

0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Table	of	Contents
Introduction

Automated	Testing

Introduction

Test::Nginx

Test	Suite	Layout

Test	File	Layout

Running	Tests

Preparing	Tests

Testing	Erroneous	Cases

Test	Modes

Advanced	Topics

Programming	OpenResty

2

Programming	OpenResty
This	is	an	official	guide	on	OpenResty	programming	written	by	the	OpenResty	creator.	This
book	is	still	in	preparation.	Please	check	back	often	for	updates.

The	entire	Programming	OpenResty	book,	written	by	Yichun	Zhang,	is	available	here.	All
content	is	licensed	under	the	Creative	Commons	Attribution	Non	Commercial	Share	Alike
3.0	license.	You	can	download	or	browse	the	rendered	book	in	various	different	formats	on
the	GitBook	website	below.

https://www.gitbook.com/book/openresty/programming-openresty/

The	latest	source	of	the	book	can	be	found	in	the	following	GitHub	repository:

https://github.com/openresty/programming-openresty

Pull	requests	are	always	welcome.

Programming	OpenResty

3Introduction

http://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.gitbook.com/book/openresty/programming-openresty/
https://github.com/openresty/programming-openresty

Automated	Testing
Automated	testing	plays	a	critical	role	in	software	development	and	maintainance.
OpenResty	provides	a	data-driven	test	scaffold	for	writing	declarative	test	cases	for	NGINX
C	modules,	Lua	libraries,	and	even	OpenResty	applications.	The	test	cases	are	written	in	a
specification-like	format,	which	is	both	intuitive	to	read	and	write	for	humans	and	also	easy
to	handle	for	machines.	The	data-driven	approach	makes	it	easy	to	run	the	same	tests	in
wildly	different	ways	that	can	help	expose	issues	in	different	scenarios	or	with	different	kinds
of	external	tools.

This	chapter	introduces	the		Test::Nginx		test	scaffold	that	has	been	widely	used	to	organize
test	suites	for	almost	all	the	OpenResty	components,	including	the		ngx_http_lua		module,
most	of	the		lua-resty-*		Lua	libraries,	as	well	as	full-blown	business	applications	like
CloudFlare’s	Lua	CDN	and	Lua	SSL.

Keywords:	Testing,	Mocking

Programming	OpenResty

4Automated	Testing

Introduction
OpenResty	itself	has	been	relying	on	automated	testing	to	remain	high	quality	over	the
years.	As	OpenResty	core	developers,	we	embrace	the	test	driven	development	(TDD)
process	all	the	time.	An	excellent	result	of	our	TDD	practices	over	the	years	is	a	huge	set	of
test	suites	for	all	the	OpenResty	components.	These	test	suites	are	so	large	as	a	whole,	so
it	is	impractical	to	run	all	the	tests	thoroughly	on	a	single	machine.	A	relatively	large	test
cluster	is	often	run	on	Amazon	EC2	to	run	all	these	tests	in	all	existing	test	modes.	Lying	at
the	heart	of	these	test	suites	is	usually	the		Test::Nginx		test	scaffold	module	developed	by
the	OpenResty	team.

The		Test::Nginx		scaffold	provides	a	generic	simple	specification	language	for	expressing
and	organizing	test	cases	in	an	intuitive	way.	It	also	provides	various	powerful	testing	modes
or	"engines"	to	run	the	tests	in	various	different	ways	in	the	hope	of	exposing	bugs	in
different	settings.	It	is	also	supported	to	extend	the	test	specification	language	to	add	custom
abstractions	for	advanced	testing	needs,	usually	found	in	application-level	regression
testing.

Conceptual	Roadmap

Overview

Programming	OpenResty

5Introduction

Test::Nginx
Test::Nginx	is	a	test	framework	that	drives	test	cases	written	for	any	code	running	atop
NGINX,	and	also,	naturally,	the	NGINX	core	itself.	It	is	written	in	Perl	because	of	the	rich
testing	facilities	and	toolchain	already	accumulated	in	the	Perl	world	for	years.	Fortunately,
the	user	does	not	really	need	to	know	Perl	for	writing	test	cases	atop	this	scaffold	since
	Test::Nginx		provides	a	very	simple	notation	to	present	the	test	cases	in	a	specification-like
format.

The	simple	test	specification	format,	or	language,	used	in		Test::Nginx		is	just	a	dialect	of
the	more	general	testing	language	provided	by	the	Test::Base	testing	module	in	the	Perl
world.	In	fact,		Test::Nginx		is	just	a	subclass	of		Test::Base		in	the	sense	of	object-oriented
programming.	This	means	that	all	the	features	offered	by		Test::Base		is	available	in
	Test::Nginx		and		Test::Nginx		just	provides	handy	primitives	and	notations	that	simplify
testing	in	the	NGINX	and	OpenResty	context.	The	core	idea	of		Test::Base		is	so	useful	that
we	have	been	using	testing	scaffolds	based	on		Test::Base		in	many	different	projects	even
including	Haskell	programs	and	Linux	kernel	modules.		Test::Nginx		is	such	an	example	we
created	for	the	NGINX	and	OpenResty	world.	Detailed	discussion	of	the		Test::Base	
framework	itself	is	beyond	the	scope	of	this	book,	but	we	will	introduce	the	important
features	of		Test::Base		that	are	inherited	by		Test::Nginx		in	the	later	sections.

	Test::Nginx		is	distributed	via	CPAN,	the	Comprehensive	Perl	Archive	Network,	just	like
most	of	the	other	Perl	libraries.	If	you	already	have		perl		installed	in	your	system	(many
Linux	distributions	ship	with		perl		by	default),	then	you	can	install		Test::Nginx		with	the
following	simple	command:

cpan	Test::Nginx

For	the	first	time	that	the		cpan		utility	is	run,	you	may	be	prompted	to	configure	the		cpan	
utility	to	fit	your	requirements.	If	you	are	unsure	about	those	options,	just	choose	the
automatic	configuration	option	(if	available)	or	just	accept	all	the	default	settings.

	Test::Nginx		provides	several	different	testing	classes	for	different	user	requirements.	The
most	frequently	used	one	is		Test::Nginx::Socket	.	The	rest	of	this	chapter	will	focus	on	this
testing	class	and	its	subclasses.	We	will	use	the	names		Test::Nginx		and
	Test::Nginx::Socket		interchangeably	from	now	on	to	mean	the		Test::Nginx::Socket		test
module	and	its	subclasses,	unless	otherwise	specified.

Programming	OpenResty

6Test::Nginx

https://metacpan.org/pod/Test::Nginx
https://metacpan.org/pod/distribution/Test-Base/lib/Test/Base.pod
http://www.cpan.org/

Note

There	is	actually	another	different	testing	scaffold	called		Test::Nginx	,	created
by	Maxim	Dounin	and	maintained	by	the	official	NGINX	team.	That	testing
module	is	shipped	with	the	official	NGINX	test	suite	and	has	no	relationship	with
our		Test::Nginx		except	that	both	of	these	are	meant	to	test	NGINX	related
code.	The	NGINX	team’s		Test::Nginx		requires	the	user	to	directly	code	in	Perl
to	convey	all	the	test	cases,	which	means	that	tests	written	for	their
	Test::Nginx		are	not	data	driven	and	requires	decent	knowledge	about	Perl
programming.

Programming	OpenResty

7Test::Nginx

http://hg.nginx.org/nginx-tests/file/tip

Test	Suite	Layout
Projects	using		Test::Nginx		to	drive	their	test	suites	usually	have	a	common	directory	layout
and	common	test	file	name	patterns	to	organize	their	tests.	This	makes	the	user	easy	to
reason	about	the	location	of	the	test	suite	in	a	project	source	tree	and	the	usage	of	the	tests.
It	is	not	really	required,	however,	to	use	this	common	convention;	it	is	just	highly
recommended.

By	convention,	such	projects	have	a		t/		directory	at	the	root	of	their	source	tree	where	test
files	reside	in.	Each	test	file	contains	test	cases	that	are	closely	related	in	some	way	and	has
the	file	extension		.t		to	easily	identify	themselves	as	"test	files".	Below	is	the	directory	tree
structure	of	a	real-world	test	suite	inside	the	headers-more-nginx-module	project:

└──	t

				├──	bug.t

				├──	builtin.t

				├──	eval.t

				├──	input-conn.t

				├──	input-cookie.t

				├──	input-ua.t

				├──	input.t

				├──	phase.t

				├──	sanity.t

				├──	subrequest.t

				├──	unused.t

				└──	vars.t

When	you	have	many	test	files,	you	can	also	group	them	further	with	sub-directories	under
	t/	.	For	example,	in	the	lua-nginx-module	project,	we	have	sub-directores	like		023-
rewrite/		and		024-access/		under	its		t/		directory.

In	essence,	each		.t		file	is	a	Perl	script	file	runnable	by	either		perl		or	Perl’s	universal	test
harness	tool	named	prove.	We	usually	use	the		prove		command-line	utility	to	run	such		.t	
files	to	obtain	test	results.	Although		.t		files	are	Perl	scripts	per	se,	they	usually	do	not
have	much	Perl	code	at	all.	Instead,	all	of	the	test	cases	are	declared	as	cleanly	formatted
"data"	in	these		.t		files.

Programming	OpenResty

8Test	Suite	Layout

https://github.com/openresty/headers-more-nginx-module
https://github.com/openresty/lua-nginx-module
http://perldoc.perl.org/prove.html

Note

The	test	suite	layout	convention	we	use	here	are	also	used	by	the	Perl
community	for	many	years.	Because		Test::Nginx		is	written	in	Perl	and	reuses
Perl’s	testing	toolchain,	it	makes	sense	for	us	to	simply	follow	that	convention	in
the	NGINX	and	OpenResty	world	as	well.

Programming	OpenResty

9Test	Suite	Layout

Test	File	Layout
Test	files	usually	have	a	common	file	extension,		.t	,	to	distinguish	themselves	from	other
types	of	files	in	the	source	tree.	Each	test	file	is	a	Perl	script	per	se.		Test::Nginx		follows	a
special	design	that	decomposes	each	test	file	into	two	main	parts:	the	first	part	is	a	very
short	prologue	that	consists	of	a	few	lines	of	Perl	code	while	the	second	part	is	a	listing	of
the	test	cases	in	a	special	data	format.	These	two	parts	are	separated	by	the	following
special	line

__DATA__

The		perl		interpreter	or	the		prove		utility	stop	interpreting	the	file	content	as	Perl	source
code	until	they	see	this	special	line.	Everything	after	this	line	is	treated	as	data	in	plain	text
that	is	reachable	by	the	Perl	code	above	this	line.	The	most	interesting	part	of	each		.t		test
file	is	the	stuff	after	this	line,	i.e.,	the	data	part.

Note

The	special		__DATA__		notation	is	a	powerful	feature	of	the	Perl	programming
language	that	allows	embedding	arbitrary	free-text	data	in	any	Perl	script	files
that	can	be	manipulated	by	the	containing	Perl	scripts	themselves.
	Test::Nginx		takes	advantage	of	this	feature	to	allow	data-driven	test	case
specifications	in	a	simple	format	or	language	that	is	easily	understandable	by
everyone,	even	those	without	any	prior	experiences	in	Perl	programming.

The	Prologue	Part

The	first	part,	i.e.,	the	"prologue"	above	the		__DATA__		line	is	usually	just	a	few	lines	of	Perl
code.	You	do	not	have	to	know	Perl	programming	to	write	them	down	because	they	are	so
simple	and	seldom	or	never	change.	The	simplest	Perl	code	prologue	is	as	follows:

use	Test::Nginx::Socket	'no_plan';

run_tests();

The	first	line	is	just	loading	the	Perl	module	(or	class),		Test::Nginx::Socket		and	passing	the
option		'no_plan'		to	it	to	disable	test	plans	(we	will	talk	more	about	test	plans	in	later
chapters	and	we	do	not	bother	worrying	about	it	here).		Test::Nginx::Socket		is	one	of	the
most	popular	class	in	the		Test::Nginx		test	framework.	The	second	line	just	calls	the
	run_tests		Perl	function	imported	automatically	from	the		Test::Nginx::Socket		module	to
run	all	the	test	cases	defined	in	the	data	part	of	the	test	file	(i.e.,	the	things	coming	after	the
	__DATA__		line).

Programming	OpenResty

10Test	File	Layout

There	are,	however,	more	complicated	prologue	parts	in	many	real-world	test	suites.	Such
prologues	usually	define	some	special	environment	variables	or	Perl	variables	that	can	be
shared	and	referenced	in	the	test	cases	defined	in	the	"data	part",	or	just	call	some	other
Perl	functions	imported	by	the		Test::Nginx::Socket		module	to	customize	the	testing
configurations	and	behaviors	for	the	current	test	file.	We	will	return	to	such	fancier	prologues
in	later	sections.	They	can	be	very	helpful	in	some	cases.

Note

Perl	allows	function	calls	to	omit	the	parentheses	if	the	context	is	unambiguous.
So	we	may	see	Perl	function	calls	without	parentheses	in	real-world	test	files'
prologue	part,	like		run_tests;	.	We	may	use	such	forms	in	examples	presented
in	later	sections	because	they	are	more	compact.

The	Data	Part

The	data	part	is	the	most	important	part	of	any	test	files	powered	by		Test::Nginx	.	This	is
where	test	cases	reside.	It	uses	a	simple	specification	format	to	express	test	cases	so	that
the	user	does	not	use	Perl	or	any	other	general-purpose	languages	to	present	the	tests
themselves.	This	special	specification	format	is	an	instance	of	Domain-Specific	Languages
(DSL)	where	the	"domain"	is	defined	as	testing	code	running	upon	or	inside	NGINX.	Use	of
a	DSL	to	present	test	cases	open	the	door	of	presenting	the	test	cases	as	data	instead	of
code.	This	is	also	why		Test::Nginx		is	a	data-driven	testing	framework.

The	test	case	specification	in	the	data	part	is	composed	by	a	series	of	test	blocks.	Each	test
block	usually	corresponds	to	a	single	test	case,	which	has	a	title,	an	optional	description,
and	a	series	of	data	sections.	The	structure	of	a	test	block	is	described	by	the	following
template.

===	title

optional	description

goes	here...

---	section1

value1	goes

here

---	section2

value2	is

here

---	section3

value3

Block	Titles

As	we	can	see,	each	test	block	starts	with	a	title	line	prefixed	by	three	equal	sign	(===).	It	is
important	to	avoid	any	leading	spaces	at	the	beginning	of	the	line.	The	title	is	mandatory	and
is	important	to	describe	the	intention	of	the	current	test	case	in	the	most	concise	form,	and

Programming	OpenResty

11Test	File	Layout

also	to	identify	the	test	block	in	the	test	report	when	test	failures	happen.	By	convention	we
put	a		TEST	N:		prefix	in	this	title,	for	instance,		TEST	3:	test	the	simplest	form	.	Don’t	worry
about	maintaining	the	test	ordinal	numbers	in	these	titles	yourself,	we	will	introduce	a
command-line	utility	called	reindex	in	a	later	section	that	can	automatically	update	the
ordinal	numbers	in	the	block	titles	for	you.

Block	Descriptions

Each	test	block	can	carry	an	optional	description	right	after	the	block	title	line.	This
description	can	span	multiple	lines	if	needed.	It	is	a	more	detailed	description	of	the	intention
of	the	test	block	than	the	block	title	and	may	also	give	some	background	information	about
the	current	test.	Many	test	cases	just	omit	this	part	for	convenience.

Data	Sections

Every	test	block	carries	one	or	more	data	sections	right	after	the	block	description	(if	any).
Data	sections	always	have	a	name	and	a	value,	which	specify	any	input	data	fields	and	the
expected	output	data	fields.

The	name	of	a	data	section	is	the	word	after	the	line	prefix		---	.	Spaces	are	allowed	though
not	syntactically	required	after		---	.	We	usually	use	a	single	space	between	the	prefix	and
the	section	name	for	aesthetic	considerations	and	we	hope	that	you	follow	this	convention
as	well.	The	section	names	usually	contain	just	alphanumeric	letters	and	underscore
characters.

Section	values	are	specified	in	two	forms.	One	is	all	the	lines	after	the	section	name	line,
before	the	next	section	or	the	next	block.	The	other	form	is	more	concise	and	specifies	the
value	directly	on	the	same	line	as	the	section	name,	but	right	after	the	first	colon	character
(:).	The	latter	form	requires	that	the	value	contains	no	line-breaks.	Any	spaces	around	the
colon	are	always	discarded	and	never	count	as	a	part	of	the	section	value;	furthermore,	the
trailing	line-break	character	in	the	one-line	form	does	not	count	either.

If	no	visible	values	come	after	the	section	name	in	either	form,	then	the	section	takes	an
empty	string	value,	which	is	still	a	defined	value,	however.	On	the	other	hand,	omitting	the
section	name	(and	value)	altogether	makes	that	section	undefined.

	Test::Nginx		offers	various	pre-defined	data	section	names	that	can	be	used	in	the	test
blocks	for	different	purposes.	Some	data	sections	are	for	specifying	input	data,	some	are	for
expected	output,	and	some	for	controlling	whether	the	current	test	block	should	be	run	at	all.

It	is	best	to	explain	data	sections	in	a	concrete	test	block	example.

Programming	OpenResty

12Test	File	Layout

https://raw.githubusercontent.com/agentzh/old-openresty/master/bin/reindex

===	TEST	1:	hello,	world

This	is	just	a	simple	demonstration	of	the

echo	directive	provided	by	ngx_http_echo_module.

---	config

location	=	/t	{

				echo	"hello,	world!";

}

---	request

GET	/t

---	response_body

hello,	world!

---	error_code:	200

Here	we	have	two	input	data	sections,		config		and		request	,	for	specifying	a	custom
NGINX	configuration	snippet	in	the	default		server	{}		and	the	HTTP	request	sent	by	the
test	scaffold	to	the	test	NGINX	server,	respectively.	In	addition,	we	have	one	output	data
section,		response_body	,	for	specifying	the	expected	response	body	output	by	the	test
NGINX	server.	If	the	actual	response	body	data	is	different	from	what	we	specify	under	the
	response_body		section,	this	test	case	fails.	We	have	another	output	data	section,
	error_code	,	which	specifies	its	value	on	the	same	line	of	the	section	name.	We	see	that	a
colon	character	is	used	to	separate	the	section	name	and	values.	Obviously,	the
	error_code		section	specifies	the	expected	HTTP	response	status	code,	which	is	200.

Empty	lines	around	data	sections	are	always	discarded	by		Test::Nginx::Socket	.	Thus	the
test	block	above	can	be	rewritten	as	below	without	changing	its	meaning.

===	TEST	1:	hello,	world

This	is	just	a	simple	demonstration	of	the

echo	directive	provided	by	ngx_http_echo_module.

---	config

location	=	/t	{

				echo	"hello,	world!";

}

---	request

GET	/t

---	response_body

hello,	world!

---	error_code:	200

Some	users	prefer	this	style	for	aesthetic	reasons.	We	are	free	to	choose	whatever	form	you
like.

Programming	OpenResty

13Test	File	Layout

There	are	also	some	special	data	sections	that	specify	neither	input	nor	output.	They	are	just
used	to	control	how	test	blocks	are	run.	For	example,	the		ONLY		section	makes	only	the
current	test	block	in	the	current	test	file	run	and	all	the	other	test	blocks	are	skipped.	This	is
extremely	useful	for	running	an	individual	test	block	in	any	given	file,	which	is	a	common
requirement	while	debugging	a	particular	test	failure.	Also,	the	special		SKIP		section	can
skip	running	the	containing	test	block	unconditionally,	handy	for	preparing	test	cases	for
future	features	without	introducing	any	expected	test	failures.	We	will	visit	more	such	"control
sections"	in	later	sections.

We	shall	see,	in	a	later	section,	that	the	user	can	define	her	own	data	sections	or	extending
existing	ones	by	writing	a	little	bit	of	custom	Perl	code	to	satisfy	her	more	complicated
testing	requirements.

Section	Filters

Data	sections	can	take	one	or	more	filters.	Filters	are	handy	when	you	want	to	adjust	or
convert	the	section	values	in	certain	ways.

Syntactically,	filters	are	specified	right	after	the	section	name	with	at	least	one	space
character	as	the	separator.	Multiple	filters	are	also	separated	by	spaces	and	are	applied	in
the	order	they	are	written.

	Test::Nginx::Socket		provides	many	filters	for	your	convenience.	Consider	the	following
data	section	from	the	aforementioned	test	block.

---	error_code:	200

If	we	want	to	place	the	section	value,	200,	in	a	separate	line,	like	below,

---	error_code

200

then	the	section	value	would	contain	a	trailing	new	line,	which	leads	to	a	test	failure.	This	is
because	the	one-line	form	always	excludes	the	trailing	new-line	character	while	the	multi-line
form	always	includes	one.	To	explicitly	exclude	the	trailing	new-line	in	the	multi-line	form,	we
can	employ	the		chomp		filter,	as	in

---	error_code	chomp

200

Now	it	has	exactly	the	same	semantics	as	the	previous	one-line	form.

Programming	OpenResty

14Test	File	Layout

Some	filters	have	more	dramatic	effect	on	the	section	values.	For	instance,	the		eval		filter
evaluates	the	section	value	as	arbitrary	Perl	code,	and	the	Perl	value	resulted	from	the
execution	will	be	used	as	the	final	section	value.	The	following	section	demonstrates	using
the		eval		filter	to	produce	4096	a’s:

---	response_body	eval

"a"	x	4096

The	original	value	of	the		response_body		section	above	is	a	Perl	expression	where	the		x	
symbol	is	a	Perl	operator	is	used	to	construct	a	string	that	repeats	the	string	specified	as	the
left-hand-side	N	times	where	N	is	specified	by	the	right-hand-side.	The	resulting	4096-byte
Perl	string	after	evaluating	this	expression	dictated	by	the		eval		filter	will	be	used	as	the
final	section	value	for	comparison	with	the	actual	response	body	data.	It	is	obvious	that	use
of	the		eval		filter	and	a	Perl	expression	here	is	much	more	readable	and	manageable	by
directly	pasting	that	4096-byte	string	in	the	test	block.

As	with	data	sections,	the	user	can	also	define	her	own	filters,	as	we	shall	see	in	a	later
section.

A	Complete	Example

We	can	conclude	this	section	by	a	complete	test	file	example	given	below,	with	both	the
prologue	part	and	the	data	part.

use	Test::Nginx::Socket	'no_plan';

run_tests();

__DATA__

===	TEST	1:	hello,	world

This	is	just	a	simple	demonstration	of	the

echo	directive	provided	by	ngx_http_echo_module.

---	config

location	=	/t	{

				echo	"hello,	world!";

}

---	request

GET	/t

---	response_body

hello,	world!

---	error_code:	200

We	will	see	how	to	actually	run	such	test	files	in	the	next	section.

Programming	OpenResty

15Test	File	Layout

Note

The	test	file	layout	described	in	this	section	is	exactly	the	same	as	the	test	files
based	on	other	test	frameworks	derived	from		Test::Base	,	the	superclass	of
	Test::Nginx::Socket	,	except	those	specialized	test	sections	and	specialized
Perl	functions	defined	only	in		Test::Nginx::Socket	.	All	the		Test::Base	
derivatives	share	the	same	basic	layout	and	syntax.	They	proudly	inherit	the
same	veins	of	blood.

Programming	OpenResty

16Test	File	Layout

Running	Tests
Like	most	Perl-based	testing	frameworks,		Test:Nginx		relies	on	Perl’s		prove		command-line
utility	to	run	the	test	files.	The		prove		utility	is	usually	shipped	with	the	standard	perl
distribution	so	we	should	already	have	it	when	we	have		perl		installed.

	Test::Nginx		always	invokes	a	real	NGINX	server	and	a	real	socket	client	to	run	the	tests.	It
automatically	uses	the		nginx		program	found	in	the	system	environment		PATH	.	It	is	your
responsibility	to	specify	the	right		nginx		in	your		PATH		environment	for	the	test	suite.	Usually
we	just	specify	the	path	of	the		nginx		program	inside	the		OpenResty		installation	tree.	For
example,

export	PATH=/usr/local/openresty/nginx/sbin:$PATH

Here	we	assume	that	OpenResty	is	installed	to	the	default	prefix,	i.e.,
	/usr/local/openresty/	.

You	can	always	use	the		which		command	to	verify	if	the		PATH		environment	is	indeed	set
properly:

$	which	nginx

/usr/local/openresty/nginx/sbin/nginx

For	convenience,	we	usually	wrap	such	environment	settings	in	a	custom	shell	script	so	that
we	do	not	risk	polluting	the	system-wide	or	account-wide	environment	settings	nor	take	on
the	burden	of	manually	setting	the	environments	manually	for	every	shell	session.	For
example,	I	usually	have	a	local	bash	script	named		go		in	each	project	I	work	on.	A	typical
	go		script	might	look	like	below

#!/usr/bin/env	bash

export	PATH=/usr/local/openresty/nginx/sbin:$PATH

exec	prove	"$@"

Then	we	can	use	this		./go		script	to	substitute	the		prove		utility	in	any	of	the	subsequent
commands	involving		prove	.

Because		Test::Nginx		makes	heavy	use	of	environment	variables	for	the	callers	to	fine	tune
the	testing	behaviors	(as	we	shall	see	in	later	sections),	such	shell	wrapper	scripts	also
make	it	easy	to	manage	all	these	environment	variable	settings	and	hard	to	get	things

Programming	OpenResty

17Running	Tests

wrong.

Note Please	do	not	confuse	the	name	of	this	bash	script	with	Google’s	Go
programming	language.	It	has	nothing	to	do	with	the	Go	language	in	any	way.

Running	A	Single	File

If	you	want	to	run	a	single	test	file,	say,		t/foo.t	,	then	all	you	need	to	do	is	just	typing	the
following	command	in	your	terminal.

prove	t/foo.t

Here	inside		t/foo.t		we	employs	the	simple	test	file	example	presented	in	the	previous
section.	We	repeat	the	content	below	for	the	reader’s	convenience.

t/foo.t

use	Test::Nginx::Socket	'no_plan';

run_tests();

__DATA__

===	TEST	1:	hello,	world

This	is	just	a	simple	demonstration	of	the

echo	directive	provided	by	ngx_http_echo_module.

---	config

location	=	/t	{

				echo	"hello,	world!";

}

---	request

GET	/t

---	response_body

hello,	world!

---	error_code:	200

It	is	worth	mentioning	that	we	could	run	the	following	command	instead	if	we	have	a	custom
wrapper	script	called		./go		for		prove		(as	mentioned	earlier	in	this	section):

./go	foo.t

When	everything	goes	well,	it	generates	an	output	like	this:

Programming	OpenResty

18Running	Tests

t/foo.t	..	ok

All	tests	successful.

Files=1,	Tests=2,	0	wallclock	secs	(0.02	usr	0.01	sys	+	0.08	cusr	0.03	csys	=	0.14	CPU)

Result:	PASS

This	is	a	very	concise	summary.	The	first	line	tells	you	all	tests	were	passed	while	the
second	line	gives	you	a	summary	of	the	number	of	test	files	(1	in	this	case),	the	number	of
tests	(2	in	this	case),	and	the	wallclock	and	CPU	times	used	to	run	all	the	tests.

It	is	interesting	to	see	that	we	have	only	one	test	block	in	the	sample	test	file	but	in	the	test
summary	output	by		prove		we	see	that	the	number	of	tests	are	2.	Why	the	difference?	We
can	easily	find	it	out	by	asking		prove		to	generate	a	detailed	test	report	for	all	the	individual
tests.	This	is	achieved	by	passing	the		-v		option	(meaning	"verbose")	to	the		prove	
command	we	used	earlier:

prove	-v	t/foo.t

Now	the	output	shows	all	the	individual	tests	performed	in	that	test	file:

t/foo.t	..

ok	1	-	TEST	1:	hello,	world	-	status	code	ok

ok	2	-	TEST	1:	hello,	world	-	response_body	-	response	is	expected	(req	0)

1..2

ok

All	tests	successful.

Files=1,	Tests=2,	0	wallclock	secs	(0.01	usr	0.01	sys	+	0.07	cusr	0.03	csys	=	0.12	CPU)

Result:	PASS

Obviously,	the	first	test	is	doing	the	status	code	check,	which	is	dictated	by	the		error_code	
data	section	in	the	test	block,	and	the	second	test	is	doing	the	response	body	check,
required	by	the		response_body		section.	Now	the	mystery	is	solved.

It	is	worth	mentioning	that	the		---	error_code:	200		section	is	automatically	assumed	when
no		error_code		section	is	explicitly	provided	in	the	test	block.	So	our	test	block	above	can	be
simplified	by	removing	the		---	error_code:	200		line	without	affecting	the	number	of	tests.
This	is	because	that	checking	200	response	status	code	is	so	common	that		Test::Nginx	
makes	it	the	default.	If	you	expect	a	different	status	code,	like	500,	then	just	add	an	explicit
	error_code		section.

Programming	OpenResty

19Running	Tests

From	this	example,	we	can	see	that	one	test	block	can	contain	multiple	tests	and	the
number	of	tests	for	any	given	test	block	can	be	determined	or	predicted	by	looking	at	the
data	sections	performing	output	checks.	This	is	important	when	we	provide	a	"test	plan"
ourselves	to	the	test	file	where	a	"test	plan"	is	the	exact	number	of	tests	we	expect	the
current	test	file	to	run.	If	a	different	number	of	tests	than	the	plan	were	actually	run,	then	the
test	result	would	be	considered	malicious	even	when	all	the	tests	are	passed	successfully.
Thus,	a	test	plan	adds	a	strong	constraint	on	the	total	number	of	tests	expected	to	be	run.
For	our		t/foo.t		file	here,	however,	we	intentionally	avoid	providing	any	test	plans	by
passing	the		'no_plan'		argument	to	the		use		statement	that	loads	the		Test::Nginx::Socket	
module.	We	will	revisit	the	"test	plan"	feature	and	explain	how	to	provide	one	in	a	later
section.

Running	Multiple	Files

Running	multiple	test	files	are	straightforward;	just	specify	the	file	names	on	the		prove	
command	line,	as	in

prove	-v	t/foo.t	t/bar.t	t/baz.t

If	you	want	to	run	all	the	test	files	directly	under	the		t/		directory,	then	using	a	shell	wildcard
can	be	handy:

prove	-v	t/*.t

In	case	that	you	have	sub-directories	under		t/	,	you	can	specify	the		-r		option	to	ask
	prove		to	recursively	traverse	the	while	directory	tree	rooted	at		t/		to	find	test	files:

prove	-r	t/

This	command	is	also	the	standard	way	to	run	the	whole	test	suite	of	a	project.

Running	Individual	Test	Blocks

	Test::Nginx		makes	it	easy	to	run	an	individual	test	block	in	a	given	file.	Just	add	the	special
data	section		ONLY		to	that	test	block	you	want	to	run	individually	and		prove		will	skip	all	the
other	test	blocks	while	running	that	test	file.	For	example,

Programming	OpenResty

20Running	Tests

===	TEST	1:	hello,	world

This	is	just	a	simple	demonstration	of	the

echo	directive	provided	by	ngx_http_echo_module.

---	config

location	=	/t	{

				echo	"hello,	world!";

}

---	request

GET	/t

---	response_body

hello,	world!

---	ONLY

Now		prove		won’t	run	any	other	test	blocks	(if	any)	in	the	same	test	file.

This	is	very	handy	while	debugging	a	particular	test	block.	You	can	focus	on	one	test	case	at
a	time	without	worrying	about	other	unrelated	test	cases	stepping	in	your	way.

When	using	the	Vim	editor,	we	can	quickly	insert	a		---	ONLY		line	to	the	test	block	we	are
viewing	in	the	vim	file	buffer,	and	then	type		:!prove	%		in	the	command	mode	of	vim	without
leaving	the	editor	window.	This	works	because	vim	automatically	expands	the	special		%	
placeholder	with	the	path	of	the	current	active	file	being	edited.	This	workflow	is	great	since
you	never	leave	your	editor	window	and	you	never	have	to	type	the	title	(or	other	IDs)	of
your	test	block	nor	the	path	of	the	containing	test	file.	You	can	quickly	jump	between	test
blocks	even	across	different	files.	Test-driven	development	usually	demands	very	frequent
interactions	and	iterations,	and		Test::Nginx		is	particularly	optimized	to	speed	up	this
process.

Sometimes	you	may	forget	to	remove	the		---	ONLY		line	from	some	test	files	even	after
debugging,	this	will	incorrectly	skip	all	the	other	tests	in	those	files.	To	catch	such	mistakes,
	Test::Nginx		always	reports	a	warning	for	files	using	the		ONLY		special	section,	as	in

$	prove	t/foo.t

t/foo.t	..	#	I	found	ONLY:	maybe	you're	debugging?

t/foo.t	..	ok

All	tests	successful.

Files=1,	Tests=2,	0	wallclock	secs	(0.01	usr	0.00	sys	+	0.09	cusr	0.03	csys	=	0.13	CPU)

Result:	PASS

This	way	it	is	much	easier	to	identify	any	leftover		---	ONLY		lines.

Similar	to		ONLY	,		Test::Nginx		also	provides	the		LAST		data	section	to	make	the	containing
test	block	become	the	last	test	block	being	run	in	that	test	file.

Programming	OpenResty

21Running	Tests

http://www.vim.org/

Note The	special	data	sections		ONLY		and		LAST		are	actually	features	inherited	from
the		Test::Base		module.

Skipping	Tests

We	can	specify	the	special		SKIP		data	section	to	skip	running	the	containing	test	block
unconditionally.	This	is	handy	when	we	write	a	test	case	that	is	for	a	future	feature	or	a	test
case	for	a	known	bug	that	we	haven’t	had	the	time	to	fix	right	now.

It	is	also	possible	to	skip	a	whole	test	file	in	the	prologue	part.	Just	replace	the		use	
statement	with	the	following	form.

use	Test::Nginx::Socket	skip_all	=>	"some	reasons";

Then	running	the	test	file	gives	something	like	follows.

t/foo.t	..	skipped:	some	reasons

Note
It	is	also	possible	to	conditionally	skip	a	whole	test	file	but	it	requires	a	little	bit	of
Perl	programming.	Interested	readers	can	try	using	a		BEGIN	{}		before	before
the		use		statement	to	calculate	the	value	of	the		skip_all		option	on	the	fly.

Test	Running	Order

Test	File	Running	Order

Test	files	are	usually	run	by	the	alphabetical	order	of	their	file	names.	Some	people	prefer
explicitly	controlling	the	running	order	of	their	test	files	by	prefixing	the	test	file	names	with
number	sequences	like		001-	,		002-	,	and	etc.

The	test	suite	of	the	ngx_http_lua	module	follows	this	practice,	for	example,	which	has	test
file	names	like	below

t/000-sanity.t

t/001-set.t

t/002-content.t

t/003-errors.t

...

t/139-ssl-cert-by.t

Programming	OpenResty

22Running	Tests

https://github.com/openresty/lua-nginx-module#readme

Although	the		prove		utility	supports	running	test	files	in	multiple	parallel	jobs	via	the		-jN	
option,		Test::Nginx		does	not	really	support	this	mode	since	all	the	test	cases	share	exactly
the	same	test	server	directory,		t/servroot/	,	and	the	same	listening	ports,	as	we	have
already	seen,	while	parallel	running	requires	strictly	isolated	running	environments	for	each
individual	thread	of	execution.	One	can	still	manually	split	the	test	files	into	different	groups
and	run	each	group	on	a	different	(virtual)	machine	or	an	isolated	environment	like	a	Linux
container.

Test	Block	Running	Order

By	default,	the		Test::Nginx		scaffold	shuffles	the	test	blocks	in	each	file	and	run	them	in	a
random	order.	This	behavior	encourages	writing	self-contained	and	independent	test	cases
and	also	increases	the	chance	of	hitting	a	bug	by	actively	mutating	the	relative	running	order
of	the	test	cases.	This	may,	indeed,	confuse	new	comers,	coming	from	a	more	traditional
testing	platform.

We	can	always	disable	this	test	block	shuffling	behavior	by	calling	the	Perl	function,
	no_shuffle()	,	imported	by	the		Test::Nginx::Socket		module,	before	the		run_tests()		call
in	the	test	file	prologue.	For	example,

use	Test::Nginx::Socket	'no_plan';

no_shuffle();

run_tests();

__DATA__

...

With	the		no_shuffle()		call	in	place,	the	test	blocks	are	run	in	the	exact	same	order	as	their
appearance	in	the	test	file.

Programming	OpenResty

23Running	Tests

Preparing	Tests
As	we	have	seen	in	the	previous	sections,		Test::Nginx		provides	a	simple	declarative
format	to	express	test	cases.	Each	test	case	is	represented	by	a	test	block.	A	test	block
consists	of	a	title,	an	optional	description,	and	several	data	sections	for	specifying	inputs	and
expected	outputs.	In	this	section,	we	will	have	a	close	look	at	how	to	prepare	such	test
cases	for	different	test	requirements.

Designing	test	cases	is	an	art,	in	many	ways.	It	may,	sometimes,	take	even	more	time	and
effort	than	implementing	the	feature	to	be	tested,	according	to	our	own	experience.
	Test::Nginx		tries	hard	to	make	writing	tests	as	simple	as	possible	but	it	still	cannot
automate	the	whole	test	case	design	process.	Only	you	know	exactly	what	to	test	and	how	it
can	be	tested	anyway.	This	section	will	focus	on	the	basic	primitives	provided	by
	Test::Nginx		that	you	can	take	advantage	of	to	devise	clever	and	effective	test	cases.

Preparing	NGINX	Configuration

In	a	test	block,	we	can	use	different	data	sections	to	specify	our	custom	snippets	in	different
positions	of	the	final		nginx.conf		configuration	file	generated	by		Test::Nginx	.

The	most	common	one	is	the		config		section	which	is	used	to	insert	custom	snippets	inside
the		server	{}		configuration	block	for	the	default	test	server.	We	can	also	use	the
	http_config		section	to	insert	our	custom	content	into	the		http	{}		configuration	block	of
	nginx.conf	.	The		main_config		section	can	be	used	to	insert	content	into	the	top-level	scope
of	the	NGINX	configuration.	Let’s	consider	the	following	example.

Programming	OpenResty

24Preparing	Tests

===	TEST	1:

---	main_config

env	MY_ENVIRONMENT;

---	http_config

				init_worker_by_lua_block	{

								print("init")

				}

---	config

				location	=	/t	{

								echo	ok;

				}

---	request

GET	/t

---	response_body

ok

This	test	block	will	generate	an		nginx.conf		file	with	the	following	basic	structure:

...

env	MY_ENVIRONMENT;

http	{

				...

				init_worker_by_lua_block	{

								print("init")

				}

				server	{

								...

								location	=	/t	{

												echo	ok;

								}

				}

}

Please	pay	attention	to	how	the		main_config	,		http_config	,	and		config		data	sections'
values	are	mapped	into	different	locations	in	the	NGINX	configuration	file.

When	in	doubt,	we	can	always	check	out	the	actual		nginx.conf		file	generated	by	the	test
scaffold	at	the	location		t/servroot/conf/nginx.conf		in	the	current	working	directory	(usually
just	being	the	root	directory	of	the	current	project).

Programming	OpenResty

25Preparing	Tests

	Test::Nginx		generates	a	new		nginx.conf		file	for	each	test	block,	which	makes	it	possible
for	each	test	block	to	become	self-contained.	By	default,	the	test	scaffold	automatically	starts
a	new	NGINX	server	before	running	each	test	block	and	shuts	down	the	server	immediately
after	running	the	block.	Fortunately,	NGINX	is	a	lightweight	server	and	it	is	usually	very	fast
to	start	and	stop.	Thus,	the	test	blocks	are	not	that	slow	to	run	as	it	might	look.

Preparing	Requests

The	simplest	way	to	prepare	a	request	is	to	use	the		request		data	section,	as	in

---	request

GET	/t?a=1&b=2

The	HTTP/1.1	protocol	is	used	by	default.	You	can	explicitly	make	it	use	the	HTTP/1.0
protocol	if	desired:

---	request

GET	/t?a=1&b=2	HTTP/1.0

Leading	spaces	or	empty	lines	in	the	value	of	the		request		section	are	automatically
discarded.	You	can	even	add	comments	by	leading	them	with	a		#		character,	as	in

---	request

				#	this	is	a	simple	test:

				GET	/t

You	can	add	some	additional	request	headers	at	the	same	time	through	the		more_headers	
section	as	below.

---	request

GET	/t

---	more_headers

Foo:	bar

Bar:	baz

Pipelined	Requests

Preparing	pipelined	HTTP	requests	are	also	possible.	But	you	need	to	use	the
	pipelined_requests		section	instead	of		request	.	For	instance,

Programming	OpenResty

26Preparing	Tests

===	TEST	1:	pipelined	requests

---	config

				location	=	/t	{

								echo	ok;

				}

---	pipelined_requests	eval

["GET	/t",	"GET	/t"]

---	response_body	eval

["ok\n",	"ok\n"]

It	is	worth	noting	that	we	use	the		eval		filter	with	the		pipelined_requests		section	to	treat
the	literal	value	of	that	section	as	Perl	code.	This	way	we	can	construct	a	Perl	array	of	the
request	strings,	which	is	the	expected	data	format	for	the		pipelined_requests		section.
Similarly	we	need	a	similar	trick	for	the		response_body		section	when	checking	outputs.	With
an	array	of	expected	response	body	data,	we	can	expect	and	check	different	values	for
different	individual	request	in	the	pipeline.	Note,	however,	not	every	data	section	supports
the	same	array-typed	value	semantics	as		response_body	.

Checking	Responses

We	have	already	visited	the		response_body		and		error_code		data	sections	for	checking	the
response	body	data	and	response	status	code,	respectively.

The		response_body		data	section	always	performs	an	exact	whole-string	comparison
between	the	section	value	and	the	actual	response	body.	It	tries	to	be	clever	when	long
string	value	comparison	fails.	Consider	the	following	sample	output	from		prove	.

Programming	OpenResty

27Preparing	Tests

t/foo.t	..	1/?

#			Failed	test	'TEST	1:	long	string	test	-	response_body	-	response	is	expected	(req	0)'

#			at	.../test-nginx/lib/Test/Nginx/Socket.pm	line	1282.

#										got:	..."IT	2.x	is	enabled.\x{0a}\x{0a}"...

#							length:	409

#					expected:	..."IT	2.x	is	not	enabled.\x{0a}"...

#							length:	412

#					strings	begin	to	differ	at	char	400	(line	1	column	400)

#	Looks	like	you	failed	1	test	of	2.

/tmp/foo.t	..	Dubious,	test	returned	1	(wstat	256,	0x100)

Failed	1/2	subtests

Test	Summary	Report

/tmp/foo.t	(Wstat:	256	Tests:	2	Failed:	1)

		Failed	test:		2

		Non-zero	exit	status:	1

Files=1,	Tests=2,		0	wallclock	secs	(0.01	usr	0.00	sys	+	0.09	cusr	0.03	csys	=	0.13	CPU)

Result:	FAIL

From	this	test	report,	we	can	clearly	see	that

1.	 it	is	the	test	block	with	the	title		TEST	1:	long	string	test		that	is	failing,

2.	 it	is	the		response_body		data	section	check	that	fails,

3.	 the	actual	response	body	data	is	409	bytes	long	while	the	expected	value	is	412	bytes,
and

4.	 the	expected	value	has	an	additional		not		word	in	the	string	fragment		IT	2.x	is
enabled		and	the	difference	starts	at	the	offset	400	in	the	long	string.

Behind	the	scene,		Test::Nginx		uses	the	Perl	module	Test::LongString	to	do	the	long	string
comparisons.	It	is	also	particularly	useful	while	checking	response	body	data	in	binary
formats.

If	your	response	body	data	is	in	a	multi-line	textual	format,	then	you	may	also	want	to	use	a
	diff	-style	output	when	the	data	does	not	match.	To	achieve	this,	we	can	call	the
	no_long_string()		Perl	function	before	the		run_tests()		function	call	in	the	prologue	part	of
the	test	file.	Below	is	such	an	example.

Programming	OpenResty

28Preparing	Tests

https://metacpan.org/pod/Test::LongString

use	Test::Nginx::Socket	'no_plan';

no_long_string();

run_tests();

__DATA__

===	TEST	1:

---	config

				location	=	/t	{

								echo	"Life	is	short.";

								echo	"Moon	is	bright.";

								echo	"Sun	is	shining.";

				}

---	request

GET	/t

---	response_body

Life	is	short.

Moon	is	deem.

Sun	is	shining.

Note	the		no_long_string()		call	in	the	prologue	part.	It	is	important	to	place	it	before	the
	run_tests()		call	otherwise	it	would	be	too	late	for	it	to	take	effect,	obviously.

Invoking	the		prove		utility	(or	any	shell	wrappers	for	it)	to	run	this	test	file	gives	the	following
details	about	the	test	failure:

#			Failed	test	'TEST	1:	-	response_body	-	response	is	expected	(req	0)'

#			at	.../test-nginx/lib/Test/Nginx/Socket.pm	line	1277.

#	@@	-1,3	+1,3	@@

#		Life	is	short.

#	-Moon	is	deem.

#	+Moon	is	bright.

#		Sun	is	shining.

#	Looks	like	you	failed	1	test	of	2.

It	is	obvious	that	the	second	line	of	the	response	body	output	is	different.

You	can	even	further	disable	the		diff	-style	comparison	mode	by	adding	a		no_diff()		Perl
function	call	in	the	prologue	part.	Then	the	failure	report	will	look	like	this:

Programming	OpenResty

29Preparing	Tests

#			Failed	test	'TEST	1:	-	response_body	-	response	is	expected	(req	0)'

#			at	.../test-nginx/lib/Test/Nginx/Socket.pm	line	1277.

#										got:	'Life	is	short.

#	Moon	is	bright.

#	Sun	is	shining.

#	'

#					expected:	'Life	is	short.

#	Moon	is	deem.

#	Sun	is	shining.

#	'

#	Looks	like	you	failed	1	test	of	2.

That	is,		Test::Nginx		just	gives	full	listing	of	the	actual	response	body	data	and	the	expected
one	without	any	abbreviations	or	hand-holding.

Pattern	Matching	on	Response	Bodies

When	the	request	body	may	change	in	some	ways	or	you	just	care	about	certain	key	words
in	a	long	data	string,	you	can	specify	a	Perl	regular	expression	to	do	a	pattern	match	against
the	actual	request	body	data.	This	is	achieved	by	the		response_body_like		data	section.	For
example,

---	response_body_like:	age:	\d+

Be	careful	when	you	are	using	the	multi-line	data	section	value	form.	A	trailing	newline
character	appended	to	your	section	value	may	make	your	pattern	never	match.	In	this	case
the		chomp		filter	we	introduced	in	an	early	section	can	be	very	helpful	here.	For	example,

---	response_body_like	chomp

age:	\d+

You	can	also	use	the		eval		filter	to	construct	a	Perl	regular	expression	object	with	a	Perl
expression,	as	in

---	response_body_like	eval

qr/age:	\d+/

This	is	the	most	flexible	form	to	specify	a	pattern.

Programming	OpenResty

30Preparing	Tests

Note
Perl	uses	the		qr		quoting	structure	to	explicitly	construct	regular	expression
objects.	You	can	use	various	different	quoting	forms	like		qr/…/	,		qr!…!	,		qr#…
#	,	and		qr{…}	.

Checking	Response	Headers

The		response_headers		data	section	can	be	used	to	validate	response	header	entries.	For
example,

---	response_headers

Foo:	bar

Bar:	baz

!Blah

This	section	dictates	3	tests	actually:

1.	 The	response	header		Foo		must	appear	and	must	take	the	value		bar	;

2.	 The	response	header		Bar		must	appear	and	must	take	the	value		baz	;	and

3.	 The	response	header		Blah		must	not	appear	or	take	an	empty	value.

Checking	NGINX	Error	Logs

In	addition	to	responses,	the	NGINX	error	log	file	is	also	an	important	output	channel	for	an
NGINX	server	setup.

True-False	Tests

One	immediate	testing	requirement	is	to	check	whether	or	not	a	piece	of	text	appears	in	any
error	log	messages.	Such	checks	can	be	done	via	the	data	sections		error_log		and
	no_error_log	,	respectively.	The	former	ensures	that	some	lines	in	the	error	log	file	contain
the	string	specified	as	the	section	value	while	the	latter	tests	the	opposite:	ensuring	that	no
line	contains	the	pattern.

For	example,

---	error_log

Hello	world	from	my	server

Then	the	string		Hello	world	from	my	server		(without	the	trailing	new-line)	must	appear	in	at
least	one	line	of	the	NGINX	error	log.	You	can	specify	multiple	strings	in	separate	lines	of	the
section	value	to	perform	different	checks,	for	instance,

Programming	OpenResty

31Preparing	Tests

---	error_log

This	is	a	dog!

Is	it	a	cat?

Then	it	performs	two	error	log	checks,	one	is	to	ensure	that	the	string		This	is	a	dog!	
appears	in	some	error	log	lines.	The	order	of	these	two	string	patterns	do	not	matter	at	all.

If	one	of	the	string	pattern	failed	to	match	any	lines	in	the	error	log	file,	then	we	would	get	a
test	failure	report	from		prove		like	below.

#	Failed	test	'TEST	1:	simple	test	-	pattern	"This	is	a	dog!"	matches	a	line	in	error.log	(req	0)'

If	you	want	to	specify	a	Perl	regular	expression	(regex)	as	one	of	the	patterns,	then	you
should	use	the		eval		section	filter	to	construct	a	Perl-array	as	the	section	value,	as	in

---	error_log	eval

[

		"This	is	a	dog!",

		qr/\w+	is	a	cat\?/,

]

As	we	have	seen	earlier,	Perl	regexes	can	be	constructed	via	the		qr/…/		quoting	syntax.
Perl	string	patterns	in	the	Perl	array	specified	by	double	quotes	or	single	quotes	are	still
treated	as	plain	string	patterns,	as	usual.	If	the	array	contains	only	one	regex	pattern,	then
you	can	omit	the	array	itself,	as	in

---	error_log	eval

qr/\w+	is	a	cat\?/

	Test::Nginx		puts	the	error	log	file	of	the	test	NGINX	server	in	the	file	path
	t/servroot/logs/error.log	.	As	a	test	writer,	we	frequently	check	out	this	file	directly	when
things	go	wrong.	For	example,	it	is	common	to	make	mistakes	or	typos	in	the	patterns	we
specify	for	the		error_log		section.	Also,	scanning	the	raw	log	file	can	give	us	insight	about
the	details	of	the	NGINX	internal	working	when	the	NGINX	debugging	logs	are	enabled	in
the	NGINX	build.

The		no_error_log		section	is	very	similar	to		error_log		but	it	checks	the	nonexistence	of	the
string	patterns	in	the	NGINX	error	log	file.	One	of	the	most	frequent	uses	of	the
	no_error_log		section	is	to	ensure	that	there	is	no	error	level	messages	in	the	log	file.

Programming	OpenResty

32Preparing	Tests

---	no_error_log

[error]

If,	however,	there	is	a	line	in	the	nginx	error	log	file	that	contains	the	string		[error]	,	then
the	test	fails.	Below	is	such	an	example.

#	Failed	test	'TEST	1:	simple	test	-	pattern	"[error]"	should	not	match	any	line	in	error.log	but	matches	line	"2016/02/01	11:59:50	[error]	1788\#0:	*1	lua	entry	thread	aborted:	runtime	error:	content_by_lua(nginx.conf:42):2:	bad"'

This	is	a	great	way	to	find	the	details	of	the	error	quickly	by	just	looking	at	the	test	report.

Like		error_log	,	this	section	also	supports	Perl	array	values	and	Perl	regex	values	though
the		eval		filter.

Grep	Tests

The		error_log		and		no_error_log		sections	are	very	handy	in	quickly	checking	the
appearance	of	contain	patterns	in	the	NGINX	error	log	file.	But	they	have	serious	limitations
in	that	it	is	impossible	to	impose	stronger	constraints	on	the	relative	order	of	the	messages
containing	the	patterns	nor	on	the	number	of	their	occurrences.

To	address	such	limitations,		Test::Nginx::Socket		provides	an	alternative	way	to	check
NGINX	error	logs	in	a	way	similar	to	the	famous	UNIX	tool,		grep	.	The	sections
	grep_error_log		and		grep_error_log_out		are	used	for	this	purpose.	The	test	writer	uses	the
	grep_error_log		section	to	specify	a	pattern,	with	which	the	test	framework	scans	through
the	NGINX	error	log	file	and	collect	all	the	matched	parts	of	the	log	file	lines	along	the	way,
forming	a	final	result.	This	aggregated	log	data	result	is	then	matched	against	the	expected
value	specified	as	the	value	of	the		grep_error_log_out		section,	in	a	similar	way	as	with	the
	response_body		section	discussed	above.

It	is	easiest	to	explain	with	a	simple	example.

Programming	OpenResty

33Preparing	Tests

===	TEST	1:	simple	grep	test	for	error	logs

---	config

				location	=	/t	{

								content_by_lua_block	{

												print("it	is	matched!")

												print("it	is	matched!")

												print("it	is	matched!")

								}

				}

---	request

GET	/t

---	grep_error_log:	it	is	matched!

---	grep_error_log_out

it	is	matched!

it	is	matched!

it	is	matched!

Here	we	use	the	Lua	function		print()		provided	by	the	ngx_http_lua	module	to	generate
NGINX	error	log	messages	at	the		notice		level.	This	test	case	tests	the	number	of	the	log
messages	containing	the	string		it	is	matched!	.	It	is	important	to	note	that	only	the
matched	part	of	the	log	file	lines	are	collected	in	the	final	result	instead	of	the	whole	log
lines.	This	simplifies	the	comparison	a	lot	since	NGINX	error	log	messages	can	contain
varying	details	like	timestamps	and	connection	numbers.

A	more	useful	form	of	this	test	is	to	specify	a	Perl	regex	pattern	in	the		grep_error_log	
section.	Consider	the	following	example.

===	TEST	1:	simple	grep	test	for	error	logs

---	config

				location	=	/t	{

								content_by_lua_block	{

												print("test:	before	sleeping...")

												ngx.sleep(0.001)		--	sleeping	for	1ms

												print("test:	after	sleeping...")

								}

				}

---	request

GET	/t

---	grep_error_log	eval:	qr/test:	.*?\.\.\./

---	grep_error_log_out

test:	before	sleeping...

test:	after	sleeping...

We	specify	a	Perl	regex	pattern,		test:	.*?\.\.\.	,	here	to	filter	out	all	the	error	log
messages	starting	with		test:		and	ending	with		…	.	And	naturally	in	this	test	we	also	require
the	relative	order	of	these	two	messages,	that	is,		before	sleeping		must	appear	before
	after	sleeping	.	Otherwise,	we	shall	see	failure	reports	like	below:

Programming	OpenResty

34Preparing	Tests

https://github.com/openresty/lua-nginx-module#readme

#	Failed	test	'TEST	1:	simple	grep	test	for	error	logs	-	grep_error_log_out	(req	0)'

#	at/lib/Test/Nginx/Socket.pm	line	1048.

#						got:	"test:	after	sleeping...\x{0a}test:	before	sleeping...\x{0a}"

#			length:	49

#	expected:	"test:	before	sleeping...\x{0a}test:	after	sleeping...\x{0a}"

#			length:	49

#	strings	begin	to	differ	at	char	7	(line	1	column	7)

As	with	the		response_body		section,	we	can	also	call	the		no_long_string()		Perl	function
before		run_tests()		in	the	test	file	prologue,	so	as	to	disable	the	long	string	output	mode
and	enable	the		diff		mode.	Then	the	test	failure	would	look	like	this:

#			Failed	test	'TEST	1:	simple	grep	test	for	error	logs	-	grep_error_log_out	(req	0)'

#			at	.../lib/Test/Nginx/Socket.pm	line	1044.

#	@@	-1,2	+1,2	@@

#	-test:	before	sleeping...

#		test:	after	sleeping...

#	+test:	before	sleeping...

Obviously,	for	this	test	case,	the		diff		format	looks	better.

Extra	Delay	Before	Log	Checks

By	default,		Test::Nginx::Socket		performs	the	NGINX	error	log	checks	not	long	after	it
receives	the	complete	HTTP	response	for	the	test	request.	Sometimes,	when	the	log
messages	are	generated	by	the	server	after	sending	out	the	response,	the	error	log	checks
may	be	carried	out	too	early	that	the	messages	are	not	yet	written	into	the	log	file.	In	this
case,	we	can	specify	an	extra	delay	via	the		wait		data	section	for	the	test	scaffold	to	wait	for
the	error	log	messages.	Here	is	an	example:

Programming	OpenResty

35Preparing	Tests

===	TEST	1:	wait	for	the	timer

---	config

				location	=	/t	{

								content_by_lua_block	{

												local	function	f(premature)

																print("HERE!")

												end

												assert(ngx.timer.at(0.1,	f))

								}

				}

---	request

GET	/t

---	error_log

HERE!

---	no_error_log

[error]

---	wait:	0.12

Here	we	create	a	timer	via	the		ngx.timer.at		Lua	function,	which	expires	after	0.1	seconds.
Due	to	the	asynchronous	nature	of	timers,	the	request	handler	does	not	wait	for	the	timer	to
expire	and	immediately	finishes	processing	the	current	request	and	sends	out	a	response
with	an	empty	body.	To	check	for	the	log	message		HERE!		generated	by	the	timer	handler
	f	,	we	have	to	specify	an	extra	delay	for	the	test	scaffold	to	wait.	The	0.12	seconds	time	is
specified	in	this	example	but	any	values	larger	than	0.1	would	suffice.	Without	the		wait	
section,	this	test	case	would	fail	with	the	following	output:

#	Failed	test	'TEST	1:	wait	for	the	timer	-	pattern	"HERE!"	matches	a	line	in	error.log	(req	0)'

Obviously	the	test	scaffold	checks	the	error	log	too	soon,	even	before	the	timer	handler	runs.

Section	Review

	Test::Nginx::Socket		offers	a	rich	set	of	data	sections	for	specifying	various	different	input
data	and	expected	output	data,	ranging	from	NGINX	configuration	file	snippets,	test
requests,	to	expected	responses	and	error	log	messages.	We	have	already	demonstrated
the	power	of	data	driven	testing	and	declarative	test	case	crafting.	We	want	to	achieve
multiple	goals	at	the	same	time,	that	is,	not	only	to	make	the	tests	self-contained	and	highly
readable,	but	also	to	make	the	test	report	easy	to	interpret	and	analyze	when	some	of	the
tests	fail.	Raw	files	automatically	generated	by	the	test	scaffold,	like
	t/servroot/conf/nginx.conf		and		t/servroot/logs/error.log	,	should	be	checked	frequently
when	manually	debugging	the	test	cases.	The	next	section	extends	the	discussion	of	this
section	with	a	focus	on	testing	erroneous	cases.

Programming	OpenResty

36Preparing	Tests

Testing	Erroneous	Cases
Most	robust	software	invests	heavily	on	error	handling,	and	naturally	test	designers	focus	on
corner	cases	and	erroneous	scenarios	to	maximize	code	coverage	of	the	tests.

The	previous	section	introduces	data	sections	provided	by		Test::Nginx::Socket		for
examining	messages	in	the	NGINX	error	log	file,	which	is	a	powerful	tool	to	check	for	errors
in	the	tests.	Sometimes	we	want	to	test	more	extreme	cases	like	server	startup	failures,
malformed	responses,	bad	requests,	and	various	kinds	of	timeout	errors.

Expected	Server	Startup	Failures

Sometimes	the	NGINX	server	is	expected	to	fail	to	start,	like	using	an	NGINX	configuration
directive	in	the	wrong	way	or	some	hard	prerequisites	are	not	met	in	early	initialization.	If	we
want	to	test	such	cases,	especially	the	error	log	messages	generated	for	such	failures,	we
could	use	the		must_die		data	section	in	our	test	block	to	signal	the	test	scaffold	that	the
NGINX	server	is	expected	to	die	upon	startup	in	this	very	block.

The	following	example	tests	the	case	of	throwing	a	Lua	exception	in	the	context	of
	init_by_lua_block		of	the		ngx_http_lua		module.

===	TEST	1:	dying	in	init_by_lua_block

---	http_config

				init_by_lua_block	{

								error("I	am	dying!")

				}

---	config

---	must_die

---	error_log

I	am	dying!

The	Lua	code	in		init_by_lua_block		runs	in	the	NGINX	master	process	during	the	NGINX
configuration	file	loading	process.	Throwing	out	a	Lua	exception	there	aborts	the	NGINX
startup	process	immediately.	The	occurrence	of	the		must_die		section	tells	the	test	scaffold
to	treat	NGINX	server	startup	failures	as	a	test	pass	while	a	successful	startup	as	a	test
failure.	The		error_log		section	there	ensures	that	the	server	fails	in	the	expected	way,	that
is,	due	to	the	"I	am	dying!"	exception.

If	we	remove	the		---	must_die		line	from	the	test	block	above,	then	the	test	file	won’t	even
run	to	completion:

Programming	OpenResty

37Testing	Erroneous	Cases

t/a.t	..	nginx:	[error]	init_by_lua	error:	init_by_lua:2:	I	am	dying!

stack	traceback:

	 [C]:	in	function	'error'

	 init_by_lua:2:	in	main	chunk

Bailout	called.		Further	testing	stopped:		TEST	1:	dying	in	init_by_lua_block

-	Cannot	start	nginx	using	command

"nginx	-p	.../t/servroot/	-c	.../t/servroot/conf/nginx.conf	>	/dev/null".

By	default	the	test	scaffold	treats	NGINX	server	startup	failures	as	fatal	errors	in	running	the
tests.	The		must_die		section,	however,	turns	such	a	failure	into	a	normal	test	checkup.

Expected	Malformed	Responses

HTTP	responses	should	always	be	well-formed,	but	unfortunately	the	real	world	is
complicated	and	there	indeed	exists	cases	where	the	responses	can	be	malformed,	like
being	truncated	due	to	some	unexpected	causes.	As	a	test	designer,	we	always	want	to	test
such	strange	abnormal	cases,	among	other	things.

Naturally,		Test::Nginx::Socket		treats	malformed	responses	from	the	NGINX	server	as	an
error	since	it	always	does	sanity	checks	on	the	responses	it	receives	from	the	test	server	by
default.	But	for	test	cases	where	we	expect	a	malformed	or	truncated	response	sent	from
the	server,	we	should	explicitly	tell	the	test	scaffold	to	disable	the	response	sanity	check	via
the		ignore_response		data	section.

Consider	the	following	example	that	closes	the	downstream	connection	immediately	after
sending	out	the	first	part	of	the	response	body.

===	TEST	1:	aborting	response	body	stream

---	config

				location	=	/t	{

								content_by_lua_block	{

												ngx.print("hello")

												ngx.flush(true)

												ngx.exit(444)

								}

				}

---	request

				GET	/t

---	ignore_response

---	no_error_log

[error]

Programming	OpenResty

38Testing	Erroneous	Cases

The		ngx.flush(true)		call	in	the		content_by_lua_block		handler	is	to	ensure	that	any
response	body	data	buffered	by	NGINX	is	indeed	flushed	out	to	the	system	socket	send
buffers,	which	also	usually	means	flushing	the	output	data	to	the	client	side	for	local	sockets.
Also,	the		ngx.exit(444)		call	is	used	to	immediately	close	the	current	downstream
connection	so	it	just	interrupts	the	response	body	stream	in	the	HTTP	1.1	chunked
encoding.	The	important	part	is	the		---	ignore_response		line	which	tells	the	test	scaffold	not
to	complain	about	the	interrupted	response	data	stream.	If	the	test	block	above	goes	without
this	line,	we	will	see	the	following	test	failure	while	running		prove	:

#	Failed	test	'TEST	1:	aborting	response	body	stream	-	no	last	chunk	found	-	5

#	hello

#	'

Obviously,	the	test	scaffold	complains	about	the	lack	of	the	"last	chunk"	used	to	indicate	the
end	of	the	chunked	encoded	data	stream.	Because	the	server	aborts	the	connection	in	the
middle	of	response	body	data	sending,	there	is	no	chance	for	the	server	to	properly	send
well-formed	response	bodies	in	the	chunked	encoding.

Testing	Timeout	Errors

Timeout	errors	are	one	of	the	most	common	network	issues	in	the	real	world.	Timeout	might
happen	due	to	many	reasons,	like	packet	dropping	on	the	wire	or	on	the	other	end,
connectivity	problems,	and	other	expensive	operations	blocking	the	event	loop.	Most	of
applications	want	to	ensure	that	the	they	have	a	timeout	protection	that	prevents	them	from
waiting	for	too	long.

Testing	and	emulating	timeout	errors	are	often	tricky	in	a	self-contained	unit	test	framework
since	most	of	the	network	traffic	initiated	by	the	test	cases	are	local	only,	that	is,	going
through	the	local	"loopback"	device	that	has	perfect	latency	and	throughput.	We	will	examine
some	of	the	tricks	that	can	be	used	to	reliably	emulate	various	different	kinds	of	timeout
errors	in	the	test	suite.

Connecting	Timeouts

Connecting	timeouts	in	the	context	of	the	TCP	protocol	are	easiest	to	emulate.	Just	point	the
connecting	target	to	a	remote	address	that	always	drops	any	incoming	(SYN)	packets	via	a
firewall	rule	or	something	similar.	We	provide	such	a	"black-hole	service"	at	the	port	12345
of	the		agentzh.org		host.	You	can	make	use	of	it	if	your	test	running	environment	allows
public	network	access.	Consider	the	following	test	case.

Programming	OpenResty

39Testing	Erroneous	Cases

===	TEST	1:	connect	timeout

---	config

				resolver	8.8.8.8;

				resolver_timeout	1s;

				location	=	/t	{

								content_by_lua_block	{

												local	sock	=	ngx.socket.tcp()

												sock:settimeout(100)	--	ms

												local	ok,	err	=	sock:connect("agentzh.org",	12345)

												if	not	ok	then

																ngx.log(ngx.ERR,	"failed	to	connect:	",	err)

																return	ngx.exit(500)

												end

												ngx.say("ok")

								}

				}

---	request

GET	/t

---	response_body_like:	500	Internal	Server	Error

---	error_code:	500

---	error_log

failed	to	connect:	timeout

We	have	to	configure	the		resolver		directive	here	because	we	need	to	resolve	the	domain
name		agentzh.org		at	request	time	(in	Lua).	We	check	the	NGINX	error	log	via	the
	error_log		section	for	the	error	string	returned	by	the	cosocket	object’s		connect()		method.

It	is	important	to	use	a	relatively	small	timeout	threshold	in	the	test	cases	so	that	we	do	not
have	to	wait	for	too	long	to	complete	the	test	run.	Tests	are	meant	to	be	run	very	often.	The
more	frequently	we	run	the	tests,	the	more	value	we	may	gain	from	automating	the	tests.

It	is	worth	mentioning	that	the	test	scaffold’s	HTTP	client	does	have	a	timeout	threshold	as
well,	which	is	3	seconds	by	default.	If	your	test	request	takes	more	than	3	seconds,	you	get
an	error	message	in	the	test	report:

ERROR:	client	socket	timed	out	-	TEST	1:	connect	timeout

This	message	is	what	we	would	get	if	we	commented	out	the		settimeout		call	and	relies	on
the	default	60	second	timeout	threshold	in	cosockets.

We	could	change	this	default	timeout	threshold	used	by	the	test	scaffold	client	by	setting	a
value	to	the		timeout		data	section,	as	in

---	timeout:	10

Programming	OpenResty

40Testing	Erroneous	Cases

Now	we	have	10	seconds	of	timeout	protection	instead	of	3.

Reading	Timeouts

Emulating	reading	timeouts	is	also	easy.	Just	try	reading	from	a	wire	where	the	other	end
never	writes	anything	but	still	keeps	the	connection	alive.	Consider	the	following	example:

===	TEST	1:	read	timeout

---	main_config

				stream	{

								server	{

												listen	5678;

												content_by_lua_block	{

																ngx.sleep(10)		--	10	sec

												}

								}

				}

---	config

				lua_socket_log_errors	off;

				location	=	/t	{

								content_by_lua_block	{

												local	sock	=	ngx.socket.tcp()

												sock:settimeout(100)	--	ms

												assert(sock:connect("127.0.0.1",	5678))

												ngx.say("connected.")

												local	data,	err	=	sock:receive()		--	try	to	read	a	line

												if	not	data	then

																ngx.say("failed	to	receive:	",	err)

												else

																ngx.say("received:	",	data)

												end

								}

				}

---	request

GET	/t

---	response_body

connected.

failed	to	receive:	timeout

---	no_error_log

[error]

Here	we	use	the		main_config		data	section	to	define	a	TCP	server	of	our	own,	listening	at
the	port	of	5678	on	the	local	host.	This	is	a	mocked-up	server	that	can	establish	new	TCP
connections	but	never	write	out	anything	and	just	sleep	for	10	second	before	closing	the
session.	Note	that	we	are	using	the	ngx_stream_lua	module	in	the		stream	{}		configuration
block.	In	our		location	=	/t	,	which	is	the	main	target	of	this	test	case,	connects	to	our	mock

Programming	OpenResty

41Testing	Erroneous	Cases

https://github.com/openresty/stream-lua-nginx-module#readme

server	and	tries	to	read	a	line	from	the	wire.	Apparently	the	100ms	timeout	threshold	on	the
client	side	is	reached	first	and	we	can	successfully	exercise	the	error	handling	code	for	the
reading	timeout	error.

Sending	Timeouts

Triggering	sending	timeouts	is	much	harder	than	connecting	and	reading	timeouts.	This	is
due	to	the	asynchronous	nature	of	writing.

For	performance	reasons,	there	exists	at	least	two	layers	of	buffers	for	writes:

1.	 the	userland	send	buffers	inside	the	NGINX	core,	and

2.	 the	socket	send	buffers	in	the	operating	system	kernel’s	TCP/IP	stack	implementation

To	make	the	situation	even	worse,	there	also	at	least	exists	a	system-level	receive	buffer
layer	on	the	other	end	of	the	connection.

To	make	a	send	timeout	error	happen,	the	most	naive	way	is	to	fill	out	all	these	buffers	along
the	data	sending	chain	while	ensuring	that	the	other	end	never	actually	reads	anything	on
the	application	level.	Thus,	buffering	makes	a	sending	timeout	particularly	hard	to	reproduce
and	emulate	in	a	typical	testing	and	development	environment	with	a	small	amount	of	(test)
payload.

Fortunately	there	is	a	userland	trick	that	can	intercept	the	libc	wrappers	for	the	actual	system
calls	for	socket	I/O	and	do	funny	things	that	could	otherwise	be	very	difficult	to	achieve.	Our
mockeagain	library	implements	such	a	trick	and	supports	emulating	timeout	errors	at	user-
specified	precise	positions	in	the	output	data	stream.

The	following	example	triggers	a	sending	timeout	right	after	sending	out	the	"hello,	world"
string	as	the	response	body.

Programming	OpenResty

42Testing	Erroneous	Cases

https://github.com/openresty/mockeagain

===	TEST	1:	send	timeout

---	config

				send_timeout	100ms;

				postpone_output	1;

				location	=	/t	{

								content_by_lua_block	{

												ngx.say("hi	bob!")

												local	ok,	err	=	ngx.flush(true)

												if	not	ok	then

																ngx.log(ngx.ERR,	"flush	#1	failed:	",	err)

																return

												end

												ngx.say("hello,	world!")

												local	ok,	err	=	ngx.flush(true)

												if	not	ok	then

																ngx.log(ngx.ERR,	"flush	#2	failed:	",	err)

																return

												end

								}

				}

---	request

GET	/t

---	ignore_response

---	error_log

flush	#2	failed:	timeout

---	no_error_log

flush	#1	failed

Note	the		send_timeout		directive	that	is	used	to	configure	the	sending	timeout	for	NGINX
downstream	writing	operations.	Here	we	use	a	small	threshold,		100ms	,	to	ensure	our	test
case	runs	fast	and	never	hits	the	default	3	seconds	timeout	threshold	of	the	test	scaffold
client.	The		postpone_output	1		directive	effectively	turns	off	the	"postpone	output	buffer"	of
NGINX,	which	may	hold	our	output	data	before	even	reaching	the	libc	system	call	wrappers.
Finally,	the		ngx.flush()		call	in	Lua	ensures	that	no	buffers	along	the	NGINX	output	filter
chain	holds	our	data	without	sending	downward.

Before	running	this	test	case,	we	have	to	set	the	following	system	environment	variables	(in
the	bash	syntax):

export	LD_PRELOAD="mockeagain.so"

export	MOCKEAGAIN="w"

export	MOCKEAGAIN_WRITE_TIMEOUT_PATTERN='hello,	world'

export	TEST_NGINX_EVENT_TYPE='poll'

Let’s	go	through	them	one	by	one:

Programming	OpenResty

43Testing	Erroneous	Cases

1.	 The		LD_PRELOAD="mockeagain.so"		assignment	pre-loads	the		mockeagain		library	into	the
running	processes,	including	the	NGINX	server	process	started	by	the	test	scaffold,	of
course.	You	may	also	need	to	set	the		LD_LIBRARY_PATH		environment	to	include	the
directory	path	of	the		mockeagain.so		file	if	the	file	is	not	in	the	default	system	library
search	paths.

2.	 The		MOCKEAGAIN="w"		assignment	enables	the		mockeagain		library	to	intercept	and	do
funny	things	about	the	writing	operations	on	nonblocking	sockets.

3.	 The		MOCKEAGAIN_WRITE_TIMEOUT_PATTERN='hello,	world'		assignment	makes		mockeagain	
refuse	to	send	more	data	after	seeing	the	specified	string	pattern,		hello,	world	,	in	the
output	data	stream.

4.	 The		TEST_NGINX_EVENT_TYPE='poll'		setting	makes	NGINX	server	uses	the		poll		event
API	instead	of	the	system	default	(being		epoll		on	Linux,	for	example).	This	is	because
	mockeagain		only	supports		poll		events	for	now.	Behind	the	scene,	this	environment
just	makes	the	test	scaffold	generate	the	following		nginx.conf		snippet.

events	{

				use	poll;

}

You	need	to	ensure,	however,	that	your	NGINX	or	OpenResty	build	has	the		poll	
support	compiled	in.	Basically,	the	build	should	have	the		./configure		option		--with-
poll_module	.

We	have	plans	to	add	epoll	edge-triggering	support	to		mockeagain		in	the	future.
Hopefully	by	that	time	we	do	not	have	to	use		poll		at	least	on	Linux.

Now	you	should	get	the	test	block	above	passed!

Ideally,	we	could	set	these	environments	directly	inside	the	test	file	because	this	test	case
will	never	pass	without	these	environments	anyway.	We	could	add	the	following	Perl	code
snippet	to	the	very	beginning	of	the	test	file	prologue	(yes,	even	before	the		use		statement):

BEGIN	{

				$ENV{LD_PRELOAD}	=	"mockeagain.so";

				$ENV{MOCKEAGAIN}	=	"w";

				$ENV{MOCKEAGAIN_WRITE_TIMEOUT_PATTERN}	=	'hello,	world';

				$ENV{TEST_NGINX_EVENT_TYPE}	=	'poll';

}

The		BEGIN	{}		block	is	required	here	because	it	runs	before	Perl	loads	any	modules,
especially		Test::Nginx::Socket	,	in	which	we	want	these	environments	to	take	affect.

Programming	OpenResty

44Testing	Erroneous	Cases

It	is	a	bad	idea,	however,	to	hard-code	the	path	of	the		mockeagain.so		file	in	the	test	file	itself
since	different	test	runners	might	put		mockeagain		in	different	places	in	the	file	system.	Better
let	the	test	runner	configure	the		LD_LIBRARY_PATH		environment	containing	the	actual	library
path	from	outside.

Mockeagain	Troubleshooting

If	you	are	seeing	the	following	error	while	running	the	test	case	above,

ERROR:	ld.so:	object	'mockeagain.so'	from	LD_PRELOAD	cannot	be	preloaded	(cannot	open	shared	object	file):	ignored.

then	you	should	check	whether	you	have	added	the	directory	path	of	your		mockeagain.so	
library	to	the		LD_LIBRARY_PATH		environment.	On	my	system,	for	example,	I	have

export	LD_LIBRARY_PATH=$HOME/git/mockeagain:$LD_LIBRARY_PATH

If	you	are	seeing	an	error	similar	to	the	following,

nginx:	[emerg]	invalid	event	type	"poll"	in	.../t/servroot/conf/nginx.conf:76

then	your	NGINX	or	OpenResty	build	does	not	have	the	poll	module	compiled	in.	And	you
should	rebuild	your	NGINX	or	OpenResty	by	passing	the		--with-poll_module		option	to	the
	./configure		command	line.

We	will	revisit	the		mockeagain		library	in	the		Test	Modes		section	soon.

Mocking	Bad	Backend	Responses

Earlier	in	this	section	we	have	already	seen	examples	that	uses	the	ngx_stream_lua	module
to	mock	a	backend	TCP	server	that	accepts	new	incoming	connections	but	never	writes
anything	back.	We	could	of	course	do	fancier	things	in	such	a	mocked	server	like	emulating
a	buggy	or	malicious	backend	server	that	returns	bad	response	data.

For	example,	while	testing	a	Memcached	client,	it	would	be	pretty	hard	to	emulate	erroneous
error	responses	or	ill-formed	responses	with	a	real	Memcached	server.	Now	it	is	trivial	with
mocking:

Programming	OpenResty

45Testing	Erroneous	Cases

https://github.com/openresty/stream-lua-nginx-module#readme

===	TEST	1:	get()	results	in	an	error	response

---	main_config

				stream	{

								server	{

												listen	1921;

												content_by_lua_block	{

																ngx.print("SERVER_ERROR\r\n")

												}

								}

				}

---	config

				location	/t	{

								content_by_lua_block	{

												local	memcached	=	require	"resty.memcached"

												local	memc	=	memcached:new()

												assert(memc:connect("127.0.0.1",	1921))

												local	res,	flags,	err	=	memc:get("dog")

												if	not	res	then

																ngx.say("failed	to	get:	",	err)

																return

												end

												ngx.say("get:	",	res)

												memc:close()

								}

				}

---	request

GET	/t

---	response_body

failed	to	get:	SERVER_ERROR

---	no_error_log

[error]

Our	mocked-up	Memcached	server	can	behave	in	any	way	that	we	like.	Hooray!

Note

	Test::Nginx::Socket		provides	the	data	sections		tcp_listen	,		tcp_query	,
	tcp_reply	,	and	etc	to	enable	the	builtin	mocked	TCP	server	of	the	test
scaffold.	You	can	use	this	facility	when	you	do	not	want	to	depend	on	the
	ngx_stream_lua		module	or	the	NGINX	stream	subsystem	for	your	test	suite.
Indeed,	we	were	solely	relying	on	the	builtin	TCP	server	of
	Test::Nginx::Socket		before	the		ngx_stream_lua		module	was	born.	Similarly,
	Test::Nginx::Socket		offers	a	builtin	UDP	server	via	the	data	sections
	udp_listen	,		udp_query	,		udp_reply	,	and	etc.	You	can	refer	to	the	official
documentation	of		Test::Nginx::Socket		for	more	details.

Emulating	Bad	Clients

Programming	OpenResty

46Testing	Erroneous	Cases

https://metacpan.org/pod/Test::Nginx::Socket

The		Test::Nginx::Socket		test	framework	provides	special	data	sections	to	help	emulating
ill-behaved	HTTP	clients.

Crafting	Bad	Requests

The		raw_request		data	section	can	be	used	to	specify	whatever	data	for	the	test	request.	It
is	often	used	with	the		eval		section	filter	so	that	we	can	easily	encode	special	characters
like		\r	.	Let’s	look	at	the	following	example.

===	TEST	1:	missing	the	Host	request	header

---	config

				location	=	/t	{

								return	200;

				}

---	raw_request	eval

"GET	/t	HTTP/1.1\r

Connection:	close\r

\r

"

---	response_body_like:	400	Bad	Request

---	error_code:	400

So	we	easily	construct	a	malformed	request	that	does	not	have	a		Host		header,	which
results	in	a	400	response	from	the	NGINX	server,	as	expected.

The		request		data	section	we	have	been	using	so	far,	on	the	other	hand,	always	ensures
that	a	well-formed	HTTP	request	is	sent	to	the	test	server.

Emulating	Client	Aborts

Client	aborts	are	a	very	intriguing	phenomenon	in	the	web	world.	Sometimes	we	want	the
server	to	continue	processing	even	after	the	client	aborts	the	connection;	on	other	occasions
we	just	want	to	abort	the	whole	request	handler	immediately	in	such	cases.	Either	way,	we
need	robust	way	to	emulate	client	aborts	in	our	unit	test	cases.

We	have	already	discussed	the		timeout		data	section	that	can	be	used	to	adjust	the	default
timeout	protection	threshold	used	by	the	test	scaffold	client.	We	could	also	use	it	to	abort	the
connection	prematurely.	A	small	timeout	threshold	is	often	desired	for	this	purpose.	To
suppress	the	test	scaffold	from	printing	out	an	error	on	client	timeout,	we	can	specify	the
	abort		data	section	to	signal	the	test	scaffold.	Let’s	put	these	together	in	a	simple	test	case.

Programming	OpenResty

47Testing	Erroneous	Cases

===	TEST	1:	abort	processing	in	the	Lua	callback	on	client	aborts

---	config

				location	=	/t	{

								lua_check_client_abort	on;

								content_by_lua_block	{

												local	ok,	err	=	ngx.on_abort(function	()

																ngx.log(ngx.NOTICE,	"on	abort	handler	called!")

																ngx.exit(444)

												end)

												if	not	ok	then

																error("cannot	set	on_abort:	"	..	err)

												end

												ngx.sleep(0.7)		--	sec

												ngx.log(ngx.NOTICE,	"main	handler	done")

								}

				}

---	request

				GET	/t

---	timeout:	0.2

---	abort

---	ignore_response

---	no_error_log

[error]

main	handler	done

---	error_log

client	prematurely	closed	connection

on	abort	handler	called!

In	this	example,	we	make	the	test	scaffold	client	abort	the	connection	after	0.2	seconds	via
the		timeout		section.	Also	we	prevent	the	test	scaffold	from	printing	out	the	client	timeout
error	by	specifying	the		abort		section.	Finally,	in	the	Lua	application	code,	we	checks	for
client	abort	events	by	turning	on	the		lua_check_client_abort		directive	and	aborts	the	server
processing	by	calling		ngx.exit(444)		in	our	Lua	callback	function	registered	by	the
	ngx.on_abort		API.

Programming	OpenResty

48Testing	Erroneous	Cases

Test	Modes
One	unique	feature	of		Test::Nginx		is	that	it	allows	running	the	same	test	suite	in	wildly
different	ways,	or	test	modes,	by	just	configuring	some	system	environment	variables.
Different	test	modes	have	different	focuses	and	may	find	different	categories	of	bugs	or
performance	issues	in	the	applications	being	tested.	The	data	driven	nature	of	the	test
framework	makes	it	easy	to	add	new	test	modes	without	changing	the	user	test	files	at	all.
And	it	is	also	possible	to	combine	different	test	modes	to	form	new	(hybrid)	test	modes.	The
capability	of	running	the	same	test	suite	in	many	different	ways	helps	squeezing	more	value
out	of	the	tests	we	already	have.

This	section	will	iterate	through	various	different	test	modes	supported	by
	Test::Nginx::Socket		and	their	corresponding	system	environment	variables	used	to	enable
or	control	them.

Benchmark	Mode

HUP	Reload	Mode

Valgrind	Mode

Naive	Memory	Leak	Check	Mode

Mockeagain	Mode

Manual	Debugging	Mode

SystemTap	Mode

Programming	OpenResty

49Test	Modes

	Introduction
	Automated Testing
	Introduction
	Test::Nginx
	Test Suite Layout
	Test File Layout
	Running Tests
	Preparing Tests
	Testing Erroneous Cases
	Test Modes

