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Neurological injuries (such as hemispheric stroke and spinal cord injury, etc.) can 
result in muscle weakness and spasticity. The affected muscles often experience 
progressive changes in their intrinsic mechanical properties, giving rise to muscle 
contracture and associated alterations in muscle internal structural changes. The 
mechanisms behind the changes are multifactorial, including disuse, autonomic 
changes, peripheral neuropathy, a loss of central motor neuron trophic influences, 
and/or their combinations. Regardless of the origins of weakness and other changes, 
it is very important to understand or quantify complex neuromuscular changes after 
a neurological injury.

In this Research Topic, we will focus on examination of skeletal muscle changes 
after neurological injuries because it is the primary organ involved in the generation 
of force for movement and is also the main effector organ of impairment after 
neurological injuries, resulting in disability. Of particular interest, the Research Topic 
will focus on examination of changes in different motor unit components because 
motor unit is the final common pathway for neuromuscular control and it provides 
a basic structure-function framework for the examination of neural and muscular 
disorders. Understanding the changes in different motor unit components (such as 
motor unit number, size, territory, control properties, etc.) can help identify specific 
mechanisms causing functional and anatomical changes in the affected muscles, and 
thereby guiding development of effective treatments for individuals with different 
neurological injuries.

Citation: Zhou, P., Zhang, X., Rymer, W. Z., Zhang, Y., eds. (2019). Understanding 
Motor Unit and Muscle Alterations for Neurologic Rehabilitation. Lausanne: Frontiers 
Media SA. doi: 10.3389/978-2-88963-304-3

https://www.frontiersin.org/research-topics/7363/understanding-motor-unit-and-muscle-alterations-for-neurologic-rehabilitation
https://www.frontiersin.org/journals/neurology
http://doi.org/10.3389/978-2-88963-304-3


Frontiers in Neurology 3 December 2019 | Understanding Motor Unit and Muscle Alterations

04 Stroke-Related Changes in the Complexity of Muscle Activation During 
Obstacle Crossing Using Fuzzy Approximate Entropy Analysis

Ying Chen, Huijing Hu, Chenming Ma, Yinwei Zhan, Na Chen, Le Li and 
Rong Song

12 Ultrasonography Monitoring of Trauma-Induced Heterotopic 
Ossification: Guidance for Rehabilitation Procedures

Qing Wang, Peizhen Zhang, Pengdong Li, Xiangfen Song, Huijing Hu, 
Xuan Li, Wufan Chen and Xiaoyun Wang

21 Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy 
Infants Crawling

Zhixian Gao, Lin Chen, Qiliang Xiong, Nong Xiao, Wei Jiang, Yuan Liu, 
Xiaoying Wu and Wensheng Hou

33 Inter-Limb Muscle Synergies and Kinematic Analysis of Hands-and-Knees 
Crawling in Typically Developing Infants and Infants With Developmental 
Delay

Qi L. Xiong, Xiao Y. Wu, Jun Yao, Theresa Sukal-Moulton, Nong Xiao, 
Lin Chen, Xiao L. Zheng, Yuan Liu and Wen S. Hou

42 Increased Corticomuscular Coherence and Brain Activation Immediately 
After Short-Term Neuromuscular Electrical Stimulation

Rui Xu, Yaoyao Wang, Kun Wang, Shufeng Zhang, Chuan He and Dong Ming

52 Position as Well as Velocity Dependence of Spasticity—Four-Dimensional 
Characterizations of Catch Angle

Yi-Ning Wu, Hyung-Soon Park, Jia-Jin Chen, Yupeng Ren, Elliot J. Roth and 
Li-Qun Zhang

62 Motor Unit-Driven Identification of Pathological Tremor in 
Electroencephalograms

Aleš Holobar, Juan A. Gallego, Jernej Kranjec, Eduardo Rocon, 
Juan P. Romero, Julián Benito-León, José L. Pons and Vojko Glaser

77 How Physical Activities Affect Mental Fatigue Based on EEG Energy, 
Connectivity, and Complexity

Rui Xu, Chuncui Zhang, Feng He, Xin Zhao, Hongzhi Qi, Peng Zhou, 
Lixin Zhang and Dong Ming

90 Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency 
Subthreshold Nerve Stimulation

Yang Zheng, Henry Shin and Xiaogang Hu

98 Variation of Finger Activation Patterns Post-stroke Through Non-invasive 
Nerve Stimulation

Henry Shin, Yang Zheng and Xiaogang Hu

Table of Contents

https://www.frontiersin.org/research-topics/7363/understanding-motor-unit-and-muscle-alterations-for-neurologic-rehabilitation
https://www.frontiersin.org/journals/neurology


March 2018 | Volume 9 | Article 1311

Original research
published: 12 March 2018

doi: 10.3389/fneur.2018.00131

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Xu Zhang,  

University of Science and Technology 
of China, China

Reviewed by: 
Bo Yao,  

Chinese Academy of Medical 
Sciences and Peking Union Medical 

College, China  
Wens Hou,  

Chongqing University, China

*Correspondence:
Le Li  

lile5@mail.sysu.edu.cn;  
Rong Song  

songrong@mail.sysu.edu.cn

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to Stroke,  

a section of the journal  
Frontiers in Neurology

Received: 16 December 2017
Accepted: 22 February 2018

Published: 12 March 2018

Citation: 
Chen Y, Hu H, Ma C, Zhan Y, 

Chen N, Li L and Song R (2018) 
Stroke-Related Changes in the 

Complexity of Muscle Activation 
during Obstacle Crossing Using 

Fuzzy Approximate Entropy Analysis.  
Front. Neurol. 9:131.  

doi: 10.3389/fneur.2018.00131

stroke-related changes in the 
complexity of Muscle activation 
during Obstacle crossing Using 
Fuzzy approximate entropy analysis
Ying Chen1,2†, Huijing Hu3†, Chenming Ma1,2, Yinwei Zhan4, Na Chen2, Le Li2*  
and Rong Song1*

1 Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, School of Engineering, 
Sun Yat-sen University, Guangzhou, China, 2 Department of Rehabilitation Medicine, Guangdong Engineering Technology 
Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, 
Guangzhou, China, 3 Guangdong Work Injury Rehabilitation Center, Guangzhou, China, 4 School of Computers, Guangdong 
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This study investigated the complexity of the electromyography (EMG) of lower limb 
muscles when performing obstacle crossing tasks at different heights in poststroke 
subjects versus healthy controls. Five poststroke subjects and eight healthy controls 
were recruited to perform different obstacle crossing tasks at various heights (randomly 
set at 10, 20, and 30% of the leg’s length). EMG signals were recorded from bilateral 
biceps femoris (BF), rectus femoris (RF), medial gastrocnemius, and tibialis anterior 
during obstacle crossing task. The fuzzy approximate entropy (fApEn) approach was 
used to analyze the complexity of the EMG signals. The fApEn values were significantly 
smaller in the RF of the trailing limb during the swing phase in poststroke subjects than 
healthy controls (p  <  0.05), which may be an indication of smaller number and less 
frequent firing rates of the motor units. However, during the swing phase, there were 
non-significant increases in the fApEn values of BF and RF in the trailing limb of the 
stroke group compared with those of healthy controls, resulting in a coping strategy 
when facing challenging tasks. The fApEn values that increased with height were found 
in the BF of the leading limb during the stance phase and in the RF of the trailing limb 
during the swing phase (p < 0.05). The reason for this may have been a larger muscle 
activation associated with the increase in obstacle height. This study demonstrated a 
suitable and non-invasive method to evaluate muscle function after a stroke.

Keywords: fuzzy approximate entropy, obstacle crossing, stroke, gait, electromyography

inTrODUcTiOn

Stroke, a leading cause of disability, often leads to functional limitations in the activity of daily living 
(ADL). Stroke survivors have a high risk of falling during all poststroke stages (1). Mackintosh et al. 
found that 36% of community-dwelling elderly people with chronic poststroke symptoms reported 
falling in the past year, which is significantly more than 24% of the healthy controls (2). Rehabilitation 
intervention offers beneficial effects on motor recovery after a stroke (3) and can reduce the risk of 
falling (4). A better understanding of motor function impairment in stroke survivors will help design 
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effective recovery strategies during rehabilitation to reduce the 
incidence of falling.

Obstacle crossing is a complex walking ADL and requires 
sufficient foot obstacle clearance for the swinging limb, stability 
of the stance limb (5), and coordination of the whole body to 
prevent the loss of balance. Half of all stroke subjects either lose 
their balance or make casual foot contact with the obstacle dur-
ing crossing (6), which indicates that obstacle crossing threatens 
the safety of patients after a stroke. Many studies based on the 
kinematic indices have been conducted to analyze stroke patients’ 
gaits. Kerrigan et al. examined the joint angles of stroke patients 
during level walking to quantitatively define the most commonly 
used strategy termed circumduction (7). Lu et al. investigated the 
motor performance in high-functioning poststroke patients dur-
ing obstacle crossing and found that stroke survivors appeared to 
adopt a specific symmetric kinematic strategy with an increased 
pelvic posterior tilt and swing hip abduction (8). Said et al. quan-
tified the modifications of kinematic characteristics in stroke sur-
vivors during obstacle crossing and found that stroke survivors 
had reduced toe-obstacle clearance and closer horizontal distance 
after clearance with increased crossing time compared to healthy 
controls (9).

Previous studies based on the kinematic analysis identified 
a significant number of stroke-related features for obstacle 
crossing. Further information about muscle function requires 
electromyography (EMG) signals, which can be recorded from 
the muscle surface (10). EMG analysis based on time and 
frequency domains was widely used in previous studies. Zhai 
et al. proposed a self-recalibrating classifier of hand movements 
based on the convolutional neural network using short latency 
dimension-reduced sEMG as an input (11). Chen and Yang suc-
cessfully reconstructed drawings of trace reconstructions using 
a novel three-step hybrid model based on the root mean square 
(RMS) of seven-channel EMG signals and a gene expression pro-
gram (12). Kisielsajewicz et al. found that the coherence between  
synergist muscles in the affected upper limb of stroke patients 
was lower than that of healthy subjects during reaching tasks 
(13). Our previous results showed greater muscle activation 
levels, increased muscle co-contraction, and lower mean power 
frequencies in persons after a stroke compared to controls during 
obstacle crossing. These findings indicated that abnormal muscle 
activation patterns might contribute to difficulties in maintaining 
balance during obstacle crossing (14). Since the generation of 
EMG signals is non-linear (15), simple linear modeled features, 
such as the RMS, integrated EMG, and mean power frequency, 
reported recently are limited in characterizing muscle dynamics 
(16). Some non-linear methods have been introduced to analyze 
the EMG signals, including fractal dimension, average maximum 
finite-time Lyapunov exponents, and recurrence quantification 
analysis (15, 17, 18). However, these non-linear dynamic methods 
usually require very large data sets to achieve reliable results. This 
may lead to spurious results when applied to small data sets from 
experiments (19). To solve this problem, entropy-based methods, 
such as approximate entropy (ApEn), sample entropy (SampEn), 
and fuzzy approximate entropy (fApEn), have been introduced 
to analyze EMG signals (19–21). For example, Zhang et al. used 
SampEn to detect the onset of muscle activity and found that it 

was more robust than the RMS method (21, 22). It was further 
used to examine the EMG-torque relation in the complexity 
domain. This demonstrated that complexity analysis is a novel 
tool to examine neuromuscular changes after stroke (23).

Entropy was first introduced by Shannon and later termed 
information entropy (24). Kolmogorov then developed K-S 
entropy based on the information entropy, which was appli-
cable for examining the complexity of systems (25). However, 
K-S entropy is not useful for the analysis of measured signals 
because these signals are noise, and K-S entropy is unable to 
analyze noisy signal (26). Pincus subsequently introduced 
ApEn, which is applicable to noisy and small data sets (26). 
Although ApEn has many advantages compared with linear 
analysis methods, it is biased. To solve this problem, SampEn 
was then developed based on ApEn (27). SampEn is less 
dependent on the size of data sets and shows better relative 
consistency, but SampEn(m, r, N) is not defined in the case of 
small N and r (27). Chen et al. later developed fApEn as another 
complexity analysis method. It combines Zadeh’s fuzzy sets 
with entropy-based methods (19). Due to its excellent robust-
ness and consistency (28), fApEn can analyze muscle function 
in patients with neuromuscular disorders. Ao et al. found that 
the fApEn values in the elbow muscles were lower compared 
to healthy controls (29). Sun et  al. found that fApEn values 
increased with force-generating capacity in stroke survivors 
during robot-aided rehabilitation training sessions (30). To 
date, there are limited studies on the dynamics of muscle func-
tion during complex tasks, such as obstacle crossing following 
stroke. This is critical to daily living.

In this study, fApEn was used to analyze the EMG signals 
recorded from eight muscles of the lower limb of poststroke sub-
jects and compared those with healthy subjects when performing 
obstacle crossings tasks at different heights. This study aimed to 
investigate the alterations in the complexity of the EMG signals 
between the two groups and between different heights during the 
task. It also aimed to identify dynamic muscle function changes 
after stroke. Our hypothesis was that the complexity of the gener-
ated EMG signals would decrease due to muscle damage after 
stroke. The complexity would increase along with the obstacle 
height due to the underlying mechanisms of muscle activation. 
The correlation between the fApEn values of the EMG signals and 
the clinical scales could provide further details regarding muscle 
function after stroke.

MaTerials anD MeThODs

Participants
Five poststroke subjects with at least 3 months onset prior to data 
collection and were capable of stepping across a 30% leg length 
height obstacle were recruited. In addition, eight healthy subjects 
of similar heights and gender participated in the experiment as 
controls. The Fugl-Meyer Assessment (FMA) and Berg Balance 
Scale for lower extremities were used to evaluate the motor func-
tion of the poststroke subjects. The clinical scales assessments 
were conducted by an experienced physiotherapist. The basic 
information for the poststroke patients is shown in Table 1. This 
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Table 1 | Background data of the stroke survivors.

subject age (years) Duration 
(months)

Paretic 
hemisphere

clinical scales

FMa-le bbs

1 45–50 26 L 28 47
2 45–50 4 L 26 43
3 40–45 3 R 18 33
4 70–75 3 R 27 41
5 50–55 3 R 22 41

To avoid indirectly identifiable patient data, the genders of stroke group were presented 
as four males and one female; and the ages were presented as a range.
BBS, Berg Balance Scale; FMA, Fugl-Meyer assessment scale of the motor function in 
paretic low-extremity; L, left; R, right.

FigUre 1 | (a) The diagram of obstacle and force plate; (b) flow diagram of the procedure of data collection and storage; and (c) diagram of the gait cycle of 
obstacle cycle.

3

Chen et al. Stroke-Related Changes during Obstacle Crossing

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 131

for data collection. The apparatuses used in this study were the 
same as our previous experiment. A detailed description was 
provided in our previous study (14). The sample frequency for 
Vicon cameras was 100 Hz and 1 kHz for the force plates and 
EMG modules.

Procedure
The subjects’ heights, body weights, and leg lengths were first 
measured and recorded before kinematic data collection. The 
distance from the anterior superior iliac spine to the lateral 
malleolus was measured as leg length. This was then used to 
calibrate the height of the obstacle of each individual. Thirty-
five 15-mm light-reflective markers and silver-silver chloride 
(Ag-AgCl) electrodes were attached to corresponding positions 
on each of the subjects. The target skin area was shaved and 
cleaned with alcohol to obtain better signals before the attach-
ment of the electrodes (14).

The gait trials began after the preparation. The subjects were 
asked to walk along a volunteered walkway (8 m) at a volunteered 
speed with bare feet with an obstacle placed at a midway distance. 
Details of the trials were described previously (14). Figure  1C 
presents the gait cycle during obstacle crossing. Trials in which 
the subjects touched the obstacles or asked for assistance were 
ignored, and three successful trials for each height were recorded.

All subjects completed the maximum voluntary contraction 
tasks and three different height obstacle crossing tasks. No 
incident of fall was observed during all trials. The trials where 
help was received from therapist or the obstacle was touched were 
discarded. Discomfort or feelings of fatigue were not reported by 
any subjects during the tasks.

study was approved by the Ethics Committee of the First Affiliated 
Hospital of Sun Yat-sen University. This study was conducted in 
accordance to the Declaration of Helsinki. All subjects provided 
written informed consent prior to enrollment.

apparatus
The kinematic data were recorded by a 6-camera 3D motion 
analysis system (Vicon Motion Systems, Oxford, UK). Two force 
plates (AMTI, Watertown, MA, USA) situated in the middle 
of the path were used to record the force signals. The height-
adjustable obstacle was placed between them. A diagram of the 
two force paths and obstacles is presented in Figure 1A. EMG 
data were recorded from the rectus femoris (RF), biceps femoris 
(BF), tibialis anterior (TA), and medial gastrocnemius of both 
sides for all subjects using preamplified wireless transmission 
modules. Figure  1B shows the flow diagram of the procedure 

6

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


4

Chen et al. Stroke-Related Changes during Obstacle Crossing

Frontiers in Neurology | www.frontiersin.org March 2018 | Volume 9 | Article 131

Data Processing
A 20-Hz low-pass fourth-order Butterworth filter was employed 
to filter the kinematic and kinetic data. When the toe marker was 
2 mm off the ground, this was regarded as the toe-off time. The 
heel strike time could be recognized according to the change of 
force signal received by the force platforms. The gait cycle was 
then divided into two phases or a single lower limb: swing phase 
and stance phase. The raw EMG signals were collected at a fre-
quency of 1 kHz and then were filtered through a fourth-order 
Butterworth filter with a frequency band from 10 to 350  Hz. 
As the frequency of mains of power supply was 50 Hz, a digital 
notch filter was used to subtract the disturbance of strong elec-
tromagnetic fields of 50 Hz that were present in the experiment 
conducted area.

The fApEn of an N sample series is computed as follows:
First, for a given m, we formed m-dimensional vector 

sequences:
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where r and n in Eq. 2 determine the width and gradient of the 
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The fApEn is then calculated as follows:

 fApEn lnm n r N n r n rm m, , , , , .( ) = ( ) − ( )+ϕ ϕ 1
 (4)

Here, m = 2 and r = 0.15 * SD(signal) were set according to the 
previous study (30).

signal Processing and statistical analysis
The fApEn values for all the muscles were averaged over three 
replicates for each subject during each height obstacle crossing. 

The SD values were also calculated. A two-way (group: control 
and poststroke × obstacle height: 10, 20, and 30% of leg length) 
repeated measure of variance (ANOVA) was performed on the 
fApEn values. A Bonferroni post hoc test was used to analyze the 
fApEn values. Kolmogorov–Smirnov test was applied to the vari-
ables. Pearson’s correlation coefficient was used to examine the 
relationship between the clinical scales and fApEn values when 
the variables were normally distributed. Spearman’s correlation 
coefficient was used when the variables were non-normally dis-
tributed. The significance level was set at 0.05. All the data were 
analyzed in SPSS 19.0 statistical software (SPSS Inc., USA).

resUlTs

Figure  2 shows that the fApEn values of the four lower limb 
muscles of the trailing limb during the stance phase. Figure  3 
presents the fApEn values of these four muscles during the swing 
phase. As presented, during this gait cycle, the fApEn values of 
poststroke subjects were lower than those of healthy controls. In 
addition, significantly lower fApEn values were found in the RF 
of poststroke subjects during the swing phase when compared 
with healthy controls (p < 0.05). As shown in Figures 2 and 3, 
most fApEn values of the four lower limb muscles of the trailing 
limb increased with the height of the obstacle. Furthermore, a 
significant increase was observed in the BF during the swing 
phase when the height of the obstacle increased from 10 to 30% 
of leg length (p < 0.05).

Figures  4 and 5 present the results of the four lower limb 
muscles of the leading limb during the swing phase and stance 
phase. As shown in Figure 4, during the swing phase, the fApEn 
values of the BF and RF in poststroke subjects were higher than in 
the healthy controls, and this result was similar for the TA during 
the swing phase when the obstacle height was 20 and 30% of leg 
length. Meanwhile, during the swing phase, fApEn values for all 
four muscles were lower in poststroke subjects compared with 
healthy controls. However, these differences between groups were 
non-significant (p > 0.05). Similar to the results of the trailing 
limb, the increase in the fApEn of the muscles with the obstacle 
height was also found in the leading limb. In addition, as presented 
in Figure 5, the fApEn value of the BF during the stance phase 
was statistically significantly greater when the obstacle height was 
30% of leg length compared with 10 and 20% (p  <  0.05). The 
correlations between fApEn and the two clinical scales were not 
statistically significant.

DiscUssiOn

We recorded EMG signals and calculated the fApEn values of four 
lower limb muscles of poststroke subjects during different phases 
of obstacle crossing at different heights. Complexity change in 
muscle activations were then compared between poststroke sub-
jects and healthy controls when they conducted this challenging 
task.

fapen Values change after a stroke
The decreased fApEn values of EMG signals in poststroke 
subjects could be explained by that muscles were damaged, 
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FigUre 2 | The details of fuzzy approximate entropy (fApEn) values of each height for trailing limb during stance phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG).

FigUre 3 | The details of fuzzy approximate entropy (fApEn) values of each height for trailing limb during swing phases. (a) The fApEn values of rectus femoris (RF); 
(b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG). *Significant effect 
between groups. The bar (-) indicates significant effect between heights.
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and they became disused after stroke. This might lead to their 
degenerated internal structure (31). The motor unit properties 
changed because of the reduced corticofugal output from the 

paretic hemisphere (32). In addition, the number of functioning 
motor units and the firing rate decreased with reduced dis-
charge variability after a stroke (33, 34). These changes directly 
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FigUre 4 | The details of fuzzy approximate entropy (fApEn) values of each height for leading limb during swing phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG).
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FigUre 5 | The details of fuzzy approximate entropy (fApEn) values of each height for leading limb during stance phases. (a) The fApEn values of rectus femoris 
(RF); (b) the fApEn values of biceps femoris (BF). (c) The fApEn values of tibialis anterior (TA); (D) the fApEn values of medial gastrocnemius (MG). The bar (-) 
indicates significant effect between heights.

affect the electrical activity and might lead to reduced muscle 
force and disability in subtle responses to the perturbations 
during functional tasks. Here, the reduction in fApEn values 

was reflected in the decreased complexity of the EMG signals of 
poststroke subjects, which might be related to the alternations 
in the properties of motor units. Our findings were consistent 
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with those reported by Ao et al., who found lower fApEn values 
in elbow muscles of poststroke subjects compared to healthy 
controls during trajectory-tracking tasks. This could be attrib-
uted to a reduced number and firing rate of active motor units 
(29). Similarly, the decreased complexity of EMG signals was 
also reported in other patients with neuromuscular disorders, 
such as Parkinson’s disease (35) and cerebral palsy (36), which 
could be explained by the disease-induced muscle fiber degen-
eration (37).

During swing phase, the fApEn values for the BF, RF, and 
TA (20 and 30% leg length) in the leading limb were higher in 
poststroke subjects than in healthy controls. This might be as a 
result of abnormal gait during obstacle crossing after a stroke. The 
swing phase of the leading limb during obstacle crossing caused 
the subjects to elevate their lower limb to secure sufficient toe-
obstacle clearance, and this could be a challenge for poststroke 
subjects, leading to abnormal muscle activation patterns. Indeed, 
our previous study found that to avoid falling, toe-obstacle clear-
ance of stroke survivors was greater than in healthy controls (38). 
The increased activation of thigh muscles in the BF and RF was 
found in stroke survivors (14). This might also contribute to the 
increased complexity of the EMG signals (36).

fapen Values change with Task  
Difficulties
When sustaining different levels of maximal voluntary contrac-
tion force in the upper limb, the complexity of EMG signals had 
been demonstrated to increase with increasing muscle contraction 
forces (23, 37, 39). In line with these findings, our results dem-
onstrated that increasing obstacle heights demanded an increase 
in muscle contraction forces that in turn led to the recruitment 
of more motor units and increased firing rates in active motor 
units (14). Our results suggested that the complexity of the EMG 
signals increased with greater task demands, and this could also 
be applied to poststroke subjects. Therefore, safely crossing higher 
height obstacles requires increased muscle contraction forces and 
more activated motor units, leading to higher entropy values for 
the EMG signals (37).

However, there are still discrepancies about the complexity 
changes with task difficulties. To investigate the effect of task 
demands on motor entropy, Hong and Newell found that the 
entropy values of muscle forces decreased as the task demands 
increased (40). They explained the decreased entropy with 
increased task demands, but reduced environmental informa-
tion, revealing a compensatory interaction between tasks and 
the environment on the force dynamics. Moreover, Murillo et al. 
found that fuzzy entropy of postural sway in healthy young adults 
decreased from the stable condition to the mid-level instability 
condition. This increased again at the highest instability condition 
at the anterior–posterior axis, which reflects the adaptations of 
postural control system to the platform instability (41). Therefore, 
the compensatory and adaptive nature of the motor control 
system to the task complexity warrants further investigation, 
especially in stroke survivors. Entropy analysis could be used to 
evaluate the effects of rehabilitation interventions targeting the 
motor recovery to restore complex motor tasks in persons after 
a stroke.

limitations
There were several limitations in this study. First, considering the 
insufficient strength of the paretic leg during the stance phase, 
we did not instruct the poststroke subjects to first step over the 
obstacle with their unaffected side due to safety issue. Thus, we 
could not compare the paretic side with the unaffected side during 
the same task. In the future, we should introduce stroke subjects 
to first step over the obstacle with both affected and unaffected 
limbs. Second, moderate to high functional level of persons after 
stroke were recruited in this study. A large-scale study of different 
types of stroke subjects should be recruited in future study to 
investigate the influences of group and obstacle height, which may 
help explore the mechanisms and guide rehabilitation after stroke.

cOnclUsiOn

In this study, the stoke-related changes in complexity of lower 
muscles during obstacle crossing were investigated using fApEn. 
Results show that the complexity of RF in trailing limb during 
stance phase decreased in stroke group, which might be associated 
with the reduced number and firing rate of MU. However, during 
the swing phase, there were non-significant increases in the fApEn 
values of BF and RF in the trailing limb of the stroke group, result-
ing in a coping strategy when facing challenging tasks. During the 
gait, the complexity of muscle activation increases with obstacle 
height. That might be because higher obstacles demand greater 
muscle forces, which causes more motor units to be recruited and 
triggers higher firing rates of motor units. These findings based on 
the fApEn values of the EMG signals indicate that the complexity 
analysis using fApEn could be a suitable and non-invasive method 
to evaluate muscle function changes after stroke.
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Traumatic injury is one of varying causes of heterotopic ossification (HO). After HO

occurrence, rehabilitation training need alterations to avoid the aggravation of HO.

Therefore, monitoring of HO development plays an important role in the rehabilitation

procedure. The aims of this study are to evaluate the post-traumatic HO occurring at

various joints, to describe the features of HO development in ultrasound images, and

to provide a guidance for the orthopedist to make individualized rehabilitation therapy.

Eight subjects with the post-traumatic HO were recruited in this study. The joints on the

injured side was examined by plain radiography. The joints on the injured side and the

corresponding sites on the uninjured sides were scanned by ultrsonography. The HO

tissues were segmented automatically using a semi-supervised segmentation algorithm.

Then the HO tissues were evaluated in comparison with the corresponding region of

the uninjured side. During the development stage of immature HO, ultrasonography

was sensitive to observe the involved soft tissue and the calcification of HO. The

characteristics of HO tissues in ultrasound image included the hyperechoic mass

occasionally accompanied with acoustic shadow and the irregular muscular architecture.

It was found that the mean grayscale value of HOwas significantly higher (p< 0.001) than

that of the uninjured side at the middle and late stages. During the development period

of HO, the HO grayscale value gradually increased and the mean grayscale of value

of mature HO was significantly higher (p < 0.05) than that of immature HO. According

to the information of HO provided by ultrasound, the orthopedist properly adjusted the

rehabilitation treatment. The results demonstrated that the visualization of HO using

ultrasonography revealed the development of HO in themuscle tissues around the injured

joints and thus provide a guidance for the orthopedist to make individualized rehabilitation

therapy. Ultrasound could be a useful imaging modality for quantitative evaluation of HO

during the rehabilitation of traumatic injury.

Keywords: heterotopic ossification, ultrasonography, trauma, rehabilitation, diagnosis
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INTRODUCTION

Heterotopic ossification (HO) has been clinically described as
lamellar bone formation in the periarticular soft tissues, where
osseous tissue should not exist. This aberrant bone formation
is commonly associated with orthopedic interventions,
trauma, stroke, traumatic brain injury, spinal cord injury,
and neurological disorder. Therefore, it is summarized under
three ways of acquiring HO: traumatic, non-traumatic (very
rare), or neurogenic. However, the definitive pathogenesis of
HO is still quite unclear. Early HO causes restriction of joint
movement, local pain and swelling. The clinical symptoms of
early superficial HOmay include erythema and localized warmth
(1, 2). At the late stage of HO, the mature osseous tissues lead to
severe limitation of the range of motion of the joint, pain in the
affected joints, and even nerve or vessel compressed by HO (2).

In the clinical laboratory, biochemical markers such as
serum alkaline phosphatase (AP) and bone alkaline phosphatase
(BAP) are usually examined to reveal the alterations in bone
metabolism. The changes in biochemical markers reflect the bone
formation or bone resorption, but could not provide visualization
of the change of bone (3). Citak et al. proved that laboratory
findings of elevated AP and BAP might not be reliable for early
HO detection because of their low diagnostic specificity (4).
Therefore, the laboratory examinations are not suggested to be
routine examination.

Nowadays, several imaging modalities have been applied to
evaluate HO. In department of orthopedics in a hospital, plain
radiography is usually used to locate and visualize the heterotopic
bone tissues. Plain radiograph is considered as the gold standard
of the clinical diagnosis of HO because it is inexpensive
and convenient to detect HO. Computed tomography (CT) is
sometimes used to provide 3-D information of HO and clearly
observe the location and volume of HO. However, the cost of CT
exam is high. Patients are exposed to a higher dose of radiation
by plain radiography and CT, which only provide the diagnosis
of HO in the late stage that the osseous tissues develop into
the matured bone. Therefore, these two imaging modalities are
unable to detect ossification in the early inflammatory stage.
The HO progression needs to be further evaluated (2). Magnetic
resonance imaging (MRI) is useful for imaging soft tissue in the
early stage of HO. Ledermann et al. proposed a HO grading
scale based on MRI characteristics to evaluate the development
of HO: grade 1 = fluid attenuation without calcifications,
grade 2 = calcification of soft tissue without evidence of bone
formation, grade 3 = immature bone formation, and grade 4 =

mature bone with cortical formation (5). However, MRI has low
resolution and is expensive and relatively insensitive to the bone
tissues.

The advantages of ultrasonography are that ultrasound
avoids ionizing radiation, and is widely available, repeatable
and inexpensive for bedside monitoring (6). It is proved
that ultrasound is a sensitive imaging method in evaluation
of soft tissue lesions and calcifications (7). Some previous
studies utilized ultrasonography to evaluate the muscle tissues
by measurements of grayscale value and thickness of the
muscles (8, 9). Furthermore, the relationship between ultrasound

measurements and the diseases were explored (8, 10). A recent
study revealed the negative correlation between the echo intensity
of the rectus femoris and muscle strength (11). Other previous
studies demonstrated that ultrasound could be effective for
detecting immature HO. Bedside ultrasound were applied to
diagnose immature HO caused by brain or spinal cord injury
and the results suggested that ultrasonography could be a useful
first-line imaging modality in the diagnosis of early HO (12–14).
Recent studies stated that ultrasonography could distinguish
matured HO from the surrounding soft tissues with a high
specificity (15–17). Trauma leading to artificial joint replacement
and internal fixation of bone fracture without neurological
injury, may also cause HO. The rehabilitation outcome of
the injured joints may be greatly affected by HO. Therefore,
ultrasonography could be applied in orthopedic rehabilitation for
providing a guidance for the orthopedist to make individualized
rehabilitation therapy. However, quantitative evaluation of
HO and serial follow-up ultrasonography for depicting HO
progression were rarely reported.

In this study, ultrasonography was applied to observe the
calcification in soft tissues in the participants with the post-
traumatic HO caused by trauma such as bone fracture and
contusion in the rehabilitation center. The aims of this study
are to evaluate the post-traumatic HO occurring at various
joints, to describe the features of HO development in ultrasound
images, and to provide a guidance for the orthopedist to make
individualized rehabilitation therapy. The ultrasonographic
results were compared with those of plain radiography, which is
the gold standard of the clinical diagnosis of HO in orthopedics.

MATERIALS AND METHODS

Participants
The participants were selected from Guangdong Work Injury
Rehabilitation Center, China. The criteria of participants include
the following: (I) trauma such as fractures, dislocations and
contusion occurring at the joints, (II) ossification in soft tissues
surrounding the injured joint but not attaching to the cortical
bone visualized by radiograph, and (III) motion restriction and
pain of the affected joints. Eight participants (6 males and 2
females, Age: 23–48) with symptoms of HO were recruited.
The exclusion criteria include the following: (I) inadequate
acquisition of ultrasound images, and (II) osteochondroma. The
basic information for the participants is shown in Table 1. Four
participants had post-traumatic HO at the elbow joint (50%), 3 at
knee joint (37.5%), and 1 at shoulder joint (12.5%).

The clinical assessments of the range of joint motion were
conducted by an experienced physiotherapist. The study
was approved by the Ethics Committee of the Guangdong
Work Injury Rehabilitation Center, Guangzhou, China.
All subjects provided written informed consent prior to
enrollment.

Apparatus
In this study, four participants No. 1, 2, 3, and 4 were scanned by
a portable ultrasound system (Mindray M5, Mindray, Shenzhen,
China) with a linear transducer (Mindray 7L4s, a range of central
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TABLE 1 | Background data of the participants.

Participant

No.

Age

(years)

Injured joint Traumatic injury Range of joint motion

1 30–35 Right elbow Bone fracture of distal humerus & head of

radius

Extension: 50◦; flexion: 85◦

2 20–25 Left shoulder Bone fracture of humerus surgical neck Limited motion range of left shoulder joint

3 40–45 Left knee Splintered bone fracture of patella with

collateral & cruciate ligament injury

Extension: 5◦; flexion: 15◦

4 44–49 Left elbow Bone fracture of lateral epicondyle of humerus

with muscle strength reduction

Extension: 25◦; flexion: 110◦

5 45–50 Right knee Soft tissue avulsion & contusion of proximal end Flexion: 25◦

6 43–48 Right elbow Splintered bone fracture of distal humerus Extension:30◦; flexion: 40◦; adduction: 70◦; abduction: 50◦

7 40–45 Right elbow Splintered bone fracture of ulnar coronoid

process & head of radius

Extension: 30◦; flexion:105◦; adduction: 10◦; abduction: 40◦

8 45–50 Left knee Bone fracture of tibial plateau Extension: 10◦; flexion: 55◦

frequency from 5 to 10 MHz). The other four participants
No. 5, 6, 7, and 8 were scanned by a wireless ultrasound
probe with a fixed central frequency of 10 MHz (Uprobe-3N,
linear transducer, SonoStar, Guangzhou, China). A pilot test
was conducted to ensure that the B-mode grayscale images
obtained by the two ultrasound systems were of similar image
quality.

All participants underwent examination of plain radiography
(Aristos VX plus, SIEMENS, Germany). Two participants
No. 4 and 5 were also examined by CT to obtain more
information of the injured joint to distinguish HO from
osteochondroma.

Procedure of Ultrasound Examination
After examination of plain radiography, all participants were
examined by ultrasonography. First, the injured joint was
scanned at the site of HO occurrence (Figure 1). The ultrasound
probe was placed on the scan site with enough coupling gel
interposed between the transducer and the skin. The depth of
view of the ultrasonographic scan was set at 4 cm for the joints
to clearly display the HO lesions and the structure of the muscles
and bone. The gain was fixed at a constant intensity for all scans.
All the ultrasound images were obtained respectively at the short
and long axis of the muscles. Next, the same scanning procedure
was performed at the corresponding site on the uninjured side as
control.

Because participant No. 8 was with HO on the immature
bone formation stage, he underwent the first ultrasound scan
2 days after the first plain radiography and the follow-up
ultrasound scan was performed every week. Four follow-up
scans were performed to monitor the development of HO. At
each time point, five longitudinal and transverse ultrasound
images of HO were obtained at the adjacent scan sites with an
interval of approximately 0.5 cm, respectively. During this period
of ultrasound monitoring, the participant was also underwent
rehabilitation therapy. At the end of this study, the participant
underwent an additional X-ray examination again.

FIGURE 1 | Longitudinal ultrasound scanning of HO at the posteriorlateral site

of the injured elbow joint of participant No. 1.

For the participants with mature HO, the ultrasound scan was
performed 2 days after plain radiography without the follow-up
ultrasound scan.

Segmentation and Assessment of HO
Because the edge of the target tissue was not easily distinguished
from the background in the ultrasound image, manual
segmentation of the HO tissue was time consuming and operator
dependent. Therefore, this study applied a semi-supervised
segmentation algorithm based on patch representation and
continuous min cut (18) to semi-automatically segment the
region of interest (ROI) of HO in ultrasound image. Under semi-
supervision of the clinical expertise, the HO can be accurately
and specifically segmented from the surrounding soft tissues
according to the texture features of the HO and muscles.
Figure 2A shows the HO ROI segmented from the background
in ultrasound grayscale images of the injured joint. Meanwhile,
a same size ROI of the health tissues was selected at the
corresponding position on the uninjured side (Figure 2B).
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After segmentation of the tissues, the ultrasound
characteristics of the images were assessed. The mean grayscale
values of the HO tissue was quantitatively evaluated in
comparison with the normal muscle tissue.

The segmentation and calculation of mean grayscale value
were performed by a self-developed program using Matrix
Laboratory (Matlab, version 2016b).

FIGURE 2 | Ultrasound greyscale images of the injured left shoulder joint (A)

and the uninjured right shoulder joint (B) of participant No. 2. Red profile in (A)

and (B) represents the HO segmented from the surrounding soft tissues and

the normal muscle tissue selected on the corresponding position, respectively.

Statistical Test
The results of the pilot study showed that there was no significant
difference between the grayscale values of the HO tissues in
ultrasound images recorded using the two ultrasound systems.
Therefore, the effect of ultrasound system on the measured
grayscale values was not considered in this study.

The grayscale values were expressed as means and standard
deviations (mean ± SD). Due to the small number of the
participants, the non-parametric statistical tests were utilized in
this study. The Mann–Whitney U-test was performed to test the
statistical significance in the grayscale values between the HO
and health muscle, and Friedman test was performed to test
the statistical significance in the grayscale values measured on
different time spots during the HO development period. The
significance level was set at 0.05. This statistical analysis was
performed by using the Statistical Package of Social Sciences
(SPSS, version22, USA).

RESULTS

The results of plain radiography showed that seven participants
were diagnosed with the post-traumatic mature HO and

FIGURE 3 | Plain radiographs and ultrasound images of left knee joint of participant No. 8 with HO in the immature bone formation stage. (A) The plain radiograph

was taken as the participant was in hospital. Discontinuous (arrowhead), faint and poorly demarcated (arrows) calcification was found. (B) The second plain

radiograph was taken ∼1 month after the first plain radiograph. Continuous (arrowhead) and distinguishable (arrow) HO was found. (C) A series of transverse and

longitudinal ultrasound images of the injured joint in comparison with the uninjured side. HO is visualized during its development. The unconnected HO tissues

(arrowhead) correspond to the gap between two calcified HO tissues. On the fifth ultrasound images, the HO tissues connect smoothly to develop into the mature HO

tissues. As the echogenicity and homogenesis of HO increased, the profile of the femur become blurred (arrow).
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participant No. 8 was with the immature bone formation.
Therefore, for participant No. 8, to track the alterations of the
immature bone tissue during the development of HO, the follow-
up ultrasound scans and plain radiography were performed.

HO in the Immature Bone Formation Stage
The participant No. 8 was in hospital because he suffered swelling
and limited range of motion of left knee joint 4 months after
surgery for trauma. Figure 3A shows discontinuous, faint, and
poorly demarcated calcification indicating the immaturity of HO.
Approximately 1 month after the first plain radiograph, the
second plain radiograph showed that the HO tissues became
continuous and distinguishable indicating the more ossified HO
tissues, but still not mature enough for HO excision (Figure 3B).

In comparison with the plain radiographs, ultrasound images
clearly showed the alterations in the anatomic, morphological
structure of the involved soft tissues and HO tissues during
the rehabilitation procedure (Figure 3C). From the transverse
ultrasound images, mixed hyperechoic and hypoechoic areas
in the swelling affected muscle tissues and loss of the texture
pattern of muscular fibers in the early stage of immature
bone formation compared with the health muscle tissues on
the uninjured joint. During the development of HO, it was
found that the echogenicity and homogenesis of the HO tissues
increased as the ossification increased, and an acoustic shadowing
caused by the HO tissues reduced the smoothness of the
profile of the femur. Similarily, the longitudinal ultrasound
images clearly visualized the development of the immature HO.
During rehabilitation procedure, the discontinuous hyperechoic
calcified tissues grew to become continuous lamellar HO tissue
(Figure 3C). It was noted that the HO tissues in ultrasound
image (Figure 3C) was consistent with lamellar bone in plain

radiograph (Figures 3A,B). Ultrasonography is more sensitive to
visualize the involved soft tissue and immature bone formation.

HO in the Mature Bone Formation Stage
The ultrasound images of the injured joints show the irregular
muscular architecture and the calcified foci (HO) (Figure 4).
As Figure 4C shown, irregular hyperechoic areas and loss of
deep fascia or aponeruroses in the swelling affected muscles
were found in three participants No. 1, 5, and 8. Besides
HO tissues, loss of the textural structure of the muscular
fibers in the swelling affected muscles was found in participant
No. 4 (Figure 4E). Figure 4G shows local muscle evagination
due to the HO tissues in the muscles disturbing the muscle
structure and causing worse pain in participant No. 6.
With less injured muscles in two participates No. 2 and
3, the effect of the mature HO tissues on the texture of
muscular fibers sometimes was not obvious (Figure 4A). The
characteristics of mature HO in ultrasound image might include
small calcified foci in size but with high echogenicity and
sometimes with acoustic shadow. Figures 4B,D,F,H show the
normal textural structure and echogenicity of the muscles and
bones.

Analysis of Grayscale Value
Figure 5A shows that at themiddle stage of the in immature bone
formation the grayscale value (86.40 ± 13.42) of the immature
HO already increased significantly (p < 0.001) compared with
the health muscle tissue (55.1 ± 12.01). At the late stage
of HO, it was found that the grayscale value of the mature
HO increased greatly (119.09 ± 22.70) and was significantly
higher (p < 0.001) than that of to the health soft tissues
(70.06± 31.09).

FIGURE 4 | Ultrasound images of the mature HO in the different joints. (A) Ultrasound image of the left knee joint of participant No. 3 showing that HO (arrow) with an

acoustic shadowing ( ). (C) Ultrasound image of the right knee joint of participant No. 5 showing a hyperechoic area ( ) in the muscles and the HO tissues (arrows).

(E) Ultrasound image of the right elbow joint of participant No. 4 showing the hypoechoic HO tissues (arrows) and loss of the textural structure of muscular fibers. (G)

Ultrasound image of the right elbow joint of participant No. 6 showing local muscle evagination (dotted line box) by the hyperechoic HO tissues (arrows). (B,D,F,H)

Ultrasound images of corresponding position of the uninjured side in (A,C,E,G), respectively.
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FIGURE 5 | (A) Comparison of the greyscale value of the HO tissues and the

health muscle tissues at the middle and late stage. * and present the

statistically significant difference between HO and health muscle (p < 0.001).

(B) Comparison of the grayscale value of HO measured on five time spots

during the development of HO. indicates statistically significant increase in

the grayscale value of the 5th scan v.s. the former four scans (p < 0.05).

Figure 5B shows that the gradual increase in the grayscale
value of the immature HO tissues during the development
period. The grayscale value of the mature HO for 5th ultrasound
scan (92.18 ± 8.37) was significantly increased in comparison
with the 1st, 2nd, 3rd, and 4th scans (p < 0.05).

Effect of HO on Rehabilitation Therapy
For the patients with high HO maturity, the strength of the
rehabilitation therapy needs to be strengthened appropriately,
in order to improve the joint movement function. However,
for the patients with low HO maturity, the strength of
rehabilitation treatments such as joint loosening and
drafting should be soft in order to avoid locally strained
muscles and other soft tissues, which might lead to HO
worsened.

According to the ultrasound images, the orthopedist obtained
the information of HO development of participant No.8.
The individualized rehabilitation therapy was performed. The
treatment intensity of the traditional rehabilitation training
reduced. The participant was anesthetized and underwent
with manipulation and arthroscopic surgery. After ∼1-month

rehabilitation therapy, the range of extension of the injured
knee joint was 5–10, while the range of flexion increased
40◦ reaching up to 95◦. The muscle strength also slightly
increased from grade 4 to grade 4+. Furthermore, with the
increase in maturity of HO, no obvious increase of HO
size was observed via ultrasonography and plain radiography
examinations.

DISCUSSION

HO Muscle and its Neuromuscular
Function
Although the exact mechanism of HO in traumatic and
neurogenic HO is unknown, two common factors precede the
formation of HO (19). One factor is trauma or neurological
injury. The other is the tissue expression of bone morphogenetic
proteins (BMPs), which induce bone formation. In this study,
all the participants sustained bone fracture at different joints
with HO. We found that the morphologic and textural
pattern of HO muscle changed in comparison with normal
muscle. Differently, a recent study on spastic muscle induced
by spinal cord injury did not find obvious changes in
textural pattern of the involved muscle but only shortening
of muscle fibers in ultrasound image (20). This may suggest
that ultrasonography visualizing the damage in the textural
pattern of the involved muscle is able to diagnose HO
tissue.

Further, previous study reported that HO formation was
related to a series of changes within not only muscles but
also nerves and vessels (21). Those alterations may affect the
neuromuscular function. After traumatic injury, the sensory
nerves detect any damage to the bone, for example, the alterations
due to trauma and BMPs. Then, the sensory nerves signal to
the central nervous system to start the remodeling program.
However, new bone is generated in incorrect places, and HO
occurs. Therefore, the regulation of peripheral nerves system is
involved in the formation of HO (21, 22).

Quantitative Assessment of Grayscale
Value
Ultrasound images show characteristics, such as size and
morphological structure, of the HO tissues. However, these
characteristics are individually different in the different joints
of different patients. Ultrasound echoes reflect the acoustic
impedance, density, stiffness of the tissues. The magnitudes
of the echoes are displayed in ultrasound image by grayscale
values. During occurrence of HO, primitive mesenchymal cells
transform into osteoblasts in the late stage. Previous studies
demonstrated that the alterations in the properties of the tissues
led to the changes in the ultrasound echoes reflecting the relative
diseases (8–11). Therefore, this study chose grayscale value as
quantitative parameter, which is relative to the maturity degree
of the HO tissues (23). The results show the significant difference
in grayscale values not only between the HO tissue and the
health muscle tissue but also between immature and mature HO
tissues.

Frontiers in Neurology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 77117

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Wang et al. Ultrasonography Monitoring of Trauma-Induced Heterotopic Ossification

FIGURE 6 | The HO tissues at left elbow joint of participant No. 4 visualized by multi-modality imaging. (A) A spiny HO (arrow) in plain radiograph. (B) A slender HO

and two small and granular HOs discovered in CT image (arrows). (C) Two small hyperechoic masses and a slender hyperechoic region (arrows) in triceps brachii in

ultrasound image.

Radiographic Classification and Evaluation
for HO
Previous studies evaluated and classified HO according to the
plain radiograph. Based on radiographic findings, HO in the hip
joint is grouped into four classes (Class I to Class IV), called
as the Brooker classification (24). The Hastings and Graham
classification system (25) was proposed to evaluate HO at the
elbow joint into three classes. However, these classification
systems were only applied to individual joint and did not
obtain good classification results of HO in other anatomical
locations.

A recent study proposed an analog scoring method (26)
for radiographic classification and evaluation of HO based on
normotopic reference bone. Its results showed high correlation
(R2 = 0.89) between the scores of the analog scale and the
heterotopic bone volumes measured by micro-CT, i.e., higher
score means larger size of HO. In comparison with the analog
method, this study evaluated grayscale value of HO in ultrasound
image, indicating that higher echogenicity means more mature
HO.

Limitation of Plain Radiography
In department of orthopedics in a hospital, plain radiography
is considered as the gold standard of the clinical diagnosis of
HO because of its convenience to detect the calcified tissues.
However, plain radiography is a method of projection imaging
producing two-dimensional images with x-ray radiation through
the body tissues. Therefore, the plain radiograph does not provide
any depth information. This limitation leads to misjudgment
on HO. In this study, participant No.4 suffered from pain
and limited range of motion in the left elbow joint. The
radiography revealed a lamellated and slender calcification that
intersected the distal humerus (Figure 6A). However, 3-D CT
image visualized a slender HO and two small and granular HO
tissues (Figure 6B). Similarily, ultrasonography also displayed
two small hyperechoic calcified foci and a lameller hyperechoic
region in triceps brachii (Figure 6C). It was found that the
overlap of the HO tissues and distal humerus or other tissues in
the radiograph might cause the misdiagnosis of the HO. Other
previous studies slimilarily demonstrated that 3-D CT image help

plain radiograph accurately locate the position and number of the
HO tissues (27, 28).

Advantages and Limitations of
Ultrasonography in Detection of HO
Previous studies have proven that ultrasound is a useful tool and
provides an earlier diagnosis of neurogenic HO than radiography
(12–14). This study similarily showed that ultrasonography could
depict the changes of related soft tissues and immature HO
tissues, that plain radiograph might fail to imagine in orthopedic
rehabilitation. The hypoechoic area and loss of the lamellar
pattern of muscular fibers in ultrasound image (Figure 4E)
probably due to the inflammatory edema surrounding HO.
Hyperechoic holistic muscle, especially hyperechoic muscular
fibers (Figure 4C) might be caused by the lack of exercise or
amyotrophy.

In addition, ultrasonography could be conveniently
performed a bedside monitoring using portable or wireless
ultrasound device. There was no significant difference between
two devices for imaging and quantitatively evaluation of HO.
This study demonstrates that grayscale value analysis method
for evaluating HO is independent on ultrasound system.
Finally, ultrasonography is suitable for follow-up tracking
the development of HO due to its real-time imaging and no
radiation.

However, operator dependency limits the use of
ultrasonography (29), especially in department of orthopedics.
Most orthopedists themselves have no experiences of performing
ultrasound scanning and diagnosing HO using ultrasound
image. And orthopedists are lack of the cooperation with
ultrasound specialist. Another limitation of this study is the
number of the proper participants. No participant with early
stage of post-traumatic HO was included in this study, only
one participant with the immature HO in the middle stage was
involved.

CONCLUSION

In this study, ultrasonography was applied to visualize the
development of immature HO and surrounding soft tissues.
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After the HO extracted from the ultrasound images, the
grayscale value was used to quantitatively assess the immature
and mature HO tissues in the middle and late stage. The
results show the significant difference in grayscale values not
only between the HO tissue and the health muscle tissue but
also between immature and mature HO tissues. This study
suggested that ultrasonography has potentials to be a useful
imaging modality for monitoring the development of HO
and providing quantitative evaluation on HO. Combination
of ultrasonography and plain radiography in diagnosis of
HO help orthopedists to make individualized rehabilitation
therapy.

AUTHOR CONTRIBUTIONS

QW and XW conceived and designed the study. PZ and PL
performed the experiments. QW and PZ wrote the paper. XS, XL,

and HH contributed to experiments. XW and WC reviewed and
edited the manuscript. All authors had read and approved the
manuscript.

FUNDING

This work was supported in part by the Project of Science
and Technology Department of Guangdong province
(No. 2016A020216017 and No. 2013B021800039), the
National Natural Science Foundation of China (No.
81371560), and Natural Science Foundation of Guangdong
Province, China (No. 2014A030313329, No. 2015A0303
10527).

ACKNOWLEDGMENTS

The authors would like to thank all the participants of this study.

REFERENCES

1. Balboni TA, Gobezie R, Mamon HJ. Heterotopic ossification:
pathophysiology, clinical features, and the role of radiotherapy
for prophylaxis. Int J Radiat. Oncol Biol Phys. (2006) 65:1289–99.
doi: 10.1016/j.ijrobp.2006.03.053

2. Vanden Bossche L, Vanderstraeten G. Heterotopic ossification: a
review. J Rehabil Med. (2005) 37:129–36. doi: 10.1080/16501970510
027628

3. Delmas PD. Biochemical markers of bone turnover. J Bone

Miner Res. (1993) 8(Suppl. 2):S549–55. doi: 10.3109/17453679509
157687

4. Citak M, Grasmucke D, Suero EM, Cruciger O, Meindl R, Schildhauer TA,
et al. The roles of serum alkaline and bone alkaline phosphatase levels in
predicting heterotopic ossification following spinal cord injury. Spinal Cord
(2015) 54:368–70. doi: 10.1038/sc.2015.211

5. Ledermann HP, Schweitzer ME, Morrison WB. Pelvic heterotopic
ossification: MR imaging characteristics. Radiology (2002) 222:189–95.
doi: 10.1148/radiol.2221010552
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Background: Synergistic recruitment of muscular activities is a generally accepted

mechanism for motor function control, and motor dysfunction, such as cerebral palsy

(CP), destroyed the synergistic electromyography activities of muscle group for limb

movement. However, very little is known how motor dysfunction of CP affects the

organization of the myoelectric frequency components due to the abnormal motor unit

recruiting patterns.

Objectives: Exploring whether the myoelectric activity can be represented with

synergistic recruitment of surface electromyography (sEMG) frequency components;

evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG

oscillations.

Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited

for self-paced crawling on hands and knees. sEMG signals have been recorded from

bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations

are extracted via multivariate empirical mode decomposition (MEMD), and non-negative

matrix factorization (NMF) method is employed to obtain synergistic pattern of these

sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to

quantify the time-varying recruitment of BB and TB myoelectric activity during infants

crawling.

Results: Three patterns of sEMG oscillation synergies with specific frequency ranges

are extracted in BB and TB of CP or TD infants. The contribution of low-frequency

oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05)

during forward swing phase for slow contraction; however, this low-frequency oscillation

synergy keep higher level during the backward swing phase crawling. For the myoelectric

activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for

the fast contraction in propulsive phase of CP infants crawling.

Conclusion: Our results reveal that, the myoelectric activities of a muscle can be

manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the
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synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and

destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient

curve of sEMG oscillation synergies is a potential index to evaluate the abnormal

recruitment of electromyography activities affected by CP disorders.

Keywords: muscle synergy, cerebral palsy, sEMG oscillations, infants crawling, synergistic recruitment

INTRODUCTION

Cerebral palsy (CP) is a permanent movement disorder caused
by brain injury in early childhood with a high prevalence
of 2–3 per 1,000 live births (1). The regulation of muscle
coordination and motor unit (MU) recruitment are usually
affected due to the secondary musculoskeletal morphology
alterations and changes in the electrophysiological characteristics
of MU followed by cerebral injury (2). Surface electromyography
(sEMG) signals regulated by central nervous system (CNS) have
been widely used to evaluate MU recruitment patterns and
neuromuscular function, and it is widely accepted that motor
dysfunction of cerebral palsy destroys the synergistic recruitment
of muscular activities (3). Although the impact of CP on
synergistic electromyography activities has been observed among
the muscle group for limb movement (4), very little is known
about how motor dysfunction of CP affects the organization
of the myoelectric frequency components due to the abnormal
motor unit recruitment patterns.

Various features of sEMG signals have been proposed
for assessing the abnormal neuromuscular functions in CP
patients. The sEMG characteristics from individual muscle,
including parameters in time- and frequency-domain, can be
used to measure the abnormal overall sEMG activity of CP.
Researchers found the changes of magnitude, frequency content
and timing from sEMG signals of individuals with CP. The
time- and frequency-domain parameters were also utilized to
analyze symmetry, cadence, or smoothness of muscle activity
for CP patients (5–7). On the other hand, sEMG characters
extracted from multiple muscles, such as muscle synergy and
co-activation index, can provide the information about relative
muscle activation of muscle groups and insights into motor
control. Tang et al. (3) reported that CP recruited fewer
muscle synergies during upper limb movements with simplified
neuromuscular control strategy. Gross et al. (8) found that co-
activation index of the rectus femoris/semitendinosus couple was
more sensitive to speed, which could be explained by altered
motor control. Furthermore, increasing studies suggested that
the motor dysfunction caused by CP affected not only the overall
sEMG activity but also the sEMG frequency components or
oscillations (9, 10).

Recent studies have demonstrated that the sEMG spectrum
profile or frequency components correlated with physiological
status of movement. Von et al. (11) reported that high-frequency
components of sEMG from tibialis anterior were activated before
heel strike during running, while low-frequency components
were dominated after heel strike. Liu et al. (12) declared
that the highest frequency components of sEMG were more

sensitive to muscle fatigue than the raw sEMG signal. Moreover,
coherence between two sEMG oscillations was used to evaluate
the neural control of movement under different conditions, such
as low-alcohol and fatigue (13, 14). In addition, studies also
reported that coherence can be affected by voluntary force (15).
More recent studies employed sEMG oscillation components
for abnormal motor functions analysis, and found that the
characteristics of sEMG oscillation components correspond to
various neuromuscular damages in CP (10, 16). On other hand,
sEMG frequency spectrum is correlated the types of recruited
MUs, Wakeling et al. have demonstrated that slower and faster
MUs in muscles indeed generate low and high sEMG frequency
components, respectively (17, 18). Moreover, sEMG oscillations
with specific frequency ranges have been successfully used to
evaluate the recruitment patterns of corresponding types of MUs
in both animal and human muscles during movement (19, 20).

It is generally accepted that multiple element synergistic
organization is a fundamental strategy for motor control, and
the elements can be well-organized by CNS to perform limb
movement (21, 22). A variety of methods have been employed
to extract multiple oscillations from sEMG (12, 23, 24), and
multivariate empirical mode decomposition (MEMD) shows
better performance in decomposing multi-channel sEMG signals
due to its self-adaptability, fully data-driven and generalized
multivariate extension (16, 25). These studies have indicated
that the resulted multi-scale oscillations are mode-aligned across
channels, and analysis of multiple oscillations is at the same scale.
To obtain the synergistic pattern of multiple elements, although
component-based algorithms, such as principal component
analysis (PCA) (26, 27) and independent component analysis
(ICA) (28), have been introduced to extract synergies, non-
negative matrix factorization (NMF) is a better choice (29, 30)
due to its non-negative constraint for all the matrices (the
raw matrix and the obtained matrices). A few works have
demonstrated that NMF can be used to extract muscle synergies
from multi-channel sEMG signals in upper limb muscles during
motion tasks (31), even to obtain activation patterns of muscle-
tendon units and time-vary coefficient curves from high-density
sEMG signals during dynamic motion tasks (32).

Inspired by muscle synergy, different types of MUs might
also be manifested as specific oscillation synergy patterns. In
other words, the synergistic recruitment mechanism should be
manifested with coordinated activation of muscle groups and
of different types of MUs in individual muscles. Hence, we
assumed sEMG frequency components or oscillations might also
be recruited with a synergistic pattern for normal motor function,
whereas motor dysfunction of CP may affect the organization
patterns of oscillation components. To this end, we recorded
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the sEMG signals from biceps brachii (BB) and triceps brachii
(TB)muscles of the upper limbs during infant crawling, extracted
sEMG oscillations and analyzed their synergy patterns to explore
the abnormal organization of sEMG oscillations in CP.

METHOD

Participants
Under the approval of children’s hospital of Chongqing medical
university, 17 infants with typical development (TD, 11.4 ±

1.7 months, 12 males and 5 females) and 12 infants with
cerebral palsy (CP, 22.3 ± 5.5 months, 9 males and 3 females)
were recruited in this study. Cerebral palsy infants were
collected from the department of rehabilitation center in the
children’s hospital of Chongqing medical university. The TD
infants were recruited from local child health clinics. The
inclusion criteria for CP infants included: (1) all CP infants
were under the age of 3 years old; (2) crawling continuously
on their hands and knees during the test; (3) no other
diseases that lead to motor function deficits according to the
historical records. The TD infants were born at term with
normal birth weight and had no neurological impairment.
To make sure all subjects can crawl continuously on hands
and knees, the Gross Motor Function Measure (GMFM-
88) was conducted before experiments. Informed consent
forms were obtained from participants’ legal guardians before
experiments.

Experimental Protocol
The infants were encouraged to crawl at their own pace from one
end of a mat (360 × 120 cm) to the opposite side. Valid crawling
cycle sequence requires infants to crawl continuously on hands
and knees more than four cycles. Before the experiment, infants
crawled on the mat several minutes to warm up.

As the major activated muscles of the upper limb during
crawling, bilateral BB and TB were selected for sEMG recording.
After disposable surface electrodes were attached to the muscle
belly and bandaged to reduce motion artifacts (Figure 1), sEMG
signals were collected using a sEMG system (ME6000T8, Mega
Electronics Ltd, Finland) with a 15–500Hz bandwidth and a
1,000Hz sampling rate.

FIGURE 1 | Experiment setup of markers and sEMG electrodes.

To specify the crawling phase, 14 markers were attached on
the bony landmarks of the bilateral wrist, elbow, shoulder, hip,
knee, ankle, the right spine scapula, and the trunk, respectively
(Figure 1). The kinematic data of infants were recorded at 100
frames/s by a 3D motion capture system (Raptor-E, Motion
analysis corporation, USA) with six high-speed digital cameras.
Kinematic data and sEMG data were stored in a desktop
computer and a laptop computer respectively synchronized
offline.

Data Analysis
As shown in Figure 2, to study the organization of sEMG
oscillations during crawling, multivariate empirical mode
decomposition (MEMD) was employed to extract the multi-scale
myoelectric oscillations, and non-negative matrix factorization
(NMF) was used to analyze the patterns of synergistic
organization within sEMG oscillations. Then, the recruitment
coefficients within each refined crawling phase were evaluated.

Pre-processing
Firstly, the valid data of more than four consecutive crawling
cycles were segmented from raw signals, and sEMG for the BB
and TB of both sides and kinematic data were simultaneously
recorded (see Figure 3). Then, the valid sEMG signals were
processed with a zero-lag high-pass filter (4th order Butterworth
filter, 20Hz). Then, a 50Hz notch filters were adopted to remove
power frequency noise.

Oscillation Extraction With MEMD
EMD is a fully data-driven analysis approach which self-
adaptively decomposes a non-linear and non-stationary signal
into several intrinsic mode functions (34). However, for multi-
channel signals, applying EMD to each channel could produce
a different number of misaligned IMFs. Rehman et al. (35)
proposed the MEMD method to extend EMD to multivariate
signal decomposition. They treated n-variable time series as n-
dimensional vectors and employ the spherical coordinate system
to project n-dimensional vectors along different directions in (n-
1)-dimensional space, and the mean value of the envelopes of
these n-dimensional projection sequences is obtained as the local
mean of multiple time series. AfterMEMDdecomposition, the n-
dimensional raw signal {v (t)}Tt=1 = {v1 (t) , v2 (t) , · · · vn (t)} can
be decomposed into d layers multivariate IMFs hi(t) and residual
r(t), which can be described as

v (t) =

d
∑

i=1

hi (t) + r (t) (1)

The IMFs obtained after MEMD analysis have the same number
for each channel and orderly align scales across channels (35).

Referred literature (16), we firstly concatenated the valid
sEMG signal segments from all subject as a 4-channel sEMG
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FIGURE 2 | Block diagram of the proposed oscillation synergy analysis framework.

FIGURE 3 | sEMG and kinematic recorded in infant crawling. (A) Diagram of the crawling cycle of left upper limb [Adapted from Patrick et al. (33)]; (B) Schematic of

the shoulder joint angle (AS); (C) Refined crawling phases, and the corresponding sEMG signals of bilateral TB and BB (LTB, left TB; LBB, left BB; RTB, right TB; RBB,

right BB;) of one crawling cycle for TD (left graph) and CP (right graph).

dataset D, which is shown as following formula:

D =







CH11 − CH12 − · · · − CH1j
...

CHi1 − CHi2 − · · · − CHij






(2)

where CHij is the ith channel of the valid sEMG signal segments
for the jth subject. Here, we recorded four channel sEMG signals,
and totally 29 subjects conducted the test; that is to say, i =

1, 2, 3, 4; j = 1, 2, . . . , 29. To reduce the mode mixing in
multivariate IMFs (36), 2-channel Gaussian white noise (with

the same length as D) were added to the 4-channel sEMG
dataset D to composite a 6-channel dataset. Then, the composite
dataset was decomposed by MEMD, which yield a total of 23
IMFs with aligned scales across channels, cycles and subjects.
Example of raw sEMG signals and their first nine IMFs of BB
in a crawling cycle are illustrated in Figure 4, of which the right
panel show the corresponding power spectra for raw sEMG
and IMFs. The frequency ranges of the first nine IMFs are
listed in Table 1, the frequency band ranges of IMFs decrease
orderly, and corresponding IMFs for different subjects are scale-
aligned.
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FIGURE 4 | Examples of decomposition results of a raw sEMG signal of BB from one TD subject. (Left panel) sEMG signal and its first nine IMFs, and (right panel)

corresponding power spectra of these IMFs.

TABLE 1 | Frequency ranges of first nine IMFs determined by 3dB bandwidth.

IMF 1 2 3 4 5 6 7 8 9

Frequency range (Hz) 284–500 183–352 127–252 81–189 52–116 34–69 23–41 16–24 4–18

Kinematics Data Preprocessing and Crawling Phase

Segmentation
Kinematics data were processed with a zero-lag low-pass filter
(4th order Butterworth filter, 4Hz) to remove high-frequency
noise. As shown in Figures 3A,B, crawling cycle phases was
determined with the z coordinates of the wrist (ZW) and the
shoulder joint angle (the joint angle in sagittal plane) (37).
Figure 3C showed the examples of segmentation from two
subjects during one crawling cycle. The squared of time derivative
of ZW (v2ZW , velocity squared) was applied to segment swing and
stance, and the crawling cycle begins with swing. A threshold of
v2ZW was set at 0.5 (m2/s2) to decide the onset of limb moving and
the end moment of a crawling phase (38). To refine the crawling
cycle in detail, the swing phase was divided into forward swing
phase (FSP) and backward swing phase (BSP) with the maximum
of ZW; and stance was divided into braking phase (BRP) and

propulsive phase (PRP) with the minimum of time derivative of
AS (wS).

Synergistic Recruitment Analysis of sEMG

Oscillations
As the frequency of IMF9 is below 20Hz and out of sEMG
frequency range (20–500Hz), the first eight IMFs are included for
oscillation recruitment analysis. Envelopes of the first eight IMFs
of each channel sEMG signal were extracted (Hilbert spectrum
and median filtering) and segmented into cycles according to
kinematics data. The envelopes were re-sampled into 200 points
for each cycle. The synergies of sEMG oscillation were extracted
with NMF, which decompose a non-negative matrix V into
two non-negative matrixes including a base matrix W and
corresponding recruitment coefficient matrix C (39). Here, eight
envelopes of IMFs resulted from a channel of sEMG within a
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crawling cycle composed the non-negative matrix V. The NMF
method can be described as following

V
m×n

= W
m×s

C
s×n (3)

In this study, the matrix of Vm×n represents the envelopes of m
IMFs (m = 8), and n is the sample number (n = 200). Each
column ofWm×s represents an oscillation synergy withm weight
factors (1 ≤ s ≤ m) , and s is the number of synergies. Each row
of Cs×n represents corresponding recruitment coefficients, which
shows how each synergy is modulated over time. To maintain
themodulation of information within oscillation synergies, C was
normalized to its maximum values of the crawling cycle.

The number of oscillation synergies was determined by
calculating the variation accounted for (VAF) between the
original matrix V and the reconstruction matrix V

′

= WC for
each s value (from 1 to 8) (40). VAF is calculated as follow

VAF = 1−
(V−V

′

)
2

V2
(4)

Here, the selection criteria were that the mean of VAFs was larger
than 95% and the increment of VAF was <1%.

Statistical Analysis
The recruitment coefficient values for each oscillation synergy
were averaged over 3–4 valid cycles for each subject. For each
TD infant or CP infant whose both side limbs were affected, as
the symmetric movement for left and right side, the oscillation
synergy and recruitment coefficient of sEMG signals recorded
from right and left BB and TB muscles have been averaged
firstly. In order to compare the recruitment pattern of each
oscillation synergy, independent sample t-test was applied on the
recruitment coefficients for each phase. The significance level was
set to 0.05. All the data were analyzed in SPSS 22.0 statistical
software (SPSS Inc., USA). In addition, Pearson’s correlation
coefficient (r) between any two oscillation synergies with the
same order number was calculated to assess the similarities
of oscillation synergy structures. Four kinds of r values were
calculated between same within-groups muscles (e.g., BB of TD1
vs. BB of TD2), between different within-groups muscles (e.g., BB
of TD1 vs. TB of TD2), between same between-groups muscles
(e.g., BB of TD1 vs. BB of CP1) and between different between-
groups muscles (e.g., BB of TD1 vs. TB of CP1).

RESULTS

All of the recruited infants in this study can crawl continuously
on hands and kneesmore than 4 valid cycles (TD, 4.9± 0.9 cycles;
CP, 5.9± 1.4 cycles). Their hands-and-knees crawling scores were
at least 44 (TD, 50.9 ± 3.3; CP, 63.7 ± 8.5) according to GMFM.
Although the crawling motor function scores of CP infants equal
or even exceeded TD infants (in this study) after rehabilitation
training, their motor development was indeed slower than that
of TD infants at the same age. CP infants exhibited abnormal
movement behavior and sEMG activities.

Three Stable Oscillation Synergies With
Low-, Medium- and High-Frequency
Ranges in Muscles
The mean VAF values acquired in the NMF decomposition of the
sEMG oscillations are shown in Figure 5. For bilateral BB and TB
muscles, the number of oscillation synergies (s) was chosen as 3
according to the selection criteria above.

Figure 6 shows the three oscillation synergies composed of
the IMFs with different weights for BB and TB in TD and CP
group. Each synergy of sEMG oscillation owned a dominant
frequency range. The main contributors of synergy1 were IMF1,
IMF2, IMF3, and IMF4, and their frequency ranged from 81
to 500Hz (see Table 1); synergy2 was dominated with IMF4,
IMF5 and IMF6, which located the frequencies from 34–
189Hz. Synergy3 was comprised of oscillations with much lower
frequency, IMF6 and IMF7, and the corresponding frequency
range was 23–69Hz. Furthermore, as listed in Table 2, the
Pearson’s correlation coefficient of synergy 1 was more than
0.883, which indicated that the composition of IMF1∼IMF8
exhibited high structural similarity for any paired muscles. The
composition of IMF1∼IMF8 in synergy 2 or synergy 3 showed
high similarity for the BB and TB of CP and/or TD group as
well, and corresponding correlation coefficients were more than
0.816 and 0.861, respectively. Altogether, there were three stable
oscillation synergies of sEMG for BB and TB both in CP infants or
TD infants crawling, and each synergy can be characterized with
sEMG oscillation composition (i.e., IMF) of specific frequencies.

Dynamic Recruitment of Oscillation
Synergies for Crawling Movement
The recruitment coefficient curves of sEMG oscillation synergies
are illustrated in Figure 7. During a crawling cycle, each of
those three oscillation synergies was dynamically recruited with
time-varied coefficient curves. It can be observed, either for TD
or CP infants, that they recruited the synergy 1 in BB with
a low level firstly, then the recruitment reached a peak level
in the second half crawling phase. Whereas the recruitment
strength of synergy 2 and synergy 3 reached a peak quickly at
the beginning of crawling cycle (i.e., FSP) and decreased then.
For the TB, both TD and CP infants almost synchronously
recruited those three synergies, and their activation level reached
a peak in the middle phase of crawling (i.e., BSP and BRP).
However, the motor dysfunction of CP affected the recruitment
of oscillation synergies for crawling movement both in BB and
TB.

The Impact of CP on the Recruitment
Pattern of Oscillation Synergies
To quantitatively evaluate the impact of CP on the recruitment
pattern of oscillation synergies, the amplitude of recruitment
coefficient curves was compared in the refined crawling phases
of FSP, BSP, BRP, and PRP. As shown in Figure 8, CP recruited
significant less synergy3 or low-frequency sEMG oscillations
in BB for slow contraction in FSP crawling (Figure 8C,
p = 0.023), and less synergy 1 or high-frequency sEMG
oscillations in TB for the fast contraction in PRP crawling
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FIGURE 5 | Mean VAF values corresponding to different number of oscillation synergies.

FIGURE 6 | Oscillation synergies extracted from 8 sEMG IMFs of BB and TB during one crawling cycle in two groups. (A) BB of TD group; (B) BB of CP group; (C)

TB of TD group; (D) TB of CP group.

(Figure 8D, p = 0.007). During the BSP (p = 0.007) and
BRP crawling (p = 0.006), CP maintained a high level of
synergy3 in BB, which revealed that the sEMG oscillations
with low-frequencies cannot be de-recruited effectively
(Figure 8C). Furthermore, during CP crawling in FSP
(p = 0.002) and BRP (p = 0.047), there was a significantly
higher activation level for synergy 2 in BB (Figure 8B), whereas
less synergy 2 was recruited in TB for BSP crawling (Figure 8E,
p= 0.029).

DISCUSSION

To deeply explore the effect of neuromuscular damage of CP on
the motor regulation, this study aimed to extract and evaluate
the oscillation synergy patterns from sEMG signals with MEMD
and NMF during infant crawling. The present work showed that
sEMG signals contained stable structures of oscillation synergy,
and the motor dysfunction of CP affected the recruitment of
oscillation synergies for crawling movement both in BB and TB.

Frontiers in Neurology | www.frontiersin.org 7 September 2018 | Volume 9 | Article 76027

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gao et al. Synergistic Recruitment of sEMG Oscillations

T
A
B
L
E
2
|
C
o
rr
e
la
tio

n
c
o
e
ffi
c
ie
n
ts

b
e
tw

e
e
n
o
sc
ill
a
tio

n
sy
n
e
rg
ie
s.

S
y
n
e
rg
y
1

S
y
n
e
rg
y
2

S
y
n
e
rg
y
3

T
D

C
P

T
D

C
P

T
D

C
P

B
B

T
B

B
B

T
B

B
B

T
B

B
B

T
B

B
B

T
B

B
B

T
B

T
D

B
B

0
.9
6
8
±

0
.0
0
3

0
.9
1
2
±

0
.0
1
5

0
.9
4
5
±

0
.0
0
3

0
.9
2
1
±

0
.0
1
5

0
.9
2
9
±

0
.0
0
6

0
.8
9
4
±

0
.0
1
5

0
.9
3
2
±

0
.0
1
0

0
.8
4
8
±

0
.0
3
8

0
.9
2
7
±

0
.0
0
6

0
.8
9
2
±

0
.0
1
1

0
.9
2
9
±

0
.0
1
0

0
.8
6
1
±

0
.0
2
1

T
B

0
.8
9
6
±

0
.0
1
3

0
.9
0
7
±

0
.0
1
4

0
.8
9
0
±

0
.0
1
2

0
.8
9
7
±

0
.0
1
2

0
.8
6
0
±

0
.0
2
2

0
.8
6
3
±

0
.0
1
1

0
.8
9
3
±

0
.0
1
0

0
.8
8
3
±

0
.0
6
1

0
.8
7
7
±

0
.0
1
1

C
P

B
B

0
.9
3
1
±

0
.0
1
7

0
.9
1
0
±

0
.0
1
3

0
.9
6
1
±

0
.0
0
4

0
.8
1
6
±

0
.0
5
3

0
.9
3
8
±

0
.0
0
5

0
.8
6
8
±

0
.0
1
8

T
B

0
.8
8
3
±

0
.0
1
4

0
.8
2
2
±

0
.0
2
1

0
.8
6
9
±

0
.0
1
1

D
a
ta
w
e
re
e
xp
re
s
s
e
d
a
s
m
e
a
n
±
s
ta
n
d
a
rd

e
rr
o
r.

Synergistic Recruitment of sEMG
Oscillations for Crawling Movement
Crawling requires multiple skeletal muscles to participate in the
regulation of limb joint flexion and extension. Muscles play
different roles and their contraction patterns also vary with
crawling phases. The results showed that the activation pattern
of muscles can be expressed as synergistic recruitment of multi-
scale sEMG oscillations. As shown in Figure 6, the activation
of BB or TB muscles during crawling can be represented
by the synergistic combination of the oscillation subsets with
different frequency ranges, i.e., high-frequency range (synergy1),
medium-frequency range (synergy2), and low-frequency range
(synergy3). Moreover, as shown in Figure 7, these synergistic
sEMG oscillations have been dynamically organized for infant
crawling movement. Both for BB and TB, the activation level
of high-frequency synergy (C1) keeps to a way of progressively
developing pattern, whereas the activation level of medium-
and low-frequency synergy (C2 and C3) reach a peak and then
descend gradually. These results follow the principle that the
recruitment of MUs has been typically graded (41) from slow to
fast during dynamic contractions (42) for joint movement, and
types of recruited MUs can be manifested as sEMG frequency
components (17, 18). In context, the observations in our study
suggest that, during the swing and stance of infant crawling,
the organization of MUs activation pattern in BB and TB can
be represented as synergistic sEMG oscillations, which have
been dynamically regulated for different contraction status and
crawling phase. Although there is some time delay for BB and TB
contraction due to their different role in crawling movement, the
coefficient curve for sEMG oscillations with high-, medium-, and
low-frequency are alternatively enhanced to a complementary
pattern among these synergies, which reveal that different types
of MUs have been coordinately recruited for limb movement in
crawling.

Crawling is a periodic movement of flexion-extension, in
which the upper limbs postures alternate with FSP, BSP,
BRP, and PRP successively. Meanwhile, BB and TB exhibit
alternating coordinate relaxation and contraction. During swing,
BB gradually contracts to achieve forward swing of upper limbs
in FSP; slow MUs are activated, and the recruitment strength
of synergy 2 and synergy 3 with lower-frequency range reach
a peak. However, TB presents some time delay in crawling
movement and kept extension/relaxation in FSP, and then begin
contraction to swing arm backward with fast developing of high-,
medium-, and low-frequency oscillations, andmedium- and low-
frequency oscillations reached their peak activations. To perform
backward swing, BB extends in BSP as slowMUs are de-recruited,
and the activation of high-frequency oscillations exceeded the
medium- and low-frequency ones. During stance, both BB and
TB are activated to response loading period, and fast MUs are
dominantly recruited accordingly to absorb the strike shock and
quickly stabilize the kinematic behavior of the joint. As shown
in Figure 7, the coefficient curve of synergy 1 (C1) maintains
a high level, whereas medium- and low-frequency oscillations
(C2 and C3) decrease gradually. In other words, more fast MUs
for high-frequency oscillations are activated to compensate the
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FIGURE 7 | Comparison of recruitment coefficient curves for three sEMG oscillation synergies and their performance in every refined phase for TD and CP group

during one crawling cycle. (A) BB of TD group; (B) BB of CP group; (C) TB of TD group; (D) TB of CP group. Red (C1), green (C2), and blue (C3) lines represent the

recruitment coefficient curves of synergy1, synergy 2, and synergy 3, respectively.

FIGURE 8 | The mean recruitment coefficient of three oscillation synergies from BB and TB in two groups. (A) synergy 1 of BB; (B) synergy 2 of BB; (C) synergy 3 of

BB; (D) synergy 1 of TB; (E) synergy 2 of TB; (F) synergy 3 of TB. *0.01 < p < 0.05, **0.005 < p < 0.01, ***p < 0.005.
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de-recruited slow MUs in stance phase of crawling, which is
a mechanism for CNS timely and moderately regulating the
recruitment of different types of MUs in muscles for joint
movement (42).

Abnormal Recruitment Pattern of
Oscillation Synergies Under Motor
Dysfunction of CP
Motor dysfunction of cerebral palsy originates from brain injury
leading to a series of neurological changes, such as reduced
input to the CNS (43) and decreased activity of descending
inhibitory system (44). Subsequently, motor dysfunction of CP is
also manifested as abnormal myoelectric activities and abnormal
movement postures due to the affected cerebral nerve in motor
area (2). As illustrated in Figures 6, 7, although three types of
synergistic sEMG oscillations with different frequency band are
presented during CP infants crawling, there are some changes
in recruitment coefficient curves, which suggest that brain injury
of cerebral palsy affected the MUs recruitment. Generally, CNS
employs a synergistic strategy to organize the multi-element
motor system within different scales to simplify motor control
(45), and the combination ofmotor elements with certain weights
constructs motor synergy. However, motor dysfunction of CP
mainly alters the organization of medium- and low-frequency
oscillations of sEMG, especially the intensity proportion between
medium- and low-frequency oscillations. Compared with TD, CP
infant recruits less low-frequency oscillation (synergy3) during
FSP crawling, whereas TB activates less medium-frequency
oscillation (synergy2) during BSP crawling. It was reported that
the impaired CNS of CP is unable to effectively drive low-
threshold MUs (46–48), our results reveal that the inadequate
recruitment of low-thresholdMUs induced insufficient activation
of low- and medium-frequency oscillations when BB and TB of
CP infants perform flexion contraction in FSP and BSP crawling,
respectively.

In addition to the aforementioned insufficient activation of
low- or medium-frequency sEMG oscillations, it also can be
observed that motor dysfunction of CP is unable to de-recruit
those undesired sEMG oscillations. As shown in Figures 7, 8,
for the BB of CP infants, the coefficient curves of synergy3 (C3)
and synergy2 (C2) hold on an abnormal level in BRP crawling,
and coefficient curve of synergy3 (C3) also keep on an abnormal
level in BSP crawling. These results suggest that, during BRP and
BSP, CP infants are unable to inhibit their low-frequency and/or
medium-frequency sEMG oscillations in the BB muscles. It is
accepted that different MU owns different intrinsic contraction
properties, and slow MUs are activated for slow contraction
and low-intensity activities, while fast MUs are recruited for
fast contraction and high-intensity activities (49, 50). Central
nervous system selectively recruits desired MUs and de-recruit
undesired MUs to produce synergistic contraction pattern, and
organizes different types of MUs at a certain activation level
can improve the synergistic control for muscular activities and
joint movement. For CP infant, motor dysfunction of injured
motor nerve or declined activity of descending inhibitory system
(31) cause an insufficient organization of different types of

MUs; another observation showed that spastic diplegic CP
loss the ability to fully recruit and optimally activate available
motor units because of their central activation failure (39). So,
our work reveal that, the synergistic recruitment of MUs can
be characterized with the coordinated activation of different
types of MU with appropriate proportion, and CP cannot
effectively regulate the activation intensity among different
MUs.

Synergistic Organization of Muscle
Functional Units Exhibited by Oscillation
Synergy Patterns
The regulation of motor function by the CNS is a synergistic
organization of multiple function units, which has been widely
confirmed in muscle groups. Variety of methods have been used
to evaluate the intensity, spectrum or frequency component
of sEMG activity. However, it is still difficult to analyze
the organization patterns of different types of MUs. Multi-
scale oscillation modes in sEMG signals are a combination
of MU activation and organization patterns. The results of
this study demonstrated that the synergistic organization of
different oscillations in sEMG signals can be used to evaluate
the organization of MUs. In fact, sEMG frequency components
are related to physiological state and have been applied to
assess motor function under different conditions (13, 14,
23). However, these studies only provided an overall effect
of frequency components in a certain period of time. We
decomposed sEMG signals of individual muscles into multi-
scale oscillations, which is correlated to MU recruitment pattern,
and then, utilized NMF to extract oscillation synergies and
their recruitment coefficient curves. The time-varying curves
represent how CNS regulate oscillation synergies over time,
which provided a novel insight to better understand the
dynamic process of the CNS organizing different types of
MUs.

The results of this study showed that three stable multi-
scale oscillation synergies might be underlying intrinsic structure
of EMG activity during crawling. The coefficient curves can
further reveal the abnormal MU activation patterns during
crawling in CP. Some researchers have found that motor
dysfunction of CPmanifested as abnormal entropy of multi-scale
oscillations of sEMG activities in CP, and a major peripheral
cause of these abnormalities is abnormal MU recruitment (10,
16). This study revealed that motor dysfunction of CP also
manifested as abnormal recruitment of oscillation synergies.
For CP, the motor dysfunction is caused by original brain
injury and resulted abnormal descending motor commands. It
can be observed that, in CP group, the oscillation synergies
with low-frequency range (synergy3) were insufficiently recruited
when BB muscles performed slow contraction during swing,
on other hand, they insufficiently de-recruited the oscillation
synergies with low-frequency range (synergy2 and 3) when
BB extended and relaxed in BSP and BRP. These results
suggested the recruitment coefficient curves of oscillation
synergies can exhibit the time-varying organization of sEMG
oscillations modulated by CNS, and the curves also can
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reveal abnormal motor control caused by neuromuscular
deficits.

CONCLUSION

This is the first time to adopt the synergistic mechanism
of motor function to characterize the recruitment pattern
of sEMG oscillations. The present results reveal that, the
myoelectric activities of a muscle can be manifested as sEMG
oscillation synergies with different frequency ranges, and motor
dysfunction of CP degrade the synergistic recruitment of sEMG
oscillations due to the impaired CNS regulation and destroyed
MU/muscle fiber. Our preliminary work suggests that, the
synergistic organization for motor control can be manifested
rather than muscle group, there are oscillation synergies in
sEMG signals. Also, the time-varying coefficient curve of sEMG
oscillation synergies is a potential index to evaluate the abnormal
recruitment of different types of MUs affected by CP disorders.
In future work, we would further investigate the sEMGoscillation
synergies in othermuscles of upper and lower limbs, and the body
size of test sample should be enlarged to verify the influence of CP
on the synergistic recruitment of sEMG oscillations.
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Hands-and-knees-crawling is an important motor developmental milestone and a unique

window into the development of central nervous system (CNS). Mobility during crawling

is regularly used in clinical assessments to identify delays in motor development.

However, possible contribution from CNS impairments to motor development delay is

still unknown. The aim of this study was to quantify and compare inter-limb muscle

synergy and kinematics during crawling among infants at a similar developmental age,

however, clinically determined to be typically developing (TD, N = 20) infants, infants at

risk of developmental delay (ARDD, N = 33), or infants with confirmed developmental

delay (CDD, N = 13). We hypothesized that even though all of the groups are at a

similar developmental age, there would be differences in kinematic measures during

crawling, and such differences would be associated with CNS impairment as measured

by electromyography (EMG) features. Surface EMG of eight arm and leg muscles

and the corresponding joint kinematic data were collected while participants crawled

on hands and knees at their self-selected velocity. Temporal-spatial parameters and

normalized Jerk-Cost (JC) function (i.e., smoothness of movement) were computed from

the measured kinematics. The inter-limb muscle synergy and the number of co-activating

muscles per synergy were measured using EMGs. We found that the infants with CDD

demonstrated higher normalized JC values (less movement smoothness), fewer muscle

synergies, and more co-activating muscles per synergy, compared to infants with TD (p

< 0.05) and ARDD (p < 0.05). Furthermore, the normalized JC values were correlated

(p < 0.05) with the number of co-activation muscles per synergy. Our results suggest

a constrained neuromuscular control strategy due to neurological injury in infants with

CDD, and such constrain may contribute to the reduced movement smoothness in

infant crawling.

Keywords: infant crawling, EMG, muscle synergy, kinematics, motor developmental delay
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INTRODUCTION

Mobility during hands-and-knees crawling is regularly used in
clinical assessments to benchmark delay in motor development
because it is an early example of skillful gross motor
ability. Clinically, a delay can be quantified relative to typical
achievement of gross motor milestones (1), but the extent
to which such delay is related to CNS impairment cannot
be ascertained. Kinetic and kinematic measures during 4-beat
crawling can enrich infant assessment and provide a non-invasive
window to CNS function.

Previous studies have measured kinetics and kinematics
separately in infants crawling. Early studies used film recording
to investigate the movement pattern of limbs while crawling
from a small sample size of infants (N = 7) (2), while more
recent studies used 3D motion capture to examine inter-limb
coordination patterns during crawling. The typical pattern of
crawling is with diagonal limbs tending to move together and
ipsilateral limbs alternating during crawling on hands and knees
(3, 4). Quantitative data concerning muscle activities in human
infant crawling is sparse. It has been briefly described as triceps
brachii activation throughout the stance phase of the arm during
crawling, with quadriceps femoris activated during swing phase
of the leg (4). Our previous work demonstrated that muscle
co-activations of lower extremities during crawling is correlated
to their motor skill development (5), but it only quantified the
coordination between antagonist muscles of a single limb, which
provides little information about the inter-limb coordination
across arm and leg muscles during hands-and-knees crawling.

Muscle synergy analysis is a valid tool to explore the
coordination across multiple muscles during locomotion (6),
and reflects the CNS control for locomotion as a linear
combination of several muscle activation patterns in order
to complete functional tasks. Crawling is a self-motivated
rhythmic locomotion that involves controlled inter-limb muscle
coordination for movement. Thus, quantifying inter-limbmuscle
synergy during crawling has the potential to explore the
underlying factors related to movement abnormalities related to
the changes/impairments of the CNS.

Muscle synergy extraction based on surface electromyography
(sEMGs) and non-negative matric factorization (NMF)
algorithm has been used to explore muscle coordination during
locomotion in neurotypical populations as well as a number of
pathologic conditions, such as stroke (6), spinal cord injury (7),
or cerebral palsy (8). For instance, Dominici et al. concluded
that two basic muscle synergies are retained through infant
development, and are augmented by new synergies during the
development of independent walking (9). Steele et al. found that
individuals with CP (age range 3.9–70 years) demonstrated fewer
synergies during gait compared with unimpaired individuals
(8), similar to the constrained muscle control found in adults
following stroke (6, 10). Muscle synergy analysis has also been
used to quantify the kinetic feature during hand-and-knee
crawling. Chen’s study (11) extracted two alternative intra-limb
muscle synergies during crawling in healthy adults, with one
related to the stance phase and the other related to the swing
phase (11). However, muscle synergy analysis during infant

crawling has not been systematically investigated either in typical
development or neurological disorders.

In order to fill the gap, we simultaneously measured kinetic
(i.e., EMG) and kinematic features during crawling with typically
developing infants and infants with different risks or severities of
developmental delay. Because smoothness and well-coordinated
movement are typical features of well-developed human motor
behavior (12), we expected that kinematic output, such as the
smoothness of movement, would be altered in infants with
developmental delay. At the same time, we hypothesized that
CNS control in infants with developmental delay is also impaired,
and would be manifested in the metrics of muscle synergy.
Finally, we hypothesized that CNS development/impairment
would be associated with the movement smoothness.

METHODS

Participants
We recruited 47 atypically developing infants (age range 8–43
months, 14.21 ± 6.91 months; female: N = 20, male: N =

27) from the Department of Rehabilitation Center, Children’s
Hospital of Chongqing Medical University. Infants visited the
hospital to follow up for the risk of developmental delay (13)
due to: (1) premature delivery (gestational age<37 weeks); (2)
low birth weight (<2,499 grams), regardless of gestational age;
or (3) lack of oxygen to the brain during birth. The age of
one infant was 43 months, which is far from the distribution
of other infants’ age and therefore was excluded as an outlier.
The remaining 46 infants (age range 8–32 months, 12.78 ±

4.87 months) were included for data analysis in this study. In
addition, 20 developmental-age-matched healthy infants (age
range 8–15 months, 10.95 ± 2.25 months; female: N = 9,
male: N = 11) were recruited from local child health clinics
as “typical development (TD)” controls. They were all full-term
with normal birth weight, and no diagnosed health conditions
per parent report. All infants were studied at the Department of
Rehabilitation Center, Children’s Hospital of Chongqing Medical
University. The experiments were performed with informed,
written consent of the parents or guardians of the infants, and the
procedures were approved by the ethics committee of Children’s
Hospital of Chongqing Medical University (approval number:
065/2011). Partial results (i.e., crawling velocity, cadence, stance
phase time) from the 20 TD infants have been published before
(5).

Clinical Assessment
For all of the participants, the Gross Motor Function Measure
(GMFM-88) and Gesell Developmental Scale were assessed by
specialist physicians. GMFM-88 measures gross motor function,
including lying and rolling, crawling and kneeling, sitting,
standing, walking activities. Each function is scaled in the range
of 0–100 (1). Gesell Developmental Scale is a set of developmental
metrics, which assesses the ages and stages of development in
young infants (1).

For the infants whowere atypically developing, developmental
age (see the column 2 in Table 1) was assessed by the gross
motor development part of Gesell Scale, and compared to
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TABLE 1 | Participant demographic information.

Biological age

(months)

Delayed age*

(months)

Scale score of five dimensions assessed by gmfm-88 (%) Number of strides for

analysis

Lying Crawling & kneeling Sitting Standing Walking

TD (N = 20) 10.95 ± 2.25 0.30 ± 0.73 90.35 ± 4.12 50.90 ± 4.48 83.05 ± 5.44 28.3 ± 17.77 11.65 ± 8.09 10.35 ± 2.70

ARDD (N = 33) 11 ± 2.29 0.30 ± 0.63 90.63 ± 5.06 50.48 ± 7.38 83.72 ± 4.70 24.57 ± 17.61 9.42 ± 9.69 6.54 ± 3.33

CDD (N = 13) 20.15 ± 5.85 8.65 ± 4.47 91.23 ± 2.71 57 ± 10.16 83.38 ± 10.37 30 ± 24.63 15.84 ± 14.12 9.07 ± 2.49

*Determined by Gesell Developmental Scale.

their biological age to calculate delayed age (in months) for
each of the infants (see the column 1 in Table 1). Infants
with a developmental delay of ≤3 months were classified
as at risk of developmental delay and those with a delay
larger than 3 months as having confirmed developmental
delay. This resulted in 13 infants (age: 20.15 ± 5.85 months,
delayed age: 8.65 ± 4.47 months) with confirmed developmental
delayed (CDD), and 33 infants (age: 11 ± 2.29 months,
delayed age: 0.3 ± 0.63 months) who were at risk of
developmental delay (ARDD). Although the biological age of
CDD group is larger than that for TD and ARDD groups
(F = 41.50, p < 0.01), the developmental age of all the
groups are similar (F = 0.072, p = 0.790), demonstrating
clinically comparable level of motor skills in all the 3 groups.
Demographic information for all participants is summarized in
Table 1.

Protocol
Infants first became acquainted with the laboratory by spending
time on a floor crawling mat (size 360 × 120 cm). Next,
they were encouraged to crawl from one end to the other
in response to toys or mother’s calling. After training, infants
wore only diapers. A motion capture system (Raptor-E, Motion
Analysis Corporation, USA) was used to record kinematic
movement of infants at 100 frames/s with six high-speed
digital cameras. Fourteen reflective markers were taped over the
shoulder (lateral to the acromion), elbow (lateral epicondyle),
wrist (ulnar styloid process), hip (posterior superior iliac spine),
knee (lateral joint line), ankle (lateral malleolus), and trunk
(scapula).

Simultaneously, a surface EMG system (ME6000, Mega
Electronics Ltd, Finland, bandwidth of 15–500Hz) with pre-
amplified EMG sensor units was used to measure sEMG from
bilateral arm and leg muscles, including: left and right triceps
brachii (LTB, RTB) and biceps brachii (LBB and RBB), quadriceps
femoris (LQF and RQF) and hamstring (LHS and RHS) (see
Figure 1) by differential electrodes. All of the sEMGwas sampled
at 1 kHz and synchronized with kinematic data recording by
a TTL pulse. In addition, movements of participants were
videotaped.

A valid trial was defined as straight crawling without stop
or deviation, for at least three complete, consecutive strides. In
each of the participants, the number of valid trials collected
varied from 2 to 16 (on average 6.80 ± 3.60), depending on the
cooperation of the infant.

Data Analysis
The first and last strides of each valid trial were excluded from the
following data analysis.

Kinematic Analysis

Temporal-spatial parameters
Missing raw kinematic data was constructed using cubic spline
interpolation. Then they were low-pass filtered (6Hz) with a
zero lag 4th-order Butterworth filter to remove high frequency
noise. In the current study, we defined the left wrist as the start
of the crawl cycle, similar to the heel strike in gait analysis).
The temporal-spatial crawling parameters were accordingly
calculated from the 3D trajectories of the left wrist, including
velocity, cadence, and stance phase time (normalized to crawling
cycle, SPT), using the methods previously reported (5).

Movement smoothness
Movement smoothness was quantified by evaluating the
endpoint jerk-cost (JC) at the left wrist, defined as:

JC =
T
∫
0

(

d3s

dt3

)2

dt (1)

where T is the total duration of a crawling cycle, and s is the
position vector of the limb segment. JC measures the change
between acceleration and deceleration during movement. A
smaller JC value reflects fewer such switches and thus indicates
a smoother movement (14).

For each crawling cycle of each subject, the endpoint JC of the
wrist marker was calculated in anterior-posterior (AP) direction
(JCx), medial-lateral (ML) direction (JCy), and vertical (VT)
direction (JCz) using Equation (4). To account for variations in
crawling velocity and to standardize results, all JC values were
normalized by the total duration of each crawling cycle, T. Per
subject, the normalized JC were then averaged across all valid
crawling cycles.

EMG Analysis

EMG preprocessing
The sEMG signals were band-pass filtered (10–400Hz) using
a 4th-order, zero-phase Butterworth digital filter and a 50Hz
digital notch filter for reducing the power interference. The
filtered sEMG signals were then divided into segments according
to the initiation of each crawling cycle. Segments of filtered
sEMG signals were subsequently demeaned, rectified, and low-
pass filtered with a zero lag 4th-order low-pass (9Hz) to
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FIGURE 1 | (A) The placement of the EMG electrode and reflective markers; (B) Snapshot of data collection.

extract envelope. The envelope was then normalized to its peak
value during each trial, then resampled from 0∼100% of the
crawling cycle at the 1% step increase. Finally, the normalized
envelopes of per participant and per muscle were averaged
cross all valid cycles. The averaged envelopes composed the
EMG data matrix (8 × 101) for an individual subject during
crawling.

Non-negative matrix factorization
A non-negative matrix factorization was applied to each
EMG data matrix to extract muscle synergies. This method
decomposed the measured EMG data matrices (M) into two
components, spatial structure (W, termed the muscle synergies)
and temporal structure (C, or relative activation of those
synergies), as expressed by the following equation:

Mm×t
= Wm×nCn×t

+ ε

In this equation, W is an m × n matrix where m is the
number of muscles (in this study m = 8) and n is the
number of muscle synergies. C is an n × t matrix where t
is number of time points (101 across the normalized crawling
cycle in this study). ε represents the error between the measured
EMG data (M) and the reconstructed EMG from W and C.
Thus, each column of W represents the relative weighting
of muscles in each synergy, and each row of C represents
the activation level of each synergy over the gait cycle. Non-
negative matrix factorization was repeated within an iterative
optimization, which minimized the sum of squared error
between the activations calculated by W × C and the measured
EMG data (15). A typical decomposition result is shown in
Figure 2.

Determining the number of muscle synergies
We made no a priori assumptions regarding the number of
synergies (s) that would be needed to adequately reconstruct the
original EMG. The goodness of fit of the data reconstruction
was quantified by the variance accounted for (VAF, ranging 0–
1), defined as VAF = 1 − ||ε||2/||M||2 (6, 16, 17). This is a
similarity metric that is similar to Pearson correlation coefficient
(r2). However, VAF is a more stringent criterion than r2 because

it evaluates both shape and magnitude of the measured and
reconstructed curves (17).

For each subject, we determined the least number of muscle
synergies that satisfied the following 2 criteria: (1) the overall
reconstructed EMGs accounted for at least 90% of the variance
across all muscles (VAF>90%); and (2) each reconstructed
EMGs accounted for >75% VAF of the measurement from
the corresponding single muscle. These criteria are considered
conservative to ensure goodness of reconstruction (6). An
example of raw EMG signals and the corresponding muscle
synergy was shown in Figure 3.

Quantifying the structure of muscle synergy
As an indicator of selective control and coordination, the number
of co-activating muscles contributing to a single muscle synergy
was calculated. Specifically, muscles in a synergy were defined
as active if their normalized weight values exceeded 0.3 (18).
Therefore, for each muscle synergy, the number of co-activating
muscles varied from 8 (i.e., all the recorded muscles co-activated)
to 1 (i.e., no co-activations). The number of co-activatingmuscles
per synergy was calculated for each subject.

Statistical Analysis
Group difference in the number of muscle synergies, the number
of co-activating muscles per synergy, and temporal-spatial
parameters were compared using one-way ANOVA (factor
of group) with post-hoc Bonferroni corrections for multiple
comparisons.

In addition, a 2-way repeated measures ANOVA (within-
subjects factor of directions (AP, ML, and VT), and group) was
used for the dependent variable of the normalized JC value.
A Bonferroni corrected post-hoc test was used if there was a
significant effect.

Spearman rank correlation tests were performed for
correlating kinetic indices (the number of co-activating muscles
per synergy) and kinematics (normalized JC values). Significance
level was set at p < 0.05. All analyses were performed using the
statistical software package SPSS18.0. The results that showed a
significant effect were marked with an asterisk in all figures.
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FIGURE 2 | A schematic illustrating how muscle synergies are linearly combined to generate muscle patterns recorded as EMG signals. Each of the two muscle

synergies (W) shown is represented as an activation weight across muscles (i.e., m1–m8) and activated through multiplication by a time-dependent coefficient(C). The

EMG envelopes resulting from the activations of individual synergies are then summed together (black lines) to reconstruct the recorded EMG (red dashed line).

FIGURE 3 | (A) Example of raw sEMG collected from an infant with typical development (left figure) and the corresponding four muscle synergy identified by NMF

algorithm (right figure); (B) Example of raw sEMG collected from an infant with confirmed development delay (left figure) and the corresponding one muscle synergy

extracted by NMF algorithm (right figure).

RESULTS

Comparison of the Temporal-Spatial
Parameters and Normalized JC Values
A one-way ANOVA found no significant effect of group for the
temporal-spatial parameters of velocity (F = 0.445, p = 0.643),
cadence (F = 0.289, p = 0.750), or stance phase time (F = 0.716,
p= 0.493).

The 2-way repeated measures ANOVA showed a significant
effect of group (F = 7.591, p < 0.01, observed power = 0.936)
and direction (F = 34.301, p < 0.01, observed power = 1) on
the normalized JC value. No significant interaction between these
2 factors was found (F = 1.24, p = 0.297). Post-hoc test using
Bonferroni corrections revealed higher normalized JC values in
the CDD group (averaged across AP, ML, and VT directions)
compared to TD (p < 0.01) and ARDD (p < 0.01) groups
(shown in Figure 4A). Further post-hoc testing showed higher

normalized JC values (averaged across TD, ARDD, and CDD
groups) in the VT direction compared to AP (p < 0.01) and ML
(p < 0.01) direction (shown in Figure 4B).

Comparison of the Number of Muscle
Synergies in Infant Crawling
Of the 20 infants with TD measured, two synergies were
identified in 60% (12 subjects), three synergies in 35% (7
subjects), and four synergies in 5% (1 subject). Of the 33 infants
with ARDD measured, 45.5% (15 subjects) demonstrated two
synergies, and 54.5% (18 subjects) three synergies. Of the 13
infants with CDD measured, 15.38% (2 subjects) demonstrated
only one synergy and 84.62% (11 subjects) showed two synergies.
There was a significant effect of group in the number of muscle
synergies (F = 7.194, p= 0.002, observed power= 0.923) during
crawling. A significantly reduced number of synergies (1.846
± 0.375) was identified in infants with CDD during crawling
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FIGURE 4 | (A) Group difference between typical developing infants (TD), infants at risk of developmental delay, and infants with confirmed developmental delay

(CDD) in the movement smoothness quantified by the averaged JC value across directions; (B) Direction difference between anterior-posterior (AP) direction,

medial-lateral (ML) direction, and vertical (VT) direction in the movement smoothness quantified by the averaged JC value across groups. **indicates p < 0.01.

FIGURE 5 | Comparison of the number of muscle synergies extracted with

crawling data from typical developing infants (TD), infants at risk of

developmental delay (ARDD), and infants with confirmed developmental delay

(CDD). *indicates p < 0.05.

compared with infants with TD (2.450 ± 0.604) and ARDD
(2.450 ± 0.503), respectively. No significant differences were
identified in the number of synergies observed between infants
with TD and ARDD (Figure 5).

Comparison of the Number of
Co-activating Muscles Per Synergy
There was a significant effect of group in the number of co-
activating muscles per synergy (F = 4.889, p = 0.011, observed
power = 0.786). As shown in Figure 6, co-activation levels were
significantly higher in the CDD group (5.730± 1.129) compared
to the TD (4.979 ± 0.501, p = 0.03) and ARDD (4.95 ± 0.787, p
= 0.012) group, respectively. There was no significant difference
between TD and ARDD group (p > 0.05).

Correlations of Muscle Synergy and
Kinematic Indices
There were no significant correlations found between the number
of co-activating muscles per synergy and crawling velocity,
crawling cadence or normalized stance phase time.

FIGURE 6 | There was a significant difference in the number of co-activating

muscles per synergy between typical developing infants (TD), infants at risk of

developmental delay (ARDD), and infants with confirmed developmental delay

(CDD). *indicates p < 0.05.

Figure 7 reports the number of co-activating muscles per
synergy plotted vs. normalized JC value. The number of co-
activating muscles per synergy was significantly correlated (r =
0.330, p = 0.007) to the normalized JC value for all infants
(Figure 7).

DISCUSSIONS

Reduced Movement Smoothness During
Crawling in Infants With Developmental
Delay
During crawling on hands and knees, there was less smoothness
in the movements of infants with known developmental delay. A
prevailing hypothesis is that the central nervous system (CNS)
is organized so that motor output strategy minimizes critical
parameters of trajectory such as jerk (19) in order to achieve
an accurate and smooth movement. This hypothesis has been
supported by observations that those with neurological diseases
affecting their CNS, such as stroke (20) and cerebral palsy (21),
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FIGURE 7 | Correlations between the number of co-activating muscles per

synergy and the normalized JC values for all 66 infants including typical

developing infants (TD), infants at risk of developmental delay (ARDD), and

infants with confirmed developmental delay (CDD).

have less smoothness than control participants. Extending to the
current study, our results of decreased smoothness in infants
with developmental delay could be the result of a suboptimal
motor command, due to the delayed or impaired development
of the CNS (22). On the other hand, the main role of the
CNS in generating smooth trajectories has been questioned by
other authors (23) who suggested that the intrinsic properties
of muscle tissue may be sufficient to produce smooth motion.
Considering this hypothesis, the results of decreased smoothness
could be related to muscle property differences, such those
reported after neurological injury (24). Our results indicate that
reduced smoothness of movement in CDD group could also
emerge as a result of increased muscle co-activations, which is
supported by the significant correlations between the number of
co-activating muscles and the normalized JC value (Figure 7).

With regards the temporal-spatial parameters, the lack of
significant difference between groups was likely because the
recruited infants from the 3 groups are at a similar developmental
age, as indicated by the clinical assessments.

Constrained Neuromuscular Control
Strategy During Crawling in Infants With
Developmental Delay
The number of muscle synergies identified in infants with CDD
was lower compared to infants with TD and ARDD (Figure 5).
The reduced number of muscle synergies were consistent with
the results during walking in individuals with cerebral palsy
(8), Parkinson’s disease (25), and stroke (6), suggesting impaired
muscle coordination. Our results suggest that infants with
developmental delay, who were at high risk of cerebral palsy,
have less degrees-of-freedom when coordinating muscles and

show a constrained neuromuscular control. It is hypothesized
that muscle synergies may represent a library of motor subtasks,
and the CNS can flexibly combine them to produce complex and
natural movements (26). Damage to the CNS, such as in cerebral
palsy or stroke, disrupts this combination process, resulting in
recruiting less subtasks (synergies). This points to the importance
of intact descending control to appropriately recruit a full library
of muscle synergies.

Our study also showed that the number of co-activating
muscles per synergy was higher in infants with CDD compared
to infants with TD and ARDD (Figure 6), which implies
more muscle co-contractions during crawling in infants with
developmental delay. Increased co-contraction of muscles was
also shown in individuals with spinal cord injury (7), cerebral
palsy and stroke during locomotion (27, 28). Previous studies
have shown that a reduction in the descending signals resulted
in higher co-activation of muscle (29). Therefore, higher muscles
co-activations could indicate that developmental delay in the
CDD group was the result of a brain injury in the infant’s early
life, even if it was not apparent from brain imaging.

Clinical Implications
Our results demonstrated that muscle synergy indices (such as
the number of synergies and co-activating muscles per synergy)
and kinematic output (normalized JC value) were significantly
different between infants with confirmed developmental delay
(CDD) and typical developing infants (TD), whereas these same
variables did not show a significant difference between typical
developing infants (TD) and infants at risk of development delay
(ARDD). This result validates the concordance between metrics
derived in this study and the clinical indicators of motor delay
(i.e., Gesell Developmental Scale), suggesting that synergy indices
and kinematic output variables are linked in a meaningful way
with developmental delay on a group level. However, the group
level for these more sensitive metrics can be extended to further
understanding of individual participants, especially those at risk
for developmental delay later in life.

These results of muscle synergy and movement smoothness
analysis during crawling imply a different control strategy
between infants with different risks or severity of developmental
delay. In spite of their risk factors, the ARDD group was
not found to be clinically delayed in the less sensitive clinical
measures, but the presence of CNS impairment could become
apparent in more sensitive metrics such as muscle synergy
assessment, which may be useful in future for the development
of more CNS specific rehabilitation plans.

Limitations and Opportunities for Future
Work
This study quantified and compared the inter-limb muscle
synergy and kinematics during crawling between typically
developing infants and infants with developmental delay
in a novel way. There are a few limitations that need
to be acknowledged. Quadrupedal locomotion requires the
coordinated behavior of many muscles of the arms, legs, and
trunk (30). Because of the small size of infant’s limb and the
difficulty of measuring locomotion in infants, we measured four
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primary muscles from each of the arms and legs. In future work,
the experimental protocol will be improved by measuring more
skeletal muscles such as the gluteus maximus, abdominal and
back muscles.

The cohorts of this study were matched on developmental
age in order to collect data when they all had similar functional
control over their body in order to successfully perform hands-
and-knees crawling. However, due to motor delays there was a
significant difference in the chronological age of the infant groups
studied where the CDD group was older. If the hypotheses being
tested were relative to the chronological or biological age of the
CNS, the TD group could have been matched on chronologic
age—but it would be anticipated that in that case an older cohort
of TD children would have at least similar, if not better, skill in
crawling than the current typical group, and thus may result even
bigger difference between TD and CDD groups.

We also recognize that there are other potential confounding
factors, such as different risk factors and etiologies for
development delay (premature delivery, low birth weight, or
lack of oxygen during birth), which may indicate different
mechanisms for development delay. However, the investigation
of these confounding factors is beyond the interests of the current
study.

There are the two extreme data points in Figure 7, showing 2
CDD participants who demonstrated both very high JC values
and co-activation of all or nearly all of the recorded muscles
during crawling, which was visually different than the cluster
formed by the TD group. One of them was identified by SPSS
boxplot (use a step of 1.5× interquartile range) as an “out” value.
If we exclude this data point and the correlation within the rest
65 infants was still significant (r = 0.298, p = 0.016).). These
two extreme data points suggests that they always activate all the
muscles and lack the movement smoothness. Some of the infants
with confirmed development delay (CDD) will likely receive
a diagnosis of cerebral palsy, which is characterized with by
the presence of spasticity and decreased selective motor control
(31, 32). A future study should include follow-up with the CDD
andARDD infants, in order to ascertain if features of the crawling
data are predictive of a later diagnosis of cerebral palsy.

Even considering the limitations above, the potential for
assessing motor function and understanding of the state of the
neuromuscular system during crawling period is an exciting
prospect. Assessment of pathological impairment in motor
control during walking can be conducted by gait analysis, which
is been widely used in clinics and typically provides quantified

metrics of kinematics and muscle activity (33). For those infants
without walking ability, movement abnormalities are typically
assessed by screening tests or visual analysis of their movement
quality. This study demonstrates that utilizing more quantitative
metrics can reveal impaired neuromuscular strategies before the
onset of walking skills and provide insight for development of
rehabilitation of protocols during infants’ crawling stage. The
long-term goal of this work is to develop a standardized measure,
similar to gait analysis, that can assess motor function in infant
crawling on an individual basis.

CONCLUSION

This study demonstrated that infants with developmental delay
demonstrated fewer inter-limb muscle synergies, increased
number of muscles that co-contracted, and reduced movement
smoothness during crawling on hands and knees, compared
to typical developing infants. In addition, more co-activations
across inter-limb muscles are considered to be attributable to
the reduced movement smoothness in infant crawling. These
muscle coordination and kinematic output deficits revealed
impaired neuromuscular strategies during the infant crawling
stage.
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Neuromuscular Electrical Stimulation (NMES) is commonly used in motor rehabilitation

for stroke patients. It has been verified that NMES can improve muscle strength and

activate the brain, but the studies on how NMES affects the corticomuscular connection

are limited. Some studies found an increased corticomuscular coherence (CMC) after a

long-term NMES. However, it is still unknown about CMC during NMES, as relatively pure

EMG is very difficult to obtain with the contamination of NMES current pulses. In order

to approach the condition during NMES, we designed an experiment with short-term

NMES and immediately captured data within 100 s. The repetition of wrist flexion was

used to realize static muscle contractions for CMC calculation and dynamic contractions

for event-related desynchronization (ERD). The result of 13 healthy participants showed

that maximal values (p = 0.0020) and areas (p = 0.0098) of CMC and beta ERD were

significantly increased immediately after NMES. It was concluded that a short-termNMES

can still reinforce corticomuscular functional connection and brain activation related to

motor task. This study verified the immediate strengthen of corticomuscular changes

after NMES, which was expected to be the basis of long-term neural plasticity induced

by NMES.

Keywords: neuromuscular electrical stimulation, corticomuscular coherence, event-related desynchronization,

functional connection, brain activation

INTRODUCTION

Neuromuscular Electrical Stimulation (NMES) is a technique that can generate contractions of
paralyzed or paretic muscles by applying electrical current on these muscles (1). Confidential
evidence has shown that NMES can increase the maximal voluntary contraction and neural
activation assessed by the twitch interpolation technique (2). Poststroke rehabilitation with NMES
has been found to effectively prevent muscle atrophy, improve muscle strength (1, 3) and
coordination (4). More recently, a study published in Nature Communications revealed the efficacy
and mechanisms of brain-actuated functional electrical stimulation via the clinical performance
and functional connectivity (5).

The influence of NMES onmuscles is easy to understand as NMES is directly applied to muscles.
However, the effect in muscles is not enough to realize motor rehabilitation, since the brain plays an
important role in motor recovery. Phenomena of event-related desynchronization/synchronization
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(ERD/ERS) of EEG could be found at the frontal and parietal
areas when limb movements are executed or imagined, which
shows a power decrease/increase in the alpha (8–13Hz) and beta
(14–30Hz) bands (6). The ERD pattern was used to indicate
brain activation and sensitive to different movement speed on
action observation (7). What’s interesting is that NMES applied
on muscles also affects Electroencephalogram (EEG) oscillatory
(8), which verifies that NMES on the muscles can activate related
brain area, and this activation pattern represented by ERD is
similar to that under active movement. Lo et al. used near
infrared spectroscopy (NIRS) to investigate cortical activation
of different-intensity electrical stimulations (9). These studies
evaluated the efficacy of NMES from the view of brain activation.

Moreover, corticomuscular coherence (CMC) is a method
to estimate neural coupling via Magnetoencephalogram (MEG)
or EEG and Electromyogram (EMG). CMC has drawn much
attention since it was first discovered by Conway et al. (10).
For now, we have known that the strength of CMC is adjusted
or affected by attention (11), muscle contraction type (12, 13),
muscle contraction force (14, 15), muscle fatigue (16, 17),
and motor learning (18). As CMC statistically calculated the
synchronization between the brain and muscle signals, it reflects
functional connection between the motor cortex and muscles
(19). Due to this, CMC of stroke patients has obtained some focus
since Mima et al. first revealed that there was significant EEG-
EMG coherence only in the unaffected side of the brain (20).
Except for the amplitude of CMC, the location is still different
for stroke patients and the control. Rossiter et al. found that the
CMC of stroke patients were located more widely than healthy
people (21). It may verify that brain regions in the contralesional
hemisphere were involved to help recover motor functions.
In 2017, the result of an interesting study demonstrated that
although CMC was reduced in the acute phase after stroke, there
was no significant change within the following 4 ∼ 6 weeks
despite of improved behavioral performance (22). Maybe CMC
is not an efficient marker for early recovery of motor function
following stroke. The continuous learning of CMC should help
us make CMCmore sensitive to the rehabilitation of stroke.

CMC calculation provides a new perspective to study the
efficacy of NMES. Lai et al. have done interesting and important
exploration on the EEG-EMG coherence affected by long-term
sensory electrical stimulation (23, 24). They found that the
electrical stimulation causing no muscle contraction and pain
increased the EEG-EMG coherence. The accurate CMC during
NMES is also necessary as it provides direct information on
the effect of NMES, and reflects transient neural plasticity.
However, it is difficult to obtain pure EMG, as the stimulation
current contaminates EMG severely. Therefore, we designed
an experiment to capture the immediate effect of a short-
term NMES and analyzed both functional connection and brain
activation via CMC and ERD respectively. We hypothesized that
CMC could be strengthened immediately after NMES.

MATERIALS AND METHODS

Participants and Experiments
Thirteen healthy right-handed people (5 females and 8 males;
mean age: 21.2 ± 1.1 years old) from Tianjin University

participated in the study. The participants had no history
of neuromuscular disorders. The study was approved by the
ethics committee of Tianjin University. All participants signed
informed consent in advance.

The experiment consisted of one long voluntary session
(300 s) and three stimulated plus short voluntary sessions (100 s
+ 100 s) shown in Figure 1A. There was a rest for 5 to 10min
between two sessions. There were 30 trials in the long voluntary
session, and 10 trials in each short voluntary session. Each
voluntary trial started with 2-s wrist flexing, followed by 5-s wrist
flexion holding and 1-s relaxing, and ended up with 3-s resting
(Figure 1B).

Before the experiment, the participant was seated in front
of a 17” monitor with his right arm on the table (Figure 2A).
His right hand was relaxed to make a slight fist. During the
experiment, the participant followed the instructions on the
monitor (generated by Psychtoolbox within Matlab) to complete
each trial: he flexed his right wrist when “Flexing” showed up
in the monitor, held the flexed wrist for the “Holding” part,
and then relaxed and rested according to the cue (Figure 1B).
There was a time label at the onset of holding part. During
the stimulated session, the participant was seated still like in
the voluntary session and his/her wrist was relaxed without
any voluntary movement. His/Her right flexor carpi radialis
(FCR) was electrically stimulated for 100 s, with the stimulation
frequency at 30Hz and the peak current varying from 7 to
13mA for different participants (mean: 10.9 ± 2.3mA). The
wrist of the participant was kept flexed under this stimulation.
The stimulation intensity was determined at each participant’s
tolerance with an actual wrist flexion before the first stimulated
session: the peak current was raised from 5mAby 1mA each time
until the participant felt uncozy and asked to stop (the maximal
current), and the peak current used in the stimulated session
was 1mA less than the maximal current. The maximal current
is listed individually in Table 1.

Data Recording and Preprocessing
EEG and surface electromyography (sEMG) data were acquired
simultaneously with a Neuroscan SynAmps2 amplifier,
hardware-filtered in the frequency range of 0.015–250Hz
and sampled at 1,000Hz. EEG data was recorded with 64
electrodes located in the positions following the 10/20 system
(Figure 2B), while sEMG data was recorded by 2 Ag/AgCl
electrodes placed on the surface of FCR (2-cm interelectrode
distance). The recorded data were referenced to the nose and
grounded at the prefrontal lobe. An additional 50-Hz notch filter
was used during data acquisition.

Data analyses were performed using Matlab R2017b
(MathWorks, MA, USA), with the toolbox EEGLAB (Swartz
Center for Computational Neuroscience; http://sccn.ucsd.edu/
eeglab/). The acquired EEG data at C1, C3, and C5 electrodes
were re-referenced using the surface Laplacian technique (25)
according to (1), (2), and (3).

VC1′ = VC1 − (VFC1 + VCP1 + VC3 + VCz) /4 (1)

VC3′ = VC3 − (VFC3 + VCP3 + VC1 + VC5) /4 (2)

VC5′ = VC5 − (VFC5 + VCP5 + VC3 + VT7) /4 (3)
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FIGURE 1 | Experimental protocol. (A) The complete experiment, consisting of one long voluntary sessions (300 s) and three stimulated plus short voluntary sessions

(100 s + 100 s). (B) One trial in voluntary sessions, with 1-s wrist flexing, 5-s flexion holding, 1-s wrist relaxing and 3-s wrist resting.

FIGURE 2 | Experiment scene. (A) The photo of one participant during the experiment. (B) Channel locations according to the international 10–20 system.

where VI (I = C1, FC1, CP1, Cz, C3, FC3, CP3, C5, FC5, CP5,
or T7) indicates the EEG data acquired at the electrode I and
VC1′ , VC3′ , and VC5′ were the re-referenced EEG data at C1,
C3, and C5. Then a 4th-order zero-phase Butterworth filter was
used to obtain filtered EEG data (5 ∼ 45Hz) and sEMG data
(20∼250Hz). The full-wave rectified sEMG were obtained as the
absolute value of the data.

There were 30 trials (in the long voluntary session) before and
10× 3 trials (in the short voluntary sessions) after the stimulated
sessions (Figure 1A). A 3072-point data part started from the
time label was extracted from the “Holding” part of each trial

(Figure 1B). The re-referenced C1 EEG, C3 EEG, C5 EEG, and
sEMG data before or after stimulation consisted of 30 data parts.
Each data part was further divided into 6 segments of 512 points.
In total, 180 data segments were used to calculate the EEG-EMG
coherence.

CMC
Denoting the fast Fourier transform (FFT) of the ith segment of
C3 EEG by Xi(f ) and of the ith segment of rectified sEMG by
Yi(f ), the coherence (Coh) at frequency f was estimated as:
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TABLE 1 | The peak current and C3 EEG-EMG coherence for individuals.

No. of

participant

Peak current

(mA)

Max of Cohs Area of Cohs

Before After Before After

1 7 0.0018 0.0235 0.0018 0.0337

2 13 0.0019 0.0143 0.0019 0.0162

3 9 0.0005 0.0115 0.0005 0.0188

4 13 0.0122 0.0131 0.0231 0.0138

5 10 0 0.0322 0 0.0389

6 13 0.0210 0.1029 0.0376 0.1542

7 11 0.0107 0.0148 0.0107 0.0227

8 10 0.0026 0.0069 0.0034 0.0095

9 15 0 0 0 0

10 10 0.0029 0.0068 0.0029 0.0122

11 10 0.0005 0 0.0005 0

12 8 0.0008 0.0016 0.0008 0.0016

13 13 0 0 0 0

The values in bold indicate increases after NMES.
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where i = 1, . . . ,N is the number of data segments available for
analysis, and ∗ denotes complex conjugate. The use of 512-point
segments with a sampling rate of 1,000Hz provided a 1.95Hz
frequency resolution in the coherence spectra. The C1 and C5
EEG-EMG coherence was calculated in the same way.

The confidence level for the coherence (26) was calculated as:

CL (α) = 1− (1− α)
1

N−1 (5)

whereN is the number of data segments and α is the desired level
of confidence. We considered coherence to be significant above
the 95% confidence limit (α = 0.95). As there were 180 segments
for coherence calculation, CL was 0.0166 according to (5).

The significant coherence Cohs used in this study was
calculated as (6). This calculation neglected the small differences
of CMC below CL. The maximal value of Cohs was also used to
indicate the strongest corticomuscular connection before or after
NMES.

Cohs
(

f
)

=

{

Coh
(

f
)

− 0.0166 if Coh
(

f
)

> 0.0166
0 else

(6)

The mean curve of significant coherence Mcoh was obtained
by (7).

MCoh

(

f
)

=
1

K

K
∑

i=1

Cohs
(

f
)

(7)

where K is the total number of participants.

Area of Significant Coherence
The C1, C3, and C5 EEG-EMG coherence values below CL were
set to zero according to (6). Only the significant coherence was
used in the area calculation. The area of significant coherence
(ACoh) within 5 ∼ 45Hz can be used to estimate the strength of
corticomuscular coupling (18), and it was calculated as:

ACoh =

45Hz
∑

f=5Hz

Cohs
(

f
)

(8)

Center of Gravity for Frequency
To detect the frequency shifts of the coherence spectrum, we
calculated the Center of Gravity for the frequency (CoGf ), that is,
the frequency at which coherence is concentrated and balanced.
The CoGf of C3 EEG-EMG coherence was obtained by (9).

CoGf =

n
∑

i=1
fi · Cohs

(

fi
)

n
∑

i=1
Cohs

(

fi
)

(9)

where i=1,. . . ,n indicates the number of significant bins with its
respective frequency fi and coherence Cohs.

Median Frequency of sEMG
In order to exclude the effect of muscle fatigue on CMC, we
also calculated the median frequency of sEMG before and after
the stimulated sessions. The median frequency is defined as the
frequency that divided the spectrum into two equal areas. It has
been widely used in the studies related to muscle fatigue (27, 28).
The median frequency of sEMG during different sessions were
calculated and compared to indicate the fatigue states in this
study.

ERD
The re-referenced and filtered EEG data at C3 channel was
downsampled to 200Hz for ERD analysis. The event-related
spectral perturbation (ERSP) method allowed us to inspect the
spectral power changes of EEG in the view of time-frequency
domain. Therefore, ERSP was calculated as:

ERSP
(

f , t
)

=
1

n

n
∑

i=1

(

Fi
(

f , t
)2

)

(10)

where i = 1, . . . , n is the number of trials, and Fi
(

f , t
)

is the
spectral estimation of the ith trial at frequency f and time t
(29). Short-time Fourier transform (STFT) was used to perform
time-frequency analysis with a Hanning window. The number
of windows was set to 200 with the length of 512 points. ERSP
was calculated using 30 trials of data and the data length was
10 s for each trial, with 2 s before movement onset and 8 s after
(1-s flexing, 5-s holding, 1-s relaxing and 1-s resting). Baseline-
normalized ERSP was calculated relative to the baseline period
(before movement onset).
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In order to investigate the difference of brain oscillation before
and after NMES, the ERD at C3 within 1 s after the movement
onset was extracted as follows:

ERD
(

f
)

=

1s
∑

t=0s

ERSP
(

f , t
)

(11)

The first second after movement onset indicated the wrist flexion
period, excluding the holding part.

Statistical Analysis
All the features mentioned above before and after NMES,
including the maximal values and areas of Cohs, CoGf , and ERD
values, were compared with Wilcoxon signed rank test. The
significance was calculated two-tailed. For the CoGf , only data
with significant coherence both before and after NMES were
considered.

RESULTS

CMC
We calculated the EEG-EMG coherence of all the subjects. The
C3 EEG-EMG coherence before (blue line) and after (red line)
NMES of each participant is listed in Figure 3. There were
some participants who did not present significant EEG-EMG
coherence before or after NMES, such as P9, P11, P12, and P13.

The grand average of significant coherence is shown in
Figure 4. The peak values of mean coherence after NMES were
larger than those before NMES in Figures 4A–C. It was obvious
that NMES had different influence on these three channels
of coherence. The maximal values and areas of significant
coherence (listed inTable 1) were calculated for further statistical
analysis. The Wilcoxon signed rank test was used and the
result indicated in Table 2 that the maximal value and area of
significant coherence for C3 EEG-EMG coherence after NMES
was significantly larger than those before NMES (Max: p =

0.0020; Area: p = 0.0098). Although areas of C1 and C5
EEG-EMG coherence after NMES also increased, there was no
significant difference.

There were only 9 participants who showed significant C3
EEG-EMG coherence both before and after NMES. The CoGf of
these 9 participants, its average and median values were listed in
Figure 5. The average frequency was increased after NMES (Avg.:
from 23.7 to 27.8Hz), but there was no significant frequency shift
after NMES according to the result we obtained.

The median frequencies of sEMG are shown in Figure 6. The
one-way repeated measure ANOVA was used to compare these
median frequencies, and no significant difference indicated that
the fatigue state of the muscle remained the same given the
sensitivity of the median frequency.

ERD
Figure 7 shows the averaged ERSP of C3 EEG before and after
NMES. There were obvious ERD patterns (blue area in the figure)
in both mu (8∼13Hz) and beta (14∼30Hz) rhythms at the
beginning and end of the movement part. The average ERD of

certain areas are listed in Table 3. It shows that the ERD patterns
seems to be weakened in the “holding” part between 1 and 6 s
and the strongest ERD patterns occur mainly in mu rhythms.
However, these changes are not significant according to the result
of a two-way (time: Flexing, Holding, and Relaxing; frequency:
mu and beta rhythms) repeated measure ANOVA.

In order to investigate and compare the brain activation before
and after NMES, we calculated the ERD values of C3 EEG at
different frequency bins according to (5). The Wilcoxon signed
rank test was used, and the significant differences between two
conditions were shaded by gray blocks in Figure 8. The blue and
red lines represented normalized ERSP before and after NMES
respectively. The ERD patterns were significantly stronger in
three sub-beta frequency bands.

DISCUSSION

This study for the first time compared the coticomuscular
coherence before and immediately after short-term motorial-
level NMES. We designed an experiment especially for exploring
the effect of NMES on the functional connectivity between
the brain and muscles. It was clear that the coticomuscular
coherence during active movement after NMES was significantly
stronger than that before NMES. The result illustrated that NMES
strengthened the interaction between the brain and muscles. We
also calculated the ERD patterns before and after NMES. The
analysis indicated that the ERD patterns were strengthened after
NMES. It seems that NMES has a positive influence on the
interaction between the brain and muscles and the activation of
the brain.

There are many studies working on the rehabilitation effect
of NMES. Most of them focus on the comparison of features
after NMES training. For example, Sota et al. compared some
gait parameters, such as the time of 10-m walking and range of
motion for ankle joint, pre- and postintervention to investigate
the characteristics of NMES responders (30). CMC combined
with clinical functional test was used to estimate the effect of
sensory NMES with motor training (24). Although the effect
remained after NMES is very important, the instantaneous body
response during NMES is also a key point of NMES studies.
However, as the stimulation pulses affected and contaminated
EMG severely, the studies on the effect during NMES are
limited to comparing the features free of EMG, such as walking
speed (31), ERD (8) and steady-state somatosensory evoked
potential (SSSEP) (32) of the brain, and muscle thickness
(33). These studies analyzed the effect of NMES on the whole
body, or the brain and muscles separately, without considering
motor control based on the interaction between the brain and
muscles.

The mechanism of motor control can be revealed by
CMC. The application of NMES was certain to cause extreme
contamination of sEMG, so we had to compare the CMC
before and after NMES to guarantee the data quality and result
reliability. There was no studies on the effect-remaining time of
NMES, but we believed that the effect of NMES should be the
strongest immediately after NMES except for the effect during
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FIGURE 3 | EEG-EMG coherence. P1 to P13 indicate Participant 1 to Participant 13, the blue line indicates coherence before NMES, while the red line indicates

coherence after NMES.

FIGURE 4 | Grand average of significant EEG-EMG coherence. (A) C5 EEG-EMG coherence. (B) C3 EEG-EMG coherence. (C) C1 EEG-EMG coherence. The blue

line indicates significant coherence before NMES, while the red line indicates significant coherence after NMES.

NMES. In this case, the stimulated session and the voluntary
session after stimulation was divided into three equal parts
individually. We tried to use this paradigm to approach the
condition during NMES.

Although CMC has been widely studied and used (34, 35),
its generation is still under debate. From the perspective of
coherence, a significant coherence between two subsystems can
be achieved by either one-way information flow, reciprocal
communication, or the third rhythm generator affecting both
(36). The result of our study verified that there were at least
two directions of information flow: one was from the brain to

muscles, sending cortical motor command; and the other one
was from muscles to the brain, caused by NMES. As SSSEP was
observed during NMES (32), the regulation of brain activities
by NMES was determined. It was possible that the significantly
increased CMC was the residual effect of SSSEP.

An interesting detail found in this study was that NMES
increased C1, C3, and C5 EEG-EMG coherence average, but
only the change in C3 EEG-EMG coherence was significant.
It was deduced that the variation of coherence caused by
NMES could be used to locate the cortex area in charge of the
executed movement. However, whether this change varied with
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TABLE 2 | Maximal value and area of significant coherence.

Max of Cohs Area of Cohs

Before After Before After

C5 EEG & EMG 0.0050 ± 0.0073 0.0058 ± 0.0123 0.0067 ± 0.0097 0.0118 ± 0.0329

C3 EEG & EMG 0.0042 ± 0.0064 0.0175 ± 0.0274* 0.0064 ± 0.0114 0.0247 ± 0.0408*

C1 EEG & EMG 0.0056 ± 0.0087 0.0101 ± 0.0162 0.0082 ± 0.0135 0.0127 ± 0.0188

The values in bold are with significant difference compared to the values before NMES. *p < 0.05.

FIGURE 5 | CoGf for EEG-EMG coherence. Avg. indicates average.

FIGURE 6 | Average of median frequencies of sEMG. Before: the long

voluntary session before NMES sessions. After1/2/3: the short voluntary

session after the 1st/2nd/3rd stimulated session. After: the voluntary session

composed of the three short voluntary sessions after the stimulated sessions.

the location of NMES or the contracted muscles was unclear in
the present study.

Higher CMC often indicated better communication between
the brain and muscles, and higher beta band CMC indicate good
motor performance (37). Moreover, beta-band CMCwas deemed
to be related to motor tasks and performance (12, 14, 15, 38).
Our main result based on Table 2 was that NMES increased

FIGURE 7 | Averaged time-frequency ERSP at C3 before (A) and after

(B) NMES. The vertical blue line indicates the onset of the wrist flexion.

C3 EEG-EMG coherence, which was consistent with the newly
published work of Pan et al. (24). They reported an increase
of CMC after 4-weeks sensory electrical stimulation. Neural
plasticity was believed to contribute to CMC increase of stroke
patients, and it was crucial for learning new motor tasks (39).
For healthy participants in our study, they did not learn new
movement, but learn new muscle contraction patterns (NMES).
This should also be regarded as learning a new motor task.
According to Hebbian and homeostatic plasticity (40, 41), the
CMC change after a short-term NMES reflected a transient
plasticity and it could go back to former state without repetition
of stimulation.

CMC could be affected by many factors. In this study, muscle
contraction type and muscle force were not considered because
the tasks in voluntary sessions were the same. The wrist flexed
according to the clues on the screen and the data processed were
extracted during the “Holding” time. The muscle contraction
type in this study was static contraction, and the muscle forces
in all the voluntary sessions, which was to keep the wrist flexed,
should be the same. No precision requirement guaranteed that
there was no difference in the attention (11). The median
frequency of sEMGwas analyzed to indicate no significant fatigue
states. Therefore, the muscle contraction type, muscle force,
attention and muscle fatigue were excluded.

The significant CMC is not a universal phenomenon for
every person(18, 24). In our study, there were 4 participants
who did not show significant CMC before or after NMES. Their
peak currents of NMES (10, 15, 10, and 13mA) were relatively
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TABLE 3 | Average of ERSP.

Flexing (0∼1s) Holding (1∼6s) Relaxing (6∼7s)

Before Mu Rhythms −0.5288 ± 1.2947 −0.4502 ± 1.1315 −0.5898 ± 1.6852

Beta Rhythms −0.2408 ± 0.4363 −0.0512 ± 0.3655 −0.2084 ± 0.4829

After Mu Rhythms −0.6906 ± 1.5691 −0.3181 ± 1.4277 −0.8435 ± 2.5954

Beta Rhythms −0.4706 ± 0.6950 −0.1424 ± 0.4601 −0.2812 ± 1.0246

FIGURE 8 | The comparison of power changes of C3 EEG. The blue line indicates ERSP before NMES, while the red line indicates ERSP after NMES. The gray blocks

present statistic significant differences (p < 0.05) between ERSP before and after NMES.

larger (the median value of these currents is 10mA). A larger
stimulation current meant this participant was less sensitive to
the stimulation, and he needed stronger stimulation to generate
muscle contraction. Therefore, we deduced that the participant
with insignificant CMC was most likely insensitive to NMES.
However, this should be further verifiedwith specifically designed
experiments.

ERD patterns was often used to indicate the brain activation.
In Figure 7, the weakening of ERD occurred for the holding
part. This phenomenon was also shown in (42). This implied
that the maintenance of the current sensorimotor state was
related to the ERD rebound. The reasons may be that holding
a posture was easier to execute than dynamic motor tasks,
and the brain completed the static motor task in a low
activation level. In order to obtain an obvious ERD variation,
we compared ERD of data within the first second after the
movement onset. It was found that NMES could induce
a stronger ERD pattern. Vidaurre et al. found a stronger
ERD pattern during NMES than motor imagery (MI), and
successfully used NMES-induced patterns to decode MI (43).
In our study, ERD was also strengthened in beta band after
NMES. The beta ERD was linked more closely to the primary
motor cortex (44, 45). Therefore, the significant cortical beta
rhythm suppression showed brain activation related to motor
control.

NMES can increase the excitability of human corticospinal
(CS) pathways to muscles, which is usually estimated by the
motor evoked potentials (MEPs). Mang et al. compared theMEPs
induced by transcranial magnetic stimulation (TMS) before and
after an NMES session and found that the MEP amplitude after
NMES was significantly larger than that before NMES (46, 47).

Whether the increase in cortical excitability is due to changes
at the spinal level, cortical reorganization, or both is unclear.
Such increases can strengthen CS pathways damaged by injury or
disease and result in enduring improvements in function (1, 48).
Here, we hypothesized that the higher CMC and stronger ERD
were caused by the strengthened CS pathways.

Our study did not consider the effect caused by stimulation
intensities. A study of healthy participants found that
higher NMES current intensities led to greater sensorimotor
network activation, and this may be attributable to increased
attentional/pain processing and to increased sensorimotor
integration (49). Therefore, a maximal tolerated intensity was
used in our study in order to obtain significant changes of
CMC before and after NMES. However, it was still unclear
that how the stimulation intensity influenced CMC or
whether there was a difference in CMC for sensory- and
motorial-level NMES. The comparison will help understand
the function of the sensorimotor circuit. The experiment
was designed to approach the condition during NMES,
but how CMC changed during NMES still needed to be
verified.

The study was undertaken among healthy participants.
Therefore, whether NMES would have the same effect in stroke
patients needs to be studied further. However, NMES has been
used to strengthen CS pathways in stroke rehabilitation (1, 48). It
is hypothesized that the strengthened CS pathways will induce a
stronger CMC in stroke patients. To be noted, the EEG channels
of stroke patients for CMC calculation should be different from
that of the healthy, as the lesion may be located at C3 or C4.
In order to explore the effect of NMES on patients’ CMC, some
stroke patients will be recruited for the future work.
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CONCLUSION

As the estimation of NMES real-time efficacy was limited to
brain or bodies separately, we designed an experiment with
NMES and repeated voluntary wrist flexion, to explore the
instantaneous effect after NMES. The result showed a significant
increase of EEG-EMG coherence caused by NMES. Additionally,
the significant increment was located in C3 position. The
strengthened beta ERD indicated stronger brain activation
related to motor function after NMES. Therefore, NMES not
only strengthened brain activation, but it also induced a stronger
connection between the brain and muscles. This result will
help understand NMES-induced corticomuscular connection,
and predict the body change during NMES. Based on transient
neural plasticity, the immediate change after NMES lays a basis
of long-term neural rehabilitation.
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We investigated the muscle alterations related to spasticity in stroke quantitatively using

a portable manual spasticity evaluator.

Methods: Quantitative neuro-mechanical evaluations under controlled passive elbow

stretches in stroke survivors and healthy controls were performed in a research laboratory

of a rehabilitation hospital. Twelve stroke survivors and nine healthy controls participated

in the study. Spasticity and catch angle were evaluated at 90◦/s and 270◦/s with the

velocities controlled through real-time audiovisual feedback. The elbow range of motion

(ROM), stiffness, and energy loss were determined at a slow velocity of 30◦/s. Four-

dimensional measures including joint position, torque, velocity and torque change rate

were analyzed jointly to determine the catch angle.

Results: The catch angle was dependent on the stretch velocity and occurred

significantly later with increasing velocity (p < 0.001), indicating position dependence of

spasticity. The higher resistance felt by the examiner at the higher velocity was also due

to more extreme joint position (joint angle) since the spastic joint was moved significantly

further to a stiffer elbow position with the higher velocity. Stroke survivors showed smaller

ROM (p < 0.001), higher stiffness (p < 0.001), and larger energy loss (p = 0.005).

Compared to the controls, stroke survivors showed increased reflex excitability with

higher reflex-mediated torque (p < 0.001) and at higher velocities (p = 0.02).

Conclusion: Velocity dependence of spasticity is partially due to joint angle position

dependence with the joint moved further (to a stiffer position where higher resistance was

felt) at a higher velocity. The “4-dimensional characterization” including the joint angle,

velocity, torque, and torque change rate provides a systematic tool to characterize catch

angle and spasticity quantitatively.

Keywords: quantitative evaluation, spasticity, muscle, stroke, catch angle
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INTRODUCTION

Spasticity commonly occurs to patients with neurological
disorders, such as stroke, spinal cord injuries, cerebral palsy, and
multiple sclerosis (1–3). Spasticity is commonly defined as “a
motor disorder characterized by a velocity-dependent increase
in tonic stretch reflexes (muscle tone) with exaggerated tendon
jerks, resulting from hyperexcitability of the stretch reflex, as one
component of the upper motor neuron syndrome” (4). Various
measures have been used to assess muscle alterations associated
with spasticity. In the clinical setting, spastic muscle is usually
evaluated by grading the resistance to a passive stretch felt by
a clinician using the Ashworth scale, modified Ashworth scale
(MAS), and the Tardieu scale (5, 6). The felt resistance could be
caused by a combination of neural and peripheral origins (i.e.,
biomechanical factors such as soft tissues or muscle properties).
Although clinical measures are convenient to use, they can be
subjective, less sensitive and qualitative rather than quantitative
to varying degrees. Previous studies raised questions about
reliability of the MAS assessment of spasticity (7–10). On the
other hand, the Tardieu scale has been suggested as an alternative
to the MAS (6). Tardieu scale is conducted using various stretch
velocities rather than using only one velocity in MAS while
determining the angle where resistance felt (i.e., catch angle). It
is argued that the MAS does not differentiate between spasticity
and contracture, while the Tardieu scale is not confounded by
the presence of contracture (11). However, with either scale,
determinations of the catch angle (12, 13) and range of motion
(ROM) are influenced by stretch velocities and stretch force and
subject to errors in reading the joint angle during assessments.

A quantitative assessment with controlled passive stretches
is needed to improve the reliability of the clinical measures.
Well-controlled quantitative measures, based on motorized
mechanical perturbations and electrophysiological approaches,
are mostly used in laboratory settings (5, 14–16), but size and
ease-of-use issues limit their applications in clinical settings
(17–19). Several portable devices have also been developed
and spasticity evaluations were performed by deriving viscous
neuro-mechanical properties of the limb from passive movement
kinematics and joint reaction torques (19–22). However, those
measurements did not translate easily to the common clinical
assessments of ROM and catch angle. Reflex threshold measured
in joint angle during passive movement has been used effectively
to evaluate spasticity by investigating the onset of muscle
activation to applied disturbance (23–25).

In spite of the current development of spasticity
quantification, in clinical setting thus far, clinicians evaluate
spasticity based on how much resistance they feel as well as
where they feel the reactive resistance while manipulating the
joint quickly. The relation with regard to velocity dependence
between stretch-induced muscle activation onset and the
resistance (catch) felt by the clinicians in the stroke survivors
has not been investigated thoroughly. Furthermore, it is not
clear whether catch angle is also joint angle position dependent.
In other words, whether joint angle might play a role in the
increasing resistance felt by clinicians at a higher velocity and
being judged as velocity-dependent spasticity is uncertain. A

comprehensive but simple way considering stretch velocities,
reflex-mediated muscle torque and joint angle is needed to assist
clinicians understand the muscle alteration due to neurological
disorders and interventions. Therefore, the purpose of this study
was to introduce an innovative and quantitative way to depict the
spasticity according to the concept of Tardieu scale and further
examined the contribution of joint angle position dependence to
the catch felt by the examiner.

MATERIALS AND METHODS

Subjects
Twelve chronic stroke survivors (53.0 ± 8.5 years old, ten males
and two females) who had a stroke more than 1 year (9.3 ±

5.6 years) and nine healthy controls (51.4 ± 24.9 years old,
nine males) were included in this study. The stroke survivors
with elbow flexors spasticity were recruited in the study. The
subjects who had shoulder or elbow contractures were excluded
from the participation. Table 1 depicts the characteristics of
the stroke survivors. The healthy controls had no history of
neurophysiologic or musculoskeletal disorders. The study was
approved by the Institutional Review Board of Northwestern
University. All subjects gave written informed consent before the
experiment.

Instrumentation
The manual spasticity evaluator (MSE) used in this study was
set up as a portable device to assess spastic muscles. A torque
sensor (Transducer Techniques, CA, USA) and a hollow-shaft
potentiometer (Vert-X51, Contelec AG, Switzerland) comprising
MSE, were used to measure joint torques and joint positions
respectively (26, 27). Adjustable braces and supports were used
to position the forearm and upper arm properly with respect
to the MSE (Figure 1). Two mechanical stops were used to
restrict the moving range of device that prevents over-stretching
of the spastic joint. Biceps and triceps muscles activations were
monitored using surface EMG electrodes (Bagnoli-8, Delsys Inc.,
Boston, USA). The torque, position and EMG signals were

TABLE 1 | Characteristics of subjects.

Subject

No.

Gender Age

(years)

Years since

the onset

Hemiparetic

side

MAS

Sbj1 M 60 10 R 2

Sbj2 M 38 9 R 2

Sbj3 M 62 6 R 1

Sbj4 M 38 7 R 1

Sbj5 M 57 9 R 1

Sbj6 M 58 26 L 3

Sbj7 M 53 9 R 3

Sbj8 M 50 6 R 3

Sbj9 M 70 2 L 1

Sbj10 F 54 9 R 3

Sbj11 F 48 12 R 2

Sbj12 M 48 6 R 3
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FIGURE 1 | Experimental setup. The participant sat next to the MSE with 75◦

shoulder abduction. The participant’s upper arm and forearm were then

strapped onto the supporting braces with the elbow flexion axis aligned with

the MSE rotation axis. A torque sensor and a hollow-shaft potentiometer were

used to measure the joint torque and joint position, respectively. Surface EMG

electrodes were used to record EMG signals of biceps brachii and triceps

brachii.

sampled at 1,000Hz with a 16-bit resolution. A custom data
acquisition program was used to provide real-time audio and
visual feedback to help an examiner control the peak stretch
velocity and the peak stretch torque (terminal torque) (26).When
the examiner passively moved the subject’s forearm, the target
velocity and torque profile with boundary lines (e.g., ±10% of
target velocity or target torque), as well as the instantaneous
joint velocity and torque were displayed on the monitor. At fast
velocities (90◦/sec and 270◦/sec), the data acquisition program
provided audio feedback for controlling peak velocities during
passive stretching. At the slow velocity of 30◦/sec, audio feedback
was used to indicate that the designated torque limit had been
reached and to stop the passive stretching. By doing so, the
applied stretch force could be consistent while quantifying the
spastic muscle each time.

A test-retest reliability investigation of the MSE was
performed on the healthy controls by the same rater twice with
1 day apart. Excellent reproducibility was found in measures
derived from fast stretching (ICC= 0.88) and from slow stretch
(ICC= 0.89 for passive ROM, 0.84 for stiffness and 0.75 for
energy loss). Excellent intra-rater reliability was also shown while
using MSE in the pediatric population (28, 29).

Experimental Procedures
In a quiet room, a therapist assessed the spastic elbows of
the stroke survivors using MAS (30). The therapist followed
the procedure described previously (31) with the exception of
the body position. In the current study, the subjects sat upright
comfortably instead of lying down. The therapist stabilized the
upper arm by holding it proximal to the elbow and moved
the forearm in a quick passive motion (∼1 sec) throughout
the available elbow range of motion from the end of flexion to
maximal extension.

During the experiment, the subject sat next to the MSE with
the elbow flexion axis aligned with the rotation axis of the
MSE. The shoulder was positioned at 75◦ of abduction and the
forearm and upper arm were secured to the supporting braces.
Surface EMG electrodes were placed on the biceps brachii and
triceps brachii with the reference electrode placed on the lateral
epicondyle.

In the clinical practice, the modified Tardieu R1 is the angle of
the catch thought to be due to induced stretch reflex at an as fast
as possible velocity. The passive ROM (R2) is graded under a slow
velocity, which would not trigger the stretch reflex (12). In the
current study, we chose 30◦/sec as the slow velocity tomeasure R2
and chose two fast velocities (90 and 270◦/sec) to detect the catch
angle (R1) using MSE. The slow velocity of 30◦/sec was chosen
because it did not induce stretch reflex during manual tests that
may confound the R2 measurement. Two high velocities (90 and
270◦/sec) were chosen because 90◦ (right angle) and its multiples
are relatively easier for the rater to perceive during manual tests.

Initially, the torque and position offset were recorded with the
subject’s elbow in the neutral position, defined as the position
where subjects felt the most comfortable, not being stretched or
restrained (79.6◦ ± 10.9◦ elbow flexion for stroke survivors, and
75.0◦ ± 6.5◦ elbow flexion for healthy controls with full extension
defined as 0◦ elbow flexion). To determine the passive ROM and
stiffness of the elbow, we then moved the elbow at 30◦/sec until
reaching a pre-defined torque (3Nm) or amechanical stop. Three
trials of passive stretch separated by 1min were performed at
each of 90◦/s and 270◦/sec to evaluate the velocity-dependence
of spasticity and catch angle. With practice, the examiner was
able to control the peak velocity of passive stretch to match
the target velocity as shown on the display (±10% of target
velocity). One stretch cycle was defined from full flexion to
full extension then back to full flexion. Since spasticity may be
altered by repeated stretching (32), the elbow was not stretched
more than three cycles in each trial. We also instructed the
subjects relax during the tests. If voluntary muscle contractions
to assist the stretch were detected by the examiner and shown
as intermittent or continuous EMG activities of triceps brachii
muscles, and/or EMG activities of the biceps brachii preceding
the stretch initiation, the trial was discarded. The examiner would
then let the subject rest before stretching the joint again.

The MAS scores, the biomechanical measures and MSE-
measured R1 and R2 were taken by the same examiner.

Data Analysis and Statistics
Biomechanical Measurement: Torque and position signals were
filtered with a low-pass cutoff frequency of 50Hz. The derivative
of torque with respect to time, dτ (t)/dt was calculated from the
acquired torque signals. All the biomechanicalmeasures captured
at 30◦/sec were determined within the torque limits of 3Nm,
including the passive ROM [also described as the R2 angle (12)],
elastic stiffness (K), energy loss, and elbow flexor torque at several
joint angles. Stiffness, K, was defined as the slope of the torque-
angle relationship of ascending arm at 70◦ of elbow flexion, a
common range among the subjects. The energy loss was the area
between the ascending and descending limbs of the torque–angle
curve during rotation (5). Since different subjects had different
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ROMs and limb inertias, the energy loss was normalized by
the transverse inertia and the individual’s range of motion. The
transverse inertia was estimated from the length of the forearm,
the perimeter of the elbow, and maximum forearm and wrist
circumference (33, 34). Joint angle position dependence of the
resistance torque was evaluated at three selected elbow flexion
angles (45◦, 60◦, and 75◦) in the two groups and normalized by
the body weight and height (35). The angles were near the end of
stretch and around the common range (70◦).

EMG Signal Processing: The EMG signals were filtered with
a passband of 10–450Hz. To determine the onset of muscle
activations (reflex-mediated responses) for verifying the catch
angle, EMG signals were presented in a linear envelope (LE)
form: with the filtered EMG data full-wave rectified and then
low-pass filtered at 10Hz. The onset of the reflex EMG was
determined when the amplitude of the EMG LE was larger
than the mean plus three standard deviations (SD) of the
background EMG (36). The background EMG was measured
during the quiescent period before the passive stretch. The elbow
flexion angle corresponding to the reflex EMG onset was thus
determined.

Catch Angle Determination and Characterization of spastic
muscles: Catch angle is where a sudden occurrence of increased
muscle activations in response to a quick passive stretch, which
leads to an abrupt stop or increased resistance (torque) before
the joint rotation reaches the end of ROM (37). This behavior
can be captured usingMSE as shown in Figure 2: the elbow flexor
torque increased with elbow flexors being stretched (flexion angle
decreased in Figures 2A,B). When the passive stretch triggered a
stretch reflex (EMG firing shown in Figure 2C), the elbow flexors
contracted strongly causing the abruptly increased torque rate
(dτ (t)/dt) as indicated by the second positive peak in Figure 2D

where the catch angle was determined. Figure 2E shows that the
examiner responded to the abruptly increased resistance with a
decreased velocity to avoid over-stretching the joint (value of
velocity changed toward zero). We then developed a systematic
way to determine R1. Since dτ (t)/dt was affected considerably
by the inertia during the initial acceleration (the first peak of
dτ (t)/dt), the local minimum of velocity was selected as the first
landmark (the dashed vertical line in Figure 2E), which occurred
shortly after the catch. Next, the joint angle corresponding to the
peak dτ (t)/dt in the 300-ms window preceding this landmark was
determined as the catch, R1 (26). The ratio R1/R2 was derived
through dividing the angular displacement between R1 and
flexion angle by the overall ROM, to represent the portion, which
is free from the catch. A four-dimensional display, including
the variables of joint angle, velocity, torque (τ ), and dτ (t)/dt,
was developed to illustrate the events involved in the catch that
provides a more comprehensive quantification of spastic muscles
group around the tested joint (Figure 2F) at various stretch
velocities. The width of the shaded area in Figure 2F represents
velocity. Note the increased width as the high velocity was
maintained. The torque increased as the elbow was moved into
extension indicated by the dashed arrow.When a catch occurred,
dτ (t)/dt increased abruptly and reached a local maximum (the
relatively hot color of the dτ (t)/dt line). The abruptly increased
resistance and the examiner’s reaction to the catch resulted in a

FIGURE 2 | Representative kinematic, kinetic and EMG signals during the

passive stretch. As the elbow was moved from 100◦ flexion to extension (A),

the elbow flexion torque τ (B) generated by the examiner on the stretched

flexor muscles increased accordingly. Sequentially, the stretch induced a reflex

response in the biceps (vertical line in C). The operator felt the sudden increase

in resistance (vertical line in D) during the “catch,” and responded by

decreasing the stretch velocity (vertical line in E). A four-dimensional display

(F) was developed to illustrate the aforementioned events.

quick velocity reduction to a local minimum (choke, the narrow
shaded area).

Statistics: Since the data was not normally distributed, non-
parametric statistics (Friedman test) were used for comparisons
of catch angles at different stretch velocities with a significance
level of p < 0.05. To investigate differences in the biomechanical
measures (ROM, stiffness, torque at three joint positions, energy
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loss) and the velocity-dependent properties of muscle compared
between the control and CVA groups, a Mann-Whitney U-
test with a significance level of p < 0.05 was conducted.
Spearman correlation was used for correlating the MAS with all
biomechanical measures as well as the catch angle. Correlation
was significant at p < 0.05. The intra-class correlation coefficient
was chosen as the test statistic to evaluate the test-retest
reliability. The two-way mixed model of intra-class correlation
coefficient was used. An intra-class correlation coefficient ≥ 0.75
indicated significant reproducibility (38). SPSS software (SPSS
Inc., Chicago, Illinois) was used to perform all statistical analysis.

RESULTS

4-D Characterization of Catch Angle
Figures 3A,B show the representative result of spasticity
and catch angle evaluations at velocity of 90◦/s and 270◦/s
respectively. Figure 3C shows the representative curve in a
healthy control, the dτ (t)/dt remained at a constant lower value
(below 10 Nm/s) throughout the available range of motion. In
addition, for healthy controls the joint resistance was much lower
when compared to stroke survivors (p < 0.05).

Dependence of R1 on Stretch Velocity and
Velocity-Dependent Properties of Spastic
Muscles
During the passive elbow extension, the catch angle in stoke
survivors was significantly smaller (elbow more extended, p <

0.001) with increasing stretch velocity (Figure 4A). This indicates
that the catch angle occurred later at faster stretch velocities.
Furthermore, the R1/R2 was significantly higher at higher stretch
velocities (Figure 4B, p < 0.001). As expected, catch was not
observed in any healthy controls. In the representative case
shown in Figures 3A,B, catch occurred at 78.2◦ and 58.8◦ elbow
flexion at the stretch velocities of 90◦/s and 270◦/s, respectively.

As a feature of spasticity, the peak resistance torque during
a stretch increased with the increasing stretch velocity in the
stroke survivors (p < 0.005, Figure 5). Healthy controls also
showed increased peak resistance at the velocity of 270◦/s when
compared to the velocity of 90◦/s (p = 0.005). The slope of the
relationship between the peak torque and the stretch velocity
was significantly higher in stroke (9.34 nu × 10−5 ± 4 × 10−5

Nkg−1deg−1s) than that in healthy controls (4.99 × 10−5 ±

2.95× 10−5 Nkg−1deg−1s; p= 0.02).

Biomechanical Measures of the Spastic
Muscles
ROM measured at a controlled torque of 3Nm was significantly
reduced in the stroke survivors as compared to that of the healthy
controls (74.2◦ ± 21.5◦ vs. 107.6◦ ± 8.7◦, p < 0.001; Figure 6A).
During extension with a 3Nm torque limit, the stroke survivors
stopped earlier at larger flexion angles (30.0◦ ± 17.6◦) compared
to healthy controls (10.2◦ ± 10.8◦; p < 0.01). Figure 7 shows the
examples of restricted ROMs for the severely spastic (MAS=3),
mildly spastic (MAS=1) and healthy controls that were 36◦-93◦,
3◦-104◦, and−1◦-106◦ elbow flexion, respectively.

FIGURE 3 | Four-dimensional characterization of the spastic muscles. Four

variables: elbow flexion angle, elbow flexion torque, velocity, and torque

change rate dτ (t)/dt, during the passive stretch were plotted simultaneously for

a representative stroke survivor at 90◦/sec (A), at 270◦/sec (B), and a healthy

control at 270◦/sec (C). The X-axis and Y-axis correspond to the elbow flexion

angle and torque, respectively. The resistance torque generated by the

stretched flexor muscles is positive. The dashed arrow indicates the direction

of movement. Velocity is proportional to the width of the gray shaded area.

The color of the line gives dτ (t)/dt, with the hot color (red) corresponding to a

high rate of dτ (t)/dt. The two small arrows in (A) indicate the local maximum of

dτ (t)/dt where the catch occurred and local minimum of velocity resulting from

the examiner’s reaction to the abruptly increased torque, respectively.

Stiffness measured at a prescribed elbow flexion angle of 70◦

was significantly larger in stroke survivors when compared to
healthy controls (Figure 6C; 0.058 ± 0.028 Nm/deg vs. 0.017 ±

0.008 Nm/deg, p < 0.001). The stiffness for the severely spastic,
mildly spastic and healthy controls was 0.162 Nm/deg, 0.042
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FIGURE 4 | Dependence of catch angle on the passive movement velocity.

The catch angle (R1) and the ratio of the angular displacement between catch

angle and initial flexion angle over ROM (R1/R2) with a controlled torque limit

are shown in (A,B), respectively. Each symbol represents a stroke survivor.

Friedman test was used for multiple comparisons of catch angles at different

stretch velocities with a significance level of p < 0.05.

Nm/deg, and 0.014 Nm/deg respectively (Figure 7, slope of the
lines).

Stroke survivors lost more energy (24.14 ± 8.07
Jdeg−1kg−1m−2) than healthy controls (12.66 ± 5.38
Jdeg−1kg−1m−2; p = 0.005; Figure 6B). In addition, stroke
survivors showed higher torque compared to healthy controls at
45◦, 60◦, and 75◦ of elbow flexion (stroke vs. healthy: 0.0116 ±

0.001 Nkg−1 vs. 0.0062± 0.0008 Nkg−1, 0.0088± 0.0031 Nkg−1

vs. 0.0045 ± 0.00084 Nkg−1, and 0.0069 ± 0.0021 Nkg−1 vs.
0.0035± 0.001 Nkg−1, respectively; Figure 6D).

Correlations Between the MAS, R1 and
Biomechanical Measures
Table 2 shows the correlations among the variables evaluated.
The catch angle showed significant correlations with ROM
(r = −0.685, p = 0.014) and with energy loss (r = −0.679, p
= 0.047). The MAS showed significant correlations with ROM
(r=−0.897, p= 0.001), as well as stiffness of the joint (r= 0.828,
p = 0.006). Reflex-mediated EMG responses at different stretch
velocities did not show any significant correlations with MAS, R1
or biomechanical measures (p > 0.05).

DISCUSSION

This study demonstrates 4-D plot, a comprehensive,
and systematic way, to investigate the group of spastic
muscles around the elbow. Spasticity-related biomechanical
characteristics, including joint ROM, joint torque, stiffness and
energy loss, at various controlled velocities can also be acquired
at the same single setting. During a controlled slow stretch, the
MSE assesses biomechanical properties of the joint including the
ROM, stiffness and energy loss using a controlled slow stretch
and determine the catch angle at controlled fast stretch velocities.

Convenient spasticity quantification has been a challenge. In
order to evaluate stretch reflex responses accurately, the way to
elicit spasticity should be standardized. Many factors including
the pre-activation of muscles, position of the joints involved, and
applied stretch torque and velocity, as well as the experience of
clinicians may result in different outcomes and interpretations.
Clinical measures, such as the MAS or Tardieu scales, have
been used to identify the catch angle during passive stretch.
However, the angles determined using these scales may not
be accurate; they generally occur later than a biomechanically-
detected catch and suffer from poor inter-rater reliability (39).
As shown in Figures 2, 3, the examiner reacted to the abruptly
increased joint resistance by slowing or stopping the passive
stretch. However, the catch occurred up to 300ms prior to this
slowing or stopping point. Therefore, peak dτ (t)/dt, instead of the
stopping point, should be used as the indicator of the catch angle.
In the current study, the instantaneous velocity change along
with dτ (t)/dt were used to determine the catch angle reliably and
to minimize potential human error. As one can see in Figures 2,
3, the human’s reaction characterized as local minimum of speed
(choke) was further away from the catch determined by dτ (t)/dt.
The discrepancy between human’s reaction and the true catch
implies the potential human errors in the subjective clinical
measures of “catch angle.” As seen in the examples in Figures 2,
3, the differences ranged from 3 to 8◦. In a clinical setting, the
catch angle reading is usually from eyeballing of a goniometer
moving with the joint, whichmay introduce even a larger error in
determining the catch angle. It should be noted that another peak
of torque change rate, which occurred earlier during the passive
stretch, was when an examiner overcame the resistance from the
limb inertia and was not related to catch angle.

Velocity-dependent increase in muscle tone is a key attribute
to spasticity as shown in the current study as well that the
stretch velocity has obvious effects on the normalized peak
torque of catch (larger slope in Figure 5). However, the velocity
dependence of spasticity might be partially due to joint angle
position dependence. The delayed catch angle associated with
fast velocities in our study showed the joint angle position
dependence of the increased resistance. At a faster stretch
velocity, the joint was quickly stretched further into an angle
position where higher resistance existed. Assuming reflex-
mediated torque developed 60ms after the stretch reflex was
triggered, the joint would have beenmoved 10.8◦ further in 60ms
at 270◦/s as compared to the stretch at 90◦/s ((270◦/s-90◦/s) ×
0.06 s = 10.8◦). The extra 10.8◦ moved the joint to a stiffer
position, whichmight make the examiner feel higher resistance at
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FIGURE 5 | Velocity-dependent property of the muscle in subjects post-stroke (solid circles) and healthy controls (solid triangles). The dotted lines demonstrate the

dependence on the velocity. Subjects post-stroke had a stronger velocity dependence compared to healthy controls (p = 0.02) and had higher torque at all velocities

than healthy controls (p < 0.001). Asterisks (*) indicates significant differences between two velocities.

FIGURE 6 | Comparisons of passive properties of elbow flexors between the healthy controls (n = 9) and stroke survivors (n = 12). Patients post stroke showed

reduced ROM (A), higher energy loss (B), increased stiffness (C), and increased resistance torque at several angles (D), represented as mean ± SE (standard error of

mean). Asterisks (*) indicate significant difference (p < 0.05) between the two groups (D). Mann-Whitney U test with significance level of P < 0.05 was used to

determine the differences.

a faster velocity. Similar results were reported that greater catch
angles were associated with higher applied angular velocities
(28, 40). Velocity-dependence of the catch angle further confirms
that a standardizedmethod to evaluate spasticmuscles is essential

since the interpretation of catch angle can be confounded by the
stretch velocities.

In the current study, passive properties were measured under
real-time feedback control by moving the elbow slowly without
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TABLE 2 | Spearman correlation coefficient p (and p-value) between the

parameters.

MAS R1 EMG ROM EL K

MAS ρ 1.000

p

R1 ρ 0.539 1.000

p 0.054

EMG ρ −0.223 0.405 1.000

p 0.282 0.160

ROM ρ −0.897** −0.685* 0.050 1.000

p 0.001 0.014 0.449

EL ρ 0.091 0.679* 0.086 −0.067 1.000

p 0.408 0.047 0.436 0.432

K ρ 0.828** 0.613 −0.319 −0.934** −0.371 1.000

p 0.006 0.072 0.269 0.001 0.234

MAS, modified Ashworth Scale; R1, catch angle; EMG, electromyography onset; EL,

energy loss; K, stiffness. * indicates P < 0.05 ** indicates P < 0.01.

eliciting a reflex response. The lack of a reflex response was
corroborated by silence in the EMG signals of the stretched
muscle. Significant changes in the passive properties of the
spastic elbow of stroke survivors were observed when compared
to healthy controls, including increased stiffness and flexors
resistance, decreased ROM, and increased energy loss (Figure 6).
Similar changes were also found in the spastic ankle of stroke
survivors with hemiparesis (5). In general, the changes in
stiffness and ROM were consistent with what have been reported
previously (14, 41, 42). Since the supporting braces fixed to the
MSE might hinder the ROM near the end of flexion, the value
of elbow ROM shown in current study was smaller than the
observations in previous studies (43–45). In addition, Figure 7
also shows that the reduced ROM was not only in one end, the
stroke survivors may lose the range toward flexion or extension
that can be relevant to daily functions.

The correlation between passive stiffness and MAS
demonstrates that the MAS is more closely related to the
passive stiffness of the joint than to joint spasticity, even
though it has been commonly used for assessing spasticity in
both clinical and laboratory settings. MAS only includes as
single stretch velocity and is scored by the amplitude of joint
resistance that potentially makeMAS reflect passive stiffness over
spasticity. Because the felt joint resistance could be from either
spastic responses and/or passive stiffness (46, 47) and without
various stretch velocities those could not be distinguished. The
consequence of this ambiguous assessment may mislabel patients
who have increased passive stiffness alone as having spasticity
and being treated with inappropriate interventions. Damiano et
al. indicated that evaluating patients at different velocities may
help to distinguish passive stiffness from spasticity (46), which we
adopted in our developed method for spasticity quantification.
Administering the Tardieu scale using the MSE could provide
proper spasticity characterization under various controlled
velocities. The intra-rater reliability of clinical assessments can
be improved using the MSE that contains accurate sensors and

FIGURE 7 | Representative torque-angle curves of stroke survivors [mild (B)

and severe (C)] and a healthy control (A). Full elbow extension = 0◦. The slope

of the thick black lines indicates the elastic stiffness of the elbow recorded at a

common angle.

provides real-time audiovisual feedback instead of the examiner’s
subjective manipulation and scoring.

LIMITATIONS OF THE STUDY

The brace of the system we used might prevent the all range of
motion toward the end of flexion due to the contact of muscle
bulks and brace. When there was no compromise using this
system to assess the elbow flexors spasticity, one should interpret
the passive flexion ROM with cautions. The sample size of the
current study is relatively small. A larger size of sample should be
considered in a future study.
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Background: Traditional studies on the neural mechanisms of tremor use coherence

analysis to investigate the relationship between cortical and muscle activity, measured by

electroencephalograms (EEG) and electromyograms (EMG). This methodology is limited

by the need of relatively long signal recordings, and it is sensitive to EEG artifacts.

Here, we analytically derive and experimentally validate a new method for automatic

extraction of the tremor-related EEG component in pathological tremor patients that aims

to overcome these limitations.

Methods: We exploit the coupling between the tremor-related cortical activity andmotor

unit population firings to build a linear minimummean square error estimator of the tremor

component in EEG. We estimated the motor unit population activity by decomposing

surface EMG signals into constituent motor unit spike trains, which we summed up into

a cumulative spike train (CST). We used this CST to initialize our tremor-related EEG

component estimate, which we optimized using a novel approach proposed here.

Results: Tests on simulated signals demonstrate that our new method is robust to

both noise and motor unit firing variability, and that it performs well across a wide range

of spectral characteristics of the tremor. Results on 9 essential (ET) and 9 Parkinson’s

disease (PD) patients show a∼2-fold increase in amplitude of the coherence between the

estimated EEG component and the CST, compared to the classical EEG-EMG coherence

analysis.

Conclusions: We have developed a novel method that allows for more precise and

robust estimation of the tremor-related EEG component. This method does not require

artifact removal, provides reliable results in relatively short datasets, and tracks changes

in the tremor-related cortical activity over time.

Keywords: pathological tremor, EEG decomposition, surface EMG decomposition, Parkinsonian tremor, essential

tremor
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INTRODUCTION

The role of cerebral cortex in the generation of pathological
tremor has been widely studied in essential as well as
in Parkinsonian tremor. Accumulated evidence suggests that
tremor-related cortical activity exists in both types of tremor (1–
5). Moreover, because of the significant coupling between the
cortical activity and the activity in the affected muscles, motor
cortex is thought to contribute to tremor generation (2, 3, 6–15).

To the best of our knowledge, all of the existing studies
assessed corticomuscular coupling by computing the
coherence between cortical activity, recorded with EEG or
magnetoencephalograms (MEG), and an estimate of muscle
activity derived from the surface EMG (2, 3, 6–13, 15, 16). Since
the coherence function reveals a linear relationship between
two signals at a given frequency (17), coherence at the tremor
frequency is assumed to indicate tremor-related EEG activity.
Although robust to noise at different frequencies, coherence
only provides an indirect measure of corticomuscular coupling,
and does not enable tracking changes in tremor properties over
a short time scale. Furthermore, it requires off-line processing
of relatively long EEG and EMG recordings, which need to
be cleaned of artifacts beforehand. This limits the comparison
of the tremor-related cortical activity across conditions and
diseases.

Besides the coherence function, the cortical tremor
component could also be potentially identified using blind
source separation (BSS) algorithms. For example, Delorme et al.
(18) identified, using independent component analysis (ICA)
techniques, a number of components in the EEG activity of
healthy subjects performing a working memory task. However,
no group has demonstrated the feasibility of separating the
tremor component from other brain activity. Notably, all
the ICA/BSS algorithms proposed so far build on general
assumptions about the EEG properties such as independence of
the identified components, and would not exploit the specific
characteristics of tremor, such as the relationship between
sensorimotor cortical activity and muscle activity. As a result,
they would suffer from large inter-trial and inter-subject
variability in convergence toward the specific (tremor-related)
EEG component.

With the exception of Gallego et al. (15), where we used
cumulative motor unit spike trains (CST) to characterize the
neural drive to the muscle, the authors of all of the studies
mentioned above used the rectified surface EMG as an estimator
of muscle activity. However, recent studies have shown that
the CST of several (e.g., ≥5) motoneurons that innervate a
muscle provide a more accurate representation of the synaptic
inputs to a motoneuron pool than the EMG envelope (19–
21). In addition, rectification of the surface EMG may or
may not enhance the detection of synaptic inputs to the pool
depending on the muscle contraction level (22). Indeed, as
shown in Farina et al. (22) rectification is preferable over the
raw EMG only at low contraction levels. Therefore, methods
based on the CST rather than on the traditional surface EMG
analysis are likely to identify tremor-related cortical activity more
reliably.

In this study, we present and validate a novel method to
identify tremor-related cortical activity. This method builds
on the assumption that the tremor-related EEG component
is stochastically phase-locked to the motor unit firings in a
tremulous muscle. This implies close to linear relationship
between the cortical activity and the firings of the pool of motor
units that form a muscle (15, 21, 23). This relationship has been
experimentally demonstrated before by the existence of EEG-
EMG coherence at the tremor frequency (2, 3, 6–13, 15, 16, 24).

In our method, motor unit spike trains are identified from
non-invasively recorded multichannel surface EMG recordings
using the Convolution Kernel Compensation (CKC) technique
(25–27). These firings are then used to construct the phase-
locked estimator of the tremor-related activity in EEG. By using
simulated data, we show that our method tracks reliably the
tremor activity for a wide range of physiologically realistic
conditions. We then apply this method to recordings from
nine essential tremor (ET) and nine Parkinson’s disease (PD)
patients, and show that the method outperforms the traditional
coherence approach when detecting tremor-related cortical
activity.

MULTICHANNEL EMG-DRIVEN
IDENTIFICATION OF TREMOR-RELATED
ACTIVITY

We first assume that EEG signals are linear mixtures of brain
oscillations (rhythms) and noise (Figure 1). Then, using this data
model, we build a linear minimum mean square error (LMMSE)
estimator of the cortical tremor activity that exploits the large
synchronization of motor unit firings in pathological tremor.

Data Model
Assume themixingmodel depicted in Figure 1, and denote theM

EEG channels by y (n) =
[

y1 (n) , y2 (n) . . . yM(n)
]T
, where the

n-th sample of the i-th channel appears in the i-th row of y (n).
The model inputs, sj(n), represent the brain rhythms in the EEG.
For example, in a normal condition, these inputs would reflect the
alpha, beta or gamma rhythms. As in other BSS/ICA EEG studies,
artifacts, such as blinking artifacts, would also be considered a
model input. In the case of pathological tremor, one or more of
these inputs reflects tremor activity.

The mixing model in Figure 1 can be expressed in a matrix
form as.

y (n) = As (n) + ω(n) (1)

Where

s (n) = [s1 (n) , s1 (n− 1) . . . s1 (n− L+ 1), s2 (n) . . .

s2 (n− L+ 1) . . . sJ(n− L+ 1)
]T

(2)

contains blocks of L samples from J sources and the noise vector

ω (n) =
[

ω1 (n) ,ω2 (n) . . . ωM(n)
]T

is modeled as a zero-mean
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FIGURE 1 | Proposed mixing model of the EEG. CST is coupled to the tremor EEG component s1(n) via an unknown function f (n). The other sources [s2(n) to sN (n)]
represent the non-tremoric brain rhythms in the EEG. The impulse responses amj project the j-th source sj(n) to the m-th EEG channel ym(n), whereas ωm(n) denotes
the additive noise in the m-th EEG channel.

ergodic Gaussian process, spatially and temporarily independent
of the activity in s(n). The mixing matrix

A =







a11 · · · a1J
...

. . .
...

aM1 · · · aMJ






(3)

contains stationary impulse responses amj =
[

amj(0) · · · amj(L− 1)
]

that convolve the j-th input
source and add the result to them-th EEG channel.

The model described in Equation (1) is typically
underdetermined, with more inputs than measurements.
However, low energy inputs can always be modeled as
physiological noise and, thus, included in ω (n). We can
also extend y (n) by adding F-1 delayed repetitions of each EEG
channel:

y (n) =
[

y1 (n), y1 (n− 1) . . . y1 (n− F + 1), y2 (n) . . .

y2 (n− F + 1) . . . yM(n− F + 1)
]T

(4)

This increases the number of outputs in model (1) and,
more importantly, compensates potentially different time delays
of same source in different EEG channels (see EMG-Driven
Decomposition of EEG section for details). This is important
because the same rhythm may be present at different EEG
electrodes at close but different time lags (this assumption is
further confirmed by the results in Results section). The extended
input vector s and mixing matrix A now change to:

s (n) = [s1 (n) . . . s1 (n− L− F + 2), s2 (n) . . .

s2 (n− L− F + 2) . . . sJ(n− L− F + 2)
]T

(5)

A =







A11 · · · A1J
...

. . .
...

AM1 · · · AMJ






(6)

with

Amj =







amj · · · 0
...

. . .
...

0 · · · amj







For the purpose of mathematical derivations in Appendix, we
will further represent the EEG recordings y(n) as analytic signals.
Note that this does not alter the assumed mixing model, and
can be readily fulfilled by applying Hilbert transform to the EEG
signals.

EMG-Driven Decomposition of EEG
By temporarily neglecting the impact of noise ω (n), the LMMSE
estimator of the input sj(n) is given by (25)

ŝj (n) = cHs j y C
−1
y y (n) = c

H
s j s

A
H
(

AC s A
H
)−1

As (n)

= c
H
s j s

C s
−1 s (n) , (7)

where superscript H denotes conjugate transpose,
csjy

=E
(

sj(n)y(n)
)

is the cross-correlation vector between

sj(n) and y(n), and csjs
=E

(

sj(n)s(n)
)

is the cross-correlation

vector between sj(n) and s(n). Matrices Cs and Cy denote
the correlation matrices of s(n) and y(n), respectively. This
LMMSE estimator is Bayesian optimal in the minimum square
error sense, also in the presence of noise, but requires a priori
knowledge of the cross-correlation vector csjy. In experimental

conditions csjy is not known and needs to be estimated from the
measurements.

To obtain an estimate of csjy, we developed a method

that is based on the assumption that, in an affected muscle,
the motor unit firings are phase-locked to the tremor-related
cortical activity. This assumption follows from the observations
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of significant coherence (linear relationship) between the EEG
and the rectified EMG (1–10, 13, 14, 16) or, more directly,
between the EEG and the motor unit CST (15). Remarkably, the
number of motor units needed to represent population behavior
during tremor is not very large, which in practice will favor the
implementation of the proposed method. For example, in Negro
and Farina (21) and Gallego et al. (15), the coherence between the
CST and the EEG was nearly maximal with only five motor units
and did not increase significantly when more motor units were
added to the CST.

To obtain an estimate of csjy, we first define the firing pattern

of the r-th tremor-affected motor unit:

tr (n) =
∑Kr

k= 0
δ

(

n− k
fs

fr
− dr − 1drk

)

, r = 1, ...,R,

(8)
where δ(τ ) denotes the unit-sample impulse, dr is the common
time lag (in samples) of the pulses in tr(n) due to the transmission
from motor cortex, 1drk is the intrinsic motor unit firing time
variability (in samples), and is frequently defined as the k-th
realization of Gaussian random variable 1drk ∼ N(0, σ1dr ), fr
is the motor unit firing frequency, f s is the sampling frequency
and Kr is the number of firings in the observed time interval.
Note that, in order to simplify analytical derivations, we ignored
the doublets in the motor unit firing pattern (8). This has small
impact on the results presented herein, as doublets can always be
modeled as two different instances of the k-th motor unit firing
with different 1drk values. Furthermore, as shown in Results
section, when respecting its physiologically induced range, 1drk
has almost negligible impact on the proposed tremor estimation.

The cross-correlation between the EEG component sj(n) and
y (n) can be estimated as (see derivation in the Appendix)

ĉsjy ≈
α

N

R
∑

r= 1

N
∑

η= 1

tr (η) y(η) (9)

where N is the number of signal samples and factor α is defined
in the Appendix). Due to the amplitude ambiguity of source
components extracted by BSS (28), the scalar factor α can be
neglected and the EEG-component that is phased-locked to the
firings of the J motor units expressed as

ŝj (n) = ĉHsjyC
−1
y y (n) (10)

By knowing ŝj (n) cross-correlation vector ĉsjy in (9) may be
recalculated as

ĉsjy ≈ F
−1
(

g
(

Ŝj
(

f
)

))

y(η) (11)

where Ŝj
(

f
)

= F
(

ŝj (n)
)

is Fourier transform of ŝj (n) and
g (x) = x∗ |x| denotes the element-wise product of element x
with its absolute value. Equations (10, 11) are then iteratively
recalculated until the convergence is reached. In our study,
iterations were stopped when the second norm of ŝj (n) changed
for <0.1%. These iterations emphasize the spectral peaks in the
extracted EEG component and suppress the wideband frequency
components with low energies.

Note that (9) is only true when none of the other oscillatory
inputs in s(n) is a higher harmonic of the input sj(n). In the
opposite case, (10) would identify both the tremor-related EEG
component and its higher harmonics as one joint input (see
explanations in the Appendix).

The presented method still needs a good approximation of the
motor unit firing times, t̂r (n), in order to accurately estimate ĉsjy.
This can be obtained from high-density surface EMG recordings
using the CKC decomposition technique (25, 27, 29–31), which
has already been demonstrated to be highly robust to high levels
of motor unit synchronization (27).

SIMULATIONS AND EXPERIMENTAL
RECORDINGS

The presented method was validated on a set of synthetic
signals and on experimental recordings from 18 tremor-affected
patients.

Simulations
First, we tested the proposed method in a simple model that
generated EEG-like oscillations as mixtures of sinusoidal sources
with time-varying amplitudes. Our goal was to test the method’s
ability to accurately reconstruct such EEG-like sources from their
convolutive mixtures, and to study its sensitivity to its three main
parameters: extension factor F in (4), motor unit firing variability
1drk and signal-to-noise ratio (SNR).

The simulated signals comprised 10 (J = 10) mutually
orthogonal sinusoids sj (n) and their first higher harmonics as
input signals:

sj (n) = a(n) ·
(

B · sin
(

2π fjn− φj

)

+H1 · sin
(

4π fjn− φj

))

,

(12)

where a(n) is an amplitude modulator generated by filtering
white noise with a second order low-pass Butterworth filter with
cut-off frequency of 1Hz. The amplitude B was set equal to
1, whereas the amplitude of the first harmonic, H1, was varied
across simulations and was set to 0, 0.2, 0.4, 0.6, 0.8, and 1. This
way we simulated the experimentally observed ratios between
the basic tremor frequency and its first harmonic (9, 13, 32).
The frequency fj of the oscillatory inputs was set to 5+j/2Hz
with j = 1, 2 . . . 10, and the phase φj was randomly selected
from the interval [0, 2π]. The sampling frequency was set
to 1024Hz and each simulation lasted 30 s. We assumed that
the first oscillatory input, s1(n), represented the tremor-related
component we wanted to detect.

Next, we simulated the spike trains of ten motor units, tr(n)
with r = 1, 2 . . . 10, by finding the local maxima of the first
generated oscillatory source, s1(n). We imposed a corticospinal
delay dr = 10 ms in Equation (8) to simulate the physiological
delays (due the transmission from motor cortex to the output
of the motoneuron pool) between the tremor-related EEG
component s1(n) and the simulated motor unit firing patterns
tr (n). Finally, the firing variability 1drk of each individual motor
unit tr (n) was modeled as Gaussian random variable 1drk ∼

N(0, σ1dr ) (33, 34) (see Appendix). The standard deviation σ1dr
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was set to 0, 10, and 20% of the average inter-spike interval in
tr (n), respectively (35–38). Ten Monte Carlo simulation runs
were performed for each value ofH1 and σ1dr , resulting in a total
of 180 (10× 6× 3) simulation runs.

We computed 15 synthetic channels y(n) in Equation (1),
with the mixing matrix A having dimensions 15 × 50. The
length of the impulse responses amj(l) in (3) was set to L = 5
samples. To simulate different delays in the representation of the
oscillatory inputs sj (n) across the 15 channels, each element amj

had one randomly selected element set to a non-zero random
value from a normal distribution N(0, 1), whereas the remaining
four elements were set to zero. In each simulation run, five
different realizations of zero-mean random Gaussian noise were
added to the measurements, with the SNR ranging from 0 to 20
dB in steps of 5 dB. This resulted in 900 (180 × 5) simulated
sets of signals. Note that our simple generative model does
not realistically represent actual EEG signals; our goal was to
use the simulation results to identify the range of parameter
values that was adequate for the experimental data analysis. All
the simulations were performed in Matlab version 8.6.0.267246
(R2015b).

Experimental Recordings
We recorded data from nine ET patients (four females and five
males; age, mean ± SD: 70 ± 6 years, range 61–79 years) and
nine PD patients (three females and six males; age, mean ± SD:
64 ± 14 years, range 44–88 years) at Hospital 12 de Octubre,
Madrid, Spain. In the ET patients, tremor severity ranged from
mild (two patients) to severe (three patients), with a mean score
of 36 ± 12 (mean ± SD; range 20–51) according to the Fahn-
Tolosa-Marin scale (39). In the PD patients, tremor severity also
ranged from mild (five patients) to severe (two patients), with a
mean score of 12 ± 6 (mean ± SD; range 5–23) according to the
UPDRSIII scale (40). All the participants included in the study
gave their written informed consent after full explanation of the
procedure. The study, which was conducted in accordance with
the principles of the Helsinki declaration of 1975, was approved
by the ethical standards committee on human experimentation at
the University Hospital “12 de Octubre” (Madrid).

The experimental protocol comprised three repetitions of
a 30 s long postural task, during which patients kept their
arms outstretched, parallel to the ground for 30 s. During these
tasks, we measured EEG, multichannel surface EMG, and wrist
kinematics. EEG was recorded with 32 passive Au or active
Ag/AgCl electrodes (depending on the session) placed on a cap
that fulfilled the extended 10/20 system (g.Tec GmbH, Graz,
Austria). Electrodes were placed in the following positions: AFz,
F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3,
C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3,
P1, Pz, P2, and P4. The ground was placed on the AFz position,
with linked earlobes used as a reference. Before positioning
the electrodes the skin was slightly abraded with abrasive paste
(Meditec–Every, Parma, Italy) and conductive gel (Meditec–
Every, Parma, Italy) was put under the electrodes. The recorded
signals were amplified (gUSBAmp, g.TechGmbH,Graz, Austria),
band–pass (0.5–60Hz) and notch filtered (50Hz), to remove

power line interference, and sampled at 256Hz with 24 bit
resolution.

Right wrist kinematics were recorded with inertial
measurement units (IMUs) comprising three-axis
accelerometers, magnetometers and gyroscopes (Tech MCS,
Technaid S.L., Madrid, Spain). These sensors were fixed with
surgical tape over the hand dorsum and the distal third of the
forearm (on the dorsal side, close to the wrist), respectively,
with one of their axes aligned to that of the wrist. Data were
sampled at 100Hz by a 12-bit A/D converter and low pass
filtered (<20Hz). Wrist kinematics was assessed as the difference
between the measured accelerations in the axis parallel to the
wrist (41).

Surface EMG signals were recorded from the right wrist
flexors and extensors with 13 × 5 electrode grids (LISiN–
OT Bioelettronica, Torino, Italy, 8mm interelectrode distance).
The electrode grids were centered over flexor carpi radialis
and extensor digitorum communis, respectively. Before the
placement of the electrode grid, the skin was lightly abraded
using abrasive paste (Meditec–Every, Parma, Italy) and cleansed
afterward. Electrical conductivity was ensured by filling each
of the electrodes in the grids with conductive gel (Meditec–
Every, Parma, Italy). A soaked bracelet placed around one of
the wrists was used as reference. The surface EMG signals were
amplified as bipolar recordings along the direction of the fibers,
band-pass filtered (3 dB bandwidth, 10–750Hz), and sampled
at 2,048Hz by 12–bit A/D converter (LISiN–OT Bioelettronica,
Torino, Italy). We synchronized the EEG, EMG, and IMU
recordings using a common clock signal, which was fed into each
acquisition systems. The rising edge of the first and last clock
signal pulses were identified using a purposely-developed Matlab
script. Data were then resampled to 2,048Hz using a routine that
incorporated an anti-aliasing filter.

Data Analysis
In the experimental recordings, individual motor unit firing
patterns were identified from the multichannel surface EMG
using the CKC algorithm (25, 27, 29). The pulse-to-noise ratio
metric (PNR) (42) was used to assess the accuracy of firing
estimation for each identified motor unit. Only reliably identified
motor units (PNR > 30 dB; accuracy of motor unit firing
estimation >90%) were used for further analysis (42), whereas
all the remaining motor units were discarded.

We estimated the tremor EEG component with Equation (7),
using the firings of all the identified (experimental recordings)
or simulated (simulations) motor units to estimate the cross-
correlation ĉsjy between the oscillatory components and the EEG
signals, as defined in Equation (10). We tested different extension
factors, from F = 1 to F = 15. Due to the amplitude ambiguity
(see Appendix), the estimate ŝ1 (n) was further normalized to
yield a unit norm. Finally, Equations (10, 11) were iteratively
applied until the convergence criterion was reached (the second
norm of ŝj (n) changed for <0.1%).

The delay between the motor unit CST and the estimated
tremor EEG component ŝ1 (n) was estimated as the argument of
the cross spectrum at the basic tremor frequency fb (17, 43).
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In the simulations, we further assessed the accuracy of our
method by computing the normalizedmean square error (NMSE;
Equation 13) and the cross-correlation coefficient (CC) between
the simulated and estimated tremor inputs, ŝ1 (n) and s1 (n), after
both signals were aligned in time:

NMSE =

∑N
n= 1

(

s1 (n)−ŝ1 (n)
)2

∑N
n= 1 (s1 (n))2

· 100 (13)

In the experimental data, we compared the coherence between
the extracted tremor component and the CST in each muscle to
the coherence between the CST and the Laplacian-filtered EEG
(15) (without any artifact rejection applied). In all these cases the
CST was smoothed by convolving it with a 25ms long Gaussian
window. The 99% confidence limit of the coherence function was

obtained as (17):

1− (0.01)1/(L−1) (14)

where L is the number of disjoint 1-s segments used in the
spectral estimation.

Finally, we computed the relative power H1/(H1+B) of the
first tremor harmonic with respect to the basic tremor frequency
in the estimated tremor EEG component, ŝ1 (n).

Due to their non-Gaussian distribution (Lilliefors test,
p > 0.05), the non-parametric Kruskal–Wallis test was used to
compare the differences between the ET and PD patient groups,
whereas the Wilcoxon signed rank test was used for paired
comparisons. The significance level was set to p < 0.05 and
p < 0.01, respectively (see Results section for details).

FIGURE 2 | Estimation of the simulated tremor component. (A) Representative example showing that the estimated tremor component (blue line) was similar to the

simulated source (red line). In this example, simulation parameters were SNR = 10 dB and σ1dr = 10%. (B,C) impact of different values of the extension factor F on

the estimated cross-correlation coefficient (CC), the NMSE between estimated and reference tremor component, and the H1/(H1+B) ratio. Results are averaged over

10 simulation runs. Mean values are depicted as thick blue lines, standard deviations as black dashed lines. In the H1/(H1+B) ratio plots, the simulated reference

values are depicted with red dashed lines.
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FIGURE 3 | Summary results of estimation of the tremor component across simulated conditions. (A,B) show the NMSE and the cross-correlation (CC) between the

estimated and simulated tremor source, and the estimated H1/(H1+B) ratio as a function of parameters SNR and σ1dr for simulated H1/(H1+B) ratios of 0.0 and

0.286, respectively. Results are averaged over ten simulation runs and depicted as a mean (colored surfaces) and mean + SD (black lines). Note that SD was

negligibly small.

RESULTS

Simulated Data Analysis
Figure 2A shows a representative example of detection of the
tremor component in the simulated signals, demonstrating that
the proposed method accurately extracts the tremor-related
component from the synthetic signals. Figures 2B,C show the
correlation between the estimated and simulated sources, the
NMSE and the estimated H1/(H1+B) ratio as a function of
extension factor F, for two different SNR and σ1dr values. Note
the high correlation and small NMSE between the simulated
and the estimated tremor-related component, and the accuracy
with which the ratio H1/(H1+B) was detected when extension
factor was set to F = 3 or higher. For a SNR of 20 dB,
extension factors from F = 2 to F = 5 were optimal, whereas
for lower SNRs, extension factors from F = 4 to F = 9 were
optimal (Figure 2C). In both cases the estimated H1/(H1+B)
ratio was largely independent from the extension factor in
the interval F = 3 to F = 10. All metrics degraded slightly
when the model looked too many samples back in the past
(F > 10). Based on these results and on the coherence analysis
of experimental data (Figure 6), we selected an extension factor
F = 8 for further analyses. Note that Figure 6 indicates that our
results would hold across a broad range of values of F, from
F = 5 to F = 10.

Figures 3A,B summarize the NMSE, CC and H1/(H1+B)
ratio as functions of the SNR and motor unit firing time

variability σ1dr at two different simulated H1/(H1+B) ratios. In
both cases, the NMSE decreased and the CC increased as the SNR
increased, whereas they did not change significantly with σ1dj ,
which suggests that the simulated intrinsic variability in motor
unit firing did not affect the source estimation. The estimated
H1/(H1+B) ratio did not change significantly with the SNR or
σ1dr and was always very close to the simulated H1/(H1+B)
ratio. Namely, when averaged over all simulated SNRs, σ1dr and
H1/(H1+B) ratios, the difference between the simulated and
estimated H1/(H1+B) ratio was 0.01± 0.05.

The delay between the estimated and simulated sources, ŝj (n)
and sj (n) was largely independent of the SNR, σ1dr , and the
simulated H1/(H1+B) ratios, averaging 0.4 ± 1.4ms across all
combinations of parameters. When a 10ms corticospinal delay
was imposed between the motor unit firings and their cortical
drive sj (n), the estimated delay averaged 11.0 ± 1.6ms. This
implies a 1.0 ± 1.6ms difference with the simulated 10ms delay.
Despite this estimate being quite accurate, we want to note that
the current simulations do not generate signals as complex as the
recorded EEGs. Nor did the simulations incorporate the delays
due to propagation of the motor unit action potentials along the
muscle fibers or due to EMG decomposition with CKC (25–27).
All these factors contribute to the unknown global delay between
0 and ∼15ms and cannot be easily estimated in experimental
conditions. Thus, we do not expect the experimental estimates
of corticospinal delay to be as accurate as those obtained based
on the model.
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FIGURE 4 | Example of tremor data from an essential tremor patient performing the postural task. (A) Wrist acceleration; (B) identified motor unit firings for the wrist

extensors (red squares) and flexors (blue squares) along with the corresponding smoothed CST (red and blue solid lines; the blue trace is inverted for representation

purposes). Each square denotes a single motor unit firing. Firings of different motor units are depicted with different vertical offset; (C) power spectrum of the

smoothed CST (red solid line for wrist extensors and blue solid line for wrist flexors) compared to that of the wrist acceleration data (black solid line).

TABLE 1 | Summary of the properties of the motor units, identified by

multichannel EMG decomposition.

EXT R FLE R

ETs No. MUs 9.0 ± 5.2

(2–23)

5.4 ± 2.8

(2–13)

No. firings 200 ± 108

(37–531)

107 ± 72

(36–341)

PNR (dB) 35.0 ± 4.3

(30.1–51.2)

33.0 ± 4.2

(30.1–51.2)

PDs No. MUs 9.8 ± 6.1

(1–23)

6.0 ± 5.0

(1–33)

No. firings 255 ± 126

(36–502)

147 ± 108

(36–414)

PNR (dB) 34.2 ± 4.0

(30.1–50.5)

34.7 ±4.2

(30.1–49.8)

The table shows the number of identified motor units with PNR > 30 dB, their number of
firings, and the PNR, for right wrist extensors (EXT R) and flexors (FLE R) of 9 the ET and
9 PD patients. Results are reported as mean ± SD (range).

Experimental Recordings
Figure 4 shows an example of EMG decomposition in a
representative ET patient, along with the smoothed CST. Table 1

summarizes the number of motor units that were detected from
the surface EMG with PNR > 30 dB and then used for the
identification of the tremor EEG component. On average, 7.7 ±

5.2 and 8.6 ± 6.3 motor units per contraction were identified
for the ET and PD patients, respectively. The average number
of firings per motor unit was 160 ± 100 for the ET and 218
± 130 for the PD patients (Table 1). In each contraction, all
the accurately identified motor units per muscle were used to
estimate the tremor EEG component (see Appendix). Since we
recorded EMGs from the wrist extensors and flexors of the right
arm, two estimates of tremor EEG components were extracted
per each task repetition.

Figure 5 shows a representative example of the estimated
tremor EEG component. Figure 5A depicts the estimated tremor
EEG component and how it relates to the smoothed CST,
both in the time (left plots) and the frequency domain (right
plot). The estimated EEG component exhibits clear tremor-
related activity with peaks both at the basic frequency and
the first harmonic of that observed in the pooled motor unit
firings and the wrist kinematics. Figure 5B shows time-frequency
domain contour plots of the extracted EEG component, the
smoothed CST and the wrist kinematics, as reference. In the
presented case, the tremor-related EEG activity preceded the
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FIGURE 5 | Examples of estimation of the tremor-related cortical activity in experimental recordings of a representative PD (A) and ET patient (B). (A) Estimated

tremor EEG component (red traces) compared to smoothed CST (blue traces) of the right wrist flexor (FLE R) and extensor muscles (EXT R), and wrist acceleration

(IMU; displayed in black). Data are plotted in time (left plots) and frequency domain (right plots). (B) Contour plots of the spectrograms of the extracted tremor-related

EEG component, smoothed CST of right wrist flexor (CST FLE R) and right wrist acceleration. Warmer colors represent higher power.

pooled motor unit activity and the observed wrist movements,
which manifested simultaneously, but this was not always the
case.

We investigated how the number of EEG samples in the
time domain (extension factor F) influenced the accuracy of
the estimation of the tremor-related cortical activity. To this
end, we computed the coherence between the tremor EEG
component and the smoothed CST for increasing values of
F (from F = 1 to F = 15). As shown in Figure 6A, the
coherence first increased, but it saturated around extension factor
F = 8, in agreement with the simulations with lower SNR
ratios. Note, however, that the increase in coherence as more
EEG samples were included was not significant after F = 5.
Figure 6B demonstrates that the proposed method significantly
outperforms the classical coherence between Laplacian-filtered
EEG and spatially averaged rectified EMG, low pass filtered at
15Hz.

Figure 7 shows an example of how the proposed method
performs compared to the traditional approach of computing
the coherence between an estimate of muscle activity (in this
case the smoothed CST) and the spatially filtered EEG signals.

We calculated the coherence function for the entire recordings
(1 s windows with 50% overlapping), and found no significant
coherence values in any EEG channel. In contrast, the coherence
between the CST and the EEG component extracted using the
proposed method (extension factor: F = 8) was significant. These
findings generalized to the all the tested ET and PD patients
(Figure 6B). Our proposed method thus outperforms classic
coherence approaches.

In 52% of cases studied (28 of 54), the tremor-related EEG
component preceded the CST by 11.0 ± 6.4ms, whereas in the
remaining 48% of cases, the CST preceded the extracted EEG
component by 11.0 ± 5.9ms. All the delays were clustered on
the interval between −30ms and + 30ms, and we observed no
significant difference between the delays in PD and ET patients
(P > 0.05, Kruskal–Wallis test). These latency values are in
agreement with previous studies (7–10, 13), notwithstanding the
limitation listed in the Discussion section.

Finally, a significant difference was observed in the
H1/(B+H1) ratio of the extracted tremor EEG between PD
and ET patients (Figure 8), also in agreement with previous
studies (9, 13).
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FIGURE 6 | Comparison of our method for detecting tremor-related cortical activity to the traditional coherence approach in experimental recordings. (A) Coherence

between the CST of the right wrist extensor and the estimated tremor EEG component as a function of the extension factor F. For reference, the average coherence

with the EEG signals over C1 is also depicted. The results are averaged over all the trials from the PD and ET patients and reported as mean (bars) and SD (whiskers).

(B) Coherence between the Laplacian-filtered EEG and the CST in comparison with the coherence between the extracted tremor EEG component and the CST (our

proposed method, F = 8): Two results for CST-EEG coherence are depicted in each graph, one for coherence between CST and spatially averaged EEG (“average

EEG”) and one for coherence between CST and EEG channel at C1 position (“C1”). Similarly, two results for coherence between CST and extracted tremor

component are depicted, one for tremor component, extracted from EEG by using the CST-based estimation described in the Appendix (“tremor CST”) and one for

tremor component, extracted from EEG by replacing the CST in Appendix by the spatially averaged rectified EMG, low pass filtered at 15Hz (“tremor rect. EMG”).

Results are plotted separately for each investigated muscle. Superscripts *p < 0.05 and **p < 0.01 denote statistically significant difference as assessed by Wilcoxon

signed rank test.

DISCUSSION

In this study, we derived and validated a new method for the
extraction of the tremor-related EEG activity in the case of
pathological tremor. The method builds on the physiological
coupling between the tremor-related cortical activity and the
neural drive to the muscle (the output of the motoneurons
that innervate a muscle). In particular, our method combines
the motor unit spike trains identified in the decomposition
of high-density surface EMG recordings to build an estimator
of the tremor-related EEG component. We applied it to
EEG recordings to demonstrate its feasibility, but it could
also be used for analyzing magnetoencephalographic (MEG)
data.

The proposed method was tested on simulated data and on
recordings from 9 PD and 9 ET patients. In the simulations,
our method detected the simulated tremor component with
great accuracy, as indicated by the low NMSE and high cross-
correlation values. The small difference between the simulated
and estimated H1/(B+H1) ratio (Figures 2, 3, global average
error of 0.006 ± 0.053 for simulated H1/B, ranging from 0
to 1) further demonstrates the fidelity of the estimated tremor

component. Our method also yielded very accurate estimates of
the delay between the motor unit population activity and the
simulated EEG (the average error was 1.0± 1.6ms for a simulated
delay of 10ms).

In the experimental data, the extracted tremor EEG
component exhibited clear similarities with the recorded
kinematics and motor unit population activity, both in the time
and frequency domains. The ground truth about the estimated
EEG tremor component is not available in experimental
conditions. However, we believe our method performed well
because the estimated EEG component exhibited significantly
larger coherence with the identified population of motor
units than the spatially filtered EEG signals, which is the
standard approach (1–10, 13, 16). This observation indicates
that the proposed method is likely to help studying the
neural mechanisms of tremor. Indeed, our method always
identified tremor-related activity in the EEG, while in many of
the investigated cases (34 of 54) we did not find significant
coherence between the spatially filtered EEG signals and the
identified population of motor units. Note that this observation
is in agreement with reports that several tens of second long
recordings are needed to obtain robust results in standard
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FIGURE 7 | Comparison of the proposed method for the detection of tremor-related cortical activity (F = 8) with the traditional coherence approach in experimental

recordings. The top right plot shows the spectrum of the smoothed CST form right wrist extensor of an ET patient performing the postural task (EXT). The top left plot

shows the coherence between the CST and the tremor EEG component as estimated by the proposed method, while the remaining 12 plots show the coherence

between the Laplacian filtered EEG signals and the CST. The label on top of each plot indicates the central EEG electrode. Red dashed lines represent the 99%

confidence limit. Note the increase in coherence yielded by our method compared to the traditional coherence approach. Coherence calculated by traditional

approach was not significant in any of the electrodes.

coherence analysis (2, 6–10, 13), whereas our datasets were only
30 s long.

Movement artifacts are an important potential confound
when studying corticospinal coupling using coherence
techniques. We performed two complementary analyses to
discard the presence of movement artifacts. First, we tested
whether the tremor components were present across many
spatially filtered EEG channels, as it would be the case if they
resulted from movement artifacts. We calculated the coherence
between the CST and each spatially filtered EEG channel. As
reported above, in 34 out of 54 cases we did not find significant
coherence between the spatially filtered EEG signals and the
identified population of motor units. In the remaining 20
cases, significant coherence at the tremor frequency or at its
higher harmonics was observed on one or two EEG channels
only. As a second control, we examined whether the EEG-CST

delays depended on the basic tremor frequency. Finding a
significant association between these two parameters would
indicate a potential mechanical coupling. Our results ruled out
this possibility: the EEG-CST delays lied within the−30 to 30ms
interval. These values did not overlap with the range of delays
potentially indicating an artifact (from ∼45 to 100ms; interval
defined by the maximum and minimum tremor frequencies,
11 and 5Hz, respectively). Therefore, our control analyses
indicate that the identified tremor component is unlikely to
originate from movement artifacts. Note that these extensive
tests are necessary every time the presented methodology is used
as, similar to the classical coherence analysis, the movement
artifacts could completely mask any tremor-related activity in
cortex.

The only parameter that needs to be chosen in our method is
the extension factor F in Equation (4). In simulated conditions,
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FIGURE 8 | H1/(B+H1) ratio of the estimated tremor EEG component (F = 8) for all PD and ET patients during the postural task. Results are plotted separately for

each investigated muscle; Superscripts *p < 0.05 and **p < 0.01 denote statistically significant difference as assessed by Kruskal–Wallis test.

the optimal extension factor was dependent on the SNR (of the
input sources in the simulated EEG signals) with the optimal
values between F= 2 and F= 5 for SNR of 20 dB, whereas larger
values, between F = 4 and F = 9, proved to be optimal in the case
of lower SNRs (Figure 2). We decided to choose extension factor
F = 8 for subsequent analyses. This choice was confirmed during
the analysis of the experimental signals, because the coherence
between the estimated tremor-related EEG component and the
smoothed CST reached the plateau region at F = 8, whereas
the overall increase in coherence was not significant after F = 5
(Figure 6A). The observation that in all the cases studied F = 1
yielded significantly worse results (lower coherence), indicates
that the extension of the convolutive model (1) helps in coping
with either the existence of different delays in the representation
of brain rhythms across different EEG channels, or with the
convolutive nature of EEG mixtures. Since the computational
complexity of the proposed method increases with the square of
the extension factor F, it is to our advantage that the preferred
value of F is relatively small.

Regarding the neurophysiological results of this study, we
found that the relative power of the first tremor harmonic
compared to the basic tremor frequency is greater in PD than
ET patients, regardless of the investigatedmuscle (Figure 8). This
is in agreement with other studies using EEG-EMG coherence
(9, 13). The observed delay between the estimated tremor
EEG component and the pooled motor unit firings also agrees
with previously reported values. Several studies in ET and PD
patients reported a bidirectional interaction between the primary
sensorimotor area of cortex and the affected muscles, with an
efferent and afferent delay between 10 and 30ms (7–10, 13). In
our dataset, the EEG activity preceded the motor unit firings
in half of the cases, and in the other half followed it. This is
likely due to the fact that the primary motor and sensory cortices
are next to each other and the limited spatial resolution of the
EEG makes their activities hard to disentangle. We want to
emphasize that these results were obtained using significantly

shorter datasets (30 s vs. the typically≥60 s long signals employed
in other studies), and avoiding the need of manually discarding
epochs with artifacts.

Results in Figure 6B suggest that the strength of our method
derives from the direct use of the CST in the identification of
the tremor-related cortical activity. One of the reasons for this
is that the CST provide a more accurate representation of the
common synaptic input to the muscles than rectified EMG as it
eliminates the influence of frequency components introduced by
the motor unit action potentials (22, 44). In the case of tremor,
the CST has most of its power at the frequency of the tremor and
its harmonics (15, 45). Thus, our approach averages out artifacts
and other non-physiological factors (42).

Our corticospinal latency results are consistent with previous
studies (7–10, 13). However, they must be interpreted with
caution. The convolutive mixing models used to represent the
EMG and EEG recordings, which are critical for accurate source
separation (25, 27, 42), may introduce a temporal uncertainty
to the reconstructed spike trains and tremor-related EEG
components. We estimate this uncertainty to be about ±5ms
for each reconstructed source. Moreover, the propagation of
the motor unit action potentials along the muscle fibers from
the innervation zone to the uptake electrodes may introduce
additional few ms delay. This could potentially further decrease
the accuracy of EEG-CST delay estimation. In the current study,
we used arrays of several tens of surface electrodes, whereas
many previous studies were based on bipolar EMG recordings.
The propagation of the motor unit action potentials may differ
substantially across these two setups, and may also be muscle
specific. Thus, the delays estimated in our study cannot easily be
compared to the ones in other studies.

The availability of our method to automatically assess the
accuracy with which each motor unit spike train is identified is
also of critical importance because this accuracy is then reflected
in the extracted tremor-related EEG component (see Appendix).
Our group demonstrated in Holobar et al. (42) that motor units
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with PNR > 30 dB exhibit accuracy > 90% in identification
of their firing patterns and in this study, we carefully utilized
this knowledge to increase the accuracy of EEG component
identification. In the future, we will investigate the minimal
number of EEG channels required for accurate detection of
tremor-related EEG activity, since it is likely that not all the EEG
channels included in this study contribute significantly to tremor
identification.

The proposed method is also computationally efficient. The
most time consuming step is its first stage (surface EMG
decomposition), which typically requires a few minutes of
processing time on regular PC for 30 s long measurements. EEG
decomposition in Equations (10, 11) is performed quickly.

The method does require multichannel EMG recordings
from a muscle, increasing the experimental costs. However,
multichannel EMG acquisition demonstrated significant
progress in the recent years and became an important source
of information in neurophysiology, neurology, sport sciences,
prosthetics and ergonomics, to name just a few major scientific
fields. Thus, it is likely that the price of multichannel acquisition
systems will decrease in the near future.

We limited our study to the EEG decomposition of
pathological tremor. The latter is a specific neurological disorder
that is characterized by clear spectral peaks in acquired EEG,
EMG, and inertial data. It is currently unclear to what extent
the presented methodology is applicable to investigations of
other types of pathological tremor (e.g., dystonic or cerebellar
tremor) or to other disorders, such as multiple sclerosis, stroke
and traumatic brain injuries and overactive thyroid, especially
as tremor frequently accompanies these disorders. All these
questions need to be systematically addressed in separate studies.

In conclusion, we have presented a novel method for
estimating tremor-related cortical activity. This method uses
pooled motor unit firings to directly extract the tremor

component from cortical recordings. Based on the presented
results, we believe that our method constitutes a significant
step forward in the current state-of-the-art as: (a) it is the first
method that directly extracts the tremor component from EEG
recordings; (b) it successfully tracks time changes in the tremor-
related cortical activity and has a potential for online tremor
detection.
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APPENDIX

Estimation of csj(n),s in the Case of
Phase-locked Motor Unit Firings
Assume that tremor-related EEG component in its analytic form
can be expressed as a complex exponential function:

sj (n) = e

i



2π
fj

fs
n+ϕj





(A1)

Where i is imaginary unit, fj and φj are the frequency and
the phase of sj, respectively, and f s is the sampling frequency.
Then the cross-correlation csj ,sλ (d) can be approximated by the
following sample mean:
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As well-known from Fourier analysis, the sum over N in (A2)
converges to zero when N → ∞ and fj 6= f λ. When fj= f λ (A2)
yields

csj ,sj (d) = e
−i2π

fj

fs
d

(A3)

Define now the r-th motor unit spike train as

tr (n) =
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(A4)

where dr is the common time lag (phase) of the pulses in tr(n),
1drk is the k-th realization of Gaussian random variable 1drk ∼
N(0, σ1dr ), fr is frequency of motor unit firings, and Kr is the
number of firings in the observed time interval. Then
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When EEG tremor is coupled to motor unit firings, we have

fj = afr for a ǫ Z. Thus, e
−i2πk

fj

fr = 1, ∀k, and (A4) simplifies to
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Since 1drk ∼ N(0, σ1dr ) and σ1dr is relatively small with respect
to fs, the imaginary component of the sum in (A6) converges to

zero, so that
∑Kr−1

k=0 e
−i2π

fj

fs
1drk

= β≤ Kr when Kr → ∞, where
β is a real number. When EEG tremor is not coupled to motor
unit firings, i.e., fj 6= afr for a ǫ Z, (A5) converges to zero when
Kr → ∞. Therefore, for sufficiently large Kr (A5) and (A6) yield:

ctr ,s
(

d
)

≈ αcsj ,s
(

d
)

(A7)

with α =
β

N
e

−i



2π
fj

fs
dr+ϕj





. In practice, The higher the number

of motor unit firings Kr , the better the estimate (A6). We can
increase Kr by increasing the length of the signal’s time support,
but this comes at the cost of long signal acquisitions. In the
case of pathological tremor, motor unit firing patterns are highly
synchronized and active motor units share approximately the
same tremor-related firing rate fr = fT , ∀r and initial delays
dr = dT , ∀r (see Figure 4). In such case, the CST of R motor
units can be modeled by

CST(n) =
R
∑

r=1

tr (n) =

R
∑

r=1

Kr−1
∑

k=0

δ

(

n− k
fs

fT
− dT − 1drk

)

(A8)

This increases the number of motor unit firings in (A5) to

cCST,sj (d) =









1

T
e

−i



2π
fj

fs
dT+ϕj



















R
∑

r=1

Kr−1
∑

k=0

e
−i2π

fj

fs
1drk







e
−i2π

fj

fs
d

(A9)

and, thus, improves the estimate (A6).
In noise-free conditions (A6), (A8) and (7) fully justify

the approximation (9). In the presence of noise, however,
further analytical derivations of the noise residual are required
to verify whether the proposed estimator (10) is truly an
LMMSE estimator and, thus, Bayesian optimal. Nevertheless, the
results on both synthetic and experimental signals confirm the
effectiveness of the proposed tremor estimation.
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Many studies have verified that there is an interaction between physical activities

and mental fatigue. However, few studies are focused on the effect of physical

activities on mental fatigue. This study was to analyze the states of mental fatigue

based on electroencephalography (EEG) and investigate how physical activities affect

mental fatigue. Fourteen healthy participants participated in an experiment including a

2-back mental task (the control) and the same mental task with cycling simultaneously

(physical-mental task). Each experiment consisted of three 20min fatigue-inducing

sessions repeatedly (mental fatigue for mental tasks or mental fatigue plus physical

activities for physical-mental tasks). During the evaluation sessions (before and after

the fatigue-inducing sessions), the states of the participants were assessed by EEG

parameters. Wavelet Packet Energy (WPE), Spectral Coherence Value (SCV), and

Lempel-Ziv Complexity (LZC) were used to indicate mental fatigue from the perspectives

of activation, functional connectivity, and complexity of the brain. The indices are the beta

band energy Eβ , the energy ratio Eα/β , inter-hemispheric SCV of beta band SCVβ and

LZC. The statistical analysis shows that mental fatigue was detected by Eβ , Eα/β , SCVβ ,

and LZC in physical-mental task. The slopes of the linear fit on these indices verified

that the mental fatigue increased more fast during physical-mental task. It is concluded

form the result that physical activities can enhance the mental fatigue and speed up

the fatigue process based on brain activation, functional connection, and complexity.

This result differs from the traditional opinion that physical activities have no influence on

mental fatigue, and finds that physical activities can increase mental fatigue. This finding

helps fatigue management through exercise instruction.

Keywords: coherence, complexity, EEG, mental fatigue, physical activities

INTRODUCTION

Mental fatigue is defined as a “state of reduced mental alertness that impairs performance” (1, 2).
It is believed to exist in the nervous system and affect the mental activities of people, such as the
motivation and attention (3). It often occurs when working on cognitively demanding tasks for a
prolonged period of time (3, 4) and causes difficulties for people inmaintaining task performance at
an adequate level (5). Furthermore, in some cases, mental fatigue can lead to vital consequences for
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people, such as drivers, pilots and surgeons. A naturalistic driving
study found that mental fatigue causes 12% of car crashes and
10% of near-misses (6, 7). Sleepiness is usually tied to mental
fatigue. Another study of French drivers showed that 46% of
the drivers experiencing near-misses reported related sleepiness
and 5.2% of the car accidents were caused by sleepiness (8).
Fatigue can affect the drivers’ performance regarding EEG and
functional near-infrared spectroscopy (fNIRS) (9, 10). Mental
fatigue is also a contributing factor for some medical conditions,
such as cardiovascular diseases (11), hypothyroidism (12), and
fibromyalgia (13). Therefore, it is of great importance to find out
the mechanism (3, 14) and the assessment (15, 16) of mental
fatigue. However, the level of mental fatigue is difficult to identify.
Usually, mental fatigue is detected by significant change of fatigue
indices.

Physical activities usually come with physical fatigue. Physical
fatigue (or muscle fatigue) is another kind of fatigue which
is caused by physical activities and defined as the inability to
maintain a required force level after prolonged use of muscle
(17). It is a complex, multifactorial phenomenon influenced by
the characteristics of the task being performed (18). Physical
fatigue is believed to be developed gradually soon after the onset
of the sustained physical activity (19). The common protocol to
quantify muscle fatigue is to interrupt the fatiguing session with
short maximal contraction to estimate the decline in the maximal
fore capacity. Additionally, EMG may be used as an indicator of
muscle fatigue.

The studies on mental fatigue have been limited by the
cognitive tasks (3, 4, 14, 20), such as N-back tasks, serial-
7 subtraction arithmetic tasks, Wisconsin Card Sorting Test,
and forward digit span. These tasks are all with high-intensity
mental activities, which can effectively induce mental fatigue.
Additionally, there are almost no physical activities except
for the necessary responses of the cognitive tasks. It seems
that an isolation exists between mental fatigue and physical
activities. A recent study used simulated driving task to induce
mental fatigue, and classified mental states based on generalized

FIGURE 1 | Experimental design. (A) Flowchart of the experiment. (B) An illustration of the two-back task. NT, non-target; T, target. (C) The photo of the one

participant during the experiment.

partial directed coherence of EEG (21). There are only few
studies on the interaction between mental fatigue and physical
activities. It is verified that mental fatigue decreased exercise
tolerance through higher perception of effort (22). Tanaka
et al. investigated the effect of mental fatigue on physical
activities using alpha-band event-related synchronization (ERD)
of magnetoencephalography (MEG) and found that the mental
fatigue suppresses activities in the right anterior cingulate
cortex during physical fatigue (23). Similar results were also
found by Mehta et al. that mental fatigue impaired motor
performance and muscle capacity when exploring the prefrontal
cortex activation with fNIRS (17). Additionally, Simth et al.
analyzed the time-motion data of mentally-fatigued athletes,
and observed a reduction in low-intensity activity velocity,
which was deduced to be mediated by an increased perception
of effort rather than cardiovascular or metabolic mechanisms
(24). Therefore, it is commonly accepted that mental fatigue
impairs physical performance, probably by increasing the effort
perception. However, how the physical activities affect the mental
fatigue is still unclear. Finding out the effect of physical activities
onmental fatigue will help deeply understandmental fatigue, and
on the other hand, it will benefit the prevention of mental fatigue.

EEG is a promising method to estimate mental fatigue (25).
EEG energy has been proposed to be a valid and reliable indicator
of mental fatigue (26). The EEG energy ratio was proposed in
order to consider the variation of EEG energy in more than one
frequency band and it can be used as a fatigue indicator during
driving (27, 28). The energy ratio of α/β was believed to be a
more reliable fatigue detection index than the energy index, since
it showed a clear fatigue-increasing process as the ratio between
the slow and fast wave activities increased (28, 29). More recently,
α/β was also used to detect the fatigue variability between
watching 2D and 3D TV (30). Another important parameter is
the spectral coherence value (SCV) of EEG. The SCV is often
used to investigate the functional connectivity of two signals.
It has been regarded as an effective indicator of mental fatigue
recently. The inter-hemispheric SCV of beta band decreases after
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a long-term cognitive task (31), whichmay indicate the weakened
cooperation of these brain regions during mental fatigue (32).
Mental fatigue is also reported to decrease brain complexity
(33, 34). The decrease of brain complexity can be interpreted
as the decrease of brain’s capability to continue a task. Brain
complexity can be assessed bymany parameters or methods, such
as the inherent fuzzy entropy method (35–37) and Lempel Ziv
Complexity (LZC). LZC was first proposed by Lempel and Ziv
to assess the system’s complexity (38). It has been widely used
to identify the complexity in EEG (39). It was noted that LZC
was more sensitive than the conventional spectral parameters
of EEG to reflect the mental activity (40), which distinguished
the schizophrenia, the depression and the healthy controls. More
recently, this method was also used to recognize the poststroke
depression (41). Therefore, LZC can be used to detect the brain
complexity and should be able to reflect the mental states.

Cycling is a very common exercise in daily life. Cycling-
based movement can provide a safe and effective way for walking
training and lower limb coordination training (42). Usually
cycling studies related to fatigue are limited to peripheral fatigue,
estimated by Electrocardiogram (ECG) and Electromyogram
(EMG) parameters (43, 44). In the present study, the mental
fatigue was generated by the n-back tasks. The n-back task is
a working memory task, which activate higher-order cognition,
such as language, reasoning and problem-solving (45). The
reliability and validity of n-back task to cause mental fatigue have
been confirmed (14, 23, 46). Physical activities (cycling) were
added with the 2-back task to generate mental fatigue during
activities.

Most studies focused on mental fatigue only, neglecting the
effect of physical activities. This interaction will help us control
fatigue and diseases with fatigue syndromes. The purpose of
this study is to investigate how physical activities change mental
fatigue based on EEG and to compare the sensitivity of different
mental fatigue indicators. As physical fatigue increases, the
nervous system will make more efforts to maintain the motor
task. Therefore, we expect that physical activities will strengthen
mental fatigue by occupying more neural resources. This paper
is organized as follows: In section Materials and Methods, the
experimental design is presented, and data processing methods
onmental fatigue detection are introduced. section Results shows
the results of the calculation and analysis. Then the obtained
results are discussed in section Discussion. Conclusions are
drawn in section Conclusions.

MATERIALS AND METHODS

Participants
Fourteen healthy participants (9 females and 5 males; mean age:
22.4 ± 1.6) without any chronic fatigue syndrome or motor

TABLE 1 | Experimental power of 14 participants.

Participant no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Experimental Power (W) 30 45 35 40 30 40 45 40 40 25 35 35 30 35

dysfunction, participated in the experiment. The experiment
protocol was approved by the Ethics Committee of Tianjin
University and the participants have signed a consent form before
experiment.

Experimental Design
The experiment was undertaken in the EEG lab of Tianjin
University. It consisted of a mental task and a physical mental
task as in Figure 1A. There are 2min rest sessions before and
after the fatigue-generated sessions for data acquisition. During
the mental task, the participant was seated in a chair in front
of the computer. The mental task included three 2-back sessions
based on 26 upper-case letters. The letters occurred on the screen
randomly, which was generated by Psychtoolbox within Matlab.
During this task, each letter was presented for 0.5 s at the center
of the screen every 3 s as shown in Figure 1B. Participants had
to judge whether the presenting letter was the same as the one
that had appeared two presentations before. If it was the same
(target stimulus), they were to press the left button with their
right index finger; if it was different (non-target stimulus), they
were to press the right button with their right middle finger.
The participants were instructed to perform the task trials as
quickly and as correctly as possible during the show of this
letter. The participants were trained with the 2-back session
before the experiment in order to fully and correctly understand

FIGURE 2 | Effect of data processing. (A) Raw EEG. (B) EEG after 0.5∼45Hz

filtering. (C) EEG after filtering and ICA.
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the experiment. The 2-back session lasted for 20min and was
repeated for 3 times. The ratio of the numbers of target stimulus
and non-target stimulus was 1:2.

A cycling part was added to the mental task described before
to form the physical-mental task. A spinning bike (Yowza B300,
Yowza Fitness, US) with a power measure was used for cycling.
The maximum cycling power of every participant was measured
before experiment: the participant first cycled for 2min at 30W
and the power was increased at 10 W/min until the participant
failed to maintain cycling (when the spinning speed is <60
rounds/min). This power was the maximum cycling power for
the participant. The experimental power (shown in Table 1) was
chosen as 40% of the maximum power, which is feasible for the
participants to maintain for the whole course of the experiment.
The participant cycled at the experimental power and completed
the 2-back session simultaneously. The physical-mental task
lasted for 20min and was repeated 3 times.

The participants refrained from intense mental and physical
activities, consumed a normal diet and beverages (excluding
caffeinated beverages), and maintained normal sleeping hours
on the day before the experiment. The mental task and

physical-mental task were separated by 3 days to exclude the
cross interference and the order of the two tasks were randomly
arranged.

Data Acquisition
The resting EEG data were recorded four times during themental
or physical mental task when the participant (with eyes open)
was seated without any obvious mental or physical activities as in
Figure 1C: one (t0) before the task and the other three (t1, t2, and
t3) after each fatigue-inducing session (shown in Figure 1A). In
this way, the mental fatigue caused by mental or physical-mental
tasks remained and there was no EMG disturbance in t0, t1, t2,
and t3.

EEG data were collected with a Neuroscan SynAmps2
amplifier (sampling rate: 1,000Hz). The electrodes were placed
on the scalp according to the extension of the international
10–20 electrode positioning system (47) with the reference at
right mastoid. Eye movements and blinks were monitored by
recording the horizontal and vertical Electrooculogram (EOG)
with two bipolar pairs of electrodes. The EEG data in F3, F4,
FZ, C3, C4, CZ, P3, P4, PZ, T3, T4, T5, T6, O1, O2, and OZ

FIGURE 3 | Eβ for mental (A) and physical mental tasks (B). *p < 0.05.

Frontiers in Neurology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 91580

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xu et al. Physical Activities Affected Mental Fatigue

were analyzed in this study. These channels were selected as the
representing channels from the frontal, central, parietal, temporal
and occipital individually. The channels of F3, F4, FZ, C3, C4,
CZ, P3, P4, and PZ are determined based on a coherence analysis
during mental fatigue (31), and T3, T4, T5, T6, O1, O2, and OZ
are supplemented for temporal and occipital areas.

Data Processing
The purpose of the pre-processing was to obtain clear EEG data
and to increase the computing speed of feature extraction. The
EEG data were re-referenced to bilateral mastoids, downsampled
to 500Hz and filtered at 0.5∼45Hz with a 4th-order Butterworth
zero-phase digital filter. The EOG interference was removed
using Independent Component Analysis (EEGLAB) (48). As
the EOG artifacts are in larger amplitude than pure EEG and
separated by several seconds randomly, the ICA component with
these artifacts can be picked out and deleted using EEGLAB. In
order to obtain the steady EEG data during t0, t1, t2, and t3,
the 1min data starting from 30 s after the onset of resting EEG
recording were extracted and analyzed.

The energy, interhemispheric SCV and complexity
features were then calculated based on the processed EEG
data.

Wavelet Packet Energy
Wavelet Packet Decomposition (WPD) is generalized from the
Wavelet Decomposition (WD). The advantage of WPD is that

TABLE 2 | Eβ for mental and physical mental tasks.

Channel Mental task Physical mental task

Before After Before After

FP1 0.11 ± 0.07 0.12 ± 0.09 0.12 ± 0.07 0.11 ± 0.06

FP2 0.12 ± 0.05 0.11 ± 0.05 0.13 ± 0.09 0.11 ± 0.06

F7 0.11 ± 0.08 0.10 ± 0.06 0.13 ± 0.11 0.09 ± 0.08

F8 0.11 ± 0.07 0.10 ± 0.07 0.11 ± 0.07 0.09 ± 0.07

F3 0.11 ± 0.06 0.14 ± 0.06 0.14 ± 0.08 0.11 ± 0.06

F4 0.12 ± 0.05 0.13 ± 0.06 0.15 ± 0.09 0.12 ± 0.07

FZ 0.11 ± 0.05 0.13 ± 0.05 0.13 ± 0.07 0.12 ± 0.06

C3 0.12 ± 0.06 0.13 ± 0.06 0.14 ± 0.08 0.10 ± 0.06

C4 0.12 ± 0.06 0.12 ± 0.05 0.15 ± 0.08 0.11 ± 0.06

CZ 0.11 ± 0.05 0.13 ± 0.06 0.13 ± 0.07 0.11 ± 0.07

P3 0.13 ± 0.06 0.13 ± 0.06 0.16 ± 0.10 0.11 ± 0.06

P4 0.11 ± 0.06 0.12 ± 0.05 0.15 ± 0.09 0.11 ± 0.07

PZ 0.11 ± 0.05 0.12 ± 0.06 0.15 ± 0.09 0.10 ± 0.06

T3 0.16 ± 0.13 0.14 ± 0.09 0.18 ± 0.12 0.11 ± 0.10

T4 0.17 ± 0.13 0.16 ± 0.09 0.17 ± 0.12 0.11 ± 0.08

T5 0.19 ± 0.10 0.16 ± 0.09 0.19 ± 0.12 0.11 ± 0.09

T6 0.14 ± 0.09 0.14 ± 0.08 0.16 ± 0.11 0.11 ± 0.09

O1 0.23 ± 0.14 0.20 ± 0.12 0.24 ± 0.17 0.17 ± 0.14

O2 0.18 ± 0.09 0.20 ± 0.12 0.24 ± 0.19 0.15 ± 0.12

OZ 0.20 ± 0.11 0.19 ± 0.11 0.25 ± 0.17 0.16 ± 0.12

The values in bold are significantly different.

both the detail and approximation coefficients are decomposed
(49), that is, precise frequency information is obtained for high
frequencies. Daubechies (“db10”) was used as the mother wavelet
in this study. The 60 s resting EEGwere decomposed by an 8-level
WPD (28≈ fs/2, fs= 500Hz).

After WPD, the wavelet packet coefficients (WPC) of 256
frequency bins were obtained. The WPE across frequencies were
calculated as:

WPE
(

fi
)

= ‖WPCi‖2, i = 0, 1, ..., 255 (1)

where || ||2 is 2-norm computation, i is the node number of the
8th level, fi is the corresponding frequency of the ith node.

fi =
i+ 1

256
·
fs

2
(2)

The power of EEG data is subdivided into four frequency
bands: delta (0.5∼4Hz), theta (4∼8Hz), alpha (8∼16Hz), and
beta (16∼32Hz) bands. The EEG energies and energy ratios of
different frequency bands are important in indicating mental
fatigue (28, 29). The energy ratio is more reliable than the band
energy, and it considers the energy variation of more than one
band. As the energy of delta and theta rhythms is not very
sensitive to mental fatigue (50), the relative energy of resting EEG
in beta band Eβ and the energy ratio of alpha and beta bands Eα/β

were calculated as in Equations 3, 4.

Eβ =

32
∑

j = 16
WPE

(

fj
)

46
∑

j = 1
WPE

(

fj
)

(3)

E∂/β =

16
∑

j = 8
WPE

(

fj
)

32
∑

j = 16
WPE

(

fj
)

(4)

Spectral Coherence Value
The SCV of EEG can be used to estimate the relationship between
two channels of EEG at any given frequency. If x and y are
EEG data of two different channels, the SCV of x and y is
estimated as

SCVx,y
(

f
)

=

∣

∣Sxy
(

f
)
∣

∣

2

Sxx
(

f
)

· Syy
(

f
) (5)

where Sxx and Syy are the power spectral densities of x and y and
Sxy the cross spectrum of x and y. The 60 s data was segmented
into 59 segments by a Hamming window of 2 s with an overlap of
1 s. The cross- and auto-spectrum were obtained by the average
spectrum of these 59 segments.
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In order to estimate the interhemispheric functional
connectivity, the SCV of EEG signals in F3-F4, C3-C4, P3-P4,
T3-T4, T5-T6, and O1-O2 electrode pairs were calculated. The
beta band SCV was obtained by Equation 6.

SCVβ =

32Hz
∑

f=16Hz

SCV
(

f
)

(6)

Lempel-Ziv Complexity
The detailed method is described in the work of Nagarajan
et al. (51). The complexity c(N) was normalized to N/log2N
resulting in

λ = c (N) /
N

log2N
(7)

The 60 s data was segmented into 20 segments. For each segment,
the number of points N = 1,500.

For each segment, the data was binarised by comparison of
each data point x(i) (i = 1, 2, . . . , N) with its median valueMd in
the following way:

s (i) =

{

0, x (i) ≤ Md

1, x (i) > Md
(8)

The normalized complexity λkj for segment k channel j was

obtained according to Equation 7. The LZC value λj for each

channel j was the average of λkj of 20 segments.

Data Analysis
The energy parameters of Eβ and Eα/β , interhemispheric beta
band SCV and LZC were compared to indicate mental fatigue.
The signed rank test was used to detect the significant difference
between the states before and after mental or physical-mental
task in each channel or channel pair.

In order to estimate the varying trend of the parameters, the
linear fit of the parameters of channels or electrode pairs with

FIGURE 4 | Eα/β for mental (A) and physical mental tasks (B). *p < 0.05.
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significant difference was performed to fit a linear polynomial
curve. These parameters are the sum of the average values in
the channels with significance, i.e., Eβ in C3, P3, PZ, T3, T5,
and OZ, Eα/β in C3, P3, and T4, SCVβ in P3-P4, and LZC in

TABLE 3 | Eα/β for mental and physical mental tasks.

Channel Mental task Physical mental task

Before After Before After

FP1 1.30 ± 0.69 1.41 ± 0.74 1.30 ± 1.06 1.80 ± 1.14

FP2 1.17 ± 0.73 1.29 ± 0.49 1.25 ± 1.05 1.66 ± 1.09

F7 1.19 ± 0.82 1.06 ± 0.40 1.21 ± 1.19 1.65 ± 0.97

F8 1.25 ± 0.79 1.22 ± 0.51 1.33 ± 1.22 1.65 ± 0.93

F3 1.36 ± 0.61 1.27 ± 0.43 1.35 ± 1.04 1.88 ± 1.01

F4 1.41 ± 0.63 1.33 ± 0.42 1.37 ± 1.03 1.80 ± 0.93

FZ 1.60 ± 0.72 1.51 ± 0.50 1.49 ± 1.08 2.01 ± 1.20

C3 1.79 ± 0.84 2.10 ± 1.11 1.59 ± 1.12 2.60 ± 1.33

C4 1.81 ± 0.71 1.87 ± 0.71 1.63 ± 1.06 2.22 ± 0.79

CZ 1.71 ± 0.66 1.57 ± 0.42 1.55 ± 1.01 1.97 ± 1.01

P3 1.68 ± 0.73 1.91 ± 0.45 1.46 ± 1.00 2.18 ± 0.80

P4 1.71 ± 0.63 1.92 ± 0.67 1.55 ± 1.03 2.18 ± 1.01

PZ 1.73 ± 0.66 1.91 ± 0.65 1.61 ± 1.00 2.21 ± 1.04

T3 1.17 ± 0.72 1.23 ± 0.58 1.14 ± 1.13 1.53 ± 0.80

T4 1.17 ± 0.77 1.19 ± 0.72 1.07 ± 1.13 1.49 ± 0.66

T5 1.27 ± 0.81 1.38 ± 0.35 1.19 ± 1.02 1.66 ± 0.62

T6 1.24 ± 0.62 1.62 ± 0.80 1.37 ± 1.02 1.80 ± 1.14

O1 1.08 ± 0.75 1.14 ± 0.40 1.15 ± 1.14 1.20 ± 0.55

O2 1.10 ± 0.67 1.21 ± 0.49 1.18 ± 1.16 1.16 ± 0.67

OZ 1.19 ± 0.80 1.18 ± 0.33 1.16 ± 1.15 1.25 ± 0.57

The values in bold are significantly different.

FIGURE 5 | SCVβ for mental (A) and physical mental tasks (B). *p < 0.05.

F8, P3, T3, and T5. As the variation of each channel is also
important to provide more accurate information, these indices
for each channel with significance are also calculated over time of
the tasks.

RESULTS

Data Processing
As the EOG artifacts are very strong in FP1 and FP2 (they are
the nearest electrode positions to the eyes), the EEG in FP1 of
one participant is shown in Figure 2 to illustrate the efficacy of
the filtering in our study. The red rectangle indicates where the
EOG artifact occurs. Figure 2B shows that the common filtering
can only remove the noise in certain frequencies, and it can not
wipe off EOG artifacts. However, EOG artifacts can be removed
successfully by ICA as shown in Figure 2C.

EEG Energy
The average of the beta band energy for all the channels of 14
participants in mental and physical-mental tasks is shown in
Figure 3, Table 2. For the mental task, there is no significant
difference in Eβ Figure 3A, but in Figure 3B, Eβ decreased
significantly after physical mental task in Central (C3, p= 0.017),
Parietal (P3, p = 0.025, and PZ, p = 0.030), Temporal (T3,
p = 0.020, and T5, p = 0.007), and Occipital (OZ, p = 0.042)
areas. Figures 4, Table 3 show the energy ratio of alpha and
beta bands Eα/β for all the channels. Significant increase of Eα/β

only occurs in Central (C3, p = 0.025), Parietal (P3, p = 0.049),
and Temporal (T4, p = 0.035) areas after physical mental task
(Figure 4B).

In view of the average values, the Eβ in all the channels
has an obvious decrease after physical mental task (Figure 3B),
while only Eβ in 8 channels decreases slightly in mental tasks
(Figure 3A). Eα/β has a similar variability trend that Eα/β

increases obviously in most channels after physical mental task
(Figure 4B).

Interhemispheric SCV
In order to estimate the interhemispheric connectivity of the
brain, we computed the SCVβ between the two symmetric
channels. The SCVβ values remains similar before and after
mental task (Figure 5A, Table 4). However, there is a significant
decrease in Parietal (P3-P4, p= 0.042) area after physical mental
task (Figure 5B). The interhemispheric connectivity decreased
significantly after physical mental task, but no significance was
found after mental task.

Lemple-Ziv Complexity
The mean LZC of all the participants for all the channels are
shown in Figure 6, Table 5. There is no significant decrease
between LZC before and after the mental task, while after
physical-mental task there exist significant decreases in Frontal
(F8, p = 0.049), Parietal (P3, p = 0.042), and Temporal (T3,
p = 0.019, and T5, p = 0.035) areas. To be noted that, the LZC
average values before and after mental task are quite similar in
Figure 6A, but the values decrease after physical mental task
in all the channels in Figure 6B. This indicates that the brain

Frontiers in Neurology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 91583

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Xu et al. Physical Activities Affected Mental Fatigue

complexity was significantly influenced by the physical mental
task.

Linear Fit
During the experiment, the resting EEG were collected for t0, t1,
t2, and t3 of the tasks. The features of these periods are shown

TABLE 4 | SCVβ for mental and physical mental tasks.

Channel Mental task Physical mental task

Before After Before After

F3-F4 17.34 ± 5.28 18.17 ± 6.37 18.14 ± 6.52 17.31 ± 5.97

C3-C4 15.16 ± 6.11 15.66 ± 7.36 16.23 ± 6.75 13.90 ± 7.02

P3-P4 16.30 ± 5.65 16.50 ± 6.67 16.25 ± 6.76 12.87 ± 5.48

T3-T4 3.50 ± 5.32 5.39 ± 6.96 6.11 ± 9.74 4.90 ± 5.45

T5-T6 5.18 ± 5.11 7.12 ± 8.78 7.09 ± 8.26 5.44 ± 5.63

O1-O2 13.61 ± 5.44 15.84 ± 7.48 14.95 ± 7.89 14.38 ± 5.78

The values in bold are significantly different.

and fitted in Figure 7. The slopes of these features indicate the
variability rate of these features when the task is proceeding. It is
shown that the slopes of Eβ (Figure 7A), SCVβ (Figure 7C), and
LZC (Figure 7D) in physical mental task are smaller than those
in mental tasks, while the slope of Eα/β (Figure 7B) in physical
mental task is larger than that in mental task. This shows that
the variability of these features caused by physical mental task is
larger than that caused by mental task.

The indices in each channel with significance are shown in
Figure 8 (A, C, E, and G for mental tasks, and B, D, F, and
H for physical mental tasks). It has been indicated that the
significant change between values in t0 and t3 only occurs in
physical mental tasks. This result shows that all the channels
varies in a similar trend, and there is a larger drop or increase in t1
than t3.

DISCUSSION

This study investigated the effect of physical activities on
mental fatigue through specifically designed experiments and
different EEG parameters. These EEG features, including beta

FIGURE 6 | LZC for mental (A) and physical mental tasks (B). *p < 0.05.
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TABLE 5 | LZC for mental and physical mental tasks.

Channel Mental task Physical mental task

Before After Before After

FP1 0.29 ± 0.06 0.29 ± 0.06 0.28 ± 0.06 0.27 ± 0.07

FP2 0.29 ± 0.06 0.29 ± 0.05 0.28 ± 0.08 0.27 ± 0.07

F7 0.29 ± 0.08 0.28 ± 0.04 0.29 ± 0.09 0.25 ± 0.08

F8 0.29 ± 0.07 0.28 ± 0.07 0.29 ± 0.09 0.25 ± 0.07

F3 0.28 ± 0.05 0.30 ± 0.04 0.29 ± 0.07 0.27 ± 0.07

F4 0.28 ± 0.05 0.30 ± 0.05 0.29 ± 0.08 0.27 ± 0.06

FZ 0.27 ± 0.04 0.29 ± 0.04 0.28 ± 0.06 0.26 ± 0.06

C3 0.28 ± 0.04 0.29 ± 0.04 0.29 ± 0.07 0.26 ± 0.06

C4 0.28 ± 0.04 0.29 ± 0.05 0.29 ± 0.08 0.26 ± 0.06

CZ 0.27 ± 0.04 0.28 ± 0.04 0.28 ± 0.06 0.26 ± 0.07

P3 0.29 ± 0.06 0.29 ± 0.04 0.30 ± 0.08 0.27 ± 0.07

P4 0.29 ± 0.05 0.29 ± 0.04 0.30 ± 0.08 0.27 ± 0.07

PZ 0.29 ± 0.05 0.29 ± 0.04 0.29 ± 0.07 0.26 ± 0.06

T3 0.31 ± 0.08 0.31 ± 0.08 0.32 ± 0.10 0.27 ± 0.09

T4 0.33 ± 0.09 0.33 ± 0.07 0.32 ± 0.10 0.27 ± 0.08

T5 0.33 ± 0.06 0.32 ± 0.07 0.33 ± 0.10 0.28 ± 0.09

T6 0.32 ± 0.07 0.31 ± 0.06 0.32 ± 0.10 0.28 ± 0.09

O1 0.37 ± 0.09 0.35 ± 0.08 0.35 ± 0.11 0.32 ± 0.12

O2 0.37 ± 0.08 0.35 ± 0.08 0.37 ± 0.11 0.32 ± 0.11

OZ 0.36 ± 0.09 0.35 ± 0.09 0.37 ± 0.11 0.32 ± 0.11

The values in bold are significantly different.

band energy, energy ratio, SCV, and LZC, estimate the fatigue
states from the perspectives of brain activation, interhemispheric
connectivity and brain complexity. From our results, the mental
fatigue causes a significant index change in physical mental task,
and physical activities speed up the fatigue process. This result
reveals the effect of physical activities on mental fatigue, which
differs from the traditional opinion that physical activities have
no influence on mental fatigue, and help instruct exercise for
people with fatigue.

Indices of Mental Fatigue
The Eβ and Eα/β calculated in this study has been previously
used to measure mental fatigue (28, 30). The significant increase
of these indices was found with mental fatigue in this study,
which confirmed the findings by Eoh et al. (28) and Chen et al.
(30). Jap et al. had paid more attention on energy ratios as
they combined the power of different frequency bands (29) and
provided a measure for greater magnitude of changes in brain
activity throughout driving (52). The significant decreases were
shown in physical-mental task. It was convinced that the mental
fatigue occurred in both tasks, but these parameters were not
so sensitive that there was no significant difference in mental
task.

Zhang et al. estimated the cortical functional connectivity in
Frontal, Central, and Parietal regions during mental fatigue and
found that the SCVβ decreased in Parietal regions (31). Similar
results were also found in the present study (Figure 5). Beta
band EEG is the main EEG wave reflecting excitatory state of
the brain cortex, which is associated with increased alertness

and excitement. Therefore, the decreased SCVβ of beta band are
related to mental fatigue. The significant decreases occurred in
P3-P4 electrode pair after physical-mental task. It was deduced
that the mental fatigue after physical mental task caused a
significant decrease in SCVβ .

Brain complexity was validated to decrease as the mental
fatigue level increased (33). The decrease of brain complexity
may be explained by neurons’ functional isolation with greater
autonomy of brain components (53). In this study, LZC
decreased significantly in Frontal, Parietal, and Temporal regions
in the physical-mental task. However, there was no significant
changes of LZC in mental task. It seemed that LZC was very
sensitive to the brain complexity variation caused by physical
activities and this variation was distributed almost in the whole
scalp.

SCV is commonly used to characterize the synchronization
and functional coupling of two signals. A study has provided
evidence that it is an effective and reliable way to quantify brain
response to mental fatigue (31). Additionally, the complexity is
another perspective to estimate mental state. LZC has excellent
performance in analysis of mental disorders (41), oppositely it
should be sensitive to mental fatigue when the brain is less
activated.

Interaction of Mental and Physical
Activities
It is well known that mental fatigue has an impact on cognitive
performances (3, 5) and physical performances (22, 23), and
it even causes muscle fatigue (54). However, to the authors’
knowledge, how physical activities affect mental fatigue has
not been thoroughly investigated. The research that EEG-EMG
coherence can predict muscle fatigue (55) demonstrates that
muscle fatigue affects the brain and muscle activities at the
same time. Mashiko et al. found that playing a rugby football
match can cause mental fatigue (56), which is consistent to the
result of the present study. However, the method they used for
the evaluation of mental fatigue was the Profile of Mood State
(POMS) test. An interesting study investigated the brain activities
during exercise in different temperatures (57). The main finding
is the hyperthermia-associated mental fatigue assessed by the
shift in EEG power distribution. However, there was no pure
physical task in the study as the control.

This present study firstly investigated the mental fatigue in
mental and physical-mental tasks with Eβ , Eα/β , SCVβ , and LZC,
and estimated the variation of the parameters during the task
using linear fit. The result indicated that the physical activities
(cycling) are able to produce mental fatigue, causing significant
differences in Eβ , Eα/β , SCVβ , and LZC. The result of the linear fit
in Figure 7 demonstrates that both mental and physical-mental
tasks can increase Eα/β and decrease Eβ , SCVβ and LZC, but
the variation is more rapid in physical-mental task. Therefore,
the physical activities speed up the fatigue process. It is deduced
that the control of the movement is a kind of mental activity that
can cause mental fatigue. As with physical fatigue increased, the
participant should make more effort to complete the task. More
attention was naturally paid on cycling. The task with attention
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FIGURE 7 | Linear fit of Eβ (A), Eα/β (B), SCVβ (C), and LZC (D). p1m: the slope of the index for mental task. p1pm: the slope of the index for physical-mental task.

is often used to generate mental fatigue, and attention is highly
related to mental fatigue (58). Therefore, the significant changes
of these indices may be related to subjective effort and attention
for physical activities.

An interesting phenomenon is shown in Figure 8, where an
obvious decrease or increase occurs in t1, and the variation is
retarded in the following t2 and t3. It is deduced that as the task
is proceeding, the participant becomes familiar with this task,
and finds an easier way to complete the task with fewer neurons
joining in. Therefore, the mental fatigue increases slowly in t2
and t3.

Limitations and Future Work
Although some valuable findings are obtained, there are still
several limitations in this study. The study only compared the
parameters in mental and physical-mental tasks. In order to
determine the effect of physical activities only, a physical task
without 2-back task should be analyzed in future studies. EEG
connectivity was also estimated by isolated effective coherence

(59, 60). The connectivity with direction may be a new attempt
to explore the mental fatigue states.

CONCLUSIONS

This study has investigated the energy parameter Eβ and
Eα/β , connectivity parameter (SCVβ ) and complexity parameter
(LZC) to indicated fatigue in mental and physical-mental tasks.
Different from the traditional view that mental fatigue is
caused by mental tasks, the present study works on mental
fatigue affected by physical activities. According to the statistical
results, the participants are more fatigued after physical-mental
task than after mental task. The linear fit results also show
that physical activities speed up the fatigue process. Thus,
the physical activities enhance the mental fatigue significantly.
The result of this study provides a new perspective of the
cause of mental fatigue. Further, this may help explain why
the mental fatigue can impair physical performances: the
mental fatigue leads to a decrease in the ability of the
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FIGURE 8 | Eβ (A,B), Eα/β (C,D), SCVβ (E,F), and LZC (G,H) in channels with significance over time for mental (A,C,E,G) and physical mental (B,D,F,H) tasks.

motor control. Therefore, this study helps understand the
mechanism of the interaction between mental fatigue and
physical activities.
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Purpose: Rapid muscle fatigue limits clinical applications of functional electrical

stimulation (FES) for individuals with motor impairments. This study aimed to characterize

the sustainability of muscle force elicited with a novel transcutaneous nerve stimulation

technique.

Method: A hemiplegic chronic stroke survivor was recruited in this case study.

Clustered subthreshold pulses of 60-µs with kilohertz (12.5 kHz) carrier frequency (high-

frequency mode, HF) were delivered transcutaneously to the proximal segment of the

median/ulnar nerve bundles to evaluate the finger flexor muscle fatigue on both sides

of the stroke survivor. Conventional nerve stimulation technique with 600-µs pulses at

30Hz (low-frequency mode, LF) served as the control condition. Fatigue was evoked

by intermittently delivering 3-s stimulation trains with 1-s resting. For fair comparison,

initial contraction forces (approximately 30% of the maximal voluntary contraction) were

matched between the HF and LF modes. Muscle fatigue was evaluated through elicited

finger flexion forces (amplitude and fluctuation) and muscle activation patterns quantified

by high-density electromyography (EMG).

Result: Compared with those from the LF stimuli, the elicited forces declined more

slowly, and the force plateau was higher under the HF stimulation for both the affected

and contralateral sides, resulting in a more sustainable force output at higher levels.

Meanwhile, the force fluctuation under the HF stimulation increased more slowly, and,

thus, was smaller after successive stimulation trains compared with the LF stimuli,

indicating a less synchronized activation of muscle fibers. The efficiency of the muscle

activation, measured as the force-EMG ratio, was also higher in the HF stimulation mode.

Conclusion: Our results indicated that the HF nerve stimulation technique can reduce

muscle fatigue in stroke survivors by maintaining a higher efficiency of muscle activations

compared with the LF stimulation. The technique can help improve the performance of

neurorehabilitation methods based on electrical stimulation, and facilitate the utility of

FES in clinical populations.

Keywords: transcutaneous electrical nerve stimulation, electromyography, muscle fatigue, stroke,

kilohertz-frequency
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INTRODUCTION

Functional electrical stimulation (FES) can electrically activate
muscle fibers with electrodes placed at the muscle belly, and can
be used to promote functional improvement in paralyzed limbs
due to neurological disorders (1, 2). Even though FES has shown
some success in assisting individuals with neurological disorders,
the clinical impact is hampered by a critical limitation which
involves rapid muscle fatigue onset during repeated stimulations
(3, 4). The increased muscle fatigability can arise from factors
including the violation of the size principle of motor unit (MU)
recruitment (5, 6) and the highly synchronized activation of
muscle fibers. Furthermore, muscles from the paralyzed limbs
are more fatigable compared with the muscles of the contralateral
side or intact individuals due to central (7) or peripheral fatigue
(8–10), which can further limit clinical applications of FES.

Previous studies have explored various techniques to reduce
muscle fatigue. For example, prolonged force production has
been observed by alternately stimulating muscle synergists
(11) or using randomly modulated stimulation parameters to
activate different muscle fibers separately (12–14). Similarly,
multi-electrode stimulation techniques have been used to
asynchronously activate different muscle portions (15–18). More
recently, stimulation at the proximal segment of nerve bundles
has been investigated (19, 20), in order to recruit a range
of MUs, especially the more fatigue-resistant MUs. The nerve
stimulation technique can result in less fatigable contractions
(21) and more dexterous movements (22). In addition, the nerve
bundle stimulation technique can activate afferent fibers with a
low current amplitude and a high frequency (23), resulting in
a more physiological recruitment order of MUs. However, the
activations of different MUs are still highly synchronized, and
the H-reflex activity is still secondary compared with the M-wave
when large muscle forces are required.

In a previous study (24), clustered narrow pulses with a
carrier frequency of kilohertz (high frequency, HF) targeting the
proximal nerve bundles can lead to asynchronized activation
of muscle fibers and reduced force fluctuations, compared with
wide pulses delivered at a low frequency (LF). Furthermore, the
HF stimulation technique can reduce muscle fatigue in healthy
subjects (25). However, it is not known to what degree the
HF stimulation technique can improve the force sustainability
in paralyzed limbs of individuals with neurological disorders.
Accordingly, a hemiplegic stroke survivor was recruited in the
current case study. The elicited finger flexion forces and the EMG
activity from the finger flexor muscles were compared between
the HF and LF stimulation on both the affected (paretic) and
contralateral sides.

METHODS

Experiment and Subject
Subject Background
A 54-year-old chronic stroke survivor with severe
motor impairment in the arm and hand was recruited. The
subject suffered from an ischemic stroke in the left corona
radiate 2 years prior to the testing. The Chedoke-McMaster

Stroke Assessment of the hand component was 2, and the arm
component was 3. No cognition impairment was reported. Two
experimental sessions, with one on each side, were performed
with an interval of 1 month. This study was carried out in
accordance with the recommendations of the Institutional
Review Board (IRB) of the University of North Carolina at
Chapel Hill with written informed consent from the subject. The
subject gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the local
IRB. Additional written informed consent was obtained from the
subject for the publication of this case report.

Experiment Setup
The subject sat in an arm chair at a comfortable height with his
back supported during the experiment. The hand was restrained,
and the forearm was supported (Figure 1A). The individual
fingers were secured to four miniature load cells (SM-200N,
Interface), respectively for force measurements with a sample
frequency of 1 kHz.

An 8 × 16 channel high density EMG electrode pad (OT
Bioelettronica) was placed at the finger flexor muscles to obtain
the EMG activities (Figure 1A). The electrode diameter was
3mm with an inter-electrode distance of 10mm. The center of
the electrode grid was aligned with the midline between the
olecranon process and the styloid process. Monopolar EMG
signals were amplified using EMG-USB2+ (OT Bioelettronica).
The sample rate, gain and bandwidth of the amplifier were set at
5,120, 200, and 10–900Hz, respectively.

Sixteen (2 × 8 array) gel-based skin-surface stimulation
electrodes (10mm in diameter) were placed beneath the short
head of the biceps brachii along the ulnar/median nerves. A
custom-made MATLAB user interface was used to control a
stimulator (STG4008,Multichannel Systems) and a switchmatrix
(Agilent Technologies) to deliver the stimulation trains with
different parameters to any pair of the 16 electrodes.

Stimulation Paradigm
The sample stimulation trains for the LF and HF mode are
illustrated in Figure 1B. In the LF mode, biphasic pulses were
delivered at 30Hz. In the HF mode, narrow pulses with a 60-µs
pulse width were clustered in bursts with a 20-µs pulse interval,
leading to a carrier frequency of 12.5 kHz. Different clusters were
also delivered at 30Hz. A pilot test demonstrated that a single 60
µs pulse evoked no EMG activity nor force responses.

The maximum voluntary contraction (MVC) of individual
fingers was first obtained, when the subject maximally flexed the
individual fingers against the load cell. Before the fatigue test,
we first searched across all electrode pairs using the LF stimuli
with a pulse duration of 600 µs to identify the electrode pair
that can elicit the strongest muscle contraction with no pain
sensation. Then, the current amplitude was adjusted until 30%
of MVC was obtained for at least one finger. In the subsequent
experiment, the current amplitude and the electrode pair were
the same between the two stimulation modes. Muscle fatigue
was evoked by delivering 20 (for the affected side) or 30 (for
the contralateral side) 3-s stimulation trains with 1-s intervals
(Figure 1C). Since muscles of the contralateral side are generally
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FIGURE 1 | The experimental apparatus includes the stimulation of the ulnar/median nerve bundles, and the recordings of high density EMG at the forearm flexor

muscles and the finger flexion forces (A). Sample stimulation trains for the LF and HF stimulation mode (B). The stimulation train of a trial on the contralateral side in

the HF mode (C). The EMG signal of a representative channel recorded on the contralateral side in the HF mode (D).

less fatigable than that of the affected side, additional stimulation
trains were delivered to ensure that fatigue can be induced. Two
trials with one stimulation mode in each trial were performed in
a random order. The resulting trial order was that the LF mode
was first tested on the affected side, and the HF mode was first
tested on the contralateral side. The initial contraction forces
from the two modes were matched such that 30% MVC was
elicited in the same finger. A 10-min rest was provided between
trials, which was sufficient for the subjects to recover frommuscle
fatigue with fully recovered forces under the stimulation protocol
(26).

Data Analysis
Finger Force
To compare the overall force output, the raw forces from all
fingers were summated at individual sample points, and the
force-time integral was calculated based on the summated force.
To further quantify the decline of forces between the two modes,
the raw force data from each 3-s stimulation train were first
averaged for individual fingers. Then, the average forces from all
fingers were summated to represent the contraction force level of
individual stimulation trains. Next, the force level were fitted with
an exponential function, i.e.y = a+ beτ t , where a represents the
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FIGURE 2 | The summated force across fingers for the affected (A) and the contralateral (B) side. The changes of the force level with the sequential stimulation trains

for the affected (C) and the contralateral (D) side, and the corresponding fitting results with the exponential function. The changes of the normalized force fluctuation

with the successive stimulation trains for the affected (E) and the contralateral (F) side. Comparison of the normalized force between the affected and contralateral

sides under the HF stimulaion (G) and the LF stimulaion (H).
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force plateau level, b is the absolute force decay, and τ <0 reflects
the rate of force decline. A direct comparison of the τ value
cannot accurately reflect the force decline rate because the force
plateau under two different modes can be different. Therefore, we
estimated the number of stimulation trains (termed as the 50%-
peak stimulation) for the force to decline below 50% of the initial
force level. A larger 50%-peak stimulation represents a slower
force decay rate.

To estimate the force variability, the forces were first band-
pass filtered (20–40Hz) to eliminate the low-frequency offset
and the high-frequency noise. Then, the standard deviation of
the filtered force was calculated to represent the magnitude of
the force fluctuation for individual stimulation trains. As in
our previous study (25), the summated force fluctuation across
all fingers was further normalized by the absolute force level
of individual stimulation trains to eliminate the effect of force
decline.

EMG Activity
Within each 3-s stimulation train, the EMG segments 5ms prior
to and 35ms after the stimulation onset were averaged to obtain
the average EMG for individual channels. Stimulation artifacts
were then identified with a threshold-crossing method based
on the EMG, and the EMG segment between two consecutive
stimulation artifacts were extracted to calculate the EMG area,
estimated as the integral of the absolute EMG over time
(Figure 1D). The start and end point of the EMG integral
calculation remained the same across the two stimulation modes.
The estimated EMG areas were then averaged across all 128
channels to represent the overall level of the EMG activity. To
evaluate the efficiency of muscle force generation, the force-to-
EMG area ratio (F–EMG ratio) was calculated.

Results
Figures 2A,B illustrate the summated force of all four fingers
between the two stimulation modes for the affected and
contralateral sides. Each impulsive force was elicited by a
stimulation train, resulting in 20 and 30 force pulses for the
affected and contralateral sides, respectively. With matched
initial force levels, the force declined notably as successive
LF stimulation trains were delivered. In contrast, the force
declined more slowly and stayed at a higher level under the HF
stimulation. Compared with the LF mode, the force-time integral
under the HF stimulation was 24.38 and 45.63% larger in the
affected and contralateral side, respectively, indicatingmore force
outputs under the HF stimulation (Table 1).

The changes of the contraction force are illustrated
in Figures 2C,D for the affected and contralateral sides,
respectively. For all conditions, the force decreased exponentially
with the stimulation train. The average R-squared value of the
exponential fit across all conditions was 0.9432 ± 0.0386. For
both the affected and contralateral sides, the force decay was
smaller and the force plateau was higher after successive HF
stimulation trains, compared with that in the LF stimulation
(Table 1). Under the LF stimuli, only 9 stimulation trains were
needed for the force to decline below 50% of the initial force level
for both the affected and contralateral sides. On the contrary,

TABLE 1 | Comparison of fatigue measurements.

Affected Contralateral

HF LF HF LF

Force-time integral/Ns 68.83 55.34 367.06 252.05

Force plateau/N 1.00 0.48 4.40 1.40

Force decay/N 1.46 1.96 5.26 8.12

50%-peak stimulation 14 9 >30 9

the 50%-peak stimulation under the HF stimuli was 14 for the
affected side and was even larger than 30 for the contralateral
side (Table 1). Figures 2G,H illustrate the relative force decay
between the affected and contralateral sides under different
stimulation modes. Under the HF stimulation, the force had
a higher plateau on the contralateral side compared with the
affected side. Under the LF stimulation, on the contrary, the
force declined continuously for both sides and the decay rate was
similar between the two sides.

The normalized force fluctuation increased with successive
stimulation trains (Figures 2E,F), which was consistent with
our previous study (25). The increase of the normalized force
fluctuation was larger under the LF stimulation compared
with that under the HF stimulation for both the affected and
contralateral sides.

The initial EMG activity distribution and the average EMG
of the channel with the highest intensity from the first and the
last 3-s stimulation train are shown in Figure 3. Similar contour
lines between the two modes demonstrated that similar muscles
or muscle portions were activated between the two modes for
both sides. The amplitude of the EMG activity under the HF
stimulation was smaller compared with the LF mode. The EMG
activity intensity decreased substantially over time under the LF
stimulation (Figures 3D,I) while the EMG activity under the HF
stimulation did not show an obvious declining trend. The F-EMG
ratio decreased in both stimulationmodes, indicating a decreased
efficiency of the muscle force generation after fatigue. However,
the F-EMG ratio under the HF stimulation was consistently
larger than that under the LF stimulation over time, indicating
a consistently higher efficiency of force generation under the HF
stimulation.

DISCUSSIONS

In this case study, a HF stimulation protocol was tested on a
hemiplegic stroke survivor to verify whether it can reduce muscle
fatigue compared with the conventional LF stimulation. The
results showed that the elicited force declined more slowly and
the force plateau was higher under the HF stimulation for both
sides, resulting in amore sustainable force output at higher levels.
The force fluctuation increased more slowly, and was smaller
with successive HF stimulation trains compared with the LF
stimuli, indicating a less synchronized activation of the muscle
fibers. The efficiency of the muscle activation measured as the F-
EMG ratio (27) was higher after successive HF stimulation trains.
These results indicate that the HF stimulation has the potential
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FIGURE 3 | The initial (first stimulation train) strength distribution of the EMG activity under the HF (A) and the LF (B) stimulation, respectively, on the affected side.

The initial strength distribution of the EMG activity under the HF (F) and the LF (G) stimulation, respectively, on the contralateral side. The white area in (F) and (G) was

eliminated from analysis because of motion artifact contamination. The EMG activity of the channel with the maximum EMG area on the affected (C) and the

contralateral sides (H), respectively. Only the EMG activity of the first and the last stimulation train were illustrated. The changes of the EMG area with the successive

stimulation trains for the affected (D) and contralateral sides (I), respectively. The changes of the F-EMG ratio with the successive stimulation trains for the affected (E)

and the contralateral sides (J), respectively.

to reduce muscle fatigue in stroke survivors, compared with the
LF stimulation, by maintaining a higher efficiency of muscle
activations.

The faster fatigue onset during electrical nerve stimulation can
arise from the differences between physiologically activated MUs
and electrically excited MUs. First, the recruitment order differs
between the two activations (5, 6). FES preferentially excites
the larger axons with lower resistance that innervate the more
fatigablemuscle fibers (28), although a random recruitment order
has also been observed (29). Second, the electrical activation
of MUs are highly synchronized and the twitch forces are
time-locked to the stimulation. This is contrary to voluntary
contraction where different MUs discharge asynchronously at a
range of different firing rates. Therefore, the highly synchronized
and physiologically reversed recruitment of MUs during FES
replace the normal physiological recruitment of MUs and their
discharge regulation, resulting in a fast decline of the elicited
forces.

The mechanisms underlying reduced muscle fatigue in the
HF stimulation may be multifactorial. First, the HF stimulation
can temporally disperse the activation of different motor units
(24). Each narrow pulse can only induce a subthreshold
depolarization of the axon membrane and different axons might
need different numbers of subthreshold depolarizations to reach

the threshold, resulting in an enlarged delay between the onsets
of action potentials of different axons. Since previous studies
have demonstrated that asynchronized activations of different
muscle fibers can delay the onset of muscle fatigue (15–17),
the decreased synchronization level of motor units with the HF
stimulation can thus be a possible mechanism for the higher
fatigue-resistance. Second, the HF mode stimulation could elicit
more H-reflex activities compared with the LF stimulation. At
low levels of stimulation intensity, the Ia afferent fibers are
preferentially activated due to their intrinsic properties and
their larger diameters compared with the motor axons. Within
each burst of the HF stimulation, the current was delivered
intermittently. Since the Ia afferent fibers can be activated more
easily than the motor axons, the HF stimulation burst could
first activate Ia afferent fibers compared with the single wide
pulse in the LF mode. As a result, a less number of action
potentials may propagate antidromically along the motor axons,
and more H-reflex activities (30) can be observed. H-reflex can
lead to more physiological recruitment of the motor units. The
initial EMGdistribution showed similar patterns between the two
stimulationmodes, indicating similar muscles or muscle portions
were activated. However, the H-reflex activity was still considered
as a possible mechanism because the surface EMG grid can only
capture the activities of superficial muscles and not the EMG
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activities of deep muscles through the H-reflex pathway. Lastly,
a potentially changed axon excitability can also lead to reduced
force generation (31). Compared with the LFmode, the HFmode
possibly leads to fewer axon drop-out due to a smaller increment
of the axon threshold associated with fatigue.

Even though the HF stimulation can prolong the force
output for both the affected and contralateral sides, the amount
of increased force outcome on the affected side was smaller
compared with the contralateral side (Table 1 and Figure 2G).
The possible reason is that the muscle fibers of the paralyzed
limbs after neurological disorders are innately more fatigable
than muscle fibers on the contralateral side (7–10). An additional
piece of support for this lies in the major differences in the
decline of F-EMG ratio between the two sides. Although the
F-EMG ratio after successive HF stimulations plateaued in
the contralateral limb, which is consistent with our previous
study (25), the affected limb showed continuous decline of F-
EMG ratio. This difference can arise from a relatively higher
force level of the affected side, given that the subject was
severely impaired. The other possible explanation is the disrupted
muscle force transmission to the tendon of the affected muscles

following stroke (32). The transmission failure of the muscle

force to the tendon counteracts the influence of the HF
stimulation on muscle fiber activation. Therefore, even though
the affected muscle still showed a decrease in the rate of
force decline with HF stimulation, the improvement of fatigue
resistance was smaller compared with that on the contralateral
side.

CONCLUDING REMARKS

The current study showed that the HF stimulation at the
proximal segment of the nerve bundles can reduce muscle
fatigue in a stroke survivor compared with the conventional LF
stimulation. The outcomes demonstrated the clinical significance
of the technique to elicit sustainable muscle contractions at high
force levels for individuals with neurological disorders.
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Purpose: A transcutaneous proximal nerve stimulation technique utilizing an electrode

grid along the nerve bundles has previously shown flexible activation of multiple fingers.

This case study aimed to further demonstrate the ability of this novel stimulation

technique to induce various finger grasp patterns in a stroke survivor.

Methods: An individual with chronic hemiplegia and severe hand impairment was

recruited. Electrical stimulation was delivered to different pairs of an electrode grid along

the ulnar and median nerves to selectively activate different finger flexor muscles, with an

automated electrode switching method. The resultant individual isometric flexion forces

and forearm flexor high-density electromyography (HDEMG) were acquired to evaluate

the finger activation patterns. A medium and low level of overall activation were chosen

to gauge the available finger patterns for both the contralateral and paretic hands. All the

flexion forces were then clustered to categorize the different types of grasp patterns.

Results: Both the contralateral and paretic sides demonstrated various force clusters

including single andmulti-finger activation patterns. The contralateral hand showed finger

activation patterns mainly centered on median nerve activation of the index, middle, and

ring fingers. The paretic hand exhibited fewer total activation patterns, but still showed

activation of all four fingers in some combination.

Conclusion: Our results show that electrical stimulation at multiple positions along the

proximal nerve bundles can elicit a select variety of finger activation patterns even in a

stroke survivor with minimal hand function. This system could be further implemented

for better rehabilitative training to help induce functional grasp patterns or to help regain

muscle mass.

Keywords: proximal nerve stimulation, neuromuscular electrical stimulation, stroke, electromyography, finger

flexion

INTRODUCTION

Following a stroke, a majority of individuals have paresis due to a loss of excitatory input and
subsequent complications, such as disuse atrophy (1) and altered spinal organization (2–4). This
loss of voluntary control of muscle activation often limits activities of daily living. Neuromuscular
electrical stimulation (NMES) has been widely utilized both in the clinic and in research settings to
help restore atrophied muscle and lost functions (5–7). Electrical stimulation has been particularly
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successful with post-stroke survivors for functional recovery
(8–10). Research in NMES also aims to restore functional
activation of muscles, such as the restoration of hand grasps (11).

Traditionally, NMES uses large electrode pads, targeting
the distal branches of the nerve, known as the motor point
stimulation (12). Although stimulation of the motor point is
straightforward methodologically, NMES is limited to localized
muscle activation, which limits its functional efficacy and
also leads to rapid muscle fatigue (13). Advances in NMES
techniques to alleviate these issues involve various multi-
electrode techniques, which can stimulate multiple small regions
of the muscle to help distribute the current and potentially
activate more muscle fibers (14, 15). Crema et al. has also
demonstrated flexible activation of multiple fingers using a
multi-electrode array across the forearm and hand (16). Other
approaches to NMES involve stimulation of the nerve bundle
prior to branching and innervating a muscle, which has shown to
allow for a larger area of muscle activation and potentially reduce
long-term fatigue effects (17–19).

Recent developments have demonstrated the capabilities
of an alternative non-invasive transcutaneous electrical nerve
stimulation method targeting the ulnar and median nerves
proximal to the elbow to flexibly activate individual and multiple
fingers (20, 21). In addition, this technique shows the ability
to delay the force decline (22, 23). A stimulation electrode
grid placed along the two nerves allows us to activate different
muscles or muscle portions to elicit varied desired movements,
but manually switching between different electrode pairs is time-
consuming. To shorten this process, an automated electrode
pair searching method has been developed and tested on intact
control subjects (24). This new method can further categorize
the total available sets of finger activation patterns across
the entire electrode grid, providing valuable information on
electrode selection and the force generation capacity of stroke
muscles. However, the efficiency of this method has not been
tested on stroke survivors. Therefore, this case study recruited
a control subject and a stroke survivor with severe weakness
of the right arm, and evaluated the available finger activation
patterns of the subjects. Our results showed varied activation
of multiple fingers from both subjects. Further development of
this stimulation technique can provide valuable alternatives to
current rehabilitation for the restoration of hand movements.

METHODS

Case Report
A 54-year-old male who had a left hemisphere ischemic stroke 2
years ago was recruited. The participant had limited voluntary
motion in the arm and hand with significant muscle atrophy
but had no cognitive impairments. The average ratio of the
subject’s maximum finger forces between hands was 0.076, and
the subject’s Chedoke-McMaster Stroke Assessment hand score
was 2, both indicating severe impairment. A 35-year-old male
participant was also recruited as a neurologically-intact control
subject for comparison. This study was carried out in accordance
with the recommendations of the Institutional Review Board
(IRB) of the University of North Carolina at Chapel Hill with

written informed consent from the subject. The subject gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the local IRB. Additional
written informed consent was obtained from the subject for the
publication of this case report.

Experimental Setup
To compare the proximal nerve stimulation method, the stroke
subject’s paretic and contralateral sides were tested on two
separate occasions. The control subject was tested on the
dominant arm. For each experiment, a 2 × 8 stimulation
electrode grid was placed along the medial side of the upper
arm below the biceps muscle where the ulnar and median nerves
are more superficial (Figure 1A). All 16 stimulation electrodes
were individually connected to a switch matrix (34904A, Agilent
Technologies), which could be programmatically controlled. The
switch matrix was then connected to a multi-channel stimulator
(STG4008, Multichannel Systems), which could also be digitally
controlled to deliver any range of current amplitudes between
0 and 16mA, with a resolution of 20 µs. A brief cycle of 200
µs pulse width, 4mA amplitude, and 30Hz stimulation was
delivered to every electrode to identify notably uncomfortable
electrode combinations, which were then disabled. Following
the stimulation setup, the skin of the anterior forearm was
cleaned to reduce skin impedance for recording high density
electromyography (HDEMG). An 8 × 16 HDEMG array (OT
Bioelettronica)with a 10mm interelectrode distance, was placed
over the flexor compartment of the forearm (Figure 1B), and
the 128 EMG channels were band-pass filtered at 10–900Hz,
with a gain of 500, and sampled at 5,120Hz (EMG-USB2+, OT
Bioelettronica). Lastly, each of the four fingers was individually
secured to a uni-axial force transducer (SM-200N, Interface Inc.).
Each finger was secured just above the metacarpophalangeal
(MCP) joint (Figure 1A). The rest of the wrist and thumb
were restricted to minimize force contamination. The force was
recorded at 1,000Hz. All the data recording and stimulation
control were unified in a customMATLAB GUI (Mathworks).

Automated Stimulation Procedure
Once the setup was completed, the subjects were asked
to perform maximum voluntary contractions (MVC)
with each of the fingers individually and all 4 together.
The stimulation procedure was composed of four
steps:

Initial Medium-Level Grid Stimulation
An initial current level was chosen which can elicit some
noticeable finger force without excessive contraction. For the
paretic and contralateral sides of the stroke subject, the current
levels were 6.5 and 4.5mA, respectively, and 5mA for the
control subject. At this initial current level, all the different
pair permutations were automatically switched and stimulated
to test all the stimulation locations (120 maximum pairs). The
bipolar stimulation consisted of trains of matched biphasic
200 µs pulse width and 30Hz pulses. The stimulation was
active for 0.5 s, and at rest for 1 s, while both the force and
EMG were simultaneously recorded. Each pair was repeated
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FIGURE 1 | Experimental Setup and Data Samples. (A) Stimulation Electrode Array and Force/HDEMG Setup. Processed Data samples are displayed adjacent to the

setup figure. (B) The EMG map is the spatial map of calculated AUC values from each EMG channel’s CMAP and (C) the Force Profile is the smoothed force of each

finger. (D) Sample Depiction of Automated Stimulation Procedure. Each stimulation pair can be paired with an EMG activity map and a force profile, which is the

repetition of 3 stimulations.

3 times before the stimulation was switched to the next pair
(Figure 1D).

Max Force Selection and Activation Range Estimation
Once all available electrode pairs were stimulated, the subject was
given a minute of rest while the GUI identified the stimulation
electrode pair which resulted in the strongest average force across
all the fingers within a single repetition. This electrode pair
was then used to estimate the current-force relation across all
of the other electrode pairs. Stimulation at 1mA intervals was
conducted to determine a rough estimate of the minimum and
medium-high activation levels (relative to the current of the
initial search) needed for each tested hand.

Current-Force Relation
Randomly chosen levels of current between these ranges
(Paretic: 2–8mA, Contralateral: 2–5mA, Control: 2–7mA) were
stimulated using the same previous parameters, but with an
increased 2-s rest between successive stimulations to reduce
possible fatigue. Only the force was recorded with each
stimulation, and the peak averaged force was calculated. The
resultant Current-Force curve was then normalized to the
corresponding averaged MVC.

Low-Level Grid Stimulation
The current value which activated around 5% MVC was selected
to represent a level where low levels of finger motions were
available. As the pareticMVCwas already low, a value was chosen
which was close to the lower take-off region of the current-force
relation. The chosen values for the paretic and contralateral sides
were 6 and 4.3mA, respectively. The low-level selected for the
control subject was 4mA. The entire electrode grid underwent
the automated stimulation procedure at these new current levels.

Data Analysis
The data were processed to simplify its comparison across
electrode pairs. First the 30ms of HDEMG data after each
stimulation pulse were aligned and averaged to form a single
compound muscle action potential (CMAP), which was again
averaged across the 3 repetitions for each electrode pair. The
Area-Under-the-Curve (AUC) of each CMAP was calculated as
a measure of overall activity of a single EMG channel. These
AUC Values were then placed in a 2D array which corresponded
to its physical location on the forearm, and this overall heat
map was used to compare the muscle activity. Additionally, the
force data were smoothed using a 100-ms window with 1-ms
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steps and averaged across the 3 repetitions. Examples of the
processed HDEMG and force data are shown in Figures 1B,C,
respectively. Any electrode pairs which did not produce at least
0.1N of force in any single finger were excluded from further
analysis.

Hierarchical clustering was utilized to categorize the different
grasp patterns based on the force data. Since the force data was
retained as a 1,500 × 4 array, a 2D correlation coefficient was
calculated between the averaged force data of different electrode
pairs. This value was considered as the distance between two
electrode pairs, and then the complement of this correlation
distance (1–Corr. Coef.), also known as the dissimilarity, was
calculated between stimulation locations. Using an inconsistency
cutoff of 1.1, the initial hierarchical clusters were then used
as a starting point to further refine the force patterns caused
by each stimulation location. The silhouette coefficient was
used as a measure of cluster validity, and therefore each
member of each group was shuffled until the average silhouette
coefficient of each group was maximized. For each resultant
final cluster group, the average ratio of force between each
finger was used to threshold whether or not the finger was
active. Each of these clusters were therefore labeled by its finger
activation.

Lastly, the EMGActivity AUCMaps of each force cluster were
correlated with each other to quantify the similarity between the
EMG activation of each force cluster. A high correlation indicates
that electrode pairs within a force cluster also produces similar
EMG activity, and inversely, a low correlation indicates that the
electrode pairs within a cluster may produce similar force, but
through different muscle portions.

Results
The maximum voluntary forces obtained from the subject
showed a large disparity between sides. On the contralateral
side, the subject’s individual finger forces were 19.9, 21.1, 30.1,
and 21.9N for the Index, Middle, Ring, and Pinky fingers,
respectively (Average: 23.2N). For the paretic side, the finger
forces were 0.7, 3.6, 2.4, and 0.3N (Average: 1.8N). The
finger maximums for the control subject were 26.7, 26.3,
20.6, and 26.9N (Average: 25.1N). These values were in a
similar range as the stroke subject’s contralateral side. Although
initially obtained to normalize the elicited forces, due to the
very low forces of the paretic side, the absolute forces were
reported.

The clusters obtained from the contralateral and paretic
hands, as well as the control subject, are shown in Figure 2.
The labels on the top of each cluster indicates which of the
four recorded fingers were active. The Contralateral hand and
the control subject showed a variety of single and multi-
finger activation patterns which were mostly an activation of
the Index, Middle, and Ring fingers, but also a few Pinky.
Similarly, the Paretic hand also resulted in several clusters
of activation patterns, although fewer than the contralateral
side. The paretic hand resulted in relatively more clusters with
only a single finger being active, but still had a few two
and three finger activations. Overall, the contralateral hand
and the control subject clusters show that the electrode grid

had strong preference to the median nerve (Index-Middle-
Ring), whereas the paretic-side electrode grid may have had a
more evenly divided placement between the two desired nerve
bundles.

The results of the AUC Correlation analysis are shown in
Figure 3. Figure 3A shows two examples of EMG activity with
high cluster correlation and low cluster correlation. Figure 3B
illustrates the individual cluster AUC Correlation for two sides
of the stroke subject and the control subject. These results
suggest that for each force cluster in Figure 2, there is a high
variability of EMG correlation. Some force clusters also have
high EMG activity correlation, whereas other force clusters
may have more varied EMG activity, and therefore lower
correlation.

DISCUSSION

In the current case report, an individual with chronic stroke
associated muscle weakness was tested with our proximal
nerve stimulation system alongside a neurologically-intact
control subject to evaluate the capabilities to elicit specific
finger activations in highly paretic muscle. Overall, our results
demonstrate that our stimulation system is able to activate
various different fingers on both the contralateral and paretic
sides of this subject.

As a survey of the available finger activations of the
stimulationmethod, our results highlight a few important aspects
of the activated finger patterns. Similar to previous results (24),
a majority of the finger activations were those of the Index,
Middle, and Ring fingers. These correspond to the median
nerve, and therefore it can be concluded that the placement of
the electrode stimulation array was preferential to the median
nerve, especially for the contralateral hand and in the control
subject. The sets of force clusters from these two conditions also
demonstrate similar ranges of single and multi-finger activation
patterns. As for the paretic hand, the activation of the Pinky
finger suggests that more of the ulnar nerve was also accessible.
As the paretic biceps muscle was also visibly atrophied when
the stimulation electrodes were applied, the underlying nerve
bundles may have been more easily accessible. Additionally, the
results suggest that different electrode pairs are able to activate
different portions of the corresponding nerves. Although the
different clusters are a post-hoc attempt at organizing the finger
forces generated by each electrode pair, in reality, each elicitable
finger pattern lies along a continuum of finger activation levels.
Different electrode pairs impose a unique electrical field onto
the nerve, and thus activates a unique subset of motor and/or
sensory axons. As shown in the contralateral force clusters,
many of these subset axons project to muscles spanning multiple
fingers, but a small number of the electrodes can partially activate
a single finger. The different clusters help to identify which
sets of electrode pairs can elicit desirable finger grasp patterns.
Additionally, although anatomical landmarks were used during
the stimulation grid placement, small variations in the location of
the electrodes could inevitably lead to different sets of activation
even within the same subject. Therefore, although there may be
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FIGURE 2 | All Finger Force Clusters. The hierarchical clustering results of a control subject and the two sides of a stroke subject is visualized here. As shown in

Figure 1, each finger is individually plotted from the force profiles of each electrode pair in a cluster. The average of all of the force profiles in a cluster are also shown

as the darker solid line within each axes. The labels above each cluster represent which fingers were deemed “active” based on its relative ratio to the other fingers.

The letters for each finger are, I-Index, M-Middle, R-Ring, and P-Pinky.
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FIGURE 3 | EMG AUC Map Correlation Examples and Cluster Averages. (A) Two samples of overlaid EMG AUC values from all of the electrode pairs within a force

cluster. High Correlation indicates EMG activity within a cluster with very similar activation patterns, whereas the lower correlation values are a result of more varied

EMG AUC Maps. (B) EMG AUC Correlation values from each cluster in Figure 2. Average and Standard Error are shown.

inter-session differences in the exact number and range of force
clusters, the general similarity between the control subject and
the contralateral side suggest that the stimulation grid is able to
activate similar patterns of finger movement.

Although the obtained number of clusters are not necessarily
indicative of any physiological correlation with muscle function,
it is important to note that the paretic side does have
notably fewer number and variety of force clusters (12 on
contralateral/control vs. 7 on paretic side). This may be due
to several factors that occur in paretic muscle after stroke.
The first is due to the significant atrophy and weakness of
the right arm and hand seen in the participant. As the overall
stimulated force level was still very low, the limited muscle
mass may not have been able to generate observable levels of
force in some activation patterns. Alternatively, various losses
in the motor unit (MU) numbers as well as reinnervation
of existing MUs are also common occurrences after stroke
(25, 26). This may alter the various subsets of activation available
through nerve stimulation. Further studies are needed to confirm
these possibilities, as the lower number of clusters may also
simply be due to the chance involved with electrode placement.
Clearly, additional testing involving a large stroke cohort is
necessary.

Along with the overview of the different force clusters, as an
estimation of the total available activation patterns, the EMG
AUC Map correlation within each cluster also provides further
insight into the actual EMG activity from each stimulation.

Figure 3 shows that within each force cluster, there may be
a wide distribution of similar and dissimilar EMG activity.
A force cluster that has high EMG AUC correlation, may
imply a set of electrode pairs which consistently activate
the same portion of muscles. Contrastingly, a force cluster
that has a low EMG AUC correlation may suggest that
the set of electrode pairs in the cluster is able to activate
different portions of muscles even with the same resultant
physical activity. This feature may have far reaching effects
regarding prolonging use with stimulation redundancy. Various
groups have shown that, distributed muscle activation using
multiple pads is able to lead to reduced fatigability in NMES
(27–29). Being able to alternate between different electrode
pairs which recruit different muscles with similar functional
outputs could reduce muscle fatigue in the stimulation. Further
investigation on the relation between the force variability
and EMG variability is necessary to better understand the
different electrode pair choices and their impacts on force
production.

CONCLUDING REMARKS

The current study demonstrates the variety of finger activation
patterns that are accessible through our proximal nerve
stimulation method. Both the contralateral and paretic sides
of a stroke subject were able to be successfully stimulated
to produce a number of multi-finger movements along
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with a few isolated single fingers. The contralateral hand,
in particular, was able to elicit a similar variety of finger
activation patterns as seen in the control subject. Further
development of the technique can also be combined with
radial nerve stimulation to also include hand opening, which
is just as important for stroke survivors. The automated
electrode searching with the force clustering can help
rapidly identify the feasible sets of electrode pairs, which
can allow us to develop an auto-calibration method between

sessions/days, which can then be applied to any future uses for
rehabilitation.
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