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About

Quantum computing is a growing field at the intersection of physics and computer
science. This module introduces three key principles of quantum computing:
superposition, quantum measurement, and entanglement. The goal of this course
is to bridge the gap between popular science articles and advanced undergraduate
texts, making some of the more technical aspects accessible to high school students,
early undergraduates, or the scientifically literate general public. Problem sets
and simulation-based labs of various levels are included to reinforce the concepts
described in the text.

The module starts by covering basic quantum mechanics concepts needed to
understand quantum computing. However, it is not designed to be a comprehensive
introduction to modern physics. Rather, the course will focus on the topics that
students may have heard about but are not typically covered in a typical physics
class.

The module is intended to take approximately 15-20 hours to complete. Given
the usual constraints on teaching time, these materials could be used after the AP
exams, in an extracurricular club, or as an independent project resource to provide
students with an overview of quantum computing.

Answers to odd-numbered exercises are included in this book. Answers to
even-numbered exercises can be accessed by course instructors at springer.com/
10.1007/978-3-030-61601-4.

Prerequisites

The material assumes knowledge of waves from high school physics. Introductory
modern physics (photoelectric effect, wave/particle duality, etc.) is helpful but not
required, and computer programming experience is not necessary.

The units are labeled by difficulty depending on the level of math and abstract
reasoning involved. It is possible to skip over intermediate and/or advanced topics
depending on the student’s background. For those who are rusty on probability and
linear algebra concepts, a refresher is provided in Appendices A and B.

Xi
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xii Course Description

@ Fundamental

* Grades: 9-10
e Math Prerequisites: probability of flipping one coin, histograms

M Intermediate

* Grades: 11-12
* Math Prerequisites: trigonometry, matrix multiplication, probabilities of flipping
multiple coins

€ Advanced

e Grades: 12+
e Math Prerequisites: vectors, vector spaces, matrices as transformations

Learning Objectives
1. Introduction to Superposition

* Explain what it means for an object to be in a quantum superposition.
* Identify the measurement outcome of a system in a classical vs. quantum
superposition.

Key Terms: quantum system, quantum state, quantum superposition

2. What is a Qubit?

» Explain the difference between a classical bit and a qubit.

* Write a mathematical expression for the superposition of a two-state particle
using “ket” notation.

* Compute the probability of finding the particle in a particular state given a
normalized superposition state.

* Express a qubit’s state as a vector and/or visually using the Bloch sphere.

* Perform matrix multiplication to change the qubit’s state.

Key Terms: qubit, ket notation, state amplitude, normalization, Bloch sphere,
unitary matrix

3. Creating Superposition: The Beam Splitter

* Explain how light behaves like a particle in the single-photon beam splitter
experiment.
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» Show how the beam splitter creates a particle in a superposition state.
* Trace the path of light through a Mach—Zehnder interferometer from both a
wave interference and a particle perspective.

Key Terms: photon, beam splitter, phase shift, Mach—Zehnder interferometer
4. Creating Superposition: Stern—Gerlach

» Explain why electron spin could serve as an example of a qubit.

* Show how the Stern—Gerlach experiment illustrates spin quantization, super-
position, and measurement collapse.

* Define what is meant by a measurement basis and convert a given spin to a
different basis.

* Compute the probability of an electron passing through one or more Stern-
Gerlach apparatuses.

Key Terms: spin, Stern—Gerlach experiment, measurement basis, orthogonal
states, no-cloning theorem

5. Quantum Cryptography

* Send a message with the one-time pad to understand what is meant by a
cryptographic key.

* Generate a shared key using the BB84 quantum key distribution protocol.

» Show how the principles of superposition and measurement collapse make the
protocol secure.

Key Terms: key, quantum key distribution

6. Quantum Gates

* Build and test quantum circuits on IBM’s quantum computer.
* Interpret the histograms produced by single qubit gates: the X, Hadamard,

and Z gates.

* Predict the output of multiple gates in a row, including two successive
Hadamards.

* Use the matrix representation of gates to determine the new state of the
system.

Key Terms: quantum gates, X gate, Hadamard gate, Z gate

7. Entanglement

» Show how measurement affects the state of entangled particles.
e Write the state of a multi-qubit system in “ket” notation.
* Identify whether two qubits are entangled given a particular state.
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* Predict the output of circuits involving CNOT gates.
* Entangle two qubits using gates.

Key Terms: quantum entanglement, product/separable states, entangled states,
CNOT gate
8. Quantum Teleportation
* Explain how entanglement is used to transmit the state of a qubit from one
place to another.
* Explain the limitations and paradoxes of quantum teleportation.
Key Terms: quantum teleportation, no-cloning theorem
9. Quantum Algorithms
» List the benefits and limitations of quantum computers.

* Describe how superposition and interference are leveraged in quantum com-
puting algorithms.

Key Terms: quantum parallelism, Deutsch—Jozsa algorithm

Alternative Pathways

The units are best studied in numerical order. However, for those with limited time,
Figure 1 shows the minimum recommended prerequisites for each unit. A few
references and examples may have to be skipped over, but the core content should
still be understandable.
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1. Introduction to Superposition

2. What is a Qubit?

3. Beam Splitter 6. Quantum Gates 4. Stern-Gerlach

9. Quantum Algorithms

‘ 7. Entanglement

‘ 5. Quantum Cryptography

8. Quantum Teleportation

Fig. 1 Flowchart of learning outcomes.
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In this section, we review the concepts of classical and quantum superposition.
Quantum superposition is the framework for understanding all quantum phenomena.
As we do not observe quantum phenomena in our everyday lives, it may seem
confusing at first. However, as unintuitive as the quantum world may appear, there
are a vast number of experiments which conclusively show that the universe really
does operate according to the law of quantum superposition at the smallest distances
accessible today.! Before going into specific details on quantum superposition, it is
useful to explain how the term “superposition” is used in different contexts in both
classical and quantum physics. At the end of the chapter, we present the related
activities and questions. After gaining experience with quantum superposition from
working through these problems, it will become more intuitive. The more expe-
rience you gain by advancing through this book, the more quantum superposition
will make sense.

1.1 @ Classical Superposition

In classical physics, the concept of superposition is used to describe when two
physical quantities are added together to make another third physical quantity that is
entirely different from the original two. An example of the “superposition principle”
in classical physics is clear when working with waves. Two pulses on a string which
pass through each other will interfere following the principle of superposition as
shown Fig. 1.1. Noise-canceling headphones use superposition by creating sound
waves with the same magnitude as the incoming sound wave but completely out of

IThese experiments have culminated in tests of Bell’s inequality https://en.wikipedia.org/wiki/
Bell_test_experiments —showing that particles can actually be in two locations at the same time
https://www.quantamagazine.org/physicists-are-closing- the-bell-test-loophole-20170207/.

© The Author(s) 2021 1
C. Hughes et al., Quantum Computing for the Quantum Curious,
https://doi.org/10.1007/978-3-030-61601-4_1
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Fig. 1.1 Examples of constructive and destructive interference due to the classical superposition
principle

®

Fig. 1.2 A classical superposition is used to calculate the total electric force on a charge ¢, due
to charges ¢ and g3

phase, thereby canceling the sound wave. This destructive interference is illustrated
in the second figure of Fig. 1.1.

Another common application of classical superposition is finding the total
magnitude and direction of quantities such as force, Plectric field, magnetic field,
etc. For example, to calculate the total electric force Fioa On a charge g, produced
by other charges g1 and g3, one would sum the forces produced by each individual
charge: Fioral = F12 + F3;. The challenge here is that forces are vectors, so vector
addition is needed, as shown in Fig. 1.2.

1.2 @ Quantum Superposition

Quantum superposition is a phenomenon associated with quantum systems. Quan-
tum systems include small objects such as nuclei, electrons, elementary particles,
and photons, for which the wave-particle duality and other non-classical effects
are observed. For example, you would normally expect that an object can have
an arbitrary amount of kinetic energy ranging from 0 to infinity (co) Joules, i.e.
a baseball could be at rest or thrown at any speed. However, according to quantum
mechanics, the ball’s energy is quantized, meaning it can only have certain values.
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Classical Systems Quantum Systems

Fig. 1.3 Quantum effects associated with energy quantization are important at the atomic and
subatomic distances. In this figure, the grey lines represent allowed energies. In quantum systems,
the energies are quantized. As we zoom out of the quantum system to see it through a classical lens
(represented by the downward arrow), the energies become more dense and appear continuous.
This is the reason quantization is not noticeable in everyday objects

Fig. 1.4 A tossed coin has a k
50% chance of landing on k N II
heads or tails Y ) 50%

50%

T
i

A specific example of energy quantization is when energies can only have integer
values E = 0, 1,2, 3, ..., but not any numbers inbetween. This is counterintuitive,
as we cannot observe it with our classical eyes. The gaps in energy are too small to
be seen with the human eye and as such can be treated as continuous for classical
physics. However, the gaps are more pronounced at smaller sizes, as shown in
Fig. 1.3. For example the hydrogen atom is small enough that quantum effects are
important, and Bohr needed to quantize the energy levels to successfully model its
behavior.

One aspect of quantum superposition can be explained using a coin analogy. A
coin has a 50/50 probability of landing as either heads or tails, as shown in Fig. 1.4.

Question 1 What state is the coin in while it is in the air? Is it heads or tails?

We can say that the coin is in a superposition of both heads and tails. When it
lands, it has a definite state, either heads or tails. Generally, the word “state” means
any particular way that a system can possibly be described. For example, the coin
can be either heads, or tails, or a combination of heads or tails while flipped in the
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air. All of these cases are called states of the coin system. While the coin is being
flipped it is in a state of superposition. When we observe the coin, we are making a
measurement which destroys the superposition.

At any given time, a system can be described as being in a particular state. The
state is related to its quantized values. For example, a tossed coin is either in a
heads state or a tails state. An electron orbiting a hydrogen atom could be in the
ground state or an excited state. A quantum system is special because it can be in a
superposition of these definite states, i.e., both heads and tails simultaneously. The
outcome of a measurement is to observe some definite state with a given probability.

In Schrodinger’s famous thought experiment, Schrodinger’s cat is placed in
a closed box with a single atom that has some probability of emitting deadly
radiation at any time. Since radioactive nuclear decay is a spontaneous process, it
is impossible to predict for certain when the nucleus decays. Therefore, you do not
know whether the cat is alive or dead unless you open and look in the box. (Watch
this video.)? It can be said that the cat is both alive AND dead with some non-zero
probability. That is, the cat is in a quantum superposition state until you open the
box and measure its state. Upon measurement, the cat is obviously either alive OR
dead and the superposition has collapsed to a definite, non-superposition state.

Quantum systems can exist in a superposition state, and measuring the system
will collapse the superposition state into one definite classical state. This might be
hard to understand from a classical point of view, as we usually do not see quantum
superposition with our human eyes (i.e in macroscopic objects). Einstein was really
bothered by this feature of quantum systems. His friend, Abraham Pais, records:
“I recall that during one walk, Einstein suddenly stopped, turned to me, and asked
whether I really believed that the moon exists only when I look at it.”3

1.3 Bigldeas
1. A particle in a quantum superposition exists as a combination of different states
at the same time.

2. Each possible state has a given probability of being observed, but measurement
destroys the superposition because only one definite state is seen.

1.4 Activities

@ Quantum Tic-Tac-Toe in Worksheet 10.3

Zhttps://www.youtube.com/watch?v=uWMTOruxOLM.

3Nielsen, M. A. 1., & Chuang, I. L. (2000). Quantum computation and quantum information. New
York: Cambridge University Press, p. 212.
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Fig. 1.5 Image of the A
painted suns 4‘.‘..

1.5  Check Your Understanding

1. @ Discuss whether the following quantities are quantized or continuous:
(a) electric charge
(b) time
(c) length
(d) cash
(e) paint color
2. @ An ink is created by mixing together 50% red ink and 50% yellow ink. An
artist uses it to stamp a picture of a sun. If the ink behaves like a quantum system
in a half-yellow, half-red quantum superposition, what are the different options
for what the resulting picture could look like? Some options are shown in Fig. 1.5.
3. @ If this controversial picture of a dress* is always seen as blue/black by
Student A and always seen as white/gold by Student B, is the dress in a quantum
superposition?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

“https://en.wikipedia.org/wiki/The_dress.
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In classical computers, information is represented as the binary digits O or 1. These
are called bits. For example, the number 1 in an 8-bit binary representation is written
as 00000001. The number 2 is represented as 00000010. We place extra zeros in
front to write every number with 8-bits total, which is called one byte. In fact,
every classical computer translates these bits into the human readable information
on your electronic device. The document you read or video you watch is encoded
in the computer binary language in terms of these 1’s and 0’s. Computer hardware
understands the 1-bit as an electrical current flowing through a wire (in a transistor)
while the 0-bit is the absence of an electrical current in a wire. These electrical
signals can be thought of as “on” (the 1-bit) or “off” (the 0-bit). Your computer then
decodes the classical 1 or 0 bits into words or videos, etc.

Quantum bits or qubits are similar to bits in that there are two measurable states
called the 0 and 1 states. However, unlike classical bits, qubits can also be in a
superposition state of these 0 and 1 states, as shown in Fig. 2.1. Certain computations
that would normally need to be performed on O or 1 separately on a classical
computer could now be completed in a single operation using a qubit on a quantum
computer. Intuitively, this could make computations much faster. It is important to
understand that although a single qubit is in a superposition of two classical bits,
when a qubit is measured, the measurement actually only results in one classical bit
of information: either O or 1.

2.1 @ Mathematical Representation of Qubits
2.1.1 DiracBra-Ket Notation

In order to work with qubits, it is useful to know how one can express quantum
mechanical states with mathematical formulas. Dirac or “bra-ket” notation is
commonly used in quantum mechanics and quantum computing. The state of a qubit

© The Author(s) 2021 7
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Fig. 2.1 A classical bit can
be either O or 1. A qubit can
be in a superposition of both

Oand 1 1 Qubit

Fig. 2.2 The state of
Schrodinger’s cat expressed _ \
in bra-ket notation |Cat) =a i / + B m

is enclosed in the right half of an angled bracket, called the “ket”. A qubit, |W),
could be in a |0) or |1) state or even a superposition of both |0) and |1). This is
written as

V) = «|0) + BI1), 2.1)

with « and B called the amplitudes of the states (Fig. 2.2). Amplitudes are generally
complex numbers (a special type of number used in mathematics and physics).
However, to understand the meaning of amplitudes, we can imagine the amplitudes
as being ordinary (real) numbers. Amplitudes allow us to mathematically represent
all of the possible superpositions.

Amplitudes are very important because they give us the probability of finding
the particle in that specific state when performing a measurement. The probability
of measuring the particle in state |0) is ||, and the probability of measuring the
particle in state |1) is |8|>. Why is it squared? The short answer is that it gives the
correct experimental predictions for this choice of representation.! Squaring « and
B to find the probability is similar to squaring a wave’s amplitude to find the energy
of the wave. Since the total probability of observing all the states of the quantum
system must add up to 100%, the amplitudes must obey this rule:

o> + 1B1° = 1. 2.2)

This is called a normalization rule. The coefficients & and 8 can always be rescaled
by some factor to normalize the quantum state.

'We know that quantum physics is probabilistic from experiments. The squared coefficients are
needed to make a quantity that behaves like a probability distribution, i.e., it is a real number and
positive. There cannot be a negative probability by definition.
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2.1.2 Examples

1. The quantum state of a spinning coin can be written as a superposition of heads
and tails. Using heads as |1) and tails as |0), the quantum state of the coin is

L
V2

What is the probability of getting heads?

The amplitude of |1) is 8 = 1/+/2, 50 |B|2 = (1 /\/E)2 — 1/2. So the probability
is 0.5, or 50%.

2. A weighted coin has twice the probability of landing on heads vs. tails. What is
the state of the coin in “ket” notation?

coin) = — (|1) + [0)). 2.3)

Pheads + Puils = 1 (Normalization Condition)

Pheads = 2 Prils  (Statement in Example)

2

— Puiis =z =«

— Pheads = 5 = /32 24

1 2
*“:\E’ﬂzw

in) = 1O 21

— [coin) =/ 510) +/311).

One common misconception is that the measurement of a single qubit will result
in a weighted average of the |0) and |1) states. It is important to note that after
you perform the measurement on a single qubit, the qubit is no longer in a
superposition but takes on a definite state of either |0) or |1).> This means that
you would not be able to find « or 8 from a single qubit. Instead, we need to
create many qubits which are in the same quantum state, and then measure how
many of the qubits collapse into |0) (giving «) and how many collapse into |1)
(giving B). Therefore, multiple identical particles are needed in order to count
how many collapse into |0) or |1).

WIN W] —

When formulating the mathematical representation of quantum mechanics, this is one
of four fundamental assumptions that need to be made. The reason for the col-
lapse is still unknown: https://en.wikipedia.org/wiki/Wave_function_collapse. Read more
at this link: https://www.quantamagazine.org/how-quantum-trajectory-theory-lets-physicists-
understand-whats- going-on-during- wave-function-collapse-20190703/.


https://en.wikipedia.org/wiki/Wave_function_collapse
https://www.quantamagazine.org/how-quantum-trajectory-theory-lets-physicists-understand-whats-going-on-during-wave-function-collapse-20190703/
https://www.quantamagazine.org/how-quantum-trajectory-theory-lets-physicists-understand-whats-going-on-during-wave-function-collapse-20190703/
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22 @ Matrix Representation

When writing a single qubit in a superposition |[) = «|0) + B]1), it is useful to
use matrix algebra. In matrix representation, a qubit is written as a two-dimensional
vector where the amplitudes are the components of the vector

—(“). 25
[¥) (/3) (2.5)

10) = ((1)) = ((1’) 2.6)

Experimentally, a qubit’s state can be changed through some physical action such as
applying an electromagnetic laser or passing it through an optical device. Changing
a qubit’s state through a physical action mathematically corresponds to multiplying
the qubit vector |) by some unitary matrix U so that after the operation the state is
now |’} = Ulyr). Unitary is a mathematical term which expresses that U can only
act on the qubit in such a way that the total probability |«|*>+|8|? does not change. A
matrix U is unitary if the matrix product of U and its conjugate transpose U ' (called
U-dagger) multiply to give the identity matrix: UUT = UTU = 1. This is very
important because, in all mathematical constructions of quantum mechanics, one
fundamental assumption is that each (matrix) operator must be unitary. This ensures
that after changing any state through an action, the total probability to observe all
possible states will still add up to 100%. If this did not happen, then we could not
interpret the results of quantum mechanics to be probabilistic, and the results would
disagree with the many experiments that have been performed to date. The physical
action of interacting with the state corresponds mathematically to applying a unitary
operator.

2.2.1 Examples

1. What is the conjugate transpose of the following matrix?

1i
A= <1 i) : 2.7

The conjugate transpose of a matrix is found using the following two steps. First,
we “conjugate” the complex numbers. The conjugate of a complex number is
found by switching the sign of the imaginary part. The complex conjugate of 1
is just 1, while the complex conjugate of +i is —i. Second, we transpose the
conjugated matrix. Transposing a matrix switches rows with columns, i.e., the
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first row turns into the first column, second row turns into the second column,

etc. Therefore,
At = ( 1, 1_). (2.8)
—1l —1

2. Is the above matrix A unitary?
AAT = (1 ’.) ( y 1.) (2.9)
1i) \—i —i
11 10
= 2(1 1) # <0 1). (2.10)

Multiplying A by its conjugate transpose does not produce the identity matrix,
SO A is not unitary.
3. What is the result of applying the unitary operator X onto a |0) state qubit?

01 1
X = (1 o)’ 10y = <0> . 2.11)
01\ (1 0
X|0) = (1 o) (o) - (1) —|1). (2.12)

The X matrix changes the |0) qubit state to the |1) qubit state.

2.3 HMBloch Sphere

A single qubit can be visualized using the Bloch sphere. The Bloch sphere is a visual
representation of a qubit with similar geometric properties to the unit circle from
trigonometry. Each point on the Bloch sphere corresponds to a different possible
superposition of a single qubit. The top and bottom of the sphere correspond to the
two measurable states of the qubit, |0) and |1). An arrow on the Bloch sphere, which
can point to any of the different locations on the surface of the sphere, indicates
the current state of the qubit. Figure 2.3 shows four examples of how the Bloch
sphere can be used to visualize different qubit states. When the arrow is not pointing
directly to the top or bottom of the sphere, the qubit is in a superposition state. For
example, everywhere around the equator the qubit has a 50/50 chance of collapsing
into |0) or |1) upon measurement. The exact location on the equator corresponds to
a distinct state, where the amplitudes can have different signs and be either real or
imaginary numbers.
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|0} [0) [0) |0}
[1) |1) 1) [1)

1

1

¥)=10 ) =1 ¥) = 0)+1 ¥) = —(|0) - |1
%) =10) =) W=+ B=-20-1)
Fig. 2.3 The state of a qubit is represented by an arrow on the Bloch sphere

Fig. 2.4 A cartoon of the Alive at North Pole

Bloch sphere depicted as the
Earth, and the state of
Schrodinger’s cat represented
as a location on Earth

Superposition
state

Dead at South Pole

When the state of the qubit is changed, the arrow rotates to a different position on
the sphere. One analogy is to think of the qubit like Schrodinger’s cat traveling the
globe shown in Fig. 2.4. When the cat is at the North Pole, it will definitely be alive.
When the cat is at the South Pole, it will definitely be dead. As long as the cat’s
state is not measured, it can be anywhere else on the globe in a superposition state
of alive and dead. As coders of the quantum computer, it is our job to manipulate
the state of the qubit which gives the cat instructions on how to move around the
globe.

Question 1 Schrodinger’s cat is determined to be alive. What location on the Earth
in Fig. 2.4 could the cat have been before the quantum measurement?

(a) Russia

(b) Australia

(c) North Pole

(d) all of the above
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The cat could have been anywhere on Earth except for the South Pole. Notice
that in Australia the cat has a smaller probability of being alive since it is further
away from the North Pole.

The Bloch sphere is a helpful visual aide for understanding how a qubit can have an
infinite number of possible quantum states. However, it only represents one qubit
and does not work for systems of two or more qubits.

2.4 @ Physical Realization of Qubits

In a classical computer, the O- and 1-bit mathematically represent the two allowed
voltages across a wire in a classical circuit. Semiconductor devices called transistors
are used to control what happens to these voltages. A question frequently posed
by new students is “What is a qubit made out of?” As quantum computers are
based on fundamentally different concepts than classical computers, they must be
built from completely different technology, i.e. it is not possible to have a classical
current in a superposition of both flowing and not flowing through a wire. Quantum
computers are still in their infancy, and so there are many different candidates for the
technology to build them. Some technologies are based on optical systems, others
use superconductors,3 and there are others based on molecules. It is still unclear
if any of these are more beneficial than the others, and it is even more unclear if
all future quantum computers will be built from the same technology or if there
will be many different types of quantum computers available (in the same way
there exists both XBox and PlayStation game consoles, but both have the same
general purpose—interactive gaming). We will study two different experiments
which illustrate the properties of the qubits, but the engineering details of building
a quantum computer are well beyond the scope of this introduction.

2.5 Bigldeas

1. A qubit can be in a superposition of |0) and |1) states. The Bloch sphere can be
used to visually represent a single qubit.

2. A qubit can be written in terms of amplitudes. Each squared amplitude corre-
sponds to the probability of measuring the qubit in |0) or |1).

3. A physical change to a qubit mathematically corresponds to unitary matrices
which multiply the qubit amplitudes.

3Fermi National Accelerator Laboratory is researching how to make long-lived coherent
qubits using their superconducting radio-frequency cavity expertise, i.e., https:/qis.fnal.gov/
superconducting-quantum-systems/.
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Table 2.1 Table for message

2.6

1.

2 Whatls a Qubit?

Character | Binary code | Character | Binary code

A 01000001 | N 01001110
B 01000010 | O 01001111
C 01000011 P 01010000
D 01000100 | Q 01010001
E 01000101 |R 01010010
F 01000110 | S 01010011
G 01000111 T 01010100
H 01001000 |U 01010101
I 01001001 \Y 01010110
J 01001010 |W 01010111
K 01001011 | X 01011000
L 01001100 |Y 01011001
M 01001101 zZ 01011010

Check Your Understanding

@ If a coin is a classical bit of information (heads = 1 and tails = 0), how is
the number 2 represented in standard 8-bit notation using coins? (Hint: Find the
8-bit representation of the number 2, then convert to H’s and T’s.)

. @ Using Table 2.1, can you figure out what this binary message 01000011

01000001 01010100 says? (Note: This is actually how your computer and
phone decode information from bits to text.)

. @ Assume a flipped coin can be measured as either heads (H) or tails (T).

(a) If the coin is in a normalized state 75 |H)+ 71 |T), what is the probability
that the coin will be tails?
(b) During a flip, the coin is in a state %|H ) + %|T}. Is this state normalized?

(c) A machine is built to flip coins and put them into a state % |H)+ ‘/75 |T) when
flipped. If 100 coins are flipped, how many coins should land on tails?
(d) A coin starts in the state ﬁlH Y+ J% |T). After a measurement is made

on the coin, what could be the state of the coin?

. @ Your friend gives you many qubits which are in same superposition state.

How can you determine what the state is?

. @ A qubit is prepared in an unknown state. It is then measured with the

outcome |0).
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(a) Which of the following could be its initial state before the measurement:
10), 510) + A511), 310) + 2[1) andfor = (10) +1))?

(b) If you tried to measure the same qubit a second time, can you narrow down
what the initial state was?

(c) Another qubit is prepared in the same unknown state. It is measured in the
|1) state. What can you say about the initial state now?

. M What is the matrix product of the X matrix,

01
X = (1 0), (2.13)

and the |0) state qubit?

. I What is the matrix product of the above X matrix and the |1) state qubit?
. I What is the matrix product of the above X matrix and a qubit in the general

state | W) = |0) + B|1)?

Find the conjugate transpose of the matrix
0—i
Y = . 2.14
<i 0 ) .14y
@ Show that the matrix
I (11
U=— 2.15
V2 (1 - 1) @15
iS unitary.

Show by example that applying a non-unitary matrix to a qubit results in
probabilities that no longer add up to 100%. (Hint: Start with any initial state,
e.g., |0). Measure the probabilities of finding either 0 or 1. Apply a non-unitary
matrix to the initial state. Then measure the probabilities of finding either a O or
1. Do the probabilities add up to 100%?)

M If the qubit represented by Fig.2.5 is measured, what are the possible
outcomes? Numerical values for the amplitudes are not needed, only conceptual
statements.

Fig. 2.5 A qubit’s state is |0>
shown on the Bloch sphere

11)
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Now that we have explored qubits and the phenomenon of superposition, we can
ask the question: how do we know that superposition actually happens? What is
the evidence that shows that a quantum particle really does exist in two different
locations at this same time while in a quantum superposition? The nature of science
means that experiments are constantly updating previous results, so are there other
interpretations of the experimental results that can explain the data without the
need for superposition? In this chapter we’ll explore the experimental evidence
that debunks interpretations other than quantum superposition. Further, while a
flipping coin is a simple model of a qubit, it is not very useful for building a
quantum computer because it does not exhibit all of the properties of a true quantum
superposition. For example, we cannot manipulate the superposition amplitudes. In
this chapter, we will study some real physical examples of quantum particles in a
superposition containing two states. These examples include a photon in a beam
splitter and the Mach—Zehnder interferometer.

3.1 @ Beam Splitter

In classical optics, a beam splitter acts like a partially reflective mirror that splits
a beam of light into two. In a 50/50 beam splitter, 50% of the light intensity is
transmitted and 50% is reflected, as shown in Fig. 3.1.

One way to visualize the beam splitter is to imagine a barrier with holes randomly
cut out like Swiss cheese, as shown in Fig. 3.2. Imagine this barrier is placed in a
pond, and a water wave moves toward the barrier. After the wave hits the barrier,
we would observe a smaller wave going through the barrier and another would be
reflected off the barrier.

© The Author(s) 2021 17
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Fig. 3.1 A beam splitter
reflects 50% of the incident
light and transmits 50% of the
incident light.

Fig. 3.2 A beam splitter
reflects 50% of the incident
light and transmits 50% of the
incident light.

Fig. 3.3 Low-intensity light
is a stream of single photons.

3 Creating Superposition: The Beam Splitter

Laser .W——W—»W—»

Question I What would happen if a classical particle such as a soccer ball is
randomly kicked at the barrier? Assume the ball can fit through the holes.

Experiments demonstrate that light behaves both like a wave (Young’s double-slit
experiment) and a particle (photoelectric effect, Compton effect). Classically, light
is thought of as a wave consisting of continually oscillating electric and magnetic
fields. However, light can also be thought of as a stream of particles called photons.
Photons have no mass but carry the light’s energy from one point to another at the
speed of light. A laser beam is comprised of photons. If you turn down the intensity
of your laser, you can even send one photon at a time, as shown in Fig.3.3. As
setting up a single photon source and detector requires specialized equipment, we
will instead run a simulator to explore the quantum effects of photons.
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Question 2 Open the beam splitter simulator,! go to the Controls screen, and fire a
single photon. The setup before the photon hits a beam splitter is shown in Fig. 3.4.
Which detectors are triggered when the photon passes through the 50/50 beam
splitter?

(a) Always detector 1

(b) Always detector 2

(c) Detector 1 OR detector 2

(d) Both detector 1 AND detector 2
(e) Neither

Question 3 Which detector(s) would trigger if a classical wave is sent through the
beam splitter?

(a) Always detector 1

(b) Always detector 2

(c) Detector 1 OR detector 2

(d) Both detector 1 AND detector 2
(e) Neither

Question 4 Which detector(s) would trigger if a classical particle is sent through
the beam splitter?

(a) Always detector 1
(b) Always detector 2

Fig. 3.4 A single photon is
sent at a beam splitter and the
outcome is measured with
detectors to see whether the
beam splitter transmits or
reflects.

Detector 1

eam :
STy m—
ru"“'r =
Detector 2

hoton
ource

Uhttps://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/photons-particles-waves/
photons-particles-waves.html.
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(c) Detector 1 OR detector 2
(d) Both detector 1 AND detector 2
(e) Neither

Question 5 What does the photon do at the instance it encounters the 50/50 beam
splitter?

(a) Splits in half. Half the photon is transmitted and half is reflected

(b) The whole photon goes through with 50% probability and reflects with 50%
probability

(c) The whole photon is both transmitted and reflected, essentially in two places at
once

If the photon was split in half, both detectors in the beam splitter experiment
would be triggered at the same time. As only one detector goes off at a time, the
photon could not have split up. In this case, we see that light behaves more like the
soccer ball than the water wave.

At this point you may be thinking that the photon was either transmitted or
reflected at the beam splitter, and we simply didn’t have that information until it
hit Detector 1 or 2. Unfortunately, this would be the incorrect interpretation formed
by our classical animal brain. This would be like saying the coin was Heads all
along, and all we had to do was look at it to determine its state. Similarly to how
a spinning coin will land on heads 50% of the time and tails 50% of the time, the
single photon is in a superposition of both states all the way until the point when
it reaches the detectors. This distinction might seem like a matter of semantics,
but this is important as the distinction describes two different ways that the universe
operates at the smallest possible distances. Also, it will be important once the system
becomes more complicated. The experimental setup after the photon hits a beam
splitter is shown in Fig. 3.5.

If we let the transmitted path be |0) (detector 1), and the reflected path be |1)
(detector 2), then the photon’s state after the beam splitter is

1 1
— —|1).
ﬁ|o>+ﬁ|>

Upon measurement, will the superposition collapse into either |0) or |1)? Unfortu-
nately, it is not possible to predict which detector will be activated at any given time
as quantum mechanics is inherently probabilistic.

The phenomenon of superposition allows quantum computers to perform opera-
tions on two bits of information at once with a single qubit. In fact, it is possible to
create a general purpose (also called universal) quantum computer using photons as
qubits, beam splitters to create superposition, and pieces of glass that slow down the
photons along selected paths (phase shifters).”

|photon) = 3.1

2Knill, E.; Laflamme, R.; Milburn, G. J. (2001). “A scheme for efficient quantum computation with
linear optics”. Nature. Nature Publishing Group. 409 (6816): 46-52.
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Fig. 3.5 The beam splitter puts the photon into a superposition state.
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Detector 2

Photon Source Mirror 2

Fig. 3.6 Schematic of the Mach—Zehnder interferometer from  https://www.st-
andrews.ac.uk/physics/quvis/simulations_html5/sims/Mach-Zehnder- Interferometer/
Mach_Zehnder_Interferometer.html

3.2 M Mach-Zehnder Interferometer

To convince ourselves that the photon really did take two paths at once, let’s see what
happens when a second beam splitter is added. This experimental setup is shown in
Fig.3.6. The mirrors redirect the photons towards the second beam splitter. This
device configuration is known as a Mach-Zehnder interferometer. The set up is
very sensitive to the distances between the mirrors and detectors, which have to be
the same or differ by an integer number of the photon’s wavelength.

Question 6 If we assume that the photon was reflected by the first beam splitter,
which detectors would be triggered?

(a) Always detector 1
(b) Always detector 2


https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/Mach-Zehnder-Interferometer/Mach_Zehnder_Interferometer.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/Mach-Zehnder-Interferometer/Mach_Zehnder_Interferometer.html
https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/Mach-Zehnder-Interferometer/Mach_Zehnder_Interferometer.html
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(c) Detector 1 OR detector 2
(d) Both detector 1 AND detector 2
(e) Neither

Question 7 If we assume that the photon was transmitted by the first beam splitter,
which detectors would be triggered?

(a) Always detector 1

(b) Always detector 2

(c) Detector 1 OR detector 2

(d) Both detector 1 AND detector 2
(e) Neither.

Question 8 Construct the Mach—Zehnder interferometer in the beam splitter simu-
lator’ and fire a single photon. Which detectors are triggered?

(a) Always detector 1

(b) Always detector 2

(c) Detector 1 OR detector 2

(d) Both detector 1 AND detector 2
(e) Neither

If the photon was either transmitted or reflected by the first beam splitter, it would
have a 50/50 chance of transmission or reflection by the second beam splitter.
Thus, both detectors should trigger with equal probability. However, strangely
the experimental results do not agree with this hypothesis, as only one detector
is triggered with 100% probability. This weird phenomenon is more intuitively
understood from the wave perspective of light.

To understand the operation of the interferometer, it is important to note that the
beam splitters have a polarity. The beam splitter consists of a piece of glass coated
with a dielectric on one side. When light enters the beam splitter from the dielectric
side, the reflected light is phase shifted by 7. Light entering from the glass side will
not experience any phase shift. The phase shift only occurs when the light travels
from a low to high index of refraction (7air < Ndielectric < Rglass)-

What does it mean for a photon to be phase shifted? In this case, it is more
intuitive to think about the wave nature of light. The phase shift would invert the
electric and magnetic field oscillations relative to the incoming wave. If a -shifted
wave overlaps with the original wave, destructive interference occurs as is shown
in Fig. 3.7.

3https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/Mach-Zehnder-
Interferometer/Mach_Zehnder_Interferometer.html.
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Fig. 3.7 The light through a beam splitter is phase shifted if it is reflected from the dielectric side
but not phase shifted if it is reflected from the glass side.

Question 9 If we assume that light is a classical wave exhibiting interference, can
you work out which detectors would be triggered? Note that the first beam splitter
has the dielectric side on top, while the second has the dielectric on the bottom, as
shown in Fig. 3.6.

(a) Always detector 1

(b) Always detector 2

(c) Detector 1 OR detector 2

(d) Both detector 1 AND detector 2
(e) Neither

3.2.1 Particle Explanation

The behavior of the interferometer can also be viewed from the particle perspective,
though it may be less intuitive. Recall from the single beam splitter experiment that
the photon did not split up or clone itself. It was in a superposition state, essentially
taking both paths. The second beam splitter treats the photon as if it came in from
both top and bottom simultaneously. As shown in Fig. 3.8, the top path enters the
second beam splitter from the glass side and experiences no phase shift, whereas the
bottom path enters from the dielectric side and is phase shifted upon reflection. The
+0 and +m states at Detector 2 interfere destructively, while the +0 and +0 states
at Detector 1 interfere constructively. Therefore, Detector 1 triggers with 100%
probability.

Question 10 If the photon is sent into the Mach—Zehnder interferometer from the
upper left instead of the bottom left, which detector(s) would be triggered and with
what probability?
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Mirror 1

Detector 1

Beam
Splitter2

Jeam
Splitter 1 |

, Detector 2

Photon Source Mirror 2

Fig. 3.8 The blue path shows the photon’s path if it is reflected by Beam Splitter 1. The red path
shows the path if the photon is transmitted. Because Beam Splitter 2 has the dielectric facing
downwards, blue is phase shifted upon reflection.

Fig. 3.9 Coin analogy for the interferometer. Sending a photon through one beam splitter puts
it in superposition, but adding a second beam splitter undoes the superposition and recovers the
original state.

Even though the output of the first beam splitter is 50/50, the second beam
splitter can distinguish whether the laser was fired from the top or the bottom. The
first beam splitter creates a superposition state, but adding a second one undoes the
superposition and recovers the original state. This is a non-classical operation. It
would be like starting with the coin heads up, flipping it, flipping it again while it
is still in the air, and then always getting heads when it lands! This is highlighted
in Fig. 3.9.

There is hidden information in the superposition state. In the Mach—Zehnder
photon qubit, the information is encoded in the form of the phase shift. In the
experiment shown in Fig.3.8, we chose the phase shift to have a value of .
However, we could have just as easily chosen the phase shift to have any value
between 0 and 27 (the angles of a circle). Each separate choice of phase shift
would produce a different type of superposition state that would still produce
the same measurable 50/50 outcome. This is represented on the Bloch sphere by
different locations along the equator.* This phase shift information is present in

‘A complex amplitude €'? with infinite possible phase angles ¢ does not affect the probability
since |¢'? 2= 1.
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the amplitudes but not the square of the amplitudes (and hence hidden from us in
the Mach—Zehnder experiment—though we could make another experiment to try to
determine this information). Here are two simple examples of distinct states that
can be created in two different experimental arrangements of the Mach—Zehnder
experiment which still have the same 50/50 probability:

1 1 1 1
—10) + —|1 —[0) — —|1).
ﬁ|)+ﬁ|> ﬁ” ﬁ”

In these two states the plus or minus signs represents two of the many different phase
shifts that are possible. Each different choice of the phase shift depends on how
the experimental arrangement is chosen. As you can see, quantum superposition is
inextricably linked to wave-particle duality.

Furthermore, in the Mach—Zehnder experiment we created a superposition,
performed a phase shift and then observed wave interference. These experimental
operations are equivalent to mathematically applying matrix/gate operations on a
qubit, as we shall see later. As such, the Mach—Zehnder is an example of how we can
technologically implement qubits (the photon) and operations (superposition/phase
shift, etc) to build a quantum computer.’ In quantum computing, people talk about
the superposition of states rather than the wave behavior. Yet, as we have seen, both
frameworks lead to the same understanding of the Mach—Zehnder interferometer.
Later we will use the interferometer to implement a quantum algorithm.

or (3.2)

3.3 Bigldeas

1. A photon can be put into a superposition using a beam splitter. After passing
through the beam splitter, a photon takes both paths simultaneously.

2. The Mach—Zehnder interferometer shows how the photon really does take two
paths at once. This is conclusive experimental evidence of superposition of
photons.

3.4 Check Your Understanding

1. @ Your friend who is explaining superposition to you says that:

“A particle in the state (1/ V2)(0)+(1 / V2)I1) represents a lack of knowledge
of the system. Over time, the particle is changing back and forth between the state
|0) and |1). The superposition state says that overall, the particle is in each of the
two states for half of the time.”

What parts of this statement do you agree with and what do you not agree with?

31t should be noted that the technology has progressed so that most qubits are at present
implemented using superconducting transmons and not using a Mach—Zehnder.
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2. M Only one detector is triggered if a single photon is sent through the beam
splitter experiment shown in Fig. 3.5. If the laser outputs two photons at the same
time, what is the probability that both detectors will be triggered simultaneously?
Now how about three photons? Ten photons? Note that this is why a higher power
beam of light appears to reach both detectors simultaneously.

3. ‘ In practice, it is difficult to place the detectors the exact same distance from
the beam splitter. The difference in distance is measured using the time delay At
between photons. The experiment is shown in Fig. 3.10 and the data in Fig. 3.11.
(a) Does the data shown in Fig.3.11 at At = 0 support that light is a particle or

a wave?

Fig. 3.10 The experiment
varies the position of Detector
2 and records the number of
coincidences, i.e., the number
of times both detectors are
triggered simultaneously.

"~ Detector 1

Calll ~ )
St m—

~ Detector 2

hoton <y
ource

400 g ; .

300 -

200 - I

100 -

Number of coincidences

-2 -1 0 1 2
Time delay(us)
Fig. 3.11 Data is shown above for light bursts sent from the laser every 0.4 ps. Figure reproduced

with permission of Martin Laforest and the Communications and Strategic Initiatives Team at the
Institute for Quantum Computing, University of Waterloo Outreach department.
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Fig. 3.12 Matrix formulation of the Mach—Zehnder apparatus.

Mirror 1

. > Detector 1

Bofiey | em— B2 o—

Detector 2

Photon Source Mirror 2

Fig. 3.13 A third detector (your eye) is added to the Mach-Zehnder apparatus.

(b) Why are there large coincidence counts when At # 0? (Hint: Look at the
spacing between the peaks.)
4. M Using the matrices given in Fig.3.12, show how the superposition state is
created by multiplying the beam splitter matrix by initial photon state.

5. 9 Construct the matrix representation for a 30/70 beam splitter.

6. M Unsettled by the Mach—Zehnder interferometer, you decide to determine
once and for all which path the photon takes after the first beam splitter. You
place another detector (indicated by the eyeball) on the upper path as shown in
Fig. 3.13. If the eyeball sees a photon, what would be seen at Detectors 1 and 2?7
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In the previous chapter, we have seen that a photon in an interferometer can be
a prototype for a qubit. Might there be any other prototypes for a qubit arising
from other particles that we might know? In fact, an electron is another prototype
for a qubit. An electron has many measurable properties such as energy, mass,
momentum. But, for the purposes of creating a qubit, we want to focus on a property
with only two measurable values. An electron has a two-state property which is
called spin.

Classically, an electron’s spin can be visualized as a rotation about its own axis,
like a spinning top or fidget spinner. You learned in high school physics that a
moving charge creates a magnetic field according to the right-hand rule. By curling
the fingers of your right hand in the direction of the electron’s rotation, your thumb
points in the direction of the magnetic field created by the charge. Conceptually,
an electron’s spin behaves somewhat like a tiny bar magnet. However, this classical
picture is just an analogy. In reality, the quantum mechanical property we call “spin”
is intrinsic to the electron (like its mass or charge). The property was called spin
because it can be described mathematically just like orbital momentum, but spin
does not actually correspond to the electron physically rotating.! Just like a lot of
quantum phenomena, spin can be confusing at first. Exploring how the electron can
be used as a qubit will provide further intuition into quantum phenomena such as
quantum superposition, spin, and measurement.

4.1 @ Stern-Gerlach Apparatus

The Stern—-Gerlach apparatus (SGA) showed that the electron spin is quantized to
only two values. This video? explains the experimental apparatus used to measure
the electron’s spin. The key point here is that the vertically oriented apparatus (called

ISee https://en.wikipedia.org/wiki/Spin_(physics) for more details.
Zhttps://www.youtube.com/watch?v=rg4Fnag4 V-E.
© The Author(s) 2021 29

C. Hughes et al., Quantum Computing for the Quantum Curious,
https://doi.org/10.1007/978-3-030-61601-4_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61601-4_4&domain=pdf
https://en.wikipedia.org/wiki/Spin_(physics)
https://www.youtube.com/watch?v=rg4Fnag4V-E
https://doi.org/10.1007/978-3-030-61601-4_4

30 4 Creating Superposition: Stern-Gerlach

the z-direction by convention) only measures the spin as either up or down, not
randomly oriented at any angle. Since the spin of an electron has two measurable
states, it can represent a qubit with |0) as spin up and |1) as spin down (Fig. 4.1).

Question 1 Open up the PhET Stern—Gerlach simulator’ and try sending electrons
of various initial spins into the Stern—Gerlach apparatus (SGA).

Are the results what you would expect? The “up” and “down” directions are
defined by the orientation of the apparatus, as in Fig. 4.2. There is nothing inherently
special about the z-direction compared to the x- or y-direction. An SGA rotated
horizontally would measure either spin left or spin right. An SGA rotated by 45°
would measure the spin to be either diagonally up or diagonally down. What is
particularly interesting is if we send a single spin up electron into a horizontally
oriented SGA.

Question 2 Where would you expect a spin up electron to land in Fig.4.3 after
passing through a horizontal SGA?

Classically, vertically oriented bar magnets in a horizontal magnetic field would
land at the center of the screen. However, recall that the spin can only be measured
as left or right and cannot possibly land in the center. The way quantum mechanics
solves this problem is to have the electron land either on the left or the right with
50% probability. Sound familiar? Sending a spin up electron through a horizontal
SGA puts the electron in a superposition state of left and right.

s |
e =
. ) ' Q I
] i B’
- \J
W up spin down

Fig. 4.1 An electron can spin either up or down and produce a magnetic field.

Fig. 4.2 A cartoon picture of the Stern—Gerlach Apparatus. Electron spin produces a magnetic
field either in the up or down direction.

3https://phet.colorado.edu/sims/stern- gerlach/stern-gerlach_en.html.
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Fig. 4.3 Choices for Question 2.

The Stern—Gerlach experiment shows that qubits in superposition are an accurate
description of how nature truly operates. Therefore, one promising application of
quantum computers is simulating systems that occur in nature such as electronic
properties of a molecule for use in drug design.*

4.2 ‘ Measurement Basis

Spin in the vertical direction can be represented as a superposition of spins in the
horizontal direction. As shown in the simulation, an electron with vertical spin has
a 50% chance of being measured as right or left:

1 1
= =)+ —| <), 4.1
[1) ﬁ' )+ﬁ| ) 4.1)
1 1
) — sy, 4.2
) ﬁ' ) ﬁ' ) 4.2)

In more traditional qubit notation, spin in the 4z and —z axis is written as |0) and
[1), while spin in the +x and —x axis is |+) and |—):

=), (4.3)

[—). 4.4)

This is non-classical because you cannot add or subtract horizontal magnetic field
vectors to get a vertical magnetic field vector. One analogy might be to think about
a person looking at a coin vertically to determine its state. If they see heads or
tails, someone looking from the side would see a superposition. If they are forced to
make a choice via measurement, they would say heads or tails with 50% probability
(Fig.4.4).

“https://analyticsindiamag.com/top-applications-of-quantum-computing-everyone-should-know-
about/.


https://analyticsindiamag.com/top-applications-of-quantum-computing-everyone-should-know-about/
https://analyticsindiamag.com/top-applications-of-quantum-computing-everyone-should-know-about/

32 4 Creating Superposition: Stern-Gerlach

Heads for
sure.
-

N

I, N o

Fig. 4.4 Analogy for how a definite vertical spin is seen as a superposition in the horizontal
direction.

Superposition of
— Heads and Tails. >

Example Write the |+) state in terms of |0) and |1).

Solution Adding Egs. (4.3) and (4.4) we find

2
0 1) = —[4). 4.5
10) + 1) ﬁ|+> 4.5
Rearranging, we get
) = —=10) + —=I1) (4.6)
V2 2T '

Similarly, by subtracting Egs. (4.3) and (4.4), we find

1 1
0y — —
ﬁ|> V2

These equations show that a horizontal spin is a superposition of spin up and spin
down. As we saw in the beam splitter example, the minus sign encodes information
about the original state of the particle before it is put in superposition. As described
and visually shown in Sect. 2.3, it is possible to choose other complex amplitudes
that give the same probability, but the details are mathematically beyond our scope.

|=) = 11). 4.7)

We reached the conclusion that spins in one direction can be written as a
superposition of spins in another direction. Within the quantum computing field,
the “z-basis” is composed of |0) and |1), while |+) and |—) compose the “x-basis.”
A basis is analogous to a coordinate system for quantum states. Any state can be
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Fig. 4.5 Rewriting quantum states in terms of a different basis is similar to decomposing a
classical vector into a different choice of coordinate system.

written in terms of a different choice of basis, similarly to how any vector can be
broken down into components along a different choice of axes.

In Fig. 4.5, a box on a ramp is subject to a force. The vector decomposition of
F is shown for three different coordinate systems. All three coordinate systems
are valid for describing the force, but only the first two are convenient to use
in actual calculations. By choosing x—y to be perpendicular, you have made the
components mutually exclusive: if a vector is horizontal, you know it’s definitely
not vertical. The x- and y- directions can be treated as two independent problems.
The mathematical term for expressing that the axes are independent is “orthogonal”.
In quantum mechanics, there are an infinite number of possible choices for a basis.
However, the basis should have two properties:’

1. The basis must describe all possible quantum states for the system.
2. The basis must be orthogonal.

Let us check these conditions for the z-basis, which consists of states |0) and |1):
1. Because the Stern—Gerlach experiment shows that an electron is either spin up or
spin down, the most general state of the electron would be a superposition of up

and down:

lelectron) = «|0) + B]1). 4.8)

SThese two properties can also be used to form a basis in a classical system, where states should
be swapped for vectors.
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A linear combination of |0) and |1) completely describes the electron’s state.
2. If you measure the spin as |0), it is definitely not |1), therefore |0) and |1) are
orthogonal.

The same argument can be made for the x-basis or any other angle of the SGA
(Fig. 4.5).

43 @ Geometric Representation of a Basis

In this geometric representation of the z-basis and x-basis, the orthogonal states are
drawn perpendicular to one another. If the electron is in a particular state |0) in the z-
basis, the state vector can be decomposed into 1/ V214) +1 / V2)|-) in the x-basis.
Physically turning the SGA from vertical to horizontal corresponds to changing the
measurement from the z to the x-basis. Since |0) = 1/\/§|—) + 1/\/5) |—), the spin
up particle became a 50/50 superposition when the measurement device became
horizontal.

Question 3 Use Fig. 4.6 and trigonometry to show that |1) = 1/4/2|4+)—1//2)|-).

Often, there is hidden information about the state that cannot be measured unless
we change to a different basis. In the x-basis, there is no measurable difference
between |0) and |1). Both the |0) qubit and the |1) qubit would have measurement
results of 50% left and 50% right in the x-basis. In the z-basis, |0) would have 100%
probability of being measured up in the Stern—Gerlach and 0% being measured
down, while |1) would have 0% probability being measured up and 100% down.

|0)

=) |electron) +)

ISE

’
’
’
s
s
,
’
’
’
’
s
s
,

Fig. 4.6 Geometric representation of the z-basis and x-basis. The state of a spin up electron is
shown.
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4.4 @ Effect of Measurement

You learned that measuring a qubit collapses its superposition state into one of
two possibilities. A spinning coin is in a superposition state, but once it lands, it
becomes either heads or tails. The photon is in a superposition state after passing
through a beam splitter, but once it reaches the detectors, we know for sure whether
it was reflected or transmitted. To appreciate the truly strange nature of quantum
measurement, let’s see what happens when electrons are sent through multiple
Stern—Gerlach devices in a row.

Question 4 Open the PhET Stern-Gerlach simulator® and send electrons with
randomly oriented spins through a vertical SGA as in Fig.4.7. What is the spin
of the electrons that pass through the hole?

(@) +z
(b) —z
(c) Superposition of +z and —z

Question 5 Add a second SGA, oriented horizontally as in Fig. 4.8. What is the spin
of the electrons before entering the second SGA?

(a) +x
(b) —x
(c¢) Superposition of +x and —x

Question 6 What is the spin of the electrons after passing through the second SGA?

(@) +x
(b) —x
(c) Superposition of +x and —x

Question 7 What is the z-spin of the electron coming out of the second SGA?
Design an experiment to confirm this in the simulation.

Fig. 4.7 The z-axis SGA lets L

through spin up electrons but

blocks spin down electrons. mo

Shttps://phet.colorado.edu/sims/stern-gerlach/stern-gerlach_en.html.
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Fig. 4.8 The z and x-axis SGA.

Random
Spin

Fig. 4.9 The first SGA selects for 4z spin and the second SGA selects for —x. The third SGA
shows that by measuring the —x in the z-basis then the electron is in a superposition of +z and —z.

(a) +z
(b) —z
(c) Superposition of +z and —z

Given that only spin up electrons passed through the first SGA, one would expect
that the electron is still spin up after the second SGA, no matter what is measured in
x. However, if you measure the z-spin with a third SGA as in Fig. 4.9, it has a 50%
chance of being up or down!

By measuring the electron, we fundamentally changed its state. Measuring the
x-spin of the qubit puts it into a superposition of up and down, even when it started
as up to begin with. When you measure the length of an object with a ruler, you
don’t expect the object’s length to change after you measure the it!

Quantum measurement collapse is used in many quantum applications such as
cryptography, where one could detect if a message has been intercepted. This will
be discussed in further detail in Chap. 5. Moreover, this property of quantum states
implies that a qubit in an unknown state cannot be copied. This concept is known
as the no-cloning theorem and has very important consequences. For example,
classical computers can make a copy of lines of text and the original version of the
text stays the same—there are now two identical copies of the same text. But, if you
try to copy an unknown qubit you first have to measure it, which fundamentally
alters it by collapsing its superposition state into a basis state. Therefore, since
quantum computers cannot copy text as easily as classical computers can, they are
unlikely to replace your laptop. However, for certain applications, the information
in superposition states allows information processing beyond what is possible in a
classical computer. This will be explored more in Chap. 9.
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4.5 Bigldeas

1. An electron has an intrinsic property called spin, which is quantized into two
values called spin-up and spin-down.

2. The measurement basis is important when interpreting results from experiments
on quantum states. Two common basis are the z-basis (|0) and |1)) and the x-
basis (|]4) and |—)).

3. The Stern—Gerlach apparatus (SGA) can be used to put the electron into a
superposition state. The electron can be used as a qubit, and the SGA as a way to
operate on this qubit. Together, they are a simple model of a quantum computer.

4.6 Activities

B Ppolarizer Demo in Worksheet 10.2
B Measurement Basis Lab in Worksheet 10.6
Superposition vs. Mixed States Lab in Worksheet 10.5

4,7 Check Your Understanding

1. @ The Stern—Gerlach apparatus is rotated by 90° so that the magnetic field is
in the x-direction as shown in Fig. 4.10. If electrons from a random source are
sent through the apparatus, what pattern would be formed on the screen?

2. @ Would |0) and |+) together satisfy the criteria for a valid basis?

3. @ Anelectronisina superposition state shown in the geometric representation
in Fig.4.11.

(a) What is the state of the electron in the z-basis? i.e. find ¢ and S in
lelectron) = «|0) 4+ B|1)
(b) What is the probability of measuring spin up?
(c) What is the state of the electron in the x-basis? i.e, find o and B in
lelectron) = «|+) + B|—).
(d) What is the probability of measuring the spin in the |—) direction?
4. @ To measure the difference between an electron in a spin state \/Li [0) + % [1)

sl 1 .
and one in 7 |0y — 7 |1}, one could use:

o O S O

O

—’X

Fig. 4.10 Stern Gerlach apparatus.
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|0)

=) lelectron)  [+)

SIE]

1)

Fig. 4.11 Superposition state of the electron.

Random __.........
Spin

Fig. 4.12 SGA setup for Problem 5.

(I) A horizontal SGA.
(Il) A vertical SGA.
(IIT) A 45° diagonal SGA.

(a) Tonly
(b) II only
(c) TorIII
(d) MorIII
(e) LIL or III
5. @ An electron with random spin is sent through two vertical SGAs as shown
in Fig.4.12. What would be the output of the second SGA?
6. @ An electron with random spin is sent through two vertical SGAs, where the
second SGA is rotated upside down, or 180°.
(a) If the second +z port is blocked as in Fig. 4.13, what would be the output of
the second SGA?
(b) If both ports on the second SGA are open as in Fig.4.14, what would you
see at the output?
7. @ An electron with random spin is sent through a horizontal SGA followed by
a vertical SGA as in Fig. 4.15. What would be the output of the second SGA?
8. @ An electron with random spin is sent through three SGAs as shown in
Fig.4.16. What would be the output of the third SGA?
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Random
Spin

Fig. 4.13 SGA setup for Problem 6a.

Random
Spin

Fig. 4.14 SGA setup for Problem 6b.

Random
Spin

Fig. 4.15 SGA setup for Problem 7.

Fig. 4.16 SGA setup for Problem 8.

9. @ An electron with random spin is sent through three SGAs as shown in

Fig.4.17. What would be the output of the third SGA?

10. @ An electron with random spin is sent through four SGAs as shown in

Fig. 4.18. What would be the output of the fourth SGA?
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Fig. 4.17 SGA setup for Problem 9.

Fig. 4.18 SGA setup for Problem 10.
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The Internet can be thought of as a channel of information being sent from you to
everyone else connected to the Internet. If you wanted to transmit your sensitive
information (such as bank account numbers or military secrets) over the Internet,
then you have to ensure that only the persons you intend to read your information
have access to your sensitive data. Otherwise, everyone would be able to read your
information, e.g., access to your bank account details and transfer money out of your
account. Therefore, one needs to encrypt any data sent over the Internet. Encryption,
in this context, ensures that only the intended sender and receiver can understand any
message being sent over an Internet channel.

5.1 @ Cryptography Fundamentals

Encryption relies on the sender and receiver sharing a secret key (that no one else
has) and using that to encrypt and decrypt messages. In this way, since no one else
has the secret key, no one else can understand the shared information. Because no
one else understands the shared information, they cannot misuse it for their own
benefit.

The only type of encryption protocol known to be perfectly secure is the One-
Time Pad, also known as the Vernam Cipher.! It is assumed that two people
exchange a shared key at least as long as the message in a completely secure way.
The shared key encrypts the message to create the cipher, and the cipher is decoded
by decrypting with the shared key. The protocol is best understood by trying it out
with the associated worksheets in Sect. 10.7. In practice, due to not having a secure
channel to share such a complicated key, despite being unbreakable, this method

!Shannon, Claude (1949). “Communication Theory of Secrecy Systems.” Bell System Technical
Journal. 28 (4): 656-715. https://doi.org/10.1002/j.1538-7305.1949.tb00928 .x.
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is usually not employed.”> Here we see the fundamental caveat with encryption:
you require a secure channel to share the secret key (if you do not have a secure
channel then someone random can just take the secret key and encryption would
be pointless), but if you have a secure channel then why do you need to encrypt
your data? You need a way around this issue. How do you share a secret key in an
insecure channel, where anyone can be listening?

5.2 @ Classical Cryptography

The way around sharing a secret key in an insecure channel in the majority of
online communications is called public key cryptography.®> A person called Alice
makes two keys such that each key knows that only the other key is related to it
(think of the keys as siblings). They are called the private and public key. Alice then
gives the public key to everyone in the world but importantly keeps the private key
for herself. Anybody else, say Bob, who wants to send a private message to Alice
has to encrypt their message with the public key that Alice generated. There are
many different types of encryption protocols that one can use. The special part of
public key cryptography is that only Alice’s private key can decrypt the message
that was encrypted using its sibling public key. In this way, only Alice can read the
message from Bob. As no one else has Alice’s private key, no one else can read
Bob’s message. However, if Bob did not use Alice’s public key but used a different
public key to encrypt his message, then Alice cannot decrypt that message, as her
private key is not a sibling key of the different public key. This whole cryptography
scheme relies on the fact that no one can break the encryption protocol. If they could
break it, then they could read Alice’s message even if they did not have Alice’s
private key.

The most commonly used modern Internet encryption protocol is RSA encryp-
tion. RSA encryption relies on encrypting messages with keys that are made out
of very large integers. To break the encryption protocol, an eavesdropper would
need to factorize this very large integer into its (prime) factors. Factorizing a large
integer into its (prime) factors is known to be a problem that classical computers
cannot solve in any reasonable amount of time.* For example, given two large prime
numbers p and g, it takes just a fraction of a second to multiply these two prime
numbers together to produce a large integer ¢ = pq. However, finding the two
prime numbers p and g given just the integer ¢ would take a classical supercomputer
thousands of years.

RSA encryption works by encrypting the message with the public key. Decrypt-
ing the message by brute force requires factorizing a large integer in the public

Zhttps://en.wikipedia.org/wiki/One-time_pad.
3https://en.wikipedia.org/wiki/Public-key_cryptography.
“https://en.wikipedia.org/wiki/Integer_factorization.
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key, which would take thousands of years. However, the private key related to the
public key knows how to check the prime factors of the public key and can decrypt
the message easily. Because the encryption protocol is so difficult to break, no one
would even attempt to do so. Instead, the eavesdropper may attempt to steal your
private key by hacking into your computer, which Internet firewalls protect against.
As such, nearly all Internet encryption relies on a computer not being able to factor
large integers in a short amount of time.

However, in 1995, Peter Shor proposed a quantum computing algorithm, based
on superposition and interference, that drastically speeds up the factoring process. A
4000-digit number, which would take a classical computer longer than the lifetime
of the universe to factorize, would take less than a day on a large, stable quantum
computer. Shor’s Algorithm® can theoretically break modern encryption schemes,
although quantum hardware is not sufficiently advanced yet to make this decryption
practical. If it were, all your bank details, military secrets, and industrial secrets
could be easily hacked. The details of Shor’s algorithm are beyond our scope, so we
will instead discuss how the same quantum computer could be used to ensure a key
is shared over a secure channel.

Together, the one-time pad and quantum key distribution (QKD) would be a
formidable combination. The BB84 QKD® simulation demonstrates how one could
create a shared key using electrons and a Stern—Gerlach apparatus. The BB84
protocol is summarized below.

5.3 @ BB84 Quantum Key Distribution
5.3.1 Before Sending the Message

The sender (Alice) and receiver (Bob) publicly agree to the relationship between
spins and bit value shown in Table 5.1.

Table 5.1 Table for the relationship between spin
and bit values for quantum cryptography

Spin 4 <~ l N
Bit value 0 0 1 1

Shttps://quantum-computing.ibm.com/docs/guide/q-algos/shor-s-algorithm.
Shttps://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/cryptography-bb84/
Quantum_Cryptography.html.
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5.3.2 Quantum Part

1. Alice randomly chooses either the x- or z-basis (horizontal or vertical Stern—
Gerlach apparatus).

2. Alice sends an electron in superposition in the chosen basis through the SGA,
measures the spin, and records the corresponding bit value as 0 or 1. The electron
is sent to Bob.

. Bob randomly chooses either the x- or z-basis.

. Bob measures the spin of the electron and records whether it was 0 or 1.

5. Repeat steps 1-4 until desired level of security is achieved.

B~ W

5.3.3 Example

Alice sends five electrons to Bob. When Alice sends an electron prepared in one
basis and Bob measures in the same basis, they measure the same spin. However,
if Bob measures in a different basis than Alice, then the electron will be in a
superposition state and there will be a 50% probability of the state collapsing into
0 or 1. Example values for the first three bits of a BB84 experiment are shown in
Fig.5.1. Can you fill in the last two bits?

Alice’s
. z z X X
Basis
Spin T 1 l - (=
Bit 1 1
value
| | | | | | | | | |
T { l - -
Bob’s
Basis
Spin 1 - «—
Bit 1 0
value

Fig. 5.1 Alice’s and Bob’s measurements of the BB84 protocol
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Alice’s
Basis

Key

Fig. 5.2 Alice and Bob’s measurements of the BB84 protocol completed from Fig.5.1. The
discarded bits are grayed out, and the key is 01

5.3.4 Classical Post-processing

1. Alice and Bob publicly share the basis used for each bit measurement without
revealing the actual bit value they measured.

2. If they measured in the same basis, they keep that bit. If they measured in
a different basis, they discard that bit. This is shown in Fig.5.2. For the
measurements performed in the same basis, Alice and Bob are guaranteed to
have the same string of bits unless there was an eavesdropper:

3. They publicly compare a subset of the bits, say 20 out of 100 bits. If all 20 are
the same, then it is unlikely that there was an eavesdropper. The remaining 80
become the shared key.

5.4 @ Detecting an Eavesdropper

If an eavesdropper (Eve) overhears the post-processing part where Alice and Bob
share the basis used for each bit measurement, Eve has no information about
whether any bit was either a O or 1. As Eve has no information, public post-
processing sharing is not a dangerous action for Alice and Bob to take. The only
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way for Eve to determine the spin value of the qubits, and as a consequence acquire
important information, is to measure the qubit with her own Stern—Gerlach before
it gets to Bob. This can be potentially dangerous for Alice and Bob. However, as
the basis is not shared during the transmission, Eve must randomly pick a basis
to measure the qubit intercepted from Alice. If Alice and Bob randomly choose to
measure in a different basis, they throw away all the bits and it does not matter
which basis Eve chooses. If Alice and Bob randomly choose to measure in the same
basis then there are two outcomes depending on what Eve does: (1) If Eve randomly
chooses the same basis as Alice, then she does not alter the state. This is bad, as Eve
has successfully eavesdropped information without Alice and Bob knowing. (2) If
Eve randomly chooses a different basis than Alice, then she alters the state and puts
it into a superposition. Even though Bob is using the same basis as Alice, due to
Eve altering the state, Alice and Bob can have a different spin measurement. This is
how they can catch an eavesdropper.

5.4.1 Example

The eavesdropping situation is shown in Fig. 5.3. If Eve chooses the same basis as
Alice, the spin is unchanged when it gets to Bob (bit #1). If Eve chooses a different
basis than Alice, the spin could be different when it gets to Bob (bits #2 and #3).
Eve could get lucky and Bob’s bit could agree with Alice (bit #2). However, Bob
is equally likely to measure something different from Alice (bit #3). Can you fill in
what might happen with bits #4 and #5?

When Alice and Bob compare a portion of their key bits, a discrepancy would
indicate the presence of an eavesdropper. If they compare a sufficient number of key
bits and all of them match, they can be reasonably sure that the rest of it is secure.
This statement will be quantified shortly in the questions.

5.5 Bigldeas

1. Classical RSA encryption assumes that factoring a large integer into its prime
factors is prohibitively difficult. This assumption is true for classical computers,
ensuring your information can be safe.

2. Shor’s algorithm on a large and stable quantum computer could factor a large
integer into prime factors, making classical encryption vulnerable.

3. New quantum encryption protocols are developed to keep information safe in the
quantum era. The BB84 protocol is one way to share a secret key in a secure
channel, that can then be used for encryption.
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Spin t v v - -
Bit 0 1 1
value
| |
T

Spin T — -
Bit 0 1 0
value
t — -«

I B S

Bit
value

Fig. 5.3 An example of how to catch an eavesdropper using the BB84 protocol

5.6 Activities

@ One-time Pad for Alice/Bob in Worksheet 10.7
@ BB384 Quantum Key Distribution for Alice/Bob/Eve in Worksheet 10.8
@ For those interested in hands-on experiments, see QuTools’

5.7  Check Your Understanding

1. M If Alice and Bob exchange 1 million bits in order to use the BB84 quantum
cryptography protocol, approximately how long will their bit-key string be?
Assume they do not check for eavesdropping.

2. M Alice and Bob share their lists of measurement basis, but do not share any
more information about the bits. What is the probability that Eve will guess the
correct bit for a single bit-key?

Thttps://www.qutools.com/quantenkoffer_science-kit/.
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3. M Alice and Bob perform 20 bit-key measurements but do not share any
information about the bits. What is the probability that Eve will guess the correct
20-bit key?

4. @ If Eve tries all possible key combinations with the one-time pad, can she crack
the one-time pad?

5. B If Eve uses a Stern—Gerlach to measure the spin in between Alice and Bob’s
measurements, what percentage of the time will she be lucky and get the correct
key-bit value without detection?

6. B If Alice and Bob measure in the same basis and compare 20 bits of their key,
what is the probability that Eve could have eavesdropped all 20 bits without being
detected?

7. @ Suppose that Eve discovers that the no-cloning theorem is wrong and finds a
way to clone the state of each photon. How could she use a cloning machine to
learn about the entire key without leaving any trace?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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As discussed in Chap. 2, information in classical computers is represented by bits.
However, if the bits did not change, then the computer would remain the same
forever and would not be very useful! Therefore, it is necessary to change the values
of bits depending on what you want the computer to do. For example, if you want
a computer to multiply the number 2 and the number 3 together to produce the
number 6, then you need to put each of the numbers 2 and 3 into an 8-bit binary
representation, and then have a computational operation to multiply the two 8-bit
values together to produce 6. The operation of changing bits in a classical computer
is performed by classical logic gates.

6.1 @ Single Qubit Gates

Classical computers manipulate bits using classical logic gates such as OR, AND,
NOT and NAND. This link! provides a basic review of classical logic gates.
Similarly, quantum computers manipulate qubits using quantum gates. The gates
are applied to qubits and the states of the qubits change depending on which
gate is applied. In the Bloch sphere representation, the gate provides instructions
for rotating the qubit’s arrow around the sphere. A quantum algorithm has to be
implemented on a quantum computer using quantum gates. After running a quantum
algorithm, the result is retrieved by measuring the qubit’s state. The hardware
implementation of quantum gates depends on how the qubit and quantum computer
has been implemented technologically.> As an example, one could have a qubit
based on spin. Then gates could be implemented using an external magnetic field to

Uhttps://whatis.techtarget.com/definition/logic- gate- AND-OR- XOR-NOT-NAND-NOR-and-
XNOR.

2E.g., topological qubits and superconducting qubits have very different hardware implementations
due to their very different nature.
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change the spin and hence the qubit state. This chapter will focus on gates from the
computing perspective rather than the engineering perspective. You will learn about
several important gates that act on a single qubit, interpret histograms produced by
a quantum computer simulator, and use matrices to describe the operation of these
gates.

6.2 @ X (Also Called NOT) Gate

In classical computers, the NOT gate takes one input and reverses its value. For
example, it changes the O bit to a 1 bit or changes a 1 bit to a 0 bit. This is like a
light-switch flipping a light from ON to OFF, or from OFF to ON. A quantum X
gate is similar in that a qubit in a definite state |0) will become |1) and vice versa.
When the qubit is in a superposition of all basis states, then the superposition also
flips:

al0) +81) — x| 5l0) +afl) 6.1)

To see how this works, you can try out the IBM Q simulator.® Traditionally,
all qubits on the IBM Q machine (or any other quantum simulator) start with the
incoming qubits in the |0) state. To run this simple gate, drag the X gate onto any
qubit. To find the results, add the measurement operation at the end, as shown in
Fig. 6.1. Figure 6.1 is known as a quantum circuit, the quantum analog to classical
circuits. A circuit describes how a qubit changes through a computation depending
on which gates act on it. The circuit is read from left to right. As an example, in
Fig. 6.1 the single qubit on the left is initialized to |0). An X gate is then applied
to that specific qubit, and the last symbol on the qubit line denotes that the qubit is
measured. The double line underneath is used to illustrate the measurement.

After running the quantum circuit and opening the results, you should see a
histogram showing the measurements of the qubit’s final state for 1,024 independent
trial runs. As the qubit always starts as the |0) state, applying the X gate produces
the |1) state and so the measurement outcome is |1) 100% of the time as shown in
Fig.6.2.

Fig. 6.1 Applying the X

gate on the IBM Q simulator ‘ O> ;K /74

and measuring the output
C u

3https://quantum-computing.ibm.com. It can also be run on IBM’s real quantum computer, but you
may have to wait in a queue for the results.
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Mathematically, the quantum NOT gate is represented as a matrix X which acts
on qubit states using matrix multiplication. The matrix representation is

01
X — (1 0) . 62)

It is worth noting that any computer will have hardware errors. In a classical
computer, this could be an electrical short of the motherboard, or degradation of the
hard drive which corrupts the stored classical bits. A real quantum computer will
also have hardware errors. The quantum state of a qubit can change accidentally
because of these hardware errors. Such errors may arise from the lack of full control
of the interference between electromagnetic fields, variations in temperature, or
energy dissipation. The accidental and incorrect change of a qubit state gives rise
to the wrong answer which is called “noise”.* As quantum computers only measure
the state of a qubit, they cannot easily tell if the measurement is correct or incorrect.
When we humans interpret these results, noise can cause confusion as to which
answer is actually correct. Minimizing noise error is the greatest obstacle to building
quantum computers.’ For example, noise will cause the histogram in Fig. 6.2 to not

Histogram
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Fig. 6.2 Histogram showing that the qubit is measured in the |1) state with a probability of
1. Reprint Courtesy of International Business Machines Corporation. ©International Business
Machines Corporation

4Background noise is an event that causes unwanted or incorrect affects on a signal.

5Noise can also occur in classical computers. Here, it can be because a wire in the computer which
holds the 0- or 1-bit breaks and gives the wrong bit value. However, since classical computation
has no probability associated with it, a single classical computation can be rerun twice and should
give the exact same result. In practice, your computer reruns the same code many times to spot if
there has been any errors and chooses the result which occurs most frequently. In this way you do
not notice the hardware noise as easily.
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have the perfect 100% outcome. Instead, noise will cause the qubit to be in the |0)
state incorrectly some of the time, and the measurement histogram will incorrectly
be x% in the |0) state and (100 — x)% in the |1) state. If the noise is large, then
x = 50% and the measurement will be completely random. It should be understood
that noise is an effect that occurs in both classical and quantum computers but
because quantum computing technology is in its infancy, the noise is not as well
under control.

6.3 @ Hadamard Gate

The Hadamard gate is very important in quantum computing. If the qubit starts in a
definite |0) or |1) state, the Hadamard gate puts each into a superposition of |0) and
|1) states. In Fig. 6.3, we apply a Hadamard gate to the |0) state qubit on the IBM Q
simulator and measure the output.

The result of running the circuit 100 times is a histogram shown in Fig. 6.4.
Note that each run is independent: before each measurement, the qubit has to
be reset to the |0) state and passed through the gate, and then the measurement
happens. We repeat this process 1024 times. Each bin in the histogram shows the
frequency/probability of measuring |0) or |1). You can clearly see that applying the
Hadamard gate to a single qubit creates a superposition state of both |0) and |1). The
probabilities are not exactly 50/50 because of statistical error. The more data you
collect, the closer the result converges to 50/50. This is similar to flipping a coin
and counting the number of heads or tails; the greater the number of flips, the more
likely you are to observe 50/50 probability of seeing heads/tails.

Recall that measurement collapses the superposition. Only one classical state
can be observed, and all of the other quantum information is lost. Measurement
collapse is the reason why a qubit’s state cannot be duplicated, known as the no-
cloning theorem of quantum computing. Once a superposition state is measured, it
fundamentally changes into one of the basis states, and hence cannot be duplicated.
Still, it is not known how or whether measurement collapse happens.®

Fig. 6.3 Applying a

Hadamard gate and ‘ O> H /74 —
b
0

measuring on the IBM Q
machine

Shttps://en.wikipedia.org/wiki/Measurement_problem.
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Fig. 6.4 Measurement histogram after running the Hadamard gate circuit in Fig.6.3 1024
times. Reprint courtesy of International Business Machines Corporation, ©International Business
Machines Corporation

10) 0) 1) 1)

Fig. 6.5 Applying two Hadamard gates to the |0) state or |1) state

Question 1 Create a qubit in the |1) state and pass it through a Hadamard gate.
From the measurement histogram, can you tell whether the qubit started in a |0) or
[1) initial state?

The measurement histogram should look identical whether |0) or [1) was the
initial state. Then how can we tell what the initial state was after a Hadamard
operation? In the beam splitter, we determined where the photon came from by
adding a second beam splitter to create interference. The way to measure and
distinguish between them is to add a second Hadamard gate.

Question 2 Build a circuit that applies two Hadamard gates to a qubit in the |0)
initial state as shown in Fig. 6.5. What is the output? Repeat this experiment for the
|1) initial state.

6.4 ‘ Mathematics of the Hadamard Gate

The Hadamard gate has the following matrix representation:

H:L(l 1) (6.3)
Sl .
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Using matrix multiplication we can show that application of the Hadamard gate
to an |0) initial state puts the qubit into the (1/ V2)(|0) + |1)) state, also called the
|+) state:

0) —[H ] =5 (10)+]1)). o

If the initial state is |1), the Hadamard gate will create the superposition
(1/+/2)(10) — 1)) state, called the |—):

1) —{H}| 5 (10) = [1)). 65)

In the Stern—Gerlach experiment, you learned that the |0) and |1) states make
up the z-basis and are associated with spin up and spin down. The |+) and |—)
states comprise the x-basis and are associated with spin right and spin left. While
the Stern—Gerlach could be rotated to measure at any angle, a quantum computer is
physically built to only measure in the z-basis. Therefore, the spin right 1/+/2(]0) +
[1)) and spin left 1/\/§(|0) — |1)) look the same when measured by a quantum
computer. However, the two states have hidden information that can be recovered
by using a second Hadamard gate to change back into the z-basis.

6.4.1 Examples
1. A spin right 1 /«/§(|0) + |1)) is sent through a Hadamard gate, creating a

superposition of |+) and |—) given by l/«/§(|+) + |—)). By performing a basis
change, show that this is equivalent to producing a |0) state.

(1) = = (510 + —=10) + 5 (=10 - 1),
V2 V2\2 V2 V2\V2 V2
(6.6)
=-10 1 10 ! 1 6.7
= 310) + 311) + 310) = 311, ©.7)
=10) (6.8)

2. Use matrix multiplication to show how applying the Hadamard gate twice to a
|0) state qubit recovers its original state.

e S50 e
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1
HH|0) = 5 G _11> G) - <(1)> . (6.10)

In fact, all quantum gates are reversible as a consequence of the unitary matrix
condition. Recall that the gates must be unitary so that the probabilities always
add up to 1. Multiplying any unitary matrix by its conjugate transpose will return
the identity matrix, i.e., reverses the gate to get the original state by UUT =
UTU = 1. The Hadamard matrix is self-unitary, i.e., it is its own conjugate
transpose, U = Ut.

6.5 MZGate

The Z-gate matrix representation is

10
Z:(O_l), (6.11)

The Z gate leaves a |0) state unchanged but flips the sign of the |1) state to —|1)
by

a|0) + B[1) al0) — B|1). (6.12)

This is equivalent to changing the qubit from a |4) state to a |—) state. The effects
of the X, H, and Z gates are summarized in Fig. 6.6.

Fig. 6.6 The X, H, and Z
gates change the qubit’s state ’ 0> X ’ 1>
in the z- and x-basis and are
related according to this
diagram
H H
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6.6 Bigldeas

1. Every interaction with a classical computer is caused by code instructing classical
logic gates to operate on classical bits. Similarly, a calculation on a quantum
computer is caused by coding quantum logic gates to act on qubits.

2. Common single-qubit gates include the X, Z, and H (Hadamard) gates.

3. Each quantum gate can be mathematically represented as a unitary matrix which
acts on qubits.

6.7 Activities

@ Exploring gates on the IBM Quantum Computer 10.4.

6.8 Check Your Understanding

1. M Use matrix multiplication to show how applying an X gate flips:
(a) A qubitin the |0) state.
(b) A qubit in the general |) = «|0) 4+ B|1) state.

2. @ Explain the relationship between a beam splitter and a Hadamard gate.

3. @ A |0) qubit is passed through a Hadamard gate. We measure the qubit state
as |1). Which of the following choices best describes the result if we perform a
measurement on the qubit a second time without reinitializing?

(A) 10)
B) 1)
(C) 50% chance of |0) or |1)

4. @ Assume a qubit represents a light bulb that can be measured as either ON or
OFF.

(a) The light bulb is originally ON. What gate would y