimization problems. 
Doing optimization in a way like the central nerve systems of advanced animals including 
humans is promising from some viewpoints. On one hand, it may help us understand more 
about the working principle of nerve systems, and on the other hand, the inherent dynamics 
of resulting RNNs makes it possible for analog circuit implementation, which would
tremendously accelerate the computing tasks, which is favored in many engineering 
applications. Chapter 13 proposes a general framework for solving various optimization
problems including combinatorial optimization problems, linear programming problems
and nonlinear programming problems, by using RNNs. For every problem, two energy
functions associated with the objective function and constraints are separately defined and
minimized by modified Hopfield-type neural networks. The simulation results are given to
demonstrate the effectiveness of the proposed method among the specialized methods. The 
latter two chapters achieve this desirable feature by making use of optimality conditions
such as primal-dual conditions or Karush-Kuhn-Tucker conditions. In particular, Chapter 14 
describes several RNN models for linear programming problems, quadratic programming 
problems, nonlinear programming problems, and variational inequalities. As all of the
optimization problems considered in the chapter are convex, and variational inequalities are
monotone, it is possible to devise globally convergent RNNs for solving them, which is
actually the case for the models presented in this chapter. However, the situation gets
complicated when the problems become nonconvex or nonmonotone. In this aspect, 
progresses made in recent years have been reviewed in Chapter 15. It is found that based on 
similar ideas one could at best devise locally stable and convergent RNNs for most of such 
problems, though in some particular cases globally convergent models can be needed. The
results are obtained without using the penalty parameters. Chapter 16 presents an 
interesting application of an RNN for optimization. It is found that under certain conditions,
the optimal control of a dynamic system can be transformed into a linear programming
problem. An annealing RNN is then applied to solve the problem. As this problem is not 
specific for the proposed network; it can also be tested to other RNNs in the literature. 

The last part of the book consists of two chapters, and each presents stability analysis of 
a variant of the original Hopfield continuous-time neural network. Chapter 17 considers a
class of uncertain stochastic high-order neural networks with time varying delays. Based on
the Lyapunov stability theory, some new global asymptotic stability criteria are obtained. 
Chapter 18 considers a discrete-time Hopfield-type neural network with delays. A complete 
bifurcation analysis is presented for the two neurons case, uncovering the structure of the 
stability domain of the null solution, as well as the types of bifurcations occurring at its
boundary. 

As mentioned in the beginning, RNN has a rather broad coverage of applications and 
we admit there must be some topics that the book does not address. One of the missing 
topics refers to associative memory, an important capability of RNNs, though there is a case 
study in Chapter 9. Anyway, this collective product complements other salient books in the
same line.

We would like to express our sincere gratitude to all chapter authors for the time and 
effort they generously gave to the book. We would also like to thank the publisher, I-Tech 
Education and Publishing, for cooperation in publication. Special thanks go to Dr. Vedran 
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Aperiodic (Chaotic) Behavior in RNN with
Homeostasis as a Source of Behavior Novelty: 
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Jorge Simão 
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1. Introduction 
One way to understand cognitive system is to think in terms of dependency relationships
between the neural controller or micro level, and the agent’s body configuration or macro 
level. Neural dynamics, as modeled in Recurrent Neural Networks (RNN), is determined by 
units and connections self-organization rules. This micro dynamics guides body 
configuration as it commands muscular action. On the other hand, an agent’s self-perception
causes the body configuration state to influence neural dynamics. Cognitive agents thus
work in a multi-level causality loop. 
An apparent limitation of RNN to model neural controllers for cognitive agents is that the
dynamics may converge to a small region of neural state space. In the extreme case, this
includes convergence to a fixed point or to limit cycles where only a few neural states are
visited. Since agent’s body configuration is mostly determined by neural activity, limited 
neural dynamics also implies a limited dynamic in an agent’s body — as being completely 
“frozen” or keep doing the the same thing over and over again. 
Because natural cognitive agents, understood as animals and humans, maintain an almost
continuous thread of behavior while they are awake, one can suggest that neural controllers 
for cognitive modeling and engineering should also allow for this kind of behavior. RNN 
with adaptive thresholds, modeling neural homeostasis, provide one possible answer. When 
units in a RNN are endowed with a rule for dynamically changing units thresholds the 
neural network as a whole behaves in a complex manner, ranging from a close to periodic
behavior to aperiodic (or chaotic) behavior. When coupled to an agent’s body the neural
dynamics can be used to produce variability in body configuration dynamics — this is the
cognitive agent’s behavior at the macro level. This variability is a key requisite to allow
agents the unaided discovery of possibilities of action (affordances) of their body in the
context of their environment. Behavior habituation to instantaneous body-environment
configurations resulting from neural homeostasis, keeps agent continuously exploring the 
configuration space, thus producing novel body postures and/or move the agent to new
locations in the environment.
This mechanism while essential for the production of creative or novel behavior, may not be
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1. Introduction 
One way to understand cognitive system is to think in terms of dependency relationships 
between the neural controller or micro level, and the agent’s body configuration or macro 
level. Neural dynamics, as modeled in Recurrent Neural Networks (RNN), is determined by 
units and connections self-organization rules. This micro dynamics guides body 
configuration as it commands muscular action. On the other hand, an agent’s self-perception 
causes the body configuration state to influence neural dynamics. Cognitive agents thus 
work in a multi-level causality loop. 
An apparent limitation of RNN to model neural controllers for cognitive agents is that the 
dynamics may converge to a small region of neural state space. In the extreme case, this 
includes convergence to a fixed point or to limit cycles where only a few neural states are 
visited. Since agent’s body configuration is mostly determined by neural activity, limited 
neural dynamics also implies a limited dynamic in an agent’s body — as being completely 
“frozen” or keep doing the the same thing over and over again. 
Because natural cognitive agents, understood as animals and humans, maintain an almost 
continuous thread of behavior while they are awake, one can suggest that neural controllers 
for cognitive modeling and engineering should also allow for this kind of behavior. RNN 
with adaptive thresholds, modeling neural homeostasis, provide one possible answer. When 
units in a RNN are endowed with a rule for dynamically changing units thresholds the 
neural network as a whole behaves in a complex manner, ranging from a close to periodic 
behavior to aperiodic (or chaotic) behavior. When coupled to an agent’s body the neural 
dynamics can be used to produce variability in body configuration dynamics — this is the 
cognitive agent’s behavior at the macro level. This variability is a key requisite to allow 
agents the unaided discovery of possibilities of action (affordances) of their body in the 
context of their environment. Behavior habituation to instantaneous body-environment 
configurations resulting from neural homeostasis, keeps agent continuously exploring the 
configuration space, thus producing novel body postures and/or move the agent to new 
locations in the environment. 
This mechanism while essential for the production of creative or novel behavior, may not be 
enough. Without sensors to perceive their body and environment neural activity can not be 
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influenced by the body-configuration. Thus, neural chaos by itself can not guarantee that the 
agent performs adequately. For example, it may lunch the agent as whole to enter in a self-
destructive non-viable biological, psychological, or social region. Introducing sensors that 
perturb individual neurons and collective dynamics, offers an additional mechanism to 
develop structured behavior. At the formal level, one can infer that by having sensors for 
self and environment perception an agent can change the probability distribution of the 
neural state space. This change, in turn, changes the dynamics and probability distribution 
of the agent body configuration, possibly steering the agent into more interesting regions. 
To illustrate the application of this principles, we show with concrete examples of simple 
articulated agents how chaos in neural controllers can be used to generate novel behavior 
and how self-perception can be used to change neural dynamics. Target applications, 
included muscular control and visual attention. To make the principles general, we also 
present a conceptual framework for embodied neural agents as models for cognitive 
systems. 
We divide this article into four main parts: in section 2, we make an abstract theoretical 
characterization of cognitive systems that is useful for the remaining parts of the discussion. 
In section 3, we describe and discuss the proposed Recurrent Neural Network model that 
uses units with adaptive thresholds to model homeostasis. In section 4, we use this neural 
model to build a particular model of a minimalist cognitive agent, endowed with a single 
link and a joint with only one-degree-of-freedom. The experimental results obtained with 
this cognitive agent are used study muscular control and to illustrate the application of 
RNN with homeostasis. In particular, we compare the behavior of agent at the micro and 
macro level when neural units have or do not have adaptive thresholds and self-perception. 
In section 5, we describe another model that uses RNN with homeostasis, this time modeling 
visual attention. In section 6, we present our conclusions and relate our results with others. 

2. A meta-model for cognitive systems 
For improved understanding of cognitive system, one needs to have a meta-model or meta-
theory that allows one to think in abstract terms and helps to identify the relevant entities and 
concepts specific to the problem domain of cognition. In particular, the relation between 
agents and the environments in which they live, and the relation between its neural controller 
dynamics and body configuration dynamics needs to be put in appropriate perspective. If this 
is achieved, we are better equipped to see what are the relevant elements that models of 
neural networks need to take into consideration to work  effectively as models of cognition. 
In this section, we present such a meta-model organizing the components sub-sections as 
follows: section 2.1 presents the concepts needed to begin understanding cognition; section 2.2 
further develops the relation between neural controllers and behavior of agents; section 2.3 
formally characterizes cognitive systems as complex dynamical systems. 

2.1 Situated cognitive agents and environments 
We characterize cognitive agents as complex systems that can be studied at two different 
complexity levels: the macro-level and the micro-level. The macro-level is defined by the 
configuration state — a formal description of the agents body posture in space and time, as 
seen by an external observer or as made apparent to the agent itself through self-perception. 
A small number of degrees-of-freedom is often required to describe an agent at this level 
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(e.g., the variables of the joint angles plus the parameters of link geometry, as is often used 
in robotics). 
The micro-level is a characterization of the state of agent neural controller. In simple neural 
models, this may include the activation level of neural units, units’ thresholds, and neural 
connections’ weights. Usually, the micro-level requires a much higher number of degrees-of-
freedom to be fully described than the macro-level, since an agent with few links and joints 
may have a controller with many neural units. Interfacing the micro and macro-levels, agent 
descriptions include the way the neural controller is connected to the agents’ body — both 
in muscular connections (efferent) and in the way sensation-perception cells/inputs 
impinge on the neural controller. In complex articulated agents, the number of macro-level 
variables and parameters needed may be in high number (e.g., on the order of dozens), but 
we always assume that the micro-level requires a much high number of variables and 
parameters to be described. A physical (non-cognitive) systems analogy of this, would be a 
rigid body (object) described at the macro-level by a few variable and parameters (e.g., for 
geometry, location and orientation in space, and material properties), and that at the micro-
level requires much more variables if one wanted to describe in detail where all its 
constituent particles/elements are located in space at a given time, assuming, for illustration 
purposes, that this could be done in practice. 
 

 
Figure 1. Conceptual diagram of a cognitive agent, its environment and the external 
observer 

Real and virtual agents are often situated in some environment, in such a way that its 
behavior and interaction with the environment can be observed by an external observer. As 
pointed out by many classical thinkers and researcher in the AI community, the agent’s own 
perception of the environment may be quite different from an external observer’s 
perspective [10]. Namely, external observers can not make easily educate guesses about the 
subjective perspective of the observed agent own perception (e.g., the perspective a human 
and another animal, such as a dog or frog, might have from the same environment, say a 
tree, might be quite different — assuming for illustrations purposes, that the two of them 
could somehow be compared). In Figure 1, we make a sketch representation of the 
relationship between the agent, its environment, the external observer, and the two levels of 
description. Below, we postulate that an agent can be sensitive to its own actions by means 
of self-perception, and we use this to provide a causal account of how such self-generated 
information can be used to guide autonomously the behavior development of the agent 
through learning at the micro-level. 
The activity of neural units often dictates the generation of body movements, by 
commanding internal force to be made by muscular-like structures. Given this, the 
dynamics of body movements as captured by the formal configuration definitions, is a 
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To illustrate the application of this principles, we show with concrete examples of simple 
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and how self-perception can be used to change neural dynamics. Target applications, 
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present a conceptual framework for embodied neural agents as models for cognitive 
systems. 
We divide this article into four main parts: in section 2, we make an abstract theoretical 
characterization of cognitive systems that is useful for the remaining parts of the discussion. 
In section 3, we describe and discuss the proposed Recurrent Neural Network model that 
uses units with adaptive thresholds to model homeostasis. In section 4, we use this neural 
model to build a particular model of a minimalist cognitive agent, endowed with a single 
link and a joint with only one-degree-of-freedom. The experimental results obtained with 
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In section 5, we describe another model that uses RNN with homeostasis, this time modeling 
visual attention. In section 6, we present our conclusions and relate our results with others. 
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For improved understanding of cognitive system, one needs to have a meta-model or meta-
theory that allows one to think in abstract terms and helps to identify the relevant entities and 
concepts specific to the problem domain of cognition. In particular, the relation between 
agents and the environments in which they live, and the relation between its neural controller 
dynamics and body configuration dynamics needs to be put in appropriate perspective. If this 
is achieved, we are better equipped to see what are the relevant elements that models of 
neural networks need to take into consideration to work  effectively as models of cognition. 
In this section, we present such a meta-model organizing the components sub-sections as 
follows: section 2.1 presents the concepts needed to begin understanding cognition; section 2.2 
further develops the relation between neural controllers and behavior of agents; section 2.3 
formally characterizes cognitive systems as complex dynamical systems. 

2.1 Situated cognitive agents and environments 
We characterize cognitive agents as complex systems that can be studied at two different 
complexity levels: the macro-level and the micro-level. The macro-level is defined by the 
configuration state — a formal description of the agents body posture in space and time, as 
seen by an external observer or as made apparent to the agent itself through self-perception. 
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(e.g., the variables of the joint angles plus the parameters of link geometry, as is often used 
in robotics). 
The micro-level is a characterization of the state of agent neural controller. In simple neural 
models, this may include the activation level of neural units, units’ thresholds, and neural 
connections’ weights. Usually, the micro-level requires a much higher number of degrees-of-
freedom to be fully described than the macro-level, since an agent with few links and joints 
may have a controller with many neural units. Interfacing the micro and macro-levels, agent 
descriptions include the way the neural controller is connected to the agents’ body — both 
in muscular connections (efferent) and in the way sensation-perception cells/inputs 
impinge on the neural controller. In complex articulated agents, the number of macro-level 
variables and parameters needed may be in high number (e.g., on the order of dozens), but 
we always assume that the micro-level requires a much high number of variables and 
parameters to be described. A physical (non-cognitive) systems analogy of this, would be a 
rigid body (object) described at the macro-level by a few variable and parameters (e.g., for 
geometry, location and orientation in space, and material properties), and that at the micro-
level requires much more variables if one wanted to describe in detail where all its 
constituent particles/elements are located in space at a given time, assuming, for illustration 
purposes, that this could be done in practice. 
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Real and virtual agents are often situated in some environment, in such a way that its 
behavior and interaction with the environment can be observed by an external observer. As 
pointed out by many classical thinkers and researcher in the AI community, the agent’s own 
perception of the environment may be quite different from an external observer’s 
perspective [10]. Namely, external observers can not make easily educate guesses about the 
subjective perspective of the observed agent own perception (e.g., the perspective a human 
and another animal, such as a dog or frog, might have from the same environment, say a 
tree, might be quite different — assuming for illustrations purposes, that the two of them 
could somehow be compared). In Figure 1, we make a sketch representation of the 
relationship between the agent, its environment, the external observer, and the two levels of 
description. Below, we postulate that an agent can be sensitive to its own actions by means 
of self-perception, and we use this to provide a causal account of how such self-generated 
information can be used to guide autonomously the behavior development of the agent 
through learning at the micro-level. 
The activity of neural units often dictates the generation of body movements, by 
commanding internal force to be made by muscular-like structures. Given this, the 
dynamics of body movements as captured by the formal configuration definitions, is a 
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reflection of the dynamics of the neural units (plus whatever mechanical external 
perturbations the environment might impose in the agent at a given time). This is micro-
macro causality mechanism. Moreover, selforganizing mechanisms at the micro-level (e.g., 
learning and homeostasis) may change the probability distribution of states of the micro-
level, and these can also leave a trace at the observed behavior. This macro behavior is 
emergent from the micro-level activity. 
An additional consequence of the above characterization, is that the mapping from the 
(micro) neural level to the (macro) configuration level is not one-toone, since the number of 
degrees-of-freedom are different. Many different neural states may mandate the same body 
configuration. Moreover, since body limbs are pulled by several muscular structures each 
with possibly many different force generating components (e.g., muscular micro-fibers), the 
coordinated action of a large number of neurons and muscular cells is usually required to 
generate strong and high-amplitude body movements. We also explore these aspects below. 
 

 
Figure 2. Block diagram of cognitive agents. 

Since agents have component units sensitive to the environment (the sensationperception 
inputs), agents can receive feedback of the “world-state” (as inferred by their sensorial 
apparatus). This is interpreted as a macro-micro (downward) causality mechanism. 
Moreover, because agent’s sensitivity of the macro world also applies to its own body state, 
agents can sense the effects of their own actions (e.g., using input from proprio-perceptive 
cells in muscles and tendons, by visually looking at body limbs — such as hands, or by 
listing the sounds produced by itself). Below, we call this type of macro-micro causality 
mechanism as self-perturbation or self-perception. 

2.2 Multi-level causality 
Once we make a micro–macro characterization of cognitive systems, we need to focus on the 
causal relations between the two levels. Figure 2, represents these causal relation in agent 
behavior according to the presented meta-model. X represents the (activation) state of the 
neural controller of the agent (part of micro-level or internal state), and Cag represents the 
body configuration of the agent (the macro-level or external state). The self-loop in X 
represents the internal dynamics of the controller, such as modeled in recurrent neural 
network models. The arrow from X to the motor units Mc represent the commanding of 
muscular contraction/distention causing the generation or cessation of internal force. The 
connection from Mc to Cag, represents the actual changes made in body configuration 
caused by changes in internal state (if any). 
Due to self-perturbation (in any sensorial modality) the agent configuration Cag generates 
input or perturbation to the neural dynamics — represented as Π. This represents part of the 
macro-micro causality. As a “side-effect” of the controller internal dynamics, changes in 
body configuration may change the state or configuration of the environment, in the 
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diagram represented as Cenv (e.g., as in a manipulation task). Changes to environment state 
trigger additional perturbation to the neural controller. For individual neural units, the two 
types of perturbation (self-generated and other) should be considered (mechanistically) 
indistinguishable. Additionally, in a complex task-environment, environments may also 
have complicated dynamics of their own (e.g., gravity, dumping, reaction force, etc.) — 
represented as a self-loop in the box labeled Cenv in Figure 2. The environment may also 
impose macro-perturbation in the configuration of the agent, abstracted as mechanical 
external forces Fext. We represent this as an additional arrow in Figure 2 from Cenv to Cag. We 
aggregate the agent configuration Cag and environment configuration Cag, and call it the 
global configuration or just configuration for short. We represent this as: C = Cag · Cenv. 
Changes in neural activity often (but not necessarily always), create body limb movements 
because they command muscular-like structures that create internal mechanical forces on 
the body. In most natural situations, body limb movements are also dependent on other 
mechanical external perturbations on the agent that combine to self-generate internal forces. 
This may include forces such as gravity, object contact reaction-force, and physical 
manipulation by social other. This aspects of agent-environment interaction are not 
developed in the chapter. 
 

 
Figure 3. Diagrammatic representation of multi-level causality with two types of 
perturbation: X is the micro state and C is the macro state as seen by an external observer or 
by the agent itself. Πμ represents the micro-perturbations, mostly due to input to sensorial-
perception units/cells, and Fext represents macroscopic/mechanical perturbations, also 
represented as ΠM. 

Since agents have component units sensitive to the environment (the sensationperception 
inputs), agents can receive feedback of the “world-state”. This input may change internal 
neural dynamics, and in turn change the internal forces that cause body limb movements. 
Agents may also have perception of their own body state (e.g. thought proprio-perception of 
limb displacement, visual perception of own body, or self-produced sounds). In the model 
presented below, we focus our attention on studies of a simple form of proprioceptive 
muscular input. 
Given this characterization, we see that micro and macro level are connected in a two-way 
causality loop. The state of the micro-level determines/influences body configuration, and 
the body configuration perturbs the internal dynamics of the neural controller due to self-
perturbation. Figure 3, further illustrates the notion multi-level causality in cognitive systems. 
An upward arrow is used to represent emergence or upward causality, and an downward 
arrow represents downward causality due to self-perception and perception of the 
environment. 
This characterization of embodied neural agents relates to Ashby classical characterization 
of adaptive agents and agent-environment couplings as dynamical systems [2], further 
explored in mainstream situated AI literature [3]. The above presentation, although similar 
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in general form, makes additional distinctions. In particular, it makes explicit and gives 
theoretical significance to the difference between the typical number of degrees-of-freedom 
at the micro or neural level, and the macro or configuration-level. Namely, |X| >> |Cag|. 

2.3 Characterization as complex dynamical system 
From a formal point of view, the agent body, neural controller, and environment represent a 
(complex) dynamical system that can be summarized with two (vectorial) coupled 
differential equations: 

 
where fa is the neural units activation function, fΠ some (possibly complicated) function that 
maps agent and world configuration to a particular value of individual units perturbation, 
and fC and Mc are functions that relate changes in internal state with changes in agent body 
and world configuration. We are ignoring here and until the next section, second-order 
dynamics in the neural controller, such as learning and/or homeostasis. 
When we make the assumption that the neural state fully determines body posture (e.g. due 
to lack of body inertia), than the differential equation above for the configuration can be 
simplified to a functional equation: C = fC[Mc(X)]. That is the neural state fully determines 
the instantaneous body configuration. When no confusion in caused, we abbreviate the 
above equation to: C = fC(X). 
For simplicity sake, we leave ambiguous whether the information about configuration state 
the agent uses is the same or comparable with the information a particular external observer 
might use to characterize the agent and its environment state. For purposes of neural 
control, the relevant information is the information the agent uses. 

3. A model of RNN with homeostasis 
In previous section, we made an abstract characterization of embodied cognitive agents that 
is independent of the controller and neural model used to generate its behavior. In this 
section, we propose a model of Recurrent Neural Networks with adaptive threshold 
capturing homoeostasis behavior in natural neural cell [16]. In section 3.1, we present the 
equation for neural dynamics. This is a variation of the continuous Hopfield RNN model [7], 
where units threshold changes to push activation back to a resting value. In section 3.2, we 
discuss how the non-embodied RNN model can be extended to control an embodied system 
as is the case of cognitive agents with a body living in some environment. 

3.1 Equations for neural dynamics 
The neural model consist of a set of units whose activation levels is described b a vector X = 
[x1, . . . , xi, . . . , xN], with |X|as the number of units. Neural units activation xi is constrained 
to lie in the interval range [xmin, xmax], where xmax is the saturation value and xmin is the 
lowest/depression value. Units are also assumed to have a rest or natural activation value 
x0. In computer simulation we make neural units start in this rest/natural activation state. 
Neural units are assumed to be connected in a network/graph as a fully recurrent neural 
network (all units connect to all) [7]. Connection strengths are represented by a connectivity 
matrix M, where element cij represents the connection strength or weight between unit i and 
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j. In the simulation results presented below we experiment mostly with fixed connection 
weights. Neural units are assumed to be initially connected with random weights, using a 
normal distribution with mean value 0 and variance 2(M). 
Neural units have an adaptive threshold that is used to maintain units in a sensitive state. 
This is equivalent to cellular homeostasis mechanisms in biological neural networks [16]. 
For unit i we represent its threshold as θi. When a unit’s activation is very high, a slow 
adaptation process takes place that gradually moves the activation value to a rest or natural 
activation value x0. Likewise, when a unit’s activation value is low the same adaptation 
process takes place to raise the activation level to x0. 
The operation of units is formally defined using two ordinary first-order differential 
equations [approximated by the Euler method in the simulations below]. The first equation 
below describes the (fast) dynamics of individual unit’s activation. The second equation 
describes the (slower) dynamics of homeostasis. 

 
above τ1, τ2, with τ 1 << τ 2, are constants for the characteristic times of the neural processes 
modelled. x0 is the resting or natural activation of units. f is an activation gain function. The 
simplest case is to have f a linear function with a constant gain G = 1. ξ is some (optional) 
random noise value. 
Solving for equilibrium in the first equation, τ 1 x i = 0, shows that at rest xi = x0 + f(Σj cjixi − θi) 
+ ξ, which is a fast quiescent/rest state. Solving for equilibrium for the second equation, τ 2 

θ i = 0, show that at rest xi = x0, which is a slow quiescent/rest state (since τ 1 << τ 2). 
Simulation results presented below show that full equilibrium (that is, xi = x0 for all units) is 
often not reached due to units’ interconnections. 
Neural connections can be made to have weights changed similarly to Hopfield networks by 
using a Hebb-like learning rule. This level of plasticity allow neural agents to have more 
adaptation possibilities since it introduces a second-order dynamics in the system. In this 
chapter, we will focus in networks without learning. 

3.2 Embodiment neural agents 
A straightforward way to give an embodiment to a RNN (with or without homestasic units), 
is to postulate that each agent actuator is controlled by a sub-set of units. Formally, if agent 
configuration state and state space is defined by vector C = [ ψ1, . . . , ψi, . . . , ψN ’], with |C| 
the number-of-degree of freedom of the configuration, then we make each degree-of-
freedom ψi to be a function of a sub-set of neural units X|i. In mathematical notation: ψi = 
f(X|i). Due to this functional relations, movement in neural state space may produce some 
kind of movement at the configuration level. On the other hand, since |X|>> |C|, neural 
dynamics may be sufficiently confined to make changes in agent configuration minimal. 
To make the neural units to receive feedback about behavioral consequence of neural 
dynamics sensorial mechanisms need to be used. One way to model this is to think that each 
agent sensor has the ability to produce a perturbation πi that adds to a units input, with a 
gain ci. This slightly changes the equation for neural dynamics, as follows: 
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j. In the simulation results presented below we experiment mostly with fixed connection 
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Figure 4. Body configuration of a minimalist articulated agent with a single link and 
rotational joint in 2D plane (one degree-of-freedom), controlled by an artificial muscle 
composed of a set of muscular units: left): abstract design; right): visualization in the 
developed neural agent simulator. 

4. A minimalist embodied neural agent 
In this section, we present a model of an embodied neural agent that relies on a RNN with 
homeostasis to control its behavior. In particular, we show that the homeostasis introduces 
aperiodic (chaotic) behavior in the system preventing the agent to ever reach a stationary 
regime. This is argued to be useful for characterizing cognitive systems, since behavioral 
exploration and continuous novelty is a distinguishing feature of this type of systems. 

4.1 Model 
We consider an embodied articulated agent with a single link and a single joint. The joint 
angle   fully defines the body configuration of the agent. The joint angle is determined by the 
contraction of a simplified muscle that works like a mechanical lever. The muscle has a large 
number of muscular units mi. The contraction/ extension of a muscular unit mi produces a 
spatial displacement Δsi, and the summation of all displacements determines the joint angle. 
Formally, ψ = f(Σi Δsi), where f is a function of the detailed geometry of the agent. We 
assume that the contraction of a single neural units produces a relatively small link 
displacement. Therefore, the simultaneous contraction of a large proportion of muscular 
units is required to generate maximum displacement of the link. Additionally, the joint 
angle ψ is always constrained to lie within a maximum amplitude interval [− , ]. The 
agent also contains proprioceptive mechanisms for muscle contraction/distention or link 
angular position (discussed below). In Figure 4, we show the abstract design of the agent. 
We also show the graphical design of the agent as visualized in a developed simulator. 
Muscle contraction (and thus body configuration) is controlled by a neural population with 
N units. We make a simple attachment between this neural population and the muscle units, 
by making the number of muscular units equal to the number of neural units, and 
connecting them one-to-one (unidirectional). Muscular contraction is thus proportional to 
the total activation of the network. When all units are in a rest/natural activation value, φ 
takes value 0 (the link is horizontal). 
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A fixed proportion fπ of neural units is sensitive to the angular position of the link. Namely, 
we define a preferred angular position φ * and cause that sub-set of units to receive 
additional excitation the closer the link is to that preferred position/angle. Thus, this units 
work as proprio-perceptive (proprioceptive) neural cells. The concrete equation we use to 
model this is: 

 
where πi is the external perturbation to the cell due to proprioceptive input, K1 is a parameter 
for maximum perturbation value, (φ − φ*)2 is the squared difference of the link’s current 
angular position and the preferred angle φ*, and K2 is a parameter for how slow perturbation 
decreases as the current angle moves away from the preferred angle φ*. (K2 is also represents 
the variance of a Gaussian curve.) In the simulation results presented below, fπ  is always set 
to .3, φ* always set to 80°. 

4.2 Experimental results 
We have performed several experiments to study the behavior of the previous presented 
model. In these experiments, we generate neural controllers with random connections 
according to the weight matrix M, using mean 0 and variance 2(M) = 1. For the presented 
results, we made connection weights fixed (no learning), and removed internal noise. 
Parameters for unit’s activation were set as follows: x0 = 1, xmax = 3, xmin = .1. Perturbation 
parameters where set as K1 = 5xmax, and K2 = 2. Neural activation levels xi at time t = 0 are 
always set to x0. In studying model behavior, we look both at the neural (micro) and link 
configuration (macro) levels. We also look both at the dynamical and the stochastic aspects 
of model behavior. 
Neural Dynamics without Homeostasis 
When units homeostasis is not put in the model’s operation (τ2 = +∞), the neural activation 
state and the configuration angle converges in most simulation runs to a fixed point. In 
fixed points, a large proportion of units are either fully saturated (xi = xmax) or fully 
depressed (xi = xmin). In some simulation runs, some units converge to intermediary values 
(closer to x0). Simulation runs with different random connection matrices produce different 
fixed points. Figure 5 shows the evolution in neural state space and link-configuration state 
spaces, along side with corresponding probability distributions, for a particular simulation 
run during 200 time steps. (High activation of units is coded as red in color plates, low 
activation as blue, and values near x0 as green.) This is a similar behavior to that observed in 
recurrent neural networks with symmetric connections, as in Hopfield RNN [7]. In a small 
proportion of simulation runs with different connection weight matrices, neural dynamics 
converges to a small region of state space usually in the form of a periodic cycle. In these 
scenarios, most neural units are either in fully depressed or saturated regime, as in fixed 
points solutions, but a proportion of cells oscillates due to non -symmetric and opposite sign 
connections. In Figure 6 we show the evolution of the configuration state for one of such 
simulation run, showing a small periodic cycle that corresponds to an oscillation of low 
amplitude in configuration space. In a set of 10 consecutive runs with the same settings (but 
different weight matrices), the results obtained were qualitatively similar — following one 
of these two cases. The results (either fixed points or periodic cycle) also appeared in 
controllers and networks with different number of neural units, from 5 to 50. Previous work 
also showed that the introduction of considerable noise is (most of the times) not enough to 
take the system away from fixed-points or small-regions of state space [14, 13]. Formally, 



 Recurrent Neural Networks 

 

8 

 
Figure 4. Body configuration of a minimalist articulated agent with a single link and 
rotational joint in 2D plane (one degree-of-freedom), controlled by an artificial muscle 
composed of a set of muscular units: left): abstract design; right): visualization in the 
developed neural agent simulator. 

4. A minimalist embodied neural agent 
In this section, we present a model of an embodied neural agent that relies on a RNN with 
homeostasis to control its behavior. In particular, we show that the homeostasis introduces 
aperiodic (chaotic) behavior in the system preventing the agent to ever reach a stationary 
regime. This is argued to be useful for characterizing cognitive systems, since behavioral 
exploration and continuous novelty is a distinguishing feature of this type of systems. 

4.1 Model 
We consider an embodied articulated agent with a single link and a single joint. The joint 
angle   fully defines the body configuration of the agent. The joint angle is determined by the 
contraction of a simplified muscle that works like a mechanical lever. The muscle has a large 
number of muscular units mi. The contraction/ extension of a muscular unit mi produces a 
spatial displacement Δsi, and the summation of all displacements determines the joint angle. 
Formally, ψ = f(Σi Δsi), where f is a function of the detailed geometry of the agent. We 
assume that the contraction of a single neural units produces a relatively small link 
displacement. Therefore, the simultaneous contraction of a large proportion of muscular 
units is required to generate maximum displacement of the link. Additionally, the joint 
angle ψ is always constrained to lie within a maximum amplitude interval [− , ]. The 
agent also contains proprioceptive mechanisms for muscle contraction/distention or link 
angular position (discussed below). In Figure 4, we show the abstract design of the agent. 
We also show the graphical design of the agent as visualized in a developed simulator. 
Muscle contraction (and thus body configuration) is controlled by a neural population with 
N units. We make a simple attachment between this neural population and the muscle units, 
by making the number of muscular units equal to the number of neural units, and 
connecting them one-to-one (unidirectional). Muscular contraction is thus proportional to 
the total activation of the network. When all units are in a rest/natural activation value, φ 
takes value 0 (the link is horizontal). 

Aperiodic (Chaotic) Behavior in RNN with Homeostasis as a Source of Behavior Novelty:  
Theory and Applications 

 

9 
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this means that fixed points are either attracting or Lyapunov stable (neural states tend to 
stay within a small distance of a fixed point when perturbed [15]). 
 

 
Figure 5. Dynamics without homeostasis with convergence to a fixed point (τ2 = +∞, N = 16). 
left-to-right) neural activation history [in (blue, green, red) color code for depressed, rest, 
and saturated activation levels]; probability distribution of neural state space mapped to 
two dimensions (X|1 is the total activation of units index [1 : ], and X|2 is the total units 
activation index [ +1,N])); time series for agent-link configuration angle  ; probability 
distribution for angle configuration angle ψ. 
 

 
Figure 6. Dynamics without homeostasis — convergence to a small region of state space or 
periodic cycle (τ2 = +∞, N = 16). 
Neural Dynamics with Homeostasis 
When units have homeostasis, the behavior of the system changes considerably. The 
proportion of time that units are not saturated or depressed increases, as inspection of the 
differential equation for the threshold above suggests. However, most units do not remain 
with an activation value near x0 all the time since they are taken away from homeostasis due to 
interconnection with other units. Figure 7 and figure 8 shows two qualitatively typical 
simulation runs. [Noise is absent, 2(ξ) = 0.] The system state does not converge to a fixed point 
or some simple attractor, but exhibits behavior that qualitatively can be categorized between 
non-periodic behavior and nearly periodic, due to threshold adjustments [15]. When the 
number of units is small, the behavior of systems tends to be closer to periodic behavior 
(nearly periodic), and when the number of units increases the behavior tends to be more 
aperiodic. Following Langton [8], such class of qualitative behaviors may be designated as 
complex behavior. This is explained considering that although first-order neural dynamics 
cause the system to move to a small region of state space, individual units’ homeostasis 
(modeled as threshold adjustments) take the system away from this regions (fixed-points or 
periodic cycles). This creates the conditions for a wider exploration of state space, when 
compared with setting where the neural controller as only a first-order dynamics. 
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Figure 7. Dynamics with Homeostasis: convergence to aperiodic/chaotic regime (τ2 = 1

−τ 1, N =16). 
 

 
Figure 8. Dynamics with Homeostasis: convergence to a nearly periodic regime (τ2 = 1

−τ 1, N = 8). 
 

 
Figure 9. The effects of proprioceptive input in probability distribution of neural and 
configuration state spaces: top) with proprioceptive input the probability distribution become 
bi-modal, with one high activation region (link up), and one low activation or depressed 
region (link down); bottom)) without proprioceptive input probability distribution become 
uni-modal, with the region near ψ = 0 of highest probability due to homeostasis. 
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Neural Dynamics with Proprioceptive Input 
To investigate the behavior of the system when proprioceptive input is used, we compared 
the behavior of the systems with and without proprioception perturbation for neural 
controllers with the same connection matrices. In particular, we want to see if increasing 
neural activity when body configuration angle is near a preferred position would increase 
the probability of the agent to staying near that region. Figure 9 shows diagrams for the 
probability distribution of the configuration (left) and neural state spaces (right), for one 
particular neural network with and without (top and bottom) proprioceptive perturbation. 
The results show that proprioception cause the link angle distribution to become bimodal; 
with the region slightly above the preferred angle, at 1.4 rad. (marked with a red vertical bar 
in the probability distribution graph on the left), to have highest probability, corresponding 
to a saturated region, and another high probability region corresponding to a region of 
neural depression (with higher entropy than the saturated region). In contrast to this, for the 
same connection weights matrix, the neural dynamics without proprioceptive perturbation 
causes the link distribution to be uni-modal. In this case, the region near ψ = 0 (link at 
horizontal position) is the highest probability region. (Previous work, suggests that this 
distribution can be characterized by a (symmetric) power-law distribution [14]). 
 

 
Figure 10. Comparing probability of regions in configuration state space across 10 different 
simulation runs. 
Testing for Robustness 
Because, the system’s behavior changes considerable with different connection weight 
matrices, we wanted to test the robustness of these findings across multiple runs with 
different controllers. For this purpose, we divided the total link-configuration state space, 
ψ∈ [−  ,  ], in three regions: a depressed region, corresponding to a interval range of ψ∈ 

[−  ,−  ], a resting region with ψ∈ [−  , ], and a saturated and high amplitude region, ψ∈ 
[  ,  ]. Figure 10 shows the probability distribution of link angle for each of these three 
intervals (mean and variance) for 10 different simulation runs. The left-hand graph 
correspond to the settings with proprioceptive input, and in right-hand the graph represents 
the setting without proprioceptive input. The results confirm the initial observation that 
introducing proprioceptive input with higher intensity near a preferred region tends to 
make that region of higher probability. 
The bi-modality, induced by proprioception, arrives because positive perturbations tends to 
increase neural excitation. This can be understood by looking at the equations governing 
system behavior (here in vector form): X = F(X, Π; M), which can be linearized to  
X  ≈ F(X;M)+G· Π, if most units are in linear (non-saturated, non-depressed regime), a 
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condition ensured by homeostasis. Thus, higher input |Π| increases the value of first-
derivative X , and higher values of X correspond to higher configuration angles ψ. 

Formally, we can say that in the linear regime  > 0. For link states ψ = ψ*, the first 

derivative X  is still positive, so the highest probability angle tends to be higher than ψ*. 

5. Other applications: visual attention 
To further illustrate the use of RNN endowed with homeostasis, we describe in this section 
an additional model this time targeting visual attention. It is a variant of the previous model 
for muscular control, but now the agent-link as a sensor apparatus for visual perturbation. 

5.1 Model 
As previously, our agent model description consist of two parts: the description of the agent 
body and the description of the neural controller. The body of the agent consists of a single 
link with a tip with visual-input sensitive cells (figure 11). The link position or body 
configuration is controlled by an antagonistic muscle pair (the left and right muscle), and 
their contraction-extension depends on the activation of the motor units ml and mr, directly 
connected to them. Activity of motor units fully defines the body configuration of the agent, 
and consequently the angular position of his visual axes. Formally, we specify the link angle 
to be: 

 
where Km is a proportionality constant. Therefore, the link will turn to the left when ml > mr 
and to the right when mr > ml. The link is always constrained to lie within a maximum 
amplitude interval [−  ,  ]. 
The visual tip of the agent detects external visual stimuli, modeled here as punctual particles 
fixed or moving in a direction parallel to the horizontal baseline of the link. The particle 
position is defined by the angle Φ*, which is constrained to a maximum amplitude interval  
[ − ,  ]. The presence of the particle imposes a visual input to the neural controller, that 
includes Nv visual units. A visual unit has a maximum activation value when the stimulus is 
located at a particular angular position in relation to a preferred position. Formally, visual 
input is defined as: 

 
where k1 and k2 are two visual input constants. Δ Φ = Φ − Φ* represents the difference 
between link and particle orientations. '

iΦ  corresponds the preferential angle for each visual 
unit. With the settings above, Δ Φ is constrained to be in the interval [− , ], with limits 
representing the two extreme situations where the particle and the link are as far away as 
possible. 
We made a simple attachment between the visual input units and a neural control 
population, by making the number of units of each population equal and connecting them 
one-to-one (unidirectionally). Control units are connected as a fully recurrent neural 
network — all units connect to all. The control population is connected to the neural motor 
population such that half of the Nc units connect to the motor unit ml, and the other half 
connects to the motor unit mr. That is: 
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Figure 10. Comparing probability of regions in configuration state space across 10 different 
simulation runs. 
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condition ensured by homeostasis. Thus, higher input |Π| increases the value of first-
derivative X , and higher values of X correspond to higher configuration angles ψ. 

Formally, we can say that in the linear regime  > 0. For link states ψ = ψ*, the first 

derivative X  is still positive, so the highest probability angle tends to be higher than ψ*. 

5. Other applications: visual attention 
To further illustrate the use of RNN endowed with homeostasis, we describe in this section 
an additional model this time targeting visual attention. It is a variant of the previous model 
for muscular control, but now the agent-link as a sensor apparatus for visual perturbation. 

5.1 Model 
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body and the description of the neural controller. The body of the agent consists of a single 
link with a tip with visual-input sensitive cells (figure 11). The link position or body 
configuration is controlled by an antagonistic muscle pair (the left and right muscle), and 
their contraction-extension depends on the activation of the motor units ml and mr, directly 
connected to them. Activity of motor units fully defines the body configuration of the agent, 
and consequently the angular position of his visual axes. Formally, we specify the link angle 
to be: 

 
where Km is a proportionality constant. Therefore, the link will turn to the left when ml > mr 
and to the right when mr > ml. The link is always constrained to lie within a maximum 
amplitude interval [−  ,  ]. 
The visual tip of the agent detects external visual stimuli, modeled here as punctual particles 
fixed or moving in a direction parallel to the horizontal baseline of the link. The particle 
position is defined by the angle Φ*, which is constrained to a maximum amplitude interval  
[ − ,  ]. The presence of the particle imposes a visual input to the neural controller, that 
includes Nv visual units. A visual unit has a maximum activation value when the stimulus is 
located at a particular angular position in relation to a preferred position. Formally, visual 
input is defined as: 

 
where k1 and k2 are two visual input constants. Δ Φ = Φ − Φ* represents the difference 
between link and particle orientations. '

iΦ  corresponds the preferential angle for each visual 
unit. With the settings above, Δ Φ is constrained to be in the interval [− , ], with limits 
representing the two extreme situations where the particle and the link are as far away as 
possible. 
We made a simple attachment between the visual input units and a neural control 
population, by making the number of units of each population equal and connecting them 
one-to-one (unidirectionally). Control units are connected as a fully recurrent neural 
network — all units connect to all. The control population is connected to the neural motor 
population such that half of the Nc units connect to the motor unit ml, and the other half 
connects to the motor unit mr. That is: 



 Recurrent Neural Networks 

 

14 

 

5.2 Experimental results 
In this section, we present simulation results for basic experimental settings. We focus on 
experiments with a single particle with a fixed position or simple movements. For more 
elaborated experimental settings see [1]. 
 

 
Figure 11. Diagram of a minimalist embodied neural agent with one degree-offreedom for 
visual attention tasks, subject to a variety of simple visual stimuli (point particles). The agent 
consists of a single link and joint, representing the orientation of a visual axes, a tip sensitive 
to visual stimuli, and an antagonistic muscle pair. left): Graphical visualization in the 
developed neural agent simulator. right): Abstract design representing the agent’s body and 
the set of units controlling muscular contraction-distension, and receiving visual input. The 
body configuration is defined by the link angle _ as commanded by left and right muscles, 
whose contraction/extension is set by two motor units ml and mr. The motor units are 
connected to a set of control neural units. Control units are connected in a fully recurrent 
way (complete connection graph), and each control unit receives input from a 
corresponding visual input unit. 
Neural Dynamics without Homeostasis 
The experiments described in this section were used to analyze the effect of homeostasic 
mechanisms in the visual system, with and without visual perturbation. This study was 
performed with 8 control units (Nc = 8), and then with different sizes of neural populations, 
Nc ∈ {4, 8, 16, 32, 64}. 
In the first trials, the neural control population was setup with eight units. Units in the 
motor population were always set with two units (controlling the left and right muscles). 
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We set as visual stimulus a point particle situated at a fixed distance from the horizontal 
basis of the agent. Different simulation runs select a different (randomly selected) angular 
position for the particle. The weight matrices also take different random values for each 
simulation run with Vc = 1. 
Figure 12 shows the system’s behavior during 500 time-steps of a particular run, when there 
is no visual stimuli present in the agent’s environment. Here, neural homeostasis is turn off 
(τ2 = +∞). The left-handed side of figure 12 depicts the time-series for configuration angle Φ, 
with the vertical axes representing time and the horizontal axes representing angular 
displacement of the link. In the right-handed side is represented the history of neural 
activation using codes (blue for depression, red for saturation and green for intermediate 
values). This is represented with the symbol Xc_. The results show that the body 
configuration/visual orientation quickly converge to a fixed-point. The same happens with 
the neural network dynamics. When equilibrium is reached (around t = 20) a variety of 
individual neural states can be observed. Some cells are in depressed state, some in 
saturated state (in this run, only one), and some take intermediate activation values. The 
initial state fluctuation corresponds to a transient period which can be interpreted as a 
“relaxation” of neural state. The potential energy of the network tends to decrease during 
this period [7]. Different simulation runs would produce different equilibrium states. 
 

 
Figure 12. Time-series for the link configuration angle Φ, and control units’ activation state 
Xc over 500 time-steps. Neural controller has 8 units without homeostasis. 
Neural Dynamics with Perception but without Homeostasis 
In figure 13 we show the behavior of the visual system for two simulation run when a point 
particle is present in the visual field. The figure includes the time-series for the configuration 
state and the time-series for the neural state, and also (in the middle) the time-series for the 
angular difference between link and particle orientations (Δ Φ). The position of the particle 
is highlighted as a vertical red line in the plot for Φ. The results show that for the first 
presented simulation run the angular position of the link is close to the position of the 
particle. This can also be seen by looking at the data plot for Δ Φ which shows that the 
angular distance to the particle quickly converges to a value close to zero. The second row in 
the figure 13, shows that this is not always the case. In this second run the link converges to 
a position far away from the particle position. 
The left-handed side of figure 14 shows the time-series of Δ Φ for 10 consecutive simulation 
runs when the neural controller is configured without homeostasis. The plots confirm the 
previous observations. Although for an important fraction of simulation runs the angular 
differences are reduced (6), for several of the simulation runs the link converges to positions 
far away from the particle. This occurs because the relaxation of the neural state takes the 
link to certain positions before the visual input is able to significantly influence the neural 
dynamics. 
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Figure 13. Time-series for the link configuration angle Φ, the difference between link and 
particle positions Δ Φ, and control units activation state Xc over 50 time-steps. Neural 
controller has 8 units without homeostasis. The visual stimulus is represented as a vertical 
red line. Positions were set randomly and were invariant during the simulation time. 
 

 
Figure 14. Time-series of Δ Φ over 200 time-steps for 10 consecutive simulation runs. A 
different particle position was set for each simulation run. (Nc = 8) left): Neural controllers 
without homeostasis; right): Neural controllers with homeostasis. 
Neural Dynamics with Homeostasis 
The introduction of an adaptive mechanism in the form of homeostasis completely changes 
the agent’s internal and external dynamics. Figure 15 shows that when homeostasic 
mechanisms are used (  = 0.5), the body configuration of the agent exhibits a non-periodic 
or chaotic behavior [15]. This means that while the equations for neural dynamics are 
completely deterministic both the link angle and the neural state seems to move erratically 
as if a stochastic process is involved. Note that in this trial the point particle is not present 
yet. Additionally, it can be seen that individual neural units hardly stabilize in particular 
activation values. This occurs because homeostasis slowly pushes unit’s activation to resting 
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value x0. However, due to unit’s interconnections a global equilibrium is never reached [13]. 
Therefore, the proportion of cells not saturated or depressed at a given time is much less 
than when homeostasis is not used. Consequently, the activation state of the neural 
population does not converge to a fixed point. Instead, we can observe complex oscillating 
patterns of neural activity. 
Neural Dynamics with Perception and Homeostasis 
In figure 16, we present data plots for two simulation runs with neural controllers working 
with homeostasis and a point particle is present in two slightly different positions. The 
results show that in both simulation runs the link orientation converges to a region close to 
the particle position. This is confirmed in the middle plot of figure 16 where is shown that  
Δ Φ converges to values close to zero. Most importantly, the link orientation does not 
converge to a fixed-point. Instead, it performs small oscillatory movements. 
Experimentation with model variations, showed that the use of an antagonistic muscle pair, 
as apposed to a single muscle, is very useful to give robustness to the model’s behavior. 
Model variations with a single muscle requires parameters to be carefully selected to 
achieve effective visual fixation behavior. It is interesting to note that while homeostasis 
tends to move the neural state away from particular regions (e.g. a fixed-point) [14, 13], this 
does not cause the system to loose track of the particle and increase error. This happens 
because there is redundancy in the neural state–configuration state mapping, with the 
number of degrees-of-freedom in the former being much higher than the number of degree-
of-freedom in the later (|X| >> 1). This explains why in the righthand plots of figure 16 the 
neural state moves between several states and yet the orientation of the visual axes changes 
little. 
 

 
Figure 15. Time-series for the link configuration angle Φ, and control units activation state 
Xc over 500 time-steps. Neural controller has 8 homeostasic units. 

The right-handed side of figure 14 shows time-series of Δ Φ for 10 consecutive simulation 
runs when the neural controller is configured with homeostasis. The plot shows that the 
behavior of the system is qualitatively different from the behavior when no homeostasis is 
used (left-handed side of figure 14 ). In a significant proportion of runs the link orientation 
approximately matches the particle orientation (Δ Φ ≈ 0), although we can identify 
continuous aperiodic oscillations of the link around the particle position. This happens 
because homeostasis prevents neural state to reach a long-term equilibrium and makes 
unit’s activation to oscillate. On the other hand, the presence of the particle promotes the 
selection of neural states that corresponds to configuration states of high visual stimulation. 
Thus, changes at the macro-level are limited while changes in the micro-level can occur. For 
another important proportion of runs the link orientation moves away from the particle 
position some proportion of the total number of simulation time-steps (in the case, 200). 
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Figure 13. Time-series for the link configuration angle Φ, the difference between link and 
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Again this happens due to homeostasis, but at particular occasions the neural state moves to 
regions of the neural states space that do not correspond to a configuration state where the 
link is aligned with the visual particle. Only in one simulation run (plotted in a blue line) the 
link is unable to fixate the particle. 
 

 
Figure 16 Time-series for the link configuration angle Φ, the difference between link and 
particle positions Δ Φ and control units activation state Xc over 500 time-steps. Neural 
controller with 8 homeostasic units. The particle is represented as a vertical red line and is 
located in random positions. 

6. Summary discussion, related work, and conclusions 
Research in Recurrent Neural Networks since Hopfield initial contribution [7] as received 
very much attention specially in exploring its properties as a model for associative memory. 
Additionally, theoretical and experimental advances in artificial intelligence and robotics 
research have identified complexity theory as a promising tool to understand how neural 
agents can self-organize to produce adaptive behavior [11]. Combining RNN models and 
behavioral research is thus a promising approach to understand cognitive systems and the 
role played by recurrent connection in the nervous system. 
In this article, we make a characterization of cognitive agents that is suggestive of how RNN 
can control embodied agents, and extend the basic formulation of RNN to include adaptive 
thresholds to model neural homeostasis. In the proposed approach, adaptive thresholds 
make neural units to move to a resting activation value although at a slower pace than main 
activation dynamics. Experimental results show that homeostasis make neural dynamics to 
produce aperiodic (chaotic) behavior and, for small networks, nearly periodic behavior. We 
showed that this can be used as a source of behavioral exploration and novelty in embodied 
neural agents. 
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Homeostasic mechanisms have been identified in the biological neural networks literature 
[16], and its behavioral relevance is being explored by other researchers [12]. The emergence 
of aperiodic behavior in recurrent neural networks as been previously advanced in literature 
[5], and fits known empirical data about animal and human brain activity [4]. Classical 
cybernetics has also identified homeostasic behavior as a key characteristic of natural and 
artificial adaptive/intelligent systems [2]. Experimental methods have been applied to study 
the role of proprioceptors in neuro-muscular control in animals and humans [6]. The 
situated AI and ALife community as also identified proprioception as an important 
mechanism in agent’s sensoriomotor coordination [9]. 
The applicability of the framework and experimental results presented in this chapter are 
wide. We have provided concrete examples in the domain of muscular control and visual 
attention, and reported some promising results. Other problem domains in cognitive 
modeling should also be considered, to see to what extent embodied neural agents and 
RNN with homeostasis provide a good experimental grounding for research in cognitive 
modeling. 
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1. Introduction 
The recent advances in the application of artificial neural networks in the biological field 
have been inspired by the functional organization of real biological structures (Draye et 
al.,1997a; Anastasio & Gad, 2007). The fascination exerted by the oculomotor system upon 
both engineers and neuroscientists have played an important role in this issue. In particular, 
since the definitive evidence of the existence of a neural integrator in the brainstem (Cheron 
et al., 1986a; Cannon & Robinson, 1987; Robinson, 1989 for a review) performing 
mathematical integration of the eye velocity into eye position signals, numerous artificial 
networks have been developed allowing a better understanding of the fundamental 
question of how the brain control movement. Such bio-mimetic strategy has recently 
permitted to elaborate different dynamic recurrent neural networks (DRNN) specifically 
dedicated to the command of humanoid robot (Tani et al., 2008). Hierarchical neural-
inspired modules have also been proposed forming cascades of forward dynamics models 
(Jordan & Rumelhart, 1992; Kawato et al., 1987; Tani, 2003) in which top-down and bottom-
up influences allowed generating behavioural primitives. This Chapter describes the main 
steps performed in the development of our DRNN from the neural integrator models to 
those applied in the field of human movement control. 

2. DRNN simulation of the oculomotor neural integrator  
The interest for neural integrator models outpaces the oculomotor field because the 
processes involved in the maintenance of eye position presents an analogy with the 
information held in short-term or working memory (Aksay et al., 2001, 2003; McCormick et 
al., 2003). When the neuron of the neural integrator persistently discharge for encoding the 



 Recurrent Neural Networks 

 

20 

Advanced Intelligence, pages 19–42. Magill, Australia: Advanced Knowledge 
International Press, 2003. 

J. P. Simão. Measuring entropy in embodied neural agents with homeostasic units: A link 
between complexity and cybernetics. 9th European Conference on Artificial Life, 2007.  

J. P. Simão. Self-perturbation and homeostasis in embodied recurrent neural networks: A 
meta-model and some explorations with mechanisms for sensorimotor 
coordination. International Conference on Artificial Neural Networks, 2007. 

S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry 
and Engineering. Perseus Books Group, 1994. 

G. Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous system. 
Nature Reviews Neuroscience, pages 97–101, 2004. 

2 

Biological Signals Identification by a Dynamic 
Recurrent Neural Network: from Oculomotor 

Neural Integrator to Complex Human 
Movements and Locomotion 

Guy CHERONa,b, Françoise LEURSa, Ana BENGOETXEAa, Ana Maria 
CEBOLLAa, Jean-Philippe DRAYEa, Pablo D’ALCANTARAa  

and Bernard DANa,c 
aLaboratory of Neurophysiology and Movement Biomechanics,  

bLaboratory of Electrophysiology, Université de Mons-Hainaut, 
cDepartment of Neurology, Hopital Universitaire des Enfants reine Fabiola, 

 Université Libre de Bruxelles,  
Belgium 

1. Introduction 
The recent advances in the application of artificial neural networks in the biological field 
have been inspired by the functional organization of real biological structures (Draye et 
al.,1997a; Anastasio & Gad, 2007). The fascination exerted by the oculomotor system upon 
both engineers and neuroscientists have played an important role in this issue. In particular, 
since the definitive evidence of the existence of a neural integrator in the brainstem (Cheron 
et al., 1986a; Cannon & Robinson, 1987; Robinson, 1989 for a review) performing 
mathematical integration of the eye velocity into eye position signals, numerous artificial 
networks have been developed allowing a better understanding of the fundamental 
question of how the brain control movement. Such bio-mimetic strategy has recently 
permitted to elaborate different dynamic recurrent neural networks (DRNN) specifically 
dedicated to the command of humanoid robot (Tani et al., 2008). Hierarchical neural-
inspired modules have also been proposed forming cascades of forward dynamics models 
(Jordan & Rumelhart, 1992; Kawato et al., 1987; Tani, 2003) in which top-down and bottom-
up influences allowed generating behavioural primitives. This Chapter describes the main 
steps performed in the development of our DRNN from the neural integrator models to 
those applied in the field of human movement control. 

2. DRNN simulation of the oculomotor neural integrator  
The interest for neural integrator models outpaces the oculomotor field because the 
processes involved in the maintenance of eye position presents an analogy with the 
information held in short-term or working memory (Aksay et al., 2001, 2003; McCormick et 
al., 2003). When the neuron of the neural integrator persistently discharge for encoding the 



 Recurrent Neural Networks 

 

22 

time-integral of the eye velocity signals during the saccade, this tonic activity may be 
interpreted as an internal memory of the eye position in space (Godaux & Cheron, 1996; 
Chan & Galiana, 2005). The analogy with working memory was thus easily accomplished 
(McCormick, 2001). 
The first neural network approach of the neural integrator was made by Cannon et al. (1983, 
1985). Their hard-wired model in which the synaptic weights were explicitly specified can 
integrate a push-pull input signal without integrating the background rates and has the 
appealing property that localized artificial lesions produced a decrease in the time constant 
of the whole network. Later, Anastasio & Robinson (1991) proposed the first learning model 
for the neural integrator. In this context, we have upgraded the Anastasio-Robinson model 
in order to work in the continuous-time domain (in opposition to the discrete-time domain). 
Additionally, we improved the biologically plausible features by (1) the introduction of a 
strong constraint on the synaptic weight and (2) the introduction of an artificial distance 
between the neurons by generating delays proportional to the proximity.  

2.1 The basic DRNN models 
The basic model is a dynamic recurrent neural network governed by the following 
equations: 

 i
i i i

dy
T    -y ( )  I

dt iF x= + +  (1) 

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit 
i, It is an external input (or bias), and xi is given by: 

 i ij j
j

x   w  y= ∑  (2) 

which is the propagation equation of the network (xi is called the total or effective input of 
the neuron, Wij is the synaptic weight between units i and j ). The time constants Ti will act 
like a relaxation process. The correction of the time constants will be included in the 
learning process in order to increase the dynamical features of the model. Introduction of Ti 
allows more complex frequential behaviour, improves the non-linearity effect of the sigmoid 
function and the memory effect of time delays (Draye et al., 1996; 1997a).  

2.2 Fixed-sign connection weights 
Traditionally, artificial network represent the synaptic weight by a real number. This 
number is modified by the learning process (often a gradient-descent kind of minimization) 
which frequently leads to a sign change at different location. This sign change is in conflict 
with biological reality and Dale’s Principle. Thus we fixed the sign of all connections by the 
introduction of a variable sij associated with every weight unit wij. The variable sij take their 
value in the set {-1,0,+1}, and in the classical network propagation equation (2), the weights 
wij are replaced by the equation: 

 ijij ws .  (3) 
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The architecture of the network is consistent with the neuroanatomy of the brainstem 
circuitry of the neural integrator devoted to saccade and vestibulo-ocular systems for the 
horizontal movements. The figure 1 illustrates the neural integrator DRNN comprising a 
fully connected hidden layer of 16 inhibitory units, two output units representing the 
motoneurons of the median and lateral rectus muscle of the left eye and two afferents inputs 
from the horizontal canal (for the vestibulo-ocular reflex) or from the eye-velocity saccade 
generator.  
 

 

 
Figure 1. Architecture of the DRNN dedicated to the neural integrator. (A) The 16 
interneurons of the hidden layer are divided into two groups of 8 and are fully connected 
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with inhibitory connections (only the connections from interneuron 1 are depicted). Each 
interneuron is connected to both motoneurons (output of the network) with a connection 
whose sign is indicated in the figure. The signals inputs are represented by pulses 
representing eye-velocity commands of opposite signs. (B) 3D surface plots of the weights 
distribution. The 16 X 16 weights surface were treated with cubic splines for better 
visualization. Values of the weights are plotted versus indexes i and j. Even if the lateral 
layer has inhibitory connections (except for c), the weights are plotted as positives values. a, 
b Two clustered structures of the weights distribution. c, The weights distribution of the 
Arnold-Robinson network trained with the general supervisor without any constraints on 
the weight signs. d, The weights distribution in which each interneuron has its own muscle. 
(modified from Draye et al. 1997a Biol Cybern) 

2.3 Artificial distance between neurons 
Classically, the distances between an artificial neuron labelled 6 and two other neurons 
labelled 7 and 16 are the same. In order to introduce a real notion of distance in our device 
(between digits that are memorized in computer memory) we generate delays between 
these units. The delay between neurons Ni and Nj is defined in order to keep the 
proportionality to the difference of index i j− . By this way, the information is artificially 

delayed during its propagation in the network. It will take i j− time steps for the 

information from neuron Ni to reach the neuron Nj. 

2.4 Numerical discretization of the continuous-time model 
The discrete-time model with a step Δt was defined as: 

 ( ) (1 ) ( ) ( ( ))i i i

t ty t t y t F x t
T T
Δ Δ

+ Δ = − ⋅ + ⋅  (4) 

where  

 ( ) ( )i ij j
j

x t t w y t+ Δ = ⋅∑  (5) 

 

where we assume that the terms Ii(t)[see (1)] has been replaced by adaptative weights w0i 
connected to a fixed input which is set to 1. The discretized equation (5) becomes: 

 
tan

( ) ( )i ji ji j
j

Artificialdis ceFixedsign

x t t s w y t i j t∗+ Δ = ⋅ ⋅ ⎡ − − ⋅Δ ⎤⎣ ⎦∑  (6) 

 

For the learning we introduced a general supervisor responsible for the modifications of the 
network weights wij. In this particular case of the oculomotor integrator simulation, the sign 
of the connections must be take into account and strictly conserved. This general supervisor 
continuously computes the amount of the positional deviation (corresponding to the retinal 
slip) and uses it as an error signal to minimize. The Levenberg-Marquardt minimization 
technique has been used. The training of the network was done with pulse signals of 50 ms 
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of duration. After this phase the network produces a position signal compatible with the 
physiological behavior of the oculomotor neural integrator presenting a time constant of 20s. 

2.5 Emergence of clusters  
The DRNN was trained a great number of times and each time a clustered structure of the 
type illustrated in the 3D weights distribution map has emerged (Fig. 1B). A cluster is a 
region of large weights between a particular group of neurons of index i centred on i* and 
another group of neurons j centred on j*, where the point [i*, j*] is considered as the “centre” 
of the cluster. The interpretation of a cluster is the following: if the connection weight wij 
between two hidden units Ni and Nj is high, the probability is high that the connection weight 
wj(i+1) between one of the neighbours of the source neuron Ni+1 and Nj is large. The same 
conclusion can be made for the weight w(j+i)I between Ni and one of the neighbours of the 
destination neuron Nj+1. The mathematical description of the cluster was developed in Draye 
et al., 1997a. The process of emergence of such clusters during the training phase remains 
unknown. However, we have studied the conditions for this emergence. Clusters appeared 
when (1) the sign of the connections was fixed, (2) a lateral inhibitory layer of interneurons, 
(3) the introduction of an artificial distance between these units and (4) a convergence of 
information from the hidden layer to the motoneurons. Indeed, when there are no 
constraints on the weights sign and no delay between the units, there is no clustering 
structure in the weight distribution (Fig. 1B,c). When we suppressed the convergence of the 
hidden units on the 2 motoneurons (each interneuron was in this case linked to a muscle), 
organization in clusters did not appeared anymore (Fig. 1B,d). As we have found that the 
behaviour (represented by their phase value when sinusoidal input were used) of the units 
participating to a same cluster was the same (e.g. units presenting eye position sensitivity) 
(Draye et al., 1997a), an interesting analogy between the artificial DRNN integrator and the 
electrophysiological recordings can be made. For example, clusters of position neurons have 
been found in the neural integrator of the cat (Delgado-Garcia et al., 1989; Escudero et al., 
1992, 1996; Godaux & Cheron, 1996). We can thus conclude that emergence of clusters in a 
DRNN performing a well-defined mathematical task (here a temporal integration) is due to 
computational constraints with a restricted space of solutions. This also suggests that 
information processing constraints could be a plausible factor inducing the emergence of 
iterated patterns in biological neural networks. 

3. The DRNN application in the field of human movement control 
3.1 Introduction 
In human, the electromyographic activity (EMG) is the only non-invasively accessible signal 
directly related to the final command of movement. EMG signal, though not ideal, is a 
reasonable reflection of the firing rate of a motoneuronal pool (Soechting & Flanders, 1997), 
and the analysis of rectified EMG envelopes of multiple muscles may reveal the basic motor 
coordination dynamics (Scholz & Kelso, 1990; Cheron et al., 1996; Bengoetxea et al., 2008). 
Our DRNN approach has been firstly applied to the problem of identification of the 
relationship between EMG signals of the shoulder muscles and the corresponding 
kinematics of the arm. This identification task is quite complex because the state variables of 
the system are unknown and identification has to be carried out using only input–output 
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data. Moreover, the EMG–motion relationship identification task is highly nonlinear. This 
latter fact complicates the task because it is well known that even in the linear case where 
the state variables are unknown, a unique parameterization of the system no longer exists 
(Kalman et al., 1969). The success of nonlinear identification techniques therefore strongly 
depends upon specific parameterizations used (Wang, 1993). 

3.2 Methodological adaptations  
The network defined by (1) can be trained using different learning algorithms; the learning 
algorithm tunes the free parameters to minimize an error measure which is computed as the 
temporal integration between the real curve and the learned curve. The most famous ones 
are the real-time recurrent learning algorithm presented by Williams & Zipser (1989) and 
the time-dependent recurrent backpropagation algorithm derived by Pearlmutter (1989, 
1995). The reader can find more details about the learning algorithm in Pearlmutter (1995), 
Draye et al. (1996, 1997a,c).  
In order to make the temporal behaviour of the network explicit, an error function is defined 
as: 
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where t0 and t1 give the time interval during which the correction process occurs. The 
function q( y(t), t) is the cost function at time t which depends on the vector of the neurone 
activations y and on time. We then introduce new variables pi (called adjoint variables) that 
will be determined by the following system of differential equations:  
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with boundary conditions pi (t1)=0. After the introduction of these new variables, we can 
derive the learning equations: 
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The training is supervised; involving learning rule adaptations of synaptic weights and time 
constant of each unit (see for more details, Draye et al., 1996). Due to the integration of the 
system of (8) backward through time, this algorithm is sometimes called ‘backpropagation 
through time’. In order to reduce the time of the learning process, the acceleration method of 
Silva & Almeida, (1990) was used, where each weight and time constant has its own 
adaptative learning rate.  
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Figure 2. Input-output organization of the DRNN. In this configuration the inputs consist of 
seven full-wave rectified EMG signals (four of them are depicted). The outputs are the Y and 
Z coordinates of the index marker during the drawing of the figure eight. The position of the 
subject and the reference axis are shown on the upper right side. This figurative movement 
is characterized by two main components in the vertical direction (Y axis-down and up) and 
by four main components in the horizontal direction (Z axis-right, left, right, and left). In the 
upper-right inset, superimposition of the experimental trajectory recorded by the ELITE 
system (thin line) and the simulated curve generated by the DRNN (thick lines). (Adapted 
from Cheron et al., 1996 IEEE) 
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1995). The reader can find more details about the learning algorithm in Pearlmutter (1995), 
Draye et al. (1996, 1997a,c).  
In order to make the temporal behaviour of the network explicit, an error function is defined 
as: 
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where t0 and t1 give the time interval during which the correction process occurs. The 
function q( y(t), t) is the cost function at time t which depends on the vector of the neurone 
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will be determined by the following system of differential equations:  
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with boundary conditions pi (t1)=0. After the introduction of these new variables, we can 
derive the learning equations: 
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The training is supervised; involving learning rule adaptations of synaptic weights and time 
constant of each unit (see for more details, Draye et al., 1996). Due to the integration of the 
system of (8) backward through time, this algorithm is sometimes called ‘backpropagation 
through time’. In order to reduce the time of the learning process, the acceleration method of 
Silva & Almeida, (1990) was used, where each weight and time constant has its own 
adaptative learning rate.  
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Figure 2. Input-output organization of the DRNN. In this configuration the inputs consist of 
seven full-wave rectified EMG signals (four of them are depicted). The outputs are the Y and 
Z coordinates of the index marker during the drawing of the figure eight. The position of the 
subject and the reference axis are shown on the upper right side. This figurative movement 
is characterized by two main components in the vertical direction (Y axis-down and up) and 
by four main components in the horizontal direction (Z axis-right, left, right, and left). In the 
upper-right inset, superimposition of the experimental trajectory recorded by the ELITE 
system (thin line) and the simulated curve generated by the DRNN (thick lines). (Adapted 
from Cheron et al., 1996 IEEE) 
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3.3 EMG and movements recordings 
In all experimental situations explored by our group, the DRNN was trained to reproduce 
the movement performed by the subject in response to the EMG signals as depicted in Fig. 2. 
In a first set of studies (Cheron et al., 1996; Draye et al., 2002; Bengoetxea et al., 2005), the 
subjects were asked to draw as fast as possible figures ‘eight’ with the right extended arm in 
free space (the initial directions of the movements were up–right, up–left, down–left, and 
down–right, in that order). We have to note that in this case the kinematics data are given by 
the position signals of the index finger (the outputs of the DRNN were the vertical and the 
horizontal position of the index). 
In a second set of studies (Cheron et al., 2007) the subjects were asked to perform ‘as fast as 
possible’ flexion movements of the elbow in the vertical plane. In this case the angular 
acceleration of the elbow was used as the output. In the third set of experiments the subjects 
locomotion was recorded (Cheron et al., 2003; Leurs et al., 2005) and the DRNN presented 3 
different output signals corresponding to the kinematics (elevation angle) of the thigh, 
shank and foot.  
These different movements were recorded and analyzed using the optoelectronic ELITE 
system including two to six TV cameras working at a sampling rate of 100 Hz (BTS, Milano, 
Italy). Surface EMG patterns were recorded using pairs of silver–silver-chloride surface 
electrode and measured using telemetry. Raw EMG signals (differential detection) were 
amplified (1000 times) and band-pass filtered (10–2000 Hz). After this, the EMGs were 
digitized at 2 kHz, full-wave rectified and smoothed by means of a third-order averaging 
filter with a time constant of 20 ms. The following muscles were recorded during the figure-
eight movement and the elbow flexion: posterior deltoid external and internal (PDE and 
PDI), anterior deltoid (AD), median deltoid (MD), pectoralis major superior and inferior 
(PMS and PMI), latissimus dorsi (LD), biceps and triceps brachii. For the locomotion: rectus 
femoris (RF), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius 
lateral (GL), soleus (SOL). The basic mapping between EMG signals input and kinematics 
output is illustrated in the figure 2 during the execution of the figure eight movement. The 
superimposition of the real (experimental) and simulated movement well illustrated the 
DRNN performance.  

3.4 From DRNN performance to biological plausibility 
For each type of the movement studied, the DRNN has successfully learned the task and 
was able to reproduce correct output signals with the same type of unlearned EMG signals 
as input. The learning performance was firstly examined on-line by inspection of the error 
curve as those illustrated in the case of walking movement (Fig. 3A) (Cheron et al., 2003). 
Successful learning was commonly ascertained on the basis of the comparison between the 
DRNN output and the actual output (provided by experimental data). Figure 3 illustrates 
the superimposition of these data (Fig. 3B-D) when the training has reached an error value 
of 0.001. The learning process (performed in this case by means of 35 fully connected units) 
was carried out for 5000 iterations which takes about 5 min on a Intel Core2 at 2 GHz 
In order to test the physiological plausibility of the DRNN identification, the basic idea was 
to compare the angular directional change induced by artificial EMG suppression or 
potentiation of a single muscle with the physiological knowledge of the pulling direction of 
the muscle. This method is illustrated for the figure eight movement where a small artificial 
lesion was performed on the first burst of the PMI muscle.  In this case, the last part of this  
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Figure. 3. Assessment of successful learning. (A) Error curve of one learning trial reaching 
an error value of 0.001 after 5000 iterations. (B, C and D) Superimposition of experimental 
(continuous line ) and DRNN (pointed line) output signals when training reaches an error 
value of 0.001. (with permission of Elsevier, Cheron et al. 2003 J Neurosci Meth) 
 

burst (Fig. 4 a) has been cut off during 50 ms. This altered signal, and the six other unaltered 
EMG signals are fed to the DRNN previously trained with the normal one. The resulting 
trajectory is compared to the normal one (Fig. 4 b). This shows that in this case the arm is not 
able to reach the lower part of the normal trajectory, which is compatible with the 
physiological action of the PMI acting as extensor-flexor of the shoulder. The quantification 
of these effects was performed by the computation of the error vector of the arm velocity 
(Fig. 4 c). For the majority of these lesion experiments performed in the EMG signals of 
different muscles the direction of the error vector coincided with the preferential field of 
activation of the corresponding muscle (Cheron et al., 1996). In this context the treatment of 
the EMG signals by means of different biological filters (Hill-type muscle model) including 
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tension-length and force-velocity relationships of muscle-tendon actuators can provide a 
good approximation of muscle force and facilitate the DRNN learning (Draye et al., 1997b). 
However, contamination of the original neuronal input (raw EMG) by output kinematics-
related data (muscle length changes) would bias the spontaneous emergence of multiple 
attractor states linked to the basic input–output mapping. 

 
Figure 4. Artificial lesion of the EMG input in order to test the physiological plausibility of 
the DRNN. (a) Small lesion of 50 ms of duration on the EMG signal recorded on the PMI. (b) 
Superimposition of the normal and altered trajectories. (c) Velocity vectors of the normal 
and altered trajectories. The error velocity vectors are obtained by the difference between 
the preceding ones. (From Cheron et al.,1996 IEEE). 
 

The physiological plausibility of our DRNN methods has recently be tested for the 
identification of the triphasic EMG patterns sub serving the execution of ballistic movements 
(Cheron & Godaux, 1986b). This pattern comprise a first burst of activity in agonist muscle 
(AG1) followed by a burst in the antagonist muscle (ANT) and again by second burst in the 
agonist (AG2). Figure 5 shows that the DRNN is able to perfectly reproduce the acceleration 
profile of the ballistic movements. The physiological plausibility was tested on all the 
networks that reached an error level below 0.001 by selectively increasing the amplitude of 
each burst of the triphasic pattern and evaluating the effects on the simulated accelerating 
profile. Nineteen percent of these simulations reproduced the physiological action 
classically attributed to the 3 EMG bursts: AG1 increase showed an increase of the first 
accelerating pulse, ANT an increase of the braking pulse and AG2 an increase of the 
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clamping pulse. Another important result was that the DRNN also recognized the 
physiological function of the time interval between AG1 and ANT, reproducing the linear 
relationship between this time interval and movement amplitude (Fig. 6). Experimental 
(Cheron & Godaux, 1986b) and clinical evidence from cerebellar patients (Manto et al., 1995) 
demonstrated that this time interval is one of the main parameters underlying hypermetria, 
the other parameter being impaired control of ANT amplitude when inertia is increased. 
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Figure 5. A, Input-output configuration of the DRNN, symbolised by the ring in the central 
box, with the triphasic EMG pattern as the input and the angular acceleration of the elbow 
(ACC) used as output. The experimental (grey) and simulated (black) acceleration curves 
are superimposed. B, DRNN fully connected architecture is represented in case of only 13 
artificial neurons (10 hidden neurons, H1-H10; 2 input neurons, I and II, and one output 
neuron, OUT1).(Modified from Cheron et al., 2007 Neurosci. Let) 
 

If the biomechanical knowledge about effect of artificial modifications of the EMG profiles is 
easily accessible for mono-articular muscles, it is less straightforward for the pluri-articular 
muscles. In the latter, the muscle force can be involved in a force regulation process for 
which the directional action is not directly defined by the pulling direction of the muscle. 
Moreover, dynamical coupling between the three joint segments can be implicated in the 
evoked movement. For example, in the figure 7 we illustrates the effect of SOL and TA 
artificial potentiation applied throughout the walking sequence on the sagittal lower limb 
kinogram over two steps. Whereas the former results in digitigrade gait (explained by the 
pulling action of SOL) with increased knee flexion (explained by a coupling action) more 
marked during the swing phase, the latter results in increased ankle dorsiflexion (walking 
on the heel explained by the pulling action of TA) and knee hyperextension (coupling 
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action) more marked during the stance phase. The implications of such complex dynamical 
simulations of biomechanics and muscle coordination in human walking have been recently 
revisited by Zajac et al. (2003). 
 

10
 m

V

70 ms

100 ms

30
00

 °
/s

²

A

C

B

20°
100ms

A
ng

ul
ar

 a
m

pl
itu

de
 (°

)

+20 ms

+40 ms
+60 ms

60 ms

20 60 100 140

20

40

60

80

100

180
BI TRI onset latency interval (ms)  

 

Figure 6. Simulation of AG1-ANT time interval increase on movement amplitude. A, 
example of a time shift of ANT burst (delayed from 60 ms, grey shading of ANT burst 
superimposed to the experimental pattern). In the left side, the corresponding ACC curves 
are superimposed (simulated curve in pointed line and experimental curve in continuous 
line). B, progressive increase of angular amplitude when the AG1-ANT interval is increased 
from 20 ms. C, AG1-ANT time interval and the related movement amplitude. 
Superimposition of the experimental relationship (the mean and SD are represented by the 
centre and the borders of the grey area, respectively) and the DRNN simulated data (open 
circles). (From Cheron et al., 2007 Neurosci. Let) 
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Figure 7. (A–C) Sagittal stick diagrams of the lower limb kinematics obtained after DRNN 
learning of normal locomotion (A) and after artificial EMG potentiation of SOL (B) and TA 
(C) muscles. (From Cheron et al., 2003 J Neurosc Meth, copyright Elsevier) 

4. DRNN with modular architecture 
4.1 Introduction of position and inertial subnetworks 
We modified the structure of our neural network in order to cope with one of the main 
drawbacks of trained neural networks: the ‘‘solution’’ appears as a black box from which it 
is difficult to retrieve any information. For this we modified the network architecture in 
order to include two distinct sets of output neurons: one set related to posture and the other 
one related to inertia. The postural–output neurons were trained to produce position 
reference signals, i.e., postural-related data. The inertial–output neurons were trained to 
produce inertial related data: acceleration signals. The input neurons remain unchanged: 
they feed the network with the EMG signals. Postural output neurons are fed by 20 fully 
connected neurons which form a subnetwork that will be called ‘‘the postural subnetwork’’ 
(its neurons are labeled ‘‘1’’ to ‘‘20’’ in Fig. 2). Similarly, inertial–output neurons are fed by 
another set of 20 fully connected neurons which form the ‘‘inertial subnetwork’’ (its neurons 
are labeled ‘‘21’’ to ‘‘40’’ on Fig. 8). 
We imposed a communication channel between both ‘‘sub-networks’’ This consists of 40 
interconnections between corresponding neural units. In other words, the learning 
algorithm is allowed to adapt the interconnection weights between neurons 1 and 21 (and 
accordingly between 21 and 1), 2 and 22 (22 and 2), . . ., 19 and 39 (39 and 19), and finally 20 
and 40 (40 and 20). These weights are shown as dashed lines in Fig. 8. In this configuration, 
the entire network has 1172 free parameters (interconnection weights and time constants). 
The modified architecture as presented above is trained as a single homogeneous network 
which includes seven input neurons (EMGs) and four output neurons (postural Y and Z, 
inertial Y and Z). The error evaluation criterion is the same for all four output neurons. 



 Recurrent Neural Networks 

 

32 

action) more marked during the stance phase. The implications of such complex dynamical 
simulations of biomechanics and muscle coordination in human walking have been recently 
revisited by Zajac et al. (2003). 
 

10
 m

V

70 ms

100 ms

30
00

 °
/s

²

A

C

B

20°
100ms

A
ng

ul
ar

 a
m

pl
itu

de
 (°

)

+20 ms

+40 ms
+60 ms

60 ms

20 60 100 140

20

40

60

80

100

180
BI TRI onset latency interval (ms)  

 

Figure 6. Simulation of AG1-ANT time interval increase on movement amplitude. A, 
example of a time shift of ANT burst (delayed from 60 ms, grey shading of ANT burst 
superimposed to the experimental pattern). In the left side, the corresponding ACC curves 
are superimposed (simulated curve in pointed line and experimental curve in continuous 
line). B, progressive increase of angular amplitude when the AG1-ANT interval is increased 
from 20 ms. C, AG1-ANT time interval and the related movement amplitude. 
Superimposition of the experimental relationship (the mean and SD are represented by the 
centre and the borders of the grey area, respectively) and the DRNN simulated data (open 
circles). (From Cheron et al., 2007 Neurosci. Let) 

Biological Signals Identification by a Dynamic Recurrent Neural Network: from Oculomotor Neural 
Integrator to Complex Human Movements and Locomotion 

 

33 

 
 

Figure 7. (A–C) Sagittal stick diagrams of the lower limb kinematics obtained after DRNN 
learning of normal locomotion (A) and after artificial EMG potentiation of SOL (B) and TA 
(C) muscles. (From Cheron et al., 2003 J Neurosc Meth, copyright Elsevier) 

4. DRNN with modular architecture 
4.1 Introduction of position and inertial subnetworks 
We modified the structure of our neural network in order to cope with one of the main 
drawbacks of trained neural networks: the ‘‘solution’’ appears as a black box from which it 
is difficult to retrieve any information. For this we modified the network architecture in 
order to include two distinct sets of output neurons: one set related to posture and the other 
one related to inertia. The postural–output neurons were trained to produce position 
reference signals, i.e., postural-related data. The inertial–output neurons were trained to 
produce inertial related data: acceleration signals. The input neurons remain unchanged: 
they feed the network with the EMG signals. Postural output neurons are fed by 20 fully 
connected neurons which form a subnetwork that will be called ‘‘the postural subnetwork’’ 
(its neurons are labeled ‘‘1’’ to ‘‘20’’ in Fig. 2). Similarly, inertial–output neurons are fed by 
another set of 20 fully connected neurons which form the ‘‘inertial subnetwork’’ (its neurons 
are labeled ‘‘21’’ to ‘‘40’’ on Fig. 8). 
We imposed a communication channel between both ‘‘sub-networks’’ This consists of 40 
interconnections between corresponding neural units. In other words, the learning 
algorithm is allowed to adapt the interconnection weights between neurons 1 and 21 (and 
accordingly between 21 and 1), 2 and 22 (22 and 2), . . ., 19 and 39 (39 and 19), and finally 20 
and 40 (40 and 20). These weights are shown as dashed lines in Fig. 8. In this configuration, 
the entire network has 1172 free parameters (interconnection weights and time constants). 
The modified architecture as presented above is trained as a single homogeneous network 
which includes seven input neurons (EMGs) and four output neurons (postural Y and Z, 
inertial Y and Z). The error evaluation criterion is the same for all four output neurons. 



 Recurrent Neural Networks 

 

34 

These four identical error signals are used by the TDRBP algorithm to adapt all the free 
parameters of the network. This type of modular DRNN has been used for the figure eight 
movement and for the straightening-up movement. The architecture of the network in the 
latter case is slightly different since the network exhibits eight EMG input signals (versus 
seven) and three output neurons (versus two). Each subnetwork still consists of 20 neurons. 
The postural subnetwork generates the angular position signals of the three joints, whereas 
the inertial subnetwork provides their angular acceleration signals. This network has 1192 
free parameters. 
 

 
Figure 8. Modular neural architecture with two subnetworks: the first one is related to 
posture and generates position signals, the second one is related to inertia and generates 
acceleration signals. The network shows the simulation network for the figure-eight 
movement case (seven EMG input signals and two kinematics output signals). Note that 
only some representative connections are depicted (e.g., the input connections are only 
depicted from input neurons 1 to 7 to neuron 1; the same connections exist between all the 
input neurons and neurons 2–40). The dashed lines show the interconnections 
corresponding to the communication channels between both subnetworks. Pos, position; 
Acc, acceleration. (From Draye et al., 2002 Biol. Cyber)  
 

In order to quantify the efficiency of the 40-neuron modular architecture, we compared its 
performance with the same network without communication channels (in this case, the error 
signals measured on the postural output signals only affect the postural subnet, and the 
error signals measured on the inertial output only affect the inertial subnet). We trained this 
network for 20 times (each new training process started with a new initial random weight 
distribution). The corresponding error curves were averaged over these 20 learning phases. 
We have found that the modular network (40-neuron with two communicating 
subnetworks) gives much better results than the two independent 20 neurons (Fig. 9). 
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Figure 9. Averaged error curve for the 40-neuron modular architecture (solid line) compared 
to the cumulative averaged error curves of two independently trained 20-neuron networks 
(dashed line). 
4.2. A Gaussian factor for the artificial distance 
In order to improve the biologically plausible features and as previously explained, we 
decided to introduce a notion of distance in the network using a Gaussian factor αG that 
modulates all the interconnection weights (from neuron i to j) is replaced by αGwij where αG 
is computed using the absolute value of the difference between the indexes i and j (see 
Draye et al., 2002 for more details). The impact of a particular neuron is greater for neurons 
with close indexes. We assumed that the hidden neurons were distributed along a 
circumference; this means that the last hidden neuron (neuron 18) has two nearest 
neighbors: neurons 17 and 1. Thus, the largest distance between two neurons is 9. In contrast 
to the artificial distance presented in the simulation of the neural integrator (Draye et al., 
1997a) which is based on temporal concepts, the distance presented for the identification of 
EMGs-movement simulation was based on spatial aspects. 

4.2 Emergence of a reduced modular architecture 
Following the introduction of an artificial distance a reduced modular architecture has 
emerged. When only the free parameters that were set to a nonzero value by the learning 
algorithm have been taken into account, a reduced architecture appeared. It has 524 free 
parameters (compared with the original configuration of 1172 parameters). Moreover, after 
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These four identical error signals are used by the TDRBP algorithm to adapt all the free 
parameters of the network. This type of modular DRNN has been used for the figure eight 
movement and for the straightening-up movement. The architecture of the network in the 
latter case is slightly different since the network exhibits eight EMG input signals (versus 
seven) and three output neurons (versus two). Each subnetwork still consists of 20 neurons. 
The postural subnetwork generates the angular position signals of the three joints, whereas 
the inertial subnetwork provides their angular acceleration signals. This network has 1192 
free parameters. 
 

 
Figure 8. Modular neural architecture with two subnetworks: the first one is related to 
posture and generates position signals, the second one is related to inertia and generates 
acceleration signals. The network shows the simulation network for the figure-eight 
movement case (seven EMG input signals and two kinematics output signals). Note that 
only some representative connections are depicted (e.g., the input connections are only 
depicted from input neurons 1 to 7 to neuron 1; the same connections exist between all the 
input neurons and neurons 2–40). The dashed lines show the interconnections 
corresponding to the communication channels between both subnetworks. Pos, position; 
Acc, acceleration. (From Draye et al., 2002 Biol. Cyber)  
 

In order to quantify the efficiency of the 40-neuron modular architecture, we compared its 
performance with the same network without communication channels (in this case, the error 
signals measured on the postural output signals only affect the postural subnet, and the 
error signals measured on the inertial output only affect the inertial subnet). We trained this 
network for 20 times (each new training process started with a new initial random weight 
distribution). The corresponding error curves were averaged over these 20 learning phases. 
We have found that the modular network (40-neuron with two communicating 
subnetworks) gives much better results than the two independent 20 neurons (Fig. 9). 
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Figure 9. Averaged error curve for the 40-neuron modular architecture (solid line) compared 
to the cumulative averaged error curves of two independently trained 20-neuron networks 
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several attempts, we found out that the minimal architecture to solve the first identification 
task (figure–eight movement) is composed of 20 neurons (two ten-neuron subnetworks). 
This model includes 244 free parameters. The same network (with eight input neurons and 
three output units) can solve the second task (standing-up movement); it consists of 274 free 
parameters. In summary, we showed that with the minimal architecture, the analysis of the 
network is much easier; there was less redundancy in the network and the number of free 
parameters has decreased drastically (a factor of about 5!). 

4.3 Emergence of inhibitory feedback connections  
We have demonstrated that the reduced architecture always exhibited strong feedback 
inhibitory interconnections between the two sub-network units. The signs of these feedback 
connection weights have been selected by the learning algorithm. We also noticed that the 
learning algorithm was more efficient when we initialized the feedback connection weights 
with negative values prior to the training phase. The emergence of a reduced lateral 
inhibitory output layer between both subnetworks is consistent with the model proposed by 
Cannon & Robinson (1983, 1985) to simulate the neural integrator of the human oculomotor 
system. It is interesting to point out the fact that in our case, the lateral inhibitory 
connections appeared during the learning process (and was not forced analytically as in 
Cannon & Robinson (1983, 1985). 

4.4 Time-constant and tonic-phasic behaviour of the hidden neurons  
The minimal aspect of the reduced DRNN organization allowed studying the distribution of 
the time constant and the temporal evolutions of the hidden neurons’ output. A clear 
distinction has appeared between the time constants of the position subnetwork units and 
the inertial subnetwork ones. 
This bimodal distribution of the time constants is depicted in Fig. 10 A,B for the figure eight 
and the straightening-up movement, respectively. These values were averaged over ten 
different trained networks for each task. The difference between the values of the 
subnetwork’s time constants proves that the individual role of each subnetwork (postural 
and inertial) has been clearly identified. A higher time-constant mean value in the postural 
subnetwork is compatible with the task assigned to this subnetwork. In the same line of 
evidence, we noticed that some the hidden neurons exhibited a phasic behavior (Fig. 10C) 
while others present a tonic behavior (Fig. 10D). This result is in accordance with the 
existence of tonic and phasic neurons found in different brain nuclei (such as in the 
oculomotor system). For example, in the paramedian reticular formation, the eye velocity 
signal (excitatory or inhibitory burst neurons, Henn et al., 1982) are phasic neurons whereas 
a group of tonic neurons encode a pure position-related signal in the prepositus hypoglossi 
nucleus (Escudero & Delgado-Garcia, 1988; Escudero et al., 1992; Godaux & Cheron, 1996). 
The coding of movement parameters of the premotoneuronal cells recorded in the motor 
cortex of behaving animals (Fetz et al. 1989) and in the red nucleus revealed that they exhibit 
at least a pure tonic, a phasic-tonic, or a pure phasic discharge pattern during a ramp-and-
hold movement (Fetz, 1992). It is interesting to note that a comparable separation of phasic 
and tonic drives was obtained by principal component analysis of raw EMG signals 
(Flanders, 1991).  Although, the phasic and tonic EMG patterns are mixed in the raw EMG 
signals, they might be implemented by distinct neural subnetworks as suggested by Pelligrini  
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Figure 10. Histograms of the time constants in both postural and inertial subnetworks in the 
cases of the figure-eight movement (top) and of the standing-up movement (bottom). 
Temporal evolutions of the hidden neurons output: a,b The output signals of a t phasic 
hidden neuron and a tonic neuron. 
 

& Flanders (1996). This idea is indirectly confirmed by the present result: The fact that the 
DRNN mapping between raw EMG signals and the related human movements gives rise to 
phasic and tonic artificial neuronal substrates is consistent with the neurophysiology of 
movement control. 
In conclusion, the physiological plausibility obtained by our DRNN approach in different 
aspect of movement control might be of benefit for the potential use of the DRNN in 
prosthetic control (Craelius, 2002). In particular, the emergence of artificial structures within 
the DRNN architecture resembling to biological network could be used as a dynamically 
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adaptive interface between EMG signals from residual muscles and artificial actuators 
(Cheron et al., 2003). New DRNNs would be dedicated to a larger repertoire of learned 
movements with generalized properties for the building of a patient-specific dynamical 
memory of motor actions. 
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1. Introduction      
Productivity is the defining property of a natural language. Any native speaker of a natural 
language utters a sentence that has never been heard and understands a sentence that has 
been heard for the first time. Chomsky claimed that the purpose of linguistics is to account 
for the productivity of natural languages (Chomsky, 1980).  
The learnability of a productive language by computational mechanisms is hindered by the 
inherent nature of the language. For many years, researchers have attempted to devise a 
learning mechanism by which productive languages can be learnt in a manner similar to 
that adopted by a child learning from scratch or a student learning a second language. 
However, there are many problems resisted to be solved. Productivity is one of their causes.  
This chapter is devoted to efforts undertaken to understand productivity in terms of 
language learning by means of simple but powerful methods such as neural networks, 
because neural networks are the simplest (maybe over-simplified) models of our brain 
mechanism we have obtained thus far.  
It is natural to expect that a recurrent neural network (RNN) among them is capable of 
learning languages, specifically a subset of a natural language, because a sentence is a 
sequence of words and an RNN is capable of learning sequences. 
The chapter consists of two parts, each of which is devoted to one of the two unmatched 
features of human languages—the recursive or self-embedding structure of human 
languages, and the syntactic or combinatorial systematicity of human languages. Both these 
features constitute the syntactic productivity of human languages.  

2. Linguistic productivity and learnability 
The difference between a natural language and other discrete symbolic systems is that a 
natural language is productive (Chomsky, 1959). The productivity of a language entails that 
a language is an infinite set of sentences; theoretically, the fact that a language is infinite 
refutes the learnability of a language. Strangely enough, any natural language can be 
learned by humans simply by hearing a finite number of, sometimes a very limited number 
of, sentences; furthermore, sometimes the sentences are ungrammatical (hence, they are not 
sentences linguistically), and it may not be indicated that they are ungrammatical (for 
example, refer (Pinker, 1984)).  
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If a natural language is learnable, it should be generated by some set of rules, which must be 
finite; otherwise, the language can never be learned. Gold’s well-known theorems (Gold, 
1967) state that even if the generating rules are finite, we would not be able to learn the 
language without negative examples (ungrammatical sentences).  
Although productivity is the defining property of a natural language, a language should be 
characterized better by its learnability. Productive systems are easily built by, for example, 
rewriting systems; however, a learnable productive system is prohibitively difficult to build. 
Our natural language is, though, a proof of existence of the learnable productive system. 
We could mention two key factors that consist the productivity of a language. One of the 
factors is systematicity and the other is recursiveness. Systematicity is related to the lexical 
category and recursiveness is related to the phrasal category. 
Syntactic systematicity is a property by which a valid sentence remains valid when a word 
in it is replaced with another word belonging to the same lexical category. Since a lexical 
category is one of the syntactic categories and is defined as a group of words that are 
replaceable with each other in a sentence without invalidating the grammaticality of the 
sentence, the claim is a tautology. Therefore, syntactic systematicity can be better defined as 
a property by which the syntax is described using lexical categories. The merit of having 
systematicity is that the number of categories is maintained far fewer than the size of the 
lexicon, and therefore the rules are simpler. Since a word, specifically a noun, is coined quite 
easily and infinitely, systematicity ensures that an infinite number of new sentences are 
obtained from a sentence. 
In general, systematicity is a wider concept, which has been under argument for years (for 
example, refer (Fodor & Pylyshyn, 1988) and the literatures citing it). We consider only 
syntactic systematicity, specifically weak systematicity and strong systematicity, as defined 
by Hadley (Hadley, 1994).  
Recursiveness is a property by which a syntax is (exactly or approximately) modelled by a 
set of rewriting rules in which some phrasal category is directly or indirectly defined by 
itself. By the recursive rules, we can obtain an infinite number of different and valid 
sentences from a set of finite rules and lexicons. It must be noted that in recursive function 
theory or computational theory, the concept of recursiveness includes or is equivalent to 
that of repetition, which is easily observed from the definitions of recursive functions or 
Turing machines. Recursive rules of the form A→aA or A→Aa are called regular rules; they 
are not fully qualified “recursive” rules because the rules A→aA or A→Aa represent 
repetitions. Recursive rules generally refer to rules such as A→aAb, which requires more 
than simply a finite state machine to parse the resultant sentences.  
For language generation, when we use a symbolic representation of grammar, systematicity 
and recursiveness are easy to implement, and we can observe the variety or postulated 
infiniteness of the resultant languages.  
For language learning or grammatical inference, systematicity and recursiveness pose 
challenges. We will first consider recursiveness, specifically the possibility or impossibility 
of representing recursive rules by RNNs; then, we will study recursiveness, specifically the 
possibility or impossibility of representing recursive rules by RNNs. 

3. Recursion 
In this section, we state a necessary condition: a simple RNN with two sigmoidal hidden 
units is a recognizer of the language {anbn|n > 0}, whose grammar is expressed by {S→aSb, 
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S→ab}. Further, we show that there exists a set of parameters that satisfy the above 
condition. Then, we realize the language recognizer for the type of language mentioned 
above, although the stated condition implies the instability in learning, as has been reported 
in previous studies. Furthermore, the condition, contrary to its success in implementing the 
recognizer, implies the difficulty in obtaining a recognizer for more complicated languages. 

3.1 Background 
The researches conducted on the induction of a grammar that includes a recursive or self-
embedding rule by neural networks have employed the following features: 
• simple recurrent neural networks (SRN) adopted as the basic or core mechanism 
• languages such as {anbn|n>0}, {anbncn|n>0}, which are clearly the results of, although not 

a representative of, recursive rules, adopted as target languages. 
Here, an denotes a string of n-times repetition of a character a; the language {anbn|n > 0} is 
generated by a context-free grammar {S→aSb, S→ab}, and {anbncn|n > 0} is generated by a 
context-sensitive grammar. The adoption of these simple languages as target languages is 
inevitable because it is not easy to determine whether or not sufficient generalization is 
achieved by the learning, if realistic grammars are used. 
Although these target languages were simple, it has been pointed out that they were learned 
but their grammars were not, because sufficient generalization by the learned network was 
not observed and the resultant network appeared to be almost similar to the result of rote 
learning. Further, the resultant networks were unstable in the sense that when they were 
given new training sentences, which were longer than the ones they had learned, the 
learned network changed to completely new networks that were more than simple 
refinements of the learned network. 
Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; Bodén & Blair, 2003), Rodriguez et al. 
(Rodriguez et al., 1999; Rodriguez, 2001), Chalup (Chalup & Blair, 2003), and others 
conducted investigations during exploration for the possibility of network learning of the 
languages. However, they have not succeeded in clearly stating the conditions that the 
learned networks should satisfy. 
In this section, we state a property describing SRNs with two hidden units that learned to 
recognize a language {anbn|n>0}, that is, a necessary condition for an SRN to be qualified as 
a successful language recognizer. The stated condition implies the instability in learning. We 
also show the realization of the condition and obtain the recognizer for the language. 
However, the question— if there really exists a solution—remains unanswered. 

3.2 Preliminaries  
A recurrent neural network (RNN) is a network that has recurrent connections added to a 
feed-forward network. The calculation proceeds at first for the feed-forward part and after a 
single time-unit delay for the recurrent connection part; hence, the inputs for the 
calculations in the feed-forward part are supplemented with the outputs of the recurrent 
connections. 
An RNN is considered to be a discrete time system. Starting with an initial state (initial 
outputs of the feed-forward part, i.e., outputs without external inputs), the network 
proceeds to accept the subsequent character in a string given to the external inputs, reaches 
the final state, and obtains the final external output from the final state. 
A simple recurrent network (SRN) is a simple type of RNN and has only one layer of hidden 
units in its feed-forward part. 
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Rodriguez et al. (Rodriguez et al., 1999) showed that an SRN learns languages {anbn|n > 0} 
and {anbncn|n > 0}. For {anbn|n > 0}, an SRN successfully accepted a language {anbn|0 < n ≤ 
16} after processing sentences language {anbn|0 < n ≤ 11}. They analyzed and described the 
manner in which the input sentences were processed by the SRN. However, the analysis 
was limited to the results obtained by simulations and did not proceed into indicating how 
and when the learning is possible. Moreover, the existence of the language recognizers was 
not yet shown. 
Siegelmann (Siegelmann, 1999) showed that the computational ability of an RNN is superior 
to that of a Turing machine, thereby implying that the recoginizers for the languages 
{anbn|n>0} and {anbncn| n>0} exist. However, based on unsatisfactory generalization 
obtained by the learning experiments, we would state that the possibility of learning and 
existence of realization is different or it might be the case that the solution does not exist 
seemingly contradictive to Siegelmann’s result because there is a difference in formulation: 
the output functions of the units are piecewise linear functions; the inversibility of the 
function is utilized in Siegelmann’s case and sigmoidal functions are utilized in standard 
SRN cases. It must be noted that piecewise linear functions have non-differentiable points, 
which makes them infeasible to utilize error-backpropagation algorithm.  
On the other hand, Casey (Casey, 1998) and Maass (Maass & Orponen, 1998) showed that in 
noisy environments, an RNN is as powerful as finite automaton. The results suggest that we 
should consider infinite precision computation when we have to search the possibility of 
computations by an RNN or specifically an SRN. 
In summary, the learnability of RNN and SRN recognizers for the language {anbn| n > 0} is 
not yet demonstrated, and moreover the existence of the recognizers is not yet proved. To 
conduct further research, we need to suppose that the computations performed by the RNN 
and SRN should be formulated with infinite precision, and the units should use sigmoidal 
functions. Therefore, in this research, we have adopted RNN models with infinite precision 
calculations and the sigmoidal function (tanh(x)) as the output function for the units.  
On the basis of the viewpoints mentioned above, we discuss two points in this section: a 
necessary condition for an SRN with two hidden units to be a recognizer for the language 
{anbn|n>0}, and whether or not the stated condition is sufficient to guide us to build an SRN 
language recognizer.  

3.3 Symbols and terminology 
An SRN is a simple type of RNN and its function is expressed as follows: 

 sn+1 = σ( ws ⋅ sn + wx ⋅ xn ) (1) 

 Nn( sn ) = wos ⋅ sn + woc (2) 

Here, σ is a standard sigmoid function (tanh(x) = (1 – exp(–x))/(1 + exp(–x))), which is 
applied componentwise. 
A counter is a device that stores an integer and allows +1 or −1 operation and answers yes or 
no to an inquiry if the content is 0 (0-test). A stack is a device that allows the operations push i 
(store i) and pop up (recover the last-stored content, discard it and restore the device to its 
state immediately before the corresponding push operation). Clearly, a stack is a more 
powerful device as compared to a counter; hence, if a counter is not implementable, a stack, 
too, is not implementable. 
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To represent an input or output word, we adopt a localist representation or one-hot vector, a 
vector representation in which a single element is 1 and the other elements are 0. The 
network is trained so that the sum of the squared error (difference between the actual 
output and desired output) is minimized. 
In learning experiments of languages, it is natural to assume there is no negative, i.e., 
ungrammatical sentence; therefore, we have to devise some teaching information from the 
sentences. Elman proposed to train an SRN as a predictor, i.e., to teach the network to 
predict a word when it sees a sub-string of words up to the word (refer (Elman, 1991)). By 
this method, if two possible outputs with the same frequency of occurrence for the same 
input exist in a training data, the network would learn to output the same value for two 
elements in the output with those for the other elements being 0; this is because the output 
vector should provide the minimum value of the sum of the squared error. 
For the language {anbn|n>0}, when an SRN is trained to predict the subsequent word, it 
behaves internally as a counter. Clearly, if SRN could count the number of as and bs, it 
would be able to recognize {anbn|n>0}. In fact, Rodriguez et al. (Rodriguez et al., 1999) and 
others analyzed trained networks and found that they behave like counters.  
It is clear that if a network correctly predicts the subsequent character in a string in the 
language {anbn|n>0}, we could see it as a counter, although its capability is limited. Let us 
add an auxiliary network output whose value is positive if the original network predicts 
only “a” (which happens only when the input string up to the time was anbn for some n) and 
is negative otherwise. 
The modified network behaves as if it counts up for a character “a” and counts down for 
“b,” because it outputs positive values when the number of “a”s and “b”s coincide and 
outputs negative values otherwise. However, the counting capability of the network may be 
limited because it would output any value when “a” is fed before the due number of “b”s 
are fed, that is, when a counting up action is required before the counter returns back to the 
0-state. 
As suggested by Rodriguez et al. (Rodriguez et al., 1999), we consider an SRN to be a 
dynamical system. For the terminology related to dynamical systems, specifically terms 
such as ω-limit set and stable/unstable manifold, we suggest that the readers refer to (Katok 
& Hasselblatt, 1996) or (Guckenheimer & Holmes, 1997). Concise definitions are provided in 
the Appendix of (Rodriguez et al., 1999). 
A (discrete-time) dynamical system is represented as the iteration of a function application: 
si+1 = f(si), where i∈N, si∈Rn. A point s is called a fixed point of f if f(s) = s. A point s is an 
attracting fixed point of f if s is a fixed point and there exists a neighbourhood Us around s 
such that limi→∞f i (x) = s for all x∈Us. A point s is a repelling fixed point of f if s is an 
attracting fixed point of f −1. A point s is called a periodic point of f if fn(s) = s for some n. 
A point s is a ω-limit point of x for f if limi→∞fni(x) = s for limi→∞ni = ∞. A fixed point x of f is 
hyperbolic if all of the eigenvalues of Df at x have absolute values other than one, where Df 
= ∂fi/∂xj is the Jacobian matrix of the first partial derivatives of the function f. A set D is 
invariant under f if for any s∈D, f(s)∈D.  
Theorem 1 (Stable Manifold Theorem for a Fixed Point (Guckenheimer & Holmes, 1997)) 
Let f: Rn → Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point x. Then there exist 
local stable and unstable manifolds Ws,floc(x), Wu,floc(x), tangent to the eigenspaces Es,fx, Eu,fx of 
Df at x and of corresponding dimension. Ws,floc(x) and Wu,floc(x) are as smooth as the map f, 
i.e., of class Cr.  
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16} after processing sentences language {anbn|0 < n ≤ 11}. They analyzed and described the 
manner in which the input sentences were processed by the SRN. However, the analysis 
was limited to the results obtained by simulations and did not proceed into indicating how 
and when the learning is possible. Moreover, the existence of the language recognizers was 
not yet shown. 
Siegelmann (Siegelmann, 1999) showed that the computational ability of an RNN is superior 
to that of a Turing machine, thereby implying that the recoginizers for the languages 
{anbn|n>0} and {anbncn| n>0} exist. However, based on unsatisfactory generalization 
obtained by the learning experiments, we would state that the possibility of learning and 
existence of realization is different or it might be the case that the solution does not exist 
seemingly contradictive to Siegelmann’s result because there is a difference in formulation: 
the output functions of the units are piecewise linear functions; the inversibility of the 
function is utilized in Siegelmann’s case and sigmoidal functions are utilized in standard 
SRN cases. It must be noted that piecewise linear functions have non-differentiable points, 
which makes them infeasible to utilize error-backpropagation algorithm.  
On the other hand, Casey (Casey, 1998) and Maass (Maass & Orponen, 1998) showed that in 
noisy environments, an RNN is as powerful as finite automaton. The results suggest that we 
should consider infinite precision computation when we have to search the possibility of 
computations by an RNN or specifically an SRN. 
In summary, the learnability of RNN and SRN recognizers for the language {anbn| n > 0} is 
not yet demonstrated, and moreover the existence of the recognizers is not yet proved. To 
conduct further research, we need to suppose that the computations performed by the RNN 
and SRN should be formulated with infinite precision, and the units should use sigmoidal 
functions. Therefore, in this research, we have adopted RNN models with infinite precision 
calculations and the sigmoidal function (tanh(x)) as the output function for the units.  
On the basis of the viewpoints mentioned above, we discuss two points in this section: a 
necessary condition for an SRN with two hidden units to be a recognizer for the language 
{anbn|n>0}, and whether or not the stated condition is sufficient to guide us to build an SRN 
language recognizer.  

3.3 Symbols and terminology 
An SRN is a simple type of RNN and its function is expressed as follows: 

 sn+1 = σ( ws ⋅ sn + wx ⋅ xn ) (1) 

 Nn( sn ) = wos ⋅ sn + woc (2) 

Here, σ is a standard sigmoid function (tanh(x) = (1 – exp(–x))/(1 + exp(–x))), which is 
applied componentwise. 
A counter is a device that stores an integer and allows +1 or −1 operation and answers yes or 
no to an inquiry if the content is 0 (0-test). A stack is a device that allows the operations push i 
(store i) and pop up (recover the last-stored content, discard it and restore the device to its 
state immediately before the corresponding push operation). Clearly, a stack is a more 
powerful device as compared to a counter; hence, if a counter is not implementable, a stack, 
too, is not implementable. 
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To represent an input or output word, we adopt a localist representation or one-hot vector, a 
vector representation in which a single element is 1 and the other elements are 0. The 
network is trained so that the sum of the squared error (difference between the actual 
output and desired output) is minimized. 
In learning experiments of languages, it is natural to assume there is no negative, i.e., 
ungrammatical sentence; therefore, we have to devise some teaching information from the 
sentences. Elman proposed to train an SRN as a predictor, i.e., to teach the network to 
predict a word when it sees a sub-string of words up to the word (refer (Elman, 1991)). By 
this method, if two possible outputs with the same frequency of occurrence for the same 
input exist in a training data, the network would learn to output the same value for two 
elements in the output with those for the other elements being 0; this is because the output 
vector should provide the minimum value of the sum of the squared error. 
For the language {anbn|n>0}, when an SRN is trained to predict the subsequent word, it 
behaves internally as a counter. Clearly, if SRN could count the number of as and bs, it 
would be able to recognize {anbn|n>0}. In fact, Rodriguez et al. (Rodriguez et al., 1999) and 
others analyzed trained networks and found that they behave like counters.  
It is clear that if a network correctly predicts the subsequent character in a string in the 
language {anbn|n>0}, we could see it as a counter, although its capability is limited. Let us 
add an auxiliary network output whose value is positive if the original network predicts 
only “a” (which happens only when the input string up to the time was anbn for some n) and 
is negative otherwise. 
The modified network behaves as if it counts up for a character “a” and counts down for 
“b,” because it outputs positive values when the number of “a”s and “b”s coincide and 
outputs negative values otherwise. However, the counting capability of the network may be 
limited because it would output any value when “a” is fed before the due number of “b”s 
are fed, that is, when a counting up action is required before the counter returns back to the 
0-state. 
As suggested by Rodriguez et al. (Rodriguez et al., 1999), we consider an SRN to be a 
dynamical system. For the terminology related to dynamical systems, specifically terms 
such as ω-limit set and stable/unstable manifold, we suggest that the readers refer to (Katok 
& Hasselblatt, 1996) or (Guckenheimer & Holmes, 1997). Concise definitions are provided in 
the Appendix of (Rodriguez et al., 1999). 
A (discrete-time) dynamical system is represented as the iteration of a function application: 
si+1 = f(si), where i∈N, si∈Rn. A point s is called a fixed point of f if f(s) = s. A point s is an 
attracting fixed point of f if s is a fixed point and there exists a neighbourhood Us around s 
such that limi→∞f i (x) = s for all x∈Us. A point s is a repelling fixed point of f if s is an 
attracting fixed point of f −1. A point s is called a periodic point of f if fn(s) = s for some n. 
A point s is a ω-limit point of x for f if limi→∞fni(x) = s for limi→∞ni = ∞. A fixed point x of f is 
hyperbolic if all of the eigenvalues of Df at x have absolute values other than one, where Df 
= ∂fi/∂xj is the Jacobian matrix of the first partial derivatives of the function f. A set D is 
invariant under f if for any s∈D, f(s)∈D.  
Theorem 1 (Stable Manifold Theorem for a Fixed Point (Guckenheimer & Holmes, 1997)) 
Let f: Rn → Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point x. Then there exist 
local stable and unstable manifolds Ws,floc(x), Wu,floc(x), tangent to the eigenspaces Es,fx, Eu,fx of 
Df at x and of corresponding dimension. Ws,floc(x) and Wu,floc(x) are as smooth as the map f, 
i.e., of class Cr.  
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Local stable/unstable manifolds for f are defined as follows (Corollary 6.2.5 in (Katok & 
Hasselblatt, 1996)):  

Ws,floc( q ) = { y ∈ Uq | limm→∞ dist( f m ( y ), q ) = 0 } 

 Wu,floc( q ) = { y ∈ Uq | limm→∞ dist( f −m ( y ), q ) = 0 } 
where Uq  represents the neighbourhood of q, and dist is the distance function. Then, the 
global stable and unstable manifolds for f are defined as follows: 

Ws,f( q ) = ∪i ≥ 0 f −i ( Ws,floc( q ) ) 

Wu,f( q ) = ∪i ≥ 0 f  i ( Wu,floc( q ) ) 
As defined, an SRN is a pair of a discrete-time dynamical system sn+1 = σ(ws⋅sn+wx⋅xn;) and 
an external output part Nn(sn) = wos⋅sn+woc. We simply express the former (dynamical 
system part) as sn+1 = f(sn,xn) and the external output part as h(sn). 
When an RNN (or SRN) is considered to be a counter, an input x+ plays the role of the “+1” 
count-up operation and another input x− performs the “−1” or count-down operation. For 
simplicity, hereafter, let f+ = f(⋅,x+) denote the “+1” operation and f− = f(⋅,x−) denote the “−1” 
operation. It must be noted that when the network is used as a recognizer of the language 
{anbn|n>0}, the input character “a” corresponds to x+ and “b” corresponds to x−. Further, f− is 
undefined for the point outside and on the border of the square I[−1,+1] × I[−1,+1], where 
I[−1,+1] is the closed interval [−1,+1]; however, we do not mention it for simplicity. 
D0 is a set {s|h(s) ≤ 0}, that is, a region where the counter value is 0 and which is simply 
connected when the network is an SRN because h is effectively a linear function. Let Di = 
f−−i(D0), that is, a region where the counter value is i.  
We postulate that f+(Di)⊆Di+1. This means that any point in Di is eligible for a state which 
designates that the counter content is i. This may appear to be rather demanding. An 
alternative approach would be that in which the point p corresponds to counter content c if 
and only if p = f−m1 f+p1⋅⋅⋅f−mi f+pi (s0) for a predefined s0, some mj ≥ 0 and pj ≥ 0 for 1 ≤ j ≤ i, and 
i ≥ 0 such that ∑j = 1i (pj − mj) = c. However, this approach has not resulted in a fruitful result. 
We also postulate that the closures of Di are disjoint. Since we defined Di as a closed set, the 
postulate is natural. Our consideration was to select Di to be closed. The postulate requires 
that we should maintain a margin between D0 and D1 and any other Dis. 

3.4 Necessary condition 
In this subsection, we consider only an SRN with two hidden units, i.e., all the vectors 
concerning s such as ws, sn, wos are two-dimensional vectors. 
Definition 2. Dω is the set of the accumulation points of {Di|i > 0}, i.e., s ∈ Dω iff s = limi→∞ski 
for some ski∈Dki. 
Definition 3. Pω is the set of ω-limit points of points in D0 for f+, i.e., s∈Pω iff s = limi→∞f+ki (s0) 
for some ki and s0∈D0. Qω is the set of ω-limit points of points in D0 for f−−1, i.e., s∈Qω iff s = 
limi→∞ f−−k (s0) for some ki and s0∈D0. 
With regard to the results obtained by Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; 
Bodén & Blair, 2003), Rodriguez et al. (Rodriguez et al., 1999; Rodriguez, 2001), Chalup 
(Chalup & Blair, 2003), it is natural, at least during the first consideration, to postulate that 
for any x, f+i (x) and f−i (x) do not wonder and therefore will converge to periodic points. 
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Therefore, Pω and Qω are postulated as finite sets of hyperbolic periodic points for f+ and f−, 
respectively. For simplicity in presentation, we postulate that Pω and Qω are finite sets of 
hyperbolic fixed points for f+ and f−, respectively. 
Moreover, the points in Qω are saddle points for f−; hence, we further postulate that Wu,f−loc(q) 
for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional space and their existence is 
guaranteed by Theorem 1. 
Postulate 4. We postulate that f+ (Di) ⊆ Di+1, the closures of Di are disjoint, Pω  and Qω are  
finite sets of hyperbolic fixed points for f+ and f−, respectively, and Wu,f−loc( q )  for q ∈ Qω and 
Ws,f−loc( q )  for q ∈ Qω are one-dimensional spaces. 
Lemma 5. f−−1°f+(Dω) = Dω, f−−1(Dω∩I(-1,1) × I(-1,1)) = Dω and Dω∩I(-1,1) × I(-1,1) = f−(Dω), and 
f+(Dω)⊆Dω. Pω⊆Dω and Qω⊆Dω. 
Definition 6. Wu,−1( q ) is the global unstable manifold at q ∈ Qω for f−−1, i.e., Wu,−1( q ) = 
Wu,(f−)−1( q ) = Ws,f−( q ) . 
Lemma 7. For any p ∈ Dω, any accumulation point of { f−i (p) | i > 0 } lies in Qω 
Proof. Since p lies in Dω, there exist pki∈Dki such that p = limi→∞f+ki(pki). Suppose q in Dω is the 
accumulation point stated in the theorem statement, i.e., q = limj→∞f−hj(p). We set ki to be 
sufficiently large for any hj so that pki exists in any neighbourhood of q with f−hj (p). Then, q = 
limj→∞f−hj (pki) = limj→∞ f−hj−ki (ski), where ki is a function of hj with ki > hj. Let ski = f−−ki(pki)∈D0 
and s0∈D0 be an accumulation point of {ski }. Then, since f−−1 is continuous, by setting nj = −hj 
+ ki > 0, we get q = limj→∞ f−nj(s0), i.e., q∈Qω.  
Lemma 8. Dω = ∪q∈Qω Wu,−1(q) 
Proof. Let p be any point in Dω. Since f−(Dω)⊆I[−1,1] × I[−1,1] where I[−1,1] is the closed 
interval [−1,1], i.e., f−(Dω) is bounded, and f−(Dω)⊆Dω, f−n(p) has an accumulation point q in 
Dω, which is, by Lemma 7, in Qω. Then, q is expressed as q = limj→∞f−nj(p). Since Qω is a finite 
set of a hyperbolic fixed point, q = limn→∞ f−n (p), i.e., p∈Ws,f(q) = Wu,f−1(q)=Wu,−1(q).  
Since Pω ⊆ Dω, the next theorem holds. 
Theorem 9. A point in Pω is either a point in Qω or in Wu,−1( q ) for some q ∈ Qω.  
It must be noted that since q∈Wu,−1(q), the theorem statement simply states that “If p∈Pω, 
then p∈Wu,−1(q) for some q∈Qω.” 

3.5 An Example of a recognizer 
To construct an SRN recognizer for { anbn | n>0 }, the SRN should satisfy the conditions 
stated in Theorem 9 and Postulate 4, which are summarized as follows: 
1. f+ ( Di ) ⊆ Di+1,  
2. the closures of Di are disjoint,  
3. Pω and Qω are finite sets of hyperbolic fixed points for f+ and f−, respectively,  
4. Wu,f−loc(q) for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional spaces, and  
5. if p ∈ Pω then p ∈ Wu,−1( q ) for some q ∈ Qω. 
To find a solution as simply as possible, let us try to suppose that p ∈ Pω and q ∈ Qω, that is, 
f+(p) = p and f−(q) = q. Since p cannot be the same point as q (because f−−1°f+(p) = p+ 
ws

−1⋅wx⋅(x+-x−)≠p), we have to find a way to cause p∈Wu,−1(q). 
Since it is generally very difficult to calculate stable or unstable manifolds from a function 
and its fixed point, we attempt to allow Wu,−1(q) to be a “simple” manifold; if Wu,−1(q) is 
simple, it is easy to define D0 = {x|h(x)≥0}; on the other hand, if Wu,−1(q) is not simple, a 
suitable h may not exist. 
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Local stable/unstable manifolds for f are defined as follows (Corollary 6.2.5 in (Katok & 
Hasselblatt, 1996)):  

Ws,floc( q ) = { y ∈ Uq | limm→∞ dist( f m ( y ), q ) = 0 } 

 Wu,floc( q ) = { y ∈ Uq | limm→∞ dist( f −m ( y ), q ) = 0 } 
where Uq  represents the neighbourhood of q, and dist is the distance function. Then, the 
global stable and unstable manifolds for f are defined as follows: 

Ws,f( q ) = ∪i ≥ 0 f −i ( Ws,floc( q ) ) 

Wu,f( q ) = ∪i ≥ 0 f  i ( Wu,floc( q ) ) 
As defined, an SRN is a pair of a discrete-time dynamical system sn+1 = σ(ws⋅sn+wx⋅xn;) and 
an external output part Nn(sn) = wos⋅sn+woc. We simply express the former (dynamical 
system part) as sn+1 = f(sn,xn) and the external output part as h(sn). 
When an RNN (or SRN) is considered to be a counter, an input x+ plays the role of the “+1” 
count-up operation and another input x− performs the “−1” or count-down operation. For 
simplicity, hereafter, let f+ = f(⋅,x+) denote the “+1” operation and f− = f(⋅,x−) denote the “−1” 
operation. It must be noted that when the network is used as a recognizer of the language 
{anbn|n>0}, the input character “a” corresponds to x+ and “b” corresponds to x−. Further, f− is 
undefined for the point outside and on the border of the square I[−1,+1] × I[−1,+1], where 
I[−1,+1] is the closed interval [−1,+1]; however, we do not mention it for simplicity. 
D0 is a set {s|h(s) ≤ 0}, that is, a region where the counter value is 0 and which is simply 
connected when the network is an SRN because h is effectively a linear function. Let Di = 
f−−i(D0), that is, a region where the counter value is i.  
We postulate that f+(Di)⊆Di+1. This means that any point in Di is eligible for a state which 
designates that the counter content is i. This may appear to be rather demanding. An 
alternative approach would be that in which the point p corresponds to counter content c if 
and only if p = f−m1 f+p1⋅⋅⋅f−mi f+pi (s0) for a predefined s0, some mj ≥ 0 and pj ≥ 0 for 1 ≤ j ≤ i, and 
i ≥ 0 such that ∑j = 1i (pj − mj) = c. However, this approach has not resulted in a fruitful result. 
We also postulate that the closures of Di are disjoint. Since we defined Di as a closed set, the 
postulate is natural. Our consideration was to select Di to be closed. The postulate requires 
that we should maintain a margin between D0 and D1 and any other Dis. 

3.4 Necessary condition 
In this subsection, we consider only an SRN with two hidden units, i.e., all the vectors 
concerning s such as ws, sn, wos are two-dimensional vectors. 
Definition 2. Dω is the set of the accumulation points of {Di|i > 0}, i.e., s ∈ Dω iff s = limi→∞ski 
for some ski∈Dki. 
Definition 3. Pω is the set of ω-limit points of points in D0 for f+, i.e., s∈Pω iff s = limi→∞f+ki (s0) 
for some ki and s0∈D0. Qω is the set of ω-limit points of points in D0 for f−−1, i.e., s∈Qω iff s = 
limi→∞ f−−k (s0) for some ki and s0∈D0. 
With regard to the results obtained by Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; 
Bodén & Blair, 2003), Rodriguez et al. (Rodriguez et al., 1999; Rodriguez, 2001), Chalup 
(Chalup & Blair, 2003), it is natural, at least during the first consideration, to postulate that 
for any x, f+i (x) and f−i (x) do not wonder and therefore will converge to periodic points. 
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Therefore, Pω and Qω are postulated as finite sets of hyperbolic periodic points for f+ and f−, 
respectively. For simplicity in presentation, we postulate that Pω and Qω are finite sets of 
hyperbolic fixed points for f+ and f−, respectively. 
Moreover, the points in Qω are saddle points for f−; hence, we further postulate that Wu,f−loc(q) 
for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional space and their existence is 
guaranteed by Theorem 1. 
Postulate 4. We postulate that f+ (Di) ⊆ Di+1, the closures of Di are disjoint, Pω  and Qω are  
finite sets of hyperbolic fixed points for f+ and f−, respectively, and Wu,f−loc( q )  for q ∈ Qω and 
Ws,f−loc( q )  for q ∈ Qω are one-dimensional spaces. 
Lemma 5. f−−1°f+(Dω) = Dω, f−−1(Dω∩I(-1,1) × I(-1,1)) = Dω and Dω∩I(-1,1) × I(-1,1) = f−(Dω), and 
f+(Dω)⊆Dω. Pω⊆Dω and Qω⊆Dω. 
Definition 6. Wu,−1( q ) is the global unstable manifold at q ∈ Qω for f−−1, i.e., Wu,−1( q ) = 
Wu,(f−)−1( q ) = Ws,f−( q ) . 
Lemma 7. For any p ∈ Dω, any accumulation point of { f−i (p) | i > 0 } lies in Qω 
Proof. Since p lies in Dω, there exist pki∈Dki such that p = limi→∞f+ki(pki). Suppose q in Dω is the 
accumulation point stated in the theorem statement, i.e., q = limj→∞f−hj(p). We set ki to be 
sufficiently large for any hj so that pki exists in any neighbourhood of q with f−hj (p). Then, q = 
limj→∞f−hj (pki) = limj→∞ f−hj−ki (ski), where ki is a function of hj with ki > hj. Let ski = f−−ki(pki)∈D0 
and s0∈D0 be an accumulation point of {ski }. Then, since f−−1 is continuous, by setting nj = −hj 
+ ki > 0, we get q = limj→∞ f−nj(s0), i.e., q∈Qω.  
Lemma 8. Dω = ∪q∈Qω Wu,−1(q) 
Proof. Let p be any point in Dω. Since f−(Dω)⊆I[−1,1] × I[−1,1] where I[−1,1] is the closed 
interval [−1,1], i.e., f−(Dω) is bounded, and f−(Dω)⊆Dω, f−n(p) has an accumulation point q in 
Dω, which is, by Lemma 7, in Qω. Then, q is expressed as q = limj→∞f−nj(p). Since Qω is a finite 
set of a hyperbolic fixed point, q = limn→∞ f−n (p), i.e., p∈Ws,f(q) = Wu,f−1(q)=Wu,−1(q).  
Since Pω ⊆ Dω, the next theorem holds. 
Theorem 9. A point in Pω is either a point in Qω or in Wu,−1( q ) for some q ∈ Qω.  
It must be noted that since q∈Wu,−1(q), the theorem statement simply states that “If p∈Pω, 
then p∈Wu,−1(q) for some q∈Qω.” 

3.5 An Example of a recognizer 
To construct an SRN recognizer for { anbn | n>0 }, the SRN should satisfy the conditions 
stated in Theorem 9 and Postulate 4, which are summarized as follows: 
1. f+ ( Di ) ⊆ Di+1,  
2. the closures of Di are disjoint,  
3. Pω and Qω are finite sets of hyperbolic fixed points for f+ and f−, respectively,  
4. Wu,f−loc(q) for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional spaces, and  
5. if p ∈ Pω then p ∈ Wu,−1( q ) for some q ∈ Qω. 
To find a solution as simply as possible, let us try to suppose that p ∈ Pω and q ∈ Qω, that is, 
f+(p) = p and f−(q) = q. Since p cannot be the same point as q (because f−−1°f+(p) = p+ 
ws

−1⋅wx⋅(x+-x−)≠p), we have to find a way to cause p∈Wu,−1(q). 
Since it is generally very difficult to calculate stable or unstable manifolds from a function 
and its fixed point, we attempt to allow Wu,−1(q) to be a “simple” manifold; if Wu,−1(q) is 
simple, it is easy to define D0 = {x|h(x)≥0}; on the other hand, if Wu,−1(q) is not simple, a 
suitable h may not exist. 
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We have decided that Wu,−1(q) is a line (if possible). Considering the function form f−(s) = 
σ(ws⋅s + wx⋅x−), it is not difficult to observe that the line could be one of the axes or one of 
the bisectors of the right angles at the origin (i.e., one of the lines y = x and y = −x). We have 
selected the bisector in the first (and the third) quadrant (i.e., the line y = x). q is selected as 
the origin, and p is selected arbitrarily as (0.8, 0.8). 
The condition stated in Item 4 in the above is satisfied by setting one of the two eigenvalues 
of Df− at the origin to be greater than 1 and the other eigenvalue smaller than 1. We have 
selected 1/0.6 and 1/μ for the two eigenvalues so that the conditions stated in Item 1 and 2 
in the above are satisfied by considering the eigenvalues of Df+ at p for f+. 
The design consideration that we have ignored is the design of D0 = {x|h(x)≥0}. A simple 
method is to make the boundary h(x) = 0 parallel to Wu,−1(q) for our intended q∈Qω; if we do 
so, by setting the largest eigenvalue of Df− at q to be equal to the inverse of the eigenvalue of 
Df+ at p along the normal to Wu,−1, we can obtain the points s ∈ D0, f−°f+( s ), f−2°f+2 (s),…, 
f−i°f+i(s),… that belong to {anbn|n>0} and reside at approximately equal distances from Wu,−1. 
It is apparent that the points belonging to, say, {an+1bn|n > 0} have approximately equal 
distances from Wu,−1, and this distance is different from that for {anbn|n>0} 
Let f−(x) = σ(Ax + B0), f+(x) = σ(Ax + B1). We plan to set Qω = {(0,0)}, Pω = {(0.8,0.8)}, Wu,−1 = 
{(x,y)|y = x}; the eigenvalues of the tangent space of f−−1 at (0,0) are 1/λ = 1/0.6 and 1/μ 
(where the eigenvector on y = x is expanding), and the eigenvalues of the tangent space of f+ 
at (0.8,0.8) are 1/μ and any value. Then, considering the derivatives at (0,0) and (0.8,0.8), it is 
easy to determine that 
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These give us μ=5/3, λ=0.6, B1 ≈ (1.23722, 1.23722)T. 
In Fig. 1, the left-hand side image shows the vector field of f+, where the arrows starting at 
the x end at f+(x) and the right image shows the vector field of f−. In the left-hand pane of 
Fig.2, the group of points at the centre (red) correspond to {anbn|n>0}, those at the top (blue) 
correspond to {an+1bn|n > 0}, and those at the bottom (green) correspond to {anbn+1|n > 0}. 
The initial point is set to p = (0.5,0.95) in Fig. 2. All the points correspond to n = 1 to n = 40, 
and when n grows, the points group together to points on y = −x, forming narrow stripes, 
i.e., Dn, for some n. As shown in the right-hand pane of Fig. 2, numerical computations of 
f−n°f+n are sensitive to small truncation errors. In the case of Mathematica, the points start 
straying away for n ≥ 47.  
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Fig. 1. Vector field representation of f+ (left) and f− (right) 

            
Fig. 2.  On the left-hand side, { f−n°f+n(p) | 40 ≥ n ≥ 1} (middle; red), { f−n+1°f+n(p)|40 ≥ n ≥ 1} 
(top; blue), and { f−n° f+n+1(p)|40 ≥ n ≥ 1} (bottom; green), where p = (0.5,0.95) are plotted. On 
the right side, the plots are identical to those on the left-hand side, except for 70 ≥ n ≥ 1.   
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Fig. 3. Points of {(f−°f+)n(p)|11 ≥ n ≥ 1}, where p = (0.5,0.95) are plotted over the left-hand pane 
of Fig. 2, which shows that the points do not stay in D0. The points start from p and converge 
at around (–0.8595, 0.8984). 
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We have decided that Wu,−1(q) is a line (if possible). Considering the function form f−(s) = 
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3.6 Discussion for recursiveness 
We obtained a necessary condition for an SRN to be used as a recognizer for the language 
{anbn |n > 0} by analyzing its proper behavior from the viewpoint of discrete dynamical 
systems. The stated condition supposes that the closures of Di are disjoint, f+(Di)⊆Di+1, and 
Qω is finite. 
This suggests a possibility for the implementation of the recognizer; in fact, we have 
successfully built a recognizer for the language, thereby showing that the learning problem 
of the language has at least one solution. However, it is worthwhile to be cautious. As 
shown in Fig. 3, f−°f+(p) does not return to around p unless there is no proper setting for D0 to 
which p belongs. This means that we have to “reset” the counter when it returns to the 0-
state in order to reuse it. The experimental setting used, for example, (Elman, 1990), i.e., a 
setting where a string aabbaaaabbbbab… is used is not appropriate to obtain the recognizer. 
It is suggested (but not logically derived) that the instability of any solution for learning 
occurs due to the necessity of Pω being in an unstable manifold Wu,−1(q) for some q∈Qω. Since 
Pω is an attractive fixed point in the above example, f+n(s0) for s0∈D0 approaches 
exponentially close to Pω for n. Even a small fluctuation in the position of Pω, since f+n(s0), 
too, is close to Wu,−1(q), f−n(f+n(s0)), which should be in D0, is significantly disturbed. This 
means that even if an temporary solution is close to a correct solution, due to a small 
fluctuation in the position of Pω caused by a new training data, f−n(f+n(s0)) may easily be 
pushed out of D0. 
Since Rodriguez et al. (Rodriguez, 2001) showed that the languages that do not belong to the 
context-free class could be learned to some degree, we have to conduct further study on the 
discrepancies. 
These instabilities of grammar learning by SRN mentioned above might not be visible in our 
natural language learning; this suggests that an SRN might not be appropriate for a model 
of language learning. 

4. Systematicity  
Hadley defines three degrees of syntactic systamaticity (Hadley, 1994). We focus on two of 
the degrees, namely weak systematicity and strong systematicity. According to Hadley, 
supposing that a training corpus is “representative” in the sense that every word (noun, 
verb, etc.) that occurs in some sentence of the corpus also occurs (at some point) in every 
permissible syntactic position, if a set of test sentences is the one that contains only 
grammatical sentences which are syntactically isomorphic to sentences in the training 
corpus, and that no new vocabulary is present, and a network is capable of successfully 
processing (by recognizing or interpreting) novel test sentences, then the network is said to 
be (at least) weakly systematic. Hadley defines that a system is strongly systematic if (i) it 
can exhibit weak systematicity and (ii) it can accurately process a variety of novel simple 
sentences and novel embedded sentences containing previously learned words in positions 
where they do not appear in the training corpus (i.e., the word within the novel sentence 
does not appear in that same syntactic position within any simple or embedded sentence in 
the training corpus). For subtleties in the above definition, refer to (Christiansen & Chater, 
1994). 
It is clear that if a training set is sufficiently large and syntactic sentence patterns are limited 
(for example, the length of the sentences is limited to at most ten words), we could state that 
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a Bayesian method with lexical categories as a latent variable would provide a satisfactory 
result. In fact, many researches have targeted unsupervised language learning thus far. 
(Schütze, 1993) is an early research conducted on unsupervised language learning.  
These researches show that the lexical categories could be induced from an unlabeled 
corpus if we adopt an approach based on symbolic paradigm and statistics. A question 
remains: is it possible for a simple method such as an RNN to induce lexical categories with, 
for example, an error-backpropagation algorithm?   
If an SRN or RNN is able to learn the grammar of a language, they would be able to learn 
the lexical categories. However, since a large lexicon implies a large number of connections 
and possibly the necessity for a large number of internal nodes, it might make learning 
difficult for a network. Therefore, we must develop some mechanism, other than the SRN or 
RNN, to group similar words into clusters, which are input to the SRN or RNN. The 
clustering algorithm to be used may be explicit or implicit; here, “explicit” means that a 
clustering mechanism other than SRN or RNN is used, whereas “implicit” means that a sub-
network is added to the SRN or RNN and is trained with the main SRN or RNN. (Elman, 
1991) adopts the latter approach, whereas (Farkaš & Crocker, 2008) adopts the former one. 
Frank adopts an approach that does not use additional networks (Frank, 2006). 
Farkaš and Crocker approached the problem by adding a type of self-organizing map 
(SOM). By means of the SOM, they successfully constructed a distributional representation 
of words, as done explicitly in probabilistic approaches (e.g. (Schütze, 1993)). The SOM is 
used not only for mapping from an input word to its distributional representation (a type of 
category) but also vise versa. The success of their approach clearly shows the possibility of 
existence of two types of networks, i.e., networks for clustering and networks for grammar.  
One of the problems that remains is that since an SOM provides graded responses, it may be 
the case that frequency-related information creeps in the SOM output and SRN is trained 
not only on categories but also on frequency. Since we may not know how much of the 
result depends on the frequency-related information, we would be a little hesitant to say 
that the SRN has learned the grammar described in the lexical categories 
One of the issues that we have to consider when we adopt the approach of “graded 
responses” such as statistics and neural networks with real value outputs is the performance 
criteria for the results. In this chapter, we consider an RNN with linear input functions and 
sigmoidal activation functions, which assume values between 0 and 1. Although the words 
are represented by localist representation or one-hot vector and therefore for an input, 
exactly one node is 1 and others are 0, the outputs assume real values, that is, possibly all 
the nodes have graded predictions for words.  
Networks are trained so that an output designates the subsequent word. A training data set 
may be ambiguous in a sense that the possible number of subsequent words after a 
sequence may exceed one. Then, as usual, the output values are considered to be a 
distributional representation of the subsequent words or the likelihood of the network 
prediction. Suppose that there are training sequences that consist of a common prefix for a 
string of words but more than one word comes after the prefix. If a network is properly 
trained, we could expect that the network’s output prediction is uniform for the subsequent 
words after the common prefix string. If some word appears more often than another word, 
the output activation for the former word must be higher than that for the latter word, 
although the activations may not be proportional to their frequency. 
Consequently, in a manner different from many neural network classification researches, 
which employ the sum of errors for each training samples, we must measure the 
distributional differences. 
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Measuring the degree of systematicity in a trained network is a problem.  
Elman did not conduct a direct test to observe whether the trained network exhibited weak 
systematicity or equivalent property, because Elman’s pioneering study was conducted 
before Hadley’s proposal of weak systematicity. However, Elman showed the result of 
analysis on activations of hidden units, which effectively showed the categorization of 
words. The dendrogram in (Elman, 1991) shows the hierarchical structure among words and 
the similarity between word groups, although it is constructed on the basis of activations 
summed over all the contexts before the target word. Therefore, there remains the question 
whether the network really learned the hierarchy or the result is simply a result of statistical 
analysis of the network’s behaviour. In other words, although the network was trained to 
predict a word, it had not acquired the capability to predict a category (or distribution of 
possibilities of words) of the subsequent word.  
Frank, in (Frank, 2006), adopted a criterion that compares the sum of activations for words 
in the expected category and the unexpected category. However, a malicious network may 
not predict a word in an incorrect category but predict only one word among many words 
in the correct category. 
One and only one alternative is to measure the distributional responses in terms of, for 
example, χ2 distance or KL divergence. 
We have another problem concerning training data. To examine the systematicity of an 
RNN, Frank selected a rather difficult problem. In (Frank, 2006), the training data include 
data of type N1 V1 N1 and N2 V2 N2, where N1 and N2 represent the noun categories and 
V1 and V2 verb category, whereas the test data is of N2 V1 N2 and N1 V2 N2, requiring that 
a network should induce that words in N1 and N2 are in the same category. The 
requirement appears to be rather demanding, because no suggestion of equating the 
position of N1 in the first sentence and N2 in the second and that of V1 and V2 is provided. 
Since the network inevitably learns the frequencies of words, it may learn to predict N2 after 
V2, irrespective of the first N1, or to predict N2 in the third place when N2 appears in the 
first place regardless of V1 in the second place.  
It is better to select simpler settings for the training data and test data. 
In this section, we examine the learnability of systematicity in a simpler situation. It is 
hypothesized that the systems of categories exist a priori; hence, learners need to only select 
the best one among them. Suppose that SRNs are furnished with an input conversion sub-
network that converts an input word into its category and undergoes learning to predict the 
subsequent word. We found that an SRN with a conversion sub-network consistent with the 
grammatical categories of words in input sentences has the smallest learning error in terms 
of predicting frequency. Consequently, we can recover correct categorization of words by 
observing the SRN outputs, calculating learning errors, and selecting the SRN with the least 
learning error.  

4.1 Experimental settings: network architecture   
In systematicity experiments, SRNs are augmented with a new input layer (Fig. 4 (left)) 
which corresponds to the primary networks in (Bodén, 2004). The connection weights 
between the first and second input layers are fixed during learning with 0 (disconnected) or 
1 (connected). The activation function of the second input layer is linear and that of the 
hidden and output units is the standard sigmoid function 1/(1 + exp(−x))  
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Fig. 4. Architecture experimented (left) and categorization examples (right). 

A localist representation or the so-called one-hot vector (a binary vector with a single 1) is 
adopted for input words as well as categories. The connections between Input Layer 1 and 
Input Layer 2 convert the former to the latter. These connections are set and fixed to 1 or 0 
according to the conversion, because a word belongs to a category or not (the corresponding 
weight is 1 or 0, respectively). As shown in Fig. 4 (left), the information that the SRN part of 
the network would know is limited to the categories of the input words. 
In the current experiment, the category refers to a mutually exclusive partition of words. 
Since words and categories are represented by localist representation, each node in Input 
Layer 1 has exactly one outgoing connection to Input Layer 2, and each node in Input Layer 
2 has incoming connections from the nodes designating words of the category. In other 
words, in this experiment, we suppose that the word in the example sentences belongs to 
only one category or is derived from at most one non-terminal symbol in derivation. 
Examples of the categorization are shown in Fig. 4 (right). 
As many networks as the possible categorizations were prepared. Then, all the networks 
were trained while observing their learning errors. It must be noted that the network is 
robust to overtraining and that a network with the least learning error might possibly be a 
network with the least generalization error because the networks accept only categorized 
inputs so that a network with incorrect categorization connections receives inconsistent 
learning data. 

4.2 Experimental settings: target language and learning method 
In the current experiments, the task is to learn a diversified centre-embedded language 
(DCEL) {abt, aabbt, aaabbbt|a = a1 or a2, b = b1 or b2} (Bodén, 2004), where “t” is the 
terminal of a string and “a” and “b” correspond to categories. Hereafter, the terms character 
and string are used instead of word and sentence; further, the density of a category is the 
number of terminal symbols derived from a non-terminal symbol or equivalently the 
number of elements or characters belonging to  the category; for example, the density of “a” 
in the above example is 2. The length of the language is the length of the longest sequence in 
the language (excluding the termination symbol “t”); hence, the length of the language in 
the above example is 6. 
A simple error-backpropagation algorithm with the squared error function is adopted for 
the learning as in SRN experiments. The learning rate is 0.10 and no acceleration is used.  
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Measuring the degree of systematicity in a trained network is a problem.  
Elman did not conduct a direct test to observe whether the trained network exhibited weak 
systematicity or equivalent property, because Elman’s pioneering study was conducted 
before Hadley’s proposal of weak systematicity. However, Elman showed the result of 
analysis on activations of hidden units, which effectively showed the categorization of 
words. The dendrogram in (Elman, 1991) shows the hierarchical structure among words and 
the similarity between word groups, although it is constructed on the basis of activations 
summed over all the contexts before the target word. Therefore, there remains the question 
whether the network really learned the hierarchy or the result is simply a result of statistical 
analysis of the network’s behaviour. In other words, although the network was trained to 
predict a word, it had not acquired the capability to predict a category (or distribution of 
possibilities of words) of the subsequent word.  
Frank, in (Frank, 2006), adopted a criterion that compares the sum of activations for words 
in the expected category and the unexpected category. However, a malicious network may 
not predict a word in an incorrect category but predict only one word among many words 
in the correct category. 
One and only one alternative is to measure the distributional responses in terms of, for 
example, χ2 distance or KL divergence. 
We have another problem concerning training data. To examine the systematicity of an 
RNN, Frank selected a rather difficult problem. In (Frank, 2006), the training data include 
data of type N1 V1 N1 and N2 V2 N2, where N1 and N2 represent the noun categories and 
V1 and V2 verb category, whereas the test data is of N2 V1 N2 and N1 V2 N2, requiring that 
a network should induce that words in N1 and N2 are in the same category. The 
requirement appears to be rather demanding, because no suggestion of equating the 
position of N1 in the first sentence and N2 in the second and that of V1 and V2 is provided. 
Since the network inevitably learns the frequencies of words, it may learn to predict N2 after 
V2, irrespective of the first N1, or to predict N2 in the third place when N2 appears in the 
first place regardless of V1 in the second place.  
It is better to select simpler settings for the training data and test data. 
In this section, we examine the learnability of systematicity in a simpler situation. It is 
hypothesized that the systems of categories exist a priori; hence, learners need to only select 
the best one among them. Suppose that SRNs are furnished with an input conversion sub-
network that converts an input word into its category and undergoes learning to predict the 
subsequent word. We found that an SRN with a conversion sub-network consistent with the 
grammatical categories of words in input sentences has the smallest learning error in terms 
of predicting frequency. Consequently, we can recover correct categorization of words by 
observing the SRN outputs, calculating learning errors, and selecting the SRN with the least 
learning error.  

4.1 Experimental settings: network architecture   
In systematicity experiments, SRNs are augmented with a new input layer (Fig. 4 (left)) 
which corresponds to the primary networks in (Bodén, 2004). The connection weights 
between the first and second input layers are fixed during learning with 0 (disconnected) or 
1 (connected). The activation function of the second input layer is linear and that of the 
hidden and output units is the standard sigmoid function 1/(1 + exp(−x))  
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Fig. 4. Architecture experimented (left) and categorization examples (right). 

A localist representation or the so-called one-hot vector (a binary vector with a single 1) is 
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according to the conversion, because a word belongs to a category or not (the corresponding 
weight is 1 or 0, respectively). As shown in Fig. 4 (left), the information that the SRN part of 
the network would know is limited to the categories of the input words. 
In the current experiment, the category refers to a mutually exclusive partition of words. 
Since words and categories are represented by localist representation, each node in Input 
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words, in this experiment, we suppose that the word in the example sentences belongs to 
only one category or is derived from at most one non-terminal symbol in derivation. 
Examples of the categorization are shown in Fig. 4 (right). 
As many networks as the possible categorizations were prepared. Then, all the networks 
were trained while observing their learning errors. It must be noted that the network is 
robust to overtraining and that a network with the least learning error might possibly be a 
network with the least generalization error because the networks accept only categorized 
inputs so that a network with incorrect categorization connections receives inconsistent 
learning data. 

4.2 Experimental settings: target language and learning method 
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terminal of a string and “a” and “b” correspond to categories. Hereafter, the terms character 
and string are used instead of word and sentence; further, the density of a category is the 
number of terminal symbols derived from a non-terminal symbol or equivalently the 
number of elements or characters belonging to  the category; for example, the density of “a” 
in the above example is 2. The length of the language is the length of the longest sequence in 
the language (excluding the termination symbol “t”); hence, the length of the language in 
the above example is 6. 
A simple error-backpropagation algorithm with the squared error function is adopted for 
the learning as in SRN experiments. The learning rate is 0.10 and no acceleration is used.  
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The generalization capability of the learned networks is evaluated by the Kullback-Leibler 
divergence (KLd) between two distributions: expectation and realized network output. The 
former distribution is obtained by supposing the uniform distribution for the above three 
strings and the characters in the same categories (e.g. {a1,a2}). {1/4, 1/4, 1/4, 1/4, 0} is an 
example distribution for {a1,a2,b1,b2,t} that appears after a string a1a2 or a2a1. The latter 
distribution is obtained by normalizing the network outputs to 1. It must be noted that KLd 
is used only for evaluation and never used for learning. 
The learning data were obtained by first randomly generating a set of strings of terminal 
symbols, and then randomly re-sampling from the set until the due number of strings is 
obtained. 90,000 strings were used for each run of training and 10,000 strings were used to 
calculate the resultant learning error and the generalization error.  
15 training sessions for each network were conducted by changing the learning data and its 
presentation order; the average and the standard deviation of the resultant learning and 
generalization errors were obtained. Categorizations were varied for each network. 
The parameters were varied; the length of the language was 6, 8, and 10; the number of 
training data was 30 and 60; the density of category was 2, 3, 4, and 5.  

4.3 Results  
Figs. 5 and 6 summarize some of the results obtained; L denotes the length of the language 
and D denotes the density of the correct category for “a” and “b” (set equal); Nc denotes the 
number of categories including “t”; N denotes the number of learning examples. An error 
bar shows the standard deviation averaged over experiments.  
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Fig. 5. Top two figures. L = 6, D = 2, Nc = 3, and N = 60. On the horizontal axis, Correct is 
{a1,a2}, {b1,b2}, {t}, Wrong1 is {a1}, {a2,b1,b2}, {t} and Wrong2 is {a1,b1}, {a2,b2}, {t}. Bottom two 
figures. L = 8, D = 4, Nc = 4, and N = 60. On the horizontal axis, Correct1 is {a1,a2,a3,a4}, 
{b1,b2}, {b3,b4}, {t}, Correct2 is {a1,a2,a3,a4}, {b1,b2,b3}, {b4}, {t}, Wrong1 is {a1,a2,b1}, {a3,a4,b2}, 
{b3,b4}, {t} and Wrong2 is {a1,a2,b3,b4}, {a1,b1}, {a2,b2}, {t} 
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The correct categorization consistently gives the smallest of the resultant learning and 
generalization errors. The correct sub-categorization also gives the smallest values as shown 
in Fig. 5 (bottom). It is observed that the two different sub-categorizations give the similar 
learning errors and generalization errors. 
In Fig. 6, some results of the experiments for categories with higher density are shown. The 
difference between the correct categories and the wrong categories in these cases is clearer 
than that that found in the cases in Fig. 5.  
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Fig. 6. L = 10, D = 5, Nc = 3, and N = 60. On the horizontal axis, Correct is {a1,a2,a3,a4,a5}, 
{b1,b2,b3,b4,b5}, {t}; Wrong1 is {a1,a2,a3,b1,b2,b3}, {a4,a5,b4,b5}, {t}; Wrong2 is {a1,a2,b3,b4,b5}, 
{a3,a4,a5,b1,b2}, {t}; Wrong3 is {a1,a2,b1,b2}, {a3,a4,a5,b3,b4,b5}, {t}; Wrong4 is {a1,a2}, 
{a3,a4,a5,b1,b2,b3,b4,b5}, {t}; Wrong5 is {a1,b1}, {a2,a3,a4,a5,b2,b3,b4,b5}, {t}. 

4.4 Discussion on systematicity 
Networks with systematicity that conforms to the systematicity in the target language can be 
differentiated from the networks without it, because networks with correct categorizations 
or sub-categorizations can be found by referring to their learning error, simple and 
observable quantity, as stated in the previous section. 
To acquire word meanings (or the extent of category of objects/movements/events that a 
word means), it has been argued that humans use a lot of tactics that constrain 
generalizations to an appropriate level (e.g., (Markman, 1990)). It is noteworthy that no 
workable model is possible if we require that humans should interact with external 
environments to use the tactics.  
Acquisition of grammatical categories of word is a different problem than acquisition of 
word meanings, because grammatical categories exist only for grammars, which suggests 
that humans use different tactics. Pinker suggests that humans utilize bootstrapping 
interactions between syntax and semantics development as a key factor (Pinker, 1984). 
However, if the semantics should concern with external environments, no workable model 
is possible.  
Conventional approaches have not yet provided satisfactory results. For example, although 
distributional clustering is one of the promising approaches, the clusters corresponding to 
grammatical categories that the algorithm provides are unsatisfactory (Clark, 2000). 
However, if we could utilize the fact that grammatical categories exist only for grammars, as 
in the case, it may be possible to induce grammatical categories solely from written texts.  
In the current experiments, based on these observations, we proposed to hypothesize the 
existence of innate systems of categorizations. Although the method and results reported 
here are still very primitive, they suggest that the hypothesis is promising.  
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The generalization capability of the learned networks is evaluated by the Kullback-Leibler 
divergence (KLd) between two distributions: expectation and realized network output. The 
former distribution is obtained by supposing the uniform distribution for the above three 
strings and the characters in the same categories (e.g. {a1,a2}). {1/4, 1/4, 1/4, 1/4, 0} is an 
example distribution for {a1,a2,b1,b2,t} that appears after a string a1a2 or a2a1. The latter 
distribution is obtained by normalizing the network outputs to 1. It must be noted that KLd 
is used only for evaluation and never used for learning. 
The learning data were obtained by first randomly generating a set of strings of terminal 
symbols, and then randomly re-sampling from the set until the due number of strings is 
obtained. 90,000 strings were used for each run of training and 10,000 strings were used to 
calculate the resultant learning error and the generalization error.  
15 training sessions for each network were conducted by changing the learning data and its 
presentation order; the average and the standard deviation of the resultant learning and 
generalization errors were obtained. Categorizations were varied for each network. 
The parameters were varied; the length of the language was 6, 8, and 10; the number of 
training data was 30 and 60; the density of category was 2, 3, 4, and 5.  

4.3 Results  
Figs. 5 and 6 summarize some of the results obtained; L denotes the length of the language 
and D denotes the density of the correct category for “a” and “b” (set equal); Nc denotes the 
number of categories including “t”; N denotes the number of learning examples. An error 
bar shows the standard deviation averaged over experiments.  
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Fig. 5. Top two figures. L = 6, D = 2, Nc = 3, and N = 60. On the horizontal axis, Correct is 
{a1,a2}, {b1,b2}, {t}, Wrong1 is {a1}, {a2,b1,b2}, {t} and Wrong2 is {a1,b1}, {a2,b2}, {t}. Bottom two 
figures. L = 8, D = 4, Nc = 4, and N = 60. On the horizontal axis, Correct1 is {a1,a2,a3,a4}, 
{b1,b2}, {b3,b4}, {t}, Correct2 is {a1,a2,a3,a4}, {b1,b2,b3}, {b4}, {t}, Wrong1 is {a1,a2,b1}, {a3,a4,b2}, 
{b3,b4}, {t} and Wrong2 is {a1,a2,b3,b4}, {a1,b1}, {a2,b2}, {t} 
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The correct categorization consistently gives the smallest of the resultant learning and 
generalization errors. The correct sub-categorization also gives the smallest values as shown 
in Fig. 5 (bottom). It is observed that the two different sub-categorizations give the similar 
learning errors and generalization errors. 
In Fig. 6, some results of the experiments for categories with higher density are shown. The 
difference between the correct categories and the wrong categories in these cases is clearer 
than that that found in the cases in Fig. 5.  
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Fig. 6. L = 10, D = 5, Nc = 3, and N = 60. On the horizontal axis, Correct is {a1,a2,a3,a4,a5}, 
{b1,b2,b3,b4,b5}, {t}; Wrong1 is {a1,a2,a3,b1,b2,b3}, {a4,a5,b4,b5}, {t}; Wrong2 is {a1,a2,b3,b4,b5}, 
{a3,a4,a5,b1,b2}, {t}; Wrong3 is {a1,a2,b1,b2}, {a3,a4,a5,b3,b4,b5}, {t}; Wrong4 is {a1,a2}, 
{a3,a4,a5,b1,b2,b3,b4,b5}, {t}; Wrong5 is {a1,b1}, {a2,a3,a4,a5,b2,b3,b4,b5}, {t}. 

4.4 Discussion on systematicity 
Networks with systematicity that conforms to the systematicity in the target language can be 
differentiated from the networks without it, because networks with correct categorizations 
or sub-categorizations can be found by referring to their learning error, simple and 
observable quantity, as stated in the previous section. 
To acquire word meanings (or the extent of category of objects/movements/events that a 
word means), it has been argued that humans use a lot of tactics that constrain 
generalizations to an appropriate level (e.g., (Markman, 1990)). It is noteworthy that no 
workable model is possible if we require that humans should interact with external 
environments to use the tactics.  
Acquisition of grammatical categories of word is a different problem than acquisition of 
word meanings, because grammatical categories exist only for grammars, which suggests 
that humans use different tactics. Pinker suggests that humans utilize bootstrapping 
interactions between syntax and semantics development as a key factor (Pinker, 1984). 
However, if the semantics should concern with external environments, no workable model 
is possible.  
Conventional approaches have not yet provided satisfactory results. For example, although 
distributional clustering is one of the promising approaches, the clusters corresponding to 
grammatical categories that the algorithm provides are unsatisfactory (Clark, 2000). 
However, if we could utilize the fact that grammatical categories exist only for grammars, as 
in the case, it may be possible to induce grammatical categories solely from written texts.  
In the current experiments, based on these observations, we proposed to hypothesize the 
existence of innate systems of categorizations. Although the method and results reported 
here are still very primitive, they suggest that the hypothesis is promising.  
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5. Conclusion 
Productivity is the key property of a natural language. Learnability is an equally important 
property, since productivity without learnability will not help the transfer of a language 
beyond generations. Linguistic productivity is supported by recursiveness described in 
terms of phrasal categories and systamaticity described in terms of lexical categories.  
Recursiveness is realizable by an SRN; however, the realized function is limited to a counter 
capable of counting up and down just once. Hence, for example, parsing consecutive 
embedded sentential phrases requires a reset of counters or stacks. The difficulty of learning 
of recursiveness is observed experimentally and theoretically.  
Human learns recursive grammar in his/her first language which requires stacks to parse. 
We have to determine an alternative mechanism or appropriate a priori knowledge along 
with an additional method that embeds the knowledge in the learning mechanism. 
Systematicity is learnable with an RNN by using added sub-networks, which is equivalent 
to one-stage learning algorithms composed of clustering of words into categories and 
learning of grammars written in lexical (and phrasal) categories. Learnability is observed 
when frequency information that exist in training corpus and influence learning results is 
not transferred to the SRN; this shows the possibility of grammatical induction when 
systematicity exists. 
The difficulty in learning systematicity in more realistic situations is rooted in ambiguous 
words and varied contexts. An ambiguous word is a word, for example, which could be a 
noun in a sentence but a verb in another sentence. Varied contexts are contexts which induce 
the same category but have very different forms, for example, a noun could be followed by 
almost any lexical category.  
Research is being conducted on the learnability of productive grammars. 
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5. Conclusion 
Productivity is the key property of a natural language. Learnability is an equally important 
property, since productivity without learnability will not help the transfer of a language 
beyond generations. Linguistic productivity is supported by recursiveness described in 
terms of phrasal categories and systamaticity described in terms of lexical categories.  
Recursiveness is realizable by an SRN; however, the realized function is limited to a counter 
capable of counting up and down just once. Hence, for example, parsing consecutive 
embedded sentential phrases requires a reset of counters or stacks. The difficulty of learning 
of recursiveness is observed experimentally and theoretically.  
Human learns recursive grammar in his/her first language which requires stacks to parse. 
We have to determine an alternative mechanism or appropriate a priori knowledge along 
with an additional method that embeds the knowledge in the learning mechanism. 
Systematicity is learnable with an RNN by using added sub-networks, which is equivalent 
to one-stage learning algorithms composed of clustering of words into categories and 
learning of grammars written in lexical (and phrasal) categories. Learnability is observed 
when frequency information that exist in training corpus and influence learning results is 
not transferred to the SRN; this shows the possibility of grammatical induction when 
systematicity exists. 
The difficulty in learning systematicity in more realistic situations is rooted in ambiguous 
words and varied contexts. An ambiguous word is a word, for example, which could be a 
noun in a sentence but a verb in another sentence. Varied contexts are contexts which induce 
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1. Introduction 
The Recent advances in understanding of the working principles of artificial neural 
networks  has given a tremendous boost to identification, prediction and control tools of 
nonlinear systems, (Narendra & Parthasarathy, 1990; Chen & Billings, 1992; Hunt et al., 
1992; Miller III et al., 1992; Pao et al., 1992; Su et al., 1992; Narendra & Mukhopadhyay, 1994; 
Boskovic & Narendra, 1995; Ku & Lee, 1995; Baruch et al., 1996; Jin & Gupta, 1999, Haykin, 
1999; Mastorocostas & Theocharis, 2006; Kazemy et all., 2007). The main network property 
namely the ability to approximate complex non-linear relationships without prior 
knowledge of the model structure makes them a very attractive alternative to the classical 
modeling and control techniques. This property has been proved by the universal 
approximation theorem, (Haykin, 1999). Among several possible network architectures the 
ones most widely used are the feedforward and the recurrent neural networks. In a feed-
forward neural network the signals are transmitted only in one direction, starting from the 
input layer, subsequently through the hidden layers to the output layer, which requires 
applying a tap delayed global feedbacks and a tap delayed inputs to achieve a nonlinear 
autoregressive moving average neural dynamic plant model. A recurrent neural network 
has local feedback connections to some of the previous layers. Such a structure is suitable 
alternative to the first one when the task is to model dynamic systems, and the universal 
approximation theorem has been proved for the recurrent neural networks too. The 
preferences given to recurrent neural network identification with respect to the classical 
methods of process identification are clearly demonstrated in the solution of the “bias-
variance dilemma”, (Haykin, 1999). Furthermore, the derivation of an analytical plant 
model, the parameterization of that model and the Least Square solution for the unknown 
parameters have the following disadvantages: (a) the analytical model did not include all 
factors having influence to the process behavior; (b)  the analytical model is derived taking  
into account some simplifying suppositions which not  ever match; (c) the analytical model 
did not described all plant nonlinearities, time lags and time delays belonging to the process 
in hand; (d) the analytical model did not include all process and measurement noises which 
are sensor and actuator dependent. In (Sage, 1968) the method of invariant imbedding has 
been described. This method seemed to be a universal tool for simultaneous state and 
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parameter estimation of nonlinear plants but it suffer for the same drawbacks because a 
complete nonlinear plant model description is needed.  
So, the unknown nonlinear technological processes needed a new tool for modeling and 
identification capable to correlate experimental data and to estimate parameters and states 
in the same time, processing noisy measurements. Such efficient tool is the recurrent neural 
Kalman filter, where the estimated parameters and states could be used directly for control.  

2. Description of the recurrent neural Kalman filter 
2.1 Topology and learning of the recurrent trainable neural network 
The Recurrent Trainable Neural Network (RTNN) topology, given on Fig. 1, is a hybrid one. 
It has one recurrent hidden layer and one feedforward output layer. This topology is 
inspired from the Jordan canonical form of the state-space representation of linear dynamic 
systems (Baruch et al., 1996) adding activation functions to the state and the output 
equations so to convert it to recurrent neural network named Recurrent Trainable Neural 
Network described by the equations: 

 X(k+1) = AX(k) + BU(k) (1) 

 B = [B1 ; B0]; UT = [U1T ; U2T] (2) 

 A = block-diag (Ai), |Ai | < 1 (3) 

 Z1(k) = G[X(k)] (4) 

 C = [C1 ; C0]; ZT = [Z1T ; Z2T] (5) 

 V(k) = CZ(k) (6) 

 Y(k) = F[V(k)] (7) 

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L, 
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer, 
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant 
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of 
the output layer; the super-index T means vector transpose; A is (NxN) block-diagonal 
weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight matrices; B0 and 
C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; F[.], G[.] are 
vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding dimensions. 
The RTNN topology has been derived independently of the hybrid Diagonal Recurrent 
Neural Network (DRNN) (see Ku & Lee, 1995) with which it have the following differences: 
(a) the state equation (1) of the RTNN is linear and the state equation of the DRNN is 
nonlinear (the activation functions are in the closed loop). This made the RTNN completely 
controllable and the state, and parameter information X, A, B of RTNN directly applicable 
for state-space control purposes. On the other side, the controllability of the DRNN depends 
on the type of the activation functions (see Sontag & Sussmann, 1997); (b) the state weight 
matrix A of the RTNN is defined as block- diagonal (3) and some stability bounds have been 
imposed to it which preserved the RTNN stability during the learning. The DRNN was 
defined as block-diagonal later (Mastorocostas & Theocharis, 2006; Kazemy et al., 2007) and 
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some algorithmic measures have been taken to maintained the stability of DRNN during the 
learning. For the RTNN the learning of the Jordan blocks is resolved in universal manner, 
defining diagonal and full-matrix Backpropagation (BP) learning options; (c) the RTNN 
include thresholds in the inputs of both layers which facilitated the nonlinear systems 
identification, especially in lack of a-priory information about the approximated nonlinear 
plant. The DRNN did not apply thresholds; (d) the output layer of the DRNN is linear, and 
that of the RTNN is nonlinear, which permitted it to perform better approximation of 
nonlinear plants. Furthermore, depending on the plant structure, the topology of the RTNN 
could be extended with additional feedforward output or input layers which augmented the 
approximation ability of the RTNN. The observability of the DRNN has been proved by 
(Albertini & Sontag, 1994). The observability of the RTNN is assumed and it is fulfilled 
when the reference signal entered in the limits of the activation functions. The dynamic BP 
algorithm of RTNN learning is derived using the adjoint RTNN topology, predicting the 
output error (see Fig. 2). The adjoint RTNN is built applying the Separation theorem (Sage, 
1968) and the diagrammatic method of (Wan & Beaufays, 1996). The BP algorithm is:  

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0  (8) 

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (9) 

 F’[Y(k)] = [1-Y2(k)] (10) 

 ΔC(k) = E1(k) ZT(k) (11) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (12) 

 G’[Z(k)] = [1-Z2(k)] (13) 

 ΔB(k) = E3(k) UT(k) (14) 

 ΔA(k) = E3(k) XT(k) (15) 

 Vec(ΔA(k)) = E3(k)▫X(k) (16) 

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting 
each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), is the 
weight correction of W; Yd is an L-dimensional output of the approximated plant taken as a 
reference for RTNN learning; η, α are learning rate parameters; ΔC is a weight correction of 
C; ΔB is a weight correction of B; ΔA is a weight correction of A; the diagonal of the matrix A 
is denoted by Vec (A(k)) where (16) represents its learning as an element-by-element vector 
product; E, E1, E2, E3, are error vectors (see Fig. 2).  
 

 
Fig. 1. Block diagram of the RTNN model 
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Fig. 1. Block diagram of the RTNN model 
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Fig. 2. Block diagram of the adjoint RTNN model 

The dimension of the state vector X of the RTNN is chosen using the simple rule of thumb 
which is: N=L+M. The initial values of the weight matrices during the learning are chosen as 
arbitrary numbers inside a small range. The stability of the RTNN model is assured by the 
activation functions [-1, 1] bounds and by the local stability weight bound conditions given 
by (3), (8). The stability of the RTNN movement around the optimal weight point will be 
proven extending the proof of (Nava et al., 2004), as it is stated below. 
Theorem of stability of the RTNN. Let the RTNN with Jordan Canonical Structure is given 
by equations (1)-(7) (see Fig.1) and the nonlinear plant model, is as follows: 

 Xd.(k+1) = G[ Xd (k), U(k) ] (17) 

 Yd (k) = F[ Xd (k) ] (18) 

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with dimensions L, Nd, M, 
respectively; F(.), G(.) are vector valued nonlinear functions with respective dimensions. 
Under the assumption of RTNN identifiability made, the application of the BP learning 
algorithm for A(.), B(.), C(.), in general matricial form, described by equation (8)-(16), and 
the learning rates η (k), α (k) (here they are considered as time-dependent and normalized 
with respect to the error) are derived using the following Lyapunov function: 

 ( ) ( ) ( )1 2L k  = L k +L k  (19) 

Where: 1L (k)   and  2L (k)  are given by: 

 ( ) ( )211 2L k  = e k  

 ( ) ( ) ( ) ( )T T T
2 A B CBA CL k  = tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  

Where: 

 − − −* * *
A B Cˆ ˆˆW (k) = A(k) A ,W (k) = B(k) B ,W (k) = C(k) C  

are vectors of the parameter estimation error and * * *(A ,B ,C )  and ˆ ˆˆ(A(k),B(k),C(k))  denote 
the ideal neural weight and the estimate of the neural weight at the k-th step, respectively, 
for each case. 
Then the identification error is bounded, i.e.: 

 
( ) ( ) ( )
( ) ( ) ( )

<
Δ + = +

1 2L k+1  = L k+1 +L k+1 0
L k 1   L k 1  –  L k

 (20) 
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Where the condition for 1L (k+1)<0  is that: 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠< <max

max max

1 11- 1+
2 2η

ψ ψ
 

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )< − −2 2
2 max maxΔL k+1 η e k+1 α e k +d k+1  

Note that maxη  changes adaptively during the RTNN learnig and:  

{ }
3

max i
i=1

η =max η  

Where all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the d-term, and the complete proof of that theorem, is given in Apendix A. 
The Rate of Convergence Lemma, used, is given in (Nava et al., 2004). 

2.2 Topology and learning of the Kalman filter recurrent neural network 
Let us consider the linearized plant model (17), (18), represented in a state-space form: 

 Xd.(k+1) = Ad (k) Xd (k) + Bd (k) U(k) + Θ1(k) (21) 

 Yd (k) = Cd (k) Xd (k) + Θ2 (k) (22) 

Where: E [.] means mathematical expectation; the process  and measurement noises Θ1 (.),  
Θ2 (.) are white, with Θ1(k), Θ2 (s) and the initial state Xd (k0) independent and zero mean for 
all k, s, with known variances E [Xd (k) XdT (k)] = P0 , E[Θ1(k) Θ1T (k)] = Q(k) δ (k-τ), E[Θ2(k) 
Θ2T (k)] = R(k) δ (k-τ),  where δ (k-τ)=1 if k= τ, and 0 otherwize. The optimal Kalman filter 
theory is completely described in (Sage, 1968) and we would not repeated it here.  
For us the Kalman Filter (KF) is a full rank optimal state estimator capable to estimate the 
systems state, to filter the process and measurement noises taking in hand all plant 
information available like: input/output plant data, all parameters of the plant model (21), 
(22), and the given up noise and initial state statistics (mean and variance). The basic 
Kalman filter equations for the estimated state and output variables are given by: 

 Xe.(k+1) = Ae (k) Xe (k)  + Ke (k) Yd (k) + Bd (k) U(k) (23) 

 Ae (k) = Ad (k) - Ke (k) Cd (k) (24) 

 Ye (k) = Cd (k) Xe (k) (25) 

Where: Xe (k) is the estimated state vector with dimension Ne; Ae (k) is a (Ne x Ne) closed-
loop KF state matrix; Ye (k) is the estimated plant output vector variable with dimension L; 
Ke(k) is the optimal Kalman filter gain matrix with dimension (Ne x L). This gain matrix is 
computed applying the optimal Kalman filtering methodology given in (Sage, 1968). So, the 
KF performed noise filtration by means of an optimal closed-loop feedback which has the 
drawback that the feedback amplified the noise components of the error, especialy when the 
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Fig. 2. Block diagram of the adjoint RTNN model 
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Where the condition for 1L (k+1)<0  is that: 

⎛ ⎞ ⎛ ⎞
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max max

1 11- 1+
2 2η

ψ ψ
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{ }
3

max i
i=1

η =max η  
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 Ae (k) = Ad (k) - Ke (k) Cd (k) (24) 

 Ye (k) = Cd (k) Xe (k) (25) 
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feedback gain is high. The second draback is that the KF design needs a complete plant 
parameter and noise information, which means that if the plant data are incomplete the 
process noise level is augmented. To overcome this we need to take special measures like to 
augment the filtering capabilities of the KF.  
So, the Kalman filter could not estimate parameters and states in the same time processing 
noisy measuremets with unknown noise statistics, and it will be our task. To resolve this 
task we need to derive the topology and the BP learning algorithm of a new recurrent 
Kalman filter neural network. First of all we could rewrite the equation (23) defining a new 
extended input vector, containing all available input/output information issued by the 
plant, and second – we could modify the output equation (25) so to convert it to an output 
noise filter. After that we obtain: 

 Xe.(k+1) = Ad (k) Xe (k) - Ke (k) Ye (k) + B2 (k) Ue(k) (26) 

 B2 = [Bd ; Ke]; UeT = [U ; Yd] (27) 

 Z(k) = Cd (k) Xe (k) (28) 

 Ye (k+1) = A2 Ye (k) + Z(k) (29) 

Now comparing the equations (26)-(29) with the RTNN topology (1)-(7) we decided to 
extend the RTNN topology adding local and global feedbacks so that to fulfil KF 
requirements. The obtained new Kalman Filter Recurrent Neural Network (KF RNN) 
topology is given on Fig. 3, where the first layer represented the plant model, the second 
layer represented the output noise filtering model, and it has also a global output feedback. 
The KF RNN topology is described by the equations:  

 X(k+1) = A1X(k) + BU(k) - DY(k) (30) 

 B = [B1 ; B0]; UT = [U1 ; U2] (31) 

 A1= block-diag (A1,i), | A1,i | < 1 (32) 

 Z1(k) = G[X(k)] (33) 

 C = [C1 ; C0]; ZT = [Z1 ; Z2] (34) 

 V1(k) = CZ(k) (35) 

 V(k+1) = V1(k) + A2V(k) (36) 

 A2 = block-diag (A2,i), |A2,i | < 1 (37) 

 Y(k) = F[V(k)] (38) 

Where: X, Y, U are vectors of state, output, and augmented input with dimensions N, L, 
(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer, 
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant 
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of 
the output layer; the super-index T means vector transpose; A1, A2 are (NxN) and (LxL) 
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block-diagonal weight matrices; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight 
matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; 
F[.], G[.] are vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding 
dimensions. Here the input vector U and the input matrix B of the KF RNN are augmented 
so to fulfill the specifications (27) and the matrix D corresponded to the feedback gain 
matrix of the KF. So the KF RNN topology corresponded functionally to the KF definition 
(26)-(29) and ought to be learnt applying the BP learning algorithm which is in fact an 
unrestricted optimization procedure, derived using the adjoint KF RNN (see Fig.4) for KF 
RNN topology, applying the Separation theorem (Sage, 1968) and the diagrammatic method 
(Wan & Beaufays, 1996). The BP learning algorithm, expressed in vector-matricial form is:   

 W(k+1) = W(k) +η ΔW(k) + α ΔW(k-1); |Wij | < W0 (39) 

 E(k) = Yd (k) - Y(k); E1(k) = F’[Y(k)] E(k) (40) 

 F’[Y(k)] = [1-Y2(k)] (41) 

 ΔC(k) = E1(k) ZT(k) (42) 

 ΔA2(k) = E1(k) VT(k) (43) 

 Vec(ΔA2(k)) = E1(k)▫X(k) (44) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (45) 
 

 
Fig. 3. Block diagram of the KF RNN model 
 

 
Fig. 4. Block diagram of the adjoint KF RNN model 
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(M+1), respectively, Z is an (L+1) –dimensional input of the feedforward output layer, 
where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden layer; the constant 
scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-synaptic activity of 
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block-diagonal weight matrices; B and C are [Nx(M+1)] and [Lx(N+1)]- augmented weight 
matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden and output layers; 
F[.], G[.] are vector-valued tanh(.) or sigmoid(.) -activation functions with corresponding 
dimensions. Here the input vector U and the input matrix B of the KF RNN are augmented 
so to fulfill the specifications (27) and the matrix D corresponded to the feedback gain 
matrix of the KF. So the KF RNN topology corresponded functionally to the KF definition 
(26)-(29) and ought to be learnt applying the BP learning algorithm which is in fact an 
unrestricted optimization procedure, derived using the adjoint KF RNN (see Fig.4) for KF 
RNN topology, applying the Separation theorem (Sage, 1968) and the diagrammatic method 
(Wan & Beaufays, 1996). The BP learning algorithm, expressed in vector-matricial form is:   
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 F’[Y(k)] = [1-Y2(k)] (41) 

 ΔC(k) = E1(k) ZT(k) (42) 

 ΔA2(k) = E1(k) VT(k) (43) 

 Vec(ΔA2(k)) = E1(k)▫X(k) (44) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k) (45) 
 

 
Fig. 3. Block diagram of the KF RNN model 
 

 
Fig. 4. Block diagram of the adjoint KF RNN model 



 Recurrent Neural Networks 

 

68 

 G’[Z(k)] = [1-Z2(k)] (46) 

 ΔB(k) = E3(k) UT(k) (47) 

 ΔD(k) = E3(k) YT(k) (48) 

 ΔA1(k) = E3(k) XT(k) (49) 

 Vec(ΔA1(k)) = E3(k)▫X(k) (50) 

Where: F’[.], G’[.] are derivatives of the tanh(.) functions; W is a general weight, denoting 
each weight matrix (C, A1, A2, B, D) in the KF RNN model, to be updated; ΔW (ΔC, ΔA1, 
ΔA2, ΔB, ΔD), is a weight correction of W; Yd is an L-dimensional output of the 
approximated plant taken as a reference for KF RNN learning; η, α are learning rate 
parameters; ΔC is a weight correction of C; ΔB is a weight correction of B; ΔD is a weight 
correction of D, ΔA1 is a weight correction of A1 , ΔA2 is a weight correction of A2; the 
diagonals of the matrices A1, A2  are denoted by Vec (A1(k)), Vec (A2(k)), respectively, where 
(44), (50) represented their learning as an element-by-element vector products; E, E1, E2, E3, 
are error vectors (see Fig. 4), predicted by the adjoint KF RNN model.  
So, the KF RNN is capable to issue parameter and state estimations for control purposes, 
thanks to the optimization capabilities of the BP learning algorithm, applying the 
“correction for error” delta rule of learning (see Haykin, 1999). The stability of the KF RNN 
model is assured by the activation functions [-1, 1] bounds and by the local stability weight 
bound conditions given by (32), (37). The stability of the KF RNN movement around the 
optimal weight point has been proved by one theorem and the Rate of Convergence Lemma 
(see Nava et al., 2004), following the same way as for the RTNN. It is stated below. 
Theorem of stability of the KF RNN. Let the KF RNN is given by equations (30)-(38) (see 
Fig.3) and the nonlinear plant model, is given by equations (17), (18). Under the assumption 
of KF RNN identifiability made, the application of the BP learning algorithm for C, A1, A2, B, 
D, in general matricial form, described by equation (39)-(50), and the learning rates η (k), α 
(k) (here they are considered as time-dependent and normalized with respect to the error) 
are derived using the following Lyapunov function: 

 ( ) ( ) ( )1 2L k  = L k +L k  (51) 

Where: 1L (k)   and  2L (k)  are given by: 

( ) ( )211 2L k  = e k ;  

( ) ( ) ( ) ( ) ( )
( )

1 21 2
T T T T

2 A A B CB CA A

T
D D

L k  = tr W (k)W (k) + tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)

           +tr W (k)W (k)
 

Where: 
* * * * *

A1 1 1 A2 2 B C D2ˆ ˆ ˆˆ ˆW (k) = A (k)-A ,W (k) = A (k)-A ,W (k) = B(k)-B ,W (k) = C(k)-C ,W (k) = D(k)-D  
are vectors of the estimation error and * * * * *

1 2(A ,A ,B ,C ,D )  and 1 2ˆ ˆ ˆˆ ˆ(A (k),A (k),B(k),C(k),D(k))  
denote the ideal optimal neural weight and the estimate of the neural weight at the k-th 
step, respectively, for each case. 

Recurrent Neural Network Identification and Adaptive Neural Control  
of Hydrocarbon Biodegradation Processes 

 

69 

Then the identification error is bounded, i.e.: 

 ( ) ( ) ( )
( ) ( ) ( )

1 2L k+1  = L k+1 +L k+1 <0
ΔL k+1  = L k+1  – L k

 (52) 

Where the condition for 1L (k+1)<0  is that 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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max
max max

1 11- 1+
2 2<η <

ψ ψ
 

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )− −2 2
2 max maxΔL k+1 < η e k+1 α e k +d k+1  

Note that maxη  changes adaptively during learnig process of the network and  

{ }
5

max i
i=1

η =max η  

Where all: the unmodeled dynamics, the approximation errors and the perturbations, are 
represented by the d-term, and the complete proof of that theorem can be easily obtained 
following the same procedure detailed in Appendix A derived for the RTNN. 

3. Description of the adaptive control schemes 
3.1 Indirect adaptive control scheme (sliding mode control) 
The indirect adaptive control using the RTNN as plant identifier has been described in 
(Baruch et al., 2001a; Baruch et al., 2001b; Baruch et al., 2005). Later the proposed indirect 
control has been derived as a Sliding Mode Control (SMC) and some preliminary results of 
SMC of unknown hydrocarbon biodegradation processes have been reported (see Baruch et 
al., 2007a; Baruch et al., 2007b). The block diagram of the indirect adaptive control scheme is 
shown on Fig. 5. It contained identification and state estimation KF RNN and a sliding mode 
controller. The stable nonlinear plant is identified by a KF RNN model with topology, given 
by equations (30)-(38) learned by the stable BP-learning algorithm, given by equations (39)-
(50), where the identification error tends to zero. The simplification and linearization of the 
neural identifier equations (30)-(33), omitting the DY(.) and KeYd(.), (27) parts, leads to the 
next local linear plant model, extracted from the complete KF RNN model: 

 X(k+1) = A1X(k) + BU(k) (53) 

 Z(k) = H X(k); H = C G’(Z) (54) 

Where G’(.) is the derivative of the activation function and L = M, is supposed.  
In (Young et al., 1999), the sliding surface is defind with respect to the state variables  and 
the SMC objective is to move the states form an arbitrary space position to the sliding 
surface in finite time. In (Levent, 2003), the sliding surface is also defined with respect to the 
states but the states of a SISO systems are obtained from the plant outputs by differentiation. 
In (Eduards et al., 2003), the sliding surface definition and the control objectives are the 
same. The equivalent control systems design is done with respect to the plant output, but 
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 G’[Z(k)] = [1-Z2(k)] (46) 

 ΔB(k) = E3(k) UT(k) (47) 
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bound conditions given by (32), (37). The stability of the KF RNN movement around the 
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Theorem of stability of the KF RNN. Let the KF RNN is given by equations (30)-(38) (see 
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Then the identification error is bounded, i.e.: 
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Where all: the unmodeled dynamics, the approximation errors and the perturbations, are 
represented by the d-term, and the complete proof of that theorem can be easily obtained 
following the same procedure detailed in Appendix A derived for the RTNN. 
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next local linear plant model, extracted from the complete KF RNN model: 
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Where G’(.) is the derivative of the activation function and L = M, is supposed.  
In (Young et al., 1999), the sliding surface is defind with respect to the state variables  and 
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states but the states of a SISO systems are obtained from the plant outputs by differentiation. 
In (Eduards et al., 2003), the sliding surface definition and the control objectives are the 
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the reachability of the stable output control depended on the plant structure. In (Baruch et 
al., 2007a; Baruch et al., 2007b), the sliding surface is derived directly with respect to the 
plant outputs which facilitated the equivalent SMC systems design. 
Let us define the following Sliding Surface (SS) as an output tracking error function: 

 S(k+1)=E(k+1)+
1

P

i
i=
γ∑ E(k-i+1);  |γi | < 1 (55) 

Where: S(.) is the Sliding Surface Error Function (SSEF) defined with respect to the plant 
output; E(.) is the systems output tracking error; γi are parameters of the desired stable SSEF; 
P is the order of the SSEF. The tracking error and its iterate are defined as: 

 E(k) = R(k) − Z(k); E(k+1) = R(k+1) − Z(k+1) (56) 

Where R(k), Z(k) are L-dimensional reference and output vectors of the local linear plant 
model. The objective of the sliding mode control systems design is to find a control action 
which maintains the systems error on the sliding surface which assure that the output 
tracking error reaches zero in P steps, where P < N. So, the control objective is fulfilled if: 

 S(k+1) = 0 (57) 

Now, let us to iterate (54) and to substitute (53) in it so to obtain the input/output local plant 
model, which yields: 

 Z(k+1) = H X(k+1) = H [AX(k) + BU(k)] (58) 

From (55), (56), and (57) it is easy to obtain: 

 R(k+1) – Z(k+1) + 
1

P

i
i=
γ∑ E(k-i+1) = 0 (59) 

The substitution of (58) in (59) gives: 

 R(k+1) – HAX(k) – HBU(k) + 
1

P

i
i=
γ∑ E(k-i+1) = 0 (60) 

As the local approximation plant model (53), (54), is controllable, observable and stable, (see 
the proofs of the preceeding paragraph), the matrix A1 is diagonal, and L = M, then the 
matrix product (HB), representing the plant model static gain, is nonsingular, and the plant 
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states X(k) are smooth non-increasing functions. Now, from (60) it is easy to obtain the 
equivalent control capable to lead the system to the sliding surface which yields: 

 Ueq(k) = (HB)-1 [ – HAX(k) + R(k+1) + 
1

P

i
i=
γ∑ E(k-i+1)] (61) 

Following (Young et al., 1999), the SMC avoiding chattering is taken using a saturation 
function instead of sign one. Here the saturation level Uo is chosen with respect to the load 
level perturbation. So the SMC takes the form: 
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It is easy to see that the substitution of the equivalent control (61) in the linear plant model 
(53), (54) show an exact complete plant dynamics compensation which avoided oscillations, 
so that the chattaring effect is not observed. Furthermore, the designed plant output sliding 
mode equivalent control substituted the multi-input multi-output coupled high order 
dynamics of the linearized plant with desired decoupled low order one. 

3.2 Direct adaptive neural control scheme 
The Direct Adaptive Neural Control (DANC) using the RTNN as plant identifier and plant 
controller has been described in (Baruch et al., 2001b; Flores et al., 2001; Baruch et al., 2004; 
Baruch et al., 2005). The block-diagram of the control system is given on Fig. 6. It contains a 
recurrent neural identifier, and two recurrent neural controllers (feedback and feedforward). 
Let us to write the following z-transfer- function representations of the plant, the state 
estimation part of the KF RNN, the feedback and the feedforward controllers: 

 Wp(z) = Cp (zI – Ap)-1 Bp  (63) 

 Pi(z) = (zI – Ai)-1 Bi  (64) 

 Q1(z) = Ccfb (zI – Acfb)-1 Bcfb  (65) 

 Q2(z) = Ccff (zI – Acff)-1 Bcff  (66) 

The control systems z-transfer functions (63)-(66) are connected by the following equation, 
derived from the Fig. 6, and given in z-operational form: 

 Y p(z) = Wp(z) [I + Q1(z) Pi(z)] -1 Q2(z) R(z) + θ(z) (67) 

 θ(z) = Wp(z) θ1(z) + θ2(z) (68) 

Where θ(z) is a noise term. The RTNN and the KF RNN topologies are controllable and 
observable. The BP algorithm of learning is convergent (Baruch et al., 2002; Nava et al., 
2004). Then the identification and control errors tend to zero. 
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Fig. 6. Block - diagram of the control system containing neural identifier and two adaptive 
neural controllers. 

 Ei(k) = Y p(k) – Y(k) → 0; k → ∞ (69) 

 Ec(k) = R(k) - Y p(k) → 0; k → ∞ (70) 

This means that each transfer function given by equations (63)-(66) is stable with minimum 
phase. The closed-loop system is stable and the RTNN-1 feedback controller compensates 
the plant dynamics. The RTNN-2 feedforward controller dynamics is an inverse dynamics 
of the closed-loop system one, which assure a precise reference tracking in spite of the 
presence of process and measurement noises. 

4. Experimental and simulation results 
A time ago the KF RNN has been applied for prediction of various bioprocesses like the 
Fed-Batch fermentation kinetics of Bacillus Thuringiensis (Valdes-Castro et al., 2003), the 
osmotic dehydration process (Baruch et al., 2005), and the hydrocarbon degradation profiles 
in a biopile system (De la Torre-Sanchez et al., 2006). Some preliminary results of application 
of the KF RNN used as systems identifier in a sliding mode controlled bioremediation 
processes have been presented in various scientific conferences like (Baruch et al., 2007 a; 
Baruch et al., 2007b). In this part those results would be described with more details. The 
bioremediation process at hand is considered as completely unknown and represented by 
input/output records of normalized noisy data. 

4.1 Experimental and simulation results obtained for the biopile system 
Description of the Process and the Experiment. Biological treatment is attractive as a 
potentially low-cost technology, which converts toxic organic contaminants into CO2 and 
biomass. Since the 70’s, this technology has been applied for the hydrocarbon degradation, 
and today, it is considered as the best alternative to cleanup polluted soils. Bioremediation 
in biopile system is an ex-situ Solid Substrate Fermentation (SSF) technology, based on the 
ability of micro-organisms to degrade pollutant hydrocarbon compounds (Alexander, 1994). 
The often used bio-stimulation technique consists on the activation of the native soil micro-
organisms by addition of nutrients, water, oxygen (for aerobic process) and a bulking agent 
that let it to improve the oxygen supplied to the microorganisms. The Solid Substrate 
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Fermentation takes place in the absence of free water, so it offers the advantage of reducing 
the place and cost requirements. The SSF disadvantage consists of the complexity and 
heterogeneity of the solid matrix, which makes quite difficult the measurement and control 
of process variables. The interest of the biopile technology is an inherent temperature 
increase inside the biopile - from the centre to the surface, which favors the sequential 
development of a microbial population growth associated to the temperature profile and 
residual pollution. Temperature increase can reach 60ºC, so it is frequently controlled by an 
air flux supplied to the biopile columns. Besides, controlling the temperature, the air flux is 
a source of fresh oxygen to the microorganisms. The next environmental conditions are 
recommended for an adequate hydrocarbon biodegradation in biopile system: pH ≈ 7; 
humidity at 50-60% of the water holding capacity of soil; average temperature of 30ºC. It is 
important to supply an adequate air flux, since a low one could not be enough for satisfying 
the microbial requirements, but a high air one could dry the solid matrix. In this study, it is 
used a crumb-limose soil from a site polluted near a refinery in México. The pollution of 
165000 ppm, consist on different residues of crude oil process and refining. The soil was 
dried and blended with ocorn used as a bulking agent 10:1 (% v/v), which was milled and 
sterilized. The moisture was adjusted at 60% of water retention capacity, and C:N:P ratio at 
100:10:1 according to analyses done. Tergitol 1% (p/p) was used as surfactant to enhance 
contaminant desorption from soil. The equipment used is shown on Fig. 7a, and the 
Input/Output full KF RNN learning pattern in shown on Fig. 7b. The biopile system 
consists of twenty one columns (1.0 m height x 3.81 cm i.d.), constructed to allow the 
monitoring through 28 days, almost each other day. Each column has sample ports located 
at the sites every 25 cm, and was fitted with water vessels to humidify the air entering the 
columns. The columns were housed in a chamber provided with temperature control, and 
the air was supplied at a constant pressure via a manifold. The experiment consists of seven 
sets of fermentation data taken for different air flux (180, 360, 450 and 540 ml/min) and 
different temperature (20 and 40oC). The duration of the bioremediation process depends on 
the volume of the soil under treatment and the type and concentration of the contaminants 
in it. In our case 28 days are sufficient to degrade 60% of the contaminants which is 
considered sufficient for our experiment. The evolution of the hydrocarbon removal was 
evaluated from solid samples periodically extracted from the biopile for analysis of pH 
(potentiometer), humidity (gravimetric method), oxygen consumption and carbon dioxide 
production - by gas chromatography, Total Petroeum Hydrocarbons (TPH) - by infrared 
spectroscopy, following soxhlet extraction with dichloromethane (EPA Method 3540C). 
Process Identification. The graphical results of the experimental neural biodegradation 
process identification are given on Fig. 8 a – for KF RNN learning, and on Fig. 8 b – for KF 
RNN generalization. The Input Learning Pattern (ILP) proposed is conformed by the: 
ILP(AF, TEMP, pH, HU, O2, CO2, TPH). The Output Learning Pattern (OLP) includes: 
OLP(pH, HU, O2, CO2, TPH). The KF RNN used for modeling and identification of the 
hydrocarbon degradation process in biopile system has seven inputs, twelve neurons in the 
hidden layer and five outputs. The number of neurons (twelve) in the hidden layer was 
determined in an experimental way, applying the rule of thumb and according to the Mean 
Square Error (MSE%) of learning. The learning algorithm is a version of the dynamic BP 
one, specially designed for this KF RNN topology. The described above learning algorithm 
is applied simultaneously to 7 degradation kinetic data sets (patterns), realized below 
different conditions of air flow and temperature in the ranges 180-540 mi/min and 25-50oC, 
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Fig. 7. a) Sketch of the biopile system; b) Learning pattern of the full KF RNN model 
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Fig. 8. Graphical results of experimental biodegradation process identification; a) graphical 
results of KF RNN learning (%TPH, pH, CO2, O2, HU, and MSE%); b) graphical results of 
KF RNN generalization (%TPH, pH, CO2, O2, HU, and MSE%) 
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and containing 8 points each one. The experimental data were normalized in the range 0-1 
due to the great difference in magnitude between them. The 7 data sets are considered as an 
epoch of learning, containing 56 points. After each epoch of learning, the 7 pattern sets are 
interchanged in an arbitrary manner from one epoch to another. An unknown kinetic data 
set, repeated 7 times, is used as a generalization data set. The learning is stopped when the 
MSE% of learning and generalization reached values below 2%, and the relationship 
|ΔWij(k)|/|Wij(k)|*100% reached values below or equal of 2% for all updated parameters. 
This error was attained after 131 epochs of learning. The graphical results shown on Fig. 8 a. 
compared the experimental data for the 7 degradation kinetics with the outputs of the KF 
RNN during the last epoch of learning. The variables compared and plotted subsequently 
for the last epoch of learning are % degradation in TPH, pH, carbon dioxide (CO2), oxygen 
available (O2), % of humidity (HU) and the mean square error (MSE%) given for 131 epochs 
of learning. The learning rate is 0.9, the momentum rate is 0.8, the epoch size contains 56 
points, the convergence is obtained after 131 epochs of learning. The final MSE% of learning 
is below 2%. The generalization of the KF RNN was carried out reproducing a degradation 
kinetics which is not included in the training process. This degradation process was carried 
out at AF = 360 ml/min and temperature of 20ºC. The operational conditions of this 
degradation process are in the range of operational conditions studied. The generalization 
results shown on Fig. 8 b. compare the experimental data for the one unknown degradation 
kinetics (repeated 7 times so to maintain the epoch size) with the output of the KF RNN. The 
same experimental data %TPH, pH, CO2, O2, HU, MSE% (continuous line) are compared  
with the KF RNN outputs (pointed line) and are plotted subsequently for the last epoch of 
generalization. The final MSE% of KF RNN generalization is below 2%. 
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. The graphical simulation results of the controlled system with both controls 
are given on Fig. 9a,b and the MSE% of control is given in Table 1, Table 2 for 20 runs of the 
control program (SMC and DANC) with data mixed with 10% measurement Gaussian noise 
with different variance for each run. A simplified RTNN process model, extracted from the 
complete KF RNN model has been used to design both control systems and to issue the state 
vector. The RTNN particular model used as a feedforward controller has 2 inputs or 
references (%TPH, CO2), two outputs as control signals (AF, HU) and 9 states. The RTNN 
feedback controller has the topology (12, 9, 2). The RTNN particular plant model has 2 
inputs (AF, HU), two outputs (%TPH, CO2) and 12 states. In that reduced model, depending 
on the available measurements, the input and output patterns are chosen as: ILP(AF, HU, 
CO2, TPH); OLP(CO2, TPH). For both control schemes, the two system set points 
(continuous line) are compared with the two plant outputs (%TPH, CO2) (pointed line) and 
are plotted subsequently for seven sets of set point data. The control variables shown are: 
AF, HU. However the lost of water is pretended to be compensated by the wet saturated air 
flux with controlled humidity introduced, which could accelerate the bioremediation 
process in the biopile system. The obtained MSE% of control in the end of the process for 
both control schemes is below 1%. The behaviour of the control system in the presence of 
10% white Gaussian noise (with different SEED parameter at each run) added to the plant 
outputs could be studied acumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (see Table 1 for SMC and Table 2 for DANC). The mean average 
cost for all runs (ε) of control, the standard deviation (σ) with respect to the mean value and 
the deviation (Δ) are computed by means of the following formulas: 
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and containing 8 points each one. The experimental data were normalized in the range 0-1 
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epoch of learning, containing 56 points. After each epoch of learning, the 7 pattern sets are 
interchanged in an arbitrary manner from one epoch to another. An unknown kinetic data 
set, repeated 7 times, is used as a generalization data set. The learning is stopped when the 
MSE% of learning and generalization reached values below 2%, and the relationship 
|ΔWij(k)|/|Wij(k)|*100% reached values below or equal of 2% for all updated parameters. 
This error was attained after 131 epochs of learning. The graphical results shown on Fig. 8 a. 
compared the experimental data for the 7 degradation kinetics with the outputs of the KF 
RNN during the last epoch of learning. The variables compared and plotted subsequently 
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available (O2), % of humidity (HU) and the mean square error (MSE%) given for 131 epochs 
of learning. The learning rate is 0.9, the momentum rate is 0.8, the epoch size contains 56 
points, the convergence is obtained after 131 epochs of learning. The final MSE% of learning 
is below 2%. The generalization of the KF RNN was carried out reproducing a degradation 
kinetics which is not included in the training process. This degradation process was carried 
out at AF = 360 ml/min and temperature of 20ºC. The operational conditions of this 
degradation process are in the range of operational conditions studied. The generalization 
results shown on Fig. 8 b. compare the experimental data for the one unknown degradation 
kinetics (repeated 7 times so to maintain the epoch size) with the output of the KF RNN. The 
same experimental data %TPH, pH, CO2, O2, HU, MSE% (continuous line) are compared  
with the KF RNN outputs (pointed line) and are plotted subsequently for the last epoch of 
generalization. The final MSE% of KF RNN generalization is below 2%. 
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. The graphical simulation results of the controlled system with both controls 
are given on Fig. 9a,b and the MSE% of control is given in Table 1, Table 2 for 20 runs of the 
control program (SMC and DANC) with data mixed with 10% measurement Gaussian noise 
with different variance for each run. A simplified RTNN process model, extracted from the 
complete KF RNN model has been used to design both control systems and to issue the state 
vector. The RTNN particular model used as a feedforward controller has 2 inputs or 
references (%TPH, CO2), two outputs as control signals (AF, HU) and 9 states. The RTNN 
feedback controller has the topology (12, 9, 2). The RTNN particular plant model has 2 
inputs (AF, HU), two outputs (%TPH, CO2) and 12 states. In that reduced model, depending 
on the available measurements, the input and output patterns are chosen as: ILP(AF, HU, 
CO2, TPH); OLP(CO2, TPH). For both control schemes, the two system set points 
(continuous line) are compared with the two plant outputs (%TPH, CO2) (pointed line) and 
are plotted subsequently for seven sets of set point data. The control variables shown are: 
AF, HU. However the lost of water is pretended to be compensated by the wet saturated air 
flux with controlled humidity introduced, which could accelerate the bioremediation 
process in the biopile system. The obtained MSE% of control in the end of the process for 
both control schemes is below 1%. The behaviour of the control system in the presence of 
10% white Gaussian noise (with different SEED parameter at each run) added to the plant 
outputs could be studied acumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (see Table 1 for SMC and Table 2 for DANC). The mean average 
cost for all runs (ε) of control, the standard deviation (σ) with respect to the mean value and 
the deviation (Δ) are computed by means of the following formulas: 
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No 1 2 3 4 5 
MSE% 1.106 1.0035 1.001 1.0951 0.93454 

No 6 7 8 9 10 
MSE% 1.146 1.3214 1.225 1.4721 1.1206 

No 11 12 13 14 15 
MSE% 1.3185 1.1544 1.1821 1.0316 1.1267 

No 16 17 18 19 20 
MSE% 1.1295 1.3268 1.1842 1.2858 1.1993 

Table 1. Final MSE (%) of control (ξav) for 20 runs of the SMC control program 

  
a) b) 

Fig. 9. a) Graphical results of the biodegradation process SMC; b) Graphical results of the 
biodegradation process DANC; for both  schemes the variables shown are (%TPH, CO2, AF, 
HU, MSE%) 

No 1 2 3 4 5 
MSE% 0.9805 0.8207 1.0421 0.8148 0.8813 

No 6 7 8 9 10 
MSE% 0.8227 1.0959 0.8990 0.8100 1.0881 

No 11 12 13 14 15 
MSE% 1.0551 0.9569 0.8227 1.0619 1.0891 

No 16 17 18 19 20 
MSE% 1.0518 1.1173 0.8045 1.0454 1.1012 

Table 2. Final MSE (%) of control (ξav) for 20 runs of the DANC control program 
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Where k is the run number and n is equal to 20. The mean and standard deviation values of 
process error, obtained for the SMC, are respectively: ε  = 1.1682%; σ= 0.1276 %. The mean 
and standard deviation values of process control, obtained for DANC, are respectively: ε  = 
0.9680 %; σ= 0.0583 % which is a little bit smaller that the results, obtained for the SMC due 
to the nonlinearity and adaptivity of the DANC, which contained two RTNN controllers. 

4.2 Simulation results obtained for the rotating drum 
Description of the Process and the Experiment. For the bioremediation process one 
challenge is to provide enough O2 and nutrients to enable rapid conversion of contaminants 
by either indigenous microorganisms or inoculated species (Alexander, 1994). Another 
challenge is to achieve efficient contact between the active micro-organisms and the 
contaminants, which may represented a problem with in-situ treatment. An attractive 
alternative to overcome this problem is to apply a biological treatment in slurry phase using 
Horizontal Rotating Drum (HRD) (see the schematic diagram given on Fig. 10a). The HRD 
can effectively mix heterogeneous blends of a wide range of particle sizes and high solid 
concentration (more than 60 %), (Alexander, 1994). The HRD operated with oxygen supply 
or aeration. Independently of the type of HRD operation (open or close), the insufficiency of 
water decreased the efficiency of hydrocarbon degradation in HRD favouring the formation 
of hydrocarbon balls (Alexander, 1999). So one objective of the process control is to maintain 
the humidity at 60%, which is the maximal solid concentration determined as the best for 
hydrocarbon removal from polluted soils treated in open rotating slurry bioreactors. 
Nowadays, semi empirical models, based on the Monod equation, have been developed to 
predict micro-organism growth as a function of available contaminants concentration. 
However, as the application of such models requires experimental work for calculating the 
kinetics parameters involved, so an alternative modelling technique is required. The KF 
RNN model offers many advantages as the possibility to approximate complex non linear 
high order multivariable processes, as the biodegradation process is. The bioremediation of 
polluted soils selected for modelling purpose was carried out by bio-stimulation in slurry 
phase using an open HRD. A silt loam (sand 36.5%w/w, silt 62.5% w/w and clay 1% w/w) 
soil of an average diameter of 15 μm, particle diameter in the range 2 - 75 μm, was used. The 
soil was contaminated with 50000 ppm of crude oil collected from a contaminated zone 
located near from a petroleum refinery. The slurry was prepared with 40% weight of soil 
(715 g) and 60% weight of a mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; KH2PO4, 1.7; 
MgSO4, 1; CaCl2⋅2H2O, 0.005; FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 0.5%). The 
slurry was added to a HRD of 4 litters (13 cm diameter by 30 cm long), which was opened, 
on the flat faces, for a natural air supply (see Fig. 10a). The drum was operated during 19 
days at a fix turning in the interval 3.5-20 RPM. During this time, the reactor was daily 
weighted in order to replace the water lost, so to maintain constant the water concentration. 
Samples were removed each day for analysis of residual hydrocarbons, pH, water 
concentration and slurry viscosity. The hydrocarbon concentration was determined by an 
infrared spectrometer; the pH was measured with a Beckman Φ potentiometer; water 
concentration was calculated by difference of two sequence data of the drum weight; finally, 
slurry viscosity was measured with an AND Vibro-viscometer SV-10 (MED BY A&D LTD). 
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Where k is the run number and n is equal to 20. The mean and standard deviation values of 
process error, obtained for the SMC, are respectively: ε  = 1.1682%; σ= 0.1276 %. The mean 
and standard deviation values of process control, obtained for DANC, are respectively: ε  = 
0.9680 %; σ= 0.0583 % which is a little bit smaller that the results, obtained for the SMC due 
to the nonlinearity and adaptivity of the DANC, which contained two RTNN controllers. 

4.2 Simulation results obtained for the rotating drum 
Description of the Process and the Experiment. For the bioremediation process one 
challenge is to provide enough O2 and nutrients to enable rapid conversion of contaminants 
by either indigenous microorganisms or inoculated species (Alexander, 1994). Another 
challenge is to achieve efficient contact between the active micro-organisms and the 
contaminants, which may represented a problem with in-situ treatment. An attractive 
alternative to overcome this problem is to apply a biological treatment in slurry phase using 
Horizontal Rotating Drum (HRD) (see the schematic diagram given on Fig. 10a). The HRD 
can effectively mix heterogeneous blends of a wide range of particle sizes and high solid 
concentration (more than 60 %), (Alexander, 1994). The HRD operated with oxygen supply 
or aeration. Independently of the type of HRD operation (open or close), the insufficiency of 
water decreased the efficiency of hydrocarbon degradation in HRD favouring the formation 
of hydrocarbon balls (Alexander, 1999). So one objective of the process control is to maintain 
the humidity at 60%, which is the maximal solid concentration determined as the best for 
hydrocarbon removal from polluted soils treated in open rotating slurry bioreactors. 
Nowadays, semi empirical models, based on the Monod equation, have been developed to 
predict micro-organism growth as a function of available contaminants concentration. 
However, as the application of such models requires experimental work for calculating the 
kinetics parameters involved, so an alternative modelling technique is required. The KF 
RNN model offers many advantages as the possibility to approximate complex non linear 
high order multivariable processes, as the biodegradation process is. The bioremediation of 
polluted soils selected for modelling purpose was carried out by bio-stimulation in slurry 
phase using an open HRD. A silt loam (sand 36.5%w/w, silt 62.5% w/w and clay 1% w/w) 
soil of an average diameter of 15 μm, particle diameter in the range 2 - 75 μm, was used. The 
soil was contaminated with 50000 ppm of crude oil collected from a contaminated zone 
located near from a petroleum refinery. The slurry was prepared with 40% weight of soil 
(715 g) and 60% weight of a mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; KH2PO4, 1.7; 
MgSO4, 1; CaCl2⋅2H2O, 0.005; FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 0.5%). The 
slurry was added to a HRD of 4 litters (13 cm diameter by 30 cm long), which was opened, 
on the flat faces, for a natural air supply (see Fig. 10a). The drum was operated during 19 
days at a fix turning in the interval 3.5-20 RPM. During this time, the reactor was daily 
weighted in order to replace the water lost, so to maintain constant the water concentration. 
Samples were removed each day for analysis of residual hydrocarbons, pH, water 
concentration and slurry viscosity. The hydrocarbon concentration was determined by an 
infrared spectrometer; the pH was measured with a Beckman Φ potentiometer; water 
concentration was calculated by difference of two sequence data of the drum weight; finally, 
slurry viscosity was measured with an AND Vibro-viscometer SV-10 (MED BY A&D LTD). 
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a) b) 

Fig. 10. a) Schematic diagram of a rotating drum system. b) Learning pattern 

The biodegradation process was repeated at a different turning value (3.5, 5, 7.5, 10, 15, 20 
RPM) in order to vary the oxygen available into the HRD. The learning pattern (see Fig. 10b) 
used for KF RNN training is composed by six input variables and three output variables. In 
order to avoid saturation problems in the RNNM training, the variables of the learning 
pattern are normalized in the interval 0-1. The measured variables are: Residual 
Hydrocarbon Concentration (RH), Evaporated Water (EW); Soil Viscosity (VISC), Added 
Water (AW); Temperature (T); Velocity of Agitation (VA). The RNNM outputs are: OUT 
(RH, EW, VISC). Depending on the available measurements and the control objectives, this 
model could be simplified, where the input- output pattern is chosen as: ILP (RH, EW, AW, 
VA); OLP (RH, EW). This reduced model will be used for SMC and DANC system design. 
Process Identification. The described above learning algorithm is applied simultaneously to 
four fermentation kinetic data, represented by its input/output learning data patterns, and 
containing 19 points each (one per day). The total time of learning is 200 epochs, where the 
epoch size, corresponding to the number of data, is 76 iterations. After each epoch of 
training, the 4 sets are interchanged in an arbitrary manner from one epoch to another. The 
learning is stopped when the MSE% of learning reached values below 1.5%, the MSE% of 
generalization reached valued below 2%, and the relationship |ΔWij(k)|/|Wij(k)|*100% 
reached values below or equal of 2% for all updated parameters. Graphical results of RNNM 
training are given in Fig. 11a for the last epoch of learning. In the graphics, the output 
variables of the KF RNN are compared with the experimental data. The Fig. 11a compared 
the 4 kinetics experimental data with those, issued by the KF RNN. The output process data 
of 76 points are the hydrocarbon residual, the water requirements and the soil viscosity 
(EW, RH, VISC). The last figure in Fig. 11a represents the evolution of the mean squared 
error of approximation (MSE%) for whole learning process of 200 epochs. An unknown set 
of kinetic data, containing 19 points and repeated 4 times, so to maintain the same 76-points 
epoch size, is used as a validation (generalization) set, and these results are given on Fig. 
11b. The obtained graphical results of KF RNN training and generalization shows a good 
convergence with an MSE% below 1.5% for the training and 2% for the generalization.  
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. A simplified RTNN process model extracted from the KFRNN complete 
identified model has been used to design SMC and DANC systems. The RTNN particular 
model has two inputs (AW, VA), two outputs (EW, RH) and nine states. The SMC SSEF is 
chosen as a first order one (P=1) with parameters Uo=1, γ=0.07, L=M=2. The DANC RTNN 
particular model used as a feedforward controller has two reference inputs (EW, RH), two 
outputs as control signals (VA, AW) and six states. The feedback RTNN controller has 
topology (12, 6, 2).  The graphical simulation results of the controlled system outputs (EW, 
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Fig. 11. Graphical results of experimental biodegradation process identification; a) graphical 
results of KF RNN learning (EW, RH, VISC, and MSE%.); b) graphical results of KF RNN 
generalization (EW, RH, VISC, and MSE%.) 
RH), and the control variables (AW, VA) for both control schemes are given on Fig. 12 a,b  
for 76 points (one epoch of learning). For both control schemes, the two system set points 
(continuous line) are compared with the plant outputs (EW, RH) (data point line) and are 
plotted subsequently for four sets of set point data. The MSE% of control is given also in Fig. 
12 a,b for all 200 epochs of learning. For both control schemes, the obtained MSE% of control 
at the end of the process is below 1%. The behaviour of the control system in the presence of 
5% white Gaussian noise (with different SEED parameter at each run) added to the plant 
output has been studied accumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (SMC and DANC), which results are given on Table 3, Table 4 
for 20 runs. The mean average cost for all runs (ε) of control, the standard deviation (σ) with 
respect to the mean value and the deviation (Δ) are computed using the formulas (71). The 
mean and standard deviation values of process error, obtained for the SMC are respectively: 
ε  = 0.6663 %; σ= 0.0593 %. The mean and standard deviation values of process control, 
obtained for the DANC are respectively: ε  = 0.5456 %; σ= 0.0124 %, which is slightly smaller 
with respect to the SMC, due to the nonlinearity and the adaptivity of the DANC, which 
contained two RTNN controllers. 

5. Conclusion 
The chapter proposes a new Kalman filter closed loop topology of recurrent neural network 
for identification and modeling of an unknown hydrocarbon degradation process carried 
out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent 
neural plant model, a recurrent neural output plant filter and posses global and local 
feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation 
one derived using the adjoint KF RNN topology by means of the diagramatic method. The 
obtained KF RNN model issued parameters and states information appropriate for control 
systems design purposes. 
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Fig. 10. a) Schematic diagram of a rotating drum system. b) Learning pattern 

The biodegradation process was repeated at a different turning value (3.5, 5, 7.5, 10, 15, 20 
RPM) in order to vary the oxygen available into the HRD. The learning pattern (see Fig. 10b) 
used for KF RNN training is composed by six input variables and three output variables. In 
order to avoid saturation problems in the RNNM training, the variables of the learning 
pattern are normalized in the interval 0-1. The measured variables are: Residual 
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Water (AW); Temperature (T); Velocity of Agitation (VA). The RNNM outputs are: OUT 
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containing 19 points each (one per day). The total time of learning is 200 epochs, where the 
epoch size, corresponding to the number of data, is 76 iterations. After each epoch of 
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reached values below or equal of 2% for all updated parameters. Graphical results of RNNM 
training are given in Fig. 11a for the last epoch of learning. In the graphics, the output 
variables of the KF RNN are compared with the experimental data. The Fig. 11a compared 
the 4 kinetics experimental data with those, issued by the KF RNN. The output process data 
of 76 points are the hydrocarbon residual, the water requirements and the soil viscosity 
(EW, RH, VISC). The last figure in Fig. 11a represents the evolution of the mean squared 
error of approximation (MSE%) for whole learning process of 200 epochs. An unknown set 
of kinetic data, containing 19 points and repeated 4 times, so to maintain the same 76-points 
epoch size, is used as a validation (generalization) set, and these results are given on Fig. 
11b. The obtained graphical results of KF RNN training and generalization shows a good 
convergence with an MSE% below 1.5% for the training and 2% for the generalization.  
Simulation Results Obtained with the Sliding Mode Control and the Direct Adaptive 
Neural Control. A simplified RTNN process model extracted from the KFRNN complete 
identified model has been used to design SMC and DANC systems. The RTNN particular 
model has two inputs (AW, VA), two outputs (EW, RH) and nine states. The SMC SSEF is 
chosen as a first order one (P=1) with parameters Uo=1, γ=0.07, L=M=2. The DANC RTNN 
particular model used as a feedforward controller has two reference inputs (EW, RH), two 
outputs as control signals (VA, AW) and six states. The feedback RTNN controller has 
topology (12, 6, 2).  The graphical simulation results of the controlled system outputs (EW, 
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Fig. 11. Graphical results of experimental biodegradation process identification; a) graphical 
results of KF RNN learning (EW, RH, VISC, and MSE%.); b) graphical results of KF RNN 
generalization (EW, RH, VISC, and MSE%.) 
RH), and the control variables (AW, VA) for both control schemes are given on Fig. 12 a,b  
for 76 points (one epoch of learning). For both control schemes, the two system set points 
(continuous line) are compared with the plant outputs (EW, RH) (data point line) and are 
plotted subsequently for four sets of set point data. The MSE% of control is given also in Fig. 
12 a,b for all 200 epochs of learning. For both control schemes, the obtained MSE% of control 
at the end of the process is below 1%. The behaviour of the control system in the presence of 
5% white Gaussian noise (with different SEED parameter at each run) added to the plant 
output has been studied accumulating some statistics of the final MSE% (ξav) for multiple 
run of the control program (SMC and DANC), which results are given on Table 3, Table 4 
for 20 runs. The mean average cost for all runs (ε) of control, the standard deviation (σ) with 
respect to the mean value and the deviation (Δ) are computed using the formulas (71). The 
mean and standard deviation values of process error, obtained for the SMC are respectively: 
ε  = 0.6663 %; σ= 0.0593 %. The mean and standard deviation values of process control, 
obtained for the DANC are respectively: ε  = 0.5456 %; σ= 0.0124 %, which is slightly smaller 
with respect to the SMC, due to the nonlinearity and the adaptivity of the DANC, which 
contained two RTNN controllers. 

5. Conclusion 
The chapter proposes a new Kalman filter closed loop topology of recurrent neural network 
for identification and modeling of an unknown hydrocarbon degradation process carried 
out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent 
neural plant model, a recurrent neural output plant filter and posses global and local 
feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation 
one derived using the adjoint KF RNN topology by means of the diagramatic method. The 
obtained KF RNN model issued parameters and states information appropriate for control 
systems design purposes. 
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Fig. 12. a) Graphical results of the biodegradation process SMC; b) Graphical results of the 
biodegradation process DCD; for both  schemes the variables shown are (VA, AW, EW, RH, 
MSE%) 
 

No 1 2 3 4 5 
MSE% 0.6434 0.6577 0.7669 0.6805 0.6662 

No 6 7 8 9 10 
MSE% 0.5757 0.5835 0.7043 0.7040 0.6350 

No 11 12 13 14 15 
MSE% 0.6602 0.7759 0.7732 0.6566 0.6408 

No 16 17 18 19 20 
MSE% 0.6481 0.6061 0.7240 0.6514 0.5725 

Table 3. Final MSE (%) of control (ξav) for 20 runs of the control program 

The obtained complete KF RNN model is simplified and used to design an indirect sliding 
mode control and a direct recurrent feedback-feedforward neural control. The simulation 
results obtained with the recurrent neural model learning and control exhibited a good 
convergence and precise reference tracking. The MSE% of the KF RNN learning and 
generalization is below 2% and the MSE% of the indirect and direct control is below 1%. 
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No 1 2 3 4 5 
MSE% 0.5187 0.5449 0.5788 0.5738 0.5496 

No 6 7 8 9 10 
MSE% 0.5208 0.5732 0.5418 0.5672 0.5576 

No 11 12 13 14 15 
MSE% 0.5619 0.5040 0.5468 0.5471 0.5029 

No 16 17 18 19 20 
MSE% 0.5752 0.5744 0.5228 0.5065 0.5440 

Table 4. Final MSE (%) of control (ξav) for 20 runs of the control program 

Some statistical results of multiple run of the control program with noisy data, obtained 
with both control schemes are also given. The results show a slight priority of the DANC 
with respect to the SMC due to the better adaptation abilities to the first one. 
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Fig. 12. a) Graphical results of the biodegradation process SMC; b) Graphical results of the 
biodegradation process DCD; for both  schemes the variables shown are (VA, AW, EW, RH, 
MSE%) 
 

No 1 2 3 4 5 
MSE% 0.6434 0.6577 0.7669 0.6805 0.6662 

No 6 7 8 9 10 
MSE% 0.5757 0.5835 0.7043 0.7040 0.6350 

No 11 12 13 14 15 
MSE% 0.6602 0.7759 0.7732 0.6566 0.6408 

No 16 17 18 19 20 
MSE% 0.6481 0.6061 0.7240 0.6514 0.5725 

Table 3. Final MSE (%) of control (ξav) for 20 runs of the control program 

The obtained complete KF RNN model is simplified and used to design an indirect sliding 
mode control and a direct recurrent feedback-feedforward neural control. The simulation 
results obtained with the recurrent neural model learning and control exhibited a good 
convergence and precise reference tracking. The MSE% of the KF RNN learning and 
generalization is below 2% and the MSE% of the indirect and direct control is below 1%. 
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No 1 2 3 4 5 
MSE% 0.5187 0.5449 0.5788 0.5738 0.5496 

No 6 7 8 9 10 
MSE% 0.5208 0.5732 0.5418 0.5672 0.5576 

No 11 12 13 14 15 
MSE% 0.5619 0.5040 0.5468 0.5471 0.5029 

No 16 17 18 19 20 
MSE% 0.5752 0.5744 0.5228 0.5065 0.5440 

Table 4. Final MSE (%) of control (ξav) for 20 runs of the control program 

Some statistical results of multiple run of the control program with noisy data, obtained 
with both control schemes are also given. The results show a slight priority of the DANC 
with respect to the SMC due to the better adaptation abilities to the first one. 
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7. Appendix: Proof of the Theorem of RTNN Stability 
Let the Recurrent Trainable Neural Network with Jordan Canonical Structure given by (1), 
(2), (3), (4), (5), (6), (7) and the nonlinear plant model as follows: 

 ( ) ( ) ( )[ ]x k+1 =g x k ,u k  (A.1) 

 ( ) ( )[ ]y k =f x k  (A.2) 

and the plant and activation functions fulfill the following assumptions: 
Assumption 1: The plant dynamics is locally Lipchitz, so the functions ⋅g( ) , ⋅f( ) are as: 

( ){ }≤ 0 1f:= f|f=σ+Δf, Δf f +f x k  

( ){ }≤ 0 1g:= g|g=σ+Δg, Δg +g x kg  

andΔg , Δf are modeling errors, which reflex the effect of unmodeled dynamics. 
Assumption 2: The activation function has the following Taylor approximation: 

( ) ( )
( ) ( )∂

−
∂

σ θ
σ θ =σ θ + θ θ +ς

θ
 

with the approximation error bound given by: 

≤ −
22 Lς θ θ

2
 

and the signal error defined by: 

( ) ( ) ( )ˆe k =y k -y k  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]− = − −⎡ ⎤⎣ ⎦
*ˆ ˆˆe k+1 =y k+1 y k+1 C k x k C x k Δf x kF F  

Now, let us define the state estimation error, add and subtract the RTNN to the last equation 
and apply the Assumption 2, then: 

( ) ( ) ( )ˆΔ k =x k -x k  

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]= ⎡ ⎤⎣ ⎦
* *ˆ ˆ ˆΔ k+1 =x k+1 -x k+1 A k x k +B k u k -G A x k +B u k -Δg x k ,u kG  
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Let us now define the output identification error and put it in terms of the state estimation 
error as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ] ( ) ( ) ( )( )
( ) ( )( )

⎡ ⎤⎣ ⎦
* * *

3 F 4

1 2

ˆe k+1 =F' k δC k G' k δA k x k +δB k u k +Θ +F' k δC G' k A Δ k -B O +Θ
            +Θ +Θ -Δf x k ,u k

 

 

Where: the term ( ) ( ) Fu k =u k +O ; the 1,2,3,4Θ  are the higher order terms in the Taylor series 
approximation; ( ) ( )( )Δf x k ,u k  is the unmodeled dynamics; FO  is an offset. 
 If Assumptions 1 and 2 fulfil, the learning algorithm for the RTNN is given by (8) and the 
learning parameters kη , kα  are normalized and depended on the output error structure.  
Then, the approximation error is bounded. 
Consider a Lyapunov candidate function as 

 ( ) ( ) ( )1 2k =L k +L kL  (A.3) 

In which ( )1L k  and ( )2L k  are given by: 

 ( ) ( )2
1

1k = e k
2

L  (A.4) 

 ( ) ( ) ( ) ( )T T T
2 A B CBA Ck =tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)L  (A.5) 

Where:  

* * *
A B C1 ˆ ˆˆW (k)=A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C  

 

are vectors of the estimation error and * * *(A ,B ,C )  and k k kˆ ˆˆ(A ,B ,C )  denote the ideal neural 
weight and the estimate of neural weight at the k-th step, respectively, for each case. 
Let us consider the equation (A.4). The change of the Lyapunov function in two consecutive 
samples due of the training process is obtained by: 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]− = − −1 11 1 1 2 2ΔL k =L k+1 L k e k+1 e k e k + e k+1 e k   (A.6) 
 

Then, defining  ( )Δe k  as the difference between two consecutive error samples, the 
equation (A.6) becomes: 

 ( ) ( ) ( ) ( )[ ]11 2ΔL k =Δe k e k + Δe k  (A.7) 

Where: ( )Δe k can be defined as: 

 ( ) ( )∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

e kΔe k = ΔW
W

 (A.8) 

Putting all weights into one vector as 
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ˆe k+1 =F' k δC k G' k δA k x k +δB k u k +Θ +F' k δC G' k A Δ k -B O +Θ
            +Θ +Θ -Δf x k ,u k

 

 

Where: the term ( ) ( ) Fu k =u k +O ; the 1,2,3,4Θ  are the higher order terms in the Taylor series 
approximation; ( ) ( )( )Δf x k ,u k  is the unmodeled dynamics; FO  is an offset. 
 If Assumptions 1 and 2 fulfil, the learning algorithm for the RTNN is given by (8) and the 
learning parameters kη , kα  are normalized and depended on the output error structure.  
Then, the approximation error is bounded. 
Consider a Lyapunov candidate function as 

 ( ) ( ) ( )1 2k =L k +L kL  (A.3) 

In which ( )1L k  and ( )2L k  are given by: 

 ( ) ( )2
1

1k = e k
2

L  (A.4) 

 ( ) ( ) ( ) ( )T T T
2 A B CBA Ck =tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)L  (A.5) 

Where:  

* * *
A B C1 ˆ ˆˆW (k)=A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C  

 

are vectors of the estimation error and * * *(A ,B ,C )  and k k kˆ ˆˆ(A ,B ,C )  denote the ideal neural 
weight and the estimate of neural weight at the k-th step, respectively, for each case. 
Let us consider the equation (A.4). The change of the Lyapunov function in two consecutive 
samples due of the training process is obtained by: 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]− = − −1 11 1 1 2 2ΔL k =L k+1 L k e k+1 e k e k + e k+1 e k   (A.6) 
 

Then, defining  ( )Δe k  as the difference between two consecutive error samples, the 
equation (A.6) becomes: 

 ( ) ( ) ( ) ( )[ ]11 2ΔL k =Δe k e k + Δe k  (A.7) 

Where: ( )Δe k can be defined as: 

 ( ) ( )∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

e kΔe k = ΔW
W

 (A.8) 

Putting all weights into one vector as 
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which  represents the weight vectors constructed by their columns. Also let: 
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Where: A B C(η ,η ,η )  and A B C(α ,α ,α )  represented the learning rate matrix, the momentum 

rate matrix corresponding to (A,B,C) , respectively, and A
1 Aη =η I , B

2 Bη =η I , C
3 Cη =η I , 

A
1 Aα =α I , B

2 Bα =α I , C
3 Cα =α I . Moreover, ( )iη i=1,...,3 and ( )iα i=1,...,3  are two positive 

constants, and ZI  is an identity matrix with Z  representing A,B,C , respectively. Now, we 
could define ΔW  and derive an expression for ( )1ΔL k :   

 ( ) ( )−ΔW=ηΔW k +αΔW k 1  (A.11) 
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 ( ) ( ) ( )− −Δe k+1 = γe k+1 λe k  (A.15) 
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( ) ( ) ( )[ ] ( )
=

= − − −⎡ ⎤⎣ ⎦

11 2
2 2 2 21 1

2 2
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 (A.16) 

Proposing: −λ=γ 1 , then: 

 ( ) ( ) ( )[ ]= − − − −⎡ ⎤⎣ ⎦
22 2 21 11 2 2ΔL k+1 e k+1 2γ +4γ 1 λ Δe k  (A.17) 

According to the Lyapunov’s stability theory, the convergence could be be guaranteed, if 
( )ΔL k+1 <0 , thus − −22γ +4γ 1>0 , and 

 ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1 11 <γ< 1+
2 2

 (A.18) 

That is : 
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Let { }
3

max i
i=1

η =max η ; thus, as long as: 
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Note that ⋅   is the Euclidean norm, therefore: 

 ( ) ( ) ( ) ( )∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

2 2 2 2e k e k e k e k+ + =
A B C W

 (A.21) 

Now let : ( ) ( ) ( )∂∂
∂ ∂= − y ke k
W Wψ k =  and ( )max kψ =max ψ k , then: 

 

 
⎛ ⎞ ⎛ ⎞
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max
max max

1 11- 1+
2 2<η <

ψ ψ
 (A.22) 

Now, working with equation (A.5), we have:  

 ( ) ( ) ( ) ( )= T T T
2 A B CBA CL k tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  (A.23) 

Considering the change of the Lyapunov function in two consecutive samples of the training 
process, and substituting the quantities: ( )

* * *
B CA k ˆ ˆˆW =A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C , we get:  
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Note that ⋅   is the Euclidean norm, therefore: 
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Now, working with equation (A.5), we have:  

 ( ) ( ) ( ) ( )= T T T
2 A B CBA CL k tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  (A.23) 

Considering the change of the Lyapunov function in two consecutive samples of the training 
process, and substituting the quantities: ( )

* * *
B CA k ˆ ˆˆW =A(k)-A ,W (k)=B(k)-B ,W (k)=C(k)-C , we get:  
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⎜ ⎟
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⎜ ⎟
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T

T T T
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*
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B
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              +tr
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 (A.24) 

Applying the learning law (8) and the trace properties we obtained: 

 

( )

( )
( )

⎡ ⎤ ⎡ ⎤=
⎣ ⎦ ⎣ ⎦

2 2 2 22 22 2
2 max max

T T T
max

T T T
max

ˆ ˆ ˆ ˆˆ ˆΔL k η ΔA(k) + ΔB(k) + ΔC(k) +α ΔA(k-1) + ΔB(k-1) + ΔC(k-1)

ˆ ˆˆ             +2η tr A(k)ΔA (k)+B(k)ΔB (k)+C(k)ΔC (k)
ˆ ˆˆ             +2α tr A(k)ΔA (k-1)+B(k)ΔB (k-1)+C(k)ΔC (k-1)

( )T T T
max max ˆ ˆ ˆ ˆˆ ˆ             +2α η tr ΔA(k)ΔA (k-1)+ΔB(k)ΔB (k-1)+ΔC(k)ΔC (k-1)

 (A.25) 

Substituting the learning values and errors (9)-(15), we obtained terms like: 

 2
max max2η e(k) -2η ξ(k)e(k)  ; 2

max max2η e(k-1) -2η ξ(k-1)e(k-1)  (A.26) 

Applying the following inequality: ( ) ≤
TT T T T -1X Y+ X Y X ΛX+Y Λ Y , which is valid for any 

∈ℜn×mX,Y , and for any positive definite matrix ×< Λ = Λ ∈ℜ0 T n n ,  we obtained: 

 ( ) ( ) ≤ -11 1

2 22
max max max max Λ Λ2η e(k)ξ(k)= η e(k) ξ(k)+ξ(k) η e(k) η e(k) + ξ(k) ; 

 ( ) ( ) ≤ -12 2

2 22
max max max max Λ Λ2α e(k-1)ξ(k-1)= α e(k-1) ξ(k-1)+ξ(k-1) α e(k-1) α e(k-1) + ξ(k-1)  (A.27) 

Analyzing (A.27) term by term and applying the Rayleigh inequality: 
( ) ( )≤ ≤2 2T

min maxλ Λ x x Λx λ Λ x  we obtained a statement for ( )2ΔL k . Making inner terms 
equal to one as in the unit circle condition for discrete time, at last we get the final condition: 

 ( ) ( ) ( ) ( )≤ 2 2
2 max maxΔL k -η e k -α e k-1 +d k   (A.28) 

 ( ) -1 -1
1 2

2 2
Λ Λd k = ξ(k) + ξ(k-1)   (A.29) 

Where ( )d k  represented the unmodeled dynamics and/or perturbations term. Applying 
the Rate of Convergence Lemma (Nava et al., 2004) for the result (A.28) we could conclude 
that: the d(k)  - term must be bounded by the weight matrices and the learning parameter in 
order to obtain the final result: ( ) ∞∈2ΔL k L . As a consequence we get : 

( ) ( ) ( )∞ ∞ ∞∈ ∈ ∈k k kA L ,B L ,C L . From equations (A.22) and (A.28) we easily could get the 
inequality (A.20). Therefore the boundedness of  L(k) , +∈ 0k Z  is guaranteed. 
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1. Introduction 
Recently, neural-network-based adaptive control technique has attracted increasing 
attentions, because it has provided an efficient and effective way in the control of complex 
nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu, 
2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the 
approximation capabilities of the neural networks. The parameterized neural networks can 
approximate the unknown system dynamics or the ideal tracking controller after learning. 
One must distinguish between two classes of control applications – open-loop identification 
and closed-loop feedback control. Identification applications are similar to signal 
processing/classification, so that the same open-loop algorithms may often be used. 
Therefore, a tremendous amount of training data must be used and considerable training 
time undertaken is required. On the other hand, in closed-loop feedback applications the 
neural network is inside the control loop, so that special steps must be taken to ensure that 
the tracking error and the neural network weights remain bounded in the closed-loop 
system. The basic issues in neural network closed-loop feedback control are to provide on-
line learning algorithms that do not require preliminary off-line tuning. Some of these 
learning algorithms are based on the backpropagation algorithm. However, these 
approaches have difficulties to guarantee the stability and robustness of closed-loop system 
(Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the 
Lyapunov stability theorem. The tuning laws have been designed to guarantee the system 
stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004).  
However, these neural networks are feedforward neural networks; they belong to static 
mapping networks. Without aid of tapped delay, a feedforward neural network is unable to 
represent a dynamic mapping. The recurrent neural network (RNN) has superior 
capabilities as compared to feedforward neural networks, such as their dynamic response 
and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has 
an internal feedback loop, it captures the dynamic response of a system with external 
feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic 
characteristic and relatively simple architecture, the recurrent neural network is a useful tool 
for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et 
al. 2004). 
Although the neural-network-based adaptive control performances are acceptable in above 
literatures; however, the learning algorithm only includes the parameter learning, and they 
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( )T T T
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Substituting the learning values and errors (9)-(15), we obtained terms like: 

 2
max max2η e(k) -2η ξ(k)e(k)  ; 2

max max2η e(k-1) -2η ξ(k-1)e(k-1)  (A.26) 

Applying the following inequality: ( ) ≤
TT T T T -1X Y+ X Y X ΛX+Y Λ Y , which is valid for any 

∈ℜn×mX,Y , and for any positive definite matrix ×< Λ = Λ ∈ℜ0 T n n ,  we obtained: 

 ( ) ( ) ≤ -11 1

2 22
max max max max Λ Λ2η e(k)ξ(k)= η e(k) ξ(k)+ξ(k) η e(k) η e(k) + ξ(k) ; 

 ( ) ( ) ≤ -12 2

2 22
max max max max Λ Λ2α e(k-1)ξ(k-1)= α e(k-1) ξ(k-1)+ξ(k-1) α e(k-1) α e(k-1) + ξ(k-1)  (A.27) 

Analyzing (A.27) term by term and applying the Rayleigh inequality: 
( ) ( )≤ ≤2 2T

min maxλ Λ x x Λx λ Λ x  we obtained a statement for ( )2ΔL k . Making inner terms 
equal to one as in the unit circle condition for discrete time, at last we get the final condition: 

 ( ) ( ) ( ) ( )≤ 2 2
2 max maxΔL k -η e k -α e k-1 +d k   (A.28) 

 ( ) -1 -1
1 2

2 2
Λ Λd k = ξ(k) + ξ(k-1)   (A.29) 

Where ( )d k  represented the unmodeled dynamics and/or perturbations term. Applying 
the Rate of Convergence Lemma (Nava et al., 2004) for the result (A.28) we could conclude 
that: the d(k)  - term must be bounded by the weight matrices and the learning parameter in 
order to obtain the final result: ( ) ∞∈2ΔL k L . As a consequence we get : 

( ) ( ) ( )∞ ∞ ∞∈ ∈ ∈k k kA L ,B L ,C L . From equations (A.22) and (A.28) we easily could get the 
inequality (A.20). Therefore the boundedness of  L(k) , +∈ 0k Z  is guaranteed. 
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1. Introduction 
Recently, neural-network-based adaptive control technique has attracted increasing 
attentions, because it has provided an efficient and effective way in the control of complex 
nonlinear or ill-defined systems (Duarte-Mermoud et al., 2005; Hsu et al., 2006; Lin and Hsu, 
2003; Lin et al., 1999; Peng et al. 2004). The key elements of this success are the 
approximation capabilities of the neural networks. The parameterized neural networks can 
approximate the unknown system dynamics or the ideal tracking controller after learning. 
One must distinguish between two classes of control applications – open-loop identification 
and closed-loop feedback control. Identification applications are similar to signal 
processing/classification, so that the same open-loop algorithms may often be used. 
Therefore, a tremendous amount of training data must be used and considerable training 
time undertaken is required. On the other hand, in closed-loop feedback applications the 
neural network is inside the control loop, so that special steps must be taken to ensure that 
the tracking error and the neural network weights remain bounded in the closed-loop 
system. The basic issues in neural network closed-loop feedback control are to provide on-
line learning algorithms that do not require preliminary off-line tuning. Some of these 
learning algorithms are based on the backpropagation algorithm. However, these 
approaches have difficulties to guarantee the stability and robustness of closed-loop system 
(Duarte-Mermoud et al., 2005; Lin et al., 1999). Another learning algorithms are based on the 
Lyapunov stability theorem. The tuning laws have been designed to guarantee the system 
stability in the Lyapunov sense (Hsu et al., 2006; Lin & Hsu, 2003; Peng et al., 2004).  
However, these neural networks are feedforward neural networks; they belong to static 
mapping networks. Without aid of tapped delay, a feedforward neural network is unable to 
represent a dynamic mapping. The recurrent neural network (RNN) has superior 
capabilities as compared to feedforward neural networks, such as their dynamic response 
and their information storing ability (Lee & Teng, 2000; Lin & Hsu, 2004). Since an RNN has 
an internal feedback loop, it captures the dynamic response of a system with external 
feedback through delays. Thus, an RNN is a dynamic mapping network. Due to its dynamic 
characteristic and relatively simple architecture, the recurrent neural network is a useful tool 
for most real-time applications (Lin & Chen, 2006; Lin & Hsu, 2004; Tian et al., 2004; Wai et 
al. 2004). 
Although the neural-network-based adaptive control performances are acceptable in above 
literatures; however, the learning algorithm only includes the parameter learning, and they 
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have not considered the structure learning of the neural network. If the number of hidden 
neurons is chosen too large, the computation load is heavy so that they are not suitable for 
practical applications. If the number of hidden neurons is chosen too small, the learning 
performance may be not good enough to achieve desired control performance. To tackle this 
problem, several self-structuring neural networks, consisting of structure and parameter 
learning phases, have been proposed (Huang et al., 2004; Leung & Tsoi, 2005; Lin et al, 
2005). These learning phases not only decide the structure of neural network but also adjust 
the parameters of neural network. Recently, some self-structuring neural networks have 
been applied to solve several control problems (Lin et al., 2001; Gao & Er, 2003; Park et al., 
2005). Lin et al. (2001) used a similarity measure method to avoid the newly generated 
membership function being too similar to the existing ones; however, the structure would 
grow large as the input data has large variations. Gao & Er (2003) proposed an error 
reduction ratio with QR decomposition to prune the hidden neurons; however, the design 
procedure is overly complex. Park et al. (2005) proposed a self-structuring neural network 
which can create new hidden neurons to increase the learning ability; unfortunately, the 
proposed approach can not avoid the structure of neural network growing unboundedly. 
This paper proposes a recurrent-neural-network-based adaptive control (RNNAC) method, 
which combines neural-network-based adaptive control, robust control and self-structuring 
approach, for a class of unknown nonlinear systems. The proposed RNNAC system is 
composed of a neural controller and a robust controller. The neural controller uses a self-
structuring recurrent neural network (SRNN) to approximate an ideal tracking controller. 
The learning process of SRNN includes the structure learning and parameter learning. In the 
structure learning, the SRNN can online create new hidden neurons as the incoming data is 
far away the existing hidden neurons, and cancel hidden neurons as the hidden neurons is 
inappropriate. Thus the learning capability and flexibility can be upgraded. In the parameter 
learning, the controller parameters can be online tuned based on the Lyapunov function, so 
that the stability of the closed-loop system can be guaranteed. The robust controller is 
designed to recover the residual of the approximation error to achieve 2L  tracking 
performance with desired attenuation level. Finally, the proposed RNNAC system is 
applied to control a nonlinear dynamic system. Simulation results are performed to 
demonstrate the effectiveness of the proposed design method. 

2. Problem statement and ideal tracking control 
The model of many practical nonlinear systems can be expressed in the nth-order form as 

 ufx n += )()( x  (1) 

where Tnxxx ],,,[ )1( −= …�x  is the state vector of the system, which is assumed to be available 
for measurement, )(xf  is the nonlinear system dynamics which can be unknown, and u  is 
the input of the system. The tracking control problem of the system is to find a control law 
so that the state trajectory x  can track a reference command cx  closely. The tracking error is 
defined as 

 xxe c −= . (2) 

If the exact model of the controlled system is well known, there exists an ideal tracking 
controller to achieve favorable control performance by possible canceling all the system 
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uncertainties (Slotine and Li, 1991). Assume that the parameters of the controlled system in 
(1) are well known, there exits an ideal tracking controller  

 EKx Tn
cxfu ++−= )(* )(  (3) 

where Tneee ],,,[ )1( −= …�E  and T
n kkk ],,,[ 12�=K . Applying the ideal tracking controller (3) to 

system (1) results in the following error dynamics 
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If ik , ni ,,2,1 �=  are chosen such that all roots of the polynomial n
nn kskssh +++Δ − �1

1)(  

lie strictly in the open left half of the complex plane, then it implies that 0lim =
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starting initial conditions. The error dynamics (4) can be rewritten in a vector form as 
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A . However, since the system dynamics )(xf  may be 

unknown or perturbed in practical applications, the ideal tracking controller (3) can not be 
precisely obtained. 

3. Design of RNNAC 
For achieving a favorable tracking performance and a specified attenuation level 
simultaneously, the developed recurrent-neural-network-based adaptive control (RNNAC) 
system with structure adaptation algorithm shown in Fig. 1 is assumed to take the following 
form 

 rcncanc uuu +=  (6) 

where ncu  is the neural controller and rcu  is the robust controller. The neural controller 
using a self-structuring recurrent neural network (SRNN) to approximate the ideal tracking 
controller is the principal controller; and the robust controller is designed to achieve a 
specified 2L  robust tracking performance. The detail will be described as follows: 

3.1 Description of SRNN 
Radial basis function (RBF) networks have gained much popularity due to their ability to 
approximate complex nonlinear mappings directly from the input-output data with a 
simple topological structure. RBF is different from neural network with sigmoidal activation 
functions utilizing basis functions, which are locally responsive to input stimulus. Each 
output of RBF has a radially symmetrical response around the center vector. Although the 
RBF neural-network-based adaptive control performances are acceptable, the structure of 
the RBF network is determined by trial-and-error, and RBF network is unable to represent a 
dynamic mapping. To tackle this problem, a three-layer SRNN is shown in Fig. 2, which 
comprises of an input layer, a hidden layer with a feedback unit, and an output layer.  
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where Tnxxx ],,,[ )1( −= …�x  is the state vector of the system, which is assumed to be available 
for measurement, )(xf  is the nonlinear system dynamics which can be unknown, and u  is 
the input of the system. The tracking control problem of the system is to find a control law 
so that the state trajectory x  can track a reference command cx  closely. The tracking error is 
defined as 
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form 
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Fig. 1 Block diagram of self-constructing RNNAC system. 
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Fig. 2 The structure of self-structuring recurrent neural network. 
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The recurrent feedback is embedded in the network by adding feedback connections in the 
hidden layer. Then, the developed SRNN captures the dynamic response with external 
feedback through delays. The output of SRNN with m neurons for an input vector 

T
lxxx ],...,,[ 21=x  is given by 

 ∑
=

−Θ=
m

k
kkkkk rwy

1

),,( scx  (7) 

where Tl
kkkk ccc ]....[ 21=c  and Tl

kkkk sss ]....[ 21=s  are the center and width vectors of RBF, 
respectively; kr  is the internal feedback gain of RBF; kw  represents the connection weights 
between the hidden layer; and ),,( kkkk rscx −Θ  represents the firing weight of the k-th 
hidden neuron which is given as 

 ∏
=

−Θ+−=−Θ
l

i

i
k

i
kkkpikkkk scrxr

1

22 ]/)(exp[),,( scx  (8) 

where i
kc  and i

ks  are the center and width of RBF in the k-th term of the i-th input variable 

ix , respectively; and kpΘ  is the output signal of the k-th hidden neuron in the previous time. 
Define the vectors c , s  and r  collecting all parameters of the hidden layer as 

 TT
m

TT ]....[ 21 cccc =  (9) 

 TT
m

TT ]....[ 21 ssss =  (10) 

 T
mrr ][ 1=r . (11) 

Then, the output of the SRNN can be represented in a vector form 

 ),,,(),,,,( rscxΘwwrscx Ty =  (12) 

where T
mwww ]...[ 21=w  and T

m ]...[ 21 ΘΘΘ=Θ . 
If the number of the hidden neurons m  is chosen too large, the computation load is heavy 
so that they are not suitable for online practical applications. If the number of the hidden 
neurons m  is chosen too small, the learning performance may be not good enough to 
achieve desired performance.  
To solve this problem, this paper proposes an online structuring learning algorithm. The 
first step of the structure learning is to determine whether or not to add a new hidden 
neuron (Lin et al., 2001). In the growing process, the firing weight of a hidden neuron for 
each incoming data ix  can be represented as the degree to which the incoming data belong 

to the existing hidden neurons. According to the degree measure, the criterion of generating 
a new hidden neuron for new incoming data is described as follows. Find the maximum 
degree maxΘ  defined as 

 ktmk
Θ=Θ

≤≤ )(1max max  (13) 



 Recurrent Neural Networks 

 

92 

adaptive 
laws

neural 
controller

+

−
ncucx e

recurrent-neural-network-based 
adaptive control

robust
controller

nth-order 
nonlinear 
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

adaptive 
laws

neural 
controller

+

−
ncucx e

recurrent-neural-network-based 
adaptive control

robust
controller

nth-order 
nonlinear 
systems

x+

rcu

+

)(tm

kΘ

self-structuring
machine

rscw ˆ,ˆ,ˆ,ˆ

κ

thth I,Θ

ancu

 
Fig. 1 Block diagram of self-constructing RNNAC system. 
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Fig. 2 The structure of self-structuring recurrent neural network. 
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The recurrent feedback is embedded in the network by adding feedback connections in the 
hidden layer. Then, the developed SRNN captures the dynamic response with external 
feedback through delays. The output of SRNN with m neurons for an input vector 
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ix , respectively; and kpΘ  is the output signal of the k-th hidden neuron in the previous time. 
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where T
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If the number of the hidden neurons m  is chosen too large, the computation load is heavy 
so that they are not suitable for online practical applications. If the number of the hidden 
neurons m  is chosen too small, the learning performance may be not good enough to 
achieve desired performance.  
To solve this problem, this paper proposes an online structuring learning algorithm. The 
first step of the structure learning is to determine whether or not to add a new hidden 
neuron (Lin et al., 2001). In the growing process, the firing weight of a hidden neuron for 
each incoming data ix  can be represented as the degree to which the incoming data belong 

to the existing hidden neurons. According to the degree measure, the criterion of generating 
a new hidden neuron for new incoming data is described as follows. Find the maximum 
degree maxΘ  defined as 
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where )(tm  is the number of the existing hidden neurons at the time t. It can be observed 
that if the maximum degree maxΘ  is small as the incoming data is far away the existing 
hidden neurons. If thΘ≤Θmax  is satisfied, where )1,0(∈Θ th  is a pre-given threshold, then a 
new hidden neuron is generated. The thΘ  denotes the adding threshold value. If thΘ  is 
chosen to be large, the hidden neurons of SRNN can be easily created; on the other hand, if 

thΘ  is chosen to be small, the hidden neurons of SRNN can be difficulty created. For the 
practical implement, as the unknown control system dynamics are too complex, the thΘ  
should be chosen as a large value so that more hidden neurons can be created to increase the 
learning ability. The number )(tm  is incremented 

 1)()1( +=+ tmtm . (14) 
The parameters associated with the new hidden neuron are given by 

 ( 1)
new
i m ic x+ =  (15) 

 ( 1)
new
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where ix  is the new incoming data and σ  is the width of a radial basis function. 
Then, to prevent the structure growing unboundedly, the structure learning considers 
whether or not to prune the existing hidden neurons which are inappropriate. A significance 
of the k-th hidden neuron is defined as (Hsu, 2007) 
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where the initial value of kI  is 1; δ  is the threshold value; and τ  is the elimination speed 
constant. The pruning algorithm is derived from the observation that if the significance gets 
fading when the firing weight kΘ  is smaller than the threshold value δ . If thk II ≤  is 
satisfied, where thI  a pre-given threshold, then the k-th hidden neuron is cancelled. thI  
denotes the significance threshold value. If thI  is chosen to be large, the neurons of SRNN 
can be easily canceled. For practical implement, as the computation load is the important 
issue, thI  should be chosen as a large value so that more hidden neurons can be pruned. 
Hence, the computation load can be decreased. In summary, the flow chart of the structure 
learning algorithm is shown in Fig. 3. The major contribution of SRNN is that it can operate 
directly without spending much time on pre-determining the structuring of neural network. 

3.2 SRNN approximation 
Let the number of optimal hidden neurons be *m  and can divide into two parts. The first 
part contains m  hidden neurons which are the activated part, and the secondary part 
contains mm −*  hidden neurons which do not exist yet. Thus, by the universal 
approximation theorem, an optimal SRNN approximator can be designed to approximate 
y , such that (Park et al., 2005) 
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Fig. 3 The flow chart of the structure learning algorithm for SRNN. 

 y Δ++= ),,,(),,,( **********
uuuuu rscxΘwrscxΘw TT  (19) 

where *w , *Θ , *c , *s  and *r  are activated parts of optimal weights; *
uw , *

uΘ , *
uc , *

us  and *
ur  

are inactivated parts of optimal weights; and Δ  is the approximation error. Since these 
optimal parameters are unobtainable, a SRNN estimator ŷ  is defined as 

 )ˆ,ˆ,ˆ,(ˆˆˆ rscxΘwTy =  (20) 

where ŵ , Θ̂ , ĉ , ŝ  and r̂  are the estimated values of *w , *Θ , *c , *s  and *r , respectively. 
Define the estimated error y~  as 
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issue, thI  should be chosen as a large value so that more hidden neurons can be pruned. 
Hence, the computation load can be decreased. In summary, the flow chart of the structure 
learning algorithm is shown in Fig. 3. The major contribution of SRNN is that it can operate 
directly without spending much time on pre-determining the structuring of neural network. 

3.2 SRNN approximation 
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contains mm −*  hidden neurons which do not exist yet. Thus, by the universal 
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 yyy ˆ~ −= ΘwΘwΘw uu
ˆˆ**** TTT −Δ++= Δ++++= **~~~ˆˆ~

uu ΘwΘwΘwΘw TTTT  (21) 

where www ˆ~ * −=  and ΘΘΘ ˆ~ * −= . In this study, a method is proposed to guarantee the 
closed-loop stability and perfect tracking performance, and to tune the center and the width 
of the radial basis function and the recurrent weight on line. For achieving this goal, 
linearization technique is employed to transform the nonlinear functions into partially linear 
form so that the expansion of Θ~  in a Taylor series to obtain (Lin and Chen, 2006) 

 hrTsTcTΘ rsc +++= ~~~~ TTT  (22) 
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= m� ; and h  is a vector of higher-order terms. Substituting (22) into (21), it 

is obtained that 
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uursc ΘwΘwhrTsTcTwΘw TTTTTTT  

 ε++++= wTrwTswTcΘw rsc
ˆ~ˆ~ˆ~ˆ~ TTTT  (23) 

where wTccTw cc
ˆ~~ˆ TTT = , wTssTw ss

ˆ~~ˆ TTT =  and wTrrTw rr
ˆ~~ˆ TTT =  are used since they are scales; 

and the uncertain term Δ+++≡ **~~ˆ
uu ΘwΘwhw TTTε . 

3.3 RNNAC design 
By substituting (6) into (1) and using (3) and (23), the tracking error dynamic equation can 
be obtained as follows 

)( *
rcnc uuu −−+= bAEE�  

 )ˆ~ˆ~ˆ~ˆ~( rc
TTTT u−+++++= εwTrwTswTcΘwbAE rsc  (24) 

where T]100[ …=b . In case of the existence of ε , consider a specified 2L  tracking 
performance (Lee et al., 2005; Lin and Lin 2002; Wang et al., 2002) 
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where 1η , 2η , 3η  and 4η  are the positive constants, ],0[ ∞∈T  and 2L∈ε . The κ  is a design 
gain, ρ  is a prescribed attenuation level, and the positive definite matrices P  and Q  
satisfy the following Riccati-like equation 

 0PbPbQPAPA =−+++ TT

κρ
)21(

2
 (26) 
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with κρ ≥22 . The design objective is to tune the parameters of SRNN to specify an 
adequate control law so that the worst effect of approximation error ε  on tracking error 
vector E  is guaranteed to be less than or equal to prescribed attenuation level ρ . If the 
system starts with initial conditions 0)0( =E , 0)0(~ =w , 0)0(~ =c , 0)0(~ =s  and 0)0(~ =r , then 
the 2L  tracking performance in (25) can be rewritten as 

 ρ
εε

≤

∫
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∈
T

T
T

TL dt

dt

0 

2

0 

],0[  

 
sup

2

QEE
. (27) 

where the 2L -gain from ε  to the tracking error E  must be equal to or less than ρ . The 
following theorem can be stated and proved. 
Theorem 1: Consider an nth-order nonlinear system expressed by (1). The control system is 
designed as (6), in which the adaptation laws of the neural controller are designed as 

 ΘPbEww ˆ~ˆ
1

Tη=−=  (28) 

 wPbTEcc c
ˆ~ˆ

2
Tη=−=  (29) 

 wPbTEss s
ˆ~ˆ

3
Tη=−=  (30) 

 wPbTErr r
ˆ~ˆ

4
Tη=−=  (31) 

and the robust controller is designed as 

 PEbT
rcu

κ
1

=  (32) 

then the stability of the system can be guaranteed. 
Proof: 
Consider a Lyapunov function in the following form 
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Differentiating (33) with respect to time and using (24) and (28) ~ (31), it can be obtained 
that 
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where 1η , 2η , 3η  and 4η  are the positive constants, ],0[ ∞∈T  and 2L∈ε . The κ  is a design 
gain, ρ  is a prescribed attenuation level, and the positive definite matrices P  and Q  
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with κρ ≥22 . The design objective is to tune the parameters of SRNN to specify an 
adequate control law so that the worst effect of approximation error ε  on tracking error 
vector E  is guaranteed to be less than or equal to prescribed attenuation level ρ . If the 
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Using (26) and (32), equation (34) can be rewritten as 
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where 0)1()1( ≥−− ρεε PEbPEb TTT
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Since 0)( ≥TV , the above inequality implies the following inequality 
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Using (34), this inequality is equivalent to inequality (25). Since )0(V  is finite if the 

approximation error 2L∈ε , that is ∞<∫
T

d
0

2 τε , it implies that 0lim =
∞→

E
t

. 

In the following, the design algorithm of RNNAC with structure adaptation algorithm is 
summarized as follows: 
Step 1: Initialize the pre-defined parameters of RNNAC. 
Step 2: The tracking error is given in (2). 
Step 3: The neural controller is given as (20), where the parameter are estimated by (28)-(31), 
respectively. 
Step 4: The robust controller is given as (32). 
Step 5: The control law is given as (6). 
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Step 6: Determine whether or not to add a new hidden neuron by thΘ≤Θmax  condition, and 
determine whether or not to cancel a existing node by a significance index kI . 
Step 7: Return to Step 2. 

4. Simulation results 
Consider a second-order chaotic system such as the Duffing’s equation describing a special 
nonlinear circuit or a pendulum moving in a viscous medium (Chen and Dong, 1993; Jiang, 
2002) 

 ufx += )(x  (38) 

where =)(xf )cos(3
21 tqxpxpxp ω+−−−  is the system dynamics, t is the time variable, ω  is 

the frequency, u  is the control effort and p , 1p , 2p  and q  are real constants. The chaotic 
dynamic system can be observed in many nonlinear circuits and mechanical systems. 
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Fig. 4 Phase plane of uncontrolled chaotic system. 

Recently, control of the chaotic dynamic system has become a significant research topic in 
the physics, mathematics and engineering communities. Chaotic dynamic system is a 
nonlinear deterministic system that displays complex, noisy-like and unpredictable 
behavior. Depending on the choice of these constants, it is known that the solutions of (38) 
may exhibit periodic, almost periodic and chaotic behavior. For observing the chaotic 
unpredictable behavior, the open-loop system behavior with 0=u  was simulated with 
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summarized as follows: 
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Step 5: The control law is given as (6). 
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Step 6: Determine whether or not to add a new hidden neuron by thΘ≤Θmax  condition, and 
determine whether or not to cancel a existing node by a significance index kI . 
Step 7: Return to Step 2. 

4. Simulation results 
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nonlinear circuit or a pendulum moving in a viscous medium (Chen and Dong, 1993; Jiang, 
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Fig. 4 Phase plane of uncontrolled chaotic system. 

Recently, control of the chaotic dynamic system has become a significant research topic in 
the physics, mathematics and engineering communities. Chaotic dynamic system is a 
nonlinear deterministic system that displays complex, noisy-like and unpredictable 
behavior. Depending on the choice of these constants, it is known that the solutions of (38) 
may exhibit periodic, almost periodic and chaotic behavior. For observing the chaotic 
unpredictable behavior, the open-loop system behavior with 0=u  was simulated with 
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4.0=p , 1.11 −=p , 0.12 =p  and 8.1=ω . The phase plane plots from an initial condition 
point (0, 0) are shown in Figs. 4(a) and 4(b) for 65.1=q  (chaotic) and 35.5=q  (period 1), 
respectively (Chen and Dong, 1993). It is shown that the uncontrolled chaotic dynamic 
system has different chaotic trajectories with different q values. The interest in the chaotic 
equation is the problem of how to design a controller to drive a chaotic trajectory to track a 
reference command closely. 
The proposed RNNAC with structure adaptation algorithm is applied to control a nonlinear 
dynamic system. It should be emphasized that the development of the proposed control 
method does not need to know the system dynamics of the control system. A SRNN 
approximator is used to online estimate an ideal tracking controller with the online 
structuring and parameter learning algorithms. The structure learning possesses the ability 
of both adding and pruning hidden neurons, and the parameter learning adjusts the 
interconnection weights of neural network to achieve favorable approximation performance. 
The parameters of RNNAC are selected as 11 =k , 22 =k , 501 =η , 10432 === ηηη , 0.2=σ , 

5.0=Θ th , 01.0=τ , 2.0=δ , and 1.0=thI . The choices of these values are through some trials 
to achieve satisfactory control performance considering the requirement of stability and 
possible operating conditions. Properly choosing the values of 1k  and 2k , the desired 
system dynamics such as rise time, overshoot, and settling time can be easily designed by 
the second-order system shown in (4). The parameters 1η , 2η , 3η  and 4η  are the leaning 
rates of the interconnection weights. If the leaning rates are chosen to be small, then the 
parameters convergence of RNNAC will be easily achieved; however, this will result in slow 
learning speed. On the other hand, if the leaning rates are chosen to be large, then the 
learning speed will be fast; however, the RNNAC system may become more unstable for the 
parameter convergence. For a choice of IQ = , solve the Riccati-like equation (26) with 

κρ =22 , then 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

5.05.0
5.05.1

P . (39) 

The simulation results of the RNNAC system with 0.1=κ  for 65.1=q  and 35.5=q  are 
shown in Figs. 5 and 6, respectively. The tracking responses of state x  are shown in Figs. 
5(a) and 6(a); the tracking responses of state x  are shown in Figs. 5(b) and 6(b); the 
associated control efforts are shown in Figs. 5(c) and 6(c); and the numbers of hidden 
neurons are shown in Figs. 5(d) and 6(d), respectively. Simulation results show that the 
robust tracking performance of the proposed RNNAC system has been achieved. To 
attenuate an arbitrarily desired level via 2L  tracking design technique as small as possible. 
The simulation results of the proposed RNNAC system with 1.0=κ  for 65.1=q  and 

35.5=q  are shown in Figs. 7 and 8, respectively. The tracking responses of state x  are 
shown in Figs. 7(a) and 8(a); the tracking responses of state x  are shown in Figs. 7(b) and 
8(b); the associated control efforts are shown in Figs. 7(c) and 8(c); and the numbers of 
hidden neurons are shown in Figs. 7(d) and 8(d), respectively. From these simulation 
results, it can be seen that robust tracking performance can be also achieved without any 
knowledge of system dynamic functions; moreover, better system performance can be 
achieved as soon as the robust gain κ  is decreased. 
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Fig. 5 Simulation results for 65.1=q  with 0.1=κ . 
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Fig. 6 Simulation results for 35.5=q  with 0.1=κ . 
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Fig. 8 Simulation results for 35.5=q  with 1.0=κ . 
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5. Conclusions 
This paper develops a recurrent-neural-network-based adaptive control (RNNAC) system 
with structure adaptation algorithm, which is composed of a neural controller and a robust 
controller. In the neural controller design, a self-structuring recurrent neural network 
(SRNN) is utilized to mimic an ideal tracking controller. In the SRNN approximator, a 
dynamic generating and pruning mechanism of the neural stricture is developed to cope 
with the tradeoff between the approximation accuracy and computation load. The robust 
controller is designed to attenuate the effects of the approximation error on the tracking 
performance using 2L  tracking technique. Finally, the developed RNNAC system is used to 
control a nonlinear chaotic dynamic system to demonstrate its effectiveness. Simulation 
results indicate that a small attenuation level can be achieved if the magnitude of weighting 
factor κ  is chosen small. 
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1. Introduction 
There are many papers that consider different structure and training algorithms of FNN. 
Within their structural range, the networks may differ by type of signals (singleton, interval, 
general fuzzy, triangle shaped or other), topology (layered, fully-connected, with or without 
feed-back connections, feed-back connections in all or some of the layers etc), type of 
neurons (transfer function, same type in all layers or different depending on layer).  
Note also that FNN is further complicated when we deal with applications of temporal 
character such as dynamic control, forecasting, identification, recognition of temporal 
sequences (e.g. voice recognition). It is obvious that in this case classical FNN with feed-
forward structure, operable mainly for memory-less problems, would be ineffective. In this 
respect there is a strong demand for recurrent fuzzy neural networks (RFNN) with dynamic 
mapping capability, temporal information storage, dynamic fuzzy inference, and as a result, 
capable of solving temporal problems [7,24,27]. 
Paper [48] discusses delay feedback neuro-fuzzy networks and their usability to effectively 
tackle dynamic systems. This is a simplified version of recurrent network with feedback 
connections at only one layer of the network. To train unknown parameters of RFNN the 
author of [1] uses a supervised learning algorithm that requires differentiability of the 
membership functions that is not always possible. 
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main 
characteristic of this system is the ability to deal with temporal problems including dynamic 
fuzzy inference. The system with on-line learning feature is capable also of building the 
structure and (crisp) parameters of the network. The learning algorithm is based on the use 
of the ordered derivative (partial derivative) produced with the use of an ordered set of 
equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of 
various simulations on benchmark temporal problems, including time-sequence prediction, 
adaptive noise cancellation, dynamic plant identification, and non-linear plant control.  
In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using 
dynamic fuzzy rules is presented. The paper distinguishes as containing good 
methodological support encompassing important aspects of neuro-fuzzy systems class. The 
back-propagation algorithm is used as the learning algorithm minimizing the cost function 
to achieve necessary connection weights and biases. As in [25], several examples and 
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author of [1] uses a supervised learning algorithm that requires differentiability of the 
membership functions that is not always possible. 
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main 
characteristic of this system is the ability to deal with temporal problems including dynamic 
fuzzy inference. The system with on-line learning feature is capable also of building the 
structure and (crisp) parameters of the network. The learning algorithm is based on the use 
of the ordered derivative (partial derivative) produced with the use of an ordered set of 
equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of 
various simulations on benchmark temporal problems, including time-sequence prediction, 
adaptive noise cancellation, dynamic plant identification, and non-linear plant control.  
In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using 
dynamic fuzzy rules is presented. The paper distinguishes as containing good 
methodological support encompassing important aspects of neuro-fuzzy systems class. The 
back-propagation algorithm is used as the learning algorithm minimizing the cost function 
to achieve necessary connection weights and biases. As in [25], several examples and 
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performance comparisons with the existing works are presented including time sequence 
prediction, identification of non-linear dynamic system, identification of a chaotic system, 
and adaptive control of a non-linear system. 
It should be noted that in [27] feedback links in the second layer only are added to the fuzzy 
feed-forward neural network. This rather simplified version of neuro-fuzzy network has 
crisp feed-forward connection weights and non-adjustable recurrent connection weights in 
the second layer. These simplifications undoubtedly lead to some decrease in the efficiency 
of the proposed neuro-fuzzy network.  
In [35] a dynamic neuro-fuzzy system consisting of recurrent TSK rules is investigated. The 
suggested network is trained by dynamic fuzzy neural constrained optimization method 
based on the concept of constrained optimization. The proposed dynamic neuro-fuzzy 
system is tested on two temporal examples and the noise cancellation problem.  
In [31] a hybrid supervisory control system using a recurrent neuro-fuzzy network, with the 
network output feeding back to the network input through time-delay units, is proposed. 
An on-line training methodology which is based on Lyapunov stability theorem and the 
gradient descent method is proposed. Some simulated and experimental results are 
provided to demonstrate the efficiency of the proposed neuro-fuzzy system.  
Recurrent neuro-fuzzy systems for implementation of long-range prediction fuzzy model is 
investigated in [54]. In this recurrent neuro-fuzzy model the network output is fed back to 
the network input through one or more time delay units. Levenberg-Marquardt algorithm 
with regularization is used for adjusting crisp weights and biases of the feed-forward and 
feed-back connections of the recurrent neuro-fuzzy network. The suggested neuro-fuzzy 
network is applied to modeling and control of a neutralization process.  
In [50] a direct adaptive iterative learning control system based recurrent neuro-fuzzy 
network is presented. The analysis of stability and learning is studied. A computer 
simulation for an inverted pendulum system and Chua’s chaotic circuit is demonstrated.  
A sliding mode recurrent neuro-fuzzy network based control system is proposed in [30] to 
control the mover of a permanent-magnet linear synchronous motor. The learning algorithm 
used is the same as in [31].  
Interesting design methods and applications of FRNN are discussed in [18,26,29,34,55]. In 
paper [34] a discrete mathematical model of RFNN is constructed and a learning algorithm 
adopting a recursive least square approach is used to identify the unknown parameters in 
the model. In [18] the authors propose an efficient algorithm for determination of structure 
of model and identification of its parameters with the aim of producing improved predictive 
performance for NARMAX (nonlinear autoregressive moving average with exogenous 
inputs) time series models. A fuzzified TSK (Takagi-Sugeno-Kang) type recurrent fuzzy 
network is developed in paper [26] for one-dimensional and two-dimensional fuzzy 
temporal sequence prediction. Paper [29] considers a design method of recurrent fuzzy 
neural network based adaptive hybrid control for multi-input multi-output linearized 
dynamic systems. The proposed control system is applied to aircraft flight control system. 
Paper [55] deals with adaptive nonlinear noise control systems using recurrent fuzzy neural 
networks, the feedback connections of which are used to create dynamic fuzzy rules trained 
using dynamic back-propagation learning algorithm. The learning of fuzzy weights of 
FRNN is not considered in these works as all the papers assume network weights to be crisp 
numbers. 
In [20] a self-organizing adaptive fuzzy neural network for nonlinear systems is proposed. 
The identifier is used to estimate the controlled system’s dynamic with the learning of fuzzy 
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neural network. The parameter learning algorithms are derived based on Lyapunov 
function candidate. 
A very important role in designing fuzzy neural networks takes its learning method and the 
problem of how to train fuzzy neural networks (FNN) has great scientific and practical 
interest and is becoming challenging and important research area.  
The training methods for neural networks can be divided into two large categories: 
gradient-based algorithms and evolutionary algorithms. The overview of the works on 
training methods for fuzzy feed-forward neural networks is given in [10]. Work [32] needs 
special note as presenting some methodological support from the viewpoint of fuzzy neural 
networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural 
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient 
(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy 
numbers. The authors use GA for determination of optimal learning rate at each iteration 
step of fuzzy CG algorithm. Some real simulations realizing non-dynamic fuzzy inference 
rules and fuzzy functions are demonstrated.  
The evolutionary algorithms based approach to training of FNN involves application of 
genetic algorithms and other population-based natural evolution inspired algorithms to 
minimize error function and determine the fuzzy connection weights and biases [10,28]. In 
contrast to BP and other supervised learning algorithms, evolutionary algorithms do not use 
the derivative information, and hence, they are most effective in case where the derivative is 
very difficult to obtain or even unavailable. Moreover, the calculation complexity of BP 
algorithms is high due to the need for computing complex Hessian or Jacobian matrices. 
In [47] nonlinear neural network predictive control strategy based on chaotic particle swarm 
optimization is presented. It is shown that since the back-propagation algorithm is easily 
trapped in local minima and its convergence performance greatly depends on its learning 
rate parameter and initial conditions, the weights and biases of the neural network are 
optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is 
considered in this work.  
TSK-type recurrent neuro-fuzzy system trained by GA is proposed in [24]. In this network 
internal variables, derived from fuzzy firing strengths are fed back to both network input 
and output layers. To train the proposed TSK-type recurrent neuro-fuzzy network, a GA 
based method is developed. The recurrent neuro-fuzzy network with genetic learning is 
applied to dynamic system control problem. The research in this field is at its infancy and 
many fundamental problems such as choosing the most efficient error function, coding 
technique, and genetic strategies remain to be solved [33]. 
Unfortunately, little progress has been made in the development of recurrent fuzzy neural 
networks processing directly fuzzy information and using fuzzy weights and biases as 
adjustable parameters. For the first time some attempts were made in [5,6,8-10,22] to 
develop an efficient RFNN with fuzzy inputs, fuzzy weights expressed as fuzzy numbers, 
and fuzzy outputs. In this study we consider the structure, operation, and DE-based training 
algorithm for multi-layer recurrent fuzzy neural network processing fuzzy signals and 
demonstrate its efficiency on a number of benchmark and application problems. 
The rest of this paper is organized as follows. In section 2 we cover prerequisite material 
(such as fuzzy function, Hamming distance, fuzzy neural networks, differential evolution 
optimization, etc.) to be used in the study. Section 3 formulates the statement of problem of 
creating RFNN with efficient learning algorithm. Section 4 illustrates the structure and 
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networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural 
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient 
(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy 
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trapped in local minima and its convergence performance greatly depends on its learning 
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optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is 
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internal variables, derived from fuzzy firing strengths are fed back to both network input 
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technique, and genetic strategies remain to be solved [33]. 
Unfortunately, little progress has been made in the development of recurrent fuzzy neural 
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computational procedure of the investigated recurrent fuzzy neural network. In section 5 
the recurrent fuzzy neural network learning algorithm using DEO is described. Simulations 
and experimental results are discussed in section 6. Section 7 gives the conclusion of this 
paper.  

2. Preliminaries 
In this section, we briefly review some prerequisite material which will be of help in the 
development of the concepts of evolutionary computing based learning of RFNN. While the 
reader may find some of the definitions in the literature, we augment them with some 
interpretation which could be useful in the context of our considerations. 

2.1 Fuzzy function  
Briefly speaking, by a fuzzy function we mean a function, whose values are fuzzy numbers. 
Let f be a fuzzy function, 

( ) f xμ  denotes the membership function of the fuzzy number 

( )f x , and for 0 1α< ≤ , ( )f xα
+

 will denote sup
( ){ ( ) :∈ f xz dom μ  

( ) ( )  }≥f x zμ α  and ( )f x−
α  

will denote inf ( ){ ( ) :∈ f xz dom μ ( ) ( )  }≥f x zμ α . Functions ( )f x−
α  and ( )f x+

α  are level 

functions of f.  
A fuzzy subset A of Rn is defined in terms of its membership function ( ) : [0,1]n

A x Rμ →  

For each (0,1]α ∈  the α -level set [ ( )]A x αμ  of a fuzzy set A is the subset of points x∈ Rn 

with membership values ( )A xμ  of at least α , that is [ ( )] = { :  ( ) }n
A Ax x R xαμ μ α∈ ≥ . 

2.2 Distance 
Formally, the distance  d(x,y) between x and y in Rn is considered to be a two-argument 
function satisfying the conditions: d(x,y) ≥ 0, for every x and y; d(x,x)=0, for every x; 

( , ) ( , ) ( , )d x z d x y d y z≥ +  for every pattern x, y and z. In the case of continuous variables 
we have a long list of distance functions [7, 40]. 
Let us consider the space En of all fuzzy subsets of Rn which satisfy the conditions of 
normality, convexity and are upper semicontinuous with compact supports 0[ ( )]A x αμ = . For 

fuzzy sets A and B in En, in general, the Minkowski distance defined as follows 

( , ) ( ) ( ) , 1p
p A Bd A B x x dx pμ μ
Χ

= − ≥∫ , (1) 

where X - is a universe of discourse. This distance satisfies the above mentioned conditions. 
In particular, when 1p =  we get Hamming distance. 

2.3 Fuzzy neural networks and neuro-fuzzy systems 
Fuzzy neural network (FNN) approach has become a powerful tool for solving real-world 
problems in the area of forecasting, identification, control, image recognition and others that 
are associated with high level of uncertainty [2,7,10,11,14,23,24,23]. This is related with the 
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fact that the FNN paradigm combines the capability of fuzzy reasoning in handling 
uncertain information and the capability of pure neural networks in learning from 
experiments [48]. An advantage of FNN is that it allows automation of design of fuzzy rules 
and combined learning of numerical data as well as expert knowledge expressed as fuzzy 
IF-THEN rules [7]. FNN may have smaller network size and be faster in convergence speed 
as compared with ordinary NN.  
There are two different approaches in academic literature. First approach is neuro-fuzzy 
systems whose main task is to process numerical relationships [27]. Many papers, including 
papers [31,37,48] combine features of neural and fuzzy approaches into Neuro-Fuzzy 
systems. Second approach is fuzzy neural systems with the objective to process both 
numerical (measurement based) information and perception based information. The FNN of 
this (second) class are oriented for real-world problems that are inherently uncertain and 
imprecise [10,19,32]. It is necessary to point out that neuro-fuzzy systems cannot replace 
fuzzy neural systems because unlike the former which perform mapping from non-fuzzy 
input signals to non-fuzzy outputs, the latter process linguistic information directly.  
When we deal with linguistic information, i.e. work at a higher data abstraction level, we 
should employ fuzzy neural networks, not neuro-fuzzy networks, to solve the considered 
problem approximately [21]. 

2.4 Differential evolution optimization method 
Recently many heuristic algorithms have been proposed for global optimization of 
nonlinear, non-convex, and non-differential functions [3,12,41,51]. These methods are more 
flexible than classical as they do not require differentiability, continuity, or other properties 
to hold for optimizing functions. Some of such methods are genetic algorithm, evolutionary 
strategy, particle swarm optimization, and differential evolution (DE) optimization. In this 
study we consider the use of the DE algorithm. 
As a stochastic method, DE algorithm uses initial population randomly generated by 
uniform distribution, differential mutation, probability crossover, and selection operators 
[42]. The population with ps individuals are maintained with each generation. A new vector 
is generated by mutation which in this case is randomly selecting from the population 3 
individuals: 321 rrr ≠≠  and adding a weighted difference vector between two individuals 

to a third individual (population member).  
The mutated vector is then undergone crossover operation with another vector generating 
new offspring vector. 
The selection process is done as follows. If the resulting vector yields a lower objective 
function value than a predetermined population member, the newly generated vector will 
replace the vector with which it was compared in the following generation.  
Extracting distance and direction information from the population to generate random 
deviations results in an adaptive scheme with excellent convergence properties. DE has been 
successfully applied to solve a wide range of problems such as image classification, 
clustering, optimization etc. 
Figure 1 shows the process of generation new trial solution vector from randomly selected 
population members. Here we assume that the solution vectors are of dimension 2 (i.e. 2 
optimization parameters). 
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3. Statement of problem 
Assume that an unknown nonlinear system is expressed as follows [4]: 
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where )(~ ty  and )(~ tu  are the output and input of the system, respectively, represented as 
fuzzy valued function, (.)~g  is an unknown nonlinear fuzzy mapping to be estimated by 
RFNN, n and m are order of the system. It is required to design RFNN such that its output 

)(~ tyN  determined as 

( )θ~,~,~),1(~),1(~~)(~ VWtutygty NN −−= , (3) 

will be as close as possible to )(~ ty  (1), where θ~,~,~ VW  collectively define the structure and 
set of parameters of RFNN: forward connection weights, backward (recurrent) connection 
weights, and biases, respectively. 
As measure of closeness between )(~ ty  and )(~ tyN  we need to define a suitable error 
function serving as a distance (metric). For continuous variables there is a long list of 
distance functions [4,40]. In this paper we will use the well-known and commonly used 
Hamming distance. Therefore the problem of learning of FRNN is an optimization problem 
with the purpose of adjusting fuzzy parameters }~{~
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∑∑ −= Npipi yyE ~~~ , 
(4) 

where piy~  is the desired value and Npiy~  is the actual value of RFNN output layer’s neuron i 

when applied training patter p, E~  is hamming distance. 
Training algorithm is critical to RFNN as it will affect RFNN approximation capability. Due 
to the type of error function, we cannot use here the BP algorithm. Another problem with 
the BP is that it is easily trapped in local minimima and its convergence performance greatly 
depends on its learning rate parameter and the initial conditions. As optimization strategy 
for training RFNN we will use an evolutionary computing strategy, namely, DEO method.  
During the training, the weights of feed-forward and feed-back connections and biases of 
RFNN are optimized by the differential evolution algorithm which would lead to the 
minimum of error function (4). 
It is worth to note that using clustering based differential evolution algorithm for training of 
RFNN may give a higher performance [51]. Such an approach will be used on considering a 
petrol production forecasting example. 

4. Recurrent fuzzy neural network structure and computation 
The general structure of a recurrent fuzzy neural network is presented in Figure 2. The box 
elements represent memory cells that store values of activation of neurons at previous time 
step, which is fed back to the input at the next time step. 
 

 
 

Figure 2. The structure of RFNN 
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where piy~  is the desired value and Npiy~  is the actual value of RFNN output layer’s neuron i 

when applied training patter p, E~  is hamming distance. 
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Figure 3. The activation function F(s) 

In general, the network may have virtually any number of layers. We number the layers 
successively from 0 (the first or input layer) to L (last or output layer). The neurons in the 
input layer (layer 0) only distribute the input signals without modifying their values.  

 )(~)(~ 00 txty ii =  (5) 

The neurons in the remaining layers (layer 1 to layer L-1) are dynamic and compute their 
output signals as follows: 
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where )(~ tx l
j  is j-th fuzzy input to the neuron i at layer l at the time step t, )(~ ty l

i  is the 

computed output signal of the neuron at the time step t, ijw~  is the fuzzy weight of the 

connection to neuron i from neuron j located at the previous layer, iθ
~

 is the fuzzy bias of 

neuron i, and )1(~ −ty l
j  is the activation of neuron j at the time step (t-1), ijv~  is the recurrent 

connection weight to neuron i from neuron j at the same layer.  
The neurons at the last layer (layer L) are linear and their outputs are calculated as: 
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The activation F for a total input to the neuron s (figure 3) is calculated as: 
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So, the output of neuron i at layer l ( 1,1 −= Ll ) is calculated as follows: 
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The total number of connections (including forward, recurrent, and biases) is equal to 
22)1()1( OHOHHI NNNNNN +++++ , 

where IN  is number of inputs (here we use 1 input for simplicity), HN  is the number of 

neurons in the second (hidden) layer of RFNN and ON  is the number of outputs. Thus, for 
a network with 1 input, 3 hidden neurons, and 1 output, there will be 20 connections overall. 
Every forward connection weight, recurrent connection weight, and bias value are 
represented as a triangular fuzzy number [16,17,37-39]: ),,(~ l

Rij
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l
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l
ij vvvTv = , ),,(~ l
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Li

l
i T θθθθ = , respectively. Note that the forward 

connection is from neuron j at layer (l-1) to neuron i at layer l, while the recurrent 
connections are between the outputs and inputs of the neurons at the same layer. Triangle 
fuzzy numbers are described as T(a,b,c), where [a,c] is the fuzzy number support and b is the 
value with membership equal to 1 (the average value). 
Inputs to RFNN ix  can accept system outputs at previous stages, 

)(),...,2(  ),1( 21 rtyxtyxtyx NrNN −=−=−= , etc., as well as exogenous signals 

),...2(  ),1(  ),( 321 −=−== +++ tuxtuxtux rrr .  

For example, for constructing a RFNN based time series predictor ( NNF̂ ) 

),,...,,,...,,(ˆˆ 11111 +−−+−−+ = mtttntttNNt uuuyyyFy , where ty  is the value of time series data 

at time interval t, tu  is the value of an additional (second) factor at time interval t, the above 
presented structure could be modified as given in Figure 4. 
In case the original learning patterns are crisp, we need to sample data into fuzzy terms, i.e. 
to fuzzify the learning patterns. The fuzzifiers can be created independently for specific 
problems. A different approach that is used in this paper is to convert the numeric data into 
information granules by fuzzy clustering [40]. In this case the receptive fields forming the 
input layer of RFNN are constructed using clustering. Fuzzy clusters fully reflect the 
character of the data. 

5. Differential evolution optimization based learning of RFNN 
The considered RFNN requires the global parameter optimization method suitable for 
nonlinear, non-convex, and non-differentiable mapping functions. Ideally, we want to find 
the global minimum of (4) and this requires more careful selection of the optimization 
engine. Despite the fact that the gradient descent based methods are predominant, they are 
not global optimizers. Most suitable are population based optimization techniques including 
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engine. Despite the fact that the gradient descent based methods are predominant, they are 
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genetic algorithms, evolutionary strategy, particle swarm optimization, DEO, etc. In this 
paper we use DEO method which has many advantages over other evolutionary algorithms 
and GA [3,42,51]. There are some reasons for using DEO in RFNN learning problem. First, 
DEO supports a search mechanism of global nature. DEO is useful when dealing with 
different distance functions including Hamming distance, Tschebyshev distance (gradient 
descent based methods require distance functions be differentiable, e.g. Euclidean distance 
function). 
 

 
Figure 4. The structure of a simple FRNN 

For application of an evolutionary algorithm for learning RFNN we consider the population 
individ to represent a whole combination of weights ( }~{~

lijwW = , }~{~
lijvV = ) and biases 

( }~{~
liθθ = ) (i.e. parameters of RFNN) defining the input/output mapping (3). The 

population maintains a number of popential parameter sets defining different RFNN 
solutions and recognizes one of these solutions to be the best solution. This best solution is 
the one with minimum training error. After a series of generations, the best solution may 
converge to a near-optimum solution, which would represent in our case a RFNN with the 
required accuracy. 
To apply an evolutionary population based optimization algorithm we first should identify 
the optimized parameter vector. For training RFNN we need to optimize values of: forward 
connection weights, processing (hidden and output) neuron biases, and recurrent weights. 
According to the structure of RFNN given in section 2, the number of all parameters to be 
adjusted during the learning process and therefore the dimension of the optimized 
parameter vector (for a FRNN with one hidden layer) is  
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 22)1()1( OHOHHIpar NNNNNNN +++++= .  (10) 

Before starting training all the parameters are initialized by randomly chosen values, 
usually not beyond the interval [-1,1]. This constraint is further enforced to the parameters 
associated to backward connections. It means that during further training steps the values of 
forward weights and biases can go beyond the interval [-1,1] while the values of backward 
connection are kept within this interval. This additional constraint is added to make RFNN 
stable which means that under the constant input the value of output will converge to a 
constant value (either crisp or fuzzy).  
Prior launching the optimization we set parameter f of DEO to a positive value (typically 
about 0.9), define the DEO cost function to be the RFNN error function (4), and choose the 
population size (typically ten times the number of optimization parameters, i.e. parN10 ). 

Then the differential evolution optimization is started. 
DEO based RFNN training algorithm can be summarized as follows: 
Step 0. Initialize DE 

Step 0.0 Define the structure of RFNN: Ni, Nh, No 
Step 0.1.Construct template parameter vector X of dimension Npar according (10) for 

holding RFNN weights and biases: X={ θ~,~,~ VW } 
Step 0.2.Set algorithm parameters: f (mutation rate), cr (crossover rate), and ps (size 

of population) 
Step 0.3.Define the cost function as function of error function of current RFNN 

parameters: ∑∑ −= Npipi yyE ~~~  

Step 1. Randomly generate ps parameter vectors (from respective parameter spaces (e.g. in 
the range [-1, 1]) and form a population P={X1, X2, ..., Xps} 

Step 2. While Termination condition (number of predefined generations reached or required 
error level obtained) is not met generate new parameter sets: 
Step 2.1.Choose a next vector Xi (i=1,...,ps) 
Step 2.2.Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of which is 

different from current Xi 
Step 2.3.Generate trial vector Xt=Xr1+f(Xr2-Xr3) 
Step 2.4.Generate new vector from trial vector Xt. Individual vector parameters of Xt 

are inherited with probability cr into the new vector Xnew. If the cost function 
from Xnew is better (lower) than the cost function from Xi, current Xi is 
replaced in population P by Xnew 

 Next i 
Step 3. Select the parameter vector Xbest (RFNN parameter set) with best cost (training error 

E~ ) function from population P. Extract from Xbest vectors θ~,~,~ VW  defining weights 
and thresholds for RFNN 

Step 4. Stop the algorithm 
If the obtained total error performance index or the behavior of the obtained network is not 
desired, we can restructure the network by adding new hidden neurons, or do better 
granulation of the learning patterns. 
During the DE optimization process the solutions resulting in lower cost values have more 
chances to survive and be saved into a new population for participation in future 
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generations. The process is repeated iteratively. During succeeding generations we keep into 
the population the solution that produced the lowest value of cost function of all previous 
generations. The farther we go with generations the higher is the chance to find a better 
solution. 

6. Experiments and application 
In this section, we report on the results of simulation of the suggested RFNN with DEO 
learning and compare the performance of RFNN and existing approaches. The performance 
of the proposed algorithm is examined on 3 benchmark problems in literature [13,27,46]. 

6.1 Non-linear system identification 
We start with non-linear system studied in [13,28,32,45] as a benchmark identification 
problem. 
The dynamic system is described by the equation: 

 y(k)=g(y(k-1), y(k-2))+u(k) (11) 

where: 

 
)2()1(1

)5.0)1()(2()1())2(),1(( 22 −+−+
−−−−

=−−
kyky

kykykykykyg  (12) 

The system output depends on both its past values and current input. The goal is to 
approximate the model (11)-(12) by RFNN. 
The RFNN for this example has 2 input neurons, 6 neurons at layer 1 and one output 
neuron. The number of all connections (including forward, backward, and biases) was 62. 
On the basis of (12) 400 data were created using random (in interval [-1,1] signal u and used 
for training. The trained network was tested on the basis of 200 test data created using (12) 
by applying sinusoidal signal )25/2sin( ku π= .  
DE Optimization progress (MSE vs. successful iterations) is shown in Figure 5. 
Table 1 shows a fragment of results (reached MSE) from intensive simulation experiments. 
 

Experiment MSE on train data MSE on test data 
1 0.0000818477 0.000342153 
2 0.000116419 0.000738948 
3 0.0000761331 0.000361591 
4 0.0000235756 0.0000656312 
5 0.000373168 0.00105125 
6 0.000103995 0.000215761 
7 0.0000696317 0.000204256 

Table 1. RFNN training simulations for non-linear system identification 

The final reached MSE at the best experiment was 0.000024 on training data and 0.000066 on 
test data. Table 2 presents comparative results obtained by different methods given in 
literature. 
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Figure 5. RFNN error convergence 
 

Reference fuzzy model MSE on training 
set MSE on test set 

[53] - 0.00080 
[45] 0.00075 0.00035 
[13] 0.00010 0.00032 

RFNN (our approach) 0.000024 0.000066 

Table 2. Comparative results by different methods 

The comparison of the actual and identified curves for y(k) is illustrated in Figure 6. 
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Figure 6. RFNN identification performance 
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6.2 Dynamic plant identification 
This example is taken from [25,27] in which a nonlinear plant with multiple time-delay is 
identified. The nonlinear plant is described as follows: 

 ( 1) ( ( ), ( 1), ( 2), ( ), ( 1))p p p py k f y k y k y k u k u k+ = − − −  (13) 

where  

 1 2 3 5 3 4
1 2 3 4 5 2 2

2 3
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x x

− +
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+ +
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In this example the output depends on three previous outputs and two previous inputs. For 
better results 2000 data were used for training generated by applying random )(ku  in 
interval [-1, 1].  
For the testing signal u(k) the following equation was used: 
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Figure 7 shows the comparison of the desired test and RFNN output curves of the 
considered dynamic system. 
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The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one 
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons 
(y(k), y(k-1), y(k-2), u(t-1)) and 1 output neuron (y(k+1)). In comparison with a regular FNN, 
the use of RFNN allows significant simplification of the network structure. Table 3 below 
shows the comparison of characteristics of fuzzy neural networks suggested in [27] and our 
RFNN. 
 

 RFNN [27] FNN [27] RFNN (our approach) 
No of inputs 2 5 2 

No of outputs 1 1 1 
Nodes 51 112 11 

Parameters 112 (crisp) 176 (crisp) 96 (fuzzy triangle 
numbers) 

MSE 0.00013 0.003 0.00004048 
 

Table 3. Comparison performance of different FNN models for dynamic plant identification 

In addition, RFNN is more accurate. The simulation using the suggested RFNN 
demonstrates that the identification error (MSE) is less than the error with other approaches 
(Table 3).  
It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27] 
exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN 
model has lower number of nodes than the models presented in [27]. 

6.3 Sun-spot prediction 
The performance of FRNN was also tested on a well-known problem of sun-spot prediction 
[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately 
11 years. In addition to this, there are variations over longer periods. The recent trend is 
upward from 1900 to the 1960s, then somewhat downward. The historical data for this 
problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data 
used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets 
used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.  
The comparison of performance of the FRNN approach with other existing methods for two 
different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean 
Square Error measure is used in these experiments). The last two rows in Table 4 were 
obtained by two networks trained on the same data sets by two different persons 
independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the 
total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of 
connections for RFNN-1 and RFNN-2 were 148 and 179, respectively. 
Table 4 presents comparative results on performance of different forecasting methods for 
sun-spot prediction problem. 
As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1 
input neuron) than other models. The identification error of the RFNN is less than that of 
existing models applied to sun-spot forecasting problem. 
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6.2 Dynamic plant identification 
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The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one 
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons 
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In addition, RFNN is more accurate. The simulation using the suggested RFNN 
demonstrates that the identification error (MSE) is less than the error with other approaches 
(Table 3).  
It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27] 
exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN 
model has lower number of nodes than the models presented in [27]. 

6.3 Sun-spot prediction 
The performance of FRNN was also tested on a well-known problem of sun-spot prediction 
[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately 
11 years. In addition to this, there are variations over longer periods. The recent trend is 
upward from 1900 to the 1960s, then somewhat downward. The historical data for this 
problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data 
used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets 
used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.  
The comparison of performance of the FRNN approach with other existing methods for two 
different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean 
Square Error measure is used in these experiments). The last two rows in Table 4 were 
obtained by two networks trained on the same data sets by two different persons 
independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the 
total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of 
connections for RFNN-1 and RFNN-2 were 148 and 179, respectively. 
Table 4 presents comparative results on performance of different forecasting methods for 
sun-spot prediction problem. 
As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1 
input neuron) than other models. The identification error of the RFNN is less than that of 
existing models applied to sun-spot forecasting problem. 
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Author (Method) Number of 
inputs PR1 PR2 

Rementeria (AR) [44] 12 0.126 0.36 
Tong (TAR) [49] 12 0.099 0.28 

Subba Rao (Bilinear) [43] 9 0.079 - 
DeGroot (ANN)[15] 4 0.092 - 

Nowland (ANN) [36] 12 0.077 - 
Rementeria (ANN) [44] 12 0.079 0.34 
Waterhouse (HME) [52] 12 0.089 0.27 

(RFNN-1) 1 0.066 0.22 
(RFNN-2) 1 0.074 0.21 

Table 4. MSE obtained by different models for sun-spot prediction 

6.4 Application of RFNN to forecast demand for petrol 
In this example the problem is to forecast demand for petrol (A92) for optimal scheduling of 
an oil refinery plant [56]. In our fuzzy forecasting model we assumed the relationship: 

 y(k+1)=F(y(k-2), y(k-1) ,y(k)) (16) 

For this example we used actual daily data from existing oil refinery plant for a month 
period. Approximately 80% of the data (chosen randomly) were used for clustering and 
training and the remaining data were used for testing of RFNN.  
Usually, the structure of RFNN is determined by trial-and-error in advance for the reason 
that it is difficult to consider the balance between the number of rules and desired 
performance [20]. In this study, to determine the structure of RFNN, first we convert 
numeric data into information granules by fuzzy clustering. The number of clusters defines 
the number of fuzzy rules. By applying the fuzzy C-means clustering method [13,40] on the 
training data and checking the validity measure suggested in [13] it was identified that an 
adequate number of clusters is 4. Therefore 4 fuzzy rules were used for the basis for training 
and further refining. The clustering algorithm identified the following cluster centers for the 
presented data. 

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1 
IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2 
IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3 
IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4 

(17) 

Initial fuzzy terms A1, A2, A3, A4 were created from the component y(t-2) of the cluster 
vectors 1, 2, 3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – from y(t-1), C1, C2, C3, 
C4 – from y(t), and D1, D2, D3, D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, C2,...D1, 
D2, ... are described linguistically. 
DEO based training allowed to further decrease MSE of output (forecasting of petrol) after 
clustering making it ten times lower. The final MSE after training was 0.0008. 

6.5 Application of RFNN to control battery charging process 
The FRRN designed for battery charging control has 4 inputs, 20 hidden neurons, and 1 
output. The four used inputs represent temperature (T), change of temperature (dT), voltage 
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(U) and change of voltage (dU). The output of the controller is the current (I) applied for 
charging the battery.  
The network has been trained on the basis of the data base (collected by a separate work 
group over a year period) contained data series formed of measured temperature, voltage, 
and current readings from many charging experiments with different batteries.  
The proposed control system allows very quick and effective charge of the battery: the 
charging time is reduced from more than 2000 seconds (with applied constant charge 
current 2A) to 860 seconds (or even less, if the temperature limit is set higher than 25ºC) 
with dynamically changed (under the control of the proposed intelligent controller) input 
current. Also the battery is protected from overheating and a long utilization time of the 
battery can be provided by adequately adjusting the fuzzy rules describing the desired 
charging process. The results of proposed charging controller compared with other battery 
chargers for a particular charging experiment (with the same initial conditions) are given in 
Table 5. The value of decrease in charging time and heating level was %2.20.18 ±  and 

%6.05 ± , respectively, compared to other methods.  
 

Charging controller Time (sec) Tend-Tstart 
Proposed approach 860 2,85 

FL [4] (no data) 35-60 
FG [14] 959 9 

ANFIS [9] 900 50 
NeuFuz [16] 1200-1800 5 

Table 5. Comparison of different charging controllers 

7. Conclusions 
In spite of great importance of fuzzy neural networks for solving wide range of real-world 
problems, unfortunately, little progress has been made in their development. 
In this study we have discussed recurrent neural networks with fuzzy weights and biases as 
adjustable parameters and internal feedback loops, which allows capturing dynamic 
response of a system without using external feedback through delays. In this case all the 
nodes are able to process linguistic information.  
As the main problem regarding fuzzy and recurrent fuzzy neural networks that limits their 
application range is the difficulty of proper adjustment of fuzzy weights and biases, we put 
an emphasize on the RFNN training algorithm. 
We have proposed the standard DEO-based method for learning of recurrent fuzzy neural 
network. The optimization method, customized for RFNN training, compares favorably 
with the existing gradient-based error minimization method as it is less complex and is 
more likely to locate the global minimum of network error. As the method does not require 
derivative information, it is very effective in case when dealing with different distance 
functions. Also, the considered global optimization algorithm can provide high accuracy of 
fuzzy mapping with relatively smaller network size. 
The RFNN was tested on a number of benchmark identification and time-series forecasting 
problems well-known in the literature as well as on application problems. Experimental 
results demonstrated very good performance on all considered problems.  
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1. Introduction 
The fuzzy systems and control are regarded as the most widely used application of fuzzy 
logic systems in recent years (Jang, 1993; John & Coupland, 2007; Lin & Lee, 1006; Mendel, 
2001; Wang, 1994). The structure of traditional fuzzy system models that is characterized by 
using type 1 fuzzy sets, which are defined on a universe of discourse, map an element of the 
universe of discourse onto a precise number in the unit interval [0, 1]. The concept of type-2 
fuzzy sets was initially proposed by Zadeh as an extension of typical fuzzy sets (called type- 
1) (Zadeh, 1975). Mendel and Karnik developed a complete theory of interval type-2 fuzzy 
logic systems (iT2FLSs) (Karnik et al, 1999; Liang & Mendel, 2000; Mendel, 2001). Recently, 
T2FLSs have attracted more attention in many literatures and special issue of IEEE 
Transactions on Fuzzy systems (Baldwin & Karake, 2003; John & Coupland, 2007; Lee & Lin, 
2005; Liang & Mendel, 2000; Mendel, 2001, Hagras, 2007; Ozen & Garibaldi, 2004; Pan et al, 
2007; Wang et al, 2004). 
T2FLSs are more complex than type-1 ones, the major difference being the present of type- is 
their antecedent and consequent sets. T2FLSs result better performance than type-1 Fuzzy 
Logic Systems (T1FLSs) on the applications of function approximation, modeling, and 
control. In addition, neural networks have found numerous practical applications, especially 
in the areas of prediction, classification, and control (Lee & Teng, 2000; Lin & Lee, 1996; 
Narendra & Parthasarathy, 1990). The main aspect of neural networks lies in the connection 
weights which are obtained by training process. Based on the advantages of T2FLSs and 
neural networks, the type-2 neural fuzzy systems are presented to handle the system 
uncertainty and reduce the rule number and computation (Castillo & Melin, 2004; Lee & Lin, 
2005; Mendel, 2001; Pan et al, 2007; Wang et al, 2004). Besides, recurrent neural network has 
the advantages of store past information and speed up convergence (Lee & Teng, 2000). 
The design of a fuzzy partition and rules engine normally affects system performance. To 
simplify the design procedure, we usually use the symmetric and fixed membership 
functions (MFs), such as Gaussian, triangular. However, a large rule number should be used 
to achieve the specified approximation accuracy (or result larger approximated error) (Lee & 
Teng, 2001; Lotfi & Tsoi, 1996). Several approaches have been introduced to optimize fuzzy 
MFs and choose an efficient scheme for structure and parameter learning. Nevertheless, 
asymmetric fuzzy MFs (AFMFs) has been discussed and analyzed for this problem (Baldwin 
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Teng, 2001; Lotfi & Tsoi, 1996). Several approaches have been introduced to optimize fuzzy 
MFs and choose an efficient scheme for structure and parameter learning. Nevertheless, 
asymmetric fuzzy MFs (AFMFs) has been discussed and analyzed for this problem (Baldwin 
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& Karake, 2003; Kim et al, 2003; Lee & Teng, 2001; Li et al, 2005; Lin & Ho, 2005; Ozen & 
Garibaldi, 2004; Pan et al, 2007). The results showed that using AFMFs can improve the 
approximation capability. According to the results above, our purpose is to introduce a 
recurrent interval type-2 fuzzy neural network with asymmetric membership functions 
(RiT2FNN-A). The asymmetric Gaussian function is a new type of membership function due 
to excellent approximation results. It also provides a fuzzy-neural network with higher 
flexibility to easily approach the optimum result more accurately. Literature (Lee & Pan, 
2007; Pan et al, 2007) proposed that a T2FNN with AFMFs (T2FNN-A) can improve the 
system performance and obtain better approach ability. However, the structure of network 
was a static model. In this article, we proposed a combining interval type-2 fuzzy 
asymmetric membership functions with recurrent neural network system, called 
RiT2FNNA. The proposed RiT2FNN-A is a modified version of the T2FNN (Lee & Lin, 2005; 
Lee et al, 2003; Lee & Pan, 2007; Pan et al, 2007; Wang et al, 2004), which provides memory 
elements to capture system dynamic information (Lee & Teng, 2000). The RiT2FNN-A 
system capability for temporarily storing information allowed us to extend the application 
domain to include temporal problem. Simulations are shown to illustrate the effectiveness of 
the RiT2FNN-A system. 
This article is organized as follows. Section 2 introduces the interval type-2 fuzzy neural 
systems and construction of interval type-2 AFMFs. The proposed RiT2FNN-A system is 
described in Section 3. Simulation results about handling nonlinear system identification is 
done and introduced in Section 4. Finally, conclusion is given. 
 

 
Figure1, Diagram of MISO T2FNN system with M fuzzy rules (Lee & Lin, 2005). 

2. Interval type-2 fuzzy neural systems 
The concept of type-2 fuzzy set was initially proposed as an extension of ordinary one 
(called type-1) by Zadeh (Zadeh 1975). In recent years, Mendel and Karnik have developed a 
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complete theory of T2FLSs (John & Coupland, 2007; Karnik et al, 1999; Lee & Lin, 2005; 
Mendel, 2001). These systems are as an extension of general FLSs (called type-1) which is 
characterized by IF-THEN rules (Lin & Lee, 1996). The computation of iT2FLSs is more 
complex than the T1FLSs because of the antecedent and consequent type-2 fuzzy sets (John 
& Coupland, 2007; Karnik et al, 1999; Mendel, 2001). In our previous results, we successfully 
constructed the T2FNN to identify the nonlinear system (Lee & Lin, 2005; Lee et al, 2003; Lee 
& Pan, 2007). They perform as well as the general T1FNNs, even better. In this section, we 
first introduce the interval type-2 fuzzy neural network (iT2FNN) systems, a type of fuzzy 
inference system in neural network structures, followed by the construction of interval type- 
2 AFMFs (iT2AFMFs) which is used to develop the recurrent interval type-2 fuzzy neural 
network (RiT2FNN). 
 

 
Figure 2. Symmetric interval type-2 fuzzy MFs: (a) Gaussian MF with uncertain mean and 
(b) Gaussian MF with uncertain variance. 

2.1 Interval type-2 fuzzy neural network systems 
In general, given an system input data set xi , i=1, 2, …, n, and the desired output yp , p=1, 2, 
…, m, the jth type-2 fuzzy rule has the form 

 
(1) 

where j is the number of rules, j
iG  represents the linguistic term of the antecedent part, j

pw  
represents the real number of the consequent part; n and m are the numbers of the input and 
output dimensions, respectively. Based on the iT2FLSs, the construction of multi-
inputsingle- output (MISO) type of the iT2FNN system is shown in Fig. 1 (Lee & Lin, 2005). 
Obviously, it is a static model and the structure uses interval type-2 fuzzy sets ( G and w ). 
Figure 2 shows a commonly used two-dimensional interval type-2 Gaussian MF. Figure 2(a) 
is an interval type-2 Gaussian MF with an interval mean in [m1,m2 ] and fixed variance σ, 
and Fig. 2(b) is an interval type-2 Gaussian MF with an interval variance in [σ1, σ2] and fixed 
mean m. 
It can be found that the iT2FNN uses the interval type-2 fuzzy sets and it implements the 
FLS in a four layer neural network structure. Layer-1 nodes are input nodes representing 
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input linguistic variables, and layer-4 nodes are output nodes. The nodes in layer 2 are term 
nodes that act as T2MFs. All of the layer-3 nodes together formulate a fuzzy rule basis, and 
the links between layers 3 and 4 function as a connectionist inference engine. Herein, we 
introduce the iT2FNN system. 
Layer 1: Input Layer 
For the ith node of layer 1, the net input and the net output are represented as: 

 (2) 

where (1)
ix represents the ith input to the ith node of layer 1. The subscript i denotes the ith 

input and the super-script (1) denotes the first layer. 

Layer 2: Membership Layer 
In this layer, each node performs a type-2 membership function (T2MF). Two kinds of T2MF 
are introduced (Liang & Mendel, 2000; Mendel, 2001). For case 1- Gaussian MFs with 
uncertain mean, shown in Fig. 2(a), we have 

 
(3) 

Case 2- Gaussian MFs with uncertain variance, shown in Fig. 2(b), we have 

 
(4) 

where mij and σ ij represent the center (or mean) and the width (or variance), respectively 
The subscript ij indicates the jth term of the ith input (1)

iO , where j=1, …, M, and the 

superscript (2) means the secondary layer. Therefore, the output (2)
ijO  is represented as 

[ (2)
ijO (2)

ijO ]. 
Layer 3: Rule Layer 
In this layer, the operation is chosen as simple PRODUCT operation, i.e., 

 

(5) 

where the weights (3)
ijw are assumed to be unity, and the subscript j indicates the jth rule, j = 

1,…,M, and the super-script (3) means the third layer. Thus, the output (3)
ijO is represented as  

 

Layer 4: Output Layer 
Links in this layer are used to implement the consequence matching, type-reduction and 
defuzzification (Lee & Lin, 2005; Mendel, 2001). Thus, 
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(6) 

where 

 
(7) 

 
(8) 

and 
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Similarly, the iT2FNN using T2MFs with uncertain variance can be simplified as (Lee & Lin, 
2005) 

 
(10) 

 

 
  (a)       (b) 

 
(c) 

Figure 3. Construction of a type-2 AFMF: (a) upper MF (solid line), (b) lower MF (solid line), 
and (c) constructed iT2AFMF. 

2.2 Construction of interval type-2 asymmetric fuzzy membership functions 
The interval T2MFs of the precondition part discussed in this article are of asymmetric type, 
iT2AFMFs, as described below (see Fig. 3). Each MF is replaced by an asymmetric one 
constructed from parts of four Gaussian functions; that is, each upper and lower MF is 
constructed by two Gaussian MFs and one segment. Here we use the superscripts (l) and (r) 
to denote the left and right curves of a Gaussian MF. The parameters of lower and upper 
MFs are denoted by an underline (_) and bar ( ¯ ), respectively. Thus, the upper MF is 
constructed as 
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where ( )lm  and ( )rm denote the means of two Gaussian MFs satisfying ( )lm ≤ ( )rm , and 
( )lσ and ( )rσ denotes the deviation (i.e., width) of two Gaussian MFs. Figure 3(a) shows the 

upper iT2AFMF constructed using ( )lm , ( )rm , ( )lσ , and ( )rσ . Similarly, the lower 
asymmetric MF is defined as 
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where ( )lm ≤ ( )rm and 0.5 ≤ r ≤ 1 . The corresponding widths of the MFs are ( )lσ and ( )rσ . To 
avoid unreasonable MFs, the following constrains are added: 

 

(13) 

Figure 3(b) sketches the lower type-2 AFMF. The corresponding constructed iT2AFMF is 
shown in Fig. 3(c). This introduces the properties of uncertain mean and variance (Karnik et 
al, 1999). Additionally, we can construct other iT2AFMFs by tuning the parameters. The 
corresponding tuning algorithm is derived to improve system accuracy and approximation 
ability. 

3. RiT2FNN-A system and learning 
3.1 Network structure of RiT2FNN-A system 
In this section, the structure of RiT2FNN-A system is introduced. The MISO case I 
considered here for convenience. The proposed RiT2FNN-A is modified and extended from 
previous results of literature (Juang, 2002; Karnik et al, 1999; Lee & Lin, 2005; Lee & Pan, 
2007; Lin & Ho, 2005). It uses the interval asymmetric type-2 fuzzy sets and it implements 
the FLS in a five-layer neural network structure which contains four-layer forward network 
and a feedback layer. Layer-1 nodes are input nodes representing input linguistic variables, 
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and layer-4 nodes are output nodes representing output linguistic variables. The nodes in 
layer 2 are term nodes that act as MFs, where each membership node is responsible for 
mapping an input linguistic variable into a corresponding linguistic value for that variable. 
All of the layer-3 nodes together formulate a fuzzy rule basis, and the links between layers 3 
and 4 function as a connectionist inference engine. The rule nodes reside in layer 3, and 
layer 5 is the recurrent part in type-2 fuzzy sets. 
In general, given system input data xi , i = 1, 2,…, n, the internal variables g j , j = 1, 2,…, M, 
and the desired output y p , p = 1, 2,…, m, the jth type-2 fuzzy rule for RiT2FNN-A has the 
form: 

 
(14) 

where G  represents the linguistic term of the antecedent part, w and a  represents the 
interval real number of the consequent part; and M is the total rule number. Here the fuzzy 
MFs of the antecedent part G are of iT2AFMFs, which represent the different from typical 
Gaussian MFs. The diagram of RiT2FNN-A is shown in Fig. 4. Below we indicate the signal 
propagation and the operation functions of the nodes in each layer. In the following 
description, ( )l

iO denotes the ith output of a node in the lth layer. 
 

 
Fig. 4. Diagram of the proposed RiT2FNN-A system. 
Layer 1: Input Layer 
For the ith node of layer 1, the net input and output are represented as 

 (15) 
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where (1)
ix represents the ith input to the jth node. Obviously, the nodes in this layer only 

transmit input values to the next layer directly. 

Layer 2: Membership Layer 
In layer 2, each node performs an iT2AFMF introduced by (11)–(13) (shown in Fig. 3). The 
following simplified notation is adopted 

)(~ )1(
~

)2(
iGij OO j

i
μ=  (16) 

It is clear that there are two parts in this layer, regular nodes and feedback nodes. Their 
input are (1)

jO and g j (k). Therefore, for network input x i , the output is 

 
(17) 

For internal or feedback variable g j , 

 
(18) 

where the subscript ij indicates the jth term of the ith input (1)
iO . The superscript F indicates 

the feedback layer. 

Layer 3: Rule Layer 
The links in layer 3 are used to implement the antecedent matching, and these are equal to 
the work in the rule layer. Using the product t-norm, the firing strength associated with the 
jth rule is 

1
1
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j j jF

n j

j

nG G G
f x xμ μ μ= ∗ ∗ ∗ ⋅  (19) 
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j
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f x xμ μ μ= ∗ ∗ ∗ ⋅  (20) 

where μ (⋅) and μ (⋅) are the lower and upper membership grades of G (⋅), respectively. 
Therefore, a simple product operation is used. Then, for the jth input rule node: 

 

(21) 

where weights (3)
ijw are assumed to be unity and 

 
(22) 

Layer 4: Output Layer 
Without loss of generality, the consequent part of the iT2FLS is  
The vector notations and are used for clarity. The 
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remaining works are type reduction and defuzzification. For type reduction, we should 
calculate the lower and upper bounds [ yl, yr] (Karnik et al, 1999; Mendel, 2001). Modifying 
from the Karnik-Mendel procedure (Karnik et al, 1999; Mendel, 2001), let 

 (23) 

Note that the normalization ( 1

M
ii f

=∑ ) is removed here to simplify the type reduction 
procedure, computation, and the derivation of the learning algorithm by the gradient 
method. We denote the maximum and minimum of  1

M
i ii f w

=∑  as (4)O and (4)O , 
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where 

 
(26) 
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It is obvious that R and L should be calculated first. The weights are arranged in order as 
and . According to the Karnik-Mendel procedure (Karnik et 

al, 1999; Liang & Mendel, 2000; Mendel, 2001), L and R are 

 
(28) 

According to the above introduction, only the minimum of (4)O and the maximum of 
(4)O should be calculated; which therefore simplifies the type-reduction computation. 

Finally, the crisp output is 

 
(29) 

Layer 5: Feedback Layer 
This layer contains the context nodes, which is used to produce the internal variable (5)

jO . 

Each rule is associated with a particular internal variable. Hence, the number of the context 

nodes is equal to the number of rules. The same operations (type-reduction and 
defuzzifcation) as layer 4 are performed here. 

 
(30) 
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(34) 

Note that the delayed value of g j is fed into layer 2, and it acts as an input variable to the 
precondition part of a rule. Each fuzzy rule has the corresponding internal variable g j which 
is used to decide the influence degree of temporal history to the current rule. 

3.2 Learning algorithm for RiT2FNN-A 
The gradient descent method is adopted to derive learning algorithm of the RiT2FNN-A 
system. For clarification, we consider the single-output system and define the error cost 
function as 

 
(35) 

where yd is the desired output and ŷ  is the RiT2FNN-A’s output. Using the gradient 
descent algorithm, the parameters updated law is 

 
(36) 

in which η is the learning rate ( 0 <η ≤ 1 ). are the 
adjustable parameters, where W w is consequent weights, W and WF are parameters of lower 
MFs, W  and W F are upper MFs parameters, W a is parameter in feedback layer, and r and 
 r F are the column vectors, i.e., 

 (37) 

 (38) 

 (39) 

 (40) 
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 (41) 

 (42) 

Considering the term of ∂E(k)/∂W(k) , we have 

 
(43) 

Thus, (36) can be rewritten as 

 
(44) 

where e(k) = yd (k) - ŷ (k). The remaining work involves finding the corresponding partial 
derivatives with respect to each parameter. 

Observing equation (24) and if j≤L, only the term of should be considered, and 

only consider  if j>L. Moreover, we consider  if j≤R in (25), as well 

as where j>R. Thus, we should notice the values of j, R, and L in deriving the 
update laws. 
In order to avoid the unnecessary tuning, we must also consider the firing regions of MFs 
for input variable xi. For example, considering an upper MF as shown in Fig. 5, region  
(I)- xi ≤  , only  and are updated; region (II)- ≤ xi , only  and must be 
updated as well. Finally, region (III)- < xi <  , nothing should be done. Therefore, we 
can tune one side of MF for each training pattern. The results of lower MFs are the same as 
above discussion. Besides, parameter r must be updated for all three regions. Owing the 
recurrent property, the real time recurrent learning algorithm (RTRL) is used. 
 

 
Fig. 5. Definitions of firing regions of input variable xi (upper MF). 
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By the gradient method, we derive the parameters update laws. Consider equations (24), 
(25), and (29), the output of RiT2FNN-A is rewritten as 

 
(45) 

From equations (36) and (44), our major work is to find the partial derivation of RiT2FNN-A 
with respect to each parameter which can be obtained using the chain rule. We will show 
the update rule of Ww and W only. Other parameter’s updated rule can be derived the same 
way and are omitted. 
-Parameters Ww 

 
(46) 

where f L j , and f R j , are introduced previously in (26) and (27), and ηw is the corresponding 
learning rate. 
-Parameters W  
Region (I): xi ≤  

 

(47) 

where η  denotes the corresponding learning rate, 
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the update rule of Ww and W only. Other parameter’s updated rule can be derived the same 
way and are omitted. 
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where f L j , and f R j , are introduced previously in (26) and (27), and ηw is the corresponding 
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-Parameters W  
Region (I): xi ≤  

 

(47) 

where η  denotes the corresponding learning rate, 
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Region (II):  

 

(48) 
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Region (III):  

 

(49) 

Note that are recurrent factors and equal to zero initially and are 

reset to zero after a period of time. is the recurrent weighting factor. 
By using the Lyapunov stability approach, we have the following convergence theorem. 

Theorem 1: Let   be the learning rates of the tuning parameters for RiT2FNNA 
The asymptotic convergence of RiT2FNN-A is guaranteed if proper learning rates 

 are chosen satisfying the following condition 
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Proof: 
First, we define the Lyapunov function as follows: 

 
(51) 

where ŷ (k) is RIT2FNN-A’s system output, yd(k) is desired output and e(k) denotes the 
approximated error. Thus, the change of V(k) is 
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The error difference due to the learning can be represented by 
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The convergence of RiT2FNN-A is guaranteed if ΔV (k) < 0 , i.e., λ > 0 , and 

 
This completes the proof. 
 

 
Fig. 7. Series-parallel identification scheme using RiT2FNN-A. 

 
(a) 

 
(b) 

Fig. 8. Phase plane plot of chaotic system; (a) the chaotic system, (b) identification result of 
RiT2FNN-A. 
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4. System identification using RiT2FNN-A system 
Consider the following non-linear system 

 (55) 

where u and yd are systematic input and output; function f(.) is the unknown function which 
is approximated by the RiT2FNN-A. And then m and n are all positive integer number. 
Here, the series-parallel training scheme is adopted, as shown in Fig. 7. The approximated 
error is defined as follows 

 (56) 

where ŷ (k) denotes the RiT2FNN-A’s output. Clearly, the inputs of RiT2FNN-A are contro 
input u and system past input yd(k-1). If a static network system (or feed-forward neural 
network) is used, such as, neural network, fuzzy neural network, T2FNN, T2FNN-A, the 
input number of n+m should be used. This is due to the dynamic property (feedback layer) 
of RiT2FNN-A system. 
In general, the following Training-Mean-Square-Error (TMSE) is adopted to be the 
performance index. 

 
(57) 

where N is the number of training pattern. 
In this article, the following nonlinear chaotic system is considered 

 (58) 

where P=1.4 and Q=0.3. 
The feed-forward type-2 fuzzy neural network- T2FNN and T2FNN-A, are used to have 
comparisons in nonlinear system identification for illustrating the performance of 
RiT2FNNA. It is clear that the feed-forward T2FNN with three input nodes for feeding 
appropriate past values of yd and u were used. In this article, only two values, yd(k-1) and 
u(k), are fed into the RiT2FNN-A to predict the system output. In training the RiT2FNN-A, 
we first randomly choose the training data (1000 pairs) from system over the interval  
[-1.5 1.5]. Then, the RiT2FNN-A is used to approximate the chaotic system. In this 
simulation, we use 3 rules to construct the RiT2FNN-A. Learning rate is selected as 0.1. 
The simulation results are described in Figs. 8 and 9. Figure 8(a) shows the phase plane of 
this chaotic system, whereas Fig. 8(b) shows the result of RiT2FNN-A system after training 
(10 epochs). The initial point is [yd(1), yd(0)]T=[0.4, 0.4]T and the TMSE is 0.00019886, which 
is less than the results of T2FNN-A and T2FNN (as shown in Fig. 9). The initial interval 
T2MFs for input and internal variables x and g are empirically designed as Figs. 10(a) and 
10(b), respectively. After training, the final iT2AFMFs are shown in Figs. 10(c) and 10(d). 
Obviously, the iT2AFMFs are obtained for better performance. 
In order to make sure RiT2FNN-A system to be stable in training, we need to check the 
condition (50). Figure 11 shows the values of  
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which were introduced previously in (50), the stable condition hold if β<2. Obviously, 
condition (50) holds in training epochs. 
 

 
Fig. 9. Simulation results of system identification; (a) system output, (b) learning curves of 
the T2FNN (dotted-line), T2FNN-A (dashed-line) and RiT2FNN-A (solid-line). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 10. Membership functions; (a) initial MFs for x1, (b) initial MFs for g1, g2, and g3, (c) MFs 
for x1 after training, and (d) MFs for g1, g2, and g3 after training. 

 
Fig. 11. Condition checking of (50). 
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This simulation demonstrates that the RiT2FNN-A has the smaller network structure for 
identification. In addition, we observe that the identification error of the RiT2FNN-A is less 
than that of T2FNN-A for each epoch. 
 

 
Table 1. Comparison results of network structure, rule number, parameter number, and 
TMSE. 

Table 1 shows the comparison results of network structure, rule number, parameter number, 
and TMSE. Obviously, the asymmetric MFs improve the approximation accuracy of the 
iT2FLSs. On the other hand, for a given approximation accuracy, RiT2FNN-A can achieve 
by using less fuzzy rules and tuning parameters with simplified structure. 

5. Conclusion 
This article has introduced a novel recurrent interval type-2 fuzzy neural network with 
asymmetric membership functions, which utilizes Lyapunov stability theorem to prove the 
stability of the system. The novel RiT2FNN-A use the interval asymmetric type-2 fuzzy sets 
implements the FLS in a five-layer neural network structure which contains four layer 
forward network and a feedback layer. According to the Lyapunov theorem and gradient 
descent method, the convergence of RiT2FNN-A is guaranteed and the corresponding 
learning algorithm is derived. Moreover, the RIT2FNN-A capability to temporarily store 
information allowed us to extend the application domain to include temporal problem. In 
application, We have found that the proposed RiT2FNN-A can use a smaller network 
structure and a small number of tuning parameters than the feed-forward fuzzy neural 
networks to obtain similar or better performance. It can successfully also approximate to a 
dynamic system mapping as accurately as desired. 
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1. Introduction  
Heavy vehicles, such as tractor-semitrailers, play an important role in transportation 
systems. They present more complex dynamical behavior than passenger cars, due to their 
high centers of gravity, which can vary depending on the load conditions, and are highly 
susceptible to rollover during cornering. Heavy vehicle rollover on highways occurs as a 
result of cornering with excessively high speed, cornering on a small radius curve or sudden 
lane change. However, if rollover threat is predicted using an appropriate algorithm, then 
the accident can be prevented by the driver's corrective maneuvers. For situations where 
rollover warning is ineffective, active rollover control is necessary. 
Most of the rollover warning algorithms use instantaneous rollover-threat index to identify 
the rollover threat. Since a rollover warning may be issued at 75 % of the rollover threshold 
acceleration, the time from warning to rollover is too short for the driver to respond 
effectively. However, if the rollover threat is predicted using the expected maneuvers, a 
warning can be issued sufficiently in advance of the event. This fact implies that warning 
systems based on predicted rollover threat can be more effective. 
Many control strategies have been designed to prevent rollover, most of them based on 
active speed control and active roll control. However, active roll control is ineffective for 
sharp turns, since it does not reduce the lateral acceleration, and requires hydraulic 
actuators which increase the cost considerably. On the other hand, the use of differential 
braking prevent jack-knifing and loss of direction generated by sudden braking during 
cornering. 
Different loading configurations produce different reaction forces on each wheel. This 
motivates the use of nonlinear robust controllers which have to be able to deal with 
parametric uncertainties, but most controllers are based on reduced models, in order to 
lessen the computational requirements. Many mathematical models for tractor semitrailers 
have been developed in order to derive active control algorithms. The Automotive Research 
Center of the University of Michigan developed the 33 degrees-of-freedom ArcSim model 
(UMTRI, 1997) to study the acceleration/braking and handling responses of an US Army 6-
axle tractor-semitrailer. In (Hyun & Langari, 2003), the vehicle model for single-unit heavy 
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susceptible to rollover during cornering. Heavy vehicle rollover on highways occurs as a 
result of cornering with excessively high speed, cornering on a small radius curve or sudden 
lane change. However, if rollover threat is predicted using an appropriate algorithm, then 
the accident can be prevented by the driver's corrective maneuvers. For situations where 
rollover warning is ineffective, active rollover control is necessary. 
Most of the rollover warning algorithms use instantaneous rollover-threat index to identify 
the rollover threat. Since a rollover warning may be issued at 75 % of the rollover threshold 
acceleration, the time from warning to rollover is too short for the driver to respond 
effectively. However, if the rollover threat is predicted using the expected maneuvers, a 
warning can be issued sufficiently in advance of the event. This fact implies that warning 
systems based on predicted rollover threat can be more effective. 
Many control strategies have been designed to prevent rollover, most of them based on 
active speed control and active roll control. However, active roll control is ineffective for 
sharp turns, since it does not reduce the lateral acceleration, and requires hydraulic 
actuators which increase the cost considerably. On the other hand, the use of differential 
braking prevent jack-knifing and loss of direction generated by sudden braking during 
cornering. 
Different loading configurations produce different reaction forces on each wheel. This 
motivates the use of nonlinear robust controllers which have to be able to deal with 
parametric uncertainties, but most controllers are based on reduced models, in order to 
lessen the computational requirements. Many mathematical models for tractor semitrailers 
have been developed in order to derive active control algorithms. The Automotive Research 
Center of the University of Michigan developed the 33 degrees-of-freedom ArcSim model 
(UMTRI, 1997) to study the acceleration/braking and handling responses of an US Army 6-
axle tractor-semitrailer. In (Hyun & Langari, 2003), the vehicle model for single-unit heavy 
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vehicles and tractor-semitrailers was derived using Lagrange's equations and Newtonian 
mechanics; this model was validated by examining its steady-state response characteristics 
and comparing it with ArcSim obtaining similar results but with less computational 
complexity. Then, an algorithm to identify the rollover threshold, the measure of roll 
stability, in terms of vehicle lateral acceleration or roll angle is established. In this paper we 
used the model presented in (Hyun & Langari, 2003) for simulations. 
On the other hand, since the seminal paper (Narendra & Parthasarathy, 1990), there has 
been continually increasing interest in applying neural networks to identification and 
control of nonlinear systems. Lately, the use of recurrent neural networks is being 
developed, which allows more efficient modeling of the underlying dynamical systems 
(Poznyak et al. 1999). Three representative books (Poznyak et al. 2000), (Rovitahkis & 
Christodoulou, 2000) and (Suykens et al., 1996) have reviewed the application of recurrent 
neural networks for nonlinear system identification and control. In particular, (Suykens et 
al., 1996)  uses off-line learning, while (Rovitahkis & Christodoulou, 2000) analyzes adaptive 
identification and control by means of on-line learning, where stability of the closed-loop 
system is established based on the Lyapunov function method. In (Rovitahkis & 
Christodoulou, 2000), the trajectory tracking problem is reduced to a linear model following 
problem, with application to DC electric motors. In (Poznyak et al. 2000), analysis of 
Recurrent Neural Networks for identification, estimation and control are developed, with 
applications on chaos control, robotics and chemical processes.  
 

 
Fig. 1. Recurrent neural control scheme 

Control methods which are applicable to general nonlinear systems have been intensely 
developed since the early 1980's. Recently, the passivity approach has generated increasing 
interest for synthesizing control laws (Hill & Moylan, 1996). An important problem for these 
approaches is how to achieve robust nonlinear control in the presence of unmodelled 
dynamics and external disturbances. In this direction, there exists the so-called H∞ nonlinear 
control approach (Basar & Bernhard, 1995). One major difficulty with this approach, 
alongside its possible system structural instability, seems to be the requirement of solving 
some resulting partial differential equations. In order to alleviate this computational 
problem, the so-called inverse optimal control technique was recently developed, based on 
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the input-to-state stability concept (Krstic & Deng, 1999). In (Sanchez et al., 2002), a robust 
adaptive neural controller for nonlinear systems with uncertainties is considered, in order to 
guarantee stability and trajectory tracking; a direct control approach is considered, where a 
recurrent neural network is assumed to model the unknown system and a control law is 
designed using the Lyapunov methodology and the inverse optimal control approach 
(Krstic & Deng, 1999).  
In this article we use Recurrent Neural Networks for applications to rollover prevention on 
heavy vehicles where we consider the presence of uncertainties and unmodeled dynamics. 
An active control algorithm is developed to prevent rollover if corrective actions from the 
driver are not done after receiving alarm signals for rollover threats. The proposed adaptive 
control scheme, as shown in Fig. 1, is composed of a recurrent neural identifier and a 
controller, where the former is used to build an on-line model for the unknown plant, and 
the latter to force the unknown plant to track the reference trajectory. An update law for the 
high order recurrent neural network weights is proposed via the Lyapunov methodology. 
The control law is synthesized using the Lyapunov methodology and the inverse optimal 
control approach. The algorithm is tested, via simulations, for prevention of rollover of the 
tractor semitrailer model developed in (Hyun & Langari, 2003). Speed only control and 
Speed-Yaw rate control are applied in order to reduce the lateral acceleration and roll angle 
of the trailer. The list of symbols that appear in this chapter are presented in Table 1 and 
Table 2. 
 

A  Lipschitz matrix in the Recurrent Neural Network system 

y ta  Lateral acceleration rollover threshold 

e  Tracking error 
( )pf ⋅ , ( )rf ⋅  Vector field for the vehicle and reference dynamics 

T iF  Normal tire forces for wheel i-th 

( )pg ⋅  Input vector field for the vehicle dynamics 

k  Sigmoid slope parameter 

L  Number of high order connections 
,f rL L  Front and rear segments of tractor wheelbase 

,f gL V L V  Lie derivatives of the Lyapunov function respect of ( )pf ⋅  and ( )pg ⋅   

( )l ⋅  Positive semidefinite function for Hamilton-Jacobi-Bellman system 

( )R ⋅  Positive definite function for cost function evaluation 

( )S ⋅  Sigmoid function 

u  Applied input 

xv  Longitudinal speed 

yv  Lateral acceleration 

Table 1. List of symbols 
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, gW W  Estimated weights matrices 
* *, gW W  Optimal weights matrices 

, gW W  Weight error matrices 

x  Plant state to be identified 

px  Unknown nonlinear state 

rx  Reference signal state 

, ,p p px y z  Longitudinal, lateral and vertical position for tractor sprung mass 

,N Nx y  Longitudinal and lateral reference coordinates 

rz  Vertical position of the tractor unsprung mass 

( ), ( )gz z⋅ ⋅  Sigmoid high order vectors 

( )α ⋅r  Applied input forces for reference tracking of the neural network 

β  Positive parameter for cost function 

, gΓ Γ  Learning rate matrices 

δ  Steer input 

ε  Relative pitch angle of the fifth wheel 

ζ  Sigmoid function parameter 

η  Relative yaw angle of the trailer 

θ  Tractor pitch 

λ  HORNN system parameter 
μ  Gain matrix for the control law 

ϖ  Vector of tractor states 

τ  Parameter for sigmoid function 

φ  Tractor roll angle 

tφ  Roll angle rollover threshold 

χ  Neural network state 
ψ  Tractor yaw angle 

dϕ  Reference yaw angle 

iω  Wheel i spin i =1,…,6 

Table 2. List of symbols 
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2. System model description 
In this paper, we consider as the simulation tool, the tractor-semitrailer model presented in 
(Hyun & Langari, 2003), which has 14 degrees of freedom:  
 

, ,N N rx y z  Longitudinal, lateral and vertical position with respect to a coordinate
system fixed to the ground 

ψ  Tractor yaw angle 
θ  Tractor pitch angle 
φ  Tractor roll angle 
ε  Relative pitch angle of the fifth wheel with respect to the tractor sprung

mass coordinates ( ), ,p p px y z  
η  Relative yaw angle of the trailer with respect to the tractor sprung mass

coordinates ( ), ,p p px y z  

iω  Wheel i spin i=1,...,6 
This model is derived using Lagrange's equations as well as Newtonian mechanics. 
Nonlinear suspension and tire-force models are considered in the vehicle model. Fig. 2 and 
Fig. 3 display side, rear and yaw plane view of the trailer under consideration. 
 

 
Fig. 2. Side view of the tractor-semitrailer 
 

 
Fig. 3. Rear view and Yaw-plane view of the tractor-semitrailer. 



 Recurrent Neural Networks 

 

154 

, gW W  Estimated weights matrices 
* *, gW W  Optimal weights matrices 

, gW W  Weight error matrices 

x  Plant state to be identified 

px  Unknown nonlinear state 

rx  Reference signal state 

, ,p p px y z  Longitudinal, lateral and vertical position for tractor sprung mass 

,N Nx y  Longitudinal and lateral reference coordinates 

rz  Vertical position of the tractor unsprung mass 

( ), ( )gz z⋅ ⋅  Sigmoid high order vectors 

( )α ⋅r  Applied input forces for reference tracking of the neural network 

β  Positive parameter for cost function 

, gΓ Γ  Learning rate matrices 

δ  Steer input 

ε  Relative pitch angle of the fifth wheel 

ζ  Sigmoid function parameter 

η  Relative yaw angle of the trailer 

θ  Tractor pitch 

λ  HORNN system parameter 
μ  Gain matrix for the control law 

ϖ  Vector of tractor states 

τ  Parameter for sigmoid function 

φ  Tractor roll angle 

tφ  Roll angle rollover threshold 

χ  Neural network state 
ψ  Tractor yaw angle 

dϕ  Reference yaw angle 

iω  Wheel i spin i =1,…,6 

Table 2. List of symbols 

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks 

 

155 

2. System model description 
In this paper, we consider as the simulation tool, the tractor-semitrailer model presented in 
(Hyun & Langari, 2003), which has 14 degrees of freedom:  
 

, ,N N rx y z  Longitudinal, lateral and vertical position with respect to a coordinate
system fixed to the ground 

ψ  Tractor yaw angle 
θ  Tractor pitch angle 
φ  Tractor roll angle 
ε  Relative pitch angle of the fifth wheel with respect to the tractor sprung

mass coordinates ( ), ,p p px y z  
η  Relative yaw angle of the trailer with respect to the tractor sprung mass

coordinates ( ), ,p p px y z  

iω  Wheel i spin i=1,...,6 
This model is derived using Lagrange's equations as well as Newtonian mechanics. 
Nonlinear suspension and tire-force models are considered in the vehicle model. Fig. 2 and 
Fig. 3 display side, rear and yaw plane view of the trailer under consideration. 
 

 
Fig. 2. Side view of the tractor-semitrailer 
 

 
Fig. 3. Rear view and Yaw-plane view of the tractor-semitrailer. 



 Recurrent Neural Networks 

 

156 

3. Mathematical preliminaries 
3.1 Artificial neural networks 
Artificial neural networks have become an useful tool for control engineering thanks to their 
applicability on modelling, state estimation and control of complex dynamic systems. Using 
neural networks, control algorithms can be developed to be robust to uncertainties and 
modelling errors. 
Neural Networks consist of a number of interconnected processing elements or neurons. 
The way in which the neurons are interconnected determines its structure. For identification 
and control, the most used structures are: 
Feedforward networks. In feedforward networks, the neurons are grouped into layers. Signals 
flow from the input to the output via unidirectional connections. The network exhibits high 
degree of connectivity, contains one or more hidden layers of neurons and the activation 
function of each neuron is smooth, generally a sigmoid function. 
Recurrent networks. In a recurrent neural network, the outputs of the neuron are fed back to 
the same neuron or neurons in the preceding layers. Signals flow in forward and backward 
directions.  

3.2 Recurrent higher-order neural networks 
Artificial Recurrent Neural Networks are mostly based on the Hopfield model (Hopfield, 
1984). These networks are considered as good candidates for nonlinear systems applications 
which deal with uncertainties and are attractive due to their easy implementation, relatively 
simple structure, robustness and the capacity to adjust their parameters on line. 
In (Kosmatopoulos, et al. 1997), Recurrent Higher-Order Neural Networks (RHONN) are 
defined as 

 ( )

1
, 1,...,j

k

L
d k

i i i ik j
k j I

y i nχ α χ ω
= ∈

= − + =∑ ∏  (1) 

where iχ  is the ith neuron state, L is the number of higher-order connections, { }1 2, ,..., LI I I is 

a collection of non-ordered subsets of{ }1,2,...,m n+ , 0ia > , ikw  are the adjustable weights 

of the neural network, ( )jd k  are nonnegative integers, and y is a vector defined by 

[ ] ( ) ( ) ( ) ( )1 1 1 1,..., , ,..., ,..., , ,...,
TT

n n n m n my y y y y S S S u S uχ χ+ += = ⎡ ⎤⎣ ⎦ , with [ ]1 2, ,..., T
mu u u u=  being 

the input to the neural network, and ( )S •  a smooth sigmoid function formulated by 

1( )
1 exp( )

S χ ζ
τχ

= +
+ −

.  For the sigmoid function, τ  is a positive constant and ζ  is a small 

positive real number. Hence, [ ]( ) , 1S χ ζ ζ∈ + . 
As can be seen, (1) allows the inclusion of higher-order terms. 
By defining a vector   

 ( ) ( ) ( )
1

(1) ( )
1, , ......, , ,....,j j

L

TT d d L
L j I j j I jz u z u z u y yε εχ χ χ ⎡ ⎤= ⎡ ⎤ = Π Π⎣ ⎦ ⎣ ⎦  

(1) can be rewritten as 

Rollover Control in Heavy Vehicles via Recurrent High Order Neural Networks 

 

157 

 1
( , ) , 1,...,

( , ) ,

L

i i i ik k
k

i i i i

z u i n

z u

χ α χ ω χ

χ α χ ω χ
=

= − + =

= − +

∑  (2) 

where ,1 ,.....
T

i i i Lw w w= ⎡ ⎤⎣ ⎦ . 

In this paper, terms as [ ] ( ) ( )1 1 1,... , 1,...., ,..., , ,..,
TT

n n n m n ny y y y y S S u uχ χ+= + = ⎡ ⎤⎣ ⎦ are 
considered. This means that the same number of inputs and states is used. We also assume 
that the RHONN is affine in the control, so that (2) can be rewritten as 

 ( ) ,T
i i i i gi iz uχ α χ ω χ ω= − + +  (3) 

Reformulating (3) in matrix form yields 

 ( )i gA Wz W uχ χ χ= + +  (4) 

where , , , ( ) , ,  and , 0.n n L n n L n
gW W z x u A Iχ λ λ× ×∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ = − >  

4. Adaptive recurrent neural control for tractor-semitrailer 
4.1 Problem formulation 
 

The nonlinear system (tractor-semitrailer) model can be described as 

 ( ) ( )p p p px f x g x u= +  (5) 

We propose to model the unknown nonlinear plant by the recurrent neural network 

 * *( ) ( )
p per

p g

x

A W z x W u

χ ω

χ χ χ

= +

= + + − +
 (6) 

where , , , ( ) , , ,  n n L nxL nxm m
p g gA x x z x W W uλχ ∗ ∗= − ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ ∈ℜ  and per pxω χ= −  

represents the modelling error, with * *, gW W  being the unknown values of the neural 
network weights which minimize the modelling error. 
We will design a robust controller which enforces asymptotic stability of the tracking error 
between the plant and the reference signal 

 ( , )r r r rx f x u=  (7) 

namely,  

 p re x x= −  (8) 
Its time derivative is 

 * *( ) ( ) ( , )p g r r re A W z x W u f x uχ χ χ= + + − + −  (9) 

Now, we proceed to add and subtract the terms ˆ ( ), , ,  and r r rWz x Ae Ax x Ae , so that 
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 ( )* * ˆ( ) ( , ) ( )

ˆ ( )

g r r r r r r p

r r r

e Ae W z W u f x u Ax Wz x x x

Ae Wz x Ax x A

χ

χ χ

= + Γ + + − + + + −

− − − − + +
 (10) 

where Ŵ  is the estimated value for the unknown weight matrix *W . 
Let us assume that there exists a function ˆ ˆ( , , )r gt W Wα  such that 

 ( )1ˆ ˆˆ( , ) ( ) ( , ) ( ) ( )r g r r r r r r pt W f x u Ax W z x x xWα −= − − Γ − −  (11) 

where ˆ
gW  is the estimated value for the unknown weight matrix *

gW . 

Then, adding and subtracting to (10) the term ˆ ˆ ˆ( , , )g r gW t W Wα  and simplifying we obtain 
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Next, let us define 
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so that (12)  is reduced to 
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 (13) 

Adding and subtracting to (13) the terms ( )pz x  and px , we obtain 

 
ˆ ˆ( ) ( ( ) ( ) ( ) ( ))
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A x x A I x x x

χ χ

χ

= + + − + − + +

− − + + − + −
 (14) 

Then, by defining 

 1 2u u u= +  (15) 
with 

 ( )1
1

ˆ ˆ( ) ( ( ) ( )) ( )( )g p pu W W z z x A I xχ χ−= − − − + −  (16) 

equation (14)  reduces to 

 2
ˆ ˆ( ) ( ) ( ( ) ( ))p r g ge A I e Wz W z x z x W u W uχ= + + + − + +  (17) 

Therefore, the tracking problem reduces to a stabilization problem for the error dynamics 
(17). To solve this problem, we next apply the inverse optimal control approach. 
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4.2 Tracking error stabilization 
Once (17) is obtained, we proceed to study its stabilization. Note that ˆ ˆ0, 0, 0ge W W= = =  is 
an equilibrium point for the system without disturbances. 
In order to perform the stability analysis for the system, the following Lyapunov function is 
formulated 

 { } { }
{ } { }

11
2

1 1

1
2 2 2

,..., , ,...,

T Tg
g g

n g g gn

V e tr W W tr W W

diag diagγ γ γ γ

−− ΓΓ
= + +

Γ = Γ =
 (18) 

Its time derivative, along the trajectories of (17), is 

 { } { }
2

1 1
2

ˆ ˆ( ) ( ) ( ( ) ( )) )

ˆ

T T T
p r g

T TT
g g g g

V A I e e Wz e W z x z x e e W u

e W u tr W W tr W W

χ

− −

= + + + − + +

+ + Γ + Γ
 (19) 

Replacing the learning laws 

 

{ }

{ }

( )

ˆ ( )

ˆ

T T

ij i j

T T
g g g g

gij ig i j

tr W W e Wz x

ez x

tr W W e W u

e u

ω γ

ω γ

= −Γ

= −

= −Γ

= −

 (20) 

in (19), we obtain 

 2
2

ˆ ˆ( 1) ( , )T T
z r gV e e W e x e W uλ φ= − − + +  (21) 

where 

 ( , ) ( ) ( ) ( ) ( )z r p r r re x z x z x z e x z xφ = − = + −  (22) 

Next, we consider the following inequality (Poznyak et al., 1999), 

 1T T T TX Y Y X X X Y Y−+ ≤ Λ + Λ  (23) 

which holds for all matrices ,  and  with 0n k n nX Y × × Τ∈ℜ Λ∈ℜ Λ = Λ > . 

Applying (23) to ˆ ( , ) with re W e x IφΤ Λ = , we obtain 

 
22 2

2
1 1 ˆ ˆ( 1) ( , )
2 2

T T
z r gV e e e W e x e W uλ φ= − − + + +  (24) 

where Ŵ , is any matrix norm for Ŵ . 

Since ( , )z re xφ  is Lipschitz with respect to e , then, there exists a positive constant Lφ  such 
that 
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ˆ ( )

g r r r r r r p

r r r
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− − − − + +
 (10) 
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gW . 
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( )

ˆ ˆ

ˆ ˆ

ˆ,

g g g

r

W W W

W W W

u u t Wα

∗

∗
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= −
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22 2

2
1 1 ˆ ˆ( 1) ( , )
2 2

T T
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 ( , )z re x L eφφ Τ ≤  

Hence (24) can be rewritten as 

 
22 22

2
1 ˆ ˆ( 1) (1 ) )
2

T
gV e L W e e W uφλ= − − + + +�  (25) 

To this end, we define the following control law 

 
{ }

21 2
2

1 2

ˆ ˆ( ) (1 )

1, ,..., , , 1,...,
2

g z

n i

u W L W e

diag i n

φμ

μ μ μ μ μ

−= − +

= > =
 (26) 

which renders 

 ( ) ( )22 2 * 21
2

1
( 1) 1

0

n

i i
i

V e L W W eφλ μ
=

≤ − − − + − −

≤

∑��
 (27) 

We now apply the Barbalat's lemma (Khalil, 1996), (Khalil, 2002). Since 
0 , , 0 and ( ) 0 i gV e W W V t> ∀ ≠ ≤� � � , V  is bounded. Hence, e  is bounded on [ ]0,T , the 

maximal interval of existence of the solution for any given initial state. V  is nonincreasing 
and bounded from below by zero, and converges as t →∞ . Integrating both sides of (27) we 
obtain 

 ( ). 2 2 * 2

10 0

1lim ( ) lim ( 1) 1
2

t t n

i it t i
V d e L W W e dφτ τ λ μ τ

→∞ →∞
=

⎛ ⎞ ⎛ ⎞⎛ ⎞− ≥ − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑∫ ∫ �  

which exists and is finite. Then, 

 ( ) ( )22 2 * 2

1

11 1 0  as  
2

n

i i
i

e L W W e tφλ μ
=

⎛ ⎞− + + − − → →∞⎜ ⎟
⎝ ⎠

∑�  

which implies that 0 ase t→ →∞ . 
From the learning laws (20), we have 

ˆ 0 as 

ˆ 0 as 

ij

g ij

w t

w t

→ →∞

→ →∞

i

i  

Therefore, 
( ) 0 as 

( ) 0 as g

W t t

W t t

→ →∞

→ →∞

��
��

 

then 

,

,

ˆ ˆlim lim

ˆ ˆlim lim
t t

g g g gt t

W W W W

W W W W

∞ ∞→∞ →∞

∞ ∞→∞ →∞

→ →

→ →

� �

� �  
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where ˆ ˆ, , ,g gW W W W∞ ∞ ∞ ∞  are constant values. 

Taking into account that * *, gW W  are constant matrices, ( ) ( )ˆ ˆ and gW t W t  are bounded 

when t →∞ . Since χ  and px  are assumed to be bounded on [ ]0,T , this implies that T = ∞ . 
This ensures asymptotic stability of the tracking error. 
Then, the control law to apply to the nonlinear system is defined by 

 1 2( )r ru x u uα= + +  (28) 

where 1 2( ), ,r rx u uα  are defined in equations  (11), (16), (26). This control law guarantees 
asymptotic stability of the error dynamics and therefore ensures the tracking of the reference 
signal. 

4.3 Optimization with respect to a cost function 
Once the control law (26) is obtained, we proceed to analyze its optimality with respect to a 
cost function which considers the tracking error and the magnitude of the applied input. 
Next, we prove that the control law (26), minimizes the cost function given by  (Sanchez et 
al., 2002) 

 ( )2 2
0

ˆ ˆ ˆ ˆ( ) lim 2 ( , , ) ( , , )
t

T
g gt

J u V l e W W u R e W W u dtβ
→∞

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫  (29) 

where the Lyapunov function solves the following Hamilton-Jacobi-Bellman family of 
partial derivative equations parametrized with 0β >  

 2 1ˆ ˆ ˆ ˆ( , , ) 2 ( , , ) 0T
g f g g gl e W W L V L VR e W W L Vβ β −+ − =  (30) 

    Note that 2 Vβ  in (30) is bounded when t →∞ , since by (25) and (26),  is decreasing and 
bounded from below by ( )0V . Therefore, ( )lim

t
V t

→∞
 exists and is finite.V  

    In (Krstic & Deng, 1998), ( )ˆ,l e W  is required to be positive definite and radially 

unbounded with respect to e . Here, from (30) we have 

 2 1ˆ ˆ ˆ ˆ( , , ) 2 ( , , ) T
g f g g gl e W W L V L VR e W W L Vβ β −= − +  (31) 

Substituting  (26) into (31) and then applying (23) to the second term on the right side of  
fL V , we have 

 ( ) ( )
22 2 2

1

ˆ ˆ ˆ( , , ) ( 1) 1 1
n

g i i
i

l e W W e L W eφλ μ
=

≥ − + + −∑  (32) 

Selecting 1λ >  and 1iμ > , we ensure that ˆ ˆ( , , )gl e W W satisfies the condition of being 
positive definite and radially unbounded. Hence, (29) is a suitable cost function. 
The integral term in (29) can be written as,   

 
12

2 2
ˆ ˆ ˆ( , ) ( , ) 2 ( ) 2 ( ) ( , ) ( )T T

f g gl e W u R e W u L V L V R e W L Vβ β
−

⎡ ⎤+ = − + ⎣ ⎦  (33) 
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where ˆ ˆ, , ,g gW W W W∞ ∞ ∞ ∞  are constant values. 
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when t →∞ . Since χ  and px  are assumed to be bounded on [ ]0,T , this implies that T = ∞ . 
This ensures asymptotic stability of the tracking error. 
Then, the control law to apply to the nonlinear system is defined by 
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where 1 2( ), ,r rx u uα  are defined in equations  (11), (16), (26). This control law guarantees 
asymptotic stability of the error dynamics and therefore ensures the tracking of the reference 
signal. 

4.3 Optimization with respect to a cost function 
Once the control law (26) is obtained, we proceed to analyze its optimality with respect to a 
cost function which considers the tracking error and the magnitude of the applied input. 
Next, we prove that the control law (26), minimizes the cost function given by  (Sanchez et 
al., 2002) 

 ( )2 2
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ˆ ˆ ˆ ˆ( ) lim 2 ( , , ) ( , , )
t

T
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Substituting  (26) into (31) and then applying (23) to the second term on the right side of  
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 ( ) ( )
22 2 2

1

ˆ ˆ ˆ( , , ) ( 1) 1 1
n

g i i
i

l e W W e L W eφλ μ
=

≥ − + + −∑  (32) 

Selecting 1λ >  and 1iμ > , we ensure that ˆ ˆ( , , )gl e W W satisfies the condition of being 
positive definite and radially unbounded. Hence, (29) is a suitable cost function. 
The integral term in (29) can be written as,   

 
12

2 2
ˆ ˆ ˆ( , ) ( , ) 2 ( ) 2 ( ) ( , ) ( )T T

f g gl e W u R e W u L V L V R e W L Vβ β
−

⎡ ⎤+ = − + ⎣ ⎦  (33) 
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The Lyapunov time derivative is defined as 

 f g uV L V L V= +  (34) 

and substituting  in , we obtain 

 1ˆ ˆ( ( , , ) ( )f g g gV L V L V R e W W L V τβ −⎡ ⎤= + −⎣ ⎦  

Then, multiplying V  by 2β−  we have 

 
12 ˆ ˆ2 2 ( ) 2 ( ) ( , , ) ( )f g g gV L V L V R e W W L Vβ β β
−

Τ⎡ ⎤− = − + ⎣ ⎦  

Hence, 

 2 2
ˆ ˆ ˆ ˆ( , , ) ( , , ) 2T

g gl e W W u R e W W u Vβ+ = −  (35) 

Replacing (35) in the cost function (29), we obtain 

 { }2
0

( ) lim 2 2 lim 2 ( ) 2 ( ) 2 (0)

2 (0)

t

t t
J u V Vdt V t V t V

V

β β β β β

β

→∞ →∞
= − = − +

=

∫  (36) 

The cost function optimal value is given by ( )* 2 0J Vβ= . This is achieved by the control law 
(26). 
Selecting 1λ >  and 1iμ > , we ensure that ˆ ˆ( , , )gl e W W satisfies the condition of being 
positive definite and radially unbounded. Hence, (29) is a suitable cost function.  

4.4 Simulation results for rollover active control 
We now apply the developed approach on rollover active control for cornering situations, 
where the features of the road can be assumed to be known by means of a system such as 
GPS, in order to determine the steering input for the vehicle. A prediction model can be 
introduced in the control scheme in order to predict the rollover threat and to produce a 
warning signal. For the cases where the driver can not respond to warning signals, active 
rollover control is necessary in order to prevent rollover. We consider two control 
approaches. First we develop a speed control which would be activated before cornering 
using differential braking, which could be available for implementation purposes. For the 
second approach, we consider the case where the road could be slippery, thus the braking 
would not be the same on each wheel, so the braking process would produce undesirable 
roll, yawing and lateral acceleration response, which would reduce the rollover threshold 
(Hyun & Langari, 2003). The tractor roll motion is governed by its lateral acceleration, which 
is generated by longitudinal speed and vehicle steering angle. In order to have reference 
values for the desired yawing response, the roll threshold and lateral acceleration threshold, 
we consider the values given in (Hyun & Langari, 2003). 
The approach is based on building a recurrent neural network identifier which models the 
longitudinal speed xv  and yaw rate, which considers two inputs: longitudinal force TF  and 
yawing moment zT . The model is described by the following RHONN 
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 1 1 1* 11( ) g TW z W Fχ λχ χ= − + +  (37) 

 2 2 2* 22( ) g zW z W Tχ λχ χ= − + +  (38) 

or in matrix form 

 1
ˆ ( ) gWz W uχ λχ χ= − + +  (39) 

where { }2 12
11 220, , ,g g gW W diag W Wλ ×> ∈ℜ =  and 

 

2 2
1 2 1 2 1 2

2 2 3 3
1 2 1 2

3 3 4 4 4 4
1 2 1 2 1 2

( ) tanh ,tanh ,tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh ,

tanh tanh ,tanh ,tanh , tanh tanh

k k k k k k

k k k k

k k k k k k

z χ χ χ χ χ χ χ

χ χ χ χ

χ χ χ χ χ χ

⎡= ⎣

⎤⎦

 (40) 

where 1 1 1 2 2 2 and k kk kχ χ χ χ= = . 
As in (Hyun & Langari, 2003), the reference yaw response can be obtained as a function of 
the desired speed and the steer angle using the Ackermann angle (Gillespie, 1992) 

 x
d

f rL L
υψ δ=
+

 (41)       

where δ  is the steer angle and ,f rL L  are the front and rear vehicle wheelbase segments. 
We consider for the tractor semitrailer model, the heavy payload condition model given in 
(Hyun & Langari, 2003), with the rollover threshold values given in function of the roll 
angle and lateral acceleration as 

 
22.6 /

2.87deg
yt

t

a m s
φ

=

=
 

 
Fig. 4. Steer input for cornering maneuver 

For the cornering situation given in Fig. 4, a speed reduction is desirable as given in Fig. 5. 
This speed reference is arbitrarily selected only for simulation purposes. 
For the speed control, we consider the simplified RHONN given by (39), and we select 
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 1 1 1* 11( ) g TW z W Fχ λχ χ= − + +  (37) 

 2 2 2* 22( ) g zW z W Tχ λχ χ= − + +  (38) 

or in matrix form 
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where 1 1 1 2 2 2 and k kk kχ χ χ χ= = . 
As in (Hyun & Langari, 2003), the reference yaw response can be obtained as a function of 
the desired speed and the steer angle using the Ackermann angle (Gillespie, 1992) 

 x
d

f rL L
υψ δ=
+

 (41)       

where δ  is the steer angle and ,f rL L  are the front and rear vehicle wheelbase segments. 
We consider for the tractor semitrailer model, the heavy payload condition model given in 
(Hyun & Langari, 2003), with the rollover threshold values given in function of the roll 
angle and lateral acceleration as 
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Fig. 4. Steer input for cornering maneuver 

For the cornering situation given in Fig. 4, a speed reduction is desirable as given in Fig. 5. 
This speed reference is arbitrarily selected only for simulation purposes. 
For the speed control, we consider the simplified RHONN given by (39), and we select 
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For the control law (26), we choose 

 30.5 10μ = ×  

 

 
Fig. 5.  Speed reference trajectory 

The results for the speed-only control in Fig. 6 and Fig. 7 show that the speed is decreased 
successfully, but the yaw response deviates from the desired one, and the trailer presents 
high values of the roll angle. In order to reduce these effects we now apply a speed-yaw rate 
control. 
 

 
 

Fig. 6. Vehicle speed and yaw rate for speed only control 
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Fig. 7. Trailer roll angle and lateral acceleration for speed-only control 

For the speed-yaw rate control, we consider the RHONN build from (37) and (38) the same 
cornering situation as in the previous application. 
The RHONN parameters are selected as  
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Fig. 8. Vehicle speed and yaw rate for speed-yaw rate control 

For the control law, (26) we choose 
{ }3 40.5 10 ,5 10diagμ = × ×  
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The results for trajectory tracking are shown in Fig. 8 to Fig. 10, where the tracking error is 
decreased considerably. The value for the roll angle decreased compared to the speed-only 
control simulation. The lateral acceleration presents an improved response. The speed-yaw 
rate control scheme prevents the rollover threat by forcing the values for roll and lateral 
acceleration to be far from the rollover threshold parameters. 
 

 
Fig. 9. Trailer roll angle and lateral acceleration for speed-yaw rate control 
 

 
Fig. 10. Applied total braking torque and yawing moment for speed-yaw rate control 

5. Conclusions 
In this paper an adaptive recurrent neural network controller is developed in order to 
prevent rollover in heavy vehicles. The control scheme is composed of an Recurrent Neural 
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Network predictor which estimates the future behavior of the roll angle and lateral 
acceleration. A neural identifier builds an on-line model for the trailer-semitrailer model of 
14 degrees of freedom which is assumed to be unknown. A learning adaptation law is 
derived using the Lyapunov methodology. Asymptotic stability of the tracking error is 
ensured by means of the inverse optimal control approach. The proposed scheme is tested, 
via simulations, to prevent rollover of a tractor-semitrailer. Two different control strategies 
are applied: speed-only control and speed-yaw rate control. The neural controller for speed 
and yaw rate presented the best performance by reducing the roll angle and lateral 
acceleration of the trailer.  
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1. Introduction 
In the past decades, Recurrent Neural Network (RNN) has attracted extensive research 
interests in various disciplines. One important motivation of these investigations is the 
RNN's promising ability of modeling time-behavior of nonlinear dynamic systems. It has 
been theoretically proved that RNN is able to map arbitrary input sequences to output 
sequences with infinite accuracy regardless underline dynamics with sufficient training 
samples [1]. Moreover, from biological point of view, RNN is more plausible to the real 
neural models as compared to other adaptive methods such as Hidden Markov Models 
(HMM), feed-forward networks and Support Vector Machines (SVM). From the practical 
point of view, the dynamics approximation and adaptive learning capability make RNN a 
highly competitive candidate for a wide range of applications. See [2] [3] [4] for examples. 
Among the various applications, the realtime signal processing has constantly been one of 
the active topics of RNN. In such kind of applications, the convergence speed is always an 
important concern because of the tight timing requirement. For example, the conventional 
training algorithms of RNN, such as the Backpropagation Through Time (BPTT) and the 
Real Time Recurrent Learning (RTRL) always suffer from slow convergence speed. If a large 
learning rate is selected to speed up the weight updating, the training process may become 
unstable. Thus it is desirable to develop robust learning algorithms with variable or 
adaptive learning coe±cients to obtain a tradeoff between the stability and fast convergence 
speed. 
The issue has already been extensively studied for linear adaptive filters, e.g., the famous 
Normalized Least Mean Square (N-LMS) algorithm. However, for online training 
algorithms of RNN this is still an open topic. Due to the inherent feedback and distributive 
parallel structure, the adjustments of RNN weights can affect the entire neural network state 
variables during network training. Hence it is difficult to obtain the error derivative for 
gradient type updating rules, and in turn difficulty in the analysis of the underlying 
dynamics of the training. So far, a great number of works have been carried out to solve the 
problem. To name a few, in [5], B. Pearlmutter presented a detail survey on gradient 
calculation for RNN training algorithms. In [6] [7] , M. Rupp et al introduced a robustness 
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analysis of RNN by the small gain theorem. The stability was explained from the energy 
point of view that the ratio of output noise against input noise was guaranteed to be smaller 
than unity. In [8], J. Liang and M. Gupta studied the stability of dynamic back-propagation 
training algorithm by the Lyapunov method. An auxiliary term was appended to augment 
the learning error. The convergence speed was improved by introducing an extra increment 
in the updating rule. Later, A. Atiya and A. Parlos used a generalized steepest descent 
method to obtain a unified error gradient algorithm [9]. Recently, Q. Song et al proposed a 
simultaneous perturbation stochastic approximation training method for neural networks 
and robust stability is established by the conic sector theorem [10] [11]. 
The work presented in this chapter investigate the stability and robustness of the gradient-
type training algorithms of RNN in the discrete-time domain. A Robust Adaptive Gradient 
Descent (RAGD) training algorithm is introduced to improve the RNN training speed as 
compared to those conventional algorithms, such as the BPTT, the RTRL and the 
Normalized RTRL (N-RTRL). The main feature of the RAGD is the novel hybrid training 
concept, which switches the training patterns between the standard online Back Propagation 
(BP) and the N-RTRL algorithm via three adaptive parameters, the hybrid adaptive learning 
rates, the adaptive dead zone learning rates, and the normalization factors. These 
parameters allow RAGD to locate relatively deeper local attractors of the training and hence 
obtain a faster transient response. Different from the N-RTRL, the RAGD uses a specifically 
designed error derivatives based on the extended recurrent gradient to approximate the true 
gradient for realtime learning. Also the RAGD is different from the static BP in terms that 
the former uses the extended recurrent gradient to extend the instantaneous squared 
estimation error minimization into recurrent mode, while the latter is strictly based on the 
instantaneous squared estimation error minimization without specifically considering the 
recurrent signal. 
Weight convergence and robust stability of the RAGD are proved respectively based on the 
Lyapunov function and the Cluett's law, which is developed from the conic sector theorem 
of input- output system theory. Sufficient boundary conditions of the three adaptive 
parameters are derived to guarantee the L2 stability of the training. Different from precedent 
results [12], the present work employs the input-output systematic approach in analysis. 
This is because the input-output theory on basis of functional analysis requires minimal 
assumptions about the training statistics. Although the results are also derivable from 
conventional analysis method, we emphasize that input-output systematic scheme can 
provide an in-depth understanding of RNN training dynamics from different aspect. 
In addition to the theoretical analysis, we carried out three case studies of the applications in 
realtime signal processing via computer simulations, including time series prediction, 
system identification, and attractor learning for pattern association. With these case studies, 
we are able to qualify the effectiveness of the RAGD and hence justify that the algorithm 
outperforms other counterparts. 
The overall chapter is organized as follows: In Sections 2, we briefly introduce the structure 
of the RNN and the RAGD training algorithm. In Section 3, the robustness analysis of the 
RAGD is carried out for the Single-input Single-Output and Multi-input Multi-output RNN 
respectively. In addition, the conic sector theorem is introduced as the theoretical 
foundation of the analysis. Computer simulations are presented in Section 4 to show the 
efficiency of our proposed RAGD. Section 5 draws the final conclusions. 
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2. RAGD learning algorithm 
Consider a RNN with l output nodes and m hidden neurons. In discrete-time domain, the 
network output ŷ  at time instant k can be written as 

 (1) 

where V̂ (k) ∈ Rl×m and Ŵ  (k) ∈ Rm×n are output and hidden layer weights respectively (in 
matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the 
state vector that consists of external input u(k) and n - 1 delayed output feedback entries 

 (2) 

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k) 
instead of Φ (Ŵ (k) x̂ (k)) hereafter. When estimating a command signal d(k), the 
instantaneous modeling error of RNN can be defined by 

 (3) 

Note a disturbance term ε (k) ∈ Rl×1 is taken into account in (3). Without loss of generality, 

there is no assumption on the prior knowledge of ε (k) and its statistics. The training 
objective of RNN is to update the weight parameters step by step to minimize certain cost 
function f(e(k)), with the most convenient form being the squared instantaneous error e2(k)/2. 
Specifically, in an environment of time-varying signal statistics, a gradient based sequential 
training algorithm can be used to recursively reduce the f(e(k)) by estimating the weights at 
each time instant 

 

(4) 

where α is the learning rate of RNN, and Ŵ i(k) is the ith row of hidden layer weight matrix, 
with i = 1, 2, …, m. Note subscript i denotes ith row for matrices or ith entry for vectors. As 
for the above algorithm, a widely recognized problem is the slow convergence speed 
because of small learning rates for purpose of preserving weight convergence. So far the 
commonly accepted solution of this problem is to employ normalization, e.g., the N-RTRL 
algorithm [13] [1]. Indeed, the solution can be further improved if we can find effective 
boundary conditions of learning rates and normalization factors as will be shown in later 
sections. Moreover, hybrid learning rates can be employed to obtain the tradeoff between 
the transient and steady state response. Now based on the RNN model (1) and the gradient-
based training equation (4), we propose the RAGD learning algorithm as follows 

 

(5) 
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where V̂ (k) ∈ Rl×m and Ŵ  (k) ∈ Rm×n are output and hidden layer weights respectively (in 
matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the 
state vector that consists of external input u(k) and n - 1 delayed output feedback entries 

 (2) 

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k) 
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where Φ’(k) is the vector of activation function derivatives, αv(k), αw(k) are adaptive dead 
zone learning rates, βv(k), βw(k) are hybrid learning rates, ρv(k), ρw(k) are normalization 
factors, and Â (k), B̂ (k) are residual error gradients. These variables are defined in the 
following. 
(a) Φ’(k) ∈ Rm×1 

 (6) 

(b) Â (k) ∈ R1×m and B̂ (k) ∈ R1×n 

 
(7) 

 (8) 

where 
 
are block diagonal matrices 

with sub-matrix diag{Φ’ (k)} and Ŵ (k) on the diagonal respectively 

 

 
are long vector versions of the weight matrices V̂ (k) 

and Ŵ (k) respectively 

 
and the Jacobian  
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in which are sub-matrices. 

(c) β v(k) and β w(k) 

 (9) 

 (10)

where  is a small positive constant, I is the identity matrix, and I is employed to ensure the 
matrix and positive definite. 
(d) ρ v(k) and ρ w(k) 

 (11)

 
(12)

where  are positive constants, μ max is the maximu value of the 
activation function, and . Note we are using an inner 
product induced norm, the Frobenius norm, as the norm of weight matrices in this work. 
(e) αv(k) and αw(k) 

 
(13)

 
(14)

where   and sgn(•) function is defined by 

 

(15)

Remark 1 The RAGD algorithm uses the specific designed derivative as shown in (5). The state 
estimators are taken into account in the second terms of the partial derivatives on the right side of the 
equation. Further, to make the proposed algorithm realtime adaptive and recurrent, the D̂ v(k) and 
the D̂ w(k) in the partial derivatives are calculated on basis of the data from previous training steps, 
which is similar to that of the N-RTRL algorithm [14]. It is noteworthy only when the convergence 
and stability requirements (details will be given in Section 3) are met, they hybrid learning rate β will 
be turned on. In this case, since we have estimated the best available gradient at each step k, the 
combination of weights and state estimates in (5) should provide a relatively deeper local attractor of 
the nonlinear iteration, and hence to speed up the training. 
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3. Robust stability analysis 
In this section, we present detail analysis of robust stability of the RAGD algorithm. Proofs 
of weight convergence and L2 stability are derived on basis of Lyapunov function and input-
output systematic approach respectively. The boundary conditions on the three adaptive 
parameters, the hybrid learning rate, the adaptive dead zone learning rates, and the 
normalization factors, are obtained for the optimized transient response of the training. For 
better understanding of the algorithm, a simple case of Single-input Single-output (SISO) 
RNN is firstly given as an example. Then the results are extended to the more complicated 
case of Multi-input Multi-output (MIMO) RNN. Before proceeding, we introduce the 
Cluett's law and mathematical preliminaries. 

3.1 Cluett's laws 
The main concern of this work is discrete signals which are infinite sequences of real 
numbers. Each signal may be considered an element of a set known as a linear vector space. 
To provide a clear explanation, an immediate review is given on several mathematical 
notations. Let the x(k) ∈ Rn×1 denotes the series {x(1), x(2), …}, then 

i) The L2 norm of x(k) is defined as 
 

ii) If the L2 norm of x(k) exists, the corresponding normed vector spaces are called L2 spaces; 

iii) The truncation of x(k) is defined as  

iv) The extension of a space L2, denoted by L2e is the space consisting of those elements x(k) 
whose truncations are all lie in L2, i.e., , for all N ∈Z+ (the set of positive 
integers). 
Note • denotes the Euclidean norm of a vector, and • 2 for the L2 norm of a signal (could 
be either a vector or a scalar). Let's consider the closed loop system shown in Figure 1 
 

 
Figure 1. A general closed loop feedback system 

 

(16)

where operators H1;H2 : L2e →L2e, discrete time signals e0(k); e(k); φ(k) ∈ L2e and ε(k) ∈ L2. 
Theorem 1 (Cluett's Law-1) If the following two conditions hold 
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i)  

ii)  

for some α, β ∈ R, which are independent of k and N, and γ ≥ 0, η > 0, which are 
independent of N, then the closed loop feedback system of (16) is stable in the sense of e(k), 
 φ (k) ∈ L2. 
Proof: By the inequality i) and using e0(k) = ε(k) -φ (k) 

 
(17)

Combining inequality ii) and equation (17) 

 
(18)

Using the Schwartz inequality 

 

 
(19)

Assume as N→∞, then from equation (19) we derive η ≤0. This is 
a contradiction. Therefore is bounded for all N ∈ Z+, i.e., φ(k), e(k) ∈ L2. ■ 

Theorem 2 (Cluett's Law{2) For the feedback system (16), if 
i) H1 : e0(k) - e(k) satisfies 

 
ii) H2 : e(k) - φ (k) satisfies 

 
for some γ ≥ 0, η > 0, which are independent of N, and  ∈ (0, 1], which is independent of k 
and N, then the closed loop signals e(k), φ (k) ∈ L2. 
Proof: See corollary 2.1 in [15]. ■ 
Remark 2 As a matter of fact, the operator H1 represents the nonlinear mapping and H2 is a dynamic 
linear transfer function. When condition (i) and (ii) are satisfied, H2 is guaranteed to be passive and 

1
1H −

 is strictly interior conic (c1, r1), where c1 = 1 and r1 = (1- )1/2, or equivalently H1 is strictly 

interior the conic (c2, r2) where c2 =  -1
 and r1 =  -1

 (1 - )1/2 as long as  < 1 holds. Hence the 
feedback loop is L2-stable by the conic sector theorem. This conic relation is illustrated in Figure 2 
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Figure 2. Illustration of interior and exterior conic relations of H1 

3.2 Output layer analysis of SISO RNN 
In this and next section, we consider the RNN model of (1) with only one output node, i.e., 
l = 1. Such simplification is favorable for us to put more concentration on the basic ideas of 
the proof rather than the pure mathematics. Moreover, the results for SISO RNN will also be 
extended to the more general case of MIMO RNN in later sections. On the other hand, in a 
multi-layered RNN, it may not be able to update all the estimated weights within a single 
gradient approximation function. Hence we shall partition the training into different layers. 
Now with the assumption of SISO RNN, the training for output layer can be re-written as 

 
(20)

In order to analyze the dynamics of this training equation via input-output approach, the 
first step is to restructure (20) into an error feedback loop, which should be the same as that 
in Figure 1. Further, the weight estimation error must be referred as the output signal. For 
this purpose, define the estimation error 

 (21)

where V* ∈ R1×m and V (k) = V (k) - V* are the ideal weight vector and estimation error 
vector of output layer respectively, and Φ*(k) is defined in analogous to Φ (k) as 

 (22)

where x*(k) ∈ Rn×1 is the ideal input state, W* ∈ Rm×n is the ideal weight matrix of hidden 
layer of the RNN. Then the training error of RNN can be expanded as 
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(23)

Because the term V* Φ*(k) - V* Φ (k) is temporarily constant in case of output layer training, 
we can define ε v(k) = ε  (k) + V* Φ*(k) - V* Φ (k). Then (23) can be transformed as 

 (24)

Equation (24) has a similar form as the feedback path of the system (16), with ev(k) and e(k) 
corresponding to e(k) and e0(k) in Figure 1 respectively, and here the feedback gain is unity, 
i.e., H2 = 1. 
There is an important implication in the relation of (24). The ev(k), e(k) and ε v(k) correspond 
to the weight estimation error, the RNN modeling error and the disturbance, respectively. 
Hence the training error is directly linked to the disturbance, and in turn, the parameter 
estimating error of the RNN output layer. If we further establish a nonlinear mapping from 
the original disturbance ε v(k) to the parameter estimation error ev(k), the relationship 
between L2-stability of training algorithm and learning parameters can subsequently be 
studied by imposing the conditions of Theorem 2. 
Theorem 3 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 
(20), the weight V̂ (k) is guaranteed to be stable in the sense of Lyapunov 

 (25)

with V (k) = V (k) - V*. Also the training will be L2-stable in the sense of ev(k) ∈ L2 if αv(k) ≠0 
for all k ∈ Z+. 
Proof: Subtracting V*and then squaring both sides of (20) 

 

 
 
 
 

(26)

Regarding the first term on the right side of (26), we find that it may be easily associated 
with the term ev(k) due to the explicit appearance of V (k) and Φ(k). Following this idea, we 
need to apply certain transformation to β v(k) Â (k)T , such that Φ(k) can be extracted from the 
summation. When it comes to this point, our first thought is to left multiply 

 However, the transformation is not valid 
because Φ(k) Φ(k)T is not an invertible matrix (Φ(k) is a column vector). Fortunately, inspired 
by the approximation method of classical Gauss-Newton iteration algorithm [2] (pp.126-
127), we can add the term Φ(k) Φ(k)T by a small positive constant  to expand it into 
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 (27)

Such that the singular matrix problem can be avoided. On this basis, we have the following 
derivations 

  

         

                
(28)

 

           
(29)

where (29) is obtained by substituting (24) into (28). Then based on the triangular inequality 
 (29) can be further deducted as 

 
 

By the definition of βv(k), we may derive that  
Furthermore, because that  as defined in (11) which lead 

to 1 -  > 0, and by the definition of αv(k), the convergence of V (k) can 

be derived 
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(30)

Next considering the case that the assumption αv(k) ≠0 holds for all k ∈ Z+, we can divide 
both sides of (28) by  and then sum 
up to N steps 

 

 
(31)

where the normalized error signals are defined as 

 
and the cone satisfies 

 
which prevents the vanishing radius problem, i.e., σ v is strictly smaller than one [15]. 
Because for each k the Lyapunov function (30) is guaranteed smaller or equal to zero, we 
have 
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Due to the specific selection of the normalization factor in (11), the normalized error signals 
guarantee that the original signals e(k) and ev(k) are bounded according to the original 
operators H v

1 and H2 [15]. Now the operator H v
1 represented by (31) satisfies the condition 

(i) of Theorem 2, and condition (ii) is guaranteed to hold due to H2 = 1. Thus we conclude 
that ev(k) ∈ L2. ■ 
Remark 3 According to the theoretical analysis, the three adaptive parameters αv(k), β v(k) and ρv(k) 

play important roles in the design of the RAGD. The adaptive learning rate αv(k) is based on the 
standard adaptive control system to solve the weight drift problem [10]. The normalization factor  
ρ v(k) prevents the so-called vanishing cone problem of the conic sector theorem [15], which also has a 
similar role to the local stability condition as in [8] to bound the gradient in (20). The specific 
designed hybrid adaptive learning rate β v(k) can be further interpreted as activating the recurrent 
learning fashion in case  It implies that the recurrent 
training of the RAGD will be active only if the second term of the derivative in (20) gives the negative 
gradient direction, i.e., a relatively deeper local attractor, otherwise the RAGD training procedure 
will be the same as a static BP algorithm and likely escape this undesired local attractor since it is 
unfavorable in the recurrent training. This design is especially effective for accelerating the training 
of the RNN when the iteration is near the bottom of basin of a local attractor, where the derivatives 
are changed slowly. With β v(k) = 1, the approximation of D̂ v(k) is more accurate to meet the 
convergence and stability requirements. 
Remark 4 The idea of the RAGD is similar to the existing works [16] [17] [14]. If we calculate the 
derivative in (20) exactly by unfolding the recurrent structure and force β v(k) = 0, i.e, pursuing all N 
steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the 
assumption that the model parameters do not change apparently between each iteration [16], then we 
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD 
and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence 
and system stability. 

3.3 Hidden layer analysis of SISO RNN 
This section presents the stability analysis for the hidden layer training of the RAGD. 
Apparently the analysis for the hidden layer is more di±cult than the one of the output 
layer, because the dynamics between the weight and modeling error is nonlinear. The 
derivation of error gradient must be carried out through one layer backward, which 
involves the derivative of activation function. In the following analysis, we show that the 
nonlinearity can actually be avoided by using the mean value theorem. On the other hand, 
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the 

proof, e.g., ˆ ( )
F

W k . A direct benefit of this expression is that the proof and the training 

equation can be presented in matrix forms, while not in a manner of row by row. However 
question arises, it is difficult to derive the Jacobian in this framework. We find that it is 
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the 
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified 
as follows 

 
(32)
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Expanding the modeling error around the hidden layer weight 

 

 
 
 
 
 
 
 
 
 
 

(33)

where is the vector difference 
between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith 
nonlinear activation function, and Ψ (k) is 

 
Defining 

 (34)

then equation (33) can be simplified as 

 (35)

Because the output layer weight is always updated before the hidden layer weight, and 
V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error 
signal ε w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone, 
thus we only need to study the operator H1 to analyze the stability of the training. 
Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 
(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov 

 
 
with W (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense 
of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+. 
Proof: Subtracting W* from both sides of (32) 

 
(36)

Squaring both sides of (36) 
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steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the 
assumption that the model parameters do not change apparently between each iteration [16], then we 
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD 
and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence 
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3.3 Hidden layer analysis of SISO RNN 
This section presents the stability analysis for the hidden layer training of the RAGD. 
Apparently the analysis for the hidden layer is more di±cult than the one of the output 
layer, because the dynamics between the weight and modeling error is nonlinear. The 
derivation of error gradient must be carried out through one layer backward, which 
involves the derivative of activation function. In the following analysis, we show that the 
nonlinearity can actually be avoided by using the mean value theorem. On the other hand, 
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the 

proof, e.g., ˆ ( )
F

W k . A direct benefit of this expression is that the proof and the training 

equation can be presented in matrix forms, while not in a manner of row by row. However 
question arises, it is difficult to derive the Jacobian in this framework. We find that it is 
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the 
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified 
as follows 

 
(32)
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Expanding the modeling error around the hidden layer weight 

 

 
 
 
 
 
 
 
 
 
 

(33)

where is the vector difference 
between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith 
nonlinear activation function, and Ψ (k) is 

 
Defining 

 (34)

then equation (33) can be simplified as 

 (35)

Because the output layer weight is always updated before the hidden layer weight, and 
V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error 
signal ε w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone, 
thus we only need to study the operator H1 to analyze the stability of the training. 
Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 
(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov 

 
 
with W (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense 
of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+. 
Proof: Subtracting W* from both sides of (32) 

 
(36)

Squaring both sides of (36) 
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(37)

By the definition of Frobenius norm 

 
where Trace {•} function is defined as the sum of the entries on the main diagonal of the 
associated matrix. The following equation can be derived then 

 

     
(38)

Using the trace properties, the first term on the right side of (38) can be transformed as 

 

 
(39)

where the third equality to the last is derived by the similar perturbation method as the one 
in the output layer training (adding a small constant diagonal matrix I to to 
make it invertible, see the proof in Section 3.2). 
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Before proceeding, let's consider a RNN with scalar weight Ŵ (k). The relation of the local 
attractor basin of the instantaneous square error against the W (k) can be presented by 

, as illustrated in Figure 3 [10]. Extend this result to the RNN with a matrix 

weight Ŵ (k), we have a similar presentation by the local attractor basin concept 

 
(40)

By the local attractor basin properties in (40) 

 

 
(41)

The right side of (39) can be enlarged as 

 

 

 
(42)

 

 

Figure 3. Illustration of a local attractor basin of the RNN against a scalar estimated weight Ŵ (k) 

Substituting (42) into (39) 
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(43)

Substituting (35) into (43) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(44)

By the definition of ρw(k) and α w(k) in (12) and (14) respectively, we can draw that 

 (45)

Again, consider the extreme case with the assumption of nonzero α w(k). Dividing both sides 
of (43) by 

 
and then summing up to N steps 

 

 
(46)

where the normalized error signals are  
and the cone is 
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(47)

and ΔW is greater than zero because for each k the Lyapunov function (45) is guaranteed 
smaller than or equal to zero, i.e. 

 

                  
(48)

Due to the specific selection of the normalization factor in (12), the original signals e(k) and 
ew(k) are guaranteed to be bounded according to the original operators 1H w and H2 [11] [15]. 

Now the operator 1H w represented by (46) satisfies the condition (i) of Theorem 2. Thus we 

conclude that ew(k) ∈ L2 in case of α w(k) ≠ 0, ∀k ∈ Z+. ■ 

3.4 Robustness analysis of MIMO RNN 
In this section, we discuss the RAGD training for the RNN of Multi-Input Multi-Output 
(MIMO) types. As mentioned in the introduction, the RNN with multiple output neurons 
can be regarded as consisting of several single output RNNs. Thus the training of MIMO 
RNN can be studied by decomposition. In detail, for the output layer training, we may 
calculate the gradient of each output neuron with respect to weight parameters, and then 
obtain the total weight updating by summing these individual gradient. As for the hidden 
layer, we also use this method to take into account the influence of multi-output neurons on 
total weight updating. Following this idea, the extension of the stability analysis from SISO 
to MIMO is straight forward. 
Theorem 5 If the RNN is trained by the adaptive normalized gradient algorithm (5)-(15), then the 
weight V̂ (k) and Ŵ (k) are guaranteed to be stable in the sense of Lyapunov. 
Proof: (i) Output layer analysis: To study the stability of the RAGD, we need to establish the 
error dynamics of the training algorithm. First of all, define the estimation error 

 (49)

where V*∈R l × m is the ideal output layer weight, and 

 
Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as 
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where V*∈R l × m is the ideal output layer weight, and 

 
Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as 
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                                  (50)

with ε v(k) = V *Φ*(k) - V *Φ(k) + ε (k). In (50), we restructure the output layer training of the 
RAGD algorithm into a closed loop form same as that of (16) , by which the weight 
estimation error ev(k) is referred as the output signal. Subtracting V* and squaring both sides 
of the output layer training equation in (5) 

 

        
(51)

By the matrix trace properties 

 
Again, we employ the customary practice by using a small positive perturbation constant  
to make I + Φ(k)Φ(k)T full rank and then apply the approximation as 
 

 

          (52)

Substituting (50) and (52) into (51) 

 

 

 
 
 
 
 
 
 
 

(53)
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(54)

     

 
 
 
 
 
 
 
 
 
 
 
 

(55)

where (54) is because of the triangular inequality  
and (55) is due to 

 
Combining the inequality (55) with the definition of ρ v(k) and α v(k) in (11) and (13) 
respectively, the Lyapunov equation of output layer estimation error can be derived 

 (56)

(ii) Hidden layer analysis: Expanding e(k) with respect to the estimation error of hidden layer 
weight 

 

                  
(57)

where W*(k) ∈ Rm×n is the ideal hidden layer weight matrices, x*(k) ∈ Rn×1 is the ideal state 
vector, μi(k) is the mean value of the ith nonlinear activation function at instant k, and  
W j(k) =Ŵ j(k)- *

jW . Using the local attractor basin concept that similar to (40) 
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(58)

Substituting W*and squaring both sides of hidden layer training equation of the RAGD in 
(5), we can derive the Lyapunov function of the hidden layer weight of MIMO RNN based 
upon (58) as 

 

 
 
 
 
 
 
 
 
 

(59)
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(60)

Summarizing (56) and (60), we can conclude the proof. ■ 
Theorem 6 If a MIMO RNN is trained by the adaptive normalized gradient algorithm (5)-(15), and 
α v(k), α w(k) are nonzero for all k ∈ Z+, then the training will be L2-stable in the sense of  
e v(k), e w(k) ∈ L2. 
Proof: Respectively, dividing both sides of (53) and (59) by the following two factors (since  
α v(k); α w(k) ≠0) 

 

(61)

 

Summing both inequalities up to N steps, then for the output layer 

 

 
(62)

and for the hidden layer 

 

 
(63)

where 



 Recurrent Neural Networks 

 

188 

 

 
(58)

Substituting W*and squaring both sides of hidden layer training equation of the RAGD in 
(5), we can derive the Lyapunov function of the hidden layer weight of MIMO RNN based 
upon (58) as 

 

 
 
 
 
 
 
 
 
 

(59)

 

A New Supervised Learning Algorithm of Recurrent Neural Networks and  
L2 Stability Analysis in Discrete-Time Domain 

 

189 

   

 

(60)

Summarizing (56) and (60), we can conclude the proof. ■ 
Theorem 6 If a MIMO RNN is trained by the adaptive normalized gradient algorithm (5)-(15), and 
α v(k), α w(k) are nonzero for all k ∈ Z+, then the training will be L2-stable in the sense of  
e v(k), e w(k) ∈ L2. 
Proof: Respectively, dividing both sides of (53) and (59) by the following two factors (since  
α v(k); α w(k) ≠0) 

 

(61)

 

Summing both inequalities up to N steps, then for the output layer 

 

 
(62)

and for the hidden layer 

 

 
(63)

where 



 Recurrent Neural Networks 

 

190 

 
and the normalized signals are defined by 

 

 
Due to the specific selection of the normalization factor ρv(k) and ρw(k) as in (11) and (12), the 
normalized error signals e v(k), e v(k), e w(k), and e w(k) are guaranteed to be bounded. 
Now, for each V̂  (k) and W  (k), applying the Cluett's law, we found that the operator 1H v

 

and 1H w
 represented by (62) and (63) satisfy the condition (i). Further, H2 = 1 ensures 

condition (ii) holds, thus ev(k)and ew(k) are L2 stable with αv(k), αw(k) ≠ 0, ∀k ∈ Z+. ■ 

3.5 Summary 
In Section 3, we introduce a novel RAGD training algorithm of RNN. Because conventional 
gradient type algorithms most likely suffer from slow convergence when dealing with 
statistically non-stationary inputs, the RAGD aims at overcoming such shortcomings via a 
series of new training parameters. Moreover, the robust local stability of the RAGD has been 
addressed for three layer RNN based upon the Cluett's law. Theoretical analysis shows that 
the proposed adaptive parameters improve the training performance in terms of a deeper 
gradient descent direction updating, which leads to a better transient response. Further, 
compared to BPTT, the RAGD algorithm requires limited backward unfolding, which 
reduces the computational complexity. The flow chart of the overall training procedure of 
the RAGD is summarized in Figure 4. 

4. Applications in realtime signal processing 
This section presents quantitative studies of the RAGD algorithm via computer simulations. 
We choose three of the most representative applications of RNN to verify the effectiveness 
of the RAGD. By default, the RNN is constructed with 50 hidden neurons and 5 input 
nodes. The 5- dimensional input vector consists of current and last sample of time sequence 
u(k) and RNN output feedback with 1 to 3 steps delay respectively. Both hidden and output 
layer weights are initialized as uniformly distributed in the interval of (-1, 1). Sigmoid 
function is chosen as activation function, which is monotonic increasing, and both first and 
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second order differentiable. The function and its first order derivative are given in equation 
(64), including the boundaries 

 

(64)

For the purpose of comparison, in most of the simulations we also provide the results of 
other training algorithms, such as the Truncated BPTT (T-BPTT) and the N-RTRL etc. 
 

 
Figure 4. Flow chart of the RAGD training algorithm for SISO RNN 

4.1 Time series prediction 
In the first simulation, the performance of the RAGD is evaluated via time series prediction 
problems. The RNN is employed to predict the next sample (one step) of a real sequence 
{y(k)}, which is generated by the following process 
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(65)

where u(k) is white Gaussian input sequence. The model of (65) is chosen from the 
benchmark problem in [1] (pp.159). Two data groups are generated in simulations. One is 
the training data set, and the other is for evaluation purpose. The traces of the time series for 
training and evaluation are displayed in Figure 5. 
 

 
Figure 5. Sequences of the time series for training and evaluation 

To provide a comparative idea, we have also implemented the N-RTRL in simulations with 
constant C = 0 and C = 0.2 respectively. All the simulations run for 10000 steps. In order to 
present a clear illustration on both transient and steady state performance of each training 
algorithm, the training errors are displayed by the first 100 steps and the full 10000 steps 
separately as shown in Figure 6 and 7. Moreover, the squared training errors of the first 100 
 

 
Figure 6. Squared training errors of the first 100 steps with the same set of random 
initializations for different algorithms 
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steps are plot in logarithmic format to provide a further better comparison. The steady state 
training errors are expressed in dB (20 times the logarithm of the amplitude ratio between 
error and signal) such that performance difference between the RAGD and the N-RTRL can 
be more explicit. The traces of the normalization factors are shown in Figure 8. The 
trajectories of the Frobenius norms of RNN weights with the RAGD training are displayed 
in Figure 9. 
 

 
Figure 7. Squared training errors of full 3000 steps for different algorithms 
 

 
Figure 8. Traces of normalization factors ρv(k) and ρw(k) 

The results show that the RAGD algorithm is successfully stabilized in the sense that the 
Frobenius norms of the weights converge. The convergence of the RAGD is faster than the 
N- RTRL with both parameter values. Moreover, the RAGD can achieve better steady state 
error (mean squared training error 5.79e-3) than the N-RTRL (mean squared training errors 
6.67e-3 and 8.28e - 3 respectively). 
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Figure 9. Traces of the Frobenius norms of RNN weights with the RAGD training 
In addition to the proposed adaptive training parameters, we also investigate how the 
training is affected by the number of hidden layer neurons and the exponential factor of 
activation functions. The statistics with respect to various values of this two parameters are 
given in Table 1 and 2 respectively. The data are obtained by averaging the results of 50 runs 
(each have 10000 steps). 
All simulations start with same initial weights, which can make a same starting point of the 
training error such that we can make a convincing comparison. The results indicate that the 
steady state performance is slightly improved as the λ increases. A possible reason is that 
transition slope of linear region of activation function becomes higher (faster) with larger λ. 
A similar phenomena is also observed in [7] (pp.617). In contrast, there is no obvious 
influence of the neuron number on the training performance. 
 

 
Table 1. Statistics of squared training errors of the RAGD with different λ 

 
Table 2. Statistics of squared training errors of the RAGD with di®erent neurons 
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4.2 Output tracking of Hammerstein-Wiener model 
In the second example, the RAGD is evaluated using a system identification problem. In this 
simulation, the “unknown” plant consists of a dynamic linear block followed by a static 
nonlinearity, which is a so-called Hammerstein-Wiener model. Furthermore, the model 
dynamics is supposed to vary with time in terms of the time-varying coefficients of linear 
part, which can be expressed in a polynomial form as [19] 

 

(66)

The objective of the simulation is to model the plant's input-output behavior by the RNN. 
The command signal was given by u(k), and the RNN attempts to emulate the plant output 
d(k) as close as possible. The estimation error between actual plant output and reference 
signal e(k) = d(k)-y(k) is fed back to RNN to adjust the weight parameters. One of the most 
crucial tasks in system identification is the design of appropriate excitation signals. It is 
important that the training data cover the entire range of plant operation due to non 
accurate extrapolation of RNN. In this simulation, Amplitude Modulated Pseudo Random 
Permutation (AMPRP) sequence are generated as training set, with the data uniformly 
distributed in the range of (0, 1), see Figure 10. We have also implemented the T-BPTT 
algorithm in simulations. The learning rate α = 0.05 (tuned by trial-and-error) was used for 
T-BPTT.We present the squared training error of first 1000 (transient) and 1000-5000 (steady 
state) steps separately in Figure 11 and 12. Results show that the RAGD converges within 
200 steps while T-BPTT takes around 1000 steps. In addition, the steady state error of the 
RAGD is smaller than T-BPTT. Hence we say the RAGD is capable of providing a faster 
response to the changes of system dynamics. The traces of the normalization factors of the 
RAGD are provided in Figure 13. 
 

 
Figure 10. Trace of AMPRP input for model identification 
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simulation, the “unknown” plant consists of a dynamic linear block followed by a static 
nonlinearity, which is a so-called Hammerstein-Wiener model. Furthermore, the model 
dynamics is supposed to vary with time in terms of the time-varying coefficients of linear 
part, which can be expressed in a polynomial form as [19] 

 

(66)

The objective of the simulation is to model the plant's input-output behavior by the RNN. 
The command signal was given by u(k), and the RNN attempts to emulate the plant output 
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signal e(k) = d(k)-y(k) is fed back to RNN to adjust the weight parameters. One of the most 
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important that the training data cover the entire range of plant operation due to non 
accurate extrapolation of RNN. In this simulation, Amplitude Modulated Pseudo Random 
Permutation (AMPRP) sequence are generated as training set, with the data uniformly 
distributed in the range of (0, 1), see Figure 10. We have also implemented the T-BPTT 
algorithm in simulations. The learning rate α = 0.05 (tuned by trial-and-error) was used for 
T-BPTT.We present the squared training error of first 1000 (transient) and 1000-5000 (steady 
state) steps separately in Figure 11 and 12. Results show that the RAGD converges within 
200 steps while T-BPTT takes around 1000 steps. In addition, the steady state error of the 
RAGD is smaller than T-BPTT. Hence we say the RAGD is capable of providing a faster 
response to the changes of system dynamics. The traces of the normalization factors of the 
RAGD are provided in Figure 13. 
 

 
Figure 10. Trace of AMPRP input for model identification 
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Figure 11. Squared training errors of the first 1000 steps 

 

Figure 12. Squared training errors of steady state: 1000-5000 steps 

4.3 Pattern association of binary image 
In the last simulation, we study the problem of stable equilibrium point learning associated 
with a discrete-time RNN using the RAGD algorithm. In the applications of visual 
processing and pattern recognition, RNN plays an important role due to the feature of 
associative memory. The work presented in this section is inspired by an earlier paper of 
Liang and Gupta [8]. In [8], the authors considered absolute stability of BPTT for a general 
class of discrete time RNN by the Lyapunov first method. In this work the RAGD will be 
incorporated in place of BPTT to develop a stable learning process. To present comparison 
with the precedent works [20], we implement a similar simulation case of binary pattern 
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Figure 13. Traces of the normalization factors ρv(k) and ρw(k) 

association as well as BPTT algorithm, where the target pattern is a 10×10 binary image as 
shown in the first picture of Figure 14. The training of RNN is to store the target pattern 
directly as a local attractor, i.e., an equilibrium point of RNN. Since the state vector is 100 
dimensional (number of pixels in target pattern) and there are no external inputs, RNN is 
configured with 100 inputs and outputs. As a matter of fact, this structure is analogous to 
the conventional Hopfield type network. RNN is utilized as an auto-associator and we aim 
at studying self-organizing behavior with the RAGD training algorithm. In order to 
demonstrate the changing of the binary image corresponding to the state of RNN during 
learning process, a filter layer based on sign function is added to observe the RNN output 
pattern, which represents the binary image at the iterative instant. The training process of 
the RAGD is shown in Figure 14. As mentioned, we also implement the BPTT algorithm to 
 

 
Figure 14. The binary patterns correspond to the state evolution of RNN during the training 
process using the RAGD algorithm. 
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provide comparison. The learning rate for the BPTT is 0.028. Similar to previous sections, 
this value is obtained by trial-and-error tuning method without violating stability constraint. 
The changing process of the binary image corresponding to the state vector of RNN is 
shown in Figure 15. 
 

 
Figure 15. The binary patterns correspond to the state evolution of RNN during the training 
process using the BPTT algorithm. 
From Figure 14 and 15, we see that using the RAGD training method, the dynamic learning 
process is completed within 300 steps, which is superior to the 500 steps of the BPTT 
algorithm. Further, we provide the squared error during the dynamic learning process of 
the RAGD and BPTT in Figure 16. The results indicate that the convergent process of the 
BPTT (about 450 iterations) is longer than the RAGD (about 280 iterations). 
 

 
Figure 16. Comparison of the squared error curves between the RAGD and BPTT training 
procedures. 

A New Supervised Learning Algorithm of Recurrent Neural Networks and  
L2 Stability Analysis in Discrete-Time Domain 

 

199 

With these training results, we evaluate the association performance upon a distorted test 
pattern. The target image pattern is assumed to be disturbed by a white Gaussian noise with 
the noise level about 40% pixels, as shown in the first picture of Figure 17. This image is 
utilized as initial state of RNN to test the capability of recalling the associative memory. The 
recovered binary images at each time instant during recalling procedure of the two RNN 
trained by the RAGD and BPTT are given in Figure  17 and 18 respectively. The results show  
 

 
Figure 17. The binary patterns correspond to the state evolution of association process of 
RNN trained b the BPTT algorithm. 
 

 
Figure 18. The binary patterns correspond to the state evolution of association process of 
RNN trained b the RAGD algorithm. 
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that the 10×10 binary pattern is successfully stored as a stable equilibrium point of the RNN 
by both algorithms. And there is no obvious difference of recall duration between two 
schemes (both within 10 iterations). 

4.4 Summary 
We have presented quantitative studies of the proposed RAGD algorithm in this section. 
Computer simulations are synthesized to justify the effectiveness of the RAGD. We give 
three examples which are the most frequent application areas of RNN: i) One-step 
prediction of non-statistical time series, which is generated by benchmark process model; 
ii) Identification of a nonlinear dynamic plant and the training data set is generated by a 
time-varying Hammerstein-Wiener model; iii) Pattern association of binary images. 
Further, we provide comprehensive comparisons between the RAGD and various other 
algorithms such as the N-RTRL, the T-BPTT, and the BPTT. In most results of these 
simulations, RNN trained by the RAGD demonstrates explicit advantages in the transient 
response speed, e.g., see Figure 6, 11 and 16. Some of the results also indicates that the 
RAGD can achieve better steady state responses, such as those in Figure 7 and 12. Hence 
by these experiment results, we conclude that the performance of the RAGD training 
algorithm of RNN is improved. 

5. Conclusion 
In this chapter, a Robust Adaptive Gradient Descent training algorithm of RNN with 
improved convergence speed is investigated. The major feature of the RAGD is the three 
adaptive parameters that switch the training patterns in a hybrid learning mode. Weight 
convergence and robust stability of the algorithm are analyzed via Lyapunov and input-
output systematic approach respectively. We show how the training algorithm can be 
decomposed into a nonlinear feedforward operator H1 and a linear feedback operator H2, 
and thus form a closed loop (H1, H2). Then, by restricting the cone conditions of each 
operator, sufficient boundary conditions of L2 stability of the training are obtained. In 
addition, we obtain the knowledge in which way we can adaptively change the learning 
rates of gradient training algorithms, or equivalently re-scale the corresponding error 
derivatives under stability preservation, such that the learning is ensured to be within the 
stable range. Such techniques are specially important for deriving a fast transient 
response. Another important contribution of this work lies in that we obtain a unified 
framework for the analysis of training algorithms of RNN by taking this systematic 
approach. Such an approach avoids the direct analysis of nonlinear functions in the 
feedforward path by applying the sector conditions. Computer simulations are also 
synthesized to justify the effectiveness of the RAGD. We give three examples which are 
most frequent application areas of RNN. The evaluation results indicate that with the 
proposed adaptive training parameters, the RAGD can obtain better transient and steady 
state responses than that of the conventional algorithms such as the BPTT, the RTRL, and 
the N-RTRL etc. 
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1. Introduction 
Knowledge of the hydrological process is essential to the watershed and flood management. 
Due to the complexity of the interactions among the hydrological process, 
hydormeterological and geomorphological processes, a rigorous dynamic system model is 
required for the modelling purpose. Among them, the rainfall-runoff modelling is always 
considered as one of the most challenging part of hydrological process modelling.   It has 
been shown in a variety of research fields that the application of recurrent neural network 
(RNN) can perform superior in dynamic system modelling (Pan and Wang, 2005). However, 
Maier and Dandy (2000) reviewed 43 hydrology journal articles with modelling of artificial 
neural networks (ANNs) published before 1998, where only Chow and Cho (1997) applied 
RNNs to forecast rainfall.   
The application of RNNs to hydrological modelling is rapidly growing these years. 
Published between 2000 and 2008 spring, 14 papers in which RNNs have been used for 
simulation or forecasting of water resources variables are reviewed in terms of the 
modelling process. Due to the rapid increase in journals, it is unlikely that complete 
coverage has been achieved. Following the form of Maier and Dandy (2000), the major 
features of the models investigated are summarised in Tables 1 and 2, including background 
information (variable modelled, location of application, model time step, and forecast 
length), information about the data used (data type, normalization range, number of 
training samples, and number of testing samples), information about network architecture 
(connection type, method used to obtain optimal network geometry, and number of nodes 
per layer), information about the optimization algorithm used (optimization method, 
internal network parameters (hidden layer transfer function, learning rate, momentum 
value, epoch size, and initial weight distribution range)) and the stopping criterion adopted. 
While hydrologists have not made an effort to construe the knowledge embedded in the 
trained RNN models, the recent studies strive to interpret physical significance from the 
internal architecture of RNN hydrological models, like Pan et al. (2004, 2005, and 2007). 
Therefore, this chapter will introduce the deterministic linearized recurrent neural network 
(denoted as DLRNN) and its application to rainfall-runoff processes. 
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Table 2. Details of papers reviewed (RNN architecture and optimization). 

2. Deterministic linearized recurrent neural network 
The RNN introduced in this chapter is to integrate a state space form into the neural 
network framework. The integration can provide not only the flexibility to represent any 
nonlinear functions but also the parallel inputs/outputs (causes/effects) relationships 
established between the neural model and the physical system (Pan & Wang, 2004).  The 
presented RNN has five layers: input layer, hidden layer S, state layer, hidden layer O, and 
output layer. The input layer takes the input signals and delivers these inputs to every 
neuron in the next layer, hidden layer S, which represents any function that specifies the 
behaviour of states. State layer receives the signals from hidden layer S, and each neuron in 
this layer represents one state whose output value is the value of the state. After hidden 
layer O, which represents the features that relates the outputs of the neural network to the 
states, gets the signals from state layer, output layer takes the hidden layer O signals adds 
them to each output neuron. These outputs are, finally, the outputs of the RNN embedded 
in a state space form as Fig. 1. 
The mathematical representation of a deterministic non-linear system in state space form is: 

 ( )kkk uxFx ,1 =+  (1) 
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where ku , ky , and kx  with m , l , and n  ranks denote, respectively, the input, output, and 
state vectors at time k . nmnF →×:  and lnG →:  are two static linear/nonlinear 
mappings. 
 

 
Fig. 1. The RNN embedded in a state space form. 

A neural network containing a single hidden layer with bounded transfer functions in its 
neurons can be used for the representation of a variety of linear/nonlinear functions 
(Zarmarreño et al., 2000).  Therefore, to apply the neural network for the linear/nonlinear 
mappings in Eqs. (1) and (2), the mathematical form of this special RNN can be written as: 
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where hW , rW , iW , oW , and 2hW  are matrices with dimensions hn× , nh× , mh × , 
2hm× , and nh ×2  as the weights of the RNN, respectively. hB  and 2hB  are two vectors 

with h  and 2h  elements as biases. 1f  and 2f  are linear/nonlinear functions depending on 
the behaviour of the system. 
Previous works have established that linearized neural networks suffice to capture 
nonlinear systems. Botto and Costa (1998) designed a linear predictive control using a 
linearized neural network model. Henriques and Kuanyi (1998) stated that control design 
for linear systems has been well developed, and it is natural to make use of it in nonlinear 
plants. Hence, they applied as a linearized neural model. Furthermore, Rahman and Kuanyi 
(2000) studied a neural network method to linearizing control of nonlinear process plants, 
and used neural networks to model the process plant and to linearize the neural network 
model in a novel way. Additionally, the difference between a RNN and a linearized one is 
the linearity of the active function of each neuron in the hidden layer. In fact, however, it is 
not strictly necessary that a neural interpretation of the neuron contains a non-linear 
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function because the reduction of the diversity of activation functions, such as the sigmoid 
function, is beneficial (Ptitchkin, 2001). Although neural networks are known to be universal 
function approximators, except for unchanged the active functions, the weights and 
structure of the neural network are updated or modified during the entire approximating 
process. Moreover, a high-dimensional space nonlinearity problem can be suitably 
approximated by modifying the weights in the linear combinations of state variables with 
time. Consequently, the linear transfer function of the RNN applied herein is capable of 
simulating nonlinear rainfall-runoff process. 
Considering the transfer functions of the RNN applied herein are set as linear functions and 
the biases are set at zero. Consequently, the Eqs. (3) and (4) are rewritten as: 
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In the recursive equation (5), W1, W2, and W3 are unknown weights to be identified by 
observed input/output sequences { }110 ,,, −Nuuu  and { }110 ,,, −Nyyy . By replacing the kx  
term in the observed equation (6) with the solved recursive equation (5), the output 
response of the system is given as: 
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For a system initially at rest, i.e., 01 =x , Equation (7) is rewritten as: 
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p
pkpk uhy

1

 (8) 

where the unit hydrograph (UH) of the rainfall-runoff processes can be summarized as: 

21

13 ≥= − pWWWh p

p   if     2  

 10 == php   if              (9) 

The impulse response terms 
2

WWW p 1

13

−  for 2≥p  are known as the Markov parameters. 

3. Calibration algorithm for DLRNN 
3.1 Indirect system identification 
The concept of indirect system identification algorithms is to obtain the UH ordinates first, 
called the constrained deconvolution step. The linear programming is selected herein to 
carry out the UH from the rainfall and runoff data. Then, the system matrices [ ]31 ,, WWW 2  
are identified from the UH ordinates via singular value decomposition (SVD), entitled the 
realization step. 
In the realization step, the state space model can be represented as follows if kk Txx =  for 
some nonsingular transformation matrix T (Romos et al., 1995): 
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By considering ][ 1
1

−TTW  as 1W , ][ 2TW  as 2W , and ][ 1
3

−TW  as 3W , the system matrices of 

the transformed system are now [ ]31 ,, WWW 2 , and these parameter matrices [ ]31 ,, WWW 2  

are identified based on the deconvoluted impulse response sequence }ˆ{ ph . Specifically, SVD 
is performed on the following Hankel matrix: 
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where Mk ≤−12 . M is the memory of system. The transformed parameter matrices are 
identified from: 

∗− == 1,2,
1

11 kkTTWW cc ; 
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where 1,kc  and 2,kc  denote the first and last ( )1−k  columns of c , and the star denotes a 
pseudoinverse. 

3.2 Subspace algorithm 
Above indirect system identification algorithm computes the weights of a RNN from a 
Hankel matrix constructed using Markov parameters. However, using the Markov 
parameters as a starting point would be rather difficult to measure in some fields 
(Abdelghani & Verhaegen, 1998). The subspace algorithms are the automatic structure 
identification, and derive the model directly from the input-output data without estimating 
the Markov parameters as an intermediate step (Gustafsson, 2001; Ramos et al., 1995). 
Before description of subspace algorithm, the past and future highly rectangular 
input/output Hankel matrices, H1 and H2 respectively, are defined by input-output data: 
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Two state vector sequences X1 and X2 are defined as ]|||[ 211 jxxxX =  and 
]|||[ 212 jiii xxxX +++= . The subspace algorithm is presented as follows: 

a) Compute the SVD of the concatenation of H1 and H2: 
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where 11u , 12u , 21u , 22u , 11Σ , and HV  are the matrices with dimensions 
)2()( nmilimi +×+ , )2()( nlilimi −×+ , )2()( nmilimi +×+ , )2()( nlilimi −×+ , 

)2()2( nminmi +×+ , and jj ×  respectively. 
b) Compute the SVD of 111112 ΣuuT  in order to determine the system order, n: 
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where qU , ⊥

qU , qΣ , and qV  are the matrices with dimensions nnli ×− )2( , 
)(2)2( nlinli −×− , nn× , and )2()2( nminmi +×+  respectively. 

c) Compute the transformed state vector sequence: 
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where 2X  is the matrix with dimensions jn× . 
d) Compute the weights of the RNN by solving the overdetermined system of equations: 
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In the past few years, much attention has been paid recently to subspace algorithms when 
various time domain methods for identifying dynamic models of systems from modal 
experimental data appeared. However, this algorithm was seldom applied in the scope of 
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30 
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data, 
hourly data used herein have more uncertainty and noisy. The suitability of subspace 
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real 
typhoon event of the Keelung River in Taiwan as follows: 
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where 2X  is the matrix with dimensions jn× . 
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In the past few years, much attention has been paid recently to subspace algorithms when 
various time domain methods for identifying dynamic models of systems from modal 
experimental data appeared. However, this algorithm was seldom applied in the scope of 
hydrology. Except Ramos et al. (1995), they used one event of 29 data points (each 30 
minutes long) and 365 daily data to evaluate the algorithm. To compare with daily data, 
hourly data used herein have more uncertainty and noisy. The suitability of subspace 
algorithm with hourly rainfall-runoff data, therefore, is re-evaluated based on a real 
typhoon event of the Keelung River in Taiwan as follows: 
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Firstly, a sequence of 100 data is generated from a state space model that was identified 
from rainfall-runoff data observed on Sep. 27, 1996.  Indirect system identification algorithm 
was used to check if the subspace algorithm could identify the original system. The state 
space model is a 3-order system as following equations: 
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 [ ] kk XY ⋅= -0.1485-0.2144-0.2274  (20) 

The generated sequence was identified as Equations (21) and (22). The results show that the 
system order determination in the step 2 of subspace algorithm is correct so that the impulse 
response can be simulated accurately. 

 kkk UXX ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

0.0386

0.0716

-0.1190

0.66280.1880-0.0237

0.57040.85170.0693

-0.0944-0.18570.9559

1  (21) 

 [ ] kk XY ⋅= 0.6034-0.6683-0.4403  (22) 

The second test used the original observed data to identify a rainfall-runoff system. 
However, according to the identified UHs shown in Fig. 2, the subspace algorithm 
performed poorly because it was very sensitive to the noise in observed data. Therefore, the 
modified system identification combined with indirect system identification and subspace 
algorithm is introduced. 
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Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace 
algorithm. 
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3.3 Modified system identification for hydrology 
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification 
algorithm and subspace algorithm respectively. To compare with these two flowcharts, 
indirect system identification algorithm needs to subjectively decide the system order from a 
sequence of singular values in Equation (16). In practice, the singular values are not easily 
classified into significant and insignificant groups when the singular values descend slowly. 
Additionally, subspace algorithm can determine the system order objectively, but it is 
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a 
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized 
data are without noise that helps subspace algorithm to get the system order. The right part 
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology. 
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Fig. 3. Flowchart of indirect system identification. 

4. On-line learning algorithm for DLRNN 
Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al., 
2000), such as (1) the real time recurrent learning; (2) the backpropagation through time 
(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method; 
and (5) the block update method. All training algorithms above are gradient-based by which 
the learning trajectory is represented into the changes of weights of neurons. 
The weights updated via gradient-based learning algorithms can be written as: 
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where η denotes the learning rate, and E is the sum of square errors. 
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Firstly, a sequence of 100 data is generated from a state space model that was identified 
from rainfall-runoff data observed on Sep. 27, 1996.  Indirect system identification algorithm 
was used to check if the subspace algorithm could identify the original system. The state 
space model is a 3-order system as following equations: 
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The generated sequence was identified as Equations (21) and (22). The results show that the 
system order determination in the step 2 of subspace algorithm is correct so that the impulse 
response can be simulated accurately. 
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The second test used the original observed data to identify a rainfall-runoff system. 
However, according to the identified UHs shown in Fig. 2, the subspace algorithm 
performed poorly because it was very sensitive to the noise in observed data. Therefore, the 
modified system identification combined with indirect system identification and subspace 
algorithm is introduced. 
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Fig. 2. UHs carried out via linear programming, indirect system identification, and subspace 
algorithm. 
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3.3 Modified system identification for hydrology 
Figure 3 and the left part of Fig. 4 are the flowcharts of indirect system identification 
algorithm and subspace algorithm respectively. To compare with these two flowcharts, 
indirect system identification algorithm needs to subjectively decide the system order from a 
sequence of singular values in Equation (16). In practice, the singular values are not easily 
classified into significant and insignificant groups when the singular values descend slowly. 
Additionally, subspace algorithm can determine the system order objectively, but it is 
sensitive. Therefore, the constrained deconvolution step is considered, firstly, to compute a 
discrete UH from rainfall-runoff events for calibration. Secondly, a sequence of rainfall-
runoff data generated form the discrete UH via convolution is synthesized. This synthesized 
data are without noise that helps subspace algorithm to get the system order. The right part 
of Fig. 4 surrounded by dotted line is the modified system identification for hydrology. 
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Fig. 3. Flowchart of indirect system identification. 

4. On-line learning algorithm for DLRNN 
Dynamic RNN learning algorithms can be grouped into five major categories (Parlos et al., 
2000), such as (1) the real time recurrent learning; (2) the backpropagation through time 
(BTT) method; (3) the fast forward propagation method; (4) the Green’s function method; 
and (5) the block update method. All training algorithms above are gradient-based by which 
the learning trajectory is represented into the changes of weights of neurons. 
The weights updated via gradient-based learning algorithms can be written as: 
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where η denotes the learning rate, and E is the sum of square errors. 
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where yk is the output of the model, and dk represents the desired output at time index k. The 
algorithm introduced herein is based on the gradient-based learning method developed by 
Atiya and Parlos (2000). 
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Fig. 4. Flowchart of modified system identification. 

4.1 DLRNN learning algorithm 
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that 
can be efficiently computed via the interchange of the roles of the network states xk and the 
weight matrix W. Let the states be considered as the control variables, and the change in the 
weights is determined upon the changes in xk. The details of the algorithm are as follows: 
First, the network learning is formulated as constrained minimization problem, with the 
objective to minimize the sum of square error, E, given by Equation (24), and the constraints. 
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According to the Equations (10) and (11), the error gradient can be written as follows: 
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weights of W2 and W3 for time K can be derived ffom Equation (23), (24), (26b), and (26c) as 
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Solving Equations (26a) and (29), one can get: 
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According to the convention that  ( )vu ∂∂ for two vectors u and v is the matrix whose (i, j)th 
element is ( )ji vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as 
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where yk is the output of the model, and dk represents the desired output at time index k. The 
algorithm introduced herein is based on the gradient-based learning method developed by 
Atiya and Parlos (2000). 
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Fig. 4. Flowchart of modified system identification. 

4.1 DLRNN learning algorithm 
The idea of the algorithm adopted herein is to obtain an approximation for the gradient that 
can be efficiently computed via the interchange of the roles of the network states xk and the 
weight matrix W. Let the states be considered as the control variables, and the change in the 
weights is determined upon the changes in xk. The details of the algorithm are as follows: 
First, the network learning is formulated as constrained minimization problem, with the 
objective to minimize the sum of square error, E, given by Equation (24), and the constraints. 
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Solving Equations (26a) and (29), one can get: 
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According to the convention that  ( )vu ∂∂ for two vectors u and v is the matrix whose (i, j)th 
element is ( )ji vu ∂∂ , the matrices in (28) can be evaluated from Equations (6) and (24) as 
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I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros. 
After calculating the gradient of E with respect to the states xk, a small change at the states xk 
in the negative direction of that gradient can be written as: 
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Since g, given by Equation (25), equals zero, one can get: 
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After applying the transposition and the pseudoinverse in Equation (37), the change in 
weights can be determined as: 
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where 
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From Equation (36), let  
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and partition the vector γ  into the K vectors as follows: 
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Using Eqs. (32) and (40), γ  can be evaluated by following recursions: 

 Te11 −=γ   (42a) 

 TT eWe 1122 +−=γ   (42b) 

  

 T
K

T
KK eWe 11 −+−=γ   (42c) 

Let  

 ∑
−

=

=′
1

0

K

k

T
kkK xxV  (43) 

Substituting Equations (33), (39), (40), and (43) into (38), one can get after some 
manipulation. 
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In order to alleviate the effect of most likelihood ill-conditioning problems caused by the 
matrix inversion in Equation (44), a small matrix Iε  is added to the outer product matrix  

KV ′ as follows: 
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where ε  is a small positive constant. Then Equation (44) is rewritten as follows: 
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Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1) 
are already available to get 1,1 −Δ KW , the on-line updated change in weights KW ,1Δ  based on a 
new data point (uK, xK, dK) can be written as follows: 
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I is the identity matrix, and 0 in Equations (32) and (34) is a matrix (or vector) of zeros. 
After calculating the gradient of E with respect to the states xk, a small change at the states xk 
in the negative direction of that gradient can be written as: 
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Replace 
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∂  by Equation (29), and Equation (33) can be rewritten as: 
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Since g, given by Equation (25), equals zero, one can get: 
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After applying the transposition and the pseudoinverse in Equation (37), the change in 
weights can be determined as: 
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where 
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From Equation (36), let  
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and partition the vector γ  into the K vectors as follows: 
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Using Eqs. (32) and (40), γ  can be evaluated by following recursions: 
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Substituting Equations (33), (39), (40), and (43) into (38), one can get after some 
manipulation. 
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In order to alleviate the effect of most likelihood ill-conditioning problems caused by the 
matrix inversion in Equation (44), a small matrix Iε  is added to the outer product matrix  

KV ′ as follows: 
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where ε  is a small positive constant. Then Equation (44) is rewritten as follows: 
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Since the passed inputs, state variables, and observed outputs (u1, x1, d1, …, uK-1, xK-1, dK-1) 
are already available to get 1,1 −Δ KW , the on-line updated change in weights KW ,1Δ  based on a 
new data point (uK, xK, dK) can be written as follows: 
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Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of KV  
can be obtained recursively in terms of the inverse of 1−KV  as follows: 
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Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated 
formula of W1 as follows: 
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5. Application 
5.1 Study area and data pre-processing 
With a length of 86 km and an area of 501 km2, the Keelung River has a U-turn in the 
northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and 
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2 
surrounding the city of Taipei in northern Taiwan was chosen for evaluating the simulation 
ability of the DLRNN for recognizing the transition of rainfall-runoff processes. Due to the 
northeast monsoon in winter and the typhoons in summer, the mean annual precipitation, 
runoff depth, and runoff coefficient are 2865 mm, 2177 mm, and 0.76, respectively. Owing to 
the rugged topography of the watershed, large floods caused by the short and steep runoff 
path-line arrive rapidly in the middle-to-downstream reaches of the watershed, and cause 
serious damage. 
According to the records of three rain gauges (Wu-tu, Jui-fang, and Huo-shao-liao) and on 
discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from 
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events 
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972, 
were used for calibration while the remainder events were used for validation. Through the 
Kriging method to calculate the average effective rainfall based on effective rainfall 
measurements from three rain gauges, current average effective rainfall (mm) and direct 
hourly runoff (m3/s) are the input and output with no lead-time considered after be 
normalized between 0 and 0.9. 

5.2 Criteria 
The performances of rainfall-runoff simulations were evaluated by four criteria as follows: 
(1) Coefficient of efficiency, CE, is defined as follows: 
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where kestQ ,  denotes the discharge of the simulated hydrograph for time index k (m3/s), kobsQ ,  

is the discharge of the observed hydrograph for time index k (m3/s), and obsQ  is the mean of 
the discharge of the observed hydrograph during whole event period K. The better the fit, 
the closer CE is to 1. 
 

 
Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the 
coordinates are TWD67 2-degree wide Transverse Mercator projection). 
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discharge

(m3/s)
Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0
*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7
Nadine 1968/07/26 61 252.1 15.1 219.7 *Abby 1986/09/17 91 521.3 28.8 579.0
Elaine 1968/09/29 72 686.6 44.5 1037.7 Alex 1987/07/27 30 187.0 40.7 519.8
*Storm 1969/09/09 89 678.5 24.1 848.4 *Gerald 1987/09/09 33 321.2 47.2 553.9
Elsie 1969/09/26 38 288.5 38.0 662.5 *Storm 1988/09/29 101 627.3 22.7 670.2

Agnes 1971/09/18 69 411.3 31.5 466.3 *Sarah 1989/09/10 61 322.5 27.7 401.2
Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0
Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5
Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4

Wendy 1974/09/28 57 321.2 16.7 822.0 Storm 1990/09/02 26 192.8 32.2 842.5
Vera 1977/07/31 46 264.7 16.9 735.7 *Polly 1992/08/29 98 500.6 17.8 278.9

Storm 1977/11/15 72 292.2 15.2 538.4 Gladys 1994/09/01 18 184.1 31.3 434.2
Irving 1979/08/14 56 340.3 24.4 974.1 *Seth 1994/10/09 48 300.7 12.2 451.3
Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9
*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0
Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8
Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event  
Table 3. Information about the 38 events selected from Wu-tu watershed. 

(2) The error of peak discharge, EQp (%), is defined as follows: 

 ( ) %100%
,

,,
×

−
=

obsp

obspestp
p Q

QQ
EQ   (52) 



 Recurrent Neural Networks 

 

216 

Furthermore, using the small rank adjustment matrix inversion lemma, the inverse of KV  
can be obtained recursively in terms of the inverse of 1−KV  as follows: 
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Substituting Eq. (48) into Eq. (47), after simplification one can get the final on-line updated 
formula of W1 as follows: 
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northeast Taipei county, and runs through Taipei city, where it joins the Dansuie River and 
flows out to sea, as shown in Fig. 5. The watershed upstream of Wu-tu with about 204 km2 
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discharge site (Wu-tu) in Wu-tu watershed, as shown in Fig. 5, 38 rainfall-runoff events from 
1966 to 1997 were selected as study cases including 13 multi-peak and 25 single-peak events 
(Table 3). With 766 rainfall-runoff observations, the earliest 10 events, from 1966 to 1972, 
were used for calibration while the remainder events were used for validation. Through the 
Kriging method to calculate the average effective rainfall based on effective rainfall 
measurements from three rain gauges, current average effective rainfall (mm) and direct 
hourly runoff (m3/s) are the input and output with no lead-time considered after be 
normalized between 0 and 0.9. 
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where kestQ ,  denotes the discharge of the simulated hydrograph for time index k (m3/s), kobsQ ,  

is the discharge of the observed hydrograph for time index k (m3/s), and obsQ  is the mean of 
the discharge of the observed hydrograph during whole event period K. The better the fit, 
the closer CE is to 1. 
 

 
Fig. 5. The maps of Wu-tu watershed showing the study area near Taipei, Taiwan (the 
coordinates are TWD67 2-degree wide Transverse Mercator projection). 
 

Typhoon
name

Time
(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Typhoon

name
Time

(y/m/d)

Rainfall
duration

(h)

Rainfall
depth
(mm)

Max rainfall
intensity
(mm/h)

Max
discharge

(m3/s)
Cora 1966/09/06 48 247.9 20.0 770.7 *Gerald 1984/08/14 127 513.5 23.4 586.4

*Carla 1967/10/17 72 1088.0 52.9 921.2 Nelson 1985/08/22 46 341.4 25.0 1177.0
*Gilda 1967/11/16 59 339.5 29.1 706.9 Brenda 1985/10/03 38 248.4 15.1 626.7
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Bess 1971/09/22 54 353.3 32.0 994.1 *Offlia 1990/06/22 49 251.0 20.6 500.0
Betty 1972/08/16 40 177.2 15.2 677.9 Yancy 1990/08/19 44 259.5 46.3 824.5
Storm 1973/09/20 22 292.5 37.3 862.3 Abe 1990/08/30 35 239.1 15.7 764.4
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Storm 1980/11/19 42 266.9 21.9 687.1 Herb 1996/07/31 44 313.6 31.8 1082.9
*Cecil 1982/08/09 34 235.7 23.9 626.4 *Zane 1996/09/27 84 440.6 29.9 666.0
Storm 1984/06/02 18 212.7 46.1 1403.5 Winnie 1997/08/17 47 343.5 24.1 1034.8
Freda 1984/08/06 30 242.1 30.7 501.5 Amber 1997/08/29 42 329.8 30.2 953.5

* Multi-peak event  
Table 3. Information about the 38 events selected from Wu-tu watershed. 
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where estpQ ,  denotes the peak discharge of the simulated hydrograph (m3/s) and obspQ ,  is the 
peak discharge of the observed hydrograph (m3/s). 
(3) The error of the time for peak to arrive, ETp, is defined as follows: 

 obspestpp TTET ,, −=   (53) 

where estpT ,  denotes the time for the simulated hydrograph peak to arrive (hours) and obspT ,  
represents the time required for the observed hydrograph peak to arrive (hours). 
(4) The error of total discharge volume, VER(%), is defined as follows: 
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where kestQ ,  denotes the discharge of the simulated hydrograph for time index k (m3/s) and 

kobsQ ,  is the discharge of the observed hydrograph for time index k (m3/s). The better the fit, 
the closer EQp, ETp and VER are to 0. 

6. Result and discussion 
A developed DLRNN is applied to perform rainfall-runoff simulation and recognize the 
transition of rainfall-runoff processes using UHs realized from the DLRNN weights. First, 
the DLRNN is compared with a forward neural network to demonstrate the advantage of 
RNNs. DLRNNs identified using indirect system identification and modified system 
identification then are compared. Furthermore, control system theory is employed to 
consider a DLRNN in canonical form and compare it with that identified using modified 
system identification. Finally, rainfall-runoff processes recognition using DLRNN is 
described. 

6.1 Comparison between DLRNN and FNN (Pan et al., 2007) 
Through the modified system identification based on the earliest 10 events, a DLRNN with 4 
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection 
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information. 
Therefore, it is fair to have the same control on the quantity of weights for comparing the 
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs 
with inputting information as a time delay pattern that constitutes the tapped delay line 
information are classified as local or global RNNs according to the definition by Tsoi and 
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data 
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated 
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a 
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained 
using the same calibrated data via the back-propagation learning algorithm, the most 
common learning algorithm for FNNs. 

 ( )( )( )( )1rainfallneuron  input ++−= 2/1int nk , if n is odd; (55) 
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 ( )( )( )2/int nk −= runoffneuron  input , if n is even (56) 
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Fig. 6. Architecture of DLRNN identified via modified system identification. 
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Fig. 7. The structure of FNNs with the tapped delay line inputs. 
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where estpQ ,  denotes the peak discharge of the simulated hydrograph (m3/s) and obspQ ,  is the 
peak discharge of the observed hydrograph (m3/s). 
(3) The error of the time for peak to arrive, ETp, is defined as follows: 
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where kestQ ,  denotes the discharge of the simulated hydrograph for time index k (m3/s) and 

kobsQ ,  is the discharge of the observed hydrograph for time index k (m3/s). The better the fit, 
the closer EQp, ETp and VER are to 0. 
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identification then are compared. Furthermore, control system theory is employed to 
consider a DLRNN in canonical form and compare it with that identified using modified 
system identification. Finally, rainfall-runoff processes recognition using DLRNN is 
described. 

6.1 Comparison between DLRNN and FNN (Pan et al., 2007) 
Through the modified system identification based on the earliest 10 events, a DLRNN with 4 
neurons in the hidden layer is calibrated, as shown in Fig. 6. Due to the full connection 
between neurons in hidden layer, the DLRNN totally has 24 weights for storing information. 
Therefore, it is fair to have the same control on the quantity of weights for comparing the 
DLRNN with the feed-forward neural networks (FNNs) although the structures of FNNs 
with inputting information as a time delay pattern that constitutes the tapped delay line 
information are classified as local or global RNNs according to the definition by Tsoi and 
Back (1997). Based on the rule of Equations (55) and (56), observed runoff and rainfall data 
are used in sequence to constitute the tapped delay line inputs as the input layer illustrated 
in Fig. 7. In hidden layer of Fig. 7, a bias neuron always delivers a negative impulse as a 
threshold to each hidden neuron. All FNNs compared with the DLRNN herein are trained 
using the same calibrated data via the back-propagation learning algorithm, the most 
common learning algorithm for FNNs. 
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Fig. 7. The structure of FNNs with the tapped delay line inputs. 
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Model Form DLRNN
Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4
Number of neuraons in input layer 22 10 6 4 3 2 2 1 1
Number of neural network's weights 24 24 24 24 25 24 28 24 24
CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926
EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438
ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036
VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

 
Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28 
events (Pan et al., 2007). 

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which 
FNN(1-8-1) is the only neural network without any feedback connection. According to the 
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static 
system without memory and only executes mapping from rainfall to runoff. However, the 
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform 
superiorly. The result shows the importance of a feedback connection and using tapped 
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback 
connections is especially important and useful for grasping the extraordinary time-varying 
characteristics of the rainfall-runoff processes. The neural network with only one rainfall 
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1), 
gives the feed-forward neural network the last-time-step status of the runoff, and raises the 
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a 
satisfactory simulation because the feedback connections in hidden layer give the DLRNN 
the function to calculate the state of the rainfall-runoff process recurrently. 

6.2 Comparison between DLRNNs based on two identification methods 
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the 
optimal form or value of most network design parameters differ for each application and 
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a 
deterministic solution. This chapter considers the indirect and modified system 
identification for identifying DLRNNs. In the realization step of the indirect system 
identification, a series of singular values is carried out through the singular value 
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated 
distinctly into two groups, namely the significant and the neglected groups, the number of 
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig. 
8, the first two singular values are relatively significant and the number of neurons in the 
hidden layers are at least 2. However, the other singular values do not decrease noticeably, 
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the 
relation between the coefficient of efficiency and the number of neurons in the hidden layers 
of the DLRNN determined using trial-and-error method is illustrated as the open dots in 
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers 
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN 
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best 
coefficient of efficiency (CE=0.87043). 
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Fig. 8. The singular value plot from the realization step of indirect system identification. 
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Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers 
of the DLRNN. 

Another DLRNN (denoted as DLRNN(2)) has four neurons in the hidden layer, as 
determined using modified system identification (solid dot at the left side of Fig. 9). Owing 
to part of the subspace algorithm being included in modified system identification, the four 
neurons in the hidden layer are chosen without any referable plot, such as singular value 
plot. From Fig. 9, the CE of DLRNN(2) is just 0.00028 less than that of DLRNN(1). However, 
DLRNN(2) reduces 48 weights of DLRNN(1), to 24 weights. The 50% reduction in weights 
from DLRNN(2) demonstrates that the combination of modified system identification and 



 Recurrent Neural Networks 

 

220 

Model Form DLRNN
Number of neurons in hidden layer 1 2 3 4 5 6 7 8 4
Number of neuraons in input layer 22 10 6 4 3 2 2 1 1
Number of neural network's weights 24 24 24 24 25 24 28 24 24
CE 0.943 0.982 0.975 0.974 0.957 0.952 0.950 -0.074 0.926
EQp (%) 10.363 4.377 4.432 4.445 4.545 4.687 5.322 48.936 12.438
ETp (hour) 2.079 1.184 1.184 1.526 1.895 1.921 1.921 7.474 1.036
VER (%) 5.504 2.088 2.242 2.383 2.513 3.101 3.295 24.509 4.769

Feed-forward neural network

 
Table 4. The averages of absolute criteria of the DLRNN and FNNs to simulate the rest 28 
events (Pan et al., 2007). 

Table 4 shows the averages of the absolute criteria of the DLRNN and the FNNs in which 
FNN(1-8-1) is the only neural network without any feedback connection. According to the 
average absolute criteria, the FNN(1-8-1) performs poorly because it is merely a static 
system without memory and only executes mapping from rainfall to runoff. However, the 
FNNs with tapped delay line inputs, such as FNN(2-7-1) to FNN(22-1-1), perform 
superiorly. The result shows the importance of a feedback connection and using tapped 
delay line inputs to the FNN. Chiang et al. (2004) also noticed that the feature of feedback 
connections is especially important and useful for grasping the extraordinary time-varying 
characteristics of the rainfall-runoff processes. The neural network with only one rainfall 
input can not achieve a satisfactory mapping to the current runoff because the rainfall-
runoff processes are dynamic systems. One more tapped delay line input, like FNN(2-7-1), 
gives the feed-forward neural network the last-time-step status of the runoff, and raises the 
CE over 0.94. However, the DLRNN only needs the current rainfall as the input to get a 
satisfactory simulation because the feedback connections in hidden layer give the DLRNN 
the function to calculate the state of the rainfall-runoff process recurrently. 

6.2 Comparison between DLRNNs based on two identification methods 
Vos et al. (2005) commented that a disadvantage of artificial neural networks is that the 
optimal form or value of most network design parameters differ for each application and 
cannot be theoretically defined, which is why they are commonly found using trial-and-
error approaches. However, the identification methods mentioned herein provide a 
deterministic solution. This chapter considers the indirect and modified system 
identification for identifying DLRNNs. In the realization step of the indirect system 
identification, a series of singular values is carried out through the singular value 
decomposition, and it can be illustrated in Fig. 8. If the singular values can be separated 
distinctly into two groups, namely the significant and the neglected groups, the number of 
neurons in the hidden layers of a RNN equals to the size of the significant group. From Fig. 
8, the first two singular values are relatively significant and the number of neurons in the 
hidden layers are at least 2. However, the other singular values do not decrease noticeably, 
making it difficult to optimize the number of neurons of the hidden layers. Furthermore, the 
relation between the coefficient of efficiency and the number of neurons in the hidden layers 
of the DLRNN determined using trial-and-error method is illustrated as the open dots in 
Fig. 9. The CE increases from 0.70 to over 0.86 while the number of neurons in hidden layers 
exceeds 2 in Fig. 9. Six neurons in the hidden layer are selected as the optimum DLRNN 
(denoted as DLRNN(1)), denoted as the solid dot at the right side of Fig. 9) using the best 
coefficient of efficiency (CE=0.87043). 

Application of Recurrent Neural Networks to Rainfall-runoff Processes 

 

221 

0 20 40 60 80
Singular value sequence

0

0.4

0.8

1.2

S
in

gu
la

r v
al

ue

Singular Value Plot
calculated from
1966/09/06
1967/10/17
1967/11/16
1968/07/26
1968/09/29
1969/09/09
1969/09/26
1971/09/18
1971/09/22

 
Fig. 8. The singular value plot from the realization step of indirect system identification. 
 

0 4 8 12 16
Quantity of nerons in hidden layer

0.68

0.72

0.76

0.8

0.84

0.88

C
oe

ffi
ci

en
t o

f e
ffi

ci
en

cy

Relation between 
coefficient of efficiency and 
quantity of neurons in hidden layers

 
Fig. 9. The relation between coefficient of efficiency and number of neurons in hidden layers 
of the DLRNN. 
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to part of the subspace algorithm being included in modified system identification, the four 
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the advantages of indirect system identification and subspace algorithm provide an efficient 
algorithm for applying DLRNN in hydrology. 

6.3 Comparison between DLRNNs in different forms 
The DLRNN adopted herein is a fully RNN and has full connections between neurons in 
different layers. However, using a state space model is well known to over parameterize the 
estimation problem, while using canonical forms, as illustrated in Fig. 10, is far more 
economical for estimating the linear model. Figures 6 and 10 show that the DLRNNs have 
the feed-back connections in the hidden layers that belong to the local recurrent structures. 
The DLRNN in a canonical form has the same number of neurons as the original DLRNN, 
but the DLRNN in a canonical form has the minimum connections and weights to achieve 
the same performance. Hence, the comparison between the two DLRNNs in canonical form 
is of interest in this investigation. Some experiments are designed to clarify this issue. First, 
in the flowchart illustrated in Fig. 4, the original DLRNN(1) is transformed into a DLRNN in 
the canonical form after identifying the quantity of neurons in hidden layer and the weights 
of the DLRNN. Figure 10 shows that the DLRNN in the canonical form is clearly not a fully 
RNN. 28 validated events are fed to the model, and a new on-line learning method 
developed by Pan and Wang (2004), is applied to develop the DLRNN into a fully RNN via 
on-line learning. Table 5 lists the average absolute criteria. The table reveals that the 
canonical and non-canonical form DLRNNs do not differ significantly, and the on-line 
learning algorithm always derives a fully RNN from a DLRNN in the canonical form. 
 

Input layer Hidden layer Output layerInput layer Hidden layer Output layer  
Fig. 10. The DLRNN in canonical form. 

model type CE EQp  (%) ETp  (hour) VER  (%)
original model 0.926 12.438 1.036 4.769
canonical form 0.925 12.704 1.071 4.845
original model: a DLRNN identified via modified system identification.
canonical form: a DLRNN in canonical form.  

Table 5. The averages of absolute criteria of the DLRNNs in two forms. 

6.4 Recognition of the transition of rainfall-runoff processes (Pan et al., 2007) 
A streamflow or discharge hydrograph is a graph showing the flow rate as a function of 
time at a given location on the stream. In effect, the hydrograph is “an integral expression of 
the physiographic and climatic characteristics that govern the relations between rainfall and 
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runoff of a particular drainage basin” (Chow, 1959). UH is a hypothetical unit response of 
the watershed to a unit input of rainfall that has been widely adopted by hydrologists to 
represent the mechanism of rainfall-runoff processes. Through the visualization of the 
transition of rainfall-runoff processes by UHs, the duration of a storm event, the time to 
peak flow, and the peak flow can be detected from the UHs. Therefore, the DLRNN learning 
algorithm is applied to modify the weights of the DLRNN on-line for detecting the 
transition of UHs based on the connection between the DLRNN and UH representation by 
treating the weights as Markov parameters. The structure of DLRNN can analogize the 
rainfall-runoff processes in a simple manner. The number of neurons in the hidden layer 
calibration by modified system identification describes the dimensions of the state space for 
the rainfall-runoff processes. Each neuron in the hidden layer represents a state variable that 
is controlled by rainfall and interacts with all state variables recurrently. Although the state 
variables can not be measured directly, UH can be represented based on their weights to 
describe the transition of rainfall-runoff processes. 
Equations (8) and (9) reveal the relationship between the UH and the weights of DLRNN. 
Equation (9) also illustrates the relationship between the system responses to a unit impulse 
and the weights of DLRNN used herein. The time variance of the weights of a DLRNN can 
be used to recognize the transition of rainfall-runoff processes. Figure 11 illustrates the 
transition of UHs of the single-peak typhoon in Aug. 17, 1997, while Fig. 12 shows the 
simulation of this typhoon through DLRNN with on-line learning. At the beginning of the 
simulation, the weights of the DLRNN are identified from the earliest 10 events to form a 
generalized model. When comparing these two figures, the change of the UHs reveals the 
peak arrival is between the 15th and 30th hours. The time to peak of this typhoon is 
approximately 8 hours, shown in Fig. 11. The 8-hour duration is significantly increased after 
the time to peak of UH is calibrated as 3 hours. The rainfall process is fed to DLRNN to 
simulate runoff, as illustrated in Fig. 12, and the simulated runoff should follow the trends 
of the rainfall process. The rainfall-runoff simulations are evaluated as effective if the trends 
of rainfall and runoff are identical. 
Another study case, Zane typhoon, is a multi-peak rainfall-runoff process out of the 38 
selected events (Table 5). Figure 14 illustrates the variation between observed rainfall and 
runoff, and shows the excellent simulation performance from DLRNN. Figure 13 
characterizes the transition of the rainfall-runoff process as the changes of UHs. During the 
first 20 hours of Zane typhoon, the simulated runoff is slightly higher than observed runoff 
(Figure 14), and this phenomenon demonstrates that the peak of the actual UH is lower than 
the UH realized from DLRNN. Through the on-line learning, the peak of the UH realized 
from DLRNN decays during first 20 hours. However, the largest peak of observed runoff is 
higher than the simulated runoff, and this shows that the actual UH of the rainfall-runoff 
process changes with time. Therefore, the peak of the UH realized from DLRNN increases 
after on-line learning. Furthermore, the difference between observed and simulated runoffs 
around the 60th hour demonstrates again the property of DLRNN that simulated runoff 
goes with the trends of the rainfall process. Additionally, a common conceptual model, 
called linear reservoir model, is introduced to compare with the DLRNN. It is an objective 
comparison in which both two models consider rainfalls as inputs. Results show that 
DLRNN performs better than the linear reservoir model. 
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Fig. 11. The transition of UHs of the single-peak typhoon in Aug. 17, 1997. 
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Fig. 12. Simulation of Winnie typhoon in Aug. 17, 1997 via DLRNN with on-line learning 
and a linear reservoir model. 
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Fig. 13. The transition of UHs of the multi-peak typhoon in Sep. 27, 1996. 
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Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a 
linear reservoir model. 
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Fig. 14. Simulation of Zane typhoon in Sep. 27, 1996 via DLRNN with on-line learning and a 
linear reservoir model. 
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A generalized UH identified from multi-event rainfall-runoff records can represent the 
hydrological feature of the watershed. However, due to the complex interaction with other 
hydrometeorological and geomorphological processes within the hydrological cycle, the 
true UH of a rainfall-runoff process can not be predetermined before the event happens. 
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the 
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The 
transition of the rainfall-runoff processes is visualized by the representation of UHs that 
furthers the interpretation of DLRNN weights. 

7. Conclusion 
In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff 
processes and recognize the transition of UHs in hydrology. Although most neural networks 
are black-box models that lack physical meanings of weights, the DLRNN developed in this 
chapter connects its weights with UHs that reveal the physical concepts from the network 
based on the special structure of RNNs. Without trial and error method, the structure and 
the weights of DLRNN can be quickly determined through a modified form of system 
identification that combines indirect system identification with the subspace algorithm. 
Then, the DLRNN learning algorithm based on the interchange of the roles of the network 
state variables and the weight matrix is derived for on-line training. 
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but 
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs 
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic 
feature has been proven after the comparison between DLRNN and FNN. The investigation 
of the connections between weights and physical meanings is an extension of neural 
networks applied in hydrological field due to the linearization of the RNN. Based on the 
linearization, weights of DLRNN are treated as Markov parameters to realize the transition 
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation 
between rainfall and runoff every time step, and the transition of rainfall-runoff processes 
can be emerged based on the changes of UHs. 
Furthermore, a modified system identification that combines indirect system identification 
with subspace algorithm is described to calibrate the DLRNN. This method determines the 
quantity of neurons in hidden layer and the weights of the network. It overcomes the 
drawback of costing time by traditional trial and error search for optimum structure of 
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The 
results show that the performances of DLRNNs in different forms are close. Hence, the 
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN. 
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff 
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN 
is competent to simulate dynamic systems, like rainfall-runoff processes. 

8. Future research 
Although feed-forward neural networks are commonly adopted to solve hydrological 
problems, applying RNNs to deal with the issues of hydrology is still a novel technique 
because the structure and the learning algorithm of RNN are more complex than those of 
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological 
problems. However, further research is necessary. As Sudheer mentioned (2005), 
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hydrologists have not endeavored to construe the knowledge embedded in the trained 
ANN models, other than the recent research attempts to assign physical significance to the 
internal architecture of ANN hydrological models. Therefore, how to abstract more physical 
interpretations from the weights or the architectures of RNN, like the connection between 
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify 
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output 
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge 
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed. 
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A generalized UH identified from multi-event rainfall-runoff records can represent the 
hydrological feature of the watershed. However, due to the complex interaction with other 
hydrometeorological and geomorphological processes within the hydrological cycle, the 
true UH of a rainfall-runoff process can not be predetermined before the event happens. 
DLRNN has the capability to shape the generalized UH to catch the transition of rainfall-
runoff processes by real time modifying weights. The case study shows that the 
representation of UHs from DLRNN weights and the tracing ability of the DLRNN. The 
transition of the rainfall-runoff processes is visualized by the representation of UHs that 
furthers the interpretation of DLRNN weights. 

7. Conclusion 
In this chapter, the application of a DLRNN is demonstrated to simulate rainfall-runoff 
processes and recognize the transition of UHs in hydrology. Although most neural networks 
are black-box models that lack physical meanings of weights, the DLRNN developed in this 
chapter connects its weights with UHs that reveal the physical concepts from the network 
based on the special structure of RNNs. Without trial and error method, the structure and 
the weights of DLRNN can be quickly determined through a modified form of system 
identification that combines indirect system identification with the subspace algorithm. 
Then, the DLRNN learning algorithm based on the interchange of the roles of the network 
state variables and the weight matrix is derived for on-line training. 
In this chapter, the DLRNN introduced can not only simulate rainfall-runoff processes, but 
also recognize the transition of UHs. Owing to the feedback connections, DLRNN performs 
rainfall-runoff simulations as dynamic systems, and the advantage of DLRNN’s dynamic 
feature has been proven after the comparison between DLRNN and FNN. The investigation 
of the connections between weights and physical meanings is an extension of neural 
networks applied in hydrological field due to the linearization of the RNN. Based on the 
linearization, weights of DLRNN are treated as Markov parameters to realize the transition 
of UHs. Through on-line learning, DLRNN modifies the weights to capture the relation 
between rainfall and runoff every time step, and the transition of rainfall-runoff processes 
can be emerged based on the changes of UHs. 
Furthermore, a modified system identification that combines indirect system identification 
with subspace algorithm is described to calibrate the DLRNN. This method determines the 
quantity of neurons in hidden layer and the weights of the network. It overcomes the 
drawback of costing time by traditional trial and error search for optimum structure of 
DLRNN. Additionally, the different forms of DLRNN have also been discussed herein. The 
results show that the performances of DLRNNs in different forms are close. Hence, the 
transformation of canonical form can be ignored in the flowchart of simulation via DLRNN. 
Finally, four criteria have been applied to evaluate the performance of rainfall-runoff 
simulation via DLRNN. The results show that the performance is satisfactory and DLRNN 
is competent to simulate dynamic systems, like rainfall-runoff processes. 

8. Future research 
Although feed-forward neural networks are commonly adopted to solve hydrological 
problems, applying RNNs to deal with the issues of hydrology is still a novel technique 
because the structure and the learning algorithm of RNN are more complex than those of 
FNN. This chapter has demonstrated an example to show how RNN applies to hydrological 
problems. However, further research is necessary. As Sudheer mentioned (2005), 
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hydrologists have not endeavored to construe the knowledge embedded in the trained 
ANN models, other than the recent research attempts to assign physical significance to the 
internal architecture of ANN hydrological models. Therefore, how to abstract more physical 
interpretations from the weights or the architectures of RNN, like the connection between 
UHs and the weights of DLRNN, is one of the major issues. Furthermore, in order to clarify 
some opacity in RNN, the DLRNN mentioned herein is only a single-input-single-output 
(SISO) system with a nonlinearity-interpretation trade-off. With construing the knowledge 
embedded in, an ideal multi-input-multi-output RNN without any trade-off for rainfall-
runoff simulation is needed. 
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1. Introduction 
An artificial neural network, more commonly known as neural network, is a mathematical 
model for information processing based on the biological nervous system, which has a 
natural propensity for storing experiential knowledge and making it available for use 
(Haykin, 1999). The main advantage of a neural network is in its ability to approximate 
functional relationships, particularly nonlinear relationships.  
Neural networks have been applied to several classes of optimization problems and have 
shown promise for solving such problems efficiently. Most of the neural architectures 
proposed in the literature solve specific types of optimization problems (Dillon & O’Malley, 
2002; Kakeya & Okabe, 2000; Xia et al., 2002). In contrast to these neural models, the network 
proposed here is able to treat several kinds of optimization problems using a unique 
network architecture. 
The approach described in this chapter uses a modified Hopfield network, which has 
equilibrium points representing the solution of the optimization problems. The Hopfield 
network is modified by presenting an optimization process carried out in two distinct 
stages, which are represented by two energy functions. The internal parameters of the 
network have been computed using the valid-subspace technique (Aiyer et al., 1990; Silva et 
al., 1997). This technique allows us to define a subspace, which contains only those solutions 
that represent feasible solutions to the problem analyzed. It has also been demonstrated that 
with appropriately set parameters, the network confines its output to this subspace, thus 
ensuring convergence to a valid solution. Also in contrast to other neural approaches that 
use an energy function for each constraint to be satisfied, the mapping of optimization 
problems using the modified Hopfield network always consists of determining just two 
energy functions, which are denoted by Econf and Eop. The function Econf is a confinement term 
that groups all structural constraints associated with the problems, and Eop is an 
optimization term that leads the network output to the equilibrium points corresponding to 
optimal solutions.  
In this chapter, the proposed approach has been applied to solve combinatorial optimization 
problems, dynamic programming problems and nonlinear optimization problems. In 
addition to providing a new approach for solving several classes of optimization problems 
through a unique neural network architecture, the main advantages of using the modified 
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1. Introduction 
An artificial neural network, more commonly known as neural network, is a mathematical 
model for information processing based on the biological nervous system, which has a 
natural propensity for storing experiential knowledge and making it available for use 
(Haykin, 1999). The main advantage of a neural network is in its ability to approximate 
functional relationships, particularly nonlinear relationships.  
Neural networks have been applied to several classes of optimization problems and have 
shown promise for solving such problems efficiently. Most of the neural architectures 
proposed in the literature solve specific types of optimization problems (Dillon & O’Malley, 
2002; Kakeya & Okabe, 2000; Xia et al., 2002). In contrast to these neural models, the network 
proposed here is able to treat several kinds of optimization problems using a unique 
network architecture. 
The approach described in this chapter uses a modified Hopfield network, which has 
equilibrium points representing the solution of the optimization problems. The Hopfield 
network is modified by presenting an optimization process carried out in two distinct 
stages, which are represented by two energy functions. The internal parameters of the 
network have been computed using the valid-subspace technique (Aiyer et al., 1990; Silva et 
al., 1997). This technique allows us to define a subspace, which contains only those solutions 
that represent feasible solutions to the problem analyzed. It has also been demonstrated that 
with appropriately set parameters, the network confines its output to this subspace, thus 
ensuring convergence to a valid solution. Also in contrast to other neural approaches that 
use an energy function for each constraint to be satisfied, the mapping of optimization 
problems using the modified Hopfield network always consists of determining just two 
energy functions, which are denoted by Econf and Eop. The function Econf is a confinement term 
that groups all structural constraints associated with the problems, and Eop is an 
optimization term that leads the network output to the equilibrium points corresponding to 
optimal solutions.  
In this chapter, the proposed approach has been applied to solve combinatorial optimization 
problems, dynamic programming problems and nonlinear optimization problems. In 
addition to providing a new approach for solving several classes of optimization problems 
through a unique neural network architecture, the main advantages of using the modified 
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Hopfield network proposed in this chapter are the following: i) the internal parameters of 
the network are explicitly obtained by the valid-subspace technique of solutions, which 
avoids the need to use training algorithm for their adjustments; ii) the application of the 
valid-subspace technique allows feasible solutions to be found, which are derived from the 
confinement of all structural constraints by Econf; iii) The optimization and confinement 
terms are not weighted by penalty parameters, which could affect both precision of the 
equilibrium points and their respective convergence processes; iv) for all classes of 
optimization problems, the same methodology is adopted to derive the internal parameters 
of the network, and v) for industrial application, the modified Hofpfield network offers 
simplicity of implementation both in analogue hardware, making use of operational 
amplifiers and in digital hardware by using digital signal processors. 
The organization of the present chapter is as follows. In Section 2, the modified Hopfield 
network is presented, and the valid-subspace technique used to design the network 
parameters is described. In Section 3, the mapping of optimization problems using the 
modified Hopfield network is formulated. In Section 4, simulation results are given to 
demonstrate the performance of the developed approach. In Section 5, the key issues raised 
in the chapter are summarized and conclusions drawn. 

2. The modified Hopfield network 
Hopfield networks are single-layer networks with feedback connections between nodes. In 
the standard case, the nodes are fully connected, i.e., every node is connected to all others 
nodes, including itself (Hopfield, 1984). The node equation for the continuous-time network 
with N neurons is given by: 

 ∑
=

++−=
N

j

b
ijijii itvTtutu

1

)(.)(.)( η  (1) 

 ))(()( tugtv ii =  (2) 

where ui(t) is the current state of the i-th neuron, vi(t) is the output of the i-th neuron, b
ii  is 

the offset bias of the i-th neuron, η.ui(t) is a passive decay term, Tij is the weight connecting 
the j-th neuron to i-th neuron. 
In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits the 
output of each neuron to ensure that the network output always lies in or within a 
hypercube. It is shown in Hopfield (1984) that if T is symmetric and η=0, the equilibrium 
points of the network correspond to values v(t) for which the energy function (3) associated 
with the network is minimized: 
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Therefore, the mapping of optimization problems using the Hopfield network consists of 
determining the weight matrix T and the bias vector ib to compute equilibrium points to 
represent the problem to be solved.  
One of the major difficulties in mapping optimization problems onto a conventional 
Hopfield network involves deciding how constraints can be included. Basically, most of 
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these neural networks proposed in the literature for solving optimization problems code the 
constraints as terms in the energy function that are weighted by penalty parameters. The 
stable equilibrium points of these networks, which represent a solution of the optimization 
problem, gave the correct solution only when those parameters are properly adjusted, and 
both the accuracy and the convergence process can be affected. This weakness of penalty 
and barrier function methods has, of course, been well known since 1968 when it was 
discussed by Fiacco and McCormick in Fiacco & McCormick (1968). They investigated the 
numerical problem associated with the change of parameters in these functions. In such 
approaches, the energy function given in (3) is represented by: 

 )()()()()( 2211 tEctEctEctEtE const
mm

constconstop ⋅++⋅+⋅+=  (4) 

where ci are positive constants that are weighing each one of the constraints const
iE . Thus, 

the network is involved with the minimization of a single energy function (Eop) 
correspondent to the objective function of the problem and subject to the several constraints 

const
iE . If any of these constraints is violated then the solution is not feasible, i.e., the 

multiple constraints terms const
iE  tend to cancel each other out. Moreover, the convergence 

processes of these networks depend on the correct adjustment of the penalty constants 
associated with the energy terms. 
In this chapter, we have developed a modified Hopfield network that does not depend on 
penalty or weighting parameters, which overcomes shortcomings associated with the other 
neural approaches. In contrast to most of the other neural models, the network proposed 
here is able to treat several kinds of optimization problems using a unique network 
architecture. A modified energy function Em(t), composed just by two energy terms is used 
here, which is defined as follows: 

 Em(t) = Eop(t) + Econf(t) (5) 

where Econf(t) is a confinement term that groups the structural constraints associated with the 
respective optimization problem, and Eop(t) is an optimization term that conducts the 
network output to the equilibrium points corresponding to a cost constraint. Thus, the 
minimization of Em(t) of the modified Hopfield network is conducted in two stages: 
i) minimization of the term Econf(t): 

 confTconfTconf ttttE ivvTv .)()(..)(
2
1)( −−=  (6)  

where v(t) is the network output, Tconf  is a weight matrix and iconf is a bias vector belonging 
to Econf. This results in a solution v(t) in the subspace generated from the structural 
constraints imposed by the problem. This subspace has been derived from analysis of the 
Hopfield network dynamics, where it is shown in Hopfield (1984) that the energy functions 
Eiconst(t) given in (4), which are defined by (3), are Lyapunov functions provided matrices T 
are symmetric. An investigation associating the equilibrium points of those Lyapunov 
functions with respect to the eigenvalues and eigenvectors of the matrices T shows that all 
feasible solutions can be grouped in a unique subspace of solutions with equation v(t+1) = 
Tconf.v(t) + iconf, where Tconf is a projection matrix and iconf is a vector orthogonal to Tconf. By 
analyzing the convergence process dynamics, it is revealed that v evolves first along those 
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Hopfield network proposed in this chapter are the following: i) the internal parameters of 
the network are explicitly obtained by the valid-subspace technique of solutions, which 
avoids the need to use training algorithm for their adjustments; ii) the application of the 
valid-subspace technique allows feasible solutions to be found, which are derived from the 
confinement of all structural constraints by Econf; iii) The optimization and confinement 
terms are not weighted by penalty parameters, which could affect both precision of the 
equilibrium points and their respective convergence processes; iv) for all classes of 
optimization problems, the same methodology is adopted to derive the internal parameters 
of the network, and v) for industrial application, the modified Hofpfield network offers 
simplicity of implementation both in analogue hardware, making use of operational 
amplifiers and in digital hardware by using digital signal processors. 
The organization of the present chapter is as follows. In Section 2, the modified Hopfield 
network is presented, and the valid-subspace technique used to design the network 
parameters is described. In Section 3, the mapping of optimization problems using the 
modified Hopfield network is formulated. In Section 4, simulation results are given to 
demonstrate the performance of the developed approach. In Section 5, the key issues raised 
in the chapter are summarized and conclusions drawn. 

2. The modified Hopfield network 
Hopfield networks are single-layer networks with feedback connections between nodes. In 
the standard case, the nodes are fully connected, i.e., every node is connected to all others 
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where ui(t) is the current state of the i-th neuron, vi(t) is the output of the i-th neuron, b
ii  is 

the offset bias of the i-th neuron, η.ui(t) is a passive decay term, Tij is the weight connecting 
the j-th neuron to i-th neuron. 
In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits the 
output of each neuron to ensure that the network output always lies in or within a 
hypercube. It is shown in Hopfield (1984) that if T is symmetric and η=0, the equilibrium 
points of the network correspond to values v(t) for which the energy function (3) associated 
with the network is minimized: 

 bTT ttttE ivvTv .)()(..)(
2
1)( −−=  (3) 

Therefore, the mapping of optimization problems using the Hopfield network consists of 
determining the weight matrix T and the bias vector ib to compute equilibrium points to 
represent the problem to be solved.  
One of the major difficulties in mapping optimization problems onto a conventional 
Hopfield network involves deciding how constraints can be included. Basically, most of 
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these neural networks proposed in the literature for solving optimization problems code the 
constraints as terms in the energy function that are weighted by penalty parameters. The 
stable equilibrium points of these networks, which represent a solution of the optimization 
problem, gave the correct solution only when those parameters are properly adjusted, and 
both the accuracy and the convergence process can be affected. This weakness of penalty 
and barrier function methods has, of course, been well known since 1968 when it was 
discussed by Fiacco and McCormick in Fiacco & McCormick (1968). They investigated the 
numerical problem associated with the change of parameters in these functions. In such 
approaches, the energy function given in (3) is represented by: 
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where ci are positive constants that are weighing each one of the constraints const
iE . Thus, 

the network is involved with the minimization of a single energy function (Eop) 
correspondent to the objective function of the problem and subject to the several constraints 

const
iE . If any of these constraints is violated then the solution is not feasible, i.e., the 

multiple constraints terms const
iE  tend to cancel each other out. Moreover, the convergence 

processes of these networks depend on the correct adjustment of the penalty constants 
associated with the energy terms. 
In this chapter, we have developed a modified Hopfield network that does not depend on 
penalty or weighting parameters, which overcomes shortcomings associated with the other 
neural approaches. In contrast to most of the other neural models, the network proposed 
here is able to treat several kinds of optimization problems using a unique network 
architecture. A modified energy function Em(t), composed just by two energy terms is used 
here, which is defined as follows: 

 Em(t) = Eop(t) + Econf(t) (5) 

where Econf(t) is a confinement term that groups the structural constraints associated with the 
respective optimization problem, and Eop(t) is an optimization term that conducts the 
network output to the equilibrium points corresponding to a cost constraint. Thus, the 
minimization of Em(t) of the modified Hopfield network is conducted in two stages: 
i) minimization of the term Econf(t): 

 confTconfTconf ttttE ivvTv .)()(..)(
2
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where v(t) is the network output, Tconf  is a weight matrix and iconf is a bias vector belonging 
to Econf. This results in a solution v(t) in the subspace generated from the structural 
constraints imposed by the problem. This subspace has been derived from analysis of the 
Hopfield network dynamics, where it is shown in Hopfield (1984) that the energy functions 
Eiconst(t) given in (4), which are defined by (3), are Lyapunov functions provided matrices T 
are symmetric. An investigation associating the equilibrium points of those Lyapunov 
functions with respect to the eigenvalues and eigenvectors of the matrices T shows that all 
feasible solutions can be grouped in a unique subspace of solutions with equation v(t+1) = 
Tconf.v(t) + iconf, where Tconf is a projection matrix and iconf is a vector orthogonal to Tconf. By 
analyzing the convergence process dynamics, it is revealed that v evolves first along those 
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eigenvectors of Tconf with the large eigenvalues, then along those with negative eigenvalues. 
As consequence of the application of this subspace approach, which is named the valid-
subspace method, a unique energy term can be used to represent all constraints associated 
with the optimization problem since Tconf to be a projection matrix (Tconf. Tconf = Tconf) and 
iconf a vector orthogonal to Tconf, i. e., Tconf. iconf = 0. A more detailed analysis of the valid-
subspace method can be found in Silva et al. (1997).   
ii) minimization of the term Eop(t): 

 opTopTop ttttE ivvTv .)()(..)(
2
1)( −−=  (7) 

where Top is weight matrix and iop is bias vector belonging to Eop. This corresponds to move 
v(t) towards an optimal solution (the equilibrium points). Thus, the operation of the 
modified Hopfield network consists of three main steps, as shown in Fig. 1: 

 
Fig. 1.  The modified Hopfield network. 

Step ((I)): Minimization of Econf, corresponding to the projection of v(t) in the valid subspace 
defined by: 

 confconfconfconf tt ivTvivTv +⋅←⇒+⋅=+ )()1(  (8) 

where: Tconf  is a projection matrix (Tconf.Tconf = Tconf) and the vector iconf is orthogonal to the 
subspace (Tconf.iconf = 0). This operation corresponds to an indirect minimization of Econf(t). 
An analysis of the valid-subspace technique is presented in Aiyer et al. (1990) and Silva et al. 
(1997). 
Step ((II)):  Application of a nonlinear ‘symmetric ramp’ activation function constraining 
v(t) in a hypercube: 
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 v ← v +Δv

vout ← v 

((I))

((II))

((III))

Δv ← Δt.(Top.v + iop) 

v ← Tconf.v  + iconf 

g(v)

v
v

Recurrent Neural Approach for Solving Several Types of Optimization Problems 

 

233 

 where ] ,[)( supinf
iii limlimtv ∈ . For combinatorial optimization and dynamic programming 

problems gi(vi) ∈ [0, 1] and in this case 1 and 0 supinf == ii limlim . Although v is inside a set 
with particular structure, the modified  
Hopfield network can represent a general problem. For example, if v ∈ ℜn for nonlinear 
optimization problem, then −∞=inf

ilim  and ∞=sup
ilim .  

Step ((III)): Minimization of Eop, which involves updating of v(t) in direction to an optimal 
solution (defined by Top and iop) corresponding to network equilibrium points, which are the 
solutions for the optimization problem considered in a specific application. Using the 
‘symmetric ramp’ activation function defined in (7) and given η=0, equation (2) 
subsequently becomes: 

 v(t) = g(u(t)) = u(t) (10) 
By comparison with (1) and (6), we have: 

v
vv

∂
∂ )()( tE

dt
td op

−==  

    Δv = – Δt.∇Eop(v) = Δt.(Top.v + iop) (11) 

Therefore, minimization of Eop consists of updating v(t) in the opposite direction to the 
gradient of Eop. These results are also valid when a ‘hyperbolic tangent’ activation function is 
used. In this step, the process used by the modified Hopfield network for solving the 
corresponding differential equations are identical to Euler’s method and in optimization 
terms it represents a steepest descent algorithm with a fixed step size. 
After each optimization step in ((III)), it is necessary to carry out several times the two steps 
involved with the confinement of constraints in order to ensure the feasibility of the 
problem is achieved, i.e., the steps ((I)) and ((II)) are continuously applied until the 
convergence of the output vector v. In optimization terminology this method is therefore a 
gradient restoration algorithm with a fixed step size. 
Therefore, according to Fig. 1 each iteration has two distinct stages. First, as described in 
Step ((III)), v is updated using the gradient of the term Eop alone. Second, after each 
updating, v is projected in the valid subspace. This is an iterative process, in which v is first 
orthogonally projected in the valid subspace (8), and then thresholded so that its elements 
lie in the range ] ,[ supinf

ii limlim . The convergence process is concluded when the values of 
vout during two successive loops remain practically constant, where the value of vout in 
this case is equal to v.  

3. Mapping optimization problems by the modified Hopfield network 
In this section, the formulation of three types of optimization problems, namely 
combinatorial optimization problems, dynamic programming problems and nonlinear 
optimization problems, is presented. 

3.1  Notation and definitions 
The notation employed for vectors and matrices, which are used for mapping combinatorial 
optimization problems and dynamic programming problems, is as follows. 
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subsequently becomes: 
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gradient of Eop. These results are also valid when a ‘hyperbolic tangent’ activation function is 
used. In this step, the process used by the modified Hopfield network for solving the 
corresponding differential equations are identical to Euler’s method and in optimization 
terms it represents a steepest descent algorithm with a fixed step size. 
After each optimization step in ((III)), it is necessary to carry out several times the two steps 
involved with the confinement of constraints in order to ensure the feasibility of the 
problem is achieved, i.e., the steps ((I)) and ((II)) are continuously applied until the 
convergence of the output vector v. In optimization terminology this method is therefore a 
gradient restoration algorithm with a fixed step size. 
Therefore, according to Fig. 1 each iteration has two distinct stages. First, as described in 
Step ((III)), v is updated using the gradient of the term Eop alone. Second, after each 
updating, v is projected in the valid subspace. This is an iterative process, in which v is first 
orthogonally projected in the valid subspace (8), and then thresholded so that its elements 
lie in the range ] ,[ supinf

ii limlim . The convergence process is concluded when the values of 
vout during two successive loops remain practically constant, where the value of vout in 
this case is equal to v.  

3. Mapping optimization problems by the modified Hopfield network 
In this section, the formulation of three types of optimization problems, namely 
combinatorial optimization problems, dynamic programming problems and nonlinear 
optimization problems, is presented. 

3.1  Notation and definitions 
The notation employed for vectors and matrices, which are used for mapping combinatorial 
optimization problems and dynamic programming problems, is as follows. 
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• The vector p ∈ ℜn represents the solution set of an optimization problem consisted of n 
nodes (neurons). Thus, the elements belonging to p have integer elements defined by: 

 pi ∈ {1,...,n} where i ∈ {1..n} (12) 

The vector p can be represented by a vector v, composed of ones and zeros, which 
represents the output of the network. In the notation using Kronecher products (Graham, 
1981), we have: 
• δ is a matrix (δ ∈ ℜnxn) defined by: 

 
⎩
⎨
⎧

≠
=

ji
ji

ij     if  0,
 =   if  ,1

δ  (13) 

δ(k) ∈ ℜn is a column vector corresponding to k-th column of  δ. 
• v(p) is an n.m dimensional vector representing the form of the final network output 

vector v, which corresponds to the problem solution denoted by p. The vector v(p) is 
defined by: 
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• vec(U) is a function which maps the mxn matrix U to the n.m-element vector v. This 
function is defined by: 

 v = vec(U) = [U11 U21...Um1    U12 U22...Um2   U1n U2n ...Umn]T (15) 

• V(p) is an nxn dimensional matrix defined by: 
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where [V(p)]ij = [δ(pi)]j . 
• P⊗Q denotes the Kronecher product of two matrices. If P is an nxn matrix, and Q is an 

mxm matrix, then (P⊗Q) is an (n.m)x(n.m) matrix given by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

QQQ

QQQ
QQQ

QP

nnnn

n

n

PPP

PP
PPP

       
                  

P       
       

21

22221

11211

…
���
…
…

 (17) 

• w⊗h denotes the Kronecher product of two vectors. If w is an n-element vector and h an 
m-element vector, then (w⊗h) is an n.m-element vector given by: 
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The properties of the Kronecher products (Graham, 1981) utilized are: 

 (λw⊗γh) = λγ(w⊗h) (19) 

 (w⊗h)T(x⊗g) = (wTx)(hTg) (20) 

 (P⊗Q)(w⊗h) = (Pw⊗Qh) (21) 

 (P⊗Q)(E⊗F) = (PE⊗QF) (22) 

 vec(Q.V.PT) = (P⊗Q).vec(V) (23) 

• on and On are respectively the n-element vector and the nxn matrix of ones, that is: 
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• Rn is an nxn projection matrix (i.e., Rn.Rn = Rn) defined by: 

 nnn
n
OIR 1

−=  (25) 

The sum of the elements of each row of a matrix is transformed to zero by post-
multiplication with Rn, while pre-multiplication by Rn has the effect of setting the sum of the 
elements of each column to zero. 

3.2  Formulation of combinatorial optimization problems 
The combinatorial optimization problem considered in this chapter is the matching problem 
in bipartite graphs. However, several other types of combinatorial optimization problems, 
such as the salesman and N-queens problems, can be also solved by the proposed neural 
approach. 
A graph G is a pair G = (V,E), where V is a finite set of 2n nodes or vertices and E has as 
elements subsets of V of cardinality two called edges (Papadimitriou & Steiglitz, 1982). A 
matching M of a graph G = (V,E) is a subset of the edges with the property that no two 
edges of M share the same node. The graph G = (V,E) is called bipartite if the set of vertices 
V can be partitioned into two sets of n nodes, U and W, and each edge in E has one vertex in 
U and one vertex in W . 
For each edge [ui, wj] ∈ E is given a number Pij ≥ 0 called the connection weight of [ui , wj]. 
The goal of the matching problem in bipartite graphs is to find a matching of G with the 
minimum total sum of weights. Several problems, such as pattern recognition in 
computational vision, processes involving signal transmission, design of thin film circuits 
and schedule of operation processes, can be modeled as a matching problem in bipartite 
graphs.  
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As an example, for a bipartite graph with four nodes (2n = 4) represented in Fig. 2, the sets 
V, E, U, W and the matrix P are given by: 

 V = {u1, u2, w1, w2} (26) 

 E = {[u1,w1], [u1,w2], [u2,w1], [u2,w2]} (27) 

 U = {u1, u2} (28) 

 W = {w1, w2} (29) 
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In this case, the minimum bipartite graph represented by the matching M will be chosen 
either by the subset M1 = {[u1,w1], [u2,w2]} or M2 = {[u1,w2], [u2,w1]}. As the sum of the edges 
of M2 is lower than that of M1, then the subset M2 corresponds to minimum bipartite graph, 
i. e., M = M2.  
 

 
Fig. 2.  Bipartite graph composed by four nodes. 
In order to represent the association between nodes of U and W belonging to matching M, 
we have used the vector p ∈ ℜn, where the element pi ∈ {1,…,n} represents the edge linking 
the i-th node of U to respective node of W, which is given by the own value of pi . Using the 
definitions presented in subsection 3.1, for the matching problem illustrated in Fig. 2 the 
values of p, v(p) and V(p) representing the solution given by M are defined by: 
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The equations of Tconf and iconf are developed to force the validity of the structural 
constraints. These constraints mean that each edge in E has just one activated node in U and 
one activated node in W. Using the matrix V(p) to represent the structural constraints, we 
have: 

[V(p)]ij  ∈ {1,0} 

 ∑
=

=
n

j
ij

1

1)]([ pV  (34) 

In this case, a valid subspace for the matching problem in bipartite graphs can be 
represented by the following relationship: 

Iconf = V = 
n
1 on.on

T
 (35)

It is now necessary to guarantee that the sum of the elements of each line of the matrix V 
takes value equal to 1. This procedure is represented in the modified Hopfield network by 
the projection matrix Tconf, i.e., the multiplication of Tconf by V should also guarantee these 
constraints. Using the properties of the matrix Rn, we have: 

 V.Rn = Tconf.V (36) 

 In.V.Rn = Tconf.V (37) 

Using  (35) and (37) in equation of the valid subspace (V = Tconf.V + Iconf), 

V = In.V.Rn +
n
1 on.on

T
 (38)

Applying operator vec(.) given by (23) in (38), 

vec(V) = vec(In.V.Rn) + 
n
1 vec(on.1.on

T
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 vec(V) = (In ⊗ Rn).vec(V) +
n
1 (on ⊗ on ) (39) 

Changing vec(V) by v in equation (39), we have: 

 v(t+1) = (In ⊗ Rn).v(t) + 
n
1 (on ⊗ on ) (40) 

Thus, comparing (40) and (8) the parameters Tconf and iconf are given by: 

 Tconf =  (In ⊗ Rn) (41) 

 iconf  = 
n
1 (on ⊗ on ) (42) 
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As an example, for a bipartite graph with four nodes (2n = 4) represented in Fig. 2, the sets 
V, E, U, W and the matrix P are given by: 

 V = {u1, u2, w1, w2} (26) 
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In this case, the minimum bipartite graph represented by the matching M will be chosen 
either by the subset M1 = {[u1,w1], [u2,w2]} or M2 = {[u1,w2], [u2,w1]}. As the sum of the edges 
of M2 is lower than that of M1, then the subset M2 corresponds to minimum bipartite graph, 
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Fig. 2.  Bipartite graph composed by four nodes. 
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Equations (41) and (42) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and        
Tconf.iconf = 0. In relation to example illustrated in Fig. 2 the matrix Tconf and the vector iconf are 
respectively given by: 
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 Tconf ]5.05.05.05.0[=i  (44) 

The energy function Eop of the modified Hopfield network for the matching problem in 
bipartite graphs is projected in order to find a solution corresponding to the minimum total 
sum ξ(p) referent to the values Pij associated with each edges of M, which is defined by: 

 Eop = ξ(p) = trace(V(p)T.P) (45) 

In this case, when Eop is minimized, the optimal solution corresponds to the minimum 
energy state of the network. The parameters Top and iop are then obtained from the 
corresponding cost constraint given by above equation. Using the properties of Kronecher 
product in (45), we have: 

 Eop = vec(V(p)T).vec(P) =  v(p)T.vec(P) (46) 

Comparing (46) and (7), the parameters Top and iop are given by: 

 Top = 0 (47) 

 iop = –vec(P) (48) 

Using the definition of vec(.) provided in (15), the vector iop in relation to example illustrated 
in Fig. 2 is given by: 

 Tconf ]5.38.03.19.2[ −−−−=i  (49) 

To illustrate the performance of the proposed neural network, some simulation results 
involving the matching problem in bipartite graphs are presented in Section 4.  

3.3 Formulation of dynamic programming problems 
A typical dynamic programming problem can be modeled as a set of source and destination 
nodes with n intermediate stages, m states in each stage, and metric data dxi,(x+1)j, where x is 
the index of the stages, and i and j are the indices of the states in each stage (Hillier & 
Lieberman, 1980). The goal of the dynamic programming problem considered in this chapter 
is to find a valid path which starts at the source node, visits one and only one state node in 
each stage, reaches the destination node, and has a minimum total length (cost) among all 
possible paths. 
The equations of Tconf and iconf are developed to force the validity of the structural 
constraints. These constraints, for dynamic programming problems, mean that one and only 
one state in each stage can be actived. Thus, the matrix V(p) is defined by: 
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[V(p)]ij  ∈ {1,0} 
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A valid subspace (V=Tval.V + Iconf) for the dynamic programming problem can be 
represented by: 

Iconf = V = 
m
1 on.om

T
 (51)

Equation (51) guarantees that the sum of the elements of each line of the matrix V takes 
values equal to 1. Therefore, the term Tconf.V must also guarantee that the sum of the 
elements of each line of the matrix V takes value equal to zero. Using the properties of the 
matrix Rn, we have: 

V.Rm = Tconf.V 

 In.V.Rm = Tconf.V  (52) 

Using (51) and (52) in equation of the valid subspace (V = Tconf .V + Iconf), 

V = In.V.Rm +
m
1 on.om

T
 (53)

Applying operator vec(.) given by (23) in (53), 

vec(V) = vec(In.V.Rm) + 
m
1 vec(on.1.om

T
) 

 vec(V) = (In ⊗ Rm).vec(V) +
m
1  (on ⊗ om ) (54) 

Changing vec(V) by v in equation (54), we have: 

 v(t+1) = (In ⊗ Rm).v(t) + 
m
1  (on ⊗ om ) (55) 

Thus, comparing (55) and (8) the parameters Tconf and iconf are given by: 

 Tconf =  (In ⊗ Rm) (56) 

 Iconf = 
m
1  (on ⊗ om ) (57) 

Equations (56) and (57) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and       
Tconf.iconf = 0. 
The energy function Eop of the modified Hopfield network for the dynamic programming 
problem, which is defined in (58), is projected to find a minimum path among all possible 
paths. In this equation, the first term defines the weight (metric cost) of the connection 
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nodes with n intermediate stages, m states in each stage, and metric data dxi,(x+1)j, where x is 
the index of the stages, and i and j are the indices of the states in each stage (Hillier & 
Lieberman, 1980). The goal of the dynamic programming problem considered in this chapter 
is to find a valid path which starts at the source node, visits one and only one state node in 
each stage, reaches the destination node, and has a minimum total length (cost) among all 
possible paths. 
The equations of Tconf and iconf are developed to force the validity of the structural 
constraints. These constraints, for dynamic programming problems, mean that one and only 
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linking the i-th neuron of stage x to the j-th neuron of the following stage (x+1). The second 
term defines the weight of the connection linking the i-th neuron of stage x to the j-th neuron 
of previous stage (x–1). The third term provides the weight of the connection linking the 
source node to all others nodes of the first stage, while the fourth term provides the weight 
of the connection linking the destination to all other nodes of the last stage. When Eop is 
minimized, the optimal solution corresponds to the minimum energy state of the network. 
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Therefore, optimization of Eop corresponds to minimizing each term given by (58) in relation 
to vxi. From (58), the matrix Top and vector iop can be given by: 
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where: Top ∈ℜnmxnm; iop ∈ ℜn.m; p = m.(x – 1) + i; q = m.(y –1) + j; x, y ∈ {2..n – 1}; i, j ∈ {1..m}. 
In the next subsection, the formulation of nonlinear optimization problems by the modified 
Hopfield network is presented. 

3.4  Formulation of nonlinear optimization problems 
Consider the following general nonlinear optimization problem, with m-constraints and n-
variables, given by the following equations: 

 Minimize: Eop(v) =  f(v) (61) 

 subject to: Econf(v): hi(v) ≤ 0 ,   i ∈ {1..m} (62) 

 zmin ≤  v  ≤ zmax (63) 

where v , zmin, zmax ∈ ℜn; f(v) and hi(v) are continuous, and all first and second order partial 
derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax define the 
bounds on the variables belonging to the vector v. The conditions in (62) and (63) define a 
bounded polyhedron. The vector v must remain within this polyhedron if it is to represent a 
valid solution for the optimization problem (61). A solution can be obtained by a modified 
Hopfield network, whose valid subspace guarantees the satisfaction of condition (62). 
Moreover, the initial hypercube represented by the inequality constraints in (63) is directly 
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defined by the ‘symmetric ramp’ function given in (9), which is used as neural activation 
function, i.e. v ∈ [zmin , zmax].  
The parameters Tconf and iconf are calculated by transforming the inequality constraints in (62) 
into equality constraints by introducing a slack variable w ∈ ℜn for each inequality 
constraint: 
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j
iji wh δv  (64) 

where wj are slack variables, treated as the variables vi , and δij is defined by the Kronecker 
impulse function: 
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After this transformation, the problem defined by equations (61), (62) and (63) can be 
rewritten as: 

 Minimize: Eop(v+) =  f(v+) (66) 

 subject to: Econf(v): hi(v+) ≤ 0 ,   i ∈ {1..m} (67) 

 max
ii

min
i zvz ≤≤ + ,  i ∈ {1..n} (68) 

 max
ii zv ≤≤ +0 ,  i ∈ {n+1..N} (69) 

where N = n + m, and v+ = [vT  wT]T ∈ ℜN  is a vector of extended variables. Note that Eop 
does not depend on the slack variables w. Also an equality constraint of the form hi(.) = 0 is 
incorporated in the above optimization problem by transforming into two inequalities, i.e., 
hi(.) ≤ 0 and hi(.) ≥ 0. 
The projection matrix Tconf belonging to the valid-subspace equation given in (8) is obtained 
from the projection of v+, which is obtained after a minimization step of Eop(v+), onto the 
tangent subspace of the surface bounded by constraints given by (67). In Luenberger (1984), 
it has been shown that a projection matrix to the system defined in (67) is given by: 

 Tconf = I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+) (70) 
where: 
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linking the i-th neuron of stage x to the j-th neuron of the following stage (x+1). The second 
term defines the weight of the connection linking the i-th neuron of stage x to the j-th neuron 
of previous stage (x–1). The third term provides the weight of the connection linking the 
source node to all others nodes of the first stage, while the fourth term provides the weight 
of the connection linking the destination to all other nodes of the last stage. When Eop is 
minimized, the optimal solution corresponds to the minimum energy state of the network. 
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Therefore, optimization of Eop corresponds to minimizing each term given by (58) in relation 
to vxi. From (58), the matrix Top and vector iop can be given by: 
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where: Top ∈ℜnmxnm; iop ∈ ℜn.m; p = m.(x – 1) + i; q = m.(y –1) + j; x, y ∈ {2..n – 1}; i, j ∈ {1..m}. 
In the next subsection, the formulation of nonlinear optimization problems by the modified 
Hopfield network is presented. 

3.4  Formulation of nonlinear optimization problems 
Consider the following general nonlinear optimization problem, with m-constraints and n-
variables, given by the following equations: 

 Minimize: Eop(v) =  f(v) (61) 

 subject to: Econf(v): hi(v) ≤ 0 ,   i ∈ {1..m} (62) 

 zmin ≤  v  ≤ zmax (63) 

where v , zmin, zmax ∈ ℜn; f(v) and hi(v) are continuous, and all first and second order partial 
derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax define the 
bounds on the variables belonging to the vector v. The conditions in (62) and (63) define a 
bounded polyhedron. The vector v must remain within this polyhedron if it is to represent a 
valid solution for the optimization problem (61). A solution can be obtained by a modified 
Hopfield network, whose valid subspace guarantees the satisfaction of condition (62). 
Moreover, the initial hypercube represented by the inequality constraints in (63) is directly 
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defined by the ‘symmetric ramp’ function given in (9), which is used as neural activation 
function, i.e. v ∈ [zmin , zmax].  
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incorporated in the above optimization problem by transforming into two inequalities, i.e., 
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The projection matrix Tconf belonging to the valid-subspace equation given in (8) is obtained 
from the projection of v+, which is obtained after a minimization step of Eop(v+), onto the 
tangent subspace of the surface bounded by constraints given by (67). In Luenberger (1984), 
it has been shown that a projection matrix to the system defined in (67) is given by: 

 Tconf = I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+) (70) 
where: 
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Inserting the value of (70) in the expression of the valid subspace in (8), we have: 

 v+ ← [I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+)]. v+ + iconf (72) 

Results of the Lyapunov stability theory (Vidyasagar, 1993) should be used in (72) to 
guarantee the stability of the nonlinear system, and consequently, to force the network 
convergence to equilibrium points that represent a feasible solution to the nonlinear system. 
By the definition of the Jacobean, when v leads to equilibrium point implicates in ve = 0. In 
this case, the value of iconf should also be null to satisfy the equilibrium condition, i. e., ve = 
v(t) = v(t + 1) = 0. Thus, h(v+) given in equation (72) can be approximated as follows: 

 h(v+) ≈ h(ve) + J.( v+ – ve) (73) 

where J = ∇h(v+) and h(v+) = [h1(v+)  h2(v+) ... hm(v+)]T. 
In the proximity of the equilibrium point ve = 0, we obtain the following equation related to 
the parameters v+ and h(v+): 
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Finally, introducing the results derived from (73) and (74) in equation given by (72), we 
obtain: 

 v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.h(v+) (75) 
 

Therefore, equation (75) synthesizes the valid-subspace expression for treating systems of 
nonlinear equations. In this case, for nonlinear optimization problems the original valid-
subspace equation given in (8), which is represented by step ((I)) in Fig. 1, should be 
substituted by equation (75). Thus, according to Fig. 1, successive applications of the step 
((I)) followed by the step ((II)) make v+ convergent to a point that satisfies all constraints 
imposed to the nonlinear optimization problem.  
The parameters Top and iop associated to the energy function Eop, which is given by (7) and 
represented in (66), should be defined so that the optimal solution corresponds to the 
minimization of Eop. This procedure can be implemented by updating the vector v+ in the 
opposite gradient direction that of the energy function Eop. Since conditions (66)-(69) define a 
bounded polyhedron, the objective function (66) has always a minimum. Thus, the 
equilibrium points of the network can be calculated by assuming the following values to Top 
and iop: 
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 Top = 0 (77) 

According to mentioned previously, the vector v+ is composed by both vectors v and w, i. e., 
v+ = [vT  wT]T, then the vector iop given in (76) can be also represented by: 
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As the optimization process of the cost function does not depend on the slack variables w, 
equation (76) can then be replaced by the following one: 
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To illustrate the performance of the proposed neural network, some simulation results 
involving nonlinear optimizations problems are presented in the next section. 

4. Simulation results 
In this section, some simulation results are presented to illustrate the application of the 
neural network approach developed in the previous sections for solving combinatorial 
optimization problems, dynamic programming problems and nonlinear optimization 
problems. 

4.1 Combinatorial optimization problems 
The modified Hopfield network has been used in the solution of the matching problem 
proposed in Papadimitriou & Steiglitz (1982), with matrix P given by: 
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A graphical representation of this problem is illustrated in Fig. 3(a). The parameters Tconf and 
iconf to be used in the modified Hopfield network illustrated in Fig. 1 are obtained using 
equations given in (41) and (42), while the parameters Top and iop are defined using (47) and 
(48). The elements of the vector v of the modified Hopfield network were randomly 
generated between 0 and 1. 
The modified Hopfield network converged after 50 iterations, which is considered 
extremely fast when compared with other neural approaches used in combinatorial 
optimization. In comparative terms, the simulation of this problem by the conventional 
Hopfield network proposed in Hopfield & Tank (1985), using the same initial values for the 
output vector v, reaches the final solution in 317 iterations. The edges set, representing the 
optimal solution, is given by {[1,3];[2,5];[3,1];[4,4];[5,2]}. The vectors p and v(p), and the 
matrix V(p) representing the obtained solution is provided by: 
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Finally, introducing the results derived from (73) and (74) in equation given by (72), we 
obtain: 

 v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.h(v+) (75) 
 

Therefore, equation (75) synthesizes the valid-subspace expression for treating systems of 
nonlinear equations. In this case, for nonlinear optimization problems the original valid-
subspace equation given in (8), which is represented by step ((I)) in Fig. 1, should be 
substituted by equation (75). Thus, according to Fig. 1, successive applications of the step 
((I)) followed by the step ((II)) make v+ convergent to a point that satisfies all constraints 
imposed to the nonlinear optimization problem.  
The parameters Top and iop associated to the energy function Eop, which is given by (7) and 
represented in (66), should be defined so that the optimal solution corresponds to the 
minimization of Eop. This procedure can be implemented by updating the vector v+ in the 
opposite gradient direction that of the energy function Eop. Since conditions (66)-(69) define a 
bounded polyhedron, the objective function (66) has always a minimum. Thus, the 
equilibrium points of the network can be calculated by assuming the following values to Top 
and iop: 
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 Top = 0 (77) 

According to mentioned previously, the vector v+ is composed by both vectors v and w, i. e., 
v+ = [vT  wT]T, then the vector iop given in (76) can be also represented by: 
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As the optimization process of the cost function does not depend on the slack variables w, 
equation (76) can then be replaced by the following one: 
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To illustrate the performance of the proposed neural network, some simulation results 
involving nonlinear optimizations problems are presented in the next section. 

4. Simulation results 
In this section, some simulation results are presented to illustrate the application of the 
neural network approach developed in the previous sections for solving combinatorial 
optimization problems, dynamic programming problems and nonlinear optimization 
problems. 

4.1 Combinatorial optimization problems 
The modified Hopfield network has been used in the solution of the matching problem 
proposed in Papadimitriou & Steiglitz (1982), with matrix P given by: 
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A graphical representation of this problem is illustrated in Fig. 3(a). The parameters Tconf and 
iconf to be used in the modified Hopfield network illustrated in Fig. 1 are obtained using 
equations given in (41) and (42), while the parameters Top and iop are defined using (47) and 
(48). The elements of the vector v of the modified Hopfield network were randomly 
generated between 0 and 1. 
The modified Hopfield network converged after 50 iterations, which is considered 
extremely fast when compared with other neural approaches used in combinatorial 
optimization. In comparative terms, the simulation of this problem by the conventional 
Hopfield network proposed in Hopfield & Tank (1985), using the same initial values for the 
output vector v, reaches the final solution in 317 iterations. The edges set, representing the 
optimal solution, is given by {[1,3];[2,5];[3,1];[4,4];[5,2]}. The vectors p and v(p), and the 
matrix V(p) representing the obtained solution is provided by: 
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Figure 3(b) illustrates the minimum bipartite graph representing the final solution obtained 
by the modified Hopfield network. Figure 4 shows the evolution of the matrix V during the 
convergence process of the network. The minimization of the energy term Eop guarantees the 
minimum total sum among all edges (Eop = 15), where the value of Δt used in (11) were 
assumed as 0.01. 
 

 
Fig. 3.  Bipartite graph composed by ten nodes (a) and minimum bipartite graph (b). 

4.2  Dynamic programming problems 
The first dynamic programming problem to be solved by the modified Hopfield network is 
illustrated in Fig. 5, which is composed by three intermediate stages (n = 3) and two states in 
each stage (m = 2).  The values of the weights dxi,(x+1)j , which link the ith neuron of stage x to 
the jth neuron of the following stage (x+1), are also indicated in Fig. 5. The goal is to find the 
minimum path (from all possible paths), which starts at the source node and reaches the 
destination node, passing by only one state node in each stage. 
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Fig. 4.  Evolution of the matrix V for bipartite graph problem.  

 
Fig. 5.  The dynamic programming problem (m = 3 and n =2) 
For this example the total number of possible paths is equal to 8, which is obtained by mn. 
The optimal solution is given by the shaded states, i.e., state 2 in stage 1, state 1 in stage 2, 
and state 2 in stage 3. The modified Hopfield network applied in this problem always 
converges after three iterations. The vectors p and v(p), and the matrix V(p) representing the 
obtained solution are as follows: 
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The minimization of the energy term Eop guarantees that the solution obtained represents the 
minimum path (Eop = 21) from all possible paths. 
To illustrate that the proposed network can be used efficiently, various dynamic 
programming problems were simulated and the results compared with those obtained by 
the network proposed by Chiu et al. (1991). In this example, the number of stages and 
number of states has been increased step by step. The number of stages and number of 
states in each stage for the simulated examples were established by values belonging to the 
integer set defined by {2, 4, 8, 16, 32, 64}. The goal was to find a valid path, which starts at 
the source node, visits one and only node in each stage, and reaches the destination node, 
with the minimum possible total length. For such purposes, we have simulated both 
networks using the same initial values for the output vectors v, which were randomly 
generated between 0 and 1 for all instances treated in this comparison. 
The weights of the connection dxi,(x+1)j linking nodes (states) of the network were randomly 
selected from the integer set {1, 3, 5, 7, 9}. For those instances with n and m less than 32, each 
example was simulated twenty times using random initial conditions. Examples with n and 
m greater than or equal to 32 were simulated ten times. 
The performance analysis for both networks was done using the average normalized path 
length (D), which is given by: 
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where Sc is the sum of the selected paths after network convergence; ns is the number of 
simulations; n is the number of stages. 
The simulation results are shown in Table 1. In this table, the DMHN and DCN columns 
provide, respectively, the results of the average normalized path length for the modified 
Hopfield network and the one proposed by Chiu et al. (1991). This table shows that the 
modified Hopfield network presented better results with a shorter normalized path length. 
For checking the results obtained by the modified Hopfield network, simulations using 
conventional dynamic programming were also carried out using the same instances 
described in Table 1. In all analyzed instances, the values reached to the objective functions 
were practically identical in both approaches. However, the conventional method obtains 
the final solutions more rapidly than the modified Hopfield network. On the other hand, the 
implementation of dynamic programming problem to specialist systems in a neural network 
environment can be more easily made by using the modified Hopfield network. For all 
problems treated in this subsection, the values of Δt used in (11) were assumed as 0.01. 
The adverse facts that can influence on the performance of the network proposed by Chiu et 
al. (1991) and explain their less accurate results are the following: i) optimization and 
constraint terms involved in problem mapping are treated in a single stage, ii) interference 
between optimization and constraint terms affects the precision of the equilibrium points, 
and iii) the convergence process of the network depend on the correct adjustment of the 
weighting constants associated with the energy terms. However, the modified Hopfield 
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network presented here treats these terms in different stages. The terms Tconf and iconf 
(belonging to Econf) of the modified Hopfield network were developed to force the validity of 
the structural constraints associated with the dynamic programming problem, and the terms 
Top and iop were projected to find a minimum path among all possible paths. 
 

Number of stages (n) Number of states (m) DMHN DCN 
2 2 3.13 3.25 
4 4 2.03 3.12 
8 8 1.34 2.00 
16 16 1.06 1.85 
32 32 1.03 1.61 
64 64 1.02 1.39 
16 2 3.14 3.21 
16 4 1.79 2.98 
16 8 1.26 1.85 
16 32 1.13 1.79 
2 16 1.17 1.53 
4 16 1.02 1.60 
8 16 1.09 1.76 

Table 1.  Simulation results (dynamic programming). 

Thus, the main advantages of using a modified Hopfield network to solve dynamic 
programming problems are i) consideration of optimization and constraint terms in distinct 
stages with no interference with each other, ii) use of the unique energy term (Econf) to group 
all constraints imposed on the problem, and iii) lack of need for adjustment of weighting 
constants for initialization. In all examples, the network output vector v was initialized with 
small random values defined between 0 and 1. It should be noticed that the increase in the 
number of states and stages does not degrade the performance of the network, but rather 
shows its efficiency. 

4.3  Nonlinear optimization problems 
In this subsection, we provide three examples to illustrate the effectiveness of the proposed 
architecture to solve nonlinear optimizations problems. 
Example 1. Consider the following constrained optimization problem proposed in Bazaraa 
& Shetty (1979) in page 491, which is composed by inequality constraints and bounded 
variables:  
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The minimization of the energy term Eop guarantees that the solution obtained represents the 
minimum path (Eop = 21) from all possible paths. 
To illustrate that the proposed network can be used efficiently, various dynamic 
programming problems were simulated and the results compared with those obtained by 
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where Sc is the sum of the selected paths after network convergence; ns is the number of 
simulations; n is the number of stages. 
The simulation results are shown in Table 1. In this table, the DMHN and DCN columns 
provide, respectively, the results of the average normalized path length for the modified 
Hopfield network and the one proposed by Chiu et al. (1991). This table shows that the 
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described in Table 1. In all analyzed instances, the values reached to the objective functions 
were practically identical in both approaches. However, the conventional method obtains 
the final solutions more rapidly than the modified Hopfield network. On the other hand, the 
implementation of dynamic programming problem to specialist systems in a neural network 
environment can be more easily made by using the modified Hopfield network. For all 
problems treated in this subsection, the values of Δt used in (11) were assumed as 0.01. 
The adverse facts that can influence on the performance of the network proposed by Chiu et 
al. (1991) and explain their less accurate results are the following: i) optimization and 
constraint terms involved in problem mapping are treated in a single stage, ii) interference 
between optimization and constraint terms affects the precision of the equilibrium points, 
and iii) the convergence process of the network depend on the correct adjustment of the 
weighting constants associated with the energy terms. However, the modified Hopfield 
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network presented here treats these terms in different stages. The terms Tconf and iconf 
(belonging to Econf) of the modified Hopfield network were developed to force the validity of 
the structural constraints associated with the dynamic programming problem, and the terms 
Top and iop were projected to find a minimum path among all possible paths. 
 

Number of stages (n) Number of states (m) DMHN DCN 
2 2 3.13 3.25 
4 4 2.03 3.12 
8 8 1.34 2.00 
16 16 1.06 1.85 
32 32 1.03 1.61 
64 64 1.02 1.39 
16 2 3.14 3.21 
16 4 1.79 2.98 
16 8 1.26 1.85 
16 32 1.13 1.79 
2 16 1.17 1.53 
4 16 1.02 1.60 
8 16 1.09 1.76 

Table 1.  Simulation results (dynamic programming). 

Thus, the main advantages of using a modified Hopfield network to solve dynamic 
programming problems are i) consideration of optimization and constraint terms in distinct 
stages with no interference with each other, ii) use of the unique energy term (Econf) to group 
all constraints imposed on the problem, and iii) lack of need for adjustment of weighting 
constants for initialization. In all examples, the network output vector v was initialized with 
small random values defined between 0 and 1. It should be noticed that the increase in the 
number of states and stages does not degrade the performance of the network, but rather 
shows its efficiency. 

4.3  Nonlinear optimization problems 
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This problem has a unique optimal solution v* = [0.0   1.5   0.0]T, and the minimal value of 
f(v*) at this point is equal to –3.5. Using a value of Δt = 0.01 in (11), which is corresponding 
to step ((III)) in Fig. 2, the solution vector (equilibrium point) obtained by the modified 
Hopfield network is given by v = [0.0002  1.5001  0.0000]T, with E(v) = f(v) = –3.499.  
However, if we assume the value Δt = 0.0001 the network reaches the optimal solution v*. 
Figure 6 shows the trajectories of the modified Hopfield network starting from v0 = [2.33  
0.31  0.16]T and converging towards the equilibrium point. 
  

0 200 400 600 800  1000  1200  1400  1600
0

0.5

1

1.5

2

2.5

v2 

v1 

v3 

iteration 

ou
tp

ut
 v

ec
to

r 

 
Fig. 6.  Transient behavior of the modified Hopfield network in example 1. 
To observe the global convergent behavior of the proposed network, we generated 15 initial 
points randomly distributed between 0 and 5. The bound constraints represented by the last 
three equations are directly mapped through the piecewise activation function defined in 
(9). All simulation results obtained by the modified Hopfield network show that the 
proposed architecture converges to v*. The trajectories of the objective function starting 
from several initial points are illustrated in Fig. 7. All trajectories lead towards the same 
theoretical minimal value provided by f(v*) = –3.5 when assumed Δt = 0.0001. These results 
show the efficiency of the modified Hopfield network for solving constrained nonlinear 
optimization problems.  
A comparison using the SQP (Sequential Quadratic Programming) method and the 
modified Hopfield network was also done for this example. Both methods have found the 
same final solution. The SQP method reached the final solution in 35 iterations, whereas the 
modified Hopfield network needed 1587 iterations. However, convergence time to reach the 
final solution has not been directly proportional to number of iterations. For this example, 
using a microcomputer Pentium IV, the SQP method and the modified Hopfield network 
obtained the final solution in 3.65 and 5.86 seconds, respectively. This fact can be explained 
with respect to simplicity associated with the convergence process used by the modified 
Hopfield network, which consists of only three main steps as shown in Fig. 1. As well, as 
observed with the dynamic programming problems, the modified Hopfield network is an 
alternative method for solving constrained optimization problems and has the advantage of 
offering simplicity of implementation both in analogue hardware making use of operational 
amplifiers and in digital hardware by using digital signal processors. 
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Fig. 7.  Evolution of the objective function for 15 initial points in example 1. 

To provide a more consistent analysis in relation to the efficiency of the proposed 
architecture, we make in the next example a comparison between the results produced by 
the modified Hopfield network with those provided by the network developed in Xia et al. 
(2002), and also by the topology presented in Kennedy & Chua (1988).  
Example 2. Consider the following constrained optimization problem proposed in Xia et al. 
(2002), which is composed by inequality constraints: 
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2 ≤+ℜ∈= vvV v . This problem has a unique optimal solution given by v* = 
[–0.5159 0.8566]T with f(v*) = –9.8075. All simulation results provided by the modified 
Hopfield network show that it is convergent to v*.  
In Table 2, the results obtained by the modified Hopfield network using Δt = 0.0001 are 
compared with those provided by the projection neural network proposed in Xia et al. 
(2002), and also those given by the nonlinear circuit network developed in Kennedy & Chua 
(1988). Six different initial points were chosen, where two points {(1, 0); (0, -1)} are located in 
V and four {(-2, -2); (2, -2); (2, 2); (-2, 2)} are not in V. The results obtained by the modified 
Hopfield network are very close to the exact solution. The mean error between the solutions 
obtained by the network and the exact solution is less than 0.02%. We can verify that all 
solutions produced by the modified Hopfield network are quite stable.  
According to Table 2 the nonlinear circuit network proposed in Kennedy & Chua (1988) can 
apparently approach v* in only two cases. This was also observed in simulations performed 
in Xia et al. (2002). The projection neural network developed in Xia et al. (2002) produces 
solutions for all cases presented in Table 1, and we can observe that the final solutions 
depend on their initial values. It is also shown in table 1 that the modified Hopfield 
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Hopfield network, which consists of only three main steps as shown in Fig. 1. As well, as 
observed with the dynamic programming problems, the modified Hopfield network is an 
alternative method for solving constrained optimization problems and has the advantage of 
offering simplicity of implementation both in analogue hardware making use of operational 
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To provide a more consistent analysis in relation to the efficiency of the proposed 
architecture, we make in the next example a comparison between the results produced by 
the modified Hopfield network with those provided by the network developed in Xia et al. 
(2002), and also by the topology presented in Kennedy & Chua (1988).  
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[–0.5159 0.8566]T with f(v*) = –9.8075. All simulation results provided by the modified 
Hopfield network show that it is convergent to v*.  
In Table 2, the results obtained by the modified Hopfield network using Δt = 0.0001 are 
compared with those provided by the projection neural network proposed in Xia et al. 
(2002), and also those given by the nonlinear circuit network developed in Kennedy & Chua 
(1988). Six different initial points were chosen, where two points {(1, 0); (0, -1)} are located in 
V and four {(-2, -2); (2, -2); (2, 2); (-2, 2)} are not in V. The results obtained by the modified 
Hopfield network are very close to the exact solution. The mean error between the solutions 
obtained by the network and the exact solution is less than 0.02%. We can verify that all 
solutions produced by the modified Hopfield network are quite stable.  
According to Table 2 the nonlinear circuit network proposed in Kennedy & Chua (1988) can 
apparently approach v* in only two cases. This was also observed in simulations performed 
in Xia et al. (2002). The projection neural network developed in Xia et al. (2002) produces 
solutions for all cases presented in Table 1, and we can observe that the final solutions 
depend on their initial values. It is also shown in table 1 that the modified Hopfield 
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network, independently of the initial values of v, has converged to the same final values for 
all simulations. To illustrate the global convergent behavior of the modified Hopfield 
network, Fig. 8 shows the trajectories of v starting from several initial points. 
 

Initial Vector Modified Hopfield 
Network 

Projection Neural 
Network 

Nonlinear Circuit 
Network 

v(0) = [ 2   2]T v = [-0.5160   0.8566]T v = [-0.5160   0.8566]T v = [-0.5195   0.8641]T 

v(0) = [-2   2]T v = [-0.5160   0.8566]T v = [-0.5160   0.8566]T v = [-0.5196   0.8641]T 

v(0) = [-2  -2]T v = [-0.5160   0.8566]T v = [-0.5161   0.8564]T ∝ 
v(0) = [ 2  -2]T v = [-0.5160   0.8566]T v = [-0.5162   0.8563]T ∝ 
v(0) = [ 1    0]T v = [-0.5160   0.8566]T v = [-0.5162   0.8564]T ∝ 
v(0) = [ 0   -1]T v = [-0.5160   0.8566]T v = [-0.5161   0.8564]T ∝ 

Table 2.  Comparison of the simulation results in example 2. 
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Fig. 8.  Trajectories of the modified Hopfield network for 20 initial points in example 2. 

It is important to observe that all trajectories starting from the inside or outside of the 
feasible region V converge to v*. Thus, the proposed approach always converges to the 
optimal solution, independently whether the chosen initial point is located in the feasible 
region or not. Therefore, we can conclude that the modified Hopfield network is of high 
robustness.  
A comparison using the SQP method and the modified Hopfield network was also made for 
this example. The SQP method has reached the exact solution for all simulations. Table 3 
shows the number of iterations and convergence time used in each approach to reach the 
final solution for different initial values of the output vector v. From this table, although the 
method SQP obtains the final solution in less iteration, it is verified that convergence time of 
the modified Hopfield network is close to that required by the SQP method, where for v(0) = 
[-2  2]T and v(0) = [1  0]T the network converged more rapidly. 
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Modified Hopfield Network SQP Method 
Initial Vector 

Iterations Convergence 
time Iterations Convergence time 

v(0) = [ 2   2]T 278 3.86 34 3.72 
v(0) = [-2   2]T 316 2.83 24 2.87 
v(0) = [-2  -2]T 297 3.19 24 2.81 
v(0) = [ 2  -2]T 303 5.03 42 4.41 
v(0) = [ 1    0]T 359 2.94 25 3.16 
v(0) = [ 0   -1]T 311 4.76 39 4.15 

Table 3.  Comparison between SQP method and modified Hopfield network in example 2. 

Example 3. Consider the following constrained optimization problem proposed in Bazaraa 
& Shetty (1979) in page 418, which is composed by inequality and equality constraints: 
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The optimal solution for this problem is given by v* = [0.0  4.0  0.0]T, where the minimal 
value of f(v*) at this point is equal to zero. Figure 9 shows the trajectories of the network 
variables starting from the initial point v0 = [1.67  1.18  3.37]T. All simulation results obtained 
by the modified Hopfield network using Δt = 0.001 show that the proposed architecture is 
globally convergent to v*. 
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Fig. 9.  Transient behavior of the modified Hopfield network in example 3. 
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network, independently of the initial values of v, has converged to the same final values for 
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network, Fig. 8 shows the trajectories of v starting from several initial points. 
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this example. The SQP method has reached the exact solution for all simulations. Table 3 
shows the number of iterations and convergence time used in each approach to reach the 
final solution for different initial values of the output vector v. From this table, although the 
method SQP obtains the final solution in less iteration, it is verified that convergence time of 
the modified Hopfield network is close to that required by the SQP method, where for v(0) = 
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The optimal solution for this problem is given by v* = [0.0  4.0  0.0]T, where the minimal 
value of f(v*) at this point is equal to zero. Figure 9 shows the trajectories of the network 
variables starting from the initial point v0 = [1.67  1.18  3.37]T. All simulation results obtained 
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Fig. 9.  Transient behavior of the modified Hopfield network in example 3. 
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The network has also been evaluated for different values of initial conditions. The 
trajectories of the objective function starting from several initial points are illustrated in Fig. 
10. All trajectories lead toward the same equilibrium point. These results show the ability 
and efficiency of the modified Hopfield network for solving constrained nonlinear 
optimization when equality and inequality constraints are simultaneously included in the 
problem. 
In comparison with results obtained by using the multilayer perceptron network proposed 
in Bazaraa & Shetty (1979), and starting from the same initial points, it was observed that the 
modified Hopfield Network not only converges more quickly, but also results in higher 
accuracy. 
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Fig. 10.  Evolution of the objective function for 15 initial points in example 3. 

In relation to the SQP method, the obtained solution was the same found by the modified 
Hopfield network. For this example, the SQP method reached the final solution using 30 
iterations (3.66 seconds), whereas the modified Hopfield network needed 768 iterations (3.48 
seconds). So, for this example, the modified Hopfield network has converged in less time 
than the SQP method. 

5. Conclusions 
This chapter presents an approach for solving optimization problems using artificial neural 
networks. More specifically, a modified Hopfield network is developed and its internal 
parameters are computed using the valid-subspace technique.  
The developed approach allows to solve several classes of optimization problems through a 
unique neural network architecture. The optimization problems treated in this chapter are 
the combinatorial optimization problems, dynamic programming problems and nonlinear 
optimization problems. An energy function Eop was designed to conduct the network output 
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to the equilibrium points corresponding to a cost constraint. All structural constraints 
associated with the optimization problems can be grouped in Econf.  
The simulation results demonstrate that the network is an alternative method to specialist 
algorithms and has the advantage of being implementable in a neural network environment, 
which can be mapped in hardware for engineering applications. The internal parameters of 
the network were explicitly computed using the valid-subspace technique that guarantees 
the network convergence. All simulation results show that the proposed network is 
completely stable and convergent to the solutions of the optimization problems considered 
in this chapter. The network has also been evaluated for different values of initial 
conditions. All trajectories lead toward the same equilibrium point. 
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to the equilibrium points corresponding to a cost constraint. All structural constraints 
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1. Introduction 
The work in this chapter presents some applications of recurrent neural networks to general 
optimization problems. While particular problems presented in this research relates to 
linear, quadratic and nonlinear programming, monotone variational inequalities and 
complementarity problems, I fell that the methodology by which one solves these problems 
are quite general and warrants attention in and of themselves. Correspondingly, I hope that 
this material will be taken as both a response to a particular problem and a general method. 
Constrained optimization problems are defined as the mathematical representation of real 
world problems concerned with the determination of a minimum or a maximum of a 
function of several variables, which are required to satisfy a number of constraints. Such 
function optimization are sought in diverse fields, including mechanical, electrical and 
industrial engineering, operational research, management sciences, computer sciences, 
system analysis, economics, medical sciences, manufacturing, social and public planning 
and image processing.   
Although many classical optimization algorithms such as simplex, Karmarkar interior point, 
direct and indirect techniques are given to solve linear, quadratic and nonlinear 
optimization problems, in many applications, it is desire to have real-time on-line solutions 
of corresponding optimization problems. However, traditional optimization algorithms are 
not suitable for real-time on-line implementation on the computer. The dynamical system 
approach is one of the promising approaches that can handle these difficulties.  
In the recent years many artificial neural networks models developed to solve optimization 
problems. Several basic and advance questions associated with these models have 
motivated the studies presented in this chapter. 
The goal of this chapter is twofold. The theoretical areas of interest include fundamental 
methods, models and algorithms for solving general optimization problems using artificial 
recurrent neural networks. On the other hand, it will try to present and discuss the 
numerical analysis for the corresponding models, simulations and applications of recurrent 
neural networks that solve various practical optimization problems.  
Recurrent dynamical neural network is an area of neural networks which is one of the 
fundamental topics of the subject, and combines many mathematical concepts like ordinary 
and partial differential equations, dynamical systems, unconstrained and constrained 
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optimization, local and global optima for a function of several variables, sigmoid functions, 
error estimation, integration and gradient descent methods. Students are often familiar with 
the local optima of a function with one variable before embarking on an undergraduate 
course, and in practical way will have integrals which they can not express in closed 
analytical form. Here we must compute the optimal solution for the constrained 
optimization problem with objective function of several variables that corresponds with the 
solution of a system of ordinary differential equations. From mathematical point of the view 
convergence of the solution and stability of the method has quiet importance, while as an 
engineer we might look for an algorithm that works for many different problems.   
The troublesome problem of just what numerical optimization analysis is arises in recurrent 
dynamical neural network, as it does in other branches of the field. Should the optimization 
analysis part be the main aim, or is it the generation of an efficient, tested and validated 
program which is important? The answer is surely that both areas are important, but at the 
end of the day numerical analysis and mathematical techniques are some service industry 
and what the customers want is reliable codes to solve their problems. The theoretical 
analysis forms part of the reliability assessment, as it determines bounds on errors and 
levels of stability. These error bounds form the basis of a theoretical justification for the 
solution convergence of the corresponding numerical algorithm to the actual solution of the 
original neural network model.  
The chapter covers a range of topics from early undergraduate work on constrained linear 
and quadratic programming through to recent research on nonlinear constrained 
optimization problems and recurrent neural networks. The source of the optimization work 
is the lecture notes for graduate students participated in my advance linear programming 
and optimization courses. The notes have grown in sixteen years of teaching the subject. The 
work on recurrent neural network models is based partly on my own research. It has taken 
annual updates as new models have proposed in some of the thesis of my postgraduate 
students during the last ten years. This research is enriched by the huge literature which has 
grown in the last two decades.  
I am grateful to the applied mathematics department here at Tarbiat Modares University 
which has made available the technical equipment for the work. The novel models and 
numerical programs have been tested, compared and improved using the various 
computers which have been installed over the years.  
In the next section we study solution methods for general optimization problems under the 
assumption that there exists an optimal solution.  

2. Optimization problems 
In this section, we shall first consider an important class of constrained linear programming 
problems and their general dual form.  Second, we shall introduce primal and dual form of a 
constrained convex quadratic programming problem. Then we will consider the nonlinear 
convex programming problems. This, as we shall see, leads to discovering some primal-dual 
relationships that exists for corresponding class of constrained optimization problems. 
Among the class of constrained optimization problems, an important and richly studied 
subclass of problem is that of convex programs.  
Definition 1. The problem of maximizing a concave function or minimizing a convex 
function over a convex set is known as convex programming.  
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2.1 Constrained linear optimization problems 
A problem of the form  

     (PLP)      

0

TMaximize z c x
Subject to

Ax b
x

=

≥
≥

  (1) 

is said to be a primal linear programming problem, where  , , ,n n m n mx R c R A R b R×∈ ∈ ∈ ∈ . 

Here ( )ijA a= is the coefficient matrix of the inequality constraints, 1( ,..., )T
mb b b= is the 

vector of constants, the components of 1( ,..., )nc c c= are called cost factors, 1( ,..., )T
nx x x= is 

the vector of variables, called the decision variables. Associated with (PLP) is the linear 
programming problem (DLP), called the dual of (PLP): 

  (DLP)       

0

T

T

Minimize v b y
Subject to

A y C
y
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≥

  (2) 

In (DLP) formulation y is the vector of m  dual variables. We can define the dual of any 
linear problem after writing it in the primal form (PLP), [1]. 
Remark 1. Primal and dual linear programs (PLP) and (DLP) are convex programs since the 
set of feasible solutions to a linear program is a convex set and a linear objective function is 
both convex and concave.  

2.2 Constrained quadratic optimization problems 
We consider a primal quadratic programming problem in  

1        ( )
2

T TMinimize f x x Ax c x= +  

          ( ) 0,subject to g x Dx b= − =   0,x ≥  (3) 

Where A is a m m×  symmetric positive semidefinite matrix, D is a n m×  matrix and rank 
(D) = , , , .n mm b R x c R∈ ∈  We define the dual problem (DQP) as follows: 

1     ( )
2

T TMinimize f x x Ax b y= − +  

     ( ) ( ) 0,TSubject to g x D y f x= −∇ ≤   (4) 

where ( ) , nf x Ax c y R∇ = + ∈ . 
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Lemma 1. The primal quadratic program (PLP) and its dual (DLP) are convex programs. 

This is because the quadratic forms 
1
2

T Tx Ax c x+  and 
1
2

T Tx Ax b y− +  are convex if and 

only if A  is a positive semidefinite matrix (for example see [2]). Clearly the standard linear 
programming problem  
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=
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≥

 (5) 

and its dual   
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T
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Minimize v b y
Subject to

A y c
y is free in sign

=

≥
 (6) 

 are special cases of the (3) and (4) respectively, for which 0 m mA ×= . 

2.3 Constrained nonlinear optimization problems 
Consider the following nonlinear convex programming problem (NP) with nonlinear 
constraints: 

 (NP)    ( )Minimize f x   

 Subject to g(x) ≤ 0, x ∈ Ω  (7)  

where 
1( , , ) , : .T n n

nx x x R f R R= ∈ →… 1( ) ( ( ), , ( ))mg x g x g x= …  is m-dimensional vector-

valued continuous function of n variables. The functions f  and  1 , , mg g…  assumed to be 
convex and twice differentiable for .nRΩ⊆   
Definition 2. A vector x  is called a feasible solution to (NP) if and only if x satisfies m n+  
constraints of the (NP).  
Definition 3. Any feasible solution x  is said to be a regular point if the gradients of 

( ), ( )i ig x g x∇ for ( { | ( ) 0}),ji I j g x∈ = =   are linearly independent.  

Definition 4. The (NP) has at least one optimal solution [3] when  
i. the set of all feasible solutions is nonempty and bounded, 
ii. the feasible set is unbounded but ( )f x has a bound level set. 

 2.4 Monotone variational inequalities and complementarity problems 
The problem of finding a vector point * nx R∈   such that  
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 * ,x S∈    *( ),F x〈 * 0x x− 〉 ≥     for all x S∈   (8) 

where 1( , , )T n
nx x x R= ∈… ,  is called the monotone variational inequality problem [4]. F  is 

a continuous mapping from nR  into itself, and { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥  

where m nA R ×∈ , rank ( A )= m , r nB R ×∈ , rank( B )= ,r 0 ≤ m , r n≤ , mb R∈ , rc R∈ , 

and S  is a nonempty closed convex subset of nR and  〈 . , . 〉  denotes the inner product in 
nR . In the special case where nS R+= , problem (8) can be rewritten as the following 

nonlinear complementarity problem 

 * 0,x ≥    *( ) 0F x ≥ ,   * ,x〈  *( ) 0F x 〉 = .  (9) 

For nS R= , problem (8) reduces to solving the system of nonlinear equation ( ) 0F x = , [5]. 

Remark 2. For a continuously differentiable function f , if *x  is a solution of the problem  

Minimize{ }( ) | ;f x x S∈  { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥  then *x is also a solution 

of (8) with ( ) ( )F x f x= ∇ , and ( )1( ) / , , / T n
nf x f x f x R∇ = ∂ ∂ ∂ ∂ ∈…   is the gradient vector of 

( )f x  at point x . 

Definition 5. [6] A mapping : n nF R R→  is said to be monotone on S  if 

 ( ) ( ')F x F x〈 − , ' 0x x− 〉 ≥     for all , ' .x x S∈   (10) 

F is strictly monotone on ,S  if strict inequality holds in (10) whenever 'x x≠ . 
Lemma 2. If F is continuously differentiable and the Jacobean matrix F∇  is positive 
definite for all x S∈ , i.e. 

, 0d Fd〈 ∇ 〉 >    for all  ,x S∈  nd R∈  ( 0)d ≠ . 

then F is strictly monotone on S . 
Proof.  For example see [7]. 
The variational inequalities problems have wide variety of scientific and engineering 
applications (for example see [2], [6], [8] to [11]). In many applications, real-time on-line 
solutions of (8) and (9) are desired. However, traditional algorithms (see [2], [6], [8], [12] and 
[13]) are not suitable for real-time on-line implementation on the computer. One promising 
approach to handle these problems is to employ an artificial neural network based on circuit 
implementation. Many continuous-time neural networks for constrained optimization 
problems, have been developed ([14] to [18]) using network parameters. To avoid using 
penalty parameters, some significant works have been done in recent years. A few primal 
and dual neural networks with two-layer and one-layer structure were developed in [14], 
[17] and [18]. These neural networks were proved to be globally convergent to an exact 
solution. 
In the next section, we discuss some general ideas about artificial neural networks.  
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3. Artificial neural networks 
Artificial neural networks consist of a calculation unit called neuron. Every neuron has some 
real valued inputs. Inside every neuron, each input is multiplied with corresponding neural 
coefficient defining its value. The sum of all these products adds to a value called bias. 
Finally, activation function affects this sum and determines the real valued output of the 
neuron feed forwardly [19] or by some feed back [20].  

3.1 Feed forward back propagation neural networks 
Primary discussions regarding artificial neural networks introduced in the 40's with 
presentation of the feed forward neural networks. Artificial neural networks in some extents 
are modeled from the brain and neural system of the human, which are able to give 
acceptable solutions based on correct information records from the problem.  
The basic structure for the feed forward back propagating neural network (nets without feed 
back) consists of some number of nodes in the input layer, the hidden layer, and the output 
layer that has one node. The sigmoid functions approximate linear functions, yet allow the 
update scheme to propagate backwards through differentiable functions. The manner in 
which input data generates output data for a given neural network depends on the 
interconnection weights. These weights are adjusted to reduce the error between the neural 
network outputs and the actual output values. i.e. 

 
1

1 ( )
2

n actual net
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iO  is the actual output for the thi  training point. net
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the neural network for the thi training point from the neural network. n  is the total number 
of training points obtained by taking known data points for a given task. Here the objective 
is to train the network so that the output from the network minimizes equation (11).  

3.2 Recurrent dynamical artificial neural network 
Khanna in year 1990 [21], describes associative memory as "the ability to get from one 
internal representation to another or to infer a complex representation from a portion of it". 
Effectively our goal in applying neural networks is to create a functional mapping from 
steady optimization space to either dynamical time dependent space or some parameter 
space. Two approaches to achieving this mapping have been extensively studied by Xia [14], 
[15] and [22] to [25], Malek [4], [16], [26] and [27] and their coauthors.  
The first approach relies on a structure with adjustable parameters. On the basis of known 
input/output pairs, these parameters are selected or changed. If this approach is successful, 
the appropriate selection of these parameters will yield a mapping device which will always 
provide the associated output values for a given input.  
The second approach uses information from the primal and dual optimization problem and 
applied primarily by Malek in year 2005 [16]. The basis for such systems is a precisely 
defined set of ordinary differential equations that automatically satisfy the related primal 
and dual optimization problems simultaneously. These information are defined by the 
cumulative designing the system and are laid out in a hierarchical fashion. The system then 
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performs a sequential set of values, using the output from the previous as the input to the 
next. If successful, a system can be created which will associate input with its correlated 
output. The challenge is to make the system complete enough (consistent, convergent and 
stable) to always associate the correct output with a given input.  
The primary difference in these two approaches is that adjustable parameters in the first are 
a prior, i.e., the parameters are settled upon and maintained before data is introduced into 
the system. The second approach has no adjustable parameters thus its model is simple to 
use. The advantage of this approach is that in this way, we can obtain a solution for the 
given real life problem, however we wish to assume a prior knowledge of relationships 
between constrained optimization problem and dynamical system. Moreover the solution 
for optimization problem consists of a solution for real life problem, since optimization 
problem is simulated from the corresponding real life problem.  
The work presented in this section applies recurrent dynamical artificial neural network. We 
shall emphasize on networks that do not use network parameters or penalty parameters in 
advance. This approach is a metric driven method. i.e., we establish distance between the 
input and the neural network output. For a given input, the neural network outputs the 
value whose distance from the given input is smallest using linear constraint least square 
technique or any other related method. One manner of doing this mapping is to associate 
the equilibrium points of a dynamical system with the optimal points of constraint 
optimization problem. When the input is the initial condition of the dynamical system, the 
system will converge to an equilibrium point. Thus this optimal solution contains a solution 
that minimizes equation (11), where we use the feed back process to produce corresponding 
optimal weights. This means that the artificial neural network structure is recurrent.  
The structure of the recurrent dynamical artificial neural network is different from the feed 
forward artificial neural network. However it is possible to make some corresponding 
relations between these two neural networks (see Rumelhart 1986, [28]). i.e., there is a sense 
in which the error back propagation scheme may be applied to networks that contain feed 
back, (see Fig. 3.1). The feed forward network in Fig. 3.1 may be represented to simulate a 
feed back network with a given set of weight and bias parameters.  
Having developed the equivalent structure as shown in Fig. 3.2, it becomes proper to say 
"the goal for recurrent dynamical artificial neural network, as with the back propagation 
artificial neural network, is to minimize the error function given by equation (11).  
Training of dynamical neural networks has received considerable attention in the last 30 
years [20], [29] and [30]. The equations governing the behavior of the simplest supervised 
recurrent dynamical neural network are  
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3. Artificial neural networks 
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is the sigmoid function. The adjustable parameters in this supervised recurrent dynamical 
neural network are found in the A, B matrices and vector C. The input x of the neural 
network corresponds to the input data associated with a training point. This input is then 
applied to the system governed by equation (12). When equation (13) reaches an equilibrium 
value u* for this input, we obtain the output of the neural network by taking the dot product 
of C and u* by equation (14). This neural network output will then compare with the actual 
output. To update the elements of A, B, and Cone may use gradient descent method using 

ij

u
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∂
∂

,
ij

u
B
∂
∂

, and 
i

u
C
∂
∂

.  

This minimization task requires that the neural network possess enough parameter freedom 
to enable each input set to generate an output close to the actual value. This is not a case in 
many problems. Thus in the next section we emphasize on the unsupervised recurrent 
dynamical artificial neural networks. 

    
Fig. 3.1  Equivalent structures of a two unit network; Feed forward network, and feed back 
network for a given biases b1  and b2 and weights 1w  and 2w . 

4. Networks dynamic analysis 
For many times dependent cost functions an online optimizer on the basis of an analog 
circuit [31], [32] and [33]) is desirable. Dynamic solvers or analog computer, was first 
proposed by Dennis [34], Rybashov [35] and [36], Karpinskaya [37], and later studied by 
Kenedy and Chua [38], Rodriguez-Vazquez et al. [39], Tank and Hopfield [31]. These 
dynamic solvers usually employ neural networks since they have many advantages over the 
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traditional algorithms. Massively parallel processing and fast convergence are two of the 
most important advantages of the neural networks. 

4.1 Models for linear programming 
Use of neural network for the solution of linear programming problems goes back to 1985, 
when Hopfield and Tank [31] provide fast algorithm based on analog electrical components. 
Chen and Fang [40] in 1998 examined the theoretical properties of a method proposed by 
Kennedy and Chua in 1987, [38]. Malek and Yari in year 2005 proposed a fully stable 
artificial recurrent neural network model for the solution of primal linear programming 
problems of the type (1): 
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where 1,η η  and 2η are rate of learning (in the neural network dynamic). They are step sizes 

in the process of optimization computation. 1,η η  and 2η can stay constant or vary in each 
iteration.  
Model (15) transfers the linear programming problem into a dynamical system of equations 
and gives approximation solution to the exact solution only for primal variables. This means 
that by the recurrent neural network model (15) dual optimum value for objective function 
does not coincide exactly with the optimum value obtained from primal problem.  
The second model proposed by Malek in the same article is in the following form [16]: 
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most important advantages of the neural networks. 
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m nA C C c b b b b cη η× = − − = − We shall see that, A  is a (m+n+2) ×  

(2 2 )m n+ matrix and C  is a vector with 2 2m n+  components and b  is( 2m n+ + )×1  
vector. 
The following lemma shows that this model solves both primal and dual problems of the 
type (1) and (2) simultaneously. 
Lemma 3. For 1 2( , ,..., )nX x x x∗ ∗ ∗ ∗=  the optimum solution ( , )U X Y∗ ∗ ∗= of problems in the 

forms (PLP) and (DLP), is the optimum solution for (P-D) iff Z ∗  the maximum value for Z 

vanishes where 0dX
dt

→ and 0dY
dt

→ . 

Proof: See [16]. 
These models need some network parameters 1,η η and 2η that must be fixed in the starting 
time. 

4.2 Models for quadratic programming 
 Xin-Yu Wu et al. [22] in year 1996 proposed the following neural network model to solve 
problems (3) and (4) 
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Youshen Xia [14] considered the adjusted form of model (1) as follows  
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where I  is the identity matrix.  
Malek and Oskoei [26] proposed three novel models based on model (1) in the following 
forms: 

 
[ ( ) ] ( )

( )

T T T

T

x D y Ax c A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫− − − − + − − − −⎧⎛ ⎞ ⎪= ⎨ ⎬⎜ ⎟ − + − − + ⎪⎝ ⎠ ⎩ ⎭
  (20) 

Applications of Recurrent Neural Networks to Optimization Problems 

 

265 

Model (20) is a simplified model (18) of Xin-Yu Wu et al. Here one may concerne of 
obtaining better accuracy for the final solutions, while we do not use expensive analog 
multipliers of Xin-Yu Wu et al. Therefore the relative question might be: is there a simpler 
neural network models in the manipulation of hardware tools. Malek & Oskoei [26] show 
that for some examples model (20) converges to the exact solution with 13 exact decimal 
points. While in the same conditions the solutions for neural network proposed by Xin-Yu 
Wu agrees with the corresponding exact solution only up to 3 decimal points. 
It is still possible to simplify model (20). Model (21) has the advantage of serious 
simplification and good accuracy in the same time. It is in the form [26]: 
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in [26] which appears to be more efficient than the models (20) and (21) when we investigate 
the complexity, complexity of individual neurons, stability, and accuracy of the solutions, 
(see Tables 1 and 2 in section 5). 
Model (22) does not use any projection operator in practice thus it is different and simpler 
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model 
we do not use any extension of Newton's optimal descent flow equation to solve the 
problem. 
If we assume that   ( )Tx D y Ax cα += + − − and ( )TD Dx bβ = − , then models (22) and (19) 
are in the following forms respectively [41]: 
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The network circuit implementation for solving problems (3) and (4) whose dynamics are 
governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing 
amplifiers) and integrators. In the Fig. 3.2, vectors c  and b are external input vectors, while 
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that for some examples model (20) converges to the exact solution with 13 exact decimal 
points. While in the same conditions the solutions for neural network proposed by Xin-Yu 
Wu agrees with the corresponding exact solution only up to 3 decimal points. 
It is still possible to simplify model (20). Model (21) has the advantage of serious 
simplification and good accuracy in the same time. It is in the form [26]: 

 
( )[ ( ) ]

( )

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  (21) 

Let us assume that  

{ }( , ) , ( ,  y) , , 0 ,n mx y x y R x R x∈ Ψ Ψ = ∈ ∈ ≥  

1( ) ( ) , ..., ( )
T

mx x x+ + += ⎡ ⎤⎣ ⎦  and { }( ) max 0,i ix x+ = , for 1,..., .i m=  We proposed following 

model: 

 
( )

[( ) ]

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  (22) 

in [26] which appears to be more efficient than the models (20) and (21) when we investigate 
the complexity, complexity of individual neurons, stability, and accuracy of the solutions, 
(see Tables 1 and 2 in section 5). 
Model (22) does not use any projection operator in practice thus it is different and simpler 
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model 
we do not use any extension of Newton's optimal descent flow equation to solve the 
problem. 
If we assume that   ( )Tx D y Ax cα += + − − and ( )TD Dx bβ = − , then models (22) and (19) 
are in the following forms respectively [41]: 

 
,

.

x
xd
ydt

D b

α

α

−⎧
⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

  (23) 

 

( ) ( ) ,

.

I A x
xd
ydt

D b

α β

α

+ − −⎧
⎛ ⎞ ⎪

= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

  (24) 

The network circuit implementation for solving problems (3) and (4) whose dynamics are 
governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing 
amplifiers) and integrators. In the Fig. 3.2, vectors c  and b are external input vectors, while 
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x  and y  are the network outputs. In this diagram dynamical process of vector α  is the 
same as what is given in [14]. A simplified block diagram of  α  is illustrated in Fig. 3.3 to 
show how expensive it is using vector α  in the arbitrary model. 
Malek & Alipour, Applied Mathematics and Computation 192 (2007) 27-39 We now 
compare the network (24) with our proposed network in (23) for solving problems (2) and 
(3). The network (24) is stable to exact solution and there are no parameters to set, but the 
main disadvantage of it is that too many expensive analog multipliers ( ,α β ) are required 
for large scale quadratic programming problems, thus the set of hardware implementation 
is expensive and therefore greatly affect the accuracy of solutions. Neural network model 
(23) does not need to use β  and therefore in practice needs relatively less computational 
efforts. Moreover, this model is globally convergence to the corresponding exact solution 
independent of where and how to choose the starting input initial values. Model (23) not 
only has the same global convergence property as the model (24), but also has some more 
advantages, plus simplicity. Network (23) is better than network (24) in the sense of 
complexity, i.e. usage analog multipliers and hardware implementations. 

 
Fig. 3.2. A simplified neural network diagram for model (23): Malek & Alipour, Applied 
Mathematics and Computation 192 (2007) 27-39 

Remark 3. Model in (23) may be used for solving general standard linear programming 
problems by setting 0m mA ×= . 
Simulation and numerical results are discussed in the next section. 
Theorem 1.  The recurrent dynamic artificial neural network (23) is globally convergent to 
the solution set of the primal and dual quadratic programming problems (3) and (4). 
Proof. Let in the proposed model of Qing Tao et al. [17], general projection operator to be 
the identity operator. Then the proof is similar to Qing Tao's proof. (see [26] and also see 
Theorem 4) 
In the reminder of this subsection we will try to clarify the ideas in Theorem 1 from 
theoretical point of view (see [41]). 
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Fig. 3.3.  A simplified block diagram forα , where ( )ijA a= and ( )ijD d= : 

In this section, we shall study the dynamics of network (23).We define a specific Liapunov 
function and get the global convergence of network (23).We first discuss some prerequisites. 
Definition 6. A continuous-time neural network is said to be globally convergent if for any 
given initial point, the trajectory of the dynamic system converges to an equilibrium point. 
Lemma 4. Let  Ψ  be a closed convex set of mR .Then  

( ) ( ) 0, ,
T mp p x R xν ν ν νΨ Ψ− − ≥ ∈ ∈ Ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

and ( ) ( ) , , mp p u u u Rν ν νΨ Ψ− ≤ − ∈  

where .  denote 2l  norm and the projection operator ( )p uΨ  is defined by 

( ) arg min .p u u
ν

νΨ ∈Ψ
= − Proof. See [42]. 
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Remark 4. Since { }0mR x x+ = ≥  is a closed convex and by the property of a projection on a  

( ) ( ) 0, , .
T m mv v x x R Rν ν+ +

+− − ≥ ∈ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

Theorem 2. * *,x y are  solutions of  problems (3) and (4), respectively, if and only if 
* *( , )x y  satisfies 

 
* * * *

* *

( ) ,
( ) .

T

T

x D y Ax c x
D x D y Ax c b

+

+

+ − − =⎧
⎨

+ − − =⎩
  (25)      

Proof . By Karush-Kuhn-Tucker theorem for convex programming problem [43] we have 
* *,x y are solutions of problems (3) and (4), respectively, if and only if * *( , )x y  satisfies 

 

* *

* * *

* *

, 0,
( ) 0,

0 .

T T

T

D x b x
x D y A x c
D y A x c

= ≥⎧
⎪ − − =⎨
⎪ − − ≤⎩

  (26) 

Clearly, that (26) is equivalent to (25). 
We will now prove a theorem that is a base for proving the global convergence of model (23). 

Theorem 3. Let ( ) ( ) ( ) 2* * *
1

1 1,
2 2

T
F x y x x A x x x x= − − + −  and  

 ( ) 2*
2

1,
2

F x y y y= −  and ( ) ( ) ( )1 2, , ,F x y F x y F x y= + . Then   

( ) ( ) ( ) ( )
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −  

Proof .   

( ) ( ) ( )* *
1 , ( )

T Td dx dxF x y A x x x x
dt dt dt

= − + −   

( ) ( ) ( ) ( )* *( ) ( ) ( )
T TT TA x x x D y Ax c x x x x D y Ax c x+ += − + − − − + − + − − −  

Note that   

( ) ( )*( ) ( )
T TA x x x D y Ax c x+− + − − −  

( ) ( )* * *( ) ( )
T TA x x x D y Ax c x x x+= − + − − − + −  

( ) ( ) ( ) ( )
( ) ( )

* * *

* *

( ) ( )

( )

T TT

TT

A x x x x x D y Ax c x Ax c

x D y Ax c x Ax c

+

+

= − − + + − − − +

− + − − − +
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On the other hand, 

                 

( )
( ) ( )
( ) ( )
( )

*

*

*

*

( ) ( )

( ) ( )

( ) ( )

( )

TT

TT T T

TT T

TT T

x D y Ax c x Ax c

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x D y Ax c x D y

+

+ +

+ +

+

+ − − − +

= + − − − + − − + + − −

+ + − − − − + − −

+ + − − −

 

             

( ) ( )
( ) ( )
( ) ( )
( )

*

*

*

( ) ( )

( ) ( )

( )

( )

TT T T

TT T

T T

TT T

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x x x x D y Ax c

x D y Ax c x D y

+ +

+ +

+

+

= + − − − + − − + + − −

+ + − − − − + − −

+ − − + − −

+ + − − −

 

 

and 

( )* *( ) ( )
TT Tx D y Ax c x Ax c+ − − − +  

( ) ( )* * *( )
TT T Tx D y Ax c x Ax c D y= + − − − + − ( )* *( )

TT T Tx D y Ax c x D y+ + − − −  

So  

        

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

* *
1

*

2 * * *

* *

, (

( ) ( )

( ) ( )

( ) .

T

TT T T

TT T T

TT T T

d F x y A x x x x
dt

x D y Ax c x Ax c D y x x D y Ax c

x x D y Ax c x D y Ax c x Ax c D y

x D y Ax c x D y D y

+ +

+ +

+

= − −

+ + − − − + − − + + − −

− − + − − − + − − − + −

+ + − − − −

 

Thus by (22) we have 

               

( ) ( )
( ) ( ) ( )
( ) ( )

* * *

* * * * *

* *

( )

( )

( ) 0

TT T

TT T T T

TT T

x D y Ax c x D y Ax c

x D y Ax c D y Ax c x D y Ax c

x D y Ax c D y Ax c

+

+

+

+ − − − − −

= + − − − − − − −

= + − − − − ≤

 

Using lemma 4 we have 

                ( ) ( ) ( ) 2* *
1 , ( )

T Td
F x y x x A x x x x D y Ax c

dt
+≤ − − − − − + − −                     

( ) ( )* *( ) .
TT T Tx D y Ax c x D y D y++ + − − − −  
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T T
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On the other hand, 

                 

( )
( ) ( )
( ) ( )
( )

*

*

*

*

( ) ( )

( ) ( )

( ) ( )

( )

TT

TT T T

TT T

TT T

x D y Ax c x Ax c

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x D y Ax c x D y

+

+ +

+ +

+

+ − − − +

= + − − − + − − + + − −

+ + − − − − + − −

+ + − − −

 

             

( ) ( )
( ) ( )
( ) ( )
( )

*

*

*

( ) ( )

( ) ( )

( )

( )

TT T T

TT T

T T

TT T

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x x x x D y Ax c

x D y Ax c x D y

+ +

+ +

+

+

= + − − − + − − + + − −

+ + − − − − + − −

+ − − + − −

+ + − − −

 

 

and 

( )* *( ) ( )
TT Tx D y Ax c x Ax c+ − − − +  

( ) ( )* * *( )
TT T Tx D y Ax c x Ax c D y= + − − − + − ( )* *( )

TT T Tx D y Ax c x D y+ + − − −  

So  

        

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

* *
1

*

2 * * *

* *

, (

( ) ( )

( ) ( )

( ) .

T

TT T T

TT T T

TT T T

d F x y A x x x x
dt

x D y Ax c x Ax c D y x x D y Ax c

x x D y Ax c x D y Ax c x Ax c D y

x D y Ax c x D y D y

+ +

+ +

+

= − −

+ + − − − + − − + + − −

− − + − − − + − − − + −

+ + − − − −
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( ) ( )
( ) ( ) ( )
( ) ( )

* * *

* * * * *

* *

( )

( )

( ) 0

TT T

TT T T T

TT T

x D y Ax c x D y Ax c

x D y Ax c D y Ax c x D y Ax c

x D y Ax c D y Ax c

+

+

+

+ − − − − −

= + − − − − − − −

= + − − − − ≤

 

Using lemma 4 we have 
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1 , ( )

T Td
F x y x x A x x x x D y Ax c
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( ) ( )* *( ) .
TT T Tx D y Ax c x D y D y++ + − − − −  
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Since 

                       ( ) ( )*
2 ,

Td dyF x y y y
dt dt

= −  

( ) ( )* *( )
T Ty y D x D y Ax c Dx+= − − + − − +  

then 

            ( ) ( ) ( ) ( )
2

* *, .
T Td F x y x x A x x x x D y Ax c

dt
+

≤ − − − − − + − −  

The proof is complete. 
Theorem 4. Network (4) is globally convergent to the solutions set of problems (3) and (4). 
Proof . Using lemma 4, the right hand side of (23) is a Lipschitz mapping. From the existence 
theory of ordinary differential equations [44], we can assume that for any 0 0( , ) m nx y R R∈ ×  

there exists a unique solution ( )( ), ( )x t y t  of (4) and its maximal existence interval 

[ )0 00, ( , )x yλ . 

Let * *,x y  be solutions of problems (3) and (4) respectively. Let     

     
2 2* * * *

0 0

1 1 1( , ) ( , ) ( ) ( )  
2 2 2

m n TV x y R R F x y x x A x x x x y y⎧ ⎫= ∈ × ≤ − − + − + −⎨ ⎬
⎭⎩

  

Using theorem 3, ( , )F x y  is a Liapunov function of system (23) on V. Since 
* *( ) ( ) 0Tx x A x x− − ≥  we have 

2 2* *1 1( , )
2 2

F x y x x y y≥ − + − . 

This proves that V is bounded. By the extension theory of ordinary differential equations [], 
0 0( , )x yλ = +∞ .Using the LaSalle invariant principle [45], there exists a constant k, such that 

( ) 1( ), ( ) ( ),x t y t M F k t−→ ∩ → +∞  , where M is the maximal invariant set in 

__

( , ) ( , ) 0, ( , )dx y F x y x y V
dt

⎧ ⎫
Ω = = ∈⎨ ⎬

⎩ ⎭
. 

Now we will prove that every point in set M is a solution of problems (3) and (4). 

1 1( , )x y N∀ ∈  , let ( )1 1( ), ( )x t y t  be a solution of equation (23) with initial point 1 1( , )x y , its 

maximal existence interval is [ )1 10, ( , ) .x yλ By the invariant of M and bounded ness of V, we 

have 1 1 1 1( , ) ,  ( ) .x y x t xλ = +∞ =  If  1 1( , )x y  is not a solution of problems (3) and (4), using 

theorem 2 and 3  ( )1 1 1
TD x D y Ax c b

+
+ − − ≠ . From (23) 

We have 1 ( )y t →∞  as t →∞  . It is contradictory to the bound ness of V. Thus 1 1( , )x y  is 

a solution of problems (3) and (4). Since 1 1( , )x y  is arbitrary the proof is completed.   
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4.3 Models for nonlinear programming 
Malek and Yashtini proposed the following recurrent dynamical artificial neural network 
[46] 

 
[ ( ) ( ) ]

,
[ ( )]

P x f x g x y xxd
ydt y g x y

Ω

+

−∇ −∇ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ + −⎝ ⎠ ⎝ ⎠

  (27) 

for the solution of nonlinear programming problem:  

                ( )Minimize f x              

                                                       Subject to Ax b≤                                                 (28) 

x∈Ω           

where , .m n mA R b R×∈ ∈    

4.4 Models for variational inequalities  
The systems governing the behavior of the recurrent dynamical artificial network 
corresponding to the variational inequalities problem (8) are [4] 

 
( ( ) )

( )

T Tx x F x A y B z x
du d y y Ax b y
dt dt

z Bx c

+

+

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − + −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

  (29) 

 

* * * * *

* * *

*

( ( ) )
( )

T Tx x F x A y B z
y y Ax b
Bx c

+

+

= − + +⎧
⎪ = − +⎨
⎪ =⎩

  (30) 

where { }( ) max 0,i ix x+ = for all 1, ,i n= …  and { }( ) max 0,j jy y+ =  for all 1, ,j m= … , 

and *x is the solution of monotone variational inequalities problem (…). 
Now, let (.),  (.)x y and (.)z  be some dependent variables to time t. We initiate 0initialu =  to 

the system governed by (29), when system (30) reaches an equilibrium value *u for this 
input, we obtain the output of the neural network. The goal for the continuous time based 
dynamical system described by two systems (29) and (30), is to minimize the error function 
given by equation (11).  
Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29) 
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.  

5. Work examples 
For the following three models proposed by Xia, Malek and their coauthors solve quadratic 
programming problem in Example 1. 
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Ω = = ∈⎨ ⎬

⎩ ⎭
. 

Now we will prove that every point in set M is a solution of problems (3) and (4). 

1 1( , )x y N∀ ∈  , let ( )1 1( ), ( )x t y t  be a solution of equation (23) with initial point 1 1( , )x y , its 

maximal existence interval is [ )1 10, ( , ) .x yλ By the invariant of M and bounded ness of V, we 

have 1 1 1 1( , ) ,  ( ) .x y x t xλ = +∞ =  If  1 1( , )x y  is not a solution of problems (3) and (4), using 

theorem 2 and 3  ( )1 1 1
TD x D y Ax c b

+
+ − − ≠ . From (23) 

We have 1 ( )y t →∞  as t →∞  . It is contradictory to the bound ness of V. Thus 1 1( , )x y  is 

a solution of problems (3) and (4). Since 1 1( , )x y  is arbitrary the proof is completed.   

Applications of Recurrent Neural Networks to Optimization Problems 

 

271 

4.3 Models for nonlinear programming 
Malek and Yashtini proposed the following recurrent dynamical artificial neural network 
[46] 

 
[ ( ) ( ) ]

,
[ ( )]

P x f x g x y xxd
ydt y g x y

Ω

+

−∇ −∇ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ + −⎝ ⎠ ⎝ ⎠

  (27) 

for the solution of nonlinear programming problem:  

                ( )Minimize f x              

                                                       Subject to Ax b≤                                                 (28) 

x∈Ω           

where , .m n mA R b R×∈ ∈    

4.4 Models for variational inequalities  
The systems governing the behavior of the recurrent dynamical artificial network 
corresponding to the variational inequalities problem (8) are [4] 

 
( ( ) )

( )

T Tx x F x A y B z x
du d y y Ax b y
dt dt

z Bx c

+

+

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − + −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

  (29) 

 

* * * * *

* * *

*

( ( ) )
( )

T Tx x F x A y B z
y y Ax b
Bx c

+

+

= − + +⎧
⎪ = − +⎨
⎪ =⎩

  (30) 

where { }( ) max 0,i ix x+ = for all 1, ,i n= …  and { }( ) max 0,j jy y+ =  for all 1, ,j m= … , 

and *x is the solution of monotone variational inequalities problem (…). 
Now, let (.),  (.)x y and (.)z  be some dependent variables to time t. We initiate 0initialu =  to 

the system governed by (29), when system (30) reaches an equilibrium value *u for this 
input, we obtain the output of the neural network. The goal for the continuous time based 
dynamical system described by two systems (29) and (30), is to minimize the error function 
given by equation (11).  
Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29) 
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.  

5. Work examples 
For the following three models proposed by Xia, Malek and their coauthors solve quadratic 
programming problem in Example 1. 
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(Model 1):      
( )( ( ) ) ( )

( )

T T

T

x I A x x D y Ax c D Dx bd
ydt D x D y Ax c b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 

 (Model 2):       
( )( ( ) )

( )

T

T

x I A x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  

(Model 3):      
( )

( )

T

T

x x x D y Ax cd
ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
           

Example  1.  Consider the following (QP) problem: 

2 2
1 2 1 2 1 2       30 30Minimize x x x x x x+ + − −  

                                            1 2 3      2Subject to x x x− + + =  
          1 2 4 2x x x+ + =  
          1 2 5 8x x x− + =  

            1 2 6 12x x x+ + =  
                    1 2,  0x x ≥  

x*=(1,1,2,0,8,10)  z*=-57 
Figs.  5.3 to 5.8 displays  the  transient  behavior of  ( )x t  with  five  feasible  initial  points 

(5,  0, 7, -3, 3, 7)A = , 
(9,  1, 10, -12, 0, 2)B = , (8,  4, 6, -10, 4, 0)C = , (4,  6, 0, -8, 10, 2)D = and 
(5,  4, 3, -7, 7, 3)E =  where  y=(0,-1,0-2). 
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x*=(1,1,2,0,8,10)
y*=(0,-27, 0,0)

    
Fig. 5.1. Trajectories of example 1. for the  given x and y initial vectors (feasible) using (Model 3). 
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Fig. 5.2. Trajectories of example 1. for the  given x and y initial vectors (infeasible) using  
(Model 3). 
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Fig. 5.3. Example 1: trajectories with initial points inside the feasible region using (Model 1). 
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Fig. 5.3. Example 1: trajectories with initial points inside the feasible region using (Model 1). 
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Fig. 5.4. Example 1: trajectories with initial points outside the feasible region using  

(Model 1). 
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Fig. 5.5. Example 1: trajectories with initial points inside the feasible region using (Model 2). 
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Fig. 5.6. Example 1: trajectories with initial points outside the feasible region using  
(Model 2). 
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Fig. 5.7. Example 1: trajectories with initial points inside the feasible region using (Model 3). 
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Fig. 5.5. Example 1: trajectories with initial points inside the feasible region using (Model 2). 
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Fig. 5.7. Example 1: trajectories with initial points inside the feasible region using (Model 3). 
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Fig. 5.8. Example 1: trajectories with initial points outside the feasible region using (Model 3). 
Example 2. Consider the following nonlinear programming problem: 

4 2 4 2
1 1 2 2 1 2

1 1      0.5 0.5 30
4 4

Minimize x x x x x x+ + − −  

1 2     2Subject to x x− ≥ − , 

                       1 2

1 13
4 2

x x− ≥ − , 

                  1 24 4x x− − = −  
                 1 2 1x x− + =  
                     1 2,  0x x ≥  

 

Fig. 5.9 displays the transient behavior of ( )x t with seven initial points A(-5,-5), B(5,-5),  
C(15,0) D(15,10), E(5,15), F(-5,10) and  G(-5,5). 
Example  3. Consider  the  following  convex  nonlinear  programming  problem: 

                        
3

2 2 2 2 1
1 1 2 3 1 2 4    0.4 0.5 0.5

30
xMinimize x x x x x x x+ + + − + +  

1 2 3      2Subject to x x x− + ≥ −  

1 2 3 43 18x x x x− − + + ≥ −  

1 2 4

1 2
3

x x x+ − =  

1 2 3 4,  ,   ,   0x x x x ≥  
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Fig. 5.9. Example 2: The transient behavior of x(t)=(x1(t),x2(t)), with initial points outside the 
feasible region. 
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Fig. 5.10. Example 3: The transient behavior of x(t)=(x1(t),x2(t)), using  the recurrent neural 
network model proposed by Yashtini and Malek [4]. 
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Fig. 5.10. Example 3: The transient behavior of x(t)=(x1(t),x2(t)), using  the recurrent neural 
network model proposed by Yashtini and Malek [4]. 
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Fig. 5.11. Example 3: The transient behavior of  the neural network model, Yashtini and 
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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Example  4. Consider  the  nonlinear  variational  inequalities  problem.  The mapping F and  
constraint  set  S    defined  by 

1 2
2

1 2

3 4

3 4
3

14 2 1

1
( ) 2

2 6
1 1 2
3

x x
x

x x
F x

x x

x x
x

⎡ ⎤− + −⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
+⎢ ⎥

⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

 

 

and { }4
1 2 3 42 2,  3 2,  S x R x x x x l x h= ∈ + = + ≥ ≤ ≤  where (0,  0.1,  0.3,  0)Tl =  and 

(8,  8,  8,  8)Th = . 
In both cases trajectories converge to the x*=(0.95, 0.1, 0.3, 5.233). Here  y*=0,    z*=-3.5. 
Example 5. Consider the following linear variational inequality problem.  The mapping F 
and constraint set S defined by 

1 2 3

1 2 3

1 2 3

4 2 8 5
( ) 2 8 6 6

8 6 12 12

x x x
F x x x x

x x x

− + +⎡ ⎤
⎢ ⎥= − + − +⎢ ⎥
⎢ ⎥− + −⎣ ⎦

 

and  

{ }4
1 2 3 1 2 3 1 22 6,  2 16,  - 2 4,  ,S x R x x x x x x x x l x h= ∈ + + ≥ − − − ≥ − + = ≤ ≤  

 

where  ( 7,  7,  7)Tl = − − − and (5,  5,  5)Th = . 
Example  6. Consider  the  following  linear  complementarity  problem: 

0,      0,    ( ) 0,Tx Qx x Qxθ θ≥ + ≥ + =   

 Where 

2 6 2 3
0 3 2 6
2 3 4 9

2 6 2 6

Q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

  and      .

5
6
3

4

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

  

 
This problem has one solution x*= (1.1668, 0, 1.333, 0). Fig. 5.12 depict  the  trajectories  of  
neural network  model  (19)  with initial points  (8,3,2,0)T  and (3,1,2,6)T.      
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Fig. 5.11. Example 3: The transient behavior of  the neural network model, Yashtini and 
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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This problem has one solution x*= (1.1668, 0, 1.333, 0). Fig. 5.12 depict  the  trajectories  of  
neural network  model  (19)  with initial points  (8,3,2,0)T  and (3,1,2,6)T.      
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Fig.  5.12. Example  4: The transient behavior of  the neural network model, Yashtini and 
Malek [4],  for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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Fig.  5.13. Example  5: Simulation  results  for  the  neural  network  model  Yashtini and 
Malek [4], with  eight  various  initial points.  

Example 7. Consider the following quadratic programming problem: 

2 2
1 2 1 2 1 2   30 30 ,Minimize x x x x x x+ + − −  

          

1 2 3

1 2 4

5 1

2 6

5 35      ,
12 12
5 35                      ,
2 2

                                 5,
                                 5,
                                        0, 1,i

Subject to x x x

x x x

x x
x x

x i

− + =

+ + =

− =
+ =

≥ =( )2,...,6 .

 

and its dual:   

            2 2
1 2 3 4 1 2 1 2

35 35     5 5 ,
12 2

Minimize y y y y x x x x+ + + − − −       

1 2 3 1 2

1 2 4 1 2

5 5        2 30,
12 2

                          2 30.

Subject to y y y x x

y y y x x

+ − − − ≤ −

− + + − − ≤ −
 



 Recurrent Neural Networks 

 

280 

 (a) 

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1
x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(1/4,3/2,4,1/3,-2,-3)

 
(b) 

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

6

8

x1

x2

x3

x4

y

z

t

x(
t),

y(
t),

z(
t)

xo=(2,-2,-1,1,2.5,3)

  
 

Fig.  5.12. Example  4: The transient behavior of  the neural network model, Yashtini and 
Malek [4],  for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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This problem is solved using models (23) and (24). Numerical results are shown in tables 1 
and 2. These tables show that both models (23) and (24) are converging to the exact solution 
while model (23) is simpler to use and uses less expensive analog multipliers (see Malek & 
Alipour 2007). 
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Fig.  5.14. Example  6: The transient behavior of  the neural network model, Yashtini and 
Malek [4]  using  two different  set of the initial points. 
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6. Exercises for the Reader  
6.1 Smoothing filters: 
It is often desirable to apply a smoothing filter to the measured date in order to reconstruct 
the underlying smooth function, where the noise is independent of the observed variable. 
We denote by 1[ ,..., ]nf f f=  and 1[ ,..., ]ng g g=  as measured data and smoothed data 
respectively. For a given vector f  of length n  consisting of measured data corrupted by 
random noise of δ =constant mean derivation, the smoothing filters problem is to find 

,  1,  ...,ig i n=  such that i if g δ− ≤ , on average. For n  samples this condition can be 
written as   

 2 2

1
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i i
i

f g nδ
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− ≤∑  (Noise limiting condition)  (31) 

Now since our filtering problem consists in requiring that the continuous filtered curve 
)(xg  be as smooth as possible, we would require that  
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A finite difference scheme for second derivative of )(xg  is [47] 
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Then, by restating the optimization problem (33) and (31) in matrix notation we will have 
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2
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subject to the quadratic inequality constraint 
2 2
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This is a quadratic optimization problem with quadratic conditions [48]. 
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i. Solve this problem for 0.1δ = , 1000n =  by the neural network models given in this 
chapter (Malek & coauthors). 

ii. Compare your results with method of A. Savitzky and M.J.E Golay [49] and J. Steinier et   
al. [50].  

iii. Use MATLAB or MAPEL to solve this problem. 

6.2 Nonlinear programming via variational inequalities 
Consider the nonlinear programming problem:        

3
2 2 2 2 1

1 1 2 1 2 3 4

1 2 4

1 2 3

         ( ) 0.4 0.5 0.5
30

                     -0.5 0.5,
                                      0.5 0.4,
                                      

xMinimize f x x x x x x x x
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x x x

= + + − + + +
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1 2 3 4    , , , 0.x x x x ≥

 

i. Show that this is a convex nonlinear programming problem. 
ii. Use MATLAB or MAPEL to show that x* = (0.257, 0.258, 0, 0)T is an optimal    solution 

for this problem. 
iii. Show that x* In (ii) is also a solution for the monotone variational inequalities described 

in section 2.4, where ( ) ( )F x f x= ∇ , and  

                       { }4
1 2 4 1 2 30.5 0.5,  0.5 0.4,  0S x R x x x x x x x= ∈ − − + ≥ − + − = − ≥  

iv. Use the dynamical system 

( ( ) )T Tx x F x A y B y x
d y y Ax b
dt

z Bx c

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = − +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 

proposed in [4], in order to find the equilibrium value u*=(x*, y*, z*), starting from (a) 
feasible initial point (0.2, 1, 0.3, 0.75, -0.3, -0.5,)T and (b) infeasible initial point  
(0.5, 0.5, -0.1, -0.4, 0.9, -0.5)T 
v. Depict the trajectories of the above dynamical system. 
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1. Introduction 
Optimization is a ubiquitous phenomenon in nature and an important tool in engineering. 
As the counterparts of biological neural systems, properly designed artificial neural 
networks can serve as goal-seeking computational models for solving various optimization 
problems in many applications. In many engineering applications such as optimal control 
and signal processing, obtaining real-time locally optimal solutions is more important than 
taking time to search for globally optimal solutions. In such applications, recurrent neural 
networks are usually more competent than numerical optimization methods because of the 
inherent parallel nature. 
Since the seminal work of Tank and Hopfield in 1980s (Hopfield & Tank, 1986; Tank & 
Hopfield, 1986), recurrent neural networks for solving optimization problems have attracted 
much attention. In the past twenty years, many models have been developed for solving 
convex optimization problems, from the earlier proposals including the penalty method 
based neural network (Kennedy & Chua, 1988), the switched-capacitor neural network 
(Rodriģuez-Vázquez et al., 1990) and the deterministic annealing neural network (Wang, 
1994), to the latest development including (Xia, 2004; Gao, 2004; Gao et al., 2005; Hu & 
Wang, 2007b; Hu & Wang, 2007c; Hu & Wang, 2008). These latest models have a common 
characteristic: they were all formulated based on optimality conditions of the problems and 
therefore their equilibria correspond exactly to the solutions of the problems. In addition, for 
ensuring this correspondence, in contrast to many earlier proposals such as the penalty-
based neural network (Kennedy & Chua, 1988), there is no need to let any parameter go 
infinity. More importantly, if these neural networks are applied to solve nonconvex 
optimization problems, this nice property will be retained in the sense of critical points 
instead of global optima, e.g., Karush-Kuhn-Tucker (KKT) points (i.e., the equilibria will 
correspond no longer to the global optima but to these critical points). Naturally, one will 
ask if these models are suitable for searching for critical points, especially local optima, of 
general nonconvex optimization problems. 
Unfortunately, there is no guarantee that these optimality-conditions-based neural networks 
can be directly adopted to solve nonconvex optimization problems. In designing recurrent 
neural networks for optimization, letting the equilibria correspond to solutions is just one 
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issue. The other issue that cannot be neglected is to ensure the stability of the networks at 
these equilibria. In fact, if the above mentioned neural networks are directly applied to 
nonconvex problems, their dynamic behaviors could change drastically and become 
unpredictable. This is not like the circumstance of extending penalty-based neural networks 
for constrained convex optimization to solve constrained nonconvex problems. In that case, 
the performances of the networks for solving nonconvex problems can be predicted easily 
based on their performances in solving convex counterparts, e.g., if a network is previously 
globally convergent to some points, then it is locally convergent to these points now. 
So far, no much achievement in this direction has been obtained yet. In the chapter, I will 
review some recent progress made by us along this route. Our primary aim is to design 
locally or globally convergent recurrent neural networks (1) for solving special nonconvex 
optimization problems whose local minima are also global, and (2) for seeking Karush-
Kuhn-Tucker points of general nonconvex optimization problems. The two issues are 
presented in Section 3 and Section 4, respectively, after a brief introduction of some 
preliminaries in Section 2. Section 5 summarizes the findings and discusses several possible 
future directions related to this topic. 

2. Preliminaries 

Throughout the chapter, without specifications, the following notations are adopted. ℜn 

denotes the n dimensional real space and n
+ℜ  denotes its nonnegative quadrant. If a function 

g : ℜn → ℜ, then ∇g ∈ ℜn stands for its gradient and ∇2g ∈ ℜn×n stands for its Hessian matrix. 

If g(x, y) : ℜn × ℜm→ ℜ, then ∇xg( x,y) ∈ ℜn and ∇xx g( x,y) ∈ ℜn×n are viewed as respectively 

the gradient and Hessian matrix of g with respect to x. If a function G : ℜn → ℜm, ∇G ∈ ℜm×n 
stands for its Jacobian matrix. The transpose of a real matrix A is denoted by AT. A square 
matrix A is said to be positive definite (positive semidefinite), denoted by A > 0 (A ≥ 0), if 
xTAx > 0 (xTAx ≥ 0) ∀x ≠0.  denotes the L2 norm of a vector x. 
In many recurrent neural networks, the following projection operator is used as their 
activation functions 

 (1) 

where Ω is a closed convex set and “arg“ stands for the solution of the minimization 
problem adhering to it. In general, computing the projection of a point onto a convex set Ω is 
itself an optimization problem (see (Hu & Wang, 2008) for a neurodynamic solution to such 
a problem). But if Ω is a box set or a sphere set, the calculation is straight forward. For 
instance, if , then  PΩ (x) = (PΩ (x1),…, PΩ (xn))T 

and 

 

(2) 
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Figure 1. Projection operator in one dimensional case. Reprint of Fig. 1.3 in (Hu, 2007). 

Note ui might be +∞ and li might be -∞. Fig. 1 illustrates this operator in one dimensional 
case, which is somewhat similar in shape to the sigmoid activation function in the Hopfield 
neural network (cf. Fig. 3(A) in (Hopfield & Tank, 1986)). In particular, if l = 0 and u = ∞, the 
operator becomes nP

+ℜ (x). To simplify the notation, in this case it is written as x+. And the 

definition can be simplified as x+ = ( 1x+ ,…, nx+ )T with ix+ = max(xi, 0). 

For another instance, if  where c ∈ ℜn and r ∈ ℜ  are two 
constants. Then 

 
Definition 1 (Lipschitz Continuity) A function F: ℜn → ℜn is said to be Lipschitz continuous 
with constant L on a set D if, for every pair of points x, y ∈ D, 

 
F is said to be locally Lipschitz continuous on D if each point of D has a neighborhood  
D0 ⊂ D such that the above inequality holds for every pair of points x, y ∈ D0. 

Definition 2 (Convexity) A function f : ℜn → ℜ is convex over a convex set D if for all  
x, y ∈ D, and 0 < α < 1 

 
f(x) is strictly convex on D if above strict inequality holds whenever x ≠ y. 
Lemma 1 A differentiable function f : ℜn → ℜ is convex on a convex set D if and only if for every 
pair of distinct points x, y ∈D, 

≥ ∇ Tf y f x f x y - x( ) ( )+ ( ) ( ).  

f(x) is strictly convex if and only if above strict inequality holds whenever x ≠ y. 
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3. Solving pseudoconvex optimization problems 
In this section we consider solving the following problem 

 (3) 

where f : ℜn → ℜ is a differentiable nonconvex function and Ω ⊆ ℜn is a box set or sphere set 
defined in Section 2. 
To pave the way for discussion, some additional definitions are needed. 
Definition 3 (Pseudoconvexity) A differentiable function f : ℜn → ℜ is pseudoconvex on a convex 
set D if for every pair of distinct points x, y ∈D, 

 
f is strictly pseudoconvex on D if for every pair of distinct points x, y ∈D, 

 
and strongly pseudoconvex on D if there exists a constant β > 0 such that for every pair of points  
x, y ∈D, 

 
Definition 4 (Pseudomonotonicity) A function F: ℜn → ℜn is pseudomonotone on a convex set D 
if, for every pair of distinct points x, y ∈D, 

 
F is strictly pseudomonotone on D if, for every pair of distinct points x, y ∈D, 

 
and strongly pseudomonotone on D if there exists a constant γ > 0 such that for every pair of points 
x, y ∈D, 

 
It is shown in (Karamardian & Schaible, 1990) that a differentiable function is pseudoconvex 
and strictly pseudoconvex if and only if its gradient is a pseudomonotone and strictly 
pseudomonotone mapping, respectively. Moreover, if its gradient is strongly 
pseudomonotone, the function is strongly pseudoconvex; but the converse is not true 
(Hadjisavvas & Schaible, 1993). 
Lemma 2 Suppose a differentiable function f : ℜn → ℜ is pseudoconvex on Ω ⊂ ℜn. Then a point  
 x *∈ Ω satisfies 

 
if and only if x* is a minimum of f(x) in Ω. 
One of the important classes of pseudoconvex optimization problems are the quadratic 
fractional problems in the following form: 
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(4) 

where Q is an n × n symmetric matrix, a, b ∈ ℜn, a0, b0 ∈ ℜ. It is well known (e.g., Avriel et al., 
1988) that f is pseudoconvex on X when Q ≥ 0. Conditions for f being pseudoconvex on X 
when Q is not positive semidefinite are discussed in (Cambini et al., 2002). Specially, when b 
= 0, problem (4) reduces to the classic quadratic programming problem, and when  
Q = 0 it reduces to the so-called linear fractional problem, which is of course pseudoconvex on 
X (Bazaraa et al., 1993). 
Throughout this section, f(x) in (3) is assumed to be pseudoconvex on Ω and ∇f is assumed 
to be Lipschitz continuous on Ω. Note that if f is twice continuously differentiable in an open 
set containing Ω, then the latter assumption is satisfied automatically. 

3.1 Two-layer projection neural network 
Consider a recurrent neural network for solving (3) whose dynamics is governed by 

 
(5) 

where λ > 0 and α > 0 are two scaling factors, PΩ : ℜn → Ω is the projection operator defined 
in section 2, and F(x) stands for ∇f(x). The architecture of the network is illustrated in Fig. 2. 
In contrast to the projection neural network, which has a one-layer structure and will be 
discussed in next subsection, for convenience, the above network is termed two-layer 
projection neural network or TLPNN for short in the chapter. 
 

 
Figure 2. Architecture of the TLPNN (5). Reprint of Fig. 2.1 in (Hu, 2007). 
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It is proved in (Xia & Wang, 1998) that x*∈ Ω is a solution of (3) if and only if it is an 
equilibrium point of the neural network (5). The dynamic behavior of the system was first 
discussed in (Xia & Wang, 1998), and later in (Xia & Wang, 2000) with different convexity 
assumptions. In (Hu & Wang, 2006a) we have shown that the corresponding results are still 
valid when the neural network is employed to solve pseudoconvex optimization problems 
in the form of (3) (of course with some additional assumptions). The results are contained in 
the following theorem, which is a restatement of Theorems 2 and 3 in (Hu & Wang, 2006a). 
Theorem 1 Assume that ∇f(x) is Lipschitz continuous in ℜn with a constant L. 
• The TLPNN is globally convergent to a solution of (3) with α < 1/L. In particular, if (3) has a 

unique solution, the neural network is globally asymptotically stable. 
• If ∇f(x) is strongly pseudomonotone on Ω with constant γ, where γ > 4L, then the TLPNN is 

globally exponentially stable with α < (γ - 4L)/ γL. 

Remark 1 Note that the Lipschitz continuity of ∇f(x) in ℜn is a stronger condition than the 
Lipschitz continuity in Ω. 
 

 
Figure 3. Transient behavior of the TLPNN (5) in Example 1. 

Example 1 We now use the TLPNN to solve a quadratic fractional programming problem (4) with 

 
It is easily verified that Q is symmetric and positive definite in ℜ4, and consequently f is 

pseudoconvex on X = {x ∈ ℜ 4|bT x + b0 > 0}. We minimize f over Ω = {x ∈ ℜ 4|1 ≤ xi ≤ 10, 

 i = 1,…, 4}⊂ X by using the TLPNN with 
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This problem has a unique solution x* = (1, 1, 1, 1)T in Ω. Simulations show that the TLPNN (5) is 
globally asymptotically stable at x* with any initial point if α is appropriately selected. For instance, 
Fig. 3 shows that the trajectories of the neural network with λ = 100, α= 0.01 and the initial point x0 
= (0, 3, 6, 10)T converge to x*. 
 

 
Figure 4. Architecture of the PNN (6). Reprint of Fig. 3.1 in (Hu, 2007). 

3.2 One-layer projection neural network 
Consider a simpler neural network, called the projection neural network or PNN, for solving 
problem (3) whose dynamic behavior is governed by the following equation 

 
(6) 

where the notations are the same as in (5). According to (Kinderlehrer & Stampcchia, 1980), 
x* is a solution of (3) if and only if it is an equilibrium point of the PNN. One of the merits of 
this neural network is its simplicity compared with the TLPNN. The architecture of the 
network is illustrated in Fig. 4. Its stability results were presented in (Hu & Wang, 2006b, 
Corollary 3) which is restated as follows. 
Theorem 2 Assume that f(x) is twice continuously differentiable on an open set containing Ω. Then 
the PNN (6) is stable in the sense of Lyapunov and globally convergent to a solution of (3). Moreover, 
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This problem has a unique solution x* = (1, 1, 1, 1)T in Ω. Simulations show that the TLPNN (5) is 
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Figure 4. Architecture of the PNN (6). Reprint of Fig. 3.1 in (Hu, 2007). 

3.2 One-layer projection neural network 
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• If rf is strongly pseudomonotone on Ω and there exists δ > 0 such that f(x) ≤ δ║x - x*║2, where 
x* is the unique solution of (3), then the neural network is globally exponentially stable; 

• If ∇f is strongly pseudomonotone on Ω and ║∇f(x)║ has an upper bound on Ω, then the neural 
network is globally asymptotically stable at the unique solution of (3), while the convergence rate 
is upper bounded by 

 
       where a, b are two positive constants. 
Example 2 We now use the PNN to solve the pseudoconvex optimization problem in Example 1. 
Simulations show that the PNN (6) is globally asymptotically stable at x* with any α, λ and any 

initial point. For instance, Fig. 5 shows that the trajectories of the neural network with λ = α = 1 and 
the initial point x0 = (0, 3, 6, 10)T converge to x*. 
 

 
Figure 5. Transient behavior of the PNN (6) in Example 2. Reprint of Fig. 6 in (Hu & Wang, 
2006b). 

4. Solving general nonconvex optimization problems 
Pseudoconvex optimization problems in the form of (3) represent a very special case in the 
family of nonconvex optimization problems. In this section let's consider solving the 
following generally constrained nonconvex optimization problem: 

 
(7) 

where f : ℜn→ℜ, g(x) = [g1(x),…,gm(x)]T is an m-dimensional vector-valued function of n 
variables, and X is a box set or a sphere set defined in Section 2. In what follows, the 
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functions f, g1(x),…,gm(x) are assumed to be twice continuously differentiable. If all functions 
f(x) and gj(x) are convex over ℜn, the problem is called a convex optimization problem; 
otherwise, it is called a nonconvex optimization problem, which is what we are interested in 
here. Equation (7) represents a wide variety of optimization problems. For example, it is 
well known that if a problem has equality constraints h(x) = 0, then this constraint can be 
expressed as h(x) ≤ 0 and - h(x) ≤ 0. 
For solving general nonconvex optimization problems (including pseudoconvex 
optimization problems (3) where Ω is a general convex set instead of box set or sphere set), 
no much progress has been made in the neural network community. This is mainly due to 
the difficulty in characterizing global optimality of nonconvex optimization problems by 
means of explicit equations. From the optimization context, it is known that under fairly 
mild conditions an optimum of the problem must be a Karush-Kuhn-Tucker (KKT) point, 
while the KKT points are easier to characterize. In terms of developing neural networks for 
global optimization, it is very hard to find global optima at the very beginning; and a more 
attainable goal at present is to design neural networks for seeking local optima first with the 
aid of KKT conditions. 
To pave the way for discussion, some additional notations and definitions are needed in this 
section. In what follows, let I = {1, … ,n}, J = {1, … ,m}. If u ∈ ℜn, then up = ( 1

pu ,… , p
nu )T 

where p is an integer; Γ(u) = diag(u1,…, un). intS denotes the interior of a set S. 
Definition 5 A solution x satisfying the constraints in (7) is called a feasible solution. A feasible 
solution x is said to be a regular point if the gradients of gj(x), ∇gj(x), ∀j ∈ { j ∈ J|gj(x) = 0}, are 
linearly independent. 
Definition 6 A point x* is said to be a strict minimum of the problem in (7) if f(x*) < f(x), 
 ∀x ∈ K(x*) ∩ S, where K(x*) is a neighborhood of x* and S is the feasible region of the problem. 
According to (Kinderlehrer & Stampcchia, 1980), the Karush-Kuhn-Tucker (KKT) condition 
(Bazaraa et al., 1993) for problem (7) can be expressed as 

 
(8) 

where α > 0, y ∈ ℜ m and  
The classical Lagrangian function associated with problem (7) is defined as 

 
(9) 

Note that the Hessian of the Lagrangian function is calculated as 

 
(10)

Lemma 3 (Second-order sufficiency conditions (Bazaraa et al., 1993)) Suppose that x* is a 
feasible point to problem (7) and x* ∈ int X. If there exists y* ∈ ℜ m, such that (x*, y*) is a KKT point 

pair and the Hessian matrix ∇xxL(x*, y*) in (10) is positive definite on the tangent subspace: 
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where J(x*) is defined by 

 (11)

then x*is a strict minimum point of problem (7). 
In what follows, let Ω = X × n

+ℜ and Ω* denote the KKT point set of (7) or the solution set of 
(8). 

4.1 Local convergence of the extended projection neural network 
In a series of papers (Xia & Wang, 2004; Xia, 2004; Xia & Feng, 2005; Xia et al., 2007), a 
recurrent neural network, termed extended projection neural network (or EPNN for short), 
was developed for solving the convex optimization problems in the form of (7) with the 
following dynamical equation: 

 
(12)

where α > 0. According to the projection formulation (8), the equilibria of the above EPNN 
correspond to the KKT points of problem (7) exactly. If problem (7) is convex, then the KKT 
points correspond to the global optima, and the EPNN solves the problem. One wonders 
what will happen if (12) is used to solve a nonconvex program in the form of (7). Contrary to 
our expectation, in the nonconvex case, the EPNN can not be guaranteed to converge to any 
KKT point (which may not correspond to a global optimum), even locally, as will be shown 
by numerical examples later on. It is thus demanded to find some necessary and/or 
sufficient conditions that guarantee the local convergence of the neural network. The 
following theorem provides such a set of sufficient conditions, which is an improved 
version of Theorem 9.4 in (Hu, 2007). 
Theorem 3 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T )T be the 
corresponding KKT point of the problem. If the Hessian matrix ∇xxL(x*; y*) in (10) is positive 
definite, then the EPNN (12) is asymptotically stable at u*, and x* is a strict local minimum of the 
problem. 
Remark 2 In Theorem 9.4 of (Hu, 2007) there is an additional requirement on u*: it should satisfy 
the second-order sufficiency conditions in Lemma 3. This requirement is actually unnecessary as it 
can be covered by the positive definiteness of ∇xxL(x*; y*). 

4.2 Augmented Lagrange networks 
Theorem 3 reveals that if the Hessian matrix of the Lagrangian function is positive definite 
at a local minimum solution, the EPNN (12) may be locally convergent to that local 
optimum. But in many cases, this condition fails to exist. Fortunately, there exist ways to 
generate this condition, and one popular technique is to utilize the augmented Lagrangian 
functions (Li & Sun, 2000). 
In 1992, Zhang and Constantinides proposed a neural network based on the augmented 
Lagrangian function for seeking local minima of the following equality constrained 
optimization problem (Zhang & Constantinides, 1992): 
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where f : ℜn→ ℜ, h : ℜn → ℜm and both f and h are assumed twice continuously differentiable. 
The dynamic equation of the network is as follows 

 
 
where c > 0 is a control parameter. Under the second-order sufficiency conditions, the neural 
network can be shown convergent to local minima with appropriate choice of c. The 
disadvantage of the neural network lies in that it handles equality constraints only. Though 
in theory inequality constraints can be converted to equality constraints by introducing slack 
variables, the dimension of the neural network will inevitably increase, which is usually not 
deemed a good strategy in terms of model complexity. 
An alternative extension of the neural network in (Zhang & Constantinides, 1992) for 
handling inequality constraints in (7) directly can be found in (Huang, 2005) and its dynamic 
system is as follows (the bound constraint x ∈ X is not considered explicitly in that paper): 

 
The local convergence of the neural network to its equilibrium set, denoted by ˆ eΩ , was 
proved by using the linearization techniques, and moreover, Ω* ⊂ ˆ eΩ . However, it is clear 

that ˆ eΩ ≠Ω*. For example, any critical point x of the objective function, which makes ∇f(x) = 
0, and y = 0 constitute an equilibrium point of the neural network, but in rare cases such an 
equilibrium corresponds to a KKT point. 
Other augmented Lagrangians associated with problem (7) could be tested from the 
viewpoint of recurrent neural networks. But whether a particular Lagrangian is suited for 
the design of recurrent neural networks does not have a straightforward answer. For 
example, the essentially quadratic augmented Lagrangian discussed in (Sun et al., 2005) might 
be a candidate, but its Hessian matrix is not continuous which lays difficulties for analyzing 
the convergence of the resulting neural networks. On the other hand, the exponential-type 
augmented Lagrangian does have a continuous Hessian matrix, but as the reformulation raises 
the constraints to exponents of some exponential functions which causes numerical 
difficulties, that method rarely works in practice. In what follows, we discuss about two 
promising augmented Lagrangians without these difficulties. For convenience, the resulting 
neural networks are termed Augmented Lagrange Networks. 

4.2.1 Partial p-power augmented Lagrangian 
Problem (7) can be written as 

 
(13)

where ĝ (x) = g(x) + b. Consider the partial p-power transformation of (13): 
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(14)

with p≥1. If we assume that b1,…,bm are positive constants and g1(x),…,gm(x) are nonnegative 
over X, then problem (13) is equivalent to (14). This assumption does not impose a strict 
restriction on problem (13) as we can always apply some suitable equivalent transformation 
on the problem if necessary. Correspondingly, the standard Lagrangian function of problem 
(14) is defined as 

 
 

where yj ≥0; j ∈ J, which can be regarded as an augmented Lagrangian function associated 
with the original problem (7). Then, from (12), the neural network for solving (14) becomes 

 
(15)

where It is easy to calculate 

 
 

Problem (14) is termed partial p-power transformation of the problem (13) (Li & Sun, 2000). 
The following lemma reveals one of the advantages of the transformation. 
Lemma 4 (Li & Sun, 2000) Let x* be a local optimal solution of (13) and x* ∈ intX. Assume that x* 

is a regular point and satisfies the second-order sufficiency conditions. If J(x*) ≠ ∅in (11), then there 

exists a q > 0 such that the Hessian of the partial p-power Lagrangian function, ∇xxLp(x*, y*), is 
positive definite when p > q. 
Hence we have the following stability results about neural network (15), which follows from 
Theorem 3 and Lemma 4. 
Theorem 4 Let x* be a feasible and regular point of problem (13), and u* = ((x*)T ; (y*)T )T be the 
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma 
3. Then there exists p > 0 such that the neural network (15) is asymptotically stable at u*, and x* is a 
strict local minimum of the problem. 
Example 3 Consider the following nonconvex programming problem in (Li & Sun, 2000) 

 
This problem has only one local solution x*= (0.5, 0.125)T, thus also the global solution. The solution 
is located on the boundary of the feasible region (see Fig. 6). It can be verified that 

 
The Hessian of the Lagrangian function is 
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which is indefinite. 
Now consider the partial p-power formulation (14) of the problem. When p = 3, a direct calculation 
yields the new optimal Lagrangian multiplier y* = 0.0417 and the Hessian of the new Lagrangian 

 
which is a positive definite matrix. We simulate the neural network (15) to solve the problem. Fig. 7 
shows the transient behavior of the neural network (15) with the initial point u(t0) = (0.5, 0.2, 0.125)T 

that is very close to u*. When p = 1, the neural network is identical to (12) and it does not converge to 
u*. But when p≥1.5, the neural network converges. When p = 3, Fig. 8 displays the transient behavior 
of x(t) with several initial points u(t0) = (x(t0), y(t0)) chosen as follows: y(t0) is random chosen and 
x(t0) is chosen as P1(0.8, 0.1), P2(0.3, 0.5), P3(0, 0.2), P4(0.4,-0.3). From Fig. 8, it is observed that all 
four trajectories converges to x* eventually, although the trajectory started from P2 exhibits obvious 
instability at its earlier evolving stage. 
Moreover, all simulations show that the neural network does not converge to the other KKT points 
corresponding to the maximum solution x *= (0, 0)T, even after the partial p-power transformation. 
This is because 

 
is not positive semidefinite. 
 

 
Figure 6. Isometric view of the objective function and constraints in Example 3. Reprint of 
Fig. 9.1 in (Hu, 2007). 

4.2.2 A new augmented Lagrangian 
Consider the following augmented Lagrangian function associated with problem (7) slightly 
differing from that in (Huang, 2005): 
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(a) p = 1.0 (b) p = 1.2 

  
(c) p = 1.5 (d) p = 3.0 

Figure 7. Transient behavior of the neural network (15) with u(t0) = (0.5, 0.2, 0.125)T and 
different values of p in Example 3. Reprint of Fig. 9.2 in (Hu, 2007). 
 

 

Figure 8: State trajectories (x1(t), x2(t)) of the neural network (15) with p = 3 and four initial 
points in Example 3. Reprint of Fig. 9.3 in (Hu, 2007). 
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where L(x, y) is the regular Lagrangian function defined in (9) and c > 0 is a scalar. Let Ωe 

denote the solution set of the following equations 

 
 

where α > 0. We have the following theorem. 
Theorem 5 Ω* = Ωe. 
Consider a recurrent neural network with its dynamic behavior governed by 

 
(16)

where α > 0, c > 0 are two contents. Note that the term ∇f(x) + ∇g(x)y + c∇g(x)Γ(y2)g(x) on 

the right-hand-side is the expansion of ∇xLc(x, y). Therefore the equilibrium set of the neural 

network is actually Ωe, which is equal to Ω*  as claimed in Theorem 5. 
Theorem 6 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T )T be the 
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma 
3. Then there exists c > 0 such that the neural network (16) is asymptotically stable at u*, and x* is a 
strict local minimum of the problem. 
The proofs of Theorems 5 and 6 can be found in (Hu & Wang, 2007a) and (Hu, 2007). 
Example 4 Consider the problem in Example 3 again. This time we use the new augmented Lagrange 
network (16) to solve it. Fig. 9 shows the transient behavior of the neural network (16) with the initial 
point u(t0) = (0.5, 0.2, 0.125)T (same as in Example 3). When c ≤ 1.5, the neural network does not 
converge, and when c ≥ 2 the neural network converges to u*. When c = 5, Fig. 10 displays the 
transient behavior of x(t) with four initial points chosen in a similar way as in Example 3. It is 
observed that all four trajectories converges to x* eventually. 
Example 5 Consider the following problem 

 
 

As both f(x) and g1(x) are concave, the problem is a nonconvex optimization problem. Fig. 11 shows 
the contour of the objective function and the solutions to g1(x) = 0 and g2(x) = 0 on the x1-x2 plane. 
The feasible region is the nonconvex area enclosed by the bold curves. Simple calculations yield 
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(a) p = 1.0 (b) p = 1.2 

  
(c) p = 1.5 (d) p = 3.0 

Figure 7. Transient behavior of the neural network (15) with u(t0) = (0.5, 0.2, 0.125)T and 
different values of p in Example 3. Reprint of Fig. 9.2 in (Hu, 2007). 
 

 

Figure 8: State trajectories (x1(t), x2(t)) of the neural network (15) with p = 3 and four initial 
points in Example 3. Reprint of Fig. 9.3 in (Hu, 2007). 
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Evidently, ∇xxL(x, y) is not positive definite over the entire real space, and the neural network (12) 
can not be applied to solve the problem. Now we check if the neural network (16) can be used to search 
for the KKT points. There are four KKT points associated with the problem: *

1u = (-1.272, 2.618, 

4.013, 1.395)T , *
2u = (1.272, 2.618, 4.013, 1.395)T , *

3u = (0, 0, 0, 0)T , *
4u = (0, 1, 1, 0)T , but only the 

first two correspond to local minima. Moreover, it is verified that at either *
1u or *

2u , J(x*) defined in 

Lemma 3 is equal to {1, 2}, and ∇g1(x*), ∇g2(x*) are linearly independent, which indicates M(x*) = 
0. So the second-order sufficiency conditions holds trivially at either point. According to Theorem 6, 
the neural network (16) can be made asymptotically stable at *

1u and *
2u by choosing appropriate c > 0. 

Fig. 12 displays the state trajectories of the neural network with different values of c started from the 
same initial point (-2, 3, 0, 0)T . When c = 0, the neural network reduces to the neural network (12). It 
is seen from Fig. 12(a) that some trajectories diverge to infinity. When c = 0.1, the neural network is 
not convergent, either, as shown in Fig. 12(b). However, when c ≥ 0.2, in Figs. 12(c) and 12(d) we 
observe that the neural network converges to *

1u asymptotically. 
 

  

(a) c = 1.0 (b) c = 1.2 

  

(c) p = 1.5 (d) p = 3.0 

Figure 10. State trajectories (x1(t), x2(t)) of the neural network (16) with c = 5 and four initial 
points in Example 4. 
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Figure 11. Contour of the objective function and the feasible region in Example 5. Reprint of 
Fig. 1 in (Hu & Wang, 2007a). 

5. Concluding remarks 
5.1 Summary of contents 
This chapter summarizes our recent work in designing recurrent neural networks for 
solving nonconvex optimization problems. It is required that the designed neural networks 
should converge, either locally or globally, to exact local or global solutions of the problems, 
which is different from the principle of simple penalty-based methods. (Here, the words 
“locally” and “globally” characterize the convergence behavior of recurrent neural networks 
while the words “local” and “global” characterize the inherent property of a solution to the 
problem; they are in general uncorrelated with each other.) First, a special class of 
nonconvex optimization problems, pseudoconvex optimization problems, were considered. 
Because any local solution of such a problem is global as well, it is possible to design neural 
networks which can globally converge to the global solutions. We have revealed that two 
existing neural networks, called TLPNN and PNN, are capable of accomplishing this task 
with appropriate conditions. 
Second, general nonconvex optimization problems were discussed from the viewpoint of 
designing neural networks to search for their Karush-Kuhn-Tucker (KKT) points especially 
the corresponding local solutions. The extended projection neural network (EPNN), 
originated from solving convex optimization problems in the literature, was studied in this 
context. The local convergence of the EPNN to KKT points was studied and a set of 
sufficient conditions was given. Since in many cases these conditions fail to exist, an 
effective method, augmented Lagrangian techniques were proposed to conquer this 
difficulty. Two augmented Lagrangian function methods were investigated: one is the 
partial p-power Lagrangian function existing in the literature and the other is new. Two 
prominent augmented Lagrange networks were then obtained. For both neural networks, a 
nice property is that their equilibria are in exact correspondence with the KKT points. 
Another nice property lies in that by choosing an appropriate control parameter each neural 
network can be made asymptotically stable at those KKT points associated with local optima 
under some standard assumptions in the optimization context, although locally. This can be 
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regarded as a meaningful progress for designing neural networks for completely solving 
nonconvex optimization problems. 
During discussion, numerical examples were provided to illustrate as well as validate the 
theoretical results. 
 

  
(a) c = 0 (b) c = 0.1 

  
(c) c = 0.2 (d) c = 0.5 

Figure 12. Transient behavior the neural network (16) with different values of c in Example 
5. Reprint of Fig. 2 in (Hu & Wang, 2007a). 

5.2 Future directions 
If we classify the nonconvex optimization problems into two categories Type-I and Type-II, 
referring to those whose local optima are also global optima and those otherwise, 
respectively, our primary goal at current stage is to devise some neural networks that can 
converge globally to the solutions of Type-I problems and can converge globally to local 
optima sets of Type-II problems. Towards this goal, there is still a long way to walk. Related 
to the contents of this chapter, some meaningful future directions are as follows. Notice that 
in Section 4.1 it was shown that the EPNN is locally asymptotically stable at a KKT point (x*, 
y*) (corresponding to a local solution) of the Type-II problem provided that the Hessian of 
the Lagrange function ∇LxxL(x, y) > 0 at this point. The main idea of the proof of this result 
(see Hu, 2007, Chapter 9.2) is to construct a neighborhood Ωc(x*, y*) around this KKT point 
in which ∇LxxL(x, y) > 0. Then the trajectory originated in it will converge to the KKT point. 
Hence, for the size of the neighborhood, the larger the better. This condition is actually 
somewhat too strong. For ensuring the local convergence, it is required ∇LxxL(x, y) > 0 on 
the trajectory of the network in Ωc(x*, y*) only, not necessarily on the entire Ωc(x*, y*). This 
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new condition can be utilized to state global convergence of the EPNN to a KKT point, while 
the original one cannot. The reason is that it is impossible for a nonconvex optimization 
problem that ∇LxxL(x, y) > 0 over the entire space, but it is possible that this inequality holds 
over a particular trajectory. This is one of the main ideas of a most recent article (Xia et al., 
2007). Obviously, this idea can be also applied to the two augmented Lagrange networks 
discussed in the chapter. 
For solving optimization problems with general constraints, the EPNN and its variants play 
the dominant roles in the community. Recently, a notable progress has been made in (Xia & 
Feng, 2007) where a much different model was proposed for solving convex optimization 
problems. It deserves further investigation from the viewpoint of nonconvex optimization. 
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An Improved Extremum Seeking Algorithm 
Based on the Chaotic Annealing Recurrent 

Neural Network and Its Application 
Yun-an Hu, Bin Zuo and Jing Li 

Department of Control Engineering, Naval Aeronautical and Astronautical University 
P. R. China 

1. Introduction  
Extremum seeking problem deals with the problem of minimizing or maximizing a plant 
over a set of decision variables[1]. Extremum seeking problems represent a class of 
widespread optimization problems arising in diverse design and planning contexts. Many 
large-scale and real-time applications, such as traffic routing and bioreactor systems, require 
solving large-scale extremum seeking problem in real time. In order to solve this class of 
extremum seeking problems, a novel extremum seeking algorithm was proposed in the 
1950’s. Early work on performance improvement by extremum seeking can be found in 
Tsien. In the 1950s and the 1960s, Extremum seeking algorithm was considered as an 
adaptive control method[2]. Until 1990s sliding mode control for extremum seeking has not 
been utilized successfully[3]. Subsequently, a method of adding compensator dynamics in 
ESA was proposed by Krstic, which improved the stability of the controlled extremum 
control system[4]. Although those methods improved tremendously the performance of 
ESA, the “chatter” problem of the output and the switching of the control law and 
incapability of escaping from the local minima limit the application of ESA. 
In order to solve those problems in the conventional ESA and improve the capability of 
global searching, an improved chaotic annealing recurrent neural network (CARNN) is 
proposed in the paper. The method of introducing a chaotic annealing recurrent neural 
network into ESA is proposed in the paper. First, an extremum seeking problem is 
converted into the process of seeking the global extreme point of the plant where the slope 
of cost function is zero. Second, an improved CARNN is constructed; and then we can apply 
the CARNN to finding the global extreme point and stabilizing the plant at that point. The 
CARNN proposed in the paper doesn’t make use of search signals such as sinusoidal 
periodic signals, so the method can solve the “chatter” problem of the output and the 
switching of the control law in the general ESA and improve the dynamic performance of 
extremum seeking system. At the same time, CARNN utilizes the randomicity and the 
property of global searching of chaos system to improve the capability of global searching of 
the system[5-6], During the process of optimization, chaotic annealing is realized by 
decaying the amplitude of the chaos noise and the accepting probability continuously. 
Adjusting the probability of acceptance could influence the rate of convergence. The process 
of optimization was divided into two phases: the coarse search based on chaos and the 
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1. Introduction  
Extremum seeking problem deals with the problem of minimizing or maximizing a plant 
over a set of decision variables[1]. Extremum seeking problems represent a class of 
widespread optimization problems arising in diverse design and planning contexts. Many 
large-scale and real-time applications, such as traffic routing and bioreactor systems, require 
solving large-scale extremum seeking problem in real time. In order to solve this class of 
extremum seeking problems, a novel extremum seeking algorithm was proposed in the 
1950’s. Early work on performance improvement by extremum seeking can be found in 
Tsien. In the 1950s and the 1960s, Extremum seeking algorithm was considered as an 
adaptive control method[2]. Until 1990s sliding mode control for extremum seeking has not 
been utilized successfully[3]. Subsequently, a method of adding compensator dynamics in 
ESA was proposed by Krstic, which improved the stability of the controlled extremum 
control system[4]. Although those methods improved tremendously the performance of 
ESA, the “chatter” problem of the output and the switching of the control law and 
incapability of escaping from the local minima limit the application of ESA. 
In order to solve those problems in the conventional ESA and improve the capability of 
global searching, an improved chaotic annealing recurrent neural network (CARNN) is 
proposed in the paper. The method of introducing a chaotic annealing recurrent neural 
network into ESA is proposed in the paper. First, an extremum seeking problem is 
converted into the process of seeking the global extreme point of the plant where the slope 
of cost function is zero. Second, an improved CARNN is constructed; and then we can apply 
the CARNN to finding the global extreme point and stabilizing the plant at that point. The 
CARNN proposed in the paper doesn’t make use of search signals such as sinusoidal 
periodic signals, so the method can solve the “chatter” problem of the output and the 
switching of the control law in the general ESA and improve the dynamic performance of 
extremum seeking system. At the same time, CARNN utilizes the randomicity and the 
property of global searching of chaos system to improve the capability of global searching of 
the system[5-6], During the process of optimization, chaotic annealing is realized by 
decaying the amplitude of the chaos noise and the accepting probability continuously. 
Adjusting the probability of acceptance could influence the rate of convergence. The process 
of optimization was divided into two phases: the coarse search based on chaos and the 
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elaborate search based on RNN. At last, CARNN will stabilize the system to the global 
extreme point, which is validated by simulating a simplified UAV tight formation flight 
model and a typical Schaffer Function. At the same time, the stability analysis of ESA can be 
simplified by the proposed method. 

2. Annealing recurrent neural network description 
2.1 Problem formulation 
Consider a general nonlinear system: 

 
( ) ( )( )
( )( )

x f x t ,u t

y F x t

=

=
 (1) 

Where n mx R ,u R∈ ∈ and y R∈ are the states, the system inputs and the system output, 
respectively. ( )F x is also defined as the cost function of the system (1). ( )f x,u  and 

( )F x are smooth functions. If the nonlinear system (1) is an extremum seeking system, then 
it must satisfy the following assumptions. 
Assumption 1: There is a smooth control law[7]: 

 ( ) ( )( )u t x t ,α θ=  (2) 

to stabilize the nonlinear system(1), where  [ ]( )1 2 12
T

i p, , , , , i , , ,pθ θ θ θ θ⎡ ⎤= ∈⎣ ⎦ is a parameter 

vector of p  dimension which determines a unique equilibrium vector.  
With the control law (2), the closed-loop system of the nonlinear system (1) can be written 
as: 

( )( )x f x, x,α θ=  

Assumption 2: There is a smooth function p n
ex : R R→  such that: 

( )( ) ( )0 ef x, x, x xα θ θ= ↔ =  

Assumption 3: The static performance map at the equilibrium point ( )ex θ  from θ  to y  
represented by: 

 ( )( ) ( )ey F x Fθ θ= =  (3) 

is smooth and has a unique global maximum or minimum vector  
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Differentiating (3) with respect to time yields the relation between θ  and ( )y t . 

 ( )( ) ( ) ( )t t y tθ θ∂ =  (4) 

Where ( )( ) ( ) ( ) ( )
1 2

T

p

F F F
t , , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
and ( ) 1 2

T

pt , , ,θ θ θ θ= ⎡ ⎤⎣ ⎦ . 

Based on Assumption 3, once the seeking vector θ  of the extremum seeking system (1) 

converges to the global extreme vectorθ ∗ , then ( ) ( ) ( ) ( )
1 2
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p

F F F
, , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
must 

also converge to zero. A CARNN is introduced into ESA in order to minimize ( )θ∂  in 
finite time. Certainly the system (1) is subjected to (4). 
Then, the extremum seeking problem can be written as follows. 

( )ˆarg minθ θθ θ∗
∈

= ∂  

 Subject to: ( )( ) ( ) ( )T t t y tθ θ∂ =  (5) 

The optimization (5) is then equivalent to 

Minimize: ( )1
Tf cυ υ=  

 Subject to: ( )1 0p A bυ υ= − =  (6) 
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. 

By the dual theory, the dual program corresponding to the program (6) is 

Maximize: ( )2
Tf bω ω=  

 Subject to: ( )2 0Tp A cω ω= − =  (7) 

Where, ω  denotes the dual vector of υ , [ ]1 2 3 1 3
Tω ω ω ω

×
= . 

Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7). 

2.2 Annealing Recurrent Neural Network (ARNN) design 
In view of the primal and dual programs (6) and (7), define the following energy function: 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 1 2

1 1 1,
2 2 2

E T t f f p pυ ω υ ω υ ω= − + +  (8) 
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Differentiating (3) with respect to time yields the relation between θ  and ( )y t . 
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finite time. Certainly the system (1) is subjected to (4). 
Then, the extremum seeking problem can be written as follows. 
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By the dual theory, the dual program corresponding to the program (6) is 

Maximize: ( )2
Tf bω ω=  

 Subject to: ( )2 0Tp A cω ω= − =  (7) 

Where, ω  denotes the dual vector of υ , [ ]1 2 3 1 3
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×
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Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7). 

2.2 Annealing Recurrent Neural Network (ARNN) design 
In view of the primal and dual programs (6) and (7), define the following energy function: 
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Clearly, the energy function (8) is convex and continuously differentiable. The first term in 
(8) is the squared of the difference between two objective functions of the programs (6) and 
(7), respectively. The second and the third terms are for the equality constraints of (6) and 
(7). ( )T t  denotes a time-varying annealing parameter. 
With the energy function defined in (8), the dynamics for CARNN solving (6) and (7) can be 
defined by the negative gradient of the energy function as follows. 

 ( )d E
dt
σ μ σ= − ∇  (9) 

Where, ( )T,σ υ ω= , ( )E σ∇ is the gradient of the energy function ( )E σ  defined in (9), and μ  
is a positive scalar constant, which is used to scale the convergence rate of annealing 
recurrent neural network. 
The dynamical equation (9) of annealing recurrent neural network can be expressed as: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 11
1 2 1

,E f pdu T t f f p
dt

υ ω υ υ
μ μ υ ω υ

υ υ υ
∂ ⎡ ∂ ∂ ⎤

= − = − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦
 

                 ( ) ( ) ( )T T TT t c c b A A bμ υ ω υ⎡ ⎤= − − + −⎣ ⎦  (10) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 2

,E f pdu T t f f p
dt

υ ω ω ω
μ μ υ ω ω

ω ω ω
∂ ⎡ ∂ ∂ ⎤

= − = − − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦
 

           ( ) ( ) ( )T T TT t b c b A A cμ υ ω ω⎡ ⎤= − − − + −⎣ ⎦  (11) 

 ( )1q uυ =  (12) 

 ( )2q uω =  (13) 

Where, ( )q  is a sigmoid activation function, ( )
1 1

1 1
1 11 u

b aq u a
e ευ −

−
= = +

+
 and 

( )
2 2

2 2
2 21 u

b aq u a
e εω −

−
= = +

+
. 1a  and 1b  denote the upper bound and the below bound of υ . 2a  

and 2b  denote the upper bound and the below bound of ω . 1 0ε >  and 2 0ε > . 

The annealing recurrent neural network is described as the equations (10)～(13), which are 
determined by the number of decision variables such as ( ),υ ω , ( )1 2u ,u  is the column vector 

of instantaneous net inputs to neurons, ( ),υ ω  is the column output vector of neurons. The 

lateral connection weight matrix is defined as ( )( ) ( )
( ) ( )( )

11 12

21 22

T T T

T T T
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μ μ

μ μ
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, the 

biasing threshold vector of the neurons is defined as 1
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TA b
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ϑ μ
ϑ μ
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3. Convergence analysis 
In this section, analytical results on the stability of the proposed annealing recurrent neural 
network and feasibility and optimality of the steady-state solutions to the programs 
described in (6) and (7) are presented.  

3.1 Solution feasibility 
Theorem 1. Assume that the Jacobian matrices ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  exist and are 

positive semidefinite. If the temperature parameter ( )T t  is nonnegative, strictly monotone 

decreasing for 0t ≥ , and approaches zero as time approaches infinity, then the annealing 
recurrent neural network (10)～(13) is asymptotically stable. 
Proof: Consider the following Lyapunov function. 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 1 2

1 1 1,
2 2 2

L E T t f f p pυ ω υ ω υ ω= = − + +  (14) 

Apparently, ( ) 0L t > . The difference of L  along time trajectory of (14) is as follows: 
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1 2 1
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dt dt dt dt
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( ) ( ) ( ) ( ) ( )( )22
2 1 2

1
2

p dT td p f f
dt dt

ω ω ω υ ω
ω

∂
+ ⋅ ⋅ + −

∂
 

( ) ( ) ( ) ( )( ) ( ) ( )1 1
1 2 1

f p dT t f f p
dt

υ υ υυ ω υ
υ υ

⎡ ∂ ∂ ⎤
= ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 

( ) ( ) ( ) ( )( ) ( ) ( )2 2
1 2 2

f p dT t f f p
dt

ω ω ωυ ω ω
ω ω

⎡ ∂ ∂ ⎤
+ − ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦
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dt
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According to the equations (10) and (11), and the following equations 
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υ
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We can have: 
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3. Convergence analysis 
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( ) ( ) ( ) ( )( ) ( ) ( )2 2
1 2 2

f p dT t f f p
dt

ω ω ωυ ω ω
ω ω

⎡ ∂ ∂ ⎤
+ − ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 

 ( ) ( ) ( )( )2
1 2

1
2

dT t
f f

dt
υ ω+ −  (15) 

According to the equations (10) and (11), and the following equations 

 ( ) 1
1

d duJ q u
dt dt
υ
= ⎡ ⎤ ⋅⎣ ⎦  (16) 

 ( ) 2
2

d duJ q u
dt dt
ω
= ⎡ ⎤ ⋅⎣ ⎦  (17) 

We can have: 

 ( ) ( ) ( ) ( ) ( )( )21 1 2 2
1 2 1 2

1 1 1
2

dT tdL du du du duJ q u J q u f f
dt dt dt dt dt dt

υ ω
μ μ

=− ⋅ ⋅ ⎡ ⎤⋅ − ⋅ ⋅ ⎡ ⎤⋅ + −⎣ ⎦ ⎣ ⎦  (18) 
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We know that the Jacobian matrices of ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  both exist and are positive 
semidefinite and μ  is a positive scalar constant. If the time-varying annealing parameter 
( )T t  is nonnegative, strictly monotone decreasing for 0t ≥ , and approaches zero as time 

approaches infinity, then dL dt  is negative definite. Because ( )T t  represents the annealing 

effect, the simple examples of ( )T t  can described as follows. 

 ( ) tT t ηβα −=  (19) 

 ( ) ( )1T t t ηβ −= +  (20) 
Where 1α > , 0β >  and 0η >  are constant parameters. Parameters β  and η  can be used to 
scale the annealing parameter. 
Because ( )L t  is positive definite and radially unbounded, and dL dt  is negative definite. 
According to the Lyapunov’s theorem, the designed annealing recurrent neural network is 
asymptotically stable. 
Theorem 2. Assume that the Jacobian matrices ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  exist and are 

positive semidefinite. If ( ) 0T t ≥ , ( ) 0dT t dt <  and ( )lim 0
t

T t
→∞

= , then the steady state of the 

annealing neural network represents a feasible solution to the programs described in 
equations (6) and (7). 
Proof: The proof of Theorem 1 shows that the energy function ( ),E υ ω  is positive definite 

and strictly monotone decreasing with respect to time t , which implies ( )( )lim , , 0
t

E T tυ ω
→∞

= . 

Because ( )lim 0
t

T t
→∞

= , then we have 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 1 2

1 1 1lim , , lim
2 2 2t t

E T t T t f f p pυ ω υ ω υ ω
→∞ →∞

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (21) 

 ( )( ) ( )( )2 2

1 2
1 1lim 0
2 2t

p t p tυ ω
→∞

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (22) 

Because ( )( )1p tυ  and ( )( )2p tω  are continuous, ( )( ) ( )( ) ( )( )
22 2

1 2 1
1 1 1lim lim
2 2 2t t

p t p t p tυ ω υ
→∞ →∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( )
2 2 2

2 1 2
1 1 1lim 0
2 2 2t

p t p pω υ ω
→∞

+ = + = , so we have ( )1 0p υ =  and ( )2 0p ω = , where υ  

and ω  are the stable solutions of υ  and ω . 

3.2 Solution optimality 

Firstly, Let ( )
( )( )
( )( )
( )( )

( )( )
1

1 1 3 1 1

1

f

F f I f

f

υ

υ υ υ

υ
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and ( )
( )( )
( )( )
( )( )

( )( )
2

2 2 3 1 2

2

f

F f I f

f

ω

ω ω ω

ω
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 be the augmented 

vector. 
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Theorem 3. Assume that the Jacobian matrices ( )1 0J q u⎡ ⎤ ≠⎣ ⎦  and ( )2 0J q u⎡ ⎤ ≠⎣ ⎦  and are 

positive semidefinite, 0t∀ ≥ , and ( )( )1 0f υ∇ ≠  and ( )( )2 0f ω∇ ≠ . If ( ) 0dT t dt < , 

( )lim 0
t

T t
→∞

=  and  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

max 0, ,

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎧ ⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎪ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎪ ⎝ ⎠≥ ⎨

⎛ ∂ ∂ ⎞⎪ ∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ∂ ∂⎝ ⎠⎩

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2
2 2 2 2 2 2

2 2
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T T
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f f
F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎫⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ ⎪⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ⎪⎝ ⎠

⎬
⎛ ∂ ∂ ⎞⎪∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪∂ ∂⎝ ⎠⎭

 (23) 

then the steady states υ  and ω  of the annealing neural network represents the optimal 
solutions υ∗  and ω∗  to the programs described in equations (6) and (7). 
Proof: According to the equation (23), we know 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

 

The above equation implies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
1 1 1 1 1 2

T T f
T t F t J q u p t J q u f f

υ
μ υ υ υ ω

υ
∂⎡ ⎤∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ∂

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1 1 1

T Tp p
p t J q u p F t J q u p

υ υ
μ υ υ μ υ υ

υ υ
∂ ∂

≥ ∇ ⎡ ⎤ ⎡ ⎤ − ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂
 

Rearranging the above inequality, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1
1 1 1 2 1 1 1

T Tf p
T t F t J q u f f F t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

∇ ⎡ ⎤ ⎡ ⎤ − + ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1
1 1 1 2 1 1 1 0

T Tf p
T t p t J q u f f p t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

− ∇ ⎡ ⎤ ⎡ ⎤ − − ∇ ⎡ ⎤ ⎡ ⎤ ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂
 

That is also 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1
1 1 1 2 1

T f p
F t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
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We know that the Jacobian matrices of ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  both exist and are positive 
semidefinite and μ  is a positive scalar constant. If the time-varying annealing parameter 
( )T t  is nonnegative, strictly monotone decreasing for 0t ≥ , and approaches zero as time 

approaches infinity, then dL dt  is negative definite. Because ( )T t  represents the annealing 

effect, the simple examples of ( )T t  can described as follows. 

 ( ) tT t ηβα −=  (19) 

 ( ) ( )1T t t ηβ −= +  (20) 
Where 1α > , 0β >  and 0η >  are constant parameters. Parameters β  and η  can be used to 
scale the annealing parameter. 
Because ( )L t  is positive definite and radially unbounded, and dL dt  is negative definite. 
According to the Lyapunov’s theorem, the designed annealing recurrent neural network is 
asymptotically stable. 
Theorem 2. Assume that the Jacobian matrices ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  exist and are 

positive semidefinite. If ( ) 0T t ≥ , ( ) 0dT t dt <  and ( )lim 0
t

T t
→∞

= , then the steady state of the 

annealing neural network represents a feasible solution to the programs described in 
equations (6) and (7). 
Proof: The proof of Theorem 1 shows that the energy function ( ),E υ ω  is positive definite 

and strictly monotone decreasing with respect to time t , which implies ( )( )lim , , 0
t

E T tυ ω
→∞

= . 

Because ( )lim 0
t

T t
→∞

= , then we have 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 1 2

1 1 1lim , , lim
2 2 2t t

E T t T t f f p pυ ω υ ω υ ω
→∞ →∞

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (21) 

 ( )( ) ( )( )2 2

1 2
1 1lim 0
2 2t

p t p tυ ω
→∞

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (22) 

Because ( )( )1p tυ  and ( )( )2p tω  are continuous, ( )( ) ( )( ) ( )( )
22 2

1 2 1
1 1 1lim lim
2 2 2t t

p t p t p tυ ω υ
→∞ →∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( )
2 2 2

2 1 2
1 1 1lim 0
2 2 2t

p t p pω υ ω
→∞

+ = + = , so we have ( )1 0p υ =  and ( )2 0p ω = , where υ  

and ω  are the stable solutions of υ  and ω . 

3.2 Solution optimality 

Firstly, Let ( )
( )( )
( )( )
( )( )

( )( )
1

1 1 3 1 1

1

f

F f I f

f

υ

υ υ υ

υ
×

⎡ ⎤
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F f I f
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ω ω ω

ω
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⎡ ⎤
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⎢ ⎥
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 be the augmented 

vector. 
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Theorem 3. Assume that the Jacobian matrices ( )1 0J q u⎡ ⎤ ≠⎣ ⎦  and ( )2 0J q u⎡ ⎤ ≠⎣ ⎦  and are 

positive semidefinite, 0t∀ ≥ , and ( )( )1 0f υ∇ ≠  and ( )( )2 0f ω∇ ≠ . If ( ) 0dT t dt < , 

( )lim 0
t

T t
→∞

=  and  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

max 0, ,

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎧ ⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎪ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎪ ⎝ ⎠≥ ⎨

⎛ ∂ ∂ ⎞⎪ ∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ∂ ∂⎝ ⎠⎩
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ω υ ω ω υ ω
ω ω

⎫⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ ⎪⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ⎪⎝ ⎠

⎬
⎛ ∂ ∂ ⎞⎪∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪∂ ∂⎝ ⎠⎭

 (23) 

then the steady states υ  and ω  of the annealing neural network represents the optimal 
solutions υ∗  and ω∗  to the programs described in equations (6) and (7). 
Proof: According to the equation (23), we know 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1
1 1 1 1 1 1

1 1
1 1 1 2 1 1 1 2

T T
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p p
p t J q u p F t J q u p
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f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ
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⎛ ∂ ∂ ⎞
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The above equation implies 
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Rearranging the above inequality, we have 
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That is also 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1
1 1 1 2 1 0

T f p
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υ υ
μ υ υ ω υ

υ υ
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Substituting equations (10), (11), (16) and (17) into the above inequality, we have 

( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 1

T Tdu t du t
F t J q u p t J q u

dt dt
υ υ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ − ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) ( ) ( )( ) ( )( )1 1
1 1 0

T T dF t dp td t d t
F t p t

dt dt dt dt
υ υυ υ

υ υ∇ ⎡ ⎤ ⋅ −∇ ⎡ ⎤ ⋅ = − ≤⎣ ⎦ ⎣ ⎦  

Therefore, we have ( )( ) ( )( )1 1dF t dt dp t dtυ υ≤ , which implies ( )( ) ( )( )1 1F t F tυ υ′′ ′− ≤  

( )( ) ( )( )1 1p t p tυ υ′′ ′−  for any t t′ ′′≤ . Let t∗  be the time associated with an optimal 

 solution υ∗ . We have ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1F F t p p tυ υ υ υ∗ ∗∞ − ≤ ∞ − ; that is 

( ) ( ) ( ) ( )1 1 1 1F F p pυ υ υ υ∗ ∗− ≤ − . Because ( ) ( )1 1 0p pυ υ∗= = , ( ) ( )1 1F Fυ υ∗≤ . At last, we have 

( ) ( )1 1f fυ υ∗≤ . Also, because ( )ˆ 1arg min V fυυ υ∗
∈

= , ( ) ( )1 1f fυ υ∗≥  by definition of υ∗ . 

Consequently, ( ) ( ) ( )ˆ1 1 1min Vf f f
υ

υ υ υ∗
∈

= = , where V̂  denotes the feasible region of the 

optimal solution υ∗ . 
Next, according to the equation (23), we also know 
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⎛ ∂ ∂ ⎞
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By the same reasoning, we know 
( )( ) ( )( )2 2dF t dp t

dt dt
ω ω

≥ , which implies ( )( ) ( )( )2 2F t F tω ω′′ ′−  

( )( ) ( )( )2 2p t p tω ω′′ ′≥ −  for any t t′ ′′≤ . Let t∗  be the time associated with an optimal solution 

ω∗ . We have ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2F F t p p tω ω ω ω∗ ∗∞ − ≥ ∞ − ; that is ( ) ( ) ( ) ( )2 2 2 2F F p pω ω ω ω∗ ∗− ≥ − . 

Because ( ) ( )2 2 0p pω ω∗= = , ( ) ( )2 2F Fω ω∗≥ . At last, we have ( ) ( )2 2f fω ω∗≥ . Also, because 

( )ˆ 2arg max U fωω ω∗
∈

= , ( ) ( )2 2f fω ω∗ ≥  by definition of ω∗ . Consequently, ( ) ( )2 2f fω ω∗= =  

( )ˆ 2max U fω ω
∈

, where Û  denotes the feasible region of the optimal solution ω∗ . 

4. A chaotic annealing recurrent neural network description 
In order to improve the global searching performance of the designed annealing recurrent 
neural network, we introduce chaotic factors into the designed neural network. Therefore, 
the structure of a chaotic annealing recurrent neural network is described as follows. 
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 ( ) ( ) ( )( )1 1i i it t tχ γχ χ+ = −  (30) 

Where 4γ = , ( )0 0iP > , 0 1κ< < , 0 1δ< < , ( )0 0iη > , 1 0ε >  and 2 0ε > . We know that 
equation (30) is a Logistic map, when 4γ = , the chaos phenomenon will happen in the 
system. 
As time approaches infinity, the chaotic annealing recurrent neural network will evolve into 
the annealing recurrent neural network (10)～(13). Therefore, we must not repeatedly 
analyze the stability and solution feasibility and solution optimality of the chaotic annealing 
recurrent neural network (24)～(30). 

5. Simulation analysis 
5.1 A simplified tight formation flight model simulation 
Consider a simplified tight formation flight model consisting of two Unmanned Aerial 
Vehicles[8].  
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− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (31) 

with a cost function given by 
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Substituting equations (10), (11), (16) and (17) into the above inequality, we have 
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By the same reasoning, we know 
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, where Û  denotes the feasible region of the optimal solution ω∗ . 

4. A chaotic annealing recurrent neural network description 
In order to improve the global searching performance of the designed annealing recurrent 
neural network, we introduce chaotic factors into the designed neural network. Therefore, 
the structure of a chaotic annealing recurrent neural network is described as follows. 
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the annealing recurrent neural network (10)～(13). Therefore, we must not repeatedly 
analyze the stability and solution feasibility and solution optimality of the chaotic annealing 
recurrent neural network (24)～(30). 

5. Simulation analysis 
5.1 A simplified tight formation flight model simulation 
Consider a simplified tight formation flight model consisting of two Unmanned Aerial 
Vehicles[8].  
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− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (31) 

with a cost function given by 
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 ( ) ( )( ) ( )( )2 2
1 310 0 5 9 590y t x t x t= − + − + +  (32) 

Where 1x  is the vertical separation of two Unmanned Aerial Vehicles, 2x  is the differential 
of 1x , 3x  is the lateral separation of two Unmanned Aerial Vehicles, 4x  is the differential of 

3x  and y  is the upwash  force acting on the wingman. It is clear that the global maximum 
point is 1 0x∗ =  and 3 9x∗ = − , where the cost function ( )y t  reaches its maximum 590y∗ = . 
A control law based on sliding mode theory is given by: 
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( ) ( )

1 1 1 2
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2 2 3 4

2 3 2 4 2 2 2 2
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35 15

s x x
u x s x k sign s

s x x
u x s x k sign s

σ
σ θ

σ
σ θ

= +⎧
⎪ = + − − −⎪
⎨ = +⎪
⎪ = + − − −⎩

 (33) 

Where 1 2,σ σ  are two sliding mode surfaces, 1 1 2 2s ,k ,s ,k are positive scalar constants, 

[ ]1 2,θ θ θ=  are an extremum seeking vector.  
Remark: The control law is given in (33), which is based on sliding mode theory. We 
choose ( )i i isign sσ θ− , ( )1 2i ,=  so that 1x and 3x  entirely traces 1θ and 2θ  in the sliding mode 

surfaces respectively, and the system will be stable at 1θ
∗  and 2θ

∗  finally. 
The initial conditions of the system (31) are given as ( )1 0 2x = − , ( )2 0 0x = , ( )3 0 4x = − , 

( )4 0 0x = , ( )1 0 2θ = − , ( )2 0 4θ = − . Choose ( ) tT t ηβα −= , where 0 01.β = , eα = , 5η = . 
Applying CARNN to system (31), the parameters are given as: 23.5μ = , 4γ = , 
( ) ( )1 20 0 1P P= = , 0.01κ = , 0.01δ = , 1 10ε = , 2 10ε = , ( )1 0 0.912χ = , ( )2 0 0.551χ = , 

( ) [ ]1 0 10 1 5 Tη = − − , ( ) [ ]2 0 3 10 5 Tη = , 1 2 0.5b b= = , 1 2 0.5a a= = − . The simulation results 
are shown from figure 1 to figure 3. 
 

 
 Fig. 1.  The simulation result of the state 1x          Fig. 2.  The simulation result of the state 3x  
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Fig. 3.  The simulation result of the output y  

Certainly, μ  is a main factor of scaling the convergence rate of CARNN, if it is too big, the 
error of the output will be introduced. On the contrary, if it is too small, the convergence 
rate of the system will be slow. In conclusion, the values of those parameters should be 
verified by the system simulation. 
In those simulation results, solid lines are the results applying CARNN to ESA; dash lines 
are the results applying ESA with sliding mode[9]. Comparing those simulation results, we 
know the dynamic performance of the method proposed in the paper is superior to that of 
ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in figure 1 and 
2, which is very harmful in practice. Moreover the convergence rate of ESA with CARNN 
can be scaled by adjusting the chaotic annealing parameter ( )T t . 

5.2 Schaffer function simulation 
In order to exhibit the capability of global searching of the proposed CARNN, the typical 
Schaffer function (34) is defined as the testing function[10]. 
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When 1 2 0x x= = , the schaffer function ( )1 2,f x x  will obtain the global minimum 

( )0,0 1f = − . There are numerous local minimums and maximums among the range of 3.14 
away from the global minimum.  
Now, we define 1 1xθ =  and 2 2xθ = . Choose ( ) tT t ηβα −= , where 0 01.β = , eα = , 3η = , and 

apply the CARNN to search the global minimum of the function (34). The neural network 
parameters are given as: 35μ = , 4γ = , ( ) ( )1 20 0 1P P= = , 0.01κ = , 0.001δ = , 1 10ε = , 2 10ε = , 

( )1 0 0.912χ = , ( )2 0 0.551χ = , ( ) [ ]1 0 200 20 50 Tη = − − , ( ) [ ]2 0 100 300 50 Tη = , 

1 2 0.5b b= = , 1 2 0.5a a= = − . When the initial conditions of the function (34) are given 
as 1 2x = −  and 2 3.5x = , the simulation results are shown from figure 4 to figure 6. 
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Fig. 3.  The simulation result of the output y  

Certainly, μ  is a main factor of scaling the convergence rate of CARNN, if it is too big, the 
error of the output will be introduced. On the contrary, if it is too small, the convergence 
rate of the system will be slow. In conclusion, the values of those parameters should be 
verified by the system simulation. 
In those simulation results, solid lines are the results applying CARNN to ESA; dash lines 
are the results applying ESA with sliding mode[9]. Comparing those simulation results, we 
know the dynamic performance of the method proposed in the paper is superior to that of 
ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in figure 1 and 
2, which is very harmful in practice. Moreover the convergence rate of ESA with CARNN 
can be scaled by adjusting the chaotic annealing parameter ( )T t . 

5.2 Schaffer function simulation 
In order to exhibit the capability of global searching of the proposed CARNN, the typical 
Schaffer function (34) is defined as the testing function[10]. 
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When 1 2 0x x= = , the schaffer function ( )1 2,f x x  will obtain the global minimum 

( )0,0 1f = − . There are numerous local minimums and maximums among the range of 3.14 
away from the global minimum.  
Now, we define 1 1xθ =  and 2 2xθ = . Choose ( ) tT t ηβα −= , where 0 01.β = , eα = , 3η = , and 

apply the CARNN to search the global minimum of the function (34). The neural network 
parameters are given as: 35μ = , 4γ = , ( ) ( )1 20 0 1P P= = , 0.01κ = , 0.001δ = , 1 10ε = , 2 10ε = , 
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1 2 0.5b b= = , 1 2 0.5a a= = − . When the initial conditions of the function (34) are given 
as 1 2x = −  and 2 3.5x = , the simulation results are shown from figure 4 to figure 6. 
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When the initial conditions of the function (34) are given as ( )1 0 1x = − and 2 9.59x = , the 
simulation results are shown as from figure 7 to figure 9. 
 

  
    Fig. 4.  The simulation result of ( )1 2f x ,x            Fig. 5.  The simulation result of 1x  
 

 
    Fig. 6.  The simulation result of 2x                    Fig. 7.  The simulation result of ( )1 2f x ,x  
 

   
    Fig. 8.  The simulation result of 1x                      Fig. 9.  The simulation result of 2x  
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We have accomplished a great deal of computer simulations in different initial conditions. 
The ESA based on the chaotic annealing recurrent neural network can find the global 
minimum of Schaffer function under different conditions of the simulation. 

6. Referring 
The method of introducing CARNN into ESA greatly improves the dynamic performance 
and the global searching capability of the system. Two phases of the coarse search based on 
chaos and the elaborate search based on ARNN guarantee that the system could fully carry 
out the chaos searching and find the global extremum point and accordingly converge to 
that point. At the same time, the disappearance of the “chatter” of the system output and the 
switching of the control law are beneficial to engineering applications.  
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1. Introduction 
Neural networks have been widely applied in image processing, pattern recognition, 
optimization solvers, fixed-point computation and other engineering areas. It has been 
known that these applications heavily depend on the dynamic behaviors of neural 
networks. The stability of neural networks has been extensively studied over the past years 
because it is one of the most important behaviors of neural networks. On the other hand, 
time delays are frequently encountered in neural networks due to the finite switching speed 
of amplifiers and the inherent communication time of neurons. Since the existence of time 
delay is often a source of instability for neural networks, the stability study for delayed 
neural networks is of both theoretical and practical importance. 
Hopfield [9, 10] has proposed Hopfield neural networks (HNNs) which have found 
applications in a broad range of disciplines where the targeted problems can reduce to 
optimization problems. In recent years, HNNs and their various generalizations have 
attracted the great attention of many scientists including mathematicians, physicists, 
computer scientists due to their potential for the tasks of classification, associative memory, 
parallel computation and their ability to solve difficult optimization problems, see for 
example [4, 10, 13]. HNNs characterized by first-order interactions, [1, 14] presented their 
intrinsic limitations. Recently, the study of high-order neural networks has received much 
attention due to that they have stronger approximation property, faster convergence rate, 
greater storage capacity and higher fault tolerance than lower-order neural networks [17]. In 
[3, 5, 6, 8, 11, 12, 15, 16, 18, 19, 22], the authors have been studied the stability analysis of 
high-order neural networks with constant time delays or time varying delays. In this paper, 
we are concerned with the global stability for a class of uncertain stochastic high-order 
neural networks with time varying delays. The structure of the stochastic neural networks 
under consideration is more general than some previous ones existed in the literature. Based 
on the Lyapunov stability theory, new global asymptotic stability criteria are presented in 

                                                 
1 The work of the authors was supported by UGC, New Delhi under SAP(DRS) sanctioned 
No. F510/6/DRS/2004 (SAP-1). 
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terms of LMIs . Finally, we also provide a numerical example to demonstrate the 
effectiveness of the proposed stability results. 

2. Problem description and preliminaries 
Throughout this chapter we will use the notation A > 0 (or A < 0) to denote that the matrix A 
is a symmetric and positive definite (or negative definite) matrix. The notation AT and A−1 

mean the transpose of A and the inverse of a square matrix. If A,B are symmetric matrices A 
> B (A ≥ B) means that A − B is positive definite (positive semi-definite). 
Consider the following high-order Hopfield neural networks with time varying delays 
described by 

(1) 

where i ∈ {1, 2, , ..., n}, t ≥ t0, xi(t) is the neuron state; ci is positive constant, it denotes the rate 
with which the cell resets its potential to the resting state; aij, bij are the first-order synaptic 
weights of the neural networks; Tijl is the second-order synaptic weights of the neural 
networks; τj(t) (j = 1, 2, ..., n) is the transmission delay of the jth neuron such that  
0 < τj(t) ≤ τj* and ,

jτ (t) ≤ ηj < 1, where τj*, ηj are constants; the activation function fj is 

continuous on [t0 − τ ∗,+∞); Ji is the external input. 
Assume that 
(H1) In the neuron activation function f(y) = (f1(y1), f2(y2),…, fn(yn))T , each function fi is 
continuously differentiable with fi(0) = 0 and there exists a positive scalars Li and X i such 

that for any αi, βi ∈ R, 

 
Due to the boundedness of the activation function fi, by employing the well known 
Brouwer’s fixed point theorem, we can easily obtain that there exists an equilibrium point of 
the system (1). The uniqueness of the equilibrium point can be deduced from the asymptotic 
stability which will be proved subsequently. 
Let x* be an equilibrium point of (1) and y(t) = x(t) − x*. Set gj(yj(t)) = fj(xj(t)) − fj(x*j ), 
gj(yj(t − τj(t))) = fj(xj(t − τj(t))) − fj(x*j ). Apparently, for each i = 1, 2, ..., n, we have 

 
Consider the following high-order HNNs with time varying delay is given by 

 (2) 
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where 

 

 
In this paper the following high-order HNN with parameter uncertainties and stochastic 
perturbations is considered 

 

 (3) 

where w(t) = (w1(t), w2(t), ..., wm(t))T is an m-dimensional Brownian motion defined on a 
complete probability space (Ω,F, P) with a natural filtration {Ft}t≥0. Let σ(t, x, y) : R+×Rn×Rn → 

Rn×m is locally Lipschitz continuous and satisfies the linear growth condition. The 

uncertainties ΔC(t), ΔA(t), ΔB(t) are defined by 
 

 
 

where ΔC(t) is a diagonal matrix and M, NC, NA and NB are known real constant matrices 
with appropriate dimensions, which characterize how the deterministic uncertain parameter 
in F(t) enters the nominal matrices C, A and B. The matrix F(t), which is time varying 
unknown and satisfies 
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Let x(t; ξ) denote the state trajectory of the neural network (3) from the initial data x(θ) = ξ(θ) 
on −τ * ≤ θ ≤ 0 in 

0

2LF ([−τ*, 0],Rn). It can be easily seen that the system (3) admits a trivial 
solution x(t; 0) ≡ 0 corresponding to the initial data ξ = 0, see [2, 7]. 

3. Main results 

Let C2,1(Rn × R+ : R+) denote the family of all non-negative functions V (y, t) on Rn × R+  

which are continuously twice differentiable in x and once differentiable in t. For each  
V ∈ C2,1([−τ*, ∞] × Rn, R+), define an operator LV (y(t), t) associated with stochastic high 

order neural networks (3) from R+ × C([−τ*, 0]; Rn) to R by 

 
where 

 
and 

 
where i, j = 1, 2, ..., n. In order to prove our results, we need to state the following definitions 
and Lemma. 
Lemma 3.1. Given any real matrices Σ1, Σ2, Σ3 of appropriate dimensions and a scalar ∈ > 0 such 
that 0 < Σ3 = 3

T∑ . Then, the following inequality holds: 

 
We also recall some basic facts about norms of vectors and matrices. Let y = (y1, y2, ..., yn)T ∈ 

Rn. Three commonly used vector norms are given as 2 1/2
1 11 2

, ( )n n
i i i i= == =∑ ∑y y y y and 

1max i n i≤ ≤∞
=y y . It is also known that 

1∞
≤y y . The vector |y| will denote |y| = 

(|y1|, |y2|, ..., |yn|)T . For any matrix V = (vij)n×n, λm(V ) and λM(V ) will denote respectively 
the minimum and maximum eigenvalues of V . For the matrix V , 

2

2
V  = λM(V T V ). 

Now we will prove the following theorem on global asymptotic stability in the mean square 
for equation (3). 
Theorem 3.2. Assume that there exist matrices P >0, D0 ≥ 0 and D1 ≥ 0 such that 
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System (3) is globally asymptotically stable in the mean square, if there exist positive definite 
matrices Σ1, Σ2 and the scalars ∈k > 0 (k = 1, 2) such that 

 

(4) 

 
Proof: We use the following Lyapunov functional to derive the stability result 

 
 

By Ito’s formula, we can calculate  along the trajectories of the 
system (3), then we have 

 

 (5) 

 (6) 

From (5)-(6), we get 

 

 (7) 
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By Lemma 3.1 we get, 

 (8) 

 (9) 

 (10) 

 

 
 
 

(11) 

 

 
 
 

(12)

 

 
 
 

(13)

Since , it is clear that 

 
 
Since , and from (7)-(13), it follows that 
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Then we have LV (y(t), t) < 0 when Π 1 < 0, that is the inequality (4) holds, which completes 
the proof of the theorem. 
By constructing another Lyapunov functional, we can obtain the following result. 
Theorem 3.3. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if there exist positive definite matrices 
Σ1 and the scalars ∈k > 0 (k = 1, 2, 3) such that 

 

(14)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 

 
 

where Define 
 

 
which satisfies 
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and (0) 0, ( ) ( )G G G= =y y , for n
+∈x R . We have 

 
which gives a lower by a positive radially unbounded function. 
It is to verify that 

 
By Ito’s formula, we can calculate LV1(y(t), t),LV2(y(t), t) along the trajectories of the system 
(3), then we have 

 

                                 
(15) 

 
(16)

Then it follows from Lemma 3.1 that 

 

 
 
 

(17) 

 

 
 
 

(18)

            

                                                                              (19)

 

                                                                                             (20)
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                                                       (21)

Since , and from (15)-(21) it follows that 

 
Then we have LV (y(t), t) < 0 when Π2 < 0, that is the inequality (14) holds, which completes 
the proof of the theorem. 
Theorem 3.4. Assume that there exist matrices C > 0, D0 ≥ 0 and D1 ≥ 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if the condition (H1) is 
satisfied and there exists positive constants β, ∈i, i = 4, 5, 6 such that 

 

(22)

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 
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where W = B + ΓT TH and Q = (qij)n×n = (∈ 1
3
− +α∈ 1

6
− )N T

B NB + L−1D1L−1. By Ito’s formula, we can 
calculate LV1,LV2,LV3,LV4 and LV5along the trajectories of the system (3), then we have 

 

                              (23)

Using the inequality technique, we have 

 

                                            (24)

 

                                                                 (25)

From Lemma 3.1, it follows that 

 

                                                   (26)

 

                                  (27)

        

                                                                             (28)

Since the first term of the equations (24) and (25) are non-positive, we can write the 
following inequalities: 

 (29) 

(30)
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Substitute (26)-(30) in (23), we get 

 

       (31)

Also, 

 

 
 

Adding and subtracting  in the above equation, then we have 

 

                                 (32)

From Lemma 3.1, it follows that 

 

                                                                               (33)

 

 (34)

 

 (35)
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and 

 (36)

Using the inequality technique, we have 

 
Since the first term of the above equation is non-positive, we can write the following 
inequality 
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Substitute (33)-(37) in (32), we get 

 

                             (38) 

 
(39)

 
(40)

 
(41)
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From (31) and (38)-(41), it follows that 

 

 

       
Since 

 
Therefore, 
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From (31) and (38)-(41), it follows that 
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Therefore, 
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The choice 

 
ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0. Thus, for ensuring negativity of LV (y(t), t) for 

any possible state, it suffices to require Ω be a negative definite matrix. This implies that the 
equilibrium point of system (3) is globally asymptotically stable in the mean square. The 
proof is completed. 
Theorem 3.5. Assume that there exist matrices D0 ≥ 0 and D1 ≥ 0 such that 

 
System (3)is globally asymptotically stable in the mean square, if the condition (H1) is 
satisfied and if the following condition hold: 

 
Proof: We use the following positive definite Lyapunov functional to derive the stability 
result, 

 
where α and β are some positive constants to be determined later. Let W = B + ΓT TH, by Ito’s 
formula, we can calculate LV1(y(t), t),LV2(y(t), t),LV3(y(t), t) and LV4(y(t), t) along the 
trajectories of the system (3), then we have 

Stability Results for Uncertain Stochastic High-Order Hopfield Neural Networks   
 with Time Varying Delays 

 

337 

 

        (42)

Using the inequality technique, we have 

 

                             (43)

 

                                                                             (44)

Since the first terms of the equations (43) and (44) are non-positive, we can write the 
following inequalities 

 (45)

 (46)

From Lemma 3.1, it follows that 

 

                                                           (47)

 (48)

              

                                                                                (49)

From (45)-(49), we get 
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Since 

 

the choice 
  

ensures that LV (y(t), t) < 0, for all g(y(t)) ≠ 0, where 

 

and 
 

 
Thus, for ensuring negativity of LV (y(t), t) for any possible state, it suffices to require Ω1 be 
a positive definite matrix. This implies that the equilibrium point of system (3) is globally 
asymptotically stable in the mean square. The proof is completed. 
Remark 3.6. In [12], stability of equilibrium point of High-order Hopfield neural networks with time 
varying delays has been considered by means of Lyapunov functional and LMI techniques. We extend 
this technique to study the stochastic high-order neural networks with time-varying uncertain 
parameters. In view of this, our results in this chapter extend the results in [12]. 
Remark 3.7. In [20], the authors studied the global stability of stochastic high-order neural networks 
with discrete and distributed delays. Similarly in [21], the authors studied stability results of 
stochastic high-order Markovian jumping neural networks with mixed time delays. It should be noted 
that the uncertain stochastic neural network studied in this chapter is time-varying delays. Therefore, 
our results and those established in [20, 21] are complementary each other.    

4. An illustrative example. 
The effectiveness of the theories will be demonstrated through the following example. 
Consider the following high-order stochastic Hopfield neural network with time varying 
delays 
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where g1(y1) = tanh(0.95y1), g2(y2) = tanh(y2), 

 
Thus we have L = I, 

2
X = 1. Now, solving the LMI in Theorem 3.2, using Matlab LMI 

Control toolbox, we get the following feasible solution 

 
∈1 = 5.5014, ∈2 = 0.2838, ∈3 = 21.7583 
It follows from Theorem 3.2 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 
Now, solving the LMI in Theorem 3.3, using Matlab LMI Control toolbox, we get the 
following feasible solution 

 
Therefore, from Theorem 3.3 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 

Now we let  

 

Again solving the LMI in Theorem 3.4, using Matlab 

LMI Control toolbox, we get the following feasible solution 

 
Therefore, from Theorem 3.4 that the equilibrium point of the system (58) is globally 
asymptotically stable in the mean square. 
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1. Introduction 
This chapter is devoted to the analysis of the complex dynamics exhibited by two-
dimensional discrete-time delayed Hopfield-type neural networks. 
Since the pioneering work of (Hopfield, 1982; Tank & Hopfield, 1986), the dynamics of 
continuous-time Hopfield neural networks have been thoroughly analyzed. In 
implementing the continuous-time neural networks for practical problems such as image 
processing, pattern recognition and computer simulation, it is essential to formulate a 
discrete-time system which is a version of the continuous-time neural network. However, 
discrete-time counterparts of continuous-time neural networks have only been in the 
spotlight since 2000.  
One of the first problems that needed to be clarified, concerned the discretization technique 
which should be applied in order to obtain a discrete-time system which preserves certain 
dynamic characteristics of the continuous-time system. In (Mohamad & Gopalsamy, 2000)  a 
semi-discretization technique has been presented for continuous-time Hopfield neural 
networks, which leads to discrete-time neural networks which faithfully preserve some 
characteristics of the continuous-time network, such as the steady states and their stability 
properties. 
In recent years, the theory of discrete-time dynamic systems has assumed a greater 
importance as a well deserved discipline. In spite of this tendency of independence, there is 
a striking similarity or even duality between the theories of continuous and discrete 
dynamic systems. Many results in the theory of difference equations have been obtained as 
natural discrete analogs of corresponding results from the theory of differential equations. 
Nevertheless, the theory of difference equations is a lot richer than the corresponding theory 
of differential equations. For example, a simple difference equation resulting from a first 
order differential equation may exhibit chaotic behavior which can only happen for higher 
order differential equations. This is the reason why, when studying discrete-time 
counterparts of continuous neural networks, important differences and more complicated 
behavior may also be revealed.   
The analysis of the dynamics of neural networks focuses on three directions: discovering 
equilibrium states and periodic or quasi-periodic solutions (of fundamental importance in 
biological and artificial systems, as they are associated with central pattern generators 
(Pasemann et al., 2003)), establishing stability properties and bifurcations (leading to the 
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biological and artificial systems, as they are associated with central pattern generators 
(Pasemann et al., 2003)), establishing stability properties and bifurcations (leading to the 
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discovery of periodic solutions), and identifying chaotic behavior (with valuable 
applications to practical problems such as optimization (Chen & Aihara, 1995, 1997, 2001; 
Chen & Shih, 2002), associative memory (Adachi & Aihara, 1997) and cryptography (Yu & 
Cao, 2006)). 
We refer to (Guo & Huang, 2004; Guo et al., 2004) for the study of the existence of periodic 
solutions of discrete-time Hopfield neural networks with delays and the investigation of 
exponential stability properties. 
In (Yuan et al., 2004, 2005) and in the most general case, in (He & Cao, 2007), a bifurcation 
analysis of two dimensional discrete neural networks without delays has been undertaken. 
In (Zhang & Zheng, 2005, 2007), the bifurcation phenomena have been studied, for the case 
of two- and n-dimensional discrete neural network models with multi-delays obtained by 
applying the Euler method to a continuous-time Hopfield neural network with no self-
connections. In (Kaslik & Balint, 2007a-b), a bifurcation analysis for discrete-time Hopfield 
neural networks of two neurons with self-connections has been presented, in the case of a 
single delay and of two delays. In (Guo et al., 2007), a generalization of these results was 
attempted, considering three delays; however, only two delays were considered 
independent (the third one is a linear combination of the first two) and the analysis can be 
reduced to the one presented in (Kaslik & Balint, 2007a). 
The latest results concerning chaotic dynamics in discrete-time delayed neural networks can 
be found in (Huang & Zou, 2005) and (Kaslik & Balint, 2007c). 
A general discrete-time Hopfield-type neural network of two neurons with finite delays is 
defined by:  

 )k,k,k,k(maxn)(ygT)(xgTya=y
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 In this system (0,1)ai ∈  are the internal decays of the neurons, 22ij )T(=T ×  is the 

interconnection matrix, RR →:gi  represent the neuron input-output activations and 
N∈ijk  represent the delays. The reason for incorporating delays into the model equations of 

the network is that, in practice, due to the finite speeds of the switching and transmission of 
signals in a network, time delays unavoidably exist in a working network. 
In order to insure that delays are present, we consider 0>)k,k,k,k(max 22211211 . The non-
delayed case was extensively studied in (He & Cao, 2007). In the followings, we will denote 

)k,k(max=k 21111  and )k,k(max=k 22122 . 

We will suppose that the activation functions ig  are of class 3C  in a neighborhood of 0  

and that 0=(0)gi . In the followings, let 22:g RR →  be the function given by 
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We use the notations )B(tr=bb=2 2211 +β  and )B(det=bbbb= 21122211 −δ . 
The aim of this chapter is to present a complete stability and bifurcation analysis in a 
neighborhood of the null solution of (1), choosing the characteristic parameters ),( δβ  for the 
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system. Considering equal internal decays a=a=a 21  and delays satisfying 

21122211 kk=kk ++ , two complementary situations are discussed:  
• 2211 k=k   
• 2211 kk ≠  (with the supplementary hypothesis 2211 b=b )  
To the best of our knowledge, these are generalizations of all cases considered so far in the 
existing literature. This analysis allows the description of the stability domain of the null 
solution and the types of bifurcation occurring at its boundary, in terms of the characteristic 
parameters. By applying the center manifold theorem and the normal form theory, the 
Neimark-Sacker bifurcations are analyzed. A numerical example is presented to substantiate 
the theoretical findings. Moreover, the numerical example shows that the dynamics become 
more and more complex as the characteristic parameters leave the stability domain, 
eventually leading to the installation of chaotic behavior. The route from stability towards 
chaos passes through several stages of strange attractors and periodic solutions. 

2. Preliminary results 
We will start by giving two results that have particular importance for the bifurcation 
analysis to follow, namely for the study of the distribution of the roots of the characteristic 
polynomial associated to sysem (1) with respect to the unit circle.  
The first result concerns the distribution of the roots of a polynomial function with respect 
to the unit circle, and can be proved using Rouché's theorem. 
Proposition 1. (see (Zhang & Zheng, 2005, 2007)) Suppose that R⊂S  is a compact and 
connected set, and the polynomial )(p...)(p)(p=),(P m

2n
2

1n
1

m α++λα+λα+λαλ −−  is 
continuous on S×C . Then, as the parameter α  varies, the sum of the order of the zeros of 

),(P αλ  out of the unit circle, i.e. 1})|>|0,=),(P:({card λαλ∈λ C , can change only if a zero 
appears on or crossed the unit circle. ■  
The second result concerns the existence of the roots of a special equation which plays an 
important role in the analysis of the characteristic polynomial associated to system (1). 
Proposition 2. (see (Kaslik & Balint, 2007b)) Let be 0m ≥ , ]m[  the integer part of m  and 

(0,1)a∈ . The equation  

 0=msina1)m(sin φ−φ+  (2) 
has exactly 2]m[ +  solutions in the interval ][0,π . More precisely:   
• 0=0φ  is a solution;  
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3. Stability and bifurcation analysis 
We transform system (1) into the following system of 2kk 21 ++  equations without delays: 
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T

21 ))y(g),x(g(=)y,x(g  and  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′
′′

2221

1211

222121

212111
bb
bb

=
(0)gT(0)gT
(0)gT(0)gT

=(0)TDg=B  

We use the notations )B(tr=bb=2 2211 +β  and )B(det=bbbb= 21122211 −δ . 
The aim of this chapter is to present a complete stability and bifurcation analysis in a 
neighborhood of the null solution of (1), choosing the characteristic parameters ),( δβ  for the 
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system. Considering equal internal decays a=a=a 21  and delays satisfying 

21122211 kk=kk ++ , two complementary situations are discussed:  
• 2211 k=k   
• 2211 kk ≠  (with the supplementary hypothesis 2211 b=b )  
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Neimark-Sacker bifurcations are analyzed. A numerical example is presented to substantiate 
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more and more complex as the characteristic parameters leave the stability domain, 
eventually leading to the installation of chaotic behavior. The route from stability towards 
chaos passes through several stages of strange attractors and periodic solutions. 

2. Preliminary results 
We will start by giving two results that have particular importance for the bifurcation 
analysis to follow, namely for the study of the distribution of the roots of the characteristic 
polynomial associated to sysem (1) with respect to the unit circle.  
The first result concerns the distribution of the roots of a polynomial function with respect 
to the unit circle, and can be proved using Rouché's theorem. 
Proposition 1. (see (Zhang & Zheng, 2005, 2007)) Suppose that R⊂S  is a compact and 
connected set, and the polynomial )(p...)(p)(p=),(P m

2n
2

1n
1

m α++λα+λα+λαλ −−  is 
continuous on S×C . Then, as the parameter α  varies, the sum of the order of the zeros of 

),(P αλ  out of the unit circle, i.e. 1})|>|0,=),(P:({card λαλ∈λ C , can change only if a zero 
appears on or crossed the unit circle. ■  
The second result concerns the existence of the roots of a special equation which plays an 
important role in the analysis of the characteristic polynomial associated to system (1). 
Proposition 2. (see (Kaslik & Balint, 2007b)) Let be 0m ≥ , ]m[  the integer part of m  and 
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⎠
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⎠
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⎛

+
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+
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m
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m
1)j(

1m
j,

1m2
1)j(2 , 

]}m[{1,2,...,j∈ ;  
• if N∈m  then πφ + =1]m[  is a solution and if N∉m  then there is one solution 

⎟
⎠
⎞

⎜
⎝
⎛ π

π
∈φ + ,

m
]m[

1]m[ . ■ 

3. Stability and bifurcation analysis 
We transform system (1) into the following system of 2kk 21 ++  equations without delays: 
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2
1)j(

n
)j(

1n

)22k(
n222
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n121

(0)
n2

(0)
1n

1
1)j(

n
)j(

1n

)12k(
n212

)11k(
n111

(0)
n1

(0)
1n

 (3) 

where R∈)j(x , 1k0,=j  and R∈)j(y , 2k0,=j . 

Let be the function 22k1k22k1k:F ++++ →RR  given by the right hand side of system (3). The 

jacobian matrix of system (3) at the fixed point 22k1k0 ++∈R  is )0(DF=Â . 
The following characteristic equation is obtained:  

 0=zbb)zbaz)(zbaz( )21k12k(
211222k

22211k
111

+−−− −−−−−  (4) 

Studying the stability and bifurcations occurring at the origin in system (1) reduces to the 
analysis of the distribution of the roots of the characteristic equation (4) with respect to the 
unit circle. The difficulty of this analysis is due to the large number of parameters appearing 
in the characteristic equation. 
In the followings, considering equal internal decays a=a=a 21  and delays satisfying 

21122211 kk=kk ++ , we will analyze the roots of equation (4) in two particular situations, 
depicting information about the stability and bifurcations occurring at the origin in system 
(1). 

3.1 Situation 1: 2211 k=k  
We will denote k=k=k 2211  and therefore, we have k2=kk 2112 + . 
A particular case of this situation is the one studied in (Kaslik & Balint, 2007a), where in 
addition, it was considered that k=k=k 2112 , that is, all four delays are equal. Another 
particular case of this situation is the one analyzed in (Guo et al., 2007), considering the 
supplementary hypothesis 2211 b=b  (but without assuming that all four delays are equal). 
In this situation, the characteristic equation (4) can be written as:  

 0=)az(z2)az(z k2k2 δ+−β−−  (5) 

The distribution of the roots of the characteristic equation (5) has been thoroughly analyzed 
in (Kaslik & Balint, 2007a). This analysis provides us with the following results concerning 
the stability and bifurcations occurring at the origin in system (1): 
Considering the following notations and associated basic results:   
• 1φ  the unique solution of the equation 0=ksina1)k(sin φ−φ+  from the interval 

)
1k

(0,
+
π ; 

• the strictly decreasing function R→φ ][0,:c 1 , θ−θ+θ kcosa1)k(cos=)(c ; 

• 0<)cosa21a(=)(c 2
1

1
2

1 φ−+−φ ; 
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• the strictly decreasing function )(0,]a),1(c[:U 1 ∞→−φ  defined by 

))(c(cosa2a1=)(U 12 β−+β − ; 

• the function RR →λ :0 , 2
0 )a(1)a2(1=)( −−β−βλ ; 

• the function RR →λ :1 , 2
111 )(c)(c2=)( φ−βφβλ ; 

• the function R→−φ ]a),1(c[:L 1 , ( ){0,1}j)/(max=)(L j ∈βλβ ; 

• ]a1)(c[
2
1= 10 −+φβ ; 

The following theorem holds: 
Theorem 1. The null solution of (1) is asymptotically stable if and only if β  and δ  satisfy the 
following inequalities:  

 ).(U<<)(Landa1<<)(c 1 βδβ−βφ  (6) 

On the boundary of the set )}(U<<)(Landa1<<)(c:),{(=D 1
2

S βδβ−βφ∈δβ R  the 
following bifurcation phenomena causing the loss of asymptotical stability of the null 
solution of (1) take place:   
i. Let be )a,1( 0 −β∈β . When )(=)(L= 0 βλβδ  system (1) has a Fold bifurcation at the 

origin. 
ii. Let be )),(c( 01 βφ∈β . When )(=)(L= 1 βλβδ  a Neimark-Sacker bifurcation occurs in 

system (1), i.e. a unique closed invariant curve bifurcates from the origin near )(= 1 βλδ . 
iii. Let be )a),1(c( 1 −φ∈β . When )(U= βδ , system (1) has a Neimark-Sacker bifurcation at 

the origin. That is, system (1) has a unique closed invariant curve bifurcating from the 
origin near )(U= βδ . 

iv. For 0= ββ  and )a)(1(c=)(L= 10 −φβδ  a Fold-Neimark-Sacker bifurcation occurs at the 
origin in system (1). 

v. For )(c= 1φβ  and 2
1)(c= φδ , the null solution of (1) is a double Neimark-Sacker 

bifurcation point. 
vi. For )a(1= −β  and 2)a(1= −δ , the system (1) has a strong 1:1 resonant bifurcation at 

the origin. ■ 
The set SD  given by Theorem 1 is the stability domain of the null solution of (1) with 
respect to the characteristic parameters β  and δ . 

3.2 Situation 2: 2211 kk ≠  and 2211 b=b  
A particular case of this situation has been studied in (Kaslik & Balint, 2007b), where in 
addition, it was considered that 2111 k=k  and 2212 k=k . 
In this situation, the characteristic equation (4) can be written as:  

 0=)az(z)az(z)az(z 11k22k222k11k δ+−β−−β−−+  (7) 

This equation is the same as the one obtained and analyzed in (Kaslik & Balint, 2007b). The 
conclusions of this analysis will be presented below. 
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First, a list of notations will be introduced and some mathematical results will be presented, 
which can be proved using basic mathematical tools:   

• )kk(
2
1=m 2211 +  and |kk|

2
1=l 2211 − ; remark: 

2
1l ≥ , 1>m ; 

• },...,,0,={=S 1]m[2101 +φφφφ  the set of all solutions of the equation (2) from the interval 
][0,π ; 

• }
2

1l2{1,2,...,j/
l2
1)j(2={=S j2 ⎥⎦

⎤
⎢⎣
⎡ +

∈
π−

ψ ; 

• ),(min= 111 ψφθ ; 
• the function R→π][0,:c , θ−θ+θ mcosa1)m(cos=)(c ; 
• the function R→π][0,:s , θ−θ+θ msina1)m(sin=)(s ; 
• the strictly decreasing function R→θ )[0,:h 1 , )l(sec)(c=)(h θθθ ; 

• 
⎩
⎨
⎧

ψ≥φ∞−
ψφφφ

θα
θ→θ 11

1111

1
if

<if0<)l(sec)(c
=)(hlim=  

• )[0,]a,1(:h 1
1 θ→−α−  the inverse of the function h ; 

• the strictly decreasing function )(0,]a,1(:U ∞→−α , ))(h(cosa2a1=)(U 12 β−+β − ;  

• the functions RR →λ :j , 2
jjjj )(c)l(cos)(c2=)( φ−βφφβλ ; 

• the function R→−α ]a,1(:L , ( )1}]m[{0,1,...,j)/(max=)(L j +∈βλβ ; 

• ijβ  the solution of the equation )(=)( ji βλβλ , ji ≠ ; 

• 0)<1},]m[{1,2,...,j/(max= j0j00 β+∈ββ ; 

• remark: 2
0 )a(1)a2(1=)(=)(L −−β−βλβ  for any ]a,1[ 0 −β∈β ; 

• if the equation )(L=)(U ββ  has some roots in the interval ),( 0βα , then 1β  is the largest 
of these roots; otherwise, αβ =1 .  

We will consider the following two cases:   
(c1) At least one of the delays 11k  or 22k  is odd.  
(c2) Both delays 11k  and 22k  are even.  
Theorem 2.  The null solution of (1) is asymptotically stable if β  and δ  satisfy the following 
inequalities:  

 ).(U<<)(Landa1<<1 βδβ−ββ  (8) 

On the boundary of the set )}(U<<)(Landa1<<:),{(=D 1
2

S βδβ−ββ∈δβ R  the following 
bifurcation phenomena causing the loss of asymptotical stability of the null solution of (1) 
take place:   
i. Let be )a,1( 1 −β∈β . When )(U= βδ , system (1) has a Neimark-Sacker bifurcation at the 

origin. That is, system (1) has a unique closed invariant curve bifurcating from the 
origin near )(U= βδ . 

ii. Let be ),( 01 ββ∈β  such that the function L  is differentiable at β . When )(L= βδ :  
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        (c1) system (1) has a Neimark-Sacker bifurcation at the origin.  
        (c2) system (1) has a Flip or a Neimark-Sacker bifurcation at the origin.  
iii. Let be )a,1( 0 −β∈β . When 2)a(1)a2(1=)(L= −−β−βδ  system (1) has a Fold 

bifurcation at the origin. 
iv. For )a(1= −β  and 2)a(1= −δ , system (1) has a strong 1:1  resonant bifurcation at the 

origin. 
v. For 0= ββ  and 2

00 )a(1)a2(1=)(L= −−β−βδ , system (1) has a Fold-Neimark-Sacker 
bifurcation at the origin. 

vi. For 1= ββ  and )(U= 1βδ :   
        (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.  
        (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the  
        origin.  
vii. If there exists ),( 01 ββ∈β∗  such that the function L  is not differentiable at ∗β , then for 

∗ββ =  and )(L= ∗βδ :   
        (c1) system (1) has a double Neimark-Sacker bifurcation at the origin.  
        (c2) system (1) has a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation at the  
        origin. ■  
We underline that Theorems 1 and 2 completely characterize the stability domain (in the 

),( δβ -plane) of the null solution of (1) and the bifurcations occurring at its boundary, in the 
considered situations. 

4. Direction and stability of Neimark-Sacker bifurcations 

Let be the function 22k1k22k1k:F ++++ →RR  given by the right hand side of system (3). Let 

be the operators )0(DF=Â , )0(FD=B̂ 2  and )0(FD=Ĉ 3 . 
In the cases ii. and iii. of Theorem 1 and i. and ii. of Theorem 2, Neimark-Sacker bifurcations 
occur at the origin in system (1). That is, matrix Â  has a simple pair )z,z(  of eigenvalues on 
the unit circle, such that z  is not a root of order 1,2,3,4  of the unity. 
The restriction of system (3) to its two dimensional center manifold at the critical parameter 
values can be transformed into the normal form written in complex coordinates (see 
(Kuznetsov, 2004)):  

 C∈++ w),|w(|O)|w|d
2
1(1zww 42  (9) 

with 

〉−+−+〈 −− ))q,q(B̂)ÂIz(,q(B̂))q,q(B̂)ÂI(,q(B̂2)q,q,q(Ĉ,pz=d 121  
 

where zq=qÂ , pz=pÂT  and 1=q,p 〉〈  (with qp=q,p T〉〈 ) 
Direct computations provide the following result: 
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the unit circle, such that z  is not a root of order 1,2,3,4  of the unity. 
The restriction of system (3) to its two dimensional center manifold at the critical parameter 
values can be transformed into the normal form written in complex coordinates (see 
(Kuznetsov, 2004)):  

 C∈++ w),|w(|O)|w|d
2
1(1zww 42  (9) 

with 

〉−+−+〈 −− ))q,q(B̂)ÂIz(,q(B̂))q,q(B̂)ÂI(,q(B̂2)q,q,q(Ĉ,pz=d 121  
 

where zq=qÂ , pz=pÂT  and 1=q,p 〉〈  (with qp=q,p T〉〈 ) 
Direct computations provide the following result: 
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Proposition 3. Suppose that 21122211 kk=kk ++  and a=a=a 21 . Consider 

]b)az(z][b)az(z[=)z(P 2222k
1111k −−−− . The vectors q  and p  of 22k1k ++C  which verify  

1=q,p;pz=pÂ;zq=qÂ T 〉〈  

are given by: 

T
222
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22k

111
11k

11k )q,zq,...,qz,qz,q,zq,...,qz,qz(=q −−  

T
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12k
2221

11k
111 )p)az(z,...,p)az(z,p)az(,p,p)az(z,...,p)az(z,p)az(,p(=p −−−−−− −−  

where 
)z(Pb
)az(z=p;

)z(P
1=p;b=q;)az(z=q

21

11k

2121222k
1 ′

β−−
′

β−− .■  

The following result gives us information about the direction and stability of Neimark-
Sacker bifurcations. 
Proposition 4. (see (Kuznetsov, 2004)) The direction and stability of the Neimark-Sacker 
bifurcation is determined by the sign of )d(Re . If 0<)d(Re  then the bifurcation is 
supercritical, i.e. the closed invariant curve bifurcating from the origin is asymptotically 
stable. If 0>)d(Re , the bifurcation is subcritical, i.e. the closed invariant curve bifurcating 
from the origin is unstable. ■  

5. Example 
In the following example, we will consider the delays 1=k11 , 5=k22 , 4=k12  and 

2=k21 . We will also choose 0.5=a  and β=b=b 2211 . In this case, using Mathematica, we 
compute:   

• }2.28703,1,1.44928,{0,0.66756=S1 π  (rad), }
4

3,
4

{=S2
ππ ; 

• 0.667561== 11 φθ  (rad), 2.91934= −α , 0.723816=1 −β , 0.162831=0 −β ; 

• 0.380779.= −β∗   
The bifurcations occurring at the boundary of SD  (provided by Theorem 2) are:   
• For ),( 01 ββ∈β  and )(U= βδ  a Neimark-Sacker bifurcation occurs, with the multipliers 

)(1ihe β−± ; 
• For )a,1( 0 −β∈β  and 2

0 )a(1)a2(1=)(= −−β−βλδ  a Fold bifurcation occurs; 

• For ),( 1
∗ββ∈β  and )(=)(L= 2 βλβδ  a Neimark-Sacker bifurcation occurs, with the 

multipliers 2ie φ± ; 
• For ),( 0ββ∈β ∗  and )(=)(L= 1 βλβδ  a Neimark-Sacker bifurcation occurs, with the 

multipliers 1ie φ± ; 
• For a1= −β  and 2)a(1= −δ  a 1:1 resonant bifurcation occurs; 
• For 1= ββ  and )(U= 1βδ  a double Neimark-Sacker bifurcation occurs; 
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• For 0= ββ  and )(=)(L= 000 βλβδ  a Fold-Neimark-Sacker bifurcation occurs. 

• For ∗ββ =  and )(L= ∗βδ  a double Neimark-Sacker bifurcation occurs. 
The stability domain in the ),( δβ -plane for this network is the one presented in Figure 1. 
More precisely, we consider the delayed discrete-time Hopfield neural network:  

 5n
)y(sin)x(tanh)(y0.5=y

)y(sin)x(tanhx0.5=x

5n2n
2

n1n

4n1nn1n ≥∀
⎩
⎨
⎧

β+β−δ+
−β+

−−+

−−+  (10) 

 

Choosing 0.25= −β , we obtain that the origin is asymptotically stable if 
.324255)0.385082,0(−∈δ  and supercritical Neimark-Sacker bifurcations occur at 

0.385082=)(L= −βδ  and 0.324255=)(U= βδ  respectively (see Figures 4-5). The bifurcation 
diagram for 2.5,2.5)(−∈δ  is presented in Figure 2 and the values of the Largest Lyapunov 
Characteristic Exponent are presented in Figure 3. It can be seen that as δ  leaves the 
stability domain SD , the dynamics in a neighborhood of the origin become more and more 
complex, eventually leading to the occurrence of chaotic behavior. The phase portraits presented 
in Figures 6-7 sillustrate the changes which appear on the route from stable dynamics to chaotic 
dynamics, in a neighborhood of the origin, as ||δ  increases from 0 to 2.5. 

 
Fig. 1. Stability domain for the null solution when 1=k11 , 5=k22 , 4=k12 ,  2=k21  

 
 

Fig. 2. Bifurcation diagram for system (10) with 0.25= −β , in the (,x) -plane, for  ∈(-2.5,2.5) 
(with the step size of 0.02 for ). For this bifurcation diagram, for each  value, the initial 
conditions were reset to (x0,y0)=(0.01,0.01) and 105 time steps were iterated before plotting 
the data (which consists of  102 points per  value). 
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Fig. 3. Largest Lyapunov Characteristic Exponent for system (10) with 0.25= −β . For the 
computation of the Lyapunov spectrum, for each δ  value (step size 0.02  for δ ), the initial 
conditions were reset and 510  time-steps were iterated before calculating the LCEs (which 
were computed over the next 510  time steps). The Lyapunov spectrum was computed 
using the Householder QR based (HQRB) method presented in (Bremen et al., 1997).  
 

  
 

Fig. 4. Supercritical Neimark-Sacker bifurcation at 0.324255=δ . For 0.32=δ , the null 
solution is asymptotically stable, and the trajectory converges to the origin. For 0.33=b , an 
asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle. 
 

  
Fig. 5. Supercritical Neimark-Sacker bifurcation at 0.385082= −δ . For 0.38= −δ , the null 
solution is asymptotically stable, and the trajectory converges to the origin. For 0.39=b − , 
an asymptotically stable cycle (1-torus) is present, and the trajectory converges to this cycle. 
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Fig. 6. Phase portraits for various values of (0,2.5)∈δ , at the first step towards chaos. The 
route towards chaos passes through several stages: 0.6=δ , 1=δ , 1.5=δ : 1-toruses 
( 0=LLCE ); 1.55=δ : 2-torus ( 0=LLCE ); 1.6=δ : strange attractor ( 0LLCE ≈ ); 1.7=δ : 
chaos (LLCE>0). For each plot, considering the initial conditions (x0,y0)=(0.01,0.01), the first 106 
iterations of system (10) have been dropped, and the next 104 iterations have been plotted.  
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( 0=LLCE ); 1.55=δ : 2-torus ( 0=LLCE ); 1.6=δ : strange attractor ( 0LLCE ≈ ); 1.7=δ : 
chaos (LLCE>0). For each plot, considering the initial conditions (x0,y0)=(0.01,0.01), the first 106 
iterations of system (10) have been dropped, and the next 104 iterations have been plotted.  



 Recurrent Neural Networks 

 

354 

  

  

  
Fig. 7: Phase portraits for various values of 2.5,0)(−∈δ , at the first step towards chaos. The 
route towards chaos passes through several stages: 0.6= −δ , 1.5= −δ : 1-toruses 
( 0=LLCE ); 1.55= −δ : stable period-9 orbit ( 0<LLCE ); 1.6= −δ : 1-torus ( 0=LLCE ); 

1.8= −δ : 2-torus ( 0=LLCE ), 2= −δ : strange attractor ( 0LLCE ≈ ). For each plot, 
considering the initial conditions )(0.01,0.01=)y,x( 00 , the first 610  iterations of system (10) 
have been dropped, and the next 104 iterations have been plotted.  
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6. Conclusions 
A complete bifurcation analysis has been presented for a discrete-time Hopfield-type neural 
network of two neurons with several delays, uncovering the structure of the stability 
domain of the null solution, as well as the types of bifurcations occurring at its boundary. 
The numerical example illustrated the theoretical results and suggested some routes 
towards chaos as the characteristic parameters of the system leave the stability domain.  
A generalization of these results to more complicated networks of two or more neurons may 
constitute a direction for future research. 
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1. Introduction 
Artificial neural networks (ANNs) are computational modeling tools that have recently 
emerged and found extensive acceptance in many disciplines for modeling complex real-
world problems. ANN-based models are empirical in nature, however they can provide 
practically accurate solutions for precisely or imprecisely formulated problems and for 
phenomena that are only understood through experimental data and field observations. 
ANNs produce complicated nonlinear models relating the inputs (the independent variables 
of a system) to the outputs (the dependent predictive variables). ANNs have been widely 
used for various tasks, such as pattern classification, time series prediction, nonlinear 
control, and function approximation. ANNs are desirable because (i) nonlinearity allows 
better fit to the data, (ii) noise-insensitivity provides accurate prediction in the presence of 
uncertain data and measurement errors, (iii) high parallelism implies fast processing and 
hardware failure-tolerance, (iv) learning and adaptivity allow the system to modify its 
internal structure in response to changing environment, and (v) generalization enables 
application of the model to unlearned data (Fausett, 1994; Haykin, 1994; Hassoun, 1995).  
The idea of using ANNs for pattern classification purposes has encountered, for a long time, 
the favour of many researchers (Miller et al., 1992; Wright et al., 1997; Wright & Gough, 
1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 2008a; 2008b; 2008c). Feedforward neural 
networks are a basic type of neural networks capable of approximating generic classes of 
functions, including continuous and integrable ones. One of the most frequently used 
feedforward neural network for pattern classification is the multilayer perceptron neural 
network (MLPNN) which is trained to produce a spatial output pattern in response to an 
input spatial pattern (Fausett, 1994; Haykin, 1994; Hassoun, 1995). The mapping performed 
is static, therefore, the network is inherently not suitable for processing temporal patterns. 
Attempts have been made to use the MLPNN to classify temporal patterns by transforming 
the temporal domain into a spatial domain.   
An alternate neural network approach is to use recurrent neural networks (RNNs) which 
have memory to encode past history. Several forms of RNNs have been proposed and they 
may be classified as partially recurrent or fully recurrent networks (Saad et al., 1998; Gupta 
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1. Introduction 
Artificial neural networks (ANNs) are computational modeling tools that have recently 
emerged and found extensive acceptance in many disciplines for modeling complex real-
world problems. ANN-based models are empirical in nature, however they can provide 
practically accurate solutions for precisely or imprecisely formulated problems and for 
phenomena that are only understood through experimental data and field observations. 
ANNs produce complicated nonlinear models relating the inputs (the independent variables 
of a system) to the outputs (the dependent predictive variables). ANNs have been widely 
used for various tasks, such as pattern classification, time series prediction, nonlinear 
control, and function approximation. ANNs are desirable because (i) nonlinearity allows 
better fit to the data, (ii) noise-insensitivity provides accurate prediction in the presence of 
uncertain data and measurement errors, (iii) high parallelism implies fast processing and 
hardware failure-tolerance, (iv) learning and adaptivity allow the system to modify its 
internal structure in response to changing environment, and (v) generalization enables 
application of the model to unlearned data (Fausett, 1994; Haykin, 1994; Hassoun, 1995).  
The idea of using ANNs for pattern classification purposes has encountered, for a long time, 
the favour of many researchers (Miller et al., 1992; Wright et al., 1997; Wright & Gough, 
1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 2008a; 2008b; 2008c). Feedforward neural 
networks are a basic type of neural networks capable of approximating generic classes of 
functions, including continuous and integrable ones. One of the most frequently used 
feedforward neural network for pattern classification is the multilayer perceptron neural 
network (MLPNN) which is trained to produce a spatial output pattern in response to an 
input spatial pattern (Fausett, 1994; Haykin, 1994; Hassoun, 1995). The mapping performed 
is static, therefore, the network is inherently not suitable for processing temporal patterns. 
Attempts have been made to use the MLPNN to classify temporal patterns by transforming 
the temporal domain into a spatial domain.   
An alternate neural network approach is to use recurrent neural networks (RNNs) which 
have memory to encode past history. Several forms of RNNs have been proposed and they 
may be classified as partially recurrent or fully recurrent networks (Saad et al., 1998; Gupta 
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& McAvoy, 2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). RNNs can 
perform highly non-linear dynamic mappings and thus have temporally extended 
applications, whereas multilayer feedforward networks are confined to performing static 
mappings. RNNs have been used in a number of interesting applications including 
associative memories, spatiotemporal pattern classification, control, optimization, 
forecasting and generalization of pattern sequences (Saad et al., 1998; Gupta & McAvoy, 
2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). In partially recurrent 
networks, partial recurrence is created by feeding back delayed hidden unit outputs or the 
outputs of the network as additional input units. The partially recurrent networks, whose 
connections are mainly feedforward were used, but they include a carefully chosen set of 
feedback connections. One example of such a network is an Elman RNN which in principle 
is set up as a regular feedforward network (Elman, 1990). Architecture of Elman RNNs, case 
studies for biomedical engineering, case study for nuclear engineering are presented in the 
subtitles of this chapter. The results of the case studies for biomedical engineering and 
nuclear engineering are presented. These conclusions will assist to the readers in gaining 
intuition about the performance of the Elman RNNs used in biomedical engineering and 
nuclear engineering problems. 

2. Architecture of Elman recurrent neural networks  
RNNs have been used in pattern classification, control, optimization, forecasting and 
generalization of pattern sequences (Petrosian et al., 2000; Petrosian et al., 2001; Shieh et al., 
2004; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). Fully recurrent networks use 
unconstrained fully interconnected architectures and learning algorithms that can deal with 
time-varying input and/or output in non-trivial ways. In spite of several modifications of 
learning algorithms to reduce the computational expense, fully recurrent networks are still 
complicated when dealing with complex problems. Therefore, the partially recurrent 
networks, whose connections are mainly feedforward, were used but they include a 
carefully chosen set of feedback connections. The recurrence allows the network to 
remember cues from the past without complicating the learning excessively. The structure 
proposed by Elman (1990) is an illustration of this kind of architecture. Elman RNNs were 
used in these applications and therefore in the following the Elman RNN is presented.  
An Elman RNN is a network which in principle is set up as a regular feedforward network. 
This means that all neurons in one layer are connected with all neurons in the next layer. An 
exception is the so-called context layer which is a special case of a hidden layer. Figure 1 
shows the architecture of an Elman RNN. The neurons in the context layer (context neurons) 
hold a copy of the output of the hidden neurons. The output of each hidden neuron is 
copied into a specific neuron in the context layer. The value of the context neuron is used as 
an extra input signal for all the neurons in the hidden layer one time step later. Therefore, 
the Elman network has an explicit memory of one time lag (Elman, 1990). 
Similar to a regular feedforward neural network, the strength of all connections between 
neurons are indicated with a weight. Initially, all weight values are chosen randomly and 
are optimized during the stage of training. In an Elman network, the weights from the 
hidden layer to the context layer are set to one and are fixed because the values of the 
context neurons have to be copied exactly. Furthermore, the initial output weights of the 
context neurons are equal to half the output range of the other neurons in the network. The 
Elman network can be trained with gradient descent backpropagation and optimization 
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methods, similar to regular feedforward neural networks (Pineda, 1987). The 
backpropagation has some problems for many applications. The algorithm is not guaranteed 
to find the global minimum of the error function since gradient descent may get stuck in 
local minima, where it may remain indefinitely. In addition to this, long training sessions 
are often required in order to find an acceptable weight solution because of the well known 
difficulties inherent in gradient descent optimization (Haykin, 1994; Chaudhuri & 
Bhattacharya, 2000). Therefore, a lot of variations to improve the convergence of the 
backpropagation were proposed. Optimization methods such as second-order methods 
(conjugate gradient, quasi-Newton, Levenberg-Marquardt) have also been used for neural 
networks training in recent years. The Levenberg-Marquardt algorithm combines the best 
features of the Gauss-Newton technique and the steepest-descent algorithm, but avoids 
many of their limitations. In particular, it generally does not suffer from the problem of slow 
convergence (Battiti, 1992; Hagan & Menhaj, 1994) and can yield a good cost function 
compared with the other training algorithms. 

2.1. Levenberg-Marquardt algorithm 
Essentially, the Levenberg-Marquardt algorithm is a least-squares estimation algorithm 
based on the maximum neighborhood idea. Let ( )E w  be an objective error function made 

up of m  individual error terms 2 ( )ie w  as follows: 
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where ( )22 ( ) y yi di ie = −w  and ydi  is the desired value of output neuron i , yi  is the actual 
output of that neuron. 
It is assumed that function ( )f ⋅  and its Jacobian J  are known at point w. The aim of the 
Levenberg-Marquardt algorithm is to compute the weight vector w such that ( )E w  is 

minimum. Using the Levenberg-Marquardt algorithm, a new weight vector 1+kw  can be 

obtained from the previous weight vector kw  as follows: 

 kkk www δ+=+1 ,  (2) 

where kwδ  is defined as  

 1)))((( −+−= Iww λδ k
T

kk
T

kk JJfJ .  (3) 

In equation (3), kJ  is the Jacobian of f  evaluated at kw , λ  is the Marquardt parameter, 

I  is the identity matrix (Battiti, 1992; Hagan & Menhaj, 1994). The Levenberg-Marquardt 
algorithm may be summarized as follows: 
i. compute )( kE w , 

ii. start with a small value of λ  ( 01.0=λ ), 
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iii. solve equation (3) for kwδ  and compute )( kkE ww δ+ , 

iv. if )()( kkk EE www ≥+δ , increase λ  by a factor of 10 and go to (iii), 

v. if )()( kkk EE www <+δ , decrease λ  by a factor of 10, update 

kkkk wwww δ+←:  and go to (iii).       

3. Case studies for biomedical engineering 
Automated biomedical signals classification algorithms can be divided into three steps: pre-
processing, feature extraction/selection, and classification. The techniques developed for 
automated biomedical signals classification transform the mostly qualitative diagnostic 
criteria into a more objective quantitative signal feature classification problem (Miller et al., 
1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 
2008a; 2008b; 2008c). For pattern processing problems to be tractable requires the conversion 
of patterns to features, which are condensed representations of patterns, ideally containing 
only salient information. Selection of the neural network inputs has two meanings: 1) which 
components of a pattern, or 2) which set of inputs best represent a given pattern. Different 
diverse feature vectors can be extracted from the biomedical signals under study by using 
different spectral analysis methods. The features are then used in representation and/or 
discrimination of the biomedical signals, i.e., wavelet coefficients and Lyapunov exponents 
(Miller et al., 1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 
2007a; 2007b; 2008a; 2008b; 2008c). Therefore, the RNNs employing single feature vector or 
composite features can be implemented for automated classification of biomedical signals. 

3.1 Elman recurrent neural networks for analysis of Doppler ultrasound signals 
The implementation of Elman RNNs with the Lyapunov exponents for Doppler ultrasound 
signals classification is presented. This study is based on the consideration that Doppler 
ultrasound signals are chaotic signals. This consideration was tested successfully using the 
nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making 
was performed in two stages: computation of Lyapunov exponents as representative 
features of the Doppler ultrasound signals and classification using the RNNs trained on the 
extracted features (Übeyli, 2008a). 
Doppler ultrasound is widely used as a noninvasive method for the assessment of blood 
flow in both the central and peripheral circulation. It may be used to estimate blood flow, to 
image regions of blood flow and to locate sites of arterial disease as well as flow 
characteristics and resistance of ophthalmic and internal carotid arteries (Evans et al., 1989). 
Doppler systems are based on the principle that ultrasound, emitted by an ultrasonic 
transducer, is returned partially towards the transducer by the moving targets, thereby 
inducing a shift in frequency proportional to the emitted frequency and the velocity along 
the ultrasound beam. Studies in the literature have shown that Doppler ultrasound 
evaluation can give reliable information on both systolic and diastolic blood velocities of 
arteries and is useful in screening certain hemodynamic alterations in arteries (Evans et al., 
1989; Wright et al., 1997; Wright & Gough, 1999; Übeyli, 2008a).  
The objective of the present study in the field of automated diagnosis of arterial diseases is 
to extract the representative features of the ophthalmic arterial (OA) and internal carotid 
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arterial (ICA) Doppler ultrasound signals and to present the accurate classification model. 
As in traditional pattern recognition systems, the model consists of three main modules: a 
feature extractor that generates a feature vector from the raw Doppler ultrasound signals, 
feature selection that composes composite features (Lyapunov exponents), and a feature 
classifier that outputs the class based on the composite features (recurrent neural networks – 
RNNs). A significant contribution of the present work was the composition of composite 
features which were used to train novel classifier (RNNs trained on computed Lyapunov 
exponents) for the OA and ICA Doppler ultrasound signals. To evaluate performance of the 
RNNs trained with the Levenberg-Marquardt algorithm, the classification accuracies and 
the central processing unit (CPU) times of training were considered.  
The technique used in the computation of Lyapunov exponents was related with the Jacobi-
based algorithms. For each OA and ICA Doppler segment (256 discrete data), 128 Lyapunov 
exponents were computed. The computed Lyapunov exponents samples of OA and ICA 
Doppler signals are shown in Figures 2 and 3. High-dimension of feature vectors increased 
computational complexity and therefore, in order to reduce the dimensionality of the 
extracted feature vectors (feature selection), statistics over the set of the Lyapunov 
exponents were used. The following statistical features were used in reducing the 
dimensionality of the extracted feature vectors representing the signals under study: 
1. Maximum of the Lyapunov exponents of each Doppler ultrasound signal segment.  
2. Minimum of the Lyapunov exponents of each Doppler ultrasound signal segment.  
3. Mean of the Lyapunov exponents of each Doppler ultrasound signal segment.  
4. Standard deviation of the Lyapunov exponents of each Doppler ultrasound signal 

segment.  
The feature vectors were computed by the usage of the MATLAB software package. The 
RNNs proposed for classification of the Doppler ultrasound signals were implemented by 
using the MATLAB software package (MATLAB version 7.0 with neural networks toolbox). 
The key design decisions for the neural networks used in classification are the architecture 
and the training process. Different network architectures were experimented and the results 
of the architecture studies confirmed that for the OA Doppler signals, networks with one 
hidden layer consisting of 20 recurrent neurons results in higher classification accuracy. The 
RNNs with one hidden layer were superior to models with two hidden layers for the ICA 
Doppler signals. The most suitable network configuration found was 15 recurrent neurons 
for the hidden layer.  
Classification results of the classifiers were displayed by a confusion matrix. In a confusion 
matrix, each cell contains the raw number of exemplars classified for the corresponding 
combination of desired and actual network outputs. The confusion matrices showing the 
classification results of the classifiers used for classification of the OA and ICA Doppler 
signals are given in Tables 1 and 2. From these matrices one can tell the frequency with 
which a Doppler signal is misclassified as another. As it is seen from Table 1, healthy 
subjects are most often confused with subjects suffering from OA stenosis, likewise subjects 
suffering from ocular Behcet disease with subjects suffering from OA stenosis. From Table 2, 
one can see that healthy subjects are most often confused with subjects suffering from ICA 
stenosis, likewise subjects suffering from ICA stenosis with subjects suffering from ICA 
occlusion.  
The test performance of the classifiers can be determined by the computation of specificity, 
sensitivity and total classification accuracy. The specificity, sensitivity and total classification 
accuracy are defined as:  
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iii. solve equation (3) for kwδ  and compute )( kkE ww δ+ , 
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Specificity: number of true negative decisions / number of actually negative cases 
Sensitivity: number of true positive decisions / number of actually positive cases 
Total classification accuracy:  number of correct decisions / total number of cases 
A true negative decision occurs when both the classifier and the physician suggested the 
absence of a positive detection. A true positive decision occurs when the positive detection 
of the classifier coincided with a positive detection of the physician.  
In order to demonstrate performance of the classifiers used for classification of the OA and 
ICA Doppler signals, the classification accuracies (specificity, sensitivity, total classification 
accuracy) on the test sets and the CPU times of training (for Pentium 4, 3.00 GHz) of the 
RNNs are presented in Table 3. The present research demonstrated that the Lyapunov 
exponents are the features which well represent the Doppler ultrasound signals and the 
RNNs trained on these features achieved high classification accuracies (Übeyli, 2008a). 

3.2 Elman recurrent neural networks for detection of electrocardiographic changes in 
partial epileptic patients 
The aim of this study is to evaluate the diagnostic accuracy of the RNNs with composite 
features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG) 
signals. Two types of  ECG beats (normal and partial epilepsy) were obtained from the MIT-
BIH database (Al-Aweel et al., 1999). Decision making was performed in two stages: 
computing composite features which were then input into the classifiers and classification 
using the classifiers trained on the extracted features (Übeyli, 2008c). 
Epileptic seizures are associated with several changes in autonomic functions, which may 
lead to cardiovascular, respiratory, gastrointestinal, cutaneous, and urinary manifestations 
(Leutmezer et al., 2003; Rocamora et al., 2003).Cardiovascular changes have received the 
most attention, because of their possible contribution to sudden unexplained death. Studies 
have reported the importance of monitoring the ECG signal during epileptic seizures, since 
the seizures can trigger high risk cardiac arrhythmias. Since seizures can occur at any time 
in an epileptic patient, the ECG may need to be recorded for several hours or days at a time, 
leading to an enormous quantity of data to be studied by physicians. To reduce the time and 
possibility of errors, automatic computer-based algorithms have been proposed to support 
or replace the diagnosis and analysis performed by the physician (Miller et al., 1992; Saxena 
et al., 2002; Übeyli, 2007a; 2007b; 2008c). From the hours of ECG data, these algorithms can 
flag the periods when the patient is having a seizure and, eventually, determine from these 
periods if any cardiac arrhythmias occured. This study provides a highly accurate algorithm 
for classifying non-arrhythmic ECG waveforms as normal or partial epileptic. 
The evaluation of the classification capabilities of the Elman RNNs trained with Levenberg-
Marquardt algorithm was performed on the ECG signals (normal and partial epilepsy ECG 
beats) from the MIT-BIH database (Al-Aweel et al., 1999). As in traditional pattern 
recognition systems, the model consists of three main modules: a feature extractor that 
generates a feature vector from the ECG signals, feature selection that composes composite 
features (wavelet coefficients and Lyapunov exponents), and a feature classifier that outputs 
the class based on the composite features. A significant contribution of the work was the 
composition of composite features which were used to train novel classifier (RNN trained 
on composite feature) for the ECG signals. To evaluate performance of the classifiers, the 
classification accuracies, the CPU times of training and the receiver operating characteristic 
(ROC) curves of the classifiers were examined (Übeyli, 2008c).  
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The detail wavelet coefficients at the first decomposition level of the two types of ECG beats 
are presented in Figures 4(a) and (b), respectively. From these figures it is obvious that the 
detail wavelet coefficients of the two types of ECG beats are different from each other and 
therefore they can serve as useful parameters in discriminating the ECG signals. A smaller 
number of parameters called wavelet coefficients are obtained by the wavelet transform 
(WT). These coefficients represent the ECG signals and therefore, they are particularly 
important for recognition and diagnostic purposes. The Lyapunov exponents of the two 
types of ECG beats are shown in Figures 5(a) and (b), respectively.  One can see that the 
Lyapunov exponents of the two types of ECG beats differ significantly from each other so 
they can be used for representing the ECG signals. As it is seen from Figures 5(a) and (b), 
there are positive Lyapunov exponents, which confirm the chaotic nature of the ECG 
signals. Lyapunov exponents are a quantitative measure for distinguishing among the 
various types of orbits based upon their sensitive dependence on the initial conditions, and 
are used to determine the stability of any steady-state behavior, including chaotic solutions. 
The reason why chaotic systems show aperiodic dynamics is that phase space trajectories 
that have nearly identical initial states will separate from each other at an exponentially 
increasing rate captured by the so-called Lyapunov exponent. 
The following statistical features were used in reducing the dimensionality of the extracted 
diverse feature vectors representing the ECG signals: 
1. Maximum of the wavelet coefficients in each subband, maximum of the Lyapunov 

exponents in each beat. 
2. Minimum of the wavelet coefficients in each subband, minimum of the Lyapunov 

exponents in each beat.    
3. Mean of the wavelet coefficients in each subband, mean of the Lyapunov exponents in 

each beat.  
4. Standard deviation of the wavelet coefficients in each subband, standard deviation of 

the Lyapunov exponents in each beat. 
Different network architectures were tested and the architecture studies confirmed that for 
the ECG signals, RNN with one hidden layer consisting of 20 recurrent neurons trained on a 
composite feature vector results in higher classification accuracy. In order to compare 
performance of the different classifiers, for the same classification problem the MLPNN, 
which is the most commonly used feedforward neural networks was also implemented. The 
single hidden layered (25 hidden neurons) MLPNN was used to classify the ECG signals 
based on a composite feature vector.  
The values of the statistical parameters (specificity, sensitivity and total classification 
accuracy) and the CPU times of training (for Pentium 4, 3.00 GHz) of the two classifiers are 
presented in Table 4. ROC plots provide a view of the whole spectrum of sensitivities and 
specificities because all possible sensitivity/specificity pairs for a particular test are graphed. 
The performance of a test can be evaluated by plotting a ROC curve for the test and 
therefore, ROC curves were used to describe the performance of the classifiers. A good test 
is one for which sensitivity rises rapidly and 1-specificity hardly increases at all until 
sensitivity becomes high. ROC curves which are shown in Figure 6 demonstrate the 
performances of the classifiers on the test files. The classification results presented in Table 4 
and Figure 6 (classification accuracies, CPU times of training, ROC curves) denote that the 
RNN trained on composite feature vectors obtains higher accuracy than that of the MLPNN 
(Übeyli, 2008c). 
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4. Case study for nuclear engineering 
Considerable interest has been developed to modeling of dynamic systems with ANNs in 
recent years. The basic motivation is the ability of neural networks to create data driven 
representations of the underlying dynamics with less reliance on accurate mathematical or 
physical modeling. There exist many problems for which such data-driven representations 
offer more advantages over more traditional modeling techniques, such as availability of 
fast hardware implementations, ability to cope with noisy or incomplete data and ability to 
very fast data generation by using ordinary digital computers (Narendra & Parthasarathy, 
1990; Boroushaki et al., 2002; Choi et al., 2004; Übeyli & Übeyli, 2007). 
Recently, data processing algorithms based on artificial intelligence gained popularity in 
nuclear technology. In particular, ANNs found their application in a wide range of 
problems (Uhrig & Tsoukalas, 1999), such as diagnostics (Bartlett & Uhrig, 1992; Kim et al., 
1992), signal validation (Fantoni & Mazzola, 1996a; 1996b), anomalies detection (Ogha & 
Seki, 1991; Kozma & Nabeshima, 1995; Reifman, 1997) and core monitoring (Kozma et al., 
1995). ANNs allow modeling of complex systems without requiring an explicit knowledge 
or formulation of the relationship existing among the variables, and they can constitute a 
valuable alternative to structured models or empirical correlations (Thibault & Grandjean, 
1991). 

4.1. Elman recurrent neural networks for neutronic parameters of a thorium fusion 
breeder  
RNNs are capable to represent arbitrary nonlinear dynamical systems (Narendra & 
Parthasarathy, 1990; Boroushaki et al., 2002). Learning and generalization ability, fast real 
time operation and ease of implementation features have made RNNs popular in the last 
decade. Recent works by nuclear engineering researchers demonstrated the ability of RNNs 
in identification of complex nonlinear plants like nuclear reactor cores (Boroushaki et al., 
2002; Adal et al., 1997; Boroushaki et al., 2003; Şeker et al., 2003; Ortiz & Requena, 2004). 
Übeyli & Übeyli (2007) used the Elman RNNs for the estimation of the neutronic parameters 
of a thorium fusion breeder.  
The inputs of the implemented nine RNNs (for three types of coolant and three outputs) are 
atomic densities of the components used in the investigated reactor (Übeyli & Übeyli, 2007). 
The outputs of the computations are the main neutronic parameters; tritium breeding ratio, 
energy multiplication factor and net 233U production. Figure 7 shows the RNNs model used 
in neural computation of the main neutronic parameters. 
In calculations by Scale4.3, atomic densities of the blanket zone components, thicknesses and 
materials of the zones and reaction cross section types are entered to the prepared inputs. 
Then, outputs are generated by running these inputs in a personal computer. In the outputs, 
the reaction cross sections with respect to neutron energy groups required to compute 
neutronic parameters of the reactor are derived from the library. After that, these outputs 
are processed with a computer code to get neutronic parameters of the reactor for an 
operation period of 48 months (Übeyli & Acr, 2007).  
The nine RNNs proposed for computation of the main neutronic parameters (tritium 
breeding ratio computation, energy multiplication factor and net 233U production) were 
implemented by using the MATLAB software package (MATLAB version 7.0 with neural 
networks toolbox). Different network architectures were experimented and the results of the 
architecture studies confirmed that, networks with one hidden layer results in higher 
computation accuracy. The Scale 4.3 was used to generate data (Übeyli & Acr, 2007). For 
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neural computation of the tritium breeding ratio, energy multiplication factor and net 233U 
production 49 data, consisting of input parameters and the corresponding computed values 
of the tritium breeding ratio, energy multiplication factor and net 233U production, were 
generated for each RNN.  
The test results of the RNNs implemented for three types of coolant are compared with the 
results of Scale 4.3 in Figures 8-10 for the tritium breeding ratio (TBR) computation, the 
energy multiplication factor (M) and the net 233U production, respectively. It can be clearly 
seen from these Figures that the results of the RNNs presented in this study are in very good 
agreement with the results of Scale 4.3. The difference between the output of the network 
and the desired output (computed using Scale 4.3) is referred to as the error and can be 
measured in different ways. In this study, mean square error (MSE), mean absolute error 
(MAE), and correlation coefficient ( r ) were used for the measuring error of the RNNs 
during test process. The correlation coefficient is limited with the range [-1,1]. When 1r =  
there is a perfect positive linear correlation between network output and desired output, 
which means that they vary by the same amount. When 1r = −  there is a perfectly linear 
negative correlation between network output and desired output, that means they vary in 
opposite ways. When 0r =  there is no correlation between network output and desired 
output. Intermediate values describe partial correlations. In Table 5, performance evaluation 
parameters of the RNNs implemented for three types of coolant are given for the tritium 
breeding ratio computation, the energy multiplication factor and the net 233U production 
during test process. The values of performance evaluation parameters and the very good 
agreement between the  results of the RNNs and the results of Scale 4.3 support the validity 
of the RNNs trained with the Levenberg-Marquardt algorithm presented in this study 
(Übeyli & Übeyli, 2007).  

5. Conclusions 
ANNs may offer a potentially superior method of biomedical signal analysis to the spectral 
analysis methods. In contrast to the conventional spectral analysis methods, ANNs not only 
model the signal, but also make a decision as to the class of signal. Another advantage of 
ANN analysis over existing methods of biomedical signal analysis is that, after an ANN has 
trained satisfactorily and the values of the weights and biases have been stored, testing and 
subsequent implementation is rapid. The proposed combined Lyapunov exponents/RNN 
approach can be evaluated in discrimination of other Doppler ultrasound signals or time-
varying biomedical signals. Preprocessing, feature extraction methods and ANN 
architectures are the main modules of an automated diagnostic systems and therefore they 
play important roles in determining the classification accuracies. Thus, further work can be 
performed for improving the classification accuracies by the usage of different 
preprocessing (different filtering methods), feature extraction methods (different spectral 
analysis methods) and ANN architectures (self-organizing map, radial basis function, 
mixture of experts, etc.) (Übeyli, 2008a). 
The research demonstrated that the wavelet coefficients and the Lyapunov exponents are 
the features which well represent the ECG signals and the RNN trained on these features 
achieved high classification accuracies. The overall results of the RNN were better when 
they were trained on the computed composite features for each ECG beat. The results 
demonstrated that significant improvement can be achieved in accuracy by using the RNNs 
compared to the feedforward neural network models (MLPNNs). This may be attributed to 
several factors including the training algorithms, estimation of the network parameters and 
the scattered and mixed nature of the features. The results of the present study 
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demonstrated that the RNN can be used in classification of the ECG beats by taking into 
consideration the misclassification rates (Übeyli, 2008c). 
ANNs have recently been introduced to the nuclear engineering applications as a fast and 
flexible vehicle to modeling, simulation and optimization. A new approach based on RNNs 
was presented for the neutronic parameters of a thorium fusion breeder. The results of the 
RNNs implemented for the tritium breeding ratio computation, energy multiplication factor 
and net 233U production in a thorium fusion breeder and the results available in the 
literature obtained by using Scale 4.3 were compared. The drawn conclusions confirmed 
that the proposed RNNs could provide an accurate computation of the tritium breeding 
ratio computation, the energy multiplication factor and the net 233U production of the 
thorium fusion breeder (Übeyli & Übeyli, 2007).  
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demonstrated that the RNN can be used in classification of the ECG beats by taking into 
consideration the misclassification rates (Übeyli, 2008c). 
ANNs have recently been introduced to the nuclear engineering applications as a fast and 
flexible vehicle to modeling, simulation and optimization. A new approach based on RNNs 
was presented for the neutronic parameters of a thorium fusion breeder. The results of the 
RNNs implemented for the tritium breeding ratio computation, energy multiplication factor 
and net 233U production in a thorium fusion breeder and the results available in the 
literature obtained by using Scale 4.3 were compared. The drawn conclusions confirmed 
that the proposed RNNs could provide an accurate computation of the tritium breeding 
ratio computation, the energy multiplication factor and the net 233U production of the 
thorium fusion breeder (Übeyli & Übeyli, 2007).  
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Figure 1. A schematic representation of an Elman recurrent neural network. z-1 represents a 
one time step delay unit. 
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Figure 2. Lyapunov exponents of the OA Doppler signals: healthy subject (subject no: 12); 
subject suffering from OA stenosis (subject no: 27); subject suffering from ocular Behcet 
disease (subject no: 38) 
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Figure 3. Lyapunov exponents of the ICA Doppler signals obtained from: a healthy subject 
(subject no: 15); a subject suffering from ICA stenosis (subject no: 32); a subject suffering 
from ICA occlusion (subject no: 43) 
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Figure 3. Lyapunov exponents of the ICA Doppler signals obtained from: a healthy subject 
(subject no: 15); a subject suffering from ICA stenosis (subject no: 32); a subject suffering 
from ICA occlusion (subject no: 43) 
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(b) 

Figure 4. The detail wavelet coefficients at the first decomposition level of the ECG beats: (a) 
normal beat, (b) partial epilepsy beat 
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(b) 
Figure 5. Lyapunov exponents of the ECG beats: (a) normal beat, (b) partial epilepsy beat 
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Figure 4. The detail wavelet coefficients at the first decomposition level of the ECG beats: (a) 
normal beat, (b) partial epilepsy beat 
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Figure 5. Lyapunov exponents of the ECG beats: (a) normal beat, (b) partial epilepsy beat 
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Figure 6. ROC curves of the classifiers used for classification of the ECG beats 

 
Figure 7. Implemented RNNs for various coolant type (a) Natural Lithium (b) Li20S80 (c) Flinabe 
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Figure 8. TBR variation in the blanket cooled with natural Li obtained by Scale 4.3 (Übeyli & 
Acr, 2007) and RNN 
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Figure 9. Change in M with respect to time in the blanket using Li20Sn80 obtained by Scale 
4.3 (Übeyli & Acr, 2007) and RNN 
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Figure 9. Change in M with respect to time in the blanket using Li20Sn80 obtained by Scale 
4.3 (Übeyli & Acr, 2007) and RNN 
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Figure 10. Net 233U production in the blanket using Flinabe obtained by Scale 4.3 (Übeyli & 
Acr, 2007) and RNN 

 

Output Result 
Desired Result 

Healthy OA stenosis Ocular Behcet disease 

Healthy 41 0 0 

OA stenosis 2 32 1 

Ocular Behcet disease 0 0 33 

Table 1. Confusion matrix of the RNN used for classification of the OA Doppler signals 

Output Result 
Desired Result 

Healthy ICA stenosis ICA occlusion 

Healthy 31 0 0 

ICA stenosis 1 40 0 

ICA occlusion 0 2 36 

Table 2. Confusion matrix of the RNN used for classification of the ICA Doppler signals 
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Classifiers CPU time 
(min:s) Classification Accuracies Values (%) 

Specificity 95.35 

Sensitivity 
(OA stenosis) 100.00 

Sensitivity 
(Ocular Behcet disease) 97.06 

RNN implemented for 
OA Doppler signals 8:23 

Total classification accuracy 97.25 

Specificity 96.88 

Sensitivity 
(ICA stenosis) 95.24 

Sensitivity 
(ICA occlusion) 100.00 

RNN implemented for 
ICA Doppler signals 7:41 

Total classification accuracy 97.27 

 
 
 

Table 3. The classification accuracies and the CPU times of training of the classifiers used for 
classification of the OA and ICA Doppler signals 

 
 
 

Statistical Parameters (%) 
Classifiers 

Specificity Sensitivity Total classification 
accuracy 

CPU time 
(min:s) 

RNN 98.89 97.78 98.33 12:34 

MLPNN 92.22 93.33 92.78 17:05 

 
 

Table 4. The values of the statistical parameters and the CPU times of training of the 
classifiers used for classification of the ECG beats 
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Table 4. The values of the statistical parameters and the CPU times of training of the 
classifiers used for classification of the ECG beats 
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Coolant 
type Performance 

RNNs for 
tritium 

breeding 
ratio 

RNNs for energy 
multiplication 

factor 

RNNs for net 
233U production 

MSE 0.009 0.005 0.008 

MAE 0.008 0.004 0.008 
Natural 
Lithium 

r 0.892 0.921 0.945 

MSE 0.089 0.006 0.007 

MAE 0.008 0.005 0.008 Li20S80 

r 0.899 0.934 0.905 

MSE 0.009 0.005 0.006 

MAE 0.088 0.005 0.007 Flinabe 

r 0.895 0.924 0.936 

Table 5. Performance evaluation parameters of the RNNs implemented for the estimation of 
the neutronic parameters of a thorium fusion breeder 
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1. Introduction 
In this chapter, we review existing locally recurrent neural networks and introduce a novel 
artificial neural network architecture that merges the locally recurrent probabilistic neural 
networks (LRPNN) with swarm intelligence algorithms and concepts.   
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected 
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of 
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the 
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with 
which it communicates through interconnections. The locality that determines the 
neighbourhoods is defined based on existing neighbourhood and communication schemes 
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more 
general scheme, in which the fully connected LRPNN can be considered as a particular case, 
where all links in the recurrent layer are implemented. 
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or 
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm 
intelligence, since swarms with dynamic communication schemes among individuals have 
been shown to achieve remarkably better results than swarms with static communication 
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful 
in cases where better fit to unknown data is required.  In the present chapter we will limit 
our exposition to the static neighbourhoods, which are defined once during training, and 
remain unchanged during the operation of the PC-LRPNN.  However, the concepts that we 
introduce here can be extended further to the dynamic counterparts. 
The aforementioned local neighbourhoods and communications schemes facilitate the 
optimization of the recurrent layer linkage, which leads to much faster operation of the 
neural network, when compared to the fully linked structure.  Furthermore, it significantly 
reduces the computational load for the overall training of the recurrent layer, which is 
performed at each case using the Particle Swarm Optimization (PSO) algorithm.  Equipping 
the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the 
virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN), 
swarm intelligence concept, and that can tackle successfully real-life classification problems 
that assume temporal or spatial correlations among subsequent events. 



 Recurrent Neural Networks 

 

376 

Coolant 
type Performance 

RNNs for 
tritium 

breeding 
ratio 

RNNs for energy 
multiplication 

factor 

RNNs for net 
233U production 

MSE 0.009 0.005 0.008 

MAE 0.008 0.004 0.008 
Natural 
Lithium 

r 0.892 0.921 0.945 

MSE 0.089 0.006 0.007 

MAE 0.008 0.005 0.008 Li20S80 

r 0.899 0.934 0.905 

MSE 0.009 0.005 0.006 

MAE 0.088 0.005 0.007 Flinabe 

r 0.895 0.924 0.936 

Table 5. Performance evaluation parameters of the RNNs implemented for the estimation of 
the neutronic parameters of a thorium fusion breeder 

18 

Partially Connected Locally Recurrent 
Probabilistic Neural Networks 

Todor D. Ganchev, Konstantinos E. Parsopoulos, Michael N. Vrahatis, 
 and Nikos D. Fakotakis 

University of Patras 
Greece 

1. Introduction 
In this chapter, we review existing locally recurrent neural networks and introduce a novel 
artificial neural network architecture that merges the locally recurrent probabilistic neural 
networks (LRPNN) with swarm intelligence algorithms and concepts.   
In particular, we develop an enhanced LRPNN model, referred to as Partially Connected 
LRPNN (PC-LRPNN). In contrast to LRPNN, where the recurrent layer consists of a set of 
fully connected neurons, the proposed new architecture assumes a swarm of neurons in the 
recurrent layer. Each neuron of the swarm presumes a neighbourhood of neurons with 
which it communicates through interconnections. The locality that determines the 
neighbourhoods is defined based on existing neighbourhood and communication schemes 
proposed in the swarm intelligence literature. Obviously, the PC-LRPNN offers a more 
general scheme, in which the fully connected LRPNN can be considered as a particular case, 
where all links in the recurrent layer are implemented. 
The neighbourhood topology of the new, swarm-based recurrent layer can be either static or 
dynamic. Dynamic neighbourhoods have been studied extensively in the field of swarm 
intelligence, since swarms with dynamic communication schemes among individuals have 
been shown to achieve remarkably better results than swarms with static communication 
schemes in the field of optimization. Also, the plasticity of the neighbourhoods can be useful 
in cases where better fit to unknown data is required.  In the present chapter we will limit 
our exposition to the static neighbourhoods, which are defined once during training, and 
remain unchanged during the operation of the PC-LRPNN.  However, the concepts that we 
introduce here can be extended further to the dynamic counterparts. 
The aforementioned local neighbourhoods and communications schemes facilitate the 
optimization of the recurrent layer linkage, which leads to much faster operation of the 
neural network, when compared to the fully linked structure.  Furthermore, it significantly 
reduces the computational load for the overall training of the recurrent layer, which is 
performed at each case using the Particle Swarm Optimization (PSO) algorithm.  Equipping 
the PC-LRPNN with PSO, results in an efficient hybrid scheme that takes advantage of the 
virtues of the probabilistic neural networks (PNN), recurrent neural networks (RNN), 
swarm intelligence concept, and that can tackle successfully real-life classification problems 
that assume temporal or spatial correlations among subsequent events. 



 Recurrent Neural Networks 

 

378 

2. Locally recurrent neural networks 
A large number of recurrent and locally recurrent neural networks (LRNNs) have been 
studied in the literature. All they posses the valuable virtue to learn temporal dependences 
among the training data, which allows for context awareness, and thus, for improved 
recognition capabilities when compared to their non-recurrent counterparts. This advantage 
has proved useful in numerous applications of the LRNNs on real-life problems, which 
among others include: nonlinear system identification (Back & Tsoi, 1992; Lin et al., 1998); 
grammatical inference (Lin et al., 1998); weather prediction (Aussem et al., 1995); speech 
recognition (Kasper et al., (1995, 1996)); protection of power systems (Cannas et al., 1998); 
speaker verification (Ganchev et al., (2003, 2004, 2007)); wind speed prediction (Barbounis & 
Theocharis, (2007a, 2007b)), etc. 
The locally recurrent global feedforward architecture was originally proposed by Back and 
Tsoi (Back & Tsoi, 1991), who considered an extension of the Multilayer Perceptron (MLP) 
neural network to exploit contextual information.  In their work, they introduced the Infinite 
Impulse Response (IIR) and Finite Impulse Response (FIR) synapses, able to utilize temporal 
dependencies in the input data.  The FIR synapse has connections to its own, current and 
delayed, inputs, while the IIR synapse has also connections to its past outputs.   
Ku and Lee (Ku & Lee, 1995) proposed Diagonal Recurrent Neural Networks (DRNN) for 
the task of system identification in real-time control applications.  Their approach is based 
on the assumption that a single feedback from the neuron’s own output is sufficient.  Thus, 
they simplify the fully connected neural network to render training easier.   
A comprehensive study of several MLP-based Locally Recurrent Neural Networks is 
available in (Campolucci et al., 1999).  They introduced a unifying framework for the 
gradient calculation techniques, called Causal Recursive Back-Propagation. All 
aforementioned approaches consider gradient-based training techniques for neural 
networks, which, as it is well known, require differentiable transfer functions. 
From the abundance of LRNN, in the present work, we will consider primary architectures 
originating from the family of the Probabilistic Neural Network (PNN).  Specifically in the 
present section we will briefly outline the Locally Recurrent Probabilistic Neural Network 
(LRPNN), which was introduced (Ganchev et al., 2003) as an extension of the feed-forward 
Probabilistic Neural Network (PNN) architecture (Specht, (1988, 1990)). This structure is 
used as basis for the novel partially connected LRPNN (PC-LRPNN), which we will discuss 
in the next sections. 
In brief, the LRPNN was derived from the original PNN by incorporating an additional 
hidden layer, referred to as recurrent layer, between the summation layer and the output 
competitive layer of the PNN structure.  The recurrent layer consists of neurons possessing 
feedbacks from all other neurons in that layer. Due to this recurrent layer, the LRPNN, in 
contrast to the original PNN, is sensitive to the context in which the individual input data 
appear, and thus, it is capable to learn temporal regularities and the sequence of occurrence 
of events.  Specifically, in the frame of speech processing this new capability of the LRPNN 
enables detecting and exploiting the abundance of correlations among speech features 
vectors estimated for successive speech frames. Exploiting these correlations was found 
important for improving the classification accuracy in the speaker verification task (Ganchev 
et al., (2003, 2004, 2007)).  
As presented in earlier studies  (Ganchev et al., (2003, 2004)) in the LRPNN architecture each 
neuron in the recurrent layer receives as input not only current values of its inputs, but also 
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the N  previous outputs of all neurons in that layer.  Broadly speaking, the input, acting on 
a recurrent neuron located in the recurrent hidden layer of an LRPNN, is a sum of two 
differences: The first difference is between the weighted probability of the given class and 
the sum of weighted probabilities computed for all other classes. These probabilities are 
computed at the output of the summation layer of the LRPNN.  The second difference is 
between the weighted past output values of the given unit and the sum of the weighted past 
output values of all other neurons in this layer.  Thus, in the proposed architecture, the 
probability of belonging to a specific class is combined with the probabilities computed for 
the other classes, and more importantly with the past values of the outputs of the recurrent 
units for all classes. This incorporation of previous information enables the LRPNN network 
to take advantage of the temporal context, which results in producing smoother in the time 
output scores, improved confidence levels, and consequently more accurate final decisions. 
In the present chapter, we elaborate further on the LRPNN architecture by studying ways to 
optimize the recurrent layer linkage.  In contrast to LRPNN, where the recurrent layer 
consists of a set of fully connected neurons, the introduced here new PC-LRPNN 
architecture assumes a swarm of neurons in the recurrent layer.  Each neuron of the swarm 
presumes a neighbourhood of neurons with which it communicates through 
interconnections.  The locality that determines the neighbourhoods is defined based on 
existing neighbourhood and communication schemes proposed in the swarm intelligence 
literature.  When compared to the original LRPNN architecture, the PC-LRPNN has a 
greater capacity to adapt (its recurrent layer linkage) to the training dataset.  This is due to 
the additional degree of freedom provided by the recurrent layer linkage selection that can 
be controlled for a fine-tuning of the neural network to the problem at hand.  Obviously, the 
fully connected LRPNN architecture can be regarded as a particular case of the PC-LRPNN, 
which implements the full linkage in the recurrent layer. 

3. Particle swarms and particle swarm optimization 
The particle swarm is a community of individual performers, known as particles, which 
communicate/share information and collaborate on finding optimal regions in the search 
space. In the literature, the particle swarm is synonym to Particle Swarm Optimization 
(PSO) algorithm, which has become an attractive alternative to other optimization 
techniques (Clerc and Kennedy, 2002).  
In brief, PSO is a stochastic optimization, population-based algorithm. It was introduced in 
1995 by Kennedy and Eberhart (Kennedy & Eberhart, 1995), inspired by social behaviour 
simulation models. Features such as information exchange and neighbour alignment are 
inherent in such models, allowing the emergence of intelligent behaviour in swarms of 
simple agents with limited field of action. Similarly to evolutionary algorithms, PSO exploits 
a population, called a swarm, of potential solutions, called particles, which adapt their 
position stochastically at each iteration of the algorithm.  
In contrast to standard evolutionary approaches, PSO promotes cooperativeness rather than 
competition among the solutions. More specifically, instead of using explicit mutation and 
selection operators in order to modify the population and favour the best performing 
individuals, PSO uses an adaptable position shift, called velocity, to move each particle to a 
new position at each iteration of the algorithm. The particles are moving towards promising 
regions of the search space by exploiting information springing from their own experience 
during the search as well as from the experience of other particles. For this purpose, a 
memory of the best position ever visited by each particle in the search space is retained.  
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In the context of single-objective optimization, the PSO can be outlined formally as follows: 
Let S be an n-dimensional search space, f : S →  be the objective function, and N  be the 
number of particles that comprise the swarm,  

 S = {x1, x2,…, xN}.  (1) 

Then, the ith particle is a point in the search space,  

 xi = (xi1, xi2,…, xin) ∈ S,  (2) 

as well as its best position, 

 pi = (pi1, pi2,…, pin) ∈ S, (3) 

which is the best position ever visited by xi  during the search. The velocity of xi  is also an n-
dimensional vector, 

 vi = (vi1, vi2,…, vin).  (4) 

In order to avoid biasing the swarm in specific parts of the search space, the particles as well 
as their velocities are randomly initialized in the search space.  
Let NGi ⊆ S  be a set of particles that exchange information with xi. This set is called the 

neighbourhood of xi and it will be discussed later. Let also, g, be the index of the best particle 
in NGi, i.e.,  

 f(pg) ≤ f(pl),                for all l  with xl ∈ NGi, (5) 

and t denote the iteration counter. Then, the swarm is manipulated according to the 
equations (Eberhart & Shi, 2000), 

 vij(t+1) = w vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t)),  (6) 

 xij(t+1) = xij(t) + vij(t+1),  (7) 

where i = 1, 2,…, N; j = 1, 2,…, n; w is a positive parameter called inertia weight; c1 and c2 are 
two positive constants called cognitive and social parameter, respectively; and r1, r2, are 
realizations of two independent random variables that assume the uniform distribution in 
the range [0, 1]. The best position of each particle is updated at each iteration by setting  

 pi(t+1) = xi(t+1),                  if  f(xi) < f(pi), (8) 

otherwise it remains unchanged. Obviously, an update of the index g is also required at each 
iteration. 
The inertia weight was not used in early PSO versions. However, experiments showed that 
the lack of mechanism for controlling the velocities could result in swarm explosion, i.e., an 
unbounded increase in the magnitude of the velocities, which resulted in swarm divergence. 
For this purpose, a boundary, vmax, was imposed on the absolute value of the velocities, such 
that, if vij > vmax then vij = vmax, and if vij < -vmax then vij = -vmax. In later, more sophisticated 
versions, the new parameter was incorporated in the velocity update equation, in order to 
control the impact of the previous velocity on the current one, although the use of vmax was 
not abandoned.  
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Intelligent search algorithms, such as PSO, must demonstrate an ability to combine 
exploration, i.e., visiting new regions of the search space, and exploitation, i.e., performing 
more refined local search, in a balanced way in order to solve problems effectively 
(Parsopoulos & Vrahatis, (2002, 2004, 2007)).  Since larger values of w promote exploration, 
while smaller values promote exploitation, it was proposed and experimentally verified that 
declining values of the inertia weight can provide better results than fixed values. Thus, an 
initial value of w around 1.0 and a gradually decline towards 0.0 are considered a good 
choice. On the other hand, the parameters c1 and c2 are usually set to fixed and equal values 
such that the particle is equally influenced by its own best position, pi, as well as the best 
position of its neighbourhood, pg, unless the problem at hand implies a different setting. 
An alternative velocity update equation was proposed by Clerc & Kennedy, (2002), 

 vij(t+1) = χ [vij(t) + c1 r1 (pij(t) – xij(t)) + c2 r2 (pgj(t) – xij(t))],  (9) 

where χ  is a parameter called constriction factor. This version is algebraically equivalent with 
the inertia weight version of (6). However, the parameter selection in this case is based on 
the stability analysis due to Clerc and Kennedy (2002), which expresses χ as a function of c1 
and c2. Different promising models were derived through the analysis of the algorithm, with 
the setting χ = 0.729, c1 = c2 =2.05, providing the most promising results and robust 
behaviour, rendering it the default PSO parameter setting. 
Regardless of the PSO version used, it is clear that its performance is heavily dependent on 
the information provided by the best positions, pi  and pg, since they determine the region of 
the search space that will be visited by the particle. Therefore, their selection, especially for 
pg, which is related to information exchange, plays a central role in the development of 
effective and efficient PSO variants. Moreover, the concept of neighbourhood mentioned 
earlier in this section, raises efficiency issues. A neighbourhood has been already defined as 
a subset of the swarm. The most straightforward choice would be to consider as neighbours 
of the particle xi, all particles enclosed in a sphere with centre xi and a user-defined radius in 
the search space. Despite its simplicity, this approach increases significantly the 
computational burden of the algorithm, since it requires the computation of all distances 
among particles at each iteration. This deficiency has been addressed by defining 
neighbourhoods in the space of particles’ indices instead of the actual search space. 
Thus, the neighbours of xi are determined based solely on the indices of the particles, 
assuming different neighbourhood topologies, i.e., orderings of the particles’ indices. The most 
common neighbourhood is the ring topology, depicted in Fig. 1 (left), where the particles are 
arranged on a ring, with xi-1 and xi+1 being the immediate neighbours of xi, and x1 following 
immediately after xN. Based on this topology, a neighbourhood of radius r of xi is defined as 

 NGi(r) = {xi-r, xi-r+1,…, xi-1, xi, xi+1,…, xi+r-1, xi+r}, (10) 
 

 
Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO 
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Fig. 1. The ring (left) and star (right) neighbourhood topologies of PSO 
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and the search is influenced by the particle’s own best position, pi, as well as the best 
position of its neighbourhood. This topology promotes exploration, since the information 
carried by the best positions is communicated slowly through the neighbours of each 
particle. A different topology is the star topology, depicted in Fig. 1 (right) where all particles 
communicate only with a single particle, which is the overall best position, pg, of the swarm, 
i.e., NGi ≡ S. This topology promotes exploitation, since all particles share the same 
information. This is also called the global variant of PSO, denoted as gbest in the relative 
literature, while all other topologies with NGi ⊂ S, define local variants, usually denoted as 
lbest. Different topologies have also been investigated with promising results (Kennedy, 
1999; Janson & Middendorf, 2005). 

4. The partially connected locally recurrent probabilistic neural network 
The LRPNN was derived (Ganchev et al., 2003) from the original PNN (Specht, 1988) by 
incorporating an additional hidden layer, referred to as recurrent layer, between the 
summation layer and the output competitive layer of the PNN structure.  This recurrent 
layer consists of neurons possessing feedbacks with all other neurons in that layer.  
Elaborating on the LRPNN, here, we introduce the Partially Connected LRPNN (PC-LRPNN) 
architecture.  Fig. 2 presents the simplified structure of a PC-LRPNN for classification in 
K classes.  In contrast to the fully connected LRPNN, where each neuron in the recurrent 
layer communicates with all other neurons in that layer (i.e. global communication is enabled), 
in the PC-LRPNN the recurrent layer linkage is implemented only partially, depending on 
the problem at hand and the actual training data.  This is illustrated in Fig. 2, where the 
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dashed line indicates that the linkage between neurons 1y , 2y  and yK  might not be 
implemented.  In general, the concept of partially connected recurrent layer can be regarded 
as defining local neighbourhoods for each of the recurrent layer neurons.  This can be 
viewed as establishing a swarm of neurons which cooperate (i.e. exchange information) in 
order to categorize more precisely a given unknown input.  However, in contrast to the 
classic particle swarms that are utilized in the PSO schemes, here the local neural 
neighbours are not defined by the specific values of the neurons’ indexes but the swarm 
members are selected during training, on a competitive basis, and in data-dependent 
manner, with respect to certain predefined criterion.  In practice, the size of neighbourhood 
and the recurrence depth (i.e. the depth of memory) in the recurrent layer are specified 
depending on a priori knowledge about the specific problem at hand, or are identified 
heuristically after some experimentation with a representative dataset.  
However, before describing any specific strategy for implementing the (partial) linkage of 
the recurrent layer, for comprehensiveness of exposition we briefly outline the PC-LRPNN 
architecture.  In brief, the first two hidden layers the PC-LRPNNs, as their predecessor — 
the PNNs, implement the Parzen window estimator (Parzen, 1962) by using a mixture of 
Gaussian basis functions.  If a PC-LRPNN for classification in K  classes is considered, the 
class conditional probability density function ( | )i p ip kx  is defined as: 

 2 2
1

1 1 1( | ) f ( ) exp ( ) ( )
2(2 )

iM
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i p i i p p ij p ijd d
ji ii

p k
M σπ σ =

⎛ ⎞
= = ⋅ − − −⎜ ⎟

⎝ ⎠
∑x x x x x x , 1,2,..., ,i K=  (11) 

where for simplicity of further notations ( | )i p ip kx  is replaced by f ( )i px .  Here ijx  is the j th 
training vector from class iκ , px  belonging to the set { },p=X x  with 1,2,..., ,p P=  is the p th 
input vector, d  is the dimension of the input vectors, and iM  is the number of training 
patterns in class iκ .  Each training vector ijx  is assumed a centre of a kernel function, and 
consequently the number of pattern units in the first hidden layer of the neural network is 
given by the sum of the pattern units for all the classes.  The standard deviation iσ  acts as a 
smoothing factor, which softens the surface defined by the multiple Gaussian functions.  
Instead of the simple covariance matrix, { }2

i Iσ , where I  represents the identity matrix, the 

full covariance matrix can be computed using the Expectation Maximization algorithm, as 
proposed in (Yang & Chen, 1998; Mak & Kung, 2000) and elsewhere.  Since the computation 
of the covariance matrix, or the optimization of the smoothing factor iσ , does not interfere 
with the development of the PNN we discuss, for simplicity of exposition, we consider here 
the simple case, where the value of the standard deviation is identical for all pattern units 
belonging to a specific class.  Moreover, iσ  can be the same for all pattern units, irrespective 
of their class belonging, as it was originally proposed (Specht, 1990). 
Next, the class conditional probability density functions f ( )i px  for each class iκ , estimated 
through (11), act as inputs for the recurrent layer.  In general, the recurrent layer can be 
considered as a form of Infinite Impulse Response (IIR) filter that smoothes the probabilities 
generated for each class, by incorporating information about the probabilities computed for 
all other classes, and more importantly, by exploiting one or more past values of the outputs 
for all classes.   
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The recurrent layer is composed of recurrent neurons, which in addition to the inputs 
coming from the summation layer also possess feedbacks from their own past outputs and 
from current and past outputs of the neurons of the other classes.  Fig. 3 illustrates the 
linkage of a single neuron belonging to the hidden recurrent layer.  As shown in the figure, 
beside the PDFs from all classes, f ( ),  1,2,..., ,i p i K=x  this neuron also receives feedbacks 
from its past outputs, y ( ),  1,2,..., ,i p t t N− =x  with i  denoting the current neuron number, as 
well as from current y ( ),  1,2,...,j i p j K≠′ =x  and past y ( ),j i p t≠ −x  1,2,..., ,  1,2,..., ,j K t N= =  
outputs from all other neurons belonging to that layer.  Here, the subscript p  stands for the 
serial number of the input vector px .  On its own side, the current neuron provides to the 
other neurons of the recurrent layer its current y ( )i px  and past y ( ),i p t−x  1,2,...,t N=  
outputs, again with p  standing for the specific input vector.   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 3.  Linkage of a neuron that belongs to the recurrent layer 
A detailed structure of the recurrent neurons is provided in Fig. 4.  As the figure presents, 
the inputs f ( ),  1,2,..., ,i p i K=x  denoting the class conditional PDFs, are weighted by the 
coefficients ,i jb .  The two indexes of the weights of ,i jb  with 1,2,...,i K=  and 1,2,...,j K=  
stand for the current recurrent neuron and for the class to which the corresponding input 
belongs.  The first two indexes of the weights , ,i j ta  have the same meaning as for the 
weights ,i jb , and the third index 1,2,...,t N=  shows the time delay of the specific output 
before it appear as an input.   
All feedbacks y ( )i p t−x , 1,2,...,t N=  that originate from the present neuron i , and the links 
y ( ),j i p t≠ −x  1,2,..., ,j K=  1,2,...,t N=  coming from the other neurons j i≠  of the recurrent 
layer are weighted by the coefficients , , ,  1,2,...,i i ta t N=  and , , ,i j i ta ≠  1,2,..., ,j K=  

1,2,...,t N= , respectively. 
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The summation units’ output y ( )i px  of the locally recurrent layer is computed by: 

 , , , , , ,
1 1 1

1,2,..., ,y ( ) f ( ) f ( ) y ( ) y ( ) ,  
K N K

i p i i i p i k k p i i t i p t i k t k p t
k t k
i k i k

i Kb b a a− −
= = =
≠ ≠

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑x x x x x  (12) 

where f ( )i px  is the probability density function of each class iκ , px  is the p th input vector, 
K  is the number of classes, N  is the recurrence depth, ( )yi p t−x  is the normalized past 
output for class iκ  that has been delayed on t  time steps, and , ,i j ta  and ,i jb  are weight 
coefficients.  The output y ( )i px  of each summation unit from the recurrent layer is subject to 
the regularization transformation: 
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which retains the probabilistic interpretation of the output of the recurrent layer.  Here, the 
designation sgm  refers to the sigmoid activation function. 
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Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN 
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Fig. 4. Internal structure of the ith neuron from the recurrent layer of the PC-LRPNN 
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Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision 
rule (14) is applied to distinguish class iκ , to which the input vector px  is categorized:  

 { }D( ) argmax y ( ) ,  1,2,..., ,p i i i p
i

h c i K= =x x  (14) 

where ih  is a priori probability of occurrence of a pattern from class iκ , and ic  is the cost 
function associated with the misclassification of a vector belonging to class iκ . 
Finally, provided that all classes are mutually exclusive and exhaustive, we can compute the 
Bayesian confidence for every decision D( )px by applying the Bayes’ theorem: 
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The posterior probability ( | )i pP k x  for the p th input vector belonging to class iκ  is 

computed by relying on the a priori probabilities ih  and the temporally smoothed PDFs 
y ( )i px .   

The decision D( )px , and the confidence for every decision ( | )i pP k x ,  are computed for 

every input vector. However, in many practical applications (such as speaker verification, 
speaker identification, emotion detection, etc) every test trial (usually a speech utterance) 
consists of multiple feature vectors.  Therefore, the probability ( | )iP k X  all test vectors 
originating from a given test trial { },p=X x  1,2,...,p P=  to belong to class iκ , can be 

computed by: 
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where 1 D( )P
p ip k=

⎡ ⎤=⎣ ⎦∑ x  is the number of vectors px classified by the Bayesian decision rule 

(14) as belonging to class iκ .  In applications that assume an exhaustive taxonomy any of 

the inputs px  falls in one of the classes iκ , and therefore the equality: 

 1 1 D( ) ,K P
p jj pP k= =

⎡ ⎤= =⎣ ⎦∑ ∑ x  (17) 

 

where P  is the number of test vectors in the given trial X , is always preserved. 
However, in many real-world applications computing the probability ( | )iP k X  is not 
sufficient as a final outcome from the PC-LRPNN.  In such cases, a final decision is made by 
applying the Bayesian decision rule: 

 { }( ) argmax ( | ) ,i
i

D P k=X X  1,2,..., ,i K=  (18) 

or alternatively, the outcome of (16) is assessed with respect to a predefined threshold θ : 
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Most often, the threshold θ  is computed on a data set, referred to as development or 
validation data, which is independent from the training and testing data.  A necessary 
requirement for obtaining a reasonable estimate of θ  is the development data to be 
representative, i.e., they have to bear a resemblance to the real-world data on which the PC-
LRPNN will operate within the corresponding application. 

5. Training the PC-LRPNN 
In general, the training of the PC-LRPNNs is similar to the three-step training procedure of 
the original fully connected LRPNNs (Ganchev et al, 2004) except for one extra step that is 
PC-LRPNN specific.  Specifically, in the LRPNN, the first two steps implement the usual 
strategy for training PNNs, while the third step adjusts the weights in the recurrent layer.  In 
the PC-LRPNN the third training step is preceded by procedure which selects the actual 
linkage that will be implemented in the recurrent layer, i.e. the PC-LRPNN are trained in 
four steps.  In the following we provide a concise description of the entire training process 
of the PC-LRPNN. 
STEP 1:  In brief, by analogy to the original PNN, the first training step creates the actual 

topology of the network.  In the first hidden layer, a pattern unit for each training 
vector is created by setting its weight vector equal to the corresponding training vector.  
In order to reduce the amount of neurons, i.e. the computational load during operation, 
the training data can be compressed by performing some sort of clustering (for instance, 
k-means) as pre-processing of the training dataset.  An alternative approach could be to 
employ pruning and discard redundant neurons, or to build the first layer in multistep 
manner by adding a new neuron only when there is compelling need this to be done.  
The outputs of the pattern units associated with the class iκ  are then connected to one 
of the second hidden layer summation units.  The number of summation units is equal 
to the number of target classes K . The outputs of the summation units can be fed to 
some or all neurons of the recurrent layer, depending on the implemented linkage.  

STEP 2:  The second training step is the computation of the smoothing parameter iσ  for each 
class.  To this end, various approaches (Meisel, 1972; Cain, 1990; Specht, 1992; Musavi et 
al., 1992; Specht & Romsdahl, 1994; Masters, 1993; Georgiou et al., (2006, 2008), etc) have 
been proposed.  Although other methods can be employed, here we will mention only 
the one (Cain, 1990) due to its simplicity.  According to that approach, any iσ  is 
proportional to the mean value of the minimum distances among the training vectors in 
class iκ : 
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Subsequently, in the output layer, often referred as competitive layer, the Bayesian decision 
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The posterior probability ( | )i pP k x  for the p th input vector belonging to class iκ  is 

computed by relying on the a priori probabilities ih  and the temporally smoothed PDFs 
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where 1 D( )P
p ip k=

⎡ ⎤=⎣ ⎦∑ x  is the number of vectors px classified by the Bayesian decision rule 
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where P  is the number of test vectors in the given trial X , is always preserved. 
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employ pruning and discard redundant neurons, or to build the first layer in multistep 
manner by adding a new neuron only when there is compelling need this to be done.  
The outputs of the pattern units associated with the class iκ  are then connected to one 
of the second hidden layer summation units.  The number of summation units is equal 
to the number of target classes K . The outputs of the summation units can be fed to 
some or all neurons of the recurrent layer, depending on the implemented linkage.  
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been proposed.  Although other methods can be employed, here we will mention only 
the one (Cain, 1990) due to its simplicity.  According to that approach, any iσ  is 
proportional to the mean value of the minimum distances among the training vectors in 
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represents the smallest Euclidean distance computed between j th pattern unit of class 

iκ  and all other pattern units from the same class;  and iM  is the number of training 
patterns in class iκ . The constant λ , which controls the degree of overlapping among 
the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the 
smoothing parameter is common for all classes, either it is chosen empirically, or it is 
computed by applying (20) on the entire training data set.   

Step 3:  For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be 
implemented.  This linkage could be static, i.e. defined once during training, or 
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input 
sequences.  Furthermore, it could be expected that many of the recurrent layer neurons 
will participate in multiple class-specific neighbourhoods, which are then combined to 
assemble the recurrent layer linkage, but there could be neurons that do not participate 
in any swarms and are left detached from their neighbours.  Usually, the linkage 
selection is performed in a data-dependent manner but it could be also based on the 
indexes of the individual neurons, if there is such necessity they to be pre-specified or 
bounded.  

In fact, the linkage selection consists in identifying a sufficient subset of connections which 
typically is much smaller than the size of the full linkage. An assortment of strategies can be 
applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm, 
and the neighbourhood for each target class.  For instance, examples could be strategies 
based on identifying the Top-C competitor classes for a given input sequence, and 
implementing the linkage only for the recurrent neurons corresponding to these classes.  
The linkage to the less-promising competitors, which are not members of the Top-C club, is 
not implemented.  An alternative strategy could be to perform pruning of the connections, 
starting from the fully connected LRPNN and iteratively identifying and discarding links 
which are not contributing for maximizing the overall performance.  Yet, another strategy 
could be to start from the simplest reasonable topology and continue adding connections 
until the performance of the PC-LRPNN increases, or predefined limits are reached.  Other 
strategies might involve optimization of the linkage of each particular recurrent neuron or 
the amount of memory it possesses, and then organize teams of super-neurons, etc.  
Obviously, the most successful strategies should exploit any a priori knowledge about the 
problem at hand and be able to interpret properly the information available in the training 
dataset.   
At this point, we need to remember that in the PC-LRPNNs we deal with classification 
scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent 
layer are in fact the probabilities computed by the summation units in the previous layer.  
These probabilities compete for distinguishing the winning class, and in non-trivial multi-
class problems there exist more than one probability bigger than zero.  For this type of 
classification scheme, we can consider a straightforward but efficient and effective strategy 
that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent 
neuron in terms of its closest competitors for the prise.  In such a strategy, we follow a two 
stage procedure:  
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1. Firstly, we identify the Top-C competitors for each target class, by feeding the original 
non-compressed training data for that class at the input of the already trained pattern 
layer. At the output of the class-specific summation units (residing in the summation 
layer), the outcome will be a set of xiM K  probabilities, with iM  indicating the number 
of feature vectors in the training dataset for class iκ  and K  the total number of target 
classes.  Having computed the matrix xiM K  for a specific class iκ , we can identify the 
Top-C competitors by computing the average score per class, and sorting these values.  

2. Subsequently, we implement symmetric connections only among these Top-C recurrent 
neurons.  Here, symmetric stands for the case where each neuron that receives 
information form another neuron also supplies back to this neuron the equivalent 
information about its own class.  Thus, the relationship between the two neurons is 
symmetric in terms of linkage.  However, in the general case symmetry might not be 
reasonable or desirable and should not be imposed unless the properties of the 
underlying training data indicate such necessity, or there exists some a priori 
knowledge about the problem at hand. 

Eventually, the recurrent layer linkage is formed as union of all class-specific 
neighbourhoods. This can be expressed as follows: Let 0L  be the xK K  matrix which 
represents the connections originating form the output of the summation layer to the inputs 
of the recurrent layer neurons, and 0( , ) 1l i j =  indicates that the specific connection from the 
summation unit corresponding to class iκ  is connected to the recurrent neuron for class jκ . 
Alternatively, the value 0( , ) 0l i j =  would indicate that the specific connection was not 
implemented.  The individual elements of the 0L  matrix, i.e. 0( , )l i j , can be referred to as the 
mask which determines if the specific coefficients ,i jb (refer to (12) ) will be present or not.  
Obviously, it is mandatory for the diagonal elements of 0L  to have non-zero values, i.e. 

0( , ) 1l i i = , for any 1,2,..., ,i K=  so a connection between the summation and recurrent layer 
in class jκ is always guaranteed.  As explained earlier, the rest of the linkage 0( , ) i jl i j

≠
can 

be identified in a data-dependent manner (for instance, by following the Top-C strategy), or 
by utilizing a priori knowledge. 
By analogy, let the xK K matrixes nL , with 1,2,..., ,n N=  stand for the links that originate 
from the past outputs of the recurrent layer neurons to the inputs of neurons in the same 
layer.  Here n  is the index of delay, and the elements of nL  serve as a mask, which 
determines if the coefficients , ,i j na  (refer to (12) ) will exist, or not.  Again, let the elements of 

1 ,L  1( , ) 1l i j = , indicate that there exists a connection between the past output at time 1t − of 
the recurrent neuron for class iκ  and the input of the recurrent neuron for class jκ , and 

1( , ) 0l i j =  indicate for lack of connection.  The same logic applies for the other matrixes nL , 
but in contrast with 0L  there are no restrictions about the values of their elements, ( , )nl i j , 
i.e. there could be a case where all ( , ) 0nl i j = .  In such a case, all recurrent feedbacks from 
past states as well as the connections between the recurrent neurons are dismissed, which is 
equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all 
coefficients , 1i ib = ), the PC-LRPNN becomes functionally identical to the original PNN.  On 



 Recurrent Neural Networks 

 

388 

 { }2
, , 2

min i j i j i≠−x x  (21) 

represents the smallest Euclidean distance computed between j th pattern unit of class 

iκ  and all other pattern units from the same class;  and iM  is the number of training 
patterns in class iκ . The constant λ , which controls the degree of overlapping among 
the individual Gaussian functions, is usually selected in the range λ ∈ [1.1, 1.4]. If the 
smoothing parameter is common for all classes, either it is chosen empirically, or it is 
computed by applying (20) on the entire training data set.   

Step 3:  For the PC-LRPNNs, the third training step selects the recurrent layer linkage to be 
implemented.  This linkage could be static, i.e. defined once during training, or 
dynamic, i.e. changing during operation of the PC-LRPNN, depending on the input 
sequences.  Furthermore, it could be expected that many of the recurrent layer neurons 
will participate in multiple class-specific neighbourhoods, which are then combined to 
assemble the recurrent layer linkage, but there could be neurons that do not participate 
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selection is performed in a data-dependent manner but it could be also based on the 
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typically is much smaller than the size of the full linkage. An assortment of strategies can be 
applied for identifying the optimal subsets of interacting neurons, i.e. the scope of swarm, 
and the neighbourhood for each target class.  For instance, examples could be strategies 
based on identifying the Top-C competitor classes for a given input sequence, and 
implementing the linkage only for the recurrent neurons corresponding to these classes.  
The linkage to the less-promising competitors, which are not members of the Top-C club, is 
not implemented.  An alternative strategy could be to perform pruning of the connections, 
starting from the fully connected LRPNN and iteratively identifying and discarding links 
which are not contributing for maximizing the overall performance.  Yet, another strategy 
could be to start from the simplest reasonable topology and continue adding connections 
until the performance of the PC-LRPNN increases, or predefined limits are reached.  Other 
strategies might involve optimization of the linkage of each particular recurrent neuron or 
the amount of memory it possesses, and then organize teams of super-neurons, etc.  
Obviously, the most successful strategies should exploit any a priori knowledge about the 
problem at hand and be able to interpret properly the information available in the training 
dataset.   
At this point, we need to remember that in the PC-LRPNNs we deal with classification 
scheme of the type winner-takes-all, and that the scores acting on the input of the recurrent 
layer are in fact the probabilities computed by the summation units in the previous layer.  
These probabilities compete for distinguishing the winning class, and in non-trivial multi-
class problems there exist more than one probability bigger than zero.  For this type of 
classification scheme, we can consider a straightforward but efficient and effective strategy 
that builds the recurrent layer linkage by identifying a neighbourhood for a given recurrent 
neuron in terms of its closest competitors for the prise.  In such a strategy, we follow a two 
stage procedure:  

Partially Connected Locally Recurrent Probabilistic Neural Networks 

 

389 

1. Firstly, we identify the Top-C competitors for each target class, by feeding the original 
non-compressed training data for that class at the input of the already trained pattern 
layer. At the output of the class-specific summation units (residing in the summation 
layer), the outcome will be a set of xiM K  probabilities, with iM  indicating the number 
of feature vectors in the training dataset for class iκ  and K  the total number of target 
classes.  Having computed the matrix xiM K  for a specific class iκ , we can identify the 
Top-C competitors by computing the average score per class, and sorting these values.  

2. Subsequently, we implement symmetric connections only among these Top-C recurrent 
neurons.  Here, symmetric stands for the case where each neuron that receives 
information form another neuron also supplies back to this neuron the equivalent 
information about its own class.  Thus, the relationship between the two neurons is 
symmetric in terms of linkage.  However, in the general case symmetry might not be 
reasonable or desirable and should not be imposed unless the properties of the 
underlying training data indicate such necessity, or there exists some a priori 
knowledge about the problem at hand. 

Eventually, the recurrent layer linkage is formed as union of all class-specific 
neighbourhoods. This can be expressed as follows: Let 0L  be the xK K  matrix which 
represents the connections originating form the output of the summation layer to the inputs 
of the recurrent layer neurons, and 0( , ) 1l i j =  indicates that the specific connection from the 
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Alternatively, the value 0( , ) 0l i j =  would indicate that the specific connection was not 
implemented.  The individual elements of the 0L  matrix, i.e. 0( , )l i j , can be referred to as the 
mask which determines if the specific coefficients ,i jb (refer to (12) ) will be present or not.  
Obviously, it is mandatory for the diagonal elements of 0L  to have non-zero values, i.e. 
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in class jκ is always guaranteed.  As explained earlier, the rest of the linkage 0( , ) i jl i j
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be identified in a data-dependent manner (for instance, by following the Top-C strategy), or 
by utilizing a priori knowledge. 
By analogy, let the xK K matrixes nL , with 1,2,..., ,n N=  stand for the links that originate 
from the past outputs of the recurrent layer neurons to the inputs of neurons in the same 
layer.  Here n  is the index of delay, and the elements of nL  serve as a mask, which 
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i.e. there could be a case where all ( , ) 0nl i j = .  In such a case, all recurrent feedbacks from 
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equivalent to recurrence depth 0N = . When this is combined with strategy Top-1 (and all 
coefficients , 1i ib = ), the PC-LRPNN becomes functionally identical to the original PNN.  On 
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the other hand, when all ( , ) 1nl i j = and 0( , ) 1l i j =  the structure of the PC-LRPNN coincides 
with the one of the fully connected LRPNN.  
Eventually, the overall linkage of the recurrent layer is the composite matrix 

 [ ]0 1  ...  ...  n NL L L L L= , 1,2,..., ,n N=  (22) 

with dimensionality ( )+ 1 x xN K K , where K  is the total number of target classes, and N  is 
the recurrence depth.   
In general, the linkage defined by the matrixes nL  and 0L  can be identified using different 
strategies, or yet the same Top-C strategy.  Furthermore, in the simplest scenario, the 
matrixes nL  could be duplicates of 0L , so L  to have a repeating structure, however, this is 
not a requisite by any means.  Once the proper linkage L  is identified the weight of each 
connection needs to be estimated. 
STEP 4:  Finally, the forth training step consists in computation of the recurrent layer weights, 

using the uncompressed training data exploited at step three.  In previous work 
(Ganchev et al, (2003, 2004)), we studied training strategies that aim at adjusting the 
weights in the recurrent layer in a manner that maximizes the classification accuracy on 
the training data set.  Here we rely on another more successful strategy that was 
developed recently (Ganchev, in-press-2008).  In brief, this new training strategy does 
not rely on a quantitative measure accounting for the classification performance on the 
training dataset, but merely aims at maximizing the probability for the target class and 
simultaneously minimizing the probabilities computed for the non-target classes over 
the training dataset. This leads to a simplification of the error function and reduction in 
the number of steps necessary for evaluating the goodness of the recurrent layer 
weights at each iteration.  

Specifically, the new error function that is subject to minimization here involves the 
complementary to one value of the probability ( | )

ik iP kX , and the compound probability for 

ikX  belonging to any other class:   

 ( )
1 1 1

1E( ) 1 ( | ) ( ) ( | ) ( )
1i i

K K K

i k i i j k j j
i i j

j i

m P k P k m P k P k
K= = =

≠

= − +
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Here 
ikX are the training data for class iκ , and ( )iP k  are the a priori probability of class  iκ .  

Finally, the constants im  and jm  determine the relative importance of (or alternatively the 
significance of misclassification of an input belonging to) the corresponding class iκ  or 

j iκ ≠ , respectively. 
The first term in equation (23) estimates the distance between the probability ( | )

ik iP kX  and 
one, i.e. the error with respect to the probability computed for a perfect match to the model.  
This term causes the output for class iκ  of the trained recurrent layer to strive towards 
value one for input vectors that resemble the training dataset for that class.   The second 
term in equation (23) is the cumulative error of 

ikX being acknowledged as belonging to any 
of the competitive classes j iκ ≠ .  This second term contributes towards restraining the output 
values produced by the competitive classes for input data that belong to class iκ . 
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The minimization of total error E( )w  is performed by employing a PSO algorithm Type 1 
(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other 
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in 
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005). 

6. Numerical evaluation 
The experimentations reported in the present section aim at illustrating the operation of the 
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of 
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.  
Specifically, for the purpose of experimentations, we selected two interesting problems of 
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant 
attention by the speech processing community.  The first one is the text-independent 
speaker identification task, which is of moderate difficulty, and the second one is the 
speaker-independent emotion recognition task, which is well-known as an extremely 
challenging problem. In the following paragraphs we offer a brief outline of these tasks: 
Task 1: Text-independent speaker identification 
Speaker identification is multiple-class decision problem where the identity of a given 
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models.  The outcome of this process is either a decision about the identity of the 
speaker or a notice that the present input cannot be categorized as any of the known 
speakers.  In the closed set speaker identification that we consider here, the input speech 
utterances always belong to someone of the known speakers.  Here, text-independence 
referrers to the specific aspect that no explicit modelling of the linguistic contents of the 
input utterance is performed.  Thus, the outcome of the identification process is not 
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity 
between the input speech signal and the predefined speaker models.  
Task 2: Speaker-independent emotion recognition 
The emotion classification task is a multiple-class decision problem, where the emotional 
state of a given speaker is judged based on comparison of an input (typically a speech 
utterance) against multiple pre-defined models for the emotional states of interest.  Here, the 
notion for speaker-independency refers to the fact that the models for the emotional states of 
interest are general for a large population of people, and were built utilizing the speech of 
people who do not present in the test datasets.  Emotion recognition from speech is a very 
challenging task mainly due to the inherent speaker-dependency of emotion expression but 
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).   

6.1 Experimental protocol 
Common training and testing protocols were followed in all experiments. All classifiers 
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with 
common task-specific train datasets, and trials were performed with common task-specific 
test datasets.   
For the purpose of the speaker identification task, ten female speakers, extracted from the 
PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were 
modelled as authorized users.  The training data, comprised of ten utterances, containing 
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the other hand, when all ( , ) 1nl i j = and 0( , ) 1l i j =  the structure of the PC-LRPNN coincides 
with the one of the fully connected LRPNN.  
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the number of steps necessary for evaluating the goodness of the recurrent layer 
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Here 
ikX are the training data for class iκ , and ( )iP k  are the a priori probability of class  iκ .  

Finally, the constants im  and jm  determine the relative importance of (or alternatively the 
significance of misclassification of an input belonging to) the corresponding class iκ  or 

j iκ ≠ , respectively. 
The first term in equation (23) estimates the distance between the probability ( | )

ik iP kX  and 
one, i.e. the error with respect to the probability computed for a perfect match to the model.  
This term causes the output for class iκ  of the trained recurrent layer to strive towards 
value one for input vectors that resemble the training dataset for that class.   The second 
term in equation (23) is the cumulative error of 

ikX being acknowledged as belonging to any 
of the competitive classes j iκ ≠ .  This second term contributes towards restraining the output 
values produced by the competitive classes for input data that belong to class iκ . 
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The minimization of total error E( )w  is performed by employing a PSO algorithm Type 1 
(Clerc & Kennedy, 2002), which was found more successful and/or much faster than other 
PSO implementations, such as the basic PSO (Eberhart & Shi, 2000), the local PSO as in 
(Liang et al., 2006), and the UPSO (Parsopoulos & Vrahatis, 2005). 

6. Numerical evaluation 
The experimentations reported in the present section aim at illustrating the operation of the 
PC-LRPNNs, but also serve as a scene for discussing the advantages and disadvantages of 
the PC-LRPNN, when compared to the original PNN and the fully connected LRPNN.  
Specifically, for the purpose of experimentations, we selected two interesting problems of 
different difficulty. Both of these problems are important for the development of human-
friendly spoken dialogue applications, and by that reason they currently enjoy significant 
attention by the speech processing community.  The first one is the text-independent 
speaker identification task, which is of moderate difficulty, and the second one is the 
speaker-independent emotion recognition task, which is well-known as an extremely 
challenging problem. In the following paragraphs we offer a brief outline of these tasks: 
Task 1: Text-independent speaker identification 
Speaker identification is multiple-class decision problem where the identity of a given 
speaker is judged based on a comparison of a sample of her\his voice against multiple pre-
defined models.  The outcome of this process is either a decision about the identity of the 
speaker or a notice that the present input cannot be categorized as any of the known 
speakers.  In the closed set speaker identification that we consider here, the input speech 
utterances always belong to someone of the known speakers.  Here, text-independence 
referrers to the specific aspect that no explicit modelling of the linguistic contents of the 
input utterance is performed.  Thus, the outcome of the identification process is not 
dependent on the exact linguistic contents of the phrase, but only on the degree of proximity 
between the input speech signal and the predefined speaker models.  
Task 2: Speaker-independent emotion recognition 
The emotion classification task is a multiple-class decision problem, where the emotional 
state of a given speaker is judged based on comparison of an input (typically a speech 
utterance) against multiple pre-defined models for the emotional states of interest.  Here, the 
notion for speaker-independency refers to the fact that the models for the emotional states of 
interest are general for a large population of people, and were built utilizing the speech of 
people who do not present in the test datasets.  Emotion recognition from speech is a very 
challenging task mainly due to the inherent speaker-dependency of emotion expression but 
also due to the well-known multi-functionality of speech (Batliner & Huber, 2007).   

6.1 Experimental protocol 
Common training and testing protocols were followed in all experiments. All classifiers 
considered in the present evaluation (GMM, PNN, LRPNN, PC-LRPNN) were trained with 
common task-specific train datasets, and trials were performed with common task-specific 
test datasets.   
For the purpose of the speaker identification task, ten female speakers, extracted from the 
PolyCost v1.0 telephone-speech speaker recognition corpus (Hennebert et al., 2000) were 
modelled as authorized users.  The training data, comprised of ten utterances, containing 
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both numbers and sentences, obtained from the first session of each speaker.  In average, 
about 17 seconds of voiced speech per speaker were available for training each user model.  
The test dataset consisted of 450 target trials, including 45 utterances per speaker.  Each test 
trial involved approximately 3 seconds of speech.  All speech recordings are of telephone 
bandwidth, sampled at 8 kHz, and A-law compressed. 
For the purpose of the experimentations with the emotion classification task, we utilized the 
recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts 
database (LDC, 2002).  All recordings were split in utterances, with respect to the provided 
annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality 
bandwidth.  
In the specific experimental setup considered here, we carry out recognition of three 
emotional states: neutral, anger, and panic. This combination is of particular interests for 
practical applications, but also has proved as a very challenging set, since the members of 
the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic 
characteristics.   
The training dataset consist of the available recordings for the seven speakers and the 
recordings of the remaining speaker were used as the test dataset.  Since one of the speakers 
had only neutral recordings, the training data for the anger and panic models were built 
from the recordings of six speakers.  The amount of available data for training the speaker-
independent models for the three emotional categories of interest was much different: 
approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic, 
respectively.  For the purpose of fair training of the emotion models, we performed k-means 
clustering as a pre-processing of the training dataset.  The resultant codebooks, one per 
speaker, one per emotion category, were of size 256 feature vectors.  Subsequently, these 
codebooks were used to train the neural network-based classifiers.   
On the other hand, the GMM-based classifier was trained directly from the uncompressed 
dataset, for achieving a higher precision of the emotion models.  The diagonal covariance 
GMM emotion models were trained via a standard version of the Expectation Maximization 
algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations.  Training 
termination criterion was applied, and training process was interrupted if there was no error 
reduction among subsequent iterations.  
The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger 
and panic, respectively.  Each test trial consisted of approximately 3 seconds of speech. 
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency 
cepstral coefficients (MFCC) with a rate of 100 feature vectors per second.  We utilized the 
MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8 
kHz.  This resulted in a filter-bank of thirty-two filters, which cover the frequency range 
[133, 3954] Hz, from which we computed 29 cepstral coefficients.  In all experiments, we 
excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to 
avoid dependence on the recording setup (distance to the microphone, communication 
channel and handset mismatch, etc). Finally, in all experiments we considered a common 
feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}.  All parameters 
of the feature vector were normalized to fit in a common dynamic range. 
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6.2 Experimental results 
In this section, we study the performance of the PC-LRPNN for different connectivity range 
of the neighbourhood, Top-C, and different recurrence depth, ,N  of the recurrent layer. 
Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows: 
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task 
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we 
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected 
LRPNN.  On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same 
number of weights in the recurrent layer as the number of connections between the 
summation and competitive layers in the PNN.  However, there is no equivalence between 
these two structures, mainly because the weights of the connections between the summation 
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they 
are all equal.  This gives to the PC-LRPNN the capability to model better the training data.  
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task, 
and in Table 1, we show the number of recurrent layer weights for different values of the 
recurrence depth, N , and different values of the neighbourhood, Top-C.  As the figure 
presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the 
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Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for 
different values of the recurrence depth, ,N  and different size of the recurrent layer 
neighbourhoods, Top-C. 
 

Number of recurrent 
layer weights N=0 N=1 N=2 

Top-C=1 10 20 30 
Top-C=2 30 60 90 
Top-C=3 46 92 138 
Top-C=5 68 136 204 
Top-C=7 90 180 270 

Top-C=10 100 200 300 

Table 1. The number of recurrent layer weights to be trained, for different recurrence depth, 
,N  and different size of the recurrent layer neighbourhood, Top-C 
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both numbers and sentences, obtained from the first session of each speaker.  In average, 
about 17 seconds of voiced speech per speaker were available for training each user model.  
The test dataset consisted of 450 target trials, including 45 utterances per speaker.  Each test 
trial involved approximately 3 seconds of speech.  All speech recordings are of telephone 
bandwidth, sampled at 8 kHz, and A-law compressed. 
For the purpose of the experimentations with the emotion classification task, we utilized the 
recordings of all eight speakers available in the Emotional Prosody Speech and Transcripts 
database (LDC, 2002).  All recordings were split in utterances, with respect to the provided 
annotations, and then were down-sampled to 8 kHz and band-limited to telephone quality 
bandwidth.  
In the specific experimental setup considered here, we carry out recognition of three 
emotional states: neutral, anger, and panic. This combination is of particular interests for 
practical applications, but also has proved as a very challenging set, since the members of 
the pairs: hot anger – panic, and cold anger – neutral, share a number of common prosodic 
characteristics.   
The training dataset consist of the available recordings for the seven speakers and the 
recordings of the remaining speaker were used as the test dataset.  Since one of the speakers 
had only neutral recordings, the training data for the anger and panic models were built 
from the recordings of six speakers.  The amount of available data for training the speaker-
independent models for the three emotional categories of interest was much different: 
approximately 1650, 380 and 180 seconds of speech for neutral, anger and panic, 
respectively.  For the purpose of fair training of the emotion models, we performed k-means 
clustering as a pre-processing of the training dataset.  The resultant codebooks, one per 
speaker, one per emotion category, were of size 256 feature vectors.  Subsequently, these 
codebooks were used to train the neural network-based classifiers.   
On the other hand, the GMM-based classifier was trained directly from the uncompressed 
dataset, for achieving a higher precision of the emotion models.  The diagonal covariance 
GMM emotion models were trained via a standard version of the Expectation Maximization 
algorithm (McLachlan & Krishnan, 1997) with a maximum of 200 iterations.  Training 
termination criterion was applied, and training process was interrupted if there was no error 
reduction among subsequent iterations.  
The amount of target trials per category was 115, 29 and 18 utterances for the neutral, anger 
and panic, respectively.  Each test trial consisted of approximately 3 seconds of speech. 
In both tasks, only the voiced parts of the speech signal was parameterized to Mel-frequency 
cepstral coefficients (MFCC) with a rate of 100 feature vectors per second.  We utilized the 
MFCC implementation of Slaney (Slaney, 1998), but adapted for sampling frequency of 8 
kHz.  This resulted in a filter-bank of thirty-two filters, which cover the frequency range 
[133, 3954] Hz, from which we computed 29 cepstral coefficients.  In all experiments, we 
excluded the first cepstral coefficient (i.e. the one with index zero) from the feature vector, to 
avoid dependence on the recording setup (distance to the microphone, communication 
channel and handset mismatch, etc). Finally, in all experiments we considered a common 
feature vector consisting of the MFCC parameters {MFCC(1) ,…,MFCC(28)}.  All parameters 
of the feature vector were normalized to fit in a common dynamic range. 
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6.2 Experimental results 
In this section, we study the performance of the PC-LRPNN for different connectivity range 
of the neighbourhood, Top-C, and different recurrence depth, ,N  of the recurrent layer. 
Comparisons with the PNN, GMM and the fully connected LRPNN are provided as follows: 
The PC-LRPNN vs. the PNN and LRPNN, in the speaker identification task 
Since in this task we consider identification of 10 different voices, i.e. we have 10 classes, we 
can note that in the case Top-C=10, the PC-LRPNN is equivalent to the fully connected 
LRPNN.  On the other hand, in the case of 0N = , Top-C=1, the PC-LRPNN has the same 
number of weights in the recurrent layer as the number of connections between the 
summation and competitive layers in the PNN.  However, there is no equivalence between 
these two structures, mainly because the weights of the connections between the summation 
and recurrent layers in the PC-LRPNN are adjusted during training, while in the PNN they 
are all equal.  This gives to the PC-LRPNN the capability to model better the training data.  
In Fig. 5, we present the performance of the PC-LRPNN in the speaker identification task, 
and in Table 1, we show the number of recurrent layer weights for different values of the 
recurrence depth, N , and different values of the neighbourhood, Top-C.  As the figure 
presents, for the PNN we obtained recognition accuracy of 91.6%, which we consider as the 
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Fig. 5. Performance of the PC-LRPNN classifier on the speaker identification task, for 
different values of the recurrence depth, ,N  and different size of the recurrent layer 
neighbourhoods, Top-C. 
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baseline.  It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-
C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection 
between the summation layer and recurrent layer neurons is implemented only for the top 
scoring candidates, is higher than the baseline, PNN, although the number of weights is 
equal.  As explained above, this advantage of the PC-LRPNN comes from the fact that the 
values of these weights are trained in a data-dependent manner, while in the original PNN, 
these weight are equal.  Furthermore, for recurrence depth 0N = , the PC-LRPNN with 
neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is 
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully 
connected LRPNN.  The last can be explained with the smaller number of weights to be 
adjusted for the case of Top-C=7, and the limited amount of training data. 
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for 
the PC-LRPNN with 2,N =  and Top-C=1.  The top performance here illustrates both the 
importance of the recurrence depth (i.e. the memory about past states) and the capability of 
the PC-LRPNN to implement partial linkage in the recurrent layer.  As the figure presents, 
the second best performance is shared between the PC-LRPNN with 1,N =  and Top-C=1, 
and the already discussed  0,N =  and Top-C=7.   It is interesting to note that the recurrent 
PC-LRPNN ( 1N = ) achieves this performance with only 20 weights, while the non-
recurrent PC-LRPNN ( 0N = ) needs 90 (please refer to Table 1.) 
Speaking generally, we can conclude that the presented example on the speaker 
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition 
accuracy than the baseline PNN.  This advantage is mainly due to the exploitation of 
information from the competitive classes, which the recurrent layer neurons utilize for 
proper selection of the class belonging of a given input sequence.  Furthermore, we 
observed that the PC-LRPNNs show performance even better than the one of the fully 
connected LRPNN.   This superiority is due mainly to the additional degree of freedom that 
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the 
recurrent layer linkage to the available training data.  Finally, it is worth mentioning that 
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster 
than the fully connected LRPNN. 
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task 
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based 
classifier to identify the maximum performance that can be obtained (for a context-blind 
classifier) in our experimental setup.  In Fig. 6, we present the identification accuracy 
obtained for different number of components in a Gaussian mixture.  As the figure presents, 
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Fig. 6. Performance of the GMM classifier for different number of components on the 
speaker-independent emotion recognition task 
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the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with 
35 components.  This performance will be considered as the baseline. 
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the 
LRPNN for different values of the recurrence depth, ,N  and different size of the recurrent 
layer neighbourhoods, Top-C.  Table 2 presents the number of weights in the recurrent layer 
that need to be trained for the PC-LRPNN and LRPNN.  Since in the present experimental 
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the 
fully connected LRPNN. 
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Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for 
different values of the recurrence depth, ,N  and different size of the recurrent layer 
neighbourhoods, Top-C. 
As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one 
for the GMM classifier.  The difference in performance of approximately 1% can be 
explained by the fact that here we employ the original homoscedastic PNN, which utilizes 
uniform smoothing factor iσ  for all classes, while the diagonal GMM employed here adjusts 
the variance for each class and thus is able to adapt better to the underlying distribution of 
the training data.  
 

Number of recurrent 
layer weights N=0 N=1 N=2 N=3 N=4 N=5 N=6 N=7 

Top-C=1 3 6 9 12 15 18 21 24 
Top-C=2 7 14 21 28 35 42 49 56 
Top-C=3 9 18 27 36 45 54 63 72 

Table 2. The number of recurrent layer weights to be trained, for different recurrence depth, 
,N  and different size of the recurrent layer neighbourhood, Top-C 

As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully 
connected LRPNN is superior to the one observed for the GMM and the PNN.  Inspecting 
the recognition accuracy presented on the figure and the number of weights in the recurrent 
layer, presented in Table 2, we can notice that there are some relations among the 
performance results for similar number of coefficients.  Furthermore, the general trend of 
the plots for different neighbourhood size, Top-C, seems to agree with respect to the 
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baseline.  It is interesting to note that the performance of the PC-LRPNN for 0N = , Top-
C=1, i.e. when there are no recurrent feedbacks in the recurrent layer and the connection 
between the summation layer and recurrent layer neurons is implemented only for the top 
scoring candidates, is higher than the baseline, PNN, although the number of weights is 
equal.  As explained above, this advantage of the PC-LRPNN comes from the fact that the 
values of these weights are trained in a data-dependent manner, while in the original PNN, 
these weight are equal.  Furthermore, for recurrence depth 0N = , the PC-LRPNN with 
neighbourhood Top-C=7 demonstrated the highest recognition accuracy (94.0%), which is 
higher than the recognition accuracy for the case of Top-C=10, i.e. the equivalent to the fully 
connected LRPNN.  The last can be explained with the smaller number of weights to be 
adjusted for the case of Top-C=7, and the limited amount of training data. 
Next, as Fig. 5 presents, the highest recognition accuracy among all (94.2%) was achieved for 
the PC-LRPNN with 2,N =  and Top-C=1.  The top performance here illustrates both the 
importance of the recurrence depth (i.e. the memory about past states) and the capability of 
the PC-LRPNN to implement partial linkage in the recurrent layer.  As the figure presents, 
the second best performance is shared between the PC-LRPNN with 1,N =  and Top-C=1, 
and the already discussed  0,N =  and Top-C=7.   It is interesting to note that the recurrent 
PC-LRPNN ( 1N = ) achieves this performance with only 20 weights, while the non-
recurrent PC-LRPNN ( 0N = ) needs 90 (please refer to Table 1.) 
Speaking generally, we can conclude that the presented example on the speaker 
identification task illustrates undoubtedly that the PC-LRPNNs provide higher recognition 
accuracy than the baseline PNN.  This advantage is mainly due to the exploitation of 
information from the competitive classes, which the recurrent layer neurons utilize for 
proper selection of the class belonging of a given input sequence.  Furthermore, we 
observed that the PC-LRPNNs show performance even better than the one of the fully 
connected LRPNN.   This superiority is due mainly to the additional degree of freedom that 
the PC-LRPNNs possess, i.e. the better flexibility to adjust the implementation of the 
recurrent layer linkage to the available training data.  Finally, it is worth mentioning that 
due to the reduced number of weights, the PC-LRPNN are trained and operate much faster 
than the fully connected LRPNN. 
The PC-LRPNN vs. the PNN, LRPNN and GMM, in the emotion recognition task 
In the emotion recognition task, we firstly experimented with a state-of-the-art GMM-based 
classifier to identify the maximum performance that can be obtained (for a context-blind 
classifier) in our experimental setup.  In Fig. 6, we present the identification accuracy 
obtained for different number of components in a Gaussian mixture.  As the figure presents, 
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Fig. 6. Performance of the GMM classifier for different number of components on the 
speaker-independent emotion recognition task 
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the highest recognition accuracy (59.4%) was observed for the case of Gaussian mixture with 
35 components.  This performance will be considered as the baseline. 
In Fig. 7, we present the recognition accuracy obtained for the PNN, PC-LRPNN and the 
LRPNN for different values of the recurrence depth, ,N  and different size of the recurrent 
layer neighbourhoods, Top-C.  Table 2 presents the number of weights in the recurrent layer 
that need to be trained for the PC-LRPNN and LRPNN.  Since in the present experimental 
setup we have three emotional categories, the PC-LRPNN with Top-C=3 is equivalent to the 
fully connected LRPNN. 
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Fig. 7. Performance of the PC-LRPNN classifier on the emotion recognition task, for 
different values of the recurrence depth, ,N  and different size of the recurrent layer 
neighbourhoods, Top-C. 
As the figure presents, the recognition accuracy obtained for the PNN is inferior to the one 
for the GMM classifier.  The difference in performance of approximately 1% can be 
explained by the fact that here we employ the original homoscedastic PNN, which utilizes 
uniform smoothing factor iσ  for all classes, while the diagonal GMM employed here adjusts 
the variance for each class and thus is able to adapt better to the underlying distribution of 
the training data.  
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As Fig. 7 presents, the recognition accuracy observed for the PC-LRPNN and the fully 
connected LRPNN is superior to the one observed for the GMM and the PNN.  Inspecting 
the recognition accuracy presented on the figure and the number of weights in the recurrent 
layer, presented in Table 2, we can notice that there are some relations among the 
performance results for similar number of coefficients.  Furthermore, the general trend of 
the plots for different neighbourhood size, Top-C, seems to agree with respect to the 
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increase of the recurrence depth, .N   On the present experimental setup, the PC-LRPNN 
outperforms entirely the fully connected LRPNN, due to its better capacity to adapt to the 
training data.  Exception here is the case for recurrence depth 6N = , where the LRPNN 
outperforms significantly the partially connected counterpart. 
Finally, the significant advantage of the PC-LRPNN and LRPNN over the PNN and GMM 
can be summarized as follows:  
1. LRPNNs and PC-LRPNNs process the information coming from the competitive classes 

(for Top-C > 1) and the target class;  
2. the recurrent structures are capable to capture temporal dependences among 

subsequent feature vectors, and thus, are capable to exploit the context in which a given 
input appears;  

3. the recurrent layer is trained in a constructive manner to maximize the probability 
generated for the target class and to minimize to probabilities generated by the 
competitive classes, which favours resolving ambiguous situations. 

The smoothing factor iσ , the PC-LRPNN vs. the PNN 
Utilizing the experimental setup of the emotion recognition task, and the best performing 
locally recurrent neural network, i.e. PC-LRPNN (Top-C=1, N =3), we would like to discuss 
an interesting phenomenon concerning the optimal value of the smoothing factor, iσ .  
Extensive experimentations with the PNN, PC-LRPNNs and fully connected LRPNNs, 
demonstrated that the estimation of the smoothing factor iσ  on the training dataset does not 
lead to optimal performance on the test dataset. This was especially topical in the emotion 
recognition task. To illustrate this phenomenon, in Fig. 8, we plot the performance of the 
PNN and the best performing PC-LRPNN for different values of the smoothing factor, iσ .  
For comprehensiveness of exposition we computed the recognition accuracy obtained on the 
training dataset, presented in the figure with dashed line, and on the test datasets, presented 
with solid line. 
 

 
Fig. 8.  Performance of the PNN and PC-LRPNN (Top-C=1, N =3), for different values of 
the smoothing factor iσ  

As the figure presents, for both the PNN and PC-LRPNN there was a significant gap 
between the recognition accuracy obtained on the training dataset and on the test data.  
Looking at the plots for the PNN, we can see that the trend of this difference in performance 
is a relatively smooth monotonically decreasing function.  However, for the PC-LRPNN, the 
initial difference, for small values of iσ , tends to decrease when iσ increases.  Furthermore, 
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the best performance for the PNN was obtained for iσ =0.6, and the best performance for the 
various PC-LRPNN and LRPNN in the different experiment was for iσ  in the range [1.2, 
2.0], even though the recognition performance for the training dataset was significantly 
lower, when compared to the optimal iσ  computed through (Cain, 1990), or any other 
method.  Although the degree of learning for the training dataset varied greatly in the 
experiments with different PC-LRPNNs, and mostly ranged between 75% and 100%, the 
best performance on the test dataset was observed always for significantly higher values of 

iσ , when compared to the best one for the training dataset.  The last indicates that in 
challenging problems, for which it is known that there is significant mismatch between the 
training and operational conditions, the computation of the value of iσ  should be 
performed on another independent dataset, referred to as development or validation data.  
The development data are independent from the training and test datasets and serve for 
fine-tuning of the overall performance. 

7. Conclusion and future research directions 
Although the research on locally recurrent neural networks has a long record of history, the 
potential of development has not been exhausted.  Moreover, in the last few years, there is a 
resumption of interest to the field, and recently some new paradigms appeared.  These new 
architectures are in anticipation of further in depth studies, and further improvements and 
elaboration.  
Speaking specifically for the family of LRPNNs, there is a compelling need for further 
studies that will investigate comprehensively how the recurrent layer linkage can be 
optimized for specific problem on specific dataset.  Perhaps, new strategies for automatic 
selection of neighbourhood size and the specific neighbours of each recurrent neuron that 
arise directly from the training data will appear.  It will be particularly interesting to study 
new algorithms for developing dynamically varying neighbourhoods, which depend on the 
input during operation of the neural network, and which go beyond the predefined during 
training look-up tables. 
Finally, despite the progress made during the past decades, we deem that the locally 
recurrent neural networks still await for their golden time, when they will have significantly 
better biological plausibility.  The human brain is still a source of inspiration, and we are 
looking forward to see how the development of the neuroscience will contribute further for 
the progress in the field of recurrent neural networks.   
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increase of the recurrence depth, .N   On the present experimental setup, the PC-LRPNN 
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PNN and the best performing PC-LRPNN for different values of the smoothing factor, iσ .  
For comprehensiveness of exposition we computed the recognition accuracy obtained on the 
training dataset, presented in the figure with dashed line, and on the test datasets, presented 
with solid line. 
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