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Abstract: Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in
the last few years for forestry applications that benefit from the added value of flexibility, low cost,
reliability, autonomy, and capability of timely provision of high-resolution data. This special issue
(SI) collects nine papers reporting research on different forestry applications using UAV imagery.
The special issue covers seven Red-Green-Blue (RGB) sensor papers, three papers on multispectral
imagery, and one further paper on hyperspectral data acquisition system. Several data processing
and machine learning methods are presented. The special issue provides an overview regarding
potential applications to provide forestry characteristics in a timely, cost-efficient way. With the
fast development of sensors technology and image processing algorithms, the forestry potential
applications will growing fast, but future work should consider the consistency and repeatability of
these novel techniques.

Keywords: unmanned aerial vehicles (UAV); precision forestry; forestry applications; image
processing; machine learning; RGB imagery

1. Introduction

Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the
last few years for forestry applications that benefit from the added value of flexibility, low cost,
reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted
image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming
commonly-used to improve the estimation of relevant plant traits. In comparison with other permanent
ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees,
and the primary objective is the conservation and protection of forests. Nevertheless, forestry and
agriculture both involve the cultivation of renewable raw materials—the difference is that forestry is
less tied to economic aspects and this reflects the delay in using new monitoring technologies. The use
of UAV in precision forestry has exponentially increased in the last years as demonstrated by a large
number of papers published between 2018 and 2019, and more than 400 references are found searching
for “UAV” + “forest” and considering articles, conference proceedings, and books.

The main forestry applications aim to inventory resources, map diseases, species classification,
fire monitoring, and spatial gaps estimation. This Special Issue focused on new technologies (UAV and
sensors) and innovative data elaboration methodologies (object recognition and machine vision) for
forestry applications.

2. Overview of Contributions

VOSviewer software version 1.6.14 (Centre for Science and Technology Studies, Leiden University,
The Netherlands) was used for a simple bibliometric map, shown in Figure 1. The software was
developed for creating, visualizing, and exploring papers’ bibliometrics. Term map offers overviews

Forests 2020, 11, 406; doi:10.3390/f11040406 www.mdpi.com/journal/forests1
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for identifying the structure of a topic and represents research topics where strongly related terms are
located close to each other and the weaker the relationship is between terms, the greater the distance
is between them. Terms were extracted in titles and abstracts of papers and represented in the map
as circles.

Figure 1. Term clustering map based on the SI publications. Different colors represent the terms
belonging to different clusters. The size of the term is based on the number of occurrences. The
connecting lines indicate the strongest co-occurrence links between terms.

Seven papers in this special issue reported results from UAV platform using RGB cameras [1–7],
three paper used multispectral cameras [6,8,9], while one paper used a hyperspectral camera [6].

The aims of the papers were to test the feasibility of using UAVs to rapidly identify coniferous
seedlings in replanted forest-harvest using an efficient sampling-based approach, consumer-grade
cameras, and straightforward image handling, such as in [1]. The tree characteristics monitored were
tree height, crown width, prediction of diameter at breast height (DBH), and tree age with low cost,
high efficiency, and high precision in [2]. The development of a dataset called MauFlex related to
Mauritia flexuosa palm, also known as “aguaje”, was a study aimed at its conservation as it is a species
poorly monitored because of the difficult access to these swamps. Moreover, a segmentation and
measurement method for areas covered in Mauritia flexuosa palms using high-resolution aerial images
acquired by UAVs was performed in this research [3]. One study evaluated the feasibility of adopting
the low-cost, flexible, high-resolution, sensor-capable UAV platform for collecting reference data to use
in thematic map accuracy assessments for complex environments [4]. Another research study focused
on seed germination, stump shoot resprout, and spreading by root suckering of black locust in ten
short rotation coppices [5]. The evaluation of density and canopy cover of western juniper in a treated
(juniper removed) and an untreated watershed and an assesment of the effectiveness of using low
altitude UAV-based imagery to measure juniper-sapling population density and canopy cover were
also studied [6]. The investigation of UAV-based photogrammetric point clouds and hyperspectral
imagery for characterizing seedling stands in leaf-off and leaf-on conditions were researched in [7].
The study of multispectral UAV images that can be used to classify burn severity, including the burned
surface class, were considered in [8]. Lastly, the estimation of Chestnut pruning biomass through
differences in the volume of canopy trees and an evaluation of the performance of an unsupervised
segmentation methodology as a feasible tool for the analysis of large areas were considered in [9].

Various data processing methods were used in this Special Issue.
Image analysis workflow, where a three-step, object-based process consisting of image

segmentation, automated classification using a classification and regression tree (CART)
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machine-learning algorithm, and the merging of adjacent image objects classified as ‘seedlings’
into single seedling objects, was conducted in [1]. The Structure-from- Motion/Multi-view Stereo
(SfM-MVS) method was used to detect the feature points of the image, and the scale-invariant feature
transform (SIFT) algorithm was used to detect feature points and generate feature vectors. Then,
matching was carried out according to the feature vectors, and the RANSAC (random sample consensus)
algorithm was used to delete the connection of the conflicting geometric features of corresponding
feature points in [2]. Convolutional Neural Network (CNN) based on the Deeplab v3+ architecture
was completed. Images were acquired under different environment and light conditions using three
different RGB cameras in [3]. Pixel-based and object-based classification reference data methods were
used in [4]. Object-based image analysis (OBIA) and convolutional neural network (CNN) were used
in [5]. Vegetation indices and support vector machine classification were used in [6]. Watershed
segmentation method to delineate the tree canopy boundary at an individual tree level, and optimal
bands for calculating vegetation indices were determined. Species classification using the random forest
method was used in [7]. Maximum likelihood (MLH), spectral angle mapper (SAM), and thresholding
of a normalized difference vegetation index (NDVI) were used as classifiers in [8]. Supervised and
unsupervised crown segmentation with a double filtering process based on Canopy Height Model
(CHM) and vegetation index threshold were used in [9].

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The agricultural and forestry sector is constantly evolving, also through the increased use
of precision technologies including Remote Sensing (RS). Remotely biomass estimation (WaSfM)
in wood production forests is already debated in the literature, but there is a lack of knowledge
in quantifying pruning residues from canopy management. The aim of the present study was to
verify the reliability of RS techniques for the estimation of pruning biomass through differences
in the volume of canopy trees and to evaluate the performance of an unsupervised segmentation
methodology as a feasible tool for the analysis of large areas. Remote sensed data were acquired on
four uneven-aged and irregularly spaced chestnut orchards in Central Italy by an Unmanned Aerial
Vehicle (UAV) equipped with a multispectral camera. Chestnut geometric features were extracted
using both supervised and unsupervised crown segmentation and then applying a double filtering
process based on Canopy Height Model (CHM) and vegetation index threshold. The results show that
UAV monitoring provides good performance in detecting biomass reduction after pruning, despite
some differences between the trees’ geometric features. The proposed unsupervised methodology
for tree detection and vegetation cover evaluation purposes showed good performance, with a low
undetected tree percentage value (1.7%). Comparing crown projected volume reduction extracted by
means of supervised and unsupervised approach, R2 ranged from 0.76 to 0.95 among all the sites.
Finally, the validation step was assessed by evaluating correlations between measured and estimated
pruning wood biomass (Wpw) for single and grouped sites (0.53 < R2 < 0.83). The method described
in this work could provide effective strategic support for chestnut orchard management in line with a
precision agriculture approach. In the context of the Circular Economy, a fast and cost-effective tool
able to estimate the amounts of wastes available as by-products such as chestnut pruning residues
can be included in an alternative and virtuous supply chain.

Keywords: unmanned aerial vehicles; precision agriculture; biomass evaluation; image processing;
Castanea sativa

1. Introduction

Remote Sensing (RS) is one of the technologies that has been currently most employed in the
forestry sector for monitoring, inventorying, and mapping purposes. RS techniques with the aim to
obtain information on large areas can be conducted at different levels of precision, according to the
different goals to be achieved. The choice of the RS platform to be employed, and consequently the

Forests 2020, 11, 308; doi:10.3390/f11030308 www.mdpi.com/journal/forests5
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sensors installed and operating on-board that specific platform will depend on the processes under
investigation and the level of detail required for a particular analysis [1].

RS platform as satellite systems, aircraft platforms and unmanned aerial vehicles (UAVs) have
features that differ in terms of spatial resolution, surface covered, temporal resolution, operational
procedures, and costs. Satellite solutions remain a fundamental tool for long-term and extensive
monitoring and surveillance forestry activities against fire events [2], pests attack [3], illegal logging [4]
and more generally, to assess the health and structure of forests’ cover [5]. Aircraft platforms provide a
better image resolution, returning a higher level of detail compared to satellite, against a higher effort
in flight planning and relevant operational costs [6]. UAVs are flexible small platforms characterized
by low operational costs, high spatial and temporal resolution [7] but suitable to cover only limited
areas. Comparisons among different platforms have been made both in the agricultural [8] and in the
forestry field [9].

The use of UAV in precision forestry has exponentially increased in recent years, as demonstrated
by the large number of papers published between 2018 and 2019; more than 400 references were found
when searching for “UAV” + “forest” and considering articles, conference proceedings and books [10].

Authors have dealt with several research topics involving applications in forest monitoring,
inventorying, and mapping both with multirotor and fixed-wing unmanned platforms equipped
with a wide series of optical technology sensors [11–18]. These studies took into account forestry
UAV applications mainly within two forest types: the first one included planted, pure and even-aged
forests [19–24] and the second one included natural, mixed and uneven-aged forests where the spatial
variability of vegetation was very high [25–29].

Within natural, mixed and uneven-aged forests research, UAVs have been employed most
commonly for (i) estimation of dendrometric parameters such as dominant height, stem number, crown
area, volume and above-ground biomass (Wa) using RGB (Red–Green–Blue bands camera) [30–34],
multispectral near red green (NRG) [35,36] and laser scanning [37,38] sensors. This is the top research
topic because reliable information on the status and trends of forest resources is the basis for the
decision-making process for forest management and planning [39]; (ii) tree species classification and
invasive plants detection for forest inventories and monitoring of biodiversity using RGB [40,41],
multispectral [42,43], hyperspectral [29,44] and laser scanning [45] sensors; (iii) flight plan ad RGB
sensor settings to improve imagery products accuracy [26,46–49] (iv) forest health monitoring and
diseases mapping using different sensors (RGB [50], multispectral [51], hyperspectral [52], thermal [15])
to provide data for supporting intervention decisions in the management of forests; (v) recovery
monitoring after fire events or conservation interventions through UAV equipped with RGB [53] and
multispectral [2,17] cameras.

By providing key forest structural attributes such as tree crown centers and boundaries, UAV
imagery tree segmentation is used for stem counting [32,54], extrapolation of further dendrometric
parameters (i.e., Wa) [55–59], species recognition [42], and pathogens detection and mapping [60].

Regarding Wa estimation, there are two main strategies adopted for Digital Aerial Photogrammetry
(DAP) and Airborne Laser Scanning (ALS)-based analysis in forestry inventories: (i) the Area-Based
Approach (ABA), a distribution-based technique which provides data at stand level using predictive
models developed with co-located ground plot measurements and RS data that are then applied to the
entire area of interest to generate estimates of specific forest attributes [61]; and (ii) Individual Tree
Crown segmentation (ITC) delineation, in which individual tree crowns, heights and positions are
the basic units of assessment and where specific algorithms are used to identify the location and size
of individual trees from raster images or high-density point clouds [62]. Previous research papers
dealt with biomass estimation both at the stand and at tree level. Biomass at stand level is evaluated
by comparing the effects of flight settings, sensor type and resolution in tropical woodlands [55], the
influence of plot size in dry tropical forests [58] or by taking into account different mangrove species in
South China wetlands [59]. Concerning tree-level biomass estimation, Guerra-Hernandez et al. [57]
and Guerra-Hernandez et al. [56] used, respectively, UAV-DAP point clouds in open Mediterranean
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forest of coniferous Pinus pinea (Central of Portugal) and DAP and ALS data in evergreen Eucalyptus
spp. plantation (North of Portugal). The latter two studies are important references for modeling SfM
individual tree diameters and SfM-derived individual tree biomass (WaSfM) and volume (VSfM) from
the canopy height model (CHM) in Mediterranean forest plantation.

Segmentation of individual tree crowns is difficult, particularly in broadleaf, mixed, or
multi-layered forests. This is generally due to an inability to determine the appropriate kernel size to
simultaneously minimize omission and commission error with respect to tree stem identification [63].
In the literature, several unsupervised segmentation approaches have been proposed: the most widely
used is the watershed segmentation algorithm [20,23,34,64–67] and its variants [16,54,68]. Other
techniques are multiresolution segmentation algorithm [27,69], large-scale mean-shift algorithm [35],
semantic-level segmentation using a Convolutional Neural Network (CNN) [70] and more complex
approaches with two or more integrated algorithms [37,63,71]. Some authors associated the
above-mentioned unsupervised approaches to manually drawn individual tree crown polygons
from on-screen interpretation to compare and validate results or provide a reference for the accuracy
assessment of an automatic procedure [72–74].

Among the papers that adopted both manual and unsupervised tree segmentation, only a few
research works included ground data collection [42,72,75–77] with a tree sample size ranging from 109
to 2069 trees. None of those presented wood biomass in-field data. For natural, mixed and uneven-aged
forest, Mayr et al. [75] gathered tree height in dry savannah and used an implementation of the watershed
segmentation algorithm provided by System for Automated Geoscientific Analyses-Geographic
Information System (SAGA-GIS) while Franklin and Ahmed [42] utilized the multi-resolution
segmentation procedure with the ENVI software system and they collected tree height and crown
dimensions in a mixed maple, aspen, and birch forest. Concerning planted, pure and even-aged forests,
Ganz et al. [72] used a multiresolution segmentation algorithm and measured tree height within stands
of Norway spruce and common beech while Apostol et al. [77] utilized the watershed algorithm and
collected tree height and stem diameter in an even-aged Douglas fir stand. By taking tree height
as ground-truth data in a chestnut plantation, Marques et al. [76] segmented trees by combining a
vegetation-index based algorithm with the Otsu method.

Chestnut (Castanea sativa Mill.) orchards are a type of multifunctional tree cultivation used
worldwide that represent a relevant income for rural populations. In Italy, sweet chestnut groves
cover 147,568 hectares (ha) of the whole Italian forested territory [78]. Only a few research papers used
UAV in chestnut plantations and dealt with phytosanitary problem detection and monitoring of tree
health [76,79,80], automatic classification and segmentation of chestnut fruits through Convolutional
Neural Networks (CNNs) [81], and insects damage rate detection and pest control methods [82].
However, there is no research available that tried to estimate the amounts of residues coming from tree
tending by using UAV techniques and comparing their information with ground truth. In the present
study, the authors applied RS techniques (UAV) to collect data on uneven-aged and irregularly spaced
chestnut (Castanea sativa Mill.) orchards. The aim of the present study was to verify the reliability of RS
techniques for the estimation of pruning wood biomass (Wpw) through differences in the volume of
canopy trees calculated with supervised extraction and to evaluate the performance of an unsupervised
segmentation methodology as a feasible tool for large-area analysis. In the context of the Circular
Economy, a fast and cost-effective tool able to estimate the amounts of residues available as by-products,
such as chestnut pruning material, can be included in an alternative and virtuous supply chain.

2. Materials and Methods

2.1. Experimental Sites

The study took place within the Amiata mountain region (Tuscany, Italy) between 2017 and 2018.
Four sites located into three different chestnut orchards were selected as representative of this area in
terms of variety and management practices (Figure 1).
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Figure 1. Experimental sites map.

The experimental sites’ characteristics are shown in Table 1. The chestnut orchards under study
were uneven-aged and irregularly spaced (Figure 1), mainly due to replacements of dead trees that
occurred over time. For this reason, they were equated to irregular forests.

Table 1. Experimental sites’ description.

ID Site A Site B Site C Site D

Location 42◦53′18.22” N
11◦33′41.57” E

42◦53′17.19” N
11◦33′41.75” E

42◦52′11.71” N
11◦30′28.55” E

42◦52′18.59” N
11◦30′29.65” E

Altitude (m ASL) 960 1085 780 755
Surface (ha) 0.55 0.32 0.36 0.32

Chestnut variety Cecio Cecio Bastarda Rossa Bastarda Rossa
Density (trees ha−1) 72.57 114.60 110.10 111.73
Canopy cover (%) 82.50 86.47 90.19 87.80

2.2. Pruning Wood Biomass Ground Measurement

At the beginning of March 2017, 30 chestnut trees per plot (A, B, C, D) were selected and the
diameter at breast height (DBH) was callipered. The choice of the sample trees was made by identifying
plants representative of each site in terms of size (DBH). Sample trees were georeferenced at high
resolution (0.02 m) with a differential GPS (Leica GS09 GNSS, Leica Geosystems AG). In February 2018,
the previously selected trees were pruned, their branches severed and grouped in two sets: “wings”
(pieces below 4 cm in diameter) and “wood” (pieces over 4 cm in diameter). The first group had
no commercial use while the second could follow two different destinations: sold as firewood after
being seasoned in the field or sold to the industry for tannins extraction. These two raw materials
were separately loaded on a tractor equipped with a bucket or a pitchfork and weighed by means of
portable scales (model WWSD6T, Nonis s.r.l., Biella, Italy). Every five weighing the scales’ accuracy
was checked by weighing the tractor unloaded. From every site, Wpw samples were collected and
weighed fresh, then oven-dried according to the standard UNI EN ISO 18134-2:2017 to measure their
moisture content. The following analyses and comparisons were made on a dry matter basis, avoiding
uncontrollable variability due to wood samples size, initial moisture conditions or seasoning.
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2.3. UAV Platform and Data Processing

Remote sensed data were acquired to characterize the intra-plot variability in terms of plant
vigor and Wpw. Two flight campaigns were performed on 2 August 2017 and on 25 July 2018 at the
same phenological stage using a modified multi-rotor Mikrokopter (HiSystems GmbH, Moomerland,
Germany) described in Matese and Di Gennaro [83] equipped with a multispectral camera Tetracam
ADC Snap (Tetracam Inc., Chatsworth, CA, USA). The second flight was performed immediately after
the canopy pruning management to enable a comparison between ground truth and UAV results.
Multispectral image acquisition was planned flying at 60 m above ground level at midday, yielding a
ground resolution of 0.05 m pixel−1 and a 70% overlap in both directions. The images were recorded
in clear sky conditions. The radiometric calibration processes were realized by acquiring, during
the flight, images from three OptoPolymer (OptoPolymer-Werner Sanftenberg, Munich, Germany)
reference panels, with 95%, 50%, and 5% reflectance, respectively.

The data processing workflow is described in Figure 2. Multispectral or NRG images with
three broad bands (Near-infrared–Red–Green bands) acquired by UAV were processed using Agisoft
Metashape Professional Edition 1.5.2 [84], which allows to generate the dense cloud and the orthomosaic
of each experimental site. During this process, any ground control points (GCPs) were used due to the
irregular and dense canopy cover. The spatial variability in the chestnut orchard was evaluated in
terms of vigor and assuming the correspondence between NDVI and vigor [85,86]. NDVI was used as
a further filter threshold, as described in Section 2.4.

The dense cloud obtained was normalized using a digital elevation model (DEM) from the
automatic classification of ground points from photogrammetric software and subsequently imported
into QGis software [87] to develop, by means of the LAStools toolbox [88], the CHM relative to the
canopy height of each sample tree. The resolution chosen for this model was 0.05 m.

The next processing step concerned the creation of a chestnut crown mask through a two-fold
approach: supervised and unsupervised segmentation. The supervised method consisted of manually
drawing each chestnut crown one by one within the experimental plot, visualizing together the
CHM and the NRG orthomosaic in the QGis software. The unsupervised approach used a script
called ‘rLIDAR’ (version 0.1.1) [89] in R programming language (version 3.6.0), which allows to
generate a vector format file relative to the position and the crown dimension of each sample tree.
First, CHM smoothing was performed to eliminate spurious local maxima caused by tree branches.
Then, the location and height of individual trees were automatically detected using the CHM and
the Local maxima method (rLiDAR: FindTreesCHM function) by sequentially searching the moving
window through a Fixed Window Size (FWS) set to 9x9 pixels. In this step, we used a lower CHM
resolution (0.25 m/pixel) to generate the mask with the unsupervised method, due to the fact that the
workflow with native resolution (0.05 m/pixel) required to many computing resources. However, the
segmentation provided enough accuracy with respect to the supervised segmentation. The threshold for
the lowest tree height (minht) was fixed at 3.0 m to avoid the misdetection of forest undergrowth as trees.
For unsupervised crown segmentation, the ForestCAS function (cf. rLiDAR) based on the watershed
method was applied to automatically detect crown boundaries. The threshold for the maximum crown
radius (maxcrown) was set to 15.0 m, according to chestnut dendrometric characteristics.

Finally, the obtained dataset was analyzed to perform a spatial estimation of the potential pruning
biomass (Figure 2). The tree crown volume was calculated at the pixel level by integrating the volume
of all the individual pixels that were positioned below each tree. This choice was made to deal with
the irregular shape of every tree and consequently, to reduce the error usually produced in empirical
estimations due to the inexact assimilation of trees to regular solids. Therefore, as suggested by
Torres-Sanchez et al. [90], the height and area of every tree pixel were multiplied to obtain the pixel
volume; subsequently, the crown projected volume was derived by adding the volume of all the pixels
below each chestnut tree.

For identifying the volume change between the two years (before and after pruning), the tree
mask generated both in the supervised and unsupervised method for the 2017 dataset was chosen
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as the reference and also used in 2018 (QGis Software) to correct the XY shift of the camera GPS
between the two flights. This operation avoided an overestimation of the segmented crown area in
2018 following pruning, especially with R software. The Wpw estimation was performed on the basis
of the crown volume reduction in the post-pruning survey with respect to the first flight. A linear
regression model between the Wpw measured on the ground and estimated by UAV was applied to
evaluate the performance of the UAV approach.

Since the aim of this work was Wpw estimation from remote sensing data, for ground truth
measurements, we focused on a very large number of pruning wood sampling (30 trees/site), while
only the DBH parameter was meausured as geometric field data for sample trees selection. As a
consequence, the geometric data evaluation was related only to the comparison between the supervised
and unsupervised methods on the structure from the motion dataset, without any field data as ground
truth (tree height or crown dimension).

Figure 2. UAV elaboration data workflow.

2.4. Double Filtering Approach

Several authors reported on the improvement in tree crown segmentation when vegetation indices
analysis is applied in discriminating between vegetation targets [76,90]. However, in our study, the
discrimination between canopy and no canopy pixels was ensured by the CHM thanks to the higher
tree height which was more than double the regular plantation sites observed in other works [76,90].
Although the spectral data were not used to improve the segmentation of the crowns from the soil, in
our study, they were used to improve the measurement of volume reduction from the CHM.

In detail, the elaboration of crown volume data from the pruned tree (2018 survey) accounted also
for no canopy information of the small holes within the canopy undetected by the 3D reconstruction
process performed with Agisoft Metashape but clearly visible in the orthomosaic. To solve these
problems, we applied a double filtering process: the first one based on canopy height (CHM) and the
second based on a vegetation index (NDVI) threshold to remove no vegetation pixels within the crown
(Figure 3). The results presented in this work were obtained from a dataset filtered with an NDVI
threshold of 0.3.

10



Forests 2020, 11, 308

Figure 3. Filtering workflow aimed to improve the accuracy of the canopy height model.

2.5. Puning Wood Biomass Estimation

Reference segmentation masks of sample trees were manually created for each experimental site.
The supervised method was applied to develop a linear model between ground truth Wpw and crown
projected volume reduction extracted by the reference segmentation mask. The linear model was
then applied to calculate the estimated Wpw from the unsupervised segmentation method following
Equation (1):

Y = β (X1 − X2) + γ (1)

where Y is the dependent variable (Wpw), X1 to X2 are independent variables related, respectively, to
crown-projected volume before and after pruning management, β is the multiplicative parameter and
γ is the intercept. The coefficient of determination (R2) and Root Mean Square Error (RMSE) were
computed between the measured correlations, between supervised and unsupervised segmentation
approaches for UAV geometric data extraction, and between ground-truth measured and estimated
Wpw data.

The adjusted coefficient of determination (Equation (2)), the relative root mean square error
(Equation (3)) and the percentage bias (Equation (4)) to determine the accuracy of unsupervised
segmentation for estimating Wpw using crown projected volume reduction are as follows:

adjR2 = 1 − ((n − 1)
∑

(yini = 1 − ŷi)2(n − p)
∑

(yini = 1 − yi)2) (2)

rRMSE = RMSEy (3)

PBias = 100*(
∑

(ŷi − yini = 1)n) (4)
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where n is the number of trees, yi is the field measured Wpw i, y is the the mean observed value of
Wpw and ŷi is the estimated value of Wpw derived from the linear regression model. A statistical
analysis was performed using R software.

3. Results

3.1. Wpw Ground Measurement

In Table 2 are presented the ground data of measured Wpw per tree, per site (sample of 30 trees)
and per surface unit.

Table 2. Pruning wood biomass (Wpw) produced per tree (Avg. and Std. dev.), per plot, and per surface.

SiteTitle DBH (cm)
Wpw per Tree

(kgdw)
Wpw per Site

(kgdw)
Wpw per Surface

(Mgdw ha−1)

A 84.21 ± 26.55 625.01 ± 590.48 18750.28 24.92
B 63.24 ± 11.97 243.69 ± 90.42 7310.85 8.94
C 49.77 ± 11.75 97.37 ± 63.99 3115.84 3.86
D 53.38 ± 15.5 113 ± 76.39 3390.00 4.05

Note: dw = dry weight.

The yield of Wpw per hectare was comparable with the data presented in a former study [91],
where three chestnut groves produced from 22 up to 33 Mg ha−1, but this result matches only with site
A. In fact, although site A was different from the other three sites presented in the aforementioned
study, showing an even bigger DBH on average compared to them, it had a similar pruning intensity.
Compared to site A, the number of pruning residues produced in the other three sites investigated in
the present study turned out to be noticeably lower, probably caused here—as in other case studies—by
differences in trees age, site density, and pruning intensity. The results of sites C and D were very
similar and still comparable to site B in terms of wood biomass recovered after pruning, despite the
different chestnut varieties.

The proportion of “wood” compared to “wings” was equal to 311.9% at site A, 55.7% at site B and
51.7% at site D. At site C, it was not possible to separate the two fractions due to operative reasons.

3.2. Supervised Data Extraction

Table 3 shows the geometric characterization of each experimental site arising from supervised
segmentation before (2017) and after pruning (2018). Maximum tree height, crown mean height, crown
area, and crown projected volume are mean values of each site. Crown area and crown projected
volume per site are also showed to provide a general overview of biomass reduction after pruning.
These values derive from a single tree crown area and projected crown volume, respectively, multiplied
by the total number of trees for each site.

The decrease in heights after pruning is not significantly different. However, considering crown
mean height and crown area, biomass reduction between the two years detected by UAV is relevant.
In fact, it ranges from 8.8% in site A to 14.2% in site B, referring to the crown mean height and
from 6.5% in site B to 15.1% in site A, considering the crown area values. In sites C and D, these
two parameters show intermediate but comparable variations, reflecting the geomorphological and
vegetational similarities of the two sites, in detail: crown mean heights of 11.0% (C) and 11.6% (D), and
crown areas of 13.1% (C) and 11.8% (D).

The tree geometric characteristic that best shows the effects of pruning is crown projected volume,
whose values have the strongest variations between 2017 and 2018. The highest percentage of biomass
reduction was found at site C (21.4%) while site A has the maximum decrease (298 m3), confirming
ground measurements (see Table 2).
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Table 3. Geometric characterization of each experimental site.

Year Site
Tree Height

(m)
Crown Mean

Height (m)
Crown Area

(m2)

Crown
Projected

Volume (m3)

Crown Area
per Site (m2)

Crown Projected
Volume per Site

(m3)

2017 A 18.07 ± 2.8 14.69 ± 2.67 93.97 ± 49.56 1401.66 ± 807.53 3006.89 44,853.18
B 15.19 ± 1.38 12.90 ± 1.09 59.44 ± 20.32 767.61 ± 267.9 1902.10 24,563.55
C 9.63 ± 0.98 7.65 ± 0.94 61.19 ± 18.69 472.7 ± 170.34 1958.17 15,126.38
D 11.23 ± 1.36 8.91 ± 1.15 63.06 ± 18.70 575.36 ± 216.96 1954.86 17,836.20

2018 A 17.63 ± 2.66 13.40 ± 2.58 79.74 ± 45.82 1103.71 ± 751.49 2551.80 35,318.81
B 14.63 ± 1.36 11.07 ± 1.56 55.57 ± 20.56 620.82 ± 248.39 1778.20 19,866.23
C 9.44 ± 1.12 6.81 ± 1.04 53.16 ± 19.55 371.31 ± 164.53 1700.97 11,882.00
D 11.08 ± 1.68 7.88 ± 1.33 55.62 ± 22.97 460.28 ± 226.76 1724.20 14,268.58

3.3. Unsupervised Data Extraction

Table 4 reports the segmentation results of the proposed unsupervised methodology. Following
Marques et al. [76]’s study, the evaluation of the automatic segmentation accuracy applied in this
work was assessed by comparing it with a manual crowns’ segmentation. In line with the different
site conditions in terms of trees age and dimension, the proposed methodology provides a different
response in terms of accuracy. Site A presented the lowest accuracy value (46.7%) due to the highest
presence of both over and under detection cases. In detail, the irregular and oversize crown (mean
values over 90 m2) caused elevated crown shape fragmentation (33.3%), while the high overlap crown
level led to 20.0% of merged cases. Sites B and D, characterized by a lower overlap level, showed the
best accuracy performances, respectively 83.3% and 76.7%. Site D presented a lower accuracy value
due to the 20.0% of merged crowns in a circumscribed zone with close trees with similar crown heights.
An intermediate accuracy performance was found in the C site (63.3%), where the lowest values and
variability in terms of height and some irregular shape cases caused an overestimation of 26.7% crown
shape segmentation. The methodology provided the optimal results in terms of undetected tree crown,
with 1.7% mean accuracy considering the overall dataset (four sites).

Table 4. Report of the trees’ detection accuracy with the number of estimated trees and its detection
type in the four sites.

Site Reference Crowns Matched Split Merged Missed

A 30 46.7% 33.3% 20.0% 0.0%
B 30 83.3% 3.3% 10.0% 3.3%
C 30 63.3% 26.7% 6.7% 3.3%
D 30 76.7% 3.3% 20.0% 0.0%

Dataset 30 67.5% 16.7% 14.2% 1.7%

3.4. Geometric Data Comparison between the Supervised and the Unsupervised Approach

Figure 4 presents the comparison results between supervised and unsupervised segmentation
approaches to perform tree geometric characterization from the structure of motion products. Taking
into account the presence of split and merged cases in the unsupervised approach, the dataset was first
analyzed not tree-by-tree but by means of the aggregation per site of each polygon identified by both
segmentation methodologies. Each XY graph shows the comparison of geometric data related to four
sites in both years (2017–2018). The height estimation both for tree height and crown mean height was
correctly described from the proposed unsupervised method, providing R2 = 1.00 correlation coefficient
and a good accuracy in terms of values RMSE = 0.25 m and RMSE = 0.24 m, respectively. Considering
the estimation of the crown area mean value per site, no correlation was found from the application
of the proposed methods (R2 = 0.01), with a high difference between the values (RMSE = 21.47 m2).
The crown-projected volume shows a lower correlation (R2 = 0.54) than pure height-derived variables
(tree height and crown mean height), but a discrete error in the absolute values (RMSE = 274.64 m3).
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Regarding full site characterization in terms of canopy cover area and crown projected volume, the
unsupervised method provided very high correlations: R2 = 0.93 and R2 = 0.99, respectively.

Figure 4. Comparison performance between supervised and unsupervised segmentation within 4 sites
for 2017 and 2018 season to characterize geometric information: tree height (a), crown mean height (b),
crown mean area (c), crown projected volume (d), full site canopy cover (e), full site crown projected
volume (f).

A deep analysis was performed taking into account a larger dataset obtained by the unsupervised
segmentation to evaluate the performance of the proposed method as a feasible tool for Wpw evaluation
on large scale areas. The unsupervised dataset was created with about 67.5% matched polygons,
potentially available to investigate correlation tree-to-tree with measured ground truth Wpw and
supervised geometric data per tree. The dataset was then increased by adding the 16.7% of split
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cases considered as single-tree data by the merging of the sub-polygons in which a sample tree was
fragmented by the unsupervised approach. Figure 5 reports the correlations (R2 and RSME) related to
crown volume reduction of the proposed methodology versus the manually segmented mask.

Figure 5. Comparison between crown projected volume reduction extracted by means of the supervised
and unsupervised approach within each site (a, b, c, d). The dataset was made of both correctly
segmented crown (matched) and fragmented crown (split) as a sum of each sub-polygon of the
fractionated crown described in Table 4.

The unsupervised method showed a high accuracy performance in crown segmentation, providing
high R2 values ranging between 0.76 and 0.95, and good precision in term of absolute values, with
RMSE ranging between 79.16 m3 and 117.48 m3. The scatterplots show results close to the 1:1 line
between supervised and unsupervised segmentation methods.

3.5. Wpw Estimation

Table 5 presents the correlation results (equations and R2) between crown projected volume
reduction (X-independent variable) and pruning wood biomass (Y-dependent variable), in which a
linear regression model was applied to the dataset extracted with the manually reference masks and
the ground truth Wpw measurements. All sites show representative results with higher correlation
coefficients for the A site (R2 = 0.78), intermediate value in site C and D (R2 = 0.71 and R2 = 0.69
respectively) and lower in site B (R2 = 0.60). Considering the similar tree ages and dimensions in the
close sites C and D, Table 5 also reports the good correlations obtained by oganising the two sites as a
single dataset (R2 = 0.65). The linear regression analysis applied to the overall dataset provides good
results but lower than the values at the single-site level (R2 = 0.33).
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Table 5. Regression analysis between ground truth Wpw data (X-independent variable) and estimated
projected crown volume reduction (Y-dependent variable) obtained by the application of supervised
segmentation. Linear regression results (equation and R2) calculated for each site (A, B, C, D) and
aggregated dataset (C + D and A + B + C + D). All liner regressions provided significance results
(p < 0.001).

Segmentation Site Equation R2

Supervised

A y = 1.2566x − 201.4442 0.78
B y = 0.2729x + 143.1937 0.60
C y = 0.3549x + 25.1030 0.71
D y = 0.2028x + 64.0793 0.69

C + D y = 0.2393x + 53.1303 0.65
A + B + C + D y = 0.6664x + 56.446 0.33

Concerning the Wpw validation, the estimated Wpw values obtained using the calibration realized
in each site with the manually segmented mask were compared with ground-truth Wpw measurements.
Figure 6 shows the linear regression results within every single site and with the aggregated dataset
(C + D and all dataset), which are similar to the trend found in Table 5.

 
Figure 6. Wpw estimation validation by means of a comparison between measured and estimated
Wpw retrieved by the unsupervised segmentation within site A (a), B (b), C (c), D (d), C + D (e) and
A + B + C + D dataset (f).
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Table 6 reports the statistic results of the methodology suggested as Wpw estimation approach.
Site A presents a higher accuracy in Wpw estimation (R2 = 0.83) but RMSE = 221.26 kg is very high,
while site B presents lower correlations (R2 = 0.53 and RMSE = 46.99). Sites C and D show good
correlations with R2 = 0.54 and R2 = 0.67 respectively, and similar values in terms of RMSE 47.38 kg
and 43.08 kg, respectively. Combining the C and D datasets, the results obtained show similar behavior
to the separate dataset analysis (with R2 = 0.61 and RMSE = 45.28 kg). The correlations identified using
the overall dataset present a lower correlation coefficient (R2 = 0.49) than the other sites, but similar to
sites B and C. As reported in Table 6, the unsupervised methodology provides rRMSE values between
44.10% (site A) and 71.60% (site B), and presents very low PBias values with a minimal tendency of
understimation in sites B, C, D (mean value −3.0%). Site A presents an overestimation tendency with a
bias value of 12.60%.

Table 6. Statistic results (R2, adjR2, RMSE, rRMSE (%) and PBias (%) calculated for each site (A, B, C,
D) and aggregated dataset (C + D and A + B + C + D).

Site R2 adjR2 RMSE rRMSE (%) PBias (%)

A 0.83 0.82 221.26 44.10 12.60
B 0.53 0.50 46.99 71.10 −2.50
C 0.54 0.52 47.38 66.20 −2.30
D 0.67 0.65 43.08 58.10 −4.40

C + D 0.61 0.60 45.28 62.70 −3.40
A + B + C + D 0.49 0.48 217.54 71.60 −1.20

4. Discussion

This work aimed to evaluate the accuracy performance of supervised and unsupervised
methodologies to estimate pruned biomass. To carry out this objective, an experimental design
was planned by taking into account four sites with different conditions of vegetative growth in terms of
DBH dimension, trees density and height. Site A presented the highest vegetative growth conditions,
site B an intermediate level, C and D, the lowest dimensions. Those different vegetative conditions
directly affected the geometric estimation provided by the UAV data analysis, so it was necessary to
divide the dataset into three different groups of trees according to age and therefore, size.

Pruning intensity varied among sites as the tender’s choice normally depends on the trees’ growth,
health conditions and age. The heavier intervention carried out with restoration purposes, as in site A,
corresponded to a higher wood production, in line with analogous cases. In orchards where pruning
is conducted on a long timespan (8–10 years) the amount of wood residues available for industrial
purposes can be relevant (from 51.7% to 311.9% in the present study) and an early survey can provide
useful information for planning the supply.

The results show that UAV monitoring has a good performance in detecting the biomass reduction
after pruning, despite the differences between the trees’ geometric characteristics mentioned in
Section 3.1. The tree height decrease was weakly detected, mainly due to some branches not being
pruned in 2017, which therefore attenuated the height reduction with their vigorous growth in 2018.
Considering crown mean height and crown area, the biomass decrease is evident because they are
more representative features of the whole canopy. By analyzing the data shown in Table 3, it can be
stated that the crown projected volume is the best tree geometric characteristic with which biomass
variation can be monitored. In site C, the highest volume decrease is not associated with the greatest
height decrease and this can be explained by the typical chestnut pruning method. This technique is
not characterized by a uniform topping and hedging but by the cutting of whole branches, so there is
no marked height reduction. This led to the formation of crown holes whose presence can be clearly
detected only by analyzing tree volume.

In the present work, the chestnut orchard condition strongly affected the segmentation accuracy.
The high variability due to irregular spacing between trees, ages and dimensions, irregular crown
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shape, absence of isolated tree cases, high overlap crown conditions and minimal presence of free
space around each tree crown caused a lower accuracy performance in tree segmentation with respect
to elevated tree detection results described in other valuable works such as those suggested by
Marques et al. [76] and Jorge Torres-Sánchez et al. [90]. The large number of oversized tree crowns in
the site A led to an increase in the percentage of split and merged cases, while in sites C and D, the
lowest values of DBH and trees’ height affect the segmentation accuracy providing 26.7% of split and
20% of merged cases respectively. Concerning the feasibility of large areas canopy cover scouting,
the method proposed provided similar results as those reported by Marques et al. [76] related to an
undetected tree percentage value (1.7%).

The evaluation of the accuracy of the unsupervised method applied in this study was realized by
the comparison of a geometric dataset for each site in each year with the data extracted with the reference
mask manually drawn. The proposed method provides a correct estimation of the mean height per tree
in terms of tree height with minimal difference in absolute values (RMSE = 0.25 m), confirming the
good performance as a height estimation tool for that type of survey on large areas. The mean crown
area per tree within each site presents poor correlations and a high RMSE value, as a consequence
of the wide value range derived from the split and merge cases of the unsupervised segmentation
polygons. The crown projected volume shows a better performance in terms of correlations than the
crown area due to the positive influence of the well estimated height but still with a high RMSE value.
The analysis of the total canopy cover and the total crown projected volume per site provides optimal
results, confirming the method as a powerful tool for fast detection in large areas. A focus elaboration
on the projected crown volume reduction between the two years as a consequence of the pruning
management practice was performed by increasing the dataset of the matched crowns with the sum
of the sub-polygons in which some crowns were divided, reported as “split cases”. The improved
dataset shows the highest correlation coefficients (mean R2 = 0.86) and a low difference in values (mean
RMSE = 99.75 m3) with respect to manually segmented crowns.

The validation of the method was carried out after a calibration step, a model was created using a
regression analysis between Wpw and volume variation extracted with the reference mask manually
drawn on the crown profile. Subsequently, the model identified was applied to the segmentation
results obtained with the proposed method. The estimated Wpw per crown was finally correlated
with the measured Wpw in order to define the accuracy in terms of correlation coefficient and RMSE.
In the case of a full dataset analysis, the approach obtained good correlation (R2 = 0.33 for calibration
and R2 = 0.49 for validation) but the clustered nature of the dataset with different tree conditions
implied a lower performance, confirming the application of a site-by-site approach as the most correct
choice. The method proposed showed the high coefficient of correlation (R2 = 0.83) for site A, but
with a very high RMSE since this site was extremely modified in terms of Wpw removed more
than the others. Despite showing a lower accuracy in Wpw estimation (R2 = 0.53), site B presented
an acceptable RMSE = 46.99 kg. The factors that strongly reduced the segmentation success were
the higher tree density within the site and an elevated overlap level between adjacent crowns, as
reported in Table 3. In fact, this site is characterized by high tree and DBH values (close to the
biggest in site A), but the lowest mean crown area with respect to all other sites. The application of
the proposed methods in sites C and D characterized by similar tree conditions provided high and
concordant performances, suggesting that they should be considered as a single dataset (R2 = 0.61).
This result strongly encourages the hypothesis of the feasibility of this method as a site-specific tool for
large-scale monitoring. The PBias indicates an overall tendency of minimal understimation, while
in site A, characterized by very different conditions in term of Wpw harvested and tree ages, the
unsupervised segmentation approach shows a low overstimation of the Wpw with respect to ground
truth meausurements.

In the literature, there are no studies regarding chestnut Wpw estimation using UAV. Nevertheless,
there have already been recent studies that specifically derived individual biomass and VSfM at tree
level with ITC segmentation. Among these, important references in the Mediterranean environment
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were represented mainly by Guerra-Hernandez et al. [57] and Guerra-Hernandez et al. [56], who used
a fixed-wing UAV equipped with an RGB camera to evaluate (i) WaSfM in Pinus pinea regular forest
plantation (10 x 16 m regular spaced, open canopy, fairly flat terrain, no understory) and (ii) VSfM

in Eucalyptus regular forest plantation (3.7 × 2.5 m regularly spaced, steep terrain). Comparing our
results with the aforementioned studies, it worth noting that the RMSE could only be compared with
Guerra-Hernandez et al. [57], who used the same unit (kg) and reported a value of 87.46 and 117.80
kg for 2015 and 2017, respectively. These values are lower than the overall aggregated dataset RMSE
(217.54 kg, Table 6) and the difference could be partially explained by the regular characteristics of
the stand investigated by the reference study (spacing, tree age, field management). Thereafter, it is
of pivotal importance to compare different remote sensed tree biomasses through statistic indexes
that facilitate comparison between datasets or models with different scales, as rRMSE and adjR2.
Guerra-Hernandez et al. [57] in P. pinea plantation gained good results in the estimation of WaSfM

in comparison to measured Wa (0.85 < adjR2 < 0.87 and 11.44% < rRMSE < 12.59% in two different
years and model approaches) while Guerra-Hernandez et al. [56], in a Eucalyptus plantation, got
slightly worse performances (R2 = 0.43 and rRMSE = 20.31%). However, the current work presents
lower correlation values (except in one case) and lower rRMSE (Table 6) with respect to the literature
references, mainly due to orchard characteristics (uneven-aged and irregularly spaced) and fine pruning
evaluation purposes with respect to growth monitoring. As for Guerra-Hernandez et al. [57], who
focused on canopy management study in fruit production crop, our method falls within precision
agriculture applications while most of the literature focused on precision forestry.

A strong point of this method was that the dataset was acquired with a low-resolution multispectral
camera, which provides both geometric information from the CHM reconstruction and spectral data
to calculate the NDVI layer used as a filtering approach to improve the quality of the dataset. As a
consequence, the weight of the products to be processed were much lower, allowing faster data
processing and requiring less computing power.

5. Conclusion

In the context of the Circular Economy envisaged as a “regenerative system in which resource input
and waste, emission, and energy leakage are minimized by slowing, closing and narrowing material
and energy loops” [92], it is important to estimate the amounts of wastes available as by-products for
industrial purposes. In this specific case, chestnut pruning and their periodical availability can be
forecasted and included in supply chain planning to benefit both producers and industrial users.

The unsupervised segmentation method proposed in this work made it possible to realize an
accurate estimation of chestnut geometric characteristics from high-resolution CHM layers in four
study sites. The results obtained are strongly in line with those extracted with a reference manually
segmented mask. Applying a calibration performed on supervised UAV data extraction, the method
reports a high accuracy in terms of R2 and RMSE values, suggesting this approach as a fast and
cost-effective tool for fast monitoring of large areas. The dataset was acquired before and after a
pruning management practice in four study sites identifying three different DBH classes (around
~0.50 m, ~0.60 m, ~0.80 m). The results obtained allow for us to conclude that the method provides
generally good performance, but to achieve the best Wpw estimation, is necessary to choose the correct
calibration curve in the function of the DBH. This input information could be easily provided by the
orchard owner, making the proposed method a useful tool for fast Wpw estimation purposes.

A future perspective could be to evaluate the potential of a combined approach analyzing also
the spectral data actually used only to improve data extraction accuracy, with the aim of finding the
described Wpw estimation performance by the contribution of information on vegetation indices.
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Abstract: Unmanned aerial vehicle (UAV)-based remote sensing has limitations in acquiring images
before a forest fire, although burn severity can be analyzed by comparing images before and after a
fire. Determining the burned surface area is a challenging class in the analysis of burn area severity
because it looks unburned in images from aircraft or satellites. This study analyzes the availability of
multispectral UAV images that can be used to classify burn severity, including the burned surface
class. RedEdge multispectral UAV image was acquired after a forest fire, which was then processed
into a mosaic reflectance image. Hundreds of samples were collected for each burn severity class, and
they were used as training and validation samples for classification. Maximum likelihood (MLH),
spectral angle mapper (SAM), and thresholding of a normalized difference vegetation index (NDVI)
were used as classifiers. In the results, all classifiers showed high overall accuracy. The classifiers also
showed high accuracy for classification of the burned surface, even though there was some confusion
among spectrally similar classes, unburned pine, and unburned deciduous. Therefore, multispectral
UAV images can be used to analyze burn severity after a forest fire. Additionally, NDVI thresholding
can also be an easy and accurate method, although thresholds should be generalized in the future.

Keywords: UAV; multispectral image; forest fire; burn severity; classification

1. Introduction

A fire is a primary disaster in forests, disturbing biodiversity and forest wealth. Forest fires
sometimes destroy human settlements and cause loss of life and property. The forest fires in South
Korea occur mainly in the dry season (from winter to spring), and are mostly caused by humans.
As a forest fire burns off vegetation, soil, organic matter, and moisture, there is a danger of landslides
or other secondary disasters during the summer rainy season. In the Republic of Korea, there were
6,588 forest fires from 2004 to 2018. The total area affected was 11,065 hectares, and the damage
amounted to US$ 252 million [1].

A strategy is needed to recover from the damage and to respond to secondary disasters by
rapidly investigating the burn severity. Burn severity is mainly investigated by field survey or visual
interpretation of satellite imagery. Field surveys need a lot of labor, incur high costs, and take time.
Satellite imagery has limited uses based on weather conditions and image resolution. Therefore, a rapid
and efficient method is needed to investigate burn severity. The unmanned aerial vehicle (UAV) is
widely used in various fields. UAVs and sensors provide high-resolution data when users want them,
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and they are less affected by atmospheric conditions [2–5]. In most cases, UAVs can acquire images
right after a forest fire even though the location and time of a forest fire cannot be anticipated [6,7].

Previous studies used spaceborne or airborne multispectral imagery to analyze burn severity.
The traditional methods are comparisons of spectral indices pre- and post-fire [8,9]. The normalized
difference vegetation index (NDVI) and the normalized burn ratio (NBR) are well-known as spectral
indices sensitive to forest fire damage [10–13]. Recent studies widely used NBR and the burned area
index (BAI) because shortwave infrared (SWIR) bands are more sensitive to forest fire damage [14–16].
UAV or high-resolution satellite images have to use visible-near infrared (VNIR) bands because they
do not have SWIR bands.

Burn severity incorporates both short- and long-term post-fire effects on the local and regional
environment. Burn severity is defined as the degree to which an ecosystem has changed as a result
of the fire. Vegetation rehabilitation may specifically vary based on burn severity after a fire [17–22].
Previous studies classified burn severity into four or five classes, such as extreme, high, moderate, low,
and unburned, using remote sensing data based on the composite burn index (CBI) suggested by the
United States Forest Service [23–25]. Those classes might not be clear enough to define burn severity
with remote sensing data. One study suggested a Korean CBI (KCBI) by adjusting the CBI classes to
burned crown, boiled crown, moderate (a mix of burned crown and burned surface), low (burned
surface only), and unburned [26]. But low and unburned are challenging classes. They look similar from
nadir views of the crown because the class low means a burned surface under an unburned crown. Also,
the Korean forest has a very high canopy density. These characteristics add limitations to classifying
severity as low or unburned. Therefore, a method is needed to classify low and unburned severity
using remotely sensed imagery that might contribute to estimating damaged areas and establishing a
recovery plan.

This study tries to analyze multispectral UAV images that can be used to classify burn severity,
including surfaces in the study area that are classed as low under the KCBI. Sample pixels were
collected from UAV multispectral images based on visual interpretation and field surveys. Spectral
characteristics of the samples were analyzed, after which burn severity was classified using a spectral
index and supervised classifiers. The suitability of multispectral UAV imaging for burn severity
analysis is shown by the classification accuracy.

2. Study Area and Data

2.1. Study Area

The study area is in a forest near the city of Gangneung, Republic of Korea, which is located on
the coast of the East Sea, as seen in Figure 1a. The area is very dry from winter to spring owing to a
föhn wind and low precipitation. The Korean red pine (Pinus densiflora) is the primary species in the
area, which has a volatile pine resin. These environmental and climatic factors are the cause of frequent
and huge forest fires. The study area was some of the damaged area from a forest fire that occurred
from 4 to 5 April 2019. Seven hundred hectares burned, and US$ 61 million was lost from this forest
fire. Figure 1b shows a KOMPSAT-3A high-resolution satellite image taken on 5 April 2019 when the
forest fire was in progress, which has a spatial resolution of 2.2 m and four bands (blue, green, red, and
near-infrared). The red box is the study area, which is 2 km × 0.5 km in size, located at the border of
the whole damaged area, where there were various KCBI types of burn severity.
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Figure 1. Location of (a) the city of Gangneung, and (b) the study area (red box) in the burning forest
shown in a KOMPSAT-3A satellite image taken on 5 April 2019.

Figure 2 shows some of the damaged locations in the study area. The burned crown looks black
along one ridge, and the boiled crown shows brown-colored needles in Figure 2a. In the burned surface
area, green needles are distributed in the crown, although the ground surface and the bark of the lower
trunks that burned are black (Figure 2b). A burned surface stresses the trees owing to a lack of organic
matter and moisture in the soil.
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Figure 2. The study area is forest damaged by fire from 4 to 5 April 2019, near the city of Gangneung:
(a) burned forest where there are various burned (damaged) types mixed in the area; and (b) a typical
burned surface area where some tree trunks were burned, even though the crown was not burned.

2.2. Data

2.2.1. Multispectral UAV Image

Multispectral images were acquired using a RedEdge camera (Micasense, Seattle, WA, USA) on
9 May 2019, which was more than one month after the forest fire. The camera was installed on a
self-developed hexa-copter UAV that was 100 cm in diameter and 10 kg in weight. The acquired images
were 214 scenes with 70% overlap and 50% sidelap. An image consisted of five bands (blue, green,
red, red edge, and near infrared) that are appropriate to observe vegetation. The spatial resolution
was 31 cm with a flight altitude of 500 m. The images were preprocessed to a mosaicked reflectance
image using Pix4D software (Pix4 S.A., Prilly, Switzerland). Figure 3 shows an image with (a) natural
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color composite and (b) pseudo-infrared composite. The image shows some distinguishable colors
in Figure 3a, which are dark brown, light brown, dark green, and light green for the burned crown,
boiled crown, unburned pine trees, and deciduous trees, respectively. However, the burned surface
and unburned (pine) trees cannot be classified from visual interpretation. Figure 3b shows more clearly
distinguished colors using the NIR band. Figure 4 shows an NDVI transformed image.

Figure 3. RedEdge multispectral unmanned aerial vehicle (UAV) image of some of the burned area
(red box in Figure 1) near the city of Gangneung: (a) natural color composite: RGB = band 3, 2, 1; and
(b) pseudo-infrared composite: RGB = band 5, 3, 2.
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Figure 4. A normalized difference vegetation index (NDVI) transformed image that was stretched from
0.10 to 0.95.

2.2.2. Reference Map

A reference map was produced with screen digitizing based on a field survey, and it was used to
extract samples to validate the classification results of burn severity. In screen digitizing, some classes
were distinguished well by eye, such as burned crown, boiled crown, and unburned deciduous trees.
The boundary between a burned surface and unburned pine was drawn on the image through a field
survey. Figure 5 shows the reference map with color-coded classes. Red, orange, yellow, dark green,
and light green mean burned crown, boiled crown, burned surface, unburned pine, and unburned
deciduous, respectively. The classes are further defined in the following section.

Figure 5. A reference map from visual interpretation based on a field survey.
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3. Methods

3.1. Sample Collection and Spectral Analysis

3.1.1. Class Definition of Burn Severity

Previous studies defined classes of burn severity as extreme, high, moderate, low, and unburned.
These classes might be subjective (or qualitative), and might not be considered spectral characteristics.
In this study, burn severity classes are defined with consideration for both KCBI and spectral
characteristics. The defined classes are burned crown, boiled crown, burned surface, unburned pine,
and unburned deciduous in this study. Some classes can be compatible between KCBI and previously
defined classes, such as burned crown (extreme), boiled crown (high), and burned surface (low).
However, others are not compatible with each other. Moderate means a spatial mixture of burned
crown and burned surface. Unburned should be classified as pine (coniferous) or deciduous, from the
perspective of spectral characteristics.

3.1.2. Sample Collection

Samples were collected from a multispectral UAV image. The samples consisted of five defined
classes as outlined in Section 3.1.1. Twenty plots were selected for each class based on a field survey
and visual interpretation. The plots were evenly distributed in the image, and one plot is a nine-pixel
square. Therefore, 450 sample pixels were collected for each class; 180 pixels (40%) were assigned as a
training set, and the other 270 pixels (60%) were used as a validation set for the classifications. Figure 6
shows examples of the collected sample pixels.

Figure 6. Examples of sample collections for (a) an unburned area and (b) a burned crown and burned
surface area.

3.1.3. Spectral Characteristics Analysis

It is necessary to know the possible burn severity classifications as prior information.
The possibilities were analyzed with statistics on reflectance and from spectral indices of the training
samples. The mean and standard deviation of reflectance were calculated for each class. NDVI, red
edge NDVI (RE-NDVI), and the visible-band difference vegetation index (VDVI) were calculated using
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the mean reflectance of each class. Equations (1) to (3) show the definitions of each vegetation index,
where ρ is the mean reflectance of each band:

NDVI =
ρNIR − ρRed

ρNIR + ρRed
, (1)

RE−NDVI =
ρNIR − ρRed edge

ρNIR + ρRed edge
, (2)

VDVI =
2× ρGreen − ρRed − ρBlue

2× ρGreen + ρRed + ρBlue
. (3)

Table 1 shows the mean values of the burn severity classes for three spectral indices where mean
values were estimated from collected training samples. NDVI shows bigger gaps among the classes
than other indices. NDVI might be useful in the classification of burn severity because we can easily
define thresholds among classes.

Table 1. Mean of burn severity classes for each vegetation index. NDVI, normalized difference
vegetation index; RE-NDVI, red edge NDVI; VDVI, visible-band difference vegetation index.

Index Burned Crown
Boiled
Crown

Burned
Surface

Unburned
Pine

Unburned
Deciduous

NDVI 0.33 0.31 0.78 0.84 0.91
RE-NDVI 0.33 0.27 0.45 0.49 0.51

VDVI 0.08 0.00 0.33 0.36 0.52

3.2. Classification of Burn Severity

3.2.1. Supervised Classification

Maximum likelihood (MLH) and spectral angle mapper (SAM) were used as supervised
classification methods. The MLH classifier assigns a pixel to a class with the highest probability under
the assumption that reflectance values of each class have a normal (Gaussian) distribution in each
band. The probability for a pixel is calculated by the multivariate normal density function from the
mean, variance, and covariance of training samples [27]. The SAM classifier calculates similarity using
the spectral angle between a pixel and the mean of each class. Spectral reflectance is assumed to be a
vector in n-dimensional space, where n is the number of bands. A pixel is assigned to a class with the
smallest spectral angle [28]. Equations (4) and (5) show the definitions of MLH and SAM, respectively:

P(X|wi) =
1
n

(2π)2
∣∣∣∣Vi

∣∣∣∣ 12
exp[−1

2
(X−Mi)

TVi
−1(X−Mi), (4)

where, n, X, Vi, and Mi denote the number of multispectral bands, the unknown measurement vector,
the covariance matrix of each training class, and the mean vector of each training class, respectively, and

α = cos−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑n

i=1 tiri(∑n
i=1 ti2

) 1
2
(∑n

i=1 ri2
) 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (5)

where, n, ti, and ri denote the number of multispectral bands, the unknown measurement vector, and
the reference spectrum vector, respectively; and α denotes an angle between r and t vectors.
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3.2.2. Spectral Index Classification

Thresholding of a spectral index is used a classification method for burn severity. In this study,
NDVI was used only as a spectral index for classification because NDVI shows higher differences
among classes, compared with other indices. Figure 7 shows the range of NDVI values for each class,
with the mean ± standard deviation. Burned crown and boiled crown are perfectly separated with
burned surface, unburned pine, and unburned deciduous. However, some class pairs overlap each
other, such as burned crown (boiled crown) and burned surface (unburned pine). Thresholds were
defined as the median of the overlapping range between neighboring classes (Table 2).

Figure 7. Distribution of NDVI values with mean ± one standard deviation for each burn severity class.

Table 2. Thresholds between burn severity classes using the median of the overlapped range.

Class Pair
Burned

Crown—Boiled
Crown

Boiled
Crown—Burned

Surface

Burned Surface
—Unburned Pine

Unburned
Pine—Unburned

Deciduous

Threshold 0.308 0.565 0.833 0.870

4. Results

4.1. Spectral Charateristics

Spectral reflectance curves were plotted for training samples; those are the mean reflectance of
each band (Figure 8). Burned crown shows lower reflectance than other classes because of soot and ash.
In boiled crown, yellow needles show high reflectance in green (560 nm) and red (668 nm) bands, and
needles are distributed in the crown, which creates higher reflectance in the near-infrared band (840 nm)
than burned crown, where we can see that the spectral reflectance of boiled crown is higher in the blue
(475 nm) and red bands than with unburned pine, unburned deciduous, and burned surface classes.
This can be attributed to the loss of chlorophyll, a pigment that absorbs blue and red as the leaves
turn yellow owing to damage from the heat. Unburned deciduous shows low reflectance in the blue
and red bands, and high reflectance in the green, red edge, and NIR bands; these are typical spectral
characteristics of broadleaf vegetation. This study focuses on unburned pine and burned surface
classifications. Burned surface and unburned pine show similar spectral reflectance curves and an
overlapped range for the mean ± standard deviation (Figure 9), because they both have green needles
at the top of the crown. However, a burned surface shows slightly higher reflectance at the red edge,
and lower reflectance at the NIR bands. This is called the red-edge shift phenomenon, where the center
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wavelength of the red edge between the red and NIR bands slightly shifts to a shorter wavelength [29].
The reason for the red-edge shift is known to be decreased vitality owing to stress. Therefore, a burned
surface and unburned pine might be classified using slightly different spectral characteristics.

Figure 8. Mean spectral reflectance curve for five classes in the training samples.

Figure 9. Range of mean ± one standard deviation for burned surface, unburned pine, and
unburned deciduous.

4.2. Interpretation of Classification Results

Burn severity was classified using two supervised classification methods plus the NDVI
thresholding method. Figure 10a–c show classification results from using MLH, SAM, and NDVI
thresholding, respectively. SAM shows good classification results for overall classes, except for burned

34



Forests 2019, 10, 1025

surface, which was mostly misclassified as unburned pine. MLH showed better results with a burned
surface, although it was overestimated by misclassification between unburned pine and burned
surface. Additionally, it showed confusion between unburned pine and unburned deciduous. NDVI
thresholding showed moderate results among the three classification methods. The burned surface
class was underestimated, and burned crown was confused with boiled crown.

Figure 10. Results from classification of burn severity using (a) maximum likelihood (MLH), (b) spectral
angle mapper (SAM), and (c) NDVI thresholding.
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Confusion matrices (Tables 3–5) show the classification accuracy for each classifier. High accuracy
was shown in the following order: MLH, SAM, and NDVI thresholding. Overall accuracies are 89%,
81%, and 71% for MLH, SAM, and NDVI thresholding, respectively. Kappa coefficients were also
similar to overall accuracy at 0.86, 0.76, and 0.64, respectively. As seen in Table 3, MLH showed
very high accuracy of more than 85% for four classes, except unburned pine. We can see that 33%
of the unburned pine was misclassified as burned surface, demonstrating that burned surface was
overestimated, as seen in the visual analysis of classification results in Figure 10a. In Table 4, we see
that SAM had more than 85% classification accuracy in three classes except for unburned pine and
unburned deciduous. Those were misclassified as burned surface, or confused with each other, because
the SAM algorithm uses a pattern of spectral reflectance rather than an absolute value of reflectance.
In Table 5, NDVI thresholding showed lower overall accuracy than the supervised classifiers, MLH
and SAM. Low overall accuracy was caused by confusion between burned crown and boiled crown
from similar NDVI values for burned out or discolored needles. However, the classification accuracy
of burned surface, unburned pine, and unburned deciduous showed similar or higher levels than the
two supervised classifiers.

Table 3. Confusion matrix for classification accuracy assessment using MLH (%).

Reference
Classifications

Burned
Crown

Boiled
Crown

Burned
Surface

Unburned
Pine

Unburned
Deciduous

Total

Burned crown 96 13 0 0 0 22
Boiled crown 4 87 3 0 0 19

Burned surface 0 0 92 33 0 25
Unburned pine 0 0 5 67 0 14

Unburned deciduous 0 0 0 0 100 20
Total 100 100 100 100 100 100

Overall accuracy = 89%, Kappa coefficient = 0.86

Table 4. Confusion matrix for classification accuracy assessment using spectral angle mapper (SAM) (%).

Reference
Classifications

Burned
Crown

Boiled
Crown

Burned
Surface

Unburned
Pine

Unburned
Deciduous

Total

Burned crown 95 6 0 0 0 20
Boiled crown 2 91 2 0 0 19

Burned surface 3 3 85 24 20 27
Unburned pine 0 0 13 74 22 22

Unburned deciduous 0 0 0 2 58 12
Total 100 100 100 100 100 100

Overall accuracy = 81%, Kappa coefficient = 0.76

Table 5. Confusion matrix for classification accuracy assessment using NDVI thresholding (%).

Reference
Classifications

Burned
Crown

Boiled
Crown

Burned
Surface

Unburned
Pine

Unburned
Deciduous

Total

Burned crown 72 70 6 0 0 29
Boiled crown 25 27 0 0 0 11

Burned surface 3 3 89 24 0 24
Unburned pine 0 0 5 74 6 17

Unburned deciduous 0 0 0 2 94 19
Total 100 100 100 100 0 100

Overall accuracy = 71%, Kappa coefficient = 0.64
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5. Discussion

In this study, two supervised classifiers and NDVI thresholding were compared for the classification
of forest burn severity, including burned surface. As a result, the classification of burned surface
showed accuracy of more than 85%. This means that the UAV multispectral image can be used to
accurately classify a burned surface, even though the two classes are very similar when viewed from
the air.

Comparing the classification methods, the supervised classifiers (MLH and SAM) showed more
than 80% overall accuracy, while the NDVI thresholding accuracy was 71%. However, 20% to 30% of
unburned pine and deciduous trees were misclassified as a burned surface, and the amount of burned
surface was overestimated. This means that a high degree of expertise and a lot of time are required
to collect dozens to hundreds of training samples for a supervised classifier such as MLH, while the
classification accuracy between burned surface and unburned pine is not high. SAM can classify with
one training sample, such as a collected pixel or a spectrum from a spectral library. It showed a high
number of misclassifications between classes with similar spectral patterns, although hundreds of
training samples were used.

NDVI thresholding showed similar or higher accuracy with the burned surface class, compared
with the supervised classifiers, even though it showed confusion between burned crown and boiled
crown. Previous studies reported that burned crown and boiled crown can be classified easily with
various methods, including visual interpretation. Detection or classification of a burned surface
should be the focus for accurate assessment of damaged areas and burn severity. Therefore, the NDVI
thresholding method is expected to be able to estimate forest fire damage more easily and accurately.
Further studies are needed to generalize the threshold for application in the field. In other words,
independent thresholds should be defined for different regions and times when classifying burn
severity of a forest.

UAV multispectral images have very high spatial resolution and multispectral bands that can be
used as training samples for classification using high-resolution satellite images and deep learning
algorithms in the future. Deep learning can enhance accuracy and convenience, although it needs a
long-term approach to collecting a large number of training samples. High-resolution earth observation
satellites can also be a useful tool for analyzing burn severity and damaged areas. The Korean
government is developing a new earth observation satellite program, the Compact Advanced Satellite
500 (CAS 500), to shorten the observation interval. The first and second twin satellites will be launched
in 2020, and have a 0.5 m panchromatic band and 2 m multispectral bands. We are expecting acquisition
of high-resolution multispectral images within two to three days. In the future, it will be necessary to
suggest the possibility of classifying burn severity using high-resolution satellite images, in comparison
with UAV images.

6. Conclusions

This study tried to analyze the use of multispectral UAV images to classify burn severity, including
burned surfaces. A RedEdge multispectral image was acquired for a region of the Gangneung forest
fire in April 2019. Spectral characteristics showed differences among burn severity classes, although
some of them were similar. Burn severity was classified using two supervised classifiers, MLH and
SAM, as well as the NDVI thresholding method. Classification accuracies were about 80% to 90%
using the supervised classifiers and about 70% using NDVI thresholding. They showed an accuracy
of more than 85% for the burned surface class, where a multispectral UAV image can differentiate a
burned surface from unburned pine or deciduous trees. The NDVI thresholding method also showed
high classification accuracy for burned surface, unburned pine, and deciduous. It can be useful as an
easier and more accurate tool for the estimation of burn severity and damaged areas than a supervised
classifier. Supervised classification approaches might be applied to other regions through collection
of corresponding training samples. However, NDVI of burn severity classes might have different
values by regional characteristics. Further studies are needed to generalize NDVI or the thresholds for
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application in other regions. In the future, multispectral UAV images can also be used for training
deep learning techniques and high-resolution satellite images.
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Abstract: Seedling stands are mainly inventoried through field measurements, which are typically
laborious, expensive and time-consuming due to high tree density and small tree size. In addition,
operationally used sparse density airborne laser scanning (ALS) and aerial imagery data are not
sufficiently accurate for inventorying seedling stands. The use of unmanned aerial vehicles (UAVs)
for forestry applications is currently in high attention and in the midst of quick development and
this technology could be used to make seedling stand management more efficient. This study was
designed to investigate the use of UAV-based photogrammetric point clouds and hyperspectral
imagery for characterizing seedling stands in leaf-off and leaf-on conditions. The focus was in
retrieving tree density and the height in young seedling stands in the southern boreal forests of
Finland. After creating the canopy height model from photogrammetric point clouds using national
digital terrain model based on ALS, the watershed segmentation method was applied to delineate the
tree canopy boundary at individual tree level. The segments were then used to extract tree heights
and spectral information. Optimal bands for calculating vegetation indices were analysed and used
for species classification using the random forest method. Tree density and the mean tree height
of the total and spruce trees were then estimated at the plot level. The overall tree density was
underestimated by 17.5% and 20.2% in leaf-off and leaf-on conditions with the relative root mean
square error (relative RMSE) of 33.5% and 26.8%, respectively. Mean tree height was underestimated
by 20.8% and 7.4% (relative RMSE of 23.0% and 11.5%, and RMSE of 0.57 m and 0.29 m) in leaf-off and
leaf-on conditions, respectively. The leaf-on data outperformed the leaf-off data in the estimations.
The results showed that UAV imagery hold potential for reliably characterizing seedling stands and
to be used to supplement or replace the laborious field inventory methods.

Keywords: seedling stand inventorying; photogrammetric point clouds; hyperspectral imagery;
unmanned aerial vehicles; leaf-off; leaf-on
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1. Introduction

Sustainable forest management requires accurate and up-to-date information. The information is
acquired by field measurements or remote sensing-based inventorying. The field measurements are
time-consuming, expensive and laborious, in contrast to remote sensing-based inventorying techniques.
Currently, unmanned aerial vehicles (UAVs, aka: drones) are in high interest for forest inventorying
because of the UAVs’ capability to collect data from which suite of essential forest inventory attributes
can be derived with accuracy close to field inventories [1–8]. UAVs provide an easy, inexpensive, and
repeatable data collection method [9] with very high spatial resolution data that can even support the
detection of small trees which has not been possible using airborne laser scanning (ALS) data [10].

In Finland, seedling stands are defined as the forest stands with mean height of < 7 m (conifer) or
9 m (deciduous) [11]. Conditions of the seedling stands can greatly predict and define the condition of
future mature stands [12]. For example, Huuskonen and Hynynen [12] revealed that precommercial
thinning, which was carried out when the dominate height was 3 m and the target tree density was
2000 trees per hectare (TPH), resulted in an increase of 15% in the mean diameter of the first commercial
thinning. Thus, monitoring and management of the seedling stands development are required to
ensure quality timber as well as the future timber supply.

ALS data, used in operational private forest inventories (61%) in Finland, is not capable to
characterise seedling stands due to small tree size and high tree density. Thus, the seedling stands
are inventoried by field measurements, which are the most expensive part of the total cost of the
inventory. Therefore, analysing other cost-efficient means to estimate tree density, height, and species
composition is required. A few studies explored the use of UAV-based photogrammetric point clouds
in the seedling stands. For example, Puliti et al. [13] estimated biophysical properties of seedling
stands using UAV-photogrammetric point cloud data, and compared it with ALS data. Similarly, UAV
demonstrated promising results to detect coniferous seedlings in leaf-off conditions where seedlings
were visually and spectrally distinctive [14]. Moreover, Goodbody et al. [15] combined UAV- and
aerial-photogrammetric point clouds to assess spatial, spectral and structural details for the seedling
stands. The UAV-based photogrammetric data were also utilized to investigate the feasibly and merits
of UAV for evaluating regeneration performance in naturally-growing and planted conifer seedlings
in different growth phases [16]; as well as assessing the effects of the European spruce bark beetle
(Ips typographus L.) disturbance on natural regeneration and standing deadwood [17].

In addition to the few UAV studies, other remote sensing materials were also used for investigating
the seedling stands, for example airborne imagery [18–21] and SPOT-5 satellite imagery [22]. Moreover,
ALS data were applied for analysing small trees in the forest-tundra ecotone [23,24], regeneration
or young forests [25,26] and predicting aboveground biomass (AGB) change in young forests [27].
Additionally, Korpela et al. [28] combined ALS and airborne imagery for characterizing seedling
stand vegetation; and for detecting the requirement for tending seedling stands [29]. Also, Korhonen
et al. [29] used ALS and aerial imagery to detect the tending requirement of seedling stands, by creating
model function based on ALS-derived echo intensity and height percentiles together with aerial images
texture. However, they appointed out that their approach could not completely replace the field visits
with regards to the need for tending seedling stands.

The use of hyperspectral data and comparing data from leaf-off and leaf-on conditions remained
unexplored in the previous seedling-focused studies. Thus, this study was designed to extend current
knowledge of using UAV-red, green, blue (RGB)-imagery, UAV-hyperspectral data as well as analysing
the performance of leaf-off and leaf-on data with predefined plot-level tree densities (TPH). This
research concentrates on retrieving the total and spruce-specific tree density and height in seedling
stands in the southern boreal forests of Finland. We focused on the spruces because it is the species
of interest to be grown and spruce seedling stands commonly require more care (e.g., tending and
removal of naturally regenerated broadleaf trees) compared to seedling stands of Scots pine. In Finland,
seedling stands are divided into young (height ≤ 1.3 m, YoS) and advanced seedling stands (height
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> 1.3 m, AdS). Therefore, this study also aims to assess the differences between predictions for YoS
and AdS.

2. Materials and Methods

2.1. Study Area and Establishment of the Sample Plots

This study was carried out in a southern boreal forest zone in Evo, Finland (61.20◦ N, 25.08◦ E,
133–150 m above sea level) (Figure 1). There are mostly managed forests where Scots pine and Norway
spruce are the dominant tree species.

Figure 1. Map of study area and established sample plots in young seedling stand (northern image
block) and in advanced seedling stand (southern image blocks). Background: UAV-red, green, blue
(RGB)-image mosaics (middle map) and UAV-hyperspectral image mosaics (right maps) visualized
coloured-infrared (885.9 nm, 605.4 nm, 513.5 nm) in leaf-on conditions.

In our study, we selected one YoS and one AdS stand from the study area based on the existing
forest resource information. A prerequisite for both seedling stands was the number of TPH, which
had to be more than 2400. Such a density was required to establish sample plots and thin them to
varying densities. We established five sample plots with an 8-m radius to YoS and 10 sample plots with
a 10-m radius to AdS. The sample plots in YoS were thinned approximately to the following target tree
densities: 1200, 1400, 1600, 1800, and 2000 TPH. Respectively, the sample plots in AdS were thinned to
the following densities: 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, and 2400 TPH.

The sample plots were established in April through May 2016. Sample plot locations were
recorded using the Trimble GeoXT Global Navigation Satellite System (GNSS) device. The GNSS
positions were differentially corrected using the data from the local reference station. The expected
accuracy in an open area is below 1 meter. After the thinning treatments, tree attributes were measured
during June (Table 1), and the sample plot-level forest inventory attributes were compiled. In YoS all
remaining trees were spruce, but AdS sample plots had an admixture of birch that varied from 0% to
51%. The site type of our sample plots is the mesic heath forest.
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During the field data collection in June, many fern and grasses had emerged. In AdS, the tree
species was determined, and the diameter at breast height (DBH) was measured with steel callipers
from every tree with a height of ≥ 1.3 m. The tree height was measured using an electronic hypsometer
(Vertex IV, Haglöf, Långsele, Sweden) from every third tree for each tree species. In addition, the height
of the tallest tree was measured from every sample plot. YoS was measured similarly, but instead of
DBH, the diameter at ground height was measured because the mean height of the YoS sample plots
was less than 1.3 m (Table 1). The height for all of the trees within each sample plot was predicted using
the sample tree height measurements and by fitting the Näslund’s height curve [30] to the measured
data. The relative RMSE of the tree height prediction was 12.8% (relative Bias: −0.13%) and 11.8%
(relative Bias: 0.60%) for YoS and AdS, respectively. In the sample plots with mixed species classes,
mean tree height of all trees was calculated with a weighted average of the number of each tree species
and their mean height. Plot-level TPH was calculated by dividing the number of field-observed trees
in each plot with its area (radius of 8 and 10 m in YoS and AdS, respectively) and converting the area to
hectare. Species-specific tree height and TPH statistics are presented in Table 1.

2.2. Remote Sensing Data

Remote sensing data acquisition were carried out using a hexacopter drone of the Finnish
Geospatial Research Institute (FGI). A hyperspectral camera based on Fabry–Pérot interferometer
(FPI) [31] and a Samsung NX300 RGB camera were used to collect remote sensing imagery. The FPI
technology provides spectral data cubes with a rectangular image format, but each band in the data
cube has a slightly different position and orientation. The sensor provides images with dimension of
1024 in 648 pixels where every pixel is 11 μm × 11 μm. In this study, a filter with a wavelength range of
500–900 nm and settings with 36 separate bands was used; the spectral resolution range was 10–40 nm
at the full width at half maximum (FWHM) (Table 2). A Samsung RGB camera had a 16-mm fixed lens
and an image size of 5472 × 3648 pixels. The drone was equipped with a NV08C-CSM-GNSS receiver
that was used to calculate the flight trajectory. The Raspberry Pi2 on-board computer was used for
collecting timing data for all devices and for logging the GNSS receiver. More details of the imaging
sensor and UAV system are provided in [32,33].

Table 2. Spectral settings of the hyperspectral spectral camera. L0: Central wavelength, FWHM: Full
width at half maximum.

Spectral Settings of the Hyperspectral Spectral Camera

L0
(nm)

507.24 509.08 513.48 520.44 537.16 545.62 554.2 562.85 572.27 584.43 591.92 599.24
605.39 616.18 628.6 643.2 656.34 668.97 675.75 687.44 694.17 702.28 709.41 715.4
726.91 734.62 748.81 761.23 790.85 804.14 816.73 831.08 844.45 857.46 871.31 885.86

FWHM
(nm)

7.79 10.57 15.86 19.82 20.11 19.23 20.53 20.69 22.75 16.64 15.35 19.82
26.55 26.72 30.81 28.61 27.9 28.98 27.85 30.01 30.59 28.29 25.45 26.13
29.94 31.34 28 29.6 27.65 25.13 27.97 28.6 28.41 30.68 32.75 29.52

The UAV imagery was acquired during leaf-off (9 and 11 May) and leaf-on (29 June) 2016 in three
separate flights in both seasons. The weather conditions were bright and cloudless during leaf-off
campaigns and varied from sunny to cloudy during leaf-on campaigns (Table 3). The flight height
was 100 m from the ground level, which provided a ground sampling distance (GSD) of 10 cm for
the FPI and 2.5 cm for the RGB images. The flight speed was 3 m/s. The forward and side overlaps
were 83% and 80%, respectively, for the FPI camera blocks and 96% and 85%, respectively, for the
RGB camera blocks. Altogether, 20 ground control points (GCPs) were installed in the areas for
georeferencing purposes (6 GCPs in YoS and 7 GCPs in both AdS east and west). They were targeted
with circular targets with a 30-cm diameter, and their coordinates were measured using a Trimble
R10 (L1 + L2) RTK-GPS receiver with accuracies of 2 cm in horizontal coordinates and 3 cm in height.
For the reflectance transformation purposes, reflectance panels with a size of 1 m × 1 m and nominal
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reflectance of 0.03, 0.10, and 0.50 [34] were positioned near the UAV take-off place. An ASD Field
Spec Pro (Analytical Spectral Devices, Malvern Panalytical Ltd., Malvern, United Kingdom) with
cosine collector optics was installed near the take-off place to make irradiance measurements during
the flights.

Table 3. Details of the UAV data capture in young seedling (YoS) and advanced seedling (AdS): date,
time, sun zenith (SunZen) and azimuth (SunAz) angles, illumination conditions, and information
about radiometric model used for FPI image processing (BRDF = bidirectional reflectance distribution
function correction, RELA = relative image-wise corrections).

Spot YoS AdS West AdS East

Season Leaf-Off Leaf-On Leaf-Off Leaf-On Leaf-Off Leaf-On

Date 11 May 29 June 9 May 29 June 9 May 29 June
Time (UTC + 3) 11:41 15:11 12:10 13:57 11:31 13:12

SunZen 46◦ 42◦ 45◦ 38◦ 47◦ 38◦
SunAz 148◦ 218◦ 158◦ 193◦ 145◦ 176◦

Illumination Conditions Bright Bright Bright Variable Bright Overcast
Radiometric Model BRDF BRDF BRDF RELA BRDF RELA

2.3. Creating Dense Point Clouds and Image Mosaics

Georeferencing of the RGB images was carried out using the Pix4D MapperPro (Pix4D S.A.,
Prilly, Switzerland) version 2.2.25 software and supported by GCP and GNSS trajectory data collected
on-board the UAV. After orientation processing, dense three-dimensional (3D) point clouds were
created by automatic image matching using average point densities of 1600 points/m2. Orientations
of the FPI images were determined in a separate process. First, the orientations of three reference
bands (band 3: L0 = 513.5 nm; band 11: L0 = 591.9; band 14: L0 = 616.2 nm) were calculated using the
Pix4D software, as was the case with the RGB images. The rest of the bands were co-registered to the
reference bands using a rigorous 3D approach [35]. The process provided the band registration with
a better than 1-pixel accuracy over the area.

The objective of the radiometric processing of the FPI imagery was to provide high-quality
reflectance mosaics including the 36 spectral bands. The radiometric modelling approach developed
at the FGI and implemented in the FGI’s radBA software (version 2016-08-20, Masala, Finland),
an in-house toolbox for radiometric block adjustment [32,36], included sensor correction, atmospheric
correction, correction for the illumination changes and other non-uniformities, and normalisation
of the anisotropy effects due to the varying illumination and viewing directions [32]. The empirical
line method [37] was used to calculate the transformation from digital numbers to reflectance factors
with the aid of the reflectance reference panels. A radiometric block-adjustment method was used to
determine the model-based radiometric correction to compensate for the radiometric disturbances.
In this investigation, the relative image-wise correction parameters were calculated for all six datasets.
Furthermore, disturbances caused by the object-reflectance anisotropy (i.e., bidirectional reflectance
distribution function (BRDF)) were determined for the datasets that were collected during sunny weather
(Table 3). Markelin et al. [38] previously evaluated different options of the radiometric processing.

The RGB image orthomosaics were calculated with a GSD of 2.5 cm using the Pix4D software. The
hyperspectral orthomosaics were created using the FGI’s radBA software ([32,36] with a GSD of 10 cm).

2.4. Delineation of Tree Crowns and Extracting 3D Metrics

The height of the photogrammetric point clouds was normalised to the height above-ground level
using the national digital terrain model (DTM) with the resolution of 2 m. The DTM was created by
the National Land Survey of Finland using ALS data. The expected elevation accuracy of the DTM
varies from 10 to 30 cm in boreal forest conditions [39]. The DTM has been updated in August 2015.
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For detecting tree crowns, leaf-off and leaf-on canopy height models (CHMs) were created from
the normalised point clouds, by assigning the height value of the highest point to pixels of the CHMs.
The resolution of 10 cm was selected for the CHMs to also match with the resolution of the FPI
hyperspectral images. To avoid any empty pixels (gaps) in the CHMs, values for the null pixels were
interpolated using the K-nearest neighbour inverse distance weighting (KNNidw) with the three
nearest neighbours in the lidR package [40] in R 3.3.3 [41]. To delineate tree crowns from the CHMs of
each plot, we applied watershed segmentation in SAGA GIS version 2.3.2 [42].

The maximum and mean height (Hmax, Hmean) of segments were extracted from CHMs. Then,
segments with Hmax below a height threshold (0.5 m and 1.0 m for YoS and AdS, respectively) were
excluded as ground vegetation or understory. Næsset and Bjerknes [26], and Økseter et al. [27],
excluded ALS points below the 0.5-m threshold, assuming them to be laser returns from the ground
vegetation. Therefore, we selected the threshold 0.5 for YoS and 1m AdS. Moreover, according to field
data (Table 1), the smallest tree had Hmin of 0.73 m in YoS and 1.57 m in AdS. Therefore, the selected
thresholds were lower to include all tree segments. Within segments, we kept cells with height of
≥ 50% of segments Hmax to minimise the possible effect of understory. The 50% was selected by expert
knowledge and visual inspection, although we admit that there might be other approaches.

2.5. Selection of Training Segments

The exclusion of segments with Hmax below height thresholds was also applied for segments
located outside sample plots boundary. Then, training segments were selected by visual interpretation
of the well-distinguishable and typical leaf-off and leaf-on segments, located within a 2 m buffer
around the sample plots boundary. The visual interpretation was carried out using leaf-off and leaf-on
RGB orthomosaics to detect tree classes (spruce and birch) and non-tree classes (stumps/deadwood,
bush/grass and rock). The number of training segments were 144 in leaf-off and 279 in leaf-on (Table 4).
The non-tree classes were merged for the classification step.

Table 4. Number of training data in each classification class in each epoch. Non-tree classes include
stump/deadwood, bush/grass/fern, and rock.

Birch Spruce Non-Trees Total

Leaf-off 30 67 47 144
Leaf-on 50 101 128 279

The number of training data is higher in leaf-on (Table 4) because grass, bushes, and ferns (which
are in the non-tree class) had more segments in leaf-on data. They emerge in summer, grow fast, and
reach the height thresholds.

2.6. Vegetation Indices and Finding Optimal Bands

We calculated the arithmetic mean of spectral values for each band from the hyperspectral data
for each segment in the leaf-off and leaf-on data separately. These were then used to calculate three
vegetation indices (VIs) (Equation (1)) using a combination of near-infra red (NIR) together with green
(i), red (ii), and red-edge bands (iii). As there were several bands within these ranges of spectrum
in our hyperspectral data (Table 5), we calculated all possible combinations of the three VIs using
Equation (1).

Index =
(Rλ1 −Rλ2)

(Rλ1 + Rλ2)
, (1)

where R is the reflectance value and λ1 and λ2 are the wavelengths of the two bands employed in
the index.

To select the optimal and most important bands for the VIs in identifying trees from non-trees as
well as spruce from birch, we ran the random forest method (implemented from yaImpute package [43]
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in R 3.3.3) 100 times for both leaf-off and leaf-on data. The final selection for the VIs was done based on
the scaled importance; in other words, the VIs that were considered the most important variable at
least 20 times of the 100 random forest runs were selected for the final modelling.

Table 5. Wavelength range and corresponding number of bands from hyperspectral images.

Wavelength Range (nm) Number of Bands

Green 507–562 8
Red 620–700 7

Red Edge 700–780 7
NIR 780–886 8

2.7. Segments Classification

In addition to the optimal VIs, Hmax and Hmean were also used as predictors in training and
prediction phases of the random forest classification method [44] to predict the species class of
segments. The random forest classification method was applied to find the nearest neighbours (i.e.,
crown segments) in a feature space using the predictors selected (i.e., VIs, Hmax, and Hmean).

We used the random forest method from the yaImpute R package with the buildClasses mode with
500 trees, k = 1, and we set the classification classes (birch, spruce, non-tree classes) as the y variable.

After classifying the segments, we discarded non-tree classes and proceeded to extract the
plot-level total and spruce-specific TPH, as well as the mean height of all trees and of spruce trees’
mean height. Note that tree heights were derived from CHMs and not predicted with the random
forest method.

2.8. Accuracy Evaluation for Tree Density and Height

We compared plot-level spruce-specific TPH and the total TPH attributes with field-measured
reference. To evaluate the reliability of remotely sensed tree height, we compared our estimation of the
plot-level mean tree height with its corresponding field data, either spruce-specific tree heights or total
tree heights, using the equations. Absolute and relative bias (BIAS) and RMSE were calculated for
each attribute (Equations (2)–(5)).

BIAS =

∑n
i=1

(
yi − ŷi

)
n

, (2)

BIAS% = 100× BIAS
y

, (3)

RMSE =

√∑n
i=1

(
yi − ŷi

)
n

, (4)

RMSE% = 100× RMSE
y

, (5)

where n is the number of plots, yi the value from the field data for plot i, ŷi the remotely sensed
(predicted) value for plot i, and y is the mean of the variable in the field data.

In addition, we also used Pearson correlation coefficient (r). The output value can be interpreted
as the proportion of the variance in an attribute (remotely-sensed data) to the variance in another (field
data) as x and y, respectively. The formula is the following:

r =

∑n
i=1(xi − x).

(
yi − y

)
√∑n

i=1(xi − x)2.
∑n

i=1

(
yi − y

)2 , (6)
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The accuracy evaluation for TPH and tree height was analysed and reported for all sample plots
(n = 15) for both leaf-off and leaf-on conditions. Additionally, the accuracy was assessed among YoS
(n = 5) and AdS (n = 10) separately.

3. Results

3.1. Analysing Spectral Features and Optimal Bands for Vegetation Indices

The spectral reflectance of training data using leaf-off and leaf-on hyperspectral data (Figure 2)
showed that the tree classes are distinguishable from the non-tree class, especially in the red-edge and
NIR spectrum in both epochs. The reflectance spectra from AdS leaf-on datasets had some anomalies
(Figure 2b). The datasets were captured under cloudy or partially cloudy conditions using a short
exposure time of 10 ms, which resulted in poor image quality, especially in the red spectral range
(600–670 nm). This was not considered a critical problem in the analysis because only one of the indices
was in this range, and our selection procedure did not select the lowest quality bands for the indices.

 
Figure 2. Mean spectra of training data in five classes, in leaf-off (a) and leaf-on (b).

The optimal bands found and used for creating VIs are given in Table 6 for each epoch.

Table 6. Wavelengths used for calculating vegetation indices.

Vegetation Index Leaf-OffWavelengths (nm) Leaf-On Wavelengths (nm)

Red and NIR 694.16 and 857.46
675.75 and 804.15 675.75 and 871.31

Green and NIR 520.44 and 857.46
513.48 and 871.31 537.16 and 790.85

Red Edge and NIR
709.41 and 790.85
702.28 and 844.45
761.23 and 831.08

709.41 and 885.86
715.40 and 871.31
715.40 and 885.86
748.81 and 844.45

3.2. Tree Density Estimation

Both total tree density and spruce tree density were more accurately predicted with leaf-on data
(Table 7). The total tree density was estimated approximately 10%-points more accurately (relative
RMSE of 33.5% and 26.8% in leaf-off and leaf-on) than spruce tree density (44.6% and 38.1%) in
both epochs.
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The estimation of the total TPH was also compared among YoS and AdS separately (Figure 3).
Total tree density of YoS were estimated more accurately with leaf-on data (relative RMSE of 32.7%)
than with leaf-off data (relative RMSE of 47.3%). The total TPH was underestimated by 15.4% in
leaf-on conditions whereas the underestimate for leaf-off conditions was 6.3%; although there was no
substantial difference in relative and absolute RMSE between the epochs (Figure 3).

Figure 3. Total tree density (unit: TPH) in leaf-off (a) and leaf-on (b) conditions, separating plots in
advanced seedling stand (AdS) and plots in young seedling stand (YoS).

Moreover, spruce tree density among YoS (n = 5) and AdS (n = 10) was also calculated for both
epochs (Figure 4). The relative RMSE of spruce tree density in AdS was 19.2% in leaf-on data whereas
it was 58.5% and 58.2% in YoS for both epochs. Spruce tree density was less underestimated in AdS in
leaf-on (28.3% and 12.7% in leaf-off and leaf-on); nevertheless, it was approximately 4%-points more
accurate in leaf-off in YoS (53.8% and 57.5% in leaf-off and leaf-on conditions).

Figure 4. Spruce tree density (TPH) in leaf-off (a) and leaf-on (b) conditions, separating plots in advanced
seedling stand (AdS) and plots in young seedling stand (YoS) in leaf-off and leaf-on conditions.
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Table 7. Evaluation of the total and spruce tree densities among all sample plots (n = 15) (TPH = Trees
per hectare).

Total Number of Trees Number of Spruce Trees

Leaf-Off Leaf-On Leaf-Off Leaf-On

RMSE (TPH) 514 411 686 585
Relative RMSE (%) 33.5 26.8 44.6 38.1

Bias (TPH) 269 311 570 432
Bias % 17.5 20.2 37.1 28.1

R2 0.57 0.73 0.46 0.35

3.3. Height Attribute Extraction

Among all sample plots, the mean height of all trees was underestimated by 20.8% and 7.4%
(relative RMSE of 23.0% and 11.5%) in leaf-off and leaf-on conditions, respectively (Table 8). The mean
height of spruces was underestimated by 20.2% and 6.9% (relative RMSE of 21.7% and 11.4%) with
leaf-off and leaf-on data, respectively. As the results show, leaf-on data were more favourable for both
all trees and the spruce mean height estimation. The absolute RMSEs and biases were 0.29 m and
0.18 m, respectively, for the leaf-on data, and 0.57 m and 0.52 m, respectively, for the leaf-off dataset.

Table 8. Evaluation of the total and spruce mean tree heights among all sample plots (n = 15).

Mean Height of all of the Trees Mean Height of Spruce Trees

Leaf-Off Leaf-On Leaf-Off Leaf-On

RMSE (m) 0.57 0.29 0.52 0.27
Relative RMSE (%) 23.0 11.5 21.7 11.4

Bias (m) 0.52 0.18 0.48 0.16
Bias% 20.8 7.4 20.2 6.9

R2 0.95 0.96 0.97 0.95

Figure 5 shows the estimation of the total tree height among YoS and AdS separately in both
epochs. Leaf-on data resulted in more accurate estimations in both YoS and AdS. The mean height
of all trees in AdS was underestimated by 20.1% in leaf-off, whereas it was improved to 8.3% in the
leaf-on data. The underestimation in YoS was improved from 24.6% in leaf-off conditions to 2.6% in
leaf-on conditions.

Figure 5. Mean tree height (unit: meter) of all trees in leaf-off (a) and leaf-on (b) conditions, separating
plots in advanced seedling stand (AdS) and plots in young seedling stand (YoS).
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The mean height of spruces was underestimated by 19.4% and 8.7% (relative RMSE of 19.8%
and 10.8%) in the AdS in leaf-off and leaf-on conditions, respectively (Figure 6). Although it was
underestimated by 24.6% (relative RMSE of 26.4%) for the YoS in leaf-off conditions; it was overestimated
by 2.4% in leaf-on conditions (relative RMSE of 9.6%). The overestimation (Figure 6b) could be due to
higher underestimation of spruce tree density in leaf-on (Figure 4b), which could show the omission of
small spruce trees and result in the 2.4% overestimation. Relative RMSE for AdS (10.8%) was larger
than YoS (9.6%) in leaf-on, in contrast to leaf-off conditions.

Figure 6. Spruce-specific mean tree height (unit: meter) in leaf-off (a) and leaf-on (b) conditions,
separating plots in advanced seedling stand (AdS) and plots in young seedling stand (YoS) in leaf-off
and leaf-on conditions.

4. Discussion

4.1. Tree Density Estimation

Our findings for total trees density in leaf-on (relative RMSE: 26.8%) was an improvement to [13]
that achieved plot-level relative RMSE of 36.3%, that used area-based approach to fit random forest
models with plot data and UAV for estimating forest attributes. We shall note that Puliti et al. [13]
presented RMSE of different tree densities ranging between 1 to >10,000 at every 1000 intervals.
Comparing the range of our field tree density (600–2400 TPH) with the corresponding reported interval
in their results, our total tree leaf-on RMSE was more accurate (411 TPH) than their achievement
(~1900 TPH). Our underestimation of tree density (leaf-off 17.5% and 20.2% leaf-on) was greater
than [14] (13.6%). The greater underestimation can be because of different tree detection method they
used three-step object-based methods, unlike our watershed-segmentation.

Comparing our findings with seedling-focused ALS studies, our relative RMSE was more accurate
(26.8%) than [13] (53.4%). They used ALS data with point density of 5 points m−2 with the same
methodology that they used for UAV data, area-based approach and random forest model fitting. Our
higher point density and the different used method could consequence the outperformance. Earlier,
Ørka et al. [25] applied ALS for predicting the attributes of 19 regeneration stands achieved a relative
RMSE of 47% for predicting the total TPH at the stand level. Comparing our plot-level results with that
of the stand level predictions in [25], our findings are more accurate because a decrease in the RMSE
values was observed when scaling the plot-level estimation to stand level [13]. Moreover, an earlier
study [26] utilised small-footprint ALS to estimate the tree height and the TPH in young forest stands
(tree heights < 6 m). They resulted in a relative RMSE of 42% for predicting the stem number using
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a regression model, created with a combination of field reference data. Our tree density results (relative
RMSE: 26.8%) were more reliable than above-mentioned studies in the seedling stands. However, we
admit that every study can have various parameters that affect the results, such as sample size, tree
species, density and height conditions, different resolution and quality of remote sensing imagery.
The most comparable studies are [13,14], because the other above-mentioned literature used models to
predict TPH, instead of direct detection of the trees from the remote sensing data.

4.2. Tree Height Estimation

Our findings for total trees leaf-on height (relative RMSE: 26.8% TPH) was in line with [13],
achieved plot-level relative RMSE of 30.9 % using area-based approach and fitting random forest models
with plot data and UAV to predict forest attributes. Our tree height estimation was more accurate
than [17] that used UAV-based photogrammetric point clouds to assess the effects of the European
spruce bark beetle (Ips typographus L.) disturbance on natural regeneration and standing deadwood.
They reached a mean RMSE of 1.31 m (59%) and 1.57 m (64%) for manually and automatically
delineated regeneration trees, respectively. They reported more accurate tree height estimation
with point clouds from UAV than from aerial photography (mean relative RMSE of 115% and 59%,
respectively), when manually delineating trees in both data. Moreover, Vepakomma et al. [16] resulted
in an underestimation of 0.39 m in seedling tree height retrieval using UAV-based photogrammetric
point clouds. Furthermore, Goodbody et al. [15] assessed the conditions of regeneration stands using
digital aerial photography and UAVs, and underestimated tree height by 0.55 m (RMSE = 0.92 m)
using UAV-based photogrammetric point clouds. They claimed that their result had the potential to be
used in silvicultural prescriptions and growth projection models.

ALS has been another important data source for estimating tree height. Puliti et al. [13] achieved
32.0% of relative RMSE when assessing seedling tree height using 5 points m−2 density ALS data. Also,
Ørka et al. [25] utilised ALS data in 19 regenerations stands in Norway for predicting tree attributes.
They revealed relative RMSE of 28% for predicting the mean tree height at the stand level. Næsset and
Bjerknes [26] predicted the plot-level height with 0.23 m (3.5%) of bias using a two-stage procedure.
Note that only 29 sample plots (of the total 174 sample plots of their whole study area) were young
stands (heights < 11.5m). Also, the tree height in the study [26] was higher than this study, although
their tree density was higher (mean density 4197 TPH). Their smaller bias could be due to the two-stage
procedure or because they had a mixture of mature stands in their study.

In our evaluations, the absolute RMSE and bias for mean tree height of all trees were 0.29 m and
0.18 m, respectively, for the leaf-on data, and 0.57 m and 0.52 m, respectively, for the leaf-off dataset. The
values of the leaf-on data were close to the limits of the methods when considering the georeferencing
accuracy of approximately 0.05 m, reconstruction accuracy of the tree surfaces of decimetres, and the
uncertainty of the ALS based DTM, of approximately 0.10–0.30 m. The poorer accuracy of the leaf-off
data is likely to be due to the challenges of 3D object reconstruction of leafless branches with of data set
with a GSD of 2.5 cm using image matching; furthermore, the overall accuracy of the photogrammetric
processing could be poorer with the more challenging leaf-off dataset. These results were better than
in earlier studies for seedling stands although the earlier studies can have different parameters that can
influence on the result such as sample size, tree species, density and height conditions, in addition to
the quality of remotely-sensed data. The mean tree height in [17] varied between 1.19 and 4.10 m within
eight sample plots, scanned by UAV at 40-m flying altitude. The GSD after optimisation process in the
study had yielded average residuals < 10 cm in all plots (they used only RGB, not hyperspectral). Yet
the flight height in this study was 100 m, which resulted in a GSD of hyperspectral data up to 10 cm and
RGB-orthomosaics of 2.5 cm. The regeneration density in the study [17] varied more (approximately
300–8000 TPH) than in this study (approximately 1200–2000 TPH in YoS and 600–2400 TPH in AdS).
Yet in this study, the deviation of plot-level tree height was higher (0.77–4.54 m) than in [17] that varied
between 1.19–4.10 m.
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In this study, the tree height could be even more accurately estimated if our field reference data
were measured at the individual tree level or if at least the training data had tree-wise field-measured
height. It is common that the tree height is also predicted at the same time as species classification
carries out using the random forest method because it can handle predicting several attributes. This
could improve the height estimation further and correct the small overestimation of tree height in YoS
in the leaf-on data. Additionally, underestimation in tree density can cause overestimation in height
retrieval, especially the omission of smaller trees. It was perhaps why the underestimation of spruce
density in leaf-on caused a minor height overestimation (2.4%).

4.3. Comparing Leaf-Off and Leaf-On Data

This research was specifically designed to evaluate the performance of data collected in leaf-off
and leaf-on conditions for seedling stands. It was observed that inventorying in leaf-on conditions is
more favourable for both tree density and mean tree height overall, and we recommend the use of
leaf-on data when object reconstruction is based on photogrammetry. Mean tree height was predicted
more reliably (relative RMSE: 11.5%) than tree density (relative RMSE: 26.8%) among all sample plots
with leaf-on data.

To the best of our knowledge, there were no prior literature to compare leaf-off and leaf-on data
for characterizing seedling stands (using any type of remote sensing data, either from UAV, aerial
imagery, active sensing or spaceborne). Therefore, we should compare our findings with studies
that focused on non-seedling stands. In mature forests, leaf-off and leaf-on aerial images had been
used to assess mapping of forest attributes [45]. They recommended against of using leaf-off aerial
images, where coniferous trees (pine and spruce) were major species with birch trees as minor tree,
because they observed poor accuracy and underestimation of height distribution using leaf-off data in
deciduous forest. The lower height value estimation in leaf-off data was also reported by [46], that
used leaf-off and leaf-on aerial images to estimate the proportion of deciduous stem volume in mixed
coniferous-deciduous forest using area-based approach. Our findings are in parallel with their results.
It is worth noting that further advantage of the leaf-on data includes the prospects of utilizing the
spectral information in characterizing the vegetation.

In terms of ALS data for mature forests, small difference (relative RMSE and bias < 2%) was
reported for estimating all forest attributes except volume (< 7%) between leaf-off and leaf-on data,
affirming that leaf-off ALS data could be used for area-based methods [47]. Similarly, Lorey’s mean
height were estimated more accurately in leaf-off (RMSE: 0.07 m), than leaf-on (RMSE: 0.09 m) using
area-based approach with ALS in a mixed managed boreal forest [48]. Also, other ALS studies
recommended the use of leaf-off [49,50]. The reported slight advantage of leaf-off data in the ALS
studies could be due to the used single-spectral ALS sensor that can be insufficient for discriminating
different species in leaf-on conditions; in contrast to multi- and hyper-spectral data that outperformed
in leaf-on in our research as well as other studies [45,46]. We note that further studies are required to
examine this with more sample plots.

Our study showed that UAV imagery can be reliable used for characterizing seedling stands and
may be a supplement or replacement for inventorying seedling stands in the future. Admittedly, further
studies with more sample plots containing more deviation in tree height and density are required.

5. Conclusions

We used UAV-based photogrammetric point clouds and hyperspectral data to characterize tree
attributes in seedling stands with our predesigned tree density and the species proportions of each
field plot. Our data were acquired with leaf-on and leaf-off conditions.

Tree density feature in AdS were more accurately predicted compared to YoS, although tree
density was higher in AdS. Thus, it can be concluded that the YoS (average height of less than 1.3
m) remained challenging to UAV-based photogrammetric point clouds and hyperspectral data and
required further studies with more sample plots.
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Overall, mean tree height of all and spruce trees were estimated more accurately in leaf-on
conditions for both YoS and AdS. Comparing both height estimations between YoS and AdS in leaf-on
conditions, the heights were estimated more accurately for YoS than AdS.

Comparing epochs, it can be concluded that collecting remotely sensed data in leaf-on conditions
could be more favorable because our findings showed lower absolute and relative RMSE with leaf-on
data for both the total and spruce tree density. The superiority of the leaf-on condition, considering
absolute and relative RMSE, was the same for mean tree height of all and spruces trees, for both
YoS and AdS, although some absolute and relative bias were different. Generally, leaf-on data is
recommended especially when using photogrammetric reconstruction method, and furthermore, when
using hyperspectral data, the leaf-on data might provide further information about the condition of
the vegetation.
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Abstract: Monitoring vegetation characteristics and ground cover is crucial to determine appropriate
management techniques in western juniper (Juniperus occidentalis Hook.) ecosystems. Remote-sensing
techniques have been used to study vegetation cover; yet, few studies have applied these techniques
using unmanned aerial vehicles (UAV), specifically in areas of juniper woodlands. We used
ground-based data in conjunction with low-altitude UAV imagery to assess vegetation and ground
cover characteristics in a paired watershed study located in central Oregon, USA. The study was
comprised of a treated watershed (most juniper removed) and an untreated watershed. Research
objectives were to: (1) evaluate the density and canopy cover of western juniper in a treated (juniper
removed) and an untreated watershed; and, (2) assess the effectiveness of using low altitude
UAV-based imagery to measure juniper-sapling population density and canopy cover. Ground-
based measurements were used to assess vegetation features in each watershed and as a means
to verify analysis from aerial imagery. Visual imagery (red, green, and blue wavelengths) and
multispectral imagery (red, green, blue, near-infrared, and red-edge wavelengths) were captured
using a quadcopter-style UAV. Canopy cover in the untreated watershed was estimated using
two different methods: vegetation indices and support vector machine classification. Supervised
classification was used to assess juniper sapling density and vegetation cover in the treated watershed.
Results showed that vegetation indices that incorporated near-infrared reflectance values estimated
canopy cover within 0.7% to 4.1% of ground-based calculations. Canopy cover estimates at the
untreated watershed using supervised classification were within 0.9% to 2.3% of ground-based
results. Supervised classification applied to fall imagery using multispectral bands provided the best
estimates of juniper sapling density compared to imagery taken in the summer or to using visual
imagery. Study results suggest that low-altitude multispectral imagery obtained using small UAV
can be effectively used to assess western juniper density and canopy cover.

Keywords: juniper woodlands; ecohydrology; remote sensing; unmanned aerial systems; central
Oregon; rangelands

1. Introduction

The range and density of woody plant species such as western juniper (Juniperus occidentalis
Hook.) have substantially increased in the western United States over the last 150 years. Estimates of
juniper (Juniperus spp.) expansion across the Great Basin range from 125% to 625% [1] and western
juniper alone can be found across 3.6 million ha in the intermountain west [2]. The expansion of
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western juniper in particular has arisen in two primary forms: through the encroachment of juniper
into areas previously dominated by sagebrush (Artemisia tridentata Nutt.), and through increases in the
density of juniper in areas where it was relatively sparse [3]. Historically, juniper was largely found in
areas with lower fire risk [4]. Intensive grazing, reduced fire occurrence, and favorable wetter climate
conditions have all been cited as reasons for the vast juniper expansion observed in the late 19th and
early 20th century [3,5].

Juniper expansion is a concern in many rangeland areas as it may lead to reduced water availability
for other types of vegetation. Increased juniper canopy cover has been associated with increased bare
ground and decreased shrub, forb, and grass cover [6] and reductions in vegetation production
and diversity [7]. Several studies [6,8–11] have addressed the impacts of juniper expansion on
ecological and hydrological processes. These impacts include increased erosion and runoff [12–14] and
decreased soil moisture [8] typically associated with shifts in vegetation cover [2,12,15], particularly
with increased bare ground in intercanopy locations [16].

The use of ground-based techniques to assess vegetation characteristics is limited to the resources
available and normally includes an aggregate of data collected at point specific locations. Remote
sensing offers the ability to assess ecological features over larger temporal and spatial scales.
Remote sensing has been used successfully to identify juniper expansion [17], assess shrub cover
characteristics in encroached sagebrush steppe ecosystems [18], calculate canopy cover in juniper
woodlands [19,20] and characterize ground cover following treatment [21]. Remote-sensing techniques
using multispectral imagery (particularly near-infrared reflectance) has improved the ability to assess
changes in vegetation cover [22,23].

The use of unmanned aerial vehicle (UAV)-based data collection in remote-sensing applications
can be useful in western juniper research including species classification [24], soil erosion
monitoring [25], and measurements of tree canopy [26,27]. Imagery captured using remote sensing
can improve our ability to study juniper removal and recovery by reducing time requirements for
data collection and providing greater flexibility in observation times compared to ground-based
measurements alone.

Vegetation indices derived from aerial and satellite imagery can be particularly useful for
vegetation identification and classification as they provide information about vegetation characteristics
by analyzing specific band reflectance properties. The relationship between different spectral bands can
be used to distinguish between areas of vegetation and bare soil or rock. Vegetation indices developed
from remote sensing data have been used to determine gross primary production in pinyon-juniper
woodlands [28].

There is a range of vegetation indices used to assess vegetation characteristics. Reflectance
characteristics from multispectral imagery, particularly the near-infrared and red-edge spectral regions,
have been successfully used to assess vegetation growth [29] and to identify different vegetation
species [24,30]. A commonly used vegetation index, the normalized difference vegetation index
(NDVI) [31], is calculated from the reflectance characteristics of the near-infrared and red bands,
and indicates photosynthetic activity. NDVI has also been found to be closely related to ground-based
canopy cover calculations [32]. The optimized soil adjusted vegetation index (OSAVI) has a similar
formula to that of NDVI but is used to minimize the influence of soil reflectance [33], a concern
in many arid and semiarid regions with high amounts of bare soil. Another example of an index
potentially useful in studying western juniper is the total ratio vegetation index (TRVI) [34], which was
developed to address different vegetation characteristics in arid and semiarid ecosystems (e.g., juniper
woodlands).

Other techniques used in image analysis such as classification have been utilized extensively
for the detection and assessment of vegetation [35–37]. Pixel-based image analysis has been used
for weed detection [38] and vegetation identification in mixed plant communities [39]. The use of
classification tools for image analysis has also been shown to decrease time requirements compared to
manual analysis of imagery [40], particularly over large areas. In ecosystems where juniper expansion
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is occurring, visual inspection of imagery alone is time-consuming and inefficient due to the typically
large areas involved. By incorporating classification into analysis of UAV-based imagery, it may be
possible to more efficiently monitor juniper re-establishment after removal.

This study sought to build upon UAV-based techniques and ground- based data collection to
study the spatial distribution of juniper in a treated watershed where mature western juniper was
eliminated in 2005 and in an untreated watershed. Study objectives were to: (1) evaluate the density
and canopy cover of western juniper in a treated (juniper removed) and an untreated watershed;
and, (2) assess the effectiveness of using low altitude UAV-based imagery to measure juniper-sapling
population density and canopy cover.

2. Materials and Methods

2.1. Study Site

The study was conducted at the Camp Creek Paired Watershed Study (CCPWS) site in central
Oregon. The CCPWS was established in 1993 to study long-term ecohydrological relationships in
western juniper-dominated landscapes [41]. The study site includes two watersheds (WS): an untreated
WS (96 hectares) and a treated WS (116 hectares) (Figure 1). During 2005 to 2006, nearly 90% of western
juniper trees were removed from the treated WS. Trees were cut using chainsaws, the boles were
removed, and tree limbs were scattered [42].

Figure 1. Map of the study site showing ground-based collection points and monitoring plot location
in both watersheds. Study plots in the untreated watershed (WS) have been labeled to clarify position.
The larger plot in the treated WS indicates the location of the unmanned aerial vehicle (UAV) imagery
collection in that WS. Image created using ArcMap 10.6. Source: Esri, DigitalGlobe.
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Climate in central Oregon is semiarid and precipitation falls largely during the fall and winter
months. Average annual precipitation (2009–2017) at the study site is 358 mm [41]. Elevation at
the study site ranges from 1350 to 1500 m. The orientation of the treated WS is primarily north by
northwest while the untreated WS is largely oriented toward the north [43]. The average slope is 25%
in the untreated WS and 24% in the treated WS [43].

Overstory vegetation at the treated WS is dominated by big sagebrush, while western juniper is
the dominant species at the untreated WS. Understory vegetation in both watersheds is dominated
by perennial grasses, primarily bluebunch wheatgrass [Pseudoroegneria spicata (Pursh.) Á. Löve],
Idaho fescue (Festuca idahoensis Elmer), Indian ricegrass [Achnatherum hymenoides (Roem. and Schult.)
Barkworth], Sandberg bluegrass (Poa secunda J. Presl), and Thurber’s needlegrass [Achnatherum
thurberianum (Piper) Barkworth] and some annual grasses, such as cheatgrass (Bromus tectorum
L.) [43,44]. As reported by Ray et al. [44], juniper canopy cover at the untreated WS is 31% and
at the treated WS is less than 1%, this based on surveys in 2015. According to the juniper occupancy
classification described by Miller et al. [2], the untreated WS is considered at the highest level, Phase
III, in which juniper is at nearly 30% occupancy and it is the dominant overstory species.

2.2. Vegetation Measurements

We calculated juniper-sapling population density, canopy cover, and age characteristics at the
watershed scale in the treated WS, and adult and sapling-stage tree density and canopy cover at the
plot scale in both watersheds.

At the watershed scale, we installed 41 belt transects (30 m by 3 m) to measure juniper-sapling
count, height, and crown width in the treated WS. The belt transects were located across the landscape
to represent varying aspect and slope characteristics. A subsample of 18 saplings representing common
tree characteristics (i.e., height and width) observed in the treated WS were removed to determine tree
age using techniques described by Phipps [45].

At the plot scale, we installed two 2000 m2 monitoring plots in each watershed. One plot was
installed in a valley location near the watershed outlet and one in an upstream location (Figure 1).
In the untreated WS, tree canopy cover was estimated using a spherical concave densiometer (model
A) (Forestry Suppliers, Jackson, MS, USA) across five 40 m parallel transects in each plot. Tree canopy
cover was measured every 5 m, facing each cardinal direction, in each 40 m transect. The two plots in
the untreated WS were also used to assess juniper canopy cover estimates using UAV-based imagery.
All juniper (sapling and adult stages) were counted on the ground to determine tree population density
in the monitoring plots at both watersheds. No adult-stage trees were present in either of the two plots
in the treated WS; therefore, we only measured sapling count in each 2000 m2 plot.

An 11,600 m2 plot in the treated WS (Figure 1) was employed to assess juniper sapling estimates
obtained using the various UAV-based methods described below. A subset of juniper saplings in the
larger plot were selected to assess the accuracy of juniper identification.

2.3. Unmanned Aerial Vehicle (UAV)-Based Imagery Collection and Analysis

We collected UAV-based imagery from multiple low elevation (40 to 50 m) flights conducted on
21 June 2018, 15 and 16 July 2018, and 12 October 2018. In order to minimize shadows, flights occurred
around noon and early afternoon. Aside from temperature, weather conditions at the time of each
flight were similar with scattered clouds present and light, variable winds. Data collected in October
2018 and in the summer of 2018 were used to compare multispectral imagery results across seasons
in the treated WS. Three quadcopter UAV (Table 1) were used to collect data. Multispectral imagery
(red, green, blue, near-infrared, and red-edge) was captured using a RedEdge camera (MicaSense, Inc.,
Seattle, WA, USA). The RedEdge camera was attached either to a Matrice 100 (DJI, Shenzhen, China)
or to a Solo (3D Robotics, Inc., Berkeley, CA, USA) UAV for multispectral imagery collection. RGB
(red, green, and blue wavelengths) imagery was collected using a DJI Phantom 3 Professional camera
(DJI, Shenzhen, China). The Phantom 3 was not used for image collection at the treated WS, the red,
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green, and blue bands were extracted from the multispectral raster and used for analysis of visual
imagery instead.

Table 1. UAVs used for data collection. Multispectral (red, green, blue, near-infrared, and red-edge
bands) imagery was captured by attaching the RedEdge camera to the Solo and Matrice 100. Visual
imagery (red, green, and blue bands) was collected using the Phantom 3 Professional camera.

UAV Platform Manufacturer Image Type

Solo 3D Robotics, Inc., Berkeley, CA, USA Multispectral
Matrice 100 DJI, Shenzhen, China Multispectral

Phantom 3 Professional DJI, Shenzhen, China Visual

These quadcopter UAV were selected for use as they provide a flexible platform that can be
adapted for multiple types of data collection. Additionally, given the remote location and lack of
suitable launching and landing areas, a fixed wing aircraft would be difficult to use. The quadcopters
used in this study offer the advantage of being relatively easy to operate, making them an ideal
candidate to be used by land managers who may not have flight experience or access to more
expensive UAV.

Flight plans were created and conducted using the Pix4Dcapture (Pix4D SA, Lausanne,
Switzerland) mobile application, or flown manually. Relatively low flight altitudes (40 to 50 m
above ground level) were employed in order to assess the ability of the UAV-imagery to detect juniper
saplings. These flight altitudes were chosen as they provide relatively high spatial resolution, while
requiring less flight time than much lower flight altitudes. While time requirements for UAV-based
data collection were not intensive (flights averaged less than 12 min), the intent of this study was to
assess a method that could be applied to larger study areas in the future. Additionally, the height of
mature juniper in the untreated WS required a minimum of 40 m flight altitude to ensure sufficient
clearance from the top of the trees. An overlapping grid pattern was flown to ensure minimum
80% forward overlap and 60% side overlap. Sufficient overlap was confirmed using the PhotoScan
professional (Agisoft LLC, St Petersburg, Russia) program after individual images were added and
aligned. All images were captured at nadir.

Orthomosaics created using RGB imagery had slightly higher spatial resolution than those created
using the multispectral imagery. Spatial resolution of the visual band orthomosaic at the untreated
valley site was 2.09 cm pixel−1 and 2.02 cm pixel−1 at the untreated upstream site. Spatial resolution
of the multispectral imagery at the untreated WS valley site was 3.15 cm pixel−1 and 2.74 cm pixel−1

at the untreated WS upstream site. For the multispectral imagery captured in July 2018 at the treated
WS study plot, the orthomosaic was 3.00 cm pixel−1. The orthomosaic created from imagery captured
in October of 2018 had a spatial resolution of 2.40 cm pixel−1.

Image processing, including the creation of orthomosaics, was conducted using PhotoScan
professional (Agisoft LLC, St Petersburg, Russia). Photo alignment was performed using the highest
accuracy setting, with a key point limit of 120,000 and a tie point limit of 30,000. Adaptive camera
fitting was performed during this step. To create the dense cloud, the ultra-high quality setting with
aggressive depth filtering was used. A mesh was created using the 2.5D height field for surface data
with a high face count, using the sparse cloud. The mosaic blending mode was used to build the texture.
The dense cloud was used to build the tiled model and digital elevation model (DEM). Orthomosaics
were subsequently produced in PhotoScan using the created DEM. Areas with poor image quality
and without sufficient overlap (on the edges of the orthomosaic) were excluded from analysis. Image
analysis was conducted using ArcGIS (version 10.6, Redlands, CA, USA). No radiometric correction
was performed; therefore, brightness numbers were used for image analysis. Georeferencing and
alignment of images was performed in ArcGIS using landscape features (e.g., gully intersection points)
and selected ground control reference markers with known latitude and longitude positions that could
be easily identified in imagery.
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2.4. Comparative Analysis, Ground Data versus UAV Imagery

RGB imagery (red, green, and blue wavelengths) and multispectral imagery (red, green, blue,
near-infrared, and red-edge wavelengths) were used to assess canopy cover and vegetation cover
characteristics. Four vegetation indices were selected to assess canopy cover characteristics of the
untreated study plots (Table 2). As RGB cameras are often more accessible and affordable compared to
cameras that capture multispectral imagery, we assessed the effectiveness of using RGB imagery
for measuring canopy cover (both mature juniper and juniper saplings), vegetation cover, and
juniper identification.

Table 2. Vegetation indices selected to assess vegetation and ground cover characteristics of the study
plots. Names refer to reflectance values for each band. The TGI uses the wavelength (ʎ ) for the red,
green, and blue bands in the calculation. NIR refers to near-infrared.

Method Formula

Triangular Greenness Index (TGI) [46] −0.5[(ʎ red − ʎ blue)(Red − Green) − (ʎ red −
ʎ green)(Red − Blue)]

Optimized Soil Adjusted Vegetation Index (OSAVI) [33] (NIR − Red)/(NIR + Red + 0.16)
Normalized Difference Vegetation Index (NDVI) [31] (NIR − Red)/(NIR + Red)

Total Ratio Vegetation Index (TRVI) [34] 4[(NIR − Red)/(NIR + Red + Green + Blue)]

In order to measure canopy cover, the triangular greenness index (TGI) [46], which indicates
chlorophyll content, was applied to the visual imagery at the untreated WS. Additionally, three
vegetation indices (NDVI, OSAVI, and TRVI) that utilize multispectral imagery were used in estimating
canopy cover at the untreated WS. Vegetation indices were calculated using the Raster Calculator
function in ArcGIS, which created a raster of one band with these values.

Support vector machine (SVM) supervised classification was also used to assess canopy cover in
the untreated WS. RGB imagery (red, green, and blue wavelengths) and multispectral imagery (red,
green, blue, near-infrared, and red-edge wavelengths) were used for classification. Using the Training
Sample Manager within ArcGIS, polygons were drawn around representative samples of juniper, bare
soil, and woody debris. Training sites were selected from different areas of the image to represent the
range of reflectance characteristics of each class. An initial image was created using the Interactive
Supervised Classification function in order to determine how well the land cover was represented and
to determine if more training samples were needed. Once each class was differentiated, the training
samples were saved and used for classification. The Train Support Vector Machine Classifier tool in
ArcGIS was used to create an Esri Classifier Definition (.ecd) file for each orthomosaic. Using the
.ecd file, each the Classify Raster tool was used to perform classification on each raster. In order to
minimize noise within the image, and remove small isolated clusters of pixels, the Majority Filter
was then applied. The general supervised classification procedure used in this research is shown in
Figure 2.

Figure 2. Supervised classification procedure performed in ArcMap.

A pixel-based analysis was conducted to assess juniper density and canopy cover, and total
vegetation cover. By determining the number of pixels that correspond to vegetation compared to all
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other types of ground cover, the percentage of vegetation and canopy cover can be estimated within a
given area. For the indices selected in this research, higher values (above 0) corresponded to greater
photosynthetic activity or chlorophyll depending on the index applied. For instance, values for NDVI
can range from −1 to 1, with areas of bare soil corresponding to values of approximately 0.025 or
less, grasslands and shrub vegetation corresponding to values of around 0.09, and areas of dense
vegetation corresponding to values of 0.4 or greater [47]. These values can vary depending on study
site characteristics, vegetation type, season, sensor type and calibration, and weather conditions [48].
Based on visual inspection of the imagery (specifically examining values associated with bare ground,
juniper canopy, woody debris, and shadows), threshold values were established for each index to
separate vegetation from all other ground cover. The number of pixels with values greater than the
threshold were divided by the total number of pixels in order calculate the percent of canopy cover or
area covered by vegetation, similar to methods described by Wu [32].

Juniper identification, juniper sapling canopy cover, and vegetation ground cover in the treated
WS were assessed for two dates, July 2018 and October 2018. Support vector machine supervised
classification was applied to RGB imagery, multispectral imagery (red, green, blue, NIR, and red-
edge bands) and imagery with multispectral bands and NDVI values at the treated WS. The same
supervised classification process described above was used in the treated WS; however, training
samples in the treated WS were divided into four main categories: juniper, other vegetation, woody
debris, and bare ground.

The number of pixels classified as juniper, other vegetation, bare ground, or woody debris was
tabulated. Similar to calculations made for canopy cover in the untreated plots, the number of pixels
represented by each class was divided by the total number of pixels to determine a percent cover
of each class in the treated WS. This was then compared to estimates of juniper sapling density and
vegetated ground cover calculated using the belt transect method and to the results found using
line-point intercept surveys conducted in 2018 at this study site [49].

To assess the accuracy of the supervised classification in the treated WS, 249 random points were
selected in each orthomosaic using the ArcGIS random point tool (one random point corresponded to a
board used as a ground control point and was subsequently excluded from this analysis). Additionally,
67 pixels corresponding to juniper saplings were identified within the image and used to assess the
accuracy of juniper detection specifically. For accuracy analysis, four main classes were utilized:
juniper, other vegetation, woody debris, and bare ground. No assessment was made of the accuracy
of detecting specific vegetation species other than western juniper. A confusion matrix was created
for each orthomosaic in the treated WS. From the confusion matrix, the user’s accuracy (indication of
Type I error), producer’s accuracy (indication of Type II error), Cohen’s kappa coefficient, and overall
method accuracy were calculated.

3. Results

3.1. Ground-Based Vegetation Data Results

Tree Density, Height, and Canopy Cover

A greater number of juniper trees were observed in the untreated WS than in the treated WS.
Based on ground counts in the two monitoring plots, average juniper tree density (of all age classes)
was 797 trees ha−1 for the untreated WS. In the treated WS, juniper density was calculated to be 313
juniper saplings ha−1 based on the 41 belt transects distributed across the watershed. Mean sapling
density was 473 trees ha−1 based on ground counts from the two 2000 m2 monitoring plots at the
valley and upstream locations.

The mean height of all juniper saplings surveyed in the treated WS (n = 113) was 0.75 m, ranging
from 0.09 to 2.08 m. Tree crown width ranged from 0.09 to 1.4 m. Data from a subsample (n = 18) of
saplings showed mean age tree was 9 years, ranging from 1 to 15 years. On average, saplings grew
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0.1 m year−1 in height and 0.04 m year−1 in width. Mean sapling canopy cover was calculated to be
0.7% at the treated WS based on the belt transects.

In the untreated WS, adult trees (based on having a canopy diameter of 1.5 m or greater) made
up 26% (34 of 133 trees) of all juniper at the valley monitoring plot and 16% (29 of 186 trees) of all
juniper in the upstream monitoring plot. Mean sapling density was estimated to be 640 trees ha−1 at
the untreated WS. Tree canopy cover was 30.4% for the valley plot and 28.0% for the upstream plot in
the untreated WS.

3.2. UAV-Based Vegetation Data Results

3.2.1. Tree Canopy Cover at the Untreated Watershed (WS)

Canopy cover estimates using the UAV-based imagery at both untreated WS plots varied between
vegetation indices that used visual or multispectral data (Table 3). The threshold value to determine
vegetation was 0.05 for NDVI and OSAVI, 0.1 was used for TRVI and 0 was used for TGI. All pixels
valued at and below the corresponding index threshold were considered to be non-vegetated areas.
At the untreated WS upstream plot, NDVI, OSAVI and TRVI based estimates of canopy cover ranged
from 26.1% to 27.3% (0.7% to 1.9% less than ground observations) while canopy cover measurements
using TGI indicated 22.8% canopy cover (5.2% less than ground calculations). At the untreated WS
valley plot, canopy cover estimates using NDVI, OSAVI, and TRVI were 33.7% to 34.5% (3.3% to 4.1%
greater than ground measurements) (Figure 3). Canopy cover estimates using TGI at the untreated WS
valley plot showed the largest difference from ground-based measurements at 21.2% (9.2% lower than
ground estimates).

Table 3. Canopy cover at the untreated study plots. Method refers to the vegetation index used
to calculate the canopy cover. TGI is calculated using reflectance values from the RGB (red, green,
and blue bands) imagery. NDVI, OSAVI, and TRVI are calculated using reflectance values from the
multispectral (red, green, blue, near-infrared, and red-edge bands) imagery. Values above the threshold
value are considered vegetation. RGB classification refers to the support vector machine supervised
classification performed using visual imagery. MS (multispectral bands: red, green, blue, near-infrared,
and red-edge) classification refers to supervised classification performed using multispectral imagery.
Ground refers to ground-based measurements of canopy cover made at each study plot.

Location Method Canopy Cover (%) Threshold

Untreated WS Upstream TGI 22.8 0
NDVI 26.1 0.05
OSAVI 26.7 0.05
TRVI 27.3 0.1

RGB classification 26.6 N/A
MS classification 30.3 N/A

Ground 28.0 N/A
Untreated WS Valley TGI 21.2 0

NDVI 33.7 0.05
OSAVI 33.7 0.05
TRVI 34.5 0.1

RGB classification 29.5 N/A
MS classification 29.4 N/A

Ground 30.4 N/A

At the untreated WS valley site, estimates of canopy cover using SVM supervised classification
(both RGB and multispectral imagery) were closer to ground-based results compared to the use of
vegetation indices (Table 3). At the untreated WS upstream site, TRVI estimated canopy cover better
than the SVM classification using RGB or multispectral imagery.
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Figure 3. Untreated WS valley canopy cover. Darker shades correspond to lower vegetation index
values and lighter shades correspond to higher values. NDVI, TRVI, and OSAVI values were similar,
and therefore only OSAVI is shown for comparison. Differences can be seen in the characterization of
canopy cover and in the shadows under the canopy between the OSAVI and TGI images.

3.2.2. Vegetation Cover and Juniper Sapling Density at the Treated WS

Based on the number of pixels corresponding to vegetation and non-vegetated areas, estimates
of total vegetated ground cover based at the treated WS were similar between methods with the
exception of the RGB imagery from October 2018 (Table 4). Results of these methods were also similar
to line-point intercept surveys conducted in 2018 [49]. However, visual inspection of some areas of
the classified rasters indicated regions where areas of bare ground and vegetation were misclassified.
The use of NDVI with multispectral imagery resulted in a small difference in overall vegetated cover
estimate for October imagery (0.1%) and a 1.9% difference in the estimate of vegetation cover for
July imagery.

Table 4. Characterization of ground cover by pixel-based analysis from supervised classification from
July and October 2018 at the Treated WS. RGB refers to supervised classification of RGB bands (red,
green, and blue) only. Multispectral data (“MS only”) uses reflectance values from the red, green,
blue, near-infrared, and red-edge wavelengths. Multispectral with NDVI (“MS+NDVI”) used the
multispectral bands with the addition of NDVI values for classification. Non-vegetated ground cover
refers to all other types of ground cover evaluated: bare ground and woody debris. Ground-based
results are based on data collected from belt-transects and line-point transects from a study in 2018 [49].

Juniper Cover (%) Vegetation Cover (%) Non-Vegetated Cover (%)

Jul 18: RGB 4.8 43.2 56.8
Jul 18: MS only 6.5 41.2 58.8

Jul 18: MS+NDVI 7.5 43.1 56.9
Oct 18: RGB 3.5 50.3 49.7

Oct 18: MS only 0.7 42.8 57.2
Oct 18: MS+NDVI 1.0 42.7 57.3

Ground 0.7 43.1 56.9

Based on the number of pixels classified as juniper, estimates of juniper sapling canopy cover using
multispectral data (with and without NDVI values) from October 2018 were similar to ground-based
estimates. Estimates of juniper sapling cover from multispectral imagery in July 2018 were five to six
times those of the ground-based measurements. Juniper density estimates at the treated WS based on
RGB imagery were 3.5% (October 2018) and 4.8% (July 2018), compared to the 0.7% juniper density
calculated using belt transects.

Overall, identification of juniper saplings using supervised classification was more accurate in the
October orthomosaic compared to that of imagery from July (Figure 4, Tables 5 and 6). User’s accuracy
of juniper was also greater in October compared to July, regardless of the inclusion of NDVI values or
if multispectral or RGB imagery was used. User’s accuracy ranged from 72.6% (RGB imagery from

67



Forests 2019, 10, 296

July 2018) to 100% (October imagery without NDVI and October RGB imagery). Producer’s accuracy
for juniper ranged from 64.3% (July RGB imagery) to 88.6% (October imagery with and without NDVI).
For both months, the use of NDVI resulted in slight differences in user’s and producer’s accuracy of
juniper. The use of RGB imagery was also associated with somewhat lower producer’s accuracies
compared to multispectral imagery.

Figure 4. Subset of orthomosaic and classified rasters for the treated WS. July imagery is shown in top
row: (a) subset of original orthomosaic, (b) classification of RGB (red, green, and blue wavelengths)
raster, and (c) classification of MS (multispectral bands: red, green, blue, near-infrared, and red-edge
wavelengths) without NDVI values. October imagery is displayed on the bottom row: (d) subset of
original orthomosaic, (e) classification of RGB raster, and (f) classification of MS raster without NDVI.
All classified images display results following the application of the Majority Filter tool. Red shading
indicates pixels classified as juniper while pixels shaded green represent pixels identified as any other
vegetation type. White cardboard was used to identify juniper in the October image (d) but is not
present in the July image (a). “Other veg” refers to all vegetation not classified as juniper.

The accuracy of these methods to assess other types of ground cover (non-juniper vegetation,
bare ground, and woody debris) was also compared (Tables 5 and 6). However, specific vegetation
species other than juniper (such as sagebrush) were not analyzed for accuracy, and all pixels that
corresponded to non-juniper vegetation were grouped together for analysis. Misclassification of pixels
corresponding to areas of bare ground and woody debris occurred more frequently in both October
orthomosaics compared to the July orthomosaics (Figure 4, Tables 5 and 6).

The overall accuracy of the supervised classification for all classes analyzed (juniper, bare ground,
other vegetation, and woody debris) ranged from 76.6% (July RGB imagery) to 80.7% (July multispectral
imagery with NDVI) (Table 7). The greater overall accuracy of the July orthomosaic can be largely
attributed to the higher producer’s accuracy of woody debris for this month. Values of Cohen’s kappa
coefficient for each method were similar, ranging from 0.70 to 0.74. The kappa coefficient for the
juniper class only was 0.88 for both October orthomosaics, and 0.69 (multispectral imagery only) and
0.71 (multispectral imagery with NDVI) for the July orthomosaics. The use of RGB imagery resulted in
very low kappa coefficients for the juniper class specifically: −0.08 for RGB imagery in July and 0.47
for RGB imagery in October.
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Table 5. Confusion matrix for supervised classification for July 2018, for RGB (red, green, and blue
wavelengths), multispectral imagery (red, green, blue, near-infrared, and red-edge wavelengths), and
multispectral imagery with NDVI values. Reference pixels are displayed by column and classified
pixels are displayed by row. All vegetation that was not juniper was grouped under the class of
“Other Veg”.

July RGB Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 45 2 15 0 72.6
Bare Ground 0 73 3 8 86.9

Other Veg 25 6 86 0 73.5
Wood 0 8 7 38 71.7

Producer’s Accuracy 64.3 82.0 77.5 82.6

July without NDVI Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 48 1 11 0 80.0
Bare Ground 0 67 3 1 94.4

Other Veg 22 6 89 0 76.1
Wood 0 15 8 45 66.2

Producer’s Accuracy 68.6 75.3 80.2 97.8

July NDVI Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 50 1 15 0 75.8
Bare Ground 0 73 2 2 94.8

Other Veg 20 6 88 0 77.2
Wood 0 9 6 44 74.6

Producer’s Accuracy 71.4 82.0 79.3 95.7

Table 6. Confusion matrix for supervised classification for October 2018, for RGB (red, green, and blue
wavelengths), multispectral imagery (red, green, blue, near-infrared, and red-edge wavelengths), and
multispectral imagery with NDVI values. Reference pixels are displayed by column and classified
pixels are displayed by row. All vegetation that was not juniper was grouped under the class of
“Other Veg”.

Oct RGB Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 58 0 0 0 100.0
Bare Ground 0 67 9 5 82.7

Other Veg 11 17 76 7 68.5
Wood 1 16 7 42 63.6

Producer’s Accuracy 82.9 67.0 82.6 77.8

Oct without NDVI Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 62 0 0 0 100.0
Bare Ground 0 67 9 5 82.7

Other Veg 8 17 76 7 70.4
Wood 0 17 7 41 63.1

Producer’s Accuracy 88.6 66.3 82.6 77.4

Oct NDVI Reference

Classified Juniper Bare Ground Other Veg Wood User’s Accuracy

Juniper 62 1 0 0 98.4
Bare Ground 0 68 7 5 85.0

Other Veg 8 16 77 6 72.0
Wood 0 13 9 44 66.7

Producer’s Accuracy 88.6 69.4 82.8 80.0
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Table 7. Overall accuracy and Cohen’s kappa coefficient for supervised classification of each
orthomosaic. Method refers to the kappa coefficient across all classes while juniper refers to the
kappa coefficient only for juniper.

Overall Accuracy (%) Kappa (Method) Kappa (Juniper Only)

Jul 18: RGB 76.6 0.72 −0.08
Jul 18: MS only 78.8 0.71 0.69

Jul 18: MS+NDVI 80.7 0.74 0.71
Oct 18:RGB 76.9 0.71 0.47

Oct 18: MS only 77.8 0.70 0.88
Oct 18: MS+NDVI 79.4 0.72 0.88

4. Discussion

This research examined the use of ground and UAV-based techniques to assess vegetation
characteristics in two watersheds, one dominated by juniper and one where the majority of juniper
was removed 14 years ago. We hypothesized that the use of high-resolution UAV imagery could be
used to reasonably estimate canopy cover and juniper density at this study site.

4.1. Juniper Canopy Cover

Our ground-based tree canopy cover estimates (0.7% treated WS; 29.2% untreated WS) were
similar to those by Ray et al. [44] who, 10 years post-treatment, estimated <1% juniper cover in the
treated WS and 30% in the untreated. Our results are also similar to those by Bates et al. [50] for a
similar western juniper ecosystem in southeastern Oregon; where juniper saplings occupied 0.8% of
the treated plots and mature juniper occupied 29.6% of the control plots 12 years post-treatment.

Results also indicate that canopy cover estimated from vegetation indices (TRVI, NDVI, and
OSAVI) derived from multispectral imagery were similar to the ground-based canopy cover estimates.
Our results are similar to those by Davies et al. [51] who found a strong correlation between juniper
cover estimates made using National Agriculture Imagery Program imagery and ground-based
measurements using line intercepts.

Canopy cover estimates using a vegetation index (TGI) based on RGB data were not as close to
our ground-based estimates when compared to those obtained using multispectral imagery. However,
when supervised classification was used with RGB imagery, we found that canopy cover estimates
substantially improved when compared to the use of TGI. This is similar to the findings from other
studies that have successfully used RGB imagery to estimate canopy cover in other settings such as
dense beech forests [26] and rice fields [52].

4.2. Juniper Sapling Density and Vegetative Cover

Our ground-based estimates of juniper density (797 trees ha−1) in the untreated WS were similar to
those (743 trees ha−1) reported by Fisher [43] in 2004. Supervised classification applied to multispectral
imagery (with and without NDVI) collected in October 2018 produced similar estimates of juniper
sapling density (0.7% and 1.0%) compared to our ground-based results (0.7%).

Several studies [24,53] have highlighted the impact of seasonal collection on the accuracy of
vegetation detection. In this study, the accuracy of juniper detection in the treated WS monitoring plot
was greater for October imagery when compared to July imagery. Visible differences in vegetation
were apparent in the imagery collected in the fall compared to the summer, this due in part to the
non-juniper vegetation had senesced or displayed reduced vigor compared to the July imagery. While
data collection occurred at around the middle of the day for both flights, differences in illumination
were also clear in the images. The use of RGB imagery also resulted in lower producer’s and user’s
accuracies of juniper identification compared to multispectral imagery of the same month. Furthermore,
low kappa coefficients of the juniper class for RGB imagery were observed during both seasons while
much higher kappa coefficients for the juniper class were observed with multispectral imagery in

70



Forests 2019, 10, 296

October. Similar to our findings, Everitt et al. [54] found differences in reflectance characteristics
between juniper and surrounding vegetation during summer and spring. Juniper in northwest Texas
was also found to have different reflectance characteristics than other species during the month of
February but no other times of the year [55].

4.3. Study Limitations and Future Research

The differences in canopy cover estimates and juniper density observed may be related to
techniques and timing of data collection. While all flights were conducted around the same time of
day, differences in cloud cover and topography may have influenced shading and vegetation index
values. Small differences in threshold values will likely influence the canopy cover estimate and
inherent differences in the ground-based measurement methods have also been found to contribute
to differences in canopy cover estimates in semiarid woodlands [56]. The belt transects in the
treated WS captured a wider range of topography and slopes within the watershed compared to
the UAV-monitoring plot, which may not be representative of the differing vegetation characteristics.

By using small monitoring plots we were able to compare ground measurements more directly
to UAV analysis to determine accuracy. However, a larger study area would encompass more
topographical features of the watershed allowing us to compare results by aspect and slope. In addition
to density and canopy cover, sapling height is an important characteristic in understanding juniper
re-establishment. The use of UAV-based imagery to measure tree height has been demonstrated
in several studies [57–59], and may provide important information regarding juniper height at this
study site in future research. However, the height of juniper saplings may be similar to much of the
surrounding vegetation (e.g., sagebrush) so consideration should be given to the age and structure of
juniper stands.

The choice of pixel-based classification methods can influence results. A support vector machine
(SVM) approach was used for supervised classification in this study. The use of SVM offers advantages
over some other supervised classification methods, such as the maximum likelihood classifier, as it does
not require the data to be normally distributed. However, Otukei and Blaschke [60] found that decision
trees outperformed both support vector machine and maximum likelihood classifier approaches
for land cover classification in open woodlands in Portugal, although all three methods produced
acceptable accuracies. Another study, Joy et al. [61] successfully used decision trees to identify key
vegetation types within a mixed woodland ecosystem that included pinyon-juniper species.

The accuracy of supervised classification is also dependent upon the training samples. Challenges
associated with pixel-based analysis result when individual pixels may represent different classes
(e.g., bare ground and wood), which may have accounted for some misclassification of wood and bare
ground pixels in this study. If classes are very similar, misidentification and misclassification can occur.
The use of a hybrid approach may also improve accuracy at our study site. Kumar et al. [62] found that
the use of unsupervised and supervised classification together improved land cover classification in a
semiarid region over using either approach alone. Additionally, in this study we used the pixel digital
numbers, without radiometric calibration, for analysis. While imagery was visually assessed, in order
to assess temporal changes or fuse imagery from multiple dates together, radiometric corrections
should be made in future research.

This study utilized pixel-based image analysis based on pixel brightness values. Future research
utilizing object-based image analysis (OBIA) incorporating shape and texture into classification may
help delineate between juniper and other vegetation species. Baena et al. [63] found that OBIA, when
used in combination with structure from motion (SfM) derived height models, could be used to assess
the density of tree species in Northern Peru. While the ArcGIS Majority Filter tool was used in this
research to minimize isolated pixels, the use of OBIA has been shown to reduce the amount of scattered
pixels in high-resolution imagery [64].

The results of this study demonstrated the potential use of quadcopter UAV for evaluating
juniper canopy cover and density, when seasonal limitations for data collection are considered. As in
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Breckenridge et al. [65], our vegetative cover measurements using UAV-based multispectral imagery
were similar to ground-based measurements. However, the accuracy of juniper sapling identification
varied between seasons. Similar to the results found by Tay et al. [39], we found that pixel-based
classification applied to UAV images can accurately detect and monitor vegetation. Given the large
scale of juniper expansion and time requirements associated with ground surveys, the use of UAV
offers the advantage of more efficient data collection compared to using ground-based techniques
alone. UAV also offer a high-resolution, flexible platform which can be used by land managers to
target specific study sites, times, and objectives.

Our study was specifically designed to evaluate UAV techniques for the management of juniper
ecosystems. Similar to research by Lehmann et al. [66], future research at this study site includes
expanding the techniques used in this study to characterize the spatial distribution of invasive species
such as cheatgrass, which negatively affect rangeland ecosystems in the Pacific Northwest. A variety
of other UAV applications such as in forest conservation planning, post-fire recovery, and estimation
of dendrometric parameters for timber extraction forecast will likely become more common in the near
future [67] because of the high cost, time and labor involved in traditional extensive field methods,
especially in inaccessible locations [68].

5. Conclusions

This study evaluated western juniper canopy cover and density in a treated (juniper removed)
and an untreated WS using ground-based and UAV-based methods. This research found that, as
expected, juniper canopy cover and density were greater at the untreated WS compared to the treated
WS. When supervised classification or multispectral vegetation indices were used, estimates of mature
juniper canopy cover were similar to ground-based results. Additionally, we found that juniper sapling
reestablishment post-treatment was of similar magnitude to that obtained in previous studies by
different methods in the same ecosystem.

The results of this study also emphasize the importance of considering the seasonal characteristics
of vegetation when collecting data. Juniper identification was more accurately achieved with October
multispectral imagery than with July multispectral imagery or with RGB imagery. However, estimates
of vegetation cover in the treated WS were similar, with the exception of RGB imagery from October,
to ground-based estimates regardless of the season of collection. Although specific objectives and data
collection regimes should be considered, UAV techniques are promising tools for monitoring western
juniper expansion and monitoring vegetation cover in semiarid ecosystems.
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Abstract: Varying reproduction strategies are an important trait that tree species need in order both
to survive and to spread. Black locust is able to reproduce via seeds, stump shoots, and root suckers.
However, little research has been conducted on the reproduction and spreading of black locust in short
rotation coppices. This research study focused on seed germination, stump shoot resprout, and spreading
by root suckering of black locust in ten short rotation coppices in Germany. Seed experiments and
sample plots were analyzed for the study. Spreading was detected and measured with unmanned
aerial system (UAS)-based images and classification technology—object-based image analysis (OBIA).
Additionally, the classification of single UAS images was tested by applying a convolutional neural
network (CNN), a deep learning model. The analyses showed that seed germination increases with
increasing warm-cold variety and scarification. Moreover, it was found that the number of shoots
per stump decreases as shoot age increases. Furthermore, spreading increases with greater light
availability and decreasing tillage. The OBIA and CNN image analysis technologies achieved 97%
and 99.5% accuracy for black locust classification in UAS images. All in all, the three reproduction
strategies of black locust in short rotation coppices differ with regards to initialization, intensity,
and growth performance, but all play a role in the survival and spreading of black locust.

Keywords: Robinia pseudoacacia L.; reproduction; spreading; short rotation coppice; unmanned aerial
system (UAS); object-based image analysis (OBIA); convolutional neural network (CNN)

1. Introduction

The spreading of tree species is influenced by overcoming barriers (e.g., geographical) as well as
survival and reproduction strategies. Trees are able to reproduce generatively via seeds, and vegetatively
as well, for example via stump shoots or root suckers. Nevertheless, little research has been conducted
on the reproduction and spreading strategies of black locust in short rotation coppices. However,
examining the details within a holistic perspective of reproduction strategies for tree species may
improve the estimation of spreading and survival potential, especially of non-native or invasive
tree species.

Black locust (Robinia pseudoacacia L.) originated in the eastern part of North America, particularly in
the Appalachian regions [1,2]. By the early 17th century, black locust had been introduced to Europe [3–6].
Today, black locust appears in many European countries, especially in Hungary, Northern Germany,
Western Poland, Czech Republic, Southern Slovakia, and Eastern Austria [6]. In Germany, a change in
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energy policies aimed towards a reduction in the use of fossil fuels and greater utilization of renewable
energy since 2004 [7] marked an increase in fast-growing tree production, including black locust in short
rotation coppices (harvested every 2–20 years) [8,9]. Nevertheless, some studies have declared black
locust to be an invasive non-native tree species in Europe [6,10–12]. However, other studies consider
black locust to be an alternative tree species, for example for European ash (Fraxinus excelsior) [13,14],
whose high dieback is caused by the fungal pathogen Hymenoscyphus fraxineus [14].

Black locust possesses many growth characteristics that makes it ideal for short-rotation biomass
production such as: rapid growth, high drought tolerance, and nitrogen-fixation [15,16], as well as the
ability to reproduce via stump shoots in response to harvest. Black locust starts flowering at the age
of six years [17]. Many insects benefit from this characteristic, including honeybees [18]. Moreover,
the production of black locust honey is very common and economically important, especially in
Hungary [17]. A maximum of 15,559 flowers per tree were counted in an eight-year-old black locust
plantation [18], and 12,000 seeds/m2 were identified in a monodominant stand [6,19]; black locust
thus produces an abundance of seeds. As black locust belongs to the Fabaceae family, the seed coat is
hard and impermeable [20,21]. Hence, seeds require scarification for successful germination [21–23]
and priming of seeds is favorable [21,24,25]. Seeds prefer mineral-rich sandy and loamy-sandy
soil [17,26,27]. Additionally, seeds are dormant [28] and Voss and Edward [29] observed germination
of black locust seeds 88 years after the seeds were collected. Moreover, increasing germination and
seedling density was observed in the year immediately following a fire event; it is likely that some
seeds survive fire and benefit from the light availability [30–32]. Nevertheless, scarification intensity
has not been researched much, particularly in seeds from an eight-year-old short rotation coppice.

Vegetative reproduction strategies of black locust include re-sprouting stump shoots and root
suckers. Stump shoot sprouting occurs in many broad-leafed trees in response to harvest or damage
and is a characteristic feature of the special forest management practice known as (short rotation)
coppicing. Stump shoots typically grow in densely populated stands and often have several shoots per
stump. The biomass production differs compared to non-harvested trees, especially for black locust [33].
To account for this, specific yield tables and growth models for coppices of different broad-leafing
tree species were developed [34–46]. Moreover, in nutrient-poor and sandy forest stands, a decreasing
number of black locust stump shoots with increasing shoot age and a wide variety of stump shoots
depending on the stump distance and stump age was observed [47,48]. However, the sprouting
intensity and dieback of black locust shoots with increasing shoot age in densely populated short
rotation coppices have not been a focus of research up to now.

The spreading of black locust short rotation coppice seems to take place primarily via root
suckering [49]. Root suckers are shoots which grow from adventitious buds in roots of trees or shrubs.
Crosti et al. [50] observed decreasing spreading intensity of black locust in orchards and nearby forests
in Italy. Furthermore, Vítková et al. [6] published an overview of the distribution of black locust
in central and eastern Europe on a landscape scale based on inventory data. However, there is a
lack of knowledge about the spreading potential of black locust on a small scale, particularly with
respect to short rotation coppice. Thereby, tree species detection and spreading could be analyzed via
field measurements [50], satellite data [51,52], airplanes, or unmanned aerial systems (UAS) [53–63].
Field measurements are usually time consuming. Satellite data can be used to detect ecosystem
structures and changes for large areas [64–68]. However, fine-scale field maps are difficult to generate
from satellite or airplane data because they have a low spatial and temporal resolution and are
generally expensive. Therefore, UAS allow the detection of ecosystem structures and changes
offering a higher spatial resolution of small, specific, and detailed vegetation structures [18,69].
Additionally, UAS have quick turnaround times, are very cost-efficient and are useful supplements to
data from satellites, airplanes, terrestrial manual, and other data analyses. Invasiveness analysis using
UAS was demonstrated by Lehmann et al. [70] for invasive Acacia mangium management in Brazil.
Müllerová et al. [71] conclude that the near-infrared (NIR) spectrum is very important for detecting
black locust via satellite and UAS. Common approaches to analyzing UAS images are pixel-based
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analysis [18] and object-based image analysis (OBIA) [70], primarily including structure from motion
(SfM) point clouds [53–55,57,58,60]. Nevertheless, OBIA has not yet been used to analyze the spreading
of black locust in short rotation coppices.

Furthermore, there is an increasing interest in machine learning algorithms for data and image
analysis, such as the application of the random forest model [52,72–76], support vector machine [73–76],
and deep learning algorithms, especially convolutional neural networks (CNNs) [62,73,75,77–79].
However, CNNs were not previously utilized for the classification of black locust in short rotation
coppices under varying conditions in single images.

The main purpose of this study is to estimate and monitor the invasiveness potential of black
locust. Therefore, in the current study, we analyze the seed germination, stump shoot survival, and
spreading of black locust planted in short rotation coppices. We investigate the seed germination of
3000 seeds, focusing on six different seed experiments. After the treatment, the seeds were seeded in
planting boxes and watered. Moreover, we estimate black locust stump shoot sprouting and dieback
with the aid of sample plots in seven different sample areas, including 5244 stump shoots. For this
purpose, the relationship of the planted trees and the current shoots per stump were calculated.
Additionally, spreading was estimated in short rotation coppices at a length of 2124 m based on UAS
images by using OBIA. Furthermore, a deep learning algorithm was tested to classify black locust
under varying light conditions, flying altitudes, UAS, and cameras in single images. This study deals
with the following research questions:

(1) What is the average germination of black locust seeds after six different seed treatments?
(2) How many stump shoots survive in short rotation coppices depending on shoot age?
(3) What is the average sprouting distance of black locust, depending on neighboring forest, meadow,

farmland, and along a dirt road analyzed via OBIA in UAS images?
(4) What is the accuracy and loss of black locust classification in single UAS images under varying

conditions by using a CNN?

2. Materials and Methods

2.1. Site Description

The ten analyzed study sites were located in northeastern Germany (Table 1, Figure 1). The annual
precipitation ranges between 495 mm and 671 mm and the mean annual temperature ranges between
7.4 ◦C and 9.4 ◦C [80]. The elevation above sea level is 22 to 149 m. Seeds were collected in winter 2016 in
two eight-year-old R. pseudoacacia short rotation plantations in Germany (Lauchhammer and Röblingen).
Thereafter, the seeds were stored in a seed bank (Thuringia, Germany). Stump shoot sample plots in
seven study sites were analyzed between November 2016 and March 2017. The UAS images and field
data for the spreading analysis were collected in May 2018 in Grunow-Dammendorf (Germany).

Table 1. Site description including location, longitude (long), latitude (lat), tree/shoot age, and
analysis methodology.

Site Abbreviation Location Long (◦E) Lat (◦N) Tree/Shoot Age Analysis

BG Blumberg 14◦10′24′′ 53◦12′25′′ 3 Stump shoot
BH Buchholz 12◦38′9′′ 53◦15′34′′ 2 Stump shoot
DA Grunow-Dammendorf 14◦25′5′′ 52◦8′26′′ 4 Spreading
GU Gumtow 12◦14′11′′ 52◦59′46′′ 2 Stump shoot
KL Klein Loitz 14◦30′57′′ 51◦36′35′′ 3 Stump shoot
LH Lauchhammer 13◦50′57′′ 51◦32′20′′ 8 Seed collection
PA Paulinenaue 12◦43′52′′ 52◦39′44′′ 3 Stump shoot
RM Röblingen 11◦42′42′′ 51◦25′57′′ 8 Seed collection
WA Wainsdorf 13◦29′4′′ 51◦24′50′′ 1 Stump shoot
WZ Welzow 14◦14′7′′ 51◦33′32′′ 1 Stump shoot
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Figure 1. Map of the study area in Europe, indicating the ten R. pseudoacacia sampling sites in
Germany [81]. Red triangles are sites visited for seed collection, green dots are the sites where
sample plots for the stump shoot analysis were measured, and the purple square is the study site
of the UAS image analysis, which was applied for the spreading detection. For an overview of site
abbreviations, see Table 1.

2.2. Reproduction Analysis

The analysis was divided into three parts (Figure 2) to estimate the reproduction and spreading
of black locust: seed, stump shoot, and root suckering analysis. Seed germination was undertaken to
determine differences in seed treatments. Sample plots were used for the stump shoot analysis, which was
conducted to analyze the number of shoots per stump depending on the shoot age. Spreading was
analyzed by using an UAS and image analysis to observe the spreading from a bird’s-eye view.

2.3. Seed Germination

The analysis of the seeds started in March 2018 and finished in July 2018. The seeds were seeded
in sandy mineral soil in planting boxes. We tested 100 seeds in five iterations for six treatments
(3000 seeds):

(I) seeds were seeded and watered,
(II) seeds were soaked for 24 h in water at a water temperature of 18 ◦C (64.4 ◦F) and then seeded

and watered,
(III) seeds were stored at an air temperature of 45 ◦C (113 ◦F) for two hours, and thereafter stored at

an air temperature of −20 ◦C (−4 ◦F) for a further two hours and then seeded and watered,
(IV) seeds were stored at an air temperature of 60 ◦C (140 ◦F) for two hours and thereafter stored for

two hours at an air temperature of −20 ◦C (−4 ◦F) and then seeded and watered,
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(V) seeds were scalded with hot water, seeded and watered, and
(VI) seeds were mechanically scarified, seeded and watered.

Figure 2. Flow chart showing the reproduction and spreading analysis: seed germination (a), stump
shoot analysis (b), and root suckering (spreading) analysis (c). Seeds were seeded in planting boxes,
and watered. Stump shoots were analyzed in sample plots. Spreading was estimated with the aid of
UAS-images [82].

We calculated the average seed germination, standard deviation (SD) and standard error of the
mean (SE) for each seed treatment. Furthermore, we performed an analysis of variance (ANOVA) with
the software R [83]. Seed data were (1) variance heterogeneous and (2) normally distributed. Therefore,
we applied a one-way analysis of means and pairwise t-test for pairwise comparisons [83,84].

2.4. Stump Shoot Analysis

In total, 5244 black locust stump shoots were investigated, measuring leafless stump shoots
in 33 sample plots. Sample plots sizes ranged from 4 to 6 m radius and contained a minimum of
150 stump shoots. All stump shoots in the sample plot were counted. Furthermore, the planting
distance was listed by the land manager and checked on the study sites. The measured number of
stump shoots per sample plot was divided by the number of established/planted black locust trees to
calculate the average number of shoots per stump, per site, and per age class. Moreover, we calculated
SD, SE, confidence interval (CI) with a default of 95% for each age class and performed an ANOVA [83].
Stump shoot data were (1) variance homogeneous and (2) normally distributed. Hence, we applied an
ANOVA as global test and Tukey test for pairwise comparisons [83,84].
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2.5. Root Suckering (Spreading)

Two quadrocopters were used as a UAS platform: Microdrones MD4-1000 [82] and dji Mavic
Pro [85]. The Microdrones MD4-1000 was equipped with two camera systems synchronously for
the image collection: a multispectral MAPIR Survey 3 (red, green, NIR) camera [86] with an image
size of 4000 × 3000 and a red-green-blue (RGB) SONY-ILCE-5100 [87] camera with a picture size of
6000 × 4000. Furthermore, the dji Mavic Pro took images with the aid of the RGB camera DJI FC220
(picture size of 4000 × 3000) [85]. Weather conditions were calm, and the lighting conditions varied
between sunny and cloudy.

2.5.1. Object-Based Analysis (OBIA)

The analyzed total length was 2124 m, whereby the neighboring areas were comprised of meadow
(726 m), farmland (565 m), dirt road (293 m), and pine forest (540 m). For georeferencing purposes,
13 white ground control points were randomly placed. In addition, planting lines were calibrated
by using a mobile differential global positioning system [88]. The altitude above ground level was
set at 30 m. To create 3D point cloud surface models, the image side and forward overlap were
set to 80% [89]. RGB and NIR image data were orthorectified and mosaicked using Pix4D mapper
software [90] to create a high-resolution orthoimagery. An SfM approach was used to calculate the
digital surface models.

In eCognition Developer software [91], the classification procedure via OBIA consisted of two
major steps: (A) segmentation and (B) classification. The multiresolution segmentation was used
to aggregate neighboring pixels into segments based on homogeneity criteria (shape, texture, color,
compactness, smoothness) and a scale factor (scale parameter) [92]. For the R. pseudoacacia classification,
the subsequent OBIA was performed using class-specific features. This involved spectral information
such as the mean green value, as black locust leaves have a specific light green. Furthermore,
the vegetation height (digital surface model–digital terrain model) has the advantage of classifying
distinctions of vegetation height for grass as well as trees in plantations and pine forests. To capture
black locust trees in the shade neighbor-related pixel values as a contrast to neighboring pixels are
important. The resulting classification of R. pseudoacacia were exported as shape files into Quantum
GIS (QGIS) [93]. Furthermore, during the field survey, marked points of the last planting lines were
connected. Starting from this last planting line, five zones from 0 to 10 m were generated with the
QGIS software. For each zone, we intercepted and measured the R. pseudoacacia cover. To calculate
the average distance of spreading (b), the covered area of black locust 0–10 m (A) was divided by the
length of the last planting line (a), as shown in Equation (1).

b =
A
a

(1)

The accuracy of classification was evaluated by selecting random samples. These randomly
selected samples were then manually classified via a visual on-screen interpretation of the available
image information together with additional field data. Therefore, 150–200 points were randomly
distributed. The object classification was verified among R. pseudoacacia and non-R. pseudoacacia. Based
on the samples, a confusion matrix was produced to evaluate the accuracy of the final classifications,
including overall, user’s, and producer’s classification accuracies and the Kappa Index of Agreement
(KIA) [94,95].

2.5.2. Classification via Deep Learning–CNN

A deep learning algorithm on single UAS images was applied to classify black locust and
non-black locust. Therefore, 1000 RGB images were selected. Black locust was detected with varying
light conditions (sunny and cloudy), flying altitudes (15 m, 30 m, and 100 m), UAS, and cameras (listed
in Section 2.5), and thus different structures and colors. In Python [96] via Jupyter Notebook [97] the
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tensorflow [98] and keras [99], as well as matplotlib [100], numpy [101], pandas [102], and sklearn [103]
libraries were applied for the construction and calculation of the CNN [104,105]. The images were
therefore split into train (80%) and test data (20%). The applied CNN structure is presented in Figure 3.
In each block, there are convolutional layers and a sub-sampling by max-pooling. In the convolutional
layer in the first block, 64 filters with a size of 3 × 3 were used. In the second block 128 feature
channels were integrated, and in the third block 256 feature channels were integrated. The activation
function was the rectified linear unit (relu)-function [106]. As an optimization algorithm, we used
“Adam” (adaptive moment estimation) [107]. Adam integrates moment and the adaptive learning
rate. Furthermore, to avoid overfitting and to allow generalization, we integrated dropouts [106] after
each max-pooling and fully connected-layer. The total number of trainable parameters is 4,787,330 per
image. We tested our CNN architecture without and with dropout layers: (A) including 6 convolutional
layers, 3 max-pooling layers, 1 flatten layer, and 2 fully connected layers; (B) including 6 convolutional
layers, 3 max-pooling layers, 1 flatten layer, 2 fully connected layers, and 4 dropout layers (Figure 3).
To evaluate the applied CNNs, the loss and the accuracy of the train and test data were computed.

Figure 3. Convolutional neural network (CNN) structure as applied deep learning algorithm.
Conv–convolutional layer (light green), pool–max-pooling layer (yellow), drop–dropout layer (blue),
flat–flatten layer (pink), dens–fully connected layer (dark green).

3. Results

3.1. Seed Germination

Black locust seed germination after seeding on sandy mineral soils is presented in Figure 4. Seed
germination increased with increasing scarification. Hence, seeds directly sown and watered reached
6% germination. By soaking the seeds for 24 h, 8% of the seeds sprouted. By warming the seeds
for two hours at 45 ◦C/60 ◦C (113 ◦F/140 ◦F) and for two hours at −20 ◦C (−4 ◦F) as warm-cold
variation, the germination reached 23%/69%. Scalding with hot water attained germination of 72%
and mechanical scarification resulted in 90% of the seeds sprouting. Moreover, scalding of seeds
achieved the highest standard error of the mean (Figure 4). The variance differs significantly (p-value
< 0.05) by comparing all applied seed treatments. Nevertheless, the differences were non-significant
(p-value > 0.05) between treatments I and II, IV and V, as well as V and VI (Table 2).

Table 2. Pairwise t-tests of the black locust seed germination by (I) directly sowing, (II) 24 h soaking,
(III) warm-cold treatment for two hours at 45 ◦C and two hours at −20 ◦C, (IV) warm-cold treatment of
two hours at 60 ◦C and two hours at −20 ◦C, (V) hot water scalding, and (VI) mechanical scarification.

Treatment I II III IV V

II 0.3365
III <0.001 <0.001
IV <0.001 <0.001 <0.001
V 0.0086 0.009 0.015 0.750
VI <0.001 <0.001 <0.001 0.011 0.274
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Figure 4. Black locust seed germination (%) by (I) directly sowing, (II) 24 h soaking, (III) warm-cold
treatment for two hours at 45 ◦C and two hours at −20 ◦C, (IV) warm-cold treatment of two hours at
60 ◦C and two hours at −20 ◦C, (V) hot water scalding, and (VI) mechanical scarification. The error
bars show the standard error of the mean per seed treatment. Database = 3000 seeds.

3.2. Stump Shoot

The average number of shoots per stump decreases with increasing age (Table 3 and Figure 5).
Thereby, the average number of shoots per stump is 4.17 one year after the last harvest, shoots
aged 1 year. Two years after the last harvest, an average of 3.61 shoots per stump are alive. In the
third year after harvest, the value decreased to 2.18 shoots per stump. The values of the SD, SE,
and CI are largest in the 3-year age class and smallest in the 2-year age class. Furthermore, there
was a statistically significant difference between age classes as determined by ANOVA (Table 3).
Nevertheless, the differences were non-significant between age classes 1 and 2 (p-value 0.313), but
significant between age classes 1 and 3 (p-value <0.001) and between age classes 2 and 3 (p-value 0.008).

Table 3. Average number of shoots per stump and per age class as well as the plot and shoot database.

Site
Abbreviation

Shoot
Age

Plots Data
Average
Shoots

Shoots
Per Age

SD SE CI p-Value

WA
1

4 680 2.87
4.17 1.12 0.32 0.71

<0.001

WZ 8 1331 4.82

BH
2

6 1000 3.98
3.61 0.61 0.16 0.35GU 8 1314 3.34

BG
3

3 441 1.56
2.18 1.19 0.45 1.10KL 3 478 3.38

PA 1 167 0.44

SD: standard deviation; SE: standard error of the mean; CI: confidence interval (default 95%).

3.3. Root Suckering (Spreading) via OBIA

In Table 4 and Figure 6, the proportion of black locust classified by OBIA in the five zones is
shown in percentage depending on the surrounding area: meadow, farmland, dirt road, and pine
forest. Furthermore, the average distance is presented in the last row. The further away from the
last planting line, the lower the proportion of black locust. Average spreading is highest to dirt road
and meadow.
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Table 4. Zones 0–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m and the average distance as spreading of black
locust depending on the surrounding area: meadow, farmland, dirt road, and forest.

Zone 0–2 m (%) 2–4 m (%) 4–6 m (%) 6–8 m (%) 8–10 m (%) Average Distance (m)

Meadow 43.99 32.37 14.86 3.00 0.33 1.89
Farmland 27.45 19.60 9.78 0.91 0.07 1.16
Dirt road 41.96 37.81 26.07 6.38 0.58 2.26

Forest 40.23 25.42 7.79 1.14 0.002 1.49

Figure 5. Average number of shoots per stump in relation to the shoot age and the standard error of
the mean (data = 5244 shoots). Detailed values are presented in Table 3.

Figure 6. Spreading: outline average values of the areas; 0–2 m, 2–4 m, 4–6 m, 6–8 m, 8–10 m depending
on the surrounding areas: meadow, farmland, dirt road, and pine forest. The spreading depends on
the proportion of black locust; dark green stands for 40%–50%, light green indicates 30%–40%, yellow
is 20%–30%, orange 10%–20% and red 0%–10%. The arrows show the average spreading distance of
black locust. For an overview of the results, see Table 4. Database = 2124 m [82].
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At 43.99%, the highest value in the 0–2 m zone is reached if the surrounding area is meadow, and
the smallest, 27.45%, if the surrounding area is farmland. In the following four zones 2–10 m, the highest
black locust quantity is measured if the surrounding area is a dirt road. Generally, the spreading in the
first 2 m from the last planting line to the neighboring area is between 40%–50% if the neighboring
area is meadow, dirt road, and forest. In the zone from 4–10 m, the proportion is around 0%–10% if the
neighboring area is forest or farmland, and in the zone from 6–10 m, the proportion is 0%–10% if the
neighboring area is meadow or dirt road. Furthermore, the highest average distance, 2.26 m, is reached
if the surrounding area is a dirt road (arrow in Figure 6). At 1.89 m, the second highest average distance
is measured if the surrounding area is meadow. In the case of the forest as the surrounding area,
the average distance is 1.49 m. The smallest average distance, 1.16 m, is reached if the surrounding
area is farmland. The overall accuracy of the OBIA analysis is 0.97 and the overall KIA is 0.93 (Table 5).
The producer and user accuracy ranged between 0.96 and 0.98.

Table 5. Confusion matrix of the classification R. pseudoacacia and non-R. pseudoacacia via object-based
image analysis (OBIA). KIA stands for Kappa Index of Agreement.

Actual

R. pseudoacacia Non-R. pseudoacacia

Pr
ed
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ud
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177 7

N
on

-R
.p

se
ud

oa
ca

ci
a

5 174

Producer Accuracy 0.975 0.962

User Accuracy 0.963 0.972

KIA Class 0.942 0.928

Overall Accuracy 0.966

KIA Overall 0.932

3.4. Classification via CNN

The CNN architecture without dropout layers (A) reached a 90% test accuracy and a 99.7% train
accuracy. The test loss was 0.395 and the train loss achieved 0.009. The model of the CNN (B) used for
classifying R. pseudoacacia and Non-R. pseudoacacia is presented in Table 6. On the left-hand side are
image examples of test data of R. pseudoacacia (1) classifications with varying flying altitudes, light
conditions, UAS, and cameras. On the right-hand side are examples of test data of Non-R. pseudoacacia
(0) category. The CNN’s (B) accuracy (Figure 7) in classifying R. pseudoacacia (1) and Non-R. pseudoacacia
(0) increased quickly. After a small number of iterations, the accuracy of the training and validation
dataset increased by over 90%, ranging between 90 and 100% from iteration 5 to 50. The training
accuracy reached 99.7% and the test accuracy 99.5%. The training and validation loss reduced from 0.7
to a range between 0 and 0.2. Finally, the training loss was 0.009 and the test loss 0.027. The time for
fitting the model was 24.2 min, with 3.83 billion training parameters included.
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Table 6. Classification examples of the test data set; R. pseudoacacia ((a), category 1) and Non-R.
pseudoacacia ((b) category 0): meadow, dirt road, pine forest, and farmland. Pred is the abbreviation for
Prediction. True and the green color of the labels show that the prediction (output in Figure 3) and the
class (input in Figure 3) are equal.

(a) Robinia pseudoacacia L. (b) Non Robinia pseudoacacia L.

 

1 True
1 Pred

 

0 True
0 Pred

 

1 True
1 Pred

 

0 True
0 Pred

 

1 True
1 Pred

 

0 True
0 Pred

 

1 True
1 Pred

 

0 True
0 Pred
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Figure 7. Accuracy (a) and loss (b) of the training and validation (=testing) data for classification of
R. pseudoacacia and Non-R. pseudoacacia, depending on the iterations. Dataset = 1000 images; 80% for
training and 20% for testing.

4. Discussion

Reproduction strategies of tree species are an important basis for the survival in spatially
and temporally varied ecosystems. However, the reproduction and spreading of black locust in
short rotation coppices in Germany have not been analyzed until now. In this study, by applying
seed experiments, stump shoot analysis, and spreading measurements, we create an overview
of the invasiveness potential of black locust in short rotation coppices in a temperate climate
zone. Black locust reproduces generatively via seeds and vegetatively via stump shoots and root
suckers. These three reproduction strategies improve the survival of black locust in many ecosystems
globally [6,17,108–114]. Thereby, the reproduction and spreading increases with greater damage to the
seed coat and the harvest of black locust trees. Further favorable conditions are sandy soil and high
light availability.

Reproduction via seeds is a successful strategy for plants globally. Black locust seeds have a hard
and impermeable seed coat [20,21]. In the present study, we observed that seed germination increased
with increasing mechanical scarification. This is in line with Vines [22] and Redei et al. [23]. Moreover,
the seed experiment shows that germination increases when the warm-cold variation is increased.
It might be possible that when the warm-cold variation increases, micro-cracks appear, water enters,
and light stimuli facilitates the growth processes. During mechanical scarification, the seed’s coat is
directly damaged and the seedling’s development can start. Tompa and Szent-Istvany [115] conclude
that hot water treatment was less effective for black locust seed germination. In our study, seeds soaked
for 24 h had a 2% higher germination compared to the directly seeded category, with a 6% germination.
However, there was no statistically significant difference between seed treatments I) directly seeded
and II) soaked in water (18 ◦C/64.4 ◦F) for 24 h. However, scalding with hot water yielded the second
highest average germination value, with germination above 70%, as well as the highest standard
error of the mean. The reason could be the appearance of microcracks in some seed coats and for
others the scalding stimulus might be too weak, as the seed coat permeability varied. The applicability
of scalding for increasing germination is in line with Velkov [25], as well as with Bogoroditskii and
Sholokhov [24]. All in all, it is important to crack and open the seed coat for successful germination.
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We have to stress that seeds were collected in winter 2016 and only from two former mining areas, as
the black locust trees were non-harvested, aged 8 years, and abundant seeds were collectable. It might
be possible that the seed quality and germination from different former types of utilization, sites, stand
ages, and years vary, as it is described by Redei et al. [17]. Therefore, depending on the seed samples,
the absolute results may differ. However, the relative results might be similar. It is important to note,
that flowering and reproduction via seed usually starts at the age of six years [17]. For younger short
rotation coppices, the reproduction via seeds might be neglectable. Further research could focus on
additional seeds selected at different sites, such as urban sites, pure and mixed forests, and on varying
age, years, etc. The seed experiments could be planned as field experiments to analyze the influence of
fire [31], landscape destruction [31,49], dryness, insects, diseases [116], storms, landslides [32], etc.

Building stump shoots after being damaged or harvested is a survival strategy of many broad-leafing
tree species. As black locust is able to build stump shoots, grows fast, and can grow on nutrient-poor
sites, this species was planted in short rotation coppices in Germany [33]. In this study, we estimate
that the number of shoots per stump decreases with increasing shoot age, which differs significantly
by comparing shoot age classes 1 and 3 as well as 2 and 3. This age–shoot relationship has already
been observed for black locust stump shoots in forest stands [47,48]. Zeckel [47] counted 13 shoots
on average, and Ertle et al. [48] observed seven shoots per stump one year after harvest, six stump
shoots in the second year after harvest [47,48], and four shoots per stump in the third and fourth
years after harvest [48]. Those values are higher compared with the stump shoot analysis of the
present study. In short rotation coppices, we observed on average 4.2 shoots per stump one year
after harvest, 3.6 shoots per stump two years after harvest, and 2.2 shoots per stump three years
after harvest. One reason for the difference in the number of shoots per stump in forests compared
with short rotation coppices might be the planting distance and the number of trees per hectare.
Forests were planted with 2000–3000 trees per hectare, and short rotation coppices typically with
8000–10,000 trees per hectare [9]. This fact corresponds with further observations that black locust
mortality increases in plantation and reclamation projects with higher density planting [117,118].
Furthermore, the range in number of shoots per stump widens as stump age and dieback of stumps
increases [47,48]. Additionally, significant differences were recorded among black locust biomass
production of trees (non-harvested) and stump shoots (harvested) [33] in short rotation coppices.
This study is a further step in understanding the relationships of the average shoot sprout and dieback
with increasing shoot age. The intensity of dieback and growth partitioning might also depend on the
aboveground and belowground resources. As belowground resources, water and phosphorus were
described as key drivers for competition among black locust trees and stump shoots [119]. Accordingly,
by increasing water and phosphorus availability, the competition among stump shoots and the dieback
of shoots increases. Additionally, the fact that the increasing shoot age correlates with a decrease in
the number of shoots per stump is important for managers of short rotation coppices, as the wood
biomass (quality) increases, but the shoots per stump (quantity) decreases. It could be interpreted that
it might be effective to plant black locust at greater planting distances, as more shoots will survive in
the first years after harvest. However, this feature could be also interpreted as a risk-minimizing and
quality-improving aspect. The slenderness is reduced and the risk of breaking due to wind or weight
(for example, abundant seeds) is decreased. The wood quality of the surviving shoots increases as the
relative bark proportion decreases and the relative wood proportion per shoot increases. Furthermore,
black locust wood differs among juvenile and adult wood [120–123]. Hence, as the black locust tree or
shoot becomes older, the wood quality could improve for energy use and construction timber. Further
studies might focus on the best planting distances for black locust to improve the target biomass and
wood production.

As a third reproduction strategy, black locust is able to spread via root suckering. We observed
that the spreading increases with increasing light availability and reduced tillage. The proportion and
average spreading distance are highest if the surrounding area is a dirt road or meadow. The proportion
and distance were lower if the neighboring area is a forest or farmland. The lower spreading distance
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to the farmland could be due to tillage by the land owner and the resulting destruction of the spreading
black locust roots. The reason for lesser spreading in the neighboring area if it is a forest could be the
light limitation due to the higher pine trees. As a light-demanding tree species, black locust growth is
reduced if the light availability is low [124]. This is in line with previous findings discussed in Crosti
et al. [50], who found that the density of black locust regeneration in Mediterranean ecosystems is
strongly affected by the land cover. Accordingly, abandoned agricultural land is most prone to black
locust colonization. The spread was lowest in a zone with orchards. This zone was described as very
effective for controlling black locust invasion [50]. Moreover, our study shows that independent of the
neighboring area, the proportion of black locust cover and spreading decreases, the longer the distance
is to the plantation. Therefore, it seems that the spreading is a step-by step-process. Nevertheless,
it has been found that black locust is able to spread locally up to 1 m per year [125]. Huntley [2] and
Grese [126] describe that root sprouting usually begins when plants are 4 years old and increases
rapidly in full sun, open areas, and particularly in sandy soil [126]. As with stump shoots, sprouting is
a response to disturbance, and sprouts need sufficient light to survive [32]. Moreover, as black locust
belongs to the family Fabaceae, it is able to fix atmospheric nitrogen via rhizobia [15,16], which results
in an increasing nitrogen concentration and a change in the chemical compositions in the soil [127–129].
In Europe, particularly in Germany, nature conservation areas are often open areas, such as dry and
semi-dry grasslands, which belongs to the most species-rich and endangered types of habitats [130].
To protect such areas and avoid a black locust spreading, it is important to avoid planting black locust
close or next to protected areas. Long-term investigations might provide answers regarding further
ecosystem modifications of black locust. Moreover, on a global scale, the spreading of atmospheric
nitrogen fixing tree species is increasing [6,70,131]. This might be due to anthropogenic influences such
as an increased CO2 and nitrogen concentration in the atmosphere [132,133]. Additionally, the nitrogen
concentration often increases locally due to the usage of fertilizer on farmlands [134]. The increasing
spreading of atmospheric nitrogen fixing tree and shrub species that results in ecosystem-changing
processes by enriching the soil with nitrogen, seems to be a manmade issue. Moreover, increasing
temperature, reduced frost [2,135,136], and the dieback of tree species, such as European ash [13,14],
could result in a further increase in black locust and additional non-native tree species. It is important
to stress that the analyzed length to the neighboring areas varies and that mother stumps are missing
in a few planting lines, which might influence the results. Therefore, to validate the results further,
black locust stands with other neighboring ecosystems could be investigated.

The approach of combining UAS images with OBIA, as described in the present study, could
be the foundation to create a database to appraise the spreading and ecosystem changes caused
by R. pseudoacacia and could be further applied to non-native and native tree species. To this end,
UAS allows monitoring with a higher spatial resolution of small, specific, and detailed vegetation
structures [18,69,137] and avoids environmental damage. Another advantage of UAS images is the
possibility to generate 3D surface models [69]. The 3D surface models in this study were important for
the classification of the vegetation height of R. pseudoacacia, grass, and forest pine trees. The height of
the black locust trees in the analyzed plantation ranged between 0.2 and 3.0 m. This height classification
approach is common for tree analysis [53–55,57,58,60]. However, a limitation of current UAS images is
that depending on stand density only the top of the tree or stump shoot is detectable [138]. Solutions
could be the integration of high-resolution light detection and ranging (LiDAR) systems to an UAS [139]
or UAS flying below the canopy as a possibility for future technology. Both could detect the deeper
canopy and stand layers [139]. Along with the vegetation height, the neighbor-related pixel values
and contrast were important for detecting black locust trees in shade caused by higher vegetation or
cloud cover. Furthermore, the mean green values were considerable, as R. pseudoacacia leaves have
a specific light green. The advantage of OBIA compared to pixel-based analysis is the avoidance of
misclassification of single pixels [140,141]. OBIA includes geometric properties such as dimension
and texture of the target tree species and creates additional options as compared to pixel-based
analysis [92,142]. Nevertheless, the OBIA approach as applied in the present study relies on a labor-
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intensive survey, which needs expertise in image converting. This is generally time consuming and
expensive [143,144]. Furthermore, mistakes due to human operation are possible [145].

In addition, machine learning algorithms are increasingly being used for data and image
analysis [52,62,72–79]. The CNN applied in the current study was tested to classify single black locust
images under varying conditions and attained a high test accuracy of 99.5%. However, disadvantages
of CNN algorithms are that a high number of labeled training images should be available [146], as well
as the difficult traceability of the used classification features [105]. Nevertheless, studies [73,145,146]
have shown that when the training sample size was high, CNN tended to show better results and
accuracies compared to random forest, support vector machine, and fully convolutional networks.
Therefore, Liu and Abd-Elrahman [146] used 400 UAS images per object, Diegues et al. [147] applied
about 700 underwater images, Abrams et al. [148] operated with 700 canopy and 800 understory
images per habitat class as well as Li et al. [73] used 5,000 satellite images per category. In the present
study 1000 UAS images were selected to classify black locust and non-black locust. Moreover, varying
CNN architectures are existing and being further developed. We evaluate the classification accuracy
of two widely used CNN architectures: (A) including 6 convolutional layers, 3 max-pooling layers,
1 flatten layer, and 2 fully connected layers as simplified VGG architecture [104]; (B) including 6
convolutional layers, 3 max-pooling layers, 1 flatten layer, 2 fully connected layers, and 4 dropout
layers, which is similar to AlexNet architecture [106]. Our proposed approach (B), which includes
dropout layers, achieved a higher test accuracy at 99.5% compared with the applied VGG architecture
without dropout layers, which achieved a 90% test accuracy. Both CNN architectures achieved a 99.7%
training accuracy. Therefore, the applied VGG architecture tend to overfit the model. Nevertheless,
the applied dropout layers [106] in the applied AlexNet architecture avoided overfitting and allowed
generalization with a 99.5% accuracy by modelling 1,000 images. This is in line with previous
findings discussed in Li et al. [73], who found that the AlexNet architecture achieved the highest
accuracy in oil palm tree detection (satellite images) compared to LeNet [149] and VGG-19 architecture.
Single image classification of black locust, as applied in the present study, could be advanced
in further studies by applying CNN architectures for segmentation (e.g., semantic or pedestrian
segmentation) [62,145,150–152]. It is important to stress that the described CNN architectures were
tested on images of black locust in a short-rotation coppice at one site in a variation of flying altitudes
(15 m, 30 m, and 100 m), light conditions (sunny and cloudy), UAS (Microdrones MD4-1000 [82] and
dji Mavic Pro [85]), and cameras (SONY-ILCE-5100 [87] and DJI FC220 [85]). For a comprehensive
training and the applicability to different sites, further images of black locust from different age classes,
health conditions, seasonal change of leaf colors (e.g., spring and autumn in Central Europe), tree
heights, stand densities, competition [119], multiple mixed stands, environments, drones, etc., are
needed, but this methodology offers a new possibility for faster and automatic detection of black locust
and other tree species.

This study focuses on the reproduction of black locust in short rotation coppices in Germany in
order to improve the estimation of the spreading and survival potential. The analysis of generative
and vegetative reproduction shows that scarification increases germination, the numbers of shoots
per stump decrease with time, and sprouting is influenced by light availability. Our research study
gives an overview of the invasiveness potential and reproduction strategies of black locust in short
rotation coppices, which is important for managing black locust effectively, for example for biomass
production and nature conservation.

5. Conclusions

This study provides an overview of the reproduction strategies of black locust by analyzing
the reproduction and spreading in ten short rotation coppices in Germany. The seed experiments
focus on six different treatments in five iterations and show that seed germination increases with
increasing warm-cold variation (23%–69%), hot water scalding (72%), and mechanical scarification
(90%) of the hard and impermeable seed coat. Furthermore, after scalding with hot water, the seed
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germination reached the highest standard error of the mean. Moreover, the findings showed that the
seed germination is less than 10% when seeds were directly seeded or soaked in water (18 ◦C/64.4 ◦F)
for 24 h. Stump shoots were counted in sample plots in varying age classes (1–3 years). The numbers of
shoots per stump decrease as shoot age increases, which differs significantly by comparing age classes
1 and 3, as well as 2 and 3. Spreading of root suckers was analyzed with the aid of UAS platforms
and image analysis via OBIA. The spreading distance increases with increasing light availability and
is decreases with tillage. Thereby, the proportion and average spreading distance are highest if the
surrounding area is a dirt road or meadow. The proportion and distance were lower if the neighboring
area is a forest or farmland. Furthermore, we tested a CNN model to classify black locust under
varying conditions in single images (1000 images) and achieved a high accuracy of 99.5% by including
6 convolutional layers, 3 max-pooling layers, 1 flatten layer, 2 fully connected layers, and 4 dropout
layers. The methodology and results presented herein provide local managers, foresters, and scientists
with the opportunity to estimate reproduction and spreading of black locust and other tree species.
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The following abbreviations are used in this manuscript:

Adam Adaptive moment estimation
ANOVA Analysis of Variance
CI Confidence Interval
CNN Convolutional Neural Network(s)
h Hours
KIA Kappa Index of Agreement
LiDAR Light Detection and Ranging
NIR Near-InfraRed
OBIA Object-Based Image Analysis
QGIS Quantum GIS
RGB Red-Green-Blue
SD Standard Deviation
SE Standard Error of the Mean
SfM Structure from Motion
UAS Unmanned Aerial System(s)
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Abstract: Thematic mapping provides today’s analysts with an essential geospatial science tool
for conveying spatial information. The advancement of remote sensing and computer science
technologies has provided classification methods for mapping at both pixel-based and object-based
analysis, for increasingly complex environments. These thematic maps then serve as vital resources
for a variety of research and management needs. However, to properly use the resulting thematic map
as a decision-making support tool, an assessment of map accuracy must be performed. The methods
for assessing thematic accuracy have coalesced into a site-specific multivariate analysis of error,
measuring uncertainty in relation to an established reality known as reference data. Ensuring
statistical validity, access and time constraints, and immense costs limit the collection of reference
data in many projects. Therefore, this research proposes evaluating the feasibility of adopting the
low-cost, flexible, high-resolution sensor-capable Unmanned Aerial Systems (UAS, UAV, or Drone)
platform for collecting reference data to use in thematic map accuracy assessments for complex
environments. This pilot study analyzed 377.57 ha of New England forests, over six University of
New Hampshire woodland properties, to compare the similarity between UAS-derived orthomosaic
samples and ground-based continuous forest inventory (CFI) plot classifications of deciduous, mixed,
and coniferous forest cover types. Using an eBee Plus fixed-wing UAS, 9173 images were acquired
and used to create six comprehensive orthomosaics. Agreement between our UAS orthomosaics
and ground-based sampling forest compositions reached 71.43% for pixel-based classification and
85.71% for object-based classification reference data methods. Despite several documented sources
of uncertainty or error, this research demonstrated that UAS are capable of highly efficient and
effective thematic map accuracy assessment reference data collection. As UAS hardware, software,
and implementation policies continue to evolve, the potential to meet the challenges of accurate and
timely reference data collection will only increase.

Keywords: Unmanned Aerial Systems (UAS); structure from motion (SfM); Unmanned Aerial
Vehicles (UAV); Photogrammetry; Thematic Mapping; Accuracy Assessment; Reference Data;
Forest Sampling; Remote Sensing

1. Introduction

Growing dissidence over the causes and impacts of environmental change in the modern era has
forced an ever-increasing need for data accuracy and certainty. Studied patterns of global change such
as habitat augmentation, loss of biodiversity, invasive species spread, and other systems imbalances
have designated humans as a ubiquitous disturbance for the natural world, leading to the current
‘Anthropocene’ era [1–3]. Degrading natural systems also causes noted pressures on human economies
and quality of life through diminished potential for ecosystem services [4]. These services include
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life sustaining functions such as nutrient regulation, primary production products in agriculture
and forestry, water quality management, and disease mitigation [1,2,5]. Modeling natural systems
requires us to undergo the inherently difficult task of finding representative characteristics. Forested
landscapes comprising high compositional and structural diversity (i.e., complexity), such as those in
the Northeastern United States, further impede these efforts [6]. In many cases, land cover allows us
this ability to represent fundamental constructs of the earth’s surface [7]. We can then employ remote
sensing as a tool to collect land cover data at scales sufficient to overcome environmental issues [8–10].

Remote sensing provides the leading source of land use and land cover data, supported by its
scales of coverage, adaptability, and prolific modifications [7,11,12]. The classification of remote sensed
imagery traditionally referred to as thematic mapping, labels objects and features in defined groups
based on the relationship of their attributes [13,14]. This process incorporates characteristics reflected
within the source imagery and motivations of the project, to recognize both natural and artificial
patterns and increase our ability to make informed decisions [13,15,16].

In the digital age, the process of image classification has most often been performed on a per
pixel basis. Pixel-based classification (PBC) algorithms utilize spectral reflectance values to assign
class labels based on specified ranges. More refined classification techniques have also been formed to
integrate data such as texture, terrain, and observed patterns based on expert knowledge [17–19].

Technologies have recently advanced to allow users a more holistic, human vision matching,
approach to image analysis in the form of object-based image analysis (OBIA). Object-based
classification (OBC) techniques work beyond individual pixels to distinguish image objects (i.e.,
polygons, areas, or features), applying additional data parameters to each individual unit [10,20,21].
OBC methods can also benefit users by reducing the noise found in land cover classifications at high
spatial resolution using class-defining thresholds of spectral variability and area [22]. The specific
needs of the project and the characteristics of the remote sensing data help guide the decision between
which classification method would be most appropriate for creating a desired thematic layer [15,23].

Outside of the progression of classification algorithms, novel remote sensing and computer vision
technologies have inspired new developments in high-resolution three-dimensional (3D) and digital
planimetric modeling. Photogrammetric principles have been applied to simultaneously correct
for sensor tilt, topographic displacement in the scene, relief displacement, and even lens geometric
distortions [24,25]. To facilitate this process, Structure from Motion (SfM) software packages isolate
and match image tie points (i.e., keypoints) within high-resolution images with sizeable latitudinal
and longitudinal overlap to form 3D photogrammetric point clouds and orthomosaic models [25–27].
Techniques for accurate and effective SfM modeling have been refined, even in complex natural
environments, to expand the value of these products [28–30].

The appropriate use of these emergent remote sensing data products establishes a need for
understanding their accuracy and sources of error. Validating data quality is a necessary step
for incorporating conclusions drawn from remote sensing within the decision-making process.
Spatial data accuracy is an aggregation of two distinct characteristics: positional accuracy and thematic
accuracy [10]. Positional accuracy is the difference in locational agreement between a remotely
sensed data layer and known ground points, calculated through Root Mean Square Error (RMSE) [31].
Thematic accuracy expresses a more complex measure of error, evaluating the agreement for the
specific labels, attributes, or characteristics between what is on the ground and the spatial data product,
typically in the form of an error matrix [10].

The immense costs and difficulty of validating mapping projects have brought about several
historic iterations of methods for quantitatively evaluating thematic accuracy [10]. Being once an
afterthought, the assessment of thematic accuracy has matured from a visual, qualitative process
into a multivariate evaluation of site-specific agreement [10]. Site-specific thematic map accuracy
assessments utilize an error matrix (i.e., contingency table or confusion matrix) to evaluate individual
class accuracies and the relations among sources of uncertainty [23,32]. While positional accuracy
holds regulated standards for accuracy tolerance, thematic mapping projects must establish their own
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thresholds for amount and types of justifiable uncertainty. Within thematic accuracy two forms of error
exist: errors of commission (i.e., user’s accuracy) and errors of omission (i.e., producer’s accuracy) [33].
Commission errors represent the user’s ability to accurately classify ground characteristics [10].
Omission errors assesses if the known ground reference points have been accurately captured by
the thematic layer for each class [33]. For most uses, commission errors are favored because the
false addition of area to classes of interest is of less consequence than erroneously missing critical
features [10]. The error matrix presents a robust quantitative analysis tool for assessing thematic map
accuracy of classified maps created through both pixel-based and object-based classification methods.

Collecting reference data, whether using higher-resolution remotely sensed data,
ground sampling, or previously produced sources, must be based on a sound statistical sample design.
Ground sampling stands out as the most common reference data collection procedure. However,
such methods generally come with an inherent greater associated cost. During the classification
process, reference data can be used for two distinct purposes, depending on the applied classification
algorithm. Reference data can be used to train the classification (training data), generating the
decision tree ruleset which forms the thematic layer. Secondly, reference data are used as the source of
validation (validation data) during the accuracy assessment. These two forms of reference data must
remain independent to ensure the process is statistically valid [10].

There are also multiple methods for collecting ground reference data, such as: visual interpretation
of an area, GPS locational confirmation, or full-record data sampling with precise positioning.
The procedures of several professional and scientific fields have been adopted to promote the objective
and efficient collection of reference data. Forest mensuration provides such a foundation for obtaining
quantifiable information in forested landscapes, with systematic procedures that can mitigate biases
and inaccuracies of sampling [34,35]. For many decades now, forest mensuration (i.e., biometrics)
has provided the most accurate and precise observations of natural characteristics through the use of
mathematical principles and field-tested tools [34–36]. To observe long-term or large area trends
in forest environments, systematic Continuous Forest Inventory (CFI) plot networks have been
established. Many national agencies (e.g., the U.S. Forest Service) have such a sampling design
(e.g., Forest Inventory and Analysis (FIA) Program) for monitoring large land areas in a proficient
manner [37]. Despite these sampling designs for efficient and effective reference data collection,
the overwhelming costs of preforming a statistically valid accuracy assessment is a considerable
limitation for most projects [10,23].

The maturation of remote sensing technologies in the 21st century has brought with it the
practicality of widespread Unmanned Aerial Systems (UAS) applications. This low-cost and
flexible platform generates on-demand, high-resolution products to meet the needs of society [38,39].
UAS represent an interconnected system of hardware and software technologies managed by a
remote pilot in command [30,40]. Progressing from mechanical contraptions, UAS now assimilate
microcomputer technologies that allow them to operate for forestry sampling [29,41], physical
geography surveys [42], rangeland mapping [43], humanitarian aid [44], precision agriculture [45],
and many other applications [12,39,46].

The added potential of the UAS platform has supported a wide diversity of data collection
initiatives. UAS-SfM products provide analytical context beyond that of traditional raw imagery,
with products including photogrammetric point clouds, Digital Surface Models (DSM), and planimetric
(or orthomosaic) surfaces. While it is becoming increasingly common to use high-spatial resolution
satellite imagery for reference data to assess maps generated from medium to coarse resolution
imagery, UAS provide a new opportunity at even higher spatial resolutions. To properly apply the
practice of using high-resolution remote sensing imagery as a source of validation data [36,47,48],
our research focuses on if UAS provide the potential for collecting thematic map accuracy assessment
reference data of a necessary quality and operational efficiency to endorse their use. To do this,
we evaluated the agreement between the UAS-collected samples and the ground-based CFI plot
composition. Specifically, this pilot study investigated if UAS are capable of effectively and efficiently
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collecting reference data for use in assessing the accuracy of thematic maps created from either a (1)
pixel-based or (2) object-based classification approach.

2. Materials and Methods

This research conducted surveys of six woodland properties comprising 522.85 ha of land,
377.57 ha of which were forest cover, in Southeastern New Hampshire (Figure 1). The University of
New Hampshire (UNH) owns and manages these six properties, as well as many others, to maintain
research integrity for natural communities [49]. These properties contain a wide diversity of structural
and compositional diversity, ranging in size from 17 ha to 94.7 ha of forested land cover. Each property
also contains a network of CFI plots for measuring landscape scale forest characteristics over time.

Figure 1. Woodland property boundaries for the six study areas. From North to South (with total
area): Kingman Farm (135.17 ha), Moore Field (47.76 ha), College Woods (101.17 ha), West Foss Farm
(52.27 ha), East Foss Farm (62.32 ha), and Thompson Farm (118.17 ha).

The systematic network of CFI ground sampling plots was established for each of the six woodland
properties to estimate landscape level biophysical properties. These plot networks are sampled on
a regular interval, not to exceed 10 years in reoccurrence. Kingman Farm presents the oldest data
(10 years since previous sampling) and East Foss Farm, West Foss Farm, and Moore Field each being
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sampled most recently in 2014. CFI plots were located at one plot per hectare (Figure 2), corresponding
to the minimum management unit size. Each plot location used an angle-wedge prism sampling
protocol to identify the individual trees to be included in the measurement at that location. Those trees
meeting the optical displacement threshold (i.e., “in” the plot) were then measured for diameter at
breast height (dbh), a species presence count, and the tree species itself, through horizontal point
sampling guidelines [35]. Prism sampling formed variable radius plots in relation to the basal area
factor (BAF) applied. The proportional representation of species under this method is not unbiased
with the basal area of the species with a larger dbh being overestimated, while those with smaller dbh
are underestimated. Since photo interpretation of the plots is also performed from above this bias
tends to hold here as well since the largest canopy trees are the ones most viewed. Therefore, the use
of this sampling method is effective here.

Figure 2. Woodland property continuous forest inventory (CFI) plot networks totaling 354 horizontal
point sampling plots over 377.57 ha of forested land. Pictured are (Top left to bottom right): (a) Kingman
Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East Foss Farm, and (f) West
Foss Farm.
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The UNH Office of Woodland and Natural Areas forest technicians used the regionally
recommended BAF 4.59 m2 (or 20 ft2) prism [50]. Additionally, a nested plot “Big BAF” sampling
integration applied a BAF 17.2176 m2 (or 75 ft2) prism to identify a subset of trees for expanded
measurements. These ‘measure’ trees for had their height, bearing from plot center, distance from plot
center, crown dimensions, and number of silvicultural logs present recorded.

Basal area was used to characterize species distributions and proportions throughout the
woodland properties [34,35]. For our study, this meant quantifying the percentage of coniferous
species basal area comprising each sample. For the six observed study areas a total of 31 tree species
were observed (Table S1). Instead of a species specific classification, our analysis centered on the
conventional Deciduous Forest, Mixed Forest, and Coniferous Forest partitioning defined by Justice et
al., [5] and MacLean et al., [6]. Here we used the Anderson et al., [7] classification scheme definition
for forests, being any area with 10 percent or greater aerial tree-crown density, which has the ability to
produce lumber, and influences either the climate or hydrologic regime. From this scheme we defined:

• “Coniferous” as any land surface dominated by large forest vegetation species, and managed as
such, comprising an overstory canopy with a greater than or equal to 65% basal area per unit area
coniferous species composition

• “Mixed Forest” being any land surface dominated by large forest vegetation species, and managed
as such, comprising an overstory canopy, which is less than 65% and greater than 25% basal area
per unit area coniferous species in composition.

• “Deciduous”, any land surface dominated by large forest vegetation species, and managed as
such, comprising an overstory canopy, which is less than or equal to 25% basal area per unit area
coniferous species in composition.

The presented classification ensured that samples were mutually exclusive, totally exhaustive,
hierarchical, and produced objective repeatability [7,14].

The original ground-based datasets were collected for general-purpose analysis and research and
so, needed to be cleaned, recoded, and refined using R Studio, version 3.3.2 [51]. We used R Studio to
isolate individual tree dbh measurements in centimeters and then compute basal area for the deciduous
or coniferous species in centimeters squared. Of the original 359 CFI plots, six contained no recorded
trees and were removed from the dataset, leaving 353 for analysis. Additionally, standing dead trees
were removed due to the time lag between ground sampling and UAS operations. Percent coniferous
composition by plot was calculated for the remaining locations based on the classification scheme.

Once classified individually as either Coniferous, Mixed, or Deciduous in composition, the CFI
plot network was used to delineate forest management units (stands). Leaf-off, natural color,
NH Department of Transportation imagery with a 1-foot spatial resolution (0.3 × 0.3 m) [52] provided
further visual context for delineating the stand edges (Figure 3). Non-managed forests and non-forested
areas were also identified and removed from the study areas.

UAS imagery was collected using the eBee Plus (SenseFly Parrot Group, Cheseaux-sur-Lausanne,
Switzerland), fixed-wing platform, during June and July 2017. The SenseFly eBee Plus operated under
autonomous flight missions, in eMotion3 software version 3.2.4 (senseFly SA, Cheseaux-Lausanne,
Switzerland), for approximately 45 minutes per battery. This system deployed the sensor optimized
for drone applications (S.O.D.A), a 20 megapixel, 1in (2.54 cm) global shutter, natural color, proprietary
sensor designed for photogrammetric analysis. In total, the system weighed 1.1 kg (Figure 4).
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Figure 3. Ground-based forest stands digitized from CFI-plot classifications. Pictured are (Top left to
bottom right): (a) Kingman Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East
Foss Farm, and (f) West Foss Farm.

UAS mission planning was designed to capture plot- and stand- level forest composition.
Our team predefined mission blocks which optimized image collection while minimizing time outside
of the study area. For larger properties (e.g., College Woods) up to six mission blocks were required
based on legal restrictions to comprehensively image the study area. We used the maximum allowable
flying height of 120 m above the forest canopy with an 85% forward overlap, and 75% side overlap for
all photo missions [30,53]. This flying height was set relative to a statewide LiDAR dataset canopy
height model provided by New Hampshire GRANIT [54]. Further characteristics such as optimal sun
angle (e.g., around solar noon), perpendicular wind directions, and consistent cloud coverage were
considered during photo missions to maintain image quality and precision [28,30].
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Figure 4. eBee Plus Unmanned Aerial System (UAS) with the sensor optimized for drone applications
(S.O.D.A) and eMotion3 flight planning software.

Post-flight processing began with joining the spatial data contained within the onboard flight
log (.bb3 or .bbx) to each individual captured image. Next, we used Agisoft PhotoScan 1.3.2 [55] for
a high accuracy photo alignment, image tie point calibration, medium-dense point cloud formation,
and planimetric model processing workflow [30]. For all processing, we used a Dell Precision 7910,
running an Intel Xeon E5-2697 v4 (18 core) CPU, with 64 GB of RAM, and a NVIDIA Quadro M4000
graphics card. Six total orthomosaics were created.

For each classification method, UAS reference data were extracted from the respective woodland
property orthomosaic. West Foss Farm was used solely for establishing training data samples to
guide the photo interpretation processes. In total, there were six sampling methods for comparing the
ground-based and UAS derived reference data (Table 1) (Figures S1–S6).

Table 1. Six total methods used for UAS reference data collection, between Pixel-based (PBC) and
Object-based (OBC) classification approaches.

Classification Approach

Pixel-based Classification Object-based Classification
1. Stratified Random Distribution 3. Stratified Random, Individual Subsamples
2. CFI-plot Positionally Dependent 4. Stratified Random, Image Object Majority Agreement

5. CFI-plot Dependent, Individual Subsamples
6. CFI-plot Dependent, Image Object Majority Agreement

For the first pixel-based classification reference data collection method (method one),
90 × 90 m extents were partitioned into 30 × 30 m grids, and positioned at the center of each
forest stand. The center 30 × 30 m area then acted as the effective area for visually classifying the given
sample. Using an effective area in this way both precluded misregistration errors between the reference
data and the thematic layer, and ensured that the classified area was fully within the designated
stand boundary [10]. The second PBC reference data collection method (method two) used this same
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90 × 90 m partitioned area but positionally aligned it with CFI-plot locations, avoiding overlaps with
boundaries and other samples.

The first of four object-based classification reference data collection methods (method three) used
a stratified random distribution for establishing a maximum number of 30 × 30 m interpretation
areas (subsamples) within each forest stand. In total, 268 of these samples were created throughout
35 forest stands while remaining both spatially independent and maintaining at least two samples
per forest stand. Similar to both PBC sampling methods, this and other OBC samples used 30 × 30 m
effective areas for visually interpreting their classification. The second OBC reference data collection
method (method four) used these previous 30 × 30 m classified areas as subsamples to represent the
compositional heterogeneity at the image object (forest stand) level [5,10]. Forest stands which did not
convey a clear majority, based on the subsamples, were classified based on a decision ruleset shown
in Table 2.

Table 2. Decision support ruleset for forest stands (image objects) classification of split decision areas.

Class 1 Class 2 Resulting Classification

Coniferous Mixed Coniferous
Deciduous Mixed Deciduous
Coniferous Deciduous Mixed

For the remaining two OBC reference data collection methods, we assessed individual 30 × 30 m
samples (method five) and the overall forest stand classifications (method six) by direct comparison
with the CFI-plots location compositions. An internal buffer of 21.215 m (the hypotenuse of the
30 × 30 m effective area) was applied to each forest stand to eliminate CFI-plots that were subject to
stand boundary overlap. This process resulted in 202 subsamples for 28 stands within the interior
regions of the five classified woodland properties.

For each of the six orthomosaic sampling procedures we relied on photo interpretation for deriving
their compositional cover type classification. Using a confluence of evidence within the imagery,
including morphological and spatial distribution patterns, the relative abundance of coniferous and
deciduous species was identified [24,56]. Supporting this process was the training data collected
from West Foss Farm (Figure S7). A photo interpretation key was generated for plots with distinct
compositional proportions, set at the distinctions between coniferous, deciduous, and mixed forest
classes. During the visual classification process, a blind interpretation method was used so that ground
data bias or location was not influential.

Error matrices were used to quantify the agreement between the UAS orthomosaic and
ground-based thematic map reference data samples. Sample units for both PBC and OBC across
all six approaches followed this method. These site-specific assessments reported producer’s, user’s,
and overall accuracies for the five analyzed woodland properties [33].

3. Results

UAS imagery across the six woodland properties was used to generate six orthomosaics with
a total land cover area of 398.71 ha. These UAS-SfM models represented 9173 images (Figure 5).
The resulting ground sampling distances (gsd) were: Kingman Farm at 2.86 cm, Moore Field at 3.32 cm,
East Foss Farm at 3.54 cm, West Foss Farm at 3.18 cm, Thompson Farm at 3.36 cm, and College Woods
at 3.19 cm, for an average pixel size of 3.24 cm. The use of Agisoft PhotoScan for producing these
orthomosaics does not report XY positional errors. Additional registration of the woodland areas
modeled to another geospatial data layer could determine relative error.
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Figure 5. UAS orthomosaics for the six woodland properties (Top left to Bottom Right): (a) Kingman
Farm, (b) Moore Field, (c) Thompson Farm, (d) College Woods, (e) East Foss Farm, (f) West Foss Farm.

In our first analysis of pixel-based classification thematic map accuracy assessment reference data
agreement, 29 sample units were located at the center of the forest stands. This method represented
the photo interpretation potential of classifying forest stands from UAS image products. Overall
agreement between ground-based and UAS-based reference data samples was 68.97% (Table 3).
Producer’s accuracy was highest for deciduous stands, while user’s accuracy was highest for coniferous
forest stands.
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Table 3. Stratified random sampling PBC thematic map error matrix. Ground (reference) data
are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 

Coniferous 4 1 0 5 80.0% 
Mixed 3 8 2 13 61.54% 

Deciduous 0 3 8 11 72.73% 
Total 7 12 10 29  

Producer’s Accuracy 57.14% 66.67% 80.0%  Overall Accuracy = 20/29 or 68.97% 

For our second PBC reference data analysis, in which orthomosaic samples were registered with
CFI-plot locations, 19 samples were assessed. Reference data classification agreement was 73.68%
(Table 4), with both user’s and producer’s accuracies highest for coniferous forest stands.

Table 4. CFI plot-registered PBC thematic map error matrix. Ground (reference) data are
represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 

Coniferous 5 0 0 5 100% 
Mixed 1 5 2 8 62.5% 

Deciduous 0 2 4 6 66.66% 
Total 6 7 6 19  

Producer’s Accuracy 83.33% 71.43% 66.66%  Overall Accuracy = 14/19 or 73.68% 

Four total OBC reference data error matrices were generated; two for the individual subsamples
and two for the forest stands or image objects. Using the stratified random distribution for subsamples,
our analysis showed an overall agreement of 63.81% between the ground-based forest stands and UAS
orthomosaics across 268 samples. Producer’s accuracy was highest for deciduous forests while user’s
accuracy was highest for mixed forest (Table 5).

Table 5. Stratified randomly distributed OBC reference data subsample error matrix. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 
Coniferous 40 18 1 59 68.0% 

Mixed 23 90 15 128 70.31% 
Deciduous 3 37 41 81 50.62% 

Total 66 145 57 268  
Producer’s Accuracy 60.61% 62.07% 71.93%  Overall Accuracy = 171/268 or 63.81% 

At the forest stand level, the majority agreement of the stratified randomly distributed subsamples
presented a 71.43% agreement when compared to the ground-based forest stands (Table 6). For the
35 forest stands analyzed, user’s accuracy was 100% for coniferous forest stands. Producer’s accuracy
was highest for deciduous stands at 81.82%.
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Table 6. OBC sample unit thematic map error matrix for stratified randomly distributed subsamples.
Ground (reference) data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data
are derived from the corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 
Coniferous 7 0 0 7 100% 

Mixed 4 9 2 15 60.0% 
Deciduous 0 4 9 13 69.23% 

Total 11 13 11 35  
Producer’s Accuracy 63.64% 69.23% 81.82%  Overall Accuracy = 25/35 or 71.43% 

Next, UAS orthomosaic subsamples that were positionally aligned with individual CFI plots
were assessed. A total of 202 samples were registered, with a 61.88% classification agreement (Table 7).
User’s accuracy was again highest for coniferous stands at 91.80%. Producer’s accuracy for these
subsamples was highest in mixed forest, with an 80.85% agreement.

Table 7. CFI plot-registered UAS orthomosaic subsample thematic map error matrix. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 

Coniferous 56 1 4 61 91.80% 
Mixed 41 38 17 96 39.58% 

Deciduous 6 8 31 45 68.89% 
Total 103 47 52 202  

Producer’s Accuracy 54.37% 80.85% 59.62%  Overall Accuracy = 125/202 or 61.88% 

Forest stand level classification agreement, based on the positionally registered orthomosaic
samples was 85.71%. In total, 28 forest stands were assessed (Table 8). User’s and producer’s accuracies
for all three classes varied marginally, ranging from 84.62% to 87.51%. Commission and omission error
were both lowest for deciduous forest stands.

Table 8. UAS forest stand thematic map error matrix for CFI plot-registered samples. Ground (reference)
data are represented by the CFI plots and Unmanned Aerial Systems (UAS) data are derived from the
corresponding orthomosaic.

 Ground Data 

UAS 

 Coniferous Mixed Deciduous Total User’s Accuracy 
Coniferous 6 1 0 7 85.71% 

Mixed 1 11 1 13 84.62% 
Deciduous 0 1 7 8 87.50% 

Total 7 13 8 28  
Producer’s Accuracy 85.71% 84.62% 87.50%  Overall Accuracy = 24/28 or 85.71% 

4. Discussion

This research set out to gauge whether UAS could adequately collect reference data for use in
thematic map accuracy assessments, of both pixel-based and object-based classifications, for complex
forest environments. To create UAS based comparative reference data samples, six independent
orthomosaic models, totaling 398.71 ha of land area were formed from 9173 images (Figure 5).
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The resulting average gsd was 3.24 cm. For the six comparative analyses of UAS and ground-based
reference data (Table 1), 581 samples were used.

Beginning with PBC, the resulting agreement for stratified randomly distributed samples was
68.97% (Table 3). For this sampling technique, we experienced high levels of commission errors,
especially between the coniferous and mixed forest types. One reason for this occurrence could
have been the perceived dominance, visual bias, of the conifer canopies within the orthomosaic
samples. Mixed forests experienced the greatest mischaracterization here. The CFI plot-registered PBC
method generated a slightly higher overall accuracy at 73.68% (Table 4). The mixed forest samples still
posed issues for classification. Coniferous samples however, showed much improved agreement with
ground-based classifications.

Next, we looked at the object-based classification reference data samples. Stratified randomly
distributed subsamples had an agreement of 63.81% (Table 5). While at the forest stand level agreement
to the ground-based composition was 71.43% (Table 6). As before, mixed forest samples showed
the highest degree of error. CFI plot-registered OBC subsamples have a 61.88% agreement (Table 7).
For forest stand classifications based on these plot-registered subsamples, agreement was 85.71%
(Table 8). Mixed forests once again led to large amounts of both commission and omission error.
Other than OBC subsample assessments, our results showed a continuously lower accuracy for the
stratified randomly distributed techniques. The patchwork composition of the New England forest
landscape could be a major reason for this difficulty.

As part of our analysis we wanted to understand the sources of intrinsic uncertainty for UAS
reference data collection [10,18]. The compositional and structural complexity, although not to the
degree of tropical forests, made working with even the three classes difficult. Visual interpretation
was especially labored by this heterogeneity. To aid the interpretation process, branching patterns and
species distribution trends were used [24,56]. All visual based classification was performed by the
same interpreter, who has significant experience in remote sensing photo interpretation as well as local
knowledge of the area. Another source of error could have been from setting fixed areas for UAS-based
reference data samples while the CFI plots established variable radius areas [35]. Our 30x30m effective
areas looked to capture the majority of ground measured trees, providing snapshots of similarly
sized sampling areas. Lastly, there were possible sources of error stemming from the CFI plot ground
sampling procedures. Some woodlots, such as Kingman Farm, were sampled up to 10 years ago.
Slight changes in composition could have occurred. Also, GPS positional error for the CFI plots was
a considerable concern given the dense forest canopies. Error in GPS locations were minimized by
removing points close to stand boundaries and by using pixel clusters when possible.

One of the first difficulties encountered in this project was in the logistics of flight planning.
While most practitioners may strive for flight line orientation in a cardinal direction, we were limited
at some locations due to FAA rules and abutting private properties [30,57]. As stated in the methods,
UAS training missions and previously researched advice were used to guide comprehensive coverage
of the woodland properties [28]. A second difficulty in UAS reference data collection was that even
with a sampling area of 377.57 ha, the minimum statistically valid sample size for a thematic mapping
accuracy assessment was not reached [10]. Forest stand structure and arrangement limited the number
of samples for most assessments to below the recommended samples size of approximately 30 per
class. A considerably larger, preferably continuous, forested land area would be needed to generate a
sufficient sampling design. Limited sample sizes also brought into perspective the restriction from
a more complex classification scheme. Although some remote sensing studies have performed to a
species-specific classification, Justice et al., [5] and MacLean et al., [6] have both shown that a broader,
three class, scheme has potential for understanding local forest composition.

Despite the still progressing nature of UAS data collection applications, this study has made
the potential for cost reductions apparent. The volume of data collected and processed in only a
few weeks opened the door for potential future research in digital image processing and computer
vision. Automated classification processing, multiresolution segmentation [20], or machine learning
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were a consideration but could not be implemented in this study. A continuing goal is to integrate
the added context of the digital surface model (DSM), texture, and multispectral image properties
into automated forest classifications. We hope that in future studies more precise ground data can
be collected, to alleviate the positional registration error and help match exact trees. Additionally,
broader analyses should be conducted to establish a comparison for UAS-based reference data to other
forms of ground-based sampling protocols (e.g., FIA clustered sampling or fixed-area plots). Lastly,
multi-temporal imagery could benefit all forms of UAS classification and should be studied further.

In well under a months’ time, this pilot study collected nearly 400 ha of forest land cover
data to a reasonable accuracy. With added expert knowledge-driven interpretation or decreased
landscape heterogeneity, this platform could prove to be a significant benefit to forested area research
and management. Dense photogrammetric point clouds and ultra-high-resolution orthomosaic
models were obtained, with the possibility of incorporating multispectral imagery in the future.
These ultra-high resolution products have the potential now to provide an accessible alternative to
reference data collected using high-spatial resolution satellite-based imagery. For the objective of
collecting reference data which can train and validate environmental models, it must be remembered
that reference data itself is not without intrinsic error [58]. As hardware and software technologies
continue to improve, the efficiency and effectiveness of these methods will continue to grow [39].
UAS positional accuracy assessment products are gaining momentum [12,59,60]. Providing examples
to the benefits of UAS should also support further legislative reform, better matching the needs of
practitioners. FAA RPIC guidelines remain a sizeable limitation for UAS mapping of continuous,
remote, or structurally complex areas [39,57,61]. We should also remember that these technologies
should be used to augment and enhance data collection initiatives, and not replace the human element
in sampling.

5. Conclusions

The collection of reference data for the training and validation of earth systems models bares
considerable costs yet remains an essential component for prudent decision-making. The objectives of
this pilot study were to determine if the application of UAS could enhance or support the collection of
thematic map accuracy assessment reference data for both pixel-based and object-based classification
of complex forests. Comparative analyses quantified the level of agreement between ground-based
CFI plot compositions and that of UAS-SfM orthomosaic samples. Despite diminished agreement
from mixed forest areas, PBC showed 68.97% agreement for stratified randomly distributed samples
and 73.86% for CFI plot-registered samples. For OBC classifications, forest stands reached 71.43%
agreement for stratified randomly distributed samples and 85.71% for CFI plot-registered samples.
Our results demonstrated the ability to comprehensively map nearly 400 ha of forest area, using a
UAS, in only a few weeks’ time. They also showed the significant benefit that could be gained from
deploying UAS to capture forest landscape composition. Low sample sizes, positional error in the CFI
plot measurements, and photo interpretation insensitivity could have led to heightened commission
and omission errors. Along with these sources of uncertainty, our results should be considered with
the understanding that all reference data has intrinsic error and that UAS are not presented to be
total replacements of in situ data collection initiatives. The continual advancement of the platform
however, should be the basis for investigating their use in a greater number of environments, for the
comparison to more varied ground-based reference data frameworks, and with the inclusion of more
technologically advanced classification procedures.
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Abstract: One of the most important ecosystems in the Amazon rainforest is the Mauritia flexuosa
swamp or “aguajal”. However, deforestation of its dominant species, the Mauritia flexuosa palm,
also known as “aguaje”, is a common issue, and conservation is poorly monitored because of the
difficult access to these swamps. The contribution of this paper is twofold: the presentation of a
dataset called MauFlex, and the proposal of a segmentation and measurement method for areas
covered in Mauritia flexuosa palms using high-resolution aerial images acquired by UAVs. The method
performs a semantic segmentation of Mauritia flexuosa using an end-to-end trainable Convolutional
Neural Network (CNN) based on the Deeplab v3+ architecture. Images were acquired under different
environment and light conditions using three different RGB cameras. The MauFlex dataset was
created from these images and it consists of 25,248 image patches of 512 × 512 pixels and their
respective ground truth masks. The results over the test set achieved an accuracy of 98.143%,
specificity of 96.599%, and sensitivity of 95.556%. It is shown that our method is able not only to
detect full-grown isolated Mauritia flexuosa palms, but also young palms or palms partially covered
by other types of vegetation.

Keywords: Mauritia flexuosa; semantic segmentation; end-to-end learning; convolutional neural
network; forest inventory

1. Introduction

The Mauritia flexuosa L. palm is the main species of one of the most remarkable ecosystems of
the Amazon rainforest: the Mauritia flexuosa swamp, also known as “aguajal” [1–3]. Its importance is
not only ecological but also social and economic. It is the ecosystem with the greatest carbon dioxide
absorption capacity in the Amazon [4,5] and it is habitat of a wide range of fauna [1]. In addition, due
to high demand of Mauritia flexuosa fruit and derivatives, this species is a key economic engine for the
indigenous populations and contributes to their economic and social development [3,6]. Unfortunately,
in spite of the stringent government efforts to control deforestation, cutting down M. Flexuosa palm
trees to harvest their fruits is a common activity [1]. For trees that are harvested, the proportion that is
cut versus climbed is unknown, which is why carrying out multidisciplinary studies regarding species
population assessment and extraction locations would help to target conservation and management
efforts in communities that are hot-spots for extraction [7,8].

Recently, there has been a drastic increase in the use of Unmanned Aerial Vehicles (UAVs)
for forest applications due to their low cost, automation capabilities, and the fact that they can
support different types of payloads, e.g., RGB or multispectral cameras, LiDAR (Light detection and
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Ranging), radar, etc. For instance, UAV photogrammetric data is used to rapidly detect tree stumps
or coniferous seedlings in replanted forest harvest areas using basic image processing and machine
learning techniques [9,10]. Similarly, UAVs have been used to tackle the problem of tree detection from
many perspectives. For example, LiDAR-based methods model the 3D-shape of trees for detection with
accuracy values ranging from 86% to 98% [11,12]; however, the high cost of LiDAR for UAVs represents
an important limitation. The same limitation occurs with hyperspectral-based methods, such as [13],
which uses a hyperspectral frame format camera and an RGB camera along with 3D modelling and
Multilayer Perceptron (MLP) neural networks, and obtains accuracy values ranging from 40% to
95% depending on the conditions of the area. Following the idea of exploiting the 3D-shape of trees,
some methods perform tree detection from RGB images using generated Digital Surface Models
(DSMs), Structure-from-Motion (SfM) or local-maxima based algorithms on UAV-derived Canopy
Height Models (CHMs) [14,15]. Nevertheless, the aforementioned methods are likely to show poor
performance for trees with irregular canopy, trees in mixed-species forests, or trees that are partially
occluded by taller trees.

There exist tree detection methods that use multispectral or RGB cameras and specific descriptors
such as crown size, crown contour, foliage cover, foliage color and texture [16]; while others rely on
pixel-based classification techniques, such as calculating the Normalized Difference Vegetation Index
(NDVI), Circular Hough Transform (CHT) and morphological operators to segment palm trees with
an accuracy of 95% [17]. Other methods depend on object-based classification techniques; for example,
they use the Random Forest algorithm on multispectral data with an accuracy value of 78% [18], or
a naive Bayesian network on high-resolution aerial ortophotos and ancillary data (Digital Elevation
Models and forest maps) with an accuracy value of 87% [19].

In recent years, the availability of large datasets and optimal computational resources has allowed
for the development of different deep learning techniques, which have now become a benchmark for
tackling computer vision problems such as object detection or segmentation. Nevertheless, to the best
of our knowledge, few deep learning-based techniques have been proposed to solve the problem of
tree detection in aerial images. For instance, the method in [20] used the AlexNet CNN (Convolutional
Neural Network) architecture with a sliding window for palm tree detection and counting, obtaining
an overall accuracy of 95% over QuickBird images with a spatial resolution of 2.4 m. Similarly, the
method in [21] used a pre-trained CNN in combination with the YOLOv2 algorithm to detect Cohune
palm trees (Attalea cohune C.), with an average precision of 79.5%, and deciduous trees, with an average
precision of 67.3%. Furthermore, the method in [22] used Google’s CNN Inception v3 with transfer
learning and sliding windows to detect coconut trees with a precision of 71% and a recall of 93%.
Finally, the method in [23] first segmented aerial forest images into individual tree crowns using
the eCognition software and then trained the GoogLeNet model to classify seven tree types with an
accuracy of 89%. It is worth mentioning that all of these methods are trained to classify visible tree
crowns in the images but do not attempt to delineate or segment the tree crowns; as a consequence,
if most of a tree crown is covered by taller trees, trained CNNs are not likely to detect it.

In this work, we present a new efficient method to semantically segment Mauritia flexuosa palm
trees in aerial images acquired with RGB cameras mounted on Unmanned Aerial Vehicles (UAV).
Our aerial images of a Mauritia flexuosa swamp located south of the Peruvian city of Iquitos were
obtained with three different cameras under different climate conditions. By doing so, we created
a publicly available dataset of 25,248 image patches of 512 × 512 pixels, each of them with their
respective hand-drawn ground truth. With this dataset, we trained five state-of-the-art segmentation
deep learning models and decided to use a model based on the Deeplab v3+ architecture [24], as it
showed the best performance. The model was trained to detect and segment Mauritia flexuosa crowns
at different growing stages and scales, even when only a small part of the crown was visible.
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2. Materials and Methods

2.1. Mauritia flexuosa

The Mauritia flexuosa swamp, also known as “aguajal”, is a swamp (humid forest ecosystem) in
permanently flooded depressions. Although it is home to more than 500 flora species and 12 fauna
species, its dominant species is the Mauritia flexuosa palm, also known as “aguaje”, which is a palm tree
that belongs to the family Arecaceae. In the adult stage, aguajes can grow up to 40 meters (131 feet) in
height and 50 centimeters (1.6 feet) in trunk diameter; their leaves are large and form a rounded crown
(Figure 1). Each palm tree has an average of eight clusters of fruit, and each cluster produces more
than 700 oval-shaped drupes covered in dark red scales [1].

Figure 1. Aerial view of a Mauritia flexuosa palm.

The extent of Mauritia flexuosa swamps in the Peruvian Amazon rainforest is quite significant.
An example is the Ucamara depression between the Ucayali and Marañón rivers, in the region of
Loreto, whose capital is the Iquitos City. There, the extent of these swamps reaches about four million
hectares (10% of the region surface) [3].

In addition to the economic (Iquitos City alone consumes up to 50 metric tons of aguaje a day) [1],
social [3] and nutritional value [25] of this palm tree, its environmental importance is also to be
highlighted: in 2010, the FAO Forestry Department stated that, for the evaluation period 2002–2008 in
an area of 1,415,100 hectares of aguajales, 146,462,850 metric tons of carbon were stored in vegetation
(103.5 t/ha) and 141,510,000 metric tons of carbon in soil (100 t/ha), which represents the greatest
carbon absorption capacity of all ecosystems in the Amazonian rainforest [5].

Worryingly, cutting down these trees to harvest the fruit of aguaje is affecting several populations
of Mauritia flexuosa female palms. It is estimated that 17 million of these palms are cut down in the
surroundings of Iquitos to meet the demand of the city [1]. This has resulted in the disappearance of
female individuals in accessible Mauritia flexuosa populations, thus affecting the food chains of such
regions (due to their key importance in the diet of the Amazonian fauna) and causing genetic erosion
(since the best and more productive palms are cut down). For such reasons, these ecosystems should
be properly and continuously monitored so that preventive measures can be taken in order to prevent
illegal logging and the disappearance of this important palm tree.

2.2. Image Acquisition

2.2.1. Study Area

The study area consisted of two regions with different densities of Mauritia flexuosa. The one
with the higher density was located in the surroundings of Lake Quistococha, south of Iquitos City.
The other region was located next to the facilities of the Peruvian Amazon Research Institute (IIAP).
Both areas are in Iquitos City, in Maynas Province. Figure 2 shows six orthomosaics corresponding to
the regions above.
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Figure 2. Study area in Iquitos City, Maynas Province, north of Peru.

2.2.2. UAV Imagery

UAV imagery was collected over the years (2015, 2016, 2017 and 2018) under different atmospheric
conditions. The flight crew consisted of two pilots and one spotter. We used three UAVs with different
camera models; and so, we acquired images with different features. Further details are summarized in
Table 1.

Table 1. Unmanned aerial vehicles (UAVs) and cameras specifications.

UAV Specifications
Description Quadcopter Quadcopter Quadcopter

Brand Aeryon DJI TurboAce
Model SkyRanger sUAS Mavic Pro Matrix-E

Vehicle Dimensions 1020 × 1020 × 240 mm 485 × 430 × 83 mm 1160 × 840 × 250 mm
Vehicle Weight (kg) 2.4 0.734 4

Camera Specifications
Camera Model Aeryon MT9F002 DJI FC220 Sony Nex-7

Image Size (megapixels) 14 MP 12 MP 24 MP
Ground Sampling Distance 1.4 cm/pixel 2.5 cm/pixel 1.4 cm/pixel

Flight Altitude 80 m 70 m 100 m
Image Dimensions (pixels) 4608 × 3288 4000 × 3000 4000 × 6000

Bit Depth 24 24 24

The Sony Nex-7 camera mounted in the Matrix-E UAV was manually configured: the ISO value
was 200; the maximum aperture was f/8; and the shutter speed was 1/320. The settings of the
SkyRanger and the Mavic Pro cameras were set to automatic. Many of the images were acquired near
midday with cloud-free conditions (Figure 3a); however, Iquitos is normally covered in big clouds, and
that is why we obtained some dark images of forest under shadows (Figure 3b). Some images were
also acquired in the afternoon, and due to the angle of incidence of the sun’s rays, there were many
shadows cast by tall trees (Figure 3c). Moreover, the images acquired with the SkyRanger camera
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showed a defect around the corners known as vignetting (Figure 3d). Finally, because we flew at
different altitudes, we achieved Ground Sample Distances (GSD) from 1.4 to 2.5 cm/pixel. In summary,
we acquired images with different resolutions, white balance settings, light conditions and others
defects; nevertheless, Mauritia flexuosa palms can still be recognized by any trained human.

Figure 3. Aerial images acquired by different UAVs. (a) Cloud-free region captured with a Sony Nex-7.
(b) Shadowed region captured with a Sony Nex-7. (c) Aerial image acquired in the afternoon with
a Sony Nex-7. (d) Aerial image captured by the Skyranger UAV with vignetting. (e) and (f) Aerial
images captured by the Mavic Pro UAV.

2.2.3. MauFlex Dataset

Among all the aerial images acquired over the last four years, we selected 96 of the most
representative to create the dataset: 47 were acquired by the TurboAce UAV; 28, by the Mavic Pro UAV;
and 21, by the SkyRanger UAV. Each image has a binary hand-drawn mask indicating the presence of
Mauritia flexuosa palms in white. From these images, we extracted image patches of 512 × 512 pixels.

To analyze the images at different scales, the images captured by the TurboAce UAV were resized
to 50% and 25% of their original size due to their high level of detail. In addition, we used data
augmentation to increase the dataset size and to prevent overfitting issues; thus, each patch was
rotated 90◦, 180◦and 270◦ [26]. This is how we created the MauFlex dataset (See Supplementary
Materials) [27], which is made up of 25,248 image patches, each one with its respective binary mask,
as shown in Figure 4. We split 95% of the data to create the training set, 2.5% to create the validation
set and 2.5% to create the test set. These three sets are independent among them.
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Figure 4. Samples of original images and shadow masks from the MauFlex dataset.

2.3. Proposed CNN for Segmentation

We propose a semantic level segmentation of Mauritia flexuosa using a Convolutional Neural
Network (CNN). The architecture of our network is based on the Deeplab v3+ architecture [24], which
integrates an encoder, a spatial pyramid pooling module, and a decoder. Those modules use inverted
residual units, atrous convolutions and atrous separable convolutions, which are briefly described
below:

• Inverted residual unit: The main feature of a residual unit is the skip/shortcut between input
and output, which allows the network to access earlier activations that were not modified by the
convolution blocks, thus preventing network degradation problems such as gradient vanishing or
exploding when it is too deep [28]. Inverted residuals units were first introduced in [29]; the main
difference is that instead of expanding the number of input channels and then shrinking them,
inverted residual units (IRUs) expand the input number of channels using a 1 × 1 convolution,
then apply a 3 × 3 depthwise convolution (the number of channels remains the same), and, finally,
apply another 1 × 1 convolution that reduces the number of channels, as shown in Figure 5.
The IRU shown in Figure 5 uses a batch normalization layer (“BN”) and a Rectified-Linear unit
layer with a maximum possible value of 6 (“ReLU6”) after each convolution layer.

Figure 5. Inverted residual unit (IRU) used in our proposed network. It uses regular 1× 1 convolutions
(“Conv”), 3 × 3 depthwise convolutions, batch normalization (“BN”) and Rectified Linear Unit
activation with a maximum possible value of 6 (“ReLU6”).

• Atrous convolution: Also known as dilated convolution, it is basically a convolution with
upsampled filters [30]. Its advantage over convolutions with larger filters, is that it allows
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enlarging the field of view of filters without increasing the number of parameters [31]. Figure 6
shows how a convolution kernel with different dilation rates is applied to a channel. This allows
for multi-scale aggregation.

Figure 6. Atrous convolution kernel (green) dilated with different rates.

• Atrous separable convolution: It is a depthwise convolution with atrous convolutions followed
by a pointwise convolution [24]. The former performs an independent spatial atrous convolution
over each channel of an input; and the latter combines the output of the previous operation
using 1 × 1 convolutions. This arrangement effectively reduces the number of parameters and
mathematical operations needed in comparison with a normal convolution.

2.4. CNN Architecture

As we stated before, our proposed architecture is similar to the Deeplab v3+ architecture [24].
Figure 7 shows our architecture and its three main modules: an encoder, an Atrous Spatial Pyramid
Pooling (ASPP) module, and a decoder. The main difference from the original Deeplab v3+ network is
the number of layers used.

Figure 7. The proposed network architecture. It uses regular convolutions (“CONV”), inverted residual
units (“IRU”) and atrous separable convolutions (“ASC”).

The encoder is a feature extractor that uses several inverted residual units as a backbone and
reduces the original size of the image by a factor of eight (output stride = 8). The ASPP module applies
four parallel atrous separable convolutions with different dilation rates; this allows analyzing the
extracted features at different scales. These outputs are concatenated and passed through a 1 × 1
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convolution in order to reduce the number of channels. This result is upsampled by a factor of four
and concatenated with low-level features of the same dimension. The motivation for doing so is that
the structure in the input should be aligned with the structure in the output, so it is convenient to share
information from low levels of the network, such as edges or shapes, to the higher ones. Then, we
apply two more 3 × 3 separable convolutions and finally, a 1 × 1 convolution with one channel and
sigmoid activation, so that a binary mask is obtained. This result is upsampled by a factor of two to
recover the original size of the image.

In Figure 7, convolution blocks are denoted as : “CONV;” inverted residual units, as “IRU;” and
atrous separable convolution blocks, as “ASC.” The output number of filters of each block is reported
using the hash symbol (“#”). The stride of all convolutions is denoted as “s.” Blocks marked with “S”
are “same padded,” which means that the output is the same size as the input. “ReLU” represents a
standard rectified linear unit activation layer and “BN” a batch normalization layer. If an IRU block is
strided, there cannot be a skip between its input and its output; in such cases the “skip” option is set to
“False”.

3. Results and Discussion

3.1. CNN Training

The training algorithm was implemented using Python 3.6 on a PC with Intel i7-8700 at 3.7 GHz
CPU, 64GB RAM and a NVIDIA GeForce GTX 1080 Ti GPU. The proposed CNN was trained using
an Adam optimizer [32] with a learning rate of 0.003, a momentum term β1 of 0.9, a momentum
term β2 of 0.999 and a mini-batch size of 16. The binary cross-entropy function was chosen as our
loss function given the fact that it is commonly used for binary segmentation problems and that
there is a balance between the amount of pixels of both training classes; thus, it was not necessary
to implement specialized loss functions, such as weighted binary cross-entropy function. Figure 8
shows the evolution of network accuracy and loss over training time. After each training epoch, the
accuracy and the loss are calculated on the validation set to monitor its ability to generalize and avoid
overfitting. The spikes shown in validation loss in epochs 30 and 50, approximately, correspond to a
decrease in performance in the training set. This is an expected behaviour during the first training
epochs, since the model is still unstable and it is not able to generalize well; however, when the model
stabilizes, the validation loss fluctuates with small spikes close to the training loss.

Figure 8. Metrics evolution over training time of our proposed network. (a) Epochs vs. Accuracy.
(b) Epochs vs. Loss.

In order to compare the performance of our proposed network with a different segmentation
approach, we trained four other networks based on the U-NET structure [33] to compare the results
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and choose the best one. A U-NET is a network composed of an encoder and a decoder with skip
connections that has been widely used for solving segmentation problems. The encoder-decoder
structure of the U-NET tends to extract global features of the inputs and generate new representations
from this overall information. Because we experienced a sudden drop in the accuracy metric during
training, we decided to strengthen our networks by implementing skips between the input and output
of each layer with 1 × 1 convolutions in order to equalize the number of channels before the addition
operation, thus converting our U-NETs to ResU-NETs [34]. The first implemented network (U-NET1)
has three layers in the encoder and three in the decoder; each layer has a 3 × 3 convolution block
followed by a batch normalization block and a ReLU activation. Furthermore, we added a 10%
dropout rate in the decoder layers to prevent overfitting. The second network (U-NET2) is similar to
the previous one but has four layers in the encoder and four in the decoder. The third (U-NET3) and
fourth (U-NET4) networks have the same structure as the first and the second networks, respectively,
but they apply atrous separable convolutions with dilation rates of two instead of regular convolutions.
Figure 9 shows the evolution of accuracy and loss of all networks over training time.

Figure 9. Comparison of metrics evolution over training time of all networks. (a) Epochs vs. Accuracy.
(b) Epochs vs. Loss.

To statistically analyze the behavior of our network against the other networks, we calculated
four metrics from the validation set: accuracy (ACC), precision (PREC), recall/sensitivity (SN), and
specificity (SP), as shown in Table 2. The ACC ratio indicates correctly predicted observations against
total observations; the PREC ratio indicates correctly predicted positive observations against total
predicted positive observations; the SN ratio indicates correctly predicted positive observations against
total actual positive observations, and the SP ratio indicates correctly predicted negative observations
against total actual negative observations. Additionally, the number of trainable parameters of each
network is added in Table 2.

Table 2. Metrics Comparison of Different Shadow Detection Methods.

Method
Metric

ACC (%) PREC (%) SN (%) SP (%) Parameters

U-NET1 95.973 91.381 92.632 97.087 3,736,321
U-NET2 97.682 94.858 95.953 98.261 3,910,641
U-NET3 96.843 92.534 94.886 97.486 503,100
U-NET4 97.512 95.166 95.028 98.358 542,460

Proposed network 98.036 96.688 95.616 98.871 507,729
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In Table 2 we observe that our method has achieved the highest metric values. Our method
is nearly 0.5% more accurate, sensitive and specific when compared to the second best accuracy,
sensitivity and specificity values; and nearly 1.5% more precise when compared to the second best
precision value. That means that our proposed network is particularly better than the others are at
avoiding false positives. Although these differences may not seem significant, we observe in Figures 8
and 9 that only our method shows a little difference between the training and validation values over
the training time, meaning that it prevents overfitting problems and has better performance than the
other networks when it comes to predicting new samples outside the training set. Furthermore, we
notice a huge difference between the number of trainable parameters of U-NET1 and U-NET3, and
U-NET2 and U-NET4, although they have similar architectures, proving that using atrous separable
convolutions instead of regular convolutions significantly reduces the amount of computation. Finally,
another advantage of our method is that it has 34,731 less parameters than U-NET4; thus, it is faster
because it has less operations to perform. When evaluating on the test set, the proposed network
showed an accuracy of 98.143%, a specificity of 96.599%, and a sensitivity of 95.556%. This represents
an unbiased evaluation of the final selected network.

3.2. Mauritia flexuosa Segmentation

Figure 10 shows the segmentation results of 512 × 512 patches; however, one aerial photograph
contains several of these small patches, as its dimensions are much larger (Table 1). Thus, to perform
the Mauritia flexuosa segmentation of a whole image, we apply a 512 × 512 sliding window across
the image in both horizontal and vertical direction with a 50-pixel overlap. This sliding window is
processed by the trained CNN in each position. Then, the image is reconstructed with the segmentation
results, as shown in Figure 11. In order to avoid discontinuities or discrepancies in the overlapping
pixels captured by the moving pixels, we always considered the maximum pixel values. Furthermore,
a threshold of 0.5 is applied over the probability map (Figure 11b) to obtain a binary mask as shown in
Figure 11c.

Figure 10. Mauritia flexuosa segmentation results.
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Figure 11. Mauritia flexuosa segmentation result for a whole image. (a) Original image. (b) Mauritia
flexuosa probability map. (c) Mauritia flexuosa binary mask.

3.3. Mauritia flexuosa Monitoring

The proposed algorithm is designed to be used as a tool by experts from the Peruvian Amazon
Research Institute (IIAP). They will acquire aerial images of areas of interest to monitor periodically
the approximate amount of Mauritia flexuosa palms on a regular basis.

Hundreds of images can be taken in one single flight; using only one of them is not representative
enough to analyze a big area, which is why it is necessary to create a georeferenced image mosaic using
the GPS information of each image. The elaboration of a mosaic consists of reconstructing a scene in
two dimensions from the combination of images acquired with a certain overlap. To carry out this
operation, a series of geometric transformations between pairs of images must be estimated, so that
when warping one image on another, they can be blended with the least possible error. For this, we use
an algorithm that was specifically developed as part of this project to work on areas with abundant
vegetation [35]. Figure 12 illustrates two types of mosaics: one made up of RGB images and the other
of binary Mauritia flexuosa masks. Figure 13 shows five mosaics of areas with different concentration of
Mauritia flexuosa palms. By doing this, we can analyze large areas and fly periodically to monitor this
kind of natural resources.

Figure 12. Aerial image mosaic composed of 168 photographs. (a) Mosaic of RGB images. (b) Mosaic
of Mauritia flexuosa masks.
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Figure 13. Aerial image mosaics acquired near Lake Quistococha. (a) Mosaics of RGB images.
(b) Mosaics of Mauritia flexuosa masks.

4. Conclusions

In this paper, we have presented a new end-to-end trainable deep neural network to tackle the
problem of Mauritia flexuosa palm trees segmentation in aerial images acquired by Unmanned Aerial
Vehicles (UAVs).

The proposed model is based on Google’s Deeplab v3+ network and has achieved better
performance than those of other Convolutional Neural Networks used for performance comparison.
With an accuracy of 98.036%, the segmentation results prove to be quite similar to the hand-drawn
ground truth masks. What is more, after learning the particular features of Mauritia flexuosa and its
leaves (e.g. shape, texture, color, etc.), our model , our model is able to detect the presence of Mauritia
flexuosa palms and segment them even when partially covered by taller trees. Further work will be
focused on both segmenting and counting the approximate amount of Mauritia flexuosa palms in
high-resolution aerial photographs.

Supplementary Materials: The dataset are available at http://didt.inictel-uni.edu.pe/dataset/MauFlex_Dataset.
rar, dataset license: CC-BY-NC-SA 4.0.
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Abstract: Ancient tree community surveys have great scientific value to the study of biological
resources, plant distribution, environmental change, genetic characteristics of species, and historical
and cultural heritage. The largest ancient pear tree communities in China, which are rare, are located in
the Daxing District of Beijing. However, the environmental conditions are tough, and the distribution
is relatively dispersed. Therefore, a low-cost, high-efficiency, and high-precision measuring system
is urgently needed to complete the survey of ancient tree communities. By unmanned aerial vehicle
(UAV) photogrammetric program research, ancient tree information extraction method research, and
ancient tree diameter at breast height (DBH) and age prediction model research, the proposed method
can realize the measurement of tree height, crown width, and prediction of DBH and tree age with low
cost, high efficiency, and high precision. Through experiments and analysis, the root mean square error
(RMSE) of the tree height measurement was 0.1814 m, the RMSE of the crown width measurement was
0.3292 m, the RMSE of the DBH prediction was 3.0039 cm, and the RMSE of the tree age prediction
was 4.3753 years, which could meet the needs of ancient tree survey of the Daxing District Gardening
and Greening Bureau. Therefore, a UAV photogrammetric measurement system proved to be capable
when applied in the survey of ancient tree communities and even in partial forest inventories.

Keywords: UAV photogrammetry; forest modeling; ancient trees measurement; tree age prediction

1. Introduction

Ancient trees are the cornerstone of the natural, agricultural, and urban ecosystems on earth [1–5].
The investigation of ancient tree communities is of great scientific value to the study of biological
resources, plant distribution, environmental change, genetic characteristics of species, and historical
and cultural heritage [6,7]. In view of the specific situation of the ancient tree community survey, few
unique survey patterns have been formed. At present, the traditional forest survey pattern is mainly
used in the survey of ancient tree communities. The Daxing District of Beijing has the world’s rarest
ancient pear tree communities. For the purpose of protecting and managing ancient trees, preventing
the malicious and illegal felling of ancient trees, and strengthening the information management of
ancient trees, the Daxing District Gardening and Greening Bureau hopes to carry out ancient tree
communities monitoring every year. As more than 100,000 pear trees and 40,000 ancient pear trees
are scattered over more than 400 km2, great difficulties have arisen in the investigation of ancient tree
communities. In addition, the Daxing District Gardening and Greening Bureau can only conduct the
survey of ancient pear trees within one month before the Pear Flower Festival every year. Therefore,
the high efficiency and real-time performance of the survey of ancient tree communities becomes
particularly critical.
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Traditional forest survey patterns include ground surveys and aerial remote sensing surveys [8,9].
As ground survey equipment, an electronic total station can accurately measure the three-dimensional
coordinates, height, diameter at breast height (DBH), stem volume, and canopy volume of an
individual tree [10]. Forest intelligent surveying and mapping instruments, which are portable
and internal-external integrated, can be applied in the measurement of height, DBH, and volume of
an individual tree. In addition, stand average height, stand average DBH, stand density, and stand
volume can be estimated by the angle gauge measure function embedded in the program [11]. A forest
telescope intelligent dendrometer is capable of measuring height and DBH of an individual tree from
a long range. In addition, stand parameters can be estimated by using the embedded micro sample
plot measure function [12]. Even though the above survey instruments have the function of stand
parameter estimation, they are more suitable for the accurate measurement of an individual tree than
a large-scale forest survey. A terrestrial laser scanning (TLS) system, as an efficient and high-precision
measurement method, has gradually become an important means of conducting a forest survey and
can visually measure stand structure parameters in three dimensions [13,14]. The main purpose of
TLS is to improve the efficiency of forest sample plot monitoring. With the help of the point cloud,
automatic acquisition replaces manual measurement of tree attributes, which mainly include tree
height, DBH, crown width, and coordinates [15]. The line of sight of TLS is not limited to only a few
meters. Several scanning locations are required rather to avoid gaps in the point cloud due to occlusion
from terrain or vegetation [16]. This limitation means that using TLS point cloud data to describe large
areas of forest space is time-consuming and costly [17].

Airborne laser scanning (ALS) is a good solution for large areas of forest investigation. The ALS
systems can generate 3D point cloud data to describe tree height and canopy structure and use
other methods to build the relationship between tree heights, canopy structures, and other forest
attributes [18]. Many research results showed that the accuracy and precision of the forest survey
were satisfying in obtaining forest attributes, such as forest volume and forest biomass, using ALS
systems [19–23]. More and more people choose to use high-resolution digital aerial images to generate
3D data just like ALS and apply it to the forest survey [24–26]. The cost of unmanned aerial vehicle
(UAV) photogrammetric measurement systems is more acceptable compared to ALS, and attributes
such as species composition, maturity, and health status can be acquired through images. Many
studies have shown that UAV photogrammetric measurement systems can generate 3D data and the
combination of the digital surface model (DSM) and digital elevation model (DEM) can deduce the
height of a canopy on the ground, thus producing a canopy height model (CHM) [27]. Generally,
UAV photogrammetric measurement systems rely on a ground control point (GCP), which is regarded
as a source of reliable georeferencing information [28]. Furthermore, in the UAV photogrammetric
measurement systems, additional GCPs are often used to calibrate the location parameters [28].
In general, UAV photogrammetric measurement systems require more than 30 control points per square
kilometer, which is undoubtedly extremely difficult and inefficient in a complex forest environment [29].
Therefore, we need a kind of UAV photogrammetric measurement system that can meet the forestry
survey requirements. In addition, without a proper sensor geometric calibration, the GCPs will not
provide enough accuracy for coordinate correction and that will affect the final 3D model accuracy.
Nan An and others imported the converted TIFF images into the Agisoft Photoscan program to
generate an orthophoto by correcting perspective distortion [30]. Dongwook Kim and others used
Pix4Dmapper software to auto-compensate the principal point and radial distortion by processing the
bundle block adjustment [31].

Forest modeling is a type of ecological modeling. With the development of forestry informatization,
the relationship between forest modeling and high spatial resolution three-dimensional (3D) remote
sensing has become closer [32–35]. Temuulen T. Sankey and others have proposed combining light
detection and ranging (LiDAR) data and hyperspectral data for ecological modeling and subtle
environmental change detection [36,37]. Remote sensing techniques, in combination with forest
modeling, which can be applied to estimate forest biomass and carbon stock [38,39] and to monitor
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forest harvest and recruitment [40], are widely used in ecosystem process modeling [41]. Remote sensing
techniques such as LiDAR can be combined with the algorithm for individual tree detection [42–44]
to obtain tree height and canopy area. Many studies have shown that the use of linear mixed models
can well establish the correlation between tree height, canopy area, and DBH [45]. In addition, in the
forest modeling study, if DBH and tree height are known, tree growth modeling combined with forest
environment can predict tree age well [46,47]. However, the development of these two models requires
an expensive monitoring system to effectively monitor the forest environment [48]. The survey of
ancient tree communities in Daxing District requires high efficiency and low cost. Therefore, a new
forest modeling method is needed to predict DBH and tree age.

This study aims to solve the following main problems:

1. On the premise of ensuring the accuracy of forestry survey, it is necessary to study a continuous
photogrammetric algorithm and software suitable for monitoring ancient tree communities.

2. Using existing technology and algorithms, it is necessary to study the effective and accurate
extraction of forest information from the point cloud data.

3. Because of the specific situation of ancient tree communities, it is necessary to study the ancient
tree structure relationship model and ancient tree growth model to estimate the DBH and age.

2. Materials and Methods

2.1. Profile of Study Sites

Daxing District (Figure 1) is located in the south area of Beijing, with Tongzhou District to the
east, Gu’an County and Bazhou City in the Hebei province in the south, the Yongding River in the
west, and the Fangshan, Fengtai, and Chaoyang districts in the north. It has an east longitude of
116◦13′–116◦43′ and a north latitude of 39◦26′–39◦51′. The whole district is on the Yongding River
alluvial plain. The terrain gradually slopes from the west to the southeast, with an altitude between 14
and 52 m. There are six main rivers in the Daxing District, including the Yongding, Liangshui, Tiantang,
Dalong, Xiaolong, and Xinfeng. The Beijing Daxing Wanmu pear orchard is the largest ancient pear tree
community with the largest planting area, the earliest flowering, and the most varieties around Beijing.
The central area is located in Lihua Village, where more than 40,000 ancient pear trees (Figure 2) have
been preserved for over 50 years. There are more than 40 varieties of pear trees in this area, one of
which is 417 years old and has been named “gold yellow” by an emperor of Qing dynasty. From
Appendix A, we can see the distribution of ancient trees in each town in Daxing District.

2.2. Technical Information

In this study, by using the YS-500 Fixed-Wing UAV (Figure 3 and Table 1, Beijing Global Forest
Technology Co. LTD, Beijing, China) and Sony-A7R camera (Table 2), aerial images of Panggezhuang
Town were obtained. The flight area was about 49 km2, and the ground resolution was better than
5 cm. A total of 4984 images were taken through taking off and landing six times, with an average
height of 331 m. The fore-and-aft overlap of route planning was 65%, and the side overlap was 75%.

Control points were measured by Yinhe I RTK (Real Time Kinematic) measurement system (made
in China South Surveying & Mapping Instrument Company). The specific parameters of RTK are
shown in Table 3.
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Figure 1. Layout of the research area.

 

Figure 2. The scene of ancient trees investigation.

Table 1. Parameters of YS-500 Fixed-Wing UAV.

Content Parameters Value

Wingspan 1700 mm
Length 900 mm

Dynamical System Dynamoelectric system
Materials Aeronautical Composite

Maximum Take-off Weight 5.5 kg
Aircraft Standard Load 1.5 kg

Speed 70–120 km/h
Cruising Speed 80–90 km/h

Maximum Flying Distance 100 km
Cruising Range 80 km

Cruising Duration 90 min
Maximum Flying Altitude 4500 m

Wind Resistance 10.8–13.8 m/s
Working Temperature −10 ◦C–50 ◦C

Radio Range 30 km
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Table 2. Calibration parameters of the Sony-A7R camera (measurement by the Chinese Academy of
Surveying and Mapping).

Calibration Content Calibration Value

Principal Point x0 −0.188561
Principal Point y0 −0.138128

Focal Length f 36.289444 mm
Pixel Size 4.88 μm

Picture Format (pixel) 7360 × 4912
Coefficient of Radial Distortion k1 −5.145797 × 10−5

Coefficient of Radial Distortion k2 1.583367 × 10−7

Coefficient of Radial Distortion k3 1.829755 × 10−5

Tangential Distortion Factor p1 −6.050453 × 10−6

Tangential Distortion Factor p2 −1.739164 e−5

 
Figure 3. YS-500 Fixed-Wing Unmanned Aerial Vehicle (UAV).

Table 3. Specific parameters of Yinhe I RTK (Real Time Kinematic) measurement system (measurement
by the China South Surveying & Mapping Instrument Company).

Instrument Specifications Specific Parameters

Signal Tracking

220 signal channel
BDS B1, B2, B3

GPS L1C/A, L1C, L2C, L2E, L5
GLONASS L1C/A, L1P, L2C/A, L2P, L3

SBAS L1C/A, L5
Galileo GIOVE-A, and GIOVE-B, E1, E5A, E5B

QZSS, WAAS, MSAS, EGNOS, GAGAN (Veripos)

GNSS Features

Positioning output frequency, 1 Hz–50 Hz
Initialization time, Less than 10 s

Able to support GNSS constellation signals from all current and future plans
High reliable carrier tracking technology

Intelligent dynamic sensitivity positioning technology
High precision positioning processing engine

Differential positioning accuracy
Horizontal: 0.25 m + 1 ppm RMS

Vertical: 0.50 m + 1 ppm RMS
SBAS differential positioning accuracy: Typical <5m 3DRMS

Static GNSS measurements ±(2.5 mm + 1 mm/km × d),
d is the distance of the measured point, km

Real-time dynamic measurement (RTK) ±(8 mm + 1 mm/km × d),
d is the distance of the measured point, km

2.3. Research on the Improved UAV Photogrammetric Program

SfM is the abbreviation of structure from motion, which is a valuable tool for generating 3D
models from 2D images. It is developed from computer vision and conventional photogrammetry.
Unlike conventional photogrammetry, SfM uses algorithms to identify matching features in the set
of overlapping images and to calculate the camera position and direction in accordance with the
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difference of the multiple matching features [49,50]. Based on these calculations, the overlapping
images can be used to reconstruct the “sparse” or “rough” three-dimensional point cloud model of the
captured object. The model obtained by the SfM method can be further refined by a multi-view stereo
(MVS) algorithm, so as to complete the workflow of SfM-MVS [51].

The SfM-MVS method is relatively inexpensive, both in terms of hardware and software
requirements. It is faster than other digital measurements in the field and is a process almost
independent of spatial scales. In addition, the SfM-MVS can also produce 3D point cloud data
with high precision, high density, and high resolution. In some cases, it may even catch up with the
terrestrial laser scanner [49].

In this study, the SfM-MVS method was used to detect the feature points of the image, and the
scale-invariant feature transform (SIFT) algorithm (Figure 4) was used to detect feature points and
generate feature vectors. By identifying the correspondence between feature points on different images,
we screen out the image pairs with overlapping parts. Then, the matching was carried out according
to the feature vectors, and the RANSAC (random sample consensus) algorithm was used to delete the
connection of the conflicting geometric features of corresponding feature points.

 

Figure 4. SIFT algorithm image matching the partial region (blue “+” represents feature points that
match between images).

The regional network bundle adjustment method of aerial triangulation contains a beam of
light composed of an image as the basic unit of adjustment and the collinearity formula of central
projection as the basic formula of adjustment [52,53]. Through the rotation and translation of every
light beam in space, the best intersection of the light from the common points between the models
can be achieved, and the entire region can be optimally incorporated into the known control point
coordinate system [54,55]. The advantage of this algorithm is that it only takes more than four GCPs
for the free network bundle adjustment method and the system bundle adjustment method, so as to
obtain the correction number of the images, improve the efficiency of the field work, and minimize the
measurement error.

ϕ is longitudinal tilt, ω is lateral tilt, and κ is swing angle. X, Y, Z are longitude, latitude, and
altitude. Given the profile of the test area, UAV POS (Positioning and Orientation System) data (X0

i ,
Y0

i , Z0
i , ϕ0

i , ω0
i , κ0

i ) and ground control point Pn(Xn0, Yn0, Zn0) (n ≥ 4), free network adjustment was
first conducted (Figure 5). Nine control points were arranged in the four corners of the rectangle, the
center of the four edges and the center of the rectangle. Among them, (uj

′, vj
′) and (uj, vj) are the

corresponding image point to image i + 1 and image i, respectively. λ′
j and λj are the corresponding

scale factor to image i + 1 and image i, respectively. X0
i+1, Y0

i+1, Z0
i+1, ϕ0

i+1, ω0
i+1, and κ0

i+1 are the
elements of exterior orientation of the POS data in the image. i + 1, X0

i , Y0
i , Z0

i , ϕ0
i , ω0

i , and κ0
i are the

elements of exterior orientation of POS data in image i. R0
i is the initial value of the rotation matrix

composed of the elements of exterior orientation of POS data in image i. R0
i+1 is the initial value of the

rotation matrix composed of the elements of exterior orientation of POS data in image i + 1. Formula
(1) can be obtained by substituting the values of three corresponding image points.
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j stands for corresponding image point. λ0
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′, and f are coordinates of the corresponding image point. Therefore, we can get the
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Figure 5. Image correction of the free network adjustment in ancient tree communities.

The selection and positioning of the image control points (Figure 6) is to accurately indicate
the position of the image control point on the image. It is the basis of image interpretation and
measurement. In the selection and positioning of image control points, the intersection of linear
ground objects and the corner of ground objects are generally selected.

According to the correction between images (Figure 7), the adjustment value of each image center
is calculated, and the coordinates of each ground control point in the independent coordinate system of
images are then calculated. We convert the image coordinate system to the ground coordinate system,
so as to obtain the final correction value after the system bundle adjustment method.

From the above, based on the development platform of Microsoft Visual Studio 2010, using C#
language, we independently developed software called “New UAV Bundle Adjustment” for image
matching and POS correction. The image and POS data processed by this software were imported
into Pix4Dmapper software for three-dimensional (3D) points cloud modeling. Pix4Dmapper comes
from the Swiss company Pix4D, which is the research result of the world-class research institute EPFL
(Swiss Federal Institute of Technology in Lausanne).
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Figure 6. Selection and positioning of the image control points.

Figure 7. Image correction of the regional system adjustment of ancient tree communities.

The number of control points and the layout position will have a great influence on the precision
of aerial triangulation. To verify the accuracy of improved UAV photogrammetric program in this
study, nine control points were set up in Panggezhuang Town (Figure A1), and a total of 68 field
control points were collected by RTK. The flight area was about 49 km2. The same height points were
set up on the four sides and the center line of the region. Considering that this test area was a more
regular rectangular region, nine points were arranged in the four corners of the rectangle, the center of
the four edges, and the center of the rectangle. The remaining 59 points were precision check points.
Data acquisition was based on the same camera (Table 2). Data Source A used the improved bundle
adjustment for calculation, and Data Source B adopted the conventional aerial measurement method.
The layout scheme is shown in Figure 8.
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Figure 8. Layout scheme.

The precision of orientation points and check points by using the bundle adjustment was evaluated
via field measurement. The difference value between the calculated value of ground coordinate and the
measured coordinate was considered to be the true error. The root mean square error was calculated
according to Formula (2).

σX =

√
∑(XC−XR)

2

n

σY =

√
∑(YC−YR)

2

n

σXY =
√

σ2
X + σ2

Y

σZ =

√
∑(ZC−ZR)

2

n

. (2)

In the formula, σX and σY were the root mean square error (RMSE) of points in the X and Y
directions. σZ was the root mean square error of the points in the elevation. σXY was the root mean
square error of the points in the plane. XC, YC, and ZC were the measured coordinate values of the
check points. XR, YR, and ZR were the calculated coordinate values of check points by using the
bundle adjustment.

2.4. Research on the Ancient Tree Information Extraction Method

The image matching point cloud based on the UAV platform can cover large areas and generate
high-density accurate point cloud, and the cost is relatively low. An image matching point cloud is
a series of inhomogeneous and discrete point sets in space, which contains certain texture information.
A DSM can be obtained through the processing of point cloud data, and a DEM can be obtained
through the filtering process [49]. As the image point cloud is a passive remote sensing product, it does
not have multiple echoes, and it is difficult to obtain accurate DEM data directly in densely vegetated
areas. Therefore, it is necessary to conduct research and analysis in information extraction of forest.
This study used LiDAR 360 (Beijing Digital Green Earth Technology Co. LTD, Beijing, China) software
to extract ancient tree information.

2.4.1. Classification of Ground Point Based on Point Cloud Data

(1) Point cloud denoising. In the process of point cloud acquisition, some noise points will
appear due to equipment inaccuracy and environmental factors. Removal of noise points before data
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processing can improve data accuracy and reduce the error caused by noise points [56]. The noise
removal algorithm adopted in this study includes the high threshold method, the isolated point search
method, and the low point search method.

(2) Ground point classification. Ground point refers to the point below ground vegetation or the
ground building. The basic idea of extracting the ground point is to assume that the lowest point in an
area is its ground point and search these local lowest points to form the initial surface. On this basis,
the relationship between other points and the initial surface can be valued. If it conforms to a certain
relationship, it will be regarded as the ground point for classification, which is dealt with by multiple
iterations. Different geomorphic features have different iterative algorithms and given thresholds [49].
In this study, a hierarchical robust linear predictive filtering algorithm, a morphological filtering
algorithm based on gradient, and a TIN stepwise encryption algorithm were used.

2.4.2. Generation of Raster Data from Point Clouds

(1) DSM generation. Point cloud data are irregular three-dimensional discrete points, which need
to be interpolated to generate a three-dimensional model with continuous changes [49]. The algorithms
used in this study include inverse distance weighted (IDW) interpolation, Kriging interpolation, natural
neighbor interpolation, and radial basis function interpolation.

(2) DEM generation. Discrete ground points are interpolated to generate DEM [49]. Firstly, the
ground point cloud is rasterized, the ground point is then extracted by the local minimum search
window algorithm, and the raster data is interpolated using the TIN interpolation algorithm.

(3) CHM generation. The canopy height model (CHM) is a high-resolution raster dataset that
maps the height of the tree to a continuous surface, where each pixel represents the height of the tree
above the ground. The method of obtaining CHM is the subtraction of DSM and DEM [49]. Ground
fluctuation in the study of ancient tree community causes the bottom of the trees to not be on the
same horizontal surface, and the introduction of CHM can solve this problem well. CHM reduces
the calculation of tree height to a plane, which can conveniently reflect the information of tree height,
as shown in Figure 9.

Figure 9. Digital surface model (DSM) and digital elevation model (DEM) schematic.

2.4.3. Segmentation of Individual Ancient Tree

The three-dimensional point cloud is rasterized and transformed into CHM based on the 3D point
cloud, from which information such as tree height and crown width can be obtained. In the individual
tree segmentation of pear trees, the model algorithm of seed region growth is adopted [49]. The basic
method is to form convex hull polygons based on CHM and then reconstruct the canopy along the
two-dimensional convex hull with the normalized image point cloud, so as to achieve the purpose of
individual tree segmentation. The detailed process is as follows.

(1) A sliding window to detect the location of seed point was defined. The minimum threshold
of tree height will be set during processing. When the value is greater than the minimum threshold
detected in slide detection, this point is considered as the seed point. (2) The points on CHM are
marked and divided into seed points and non-seed points. (3) Four adjacent points near a seed point
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are searched for to determine whether the seed point to each point is greater than the set crown
width threshold on the plane and whether the height is greater than the height threshold. If the
above two points are satisfied, it will be regarded as a new seed point, which will be reclassified and
processed several times until all seed points and non-seed points are classified. (4) Marked seed points
were used as the center to establish a two-dimensional convex envelope marking boundary. (5) The
final boundary contour of the generated point boundary polygon is used as the basis to segment the
normalized point cloud data and achieve the purpose of individual tree segmentation.

According to image data and impression of the field situation, the position of missed, excessive,
and false detection points were edited. The false seed points could be deleted. The excessive seed
points could be deleted and the corrected seed points could be reserved. The missed seed points could
be added. Then, the individual tree could be segmented. The central location of the tree could be
obtained by the center coordinate of prominent position.

2.5. Research on the Ancient Tree DBH and Age Prediction Model

The height–crown-width–DBH model and “3 speed 2 inflection points” optimum condition
growth model of pear trees were developed based on the measured data from a pear tree survey in
Lihua Village, Daxing District. In combination with a UAV photogrammetric tree measurement system,
the DBH and age of individual trees can be estimated accurately.

2.5.1. Building of the Height–Crown-Width–DBH Model

Data of fixed plots are usually affected by the within-plot and temporal correlation. In order
to solve this potential problem of autocorrelation, linear mixed models were fitted to the data by
including a random effect of plot (to model spatial correlation) in the model and by specifying an
autoregressive error structure (to model temporal correlation) [45]. The fixed plot data of this study is
the previous survey data of pear tree communities in Lihua Village (Appendix A, Figure A1), with
a total of 1484 pear trees, including only DBH, tree height, and crown width. In 2014, Local Forestry
Station investigators made use of the Diameter Ruler and Electronic Total Station (NTS 362R, China
South Surveying & Mapping Instrument Company, Guangdong, China) to measure the DBH, height,
and crown breadth of pear trees. Therefore, it is more suitable to use the nonlinear model. Referring to
the common height–DBH model and crown width–DBH model, the height–crown-width–DBH model
(Formula (3)) is obtained.

d1.3 = g1·Hq1 + g2·Dq2 . (3)

d1.3 is the diameter at breast height, H is the tree height, and D is the crown width. g1 and q1

are the factors to establish the correlation between tree height and DBH. g2 and q2 are the factors to
establish the correlation between crown width and DBH.

2.5.2. Building of the “3 Speed 2 Inflection Points” Optimum Condition Growth Model

The growth data in this study were 39 ancient pear trees in Lihua Village obtained by specimens
of trees, including the annual diameter growth of different types of pear trees. Commonly used
tree growth modeling includes the logistic model, the Mitscherlich model [57], the Gompertz model,
the Korf model [58], and the Richards model [59]. In the above model fitting process, the sample
data will be regarded as a mean tree of the same site and environment. Therefore, it is necessary to
propose a growth model, which can not only fit the sample data at different sites and under different
environments but also fit the overall growth trend of the sample data. Tree growth consists of three
basic processes, namely cell division, cell elongation, and cell differentiation. Theoretically, the growth
potential of cells and tissues is unlimited, and their growth should always be exponential. However,
since the internal interactions between individual cells or organs limit growth [60], the growth process
of trees is divided into the juvenile period, the medium period, and the near-mature period. In this
study, the three stages were summarized as “3 speed 2 inflection points,” and the overall growth
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trend was relatively stable. Different tree growth indexes were assigned to each sample data, which is
the composite index of site index, structure index, and growth rate index. By selecting the optimal
tree growth index and the tree growth model, the optimal tree growth can be obtained, as shown in
Formula (4). ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d1.3 = a1·e
−b1

t ·
(

e−b4·t+a4 + a5

)
0 < t ≤ t1

d1.3 = a1·e
−b2

t +a2 ·
(

e−b4·t+a4 + a5

)
t1 < t ≤ t2

d1.3 = a1·e
−b3

t +a3 ·
(

e−b4·t+a4 + a5

)
t2 < t

. (4)

d1.3 is the DBH, t is the age of the tree, a1, a2, a3, b1, b2, and b3 are the parameters of the tree growth
model of the overall sample data. e−b4·t+a4 + a5 is the tree growth index model of each independent
sample data, and b4, a4, and a5 are the factors of this model.

3. Results

3.1. Experiment Preparation

We choose Beicao Village (Figure A1), Gaodian Village (Figure A3), Houyechang Village
(Figure A3), Nandi Village (Figure A1), Qiancao Village (Figure A1), Shilipu Village (Figure A2),
Taiziwu Village (Figure A2), Xinzhuang Village (Figure A2), Zhouying Village (Figure A4), and
Zhuzhuang Village (Figure A4) as the study area. The parameters of the pear tree were obtained
by using an electronic total station, diameter tape, and an increment-borer, and the system accuracy
was verified.

3.2. Analysis of the Improved UAV Photogrammetric Program

According to the computer three-dimensional visual algorithm, the matched points are handled
to generate the sparse point cloud (Figure 10). The sparse point cloud is encrypted to obtain the dense
point cloud with a geographical reference, as shown in Figure 11. The missing point cloud problem
is the most common phenomenon in the photogrammetric system. The main solution of this study
is to use missing area images separately for three-dimensional point cloud construction and select
the high-precision and high-density point cloud construction options of Pix4Dmapper. The precision
results of orientation points and check points by using the bundle adjustment are shown in Table 4.

Analysis of results from different data sources shows that the RMSE in the orientation point and
check point of Data Source A was generally less than that of Data Source B. The RMSE in the plane of
Data Source B is more than two times higher than that of Data Source A, and the RMSE in the elevation
Data Source B is also more than two times higher than that of Data Source A.

 
Figure 10. Sparse 3D point cloud of ancient tree communities.

144



Forests 2018, 9, 735

 
Figure 11. Dense 3D point cloud of ancient tree communities.

Table 4. Aerial triangulation accuracy for different data sources.

Data Sources Data Source A Data Source B

Fundamental orientation points

RMSE of plane 0.233 m 0.442 m
Maximum error of plane 0.317 m 0.762 m

RMSE of elevation 0.154 m 1.516 m
Maximum error of elevation 0.196 m 2.289 m

Check points

RMSE of plane 0.299 m 0.314 m
Maximum error of plane 0.691 m 0.714 m

RMSE of elevation 0.873 m 1.508 m
Maximum error of elevation 1.498 m 2.686 m

3.3. Analysis of the Tree Information Extraction Method

After multiple processing experiments, tree information extraction has the best processing effect
by dividing areas (no more than 10 km2). The point cloud data is displayed by the elevation of ancient
tree communities, as shown in Figure 12. The classification results of ground points are shown in
Figure 13. The DSM (Figure 14a), DEM (Figure 14b), and CHM (Figure 14c) after processing are shown
in Figure 14.

 

Figure 12. Point cloud data displayed by elevation of ancient tree communities.
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Figure 13. Ground point classification of ancient tree communities.

   

(a) (b) (c) 

Figure 14. The DSM (a), DEM (b), and canopy height model (CHM) (c) of ancient tree communities.

According to the seed points (Figure 15), the prominent position of point cloud data is segmented
and the information of individual trees is calculated, as shown in Figure 16.

To verify the measurement accuracy of tree height in the system, the reference tree heights of
745 pear trees were arranged from small to large, and the tree number was reset. The tree height was
distributed between 3.02 and 5.42 m (Figure 17). The results (Table 5) show that the measured values
were distributed on both sides of the reference values, and the maximum measurement error was
0.688 m. Most of the measurement error was within 0.3 m.

Table 5. Verification and analysis of measurement accuracy of tree height and crown width.

RMSE RMSE% Bias Bias%

Tree Height (m) 0.1814 m 4.39% 0.0408 m 0.99%
Crown width (m) 0.3292 m 4.73% 0.0244 m 0.35%

In order to verify the measurement accuracy of the crown width of the system, the reference
values of 745 pear trees were arranged according to the size, and the tree number was reset. The canopy
amplitude was distributed between 3.01 and 12.02 m (Figure 18). The results (Table 5) show that the
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measured values are distributed on both sides of the reference value, with the maximum measurement
error of 1.165 m. Most of the measurement errors were within 0.5 m.

 
Figure 15. Seed point generated in ancient tree communities.

 

Figure 16. Eye-dome lighting (EDL) display of ancient tree communities.
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Figure 17. Reference value and measured value distribution of tree height.

Figure 18. Reference value and measured value distribution of tree crown width.

3.4. Analysis of the Ancient Tree DBH and Age Prediction Model

The fitting status of the height–crown-width–DBH model is shown in Table 6. In order to verify
the DBH prediction accuracy of the system, the reference values of 745 pear tree data was adjusted
according to the size, and the tree number was reset. DBH was distributed between 16.7 and 55.3 cm
(Figure 19). The results (Table 7) show that the predicted values were distributed on both sides of the
reference value, and the maximum prediction error was 10.33 cm. Most of the prediction errors were
within 5 cm.

Table 6. Fitting analysis of the height–crown-width– diameter-at-breast-height (DBH) model
(R2 = 0.986).

Factor Estimated Value Standard Error
Lower Limit of 95%
Confidence Interval

Upper Limit of 95%
Confidence Interval

g1 1.570 0.193 1.191 1.950
q1 1.428 0.052 1.325 1.530
g2 2.296 0.242 1.821 2.771
q2 1.119 0.035 1.051 1.187
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Table 7. Accuracy analysis of DBH prediction.

RMSE RMSE% Bias Bias%

DBH (cm) 3.0039 cm 9.25% −0.4193 cm −1.29%

Figure 19. Reference value and measured value distribution of DBH.

In the “3 speed 2 inflection points” model, K-means cluster analysis was carried out on the sample
data of 39 ancient pear trees, which was divided into three growth stages: 1–26 years as the juvenile
period, 27–59 years as the medium period, and ≥60 years as the near-mature period. In addition,
the sample of the optimal tree growth index was taken as the mean tree, and the fitting analysis of the
“3 speed 2 inflection points” model is shown in Table 8.

Table 8. Fitting analysis of “3 speed 2 inflection points” model (R2 = 0.892).

Factor Estimated Value
Standard

Value
Lower Limit of 95%
Confidence Interval

Upper Limit of 95%
Confidence Interval

a1 26.959 0.747 25.494 28.424
b1 12.076 0.455 11.184 12.969
a2 0.522 0.035 0.453 0.590
b2 25.907 0.866 24.208 27.605
a3 1.341 0.054 1.236 1.447
b3 74.661 3.330 68.131 81.191
a4 5.739 1.778 2.207 9.272
b4 1.326 0.521 0.290 2.361
a5 1.147 0.006 1.135 1.159

In order to verify the accuracy of the system’s age prediction, the reference ages of 745 pear trees
were arranged from small to large, and the tree number was reset, and the ages were distributed
between 30 and 104 (Figure 20). The results (Table 9) show that the predicted value is distributed on
both sides of the reference value, and the maximum prediction error is 16 years. Most of the prediction
errors were within 8 years. The number of pear trees identified through the system was 391, and the
number of pear trees sampled through the increment borer was 401.

Table 9. Age prediction accuracy analysis.

RMSE RMSE% Bias Bias%

Tree Age/years 4.3753 years 8.77% 1.5141 years 3.03%
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Figure 20. Reference value and measured value distribution of tree age.

4. Discussion

4.1. Comparative Analysis of UAV Photogrammetry in Forestry Application

4.1.1. UAV Photogrammetry to Obtain Forest Structure

There are many studies on extracting the scale structure information of single trees by UAV
photogrammetry. Dandois and others (2010) used cameras mounted on a kite platform to obtain
aerial images of different-age forests and same-age forest and reconstructed 3D point clouds through
Ecosynth. Image construction CHM can be used to estimate tree height (R2 > 0.64) [61]. However,
the above research differs greatly from the accuracy of the estimated tree height by our improved
system, mainly because our fixed-wing UAV platform is relatively stable. Zarco-Tejada and others
analyzed the near-infrared images of olive trees obtained by fixed-wing UAVs, conducted 3D
construction by Pix4UAV software (Swiss company Pix4D), and obtained tree height information
from DSM image construction, which had good correlation with ground measured trees (R2 = 0.83,
RMSE = 35 cm) [62]. The above research is very close to the accuracy of the tree height estimation of
this system, but there is still a certain gap in accuracy. The main reason is that our system matches and
corrects UAV image and POS data before 3D construction, which is also an innovative and important
means to improve the accuracy of low-cost UAV photogrammetry. Ni and others obtained northern
forest aerial images through a multi-rotor UAV, reconstructed the three-dimensional point cloud images
with Agisoft Photoscan, compared and analyzed the photogrammetric CHM and the LiDAR CHM,
and found that the soil scale forest was highly correlated (R2 = 0.87, RMSE = 1.9 m) [63]. In the above
research, a multi-rotor UAV platform is used, so there is still a certain gap compared to the fixed-wing
UAV platform accuracy. In addition, White and others used RSG to perform the three-dimensional
construction of high-altitude aerial images (point cloud density is 12.27 points/m2) [64]. Because the
side overlap rate is too low, only fore-and-aft overlap images are used to match. Image construction
point cloud minus LiDAR DEM obtains a terrain-normalized point cloud and performs hierarchical
analysis according to the slope and canopy closure change. The image construction point cloud
and the LiDAR point cloud feature quantities are statistically significant, and the DBH is the largest
difference. The model result is the same. There is no trend between slope and canopy closure. However,
the combination of photogrammetry and LiDAR proposed by the institute provides a direction for the
future extraction of forest structures with higher precision.
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4.1.2. UAV Photogrammetry to Obtain Topography under Tree Crowns

There are many related studies on UAV photography to measure the terrain under the forest.
Dandois and others (2010) used aerial images of different forests and same-age forests for 3D
construction [61]. By comparing the image construction point cloud DEM with the LiDAR DEM,
it was found that the image construction DEM accuracy is low due to the influence of forest canopy
occlusion. Dandois and others (2013) used three-dimensional construction to obtain aerial images of
deciduous forest growing seasons and deciduous seasons [65]. By comparing the image construction
DEM and the LiDAR DEM in the growing season and the deciduous season, it was found that the
DEM accuracy (RMSE is 0.89–3.04 m) in the deciduous season images is higher than that in the
growing season (RMSE is 2.49–5.69 m). In the difference value between the image construction
DEM and the LiDAR DEM, the forest coverage area has a larger DEM difference value than the
non-forest area. Wallace and others used the aeronautical aerial image of Eucalyptus forest for 3D
construction. The image construction DEM and the LiDAR DEM generally have little difference (the
average difference value is 0.09 m). For the high canopy density area, the image construction DEM is
not as accurate as the LiDAR DEM. In view of the investigation of ancient tree community, our system
chose to take advantage of UAV photogrammetry to extract DEM. The main reason besides the low
cost is that the overall density of the ancient pear tree community (7000-60,000 trees/km2) is small,
and the surrounding bare ground is extensive. As a result, the accuracy of image construction DEM
is higher.

4.2. Error Analysis of Improved UAV Photogrammetric Measurement System

UAV photogrammetric measurement system is based on studies of SfM-MVS. In the case of tree
height and canopy width measurement, errors are caused by all sorts of reasons. As point clouds
are scaled, shifted, and rotated into geographic coordinates, the measurement error of each GCP’s
three-dimensional position will also bring additional registration errors to SfM-MVS. The objective
of the modified UAV image matching and correction algorithm in this paper is to minimize the
registration errors of SfM-MVS. SfM-MVS can generate data equivalent to TLS over short distances.
However, as the measurement distance increases, the accuracy decreases significantly, which is also
the main precision limiting factor of UAV photogrammetric tree measurement system. Reasonable
flight height can improve the measurement accuracy.

The difference of contrast and terrain texture can also affect the measurement accuracy of the UAV
photogrammetric tree measurement system. SfM-MVS also faces many challenges in the vegetation
survey, such as the dynamic nature of vegetation, the complexity of vegetation, and the need of many
topographic models to filter out vegetation and restore bare surface spots. Although TLS data can also
restore vegetation surfaces, most verified data sets are bare land elevation obtained from TS (total station),
differential GPS (global positioning system), and other measurement methods. A UAV photogrammetric
tree measurement system uses a variety of vegetation filtering algorithms, classifies pixels according
to RGB values with multi-scale dimension standards, resampling point cloud at lower resolution, and
finally extracts the minimum observation height in a wide and dense vegetation area. In this process
of vegetation filtration, the error will increase with the increase of vegetation density. Because of the
low stand density of ancient trees, the error is relatively small in the investigation of the ancient tree
community. Moreover, for the purpose of protecting the ancient tree community, the Daxing District
Gardening and Greening Bureau regularly processed the other vegetation around the ancient tree.
Ancient trees, other trees, and bare land are obviously different from each other in images. Therefore,
the UAV photogrammetric tree measurement system can be well used for terrain data extraction.

In addition, due to the large imaging distortion residuals of consumer-grade camera, the aerial
triangulation calculation of GCPs may lead to the cumulative diffusion of orientation error. Therefore,
choosing medium format cameras, high-precision UAV platforms, and optimizing algorithms can
not only significantly reduce the uncertainty of the elements of exterior orientation, but also improve
measurement accuracy.
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4.3. Error Analysis of the Ancient Tree DBH and Age Prediction Model

Both the growth of DBH and changes in tree rings were influenced by many factors such as
climate, environment, and the physiological characteristics of vegetation, especially sensitive to climate
change. In the past, the non-linear growth model of trees did not consider factors such as climate and
environment. The main reason was that the data source was normal-growth trees, and the purpose was
to study the growth curve of the tree. Since ancient pear trees are old, it is difficult to study a growth
model by a normal-growth trees method. Forest modeling in this study was combined with UAV
photogrammetry to obtain a universal model of the growth of ancient pear trees for the inversion of
DBH and tree age. Therefore, by effectively classifying the growth index of each pear tree in the data
source, the height–crown-width–DBH model and the “3 Speed 2 Inflection Points” optimum condition
growth model can simulate the optimal growth process of ancient pear trees.

There are some uncertainties in the establishment of an ancient tree community model, which
is caused by many aspects. There are few studies on the physiological parameters of pear species in
China, which makes it unreliable to predict the growth trend of pear trees with their physiological
parameters. The model is randomly fitted with its own parameters, which results in a certain amount
of error in the accuracy of the simulation results. Due to the lack of climate data in this study, there is no
relevant climate data to study the optimal growth process of ancient pear trees, which will reduce the
accuracy of the model. In addition, forest modeling in this study also has some limitations, and factors
such as external interference activities of the forest ecosystem (such as natural disasters, diseases, and
pests) are not taken into account. The improvement of model parameters, the physiological parameters
of vegetation, and climate data will increase the accuracy of the model simulation.

The forest modeling experiment results in this paper show that most of the predicted results have
good consistency and achieve significant relevant predictions. The variability of individual prediction
results is mainly caused by individual differences and special environmental impacts. In addition,
the distribution of pear community is relatively scattered, and canopy breadth is less affected by forest
density. Therefore, the height–crown-width–DBH model’s precision is high. However, some pear
trees are affected by site conditions and disease and insect disasters, which produces large prediction
errors. Because a small number of pear trees grow in sandy environments, this results in slow DBH
growth. Therefore, the predicted age is much smaller than the actual age, but most pear trees have
better accuracy in predicting age. The overall level of precision could meet the demand of the ancient
tree community survey.

5. Conclusions

In this study, a UAV photogrammetric measurement system was developed for the investigation
of ancient tree communities. Through an improved UAV photogrammetric program and an ancient
tree information extraction method, highly efficient and highly precise measurement of tree height
and crown width can be achieved. The accurate prediction of DBH and age can be achieved through
the construction of a height–crown-width–DBH model and a “3 speed 2 inflection points” optimum
condition growth model.

Although the system is aimed at the investigation of ancient tree communities, the improved
UAV photogrammetric program and the ancient tree information extraction method can provide
a new method for the application of UAV photogrammetry in a forestry survey. In addition,
the height–crown-width–DBH model can predict tree diameter with high precision. The study
proposed that a “3 speed 2 inflection points” optimum condition growth model based on tree growth
index could predict tree age accurately and provide a new method for age identification in a forest
survey. Therefore, a UAV photogrammetric tree measurement system can be applied in ancient tree
community surveys and even partial forestry surveys. In the future, if forest environment ground
monitoring data can be combined, forest modeling research can be improved and achieve the low-cost
and high-precision measurement of stand density, stand volume, carbon storage, and biomass.
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Appendix A

Ancient trees are mainly distributed in Panggezhuang Town (Figure A1), Yufa Town (Figure A2),
Anding Town (Figure A3), and Zhangziying Town (Figure A4).

Figure A1. Ancient trees distributed in the Panggezhuang Town.

Figure A2. Ancient trees distributed in the Yufa Town.
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Figure A3. Ancient trees distributed in the Anding Town.

Figure A4. Ancient trees distributed in the Zhangziying Town.
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Abstract: Rapid assessment of forest regeneration using unmanned aerial vehicles (UAVs) is likely
to decrease the cost of establishment surveys in a variety of resource industries. This research tests
the feasibility of using UAVs to rapidly identify coniferous seedlings in replanted forest-harvest
areas in Alberta, Canada. In developing our protocols, we gave special consideration to creating
a workflow that could perform in an operational context, avoiding comprehensive wall-to-wall
surveys and complex photogrammetric processing in favor of an efficient sampling-based approach,
consumer-grade cameras, and straightforward image handling. Using simple spectral decision
rules from a red, green, and blue (RGB) camera, we documented a seedling detection rate of 75.8 %
(n = 149), on the basis of independent test data. While moderate imbalances between the omission and
commission errors suggest that our workflow has a tendency to underestimate the seedling density
in a harvest block, the plot-level associations with ground surveys were very high (Pearson’s r = 0.98;
n = 14). Our results were promising enough to suggest that UAVs can be used to detect coniferous
seedlings in an operational capacity with standard RGB cameras alone, although our workflow
relies on seasonal leaf-off windows where seedlings are visible and spectrally distinct from their
surroundings. In addition, the differential errors between the pine seedlings and spruce seedlings
suggest that operational workflows could benefit from multiple decision rules designed to handle
diversity in species and other sources of spectral variability.

Keywords: unmanned aerial vehicles; seedling detection; forest regeneration; reforestation; establishment
survey; machine learning; multispectral classification

1. Introduction

The rapid assessment of forest and vegetation structure using unmanned aerial vehicles (UAVs)
is likely to decrease the cost of field surveys for a variety of resource industries. UAVs may be
particularly well suited for applications in reforestation, because they can collect very high-resolution
imagery of small features with great operational flexibility. In Canada, establishment surveys are
conducted at every forest-harvest area that has been replanted, to assess the adequacy of spacing,
survival, growth, and species composition. For example, the Regeneration Standards of Alberta [1] call
for a reconnaissance survey to be conducted three growing seasons after planting, wherein certified
forestry technicians walk through the harvest area to visually estimate ‘stocking’, the percentage of
10 m2 cells within the block that contain a live seedling at least 30 cm in height, from an acceptable
tree species. If the estimated stocking rate is above 84%, the harvest area passes the establishment
assessment. If the stocking rate is below 70%, the harvest area is rejected and must be replanted. If the
stocking falls between 70%–84%, the harvest area becomes subject to further assessment [1].

If the condition, minimum height, and species of seedlings within the sample cells used to perform
establishment surveys could be derived from UAV imagery, then the reduced need for manual surveys
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could lead to considerable cost savings. However, it needs to be demonstrated that the seedlings
can be automatically or semi-automatically detected from a remote sensing. Coniferous seedlings
under five years of age in Canada have crown diameters between 5 and 30 cm; imagery of a very high
spatial resolution is required to detect the seedlings of this size. Although automated procedures have
been used to detect small tree stumps [2], and to detect weed seedlings on bare soil in an agricultural
application [3], we could not find any previous research attempting to identify coniferous seedlings
of this age in an automated manner. Early studies of remote sensing applications in forestry [4,5]
used manual photointerpretation of large-scale aerial photographs acquired from piloted helicopters.
For example, Hall and Aldred [5] detected just 44% of seedlings with crown diameter less than 30 cm
using 1:500 color-infrared photography. More recently, Goodbody et al. [6] classified 2.4 cm spatial
resolution red, green, and blue (RGB) imagery acquired from a UAV over harvest blocks replanted
5 to 15 years earlier in British Columbia, Canada, and obtained user accuracies for coniferous cover
between 35% and 97%. However, no attempt was made to detect individual conifer seedlings or
saplings, which in their study area were greater than 1 m in height. These authors acknowledged that
the potential to detect all stems using aerial remote-sensing technologies is still limited, and called for
further research.

Depending on the spatial resolution of the imagery, seedling detection is akin to individual-tree
detection in mature forests, which has been well studied using satellites [7], piloted aircraft [4,8–15] and,
more recently, UAVs [16–23]. Given a fixed spatial resolution, the accuracy with which individual trees
are detected tends to improve with crown size [11]. For example, using 15 cm resolution multispectral
airborne imagery and an image-segmentation algorithm, Hirschmugl et al. [24] obtained 70% accuracy
on replanted coniferous trees between 5 and 10 years of age, with an average height of 138 cm.
The accuracy levels improved for the crown diameters larger than 30 cm. The UAV-based studies of
the tree detection have achieved even higher accuracies. For example, Wallace et al. [16] obtained
overall accuracies of 97% (n = 308) using a tree-crown segmentation algorithm applied to a dense
(>50 points/m2) light detection and ranging (LiDAR) point cloud. However, the LiDAR sensors come
with equipment costs and operational difficulties that some may wish to avoid. Consumer-grade
cameras mounted on UAVs provide an attractive low-cost source of vegetation information over
disturbed and regenerating forests [25,26].

In this research, we show how millimetric (i.e., spatial resolution on the order of millimeters)
UAV imagery can be used to detect coniferous seedlings less than five years old within forest-harvest
areas in Alberta, Canada, with good accuracies using simple processing workflows. This study
represents the first step towards creating a larger UAV-based stocking-assessment workflow, which,
once realized, could extend to the remote assessment of height (from LiDAR or photogrammetric point
clouds), species, and condition (from deep-learning algorithms). Achieving this complete workflow
would reduce the need for in situ assessments of forest stocking, and provide a powerful new tool for
establishment surveys.

2. Materials and Methods

2.1. Study Area

We surveyed two replanted forest-harvest areas located in western Alberta, Canada, for this study
(Figure 1). One of the harvest areas was used to develop and train the seedling-detection algorithm,
and is hereafter referred to as the ‘training study area’. A second block was used as an independent
validation site and is hereafter referred to as the ‘test study area’. The 20.3 ha training study
area is managed by Weyerhaeuser Canada (Pembina Forest Management Area), and was replanted
approximately four years before our survey, with a mix of lodgepole pine (Pinus contorta) and white
spruce (Picea glauca) seedlings. The 3.3 ha test study area was also replanted with a mix of lodgepole
pine and white spruce seedlings between three and four years before our field survey, although
most individuals we encountered in the field were lodgepole pine. The vegetation surrounding
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these two harvest areas consist of forests regenerating to mixed stands of aspen (Populus tremuloides),
lodgepole pine, and white spruce.

Figure 1. Location of two replanted forest-harvest areas surveyed for this research in southwestern
Alberta, Canada. Sample plots within the harvest areas are depicted with the red dots.

2.2. Reference Data

Field crews surveyed the test study area on 24 April 2014, and the training study area on
1 October 2015. We timed our visits to exploit the leaf-off seasonal windows in the spring and
fall when the coniferous seedlings have increased their spectral contrast with their surroundings.
We contend that the 1.5 year time gap between the two surveys is irrelevant, given that testing
took place independently of the training. The crews located randomly generated plot centers using
handheld global positioning system (GPS) units and established 50 m2 circular plots with 3.99 m
radii (Figure 2). Biodegradable clay targets or plastic boards were placed in the center of the plot
and pinned down with metal spikes as ground control points, whose precise locations were recorded
with a survey-grade Trimble real-time kinematic (RTK) global navigation satellite system (GNSS) unit.
The plot outlines were marked using chalk or spray paint. The crews then recorded the species and
precise location of each seedling inside the plot using the RTK GNSS. A total of 254 seedlings within 14
plots in the training study area, and 149 seedlings within 10 plots in the test study area were surveyed
in this manner.

2.3. UAV Imagery

UAV imagery was collected by a flight crew consisting of a pilot and a spotter using a 3DR
X8 + octocopter (Figure 3a). Both areas were flown in conjunction with the seedling surveys 24 April 2014
for the test study area and 1 October 2015 for the training study area. Details of the X8+ platform and
payload are summarized in Table 1. The platform was modified to carry two cameras simultaneously,
one standard RGB camera and a second camera with a modified red-edge (RE) filter. Single-scene images,
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one RGB and one RE, were acquired for each of the 24 plots during 24 separate flights. The flights took
place between 10:00 am and 5:30 pm to cover a variety of lightning conditions. The platform operated a
simple automated flight plan, as follows: The X8+ launched, flew to the plot center, and hovered at 15 m
above ground level to acquire imagery (single photographs) at a consistent scale (Figure 3b). We installed
a LidarLITE laser range finder (vertical accuracy < 2.5 cm) to the UAV, which allowed us to control the
altitude of the X8 for imaging. It is important to note that that circular plot did not cover the entire image,
but was instead located at the center of each frame. As the UAV hovered directly over each plot prior to
image acquisition, the plots were always located very close to the principal point, with the maximum
off-nadir angles never exceeding 15 degrees. This reduced the terrain distortion and layover effects.
Each flight was less than three minutes in length. The imagery was collected using a sampling approach,
avoiding the need for wall-to-wall aerial surveys designed to image the entire harvest area.

Figure 2. A sample plot, outlined with paint, measured 3.99 m in radius. The coordinates of both
ground control point/center point and seedlings were measured using a survey grade global navigation
satellite system (GNSS) unit. Note that the image has been clipped to just the plot extent for the purpose
of display.

We used a Nikon Coolpix A digital camera to collect standard RGB imagery and a modified
Canon PowerShot S110 to collect imagery in the RE wavelength. We substituted the internal
near-infrared (NIR) filter in the Canon PowerShot S110 with an Event 38 near-infrared green blue
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(NGB) filter, which pushed the red band response to be centered on 715 nm. The aerial imagery was
collected at a low altitude of 15 m, resulting in a ground sampling distance of 3 mm for the Nikon
Coolpix A (18.5 mm focal length) and 5 mm for the Canon PowerShot S110 (5.2 mm focal length).
The cameras were set to a fixed shutter speed of 1/1250 s with varying apertures, and were manually
triggered using a remote control.

Figure 3. (a) The 3DR X8+ unmanned aerial vehicle (UAV) can collect density samples at a rate of
45 s/ha. (b) The sample-based flight plan used for this study enables a rapid assessment of large
forestry blocks. The UAV moves to a sample plot waypoint, descends to a 15 m altitude above ground
level (AGL), captures an image, ascends, and continues to the next waypoint.

Table 1. Unmanned aerial vehicle (UAV) and camera specifications. RGB—red green blue. NIR—near-infrared;
CMOS—complementary metal-oxide-semiconductor; NDVI—normalized difference vegetation index.

UAV Specifications: 3DR X8+

Description Octocopter
Vehicle Dimensions 35 cm × 50 cm × 21 cm

Battery 4S 14 8V 10.000 mAh 10C
Vehicle Weight with Battery 2.56 kg

Platform Estimated Flight Time 15 min
Maximum Speed
Ranging Device

96 km/h
LidarLITE laser range finder

Payload Specification RGB NIR
Camera Model Nikon Coolpix A Canon PowerShot S110

Weight 299 g 198 g
Image Size (megapixels) 16 MP 12.1 MP

Ground Sampling Distance at Nadir 3 mm 5 mm
Image Dimensions (pixels) (4928 × 3264) (4000 × 3000)

Effective Field of View for Sample Plot 30◦ 30◦
Focal Length 18.5 mm 5.2 mm
Aspect Ratio 3:2 4:3

Filter Stock Event 38 NDVI
Bit Depth 24 24

Trigger Mode Shutter Priority Shutter Priority
ISO 500 500

Shutter Speed 1/1250 1/1250
Maximum Aperture f/4 f/3.5

Focus Mode Center weighted Center weighted
Sensor Type CMOS CMOS

2.4. Data Handling and Image Analysis

The seedling locations were exported to a geographic information system (GIS) point layer,
visually confirmed using the UAV imagery, and, if required, spatially edited to be centered within each
seedling crown in the image. The seedlings ranged in height from 5 cm to 35 cm, and the crown radii
ranged between 5 cm and 50 cm. The tall seedlings were those manually planted about four years
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before our study, while the short seedlings regenerated naturally. The wider crowns (up to 50 cm)
corresponded generally to clusters of naturally regenerating seedlings, rather than to individuals.
We treated these clusters as single entities for the purpose of this study. It is important to note that
the planted seedlings (taller, generally isolated from other individuals) are more important than the
naturally regenerating seedlings (shorter, sometimes occurring in clusters) when assessing stocking in
the planted harvest areas. Not all of the seedlings will survive to maturity, and the planted seedlings
have the best chance. Within a cluster, no more than one seedling will typically survive.

The image analysis workflow is a three-step object-based process consisting of (i) image
segmentation, (ii) automated classification using a classification and regression tree (CART)
machine-learning algorithm, and (iii) the merging of adjacent image objects classified as ‘seedlings’
into single seedling objects. Priority was placed on creating a workflow that is economic with regards
to both the UAV flight time and processing time, so image analyses were conducted on single scenes
with minimal preprocessing. The challenge was to identify a classification ruleset that could perform
under a variety of target and illumination conditions. We used the CART approach in the training
study area to test the importance of the spectral, spatial, and textural variables for this task. On the
basis of the results of this testing, we selected a single model for application in the test study area.

Red-edge and RGB imagery were co-registered into 16-bit unsigned raster layers for each sample,
using ArcGIS Desktop 10.1 (Figure 4a,b). The images were rectified with first-order polynomial
functions, using the seedlings and ground control points as reference marks. It is worth noting
that this step—rectifying images to match field data—would not be required in an operational
workflow. Additional raster layers were generated from band ratios to gain a spectral contrast
between the green seedlings and their non-photosynthetic surroundings (Figure 4c). We used Trimble
eCognition Suite 9.1 (www.ecognition.com) to segment the imagery and derive image-object statistics.
The input raster for the initial segmentation was a ratio of ratios (red ratio/blue ratio) scaled to the
0–255 interval. The user-defined segmentation parameters were as follows: scale = 50; shape = 0.1;
and compactness = 0.3. All of the 48 images (24 RGB and 24 RE) were segmented using the same
parameters. We arrived at the final segmentation parameters iteratively through trial and error. Our
goal was to develop object primitives that best delineated the seedling edges from their surroundings.
The resulting image-objects were then further merged using a homogenous region-growing algorithm,
with shape and compactness factors of 0.1 and 0.5, respectively. Once the final image objects were
generated for each plot, we assembled a number of attributes for each image object. The final list of
spectral, spatial, and textural variables evaluated by the CART approach is summarized in Table 2.

2.5. Machine Learning

Image-object attributes were exported to a table, resulting in a database with 18,905 records
(image-objects from all of the 14 plots in the training study area together). Each record was then
classified as either seedling or non-seedling using the CART machine-learning algorithm in the Salford
Predictive Modeler (SPM v. 70) software (info.salford-systems.com). This algorithm generates a
classification decision tree, with rules that can be used with structured query language (SQL) queries
or to build a decision tree in eCognition. Three sets of models were evaluated. All three of the sets
used the same spatial and textural attributes as the predictors (Table 2), but the spectral attributes
varied as follows: (i) RGB-only variables, (ii) RE-only variables, and (iii) RGB-combined-with-RE
variables. The adjacent image objects classified as seedling were merged together using a GIS ‘dissolve’
function. The detection accuracy of each model was assessed using a 10-fold cross validation procedure.
The mean overall seedling classification accuracy was obtained by each model across all of the 10 trials
and was assigned as a measure of global accuracy. The most accurate model was applied to the test
study area, which served as an independent validation of our workflow.
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Figure 4. Detail of the UAV image from a sample plot. Left to right: (a) red, green, and blue (RGB)
(3 mm spatial resolution), (b) red-edge (RE) (5 mm spatial resolution), and (c) red ratio/blue ratio
(from the RGB image).

3. Results and Discussion

3.1. Model Selection

The overall classification accuracy of all of the image-objects in the training study area was 96%,
97%, and 97% for the RGB-only variables, RE-only variables, and RGB and RE variables, respectively.
It should be noted that the overall accuracy reported here (raw agreement) is a high-level accuracy
statistic based on a disproportionately small number of seedling objects (2420) to non-seedling objects
(18,663). We report on more detailed error analytics associated with the test dataset below. As the
RE-only and RGB and RE models did not result in significant increases in performance (1%), we chose
to use the RGB-only model for parsimony.

The final CART decision tree was pruned to a simple two-rule model based on just two spectral
vegetation indices, the green-red difference index and the blue-green difference index. We found
that reasonable classification models could be generated using an RGB camera alone, and—more
importantly—that one classification model could be used to detect coniferous seedling crowns across
many sample plots in our study sites imaged under different lighting conditions. An example test-plot
classification is shown in Figure 5.

3.2. Detection Accuracy, Error Patterns, and Density Estimates

To assess the detection accuracy in the test area, we considered a reference seedling detected
(i.e., a true positive) if its corresponding geolocation point was inside a seedling object; otherwise,
we considered the image object containing the point to be a false negative. Likewise, the seedling
objects not containing a seedling geolocation point were considered false positives, and the rest of
the non-seedling image objects were accordingly considered true negatives. The overall detection
rate (sensitivity) for conifer seedlings in the independent test dataset was 75.8%: 113 out of the
149 seedlings surveyed in the test site were detected (Table 3). The classification model had a
commission error (false positive) rate of 12.4% and an omission error (false negative) rate of 24.2%.
The moderate imbalance between the omission and commission errors suggests that our workflow
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tends to underestimate the seedling density. This is understandable given the small size of the target
seedlings and the complex environmental conditions in which they are found. The overall Kappa
coefficient was 0.810 and the area under the receiver operating characteristic (ROC) curve was 0.93.

Table 2. Spectral, spatial, and textural attributes of image objects used for classification and regression
tree (CART) modelling.

Metric Type Description Source

Spectral

Brightness Sum of all mean layer values within image object
divided by number of layers [27]

Border Contrast Relative difference between brightness and mean
intensity of image layers [27]

BGVI (Mean Blue DN − Mean Green DN) [27]

EGI (2 ∗ Mean Green DN)− Mean Red DN − Mean Blue DN [28]

GRDI (Mean Green DN − Mean Red DN) [29]

NBGVI (Mean Blue DN−Mean Green DN)
(Mean Blue DN+Mean Green DN)

[30]

NDVI Mean NIRR DN−Mean Red DN
Mean NIRR DN+Mean Red DN [30]

NEGI (2 ∗ Mean Green DN)−Mean Red DN−Mean Blue DN
(2 ∗ Mean Green DN)+Mean Red DN+Mean Blue DN [31]

NGRDI (Mean Green DN−Mean Red DN)
(Mean Green DN+Mean Red DN)

. [28]

NGBDI (Mean Green DN−Mean Blue DN)
(Mean Green DN+Mean Blue DN)

[28]

Rx, Gx, Bx, NIRRx, NIRGx,
NIRBx

Rx = ∑ Red DN
n , etc. [27]

Rratio, Gratio, Bratio, NIRRratio,
NIRGratio, NIRBratio

Rratio = Mean Red DN
Mean Red DN+Mean Green DN+Mean Blue DN , etc. [27]

Rstd, Gstd, Bstd, NIRRstd,
NIRGstd, NIRBstd

Standard deviation of digital number (DN) values within
image object [27]

Spatial

Border Index Describes the ratio between the border length of an
image object and the smallest enclosing rectangle [27]

Asymmetry Describes a length/width ratio between the image object
and an approximated ellipse [27]

Compactness (pixel) The product of the length and width divided by the
number of pixels [27]

Compactness (polygon) Ratio of the area of the image object to the area of a circle
with the same perimeter [27]

Perimeter Pixel sum of the length of all edges in an image object [27]

Pixel Area Number of pixels contained in an image object [27]

Roundness Difference between the radius of the smallest enclosing
and largest enclosed ellipse [27]

Volume (voxel) The number of volume elements (voxels) contained in an
image object [27]

Textural

GLCM Contrast Grey level co-occurrence matrix contrast [27]

GLCM Homogeneity Grey level co-occurrence matrix homogeneity [27]
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Figure 5. GNSS-surveyed reference seedlings (a) were surveyed in the field by trained personnel.
UAV imagery was segmented into image objects (b) and subject to a decision-tree classification based
on spectral indices from RGB imagery. The final output (c) delineates individual seedlings, whose
accuracy was checked against the reference data.

We noted differential errors between the pine seedlings (86% detection rate, n = 124) and spruce
seedlings (24% detection rate, n = 25), which were relatively rare in our test study area. This issue
could likely be addressed using multiple classification models (one per species), although we did not
attempt it here.

Plot-level associations between the CART-predicted stem numbers and field observations
produced a Pearson’s correlation coefficient of r = 0.98 in the test dataset (Figure 6). The plot accuracies
in the test dataset ranged between 62.5% and 100%, with a mean accuracy of 86.2%. Once again,
we observed a tendency of our workflow to underestimate when large numbers of seedlings are
present (top end of Figure 6). This is not a critical problem, although, as plots with large numbers
of small seedlings would be considered fully stocked, a moderate underestimation bias in these
conditions can be tolerated in practical applications.
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Table 3. Confusion matrix for the test data (independent validation) set. Interior matrix cells indicate
both correctly classified objects (true positives [TP] and true negatives [TN]) and errors (false positives
[FP] and false negatives [FN]). Square brackets in the interior cells break down the seedling reference
data by species [pine/spruce].

Reference

Seedling Non-Seedling
C

A
R

T Seedling 113 (TP)
[107/6] 16 (FP)

Non-Seedling 36 (FN)
[17/19] 8219 (TN)

Sensitivity =
75.8%

Specificity =
99.7%

Seedling Commission Errors (false-positive rate) = 12.4%; Seedling Omission Errors; (false-negative rate) = 24.2%;
Overall Accuracy = 99.4%; Kappa = 0.810.

Expressing the stem numbers derived from remote sensing on a per-hectare basis produced
an estimated seedling density of 2160 stems/ha, versus 2500 stems/ha from the reference data.
This represents an underestimation of 320 stems/ha (13.6%), which is consistent with the UAV
data’s tendency to slightly underestimate seedling counts, noted previously. Puliti et al. [20] estimated
the stem numbers of mature trees in 38 fixed-area plots in Norway using photogrammetric data
from UAVs, and reported root-mean-square errors of 538 stems/ha (39.2%). While less accurate
than our results, the area-based regression analyses used by the authors is quite different than the
object-detection approach used here.

Figure 6. Association between classified seedling counts and field reference observations in the
test-case study.

We could not find any published literature on the automated classification of very small seedlings
(less than 5 years of age) against which to compare our results. Hall and Aldred [5] detected just
44% of the seedlings with a smaller than 30 cm crown diameter using the manual interpretation of
1:500 scale color-infrared imagery. Our results are slightly less accurate than those of Sperlich et al. [32],
who reported an 88% overall accuracy from the photogrammetric detection of 219 mature tree crowns.
Not surprisingly, our accuracy is lower than that in studies using UAVs to detect mature trees in
plantation contexts, which present a simpler classification problem, in which individuals are spatially
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and structurally homogenous. For example, Torres-Sánchez et al. [21] reported a 95% accuracy
using photogrammetric data on 54 olive trees, and Wallace et al. [17] reported a 98% detection rate
of 308 eucalyptus plants in rows using UAV LiDAR data. Our results exceed those reported by
Ke and Quackenbush [13] (70% user and producer accuracy) in their classification of individual trees
in single-scene forest stands from piloted aerial imagery, and those of Chisolm et al. [33] (73% overall
accuracy) in a below-canopy LiDAR survey of mature trees.

3.3. Challenges with Small Seedlings and Clusters of Seedlings

Many of the omission errors we encountered arose from image-segmentation challenges.
Small individuals (down to 10 cm height with 5 cm crown diameter) and clusters of seedlings with
contiguous crown types posed problems for our workflow (Figure 7). While millimetric spatial
resolution helps identify fine features in our environment, it comes at the cost of spatial and spectral
heterogeneity. While the CART algorithm is efficient at negotiating this heterogeneity, it can do so at
the expense of specificity. To guard against this tendency, we pruned the decision tree to just two rules.

Figure 7. Despite using images with ultra-high spatial resolution, segmentation routines had difficulty
detecting very small seedlings (a) or delineating groups of seedlings with contiguous crowns (b).
Normally, individuals within clusters could only be delineated when small gaps occurred between
crowns (c).

3.4. A Sample-Based Approach to Silvicultural Surveys

A significant portion of our study was devoted to working with a sample-based survey
approach, rather than conventional wall-to-wall mapping: as is common in remote sensing.
This approach achieves significant time savings in terms of field data collection and avoids additional
photogrammetric and orthomosaic processing costs. We estimate that a standard wall-to-wall UAV
survey over the training site would require a flight time of 33 minutes, during which the platform
would fly 9.8 km (Figure 8a). Alternatively, a sample-based survey of the same area could take place in
under six minutes and cover just 2.8 km, with a time savings of 81% (Figure 8b). While we acknowledge
that wall-to-wall surveys of forest-harvest areas the size of the ones we worked in are currently possible
with UAV platforms, and that wall-to-wall surveys (i.e. census) may provide incremental benefits
to sampling, we contend that sample-based flight planning is currently underutilized by the UAV
community, and may be crucial to developing operational workflows.

Our workflow is based on spectral variables from a standard RGB camera alone, with no
geometric pre-processing and no secondary photogrammetric products. This approach has its
pros and cons. For example, the exclusion of spatial and structural variables from our workflow
limits our approach to applications where seedlings are spectrally distinct from their surroundings;
hence, our requirement for seasonal leaf-off conditions. The main benefit is a streamlined workflow
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that simplifies the survey and processing procedures. Nex and Remondino [34] estimate that the
placement of ground control points and photogrammetric processing constitute 55% of the time effort
required to perform a photogrammetric UAV survey, compared to 25% for flight planning and image
acquisition. Alternative workflows to ours that incorporate multiple datasets often require precise
geometric integration using ground-control points, which must be laid out and surveyed prior to image
acquisition. Photogrammetric processing also adds significant computational costs, and may introduce
ground-object distortions [35], moaicking artefacts [36], and radiometric inconsistencies. For example,
Borgogno-Mondino et al. [37] explain how color-balancing algorithms embedded in commercial
image-processing packages can degrade the radiometric quality of the resulting orthomosaics and limit
the effectiveness of derived spectral indices. These issues will certainly diminish in time, given the rapid
advancement in direct georeferencing technology [34,38], alternative spatial processing routines [39],
and integrated sensor systems. As a result, we expect future studies to find incremental value
in photogrammetric data for forest-regeneration surveys, as other authors have reported with the
detection of mature trees [2,21,32]. In the meantime, the benefits of the simplified workflows for
operational projects are substantial.

Figure 8. The flight plan for a standard wall-to-wall survey (a) is almost six times longer in duration
and three times longer in distance than the sample-based approach (b) used in this research.

Despite these benefits, our simplified sample-based workflow also contains a number of
drawbacks. The lack of geometric correction means that images contain relief distortion and optical
lens distortion, which introduce variability into the seedlings’ appearance. Excluding the geometric
correction from the workflow also introduced variability into the spatial resolution of the resulting
images, with the ground-sample distance (GSD) being just a simple function of the flying altitude and
camera lens focal length. We reduced this scale effect by outfitting our UAV with a laser rangefinder,
which allowed us to hover at exactly 15 m above ground level during imaging. With this, we ensured
a common GSD of 3 mm at nadir (5 mm for the NIR camera), which became 3.2 mm at the edge
of the circular plot over flat terrain. Even in slightly uneven ground (slopes in our study area did
not exceed 10%), the GSD at the low side of a sloping lot did not exceed 3.4 mm. A standard UAV
equipped with a conventional GNSS and barometer would be unable to acquire images in such a
consistent manner. While the seedlings at the edge of plots appeared up to 30% smaller than those at
the center, this effect is unlikely to decrease the detection rate, except perhaps for very small seedlings
arising from natural regeneration. The occlusion by taller vegetation could also impair the detection
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of those seedlings close to the edge of the plots. Once again, though, this is unlikely to decrease
the detection, because most shrubs were devoid of leaves at the acquisition date, and there were no
saplings or mature conifer trees within the plots. Additional challenges in our workflow arose from
the substantial spectral variability caused by the changing illumination conditions during our flights.
While this variability could be reduced with the use of an integrated irradiance sensor, operational
workflows could benefit from several classification models designed to account for diversity in seedling
species, radiometric conditions, and surrounding vegetation, as well as for other sources of spectral
variability. We encourage future researchers to assess the value of incorporating scene-level variables
that categorize samples on the basis of brightness, time of day, latitude, greenness, and other factors.

Finally, we note that the Regeneration Standards of Alberta [1] call for between 2.77 and
12.4 sample plots per hectare, depending the size of the harvest area being assessed. In a real-world
scenario, this means that we would need to increase our sampling intensity substantially (4 or 5 fold)
over the design used in this research. However, it was not our intention to conduct actual stocking
assessments, but rather to create and evaluate a workflow that could perform efficiently in this respect.

4. Conclusions

In this study, we assessed the capacity of optical photography from an unmanned aerial vehicle
(UAV), to perform coniferous-seedling detection in an object-based environment. The 75.8% overall
detection rate of the ground-surveyed seedlings in an independent test site (n = 149) demonstrates the
utility of our approach. Error analytics revealed a slight tendency to underestimate seedlings, although
the plot-level associations with ground surveys were very high (r = 0.98, n = 14). Red-edge imagery
offered no significant advantage over the data from a standard RGB camera, and our final decision tree
was comprised of a simple two-rule model based on just two spectral vegetation indices, the Green-Red
Difference Index and the Blue-Green Difference Index. We found spatial and textural variables to be
unnecessary for identifying coniferous seedlings in the conditions we assessed. Our workflow relies
on seasonal leaf-off conditions when grasses are senesced and seedlings are spectrally distinct from
their surroundings, and it would not be expected to perform with the same efficiency at other times of
the year, or with deciduous seedlings.

The seedling surveys conducted with UAVs are feasible and efficient, but further research is
required. For example, we expect that the increased variability encountered under operational
conditions will require the complementary use of several models or the application of more
sophisticated machine-learning approaches. We encourage other researchers to explore the detectability
of other seedling species in new environments, and at different times of the year. Also, a full
stocking-assessment workflow would require delineated seedlings to be assessed for other attributes,
including height, species, and condition: challenges that will probably require enhanced spectral
information and 3D data collected using light detection, ranging or photogrammetry.

The trend towards quantified vegetation surveys at this level of detail is a promising development,
both for forest management and in the larger context of restoration. Perhaps the most useful area for
the future development of the use of UAVs in forest management is repeatability. This is a progressive
approach, as the future use of UAVs may not depend as much on the correlation of the metrics derived
from the data collected with unmanned aerial vehicles to field observations as on simple data and
mensuration consistency. Wallace et al. [18] have been pioneers in this regard, publishing a study
focused on the repeatability of the measurements taken using unmanned aerial vehicles. We encourage
other researchers to assist in the development and reporting of forest mensuration workflows based on
remote sensing to establish a body of literature that provides a foundation from which the consistency
and repeatability of these novel techniques can be assessed.
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