Clojure In Small Pieces

Juozas Baliuka
Tom Faulhaber
Christophe Grand
Shawn Hoover
Eugene Kuleshov
Chris Nokleberg
Jason Sankey
Vishal Vishnoi
Kai Wu

Rich Hickey

Eric Bruneton Chas Emerick
Stephen C. Gilardi Daniel Solano Gmez
Stuart Halloway Mike Hinchey

Chris Houser Rajendra Inamdar
Robert Lachlan J. McConnell

Allen Rohner Michel Salim

Stuart Sierra Frantisek Sodomka

Jean Niklas Lérange Kyle Kingsbury

Timothy Daly (Editor)

Based on Version 1.3.0-alpha4

November 14, 2013

Contents

ii CONTENTS

39
39
40
42
45
46
49
50
52
53
95
55
55
99
99
99
60
61
62
62
64
65
65
65
65
65
65
66
66
66
66
66
66
67
67
69
71
72
74
74
75
76
79
80
80
80

CONTENTS il

2.23.11The Map reader macro. 81
2.23.12The Character reader macro 81
2.23.13The Arg reader macro 82
2.24 Reader Dispatch Macros« o oo v v v 83
2.24.1 The Var reader macro 84
2.24.2 The Regular Expression reader macro 85
2.24.3 The Function reader macro 86
2.24.4 The Set reader macro 87
2.24.5 The Eval reader macro. 87
2.24.6 The Unreadable reader macro 89
2.24.7 The Discard reader macro 89
225 VATS « o o oo e e e e e 89
226 Transients v o oo e 89
227 ALOMS . .« . e 94
228 Refs 94
229 Agentso 94
2.30 Promise and Deliver 94
231 FUtures oo e e e 96
2.32 MultiMethodso 99
2.33 Deftype 99
234 Defrecord 99
235 Protocols 101
2.36 Prototypes 102
237 Genclass e e e 102
2.37.1 Overriding protected methods 102
238 PIOXies. . v v v v v 103
239 MACIOS .« v v v o o e e e e e 103
240 Tterators oo e 103
2.41 Generating Java Classes 105
242 Type Hints 105
2.43 Native Arithmetic 105
3 Writine Idi ic Cloi 107
4 The Ants Demo (Kai Wu) 109
4.1 The Simulation World 109
4.1.1 Initial setup of constants/magic-numbers 109
4.1.2 The board: ready to mutate via transactions 110
4.1.3 Ants as agents - doing asynchronous uncoordinated changes 112
4.1.4 Setting up the home, and ants 113
4.1.5 Orientation and moving around the world 115
4.1.6 Ant-agent behavior functions 116
4.1.7 World behavior: pheromone evaporation 124
42 The Ul. e 125
4.2, Using the Java AWT 125

iv CONTENTS

128
130

133
133
133
137
139
141
141
141

143
143
149

163
163
165
171
176
183
185
229
233
262
263
264
269
300
301
305
314
317
326
387
394

413
426
445
449
453
484

CONTENTS

87 Methodjava
8.8 SerialVersionUIDAdderjava

491
496
506
508

509
509
519
520
527
530
538
941
552
553
556
556
558
o971
576
LY
579
581
582
585
585
586
586
588
590
766
768
768
769
770
772
772
773
773
774
774
796
797
797
798
798

vi

CONTENTS

941 TMetajava v v v v e e e e 799
942 Indexedjavao 799
943 TndexedSeqjava 799
9.44 T0Dbjjava 800
9.45 TPersistentCollectionjava 800
9.46 TPersistentlistjavao 801
9.47 TPersistentMap.java 801
9.48 TPersistentSet.java 802
9.49 TPersistentStackjava 802
9.50 IPersistentVectorjava 802
9,51 IPromiselmpljavao 803
9.52 TPTOXV.JAVA « « v v v v v e e e e e e e 803
9.53 TReducejava e e 804
9.54 TReferencejavao 804
9.55 TRefjava 805
9.56 ISeqjava 805
9.57 TteratorSeqjava v . v v v e e e e 806
9.58 ITransientAssociativejava oo ... 807
9.59 ITransientCollectionjavao 808
9.60 ITransientMap.java oot vt 808
9.61 ITransientSetjava o o v v v i e 809
9.62 ITransientVectorjava« . v v v v v v v 809
9.63 Keyword.java e e 810
9.64 KeywordLookupSitejava oo 816
9.65 LazilyPersistentVector.java 817
9.66 LazySeqjava 818
9.67 LineNumberingPushbackReader.java 823
9.68 LispReaderjava 825
9.69 LockingTransactionjava 836
9.70 MapEntryjava 850
9.71 MapEquivalencejavao i 850
9.72 MethodImplCachejava 851
9.73 MultiFnjava 852
9.74 Named.Java v v v v v e 861
9.75 NamesSpaceJava . . « « « v v oo v e e e e e 861
9.76 Numbersjavao 867
9.77 ObJjava v v v v i 947
9.78 PersistentArrayMapjavao oo 948
9.79 PersistentHashMap.java 955
9.80 PersistentHashSetjava 980
9.81 Persistentlistjava 982
9.82 PersistentQuenejava oo 989
9.83 PersistentStructMap.javao 995
9.84 PersistentTreeMap.javao oo 1000
9.85 PersistentTreeSet.java 1012

CONTENTS vii

9.87 ProxyHandlerjava 1030
9.88 Rangejava o oo i e 1031
9.89 Ratiojava 1033
990 Refjava 1034
9.91 Reflectorjava 1044
992 Repljava o 1054
993 RestFnjava o 1055
9.94 Reversiblejava e 1094
9.95 RTjava . . .« v v v v i i et e e e 1094
9.96 Scriptjava 1138
9.97 SeqEnumerationjavao 1138
9.98 Seqlterator.java v v v e e e e 1139
9.99 Seqablejavao e e 1140
9.100Sequentialjava oo 1140
9.1018ettablejava Lo 1140
9.1028ortedjava 1141
9.103StringSeqjavao 1141
9.104Symboljava 1143
9.105TransactionalHashMapjava 1145
9.106UtILJavao e e 1149
9107Varjava v v vt e e e 1152
9.108XMLHandlerjava 1164
10 jvm/clojure 1167
101 mainjavao e 1167
11 clj/clojure/ 1169
11.1 coreclj o o o 1169
11.2 protocols.clj 1296
11.3 coredeftype.clj 1298
114 core’print.clj. 1315
115 core’proxy.clj 1323
116 datacljo 1332
11.7 genclass.clj 1334
118 gvecclj. - o v o o o 1351
11.9 inspector.clj 1361
1L10browsecli 1365
1lddbrowsewielj -« . o .o 1366
11120l - . . o 1367
1113javadoc.clj oL 1376
11 d4shellelj . . . oo 1378
1l d5maineelj . . . o .o 1381
1ld6parallelelj 1389
1l d%7clformatelj o Lo 1394
1118column'writer.clj 1436

viii CONTENTS

11.20pprint'base.clj 1448
11 21pretty'writer.cljo 1456
11.22print'tableclj 1467
11.23utilities.clj 1467
1L24PDHNECl] « « v e e 1470
TL241JAVAC « 1471
11.25reflectclj. o oo 1476
TL268CPLAL] « « v v o e e e e e 1479
TL2TSEEcli « o v o e 1485
11.28stacktrace.cljo 1489
TL20SE0E.Cl « « « o e 1490
11.30template.clj 1496
1131junitelj .+ 1497
TL326aD.Cl -« o o e e 1501
11.33testcly o o 1503
11.34version.properties 1519
IL3WALKCl . o v v e e e 1519
TL36XILEL .« o o v e e e 1522
TL3TZIDC o o o o 1524
11.38pom-templatexml - . .« . oo e 1531
12 test/clojure 1533
12.1 test/test'clojure.clj 1533
12.2 test/test'helper.clj oL 1535
12.3 test/agents.clj 1537
12.4 test/annotations.clj 1541
12,5 test/atoms.clj 1541
12.6 test/clojure'set.clj 1542
12.7 test/clojurexml.cljo 1546
12.8 test/clojurezip.clj o oL 1547
12.9 test/compilation.clj 1548
12.10test/controlelio 1550
1200est/datacclj 1556
12.12test/data’structures.cljo 1557
1243test/deficlj 1574
12 14test/errors.cljo oo 1575
12.15test fevaluation.cljo 1576
12066et/H0r.Cli .« o o o 1580
12 17test/genclass.cljo 1583
12.18test/java'interop.clj 1585
12.19test /keywords.clj Lo 1594
12.20test/logiceelj . . . o o o 1594
12.21test/macros.clj 1599
1222608t/ MAINCY .+« o o o 1599
12.23test /metadata.clj 1600

12.24test/multimethods.clj 1602

CONTENTS ix

12.25test /NS TSl « « o o o e 1605
12.26test/numbers.clj 1607
12.27test/other functions.clj 1618
12.28test/parallel.clj 1620
12.20test /POEINGCl) - - . oo e 1621
12.30test/predicates.clj 1621
12.31test/DUHItEr.cly . . o oo e 1624
12.32test/DIOtOCOIS.CL .« .« .« o o e 1626
12.33test /reader.cljo 1633
12.34test /reflect.clj Lo 1640
12.3btest/refs.clj 1640
12.36test/1eplcl] « o o e e e e 1641
12370eSE/TECl - o o o e e e 1642
12.38test/sequences.clj 1644
12.39%test/serialization.clj 1668
12.40test/special.clj 1671
12414eSE/SEINE.Cl] « o o v e e 1672
12.42test/testuclj 1674
12.43test/test fixtures.cljo 1677
12.44test/transients.clj 1678
12.45test/vars.cljo Lo 1678
12.46test/vectors.clj 1680
12.4Ttest [java'belj 1686
12.48test/java'6'andlater.clj 1688
12.49test/examples.cli 1690
12.50test/iocly .« oo 1691
12 51test/javadoc.cljo 1696
12.52test/shelliclj 1696
12.53test/test’cl formateclj Lo 1697
12.54test] /test'helper.cljo 1714
12.55test /test'pretty.clj oL Lo 1715
12.56test] /examples.clio 1721
12.57test/more’examples.clj 1722
12.58test/example.clj 1722
A _External Java References 1723
B Copyright and Licenses 1725
C _Building Clojure from this document 1733
C.1 Thebasicidea v v v i 1733
C.2 The tangle functionin C 1733
C3 Makefile 1737
C.4 The tangle function in Clojure 1744
C4.1 Authorand License 1744

C.4.2 Abstractand UseCases v v .. 1744

CONTENTS

1746
1747
1748
1748
1748
1749
1750
1751
1751

1753

1755

CONTENTS xi

Foreword

Rich Hickey invented Clojure. This is a fork of the project to experiment with
literate programming as a development and documentation technology.

Every effort is made to give credit for any and all contributions.

Clojure is a break with the past traditions of Lisp. This literate fork is a
break with the past traditions of code development. As such it is intended as
an experiment, not a replacement or competition with the official version of
Clojure.

Most programmers are still locked into the idea of making a program out of a
large pile of tiny files containing pieces of programs. They do not realize that
this organization was forced by the fact that machines like the PDP 11 only
had 8k of memory and a limit of 4k buffers in the editor. Thus there was a lot
of machinery built up, such as overlay linkers, to try to reconstruct the whole
program.

The time has come to move into a more rational means of creating and main-
taining programs. Knuth suggested we write programs like we write literature,
with the idea that we are trying to communicate the ideas to other people. The
fact that the machine can also run the programs is a useful side-effect but not
important.

Very few people have seen a literate program so this is intended as a complete
working example, published in book form. The intent is that you can sit and
read this book like any other novel. At the end of it you will be familiar with
the ideas and how those ideas are actually expressed in the code.

If programmers can read it and understand it then they can maintain and modify
it. The ideas will have been communicated. The code will be changed to match
changes in the idea. We will all benefit.

I've tried to make it as simple as possible. Try it once, you might like it.

Tim Daly
December 28, 2010 ((iHy))

CONTENTS i

Preface: Why Literate Programming

This is a literate program, inspired by Donald Knuth [Knu84]. It is intended
to be read like a novel from cover to cover. The ideas are expressed clearly but
they are grounded in the actual source code.

The code in this documment is the executable source. The appendix gives the
procedure for building a running system from the enclosed sources.

Steps to build Clojure
Step 1

Basically you need the C program [1733] tangle.c which you can clip using a
text editor and save it as tangle.c.

Step 2

Compile tangle.c to create a function called tangle.

gcc -o tangle tangle.c

Step 3 Run tangle to extract the [1737] Makefile from this document.
tangle clojure.pamphlet Makefile >Makefile

Step 4

make

This will

create a new subdirectory called “tpd” containing all of the source code
test Clojure

create a running copy of Clojure

create the pdf

start a Clojure REPL

Steps to change Clojure

If you make changes to this document and want the new changes just type:
rm -rf tpd

tangle clojure.pamphlet Makefile >Makefile

make

or you can combine them into one line:

rm -rf tpd && tangle clojure.pamphlet Makefile >Makefile && make

ii CONTENTS

This will destroy the old source, extract the Makefile, and rebuild the system.
On a fast processor this takes about a minute.

Resist the urge to edit the files in the tpd directory. They are only there for the
compiler. Edit this file directly.

You can change where Clojure is built. In the [1737] Makefile there is a line
which defines the root of the directory build. You can change this or override
it on the command line to build Clojure elsewhere.

WHERE=tpd
To build a second copy of Clojure, or to work in some other directory, just type

make WHERE=newplace

Why Bother?

Why bother with such a difficult method of programming? Because worthwhile
programs should “live”.

Programs “live” because people maintain them. Maintaining and modifying
code correctly requires that you understand why the program is written as it
is, what the key ideas that make the program work, and why certain, not very
obvious, pieces of code exist. Programmers almost never write this information
down anywhere. Great ideas are invented, the code is written, a man page of
documentation is created, and the job is done.

Well, almost. What does is mean for a program to “live”? How does a program
survive once the original developers leave the project? There are many sources
of information but almost no source of knowledge. New programmers don’t
know what the “elders” know. In order to “live” and continue to grow there
has to be a way to transmit this knowledge.

Literate programming is Knuth’s proposed idea for moving from the world of
ideas to the world of information. This is not simply another documentation
format. This is meant to be Literature. The ideas are presented, the impli-
cations are explored, the tradeoffs are discussed, and the code is “motivated”,
like characters in a novel.

You are encouraged to write or rewrite sections of this document to improve the
communication with the readers.

“But I have to learn latex!”. Well, for this document you do. But KTEXis
just more than a document markup language like HTML and it is no harder
to learn. It gives you the added advantage that you have a real language for
publishing real documents. Most books are typeset with this technology and
a lot of conferences and Journals require it. If you can learn Clojure, you can
learn IATEX. If you're a programmer you will always need to continue to learn,
at least until you retire into management.

CONTENTS il

Having used literate programming for years I have collected some key quotes
that might stimulate your interest.

I believe that the time is ripe for significantly better documentation of pro-
grams, and that we can best achieve this by considering programs to be works
of literature. Hence, my title “Literate Programming”. Let us change our
traditional attitude to the construction of programs. Instead of imagining
that our main task is to instruct a computer what to do, let us concentrate
on explaining to human beings what we want a computer to do.

—Donald Knuth “Literate Programming (1984)”

Step away from the machine. Literate programming has nothing to do with
tools or style. It has very little to do with programming. One of the hard
transitions to literate programming is “literate thinking”.

—Timothy Daly in Lambda the Ultimate (2010)

The effect of this simple shift of emphasis can be so profound as to change
one’s whole approach to programming. Under the literate programming
paradigm, the central activity of programming becomes that of conveying
meaning to other intelligent beings rather than merely convincing the com-
puter to behave in a particular way. It is the difference between performing
and exposing a magic trick.

—Ross Williams, FunnelWeb Tutorial Manual

Another thing I've been enjoying lately is literate programming. Amazingly
it turns out to be faster to write a literate program than an ordinary program
because debugging takes almost no time.

—Bill Hart, SAGE Mailing list, May 3, 2010

The conversation is much more direct if the Design Concept per se, rather
than derivative representatives or partial details, is the focus.
—Fred Brooks, “The Design of Design”

We are banning the old notion of literate programming that I used when
developing TEX82 because documentation has proven to be too much of a
pain.

—Donald Knuth TUG 2010

iv

CONTENTS

Once upon a time I took great care to ensure that TEX82 would be truly
archival so that results obtainable today would produce the same output 50
years from now but that was manifestly foolish. Let’s face it, who is going
to care one whit for what I do today after even 5 years have elapsed, let
alone 50. Life is too short to re-read anything anymore in the internet age.
Nothing over 30 months old is trustworthy or interesting.

—Donald Knuth TUG 2010

Chapter 1

From The Ground Up
(Kyle Kingsbury)

This is quoted from Kingbury. [Kingl3]

1.1 Clojure from the ground up

1.1.1 Getting set up

When you have a JDK, youll need Leiningen, the Clojure build tool. If youre on
a Linux or OS X computer, these instructions should get you going right away.
If youre on Windows, see the Leiningen page for an installer. If you get stuck,
you might want to start with a primer on command line basics.

mkdir -p “/bin

cd ~/bin

wget https://raw.github.com/technomancy/leiningen/stable/bin/lein
chmod at+x lein

Leiningen automatically handles installing Clojure, finding libraries from the
internet, and building and running your programs. Well create a new Leiningen
project to play around in:

cd
lein new scratch

This creates a new directory in your homedir, called scratch. If you see command
not found instead, it means the directory /bin isnt registered with your terminal
as a place to search for programs. To fix this, add the line

1

2 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

export PATH="$PATH":"/bin

to the file .bash'profile in your home directory, then run
source ~/.bash_profile.

Re-running

lein new scratch

should work.

Lets enter that directory, and start using Clojure itself:

cd scratch
lein repl

1.1.2 The structure of programs

boa$ lein repl

which responds with

nREPL server started on port 45413

REPL-y 0.2.0
Clojure 1.5.1
Docs: (doc function-name-here)

(find-doc "part-of-name-here")
Source: (source function-name-here)
Javadoc: (javadoc java-object-or-class-here)
Exit: Control+D or (exit) or (quit)
user=>

This is an interactive Clojure environment called a REPL, for Read, Execute,
Print Loop. Its going to read a program we enter, run that program, and print
the results. REPLs give you quick feedback, so theyre a great way to explore a
program interactively, run tests, and prototype new ideas.

Lets write a simple program. The simplest, in fact. Type nil, and hit enter.

user=> nil
nil

nil is the most basic value in Clojure. It represents emptiness, nothing-doing,
not-a-thing. The absence of information.

user=> true
true

user=> false
false

1.1. CLOJURE FROM THE GROUND UP 3

true and false are a pair of special values called Booleans. They mean exactly
what you think: whether a statement is true or false. true, false, and nil form
the three poles of the Lisp logical system.

user=> 0
0

This is the number zero. Its numeric friends are 1, -47, 1.2e-4, 1/3, and so
on. We might also talk about strings, which are chunks of text surrounded by
double quotes:

user=> "hi there!"
"hi there!"

nil, true, 0, and "hi there!” are all different types of values; the nouns of pro-
gramming. Just as one could say House. in English, we can write a program
like "hello, world” and it evaluates to itself: the string "hello world”. But most
sentences arent just about stating the existence of a thing; they involve action.
We need verbs.

user=> inc
#<core$inc clojure.core$inc@6f7efdic>

This is a verb called incshort for increment. Specifically, inc is a symbol which
points to a verb: #<core$inc clojure.core$inc@6f7ef4ic> just like the word run
is a name for the concept of running.

Theres a key distinction herethat a signifier, a reference, a label, is not the same
as the signified, the referent, the concept itself. If you write the word run on
paper, the ink means nothing by itself. Its just a symbol. But in the mind of a
reader, that symbol takes on meaning; the idea of running.

Unlike the number 0, or the string hi, symbols are references to other values.
when Clojure evaluates a symbol, it looks up that symbols meaning. Look up
inc, and you get #<core$inc clojure.core$inc@6f7efdic>.

Can we refer to the symbol itself, without looking up its meaning?

user=> ’inc
inc

Yes. The single quote ’ escapes an expression. It says Rather than evaluating
this text, simply return the text itself, unchanged. Quote a symbol, get a
symbol. Quote a number, get a number. Quote anything, and get it back
exactly as it came in.

user=> ’123

4 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

123

user=> ’"foo"
"foo"

user=> ’(1 2 3)
(12 3)

A new kind of value, surrounded by parentheses: the list. LISP originally stood
for LISt Processing, and lists are still at the core of the language. This list
contains three elements: the numbers 1, 2, and 3. Lists can contain anything:
numbers, strings, even other lists:

user=> ’(nil "hi")
(nil "hi")

A list containing two elements: the number 1, and a second list. That list
contains two elements: the number 2, and another list. That list contains two
elements: 3, and an empty list.

user=> (1 (2 (3 M)
1 2 3N

You could think of this structure as a treewhich is a provocative idea, because
languages are like trees too: sentences are comprised of clauses, which can be
nested, and each clause may have subjects modified by adjectives, and verbs
modified by adverbs, and so on. ”Lindsay, my best friend, took the dog which
we found together at the pound on fourth street, for a walk with her mother
Michelle.

Took
Lindsay
my best friend
the dog
which we found together
at the pound
on fourth street
for a walk
with her mother
Michelle

But lets try something simpler. Something we know how to talk about. Incre-
ment the number zero. As a tree:

Increment
the number zero

We have a symbol for incrementing, and we know how to write the number zero.
Lets combine them in a list:

1.1. CLOJURE FROM THE GROUND UP 5

clj=> ’(inc 0)
(inc 0)

A basic sentence. Remember, since its quoted, were talking about the tree,
the text, the expression, by itself. Absent interpretation. If we remove the

single-quote, Clojure will interpret the expression:

user=> (inc 0)
1

Incrementing zero yields one. And if we wanted to increment that value? In-
crement increment the number zero

user=> (inc (inc 0))
2

A sentence in Lisp is a list. It starts with a verb, and is followed by zero or
more objects for that verb to act on. Each part of the list can itself be another
list, in which case that nested list is evaluated first, just like a nested clause in
a sentence. When we type

(inc (inc 0))

Clojure first looks up the meanings for the symbols in the code:

(#<core$inc clojure.core$inc@6f7ef4dic>
(#<core$inc clojure.core$inc@6f7ef4ic>

0))
Then evaluates the innermost list (inc 0), which becomes the number 1:

(#<core$inc clojure.core$inc@6f7ef4dic>
1

Finally, it evaluates the outer list, incrementing the number 1:

Every list starts with a verb. Parts of a list are evaluated from left to right.
Innermost lists are evaluated before outer lists.

+1 (52 (+34)
(+13 (+ 3 4))
(+13 7)

11

6 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

Thats it.

The entire grammar of Lisp: the structure for every expression in the language.
We transform expressions by substituting meanings for symbols, and obtain
some result. This is the core of the Lambda Calculus, and it is the theoretical
basis for almost all computer languages. Ruby, Javascript, C, Haskell; all lan-
guages express the text of their programs in different ways, but internally all
construct a tree of expressions. Lisp simply makes it explicit.

1.1.3 Review

We started by learning a few basic nouns: numbers like 5, strings like ”cat”, and
symbols like inc and +. We saw how quoting makes the difference between an
expression itself and the thing it evaluates to. We discovered symbols as names
for other values, just like how words represent concepts in any other language.
Finally, we combined lists to make trees, and used those trees to represent a
program.

With these basic elements of syntax in place, its time to expand our vocabu-
lary with new verbs and nouns; learning to represent more complex values and
transform them in different ways.

1.2 Clojure from the ground up: basic types

Weve learned the basics of Clojures syntax and evaluation model. Now well
take a tour of the basic nouns in the language.

1.2.1 Types

Weve seen a few different values alreadyfor instance, nil, true, false, 1, 2.34, and
"meow”. Clearly all these things are different values, but some of them seem
more alike than others.

For instance, 1 and 2 are very similar numbers; both can be added, divided,
multiplied, and subtracted. 2.34 is also a number, and acts very much like 1
and 2, but its not quite the same. Its got decimal points. Its not an integer.
And clearly true is not very much like a number. What is true plus one? Or
false divided by 5.37 These questions are poorly defined.

We say that a type is a group of values which work in the same way. Its a
property that some values share, which allows us to organize the world into sets
of similar things. 1 + 1 and 1 4+ 2 use the same addition, which adds together
integers. Types also help us verify that a program makes sense: that you can
only add together numbers, instead of adding numbers to porcupines.

Types can overlap and intersect each other. Cats are animals, and cats are fuzzy

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 7

too. You could say that a cat is a member (or sometimes instance), of the fuzzy
and animal types. But there are fuzzy things like moss which arent animals,
and animals like alligators that arent fuzzy in the slightest.

Other types completely subsume one another. All tabbies are housecats, and
all housecats are felidae, and all felidae are animals. Everything which is true of
an animal is automatically true of a housecat. Hierarchical types make it easier
to write programs which dont need to know all the specifics of every value; and
conversely, to create new types in terms of others. But they can also get in the
way of the programmer, because not every useful classification (like fuzziness) is
purely hierarchical. Expressing overlapping types in a hierarchy can be tricky.

Every language has a type system; a particular way of organizing nouns into
types, figuring out which verbs make sense on which types, and relating types
to one another. Some languages are strict, and others more relaxed. Some
emphasize hierarchy, and others a more ad-hoc view of the world. We call
Clojures type system strong in that operations on improper types are simply
not allowed: the program will explode if asked to subtract a dandelion. We
also say that Clojures types are dynamic because they are enforced when the
program is run, instead of when the program is first read by the computer.

Well learn more about the formal relationships between types later, but for now,
keep this in the back of your head. Itll start to hook in to other concepts later.

1.2.2 Integers

Lets find the type of the number 3:

user=> (type 3)
java.lang.Long

So 3 is a java.lang.Long, or a Long, for short. Because Clojure is built on top
of Java, many of its types are plain old Java types.

Longs, internally, are represented as a group of sixty-four binary digits (ones
and zeroes), written down in a particular pattern called signed twos complement
representation. You dont need to worry about the specificsthere are only two
things to remember about longs. First, longs use one bit to store the sign:
whether the number is positive or negative. Second, the other 63 bits store the
size of the number. That means the biggest number you can represent with a
long is 263 - 1 (the minus one is because of the number 0), and the smallest
long is -263.

How big is 263 - 17

user=> Long/MAX_VALUE
9223372036854775807

8 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

Thats a reasonably big number. Most of the time, you wont need anything
bigger, but what if you did? What happens if you add one to the biggest Long?

user=> (inc Long/MAX_VALUE)
ArithmeticException integer overflow clojure.lang.Numbers.throwIntOverflow
(Numbers. java:1388)

An error occurs! This is Clojure telling us that something went wrong. The
type of error was an ArithmeticException, and its message was integer overflow,
meaning this type of number cant hold a number that big. The error came from
a specific place in the source code of the program: Numbers.java, on line 1388.
Thats a part of the Clojure source code. Later, well learn more about how to
unravel error messages and find out what went wrong.

The important thing is that Clojures type system protected us from doing some-
thing dangerous; instead of returning a corrupt value, it aborted evaluation and
returned an error.

If you do need to talk about really big numbers, you can use a Biglnt: an
arbitrary-precision integer. Lets convert the biggest Long into a Biglnt, then
increment it:

user=> (inc (bigint Long/MAX_VALUE)) 9223372036854775808N
Notice the N at the end? Thats how Clojure writes arbitrary-precision integers.

user=> (type 5N)
clojure.lang.Biglnt

There are also smaller numbers.

user=> (type (int 0))
java.lang.Integer
user=> (type (short 0))
java.lang.Short

user=> (type (byte 0))
java.lang.Byte

Integers are half the size of Longs; they store values in 32 bits. Shorts are 16
bits, and Bytes are 8. That means their biggest values are 23'=1, 215=1 and
271 respectively.

user=> Integer/MAX_VALUE
2147483647

user=> Short/MAX_VALUE
32767

user=> Byte/MAX_VALUE
127

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 9

1.2.3 Fractional numbers

To represent numbers between integers, we often use floating-point numbers,
which can represent small numbers with fine precision, and large numbers with
coarse precision. Floats use 32 bits, and Doubles use 64. Doubles are the default
in Clojure.

user=> (type 1.23)
java.lang.Double

user=> (type (float 1.23))
java.lang.Float

Floating point math is complicated, and we wont get bogged down in the details
just yet. The important thing to know is floats and doubles are approximations.
There are limits to their correctness:

user=> 0.99999999999999999
1.0

To represent fractions exactly, we can use the ratio type:

user=> (type 1/3)
clojure.lang.Ratio

1.2.4 Mathematical operations

The exact behavior of mathematical operations in Clojure depends on their
types. In general, though, Clojure aims to preserve information. Adding two
longs returns a long; adding a double and a long returns a double.

user=> (+ 1 2)

3

user=> (+ 1 2.0)
3.0

3 and 3.0 are not the same number; one is a long, and the other a double. But
for most purposes, theyre equivalent, and Clojure will tell you so:

user=> (= 3 3.0)
false
user=> (== 3 3.0)
true

= asks whether all the things that follow are equal. Since floats are approxi-
mations, = considers them different from integers. == also compares things,

10 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

but a little more loosely: it considers integers equivalent to their floating-point
representations.

We can also subtract with -, multiply with * and divide with /.

user=> (- 3 1)

2

user=> (* 1.5 3)
4.5

user=> (/ 1 2)
1/2

Putting the verb first in each list allows us to add or multiply more than one
number in the same step:

user=> (+ 1 2 3)

6

user=> (* 2 3 1/5)
6/5

Subtraction with more than 2 numbers subtracts all later numbers from the
first. Division divides the first number by all the rest.

user=> (- 511 1)
2

user=> (/ 24 2 3)
4

By extension, we can define useful interpretations for numeric operations with
just a single number:

user=> (+ 2)

2

user=> (- 2)
-2

user=> (x 4)
4

user=> (/ 4)
1/4

We can also add or multiply a list of no numbers at all, obtaining the addi-
tive and multiplicative identities, respectively. This might seem odd, especially
coming from other languages, but well see later that these generalizations make
it easier to reason about higher-level numeric operations.

user=> (+)
0
user=> (x*)
1

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 11

Often, we want to ask which number is bigger, or if one number falls between
two others. <= means less than or equal to, and asserts that all following values
are in order from smallest to biggest.

user=> (<=1 2 3)
true
user=> (<=1 3 2)
false

< means strictly less than, and works just like <=, except that no two values
may be equal.

user=> (k=11 2)
true
user=> (< 1 1 2)
false

Their friends > and >= mean greater than and greater than or equal to, re-
spectively, and assert that numbers are in descending order.

user=> (> 3 2 1)
true

user=> (> 1 2 3)
false

Also commonly used are inc and dec, which add and subtract one to a number,
respectively:

user=> (inc 5)
6
user=> (dec 5)
4

One final note: equality tests can take more than 2 numbers as well.
user=> (= 2 2 2)
true

user=> (= 2 2 3)
false

1.2.5 Strings

We saw that strings are text, surrounded by double quotes, like "foo”. Strings
in Clojure are, like Longs, Doubles, and company, backed by a Java type:

user=> (type "cat")
java.lang.String

12 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

We can make almost anything into a string with str. Strings, symbols, numbers,
booleans; every value in Clojure has a string representation. Note that nils string

99,

representation is ””; an empty string.

user=> (str "cat")

llcatll

user=> (str ’cat)
llcatll

user=> (str 1)

||1||

user=> (str true)
lltruell

user=> (str ’(1 2 3))
n (1 2 3) n

user=> (str nil)
nn

str can also combine things together into a single string, which we call concate-
nation.

user=> (str "meow " 3 " times")
"meow 3 times"

To look for patterns in text, we can use a regular expression, which is a tiny
language for describing particular arrangements of text. re-find and re-matches
look for occurrences of a regular expression in a string. To find a cat:

user=> (re-find #"cat" "mystic cat mouse")

n cat n

user=> (re-find #"cat" "only dogs here")

nil

That #"..." is Clojures way of writing a regular expression.

With re-matches, you can extract particular parts of a string which match an
expression. Here we find two strings, separated by a :. The parentheses mean
that the regular expression should capture that part of the match. We get
back a list containing the part of the string that matched the first parentheses,
followed by the part that matched the second parentheses.

user=> (rest (re-matches #"(.+):(.+)" "mouse:treat"))
"mouse" "treat")

Regular expressions are a powerful tool for searching and matching text, es-
pecially when working with data files. Since regexes work the same in most
languages, you can use any guide online to learn more. Its not something you
have to master right away; just learn specific tricks as you find you need them.

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 13

1.2.6 Booleans and logic

Everything in Clojure has a sort of charge, a truth value, sometimes called
truthiness. true is positive and false is negative. nil is negative, too.

user=> (boolean true)
true

user=> (boolean false)
false

user=> (boolean nil)
false

Every other value in Clojure is positive.

user=> (boolean 0)

true

user=> (boolean 1)

true

user=> (boolean "hi there")
true

user=> (boolean str)

true

If youre coming from a C-inspired language, where 0 is considered false, this
might be a bit surprising. Likewise, in much of POSIX, 0 is considered success
and nonzero values are failures. Lisp allows no such confusion: the only negative
values are false and nil.

We can reason about truth values using and, or, and not. and returns the
first negative value, or the last value if all are truthy.

user=> (and true false true)

false

user=> (and true true true)
true

user=> (and 1 2 3)

3

Similarly, or returns the first positive value.

user=> (or false 2 3)
2

user=> (or false nil)
nil

And not inverts the logical sense of a value:

14 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

user=> (not 2)
false

user=> (not nil)
true

Well learn more about Boolean logic when we start talking about control flow;
the way we alter evaluation of a program and express ideas like if Im a cat, then
meow incessantly.

1.2.7 Symbols

We saw symbols in the previous chapter; theyre bare strings of characters, like
foo or +.

user=> (class ’str)
clojure.lang.Symbol

Every symbol actually has two names: one, a short name, is used to refer
to things locally. Another is the fully qualified name, which is used to refer
unambiguously to a symbol from anywhere. If I were a symbol, my name would
be Kyle, and my full name Kyle Kingsbury.

Symbol names are separated with a /. For instance, the symbol str actually
comes from a family called clojure.core, which means that its full name is clo-
jure.core/str

user=> (= str clojure.core/str)
true
user=> (name ’clojure.core/str)
n strll

When we talked about the maximum size of an integer, that was a fully-qualified
symbol, too.

user=> (type ’Integer/MAX_VALUE)
clojure.lang.Symbol

The job of symbols is to refer to things, to point to other values. When eval-
uating a program, symbols are looked up and replaced by their corresponding
values. Thats not the only use of symbols, but its the most common.

1.2.8 Keywords

Closely related to symbols and strings are keywords, which begin with a :
Keywords are like strings in that theyre made up of text, but are specifically

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 15

intended for use as labels or identifiers. These arent labels in the sense of
symbols: keywords arent replaced by any other value. Theyre just names, by
themselves.

user=> (type :cat)
clojure.lang.Keyword
user=> (str :cat)

n :ca n

user=> (name :cat)
"Cat"

As labels, keywords are most useful when paired with other values in a collection,
like a map. Well come back to keywords shortly.

1.2.9 Lists

A collection is a group of values. Its a container which provides some structure,
some framework, for the things that it holds. We say that a collection con-
tains elements, or members. We saw one kind of collectiona listin the previous
chapter.

user=> (1 2 3)

123

user=> (type ’(1 2 3))
clojure.lang.PersistentList

Remember, we quote lists with a ’ to prevent them from being evaluated. You
can also construct a list using list:

user=> (list 1 2 3)
(12 3)

Lists are comparable just like every other value:

user=> (= (list 1 2) (list 1 2))
true

You can modify a list by conjoining an element onto it:

user=> (conj (1 2 3) 4)
4123)

We added 4 to the listbut it appeared at the front. Why? Internally, lists are
stored as a chain of values: each link in the chain is a tiny box which holds the
value and a connection to the next link. This data structure, called a linked
list, offers immediate access to the first element.

16 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

user=> (first (list 1 2 3))
1

But getting to the second element requires an extra hop down the chain

user=> (second (list 1 2 3))
2

and the third element a hop after that, and so on.

user=> (nth (list 1 2 3) 2)
3

nth gets the element of an ordered collection at a particular index. The first
element is index 0, the second is index 1, and so on.

This means that lists are well-suited for small collections, or collections which
are read in linear order, but are slow when you want to get arbitrary elements
from later in the list. For fast access to every element, we use a vector.

1.2.10 Vectors

Vectors are surrounded by square brackets, just like lists are surrounded by
parentheses. Because vectors arent evaluated like lists are, theres no need to
quote them:

user=> [1 2 3]

[1 2 3]

user=> (type [1 2 31)
clojure.lang.PersistentVector

You can also create vectors with vector, or change other structures into vectors
with vec:

user=> (vector 1 2 3)
[1 2 3]

user=> (vec (list 1 2 3))
[1 2 3]

conj on a vector adds to the end, not the start:
user=> (conj [1 2 3] 4) [1 2 3 4]

Our friends first, second, and nth work here too; but unlike lists, nth is fast on
vectors. Thats because internally, vectors are represented as a very broad tree

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 17

of elements, where each part of the tree branches into 32 smaller trees. Even
very large vectors are only a few layers deep, which means getting to elements
only takes a few hops.

In addition to first, youll often want to get the remaining elements in a collection.
There are two ways to do this:

user=> (rest [1 2 3])
(2 3)
user=> (next [1 2 3])
(2 3)

rest and next both return everything but the first element. They differ only
by what happens when there are no remaining elements:

user=> (rest [1])
O

user=> (mext [1])
nil

rest returns logical true, next returns logical false. Each has their uses, but
in almost every case theyre equivalentl interchange them freely.

We can get the final element of any collection with last:

user=> (last [1 2 3])
3

And figure out how big the vector is with count:

user=> (count [1 2 3])
3

Because vectors are intended for looking up elements by index, we can also use
them directly as verbs:

user=> ([:a :b :c] 1)
H)

So we took the vector containing three keywords, and asked Whats the element
at index 17 Index 1 is the second element, so this evaluates to :b.

Finally, note that vectors and lists containing the same elements are considered
equal in Clojure:

user=> (= (1 2 3) [1 2 3])
true

In almost all contexts, you can consider vectors, lists, and other sequences as
interchangeable. They only differ in their performance characteristics, and in a
few data-structure-specific operations.

18 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

1.2.11 Sets

Sometimes you want an unordered collection of values; especially when you plan
to ask questions like does the collection have the number 3 in it? Clojure, like
most languages, calls these collections sets.

user=> #{:a :b :c}
#{:a :c :b}

Sets are surrounded by #{...}. Notice that though we gave the elements :a, :b,
and :c, they came out in a different order. In general, the order of sets can shift
at any time. If you want a particular order, you can ask for it as a list or vector:

user=> (vec #{:a :b :c})
[:a :c :b]

Or ask for the elements in sorted order:

user=> (sort #{:a :b :c})
(:a :b :c)

conj on a set adds an element:

user=> (conj #{:a :b :c} :d)
#{:a :c :b :d}

user=> (conj #{:a :b :c} :a)
#{:a :c :b}

Sets never contain an element more than once, so conjing an element which is
already present does nothing. Conversely, one removes elements with disj:

user=> (disj #{"hornet" "hummingbird"} "hummingbird")
#{"hornet"}

The most common operation with a set is to check whether something is inside
it. For this we use contains?.

user=> (contains? #{1 2 3} 3)
true
user=> (contains? #{1 2 3} 5)
false

Like vectors, you can use the set itself as a verb. Unlike contains?, this expression
returns the element itself (if it was present), or nil.

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 19

user=> (#{1 2 3} 3)
3

user=> (#{1 2 3} 4)
nil

You can make a set out of any other collection with set.

user=> (set [:a :b :cl])
#{:a :c :b}

1.2.12 Maps

The last collection on our tour is the map: a data structure which associates
keys with values. In a dictionary, the keys are words and the definitions are
the values. In a library, keys are call signs, and the books are values. Maps
are indexes for looking things up, and for representing different pieces of named
information together.

user=> {:name "spook" :weight 2 :color "black"}
{:weight 2, :name "spook", :color "black"}

Maps are surrounded by braces {...}, filled by alternating keys and values. In
this map, the three keys are :name, :color, and :weight, and their values are
”spook”, "black”, and 2, respectively. We can look up the corresponding value
for a key with get:

user=> (get {"cat" "meow" "dog" "woof"} "cat")
llmeow n

user=> (get {:a 1 :b 2} :c)

nil

get can also take a default value to return instead of nil, if the key doesnt exist
in that map.

user=> (get {:glinda :good} :wicked :not-here)
:not-here

Since lookups are so important for maps, we can use a map as a verb directly:

user=> ({"amlodipine" 12 "ibuprofin" 50} "ibuprofin")
50

And conversely, keywords can also be used as verbs, which look themselves up
in maps:

20 CHAPTER 1. FROM THE GROUND UP (KYLE KINGSBURY)

user=> (:raccoon {:weasel "queen" :raccoon "king"})
n king n

You can add a value for a given key to a map with assoc.

user=> (assoc {:bolts 1088} :camshafts 3)
{:camshafts 3 :bolts 1088}

user=> (assoc {:camshafts 3} :camshafts 2)
{:camshafts 2}

assoc adds keys if they arent present, and replaces values if theyre already
there. If you associate a value onto nil, it creates a new map.

user=> (assoc nil 5 2)

{5 2}

You can combine maps together using merge, which yields a map containing
all the elements of all given maps, preferring the values from later ones.

user=> (merge {:a 1 :b 2} {:b 3 :c 4})
{:c 4, :a 1, :b 3}

Finally, to remove a value, use dissoc.

user=> (dissoc {:potatoes 5 :mushrooms 2} :mushrooms)
{:potatoes 5}

1.2.13 Putting it all together

All these collections and types can be combined freely. As software engineers,
we model the world by creating a particular representation of the problem in
the program. Having a rich set of values at our disposal allows us to talk about
complex problems. We might describe a person:

{:name "Amelia Earhart"
:birth 1897
:death 1939
:awards {"US" #{"Distinguished Flying Cross"
"National Women’s Hall of Fame"}
"World" #{"Altitude record for Autogyro"
"First to cross Atlantic twice"}}}

Or a recipe:

1.2. CLOJURE FROM THE GROUND UP: BASIC TYPES 21

{:title "Chocolate chip cookies"
:ingredients {"flour" [(+ 2 1/4) :cup]

"baking soda" [1 :teaspoon]
"salt" [1 :teaspoon]
"butter" [1 :cup]
"sugar" [3/4 :cup]
"brown sugar" [3/4 :cup]
"vanilla" [1 :teaspoon]
"eggs" 2
"chocolate chips" [12 :ouncel}

Or the Gini coefficients of nations, as measured over time:

{"Afghanistan" {2008 27.8}
"Indonesia" {2008 34.1 2010 35.6 2011 38.1}
"Uruguay" {2008 46.3 2009 46.3 2010 45.3}}

In Clojure, we compose data structures to form more complex values; to talk
about bigger ideas. We use operations like first, nth, get, and contains? to
extract specific information from these structures, and modify them using conj,
disj, assoc, dissoc, and so on.

We started this chapter with a discussion of types: groups of similar objects
which obey the same rules. We learned that bigints, longs, ints, shorts, and
bytes are all integers, that doubles and floats are approximations to decimal
numbers, and that ratios represent fractions exactly. We learned the differences
between strings for text, symbols as references, and keywords as