

HTML 5 Shoot ’em Up in an Afternoon
Learn (or teach) the basics of Game Programming with this free
Phaser tutorial

Bryan Bibat

This book is for sale at http://leanpub.com/html5shootemupinanafternoon

This version was published on 2015-07-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book and build traction once you do.

©2014 - 2015 Bryan Bibat

http://leanpub.com/html5shootemupinanafternoon
http://leanpub.com
http://leanpub.com/manifesto

Contents

Preface . i
License . i

Introduction . 1
Who is this book for? . 1

Morning: Preparing for the Afternoon . 2
Introduce them to Shoot ‘em Ups . 2
Technical Requirements: JavaScript and Math . 2
Development Environment Setup . 3
Other Suggested Prior Reading . 3
Video Walkthrough . 3

Afternoon 0: Overview of the Starting Code . 4

Afternoon 1: Sprites, the Game Loop, and Basic Physics . 7
Sprite Basics . 7
The Game Loop . 13
Apply Physics . 15

Afternoon 2: Player Actions . 20
Keyboard Movement . 20
Mouse/Touch Movement . 22
Firing Bullets . 24

Afternoon 3: Object Groups . 27
Convert Bullets to Sprite Group . 27
Enemy Sprite Group . 29
Player Death . 30
Convert Explosions to Sprite Group . 32

Intermission: Refactoring . 35
Refactoring Functions . 35
Reducing Hard-coded Values . 39

Afternoon 4: Health, Score, and Win/Lose Conditions . 43
Enemy Health . 43
Player Score . 45
Player Lives . 46
Win/Lose Conditions, Go back to Menu . 48

Afternoon 5: Expanding the Game . 53

CONTENTS

Harder Enemy . 53
Power-up . 60
Boss Battle . 65
Sound Effects . 70

Afternoon 6: Wrapping Up . 73
Restore original game flow . 73
Sharing your game . 74

Evening: What Next? . 77
Challenges . 77
What we didn’t cover . 80

Appendix A: Environment Setup Tutorials . 81
Basic Setup . 81
Advanced Setup . 84
Cloud IDE Setup . 85

Appendix B: Expected Code Per Chapter . 90

Preface
I’ll be honest and get this out as early as possible: I’m not a “professional” game developer. Looking at
my other Leanpub books will tell you that I’m more into web development. Heck, if you told me a few
months ago that I would be putting out a game development book, I would’ve thought you’re crazy.

This book was a result of three things that happened to occur around the same time:

First was the problem that came up with our HTML5 workshop. The original lecturer bailed at the last
minute and we had problems with finding a replacement. We even considered the worst case, cutting out
the hands-on portion leaving us with a morning “workshop” consisting only of talks from people in the
local gaming industry.

Coincidentally, I was playing around with Phaser a few weeks before the event. While I am not a game
developer, I had just enough knowledge to make a simple workshop to introduce basic game concepts via
the said HTML5 game framework. In the end I volunteered to take over the workshop less than four days
before the actual event.

Normally I would have prepared a hundred or so slides and go through them during the workshop. But
earlier that week I had the rare opportunity to talk to the first person who gave me advice when I started
out teaching, and one of the things we talked about the not-so-recent trend of lazy college professors
making only slides leaving a big gap between them and textbooks. This convinced me to switch things
up with the workshop – instead of giving the participants a link to SpeakerDeck, I would point them to
Leanpub.

It took a few sleepless nights to write the original 36-page workbook, but it was worth it: I had a much
easier time conducting the workshop than I would have if I went with slides.

The positive response from the participants also convinced me to spend some more time to improve this
book and get it out there for anyone interested in learning the basics of game development.

License

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a
letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

You can find the complete source of this book at https://github.com/bryanbibat/html5shootemupinanafternoon.

Phaser © 2013-2015 Photon Storm Ltd.

Art assets derived from SpriteLib, © 2002 Ari Feldman.

Sound assets © 2012 - 2013 dklon (Devin Watson).

https://leanpub.com/u/bryanbibat
http://devcon.ph/events/game-development-camp
https://speakerdeck.com/bryanbibat
https://github.com/bryanbibat/html5shootemupinanafternoon
http://www.widgetworx.com/spritelib/
http://opengameart.org/users/dklon

Introduction
This is usually the part where books give a lengthy intro about HTML5 to increase their word count. This
is not one of those books.

All you need to know about HTML5 is that it allows you to do stuff in your browser, regardless if it’s on
a desktop PC or a mobile phone, without the need for extra plugins. And that includes making games. If
you want a better intro to HTML5, head over to Dive Into HTML5.

As the title and cover of the book implies, we will introduce you to both HTML5 and game development
by guiding you in making a shoot-em-up game similar to the classic video game 1942.

There are a number of HTML5 libraries and frameworks out there right now. For this afternoon workshop,
we’ll be using Phaser, an open-source framework built on top of Pixi.js. It’s a higher-level framework: it’s
bigger and may feel like you have much less control (i.e. magical) compared to other frameworks, but at
the same time, you need far less code to get things done and this makes it suitable for a short workshop
such as this one.

Who is this book for?

This book is for people who want to learn the basic concepts behind creating games. As a workshop
manual, it is also for experienced developers interested in introducing those concepts to those people.
With these in mind, here are some possible setups for using HTML5 Shoot ‘em Up in and Afternoon:

• Self-study - AKA your run-of-the-mill tutorial where you just go through the book from cover-
to-cover. Web developers with extensive experience in JavaScript will find the code in this book
easy and fairly straightforward. Novice programmers might not get the same pleasant experience,
especially those who have not yet coded in JS enough to understand its quirks.

• Pair or Small-group Study - Spend an afternoon teaching game programming to your daughter /
cousin / nephew. It’s recommended to go through the book once or twice beforehand to make sure
things go smoothly. (Unless of course you want to expose the kid to the reality of “spend minutes
or hours looking for the copy-paste typo” software development.)

• Workshop - What this book was originally written for. Gather a group of people interested in
making games in HTML5 and go through the tutorial at a slower pace. An experienced instructor
(i.e. worked with Phaser for some time, gone through the tutorial multiple times) can lead a
workshop of 20 without a hitch, but for larger groups or groups with less programming experience,
you may need to get a few extra mentors to help.

http://diveintohtml5.info/
http://en.wikipedia.org/wiki/1942_(video_game)
http://phaser.io
http://www.pixijs.com

Morning: Preparing for the Afternoon
For instructors tutoring children or other individuals with little programming or even gaming experience,
we recommended spending a few hours in the morning to make sure things go smoothly in the afternoon.

If you’re the student, it’s best you skip this part so as not to spoil what your teacher is going to ask you to
do.

Introduce them to Shoot ‘em Ups

It may sound weird for us who grew up in the ’80s and ’90s where shoot ‘em ups were staple arcade games,
but there is a very slight possibility that the person you’re teaching may not be familiar with the genre.

If that’s the case, then you need to let them play a few shoot ‘em ups before starting the workshop. They
must first understand the basic concepts around the genre, knowing what makes those games fun an
challenging. At the worst case, finding out that they hate the genre will let you end the session early and
spare you from an unproductive afternoon.

An obvious choice would be 1942, as it has been ported and remade so many times that you can find one
on pretty much any platform.

Then there are Flash games from sites like Newgrounds and Kongregate. As HTML5 is supposed to replace
Flash, letting your student play these games will give them an idea on what they can make in the future.

Steam also has a good collection of shmups. Jamestown deserves special mention because it lets you play
with your students via local co-op.

Technical Requirements: JavaScript and Math

Theoretically, you can conduct a workshop with students who have no prior knowledge of JavaScript.
They will be at the mercy of the copy-paste gods however, and it’s also safe to say that they won’t retain
much after this workshop is over.

For best results, students who aren’t familiar with programming or JavaScript must take a crash course in
the morning. You don’t need to go all the way into advanced JavaScript - knowing how to make and use
functions and objects as well as using browser’s developer consoles for debugging should be enough for
the workshop. MDN has a good list of JavaScript tutorials that you and your students can choose from
for this purpose.

In addition to programming skills, students should know basic Trigonometry. Phaser already handles most
of the calculation but knowing stuff like sine/cosine and polar coordinates will make it easier for them to
visualize what’s going on under the hood. They will also directly use those concepts at the latter part of
the workshop where we rotate sprites and generate patterns for the boss battle.

While there are many online tutorials out there for trigonometry (Khan Academy comes to mind), I have
yet to see one that is better than your usual high school trigonometry class while accessible to younger
students. You might even say that the other way around, introducing kids to trigonometry through game
concepts, would be a better approach¹.

¹True story: I discovered sine and cosine as way to make things spin or bob up and down back when I was a kid playing around with BASIC,
two years before I had trigonometry class.

http://www.newgrounds.com/games/browse/tag/shmup#sort:score
http://www.kongregate.com/shooter-games
http://store.steampowered.com/tag/en/Shmup/
http://store.steampowered.com/app/94200/
https://developer.mozilla.org/en-US/docs/Web/Tutorials
https://www.khanacademy.org/math/trigonometry/basic-trigonometry

Morning: Preparing for the Afternoon 3

If you still wish to quickly introduce basic trigonometry to your students before the workshop, look for
visually impressive and interactive demos like How to Fold a Julia Fractal.

Development Environment Setup

All you need to code in Phaser is a browser that supports HTML5 (e.g. Chrome, Firefox), a web server,
and the text editor of your choice.

You have to use a web server to test your game in this tutorial. The first part of Getting Started With
Phaser explains why you should do this.

As for the text editor, any editor or IDE with JavaScript support (syntax highlighting, automatic
indent/brackets) and can parse non-Windows line endings (i.e. not Notepad) will do. If your preferred
editor does not fit these requirements, we suggest downloading the free trial of Sublime Text.

Once you have setup your web server and text editor, download the basic game template with Phaser 2.4
RC1 from Github, extract it to the folder served by the web server, and start coding.

More detailed information about setting up your development environment (like choosing a web server)
can be found at Appendix A: Environment Setup Tutorials.

Other Suggested Prior Reading

Apart from JS and Math, we suggest that you at least skim through the following to give you an idea
about what we are going to do:

• Getting Started with Phaser - Phaser’s own guide setting up a development environment
• Phaser Examples - view demos of Phaser’s features.
• Phaser Documentation - your typical API docs with link to source.

In addition to Phasers documentation, the following may give you insights on making games in Phaser:

• Game Programming Patterns - like many game frameworks, Phaser uses the Game Loop pattern
at its core.

• Game Mechanic Explorer - a somewhat short list of game mechanics, all implemented in Phaser.

Video Walkthrough

This book reached the Leanpub’s “Lifetime Number of Copies Sold” bestsellers list around December 2014.
As my holiday gift of thanks to those that bought and downloaded it, I recorded a quick and dirty video
walkthrough of the main chapters of the book. If you prefer watching the programming lessons in HD
video (even when they are taught by a slightly drunk non-native English speaking guy), you’re in luck.

If you purchased or downloaded the book, you should be able to download the videos (all 600MB+ of
them) via the “Extras” zip link on your Leanpub dashboard. If you’re reading this online or want to watch
in lower resolution, you can also watch the videos on YouTube.

http://acko.net/blog/how-to-fold-a-julia-fractal/
https://www.google.com/intl/en/chrome/browser/
http://www.mozilla.org/en-US/firefox/new/
http://www.phaser.io/tutorials/getting-started/index
http://www.phaser.io/tutorials/getting-started/index
http://www.sublimetext.com/
https://github.com/bryanbibat/html5shmup-template/archive/2.4-rc1.zip
https://github.com/bryanbibat/html5shmup-template/archive/2.4-rc1.zip
http://phaser.io/getting-started-js.php
http://phaser.io/examples
http://phaser.io/docs/
http://gameprogrammingpatterns.com/
http://gamemechanicexplorer.com/
https://leanpub.com/dashboard
https://www.youtube.com/playlist?list=PL0mVjsUoElSGbxaNmkOW6ZxwPcQm-_hwl

Afternoon 0: Overview of the Starting Code
By now you should have finished setting up your development environment, with your web server up
and your editor open to the folder containing the base code for the tutorial. If not, please refer again to
the Development Environment Setup in previous chapter.

Before we proceed to the actual tutorial, let’s take a tour of the starter template:

This template is based on the Basic Game Template found in the resources/Project Templates folder
of the Phaser Git repository. We’re using this because it follows a more modular approach compared to
most of the Phaser Examples and therefore much closer to real-life apps.

Let’s do a quick run-through of the files:

• index.html - our main HTML5 page that links all our files together. There’s not much to say about
this except for the <div id="gameContainer"></div> which Phaser will use to draw the Canvas
on to.

• phaser-arcade-physics.min.js - Phaser stripped of 2 other physics engines (retaining only
“Arcade” physics) and minified. You can replace this later on with the full version if you plan
to use the other physics engines or if you want to the refer to the original code while developing.

• app.js - the code that kicks off the app. Creates the Phaser.Game object and adds the States.
• boot.js, preloader.js, mainMenu.js, game.js - the different states of our game, combined together
by app.js to form the flow of our app:

– Boot - The initial state. Sets up additional settings for the game. Also pre-loads the image for
the pre-loader progress bar before passing the game to Preloader.

– Preloader - Loads all assets before the actual game. Once that’s done, the game proceeds to
MainMenu.

– MainMenu - The title screen and main menu before the actual game.
– Game - The actual game.

Reading through the JS files and the comments within will give you a peek of what to expect from Phaser.

https://github.com/photonstorm/phaser/tree/master/resources/Project%20Templates

Afternoon 0: Overview of the Starting Code 5

The template also includes all the necessary sprites and sounds for the basic game, saving you hours of
looking for or making your own game assets. The sprites were taken from Ari Feldman’s open-sourced
sprite compilation SpriteLib while the sounds were from Devin Watson’s OpenGameArt.org portfolio.

With the code tour out of the way, we can now move on to the tutorial.

..

Code Examples
You will see sample code throughout this manual. The text decoration in the code will tell you what
you need to do to the existing code.

For example, let’s modify game.js to make the background scroll vertically:

update: function () {

// Honestly, just about anything could go here. It's YOUR game after all...

this.sea.tilePosition.y += 0.2;

},

In the code example above, there is a strikethrough on the comment. Strikethrough means you need to
delete those lines. On the other hand, the following line is in boldface, which means you need to insert
those lines at that position.

Some examples for inserting functions will also have line numbers to tell you where to insert those
functions. They will also give you an idea if you’ve properly added the code up to that point.

..

Skipping Main Menu
We’ll be modifying our code many times throughout this tutorial. Skipping the boot, pre-loading, and
main menu in order to go directly to our game, will save us a click after the refresh every time we make
a change. To skip those states, change the starting state in app.js:

game.state.start('Boot');

game.state.start('Game');

And since we’re skipping the preloader.js, we’ll copy over the sea background asset loading to
game.js:

http://www.widgetworx.com/spritelib/
http://opengameart.org/users/dklon

Afternoon 0: Overview of the Starting Code 6

..

BasicGame.Game.prototype = {

preload: function () {

this.load.image('sea', 'assets/sea.png');

},

create: function () {

..

WebGL lag workaround
Phaser automatically detects if your browser supports WebGL and will use it if possible.

While it usually translates to faster performance on devices with graphics processors, WebGL rendering
can be slow and laggy on other machines. If you’re noticing significant lag on your browser, you can
force Phaser to use plain HTML Canvas by changing the following line in app.js :

var game = new Phaser.Game(800, 600, Phaser.AUTO, 'gameContainer');

var game = new Phaser.Game(800, 600, Phaser.CANVAS, 'gameContainer');

http://en.wikipedia.org/wiki/WebGL

Afternoon 1: Sprites, the Game Loop, and
Basic Physics
In this first part, we’ll go over how to draw and move objects on our game.

Sprite Basics

Draw Bullet Sprite

Let’s start with something basic – drawing an object on the game stage. The most basic object in Phaser
is the Sprite. So for our first piece of code, let’s load then draw a bullet sprite on our game by making
the following modifications to game.js. (All of the code examples in this tutorial refer to game.js unless
otherwise noted.)

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

},

create: function () {

this.sea = this.add.tileSprite(0, 0, 800, 600, 'sea');

this.bullet = this.add.sprite(400, 300, 'bullet');

}

We called the following functions:

• load.image() - loads an image (e.g. assets/bullet.png) and assigns it a name (e.g. bullet) which
we use later.

• add.sprite() - accepts the x-y coordinates of our sprite and the name of the sprite which we
assigned in the load.image() function.

https://phaser.io/docs/2.3.0/Phaser.Sprite.html
https://phaser.io/docs/2.3.0/Phaser.Loader.html#image
https://phaser.io/docs/2.3.0/Phaser.GameObjectFactory.html#sprite

Afternoon 1: Sprites, the Game Loop, and Basic Physics 8

Bullet sprite added into our game

Screen Coordinates vs Cartesian Coordinates

At around middle school, children learn about the Cartesian coordinate system where points, defined by
an ordered pair (x, y), can be plotted on a plane. The center is (0, 0), x-values increase as you go right,
while y-values increase as you go up.

However, computer displays do not use Cartesian coordinates as is but instead use a variation: instead of
being at the center, (0, 0) represents the point at the top-left, and instead of decreasing, y-values increase
as you go down. This picture illustrates the screen coordinate system in our game at the moment:

Afternoon 1: Sprites, the Game Loop, and Basic Physics 9

Afternoon 1: Sprites, the Game Loop, and Basic Physics 10

A note about the Phaser Examples
The biggest difference between the Phaser Examples and our game template is that the former
uses global variables while we’re adding States which encapsulate the logic of our game. This
means that you can’t copy the code from those examples directly. For example, 01 - load an
image uses the following syntax:

game.add.sprite(0, 0, 'einstein');

We don’t have a game global variable within the scope in our BasicGame.Game state object.
Instead, we have a this.game property so translating the code above into our template would
be:

this.game.add.sprite(0, 0, 'einstein');

Adding this.game over and over in your code might make you wish for a global variable.
Fortunately, Phaser also adds the other game properties into the state. You can see a list of this
in the original game template:

BasicGame.Game = function (game) {

// When a State is added to Phaser it automatically has the following

// properties set on it, even if they already exist:

this.game; // a reference to the currently running game

this.add; // used to add sprites, text, groups, etc

this.camera; // a reference to the game camera

this.cache; // the game cache

this.input; // the global input manager (you can access this.input.keyboard,

// this.input.mouse, as well from it)

this.load; // for preloading assets

this.math; // lots of useful common math operations

this.sound; // the sound manager - add a sound, play one, set-up markers, etc

this.stage; // the game stage

this.time; // the clock

this.tweens; // the tween manager

this.state; // the state manager

this.world; // the game world

this.particles; // the particle manager

this.physics; // the physics manager

this.rnd; // the repeatable random number generator

// You can use any of these from any function within this State.

// But do consider them as being 'reserved words', i.e. don't create a property

// for your own game called "world" or you'll over-write the world reference.

};

In other words, you only need to use this.add in place of this.game.add:

this.add.sprite(0, 0, 'einstein');

Which is exactly what we used for adding a sprite above.

http://phaser.io/examples
https://phaser.io/docs/2.3.0/Phaser.State.html
http://phaser.io/examples/v2/basics/01-load-an-image
http://phaser.io/examples/v2/basics/01-load-an-image
https://github.com/photonstorm/phaser/blob/master/resources/Project%20Templates/Basic/Game.js

Afternoon 1: Sprites, the Game Loop, and Basic Physics 11

Draw Enemy Animation

Let’s then proceed with something more complicated, an animated sprite.

We first load a sprite sheet, an image containing multiple frames, in the pre-loading function.

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

},

Instead of load.image(), we used load.spritesheet() to load our sprite sheet. The two additional
arguments are the width and height of the individual frames. Since we defined 32 for both width and
height, Phaser will load the sprite sheet and divide it into individual frames like so:

Enemy sprite sheet (magenta refers to the transparent parts of the image)

Now that the sprite sheet is loaded, we can now add it into our game:

create: function() {

this.sea = this.add.tileSprite(0, 0, 800, 600, 'sea');

this.enemy = this.add.sprite(400, 200, 'greenEnemy');

this.enemy.animations.add('fly', [0, 1, 2], 20, true);

this.enemy.play('fly');

this.bullet = this.add.sprite(400, 300, 'bullet');

}

The animations.add() function specified the animation: its name, followed by the sequence of frames in
an array, followed by the speed of the animation (in frames per second), and a flag telling whether the
animation loops or not. So in this piece of code, we defined the fly animation that loops the first 3 frames
of the green enemy sprite sheet, an animation of the propeller spinning:

https://phaser.io/docs/2.3.0/Phaser.Loader.html#spritesheet
https://phaser.io/docs/2.3.0/Phaser.AnimationManager.html#add

Afternoon 1: Sprites, the Game Loop, and Basic Physics 12

Ordering
Note howwe added the bullet sprite after the enemy sprite. As we shall see later, this declaration
will put the bullet sprite above the enemy sprite.

There are ways to rearrange the order of the sprites (e.g. top to bottom) but the simplest way
is to create them already in a bottom-to-top order.

Set Object Anchor

The sprites share the same x-coordinate, so by default they are left-aligned.

For games, however, most of the time we want the x-y coordinates to be the center of the sprite. We can
do that in Phaser by modifying the anchor settings:

Afternoon 1: Sprites, the Game Loop, and Basic Physics 13

this.enemy = this.add.sprite(400, 300, 'greenEnemy');

this.enemy.animations.add('fly', [0, 1, 2], 20, true);

this.enemy.play('fly');

this.enemy.anchor.setTo(0.5, 0.5);

this.bullet = this.add.sprite(400, 400, 'bullet');

this.bullet.anchor.setTo(0.5, 0.5);

The (0.5, 0.5) centers the sprite. On the other hand, (0, 0) will mean that the x-y coordinate defines
the top-left of the sprite. Similarly, (1, 1) put the x-y at the bottom right of the sprite.

The Game Loop

The following is an oversimplified diagram on what happens when Phaser games run:

• Preload - The game starts with a pre-load section where all assets are pre-loaded. Without pre-
loading, the game will stutter or hang in the middle of gameplay because it has to load assets.

Afternoon 1: Sprites, the Game Loop, and Basic Physics 14

• Create - After pre-loading all assets, we can now setup the initial state of the game.
• Update - At a set interval (usually 60 times per second), this function is called to update the game
state. All updates to the game are done here. For example, checking if the character has collided
with the enemy, spawning an enemy at a random location, moving a character to the left because
the player pressed the left arrow key, etc.

• Render - coming after Update, here is where the latest state of the game is drawn (rendered) to the
screen.

The update-render loop is what’s called theGame Loop, and is the heart of almost every computer game.
You can read more about the Game Loop at the Game Programming Patterns site.

Move Bullet via update()

Now that we know how the game loop is implemented in Phaser, let’s move our bullet sprite vertically
by reducing its y-coordinate in the update() function:

update: function () {

this.sea.tilePosition.y += 0.2;

this.bullet.y -= 1;

},

As mentioned above, Phaser will call the update() function at a regular interval, effectively moving the
bullet upwards at a rate of around 60 pixels per second.

This is how you move sprites in most basic game libraries/frameworks. In Phaser, though, we can let the
physics engine do almost all of the dirty work for us.

..

Missing render()?
Before we discuss how to use Phaser’s physics engines, let’s explain why we still don’t have a render()
function and yet the game renders the game state on its own.

First off, as some might have noticed from the app.js, we’re only coding a portion of the game called
the state which, as the name implies, is a state of the game.

game.state.add('Boot', BasicGame.Boot);

game.state.add('Preloader', BasicGame.Preloader);

game.state.add('MainMenu', BasicGame.MainMenu);

game.state.add('Game', BasicGame.Game);

http://gameprogrammingpatterns.com/game-loop.html

Afternoon 1: Sprites, the Game Loop, and Basic Physics 15

..

The state is just one of the many things updated and rendered in Phaser’s game loop. For instance, here’s
what the Game object calls on update (pre- and post-update hooks removed):

this.state.update();

this.stage.update();

this.tweens.update();

this.sound.update();

this.input.update();

this.physics.update();

this.particles.update();

this.plugins.update();

And here’s the render section:

this.renderer.render(this.stage);

this.plugins.render();

this.state.render();

this.plugins.postRender();

We don’t need to write code to render our sprites because that is already covered by the first line,
this.renderer.render(this.stage);, with this.stage containing all of the sprites currently in the
game.

We’ll write some render code later for debugging purposes.

Apply Physics

Phaser comes with 2 physics systems, Arcade and P2. Arcade is the default and the simplest, and so we’ll
use that.

(And besides, the version of Phaser bundled with the basic template, phaser-arcarde-physics.min.js,
contains only Arcade physics to reduce download file size.)

Velocity

Once we put our bullet into the Arcade physics system, we can now set its velocity and let the system
handle all the other calculations (e.g. future position).

this.bullet = this.add.sprite(400, 400, 'bullet');

this.bullet.anchor.setTo(0.5, 0.5);

this.physics.enable(this.bullet, Phaser.Physics.ARCADE);

this.bullet.body.velocity.y = -500;

},

update: function () {

this.sea.tilePosition.y += 0.2;

this.bullet.y -= 1;

},

Afternoon 1: Sprites, the Game Loop, and Basic Physics 16

With the physics enabled and velocity set, our sprite’s coordinates will now be updated by the
this.physics.update(); call rather than our update code. In this case, “velocity.y = -500” is 500
pixels per second upward; at 60 frames per second, each update call will move the bullet up 8-9 pixels.

Show Body Debug

Arcade physics is limited to axis-aligned bounding box (AABB) collision checking only. In simpler terms,
all objects under Arcade are rectangles.

bounding boxes (hitboxes) of the sprites outlined in red; the sprites to the right are colliding with each other

We can view these rectangles by rendering these areas with the debugger. First we add the enemy sprite
to the physics system:

this.enemy.play('fly');

this.enemy.anchor.setTo(0.5, 0.5);

this.physics.enable(this.enemy, Phaser.Physics.ARCADE);

this.bullet = this.add.sprite(400, 300, 'bullet');

Then we add the debugging code under our currently nonexistent render() function:

Afternoon 1: Sprites, the Game Loop, and Basic Physics 17

30 update: function () {

31 this.sea.tilePosition.y += 0.2;

32 },

33

34 render: function() {

35 this.game.debug.body(this.bullet);

36 this.game.debug.body(this.enemy);

37 },

Collision

Once added to the physics system, checking collision and overlapping is only a matter of calling the right
functions:

update: function () {

this.sea.tilePosition.y += 0.2;

this.physics.arcade.overlap(

this.bullet, this.enemy, this.enemyHit, null, this

);

},

The overlap() function requires a callback which will be called in case the objects overlap. Here’s the
enemyHit() function:

42 enemyHit: function (bullet, enemy) {

43 bullet.kill();

44 enemy.kill();

45 },

Being common situation in games, Phaser provides us with a sprite.kill() function for “killing” sprites.
Calling this function both marks the sprite as dead and invisible, effectively removing the sprite from the
game.

Here’s the collision in action:

With debug on, we can see that the sprite is still at that location but it’s invisible and the physics engine
ignores it (i.e. it no longer moves).

https://phaser.io/docs/2.3.0/Phaser.Physics.Arcade.html#overlap
https://phaser.io/docs/2.3.0/Phaser.Physics.Arcade.html#overlap
https://phaser.io/docs/2.3.0/Phaser.Sprite.html#kill

Afternoon 1: Sprites, the Game Loop, and Basic Physics 18

Remove Debugging

Debugging isn’t really required in this workshop so you should probably remove or comment out the
debugging code when you’re done testing.

render: function() {

this.game.debug.body(this.bullet);

this.game.debug.body(this.enemy);

},

Explosion

Before we proceed to the next lesson, let’s improve our collision handling by adding an explosion
animation in the place of the enemy. Here’s the animation pre-loading:

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

},

Then the actual explosion:

enemyHit: function (bullet, enemy) {

bullet.kill();

enemy.kill();

var explosion = this.add.sprite(enemy.x, enemy.y, 'explosion');

explosion.anchor.setTo(0.5, 0.5);

explosion.animations.add('boom');

explosion.play('boom', 15, false, true);

},

Here we used a different way to setup animations. This time we used animations.add() with only the
name of the animation. Lacking the other arguments, the boom animation uses all frames of the sprite
sheet, runs at 60 fps, and doesn’t loop.

We want to tweak the settings of this animation, so we add them to the explosion.play() call as
additional arguments:

• 15 - set the frames per second
• false - don’t loop the animation
• true - kill the sprite at the end of the animation

https://phaser.io/docs/2.3.0/Phaser.Sprite.html#play

Afternoon 1: Sprites, the Game Loop, and Basic Physics 19

The last argument the most convenient to us; without it we’ll need to register an event handler callback
to perform the sprite killing, and event handling is a much later lesson. In the meantime, enjoy your
improved “shooting down an enemy” animation:

Afternoon 2: Player Actions
Now that we’re done with drawing and movement, let’s move on to making an object that will represent
us in the game. Load the player sprite in the preload() function:

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

this.load.spritesheet('player', 'assets/player.png', 64, 64);

},

Add the following to the create() function before the enemy sprite to add our sprite into the game:

this.sea = this.add.tileSprite(0, 0, 800, 600, 'sea');

this.player = this.add.sprite(400, 550, 'player');

this.player.anchor.setTo(0.5, 0.5);

this.player.animations.add('fly', [0, 1, 2], 20, true);

this.player.play('fly');

this.physics.enable(this.player, Phaser.Physics.ARCADE);

this.enemy = this.add.sprite(400, 200, 'greenEnemy');

Keyboard Movement

Implementing keyboard-based input is straightforward in Phaser. Here we begin by using a convenience
function which returns the four arrow keys.

this.bullet.anchor.setTo(0.5, 0.5);

this.enable(this.bullet, Phaser.Physics.ARCADE);

this.bullet.body.velocity.y = -500;

this.cursors = this.input.keyboard.createCursorKeys();

},

Let’s also set the player’s initial speed speed as a property of the player object on create since we’ll be
using this value multiple times throughout our program:

https://phaser.io/docs/2.3.0/Phaser.Keyboard.html#createCursorKeys
https://phaser.io/docs/2.3.0/Phaser.Keyboard.html#createCursorKeys

Afternoon 2: Player Actions 21

this.player = this.add.sprite(400, 550, 'player');

this.player.anchor.setTo(0.5, 0.5);

this.player.animations.add('fly', [0, 1, 2], 20, true);

this.player.play('fly');

this.physics.enable(this.player, Phaser.Physics.ARCADE);

this.player.speed = 300;

this.enemy = this.add.sprite(400, 200, 'greenEnemy');

This will also allow us to have planes with different speeds or “speed up” type of power-ups later.

Once that’s done, we can now set the velocity like so:

update: function () {

this.sea.tilePosition.y += 0.2;

this.physics.arcade.overlap(

this.bullet, this.enemy, this.enemyHit, null, this

);

this.player.body.velocity.x = 0;

this.player.body.velocity.y = 0;

if (this.cursors.left.isDown) {

this.player.body.velocity.x = -this.player.speed;

} else if (this.cursors.right.isDown) {

this.player.body.velocity.x = this.player.speed;

}

if (this.cursors.up.isDown) {

this.player.body.velocity.y = -this.player.speed;

} else if (this.cursors.down.isDown) {

this.player.body.velocity.y = this.player.speed;

}

},

Note that we set the velocity to zero so that the plane stops when the input stops. We also allow the player
to input both vertical and horizontal movement at the same time.

Afternoon 2: Player Actions 22

Arcade physics also makes it easy to make the edges of the stage act like walls:

this.physics.enable(this.player, Phaser.Physics.ARCADE);

this.player.speed = 300;

this.player.body.collideWorldBounds = true;

this.enemy = this.add.sprite(400, 300, 'greenEnemy');

Mouse/Touch Movement

Point-based movement usually requires hand-rolling your mathematical calculations. Fortunately, Phaser
already has functions which calculates the angle and velocity based on input points.

Here’s how simple it is to move an object towards the pointer:

this.player.body.velocity.y = this.player.speed;

}

if (this.input.activePointer.isDown) {

this.physics.arcade.moveToPointer(this.player, this.player.speed);

}

},

Afternoon 2: Player Actions 23

Based on the object’s location and a speed, the Arcade physics function moveToPointer() calculates the
angle and velocities required to move towards the pointer at the input speed. Calling this function will
already modify the x and y velocities of the object, which is exactly what we need in this situation.

This function will not rotate the sprite, though, so if you need to rotate the sprite accordingly, you can
use the return value of the function which is the angle of rotation in radians. We shall see an example of
this in a later lesson.

Just a word of warning, the movement in a frame may overshoot the target (i.e. move 5 pixels even though
the pointer is 2 pixels away) causing your player sprite to tremble instead of staying put. The inaccurate
coordinates given by a touch screen may also produce a similar effect. A crude way of getting over these
is to stop movement at a certain distance from the pressed point, like so:

this.player.body.velocity.y = this.player.speed;

}

if (this.input.activePointer.isDown) {

if (this.input.activePointer.isDown &&

this.physics.arcade.distanceToPointer(this.player) > 15) {

this.physics.arcade.moveToPointer(this.player, this.player.speed);

}

},

If you need more precise input, you may be better off implementing an on-screen directional pad.

https://phaser.io/docs/2.3.0/Phaser.Physics.Arcade.html#moveToPointer

Afternoon 2: Player Actions 24

Firing Bullets

Let’s remove our old bullet code and add new code for creating bullets on the fly.

create: function () {

...

this.bullet = this.add.sprite(400, 300, 'bullet');

this.bullet.anchor.setTo(0.5, 0.5);

this.physics.enable(this.bullet, Phaser.Physics.ARCADE);

this.bullet.body.velocity.y = -500;

this.bullets = [];

We set our fire button to Z or tapping/clicking the screen:

update: function () {

...

this.physics.arcade.moveToPointer(this.player, this.player.speed);

}

if (this.input.keyboard.isDown(Phaser.Keyboard.Z) ||

this.input.activePointer.isDown) {

this.fire();

}

},

Then we create a new function that will fire a bullet just above the nose of player’s sprite:

82 fire: function() {

83 var bullet = this.add.sprite(this.player.x, this.player.y - 20, 'bullet');

84 bullet.anchor.setTo(0.5, 0.5);

85 this.physics.enable(bullet, Phaser.Physics.ARCADE);

86 bullet.body.velocity.y = -500;

87 this.bullets.push(bullet);

88 },

And finally we modify our collision detection code to iterate over the bullets:

update: function () {

this.sea.tilePosition.y += 0.2;

this.physics.arcade.overlap(

this.bullet, this.enemy, this.enemyHit, null, this

);

for (var i = 0; i < this.bullets.length; i++) {

this.physics.arcade.overlap(

this.bullets[i], this.enemy, this.enemyHit, null, this

);

}

Afternoon 2: Player Actions 25

Fire Rate

One obvious problem that you’ll see as you test this new firing code is that the bullets come out at a very
high rate. We can throttle this by storing a time value specifying the earliest time when the next bullet
can be fired.

Add the variable nextShotAt and shotDelay (set to 100 milliseconds) to the create() function:

this.bullets = [];

this.nextShotAt = 0;

this.shotDelay = 100;

Then modify the fire() function to check and eventually set the nextShotAt variable:

fire: function() {

if (this.nextShotAt > this.time.now) {

return;

}

this.nextShotAt = this.time.now + this.shotDelay;

var bullet = this.add.sprite(this.player.x, this.player.y - 20, 'bullet');

bullet.anchor.setTo(0.5, 0.5);

this.physics.enable(bullet, Phaser.Physics.ARCADE);

bullet.body.velocity.y = -500;

this.bullets.push(bullet);

},

fire rate now down to 100 milliseconds per shot

Afternoon 2: Player Actions 26

..

How To Play message
We don’t have time to code a help screen, so let’s just flash the “how to play” instructions in the first 10
seconds of every session.

Add this to the end of create() to add the text:

this.instructions = this.add.text(400, 500,

'Use Arrow Keys to Move, Press Z to Fire\n' +

'Tapping/clicking does both',

{ font: '20px monospace', fill: '#fff', align: 'center' }

);

this.instructions.anchor.setTo(0.5, 0.5);

this.instExpire = this.time.now + 10000;

And the end of update() to make the text disappear after the time has elapsed:

if (this.instructions.exists && this.time.now > this.instExpire) {

this.instructions.destroy();

}

Other problems

If you haven’t noticed it yet, the other problem with our current bullet generation approach is it’s
essentially a memory leak. In the next chapter, we’ll discuss one way of limiting the resources that our
game will use.

https://phaser.io/docs/2.3.0/Phaser.GameObjectFactory.html#text

Afternoon 3: Object Groups
Instead of creating objects on the fly, we can create Groups where we can use and re-use sprites over and
over again.

Convert Bullets to Sprite Group

Bullets are best use case for groups in our game; they’re constantly being generated and removed from
play. Having a pool of available bullets will save our game time and memory.

Let’s begin by switching out our array with a sprite group. The comments below explain our new code.

create: function () {

...

this.bullets = [];

// Add an empty sprite group into our game

this.bulletPool = this.add.group();

// Enable physics to the whole sprite group

this.bulletPool.enableBody = true;

this.bulletPool.physicsBodyType = Phaser.Physics.ARCADE;

// Add 100 'bullet' sprites in the group.

// By default this uses the first frame of the sprite sheet and

// sets the initial state as non-existing (i.e. killed/dead)

this.bulletPool.createMultiple(100, 'bullet');

// Sets anchors of all sprites

this.bulletPool.setAll('anchor.x', 0.5);

this.bulletPool.setAll('anchor.y', 0.5);

// Automatically kill the bullet sprites when they go out of bounds

this.bulletPool.setAll('outOfBoundsKill', true);

this.bulletPool.setAll('checkWorldBounds', true);

this.nextShotAt = 0;

Let’s move on to the fire() function:

https://phaser.io/docs/2.3.0/Phaser.Group.html

Afternoon 3: Object Groups 28

fire: function() {

if (this.nextShotAt > this.time.now) {

return;

}

if (this.bulletPool.countDead() === 0) {

return;

}

this.nextShotAt = this.time.now + this.shotDelay;

var bullet = this.add.sprite(this.player.x, this.player.y - 20, 'bullet');

bullet.anchor.setTo(0.5, 0.5);

this.physics.enable(bullet, Phaser.Physics.ARCADE);

bullet.body.velocity.y = -500;

this.bullets.push(bullet);

// Find the first dead bullet in the pool

var bullet = this.bulletPool.getFirstExists(false);

// Reset (revive) the sprite and place it in a new location

bullet.reset(this.player.x, this.player.y - 20);

bullet.body.velocity.y = -500;

},

Here we replaced creating bullets on the fly with reviving dead bullets in our pool.

Update collision detection

Switching from array to group means we need to modify our collision checking code. Good news is that
overlap() supports Group to Sprite collision checking.

update: function () {

this.sea.tilePosition.y += 0.2;

for (var i = 0; i < this.bullets.length; i++) {

this.physics.arcade.overlap(

this.bullets[i], this.enemy, this.enemyHit, null, this

);

}

this.physics.arcade.overlap(

this.bulletPool, this.enemy, this.enemyHit, null, this

);

There is a minor quirk when comparing “Groups to Sprites” (see if you can notice it) that is not present
in “Sprite to Groups” or “Group to Groups”. This shouldn’t be a problem since we’re only doing the latter
two after this section.

https://phaser.io/docs/2.3.0/Phaser.Sprite.html#reset

Afternoon 3: Object Groups 29

Enemy Sprite Group

Our game would be boring if we only had one enemy. Let’s make a sprite group so that we can generate
a bunch more enemies so that they can start giving us a challenge:

this.enemy = this.add.sprite(400, 200, 'greenEnemy');

this.enemy.anchor.setTo(0.5, 0.5);

this.enemy.animations.add('fly', [0, 1, 2], 20, true);

this.enemy.play('fly');

this.physics.enable(this.enemy, Phaser.Physics.ARCADE);

this.enemyPool = this.add.group();

this.enemyPool.enableBody = true;

this.enemyPool.physicsBodyType = Phaser.Physics.ARCADE;

this.enemyPool.createMultiple(50, 'greenEnemy');

this.enemyPool.setAll('anchor.x', 0.5);

this.enemyPool.setAll('anchor.y', 0.5);

this.enemyPool.setAll('outOfBoundsKill', true);

this.enemyPool.setAll('checkWorldBounds', true);

// Set the animation for each sprite

this.enemyPool.forEach(function (enemy) {

enemy.animations.add('fly', [0, 1, 2], 20, true);

});

this.nextEnemyAt = 0;

this.enemyDelay = 1000;

And again, modifying the collision code become Group to Group:

this.physics.arcade.overlap(

this.bulletPool, this.enemy, this.enemyHit, null, this

this.bulletPool, this.enemyPool, this.enemyHit, null, this

);

Randomize Enemy Spawn

Many games have enemies show up at scripted positions. We don’t have time for that so we’ll just
randomize the spawning locations.

Add this to the update() function:

Afternoon 3: Object Groups 30

update: function () {

this.sea.tilePosition.y += 0.2;

this.physics.arcade.overlap(

this.bulletPool, this.enemyPool, this.enemyHit, null, this

);

if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

this.nextEnemyAt = this.time.now + this.enemyDelay;

var enemy = this.enemyPool.getFirstExists(false);

// spawn at a random location top of the screen

enemy.reset(this.rnd.integerInRange(20, 780), 0);

// also randomize the speed

enemy.body.velocity.y = this.rnd.integerInRange(30, 60);

enemy.play('fly');

}

this.player.body.velocity.x = 0;

this.player.body.velocity.y = 0;

Like our bulletPool, we also store the next time an enemy should spawn.

enemy spawn area and movement range in white

Note that we did not use Math.random() to set the random enemy spawn location and speed but instead
used the built-in randomizing functions. Either way is fine, but we chose the built in random number
generator because it has some additional features that may be useful later (e.g. seeds).

Player Death

Let’s further increase the challenge by allowing our plane to blow up.

Let’s first add the collision detection code:

https://phaser.io/docs/2.3.0/Phaser.Game.html#rnd
https://phaser.io/docs/2.3.0/Phaser.Game.html#rnd

Afternoon 3: Object Groups 31

update: function () {

this.sea.tilePosition.y += 0.2;

this.physics.arcade.overlap(

this.bulletPool, this.enemyPool, this.enemyHit, null, this

);

this.physics.arcade.overlap(

this.player, this.enemyPool, this.playerHit, null, this

);

if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

Then the callback:

140 playerHit: function (player, enemy) {

141 enemy.kill();

142 var explosion = this.add.sprite(player.x, player.y, 'explosion');

143 explosion.anchor.setTo(0.5, 0.5);

144 explosion.animations.add('boom');

145 explosion.play('boom', 15, false, true);

146 player.kill();

147 },

You might notice that even though the plane blows up when we crash to another plane, we can still fire
our guns. Let’s fix that by checking the alive flag:

fire: function() {

if (this.nextShotAt > this.time.now) {

if (!this.player.alive || this.nextShotAt > this.time.now) {

return;

}

if (this.bulletPool.countDead() === 0) {

return;

}

Another possible issue is that our hitbox is too big because of our sprite. Let’s lower our hitbox accordingly:

this.physics.enable(this.player, Phaser.Physics.ARCADE);

this.player.speed = 300;

this.player.body.collideWorldBounds = true;

// 20 x 20 pixel hitbox, centered a little bit higher than the center

this.player.body.setSize(20, 20, 0, -5);

This hitbox is pretty small, but it’s still on par with other shoot em ups (some “bullet hell” type games
even have a 1 pixel hitbox). Feel free to increase this if you want a challenge.

Use the debug body function if you need to see your sprite’s actual hitbox size. Don’t forget to remove it
afterwards.

https://phaser.io/docs/2.3.0/Phaser.Physics.Arcade.Body.html#setSize

Afternoon 3: Object Groups 32

render: function() {

this.game.debug.body(this.player);

}

smaller hitbox, but still fair gameplay-wise

Convert Explosions to Sprite Group

Our explosions are also a possible memory leak. Let’s fix that and also do a bit of refactoring in the process.

Put this on the create() after all of the other sprites:

this.shotDelay = 100;

this.explosionPool = this.add.group();

this.explosionPool.enableBody = true;

this.explosionPool.physicsBodyType = Phaser.Physics.ARCADE;

this.explosionPool.createMultiple(100, 'explosion');

this.explosionPool.setAll('anchor.x', 0.5);

this.explosionPool.setAll('anchor.y', 0.5);

this.explosionPool.forEach(function (explosion) {

explosion.animations.add('boom');

});

this.cursors = this.input.keyboard.createCursorKeys();

Then create a new function:

Afternoon 3: Object Groups 33

161 explode: function (sprite) {

162 if (this.explosionPool.countDead() === 0) {

163 return;

164 }

165 var explosion = this.explosionPool.getFirstExists(false);

166 explosion.reset(sprite.x, sprite.y);

167 explosion.play('boom', 15, false, true);

168 // add the original sprite's velocity to the explosion

169 explosion.body.velocity.x = sprite.body.velocity.x;

170 explosion.body.velocity.y = sprite.body.velocity.y;

171 },

And refactor the collision callbacks:

enemyHit: function (bullet, enemy) {

bullet.kill();

this.explode(enemy);

enemy.kill();

var explosion = this.add.sprite(enemy.x, enemy.y, 'explosion');

explosion.anchor.setTo(0.5, 0.5);

explosion.animations.add('boom');

explosion.play('boom', 15, false, true);

},

playerHit: function (player, enemy) {

this.explode(enemy);

enemy.kill();

var explosion = this.add.sprite(player.x, player.y, 'explosion');

explosion.anchor.setTo(0.5, 0.5);

explosion.animations.add('boom');

explosion.play('boom', 15, false, true);

this.explode(player);

player.kill();

},

Afternoon 3: Object Groups 34

..

Sprite Ordering
We mentioned before that the ordering of sprites is determined by the time they are added into our
game i.e. the first objects (sprites, text, etc) added are at the bottom while the later objects are at the top.

This is done through sprite groups: all objects (sprites, text, and even groups - groups can contain other
groups) are added to the game’s World by default, a special group in our game. Display order is then
determined by iterating over the members of the World.

For example, the order of the contents of World in the following scene is:

• The sea tile sprite is at the bottom.
• The player sprite is next.
• The greenEnemy sprite group is on the next level. Only a few sprites from this group are visible
(the rest are still dead).

• Next is the bullet sprite group. Same as the enemy group, only a few sprites from this group are
visible.

• Next is the explosion sprite group.
• At the top is the instructions text. It’s not visible anymore at this point in the game.

(World is also contained in the Stage but we won’t be using the Stage directly so we won’t cover it.)

https://phaser.io/docs/2.3.0/Phaser.World.html

Intermission: Refactoring
Before we proceed with the rest of the lessons, let’s refactor the code to make it easier for us to change and
maintain the code later. This should not change the behavior of the game, so this is just an intermission
rather than a full afternoon chapter.

Refactoring Functions

First on our list of things to refactor are our create() and update() functions. They’re getting bigger and
they will be worse as we proceed with the workshop. We’ll refactor them by splitting these large functions
into smaller functions.

..

Function Order
There’s no generally accepted standard for ordering functions within classes. Modern editors and IDEs
have features (e.g. quick search, code folding) that allow devs to order functions any way they like.

For our program, our standard will be to group functions according to their usage. This will reduce the
amount of scrolling needed when editing multiple functions.

Here is the general outline of our game.js after our refactoring:

• Phaser game loop functions
• Functions called by create()

• Functions called by update()

Refactoring create

Let’s start by extracting functions out of create(). Replace the contents of the function with:

15 create: function () {

16 this.setupBackground();

17 this.setupPlayer();

18 this.setupEnemies();

19 this.setupBullets();

20 this.setupExplosions();

21 this.setupText();

22

23 this.cursors = this.input.keyboard.createCursorKeys();

24 },

Then insert the following after render():

http://en.wikipedia.org/wiki/Code_refactoring
http://refactoring.com/catalog/extractMethod.html
http://refactoring.com/catalog/extractMethod.html

Intermission: Refactoring 36

79 //

80 // create()- related functions

81 //

82 setupBackground: function () {

83 this.sea = this.add.tileSprite(0, 0, 800, 600, 'sea');

84 this.sea.autoScroll(0, 12);

85 },

86

87 setupPlayer: function () {

88 this.player = this.add.sprite(400, 550, 'player');

89 this.player.anchor.setTo(0.5, 0.5);

90 this.player.animations.add('fly', [0, 1, 2], 20, true);

91 this.player.play('fly');

92 this.physics.enable(this.player, Phaser.Physics.ARCADE);

93 this.player.speed = 300;

94 this.player.body.collideWorldBounds = true;

95 // 20 x 20 pixel hitbox, centered a little bit higher than the center

96 this.player.body.setSize(20, 20, 0, -5);

97 },

98

99 setupEnemies: function () {

100 this.enemyPool = this.add.group();

101 this.enemyPool.enableBody = true;

102 this.enemyPool.physicsBodyType = Phaser.Physics.ARCADE;

103 this.enemyPool.createMultiple(50, 'greenEnemy');

104 this.enemyPool.setAll('anchor.x', 0.5);

105 this.enemyPool.setAll('anchor.y', 0.5);

106 this.enemyPool.setAll('outOfBoundsKill', true);

107 this.enemyPool.setAll('checkWorldBounds', true);

108

109 // Set the animation for each sprite

110 this.enemyPool.forEach(function (enemy) {

111 enemy.animations.add('fly', [0, 1, 2], 20, true);

112 });

113

114 this.nextEnemyAt = 0;

115 this.enemyDelay = 1000;

116 },

117

118 setupBullets: function () {

119 // Add an empty sprite group into our game

120 this.bulletPool = this.add.group();

121

122 // Enable physics to the whole sprite group

123 this.bulletPool.enableBody = true;

124 this.bulletPool.physicsBodyType = Phaser.Physics.ARCADE;

125

126 // Add 100 'bullet' sprites in the group.

127 // By default this uses the first frame of the sprite sheet and

Intermission: Refactoring 37

128 // sets the initial state as non-existing (i.e. killed/dead)

129 this.bulletPool.createMultiple(100, 'bullet');

130

131 // Sets anchors of all sprites

132 this.bulletPool.setAll('anchor.x', 0.5);

133 this.bulletPool.setAll('anchor.y', 0.5);

134

135 // Automatically kill the bullet sprites when they go out of bounds

136 this.bulletPool.setAll('outOfBoundsKill', true);

137 this.bulletPool.setAll('checkWorldBounds', true);

138

139 this.nextShotAt = 0;

140 this.shotDelay = 100;

141 },

142

143 setupExplosions: function () {

144 this.explosionPool = this.add.group();

145 this.explosionPool.enableBody = true;

146 this.explosionPool.physicsBodyType = Phaser.Physics.ARCADE;

147 this.explosionPool.createMultiple(100, 'explosion');

148 this.explosionPool.setAll('anchor.x', 0.5);

149 this.explosionPool.setAll('anchor.y', 0.5);

150 this.explosionPool.forEach(function (explosion) {

151 explosion.animations.add('boom');

152 });

153 },

154

155 setupText: function () {

156 this.instructions = this.add.text(400, 500,

157 'Use Arrow Keys to Move, Press Z to Fire\n' +

158 'Tapping/clicking does both',

159 { font: '20px monospace', fill: '#fff', align: 'center' }

160);

161 this.instructions.anchor.setTo(0.5, 0.5);

162 this.instExpire = this.time.now + 10000;

163 },

We also added a call to this.sea.autoScroll() so that we can remove the this.sea.tilePosition.y

+= 0.2 from the update() later.

Refactoring update

Now replace the contents of update() with the following:

https://phaser.io/docs/2.3.0/Phaser.TileSprite.html#autoScroll

Intermission: Refactoring 38

26 update: function () {

27 this.checkCollisions();

28 this.spawnEnemies();

29 this.processPlayerInput();

30 this.processDelayedEffects();

31 },

Insert the new functions after the create() functions:

122 //

123 // update()- related functions

124 //

125 checkCollisions: function () {

126 this.physics.arcade.overlap(

127 this.bulletPool, this.enemyPool, this.enemyHit, null, this

128);

129

130 this.physics.arcade.overlap(

131 this.player, this.enemyPool, this.playerHit, null, this

132);

133 },

134

135 spawnEnemies: function () {

136 if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

137 this.nextEnemyAt = this.time.now + this.enemyDelay;

138 var enemy = this.enemyPool.getFirstExists(false);

139 // spawn at a random location top of the screen

140 enemy.reset(this.rnd.integerInRange(20, 780), 0);

141 // also randomize the speed

142 enemy.body.velocity.y = this.rnd.integerInRange(30, 60);

143 enemy.play('fly');

144 }

145 },

146

147 processPlayerInput: function () {

148 this.player.body.velocity.x = 0;

149 this.player.body.velocity.y = 0;

150

151 if (this.cursors.left.isDown) {

152 this.player.body.velocity.x = -this.player.speed;

153 } else if (this.cursors.right.isDown) {

154 this.player.body.velocity.x = this.player.speed;

155 }

156

157 if (this.cursors.up.isDown) {

158 this.player.body.velocity.y = -this.player.speed;

159 } else if (this.cursors.down.isDown) {

160 this.player.body.velocity.y = this.player.speed;

161 }

Intermission: Refactoring 39

162

163 if (this.input.activePointer.isDown &&

164 this.physics.arcade.distanceToPointer(this.player) > 15) {

165 this.physics.arcade.moveToPointer(this.player, this.player.speed);

166 }

167

168 if (this.input.keyboard.isDown(Phaser.Keyboard.Z) ||

169 this.input.activePointer.isDown) {

170 this.fire();

171 }

172 },

173

174 processDelayedEffects: function () {

175 if (this.instructions.exists && this.time.now > this.instExpire) {

176 this.instructions.destroy();

177 }

178 },

Reducing Hard-coded Values

Apart from long functions, our game also hasmany hard-coded values and this may affect code readability
and maintenance later.

Eliminating all hard-coded values would be overkill especially for a tutorial like this, so our goal here
would be show the ways how we could reduce them.

Using Relative Values

A good portion of the hard-coded values are x-y coordinates. Replacing them with values relative to
game.width and game.height will allow us to change the size of the game later with minimal impact to
the code.

Let’s start with the background tile sprite:

setupBackground: function () {

this.sea = this.add.tileSprite(0, 0, 800, 600, 'sea');

this.sea = this.add.tileSprite(0, 0, this.game.width, this.game.height, 'sea');

this.sea.autoScroll(0, 12);

},

Then we change the player starting location to the bottom middle of the screen:

setupPlayer: function () {

this.player = this.add.sprite(400, 550, 'player');

this.player = this.add.sprite(this.game.width / 2, this.game.height - 50, 'player');

this.player.anchor.setTo(0.5, 0.5);

Also the instruction text:

Intermission: Refactoring 40

setupText: function () {

this.instructions = this.add.text(400, 500,

this.instructions = this.add.text(

this.game.width / 2,

this.game.height - 100,

'Use Arrow Keys to Move, Press Z to Fire\n' +

And finally the spawn location for the enemies:

spawnEnemies: function () {

if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

this.nextEnemyAt = this.time.now + this.enemyDelay;

var enemy = this.enemyPool.getFirstExists(false);

// spawn at a random location top of the screen

enemy.reset(this.rnd.integerInRange(20, 780), 0);

enemy.reset(this.rnd.integerInRange(20, this.game.width - 20), 0);

// also randomize the speed

enemy.body.velocity.y = this.rnd.integerInRange(30, 60);

One advantage of using relative values is that we can change the dimensions of the game without having
to change any of the code. For example, here’s the game with the height and width flipped at app.js:

Using Constants

We can also replace many hard-coded values with constants. If you open boot.js, you’ll see that all of
the constants that we need for this workshop are already defined under the BasicGame object. All we need
to do is to replace the existing code with their respective constants:

Intermission: Refactoring 41

setupBackground: function () {

this.sea = this.add.tileSprite(0, 0, this.game.width, this.game.height, 'sea');

this.sea.autoScroll(0, 12);

this.sea.autoScroll(0, BasicGame.SEA_SCROLL_SPEED);

},

setupPlayer: function () {

...

this.physics.enable(this.player, Phaser.Physics.ARCADE);

this.player.speed = 300;

this.player.speed = BasicGame.PLAYER_SPEED;

this.player.body.collideWorldBounds = true;

setupEnemies: function () {

...

this.nextEnemyAt = 0;

this.enemyDelay = 1000;

this.enemyDelay = BasicGame.SPAWN_ENEMY_DELAY;

},

setupBullets: function () {

...

this.nextShotAt = 0;

this.shotDelay = 100;

this.shotDelay = BasicGame.SHOT_DELAY;

},

setupText: function () {

...

this.instructions.anchor.setTo(0.5, 0.5);

this.instExpire = this.time.now + 10000;

this.instExpire = this.time.now + BasicGame.INSTRUCTION_EXPIRE;

},

spawnEnemies: function () {

if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

...

// also randomize the speed

enemy.body.velocity.y = this.rnd.integerInRange(30, 60);

enemy.body.velocity.y = this.rnd.integerInRange(

BasicGame.ENEMY_MIN_Y_VELOCITY, BasicGame.ENEMY_MAX_Y_VELOCITY

);

enemy.play('fly');

}

},

Intermission: Refactoring 42

fire: function () {

...

bullet.body.velocity.y = -500;

bullet.body.velocity.y = -BasicGame.BULLET_VELOCITY;

},

Afternoon 4: Health, Score, and Win/Lose
Conditions
Our game looks more like a real game now, but there’s still a lot of room for improvement.

Enemy Health

Phaser makes modifying enemy toughness easy for us because it supports health and damage calculation.

Before we could implement health to our enemies, let’s first add a hit animation (finally using the last
frame of the sprite sheet):

setupEnemies: function () {

...

this.enemyPool.setAll('checkWorldBounds', true)

// Set the animation for each sprite

this.enemyPool.forEach(function (enemy) {

enemy.animations.add('fly', [0, 1, 2], 20, true);

enemy.animations.add('hit', [3, 1, 3, 2], 20, false);

enemy.events.onAnimationComplete.add(function (e) {

e.play('fly');

}, this);

});

this.nextEnemyAt = 0;

The new animation is a very short non-looping blinking animation which goes back to the original fly
animation once it ends.

Let’s now add the health. Sprites in Phaser have a default health value of 1 but we can override it anytime:

spawnEnemies: function () {

if (this.nextEnemyAt < this.time.now && this.enemyPool.countDead() > 0) {

this.nextEnemyAt = this.time.now + this.enemyDelay;

var enemy = this.enemyPool.getFirstExists(false);

// spawn at a random location top of the screen

enemy.reset(this.rnd.integerInRange(20, this.game.width - 20), 0);

enemy.reset(

this.rnd.integerInRange(20, this.game.width - 20), 0,

BasicGame.ENEMY_HEALTH

);

enemy.body.velocity.y = this.rnd.integerInRange(

BasicGame.ENEMY_MIN_Y_VELOCITY, BasicGame.ENEMY_MAX_Y_VELOCITY

Afternoon 4: Health, Score, and Win/Lose Conditions 44

);

enemy.play('fly');

}

},

We could have used enemy.health = BasicGame.ENEMY_HEALTH but reset() already has an optional
parameter that does the same.

And finally, let’s create a new function to process the damage, centralizing the killing and explosion
animation:

enemyHit: function (bullet, enemy) {

bullet.kill();

this.explode(enemy);

enemy.kill();

this.damageEnemy(enemy, BasicGame.BULLET_DAMAGE);

},

playerHit: function (player, enemy) {

this.explode(enemy);

enemy.kill();

// crashing into an enemy only deals 5 damage

this.damageEnemy(enemy, BasicGame.CRASH_DAMAGE);

this.explode(player);

player.kill();

},

203 damageEnemy: function (enemy, damage) {

204 enemy.damage(damage);

205 if (enemy.alive) {

206 enemy.play('hit');

207 } else {

208 this.explode(enemy);

209 }

210 },

Using damage() automatically kill()s the sprite once its health is reduced to zero.

https://phaser.io/docs/2.3.0/Phaser.Sprite.html#damage

Afternoon 4: Health, Score, and Win/Lose Conditions 45

Player Score

We don’t need to explain how important it is to display the player’s current score on the screen. Everyone
just knows it.

First set the score rewarded on kill:

setupEnemies: function () {

...

this.enemyPool.setAll('outOfBoundsKill', true);

this.enemyPool.setAll('checkWorldBounds', true);

this.enemyPool.setAll('reward', BasicGame.ENEMY_REWARD, false, false, 0, true);

// Set the animation for each sprite

this.enemyPool.forEach(function (enemy) {

We used the full form of the setAll() function. The last four parameters are default, and we only change
the last parameter to true which forces the function to set the reward property even though it isn’t there.

Next step is to add the setupText() code for displaying the starting score:

setupText: function () {

this.instructions = this.add.text(

this.game.width / 2,

this.game.height - 100,

'Use Arrow Keys to Move, Press Z to Fire\n' +

'Tapping/clicking does both',

{ font: '20px monospace', fill: '#fff', align: 'center' }

);

this.instructions.anchor.setTo(0.5, 0.5);

this.instExpire = this.time.now + BasicGame.INSTRUCTION_EXPIRE;

this.score = 0;

this.scoreText = this.add.text(

this.game.width / 2, 30, '' + this.score,

{ font: '20px monospace', fill: '#fff', align: 'center' }

);

this.scoreText.anchor.setTo(0.5, 0.5);

},

And then let’s add it to our enemy damage/death handler:

https://phaser.io/docs/2.3.0/Phaser.Group.html#setAll

Afternoon 4: Health, Score, and Win/Lose Conditions 46

damageEnemy: function (enemy, damage) {

enemy.damage(damage);

if (enemy.alive) {

enemy.play('hit');

} else {

this.explode(enemy);

this.addToScore(enemy.reward);

}

},

221 addToScore: function (score) {

222 this.score += score;

223 this.scoreText.text = this.score;

224 },

Player Lives

Sudden death games are cool, but may be “unfun” for others. Most people are used to having lives and
retries in their games.

First, let’s create a new sprite group representing our lives at the top right corner of the screen.

create: function () {

this.setupBackground();

this.setupPlayer();

this.setupEnemies();

this.setupBullets();

this.setupExplosions();

this.setupPlayerIcons();

this.setupText();

this.cursors = this.input.keyboard.createCursorKeys();

Afternoon 4: Health, Score, and Win/Lose Conditions 47

},

...

118 setupPlayerIcons: function () {

119 this.lives = this.add.group();

120 // calculate location of first life icon

121 var firstLifeIconX = this.game.width - 10 - (BasicGame.PLAYER_EXTRA_LIVES * 30);

122 for (var i = 0; i < BasicGame.PLAYER_EXTRA_LIVES; i++) {

123 var life = this.lives.create(firstLifeIconX + (30 * i), 30, 'player');

124 life.scale.setTo(0.5, 0.5);

125 life.anchor.setTo(0.5, 0.5);

126 }

127 },

For the life icons, we just used the player’s sprite and scaled it down to half its size by modifying the
scale property.

With the life tracking done, let’s add the blinking ghost animation on player death:

this.player.animations.add('fly', [0, 1, 2], 20, true);

this.player.animations.add('ghost', [3, 0, 3, 1], 20, true);

this.player.play('fly');

Then let’s modify playerHit() to activate “ghost mode” for 3 seconds and ignore everything around us
while we’re a ghost:

playerHit: function (player, enemy) {

// check first if this.ghostUntil is not not undefined or null

if (this.ghostUntil && this.ghostUntil > this.time.now) {

return;

}

// crashing into an enemy only deals 5 damage

this.damageEnemy(enemy, BasicGame.CRASH_DAMAGE);

this.explode(player);

player.kill();

var life = this.lives.getFirstAlive();

if (life !== null) {

life.kill();

this.ghostUntil = this.time.now + BasicGame.PLAYER_GHOST_TIME;

this.player.play('ghost');

} else {

this.explode(player);

player.kill();

}

},

And finally, we modify the processDelayedEffects() function to check if the ghost mode has already
expired:

Afternoon 4: Health, Score, and Win/Lose Conditions 48

processDelayedEffects: function () {

if (this.instructions.exists && this.time.now > this.instExpire) {

this.instructions.destroy();

}

if (this.ghostUntil && this.ghostUntil < this.time.now) {

this.ghostUntil = null;

this.player.play('fly');

}

},

Win/Lose Conditions, Go back to Menu

One of the last things we need to implement is a game ending condition. Currently, our player can die,
but there’s no explicit message whether the game is over or not. On the other hand, we also don’t have a
“win” condition.

Let’s implement both to wrap up our prototype.

Create a new function to display the end game message:

255 displayEnd: function (win) {

256 // you can't win and lose at the same time

257 if (this.endText && this.endText.exists) {

258 return;

259 }

260

261 var msg = win ? 'You Win!!!' : 'Game Over!';

262 this.endText = this.add.text(

263 this.game.width / 2, this.game.height / 2 - 60, msg,

264 { font: '72px serif', fill: '#fff' }

265);

266 this.endText.anchor.setTo(0.5, 0);

Afternoon 4: Health, Score, and Win/Lose Conditions 49

267

268 this.showReturn = this.time.now + BasicGame.RETURN_MESSAGE_DELAY;

269 },

Modify the playerHit() function to call the “Game Over!” message:

playerHit: function (player, enemy) {

...

} else {

this.explode(player);

player.kill();

this.displayEnd(false);

}

Do the same to the addToScore() function, but now to destroy all enemies (preventing accidental death
and also stopping them from spawning) and display “You Win!!!” message upon reaching 2000 points:

addToScore: function (score) {

this.score += score;

this.scoreText.text = this.score;

if (this.score >= 2000) {

this.enemyPool.destroy();

this.displayEnd(true);

}

},

(No need to set 2000 as a constant because it’s only a temporary placeholder. We’ll change this value in
the last afternoon chapter.)

Let’s also display a “back to main menu” message a few seconds after the game ends. In processDelayed-

Effects():

this.player.play('fly');

}

if (this.showReturn && this.time.now > this.showReturn) {

this.returnText = this.add.text(

this.game.width / 2, this.game.height / 2 + 20,

'Press Z or Tap Game to go back to Main Menu',

{ font: '16px sans-serif', fill: '#fff'}

);

this.returnText.anchor.setTo(0.5, 0.5);

this.showReturn = false;

}

},

Since our main menu button is the same action as firing bullets, we can modify processPlayerInput()

function to allow us to quit the game:

Afternoon 4: Health, Score, and Win/Lose Conditions 50

if (this.input.keyboard.isDown(Phaser.Keyboard.Z) ||

this.input.activePointer.isDown) {

this.fire();

if (this.returnText && this.returnText.exists) {

this.quitGame();

} else {

this.fire();

}

}

},

Before going back to the main menu, let’s destroy all objects in the world to allow us to play over and
over again:

quitGame: function (pointer) {

// Here you should destroy anything you no longer need.

// Stop music, delete sprites, purge caches, free resources, all that good stuff.

this.sea.destroy();

this.player.destroy();

this.enemyPool.destroy();

this.bulletPool.destroy();

this.explosionPool.destroy();

this.instructions.destroy();

this.scoreText.destroy();

this.endText.destroy();

this.returnText.destroy();

// Then let's go back to the main menu.

this.state.start('MainMenu');

}

Going back to the main menu will display a black screen with text. This is because we skipped loading
the title page image in preloader.js. To properly display the main menu, let’s temporarily add the pre-
loading in mainMenu.js:

BasicGame.MainMenu.prototype = {

preload: function () {

this.load.image('titlepage', 'assets/titlepage.png');

},

create: function () {

Enjoy playing your prototype game!

Afternoon 4: Health, Score, and Win/Lose Conditions 51

Game Over screen

Win screen

Afternoon 4: Health, Score, and Win/Lose Conditions 52

pressing Z returns you to the Main Menu

Afternoon 5: Expanding the Game
Let’s flesh out the game by adding an additional enemy, a power-up, a boss battle, and sounds.

Harder Enemy

The green enemy fighters in our current game pose no real threat to our players. To make our game more
difficult, our next enemy type will be able to shoot at our player while also being faster and tougher.

Enemy Setup

First load the sprite sheet in the pre-loader:

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

this.load.spritesheet('whiteEnemy', 'assets/shooting-enemy.png', 32, 32);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

this.load.spritesheet('player', 'assets/player.png', 64, 64);

},

Then create the group for the sprites (which we will call “shooters” from now on):

setupEnemies: function () {

...

this.enemyDelay = BasicGame.SPAWN_ENEMY_DELAY;

this.shooterPool = this.add.group();

this.shooterPool.enableBody = true;

this.shooterPool.physicsBodyType = Phaser.Physics.ARCADE;

this.shooterPool.createMultiple(20, 'whiteEnemy');

this.shooterPool.setAll('anchor.x', 0.5);

this.shooterPool.setAll('anchor.y', 0.5);

this.shooterPool.setAll('outOfBoundsKill', true);

this.shooterPool.setAll('checkWorldBounds', true);

this.shooterPool.setAll(

'reward', BasicGame.SHOOTER_REWARD, false, false, 0, true

);

// Set the animation for each sprite

this.shooterPool.forEach(function (enemy) {

enemy.animations.add('fly', [0, 1, 2], 20, true);

Afternoon 5: Expanding the Game 54

enemy.animations.add('hit', [3, 1, 3, 2], 20, false);

enemy.events.onAnimationComplete.add(function (e) {

e.play('fly');

}, this);

});

// start spawning 5 seconds into the game

this.nextShooterAt = this.time.now + Phaser.Timer.SECOND * 5;

this.shooterDelay = BasicGame.SPAWN_SHOOTER_DELAY;

},

Diagonal Movement

Instead of moving only downwards like the regular enemy, we’ll make the shooters move diagonally
across the screen. Add the following code into spawnEnemies():

spawnEnemies: function () {

...

enemy.play('fly');

}

if (this.nextShooterAt < this.time.now && this.shooterPool.countDead() > 0) {

this.nextShooterAt = this.time.now + this.shooterDelay;

var shooter = this.shooterPool.getFirstExists(false);

// spawn at a random location at the top

shooter.reset(

this.rnd.integerInRange(20, this.game.width - 20), 0,

BasicGame.SHOOTER_HEALTH

);

// choose a random target location at the bottom

var target = this.rnd.integerInRange(20, this.game.width - 20);

// move to target and rotate the sprite accordingly

shooter.rotation = this.physics.arcade.moveToXY(

shooter, target, this.game.height,

this.rnd.integerInRange(

BasicGame.SHOOTER_MIN_VELOCITY, BasicGame.SHOOTER_MAX_VELOCITY

)

) - Math.PI / 2;

shooter.play('fly');

// each shooter has their own shot timer

shooter.nextShotAt = 0;

}

},

Afternoon 5: Expanding the Game 55

The figure above shows the initial spawn and target areas for the shooters; the arrows show possible flight
paths. Here we’re using moveToXY(), a function similar to moveToPointer() which moves the object to a
given point in the world.

Both moveToPointer() and moveToXY() returns the angle towards the target in radians, and we can assign
this value to object.rotation to rotate our sprite towards the target. But applying the value directly will
result in incorrectly oriented shooters:

This is because Phaser assumes that your sprites are oriented to the right. We rotated our sprite
counterclockwise Math.PI / 2 radians (90 degrees) to compensate for the fact that our sprite is oriented
downwards.

http://phaser.io/docs/2.3.0/Phaser.Physics.Arcade.html#moveToXY

Afternoon 5: Expanding the Game 56

Angles/Rotation in Phaser

Angles in Phaser are same as in Trigonometry, though it might look wrong at first glance for those used
to Cartesian coordinates rather than screen coordinates.

The rotation seems flipped (increasing angles are clockwise rotations rather than counterclockwise)
because the y values for the two coordinate systems are flipped.

By the way, you can use object.angle instead of object.rotation if you prefer rotating in degrees rather
than radians.

Shooting

Setting up the bullets are pretty much the same as the regular bullets. First the preload():

Afternoon 5: Expanding the Game 57

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.image('enemyBullet', 'assets/enemy-bullet.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

this.load.spritesheet('whiteEnemy', 'assets/shooting-enemy.png', 32, 32);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

this.load.spritesheet('player', 'assets/player.png', 64, 64);

},

Then the sprite group at setupBullets():

setupBullets: function () {

this.enemyBulletPool = this.add.group();

this.enemyBulletPool.enableBody = true;

this.enemyBulletPool.physicsBodyType = Phaser.Physics.ARCADE;

this.enemyBulletPool.createMultiple(100, 'enemyBullet');

this.enemyBulletPool.setAll('anchor.x', 0.5);

this.enemyBulletPool.setAll('anchor.y', 0.5);

this.enemyBulletPool.setAll('outOfBoundsKill', true);

this.enemyBulletPool.setAll('checkWorldBounds', true);

this.enemyBulletPool.setAll('reward', 0, false, false, 0, true);

// Add an empty sprite group into our game

this.bulletPool = this.add.group();

We’ve already set the shot timer for the individual shooters in the spawning section. All that’s left is to
create a new function that fires the enemy bullets.

update: function () {

this.checkCollisions();

this.spawnEnemies();

this.enemyFire();

this.processPlayerInput();

this.processDelayedEffects();

},

And the actual function, iterating over the live shooters in the world:

Afternoon 5: Expanding the Game 58

244 enemyFire: function() {

245 this.shooterPool.forEachAlive(function (enemy) {

246 if (this.time.now > enemy.nextShotAt && this.enemyBulletPool.countDead() > 0) {

247 var bullet = this.enemyBulletPool.getFirstExists(false);

248 bullet.reset(enemy.x, enemy.y);

249 this.physics.arcade.moveToObject(

250 bullet, this.player, BasicGame.ENEMY_BULLET_VELOCITY

251);

252 enemy.nextShotAt = this.time.now + BasicGame.SHOOTER_SHOT_DELAY;

253 }

254 }, this);

255 },

Collision Detection

To wrap things up, let’s handle the collisions for the shooters as well as their bullets:

checkCollisions: function () {

this.physics.arcade.overlap(

this.bulletPool, this.enemyPool, this.enemyHit, null, this

);

this.physics.arcade.overlap(

this.bulletPool, this.shooterPool, this.enemyHit, null, this

);

this.physics.arcade.overlap(

this.player, this.enemyPool, this.playerHit, null, this

);

this.physics.arcade.overlap(

this.player, this.shooterPool, this.playerHit, null, this

);

this.physics.arcade.overlap(

this.player, this.enemyBulletPool, this.playerHit, null, this

);

},

We’ll also destroy the shooters and bullets in addToScore() upon winning:

Afternoon 5: Expanding the Game 59

addToScore: function (score) {

this.score += score;

this.scoreText.text = this.score;

if (this.score >= 2000) {

this.enemyPool.destroy();

this.shooterPool.destroy();

this.enemyBulletPool.destroy();

this.displayEnd(true);

}

},

Afternoon 5: Expanding the Game 60

Power-up

Our regular bullet stream is now a lot weaker with the introduction of the shooters. To counter this, let’s
add a power-up that our players can pickup to get a spread shot.

Pre-loading the asset:

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.image('enemyBullet', 'assets/enemy-bullet.png');

this.load.image('powerup1', 'assets/powerup1.png');

this.load.spritesheet('whiteEnemy', 'assets/shooting-enemy.png', 32, 32);

Then creating the sprite group:

setupPlayerIcons: function () {

this.powerUpPool = this.add.group();

this.powerUpPool.enableBody = true;

this.powerUpPool.physicsBodyType = Phaser.Physics.ARCADE;

this.powerUpPool.createMultiple(5, 'powerup1');

this.powerUpPool.setAll('anchor.x', 0.5);

this.powerUpPool.setAll('anchor.y', 0.5);

this.powerUpPool.setAll('outOfBoundsKill', true);

this.powerUpPool.setAll('checkWorldBounds', true);

this.powerUpPool.setAll(

'reward', BasicGame.POWERUP_REWARD, false, false, 0, true

);

this.lives = this.add.group();

...

We also add the possibility of spawning a power-up when an enemy dies, 30% chance for regular enemies
and 50% for shooters:

Afternoon 5: Expanding the Game 61

setupEnemies: function () {

...

this.enemyPool.setAll('reward', BasicGame.ENEMY_REWARD, false, false, 0, true);

this.enemyPool.setAll(

'dropRate', BasicGame.ENEMY_DROP_RATE, false, false, 0, true

);

...

this.shooterPool.setAll(

'reward', BasicGame.SHOOTER_REWARD, false, false, 0, true

);

this.shooterPool.setAll(

'dropRate', BasicGame.SHOOTER_DROP_RATE, false, false, 0, true

);

Add the call in damageEnemy() to a function that spawns power-ups:

damageEnemy: function (enemy, damage) {

enemy.damage(damage);

if (enemy.alive) {

enemy.play('hit');

} else {

this.explode(enemy);

this.spawnPowerUp(enemy);

this.addToScore(enemy.reward);

}

},

Here’s the new function for spawning power-ups:

414 spawnPowerUp: function (enemy) {

415 if (this.powerUpPool.countDead() === 0 || this.weaponLevel === 5) {

416 return;

417 }

418

419 if (this.rnd.frac() < enemy.dropRate) {

420 var powerUp = this.powerUpPool.getFirstExists(false);

421 powerUp.reset(enemy.x, enemy.y);

422 powerUp.body.velocity.y = BasicGame.POWERUP_VELOCITY;

423 }

424 },

Weapon levels

You might have noticed the this.weaponLevel == 5 in the last code snippet. Our weapon strength will
have up to 5 levels, each incremented by picking up a power-up.

Setting the initial value to zero:

Afternoon 5: Expanding the Game 62

setupPlayer: function () {

...

this.player.body.setSize(20, 20, 0, -5);

this.weaponLevel = 0;

},

Adding a collision handler:

checkCollisions: function () {

this.physics.arcade.overlap(

this.bulletPool, this.enemyPool, this.enemyHit, null, this

);

...

this.physics.arcade.overlap(

this.player, this.powerUpPool, this.playerPowerUp, null, this

);

},

And a new function for incrementing the weapon level:

391 playerPowerUp: function (player, powerUp) {

392 this.addToScore(powerUp.reward);

393 powerUp.kill();

394 if (this.weaponLevel < 5) {

395 this.weaponLevel++;

396 }

397 },

A common theme in shoot ‘em ups is that your weapon power resets when you die. Let’s add that into
our code:

playerHit: function (player, enemy) {

...

if (life !== null) {

life.kill();

this.weaponLevel = 0;

this.ghostUntil = this.time.now + BasicGame.PLAYER_GHOST_TIME;

And finally, the code for implementing the spread shot:

Afternoon 5: Expanding the Game 63

fire: function() {

if (!this.player.alive || this.nextShotAt > this.time.now) {

return;

}

if (this.bulletPool.countDead() === 0) {

return;

}

this.nextShotAt = this.time.now + this.shotDelay;

// Find the first dead bullet in the pool

var bullet = this.bulletPool.getFirstExists(false);

// Reset (revive) the sprite and place it in a new location

bullet.reset(this.player.x, this.player.y - 20);

bullet.body.velocity.y = -BasicGame.BULLET_VELOCITY;

var bullet;

if (this.weaponLevel === 0) {

if (this.bulletPool.countDead() === 0) {

return;

}

bullet = this.bulletPool.getFirstExists(false);

bullet.reset(this.player.x, this.player.y - 20);

bullet.body.velocity.y = -BasicGame.BULLET_VELOCITY;

} else {

if (this.bulletPool.countDead() < this.weaponLevel * 2) {

return;

}

for (var i = 0; i < this.weaponLevel; i++) {

bullet = this.bulletPool.getFirstExists(false);

// spawn left bullet slightly left off center

bullet.reset(this.player.x - (10 + i * 6), this.player.y - 20);

// the left bullets spread from -95 degrees to -135 degrees

this.physics.arcade.velocityFromAngle(

-95 - i * 10, BasicGame.BULLET_VELOCITY, bullet.body.velocity

);

bullet = this.bulletPool.getFirstExists(false);

// spawn right bullet slightly right off center

bullet.reset(this.player.x + (10 + i * 6), this.player.y - 20);

// the right bullets spread from -85 degrees to -45

this.physics.arcade.velocityFromAngle(

-85 + i * 10, BasicGame.BULLET_VELOCITY, bullet.body.velocity

);

}

}

Afternoon 5: Expanding the Game 64

},

One last thing before you test your new spread shot: let’s increase the win condition to 20,000 points so
that the game will not end before you can see your new weapon in all its greatness:

if (this.score >= 2000) {

if (this.score >= 20000) {

Note that it’s you can run out of available bullet sprites as shown with the bullet gaps above. You can
avoid this by increasing the amount of bullet sprites created in the setupBullets() function, but it’s not
really that necessary gameplay-wise.

Afternoon 5: Expanding the Game 65

Boss Battle

Shooters are nice, but our game wouldn’t be a proper shoot ‘em up if it didn’t have a boss battle.

First let’s setup the sprite sheet pre-loading:

preload: function () {

...

this.load.spritesheet('whiteEnemy', 'assets/shooting-enemy.png', 32, 32);

this.load.spritesheet('boss', 'assets/boss.png', 93, 75);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

this.load.spritesheet('player', 'assets/player.png', 64, 64);

},

Then the `setupEnemies()` code:

setupEnemies: function () {

...

this.shooterDelay = BasicGame.SPAWN_SHOOTER_DELAY;

this.bossPool = this.add.group();

this.bossPool.enableBody = true;

this.bossPool.physicsBodyType = Phaser.Physics.ARCADE;

this.bossPool.createMultiple(1, 'boss');

this.bossPool.setAll('anchor.x', 0.5);

this.bossPool.setAll('anchor.y', 0.5);

this.bossPool.setAll('outOfBoundsKill', true);

this.bossPool.setAll('checkWorldBounds', true);

this.bossPool.setAll('reward', BasicGame.BOSS_REWARD, false, false, 0, true);

this.bossPool.setAll(

'dropRate', BasicGame.BOSS_DROP_RATE, false, false, 0, true

);

// Set the animation for each sprite

this.bossPool.forEach(function (enemy) {

enemy.animations.add('fly', [0, 1, 2], 20, true);

enemy.animations.add('hit', [3, 1, 3, 2], 20, false);

enemy.events.onAnimationComplete.add(function (e) {

e.play('fly');

}, this);

});

this.boss = this.bossPool.getTop();

Afternoon 5: Expanding the Game 66

this.bossApproaching = false;

},

We made a group containing our single boss. This is for two reasons: to put the boss in the proper sprite
order - above the enemies, but below the bullets and text; and to step around the sprite vs sprite collision
coding quirk we mentioned way back. We also stored the actual boss in a property for convenience.

We then replace what happens when we reach 20,000 points from ending the game to spawning the boss:

addToScore: function (score) {

this.score += score;

this.scoreText.text = this.score;

if (this.score >= 20000) {

this.enemyPool.destroy();

this.shooterPool.destroy();

this.enemyBulletPool.destroy();

this.displayEnd(true);

}

// this approach prevents the boss from spawning again upon winning

if (this.score >= 20000 && this.bossPool.countDead() == 1) {

this.spawnBoss();

}

},

Then the new spawnBoss() function:

464 spawnBoss: function () {

465 this.bossApproaching = true;

466 this.boss.reset(this.game.width / 2, 0, BasicGame.BOSS_HEALTH);

467 this.physics.enable(this.boss, Phaser.Physics.ARCADE);

468 this.boss.body.velocity.y = BasicGame.BOSS_Y_VELOCITY;

469 this.boss.play('fly');

470 },

The bossApproaching flag is there to make the boss invulnerable until it reaches its target position. Let’s
add the code to processDelayedEffects() to check this:

processDelayedEffects: function () {

...

this.showReturn = false;

}

if (this.bossApproaching && this.boss.y > 80) {

this.bossApproaching = false;

this.boss.nextShotAt = 0;

this.boss.body.velocity.y = 0;

this.boss.body.velocity.x = BasicGame.BOSS_X_VELOCITY;

Afternoon 5: Expanding the Game 67

// allow bouncing off world bounds

this.boss.body.bounce.x = 1;

this.boss.body.collideWorldBounds = true;

}

},

Once it reaches the target height, it becomes a 500 health enemy and starts bouncing from right to left
using the built-in physics engine.

Next is to setup the collision detection for the boss, taking into account the invulnerable phase:

checkCollisions: function () {

...

this.player, this.powerUpPool, this.playerPowerUp, null, this

);

if (this.bossApproaching === false) {

this.physics.arcade.overlap(

this.bulletPool, this.bossPool, this.enemyHit, null, this

);

this.physics.arcade.overlap(

this.player, this.bossPool, this.playerHit, null, this

);

}

And modify the damageEnemy() to get our game winning condition back:

damageEnemy: function (enemy, damage) {

enemy.damage(damage);

if (enemy.alive) {

enemy.play('hit');

} else {

this.explode(enemy);

this.spawnPowerUp(enemy);

this.addToScore(enemy.reward);

// We check the sprite key (e.g. 'greenEnemy') to see if the sprite is a boss

// For full games, it would be better to set flags on the sprites themselves

if (enemy.key === 'boss') {

this.enemyPool.destroy();

this.shooterPool.destroy();

this.bossPool.destroy();

this.enemyBulletPool.destroy();

this.displayEnd(true);

}

}

},

We’ve saved the boss shooting code for last:

Afternoon 5: Expanding the Game 68

enemyFire: function() {

...

}, this);

if (this.bossApproaching === false && this.boss.alive &&

this.boss.nextShotAt < this.time.now &&

this.enemyBulletPool.countDead() >= 10) {

this.boss.nextShotAt = this.time.now + BasicGame.BOSS_SHOT_DELAY;

for (var i = 0; i < 5; i++) {

// process 2 bullets at a time

var leftBullet = this.enemyBulletPool.getFirstExists(false);

leftBullet.reset(this.boss.x - 10 - i * 10, this.boss.y + 20);

var rightBullet = this.enemyBulletPool.getFirstExists(false);

rightBullet.reset(this.boss.x + 10 + i * 10, this.boss.y + 20);

if (this.boss.health > BasicGame.BOSS_HEALTH / 2) {

// aim directly at the player

this.physics.arcade.moveToObject(

leftBullet, this.player, BasicGame.ENEMY_BULLET_VELOCITY

);

this.physics.arcade.moveToObject(

rightBullet, this.player, BasicGame.ENEMY_BULLET_VELOCITY

);

} else {

// aim slightly off center of the player

this.physics.arcade.moveToXY(

leftBullet, this.player.x - i * 100, this.player.y,

BasicGame.ENEMY_BULLET_VELOCITY

);

this.physics.arcade.moveToXY(

rightBullet, this.player.x + i * 100, this.player.y,

BasicGame.ENEMY_BULLET_VELOCITY

);

}

}

}

},

There are two additional phases to this boss fight after the “approaching” phase. First is where the boss
just fires 10 bullets concentrated to the player.

Afternoon 5: Expanding the Game 69

Then once the boss’s health goes down to 250, the boss now fires 10 bullets at the area around the player.
While this is the same amount of bullets as the previous phase, the spread makes it much harder to dodge.

Afternoon 5: Expanding the Game 70

Sound Effects

We’ve saved the sound effects for the end of the workshop because integrating it with the main tutorial
may make it more complicated that it should be.

Anyway, adding sound effects in Phaser is as easy as adding sprites. First, pre-load the sounds:

preload: function () {

...

this.load.spritesheet('player', 'assets/player.png', 64, 64);

this.load.audio('explosion', ['assets/explosion.ogg', 'assets/explosion.wav']);

this.load.audio('playerExplosion',

['assets/player-explosion.ogg', 'assets/player-explosion.wav']);

this.load.audio('enemyFire',

['assets/enemy-fire.ogg', 'assets/enemy-fire.wav']);

this.load.audio('playerFire',

['assets/player-fire.ogg', 'assets/player-fire.wav']);

this.load.audio('powerUp', ['assets/powerup.ogg', 'assets/powerup.wav']);

},

You can use multiple formats for each loaded sound; Phaser will choose the best format based on the
browser. Using Ogg Vorbis (.ogg) and AAC in MP4 (.m4a) should give you the best coverage among
browsers. WAV should be avoided due to its file size, and MP3 should be avoided for public projects due
to possible licensing issues.

Once loaded, we then initialize the audio, adding a new function setupAudio():

create: function () {

...

this.setupAudio();

this.cursors = this.input.keyboard.createCursorKeys();

},

...

setupAudio: function () {

this.explosionSFX = this.add.audio('explosion');

this.playerExplosionSFX = this.add.audio('playerExplosion');

this.enemyFireSFX = this.add.audio('enemyFire');

this.playerFireSFX = this.add.audio('playerFire');

this.powerUpSFX = this.add.audio('powerUp');

},

Then play the audio when they are needed. Enemy explosion:

Afternoon 5: Expanding the Game 71

damageEnemy: function (enemy, damage) {

enemy.damage(damage);

if (enemy.alive) {

enemy.play('hit');

} else {

this.explode(enemy);

this.explosionSFX.play();

this.spawnPowerUp(enemy);

Player explosion:

playerHit: function (player, enemy) {

// check first if this.ghostUntil is not not undefined or null

if (this.ghostUntil && this.ghostUntil > this.time.now) {

return;

}

this.playerExplosionSFX.play();

// crashing into an enemy only deals 5 damage

Enemy firing:

enemyFire: function() {

...

enemy.nextShotAt = this.time.now + BasicGame.SHOOTER_SHOT_DELAY;

this.enemyFireSFX.play();

}

}, this);

if (this.bossApproaching === false && this.boss.alive &&

this.boss.nextShotAt < this.time.now &&

this.enemyBulletPool.countDead() >= 10) {

this.boss.nextShotAt = this.time.now + BasicGame.BOSS_SHOT_DELAY;

this.enemyFireSFX.play();

for (var i = 0; i < 5; i++) {

Player firing:

Afternoon 5: Expanding the Game 72

fire: function() {

if (!this.player.alive || this.nextShotAt > this.time.now) {

return;

}

this.nextShotAt = this.time.now + this.shotDelay;

this.playerFireSFX.play();

if (this.weaponLevel == 0) {

if (this.bulletPool.countDead() == 0) {

Power-up pickup:

playerPowerUp: function (player, powerUp) {

this.addToScore(powerUp.reward);

powerUp.kill();

this.powerUpSFX.play();

if (this.weaponLevel < 5) {

this.weaponLevel++;

}

},

Go ahead and play your game to check if the sounds are properly playing.

You might notice that the sound effects are pretty loud especially when you’re playing in a quiet room.
To wrap up this chapter, let’s adjust the game’s volume. It accepts a value between 0 and 1 so let’s pick
0.3:

setupAudio: function () {

this.sound.volume = 0.3;

this.explosionSFX = this.add.audio('explosion');

this.playerExplosionSFX = this.add.audio('playerExplosion');

this.enemyFireSFX = this.add.audio('enemyFire');

this.playerFireSFX = this.add.audio('playerFire');

this.powerUpSFX = this.add.audio('powerUp');

},

And now we’re done with the full game. We wrap up the tutorial in the next chapter.

https://phaser.io/docs/2.3.0/Phaser.SoundManager.html#volume

Afternoon 6: Wrapping Up
We need to do one last thing before we unleash our game to the public.

Restore original game flow

At the start of the tutorial, we modified our game to skip directly to the Game state. Now that the game’s
done, we’ll need restore it to its original flow that we discussed in Afternoon 0.

Let’s start by deleting the preload() function in game.js:

BasicGame.Game.prototype = {

preload: function () {

this.load.image('sea', 'assets/sea.png');

this.load.image('bullet', 'assets/bullet.png');

this.load.image('enemyBullet', 'assets/enemy-bullet.png');

this.load.image('powerup1', 'assets/powerup1.png');

this.load.spritesheet('greenEnemy', 'assets/enemy.png', 32, 32);

this.load.spritesheet('whiteEnemy', 'assets/shooting-enemy.png', 32, 32);

this.load.spritesheet('boss', 'assets/boss.png', 93, 75);

this.load.spritesheet('explosion', 'assets/explosion.png', 32, 32);

this.load.spritesheet('player', 'assets/player.png', 64, 64);

this.load.audio('explosion', ['assets/explosion.ogg', 'assets/explosion.wav']);

this.load.audio('playerExplosion',

['assets/player-explosion.ogg', 'assets/player-explosion.wav']);

this.load.audio('enemyFire',

['assets/enemy-fire.ogg', 'assets/enemy-fire.wav']);

this.load.audio('playerFire',

['assets/player-fire.ogg', 'assets/player-fire.wav']);

this.load.audio('powerUp', ['assets/powerup.ogg', 'assets/powerup.wav']);

},

create: function () {

Do the same for mainMenu.js:

BasicGame.MainMenu.prototype = {

preload: function () {

this.load.image('titlepage', 'assets/titlepage.png');

},

create: function () {

Revert the starting state in app.js to Boot:

Afternoon 6: Wrapping Up 74

// Now start the Boot state.

game.state.start('Game');

game.state.start('Boot');

And before we forget, let’s destroy the sprites that we added in the previous chapter when we quit the
game:

quitGame: function (pointer) {

// Here you should destroy anything you no longer need.

// Stop music, delete sprites, purge caches, free resources, all that good stuff.

this.sea.destroy();

this.player.destroy();

this.enemyPool.destroy();

this.bulletPool.destroy();

this.explosionPool.destroy();

this.shooterPool.destroy();

this.enemyBulletPool.destroy();

this.powerUpPool.destroy();

this.bossPool.destroy();

this.instructions.destroy();

this.scoreText.destroy();

this.endText.destroy();

this.returnText.destroy();

// Then let's go back to the main menu.

this.state.start('MainMenu');

}

Sharing your game

The good thing about HTML5 games is that it’s no different from a typical static HTML web site: if you
want to share your game to the world, all you need to do is find a web server, upload your files there, and
access the server through your browser.

If you used a cloud IDE like Codio or Nitrous.IO for this tutorial, you don’t need to do anything – you can
just share the preview URL you used when you developed your game. If you developed locally, however,
you’ll need to decide from the thousands of web hosting solutions out there to host your game.

The only free hosting solution I can recommend right now is Github Pages. Most of the alternatives are
either seedy ad-infested sites or free-tier cloud solutions (e.g. AWS, Azure) that require a bit of tinkering
just to serve our game.

Unfortunately, Github Pages is not as easy as “drag-and-drop”; you still need to know Git before you can
use. So for the sake of those who aren’t experienced web developers, we’ll be using the simplest free static
web hosting out there that doesn’t bombard you with ads: Neocities.

Steps for deploying to Neocities

Neocities has a straightforward sign-up page and a simple drag-and-drop interface making it easy even
for beginners. There are some caveats, though:

https://pages.github.com/
https://neocities.org/

Afternoon 6: Wrapping Up 75

• Neocities doesn’t support folders
• Neocities doesn’t allow you to upload .wav files

Taking these into account, here are the steps to using Neocities to host your game:

1. Remove all audio - Remove all of the load.audio() calls in preloader.js and the add.audio()

and audio.play() calls in game.js. Refer to the previous chapter to find their locations.
2. Update asset locations - Move all images from the assets folder to the root then update all of the

references in boot.js and preloader.js to point to the correct location i.e.

preload: function () {

// Here we load the assets required for our preloader (in this case a loading bar)

this.load.image('preloaderBar', 'preloader-bar.png');

},

preload: function () {

this.load.image('titlepage', 'titlepage.png');

this.load.image('sea', 'sea.png');

this.load.image('bullet', 'bullet.png');

this.load.image('enemyBullet', 'enemy-bullet.png');

this.load.image('powerup1', 'powerup1.png');

this.load.spritesheet('greenEnemy', 'enemy.png', 32, 32);

this.load.spritesheet('whiteEnemy', 'shooting-enemy.png', 32, 32);

this.load.spritesheet('boss', 'boss.png', 93, 75);

this.load.spritesheet('explosion', 'explosion.png', 32, 32);

this.load.spritesheet('player', 'player.png', 64, 64);

}

3. Sign-up for Neocities - Fill up the form at https://neocities.org/new.
4. Overwrite index.html - Replace its contents with your index.html.

https://neocities.org/new

Afternoon 6: Wrapping Up 76

5. Upload the game files - Drag and drop all of the .js and .png files as well favicon.ico to the files
box. If dragging multiple files doesn’t work, upload them one by one.

6. Verify the game works by opening the site - If all goes well, you should now see your game (sans
sound).

Evening: What Next?
Congratulations! You’ve just created and deployed your first HTML5 game!

Your journey is far from over, though, and in this chapter we’ll go through your next steps.

Challenges

A common problem with coding workshops is that some participants think they have already grasped the
concepts well when in reality they just knew how to correctly copy-paste the code examples. Prove that
you’re not one of those people by taking on the following challenges:

• Add bombs to the game

Players start with 3 bombs, the current count represented by icons on the top left corner of the
scene. Pressing X or tapping one of these icons will trigger the bomb, continuously destroying all
enemy bullets and dealing a small amount of damage for a few seconds. This is usually done the
moment before an enemy bullet collides with the player.

Evening: What Next? 78

Hint: Use the bomb.png as the icon and bomb-blast.png as the effect that will cover the whole
screen colliding with all enemies.

• Use the second power-up

There’s an additional power-up image in the assets folder. Use it to give the player a speed boost
or a different weapon. For example, here we made the red power-up give a concentrated shot which
can be more effective in the boss battle:

• Create a difficulty progression

Apart from the boss fight at 20000 points, the difficulty stays the same for most of the game session.
Add some flags and additional checking to make the game slightly more difficult as the game
progresses. For example:

Score Enemy Spawn Rate Shooter Spawn Rate Boss

0 - 2000 1.0s n/a n/a
2000 - 5000 0.8s 3.0s n/a
5000 - 10000 0.6s 2.5s n/a
10000 - 17500 0.5s 2.0s n/a
17500 - 25000 0.3s 1.5s n/a

> 25000 0.6s stop spawning spawn the boss

Evening: What Next? 79

• Add new patterns and phases to the boss fight

The patterns can be movement patterns (not just bouncing left and right) and shooting patterns.

A classic shoot ‘em up pattern

• Display the breakdown of kills at the end of the game

• Add new enemies: the destroyer and the sub

There are two unused enemy sprite sheets: one for a destroyer and one for a submarine. Being sea
units, they will have to behave a bit differently from their flying counterparts, namely, they are

Evening: What Next? 80

below all other flying sprites, and they can’t overlap with each other.
• Refactor parts of the code.

There are still places where the code is duplicated 3 or more times. Turn them into functions to
reduce the code size.

You can also try converting some of the game objects into JS objects. The Tank example in Phaser
Examples is way to implement this.

• Convert time-related events to use Phaser’s time classes

Many of the time-related code in our game only uses the current time as reference. This results in
incorrect behavior in certain situations (e.g. pausing the game).

Replace those code with the appropriate Time and Timer functions. See the Time section of Phaser
Examples for ideas on how to do this.

What we didn’t cover

We’ve skipped a lot of Phaser topics. Here are some topics youmight want to look into after this workshop:

• Other Phaser settings (e.g. auto-scale, pause on lose focus)
• Background music
• Mobile support (e.g. additional features, packaging to app stores)
• P2 physics
• Performance tuning and Debugging
• Persisting data
• Interacting with libraries and APIs

Many of these are covered by the official documentation and by some of the tutorials on this list. For the
rest, feel free to ask about them at the official Phaser forum.

We also did not cover how to prepare assets for your game. There are lists of free resources out there like
this wiki page (which also lists where we got our sounds, OpenGameArt.org). You can also Google for
assets, but you have to check their licenses and see if you can use them in your games.

Processing assets is also something that is out of the scope of this tutorial. For example, our art assets
came from SpriteLib but they had to be converted into sprite sheets that are compatible with Phaser (e.g.
convert blue to transparent, add damage effect to enemy, etc.), and the volume of our sound assets had to
be tweaked a bit.

For image editing, you can look for Paint.NET and Gimp tutorials. For sound editing, you check out
Audacity tutorials.

http://phaser.io/examples
http://phaser.io/examples
https://phaser.io/docs/2.3.0/Phaser.Time.html
https://phaser.io/docs/2.3.0/Phaser.Timer.html
http://phaser.io/examples
http://phaser.io/examples
http://www.lessmilk.com/phaser-tutorial/
http://www.html5gamedevs.com/forum/14-phaser/
http://freegamedev.net/wiki/Art_asset_resources
http://opengameart.org/
http://www.widgetworx.com/spritelib/
http://www.getpaint.net/
http://www.gimp.org/
http://audacity.sourceforge.net/

Appendix A: Environment Setup Tutorials
This section is divided into 3 sections. The Basic section which provides the most basic ways of setting up
your development environment for Phaser, the Advanced section which are for experienced developers
who want a more comfortable environment at the price of complexity, and the Cloud section where we
have tutorials on how to develop without requiring anything other than a browser and a stable internet
connection.

We’re using an unstable Phaser release (2.4-rc1) in this book. Ideally, we should be using the
stable 2.3 build but unfortunately the official build does not have sprite health included.

If you’ve finished this book and you’re encountering problems as you’re poking around with
the Phaser library included in the template, you can try downgrading to version 2.2.2 or wait
until the stable 2.4 is released.

Basic Setup

Here’s a basic step-by-step tutorial on preparing your system for the workshop:

1. Download the basic game template from Github and extract it into a folder.

2. Download either version 2 or beta version 3 of Sublime Text and install it in your computer.
3. In Sublime Text, add the folder you extracted to the current project by using Project -> Add Folder

to Project...

https://github.com/photonstorm/phaser/releases/tag/v2.2.2
https://github.com/bryanbibat/html5shmup-template/archive/2.4-rc1.zip
http://www.sublimetext.com/2
http://www.sublimetext.com/3

Appendix A: Environment Setup Tutorials 82

4. This last step, setting up a web server, will depend on your operating system:

If you’re using Windows, the smallest and easiest web server to setup is Mongoose.

If you’re using a Mac or a Linux / Unix machine, the easiest is Python’s SimpleHTTPServer since
pretty much all of these OSs have Python pre-installed.

Mongoose Setup

Repeating Mongoose’s tutorial:

1. Download Mongoose Free Edition and copy it into the working folder.

2. Run Mongoose. Unblock the firewall for Mongoose by clicking Allow access.

http://cesanta.com/mongoose.shtml
https://www.python.org/
http://cesanta.com/docs/FileSharing.shtml

Appendix A: Environment Setup Tutorials 83

3. Your browser should now be open at the game template.

Starting a Simple Python HTTP Server

1. Open your terminal and go to your working folder.
2. Run python -m SimpleHTTPServer.
3. Open your browser to http://localhost:8000/ to access your game.

http://localhost:8000

Appendix A: Environment Setup Tutorials 84

Advanced Setup

Some experienced web developers might open the basic template and be disappointed at how plain it
looks compared to the code they use in their day to day work. To answer this problem, I’ve made a couple
of alternative templates that have the 2 features that I can’t live without when developing front-ends:
LiveReload and a means for concatenating/minifying/preprocessing JS and CSS.

JavaScript / NodeJS Template

You can find a starting template for NodeJS at the javascript branch of the base template.

This template is a slightly modified version of Luke Wilde’s phaser-js-boilerplate which uses Browserify,
Jade, Stylus, Lodash, JsHint, Uglify.js, Google Analytics, Image optimisation tools, LiveReload, Zip
compression, and partial cache busting for assets.

To setup:

$ git clone https://github.com/bryanbibat/html5shmup-template.git

$ cd html5shmup-template

$ git checkout javascript

$ npm install

Run grunt (which you might have to install via npm install -g grunt-cli) to start server and open the
default browser to http://localhost:3017. You can change the port settings in src/js/game/properties.js.

Run grunt build to compile everything (pre-process, concatenate, minify, etc.) to the build folder for
production release.

Refer to the original boilerplate’s Github Read Me for other details.

http://livereload.com/
https://github.com/bryanbibat/html5shmup-template/tree/javascript
https://github.com/lukewilde/phaser-js-boilerplate
http://gruntjs.com/
http://localhost:3018

Appendix A: Environment Setup Tutorials 85

Ruby Template

You can find a starting template for Ruby at the ruby branch of the base template.

This template uses Middleman for features like LiveReload and Asset Pipeline. Compared to the NodeJS
template, this template’s set of libraries are more oriented towards the Ruby ecosystem: ERb and Haml
instead of Jade, Sass instead of Stylus, and so on.

To setup:

$ git clone https://github.com/bryanbibat/html5shmup-template.git

$ cd html5shmup-template

$ git checkout ruby

$ bundle install

To start server:

$ bundle exec middleman server

Your game will be available at http://localhost:4567. Note that LiveReload is set up to work only for
localhost, if you want to make it work on a different machine in the network, you must specify the host
in config.rb e.g.

activate :livereload, host: 192.168.1.111

To compile everything to the build folder:

$ bundle exec middleman build

Refer to the Middleman docs for other details.

Note that Middleman’s Sprockets interface doesn’t support audio so audio_path won’t work. Check out
_preloader.js.erb for my workaround.

Cloud IDE Setup

Online IDEs like Codio and Cloud9 serve as alternative to desktop/laptop-based development. They take
away the hassle of having to install additional software on your computer and replace it with the hassle
of finding a venue that has reliable internet - this can be a big problem for workshops.

We’ll run through the steps of setting up two types development environment: one using Codio on the
basic template, and another using Nitrous.IO on the advanced Ruby template.

https://github.com/bryanbibat/html5shmup-template/tree/ruby
http://middlemanapp.com/
http://localhost:4567
https://codio.com/
https://c9.io/

Appendix A: Environment Setup Tutorials 86

Codio + Basic Template

1. Sign-up for Codio by filling out the form at https://codio.com/p/signup.
2. At the dashboard, click “New Project”. Click the more options link (“Click here”), choose Import

and enter the Git URL https://github.com/bryanbibat/html5shmup-template.git. Fill out the project
name and description then click the “Create” button.

3. Wait until Codio finishes creating your project. You should be able to start editing your files once
that is done.

4. Click the “Project Index (static)” button/link at the header to open your game in a new tab. You can
also access your game by opening the URL shown in another browser tab or window.

https://codio.com/p/signup
https://github.com/bryanbibat/html5shmup-template.git

Appendix A: Environment Setup Tutorials 87

Cloud9 + NodeJS Template

1. Sign-up for Cloud9 by filling out the form at https://c9.io/web/sign-up/free.
2. At the dashboard, click “Create a new workspace”. Fill out the details and the Git URL, choose the

“Node.js” template, and click the “Create Box” button. Leave the Github repository blank.

3. Wait until Cloud9 finishes creating your project. Once that is done, go to the bash console at the
bottom and checkout the javascript branch then install the required modules:

$ git checkout javascript

$ npm install -g grunt-cli

$ npm install

You can also choose your preferences at the Welcome screen while the installation is in progress.

https://c9.io/web/sign-up/free

Appendix A: Environment Setup Tutorials 88

4. To view our app, Cloud9 directs traffic to one port and IP address defined by the PORT and IP env
variables respectively. Open gruntfile.js, modify the connect options accordingly:

connect: {

dev: {

options: {

port: '<%= project.port %>',

port: process.env.PORT,

hostname: process.env.IP,

base: './build'

}

}

},

Run grunt --force to start the app and ignore the grunt-open error:

5. Open “Preview -> Preview Running Application” to open your game in a new window.

Appendix A: Environment Setup Tutorials 89

You can also press the “Pop Out Into New Window” button to open the preview in a new tab.

You can now edit your files and make your game. Unfortunately since Cloud9 only opens one port,
LiveReload will not refresh the game automatically upon saving.

Appendix B: Expected Code Per Chapter
We understand that there are cases you need to “cheat” and need to look for the “correct” code after each
chapter.

Maybe you’ve been spending too much time trying to find where you mistyped the code. Maybe a
participant had to leave the workshop for 1 hour to deal with an emergency.

Regardless of the reason, here are the working code for each chapter of the workshop.

• Overview of the Starting Code - Browse in Github, Download Zip
• Sprites, the Game Loop, and Basic Physics - Browse in Github, Download Zip
• Player Actions - Browse in Github, Download Zip
• Object Groups - Browse in Github, Download Zip
• Refactoring - Browse in Github, Download Zip
• Health, Score, and Win/Lose Conditions - Browse in Github, Download Zip
• Expanding the Game

– Harder Enemy - Browse in Github, Download Zip
– Power-up - Browse in Github, Download Zip
– Boss Battle - Browse in Github, Download Zip
– Sound Effects - Browse in Github, Download Zip

• Wrapping Up
– Restore original game flow - Browse in Github, Download Zip
– Sharing your game - Browse in Github, Download Zip

Tomake sure the lazy people don’t cheat all theway, wewon’t provide links to solutions for theChallenges.

https://github.com/bryanbibat/html5shmup-template/tree/076334cd98a48d33632a36a4e67dc2f7494e0b4b
https://github.com/bryanbibat/html5shmup-template/archive/076334cd98a48d33632a36a4e67dc2f7494e0b4b.zip
https://github.com/bryanbibat/html5shmup-template/tree/d856ac984cc945a701d849d719e921359aa67f85
https://github.com/bryanbibat/html5shmup-template/archive/d856ac984cc945a701d849d719e921359aa67f85.zip
https://github.com/bryanbibat/html5shmup-template/tree/6df27588b6c5dcf28c061cca39c7ca6a93c1a9b9
https://github.com/bryanbibat/html5shmup-template/archive/6df27588b6c5dcf28c061cca39c7ca6a93c1a9b9.zip
https://github.com/bryanbibat/html5shmup-template/tree/bca4dd1ffb29468bec8039b4860ba64ec8027e36
https://github.com/bryanbibat/html5shmup-template/archive/bca4dd1ffb29468bec8039b4860ba64ec8027e36.zip
https://github.com/bryanbibat/html5shmup-template/tree/6e05d661b67cb0142be56ef0dbc9d66c31e1343c
https://github.com/bryanbibat/html5shmup-template/archive/6e05d661b67cb0142be56ef0dbc9d66c31e1343c.zip
https://github.com/bryanbibat/html5shmup-template/tree/433c8c7ed1d2e0417856216350fe74ed7c5c8bc0
https://github.com/bryanbibat/html5shmup-template/archive/433c8c7ed1d2e0417856216350fe74ed7c5c8bc0.zip
https://github.com/bryanbibat/html5shmup-template/tree/ac76c7ab2747acf1ab52e8a6b305d20940e943bc
https://github.com/bryanbibat/html5shmup-template/archive/ac76c7ab2747acf1ab52e8a6b305d20940e943bc.zip
https://github.com/bryanbibat/html5shmup-template/tree/72c5ab4437983a40a8d2384a342ec9c443389e5d
https://github.com/bryanbibat/html5shmup-template/archive/72c5ab4437983a40a8d2384a342ec9c443389e5d.zip
https://github.com/bryanbibat/html5shmup-template/tree/8cbaf44e9a90c15e802bf18a394b817f77ddebfc
https://github.com/bryanbibat/html5shmup-template/archive/8cbaf44e9a90c15e802bf18a394b817f77ddebfc.zip
https://github.com/bryanbibat/html5shmup-template/tree/966bac068e24e3fc248b678e132cdc449af3f864
https://github.com/bryanbibat/html5shmup-template/archive/966bac068e24e3fc248b678e132cdc449af3f864.zip
https://github.com/bryanbibat/html5shmup-template/tree/5720d13f9e60469d20863d8614dae7e1c43bcadf
https://github.com/bryanbibat/html5shmup-template/archive/5720d13f9e60469d20863d8614dae7e1c43bcadf.zip
https://github.com/bryanbibat/html5shmup-template/tree/c3a2104a674e5e7cbb9268689e0232ad81fcdb7b
https://github.com/bryanbibat/html5shmup-template/archive/c3a2104a674e5e7cbb9268689e0232ad81fcdb7b.zip

	Table of Contents
	Preface
	License

	Introduction
	Who is this book for?

	Morning: Preparing for the Afternoon
	Introduce them to Shoot `em Ups
	Technical Requirements: JavaScript and Math
	Development Environment Setup
	Other Suggested Prior Reading
	Video Walkthrough

	Afternoon 0: Overview of the Starting Code
	Afternoon 1: Sprites, the Game Loop, and Basic Physics
	Sprite Basics
	The Game Loop
	Apply Physics

	Afternoon 2: Player Actions
	Keyboard Movement
	Mouse/Touch Movement
	Firing Bullets

	Afternoon 3: Object Groups
	Convert Bullets to Sprite Group
	Enemy Sprite Group
	Player Death
	Convert Explosions to Sprite Group

	Intermission: Refactoring
	Refactoring Functions
	Reducing Hard-coded Values

	Afternoon 4: Health, Score, and Win/Lose Conditions
	Enemy Health
	Player Score
	Player Lives
	Win/Lose Conditions, Go back to Menu

	Afternoon 5: Expanding the Game
	Harder Enemy
	Power-up
	Boss Battle
	Sound Effects

	Afternoon 6: Wrapping Up
	Restore original game flow
	Sharing your game

	Evening: What Next?
	Challenges
	What we didn't cover

	Appendix A: Environment Setup Tutorials
	Basic Setup
	Advanced Setup
	Cloud IDE Setup

	Appendix B: Expected Code Per Chapter

