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Chapter 1. Preface: Fast Fourier Transforms



 This book focuses on the discrete Fourier transform
(DFT), discrete convolution, and, particularly, the fast algorithms
to calculate them. These topics have been at the center of digital
signal processing since its beginning, and new results in hardware,
theory and applications continue to keep them important and
exciting.
 As far as we can tell, Gauss was the first to propose the
techniques that we now call the fast Fourier transform (FFT) for
calculating the coefficients in a trigonometric expansion of an
asteroid's orbit in 1805 9. However, it was the seminal
paper by Cooley and Tukey 5 in 1965 that caught the
attention of the science and engineering community and, in a way,
founded the discipline of digital signal processing (DSP).
 The impact of the Cooley-Tukey FFT was enormous. Problems could
be solved quickly that were not even considered a few years earlier.
A flurry of research expanded the theory and developed excellent
practical programs as well as opening new applications
3. In 1976, Winograd published a short paper 14 that set a second flurry of research in motion 4. This was another type of algorithm that expanded the data lengths that could be transformed efficiently and reduced the number of multiplications required. The ground work for this algorithm had be set earlier by Good 8 and by Rader 12. In 1997 Frigo and Johnson developed a program they called the FFTW (fastest Fourier transform in the west) 7, 6 which is a composite of many of ideas in other algorithms as well as new results to give a robust, very fast system for general data lengths on a variety of computer and DSP architectures. This work won the 1999 Wilkinson Prize for Numerical Software.
 It is hard to overemphasis the importance of the DFT,
convolution, and fast algorithms. With a history that goes
back to Gauss 9 and a compilation of references
on these topics that in 1995 resulted in over 2400
entries 13, the FFT may be the most important numerical
algorithm in science, engineering, and applied mathematics.
New theoretical results still are appearing,
advances in computers and hardware continually restate the basic
questions, and new applications open new areas for research. It is
hoped that this book will provide the background, references,
programs and incentive to encourage further research and results in
this area as well as provide tools for practical applications.
 Studying the FFT is not only valuable in understanding a powerful
tool, it is also a prototype or example of how algorithms can be made
efficient and how a theory can be developed to define optimality. The
history of this development also gives insight into the process of research where timing and serendipity play interesting roles.
 Much of the material contained in this book has been collected over 40 years
of teaching and research in DSP, therefore, it is difficult to
attribute just where it all came from. Some comes from my earlier
FFT book 1 which was sponsored by Texas Instruments and some from the FFT chapter in 11.
Certainly the interaction with people like Jim Cooley and Charlie
Rader was central but the work with graduate students and
undergraduates was probably the most formative. I would
particularly like to acknowledge Ramesh Agarwal, Howard Johnson,
Mike Heideman, Henrik Sorensen, Doug Jones, Ivan Selesnick,
Haitao Guo, and Gary Sitton. Interaction with my colleagues, Tom Parks, Hans
Schuessler, Al Oppenheim, and Sanjit Mitra has been essential over
many years. Support has come from the NSF, Texas Instruments, and
the wonderful teaching and research environment at Rice University
and in the IEEE Signal Processing Society.
 Several chapters or sections are written by authors who have extensive experience and depth working on the particular topics. Ivan Selesnick had written several
papers on the design of short FFTs to be used in the prime factor
algorithm (PFA) FFT and on automatic design of these short FFTs.
Markus Püschel has developed a theoretical framework for “Algebraic Signal
Processing" which allows a structured
generation of FFT programs and a system called “Spiral" for automatically
generating algorithms specifically for an architicture. Steven
Johnson along with his colleague Matteo Frigo created, developed, and now maintains
the powerful FFTW system: the Fastest Fourier Transform in the West.  I sincerely thank these authors for their significant contributions.
 I would also like to thank Prentice Hall, Inc. who returned the copyright
on The DFT as Convolution or Filtering of Advanced Topics in Signal Processing 2 around which some of this book is built.  The content of this book is in the Connexions (http://cnx.org/content/col10550/)
repository and, therefore, is available for on-line use, pdf down loading, or purchase as a printed, bound physical book.  I certainly want to thank Daniel Williamson, Amy Kavalewitz, and the staff of Connexions for their invaluable help.  Additional FFT material can be found in Connexions, particularly content by Doug Jones 10, Ivan Selesnick 10, and Howard Johnson, 10. Note that this book and all the content in Connexions are copyrighted under the Creative Commons Attribution license
(http://creativecommons.org/).
 If readers find errors in any of the modules of this collection or have suggestions for improvements or additions, please email the author of the collection or module.
 C. Sidney Burrus
 Houston, Texas
 October 20, 2008
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Solutions


Chapter 2. Introduction: Fast Fourier Transforms



 The development of fast algorithms usually consists of using special
properties of the algorithm of interest to remove redundant or unnecessary
operations of a direct implementation. Because of the periodicity,
symmetries, and orthogonality of the basis functions and the special
relationship with convolution, the discrete Fourier transform
(DFT) has enormous capacity for improvement of its arithmetic efficiency.
 There are four main approaches to formulating efficient DFT 1 algorithms. The first two break a DFT into multiple shorter ones.
This is done in Multidimensional Index Mapping by using an index map and in
Polynomial Description of Signals by polynomial reduction. The third is Factoring the Signal Processing Operators which factors the DFT operator (matrix) into sparse factors.
The DFT as Convolution or Filtering develops a method which converts a prime-length DFT
into cyclic convolution. Still another approach is interesting where, for certain cases, the evaluation of the DFT can be posed recursively
as evaluating a DFT in terms of two half-length DFTs which are each in turn
evaluated by a quarter-length DFT and so on.
 The very important computational complexity theorems of
Winograd are stated and briefly discussed in Winograd's Short DFT Algorithms. The
specific details and evaluations of the Cooley-Tukey FFT and
Split-Radix FFT are given in The Cooley-Tukey Fast Fourier Transform Algorithm, and PFA and WFTA are covered in The Prime Factor and Winograd Fourier Transform Algorithms. A short discussion of high speed
convolution is given in Convolution Algorithms, both for its own
importance, and its theoretical connection to the DFT.
We also present the chirp, Goertzel, QFT, NTT, SR-FFT, Approx FFT,
Autogen, and programs to implement some of these.

 Ivan Selesnick gives a short introduction in Winograd's Short DFT Algorithms to using Winograd's 
techniques to give a highly structured development of short prime
length FFTs and describes a program that will automaticlly write these
programs.  Markus Pueschel presents his ``Algebraic Signal Processing" in
DFT and FFT: An Algebraic View on describing the various FFT algorithms.  And Steven Johnson 
describes the FFTW (Fastest Fourier Transform in the West) in Implementing FFTs in Practice 

 The organization of the book represents the various approaches
to understanding the FFT and to obtaining efficient computer programs.
It also shows the intimate relationship between theory and implementation
that can be used to real advantage. The disparity in material devoted
to the various approaches represent the tastes of this author, not any
intrinsic differences in value.
 A fairly long list of references is given but it is impossible to
be truly complete. I have referenced the work that I have used and that I am aware of. The collection of computer programs is also somewhat idiosyncratic. They are in Matlab and Fortran because that is what I have used over the years. They also are written primarily for their educational value although some are quite efficient. There is excellent content in the Connexions book by Doug Jones 2.
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Solutions


Chapter 3. Multidimensional Index Mapping



 A powerful approach to the development of efficient
algorithms is to break a large problem into multiple small ones.
One method for doing this with both the DFT and convolution uses a
linear change of index variables to map the original one-dimensional problem into a multi-dimensional problem. This
approach provides a unified derivation of the Cooley-Tukey FFT, the
prime factor algorithm (PFA) FFT, and the Winograd Fourier transform
algorithm (WFTA) FFT. It can also be applied directly to convolution
to break it down into multiple short convolutions that can be executed 
faster than a direct implementation.  It is often easy to translate an
algorithm using index mapping into an efficient program.
 The basic definition of the discrete Fourier transform (DFT) is
(3.1)

 where n, k, and N are integers, , the basis functions are the N roots of unity, 
(3.2)
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              /
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 and k=0,1,2,⋯,N–1.
 If the N values of the transform are calculated from the N values of
the data, x(n), it is easily seen that N2 complex multiplications and
approximately that same number of complex additions are required. One
method for reducing this required arithmetic is to use an index
mapping (a change of variables) to change the one-dimensional DFT
into a two- or higher dimensional DFT. This is one of the ideas
behind the very efficient Cooley-Tukey 6 and Winograd
19 algorithms. The purpose of index mapping is to
change a large problem into several easier ones 5, 7. This
is sometimes called the “divide and conquer" approach
3 but a more accurate description would be “organize
and share" which explains the process of redundancy removal or reduction.
The Index Map



 For a length-N sequence, the time index takes on the values
(3.3)
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 When the length of the DFT is not prime, N can be factored as N=N1N2 and two new independent variables can be defined over the
ranges
(3.4)
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(3.5)
          
            n2
            =
            0
            ,
            1
            ,
            2
            ,
            .
            .
            .
            ,
            N2
            –
            1
          
        
 A linear change of variables is defined which maps n1 and
n2 to n and is expressed by
(3.6)

 where Ki are integers and the notation ((x))N denotes the integer
residue of x modulo N13. This map defines a relation between all possible
combinations of n1 and n2 in Equation 3.4 and Equation 3.5 and the values
for n in Equation 3.3. The question as to whether all of the n in Equation 3.3 are
represented, i.e., whether the map is one-to-one (unique), has been
answered in 5 showing that certain integer Ki always exist
such that the map in Equation 3.6 is one-to-one. Two cases must be
considered.
Case 1.



 N1 and N2 are relatively prime, i.e., the greatest common divisor .
 The integer map of Equation 3.6 is one-to-one if and only if:
(3.7)

 where a and b are integers.

Case 2.



 N1 and N2 are not relatively prime, i.e., .
 The integer map of Equation 3.6 is one-to-one if and only if:
(3.8)

 or
(3.9)

 Reference 5 should be consulted for the details of
these conditions and examples. Two classes of index maps are defined
from these conditions.

Type-One Index Map:



 The map of Equation 3.6 is called a type-one map when integers a and b exist such that
(3.10)


Type-Two Index Map:



 The map of Equation 3.6 is called a type-two map when when integers a and b exist such that
(3.11)

 The type-one can be used only if the factors of N are relatively prime,
but the type-two can be used whether they are relatively prime or
not. Good 8, Thomas, and Winograd 19 all used the
type-one map in their DFT algorithms. Cooley and Tukey 6
used the type-two in their algorithms, both for a fixed radix  and a mixed radix 17.
 The frequency index is defined by a map similar to Equation 3.6 as
(3.12)

 where the same conditions, Equation 3.7 and Equation 3.8, are used for
determining the uniqueness of this map in terms of the integers K3 and K4.
 Two-dimensional arrays for the input data and its DFT are
defined using these index maps to give
(3.13)

(3.14)

 In some of the following equations, the residue reduction
notation will be omitted for clarity. These changes of variables
applied to the definition of the DFT given in Equation 3.1 give
(3.15)

 where all of the exponents are evaluated modulo N.
 The amount of arithmetic required to calculate Equation 3.15 is the
same as in the direct calculation of Equation 3.1. However, because
of the special nature of the DFT, the integer constants Ki can be
chosen in such a way that the calculations are “uncoupled" and
the arithmetic is reduced. The requirements for this are
(3.16)

 When this condition and those for uniqueness in Equation 3.6 are
applied, it is found that the Ki may always be chosen such that
one of the terms in Equation 3.16 is zero. If the Ni are
relatively prime, it is always possible to make both terms zero. If
the Ni are not relatively prime, only one of the terms can be
set to zero. When they are relatively prime, there is a choice, it
is possible to either set one or both to zero. This in turn causes
one or both of the center two W terms in Equation 3.15 to become
unity.
 An example of the Cooley-Tukey radix-4 FFT for a length-16
DFT uses the type-two map with K1=4, K2=1, K3=1, K4=4 giving
(3.17)
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(3.18)
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 The residue reduction in Equation 3.6 is not needed here since n
does not exceed N as n1 and n2 take on their values. Since,
in this example, the factors of N have a common factor, only
one of the conditions in Equation 3.16 can hold and, therefore,
Equation 3.15 becomes
(3.19)

 Note the definition of WN in Equation 3.3 allows the simple form of

 This has the form of a two-dimensional DFT with an extra
term W16, called a “twiddle factor". The inner
sum over n1 represents four length-4 DFTs, the W16 term
represents 16 complex multiplications, and the outer sum over
n2 represents another four length-4 DFTs. This choice of the
Ki “uncouples" the calculations since the first sum over n1
for n2=0 calculates the DFT of the first row of the data array
, and those data values are never needed in the
succeeding row calculations. The row calculations are independent,
and examination of the outer sum shows that the column
calculations are likewise independent. This is illustrated in Figure 3.1.
 [image: ]

Figure 3.1. 
Uncoupling of the Row and Column Calculations (Rectangles are Data Arrays)

 The left 4-by-4 array is the mapped input data, the center
array has the rows transformed, and the right array is the DFT
array. The row DFTs and the column DFTs are independent of each
other. The twiddle factors (TF) which are the center W in
Equation 3.19, are the multiplications which take place on the center
array of Figure 3.1.
 This uncoupling feature reduces the amount of arithmetic
required and allows the results of each row DFT to be written
back over the input data locations, since that input row will
not be needed again. This is called “in-place" calculation
and it results in a large memory requirement savings.
 An example of the type-two map used when the factors of N
are relatively prime is given for N=15 as
(3.20)
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(3.21)
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 The residue reduction is again not explicitly needed. Although the
factors 3 and 5 are relatively prime, use of the type-two map
sets only one of the terms in Equation 3.16 to zero. The DFT in
Equation 3.15 becomes
(3.22)

 which has the same form as Equation 3.19, including the existence of
the twiddle factors (TF). Here the inner sum is five length-3
DFTs, one for each value of k1. This is illustrated in Equation 3.2
where the rectangles are the 5 by 3 data arrays and the system is called a ``mixed radix" FFT.
 [image: ]

Figure 3.2. 
Uncoupling of the Row and Column Calculations (Rectangles are Data Arrays)

 An alternate illustration is shown in Figure 3.3 where the
rectangles are the short length 3 and 5 DFTs.
 [image: ]

Figure 3.3. 
Uncoupling of the Row and Column Calculations (Rectangles are Short DFTs)

 The type-one map is illustrated next on the same length-15
example. This time the situation of Equation 3.7 with the “and"
condition is used in Equation 3.10 using an index map of
(3.23)
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 and
(3.24)
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              k1
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              k2
            
          
 The residue reduction is now necessary. Since the factors of N
are relatively prime and the type-one map is being used, both terms
in Equation 3.16 are zero, and Equation 3.15 becomes
(3.25)

 which is similar to Equation 3.22, except that now the type-one map
gives a pure two-dimensional DFT calculation with no TFs, and the
sums can be done in either order. Figures Figure 3.2 and Figure 3.3
also describe this case but now there are no Twiddle Factor
multiplications in the center and the resulting system is called a ``prime factor algorithm" (PFA).
 The purpose of index mapping is to improve the arithmetic
efficiency. For example a direct calculation of a length-16 DFT
requires 16^2 or 256 real multiplications (recall, one complex multiplication requires 4 real multiplications and 2 real additions) and an uncoupled version
requires 144. A direct calculation of a length-15 DFT requires
225 multiplications but with a type-two map only 135 and with a
type-one map, 120. Recall one complex multiplication requires
four real multiplications and two real additions.
 Algorithms of practical interest use short DFT's that
require fewer than N2 multiplications. For example, length-4
DFTs require no multiplications and, therefore, for the length-16
DFT, only the TFs must be calculated. That calculation uses
16 multiplications, many fewer than the 256 or 144 required for
the direct or uncoupled calculation.
 The concept of using an index map can also be applied to
convolution to convert a length N=N1N2 one-dimensional
cyclic convolution into a N1 by N2 two-dimensional cyclic
convolution 5, 1. There is no savings of arithmetic
from the mapping alone as there is with the DFT, but savings can be
obtained by using special short algorithms along each dimension.
This is discussed in Algorithms for Data with Restrictions					.


In-Place Calculation of the DFT and Scrambling



 Because use of both the type-one and two index maps
uncouples the calculations of the rows and columns of the data
array, the results of each short length Ni DFT can be written
back over the data as it will not be needed again after that
particular row or column is transformed. This is easily seen from
Figures Figure 3.1, Figure 3.2, and Figure 3.3 where the DFT of the
first row of  can be put
back over the data rather written into a new array. After all the
calculations are finished, the total DFT is in the array of the
original data. This gives a significant memory savings over using a
separate array for the output.
 Unfortunately, the use of in-place calculations results in
the order of the DFT values being permuted or scrambled. This is because
the data is indexed according to the input map Equation 3.6 and the
results are put into the same locations rather than the locations
dictated by the output map Equation 3.12. For example with a length-8
radix-2 FFT, the input index map is
(3.26)
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 which to satisfy Equation 3.16 requires an output map of
(3.27)
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 The in-place calculations will place the DFT results in the
locations of the input map and these should be reordered or
unscrambled into the locations given by the output map.
Examination of these two maps shows the scrambled output to be in
a “bit reversed" order.
 For certain applications, this scrambled output order is not
important, but for many applications, the order must be unscrambled
before the DFT can be considered complete. Because the radix of the
radix-2 FFT is the same as the base of the binary number
representation, the correct address for any term is found by
reversing the binary bits of the address. The part of most FFT programs that does
this reordering is called a bit-reversed counter. Examples of
various unscramblers are found in 9, 4 and in the appendices.
 The development here uses the input map and the resulting
algorithm is called “decimation-in-frequency". If the output rather
than the input map is used to derive the FFT algorithm so the
correct output order is obtained, the input order must be scrambled
so that its values are in locations specified by the output map
rather than the input map. This algorithm is called
“decimation-in-time". The scrambling is the same bit-reverse
counting as before, but it precedes the FFT algorithm in this case.
The same process of a post-unscrambler or pre-scrambler occurs for
the in-place calculations with the type-one maps. Details can be
found in 4, 2. It is possible to do the unscrambling
while calculating the FFT and to avoid a separate unscrambler. This
is done for the Cooley-Tukey FFT in 11 and for the PFA in
4, 2, 16.
 If a radix-2 FFT is used, the unscrambler is a bit-reversed
counter. If a radix-4 FFT is used, the unscrambler is a base-4
reversed counter, and similarly for radix-8 and others. However,
if for the radix-4 FFT, the short length-4 DFTs (butterflies) have their
outputs in bit-revered order, the output of the total radix-4 FFT
will be in bit-reversed order, not base-4 reversed order. This
means any radix-2n FFT can use the same radix-2 bit-reversed
counter as an unscrambler if the proper butterflies are used. 

Efficiencies Resulting from Index Mapping with the
DFT



 In this section the reductions in arithmetic in the DFT that
result from the index mapping alone will be examined. In
practical algorithms several methods are always combined, but it
is helpful in understanding the effects of a particular method to
study it alone.
 The most general form of an uncoupled two-dimensional DFT is
given by
(3.28)

 where the inner sum calculates N2 length-N1 DFT's and, if for
a type-two map, the effects of the TFs. If the number of arithmetic
operations for a length-N DFT is denoted by F(N), the number of
operations for this inner sum is . The outer sum
which gives N1 length-N2 DFT's requires 
operations. The total number of arithmetic operations is then
(3.29)

 The first question to be considered is for a fixed length N, what
is the optimal relation of N1 and N2 in the sense of
minimizing the required amount of arithmetic. To answer this
question, N1 and N2 are temporarily assumed to be real
variables rather than integers. If the short length-Ni DFT's in
Equation 3.28 and any TF multiplications are assumed to require
Ni2 operations, i.e. , "Efficiencies Resulting from Index Mapping with the
DFT" becomes
(3.30)

 To find the minimum of F over N1, the derivative of F with
respect to N1 is set to zero (temporarily assuming the variables
to be continuous) and the result requires N1=N2.
(3.31)

 This result is also easily seen from the symmetry of N1 and N2
in N=N1N2. If a more general model of the arithmetic
complexity of the short DFT's is used, the same result is obtained,
but a closer examination must be made to assure that N1=N2 is
a global minimum.
 If only the effects of the index mapping are to be
considered, then the F(N)=N2 model is used and Equation 3.31
states that the two factors should be equal. If there are M factors,
a similar reasoning shows that all M factors should be equal. For
the sequence of length
(3.32)
          
            N
            =
            RM
          
        
 there are now M length-R DFT's and, since the factors are all
equal, the index map must be type two. This means there must be
twiddle factors.
 In order to simplify the analysis, only the number of
multiplications will be considered. If the number of multiplications
for a length-R DFT is F(R), then the formula for operation counts
in Equation 3.30 generalizes to
(3.33)

 for Ni=R
(3.34)
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 This is a very important formula which was derived by Cooley and
Tukey in their famous paper 6 on the FFT. It states that
for a given R which is called the radix, the number of
multiplications (and additions) is proportional to NlnN. It
also shows the relation to the value of the radix, R.
 In order to get some idea of the “best" radix, the number of
multiplications to compute a length-R DFT is assumed to be F(R)=Rx. If this is used with Equation 3.34, the optimal R can be found.
(3.35)

 For x=2 this gives R=e, with the closest integer being
three.
 The result of this analysis states that if no other
arithmetic saving methods other than index mapping are used, and if
the length-R DFT's plus TFs require F=R2 multiplications, the
optimal algorithm requires
(3.36)
          
            F
            =
            3
            N
            log3
            N
          
        
 multiplications for a length N=3M DFT. Compare this with N2
for a direct calculation and the improvement is obvious.
 While this is an interesting result from the analysis of the
effects of index mapping alone, in practice, index mapping is almost
always used in conjunction with special algorithms for the short
length-Ni DFT's in Equation 3.15. For example, if R=2 or 4,
there are no multiplications required for the short DFT's. Only the
TFs require multiplications. Winograd (see Winorad's Short DFT Algorithms) has
derived some algorithms for short DFT's that require O(N)
multiplications. This means that  and the
operation count F in "Efficiencies Resulting from Index Mapping with the
DFT" is independent of Ni.
Therefore, the derivative of F is zero for all Ni. Obviously,
these particular cases must be examined.

The FFT as a Recursive Evaluation of the DFT



 It is possible to formulate the DFT so a length-N DFT can be calculated in terms
of two length-(N/2) DFTs. And, if N=2M, each of those length-(N/2) DFTs can
be found in terms of length-(N/4) DFTs. This allows the DFT to be calculated by
a recursive algorithm with M recursions, giving the familiar order Nlog(N)
arithmetic complexity.
 Calculate the even indexed DFT values from Equation 3.1 by:
(3.37)

(3.38)

(3.39)

 and a similar argument gives the odd indexed values as:
(3.40)

 Together, these are recursive DFT formulas expressing the length-N DFT of x(n)
in terms of length-N/2 DFTs:
(3.41)

(3.42)

 This is a “decimation-in-frequency" (DIF) version since it gives
samples of the frequency domain representation in terms of blocks
of the time domain signal.
 A recursive Matlab program which implements this is given by:
 function c = dftr2(x)
% Recursive Decimation-in-Frequency FFT algorithm, csb 8/21/07
L = length(x);
if L > 1
     L2 = L/2;
     TF = exp(-j*2*pi/L).^[0:L2-1];
     c1 = dftr2( x(1:L2) + x(L2+1:L));
     c2 = dftr2((x(1:L2) - x(L2+1:L)).*TF);
     cc = [c1';c2'];
     c = cc(:);
else
     c  = x;
end
DIF Recursive FFT for N=2M

 A DIT version can be derived in the form:
(3.43)

(3.44)

 which gives blocks of the frequency domain from samples of the signal.
 A recursive Matlab program which implements this is given by:
 function c = dftr(x)
% Recursive Decimation-in-Time FFT algorithm, csb
L = length(x);
if L > 1
     L2 = L/2;
     ce = dftr(x(1:2:L-1));
     co = dftr(x(2:2:L));
     TF = exp(-j*2*pi/L).^[0:L2-1];
     c1 = TF.*co;
     c  = [(ce+c1), (ce-c1)];
else
     c  = x;
end
DIT Recursive FFT for N=2M

 Similar recursive expressions can be developed for other radices and and algorithms.
Most recursive programs do not execute as efficiently as looped or straight code,
but some can be very efficient, e.g. parts of the FFTW.
 Note a length-2M sequence will require M recursions, each of which will require
N/2 multiplications. This give the Nlog(N) formula that the other approaches
also derive.
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Solutions


Chapter 4. Polynomial Description of Signals



 Polynomials are important in digital signal processing
because calculating the DFT can be viewed as a polynomial evaluation
problem and convolution can be viewed as polynomial multiplication
1, 5. Indeed, this is the basis for the important
results of Winograd discussed in Winograd’s Short DFT Algorithms. A length-N signal
x(n) will be represented by an N–1 degree polynomial X(s)
defined by
(4.1)

 This polynomial X(s) is a single entity with the coefficients
being the values of x(n). It is somewhat similar to the use of
matrix or vector notation to efficiently represent signals which
allows use of new mathematical tools.
 The convolution of two finite length sequences, x(n) and
h(n), gives an output sequence defined by
(4.2)

 n=0,1,2,⋯,2N–1 where h(k)=0 for k<0. This is
exactly the same operation as calculating the coefficients when
multiplying two polynomials. Equation Equation 4.2 is the same as
(4.3)

 In fact, convolution of number sequences, multiplication of
polynomials, and the multiplication of integers (except for the
carry operation) are all the same operations. To obtain cyclic
convolution, where the indices in Equation 4.2 are all evaluated
modulo N, the polynomial multiplication in Equation 4.3 is done
modulo the polynomial P(s)=sN–1. This is seen by noting that
N=0 mod N, therefore, sN=1 and the polynomial modulus is
sN–1.
Polynomial Reduction and the Chinese Remainder Theorem



 Residue reduction of one polynomial modulo another is
defined similarly to residue reduction for integers. A polynomial
F(s) has a residue polynomial R(s) modulo P(s) if, for a given
F(s) and P(s), a Q(S) and R(s) exist such that
(4.4)
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 with degree{R(s)}<degree{P(s)}. The notation that will
be used is
(4.5)
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 For example,
(4.6)

 The concepts of factoring a polynomial and of primeness are an
extension of these ideas for integers. For a given
allowed set of coefficients (values of x(n)), any polynomial has a unique factored representation
(4.7)

 where the Fi(s) are relatively prime. This is analogous to the
fundamental theorem of arithmetic.
 There is a very useful operation that is an extension of
the integer Chinese Remainder Theorem (CRT) which says that if the
modulus polynomial can be factored into relatively prime factors
(4.8)

 then there exist two polynomials, K1(s) and K2(s), such that any
polynomial F(s) can be recovered from its residues by
(4.9)

 where F1 and F2 are the residues given by
(4.10)
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 and
(4.11)
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 if the order of F(s) is less than P(s). This generalizes to any
number of relatively prime factors of P(s) and can be viewed as a
means of representing F(s) by several lower degree polynomials,
Fi(s).
 This decomposition of F(s) into lower degree polynomials is
the process used to break a DFT or convolution into several simple
problems which are solved and then recombined using the CRT of
Equation 4.9. This is another form of the “divide and conquer" or
“organize and share"
approach similar to the index mappings in Multidimensional Index Mapping.
 One useful property of the CRT is for convolution. If cyclic
convolution of x(n) and h(n) is expressed in terms of
polynomials by
(4.12)

 where P(s)=sN–1, and if P(s) is factored into two
relatively prime factors P=P1P2, using residue reduction of
H(s) and X(s) modulo P1 and P2, the lower degree residue
polynomials can be multiplied and the results recombined with the
CRT. This is done by
(4.13)

 where
(4.14)

 and K1 and K2 are the CRT coefficient polynomials from
Equation 4.9. This allows two shorter convolutions to replace one
longer one.
 Another property of residue reduction that is useful in DFT
calculation is polynomial evaluation. To evaluate F(s) at s=x,
F(s) is reduced modulo s–x.
(4.15)
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 This is easily seen from the definition in Equation 4.4
(4.16)
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 Evaluating s=x gives R(s)=F(x) which is a constant. For
the DFT this becomes
(4.17)
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 Details of the polynomial algebra useful in digital signal
processing can be found in 1, 4, 5.

The DFT as a Polynomial Evaluation



 The Z-transform of a number sequence x(n) is defined as
(4.18)

 which is the same as the polynomial description in Equation 4.1 but
with a negative exponent. For a finite length-N sequence Equation 4.18
becomes
(4.19)

(4.20)
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 This N–1 order polynomial takes on the values of the DFT of
x(n) when evaluated at
(4.21)
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 which gives
(4.22)

 In terms of the positive exponent polynomial from Equation 4.1, the DFT is
(4.23)
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(4.24)
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 is an Nth root of unity (raising W to the Nth power gives one).
The N values of the DFT are found from
X(s) evaluated at the N Nth roots of unity which are equally
spaced around the unit circle in the complex s plane.
 One method of evaluating X(z) is the so-called Horner's
rule or nested evaluation. When expressed as a recursive
calculation, Horner's rule becomes the Goertzel algorithm which has
some computational advantages especially when only a few values of
the DFT are needed. The details and programs can be found in
7, 2 and The DFT as Convolution or Filtering: Goertzel's Algorithm (or A Better DFT Algorithm)
 Another method for evaluating X(s) is the residue reduction
modulo  as shown in Equation 4.17. Each evaluation requires
N multiplications and therefore, N2 multiplications for the N
values of C(k).
(4.25)

 A considerable reduction in required arithmetic can be achieved if
some operations can be shared between the reductions for different
values of k. This is done by carrying out the residue reduction in
stages that can be shared rather than done in one step for each k
in Equation 4.25.
 The N values of the DFT are values of X(s) evaluated at s
equal to the N roots of the polynomial P(s)=sN–1 which are
Wk. First, assuming N is even, factor P(s) as
(4.26)

 X(s) is reduced modulo these two factors to give two residue
polynomials, X1(s) and X2(s). This process is repeated by
factoring P1 and further reducing X1 then factoring P2 and
reducing X2. This is continued until the factors are of first
degree which gives the desired DFT values as in Equation 4.25. This is
illustrated for a length-8 DFT. The polynomial whose roots are
Wk, factors as
(4.27)
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 where a2=j. Reducing X(s) by the first factoring gives two
third degree polynomials
(4.31)
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 gives the residue polynomials
(4.32)

(4.33)

 Two more levels of reduction are carried out to finally give the
DFT. Close examination shows the resulting algorithm to be the
decimation-in-frequency radix-2 Cooley-Tukey FFT 7, 2.
Martens 3 has used this approach to derive an efficient
DFT algorithm.
 Other algorithms and types of FFT can be developed using polynomial
representations and some are presented in the generalization in DFT and FFT: An Algebraic View.

References



	  
      Blahut, Richard E. (1985). Fast Algorithms for Digital Signal Processing. Reading, Mass.: Addison-Wesley. 
    

	  
      Burrus, C. S. and Parks, T. W. (1985). DFT/FFT and Convolution Algorithms. New York: John Wiley & Sons. 
    

	  
      Martens, J. B. (1984, August). Recursive Cyclotomic Factorization – A New Algorithm for Calculating the Discrete Fourier Transform. IEEE Trans. on ASSP, 32(4), 750–762. 
    

	  
      McClellan, J. H. and Rader, C. M. (1979). Number Theory in Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall. 
    

	  
      Nussbaumer, H. J. (1981, 1982). Fast Fourier Transform and Convolution Algorithms. (Second). Heidelberg, Germany: Springer-Verlag. 
    

	  
      Niven, Ivan and Zuckerman, H. S. (1980). An Introduction to the Theory of Numbers. (Fourth). New York: John Wiley & Sons. 
    

	  
      Oppenheim, A. V. and Schafer, R. W. (1999). Discrete-Time Signal Processing. (Second). [Earlier editions in 1975 and 1989]. Englewood Cliffs, NJ: Prentice-Hall. 
    





Solutions


Chapter 5. The DFT as Convolution or Filtering



 A major application of the FFT is fast convolution or fast filtering
where the DFT of the signal is multiplied term-by-term by the DFT of
the impulse (helps to be doing finite impulse response (FIR) filtering)
and the time-domain output is obtained by taking the inverse DFT of
that product. What is less well-known is the DFT can be calculated
by convolution. There are several different approaches to this,
each with different application.
Rader's Conversion of the DFT into Convolution



 In this section a method quite different from the index
mapping or polynomial evaluation is developed. Rather than dealing
with the DFT directly, it is converted into a cyclic convolution
which must then be carried out by some efficient means. Those means
will be covered later, but here the conversion will be explained.
This method requires use of some number theory, which can be
found in an accessible form in 12 or 13 and is easy
enough to verify on one's own. A good general reference on number
theory is 14.
 The DFT and cyclic convolution are defined by
(5.1)

(5.2)

 For both, the indices are evaluated modulo N. In order to convert
the DFT in Equation 5.1 into the cyclic convolution of
Equation 5.2, the nk product must be changed to the k–n
difference. With real numbers, this can be done with logarithms,
but it is more complicated when working in a finite set of integers
modulo N. From number theory 1, 12, 13, 14, it can
be shown that if the modulus is a prime number, a base (called a
primitive root) exists such that a form of integer logarithm can be
defined. This is stated in the following way. If N is a prime
number, a number r called a primitive roots exists such that the
integer equation
(5.3)

 creates a unique, one-to-one map of
the N–1 member set m={0,...,N–2} and the N–1 member
set n={1,...,N–1}. This is because the multiplicative group
of integers modulo a prime, p, is isomorphic to the additive group
of integers modulo (p–1) and is illustrated for N=5 below.
Table 5.1. Table of Integers  modulo 5, [* not defined]	r	m=	0	1	2	3	4	5	6	7
	1	 	1	1	1	1	1	1	1	1
	2	 	1	2	4	3	1	2	4	3
	3	 	1	3	4	2	1	3	4	2
	4	 	1	4	1	4	1	4	1	4
	5	 	*	0	0	0	*	0	0	0
	6	 	1	1	1	1	1	1	1	1


 Table 5.1 is an array of values of rm modulo N and it is
easy to see that there are two primitive
roots, 2 and 3, and Equation 5.3 defines a permutation of
the integers n from the integers m (except for zero). 
Equation 5.3 and a primitive root (usually chosen to be the smallest
of those that exist) can be used to convert the DFT in Equation 5.1
to the convolution in Equation 5.2. Since Equation 5.3 cannot give a
zero, a new length-(N-1) data sequence is defined from x(n) by
removing the term with index zero. Let
(5.4)
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 and
(5.5)
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 where the term with the negative exponent (the inverse) is
defined as the integer that satisfies
(5.6)

 If N is a prime number, r–m always exists. For
example, . Equation 5.1 now becomes
(5.7)

 for s=0,1,..,N–2, and
(5.8)

 New functions are defined, which are simply a permutation in the
order of the original functions, as
(5.9)

 Equation 5.7 then becomes
(5.10)

 which is cyclic convolution of length N-1 (plus x(0)) and is
denoted as
(5.11)
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 Applying this change of variables (use of logarithms) to the DFT
can best be illustrated from the matrix formulation of the DFT.
Equation 5.1 is written for a length-5 DFT as
(5.12)

 where the square matrix should contain the terms of Wnk but for
clarity, only the exponents nk are shown. Separating the x(0)
term, applying the mapping of Equation 5.9, and using the primitive
roots r=2 (and r–1=3) gives
(5.13)

 and
(5.14)
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 which can be seen to be a reordering of the structure in
Equation 5.12. This is in the form of cyclic convolution as indicated
in Equation 5.10. Rader first showed this in 1968 12, stating
that a prime length-N DFT could be converted into a length-(N-1)
cyclic convolution of a permutation of the data with a permutation
of the W's. He also stated that a slightly more complicated
version of the same idea would work for a DFT with a length equal
to an odd prime to a power. The details of that theory can be found
in 12, 10.
 Until 1976, this conversion approach received little
attention since it seemed to offer few advantages. It has
specialized applications in calculating the DFT if the cyclic
convolution is done by distributed arithmetic table look-up
5 or by use of number theoretic transforms
1, 12, 13. It and the Goertzel algorithm
16, 3 are efficient when only a few DFT values need to be
calculated. It may also have advantages when used with pipelined or
vector hardware designed for fast inner products. One example is the
TMS320 signal processing microprocessor which is pipelined for inner
products. The general use of this scheme emerged when new fast
cyclic convolution algorithms were developed by Winograd
21.

The Chirp Z-Transform (or Bluestein's Algorithm)



 The DFT of x(n) evaluates the Z-transform of x(n) on N equally
spaced points on the unit circle in the z plane. Using a nonlinear
change of variables, one can create a structure which is equivalent
to modulation and filtering x(n) by a “chirp" signal.
2, 20, 19, 16, 18, 3.
 The mathematical identity (k–n)2=k2–2kn+n2 gives
(5.15)

 which substituted into the definition of the DFT in Multidimensional Index Mapping: Equation 1 gives
(5.16)

 This equation can be interpreted as first multiplying (modulating) the data
x(n) by a chirp sequence (Wn2/2, then convolving (filtering) it, then
finally multiplying the filter output by the chirp sequence to give the DFT.
 Define the chirp sequence or signal as h(n)=Wn2/2 which is called
a chirp because the squared exponent gives a sinusoid with changing frequency.
Using this definition, Equation 5.16 becomes
(5.17)

 We know that convolution can be carried out by multiplying the DFTs of the signals,
here we see that evaluation of the DFT can be carried out by convolution. Indeed,
the convolution represented by * in Equation 5.17 can be carried out by DFTs (actually
FFTs) of a larger length. This allows a prime length DFT to be calculated by a
very efficient length-2M FFT. This becomes practical for large N when a particular
non-composite (or N with few factors) length is required.
 As developed here, the chirp z-transform evaluates the z-transform at equally spaced
points on the unit circle. A slight modification allows evaluation on a spiral and
in segments 19, 16 and allows savings with only some input values are nonzero or
when only some output values are needed. The story of the development of this
transform is given in 18.
 Two Matlab programs to calculate an arbitrary length DFT using the chirp z-transform
is shown in screen.
 function y = chirpc(x);
% function y = chirpc(x)
% computes an arbitrary-length DFT with the
% chirp z-transform algorithm.  csb.  6/12/91
%
N  = length(x);  n = 0:N-1;     %Sequence length
W  = exp(-j*pi*n.*n/N);         %Chirp signal
xw = x.*W;                      %Modulate with chirp
WW = [conj(W(N:-1:2)),conj(W)]; %Construct filter
y  = conv(WW,xw);               %Convolve w filter
y  = y(N:2*N-1).*W;             %Demodulate w chirp
 
 
function y = chirp(x);
% function y = chirp(x)
% computes an arbitrary-length Discrete Fourier Transform (DFT)
% with the chirp z transform algorithm. The linear convolution
% then required is done with FFTs.
% 1988: L. Arevalo; 11.06.91 K. Schwarz, LNT Erlangen; 6/12/91 csb.
%
N   = length(x);                %Sequence length
L   = 2^ceil(log((2*N-1))/log(2)); %FFT length
n   = 0:N-1;
W   = exp(-j*pi*n.*n/N);        %Chirp signal
FW  = fft([conj(W), zeros(1,L-2*N+1), conj(W(N:-1:2))],L);
y   = ifft(FW.*fft(x.'.*W,L));  %Convolve using FFT
y   = y(1:N).*W;                %Demodulate
 


Goertzel's Algorithm (or A Better  DFT Algorithm)



 Goertzel's algorithm 7, 3, 15 is another methods that
calculates the DFT by converting it into a digital filtering problem. The
method looks at the calculation of the DFT as the evaluation of a
polynomial on the unit circle in the complex plane. This evaluation is
done by Horner's method which is implemented recursively by an IIR filter.
The First-Order Goertzel Algorithm



 The polynomial whose values on the unit circle are the DFT is a slightly
modified z-transform of x(n) given by
(5.18)

 which for clarity in this development uses a positive exponent .
This is illustrated for a length-4 sequence as a third-order
polynomial by
(5.19)
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 The DFT is found by evaluating Equation 5.18 at z=Wk, which
can be written as
(5.20)
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(5.21)
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 The most efficient way of evaluating a general polynomial without any
pre-processing is by “Horner's rule" 11 which is a nested
evaluation. This is illustrated for the polynomial in Equation 5.19 by
(5.22)
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 This nested sequence of operations can be written as a linear difference
equation in the form of
(5.23)

 with initial condition y(0)=0, and the desired result being
the solution at m=N. The value of the polynomial is given by
(5.24)
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 Equation 5.23 can be viewed as a first-order IIR filter with the
input being the data sequence in reverse order and the value of the
polynomial at z being the filter output sampled at m=N. Applying
this to the DFT gives the Goertzel algorithm 17, 15 which is
(5.25)
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 with y(0)=0 and
(5.26)
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 where
(5.27)

 The flowgraph of the algorithm can be found in 3, 15 and a
simple FORTRAN program is given in the appendix.
 When comparing this program with the direct calculation of Equation 5.27, it
is seen that the number of floating-point multiplications and additions
are the same. In fact, the structures of the two algorithms look similar,
but close examination shows that the way the sines and cosines enter the
calculations is different. In Equation 5.27, new sine and cosine values are
calculated for each frequency and for each data value, while for the Goertzel algorithm in Equation 5.25, they are calculated only for each
frequency in the outer loop. Because of the recursive or feedback nature
of the algorithm, the sine and cosine values are “updated" each loop
rather than recalculated. This results in 2N trigonometric evaluations
rather than 2N2. It also results in an increase in accumulated
quantization error.
 It is possible to modify this algorithm to allow entering the data
in forward order rather than reverse order. The difference 
Equation 5.23 becomes
(5.28)
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 if Equation 5.24 becomes
(5.29)

 for y(0)=0. This is the algorithm programmed later.

The Second-Order Goertzel Algorithm



 One of the reasons the first-order Goertzel algorithm does not improve
efficiency is that the constant in the feedback or recursive path is
complex and, therefore, requires four real multiplications and two real
additions. A modification of the scheme to make it second-order removes
the complex multiplications and reduces the number of required
multiplications by two.
 Define the variable q(m) so that
(5.30)

 This substituted into the right-hand side of Equation 5.23 gives
(5.31)

 Combining Equation 5.30 and Equation 5.31 gives the second order difference
equation
(5.32)

 which together with the output Equation 5.30, comprise the
second-order Goertzel algorithm where
(5.33)
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 for initial conditions q(0)=q(–1)=0.
 A similar development starting with Equation 5.28 gives a second-order
algorithm with forward ordered input as
(5.34)

(5.35)

 with
(5.36)

 and for q(0)=q(–1)=0.
 Note that both difference Equation 5.32 and Equation 5.34 are not changed
if z is replaced with z–1, only the output Equation 5.30 and
Equation 5.35 are different. This means that the polynomial X(z) may be
evaluated at a particular z and its inverse z–1 from one solution
of the difference Equation 5.32 or Equation 5.34 using the output
equations
(5.37)

 and
(5.38)

 Clearly, this allows the DFT of a sequence to be calculated with half
the arithmetic since the outputs are calculated two at a time. The
second-order DE actually produces a solution q(m) that contains two
first-order components. The output equations are, in effect, zeros that
cancel one or the other pole of the second-order solution to give the
desired first-order solution. In addition to allowing the calculating of
two outputs at a time, the second-order DE requires half the number of
real multiplications as the first-order form. This is because the
coefficient of the q(m–2) is unity and the coefficient of the q(m–1)
is real if z and z–1 are complex conjugates of each other which is
true for the DFT.

Analysis of Arithmetic Complexity and Timings



 Analysis of the various forms of the Goertzel algorithm from their
programs gives the following operation count for real multiplications and
real additions assuming real data.
Table 5.2. 	Algorithm	Real Mults.	Real Adds	Trig Eval.
	Direct DFT	
                  
                	
                  
                	
                  
                
	First-Order	
                  
                	
                  
                	
                  
                
	Second-Order	
                  
                	
                  
                	
                  
                
	Second-Order 2	
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 Timings of the algorithms on a PC in milliseconds are given in the
following table.
Table 5.3. 	Algorithm	
                  
                    
                      N
                      =
                      125
                    
                  
                	
                  
                    
                      N
                      =
                      257
                    
                  
                
	Direct DFT	4.90	19.83
	First-Order	4.01	16.70
	Second-Order	2.64	11.04
	Second-Order 2	1.32	5.55


 These timings track the floating point operation counts fairly well.

Conclusions



 Goertzel's algorithm in its first-order form is not particularly
interesting, but the two-at-a-time second-order form is significantly
faster than a direct DFT. It can also be used for any polynomial
evaluation or for the DTFT at unequally spaced values or for evaluating a
few DFT terms. A very interesting observation is that the inner-most loop
of the Glassman-Ferguson FFT 6 is a first-order Goertzel
algorithm even though that FFT is developed in a very different framework.
 In addition to floating-point arithmetic counts, the number of trigonometric
function evaluations that must be made or the size of a table to store
precomputed values should be considered. Since the value of the Wnk
terms in Equation 5.23 are iteratively calculate in the IIR filter structure,
there is round-off error accumulation that should be analyzed in any
application.
 It may be possible to further improve the efficiency of the second-order
Goertzel algorithm for calculating all of the DFT of a number sequence.
Perhaps a fourth order DE could calculate four output values at a time and
they could be separated by a numerator that would cancel three of the
zeros. Perhaps the algorithm could be arranged in stages to give an
 operation count. The current algorithm does not take into
account any of the symmetries of the input index. Perhaps some of the
ideas used in developing the QFT 4, 8, 9 could be used here.


The Quick Fourier Transform (QFT)



 One stage of the QFT can use the symmetries of the sines and cosines to
calculate a DFT more efficiently than directly implementing the definition
Multidimensional Index Mapping: Equation 1. Similar to the Goertzel algorithm, the one-stage QFT is a
better N2 DFT algorithm for arbitrary lengths. See The Cooley-Tukey Fast Fourier Transform Algorithm: The Quick Fourier Transform, An FFT based on Symmetries.
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Solutions


Chapter 6. Factoring the Signal Processing Operators



 A third approach to removing redundancy in an algorithm is to express
the algorithm as an operator and then factor that operator into sparse factors. This
approach is used by Tolimieri 4, 5, Egner 3,
Selesnick, Elliott 2 and others. It is presented in a more general form
in DFT and FFT: An Algebraic View The operators may be in the form of a matrix
or a tensor operator.
The FFT from Factoring the DFT Operator



 The definition of the DFT in Multidimensional Index Mapping: Equation 1 can written as a matrix-vector
operation by C=WX which, for N=8 is
(6.1)

 which clearly requires N2=64 complex multiplications and N(N–1) additions.
A factorization of the DFT operator, W, gives  and
 or, expanded,

(6.2)

(6.3)

 where the Fi matrices are sparse. Note that each has 16 (or 2N) non-zero terms
and F2 and F3 have 8 (or N) non-unity terms. If N=2M, then the number
of factors is log(N)=M.
In another form with the twiddle factors separated so as to count the complex
multiplications we have
(6.4)

(6.5)

(6.6)

 which is in the form  described by the index map.
A1, A2, and A3 each represents 8 additions, or, in general, N additions.
M1 and M2 each represent 4 (or N/2) multiplications.
 This is a very interesting result showing that implementing the DFT using the factored
form requires considerably less arithmetic than the single factor definition.
Indeed, the form of the formula that Cooley and Tukey derived showing that the
amount of arithmetic required by the FFT is on the order of Nlog(N) can be
seen from the factored operator formulation.
 Much of the theory of the FFT can be developed using operator factoring and it has some advantages for implementation of parallel and vector computer
architectures.  The eigenspace approach is somewhat of the same type 1.

Algebraic Theory of Signal Processing Algorithms



 A very general structure for all kinds of algorithms can be generalized from
the approach of operators and operator decomposition. This is developed as
“Algebraic Theory of Signal Processing" discussed in the module DFT and FFT: An Algebraic View by Püschel and others 3.
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Solutions


Chapter 7. Winograd's Short DFT Algorithms



 In 1976, S. Winograd 20 presented a new DFT algorithm
which had significantly fewer multiplications than the Cooley-Tukey
FFT which had been published eleven years earlier. This new Winograd
Fourier Transform Algorithm (WFTA) is based on the type- one index
map from Multidimensional Index Mapping with each of the relatively prime length
short DFT's calculated by very efficient special algorithms. It is
these short algorithms that this section will develop. They use the
index permutation of Rader described in the another module to
convert the prime length short DFT's into cyclic convolutions.
Winograd developed a method for calculating digital convolution with
the minimum number of multiplications. These optimal algorithms are
based on the polynomial residue reduction techniques of Polynomial Description of Signals: Equation 1 to break the convolution into multiple small ones
2, 12, 14, 23, 21, 9.
 The operation of discrete convolution defined by
(7.1)

 is called a bilinear operation because, for a fixed h(n),
y(n) is a linear function of x(n) and for a fixed x(n) it is a
linear function of h(n). The operation of cyclic convolution is
the same but with all indices evaluated modulo N.
 Recall from Polynomial Description of Signals: Equation 3 that length-N cyclic convolution of
x(n) and h(n) can be represented by polynomial multiplication
(7.2)

 This bilinear operation of Equation 7.1 and Equation 7.2 can also be
expressed in terms of linear matrix operators and a simpler bilinear
operator denoted by o which may be only a simple
element-by-element multiplication of the two vectors
12, 9, 10. This matrix formulation is
(7.3)
        
          Y
          =
          C
          [
          A
          X
          o
          B
          H
          ]
        
      
 where X, H and Y are length-N vectors with elements of
x(n), h(n) and y(n) respectively. The matrices A and B
have dimension M x N , and C is N x M with M≥N.
The elements of A, B, and C are constrained to be simple;
typically small integers or rational numbers. It will be these
matrix operators that do the equivalent of the residue reduction on
the polynomials in Equation 7.2.
 In order to derive a useful algorithm of the form Equation 7.3 to
calculate Equation 7.1, consider the polynomial formulation
Equation 7.2 again. To use the residue reduction scheme, the modulus
is factored into relatively prime factors. Fortunately the factoring
of this particular polynomial, sN–1, has been extensively studied
and it has considerable structure. When factored over the rationals,
which means that the only coefficients allowed are rational numbers,
the factors are called cyclotomic polynomials
2, 12, 14. The most interesting property for our
purposes is that most of the coefficients of cyclotomic polynomials
are zero and the others are plus or minus unity for degrees up to
over one hundred. This means the residue reduction will generally 
require no multiplications.
 The operations of reducing X(s) and H(s) in Equation 7.2 are carried
out by the matrices A and B in Equation 7.3. The convolution of
the residue polynomials is carried out by the o operator and the
recombination by the CRT is done by the C matrix. More details are
in 2, 12, 14, 9, 10 but the important fact is
the A and B matrices usually contain only zero and plus or minus
unity entries and the C matrix only contains rational numbers. The
only general multiplications are those represented by o. Indeed,
in the theoretical results from computational complexity theory,
these real or complex multiplications are usually the only ones
counted. In practical algorithms, the rational multiplications
represented by C could be a limiting factor.
 The h(n) terms are fixed for a digital filter, or they
represent the W terms from Multidimensional Index Mapping: Equation 1 if the convolution is being
used to calculate a DFT. Because of this, d=BH in Equation 7.3
can be precalculated and only the A and C operators represent
the mathematics done at execution of the algorithm. In order to
exploit this feature, it was shown 23, 9 that the
properties of Equation 7.3 allow the exchange of the more complicated
operator C with the simpler operator B. Specifically this is
given by
(7.4)
        
          Y
          =
          C
          [
          A
          X
          o
          B
          H
          ]
        
      
(7.5)

 where H' has the same elements as H, but in a permuted order,
and likewise Y' and Y. This very important property allows
precomputing the more complicated CTH' in Equation 7.5 rather than
BH as in Equation 7.3.
 Because BH or CTH' can be precomputed, the bilinear form of
Equation 7.3 and Equation 7.5 can be written as a linear form. If an
M x M diagonal matrix D is formed from d=CTH, or in the
case of Equation 7.3, d=BH, assuming a commutative property for
o, Equation 7.5 becomes
(7.6)
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          D
          A
          X
        
      
 and Equation 7.3 becomes
(7.7)
        
          Y
          =
          C
          D
          A
          X
        
      
 In most cases there is no reason not to use the same reduction
operations on X and H, therefore, B can be the same as A and
Equation 7.6 then becomes
(7.8)
        
          Y'
          =
          AT
          D
          A
          X
        
      
 In order to illustrate how the residue reduction is carried
out and how the A matrix is obtained, the length-5 DFT algorithm
started in The DFT as Convolution or Filtering: Matrix 1 will be continued. The DFT is first converted
to a length-4 cyclic convolution by the index permutation from
The DFT as Convolution or Filtering: Equation 3 to give the cyclic convolution in The DFT as Convolution or Filtering. To avoid
confusion from the permuted order of the data x(n) in The DFT as Convolution or Filtering,
the cyclic convolution will first be developed without the
permutation, using the polynomial U(s)
(7.9)
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(7.10)
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 and then the results will be converted back to the permuted x(n).
The length-4 cyclic convolution in terms of polynomials is
(7.11)

 and the modulus factors into three cyclotomic polynomials
(7.12)

(7.13)

(7.14)

 Both U(s) and H(s) are reduced modulo these three polynomials.
The reduction modulo P1 and P2 is done in two stages. First it
is done modulo , then that residue is further reduced
modulo (s–1) and (s+1).
(7.15)
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(7.16)

(7.17)

(7.18)

(7.19)

 The reduction in Equation 7.16 of the data polynomial Equation 7.15 can
be denoted by a matrix operation on a vector which has the data as
entries.
(7.20)

 and the reduction in Equation 7.19 is
(7.21)

 Combining Equation 7.20 and Equation 7.21 gives one operator
(7.22)

 Further reduction of v0+v1s is not possible because P3=s2+1 cannot be factored over the rationals. However s2–1 can be
factored into P1P2=(s–1)(s+1) and, therefore, w0+w1s can
be further reduced as was done in Equation 7.17 and Equation 7.18 by
(7.23)

(7.24)

 Combining Equation 7.22, Equation 7.23 and Equation 7.24 gives
(7.25)

 The same reduction is done to H(s) and then the convolution of
Equation 7.11 is done by multiplying each residue polynomial of X(s)
and H(s) modulo each corresponding cyclotomic factor of P(s) and
finally a recombination using the polynomial Chinese Remainder
Theorem (CRT) as in Polynomial Description of Signals: Equation 9 and Polynomial Description of Signals: Equation 13.
(7.26)
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 mod 
 where U1(s)=r1 and U2(s)=r2 are constants and U3(s)=v0+v1s is a first degree polynomial. U1 times H1 and
U2 times H2 are easy, but multiplying U3 time H3 modulo
 is more difficult.
 The multiplication of U3(s) times H3(s) can be done by the
Toom-Cook algorithm 2, 12, 14 which can be viewed as
Lagrange interpolation or polynomial multiplication modulo a special
polynomial with three arbitrary coefficients. To simplify the
arithmetic, the constants are chosen to be plus and minus one and
zero. The details of this can be found in 2, 12, 14.
For this example it can be verified that
(7.27)

 which by the Toom-Cook algorithm or inspection is
(7.28)

 where o signifies point-by-point multiplication. The total A
matrix in Equation 7.3 is a combination of Equation 7.25 and
Equation 7.28 giving
(7.29)
        
          A
          X
          =
          A1
          A2
          A3
          X
        
      
(7.30)

 where the matrix A3 gives the residue reduction s2–1 and
s2+1, the upper left-hand part of A2 gives the reduction
modulo s–1 and s+1, and the lower right-hand part of A1
carries out the Toom-Cook algorithm modulo s2+1 with the
multiplication in Equation 7.5. Notice that by calculating
Equation 7.30 in the three stages, seven additions are required. Also
notice that A1 is not square. It is this “expansion" that causes
more than N multiplications to be required in o in Equation 7.5
or D in Equation 7.6. This staged reduction will derive the A
operator for Equation 7.5
 The method described above is very straight-forward for the
shorter DFT lengths. For N=3, both of the residue polynomials
are constants and the multiplication given by o in Equation 7.3 is
trivial. For N=5, which is the example used here, there is one
first degree polynomial multiplication required but the Toom-Cook
algorithm uses simple constants and, therefore, works well as
indicated in Equation 7.28. For N=7, there are two first degree
residue polynomials which can each be multiplied by the same
techniques used in the N=5 example. Unfortunately, for any
longer lengths, the residue polynomials have an order of three or
greater which causes the Toom-Cook algorithm to require constants of
plus and minus two and worse. For that reason, the Toom-Cook method
is not used, and other techniques such as index mapping are used
that require more than the minimum number of multiplications, but do
not require an excessive number of additions. The resulting
algorithms still have the structure of Equation 7.8. Blahut
2 and Nussbaumer 14 have a good collection of
algorithms for polynomial multiplication that can be used with the
techniques discussed here to construct a wide variety of DFT
algorithms.
 The constants in the diagonal matrix D can be found from the
CRT matrix C in Equation 7.5 using d=CTH' for the diagonal
terms in D. As mentioned above, for the smaller prime lengths of
3, 5, and 7 this works well but for longer lengths the CRT becomes
very complicated. An alternate method for finding D uses the fact
that since the linear form Equation 7.6 or Equation 7.8 calculates the
DFT, it is possible to calculate a known DFT of a given x(n) from
the definition of the DFT in Multidimensional Index Mapping: Equation 1 and, given the A matrix in
Equation 7.8, solve for D by solving a set of simultaneous
equations. The details of this procedure are described in
9.
 A modification of this approach also works for a length
which is an odd prime raised to some power: N=PM. This is a
bit more complicated 12, 23 but has been done for lengths
of 9 and 25. For longer lengths, the conventional Cooley-Tukey type-
two index map algorithm seems to be more efficient. For powers of
two, there is no primitive root, and therefore, no simple conversion
of the DFT into convolution. It is possible to use two generators
12, 14, 21 to make the conversion and there exists a
set of length 4, 8, and 16 DFT algorithms of the form in Equation 7.8
in 12.
 In Table 7.1 an operation count of several short DFT
algorithms is presented. These are practical algorithms that can be
used alone or in conjunction with the index mapping to give longer
DFT's as shown in The Prime Factor and Winograd Fourier Transform Algorithms. Most are optimized in having
either the theoretical minimum number of multiplications or the
minimum number of multiplications without requiring a very large
number of additions. Some allow other reasonable trade-offs between
numbers of multiplications and additions. There are two lists of the
number of multiplications. The first is the number of actual
floating point multiplications that must be done for that length
DFT. Some of these (one or two in most cases) will be by rational
constants and the others will be by irrational constants. The second
list is the total number of multiplications given in the diagonal
matrix D in Equation 7.8. At least one of these will be unity ( the
one associated with X(0)) and in some cases several will be unity
( for N=2M ). The second list is important in programming the
WFTA in The Prime Factor and Winograd Fourier Transform Algorithm: The Winograd Fourier Transform Algorithm.
Table 7.1. Number of Real Multiplications and Additions for a Length-N
DFT of Complex Data	Length N	Mult Non-one	Mult Total	Adds
	2	0	4	4
	3	4	6	12
	4	0	8	16
	5	10	12	34
	7	16	18	72
	8	4	16	52
	9	20	22	84
	11	40	42	168
	13	40	42	188
	16	20	36	148
	17	70	72	314
	19	76	78	372
	25	132	134	420
	32	68	-	388


 Because of the structure of the short DFTs, the number of real multiplications required for the DFT of
real data is exactly half that required for complex data. The number
of real additions required is slightly less than half that required
for complex data because (N–1) of the additions needed when N is
prime add a real to an imaginary, and that is not actually
performed. When N=2m, there are (N–2) of these pseudo
additions. The special case for real data is discussed in
5, 7, 19.
 The structure of these algorithms are in the form of X'=CDAX or BTDAX or ATDAX from Equation 7.5 and Equation 7.8. The
A and B matrices are generally M by N with M≥N and
have elements that are integers, generally 0 or ±1. A
pictorial description is given in Figure 7.1.
 [image: ]

Figure 7.1. 
Flow Graph for the Length-5 DFT

 [image: ]

Figure 7.2. 
Block Diagram of a Winograd Short DFT

 The flow graph in Figure 7.1 should be compared with the
matrix description of Equation 7.8 and Equation 7.30, and with the
programs in 2, 12, 3, 14 and the appendices.  The shape in Figure 7.2 illustrates the expansion of the data by A. That is to
say, AX has more entries than X because M>N. The A operator
consists of additions, the D operator gives the M
multiplications (some by one) and AT contracts the data back to
N values with additions only. M is one half the second list of
multiplies in Table 7.1.
 An important characteristic of the D operator in the
calculation of the DFT is its entries are either purely real or
imaginary. The reduction of the W vector by  and  separates the real and the imaginary
constants. This is discussed in 23, 9. The number of
multiplications for complex data is only twice those necessary for
real data, not four times.
 Although this discussion has been on the calculation of the
DFT, very similar results are true for the calculation of
convolution and correlation, and these will be further developed in
Algorithms for Data with Restrictions. The ATDA structure and the picture in Figure 7.2
are the same for convolution. Algorithms and operation counts can be
found in 2, 14, 1.
The Bilinear Structure



 The bilinear form introduced in Equation 7.3 and the related linear
form in Equation 7.6 are very powerful descriptions of both the DFT
and convolution.
(7.31)

(7.32)

 Since Equation 7.31 is a bilinear operation defined in terms of a
second bilinear operator  o , this formulation can be nested. For
example if o is itself defined in terms of a second bilinear
operator  @, by
(7.33)

 then Equation 7.31 becomes
(7.34)

 For convolution, if A represents the polynomial residue reduction
modulo the cyclotomic polynomials, then A is square (e.g.
Equation 7.25 and o represents multiplication of the residue
polynomials modulo the cyclotomic polynomials. If A represents the
reduction modulo the cyclotomic polynomials plus the Toom-Cook
reduction as was the case in the example of Equation 7.30, then A is
NxM and o is term-by- term simple scalar multiplication. In this
case AX can be thought of as a transform of X and C is the
inverse transform. This is called a rectangular transform
1 because A is rectangular. The transform requires
only additions and convolution is done with M multiplications. The
other extreme is when A represents reduction over the N complex
roots of sN–1. In this case A is the DFT itself, as in the
example of (43), and  o  is point by point complex multiplication
and C is the inverse DFT. A trivial case is where A, B and C
are identity operators and  o  is the cyclic convolution.
 This very general and flexible bilinear formulation coupled
with the idea of nesting in Equation 7.34 gives a description of most
forms of convolution.

Winograd's Complexity Theorems



 Because Winograd's work 2, 12, 23, 21, 22, 24
has been the foundation of the modern results in efficient
convolution and DFT algorithms, it is worthwhile to look at his
theoretical conclusions on optimal algorithms. Most of his results
are stated in terms of polynomial multiplication as Polynomial Description of Signals: Equation 3 or
Equation 7.11. The measure of computational complexity is usually the
number of multiplications, and only certain multiplications are
counted. This must be understood in order not to misinterpret the
results.
 This section will simply give a statement of the pertinent
results and will not attempt to derive or prove anything. A short
interpretation of each theorem will be given to relate the result to
the algorithms developed in this chapter. The indicated references
should be consulted for background and detail.
 Theorem 1 
23 Given two polynomials, x(s) and h(s), of
degree N and M respectively, each with indeterminate
coefficients that are elements of a field H, N+M+1
multiplications are necessary to compute the
coefficients of the product polynomial x(s)h(s).
Multiplication by elements of the field G (the field of
constants), which is contained in H, are not counted and
G contains at least N+M distinct elements.
 The upper bound in this theorem can be
realized by choosing an arbitrary modulus polynomial P(s) of
degree N+M+1 composed of N+M+1 distinct linear polynomial
factors with coefficients in G which, since its degree is greater
than the product x(s)h(s), has no effect on the product, and by
reducing x(s) and h(s) to N+M+1 residues modulo the N+M+1
factors of P(s). These residues are multiplied by each other,
requiring N+M+1 multiplications, and the results recombined using
the Chinese remainder theorem (CRT). The operations required in the
reduction and recombination are not counted, while the residue
multiplications are. Since the modulus P(s) is arbitrary, its
factors are chosen to be simple so as to make the reduction and CRT
simple. Factors of zero, plus and minus unity, and infinity are the
simplest. Plus and minus two and other factors complicate the actual
calculations considerably, but the theorem does not take that into
account. This algorithm is a form of the Toom-Cook algorithm and of
Lagrange interpolation 2, 12, 14, 23. For our
applications, H is the field of reals and G the field of
rationals.
 Theorem 2 
23 If an algorithm exists which computes
x(s)h(s) in N+M+1 multiplications, all but one of its
multiplication steps must necessarily be of the form
(7.35)

 where gk are distinct elements of G; and gk' and gk"
are arbitrary elements of G
 This theorem states that the structure of
an optimal algorithm is essentially unique although the factors of
P(s) may be chosen arbitrarily.
 Theorem 3 
23 Let P(s) be a polynomial of degree N and
be of the form P(s)=Q(s)k, where Q(s) is an
irreducible polynomial with coefficients in G and k is a
positive integer. Let x(s) and h(s) be two polynomials
of degree at least N–1 with coefficients from H, then
2N–1 multiplications are required to compute the product
x(s)h(s) modulo P(s).
 This theorem is similar to
Theorem 1 with the operations of the reduction of the product modulo
P(s) not being counted.
 Theorem 4 
23 Any algorithm that computes the product
x(s)h(s) modulo P(s) according to the conditions stated
in Theorem 3 and requires 2N–1 multiplications will
necessarily be of one of three structures, each of which
has the form of Theorem 2 internally.
 As in Theorem 2, this theorem
states that only a limited number of possible structures exist for
optimal algorithms.
 Theorem 5 
23 If the modulus polynomial P(s) has
degree N and is not irreducible, it can be written in a
unique factored form P(s)=P1m1(s)P2m2(s)...Pkmk(s) where each of the Pi(s) are
irreducible over the allowed coefficient field G. 2N–k
multiplications are necessary to compute the product
x(s)h(s) modulo P(s) where x(s) and h(s) have
coefficients in H and are of degree at least N–1. All
algorithms that calculate this product in 2N–k
multiplications must be of a form where each of the k
residue polynomials of x(s) and h(s) are separately
multiplied modulo the factors of P(s) via the CRT.
 Corollary: If the modulus polynomial is P(s)=sN–1,
then 2N–t(N) multiplications are necessary to compute
x(s)h(s) modulo P(s), where t(N) is the number of
positive divisors of N.
 Theorem 5 is very general since it
allows a general modulus polynomial. The proof of the upper bound
involves reducing x(s) and h(s) modulo the k factors of
P(s). Each of the k irreducible residue polynomials is then
multiplied using the method of Theorem 4 requiring 2Ni–1
multiplies and the products are combined using the CRT. The total
number of multiplies from the k parts is 2N–k. The theorem also
states the structure of these optimal algorithms is essentially
unique. The special case of P(s)=sN–1 is interesting since it
corresponds to cyclic convolution and, as stated in the corollary,
k is easily determined. The factors of sN–1 are called
cyclotomic polynomials and have interesting properties
2, 12, 14.
 Theorem 6 
23, 21 Consider calculating the DFT of a
prime length real-valued number sequence. If G is chosen
as the field of rational numbers, the number of real
multiplications necessary to calculate a length-P DFT is
u(DFT(N))=2P–3–t(P–1) where t(P–1) is the number of
divisors of P–1.
 This theorem not only gives a lower limit
on any practical prime length DFT algorithm, it also gives practical
algorithms for N=3,5, and 7. Consider the operation counts in
Table 7.1 to understand this theorem. In addition to the real
multiplications counted by complexity theory, each optimal
prime-length algorithm will have one multiplication by a rational
constant. That constant corresponds to the residue modulo (s-1)
which always exists for the modulus P(s)=sN–1–1. In a
practical algorithm, this multiplication must be carried out, and
that accounts for the difference in the prediction of Theorem 6 and count in Table 7.1. In addition, there is another
operation that for certain applications must be counted as a
multiplication. That is the calculation of the zero frequency term
X(0) in the first row of the example in The DFT as Convolution or Filtering: Matrix 1. For
applications to the WFTA discussed in The Prime Factor and Winograd Fourier Transform Algorithms: The Winograd Fourier Transform Algorithm, that
operation must be counted as a multiply. For lengths longer than 7,
optimal algorithms require too many additions, so compromise
structures are used.
 Theorem 7 
24, 6 If G is chosen as the field of
rational numbers, the number of real multiplications
necessary to calculate a length-N DFT where N is a prime
number raised to an integer power: N=Pm , is given by
(7.36)
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 where t(P–1) is the number of divisors of (P–1).
 This result seems to be practically
achievable only for N=9, or perhaps 25. In the case of N=9,
there are two rational multiplies that must be carried out and are
counted in Table 7.1 but are not predicted by Theorem 7.
Experience 8 indicates that even for N=25, an
algorithm based on a Cooley-Tukey FFT using a type 2 index map gives
an over-all more balanced result.
 Theorem 8
6 If G is chosen as the field of rational
numbers, the number of real multiplications necessary to
calculate a length-N DFT where N=2m is given by
(7.37)
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 This result is not practically useful because the number of
additions necessary to realize this minimum of multiplications
becomes very large for lengths greater than 16. Nevertheless, it
proves the minimum number of multiplications required of an optimal
algorithm is a linear function of N rather than of NlogN
which is that required of practical algorithms. The best practical
power-of-two algorithm seems to the Split-Radix 4 FFT
discussed in The Cooley-Tukey Fast Fourier Transform Algorithm: The Split-Radix FFT Algorithm.
 All of these theorems use ideas based on residue reduction,
multiplication of the residues, and then combination by the CRT. It
is remarkable that this approach finds the minimum number of
required multiplications by a constructive proof which generates an
algorithm that achieves this minimum; and the structure of the
optimal algorithm is, within certain variations, unique. For shorter
lengths, the optimal algorithms give practical programs. For longer
lengths the uncounted operations involved with the multiplication of
the higher degree residue polynomials become very large and
impractical. In those cases, efficient suboptimal algorithms can be
generated by using the same residue reduction as for the optimal
case, but by using methods other than the Toom-Cook algorithm of
Theorem 1 to multiply the residue polynomials.
 Practical long DFT algorithms are produced by combining
short prime length optimal DFT's with the Type 1 index map from
Multidimensional Index Mapping to give the Prime Factor Algorithm (PFA) and the
Winograd Fourier Transform Algorithm (WFTA) discussed in The Prime Factor and Winograd Fourier Transform Algorithms. It is interesting to note that the index mapping technique
is useful inside the short DFT algorithms to replace the Toom-Cook
algorithm and outside to combine the short DFT's to calculate long
DFT's.

The Automatic Generation of Winograd's Short DFTs
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 Efficient prime length DFTs are important for two reasons. A particular
application may require a prime length DFT and secondly, the maximum length
and the variety of lengths of a PFA or WFTA algorithm depend upon the
availability of prime length modules.
 This 15, 18, 16, 17 discusses automation of the process Winograd
used for constructing prime length FFTs 2, 8 for N<7
and that Johnson and Burrus 9 extended to N<19.
It also describes a program that will design any prime length FFT in principle,
and will also automatically generate the algorithm as a C program and draw
the corresponding flow graph.
 Winograd's approach uses Rader's method to convert a prime length DFT into
a P–1 length cyclic convolution, polynomial residue reduction to decompose
the problem into smaller convolutions 2, 14, and the Toom-Cook
algorithm 2, 13.
The Chinese Remainder Theorem (CRT) for polynomials is then used to recombine the
shorter convolutions. Unfortunately, the design procedure derived directly from
Winograd's theory becomes cumbersome for longer length DFTs, and this has often
prevented the design of DFT programs for lengths greater than 19.
 Here we use three methods to facilitate the construction of prime
length FFT modules. First, the matrix exchange property
2, 9, 11 is used so
that the transpose of the reduction operator can be used rather than the more
complicated CRT reconstruction operator. This is then combined with the
numerical method 9 for obtaining the multiplication coefficients rather
than the direct use of the CRT. We also deviate from the Toom-Cook algorithm,
because it requires too many additions for the lengths in which we are interested.
Instead we use an iterated polynomial multiplication algorithm 2. We have
incorporated these three ideas into a single structural procedure that automates
the design of prime length FFTs.

Matrix Description



 It is important that each step in the Winograd FFT can be described using matrices.
By expressing cyclic convolution as a bilinear form, a compact form of prime length
DFTs can be obtained.
 If y is the cyclic convolution of h and x, then y can be expressed as
(7.38)
            
              y
              =
              C
              [
              A
              x
              .
              *
              B
              h
              ]
            
          
 where, using the Matlab convention, .* represents point by point multiplication.
When A,B, and C are allowed to be complex, A and B are seen to be the DFT operator
and C, the inverse DFT. When only real numbers are allowed, A, B, and C will be
rectangular. This form of convolution is presented with many examples in 2.
Using the matrix exchange property explained in 2 and 9 this form can be
written as
(7.39)

 where R is the permutation matrix that reverses order.
 When h is fixed, as it is when considering prime length DFTs, the term CTRh can be
precomputed and a diagonal matrix D formed by . This is advantageous
because in general, C is more complicated than B, so the ability to “hide" C saves
computation. Now y=RBTDAx or y=RATDAx since A and B can be the same; they
implement a polynomial reduction. The form y=RTDAxT can also be used for the prime
length DFTs, it is only necessary to permute the entries of x and to ensure that the
DC term is computed correctly. The computation of the DC term is simple, for the residue
of a polynomial modulo a–1 is always the sum of the coefficients. After adding the x0
term of the original input sequence, to the s–l residue, the DC term is obtained.
Now DFT{x}=RATDAx. In 9 Johnson observes that by permuting the elements on the
diagonal of D, the output can be permuted, so that the R matrix can be hidden in D,
and DFT{x}=ATDAx. From the knowledge of this form, once A is found, D can be found
numerically 9.

Programming the Design Procedure



 Because each of the above steps can be described by matrices, the development of a
prime length FFTs is made convenient with the use of a matrix oriented programming
language such as Matlab. After specifying the appropriate matrices that describe the
desired FFT algorithm, generating code involves compiling the matrices into the desired
code for execution.
 Each matrix is a section of one stage of the flow graph that corresponds to the DFT
program. The four stages are:
 	 Permutation Stage: Permutes input and output sequence.


	 Reduction Stage: Reduces the cyclic convolution to smaller polynomial products.


	 Polynomial Product Stage: Performs the polynomial multiplications.


	 Multiplication Stage: Implements the point-by-point multiplication in the bilinear form.




 Each of the stages can be clearly seen in the flow graphs for the DFTs. Figure 7.3
shows the flow graph for a length 17 DFT algorithm that was automatically drawn by the program.
 [image: Programming the Design Procedure]

Figure 7.3. 
Flowgraph of length-17 DFT

 The programs that accomplish this process are written in Matlab and C. Those that compute
the appropriate matrices are written in Matlab. These matrices are then stored as two ASCII
files, with the dimensions in one and the matrix elements in the second. A C program then
reads the flies and compiles them to produce the final FFT program in C 18

The Reduction Stage



 The reduction of an Nth degree polynomial, X(s), modulo the cyclotomic polynomial factors
of  requires only additions for many N, however, the actual number of additions
depends upon the way in which the reduction proceeds. The reduction is most efficiently
performed in steps. For example, if N=4 and ,and
 where the double parenthesis denote polynomial reduction modulo (s–1), s+1,
and s2+1), then in the first step ((X(s)))s2–1, and ((Xs)))s2+1 should be computed.
In the second step, ((Xs)))s–1 and ((Xs)))s+1 can be found by reducing ((X(s)))s2–1
This process is described by the diagram in Figure 7.4.
 [image: The Reduction Stage]

Figure 7.4. 
Factorization of s4–1 in steps

 When N is even, the appropriate first factorization is , however,
the next appropriate factorization is frequently less obvious. The following procedure
has been found to generate a factorization in steps that coincides with the
factorization that minimizes the cumulative number of additions incurred by the steps.
The prime factors of N are the basis of this procedure and their importance is clear
from the useful well-known equation sN–1=∏n|NCn(s) where Cn(s) is the
nth cyclotomic polynomial.
 We first introduce the following two functions defined on the positive integers,
(7.40)

 and ψ(1)=1.
 Suppose P(s) is equal to either  or an intermediate noncyclotomic polynomial
appearing in the factorization process, for example, , above. Write P(s) in terms
of its cyclotomic factors,
(7.41)

 define the two sets, G and , by
(7.42)

 and define the two integers, t and T, by

(7.43)

 Then form two new sets,
(7.44)

 The factorization of P(s),
(7.45)

 has been found useful in the procedure for factoring .
This is best illustrated with an example.
 Example: N=36
 Step 1. Let P(s)=s36–1. Since P=C1C2C3C4C6C9C12C18C36
(7.46)

(7.47)
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(7.48)
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(7.49)
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 Hence the factorization of s36–1 into two intermediate polynomials is as expected,
(7.50)

 If a 36th
 degree polynomial, X(s), is represented by a vector of coefficients,
, then  (represented by X') and
 (represented by X") is given
by
(7.51)
            test
          
 which entails 36 additions.
 Step 2. This procedure is repeated with P(s)=s18–1 and P(s)=s18+1.
We will just show it for the later. Let P(s)=s18+1. Since P=C4C12C36
(7.52)

(7.53)
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(7.55)
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(7.56)
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 This yields the two intermediate polynomials,
(7.57)

 In the notation used above,
(7.58)

 entailing 24 additions. Continuing this process results in a factorization in steps
 In order to see the number of additions this scheme uses for numbers of the
form N=P–1 (which is relevant to prime length FFT algorithms) figure 4
shows the number of additions the reduction process uses when the polynomial
X(s) is real.
 Figure 4: Number of Additions for Reduction Stage

The Polynomial Product Stage



 The iterated convolution algorithm can be used to construct an N point linear
convolution algorithm from shorter linear convolution algorithms 2.
Suppose the linear convolution y, of the n point vectors x and h (h known)
is described by
(7.59)

 where En is an “expansion" matrix the elements of which are ±l's and 0's and
D is an appropriate diagonal matrix. Because the only multiplications in this
expression are by the elements of D, the number of multiplications required,
M(n), is equal to the number of rows of En. The number of additions is denoted
by A(n).
 Given a matrix En1 and a matrix En2, the iterated algorithm gives a method
for combining En1 and En2 to construct a valid expansion matrix, En, for
N≤n1n2. Specifically,
(7.60)

 The product n1n2 may be greater than N, for zeros can be (conceptually)
appended to x. The operation count associated with En1,n2 is
(7.61)

(7.62)

 Although they are both valid expansion matrices, En1,n2≠En2,n1 and An1,n2≠An2,n1
Because Mn1,n2≠Mn2,n1 it is desirable to chose an ordering of
factors to minimize the additions incurred by the expansion matrix.
The following 1, 14 follows from above.
Multiple Factors



 Note that a valid expansion matrix, EN, can be constructed from En1,n2
and En3, for N≤n1n2n3. In general, any number of factors can be used to
create larger expansion matrices.
The operation count associated with En1,n2,n3 is
(7.63)

(7.64)

 These equations generalize in the predicted way when more factors are considered.
Because the ordering of the factors is relevant in the equation for A(.)
but not for M(.), it is again desirable to order the factors to minimize
the number of additions. By exploiting the following property of the expressions
for A(.) and M(.), the optimal ordering can be found 1.
 reservation of Optimal Ordering.
Suppose  and distinct}, then
 	 
              
(7.65)


            

	 
              
(7.66)


            

	 
              
(7.67)


            



 The generalization of this property to more than two factors reveals that
an optimal ordering of  is preserved in an optimal ordering
of . Therefore, if  is an optimal ordering
of , then  is an optimal ordering of 
and consequently
(7.68)

 for all k=1,2,⋯,L–1.
 This immediately suggests that an optimal ordering of  is one
for which
(7.69)

 is nondecreasing. Hence, ordering the factors, ,
to minimize the number of additions incurred by En1,⋯,nL
simply involves computing the appropriate ratios.


Discussion and Conclusion



 We have designed prime length FFTs up to length 53 that are as good
as the previous designs that only went up to 19. Table 1 gives the
operation counts for the new and previously designed modules,
assuming complex inputs.
 It is interesting to note that the operation counts depend on the
factorability of P–1. The primes 11, 23, and 47 are all of the
form 1+2P1 making the design of efficient FFTs for these lengths
more difficult.
 Further deviations from the original Winograd approach than we have
made could prove useful for longer lengths. We investigated, for example,
the use of twiddle factors at appropriate points in the decomposition
stage; these can sometimes be used to divide the cyclic convolution
into smaller convolutions. Their use means, however, that the 'center*
multiplications would no longer be by purely real or imaginary numbers.
Table 7.2. Operation counts for prime length DFTs	N	Mult	Adds
	7	16	72
	11	40	168
	13	40	188
	17	82	274
	19	88	360
	23	174	672
	29	190	766
	31	160	984
	37	220	920
	41	282	1140
	43	304	1416
	47	640	2088
	53	556	2038


 The approach in writing a program that writes another program is a valuable
one for several reasons. Programming the design process for the design of
prime length FFTs has the advantages of being practical, error-free, and
flexible. The flexibility is important because it allows for modification
and experimentation with different algorithmic ideas. Above all, it has
allowed longer DFTs to be reliably designed.
 More details on the generation of programs for prime length FFTs can be found in the 1993 Technical Report.
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Solutions


Chapter 8. DFT and FFT: An Algebraic View



 by Markus Pueschel, Carnegie Mellon University
 In infinite, or non-periodic, discrete-time signal processing, there
is a strong connection between the z-transform, Laurent series,
convolution, and the discrete-time Fourier transform (DTFT)
10. As one may expect, a similar connection exists
for the DFT but bears surprises. Namely, it turns out that the proper
framework for the DFT requires modulo operations of polynomials, which
means working with so-called polynomial algebras
6. Associated with polynomial algebras is the Chinese
remainder theorem, which describes the DFT algebraically and can be
used as a tool to concisely derive various FFTs as well as convolution
algorithms 9, 21, 22, 1
(see also Winograd’s Short DFT Algorithms). The polynomial algebra
framework was fully developed for signal processing as part of the
algebraic signal processing theory (ASP). ASP identifies the structure
underlying many transforms used in signal processing, provides deep
insight into their properties, and enables the derivation of their
fast algorithms
13, 14, 11, 12. Here we
focus on the algebraic description of the DFT and on the algebraic
derivation of the general-radix Cooley-Tukey FFT from 
Factoring the Signal Processing Operators. The derivation will make use of and extend the
Polynomial Description of Signals.

We start with motivating the appearance
of modulo operations.
 The z-transform associates with infinite discrete signals X=(⋯,x(–1),x(0),x(1),⋯) a Laurent series:
(8.1)

 Here we used s=z–1 to simplify the notation in the following.
The DTFT of X is the evaluation of X(s) on the unit circle 
(8.2)

 Finally, filtering or (linear) convolution is simply the multiplication
of Laurent series,
(8.3)
        
          H
          *
          X
          ↔
          H
          (
          s
          )
          X
          (
          s
          )
          .
        
      
 For finite signals X=(x(0),⋯,x(N–1)) one expects that the
equivalent of Equation 8.1 becomes a mapping to polynomials of
degree N–1,
(8.4)

 and that the DFT is an evaluation of these polynomials. Indeed, the
definition of the DFT in Winograd’s Short DFT Algorithms shows that
(8.5)

 i.e., the DFT computes the evaluations of the polynomial X(s)
at the nth roots of unity.
 The problem arises with the equivalent of Equation 8.3,
since the multiplication H(s)X(s) of two polynomials of degree N–1
yields one of degree 2N–2. Also, it does not coincide with the
circular convolution known to be associated with the DFT. The solution
to both problems is to reduce the product modulo sn–1:
(8.6)

Table 8.1. Infinite and finite discrete time signal processing.	Concept	Infinite Time	Finite Time
	Signal	
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	Filter	 
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            )
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	Convolution	 
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          (
          s
          )
          X
          (
          s
          )
        
      	
      
    
	Fourier transform		


 The resulting polynomial then has again degree N–1 and this form of
convolution becomes equivalent to circular convolution of the
polynomial coefficients. We also observe that the evaluation points in
Equation 8.5 are precisely the roots of sn–1. This connection will
become clear in this chapter.
 The discussion is summarized in Table 8.1.
 The proper framework to describe the multiplication of polynomials
modulo a fixed polynomial are polynomial algebras. Together with the
Chinese remainder theorem, they provide the theoretical underpinning
for the DFT and the Cooley-Tukey FFT.
 In this chapter, the DFT will naturally arise as a linear mapping with
respect to chosen bases, i.e., as a matrix. Indeed, the definition
shows that if all input and outputs are collected into
vectors X=(X(0),⋯,X(N–1)) and C=(C(0),⋯C(N–1)), then
Winograd’s Short DFT Algorithms is equivalent to
(8.7)
        
          C
          =
          DFTN
          X
          ,
        
      
 where
(8.8)

 The matrix point of view is adopted in the FFT books
18, 17.
Polynomial Algebras and the DFT



 In this section we introduce polynomial algebras and explain how they
are associated to transforms. Then we identify this connection for the
DFT. Later we use polynomial algebras to derive the Cooley-Tukey FFT.
 For further background on the mathematics in this section and
polynomial algebras in particular, we refer to 6.
Polynomial Algebra



 An algebra A is a vector space that also provides a
multiplication of its elements such that the distributivity law holds
(see 6 for a complete definition). Examples include
the sets of complex or real numbers C or R, and the sets of
complex or real polynomials in the variable s: C[s] or R[s].
 The key player in this chapter is the polynomial algebra. Given
a fixed polynomial P(s) of degree deg(P)=N, we define a
polynomial algebra as the set
(8.9)
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              )
              ∣
              deg
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              )
              <
              deg
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 of polynomials of degree smaller than N with addition and
multiplication modulo P. Viewed as a vector space, C[s]/P(s)
hence has dimension N.
 Every polynomial X(s)∈C[s] is reduced to a unique polynomial
R(s) modulo P(s) of degree smaller than N. R(s) is computed
using division with rest, namely
(8.10)

 Regarding this equation modulo P, P(s) becomes zero, and we get
(8.11)

 We read this equation as “X(s) is congruent (or equal) R(s)
modulo P(s).” We will also write  to denote
that X(s) is reduced modulo P(s). Obviously,
(8.12)

 As a simple example we consider , which has
dimension 2. A possible basis is b=(1,s). In A, for example,
, obtained
through division with rest
(8.13)

 or simply by replacing s2 with 1 (since s2–1=0 implies s2=1).

Chinese Remainder Theorem (CRT)



 Assume P(s)=Q(s)R(s) factors into two coprime (no common factors)
polynomials Q and R. Then the Chinese remainder theorem (CRT) for
polynomials is the linear mapping[1]
(8.14)

 Here, ⊕ is the Cartesian product of vector spaces with
elementwise operation (also called outer direct sum). In words, the CRT
asserts that computing (addition, multiplication, scalar
multiplication) in C[s]/P(s) is equivalent to computing in parallel
in C[s]/Q(s) and C[s]/R(s).
 If we choose bases b,c,d in the three polynomial algebras, then
Δ can be expressed as a matrix. As usual with linear mappings,
this matrix is obtained by mapping every element of b with Δ,
expressing it in the concatenation c∪d of the bases c and d,
and writing the results into the columns of the matrix.
 As an example, we consider again the polynomial P(s)=s2–1=(s–1)(s+1) and the CRT decomposition
(8.15)

 As bases, we choose . Δ(1)=(1,1) with the same coordinate vector in c∪d=(1,1). Further,
because of  and , Δ(x)=(x,x)≡(1,–1) with the same coordinate
vector. Thus, Δ in matrix form is the so-called butterfly
matrix, which is a DFT of size 2: .

Polynomial Transforms



 Assume P(s)∈C[s] has pairwise distinct
zeros . Then the CRT
can be used to completely
decompose C[s]/P(s) into its spectrum:
(8.16)

 If we choose a basis  in C[s]/P(s) and
bases bi=(1) in each , then Δ, as a linear
mapping, is represented by a matrix. The matrix is obtained by mapping
every basis element Pn, 0≤n<N, and collecting the results in
the columns of the matrix. The result is
(8.17)

 and is called the polynomial transform
for A=C[s]/P(s) with basis b.
 If, in general, we choose  as spectral basis, then the
matrix corresponding to the decomposition Equation 8.16 is the scaled
polynomial transform
(8.18)

 where  denotes a diagonal matrix
with diagonal entries γn.
 We jointly refer to polynomial transforms, scaled or not, as Fourier
transforms.

DFT as a Polynomial Transform



 We show that the DFTN is a polynomial transform for  with basis . Namely,
(8.19)

 which means that Δ takes the form
(8.20)

 The associated polynomial transform hence becomes
(8.21)

 This interpretation of the DFT has been known at least since
21, 9 and clarifies the connection between
the evaluation points in Equation 8.5 and the circular convolution in
Equation 8.6.
 In 4, DFTs of types 1–4 are defined, with type 1
being the standard DFT. In the algebraic framework, type 3 is obtained
by choosing  as algebra with the same basis as
before:
(8.22)

 The DFTs of type 2 and 4 are scaled polynomial
transforms 13.


Algebraic Derivation of the Cooley-Tukey FFT



 Knowing the polynomial algebra underlying the DFT enables us to derive
the Cooley-Tukey FFT algebraically. This means that instead of
manipulating the DFT definition, we manipulate the polynomial algebra
. The basic idea is intuitive. We showed that the DFT
is the matrix representation of the complete decomposition
Equation 8.20. The Cooley-Tukey FFT is now derived by performing this
decomposition in steps as shown in Figure 8.1. Each
step yields a sparse matrix; hence, the DFTN is factorized into a
product of sparse matrices, which will be the matrix representation of
the Cooley-Tukey FFT.
 [image: Figure (figure1.png)]

Figure 8.1. 
Basic idea behind the algebraic derivation of Cooley-Tukey
type algorithms

 This stepwise decomposition can be formulated generically for
polynomial transforms 15, 12. Here, we
consider only the DFT.
 We first introduce the matrix notation we will use and in particular
the Kronecker product formalism that became mainstream for FFTs
in 18, 17.
 Then we first derive the radix-2 FFT using a factorization of
sN–1. Subsequently, we obtain the general-radix FFT using a decomposition of sN–1.
Matrix Notation



 We denote the N×N identity matrix with IN, and diagonal
matrices with
(8.23)

 The N×N stride
permutation matrix is defined for N=KM by the permutation
(8.24)

 for . This definition shows that LMN
transposes a K×M matrix stored in row-major order.
Alternatively, we can write
(8.25)

 For example (· means 0),
(8.26)

 LNN/2 is sometimes called the perfect shuffle.
 Further, we use matrix operators; namely the direct sum
(8.27)

 and the Kronecker or tensor product
(8.28)

 In particular,
(8.29)

 is block-diagonal.
 We may also construct a larger matrix as a matrix of
matrices, e.g.,
(8.30)

 If an algorithm for a transform is given as a product of sparse matrices
built from the constructs above, then an algorithm for the transpose or
inverse of the transform can be readily derived using mathematical
properties including
(8.31)

 Permutation matrices are orthogonal, i.e., PT=P–1. The
transposition or inversion of diagonal matrices is obvious.

Radix-2 FFT



 The DFT decomposes  with basis  as shown in Equation 8.20. We assume N=2M.
Then
(8.32)

 factors and we can apply the CRT in
the following steps:
(8.33)

(8.34)

(8.35)

 As bases in the smaller algebras  and ,
we choose . The derivation of an
algorithm for DFTN based on Equation 8.33-Equation 8.35 is now
completely mechanical by reading off the matrix for each of the three
decomposition steps. The product of these matrices is equal to
the DFTN.
 First, we derive the base change matrix B corresponding to
Equation 8.33. To do so, we have to express the base elements
sn∈b in the basis c∪d; the coordinate
vectors are the columns of B. For 0≤n<M, sn is actually
contained in c and d, so the first M columns of B are
(8.36)

 where the entries * are determined next.
For the base elements sM+n, 0≤n<M, we have
(8.37)

 which yields the final result
(8.38)

 Next, we consider step Equation 8.34.  is decomposed
by DFTM and  by DFT-3M in Equation 8.22.
 Finally, the permutation in step Equation 8.35 is the perfect
shuffle LMN, which interleaves the even and odd spectral
components (even and odd exponents of WN).
 The final algorithm obtained is
(8.39)

 To obtain a better known form, we use DFT-3M=DFTMDM,
with , which is evident from
Equation 8.22. It yields
(8.40)

 The last expression is the radix-2 decimation-in-frequency
Cooley-Tukey FFT. The corresponding decimation-in-time version is
obtained by transposition using Equation 8.31 and the symmetry of
the DFT:
(8.41)

 The entries of the diagonal matrix IM⊕DM are
commonly called twiddle factors.
 The above method for deriving DFT algorithms is used extensively in
9.

General-radix FFT



 To algebraically derive the general-radix FFT, we use the decomposition property of sN–1. Namely, if N=KM then
(8.42)

 Decomposition means that the polynomial is written as the composition
of two polynomials: here, sM is inserted into sK–1.
Note that this is a special property: most polynomials do not decompose.
 Based on this polynomial decomposition, we obtain the following
stepwise decomposition of , which is more general than
the previous one in Equation 8.33–Equation 8.35. The basic idea
is to first decompose with respect to the outer polynomial tK–1, t=sM, and then completely 15:
(8.43)

(8.44)

(8.45)

 As bases in the smaller algebras  we choose
. As before, the derivation is completely
mechanical from here: only the three matrices corresponding to
Equation 8.43–Equation 8.45 have to be read off.
 The first decomposition step requires us to compute , 0≤n<N. To do so, we decompose the index
n as n=ℓM+m and compute
(8.46)

 This shows that the matrix for Equation 8.43
is given by DFTK⊗IM.
 In step Equation 8.44, each  is completely
decomposed by its polynomial transform
(8.47)

 At this point,  is
completely decomposed, but the spectrum is ordered according to
jK+i, 0≤i<M, 0≤j<K (j runs faster). The desired
order is iM+j.
 Thus, in step Equation 8.45, we need to apply the permutation jK+i↦iM+j, which is exactly the stride permutation LMN
in Equation 8.24.
 In summary, we obtain the Cooley-Tukey decimation-in-frequency FFT with
arbitrary radix:
(8.48)

 The matrix TMN is diagonal and usually called the
twiddle matrix. Transposition using
Equation 8.31 yields the corresponding decimation-in-time version:
(8.49)



Discussion and Further Reading



 This chapter only scratches the surface of the connection between
algebra and the DFT or signal processing in general. We provide
a few references for further reading.
Algebraic Derivation of Transform Algorithms



 As mentioned before, the use of polynomial algebras and the CRT
underlies much of the early work on FFTs and convolution algorithms
21, 9, 1. For example, Winograd's
work on FFTs minimizes the number of non-rational multiplications.
This and his work on complexity theory in general makes heavy use of
polynomial algebras 21, 22, 23 (see
Chapter Winograd’s Short DFT Algorithms for more information and references).
See 2 for a broad treatment of algebraic complexity
theory.
 Since  can be viewed a group algebra for the
cyclic group, the methods shown in this chapter can be translated into
the context of group representation theory. For example,
8 derives the general-radix FFT using group theory
and also uses already the Kronecker product formalism. So does Beth
and started the area of FFTs for more general
groups 3, 7. However, Fourier transforms for
groups have found only sporadic applications 16.
Along a related line of work, 5 shows that using group
theory it is possible that to discover and generate certain algorithms
for trigonometric transforms, such as discrete cosine transforms
(DCTs), automatically using a computer program.
 More recently, the polynomial algebra framework was extended to
include most trigonometric transforms used in signal processing
14, 13, namely, besides the DFT, the discrete cosine and sine transforms and various real DFTs including the discrete Hartley transform.
It turns out that the same
techniques shown in this chapter can then be applied to derive,
explain, and classify most of the known algorithms for these
transforms and even obtain a large class of new algorithms including
general-radix algorithms for the discrete cosine and sine transforms
(DCTs/DSTs) 15, 12, 19, 20.
 This latter line of work is part of the algebraic signal processing
theory briefly discussed next.

Algebraic Signal Processing Theory



 The algebraic properties of transforms used in the above work on
algorithm derivation hints at a connection between algebra and
(linear) signal processing itself. This is indeed the case and was
fully developed in a recent body of work called algebraic signal
processing theory (ASP). The foundation of ASP is developed in 13, 14, 11.
 ASP first identifies the algebraic structure of (linear) signal
processing: the common assumptions on available operations for filters
and signals make the set of filters an algebraA and the
set of signals an associated A-module
 M. ASP then
builds a signal processing theory formally from the axiomatic
definition of a signal model: a triple (A,M,Φ), where
Φ generalizes the idea of the z-transform to mappings from
vector spaces of signal values to M. If a signal model is given,
other concepts, such as spectrum, Fourier transform, frequency
response are automatically defined but take different forms for
different models. For example, infinite and finite time as discussed
in Table 8.1 are two examples of signal models. Their
complete definition is provided in Table 8.2 and
identifies the proper notion of a finite z-transform as a mapping
.
Table 8.2. Infinite and finite time models as defined in ASP. 	Signal model	Infinite time	Finite time
	
                  
                    A
                  
                	
                  
                	
                  
                
	
                  
                    M
                  
                	
                  
                	
                  
                
	
                  
                    Φ
                  
                	
                  
                	
                  
                
	 	defined in Equation 8.1	defined in Equation 8.4


 ASP shows that many signal models are in principle possible, each with
its own notion of filtering and Fourier transform. Those that support
shift-invariance have commutative algebras. Since finite-dimensional
commutative algebras are precisely polynomial algebras, their
appearance in signal processing is explained. For example, ASP
identifies the polynomial algebras underlying the DCTs and DSTs, which
hence become Fourier transforms in the ASP sense. The signal models
are called finite space models since they support signal
processing based on an undirected shift operator, different from the
directed time shift. Many more insights are provided by ASP including
the need for and choices in choosing boundary conditions, properties
of transforms, techniques for deriving new signal models, and the
concise derivation of algorithms mentioned before.
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Chapter 9. The Cooley-Tukey Fast Fourier Transform Algorithm



 The publication by Cooley and Tukey 5 in 1965 of an
efficient algorithm for the calculation of the DFT was a major
turning point in the development of digital signal processing.
During the five or so years that followed, various extensions and
modifications were made to the original algorithm 4. By the early
1970's the practical programs were basically in the form used today.
The standard development presented in 21, 22, 2 shows
how the DFT of a length-N sequence can be simply calculated from the
two length-N/2 DFT's of the even index terms and the odd index
terms. This is then applied to the two half-length DFT's to give
four quarter-length DFT's, and repeated until N scalars are left
which are the DFT values. Because of alternately taking the even and
odd index terms, two forms of the resulting programs are called
decimation-in-time and decimation-in-frequency. For a length of
2M, the dividing process is repeated M=log2N times and
requires N multiplications each time. This gives the famous
formula for the computational complexity of the FFT of Nlog2N
which was derived in Multidimensional Index Mapping: Equation 34.
 Although the decimation methods are straightforward and easy
to understand, they do not generalize well. For that reason it will
be assumed that the reader is familiar with that description and
this chapter will develop the FFT using the index map from Multidimensional Index Mapping.
 The Cooley-Tukey FFT always uses the Type 2 index map from
Multidimensional Index Mapping: Equation 11. This is necessary for the most popular forms that
have N=RM, but is also used even when the factors are
relatively prime and a Type 1 map could be used. The time and
frequency maps from Multidimensional Index Mapping: Equation 6 and Multidimensional Index Mapping: Equation 12 are
(9.1)

(9.2)

 Type-2 conditions Multidimensional Index Mapping: Equation 8 and Multidimensional Index Mapping: Equation 11 become
(9.3)

 and
(9.4)

 The row and column calculations in Multidimensional Index Mapping: Equation 15 are uncoupled by
Multidimensional Index Mapping: Equation 16 which for this case are
(9.5)

 To make each short sum a DFT, the Ki must satisfy
(9.6)

 In order to have the smallest values for
Ki the constants in Equation 9.3 are chosen to be
(9.7)
        
          a
          =
          d
          =
          K2
          =
          K3
          =
          1
        
      
 which makes the index maps of Equation 9.1 become
(9.8)
        
          n
          =
          N2
          n1
          +
          n2
        
      
(9.9)
        
          k
          =
          k1
          +
          N1
          k2
        
      
 These index maps are all evaluated modulo N, but in Equation 9.8, explicit reduction is not necessary since 
n never exceeds N. The reduction notation will be omitted for
clarity. From Multidimensional Index Mapping: Equation 15 and example Multidimensional Index Mapping: Equation 19, the DFT is
(9.10)

 This map of Equation 9.8 and the form of the DFT in Equation 9.10 are
the fundamentals of the Cooley-Tukey FFT.
 The order of the summations using the Type 2 map in Equation 9.10
cannot be reversed as it can with the Type-1 map. This is because
of the WN terms, the twiddle factors.
 Turning Equation 9.10 into an efficient program requires some care.
From Multidimensional Index Mapping: Efficiencies Resulting from Index Mapping with the DFT we know that all the factors should be
equal. If 

N=RM , 

with R called the radix, 
N1 

is first set
equal to 

R 

and 

N2 

is then necessarily RM–1
. 

Consider 

n1
to be the index along the rows and n2 along the columns. The inner
sum of Equation 9.10 over n1 represents a length-N1 DFT for each value
of n2. These N2 length-N1 DFT's are the DFT's of the rows
of the  array. The resulting array of row DFT's is
multiplied by an array of twiddle factors which are the WN terms
in Equation 9.10. The twiddle-factor array for a length-8 radix-2 FFT
is
(9.11)

 The twiddle factor array will always have unity in the first row and
first column.
 To complete Equation 9.10 at this point, after the row DFT's are
multiplied by the TF array, the N1 length-N2 DFT's of the
columns are calculated. However, since the columns DFT's are of
length 

RM–1, 

they can be posed as a 
RM–2 by R array and the
process repeated, again using length-R DFT's. After M stages of
length-R DFT's with TF multiplications interleaved, the DFT is
complete. The flow graph of a length-2 DFT is given in Figure 1		 and
is called a butterfly because of its shape. The flow graph of the
complete length-8 radix-2 FFT is shown in  Figure 2		.
 [image: ]

Figure 9.1. 
A Radix-2 Butterfly
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Figure 9.2. 
Length-8 Radix-2 FFT Flow Graph

 This flow-graph, the twiddle factor map of Equation 9.11, and the
basic equation Equation 9.10 should be completely understood before
going further.
 A very efficient indexing scheme has evolved over the years
that results in a compact and efficient computer program. A FORTRAN
program is given below that implements the radix-2 FFT. It should be
studied 1 to see how it implements Equation 9.10 and the
flow-graph representation.
 N2 = N
        DO 10 K = 1, M
            N1 = N2
            N2 = N2/2
            E  = 6.28318/N1
            A  = 0
            DO 20 J = 1, N2
                C = COS (A)
                S =-SIN (A)
                A = J*E
                DO 30 I = J, N, N1
                    L = I + N2
                    XT   = X(I) - X(L)
                    X(I) = X(I) + X(L)
                    YT   = Y(I) - Y(L)
                    Y(I) = Y(I) + Y(L)
                    X(L) = XT*C - YT*S
                    Y(L) = XT*S + YT*C
   30           CONTINUE
   20       CONTINUE
   10   CONTINUE
 
 
A Radix-2 Cooley-Tukey FFT Program

 This discussion, the flow graph of Winograd’s Short DFT Algorithms: Figure 2 and the program
of screen are all based on the input index map of
Multidimensional Index Mapping: Equation 6 and Equation 9.1 and the calculations are performed
in-place. According to Multidimensional Index Mapping: In-Place Calculation of the DFT and Scrambling, this means the output is
scrambled in bit-reversed order and should be followed by an
unscrambler to give the DFT in proper order. This formulation is
called a decimation-in-frequency FFT 21, 22, 2. A very
similar algorithm based on the output index map can be derived which
is called a decimation-in-time FFT. Examples of FFT programs are
found in 1 and in the Appendix of this book.
Modifications to the Basic Cooley-Tukey FFT



 Soon after the paper by Cooley and Tukey, there were
improvements and extensions made. One very important discovery was
the improvement in efficiency by using a larger radix of 4, 8 or
even 16. For example, just as for the radix-2 butterfly, there are
no multiplications required for a length-4 DFT, and therefore, a
radix-4 FFT would have only twiddle factor multiplications. Because
there are half as many stages in a radix-4 FFT, there would be half
as many multiplications as in a radix-2 FFT. In practice, because
some of the multiplications are by unity, the improvement is not by
a factor of two, but it is significant. A radix-4 FFT is easily
developed from the basic radix-2 structure by replacing the length-2
butterfly by a length-4 butterfly and making a few other
modifications. Programs can be found in 1 and operation
counts will be given in "Evaluation of the Cooley-Tukey FFT Algorithms".
 Increasing the radix to 8 gives some improvement but not as
much as from 2 to 4. Increasing it to 16 is theoretically promising
but the small decrease in multiplications is somewhat offset by an
increase in additions and the program becomes rather long. Other
radices are not attractive because they generally require a
substantial number of multiplications and additions in the
butterflies.
 The second method of reducing arithmetic is to remove the
unnecessary TF multiplications by plus or minus unity or by plus or
minus the square root of minus one. This occurs when the exponent of
WN is zero or a multiple of N/4. A reduction of additions as
well as multiplications is achieved by removing these extraneous
complex multiplications since a complex multiplication requires at
least two real additions. In a program, this reduction is usually
achieved by having special butterflies for the cases where the TF is
one or j. As many as four special butterflies may be necessary to
remove all unnecessary arithmetic, but in many cases there will be
no practical improvement above two or three.
 In addition to removing multiplications by one or j, there
can be a reduction in multiplications by using a special butterfly
for TFs with WN/8, which have equal real and imaginary parts.
Also, for computers or hardware with multiplication considerably
slower than addition, it is desirable to use an algorithm for
complex multiplication that requires three multiplications and three
additions rather than the conventional four multiplications and two
additions. Note that this gives no reduction in the total number of
arithmetic operations, but does give a trade of multiplications for
additions. This is one reason not to use complex data types in
programs but to explicitly program complex arithmetic.
 A time-consuming and unnecessary part of the execution of a
FFT program is the calculation of the sine and cosine terms which
are the real and imaginary parts of the TFs. There are basically
three approaches to obtaining the sine and cosine values. They can
be calculated as needed which is what is done in the sample program
above. One value per stage can be calculated and the others
recursively calculated from those. That method is fast but suffers
from accumulated round-off errors. The fastest method is to fetch
precalculated values from a stored table. This has the disadvantage
of requiring considerable memory space.
 If all the N DFT values are not needed, special forms of the
FFT can be developed using a process called pruning 17
which removes the operations concerned with the unneeded outputs.
 Special algorithms are possible for cases with real data or
with symmetric data 6. The decimation-in-time algorithm
can be easily modified to transform real data and save half the
arithmetic required for complex data 27. There are
numerous other modifications to deal with special hardware
considerations such as an array processor or a special
microprocessor such as the Texas Instruments TMS320. Examples of
programs that deal with some of these items can be found in
22, 1, 6.

The Split-Radix FFT Algorithm



 Recently several papers 18, 7, 28, 23, 8
have been published on algorithms to calculate a length-2M DFT
more efficiently than a Cooley-Tukey FFT of any radix. They all have
the same computational complexity and are optimal for lengths up
through 16 and until recently was thought to give the best total add-multiply count
possible for any power-of-two length. Yavne published an algorithm
with the same computational complexity in 1968 29, but it
went largely unnoticed. Johnson and Frigo have recently reported the first
improvement in almost 40 years 15. The reduction
in total operations is only a few percent, but it is a reduction.
 The basic idea behind the split-radix FFT (SRFFT) as derived
by Duhamel and Hollmann 7, 8 is the application of a
radix-2 index map to the even-indexed terms and a radix-4 map to the
odd- indexed terms. The basic definition of the DFT
(9.12)

 with W=e–j2π/N gives
(9.13)

 for the even index terms, and
(9.14)

 and
(9.15)

 for the odd index terms. This results in
an L-shaped “butterfly" shown in Figure 9.3 which relates a length-N
DFT to one length-N/2 DFT and two length-N/4 DFT's with twiddle
factors. Repeating this process for the half and quarter length
DFT's until scalars result gives the SRFFT algorithm in much the
same way the decimation-in-frequency radix-2 Cooley-Tukey FFT is
derived 21, 22, 2. The resulting flow graph for the
algorithm calculated in place looks like a radix-2 FFT except for
the location of the twiddle factors. Indeed, it is the location of
the twiddle factors that makes this algorithm use less arithmetic.
The L- shaped SRFFT butterfly Figure 9.3 advances the calculation of the top
half by one of the M stages while the lower half, like a radix-4
butterfly, calculates two stages at once. This is illustrated for N=8 in Figure 9.4.
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Figure 9.3. 
SRFFT Butterfly
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Figure 9.4. 
Length-8 SRFFT

 Unlike the fixed radix, mixed radix or variable radix
Cooley-Tukey FFT or even the prime factor algorithm or Winograd
Fourier transform algorithm , the Split-Radix FFT does not progress
completely stage by stage, or, in terms of indices, does not
complete each nested sum in order. This is perhaps better seen from
the polynomial formulation of Martens 18. Because of
this, the indexing is somewhat more complicated than the
conventional Cooley-Tukey program.
 A FORTRAN program is given below which implements the basic
decimation-in-frequency split-radix FFT algorithm. The indexing
scheme 23 of this program gives a structure very similar
to the Cooley-Tukey programs in 1 and allows the same
modifications and improvements such as decimation-in-time, multiple
butterflies, table look-up of sine and cosine values, three real per
complex multiply methods, and real data versions
8, 27.
 SUBROUTINE FFT(X,Y,N,M)
        N2 = 2*N
        DO  10 K = 1, M-1
            N2 = N2/2
            N4 = N2/4
            E  = 6.283185307179586/N2
            A = 0
            DO  20 J = 1, N4
                A3  = 3*A
                CC1 = COS(A)
                SS1 = SIN(A)
                CC3 = COS(A3)
                SS3 = SIN(A3)
                A   = J*E
                IS  = J
                ID  = 2*N2
 40             DO 30 I0 = IS, N-1, ID
                    I1 = I0 + N4
                    I2 = I1 + N4
                    I3 = I2 + N4
                    R1    = X(I0) - X(I2)
                    X(I0) = X(I0) + X(I2)
                    R2    = X(I1) - X(I3)
                    X(I1) = X(I1) + X(I3)
                    S1    = Y(I0) - Y(I2)
                    Y(I0) = Y(I0) + Y(I2)
                    S2    = Y(I1) - Y(I3)
                    Y(I1) = Y(I1) + Y(I3)
                    S3    = R1 - S2
                    R1    = R1 + S2
                    S2    = R2 - S1
                    R2    = R2 + S1
                    X(I2) = R1*CC1 - S2*SS1
                    Y(I2) =-S2*CC1 - R1*SS1
                    X(I3) = S3*CC3 + R2*SS3
                    Y(I3) = R2*CC3 - S3*SS3
 30             CONTINUE
                IS = 2*ID - N2 + J
                ID = 4*ID
                IF (IS.LT.N) GOTO 40
 20         CONTINUE
 10     CONTINUE
        IS = 1
        ID = 4
 50     DO 60 I0 = IS, N, ID
            I1    = I0 + 1
            R1    = X(I0)
            X(I0) = R1 + X(I1)
            X(I1) = R1 - X(I1)
            R1    = Y(I0)
            Y(I0) = R1 + Y(I1)
  60    Y(I1) = R1 - Y(I1)
            IS = 2*ID - 1
            ID = 4*ID
        IF (IS.LT.N) GOTO 50
 
 
Split-Radix FFT FORTRAN Subroutine

 As was done for the other decimation-in-frequency
algorithms, the input index map is used and the calculations are
done in place resulting in the output being in bit-reversed order.
It is the three statements following label 30 that do the special
indexing required by the SRFFT. The last stage is length- 2 and,
therefore, inappropriate for the standard L-shaped butterfly, so it
is calculated separately in the DO 60 loop. This program is
considered a one-butterfly version. A second butterfly can be added
just before statement 40 to remove the unnecessary multiplications
by unity. A third butterfly can be added to reduce the number of
real multiplications from four to two for the complex multiplication
when W has equal real and imaginary parts. It is also possible to
reduce the arithmetic for the two- butterfly case and to reduce the
data transfers by directly programming a length-4 and length-8
butterfly to replace the last three stages. This is called a
two-butterfly-plus version. Operation counts for the one, two,
two-plus and three butterfly SRFFT programs are given in the next
section. Some details can be found in 23.
 The special case of a SRFFT for real data and symmetric data
is discussed in 8. An application of the
decimation-in-time SRFFT to real data is given in 27.
Application to convolution is made in 9, to the discrete
Hartley transform in 26, 9, to calculating the discrete
cosine transform in 28, and could be made to calculating
number theoretic transforms.
 An improvement in operation count has been reported by Johnson
and Frigo 15 which involves a scaling of multiplying
factors. The improvement is small but until this result, it was
generally thought the Split-Radix FFT was optimal for total floating
point operation count.

Evaluation of the Cooley-Tukey FFT Algorithms



 The evaluation of any FFT algorithm starts with a count of
the real (or floating point) arithmetic. Table 9.1 gives the number of
real multiplications and additions required to calculate a length-N
FFT of complex data. Results of programs with one, two, three and
five butterflies are given to show the improvement that can be
expected from removing unnecessary multiplications and additions.
Results of radices two, four, eight and sixteen for the Cooley-Tukey
FFT as well as of the split-radix FFT are given to show the relative
merits of the various structures. Comparisons of these data should
be made with the table of counts for the PFA and WFTA programs in
The Prime Factor and Winograd Fourier Transform Algorithms: Evaluation of the PFA and WFTA. All programs use the four-multiply-two-add
complex multiply algorithm. A similar table can be developed for the
three-multiply-three-add algorithm, but the relative results are the
same.
 From the table it is seen that a greater improvement is
obtained going from radix-2 to 4 than from 4 to 8 or 16. This is
partly because length 2 and 4 butterflies have no multiplications
while length 8, 16 and higher do. It is also seen that going from
one to two butterflies gives more improvement than going from two to
higher values. From an operation count point of view and from
practical experience, a three butterfly radix-4 or a two butterfly
radix-8 FFT is a good compromise. The radix-8 and 16 programs become
long, especially with multiple butterflies, and they give a limited
choice of transform length unless combined with some length 2 and 4
butterflies.
Table 9.1. Number of Real Multiplications and Additions for Complex
Single Radix FFTs	N	M1	M2	M3	M5	A1	A2	A3	A5
	2	4	0	0	0	6	4	4	4
	4	16	4	0	0	24	18	16	16
	8	48	20	8	4	72	58	52	52
	16	128	68	40	28	192	162	148	148
	32	320	196	136	108	480	418	388	388
	64	768	516	392	332	1152	1026	964	964
	128	1792	1284	1032	908	2688	2434	2308	2308
	256	4096	3076	2568	2316	6144	5634	5380	5380
	512	9216	7172	6152	5644	13824	12802	12292	12292
	1024	20480	16388	14344	13324	30720	28674	27652	27652
	2048	45056	36868	32776	30732	67584	63490	61444	61444
	4096	98304	81924	73736	69644	147456	139266	135172	135172
	4	12	0	0	0	22	16	16	16
	16	96	36	28	24	176	146	144	144
	64	576	324	284	264	1056	930	920	920
	256	3072	2052	1884	1800	5632	5122	5080	5080
	1024	15360	11268	10588	10248	28160	26114	25944	25944
	4096	73728	57348	54620	53256	135168	126978	126296	126296
	8	32	4	4	4	66	52	52	52
	64	512	260	252	248	1056	930	928	928
	512	6144	4100	4028	3992	12672	11650	11632	11632
	4096	65536	49156	48572	48280	135168	126978	126832	126832
	16	80	20	20	20	178	148	148	148
	256	2560	1540	1532	1528	5696	5186	5184	5184
	4096	61440	45060	44924	44856	136704	128514	128480	128480
	2	0	0	0	0	4	4	4	4
	4	8	0	0	0	20	16	16	16
	8	24	8	4	4	60	52	52	52
	16	72	32	28	24	164	144	144	144
	32	184	104	92	84	412	372	372	372
	64	456	288	268	248	996	912	912	912
	128	1080	744	700	660	2332	2164	2164	2164
	256	2504	1824	1740	1656	5348	5008	5008	5008
	512	5688	4328	4156	3988	12060	11380	11380	11380
	1024	12744	10016	9676	9336	26852	25488	25488	25488
	2048	28216	22760	22076	21396	59164	56436	56436	56436
	4096	61896	50976	49612	48248	129252	123792	123792	123792


 In Table 9.1 Mi and Ai refer to the number of real multiplications
and real additions used by an FFT with i separately written butterflies.
The first block has
the counts for Radix-2, the second for Radix-4, the third for Radix-8, the
fourth for Radix-16, and the last for the Split-Radix FFT. For the
split-radix FFT, M3 and A3 refer to the two- butterfly-plus program
and M5 and A5 refer to the three-butterfly program.
 The first evaluations of FFT algorithms were in terms of the
number of real multiplications required as that was the slowest
operation on the computer and, therefore, controlled the execution
speed. Later with hardware arithmetic both the number of
multiplications and additions became important. Modern systems have
arithmetic speeds such that indexing and data transfer times become
important factors. Morris 19 has looked at some of these
problems and has developed a procedure called autogen to write
partially straight-line program code to significantly reduce
overhead and speed up FFT run times. Some hardware, such as the
TMS320 signal processing chip, has the multiply and add operations
combined. Some machines have vector instructions or have parallel
processors. Because the execution speed of an FFT depends not only
on the algorithm, but also on the hardware architecture and
compiler, experiments must be run on the system to be used.
 In many cases the unscrambler or bit-reverse-counter requires
10% of the execution time, therefore, if possible, it should be
eliminated. In high-speed convolution where the convolution is done
by multiplication of DFT's, a decimation-in-frequency FFT can be
combined with a decimation-in-time inverse FFT to require no
unscrambler. It is also possible for a radix-2 FFT to do the
unscrambling inside the FFT but the structure is not very regular
22, 14. Special structures can be found in 22 and
programs for data that are real or have special symmetries are in
6, 8, 27.
 Although there can be significant differences in the
efficiencies of the various Cooley-Tukey and Split-Radix FFTs, the
number of multiplications and additions for all of them is on the
order of NlogN. That is fundamental to the class of algorithms.

The Quick Fourier Transform, An FFT based on Symmetries



 The development of fast algorithms usually consists of using special
properties of the algorithm of interest to remove redundant or unnecessary
operations of a direct implementation. The discrete Fourier transform
(DFT) defined by
(9.16)

 where
(9.17)
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 has enormous capacity for improvement of its arithmetic efficiency. Most
fast algorithms use the periodic and symmetric properties of its basis
functions. The classical Cooley-Tukey FFT and prime factor FFT 1
exploit the periodic properties of the cosine and sine functions. Their
use of the periodicities to share and, therefore, reduce arithmetic
operations depends on the factorability of the length of the data to be
transformed. For highly composite lengths, the number of floating-point
operation is of order  and for prime lengths it is of order
N2.
 This section will look at an approach using the symmetric properties to
remove redundancies. This possibility has long been recognized
13, 16, 25, 20 but has not been developed in any
systematic way in the open literature. We will develop an algorithm,
called the quick Fourier transform (QFT) 16, that will reduce
the number of floating point operations necessary to compute the DFT by a
factor of two to four over direct methods or Goertzel's method for prime
lengths. Indeed, it seems the best general algorithm available for prime
length DFTs. One can always do better by using Winograd type algorithms
but they must be individually designed for each length.  The Chirp Z-transform can be used for longer lengths.
Input and Output Symmetries



 We use the fact that the cosine is an even function and the sine is an odd
function. The kernel of the DFT or the basis functions of the expansion is
given by
(9.18)

 which has an even real part and odd imaginary part. If the data x(n) are
decomposed into their real and imaginary parts and those into their even and
odd parts, we have
(9.19)

 where the even part of the real part of x(n) is given by
(9.20)
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 and the odd part of the real part is
(9.21)
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 with corresponding definitions of ve(n) and vo(n).
Using Convolution Algorithms: Equation 32 with a simpler notation, the DFT of Convolution Algorithms: Equation 29 becomes
(9.22)

 The sum over an integral number of periods of an odd function is zero and
the sum of an even function over half of the period is one half the sum
over the whole period. This causes Equation 9.16 and Equation 9.22 to become
(9.23)

 for k=0,1,2,⋯,N–1.
 The evaluation of the DFT using equation Equation 9.23 requires half as many
real multiplication and half as many real additions as evaluating it using
Equation 9.16 or Equation 9.22. We have exploited the symmetries of the sine and
cosine as functions of the time index n. This is independent of whether
the length is composite or not. Another view of this formulation is that
we have used the property of associatively of multiplication and addition.
In other words, rather than multiply two data points by the same value of
a sine or cosine then add the results, one should add the data points
first then multiply the sum by the sine or cosine which requires one
rather than two multiplications.
 Next we take advantage of the symmetries of the sine and cosine as
functions of the frequency index k. Using these symmetries on Equation 9.23
gives
(9.24)

(9.25)

 for k=0,1,2,⋯,N/2–1. This again reduces the number of
operations by a factor of two, this time because it calculates two output
values at a time. The first reduction by a factor of two is always
available. The second is possible only if both DFT values are needed. It
is not available if you are calculating only one DFT value. The above
development has not dealt with the details that arise with the difference
between an even and an odd length. That is straightforward.

Further Reductions if the Length is Even



 If the length of the sequence to be transformed is even, there are further
symmetries that can be exploited. There will be four data values that are
all multiplied by plus or minus the same sine or cosine value. This means
a more complicated pre-addition process which is a generalization of the
simple calculation of the even and odd parts in Equation 9.20 and Equation 9.21
will reduce the size of the order N2 part of the algorithm by still
another factor of two or four. It the length is divisible by 4, the
process can be repeated. Indeed, it the length is a power of 2, one can
show this process is equivalent to calculating the DFT in terms of
discrete cosine and sine transforms 10, 11 with a resulting
arithmetic complexity of order  and with a structure that is
well suited to real data calculations and pruning.
 If the flow-graph of the Cooley-Tukey FFT is compared to the flow-graph of
the QFT, one notices both similarities and differences. Both progress in
stages as the length is continually divided by two. The Cooley-Tukey
algorithm uses the periodic properties of the sine and cosine to give the
familiar horizontal tree of butterflies. The parallel diagonal lines in
this graph represent the parallel stepping through the data in synchronism
with the periodic basis functions. The QFT has diagonal lines that
connect the first data point with the last, then the second with the next
to last, and so on to give a “star" like picture. This is interesting in
that one can look at the flow graph of an algorithm developed by some
completely different strategy and often find section with the parallel
structures and other parts with the star structure. These must be using
some underlying periodic and symmetric properties of the basis functions.

Arithmetic Complexity and Timings



 A careful analysis of the QFT shows that 2N additions are necessary to
compute the even and odd parts of the input data. This is followed by the
length N/2 inner product that requires 4(N/2)2=N2 real
multiplications and an equal number of additions. This is followed by the
calculations necessary for the simultaneous calculations of the first half
and last half of C(k) which requires 4(N/2)=2N real additions. This
means the total QFT algorithm requires M2 real multiplications and N2+4N real additions. These numbers along with those for the Goertzel
algorithm 3, 1, 20 and the direct calculation of the DFT are
included in the following table. Of the various order-N2 DFT
algorithms, the QFT seems to be the most efficient general method for an
arbitrary length N.
Table 9.2. 	Algorithm	Real Mults.	Real Adds	Trig Eval.
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                    N
                  
                
	QFT	
                  
                    N2
                  
                	
                  
                    
                      N2
                      +
                      4
                      N
                    
                  
                	
                  
                    
                      2
                      N
                    
                  
                
	 


 Timings of the algorithms on a PC in milliseconds are given in the
following table.
Table 9.3. 	Algorithm	
                  
                    
                      N
                      =
                      125
                    
                  
                	
                  
                    
                      N
                      =
                      256
                    
                  
                
	 	 	 
	Direct DFT	4.90	19.83
	Mod. 2O. Goertzel	1.32	5.55
	QFT	1.09	4.50
	Chirp + FFT	1.70	3.52
	 


 These timings track the floating point operation counts fairly well.

Conclusions



 The QFT is a straight-forward DFT algorithm that uses all of the possible
symmetries of the DFT basis function with no requirements on the length
being composite. These ideas have been proposed before, but have not been
published or clearly developed by 16, 25, 24, 12.
It seems that the basic QFT is practical and useful as a general algorithm
for lengths up to a hundred or so. Above that, the chirp z-transform
1 or other filter based methods will be superior. For special
cases and shorter lengths, methods based on Winograd's theories will
always be superior. Nevertheless, the QFT has a definite place in the
array of DFT algorithms and is not well known. A Fortran program is
included in the appendix.
 It is possible, but unlikely, that further arithmetic reduction could be
achieved using the fact that WN has unity magnitude as was done in
second-order Goertzel algorithm. It is also possible that some way of
combining the Goertzel and QFT algorithm would have some advantages. A
development of a complete QFT decomposition of a DFT of length-2M
shows interesting structure 10, 11 and arithmetic complexity
comparable to average Cooley-Tukey FFTs. It does seem better suited to
real data calculations with pruning.
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Solutions


Chapter 10. The Prime Factor and Winograd Fourier Transform Algorithms



 The prime factor algorithm (PFA) and the Winograd Fourier
transform algorithm (WFTA) are methods for efficiently calculating
the DFT which use, and in fact, depend on the Type-1 index map from
Multidimensional Index Mapping: Equation 10 and Multidimensional Index Mapping: Equation 6. The use of this index map preceded Cooley
and Tukey's paper 6, 18 but its full potential was not
realized until it was combined with Winograd's short DFT algorithms.
The modern PFA was first presented in 12 and a program
given in 1. The WFTA was first presented in 20
and programs given in 15, 5.
 The number theoretic basis for the indexing in these
algorithms may, at first, seem more complicated than in the
Cooley-Tukey FFT; however, if approached from the general index
mapping point of view of Multidimensional Index Mapping, it is straightforward,
and part of a common approach to breaking large problems into
smaller ones. The development in this section will parallel that in
The Cooley-Tukey Fast Fourier Transform Algorithm.
 The general index maps of Multidimensional Index Mapping: Equation 6 and Multidimensional Index Mapping: Equation 12 must satisfy the
Type-1 conditions of Multidimensional Index Mapping: Equation 7 and Multidimensional Index Mapping: Equation 10 which are
(10.1)

(10.2)

 The row and column calculations in Multidimensional Index Mapping: Equation 15 are uncoupled by
Multidimensional Index Mapping: Equation 16 which for this case are
(10.3)

 In addition, to make each short sum a DFT, the Ki must also
satisfy
(10.4)

 In order to have the smallest values for Ki, the constants in
Equation 10.1 are chosen to be
(10.5)

 which gives for the index maps in
Equation 10.1
(10.6)

(10.7)

 The frequency index map is a form of the Chinese remainder theorem.
Using these index maps, the DFT in Multidimensional Index Mapping: Equation 15 becomes
(10.8)

 which is a pure two-dimensional DFT with no twiddle factors and the
summations can be done in either order. Choices other than
Equation 10.5 could be used. For example, a=b=c=d=1 will
cause the input and output index map to be the same and, therefore,
there will be no scrambling of the output order. The short
summations in (96), however, will no longer be short DFT's
1.
 An important feature of the short Winograd DFT's described
in Winograd’s Short DFT Algorithms that is useful for both the PFA and WFTA is the
fact that the multiplier constants in Winograd’s Short DFT Algorithms: Equation 6 or Winograd’s Short DFT Algorithms: Equation 8 are
either real or imaginary, never a general complex number. For that
reason, multiplication by complex data requires only two real
multiplications, not four. That is a very significant feature. It is
also true that the j multiplier can be commuted from the D
operator to the last part of the AT operator. This means the D
operator has only real multipliers and the calculations on real data
remains real until the last stage. This can be seen by examining the
short DFT modules in 3, 11 and in the appendices.
The Prime Factor Algorithm



 If the DFT is calculated directly using Equation 10.8, the algorithm
is called a prime factor algorithm 6, 18 and was
discussed in Winograd’s Short DFT Algorithms and Multidimensional Index Mapping: In-Place Calculation of the DFT and Scrambling. When the short DFT's
are calculated by the very efficient algorithms of Winograd
discussed in Factoring the Signal Processing Operators, the PFA becomes a very powerful
method that is as fast or faster than the best Cooley-Tukey FFT's
1, 12.
 A flow graph is not as helpful with the PFA as it was with
the Cooley-Tukey FFT, however, the following representation in
Figure 10.1 which combines Figures Multidimensional Index Mapping: Figure 1 and Winograd’s Short DFT Algorithms: Figure 2 gives a good picture of the
algorithm with the example of Multidimensional Index Mapping: Equation 25
 [image: The Prime Factor Algorithm]

Figure 10.1. 
A Prime Factor FFT for N = 15

 If N is factored into three factors, the DFT of Equation 10.8 would
have three nested summations and would be a three-dimensional DFT.
This principle extends to any number of factors; however, recall
that the Type-1 map requires that all the factors be relatively
prime. A very simple three-loop indexing scheme has been developed
1 which gives a compact, efficient PFA program for any
number of factors. The basic program structure is illustrated in
screen with the short DFT's being omitted for clarity. Complete
programs are given in 3 and in the appendices.
 C---------------PFA INDEXING LOOPS--------------
                DO 10 K = 1, M
                   N1 = NI(K)
                   N2 = N/N1
                   I(1) = 1
                   DO 20 J = 1, N2
                      DO 30 L=2, N1
                         I(L) = I(L-1) + N2
                         IF (I(L .GT.N)  I(L) = I(L) - N
           30         CONTINUE
                      GOTO (20,102,103,104,105), N1
                      I(1) = I(1) + N1
           20      CONTINUE
           10   CONTINUE
                RETURN
        C----------------MODULE FOR N=2-----------------
          102   R1       = X(I(1))
                X(I(1))  = R1 + X(I(2))
                X(I(2))  = R1 - X(I(2))
                R1       = Y(I(1))
                Y(I(1))  = R1 + Y(I(2))
                Y(I(2))  = R1 - Y(I(2))
                GOTO 20
        C----------------OTHER MODULES------------------
          103   Length-3 DFT
          104   Length-4 DFT
          105   Length-5 DFT
                etc.
 
 
Part of a FORTRAN PFA Program

 As in the Cooley-Tukey program, the DO 10 loop steps through the M
stages (factors of N) and the DO 20 loop calculates the N/N1  length-N1
DFT's. The input index map of Equation 10.6 is implemented in the DO 30
loop and the statement just before label 20. In the PFA, each stage
or factor requires a separately programmed module or butterfly. This
lengthens the PFA program but an efficient Cooley-Tukey program will
also require three or more butterflies.
 Because the PFA is calculated in-place using the input index
map, the output is scrambled. There are five approaches to dealing
with this scrambled output. First, there are some applications where
the output does not have to be unscrambled as in the case of
high-speed convolution. Second, an unscrambler can be added after
the PFA to give the output in correct order just as the
bit-reversed-counter is used for the Cooley-Tukey FFT. A simple
unscrambler is given in 3, 1 but it is not in place. The
third method does the unscrambling in the modules while they are
being calculated. This is probably the fastest method but the
program must be written for a specific length 3, 1. A
fourth method is similar and achieves the unscrambling by choosing
the multiplier constants in the modules properly 11. The
fifth method uses a separate indexing method for the input and
output of each module 3, 17.

The Winograd Fourier Transform Algorithm



 The Winograd Fourier transform algorithm (WFTA) uses a very
powerful property of the Type-1 index map and the DFT to give a
further reduction of the number of multiplications in the PFA. Using
an operator notation where F1 represents taking row DFT's and
F2 represents column DFT's, the two-factor PFA of Equation 10.8 is
represented by
(10.9)

 It has been shown 21, 9 that if
each operator represents identical operations on each row or column,
they commute. Since F1 and F2 represent length N1 and N2
DFT's, they commute and Equation 10.9 can also be written
(10.10)

 If each short DFT in F is expressed by
three operators as in 
Winograd’s Short DFT Algorithms: Equation 8 and Winograd’s Short DFT Algorithms: Figure 2, F can be factored
as
(10.11)
          
            F
            =
            AT
            D
            A
          
        
 where A represents the set of additions
done on each row or column that performs the residue reduction as
Winograd’s Short DFT Algorithms: Equation 30. Because of the appearance of the flow graph of A and
because it is the first operator on x, it is called a preweave
operator 15. D is the set of M multiplications and
AT (or BT or CT) from Winograd’s Short DFT Algorithms: Equation 5 or Winograd’s Short DFT Algorithms: Equation 6 is the
reconstruction operator called the postweave. Applying Equation 10.11
to Equation 10.9 gives
(10.12)

 This is the PFA of Equation 10.8 and Figure 10.1 where A1D1A1
represents the row DFT's on the array formed from x. Because these
operators commute, Equation 10.12 can also be written as
(10.13)

 or
(10.14)

 but the two adjacent multiplication
operators can be premultiplied and the result represented by one
operator  which is no longer the same for each row or
column. Equation Equation 10.14 becomes
(10.15)

 This is the basic idea of the Winograd Fourier transform algorithm.
The commuting of the multiplication operators together in the center
of the algorithm is called nesting and it results in a significant
decrease in the number of multiplications that must be done at the
execution of the algorithm. Pictorially, the PFA of Figure 10.1 becomes
12 the WFTA in Figure 10.2.
 [image: ]

Figure 10.2. 
A Length-15 WFTA with Nested Multiplications

 The rectangular structure of the preweave addition operators
causes an expansion of the data in the center of the algorithm. The
15 data points in Figure 10.2 become 18 intermediate values. This
expansion is a major problem in programming the WFTA because it
prevents a straightforward in-place calculation and causes an
increase in the number of required additions and in the number of
multiplier constants that must be precalculated and stored.
 From Figure 10.2 and the idea of premultiplying the individual
multiplication operators, it can be seen why the multiplications by
unity had to be considered in Winograd’s Short DFT Algorithms: Table 1. Even if a multiplier in D1
is unity, it may not be in D2D1. In Figure 10.2 with factors of
three and five, there appear to be 18 multiplications required
because of the expansion of the length-5 preweave operator, A2,
however, one of multipliers in each of the length three and five
operators is unity, so one of the 18 multipliers in the product is
unity. This gives 17 required multiplications - a rather impressive
reduction from the 152=225 multiplications required by direct
calculation. This number of 17 complex multiplications will require
only 34 real multiplications because, as mentioned earlier, the
multiplier constants are purely real or imaginary while the 225
complex multiplications are general and therefore will require four
times as many real multiplications.
 The number of additions depends on the order of the pre- and
postweave operators. For example in the length-15 WFTA in Figure 10.2,
if the length-5 had been done first and last, there would have been
six row addition preweaves in the preweave operator rather than the
five shown. It is difficult to illustrate the algorithm for three or
more factors of N, but the ideas apply to any number of factors.
Each length has an optimal ordering of the pre- and postweave
operators that will minimize the number of additions.
 A program for the WFTA is not as simple as for the FFT or
PFA because of the very characteristic that reduces the number of
multiplications, the nesting. A simple two-factor example program is
given in 3 and a general program can be found in
15, 5. The same lengths are possible with the PFA and
WFTA and the same short DFT modules can be used, however, the
multiplies in the modules must occur in one place for use in the
WFTA.

Modifications of the PFA and WFTA Type Algorithms



 In the previous section it was seen how using the
permutation property of the elementary operators in the PFA allowed
the nesting of the multiplications to reduce their number. It was
also seen that a proper ordering of the operators could minimize the
number of additions. These ideas have been extended in formulating a
more general algorithm optimizing problem. If the DFT operator F
in Equation 10.11 is expressed in a still more factored form obtained
from Winograd’s Short DFT Algorithms: Equation 30, a greater variety of ordering can be optimized. For
example if the A operators have two factors
(10.16)

 The DFT in Equation 10.10 becomes
(10.17)
          
            X
            =
            A2T
            
                A'
              2T
            D2
            
                A'
              2
            A2
            A1T
            
                A'
              1T
            D1
            
                A'
              1
            A1
            x
          
        
 The operator notation is very helpful in understanding the central
ideas, but may hide some important facts. It has been shown
21, 11 that operators in different Fi commute with
each other, but the order of the operators within an Fi cannot be
changed. They represent the matrix multiplications in Winograd’s Short DFT Algorithms: Equation 30 or
Winograd’s Short DFT Algorithms: Equation 8 which do not commute.
 This formulation allows a very large set of possible
orderings, in fact, the number is so large that some automatic
technique must be used to find the “best". It is possible to set up
a criterion of optimality that not only includes the number of
multiplications but the number of additions as well. The effects of
relative multiply-add times, data transfer times, CPU register and
memory sizes, and other hardware characteristics can be included in
the criterion. Dynamic programming can then be applied to derive an
optimal algorithm for a particular application 9. This is a
very interesting idea as there is no longer a single algorithm, but
a class and an optimizing procedure. The challenge is to generate a
broad enough class to result in a solution that is close to a global
optimum and to have a practical scheme for finding the solution.
 Results obtained applying the dynamic programming method to
the design of fairly long DFT algorithms gave algorithms that had
fewer multiplications and additions than either a pure PFA or WFTA
9. It seems that some nesting is desirable but not total
nesting for four or more factors. There are also some interesting
possibilities in mixing the Cooley-Tukey with this formulation.
Unfortunately, the twiddle factors are not the same for all rows and
columns, therefore, operations cannot commute past a twiddle factor
operator. There are ways of breaking the total algorithm into
horizontal paths and using different orderings along the different
paths 16, 11. In a sense, this is what the split-radix
FFT does with its twiddle factors when compared to a conventional
Cooley-Tukey FFT.
 There are other modifications of the basic structure of the
Type-1 index map DFT algorithm. One is to use the same index
structure and conversion of the short DFT's to convolution as the
PFA but to use some other method for the high-speed convolution.
Table look-up of partial products based on distributed arithmetic to
eliminate all multiplications 4 looks promising for
certain very specific applications, perhaps for specialized VLSI
implementation. Another possibility is to calculate the short
convolutions using number-theoretic transforms
2, 15, 16. This would also require special hardware.
Direct calculation of short convolutions is faster on certain
pipelined processor such as the TMS-320 microprocessor 13.

Evaluation of the PFA and WFTA



 As for the Cooley-Tukey FFT's, the first evaluation of these
algorithms will be on the number of multiplications and additions
required. The number of multiplications to compute the PFA in
Equation 10.8 is given by Multidimensional Index Mapping: Equation 3. Using the notation that T(N) is
the number of multiplications or additions necessary to calculate a
length-N DFT, the total number for a four-factor PFA of length-N,
where N=N1N2N3N4 is
(10.18)

 The count of multiplies and adds in Table 10.1 are calculated from
(105) with the counts of the factors taken from Winograd’s Short DFT Algorithms: Table 1. The list of
lengths are those possible with modules in the program of length 2,
3, 4, 5, 7, 8, 9 and 16 as is true for the PFA in 3, 1
and the WFTA in 15, 5. A maximum of four relatively prime
lengths can be used from this group giving 59 different lengths over
the range from 2 to 5040. The radix-2 or split-radix FFT allows 12
different lengths over the same range. If modules of length 11 and
13 from 8 are added, the maximum length becomes 720720
and the number of different lengths becomes 239. Adding modules for
17, 19 and 25 from 8 gives a maximum length of
1163962800 and a very large and dense number of possible lengths.
The length of the code for the longer modules becomes excessive and
should not be included unless needed.
 The number of multiplications necessary for the WFTA is
simply the product of those necessary for the required modules,
including multiplications by unity. The total number may contain
some unity multipliers but it is difficult to remove them in a
practical program. Table 10.1 contains both the total number (MULTS)
and the number with the unity multiplies removed (RMULTS).
 Calculating the number of additions for the WFTA is more
complicated than for the PFA because of the expansion of the data
moving through the algorithm. For example the number of additions,
TA, for the length-15 example in Figure 10.2 is given by
(10.19)

 where N1=3, N2=5, TM1 = the number of multiplies for
the length-3 module and hence the expansion factor. As mentioned
earlier there is an optimum ordering to minimize additions. The
ordering used to calculate Table 10.1 is the ordering used in
15, 5 which is optimal in most cases and close to optimal
in the others.
Table 10.1. Number of Real Multiplications and Additions for Complex
PFA and WFTA FFTs	Length	PFA	PFA	WFTA	WFTA	WFTA
	N	Mults	Adds	Mults	RMults	Adds
	10	20	88	24	20	88
	12	16	96	24	16	96
	14	32	172	36	32	172
	15	50	162	36	34	162
	18	40	204	44	40	208
	20	40	216	48	40	216
	21	76	300	54	52	300
	24	44	252	48	36	252
	28	64	400	72	64	400
	30	100	384	72	68	384
	35	150	598	108	106	666
	36	80	480	88	80	488
	40	100	532	96	84	532
	42	152	684	108	104	684
	45	190	726	132	130	804
	48	124	636	108	92	660
	56	156	940	144	132	940
	60	200	888	144	136	888
	63	284	1236	198	196	1394
	70	300	1336	216	212	1472
	72	196	1140	176	164	1156
	80	260	1284	216	200	1352
	84	304	1536	216	208	1536
	90	380	1632	264	260	1788
	105	590	2214	324	322	2418
	112	396	2188	324	308	2332
	120	460	2076	288	276	2076
	126	568	2724	396	392	3040
	140	600	2952	432	424	3224
	144	500	2676	396	380	2880
	168	692	3492	432	420	3492
	180	760	3624	528	520	3936
	210	1180	4848	648	644	5256
	240	1100	4812	648	632	5136
	252	1136	5952	792	784	6584
	280	1340	6604	864	852	7148
	315	2050	8322	1188	1186	10336
	336	1636	7908	972	956	8508
	360	1700	8148	1056	1044	8772
	420	2360	10536	1296	1288	11352
	504	2524	13164	1584	1572	14428
	560	3100	14748	1944	1928	17168
	630	4100	17904	2376	2372	21932
	720	3940	18276	2376	2360	21132
	840	5140	23172	2592	2580	24804
	1008	5804	29100	3564	3548	34416
	1260	8200	38328	4752	4744	46384
	1680	11540	50964	5832	5816	59064
	2520	17660	82956	9504	9492	99068
	5040	39100	179772	21384	21368	232668


 from Table 10.1 we see that compared to the PFA or any of the Cooley-Tukey FFT's, the
WFTA has significantly fewer multiplications. For the shorter
lengths, the WFTA and the PFA have approximately the same number of
additions; however for longer lengths, the PFA has fewer and the
Cooley-Tukey FFT's always have the fewest. If the total arithmetic,
the number of multiplications plus the number of additions, is
compared, the split-radix FFT, PFA and WFTA all have about the same
count. Special versions of the PFA and WFTA have been developed for
real data 7, 19.
 The size of the Cooley-Tukey program is the smallest, the
PFA next and the WFTA largest. The PFA requires the smallest number
of stored constants, the Cooley-Tukey or split-radix FFT next, and
the WFTA requires the largest number. For a DFT of approximately
1000, the PFA stores 28 constants, the FFT 2048 and the WFTA 3564.
Both the FFT and PFA can be calculated in-place and the WFTA cannot.
The PFA can be calculated in-order without an unscrambler. The
radix-2 FFT can also, but it requires additional indexing overhead
10. The indexing and data transfer overhead is greatest for
the WFTA because the separate preweave and postweave sections each
require their indexing and pass through the complete data. The
shorter modules in the PFA and WFTA and the butterflies in the radix
2 and 4 FFT's are more efficient than the longer ones because
intermediate calculations can be kept in cpu registers rather
general memory 14. However, the shorter modules and
radices require more passes through the data for a given approximate
length. A proper comparison will require actual programs to be
compiled and run on a particular machine. There are many open
questions about the relationship of algorithms and hardware
architecture.
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Chapter 11. Implementing FFTs in Practice



 by Steven G. Johnson (Department of Mathematics, Massachusetts Institute of Technology) and Matteo Frigo (Cilk Arts, Inc.) 
Introduction



 Although there are a wide range of fast Fourier transform (FFT)
algorithms, involving a wealth of mathematics from number theory to
polynomial algebras, the vast majority of FFT implementations in
practice employ some variation on the Cooley-Tukey
algorithm 9. The Cooley-Tukey algorithm can be
derived in two or three lines of elementary algebra. It can be
implemented almost as easily, especially if only power-of-two sizes
are desired; numerous popular textbooks list short FFT subroutines
for power-of-two sizes, written in the language du jour. The
implementation of the Cooley-Tukey algorithm, at least, would
therefore seem to be a long-solved problem. In this chapter, however,
we will argue that matters are not as straightforward as they might
appear.
 For many years, the primary route to improving upon the Cooley-Tukey
FFT seemed to be reductions in the count of arithmetic operations,
which often dominated the execution time prior to the ubiquity of fast
floating-point hardware (at least on non-embedded processors). Therefore, great effort was expended towards
finding new algorithms with reduced arithmetic
counts 13, from Winograd's method to achieve
Θ(n) multiplications[2] (at the cost of many more
additions) 54, 22, 12, 13 to the
split-radix variant on Cooley-Tukey that long achieved the lowest
known total count of additions and multiplications for power-of-two
sizes 56, 10, 53, 32, 13 (but
was recently improved upon 27, 31). The question of
the minimum possible arithmetic count continues to be of fundamental
theoretical interest—it is not even known whether better than
Θ(nlogn) complexity is possible, since Ω(nlogn)
lower bounds on the count of additions have only been proven subject
to restrictive assumptions about the
algorithms 33, 36, 37. Nevertheless,
the difference in the number of arithmetic operations, for
power-of-two sizes n, between the 1965 radix-2 Cooley-Tukey
algorithm (∼5nlog2n 9) and the currently
lowest-known arithmetic count ( 27, 31) remains only about 25%.
 [image: log (n) base 2 on the horizontal axis, and FFTW speed/numerical recipes speed on the vertical axis. Two curves move horizontally from value 3 to value 18, where they begin increasing. One curve, labeled, without SSE, is lower in vertical value than the second curve, with SSE (SIMD instructions).]

Figure 11.1. 
The ratio of speed (1/time) between a highly optimized FFT
(FFTW 3.1.2 15, 16) and a typical textbook radix-2
implementation (Numerical Recipes in C38) on a 3 GHz Intel
Core Duo with the Intel C compiler 9.1.043, for single-precision
complex-data DFTs of size n, plotted versus log2n. Top line
(squares) shows FFTW with SSE SIMD instructions enabled, which
perform multiple arithmetic operations at once (see section );
bottom line (circles) shows FFTW with SSE disabled, which thus
requires a similar number of arithmetic instructions to the textbook
code. (This is not intended as a criticism of Numerical
Recipes—simple radix-2 implementations are reasonable for
pedagogy—but it illustrates the radical differences between
straightforward and optimized implementations of FFT algorithms,
even with similar arithmetic costs.) For n≳219, the
ratio increases because the textbook code becomes much slower (this
happens when the DFT size exceeds the level-2 cache).

 And yet there is a vast gap between this basic mathematical theory and
the actual practice—highly optimized FFT packages are often an
order of magnitude faster than the textbook subroutines, and the
internal structure to achieve this performance is radically different
from the typical textbook presentation of the “same” Cooley-Tukey
algorithm. For example, Figure 11.1 plots the ratio of benchmark
speeds between a highly optimized FFT 15, 16 and a
typical textbook radix-2 implementation 38, and the
former is faster by a factor of 5–40 (with a larger ratio as n
grows). Here, we will consider some of the reasons for this
discrepancy, and some techniques that can be used to address the
difficulties faced by a practical high-performance FFT
implementation.[3]
 In particular, in this chapter we will discuss some of the lessons
learned and the strategies adopted in the FFTW library. FFTW 15, 16 is a widely used free-software library that computes the
discrete Fourier transform (DFT) and its various special cases.
Its performance is competitive even with manufacturer-optimized programs 16,
and this performance is portable thanks the structure of the
algorithms employed, self-optimization techniques, and highly
optimized kernels (FFTW's codelets) generated by a
special-purpose compiler.
 This chapter is structured as follows. First "Review of the Cooley-Tukey FFT", we
briefly review the basic ideas behind the Cooley-Tukey algorithm and
define some common terminology, especially focusing on the many
degrees of freedom that the abstract algorithm allows to
implementations. Next, in "Goals and Background of the FFTW Project", we provide some context for FFTW's development and stress that performance, while it receives the most publicity, is not necessarily the most important consideration in the implementation of a library of this sort. Third, in "FFTs and the Memory Hierarchy", we consider a basic
theoretical model of the computer memory hierarchy and its impact on
FFT algorithm choices: quite general considerations push
implementations towards large radices and explicitly recursive
structure. Unfortunately, general considerations are not sufficient
in themselves, so we will explain in "Adaptive Composition of FFT Algorithms" how FFTW
self-optimizes for particular machines by selecting its algorithm at
runtime from a composition of simple algorithmic steps. Furthermore,
"Generating Small FFT Kernels" describes the utility and the principles of automatic
code generation used to produce the highly optimized building blocks
of this composition, FFTW's codelets. Finally, we will
briefly consider an important non-performance issue, in
"Numerical Accuracy in FFTs".

Review of the Cooley-Tukey FFT



 The (forward, one-dimensional)
discrete Fourier transform (DFT) of an array X of n complex numbers is
the array Y given by
(11.1)

 where 0≤k<n and ωn=exp(–2πi/n) is a
primitive root of unity. Implemented directly, Equation 11.1 would
require  operations; fast Fourier transforms are O(nlogn) algorithms to compute the same result. The most important
FFT (and the one primarily used in FFTW) is known as the
“Cooley-Tukey” algorithm, after the two authors who rediscovered and
popularized it in 1965 9, although it had been
previously known as early as 1805 by Gauss as well as by later
re-inventors 24. The basic idea behind this FFT is
that a DFT of a composite size n=n1n2 can be re-expressed in
terms of smaller DFTs of sizes n1 and n2—essentially, as a
two-dimensional DFT of size n1×n2 where the output is
transposed. The choices of factorizations of n, combined
with the many different ways to implement the data re-orderings of the
transpositions, have led to numerous implementation strategies for the
Cooley-Tukey FFT, with many variants distinguished by their own
names 13, 52. FFTW implements a space of
many such variants, as described in "Adaptive Composition of FFT Algorithms", but here
we derive the basic algorithm, identify its key features, and outline
some important historical variations and their relation to FFTW.
 The Cooley-Tukey algorithm can be derived as follows. If n can be
factored into n=n1n2, Equation 11.1 can be rewritten by
letting ℓ=ℓ1n2+ℓ2 and k=k1+k2n1. We then have:

(11.2)

 where k1,2=0,...,n1,2–1. Thus, the algorithm computes
n2 DFTs of size n1 (the inner sum), multiplies the result by
the so-called 21  twiddle factors , and finally computes n1 DFTs of size
n2 (the outer sum). This decomposition is then continued
recursively. The literature uses the term  radix to describe
an n1 or n2 that is bounded (often constant); the small DFT
of the radix is traditionally called a  butterfly.
 Many well-known variations are distinguished by the radix alone. A
 decimation in time ( DIT) algorithm uses n2 as
the radix, while a  decimation in frequency ( DIF)
algorithm uses n1 as the radix. If multiple radices are used,
e.g. for n composite but not a prime power, the algorithm is called
 mixed radix. A peculiar blending of radix 2 and 4 is called
 split radix, which was proposed to minimize the count of
arithmetic
operations 56, 10, 53, 32, 13
although it has been superseded in this
regard 27, 31. FFTW implements both DIT and
DIF, is mixed-radix with radices that are adapted to the
hardware, and often uses much larger radices (e.g. radix 32) than were
once common. On the other end of the scale, a “radix” of roughly
 has been called a  four-step FFT algorithm (or
 six-step, depending on how many transposes one
performs) 2; see "FFTs and the Memory Hierarchy" for some theoretical and
practical discussion of this algorithm.
 A key difficulty in implementing the Cooley-Tukey FFT is that the
n1 dimension corresponds to discontiguous inputs ℓ1 in X but
contiguous outputs k1 in Y, and vice-versa for n2. This is a
matrix transpose for a single decomposition stage, and the composition
of all such transpositions is a (mixed-base) digit-reversal
permutation (or  bit-reversal, for radix 2). The resulting
necessity of discontiguous memory access and data re-ordering hinders
efficient use of hierarchical memory architectures (e.g., caches), so
that the optimal execution order of an FFT for given hardware is
non-obvious, and various approaches have been proposed.
 [image: Two diagrams. Both are a chart showing a large circle labeled 8, then divided into two circles labeled 4, which are each divided into two circles labeled 2. The diagram on the left, labeled breadth-first, highlights the two circles labeled 4 in white. The diagram on the right, labeled depth-first, highlights one circle labeled 4 and one labeled 2.]

Figure 11.2. 
Schematic of traditional breadth-first (left) vs. recursive
depth-first (right) ordering for radix-2 FFT of size 8: the
computations for each nested box are completed before doing anything else in the
surrounding box. Breadth-first computation performs all butterflies
of a given size at once, while depth-first computation completes one
subtransform entirely before moving on to the next (as in the
algorithm below).

 One ordering distinction is between recursion and iteration. As
expressed above, the Cooley-Tukey algorithm could be thought of as
defining a tree of smaller and smaller DFTs, as depicted in Figure 11.2;
for example, a textbook radix-2 algorithm would divide size n into
two transforms of size n/2, which are divided into four transforms
of size n/4, and so on until a base case is reached (in principle,
size 1). This might naturally suggest a recursive implementation in
which the tree is traversed “depth-first” as in Figure 11.2(right) and the
algorithm of screen—one size n/2 transform is solved completely
before processing the other one, and so on. However, most traditional
FFT implementations are non-recursive (with rare
exceptions 46) and traverse the tree
“breadth-first” 52 as in Figure 11.2(left)—in the radix-2
example, they would perform n (trivial) size-1 transforms, then
n/2 combinations into size-2 transforms, then n/4 combinations
into size-4 transforms, and so on, thus making log2n passes over
the whole array. In contrast, as we discuss in
"Discussion", FFTW employs an explicitly
recursive strategy that encompasses both depth-first and
breadth-first styles, favoring the former since it has some
theoretical and practical advantages as discussed in "FFTs and the Memory Hierarchy".
 Y[0,...,n–1]←recfft 2(n,X,ι):
IF n=1 THEN
     Y[0]←X[0]
ELSE
     Y[0,...,n/2–1]←recfft2(n/2,X,2ι)
     Y[n/2,...,n–1]←recfft2(n/2,X+ι,2ι)
     FOR k1=0 TO (n/2)–1 DO
          
          
          
     END FOR
END IFA depth-first recursive radix-2 DIT Cooley-Tukey FFT to
compute a DFT of a power-of-two size n=2m. The input is an array
X of length n with stride ι (i.e., the inputs are X[ℓι]
for ℓ=0,...,n–1) and the output is an array Y of length n (with
stride 1), containing the DFT of X [Equation 1]. X+ι
denotes the array beginning with X[ι]. This algorithm operates
out-of-place, produces in-order output, and does not require a
separate bit-reversal stage.

 A second ordering distinction lies in how the digit-reversal is
performed. The classic approach is a single, separate digit-reversal
pass following or preceding the arithmetic computations; this approach
is so common and so deeply embedded into FFT lore that many
practitioners find it difficult to imagine an FFT without an
explicit bit-reversal stage. Although this pass requires only O(n)
time 29, it can still be non-negligible, especially if the
data is out-of-cache; moreover, it neglects the possibility that data
reordering during the transform may improve memory locality. Perhaps
the oldest alternative is the Stockham auto-sort
FFT 47, 52, which transforms back and forth
between two arrays with each butterfly, transposing one digit each
time, and was popular to improve contiguity of access for vector
computers 48. Alternatively, an explicitly
recursive style, as in FFTW, performs the digit-reversal implicitly
at the “leaves” of its computation when operating out-of-place
(see section "Discussion"). A simple example of this
style, which computes in-order output using an out-of-place radix-2
FFT without explicit bit-reversal, is shown in the algorithm of screen
[corresponding to Figure 11.2(right)]. To operate in-place
with O(1) scratch storage, one can interleave small matrix
transpositions with the
butterflies 26, 49, 40, 23, and a
related strategy in FFTW 16 is briefly described by
"Discussion".
 Finally, we should mention that there are many FFTs entirely
distinct from Cooley-Tukey. Three notable such algorithms are the
prime-factor algorithm for  35, along with Rader's 41 and
Bluestein's 4, 43, 35 algorithms
for prime n. FFTW implements the first two in its codelet
generator for hard-coded n "Generating Small FFT Kernels" and the latter two for
general prime n (sections "Plans for prime sizes" and "Goals and Background of the FFTW Project"). There is also the Winograd
FFT 54, 22, 12, 13, which
minimizes the number of multiplications at the expense of a large
number of additions; this trade-off is not beneficial on current
processors that have specialized hardware multipliers.

Goals and Background of the FFTW Project



 The FFTW project, begun in 1997 as a side project of the authors Frigo and Johnson as graduate students at MIT, has gone through several major revisions, and as of 2008 consists of more than 40,000 lines of code. It is difficult to measure the popularity of a free-software package, but (as of 2008) FFTW has been cited in over 500 academic papers, is used in hundreds of shipping free and proprietary software packages, and the authors have received over 10,000 emails from users of the software.  Most of this chapter focuses on performance of FFT implementations, but FFTW would probably not be where it is today if that were the only consideration in its design.  One of the key factors in FFTW's success seems to have been its flexibility in addition to its performance. In fact, FFTW is probably
the most flexible DFT library available:
 	 FFTW is written in portable C and runs well on many
architectures and operating systems.


	 FFTW computes DFTs in O(nlogn) time for any
length n. (Most other DFT implementations are either
restricted to a subset of sizes or they become  for
certain values of n, for example when n is prime.)


	 FFTW imposes no restrictions on the rank (dimensionality) of
multi-dimensional transforms. (Most other implementations are
limited to one-dimensional, or at most two- and three-dimensional
data.)


	 FFTW supports multiple and/or strided DFTs; for example,
to transform a 3-component vector field or a portion of a
multi-dimensional array. (Most implementations support only a
single DFT of contiguous data.)


	 FFTW supports DFTs of real data, as well as of real
symmetric/anti-symmetric data (also called discrete cosine/sine
transforms).




 Our design philosophy has been to first define the most general
reasonable functionality, and then to obtain the highest possible
performance without sacrificing this generality. In this section, we
offer a few thoughts about why such flexibility has proved important,
and how it came about that FFTW was designed in this way.
 FFTW's generality is partly a consequence of the fact the FFTW
project was started in response to the needs of a real application for
one of the authors (a spectral solver for Maxwell's
equations 28), which from the beginning had to run
on heterogeneous hardware. Our initial application required
multi-dimensional DFTs of three-component vector fields (magnetic
fields in electromagnetism), and so right away this meant: (i)
multi-dimensional FFTs; (ii) user-accessible loops of FFTs of
discontiguous data; (iii) efficient support for non-power-of-two sizes
(the factor of eight difference between n×n×n and
2n×2n×2n was too much to tolerate); and (iv) saving a
factor of two for the common real-input case was desirable. That is,
the initial requirements already encompassed most of the features
above, and nothing about this application is particularly unusual.
 Even for one-dimensional DFTs, there is a common misperception that
one should always choose power-of-two sizes if one cares about
efficiency. Thanks to FFTW's code generator (described in "Generating Small FFT Kernels"), we could afford to
devote equal optimization effort to any n with small factors (2, 3,
5, and 7 are good), instead of mostly optimizing powers of two like
many high-performance FFTs. As a result, to pick a typical example
on the 3 GHz Core Duo processor of Figure 11.1, n=3600=24·32·52 and n=3840=28·3·5 both execute faster
than n=4096=212. (And if there are factors one particularly
cares about, one can generate code for them too.)
 One initially missing feature was efficient support for large prime
sizes; the conventional wisdom was that large-prime algorithms were
mainly of academic interest, since in real applications (including
ours) one has enough freedom to choose a highly composite transform
size. However, the prime-size algorithms are fascinating, so we
implemented Rader's O(nlogn) prime-n algorithm 41 purely for fun,
including it in FFTW 2.0 (released in 1998) as a bonus feature. The response was
astonishingly positive—even though users are (probably) never
forced by their application to compute a prime-size DFT, it
is rather inconvenient to always worry that collecting an unlucky
number of data points will slow down one's analysis by a factor of a
million. The prime-size algorithms are certainly slower than
algorithms for nearby composite sizes, but in interactive
data-analysis situations the difference between 1 ms and 10 ms means little,
while educating users to avoid large prime factors is hard.
 Another form of flexibility that deserves comment has to do with a
purely technical aspect of computer software. FFTW's
implementation involves some unusual language choices internally
(the FFT-kernel generator, described in "Generating Small FFT Kernels",
 is written in Objective Caml, a functional language
especially suited for compiler-like programs), but its user-callable
interface is purely in C with lowest-common-denominator datatypes
(arrays of floating-point values). The advantage of this is that
FFTW can be (and has been) called from almost any other programming
language, from Java to Perl to Fortran 77. Similar
lowest-common-denominator interfaces are apparent in many other
popular numerical libraries, such as LAPACK 1. Language
preferences arouse strong feelings, but this technical constraint means
that modern programming dialects are best hidden from view for a
numerical library.
 Ultimately, very few scientific-computing applications should have
performance as their top priority. Flexibility is often far more important,
because one wants to be limited only by one's imagination, rather than
by one's software, in the kinds of problems that can be studied.

FFTs and the Memory Hierarchy



 There are many complexities of computer architectures that impact the
optimization of FFT implementations, but one of the most pervasive
is the memory hierarchy. On any modern general-purpose computer,
memory is arranged into a hierarchy of storage devices with increasing
size and decreasing speed: the fastest and smallest memory being the
CPU registers, then two or three levels of cache, then the main-memory
RAM, then external storage such as hard disks.[4] Most of these levels are managed automatically by
the hardware to hold the most-recently-used data from the next level
in the hierarchy.[5]
There are many complications, however, such as limited cache
associativity (which means that certain locations in memory cannot be
cached simultaneously) and cache lines (which optimize the cache for
contiguous memory access), which are reviewed in numerous textbooks on
computer architectures. In this section, we focus on the
simplest abstract principles of memory hierarchies in order to grasp
their fundamental impact on FFTs.
 Because access to memory is in many cases the slowest part of the
computer, especially compared to arithmetic, one wishes to load as
much data as possible in to the faster levels of the hierarchy, and
then perform as much computation as possible before going back to the
slower memory devices. This is called  temporal locality: if a given datum is used more than once, we arrange the
computation so that these usages occur as close together as possible
in time.
Understanding FFTs with an ideal cache



 To understand temporal-locality strategies at a basic level, in this
section we will employ an idealized model of a cache in a two-level
memory hierarchy, as defined in 19.
This
 ideal cache stores Z data items from main memory
(e.g. complex numbers for our purposes): when the processor loads a
datum from memory, the access is quick if the datum is already in the
cache (a  cache hit) and slow otherwise (a  cache
miss, which requires the datum to be fetched into the cache). When a
datum is loaded into the cache,[6] it must replace
some other datum, and the ideal-cache model assumes that the optimal
replacement strategy is used 3: the new datum replaces
the datum that will not be needed for the longest time in the future;
in practice, this can be simulated to within a factor of two by
replacing the least-recently used datum 19, but ideal
replacement is much simpler to analyze. Armed with this ideal-cache
model, we can now understand some basic features of FFT
implementations that remain essentially true even on real cache
architectures. In particular, we want to know the  cache
complexity, the number Q(n;Z) of cache misses for an FFT of size
n with an ideal cache of size Z, and what algorithm choices reduce
this complexity.
 First, consider a textbook radix-2 algorithm, which divides n by 2
at each stage and operates breadth-first as in
Figure 11.2(left), performing all butterflies of a given
size at a time. If n>Z, then each pass over the array incurs
Θ(n) cache misses to reload the data, and there are log2n
passes, for  cache misses in total—no temporal
locality at all is exploited!
 One traditional solution to this problem is  blocking: the
computation is divided into maximal blocks that fit into the cache,
and the computations for each block are completed before moving on to
the next block. Here, a block of Z numbers can fit into the
cache[7] (not
including storage for twiddle factors and so on), and thus the natural
unit of computation is a sub-FFT of size Z. Since each of these
blocks involves Θ(ZlogZ) arithmetic operations, and there
are Θ(nlogn) operations overall, there must be
 such blocks. More explicitly, one
could use a radix-Z Cooley-Tukey algorithm, breaking n down by
factors of Z [or Θ(Z)] until a size Z is reached: each
stage requires n/Z blocks, and there are logZn stages, again
giving  blocks overall. Since each
block requires Z cache misses to load it into cache, the cache
complexity Qb of such a blocked algorithm is
(11.3)

 In fact, this complexity is rigorously  optimal for Cooley-Tukey
FFT algorithms 25, and immediately points us towards
 large radices (not radix 2!) to exploit caches effectively in
FFTs.
 However, there is one shortcoming of any blocked FFT algorithm: it
is  cache aware, meaning that the implementation depends
explicitly on the cache size Z. The implementation must be modified
(e.g. changing the radix) to adapt to different machines as the cache
size changes. Worse, as mentioned above, actual machines have
multiple levels of cache, and to exploit these one must perform
multiple levels of blocking, each parameterized by the corresponding
cache size. In the above example, if there were a smaller and faster
cache of size z<Z, the size-Z sub-FFTs should themselves be
performed via radix-z Cooley-Tukey using blocks of size z. And so
on. There are two paths out of these difficulties: one is
self-optimization, where the implementation automatically adapts
itself to the hardware (implicitly including any cache sizes), as
described in "Adaptive Composition of FFT Algorithms"; the other is to exploit
 cache-oblivious algorithms. FFTW employs both of these
techniques.
 The goal of cache-obliviousness is to structure the algorithm so that
it exploits the cache without having the cache size as a parameter:
the same code achieves the same asymptotic cache complexity regardless
of the cache size Z. An  optimal cache-oblivious algorithm
achieves the optimal cache complexity (that is, in an
asymptotic sense, ignoring constant factors). Remarkably, optimal
cache-oblivious algorithms exist for many problems, such as matrix
multiplication, sorting, transposition, and FFTs 19.
Not all cache-oblivious algorithms are optimal, of course—for
example, the textbook radix-2 algorithm discussed above is
“pessimal” cache-oblivious (its cache complexity is independent of
Z because it always achieves the worst case!).
 For instance, Figure 11.2(right) and the algorithm of screen shows a way to
obliviously exploit the cache with a radix-2 Cooley-Tukey algorithm,
by ordering the computation depth-first rather than breadth-first.
That is, the DFT of size n is divided into two DFTs of size
n/2, and one DFT of size n/2 is completely finished
before doing any computations for the second DFT of size
n/2. The two subtransforms are then combined using n/2 radix-2
butterflies, which requires a pass over the array and (hence n cache
misses if n>Z). This process is repeated recursively until a
base-case (e.g. size 2) is reached. The cache complexity Q2(n;Z)
of this algorithm satisfies the recurrence
(11.4)

 The key property is this: once the recursion reaches a size n≤Z, the subtransform fits into the cache and no further misses are
incurred. The algorithm does not “know” this and continues
subdividing the problem, of course, but all of those further
subdivisions are in-cache because they are performed in the same
depth-first branch of the tree. The solution of
Equation 11.4 is
(11.5)
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 This is worse than the theoretical optimum Qb(n;Z) from
Equation 11.3, but it is cache-oblivious (Z never entered the
algorithm) and exploits at least some temporal
locality.[8] On the other hand, when it is combined
with FFTW's self-optimization and larger radices in
"Adaptive Composition of FFT Algorithms", this algorithm actually performs very well until n
becomes extremely large. By itself, however, the algorithm of screen must
be modified to attain adequate performance for reasons that have
nothing to do with the cache. These practical issues are discussed
further in "Cache-obliviousness in practice".
 There exists a different recursive FFT that is optimal
cache-oblivious, however, and that is the radix-
“four-step” Cooley-Tukey algorithm (again executed recursively,
depth-first) 19. The cache complexity Qo of this algorithm
satisfies the recurrence:
(11.6)

 That is, at each stage one performs  DFTs of size
 (recursively), then multiplies by the Θ(n) twiddle
factors (and does a matrix transposition to obtain in-order output),
then finally performs another  DFTs of size . The
solution of Equation 11.6 is , the
same as the optimal cache complexity Equation 11.3!
 These algorithms illustrate the basic features of most optimal
cache-oblivious algorithms: they employ a recursive divide-and-conquer
strategy to subdivide the problem until it fits into cache, at which
point the subdivision continues but no further cache misses are
required. Moreover, a cache-oblivious algorithm exploits all levels
of the cache in the same way, so an optimal cache-oblivious algorithm
exploits a multi-level cache optimally as well as a two-level
cache 19: the multi-level “blocking” is implicit in
the recursion.

Cache-obliviousness in practice



 Even though the radix- algorithm is optimal cache-oblivious,
it does not follow that FFT implementation is a solved problem. The
optimality is only in an asymptotic sense, ignoring constant factors,
O(n) terms, etcetera, all of which can matter a great deal in
practice. For small or moderate n, quite different algorithms may
be superior, as discussed in "Memory strategies in FFTW". Moreover, real
caches are inferior to an ideal cache in several ways. The
unsurprising consequence of all this is that cache-obliviousness, like
any complexity-based algorithm property, does not absolve one from the
ordinary process of software optimization. At best, it reduces the
amount of memory/cache tuning that one needs to perform, structuring
the implementation to make further optimization easier and more
portable.
 Perhaps most importantly, one needs to perform an optimization that
has almost nothing to do with the caches: the recursion must be
“coarsened” to amortize the function-call overhead and to enable
compiler optimization. For example, the simple pedagogical code of the
algorithm in screen recurses all the way down to n=1, and hence
there are ≈2n function calls in total, so that every data
point incurs a two-function-call overhead on average. Moreover, the
compiler cannot fully exploit the large register sets and instruction-level
parallelism of modern processors with an n=1 function
body.[9]
These problems can be effectively erased, however, simply by making
the base cases larger, e.g. the recursion could stop when n=32 is
reached, at which point a highly optimized hard-coded FFT of that
size would be executed. In FFTW, we produced this sort of large
base-case using a specialized code-generation program described in
"Generating Small FFT Kernels".
 One might get the impression that there is a strict dichotomy that
divides cache-aware and cache-oblivious algorithms, but the two are
not mutually exclusive in practice. Given an implementation of a
cache-oblivious strategy, one can further optimize it for the cache
characteristics of a particular machine in order to improve the
constant factors. For example, one can tune the radices used, the
transition point between the radix- algorithm and the
bounded-radix algorithm, or other algorithmic choices as described
in "Memory strategies in FFTW". The advantage of starting cache-aware tuning with a
cache-oblivious approach is that the starting point already exploits
all levels of the cache to some extent, and one has reason to hope
that good performance on one machine will be more portable to other
architectures than for a purely cache-aware “blocking” approach. In
practice, we have found this combination to be very successful with
FFTW.

Memory strategies in FFTW



 The recursive cache-oblivious strategies described above form a useful
starting point, but FFTW supplements them with a number of
additional tricks, and also exploits cache-obliviousness in
less-obvious forms.
 We currently find that the general radix- algorithm is
beneficial only when n becomes very large, on the order of 220≈106. In practice, this means that we use at most a single
step of radix- (two steps would only be used for n≳240). The reason for this is that the implementation of
radix  is less efficient than for a bounded radix: the
latter has the advantage that an entire radix butterfly can be
performed in hard-coded loop-free code within local
variables/registers, including the necessary permutations and twiddle
factors.
 Thus, for more moderate n, FFTW uses depth-first recursion with a
bounded radix, similar in spirit to the algorithm of screen but with much
larger radices (radix 32 is common) and base cases (size 32 or 64 is
common) as produced by the code generator of "Generating Small FFT Kernels". The
self-optimization described in "Adaptive Composition of FFT Algorithms" allows the choice of
radix and the transition to the radix- algorithm to be tuned
in a cache-aware (but entirely automatic) fashion.
 For small n (including the radix butterflies and the base cases of
the recursion), hard-coded FFTs (FFTW's codelets) are
employed. However, this gives rise to an interesting problem: a
codelet for (e.g.) n=64 is ∼2000 lines long, with hundreds of
variables and over 1000 arithmetic operations that can be executed in
many orders, so what order should be chosen? The key problem here is
the efficient use of the CPU registers, which essentially form a
nearly ideal, fully associative cache. Normally, one relies on the
compiler for all code scheduling and register allocation, but but the
compiler needs help with such long blocks of code (indeed, the general
register-allocation problem is NP-complete). In particular, FFTW's
generator knows more about the code than the compiler—the generator
knows it is an FFT, and therefore it can use an optimal
cache-oblivious schedule (analogous to the radix- algorithm)
to order the code independent of the number of
registers 20. The compiler is then used only for local
“cache-aware” tuning (both for register allocation and the CPU
pipeline).[10] As a practical matter, one consequence of this scheduler
is that FFTW's machine-independent codelets are no slower than
machine-specific codelets generated by an automated search and
optimization over many possible codelet implementations, as performed
by the SPIRAL project 55.
 (When implementing hard-coded base cases, there is another choice because a
loop of small transforms is always required. Is it better to
implement a hard-coded FFT of size 64, for example, or an unrolled
loop of four size-16 FFTs, both of which operate on the same amount
of data? The former should be more efficient because it performs more
computations with the same amount of data, thanks to the logn
factor in the FFT's nlogn complexity.)
 In addition, there are many other techniques that FFTW employs to
supplement the basic recursive strategy, mainly to address the fact
that cache implementations strongly favor accessing consecutive
data—thanks to cache lines, limited associativity, and direct
mapping using low-order address bits (accessing data at power-of-two
intervals in memory, which is distressingly common in FFTs, is thus
especially prone to cache-line conflicts). Unfortunately, the known
FFT algorithms inherently involve some non-consecutive access
(whether mixed with the computation or in separate
bit-reversal/transposition stages). There are many optimizations in
FFTW to address this. For example, the data for several
butterflies at a time can be copied to a small buffer before computing
and then copied back, where the copies and computations involve more
consecutive access than doing the computation directly in-place. Or,
the input data for the subtransform can be copied from
(discontiguous) input to (contiguous) output before performing the
subtransform in-place (see "Indirect plans"), rather than
performing the subtransform directly out-of-place (as in
algorithm 1). Or, the order of loops can be interchanged in
order to push the outermost loop from the first radix step [the ℓ2
loop in Equation 11.2] down to the leaves, in order to make the input
access more consecutive (see "Discussion"). Or, the twiddle
factors can be computed using a smaller look-up table (fewer memory
loads) at the cost of more arithmetic (see "Numerical Accuracy in FFTs"). The
choice of whether to use any of these techniques, which come into play
mainly for moderate n (213<n<220), is made by the
self-optimizing planner as described in the next section.


Adaptive Composition of FFT Algorithms



 As alluded to several times already, FFTW implements a wide variety
of FFT algorithms (mostly rearrangements of Cooley-Tukey) and
selects the “best” algorithm for a given n automatically. In this
section, we describe how such self-optimization is implemented, and
especially how FFTW's algorithms are structured as a composition of
algorithmic fragments. These techniques in FFTW are described in
greater detail elsewhere 16, so here we will focus only on
the essential ideas and the motivations behind them.
 An FFT algorithm in FFTW is a composition of algorithmic steps
called a  plan. The algorithmic steps each solve a certain
class of  problems (either solving the problem directly or
recursively breaking it into sub-problems of the same type). The
choice of plan for a given problem is determined by a  planner
that selects a composition of steps, either by runtime measurements to
pick the fastest algorithm, or by heuristics, or by loading a
pre-computed plan. These three pieces: problems, algorithmic steps,
and the planner, are discussed in the following subsections.
The problem to be solved



 In early versions of FFTW, the only choice made by the planner was
the sequence of radices 17, and so each step of the plan
took a DFT of a given size n, possibly with discontiguous
input/output, and reduced it (via a radix r) to DFTs of size
n/r, which were solved recursively. That is, each step solved the
following problem: given a size n, an  input pointer I, an  input stride ι, an  output pointer O, and an  output stride o, it computed the DFT
of I[ℓι] for 0≤ℓ<n and stored the result in
O[ko] for 0≤k<n. However, we soon found that we
could not easily express many interesting algorithms within this
framework; for example,  in-place (I=O) FFTs
that do not require a separate bit-reversal
stage 26, 49, 40, 23. It became
clear that the key issue was not the choice of algorithms, as we had
first supposed, but the definition of the problem to be solved.
Because only problems that can be expressed can be solved, the
representation of a problem determines an outer bound to the space of
plans that the planner can explore, and therefore it ultimately
constrains FFTW's performance.
 The difficulty with our initial (n,I,ι,O,o) problem
definition was that it forced each algorithmic step to address only a
single DFT. In fact, FFTs break down DFTs into
multiple smaller DFTs, and it is the combination of
these smaller transforms that is best addressed by many algorithmic
choices, especially to rearrange the order of memory accesses between
the subtransforms. Therefore, we redefined our notion of a problem
in FFTW to be not a single DFT, but rather a loop of
DFTs, and in fact multiple nested loops of DFTs. The
following sections describe some of the new algorithmic steps that
such a problem definition enables, but first we will define the problem
more precisely.
 DFT problems in FFTW are expressed in terms of structures called
I/O tensors,[11] which in turn are described
in terms of ancillary structures called I/O dimensions. An  I/O dimension d is a triple d=(n,ι,o), where n is
a non-negative integer called the  length, ι is an integer
called the  input stride, and o is an integer called the
 output stride. An  I/O tensor t={d1 , d2 , ... , dρ} is a
set of I/O dimensions. The non-negative integer ρ=|t|
is called the  rank of the I/O tensor. A  DFT
problem, denoted by dft(N,V,I,O), consists
of two I/O tensors N and V, and of two  pointers I and O. Informally, this describes |V|
nested loops of |N|-dimensional DFTs with input data
starting at memory location I and output data starting
at O.
 For simplicity, let us consider only one-dimensional DFTs, so that
N={( n , ι , o )} implies a DFT of length n
on input data with stride ι and output data with stride o,
much like in the original FFTW as described above. The main new
feature is then the addition of zero or more “loops” V. More
formally, dft(N,{( n , ι , o )}∪V,I,O) is recursively defined as a “loop” of n
problems: for all 0≤k<n, do all computations in
dft(N,V,I+k·ι,O+k·o).
The case of multi-dimensional DFTs is defined more precisely
elsewhere 16, but essentially each I/O dimension in N gives one
dimension of the transform.
 We call N the size of the problem. The rank
of a problem is defined to be the rank of its size (i.e., the
dimensionality of the DFT). Similarly, we call V the
vector size of the problem, and the vector rank of a
problem is correspondingly defined to be the rank of its vector size.
Intuitively, the vector size can be interpreted as a set of “loops”
wrapped around a single DFT, and we therefore refer to a single
I/O dimension of V as a vector loop. (Alternatively, one
can view the problem as describing a DFT over a
|V|-dimensional vector space.) The problem does not
specify the order of execution of these loops, however, and therefore
FFTW is free to choose the fastest or most convenient order.
DFT problem examples



 A more detailed discussion of the space of problems in FFTW can be
found in
16
, but a simple understanding can be gained
by examining a few examples demonstrating that the I/O tensor
representation is sufficiently general to cover many situations that
arise in practice, including some that are not usually considered to
be instances of the DFT.
 A single one-dimensional DFT of length n, with
stride-1 input X and output Y, as in  Equation 11.1, is
denoted by the problem
dft({( n , 1 , 1 )},{},X,Y) (no
loops: vector-rank zero).
 As a more complicated example, suppose we have an n1×n2
matrix X stored as n1 consecutive blocks of contiguous
length-n2 rows (this is called  row-major format). The
in-place DFT of all the rows of this matrix would be denoted
by the problem
:
a length-n1 loop of size-n2 contiguous DFTs, where each
iteration of the loop offsets its input/output data by a stride n2.
Conversely, the in-place DFT of all the columns of this
matrix would be denoted by
:
compared to the previous example, N and V are swapped. In
the latter case, each DFT operates on discontiguous data, and
FFTW might well choose to interchange the loops: instead of
performing a loop of DFTs computed individually, the subtransforms
themselves could act on n2-component vectors, as described in
"The space of plans in FFTW".
 A size-1 DFT is simply a copy Y[0]=X[0], and here this can also
be denoted by N={} (rank zero, a “zero-dimensional” DFT).
This allows FFTW's problems to represent many kinds of copies and
permutations of the data within the same problem framework, which is
convenient because these sorts of operations arise frequently in
FFT algorithms. For example, to copy n consecutive numbers from
I to O, one would use the rank-zero problem
dft({},{( n , 1 , 1 )},I,O). More
interestingly, the in-place  transpose of an n1×n2
matrix X stored in row-major format, as described above, is
denoted by  (rank zero, vector-rank two).


The space of plans in FFTW



 Here, we describe a subset of the possible plans considered by
FFTW; while not exhaustive 16, this subset is enough to
illustrate the basic structure of FFTW and the necessity of
including the vector loop(s) in the problem definition to enable
several interesting algorithms. The plans that we now describe
usually perform some simple “atomic” operation, and it may not be
apparent how these operations fit together to actually compute
DFTs, or why certain operations are useful at all. We shall
discuss those matters in "Discussion".
 Roughly speaking, to solve a general DFT problem, one must perform
three tasks. First, one must reduce a problem of arbitrary vector
rank to a set of loops nested around a problem of vector rank 0, i.e.,
a single (possibly multi-dimensional) DFT. Second, one must reduce
the multi-dimensional DFT to a sequence of of rank-1 problems,
i.e., one-dimensional DFTs; for simplicity, however, we do not
consider multi-dimensional DFTs below. Third, one must solve the
rank-1, vector rank-0 problem by means of some DFT algorithm such
as Cooley-Tukey. These three steps need not be executed in the stated
order, however, and in fact, almost every permutation and interleaving
of these three steps leads to a correct DFT plan. The choice of the
set of plans explored by the planner is critical for the usability of
the FFTW system: the set must be large enough to contain the
fastest possible plans, but it must be small enough to keep the
planning time acceptable.
Rank-0 plans



 The rank-0 problem dft({},V,I,O) denotes
a permutation of the input array into the output array. FFTW
does not solve arbitrary rank-0 problems, only the following two
special cases that arise in practice.
 	 When |V|=1 and I≠O, FFTW
produces a plan that copies the input array into the output array.
Depending on the strides, the plan consists of a
loop or, possibly, of a call to the ANSI C function memcpy, which is
specialized to copy contiguous regions of memory.


	 When |V|=2, I=O, and the strides
denote a matrix-transposition problem, FFTW creates a plan
that transposes the array in-place. FFTW implements the
square transposition
dft({},{( n , ι , o ) , ( n , o , ι )},I,O) by means of the
cache-oblivious algorithm from 19, which is fast
and, in theory, uses the cache optimally regardless of the cache
size (using principles similar to those described in the section "FFTs and the Memory Hierarchy"). A generalization of this idea is employed for non-square
transpositions with a large common factor or a small difference
between the dimensions, adapting algorithms from
11.





Rank-1 plans



 Rank-1 DFT problems denote ordinary one-dimensional Fourier
transforms. FFTW deals with most rank-1 problems as follows.
Direct plans



 When the DFT rank-1 problem is “small enough” (usually, n≤64), FFTW produces a direct plan that solves the
problem directly. These plans operate by calling a fragment of C code
(a codelet) specialized to solve problems of one particular
size, whose generation is described in "Generating Small FFT Kernels". More
precisely, the codelets compute a loop (|V|≤1) of
small DFTs.

Cooley-Tukey plans



 For problems of the form
dft({( n , ι , o )},V,I,O) where
n=rm, FFTW generates a plan that implements a
radix-r Cooley-Tukey algorithm "Review of the Cooley-Tukey FFT".
Both decimation-in-time and decimation-in-frequency plans are supported, with both small fixed radices (usually, r≤64) produced by the codelet generator "Generating Small FFT Kernels" and also arbitrary radices (e.g. radix-).
 The most common case is a  decimation in time ( DIT) plan, corresponding to a
 radix r=n2 (and thus m=n1) in the notation of "Review of the Cooley-Tukey FFT": it first solves
dft({( m , r · ι , o )},V∪{( r , ι , m · o )},I,O),
then multiplies the output array O by the twiddle factors, and
finally solves
dft({( r , m · o , m · o )},V∪{( m , o , o )},O,O). For
performance, the last two steps are not planned independently, but are
fused together in a single “twiddle” codelet—a fragment of C code
that multiplies its input by the twiddle factors and performs a DFT
of size r, operating in-place on O.


Plans for higher vector ranks



 These plans extract a vector loop to reduce a DFT problem to a
problem of lower vector rank, which is then solved recursively. Any
of the vector loops of V could be extracted in this way, leading
to a number of possible plans corresponding to different loop
orderings.
 Formally, to solve dft(N,V,I,O), where
V={( n , ι , o )}∪V1, FFTW
generates a loop that, for all k such that 0≤k<n,
invokes a plan for
.

Indirect plans



 Indirect plans transform a DFT problem that requires some data
shuffling (or discontiguous operation) into a problem that requires no
shuffling plus a rank-0 problem that performs the shuffling.
 Formally, to solve dft(N,V,I,O) where
|N|>0, FFTW generates a plan that first solves
dft({},N∪V,I,O), and then
solves dft(copy-o(N),copy-o(V),O,O). Here
we define copy-o(t) to be the I/O tensor
{( n , o , o ) ∣ ( n , ι , o ) ∈ t}: that is, it replaces the input
strides with the output strides. Thus, an indirect plan first
rearranges/copies the data to the output, then solves the problem in
place.

Plans for prime sizes



 As discussed in "Goals and Background of the FFTW Project", it turns out to be surprisingly
useful to be able to handle large prime n (or large prime factors).
Rader plans implement the algorithm from
41
to compute one-dimensional DFTs of prime size in Θ(nlogn)
time. Bluestein plans implement Bluestein's “chirp-z”
algorithm, which can also handle prime n in Θ(nlogn)
time 4, 43, 35. Generic plans
implement a naive  algorithm (useful for n≲100).

Discussion



 Although it may not be immediately apparent, the combination of the
recursive rules in "The space of plans in FFTW" can produce a number of
useful algorithms. To illustrate these compositions, we discuss three particular issues: depth- vs. breadth-first, loop reordering,
and in-place transforms.
 [image: Two descriptions of size-30 DFT, one depth-first, and one breadth-first.]

Figure 11.3. 
Two possible decompositions for a size-30 DFT, both for the
arbitrary choice of DIT radices 3 then 2 then 5, and prime-size
codelets.  Items grouped by a "{" result from the plan for a
single sub-problem.  In the depth-first case, the vector rank was
reduced to zero as per "Plans for higher vector ranks" before decomposing
sub-problems, and vice-versa in the breadth-first case.

 As discussed previously in sections "Review of the Cooley-Tukey FFT" and "Understanding FFTs with an ideal cache", the same
Cooley-Tukey decomposition can be executed in either traditional
breadth-first order or in recursive depth-first order, where the
latter has some theoretical cache advantages. FFTW is explicitly
recursive, and thus it can naturally employ a depth-first order.
Because its sub-problems contain a vector loop that can be executed in
a variety of orders, however, FFTW can also employ breadth-first
traversal. In particular, a 1d algorithm resembling the
traditional breadth-first Cooley-Tukey would result from applying
"Cooley-Tukey plans" to completely factorize the problem
size before applying the loop rule "Plans for higher vector ranks" to reduce
the vector ranks, whereas depth-first traversal would result from
applying the loop rule before factorizing each subtransform. These
two possibilities are illustrated by an example in Figure 11.3.
 Another example of the effect of loop reordering is a style of plan
that we sometimes call vector recursion (unrelated to
“vector-radix” FFTs 13). The basic idea is that,
if one has a loop (vector-rank 1) of transforms, where the vector
stride is smaller than the transform size, it is advantageous to push
the loop towards the leaves of the transform decomposition, while
otherwise maintaining recursive depth-first ordering, rather than
looping “outside” the transform; i.e., apply the usual FFT to
“vectors” rather than numbers. Limited forms of this idea have
appeared for computing multiple FFTs on vector processors (where
the loop in question maps directly to a hardware
vector) 48. For example, Cooley-Tukey
produces a unit input-stride vector loop at the top-level
DIT decomposition, but with a large output stride; this
difference in strides makes it non-obvious whether vector recursion is
advantageous for the sub-problem, but for large transforms we often
observe the planner to choose this possibility.
 In-place 1d transforms (with no separate bit reversal pass) can
be obtained as follows by a combination DIT and DIF plans
"Cooley-Tukey plans" with transposes
"Rank-0 plans". First, the transform is decomposed via a
radix-p DIT plan into a vector of p transforms of size qm,
then these are decomposed in turn by a radix-q DIF plan into a
vector (rank 2) of p×q transforms of size m. These
transforms of size m have input and output at different
places/strides in the original array, and so cannot be solved
independently. Instead, an indirect plan "Indirect plans"
is used to express the sub-problem as pq in-place transforms of size
m, followed or preceded by an m×p×q rank-0
transform. The latter sub-problem is easily seen to be m in-place
p×q transposes (ideally square, i.e. p=q). Related
strategies for in-place transforms based on small transposes were
described in 26, 49, 40, 23;
alternating DIT/DIF, without concern for in-place operation, was
also considered in 34, 44.


The FFTW planner



 Given a problem and a set of possible plans, the basic principle
behind the FFTW planner is straightforward: construct a plan for
each applicable algorithmic step, time the execution of these plans,
and select the fastest one. Each algorithmic step may break the
problem into subproblems, and the fastest plan for each subproblem is
constructed in the same way. These timing measurements can either be
performed at runtime, or alternatively the plans for a given set of
sizes can be precomputed and loaded at a later time.
 A direct implementation of this approach, however, faces an
exponential explosion of the number of possible plans, and hence of
the planning time, as n increases. In order to reduce the planning
time to a manageable level, we employ several heuristics to reduce the
space of possible plans that must be compared. The most important of
these heuristics is  dynamic programming 7: it optimizes each sub-problem locally,
independently of the larger context (so that the “best” plan for a
given sub-problem is re-used whenever that sub-problem is
encountered). Dynamic programming is not guaranteed to find the
fastest plan, because the performance of plans is context-dependent on
real machines (e.g., the contents of the cache depend on the preceding
computations); however, this approximation works reasonably well in
practice and greatly reduces the planning time. Other approximations,
such as restrictions on the types of loop-reorderings that are
considered "Plans for higher vector ranks", are described in
16.
 Alternatively, there is an  estimate mode that performs no
timing measurements whatsoever, but instead minimizes a heuristic cost
function. This can reduce the planner time by several orders of
magnitude, but with a significant penalty observed in plan efficiency;
e.g., a penalty of 20% is typical for moderate n≲213,
whereas a factor of 2–3 can be suffered for large n≳216 16. Coming up with a better heuristic plan is an
interesting open research question; one difficulty is that, because
FFT algorithms depend on factorization, knowing a good plan for n
does not immediately help one find a good plan for nearby n.


Generating Small FFT Kernels



 The base cases of FFTW's recursive plans are its  codelets, and
these form a critical component of FFTW's performance. They
consist of long blocks of highly optimized, straight-line code,
implementing many special cases of the DFT that give the planner a
large space of plans in which to optimize. Not only was it
impractical to write numerous codelets by hand, but we also needed to
rewrite them many times in order to explore different algorithms and
optimizations. Thus, we designed a special-purpose “FFT
compiler” called  genfft that produces the codelets
automatically from an abstract description. genfft
 is summarized in this section and described in more detail by 20.
 A typical codelet in FFTW computes a DFT of a small, fixed size
n (usually, n≤64), possibly with the input or output
multiplied by twiddle factors "Cooley-Tukey plans".
Several other kinds of codelets can be produced by genfft
, but we
will focus here on this common case.
 In principle, all codelets implement some combination of the
Cooley-Tukey algorithm from Equation 11.2 and/or some other DFT
algorithm expressed by a similarly compact formula. However, a high-performance implementation of the DFT must address many more
concerns than Equation 11.2 alone suggests. For example, Equation 11.2
contains multiplications by 1 that are more efficient to
omit. Equation 11.2 entails a run-time factorization of n, which can be
precomputed if n is known in advance. Equation 11.2 operates on complex
numbers, but breaking the complex-number abstraction into real and
imaginary components turns out to expose certain non-obvious
optimizations. Additionally, to exploit the long pipelines in current
processors, the recursion implicit in Equation 11.2 should be unrolled and
re-ordered to a significant degree. Many further optimizations are
possible if the complex input is known in advance to be purely real
(or imaginary). Our design goal for genfft
 was to keep the
expression of the DFT algorithm independent of such
concerns. This separation allowed us to experiment with various
DFT algorithms and implementation strategies independently and
without (much) tedious rewriting.
 genfft
 is structured as a compiler whose input consists of the kind
and size of the desired codelet, and whose output is C code.
genfft
 operates in four phases: creation, simplification,
scheduling, and unparsing.
 In the  creation phase, genfft
 produces a representation of
the codelet in the form of a directed acyclic graph ( dag). The dag is
produced according to well-known DFT algorithms: Cooley-Tukey
Equation 11.2, prime-factor 35,
split-radix 56, 10, 53, 32, 13,
and Rader 41. Each algorithm is expressed in a
straightforward math-like notation, using complex numbers, with no
attempt at optimization. Unlike a normal FFT implementation,
however, the algorithms here are evaluated symbolically and the
resulting symbolic expression is represented as a dag, and in
particular it can be viewed as a  linear
network 8 (in which the edges represent
multiplication by constants and the vertices represent additions of
the incoming edges).
 In the  simplification phase, genfft
 applies local
rewriting rules to each node of the dag in order to simplify it. This
phase performs algebraic transformations (such as eliminating
multiplications by 1) and common-subexpression elimination.
Although such transformations can be performed by a conventional
compiler to some degree, they can be carried out here to a greater
extent because genfft
 can exploit the specific problem domain. For
example, two equivalent subexpressions can always be detected, even if
the subexpressions are written in algebraically different forms,
because all subexpressions compute linear functions. Also, genfft
can exploit the property that  network transposition
(reversing the direction of every edge) computes the transposed linear
operation 8, in order to transpose the network,
simplify, and then transpose back—this turns out to expose
additional common subexpressions 20. In total, these
simplifications are sufficiently powerful to derive DFT algorithms
specialized for real and/or symmetric data automatically from the
complex algorithms. For example, it is known that when the input of a
DFT is real (and the output is hence conjugate-symmetric), one can
save a little over a factor of two in arithmetic cost by specializing
FFT algorithms for this case—with genfft
, this specialization
can be done entirely automatically, pruning the redundant operations
from the dag, to match the lowest known operation count for a
real-input FFT starting only from the complex-data
algorithm 20, 27. We take advantage of this
property to help us implement real-data DFTs 20, 16,
to exploit machine-specific “SIMD” instructions
"SIMD instructions" 16, and to generate codelets for the
discrete cosine (DCT) and sine (DST) transforms 20, 27.
Furthermore, by experimentation we have discovered additional
simplifications that improve the speed of the generated code. One
interesting example is the elimination of negative constants 20:
multiplicative constants in FFT algorithms often come in
positive/negative pairs, but every C compiler we are aware of will
generate separate load instructions for positive and negative versions
of the same constants.[12] We thus
obtained a 10–15% speedup by making all constants positive, which
involves propagating minus signs to change additions into subtractions
or vice versa elsewhere in the dag (a daunting task if it had to be
done manually for tens of thousands of lines of code).
 In the  scheduling phase, genfft
 produces a topological
sort of the dag (a  schedule). The goal of this phase is to find a
schedule such that a C compiler can subsequently perform a good
register allocation. The scheduling algorithm used by genfft

offers certain theoretical guarantees because it has its foundations
in the theory of cache-oblivious algorithms 19 (here,
the registers are viewed as a form of cache), as described in
"Memory strategies in FFTW". As a practical matter, one consequence of this
scheduler is that FFTW's machine-independent codelets are no slower
than machine-specific codelets generated by SPIRAL
55.
 In the stock genfft
 implementation, the schedule is finally
unparsed to C. A variation from 18 implements the
rest of a compiler back end and outputs assembly code.
SIMD instructions



 Unfortunately, it is impossible to attain nearly peak performance on
current popular processors while using only portable C code. Instead,
a significant portion of the available computing power can only be
accessed by using specialized SIMD (single-instruction multiple data)
instructions, which perform the same operation in parallel on a data
vector. For example, all modern “x86” processors can execute
arithmetic instructions on “vectors” of four single-precision values
(SSE instructions) or two double-precision values (SSE2 instructions)
at a time, assuming that the operands are arranged consecutively in
memory and satisfy a 16-byte alignment constraint. Fortunately,
because nearly all of FFTW's low-level code is produced by
genfft
, machine-specific instructions could be exploited by
modifying the generator—the improvements are then automatically
propagated to all of FFTW's codelets, and in particular are not
limited to a small set of sizes such as powers of two.
 SIMD instructions are superficially similar to “vector processors”,
which are designed to perform the same operation in parallel on an all
elements of a data array (a “vector”). The performance of
“traditional” vector processors was best for long vectors that are
stored in contiguous memory locations, and special algorithms were
developed to implement the DFT efficiently on this kind of
hardware 48, 23. Unlike in vector
processors, however, the SIMD vector length is small and fixed
(usually 2 or 4). Because microprocessors depend on caches for
performance, one cannot naively use SIMD instructions to simulate a
long-vector algorithm: while on vector machines long vectors generally
yield better performance, the performance of a microprocessor drops as
soon as the data vectors exceed the capacity of the cache.
Consequently, SIMD instructions are better seen as a restricted form
of instruction-level parallelism than as a degenerate flavor of vector
parallelism, and different DFT algorithms are required.
 The technique used to exploit SIMD instructions in genfft
 is most
easily understood for vectors of length two (e.g., SSE2). In this case, we view a complex DFT as a pair of real DFTs:
(11.7)

 where A and B are two real arrays. Our algorithm computes the two
real DFTs in parallel using SIMD instructions, and then it combines
the two outputs according to Equation 11.7. This SIMD algorithm
has two important properties. First, if the data is stored as an
array of complex numbers, as opposed to two separate real and
imaginary arrays, the SIMD loads and stores always operate on
correctly-aligned contiguous locations, even if the the complex
numbers themselves have a non-unit stride. Second, because the
algorithm finds two-way parallelism in the real and imaginary parts of
a single DFT (as opposed to performing two DFTs in parallel), we
can completely parallelize DFTs of any size, not just even sizes or
powers of 2.


Numerical Accuracy in FFTs



 An important consideration in the implementation of any practical
numerical algorithm is numerical accuracy: how quickly do
floating-point roundoff errors accumulate in the course of the
computation? Fortunately, FFT algorithms for the most part have
remarkably good accuracy characteristics. In particular, for a DFT
of length n computed by a Cooley-Tukey algorithm with finite-precision floating-point arithmetic, the
worst-case error growth is O(logn) 21, 50
and the mean error growth for random inputs is only  45, 50. This is so good that, in practical
applications, a properly implemented FFT will rarely be a
significant contributor to the numerical error.
 The amazingly small roundoff errors of FFT algorithms are sometimes explained incorrectly as simply a consequence of the reduced number of operations: since there are fewer operations compared to a naive  algorithm, the argument goes, there is less accumulation of roundoff error.  The real reason, however, is more subtle than that, and has to do with the ordering of the operations rather than their number.  For example, consider the computation of only the output Y[0] in the radix-2 algorithm of screen, ignoring all of the other outputs of the FFT.  Y[0] is the sum of all of the inputs, requiring n–1
additions.  The FFT does not change this requirement, it merely changes the order of the additions so as to re-use some of them for other outputs.  In particular, this radix-2 DIT FFT computes Y[0] as follows: it first sums the even-indexed inputs, then sums the odd-indexed inputs, then adds the two sums; the even- and odd-indexed inputs are summed recursively by the same procedure.  This process is sometimes called  cascade summation, and even though it still requires n–1 total additions to compute Y[0] by itself, its roundoff error grows much more slowly than simply adding X[0], X[1], X[2] and so on in sequence.  Specifically, the roundoff error when adding up 
n floating-point numbers in sequence grows as 
O(n) in the worst case, or as  on average for random inputs (where the errors grow according to a random walk), but simply reordering these n-1 additions into a cascade summation yields 
O(logn) worst-case and 
 average-case error growth 57.
 However, these encouraging error-growth rates only apply if the
trigonometric “twiddle” factors in the FFT algorithm are computed
very accurately. Many FFT implementations, including
FFTW and common manufacturer-optimized libraries, therefore use
precomputed tables of twiddle factors calculated by means of standard
library functions (which compute trigonometric constants to roughly
machine precision). The other common method to compute twiddle
factors is to use a trigonometric recurrence formula—this saves
memory (and cache), but almost all recurrences have errors that grow
as , O(n), or even  51, which lead to
corresponding errors in the FFT. For example, one simple
recurrence is ei(k+1)θ=eikθeiθ,
multiplying repeatedly by eiθ to obtain a sequence of
equally spaced angles, but the errors when using this process grow as O(n) 51. A common improved recurrence is , where the small
quantity[13] eiθ–1=cos(θ)–1+isin(θ) is computed using cos(θ)–1=–2sin2(θ/2) 46; unfortunately, the error using
this method still grows as  51, far worse than
logarithmic.
 There are, in fact, trigonometric recurrences with the same
logarithmic error growth as the FFT, but these seem more difficult
to implement efficiently; they require that a table of Θ(logn) values be stored and updated as the recurrence
progresses 5, 51. Instead, in order to gain at
least some of the benefits of a trigonometric recurrence (reduced
memory pressure at the expense of more arithmetic), FFTW includes
several ways to compute a much smaller twiddle table, from which the
desired entries can be computed accurately on the fly using a bounded
number (usually <3) of complex multiplications. For example,
instead of a twiddle table with n entries ωnk, FFTW can
use two tables with  entries each, so that
ωnk is computed by multiplying an entry in one table (indexed
with the low-order bits of k) by an entry in the other table
(indexed with the high-order bits of k).
 There are a few non-Cooley-Tukey algorithms that are known to have
worse error characteristics, such as the “real-factor”
algorithm 42, 13, but these are rarely used in
practice (and are not used at all in FFTW). On the other hand,
some commonly used algorithms for type-I and type-IV discrete cosine
transforms 48, 38, 6 have errors
that we observed to grow as  even for accurate trigonometric
constants (although we are not aware of any theoretical error analysis
of these algorithms), and thus we were forced to use alternative
algorithms 16.
 To measure the accuracy of FFTW, we compare against a slow FFT
implemented in arbitrary-precision arithmetic, while to verify the
correctness we have found the O(nlogn) self-test algorithm of
14
very useful.

Concluding Remarks



 It is unlikely that many readers of this chapter will ever have to
implement their own fast Fourier transform software, except as a
learning exercise. The computation of the DFT, much like basic
linear algebra or integration of ordinary differential equations, is
so central to numerical computing and so well-established that robust,
flexible, highly optimized libraries are widely available, for the
most part as free/open-source software. And yet there are many other
problems for which the algorithms are not so finalized, or for which
algorithms are published but the implementations are unavailable or of
poor quality. Whatever new problems one comes across, there
is a good chance that the chasm between theory and efficient
implementation will be just as large as it is for FFTs, unless
computers become much simpler in the future. For readers who
encounter such a problem, we hope that these lessons from FFTW will be
useful:
 	 Generality and portability should almost always come first.


	 The number of operations, up to a constant factor, is less important than the order of operations.


	 Recursive algorithms with large base cases make optimization easier.


	 Optimization, like any tedious task, is best automated.


	 Code generation reconciles high-level programming with low-level performance.




 We should also mention one final lesson that we haven't discussed in
this chapter: you can't optimize in a vacuum, or you end up
congratulating yourself for making a slow program slightly faster.
We started the FFTW project after downloading a dozen FFT
implementations, benchmarking them on a few machines, and noting how
the winners varied between machines and between transform sizes.
Throughout FFTW's development, we continued to benefit from
repeated benchmarks against the dozens of high-quality FFT programs
available online, without which we would have thought FFTW was
“complete” long ago.
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Solutions


Chapter 12. Algorithms for Data with Restrictions



Algorithms for Real Data



 Many applications involve processing real data. It is
inefficient to simply use a complex FFT on real data because
arithmetic would be performed on the zero imaginary parts of the
input, and, because of symmetries, output values would be calculated
that are redundant. There are several approaches to developing
special algorithms or to modifying complex algorithms for real data.
 There are two methods which use a complex FFT in a special
way to increase efficiency 4, 14. The first method
uses a length-N complex FFT to compute two length-N real FFTs by
putting the two real data sequences into the real and the
imaginary parts of the input to a complex FFT. Because transforms
of real data have even real parts and odd imaginary parts, it is
possible to separate the transforms of the two inputs with 2N-4
extra additions. This method requires, however, that two inputs be
available at the same time.
 The second method 14 uses the fact that the last stage of
a decimation-in-time radix-2 FFT combines two independent transforms
of length N/2 to compute a length-N transform. If the data are
real, the two half length transforms are calculated by the method
described above and the last stage is carried out to calculate the
total length-N FFT of the real data. It should be noted that the
half-length FFT does not have to be calculated by a radix-2 FFT. In
fact, it should be calculated by the most efficient complex-data
algorithm possible, such as the SRFFT or the PFA. The separation of
the two half-length transforms and the computation of the last stage
requires N–6 real multiplications and (5/2)N–6 real additions
14.
 It is possible to derive more efficient real-data algorithms
directly rather than using a complex FFT. The basic idea is from
Bergland 1, 2 and Sande 12 which, at each stage,
uses the symmetries of a constant radix Cooley-Tukey FFT to minimize
arithmetic and storage. In the usual derivation 10 of the
radix-2 FFT, the length-N transform is written as the combination of
the length-N/2 DFT of the even indexed data and the length-N/2 DFT
of the odd indexed data. If the input to each half-length DFT is
real, the output will have Hermitian symmetry. Hence the output of
each stage can be arranged so that the results of that stage stores
the complex DFT with the real part located where half of the DFT
would have gone, and the imaginary part located where the conjugate
would have gone. This removes most of the redundant calculations
and storage but slightly complicates the addressing. The resulting
butterfly structure for this algorithm 14 resembles that
for the fast Hartley transform 13. The complete
algorithm has one half the number of multiplications and N-2 fewer
than half the additions of the basic complex FFT. Applying this
approach to the split-radix FFT gives a particularly interesting
algorithm 5, 14, 6.
 Special versions of both the PFA and WFTA can also be
developed for real data. Because the operations in the stages of
the PFA can be commuted, it is possible to move the combination of
the transform of the real part of the input and imaginary part to
the last stage. Because the imaginary part of the input is zero,
half of the algorithm is simply omitted. This results in the number
of multiplications required for the real transform being exactly
half of that required for complex data and the number of additions
being about N less than half that required for the complex case
because adding a pure real number to a pure imaginary number does
not require an actual addition. Unfortunately, the indexing and data
transfer becomes somewhat more complicated 9, 14. A
similar approach can be taken with the WFTA 9, 14, 11.

Special Algorithms for input Data that is mostly Zero,
for Calculating only a few Outputs, or where the Sampling is not Uniform



 In some cases, most of the data to be transformed are zero. It is
clearly wasteful to do arithmetic on that zero data. Another special
case is when only a few DFT values are needed. It is likewise
wasteful to calculate outputs that are not needed. We use a process
called “pruning" to remove the unneeded operations.
 In other cases, the data are non-uniform sampling of a continuous time
signal 3.

Algorithms for Approximate DFTs



 There are applications where approximations to the DFT are all that
is needed.7, 8
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Solutions


Chapter 13. Convolution Algorithms



Fast Convolution by the FFT



 One of the main applications of the FFT is to do convolution more
efficiently than the direct calculation from the definition which is:
(13.1)

 which, with a change of variables, can also be written as:
(13.2)

 This is often used to filter a signal x(n) with a filter whose
impulse response is h(n). Each output value y(n) requires N
multiplications and N–1 additions if y(n) and h(n) have N terms. So, for
N output values, on the order of N2 arithmetic operations are
required.
 Because the DFT converts convolution to multiplication:
(13.3)

 can be calculated with the FFT and bring the order of arithmetic
operations down to Nlog(N) which can be significant for large N.
 This approach, which is called “fast convolutions", is a form of
block processing since a whole block or segment of x(n) must be available to
calculate even one output value, y(n). So, a time delay of one
block length is always required. Another problem is the filtering
use of convolution is usually non-cyclic and the convolution implemented
with the DFT is cyclic. This is dealt with by appending zeros to x(n)
and h(n) such that the output of the cyclic convolution gives one
block of the output of the desired non-cyclic convolution.
 For filtering and some other applications, one wants “on going" convolution
where the filter response h(n) may be finite in length or duration, but
the input x(n) is of arbitrary length. Two methods have traditionally
used to break the input into blocks and use the FFT to convolve the block
so that the output that would have been calculated by directly implementing
Equation 13.1 or Equation 13.2 can be constructed efficiently. These are called
“overlap-add" and “over-lap save".
Fast Convolution by Overlap-Add



 In order to use the FFT to convolve (or filter) a long input sequence x(n) with a finite length-M impulse response, h(n), we partition the input sequence in segments or blocks of length L. Because convolution (or filtering) is linear, the output is a linear sum of the result of convolving the first block with h(n) plus the result of convolving the second block with h(n), plus the rest. Each of these block convolutions can be calculated by using the FFT. The output is the inverse FFT of the product of the FFT of x(n) and the FFT of h(n). Since the number of arithmetic operation to calculate the convolution directly is on the order of M2 and, if done with the FFT, is on the order of Mlog(M), there can be a great savings by using the FFT for large M.
 The reason this procedure is not totally straightforward, is the length of the output of convolving a length-L block with a length-M filter is of length L+M–1. This means the output blocks cannot simply be concatenated but must be overlapped and added, hence the name for this algorithm is “Overlap-Add".
 The second issue that must be taken into account is the fact that the overlap-add steps need non-cyclic convolution and convolution by the FFT is cyclic. This is easily handled by appending L–1 zeros to the impulse response and M–1 zeros to each input block so that all FFTs are of length M+L–1. This means there is no aliasing and the implemented cyclic convolution gives the same output as the desired non-cyclic convolution.
 The savings in arithmetic can be considerable when implementing convolution or performing FIR digital filtering. However, there are two penalties. The use of blocks introduces a delay of one block length. None of the first block of output can be calculated until all of the first block of input is available. This is not a problem for “off line" or “batch" processing but can be serious for real-time processing. The second penalty is the memory required to store and process the blocks. The continuing reduction of memory cost often removes this problem.
 The efficiency in terms of number of arithmetic operations per output point increases for large blocks because of the Mlog(M) requirements of the FFT. However, the blocks become very large (L>>M), much of the input block will be the appended zeros and efficiency is lost. For any particular application, taking the particular filter and FFT algorithm being used and the particular hardware being used, a plot of efficiency vs. block length, L should be made and L chosen to maximize efficiency given any other constraints that are applicable.
 Usually, the block convolutions are done by the FFT, but they could be done by any efficient, finite length method. One could use “rectangular transforms" or “number-theoretic transforms". A generalization of this method is presented later in the notes.

Fast Convolution by Overlap-Save



 An alternative approach to the Overlap-Add can be developed by starting with segmenting the output rather than the input. If one considers the calculation of a block of output, it is seen that not only the corresponding input block is needed, but part of the preceding input block also needed. Indeed, one can show that a length M+L–1 segment of the input is needed for each output block. So, one saves the last part of the preceding block and concatenates it with the current input block, then convolves that with h(n) to calculate the current output


Block Processing, a Generalization of Overlap Methods



 Convolution is intimately related to the DFT. It was shown
in The DFT as Convolution or Filtering that a prime length DFT could be converted to
cyclic convolution. It has been long known 48 that
convolution can be calculated by multiplying the DFTs of signals.
 An important question is what is the fastest method for
calculating digital convolution. There are several methods that each
have some advantage. The earliest method for fast convolution was
the use of sectioning with overlap-add or overlap-save and the FFT
48, 53, 10. In most cases the convolution is of real data and,
therefore, real-data FFTs should be used. That approach is still
probably the fastest method for longer convolution on a general
purpose computer or microprocessor. The shorter convolutions should
simply be calculated directly.

Introduction



 The partitioning of long or infinite strings of data into shorter sections
or blocks has been used to allow application of the FFT to realize
on-going or continuous convolution 57, 30. This section
develops the idea of block processing and shows that it is a generalization
of the overlap-add and overlap-save methods 57, 26. They
further generalize the idea to a multidimensional formulation of
convolution 3, 15. Moving in the opposite direction, it is
shown that, rather than partitioning a string of scalars into blocks and
then into blocks of blocks, one can partition a scalar number into blocks
of bits and then include the operation of multiplication in the signal
processing formulation. This is called distributed arithmetic 14
and, since it describes operations at the bit level, is completely
general. These notes try to present a coherent development of these
ideas.

Block Signal Processing



 In this section the usual convolution and recursion that implements FIR
and IIR discrete-time filters are reformulated in terms of vectors and
matrices. Because the same data is partitioned and grouped in a variety
of ways, it is important to have a consistent notation in order to be
clear. The nth element of a data sequence is expressed h(n) or, in
some cases to simplify, hn. A block or finite length column vector is
denoted  with n indicating the nth block or
section of a longer vector. A matrix, square or rectangular, is indicated
by an upper case letter such as H with a subscript if appropriate.
Block Convolution



 The operation of a finite impulse response (FIR) filter is described by a
finite convolution as
(13.4)

 where x(n) is causal, h(n) is causal and of length L, and the time
index n goes from zero to infinity or some large value. With a change
of index variables this becomes
(13.5)

 which can be expressed as a matrix operation by
(13.6)

 The H matrix of impulse response values is partitioned into N by N
square sub matrices and the X and Y vectors are partitioned into
length-N blocks or sections. This is illustrated for N=3 by
(13.7)

(13.8)

 Substituting these definitions into Equation 13.6 gives
(13.9)

 The general expression for the nth output block is
(13.10)

 which is a vector or block convolution. Since the matrix-vector
multiplication within the block convolution is itself a convolution, Equation 13.10
is a sort of convolution of convolutions and the finite length
matrix-vector multiplication can be carried out using the FFT or other
fast convolution methods.
 The equation for one output block can be written as the product
(13.11)

 and the effects of one input block can be written
(13.12)

 These are generalize statements of overlap save and overlap add
57, 26. The block length can be longer, shorter, or equal to
the filter length.

Block Recursion



 Although less well-known, IIR filters can also be implemented with block
processing 24, 18, 59, 12, 13. The block form of an IIR
filter is developed in much the same way as for the block convolution
implementation of the FIR filter. The general constant coefficient
difference equation which describes an IIR filter with recursive
coefficients al, convolution coefficients bk, input signal x(n),
and output signal y(n) is given by
(13.13)

 using both functional notation and subscripts, depending on which is
easier and clearer. The impulse response h(n) is
(13.14)

 which can be written in matrix operator form
(13.15)

 In terms of N by N submatrices and length-N blocks, this becomes
(13.16)

 From this formulation, a block recursive equation can be written that will
generate the impulse response block by block.
(13.17)

(13.18)

 with initial conditions given by
(13.19)

 This can also be written to generate the square partitions of the impulse
response matrix by
(13.20)

 with initial conditions given by
(13.21)

 ane K=–A0–1A1. This recursively generates square submatrices
of H similar to those defined in Equation 13.7 and Equation 13.9 and shows the
basic structure of the dynamic system.
 Next, we develop the recursive formulation for a general input as
described by the scalar difference equation Equation 13.14 and in matrix operator
form by
(13.22)

 which, after substituting the definitions of the sub matrices and assuming
the block length is larger than the order of the numerator or denominator,
becomes
(13.23)

 From the partitioned rows of Equation 13.24, one can write the block recursive relation
(13.24)

 Solving for  gives
(13.25)

(13.26)

 which is a first order vector difference equation 12, 13. This
is the fundamental block recursive algorithm that implements the original
scalar difference equation in Equation 13.14. It has several important
characteristics.
 	 The block recursive formulation is similar to a state variable equation
but the states are blocks or sections of the output 13, 34, 63, 64.


	 The eigenvalues of K are the poles of the original scalar problem
raised to the N power plus others that are zero. The longer the block
length, the “more stable" the filter is, i.e. the further the poles are
from the unit circle 12, 13, 63, 8, 11.


	 If the block length were shorter than the denominator, the vector
difference equation would be higher than first order. There would be a
non zero A2. If the block length were shorter than the numerator,
there would be a non zero B2 and a higher order block convolution
operation. If the block length were one, the order of the vector equation
would be the same as the scalar equation. They would be the same
equation.


	 The actual arithmetic that goes into the calculation of the output is
partly recursive and partly convolution. The longer the block, the more
the output is calculated by convolution and, the more arithmetic is
required.


	 It is possible to remove the zero eigenvalues in K by making K
rectangular or square and N by N This results in a form even more similar
to a state variable formulation 42, 13. This is briefly
discussed below in section 2.3.


	 There are several ways of using the FFT in the calculation of the various
matrix products in Equation 13.25 and in Equation 13.27 and Equation 13.28. Each has
some arithmetic advantage for various forms and orders of the original
equation. It is also possible to implement some of the operations using
rectangular transforms, number theoretic transforms, distributed
arithmetic, or other efficient convolution algorithms
13, 63, 6, 16, 62, 49.


	 By choosing the block length equal to the period, a periodically time
varying filter can be made block time invariant. In other words, all the
time varying characteristics are moved to the finite matrix multiplies
which leave the time invariant properties at the block level. This allows
use of z-transform and other time-invariant methods to be used for
stability analysis and frequency response analysis 37, 38. It
also turns out to be related to filter banks and multi-rate filters
36, 35, 20.





Block State Formulation



 It is possible to reduce the size of the matrix operators in the block
recursive description Equation 13.26 to give a form even more like a state
variable equation 42, 13, 64. If K in Equation 13.26 has several
zero eigenvalues, it should be possible to reduce the size of K until it
has full rank. That was done in 13 and the result is
(13.27)

(13.28)

 where H0 is the same N by N convolution matrix, N1 is a
rectangular L by N partition of the convolution matrix H, K1 is a
square N by N matrix of full rank, and K2 is a rectangular N by L
matrix.
 This is now a minimal state equation whose input and output are blocks of
the original input and output. Some of the matrix multiplications can be
carried out using the FFT or other techniques.

Block Implementations of Digital Filters



 The advantage of the block convolution and recursion implementations is a
possible improvement in arithmetic efficiency by using the FFT or other
fast convolution methods for some of the multiplications in Equation 13.10 or
Equation 13.25 39, 40. There is the reduction of quantization effects
due to an effective decrease in the magnitude of the eigenvalues and the
possibility of easier parallel implementation for IIR filters. The
disadvantages are a delay of at least one block length and an increased
memory requirement.
 These methods could also be used in the various filtering methods for
evaluating the DFT. This the chirp z-transform, Rader's method, and
Goertzel's algorithm.

Multidimensional Formulation



 This process of partitioning the data vectors and the operator matrices
can be continued by partitioning Equation 13.10 and Equation 13.24 and creating
blocks of blocks to give a higher dimensional structure. One should use
index mapping ideas rather than partitioned matrices for this approach
3, 15.

Periodically Time-Varying Discrete-Time Systems



 Most time-varying systems are periodically time-varying and this allows
special results to be obtained. If the block length is set equal to the
period of the time variations, the resulting block equations are time
invariant and all to the time varying characteristics are contained in the
matrix multiplications. This allows some of the tools of time invariant
systems to be used on periodically time-varying systems.
 The PTV system is analyzed in 61, 20, 19, 37, the filter
analysis and design problem, which includes the decimation–interpolation
structure, is addressed in 22, 38, 36, and the bandwidth
compression problem in 35. These structures can take the form of
filter banks 58.

Multirate Filters, Filter Banks, and Wavelets



 Another area that is related to periodically time varying systems and to
block processing is filter banks 58, 25. Recently the area of
perfect reconstruction filter banks has been further developed and shown
to be closely related to wavelet based signal analysis
20, 21, 23, 58. The filter bank structure has several forms with
the polyphase and lattice being particularly interesting.
 An idea that has some elements of multirate filters, perfect
reconstruction, and distributed arithmetic is given in
27, 28, 29. Parks has noted that design of multirate filters
has some elements in common with complex approximation and of 2-D filter
design 54, 56 and is looking at using Tang's method for these
designs.

Distributed Arithmetic



 Rather than grouping the individual scalar data values in a discrete-time
signal into blocks, the scalar values can be partitioned into groups of
bits. Because multiplication of integers, multiplication of polynomials,
and discrete-time convolution are the same operations, the bit-level
description of multiplication can be mixed with the convolution of the
signal processing. The resulting structure is called distributed
arithmetic 14, 60. It can be used to create an efficient table
look-up scheme to implement an FIR or IIR filter using no multiplications
by fetching previously calculated partial products which are stored in a
table. Distributed arithmetic, block processing, and multi-dimensional
formulations can be combined into an integrated powerful description to
implement digital filters and processors. There may be a new form of
distributed arithmetic using the ideas in 28, 29.


Direct Fast Convolution and Rectangular Transforms



 A relatively new approach uses index mapping directly to
convert a one dimensional convolution into a multidimensional
convolution 15, 5. This can be done by either a type-1
or type-2 map. The short convolutions along each dimension are then
done by Winograd's optimal algorithms. Unlike for the case of the
DFT, there is no savings of arithmetic from the index mapping alone.
All the savings comes from efficient short algorithms. In the case
of index mapping with convolution, the multiplications must be
nested together in the center of the algorithm in the same way as
for the WFTA. There is no equivalent to the PFA structure for
convolution. The multidimensional convolution can not be calculated
by row and column convolutions as the DFT was by row and column
DFTs.
 It would first seem that applying the index mapping and
optimal short algorithms directly to convolution would be more
efficient than using DFTs and converting them to convolution to be
calculated by the same optimal algorithms. In practical algorithms,
however, the DFT method seems to be more efficient 49.
 A method that is attractive for special purpose hardware
uses distributed arithmetic 14. This approach uses a table
look up of precomputed partial products to produce a system that
does convolution without requiring multiplications 17.
 Another method that requires special hardware uses number
theoretic transforms 9, 41, 45 to calculate
convolution. These transforms are defined over finite fields or
rings with arithmetic performed modulo special numbers. These
transforms have rather limited flexibility, but when they can be
used, they are very efficient.

Number Theoretic Transforms for Convolution



Results from Number Theory



 A basic review of the number theory useful for signal processing
algorithms will be given here with specific emphasis on the congruence
theory for number theoretic transforms 47, 31, 46, 41, 55.

Number Theoretic Transforms



 Here we look at the conditions placed on a general linear transform in
order for it to support cyclic convolution. The form of a linear
transformation of a length-N sequence of number is given by
(13.29)

 for k=0,1,⋯,(N–1). The definition of cyclic convolution of two
sequences is given by
(13.30)

 for n=0,1,⋯,(N–1) and all indices evaluated modulo N. We would
like to find the properties of the transformation such that it will
support the cyclic convolution. This means that if X(k), H(k), and
Y(k) are the transforms of x(n), h(n), and y(n) respectively,
(13.31)

 The conditions are derived by taking the transform defined in Equation 13.4 of
both sides of equation Equation 13.5 which gives
(13.32)

(13.33)

 Making the change of index variables, l=n–m, gives
(13.34)

 But from Equation 13.6, this must be
(13.35)

(13.36)

 This must be true for all x(n), h(n), and k, therefore from
Equation 13.9 and Equation 13.11 we have
(13.37)

 For l=0 we have
(13.38)

 and, therefore, t(0,k)=1. For l=m we have
(13.39)

 For l=pm we likewise have
(13.40)
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 Defining t(1,1)=α gives the form for our general linear transform
Equation 13.4 as
(13.44)

 where α is a root of order N
, which means that N is the
smallest integer such that αN=1.
 Theorem 1 
The transform Equation 13.13 supports cyclic convolution if and only if
α is a root of order N and N–1 is defined.
 This is discussed in 2, 4.
 Theorem 2 
The transform Equation 13.13 supports cyclic convolution if and only if
(13.45)
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(13.46)

 and
(13.47)

 This theorem is a more useful form of Theorem 1. Notice that Nmax=O(M).
 One needs to find appropriate N, M, and α such that
 	 N should be appropriate for a fast algorithm and handle the
desired sequence lengths.


	 M should allow the desired dynamic range of the signals and should
allow simple modular arithmetic.


	 α should allow a simple multiplication for
.




 We see that if M is even, it has a factor of 2 and, therefore, O(M)=Nmax=1 which implies M should be odd. If M is prime the O(M)=M–1 which is as large as could be expected in a field of M integers.
For M=2k–1, let k be a composite k=pq where p is prime. Then
2p–1 divides 2pq–1 and the maximum possible length of the transform
will be governed by the length possible for 2p–1. Therefore, only the
prime k need be considered interesting. Numbers of this form are know
as Mersenne numbers and have been used by Rader 51. For Mersenne
number transforms, it can be shown that transforms of length at least 2p
exist and the corresponding α=–2. Mersenne number transforms are
not of as much interest because 2p is not highly composite and,
therefore, we do not have FFT-type algorithms.
 For M=2k+1 and k odd, 3 divides 2k+1 and the maximum possible
transform length is 2. Thus we consider only even k. Let k=s2t,
where s is an odd integer. Then 22t divides 2s2t+1 and the
length of the possible transform will be governed by the length possible
for 22t+1. Therefore, integers of the form M=22t+1 are of
interest. These numbers are known as Fermat numbers 51. Fermat
numbers are prime for 0≤t≤4 and are composite for all t≥5.
 Since Fermat numbers up to F4 are prime,  where b=2t and
we can have a Fermat number transform for any length N=2m where
m≤b. For these Fermat primes the integer α=3 is of order
N=2b allowing the largest possible transform length. The integer
α=2 is of order N=2b=2t+1. This is particularly
attractive since α to a power is multiplied times the data values
in Equation 13.4.
 The following table gives possible parameters for various Fermat number
moduli.
Table 13.1. 	t	b	
                  
                    
                      M
                      =
                      Ft
                    
                  
                	
                  
                    N2
                  
                	
                  
                	
                  
                    Nmax
                  
                	α for Nmax
	 	 	 	 	 	 	 
	3	8	
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                      +
                      1
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	4	16	
                  
                    
                      216
                      +
                      1
                    
                  
                	32	64	65536	3
	5	32	
                  
                    
                      232
                      +
                      1
                    
                  
                	64	128	128	
                  
                
	6	64	
                  
                    
                      264
                      +
                      1
                    
                  
                	128	256	256	
                  
                


 This table gives values of N for the two most important values of
α which are 2 and . The second column give the
approximate number of bits in the number representation. The third column
gives the Fermat number modulus, the fourth is the maximum convolution
length for α=2, the fifth is the maximum length for , the sixth is the maximum length for any α, and the
seventh is the α for that maximum length. Remember that the first
two rows have a Fermat number modulus which is prime and second two rows
have a composite Fermat number as modulus. Note the differences.
 The books, articles, and presentations that discuss NTT and related topics
are 33, 41, 45, 9, 43, 44, 50, 52, 51, 1, 7, 2, 4.
A recent book discusses NT in a signal processing context 32.
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Solutions


Chapter 14. Comments: Fast Fourier Transforms



Other work and Results



 This section comes from a note describing results on efficient algorithms to
calculate the discrete Fourier transform (DFT) that were collected over years.
Perhaps the most interesting is the discovery that the Cooley-Tukey
FFT was described by Gauss in 1805 46. That gives some
indication of the age of research on the topic, and the fact that a
1995 compiled bibliography 88 on efficient algorithms
contains over 3400 entries indicates its volume. Three IEEE Press
reprint books contain papers on the FFT 74, 24, 25. An
excellent general purpose FFT program has been described in
34, 35 and is used in Matlab and available over the internet. 
 In addition to this book there are several others
60, 65, 10, 44, 102, 64, 11, 9, 97
that give a good modern theoretical background for the FFT, one book
12 that gives the basic theory plus both FORTRAN and TMS 320
assembly language programs, and other books 57, 84, 15
that contain chapters on advanced FFT topics. 
A good up-to-date, on-line reference with both theory and programming techniques is in 3.
The history of the FFT is
outlined in 21, 46 and excellent survey articles can be
found in 30, 20. The foundation of much of the modern work
on efficient algorithms was done by S. Winograd. These results can be found in
115, 116, 117. An outline and discussion of his theorems can
be found in 57 as well as 60, 65, 10, 44.
 Efficient FFT algorithms for length-2M were described by Gauss
and discovered in modern times by Cooley and Tukey 22. These
have been highly developed and good examples of FORTRAN programs can
be found in 12. Several new algorithms have been published
that require the least known amount of total arithmetic
119, 26, 28, 58, 112, 17. Of these, the
split-radix FFT 26, 28, 111, 100 seems to have the
best structure for programming, and an efficient program has been
written 90 to implement it. A mixture of
decimation-in-time and decimation-in-frequency with very good
efficiency is given in 77, 78 and one called the Sine-Cosine
FT 17. Recently a modification to the split-radix algorithm
has been described 52 that has a slightly better
total arithmetic count. Theoretical bounds on the number of
multiplications required for the FFT based on Winograd's theories
are given in 44, 43. Schemes for calculating an
in-place, in-order radix-2 FFT are given in
7, 6, 50, 107. Discussion of various forms of
unscramblers is given in
16, 69, 54, 31, 73, 114, 120, 79, 71. A
discussion of the relation of the computer architecture, algorithm
and compiler can be found in 59, 62. A modification to
allow lengths of  for q odd is given in 4.
 The “other” FFT is the prime factor algorithm (PFA) which uses an index
map originally developed by Thomas and by Good. The theory of the PFA
was derived in 55 and further developed and an efficient
in-order and in-place program given in 5, 12. More results
on the PFA are given in
105, 106, 107, 108, 98. A method has
been developed to use dynamic programming to design optimal FFT programs
that minimize the number of additions and data transfers as well as
multiplications 49. This new approach designs custom
algorithms for a particular computer architecture. An efficient and
practical development of Winograd's ideas has given a design method that
does not require the rather difficult Chinese remainder theorem
57, 51 for short prime length FFT's. These ideas have been used
to design modules of length 11, 13, 17, 19, and 25 48. Other
methods for designing short DFT's can be found in 104, 56.
A use of these ideas with distributed arithmetic and table look-up rather
than multiplication is given in 18. A program that implements
the nested Winograd Fourier transform algorithm (WFTA) is given in
60 but it has not proven as fast or as versatile as the PFA
5. An interesting use of the PFA was announced 19
in searching for large prime numbers.
 These efficient algorithms can not only be used on DFT's but on other
transforms with a similar structure. They have been applied to the
discrete Hartley transform 93, 13 and the discrete cosine
transform 112, 118, 76.
 The fast Hartley transform has been proposed as a superior method for real
data analysis but that has been shown not to be the case. A well-designed
real-data FFT 94 is always as good as or better than a
well-designed Hartley transform 93, 29, 68, 109, 80.
The Bruun algorithm 14, 101 also looks promising for real data
applications as does the Rader-Brenner algorithm
70, 23, 109. A novel approach to calculating the inverse
DFT is given in 27.
 General length algorithms include 91, 40, 32. For
lengths that are not highly composite or prime, the chirp z-transform in a
good candidate 12, 75 for longer lengths and an efficient
order-N2 algorithm called the QFT 92, 41, 42 for shorter
lengths. A method which automatically generates near-optimal prime length
Winograd based programs has been given in 51, 82, 85, 86, 87.
This gives the same efficiency for shorter lengths (i.e. N≤19) and
new algorithms for much longer lengths and with well-structured
algorithms. Another approach is given in 67.
Special methods are available for very long lengths 47, 99.
A very interesting general length FFT system
called the FFTW has been developed by Frigo and Johnson at MIT. It uses
a library of efficient “codelets" which are composed for a very efficient
calculation of the DFT on a wide variety of computers 34, 35, 33.
For most lengths and on most computers, this is the fastest FFT today.
Surprisingly, it uses a recursive program structure. The FFTW won the 1999
Wilkinson Prize for Numerical Software.
 The use of the FFT to calculate discrete convolution was one of its
earliest uses. Although the more direct rectangular transform
2 would seem to be more efficient, use of the FFT or PFA is
still probably the fastest method on a general purpose computer or DSP
chip 66, 94, 29, 61. On special purpose hardware
or special architectures, the use of distributed
arithmetic 18 or number theoretic transforms 1
may be even faster. Special algorithms for use with the
short-time Fourier transform 81 and for the calculation of a
few DFT values 89, 72, 83 and for recursive implementation
113, 35 have also been developed. An excellent analysis of efficient
programming the FFT on DSP microprocessors is given in 63, 62.
Formulations of the DFT in terms of tensor or Kronecker products look
promising for developing algorithms for parallel and vector computer
architectures 95, 102, 53, 110, 103, 39, 38.
 Various approaches to calculating approximate DFTs have been based on
cordic methods, short word lengths, or some form of pruning. A new method
that uses the characteristics of the signals being transformed has
combined the discrete wavelet transform (DWT) combined with the DFT to
give an approximate FFT with O(N) multiplications
36, 37, 8 for certain signal classes. A similar
approach has been developed using filter banks 96, 45.
 The study of efficient algorithms not only has a long history and large
bibliography, it is still an exciting research field where new results
are used in practical applications.
 More information can be found on the     
 Rice DSP Group's web page
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Solutions


Chapter 15. Conclusions: Fast Fourier Transforms



 This book has developed a class of efficient algorithms
based on index mapping and polynomial algebra. This provides a
framework from which the Cooley-Tukey FFT, the split-radix FFT, the
PFA, and WFTA can be derived. Even the programs implementing these
algorithms can have a similar structure. Winograd's theorems were
presented and shown to be very powerful in both deriving algorithms
and in evaluating them. The simple radix-2 FFT provides a compact,
elegant means for efficiently calculating the DFT. If some
elaboration is allowed, significant improvement can be had from the
split-radix FFT, the radix-4 FFT or the PFA. If multiplications are
expensive, the WFTA requires the least of all.
 Several method for transforming real data were described
that are more efficient than directly using a complex FFT. A
complex FFT can be used for real data by artificially creating a
complex input from two sections of real input. An alternative and
slightly more efficient method is to construct a special FFT that
utilizes the symmetries at each stage.
 As computers move to multiprocessors and multicore, writing and
maintaining efficient programs becomes more and more difficult.
The highly structured form of FFTs allows automatic generation of
very efficient programs that are tailored specifically to a
particular DSP or computer architecture.
 For high-speed convolution, the traditional use of the FFT
or PFA with blocking is probably the fastest method although rectangular transforms, 
distributed arithmetic, or number theoretic transforms may have a
future with special VLSI hardware.
 The ideas presented in these notes can also be applied to
the calculation of the discrete Hartley transform 6, 2,
the discrete cosine transform 3, 7, and to number
theoretic transforms 1, 4, 5.
 There are many areas for future research. The relationship
of hardware to algorithms, the proper use of multiple processors,
the proper design and use of array processors and vector processors
are all open. There are still many unanswered questions in
multi-dimensional algorithms where a simple extension of
one-dimensional methods will not suffice.
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Chapter 16. Appendix 1: FFT Flowgraphs



Signal Flow Graphs of Cooley-Tukey FFTs



 The following four figures are flow graphs for Radix-2 Cooley-Tukey FFTs. The first is a length-16, decimation-in-frequency Radix-2 FFT with the input data in order and output data scrambled.  The first stage has 8 length-2 "butterflies" (which overlap in the figure) followed by 8 multiplications by powers of W which are called "twiddle factors".  The second stage has 2 length-8 FFTs which are each calculated by 4 butterflies followed by 4 multiplies.  The third stage has 4 length-4 FFTs, each calculated by 2 butterflies followed by 2 multiplies and the last stage is simply 8 butterflies followed by trivial multiplies by one.  This flow graph should be compared with the index map in Polynomial Description of Signals, the polynomial decomposition in The DFT as Convolution or Filtering, and the program in Appendix 3.  In the program, the butterflies and twiddle factor multiplications are done together in the inner most loop.  The outer most loop indexes through the stages.  If the length of the FFT is a power of two, the number of stages is that power (log N).
 The second figure below is a length-16, decimation-in-time FFT with the input data scrambled and output data in order.  The first stage has 8 length-2 "butterflies" followed by 8 twiddle factors multiplications.  The second stage has 4 length-4 FFTs which are each calculated by 2 butterflies followed by 2 multiplies.  The third stage has 2 length-8 FFTs, each calculated by 4 butterflies followed by 8 multiplies and the last stage is simply 8 length-2 butterflies.  This flow graph should be compared with the index map in Polynomial Description of Signals, the polynomial decomposition in The DFT as Convolution or Filtering, and the program in Appendix 3. Here, the FFT must be preceded by a scrambler. 
 The third and fourth figures below are a length-16 decimation-in-frequency and a decimation-in-time but, in contrast to the figures above, the DIF has the output in order which requires a scrambled input and the DIT has the input in order which requires the output be unscrambled.  Compare with the first two figures.  Note the order of the twiddle factors. The number of additions and multiplications in all four flow graphs is the same and the structure of the three-loop program which executes the flow graph is the same.
 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.1. 
Length-16, Decimation-in-Frequency, In-order input, Radix-2 FFT

 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.2. 
Length-16, Decimation-in-Time, In-order output, Radix-2 FFT

 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.3. 
Length-16, alternate Decimation-in-Frequency, In-order output, Radix-2 FFT

 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.4. 
Length-16, alternate Decimation-in-Time, In-order input, Radix-2 FFT

 The following is a length-16, decimation-in-frequency Radix-4 FFT with the input data in order and output data scrambled.  There are two stages with the first stage having 4 length-4 "butterflies" followed by 12 multiplications by powers of W which are called "twiddle factors.  The second stage has 4 length-4 FFTs which are each calculated by 4 butterflies followed by 4 multiplies.  Note, each stage here looks like two stages but it is one and there is only one place where twiddle factor multiplications appear.  This flow graph should be compared with the index map in Polynomial Description of Signals, the polynomial decomposition in The DFT as Convolution or Filtering, and the program in Appendix 3.  Log to the base 4 of 16 is 2.  The total number of twiddle factor multiplication here is 12 compared to 24 for the radix-2.  The unscrambler is a base-four reverse order counter rather than a bit reverse counter, however, a modification of the radix four butterflies will allow a bit reverse counter to be used with the radix-4 FFT as with the radix-2.
 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.5. 
Length-16, Decimation-in-Frequency, In-order input, Radix-4 FFT

 The following two flowgraphs are length-16, decimation-in-frequency Split Radix FFTs with the input data in order and output data scrambled.  Because the "butterflies" are L shaped, the stages do not progress uniformly like the Radix-2 or 4.  These two figures are the same with the first drawn in a way to compare with the Radix-2 and 4, and the second to illustrate the L shaped butterflies. These flow graphs should be compared with the index map in Polynomial Description of Signals and the program in Appendix 3.  Because of the non-uniform stages, the program indexing is more complicated.  Although the number of twiddle factor multiplications is 12 as was the radix-4 case, for longer lengths, the split-radix has slightly fewer multiplications than the radix-4.

 Because the structures of the radix-2, radix-4, and split-radix FFTs are the same, the number of data additions is same for all of them.  However, each complex twiddle factor multiplication requires two real additions (and four real multiplications) the number of additions will be fewer for the structures with fewer multiplications.
 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.6. 
Length-16, Decimation-in-Frequency, In-order input, Split-Radix FFT

 [image: Signal Flow Graphs of Cooley-Tukey FFTs]

Figure 16.7. 
Length-16, Decimation-in-Frequency, Split-Radix with special BFs FFT
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Chapter 17. Appendix 2: Operation Counts for General Length FFT



Figures



 The Glassman-Ferguson FFT is a compact implementation of a mixed-radix Cooley-Tukey FFT with the short DFTs for each factor being calculated by a Goertzel-like algorithm.  This means there are twiddle factor multiplications even when the factors are relatively prime, however, the indexing is simple and compact. It will calculate the DFT of a sequence of any length but is efficient only if the length is highly composite. The figures contain plots of the number of floating point multiplications plus additions vs. the length of the FFT.  The  numbers on the vertical axis have relative meaning but no absolute meaning.
 [image: Figures]

Figure 17.1. 
Flop-Count vs Length for the Glassman-Ferguson FFT

 Note the parabolic shape of the curve for certain values.  The upper curve is for prime lengths, the next one is for lengths that are two times a prime, and the next one is for lengths that are for three times a prime, etc.  The shape of the lower boundary is roughly N log N.  The program that generated these two figures used a Cooley-Tukey FFT if the length is two to a power which accounts for the points that are below the major lower boundary.
 [image: Figures]

Figure 17.2. 
Flop-Count vs Length for the Glassman-Ferguson FFT
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Chapter 18. Appendix 3: FFT Computer Programs



Goertzel Algorithm



 A FORTRAN implementation of the first-order Goertzel algorithm with
in-order input as given in (???) and 1 is given below.
 C----------------------------------------------
C   GOERTZEL'S  DFT  ALGORITHM
C   First order, input inorder
C   C. S. BURRUS,   SEPT 1983
C---------------------------------------------
    SUBROUTINE DFT(X,Y,A,B,N)
    REAL X(260), Y(260), A(260), B(260)
    Q = 6.283185307179586/N
    DO 20 J=1, N
       C  = COS(Q*(J-1))
       S  = SIN(Q*(J-1))
       AT = X(1)
       BT = Y(1)
       DO 30 I = 2, N
          T  = C*AT - S*BT + X(I)
          BT = C*BT + S*AT + Y(I)
          AT = T
30     CONTINUE
       A(J) = C*AT - S*BT
       B(J) = C*BT + S*AT
20  CONTINUE
    RETURN
    END
First Order Goertzel Algorithm


Second Order Goertzel Algorithm



 Below is the program for a second order Goertzel algorithm.
 C----------------------------------------------
C   GOERTZEL'S  DFT  ALGORITHM
C   Second order, input inorder
C   C. S. BURRUS,   SEPT 1983
C---------------------------------------------
    SUBROUTINE DFT(X,Y,A,B,N)
    REAL X(260), Y(260), A(260), B(260)
C
    Q = 6.283185307179586/N
    DO 20 J = 1, N
       C  = COS(Q*(J-1))
       S  = SIN(Q*(J-1))
       CC = 2*C
       A2 = 0
       B2 = 0
       A1 = X(1)
       B1 = Y(1)
       DO 30 I = 2, N
          T  = A1
          A1 = CC*A1 - A2 + X(I)
          A2 = T
          T  = B1
          B1 = CC*B1 - B2 + Y(I)
          B2 = T
30     CONTINUE
       A(J) = C*A1 - A2 - S*B1
       B(J) = C*B1 - B2 + S*A1
20  CONTINUE
C
    RETURN
    END
Second Order Goertzel Algorithm


Second Order Goertzel Algorithm 2



 Second order Goertzel algorithm that calculates two outputs at a time.
 C-------------------------------------------------------
C GOERTZEL'S  DFT  ALGORITHM,  Second order
C Input inorder, output by twos;  C.S. Burrus, SEPT 1991
C-------------------------------------------------------
    SUBROUTINE DFT(X,Y,A,B,N)
    REAL X(260), Y(260), A(260), B(260)
    Q = 6.283185307179586/N
    DO 20 J = 1, N/2 + 1
       C  = COS(Q*(J-1))
       S  = SIN(Q*(J-1))
       CC = 2*C
       A2 = 0
       B2 = 0
       A1 = X(1)
       B1 = Y(1)
       DO 30 I = 2, N
          T  = A1
          A1 = CC*A1 - A2 + X(I)
          A2 = T
          T  = B1
          B1 = CC*B1 - B2 + Y(I)
          B2 = T
30     CONTINUE
       A2  = C*A1 - A2
       T   = S*B1
       A(J)     = A2 - T
       A(N-J+2) = A2 + T
       B2  = C*B1 - B2
       T   = S*A1
       B(J)     = B2 + T
       B(N-J+2) = B2 - T
20  CONTINUE
    RETURN
    END
 
Figure.  Second Order Goertzel Calculating Two Outputs at a Time


Basic QFT Algorithm



 A FORTRAN implementation of the basic QFT algorithm is given below to show
how the theory is implemented. The program is written for clarity, not to
minimize the number of floating point operations.
 C
   SUBROUTINE QDFT(X,Y,XX,YY,NN)
   REAL X(0:260),Y(0:260),XX(0:260),YY(0:260)
   C
   N1 = NN - 1
   N2 = N1/2
   N21 = NN/2
   Q   = 6.283185308/NN
   DO 2 K = 0, N21
      SSX = X(0)
      SSY = Y(0)
      SDX = 0
      SDY = 0
      IF (MOD(NN,2).EQ.0) THEN
         SSX = SSX + COS(3.1426*K)*X(N21)
         SSY = SSY + COS(3.1426*K)*Y(N21)
      ENDIF
      DO 3 N = 1, N2
         SSX = SSX + (X(N) + X(NN-N))*COS(Q*N*K)
         SSY = SSY + (Y(N) + Y(NN-N))*COS(Q*N*K)
         SDX = SDX + (X(N) - X(NN-N))*SIN(Q*N*K)
         SDY = SDY + (Y(N) - Y(NN-N))*SIN(Q*N*K)
3     CONTINUE
      XX(K) = SSX + SDY
      YY(K) = SSY - SDX
      XX(NN-K) = SSX - SDY
      YY(NN-K) = SSY + SDX
2  CONTINUE
   RETURN
   END
 
Simple QFT Fortran Program


Basic Radix-2 FFT Algorithm



 Below is the Fortran code for a simple Decimation-in-Frequency, Radix-2,
one butterfly Cooley-Tukey FFT followed by a bit-reversing unscrambler.
 C
C   A COOLEY-TUKEY RADIX-2, DIF  FFT PROGRAM
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C      C. S. BURRUS, RICE UNIVERSITY, SEPT 1983
C---------------------------------------------------------
    SUBROUTINE FFT (X,Y,N,M)
    REAL X(1), Y(1)
C--------------MAIN FFT LOOPS-----------------------------
C
    N2 = N
    DO 10 K = 1, M
        N1 = N2
        N2 = N2/2
        E  = 6.283185307179586/N1
        A  = 0
        DO 20 J = 1, N2
        C = COS (A)
        S = SIN (A)
        A = J*E
        DO 30 I = J, N, N1
                    L = I + N2
                    XT   = X(I) - X(L)
                    X(I) = X(I) + X(L)
                    YT   = Y(I) - Y(L)
                    Y(I) = Y(I) + Y(L)
                    X(L) = C*XT + S*YT
                    Y(L) = C*YT - S*XT
   30           CONTINUE
   20       CONTINUE
   10   CONTINUE
C
C------------DIGIT REVERSE COUNTER-----------------
  100   J = 1
    N1 = N - 1
    DO 104 I=1, N1
        IF (I.GE.J) GOXTO 101
        XT = X(J)
        X(J) = X(I)
        X(I) = XT
        XT   = Y(J)
        Y(J) = Y(I)
        Y(I) = XT
  101       K = N/2
  102       IF (K.GE.J) GOTO 103
        J = J - K
        K = K/2
        GOTO 102
  103       J = J + K
  104   CONTINUE
    RETURN
    END
 
Figure: Radix-2, DIF, One Butterfly Cooley-Tukey FFT
 


Basic DIT Radix-2 FFT Algorithm



 Below is the Fortran code for a simple Decimation-in-Time, Radix-2,
one butterfly Cooley-Tukey FFT preceeded by a bit-reversing scrambler.
 C
C   A COOLEY-TUKEY RADIX-2, DIT  FFT PROGRAM
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C      C. S. BURRUS, RICE UNIVERSITY, SEPT 1985
C
C---------------------------------------------------------
    SUBROUTINE FFT (X,Y,N,M)
    REAL X(1), Y(1)
C------------DIGIT REVERSE COUNTER-----------------
C
  100   J = 1
    N1 = N - 1
    DO 104 I=1, N1
        IF (I.GE.J) GOTO 101
            XT = X(J)
            X(J) = X(I)
            X(I) = XT
            XT   = Y(J)
            Y(J) = Y(I)
            Y(I) = XT
  101       K = N/2
  102       IF (K.GE.J) GOTO 103
        J = J - K
        K = K/2
        GOTO 102
  103       J = J + K
  104   CONTINUE
C--------------MAIN FFT LOOPS-----------------------------
C
    N2 = 1
    DO 10 K = 1, M
        E  = 6.283185307179586/(2*N2)
        A  = 0
        DO 20 J = 1, N2
        C = COS (A)
        S = SIN (A)
        A = J*E
        DO 30 I = J, N, 2*N2
                    L = I + N2
                    XT = C*X(L) + S*Y(L)
                    YT = C*Y(L) - S*X(L)
                    X(L) = X(I) - XT
                    X(I) = X(I) + XT
                    Y(L) = Y(I) - YT
                    Y(I) = Y(I) + YT
   30           CONTINUE
   20       CONTINUE
        N2 = N2+N2
   10   CONTINUE
C
    RETURN
    END


DIF Radix-2 FFT Algorithm



 Below is the Fortran code for a Decimation-in-Frequency, Radix-2,
three butterfly Cooley-Tukey FFT followed by a bit-reversing unscrambler.
 C   A COOLEY-TUKEY RADIX 2, DIF  FFT PROGRAM
C   THREE-BF, MULT BY  1  AND  J  ARE REMOVED
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C   TABLE LOOK-UP OF W VALUES
C      C. S. BURRUS, RICE UNIVERSITY, SEPT 1983
C---------------------------------------------------------
    SUBROUTINE FFT (X,Y,N,M,WR,WI)
    REAL X(1), Y(1), WR(1), WI(1)
C--------------MAIN FFT LOOPS-----------------------------
C
    N2 = N
    DO 10 K = 1, M
        N1 = N2
        N2 = N2/2
        JT = N2/2 + 1
        DO 1 I = 1, N, N1
        L = I + N2
        T    = X(I) - X(L)
        X(I) = X(I) + X(L)
        X(L) = T
        T    = Y(I) - Y(L)
        Y(I) = Y(I) + Y(L)
        Y(L) = T
   1        CONTINUE
        IF (K.EQ.M) GOTO 10
        IE  = N/N1
        IA  = 1
        DO 20 J = 2, N2
        IA = IA + IE
        IF (J.EQ.JT) GOTO 50
        C = WR(IA)
        S = WI(IA)
        DO 30 I = J, N, N1
            L = I + N2
            T    = X(I) - X(L)
            X(I) = X(I) + X(L)
            TY   = Y(I) - Y(L)
            Y(I) = Y(I) + Y(L)
            X(L) = C*T + S*TY
            Y(L) = C*TY - S*T
   30       CONTINUE
        GOTO 25
   50       DO 40 I = J, N, N1
            L = I + N2
            T    = X(I) - X(L)
            X(I) = X(I) + X(L)
            TY   = Y(I) - Y(L)
            Y(I) = Y(I) + Y(L)
            X(L) = TY
            Y(L) =-T
   40       CONTINUE
   25       A = J*E
   20       CONTINUE
   10   CONTINUE
C------------DIGIT REVERSE COUNTER Goes here----------
    RETURN
    END
 


Basic DIF Radix-4 FFT Algorithm



 Below is the Fortran code for a simple Decimation-in-Frequency, Radix-4,
one butterfly Cooley-Tukey FFT to be followed by an unscrambler.
 C   A COOLEY-TUKEY RADIX-4 DIF  FFT PROGRAM
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C   LENGTH IS  N = 4 ** M
C     C. S. BURRUS, RICE UNIVERSITY, SEPT 1983
C---------------------------------------------------------
    SUBROUTINE  FFT4 (X,Y,N,M)
    REAL X(1), Y(1)
C--------------MAIN FFT LOOPS-----------------------------
    N2 = N
    DO 10 K = 1, M
        N1 = N2
        N2 = N2/4
        E = 6.283185307179586/N1
        A = 0
C--------------------MAIN BUTTERFLIES-------------------
        DO 20 J=1, N2
            B    = A + A
            C    = A + B
            CO1  = COS(A)
            CO2  = COS(B)
            CO3  = COS(C)
            SI1  = SIN(A)
            SI2  = SIN(B)
            SI3  = SIN(C)
            A    = J*E
C----------------BUTTERFLIES WITH SAME W---------------
            DO 30 I=J, N, N1
            I1 = I  + N2
            I2 = I1 + N2
            I3 = I2 + N2
            R1 = X(I ) + X(I2)
            R3 = X(I ) - X(I2)
            S1 = Y(I ) + Y(I2)
            S3 = Y(I ) - Y(I2)
            R2 = X(I1) + X(I3)
            R4 = X(I1) - X(I3)
            S2 = Y(I1) + Y(I3)
            S4 = Y(I1) - Y(I3)
            X(I) = R1 + R2
            R2   = R1 - R2
            R1   = R3 - S4
            R3   = R3 + S4
            Y(I) = S1 + S2
            S2   = S1 - S2
            S1   = S3 + R4
            S3   = S3 - R4
            X(I1) = CO1*R3 + SI1*S3
            Y(I1) = CO1*S3 - SI1*R3
            X(I2) = CO2*R2 + SI2*S2
            Y(I2) = CO2*S2 - SI2*R2
            X(I3) = CO3*R1 + SI3*S1
            Y(I3) = CO3*S1 - SI3*R1
  30            CONTINUE
  20        CONTINUE
  10    CONTINUE
C-----------DIGIT REVERSE COUNTER goes here-----
    RETURN
    END


Basic DIF Radix-4 FFT Algorithm



 Below is the Fortran code for a Decimation-in-Frequency, Radix-4,
three butterfly Cooley-Tukey FFT followed by a bit-reversing unscrambler.
Twiddle factors are precalculated and stored in arrays WR and WI.
 C
C   A COOLEY-TUKEY RADIX-4 DIF  FFT PROGRAM
C   THREE BF, MULTIPLICATIONS BY  1, J, ETC. ARE REMOVED
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C   LENGTH IS  N = 4 ** M
C   TABLE LOOKUP OF W VALUES
C
C     C. S. BURRUS, RICE UNIVERSITY,  SEPT 1983
C
C---------------------------------------------------------
C
    SUBROUTINE  FFT4 (X,Y,N,M,WR,WI)
    REAL X(1), Y(1), WR(1), WI(1)
    DATA C21 / 0.707106778 /
C
C--------------MAIN FFT LOOPS-----------------------------
C
    N2 = N
    DO 10 K = 1, M
        N1 = N2
        N2 = N2/4
        JT = N2/2 + 1
C---------------SPECIAL BUTTERFLY FOR W = 1---------------
        DO 1 I = 1, N, N1
            I1 = I  + N2
            I2 = I1 + N2
            I3 = I2 + N2
            R1 = X(I ) + X(I2)
            R3 = X(I ) - X(I2)
            S1 = Y(I ) + Y(I2)
            S3 = Y(I ) - Y(I2)
            R2 = X(I1) + X(I3)
            R4 = X(I1) - X(I3)
            S2 = Y(I1) + Y(I3)
            S4 = Y(I1) - Y(I3)
C
            X(I) = R1 + R2
            X(I2)= R1 - R2
            X(I3)= R3 - S4
            X(I1)= R3 + S4
C
            Y(I) = S1 + S2
            Y(I2)= S1 - S2
            Y(I3)= S3 + R4
            Y(I1)= S3 - R4
C
   1        CONTINUE
        IF (K.EQ.M) GOTO 10
        IE = N/N1
        IA1 = 1
 
C--------------GENERAL BUTTERFLY-----------------
        DO 20 J = 2, N2
        IA1  = IA1 + IE
        IF (J.EQ.JT) GOTO 50
        IA2  = IA1 + IA1 - 1
            IA3  = IA2 + IA1 - 1
            CO1  = WR(IA1)
            CO2  = WR(IA2)
            CO3  = WR(IA3)
            SI1  = WI(IA1)
            SI2  = WI(IA2)
            SI3  = WI(IA3)
C----------------BUTTERFLIES WITH SAME W---------------
            DO 30 I = J, N, N1
            I1 = I  + N2
            I2 = I1 + N2
            I3 = I2 + N2
            R1 = X(I ) + X(I2)
            R3 = X(I ) - X(I2)
            S1 = Y(I ) + Y(I2)
            S3 = Y(I ) - Y(I2)
            R2 = X(I1) + X(I3)
            R4 = X(I1) - X(I3)
            S2 = Y(I1) + Y(I3)
            S4 = Y(I1) - Y(I3)
C
            X(I) = R1 + R2
            R2   = R1 - R2
            R1   = R3 - S4
            R3   = R3 + S4
C
            Y(I) = S1 + S2
            S2   = S1 - S2
            S1   = S3 + R4
            S3   = S3 - R4
C
            X(I1) = CO1*R3 + SI1*S3
            Y(I1) = CO1*S3 - SI1*R3
            X(I2) = CO2*R2 + SI2*S2
            Y(I2) = CO2*S2 - SI2*R2
            X(I3) = CO3*R1 + SI3*S1
            Y(I3) = CO3*S1 - SI3*R1
  30            CONTINUE
        GOTO 20
C------------------SPECIAL BUTTERFLY FOR  W = J-----------
  50            DO 40 I = J, N, N1
            I1 = I  + N2
            I2 = I1 + N2
            I3 = I2 + N2
            R1 = X(I ) + X(I2)
            R3 = X(I ) - X(I2)
            S1 = Y(I ) + Y(I2)
            S3 = Y(I ) - Y(I2)
            R2 = X(I1) + X(I3)
            R4 = X(I1) - X(I3)
            S2 = Y(I1) + Y(I3)
            S4 = Y(I1) - Y(I3)
C
            X(I) = R1 + R2
            Y(I2)=-R1 + R2
            R1   = R3 - S4
            R3   = R3 + S4
C
            Y(I) = S1 + S2
            X(I2)= S1 - S2
            S1   = S3 + R4
            S3   = S3 - R4
C
            X(I1) = (S3 + R3)*C21
            Y(I1) = (S3 - R3)*C21
            X(I3) = (S1 - R1)*C21
            Y(I3) =-(S1 + R1)*C21
  40            CONTINUE
  20        CONTINUE
  10    CONTINUE
C-----------DIGIT REVERSE COUNTER----------
  100   J = 1
    N1 = N - 1
    DO 104 I = 1, N1
        IF (I.GE.J) GOTO 101
        R1   = X(J)
        X(J) = X(I)
        X(I) = R1
        R1   = Y(J)
        Y(J) = Y(I)
        Y(I) = R1
 101        K = N/4
 102        IF (K*3.GE.J) GOTO 103
                J = J - K*3
                K = K/4
                GOTO 102
 103        J = J + K
 104    CONTINUE
    RETURN
    END
 


Basic DIF Split Radix FFT Algorithm



 Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix,
one butterfly FFT to be followed by a bit-reversing unscrambler.
 C   A DUHAMEL-HOLLMANN SPLIT RADIX  FFT PROGRAM
C   FROM: ELECTRONICS LETTERS, JAN. 5, 1984
C   COMPLEX INPUT DATA IN ARRAYS X AND Y
C   LENGTH IS  N = 2 ** M
C     C. S. BURRUS, RICE UNIVERSITY, MARCH 1984
C
C---------------------------------------------------------
    SUBROUTINE  FFT (X,Y,N,M)
    REAL X(1), Y(1)
C--------------MAIN FFT LOOPS-----------------------------
C
    N1 = N
    N2 = N/2
    IP = 0
    IS = 1
    A  = 6.283185307179586/N
    DO 10 K = 1, M-1
        JD = N1 + N2
        N1 = N2
        N2 = N2/2
        J0 = N1*IP + 1
        IP = 1 - IP
        DO 20 J = J0, N, JD
            JS = 0
        JT = J + N2 - 1
            DO 30 I = J, JT
            JSS= JS*IS
            JS = JS + 1
                C1 = COS(A*JSS)
                C3 = COS(3*A*JSS)
                S1 = -SIN(A*JSS)
                S3 = -SIN(3*A*JSS)
            I1 = I  + N2
            I2 = I1 + N2
            I3 = I2 + N2
            R1    = X(I ) + X(I2)
            R2    = X(I ) - X(I2)
            R3    = X(I1) - X(I3)
            X(I2) = X(I1) + X(I3)
            X(I1) = R1
C
            R1    = Y(I ) + Y(I2)
            R4    = Y(I ) - Y(I2)
            R5    = Y(I1) - Y(I3)
            Y(I2) = Y(I1) + Y(I3)
            Y(I1) = R1
C
            R1    = R2 - R5
            R2    = R2 + R5
            R5    = R4 + R3
            R4    = R4 - R3
C
            X(I)  = C1*R1 + S1*R5
            Y(I)  = C1*R5 - S1*R1
            X(I3) = C3*R2 + S3*R4
            Y(I3) = C3*R4 - S3*R2
  30            CONTINUE
  20        CONTINUE
        IS = IS + IS
  10    CONTINUE
    IP = 1 - IP
    J0 = 2 - IP
    DO 5 I = J0, N-1, 3
       I1 = I + 1
       R1    = X(I) + X(I1)
       X(I1) = X(I) - X(I1)
       X(I)  = R1
       R1    = Y(I) + Y(I1)
       Y(I1) = Y(I) - Y(I1)
       Y(I)  = R1
   5    CONTINUE
    RETURN
    END


DIF Split Radix FFT Algorithm



 Below is the Fortran code for a simple Decimation-in-Frequency, Split-Radix,
two butterfly FFT to be followed by a bit-reversing unscrambler. Twiddle
factors are precalculated and stored in arrays WR and WI.
 C--------------------------------------------------------------C
C       A DUHAMEL-HOLLMAN SPLIT RADIX FFT                      C
C       REF: ELECTRONICS LETTERS, JAN. 5, 1984                 C
C       COMPLEX INPUT AND OUTPUT DATA IN ARRAYS X AND Y        C
C       LENGTH IS N = 2 ** M,  OUTPUT IN BIT-REVERSED ORDER    C
C   TWO BUTTERFLIES TO REMOVE MULTS BY UNITY               C
C       SPECIAL LAST TWO STAGES                                C
C   TABLE LOOK-UP OF SINE AND COSINE VALUES            C
C       C.S. BURRUS,       RICE UNIV.       APRIL 1985         C
C--------------------------------------------------------------C
C
        SUBROUTINE FFT(X,Y,N,M,WR,WI)
        REAL X(1),Y(1),WR(1),WI(1)
    C81= 0.707106778
        N2 = 2*N
        DO  10 K = 1, M-3
        IS  = 1
        ID  = N2
        N2 = N2/2
        N4 = N2/4
 2      DO 1 I0 = IS, N-1, ID
        I1 = I0 + N4
        I2 = I1 + N4
            I3 = I2 + N4
        R1    = X(I0) - X(I2)
        X(I0) = X(I0) + X(I2)
        R2    = Y(I1) - Y(I3)
        Y(I1) = Y(I1) + Y(I3)
        X(I2) = R1 + R2
        R2    = R1 - R2
        R1    = X(I1) - X(I3)
        X(I1) = X(I1) + X(I3)
            X(I3) = R2
            R2    = Y(I0) - Y(I2)
                Y(I0) = Y(I0) + Y(I2)
            Y(I2) =-R1 + R2
            Y(I3) = R1 + R2
  1     CONTINUE
        IS = 2*ID - N2 + 1
        ID = 4*ID
            IF (IS.LT.N) GOTO 2
        IE  = N/N2
            IA1 = 1
            DO  20 J = 2, N4
                IA1 = IA1 + IE
                IA3 = 3*IA1 - 2
                CC1 = WR(IA1)
                SS1 = WI(IA1)
                CC3 = WR(IA3)
                SS3 = WI(IA3)
                IS  = J
                ID  = 2*N2
 40             DO 30 I0 = IS, N-1, ID
                    I1 = I0 + N4
                    I2 = I1 + N4
                    I3 = I2 + N4
C
                    R1    = X(I0) - X(I2)
                    X(I0) = X(I0) + X(I2)
                    R2    = X(I1) - X(I3)
                    X(I1) = X(I1) + X(I3)
                    S1    = Y(I0) - Y(I2)
                    Y(I0) = Y(I0) + Y(I2)
                    S2    = Y(I1) - Y(I3)
                    Y(I1) = Y(I1) + Y(I3)
C
                    S3    = R1 - S2
                    R1    = R1 + S2
                    S2    = R2 - S1
                    R2    = R2 + S1
                    X(I2) = R1*CC1 - S2*SS1
                    Y(I2) =-S2*CC1 - R1*SS1
                    X(I3) = S3*CC3 + R2*SS3
                    Y(I3) = R2*CC3 - S3*SS3
 30             CONTINUE
                IS = 2*ID - N2 + J
                ID = 4*ID
                IF (IS.LT.N) GOTO 40
  20        CONTINUE
  10    CONTINUE
C
        IS =  1
        ID = 32
  50    DO 60 I = IS, N, ID
            I0    = I + 8
            DO 15 J = 1, 2
               R1 = X(I0)   + X(I0+2)
               R3 = X(I0)   - X(I0+2)
               R2 = X(I0+1) + X(I0+3)
               R4 = X(I0+1) - X(I0+3)
               X(I0)   = R1 + R2
               X(I0+1) = R1 - R2
               R1 = Y(I0)   + Y(I0+2)
               S3 = Y(I0)   - Y(I0+2)
               R2 = Y(I0+1) + Y(I0+3)
               S4 = Y(I0+1) - Y(I0+3)
               Y(I0)   = R1 + R2
               Y(I0+1) = R1 - R2
               Y(I0+2) = S3 - R4
               Y(I0+3) = S3 + R4
               X(I0+2) = R3 + S4
               X(I0+3) = R3 - S4
               I0 = I0 + 4
  15        CONTINUE
  60    CONTINUE
            IS = 2*ID - 15
            ID = 4*ID
        IF (IS.LT.N) GOTO 50
C
        IS =  1
        ID = 16
  55    DO 65 I0 = IS, N, ID
                R1 = X(I0)   + X(I0+4)
            R5 = X(I0)   - X(I0+4)
            R2 = X(I0+1) + X(I0+5)
            R6 = X(I0+1) - X(I0+5)
            R3 = X(I0+2) + X(I0+6)
            R7 = X(I0+2) - X(I0+6)
            R4 = X(I0+3) + X(I0+7)
            R8 = X(I0+3) - X(I0+7)
            T1 = R1 - R3
            R1 = R1 + R3
            R3 = R2 - R4
            R2 = R2 + R4
            X(I0)   = R1 + R2
            X(I0+1) = R1 - R2
C
            R1 = Y(I0)   + Y(I0+4)
            S5 = Y(I0)   - Y(I0+4)
            R2 = Y(I0+1) + Y(I0+5)
            S6 = Y(I0+1) - Y(I0+5)
            S3 = Y(I0+2) + Y(I0+6)
            S7 = Y(I0+2) - Y(I0+6)
            R4 = Y(I0+3) + Y(I0+7)
            S8 = Y(I0+3) - Y(I0+7)
            T2 = R1 - S3
            R1 = R1 + S3
            S3 = R2 - R4
            R2 = R2 + R4
            Y(I0)   = R1 + R2
            Y(I0+1) = R1 - R2
            X(I0+2) = T1 + S3
            X(I0+3) = T1 - S3
            Y(I0+2) = T2 - R3
            Y(I0+3) = T2 + R3
C
            R1 = (R6 - R8)*C81
            R6 = (R6 + R8)*C81
            R2 = (S6 - S8)*C81
            S6 = (S6 + S8)*C81
C
            T1 = R5 - R1
            R5 = R5 + R1
            R8 = R7 - R6
            R7 = R7 + R6
            T2 = S5 - R2
            S5 = S5 + R2
            S8 = S7 - S6
            S7 = S7 + S6
            X(I0+4) = R5 + S7
            X(I0+7) = R5 - S7
            X(I0+5) = T1 + S8
            X(I0+6) = T1 - S8
            Y(I0+4) = S5 - R7
            Y(I0+7) = S5 + R7
            Y(I0+5) = T2 - R8
            Y(I0+6) = T2 + R8
  65    CONTINUE
            IS = 2*ID - 7
            ID = 4*ID
        IF (IS.LT.N) GOTO 55
C
C------------BIT REVERSE COUNTER-----------------
C
  100   J = 1
        N1 = N - 1
        DO 104 I=1, N1
            IF (I.GE.J) GOTO 101
            XT = X(J)
            X(J) = X(I)
            X(I) = XT
            XT   = Y(J)
            Y(J) = Y(I)
            Y(I) = XT
  101       K = N/2
  102       IF (K.GE.J) GOTO 103
                J = J - K
                K = K/2
                GOTO 102
  103       J = J + K
  104   CONTINUE
        RETURN
        END


Prime Factor FFT Algorithm



 Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT
allowing factors of the length of 2, 3, 4, 5, and 7. It is
followed by an unscrambler.
 C---------------------------------------------------
C
C   A PRIME FACTOR FFT PROGRAM WITH GENERAL MODULES
C   COMPLEX INPUT DATA IN ARRAYS  X AND Y
C   COMPLEX OUTPUT IN  A AND B
C   LENGTH  N  WITH  M  FACTORS IN ARRAY  NI
C     N = NI(1)*NI(2)* ... *NI(M)
C   UNSCRAMBLING CONSTANT  UNSC
C     UNSC = N/NI(1) + N/NI(2) +...+ N/NI(M), MOD N
C      C. S. BURRUS, RICE UNIVERSITY, JAN 1987
C
C--------------------------------------------------
C
    SUBROUTINE PFA(X,Y,N,M,NI,A,B,UNSC)
C
    INTEGER  NI(4), I(16), UNSC
        REAL X(1), Y(1), A(1), B(1)
C
    DATA  C31, C32  / -0.86602540,-1.50000000 /
    DATA  C51, C52  /  0.95105652,-1.53884180 /
    DATA  C53, C54  / -0.36327126, 0.55901699 /
    DATA  C55       / -1.25  /
    DATA  C71, C72  / -1.16666667,-0.79015647 /
    DATA  C73, C74  /  0.055854267, 0.7343022 /
    DATA  C75, C76  /  0.44095855,-0.34087293 /
    DATA  C77, C78  /  0.53396936, 0.87484229 /
C
C-----------------NESTED LOOPS----------------------
C
    DO 10 K=1, M
          N1 = NI(K)
      N2 = N/N1
      DO 15 J=1, N, N1
             IT   = J
             DO 30 L=1, N1
                I(L) = IT
            A(L) = X(IT)
            B(L) = Y(IT)
                IT = IT + N2
                IF (IT.GT.N)  IT = IT - N
   30        CONTINUE
             GOTO (20,102,103,104,105,20,107), N1
C
C----------------WFTA N=2--------------------------------
C
  102   R1    = A(1)
    A(1)  = R1 + A(2)
    A(2)  = R1 - A(2)
C
    R1   = B(1)
    B(1) = R1 + B(2)
    B(2) = R1 - B(2)
C
    GOTO 20
C----------------WFTA N=3--------------------------------
C
  103   R2 = (A(2) - A(3)) * C31
    R1 =  A(2) + A(3)
    A(1)= A(1) + R1
    R1  = A(1) + R1 * C32
C
    S2 = (B(2) - B(3)) * C31
    S1 =  B(2) + B(3)
    B(1)= B(1) + S1
    S1  = B(1) + S1 * C32
C
    A(2) = R1 - S2
    A(3) = R1 + S2
    B(2) = S1 + R2
    B(3) = S1 - R2
C
    GOTO 20
C
C----------------WFTA N=4---------------------------------
C
  104   R1 = A(1) + A(3)
    T1 = A(1) - A(3)
    R2 = A(2) + A(4)
    A(1) = R1 + R2
    A(3) = R1 - R2
C
    R1 = B(1) + B(3)
    T2 = B(1) - B(3)
    R2 = B(2) + B(4)
    B(1) = R1 + R2
    B(3) = R1 - R2
C
    R1 = A(2) - A(4)
    R2 = B(2) - B(4)
C
    A(2) = T1 + R2
    A(4) = T1 - R2
    B(2) = T2 - R1
    B(4) = T2 + R1
C
    GOTO 20
C
C----------------WFTA N=5--------------------------------
C
  105   R1 = A(2) + A(5)
    R4 = A(2) - A(5)
    R3 = A(3) + A(4)
    R2 = A(3) - A(4)
C
    T = (R1 - R3) * C54
    R1 = R1 + R3
    A(1) = A(1) + R1
    R1   = A(1) + R1 * C55
C
    R3 = R1 - T
    R1 = R1 + T
C
    T = (R4 + R2) * C51
    R4 =  T + R4 * C52
    R2 =  T + R2 * C53
C
    S1 = B(2) + B(5)
    S4 = B(2) - B(5)
    S3 = B(3) + B(4)
    S2 = B(3) - B(4)
C
    T = (S1 - S3) * C54
    S1 = S1 + S3
    B(1) = B(1) + S1
    S1   = B(1) + S1 * C55
C
    S3 =  S1 - T
    S1 =  S1 + T
C
    T = (S4 + S2) * C51
    S4 =  T + S4 * C52
    S2 =  T + S2 * C53
C
    A(2) = R1 + S2
    A(5) = R1 - S2
    A(3) = R3 - S4
    A(4) = R3 + S4
C
    B(2) = S1 - R2
    B(5) = S1 + R2
    B(3) = S3 + R4
    B(4) = S3 - R4
C
    GOTO 20
C-----------------WFTA N=7--------------------------
C
  107   R1 = A(2) + A(7)
    R6 = A(2) - A(7)
    S1 = B(2) + B(7)
    S6 = B(2) - B(7)
    R2 = A(3) + A(6)
    R5 = A(3) - A(6)
    S2 = B(3) + B(6)
    S5 = B(3) - B(6)
    R3 = A(4) + A(5)
    R4 = A(4) - A(5)
    S3 = B(4) + B(5)
    S4 = B(4) - B(5)
C
    T3 = (R1 - R2) * C74
    T  = (R1 - R3) * C72
    R1 = R1 + R2 + R3
    A(1) = A(1) + R1
    R1   = A(1) + R1 * C71
    R2 =(R3 - R2) * C73
    R3 = R1 - T + R2
    R2 = R1 - R2 - T3
    R1 = R1 + T + T3
    T = (R6 - R5) * C78
    T3 =(R6 + R4) * C76
    R6 =(R6 + R5 - R4) * C75
    R5 =(R5 + R4) * C77
    R4 = R6 - T3 + R5
    R5 = R6 - R5 - T
    R6 = R6 + T3 + T
C
    T3 = (S1 - S2) * C74
    T  = (S1 - S3) * C72
    S1 =  S1 + S2 + S3
    B(1) = B(1) + S1
    S1   = B(1) + S1 * C71
    S2 =(S3 - S2) * C73
    S3 = S1 - T  + S2
    S2 = S1 - S2 - T3
    S1 = S1 + T  + T3
    T  = (S6 - S5) * C78
    T3 = (S6 + S4) * C76
    S6 = (S6 + S5 - S4) * C75
    S5 = (S5 + S4) * C77
    S4 = S6 - T3 + S5
    S5 = S6 - S5 - T
    S6 = S6 + T3 + T
C
    A(2) = R3 + S4
    A(7) = R3 - S4
    A(3) = R1 + S6
    A(6) = R1 - S6
    A(4) = R2 - S5
    A(5) = R2 + S5
    B(4) = S2 + R5
    B(5) = S2 - R5
    B(2) = S3 - R4
    B(7) = S3 + R4
    B(3) = S1 - R6
    B(6) = S1 + R6
C
   20        IT   = J
             DO 31 L=1, N1
                I(L) = IT
            X(IT) = A(L)
            Y(IT) = B(L)
                IT = IT + N2
                IF (IT.GT.N)  IT = IT - N
   31        CONTINUE
   15     CONTINUE
   10   CONTINUE
C
C-----------------UNSCRAMBLING----------------------
C
    L = 1
    DO 2 K=1, N
       A(K) = X(L)
       B(K) = Y(L)
           L = L + UNSC
           IF (L.GT.N)  L = L - N
    2   CONTINUE
    RETURN
    END
C


In Place, In Order Prime Factor FFT Algorithm



 Below is the Fortran code for a Prime-Factor Algorithm (PFA) FFT
allowing factors of the length of 2, 3, 4, 5, 7, 8, 9, and 16. It is both
in-place and in-order, so requires no unscrambler.
 C
C   A PRIME FACTOR FFT PROGRAM
C   IN-PLACE AND IN-ORDER
C   COMPLEX INPUT DATA IN ARRAYS  X AND Y
C   LENGTH  N  WITH  M  FACTORS IN ARRAY  NI
C       N = NI(1)*NI(2)*...*NI(M)
C   REDUCED TEMP STORAGE IN SHORT WFTA MODULES
C   Has modules 2,3,4,5,7,8,9,16
C   PROGRAM BY  C. S. BURRUS,  RICE UNIVERSITY
C                  SEPT 1983
C----------------------------------------------------
C
    SUBROUTINE PFA(X,Y,N,M,NI)
    INTEGER  NI(4), I(16), IP(16), LP(16)
        REAL X(1), Y(1)
    DATA  C31, C32  / -0.86602540,-1.50000000 /
    DATA  C51, C52  /  0.95105652,-1.53884180 /
    DATA  C53, C54  / -0.36327126, 0.55901699 /
    DATA  C55       / -1.25  /
    DATA  C71, C72  / -1.16666667,-0.79015647 /
    DATA  C73, C74  /  0.055854267, 0.7343022 /
    DATA  C75, C76  /  0.44095855,-0.34087293 /
    DATA  C77, C78  /  0.53396936, 0.87484229 /
    DATA  C81       /  0.70710678 /
    DATA  C95       / -0.50000000 /
    DATA  C92, C93  /  0.93969262, -0.17364818 /
    DATA  C94, C96  /  0.76604444, -0.34202014 /
    DATA  C97, C98  / -0.98480775, -0.64278761 /
    DATA  C162,C163 /  0.38268343,  1.30656297 /
    DATA  C164,C165 /  0.54119610,  0.92387953 /
C
C-----------------NESTED LOOPS----------------------------------
C
    DO 10 K=1, M
           N1 = NI(K)
       N2 = N/N1
       L  = 1
       N3 = N2 - N1*(N2/N1)
       DO 15 J = 1, N1
          LP(J) = L
              L = L + N3
          IF (L.GT.N1) L = L - N1
   15      CONTINUE
C
       DO 20 J=1, N, N1
          IT   = J
          DO 30 L=1, N1
             I(L) = IT
             IP(LP(L)) = IT
             IT = IT + N2
             IF (IT.GT.N)  IT = IT - N
   30         CONTINUE
          GOTO (20,102,103,104,105,20,107,108,109,
     +              20,20,20,20,20,20,116),N1
 
C----------------WFTA N=2--------------------------------
C
  102   R1       = X(I(1))
    X(I(1))  = R1 + X(I(2))
    X(I(2))  = R1 - X(I(2))
C
    R1       = Y(I(1))
    Y(IP(1)) = R1 + Y(I(2))
    Y(IP(2)) = R1 - Y(I(2))
C
    GOTO 20
C
C----------------WFTA N=3--------------------------------
C
  103   R2 = (X(I(2)) - X(I(3))) * C31
    R1 =  X(I(2)) + X(I(3))
    X(I(1))= X(I(1)) + R1
    R1     = X(I(1)) + R1 * C32
C
    S2 = (Y(I(2)) - Y(I(3))) * C31
    S1 =  Y(I(2)) + Y(I(3))
    Y(I(1))= Y(I(1)) + S1
    S1     = Y(I(1)) + S1 * C32
C
    X(IP(2)) = R1 - S2
    X(IP(3)) = R1 + S2
    Y(IP(2)) = S1 + R2
    Y(IP(3)) = S1 - R2
C
    GOTO 20
C
C----------------WFTA N=4---------------------------------
C
  104   R1 = X(I(1)) + X(I(3))
    T1 = X(I(1)) - X(I(3))
    R2 = X(I(2)) + X(I(4))
    X(IP(1)) = R1 + R2
    X(IP(3)) = R1 - R2
C
    R1 = Y(I(1)) + Y(I(3))
    T2 = Y(I(1)) - Y(I(3))
    R2 = Y(I(2)) + Y(I(4))
    Y(IP(1)) = R1 + R2
    Y(IP(3)) = R1 - R2
C
    R1 = X(I(2)) - X(I(4))
    R2 = Y(I(2)) - Y(I(4))
C
    X(IP(2)) = T1 + R2
    X(IP(4)) = T1 - R2
    Y(IP(2)) = T2 - R1
    Y(IP(4)) = T2 + R1
C
    GOTO 20
 
C----------------WFTA N=5--------------------------------
C
  105   R1 = X(I(2)) + X(I(5))
    R4 = X(I(2)) - X(I(5))
    R3 = X(I(3)) + X(I(4))
    R2 = X(I(3)) - X(I(4))
C
    T = (R1 - R3) * C54
    R1 = R1 + R3
    X(I(1)) = X(I(1)) + R1
    R1      = X(I(1)) + R1 * C55
C
    R3 = R1 - T
    R1 = R1 + T
C
    T = (R4 + R2) * C51
    R4 =  T + R4 * C52
    R2 =  T + R2 * C53
C
    S1 = Y(I(2)) + Y(I(5))
    S4 = Y(I(2)) - Y(I(5))
    S3 = Y(I(3)) + Y(I(4))
    S2 = Y(I(3)) - Y(I(4))
C
    T = (S1 - S3) * C54
    S1 = S1 + S3
    Y(I(1)) = Y(I(1)) + S1
    S1      = Y(I(1)) + S1 * C55
C
    S3 =  S1 - T
    S1 =  S1 + T
C
    T = (S4 + S2) * C51
    S4 =  T + S4 * C52
    S2 =  T + S2 * C53
C
    X(IP(2)) = R1 + S2
    X(IP(5)) = R1 - S2
    X(IP(3)) = R3 - S4
    X(IP(4)) = R3 + S4
C
    Y(IP(2)) = S1 - R2
    Y(IP(5)) = S1 + R2
    Y(IP(3)) = S3 + R4
    Y(IP(4)) = S3 - R4
C
    GOTO 20
 
C-----------------WFTA N=7--------------------------
C
  107   R1 = X(I(2)) + X(I(7))
    R6 = X(I(2)) - X(I(7))
    S1 = Y(I(2)) + Y(I(7))
    S6 = Y(I(2)) - Y(I(7))
    R2 = X(I(3)) + X(I(6))
    R5 = X(I(3)) - X(I(6))
    S2 = Y(I(3)) + Y(I(6))
    S5 = Y(I(3)) - Y(I(6))
    R3 = X(I(4)) + X(I(5))
    R4 = X(I(4)) - X(I(5))
    S3 = Y(I(4)) + Y(I(5))
    S4 = Y(I(4)) - Y(I(5))
C
    T3 = (R1 - R2) * C74
    T  = (R1 - R3) * C72
    R1 = R1 + R2 + R3
    X(I(1)) = X(I(1)) + R1
    R1      = X(I(1)) + R1 * C71
    R2 =(R3 - R2) * C73
    R3 = R1 - T + R2
    R2 = R1 - R2 - T3
    R1 = R1 + T + T3
    T = (R6 - R5) * C78
    T3 =(R6 + R4) * C76
    R6 =(R6 + R5 - R4) * C75
    R5 =(R5 + R4) * C77
    R4 = R6 - T3 + R5
    R5 = R6 - R5 - T
    R6 = R6 + T3 + T
C
    T3 = (S1 - S2) * C74
    T  = (S1 - S3) * C72
    S1 =  S1 + S2 + S3
    Y(I(1)) = Y(I(1)) + S1
    S1      = Y(I(1)) + S1 * C71
    S2 =(S3 - S2) * C73
    S3 = S1 - T  + S2
    S2 = S1 - S2 - T3
    S1 = S1 + T  + T3
    T  = (S6 - S5) * C78
    T3 = (S6 + S4) * C76
    S6 = (S6 + S5 - S4) * C75
    S5 = (S5 + S4) * C77
    S4 = S6 - T3 + S5
    S5 = S6 - S5 - T
    S6 = S6 + T3 + T
C
    X(IP(2)) = R3 + S4
    X(IP(7)) = R3 - S4
    X(IP(3)) = R1 + S6
    X(IP(6)) = R1 - S6
    X(IP(4)) = R2 - S5
    X(IP(5)) = R2 + S5
    Y(IP(4)) = S2 + R5
    Y(IP(5)) = S2 - R5
    Y(IP(2)) = S3 - R4
    Y(IP(7)) = S3 + R4
    Y(IP(3)) = S1 - R6
    Y(IP(6)) = S1 + R6
C
    GOTO 20
 
C-----------------WFTA N=8--------------------------
C
  108   R1 = X(I(1)) + X(I(5))
    R2 = X(I(1)) - X(I(5))
    R3 = X(I(2)) + X(I(8))
    R4 = X(I(2)) - X(I(8))
    R5 = X(I(3)) + X(I(7))
    R6 = X(I(3)) - X(I(7))
    R7 = X(I(4)) + X(I(6))
    R8 = X(I(4)) - X(I(6))
    T1 = R1 + R5
    T2 = R1 - R5
    T3 = R3 + R7
    R3 =(R3 - R7) * C81
    X(IP(1)) = T1 + T3
    X(IP(5)) = T1 - T3
    T1 = R2 + R3
    T3 = R2 - R3
    S1 = R4 - R8
    R4 =(R4 + R8) * C81
    S2 = R4 + R6
    S3 = R4 - R6
    R1 = Y(I(1)) + Y(I(5))
    R2 = Y(I(1)) - Y(I(5))
    R3 = Y(I(2)) + Y(I(8))
    R4 = Y(I(2)) - Y(I(8))
    R5 = Y(I(3)) + Y(I(7))
    R6 = Y(I(3)) - Y(I(7))
    R7 = Y(I(4)) + Y(I(6))
    R8 = Y(I(4)) - Y(I(6))
    T4 = R1 + R5
    R1 = R1 - R5
    R5 = R3 + R7
    R3 =(R3 - R7) * C81
    Y(IP(1)) = T4 + R5
    Y(IP(5)) = T4 - R5
    R5 = R2 + R3
    R2 = R2 - R3
    R3 = R4 - R8
    R4 =(R4 + R8) * C81
    R7 = R4 + R6
    R4 = R4 - R6
    X(IP(2)) = T1 + R7
    X(IP(8)) = T1 - R7
    X(IP(3)) = T2 + R3
    X(IP(7)) = T2 - R3
    X(IP(4)) = T3 + R4
    X(IP(6)) = T3 - R4
    Y(IP(2)) = R5 - S2
    Y(IP(8)) = R5 + S2
    Y(IP(3)) = R1 - S1
    Y(IP(7)) = R1 + S1
    Y(IP(4)) = R2 - S3
    Y(IP(6)) = R2 + S3
C
    GOTO 20
 
C-----------------WFTA N=9-----------------------
C
  109   R1 = X(I(2)) + X(I(9))
    R2 = X(I(2)) - X(I(9))
    R3 = X(I(3)) + X(I(8))
    R4 = X(I(3)) - X(I(8))
    R5 = X(I(4)) + X(I(7))
    T8 =(X(I(4)) - X(I(7))) * C31
    R7 = X(I(5)) + X(I(6))
    R8 = X(I(5)) - X(I(6))
    T0 = X(I(1)) + R5
    T7 = X(I(1)) + R5 * C95
    R5 = R1 + R3 + R7
    X(I(1)) = T0 + R5
    T5 = T0 + R5 * C95
    T3 = (R3 - R7) * C92
    R7 = (R1 - R7) * C93
    R3 = (R1 - R3) * C94
    T1 = T7 + T3 + R3
    T3 = T7 - T3 - R7
    T7 = T7 + R7 - R3
    T6 = (R2 - R4 + R8) * C31
    T4 = (R4 + R8) * C96
    R8 = (R2 - R8) * C97
    R2 = (R2 + R4) * C98
    T2 = T8 + T4 + R2
    T4 = T8 - T4 - R8
    T8 = T8 + R8 - R2
C
    R1 = Y(I(2)) + Y(I(9))
    R2 = Y(I(2)) - Y(I(9))
    R3 = Y(I(3)) + Y(I(8))
    R4 = Y(I(3)) - Y(I(8))
    R5 = Y(I(4)) + Y(I(7))
    R6 =(Y(I(4)) - Y(I(7))) * C31
    R7 = Y(I(5)) + Y(I(6))
    R8 = Y(I(5)) - Y(I(6))
    T0 = Y(I(1)) + R5
    T9 = Y(I(1)) + R5 * C95
    R5 = R1 + R3 + R7
    Y(I(1)) = T0 + R5
    R5 = T0 + R5 * C95
    T0 = (R3 - R7) * C92
    R7 = (R1 - R7) * C93
    R3 = (R1 - R3) * C94
    R1 = T9 + T0 + R3
    T0 = T9 - T0 - R7
    R7 = T9 + R7 - R3
    R9 = (R2 - R4 + R8) * C31
    R3 = (R4 + R8) * C96
    R8 = (R2 - R8) * C97
    R4 = (R2 + R4) * C98
    R2 = R6 + R3 + R4
    R3 = R6 - R8 - R3
    R8 = R6 + R8 - R4
C
    X(IP(2)) = T1 - R2
    X(IP(9)) = T1 + R2
    Y(IP(2)) = R1 + T2
    Y(IP(9)) = R1 - T2
    X(IP(3)) = T3 + R3
    X(IP(8)) = T3 - R3
    Y(IP(3)) = T0 - T4
    Y(IP(8)) = T0 + T4
    X(IP(4)) = T5 - R9
    X(IP(7)) = T5 + R9
    Y(IP(4)) = R5 + T6
    Y(IP(7)) = R5 - T6
    X(IP(5)) = T7 - R8
    X(IP(6)) = T7 + R8
    Y(IP(5)) = R7 + T8
    Y(IP(6)) = R7 - T8
C
    GOTO 20
 
C-----------------WFTA N=16------------------------
C
  116   R1 = X(I(1)) + X(I(9))
    R2 = X(I(1)) - X(I(9))
    R3 = X(I(2)) + X(I(10))
    R4 = X(I(2)) - X(I(10))
    R5 = X(I(3)) + X(I(11))
    R6 = X(I(3)) - X(I(11))
    R7 = X(I(4)) + X(I(12))
    R8 = X(I(4)) - X(I(12))
    R9 = X(I(5)) + X(I(13))
    R10= X(I(5)) - X(I(13))
    R11 = X(I(6)) + X(I(14))
    R12 = X(I(6)) - X(I(14))
    R13 = X(I(7)) + X(I(15))
    R14 = X(I(7)) - X(I(15))
    R15 = X(I(8)) + X(I(16))
    R16 = X(I(8)) - X(I(16))
    T1 = R1 + R9
    T2 = R1 - R9
    T3 = R3 + R11
    T4 = R3 - R11
    T5 = R5 + R13
    T6 = R5 - R13
    T7 = R7 + R15
    T8 = R7 - R15
    R1 = T1 + T5
    R3 = T1 - T5
    R5 = T3 + T7
    R7 = T3 - T7
    X(IP( 1)) = R1 + R5
    X(IP( 9)) = R1 - R5
    T1 = C81 * (T4 + T8)
    T5 = C81 * (T4 - T8)
    R9 = T2 + T5
    R11= T2 - T5
    R13 = T6 + T1
    R15 = T6 - T1
    T1 = R4 + R16
    T2 = R4 - R16
    T3 = C81 * (R6 + R14)
    T4 = C81 * (R6 - R14)
    T5 = R8 + R12
    T6 = R8 - R12
    T7 = C162 * (T2 - T6)
    T2 = C163 * T2 - T7
    T6 = C164 * T6 - T7
    T7 = R2 + T4
    T8 = R2 - T4
    R2 = T7 + T2
    R4 = T7 - T2
    R6 = T8 + T6
    R8 = T8 - T6
    T7 = C165 * (T1 + T5)
    T2 = T7 - C164 * T1
    T4 = T7 - C163 * T5
    T6 = R10 + T3
    T8 = R10 - T3
    R10 = T6 + T2
    R12 = T6 - T2
    R14 = T8 + T4
    R16 = T8 - T4
    R1 = Y(I(1)) + Y(I(9))
    S2 = Y(I(1)) - Y(I(9))
    S3 = Y(I(2)) + Y(I(10))
    S4 = Y(I(2)) - Y(I(10))
    R5 = Y(I(3)) + Y(I(11))
    S6 = Y(I(3)) - Y(I(11))
    S7 = Y(I(4)) + Y(I(12))
    S8 = Y(I(4)) - Y(I(12))
    S9 = Y(I(5)) + Y(I(13))
    S10= Y(I(5)) - Y(I(13))
    S11 = Y(I(6)) + Y(I(14))
    S12 = Y(I(6)) - Y(I(14))
    S13 = Y(I(7)) + Y(I(15))
    S14 = Y(I(7)) - Y(I(15))
    S15 = Y(I(8)) + Y(I(16))
    S16 = Y(I(8)) - Y(I(16))
    T1 = R1 + S9
    T2 = R1 - S9
    T3 = S3 + S11
    T4 = S3 - S11
    T5 = R5 + S13
    T6 = R5 - S13
    T7 = S7 + S15
    T8 = S7 - S15
    R1 = T1 + T5
    S3 = T1 - T5
    R5 = T3 + T7
    S7 = T3 - T7
    Y(IP( 1)) = R1 + R5
    Y(IP( 9)) = R1 - R5
    X(IP( 5)) = R3 + S7
    X(IP(13)) = R3 - S7
    Y(IP( 5)) = S3 - R7
    Y(IP(13)) = S3 + R7
    T1 = C81 * (T4 + T8)
    T5 = C81 * (T4 - T8)
    S9 = T2 + T5
    S11= T2 - T5
    S13 = T6 + T1
    S15 = T6 - T1
    T1 = S4 + S16
    T2 = S4 - S16
    T3 = C81 * (S6 + S14)
    T4 = C81 * (S6 - S14)
    T5 = S8 + S12
    T6 = S8 - S12
    T7 = C162 * (T2 - T6)
    T2 = C163 * T2 - T7
    T6 = C164 * T6 - T7
    T7 = S2 + T4
    T8 = S2 - T4
    S2 = T7 + T2
    S4 = T7 - T2
    S6 = T8 + T6
    S8 = T8 - T6
    T7 = C165 * (T1 + T5)
    T2 = T7 - C164 * T1
    T4 = T7 - C163 * T5
    T6 = S10 + T3
    T8 = S10 - T3
    S10 = T6 + T2
    S12 = T6 - T2
    S14 = T8 + T4
    S16 = T8 - T4
    X(IP( 2)) = R2 + S10
    X(IP(16)) = R2 - S10
    Y(IP( 2)) = S2 - R10
    Y(IP(16)) = S2 + R10
    X(IP( 3)) = R9 + S13
    X(IP(15)) = R9 - S13
    Y(IP( 3)) = S9 - R13
    Y(IP(15)) = S9 + R13
    X(IP( 4)) = R8 - S16
    X(IP(14)) = R8 + S16
    Y(IP( 4)) = S8 + R16
    Y(IP(14)) = S8 - R16
    X(IP( 6)) = R6 + S14
    X(IP(12)) = R6 - S14
    Y(IP( 6)) = S6 - R14
    Y(IP(12)) = S6 + R14
    X(IP( 7)) = R11 - S15
    X(IP(11)) = R11 + S15
    Y(IP( 7)) = S11 + R15
    Y(IP(11)) = S11 - R15
    X(IP( 8)) = R4 - S12
    X(IP(10)) = R4 + S12
    Y(IP( 8)) = S4 + R12
    Y(IP(10)) = S4 - R12
C
    GOTO 20
C
   20      CONTINUE
   10   CONTINUE
    RETURN
    END
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Chapter 19. Appendix 4:  Programs for Short FFTs



 This appendix will discuss efficient short FFT programs that can be used in both the Cooley-Tukey and the Prime Factor FFT algorithms. Links and references are given to Fortran listings that can be used "as is" or put into the indexed loops of existing programs to give greater efficiency and/or a greater variety of allowed lengths. Special programs have been written for lengths: 

N
=
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 25,
 etc.
 

 In the early days of the FFT, multiplication was done in software and was, therefore, much slower than an addition. With modem hardware, a floating point multiplication can be done in one clock cycle of the computer, microprocessor, or DSP chip, requiring the same time as an addition. Indeed, in some computers and many DSP chips, both a multiplication and an addition (or accumulation) can be done in one cycle while the indexing and memory access is done in parallel. Most of the algorithms described here are not hardware architecture specific but are designed to minimize both multiplications and additions.
 

 The most basic and often used length FFT (or DFT) is for 

N
=
2
. In the Cooley Tukey FFT, it is called a "butterfly" and its reason for fame is requiring no multiplications at all, only one complex addition and one complex subtraction and needing only one complex temporary storage location. This is illustrated in Figure 1: The Prime Factor and Winograd Transform Algorithms and code is shown in Figure 2: The Prime Factor and Winograd Transform Algorithms. The second most used length is 
N
=
4
 because it is the only other short length requiring no multiplications and a minimum of additions. All other short FFT require some multiplication but for powers of two, 

N
=
8
 and 

N
=
16
 require few enough to be worth special coding for some situations.
 

 Code for other short lengths such as the primes 

N
=
3
, 5, 7, 11, 13, 17, and 19
 and the composites 
 are included in the programs for the prime factor algorithm or the WFTA. They are derived using the theory in Chapters 5, 6, and 9. They can also be found in references ... and
 

 If these short FFTs are used as modules in the basic prime factor algorithm (PFA), then the straight forward development used for the modules in Figure 17.12 are used.  However if the more complicated indexing use to achieve in-order, in-place calculation used in {xxxxx} require different code.
 
 For each of the indicated lengths, the computer code is given in a Connexions module. 
 They are not in the collection Fast Fourier Transforms as the printed version would be too long. However, one can link to them on-line from the following buttons:
 
N=2
N=3
N=4
N=5
N=7
N= 8
N= 9
N= l1
N= 13
N= 16
N= 17
N= 19
N= 25 

 


Versions for the in-place, in-order prime factor algorithm {pfa} can be obtained from:
  
N=2
N=3
N=4
N=5
N=7
N=8
N=9
N=l1
N=13
N=16
N=17
N=19
N=25
 

A technical report that describes the length 11, 13, 17, and 19 is in {report 8105} and another technical report that describes a program that will automatically generate a prime length FFT and its flow graph si in {report xxx}.
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