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CHAP T ER  1 

Introduction to 
Computer Graphics 

The importance of computer graphics in modern society is 
illustrated by the great quantity and variety of applications and their 

impact on our daily lives. Computer graphics can be two-dimensional (2D) 
or three-dimensional (3D), animated, and interactive. Tey are used in 
data visualization to identify patterns and relationships, and also in scien-
tifc visualization, enabling researchers to model, explore, and understand 
natural phenomena. Computer graphics are used for medical applications, 
such as magnetic resonance imaging (MRI) and computed tomography 
(CT) scans, and architectural applications, such as creating blueprints or 
virtual models. Tey enable the creation of tools such as training simu-
lators and sofware for computer-aided engineering and design. Many 
aspects of the entertainment industry make use of computer graphics to 
some extent: movies may use them for creating special efects, generat-
ing photorealistic characters, or rendering entire flms, while video games 
are primarily interactive graphics-based experiences. Recent advances in 
computer graphics hardware and sofware have even helped virtual reality 
and augmented reality technology enter the consumer market. 

Te feld of computer graphics is continuously advancing, fnding new 
applications, and increasing in importance. For all these reasons, combined 
with the inherent appeal of working in a highly visual medium, the feld 
of computer graphics is an exciting area to learn about, experiment with, 
and work in. In this book, you’ll learn how to create a robust framework 

DOI: 10.1201/9781003181378-1 1 
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2 ◾ Developing Graphics Frameworks with Python and OpenGL 

capable of rendering and animating interactive three-dimensional scenes 
using modern graphics programming techniques. 

Before diving into programming and code, you’ll frst need to learn 
about the core concepts and vocabulary in computer graphics. Tese ideas 
will be revisited repeatedly throughout this book, and so it may help to 
periodically review parts of this chapter to keep the overall process in 
mind. In the second half of this chapter, you’ll learn how to install the 
necessary sofware and set up your development environment. 

1.1 CORE CONCEPTS AND VOCABULARY 
Our primary goal is to generate two-dimensional images of three-
dimensional scenes; this process is called rendering the scene. Scenes 
may contain two- and three-dimensional objects, from simple geometric 
shapes such as boxes and spheres, to complex models representing real-
world or imaginary objects such as teapots or alien lifeforms. Tese objects 
may simply appear to be a single color, or their appearance may be afected 
by textures (images applied to surfaces), light sources that result in shading 
(the darkness of an object not in direct light) and shadows (the silhouette 
of one object's shape on the surface of another object), or environmen-
tal properties such as fog. Scenes are rendered from the point of view of 
a virtual camera, whose relative position and orientation in the scene, 
together with its intrinsic properties such as angle of view and depth of 
feld, determine which objects will be visible or partially obscured by 
other objects when the scene is rendered. A 3D scene containing multiple 
shaded objects and a virtual camera is illustrated in Figure 1.1. Te region 
contained within the truncated pyramid shape outlined in white (called a 
frustum) indicates the space visible to the camera. In Figure 1.1, this region 
completely contains the red and green cubes, but only contains part of the 
blue sphere, and the yellow cylinder lies completely outside of this region. 
Te results of rendering the scene in Figure 1.1 are shown in Figure 1.2. 

From a more technical, lower-level perspective, rendering a scene 
produces a raster—an array of pixels (picture elements) which will be 
displayed on a screen, arranged in a two-dimensional grid. Pixels are typi-
cally extremely small; zooming in on an image can illustrate the presence 
of individual pixels, as shown in Figure 1.3. 

On modern computer systems, pixels specify colors using triples of 
foating-point numbers between 0 and 1 to represent the amount of red, 
green, and blue light present in a color; a value of 0 represents no amount 
of that color is present, while a value of 1 represents that color is displayed 



      

 

 

 

Introduction to Computer Graphics ◾ 3 

FIGURE 1.1 Tree-dimensional scene with geometric objects, viewing region 
(white outline) and virtual camera (lower right). 

FIGURE 1.2 Results of rendering the scene from Figure 1.1 

FIGURE 1.3 Zooming in on an image to illustrate individual pixels. 



      

 

 

   

 
  

 

        
       

4 ◾ Developing Graphics Frameworks with Python and OpenGL 

FIGURE 1.4 Various colors and their corresponding (R, G, B) values. 

at full (100%) intensity. Tese three colors are typically used since photore-
ceptors in the human eye take in those particular colors. Te triple (1, 0, 0) 
represents red, (0, 1, 0) represents green, and (0, 0, 1) represents blue. Black 
and white are represented by (0, 0, 0) and (1, 1, 1), respectively. Additional 
colors and their corresponding triples of values specifying the amounts of 
red, green, and blue (ofen called RGB values) are illustrated in Figure 1.4. 

Te quality of an image depends in part on its resolution (the number of 
pixels in the raster) and precision (the number of bits used for each pixel). 
As each bit has two possible values (0 or 1), the number of colors that can 
be expressed with N-bit precision is 2N . For example, early video game 
consoles with 8-bit graphics were able to display 28 = 256 diferent colors. 
Monochrome displays could be said to have 1-bit graphics, while modern 
displays ofen feature “high color” (16-bit, 65,536 color) or “true color” 
(24-bit, more than 16 million colors) graphics. Figure 1.5 illustrates the 
same image rendered with high precision but diferent resolutions, while 
Figure 1.6 illustrates the same image rendered with high resolution but 
diferent precision levels. 

In computer science, a bufer (or data bufer, or bufer memory) is a part 
of a computer's memory that serves as temporary storage for data while 
it is being moved from one location to another. Pixel data is stored in a 
region of memory called the framebufer. A framebufer may contain mul-
tiple bufers that store diferent types of data for each pixel. At a minimum, 
the framebufer must contain a color bufer, which stores RGB values. 
When rendering a 3D scene, the framebufer must also contain a depth 
bufer, which stores distances from points on scene objects to the virtual 
camera. Depth values are used to determine whether the various points 
on each object are in front of or behind other objects (from the camera’s 
perspective), and thus whether they will be visiblewhen the scene is ren-
dered. If one scene object obscures another and a transparency efect is 
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FIGURE 1.5 A single image rendered with diferent resolutions. 

FIGURE 1.6 A single image rendered with diferent precisions. 
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desired, the renderer makes use of alpha values: foating-point numbers 
between 0 and 1 that specifes how overlapping colors should be blended 
together; the value 0 indicates a fully transparent color, while the value 
1 indicates a fully opaque color. Alpha values are also stored in the color 
bufer along with RGB color values; the combined data is ofen referred to 
as RGBA color values. Finally, framebufers may contain a bufer called 
a stencil bufer, which may be used to store values used in generating 
advanced efects, such as shadows, refections, or portal rendering. 

In addition to rendering three-dimensional scenes, another goal in 
computer graphics is to create animated scenes. Animations consist of a 
sequence of images displayed in quick enough succession that the viewer 
interprets the objects in the images to be continuously moving or chang-
ing in appearance. Each image that is displayed is called a frame. Te 
speed at which these images appear is called the frame rate and is mea-
sured in frames per second (FPS). Te standard frame rate for movies and 
television is 24 FPS. Computer monitors typically display graphics at 60 
FPS. For virtual reality simulations, developers aim to attain 90 FPS, as 
lower frame rates may cause disorientation and other negative side efects 
in users. Since computer graphics must render these images in real time, 
ofen in response to user interaction, it is vital that computers be able to 
do so quickly. 

In the early 1990s, computers relied on the central processing unit (CPU) 
circuitry to perform the calculations needed for graphics. As real-time 3D 
graphics became increasingly common in video game platforms (including 
arcades, gaming consoles, and personal computers), there was increased 
demand for specialized hardware for rendering these graphics. Tis led to 
the development of the graphics processing unit (GPU), a term coined by the 
Sony Corporation that referred to the circuitry in their PlayStation video 
game console, released in 1994. Te Sony GPU performed graphics-related 
computational tasks including managing a framebufer, drawing polygons 
with textures, and shading and transparency efects. Te term GPU was 
popularized by the NVidia Corporation in 1999 with their release of the 
GeForce 256, a single-chip processor that performed geometric transfor-
mations and lighting calculations in addition to the rendering computa-
tions performed by earlier hardware implementations. NVidia was the frst 
company to produce a GPU capable of being programmed by developers: 
each geometric vertex could be processed by a short program, as could 
every rendered pixel, before the resulting image was displayed on screen. 
Tis processor, the GeForce 3, was introduced in 2001 and was also used 
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in the Xbox video game console. In general, GPUs feature a highly parallel 
structure that enables them to be more efcient than CPUs for rendering 
computer graphics. As computer technology advances, so does the quality 
of the graphics that can be rendered; modern systems are able to produce 
real-time photorealistic graphics at high resolutions. 

Programs that are run by GPUs are called shaders, initially so named 
because they were used for shading efects, but now used to perform many 
diferent computations required in the rendering process. Just as there are 
many high-level programming languages (such as Java, JavaScript, and 
Python) used to develop CPU-based applications, there are many shader 
programming languages. Each shader language implements an application 
programming interface (API), which defnes a set of commands, functions, 
and protocols that can be used to interact with an external system—in this 
case, the GPU. Some APIs and their corresponding shader languages include 

• Te DirectX API and High-Level Shading Language (HLSL), used on 
Microsof platforms, including the Xbox game console 

• Te Metal API and Metal Shading Language, which runs on modern 
Mac computers, iPhones, and iPads 

• Te OpenGL (Open Graphics Library) API and OpenGL Shading 
Language (GLSL), a cross-platform library. 

Tis book will focus on OpenGL, as it is the most widely adopted graphics 
API. As a cross-platform library, visual results will be consistent on any 
supported operating system. Furthermore, OpenGL can be used in con-
cert with a variety of high-level languages using bindings: sofware librar-
ies that bridge two programming languages, enabling functions from one 
language to be used in another. For example, some bindings to OpenGL 
include 

• JOGL (https://jogamp.org/jogl/www/) for Java 

• WebGL (https://www.khronos.org/webgl/) for JavaScript 

• PyOpenGL (http://pyopengl.sourceforge.net/) for Python 

Te initial version of OpenGL was released by Silicon Graphics, Inc. (SGI) 
in 1992 and has been managed by the Khronos Group since 2006. Te 
Khronos Group is a non-proft technology consortium, whose members 

https://jogamp.org
https://www.khronos.org
http://pyopengl.sourceforge.net
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include graphics card manufacturers and general technology companies. 
New versions of the OpenGL specifcation are released regularly to support 
new features and functions. In this book, you will learn about many of the 
OpenGL functions that allow you to take advantage of the graphics capa-
bilities of the GPU and render some truly impressive three-dimensional 
scenes. Te steps involved in this rendering process are described in detail 
in the sections that follow. 

1.2 THE GRAPHICS PIPELINE 
A graphics pipeline is an abstract model that describes a sequence of steps 
needed to render a three-dimensional scene. Pipelining allows a compu-
tational task to be split into subtasks, each of which can be worked on 
in parallel, similar to an assembly line for manufacturing products in a 
factory, which increases overall efciency. Graphics pipelines increase 
the efciency of the rendering process, enabling images to be displayed 
at faster rates. Multiple pipeline models are possible; the one described 
in this section is commonly used for rendering real-time graphics using 
OpenGL, which consists of four stages (illustrated by Figure 1.7): 

• Application Stage: initializing the window where rendered graphics 
will be displayed; sending data to the GPU 

• Geometry Processing: determining the position of each vertex of the 
geometric shapes to be rendered, implemented by a program called 
a vertex shader 

• Rasterization: determining which pixels correspond to the geometric 
shapes to be rendered 

• Pixel Processing: determining the color of each pixel in the rendered 
image, involving a program called a fragment shader 

Each of these stages is described in more detail in the sections that follow; 
the next chapter contains code that will begin to implement many of the 
processes described here. 

FIGURE 1.7 Te graphics pipeline. 
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1.2.1 Application Stage 

Te application stage primarily involves processes that run on the CPU. 
One of the frst tasks is to create a window where the rendered graphics 
will be displayed. When working with OpenGL, this can be accomplished 
using a variety of programming languages. Te window (or a canvas-like 
object within the window) must be initialized so that the graphics are read 
from the GPU framebufer. In the case of animated or interactive appli-
cations, the main application contains a loop that re-renders the scene 
repeatedly, typically aiming for a rate of 60 FPS. Other processes that may 
be handled by the CPU include monitoring hardware for user input events, 
or running algorithms for tasks such as physics simulation and collision 
detection. 

Another class of tasks performed by the application includes read-
ing data required for the rendering process and sending it to the GPU. 
Tis data may include vertex attributes (which describe the appearance 
of the geometric shapes being rendered), images that will be applied to 
surfaces, and source code for the vertex shader and fragment shader pro-
grams (which will be used later on during the graphics pipeline). OpenGL 
describes the functions that can be used to transmit this data to the GPU; 
these functions are accessed through the bindings of the programming 
language used to write the application. Vertex attribute data is stored in 
GPU memory bufers called vertex bufer objects (VBOs), while images 
that will be used as textures are stored in texture bufers. It is important 
to note that this stored data is not initially assigned to any particular pro-
gram variables; these associations are specifed later. Finally, source code 
for the vertex shader and fragment shader programs needs to be sent to 
the GPU, compiled, and loaded. If needed, bufer data can be updated dur-
ing the application's main loop, and additional data can be sent to shader 
programs as well. 

Once the necessary data has been sent to the GPU, before rendering 
can take place, the application needs to specify the associations between 
attribute data stored in VBOs and attribute variables in the vertex shader 
program. A single geometric shape may have multiple attributes for each 
vertex (such as position and color), and the corresponding data is streamed 
from bufers to variables in the shader during the rendering process. It 
is also frequently necessary to work with many sets of such associations: 
there may be multiple geometric shapes (with data stored in diferent buf-
fers) that are rendered by the same shader program, or each shape may be 
rendered by a diferent shader program. Tese sets of associations can be 



      

  

 

 

10 ◾ Developing Graphics Frameworks with Python and OpenGL 

FIGURE 1.8 Wireframe meshes representing a sphere and a teapot. 

conveniently managed by using vertex array objects (VAOs), which store 
this information and can be activated and deactivated as needed during 
the rendering process. 

1.2.2 Geometry Processing 

In computer graphics, the shape of a geometric object is defned by a mesh: 
a collection of points that are grouped into lines or triangles, as illustrated 
in Figure 1.8. 

In addition to the overall shape of an object, additional information 
may be required to describe how the object should be rendered. Te prop-
erties or attributes that are specifc to rendering each individual point are 
grouped together into a data structure called a vertex. At a minimum, a 
vertex must contain the three-dimensional position of the corresponding 
point. Additional data contained by a vertex ofen includes 

• a color to be used when rendering the point 

• texture coordinates (or UV coordinates), which indicate a point in an 
image that is mapped to the vertex 

• a normal vector, which indicates the direction perpendicular to a 
surface and is typically used in lighting calculations 

Figure 1.9 illustrates diferent renderings of a sphere that make use of these 
attributes. Additional vertex attributes may be defned as needed. 

During the geometry processing stage, the vertex shader is applied to 
each of the vertices; each attribute variable in the shader receives data 
from a bufer according to previously specifed associations. Te pri-
mary purpose of the vertex shader is to determine the fnal position of 
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FIGURE 1.9 Diferent renderings of a sphere: wireframe, vertex colors, texture, 
and with lighting efects. 

FIGURE 1.10 One scene rendered from multiple camera locations and angles. 

each point being rendered, which is typically calculated from a series of 
transformations: 

• the collection of points defning the intrinsic shape of an object may 
be translated, rotated, and scaled so that the object appears to have 
a particular location, orientation, and size with respect to a virtual 
three-dimensional world. Tis process is called the model transfor-
mation; coordinates expressed from this frame of reference are said 
to be in world space 

• there may be a virtual camera with its own position and orientation 
in the virtual world. In order to render the world from the camera’s 
point of view, the coordinates of each object in the world must be 
converted to a frame of reference relative to the camera itself. Tis 
process is called the view transformation, and coordinates in this 
context are said to be in view space (or camera space, or eye space). 
Te efect of the placement of the virtual camera on the rendered 
image is illustrated in Figure 1.10 

• the set of points in the world considered to be visible, occupying 
either a box-shaped or frustum-shaped region, must be scaled to and 
aligned with the space rendered by OpenGL: a cube-shaped region 
consisting of all points whose coordinates are between −1 and 1. 
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FIGURE 1.11 A series of cubes rendered with orthogonal projection (a) and 
perspective projection (b). 

Te position of each point returned by the vertex shader is assumed 
to be expressed in this frame of reference. Any points outside this 
region are automatically discarded or clipped from the scene; coor-
dinates expressed at this stage are said to be in clip space. Tis task is 
accomplished with a projection transformation. More specifcally, it is 
called an orthographic projection or a perspective projection, depend-
ing on whether the shape of the visible world region is a box or a 
frustum. A perspective projection is generally considered to produce 
more realistic images, as objects that are farther away from the vir-
tual camera will require greater compression by the transformation 
and thus appear smaller when the scene is rendered. Te diferences 
between the two types of projections are illustrated in Figure 1.11. 

In addition to these transformation calculations, the vertex shader may 
perform additional calculations and send additional information to the 
fragment shader as needed. 

1.2.3 Rasterization 

Once the fnal positions of each vertex have been specifed by the vertex 
shader, the rasterization stage begins. Te points themselves must frst be 
grouped into the desired type of geometric primitive: points, lines, or tri-
angles, which consist of sets of 1, 2, or 3 points. In the case of lines or 
triangles, additional information must be specifed. For example, consider 
an array of points [A, B, C, D, E, F] to be grouped into lines. Tey could 
be grouped in disjoint pairs, as in (A, B), (C, D), (E, F), resulting in a set 
of disconnected line segments. Alternatively, they could be grouped in 
overlapping pairs, as in (A, B), (B, C), (C, D), (D, E), (E, F), resulting in a 
set of connected line segments (called a line strip). Te type of geometric 
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primitive and method for grouping points is specifed using an OpenGL 
function parameter when the rendering process begins. Te process of 
grouping points into geometric primitives is called primitive assembly. 

Once the geometric primitives have been assembled, the next step is to 
determine which pixels correspond to the interior of each geometric prim-
itive. Since pixels are discrete units, they will typically only approximate 
the continuous nature of a geometric shape, and a criterion must be given 
to clarify which pixels are in the interior. Tree simple criteria could be

 1. the entire pixel area is contained within the shape

 2. the center point of the pixel is contained within the shape

 3. any part of the pixel is contained within the shape 

Tese efects of applying each of these criteria to a triangle are illustrated 
in Figure 1.12, where the original triangle appears outlined in blue, and 
pixels meeting the criteria are shaded gray. 

For each pixel corresponding to the interior of a shape, a fragment is 
created: a collection of data used to determine the color of a single pixel in 
a rendered image. Te data stored in a fragment always includes the raster 
position, also called pixel coordinates. When rendering a three-dimensional 
scene, fragments will also store a depth value, which is needed when points 
on diferent geometric objects would overlap from the perspective of the 
viewer. When this happens, the associated fragments would correspond 
to the same pixel, and the depth value determines which fragment’s data 
should be used when rendering this pixel. 

Additional data may be assigned to each vertex, such as a color, and 
passed along from the vertex shader to the fragment shader. In this case, a 
new data feld is added to each fragment. Te value assigned to this feld at 

FIGURE 1.12 Diferent criteria for rasterizing a triangle. 
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FIGURE 1.13 Interpolating color attributes. 

each interior point is interpolated from the values at the vertices: calculated 
using a weighted average, depending on the distance from the interior 
point to each vertex. Te closer an interior point is to a vertex, the greater 
the weight of that vertex’s value when calculating the interpolated value. 
For example, if the vertices of a triangle are assigned the colors red, green, 
and blue, then each pixel corresponding to the interior of the triangle will 
be assigned a combination of these colors, as illustrated in Figure 1.13. 

1.2.4 Pixel Processing 

Te primary purpose of this stage is to determine the fnal color of each 
pixel, storing this data in the color bufer within the framebufer. During 
the frst part of the pixel processing stage, a program called the fragment 
shader is applied to each of the fragments to calculate their fnal color. Tis 
calculation may involve a variety of data stored in each fragment, in com-
bination with data globally available during rendering, such as 

• a base color applied to the entire shape 

• colors stored in each fragment (interpolated from vertex colors) 
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FIGURE 1.14 An image fle (a) used as a texture for a 3D object (b). 

• textures (images applied to the surface of the shape, illustrated by 
Figure 1.14), where colors are sampled from locations specifed by 
texture coordinates 

• light sources, whose relative position and/or orientation may lighten 
or darken the color, depending on the direction the surface is facing 
at a point, specifed by normal vectors 

Some aspects of the pixel processing stage are automatically handled by 
the GPU. For example, the depth values stored in each fragment are used 
in this stage to resolve visibility issues in a three-dimensional scene, deter-
mining which parts of objects are blocked from view by other objects. 
Afer the color of a fragment has been calculated, the fragment’s depth 
value will be compared to the value currently stored in the depth bufer 
at the corresponding pixel coordinates. If the fragment's depth value is 
smaller than the depth bufer value, then the corresponding point is closer 
to the viewer than any that were previously processed, and the fragment’s 
color will be used to overwrite the data currently stored in the color bufer 
at the corresponding pixel coordinates. 

Transparency is also handled by the GPU, using the alpha values stored 
in the color of each fragment. Te alpha value of a color is used to indicate 
how much of this color should be blended with another color. For example, 
when combining a color C1 with an alpha value of 0.6 with another color 
C2, the resulting color will be created by adding 60% of the value from 
each component of C1 to 40% of the value from each component of C2. 
Figure 1.15 illustrates a simple scene involving transparency. 
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FIGURE 1.15 Rendered scene with transparency. 

However, rendering transparent objects has some complex subtleties. 
Tese calculations occur at the same time that depth values are being 
resolved, and so scenes involving transparency must render objects in a 
particular order: all opaque objects must be rendered frst (in any order), 
followed by transparent objects ordered from farthest to closest with respect 
to the virtual camera. Not following this order may cause transparency 
efects to fail. For example, consider a scene, such as that in Figure 1.15, 
containing a single transparent object close to the camera and multiple 
opaque objects farther from the camera that appear behind the transparent 
object. Assume that, contrary to the previously described rendering order, 
the transparent object is rendered frst, followed by the opaque objects in 
some unknown order. When the fragments of the opaque objects are pro-
cessed, their depth value will be greater than the value stored in the depth 
bufer (corresponding to the closer transparent object), and so the opaque 
fragments’ color data will automatically be discarded, rather than blended 
with the currently stored color. Even attempting to use the alpha value of 
the transparent object stored in the color bufer in this example does not 
resolve the underlying issue, because when the fragments of each opaque 
object are being rendered, it is not possible at this point to determine if 
they may have been occluded from view by another opaque fragment (only 
the closest depth value, corresponding to the transparent object, is stored), 
and thus, it is unknown which opaque fragment's color values should be 
blended into the color bufer. 
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1.3 SETTING UP A DEVELOPMENT ENVIRONMENT 
Most parts of the graphics pipeline discussed in the previous section— 
geometry processing, rasterization, and pixel processing—are handled 
by the GPU, and as mentioned previously, this book will use OpenGL for 
these tasks. For developing the application, there are many programming 
languages one could select from. In this book, you will be using Python 
to develop these applications, as well as a complete graphics framework 
to simplify the design and creation of interactive, animated, three-
dimensional scenes. 

1.3.1 Installing Python 

To prepare your development environment, the frst step is to download 
and install a recent version of Python (version 3.8 as of this writing) from 
http://www.python.org (Figure 1.16); installers are available for Windows, 
Mac OS X, and a variety of other platforms. 

• When installing for Windows, check the box next to add to path. 
Also, select the options custom installation and install for all users; 
this simplifes setting up alternative development environments later. 

Te Python installer will also install IDLE, Python’s Integrated 
Development and Learning Environment, which can be used for devel-
oping the graphics framework presented throughout this book. A more 

FIGURE 1.16 Python homepage: http://www.python.org. 

http://www.python.org
http://www.python.org
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sophisticated alternative is recommended, such as Sublime Text, which 
will be introduced later on in this chapter, and some of its advantages 
discussed. (If you are already familiar with an alternative Python 
development environment, you are of course also welcome to use that 
instead.) 

IDLE has two main window types. Te frst window type, which auto-
matically opens when you run IDLE, is the shell window, an interactive 
window that allows you to write Python code which is then immediately 
executed afer pressing the Enter key. Figure 1.17 illustrates this win-
dow afer entering the statements 123 + 214 and print("Hello, 
world!"). Te second window type is the editor window, which func-
tions as a text editor, allowing you to open, write, and save fles containing 
Python code, which are called modules and typically use the.py fle exten-
sion. An editor window can be opened from the shell window by selecting 
either File > New File or File > Open... from the menu bar. Programs may 
be run from the editor window by choosing Run > Run Module from the 
menu bar; this will display the output in a shell window (opening a new 
shell window if none are open). Figure 1.18 illustrates creating a fle in the 
editor window containing the following code: 

print("Hello, world!") 
print("Have a nice day!") 

FIGURE 1.17 IDLE shell window. 

FIGURE 1.18 IDLE editor window. 



      

  

 

  

 

 

 

Introduction to Computer Graphics ◾ 19 

FIGURE 1.19 Results of running the Python program from Figure 1.18. 

Figure 1.19 illustrates the results of running this code, which appear in a 
shell window. 

1.3.2 Python Packages 

Once Python has been successfully installed, your next step will be to 
install some packages, which are collections of related modules that pro-
vide additional functionality to Python. Te easiest way to do this is by 
using pip, a sofware tool for package installation in Python. In particular, 
you will install 

• Pygame (http://www.pygame.org), a package that can be used to 
easily create windows and handle user input 

• Numpy (https://numpy.org/), a package for mathematics and scientifc 
computing 

• PyOpenGL and PyOpenGL_accelerate (http://pyopengl.sourceforge. 
net/), which provide a set of bindings from Python to OpenGL. 

If you are using Windows, open Command Prompt or PowerShell (run 
with administrator privileges so that the packages are automatically avail-
able to all users) and enter the following command, which will install all 
of the packages described above: 

py -m pip install pygame numpy PyOpenGL 
PyOpenGL_accelerate 

If you are using MacOS, the command is slightly diferent. Enter 

python3-m pip install pygame numpy PyOpenGL 
PyOpenGL_accelerate 

http://www.pygame.org
https://numpy.org
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net
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To verify that these packages have been installed correctly, open a new 
IDLE shell window (restart IDLE if it was open before installation). To 
check Pygame, enter the following code, and press the Enter key: 

import pygame 

You should see a message that contains the number of the Pygame 
version that has been installed, such as "pygame 1.9.6", and a greet-
ing message such as "Hello from the pygame community". If 
instead you see a message that contains the text No module named 
'pygame', then Pygame has not been correctly installed. Furthermore, 
it will be important to install a recent version of Pygame—at least a 
development version of Pygame 2.0.0. If an earlier version has been 
installed, return to the command prompt and in the install command 
above, change pygame to pygame==2.0.0.dev10 to install a more 
recent version. 

Similarly, to check the Numpy installation, instead use the code: 

import numpy 

In this case, if you see no message at all (just another input prompt), then 
the installation was successful. If you see a message that contains the text 
No module named 'numpy', then Numpy has not been correctly 
installed. Finally, to check PyOpenGL, instead use the code: 

import OpenGL 

As was the case with testing the Numpy package, if there is no message 
displayed, then the installation was successful, but a message mentioning 
that the module is not installed will require you to try re-installing the 
package. 

If you encounter difculties installing any of these packages, there is 
additional help available online: 

• Pygame: https://www.pygame.org/wiki/GettingStarted 

• Numpy: https://numpy.org/install/ 

• PyOpenGL: at http://pyopengl.sourceforge.net/documentation/ 
installation.html 

https://www.pygame.org
https://numpy.org
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net
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1.3.3 Sublime Text 

When working on a large project involving multiple fles, you may want to 
install an alternative development environment, rather than restrict your-
self to working with IDLE. Te authors particularly recommend Sublime 
Text, which has the following advantages: 

• lines are numbered for easy reference 

• tabbed interface for working with multiple fles in a single window 

• editor supports multi-column layout to view and edit diferent fles 
simultaneously 

• directory view to easily navigate between project fles in a project 

• able to run scripts and display output in console area 

• free, full-featured trial version available 

To install the application, visit the Sublime Text website (https://www. 
sublimetext.com/), shown in Figure 1.20, and click on the “download” 
button (whose text may difer from the fgure to reference the operating 
system you are using). Alternatively, you may click the download link in 
the navigation bar to view all downloadable versions. Afer downloading, 
you will need to run the installation program, which will require 
administrator-level privileges on your system. If unavailable, you may 
alternatively download a “portable version” of the sofware, which can 

FIGURE 1.20 Sublime Text homepage 

https://www.sublimetext.com
https://www.sublimetext.com
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FIGURE 1.21 Sublime Text editor window. 

FIGURE 1.22 Output from Figure 1.21. 

be found via the download link previously mentioned. While a free trial 
version is available, if you choose to use this sofware extensively, you are 
encouraged to purchase a license. 

Afer installation, start the Sublime Text sofware. A new editor window 
will appear, containing an empty fle. As previously mentioned, Sublime 
Text can be used to run Python scripts automatically, provided that Python 
has been installed for all users of your computer and it is included on the 
system path. To try out this feature, in the editor window, as shown in 
Figure 1.21, enter the text: 

print("Hello, world!") 

Next, save your fle with the name test.py; the.py extension causes 
Sublime Text to recognize it as a Python script fle, and syntax highlighting 
will be applied. Finally, from the menu bar, select Tools > Build or press 
the keyboard key combination Ctrl + B to build and run the application. 
Te output will appear in the console area, as illustrated in Figure 1.22. 
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1.4 SUMMARY AND NEXT STEPS 
In this chapter, you learned about the core concepts and vocabulary used 
in computer graphics, including rendering, bufers, GPUs, and shaders. 
Ten, you learned about the four major stages in the graphics pipeline: the 
application stage, geometry processing, rasterization, and pixel processing; 
this section introduced additional terminology, including vertices, 
VBOs, VAOs, transformations, projections, fragments, and interpolation. 
Finally, you learned how to set up a Python development environment. In 
the next chapter, you will use Python to start implementing the graphics 
framework that will realize these theoretical principles. 



https://taylorandfrancis.com


 

 

 

 

CHAP T ER  2 

Introduction to 
Pygame and OpenGL 

In this chapter, you will learn how to create windows with Pygame 
and how to draw graphics in these windows with OpenGL. You will 

start by rendering a point, followed by lines and triangles with a single 
color. Ten, you will draw multiple shapes with multiple colors, create a 
series of animations involving movement and color transitions, and imple-
ment interactive applications with keyboard controlled movement. 

2.1 CREATING WINDOWS WITH PYGAME 
As indicated in the discussion of the graphics pipeline, the frst step in 
rendering graphics is to develop an application where graphics will be 
displayed. Tis can be accomplished with a variety of programming lan-
guages; throughout this book, you will write windowed applications using 
Python and Pygame, a popular Python game development library. 

As you write code, it is important to keep a number of sofware 
engineering principles in mind, including organization, reusability, and 
extensibility. To support these principles, the sofware developed in this 
book uses an object-oriented design approach. To begin, create a main 
folder where you will store your source code. Within this folder, you will 
store the main applications as well as your own packages: folders contain-
ing collections of related modules, which in this case will be Python fles 
containing class defnitions. 

DOI: 10.1201/9781003181378-2 25 
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First, you will create a class called Base that initializes Pygame and 
displays a window. Anticipating that the applications created will eventu-
ally feature user interaction and animation, this class will be designed to 
handle the standard phases or “life cycle” of such an application: 

• Startup: During this stage, objects are created, values are initialized, 
and any required external fles are loaded. 

• Te Main Loop: Tis stage repeats continuously (typically 60 times 
per second), while the application is running and consists of the 
following three substages: 

• Process Input: Check if the user has performed any action that 
sends data to the computer, such as pressing keys on a keyboard 
or clicking buttons on a mouse. 

• Update: Changing values of variables and objects. 

• Render: Create graphics that are displayed on the screen. 

• Shutdown: Tis stage typically begins when the user performs an 
action indicating that the program should stop running (for example, 
by clicking a button to quit the application). Tis stage may involve 
tasks such as signaling the application to stop checking for user input 
and closing any windows that were created by the application. 

Tese phases are illustrated by the fowchart in Figure 2.1. 
Te Base class will be designed to be extended by the various 

applications throughout this book. In accordance with the principle of 
modularization, processing user input will be handled by a separate class 
named Input that you will create later. 

To begin, in your main folder, create a new folder called core. For Python 
to recognize this (or any) folder as a package, within the folder, you need 

FIGURE 2.1 Te phases of an interactive graphics-based application. 
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to create a new fle named __init __.py (note the double underscore 
characters that occur before and afer init). Any code in the __init __. 
py fle will be run when modules from this package are imported into 
another program; leave this as an empty fle. Next, also in the core folder, 
create a new fle named base.py, and enter the following code (which con-
tains some basic comments that will be explained more fully afer): 

import pygame 
import sys 

class Base(object):

 def __init__(self, screenSize=[512, 512]):

 # initialize all pygame modules
 pygame.init()
 # indicate rendering details

        displayFlags = pygame.DOUBLEBUF | pygame. 
OPENGL

 # initialize buffers to perform antialiasing
 pygame.display.gl_set_attribute(

 pygame.GL_MULTISAMPLEBUFFERS, 1)
 pygame.display.gl_set_attribute(

 pygame.GL_MULTISAMPLESAMPLES, 4)
        # use a core OpenGL profile for cross-platform 

compatibility
 pygame.display.gl_set_attribute(

 pygame.GL_CONTEXT_PROFILE_MASK,
 pygame.GL_CONTEXT_PROFILE_CORE)

 # create and display the window
 self.screen = pygame.display.set_mode( 

screenSize, displayFlags )
        # set the text that appears in the title bar 

of the window
 pygame.display.set_caption("Graphics Window")

 # determine if main loop is active
 self.running = True
 # manage time-related data and operations
 self.clock = pygame.time.Clock()

 # implement by extending class 
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 def initialize(self):
 pass

 # implement by extending class
 def update(self):

 pass

 def run(self):

 ## startup ##
 self.initialize()

 ## main loop ##
 while self.running:

 ## process input ##

 ## update ##
 self.update()

 ## render ##
 # display image on screen
 pygame.display.flip()

 # pause if necessary to achieve 60 FPS
 self.clock.tick(60)

 ## shutdown ##
 pygame.quit()
 sys.exit() 

In addition to the comments throughout the code above, the following 
observations are noteworthy: 

• Te screenSize parameter can be changed as desired. At present, 
if the screen size is set to non-square dimensions, this will cause the 
rendered image to appear stretched along one direction. Tis issue 
will be addressed in Chapter 4 when discussing aspect ratios. 

• Te title of the window is set with the function pygame.display. 
set _ caption and can be changed as desired. 
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• Te displayFlags variable is used to combine constants rep-
resenting diferent display settings with the bitwise or operator 
'|'. Additional settings (such as allowing a resizable window) are 
described at https://www.pygame.org/docs/ref/display.html. 

• Te pygame.DOUBLEBUF constant indicates that a rendering tech-
nique called double bufering will be used, which employs two image 
bufers. Te pixel data from one bufer is displayed on screen while 
new data is being written into a second bufer. When the new image 
is ready, the application switches which bufer is displayed on screen 
and which bufer will be written to; this is accomplished in Pygame 
with the statement pygame.display.flip(). Te double bufer-
ing technique eliminates an unwanted visual artifact called screen 
tearing, in which the pixels from a partially updated bufer are dis-
played on screen, which happens when a single bufer is used and the 
rendering cycles are not synchronized with the display refresh rate. 

• Antialiasing is a rendering technique used to remove the appear-
ance of jagged, pixelated lines along edges of polygons in a rasterized 
image. Te two lines of code beneath the antialiasing comment indi-
cate that each pixel at the edge of a polygon will be sampled multiple 
times, and in each sample, a slight ofset (smaller than the size of a 
pixel) is applied to all screen coordinates. Te color samples are aver-
aged, resulting in a smoother transition between pixel colors along 
polygon edges. 

• Starting in OpenGL version 3.2 (introduced in 2009), deprecation 
was introduced: older functions were gradually replaced by more 
efcient versions, and future versions may no longer contain or sup-
port the older functions. Tis led to core and compatibility profles: 
core profles are only guaranteed to implement functions present 
in the current version of the API, while compatibility profles will 
additionally support many functions that may have been deprecated. 
Each hardware vendor decides which versions of OpenGL will be 
supported by each profle. In recent versions of Mac OS X (10.7 and 
later) at the time of writing, the core profle supported is 3.2, while 
the compatibility profle supported is 2.1. Since some of the OpenGL 
features (such as vertex array objects or VAOs) that will be needed 
in constructing the graphics framework in this book were intro-
duced in GLSL version 3.0, a core profle is specifed for maximum 

https://www.pygame.org
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cross-platform compatibility. Te corresponding line of code also 
requires at least Pygame version 2.0 to run. 

• Te function pygame.display.set _ mode sets the properties 
of the window and also makes the window appear on screen. 

• Te Clock object (initialized with pygame.time.Clock()) has 
many uses, such as keeping track of how much time has passed since 
a previous function call, or how many times a loop has run during the 
past second. Each iteration of the main loop results in an image being 
displayed, which can be considered a frame of an animation. Since 
the speed at which these images appear is the speed at which the main 
loop runs, both are measured in terms of frames per second (FPS). 
By default, the main loop will run as fast as possible—sometimes 
faster than 60 FPS, in which case the program may attempt to use 
nearly 100% of the CPU. Since most computer displays only update 
60 times per second, there is no need to run faster than this, and the 
tick function called at the end of the main loop results in a short 
pause at the end of the loop that will bring the execution speed down 
to 60 FPS. 

• Te initialize and update functions are meant to be imple-
mented by the applications that extend this class. Since every func-
tion must contain at least one statement, the pass statement is used 
here, which is a null statement—it does nothing. 

• Te run function contains all the phases of an interactive graphics-
based application, as described previously; the corresponding code is 
indicated by comments beginning with ##. 

Te next task we need to address is basic input processing; at a minimum, 
the user needs to be able to terminate the program, which will set the vari-
able self.running to False in the code above. To this end, in the core 
folder, create a new fle named input.py containing the following code: 

import pygame 

class Input(object):

 def __init__(self): 

http:input.py
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 # has the user quit the application?
 self.quit = False

 def update(self):
        # iterate over all user input events (such as 

keyboard or 
        # mouse)that occurred since the last time 

events were checked
 # for event in pygame.event.get():

        # quit event occurs by clicking button to 
close window

 if event.type == pygame.QUIT:
 self.quit = True 

At present, the Input class only monitors for quit-type events; in later 
sections, keyboard functionality will be added as well. For now, return to 
the Base class. Afer the import statements, add the code: 

from core.input import Input 

Tis will enable you to use the Input class from the input module 
in the core package. It should be noted that the import statements 
are written assuming that your application fles (which will extend the 
Base class) will be stored in the main directory (which contains all the 
packages). 

Next, at the end of the init function, add the code: 

# manage user input 
self.input = Input() 

Tis will create and store an instance of the Input class when the Base 
class is created. 

Finally, in the run function, afer the comment ## process input 
##, add the code: 

self.input.update() 
if self.input.quit:

 self.running = False 

Tis will enable the user to stop the application, as described prior to the 
code listing for the Input class. 
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You will next write an application that uses these classes to create a win-
dow. Te general approach in this and similar applications will to extend 
the Base class, implement the initialize and update functions, and 
then, create an instance of the new class and call the run function. To 
proceed, in your main folder, create a new fle named test-2-1.py with 
the code: 

from core.base import Base 

class Test(Base):

 def initialize(self):
 print("Initializing program...")

 def update(self):
 pass 

# instantiate this class and run the program 
Test().run() 

In this program, a message is printed during initialization for illustra-
tive purposes. However, no print statements are present in the update 
function, as attempting to print text 60 times per second would cause 
extreme slowdown in any program. Run this program, and you should see 
a blank window appear on screen (as illustrated in Figure 2.2) and the text 
"Initializing program..." will appear in the shell. When you click 
on the button to close the window, the window should close, as expected. 

2.2 DRAWING A POINT 
Now that you are able to create a windowed application, the next goal is 
to render a single point on the screen. You will accomplish this by writing 
the simplest possible vertex shader and fragment shader, using OpenGL 
Shading Language. You will then learn how to compile and link the shad-
ers to create a graphics processing unit (GPU) program. Finally, you will 
extend the framework begun in the previous section to use GPU programs 
to display graphics in the Pygame application window. 

2.2.1 OpenGL Shading Language 

OpenGL Shading Language (GLSL) is a C-style language, and is both 
similar to and diferent from Python in a number of ways. Similar to 

http:test-2-1.py
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FIGURE 2.2 Te Pygame window. 

Python, there are “if statements” to process conditional statements, “for 
loops” to iterate a group of statements over a range of values, "while loops" 
to iterate a group of statements as long as a given condition is true, and 
functions that take a set of inputs and perform some computations (and 
optionally return an output value). Unlike Python, variables in GLSL 
must be declared with an assigned type, the end of each statement must 
be indicated with a semicolon, statements are grouped using braces (as 
opposed to indentation), comments are preceded by "//" (rather than "#"), 
and functions must specify the types of their input parameters and return 
value. Te details of the diferences in Python and GLSL syntax will be 
illustrated and indicated as the features are introduced in the examples 
throughout this book. 

Te basic data types in GLSL are boolean, integer, and foating point 
values, indicated by bool, int, and float, respectively. GLSL has vector 
data types, which are ofen used to store values indicating positions, colors, 
and texture coordinates. Vectors may have two, three, or four components, 
indicated by vec2, vec3, and vec4 (for vectors consisting of foats). As 
a C-like language, GLSL provides arrays and structs: user-defned data 
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types. To facilitate graphics-related computations, GLSL also features 
matrix data types, which ofen store transformations (translation, rota-
tion, scaling, and projections), and sampler data types, which represent 
textures; these will be introduced in later chapters. 

Te components of a vector data type can be accessed in multiple ways. 
For example, once a vec4 named v has been initialized, its components 
can be accessed using array notation ( v[0], v[1], v[2], v[3] ), or using 
dot notation with any of the following three systems: ( v.x, v.y, v.z, v.w ) 
or ( v.r, v.g, v.b, v.a ) or ( v.s, v.t, v.p, v.q ). While all these systems 
are interchangeable, programmers typically choose a system related to the 
context for increased readability: (x, y, z, w) are used for positions, (r, g, b, 
a) are used for colors (red, green, blue, alpha), and (s, t, p, q) are used for 
texture coordinates. 

Every shader must contain a function named main, similar to the C 
programming language. No values are returned (which is indicated by 
the keyword void), and there are no parameters required by the main 
function; thus, every shader has the general following structure: 

void main() 
{

 // code statements here 

} 

In the description of the graphics pipeline from the previous chapter, it 
was mentioned that a vertex shader will receive data about the geometric 
shapes being rendered via bufers. At this point, you may be wondering 
how vertex attribute data is sent from bufers to a vertex shader if the 
main function takes no parameters. In general, data is passed in and 
out of shaders via variables that are declared with certain type qualifers: 
additional keywords that modify the properties of a variable. For example, 
many programming languages have a qualifer to indicate that the value of 
a variable will remain constant; in GLSL, this is indicated by the keyword 
const. Additionally, when working with shaders, the keyword in indi-
cates that the value of a variable will be supplied by the previous stage of 
the graphics pipeline, while the keyword out indicates that a value will be 
passed along to the next stage of the graphics pipeline. More specifcally, 
in the context of a vertex shader, in indicates that values will be supplied 
from a bufer, while out indicates that values will be passed to the frag-
ment shader. In the context of a fragment shader, in indicates that values 
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will be supplied from the vertex shader (interpolated during the rasteriza-
tion stage), while out indicates values will be stored in one of the various 
bufers (color, depth, or stencil). 

Tere are two particular out variables that are required when writ-
ing shader code for a GPU program. First, recall that the ultimate goal 
of the vertex shader is to calculate the position of a point. OpenGL uses 
the built-in variable gl _ Position to store this value; a value must be 
assigned to this variable by the vertex shader. Second, recall that the ulti-
mate goal of the fragment shader is to calculate the color of a pixel. Early 
versions of OpenGL used a built-in variable called gl _ FragColor to 
store this value, and each fragment shader was required to assign a value 
to this variable. Later versions require fragment shader code to explic-
itly declare an out variable for this purpose. Finally, it should be men-
tioned that both of these variables are vec4 type variables. For storing 
color data, this makes sense as red, green, blue, and alpha (transparency) 
values are required. For storing position data, this is less intuitive, as a 
position in three-dimensional space can be specifed using only x, y, and 
z coordinates. By including a fourth coordinate (commonly called w and 
set to the value 1), this makes it possible for geometric transformations 
(such as translation, rotation, scaling, and projection) to be represented 
by and calculated using a single matrix, which will be discussed in detail 
in Chapter 3. 

As indicated at the beginning of this section, the current goal is to write 
a vertex shader and a fragment shader that will render a single point on 
the screen. Te code presented will avoid the use of bufers and exclusively 
use built-in variables. (You do not need to create any new fles or enter any 
code at this time.) Te vertex shader will consist of the following code: 

void main() 
{

 gl_Position = vec4(0.0, 0.0, 0.0, 1.0); 
} 

In early versions of OpenGL, the simplest possible fragment shader could 
have consisted of the following code: 

void main() 
{

 gl_FragColor = vec4(1.0, 1.0, 0.0, 1.0); 
} 
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For more modern versions of OpenGL, where you need to declare a vari-
able for the output color, you can use the following code for the fragment 
shader: 

out vec4 fragColor; 
void main() 
{

 fragColor = vec4(1.0, 1.0, 0.0, 1.0); 
} 

Taken together, the vertex shader and the fragment shader produce a 
program that renders a point in the center of the screen, colored yellow. If 
desired, these values can be altered within certain bounds. Te x, y, and z 
components of the position vector may be changed to any value between 
−1.0 and 1.0, and the point will remain visible; any values outside this range 
place the point outside of the region rendered by OpenGL and will result 
in an empty image being rendered. Changing the z coordinate (within this 
range) will have no visible efect at this time, since no perspective trans-
formations are being applied. Similarly, the r, g, and b components of the 
color vector may be changed as desired, although dark colors may be dif-
fcult to distinguish on the default black background color. It should also 
be noted that the number types int and float are not interchangeable; 
entering just 1 rather than 1.0 may cause shader compilation errors. 

2.2.2 Compiling GPU Programs 

Now that you’ve learned the basics about writing shader code, the next 
step is to learn how to compile and link the vertex and fragment shaders 
to create a GPU program. To continue with the goal of creating a reusable 
framework, you will create a utility class that will perform these tasks. In 
this section and those that follow, many of the functions from PyOpenGL 
will be introduced and described in the following style: 

functionName( parameter1 , parameter2 , … ) 

Description of function and parameters. 

Many of these functions will have syntax identical to that presented in 
the ofcial OpenGL reference pages maintained by the Khronos Group 
at https://www.khronos.org/registry/OpenGL-Refpages/. However, there 
will be a few diferences, because the OpenGL Shading Language (GLSL) 

https://www.khronos.org
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is a C-style language, and PyOpenGL is a Python binding. In particular, 
arrays are handled diferently in these two programming languages, which 
is ofen refected in the Python functions requiring fewer arguments. 

Te frst step towards compiling GPU programs centers on the indi-
vidual shaders. Shader objects must be created to store shader source code, 
the source code must be sent to these objects, and then the shaders must be 
compiled. Tis is accomplished using the following three functions: 

glCreateShader( shaderType ) 

Creates an empty shader object, which is used to store the source code of 
a shader, and returns a value by which it can be referenced. Te type of 
shader (such as a vertex shader or a fragment shader) is specifed with 
the shaderType parameter, whose value will be an OpenGL constant 
such as GL_VERTEX_SHADER or GL_FRAGMENT_SHADER. 

glShaderSource( shaderRef, shaderCode ) 

Stores the source code in the string parameter shaderCode in the shader 
object referenced by the parameter shaderRef. 

glCompileShader( shaderRef ) 

Compiles the source code stored in the shader object referenced by the 
parameter shaderRef. 

Since mistakes may be made when writing shader code, compiling a shader 
may or may not succeed. Unlike application compilation errors, which are 
typically automatically displayed to the programmer, shader compila-
tion errors need to be checked for specifcally. Tis process is typically 
handled in multiple steps: checking if compilation was successful, and if 
not, retrieving the error message, and deleting the shader object to free up 
memory. Tis is handled with the following functions: 

glGetShaderiv( shaderRef, shaderInfo ) 

Returns information from the shader referenced by the parameter 
shaderRef. Te type of information retrieved is specifed with the 
shaderInfo parameter, whose value will be an OpenGL constant 
such as GL_SHADER_TYPE (to determine the type of shader) 
or GL_COMPILE_STATUS (to determine if compilation was 
successful). 
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glGetShaderInfoLog( shaderRef ) 

Returns information about the compilation process (such as errors and 
warnings) from the shader referenced by the parameter shaderRef. 

glDeleteShader( shaderRef ) 

Frees the memory used by the shader referenced by the parameter 
shaderRef, and makes the reference available for future shaders that 
are created. 

With an understanding of these functions, coding in Python can begin. 
Te Python binding PyOpenGL provides access to the needed functions 
and constants through the OpenGL package and its GL namespace. To 
begin, in the core folder, create a new fle named openGLUtils.py 
with the following code: 

from OpenGL.GL import * 

# static methods to load and compile OpenGL shaders 
and link to create programs 

class OpenGLUtils(object):

 @staticmethod
 def initializeShader(shaderCode, shaderType):

 # specify required OpenGL/GLSL version
 shaderCode = '#version 330\n' + shaderCode

    # create empty shader object and return reference 
value

 shaderRef = glCreateShader(shaderType)
 # stores the source code in the shader
 glShaderSource(shaderRef, shaderCode)

    # compiles source code previously stored in the 
shader object

 glCompileShader(shaderRef)

 # queries whether shader compile was successful
    compileSuccess = glGetShaderiv(shaderRef, 

GL_COMPILE_STATUS) 

http:OpenGL.GL
http:openGLUtils.py
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 if not compileSuccess:
 # retrieve error message
 errorMessage = glGetShaderInfoLog(shaderRef)
 # free memory used to store shader program
 glDeleteShader(shaderRef)
 # convert byte string to character string

        errorMessage = '\n' + errorMessage. 
decode('utf-8')

        # raise exception: halt program and print 
error message

 raise Exception( errorMessage ) 

   # compilation was successful; return shader 
reference value

 return shaderRef 

Note that in the code above, initializeShader is declared to be static 
so that it may be called directly from the OpenGLUtils class rather than 
requiring an instance of the class to be created. 

Next, a program object must be created and the compiled shaders must 
be attached and linked together. Tese tasks require the use of the following 
functions: 

glCreateProgram( ) 

Creates an empty program object, to which shader objects can be 
attached, and returns a value by which it can be referenced. 

glAttachShader( programRef, shaderRef ) 

Attaches a shader object specifed by the parameter shaderRef to the 
program object specifed by the parameter programRef. 

glLinkProgram( programRef ) 

Links the vertex and fragment shaders previously attached to the pro-
gram object specifed by the parameter programRef. Among other 
things, this process verifes that any variables used to send data from 
the vertex shader to the fragment shader are declared in both shaders 
consistently. 
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As was the case with checking for shader compilation errors, program 
linking errors need to be checked for manually. This process is completely 
analogous and uses the following functions:

glGetProgramiv( programRef , programInfo )

Returns information from the program referenced by the parameter 
programRef. The type of information retrieved is specified with the 
programInfo parameter, whose value will be an OpenGL constant 
such as GL_LINK_STATUS (to determine if linking was successful).

glGetProgramInfoLog( programRef )

Returns information about the linking process (such as errors and warn-
ings) from the program referenced by the parameter programRef.

glDeleteProgram( programRef )

Frees the memory used by the program referenced by the parameter 
programRef, and makes the reference available for future programs 
that are created.

Next, return to the openGLUtils.py file, and add the following function:

@staticmethod
def� initializeProgram(vertexShaderCode, 

fragmentShaderCode):
     
    vertexShaderRef = OpenGLUtils.initializeShader(
                vertexShaderCode, GL_VERTEX_SHADER)
    fragmentShaderRef = OpenGLUtils.initializeShader(
                fragmentShaderCode, GL_FRAGMENT_SHADER)
    
    # �create empty program object and store reference 

to it
    programRef = glCreateProgram()
    
    # attach previously compiled shader programs
    glAttachShader(programRef, vertexShaderRef)
    glAttachShader(programRef, fragmentShaderRef)
 
    # link vertex shader to fragment shader
    glLinkProgram(programRef)
     

http:openGLUtils.py
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 # queries whether program link was successful
    linkSuccess = glGetProgramiv(programRef, 

GL_LINK_STATUS)
 if not linkSuccess:

 # retrieve error message 
errorMessage = glGetProgramInfoLog(programRef)
 # free memory used to store program
 glDeleteProgram(programRef)
 # convert byte string to character string

        errorMessage = '\n' + errorMessage. 
decode('utf-8')

        # raise exception: halt application and print 
error message

 raise Exception( errorMessage ) 

    # linking was successful; return program reference 
value

 return programRef 

Tere is one additional OpenGL function that can be useful when 
debugging to determine what version of OpenGL/GLSL your computer 
supports: 

glGetString( name ) 

Returns a string describing some aspect of the currently active OpenGL 
implementation, specifed by the parameter name, whose value is 
one of the OpenGL constants: GL_VENDOR, GL_RENDERER, 
GL_VERSION, or GL_SHADING_VERSION. 

In the OpenGLUtils class, add the following function. (Note that the 
decode function is used to convert the byte string returned by glGet-
String to a standard Python string.) 

@staticmethod 
def printSystemInfo():
      print("  Vendor: " + glGetString(GL_VENDOR). 

decode('utf-8') )
     print("Renderer: " + glGetString(GL_RENDERER). 

decode('utf-8') ) 
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 print("OpenGL version supported: " +
 glGetString(GL_VERSION).decode('utf-8') )

 print("  GLSL version supported: " +
         glGetString(GL_SHADING_LANGUAGE_VERSION). 

decode('utf-8') ) 

In the next section, you will learn how to use the functions from this class 
to compile shader code in an application. 

2.2.3 Rendering in the Application 

Next, you will create another application (once again, extending the Base 
class) that contains the shader code previously discussed and uses the 
functions from the utility class to compile the shaders and create the pro-
gram. In the application itself, there are a few more tasks that must be 
performed that also require OpenGL functions. 

As mentioned in the discussion of the graphics pipeline in the previ-
ous chapter, VAOs will be used to manage vertex related data stored in 
vertex bufers. Even though this frst example does not use any bufers, 
many implementations of OpenGL require a VAO to be created and bound 
in order for the application to work correctly. Te two functions you will 
need are as follows: 

glGenVertexArrays( vaoCount ) 

Returns a set of available VAO references. Te number of references 
returned is specifed by the integer parameter vaoCount. 

glBindVertexArray( vaoRef ) 

Binds a VAO referenced by the parameter vaoRef, afer frst creating the 
object if no such object currently exists. Unbinds any VAO that was 
previously bound. 

Next, in order to specify the program to be used when rendering, and 
to start the rendering process, you will need to use the following two 
functions: 

glUseProgram( programRef ) 

Specifes that the program to be used during the rendering process is 
the one referenced by the parameter programRef. 
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glDrawArrays( drawMode , frstIndex , indexCount ) 

Renders geometric primitives (points, lines, or triangles) using the 
program previously specifed by glUseProgram. Te program’s 
vertex shader uses data from arrays stored in enabled vertex buf-
fers, beginning at the array index specifed by the parameter frst-
Index. Te total number of array elements used is specifed by the 
parameter indexCount. Te type of geometric primitive rendered 
and the way in which the vertices are grouped is specifed by the 
parameter drawMode, whose value is an OpenGL constant such as 
GL_POINTS, GL_LINES, GL_LINE_LOOP, GL_TRIANGLES, or 
GL_TRIANGLE_FAN. 

Finally, an aesthetic consideration: depending on your computer display, 
it may be difcult to observe a single point, which is rendered as a single 
pixel by default. To make this point easier to see, you will use the following 
function to increase the size of the rendered point. 

glPointSize( size ) 

Specifes that points should be rendered with diameter (in pixels) equal 
to the integer parameter size. (If not specifed, the default value is 1.) 

You are now prepared to write the application. In your main folder, create 
a new fle named test-2-2.py with the following code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from OpenGL.GL import * 

# render a single point 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###

 # vertex shader code
 vsCode = """
 void main() 

http:OpenGL.GL
http:test-2-2.py
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 {
 gl_Position = vec4(0.0, 0.0, 0.0, 1.0);

 }
 """

 # fragment shader code
 fsCode = """
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(1.0, 1.0, 0.0, 1.0);
 }
 """

        # send code to GPU and compile; store program 
reference

        self.programRef = OpenGLUtils.initializeProgram(
 vsCode, fsCode)

 ### set up vertex array object ###
 vaoRef = glGenVertexArrays(1) 
glBindVertexArray(vaoRef)

 ### render settings (optional) ###

 # set point width and height
 glPointSize( 10 )

 def update(self):

 # select program to use when rendering
 glUseProgram( self.programRef ) 

        # renders geometric objects using selected 
program

 glDrawArrays( GL_POINTS, 0, 1 ) 

# instantiate this class and run the program 
Test().run() 

In this program, note that the source code for the vertex shader and the 
fragment shader are written using multiline strings, which are enclosed 
with triple quotation marks, and the diameter of the rendered point is set 
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FIGURE 2.3 Rendering a single point. 

to be 10 pixels in diameter. When you run this program, a window should 
appear, similar to that shown in Figure 2.3. 

Once you have successfully run this program and viewed the rendered 
point, you should experiment with changing the shader code. As men-
tioned previously, experiment with changing the x, y, and z components 
of the position vector, or the r, g, and b components of the color vector. 
Try changing the point size specifed in the main application. You may 
even want to purposefully introduce errors in the shader code to learn 
what error messages are displayed in each case. Some common errors 
include 

• not including a semicolon at the end of a statement 

• using an int instead of a float 

• assigning the wrong data type to a variable (such as assigning a vec3 
to the vec4 type variable gl _ Position) 

• using the wrong number of values in a vector 
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Try introducing each of the errors into your shader code one at a time, and 
familiarize yourself with the corresponding error messages. Once you are 
fnished experimenting with the code, the next topic you will learn about 
is using vertex bufers to draw two-dimensional shapes. 

2.3 DRAWING SHAPES 
Every vertex shader that you write (with the single exception of the 
one-point example from the previous section) will use arrays of data 
stored in vertex bufers. Multiple points are needed to specify the shape 
of any two-dimensional or three-dimensional object. In what follows, you 
will learn about the OpenGL functions that enable applications to work 
with vertex bufers, create a reusable class to perform these tasks, and then 
write a series of applications that use this class to create one or more shapes 
with one or more colors. 

2.3.1 Using Vertex Buffers 

Most of the tasks involving vertex bufers take place when an application is 
initialized, and so it may be helpful to review the discussion of the applica-
tion stage in the graphics pipeline from the previous chapter. In brief, the 
relevant steps in this stage are creating bufers, storing data in bufers, and 
specifying associations between vertex bufers and shader variables. Tese 
tasks are handled by the six OpenGL functions described in this section, 
starting with 

glGenBufers( buferCount ) 

Returns a set of available vertex bufer references. Te number of refer-
ences returned is specifed by the integer parameter buferCount. 

Note that in contrast to the OpenGL functions glCreateShader and 
glCreateProgram, the function glGenBufers does not actually create an 
object; this is handled by the next function. 

glBindBufer( bindTarget , buferRef ) 

Creates a bufer object referenced by the parameter buferRef if no such 
object exists. Te bufer object is bound to the target specifed by 
the parameter bindTarget, whose value is an OpenGL constant such 
as GL_ARRAY_BUFFER (for vertex attributes) or GL_TEXTURE_ 
BUFFER (for texture data). 
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Binding a bufer to a target is a necessary precursor for much of what 
happens next. Te OpenGL functions that follow—those that relate to a 
bufer in some way—do not contain a parameter that directly references 
a bufer. Instead, some functions (such as glBufferData, discussed 
next) include a parameter like bindTarget and thus afect whichever bufer 
is currently bound to bindTarget. In other cases, the function may only 
be applicable to a particular type of bufer, in which case, bindTarget is 
implicit and thus not included. For example, functions that only apply to 
vertex attribute data (such as glVertexAttribPointer, discussed 
later) only afect vertex bufers and thus automatically afect the bufer 
bound to GL_ARRAY_BUFFER. 

glBuferData( bindTarget , buferData , buferUsage ) 

Allocates storage for the bufer object currently bound to the target 
specifed by the parameter bindTarget and stores the information 
from the parameter buferData. (Any data that may have been pre-
viously stored in the associated bufer is deleted.) Te parameter 
buferUsage indicates how the data will most likely be accessed, and 
this information may be used by the GL implementation to improve 
performance. Te value of buferUsage is an OpenGL constant such 
as GL_STATIC_DRAW (which indicates the bufer contents will be 
modifed once) or GL_DYNAMIC_DRAW (which indicates the buf-
fer contents will be modifed many times). 

In order to set up an association between a vertex bufer and a shader 
variable, the reference to the shader variable in a given program must be 
obtained. Tis can be accomplished by using the following function: 

glGetAttribLocation( programRef , variableName ) 

Returns a value used to reference an attribute variable (indicated by the 
type qualifer in) with name indicated by the parameter variable-
Name and declared in the vertex shader of the program referenced by 
the parameter programRef. If the variable is not declared or not used 
in the specifed program, the value -1 is returned. 

Once the reference for an attribute variable has been obtained and the 
corresponding vertex bufer is bound, the association between the bufer 
and variable can be established using the function presented next: 



      

 
 

 
 

   

   

   
 

48 ◾ Developing Graphics Frameworks with Python and OpenGL 

glVertexAttribPointer( variableRef , size , baseType , normalize , stride , 
ofset ) 

Specifes that the attribute variable indicated by the parameter vari-
ableRef will receive data from the array stored in the vertex bufer 
currently bound to GL_ARRAY_BUFFER. Te basic data type is 
specifed by the parameter baseType, whose value is an OpenGL con-
stant such as GL_INT or GL_FLOAT. Te number of components 
per attribute is specifed by the parameter size, which is the integer 1, 
2, 3, or 4 depending on if the attribute is a basic data type or a vector 
with 2, 3, or 4 components. Te fexibility ofered by the last three 
parameters will not be needed in this book, but in brief: the param-
eter normalize is a boolean value that specifes if vector attributes 
should be rescaled to have length 1, while the parameters stride and 
ofset are used to specify how this attribute’s data should be read from 
the associated bufer (it is possible to pack and interleave data for 
multiple attributes into a single bufer, which can be useful in reduc-
ing total calls to the GPU). 

So, for example, if the shader variable has type int, then you would use 
the parameters size = 1 and baseType = GL_INT, while if the shader vari-
able has type vec3 (a vector containing three float values), then you 
would use the parameters size = 3 and baseType = GL_FLOAT (Te fnal 
three parameters will not be covered in this book, and they will always 
be assigned their default values of normalize = False, stride = 0, and 
ofset = None.). 

Even afer an association has been specifed, the corresponding bufer 
will not be accessed during rendering unless explicitly enabled with the 
following function: 

glEnableVertexAttribArray( variableRef ) 

Specifes that the values in the vertex bufer bound to the shader vari-
able referenced by the parameter variableRef will be accessed and 
used during the rendering process. 

Finally, as a reminder, vertex array objects (VAOs) will be used to manage 
the vertex-related data specifed by these functions. While a VAO is bound, 
it stores information including the associations between vertex bufers and 
attribute variables in a program, how data is arranged within each bufer, 
and which associations have been enabled. 
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2.3.2 An Attribute Class 

With the previously described OpenGL functions, you are now ready 
to create a Python class to manage attribute data and related tasks.  Te 
information managed by the class will include the type of data (float, 
vec2, vec3, or vec4), an array containing the data, and the reference of 
the vertex bufer where the data is stored. Te two main tasks handled by 
the class will be storing the array of data in a vertex bufer, and associat-
ing the vertex bufer to a shader variable in a given program; each of these 
tasks will be implemented with a function. To begin, in the core folder, 
create a new fle named attribute.py with the following code: 

from OpenGL.GL import * 
import numpy 

class Attribute(object):

 def __init__(self, dataType, data):

 # type of elements in data array:
 # int | float | vec2 | vec3 | vec4
 self.dataType = dataType

 # array of data to be stored in buffer
 self.data = data

 # reference of available buffer from GPU
 self.bufferRef = glGenBuffers(1)

 # upload data immediately
 self.uploadData()

 # upload this data to a GPU buffer
 def uploadData(self):

 # convert data to numpy array format; 
# convert numbers to 32 bit floats

        data = numpy.array( self.data ).astype( numpy. 
float32 )

        # select buffer used by the following 
functions 

http:OpenGL.GL
http:attribute.py
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 glBindBuffer(GL_ARRAY_BUFFER, self.bufferRef)

 # store data in currently bound buffer
        glBufferData(GL_ARRAY_BUFFER, data.ravel(), 

GL_STATIC_DRAW)

 # associate variable in program with this buffer
    def associateVariable(self, programRef, 

variableName):

        # get reference for program variable with 
given name

        variableRef = glGetAttribLocation(programRef, 
variableName)

        # if the program does not reference the 
variable, then exit

 if variableRef == -1:
 return

        # select buffer used by the following 
functions

 glBindBuffer(GL_ARRAY_BUFFER, self.bufferRef)

 # specify how data will be read 
# from the currently bound buffer into the 

specified
 # variable 
if self.dataType == "int":

 glVertexAttribPointer( 
variableRef, 1, GL_INT, False, 0, None)

 elif self.dataType == "float":
 glVertexAttribPointer(

                variableRef, 1, GL_FLOAT, False, 0, 
None)

 elif self.dataType == "vec2": 
glVertexAttribPointer(

                variableRef, 2, GL_FLOAT, False, 0, 
None)

 elif self.dataType == "vec3":
            glVertexAttribPointer (variableRef, 3, 

GL_FLOAT, False, 0, None) 
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 elif self.dataType == "vec4":
 glVertexAttribPointer

                (variableRef, 4, GL_FLOAT, False, 0, 
None)

 else:
            raise Exception("Attribute " + 

variableName +
                                " has unknown type " 

+ self.dataType)

        # indicate that data will be streamed to this 
variable 

glEnableVertexAttribArray( variableRef ) 

In addition to the comments throughout the code above, note the following 
design considerations: 

• Te code from the uploadData function could have been part of 
the class initialization. However, this functionality is separated in 
case the values in the variable data need to be changed and the cor-
responding bufer updated later, in which case the function can be 
called again. 

• Te numpy library is used to convert the Python list into a compatible 
format and ensure the elements of the array are of the correct data type. 

• Tis class does not store the name of the variable or the reference 
to the program that will access the bufer, because in practice, there 
may be more than one program that does so, and the variables in 
each program may have diferent names. 

• It may not appear that the information from glVertex-
AttribPointer—in particular, the associations between vertex 
bufers and program variables—is being stored anywhere. However, 
this information is in fact stored by whichever VAO was bound prior 
to these function calls. 

2.3.3 Hexagons, Triangles, and Squares 

Finally, considering aesthetics once again: since you will be rendering lines 
with the following program, you may wish to increase their width to make 
them easier to see (the default line width is a single pixel). Tis can be 
accomplished with the following function: 
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glLineWidth( width ) 

Specifes that lines should be rendered with width (in pixels) equal to the 
integer parameter width. (If not specifed, the default value is 1.)  Some 
OpenGL implementations only support lines of width 1, in which case 
attempting to set the width to a value larger than 1 will cause an error. 

With this knowledge, you are now ready to create applications that render 
one or more shapes. Tis next application renders an outlined hexagon. In 
your main folder, create a new fle named test-2–3.py with the follow-
ing code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 
from OpenGL.GL import * 

# render six points in a hexagon arrangement 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 void main()
 {

 gl_Position = vec4( 
position.x, position.y, position.z, 1.0);

 }
 """

 fsCode = """
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(1.0, 1.0, 0.0, 1.0);
 }
 """

        self.programRef = OpenGLUtils. 
initializeProgram(vsCode, fsCode) 

http:OpenGL.GL
http:test-2�3.py
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 ### render settings (optional) ###
 glLineWidth( 4 )

 ### set up vertex array object ###
 vaoRef = glGenVertexArrays(1) 
glBindVertexArray(vaoRef)

 ### set up vertex attribute ###
 positionData = [ [ 0.8, 0.0, 0.0], [ 0.4, 0.6, 

0.0], 
                         [-0.4, 0.6, 0.0], [-0.8, 0.0, 

0.0], 
                         [-0.4, -0.6, 0.0], [0.4, 

-0.6, 0.0] ]
 self.vertexCount = len(positionData)

        positionAttribute = Attribute( "vec3", 
positionData )

 positionAttribute.associateVariable( 
self.programRef, "position" )

 def update(self):
 glUseProgram( self.programRef )

        glDrawArrays( GL_LINE_LOOP , 0 , self. 
vertexCount ) 

# instantiate this class and run the program 
Test().run() 

Tere are many similarities between this application and the previous 
application (the fle test-2-2.py, which rendered a single point): the frag-
ment shader code is identical (pixels are colored yellow), and both use the 
functions initializeProgram, glUseProgram, and glDrawAr-
rays. Te major diferences are 

• Te vertex shader declares a vec3 variable named position with 
the type qualifer in. Tis indicates that position is an attribute 
variable, and thus, it will receive data from a vertex bufer. 

• Te vertex attribute is set up and confgured with three lines of code, 
corresponding to the following tasks: create an array of position data, 
create an Attribute object (which also stores data in a bufer), and set 
up the association with the attribute variable position. 

http:test-2-2.py
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• A VAO is created to store information related to the vertex bufer. 
Te VAO reference is not stored in a class variable, because there 
is only one set of associations to manage and so the VAO remains 
bound the entire time. (When there are multiple sets of associations 
to manage, the VAO references will be stored in class variables so 
that they can be bound in the update function when needed.) 

• Te glDrawArrays function parameter GL_LINE_LOOP 
indicates that lines will be rendered from each point to the next, 
and the last point will also be connected by the frst; in addition, 
the number of elements in the vertex bufer is stored in the variable 
vertexCount, for convenience and readability. 

When you run this program, a window should appear similar to that 
shown in Figure 2.4. 

Tis is an opportune time to experiment with draw mode parameters. 
Two additional line rendering confgurations are possible. If you want to 
draw a line segment from each point to the next but not connect the last 
point to the frst, this is accomplished with the parameter GL_LINE_ 
STRIP. Alternatively, if you want to draw a series of disconnected line 

FIGURE 2.4 Rendering six points with GL_LINE_LOOP. 
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FIGURE 2.5 Rendering six points with GL_LINES (a) and GL_LINE_STRIP (b). 

segments, then you would use GL_LINES, which connects each point with 
an even index in the array to the following point in the array. If the array of 
points is denoted by [A, B, C, D, E, F], then GL_LINES groups the points 
into the disjoint pairs (A, B), (C, D), (E, F) and draws a line segment for 
each pair. (If the number of points to render was odd, then the last point 
would be ignored in this case.) Tese cases are illustrated in Figure 2.5; 
note that A represents the rightmost point and the points in the array are 
listed in counterclockwise order. 

It is also possible to render two-dimensional shapes with flled-in 
triangles. As is the case with rending lines, there are multiple param-
eters that result in diferent groupings of points. Te most basic is GL_ 
TRIANGLES, which groups points into disjoint triples, analogous to how 
GL_LINES groups points into disjoint pairs; continuing the previous 
notation, the groups are (A, B, C) and (D, E, F). Also useful in this exam-
ple is GL_TRIANGLE_FAN, which draws a series of connected triangles 
where all triangles share the initial point in the array, and each triangle 
shares an edge with the next, resulting in a fan-like arrangement. For this 
example, the groups are (A, B, C), (A, C, D), (A, D, E), and (A, E, F), which 
results in a flled-in hexagon (and would similarly fll any polygon where 
the points are specifed in order around the circumference). Tese cases 
are illustrated in Figure 2.6. 

Now that you have seen how to use a single bufer in an application, 
you will next render two diferent shapes (a triangle and a square), whose 
vertex positions are stored in two separate bufers with diferent sizes. No 
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FIGURE 2.6 Rendering six points with GL_TRIANGLES (a) and GL_ 
TRIANGLE_FAN (b). 

new concepts or functions are required, and there are no changes to the 
shader code from the previous example. Te main diference is that the 
glDrawArrays function will need to be called twice (once to render 
each shape), and prior to each call, the correct bufer needs to be associ-
ated to the attribute variable position. Tis will require two VAOs to be 
created and bound when needed (before associating variables and before 
drawing shapes), and therefore, the VAO references will be stored in vari-
ables with class-level scope. To proceed, in your main folder, create a new 
fle named test-2–4.py with the following code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 
from OpenGL.GL import * 

# render two shapes 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 void main() 

http:OpenGL.GL
http:test-2�4.py
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 {
 gl_Position = vec4( 

position.x, position.y, position.z, 1.0);
 }
 """

 fsCode = """
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(1.0, 1.0, 0.0, 1.0);
 }
 """

        self.programRef = OpenGLUtils. 
initializeProgram(vsCode, fsCode)

 ### render settings ###
 glLineWidth(4)

 ### set up vertex array object - triangle ###
 self.vaoTri = glGenVertexArrays(1) 
glBindVertexArray(self.vaoTri)

        positionDataTri = [[-0.5, 0.8, 0.0], [-0.2, 
0.2, 0.0], 
[-0.8, 0.2, 0.0]]

 self.vertexCountTri = len(positionDataTri)
        positionAttributeTri = Attribute("vec3", 

positionDataTri)
 positionAttributeTri.associateVariable( 

self.programRef, "position" )

 ### set up vertex array object - square ###
 self.vaoSquare = glGenVertexArrays(1) 
glBindVertexArray(self.vaoSquare)
 positionDataSquare = [[0.8, 0.8, 0.0], [0.8, 

0.2, 0.0], 
[0.2, 0.2, 0.0], [0.2, 

0.8, 0.0]]
        self.vertexCountSquare = 

len(positionDataSquare) 
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 positionAttributeSquare = Attribute(
 "vec3", positionDataSquare)

 positionAttributeSquare.associateVariable( 
self.programRef, "position" )

 def update(self):
 # using same program to render both shapes
 glUseProgram( self.programRef )

 # draw the triangle
 glBindVertexArray( self.vaoTri )

        glDrawArrays( GL_LINE_LOOP , 0 , self. 
vertexCountTri )

 # draw the square
 glBindVertexArray( self.vaoSquare )

        glDrawArrays( GL_LINE_LOOP , 0 , self. 
vertexCountSquare ) 

# instantiate this class and run the program 
Test().run() 

Te result of running this application is illustrated in Figure 2.7. 

FIGURE 2.7 Rendering a triangle and a square. 



      

 

 

 

 
  

Introduction to Pygame and OpenGL ◾ 59 

Now that you have learned how to work with multiple bufers, you may 
want to use them for purposes other than positions; for example, as previ-
ously mentioned, bufers can be used to store vertex colors. Since attribute 
data is passed into the vertex shader, but the color data needs to be used in 
the fragment shader, this requires you to pass data from the vertex shader 
to the fragment shader, which is the topic of the next section. 

2.3.4 Passing Data between Shaders 

In this section, you will create an application that renders six points (once 
again, arranged in a hexagonal pattern) in six diferent colors. Tis requires 
data (in particular, the color data) to be sent from the vertex shader to the 
fragment shader. Recall from the introductory explanation of OpenGL 
Shading Language that type qualifers are keywords that modify the prop-
erties of a variable, and in particular 

• In a vertex shader, the keyword in indicates that values will be sup-
plied from a bufer, while the keyword out indicates that values will 
be passed to the fragment shader. 

• In a fragment shader, the keyword in indicates that values will be 
supplied from the vertex shader, afer having been interpolated dur-
ing the rasterization stage. 

Tis application described will use the shaders that follow. First, the vertex 
shader code: 

in vec3 position; 
in vec3 vertexColor; 
out vec3 color; 
void main() 
{
    gl_Position = vec4(position.x, position.y, 

position.z, 1.0);
 color = vertexColor; 

} 

Note the presence of two in variables; this is because there are two vertex 
attributes, position and vertexColor. Te data arrays for each of 
these attributes will be stored in a separate bufer and associated with the 
corresponding variable. Te arrays should contain the same number of 
elements; the length of the arrays is the number of vertices. For a given 
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vertex, the same array index will be used to retrieve data from each of the 
attribute arrays. For example, the vertex that uses the value from index N 
in the position data array will also use the value from index N in the vertex 
color data array. 

In addition, the vertex shader contains an out variable, color, which 
will be used to transmit the data to the fragment shader; a value must 
be assigned to this (and in general, any out variable) within the vertex 
shader. In this case, the value in vertexColor just “passes through” to 
the variable color; no computations are performed on this value. 

Next, the fragment shader code: 

in vec3 color; 
out vec4 fragColor; 
void main() 
{

 fragColor = vec4(color.r, color.g, color.b, 1.0); 
} 

Note here the presence of an in variable, which must have the same name 
as the corresponding out variable from the vertex shader. (Checking 
for pairs of out/in variables with consistent names between the ver-
tex and fragment shaders is one of the tasks performed when a program 
is linked.) Te components of the vector are accessed using the (r, g, b) 
naming system for readability, as they correspond to color data in this 
context. 

With an understanding of these new shaders, you are ready to create the 
application. It uses separate Attribute objects to manage the attribute 
data, but only one VAO needs to be created since these vertex bufers are 
associated with diferent variables in the program. To proceed, in your 
main folder, create a new fle named test-2–5.py with the following 
code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 
from OpenGL.GL import * 

# render shapes with vertex colors 
class Test(Base): 

http:OpenGL.GL
http:test-2�5.py
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 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 in vec3 vertexColor;
 out vec3 color;
 void main()
 {

            gl_Position = vec4(position.x, position.y, 
position.z, 1.0);

 color = vertexColor;
 }
 """

 fsCode = """
 in vec3 color;
 out vec4 fragColor;
 void main()
 { 

fragColor = vec4(color.r, color.g, 
color.b, 1.0);

 }
 """

        self.programRef = OpenGLUtils. 
initializeProgram(vsCode, fsCode)

 ### render settings (optional) ###
 glPointSize( 10 )
 glLineWidth( 4 )

 ### set up vertex array object ###
 vaoRef = glGenVertexArrays(1) 
glBindVertexArray(vaoRef)

 ### set up vertex attributes ### 
positionData = [ [0.8, 0.0, 0.0], [0.4, 0.6, 

0.0], 
           [-0.4, 0.6, 0.0],  [-0.8, 0.0, 0.0], [-0.4, 

-0.6, 0.0], [0.4, -0.6, 0.0] ] 
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 self.vertexCount = len(positionData)

        positionAttribute = Attribute("vec3", 
positionData)

 positionAttribute.associateVariable( 
self.programRef, "position" )

        colorData = [ [1.0, 0.0, 0.0], [1.0, 0.5, 
0.0], 

           [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 
0.0, 1.0], [0.5, 0.0, 1.0] ]

 colorAttribute = Attribute("vec3", colorData)
 colorAttribute.associateVariable( 

self.programRef, "vertexColor" )

 def update(self):
 glUseProgram( self.programRef )

        glDrawArrays( GL_POINTS, 0, self.vertexCount ) 

# instantiate this class and run the program 
Test().run() 

Te result of running this application is illustrated in Figure 2.8. 
Recall from the previous chapter that during the graphics pipeline, 

between the geometry processing stage (which involves the vertex shader) 
and the pixel processing stage (which involves the fragment shader) is the 
rasterization stage. At this point, the programs are sufciently complex 
to illustrate the interpolation of vertex attributes that occurs during this 
stage. 

During the rasterization stage, points are grouped into geometric 
primitives: points, lines, or triangles, depending on the draw mode specifed. 
Ten, the GPU determines which pixels correspond to the space occupied 
by each geometric primitive. For each of these pixels, the GPU generates a 
fragment, which stores the data needed to determine the fnal color of each 
pixel. Any vertex data passed from the vertex shader via an out variable 
will be interpolated for each of these fragments; a weighted average of the 
vertex values is automatically calculated, depending on the distances from 
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FIGURE 2.8 Rendering six points with vertex colors, using GL_POINTS. 

the interior point to the original vertices. It is this interpolated value that is 
sent to the corresponding in variable in the fragment shader. 

For a numerical example of interpolation, suppose a line segment is to 
be drawn between a point P1 with color C1 = [1, 0, 0] (red) and a point 
P2 with color C2 = [0, 0, 1] (blue). All points along the segment will be 
colored according to some combination of the values in C1 and C2; 
points closer to P1 will have colors closer to C1 (more red) while points 
closer to P2 will have colors closer to C2 (more blue). For example, the 
point on the segment exactly halfway between P1 and P2 will be colored 
0.5 ˛C + = [1 0.5 ˛C2 0.5, ˜0, ˜0.5], a shade of purple. For another example, a 
point that is a 25% of the distance along the segment from P1 to P2 will 
be colored 0.75 1C + 0.25 ˛C2 0.75,0,0.25], a reddish-purple. Similarly, ˛ = [ 
colors of points within a triangle are weighted averages of the colors of its 
three vertices; the color of an interior point depends on the distance from 
the interior point to each of these three vertices. To see examples of color 
interpolation within lines and triangles, you can run the previous pro-
gram but changing the drawMode parameter of glDrawArrays to either 
GL_LINE_LOOP or GL_TRIANGLE_FAN; the results are illustrated in 
Figure 2.9. 

http:20.75,0,0.25
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FIGURE 2.9 Rendering six points with vertex colors, using GL_LINE_LOOP (a) 
and GL_TRIANGLE_FAN (b). 

Many times you may want to draw a shape that is a single color. Tis 
is technically possible using the previous shaders: if your shape has N 
vertices, you could create an array that contains the same color N times. 
However, there is a much less redundant method to accomplish this task 
using uniform variables, which are introduced in the next section. 

2.4 WORKING WITH UNIFORM DATA 
Tere are many scenarios in computer graphics where you may want to 
repeatedly use the same information in shader programming. For exam-
ple, you may want to translate all the vertices that defne a shape by the 
same amount, or you may want to draw all the pixels corresponding to a 
shape with the same color. Te most fexible and efcient way to accom-
plish such tasks is by using uniform variables: global variables that can be 
accessed by both the vertex shader and the fragment shader, and whose 
values are constant while each shape is being drawn (but can be changed 
between draw function calls). 

2.4.1 Introduction to Uniforms 

Uniform shader variables, declared with the type qualifer uniform, 
provide a mechanism to send data directly from variables in a CPU 
application to variables in a GPU program. In contrast to attribute data, 
uniform data is not stored in GPU bufers and is not managed with VAOs. 
Similar to attribute data, a reference to the location of the uniform variable 
must be obtained before data may be sent to it. Tis is accomplished with 
the following OpenGL function: 
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glGetUniformLocation( programRef, variableName ) 

Returns a value used to reference a uniform variable (indicated by the 
type qualifer uniform) with name indicated by the parameter 
variableName and declared in the program referenced by the param-
eter programRef. If the variable is not declared or not used in the 
specifed program, the value -1 is returned. 

Te other OpenGL functions required to work with uniforms are used 
to store data in uniform variables. However, unlike the function glVer-
texAttribPointer which specifed the data type with its parameters 
baseType and size, specifying diferent types of uniform data is handled 
by diferent functions. Te notation {a|b|c|…} used below (similar to that 
used in the ofcial OpenGL documentation provided by the Khronos 
group) indicates that one of the values a, b, c … in the set should be each 
chosen to specify the name of a function. In other words, the notation 
below indicates that the possible function names are glUniform1f, 
glUniform2f, glUniform3f, glUniform4f, glUniform1i, 
glUniform2i, glUniform3i, and glUniform4i. 

glUniform{ 1 | 2 | 3 | 4 }{ f | i }( variableRef, value1, … ) 

Specify the value of the uniform variable referenced by the parameter 
variableRef in the currently bound program. Te number chosen in 
the function name refers to the number of values sent, while the let-
ter (f or i) refers to the data type (foat or integer). 

For example, to specify a single integer value, the form of the function you 
need to use is glUniform1i(variableRef, value1), while to spec-
ify the values for a vec3 (a vector consisting of 3 foats), you would instead 
use glUniform3f(variableRef, value1, value2, value3). 
Te boolean values true and false correspond to the integers 1 and 0, 
respectively, and glUniform1i is used to transmit this data. 

2.4.2 A Uniform Class 

Just as you previously created an Attribute class to simplify working with 
attributes, in this section you will create a Uniform class to simplify working 
with uniforms, using the two OpenGL functions discussed in the previous 
section. Each uniform object will store a value and the name of the value type. 
One of the tasks of each uniform object will be to locate the reference to the 
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shader variable that will receive the value stored in the object. Te variable ref-
erence will be stored in the uniform object, since it is not stored by a VAO, as 
was the case when working with attributes. Te other task will be to send the 
value in the uniform object to the associated shader variable. Tis will need to 
be done repeatedly, as there will typically be multiple geometric objects, each 
using diferent values in the uniform variables, which need to be sent to the 
shader program before the corresponding geometric object is rendered. 

With these design considerations in mind, you are ready to create the 
Uniform class. In the core folder, create a new fle named uniform. 
py with the following code: 

from OpenGL.GL import * 

class Uniform(object):

 def __init__(self, dataType, data): 

# type of data: 
# int | bool | float | vec2 | vec3 | vec4
 self.dataType = dataType

 # data to be sent to uniform variable
 self.data = data

 # reference for variable location in program
 self.variableRef = None

     # get and store reference for program variable 
with given name

    def locateVariable(self, programRef, 
variableName):
 self.variableRef = glGetUniformLocation(

 programRef, variableName)

     # store data in uniform variable previously 
located
 def uploadData(self):

        # if the program does not reference the 
variable, then exit

 if self.variableRef == -1:
 return 

http:OpenGL.GL
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 if self.dataType == "int":
 glUniform1i(self.variableRef, self.data)

 elif self.dataType == "bool":
 glUniform1i(self.variableRef, self.data)

 elif self.dataType == "float":
 glUniform1f(self.variableRef, self.data)

 elif self.dataType == "vec2":
            glUniform2f(self.variableRef, self. 

data[0], self.data[1])
 elif self.dataType == "vec3":

            glUniform3f(self.variableRef, self. 
data[0], self.data[1],

 self.data[2])
 elif self.dataType == "vec4":

            glUniform4f(self.variableRef, self. 
data[0], self.data[1], 

self.data[2], self.data[3]) 

2.4.3 Applications and Animations 

In this section, you will frst use the Uniform class to help render an 
image containing two triangles with the same shape, but in diferent loca-
tions and with diferent (solid) colors. Te code to accomplish this will 
include the following features: 

• a single vertex bufer, used to store the positions of the vertices of a 
triangle (centered at the origin) 

• a single GPU program containing two uniform variables: 

• one used by the vertex shader to translate the position of the 
triangle vertices 

• one used by the fragment shader to specify the color of each pixel 
in the triangle 

• two Uniform objects (one to store the position, one to store the 
color) for each triangle 

To continue, in your main folder, create a new fle named test-2–6.py 
with the following code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 

http:test-2�6.py
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from core.uniform import Uniform 
from OpenGL.GL import * 

# render two triangles with different positions and 
colors 

class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 uniform vec3 translation;
 void main()
 {

 vec3 pos = position + translation;
 gl_Position  = vec4(pos.x, pos.y, pos.z, 1.0);

 }
 """

 fsCode = """
 uniform vec3 baseColor;
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(
                baseColor.r, baseColor.g, baseColor.b, 

1.0);
 }
 """

        self.programRef = OpenGLUtils. 
initializeProgram(vsCode, fsCode)

 ### set up vertex array object ###
 vaoRef = glGenVertexArrays(1)
 glBindVertexArray(vaoRef) 

http:OpenGL.GL
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 ### set up vertex attribute ###
        positionData = [ [0.0, 0.2, 0.0], [0.2, -0.2, 

0.0], [-0.2, -0.2, 0.0] ]
 self.vertexCount = len(positionData)

        positionAttribute = Attribute("vec3", 
positionData)

 positionAttribute.associateVariable( 
self.programRef, "position" )

 ### set up uniforms ###
        self.translation1 = Uniform("vec3", [-0.5, 

0.0, 0.0])
 self.translation1.locateVariable( 

self.programRef, "translation" )

        self.translation2 = Uniform("vec3", [0.5, 0.0, 
0.0])

 self.translation2.locateVariable( 
self.programRef, "translation" )

        self.baseColor1 = Uniform("vec3", [1.0, 0.0, 
0.0])

        self.baseColor1.locateVariable( self. 
programRef, "baseColor" )

        self.baseColor2 = Uniform("vec3", [0.0, 0.0, 
1.0])

        self.baseColor2.locateVariable( self. 
programRef, "baseColor" )

 def update(self):
 glUseProgram( self.programRef )

 # draw the first triangle
 self.translation1.uploadData()
 self.baseColor1.uploadData()

        glDrawArrays( GL_TRIANGLES , 0 , self. 
vertexCount ) 
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 # draw the second triangle
 self.translation2.uploadData()
 self.baseColor2.uploadData()

        glDrawArrays( GL_TRIANGLES , 0 , self. 
vertexCount ) 

# instantiate this class and run the program 
Test().run() 

Te result of running this application is illustrated in Figure 2.10. 
Next, you will learn how to create animated efects by continuously 

changing the values stored in uniform variables. 
In the previous application code examples, you may have wondered why 

the glDrawArrays function was called within the update function— 
since the objects being drawn were not changing, the result was that the 
same image was rendered 60 times per second. In those examples, the ren-
dering code technically could have been placed in the initialize func-
tion instead without afecting the resulting image (although it would have 
been rendered only once). Te goal was to adhere to the "life cycle" struc-
ture of an application discussed at the beginning of this chapter, which 

FIGURE 2.10 Two similar triangles rendered using uniform variables. 
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becomes necessary at this point. Starting in this section, the appearance 
of the objects will change over time, and thus, the image must be rendered 
repeatedly. 

Since geometric shapes will appear in diferent positions in subsequent 
renders, it is important to refresh the drawing area, resetting all the pixels 
in the color bufer to some default color. If this step is not performed, then 
in each animation frame, the rendered shapes will be drawn superimposed 
on the previous frame, resulting in a smeared appearance. To specify the 
color used when clearing (which efectively becomes the background 
color), and to actually perform the clearing process, the following two 
OpenGL functions will be used: 

glClearColor( red , green , blue , alpha ) 

Specify the color used when clearing the color bufer; the color 
components are specifed by the parameters red, green, blue, and 
alpha. Each of these parameters is a foat between 0 and 1; the default 
values are all 0. 

glClear( mask ) 

Reset the contents of the bufer(s) indicated by the parameter mask to 
their default values. Te value of mask can be one of the OpenGL 
constants such as GL_COLOR_BUFFER_BIT (to clear the color 
bufer), GL_DEPTH_BUFFER_BIT (to clear the depth bufer), GL_ 
STENCIL_BUFFER_BIT (to clear the stencil bufer), or any combi-
nation of the constants, combined with the bitwise or operator '|'. 

In the next application, you will draw a triangle that continuously moves 
to the right, and once it moves completely past the right edge of the 
screen, it will reappear on the lef side. (Tis behavior is sometimes called 
a wrap-around efect, popularized by various 1980s arcade games.) Te 
same shader code will be used as before, and Uniform objects will be 
created for the triangle. Te Uniform corresponding to the translation 
variable will have its value changed (the frst component, representing the 
x-coordinate, will be incremented) during the update function, prior 
to clearing the color bufer and rendering the triangle. Te wrap-around 
efect is accomplished by checking if the translation x-coordinate is greater 
than a certain positive value, and if so, setting it to a certain negative value 
(these values depending on the size of the triangle). 
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In your main folder, create a new fle named test-2–7.py with the 
following code: 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 
from core.uniform import Uniform 
from OpenGL.GL import * 

# animate triangle moving across screen 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 uniform vec3 translation;
 void main()
 {

 vec3 pos = position + translation;
            gl_Position = vec4(pos.x, pos.y, pos.z, 

1.0);
 }
 """

 fsCode = """
 uniform vec3 baseColor;
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(
                baseColor.r, baseColor.g, baseColor.b, 

1.0);
 }
 """

        self.programRef = OpenGLUtils. 
initializeProgram(vsCode, fsCode)

 ### render settings (optional) ### 

http:OpenGL.GL
http:test-2�7.py
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 # specify color used when clearly
 glClearColor(0.0, 0.0, 0.0, 1.0)

 ### set up vertex array object ###
 vaoRef = glGenVertexArrays(1)
 glBindVertexArray(vaoRef)

 ### set up vertex attribute ###
        positionData = [ [0.0, 0.2, 0.0], [0.2, -0.2, 

0.0], 
[-0.2, -0.2, 0.0] ]

 self.vertexCount = len(positionData)

        positionAttribute = Attribute("vec3", 
positionData)

 positionAttribute.associateVariable( 
self.programRef, "position" )

 ### set up uniforms ###
        self.translation = Uniform("vec3", [-0.5, 0.0, 

0.0])
 self.translation.locateVariable( 

self.programRef, "translation" )

        self.baseColor = Uniform("vec3", [1.0, 0.0, 
0.0])

        self.baseColor.locateVariable( self. 
programRef, "baseColor" )

 def update(self):

 ### update data ###

 # increase x coordinate of translation
 self.translation.data[0] += 0.01
 # if triangle passes off-screen on the right,
 # change translation so it reappears on the 

left 
if self.translation.data[0] > 1.2:

 self.translation.data[0] = -1.2

 ### render scene ### 
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 # reset color buffer with specified color
 glClear(GL_COLOR_BUFFER_BIT)

 glUseProgram( self.programRef )
 self.translation.uploadData()
 self.baseColor.uploadData()

        glDrawArrays( GL_TRIANGLES , 0 , self. 
vertexCount ) 

# instantiate this class and run the program 
Test().run() 

It can be difcult to convey an animation with a series of static images, but 
to this end, Figure 2.11 shows a series of images captured with short time 
intervals between them. 

In the previous application, the movement of the triangle was specifed 
relative to whatever its current position was (it continuously moved to the 
right of its starting position). Te next application will feature time-based 
movement: the position will be calculated from equations expressed in 
terms of a time variable. 

Since keeping track of time will be useful in many applications, you 
will begin by adding related functionality to the Base class. Te variable 
time will keep track of the number of seconds the application has 
been running, which will be used to calculate time-based movement. 
Te variable deltaTime will keep track of the number of seconds that 
have elapsed during the previous iteration of the run loop (typically 1/60 
or approximately 0.017 seconds), which will be useful for future applica-
tions. Open the fle base.py from the core folder, and at the end of 
the __init __function, add the following code: 

FIGURE 2.11 Frames from an animation of a triangle moving to the right. 
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# number of seconds application has been running 
self.time = 0

Ten, in the run function, directly before the statement self.update(), 
add the following code: 

# seconds since iteration of run loop 
self.deltaTime = self.clock.get_time() / 1000
# increment time application has been running 
self.time += self.deltaTime

In the next application, a triangle will move along a circular path. Tis is 
most easily accomplished by using the trigonometric functions sine (sin) 
and cosine (cos), both of which smoothly oscillate between the values 
-1 and 1. Positions (x, y) along a circular path can be expressed with the
following equations:

In your application, the variable t will be the total elapsed time. Tis 
particular circular path is centered at the origin and has radius 1; for a 
path centered at (a, b) with radius r, you can use the following equations: 

To keep the entire triangle visible as it moves along this path, you will need 
to use a radius value less than 1. 

Te code for this application is nearly identical to the previous applica-
tion, and so to begin, in the main folder, make a copy of the fle test-
2–7.py and name the copy test-2–8.py. In this new fle, at the top, add 
the import statement: 

from math import sin, cos 

Next, delete the code between the comments ### update data ### 
and ### render scene ###, and in its place, add the following code: 

self.translation.data[0] = 0.75 * cos(self.time)
self.translation.data[1] = 0.75 * sin(self.time)

With these additions, the code for this application is complete. 

x = =cos ,( )t y  sin( )t

x = ⋅r tcos ,( )+ =a y  sr t⋅ +in( ) b

http:test-2�8.py
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FIGURE 2.12 Frames from an animation of a triangle moving along a circular 
path. 

When you run this application, you will see a triangle moving in a 
circular path around the origin, in a counterclockwise direction. Te sin 
and cos functions have a period of 2� units, meaning that they repeat 
their pattern of values during each interval of this length, and thus, the 
triangle will complete a complete revolution around the origin every 2� 
(approximately 6.283) seconds. As before, part of this animation is illus-
trated with a sequence of images, which are displayed in Figure 2.12. 

In the fnal example of this section, instead of an animation based on 
changing position, you will create an animation where the triangle color 
shifs back and forth between red and black. Tis will be accomplished by 
changing the value of the red component of the color variable. As before, 
you will use a sine function to generate oscillating values. Since the com-
ponents that specify color components range between 0 and 1, while a sine 
function ranges between −1 and 1, the output values from the sine function 
will have to be modifed. Since the function f t( )= sin t( ) ranges from −1 
to 1, the function f t( )= +sin 1( )t   shifs the output values to the range 0–2. 
Next, you must scale the size of the range; the function f t( )= (sin( )t + 1)/2 
ranges from 0 to 1. Further adjustments are also possible: for example, 
given a constant c, the function sin (c t˛ )  will traverse its range of output 
values  c times faster than sin( )t . Te fnal version of the equation you will 
use is f t( )= ⋅( )sin 3( )t +  1 / 2

 

  

To create this example, start by making a copy of the fle test-2–8.py 
from the main folder and name the copy test-2–9.py. As before, in this 
new fle, delete the code between the comments ### update data ### 
and ### render scene ###, and in its place, add the following code: 

self.baseColor.data[0] = (sin(3 * (self.time)) + 1) / 2 

Running this application, you should see the color of the triangle shif-
ing between red and black every few seconds. Tis animation is illustrated 
with a sequence of images, which are displayed in Figure 2.13. 

http:test-2�9.py
http:test-2�8.py
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FIGURE 2.13 Frames from an animation of a triangle shifing color. 

If desired, you could even make the triangle’s color shif along a greater 
range of colors by also modifying the green and blue components of the 
color variable. In this case, the sine waves will also need to be shifed, so that 
each component reaches its peak value at diferent times. Mathematically, 
this can be accomplished by adding values to the t variable within the sine 
function. Tis can be accomplished, for example, by replacing the code 
added above with the following: 

self.baseColor.data[0] = (sin(self.time) + 1) / 2 
self.baseColor.data[1] = (sin(self.time + 2.1) + 1) / 2 
self.baseColor.data[2] = (sin(self.time + 4.2) + 1) / 2 

Feel free to experiment with and combine these diferent animations to see 
what you can produce! 

2.5 ADDING INTERACTIVITY 
In this section, you will add the ability for the user to interact with an 
application using the keyboard. Te frst step will be to add supporting 
data and functions to the Input class, and testing it with a text-based 
application. Afer establishing that keyboard input works as expected, you 
will then use this functionality into a graphics-based application, where 
the user can move a triangle around the screen using the arrow keys. 

2.5.1 Keyboard Input with Pygame 

Te Pygame library provides support for working with user input events; 
previously, in the Input class update function, you wrote code to handle 
quit events. Pygame also detects keydown events, which occur the moment 
a key is initially pressed, and keyup events, which occur the moment the key 
is released. Te Input class will store the names of these keys in lists that can 
be checked later (such as in the update function of the main application). 
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Keys that are designated as down or up should only remain so for a single 
iteration of the main application loop, and so the contents of these two 
lists must be cleared before checking the Pygame event list for new events 
during the next iteration. 

An event or action is said to be discrete if it happens once at an isolated 
point in time, or continuous if it continues happening during an interval 
of time. Te keydown and keyup events are discrete, but many applica-
tions also feature continuous actions (such as moving an object on screen) 
that occur for as long as a key is being held down. Here, the term pressed 
will be used to refer to the state of a key between the keydown and keyup 
events (although it should be noted that there is no standard terminology 
for these three states). You will keep track of the names of pressed keys in 
a third list. Finally, for readability, the contents of each list can be queried 
using functions you will add to the Input class. 

To make the modifcations, open the input.py fle in the core folder. 
In the Input class _  _ init  _  _ function, add the following code: 

# lists to store key states 
# down, up: discrete event; lasts for one iteration 
# pressed: continuous event, between down and up 

events 
self.keyDownList = [] 
self.keyPressedList  = [] 
self.keyUpList = [] 

Next, in the update function, add the following code before the for 
loop: 

# reset discrete key states 
self.keyDownList = [] 
self.keyUpList = [] 

Within the for loop, add the following code: 

# check for keydown and keyup events; 
# get name of key from event 
# and append to or remove from corresponding lists 
if event.type == pygame.KEYDOWN:

 keyName = pygame.key.name( event.key )
 self.keyDownList.append( keyName )
 self.keyPressedList.append( keyName ) 

if event.type == pygame.KEYUP: 

http:input.py
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 keyName = pygame.key.name( event.key )
 self.keyPressedList.remove( keyName )
 self.keyUpList.append( keyName ) 

Finally, add the following three functions to the Input class: 

# functions to check key states 
def isKeyDown(self, keyCode):

 return keyCode in self.keyDownList 
def isKeyPressed(self, keyCode):

 return keyCode in self.keyPressedList 
def isKeyUp(self, keyCode):

 return keyCode in self.keyUpList 

As previously indicated, you will now create a text-based application to 
verify that these modifcations work as expected, and to illustrate how the 
class will be used in practice. In your main folder, create a new fle named 
test-2–10.py containing the following code: 

from core.base import Base 

# check input 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 def update(self):

 # debug printing
 if len(self.input.keyDownList) > 0:

            print( "Keys down:", self.input. 
keyDownList )

 if len(self.input.keyPressedList) > 0:
            print( "Keys pressed:", self.input. 

keyPressedList )

 if len(self.input.keyUpList) > 0:
 print( "Keys up:", self.input.keyUpList ) 

# instantiate this class and run the program 
Test().run() 

http:test-2�10.py
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When you run this program, pressing any keys on the keyboard should 
cause messages to be printed that show the contents of the non-empty 
key lists: the names of any keys that are down, pressed, or up. Afer 
verifying that this code works as expected, either comment out or delete 
the code in the application’s update function and replace it with the 
following code, which contains examples of how the functions are 
typically used. 

# typical usage 
if self.input.isKeyDown("space"):

 print( "The 'space' key was just pressed down.") 

if self.input.isKeyPressed("right"):
    print( "The 'right' key is currently being 

pressed.") 

When you run this program, pressing the space bar key should cause a 
single message to appear each time it is pressed, regardless of how long it is 
held down. In contrast, pressing the right arrow key should cause a series 
of messages to continue to appear until the key is released. It is possible 
that on diferent operating systems, diferent names or symbols may be 
used for particular keys (such as the arrow keys); this can be investigated 
by running the application with the previous code. 

2.5.2 Incorporating with Graphics Programs 

Now that the framework is able to process discrete and continuous key-
board input, you will create the graphics-based application described ear-
lier that enables the user to move a triangle using the arrow keys. As this 
application is similar to many of the animation examples previously dis-
cussed, begin by making a copy of the fle test-2–7.py from the main 
folder and name the copy test-2–11.py. In this new fle, at the end of 
the initialize function, add the following code: 

# triangle speed, units per second 
self.speed = 0.5 

Te speed variable specifes how quickly the triangle will move across the 
screen. Recalling that the horizontal or x-axis values displayed on screen 
range from −1 to 1, a speed of 0.5 indicates that the triangle will be able to 
move fully across the screen in 4 seconds. 

http:test-2�11.py
http:test-2�7.py
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Next, in the update function, delete the code between the comments 
### update data ### and ### render scene ###, and in its 
place, add the following code: 

distance = self.speed * self.deltaTime 
if self.input.isKeyPressed("left"):

 self.translation.data[0] -= distance 
if self.input.isKeyPressed("right"):

 self.translation.data[0] += distance 
if self.input.isKeyPressed("down"):

 self.translation.data[1] -= distance 
if self.input.isKeyPressed("up"):

 self.translation.data[1] += distance 

Depending on your operating system, you may need to change the strings 
checked by the isKeyPressed function; for maximum cross-platform 
compatibility, you may want to use the frequently used set of letters w/a/s/d 
in place of up/lef/down/right, respectively. 

Note that this segment of code begins by calculating how far the triangle 
should be moved across the screen (the distance traveled), taking into 
account the elapsed time since the previous render, which is stored in the 
variable deltaTime that you added to the Base class in Section 2.4.3. 
Te calculation itself is based on the physics formula speed = distance/time, 
which is equivalent to distance = speed * time. Also note that a sequence 
of if statements are used, rather than if-else statements, which allows 
the user to press multiple keys simultaneously and move in diagonal direc-
tions, or even press keys indicating opposite directions, whose efects will 
cancel each other out. You may have noticed that translations of the z 
component (the forward/backward direction) were not included; this is 
because such a movement will not change the appearance of the shape 
on screen, since perspective transformations have not yet been introduced 
into the framework. 

Once you have fnished adding this code, run the application and try 
pressing the arrow keys to move the triangle around the screen, and con-
gratulations on creating your frst interactive GPU-based graphics program! 

2.6 SUMMARY AND NEXT STEPS 
In this chapter, you learned how to create animations and interactive 
applications. Each of these examples involved polygon shapes (the 
z-coordinate of each point was always set to zero), and the movement was 



      

 

 
  

82 ◾ Developing Graphics Frameworks with Python and OpenGL 

limited to translations (of the x and y coordinates). A natural next goal 
is to transform these shapes in more advanced ways, such as combining 
rotations with translations. Perspective transformations also need to be 
introduced so that translations in the z direction and rotations around the 
x-axis and y-axis of the scene will appear as expected. In the next chapter, 
you will learn the mathematical foundations required to create these trans-
formations, and in the process, create truly three-dimensional scenes. 



 

 

 
 

  
  

 

  

  

     

  

CHAP T ER  3 

Matrix Algebra and 
Transformations 

In this chapter, you will learn about some mathematical objects—vectors 
and matrices—that are essential to rendering three-dimensional scenes. 

Afer learning some theoretical background, you will apply this knowledge to 
create a Matrix class that will be fundamental in manipulating the position 
and orientation of geometric objects. Finally, you will learn how to incorpo-
rate matrix objects into the rendering of an interactive 3D scene. 

3.1 INTRODUCTION TO VECTORS AND MATRICES 
When creating animated and interactive graphics applications, you will 
frequently want to transform sets of points defning the shape of geometric 
objects. You may want to translate the object to a new position, rotate the 
object to a new orientation, or scale the object to a new size. Additionally, 
you will want to project the viewable region of the scene into the space that 
is rendered by OpenGL. Tis will frequently be a perspective projection, 
where objects appear smaller the further away they are from the virtual 
camera. Tese ideas were frst introduced in Chapter 1, in the discussion 
of the graphics pipeline and geometry processing; these calculations take 
place in a vertex shader. In Chapter 2, you learned how to work with points 
(using the vector data types vec3and vec4), and you implemented a trans-
formation (two-dimensional translation). In this chapter, you will learn 
about a data structure called a matrix—a rectangular or two-dimensional 
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array of numbers—that is capable of representing all of the diferent types 
of transformations you will need in three-dimensional graphics. For these 
matrix-based transformations, you will learn how to 

• apply a transformation to a point 

• combine multiple transformations into a single transformation 

• create a matrix corresponding to a given description of a 
transformation 

3.1.1 Vector Defnitions and Operations 

In the previous chapter, you worked with vector data types, such as vec3, 
which are data structures whose components are foating-point numbers. 
In this section, you will learn about vectors from a mathematical point 
of view. For simplicity, the topics in this section will be introduced in a 
two-dimensional context. In a later section, you will learn how each of the 
concepts is generalized to higher-dimensional settings. 

A coordinate system is defned by an origin point and the orientation 
and scale of a set of coordinate axes. A point P = (x , y)  refers to a location 
in space, specifed relative to a coordinate system. A point is typically 
drawn as a dot, as illustrated by Figure 3.1. Note that in the diagram, the 
axes are oriented so that the x-axis is pointing to the right, and the y-axis 
is pointing upward; the direction of the arrow represents the direction 
in which the values increase. Te orientation of the coordinate axes is 
somewhat arbitrary, although having the x-axis point to the right is a stan-
dard choice. In most two-dimensional mathematics diagrams, as well as 
OpenGL, the y-axis points upward. However, in many two-dimensional 

FIGURE 3.1 A collection of points. 
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computer graphics applications, the origin is placed in the top-lef corner 
of the screen or drawing area, and the y-axis points downward. It is always 
important to know the orientation of the coordinate system you are 
working in! 

A vector v = ,m n  refers to a displacement—an amount of change in 
each coordinate—and is typically drawn as an arrow pointing along the 
direction of displacement, as illustrated by Figure 3.2. Te point where the 
arrow begins is called the initial point or tail; the point where the arrow 
ends is called the terminal point or head, and indicates the result when the 
displacement has been applied to the initial point. Te distance between 
the initial and terminal points of the vector is called its length or magni-
tude, and can be calculated from the components of the vector. Vectors 
are not associated with any particular location in space; the same vector 
may exist at diferent locations. A vector whose initial point is located at 
the origin (when a coordinate system is specifed) is said to be in standard 
position. 

To further emphasize the diference between location and displacement, 
consider navigating in a city whose roads are arranged as lines in a grid. If 
you were to ask someone to meet you at the intersection of 42nd Street and 
5th Avenue, this refers to a particular location and corresponds to a point. 
If you were to ask someone to travel fve blocks north and three blocks east 
from their current position, this refers to a displacement (a change in their 
position) and corresponds to a vector. 

Each of these mathematical objects—points and vectors—are 
represented by a list of numbers, but as explained above, they have 
diferent geometric interpretations. In this book, notation will be used to 
quickly distinguish these objects. When referring to vectors, bold lower-
case letters will be used for variables, and angle brackets will be used when 
listing components, as in v = 1,  4 . In contrast, when referring to points, 
regular (that is, non-bold) uppercase letters will be used for variables, 

FIGURE 3.2 A collection of vectors. 
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and standard parentheses will be used when listing components, as in 
P = (3,  2 ). Individual numbers (that are not part of a point or vector) 
are ofen called scalars in this context (to clearly distinguish them from 
points and vectors) and will be represented with regular lowercase letters, 
as in x = 5. Additionally, subscripted variables will sometimes be used 
when writing the components of a point or vector, and these subscripts 

P  p p ) P  p p )may be letters or numbers, as in = ( x ,  y or = ( 1 ,  2  for points, and 
v =  ,v v  or v = 1 ,v v  for vectors. 

While many algebraic operations can be defned on combinations of 
points and vectors, those with a geometric interpretation will be most sig-
nifcant in what follows. Te frst such operation is vector addition, which 
combines two vectors v = 

x y 2 

1 , 2v v  and w = w w  and produces a new 
vector according to the following formula: 

1,  2 

v w+ = v v + w w  = v w v  w  1,  2 1 , 2 1 + 1 , 2 + 2 

For example, 2, 5 + 4,−2 = 6, 3 . Geometrically, this corresponds to 
displacement along the vector v, followed by displacement along the vector 
w ; this can be visualized by aligning the terminal point of v with the initial 
point of w . Te result is a new vector u v w= +  that shares the initial point 
of v and the terminal point of w , as illustrated in Figure 3.3. 

Tere is also a geometric interpretation for adding a vector v to a point 
P with the same algebraic formula; this corresponds to translating a point 
to a new location, which yields a new point. Align the vector v so its initial 
point is at location P, and the result is the point Q located at the termi-
nal point of v; this is expressed by the equation P + =v Q. For example, 
(2, 2 )+ 1, 3 = (3, 5), as illustrated in Figure 3.4. 

FIGURE 3.3 Vector addition. 
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FIGURE 3.4 Adding a vector to a point. 

Te sum of two points does not have any clear geometric interpretation, 
but the diference of two points does. Rearranging the equation v QP + =
yields the equation v = –Q P, which can be thought of as calculating the 
displacement vector between two points by subtracting their coordinates. 

Te componentwise product of two points or two vectors does not have 
any clear geometric interpretation. However, multiplying a vector v by a 
scalar c does. Tis operation is called scalar multiplication and is defned by 

For example, ˜2 3, 2  = 6, 4 . Geometrically, this corresponds to scaling 
the vector; the length of v is multiplied by a factor of |c| (the absolute value 
of c), and the direction is reversed when c < 0. Figure 3.5 illustrates scaling 
a vector v by various amounts. 

Te operations of vector addition and scalar multiplication will be par-
ticularly important in what follows. Along these lines, consider the vectors 

FIGURE 3.5 Scalar multiplication. 

c c⋅ =v ⋅ =v v1  , ,2 1c v⋅ ⋅  2c v  
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i = 1, 0  and j = 0, 1 . Any other vector v = ,x y  can be written in terms 
of i and j using vector multiplication and scalar multiplication in exactly 
one way, as follows: 

v = ,x y  = x , 0  + 0,  y = ˛  1, 0  x + ˛  y 0, 1 x i y j= ˛ +  ˛ 

Any set of vectors with these properties is called a basis. Tere are many 
sets of basis vectors, but since i and j are in a sense the simplest such 
vectors, they are called the standard basis (for two-dimensional space). 

3.1.2 Linear Transformations and Matrices 

Te main goal of this chapter is to design and create functions that 
 transform sets of points or vectors in certain geometric ways. Tese are 
ofen called vector functions, to distinguish them from functions that have 
scalar valued input and output. Tey may also be called t ransformations to 
emphasize their geometric interpretation. Tese functions may be  written  
as F ( ( p1 ,   p 2 ) ) = ( q 1 ,  q2 ) , or  F v( )  ,1     v w2 1=  ,  2 w , or occasionally 
ve ctors will be written in column form, as 

2 

w1 

w 
= 

2 

Te latter of these three expressions is most commonly used in a tradi-
tional mathematical presentation, but the alternative expressions are ofen 
used for writing mathematics within sentences. 

Vector functions with difering levels of complexity are easy to write. As 
simple examples, one may consider the zero function, where the output is 
always the zero vector: 

F v1 , v2 0, 0 ( ) = 

Tere is also the identity function, where the output is always equal to the 
input: 

F v1 , v2 v1 , v2( ) = 

v1 
v 

F 
˝˜�˝˜ˇ 
ˆ 
ˆ̇ 

˛ 
°̨ 

�
� 

ˆ 
ˆ̇ 

˛ 
°̨ 

�
˘ 

At the other extreme, one could invent all manner of arbitrary compli-
cated expressions, such as 
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F v1 , v2 1 − ˙ ( v , v1
7 +  ln (v 3 cos 3  2 ) ( )  v )+ ˇ( ) = 2 

Most of which lack any geometrical signifcance whatsoever. 
Te key is to fnd a relatively simple class of vector functions which can 

perform the types of geometric transformations described at the begin-
ning of this chapter. It will be particularly helpful to choose to work with 
vector functions that can be simplifed in some useful way. One such set 
of functions are linear functions or linear transformations, which are func-
tions F that satisfy the following two equations relating to scalar multipli-
cation and vector addition: for any scalar c and vectors v and w, 

( v) c F  vF c  ̨ = ˛ ( )  

F (v w )= F ( )v + F w+ ( )  

One advantage to working with such functions involves the standard basis 
vectors i and j: if F is a linear function and the values of F(i) and F(j) are 
known, then it is possible to calculate the value of F(v) for any vector v, 
even when a general formula for the function F is not given. For example, 
assume that F is a linear function, F( )i = 1,2  and F( )j = 3,1 . Ten by 
using the equations that linear functions satisfy, the value of F (   4,  5  ) 
can be calculated as follows: 

In a similar way, the general formula for F ( x, y ) for this example can 
be calculated as follows: 

 

F F( )  4, 5   = +( )  4, 0 0, 5  

= +F F( )  4, 0   ( )  0, 5  

= ⋅F F( ) 4 1, 0    + ⋅( )5 0, 1  

= ⋅4  F F( )1, 0   5+ ⋅ ( )  0, 1  
 

= ⋅4 5F F( )i j+ ⋅ ( )
= ⋅4 1, 2 5+ ⋅ 3, 1

= +4, 8 15, 5

= 19, 13
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x, y ) = F ( x  , 0 0, yF ( )+( ) 
F x  , 0 )+ F ( 0, y= ( ) 

= (   1, 0  F x ˙ + F y    0, 1) ( ˙ ) 
= ˙ (x F   1, 0   + ˙   0, 1) y F ( ) 
= ˙  ( )x F ( )i + ˙y F  j 

= ˙ 1, 2 x + ˙y 3, 1 

= , 2  x x + 3 ,y y  

= +3 , 2 +x  y x y  

In fact, the same line of reasoning establishes the most general case: if F is 
( ) , b d, then the formula for the a linear function, where F i = a c and F( )j = , 

function F is F x y  ,  ) = ˝ + ˝  ,  ˝ + ˝ a x b y c x d y , since ( 

F x, y = F x  , 0 + 0, y(  ) (  ) 
F x  , 0 )+ F ( 0, y= ( ) 

= (   1, 0  F x ˙ + F y    0, 1  ) ( ˙ ) 
= ˙ (x F   1, 0   + ˙   0, 1  ) y F ( ) 
= ˙  ( )x F ( )i + ˙y F  j 

= ˙ ,x a c  + ˙y ,b d  

= ˙ ,  ˙ +a x c x  ˙ ,  ˙b y d y  

= ˙ + ˙  ,  ˙ + ˙a x  b y c x  d y  

In addition to these useful algebraic properties, it is possible to visualize the 
geometric efect of a linear function on the entire space. To begin, consider 
a unit square consisting of the points u v,  = u·i + v· j, where 0 u˜ ˜1 and 
0 ̃ ˜v 1, the dot-shaded square labeled as S on the lef side of Figure 3.6. 
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FIGURE 3.6 Te geometric efects of a linear transformation. 

Assume F is a linear function with F ( )i =m  and F ( )j = n . Ten, the set of 
points in S is transformed to the set of points that can be written as 

( i v j u F  + ˛  F u  ) i˛ + ˛ = ˛  ( ) v F  j u m v n= ˛ + ˛ 

Tis area is indicated by the dot-shaded parallelogram labeled as T on the 
right side of Figure 3.6. Similarly, the function F transforms each square 
region on the lef of Figure 3.6 into a parallelogram shaped region on the 
right of Figure 3.6. 

Te formula for a linear function F can be written in column form as 

ˇ ˜ x ˝� ˜ a x  b y  � + � ˝ 
F � ˛ ˆ� = ˛ ˆ 

c x  d y  ̂˘ °̨ y ˆ̇� °̨ � + � ˙ 

It is useful to think of the vector ⟨x, y⟩ as being operated on by the set of 
numbers a, b, c, d, which naturally leads us to a particular mathematical 
notation: these numbers can be grouped into a rectangular array of num-
bers called a matrix, typically enclosed within square brackets, and the 
function F can be rewritten as 

In accordance with this notation, the product of a matrix and a vector is 
defned by the following equation: 

˜ a b  ̋̃ x ˝ ˜ a x  b y  ̋˘ + ˘ 
= ˛ ˆ˛ ˆ ˛ ˆ

c d  y ˛ ˘ + ˘ ˆc x  d y  ° ˙ °̨ ˆ̇ ° ˙ 

x 
y 

a b  
c d  

= 
x 
y F 
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For example, consider the following linear function: 

˝˜˝ 
ˆ 
ˆ̇ 

˛ 
°̨ 

ˆ
˙ 

2 3  
4 1  

˜˝˜ 

˝
ˆ
˙

˜
˛
°

= 
˝
ˆ
˙

˜
˛
°

= 
˝
ˆ
˙

˜
˛
°

˝
ˆ
˙

˜
˛
°

= 
�
�
�

˝
ˆ
˙

˜
˛
°

ˇ
�
˘

˛
° 

�
� 

ˆ 
ˆ̇ 

˛ 
°̨ 

�
˘ 

�ˇ 

Similarly, to calculate F ( −3,1 ), 

� ˝ − ˝ ˝ − ˝ 2 � − + �  ( ) 3 1  ˇ ˝ ˇ3 ˇ� 2 3  ˇ 3 ˇ 3 −3F = = ˆ � =� ˆ �� ˆ � ˆ � ˆ �1 4 1 1 
˙̂ ( )3 1 1  ˘

−114 � − + �  �� ˙ ˘� ˙ ˘ ˙ ˘ ˙ ˘ 

Once again, it will be helpful to use notation to distinguish between 
matrices and other types of mathematical objects (scalars, points, and 
vectors). When referring to a matrix, bold uppercase letters will be used for 
variables, and square brackets will be used to enclose the grid of numbers 
or variables. Tis notation can be used to briefy summarize the previous 
observation: if F is a linear function, then F can be written in the form 

v = ˝  for some matrix A. Conversely, one can also show that if F is F ( )  A v
a vector function defned by matrix multiplication, that is, if F v = ˝( )  A v, 
then F also satisfes the equations that defne a linear function; this can 
be verifed by straightforward algebraic calculations. Terefore, these two 
descriptions of vector functions—those that are linear and those defned 
by matrix multiplication—are equivalent; they defne precisely the same 
set of functions. 

Two of the vector functions previously mentioned can be represented 
using matrix multiplication: the zero function can be written as 

˜ x ˝ ˝ ˜ ˝ 0 x y ˜ ˝
F � ˛ ˆ� = ˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ 

ˇ � ˜ 0 0  x ˜ � + � 0 ˝ 0 
y 0 0  0 � + � yy x 0 0˘ °̨ ˙̂� ° ˙ °̨ ˙̂ °̨ ˙̂ ° ˙ 

while the identity function can be written as 

˜ ˝� ˜ ˝ ˜ ˝ ˜ 1 x 0 ˝ ˜ x
F � ˛ ˆ� = ˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ 

ˇ x 1 0  x � + � y ˝ 
y x 1˘ °̨ y ˆ̇� ° 0 1  ̨̇° ˆ̇ °̨ 0 � + � y ˆ̇ °̨ y ˆ̇ 

28 
26 

x 
y 

� + � 2 5  3 6  
� + � 4 5  1 6  

Ten, F ( 5,6 )  can be calculated as follows: 

5 
6 

= 
x 

2 3  
4 1  

y F 

5 
6

F 
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Te matrix in the defnition of the identity function is called the identity 
matrix and appears in a variety of contexts, as you will see. 

When introducing notation for vectors, it was indicated that subscripted 
variables will sometimes be used for the components of a vector. When 
working with a matrix, double subscripted variables will sometimes be 
used for its components; the subscripts will indicate the position (row and 
column) of the component in the matrix. For example, the variable a12 will 
refer to the entry in row 1 and column 2 of the matrix A, and in general, 
amn will refer to the entry in row m and column n of the matrix A. Te 
contents of the entire matrix A can be written as 

° 
A = 

a a11 12 

a a21 22 

˙ 
ˇ 
ˇ̂ 

˝ 
˝̨ 

At this point, you know how to apply a linear function (written in matrix 
notation) to a point or a vector. In many contexts (and in computer graph-
ics in particular), you will want to apply multiple functions to a set of 
points. Given two functions F and G, a new function H can be created by 
defning H ( ) = F G ( ( )v ); the function H is called the composi ion of Fv t
and G. As it turns out, if F and G are linear functions, then H will be a lin-
ear function as well. Tis can be verifed by checking that the two linearity 
equations hold for H, making use of the fact that the linearity equations 
are true for the functions F and G by assumption. Te derivation relating 
to vector addition is as follows: 

v w )= F G v w ))H ( + ( ( + 

= F G v +G w )( ( )  ( )  

= ( v )+ F G( ( )w )F G( )  

= H v +H w( )  ( )  

Te derivation relating to scalar multiplication is as follows: 

˛ =v F G c ̨ v )H c( )  ( ( )  

= ( ˛ vF c G ( )) 
= ˛ ( ( )vc F G ) 
= ˛  ( )vc H  
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Te reason this is signifcant is that given two linear functions—each of 
which can be represented by a matrix, as previously observed—their 
composition can be represented by a single matrix, since the composition is 
also a linear function. By repeatedly applying this reasoning, it follows that 
the composition of any number of linear functions can be represented by a 
single matrix. Tis immediately leads to the question: how can the matrix 
corresponding to the composition be calculated? Algebraically, given two 
transformations F ( )v = A·  and G v = vv ( ) B· , the goal is to fnd a matrix C 
such that the transformation H v = ·  is equal to ( v = (  )   for ( )  C v F G( )) A  B v  · ·  
all vectors v. In this case, one writes C A B·= . Tis operation is referred to as 
matrix multiplication, and C is called the product of the matrices A and B. 

Te formula for matrix multiplication may be deduced by computing 
both sides of the equation C v = A B v· )· ·(  and equating the coefcients of x 
and y on either side of the equation. Expanding C v·  yields 

˛ c11 c12 ˆ ˛ x ˆ ˛ c x11 ˜ +  ˜ c y12 ˆ 
C v ˙ ˘ ˙ ˘ = ˙ ˘˜ =  

c c ˜ +  ˜ y c x c y˙ 21 22 ˘ ˙ ˘ ˙ 21 22 ˘˝ ˇ ˝ ˇ ˝ ˇ 

Similarly, expanding A B v( )· ·  yields 

˙ a a ˘ � ˙ b b  ̆ ˙ x ˘�
11 12 11 12A ( )B v  ˇ ˛� � ˇ˛ ˛ = � ˇ ˛ ��a a � b b  y �ˇ 21 22 � � ˇ 21 22 � ˇ ��ˆ � ˆ � ˆ � 

˙ ˘ ˙ b x b y  ˛ +  ˛ ˘a11 a12 11 12 
= ˇ �˛ˇ � 

ˆ̌ 21 22 �� ˇ 21 22 �a a b x b y  ˛ +  ˛ ˆ � 

˙ ˘a b x b y  a b x b y  12 ˛ +  ˛ )11 ( 11 ˛ +  ˛ +  12 ) ( 21 22ˇ �= 
˛ + ˛ +  ˛ + ˛ ˇ a b x b y  a b x b y  �21 ( 11 12 ) 22 ( 21 22 )ˆ � 

˙ (a b  a b  x a b  a11 ˛ +  ̨  12 )˛ +  ( 11 ˛ + ˛  12 b y  ˘
11 21 12 22 )˛ 

= ˇ � 
ˇ (a b  a b  x a b  a21 ˛ +  22 ˛ )˛ +  ( 21 ˛ +  22 ˛b y  ˆ 11 21 12 22 )˛ �

� 

Tus, matrix multiplication C= A·B is defned as 

˛ 11 c12 ˙ ( � 11 + � 21 ) (  a b  a b  � 12 + � 22 ˘
a b  a b  + 

˙ ˘ = 
c ˆ ˛ 

11 12 11 12 ) ˆ 

˝̇ c21 c22 ˇ̆ ˙
˝ (a b  a b  21 � 11 + 22 � 21 )+ (a b  a b  21 � 12 + 22 � 22 ) ˘

ˇ 
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Tis formula can be written more simply using a vector operation called 
the dot product. Given vectors v = v v2 and w = 1  ,  , the dot w w2 

product d = v w
1  , 

•  is a (scalar) number, defned by 

As an example of a dot product calculation, consider 

3, 4 • 7, 5  = ° + ° = 3 7 4 5 41 

To restate the defnition of matrix multiplication: partition the matrix A 
into row vectors and the matrix B into column vectors. Te entry cmn of 
the product matrix C= A·B is equal to the dot product of row vector m 
from matrix A (denoted by am) and column vector n from matrix B 
(denoted by bn), as illustrated in the following formula, where partitions 
are indicated by dashed lines. 

As an example of a matrix multiplication computation, consider 

˛ ˆ2, 3 • 9, 7  2, 3 •  8, 6 ˛ 2 3  ˆ ˛ 9 8  ̂ ˘˙ ˘ � ˙ ˘ = ˙ 
4 5  7 6  ˙ 4, 5 • 9, 7  4, 5 •  8, 6 ˘˝ ˇ ˝ ˇ ˝ ˇ 

˛ (2 9� + �  ) (2 8  ˆ3 7  � + �  3 6)
= ˙ ˘ 

˝ 5 7  � + �  ) ˇ˙ (4 9� + �  ) (4 8  5 6  ˘ 

˛ 39 34 ˆ 
= ˙ ˘71 62˝ ˇ 

 a a
A ⋅ =B  11 12   b b

⋅ 11 12 


21 22 b b a a   21 22 

 a 
=  1 ⋅ b b

a  1 2 


 2 
 

 a b1 1• •a b
=  1 2 


 a b2 1• •a b 2 2 

 c c 
=  11 12 

 c c21 22 

d v= =v w• ,1 2  •v w1  ,w v2 1= ⋅w v1 2+ ⋅w2 
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In general, matrix multiplication can quickly become tedious, and so a 
sofware package is typically used to handle these and other matrix-related 
calculations. 

It is important to note that, in general, matrix multiplication is not 
a commutative operation. Given matrices A and B, the product A·B is 
usually not equal to the product B·A. For example, calculating the product 
of the matrices from the previous example in the opposite order yields 

˛ ˆ 

ˇ 
˘ 
˘ 

9,8 •  2,4  9,8 • 2,5 

7,2 •  6,4  7,6 • 3,5 
˛ 9 8  ̂ ˛ 2 3  ˆ ˙ 

˙̋ 
�˙ ˘ =˙ ˘7 6  4 5˝ ˇ ˝ ˇ 

˛ (9 2� + �  8 4) (9 3� + �  8 5) ˆ 
= ˙ ˘ 

˝ ( � + �  6 4) ( � + �  6 5) ˘̌˙ 7 2  7 3  

˛ 50 67 ˆ 
= ˙ ˘38 51˝ ˇ 

Tis fact has a corresponding geometric interpretation as well: the order 
in which geometric transformations are performed makes a diference. 
For example, let T represent translation by 1, 0 
rotation around the origin by 90°. If P denotes the point P = (2,  0), then 

, and let R represent 

( (  )) = R(3,0) (0,3)= , while T R P  = T =R T  P  ( (  )) (0,2) (1,2), as illustrated in 
Figure 3.7. Tus, R T  P ( (  )).( (  )) does not equal T R P

Te identity matrix I, previously mentioned, is the matrix 

° ˙1 0I = ˝
˛ 

ˇ
ˆ0 1  

Te identity matrix has multiplication properties similar to those of the 
number 1 in ordinary multiplication. Just as for any number x, it is true 
that =  and x·11·x x = x, for any matrix A it can be shown with algebra that 
I A = A · =· and A I A. Because of these properties, both 1 and I are called 
identity elements in their corresponding mathematical contexts. Similarly, 
the identity function is the identity element in the context of function 
composition. Tinking of vector functions as geometric transformations, 
the identity function does not change the location of any points; the geo-
metric transformations translation by ⟨0, 0⟩, rotation around the origin by 
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FIGURE 3.7 Geometric transformations (translation and rotation) are not 
commutative. 

0 degrees, and scaling all components by a factor of 1 are all equivalent to 
the identity function. 

Te concept of identity elements leads to the concept of inverse elements. 
In a given mathematical context, combining an object with its inverse 
yields the identity element. For example, a number x multiplied by its 
inverse equals 1; a function composed with its inverse function yields the 
identity function. Analogously, a matrix multiplied by its inverse matrix 
results in the identity matrix. Symbolically, the inverse of a matrix A is a 

M I  and M A I . Te inverse of the matrix Amatrix M such that A· = · = is 
typically written using the notation A−1. Using a fair amount of algebra, 
one can fnd a formula for the inverse of the matrix A by solving the 
equation A·M I :=  for the entries of M

˛ ˆ˛ ˆ ˛ ˆa b  1 0m n
A ˜M = ˜ = I˙ 

˙̋ 
˘ 
˘̌ 

˙
˝ 

˘
ˇ 

˙
˝ 

˘
ˇ 

= 
c d  0 1p q  

Solving this equation frst involves calculating the product on the lef-hand 
side of the equation and setting each entry of the resulting matrix equal 
to the corresponding entry in the identity matrix. Tis yields a system of 
four equations with four unknowns (the entries of M). Solving these four 
equations yields the following formula for the inverse of a 2-by-2 matrix: 

˙ / ( d b ) −b ad bc ( ) ˘d a − c / − 
M A−1 = ˇ �= 

ˇ − / ( d b− c) a ad bc ( − )ˆ c a / �
� 

Te value (a·d− b·c) appearing in the denominator of each entry of the 
inverse matrix is called the determinant of the matrix A. If this value is 
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equal to 0, then the fractions are all undefined, and the inverse of the matrix 
A does not exist. Analogous situations, in which certain elements do not 
have inverse elements, arise in other mathematical contexts. For example, 
in ordinary arithmetic, the number x = 0 does not have a  multiplicative 
inverse, as nothing times 0 equals the identity element 1.

As may be expected, if an invertible vector function F can be re presented 
with matrix multiplication as F( )v A= ⋅v, then the inverse function G 
can be represented with matrix multiplication by the inverse of A, as 
G( )v A= ⋅−1 v, since

 F G( )( )v = ⋅A A−1 ⋅ = ⋅ =v I v v 

G F( )( )v = ⋅A A−1 ⋅ = ⋅ =v I v v  

Once again, thinking of vector functions as geometric transformations, 
the inverse of a function performs a transformation that is in some sense 
the “opposite” or “reverse” transformation. For example, the inverse of 
translation by ⟨m, n⟩ is translation by ⟨−m, −n⟩; the inverse of clockwise 
rotation by an angle a is counterclockwise rotation by an angle a (which is 
equivalent to clockwise rotation by an angle −a); the inverse of scaling the 
components of a vector by the values r and s is scaling the components by 
the values 1/r and 1/s.

3.1.3 Vectors and Matrices in Higher Dimensions

All of these vector and matrix concepts can be generalized to three, four, 
and even higher dimensions. In this section, these concepts will be restated 
in a three-dimensional context. The generalization to four-dimensional 
space follows the same algebraic pattern. Four-dimensional vectors and 
matrices are used quite frequently in computer graphics, for reasons 
 discussed later in this chapter.

Three-dimensional coordinate systems are drawn using xyz-axes, where 
each axis is perpendicular to the other two. Assuming that the axes are 
oriented as in Figure 3.1, so that the plane spanned by the x and y axes are 
aligned with the window used to display graphics, there are two p ossible 
directions for the (positive) z-axis: either pointing towards the viewer 
or away from the viewer. These two systems are called right-handed and 
 left-handed coordinate systems, respectively, so named due to the hand-
based mnemonic rule used to remember the orientation. To visualize the 
relative orientation of the axes in a right-handed coordinate system, using 
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FIGURE 3.8 Using a right hand to determine the orientation of xyz-axes. 

your right hand, imagine your index fnger pointing along the x-axis and 
your middle fnger perpendicular to this (in the direction the palm of your 
hand is facing) pointing along the y-axis. Ten, your extended thumb will 
be pointing in the direction of the z-axis; this is illustrated in Figure 3.8. If 
the z-axis were pointing in the opposite direction, this would correspond 
to a lef-handed coordinate system, and indeed, this would be the orienta-
tion indicated by carrying out the steps above with your lef hand. Some 
descriptions of the right-hand rule, instead of indicating the directions of 
the x and y axes with extended fngers, will suggest curling the fngers of 
your hand in the direction from the x-axis to the y-axis; your extended 
thumb still indicates the direction of the z-axis, and the two descriptions 
have the same result. 

In mathematics, physics, and computer graphics, it is standard practice 
to use a right-handed coordinate system, as shown on the lef side of 
Figure 3.9. In computer graphics, the positive z-axis points directly at the 
viewer. Although the three axes are perpendicular to each other, when 
illustrated in this way, at frst it may be difcult to see that the z-axis is 
perpendicular to the other axes. In this case, it may aid with visualiza-
tion to imagine the xyz-axes as aligned with the edges of a cube hidden 
from view, illustrated with dashed lines as shown on the right side of 
Figure 3.9. 

In three-dimensional space, points are written as P = ( ,  y ,  )p p p or 
= p p p

x z 

P ( 1 ,  2 ,  3 ), and vectors are written as v = ,  ,v v v or v = ,  ,v v v . 
Sometimes, for clarity, the components may be written as x, y, and z (and 
in four-dimensional space, the fourth component may be written as w). 
Vector addition is defned by 

x y z 1 2 

v w+ =  ,  ,v v v  + ,  ,w w w  = ˛ +  ,  + 2 ,  + ˝ 3v w v  w v w  1  2 3 1 2 3 1 1 2 3 

3 
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FIGURE 3.9 Coordinate axes in three dimensions. 

while scalar multiplication is defned by 

c ˜ = ˜  v c v v, ,v = ˛ ˜c ,  ˜v c,  ˜ ˝ v c v1 2 3 1 2  3 

Te standard basis for three-dimensional space consists of the vectors 
i = 1, 0, 0 , j = 0, 1, 0 , and k = 0, 0, 1 . Every vector v = , , zx y  can be 
written as a linear combination of these three vectors as follows: 

v = x , y z, 

= x , 0, 0 + 0, y , 0  + ˛0, 0, z˝ 

= ˙ 1, 0, 0  x + ˙y 0, 1, 0 + ˙z 0, 0, 1 

= ˙ + ˙ + ˙  kx i y j z 

Te defnition of a linear function is identical for vectors of any dimension, 
as it only involves the operations of vector addition and scalar multiplication; 
it does not reference the number of components of a vector at all: 

( ˛ = ˛ v) c F ( )vF c  

F (v w )= F ( )v + F w+ ( )  

Te values of a three-dimensional linear function can be calculated for 
any vector if the values of F(i), F(j), and F(k) are known, and in general, 
such a function can be written in the following form: 

ˇ � + � + � ˜ ˝� ˜
˛

a x a y a z  ˝
ˆx 11 12 13 

� ˛ ˆ�F y = ˛ � + � + � ˆa x a  y a z� ˛ ˆ� 21 22 23 
˛ ˆ� ˛ ˆ�z � +  � +  � a x a y a z˘ � 31 32 33° ˙ °̨ ˙̂ 
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As before, the coefcients of x, y, and z in the formula are typically grouped 
into a 3-by-3 matrix: 

° a  ˙
˝ 11 a  12 a 13 ˇ 

A = ̋  a  21 a  22 a 23 ˇ  
˝ ˇ
˛ a  31 a  32 a 33 ˆ

˙° 
˙
ˆ 

°
˛˘

ˇ 
ˇ 
ˇ̂

˝ 
˝ 
˝̨

= 

Te matrix-vector product A·v is then defned as 

a a  12˛ 11 12 a13 ˆ ˛ x ˆ ˙
˛ a x a y a z  11 ˜ +  ˜ +  ˜ 13 ˘

ˆ 
˙ ˘ ˙ ˘A v a a  a =˜ =  y ˙ a x a y a z  ˜ + ˜ + ˜ ˘˙ 21 22 23 ˘ ˙ ˘ 21 22 23˙ ˘˙ ˘ ˙ ˘31 a33 z ˜ +  ˜ +  ˜ a a  32 a x a y a z  ˙ 31 32 33 ˘˝ ˇ ˝ ˇ ˝ ˇ 

Matrix multiplication is most clearly described using the dot product, 
which for three-dimensional vectors is defned as 

d = v w• = v , v v, ° ,  ,w w w  = v °w v °w v °w1 2 3 1 2 3 1 1 + 2 2 + 3 3 

Matrix multiplication A·B can be calculated from partitioning the entries 
of the two matrices into vectors: each row of the frst matrix (A) is written 
as a vector, and each column of the second matrix (B) is written as a vector. 
Ten, the value in row m and column n of the product is equal to the dot 
product of row vector m from matrix A (denoted by a ) and column vector m

n from matrix B (denoted by b ), as illustrated below. n

ˆ˛ ˆ ˛ b12 b13a a  11 12 a13 b11 ˘˙ ˘ ˙
A B a a  a ˜˜ = ˙ 21 22 23 ˘ ˙ b21 b22 b23 ˘ 

˘˙ a a  a ˘ ˙ b33 32 33 33 b32 b33 ˇ˝ ˇ ˝ 

a1 

b b2 b31 a2 

a3 

˙° 
ˇ 
ˇ 
ˇ
ˆ

˝ 
˝ 
˝
˛

= 
a b a b  a b  1 • 1 1 • 2 1 • 3 

a b a b  a b  2 • 1 2 • 2 2 • 3 

a b a b  a b  3 • 1 3 • 2 3 • 3 
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° c11 c12 c13 ˙
˝ ˇ 

= ˝ c21 c22 c23 ˇ  
˝ c31 c32 c33 ˇ
˛ ˆ

Te 3-by-3 identity matrix I has the following form: 

1 0 0 
I 0 1 0 

0 0 1 

As before, this identity matrix is defned by the equations I A A· =  and 
A·I A . Similarly, the inverse of a matrix A (if it exists) is =  for any matrix A
a matrix denoted by A−1, defned by the equations A ˜ A−1 = I −1 ˜ = and A A I. 
Te formula for the inverse of a 3-by-3 matrix in terms of its entries is quite 
tedious to write down, and as mentioned previously, a sofware package 
will be used to handle these calculations. 

3.2 GEOMETRIC TRANSFORMATIONS 
Te previous section introduced linear functions: vector functions that 
satisfy the linearity equations, functions which can be written with 
matrix multiplication. It remains to show that the geometric transfor-
mations needed in computer graphics (translation, rotation, scaling, and 
perspective projections) are linear functions, and then, formulas must be 
found for the corresponding matrices. In particular, it must be possible 
to determine the entries of a matrix corresponding to a description of 
a transformation, such as “translate along the x direction by 3 units” or 
“rotate around the z-axis by 45°.” Formulas for each type of transforma-
tion (in both two and three dimensions) will be derived next, in increasing 
order of difculty: scaling, rotation, translation, and perspective projec-
tion. In the following sections, vectors will be drawn in standard position 
(the initial point of each vector will be at the origin), and vectors can be 
identifed with their terminal points. 

3.2.1 Scaling 

A scaling transformation multiplies each component of a vector by a 
constant. For two-dimensional vectors, this has the following form (where 
r and s are constants): 

˙° 
ˇ 
ˇ 
ˇ̂

˝ 
˝ 
˝̨

= 
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x 
y = 

˝˜�˝˜ˇ 
˛ 
°̨ 

�
� 

˛ 
°̨ 

�
˘ 

F 
r x  
s y  

It can quickly be deduced and verifed that this transformation can be 
expressed with matrix multiplication as follows: 

�
� 

r x  
s y  

Similarly, the three-dimensional version of this transformation, where the 
z-component of a vector is scaled by a constant value t, is: 

�
� 

�
� 
� 

r x  
s y  
t z  

˝˜ 
� ˛ 
°̨ 

˝ 

ˆ 
ˆ̇ 

˜˝ 

ˆ 
ˆ̇ 

˜�˝˜ˇ 

˝ 
ˆ 
ˆ 
ˆ̇

ˆ 
ˆ̇ 

˜ 
˛ 
˛ 
°̨

� 
˝ 
ˆ 
ˆ 
ˆ̇

ˆ
˙ 

˛
° 

= 

˜ 
˛ 
˛ 
°̨

ˆ 
ˆ̇ 

= 
˝ 
ˆ 
ˆ 
ˆ̇

˛ 
°̨ 

= 

˜ 
˛ 
˛ 
°̨

= � 
� 
��

ˆ 
ˆ 
ˆ̇

�
� 

ˆ 
ˆ̇ 

�˝ 

˛ 
°̨ 

�
˘ 

˜ 
˛ 
˛ 
°̨

ˇ 
� 
� 
�̆

x 

Observe that if all the scaling constants are equal to 1, then the formula for 
the scaling matrix results in the identity matrix. Tis corresponds to the 
following pair of related statements: scaling the components of a vector by 
1 does not change the value of the vector, just as multiplying a vector by the 
identity matrix does not change the value of the vector. 

3.2.2 Rotation 

In two dimensions, a rotation transformation rotates vectors by a constant 
amount around the origin point. Unlike the case with the scaling 
transformation, it is not immediately clear how to write a formula for a 
rotation function F(v) or whether rotation transformations can even be 
calculated with matrix multiplication. To establish this fact, it sufces 
to show that rotation is a linear transformation that it satisfes the two 
linearity equations. An informal geometric argument will be presented for 
each equation. 

To see that ( )  v = c F· ( ), begin by considering the endpoint of the F c· v 
vector v, and assume that this point is at a distance d from the origin. 
When multiplying v by c, the resulting vector has the same direction, and 
the endpoint is now at a distance c · d from the origin. Note that rotation 
transformations fx the origin point and do not change the distance of 
a point from the origin. Applying the rotation transformation F to the 

y 
z 

x 
y 

0 
s 

r 0 0  

0 
r 

0 0s 
0 0  t 

x 
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vectors v and c · v yields the vectors v  and ( · ); these vectors have F ( ) F c v 
the same direction, and their endpoints have the same distances from the 
origin: d and c · d, respectively. However, the vector · v  is also aligned c F ( )  
with v  and its endpoint has distance c · d from the origin. Terefore, F ( )
the endpoints of F c v) · v  must be at the same position, and thus, ( ·  and c F ( )  

( )  v = c F· vF c· ( ). Tis is illustrated in Figure 3.10. 
To see that F v + w)= F v + F ( )w , begin by defning u v w( ( )  = + , and let 

o represent the origin. Due to the nature of vector addition, the endpoints 
of u, v, and w, together with o, form the vertices of a parallelogram. 
Applying the rotation transformation F to this parallelogram yields a 
parallelogram M whose vertices are o and the endpoints of the vectors 
F ( ) v F ( )u , F ( ), and w . Again, due to the nature of vector addition, the 
endpoints of v , F ( ), and F ( ) F w , together with oF ( ) w v + ( )  , form the verti-
ces of a parallelogram N. Since parallelograms M and N have three vertices 
in common, their fourth vertex must also coincide, from which it follows 
that F v + F w = F u = F v w ( ) ( )  ( )  ( + ). Tis is illustrated in Figure 3.11. 

FIGURE 3.10 Illustrating that rotation transformations are linear (scalar 
multiplication). 

FIGURE 3.11 Illustrating that rotation transformations are linear (vector 
addition). 
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FIGURE 3.12 Right triangle with angle θ, indicating adjacent (a), opposite (b), 
and hypotenuse (h) side lengths. 

Given that rotation is a linear transformation, the previous theoretical 
discussion of linear functions provides a practical method for calculating a 
formula for the associated matrix. Te values of the function at the standard 
basis vectors—in two dimensions, F(i) and F(j)—are the columns of the 
associated matrix. Tus, the next step is to calculate the result of rotating 
the vectors i = ⟨1, 0⟩ and j = ⟨0, 1⟩ around the origin (counterclockwise) by 
an angle θ. 

Tis calculation requires basic knowledge of trigonometric functions. 
Given a right triangle with angle θ, adjacent side length a, opposite side 
length b, and hypotenuse length h, as illustrated in Figure 3.12, then the 
trigonometric functions are defned as ratios of these lengths: the sine 

( ) /function is defned by sin  ˜ = b h, the cosine function is defned by 
cos ( ) a h, and the tangent function is defned by ( ) b a˜ = / tan  ˜ = / . 

As illustrated in Figure 3.13, rotating the vector i by an angle θ yields a 
new vector F ( )i ,  which can be viewed as the hypotenuse of a right triangle. 
Since rotation does not change lengths of vectors, the hypotenuse has 
length h= 1, which implies sin ˜ = b and cos ˜ = a, from which it follows ( ) ( )
that F i = cos  ˜ ,sin ˜ . Tis vector represents the frst column of the ( )  ( ) ( )  
rotation matrix. 

As illustrated in Figure 3.14, rotating the vector j by an angle θ yields 
a new vector F(j), which can once again be viewed as the hypotenuse of 
a right triangle with h= 1, and as before, sin ˜ = b and cos ˜ =( ) ( ) a. Note 
that since the horizontal displacement of the vector F(j) is towards the 

FIGURE 3.13 Rotating the basis vector i by an angle θ. 
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FIGURE 3.14 Rotating the basis vector j by an angle θ. 

negative x direction, the value of the frst vector component is −b, the 
negative of the length of the side opposite angle θ. From this, it follows 
that F ( )j = –sin ˜ ,cos ˜ , yielding the second column of the rotation 
matrix. 

Based on these calculations, the matrix corresponding to rotation 
around the origin by an angle θ in two-dimensional space is given by the 
matrix: 

( )  ( )  

˜ − sin ˜˙ cos  ( )  ( ) ˘ 
ˇ � 
ˇ sin ˜     cos ˜ˆ ( )  ( ) �� 

To conclude the discussion of two-dimensional rotations, consider the fol-
lowing computational example. Assume that one wants to rotate the point 
(7, 5) around the origin by θ = 30° (or equivalently, θ = π/6 radians). Te 
new location of the point can be calculated as follows: 

˘˙ ( °) − sin 30 ( °) ˘ ˙ 7 ˙cos 30  ˘ ˙ 7 ˘ˇ � ˇ �ˇ � = ˇ �ˇ sin 30  ° cos 30 ° � 5 � 5( ) ( ) ˆ � ˇ ˆ �ˆ � ˆ � 

˙ ˘5 / 2 − ) � ˙ 3.56 ˘ˇ =
(7 3  

�� ˇ �ˇ ) � 7.83 +ˇ (7 5  3 / 2 ˆ �
ˆ � 

In three dimensions, rotations are performed around a line, rather than a 
point. In theory, it is possible to rotate around any line in three-dimensional 
space. For simplicity, only the formulas for rotation around each of the 
three axes, as illustrated in Figure 3.15, will be derived in this section. 

−3/  2  1/ 2  
1/ 2  3  / 2  
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FIGURE 3.15 Rotations around the axes in three-dimensional space. 

Note that the rotations appear counterclockwise when looking along each 
axis from positive values to the origin. 

If the xy-plane of two-dimensional space is thought of as the set of 
points in three-dimensional space where z = 0, then the two-dimensional 
rotation previously discussed corresponds to rotation around the z-axis. 
Analogous to the observation that in two dimensions, rotating around 
a point does not move the point, in three dimensions, rotating around 
an axis does not move that axis. By the same reasoning as before, rota-
tion (around an axis) is a linear transformation. Terefore, calculating the 
matrix corresponding to a rotation transformation F can be accomplished 
by fnding the values of F at i, j, and k (the standard basis vectors in three 
dimensions); the vectors F(i), F(j), and F(k) the results will be the columns 
of the matrix. 

To begin, let F denote rotation around the z-axis, a transformation 
which extends the previously discussed two-dimensional rotation around 
a point in the xy-plane to three-dimensional space. Since this transfor-
mation fxes the z-axis and therefore all z coordinates, based on previ-
ous work calculating F(i) and F(j), it follows that F ( )i = cos  ( )˜ ,sin  ˜( ), 0 , 
F ( )j =  –sin  ( )˜ ,cos  ˜( ), 0 , and F k 0, 0, 1 , and therefore, the matrix 
for this transformation is 

( ) = 

˙ ( )˜ − sin ˜ ˘cos  ( )  0
ˇ � 
ˇ sin ˜     cos ˜( )  ( )  0 � 
ˇ �0 0 1ˇ �ˆ � 

Next, let F denote rotation around the x-axis. Evaluating the values of this 
function requires similar reasoning. Tis transformation fxes the x-axis, 
so F ( )i =   1,  0,  0  is the frst column of the matrix. Since the transfor-
mation fxes all x coordinates, two-dimensional diagrams such as those 
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in Figures 3.13 and 3.14, featuring the yz-axes, can be used to analyze 
F(j) and F(k), this is illustrated in Figure 3.16, where the x-coordinate 
is excluded for simplicity. One fnds that F ( )j = 0 ,cos ˜ ,sin ˜  and ( )  ( )  
F ( )k = 0,–sin ˜ ,cos ˜ , and thus, the corresponding matrix is ( )  ( )  

˙ ˘1 0 0ˇ � 
˜ − sin ˜ �ˇ 0 cos ( )  ( )  

0 sin ˜ cos ˜
ˇ ( )  ( ) � 
ˇ �ˆ � 

Finally, let F denote the rotation around the y-axis. As before, the cal-
culations use the same logic. However, the orientation of the axes 
illustrated in Figure 3.15 must be kept in mind. Drawing a diagram 
analogous to Figure 3.16, aligning the x-axis horizontally and the z-axis 
vertically (and excluding the y-coordinate), a counterclockwise rotation 
around the y-axis in three-dimensional space will appear as a clockwise 
rotation in the diagram; this is illustrated in Figure 3.17. One may then 

FIGURE 3.16 Calculating rotation around the x-axis. 

FIGURE 3.17 Calculating rotation around the y-axis. 
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calculate that F ( )i =  cos ˜ , 0,–sin ˜  and F k =  sin ˜ , 0,cos ˜ , 
and F ( )j = 

( )  ( )  ( )  ( )  ( )  
0, 1, 0  since the y-axis is fxed. Terefore, the matrix for rota-

tion around the y-axis is shown in Figure 3.17. 
Tis completes the analysis of rotations in three-dimensional space; 

you now have formulas for generating a matrix corresponding to 
counterclockwise rotation by an angle θ around each of the axes. As a fnal 
note, observe that if the angle of rotation is ̃ = 0, then since cos 0 1( )=  and 
sin 0  ( )=1, each of the rotation matrix formulas yields an identity matrix. 

3.2.3 Translation 

A translation transformation adds constant values to each component of 
a vector. For two-dimensional vectors, this has the following form (where 
m and n are constants): 

F 
x 
y = +

+x m  
y n  

It can quickly be established that this transformation cannot be 
represented with a 2-by-2 matrix. For example, consider translation by 
⟨2, 0⟩. If this could be represented as a matrix transformation, then it 
would be possible to solve the following equation for the constants a, b, 
c, and d: 

˜ a b  ̋̃ x ˝ ˜ a x  b y  ˘ + ˘ ˝ ˜ x + 2 ˝ 
˛ ˆ ˛ ˆ = ˛ ˆ = ˛ ˆ
c d  ˘ + ˘ yy c x  d y  ° ˙ °̨ ˙̂ ˛ ˆ °̨ ˙̂° ˙ 

Matching coefcients of x and y leads to a = 1, c = 0, d =1, and the 
unavoidable expression b = 2/y, which is not a constant value for b. If 
the value b = 2 were chosen, the resulting matrix would not produce a 
translation—it would correspond to a shear transformation: 

˜ ˜ + � y ˝˜ 1 2  ˝ x ˝ x 2 
˛ ˆ = ˛ ˆ˛ ˆ0 1  y y° ˙ °̨ ˆ̇ ˛ ˙̂° 

˝ 
ˆ 
ˆ̇ 

˜ 
˛ 
°̨ 

� 
�
� 

˝ 
ˆ 
ˆ̇ 

˜ 
˛ 
°̨ 

ˇ 
�
˘ 

Tis particular shear transformation is illustrated in Figure 3.18, where 
the dot-shaded square on the lef side is transformed into the dot-shaded 
parallelogram on the right side. 
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FIGURE 3.18 A shear transformation along the x direction. 

Observe that, in Figure 3.18, the points along each horizontal line are 
being translated by a constant amount that depends on the y-coordinate 
of the points on the line; this is the defning characteristic of any shear 
transformation. In this particular example, the points along the line y =1 
are translated 2 units to the right, the points along y = 2 are translated 4 
units to the right, and so forth; the points along =y p are translated 2p 
units to the right. 

Te goal is to fnd a matrix that performs a constant translation on the 
complete set of points in a space; a shear transformation performs a constant 
translation on a subset of the points in a space. Tis observation is the key 
to fnding the desired matrix and requires a new way of thinking about 
points. Consider a one-dimensional space, which would consist of only an 
x-axis. A translation on this space would consist of adding a constant num-
ber m to each x value. To realize this transformation as a matrix, consider 
a copy of the one-dimensional space embedded in two-dimensional space 
along the line y =1; symbolically, identifying the one-dimensional point x 
with the two-dimensional point (x, 1). Ten, one-dimensional translation 
by m corresponds to the matrix calculation: 

Analogously, to perform a two-dimensional translation by ⟨m, n⟩, identify 
each point (x, y) with the point (x, y, 1) and perform the following matrix 
calculation: 

x m 

x 
y 
1 

x 
1 

1 m 
0 1  

1 0  m 
0 1  n 
0 0  1 

˝ 

˝ 
ˆ 
ˆ 
ˆ̇

+
+x m  
y n  
1 

˜˝˜˝˜ 
˛ 
˛ 
°̨

= ˆ 
ˆ 
ˆ̇

˛ 
˛ 
°̨

ˆ 
ˆ 
ˆ̇

˛ 
˛ 
°̨

ˆ
˙ 

+ 
1 

˜˝˜˝˜ 
˛
° 

=ˆ
˙ 

˛
° 

ˆ
˙ 

˛
° 

Finally, to perform a three-dimensional translation by ⟨m, n, p⟩, identify 
each point (x, y, z) with the point (x, y, z, 1) and perform the following 
matrix calculation: 



Matrix Algebra and Transformations   ◾   111

 

 1 0 0 m  x   x m+ 
    0 1 0 n y y n+    =  
 0 0 1 p  z   z p+ 
    
 0 0 0 1  1   1 

In other words, to represent translation as a matrix transformation, the 
space being translated is identified with a subset of a higher dimensional 
space with the additional coordinate set equal to 1. This is the reason that 
four-dimensional vectors and matrices are used in three-dimensional com-
puter graphics. Even though there is no intuitive way to visualize four spa-
tial dimensions, performing algebraic calculations on four- dimensional 
vectors is a straightforward process. This system of representing three-
dimensional points with four-dimensional points (or representing 
n-dimensional points with (n + 1)-dimensional points in general) is called 
homogeneous coordinates. As previously mentioned, each point (x, y, z) is 
identified with (x, y, z, 1); conversely, each four-dimensional point (x, y, 
z, w) is associated with the three-dimensional point (x/w, y/w, z/w). This 
operation is called perspective division and aligns with the previous corre-
spondence when w = 1. There are additional uses for perspective division, 
which will be discussed further in Section 3.2.4.

It is also important to verify that the transformations previously dis-
cussed are compatible with the homogeneous coordinate system. In 
two dimensions, the transformation F x( )  , y a   = +·  x b  ·y c,  ·  x d+  ·y  
becomes    F x( ),  y a, 1      = +·  x b  ·y c,  ·  x d+  ·y , 1 , which corresponds to 
the matrix multiplication:

   ⋅   a b 0  x  a x⋅ + b y
    

0 y = c d ⋅ + ⋅    c x d y  
 0 0 1    
  1   1 

Therefore (when using homogeneous coordinates), all the geometric 
transformations of interest—translation, rotation, and scaling, collectively 
referred to as affine transformations—can be represented by multiplying 
by a matrix of the following form:

 a a m 
 11 12 1 
 a a21 22 m2  

 0 0 1 



 

 

 



      

 

 

 

 

    

 

 
 

    

 
 

112 ◾ Developing Graphics Frameworks with Python and OpenGL 

where the 2-by-2 submatrix in the upper lef represents the rotation and/or 
scaling part of the transformation (or is the identity matrix when there is 
no rotation or scaling), and the two-component vector ⟨m1, m2⟩ within the 
rightmost column represents the translation part of the transformation (or 
is the zero vector if there is no translation). 

Similarly, in three dimensions (using homogeneous coordinates), afne 
transformations can be represented by multiplying by a matrix of the fol-
lowing form: 

˜ a a ˝ 
˛ 11 12 a13 m1 ˆ 
˛ a21 a22 a23 m2 ˆ  ˛ a31 a32 a33 m
˛ 3 ˆ 

ˆ
°̨ 0 0 0 1 ˆ̇

where the 3-by-3 submatrix in the upper lef represents the rotation and/ 
or scaling part of the transformation (or is the identity matrix if there is no 
rotation or scaling), and the three-component vector ⟨m1, m2, m3⟩ within 
the rightmost column represents the translation part of the transforma-
tion (or is the zero vector if there is no translation). 

3.2.4 Projections 

In this section, the goal is to derive a formula for a perspective projection 
transformation. At the beginning of Chapter 1, and also in Section 1.2.2 
on geometry processing, some of the core ideas were illustrated and 
informally introduced. To review, the viewable region in the scene needs 
to be mapped to the region rendered by OpenGL, a cube where the x, y, 
and z coordinates are all between −1 and +1, also referred to as clip space. 
In a perspective projection, the shape of the viewable region is a frustum 
or truncated pyramid. Te pyramid is oriented so that it is “lying on its 
side”: its central axis is aligned with the negative z-axis, as illustrated in 
Figure 3.19, and the viewer or virtual camera is positioned at the origin 
of the scene, which aligns with the point that was the tip of the original 
pyramid. Te smaller rectangular end of the frustum is nearest to the 
origin, and the larger rectangular end is farthest from the origin. When 
the frustum is compressed into a cube, the larger end must be compressed 
more. Tis causes objects in the rendered image of the scene to appear 
smaller the farther they are from the viewer. 
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FIGURE 3.19 Te frustum for a perspective transformation. 

Te shape of a frustum is defned by four parameters: the near distance, 
the far distance, the (vertical) angle of view, and the aspect ratio. Te near 
and far distances are the most straightforward to explain: they refer to 
distances from the viewer (along the z-axis), and they set absolute bounds 
on what could potentially be seen by the viewer—any points outside of this 
range will not be rendered. However, not everything between these bounds 
will be visible. Te angle of view is a measure of how much of the scene is 
visible to the viewer, and is defned as the angle between the top and bot-
tom planes of the frustum (as oriented in Figure 3.19) if those planes were 
extended to the origin. Figure 3.20 shows two diferent frustums (shaded 
regions) as viewed from the side (along the x-axis). Te fgure also illus-
trates the fact that for fxed near and far distances, larger angles of view 
correspond to larger frustums. 

In order for the dimensions of the visible part of the near plane to be 
proportional to the dimensions of the rendered image, the aspect ratio 
(defned as width divided by height) of the rendered image is the fnal 

FIGURE 3.20 Te efect of the angle of view on the size of a frustum. 



      

 

 

 
  

 

   

 

114 ◾ Developing Graphics Frameworks with Python and OpenGL 

value used to specify the shape of the frustum, illustrated in Figure 3.21, 
which depicts the frustum as viewed from the front (along the negative 
z-axis). In theory, a horizontal angle of view could be used to specify the 
size of the frustum instead of the aspect ratio, but in practice, determining 
the aspect ratio is simpler. 

In a perspective projection, points in space (within the frustum) are 
mapped to points in the projection window: a fat rectangular region in 
space corresponding to the rendered image that will be displayed on the 
computer screen. Te projection window corresponds to the smaller rect-
angular side of the frustum, the side nearest to the origin. To visualize how 
a point P is transformed in a perspective projection, draw a line from P to 
the origin, and the intersection of the line with the projection window is 
the result. Figure 3.22 illustrates the results of projecting three diferent 
points within the frustum onto the projection window. 

To derive the formula for a perspective projection, the frst step is to adjust 
the position of the projection window so that points in the frustum are pro-
jected to y-coordinates in the range from −1 to 1. Ten, the formula for project-
ing y-coordinates will be derived, incorporating both matrix multiplication 
and the perspective division that occurs with homogeneous coordinates: 

FIGURE 3.21 Te aspect ratio r = w/h of the frustum. 

FIGURE 3.22 Projecting points from the frustum to the projection window. 
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converting (x, y, z, w) to (x/w, y/w, z/w). Next, the formula for projecting 
x-coordinates will be derived, which is completely analogous to the for-
mula for y-coordinates except that the aspect ratio needs to be taken into 
consideration. Finally, the z-coordinates of points in the frustum, which 
are bounded by the near distance and far distance, will be converted into 
the range from −1 to 1 and once again will require taking perspective 
division into account. 

To begin, it will help to represent the parameters that defne the shape of 
the frustum—the near distance, far distance, (vertical) angle of view, and 
aspect ratio—by n, f, a, and r, respectively. Consider adjusting the projec-
tion window so that the y-coordinates range from −1 to 1, while preserv-
ing the angle of view a, as illustrated on the lef side of Figure 3.23 (viewed 
from the side, along the x-axis). Tis will change the distance d from the 
origin to the projection window. Te value of d can be calculated using 
trigonometry on the corresponding right triangle, illustrated on the right 

tan /2 1/side of Figure 3.23. By the defnition of the tangent function, (a )= d, 
from which it follows that d = (a . Terefore, all points on the pro-1/ tan /2 ) 
jection window have their z coordinate equal to −d. 

Next, ignoring x-coordinates for a moment, consider a point P = (Py , Pz ) 
in the frustum that will be projected onto this new projection window. 
Drawing a line from P to the origin, let Q = (Qy , Qz )  be the intersection of 
the line with the projection window, as illustrated in Figure 3.24. Adding a 
perpendicular line from P to the z-axis, it becomes clear that we have two 
similar right triangles. Note that since the bases of the triangles are located 
on the negative z-axis, but lengths of sides are positive, the lengths of the 
sides are the negatives of the z-coordinates. Te sides of similar triangles 
are proportional to each other, so we know that Py (– Pz ) = Qy (– Qz ). 

FIGURE 3.23 Adjusting the projection window. 
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Since Q is a point on the adjusted projection window, we also know that 
Q dz   –= . This allows us to write a formula for the y-coordinate of the 
 projection: Q dy y=  ·P P( )– z .

At first glance, this may appear to be incompatible with our matrix-
based approach, as this formula is not a linear transformation, due to the 
division by the z coordinate. Fortunately, the fact that we are working in 
homogeneous coordinates (x, y, z, w) will enable us to resolve this prob-
lem. Since this point will be converted to (x/w, y/w, z/w) by perspective 
division (which is automatically performed by the GPU after the vertex 
shader is complete), the “trick” is to use a matrix to change the value 
of the w- component (which is typically equal to 1) to the value of the 
z- component (or more precisely, the negative of the z-component). This 
can be accomplished with the following matrix transformation (where ∗ 
indicates an as-yet unknown value):

 

  Px   * * * * *     
0 0d 0  Py  d P⋅   = y  
* *   * *  pz  * 

    − 0 0 1 0   1   −P z 

Then, after performing the division transformation, the homogeneous 
point (*,  ·d Py z,*,–P ) is transformed into (*,  ·d Py z  –( )P ,*), as desired.

The next step is to derive a formula for the x-component of projected 
points; the calculations are similar to those for the y-component. The 
corresponding diagram is illustrated in Figure 3.25, viewed from along 
the y-axis. Again there is a pair of similar triangles, and therefore, the 
ratios of corresponding sides are equal, from which we obtain the equation 
P Px z  –( )= Q Qx z  –( ), and therefore,    Q dx x=  ·P Q  –( )z .

FIGURE 3.24 Calculating y-components of projected points.



      

 

 

Matrix Algebra and Transformations ◾ 117 

FIGURE 3.25  Calculating  x-components of projected points. 

However, one additional factor must be taken into account: the aspect 
ratio  r. We have previously considered the y values to be in the range 
from  −1 to 1; in accordance with the aspect ratio, the set of points that 
should be included in the rendered image have x values in the range from 
−r to  r. Tis range needs to be scaled into clip space, from −1 to 1, and 
therefore, the formula for the x coordinate must also be divided by r. Tis 
leads us to the formula Qx = ( d/ ·r P  ) x (–Pz ), which can be accomplished 
with the following matrix transformation (again, ∗ indicating undeter-
mined values): 

Te values in the third row of the matrix remain to be determined and will 
afect the z component of the point. Te z value is used in depth calcula-
tions to determine which points will be visible, as specifed by the near 
distance and far distance values. Te values of the x and  y components of  
the point are not needed for this calculation, and so the frst two values 
in the row should be 0; refer to the remaining unknown values as b and  c. 
Ten, we have the following matrix transformation: 

ˇ˝ ˝ ˇ˝ P ˇ (  d r  / )  �P d r/ 0 0 0  x 
ˆ �ˆ x � ˆ �

P d P �ˆ 0 d 0 0 � ̂ y � ˆ �
= y 

ˆ � ˆ 0 0 b c �ˆ �P b P� + c 
ˆ � ˆ z � ˆ z �

0 0 −˙ 1 0  ̆ 1 ˆ �˙̂ �̆ −˙ Pz ˘ 

ˇ ˇ ˝ d r/ 0 0 0  ˇ˝ P ˝
x (d r  / ) � P x 

ˆ � ̂  � ˆ � 
ˆ 0 d 0 0 P ˆ d P  � � � ̂  y � = y  ˆ � ˆ * * * * � ̂  � P * ˆ z � ˆ � ˆ 0 0 − ˙ 1 0  �̆ ˆ − ˙ 1 �̆ ˆ Pz �˙ ˘



  

  

 
  

 

c−b+ = −1 
n 

c−b+ =1
f 

Tere are a variety of approaches to solve this system; one of the sim-
plest is to multiply the frst equation by −1 and then add it to the 
second equation. Tis eliminates b; solving for c yields c = 2· · /  ( – fn f n  ). 
Substituting this value for c into the frst equation and solving for b yield 
b = +(  )  ( )  n f .n f  / –  

With this calculation fnished, the matrix is completely determined. 
To summarize, the perspective projection transformation for a frustum-
shaped region defned by near distance n, far distance f, (vertical) angle of 
view a, and aspect ratio r, when working with homogeneous coordinates, 
can be achieved with the following matrix: 

Developing Graphics Frameworks with Python and OpenGL

After perspective division, the third coordinate b·  P cz +   becomes 
(b P·  z z+ =  –c P) ( )  –b c –  Pz . The values of the constants b and c will be 
determined soon, after two important points are clarified. First, the near 
distance n and the far distance f are typically given as positive values, 
even though the visible region frustum lies along the negative z-axis in 
world space, and thus, the nearest visible point P satisfies P nz   –= , while 
the farthest visible point P satisfies P fz   –= . Second, we know that we must 
convert the z coordinates of visible points into clip space coordinates (the 
range from −1 to 1), and it might seem as though the z coordinates of the 
nearest points to the viewer should be mapped to the value 1, as the posi-
tive z axis points directly at the viewer in our coordinate system. However, 
this is not the case! When OpenGL performs depth testing, it determines 
if one point is closer (to the viewer) than another by comparing their z 
coordinates. The type of comparison can be specified by the OpenGL func-
tion glDepthFunc, which has the default value GL_LESS, an OpenGL 
constant which indicates that a point should be considered closer to the 
viewer if its z coordinate is less. This means that in clip space, the negative 
z axis points directly at the viewer; this space uses a left-handed coordinate 
system. Combining these two points, we now know that if    P nz = – , then 
–  b c–   Pz  should equal −1, and if P fz = – , then –  b c–   Pz  should equal 1. 
This corresponds to the following system of equations:

118   ◾   
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ˆ 1 � 
˘ 0 0 0 � r ̨ tan / 2 (a )˘ � 
˘ �1
˘ 0 0 0 � 
˘ tan / 2 ( )  �a 
˘ �+ 2 ˛ ˛n f  n f˘ 0 0 � 

n f− − �˘ n f  
˘ �0 0 −1 0ˇ � 

3.2.5 Local Transformations 

At this point, you are able to produce the matrices corresponding to trans-
lation, rotation, and scaling transformations. For example, consider an 
object in two-dimensional space, such as the turtle on the lef side of Figure 
3.26, whose shape is defned by some set of points S. Let T be the matrix 
corresponding to translation by ⟨1, 0⟩, and let R be the matrix correspond-
ing to rotation around the origin by 45°. To move the turtle around you 
could, for example, multiply all the points in the set S by T, and then by R, 
and then by T again, which would result in the sequence of images illus-
trated in the remaining parts of Figure 3.26. All these transformations are 
relative to an external, fxed coordinate system called world coordinates or 
global coordinates, and this aspect is emphasized by the more specifc term 
global transformations. 

Te internal or local coordinate system used to defne the vertices 
of a geometric object is somewhat arbitrary—the origin point and the 
orientation and scale of the local coordinate axes are typically chosen for 
convenience, without reference to the global coordinate system. For exam-
ple, the local origin is frequently chosen to correspond to a location on the 
object that is in some sense the “center” of the object. Locations specifed 

FIGURE 3.26 A sequence of global transformations. 
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relative to this coordinate system are called object coordinates or local 
coordinates. Afer an object is added to a three-dimensional scene, the 
object can then be repositioned, oriented, and resized as needed using 
geometric transformations. 

Of particular interest in this section are local transformations: 
transformations relative to the local coordinate system of an object, and 
how they may be implemented with matrix multiplication. Initially, the 
local coordinate axes of an object are aligned with the global coordinate 
axes. As an object is transformed, its local coordinate axes undergo the 
same transformations. Figure 3.27 illustrates multiple copies of the turtle 
object together with their local coordinate axes afer various transforma-
tions have been applied. 

Figure 3.28 illustrates several examples of local transformations. 
Assuming the turtle starts at the state with position and orientation shown 

FIGURE 3.27 Transforming local coordinate axes. 

FIGURE 3.28 Various local transformations. 
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in the lefmost image, the remaining images show local translation by 
⟨2, 0⟩, local translation by ⟨0, 1⟩, and local rotation by 45°, each applied to 
the starting state. Observe in particular that a local rotation takes place 
around the center of an object (the origin of its local coordinate system), 
rather than around the world or global origin. 

Te concepts of local and global transformation are refected in every-
day language. For example, walking forwards, backwards, lef, or right, 
are examples of local translations that depend on the current orientation 
of a person's coordinate system: in other words, it matters which way the 
person is currently facing. If two people are facing in diferent directions, 
and they are both asked to step forward, they will move in diferent direc-
tions. If a global translation is specifed, which is typically done by refer-
encing the compass directions (north, south, east, and west), then you can 
be assured that people will walk in the same direction, regardless of which 
way they may have been facing at frst. 

Te question remains: how can matrix multiplication be used to per-
form local transformations (assuming that it is possible)? Before addressing 
this question, it will help to introduce a new concept. When transforming 
a set of points with a matrix, the points are multiplied by the matrix in 
the vertex shader and the new coordinates are passed along to the frag-
ment shader, but the new coordinates of the points are not permanently 
stored. Instead, the accumulated transformations that have been applied 
to an object are stored as the product of the corresponding matrices, which 
is a single matrix called the model matrix of the object. Te model matrix 
efectively stores the current location, orientation, and scale of an object 
(although it is slightly complicated to extract some of the information 
from the entries of the matrix). 

Given an object whose shape is defned by a set of points S, assume that 
a sequence of transformations have been applied and let M denote the cur-
rent model matrix of the object. Tus, the current location of the points of 
the object can be calculated by M·P, where P ranges over the points in the 
set S. Let T be the matrix corresponding to a transformation. If you were 
to apply this matrix as a global transformation, as described in previous 
sections, the new model matrix would be T·M, since each new matrix that 
is applied becomes the lefmost element in the product (just as functions 
are ordered in function composition). In order for the matrix T to have the 
efect of a local transformation on an object, the local coordinate axes of 
the object would have to be aligned with the global coordinate axes, which 
suggests the following three-step strategy: 
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1. Align the two sets of axes by applying M−1, the inverse of the model 
matrix. 

2. Apply T, since local and global transformations are the same when 
the axes are aligned. 

3. Apply M, the original model matrix, which returns the object to its 
previous state while taking the transformation T into account. (In a 
sense, it is as if the matrix M has been applied to transformation T, 
converting it from a global transformation to a local transformation.) 

Tis sequence of transformations is illustrated in Figure 3.29, where the 
images show an object with model matrix M (in this example, translation 
and then rotation by 45° was applied), the result of applying M −1 (reversing 
the rotation and then reversing the translation), the result of applying T (in 
this example, translation), and the result of applying M again (translating 
and rotating again). Te last image also shows the outline of the object in 
its original placement for comparison. 

At the end of this process, combining all these transformations, the 
model matrix has become M T  M  1 M (recall that matrices are applied ˜ ˜  − ˜ 
to a point from the right to the lef). Since M−1 ˜M I (the identity matrix), = 
this expression simplifes to M·T: the original model matrix M multiplied 
on the right by T. Tis is the answer to the question of interest. To sum-
marize, given an object with model matrix M and a transformation with 
matrix T: 

• To apply T as a global transformation, let the new model matrix 
equal T·M. 

• To apply T as a local transformation, let the new model matrix equal 
M·T. 

FIGURE 3.29 A sequence of global transformations equivalent to a local 
translation. 
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As you will see in later sections, being able to use local transformations 
will be useful when creating interactive three-dimensional scenes. For 
example, navigating within a scene feels more intuitive and immersive if 
one is able to move the virtual camera with local transformations. Te 
viewer might not always be aware of the direction of the z-axis, which 
could lead to unexpected motions when moving in global directions, but 
the viewer is always able to see what is in front of them, which makes mov-
ing forward more natural. 

3.3 A MATRIX CLASS 
Now that you have learned how to derive the various types of matrices that 
will be needed, the next step will be to create a Matrix class containing 
static methods to generate matrices (with the numpy library) correspond-
ing to each of the previously discussed geometric transformations: iden-
tity, translation, rotation (around each axis), scaling, and projection. To 
proceed, in the core folder, create a new fle named matrix.py contain-
ing the following code: 

import numpy 
from math import sin, cos, tan, pi 

class Matrix(object):

 @staticmethod
 def makeIdentity():

 return numpy.array( [[1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, 0], 
[0, 0, 0, 1]] ). 
astype(float) 

@staticmethod
 def makeTranslation(x, y, z):

 return numpy.array([[1, 0, 0, x],
 [0, 1, 0, y],
 [0, 0, 1, z], 
[0, 0, 0, 1]]). 
astype(float)

 @staticmethod
 def makeRotationX(angle): 

http:matrix.py
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 c = cos(angle)
 s = sin(angle)
 return numpy.array([[1, 0,  0, 0],

 [0, c, -s, 0],
 [0, s,  c, 0], 
[0, 0,  0, 1]]). 
astype(float)

 @staticmethod
 def makeRotationY(angle):

 c = cos(angle)
 s = sin(angle)
 return numpy.array([[ c, 0, s, 0],

 [ 0, 1, 0, 0],
 [-s, 0, c, 0], 
[ 0, 0, 0, 1]]). 
astype(float)

 @staticmethod
 def makeRotationZ(angle):

 c = cos(angle)
 s = sin(angle)
 return numpy.array([[c, -s, 0, 0],

 [s,  c, 0, 0],
 [0,  0, 1, 0], 
[0,  0, 0, 1]]). 
astype(float)

 @staticmethod
 def makeScale(s):

 return numpy.array([[s, 0, 0, 0],
 [0, s, 0, 0],
 [0, 0, s, 0], 
[0, 0, 0, 1]]). 
astype(float)

 @staticmethod
 def makePerspective(angleOfView=60, 

aspectRatio=1, near=0.1, far=1000):
 a = angleOfView * pi/180.0
 d = 1.0 / tan(a/2)
 r = aspectRatio 
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 b = (far + near) / (near - far)
 c = 2*far*near / (near - far)
 return numpy.array([[d/r, 0,  0, 0], 

[0, d,  0, 0], 
[0, 0,  b, c], 
[0, 0, -1, 0]]). 
astype(float) 

With this class completed, you are nearly ready to incorporate matrix-
based transformations into your scenes. 

3.4 INCORPORATING WITH GRAPHICS PROGRAMS 
Before creating the main application, the Uniform class needs to be 
updated to be able to store the matrices generated by the Matrix class. In 
GLSL, 4-by-4 matrices correspond to the data type mat4, and the corre-
sponding uniform data can be sent to the GPU with the following OpenGL 
command: 

glUniformMatrix4fv( variableRef, matrixCount, transpose, value ) 

Specify the value of the uniform variable referenced by the parameter 
variableRef in the currently bound program. Te number of matri-
ces is specifed by the parameter matrixCount. Te matrix data is 
stored as an array of vectors in the parameter value. OpenGL expects 
matrix data to be stored as an array of column vectors; if this is 
not the case (if data is stored as an array of row vectors), then the 
boolean parameter transpose should be set to the OpenGL constant 
GL_TRUE (which causes the data to be re-interpreted as rows) and 
GL_FALSE otherwise. 

In the fle uniform.py located in the core folder, add the following 
else-if condition at the end of the block of elif statements in the uplo-
adData function: 

elif self.dataType == "mat4":
    glUniformMatrix4fv(self.variableRef, 1, GL_TRUE, 

self.data) 

Since you will now be creating three-dimensional scenes, you will 
activate a render setting that performs depth testing (in case you later 

http:uniform.py
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choose to add objects which may obscure other objects). Tis (and other 
render settings) can be confgured by using the following two OpenGL 
functions: 

glEnable( setting ) 

Enables an OpenGL capability specifed by an OpenGL constant speci-
fed by the parameter setting. For example, possible constants include 
GL_DEPTH_TEST to activate depth testing, GL_POINT_SMOOTH 
to draw rounded points instead of square points, or GL_BLEND to 
enable blending colors in the color bufer based on alpha values. 

glDisable( setting ) 

Disables an OpenGL capability specifed by an OpenGL constant speci-
fed by the parameter setting. 

Finally, for completeness, we include the OpenGL function that allows you 
to confgure depth testing, previously mentioned in Section 3.2.4 on per-
spective projection. However, you will not change the function from its 
default setting, and this function will not be used in what follows. 

glDepthFunc( compareFunction ) 

Specify the function used to compare each pixel depth with the depth 
value present in the depth bufer. If a pixel passes the comparison 
test, it is considered to be currently the closest to the viewer, and 
its values overwrite the current values in the color and depth buf-
fers. Te function used is specifed by the OpenGL constant 
compareFunction, some of whose possible values include the default 
setting GL_LESS (indicating that a pixel is closer to the viewer if 
the depth value is less) and GL_GREATER (indicating that a pixel 
is closer if the depth value is greater). If depth testing has not been 
enabled, the depth test always passes, and pixels are rendered on top 
of each other according to the order in which they are processed. 

Now you are ready to create an interactive scene. Te frst new component 
will be the vertex shader code: there will be two uniform mat4 variables. 
One will store the model transformation matrix, which will be used to 
translate and rotate a geometric object. Te other will store the perspec-
tive transformation matrix, which will make objects appear smaller as 
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they move further away. To begin creating this scene, in your main direc-
tory, create a fle named test-3.py, containing the following code (the 
import statements will be needed later on): 

from core.base import Base 
from core.openGLUtils import OpenGLUtils 
from core.attribute import Attribute 
from core.uniform import Uniform 
from core.matrix import Matrix 
from OpenGL.GL import * 
from math import pi 

# move a triangle around the screen 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 ### initialize program ###
 vsCode = """
 in vec3 position;
 uniform mat4 projectionMatrix;
 uniform mat4 modelMatrix;
 void main()
 {

 gl_Position = projectionMatrix *
 modelMatrix * vec4(position, 1.0);

 }
 """

 fsCode = """
 out vec4 fragColor;
 void main()
 {

 fragColor = vec4(1.0, 1.0, 0.0, 1.0);
 }
 """

 self.programRef = OpenGLUtils.initializeProgram( 
vsCode, fsCode) 

http:OpenGL.GL
http:test-3.py
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Next, you will initialize attribute data for the vertices of an isosceles 
triangle, uniforms for the model and projection matrices, and variables to 
store the movement and rotation speed that will be applied to the triangle 
in the update function. To continue, return to the fle named test-3. 
py, and add the following code to the initialize function: 

### render settings ### 
glClearColor(0.0, 0.0, 0.0, 1.0) 
glEnable(GL_DEPTH_TEST) 

### set up vertex array object ### 
vaoRef = glGenVertexArrays(1) 
glBindVertexArray(vaoRef) 

### set up vertex attribute ### 
positionData = [ [0.0, 0.2, 0.0], [0.1, -0.2, 0.0], 

[-0.1, -0.2, 0.0] ] 
self.vertexCount = len(positionData) 
positionAttribute = Attribute("vec3", positionData) 
positionAttribute.associateVariable( self.programRef, 

"position" ) 

### set up uniforms ### 
mMatrix = Matrix.makeTranslation(0, 0, -1) 
self.modelMatrix = Uniform("mat4", mMatrix) 
self.modelMatrix.locateVariable( self.programRef, 

"modelMatrix" ) 

pMatrix = Matrix.makePerspective() 
self.projectionMatrix = Uniform("mat4", pMatrix) 
self.projectionMatrix.locateVariable( self.programRef, 

"projectionMatrix" ) 

# movement speed, units per second 
self.moveSpeed = 0.5 
# rotation speed, radians per second 
self.turnSpeed = 90 * (pi / 180) 

Next, you will turn your attention to creating an update function. Te 
frst step will be to calculate the actual amounts of movement that may be 
applied, based on the previously set base speed and the time elapsed since 



      

 
 
 

 
   

 
 

  

 

Matrix Algebra and Transformations ◾ 129 

the last frame (which is stored in the Base class variable deltaTime). In 
the fle test-3.py, add the following code: 

def update(self): 
# update data
 moveAmount = self.moveSpeed * self.deltaTime
 turnAmount = self.turnSpeed * self.deltaTime 

To illustrate the versatility of using matrices to transform objects, 
both global and local movement will be implemented. Next, there will 
be a large number of conditional statements, each of which follow the 
same pattern: check if a particular key is being pressed, and if so, cre-
ate the corresponding matrix m and multiply the model matrix by m in 
the correct order (m on the lef for global transformations and m on the 
right for local transformations). Note that while shaders use the operator 
'*' for matrix multiplication, numpy uses the operator '@' for matrix 
multiplication. For global translations, you will use the keys W/A/S/D 
for the up/lef/down/right directions and the keys Z/X for the forward/ 
backward directions. In the fle test-3.py, in the update function, 
add the following code: 

# global translation 
if self.input.isKeyPressed("w"):

 m = Matrix.makeTranslation(0, moveAmount, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("s"):
 m = Matrix.makeTranslation(0, -moveAmount, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("a"):
 m = Matrix.makeTranslation(-moveAmount, 0, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("d"):
 m = Matrix.makeTranslation(moveAmount, 0, 0)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("z"):
 m = Matrix.makeTranslation(0, 0, moveAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("x"):
 m = Matrix.makeTranslation(0, 0, -moveAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data 

http:test-3.py
http:test-3.py
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Rotation that makes the object appear to rotate lef and right from 
the viewer’s perspective is really a rotation around the z-axis in three-
dimensional space. Since the keys A/D move the object lef/right, you 
will use the keys Q/E to rotate the object lef/right, as they lay in the row 
directly above A/D. Since these keys will be used for a global rotation, 
they will cause the triangle to rotate around the origin (0,0,0) of the three-
dimensional world. Continuing on in the fle test-3.py, in the update 
function, add the following code: 

# global rotation (around the origin) 
if self.input.isKeyPressed("q"):

 m = Matrix.makeRotationZ(turnAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data 

if self.input.isKeyPressed("e"):
 m = Matrix.makeRotationZ(-turnAmount)
 self.modelMatrix.data = m @ self.modelMatrix.data 

Next, to incorporate local translation, you will use the keys I/J/K/L for 
the directions up/lef/down/right, as they are arranged in a similar lay-
out to the W/A/S/D keys. Continue by adding the following code to the 
update function: 

# local translation 
if self.input.isKeyPressed("i"):

 m = Matrix.makeTranslation(0, moveAmount, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m 

if self.input.isKeyPressed("k"):
 m = Matrix.makeTranslation(0, -moveAmount, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m 

if self.input.isKeyPressed("j"):
 m = Matrix.makeTranslation(-moveAmount, 0, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m 

if self.input.isKeyPressed("l"):
 m = Matrix.makeTranslation(moveAmount, 0, 0)
 self.modelMatrix.data = self.modelMatrix.data @ m 

You will use the keys U/O for local rotation lef/right, as they are in the 
row above the keys used local movement lef/right (J/L), analogous to the 
key layout for global transformations. Since these keys will refer to a local 
rotation, they will rotate the triangle around its center (where the world 
origin was located when the triangle was in its original position). 

http:test-3.py
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# local rotation (around object center) 
if self.input.isKeyPressed("u"):

 m = Matrix.makeRotationZ(turnAmount)
 self.modelMatrix.data = self.modelMatrix.data @ m 

if self.input.isKeyPressed("o"):
 m = Matrix.makeRotationZ(-turnAmount)
 self.modelMatrix.data = self.modelMatrix.data @ m 

Afer processing user input, the bufers need to be cleared before the 
image is rendered. In addition to clearing the color bufer, since depth 
testing is now being performed, the depth bufer should also be cleared. 
Uniform values need to be stored in their corresponding variables, and 
the glDrawArrays function needs to be called to render the triangle. 
To accomplish these tasks, at the end of the update function, add the 
following code: 

### render scene ### 
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ) 
glUseProgram( self.programRef ) 
self.projectionMatrix.uploadData() 
self.modelMatrix.uploadData() 
glDrawArrays( GL_TRIANGLES , 0 , self.vertexCount ) 

Finally, to run this application, the last lines of code need to instantiate 
the Test class and call the run function. At the end of the test-3.py 
fle, add the following code (with no indentation, as it is not part of the 
class or the update function): 

# instantiate this class and run the program 
Test().run() 

At this point, the application class is complete! Run the fle and you 
should see an isosceles triangle in the center of your screen. Press the key-
board keys as described previously to experience the diference between 
global and local transformations of an object. While the object is located 
at the origin, local and global rotations will appear identical, but when 
the object is located far away from the origin, the diference in rotation is 
more easily seen. Similarly, while the object is in its original orientation 
(its local right direction aligned with the positive x-axis), local and global 
translations will appear identical, but afer a rotation, the diference in the 
translations becomes apparent. 

http:test-3.py
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3.5 SUMMARY AND NEXT STEPS 
In this chapter, you learned about the mathematical foundations involved 
in geometric transformations. You learned about vectors and the opera-
tions of vector addition and scalar multiplication, and how any vector can 
be written as a combination of standard basis vectors using these opera-
tions. Ten, you learned about a particular type of vector function called 
a linear transformation, which naturally led to the defnition of a matrix 
and matrix multiplication. Ten, you learned how to create matrices rep-
resenting the diferent types of geometric transformations (scaling, rota-
tion, translation, and perspective projection) used in creating animated, 
interactive three-dimensional graphics applications. You also learned how 
a model matrix stores the accumulated transformations that have been 
applied to an object, and how this structure enables you to use matrices for 
both global and local transformations. Finally, all of this was incorporated 
into the framework being developed in this book. 

In the next chapter, you will turn your attention to automating many 
of these steps as you begin to create the graphics framework classes in 
earnest. 



 

 

 
 

 
 

 

  

  
   

CHAP T ER  4 

A Scene Graph 
Framework 

In this chapter, you will begin to create the structure of a three-
dimensional graphics framework in earnest. At the heart of the frame-

work will be a scene graph: a data structure that organizes the contents of 
a 3D scene using a hierarchical or tree-like structure. 

In the context of computer science, a tree is a collection of node objects, 
each of which stores a value and a list of zero or more nodes called child 
nodes. If a node A has a child node B, then node A is said to be the par-
ent node of node B. In a tree, each node has exactly one parent, with the 
exception of a special node called the root, from which all other nodes can 
be reached by a sequence of child nodes. Starting with any node N, the set 
of nodes that can be reached from a sequence of child nodes are called the 
descendants of N, while the sequence of parent nodes from N up to and 
including the root node are called the ancestors of N. An abstract example 
of a tree is illustrated in Figure 4.1, where nodes are represented by ovals 
labeled with the letters from A through G, and arrows point from a node 
to its children. In the diagram, node A is the root and has child nodes B, C, 
and D; node B has child nodes E and F; node D has child node G. Nodes E, 
F, and G do not have any child nodes. 

In a scene graph, each node represents a 3D object in the scene. As 
described previously, the current position, orientation, and scale of an 
object is stored in a matrix called the model matrix, which is calculated 
from the accumulated transformations that have been applied to the object. 
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FIGURE 4.1 A tree with seven nodes. 

For convenience, the position, orientation, and scale of an object will be 
collectively referred to as the transform of the object. Te model matrix 
stores the transform of an object relative to its parent object in the 
scene graph. Te transform of an object relative to the root of the scene 
graph, which is ofen called a world transformation, can be calculated 
from the product of the model matrix of the object and those of each 
of its ancestors. Tis structure enables complicated transformations to 
be expressed in terms of simpler ones. For example, the motion of the 
moon relative to the sun, illustrated in Figure 4.2 (gray dashed line), can 
be more simply expressed in terms of the combination of two circular 
motions: the moon relative to the Earth and the Earth relative to the sun 
(blue dotted line). 

A scene graph structure also allows for simple geometric shapes to be 
grouped together into a compound object that can then be easily trans-
formed as a single unit. For example, a simple model of a table may be 
created using a large, fat box shape for the top surface and four narrow, 
tall box shapes positioned underneath near the corners for the table legs, 
as illustrated by Figure 4.3. Let each of these objects be stored in a node, 
and all fve nodes share the same parent node. Ten, transforming the par-
ent node afects the entire table object. (It is also worth noting that each 
of these boxes may reference the same vertex data; the diferent sizes and 
positions of each may be set with a model matrix.) 

In the next section, you will learn about the overall structure of a scene 
graph-based framework, what the main classes will be, and how they 
encapsulate the necessary data and perform the required tasks to ren-
der a three-dimensional scene. Ten, in the following sections, you will 
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FIGURE 4.2 Motion of moon and Earth relative to sun. 

FIGURE 4.3 A table composed of fve boxes. 
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FIGURE 4.4 A scene containing multiple geometric shapes. 

implement the classes for the framework, building on the knowledge and 
code from earlier chapters. Te framework will enable you to rapidly create 
interactive scenes containing complex objects, such as the one illustrated 
in Figure 4.4. 

4.1 OVERVIEW OF CLASS STRUCTURE 
In a scene graph framework, the nodes represent objects located in a three-
dimensional space. Te corresponding class will be named Object3D 
and will contain three items: 

1. a matrix to store its transform data 

2. a list of references to child objects 

3. a reference to a parent object 

Many classes will extend the Object3D class, each with a diferent role 
in the framework. Te root node will be represented by the Scene class. 
Interior nodes that are only used for grouping purposes will be repre-
sented by the Group class. Nodes corresponding to objects that can be 
rendered will be represented by the Mesh class. Tere are other objects 
with 3D characteristics that afect the appearance of the scene but are 
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not themselves rendered. One such object is a virtual camera from whose 
point of view the scene will be rendered; this will be represented by the 
Camera class. Another such object is a virtual light source that afects 
shading and shadows; this will be represented by the Light class (but will 
not be created until Chapter 6). 

To keep the framework code modular, each mesh will consist of a 
Geometry class object and a Material class object. Te Geometry 
class will specify the general shape and other vertex-related properties, 
while the Material class will specify the general appearance of an object. 
Since each instance of a mesh stores a transformation matrix, multiple ver-
sions of a mesh (based on the same geometry and material data) can be 
rendered with diferent positions and orientations. Each mesh will also 
store a reference to a vertex array object, which associates vertex bufers 
(whose references will be stored by attribute objects stored in the geom-
etry) to attribute variables (specifed by shaders stored in the material). 
Tis will allow geometric objects to be reused and rendered with diferent 
materials in diferent meshes. 

Te Geometry class will mainly serve to store Attribute objects, 
which describe vertex properties, such as position and color, as seen in 
examples in prior chapters. In later chapters, geometric objects will also 
store texture coordinates, for applying images to shapes, and normal 
vectors, for use in lighting calculations. Tis class will calculate the total 
number of vertices, which is equal to the length of the data array stored in 
any attribute. Extensions of the Geometry class will be created to real-
ize each particular shape. In some cases, such as rectangles and boxes, 
the data for each attribute will be listed directly. For other shapes, such as 
polygons, cylinders, and spheres, the attribute data will be calculated from 
mathematical formulas. 

Te Material class will serve as a repository for three types of 
information related to the rendering process and the appearance of an 
object: shader code (and the associated program reference), Uniform 
objects, and render settings: the properties which are set by calling 
OpenGL functions, such as the type of geometric primitive (points, lines, 
or triangles), point size, line width, and so forth. Te base Material 
class will initialize dictionaries to store uniform objects and render set-
ting data, and will defne functions to perform tasks such as compiling the 
shader program code and locating uniform variable references. Extensions 
of this class will supply the actual shader code, a collection of uniform 
objects corresponding to uniform variables defned in the shaders, and a 
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collection of render setting variables applicable to the type of geometric 
primitive being rendered. 

A Renderer class will handle the general OpenGL initialization tasks 
as well as rendering the image. Te rendering function will require a scene 
object and a camera object as parameters. For each mesh in the scene graph, 
the renderer will perform the tasks necessary before the glDrawArrays 
function is called, including activating the correct shader program, bind-
ing a vertex array object, confguring OpenGL render settings, and send-
ing values to be used in uniform variables. Regarding uniform variables, 
there are three required by most shaders whose values are naturally stored 
outside the material: the transformation of a mesh, the transformation of 
the virtual camera used to view the scene, and the perspective transforma-
tion applied to all objects in the scene. While the uniform objects will be 
stored in the material for consistency, this matrix data will be copied into 
the corresponding uniform objects by the renderer before they send their 
values to the GPU. 

Now that you have an idea of the initial classes that will be used by the 
framework, it is time to begin writing the code for each class. 

4.2 3D OBJECTS 
Te Object3D class represents a node in the scene graph tree structure, 
and as such, it will store a list of references to child objects and a par-
ent object, as well as add and remove functions to update parent and 
child references when needed. In addition, each object stores transform 
data using a numpy matrix object and will have a function called get-
WorldMatrix to calculate the world transformation. When rendering 
the scene, the nodes in the tree will be collected into a list to simplify iter-
ating over the set of nodes; this will be accomplished with a function called 
getDescendantList. To implement this, in the core folder, create a 
new fle named object3D.py containing the following code: 

from core.matrix import Matrix 

class Object3D(object):

 def __init__(self):
 self.transform = Matrix.makeIdentity()
 self.parent = None
 self.children = [] 

http:object3D.py
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 def add(self, child):
 self.children.append(child)
 child.parent = self

 def remove(self, child):
 self.children.remove(child)
 child.parent = None

 # calculate transformation of this Object3D relative
 # to the root Object3D of the scene graph
 def getWorldMatrix(self):

 if self.parent == None:
 return self.transform

 else:
            return self.parent.getWorldMatrix() @ 

self.transform

 # return a single list containing all descendants
 def getDescendantList(self):

 # master list of all descendant nodes
 descendants = []
 # nodes to be added to descendant list,
 # and whose children will be added to this list
 nodesToProcess = [self]
 # continue processing nodes while any are left
 while len( nodesToProcess ) > 0:

 # remove first node from list
 node = nodesToProcess.pop(0)
 # add this node to descendant list
 descendants.append(node)

            # children of this node must also be 
processed

            nodesToProcess = node.children + 
nodesToProcess

 return descendants 

It will also be convenient for this class to contain a set of functions 
that translate, rotate, and scale the object by creating and applying the 
corresponding matrices from the Matrix class to the model matrix. 
Recall that each of these transformations can be applied as either a local 
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transformation or a global transformation, depending on the order in 
which the model matrix and the new transformation matrix are multi-
plied. (In this context, a global transformation means a transformation 
performed with respect to the coordinate axes of the parent object in the 
scene graph.) Tis distinction – whether a matrix should be applied as a 
local transformation – will be specifed with an additional parameter. To 
incorporate this functionality, add the following code to the Object3D 
class: 

# apply geometric transformations 
def applyMatrix(self, matrix, localCoord=True):

 if localCoord:
 self.transform = self.transform @ matrix

 else:
 self.transform = matrix @ self.transform 

def translate(self, x,y,z, localCoord=True):
 m = Matrix.makeTranslation(x,y,z)
 self.applyMatrix(m, localCoord) 

def rotateX(self, angle, localCoord=True):
 m = Matrix.makeRotationX(angle)
 self.applyMatrix(m, localCoord) 

def rotateY(self, angle, localCoord=True):
 m = Matrix.makeRotationY(angle)
 self.applyMatrix(m, localCoord) 

def rotateZ(self, angle, localCoord=True):
 m = Matrix.makeRotationZ(angle)
 self.applyMatrix(m, localCoord) 

def scale(self, s, localCoord=True):
 m = Matrix.makeScale(s)
 self.applyMatrix(m, localCoord) 

Finally, the position of an object can be determined from entries in the 
last column of the transform matrix, as discussed in the previous chap-
ter. Making use of this fact, functions to get and set the position of an 
object are implemented with the following code, which you should add to 
the Object3D class. Two functions are included to get the position of an 
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object: one which returns its local position (with respect to its parent), and 
one which returns its global or world position, extracted from the world 
transform matrix previously discussed. 

# get/set position components of transform 
def getPosition(self):

 return [ self.transform.item((0,3)), 
self.transform.item((1,3)),
 self.transform.item((2,3)) ] 

def getWorldPosition(self):
 worldTransform = self.getWorldMatrix()
 return [ worldTransform.item((0,3)), 

worldTransform.item((1,3)),
 worldTransform.item((2,3)) ] 

def setPosition(self, position):
 self.transform.itemset((0,3), position[0])
 self.transform.itemset((1,3), position[1])
 self.transform.itemset((2,3), position[2]) 

Te next few classes correspond to particular types of elements in the 
scene graph, and therefore, each will extend the Object3D class. 

4.2.1 Scene and Group 

Te Scene and Group classes will both be used to represent nodes in 
the scene graph that do not correspond to visible objects in the scene. Te 
Scene class represents the root node of the tree, while the Group class 
represents an interior node to which other nodes are attached to more 
easily transform them as a single unit. Tese classes do not add any func-
tionality to the Object3D class; their primary purpose is to make the 
application code easier to understand. 

In the core folder, create a new fle named scene.py with the 
following code: 

from core.object3D import Object3D 

class Scene(Object3D):

 def __init__(self):
 super().__init__() 

http:scene.py
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Ten, create a new fle named group.py with the following code. 

from core.object3D import Object3D 

class Group(Object3D):

 def __init__(self):
 super().__init__() 

4.2.2 Camera 

Te Camera class represents the virtual camera used to view the scene. 
As with any 3D object, it has a position and orientation, and this informa-
tion is stored in its transform matrix. Te camera itself is not rendered, 
but its transform afects the apparent placement of the objects in the ren-
dered image of the scene. Understanding this relationship is necessary to 
creating and using a Camera object. Fortunately, the key concept can be 
illustrated by a couple of examples. 

Consider a scene containing multiple objects in front of the camera, and 
imagine that the camera shifs two units to the lef. From the perspective 
of the viewer, all the objects in the scene would appear to have shifed two 
units to the right. In fact, these two transformations (shifing the camera 
lef versus shifing all world objects right) are equivalent, in the sense that 
there is no way for the viewer to distinguish between them in the rendered 
image. As another example, imagine that the camera rotates 45° clockwise 
about its vertical axis. To the viewer, this appears equivalent to all objects 
in the world having rotated 45° counterclockwise around the camera. 
Tese examples illustrate the general notion that each transformation of 
the camera afects the scene objects in the opposite way. Mathematically, 
this relationship is captured by defning the view matrix, which describes 
the placement of objects in the scene with respect to the camera, as the 
inverse of the camera’s transform matrix. 

As cameras are used to defne the position and orientation of the viewer, 
this class is also a natural place to store data describing the visible region 
of the scene, which is encapsulated by the projection matrix. Terefore, the 
Camera class will store both a view matrix and a projection matrix. Te 
view matrix will be updated as needed, typically once during each itera-
tion of the application main loop, before the meshes are drawn. To imple-
ment this class, in your core folder, create a new fle named camera.py 
with the following code: 

http:camera.py
http:group.py
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from core.object3D import Object3D 
from core.matrix import Matrix 
from numpy.linalg import inv 

class Camera(Object3D):

 def __init__(self, angleOfView=60, 
aspectRatio=1, near=0.1, far=1000):

 super().__init__()
        self.projectionMatrix = Matrix.makePerspective 

(angleOfView, aspectRatio, near, far)
 self.viewMatrix = Matrix.makeIdentity()

 def updateViewMatrix(self):
 self.viewMatrix = inv( self.getWorldMatrix() ) 

4.2.3 Mesh 

Te Mesh class will represent the visible objects in the scene. It will contain 
geometric data that specifes vertex-related properties and material data 
that specifes the general appearance of the object. Since a vertex array 
object links data between these two components, the Mesh class is also a 
natural place to create and store this reference, and set up the associations 
between vertex bufers and shader variables. For convenience, this class 
will also store a boolean variable used to indicate whether or not the mesh 
should appear in the scene. To proceed, in your core folder, create a new 
fle named mesh.py with the following code: 

from core.object3D import Object3D 
from OpenGL.GL import * 

class Mesh(Object3D):

 def __init__(self, geometry, material):
 super().__init__()

 self.geometry = geometry
 self.material = material

 # should this object be rendered?
 self.visible = True 

http:OpenGL.GL


      

   
  

  

   
 

  

 
 
 

  
 

 

 

 

 

144 ◾ Developing Graphics Frameworks with Python and OpenGL

 # set up associations between 
# attributes stored in geometry and 
# shader program stored in material
 self.vaoRef = glGenVertexArrays(1) 
glBindVertexArray(self.vaoRef)
 for variableName, attributeObject 

in geometry.attributes.items():
 attributeObject.associateVariable(
 material.programRef, variableName)

 # unbind this vertex array object
 glBindVertexArray(0) 

Now that the Object3D and the associated Mesh class have been 
created, the next step is to focus on the two main components of a 
mesh: the Geometry class and the Material class, and their various 
extensions. 

4.3 GEOMETRY OBJECTS 
Geometry objects will store attribute data and the total number of 
vertices. Te base Geometry class will defne a dictionary to store 
attributes, a function named addAttribute to simplify adding attri-
butes, a variable to store the number of vertices, and a function named 
countVertices that can calculate this value (which is the length of 
any attribute object's data array). Classes that extend the base class will 
add attribute data and call the countVertices function afer attri-
butes have been added. 

Since there will be many geometry-related classes, they will be orga-
nized into a separate folder. For this purpose, in your main folder, create a 
new folder called geometry. To create the base class, in the geometry 
folder, create a new fle called geometry.py with the following code: 

from core.attribute import Attribute 

class Geometry(object):

 def __init__(self):

 # Store Attribute objects,
 # indexed by name of associated variable in 

shader.
 # Shader variable associations set up later 

http:geometry.py
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 # and stored in vertex array object in Mesh.
 self.attributes = {}

 # number of vertices
 self.vertexCount = None

 def addAttribute(self, dataType, variableName, data):
        self.attributes[variableName] = Attribute 

(dataType, data)

 def countVertices(self):
 # number of vertices may be calculated from
 # the length of any Attribute object's array 

of data
 attrib = list( self.attributes.values() )[0]
 self.vertexCount = len( attrib.data ) 

Te next step is to create a selection of classes that extend the 
Geometry class that contain the data for commonly used shapes. Many 
applications can make use of these basic shapes or combine basic shapes 
into compound shapes by virtue of the underlying structure of the scene 
graph. 

In this chapter, these geometric objects will contain two attributes: 
vertex positions (which are needed for every vertex shader) and a default 
set of vertex colors. Until intermediate topics such as applying images to 
surfaces or lighting and shading are introduced in later chapters (along 
with their corresponding vertex attributes, texture coordinates, and nor-
mal vectors), vertex colors will be necessary to distinguish the faces of a 
three-dimensional object. For example, Figure 4.5 illustrates a cube with 
and without vertex colors applied; without these distinguishing features, 
a cube is indistinguishable from a hexagon. If desired, a developer can 
always change the default set of vertex colors in a geometric object by 
overwriting the array data in the corresponding attribute and calling its 
storeData function to resend the data to its bufer. 

4.3.1 Rectangles 

Afer a triangle, a rectangle is the simplest shape to render, as it is composed 
of four vertices grouped into two triangles. To provide fexibility when 
using this class, the constructor will take two parameters, the width and 
height of the rectangle, each with a default value of 1. Assuming that the 
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FIGURE 4.5 A cube rendered with (a) and without (b) vertex colors. 

rectangle is centered at the origin, this means that the vertex x and y coor-
dinates will be ±width / 2 and ±height / 2, as illustrated in Figure 4.6. (Te z 
coordinates will be set to 0°.) Also, with the points denoted by P0, P1, P2, 
P3 as shown in the diagram, they will be grouped into the triangles (P0, 
P1, P3) and (P0, P3, P2). Note that the vertices in each triangle are consis-
tently listed in counterclockwise order, as OpenGL uses counterclockwise 
ordering by default to distinguish between the front side and back side 
of a triangle; back sides of shapes are frequently not rendered in order to 
improve rendering speed. 

To implement this geometric shape, in the geometry folder, create 
a new fle called rectangleGeometry.py containing the following 
code: 

FIGURE 4.6 Vertex coordinates for a rectangle with width w and height h. 

http:rectangleGeometry.py
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from geometry.geometry import Geometry 

class RectangleGeometry(Geometry):

 def __init__(self, width=1, height=1):
 super().__init__()

 P0 = [-width/2, -height/2, 0]
 P1 = [ width/2, -height/2, 0]
 P2 = [-width/2,  height/2, 0]
 P3 = [ width/2,  height/2, 0]

        C0, C1, C2, C3 = [1,1,1], [1,0,0], [0,1,0], 
[0,0,1]

 positionData = [ P0,P1,P3, P0,P3,P2 ]
 colorData  = [ C0,C1,C3, C0,C3,C2 ]

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Note that the colors corresponding to the vertices, denoted by C0, C1, 
C2, C3, are listed in precisely the same order as the positions; this will cre-
ate a consistent gradient efect across the rectangle. Alternatively, to render 
each triangle with a single solid color, the color data array could have been 
entered as [C0,C0,C0, C1,C1,C1], for example. Although you are not 
able to create an application to render this data yet, when it can eventu-
ally be rendered, it will appear as shown on the lef side of Figure 4.7; the 
right side illustrates the alternative color data arrangement described in 
this paragraph. 

In the next few subsections, classes for geometric shapes of increasing 
complexity will be developed. At this point, you may choose to skip ahead 
to Section 4.4, or you may continue creating as many of the geometric 
classes below as you wish before proceeding. 

4.3.2 Boxes 

A box is a particularly simple three-dimensional shape to render. Although 
some other three-dimensional shapes (such as some pyramids) may have 
fewer vertices, the familiarity of the shape and the symmetries in the posi-
tions of its vertices make it a natural choice for a frst three-dimensional 
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FIGURE 4.7 Rendering RectangleGeometry with gradient coloring (a) and solid 
coloring (b). 

FIGURE 4.8 Vertices of a cube. 

shape to implement. A box has 8 vertices and 6 sides composed of 2 
triangles each, for a total of 12 triangles. Since each triangle is specifed 
with three vertices, the data arrays for each attribute will contain 36 ele-
ments. Similar to the Rectangle class just created, the constructor of the 
Box class will take three parameters: the width, height, and depth of the 
box, referring to lengths of the box edges parallel to the x-, y-, and z-axes, 
respectively. As before, the parameters will each have a default value of 1, 
and the box will be centered at the origin. Te points will be denoted P0 
through P7, as illustrated in Figure 4.8, where the dashed lines indicate 
parts of the lines which are obscured from view by the box. To more easily 
visualize the arrangement of the triangles in this shape, Figure 4.9 depicts 
an “unfolded” box lying in a fat plane, sometimes called a net diagram. 
For each face of the box, the vertices of the corresponding triangles will be 
ordered in the same sequence as they were in the Rectangle class. 
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FIGURE 4.9 Vertex arrangement of an unfolded cube. 

To aid with visualization, the vertices will be assigned colors (denoted 
C1–C6) depending on the corresponding face. Te faces perpendicular to 
the x-axis, y-axis, and z-axis will be tinted shades of red, green, and blue, 
respectively. Note that each of the vertices is present on three diferent 
faces: for instance, the vertex with position P7 is part of the right (x+) 
face, the top (y+) face, and the front (z+) face, and thus, each point will be 
associated with multiple colors, in contrast to the Rectangle class. To 
create this class, in the geometry folder, create a new fle called box-
Geometry.py containing the following code: 

from geometry.geometry import Geometry 

class BoxGeometry(Geometry):

 def __init__(self, width=1, height=1, depth=1): 
super().__init__()

 P0 = [-width/2, -height/2, -depth/2]
 P1 = [ width/2, -height/2, -depth/2]
 P2 = [-width/2,  height/2, -depth/2]
 P3 = [ width/2,  height/2, -depth/2]
 P4 = [-width/2, -height/2,  depth/2]
 P5 = [ width/2, -height/2,  depth/2]
 P6 = [-width/2,  height/2,  depth/2]
 P7 = [ width/2,  height/2,  depth/2]

        # colors for faces in order: x+, x-, y+, y-, 
z+, z-

C1, C2 = [1, 0.5, 0.5], [0.5, 0, 0] 

http:Geometry.py
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 C3, C4 = [0.5, 1, 0.5], [0, 0.5, 0]
 C5, C6 = [0.5, 0.5, 1], [0, 0, 0.5]

 positionData = [ P5,P1,P3,P5,P3,P7, P0,P4,P6,P0, 
P6,P2,P6,P7,P3,P6,P3,P2, 
P0,P1,P5,P0,P5,P4,P4,P5,P7, 
P4,P7,P6, P1,P0,P2,P1,P2,P3 ]

 colorData = [C1]*6 + [C2]*6 + [C3]*6 +
 [C4]*6 + [C5]*6 + [C6]*6

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Note the use of the list operators * to duplicate an array a given number 
of times and + to concatenate lists. Figure 4.10 illustrates how this box 
will appear from multiple perspectives once you are able to render it later 
in this chapter. 

4.3.3 Polygons 

Polygons (technically, regular polygons) are two-dimensional shapes 
such that all sides have the same length and all angles have equal mea-
sure, such as equilateral triangles, squares, pentagons, hexagons, and so 
forth. Te corresponding class will be designed so that it may produce a 
polygon with any number of sides (three or greater). Te coordinates of 
the vertices can be calculated by using equally spaced points on the cir-
cumference of a circle. A circle with radius R can be expressed with the 

FIGURE 4.10 Rendering BoxGeometry from multiple perspectives. 
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FIGURE 4.11 Calculating the vertices of a regular polygon. 

parametric equations x = R · cos ( )t  and y = R · sin ( )t . Note that these 
parametric equations also satisfy the implicit equation of a circle of radius 
R, x 2 + y2 = R2, which can be verifed with the use of the trigonomet-
ric identity sin  2 ( )t + cos 2 t = 1. Te key is to fnd the required values of ( )  
the angle t that correspond to these equally spaced points. Tis in turn is 
calculated using multiples of a base angle A, equal to 2π divided by the 
number of sides of the polygon being generated, as illustrated with a nona-
gon in Figure 4.11. 

Once it is understood how the vertices of a polygon can be calculated, 
one must also consider how the vertices will be grouped into triangles. 
In this case, each triangle will have one vertex at the origin (the center of 
the polygon) and two adjacent vertices on the circumference of the poly-
gon, ordered counterclockwise, as usual. In addition, the same three vertex 
colors will be repeated in each triangle for simplicity. To proceed, in the 
geometry folder, create a new fle called polygonGeometry.py with 
the following code: 

from geometry.geometry import Geometry 
from math import sin, cos, pi 

class PolygonGeometry(Geometry):

 def __init__(self, sides=3, radius=1):
 super().__init__()

 A = 2 * pi / sides
 positionData = [] 

http:polygonGeometry.py
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 colorData  = []

 for n in range(sides):
 positionData.append( [0, 0, 0] )
 positionData.append(

 [radius*cos(n*A), radius*sin(n*A), 0] )
 positionData.append( 

              [radius*cos((n+1)*A), radius*sin((n+1)*A), 
0] )

 colorData.append( [1, 1, 1] )
 colorData.append( [1, 0, 0] )
 colorData.append( [0, 0, 1] )

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Figure 4.12 illustrates a few diferent polygons that you will eventually 
be able to render with this class, with 3, 8, and 32 sides. Note that with 
sufciently many sides, the polygon closely approximates a circle. In fact, 
due to the discrete nature of computer graphics, it is not possible to ren-
der a perfect circle, and so this is how circular shapes are implemented in 
practice. 

For convenience, you may decide to extend the Polygon class to 
generate particular polygons with preset numbers of sides (or even a 
circle, as previously discussed), while still allowing the developer to 
specify a value for the radius, which will be passed along to the base 
class. For example, you could optionally create a Hexagon class with 
a fle in the geometry folder named hexagon.py containing the 
following code: 

FIGURE 4.12 Polygons with 3 sides, 8 sides, and 32 sides. 

http:hexagon.py
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from geometry.polygonGeometry import PolygonGeometry 
class HexagonGeometry(PolygonGeometry):

 def __init__(self, radius=1):
 super().__init__( sides=6, radius=radius ) 

4.3.4 Parametric Surfaces and Planes 

Similar to the two-dimensional polygons just presented, there are a variety 
of surfaces in three dimensions that can be expressed with mathematical 
functions. Te simplest type of surface arises from a function of the form 
z = f x y , but this is too restrictive to express many common surfaces, 
such as cylinders and spheres. Instead, each of the coordinates x, y, and 
z will be expressed by a function of two independent variables u and v. 
Symbolically, 

( ,  ) 

or, written in a diferent format, 

Generally, the variables u and v are limited to a rectangular domain such 
as 0 ˜ u ˜ 1 and 0 ˜ v ˜ 1, and thus, the function S can be thought of as 
transforming a two-dimensional square or rectangular region, embedding 
it in three-dimensional space. Te function S is called a parametric func-
tion. Graphing the set of output values (x, y, z) yields a surface that is said 
to be parameterized by the function S. Figure 4.13 depicts a rectangular 
region (subdivided into triangles) and the result of transforming it into the 
surface of a sphere or a cylinder. 

To incorporate this into the graphics framework you are creating, the 
frst step is to create a class that takes as inputs a parametric function 

( ,  , and the resolution— S u  v)  that defnes a surface, bounds for u and v
in this context, the number of sample values to be used between the u 

FIGURE 4.13 A rectangular region (a), transformed into a sphere (b) and a 
cylinder (c). 

x = =f u( ), ,v y  ,g u( )v z,   = h u( ),v

( )x y, ,z f= (   ,( )u v , g u( ), ,v h  ,( )u v   ,S u( )v=)
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and v bounds. With this data, the space between u and v coordinates 
(traditionally called deltaU and deltaV) can be calculated, and a set 
of points on the surface can be calculated and stored in a two-dimen-
sional array (called positions) for convenience. Finally, the vertex 
positions (and related vertex data, such as colors) must be grouped into 
triangles and stored in a dictionary of Attribute objects for use in the 
Geometry class. To accomplish this task, in your geometry folder, 
create a new fle named parametricGeometry.py containing the 
following code: 

from geometry.geometry import Geometry 

class ParametricGeometry(Geometry):
 def __init__(self, uStart, uEnd, uResolution, 
vStart, vEnd, vResolution, surfaceFunction):

 # generate set of points on function
 deltaU = (uEnd - uStart) / uResolution 
deltaV = (vEnd - vStart) / vResolution 
positions = []

 for uIndex in range(uResolution+1):
 vArray = []
 for vIndex in range(vResolution+1):

 u = uStart + uIndex * deltaU
 v = vStart + vIndex * deltaV
 vArray.append( surfaceFunction(u,v) )

 positions.append(vArray)

 # store vertex data
 positionData = []
 colorData  = []

 # default vertex colors
 C1, C2, C3 = [1,0,0], [0,1,0], [0,0,1]
 C4, C5, C6 = [0,1,1], [1,0,1], [1,1,0]

 # group vertex data into triangles
        # note: .copy() is necessary to avoid storing 

references
 for xIndex in range(uResolution):

 for yIndex in range(vResolution): 

http:parametricGeometry.py
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 # position data
 pA = positions[xIndex+0][yIndex+0]
 pB = positions[xIndex+1][yIndex+0]
 pD = positions[xIndex+0][yIndex+1]
 pC = positions[xIndex+1][yIndex+1]

                 positionData += [ pA.copy(), pB.copy(), 
pC.copy(), pA.copy(), pC.copy(), 

pD.copy() ]

 # color data
 colorData += [C1,C2,C3, C4,C5,C6]

        self.addAttribute("vec3", "vertexPosition", 
positionData)

        self.addAttribute("vec3", "vertexColor", 
colorData)

 self.countVertices() 

Te ParametricGeometry class should be thought of as an abstract 
class: it will not be instantiated directly; instead, it will be extended by 
other classes that supply specifc functions and variable bounds that yield 
diferent surfaces. Te simplest case is a plane, a fat surface that can be 
thought of as a subdivided rectangle, similar to the Rectangle class pre-
viously developed. Te equation for a plane (extending along the x and y 
directions, and where z is always 0) is 

S u( , v) = (u, v,  0 ) 

As was the case with the Rectangle class, the plane will be cen-
tered at the origin, and parameters will be included in the constructor 
to specify the width and height of the plane. Additional parameters will 
be included to allow the user to specify the resolution for the u and v 
variables, but given the more relevant variable names widthResolu-
tion and heightResolution. To create this class, create a new fle 
named planeGeometry.py in the geometry folder, containing the 
following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

class PlaneGeometry(ParametricGeometry): 

http:planeGeometry.py
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 def __init__(self, width=1, height=1,
 widthSegments=8, heightSegments=8):

 def S(u,v):
 return [u, v, 0]

        super().__init__( -width/2,  width/2, 
widthSegments, -height/2, height/2, 

heightSegments, S ) 

A plane geometry with the default parameter values above will appear 
as shown in Figure 4.14. 

4.3.5 Spheres and Related Surfaces 

Along with boxes, spheres are one of the most familiar three-dimensional 
shapes, illustrated on the lef side of Figure 4.15. In order to render a sphere 
in this framework, you will need to know the parametric equations of a 
sphere. For simplicity, assume that the sphere is centered at the origin and 
has radius 1. Te starting point for deriving this formula is the parametric 
equation of a circle of radius R, since the cross-sections of a sphere are 
circles. Assuming that cross-sections will be analyzed along the y-axis, let 

= ( ) and =  ·sin u , where 0 ̃ ˜u 2° . Te radius R of the cross-z R·cos u x R ( )  
section will depend on the value of y. For example, in the central cross-
section, when y = 0, the radius is R =1. At the top and bottom of the sphere 
(where y =1  and y =   –1), the cross-sections are single points, which can 
be considered as R = 0. Since the equations for x, y, and z must also satisfy 

2 2 2the implicit equation of a unit sphere, x + y + z = 1, you can substi-
tute the formulas for x and z into this equation and simplify to get the 
equation R2 + y2 = 1. Rather than solve for R as a function of y, it is more 
productive to once again use the parametric equations for a circle, let-
ting R = cos v  and y = sin v . For R and y to have the values previously ( )  ( )  

FIGURE 4.14 Plane geometry. 
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FIGURE 4.15 Sphere and ellipsoid. 

described, the values of v must range from –π / 2  to π /  2. Tis yields the 
full parameterization of the unit sphere: 

(x y , z) = (sin  ( )u ·cos  v , sin ( )v , cos  u ·cos ( )v,  ( )  ( ) ) 

For additional fexibility, you may scale the parametric equations for x, y, 
and z by diferent amounts, resulting in a shape called an ellipsoid, illus-
trated on the right side of Figure 4.15. Ten, a sphere can be considered as 
a special case of an ellipsoid, where the scaling amounts are equal along 
each direction. 

To implement these shapes, you will start with an ellipsoid. Te size 
parameters will be called width, height, and depth, and used in the same 
way as the corresponding parameters that defne the size of a box. In the 
geometry folder, create a new fle named ellipsoidGeometry.py, 
containing the following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

from math import sin, cos, pi 

class EllipsoidGeometry(ParametricGeometry):

 def __init__(self, width=1, height=1, depth=1, 
                radiusSegments=32, heightSegments=16):

 def S(u,v):
 return [  width/2 * sin(u) * cos(v), 

height/2 * sin(v),
 depth/2 * cos(u) * cos(v) ]

 super().__init__( 0, 2*pi, radiusSegments, 
-pi/2, pi/2, heightSegments, S ) 

http:ellipsoidGeometry.py
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Next, you will extend this class to create a sphere. In the geometry 
folder, create a new fle named sphereGeometry.py, containing the 
following code: 

from geometry.ellipsoidGeometry import 
EllipsoidGeometry 

from math import sin, cos, pi 

class SphereGeometry(EllipsoidGeometry):

 def __init__(self, radius=1, 
radiusSegments=32, heightSegments=16):

 super().__init__( 2*radius, 2*radius, 2*radius,
                          radiusSegments, 

heightSegments ) 

4.3.6 Cylinders and Related Surfaces 

As was the case for spheres, the starting point for deriving the equation of 
a cylinder (illustrated in Figure 4.16) is the parametric equation of a circle, 
since the cross-sections of a cylinder are also circles. For the central axis 
of the cylinder to be aligned with the y-axis, as illustrated in Figure 4.16, 
let z = R·cos( )  and x = R u 0 ̃ ˜uu   ·sin( ), where 2° . Furthermore, for the 
cylinder to have height h and be centered at the origin, you will use the 
parameterization: 

y = h·(v –  1/ 2 ), where 0 v˜ ˜1. 

Tis parameterization yields an “open-ended” cylinder or tube; the 
parameterization does not include top or bottom sides. Te data for these 
sides can be added from polygon geometries, modifed so that the circles 

FIGURE 4.16 Cylinder. 

http:sphereGeometry.py
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FIGURE 4.17 Triangular, hexagonal, and octagonal prisms. 

FIGURE 4.18 Cone and pyramid. 

are perpendicular to the y-axis and centered at the top and bottom of the 
cylinder. Tis requires additional code which will be described later. 

To approximate a circular cross-section, a large number of radial 
segments will typically be used. Choosing a signifcantly smaller number 
of radial segments will result in a solid whose cross-sections are clearly 
polygons: these three-dimensional shapes are called prisms, three of which 
are illustrated in Figure 4.17. Note that a square prism has the shape of a 
box, although due to the way the class is structured, it will contain more 
triangles and is aligned diferently: in the BoxGeometry class, the coor-
dinates were chosen so that the sides were perpendicular to the coordinate 
axes; a square prism will appear to have been rotated by 45° (around the 
y-axis) from this orientation. 

By generalizing the cylinder equations a bit more, you gain the ability 
to produce more three-dimensional shapes, as illustrated in Figure 4.18. 
For example, cones are similar to cylinders in that their cross-sections are 
circles, with the diference that the radius of each circle becomes smaller 
the closer the cross-section is to the top of the cylinder; the top is a single 
point, a circle with radius zero. Furthermore, by replacing the circular 
cross-sections of a cone with polygon cross-sections, the result is a pyra-
mid. Square pyramids may come to mind most readily, but one may con-
sider triangular pyramids, pentagonal pyramids, hexagonal pyramids, 
and so on. To provide maximum generality, the base class for all of these 
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shapes will include parameters where the radius at the top and the radius 
at the bottom can be specifed, and the radius of each cross-section will 
be linearly interpolated from these two values. In theory, this would even 
enable frustum (truncated pyramid) shapes to be created. 

To efciently code this set of shapes, the most general class will be 
named CylindricalGeometry, and the classes that extend it will be 
named CylinderGeometry, PrismGeometry, ConeGeometry, 
and PyramidGeometry. (To create a less common shape such as a frus-
tum, you can use the CylindricalGeometry class directly.) To begin, 
in the geometry folder, create a new fle named cylindricalGeom-
etry.py, containing the following code: 

from geometry.parametricGeometry import 
ParametricGeometry 

from math import sin, cos, pi 

class CylindricalGeometry(ParametricGeometry):

    def __init__(self, radiusTop=1, radiusBottom=1, 
height=1,

 radialSegments=32, heightSegments=4, 
closedTop=True, closedBottom=True):

 def S(u,v):
            return [ (v*radiusTop + (1-v)*radiusBottom) 

* sin(u), height * (v - 0.5),
 (v*radiusTop + (1-v)*radiusBottom) 

* cos(u) ]

 super().__init__( 0, 2*pi, radialSegments, 
0, 1, heightSegments, S ) 

Te most natural way to create a top and bottom for the cylinder is to 
use the data generated by the PolygonGeometry class. For the poly-
gons to be correctly aligned with the top and bottom of the cylinder, 
there needs to be a way to transform the vertex position data of a polygon. 
Furthermore, once the data has been transformed, all the attribute data 
from the polygon objects will need to be merged into the attribute data 
for the cylindrical object. Since these operations may be useful in multiple 
situations, functions to perform these tasks will be implemented in the 
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Geometry class. In the fle geometry.py in the geometry folder, 
add the following two functions: 

# transform the data in an attribute using a matrix 
def applyMatrix(self, matrix, 
variableName="vertexPosition"): 

oldPositionData = self.attributes[variableName].data
 newPositionData = []

 for oldPos in oldPositionData:
 # avoid changing list references
 newPos = oldPos.copy()
 # add homogeneous fourth coordinate
 newPos.append(1)
 # multiply by matrix
 newPos = matrix @ newPos
 # remove homogeneous coordinate
 newPos = list( newPos[0:3] )
 # add to new data list
 newPositionData.append( newPos )

    self.attributes[variableName].data = 
newPositionData

 # new data must be uploaded
 self.attributes[variableName].uploadData() 

# merge data from attributes of other geometry into 
this object; 

# requires both geometries to have attributes with 
same names 

def merge(self, otherGeometry):

    for variableName, attributeObject in self. 
attributes.items():
 attributeObject.data +=

             otherGeometry.attributes[variableName].data
 # new data must be uploaded
 attributeObject.uploadData()

 # update the number of vertices
 self.countVertices() 

http:geometry.py
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With these additions to the Geometry class, you can now use these 
functions as described above. In the fle cylindricalGeometry. 
py, add the following code to the initialization function, afer which the 
CylindricalGeometry class will be complete. 

if closedTop:
    topGeometry = PolygonGeometry(radialSegments, 

radiusTop)
 transform = Matrix.makeTranslation(0, height/2, 0) @

          Matrix.makeRotationY(-pi/2) @ Matrix. 
makeRotationX(-pi/2)

 topGeometry.applyMatrix( transform )
 self.merge( topGeometry ) 

if closedBottom:
   bottomGeometry = PolygonGeometry(radialSegments, 

radiusBottom)
 transform = Matrix.makeTranslation(0, -height/2, 0) @

         Matrix.makeRotationY(-pi/2) @ Matrix. 
makeRotationX(pi/2)

 bottomGeometry.applyMatrix( transform )
 self.merge( bottomGeometry ) 

To create cylinders, the same radius is used for the top and bottom, 
and the top and bottom sides will both be closed (present) or not. In the 
geometry folder, create a new fle named cylinderGeometry.py, 
containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 

class CylinderGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
                 radialSegments=32, heightSegments=4, 

closed=True):

 super().__init__(radius, radius, height, 
radialSegments, heightSegments,

 closed, closed) 

To create prisms, the parameter radialSegments is replaced by 
sides for clarity in this context. In the geometry folder, create a new 
fle named prismGeometry.py, containing the following code: 

http:prismGeometry.py
http:cylinderGeometry.py
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from geometry.cylindricalGeometry import 
CylindricalGeometry 
class PrismGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
sides=6, heightSegments=4, closed=True):

 super().__init__(radius, radius, height, 
                         sides, heightSegments, 

closed, closed) 

To create cones, the top radius will always be zero, and the top polygon 
side never needs to be rendered. In the geometry folder, create a new fle 
named coneGeometry.py, containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 
class ConeGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
                 radialSegments=32, heightSegments=4, 

closed=True):

 super().__init__(0, radius, height, 
radialSegments, heightSegments,

 False, closed) 

Finally, creating pyramids is similar to creating cones, and as was the 
case for prisms, the parameter radialSegments is replaced by sides 
for clarity in this context. In the geometry folder, create a new fle named 
pyramidGeometry.py, containing the following code: 

from geometry.cylindricalGeometry import 
CylindricalGeometry 
class PyramidGeometry(CylindricalGeometry):

 def __init__(self, radius=1, height=1, 
sides=4, heightSegments=4, 

closed=True):

 super().__init__(0, radius, height, 
sides, heightSegments, False, 
closed) 

http:pyramidGeometry.py
http:coneGeometry.py


      

   

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

164 ◾ Developing Graphics Frameworks with Python and OpenGL 

4.4 MATERIAL OBJECTS 
Material objects will store three types of data related to rendering: shader 
program references, Uniform objects, and OpenGL render settings. As 
was the case with the base Geometry class, there will be many extensions 
of the base Material class. For example, diferent materials will exist for 
rendering geometric data as a collection of points, as a set of lines, or as a 
surface. Some basic materials will implement vertex colors or uniform base 
colors, while advanced materials (developed in later chapters) will imple-
ment texture mapping, lighting, and other efects. Te framework will also 
enable developers to easily write customized shaders in applications. 

Te tasks handled by the base Material class will include 

• compiling the shader code and initializing the program 

• initializing dictionaries to store uniforms and render settings 

• defning uniforms corresponding to the model, view, and projection 
matrices, whose values are stored outside the material (in mesh and 
camera objects) 

• defne a method named addUniform to simplify creating and 
adding Uniform objects 

• defning a method named locateUniforms that determines and 
stores all the uniform variable references in the shaders 

• defning a method named setProperties that can be used to set 
multiple uniform and render setting values simultaneously from a 
dictionary (for convenience). 

Classes that extend this class will 

• contain the actual shader code 

• add any extra uniform objects required by the shaders 

• call the locateUniforms method once all uniform objects have 
been added 

• add OpenGL render settings (as Python variables) to the settings 
dictionary 

• implement a method named updateRenderSettings, which 
will call the OpenGL functions needed to confgure the render 
settings previously specifed. 
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4.4.1 Base Class 

Since there will be many extensions of this class, all the material-related 
classes will be organized into a separate folder. To this end, in your main 
folder, create a new folder called material. To create the base class, in 
the material folder, create a new fle called material.py with the 
following code: 

from core.openGLUtils import OpenGLUtils 
from core.uniform import Uniform 
from OpenGL.GL import * 

class Material(object):

    def __init__(self, vertexShaderCode, 
fragmentShaderCode):

        self.programRef = OpenGLUtils. 
initializeProgram(vertexShaderCode, 

fragmentShaderCode)

 # Store Uniform objects,
 # indexed by name of associated variable in  

shader.
 self.uniforms = {}

 
        # Each shader typically contains these  

uniforms;
 # values will be set during render process  

from Mesh/Camera.
        # Additional uniforms added by extending  

classes.
        self.uniforms["modelMatrix"]       =  

Uniform("mat4", None)
        self.uniforms["viewMatrix"]        =  

Uniform("mat4", None)
        self.uniforms["projectionMatrix"]  =  

Uniform("mat4", None)
 

 # Store OpenGL render settings, 
# indexed by variable name.

        # Additional settings added by extending  
classes. 

http:OpenGL.GL
http:material.py
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 self.settings = {}
 self.settings["drawStyle"] = GL_TRIANGLES

 def addUniform(self, dataType, variableName, data):
        self.uniforms[variableName] = 

Uniform(dataType, data)

 # initialize all uniform variable references
 def locateUniforms(self):

        for variableName, uniformObject in self. 
uniforms.items():
 uniformObject.locateVariable( 

self.programRef, variableName )

 # configure OpenGL with render settings
 def updateRenderSettings(self):

 pass

    # convenience method for setting multiple material 
"properties"

 # (uniform and render setting values) from a 
dictionary

 def setProperties(self, properties):
 for name, data in properties.items():

 # update uniforms
 if name in self.uniforms.keys():

 self.uniforms[name].data = data
 # update render settings
 elif name in self.settings.keys():

 self.settings[name] = data
 # unknown property type
 else:

 raise Exception( 
"Material has no property named: " + name) 

With this class completed, you will next turn your attention to creating 
extensions of this class. 

4.4.2 Basic Materials 

In this section, you will create an extension of the Material class, 
called BasicMaterial, which contains shader code and a set of 
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FIGURE 4.19 Rendering the six vertices of a Rectangle Geometry with a point 
material (a), line material (b), and surface material (c). 

corresponding uniforms. Te shaders can be used to render points, 
lines, or surfaces. Keeping modular design principles in mind, this 
class will in turn be extended into classes called PointMaterial, 
LineMaterial, and SurfaceMaterial, each of which will con-
tain the relevant OpenGL render settings for the corresponding type of 
geometric primitive. Figure 4.19 illustrates the results of rendering the 
six vertices of a Rectangle object with each of these types of materials 
using vertex colors. Note that since the bottom-lef vertex color has been 
changed to gray, it is visible against a white background and that the line 
material groups points into pairs and thus does not produce a full wire-
frame (although this will be possible with the surface material settings). 

Te shaders for the basic material will use two attributes: vertex 
positions and vertex colors. As before, attribute variables are designated 
with the type qualifer in. Te vertex color data will be sent from the ver-
tex shader to the fragment shader using the variable color. Te uniform 
variables used by the vertex shader will include the model, view, and pro-
jection matrices, as usual, which are used to calculate the fnal position 
of each vertex. Te two main options for coloring fragments are either 
to use interpolated vertex colors or to apply a single color to all vertices. 
To this end, there will be two additional uniform variables used by this 
shader. Te frst variable, baseColor, will be a vec3 containing a color 
applied to all vertices, with the default value (1,1,1), corresponding to 
white. Te second variable, useVertexColors, will be a boolean value 
that determines whether the data stored in the vertex color attribute will 
be applied to the base color. You do not need to include a boolean variable 
specifying whether base color should be used (in other words, there is no 
useBaseColor variable), because if the base color is lef at its default 
value of (1,1,1), then combining this with other colors (by multiplication) 
will have no efect. 
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To implement this basic material, in the material folder, create a new 
fle called basicMaterial.py with the following code: 

from material.material import Material 
from core.uniform import Uniform 

class BasicMaterial(Material):

 def __init__(self):

 vertexShaderCode = """
 uniform mat4 projectionMatrix;
 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix;
 in vec3 vertexPosition;
 in vec3 vertexColor;
 out vec3 color;

 void main()
 {

            gl_Position = projectionMatrix * 
viewMatrix * modelMatrix 
* vec4(vertexPosition, 1.0);

 color = vertexColor;
 }
 """

 fragmentShaderCode = """
 uniform vec3 baseColor;
 uniform bool useVertexColors;
 in vec3 color;
 out vec4 fragColor;

 void main()
 {

 vec4 tempColor = vec4(baseColor, 1.0);

 if ( useVertexColors )
 tempColor *= vec4(color, 1.0);

 fragColor = tempColor;
 }
 """ 

http:basicMaterial.py
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        super().__init__(vertexShaderCode, 
fragmentShaderCode)

        self.addUniform("vec3", "baseColor", [1.0, 
1.0, 1.0])

        self.addUniform("bool", "useVertexColors", 
False)

 self.locateUniforms() 

Next, the render settings (such as drawStyle) need to be specifed, 
and the updateRenderSettings function needs to be implemented. 
As previously mentioned, this will be accomplished with three classes that 
extend the BasicMaterial class. 

Te frst extension will be the PointMaterial class, which ren-
ders vertices as points. Recall that render setting values are stored in the 
dictionary object named settings with various keys: strings, such as 
"drawStyle". Te draw style is the OpenGL constant GL_POINTS. Te 
size of the points is stored with the key "pointSize". Te points may 
be drawn in a rounded style by setting the boolean variable with the key 
"roundedPoints" to True. Finally, the class constructor contains an 
optional dictionary object named properties that can be used to eas-
ily change the default values of any of these render settings or the previ-
ously discussed uniform values, using the function setProperties. 
To implement this class, in the material folder, create a new fle called 
pointMaterial.py with the following code: 

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import * 

class PointMaterial(BasicMaterial):

 def __init__(self, properties={}):
 super().__init__()

 # render vertices as points
 self.settings["drawStyle"] = GL_POINTS
 # width and height of points, in pixels
 self.settings["pointSize"] = 8
 # draw points as rounded
 self.settings["roundedPoints"] = False

 self.setProperties(properties) 

http:OpenGL.GL
http:pointMaterial.py


      

 

        

 

 

 

 
 

 

 

        

170 ◾ Developing Graphics Frameworks with Python and OpenGL

 def updateRenderSettings(self):

 glPointSize(self.settings["pointSize"])

 if self.settings["roundedPoints"]:
 glEnable(GL_POINT_SMOOTH)

 else:
 glDisable(GL_POINT_SMOOTH) 

Te second extension will be the LineMaterial class, which renders 
vertices as lines. In this case, there are three diferent ways to group ver-
tices: as a connected set of points, a loop (additionally connecting the last 
point to the frst), and as a disjoint set of line segments. Tese are speci-
fed by the OpenGL constants GL_LINE_STRIP, GL_LINE_LOOP, and 
GL_LINES, respectively, but for readability will be stored under the set-
tings dictionary key "lineType" with the string values "connected", 
"loop", or "segments". Te other render setting is the thickness or 
width of the lines, stored with the key "lineWidth". To implement this 
class, in the material folder, create a new fle called lineMaterial. 
py with the following code: 

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import * 

class LineMaterial(BasicMaterial):

 def __init__(self, properties={}):
 super().__init__()

        # render vertices as continuous line by 
default

 self.settings["drawStyle"] = GL_LINE_STRIP
 # line thickness
 self.settings["lineWidth"] = 1
 # line type: "connected" | "loop" | "segments"
 self.settings["lineType"] = "connected"

 self.setProperties(properties)

 def updateRenderSettings(self):

 glLineWidth(self.settings["lineWidth"]) 

http:OpenGL.GL
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        if self.settings["lineType"] == "connected":
            se�lf.settings["drawStyle"] = 

GL_LINE_STRIP 
        elif self.settings["lineType"] == "loop":
            self.settings["drawStyle"] = GL_LINE_LOOP
        elif self.settings["lineType"] == "segments":
            self.settings["drawStyle"] = GL_LINES
        else:
            ra�ise Exception("Unknown LineMaterial draw 

style.")

The third extension will be the SurfaceMaterial class, which 
renders vertices as a surface. In this case, the draw style is specified 
by the OpenGL constant GL_TRIANGLES. For rendering efficiency, 
OpenGL only renders the front side of triangles by default; the front 
side is defined to be the side from which the vertices appear to be 
listed in counterclockwise order. Both sides of each triangle can be 
rendered by changing the value stored with the key "doubleSide" 
to True. A  surface can be rendered in wireframe style by changing 
the value stored with the key "wireframe" to True, in which case 
the thickness of the lines may also be set as with line-based materi-
als with the dictionary key "lineWidth". The results of rendering a 
shape in wireframe style (with double-sided rendering set to False) are 
illustrated in Figure 4.20. To implement this class, in the material 
folder, create a new file called surfaceMaterial.py with the 
following code:

from material.basicMaterial import BasicMaterial 
from OpenGL.GL import *
 
class SurfaceMaterial(BasicMaterial):
 
    def __init__(self, properties={}):
        super().__init__()
 
        # render vertices as surface
        self.settings["drawStyle"] = GL_TRIANGLES
        # render both sides? default: front side only 
        #   (vertices ordered counterclockwise)
        self.settings["doubleSide"] = False
        # render triangles as wireframe?
        self.settings["wireframe"] = False

http:OpenGL.GL
http:surfaceMaterial.py
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FIGURE 4.20 Rendering a sphere with triangles and as a wireframe. 

# line thickness for wireframe rendering
 self.settings["lineWidth"] = 1

 self.setProperties(properties)

 def updateRenderSettings(self):

 if self.settings["doubleSide"]:
 glDisable(GL_CULL_FACE)

 else:
 glEnable(GL_CULL_FACE)

 if self.settings["wireframe"]:
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

 else:
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

 glLineWidth(self.settings["lineWidth"]) 

At this point, you have completed many geometry and material classes, 
which store all the information required to render an object. In the next 
section, you will create a class that uses this information in the process of 
rendering mesh objects. 

4.5 RENDERING SCENES WITH THE FRAMEWORK 
Te fnal class required in the framework at this stage is the Renderer 
class. When initialized, this class will perform general rendering tasks, 
including enabling depth testing, antialiasing, and setting the color used 
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when clearing the color bufer (the default background color). A function 
named render will take a Scene and a Camera object as input, and 
performs all of the rendering related tasks that you have seen in ear-
lier examples. Te color and depth bufers are cleared, and the camera’s 
view matrix is updated. Next, a list of all the Mesh objects in the scene 
is created by frst extracting all elements in the scene using the get-
DescendantList function and then fltering this list using the Python 
functions filter and isinstance. Ten, for each mesh that is visible, 
the following tasks need to be performed: 

• the shader program being used must be specifed 

• the vertex array object that specifes the associations between vertex 
bufers and shader variables must be bound 

• the values corresponding to the model, view, and projection matrices 
(stored in the mesh and camera) must be stored in the corresponding 
uniform objects 

• the values in all uniform objects must be uploaded to the GPU 

• render settings are applied via OpenGL functions as specifed in the 
updateRenderSettings function 

• the glDrawArrays function is called, specifying the correct draw 
mode and the number of vertices to be rendered. 

To continue, in the core folder, create a new fle called renderer.py 
with the following code: 

from OpenGL.GL import * 
from core.mesh import Mesh 

class Renderer(object):

 def __init__(self, clearColor=[0,0,0]):

 glEnable( GL_DEPTH_TEST )
 # required for antialiasing
 glEnable( GL_MULTISAMPLE )

        glClearColor(clearColor[0], clearColor[1], 
clearColor[2], 1)

 def render(self, scene, camera): 

http:OpenGL.GL
http:renderer.py
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 # clear color and depth buffers
        glClear(GL_COLOR_BUFFER_BIT | 

GL_DEPTH_BUFFER_BIT)

 # update camera view (calculate inverse)
 camera.updateViewMatrix()

 # extract list of all Mesh objects in scene
 descendantList = scene.getDescendantList()
 meshFilter = lambda x : isinstance(x, Mesh)

        meshList = list( filter( meshFilter, 
descendantList ) )

 for mesh in meshList:

 # if this object is not visible,
 # continue to next object in list
 if not mesh.visible:

 continue

 glUseProgram( mesh.material.programRef ) 

# bind VAO
 glBindVertexArray( mesh.vaoRef )

            # update uniform values stored outside of 
material

 mesh.material.uniforms["modelMatrix"].data =
 mesh.getWorldMatrix()

 mesh.material.uniforms["viewMatrix"].data =
 camera.viewMatrix

             mesh.material. 
uniforms["projectionMatrix"].data =

 camera.projectionMatrix

 # update uniforms stored in material
 for variableName, uniformObject in 

mesh.material.uniforms.items():
 uniformObject.uploadData()

 # update render settings
 mesh.material.updateRenderSettings() 
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            glDrawArrays( mesh.material. 
settings["drawStyle"], 0,

 mesh.geometry.vertexCount ) 

At this point, you are now ready to create an application using the 
graphics framework! Most applications will require at least seven classes 
to be imported: Base, Renderer, Scene, Camera, Mesh, and at least 
one geometry and one material class to be used in the mesh. Tis exam-
ple also illustrates how a scene can be rendered in a non-square window 
without distortion by setting the aspect ratio of the camera. (If using 
the default window size, this parameter is not necessary.) To create the 
application that consists of a spinning cube, in your main project folder, 
create a new fle named test-4-1.py, containing the following code: 

from core.base import Base 
from core.renderer import Renderer 
from core.scene  import Scene 
from core.camera import Camera 
from core.mesh  import Mesh 
from geometry.boxGeometry import BoxGeometry 
from material.surfaceMaterial import SurfaceMaterial 

# render a basic scene 
class Test(Base):

 def initialize(self):
 print("Initializing program...")

 self.renderer = Renderer()
 self.scene = Scene()
 self.camera = Camera( aspectRatio=800/600 )
 self.camera.setPosition( [0, 0, 4] )

 geometry = BoxGeometry()
        material = SurfaceMaterial( 

{"useVertexColors": True} )
 self.mesh = Mesh( geometry, material )
 self.scene.add( self.mesh )

 def update(self): 

http:test-4-1.py
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 self.mesh.rotateY( 0.0514 )
 self.mesh.rotateX( 0.0337 )
 self.renderer.render( self.scene, self.camera 

) 

# instantiate this class and run the program 
Test( screenSize=[800,600] ).run() 

Running this code should produce a result similar to that illustrated in 
Figure 4.21, where the dark background is due to the default clear color in 
the renderer being used. 

Hopefully, the frst thing you noticed about the application code was 
that it is quite short, and focuses on high-level concepts. Tis is thanks 
to all the work that went into writing the framework classes in this chap-
ter. At this point, you should try displaying the other geometric shapes 
that you have implemented to confrm that they appear as expected. In 
addition, you should also try out the other materials and experiment with 
changing the default uniform values and render settings. When using a 
dictionary to set more than one of these properties, using multiline for-
matting might make your code easier to read. For example, you could con-
fgure the material in the previous example using the following code: 

FIGURE 4.21 Rendering a spinning cube with the graphics framework classes. 
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FIGURE 4.22 Rendering a cube with alternate material properties. 

material = SurfaceMaterial({
 "useVertexColors": True,
 "wireframe": True,
 "lineWidth": 8 

}) 

Tis would produce a result similar to that shown in Figure 4.22. 
Before proceeding, it will be very helpful to create a template fle contain-

ing most of this code. To this end, in your main project folder, save a copy 
of the fle named test-4-1.py as a new fle named test-template. 
py, and comment out the two lines of code in the update function that 
rotate the mesh. 

Te remaining examples in this section will illustrate how to create cus-
tom geometry and custom material objects in an application. 

4.6 CUSTOM GEOMETRY AND MATERIAL OBJECTS 
Te frst example will demonstrate how to create a custom geometry object 
by explicitly listing the vertex data, similar to the geometry classes repre-
senting rectangles and boxes; the result will be as shown in Figure 4.23. 

http:test-4-1.py
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FIGURE 4.23 A custom geometry. 

To begin, create a copy of the fle test-template.py, save it as 
test-4-2.py. Whenever you want to create your own customized 
geometry, you will need to import the Geometry class. Terefore, add 
the following import statement at the top of the fle: 

from geometry.geometry import Geometry 

Next, replace the line of code where the geometry object is initialized 
with the following block of code: 

geometry = Geometry() 
P0 = [-0.1,  0.1, 0.0] 
P1 = [ 0.0,  0.0, 0.0] 
P2 = [ 0.1,  0.1, 0.0] 
P3 = [-0.2, -0.2, 0.0] 
P4 = [ 0.2, -0.2, 0.0] 
posData = [P0,P3,P1, P1,P3,P4, P1,P4,P2] 
geometry.addAttribute("vec3", "vertexPosition", 
posData) 
R = [1, 0, 0] 
Y = [1, 1, 0] 
G = [0, 0.25, 0] 
colData = [R,G,Y, Y,G,G, Y,G,R] 
geometry.addAttribute("vec3", "vertexColor", colData) 
geometry.countVertices() 

http:test-4-2.py
http:test-template.py
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FIGURE 4.24 A custom geometry with data generated from a function. 

With these changes, save and run your fle, and you should see a result 
similar to that in Figure 4.23. 

For all but the simplest models, listing the vertices by hand can be a 
tedious process, and so you may wish to generate vertex data using func-
tions. Te next example generates the image from Figure 4.24 from vertices 
generated along the graph of a sine function. Tis particular appearance is 
generated by drawing the same geometric data twice: once using a point-
based material and once using a line-based material. 

To begin, create a copy of the fle test-template.py and save it 
as test-4-3.py. As before, you will need to import the Geometry and 
Attribute classes; in addition, you will need the sin function from the 
math package, the arange function from numpy (to generate a range of 
decimal values), and the point-based and line-based basic material classes. 
Terefore, add the following import statements at the top of the fle: 

from geometry.geometry import Geometry 
from math import sin 
from numpy import arange 
from material.pointMaterial import PointMaterial 
from material.lineMaterial import LineMaterial 

Next, in the initialize function, delete the code in that function 
that occurs afer the camera position is set, replacing it with the following: 

geometry = Geometry() 
posData = [] 
for x in arange(-3.2, 3.2, 0.3):

 posData.append([x, sin(x), 0]) 
geometry.addAttribute("vec3", "vertexPosition", 

posData) 
geometry.countVertices() 

http:test-4-3.py
http:test-template.py
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pointMaterial = PointMaterial( 
{"baseColor": [1,1,0], "pointSize": 10} ) 

pointMesh = Mesh( geometry, pointMaterial ) 

lineMaterial = LineMaterial( {"baseColor": [1,0,1], 
"lineWidth": 4} ) 

lineMesh = Mesh( geometry, lineMaterial ) 

self.scene.add( pointMesh ) 
self.scene.add( lineMesh ) 

Note that vertex color data does not need to be generated, since the 
material’s base color is used when rendering. Save and run this fle, and 
the result will be similar to Figure 4.24. 

Next, you will turn your attention to customized materials, where the 
shader code, uniforms, and render settings are part of the application 
code. In the next example, you will color the surface of an object based 
on the coordinates of each point on the surface. In particular, you will 
take the fractional part of the x, y, and z coordinates of each point and use 
these for the red, green, and blue components of the color. Te fractional 
part is used because this is a value between 0 and 1, which is the range of 
color components. Figure 4.25 shows the efect of applying this shader to 
a sphere of radius 3. 

As before, create a copy of the fle test-template.py, this time sav-
ing it with the fle name test-4-4.py. Whenever you want to create your 
own customized material, you will need to import the Material class, 
and possibly also the OpenGL functions and constants. Terefore, add the 
following import statements at the top of your new application: 

from geometry.sphereGeometry import SphereGeometry 
from material.material import Material 

Next, in the initialize function, delete the code in that function 
that occurs afer the camera object is initialized, and replace it with the 
following code. Note that there are out and in variables named posi-
tion, which are used to transmit position data from the vertex shader to 
the fragment shader (which, as usual, is interpolated for each fragment). 
Additionally, to obtain the fractional part of each coordinate, the values are 
reduced modulo 1 using the GLSL function mod. In this example, uniform 
objects do not need to be created for the matrices, as this is handled by the 
Mesh class. 

http:test-4-4.py
http:test-template.py
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FIGURE 4.25 Coloring the surface of a sphere based on point coordinates. 

self.camera.setPosition( [0, 0, 7] ) 

geometry = SphereGeometry(radius=3) 

vsCode = """ 
in vec3 vertexPosition; 
out vec3 position; 
uniform mat4 modelMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 projectionMatrix; 
void main() 
{

 vec4 pos = vec4(vertexPosition, 1.0);
 gl_Position = projectionMatrix * viewMatrix * 

modelMatrix * pos;
 position = vertexPosition; 

} 
""" 

fsCode = """ 
in vec3 position; 
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out vec4 fragColor; 
void main() 
{

 vec3 color = mod(position, 1.0);
 fragColor = vec4(color, 1.0); 

} 
""" 

material = Material(vsCode, fsCode) 
material.locateUniforms() 

self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

It is easy to see the red and green color gradients on the rendered sphere, 
but not the blue gradient, due to the orientation of the sphere and the posi-
tion of the camera (looking along the z-axis). If desired, you may add code 
to the update function that will rotate this mesh around the y-axis, to 
get a fuller understanding of how the colors are applied across the surface. 

Te fnal example in this section will illustrate how to create animated 
efects in both the vertex shader and the fragment shader, using a custom 
material. Once again, you will use a spherical shape for the geometry. In 
the material’s vertex shader, you will add an ofset to the y-coordinate, 
based on the sine of the x-coordinate, and shif the displacement over 
time. In the material’s fragment shader, you will shif between the geom-
etry’s vertex colors and a shade of red in a periodic manner. A still image 
from this animation is shown in Figure 4.26. 

Create a copy of the fle test-template.py, and save it with the fle 
name test-4–5.py. Add the same import statements at the top of your 
new application as before: 

from geometry.sphereGeometry import SphereGeometry 
from material.material import Material 

In the initialize function, delete the code in that function that 
occurs afer the camera object is initialized, and replace it with the fol-
lowing code. Note that in this example, there is a uniform variable called 
time present in both the vertex shader and the fragment shader, for 
which a Uniform object will need to be created. Also note the creation of 
the Python variable self.time, which will be used to supply the value 
to the uniform later. 

http:test-4�5.py
http:test-template.py
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FIGURE 4.26 A sphere with periodic displacement and color shifing. 

self.camera.setPosition( [0, 0, 7] ) 

geometry = SphereGeometry(radius=3, 
radiusSegments=128, heightSegments=64) 

vsCode = """ 
uniform mat4 modelMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 projectionMatrix; 
in vec3 vertexPosition; 
in vec3 vertexColor; 
out vec3 color; 
uniform float time; 
void main() 
{
    float offset = 0.2 * sin(8.0 * vertexPosition.x + 

time); 
vec3 pos = vertexPosition + vec3(0.0, offset, 0.0); 
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    gl_Position = projectionMatrix * viewMatrix * 
modelMatrix *

 vec4(pos, 1);
 color = vertexColor; 

} 
""" 

fsCode = """ 
in vec3 color; 
uniform float time; 
out vec4 fragColor; 
void main() 
{

 float r = abs(sin(time));
 vec4 c = vec4(r, -0.5*r, -0.5*r, 0.0);
 fragColor = vec4(color, 1.0) + c; 

} 
""" 

material = Material(vsCode, fsCode) 
material.addUniform("float", "time", 0) 
material.locateUniforms() 

self.time = 0; 

self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

Finally, to produce the animated efect, you must increment and update 
the value of the time variable. In the update function, add the following 
code before the render function is called: 

self.time += 1/60 
self.mesh.material.uniforms["time"].data = self.time 

With these additions, this example is complete. Run the code and you 
should see an animated rippling efect on the sphere, as the color shifs 
back and forth from the red end of the spectrum. 

4.7 EXTRA COMPONENTS 
Now that you are familiar with writing customized geometric objects, 
there are a number of useful, reusable classes you will add to the frame-
work: axes and grids, to more easily orient the viewer. Following this, you 
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will create a movement rig, enabling you to more easily create interactive 
scenes by moving the camera or objects in the scene in an intuitive way. 

4.7.1 Axes and Grids 

At present, there is no easy way to determine one's orientation relative to 
the scene, or a sense of scale, within a three-dimensional scene built in 
this framework. One approach that can partially alleviate these issues is to 
create three-dimensional axis and grid objects, illustrated separately and 
together in Figure 4.27. 

For convenience, each of these objects will extend the Mesh class, and 
set up their own Geometry and Material within the class. Since they are 
not really of core importance to the framework, in order to keep the fle 
system organized, in your main project folder, create a new folder called 
extras. 

First, you will implement the object representing the (positive) coordi-
nate axes. By default, the x, y, and z axes will have length 1 and be rendered 
with red, green, and blue lines, using a basic line material, although these 
parameters will be able to be adjusted in the constructor. In the extras 
folder, create a new fle named axesHelper.py with the following code: 

from core.mesh import Mesh 
from geometry.geometry import Geometry 
from material.lineMaterial import LineMaterial 

class AxesHelper(Mesh):

 def __init__(self, axisLength=1, lineWidth=4, 
axisColors=[[1,0,0],[0,1,0],[0,0,1]] 

):

 geo = Geometry() 

FIGURE 4.27 Coordinate axes (a), a grid (b), and in combination (c). 

http:axesHelper.py
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 positionData = [[0,0,0], [axisLength,0,0], 
[0,0,0], [0,axisLength,0], 
[0,0,0], [0,0,axisLength]]

 colorData = [axisColors[0], axisColors[0],
 axisColors[1], axisColors[1],
 axisColors[2], axisColors[2]]

        geo.addAttribute("vec3", "vertexPosition", 
positionData)

        geo.addAttribute("vec3", "vertexColor", 
colorData)

 geo.countVertices()

 mat = LineMaterial({
 "useVertexColors": True, 
"lineWidth": lineWidth,
 "lineType":  "segments"

 })

 # initialize the mesh
 super().__init__(geo, mat) 

Next, you will create a (square) grid object. Settings that you will be 
able to customize will include the dimensions of the grid, the number 
of divisions on each side, the color of the grid lines, and a separate color 
for the central grid line. In the extras folder, create a new fle named 
gridHelper.py containing the following code: 

from core.mesh import Mesh 
from geometry.geometry import Geometry 
from material.lineMaterial import LineMaterial 

class GridHelper(Mesh):

    def __init__(self, size=10, divisions=10, 
gridColor=[0,0,0], centerColor=[0.5,0.5,0.5], 

lineWidth=1):

 geo = Geometry() 

http:gridHelper.py


      

        

        

 

        

 

 

 
 mat = LineMaterial({

 "useVertexColors": 1, 
"lineWidth": lineWidth,
 "lineType":  "segments"

 }) 
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 positionData = []
 colorData = []

 # create range of values
 values = []
 deltaSize = size/divisions
 for n in range(divisions+1):

 values.append( -size/2 + n * deltaSize )

 # add vertical lines
 for x in values:

 positionData.append( [x, -size/2, 0] )
 positionData.append( [x,  size/2, 0] )
 if x == 0:

 colorData.append(centerColor)
 colorData.append(centerColor)

 else:
 colorData.append(gridColor)
 colorData.append(gridColor)

 # add horizontal lines
 for y in values:

 positionData.append( [-size/2, y, 0] )
 positionData.append( [ size/2, y, 0] )
 if y == 0:

 colorData.append(centerColor)
 colorData.append(centerColor)

 else:
 colorData.append(gridColor)
 colorData.append(gridColor)

        geo.addAttribute("vec3", "vertexPosition", 
positionData)

        geo.addAttribute("vec3", "vertexColor", 
colorData)

 geo.countVertices()
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 # initialize the mesh
 super().__init__(geo, mat) 

Note that the grid will by default by parallel to the xy-plane. For it to 
appear horizontal, as in Figure 4.27, you could rotate it by 90° around the 
x-axis. In order to see how these classes are used in code, to produce an 
image like the right side of Figure 4.27, make a copy of the fle test-
template.py, and save it as test-4–6.py. First, in the beginning of 
this new fle, add the following import statements: 

from extras.axesHelper import AxesHelper 
from extras.gridHelper import GridHelper 
from math import pi 

Ten, in the initialize function, delete the code in that function 
that occurs afer the camera object is initialized, and replace it with the 
following code, which adds coordinate axes and a grid to the scene, and 
demonstrates use of some of the available customization parameters. 

self.camera.setPosition( [0.5, 1, 5] ) 

axes = AxesHelper(axisLength=2) 
self.scene.add( axes ) 

grid = GridHelper(size=20, gridColor=[1,1,1], 
centerColor=[1,1,0]) 
grid.rotateX(-pi/2) 
self.scene.add(grid) 

When running this test application, you should see axes and a grid as 
previously described. 

4.7.2 Movement Rig 

As the fnal topic in this chapter, you will learn how to create a movement 
rig: an object with a built-in control system that can be used to move the 
camera or other attached objects within a scene in a natural way, simi-
lar to the way person might move around a feld: moving forwards and 
backwards, lef and right (all local translations), as well as turning lef and 
right, and looking up and down. Here, the use of the verb “look” indicates 
that even if a person’s point of view tilts up or down, their movement is still 
aligned with the horizontal plane. Te only unrealistic movement feature 

http:test-4�6.py
http:template.py
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that will be incorporated will be that the attached object will also be able 
to move up and down along the direction of the y-axis (perpendicular to 
the horizontal plane). 

To begin, this class, which will be called MovementRig, naturally 
extends the Object3D class. In addition, to support the “look” feature, 
it will take advantage of the scene graph structure, by way of including 
a child Object3D; the move and turn motions will be applied to the base 
Object3D, while the look motions will be applied to the child Object3D 
(and thus the orientation resulting from the current look angle will have 
no efect on the move and turn motions). However, in order to properly 
attach objects to the movement rig (to the child object within the rig) will 
require the Object3D functions add and remove to be overridden. For 
convenience, the rate of each motion will be able to be specifed. To begin, 
in the extras folder, create a new fle named movementRig.py with 
the following code: 

from core.object3D import Object3D 

class MovementRig(Object3D):

    def __init__(self, unitsPerSecond=1, 
degreesPerSecond=60):

 # initialize base Object3D; controls movement 
# and turn left/right
 super().__init__()

        # initialize attached Object3D; controls look 
up/down

 self.lookAttachment = Object3D()
 self.children = [ self.lookAttachment ]
 self.lookAttachment.parent = self

 # control rate of movement
 self.unitsPerSecond = unitsPerSecond
 self.degreesPerSecond = degreesPerSecond

    # adding and removing objects applies to look 
attachment;

 # override functions from Object3D class 

http:movementRig.py


      

        

 
 
 
 
 
 
 
  
 
 
 
 
 
 

    

190 ◾ Developing Graphics Frameworks with Python and OpenGL

 def add(self, child):
 self.lookAttachment.add(child)

 def remove(self, child):
 self.lookAttachment.remove(child) 

Next, in order to conveniently handle movement controls, this class will 
have an update function that takes an Input object as a parameter, and if 
certain keys are pressed, transforms the movement rig correspondingly. In 
order to provide the developer the ability to easily confgure the keys being 
used, they will be assigned to variables in the class, and in theory, one could 
even disable certain types of motion by assigning the value None to any 
of these motions. Te default controls will follow the standard practice of 
using the "w" / "a" / "s" / "d" keys for movement forwards / lef / backwards / 
right. Te letters "q" and "e" will be used for turning lef and right, as they 
are positioned above the keys for moving lef and right. Movement up and 
down will be assigned to the keys “r” and “f”, which can be remembered 
with the mnemonic words "rise" and "fall", and "r" is positioned in the row 
above “f”. Finally, looking up and down will be assigned to the keys "t" and 
"g", as they are positioned adjacent to the keys for moving up and down. To 
implement this, in the—init—function, add the following code: 

# customizable key mappings 
# defaults: WASDRF (move), QE (turn), TG (look) 
self.KEY_MOVE_FORWARDS  = "w" 
self.KEY_MOVE_BACKWARDS = "s" 
self.KEY_MOVE_LEFT  = "a" 
self.KEY_MOVE_RIGHT = "d" 
self.KEY_MOVE_UP  = "r" 
self.KEY_MOVE_DOWN  = "f" 
self.KEY_TURN_LEFT  = "q" 
self.KEY_TURN_RIGHT = "e" 
self.KEY_LOOK_UP  = "t" 
self.KEY_LOOK_DOWN  = "g" 

Finally, in the MovementRig class, add the following function, which 
also calculates the amount of motion that should occur based on del-
taTime: the amount of time that has elapsed since the previous update. 

def update(self, inputObject, deltaTime): 
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 moveAmount = self.unitsPerSecond * deltaTime
 rotateAmount = self.degreesPerSecond *

 (3.1415926 / 180) * deltaTime

    if inputObject.isKeyPressed(self. 
KEY_MOVE_FORWARDS):
 self.translate( 0, 0, -moveAmount ) 

    if inputObject.isKeyPressed(self. 
KEY_MOVE_BACKWARDS):
 self.translate( 0, 0, moveAmount )

 if inputObject.isKeyPressed(self.KEY_MOVE_LEFT):
 self.translate( -moveAmount, 0, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_RIGHT):
 self.translate( moveAmount, 0, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_UP):
 self.translate( 0, moveAmount, 0 )

 if inputObject.isKeyPressed(self.KEY_MOVE_DOWN):
 self.translate( 0, -moveAmount, 0 )

 if inputObject.isKeyPressed(self.KEY_TURN_RIGHT):
 self.rotateY( -rotateAmount )

 if inputObject.isKeyPressed(self.KEY_TURN_LEFT):
 self.rotateY( rotateAmount )

 if inputObject.isKeyPressed(self.KEY_LOOK_UP):
 self.lookAttachment.rotateX( rotateAmount )

 if inputObject.isKeyPressed(self.KEY_LOOK_DOWN):
 self.lookAttachment.rotateX( -rotateAmount ) 

To see one way to use this class, in the previous application fle (test-
4–6.py), add the following import statement: 

from extras.movementRig import MovementRig 

Ten, in the initialize function, delete the line of code that sets the 
position of the camera, and add the following code instead: 

self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.rig.setPosition( [0.5, 1, 5] ) 
self.scene.add( self.rig ) 
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FIGURE 4.28 Multiple views of the coordinate axes and grid. 

Finally, in the update function, add the following line of code: 

self.rig.update( self.input, self.deltaTime ) 

When you run this application, it will initially appear similar to the right 
side of Figure 4.27. However, by pressing the motion keys as previously 
indicated, you should easily be able to view the scene from many diferent 
perspectives, some of which are illustrated in Figure 4.28. 

Another way the MovementRig class may be used is by adding a cube 
or other geometric object to the rig, instead of a camera. While the view 
from the camera will remain fxed, this approach will enable you to move 
an object around the scene in a natural way. 

4.8 SUMMARY AND NEXT STEPS 
Building on your knowledge and work from previous chapters, in this 
chapter, you have seen the graphics framework truly start to take shape. 
You learned about the advantages of a scene graph framework and began 
by developing classes corresponding to the nodes: Scene, Group, Camera, 
and Mesh. Ten, you created many classes that generate geometric data cor-
responding to many diferent shapes you may want to render: rectangles, 
boxes, polygons, spheres, cylinders, and more. You also created classes that 
enabled these objects to be rendered as collections of points, lines, or trian-
gulated surfaces. Afer learning how to render objects in this new frame-
work, you also learned how customized geometry or material objects can be 
created. Finally, you created some extra classes representing coordinate axes 
and grids, to help the viewer to have a sense of orientation and scale within 
the scene, and a movement rig class, to help the viewer interact with the 
scene, by moving the camera or other objects with a natural control scheme. 

In the next chapter, you will move beyond vertex colors and learn about 
textures: images applied to surfaces of objects, which can add realism and 
sophistication to your three-dimensional scenes. 



 

  

 

CHAP T ER  5 

Textures 

In many computer graphics applications, you will want to use 
textures: images applied to surfaces of geometric shapes in three-

dimensional scenes, such as Figure 5.1, which shows an image applied to a 
box to create the appearance of a wooden crate. Textures and some related 
concepts (such as UV coordinates) were briefy mentioned in Chapter 1. 

FIGURE 5.1 A wooden crate. 
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In this chapter, you will learn all the details necessary to use textures in 
your scenes, including creating a Texture class that handles uploading 
pixel data to the graphics processing unit (GPU), assigning UV coordi-
nates to geometric objects, associating textures to uniform variables, and 
sampling pixel data from a texture in a shader. Once you have learned the 
basics, you will learn how to create animated efects such as blending and 
distortion. In the last part of this chapter, there are some optional sections 
that introduce advanced techniques, such as procedurally generating tex-
tures, using text in scenes, rendering the scene to a texture, and applying 
postprocessing efects such as pixelation and vignette shading. In theory, 
textures may also be one-dimensional and three-dimensional, but the dis-
cussion in this chapter will be limited to two-dimensional textures. 

5.1 A TEXTURE CLASS 
In OpenGL, a texture object is a data structure that stores pixel data from 
an image. In addition, a texture object stores information about which 
algorithms to use to determine the colors of the surface the texture is 
being applied to; this requires some type of computation whenever the 
texture and the surface are diferent sizes. In this section, you will create 
a Texture class to more easily manage this information and perform 
related tasks, similar to the motivation for creating an Attribute class 
in Chapter 2. Working with textures involves some additional OpenGL 
functions, introduced and discussed in this section. 

Similar to the process for working with vertex bufers, you must frst 
identify an available texture name or reference, and bind it to a particu-
lar type of target. OpenGL functions that afect a texture in some way do 
not directly reference a particular texture object; they also contain a tar-
get parameter and afect the texture object currently bound to that target, 
similar to the use of glBindBuffer and GL_ARRAY_BUFFER when 
working with attributes. 

glGenTextures( textureCount ) 

Returns a set of nonzero integers representing available texture refer-
ences. Te number of references returned is specifed by the integer 
parameter textureCount. 

glBindTexture( bindTarget, textureRef ) 

Te texture referenced by the parameter textureRef is bound to the target 
specifed by the parameter bindTarget, whose value is an OpenGL 
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constant such as GL_TEXTURE_1D or GL_TEXTURE_2D (for 
one-dimensional and two-dimensional textures, respectively). 
Future OpenGL operations afecting the same bindTarget will be 
applied to the referenced texture. 

Another necessary task is to upload the corresponding pixel data to the 
GPU. In addition to the raw pixel data itself, there is additional informa-
tion required to parse this data, including the resolution (width and height) 
and precision (number of bits used in the components of each color) of 
the image. Some image formats (such as JPEG) do not support transpar-
ency, and thus, each pixel only stores three-component RGB values. Image 
formats that do support transparency (such as PNG) also store alpha 
values, and thus, each pixel stores four-component RGBA values. All of 
this information (and more) must be transmitted to the GPU along with 
the pixel data in order for it to be parsed properly; this is handled by the 
following OpenGL function: 

glTexImage2D( bindTarget, level, internalFormat, width, height, bor-
der, format, type, pixelData ) 

Create storage and upload pixelData for the texture currently bound 
to bindTarget. Te dimensions of the image are given by the integers 
width and height. Te parameter border is usually 0, indicating that 
the texture has no border. Te parameter level is usually 0, indicat-
ing this is the base image level in the associated mipmap image. Te 
other parameters describe how the image data is stored in memory. 
Te format of the data stored in pixelData and the desired format that 
should be used by the GPU are defned by the parameters format and 
internalFormat, respectively, and are specifed using OpenGL con-
stants such as GL_RGB or GL_RGBA. Te parameter type indicates 
the precision used for the color data and is ofen GL_UNSIGNED_ 
BYTE, indicating that 8 bits are used for each component. 

When applying a texture to a surface, the pixels of the texture (referred 
to as texels) are usually not precisely the same size as the pixels in the 
rendered image of the scene. If the texture is smaller than the area of the 
surface it is being applied to, then the texture needs to be scaled up, a pro-
cess called magnifcation. Tis requires an algorithm to determine a color 
for each pixel on the surface based on the colors of the texels. Te simplest 
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FIGURE 5.2 Original image (lef), magnifed using nearest neighbor (center) and 
bilinear (right) flters. 

algorithm is nearest neighbor fltering, which assigns the pixel the color 
of the closest texel; this will result in a blocky or pixelated appearance, 
as illustrated in Figure 5.2. Another algorithm is bilinear fltering, which 
interpolates the colors of the four closest texels (calculating a weighted 
average, similar to the rasterization process described in Chapters 1 and 
2); the result is a smoother appearance, also illustrated in Figure 5.2. 

If the texture is larger than the area of the surface it is being applied 
to, then the texture needs to be scaled down, a process called minifca-
tion. Afer minifcation, the texels will be smaller than the pixels; multiple 
texels will overlap each pixel. As before, an algorithm is required to deter-
mine the color of each pixel from the texture data. A nearest neighbor 
flter can be used, where the pixel color is set to the color of the texel whose 
center is closest to the center of the pixel, but this may cause unwanted 
visual artifacts. A linear flter can be used, where the pixel color is calcu-
lated from a weighted average of the colors of the texels overlapping the 
pixel, but if a very large number of texels correspond to each pixel, calcu-
lating this average can take a relatively large amount of time. A computer 
graphics technique called mipmapping provides a more efcient approach 
to this calculation. 

A mipmap is a sequence of images, each of which is half the width and 
height of the previous image; the fnal image in the sequence consists of a 
single pixel. A sample mipmap is illustrated in Figure 5.3. Te images in 
the sequence only need to be calculated once, when the original image is 
uploaded to the GPU. Ten, when a texture needs to be minifed, the GPU 
can select the image from the corresponding mipmap that is closest to the 
desired size, and perform linear fltering on that image, a much more ef-
cient calculation as it will involve only four texels. 

Mipmap images are generated using the following OpenGL function: 

glGenerateMipmap( bindTarget ) 

Generates a sequence of mipmap images for the texture currently bound 
to bindTarget. 



      

 

 

 

 

 

Textures ◾ 197 

FIGURE 5.3 Example of a mipmap. 

Te next function enables you to select the flters used for magnifcation 
and minifcation, as well as confgure other texture-related settings. 

glTexParameteri( bindTarget, parameterName, parameterValue ) 

Tis is a general-purpose function used to set parameter values for the 
texture currently bound to bindTarget. In particular, the parameter 
with the symbolic name specifed by the OpenGL constant param-
eterName is assigned the value specifed by the OpenGL constant 
parameterValue. 

For example, the magnifcation and minifcation flters are specifed by the 
OpenGL constants GL_TEXTURE_MAG_FILTER and GL_TEXTURE_ 
MIN_FILTER, respectively. Possible values for either include 

• GL_NEAREST, for nearest-neighbor fltering 

• GL_LINEAR, for linear fltering 

When performing minifcation, mipmap-based flter options are also 
available, such as 

• GL_NEAREST_MIPMAP_NEAREST, to select the closest mipmap 
and use nearest-neighbor fltering on it 

• GL_NEAREST_MIPMAP_LINEAR, to select the closest mipmap 
and use linear fltering on it 
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• GL_LINEAR_MIPMAP_LINEAR, to select the two closest mipmaps, 
use linear fltering on each, and then linearly interpolate between the 
two results 

Another use of the OpenGL function glTexParameteri relates to texture 
coordinates. Similar to the red, green, blue, and alpha components of a 
color, the components in texture coordinates range from 0 to 1. You can 
specify how to handle values outside this range by setting the parameters 
referenced by the OpenGL constants GL_TEXTURE_WRAP_S and 
GL_TEXTURE_WRAP_T. (You can think of (s, t) as an alternative nota-
tion for texture coordinates, which are typically written using the variables 
(u, v), although some distinguish (s, t) as surface coordinates that may extend 
beyond the range of texture coordinate values and must be projected into 
this range.) Some of the possible values for the wrap parameters are 

• GL_REPEAT: only the fractional part of the values are used (the 
integer parts are ignored), equivalent to reducing the values modulo 
1, creating a periodic, repeating pattern; this is the default setting. 

• GL_CLAMP_TO_EDGE: clamps values to the range from 0 to 1 
while avoiding sampling from the border color set for the texture. 

• GL_CLAMP_TO_BORDER: when values are outside the range from 
0 to 1, the value returned by sampling from a texture will be the 
border color set for the texture. 

Te efects of these wrap settings are illustrated in Figure 5.4. 
Finally, before creating the Texture class, it is important to understand 

how the Pygame package handles image data. In Pygame, an object called 
a surface represents images and stores pixel data. Surfaces can be created 

FIGURE 5.4 Texture wrap settings: repeat, clamp to edge, clamp to border. 
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by loading an image from a fle or by manipulating pixel data directly. 
Tere is also a useful surface method called tostring, which converts 
surface pixel data to a string bufer that can be used to upload data to 
the GPU. In this framework, you will always convert the surface data to a 
string bufer containing RGBA data, and therefore, the format and inter-
nalFormat parameters of the glTexImage2D function can always be set 
to GL_RGBA. 

With this knowledge, you are ready to implement the Texture 
class. In the core folder, create a new fle called texture.py with the 
following code: 

import pygame 
from OpenGL.GL import * 

class Texture(object):

 def __init__(self, fileName=None, properties={}):

 # pygame object for storing pixel data;
 # can load from image or manipulate directly
 self.surface = None

 # reference of available texture from GPU
 self.textureRef = glGenTextures(1)

 # default property values
 self.properties = {

 "magFilter" : GL_LINEAR,
 "minFilter" : GL_LINEAR_MIPMAP_LINEAR,
 "wrap"  : GL_REPEAT

 }

 # overwrite default property values
 self.setProperties(properties)

 if fileName is not None:
 self.loadImage(fileName)
 self.uploadData()

 # load image from file
 def loadImage(self, fileName):

 self.surface = pygame.image.load(fileName) 

http:OpenGL.GL
http:texture.py
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 # set property values
 def setProperties(self, props):

 for name, data in props.items():
 if name in self.properties.keys():

 self.properties[name] = data
 else: # unknown property type

 raise Exception(
                      "Texture has no property with 

name: " + name)

 # upload pixel data to GPU
 def uploadData(self):

 # store image dimensions
 width = self.surface.get_width()
 height = self.surface.get_height()

 # convert image data to string buffer
        pixelData = pygame.image.tostring(self. 

surface, "RGBA", 1)

        # specify texture used by the following 
functions

 glBindTexture(GL_TEXTURE_2D, self.textureRef)

 # send pixel data to texture buffer
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,

 width, height, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pixelData)

        # generate mipmap image from uploaded pixel 
data

 glGenerateMipmap(GL_TEXTURE_2D)

        # specify technique for magnifying/minifying 
textures

        glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_MAG_FILTER, 

self.properties["magFilter"] )
        glTexParameteri(GL_TEXTURE_2D, 

GL_TEXTURE_MIN_FILTER,
                          self.properties["minFilter"] ) 



      

 

 

 

 

  

 

Textures ◾ 201

 # specify what happens to texture coordinates 
# outside range [0, 1]

        glTexParameteri(GL_TEXTURE_2D, 
GL_TEXTURE_WRAP_S, 

self.properties["wrap"] )
        glTexParameteri(GL_TEXTURE_2D, 

GL_TEXTURE_WRAP_T,
 self.properties["wrap"] )

 # set default border color to white;
 # important for rendering shadows
 glTexParameterfv(GL_TEXTURE_2D, 

GL_TEXTURE_BORDER_COLOR, [1,1,1,1]) 

Note that the constructor for the class is designed so that creating a 
surface object from an image fle is optional; this allows for the possibility 
of creating a surface object by other means and assigning it to a texture 
object directly, which will be explored later in this chapter. 

5.2 TEXTURE COORDINATES 
Texture coordinates (also known as UV coordinates) are used to specify 
which points of an image correspond to which vertices of a geometric 
object. Each coordinate ranges from 0 to 1, with the point (0,0) corre-
sponding to the lower-lef corner of the image, and the point (1,1) cor-
responding to the upper-right corner of the image. Typically, these values 
are passed from the vertex shader to the fragment shader (automatically 
interpolated for each fragment), and then, the UV coordinates are used to 
select a point on the texture from which the color of the fragment will be 
generated. Figure 5.5 shows a sample image and two of the many diferent 

FIGURE 5.5 Texture coordinates used to apply an image (a) to a triangle (b, c). 
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FIGURE 5.6 Texture coordinates for a rectangle shape. 

ways that UV coordinates can be applied to the vertices of a triangle, in 
order to map diferent parts of the image to the triangle. 

Te next step will be to add a new attribute containing UV coordinates 
to the previously created geometry classes: rectangles, boxes, polygons, 
and parametric surfaces. Te shader code that will be created later in this 
chapter will access this data through a shader variable named vertexUV. 

5.2.1 Rectangles 

Te simplest class to add UV coordinates to is the Rectangle class. Te 
four vertices of the rectangle correspond to the four corners of a texture; 
coordinates will be assigned as shown in Figure 5.6. 

It will be important to keep in mind that UV coordinates for each ver-
tex need to be stored in a list in the same order as the vertex positions. In 
the fle rectangleGeometry.py in the geometry folder, add the fol-
lowing code to the initialization function: 

# texture coordinates 
T0, T1, T2, T3 = [0,0], [1,0], [0,1], [1,1] 
uvData = [ T0,T1,T3, T0,T3,T2 ] 
self.addAttribute("vec2", "vertexUV", uvData) 

At this point, this code cannot yet be tested. If you wish to test this code 
as soon as possible, you may skip ahead to Section 5.3 on using textures 
in shaders, or you may continue implementing UV coordinates for other 
geometric shapes in what follows. 

5.2.2 Boxes 

Since each of the six sides of a box is a rectangle, and the vertices were 
ordered in the same way, the code for adding UV coordinates to the 

http:rectangleGeometry.py
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BoxGeometry class is straightforward. In the fle boxGeometry. 
py in the geometry folder, add the following code to the initialization 
function: 

# texture coordinates 
T0, T1, T2, T3 = [0,0], [1,0], [0,1], [1,1] 
uvData = [ T0,T1,T3, T0,T3,T2 ] * 6 
self.addAttribute("vec2", "vertexUV", uvData) 

When you are able to render this shape with a grid texture later on in 
this chapter, it will appear similar to Figure 5.7. 

5.2.3 Polygons 

To apply a texture to a polygon without distorting the texture, you will 
use UV coordinates corresponding to the arrangement of the vertices of 
the polygon, efectively appearing to “cut out” a portion of the texture, as 
illustrated for various polygons in Figure 5.8. 

Recall that the vertices of the polygon are arranged around the circum-
ference of a circle centered at the origin with a user-specifed radius, and are 

FIGURE 5.7 Box geometry with grid texture applied. 
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FIGURE 5.8 Textured polygons with 3 sides, 8 sides, and 32 sides. 

parameterized by the sine and cosine functions. To stay within the range 
of UV coordinates (from 0 to 1), you will use a circle of radius 0.5, centered 
at the point (0.5, 0.5). To implement this, in the fle polygonGeometry. 
py in the geometry folder, add the following code immediately before 
the for loop: 

uvData = [] 
uvCenter = [0.5, 0.5] 

Within the for loop, add the following code: 

uvData.append( uvCenter ) 
uvData.append( [   cos(n*A)*0.5 + 0.5, 

sin(n*A)*0.5 + 0.5 ] ) 
uvData.append( [ cos((n+1)*A)*0.5 + 0.5, 

sin((n+1)*A)*0.5 + 0.5 ] ) 

Finally, following the for loop, add the following single line: 

self.addAttribute("vec2", "vertexUV", uvData) 

5.2.4 Parametric Surfaces 

Te positions of vertices on a parametric surface are calculated using a 
parametric function, which maps a two-dimensional rectangular region 
onto a surface in three-dimensional space. Terefore, UV coordinates can 
be generated by rescaling points in the domain of the parametric function 
to values in the domain of texture coordinates: from 0 to 1. Tis will be 
accomplished in a sequence of steps, similar to the process by which vertex 
positions were generated. Te frst step will be to generate UV coordinates 
for each point in the domain; these will be stored in a two-dimensional 
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list called uvs. Ten, this data will be grouped into triangles and stored 
in a two-dimensional list called uvData, which will be used for the 
corresponding attribute. 

To begin, in the fle parametricGeometry.py in the geometry 
folder, add the following code afer the for loop that generates data for 
the list named positions. Note that dividing each of the u and v index 
values by the corresponding resolution values produces a sequence of 
evenly spaced values between 0 and 1. 

uvs = [] 
uvData = [] 

for uIndex in range(uResolution+1):
 vArray = []
 for vIndex in range(vResolution+1):

 u = uIndex/uResolution
 v = vIndex/vResolution
 vArray.append( [u, v] )

 uvs.append(vArray) 

Next, to group this data into triangles, add the following code in the 
nested for loop that follows, afer the line of code where data is added to 
the colorData list. 

# uv coordinates 
uvA = uvs[xIndex+0][yIndex+0] 
uvB = uvs[xIndex+1][yIndex+0] 
uvD = uvs[xIndex+0][yIndex+1] 
uvC = uvs[xIndex+1][yIndex+1] 
uvData += [uvA,uvB,uvC, uvA,uvC,uvD] 

Finally, afer the code where the other attributes are created, add the 
following line of code: 

self.addAttribute("vec2", "vertexUV", uvData) 

Afer you are able to test this code, you will be able to create textured 
parametric surfaces, like those shown in Figure 5.9. No special modif-
cations need to be made to the CylindricalGeometry class, since 
the merge function used by that class copies all attributes from the 
PolygonGeometry objects used for the top and bottom sides, including 
the recently added UV coordinates. 

http:parametricGeometry.py
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FIGURE 5.9 A sphere, cone, and cylinder with grid image textures applied. 

5.3 USING TEXTURES IN SHADERS 
Once you have implemented UV coordinates for at least one geometric 
shape, the next step is to focus on adding shader code that supports this 
new functionality. Sampling refers to the process of calculating a color 
based on the information stored in a texture object; this calculation is 
performed by a texture unit, to which a texture object is assigned. To per-
form sampling in a shader program, you will use a uniform variable of 
type sampler2D, which stores a reference to a texture unit. You will 
also use the function texture2D, which takes a sampler2D and a vec-
tor (containing UV coordinates) as inputs, and performs the sampling 
calculation. 

Tere are a limited number of texture units available for use by a shader 
at any given time. In OpenGL 3.0 and above, there are a minimum of 16 
texture units available. Tis number may be greater for some systems 
depending on the implementation of OpenGL, but only 16 texture units 
are guaranteed to exist. It may be possible to create many more texture 
objects than this, depending on the size of the image data in each texture 
object and the storage capacity of the GPU. However, when rendering any 
particular geometric primitive, you may be limited to using the data from 
at most 16 of these texture objects, as they are accessed through the texture 
units. 

In order to work with multiple texture units (as you will later on in this 
chapter), you will need to use the following OpenGL function: 

glActiveTexture( textureUnitRef ) 

Activates a texture unit specifed by the parameter textureUnitRef; any 
texture objects that are bound using the function glBindTexture 
are assigned to the active texture unit. Te value of textureUnitRef 
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is an OpenGL constant GL_TEXTURE0, GL_TEXTURE1, 
GL_TEXTURE2, etc., with maximum value depending on the 
number of texture units supported by the particular OpenGL 
implementation. Tese constants form a consecutive set of inte-
gers, so that for any positive integer n, GL_TEXTUREn is equal to 
GL_TEXTURE0 + n. 

Due to the intermediate step of assigning the texture object to a texture 
unit that whose reference is stored in a shader variable, each Uniform 
object that represents a sampler2D will store a list in its data feld con-
taining the reference for the texture object, followed by the number of the 
texture unit to be used. Unlike texture object references, which must be 
generated by the OpenGL function glGenTextures, texture units may 
be chosen by the developer. In addition, you will need to use the previ-
ously discussed OpenGL function glUniform1i to upload the number 
of the texture unit (not the OpenGL constant) to the sampler2D variable. 
In other words, using the previously established notation, if the active tex-
ture unit is GL_TEXTUREn, then the integer n should be uploaded to the 
sampler2D variable. 

With this knowledge, you are ready to modify the Uniform class. In 
the fle uniform.py in the core directory, add the following code to the 
if statement block in the uploadData function: 

elif self.dataType == "sampler2D":
 textureObjectRef, textureUnitRef = self.data
 # activate texture unit
 glActiveTexture( GL_TEXTURE0 + textureUnitRef )
 # associate texture object reference to currently
 # active texture unit
 glBindTexture( GL_TEXTURE_2D, textureObjectRef )
 # upload texture unit number (0...15) to 
# uniform variable in shader
 glUniform1i( self.variableRef, textureUnitRef ) 

Since certain image formats (such as PNG images) use transparency, 
you will next make a few additions to the Renderer class to support 
this feature. Blending colors in the color bufer based on alpha values is 
enabled with the OpenGL function glEnable. Te formula used when 
blending colors needs to be specifed as well, with the use of the following 
OpenGL function: 

http:uniform.py
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glBlendFunc( sourceFactor, destinationFactor ) 

Specifes values to be used in the formula applied when blending an 
incoming “source” color with a “destination” color already present in 
the color bufer. Te components of the source and destination colors 
are multiplied by values specifed by the corresponding parameters, 
sourceFactor and destinationFactor. Te values of these parameters 
are calculated based on the specifed OpenGL constant, some pos-
sible values including GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ 
ALPHA, GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA, 
GL_ZERO, and GL_ONE. 

Te formula that will be used for blending will be a weighted average based 
on the alpha value of the source color. To implement this, in the fle ren-
derer.py in the core folder, add the following code to the initialization 
function: 

glEnable(GL_BLEND) 
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 

When using alpha blending, careful attention must be paid to the 
render order, as described in Chapter 1, in Section 1.2.4 on pixel process-
ing. Figure 5.10 illustrates an image of a circle applied to two rectangle 
geometries; the pixels of the image outside the circle are completely trans-
parent. Te top-lef circle is nearer to the camera than the bottom-right 
circle. Te lef side of the fgure shows the circles rendered correctly. Te 
right side of the fgure shows the result of rendering the front circle before 
the back circle: the transparent pixels of the front image are blended with 

FIGURE 5.10 Transparency rendering issues caused by render order. 

http:derer.py
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the background color and stored in the color bufer, and then, when the back 
image is processed later, the fragments that appear behind the front circle— 
including those behind transparent pixels—are automatically discarded, as 
they are a greater distance away from the camera. Tis causes part of the 
back circle to be incorrectly removed from the fnal rendered image. 

Te next step is to create an extension of the Material class that incor-
porates UV coordinates, a uniform sampler2D variable, and the GLSL 
function texture2D. Unlike the basic materials created in the previ-
ous chapter, which included point-based and line-based versions, the 
only material developed here will be a surface-based version. Terefore, 
there only needs to be a single class that will contain the shader code, add 
the Uniform objects, initialize the render settings, and implement the 
updateRenderSettings function. In addition, this material will not 
make use of the vertex color attribute, but will keep the base color uni-
form, which can be used to tint textures by a particular color. Tis shader 
will also include uniform variables repeatUV and offsetUV, which 
can be used to scale and translate UV coordinates, allowing textures to 
appear multiple times on a surface as illustrated by Figure 5.11. Finally, the 

FIGURE 5.11 Applying a repeated crate texture to a box geometry. 
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fragment shader will make use of the GLSL command discard, which 
will be used to stop processing fragments with small alpha values. Tis will 
automatically resolve some of the rendering issues previously described 
when the pixels are transparent, but not when the pixels are translucent 
(partially transparent). 

To implement this texture-supporting material, in the material 
folder, create a new fle named textureMaterial.py and add the 
following code: 

from material.material import Material 
from OpenGL.GL import * 
class TextureMaterial(Material):

 def __init__(self, texture, properties={}):

 vertexShaderCode = """
 uniform mat4 projectionMatrix;
 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix;
 in vec3 vertexPosition; 
in vec2 vertexUV;
 uniform vec2 repeatUV;
 uniform vec2 offsetUV;
 out vec2 UV;

 void main()
 {

            gl_Position = projectionMatrix * 
viewMatrix *

                 modelMatrix * vec4(vertexPosition, 
1.0);

 UV = vertexUV * repeatUV + offsetUV;
 }
 """

 fragmentShaderCode = """
 uniform vec3 baseColor;
 uniform sampler2D texture;
 in vec2 UV;
 out vec4 fragColor;

 void main()
 { 

http:OpenGL.GL
http:textureMaterial.py
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 vec4 color = vec4(baseColor, 1.0) *
 texture2D(texture, UV);

 if (color.a < 0.10)
 discard;

 fragColor = color;
 }
 """

        super().__init__(vertexShaderCode, 
fragmentShaderCode)

        self.addUniform("vec3", "baseColor", [1.0, 
1.0, 1.0])

 self.addUniform("sampler2D", "texture", 
[texture.textureRef, 1]) 

        self.addUniform("vec2", "repeatUV", [1.0, 
1.0])

        self.addUniform("vec2", "offsetUV", [0.0, 
0.0]) 

self.locateUniforms()

 # render both sides?
 self.settings["doubleSide"] = True
 # render triangles as wireframe?
 self.settings["wireframe"] = False
 # line thickness for wireframe rendering
 self.settings["lineWidth"] = 1

 self.setProperties(properties)

 def updateRenderSettings(self):

 if self.settings["doubleSide"]:
 glDisable(GL_CULL_FACE)

 else:
 glEnable(GL_CULL_FACE)

 if self.settings["wireframe"]:
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

 else:
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

 glLineWidth(self.settings["lineWidth"]) 
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With this class fnished, the graphics framework now supports texture 
rendering. 

5.4 RENDERING SCENES WITH TEXTURES 
At this point, you can now create applications where textures are applied 
to surfaces. For convenience, in the test-template.py fle you created 
in the last chapter, add the following two import statements. Tese corre-
spond to the new classes that you have created in this chapter, and will be 
used in many of the examples that follow. 

from core.texture import Texture 
from material.textureMaterial import TextureMaterial 

Your frst texture-based application will be a simple example—applying 
a grid image to a rectangle shape—to verify that the code entered up to this 
point works correctly. To continue to keep your codebase organized, in 
your main project folder, add a new folder named images; this is where 
all image fles will be stored. Te image fles used in this book will be avail-
able to download from an online project repository. Alternatively, you may 
replace the provided images with image fles of your own choosing. 

In your main project folder, make a copy of the fle test-template. 
py and name it test-5-1.py. In this new fle, change the position of the 
camera to (0, 0, 2) and replace the lines of code where the geometry and 
material variables are defned with the following code: 

geometry = RectangleGeometry() 
grid = Texture("images/grid.png") 
material = TextureMaterial(grid) 

When you run this application, you should see a result similar to that 
of Figure 5.12. 

As you have seen earlier in this chapter, the same image used in Figure 
5.12 can be applied to other surfaces, such as Spheres, Cones, and Cylinders, 
as seen in Figure 5.9; the result is that the image will appear stretched in 
some locations, and compressed in other locations. A spherical texture is 
an image that appears correctly proportioned when applied to a sphere; 
such an image will appear distorted in some areas (such as being stretched 
out near the top and bottom) when viewed as a rectangular image. One 
well-known example is a map of the Earth, illustrated on the lef side of 
Figure 5.13 and applied to a sphere on the right side of the fgure. 

http:test-5-1.py
http:test-template.py
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FIGURE 5.12 Texture applied to a rectangle. 

FIGURE 5.13 A spherical texture of the Earth’s surface (a), applied to a sphere (b). 

Spherical textures can be particularly useful in generating virtual 
environments. A skysphere is a spherical texture used to create a back-
ground in a three-dimensional scene. As the name suggests, the texture 
is applied to a large sphere that surrounds the virtual camera; the back 
sides of the triangles must be set to render. Te same concept can be used 
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FIGURE 5.14 Multiple views of a scene featuring a skysphere texture. 

to create backgrounds from textures based on other shapes; skybox and 
skydome textures are also frequently used in practice together with the cor-
responding shape. Te next application illustrates how to use a skysphere 
texture, combined with a large plane containing a repeating grass texture, 
and adds a MovementRig object to enable the viewer to look around the 
scene. Figure 5.14 shows the resulting scene, viewed from multiple angles: 
from lef to right, the camera rotates right and tilts upward. 

To implement this scene, make a copy of the fle test-template.py 
and name it test-5-2.py. Add the following import statements: 

from geometry.rectangleGeometry import 
RectangleGeometry 
from geometry.sphereGeometry import SphereGeometry 
from extras.movementRig import MovementRig 

In the initialize function, replace the code in 
that function starting from the line where the cam-
era position is set, with the following code: 

self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.scene.add( self.rig ) 
self.rig.setPosition( [0, 1, 4] ) 
skyGeometry = SphereGeometry(radius=50) 
skyMaterial = TextureMaterial( Texture("images/ 

sky-earth.jpg") ) 
sky = Mesh( skyGeometry, skyMaterial ) 
self.scene.add( sky ) 
grassGeometry = RectangleGeometry(width=100, 

height=100) 

http:test-5-2.py
http:test-template.py
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grassMaterial = TextureMaterial( Texture("images/ 
grass.jpg"), 

                                 {"repeatUV": 
[50,50]} ) 

grass = Mesh( grassGeometry, grassMaterial ) 
grass.rotateX(-3.14/2) 
self.scene.add( grass ) 

Finally, in the update function, add the following line of code: 

self.rig.update( self.input, self.deltaTime ) 

When you run this application, you can use the keyboard to navigate 
around the scene and see results similar to those in Figure 5.14. 

5.5 ANIMATED EFFECTS WITH CUSTOM SHADERS 
In this section, you will write some custom shaders and materials to create 
animated efects involving textures. In the frst example, you will create 
a rippling efect in a texture, by adding a sine-based displacement to the 
V component of the UV coordinates in the fragment shader. Te overall 
structure of the application will be similar to the applications involving 
custom materials from the previous chapter. Besides the use of the sin 
function, the other signifcant addition to the code is the inclusion of a 
uniform foat variable that stores the time that has elapsed since the appli-
cation began; this value will be incremented in the update function. 

To create this efect, make a copy of the fle test-template.py and 
name it test-5-3.py. Add the following import statements: 

from geometry.rectangleGeometry import 
RectangleGeometry 
from material.material import Material 

Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera position is set, with the following 
code: 

self.camera.setPosition( [0, 0, 1.5] ) 
vertexShaderCode = """ 
uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 modelMatrix; 

http:test-5-3.py
http:test-template.py
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in vec3 vertexPosition; 
in vec2 vertexUV; 
out vec2 UV; 

void main() 
{
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix *
 vec4(vertexPosition, 1.0);

 UV = vertexUV; 
} 
""" 
fragmentShaderCode = """ 
uniform sampler2D texture; 
in vec2 UV; 
uniform float time; 
out vec4 fragColor; 

void main() 
{
    vec2 shiftUV = UV + vec2(0, 0.2 * sin(6.0*UV.x + 

time));
 fragColor = texture2D(texture, shiftUV); 

} 
""" 
gridTex = Texture("images/grid.png") 
self.waveMaterial = Material(vertexShaderCode, 

fragmentShaderCode) 
self.waveMaterial.addUniform("sampler2D", "texture", 

[gridTex.textureRef, 1]) 
self.waveMaterial.addUniform("float", "time", 0.0) 

self.waveMaterial.locateUniforms() 
geometry = SphereGeometry(radius=0.5) 
self.mesh = Mesh( geometry, self.waveMaterial ) 
self.scene.add( self.mesh ) 

Finally, in the update function, add the following line of code: 

self.waveMaterial.uniforms["time"].data += self. 
deltaTime 

When you run this application, you should see an animated efect as 
illustrated in Figure 5.15. Note that in this and the following examples, 
the customized material is applied to a rectangle, but can just as easily be 
applied to other geometric shapes, with visually interesting results. 
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FIGURE 5.15 Images from an animated ripple efect on a grid texture. 

In the next example, you will cyclically blend between two diferent 
textures. Tis example also illustrates the importance of assigning texture 
objects to diferent texture units. Te main idea of this shader is to sample 
colors from both textures at each fragment, and then, linearly interpo-
late between these colors to determine the fragment color. Te amount 
of interpolation varies periodically between 0 and 1, calculated using the 
absolute value of the sine of the time that has elapsed since the application 
was started. 

Since this example is similar in structure to the previous example, 
make a copy of the fle test-5-3.py and name it test-5-4.py. In the 
initialize function, replace the code in that function, starting from 
the line where the fragment shader code is created, with the following 
code: 

fragmentShaderCode = """ 
uniform sampler2D texture1; 
uniform sampler2D texture2; 
in vec2 UV; 
uniform float time; 
out vec4 fragColor; 

void main() 
{

 vec4 color1 = texture2D(texture1, UV);
 vec4 color2 = texture2D(texture2, UV);
 float s = abs(sin(time));
 fragColor = s * color1 + (1.0 - s) * color2; 

} 
""" 
gridTex  = Texture("images/grid.png") 
crateTex = Texture("images/crate.png") 

http:test-5-4.py
http:test-5-3.py
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self.blendMaterial = Material(vertexShaderCode, 
fragmentShaderCode) 

self.blendMaterial.addUniform("sampler2D", "texture1",
 [gridTex.textureRef, 1]) 

self.blendMaterial.addUniform("sampler2D", "texture2",
 [crateTex.textureRef, 2]) 

self.blendMaterial.addUniform("float", "time", 0.0) 
self.blendMaterial.locateUniforms() 

geometry = RectangleGeometry() 
self.mesh = Mesh( geometry, self.blendMaterial ) 
self.scene.add( self.mesh ) 

Finally, in the update function, replace the line of code referencing the 
previous wave material with the following: 

self.blendMaterial.uniforms["time"].data += self. 
deltaTime 

When you run this application, you should see an animated efect as 
illustrated in Figure 5.16. 

In the fnal example in this section, you will again use two textures. One 
of these textures, shown in Figure 5.17, will be used to produce pseudo-
random values (also called noise) to distort a texture over time, as shown 
in Figure 5.18. Tese values are generated by sampling red, green, or blue 
values from the noise texture, whose colors appear to be a random pattern, 
but whose components change continuously throughout the image. In this 
shader, the distortion efect is created by continuously shifing the UV 
coordinates, using them to obtain values from the noise texture, and then, 
the fnal fragment color is sampled from the image texture at the original 
UV coordinates ofset by the noise value. 

FIGURE 5.16 Images from an animated blend efect between a crate texture and 
a grid texture. 
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FIGURE 5.17 A “noise” texture used to generate pseudo-random values. 

FIGURE 5.18 Images from an animated distortion efect applied to a grid texture. 

Once again, this example is similar in structure to the previous 
examples. To begin, make a copy of the fle test-5-3.py and name it 
test-5-5.py. In the initialize function, replace the code in that 
function, starting from the line where the fragment shader code is created, 
with the following code: 

fragmentShaderCode = """ 
uniform sampler2D noise; 
uniform sampler2D image; 

http:test-5-5.py
http:test-5-3.py
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in vec2 UV; 
uniform float time; 
out vec4 fragColor; 

void main() 
{

 vec2 uvShift = UV + vec2( -0.033, 0.07 ) * time;
 vec4 noiseValues = texture2D( noise, uvShift );
 vec2 uvNoise = UV + 0.4 * noiseValues.rg;
 fragColor = texture2D( image, uvNoise ); 

} 
""" 

noiseTex  = Texture("images/noise.png") 
gridTex = Texture("images/grid.png") 

self.distortMaterial = Material(vertexShaderCode, 
fragmentShaderCode) 

self.distortMaterial.addUniform("sampler2D", "noise",
 [noiseTex.textureRef, 1]) 

self.distortMaterial.addUniform("sampler2D", "image",
 [gridTex.textureRef, 2]) 

self.distortMaterial.addUniform("float", "time", 0.0) 
self.distortMaterial.locateUniforms() 

geometry = RectangleGeometry() 
self.mesh = Mesh( geometry, self.distortMaterial ) 
self.scene.add( self.mesh ) 

Finally, in the update function, replace the line of code referencing the 
previous wave material with the following: 

self.distortMaterial.uniforms["time"].data += self. 
deltaTime 

When you run this application, you should see an animated efect as 
illustrated in Figure 5.17. A shader such as this can be used to add realistic 
dynamic elements to an interactive three-dimensional scene. For exam-
ple, by applying this shader to a texture such as the water or lava textures 
shown in Figure 5.19, one can create a fuid-like appearance. 

http:noiseValues.rg
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5.6 PROCEDURALLY GENERATED TEXTURES 
A procedurally generated texture is a texture that is created using a 
mathematical algorithm, rather than using an array of pixels stored in 
an image fle. Procedural textures can yield noise textures (similar to 
Figure 5.17) and simulations of naturally occurring patterns such as clouds, 
water, wood, marble, and other patterns (similar to those in Figure 5.19). 

Te frst step in generating a noise texture is to create a function that can 
produce pseudo-random values in a shader. Tis can be accomplished by 
taking advantage of the limited precision of the fractional part of foating-
point numbers, which can be obtained using the GLSL function fract. 
While a function such as sin(x) is perfectly predictable, the output of the 
function ( ( )  is efectively random for generating images. fract 235,711·sin x )
With regard to the number that sin(x) is being multiplied by, only the mag-
nitude (and not the particular digits) is important. To produce random 
values across a two-dimensional region, one could defne a similar func-
tion, such as fract 235,711·sin 14.337·  ( ( x + 42.418· y)). 

Next, you will create a sample application with a custom material that 
illustrates how this function can be used in a shader. To begin, make a 
copy of the fle test-template.py and name it test-5–6.py. Add 
the following import statements: 

from geometry.rectangleGeometry import 
RectangleGeometry 

from material.material import Material 

FIGURE 5.19 Water and lava textures. 

http:test-5�6.py
http:test-template.py
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Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera position is set, with the following 
code. Note that this code contains the frst example of a function defned 
in GLSL, in this case the random function defned in the fragment shader. 

self.camera.setPosition( [0, 0, 1.5] ) 

vsCode = """ 
uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 modelMatrix; 
in vec3 vertexPosition; 
in vec2 vertexUV; 
out vec2 UV; 

void main() 
{

 vec4 pos = vec4(vertexPosition, 1.0);
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix * pos;
 UV = vertexUV; 

} 
""" 

fsCode = """ 
// return a random value in [0, 1] 
float random(vec2 UV) 
{
    return fract(235711.0 * sin(14.337*UV.x + 

42.418*UV.y)); 
} 

in vec2 UV; 
out vec4 fragColor; 
void main() 
{

 float r = random(UV);
 fragColor = vec4(r, r, r, 1); 

} 
""" 

material = Material(vsCode, fsCode) 
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material.locateUniforms() 

geometry = RectangleGeometry() 
self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

When you run this example, it will produce an image similar to the one 
illustrated in Figure 5.20, where the random value generated from the UV 
coordinates at each fragment are used for the red, green, and blue com-
ponents of the fragment color, yielding a shade of gray. Te overall image 
resembles the static pattern seen on older analog televisions resulting from 
weak broadcasting signals. 

For the applications that follow, this texture is actually too random. 
Te next step will be to scale up and round the UV coordinates used as 
inputs for the random function, which will produce a result similar to the 
lef side of Figure 5.21, in which the corners of each square correspond to 
points whose scaled UV coordinates are integers, and the color of each 
square corresponds to the random value at the lower-lef corner. Next, 
the random value (and thus the color) at each point will be replaced with 

FIGURE 5.20 A randomly generated texture. 
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FIGURE 5.21 Scaled and smoothed random textures. 

a weighted average of the random values at the vertices of the square in 
which the point is contained, thus producing a smoothed version of the lef 
side of Figure 5.21, illustrated on the right side of Figure 5.21. Te GLSL 
function mix will be used to linearly interpolate the two values at the bot-
tom corners of each square, followed by interpolating the values at the top 
corners of each square and then interpolating these results. 

To produce these images, frst add the following functions to the code 
in the fragment shader: 

float boxRandom(vec2 UV, float scale) 
{

 vec2 iScaleUV = floor(scale * UV);
 return random(iScaleUV); 

} 

float smoothRandom(vec2 UV, float scale) 
{

 vec2 iScaleUV = floor(scale * UV);
 vec2 fScaleUV = fract(scale * UV);
 float a = random(iScaleUV);
 float b = random(round(iScaleUV + vec2(1, 0)));
 float c = random(round(iScaleUV + vec2(0, 1)));
 float d = random(round(iScaleUV + vec2(1, 1)));
 return mix( mix(a, b, fScaleUV.x), 

mix(c, d, fScaleUV.x),
 fScaleUV.y ); 

} 

Ten, to produce the image on the lef of Figure 5.21, in the main func-
tion in the fragment shader, replace the line of code where the variable r is 
declared with the following. 
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float r = boxRandom(UV, 6); 

To produce the image on the right side of Figure 5.21, replace this line 
of code with the following. 

float r = smoothRandom(UV, 6); 

To produce a grayscale noise texture similar to that in Figure 5.17, you 
will combine a sequence of images similar to those shown on the right 
side of Figure 5.21; such a sequence is illustrated in Figure 5.22. Te scale 
of the UV coordinates in each image in the sequence are doubled, result-
ing in square regions whose dimensions are half those from the previous 
image. Te randomly generated values will be scaled by half at each stage 
as well, so that the fner details will contribute a proportional amount to 
the accumulated total. As this process is reminiscent of fractals—shapes 
that contain the same pattern at diferent scales—this function for gener-
ating random values will be called fractalRandom. Te fnal texture 
generated by this function is illustrated in Figure 5.23. 

FIGURE 5.22 A sequence of scaled and smoothed random textures. 

FIGURE 5.23 Fractal noise produced from combining images from Figure 5.22. 
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To produce the image in Figure 5.23, frst add the following function to 
the code in the fragment shader: 

// add smooth random values at different scales 
// weighted (amplitudes) so that sum is 

approximately 1.0 
float fractalRandom(vec2 UV, float scale) 
{

 float value = 0.0;
 float amplitude = 0.5;

 for (int i = 0; i < 6; i++) 
{

 value += amplitude * smoothRandom(UV, scale);
 scale *= 2.0;
 amplitude *= 0.5;

 }

 return value; 
} 

Ten, in the main function in the fragment shader, replace the line of 
code where the variable r is declared with the following. 

float r = fractalRandom(UV, 4); 

While many other methods exist for producing random values, such 
as the Perlin noise and cellular noise algorithms, the functions here will 
be sufcient for our purposes. Te next step will be to use these functions 
to produce random images simulating textures found in nature, such as 
those illustrated in Figure 5.24, which are meant to resemble clouds, lava, 
marble, and wood. 

FIGURE 5.24 Procedurally generated textures: clouds, lava, marble, wood. 
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All of the examples from Figure 5.24 are generated by mixing two 
diferent colors, where the amount of interpolation is determined in part 
or in whole by the fractalRandom function. To create the cloud image, 
replace the code in the fragment shader with the following: 

// clouds 
float r = fractalRandom(UV, 5); 
vec4 color1 = vec4(0.5, 0.5, 1, 1); 
vec4 color2 = vec4(1, 1, 1, 1); 
fragColor = mix( color1, color2, r ); 

To create the lava image, replace the code in the fragment shader with 
the following. Notice that the fner level of detail is created by using a larger 
scale value in the fractalRandom function. 

// lava 
float r = fractalRandom(UV, 40); 
vec4 color1 = vec4(1, 0.8, 0, 1); 
vec4 color2 = vec4(0.8, 0, 0, 1); 
fragColor = mix( color1, color2, r ); 

To create the marble image, replace the code in the fragment shader with 
the following. As you will see, this code difers by the scaling of the random 
value and the application of the abs and sin functions, which creates a 
greater contrast between the diferently colored regions of the image. 

// marble 
float t = fractalRandom(UV, 4); 
float r = abs(sin(20 * t)); 
vec4 color1 = vec4(0.0, 0.2, 0.0, 1.0); 
vec4 color2 = vec4(1.0, 1.0, 1.0, 1.0); 
fragColor = mix( color1, color2, r ); 

Finally, to create the wood image, replace the code in the fragment shader 
with the following. In this code, the addition of the UV.y component in the 
calculation produces horizontal lines that are then randomly distorted. In 
addition, the modifcations in the calculation of the r variable result in 
lines that are more sharply defned in the image. 

// wood grain 
float t = 80 * UV.y + 20 * fractalRandom(UV, 2); 
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float r = clamp( 2 * abs(sin(t)), 0, 1 ); 
vec4 color1 = vec4(0.3, 0.2, 0.0, 1.0); 
vec4 color2 = vec4(0.6, 0.4, 0.2, 1.0); 
fragColor = mix( color1, color2, r ); 

5.7 USING TEXT IN SCENES 
In this section, you will explore a number of diferent ways that images of 
text can be added to three-dimensional scenes. Many of these approaches 
will naturally lead to additions to the graphics framework, such as a sprite 
material and an orthogonal camera that may be useful in other contexts 
as well. 

5.7.1 Rendering Text Images 

Te frst goal is to render text to a surface, which the Pygame library uses 
to store pixel data. Fortunately, this is a straightforward process, thanks to 
the built-in functionality present in Pygame. In this section, you will cre-
ate a new class called TextTexture, which extends the Texture class 
and renders an image of text, whose appearance will have the following 
customizations available: 

• the text to be rendered 

• the font to be used: either the name of a system font that is already 
installed on the computer, or the fle name of a font fle to be loaded 

• the size of the font 

• the color of the font and the color of the background; due to Pygame 
conventions, the values of the red, green, and blue components of the 
colors must be specifed by integers in the range from 0 to 255 

• whether or not to use a transparent background (if True, overrides 
the background color) 

• width and height of the rendered image; if not set, the image size will 
exactly ft the text 

• horizontal and vertical alignment: if the size of the image is larger 
than the size of the rendered text, the values of these parameters can 
be used to align the text horizontally (lef, center, right) or vertically 
(top, middle, bottom) 

• the width and color of a border around the image; if border width is 
not specifed or set to zero, no border will be rendered 
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FIGURE 5.25 Text rendered to image and applied to a cube. 

With these settings, you can generate images such as the one seen in 
Figure 5.25, which has been applied to a cube. Te image shown is cre-
ated from the Impact font, size 32. Te text is rendered in blue on a white 
background with a red border. Te image size is 256 by 256 pixels, and 
the text is aligned to the center of the image. Tis particular image will be 
generated in an example that follows. 

Te frst step will be to create the TextTexture class. In the extras 
folder, create a new fle named textTexture.py containing the following 
code, which is explained by the comments present throughout. 

from core.texture import Texture 
import pygame 
class TextTexture(Texture):

 def __init__( self, text="Hello, world!", 
                  systemFontName="Arial", 

fontFileName=None,
 fontSize=24,

                  fontColor=[0,0,0], 
backgroundColor=[255,255,255], 

transparent=False,
 imageWidth=None, imageHeight=None, 

http:textTexture.py
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                  alignHorizontal=0.0, 
alignVertical=0.0,

                  imageBorderWidth=0, 
imageBorderColor=[0,0,0]):

 super().__init__()
 # default font

        font = pygame.font.SysFont(systemFontName, 
fontSize)

 # can override by loading font file
 if fontFileName is not None:

            font = pygame.font.Font(fontFileName, 
fontSize)

 # render text to (antialiased) surface
        fontSurface = font.render(text, True, 

fontColor)
        # determine size of rendered text for 

alignment purposes
 (textWidth, textHeight) = font.size(text)
 # if image dimensions are not specified, 
# use font surface size as default
 if imageWidth is None:

 imageWidth = textWidth
 if imageHeight is None:

 imageHeight = textHeight

 # create surface to store image of text 
# (with transparency channel by default)

        self.surface = pygame.Surface( (imageWidth, 
imageHeight), 

                                         pygame. 
SRCALPHA )

 # background color used when not transparent
 if not transparent:

 self.surface.fill( backgroundColor )
        # alignHorizontal, alignVertical are 

percentages, 
# measured from top-left corner

        cornerPoint = ( alignHorizontal * 
(imageWidth-textWidth), 

                        alignVertical * (imageHeight-
textHeight) )

 destinationRectangle = fontSurface.get_rect( 
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 topleft=cornerPoint )
 # optional: add border
 if imageBorderWidth > 0:

            pygame.draw.rect( self.surface, 
imageBorderColor, 

                [0,0, imageWidth,imageHeight], 
imageBorderWidth )

        # apply fontSurface to correct position on 
final surface

        self.surface.blit( fontSurface, 
destinationRectangle )

 self.uploadData() 

To demonstrate the use of this class in an application in the graphics 
framework, in the main folder, make a copy of the fle test-template. 
py and name it test-5–6.py. Add the following import statements: 

from geometry.rectangleGeometry import 
RectangleGeometry 
from extras.textTexture import TextTexture 

Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera position is set, with the following 
code: 

self.camera.setPosition( [0, 0, 1.5] ) 
geometry = RectangleGeometry() 
message = TextTexture(text="Python Graphics", 
                        systemFontName="Impact", 

fontSize=32, 
fontColor=[0,0,200],

                        imageWidth=256, 
imageHeight=256,

                        alignHorizontal=0.5, 
alignVertical=0.5,

 imageBorderWidth=4,
 imageBorderColor=[255,0,0]) 

material = TextureMaterial(message) 
self.mesh = Mesh( geometry, material ) 
self.scene.add( self.mesh ) 

http:test-5�6.py
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FIGURE 5.26 Billboarding a label above a crate. 

When you run this code, you should see a rectangle object displaying 
the texture seen on the sides of the cube in Figure 5.25. 

5.7.2 Billboarding 

One major use of text is to convey information to the viewer, as in a label. 
One way to incorporate a label in a scene is to apply it to an in-scene object, 
such as a sign or a marquee. Te approach has the drawback that the viewer 
might not be able to read the label from all angles and inadvertently miss 
some useful information. One remedy for this issue is billboarding: orient-
ing an object so that it always faces the camera, as illustrated in Figure 5.26. 
Two methods for implementing billboarding are using a special matrix 
transformation and using a custom material, each of which are discussed 
in detail and implemented in what follows. 

5.7.2.1 Look-At Matrix 
One method for accomplishing billboarding is using a transformation 
called a look-at matrix, which, as the name implies, orients one object 
towards another object called the target. Te look direction or forward 
direction of a 3D object is its local negative z-axis, just as is the case when 
working with camera objects. Similarly, in this context, the positive local 
x axis and y axis are sometimes referred to as the right direction and the 
up direction of the object, respectively. Te look direction is aligned with 
the vector from the position of the object to the position of the target. To 
avoid ambiguity, an up direction must be specifed when calculating this 
matrix, as there are many ways to look along the look direction: the object 
could be tilted (rotated) to the lef or the right by any amount with respect 
to this direction. 
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To determine the rotation components of a look-at matrix (the upper 3-by-3 
submatrix), you can apply the same mathematical approach used in Chapter 
3 to derive the matrices representing rotation around each of the coordinate 
axes: determine the results of applying the look-at transformation to the stan-
dard basis vectors i, j, and k. If F represents this transformation, then in line 
with the vocabulary introduced above, F ( )i  will equal the right direction, F ( )j 
will equal the up direction, and –F k( ) will equal the forward direction. Tese 
results will be the columns for the rotational component of the transformation 
matrix. Te fourth column of the transformation matrix corresponds to the 
position of the object, which should not be changed in this matrix. 

Before proceeding with the necessary calculations, a new vector opera-
tion must be introduced: the cross product. Te cross product v × w of two 
vectors v and w in three-dimensional space produces a third vector u which 
is perpendicular to both v and w. Te orientation of u is given by the right-
hand convention discussed in Chapter 3. For example, if v and w align with 
the x and y axes, respectively, then u will align with the z axis. Te cross 
product operation is not commutative: switching the order in the product 
will reverse the orientation of the result; symbolically, v × =w –(w ×v). If 
v and w are parallel—aligned along the same direction—then the calcula-
tion of a perpendicular vector is ambiguous and the cross product returns 
the zero vector. Te cross product will be used in calculating the right, up, 
and forward vectors, as they all must be perpendicular to each other. Te 
actual formula for the cross product will not be discussed here, as it can 
be easily looked up in any vector algebra text, and you will use the Python 
package numpy to perform this calculation. 

Since the forward vector points from the object position to the target 
position, this vector can be calculated by subtracting these positions. Te 
object’s up vector should lie in the plane spanned by the world up vector 
⟨0, 1, 0⟩ and the object forward vector, and therefore, the right vector will 
be perpendicular to these vectors. Tus, the right vector can be calculated 
from the cross product of the world up vector and the forward vector. (If the 
world up vector and the forward vector are pointing in the same direction, 
then the world up vector can be perturbed by a small ofset to avoid a zero 
vector as the result.) Finally, the object’s up vector can be calculated from 
the cross product of the right vector and the forward vector. Finally, all 
these vectors should have length 1, so each vector can be scaled by dividing 
it by its length (calculated with the norm function in numpy). Te natural 
place to implement these calculations is in the Matrix class. In the fle 
matrix.py in the core folder, add the following import statements: 

http:matrix.py
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from numpy import subtract, divide, cross 
from numpy.linalg import norm 

Ten, add the following static function, which will be used to generate 
the look-at matrix: 

@staticmethod 
def makeLookAt(position, target): 

worldUp = [0, 1, 0]
 forward = subtract( target, position )
 right = cross( forward, worldUp ) 

# if forward and worldUp vectors are parallel, 
# right vector is zero; 
# fix by perturbing worldUp vector a bit
 if norm(right) < 0.001:

 offset = numpy.array( [0.001, 0, 0] )
 right = cross( forward, worldUp + offset )

 up = cross( right, forward )

 # all vectors should have length 1
 forward = divide( forward, norm(forward) )
 right = divide( right, norm(right) )
 up = divide( up, norm(up) )

    return numpy.array( [[right[0], up[0], 
-forward[0], position[0]], 

                         [right[1], up[1], 
-forward[1], position[1]], 

                         [right[2], up[2], 
-forward[2], position[2]],

 [  0, 0, 
0, 1]]

 ) 

Finally, in the fle object3D.py in the core folder, add the follow-
ing function, which will be used to apply the look-at matrix to an object, 
retaining the object's position while replacing its orientation so that the 
object faces the target. 

def lookAt(self, targetPosition): 

http:object3D.py
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    self.transform = Matrix.makeLookAt( self. 
getWorldPosition(), 

targetPosition ) 

With these additions to the graphics framework, you can now recreate 
the scene illustrated in Figure 5.26. Since the side of the rectangle that 
faces forward (the local negative z direction) is the side on which the image 
is rendered backwards, a 180° rotation is applied to the geometry before 
creating the mesh so that the image will appear correctly when the look-
at matrix is applied to the mesh. Te scene will include a movement rig 
so that you can see the orientation of the label change in response to the 
movement of the camera. In the main project folder, create a copy of the 
fle test-template.py and name it test-5–7.py. In this new fle, 
add the following import statements: 

from core.matrix import Matrix 
from extras.textTexture import TextTexture 
from extras.movementRig import MovementRig 
from geometry.rectangleGeometry import 
RectangleGeometry 
from geometry.boxGeometry import BoxGeometry 

Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera position is set, with the following 
code: 

self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.rig.setPosition( [0, 1, 5] ) 
self.scene.add( self.rig ) 

labelTexture = TextTexture(text=" This is a Crate. ", 
                    systemFontName="Arial Bold", 

fontSize=40, 
fontColor=[0,0,200],
 imageWidth=256, imageHeight=128,

                    alignHorizontal=0.5, 
alignVertical=0.5,

 imageBorderWidth=4, 
imageBorderColor=[255,0,0]) 

http:test-5�7.py
http:test-template.py
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labelMaterial = TextureMaterial(labelTexture) 
labelGeometry = RectangleGeometry(width=1, 

height=0.5) 
labelGeometry.applyMatrix( Matrix.makeRotationY(3.14) ) 
self.label = Mesh(labelGeometry, labelMaterial) 
self.label.setPosition( [0, 1, 0] ) 
self.scene.add(self.label) 

crateGeometry = BoxGeometry() 
crateTexture = Texture("images/crate.png") 
crateMaterial = TextureMaterial(crateTexture) 
crate = Mesh( crateGeometry, crateMaterial ) 
self.scene.add( crate ) 

Finally, in the update function, add the following two lines of code: 

self.rig.update( self.input, self.deltaTime ) 
self.label.lookAt( self.camera.getWorldPosition() ) 

With these additions, this new example is complete. When you run the 
application, you should be able to recreate the images from the perspec-
tives illustrated in Figure 5.26. 

5.7.2.2 Sprite Material 
Another approach to billboarding is by using a customized vertex shader 
that discards any rotation information from the model and view matri-
ces (only retaining position related data) before applying the projection 
matrix. In computer graphics, a two-dimensional image used in a three-
dimensional scene in this way is ofen referred to as a sprite, and accord-
ingly, the material you will create to implement this shader will be called 
SpriteMaterial. 

Such a material is also a natural place to build in support for tilesets. A 
tileset (sometimes also called a spritesheet) is a grid of rectangular images 
(called tiles) combined into a single image for convenience and efciency. 
When rendering the scene, the UV coordinates of the object can be trans-
formed so the desired tile is displayed from the tileset image. One situation 
where tilesets are useful is texture packing: combining multiple images 
into a single image for the purpose of reducing the number of textures 
required by an application. Tis may be particularly useful in an applica-
tion where the text or image displayed on a particular surface will change 

http:Matrix.makeRotationY(3.14
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FIGURE 5.27 Tilesets used for texture packing (a) and spritesheet animation (b). 

periodically. Te lef side of Figure 5.27 shows an example of such an 
image. Another application is spritesheet animation: displaying a sequence 
of images in rapid succession to create the illusion of motion or continu-
ous change. Te right side of Figure 5.27 contains a 4-by-4 tileset; when the 
images are displayed in the order indicated, a small circle will appear to be 
rolling around within a larger circle. 

Te vertex shader in the SpriteMaterial class will contain the 
same uniform matrices and attribute variables as previous materials. One 
new addition will be a boolean variable named billboard; if set to true, 
it will enable a billboard efect as previously described by replacing the 
rotation component of the combined model and view matrices with the 
identity matrix. In addition, to support tilesets, there will be a variable 
named tileNumber. If tileNumber is set to a number greater than 
–1, then the vertex shader will use the information stored in tileCount 
(the number of columns and rows in the tileset) to transform the UV 
coordinates so that the desired tile is rendered on the object. 

To implement this material, in the material folder, create a new fle 
called spriteMaterial.py with the following code: 

from material.material import Material 
from OpenGL.GL import * 

class SpriteMaterial(Material):

 def __init__(self, texture, properties={}):

 vertexShaderCode = """
 uniform mat4 projectionMatrix; 

http:OpenGL.GL
http:spriteMaterial.py
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 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix;
 uniform bool billboard;
 uniform float tileNumber;
 uniform vec2 tileCount;
 in vec3 vertexPosition; 
in vec2 vertexUV;
 out vec2 UV;

 void main()
 {

 mat4 mvMatrix = viewMatrix *
 if ( billboard )
 {

 mvMatrix[0][0] = 1;
 mvMatrix[0][1] = 0;
 mvMatrix[0][2] = 0;
 mvMatrix[1][0] = 0;
 mvMatrix[1][1] = 1;
 mvMatrix[1][2] = 0;
 mvMatrix[2][0] = 0;
 mvMatrix[2][1] = 0;
 mvMatrix[2][2] = 1; 

}

 modelMatrix;

 gl_Position = projectionMatrix * mvMatrix *
 vec4(vertexPosition, 1.0);

 UV = vertexUV;
 if (tileNumber > -1.0)
 {

 vec2 tileSize = 1.0 / tileCount;
               float columnIndex = mod(tileNumber, 

tileCount[0]);
               float rowIndex = floor(tileNumber / 

tileCount[0]);
               vec2 tileOffset = vec2( columnIndex/ 

tileCount[0], 
1.0 - (rowIndex + 1.0)/tileCount[1] );

 UV = UV * tileSize + tileOffset;
 }

 }
 """

 fragmentShaderCode = """ 
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 uniform vec3 baseColor;
 uniform sampler2D texture;
 in vec2 UV;
 out vec4 fragColor;

 void main()
 {

            vec4 color = vec4(baseColor, 1) * 
texture2D(texture, UV);

 if (color.a < 0.1)
 discard;

 fragColor = color;
 }
 """

        super().__init__(vertexShaderCode, 
fragmentShaderCode)

        self.addUniform("vec3", "baseColor", [1.0, 
1.0, 1.0])

 self.addUniform("sampler2D", "texture", 
[texture.textureRef, 1]) 

self.addUniform("bool",  "billboard", False) 
self.addUniform("float", "tileNumber", -1) 
self.addUniform("vec2",  "tileCount", [1, 1])
 self.locateUniforms()

 # render both sides?
 self.settings["doubleSide"] = True
 self.setProperties(properties)

 def updateRenderSettings(self):
 if self.settings["doubleSide"]:

 glDisable(GL_CULL_FACE)
 else:

 glEnable(GL_CULL_FACE) 

Next, you will make an application to test this material, using both the 
billboarding and spritesheet animation features. You will also include 
a movement rig to move the camera around the scene, and a grid for a 
fxed plane of reference as you move around the scene. To begin, create a 
copy of the fle test-template.py named test-5–8.py and add the 
following import fles. 

http:test-5�8.py
http:test-template.py
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from geometry.rectangleGeometry import 
RectangleGeometry 
from material.spriteMaterial import SpriteMaterial 
from extras.movementRig import MovementRig 
from extras.gridHelper import GridHelper 
from math import floor 

Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera position is set, with the following 
code: 

self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.rig.setPosition( [0, 0.5, 3] ) 
self.scene.add( self.rig ) 
geometry = RectangleGeometry() 
tileSet = Texture("images/rolling-ball.png") 
spriteMaterial = SpriteMaterial(tileSet, {

 "billboard"  : 1, 
"tileCount"  : [4,4],
 "tileNumber" : 0 

}) 
self.tilesPerSecond = 8 

self.sprite = Mesh( geometry, spriteMaterial ) 
self.scene.add( self.sprite ) 

grid = GridHelper() 
grid.rotateX(-3.14/2) 
self.scene.add( grid ) 

Finally, in the update function, add the following three lines of code: 

tileNumber = floor(self.time * self.tilesPerSecond) 
self.sprite.material.uniforms["tileNumber"].data = 

tileNumber 
self.rig.update( self.input, self.deltaTime ) 

When you run this application, using the spritesheet on the right side of 
Figure 5.27, you should see the animation of the small circle rolling around 
the large circle, in a scene similar to that in Figure 5.28. Furthermore, as you 
move around the scene, the rectangle should always be facing the camera. 
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FIGURE 5.28 A frame from a spritesheet animation in a scene. 

FIGURE 5.29 A heads-up display containing fxed text. 

5.7.3 Heads-Up Displays and Orthogonal Cameras 

Te methods for viewing text implemented in the previous section are 
useful when the text only needs to be visible in a particular area in the 
scene. For text or graphics that should be visible to the viewer at all times, 
the most common approach is to use a heads-up display (HUD): a trans-
parent layer containing these elements, rendered afer the scene, and 
therefore appearing on top, as illustrated in Figure 5.29. Implementing this 
functionality will involve additions or modifcations to multiple classes: 
Matrix, Camera, Renderer, and Rectangle. 

Te objects to be included in the heads-up display will be added to a 
second scene, sometimes called the HUD layer. In contrast to the primary 
three-dimensional scene, where the scale is somewhat arbitrary and a per-
spective projection is used, the natural unit of measurement in the HUD 
layer is pixels and an orthographic projection is used. Te viewable region 
of space in the HUD layer will be a rectangular box, whose width and 
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height will be equal to the dimensions of the screen, and whose depth is 
arbitrary. In general, z-coordinates in the HUD layer are only important 
if one object should be rendered above another. When used to determine 
stack order in this way, the z coordinate of an object is also called its 
z-index.

The viewable region can be specified by six constants: left, right, bottom, 
top, near, and far, denoted by the variables l, r, b, t, n, and f, respectively; the 
points (x, y, z) in the region satisfy the conditions l x       ≤ ≤ r , b   ≤ ≤y t    , and 
n   ≤ ≤–  z f   (the negation of z due to the reversal of the z direction in clip 
space, discussed in Chapter 3). This region in turn must be projected into 
the cubical volume rendered by OpenGL, the set of points (x, y, z) where 
all components are bounded by −1 and +1. The necessary transforma-
tions in each coordinate are each affine transformations, involving both 
scaling and translation. For example, the transformation of the x coor-
dinate is a function of the form F x( )   = +p x·    q, and given that F l( )   = –1 
and F r( )   = +1, it is possible to algebraically solve for the values of p and 
q in terms of l and r. In particular, p   = 2 –( )r l   and q  –= +( )r l    ( )r l –  . 
Similar calculations can be used to derive the transformation needed for 
the y coordinate and the z coordinate. Since homogeneous coordinates are 
used throughout this graphics framework, these transformations can be 
combined into the following matrix:

 2 r l+ 
 0 0 − r l− r l− 
 2 t b+ 
 0 0 − t b− t b− 
 2 f n+ 0 0 − − f n− f n− 
 
 0 0 0 1 

The next step is to add a function to the Matrix class that generates this 
matrix. To implement this, in the matrix.py file in the core folder, add 
the following function:

@staticmethod
def  makeOrthographic(left=-1, right=1, bottom=-1, 

top=1, 
                       near=-1, far=1):

 

http:matrix.py
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 return numpy.array([[2/(right-left), 0, 0, 
-(right+left)/(right-left)], 

[0, 2/(top-bottom), 0, 
-(top+bottom)/(top-bottom)], 

[0, 0, -2/(far-near), 
-(far+near)/(far-near)],

 [0, 0, 0, 1]]) 

Next, the Camera class needs to be updated so that an orthographic 
matrix can be used as the projection matrix. Tis will be accomplished by 
adding a setOrthographic function containing the necessary param-
eters. For symmetry, a setPerspective function will be added as well. 
To implement these, in the camera.py fle in the core folder, add the 
following functions: 

def setPerspective(self, angleOfView=50, 
                         aspectRatio=1, near=0.1, 

far=1000):
    self.projectionMatrix = Matrix. 

makePerspective(angleOfView, 
aspectRatio, near, far) 

def setOrthographic(self, left=-1, right=1, 
bottom=-1, top=1, 

near=-1, far=1):
    self.projectionMatrix = Matrix. 

makeOrthographic(left, right,
 bottom, top, near, far) 

At present, whenever a scene is rendered by the Renderer class, the 
color and depth bufers are cleared. In order for the HUD layer to be ren-
dered on top of the main three-dimensional scene and have the main scene 
still be visible, the color bufer needs to not be cleared between these two 
renders. However, the depth bufer should still be cleared, because other-
wise fragments from the HUD layer might not be rendered due to residual 
depth values from rendering the main scene. To this end, in the ren-
derer.py fle in the core folder, change the declaration of the render 
function to the following: 

def render(self, scene, camera, clearColor=True, 
clearDepth=True): 

http:derer.py
http:camera.py
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Ten, replace the line of code containing the glClear function with 
the following block of code:

 # clear color and depth buffers 
if clearColor:

 glClear(GL_COLOR_BUFFER_BIT) 
if clearDepth:

 glClear(GL_DEPTH_BUFFER_BIT) 

Finally, to simplify aligning these objects within the HUD layer, a few 
changes will be made to the Rectangle class, enabling any point to be 
assigned to any location within the rectangle. As the Rectangle class 
was originally written, the origin (0, 0) corresponds to the center of the 
rectangle. You will add two parameters, position and alignment 
(each a list of two numbers) which will afect the way the vertex position 
data is generated. Te alignment components should be thought of as 
percentages (values between 0.00 and 1.00), corresponding to ofsets along 
the width and height, used to indicate which point in the rectangle will 
correspond to position. For example, if alignment[0] has a value 
of 0.00, 0.50, or 1.00, then the rectangle will be lef-aligned, centered, or 
right-aligned, respectively, with respect to the x component of position. 
If alignment[1] has a value of 0.00, 0.50, or 1.00, then the rectangle 
will be bottom-aligned, centered, or top-aligned, respectively, with respect 
to the y component of position. 

To implement the changes, in the fle rectangleGeometry.py in 
the geometry folder, change the declaration of the __init __function 
to the following: 

def __init__(self, width=1, height=1, position=[0, 0], 
alignment=[0.5, 0.5]): 

Ten, change the block of code that assigns values to P0, P1, P2, and 
P3, to the following: 

x, y = position 
a, b = alignment 
P0 = [ x +  (-a)*width, y +  (-b)*height, 0 ] 
P1 = [ x + (1-a)*width, y +  (-b)*height, 0 ] 
P2 = [ x +  (-a)*width, y + (1-b)*height, 0 ] 
P3 = [ x + (1-a)*width, y + (1-b)*height, 0 ] 

http:rectangleGeometry.py
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Tis completes all the changes necessary to be able to render the scene 
shown in Figure 5.24. To create the application, in the main folder, make 
a copy of the fle test-template.py and name it test-5–9.py. Add 
the following import statements: 

from geometry.rectangleGeometry import 
RectangleGeometry 
from geometry.boxGeometry import BoxGeometry 
from material.textureMaterial import TextureMaterial 
from extras.movementRig import MovementRig 
from extras.gridHelper import GridHelper 

Ten, in the initialize function, replace the code in that function, 
starting from the line where the camera object is created, with the following 
code, which will set up the main scene. 

self.camera = Camera( aspectRatio=800/600 ) 
self.rig = MovementRig() 
self.rig.add( self.camera ) 
self.rig.setPosition( [0, 0.5, 3] ) 
self.scene.add( self.rig ) 

crateGeometry = BoxGeometry() 
crateMaterial = TextureMaterial( Texture("images/ 

crate.png") ) 
crate = Mesh( crateGeometry, crateMaterial ) 
self.scene.add( crate ) 

grid = GridHelper( gridColor=[1,1,1], 
centerColor=[1,1,0] ) 
grid.rotateX( -3.14/2 ) 
self.scene.add( grid ) 

Te next step is to set up the HUD layer. When creating a rectangle 
to display an image in the HUD, the width and height of the rectangle 
should be set to the width and height of the image (although these values 
may also be scaled proportionally if desired). Te HUD layer illustrated in 
Figure 5.29 contains two labels; the code that follows will create these two 
objects. Te position and alignment parameter values for the frst 
label are chosen to align the top-lef corner of the rectangle with the point 
in the top-lef of the screen, while the parameters for the second label align 

http:test-5�9.py
http:test-template.py
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its bottom-right corner with the bottom-right of the screen. To continue, 
add the following code at the end of the initialize function. 

self.hudScene = Scene() 
self.hudCamera = Camera() 
self.hudCamera.setOrthographic(0,800, 0,600, 1,-1) 
labelGeo1 = RectangleGeometry(width=600, height=80, 
                               position=[0,600], 

alignment=[0,1]) 
labelMat1 = TextureMaterial( Texture("images/crate-

sim.png")) 
label1 = Mesh(labelGeo1, labelMat1) 
self.hudScene.add( label1 ) 
labelGeo2 = RectangleGeometry(width=400, height=80, 
                               position=[800,0], 

alignment=[1,0]) 
labelMat2 = TextureMaterial( Texture("images/ 
version-1.png")) 
label2 = Mesh(labelGeo2, labelMat2) 
self.hudScene.add( label2 ) 

Next, replace the code in the update function with the following 
code, which renders the scenes in the correct order and prevents the color 
bufer from being cleared as needed so that the content from each scene 
is visible. 

self.rig.update( self.input, self.deltaTime ) 
self.renderer.render( self.scene, self.camera ) 
self.renderer.render( self.hudScene, self.hudCamera, 

clearColor=False) 

Finally, change the end of the program to the following, which increases 
the size of the graphics window so that it is better able to ft the HUD layer 
content. 

Test( screenSize=[800,600] ).run() 

At this point, when you run the application, you will be able to move the 
camera around the scene using the standard movement rig controls and 
produce images such as those illustrated in Figure 5.29. 
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5.8 RENDERING SCENES TO TEXTURES 
Te next goal is to render scenes to textures, which can be used for a variety 
of purposes. Figure 5.30 illustrates a scene based on the skysphere exam-
ple shown in Figure 5.14, which also includes a sphere with a grid texture 
applied, and a dark box with a rectangle positioned in front, representing 
a television screen. Te texture used for the rectangle is a rendering of the 
scene from a second camera positioned above these objects and oriented 
downward. As you will see when you implement this scene, the sphere is also 
rotating, and the image in the rectangle constantly updates and shows this. 

Framebufers, introduced in Chapter 1, are of key importance when ren-
dering to a texture. When OpenGL is initialized, a framebufer is automati-
cally generated, containing a color bufer and a depth bufer, and is attached 
to the window that displays graphics. When a scene is rendered, the image 
seen in the window corresponds to the data in the color bufer. To render 
an image to a texture, you will need to manually set up a framebufer and 
confgure the attached bufers (color and depth). Tese tasks will require 
the use of many OpenGL functions, which are discussed in what follows. 

Te frst steps in working with framebufers are to generate a reference 
and bind it to a target, analogous to the frst steps when working with 
vertex bufers or textures. In the case of framebufers, this is accomplished 
with the following two OpenGL functions: 

glGenFramebufers( buferCount ) 

Returns a set of nonzero integers representing available framebufer ref-
erences. Te number of references returned is specifed by the integer 
parameter buferCount. 

FIGURE 5.30 Rendering a scene to a texture within the scene. 



      

 

 

248 ◾ Developing Graphics Frameworks with Python and OpenGL 

glBindFramebufer( bindTarget, framebuferRef ) 

Te framebufer referred to by the parameter framebuferRef is bound 
to the target specifed by the parameter bindTarget, whose value is 
an OpenGL constant such as GL_FRAMEBUFFER or GL_DRAW_ 
FRAMEBUFFER. Future OpenGL operations afecting the same 
bindTarget will be applied to the referenced framebufer. 

Next, the bufers used by the framebufer need to be confgured. To use a 
texture for a bufer (as you will for the color bufer), you use the following 
function: 

glFramebuferTexture( bindTarget, attachment, textureRef, level ) 

Attaches a texture object specifed by textureRef as the type of bufer 
specifed by attachment to the framebufer currently bound to bind-
Target. Te parameter attachment is an OpenGL constant such as 
GL_COLOR_ATTACHMENTn (for an integer n), GL_DEPTH_ 
ATTACHMENT, or GL_STENCIL_ATTACHMENT. Te param-
eter level is usually 0, indicating this is the base image level in the 
associated mipmap image. 

Similar to textures, renderbufers are OpenGL objects that store image 
data, but specifcally used with and optimized for framebufers. As usual, 
the frst steps in working with these objects are to generate a reference and 
bind it to a target, which uses the following OpenGL functions: 

glGenRenderbufers( buferCount ) 

Returns a set of nonzero integers representing available renderbufer 
references. Te number of references returned is specifed by the 
integer parameter buferCount. 

glBindRenderbufer( bindTarget, renderbuferRef ) 

Te renderbufer referred to by the parameter renderbuferRef is bound 
to the target specifed by the parameter bindTarget, whose value must 
be the OpenGL constant GL_RENDERBUFFER. Future OpenGL 
operations afecting the same bindTarget will be applied to the ref-
erenced renderbufer. 

Once a render bufer is bound, storage is allocated with the following 
function: 
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glRenderbuferStorage( bindTarget, format, width, height ) 

Allocate storage for the renderbufer currently bound to the target 
bindTarget, whose value must be the OpenGL constant GL_ 
RENDERBUFFER. Te data stored in the renderbufer will have the 
type specifed by the parameter format, whose value is an OpenGL 
constant such as GL_RGB, GL_RGBA, GL_DEPTH_COMPONENT, 
or GL_STENCIL. Te dimensions of the bufer are specifed by width 
and height. 

Te next OpenGL function is analogous in purpose to glFramebufer-
Texture, but is used instead when a renderbufer will be used to store 
data instead of a texture. 

glFramebuferRenderbufer( framebuferTarget, attachment, render-
buferTarget, renderbuferRef ) 

Attaches a renderbufer object specifed by renderbuferRef as the type 
of bufer specifed by attachment to the framebufer currently bound 
to framebuferTarget. Te parameter attachment is an OpenGL con-
stant such as GL_COLOR_ATTACHMENTn (for an integer n), 
GL_DEPTH_ATTACHMENT, or GL_STENCIL_ATTACHMENT. 
Te parameter renderbuferTarget must be the OpenGL constant 
GL_RENDERBUFFER. 

Finally, to verify that the framebufer has been confgured correctly, you 
can use the following function: 

glCheckFramebuferStatus( bindTarget ) 

Check if the framebufer currently bound to bindTarget is complete: at 
least one color attachment has been added and all attachments have 
been correctly initialized. 

With a knowledge of these OpenGL functions, you are now prepared to 
create the RenderTarget class. In the core folder, create a new fle 
named renderTarget.py containing the following code. Note that if 
a texture is not supplied as a parameter, an empty texture is automatically 
generated. 

from OpenGL.GL import * 
import pygame 

http:OpenGL.GL
http:renderTarget.py
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from core.texture import Texture 

class RenderTarget(object):

    def __init__(self, resolution=[512, 512], 
texture=None,

 properties={}):

 # values should equal texture dimensions
 self.width, self.height = resolution

 if texture is not None:
 self.texture = texture

 else:
 self.texture = Texture( None, {

 "magFilter" : GL_LINEAR,
 "minFilter" : GL_LINEAR,
 "wrap"  : GL_CLAMP_TO_EDGE

 })
 self.texture.setProperties( properties )

            self.texture.surface = pygame.Surface( 
resolution )

 self.texture.uploadData()

 # create a framebuffer
 self.framebufferRef = glGenFramebuffers(1)

        glBindFramebuffer(GL_FRAMEBUFFER, self. 
framebufferRef)

 # configure color buffer to use this texture
        glFramebufferTexture(GL_FRAMEBUFFER, 

GL_COLOR_ATTACHMENT0,
 self.texture.textureRef, 0)
 # generate a buffer to store depth information 
depthBufferRef = glGenRenderbuffers(1)

        glBindRenderbuffer(GL_RENDERBUFFER, 
depthBufferRef)

        glRenderbufferStorage(GL_RENDERBUFFER, 
GL_DEPTH_COMPONENT, 

self.width, self.height)
        glFramebufferRenderbuffer(GL_FRAMEBUFFER, 

GL_DEPTH_ATTACHMENT,
 GL_RENDERBUFFER, depthBufferRef); 
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 # check framebuffer status
 if (glCheckFramebufferStatus(GL_FRAMEBUFFER) 

!= GL_FRAMEBUFFER_COMPLETE): 
raise Exception("Framebuffer status error") 

In order to use a manually created framebufer as the target when ren-
dering (rather than the framebufer attached to the window), you must also 
make a few additions to the Renderer class. First, because the texture 
to which you will be rendering may not be the same size as the window, 
you need to be able to specify how clip space coordinates map to window 
coordinates. In particular, you need to specify the size and location of the 
viewport: the rectangular area in the window used to display the color data 
from the currently active framebufer. Tis rectangular area is specifed by 
the coordinates of the lower-lef corner and its width and height, which is 
set by the following OpenGL function: 

glViewport( x, y, width, height ) 

Specify the coordinates (x, y) of the lower-lef corner and the width and 
height of the viewport rectangle. When a GL context is frst created, 
(x, y) is initialized to (0, 0) and the width and height are initialized to 
the dimensions of the window. 

When a Renderer object is initialized, you will store the size of the 
window for later use when setting the viewport. To begin, in the fle 
renderer.py in the core folder, add the following import statement: 

import pygame 

Ten, in the __init __function, add the following line of code: 

self.windowSize = pygame.display.get_surface(). 
get_size() 

Te render function should take an additional parameter in case 
a scene is to be rendered to a RenderTarget object, so change the 
parameter list as follows: 

def render(self, scene, camera, clearColor=True, 
clearDepth=True,

 renderTarget=None): 

http:renderer.py
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Next, at the very beginning of the render function, add the following 
code, which binds the correct framebufer (the value 0 indicating the 
framebufer attached to the window is the render target), and sets the 
viewport size accordingly. 

# activate render target 
if (renderTarget == None):

 # set render target to window
 glBindFramebuffer(GL_FRAMEBUFFER, 0)

    glViewport(0,0, self.windowSize[0], self. 
windowSize[1]) 

else:
 # set render target properties

    glBindFramebuffer(GL_FRAMEBUFFER, renderTarget. 
framebufferRef)

    glViewport(0,0, renderTarget.width, renderTarget. 
height) 

At this point, you are ready to begin creating this example. Start by 
making a copy of the fle test-5-2.py (the skysphere example) and 
rename it as test-5–11.py. Add the following import statements: 

from core.renderTarget import RenderTarget 
from geometry.boxGeometry import BoxGeometry 
from material.surfaceMaterial import SurfaceMaterial 

To demonstrate that viewports work as expected, you will use an 800 
by 600 size window and a 512 by 512 size texture. To change the size of the 
window from the default, change the last line of the code in the application 
to the following: 

Test( screenSize=[800,600] ).run() 

So that the scene does not appear stretched, you need to set the aspect 
ratio of the camera accordingly. Tus, change the line of code where the 
camera object is created to the following: 

self.camera = Camera(aspectRatio=800/600) 

Next, in the initialize function, add the following code to add new 
meshes to the scene. 

http:test-5�11.py
http:test-5-2.py
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sphereGeometry = SphereGeometry() 
sphereMaterial = TextureMaterial( Texture("images/ 

grid.png") ) 
self.sphere = Mesh( sphereGeometry, sphereMaterial ) 
self.sphere.setPosition( [-1.2, 1, 0] ) 
self.scene.add( self.sphere ) 

boxGeometry = BoxGeometry(width=2, height=2, 
depth=0.2) 

boxMaterial = SurfaceMaterial({"baseColor":[0,0,0]} ) 
box = Mesh( boxGeometry, boxMaterial ) 
box.setPosition( [1.2, 1, 0] ) 
self.scene.add( box ) 

To create the “television screen”—the rectangular mesh whose material 
will use the texture from a render target—also add the following code to 
the initialize function: 

self.renderTarget = RenderTarget( resolution=[512, 
512] ) 

screenGeometry = RectangleGeometry(width=1.8, 
height=1.8) 

screenMaterial = TextureMaterial( self.renderTarget. 
texture ) 

screen = Mesh( screenGeometry, screenMaterial ) 
screen.setPosition( [1.2, 1, 0.11] ) 
self.scene.add( screen ) 

To create the second camera that will be used when rendering to the 
texture, also add the following code to the initialize function. Note 
that the aspect ratio of the sky camera is derived from the dimensions 
of the previously created render target and that the recently introduced 
look-at functionality is used to orient the sky camera in the desired 
direction. 

self.skyCamera = Camera( aspectRatio=512/512 ) 
self.skyCamera.setPosition( [0, 10, 0.1] ) 
self.skyCamera.lookAt( [0,0,0] ) 
self.scene.add( self.skyCamera ) 
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Finally, change the code in the update function to the following, 
which causes the sphere to spin, updates the movement rig, renders the 
scene to the render target (using the new sky camera), and then renders the 
scene to the window (using the original camera). 

self.sphere.rotateY( 0.01337 ) 
self.rig.update( self.input, self.deltaTime ) 
self.renderer.render( self.scene, self.skyCamera, 

renderTarget=self.renderTarget ) 
self.renderer.render( self.scene, self.camera ) 

With these additions, the example is complete. When you run the exam-
ple, you should see a scene similar to that in Figure 5.30. Another application 
of rendering to a texture is to help orient a player moving a character around 
a large, complex environment by creating a “minimap”: a texture similar to 
the one created in example in this section, but the sky camera moves in sync 
with the player's character and stays oriented towards the character at all 
times, and the result is rendered to a small rectangle in a HUD layer so that 
it stays fxed on screen and is visible to the player at all times. 

A frequently used technique in computer graphics enabled by render-
ing to textures is postprocessing, which is described in detail and imple-
mented in the next section. 

5.9 POSTPROCESSING 
In computer graphics, postprocessing is the application of additional visual 
efects to the image of a rendered scene. Figure 5.31 illustrates three such 
efects applied separately to a scene: vignette (reduced brightness towards 
the edges of an image), color inversion, and pixelation. 

In addition, it is also desirable in many situations to chain these efects— 
apply them one afer the other in sequence—to create a compound efect. 
For example, to replicate the appearance of older handheld video game 

FIGURE 5.31 Postprocessing efects: vignette, color inversion, pixilation. 
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FIGURE 5.32 A compound postprocessing efect to simulate older video game 
system graphics. 

system graphics, one could take the same base scene used in Figure 5.31 
and apply a green tint efect followed by a pixelation efect, resulting in the 
image illustrated in Figure 5.32. 

With the addition of the RenderTarget class from the previous 
section, incorporating postprocessing into the graphics framework is a 
straightforward task. Each efect will be implemented with a simple shader 
incorporated into a material. Tere will be a sequence of render passes, 
starting with the base scene, each of which is applied to a render target. 
Te texture in each render target in the sequence will be used in a mate-
rial implementing an efect for the next render pass in the sequence. Te 
last render pass in the sequence will use a specifed fnal render target; if 
none is specifed, the window will be the target and the fnal result of the 
postprocessing efect sequence will be displayed. 

To implement postprocessing functionality, a Postprocessor 
class will be created. Tis class will maintain lists of Scene, Camera, 
and RenderTarget objects. Te original scene and camera will be the 
frst elements in their respective lists. All subsequent scenes will consist 
of a single rectangle; its vertices will be aligned with clip space to elimi-
nate the need for any matrix transformations in the vertex shader. In 
order to use the Renderer class, a camera must be supplied, and so a 
camera using the default orthographic projection (aligned to clip space) 
will be reused for the additional render passes. To begin, in the extras 
folder, create a new fle name postprocessor.py with the following 
code: 

http:postprocessor.py
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from core.renderer import Renderer 
from core.scene  import Scene 
from core.camera import Camera 
from core.mesh import Mesh 
from core.renderTarget import RenderTarget 
from geometry.geometry import Geometry 

class Postprocessor(object):

 def __init__(self, renderer, scene, camera,
 finalRenderTarget=None):

 self.renderer = renderer

 self.sceneList  = [ scene ]
 self.cameraList = [ camera ]
 self.renderTargetList = [ finalRenderTarget ] 
self.finalRenderTarget = finalRenderTarget
 self.orthoCamera = Camera()

        self.orthoCamera.setOrthographic() # aligned 
with clip space 

# by default

        # generate a rectangle already aligned with 
clip space;

 # no matrix transformations will be applied 
self.rectangleGeo = Geometry() 
P0, P1, P2, P3 = [-1,-1], [1,-1], [-1,1], 

[1,1]
        T0, T1, T2, T3 = [ 0, 0], [1, 0], [ 0,1], 

[1,1]
 positionData = [ P0,P1,P3, P0,P3,P2 ]
 uvData = [ T0,T1,T3, T0,T3,T2 ]
 self.rectangleGeo.addAttribute("vec2",

 "vertexPosition", positionData)
        self.rectangleGeo.addAttribute("vec2", 

"vertexUV", uvData)
 self.rectangleGeo.countVertices()

 def addEffect(self, effect):

 postScene = Scene() 
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 resolution = self.renderer.windowSize
 target = RenderTarget( resolution )

        # change the previous entry in the render 
target list

 # to this newly created render target
 self.renderTargetList[-1] = target

 # the effect in this render pass will use
 # the texture that was written to 
# in the previous render pass

        effect.uniforms["texture"].data[0] = target. 
texture.textureRef

 mesh = Mesh( self.rectangleGeo, effect )
 postScene.add( mesh )

 self.sceneList.append( postScene )
 self.cameraList.append( self.orthoCamera )

        self.renderTargetList.append( self. 
finalRenderTarget )

 def render(self):
 passes = len(self.sceneList)
 for n in range( passes ):

 scene  = self.sceneList[n]
 camera = self.cameraList[n]
 target = self.renderTargetList[n]

            self.renderer.render( scene, camera, 
renderTarget=target ) 

As previously mentioned, the postprocessing efects (the parameter in the 
addEffect function) are materials containing simple shaders, designed 
to work with the geometric object created by the Postprocessor class. 
Next, you will create a template material that only incorporates the data 
needed for postprocessing efects. To begin, in your project directory, 
create a new folder called effects. Within that folder, create a new fle 
called templateEffect.py that contains the following code: 

from material.material import Material 
class TemplateEffect(Material):

 def __init__(self): 

http:templateEffect.py
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 vertexShaderCode = """
 in vec2 vertexPosition; 
in vec2 vertexUV;
 out vec2 UV;
 void main()
 {

            gl_Position = vec4(vertexPosition, 0.0, 1.0);
 UV = vertexUV;

 }
 """

 fragmentShaderCode = """
 in vec2 UV;
 uniform sampler2D texture;
 out vec4 fragColor;
 void main()
 {

 vec4 color = texture2D(texture, UV);
 fragColor = color;

 }
 """

        super().__init__(vertexShaderCode, 
fragmentShaderCode)

        self.addUniform("sampler2D", "texture", [None, 
1])

 self.locateUniforms() 

Observe that, in the TemplateEffect class, the texture is rendered 
without any change; this is sometimes called a pass-through shader. Te 
texture data stored in the Uniform object is set within the addEffect 
function in the Postprocessor class. 

Te next step is to create some basic efects. Each will involve some mod-
ifcations to the fragment shader code in the template class created above. 
You will begin by creating one of the simplest postprocessing efects: color 
tinting, illustrated with a red tint applied in Figure 5.33. 

Tis efect is accomplished by averaging the red, green, and blue 
components of each pixel, and then multiplying it by the tint color. You 
will add the tint color as a parameter in the class constructor, and cre-
ate a corresponding uniform variable in the shader and uniform object 
in the class. To implement this, in the effects folder, make a copy of 
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FIGURE 5.33 Color tint postprocessing efect. 

the templateEffect.py fle and name it tintEffect.py. In the 
new fle, change the name of the class to TintEffect, and change the 
initialization function declaration to the following: 

def __init__(self, tintColor=[1,0,0]): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform vec3 tintColor; 
uniform sampler2D texture; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);
 float gray = (color.r + color.g + color.b) / 3.0;
 fragColor = vec4(gray * tintColor, 1.0); 

} 

Finally, add the following line of code near the end of the fle, before the 
locateUniforms function is called. 

self.addUniform("vec3", "tintColor", tintColor) 

http:tintEffect.py
http:templateEffect.py
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Now that you have a basic efect to work with, you can create an applica-
tion that uses it together with the Postprocessor class. In your main 
project folder, start by making a copy of the fle test-5-2.py (the sky-
sphere example) and rename it as test-5–12.py. Add the following 
import statements: 

from extras.postprocessor import Postprocessor 
from effect.tintEffect import TintEffect 

Optionally, in the initialize function, you may add the following 
code to include a textured sphere, so that the resulting scene more closely 
resembles those in this section: 

sphereGeometry = SphereGeometry() 
sphereMaterial = TextureMaterial(Texture("images/grid. 

png")) 
self.sphere = Mesh(sphereGeometry, sphereMaterial) 
self.sphere.setPosition([0,1,0]) 
self.scene.add(self.sphere) 

Next, in the initialize function, add the following code to set up 
postprocessing: 

self.postprocessor = Postprocessor(self.renderer,
 self.scene, self.camera) 

self.postprocessor.addEffect( TintEffect( 
tintColor=[1,0,0] ) ) 

Finally, replace the line of code in the update function referencing the 
renderer object to the following: 

self.postprocessor.render() 

When you run this example, you will see a scene similar to Figure 5.33. 
In the remainder of this section, you will create the efects illustrated ear-
lier. Afer writing the code for each one, you can test it using the fle test-
5–12.py by adding the corresponding import statement and changing 
the efect that is added to the postprocessor. 

To create the color inversion efect from Figure 5.31, make a copy of 
the templateEffect.py fle and name it invertEffect.py. In the 
new fle, change the name of the class to InvertEffect, and change the 
fragment shader code to the following: 

http:invertEffect.py
http:templateEffect.py
http:test-5�12.py
http:test-5-2.py
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in vec2 UV; 
uniform sampler2D texture; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);
    vec4 invert = vec4(1 - color.r, 1 - color.g, 1 -

color.b, 1);
 fragColor = invert; 

} 

To create the pixelation efect from Figure 5.31, when determining the 
color of each fragment, you will round the UV coordinates to a level of 
precision determined by the dimensions of the texture (indicated by the 
parameter resolution) and the desired size of each of the constant col-
ored boxes in the pixelation (indicated by the variable pixelSize). To 
implement this, make a copy of the templateEffect.py fle and name 
it pixelateEffect.py. In the new fle, change the name of the class to 
PixelateEffect, and change the initialization function declaration to 
the following: 

def __init__(self, pixelSize=8, 
resolution=[512,512]): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform float pixelSize; 
uniform vec2 resolution; 
out vec4 fragColor; 

void main() 
{

 vec2 factor = resolution / pixelSize;
 vec2 newUV = floor( UV * factor ) / factor;
 vec4 color = texture2D(texture, newUV);
 fragColor = color; 

} 

Finally, add the following code near the end of the fle, before the 
locateUniforms function is called. 

http:pixelateEffect.py
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self.addUniform("float", "pixelSize", pixelSize) 
self.addUniform("vec2", "resolution", resolution) 

To create the vignette efect from Figure 5.31, you will use the UV 
coordinates to recalculate the clip space coordinates, which are (0, 0) at 
the center and extend between −1 and 1 on each axis. Te color of each 
fragment will be interpolated between the texture color and a specifed 
dimming color; the color is typically black (which is the reason for the 
“dimming” terminology), but other colors may be used just as well. Te 
amount of interpolation will depend on the distance between the fragment 
position and the origin. Te distance at which dimming begins is speci-
fed by the parameter dimStart, while the distance at which the pixel 
matches the dimming color is specifed by the parameter dimEnd. To 
implement this, make a copy of the templateEffect.py fle and name 
it vignetteEffect.py. In the new fle, change the name of the class to 
VignetteEffect, and change the initialization function declaration to 
the following: 

def __init__(self, dimStart=0.4, dimEnd=1.0, 
dimColor=[0,0,0]): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform float dimStart; 
uniform float dimEnd; 
uniform vec3 dimColor; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);

    // calculate position in clip space from UV 
coordinates

 vec2 position = 2 * UV - vec2(1,1);
    // calculate distance (d) from center, which 

affects brightness
 float d = length(position);
 // calculate brightness (b) factor: 

http:vignetteEffect.py
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 // when d=dimStart, b=1; when d=dimEnd, b=0.
 float b = (d - dimEnd)/(dimStart - dimEnd);
 // prevent oversaturation
 b = clamp(b, 0, 1);
 // mix the texture color and dim color

    fragColor = vec4( b * color.rgb + (1-b) * 
dimColor, 1 ); 

} 

Finally, add the following code near the end of the fle, before the loca-
teUniforms function is called. 

self.addUniform("float", "dimStart", dimStart) 
self.addUniform("float", "dimEnd", dimEnd) 
self.addUniform("vec3", "dimColor", dimColor) 

Te last efect that will be introduced will be reducing the color 
precision in an image, illustrated in Figure 5.34, which was used to pro-
duce the composite efect illustrated in Figure 5.32. 

Te method for creating this efect is similar to that from the pixelation 
efect. In this case, the texture colors are rounded to a particular 
level of precision determined by the parameter levels. To imple-
ment this, make a copy of the templateEffect.py fle and name 

FIGURE 5.34 Color reduction postprocessing efect. 

http:templateEffect.py
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it colorReduceEffect.py. In the new fle, change the name of the 
class to ColorReduceEffect, and change the initialization function 
declaration to the following: 

def __init__(self, levels=4): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform float levels; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);
 vec4 reduced = round(color * levels) / levels;
 reduced.a = 1.0;
 fragColor = reduced; 

} 

Finally, add the following code near the end of the fle, before the 
locateUniforms function is called. 

self.addUniform("float", "levels", levels) 

With all these efects are your disposal, you can also experiment with 
diferent parameter settings and combinations of efects. In particular, to 
recreate the compound efect shown in Figure 5.32, in your application, 
afer all necessary import statements have been added, replace the code 
involving the addEffect function with the following code, to set up a 
chain of postprocessing efects. 

self.postprocessor.addEffect( 
TintEffect(tintColor=[0,1,0]) ) 

self.postprocessor.addEffect( 
ColorReduceEffect(levels=5) ) 

self.postprocessor.addEffect( PixelateEffect 
(resolution=[800,600] ) ) 

http:colorReduceEffect.py
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5.10 SUMMARY AND NEXT STEPS 
In this chapter, you extended the graphics framework, adding the ability 
to apply textures to the surfaces of geometric shapes. You created multiple 
animated efects, used algorithms to generate textures involving random-
ness and inspired by natural phenomena, generated textures involving 
text, and set up a postprocessing render system with a collection of special 
efects. Tis required additions to many of the geometry classes, modifca-
tions of multiple core classes (including Uniform, Matrix, Object3D, 
Camera, and Renderer), and the introduction of new material classes. 

In the next chapter, you will add even more realism and sophistication 
to your three-dimensional scenes by learning how to add lights, shading, 
and shadows to the graphics framework. 



https://taylorandfrancis.com


 

 

 

CHAP T ER  6 

Light and Shadow 

Lighting effects can great y enhance the three-dimensional nature 
of a scene, as illustrated in Figure 6.1, which illustrates a light source 

and shaded objects, specular highlights, bump map textures that simulate 
surface detail, a postprocessing efect to simulate a glowing sun, and shad-
ows cast from objects onto other objects. 

When using lights, the colors on a surface may be brighter or dimer, 
depending on the angle at which the light rays meet the surface. Tis efect 
is called shading and enables viewers to observe the 3D nature of a shape 
in a rendered image, without the need for vertex colors or textures, as illus-
trated in Figure 6.2. 

FIGURE 6.1 Rendered scene with lighting efects. 
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FIGURE 6.2 Four techniques to visualize a sphere: wireframe, vertex colors, 
texture, and shading. 

In this chapter, you will learn how to calculate the efects of difer-
ent types of light, such as ambient, difuse, and specular, as well as how 
to simulate diferent light sources such as directional lights and point 
lights. Ten, you will create new types of light objects to store this data, 
update various geometric classes to store additional related data, create 
a set of materials to process this data, and incorporate all these elements 
into the rendering process. Finally, you will learn about and implement 
the advanced topics illustrated by Figure 6.1, including bump mapping to 
simulate surface details, additional postprocessing techniques to generate 
light bloom and glow efects, and shadow mapping, which enables objects 
to cast shadows on other objects. 

6.1 INTRODUCTION TO LIGHTING 
Tere are many diferent types of lighting that may be used when render-
ing an object. Ambient lighting afects all points on all geometric surfaces 
in a scene by the same amount. Ambient light simulates light that has 
been refected from other surfaces and ensures that objects or regions not 
directly lit by other types of lights remain at least partially visible. Difuse 
lighting represents light that has been scattered and thus will appear lighter 
or darker in various regions, depending on the angle of the incoming light. 
Specular lighting creates bright spots and highlights on a surface to simu-
late shininess: the tendency of a surface to refect light. Tese three types 
of lighting applied to a torus-shaped surface are illustrated in Figure 6.3. 
(A fourth type of lighting is emissive lighting, which is light emitted by 
an object that can be used to create a glow-like efect, but this will not be 
covered here.) 

An illumination model is a combination of lighting types used to 
determine the color at each point on a surface. Two of the most com-
monly used illumination models are the Lambert model and the Phong 
model, illustrated in Figure 6.4. Te Lambert model uses a combination of 
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FIGURE 6.3 Ambient, difuse, and specular lighting on a torus-shaped surface. 

FIGURE 6.4 Te Lambert and Phong illumination models on a torus-shaped 
surface. 

ambient and difuse lighting, particularly appropriate for simulating the 
appearance of matte or rough surfaces, where most of the light rays meet-
ing the surface are scattered. Te Phong model uses ambient, difuse, and 
specular lighting, and is particularly appropriate for refective or shiny 
surfaces. Due to the additional lighting data and calculations required, 
the Phong model is more computationally intensive than the Lambert 
model. Te strength or sharpness of the shine in the Phong model can 
be adjusted by parameters stored in the corresponding material, and if 
the strength of the shine is set to zero, the Phong model generates results 
identical to the Lambert model. 

Te magnitude of the efect of a light source at a point depends on the 
angle at which a ray of light meets a surface. Tis angle is calculated as 
the angle between two vectors: the direction vector of the light ray, and a 
normal vector: a vector perpendicular to the surface. Figure 6.5 illustrates 
normal vectors for multiple surfaces as short line segments. When cal-
culating normal vectors to a surface, one has the option of using either 
vertex normal vectors or face normal vectors. Face normal vectors are 
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FIGURE 6.5 Normal vectors to a box, a sphere, and a torus. 

perpendicular to the triangles in the mesh used to represent the surface. 
Vertex normal vectors are perpendicular to the geometric surface being 
approximated; the values of these vectors do not depend on the triangula-
tion of the surface and can be calculated precisely when the parametric 
function defning the surface is known. For a surface defned by fat sides 
(such as a box or pyramid), there is no diference between vertex normals 
and face normals. 

Diferent types of light objects will be used to simulate diferent sources 
of light, each of which emits light rays in diferent patterns. A point light 
simulates rays of light being emitted from a single point in all directions, 
similar to a lightbulb, and incorporates attenuation: a decrease in intensity 
as the distance between the light source and the surface increases. A direc-
tional light simulates a distant light source such as the sun, in which all the 
light rays are oriented along the same direction and there is no attenuation. 
(As a result, the position of a directional light has no efect on surfaces that 
it lights.) Tese light ray direction patterns are illustrated in Figure 6.6. 
For simplicity, in this framework, point lights and directional lights will 
only afect difuse and specular values, and ambient light contributions 

FIGURE 6.6 Directions of emitted light rays for point light (lef) and directional 
light (right). 
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FIGURE 6.7 Rendering a sphere using fat shading (lef) and Phong shading 
(right). 

will be handled by a separate ambient light structure, although there is no 
physical analog for this object. 

Te choice of using face normal vectors or vertex normal vectors, and 
the part of the shader program in which light-related calculations appear 
defne diferent shading models. Te original and simplest is the fat 
shading model, in which face normal vectors are used, calculations take 
place in the vertex shader, and light contribution values are passed along to 
the fragment shader. Te result is a faceted appearance, even on a smooth 
surface such as a sphere, as illustrated in Figure 6.7. Te Gouraud shading 
model uses vertex normal vectors and calculates the efect of light at each 
vertex in the vertex shader; these values are passed through the graphics 
pipeline to the fragment shader, leading to interpolated values for each 
fragment and resulting in a smoother overall appearance (although there 
may be visual artifacts along the edges of some triangles). Te most com-
putationally intensive example that will be implemented in this frame-
work, and the one that provides the smoothest and most realistic results, is 
the Phong shading model (not to be confused with the Phong illumination 
model), also illustrated in Figure 6.7. In this shading model, the normal 
vector data is passed from the vertex shader to the fragment shader, nor-
mal vectors are interpolated for each fragment, and the light calculations 
are performed at that stage. 

6.2 LIGHT CLASSES 
To incorporate lighting efects into the graphics framework, the frst step 
is to create a series of light objects that store the associated data. For sim-
plicity, a base Light class will be created that stores data that could be 
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needed by any type of light, including a constant that specifes the type of 
light (ambient, directional, or point). Some lights will require position or 
direction data, but since the Light class will extend the Object3D class, 
this information can be stored in and retrieved from the associated trans-
formation matrix. Extensions of the Light class will represent the difer-
ent types of lights, and their constructors will store values in the relevant 
felds defned by the base class. 

To begin, in the main project folder, create a new folder named light. 
In this folder, create a new fle named light.py with the following 
code: 

from core.object3D import Object3D 
class Light(Object3D):

 AMBIENT = 1
 DIRECTIONAL = 2
 POINT = 3
 def __init__(self, lightType=0):

 super().__init__()
 self.lightType = lightType
 self.color = [1, 1, 1]
 self.attenuation = [1, 0, 0] 

As previously mentioned and alluded to by the constant values in the 
Light class, there will be three extensions of the class that represent dif-
ferent types of lights: ambient light, directional light, and point light. To 
implement the class representing ambient light, the simplest of the three, 
as it only uses the color data, in the light folder create a new fle named 
ambientLight.py with the following code: 

from light.light import Light 
class AmbientLight(Light):

 def __init__(self, color=[1,1,1]):
 super().__init__(Light.AMBIENT)
 self.color = color 

Next, you will implement the directional light class. However, you frst 
need to add some functionality to the Object3D class that enables you 
to get and set the direction an object is facing, also called the forward 

http:ambientLight.py
http:light.py
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direction, which is defned by the orientation of its local negative z-axis. 
Tis concept was originally introduced in the discussion of the look-at 
matrix in Chapter 5. Te setDirection function is efectively a local 
version of the lookAt function. To calculate the direction an object is 
facing, the getDirection function requires the rotation component of 
the mesh’s transformation matrix, which is the top-lef 3-by-3 submatrix; 
this functionality will be provided by a new function called getRota-
tionMatrix. To proceed, in the fle object3D.py in the core folder, 
add the following import statement: 

import numpy 

Ten, add the following three functions to the class: 

# returns 3x3 submatrix with rotation data 
def getRotationMatrix(self):

 return numpy.array( [ self.transform[0][0:3], 
self.transform[1][0:3], 
self.transform[2][0:3] ] ) 

def getDirection(self):
 forward = numpy.array([0,0,-1])
 return list( self.getRotationMatrix() @ forward ) 

def setDirection(self, direction):
 position = self.getPosition()
 targetPosition = [ position[0] + direction[0],

 position[1] + direction[1], 
position[2] + direction[2] ]

 self.lookAt( targetPosition ) 

With these additions, you are ready to implement the class that 
represents directional lights. In the light folder, create a new fle named 
directionalLight.py with the following code: 

from light.light import Light 
class DirectionalLight(Light):

    def __init__(self, color=[1,1,1], direction=[0, 
-1, 0]): 

http:directionalLight.py
http:object3D.py
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 super().__init__(Light.DIRECTIONAL)
 self.color = color
 self.setDirection( direction ) 

Finally, you will implement the class that represents point lights. Te 
variable attenuation stores a list of parameters that will be used when 
calculating the decrease in light intensity due to increased distance, which 
will be discussed in more detail later. In the light folder, create a new fle 
named pointLight.py with the following code: 

from light.light import Light 
class PointLight(Light):

 def __init__(self, color=[1,1,1], 
position=[0,0,0], attenuation=[1,0,0.1]):

 super().__init__(Light.POINT)
 self.color = color
 self.setPosition( position )
 self.attenuation = attenuation 

6.3 NORMAL VECTORS 
Just as working with textures required the addition of a new attribute 
(representing UV coordinates) to geometry classes, working with lights 
also requires new attributes, as discussed in the beginning of this chap-
ter, representing vertex normal vectors and face normal vectors. Te next 
step will be to add new attributes containing these two types of vectors to 
the previously created geometry classes: rectangles, boxes, polygons, and 
parametric surfaces. Te shader code that will be created later in this chap-
ter will access this data through shader variables named vertexNormal 
and faceNormal. In the case of rectangles, boxes, and polygons, since 
the sides of these shapes are fat, these two types of normal vectors are 
the same. Curved surfaces defned by parametric functions will require 
slightly more efort to calculate these two types of normal vectors. 

6.3.1 Rectangles 

Since a rectangle is a fat shape aligned with the xy-plane, the normal vec-
tors at each vertex all point in the same direction: ⟨0, 0, 1⟩, aligned with the 
positive z-axis, as illustrated in Figure 6.8. 

To implement normal vectors for rectangles, in the fle rectang-
leGeometry.py in the geometry folder, add the following code: 

http:leGeometry.py
http:pointLight.py
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FIGURE 6.8 Normal vectors for a rectangle. 

normalVector = [0, 0, 1] 
normalData = [ normalVector ] * 6 
self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

6.3.2 Boxes 

To begin, recall the alignment of the vertices in a box geometry, illustrated 
in Figure 6.9. 

Since a box has six fat sides, there will be six diferent normal vectors 
required for this shape. Te right and lef sides, as they are perpendicular 
to the x-axis, will have normal vectors ⟨1, 0, 0⟩ and ⟨−1, 0, 0⟩. Te top and 
bottom sides, perpendicular to the y-axis, will have normal vectors ⟨0, 1, 0⟩ 
and ⟨0, −1, 0⟩. Te front and back sides, perpendicular to the z-axis, will 
have normal vectors ⟨0, 0, 1⟩ and ⟨0, 0, −1⟩. Observe that each corner point 
is part of three diferent sides; for example, point P6 is part of the lef, top, 
and front sides. Tus, each corner of the cube may correspond to one of 
three normal vectors, depending on the triangle being generated in the 

FIGURE 6.9 Vertices in a box geometry. 
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rendering process. To add normal vector data for this shape, in the fle 
boxGeometry.py in the geometry folder, add the following code: 

# normal vectors for x+, x-, y+, y-, z+, z-
N1, N2 = [1, 0, 0], [-1,  0,  0] 
N3, N4 = [0, 1, 0], [ 0, -1,  0] 
N5, N6 = [0, 0, 1], [ 0,  0, -1] 
normalData = [N1]*6 + [N2]*6 + [N3]*6 + [N4]*6 + 
[N5]*6 + [N6]*6 

self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

6.3.3 Polygons 

Just as was the case for rectangles, since polygons are fat shapes aligned 
with the xy-plane, the normal vectors at each vertex are ⟨0, 0, 1⟩. To add 
normal vector data for polygons, in the fle polygonGeometry.py in 
the geometry folder, you will need to add code in three diferent parts. 
First, before the for loop, add the following code: 

normalData = [] 
normalVector = [0, 0, 1] 

Within the for loop, the same line of code is repeated three times 
because each triangle has three vertices; as with the other attributes, three 
vectors are appended to the corresponding data array. 

normalData.append( normalVector ) 
normalData.append( normalVector ) 
normalData.append( normalVector ) 

Afer the for loop, add the following code: 

self.addAttribute("vec3", "vertexNormal", normalData) 
self.addAttribute("vec3", "faceNormal", normalData) 

Tis completes the necessary additions to the Polygon class. 

6.3.4 Parametric Surfaces 

Finally, you will add normal vector data for parametric surfaces. Unlike 
the previous cases, this will involve some calculations. To calculate the face 
normal vectors for each triangle, you will use the cross product operation, 

http:polygonGeometry.py
http:boxGeometry.py
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FIGURE 6.10 Calculating the normal vector for a triangle. 

which takes two vectors as input and produces a vector perpendicular to 
both of the input vectors. Since each triangle is defned by three points 
P0, P1, and P2, one can subtract these points in pairs to create two vectors 
v = P1–P0 and w = P2–P0 aligned with the edges of the triangle. Ten, the 
cross product of v and w results in the desired face normal vector n. Tis 
calculation is illustrated in Figure 6.10. 

To calculate the vertex normal vector at a point P0 on the surface 
involves the same process, except that the points P1 and P2 used for this 
calculation are chosen to be very close to P0 in order to more precisely 
approximate the exact normal to the surface. In particular, assume that 
the surface is defned by the parametric function S and that P0 = S u v ( , ). 
Let h be a small number, such as h = 0.0001. Ten, defne two additional 
points P1 = S u  h v  ( + ,  and P2 = S u v h  ) ( , + ). With the three points P0, P1, 
and P2, one may then proceed exactly as before to obtain the desired 
vertex normal vector. 

To implement these calculations, in the fle parametricGeometry. 
py in the geometry directory, begin by adding the following import 
statement: 

import numpy 

Ten, afer the for loop that calculates the contents of the uvs list, add 
the following code, which implements a function to calculate a normal 
vector from three points as previously described, and populates a list with 
vertex normal vectors at the position of each vertex. 

def calcNormal(P0, P1, P2):
 v1 = numpy.array(P1) - numpy.array(P0)
 v2 = numpy.array(P2) - numpy.array(P0) 
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 normal = numpy.cross( v1, v2 )
 normal = normal / numpy.linalg.norm(normal)
 return normal 

vertexNormals = [] 
for uIndex in range(uResolution+1):

 vArray = []
 for vIndex in range(vResolution+1):

 u = uStart + uIndex * deltaU
 v = vStart + vIndex * deltaV
 h = 0.0001
 P0 = surfaceFunction(u, v)
 P1 = surfaceFunction(u+h, v)
 P2 = surfaceFunction(u, v+h)
 normalVector = calcNormal(P0, P1, P2)
 vArray.append( normalVector )

 vertexNormals.append(vArray) 

Ten, immediately before the nested for loop that groups the vertex 
data into triangles, add the following code: 

vertexNormalData = [] 
faceNormalData = [] 

Within the nested for loop, afer data is appended to the uvData list, 
add the following code: 

# vertex normal vectors 
nA = vertexNormals[xIndex+0][yIndex+0] 
nB = vertexNormals[xIndex+1][yIndex+0] 
nD = vertexNormals[xIndex+0][yIndex+1] 
nC = vertexNormals[xIndex+1][yIndex+1] 
vertexNormalData += [nA,nB,nC, nA,nC,nD] 

# face normal vectorsfn0 = calcNormal(pA, pB, pC) 
fn1 = calcNormal(pA, pC, pD) 
faceNormalData += [fn0,fn0,fn0, fn1,fn1,fn1] 

Finally, afer the nested for loop, add the following two lines of code 
before the countVertices function is called: 
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self.addAttribute("vec3", "vertexNormal", 
vertexNormalData) 

self.addAttribute("vec3", "faceNormal", 
faceNormalData) 

Another related change that needs to be made is in the Geometry class 
applyMatrix function, which currently transforms only the position-
related data stored in an attribute of a geometry. When transforming a 
geometry, the normal vector data should also be updated, but only by the 
rotational part of the transformation (as normal vectors are assumed to 
be in standard position, with initial point at the origin). Tis functional-
ity is especially important for cylinder-based shapes, as they include both 
a parametric geometry component and one or two transformed polygon 
geometry components. To implement this, in the fle geometry.py in 
the geometry folder, in the applyMatrix function, add the following 
code directly before the uploadData function is called. 

# extract the rotation submatrix 
rotationMatrix = numpy.array( [ matrix[0][0:3], 

matrix[1][0:3], 
matrix[2][0:3] ] ) 

oldVertexNormalData = self.attributes["vertexNormal"]. 
data 

newVertexNormalData = [] 
for oldNormal in oldVertexNormalData:

 newNormal = oldNormal.copy()
 newNormal = rotationMatrix @ newNormal
 newVertexNormalData.append( newNormal ) 

self.attributes["vertexNormal"].data = 
newVertexNormalData 

oldFaceNormalData = self.attributes["faceNormal"]. 
data 

newFaceNormalData = [] 
for oldNormal in oldFaceNormalData:

 newNormal = oldNormal.copy()
 newNormal = rotationMatrix @ newNormal
 newFaceNormalData.append( newNormal ) 

self.attributes["faceNormal"].data = newFaceNormalData 

http:geometry.py
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With these additions to the graphics framework, all geometric objects 
now include the vertex data that will be needed for lighting-based 
calculations. 

6.4 USING LIGHTS IN SHADERS 
Te next major step in implementing lighting efects is to write a shader 
to perform the necessary calculations, which will require the data stored 
in the previously created Light class. Since scenes may feature multiple 
light objects, a natural way to proceed is to create a data structure within 
the shader to group this information together, analogous to the Light 
class itself. Afer learning how data is uploaded to a GLSL structure and 
updating the Uniform class as needed, the details of the light calculations 
will be explained. You will then implement three shaders: the fat shad-
ing model, the Lambert illumination model, and the Phong illumination 
model. While the frst of these models uses face normal data in the vertex 
shader, the latter two models will use Phong shading, where vertex normal 
data will be interpolated and used in the fragment shader. 

6.4.1 Structs and Uniforms 

In GLSL, data structures are used to group together related data variables 
as a single unit, thus defning new types. Tese are created using the key-
word struct, followed by a list of member variable types and names. For 
example, a structure to store light-related data will be defned as follows: 

struct Light 
{

 int lightType;
 vec3 color;
 vec3 direction;
 vec3 position;
 vec3 attenuation; 

}; 

Following the defnition of a struct, variables of this type may be 
defned in the shader. Fields within a struct are accessed using dot nota-
tion; for example, given a Light variable named sun, the information 
stored in the direction feld can be accessed as sun.direction. 
Te data for a uniform struct variable cannot all be uploaded by a single 
OpenGL function, so there will be a signifcant addition to the Uniform 
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class corresponding to light-type objects. When storing such an object, 
the Uniform class variable variableRef will not store a single uni-
form variable reference, but rather a dictionary object whose keys are the 
names of the struct felds and whose values are the corresponding variable 
references. When uploading data to the GPU, multiple glUniform-type 
functions will be called. 

To add this functionality, in the fle uniform.py in the core folder, 
change the locateVariable function to the following: 

# get and store reference(s) for program variable with 
given name 

def locateVariable(self, programRef, variableName):
 if self.dataType == "Light":

 self.variableRef = {}
 self.variableRef["lightType"] =

 glGetUniformLocation(programRef, 
              variableName + ".lightType")

 self.variableRef["color"] =
            glGetUniformLocation(programRef, 

variableName + ".color")
 self.variableRef["direction"] =

 glGetUniformLocation(programRef, 
              variableName + ".direction")

 self.variableRef["position"] =
 glGetUniformLocation(programRef, 

              variableName + ".position")
 self.variableRef["attenuation"] =

 glGetUniformLocation(programRef, 
              variableName + ".attenuation")

 else:
        self.variableRef = glGetUniformLocation 

(programRef, variableName) 

Also in the Uniform class, in the uploadData function if-else 
block, add the following code: 

elif self.dataType == "Light":
    glUniform1i( self.variableRef["lightType"], self. 

data.lightType )
 glUniform3f( self.variableRef["color"], 

http:uniform.py
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        self.data.color[0], self.data.color[1], self. 
data.color[2] )

 direction = self.data.getDirection()
 glUniform3f( self.variableRef["direction"],

 direction[0], direction[1], direction[2] )
 position = self.data.getPosition()
 glUniform3f( self.variableRef["position"],

 position[0], position[1], position[2] )
 glUniform3f( self.variableRef["attenuation"], 

self.data.attenuation[0], 
self.data.attenuation[1], 
self.data.attenuation[2] ) 

6.4.2 Light-Based Materials 

In each of the three materials that will be created in this section, key 
features will be the Light struct previously discussed, the declaration 
of four uniform Light variables (this will be the maximum supported 
by this graphics framework), and a function (named lightCalc) to 
calculate the efect of light sources at a point. In the fat shading material, 
these elements will be added to the vertex shader, while in the Lambert 
and Phong materials, these elements will be added to the fragment 
shader instead. 

To begin, you will create the fat shader material. In the material 
directory, create a new fle called flatMaterial.py containing the fol-
lowing code; the code for the vertex and fragment shaders and for adding 
uniform objects will be added later. 

from material.material import Material 
from OpenGL.GL import * 
class FlatMaterial(Material):

 def __init__(self, texture=None, properties={}):

 vertexShaderCode = """
 // (vertex shader code to be added)
 """

 fragmentShaderCode = """
 // (fragment shader code to be added)
 """ 

http://OpenGL.GL
http:flatMaterial.py
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super().__init__(vertexShaderCode, 
fragmentShaderCode)

 // (uniforms to be added)
 self.locateUniforms()

 # render both sides?
 self.settings["doubleSide"] = True
 # render triangles as wireframe?
 self.settings["wireframe"] = False
 # line thickness for wireframe rendering
 self.settings["lineWidth"] = 1

 self.setProperties(properties)

 def updateRenderSettings(self):

 if self.settings["doubleSide"]:
 glDisable(GL_CULL_FACE)

 else:
 glEnable(GL_CULL_FACE)

 if self.settings["wireframe"]:
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

 else:
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

 glLineWidth(self.settings["lineWidth"]) 

In the fat shading model, lights are processed in the vertex shader. 
Tus, in the vertex shader code area, add the following code: 

struct Light 
{

 // 1 = AMBIENT, 2 = DIRECTIONAL, 3 = POINT
 int lightType;
 // used by all lights
 vec3 color;
 // used by directional lights
 vec3 direction;
 // used by point lights
 vec3 position; 
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 vec3 attenuation; 
}; 

uniform Light light0; 
uniform Light light1; 
uniform Light light2; 
uniform Light light3; 

Next, you will implement the lightCalc function. Te function will 
be designed so that it may calculate the contributions from a combination 
of ambient, difuse, and specular light. In the fat shading and Lambert 
materials, only ambient and difuse light contributions are considered, 
and thus, the only parameters required by the lightCalc function are 
the light source itself, and the position and normal vector for a point on 
the surface. Values for the contributions from each type of light are stored 
in the variables ambient, diffuse, and specular, each of which is 
initially set to zero and then modifed as necessary according to the light 
type. 

The calculations for the diffuse component of a directional light and 
a point light are quite similar. One difference is in the calculation of 
the light direction vector: for a directional light, this is constant, but 
for a point light, this is dependent on the position of the light and the 
position of the point on the surface. Once the light direction vector is 
known, the contribution of the light source at a point can be calculated. 
The value of the contribution depends on the angle between the light 
direction vector and the normal vector to the surface. When this angle 
is small (close to zero), the contribution of the light source is close to 
100%. As the angle approaches 90°, the contribution of the light source 
approaches 0%. This models the observation that light rays meeting 
a surface at large angles are scattered, which reduces the intensity of 
the ref lected light. Fortunately, this mathematical relationship is eas-
ily captured by the cosine function, as ( ) 1 and ) 0.cos 0° = (cos 90° =
Furthermore, it can be proven that the cosine of the angle between two 
unit vectors (vectors with length 1) is equal to the dot product of the 
vectors, which can be calculated with the GLSL function dot. If the 
value of the cosine is negative, this indicates that the surface is inclined 
at an angle away from the light source, in which case the contribution 
should be set to zero; this will be accomplished with the GLSL function 
max, as you will see. 
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1 1  

FIGURE 6.11 Attenuation of a light source as a function of distance. 

Finally, point lights also incorporate attenuation efects: the intensity 
of the light should decrease as the distance d between the light source 
and the surface increases. Tis efect is modeled mathematically by mul-
tiplying the difuse component by the factor 1  (a b d c d2 , where + ˝ + ˝  ) 
the coefcients a, b, c are used to adjust the rate at which the light efect 
decreases. Figure 6.11 displays a graph of this function for the default 
attenuation coefcients a= 1, b= 0, c= 0.1, which results in the function 

( 0  d 2 ). Observe that in the graph, when the distance is at + ˝ +   0.1 ̋ d 
a minimum (d= 0), the attenuation factor is 1, and the attenuation is 50% 
approximately when d= 3.2. 

To implement the lightCalc function, in the vertex shader code, add 
the following afer the declaration of the uniform light variables: 

vec3 lightCalc(Light light, vec3 pointPosition, vec3 
pointNormal) 

{
 float ambient = 0;
 float diffuse = 0;
 float specular = 0;
 float attenuation = 1;
 vec3 lightDirection = vec3(0,0,0);

 if ( light.lightType == 1 ) // ambient light
 {

 ambient = 1;
 }

    else if ( light.lightType == 2 ) // directional 
light

 {
 lightDirection = normalize(light.direction);

 }
 else if ( light.lightType == 3 ) // point light
 { 
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        lightDirection = normalize(pointPosition -
light.position);

        float distance = length(light.position -
pointPosition);

 attenuation = 1.0 / (light.attenuation[0] +
                         light.attenuation[1] * 

distance +
                         light.attenuation[2] * 

distance * distance);
 }

    if ( light.lightType > 1 ) // directional or point 
light

 {
 pointNormal = normalize(pointNormal);

        diffuse = max( dot(pointNormal, 
-lightDirection), 0.0 );

 diffuse *= attenuation;
 }

    return light.color * (ambient + diffuse + 
specular); 

} 

With these additions in place, you are ready to complete the vertex 
shader for the fat shading material. In addition to the standard calcula-
tions involving the vertex position and UV coordinates, you also need to 
calculate the total contribution from all of the lights. If data for a light vari-
able has not been set, then the light’s lightType variable defaults to zero, 
in which case the value returned by lightCalc is also zero. Before being 
used in the lightCalc function, the model matrix needs to be applied to 
the position data, and the rotational part of the model matrix needs to be 
applied to the normal data. Te total light contribution is passed from the 
vertex shader to the fragment shader for use in determining the fnal color 
of each fragment. In the vertex shader code, add the following code afer 
the body of the lightCalc function: 

uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 
uniform mat4 modelMatrix; 
in vec3 vertexPosition; 
in vec2 vertexUV; 
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in vec3 faceNormal; 
out vec2 UV; 
out vec3 light; 

void main() 
{
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix 
* vec4(vertexPosition, 1); 

UV = vertexUV;
 // calculate total effect of lights on color

    vec3 position = vec3( modelMatrix * 
vec4(vertexPosition, 1) );

    vec3 normal = normalize( mat3(modelMatrix) * 
faceNormal );

 light = vec3(0,0,0);
 light += lightCalc( light0, position, normal );
 light += lightCalc( light1, position, normal );
 light += lightCalc( light2, position, normal );
 light += lightCalc( light3, position, normal ); 

} 

Next, you need to add the code for the fat material fragment shader. In 
addition to the standard elements of past fragment shaders, this new shader 
also uses the light value calculated in the vertex shader when determining 
the fnal color of a fragment. Tis material (as well as the two that follow) 
will include an optional texture parameter that can be set. If a texture is 
passed into the material, it will also cause a shader variable useTexture 
to be set to true, in which case a color sampled from the supplied texture 
will be combined with the material’s base color. To implement this, set the 
fragment shader code in the fat material to be the following: 

uniform vec3 baseColor; 
uniform bool useTexture; 
uniform sampler2D texture; 
in vec2 UV; 
in vec3 light; 
out vec4 fragColor; 
void main() 
{

 vec4 color = vec4(baseColor, 1.0);
 if ( useTexture ) 
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 color *= texture2D( texture, UV );
 color *= vec4( light, 1 );
 fragColor = color; 

} 

Finally, you must add the necessary uniform objects to the mate-
rial using the addUniform function. To proceed, afer the fragment 
shader code and before the function locateUniforms is called, add 
the following code. (Te data for the light objects will be supplied by the 
Renderer class, handled similarly to the model, view, and projection 
matrix data.) 

self.addUniform("vec3", "baseColor", [1.0, 1.0, 1.0]) 
self.addUniform("Light", "light0", None ) 
self.addUniform("Light", "light1", None ) 
self.addUniform("Light", "light2", None ) 
self.addUniform("Light", "light3", None ) 
self.addUniform("bool", "useTexture", 0) 
if texture == None:

 self.addUniform("bool", "useTexture", False) 
else:

 self.addUniform("bool", "useTexture", True)
    self.addUniform("sampler2D", "texture", [texture. 

textureRef, 1]) 

Tis completes the code required for the FlatMaterial class. 
Next, to create the Lambert material, make a copy of the fle 

flatMaterial.py and name the copy lambertMaterial.py. 
Within this fle, change the name of the class LambertMaterial. Since 
the Phong shading model will be used in this material (as opposed to 
the Gouraud shading model), the light-based calculations will occur in 
the fragment shader. Terefore, move the code involving the defnition 
of the Light struct, the declaration of the four Light variables, and the 
function lightCalc from the vertex shader to the beginning of the frag-
ment shader. Ten, since vertex normals will be used instead of face nor-
mals, and since the position and normal data must be transmitted to the 
fragment shader for use in the lightCalc function there, change the 
code for the vertex shader to the following: 

uniform mat4 projectionMatrix; 
uniform mat4 viewMatrix; 

http:lambertMaterial.py
http:flatMaterial.py


      

  

  

  

 

 

Light and Shadow ◾ 289 

uniform mat4 modelMatrix; 
in vec3 vertexPosition; 
in vec2 vertexUV; 
in vec3 vertexNormal; 
out vec3 position; 
out vec2 UV; 
out vec3 normal; 
void main() 
{
    gl_Position = projectionMatrix * viewMatrix * 

modelMatrix * vec4(vertexPosition, 1);
    position = vec3( modelMatrix * 

vec4(vertexPosition, 1) );
 UV = vertexUV;

    normal = normalize( mat3(modelMatrix) * 
vertexNormal ); 

} 

In the Lambert material fragment shader, the light calculations will 
take place and be combined with the base color (and optionally, texture 
color data). Replace the fragment shader code following the declaration of 
the lightCalc function with the following: 

uniform vec3 baseColor; 
uniform bool useTexture; 
uniform sampler2D texture; 
in vec3 position; 
in vec2 UV; 
in vec3 normal; 
out vec4 fragColor; 

void main() 
{

 vec4 color = vec4(baseColor, 1.0);
 if ( useTexture )

 color *= texture2D( texture, UV );
 // calculate total effect of lights on color
 vec3 total = vec3(0,0,0);
 total += lightCalc( light0, position, normal );
 total += lightCalc( light1, position, normal );
 total += lightCalc( light2, position, normal );
 total += lightCalc( light3, position, normal ); 
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 color *= vec4( total, 1 );
 fragColor = color; 

} 

Tis completes the required code for the LambertMaterial class. 
Finally, you will create the Phong material, which includes specular 

light contributions. Tis calculation is similar to the difuse light calcula-
tion, involving the angle between two vectors (which can be calculated 
using a dot product), but in this case, the vectors of interest are the refec-
tion of the light direction vector and the vector from the viewer or virtual 
camera to the surface point. Tese elements are illustrated in Figure 6.12. 
First, the light direction vector d impacts the surface at a point. Ten, the 
vector d is refected around the normal vector n, producing the refection 
vector r. Te vector from the virtual camera to the surface is indicated by 
v. Te angle of interest is indicated by a; it is the angle between the vector 
r and the vector v. 

Te impact of specular light on an object is typically adjusted by two 
parameters: strength, a multiplicative factor which can be used to make 
the overall specular light efect appear brighter or dimmer, and shininess, 
which causes the highlighted region to be more blurry or more sharply 
defned, which corresponds to how refective the surface will be perceived. 
Figure 6.13 illustrates the efects of increasing the shininess value by a fac-
tor of 4 in each image from the lef to the right. 

To implement these changes, make a copy of the fle lambertMate-
rial.py and name the copy phongMaterial.py. Within this fle, 

FIGURE 6.12 Te vectors used in the calculation of specular highlights. 

FIGURE 6.13 Te efect of increasing shininess in specular lighting. 

http:phongMaterial.py
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change the name of the class PhongMaterial. To perform the neces-
sary calculations in the lightCalc function, it must take in additional 
data. Before the declaration of the lightCalc function, add the follow-
ing uniform declarations (so that this function can access the associated 
values): 

uniform vec3 viewPosition; 
uniform float specularStrength; 
uniform float shininess; 

Ten, within the lightCalc function, in the block of code corre-
sponding to the condition light.lightType > 1, afer the difuse 
value is calculated, add the following code that will calculate the specular 
component when needed (when there is also a nonzero difuse component): 

if (diffuse > 0) 
{
    vec3 viewDirection = normalize(viewPosition -

pointPosition);
    vec3 reflectDirection = reflect(lightDirection, 

pointNormal);
    specular = max( dot(viewDirection, 

reflectDirection), 0.0 );
    specular = specularStrength * pow(specular, 

shininess); 
} 

Finally, in the section of the material code where the uniform data is 
added, add the following two lines of code, which supplies default values 
for the specular lighting parameters. 

self.addUniform("vec3", "viewPosition", [0,0,0]) 
self.addUniform("float", "specularStrength", 1) 
self.addUniform("float", "shininess", 32) 

Tis completes the required code for the PhongMaterial class. 

6.5 RENDERING SCENES WITH LIGHTS 
In this section, you will update the Renderer class to extract the list of light 
objects that have been added to a scene, and supply that information to the 
corresponding uniforms. Following that, you will create a scene featuring 
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all three types of lights and all three types of materials. To begin, in the fle 
renderer.py in the core folder, add the following import statement: 

from light.light import Light 

Next, during the rendering process, a list of lights must be extracted 
from the scene graph structure. Tis will be accomplished in the same 
way that the list of mesh objects is extracted: by creating a flter function 
and applying it to the list of descendents of the root of the scene graph. 
Furthermore, since data for four lights is expected by the shader, if less than 
four lights are present, then default Light objects will be created (which 
result in no contribution to the overall lighting of the scene) and added to 
the list. To proceed, in the render function, afer the meshList vari-
able is created, add the following code: 

lightFilter = lambda x : isinstance(x, Light) 
lightList = list( filter( lightFilter, 
descendentList ) ) 

# scenes support 4 lights; precisely 4 must be present 
while len(lightList) < 4:

 lightList.append( Light() ) 

Next, for all light-based materials, you must set the data for the four 
uniform objects referencing lights; these materials can be identifed dur-
ing the rendering stage by checking if there is a uniform object stored with 
the key "light0". Additionally, for the Phong material, you must set the 
data for the camera position; this case can be identifed by checking for a 
uniform under the key "viewPosition". Tis can be implemented by 
adding the following code in the for loop that iterates over meshList, 
directly afer the matrix uniform data is set. 

# if material uses light data, add lights from list 
if "light0" in mesh.material.uniforms.keys():

 for lightNumber in range(4):
 lightName = "light" + str(lightNumber)
 lightObject = lightList[lightNumber]

        mesh.material.uniforms[lightName].data = 
lightObject 

# add camera position if needed (specular lighting) 

http:renderer.py
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if "viewPosition" in mesh.material.uniforms.keys():
        mesh.material.uniforms["viewPosition"].data = 

camera.getWorldPosition() 

With these additions to the graphics framework, you are ready to cre-
ate an example. To fully test all the classes you have created so far in this 
chapter, you will create a scene that includes all the light types (ambient, 
directional, and point), as well as all the material types (fat, Lambert, 
and Phong). When you are fnished, you will see a scene containing three 
spheres, similar to that in Figure 6.14. From lef to right is a sphere with a 
red fat-shaded material, a sphere with a textured Lambert material, and 
a sphere with a blue-gray Phong material. Te scene also includes a dark 
gray ambient light, a white directional light, and a red point light. Te lat-
ter two light types and their colors may be guessed by the specular light 
colors on the third sphere and the amount of the sphere that is lit by each 
of the lights; the point light illuminates less of the sphere due to its near-
ness to the sphere. 

To begin, you will frst make some additions to the test-template. 
py fle for future convenience. In this fle, add the following import 
statements: 

from geometry.sphereGeometry  import SphereGeometry 
from light.ambientLight import AmbientLight 
from light.directionalLight import DirectionalLight 
from light.pointLight import PointLight 
from material.flatMaterial  import FlatMaterial 
from material.lambertMaterial import LambertMaterial 
from material.phongMaterial import PhongMaterial 

FIGURE 6.14 Rendered scene with all light types and material types. 
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Next, make a copy of the template fle and name it test-6-1.py. In 
this new fle, in the initialize function, replace the code in that func-
tion, starting from the line where the camera object is created, with the 
following code, which will set up the main scene: 

self.camera = Camera( aspectRatio=800/600 ) 
self.camera.setPosition( [0,0,6] ) 

ambient = AmbientLight( color=[0.1, 0.1, 0.1] ) 
self.scene.add( ambient ) 
directional = DirectionalLight( 

color=[0.8, 0.8, 0.8], direction=[-1, -1, -2] ) 
self.scene.add( directional ) 
point = PointLight( 

color=[0.9, 0, 0], position=[1, 1, 0.8] ) 
self.scene.add( point ) 
sphereGeometry = SphereGeometry() 
flatMaterial = FlatMaterial( 

properties={ "baseColor" : [0.6, 0.2, 0.2] } ) 
grid = Texture("images/grid.png") 
lambertMaterial = LambertMaterial( texture=grid ) 
phongMaterial = PhongMaterial( 

properties={ "baseColor" : [0.5, 0.5, 1]} ) 
sphere1 = Mesh(sphereGeometry, flatMaterial) 
sphere1.setPosition( [-2.2, 0, 0] ) 
self.scene.add( sphere1 ) 
sphere2 = Mesh(sphereGeometry, lambertMaterial) 
sphere2.setPosition( [0, 0, 0] ) 
self.scene.add( sphere2 ) 
sphere3 = Mesh(sphereGeometry, phongMaterial) 
sphere3.setPosition( [2.2, 0, 0] ) 
self.scene.add( sphere3 ) 

Finally, change the last line of code in the fle to the following, to make 
the window large enough to easily see all three spheres simultaneously: 

Test( screenSize=[800,600] ).run() 

When you run this program, you should see an image similar to that in 
Figure 6.14. 

http:test-6-1.py
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6.6 EXTRA COMPONENTS 
In Chapter 4, the AxesHelper and GridHelper classes were 
introduced to help provide a sense of orientation and scale within a 
scene by creating simple meshes. In the same spirit, in this section 
you will create two additional classes, PointLightHelper and 
DirectionalLightHelper, to visualize the position of point lights 
and the direction of directional lights, respectively. Figure 6.15 illustrates 
the two helpers added to the scene from the previous test example. Note 
that a wireframe diamond shape is present at the location of the point 
light, and a small wireframe grid with a perpendicular ray illustrates the 
direction of the directional light. Furthermore, in both cases, the color of 
the helper objects is equal to the color of the associated lights. 

First you will implement the directional light helper, which is a grid 
helper object with an additional line segment added. To proceed, in the 
extras folder, create a new fle named directionalLightHelper. 
py containing the following code: 

from extras.gridHelper import GridHelper 
class DirectionalLightHelper(GridHelper):

 def __init__(self, directionalLight):
 color = directionalLight.color
 super().__init__(size=1, divisions=4, 

FIGURE 6.15 Objects illustrating the properties of point lights and directional 
lights. 
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 gridColor=color, centerColor=[1,1,1])
        self.geometry.attributes["vertexPosition"]. 

data += [[0,0,0], [0,0,-10]]
        self.geometry.attributes["vertexColor"].data 

+= [color, color]
        self.geometry.attributes["vertexPosition"]. 

uploadData()
        self.geometry.attributes["vertexColor"]. 

uploadData()
 self.geometry.countVertices() 

Next, you will implement the point light helper, which is a wireframe 
sphere geometry whose resolution parameters are small enough that the 
sphere becomes an octahedron. To proceed, in the extras folder, cre-
ate a new fle named pointLightHelper.py containing the following 
code: 

from geometry.sphereGeometry import SphereGeometry 
from material.surfaceMaterial import SurfaceMaterial 
from core.mesh import Mesh 

class PointLightHelper(Mesh):

    def __init__(self, pointLight, size=0.1, 
lineWidth=1):
 color = pointLight.color

        geometry = SphereGeometry(radius=size, 
radiusSegments=4, heightSegments=2)

 material = SurfaceMaterial({ 
"baseColor": color, 
"wireframe": True, 
"doubleSide": True, 
"lineWidth": linewidth

 })
 super().__init__(geometry, material) 

Next, you will test these helper objects out by adding them to the previ-
ous test example. As an extra feature, you will also illustrate the dynamic 
lighting efects of the graphics framework and learn how to keep the light 

http:pointLightHelper.py
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source and helper objects in sync. In the fle test-6-1.py, add the fol-
lowing import statements: 

from extras.directionalLightHelper import 
DirectionalLightHelper 
from extras.pointLightHelper import PointLightHelper 
from math import sin 

Next, change the code where the directional and point lights are created 
to the following; the variable declarations are changed so that the lights 
can be accessed in the update function later. 

self.directional = DirectionalLight( 
color=[0.8, 0.8, 0.8], direction=[-1, -1, -2] ) 

self.scene.add( self.directional ) 
self.point = PointLight( 

color=[0.9, 0, 0], position=[1, 1, 0.8] ) 
self.scene.add( self.point ) 

Ten, also in the initialize function afer the code that you just 
modifed, add the following. Note that the helper objects are added to their 
corresponding lights rather than directly to the scene. Tis approach takes 
advantage of the scene graph structure and guarantees that the trans-
formations of each pair will stay synchronized. In addition, the position 
of the directional light has been set. Tis causes no change in the efects 
of the directional light; it has been included to position the directional 
light helper object at a convenient location that does not obscure the other 
objects in the scene. 

directHelper = DirectionalLightHelper(self. 
directional) 

self.directional.setPosition( [3,2,0] ) 
self.directional.add( directHelper ) 
pointHelper = PointLightHelper( self.point ) 
self.point.add( pointHelper ) 

Finally, you will add some code that makes the point light move up and 
down while the directional light tilts from lef to right. In the update 
function, add the following code: 

http:test-6-1.py
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self.directional.setDirection( [ -1, sin(0.7*self. 
time), -2] ) 

self.point.setPosition( [1, sin(self.time), 0.8] ) 

When you run the program, you should see the helper objects move as 
described, and the lighting on the spheres in the scene will also change 
accordingly. 

6.7 BUMP MAPPING 
Another efect that can be accomplished with the addition of lights is 
bump mapping: a technique for simulating details on the surface of an 
object by altering the normal vectors and using the adjusted vectors in 
lighting calculations. Tis additional normal vector detail is stored in a 
texture called a bump map or a normal map, in which the (r, g, b) values 
at each point correspond to the (x, y, z) values of a normal vector. Tis 
concept is illustrated in Figure 6.16. Te lef image in the fgure shows 
a colored texture of a brick wall. Te middle image in the fgure shows 
the associated grayscale height map, in which light colors represent a large 
amount of displacement in the perpendicular direction, while dark colors 
represent a small amount. In this example, the white regions correspond to 
the bricks, which extrude slightly from the wall, while the darker regions 
correspond to the mortar between the bricks, which here appears pressed 
into the wall to a greater extent. Te right image in the fgure represents 
the normal map. Points that are shades of red represent normal vectors 
mainly oriented towards the positive x-axis, while green and blue amounts 
correspond to the y-axis and z-axis directions, respectively. Observe that 
in the normal map for this example, the top edge of each brick appears to 
be light green, while the right edge appears to be pink. 

FIGURE 6.16 A color texture, height map texture, and normal map texture for 
a brick wall. 
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FIGURE 6.17 A normal map applied to a rectangle, with point light source on the 
upper-lef (lef) and upper right (right). 

When normal map data is combined with normal data in the fragment 
shader, and the result is used in light calculations, the object in the result-
ing scene will appear to have geometric features that are not actually pres-
ent in the vertex data. Tis is illustrated in Figure 6.17, where the bump 
map from Figure 6.16 has been applied to a rectangle geometry, and is lit 
by a point light from two diferent positions. Te light and dark regions 
surrounding each brick create an illusion of depth even though the mesh 
itself is perfectly fat. 

When a color texture and a bump map are used in combination, the 
results are subtle but signifcantly increase the realism of the scene. Tis is 
particularly evident in an interactive scene with dynamic lighting – a scene 
containing lights whose position, direction, or other properties change. 

To implement bump mapping is fairly straightforward. Te following 
modifcations should be carried out for both the fles lambertMate-
rial.py and phongMaterial.py in the material directory. 

In the—init—function, add the parameter and default value 
bumpTexture=None. 

In the fragment shader, before the main function, add the following 
uniform variable declarations. 

uniform bool useBumpTexture; 
uniform sampler2D bumpTexture; 
uniform float bumpStrength; 

Similar to the way the optional texture parameter works, if the bump-
Texture parameter is set, then useBumpTexture will be set to True. 

http:phongMaterial.py
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In this case, the normal data encoded within the bump texture will be 
multiplied by the strength parameter and added to the normal vector to 
produce a new normal vector. To implement this, in the main function 
in the fragment shader, change the lines of code involving the variable 
total (used for calculating the total light contribution) to the following: 

vec3 bNormal = normal; 
if (useBumpTexture)

 bNormal += bumpStrength * vec3(texture2D( 
bumpTexture, UV )); 
vec3 total = vec3(0,0,0); 
total += lightCalc( light0, position, bNormal ); 
total += lightCalc( light1, position, bNormal ); 
total += lightCalc( light2, position, bNormal ); 
total += lightCalc( light3, position, bNormal ); 
color *= vec4( total, 1 ); 

Finally, you need to add the corresponding uniform data, which paral-
lels the structure for the texture variable. Since texture slot 1 is already 
in use by the shader, texture slot 2 will be reserved for the bump texture. 
Afer the fragment shader code and before the function locateUniforms is 
called, add the following code: 

if bumpTexture == None:
 self.addUniform("bool", "useBumpTexture", False) 

else:
 self.addUniform("bool", "useBumpTexture", True)
 self.addUniform("sampler2D", "bumpTexture", 

[bumpTexture.textureRef, 2]) 
self.addUniform("float", "bumpStrength", 1.0) 

With these additions, the graphics framework can now support bump 
mapping. To create an example, you can use the color and normal map 
image fles provided with this library; alternatively, bump maps or nor-
mal maps may be easily found with an image-based internet search, or 
produced from height maps using graphics editing sofware such as the 
GNU Image Manipulation Program (GIMP), freely available at http:// 
gimp.org. 

To proceed, make a copy of the test template fle and name it test-
6-2.py. In this new fle, in the initialize function, replace the code 

http://gimp.org
http://gimp.org
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in that function, afer the line where the camera object is created, with the 
following code: 

self.camera.setPosition( [0,0,2.5] ) 
ambientLight = AmbientLight( color=[0.3, 0.3, 0.3] ) 
self.scene.add( ambientLight ) 
pointLight = PointLight( 

color=[1,1,1], position=[1.2, 1.2, 0.3]) 
self.scene.add( pointLight ) 

colorTex = Texture("images/brick-color.png") 
bumpTex = Texture("images/brick-bump.png") 

geometry = RectangleGeometry(width=2, height=2) 
bumpMaterial = LambertMaterial( 

texture=colorTex,
 bumpTexture=bumpTex,
 properties={"bumpStrength": 1} 

) 
mesh = Mesh(geometry, bumpMaterial) 
self.scene.add(mesh) 

When you run the application, you should see a scene similar to that in 
Figure 6.18. To fully explore the efects of bump mapping, you may want to 
add a movement rig, animate the position of the light along a path (similar 
to the previous example) or apply the material to a diferent geometric sur-
face, such as a sphere. 

FIGURE 6.18 Combining color texture with normal map texture. 
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6.8 BLOOM AND GLOW EFFECTS 
In this section, you will learn how to implement light-inspired postpro-
cessing efects. Te frst of these is called light bloom, or just bloom, which 
simulates the efect of an extremely bright light overloading the sensors 
in a real-world camera, causing the edges of bright regions to blur beyond 
their natural borders. Figure 6.19 illustrates a scene containing a number 
of crates in front of a simulated light source. Te lef side of the fgure 
shows the scene without a bloom efect, and the right side shows the scene 
with the bloom efect, creating the illusion of very bright lights. 

A similar combination of postprocessing flters can be used to create a 
glow efect, in which objects appear to radiate a given color. Figure 6.20 

FIGURE 6.19 Light bloom postprocessing efect. 

FIGURE 6.20 Glow postprocessing efect. 
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illustrates a scene similar to Figure 6.19, but with the background light 
source removed, and each of the three crates appears to be glowing a dif-
ferent color. Most notably, in contrast to the bloom efect, the colors used 
for glow do not need to appear in the original scene. 

Tese techniques require three new postprocessing efects: brightness 
fltering, blurring, and additive blending. Tese efects will be created in 
the same style used in Section 5.9 on postprocessing in Chapter 5, start-
ing from the template efect fle. To prepare for testing these efects, make 
a copy of the fle test-5–12.py and name it test-6-3.py. Make sure 
that in the line of code where the renderer is created, the clear color is set 
to black by including the parameter clearColor=[0,0,0]; any other 
clear color may cause unexpected efects in the rendered results. Afer 
writing the code for each efect, you can test it in the application by add-
ing the import statement corresponding to the efect and changing the 
efect that is added to the postprocessor. Recall that if no efects are added 
to the postprocessor, then the original scene is rendered, illustrated in 
Figure 6.21; this will serve as a baseline for visual comparison with the 
postprocessing efects that follow. 

First, you will create the brightness flter efect, while only renders the 
pixels with a certain brightness, as illustrated in Figure 6.22. 

Tis efect is accomplished by only rendering a fragment if the sum of 
the red, green, and blue components is greater than a given threshold value; 
otherwise, the fragment is discarded. You will add the threshold value as 

FIGURE 6.21 Default scene with no postprocessing efects. 

http:test-6-3.py
http:test-5�12.py
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FIGURE 6.22 Brightness flter postprocessing efect. 

a parameter in the class constructor, and create a corresponding uniform 
variable in the shader and uniform object in the class. To implement this, 
in the effects folder, make a copy of the templateEffect.py fle 
and name it brightFilterEffect.py. In the new fle, change the 
name of the class to BrightFilterEffect, and change the initializa-
tion function declaration to the following: 

def __init__(self, threshold=2.4): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform float threshold; 
out vec4 fragColor; 

void main() 
{

 vec4 color = texture2D(texture, UV);
 if (color.r + color.g + color.b < threshold)

 discard;
 fragColor = color; 

} 

http:brightFilterEffect.py
http:templateEffect.py
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Finally, add the following line of code near the end of the fle, before the 
locateUniforms function is called. 

self.addUniform("float", "threshold", threshold) 

Tis completes the code for the brightness flter efect; recall that you 
may use the fle test-6-3.py to test this efect, in which case you should 
see a result similar to Figure 6.22. 

Te next efect you will create is a blur efect, which blends the colors 
of adjacent pixels within a given radius. For computational efciency, this 
is typically performed in two passes: frst, a weighted average of pixel col-
ors is performed along the horizontal direction (called a horizontal blur), 
and then, these results are passed into a second shader where a weighted 
average of pixel colors is performed along the vertical direction (called a 
vertical blur). Figure 6.23 shows the results of applying the horizontal and 
vertical blur efects separately to the base scene, while Figure 6.24 shows 
the results of applying these efects in sequence, resulting in blur in all 
directions. 

To create the horizontal blur efect, you will sample the pixels within the 
bounds specifed by a parameter named blurRadius. Since textures are 
sampled using UV coordinates, the shader will also need the dimensions of 
the rendered image (a parameter named textureSize) to calculate the 
pixel-to-UV coordinate conversion factor (which is 1/textureSize). 
Ten, within the fragment shader, a for loop will calculate a weighted 
average of colors along this line, with the greatest weight applied to the 
pixel at the original UV coordinates, and the weights decreasing linearly 

FIGURE 6.23 Horizontal blur (lef) and vertical blur (right). 

http:test-6-3.py
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FIGURE 6.24 A combined two-pass blur postprocessing efect. 

towards the ends of the sample region. Te sum of these colors is normal-
ized by dividing by the sum of the weights, which is equal to the alpha com-
ponent of the sum (since the original alpha component at each point equals 
1). To implement this, in the effects folder, make a copy of the tem-
plateEffect.py fle and name it horizontalBlurEffect.py. In 
the new fle, change the name of the class to HorizontalBlurEffect, 
and change the initialization function declaration to the following: 

def __init__(self, textureSize=[512,512], 
blurRadius=20): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform vec2 textureSize; 
uniform int blurRadius; 
out vec4 fragColor; 
void main() 
{

 vec2 pixelToTextureCoords = 1 / textureSize;
 vec4 averageColor = vec4(0,0,0,0);

    for (int offsetX = -blurRadius; offsetX <= 
blurRadius; offsetX++) 

http:horizontalBlurEffect.py
http:plateEffect.py
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 { 
float weight = blurRadius - abs(offsetX) + 1;

        vec2 offsetUV = vec2(offsetX, 0) * 
pixelToTextureCoords; 

        averageColor += texture2D(texture, UV + 
offsetUV) * weight;

 } 
averageColor /= averageColor.a;
 fragColor = averageColor; 

} 

Finally, add the following code near the end of the fle, before the loca-
teUniforms function is called. 

self.addUniform("vec2", "textureSize", textureSize) 
self.addUniform("int", "blurRadius", blurRadius) 

Tis completes the code for the horizontal blur efect. Te vertical blur 
efect works in the same way, except that the texture is sampled along 
vertical lines. To create this efect, make a copy of the horizontal-
BlurEffect.py fle and name it verticalBlurEffect.py. In the 
new fle, change the name of the class to VerticalBlurEffect. Te 
only change that needs to be made is the for loop in the fragment shader, 
which should be changed to the following: 

for (int offsetY = -blurRadius; offsetY <= 
blurRadius; offsetY++) 

{ 
float weight = blurRadius - abs(offsetY) + 1;

    vec2 offsetUV = vec2(0, offsetY) * 
pixelToTextureCoords;

    averageColor += texture2D(texture, UV + offsetUV) 
* weight; 

} 

At this point, the blur shader efects are complete and can be applied 
individually or in sequence to create images with efects similar to those 
seen in Figures 6.23 and 6.24. 

Te next efect you will create is an additive blend efect, where an addi-
tional texture is overlaid on a rendered scene, using a weighted sum of the 
individual pixel colors. In some applications, color values are multiplied 

http:verticalBlurEffect.py
http:BlurEffect.py
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FIGURE 6.25 Additive blending postprocessing efect. 

together; this is particularly useful for shading, as the component values 
of a color are between 0 and 1, and multiplying by values in this range 
decreases values and darkens the associated colors. Alternatively, adding 
color components increases values and brightens the associated colors, 
which is particularly appropriate when simulating light-based efects. Tis 
efect is illustrated in Figure 6.25, where the original scene is additively 
blended with the grid texture. 

To implement this, in the effects folder, make a copy of the tem-
plateEffect.py fle and name it additiveBlendEffect.py. In 
the new fle, change the name of the class to AdditiveBlendEffect, 
and change the initialization function declaration to the following: 

def __init__(self, blendTexture=None, 
originalStrength=1, blendStrength=1): 

Next, change the fragment shader code to the following: 

in vec2 UV; 
uniform sampler2D texture; 
uniform sampler2D blendTexture; 
uniform float originalStrength; 
uniform float blendStrength; 
out vec4 fragColor; 

http:additiveBlendEffect.py
http:plateEffect.py
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void main() 
{

 vec4 originalColor = texture2D(texture, UV);
 vec4 blendColor = texture2D(blendTexture, UV);
 vec4 color = originalStrength * originalColor +

 blendStrength * blendColor;
 fragColor = color; 

} 

Finally, add the following code near the end of the fle, before the 
locateUniforms function is called. Note that since texture slot 1 
is used for the original texture, texture slot 2 will be reserved for the 
blended texture. 

self.addUniform("sampler2D", "blendTexture", 
[blendTexture.textureRef, 2]) 

self.addUniform("float", "originalStrength", 
originalStrength) 

self.addUniform("float", "blendStrength", 
blendStrength) 

With these additions, the additive blend shader efect is complete. 
To combine these efects to create a light bloom efect, assuming that all 

the necessary imports have been added to test-6-3.py, add efects to 
the postprocessor object as follows: 

# combined effects to create light bloom 
self.postprocessor.addEffect( BrightFilterEffect(2.4) ) 
self.postprocessor.addEffect( HorizontalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
self.postprocessor.addEffect( VerticalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
mainScene = self.postprocessor.renderTargetList[0]. 
texture 

self.postprocessor.addEffect( AdditiveBlendEffect(
 mainScene, originalStrength=2, blendStrength=1) ) 

Note that the results of the frst render pass (the original scene) are 
accessed through the postprocessor object and blended with the results 
of the bright fltered light afer the light has been blurred. Running this 
application will result in an image similar to that shown in Figure 6.26. 

http:test-6-3.py
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FIGURE 6.26 Light bloom postprocessing efect. 

Next, you will use these shaders to create a glow efect. One method to 
implement glow is to use a second scene, referred to here as the glow scene, 
containing only the objects that should glow. (Tis is analogous to the 
brightness flter step used in creating the light bloom efect.) Te objects in 
the glow scene should use the same geometry data and transform matrices 
as their counterparts in the original scene, but in the glow scene, they will 
be rendered with a solid colored material corresponding to the desired 
glow color. Two postprocessing objects are then used to accomplish the 
glow efect. Te frst renders the glow scene, applies a blur flter, and stores 
the result in a render target (accomplished by setting the finalRen-
derTarget parameter). Te second renders the original scene and then 
applies an additive blend efect using the results from the frst postproces-
sor. Creating a red glow efect applied to the sphere in the main scene in 
this section will produce an image similar to Figure 6.27. 

To implement this example, make a copy of the fle test-6-3.py and 
name it test-6-4.py. Add the following import statements: 

from material.surfaceMaterial import SurfaceMaterial 
from core.renderTarget import RenderTarget 

In the initialize function, make sure that the line of code that 
initializes the renderer is as follows (otherwise, your scene may appear 
oversaturated). 

http:test-6-4.py
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FIGURE 6.27 Glow postprocessing efect. 

self.renderer = Renderer( clearColor=[0,0,0] ) 

Next, in the initialize function, replace all the code involving 
postprocessing with the following: 

# glow scene 
self.glowScene = Scene() 
redMaterial = SurfaceMaterial({"baseColor": [1,0,0]}) 
glowSphere = Mesh(sphereGeometry, redMaterial) 
glowSphere.transform = self.sphere.transform 
self.glowScene.add( glowSphere ) 

# glow postprocessing 
glowTarget = RenderTarget( resolution=[800,600] ) 
self.glowPass = Postprocessor(self.renderer, 

self.glowScene, self.camera, glowTarget) 
self.glowPass.addEffect( HorizontalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 
self.glowPass.addEffect( VerticalBlurEffect(

 textureSize=[800,600], blurRadius=50) ) 

# combining results of glow effect with main scene 
self.comboPass = Postprocessor(self.renderer, 

self.scene, self.camera) 
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self.comboPass.addEffect( AdditiveBlendEffect(
    glowTarget.texture, originalStrength=1, 

blendStrength=3)) 

Finally, replace the code in the update function with the following: 

self.glowPass.render() 
self.comboPass.render() 

Running this application should produce a result similar to Figure 6.27. 
If desired, the intensity of the glow can be changed by altering the value of 
the blendStrength parameter in the additive blend efect. 

6.9 SHADOWS 
In this section, you will add shadow rendering functionality to the graph-
ics framework. In addition to adding further realism to a scene, shadows 
can also be fundamental for estimating relative positions between objects. 
For example, the lef side of Figure 6.28 shows a scene containing a ground 
and a number of crates; it is difcult to determine whether the crates are 
resting on the ground. Te right side of Figure 6.28 adds shadow efects, 
which provide visual cues to the viewer so that they may gain a better 
understanding of the arrangement of the objects in the scene. 

6.9.1 Theoretical Background 

In this graphics framework, shadows will be based on a single directional 
light. By defnition, the light rays emitted by a directional light have a 
constant direction and are not afected by distance; these qualities will also 
be present in the corresponding shadows. A point will be considered to be 

FIGURE 6.28 A scene without shadows (lef) and with shadows (right). 
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“in shadow” (or more precisely, in the shadow of another object) when 
there is another point along the direction of the light ray that is closer to 
the light source. In this case, the closer point is also said to have "cast a 
shadow" on the more distant point. Te colors corresponding to a point in 
shadow will be darkened during the rendering process, which simulates a 
reduced amount of light impacting the surface at that point. 

Te data required for creating shadows will be gathered in a rendering 
pass called a shadow pass, performed before the main scene is rendered. 
Te purpose of the shadow pass is to render the scene from the position 
and direction of the light source to determine what points are “visible” to 
the light. Te visible points are considered to be illuminated by light rays, 
and no further shading will be applied. Te points that are not visible from 
the light are considered to be in shadow and will be darkened. 

Recall that during the pixel processing stage of the graphics pipeline, 
for each pixel in the rendered image, the depth bufer stores the distance 
from the viewer to the corresponding point in the scene. Tis information 
is used during the rendering process when a fragment would correspond 
to the same pixel as a previously processed fragment, in order to determine 
whether the new fragment is closer to the viewer, in which case the new 
fragment’s data overwrites the data currently stored in the color and depth 
bufers. In the fnal rendered image of a scene, each pixel corresponds to a 
fragment that is the shortest distance from the camera, as compared to all 
other fragments that would correspond to the same pixel. Tis “shortest 
distance” information from the depth bufer can be used to generate 
shadows according to the following algorithm (called shadow mapping): 

• Render the scene from the point of view of the directional light and 
store the depth bufer values. 

• When rendering the main scene, calculate the distance from each 
fragment to the light source. If this distance is greater than the 
corresponding stored depth value, then the fragment is not closest to 
the light source, and therefore, it is in shadow. 

Te depth bufer values that are generated during the shadow pass will be 
stored in a texture called the depth texture, which will contain grayscale 
colors at each pixel based on the corresponding depth value. Due to the 
default confguration of the depth test function, depth values near 0 
(corresponding to dark colors) represent nearby points. Conversely, depth 
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FIGURE 6.29 A scene including a directional light and shadows. 

values near 1 (corresponding to light colors) represent more distant points. 
To help visualize these concepts, Figure 6.29 depicts a scene, including 
shadows cast by a directional light, rendered from the point of view of 
a perspective camera. Te position and direction of the directional light 
are indicated by a directional light helper object. On the lef side of Figure 
6.30 we see the same scene, rendered by a camera using an orthographic 
projection, from the point of view of the directional light. For convenience, 
this secondary camera will be referred to as the shadow camera. Note 
that no shadows are visible from this point of view; indeed, the defn-
ing characteristic of shadows is that they are exactly the set of points not 
visible from the shadow camera. Te right side of Figure 6.30 shows the 
corresponding grayscale depth texture that will be produced during the 
shadow pass. 

When rendering shadows with this approach, there are some limita-
tions and constraints that should be kept in mind when setting up a scene. 
First, the appearance of the shadows is afected by the resolution of the 
depth texture; low resolutions will lead to shadows that appear pixelated, 
as illustrated in Figure 6.31. Second, the points in the scene that may cast 
shadows or be in shadow are precisely those points contained in the vol-
ume rendered by the shadow camera. One could increase the viewing 
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FIGURE 6.30 A scene viewed from a directional light (lef) and the correspond-
ing depth texture (right). 

FIGURE 6.31 Shadow pixelation artifacts. 

bounds of the shadow camera to encompass a larger area, but unless the 
resolution of the depth texture is increased proportionally, there will be 
fewer pixels corresponding to each unit of world space, and the pixelation 
of the shadows will increase. To reduce shadow pixelation, one typically 
adjusts the shadow camera bounding parameters to closely ft the region 
of the scene involving shadows. 

A point will be considered to be in shadow when two conditions are 
true: the surface must be facing the light at the point in question, and the 
distance from the point to the light must be greater than the value stored 
in the depth texture (indicating that a closer point exists and is casting 
a shadow on this point). Te frst of these conditions can be checked by 
examining the angle between the light direction and the normal vector to 
the surface at that point. If the cosine of that angle is greater than 0, then 
the angle is less than 90°, indicating that the surface is indeed facing the 
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light at that point. (Since this calculation requires interpolated normal vec-
tors for each fragment, the shadow calculations will only be implemented 
for the Lambert and Phong materials in this framework.) 

To check the second condition, depth information must be extracted 
from the depth texture. Selecting the correct point from the depth tex-
ture requires us to know where a particular fragment would appear if 
it were being rendered during the shadow pass. Calculating this infor-
mation during the normal rendering pass requires access to the infor-
mation stored by the shadow camera object (its projection matrix and 
view matrix). Position calculations are most efciently handled in a ver-
tex shader, where the standard model/view/projection matrix multiplica-
tions are typically performed. Te result will be in clip space coordinates, 
where the coordinates of points in the visible region are each in the range 
from −1 to 1. Once this calculation is performed on the vertex position, 
this value (which will be called the shadow position, as it is derived from 
shadow camera data) will be transmitted to the fragment shader and 
interpolated for each fragment. 

In the fragment shader, the coordinates of the shadow position vari-
able can be used to calculate and recover the required depth values. Te 
x and y coordinates can be used to derive the coordinates of the corre-
sponding pixel in the rendered image (as viewed from the shadow cam-
era), or more importantly, the UV coordinates corresponding to that 
pixel, which are needed to retrieve a value stored in the depth texture. 
Since clip space coordinates range from −1 to 1, while UV coordinates 
range from 0 to 1, the shadow position coordinates need to be trans-
formed accordingly before sampling the texture. Recall that the value 
retrieved from the depth texture represents the distance to the closest 
point (relative to the shadow camera frame of reference) and is in the 
range from 0 to 1. Te distance from the fragment being processed to 
the shadow camera is stored in the z component of the shadow position 
variable. Afer converting this value to the range from 0 to 1, you can 
compare the distance from the fragment to the shadow camera with the 
closest stored distance to the shadow camera. If the fragment distance is 
greater, then a diferent point is closer to the shadow camera along this 
direction, in which case the fragment is considered to be in shadow and 
its color will be adjusted accordingly. 

With this knowledge, you are now prepared to add shadow efects to the 
graphics framework. 
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6.9.2 Adding Shadows to the Framework 

Te steps involved in adding shadow casting functionality to the graph-
ics framework are similar to the steps involved in adding the lighting 
efects at the beginning of this chapter. First, a special material called 
DepthMaterial will be created to generate the depth texture during 
the shadow pass. Ten, a Shadow class will be created to store the objects 
necessary for shadow calculations (including a reference to the direc-
tional light, the shadow camera, and a render target to be used during 
the shadow pass). In the LambertMaterial and PhongMaterial 
classes, a shadow struct will be defned to group related variables used in 
the shadow calculations. Ten, the vertex and fragment shaders of both 
these materials will be updated with additional uniform objects and code. 
Te Uniform class will be extended to store Shadow objects and upload 
data to the corresponding felds in a uniform shadow variable in the shad-
ers. Finally, the Renderer class will be updated with a new enableShad-
ows function, which will generate a Shadow object and cause a shadow 
pass to be performed by the render function before the main scene 
is rendered. As usual, afer the framework classes have been updated, 
you will create an interactive scene to verify that everything works as 
expected. 

To begin, you will frst create the DepthMaterial class. In the 
material folder, create a new fle named depthMaterial.py con-
taining the following code. Note the use of the built-in GLSL variable 
gl _ FragCoord, whose z coordinate stores the depth value. Since 
the fragment shader is using grayscale colors to encode depth values in 
the texture, any component of the texture color may be used later on to 
retrieve this “closest distance to light” information. 

from material.material import Material 

class DepthMaterial(Material): 

def __init__(self):
 # vertex shader code
 vertexShaderCode = """
 in vec3 vertexPosition; 
uniform mat4 projectionMatrix;
 uniform mat4 viewMatrix;
 uniform mat4 modelMatrix; 

http:depthMaterial.py
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 void main()
 {

            gl_Position = projectionMatrix * 
viewMatrix *
 modelMatrix * vec4(vertexPosition, 1);

 }
 """

 # fragment shader code
 fragmentShaderCode = """
 out vec4 fragColor;
 void main()
 {

 float z = gl_FragCoord.z;
 fragColor = vec4(z, z, z, 1);

 }
 """

 # initialize shaders
        super().__init__(vertexShaderCode, 

fragmentShaderCode)
 self.locateUniforms() 

Next, you will create a Shadow class to store the objects necessary for 
the shadow mapping algorithm previously described. For points in the 
scene that do not map to pixels within the depth texture, the pixel should 
be colored white, which will prevent shadows from being generated at 
that point. For this reason, it is important to use the texture parameter 
wrap setting CLAMP_TO_BORDER; the default texture border color was 
already set to white in the Texture class. In the light folder, create a 
new fle named shadow.py with the following code: 

from core.camera import Camera 
from core.renderTarget import RenderTarget 
from material.depthMaterial import DepthMaterial 
from OpenGL.GL import * 

class Shadow(object):

 def __init__(self, lightSource, strength=0.5, 
resolution=[512,512], 

http:OpenGL.GL
http:shadow.py
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                 cameraBounds=[-5,5, -5,5, 0,20], 
bias=0.01):

 super().__init__()

 # must be directional light
 self.lightSource = lightSource

        # camera used to render scene from perspective 
of light

 self.camera = Camera()
        left, right, bottom, top, near, far = 

cameraBounds
 self.camera.setOrthographic(left, right, bottom,

 top, near, far)
 self.lightSource.add( self.camera )
 # target used during the shadow pass,
 # contains depth texture 
self.renderTarget = RenderTarget( resolution, 

properties={"wrap": GL_CLAMP_TO_BORDER} )
 # render only depth data to target texture
 self.material = DepthMaterial()
 # controls darkness of shadow
 self.strength = strength
 # used to avoid visual artifacts
 # due to rounding/sampling precision issues
 self.bias = bias

 def updateInternal(self):
 self.camera.updateViewMatrix()
 self.material.uniforms["viewMatrix"].data =

 self.camera.viewMatrix
        self.material.uniforms["projectionMatrix"]. 

data = self.camera.projectionMatrix 

Next, you will need to update both the Lambert and Phong materials 
to support shadow efects. Te following modifcations should be made 
to both the fles lambertMaterial.py and phongMaterial.py in the 
material directory. 

http:phongMaterial.py
http:lambertMaterial.py
http:bias=0.01
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In the __init __ function, add the parameter and default value 
useShadow=False, which will need to be set to True when the mate-
rial is created if shadow efects are desired. Since shadow-related calcula-
tions will take place in both the vertex and fragment shader, in the code for 
each, add the following struct defnition before the main function: 

struct Shadow 
{

 // direction of light that casts shadow
 vec3 lightDirection;

 // data from camera that produces depth texture
 mat4 projectionMatrix;
 mat4 viewMatrix;

    // texture that stores depth values from shadow 
camera

 sampler2D depthTexture;

 // regions in shadow multiplied by (1-strength)
 float strength;

 // reduces unwanted visual artifacts
 float bias; 

}; 

Afer the Shadow struct defnition in the vertex shader, add the follow-
ing variables: 

uniform bool useShadow; 
uniform Shadow shadow0; 
out vec3 shadowPosition0; 

In the vertex shader main function, add the following code, which cal-
culates the position of the vertex relative to the shadow camera. 

if (useShadow) 
{
    vec4 temp0 = shadow0.projectionMatrix * shadow0. 

viewMatrix *
 modelMatrix * vec4(vertexPosition, 1); 
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 shadowPosition0 = vec3( temp0 ); 
} 

Afer the Shadow struct defnition in the fragment shader, add the fol-
lowing variables: 

uniform bool useShadow; 
uniform Shadow shadow0; 
in vec3 shadowPosition0; 

In the fragment shader main function, before the value of frag-
Color is set, add the following code, which determines if the surface is 
facing towards the light direction, and determines if the fragment is in 
the shadow of another object. When both of these conditions are true, the 
fragment color is darkened by multiplying the color variable by a value 
based on the shadow strength parameter. 

if (useShadow) 
{
    // determine if surface is facing towards light 

direction
 float cosAngle = dot( normalize(normal), 

-normalize(shadow0.lightDirection) );
 bool facingLight = (cosAngle > 0.01);

 // convert range [-1, 1] to range [0, 1]
 //  for UV coordinate and depth information

    vec3 shadowCoord = ( shadowPosition0.xyz + 1.0 ) 
/ 2.0;

 float closestDistanceToLight = texture2D(
      shadow0.depthTexture, shadowCoord.xy).r;
    float fragmentDistanceToLight = 

clamp(shadowCoord.z, 0, 1);
    // determine if fragment lies in shadow of another 

object
 bool inShadow = ( fragmentDistanceToLight >

         closestDistanceToLight + shadow0.bias );

 if (facingLight && inShadow)
 {

 float s = 1.0 - shadow0.strength; 
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 color *= vec4(s, s, s, 1);
 } 

} 

Finally, in the part of the class where uniform data is added and before 
the locateUniforms function is called, add the following code. Similar to 
code for adding Light uniforms, the data for the Shadow uniform will be 
supplied by the Renderer class. 

if not useShadow:
 self.addUniform("bool", "useShadow", False) 

else:
 self.addUniform("bool", "useShadow", True)
 self.addUniform("Shadow", "shadow0", None) 

Now that the contents of the Shadow class and the related struct 
are understood, you will update the Uniform class to upload this 
data as needed. In the fle uniform.py in the core folder, in the 
locateVariable function, add the following code as a new case within 
the if-else block: 

elif self.dataType == "Shadow":
 self.variableRef = {}
 self.variableRef["lightDirection"] =

 glGetUniformLocation(programRef, 
variableName + ".lightDirection")

 self.variableRef["projectionMatrix"] =
 glGetUniformLocation(programRef, 

                variableName + ".projectionMatrix")
 self.variableRef["viewMatrix"] =

        glGetUniformLocation(programRef, variableName + 
".viewMatrix")

 self.variableRef["depthTexture"] =
 glGetUniformLocation(programRef, 

                variableName + ".depthTexture")
 self.variableRef["strength"] =

        glGetUniformLocation(programRef, variableName + 
".strength")

 self.variableRef["bias"] =
        glGetUniformLocation(programRef, variableName + 

".bias") 

http:uniform.py
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Ten, in the Uniform class uploadData function, add the following 
code as a new case within the if-else block. (Te texture unit reference 
value was chosen to be a value not typically used by other textures.) 

elif self.dataType == "Shadow":

 direction = self.data.lightSource.getDirection()
 glUniform3f( self.variableRef["lightDirection"], 

direction[0], direction[1], direction[2] )

    glUniformMatrix4fv( self. 
variableRef["projectionMatrix"], 
1, GL_TRUE, self.data.camera.projectionMatrix )

    glUniformMatrix4fv( self. 
variableRef["viewMatrix"], 
1, GL_TRUE, self.data.camera.viewMatrix )

 # configure depth texture
    textureObjectRef = self.data.renderTarget.texture. 

textureRef
 textureUnitRef = 15
 glActiveTexture( GL_TEXTURE0 + textureUnitRef )
 glBindTexture( GL_TEXTURE_2D, textureObjectRef )

    glUniform1i( self.variableRef["depthTexture"], 
textureUnitRef )

    glUniform1f( self.variableRef["strength"], self. 
data.strength )

    glUniform1f( self.variableRef["bias"], self.data. 
bias ) 

Te fnal set of changes and additions involve the Renderer class. To 
begin, add the following import statement: 

from light.shadow import Shadow 
In the __init__ function, add the following line of 
code: 
self.shadowsEnabled = False 

Afer the—init—function, add the following function which will 
enable the shadow pass that will soon be added to the render function. 
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Te only required parameter is shadowLight, the directional light that 
will be used to cast shadows. 

def enableShadows(self, shadowLight, strength=0.5, 
resolution=[512,512]):

 self.shadowsEnabled = True
 self.shadowObject = Shadow(shadowLight, 

strength=strength, resolution=resolution) 

Te main addition to the Renderer class is the shadow pass. Te col-
lection of mesh objects in the scene must be gathered into a list before the 
shadow pass, therefore the corresponding block of code will be moved, as 
shown in what follows. 

During the shadow pass, the framebufer stored in the shadow render 
target will be used, and bufers cleared as normal. If there are no objects 
in the scene to generate a color for a particular pixel in the depth tex-
ture, then that pixel should be colored white, which will prevent a shadow 
from being generated at that location, and therefore, this is used as the 
clear color for the shadow pass. Much of the remaining code that follows 
is a simplifed version of a standard render pass, as only one material (the 
depth material) will be used, and only triangle-based meshes need to be 
included at this stage. To proceed, at the beginning of the render func-
tion, add the following code: 

# filter descendents 
descendentList = scene.getDescendentList() 
meshFilter = lambda x : isinstance(x, Mesh) 
meshList = list( filter( meshFilter, descendentList ) 
) 

# shadow pass 
if self.shadowsEnabled:

 # set render target properties
 glBindFramebuffer(GL_FRAMEBUFFER, 

self.shadowObject.renderTarget.framebufferRef)
    glViewport(0,0, self.shadowObject.renderTarget. 

width, self.shadowObject.renderTarget.height)

 # set default color to white,
 # used when no objects present to cast shadows 
glClearColor(1,1,1,1) 
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 glClear(GL_COLOR_BUFFER_BIT)
 glClear(GL_DEPTH_BUFFER_BIT)

    # everything in the scene gets rendered with 
depthMaterial

 # so only need to call glUseProgram & set 
matrices once

    glUseProgram( self.shadowObject.material. 
programRef ) 

self.shadowObject.updateInternal()

 for mesh in meshList:
 # skip invisible meshes
 if not mesh.visible:

 continue

 # only triangle-based meshes cast shadows
        if mesh.material.settings["drawStyle"] != 

GL_TRIANGLES:
 continue

 # bind VAO
 glBindVertexArray( mesh.vaoRef )

 # update transform data
        self.shadowObject.material. 

uniforms["modelMatrix"].data =
 mesh.getWorldMatrix()

        # update uniforms (matrix data) stored in 
shadow material

 for varName, unifObj in 
                    self.shadowObject.material. 

uniforms.items():
 unifObj.uploadData()

   glDrawArrays( GL_TRIANGLES, 0, mesh.geometry. 
vertexCount ) 

Finally, in the standard rendering part of the render function, the 
Shadow object needs to be copied into the data variable of the corre-
sponding Uniform object, if shadow rendering has been enabled and if 
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such a uniform exists in the material of the mesh being drawn at that stage. 
To implement this, in the fnal for loop that iterates over meshList, in 
the section where mesh material uniform data is set and before the uplo-
adData function is called, add the following code: 

# add shadow data if enabled and used by shader 
if self.shadowsEnabled and "shadow0" in mesh.material. 
uniforms.keys():

    mesh.material.uniforms["shadow0"].data = self. 
shadowObject 

Tis completes the additions to the Renderer class in particular and 
support for rendering shadows in the graphics framework in general. You 
are now ready to create an example to produce a scene similar to that illus-
trated in Figure 6.28. 

In your main project direction, create a new fle named test-6-5.py 
containing the following code, presented here in its entirety for simplicity. 
Note the inclusion of commented out code, which can be used to illustrate 
the dynamic capabilities of shadow rendering, render the scene from the 
shadow camera perspective, or display the depth texture on a mesh within 
the scene. 

from core.base import Base 
from core.renderer import Renderer 
from core.scene  import Scene 
from core.camera import Camera 
from core.mesh import Mesh 
from core.texture  import Texture 
from lights.ambientLight import AmbientLight 
from lights.directionalLight import DirectionalLight 
from material.phongMaterial import PhongMaterial 
from geometry.rectangleGeometry import 
RectangleGeometry 

from geometry.sphereGeometry import SphereGeometry 
from extras.movementRig import MovementRig 
from extras.directionalLightHelper import 
DirectionalLightHelper 
# testing shadows 
class Test(Base):

 def initialize(self): 

http:test-6-5.py
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 self.renderer = Renderer([0.2, 0.2, 0.2])
 self.scene  = Scene()
 self.camera = Camera( aspectRatio=800/600 )
 self.rig = MovementRig()
 self.rig.add( self.camera )
 self.rig.setPosition( [0,2,5] )

 ambLight = AmbientLight( color=[0.2, 0.2, 0.2] )
 self.scene.add( ambLight )

        self.dirLight = DirectionalLight( 
direction=[-1,-1,0] )

 self.dirLight.setPosition( [2,4,0] )
 self.scene.add( self.dirLight )

        directHelper = DirectionalLightHelper(self. 
dirLight)

 self.dirLight.add( directHelper )

 sphereGeometry = SphereGeometry()
 phongMaterial = PhongMaterial( 

            texture=Texture("images/grid.png"), 
useShadow=True )

 sphere1 = Mesh(sphereGeometry, phongMaterial)
 sphere1.setPosition( [-2, 1, 0] )
 self.scene.add( sphere1 )

 sphere2 = Mesh(sphereGeometry, phongMaterial)
 sphere2.setPosition( [ 1, 2.2, -0.5] )
 self.scene.add( sphere2 )

 self.renderer.enableShadows( self.dirLight )

        # optional: render depth texture to mesh in 
scene

 # depthTexture =
                    self.renderer.shadowObject. 

renderTarget.texture
 # shadowDisplay = Mesh( RectangleGeometry(), 

                          TextureMaterial 
(depthTexture) )

 # shadowDisplay.setPosition([-1,3,0]) 
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 # self.scene.add( shadowDisplay )

        floor = Mesh( RectangleGeometry(width=20, 
height=20), phongMaterial)

 floor.rotateX(-3.14/2)
 self.scene.add(floor)

 def update(self):

        # view dynamic shadows -- need to increase 
shadow camera range

 # self.dirLight.rotateY(0.01337, False)

 self.rig.update( self.input, self.deltaTime ) 
self.renderer.render( self.scene, self.camera )

 # render scene from shadow camera
        # shadowCam = self.renderer.shadowObject. 

camera
 # self.renderer.render( self.scene, shadowCam ) 

# instantiate this class and run the program 
Test( screenSize=[800,600] ).run() 

At this point, you can now easily include shadows in your scenes. If 
desired, you can also include them together with the other lighting-based 
efects implemented throughout this chapter, to create scenes showcasing 
a variety of techniques as illustrated in Figure 6.1. 

6.10 SUMMARY AND NEXT STEPS 
In this chapter, you learned about diferent types of lighting, light sources, 
illumination models, and shading models. Afer creating ambient, 
directional, and point light objects, you added normal vector data to 
geometric objects and used them in conjunction with light data to imple-
ment lighting with fat-shaded, Lambert, and Phong materials. You used 
normal vector data encoded in bump map textures to add the illusion of 
surface detail to geometric objects with light. Ten, you extended the set 
of postprocessing efects, enabling the creation of light bloom and glow 
efects. Finally, you added shadow rendering capabilities to the framework, 
which built on all the concepts you have learned throughout this chapter. 

While this may be the end of this book, hopefully it is just the beginning 
of your journey into computer graphics. As you have seen, Python and 
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OpenGL can be used together to create a framework that enables you 
to rapidly build applications featuring interactive, animated three-
dimensional scenes with highly sophisticated graphics. Te goal of this book 
has been to guide you through the creation of this framework, providing 
you with a complete understanding of the theoretical underpinnings and 
practical coding techniques involved, so that you can not only make use of 
this framework, but also further extend it to create any three-dimensional 
scene you can imagine. Good luck to you in your future endeavors! 



https://taylorandfrancis.com
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face normal vector 269 
frst-person controls see movement rig 
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fat shading model see shading model, fat 
forward direction 232 
FPS (frames per second) 6 
fragment 13 
fragment shader 14, 35 
framebufer 4, 247 
frames 6 
front side 171 
frustum 2, 113, 160 

geometry objects 144 
geometric primitive 12, 43, 55, 62 
geometry processing 8, 10 
global coordinates see coordinate system, 

global 
glow efect 302, 310–312 
GLSL (OpenGL Shading Language) 7, 32 

data type 33 
GLSL functions 36 

glActiveTexture 206 
glAttachShader 39 
glBlendFunc 208 
glBindBufer 46 
glBindFramebufer 248 
glBindRenderbufer 248 
glBindTexture 194 
glBindVertexArray 42 
glBuferData 47 
glCheckFramebuferStatus 249 
glClear 71 
glClearColor 71 
glCompileShader 37 
glCreateProgram 39 
glCreateShader 37 
glDeleteProgram 40 
glDeleteShader 38 
glDepthFunc 126 
glDisable 126 
glDrawArrays 43 
glEnable 126 
glEnableVertexAttribArray 48 
glFramebuferRenderbufer 249 
glFramebuferTexture 248 
glGetAttribLocation 47 
glGenBufers 46 
glGenerateMipmap 196 

glGenFramebufers 247 
glGenRenderbufers 248 
glGenTextures 194 
glGenVertexArrays 42 
glGetProgramInfoLog 40 
glGetShaderInfoLog 38 
glGetProgramiv 40 
glGetShaderiv 37 
glGetString 41 
glGetUniformLocation 65 
glLineWidth 52 
glLinkProgram 39 
glPointSize 43 
glRenderbuferStorage 249 
glShaderSource 37 
glTexImage2D 195 
glTexParameteri 197 
glUniform 65 
glUniformMatrix4fv 125 
glUseProgram 42 
glVertexAttribPointer 48 
glViewport 251 

Gouraud shading model see shading 
model, Gouraud 

GPU (graphics processing unit) 6 
graphics pipeline 8 
graphics processing unit see GPU 
grid 186 

heads-up display 241 
heightmap 298 
homogeneous coordinates 111, 114–115 
HUD layer 241 

identity function 88, 92 
identity matrix 93, 96 
illumination model 268 

Lambert 268, 288 
Phong 268, 290 

interpolation 14, 62–63 
inverse 97 
inverse matrix 97 
inverted colors 254, 260–261 

keyboard input 77–78 
Khronos group 7, 36 
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Lambert illumination model see 
illumination model, Lambert 

light bloom efect 302, 309–310 
lines 55, 170 
linear function 89, 93 
linear transformation see linear function 
local coordinates see coordinate system, 

local 
local transformation 121 

magnifcation 195, 197 
magnitude 85 
material object 164 
matrix 83, 123 

look-at 232–234 
projection 119, 124–125 
rotation 106–108, 123–124 
scaling 103, 124 
translation 110–111, 123 

matrix multiplication 94, 101 
matrix-vector product 91, 101 
mesh 10, 136, 143 
minifcation 196–197 
mipmap 196 
model matrix 121, 133 
model transformation 11 
modules (Python) 18 
movement rig 188 

nearest-neighbor fltering 196 
node 133 
noise 218, 225 
normal map 298 
normal vector 10, 269, 274 
numpy 19 

opacity see transparency 
openGL (Open Graphics Library) 7 
openGL shading language see GLSL 
orthographic transformation see 

projection, orthographic 

packages (Python) 19, 25 
parallelogram 91, 104 
parametric equations 151, 153, 

156–158, 179 

parent node 133 
pass-through shader 258 
perspective division 111, 114, 116 
perspective transformation see projection, 

perspective 
Phong illumination model see 

illumination model, Phong 
Phong shading model see shading model, 

Phong 
pixel 2 
pixel coordinates 13 
pixel processing 8, 14 
pixellation efect 254, 261 
plane 155 
point 84 
point light 270, 274 
polygon 150 
postprocessing 254, 302–303 
precision (color) 4, 195, 263 
primitive see geometric primitive 
primitive assembly 13 
prism 159 
procedural generation 221, 226 
projection 12 

orthographic 12, 241 
perspective 12, 83, 112–119 

projection window 114 
psuedo-random numbers 221 
Pygame 19 
pyOpenGL 19 
pyramid 159 

raster 2 
raster position 13 
rasterization 8, 12, 62–63 
rendering 2, 42, 172 
resolution 4, 195 
RGB values 4, 76–77 
right-hand rule 99 
rotation see matrix, rotation; 

transformation, rotation 

sampling 206 
scalar 86 
scalar multiplication 87, 100 
scene 136 
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scene graph 133, 141 
screen tearing 29 
shader programs 7, 34 

compiling 37 
errors 37, 40, 45 
linking 39, 60 

shading 2, 267 
shading models 271 

fat 271, 282 
Gouraud 271 
Phong 271 

shadow 2, 312 
shadow camera 314 
shadow mapping 313 
shadow rendering pass 313 
skybox 214 
skysphere 213 
specular lighting 268 
spherical texture 213 
sprite 236 
spritesheet 236 
spritesheet animation 237 
standard basis vectors 88, 89, 105 
standard position 85 
stencil bufer 6 
surface (mathematics) 153 
surface (Pygame) 198 
surface coordinates 198 

texels 195 
text 228 
texture 2, 193 
texture bufers 9 
texture coordinates 10, 198, 201 
texture efects 215 
texture object 194, 206 
texture packing 236 
texture unit 206 
third-person controls see movement rig 
tileset 236 
transform 134 

transformation 88, 102; see also linear 
transformation; vector function 

projection 112–119, 242 
rotation 103–109 
scaling 102–103 
shear 109–119 
translation 109–111 

transparency 6, 15–16, 195, 210 
tree 133 
trigonometric functions 105 
type qualifers 34, 59–60, 64 

uniform variables 64–65 
UV coordinates see texture coordinates 
VAO see vertex array object 
VBO see vertex bufer object 

vector 34, 85 
vector addition 86, 99 
vector function 88 
vertex 10 
vertex array object (VAO) 10, 48, 

54, 143 
vertex attribute see attribute 
vertex bufer 46, 48 
vertex bufer object (VBO) 9 
vertex normal vector 270 
vertex shader 10, 35 
viewport 251 
view space 10 
view transformation 10 
vignette 254 
virtual camera see camera 

wireframe 171 
world coordinates see coordinate system, 

global 
world transformation 134 
wrap-around efect 71 

z-index 242 
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