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Pharmacogenetic Variation in Over
100 Genes in Patients Receiving
Acenocumarol
Vanessa Gonzalez-Covarrubias 1*, Javier Urena-Carrion 1, Beatriz Villegas-Torres 1,

J. Eduardo Cossío-Aranda 2, Sergio Trevethan-Cravioto 2, Raul Izaguirre-Avila 2,

O. Javier Fiscal-López 2 and Xavier Soberon 1

1 Instituto Nacional de Medicina Genomica, Mexico City, Mexico, 2 Instituto Nacional de Cardiologia, Mexico City, Mexico

Coumarins are widely prescribedworldwide, and inMexico acenocumarol is the preferred

form. It is well known that despite its efficacy, coumarins show a high variability for

dose requirements. We investigated the pharmacogenetic variation of 110 genes in

patients receiving acenocumarol using a targeted NGS approach. We report relevant

population differentiation for variants on CYP2C8, CYP2C19, CYP4F11, CYP4F2, PROS,

and GGCX, VKORC1, CYP2C18, NQO1. A higher proportion of novel-to-known variants

for 10 genes was identified on 41 core pharmacogenomics genes related to the PK (29),

PD (3), of coumarins, and coagulation proteins (9) including,CYP1A1, CYP3A4, CYP3A5,

and F8, and a low proportion of novel-to-known variants on CYP2E1, VKORC1, and

SULT1A1/2. Using a Bayesian approach, we identified variants influencing acenocumarol

dosing on, VKORC1 (2), SULT1A1 (1), and CYP2D8P (1) explaining 40–55% of dose

variability. A collection of pharmacogenetic variation on 110 genes related to the PK/PD

of coumarins is also presented. Our results offer an initial insight into the use of a targeted

NGS approach in the pharmacogenomics of coumarins in Mexican Mestizos.

Keywords: coumarins, acenocumarol, pharmacogenomics, Mexican Mestizo, population differences, targeted

sequencing

INTRODUCTION

Anticoagulants such as warfarin, acenocumarol, and phenprocoumon act as inhibitors of
vitamin K reducing enzymes, which regenerate vitamin K, a cofactor for several clotting
proteins. Acenocumarol is the coumarin of choice in Europe and Latin America (Ufer,
2005). The heterogeneity in coumarins efficacy, safety, and dosing has been partly explained
by clinical, demographic, and genetic parameters. Several polymorphisms on CYP2C9,
VKORC1, and CYP4F2 can account for about 40–50% on coumarin dose differences
(Scott et al., 2014). However, most studies have been performed for warfarin and in
populations other than Mexican. Acenocumarol (4-nitrowarfarin) is the most commonly
prescribed oral coumarin in the public health care system in Mexico. In contrast to
warfarin, the more potent isomer, S-acenocumarol, is rapidly eliminated and the drug’s
therapeutic effect is most likely due to R-acenocumarol. The R isomer is metabolized by
several members of the cytochrome P-450 family including, CYP2C9, CYP2C19, CYP2C8,
CYP2C18, CYP3A4, CYP1A1, and CYP1A2 (Tassies et al., 2002; Ufer, 2005). Hence, genetic
variation on genes coding for these proteins should putatively influence acenocumarol dosing.
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The collection of pharmacogenetic variation in Mexican
populations is still scarce (Fricke-Galindo et al., 2016). Reports
indicate that some of the actionable markers on VKORC1 and
UGT1A1 present significant population differences (Bonifaz-
Peña et al., 2014), suggesting the existence of variants with
distinctive allele frequency in these populations potentially
influencing drug response.

Endeavors are currently ongoing to amass a more
comprehensive picture of the pharmacogenetic variation in
MexicanMestizos. Here, we investigated genetic variation in over
100 genes by targeted NGS in patients receiving acenocumarol,
including genes involved in general pharmacokinetics and
pharmacodynamics, vitamin K recycling, and coagulation
proteins, these latter also potentially affecting acenocumarol
response (Allan et al., 2005; Harrington et al., 2008; Carcao et al.,
2015; Tong et al., 2016). Clinical and genetic data were used to
develop an algorithm to explain dose variability in this group of
patients.

Genomic data analyses provided with a collection of
pharmacogenetic variation for this population. This approach
hints to toward the consideration of multiple variants to assess
acenocumarol dosing for an individualized dose assessment.

MATERIALS AND METHODS

Participants and DNA extraction. The National Institute of
Cardiology in Mexico City prescribes acenocumarol on a regular
basis mostly after stroke, stent implants, or for thrombosis. A
hundred and fifty patients treated with acenocumarol between
2006 and 2010 were surveyed and monitored for acenocumarol
efficacy through at least three consecutive INRmeasurements. Of
these, 103 blood samples were available for DNA extraction using
the DNeasy Blood & Tissue kit (Qiagen, Valencia CA, USA) from
a routine blood sample in EDTA-Vacutainer collection tubes,
sample characteristics are depicted in Table 1. All participants
gave written informed consent according with the Declaration
of Helsinki. The project was reviewed and approved by The
Research and Ethics Committees at The National Institute of
Cardiology and The National Institute of Genomic Medicine
(INMEGEN) Mexico City, project approval 25/2016/I.

Next Generation Sequencing
We investigated coding, 25 bp of adjacent introns, and 5′ and 3′

UTR regions of 110 genes related to general pharmacogenomics
including core pharmacokinetics and pharmacodynamics targets
in 100 DNA samples. We selected these genes according to
the general PGx and the PK/PD of acenocumarol by searching
the available literature using the keywords, pharmacogenetics,
pharmacogenomics, acenocumarol, coumarin pharmacokinetics,

Abbreviations: AIC, Akaike information criteria; BIC, Bayesian information

criterion; DIC, deviance information criterion; FDR, false discovery rate; Fst,

fixation index as a measure of genetic variance; GLM, generalized linear model;

BMI, body mass index; INR, international normalized ratio based on prothrombin

time; LD, linkage disequilibrium; MAF, minor allele frequency; NGS, next

generation sequencing; PD, pharmacodynamics; PharmGKB, pharmacogenomics

knowledge base; PK, pharmacokinetics; SNV, single nucleotide variant; SNP, single

nucleotide polymorphism.

TABLE 1 | Patient demographics.

Males Females P-value

N 46 54

Age (y) 54 (17−84) 56 (26−85) >0.05

Weight (kg) 76 (54−121) 64 (37−90) <0.05

Height (m) 1.7 (1.5−1.8) 1.5 (1.4−1.7) <0.05

INR 2.8 (2.1−3.4) 2.8 (2.0−3.9) >0.05

Dose (mg/wk) 15.4 (3.2−56) 15.0 (4.0−52) >0.05

Mo under treatment 12 (4−60) 13 (6−56) >0.05

and pharmacodynamics (van Leeuwen et al., 2008; Soria
et al., 2009; Whirl-Carrillo et al., 2012; Tong et al., 2016).
Regions of interest were captured using a Haloplex custom
Target Enrichment System (Agilent Technologies, Santa
Clara, CA, USA) defined for 150 × 2 paired-end reads, in
a panel size of 1.1Mbp. In addition, we included a set of
360 ancestry informative markers (AIMS) to assess genetic
admixture using SNPs from the HapMap database for CEU
and YRI populations, and Natives from Mexico (Galanter
et al., 2012). Sequencing libraries were generated according to
the manufacturer’s protocol (version D.5, May 2013). Briefly,
all 100 DNA samples (225 ng) were digested with 8-paired
restriction enzymes, fragmentation pattern was analyzed in a
2100 Biolanalyzer (Agilent Technologies). DNA fragments were
hybridized with the Haloplex synthetic probes, adapters were
ligated followed by PCR amplification for library enrichment.
Library quality for fragment size and molarity was also
performed using 2100 Biolanalyzer information. Samples were
pooled and sequenced in a Genome Analyzer II (Illumina,
San Diego, CA, USA) according to the manufacturer’s
instructions. Targeted genes are listed in Supplemental
Table ST1.

Bioinformatic and Statistical Analyses
Sequence reads were processed according to the Broad Institute
recommended best practices workflow and the Genome Analysis
ToolKit (GATK) (Acland et al., 2013; Van der Auwera et al.,
2013). Briefly, paired-end reads were trimmed to remove
adapters and low quality regions using Trimmomatic (Bolger
et al., 2014), reads with an average Q ≤ 30 were discarded,
followed by elimination of reads shorter than 36 nucleotides.
Mapping and alignment of sequencing reads were performed
with BWA, Samtools, and Picard using the hg19 human genome
reference (dbSNP build 137) (McKenna et al., 2010). Base quality
score calibration and single nucleotide variant (SNV) calling were
assessed using GATK v3.3. Variants were confirmed visually in
the integrative genomic viewer, IGV (Robinson et al., 2011), and
their functional impact was annotated using SnpEff, and ranked
as low, moderate, modifier, or high (Sherry et al., 2001; Cingolani
et al., 2012; Exome Variant Server1).

The data analysis toolset, PLINK was used to determine
descriptive statistics, allele frequencies, Hardy-Weinberg, and

1Exome Variant Server. [updated 2014/01/02/10:04:37]. Available online at: http://

evs.gs.washington.edu/EVS
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population differentiation, this latter was assessed by determining
the measure of genetic variance in this subpopulation relative to
population variance in other continental groups using the FST
statistic. A threshold value of P < 0.05 after FDR was considered
as statistically significant (Purcell et al., 2007).

Pharmacogenetic Model
We utilized a Bayesian statistical approach to incorporate genetic
variants to an algorithm for acenocumarol dose estimation
(Sebastiani et al., 2009; Chen et al., 2012). The rejection of the
null hypothesis (lack of association between acenocumarol dose
and genetic variants) was based on probabilities of stochastic
computations of Markov Chain Monte Carlo methods (MCMC).
Also, we tested the association between dose and all SNV alone or
in combination including those previously identified via single-
SNP analysis (P > 0.05, FDR). We considered 4614 SNPs and
815 variant interactions for model development. This strategy
allows for the identification of independent genetic variants or
those that depend on each to influence dose variation. Variants
were considered with a MAF <0.95 and >0.05, and interactions
between variants within the same gene with frequencies <0.9
and >0.10, i.e., that two or more variants in a gene may have
adding or balancing effects on the dose. First, we used a Bayesian
Generalized Linear model for variable selection to obtain the
posterior probability of a gene variant affecting acenocumarol
dose, then we used Bayes Factors, a form of Bayesian hypothesis
tests, to prioritize a set of models, and then we evaluated the
selected models through Deviance Information Criterion (DIC),
a measure of model selection related to AIC and BIC criteria,
commonly used in Bayesian hierarchical models. Briefly, for the
former, we used a gamma likelihood function with logarithmic
link function, variance τ and mean conforming to Equation (1),
where v1,j and v2,j represent binary variables for each genotype
of a SNPj, refers to interactions between variants, G is a set of
genes g, and ng the number of SNPs in g; vr,jg represents genotype

r of SNP j in gene g, and β
r1,r2
jg ,kg

represents the effect size of

genotypes vr1 ,jg and vr2 ,kg ; Ij and Ij,k are binary variables for the
inclusion or exclusion of SNPs and SNP interactions, and xi and
αi represent m non-genetic covariates including age, sex, BMI,
and height.

log
(

E
[

y
∣

∣θ
])

= c+

m
∑

i

αixi +

n
∑

j

Ij(β1,jv1,j+ β2,j v2,j)

+
∑

g∈G

ng
∑

jg<kg

Ijg ,kg (β
1,1
jg ,kg

v1,jg v1,kg + β
1,2
jg ,kg

v1,jg v2,kg

+ β
2,1
jg ,kg

v2,jg v1,kg + β
2,2
jg ,kg

v2,jg v2,kg ) (1)

Where, τ ∼ Gamma (λ, κ), c ∼ Normal (0, τ 2µ), c ∼

Normal (0, τ 2µ), βj.k ∼ Laplace(0, τ 2β ), β
r1, r2
jg ,kg

∼ Laplace (0, τ 2β ),

Ij ∼ Bernoulli(π), Ijg ,kg ∼ Bernoulli(π), π ∼ U(a, b), and

αi ∼ Normal(0, τ 2α)
Next, we standardized clinical variables for mean zero and

unitary variance, and using JAGS 4.1.0 and R 3.2,0 we obtained
MCMC from the posterior distribution. We ran five chains of

110,000 iterations each, including a burn-in period of 10,000
iterations and random initial values, convergence was verified
via the Gelman-Rubin statistic R̂ < 1.2, followed by a series
of Bayes Factors to condition on the presence or absence
of variants, branching them into a decision tree, as part of
the pharmacogenetic model development. Further details on
the model development were included in Supplemental Table
ST2.

RESULTS

Demographic characteristics stratified by sex are presented
in Table 1. Bioinformatic analyses revealed 5108 variants in
110 genes in 100 DNA samples with an average depth of
250x and >98% coverage, but a wide range was registered
depending on the gene (30x−600x, 80–100%). These 110 genes
represent less than 1% of the coding genome, approximately
25% of a pharmacogenome, more than half of the Coriell
reference list for pharmacogenomics, and include >20% of
actionable pharmacogenetic markers listed by CPIC (Pratt et al.,
2010; Relling and Klein, 2011). After quality control, variant
calling, and annotation, 4290 SNVs were utilized for statistical
analyses (ST3). There was a complete agreement between
genotypes of variants assessed by NGS and allele discrimination
performed for CYP2C9∗2,∗3, and ∗5, CYP4F2 rs2108622, and
VKORC1 rs9934438. Admixture analysis with 314 ancestry
informative markers showed an average population structure
of 50–92% Mexican Native and 6–54% Caucasian (CEU), all
individuals showed less than 5% of Sub-Saharan African (YRI)
admixture.

Of these 4290 SNVs, 28% have not been reported before
(1237 without an rs identifier) and 274 of these novel
variants had a minor allele frequency (MAF>1%). On average,
each individual showed 908 SNVs, 534 heterozygous and
374 homozygous, of which 258 were present per individual
(Table 2). Four-hundred and seven variants in 65 genes did not
suffice the equilibrium of Hardy-Weinberg (9.8%, Supplemental
Table ST4).

Variants were classified by SNPEff according to their to their
in-silico functional impact as high, moderate, modifier, or low
(Cingolani et al., 2012). We listed a total of 36 known SNVs (27
heterozygous and 9 homozygous) with a high functional impact
(Table 2 and ST3). These resequencing descriptive statistics seem
to compare to other reports (Waldron, 2016).

Pharmacogenetic Variation
The FST statistic was assessed to evaluate genetic differentiation
between Mexican Mestizos and three major continental
populations, Chinese Han from Beijing (CHB), Yoruba from
Ibadan, Nigeria (YRI), and Europeans from Utah, USA (CEU)
utilizing the 1000 genomes database. YRI showed the largest
differentiation with 377 variants with a FST value above 0.25,
followed by CEU (51 variants with FST > 0.25), and CHB
(32 variants with FST > 0.25, ST5). FST >0.25 values were
identified for variants on several genes related to the coagulation
cascade or coumarin metabolism. For example, when comparing
to Caucasians we found high population differentiation for

Frontiers in Pharmacology | www.frontiersin.org 3 November 2017 | Volume 8 | Article 8637

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Gonzalez-Covarrubias et al. Pharmacogenetic Variation in 100+ Genes

TABLE 2 | Summary of NGS genetic variation.

N Observations

Total SNVs 4,290 in 100 individuals

SNVs per individual 908 534 heterozygous, 374 homozygous

Coding 3,335

UTRs 471

Non coding 484

Known SNVs 3,053 650 per individual (384 heterozygous and 266 homozygous)

Novel SNVs 1,237 258 per individual (150 heterozygous and 108 homozygous)

Novel SNVs MAF>1% 274 Present in 56 genes including 19CYPs, 3 UGTs, SULT1A2

Heterozygous SNVs 2,463 1660 known and 803 novel

Heterozygous, high impact 27 8 novel variants on 8 genes including CYP3A4 and CYP2B6, and 19 known variants in 9 CYPs, 2 UGTs,

SULT1A1, and 5 coagulation proteins

Heterozygous, moderate impact 325 106 novel in 56 genes including 12 CYPs, 5 UGTs, and SULT1A2, 219 known variants in 69 genes, including, 14

CYPs, 6 UGTs, and SULT1A2

Total homozygous 1,110 Known and novel variants

Homozygous, high impact 9 Present on 4 CYPs, including, CYP2B6 POS.4151213, CYP2C9 rs114071557, and on UGT2B7

Homozygous, moderate impact 129 36 novel variants in 25 genes (7 CYPs, 3 UGTs) including CYP4F2 POS15996832, CYP2D6 POS42522724, and

93 known variants in 33 genes (12 CYPs, 5 UGTs, and 5 drug targets)

HGVS, Human Genome variation society nomenclature; C, coding region; P, protein. The 1000 Genomes Project Consortium et al. (2015). POS indicates the position on the chromosome

for novel variants.

variants on CYP2C8, CYP2C19, CYP4F11, CYP4F2, PROS,
and GGCX. Comparing to CHB, differences arose on CYP2C8,
VKORC1, 2C18, NQO1, and for YRI differences were observed
on major CYPs, FMOs, F13B, F8, PROS, and SERPINA10
among others (ST5). Allele frequency comparisons between
Mexicans from the 1000 genome project (MXL) and those in
this study showed similar FST values for most variants, except for
CYP2C18 rs2281889, CYP2C8 rs1891071, CYP4F2 rs309319, and
CYP4F11 rs11086013, for which we observed FST values between
0.15 and 0.33.

We analyzed allele frequency variation for 30 major
pharmacogenes and 10 genes related to the coagulation
cascade. The largest number of variants per gene was observed
on SULT1A1, CYP2E1, CYP1B1, CYP3A4, CYP3A5, F5, and
F11. Interestingly, CYP1A2, CYP3A4, CYP3A5, CYP1A6, F11,
F13B, and F8 showed a large proportion of novel variants
compared to known variants. Genes with significantly fewer
variants were, CYP1A3, CYP1A5, CYP1A9, and F9, the three
former did not show any novel variants (ST3). Next, we
assessed the presence of known and novel variant considering
a MAF >5% and a predicted functional impact as high
or moderate in these genes. For known variants, we list
7 with a high predicted functional impact, 2 on UGTs
and one on SULT1A1, CYP2C9, CYP2C19, and CYP2C8
(Table 3).

Novel variants were observed on 37 of these 40 genes
in counts from 1 on UGT1A1, to 23 on CYP3A5, 25 in
F5, and 26 in F8. Of these, 2 showed a high functional
impact predicting a stop codon on CYP3A4 and CYP2B6, a
moderate impact was reported for 16 variants on 14 genes
(Table 3). The proportion of novel-to-known variants and its
functional impact for these pharmacogenes is represented in
Figure 1.

Acenocumarol Pharmacogenetic Model
We developed a pharmacogenomic model to predict
acenocumarol dose, using a Bayesian approach that included all
SNP variants and the interaction among those on the same gene.
We fitted the Bayesian GLM through five MCMC chains where
genetic variants were prioritized by their posterior inclusion
probability. The higher the posterior probability of a variant,
the larger its influence on dose. Figure 2 shows a hierarchical
tree indicating an ordered relevance of variants from VKORC1,
CYP2D8P, and SULT1A1, followed by those on CYP4F12, F13B,
and F8, Values of posterior probability for all variants are listed
in ST7 and ST8.

The dosing algorithm accounted for age, sex, weight, and
height. The interaction between VKORC1 variants rs8050894
and rs9934438 which are in LD (R = 0.492), showed the
highest posterior inclusion probability (mean, 0.96), followed by
a novel variant, on CYP2D8P (POS42547668), and variants on
SULT1A1 rs11648192, and CYP2C8 rs1058932, and rs2275620.
Unfortunately, pharmacogenetic variant VKORC1 rs9923231 did
not pass NGS quality controls thus, it was not modeled, but it
is in complete LD with rs9934438, which was included in these
analyses (Rieder et al., 2005).

Final model evaluation, we used R to implement the series
of Bayes Factors as described in Supplemental Table ST2 with a
cut-off value, cj = 3 + mj, where mj is the number of variants
conditioned to be absent from the model, and 3 as a minimum
cut-off value based on Harold Jeffrey scale of interpretation for
Bayes Factors (Baldi and Long, 2001). We selected two models
according to the lowest DIC values, the first one included SNVs
interactions, VKORC1 rs8050894 and rs9934438 and variants
on SULT1A1 and CYP2D8P (ST7). The second model excluded
variant interactions. Modeled variants and clinical parameters
(age, sex, weight, and height) explain up-to 55.9% of dose
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TABLE 3 | Novel and known variants on relevant pharmacogenes at MAF > 5%.

Gene Chr ID Predicted functional impact HGVS_C HGVS_P

UGT1A10 2 rs200144439 High c.1533C>A p.Tyr511*

UGT2B7 4 rs11935951 High c.−159+1G>T Intron/splicing

CYP2C19 10 rs28399504 High c.1A>G p.Met1?

CYP2C9 10 rs114071557 High c.1A>G p.Met1?

CYP2C8 10 rs181982392 High c.1198G>T p.Glu400*

SULT1A1 16 rs144422872 High c.307C>T p.Arg103*

NOVEL VARIANTS

Gene Chr Position Predicted functional impact HGVS_C HGVS_P

F5 1 169530002 Moderate c.376G>T p.Ala126Ser

F10 13 113803697 Moderate c.1333C>T p.Arg445Cys

UGT1A10 2 234676866 Moderate c.1076G>T p.Gly359Val

UGT1A10 2 234676884 Moderate c.1094C>A p.Ala365Asp

SULT1A2 16 28603787 Moderate c.473C>A p.Thr158Asn

CYP3A5 7 99250198 Moderate c.1231C>T p.Pro411Ser

CYP3A4 7 99358497 Moderate c.1361T>C p.Leu454Pro

CYP3A4 7 99365982 High c.665C>A p.Ser222*

CYP3A4 7 99377662 Moderate c.118G>T p.Gly40Trp

CYP2C19 10 96522531 Moderate c.69C>A p.Ser23Arg

CYP2C8 10 96800713 Moderate c.896T>A p.Phe299Tyr

CYP2C8 10 96802829 Moderate c.967G>T p.Val323Phe

CYP2E1 10 135352449 Moderate c.1463G>T p.Cys488Phe

CYP1A2 15 75042614 Moderate c.535C>A p.Leu179Met

CYP4F2 19 15996832 Moderate c.1017G>T p.Trp339Cys

CYP2B6 19 41518213 High c.975C>A p.Tyr325*

CYP2D6 22 42522724 Moderate c.1346C>A p.Ala449Asp

NQO1 16 69745184 Moderate c.520A>C p.Ser174Arg

POS, position on the chromosome for novel variants. p.Met1?, change in the translation of the initiation codon with unknown effect. *Insertion of a termination codon.

variation for this study group. Values of high density intervals
(HDI) are presented considering for 95% posterior probability
(ST7 and ST8). The addition of additional variants to the
model increased DIC values significantly which translates into a
decreasing impact on acenocumarol dose (Table 4).

Pharmacogenetic Model Considering
Variant Interactions
Ln Dose = −0.6935–0.0071∗age (y) + 0.0035∗weight (kg) –
0.1136 (if male) + 1.0709∗height (m) – 0.213 (if VKORC1
rs8050894 is C/G and rs9934438 is G/A) – 0.719 (if VKORC1
rs8050894 is G/G and rs9934438 is A/A) + 0.899 (if CYP2D8P
POS.42547668 is T/C) + 0.203 (if SULT1A1 rs11648192 is C/T).
Variance explained 55.9%.

Pharmacogenetic Model without Variant
Interactions
Ln Dose= −0.5846 – 0.0069∗age (y) + 0.0045∗weight (kg) –
0.0945 (if male) + 0.9795∗height (m) – 0.239 (if VKORC1
rs9934438 is G/A) – 0.529 (if VKORC1 rs9934438 is A/A) +

1.092 (if CYP2D8P POS. 42547668 is T/C) + 0.188 (if SULT1A1
rs11648192 is C/T). Variance explained 40.0%.

Finally, we used these models to recalculate acenocumarol
dose in patients with an INR 2–3 receiving a stable dose.

Pharmacogenetic dose calculations approached given
acenocumarol doses for all INR-sable patients (P > 0.05)
except for one patient, R4 who needed 5.4 mg/day, and models
estimated 2.47 mg/day. All individual dose estimations were
listed in ST9.

DISCUSSION

Here, we investigated pharmacogenetic variation in 110 genes by
targeted NGS in patients treated with acenocumarol.

Novel Variants
Genetic variation analyses showed that the presence of novel
variants varied widely among genes. For example, the largest
number of novel variants (≥20) was observed on CYP3A4,
CYP3A5, SULT1A1, GGCX, F11, F5, F8, and F9. High functional
impact variants were present on CYP2B6 (MAF, 50%), CYP2C8
(MAF 1%), CYP3A4 (MAF 8%), F5 (MAF 2%), and VKORC1
(MAF 1%). These are relevant for its allele frequency, the dozens
of drugs theymetabolize, and because their impact predicts a stop
codon. CYP2B6 and CYP3A4 are among the most polymorphic
genes thus, it is not surprising the presence of relevant novel
variants. Similarly, for VKORC1 population differentiation has
been previously reported and the presence of a novel variant
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FIGURE 1 | Proportion of novel and known variants. Functional impact determined in-silico is depicted in white for low impact, light gray for modifier, dark gray for

moderate impact, and black for high impact.

with a high functional impact may be in part, a consequence of
this stratification (Bonifaz-Peña et al., 2014). Novel variants on
major metabolizing genes, CBR1, CYP1A2, CYP3A4, CYP3A5,
P2RY2, and UGT1A6 represented 40–50% of novel and known
variants, suggesting that the collection of variation on these genes
is probably not yet complete in Mestizos. Other metabolizing
genes,CYP1B1, CYP2C18, CYP2C19,UGT1Amembers, CYP2E1,
SULT2B1, and SULT1A1 showed a low proportion of novel-
to-know variants (Figure 1). This may not necessarily mean
that genetic variation is complete for these genes. For example,
SULT1A1 presented 63 known and 19 novel variants ranking this
gene as second with the largest number of variants.

Also, we confirmed population differences previously
reported with an Fst > 0.19, on VKORC1 rs9934438 and
four variants on UGT2B15 when comparing to YRI and CHB
(Bonifaz-Peña et al., 2014). Differences between Mestizos
and CEU were observed for UGT2B15, CYP2E1, CYP1A2,
CYP4F2, UGT2B7, F12, and F12 (ST5). Interestingly, a few
variants showed an Fst > 0.20 between Mestizos from this
study and Mexicans from Los Angeles (MXL) from the 1000
genome project, on CYP2C8, CYP2C18, and CYP4F2 relevant
for the pharmacokinetics of coumarins, phenytoin, vitamin K,

and lipids. Allele frequencies of all variants are listed on ST6.
Observations on these relevant pharmacogenes highlight the
need to for a cautious implementation of pharmacogenomics in
Mexican Mestizos.

We developed a pharmacogenetic model to estimate
acenocumarol dose testing over four thousand variants. The
model considered relevant variants on, SULT1A1, CYP2D8P, and
VKORC1. For the latter gene, variants, rs8050894 and rs9934438,
are well-known pharmacogenetic markers of coumarin dosing
with the highest PharmGKB level of evidence. The interaction
of these SNPs has already been reported as part of a haplotype
(CG vs. TA) that aids to classify patients into high and low dose
requirements (Rieder et al., 2005).

Interestingly, the model did not associate variants on
CYP4F2 or CYP2C9 with acenocumarol dose (Table 4). Maybe
because CYP4F2 (rs2108622) has a lower impact (Danese et al.,
2012), and R-acenocumarol is metabolized by several CYPs
other than CYP2C9. Moreover, reported variants that impair
CYP2C9 activity are present in low frequency in Mexican
Mestizos (Villegas-Torres et al., 2015). Instead, we observed dose
association with variants on SULT1A1 and CYP2DP8. CYP2D8P
is a pseudogene in the CYP2D cluster comprising CYP2D6,
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FIGURE 2 | Hierarchical tree of variants influencing acenocoumarol dose. The

parent node (solid lines) represent gene variants from which other variants

depend for acenocouumaorl dose estimation, i.e., all probability statement in

that branch are conditioned to the probabilistic event of the parent node (gene)

Iparent = 1, dashed lines indicate that the parent node was conditioned to

zero, Iparent = 0. The number on each line represents the Bayes Factor for

the following branched off node; given the cut-off values. For visualization

purposes, we did not condition on CYP2D8P, which was strongly associated

with high-dose values (≥40 mg/wk) in 3 of the 6 patients receiving high doses.

Nevertheless, both frequentist and Bayesian hypothesis testing suggested a

strong association to coumarin dose for this variant (P-value < 0.05 and

Bayes Factor > 100, respectively).

CYP2D7P, and CYP2D8P the former known to metabolize
around 25% of all prescribed drugs. This cluster seems to have
rapidly evolved due to environmental adversity with ethnic
differences (Heim and Meyer, 1992). Wang et al identified a
CYP2D6 transcription enhancer in theCYP2D cluster supporting
the consideration of variants outside the CYP2D6 loci for
functional genotyping (Wang et al., 2015). We identified a new
variant on CYP2D8P POS.42547668, 26 Kbp upstream CYP2D6,
and although there is no xenobiotic metabolism reported for
this pseudogene, we can speculate that this variant is in LD
with another one affecting gene expression or drug metabolism.
The inclusion of many variants to dissect a pharmacogenetic
phenotype is becoming more common as it increases our
knowledge in paths and network interactions not previously
considered (Cruz-Correa et al., 2017; Oliveira-Paula et al., 2017).

Our model is similar to others in that it includes typical
clinical variants (age, sex, weight, and height), a dose prediction
around 50% confidence, and the inclusion of VKORC1 as the
primary determinant of acenocumarol dose. And even though we
report VKORC1 rs9934438 vs. VKORC1 9923231 this latter, most
commonly studied (Zhang et al., 2015; Tong et al., 2016) these are
in complete LD. Finally, dose assessment using this model closely
approached the dose received to achieve an INR 2–3, except
for patient R4. Therefore, we delved into the genetic variability
of this sample observing 20 heterozygous and 9 homozygous
variants, these latter on SULT1A1, FGB, CDH12, KCNJ6, CBR3,
andCYP2E1.However, this variation does not necessarily explain
a lack of dose prediction. We can speculate that it is the presence

TABLE 4 | Pharmacogenomic model parameters.

Genotype µ HDI Bayes

Factora

MODEL 1

Intercept – 0.884 0.72 to 1.03 >900

SULT1A1, rs11648192 C/T 0.203 0.06 to 0.33 91.3

CYP2D8P, POS42547668 T/C 0.899 0.54 to 1.27 >900

VKORC1, rs8050894,

rs9934438

C/G, G/A −0.213 −0.37 to−0.06 >900

VKORC1, rs8050894,

rs9934438

G/G, A/A −0.719 −0.97 to−0.48 >900

Age – −0.102 −0.17 to−0.04 23.48

Weight – 0.047 −0.05 to 0.15 2.61

Height – 0.110 0.01 to 0.22 22.08

Sex – −0.124 −0.33 to 0.05 6.41

MODEL 2

Intercept – 0.929 0.752 to 1.107 >900

SULT1A1, rs11648192 C/T 0.188 0.042 to 0.335 46.5

CYP2D8P, POS42547668 T/C 1.092 0.709 to 1.481 >900

VKORC1, rs9934438 G/A −0.235 −0.399 to−0.061 >900

VKORC1, rs9934438 A/A −0.529 −0.784 to−0.246 >900

Age – −0.099 −0.171 to−0.018 13.63

Weight – 0.061 −0.037 to 0.17 2.37

Height – 0.097 −0.021 to 0.211 10.54

Sex – −0.098 −0.313 to 0.092 3.43

aThe Bayes Factor corresponds to a hypothesis test with H0 :β = 0 and H1 :β = µ,

where β is the coefficient andµ is the posterior mean. HDI is the high-density interval forµ.

of multiple variants on certain genes that affects several steps
of the pharmacodynamics or pharmacokinetics and thus, drug
efficacy.

We acknowledge the size and closed patient group studied
retrospectively in individuals that were already assigned a dose by
trial and error, not allowing for a prospective use of the genetic
information. These observations will require confirmation and
replication. We provide a list of 20 variants in 18 genes ordered
by its impact on acenocumarol dose around the PK/PD of
coumarins and the biochemistry of the coagulation cascade.

Our results offer an initial insight to the use of a
genomic approach in pharmacogenetics showing that the advent
of next generation sequencing may offer an alternative to
identify and utilize individual variation to potentially explain a
pharmacological relevant phenotype (Cheng et al., 2015). Future
endeavors should focus on confirming these observations in a
larger population.

As of June 2017, there are under a dozen reported studies of
NGS in Mexican populations (NBCI), here, we present a list of
variants in 110 pharmacogenes in Mexican Mestizos providing
population information for allele frequency, differentiation from
other continental groups and phenotype associations, which may
complement the current catalog of pharmacogenomic variation
in different populations.
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The human leukocyte antigen (HLA) system encodes the human major histocompatibility

complex (MHC). HLA-B is themost polymorphic gene in theMHC class I region andmany

HLA-B alleles have been associated with adverse drug reactions (ADRs) and disease

susceptibility. The frequency of such HLA-B alleles varies by ethnicity, and therefore it

is important to understand the prevalence of such alleles in different population groups.

Research into HLA involvement in ADRs would be facilitated by improved methods for

genotyping key HLA-B alleles. Here, we describe an approach to HLA-B typing using

next generation sequencing (NGS) on the MinIONTM nanopore sequencer, combined

with data analysis with the SeqNext-HLA software package. The nanopore sequencer

offers the advantages of long-read capability and single molecule reads, which can

facilitate effective haplotyping. We developed this method using reference samples as

well as individuals of New Zealand Māori or Pacific Island descent, because HLA-B

diversity in these populations is not well understood. We demonstrate here that nanopore

sequencing of barcoded, pooled, 943 bp polymerase chain reaction (PCR) amplicons

of 49 DNA samples generated ample read depth for all samples. HLA-B alleles were

assigned to all samples at high-resolution with very little ambiguity. Our method is a

scaleable and efficient approach for genotyping HLA-B and potentially any other HLA

locus. Finally, we report our findings on HLA-B genotypes of this cohort, which adds to

our understanding of HLA-B allele frequencies among Māori and Pacific Island people.

Keywords: HLA-B, nanopore sequencing, Māori, Pacific Island, pharmacogenetics, Polynesian

INTRODUCTION

The human leukocyte antigen (HLA) locus contains a large family of genes encoding the human
major histocompatibility complex (MHC) proteins. It is located on chromosome 6p21 and
divided into three classes: class I, class II, and class III. HLA molecules are extremely variable
due to their peptide-binding function and are associated with autoimmune diseases and adverse
drug reactions (ADRs) (Tiwari and Terasaki, 1985; Bharadwaj et al., 2010). HLA-B is the most
polymorphic gene, with over 4,600 known alleles encoding 3,408 unique proteins (IMGT/HLA
Database release 3.27 in January 2017) (Robinson et al., 2014). Previous studies have identified
particular HLA-B alleles as risk factors for drug-induced hypersensitivity reactions (Alfirevic
and Pirmohamed, 2010; Sukasem et al., 2014). For example, screening for the HLA-B∗57:01
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allele is recommended prior to abacavir treatment to decrease
risk of a hypersensitivity reaction (Martin et al., 2012). Strong
association between HLA-B∗58:01 and allopurinol-induced
severe cutaneous adverse reactions such as Stevens–Johnson
syndrome (SJS) or toxic epidermal necrolysis (TEN) have
been reported across different populations (Somkrua et al.,
2011). However, some HLA alleles associated with drug-induced
hypersensitivity can be ethnic group-specific. For example, HLA-
B∗15:02 allele is a risk factor for carbamazepine-induced SJS/TEN
found in several Asian populations but not in Caucasian and
Japanese populations (Tassaneeyakul et al., 2010; Phillips et al.,
2018). Given the correlation of ethnic-specific risk alleles with
ADRs, a good knowledge of HLA allele frequencies, and the
prevalence of susceptibility alleles in particular, is important for
the study of pharmacogenetics.

The high level of polymorphism in the MHC family means
HLA genotyping is complex. HLA alleles are mostly determined
by the sequences of exons 2 and 3 in HLA class I genes
and exon 2 in HLA class II genes (Shiina et al., 2012).
Present DNA-based methods for HLA typing are polymerase
chain reaction (PCR) -sequence-specific priming (PCR-SSP),
PCR-sequence-specific oligo hybridization (PCR-SSO), PCR-
restriction fragment length polymorphism (PCR-RFLP), and
sequence-based typing (SBT) (Tait et al., 2009; Bontadini, 2012;
Erlich, 2012). SBT is currently considered the gold standard
method applied in high-resolution HLA typing (Erlich, 2012).
However, this approach may generate ambiguous HLA typing
due to haplotype phase issues and incomplete sequencing. Other
approaches have various limitations in resolution, workflow
complexity, probe design and testing requirements, as new
HLA alleles are submitted to the IMGT/HLA sequence database
(Erlich, 2012; Shiina et al., 2012).

Recently, next-generation sequencing (NGS) methods have
become widely established for HLA typing (Abbott et al., 2006;
Bentley et al., 2009; Erlich et al., 2011; Erlich, 2012; Shiina et al.,
2012; Hosomichi et al., 2013, 2015; Schöfl et al., 2017). Such
approaches reduce the risk of phase ambiguity and allow high-
throughput, high-resolution HLA typing. Various approaches to
HLA typing using NGS have been developed, including PCR-
based HLA sequencing (Erlich et al., 2011; Boegel et al., 2012;
Liu et al., 2012; Shiina et al., 2012; Hosomichi et al., 2013; Schöfl
et al., 2017), whole exome sequencing (WES) or whole genome
sequencing (WGS) data-derived typing (Liu et al., 2012; Major
et al., 2013). However, these methods are of limited value for
research studies of ADRs, where a more targeted screening for
specific HLA alleles may be all that is required.

Here we describe the development of high-throughput
HLA typing from next-generation DNA sequencing data,
focusing on the HLA-B locus, and its application to identifying
HLA-B alleles within the Māori and Pacific Island population
of New Zealand. Our strategy took advantage of a recent
iteration of the novel NGS platform, the MinIONTM nanopore
sequencer (Oxford Nanopore Technologies), and barcode
sequences for labeling and simultaneously analyzing HLA-B
amplicons from multiple samples. The MinION is a tiny,
portable nanopore sequencer powered by a USB 3.0 port
(Quick et al., 2014). It allows analysis of sequencing data in

real time and generation of very long reads (Urban et al.,
2015). A small pilot study used the device to examine HLA-A
and HLA-B alleles from a single sample, using the earlier,
quite error-prone R7.0 flow-cell chemistry (Ammar et al.,
2015). Oxford Technologies released a new chemistry (R9.4)
in May 2016, which has proven to be more accurate and
with higher throughput. This major update motivated us
to examine the performance of this pocket-sized device on
one of the most polymorphic genes in the human body,
HLA-B.

New Zealand is a multi-ethnic country with people from
many different nations. TheMāori are the indigenous Polynesian
people, who first settled in New Zealand. New Zealand is also
home to many people from the Pacific Islands, with its main city
of Auckland referred to as the “Polynesian capital of the world”
(Anae, 2005). Polynesian people in New Zealand include people
from Samoa, Cook Islands, Tongan, Fiji, Niue and Tokelau,
which together account for 7.6% of New Zealand population
(Geck, 2017). To date, there is a paucity of studies providing
prevalence data of HLA-B alleles in Māori and Pacific Island
population in New Zealand (Abbott et al., 2006; Edinur et al.,
2013). Given that HLA-B alleles are so relevant to disease
predisposition and ADRs, it is important to establish a prevalence
dataset for HLA-B for these population groups. Therefore,
we sought to develop an assay for HLA-B screening in this
population, using the MinION.

MATERIALS AND METHODS

Participants
Forty unrelated Māori and Pacific Island individuals with
no history of inflammatory disorders were recruited from
the Otago and Auckland regions of New Zealand. The
proportion of ancestry for each participant was estimated by
recording the ethnicity of all four grandparents. This study was
carried out in accordance with the recommendations of the
Standard Operating Procedures for Health and Disability Ethics
Committees (New Zealand), as reviewed by the Lower South
Ethics Committee (New Zealand), with written informed consent
from all subjects. Additionally, five individuals were included
from a local study on ADRs called Understanding ADRs or
responses Using Genome Sequencing (UDRUGS) (Maggo et al.,
2017), which was approved by the SouthernHealth andDisability
Ethics Committee (New Zealand), with written informed consent
from all subjects. A further four samples of known HLA-B
genotype were obtained from the Coriell Institute for Medical
Research (Camden, NJ, USA). These nine individuals were used
as a reference set for the MinION analysis, after confirmation by
either Sanger sequence based typing (SBT) or data retrieved from
the 1000 Genomes project, or both.

HLA-B Genotyping by Sanger Sequencing
We selected a subset of our participants (four Polynesian,
five UDRUGS and two Coriell samples) to analyze by
Sanger sequencing, as additional references. Nested PCR was
used to amplify a 1,710 bp region spanning exon 2 and
exon 3 of HLA-B. PCR products were diluted and used
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as templates in second round PCR to amplify a 943 bp
amplicon. These amplicons were then directly sequenced in both
forward and reverse directions using a set of six sequencing
primers (Table 1). The primers used for amplification included
some nucleotide redundancies at sites of HLA-B variation,
to prevent allelic drop-out during the PCR step. All PCR
primers and sequencing primers were derived from published
work (Abbott et al., 2006; Cotton et al., 2012). The HLA-B
genotypes of these 11 samples were generated from the Sanger
sequence data using SBTengine v.3.10.0.2610 (GenDX, Utrecht,
Holland).

Minion Library Construction
The primer used to amplify a fragment of 943 bp HLA-B exon
2 and 3 included a specific sequence (Table 1) at the 5′ end,
which is compatible with barcode sequences (Oxford Nanopore
Technologies). A standard protocol of the Kapa LongRange
Hotstart DNA PCR (Kapa Biosystems) was applied, consisting
of 1X Kapa LongRange Buffer (without Mg2+), 2.0mM MgCl2,
0.3mM dNTPs (2.5mM each dNTP), 0.5µM of each primer,
1.25 U/50 µl Kapa LongRange HotStart DNA Polymerase, 50 ng
genomic DNA, andwater up to 50µl. Thermal cycling conditions
were 94◦C for 3min, 25 cycles at 94◦C for 15 s, 68◦C for 15 s,
and 72◦C for 1min, with a final extension at 72◦C for 1min. The
PCR products were visualized by electrophoresis on 2% agarose
gel stained with SYBRTM Safe DNA Gel Stain (Invitrogen), and
then purified using 1x Agencourt AMPure XP beads (Beckman
Coulter).

PCR products were quantified by Qubit R© 2.0 Fluorometer
(ThermoFisher Scientific) and were diluted to 2 nM in water. A
second PCR was performed to incorporate barcode sequences
using Oxford Nanopore PCR Barcoding kit (EXP-PBC096). Each
100 µl reaction contained 1X Kapa LongRange Buffer (without
Mg2+), 2.0mM MgCl2, 0.3mM dNTPs (10mM each dNTP),
0.2µM PCR Barcode primers (from BC01 to BC49), 2.0U Kapa
LongRange HotStart DNA Polymerase, and 0.5 nM of first-
round PCR product. The cycling parameters were an initial

denaturation 95◦C for 3min, followed by15 cycles at 95◦C for
15 s, 62◦C for 15 s, and 65◦C for 1min, with a final extension at
65◦C for 1min. All 49 barcoded products were cleaned up with
1x Agencourt AMPure XP beads, then quantified. Purified PCR
products were normalized by concentration before being pooled
for library preparation.

The pooled library was prepared using the Oxford Nanopore
Sequencing protocol (SQK-NSK007). We used 5 µg of library as
an input, instead of the recommended 1 µg, to improve yield for
downstream steps. Briefly, 5 µg of purified amplicon library was
prepared with the NEBNext end repair module (New England
Biolabs), then dA-tailed using the NEBNext dA-tailing module
(New England Biolabs). The end-prepared, dA-tailed library was
subsequently ligated with leader and hairpin adapters, followed
by purification using Dynabeads R© MyOneTM Streptavidin C1
beads (Invitrogen).

The final prepared library from 49 participants was loaded
into theMinION R9.4 flowcell (Oxford Nanopore Technologies).
The flowcell was run for 48 h using the MinKNOW software
(0.51.1.39).

Data Analysis
Raw sequence data were uploaded for base-calling using
Metrichor software (2D Basecalling for SQKMAP007 - v1.107).
Sequences in FASTA format were extracted from the raw
FAST5 files using poretools v.0.6.0 (Loman and Quinlan,
2014). Statistical analysis of the MinION sequencing data
were generated and visualized by De Coster et al. (2017). In
order to determine error rates, base-calls in FASTQ format
were extracted using poretools v.0.6.0 (Loman and Quinlan,
2014) and then aligned against Sanger sequenced reference
using BWA-MEM (version 0.7.12-41044), parameter “-x ont2d”.
Additional statistical analyses were performed with Python and
R scripts available at https://github.com/camilla-ip/marcp2. We
only used two-dimensional (2D) reads, which are consensus
calls of the combined template and complement strands, to
perform HLA-B locus high-resolution typing with SeqPilot

TABLE 1 | Primers used for amplifying and sequencing.

Assay Primer Sequence Source

SBT HLA-B_1710_F TGTCGGGTCCTTCTTCCAGG Abbott et al., 2006

HLA-B_1710_R GAAAATTCAGGCGCTTT

HLA-B_943_F GCAGGCGGGGGCGCAGGACC Cotton et al., 2012

HLA-B_943_R GGAGATGGGGAAGGCTCCCCACT

HLA-B_Seq1 GGAGCCGCGCCGGGAGGAGGGTC

HLA-B_Seq2 GGATGGGGAGTCGTGACCT

HLA-B_Seq3 ACKGKGCTGACCGCGGGG

HLA-B_Seq4 CGGGGTCACTCACCGKCCTC

HLA-B_Seq5 GGSCKGGGCCAGGGTCTCAC

HLA-B_Seq6 ACTGCCCCTGGTACCMGCGC

MinION HLA-B_MinION_F TTTCTGTTGGTGCTGATATTGCGGGAGGAGMRAGGGGACCSCAG

HLA-B_MinION_R ACTTGCCTGTCGCTCTATCTTCGGAGGCCATCCCCGGCGACCTAT

Underlined letters are IUPAC codes indicating base redundancies at positions corresponding to known HLA-B variants.
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v.4.3.1 using default settings (JSI medical systems). HLA-B
ambiguities were designated as G group nomenclature (http://
hla.alleles.org/alleles/g_groups.html). Samples that could not be
assigned genotypes due to mismatches were re-analyzed for
error correction. Nanopolish pipeline was applied on input
reads of these samples to check improvement on the base-
level accuracy (Loman et al., 2015). After polishing, consensus
sequences were re-processed to assign HLA-B genotypes of these
samples.

RESULTS

A total of 40 Maori and Pacific Island, four Coriell and five
UDRUGS individuals were selected for library construction. We
successfully amplified a region of 943 bp spanning exon 2 and 3 of
HLA-B in a single PCR. After purifying, all 49 PCR products were
diluted to reach the desired concentration (2.0 nM). Three gave
insufficient yield, ranging from 0.19 to 1.47 nM. However, these
three were still included to test whether they could be effectively
amplified in the barcoding step.

Two primers used in the first PCR were tailed with the adapter
sequences, which were compatible with Oxford Nanopore
barcodes. Each PCR product was then amplified with barcode
primers, at which point all 49 PCR products were tagged with
barcodes, increasing their length to 1,063 bp (Figure 1).

PCR products were subjected to normalization prior to
pooling and sequencing on the MinION (∼368 ng/each).
Five samples had significantly lower concentrations than other
samples (range: 20.4–66.8 ng), but these were included in the pool
(Table 2). The total DNAquantity in the pool was 7.5µg and 5µg
was used for downstream steps. After end-repair, adapter ligation
and purification steps, 585 ng of prepared library remained and
was loaded into the MinION flow cell.

Given that for this version of the MinION chemistry, 2D
reads were more accurate and had greater length than 1D reads,
we extracted only the 2D reads for downstream analysis. After
conversion, all 49 FASTQ files were imported into SeqPilot

FIGURE 1 | Agarose gel electrophoresis of two representative PCR amplicons

(a) before and (b) after PCR barcoding step. DNA molecular size marker

obtained from KAPA Universal Ladder (KAPA Biosystems, Boston, MA).

software for HLA-B allele assignment. The mean read depth
was 5,807x and the mean read length was 1,029 bp, close to
the expected size of all amplicons (Figure 2). An average of
5,854 sequence reads per barcoded sample was obtained from
a total of 289,095 2D pass reads. The proportion of reads
with a Q-value threshold of 15 was 83.3% (Figure 3). There
were 286,852 reads with uniquely identified barcodes, of which
199,297 reads passed the quality filters and were aligned to the
assigned allele sequences. The distribution histogram of both
assigned and aligned reads for each barcoded sample is shown
in Figure 4.

The five samples that amplified poorly still produced ample
reads for SeqPilot to generate HLA-B typing calls (Table 2).
Notably, individual PI_C3, which had the lowest number of
mapped reads (80) that aligned to the reference sequence, was

TABLE 2 | DNA quantity and number of mapped reads of poorly amplified

samples.

Individual Index DNA quantity (ng) Mapped 2D read (number)

PI_G2 BC15 66.84 473

PI_C3 BC19 20.4 80

PI_D3 BC20 57.96 869

PI_H3 BC22 64.44 333

PI_C6 BC42 33.36 158

FIGURE 2 | Histogram of read length with read N50 metric.
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FIGURE 3 | Bivariate plot shows with a kernel density estimate the read length compared to the average read basecall Phred quality.

assigned the alleles HLA-B∗44:04, 56:02:01. We are confident
these alleles are correct as no mismatches occurred at key
polymorphic sites in the reads.

Using FASTQ files as inputs, SeqPilot effectively assigned
HLA-B alleles of 49 individuals. There were 4 homozygotes
and 45 heterozygotes, resulting in 38 alleles called at the third
field (formerly 6-digit) resolution and five alleles at second
field (4-digit) resolution (Table 3). There were six that could
not be automatically called by the software due to mismatches
with reference sequences. Notably, the phasing bias mostly
happened at nucleotide position 130–136 of exon 2. We realized
that there was A/G heterozygous at nucleotide 133 and the
sequence around this position was a repeat of G and A
(GAGAGRGGAG). We also observed that if nucleotide 133
was G, there was usually a deletion of two to four nucleotides
(Figure 5). Figure 6 illustrates the ambiguous results of sample
PI_A2 with several possible alleles and their corresponding
mismatched locations. HLA-B∗27:05:02G was not able to be
confidently called due to two mismatches at the area mentioned
above (Figure 6). Sanger sequencing these six samples confirmed
that these mismatches were not PCR artifacts, suggesting these

errors might happen during the nanopore sequencing step.
To explore whether such errors could be corrected, we ran
the Nanopolish pipeline to compute consensus sequences with
improved base quality. After comparing these polished sequences
with sequences obtained from Sanger sequencing, we found
that Nanopolish did not improve the accuracy for these error
regions further (Figure 7). In this case, we manually assigned
allele pairs from the suggested list, choosing those with the
least mismatch. Although other NGS approaches have been
applied to HLA analysis, Sanger sequencing is regarded as
the gold standard for HLA-typing. Consequently, we selected
11 individuals for HLA-B genotyping using the Sanger SBT
method for validation. These were four Polynesian, fiveUDRUGS
and two Coriell samples. Six amplicons covering exon 2 and
3 of each individual were directly sequenced. HLA-B alleles
were defined based on these polymorphic sequences. Using
SBTengine (GenDX, Utrecht, Holland) for analysis, we found
that there was a high consistency of variant calls with calls
derived from the MinION data. Our genotyping data for all
four Coriell individuals were concordant with the data from
these samples generated by the 1000 Genomes project. These
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FIGURE 4 | Number of mapped and unmapped reads per individual. Blue bars indicate the assigned reads that are mapped to the regions of interest. Red bars are

the aligned reads that pass the filter and are used for allele assignment.

results indicate that this MinION sequencing method is able to
generate consensus sequences for high-resolution HLA-B typing
with considerable accuracy.

There were 38 HLA-B alleles identified in the 40 Māori
and Pacific Island individuals examined. Among these alleles,
HLA-B∗40:01:01 had the highest frequency (28.95%), followed
by HLA-B∗44:02:01 (21.05%) and HLA-B∗07:02:01 (18.42%).
According to the HLA allele frequency database (http://www.
allelefrequencies.net), HLA-B∗40:01:01 is the most prevalent
allele in the Han Chinese population (allele frequency of 0.155).
It has been reported that the Polynesian people are ancestrally
related to Micronesia, Taiwanese Aborigines and East Asia
(Kayser et al., 2008; Edinur et al., 2013). This is consistent
with our observation on the frequency of HLA-B∗40:01:01 in
this population. On the other hand, the HLA-B∗44:02:01 and
HLA-B∗07:02:01 alleles are present in multiple populations.
When comparing with other studies on Polynesians, we found
there were four previously observed alleles not represented in
our data (Edinur et al., 2013). Presumably this is because our
sample size is insufficient to reflect the full range of HLA-B
alleles in Pacific Island or Māori populations. Nevertheless,
the most common allele (HLA-B∗40:01:01) in our study is
similar to the Edinur findings, suggesting that this is a common
HLA-B allele in this population. Interestingly, there were
no HLA-B∗15:02:01 nor B∗58:01 observed in the Polynesian
individuals. The lack of HLA-B∗58:01 in Polynesians has
previously been reported in other studies (Abbott et al., 2006;
Roberts et al., 2015). These alleles have been implicated in

carbamazepine and allopurinol-induced severe cutaneous
adverse reactions, respectively. However, HLA-B∗57:01:01,
important for abacavir-associated hypersensitivity reactions, was
apparent in two samples.

DISCUSSION

The primary goal of our study was to develop methods for
HLA-B class 1 typing on the MinION nanopore sequencer.
This study applied PCR across HLA-B exon 2 and exon
3, followed by barcoding and nanopore sequencing of 49
samples simultaneously. The high quality and good depth of
coverage of our sequencing data for all samples, including
several that were present at low concentration, enabled accurate
assignment of HLA-B alleles. With ongoing improvements to
the speed, throughput and workflow of MinION flowcells and
the associated chemistry, it is likely that multiplexing could be
extended to much greater numbers without compromising the
ability for accurate typing.

The workflow we employed was straightforward and solely
PCR-based. Though the ONT protocol requires 2.0 nM of
input amplicon prior to the barcoding step, sample PI_G2 was
successfully amplified and produced sequencing data at 0.19 nM,
less than 10-fold the recommended amount. That said, even
these poorly represented samples generated sufficient data for
HLA-B typing. Of all the reads generated from the sequencing
device, 199,297 reads had good quality and passed the filters
for alignment. Reads were ignored if they did not map to the

Frontiers in Genetics | www.frontiersin.org 6 April 2018 | Volume 9 | Article 15219

http://www.allelefrequencies.net
http://www.allelefrequencies.net
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ton et al. HLA-B Typing by MinION Nanopore Sequencing

TABLE 3 | Assignment result of HLA-B obtained from MinION sequencing and SBT.

Sample Ethnicity# MinION SBT

NA16688§ Ch B*15:07:01G *35:01:01G

NA17019U Ch B*15:02:01G *15:11:01G B*15:02:01G *15:11:01G

NA17240U§ C B*07:02:01G *57:01:01G B*07:02:01G *57:01:01G

NA19834U A B*35:01:01G *39:10:01

UDRUGS01U C B*40:02:01G *44:02:01G B*40:02:01G *44:02:01G

UDRUGS02U C B*15:01:01G *44:02:01G B*15:01:01G *44:02:01G

UDRUGS29U§ C B*18:01:01G *27:09 B*18:01:01G *27:09

UDRUGS41U C B*15:01:01G *51:01:01G B*15:01:01G *51:01:01G

UDRUGS44U C B*15:01:01G *44:03:01G B*15:01:01G *44:03:01G

PI_A1U 0.25NM 0.75C B*37:01:01G *39:01:01G B*37:01:01G *39:01:01G

PI_A2U§ 0.5NM 0.5C B*27:05:02G *57:01:01G B*27:05:02G *57:01:01G

PI_A3U 0.5CM 0.5 P B*39:05:01 *52:01:01G B*39:05:01 *52:01:01G

PI_A5 0.125NM 0.25 P 0.625C B*08:01:01G *35:01:01G

PI_B1 1.0S B*46:01:01G *55:02:01G

PI_B2 0.5NM 0.5C B*07:02:01G *57:01:01G

PI_B3 U B*27:07:01G *35:03:01G

PI_B4U 0.333NM 0.667 P B*40:01:01G *44:02:01G B*40:01:01G *44:02:01G

PI_B5 0.5NM 0.5C B*07:02:01G *55:02:01G

PI_B6 1.0S B*40:01:01G *56:02:01

PI_C1 0.5NM B*44:02:01G *55:02:01G

PI_C2 U B*52:02:01 *52:02:01

PI_C3 0.25NM 0.25C B*44:04 *56:02:01

PI_C4 0.25NM 0.75C B*08:156 *42:01:01

PI_C5 0.25NM 0.75N B*55:01:01G *55:02:01G

PI_C6 0.25NM 0.75C B*44:02:01G *55:01:01G

PI_D1 0.5NM 0.5C B*15:01:01G *49:01:01G

PI_D2 0.125NM 0.875C B*08:01:01G *44:03:01G

PI_D3 0.25NM 0.75C B*40:01:01G *51:01:01G

PI_D4§ 0.5NM 0.5C B*13:02:01G *39:01:01G

PI_D5§ 0.25NM 0.5N 0.25C B*40:01:01G *40:01:01G

PI_D6§ 0.375NM 0.125C B*35:60 *56:09

PI_E1 0.5NM 0.5C B*35:03:01G *40:01:01G

PI_E2 0.5S 0.5N B*56:02:01 *56:02:01

PI_E4 0.5NM 0.5C B*14:02:01G *56:01:01G

PI_E5 0.5NM 0.5S B*39:01:01G *55:01:01G

PI_F1 0.5NM 0.5C B*44:02:01G *50:01:01G

PI_F2 0.75NM 0.25C B*07:02:01G *40:01:01G

PI_F3 0.125CM 0.875C B*18:01:01G *44:02:01G

PI_F4 0.5NM 0.5C B*44:02:01G *43:03:01G

PI_F5 0.125NM 0.875C B*08:01:01G *40:01:01G

PI_F6 0.25NM 0.75C B*35:01:01G *48:01:01G

PI_G1 0.5NM 0.5C B*15:17:01G *37:01:01G

PI_G2 1.0U B*07:02:01G *53:17:02

PI_G4 0.125NM 0.875C B*07:02:01G *07:02:01G

PI_G5 0.25NM 0.25C B*35:01:01G *40:01:01G

PI_G6 0.333NM 0.583N 0.083C B*40:01:01G *44:03:01G

PI_H1 0.5NM 0.5C B*27:10 *55:01:01G

PI_H2 0.5NM 0.5C B*07:02:01G *40:10:01G

PI_H3 1.0NM B*40:01:01G *48:01:01G

# A, African; Ch, Chinese; C, Caucasian; NM, NZ Maori; CM, Cook Island Maori; S, Samoan; N, Niuean; P, others; U, unknown. U Samples selected for validation. § Samples required

manual allele assignment.
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FIGURE 5 | SeqPilot screenshot from mapping sequencing reads with reference sequences. Bias phasing position (black box) followed by deletion errors.

region of interest. Among those usable reads, varied numbers of
reads between samples were observed, ranging from 80 to 17,329
(Figure 4). Regardless of this read-depth variability between
samples, adequate coverage was achieved for all samples and
allowed for confident HLA-B phasing. It is also worth noting
that individual PI_C3 only had 80 reads that were aligned with

reference sequences, but alleles could be assigned confidently.
Our protocol takes 3 days to complete, comprising 1–1.5 days
for library construction, 1 day for sequencing and base calling,
and a half-day for data analysis. The sequencing step takes up
to 2 days if aiming for more reads; however, it is possible to
analyze data prior to the end of the run if desired. It can be
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FIGURE 6 | SeqPilot screenshot from analysis of sample PI_A2. This illustrates the ambiguous results of sample PI_A2 with several possible alleles and their

corresponding mismatched locations. HLA-B*27:05:02G was not confidently called due to two mismatches at nucleotide position 133 and 136 of exon 2. The

software provides possible allele pairs with number of mismatches and their corresponding positions (red box). The mismatched nucleotides from the assigned allele

are shown in each sequence read (ellipses).

argued that the turnaround time of ourmethod is still longer than
that of the gold standard SBT method. Other NGS workflows for
MinION library construction may take even longer (3–4 days)
with the employment of biotinylated probes (Karamitros and
Magiorkinis, 2015). Moreover, given the fact that the capacity
of the MinION can be enlarged to analyze other HLA loci
at high-resolution and more sample input (up to 96 samples
at present), MinION-based HLA typing can overcome this
limitation. The ability to confidently call the genotype with such
a small number of reads suggests that it would be reasonable
to increase throughput by sequencing additional HLA loci, or
indexing up to 96 individuals per sequencing run.

Our average read length was 1,028 bp indicating that our
reads were long enough to cover exon 2 and exon 3 of HLA-B.
We are aware that ambiguous typing of HLA-B might occur
due to variants outside the region analyzed. This resulted in the
assignment of G Codes in several samples (Table 3). In HLA
typing, the letter “G” is used to report ambiguous alleles which
have identical exon sequences encoding the peptide binding
domains (exon 2 and exon 3 for HLA class I). A whole gene
sequencing is required to resolve this ambiguity and obtain a full
resolution of HLA allele. However, as not all alleles have been
completely sequenced, only exon sequences can be mapped in
some cases. For example, there are 4,356 HLA-B alleles but only
384 alleles have complete sequence information (Robinson et al.,
2014). By this, we mean it is currently more practical to focus on

exons solely than to sequence the entire gene for HLA-B typing
with minimal ambiguity. Obviously, we are able to increase the
read length for complete sequencing of the HLA-B if necessary,
as the MinION is capable of very long sequence reads (Carter
and Hussain, 2017). Therefore, once all HLA-B alleles in the
IMGT/HLA database have full information, our method can be
adapted to sequence a full-length HLA-B with greater specificity
and sensitivity.

Our results showed that SeqPilot was able to identify HLA-B
alleles accurately using theMinION reads. Although the software
could not automatically assign HLA-B alleles of all participants
(6 cases), it listed the most likely genotype combinations in
rank of number of mismatch sites. This enabled us to manually
assign HLA-B alleles based on this order. We found that these
errors only occurred at nucleotide position 130–136 of exon
2 and on samples which had a (GA)3 repeat on one of the
allele sequence. Deletion rates of the MinION using R7.3 and
R9.0 chemistry are 4.1 and 3.5%, respectively (Jain et al., 2017).
Therefore, it may be that deletion errors produced by the
MinION device combined with the complex nature of the HLA-
B, make accurate interpretation of genotype particularly difficult
around this region. Of the six individuals that were manually
phased, alleles from three had been identified either by the SBT
method or the 1000 Genomes project or both. These alleles
were all consistent with our manual assignments, suggesting this
approach can be applicable in such circumstances.
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FIGURE 7 | Comparison of consensus sequences of NA17240 (BC47) obtained from Sanger sequencing with those from Nanopolish. Yellow bar indicates the region

where mismatched alignment happens (nt 130-136). HLA-B*07:02:01 is the reference sequence; polished.B0702 and polished B5701 are consensus sequences

generated by Nanopolish. Data was visualized on Geneious v.9.1.5 (Biomatters Ltd., New Zealand).

The second aim of our study was to examine HLA-B alleles
in individuals of Māori and Pacific Island descent living in New
Zealand. Previous studies used allele-specific primer PCR for
HLA-B genotyping, which provides typing at first field resolution
(Edinur et al., 2013; Roberts et al., 2013). Here, we report a
feasible method for high-throughput and high-resolution HLA-B
typing using NGS. Though ours is a relatively small sample, this
initial finding can be used as a reference for future studies on the
prevalence of HLA-B in these ethnic groups.

In recent years, various high-throughput HLA typing studies
have been conducted using different NGS technologies (Carapito
et al., 2016). Though NGS-based HLA typing can be time-
consuming (Chua and Ng, 2016), it offers high-resolution,
unambiguous, phase-defined HLA alleles, overcoming some
of the limitations of traditional approaches. For instance, the
current gold standard method (SBT) may generate ambiguous
typing due to genotype phase issues and incomplete sequencing.
Modern NGS-based HLA typingmethods were mostly developed
on Illumina MiSeq/HiSeq or PGM Ion Torrent platforms, which
employed short-to-medium sequencing read data as an input
for HLA allele assignment (Hosomichi et al., 2015). At present,
the Illumina platform has been widely adopted due to its high
accuracy and high precision for HLA typing. However, the advent
of long read single-molecule sequencing holds the promise
of achieving full-length phase-defined HLA genes as well as
detecting novel and rare variants. An early, very preliminary
study suggested the MinION nanopore sequencer has potential
for HLA analysis (Ammar et al., 2015). The device and associated
chemistry has been continuously improving (Jain et al., 2017).
For example, the total error of 2D reads reduced from 9.1% in
R7.3 chemistry to 7.3% in R9.0 chemistry (now R9.4). Another
advantage of theMinIONdevice is its portability, which raises the
possibility of using the device for HLA analysis in field situations
or point-of-care settings.

Before this assay could be applied clinically, at least two things
would need to occur. First, the nanopore technology is still in a
state of relatively rapid development, and the MinION platform
would need to stabilize before clinical implementation would be

possible. For example, since the work described in this report
was completed there have been various further iterations of

chemistry and library preparation procedures for theMinION. In
addition, newer versions of the nanopore sequencing equipment

with higher throughput (such as the GridION and PromethION)

have been recently released to the market. Second, a much large
study would be required to assess the sensitivity and specificity of
the nanopore sequencing and allele calling procedure described
in this paper. This would need to be carried out in a cohort which
had undergone HLA typing using the current gold standard HLA
typing approach of SBT (Erlich, 2012).

CONCLUSION

We have described here the development and evaluation
of a PCR-based HLA-B sequencing method using MinION
Nanopore Technology on R9.4 flow cell. We demonstrated
that our method is relatively straightforward and can generate
accurate sequencing data from many barcoded samples in
a single run. We also reported that precise HLA-B alleles
could be obtained from the MinION reads with minimal
phase ambiguity. Our protocol can be easily adapted for
other HLA loci, or for full gene sequencing, or to employ
greater levels of multiplexing. The method could be particularly
valuable for research studies examining the role of HLA alleles
in ADRs.

DATA AVAILABILITY

The complete sequencing data can be accessed at the NCBI
Sequence Read Archive database with the accession number
SRP138979.

AUTHOR CONTRIBUTIONS

KT carried out the laboratory work, data analysis and
drafted the manuscript. SC advised on nanopore sequencing

Frontiers in Genetics | www.frontiersin.org 10 April 2018 | Volume 9 | Article 15223

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ton et al. HLA-B Typing by MinION Nanopore Sequencing

procedures and bioinformatic analyses. SG-S contributed to
the analysis and assignment of HLA alleles. TM and LS
recruited subjects and provided DNA for this analysis. MK
supervised the work and contributed to preparation of the
manuscript.

ACKNOWLEDGMENTS

KT was supported by a University of Otago PhD scholarship.

This work was also supported by funding from the Jim and Mary

Carney Charitable Trust.

REFERENCES

Abbott, W. G., Tukuitonga, C., Ofanoa, M., Munn, S., and Gane, E. (2006).

Low-cost, simultaneous, single-sequence genotyping of the HLA-A, HLA-B

and HLA-C loci. Tissue Antigens 68, 28–37. doi: 10.1111/j.1399-0039.2006.

00620.x

Alfirevic, A., and Pirmohamed, M. (2010). Drug induced hypersensitivity and the

HLA complex. Pharmaceuticals 4, 69–90. doi: 10.3390/ph4010069

Ammar, R., Paton, T. A., Torti, D., Shlien, A., and Bader, G. D. (2015). Long

read nanopore sequencing for detection of HLA and CYP2D6 variants and

haplotypes. F1000Research 4:17. doi: 10.12688/f1000research.6037.2

Anae, M. M. (2005). “ Samoans”. Te Ara - the Encyclopedia of New Zealand.

Available online at: http://www.TeAra.govt.nz/en/samoans

Bentley, G., Higuchi, R., Hoglund, B., Goodridge, D., Sayer, D.,

Trachtenberg, E., et al. (2009). High-resolution, high-throughput HLA

genotyping by next-generation sequencing. Tissue Antigens 74, 393–403.

doi: 10.1111/j.1399-0039.2009.01345.x

Bharadwaj, M., Illing, P., and Kostenko, L. (2010). Personalized medicine

for HLA-associated drug-hypersensitivity reactions. Per. Med. 7, 495–516.

doi: 10.2217/pme.10.46

Boegel, S., Löwer, M., Schäfer, M., Bukur, T., de Graaf, J., Boisguérin, V., et al.

(2012). HLA typing from RNA-Seq sequence reads. Genome Med. 4:102.

doi: 10.1186/gm403

Bontadini, A. (2012). HLA techniques: typing and antibody detection

in the laboratory of immunogenetics. Methods 56, 471–476.

doi: 10.1016/j.ymeth.2012.03.025

Carapito, R., Radosavljevic, M., and Bahram, S. (2016). Next-generation

sequencing of the HLA locus: methods and impacts on HLA typing, population

genetics and disease association studies. Hum. Immunol. 77, 1016–1023.

doi: 10.1016/j.humimm.2016.04.002

Carter, J. M., and Hussain, S. (2017). Robust long-read native DNA sequencing

using the ONT CsgG Nanopore system. Wellcome Open Res. 2:23.

doi: 10.12688/wellcomeopenres.11246.2

Chua, E. W., and Ng, P. Y. (2016). MinION: a novel tool for predicting drug

hypersensitivity? Front. Pharmacol. 7:156. doi: 10.3389/fphar.2016.00156

Cotton, L. A., Abdur Rahman,M., Ng, C., Le, A. Q.,Milloy,M.,Mo, T., et al. (2012).

HLA class I sequence-based typing using DNA recovered from frozen plasma.

J. Immunol. Methods 382, 40–47. doi: 10.1016/j.jim.2012.05.003

De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., and Van Broeckhoven,

C. (2017). NanoPack: visualizing and processing long-read sequencing data.

Bioinformatics. doi: 10.1093/bioinformatics/bty149

Edinur, H. A., Dunn, P. P., Hammond, L., Selwyn, C., Brescia, P., Askar, M.,

et al. (2013). HLA and MICA polymorphism in polynesians and New Zealand

Maori: implications for ancestry and health. Hum. Immunol. 74, 1119–1129.

doi: 10.1016/j.humimm.2013.06.011

Erlich, H. (2012). HLA DNA typing: past, present, and future. Tissue Antigens 80,

1–11. doi: 10.1111/j.1399-0039.2012.01881.x

Erlich, R. L., Jia, X., Anderson, S., Banks, E., Gao, X., Carrington, M., et al. (2011).

Next-generation sequencing for HLA typing of class I loci. BMC Genomics

12:42. doi: 10.1186/1471-2164-12-42

Geck, C. (2017). The world factbook. Charlest. Adv. 19, 58–60.

doi: 10.5260/chara.19.1.58

Hosomichi, K., Jinam, T. A., Mitsunaga, S., Nakaoka, H., and Inoue, I. (2013).

Phase-defined complete sequencing of the HLA genes by next-generation

sequencing. BMC Genomics 14:355. doi: 10.1186/1471-2164-14-355

Hosomichi, K., Shiina, T., Tajima, A., and Inoue, I. (2015). The impact of next-

generation sequencing technologies on HLA research. J. Hum. Genet. 60,

665–673. doi: 10.1038/jhg.2015.102

Jain, M., Tyson, J. R., Loose, M., Ip, C. L. C., Eccles, D. A., O’Grady, J., et al.

(2017). MinION analysis and reference consortium: phase 2 data release and

analysis of R9. 0 chemistry. F1000Research 6:670. doi: 10.12688/f1000research.

11354.1

Karamitros, T., and Magiorkinis, G. (2015). A novel method for the multiplexed

target enrichment of MinION next generation sequencing libraries using PCR-

generated baits. Nucleic Acids Res. 43:e152. doi: 10.1093/nar/gkv773

Kayser, M., Lao, O., Saar, K., Brauer, S., Wang, X., Nürnberg, P., et al. (2008).

Genome-wide analysis indicates more Asian than melanesian ancestry of

polynesians. Am. J. Hum. Genetics 82, 194–198. doi: 10.1016/j.ajhg.2007.09.010

Liu, C., Xiao, Y., Duffy, B., Zody, M., Tycksen, E., Shrivastava, S., et al. (2012).

High resolution HLA typing by next generation exome sequencing. Blood 120,

4166–4166. Available online at: http://www.bloodjournal.org/content/120/21/

4166

Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome

assembled de novo using only nanopore sequencing data. Nat. Methods 12,

733–735. doi: 10.1038/nmeth.3444

Loman, N. J., and Quinlan, A. R. (2014). Poretools: a toolkit for

analyzing nanopore sequence data. Bioinformatics 30, 3399–3401.

doi: 10.1093/bioinformatics/btu555

Maggo, S. D., Chua, E. W., Chin, P., Cree, S., Pearson, J., Doogue, M., et al.

(2017). A New Zealand platform to enable genetic investigation of adverse

drug reactions. N. Z. Med. J. 130, 62–69. Available online at: http://www.nzma.

org.nz/journal/read-the-journal/all-issues/2010-2019/2017/vol-130-no-1466-

1-december-2017/7429

Major, E., Rigó, K., Hague, T., Bérces, A., and Juhos, S. (2013). HLA typing from

1000 genomes whole genome and whole exome illumina data. PLoS ONE

8:e78410. doi: 10.1371/journal.pone.0078410

Martin, M. A., Klein, T. E., Dong, B. J., Pirmohamed, M., Haas, D. W., and

Kroetz, D. L., (2012). Clinical pharmacogenetics implementation consortium

guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol.

Therapeut. 91, 734–738. doi: 10.1038/clpt.2011.355

Phillips, E. J., Sukasem, C., Whirl-Carrillo, M., Müller, D. J., Dunnenberger, H. M.,

Chantratita, W., et al. (2018). Clinical pharmacogenetics implementation

consortium guideline for HLA genotype and use of carbamazepine

and oxcarbazepine: 2017 update. Clin. Pharmacol. Ther. 103, 574–581.

doi: 10.1002/cpt.1004

Quick, J., Quinlan, A. R., and Loman, N. J. (2014). A reference bacterial genome

dataset generated on the MinIONTM portable single-molecule nanopore

sequencer. Gigascience 3:22. doi: 10.1186/2047-217X-3-22

Roberts, R. L., Wallace, M. C., Harrison, A., Dalbeth, N., Merriman, T. R., and

Stamp, L. K. (2015). A human leukocyte antigen locus haplotype confers

risk for allopurinol-related adverse effects in Caucasian patients with gout.

Pharmacogenet. Genomics 25, 412–415. doi: 10.1097/FPC.0000000000000147

Roberts, R. L., Wallace, M. C., Jones, G. T., van Rij, A. M., Merriman,

T. R., Harrison, A., et al. (2013). Prevalence of HLA-B27 in the New

Zealand population: effect of age and ethnicity. Arthritis Res. Ther. 15:R158.

doi: 10.1186/ar4341

Robinson, J., Halliwell, J. A., Hayhurst, J. D., Flicek, P., Parham, P., and Marsh, S.

G. (2014). The IPD and IMGT/HLA database: allele variant databases. Nucleic

Acids Res. 43(Database issue), D423–D431. doi: 10.1093/nar/gku1161

Schöfl, G., Lang, K., Quenzel, P., Böhme, I., Sauter, J., Hofmann, J. A., et al. (2017).

2.7 million samples genotyped for HLA by next generation sequencing: lessons

learned. BMC Genomics 18:161. doi: 10.1186/s12864-017-3575-z

Shiina, T., Suzuki, S., Ozaki, Y., Taira, H., Kikkawa, E., Shigenari, A., et al. (2012).

Super high resolution for single molecule-sequence-based typing of classical

HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens

80, 305–316. doi: 10.1111/j.1399-0039.2012.01941.x

Frontiers in Genetics | www.frontiersin.org 11 April 2018 | Volume 9 | Article 15224

https://doi.org/10.1111/j.1399-0039.2006.00620.x
https://doi.org/10.3390/ph4010069
https://doi.org/10.12688/f1000research.6037.2
http://www.TeAra.govt.nz/en/samoans
https://doi.org/10.1111/j.1399-0039.2009.01345.x
https://doi.org/10.2217/pme.10.46
https://doi.org/10.1186/gm403
https://doi.org/10.1016/j.ymeth.2012.03.025
https://doi.org/10.1016/j.humimm.2016.04.002
https://doi.org/10.12688/wellcomeopenres.11246.2
https://doi.org/10.3389/fphar.2016.00156
https://doi.org/10.1016/j.jim.2012.05.003
https://doi.org/10.1093/bioinformatics/bty149
https://doi.org/10.1016/j.humimm.2013.06.011
https://doi.org/10.1111/j.1399-0039.2012.01881.x
https://doi.org/10.1186/1471-2164-12-42
https://doi.org/10.5260/chara.19.1.58
https://doi.org/10.1186/1471-2164-14-355
https://doi.org/10.1038/jhg.2015.102
https://doi.org/10.12688/f1000research.11354.1
https://doi.org/10.1093/nar/gkv773
https://doi.org/10.1016/j.ajhg.2007.09.010
http://www.bloodjournal.org/content/120/21/4166
http://www.bloodjournal.org/content/120/21/4166
https://doi.org/10.1038/nmeth.3444
https://doi.org/10.1093/bioinformatics/btu555
http://www.nzma.org.nz/journal/read-the-journal/all-issues/2010-2019/2017/vol-130-no-1466-1-december-2017/7429
http://www.nzma.org.nz/journal/read-the-journal/all-issues/2010-2019/2017/vol-130-no-1466-1-december-2017/7429
http://www.nzma.org.nz/journal/read-the-journal/all-issues/2010-2019/2017/vol-130-no-1466-1-december-2017/7429
https://doi.org/10.1371/journal.pone.0078410
https://doi.org/10.1038/clpt.2011.355
https://doi.org/10.1002/cpt.1004
https://doi.org/10.1186/2047-217X-3-22
https://doi.org/10.1097/FPC.0000000000000147
https://doi.org/10.1186/ar4341
https://doi.org/10.1093/nar/gku1161
https://doi.org/10.1186/s12864-017-3575-z
https://doi.org/10.1111/j.1399-0039.2012.01941.x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Ton et al. HLA-B Typing by MinION Nanopore Sequencing

Somkrua, R., Eickman, E. E., Saokaew, S., Lohitnavy, M., and Chaiyakunapruk,

N. (2011). Association of HLA-B∗ 5801 allele and allopurinol-induced Stevens

Johnson syndrome and toxic epidermal necrolysis: a systematic review and

meta-analysis. BMCMed. Genet. 12:118. doi: 10.1186/1471-2350-12-118

Sukasem, C., Puangpetch, A., Medhasi, S., and Tassaneeyakul, W. (2014).

Pharmacogenomics of drug-induced hypersensitivity reactions: challenges,

opportunities and clinical implementation. Asian Pac. J. Allergy Immunol.

32, 111–123. Available online at: https://search.proquest.com/docview/

1614082458?accountid=14700

Tait, B. D., Hudson, F., Cantwell, L., Brewin, G., Holdsworth, R.,

Bennett, G., et al. (2009). Luminex technology for HLA antibody

detection in organ transplantation. Nephrology 14, 247–254.

doi: 10.1111/j.1440-1797.2008.01074.x

Tassaneeyakul, W., Tiamkao, S., Jantararoungtong, T., Chen, P., Lin, S. Y., Chen,

W. H., et al. (2010). Association between HLA-B∗ 1502 and carbamazepine-

induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia

51, 926–930. doi: 10.1111/j.1528-1167.2010.02533.x

Tiwari, J. L., and Terasaki, P. I. (1985). HLA and Disease Associations. New York,

NY: Springer Science & Business Media. doi: 10.1007/978-1-4613-8545-5

Urban, J. M., Bliss, J., Lawrence, C. E., and Gerbi, S. A. (2015). Sequencing Ultra-

Long DNAMolecules with the Oxford Nanopore MinION. bioRxiv:019281.

Conflict of Interest Statement:Author SG-S was employed by JSI medical systems

GmbH. The other authors declare that the research was conducted in the absence

of any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2018 Ton, Cree, Gronert-Sum, Merriman, Stamp and Kennedy. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 April 2018 | Volume 9 | Article 15225

https://doi.org/10.1186/1471-2350-12-118
https://search.proquest.com/docview/1614082458?accountid=14700
https://search.proquest.com/docview/1614082458?accountid=14700
https://doi.org/10.1111/j.1440-1797.2008.01074.x
https://doi.org/10.1111/j.1528-1167.2010.02533.x
https://doi.org/10.1007/978-1-4613-8545-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00219 June 13, 2018 Time: 16:14 # 1

METHODS
published: 15 June 2018

doi: 10.3389/fgene.2018.00219

Edited by:
Ulrich M. Zanger,

Dr. Margarete Fischer-Bosch-Institut
für Klinische Pharmakologie (IKP),

Germany

Reviewed by:
Dylan Glubb,

QIMR Berghofer Medical Research
Institute, Australia
Eric R. Gamazon,

The University of Chicago,
United States

*Correspondence:
Todd C. Skaar
tskaar@iu.edu

Specialty section:
This article was submitted to

Pharmacogenetics
and Pharmacogenomics,

a section of the journal
Frontiers in Genetics

Received: 30 November 2017
Accepted: 29 May 2018

Published: 15 June 2018

Citation:
Ipe J, Collins KS, Hao Y, Gao H,

Bhatia P, Gaedigk A, Liu Y and
Skaar TC (2018) PASSPORT-seq:

A Novel High-Throughput Bioassay
to Functionally Test Polymorphisms

in Micro-RNA Target Sites.
Front. Genet. 9:219.

doi: 10.3389/fgene.2018.00219

PASSPORT-seq: A Novel
High-Throughput Bioassay to
Functionally Test Polymorphisms
in Micro-RNA Target Sites
Joseph Ipe1, Kimberly S. Collins1,2, Yangyang Hao3,4, Hongyu Gao3,4, Puja Bhatia1,
Andrea Gaedigk5, Yunlong Liu3,4 and Todd C. Skaar1*

1 Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,
United States, 2 Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN,
United States, 3 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN,
United States, 4 Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis,
IN, United States, 5 Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City,
Kansas City, MO, United States

Next-generation sequencing (NGS) studies have identified large numbers of genetic
variants that are predicted to alter miRNA–mRNA interactions. We developed a
novel high-throughput bioassay, PASSPORT-seq, that can functionally test in parallel
100s of these variants in miRNA binding sites (mirSNPs). The results are highly
reproducible across both technical and biological replicates. The utility of the bioassay
was demonstrated by testing 100 mirSNPs in HEK293, HepG2, and HeLa cells. The
results of several of the variants were validated in all three cell lines using traditional
individual luciferase assays. Fifty-five mirSNPs were functional in at least one of three
cell lines (FDR ≤ 0.05); 11, 36, and 27 of them were functional in HEK293, HepG2, and
HeLa cells, respectively. Only four of the variants were functional in all three cell lines,
which demonstrates the cell-type specific effects of mirSNPs and the importance of
testing the mirSNPs in multiple cell lines. Using PASSPORT-seq, we functionally tested
111 variants in the 3′ UTR of 17 pharmacogenes that are predicted to alter miRNA
regulation. Thirty-three of the variants tested were functional in at least one cell line.

Keywords: SNP, functional testing, genetic variants, miRNA, high-throughput screening assays, 3′ UTR

INTRODUCTION

Large scale sequencing studies and genome-wide association studies (GWASs) have identified
1000s of genotype–phenotype associations (Welter et al., 2014). Some of the phenotype-associated
variants alter gene function and many of them are in linkage disequilibrium with the functional
variants. The functional impacts of variants can be predicted using bioinformatic algorithms,
but the in silico predictions are often incorrect and need experimental validation. While there
are several experimental methods to functionally test variants, most do not have the capacity to
simultaneously test the large number of variants.

Nearly 90% of genetic variants associated with phenotypes have been described to be located
in non-coding regions such as the untranslated regions (UTRs) (Hindorff et al., 2009). Variants,
including single nucleotide polymorphisms (SNPs) within non-coding regions, can impact gene
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expression in several ways; one example is by altering the
interaction between mRNAs and micro-RNAs (miRNAs).
Polymorphisms within miRNA-binding sites have been
implicated in diseases such as cancer (Pelletier and Weidhaas,
2010; Iuliano et al., 2013), Alzheimer’s disease (Liu et al., 2017),
and diabetes (Elek et al., 2015).

miRNAs are 21–23 nucleotide long RNAs that post-
transcriptionally silence genes or reduce their expression levels
by complementarily binding to target sites within mRNAs. More
than 29,000 human mRNAs are collectively targeted by are over
2500 miRNAs (Kozomara and Griffiths-Jones, 2014). Several
different miRNA binding sites may be present on one mRNA
and many contain genetic variations. To date, over 400,000 SNPs
have been identified in miRNA binding sites (Liu et al., 2012).
Interestingly, only about 32,000 have a minor allele frequency
greater than 1% classifying most of them as rare variants (Liu
et al., 2012). Thus, tests to identify functional SNPs affecting
miRNA binding, here referred to as mirSNPs, will involve
screening a large number of variants.

Testing these large number of mirSNPs using GWAS requires
statistical correction for multiple testing, such as the Bonferroni
correction. The low minor allele frequency of many causal
variants, and routine multiple comparisons corrections make it
very difficult, or impossible, to statistically identify functionally
relevant variants in genome-wide studies. Consequently, in
GWAS, impractically large numbers of subjects from diverse
populations would be required to identify rare functional
variants that are statistically significant. Lowering the statistical
threshold or not correcting for multiple comparisons increases
the sensitivity to detect rare variant associations, but results
in the detection of many false positives signals. Despite some
technical challenges, high-throughput in vitro approaches have
been implemented that are specific to variants in certain non-
coding regions, such as splice-junctions (Soemedi et al., 2014)
and promoters (Kwasnieski et al., 2012; Melnikov et al., 2012).
However, we are not aware of any high-throughput assays
available to functionally test variants in miRNA binding sites (Ipe
et al., 2017).

We developed PASSPORT-seq (parallel assessment of
polymorphisms in miRNA target-sites by sequencing), a high-
throughput bioassay that involves pooled synthesis, parallel
cloning and single-well transfection followed by next-generation
sequencing (NGS) to functionally test 100s of mirSNPs at once.
This assay produced results that are reproducible and consistent
with luciferase reporter assays, a gold-standard platform widely
used to assess gene expression in vitro. We also demonstrate
the application of this assay to test 111 genetic variants that are
predicted to alter miRNA regulation of 17 pharmacogenes.

MATERIALS AND METHODS

Selection of mirSNPs
RNA samples from thirty human livers were sequenced using
SOLiD R© technology (Thermo Fisher Scientific, Waltham, MA,
United States). SNPs in the 3′ UTRs were identified (O’Leary
et al., 2016) and an 8-base pair region on either side of the

reference and variant alleles was analyzed using TargetScan
(Lewis et al., 2005) to identify SNPs that were in miRNA seed
binding regions. SNPs that altered the predicted miRNA seed
binding sites were considered for further analysis. For assay
development, 84 SNPs that were associated with allele-specific
expression in the sequencing dataset were selected. A flowchart
representing the selection process of the 84 test mirSNPs is shown
in Supplementary Figure 1. In addition, we selected 16 mirSNPs
from the SomamiR database (Bhattacharya et al., 2013) that have
been linked with cancer. The list of 100 SNPs used for assay
development are listed in Supplementary Table 1. Similarly, 111
mirSNPs located in the 3′ UTR regions of 17 pharmacogenes-
the core absorption, distribution, metabolism, and excretion
(ADME) genes1, PXR, CAR, and HNF4α which showed allele
specific expression in the sequencing dataset were selected to
demonstrate the application of the assay. The list of these 111
SNPs are listed in Supplementary Table 4. The RNA analysis and
genotyping was approved by the Indiana University Institutional
Review Board.

Test Sequence Design
The 5′ and 3′ flanking regions for each SNP were obtained
from dbSNP. A 32-nucleotide region which contained either the
variant or reference nucleotide flanked by nine nucleotides on
the 3′ end and 22 nucleotides on the 5′ end was selected as the
test sequence. Two-hundred such regions (100 reference and 100
variant) were selected to test 100 SNPs. Universal primer binding
regions were added on the 5′ (GTAATTCTAGGAGCTC) and
3′ (CGTTCTAGAGTCGGG) end of each test region. The final
test fragment was 63 nucleotides in length (see Supplementary
Figure 2). The 200 test fragments were commercially synthesized
as pooled single-stranded DNA oligonucleotides (Oligomix R©,
LC Sciences, Houston, TX, United States). The pool contained
10–50 attomoles of each sequence. The oligonucleotides were
synthesized as single-stranded DNA and was diluted 1:5. One µL
of the diluted Oligomix R© was amplified in a 50 µL PCR reaction
using 0.3 µM universal primers and 25 µL 2X CloneAmpTM HiFi
PCR premix (Takara, Mountain View, CA, United States). PCR
conditions used were: 98◦C (10 s), 53◦C (5 s), and 72◦C (5 s) for
35 cycles.

Seven SNPs were also tested in individual luciferase assays
using 63-nucleotide long single stranded oligonucleotides that
were individually synthesized (reference and variant); (Integrated
DNA Technologies, Coralville, IA, United States), made double
stranded as described for pooled oligonucleotides, and cloned
into the pIS-0 plasmid.

Plasmid Library Preparation
The pIS-0 vector (plasmid 12178; Addgene, Cambridge,
MA, United States) (Yekta et al., 2004) (see Supplementary
Figure 3) was linearized with SacI-HF R© and BmtI-HF R©

restriction endonucleases (New England Biolabs, Ipswich,
MA, United States) and purified using QIAquick R© PCR spin
columns (Qiagen, Germantown, MD, United States). Plasmid
assembly was performed using 40 ng of linearized plasmid and

1http://www.pharmaadme.org/joomla/
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2 µL of unpurified PCR product containing double-stranded
test oligonucleotides using the NEBuilder R© HiFi DNA assembly
kit (NEB, Ipswich, MA, United States) per manufacturer’s
instructions. The universal primers used to amplify the test-
oligonucleotide pool also served as the flanking homology
regions for the NEBuilder R© assembly. Two µL of the NEBuilder R©

assembly product were transformed into 60 µL chemically
competent E. coli (transformation efficiency > 5 × 108 cfu/µg)
(Takara, Mountain View, CA, United States) and plated on
six standard 100 mm LB-agar plates containing 100 µg/ml
ampicillin. After overnight incubation, all colonies were
dislodged from the plates by adding 2 ml LB-broth containing
100 µg/ml ampicillin and agitation using 10–20 ColiRollersTM

glass beads (EMD Millipore, Billerica, MA, United States). The
colonies harvested from the six plates in LB-broth were pooled
together. The liquid culture was incubated at 37◦C for 5 h after
which plasmids were isolated using 10 QIAprep R© Spin miniprep
columns (Qiagen, Germantown, MD, United States) as per
manufacturer’s instructions. Column elutions were combined
to create the plasmid library that was used for downstream
experiments. The plasmid DNA concentration was determined
using a Quant-iTTM DNA Broad Range kit (Thermo Fisher
Scientific, Waltham, MA, United States).

Sanger Sequencing
To determine the representation of the test constructs in the
plasmid library, 28 individual colonies were grown in LB-broth
containing 100 µg/ml ampicillin. Plasmids were isolated using
QIAprep R© Spin miniprep columns (Qiagen, Germantown, MD,
United States) as per manufacturer’s instructions and Sanger
sequenced using a primer (GTGGTTTGTCCAAACTCATC)
near the test insert (ACGT, Inc., Wheeling, IL, United States).

Transfection of Cells in Culture
The plasmid library was used to transfect three different human
cell lines: HEK293 (embryonic kidney), HepG2 (liver carcinoma),
and HeLa (cervical cancer). Cells were seeded at a density of
0.9 × 105 cells per well into 24- well plates. The cells were
transfected 24 h after plating with 500 ng/well of the pIS-
0 plasmids. Ten ng of pGL4.74, a Renilla luciferase reporter
plasmid, was added to each well as a transfection control.
Transfection was performed using 50 µL transfection-mix in
Opti-MEM R© (Life Technologies, Carlsbad, CA, United States)
containing 1.5 µL Lipofectamine R© 3000 (Life Technologies,
Carlsbad, CA, United States) per the manufacturer’s instructions.
Opti-MEM R© and culture media were used with no antibiotics.

RNA Isolation and cDNA Synthesis
Transfected cells were incubated for 48 h, lysed in situ and total
RNA isolated using a RNeasy R© purification kit with the optional
DNase treatment (Qiagen, Germantown, MD, United States).
RNA was quantified using the Quant-iTTM RNA Broad Range
kit (Thermo Fisher Scientific, Waltham, MA, United States)
and cDNA synthesized from 800 ng of total RNA using the
QuantiTect R© Reverse Transcription kit (Qiagen, Germantown,
MD, United States).

Molecular Barcoding
Using the cDNAs from the transfected cells, the miRNA
binding sites within the 3′ UTR of the luciferase genes were
amplified in 50 µL PCR reactions using 0.3 µM flanking
universal primer sand 25 µL 2X CloneAmpTM HiFi PCR
premix (Takara, Mountain View, CA, United States). In a
separate reaction for each sample, 2 µL of cDNA and
1 pg of the input plasmid pool was used as PCR template.
PCR conditions used were: 98◦C (10 s), 54◦C (5 s), and
72◦C (5 s) for 25 cycles. A 6-nucleotide unique molecular
barcode was added to the 5′-end of both the forward and
reverse primer (see Supplementary Table 2). The input pools
(n = 4 replicates) and the five biological replicates in the
three different cell lines were each ‘barcoded’ by a unique
pair of sequences. The barcoded PCR products were purified
using a MinElute R© PCR Purification kit (Qiagen, Germantown,
MD, United States). The barcoded libraries were combined in
equimolar concentrations to create a sequencing pool with 19
different molecular barcodes. A schematic representation of the
steps involved in creating this sequencing pool is shown in
Figure 1.

Next-Generation Sequencing
The pooled PCR products were sequenced using a modified
protocol for the Ion ProtonTM system (Thermo Fisher Scientific,
Waltham, MA, United States). Briefly, the sequencing library was
created by end-polishing the barcoded PCR products, followed
by adapter ligation and amplification. The resulting library was
quantified and its quality accessed with the Agilent Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). Eight
microliters of the 100 pM library were then applied to Ion
Sphere Particles to prepare the sequencing template. The
template was amplified using Ion OneTouch 2. The Ion Sphere
Particles with the amplified template were loaded onto an
IonPI R© chip and sequenced on the Ion Proton system per
manufacturer’s instructions. Approximately, 41 million reads
were generated from each sequencing run. Raw reads were
generated as fastq files for bioinformatic analysis. Sequencing
data has been made publicly available through GEO (Accession
No. GSE111845).

Bioinformatic Analysis
The raw reads were aligned to the reference library containing
the 200 test sequences (TMAP- Ion Torrent Suite R©, Thermo
Fisher Scientific, Waltham, MA, United States). The reads that
aligned to the reference library were filtered to retain reads
with a mapping quality greater than 20 and further filtered
to include only those sequences with perfect barcodes at both
ends.

Differential expression analysis compared the expression of
each variant to its respective reference allele for all SNPs. To
account for differences in the concentrations of the variant and
reference plasmids that were used for the transfections, a plasmid
input correction factor for each target site was calculated as the
average of the number of reads from the variant plasmid divided
by the number of reads from the reference plasmid across four
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FIGURE 1 | Workflow of the PASSPORT-seq bioassay. (A) 100 Reference and variant miRNA binding regions each with the same 15–20 bp flanking sequence was
synthesized as an oligonucleotide pool. (B) Using the flanking universal sequences, the oligonucleotide pool was amplified and made double stranded by PCR.
pIS-0 plasmid was linearized by restriction enzymes. (C) The double stranded oligonucleotides were inserted into the linear plasmid using the NEBuilderTM gene
assembly system. (D) Chemically competent bacteria were transformed with the plasmid pool containing the test miRNA binding regions. Transformed bacteria were
plated on four plates. (E) All colonies from the plates were harvested, combined and scaled up in liquid culture. Plasmids were isolated from the liquid culture.
(F) Three cell lines were transfected with the plasmid pool and incubated for 48 h after which cDNA was prepared from total RNA. (G) miRNA binding regions were
amplified using universal primers that were uniquely barcoded for replicates within cell lines and for the input plasmid pool. (H) The barcoded PCR products were
combined to form the sequencing pool.

replicates of the plasmids. The reads from the variant alleles
for all biological replicates were divided by the input correction
factor. The corrected read counts were fit into a generalized linear
model using EdgeR (Robinson et al., 2010) assuming a negative
binomial distribution. Biological replicates and the genotype
were used as covariates. p-Values and log2 fold-change of the
variant alleles compared to the respective reference alleles were
derived using a likelihood ratio test on the genotype variable in
the generalized linear model. The p-values were corrected for a
false discovery rate (FDR) using the Benjamini and Hochberg
algorithm (Benjamini and Hochberg, 1995). The EdgeR script can
be found in Supplementary File 1.

The two sequencing runs, each with five biological replicates,
were analyzed together by fitting the number of reads for 10
pairs of variant and reference alleles (five from each experiment).
The different sequencing runs were included as an additional
covariate. The statistical analysis was performed as described
above.

Luciferase Reporter Assay
Genetic variants, including mirSNPs have been functionally
tested using a reporter plasmid such as the pIS-0 vector (Yekta
et al., 2004; Adams et al., 2007; Ramamoorthy et al., 2012). This
plasmid contains the firefly luciferase gene whose expression
can be quantified either by qPCR or by the luciferase reporter
assay. The reference or variant allele version of the predicted
miRNA binding sites were cloned into the 3′ UTR of the
luciferase gene within the plasmid. The plasmids were then
transfected into cells as described above. Forty-eight hours
after transfection, cells were lysed in situ and Dual-Luciferase R©

assays were performed per manufacturer’s instructions (Promega,
Madison, WI, United States). The luciferase reporter activity
was measured using a 96-well plate-reader (BioTek, Winooski,
VT, United States). The firefly luciferase activity was normalized

to that of Renilla luciferase in each well. The ratio of the
normalized luciferase activity from the variant and reference
plasmid provides a relative measure of SNP-mediated differential
mRNA expression.

RESULTS

The traditional luciferase reporter assay is useful in low-
throughput experiments, but is not a practical and cost-effective
method to test the 1000s of mirSNPs identified at a genome-
wide scale. As a novel approach, we modified the luciferase
reporter assay to develop PASSPORT-seq that can functionally
test 100s of mirSNPs in parallel. Since one of the mechanisms
of miRNA regulation is by degrading mRNA, this assay was
specifically designed to evaluate the impact of genetic variation
in miRNA binding sites on mRNA expression. We recognize
that miRNAs also alter mRNA translation, however measuring
protein levels does not distinguish between the impact on mRNA
vs. translation and thus would not provide the same mechanistic
insights. We identified 100 variants in predicted seed sequences of
miRNA binding sites, and cloned the binding sites into the pIS-0
luciferase plasmid; each contained either the reference or variant
nucleotide of 100 selected mirSNPs. The pool of the resulting
200 plasmids was then transfected into three cell lines and the
luciferase gene expression measured by NGS. A difference in
mRNA expression between the reference and the variant plasmids
indicated a functional mirSNP.

Cloning Efficiency and Plasmid
Representation
To test the efficiency of the parallel cloning, plasmids from
28 individual colonies were isolated and the sequence of the
inserts were determined by Sanger sequencing. Out of the 28

Frontiers in Genetics | www.frontiersin.org 4 June 2018 | Volume 9 | Article 21929

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00219 June 13, 2018 Time: 16:14 # 5

Ipe et al. Functionally Testing Polymorphisms in miRNA Targets

colonies, 25 contained inserts without errors; of those, 24 were
unique sequences suggesting that the cloning efficiency was
high and there was negligible sequence-bias in the plasmid
pool. Furthermore, as described below, all 200 sequences were
observed in the NGS of the entire pool.

Reproducibility Across Biological
Replicates
To test the reproducibility of the PASSPORT-seq bioassay, we
first performed the assay with five biological replicates in each
of the three cell lines and compared the number of reads from
two of the five biological replicates. The input plasmid libraries
had representation of all 100 allelic pairs. The R2 value for the
comparison of sets of two of the five input normalized-biological
replicates within the same sequencing run was between 0.68 and
0.98 (p < 0.05; Supplementary Figure 4) demonstrating highly
reproducible results within a run.

Reproducibility Across Runs
Next, we repeated the PASSPORT-seq assay again with another
five biological replicates in each of the three cell lines to validate
the observed results. A separate cDNA and sequencing library
was created for the experiments. A strong correlation (R2 = 0.98;
p < 0.05) was observed in the results from the plasmid pool from
the first sequencing run and those from the second sequencing
run (see Supplementary Figure 5). There was a high correlation
(R2 = 0.74; p< 0.05) in the results between the first and second set
of biological replicates (Figure 2 and Supplementary Figure 6).
This strong correlation between results of the first sequencing run
with those of the second sequencing run across the three cell lines
demonstrates the high reproducibility of the observed results.

Identification of Functional mirSNPs
Of the 100 mirSNPs tested, 69 showed statistically significant
(p < 0.05) differences in expression between the variant and its
respective reference allele in at least one cell line (Figure 2B).

FIGURE 3 | Functional SNPs in the cell lines. Venn diagram (Micallef and
Rodgers, 2014) showing the number of unique and overlapping functional
SNPs that were identified by the PASSPORT-seq assay in the three cell lines.
Total number of functional SNPs identified in each cell line is indicated in
parenthesis.

In HEK293, HepG2, and HeLa a significant effect was seen
in 27, 44, and 39 mirSNPs, respectively (see Supplementary
Figure 7). Due to the large number mirSNPs tested, the results
were corrected using the Benjamini and Hochberg procedure
across cell lines. This conservative threshold (FDR ≤ 0.05) was
met by 55 mirSNPs in at least one cell line with 11, 36, and 27
in HEK293, HepG2, and HeLa cells, respectively. Because these
variants were informatically predicted to be functional, this may
be an overly conservative statistical correction. The effect of the
mirSNPs was cell line- specific; four SNPs were functional across
all three cell lines, while others were functional in either two cell
lines or unique to one cell line (Figure 3).

Validation With Traditional Luciferase
Assays
Twenty-one of the results were validated using traditional
individual luciferase transfection experiments. The variant and

FIGURE 2 | Validation of the PASSPORT-seq assay. (A) Correlation between the percent-change of variant alleles compared to respective reference alleles observed
in the experimental and validation PASSPORT-seq runs. Each run contained five biological replicates tested in three cell lines. The graph includes combined average
data from all three cell lines. (B) Functional mirSNPs identified by the PASSPORT-seq assay. For each SNP, the observed percent change in the expression of the
variant allele compared to the respective reference allele in predicted miRNA binding site was calculated Statistically significant changes after correction for multiple
testing using Benjamini and Hochberg algorithm are indicated by colored boxes. Blue boxes indicate a reduction in the variant allele expression and Orange boxes
indicate increased expression. Results from the experimental and validation runs are shown. Additionally, results of the analysis with merged data from experimental
and validation runs are also represented.
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reference allele binding sites of the selected mirSNPs were
individually cloned into the 3′ UTR of the luciferase gene within
the pIS-0 plasmid and transfected into HEK293, HepG2, and
HeLa cells. This included seven of the miRNA target sequences,
each with reference and variant sequences, tested in three cell
lines for a total of 21 validations. Within each cell line, the
luciferase activity in the cells transfected with the reference
plasmid was compared to the activity in the cells transfected
with the variant plasmids. The effect of the variants in these
individual luciferase assays were compared with the results
from the PASSPORT-seq assay (Figure 4). In 17 of the 21
comparisons, the statistical significance of the results and the
direction of the effect of the variant matched the PASSPORT-
seq results (Supplementary Figure 8 and Supplementary Table 3).
In an additional two comparisons (rs3134615 in HeLa and
HEK293 cells), the results were statistically significant in one
assay, but not the other, but the direction and magnitude of
effect of the variant in the PASSPORT-seq was similar to the
luciferase assay in both cell lines (Supplementary Figure 8).
Thus, the results were very similar in 19 of the 21 comparisons
(>90%).

Application of PASSPORT-seq
To demonstrate the utility of this assay, mirSNPs predicted to
alter miRNA regulation of 17 pharmacogenes were selected for
functional testing from the RNA-seq dataset described earlier.
These variants were functionally tested using the PASSPORT-
seq assay in HeLa, HepG2, HEK293, and HepaRG (hepatic cells
that retain characteristics of primary human hepatocytes) cells.
Out of the 111 genetic variants tested, the effect of 33 variants
were statistically significant in at least one cell line, including
6, 13, 12, and 27 in HeLa, HepG2, HEK293, and HepaRG
cells, respectively (Figure 5 and Supplementary Table 4). The
effects of several mirSNPs were shown to be cell line-specific.
Only four mirSNPs had significant effects in all the four cell
lines (Figure 6). The effect of a genetic variant (rs12979270),
located in the 3′ UTR of the pharmacogene- CYP2B6, was shown
to be statistically significant in HepaRG cells. A recent study
shows that this variant, could explain part of the interindividual
variability seen in the activity of this critical pharmacogene
(Burgess et al., 2017). These results demonstrate the potential
of this assay to identify clinically relevant functional genetic
variants.

FIGURE 4 | Comparison of the results from the PASSPORT-seq assay with those from the luciferase reporter assay. Correlation between results of the
PASSPORT-seq assay (P-seq) and the luciferase reporter assay (Luc); in (A) HEK293, (B) HepG2 cells, and (C) HeLa cells. The results of the two assays are
represented as the percent-change observed in the variant allele compared to its respective reference allele. Tables show the magnitude of change observed in each
sample using the two different assays: < 5% = 0, ≥ 5 to < 10% = –/+, ≥ 10 to < 15% = −−/++, ≥ 15% = −−/+++. ‘–’ indicate decreased expression and ‘+’
indicate increased expression. The rs numbers of the SNPs can be identified based on the table.
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FIGURE 5 | Functional mirSNPs in pharmacogenes identified by the PASSPORT-seq assay. For each SNP, the observed percent change in the expression of the
variant allele compared to the respective reference allele in predicted miRNA binding site was calculated. Statistically significant changes after correction for multiple
testing using Benjamini and Hochberg algorithm are indicated by colored boxes. Blue boxes indicate a reduction in the variant allele expression and Orange boxes
indicate increased expression.

DISCUSSION

We developed PASSPORT-seq to screen 100s of SNPs that are
predicted to alter miRNA–mRNA interactions. The availability
of pooled oligonucleotide synthesis and the NEBuilder R© gene
assembly system have made this assay possible. Our assay
builds and substantially improves the technologies that have
had only limited success (Reid et al., 2009). For example,
in previous high-throughput splicing assays, short inserts
were underrepresented during the library construction using
traditional cloning methods (Chen and Chasin, 1994; Ke
et al., 2011; Soemedi et al., 2014). In contrast, our library
had representation of all allele pairs. This may be explained
by the cloning method we utilized, i.e., the NEBuilder R©

gene assembly system that produces covalently closed circular
plasmids as opposed to traditional cloning methods, which
yield a nicked-relaxed plasmid topology. This change in
topology may result in a more efficient plasmid uptake by
chemically competent bacteria (Hanahan, 1983; Xie et al., 1992;
Kobori and Nojima, 1993). Better transformation efficiency
increases the probability of both the variant and reference
plasmids being represented in the resulting pool, which is a
critical prerequisite for studying the allele-specific activity of
miRNAs.

The activity of miRNAs on target sequences have been
studied using reporter assays where the target sites of interest
are cloned into the 3′ UTR of a reporter gene followed by
quantification of the reporter activity. Typical reporter assays
also overexpress the miRNAs that are predicted to regulate the
target site (Cloonan et al., 2008; Loya et al., 2009; Baccarini and
Brown, 2010). Such overexpression, however, may not provide
a physiological context to the miRNA–mRNA interaction. For
example, high miRNA expression levels may force interactions
with mRNAs that do not normally occur. They can also compete
with the miRNA processing machinery or binding sites and
alter normal miRNA function. In contrast, our assay was
performed in the endogenous miRNA expression background,
which provides a more physiologically relevant context of the
results. In addition, we used multiple different cell lines to

allow parallel testing to identify cell line-specific effects of the
mirSNPs.

miRNAs regulate gene expression by either degrading the
target mRNAs or by binding to mRNAs and blocking translation.
Traditional luciferase assays test the effect of miRNA by
measuring differences in its target protein activity. However, the
differences in protein activity due to mRNA degradation and
those from translational blockage will be indistinguishable using

FIGURE 6 | Cell line-specificity of functional mirSNPs in pharmacogenes.
Venn diagram (Bardou et al., 2014) showing the number of unique and
overlapping functional mirSNPs in the four cell lines tested.
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luciferase activity assays. The PASSPORT-seq assay provides
additional evidence of the mechanism underlying the effect
of the variant by specifically detecting only the changes in
mRNA transcript levels. We demonstrated that the results
obtained with our PASSPORT-seq assay did reflect those
obtained with the traditional luciferase reporter assay set-up.
As described above, the PASSPORT-seq assay quantifies the
relative expression of luciferase mRNAs, whereas the luciferase
assay measures the luciferase enzyme activity. Thus, it is not
surprising that there may be differences in the magnitude of
effects between the different assays. For example, the effect
on the luciferase activity could be larger due to both the
degradation of the mRNA and the blockade of translation.
In contrast, the effect on the protein levels and activity
could be smaller due to delays from the time of changes
in mRNA levels until the changes in protein levels and
activities are observed. Typically, changes in mRNA expression
due to endogenous miRNA-mediated regulation are subtle
(<30%) (Baek et al., 2008; Bartel, 2009; Denzler et al., 2016).
Consequently one would expect relatively small effect sizes
of the variants, which was what was seen in many of these
variants. However, there are many examples demonstrating the
clinical impact of these types of variants (Bhattacharya et al.,
2014).

One of the key findings of these studies is the cell line-
specific function of mirSNPs. This is likely in part due to
the cell type specific variation in miRNA expression profiles
resulting in the effect of a mirSNP being evident in one cell
line and not in another (Landgraf et al., 2007; Ludwig et al.,
2016). We observed that the identity and number of functional
mirSNPs reproducibly varied across the different cell types.
This demonstrates one of the strengths of PASSPORT-seq in
that it can identify cell line-specific effects of mirSNPs. These
differences were validated using a second PASSPORT-seq run
that reproduced the cell line effect. Additionally, the cell line-
specific effect was also observed in the application of the assay
to test 111 mirSNPs in pharmacogenes. The tissue/cell specificity
of mirSNP function could also explain why the effects of mirSNPs
are not always consistent across studies. This further complicates
the bioinformatics predictions of the functional impact of the
mirSNPs. Thus, when using this assay, the cell line must be
carefully chosen to reflect the cell type of interest regarding the
central biological hypothesis of the study. Since studies have
shown that mirSNPs affect a wide variety of biological processes
such as cancer, neurodegenerative disorders, infectious diseases,
cardiovascular disease, and metabolic disorders (Bhattacharya
et al., 2014), the in vitro model for testing the mirSNPs is an
important consideration.

As with any in vitro assay, PASSPORT-seq has some
limitations. First, it detects only changes in mRNA, rather
than protein levels. miRNA- mRNA interactions are known to
cause mRNA destabilization, but can also lead to translational
repression (Lim et al., 2005; Bartel, 2009). Since this assay
does not detect changes in translation, it may underestimate
the functional impact of some of the mirSNPs. Second, the
variants could be affecting mRNA stability by mechanisms other

than by altering miRNA targeting. For example, it could be
altering RNA binding protein function that could alter the
mRNA stability. Although this would need additional validation
experiments to determine the mechanism of action, it would
still be of biological value. Last, like other studies using
the pISO plasmid, the miRNA binding site is tested in the
context of the luciferase mRNA, rather than the endogenous
mRNA.

In summary, the PASSPORT-seq assay is a powerful tool
that bridges bioinformatic predictions and high-throughput
mechanistic investigation of functional genetic variants that
affect miRNA–mRNA interactions. Future efforts will be
aimed toward further increasing the capacity of the assay
and identifying translational effects. This assay also has
the potential to be modified to be applicable to genetic
variants in other functional genomic regions such as
promoters and splice junctions. Collectively, these assays
will be key to elucidating the mechanisms underlying
the genetic contribution to the inter-individual phenotypic
variability.
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Background: Many gene variants modulate the individual perception of pain and
possibly also its persistence. The limited selection of single functional variants is
increasingly being replaced by analyses of the full coding and regulatory sequences
of pain-relevant genes accessible by means of next generation sequencing (NGS).

Methods: An NGS panel was created for a set of 77 human genes selected following
different lines of evidence supporting their role in persisting pain. To address the role
of these candidate genes, we established a sequencing assay based on a custom
AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian
ethnicity. To identify the systems biology of the genes, the biological functions associated
with these genes were assessed by means of a computational over-representation
analysis.

Results: Sequencing generated a median of 2.85 · 106 reads per run with a mean depth
close to 200 reads, mean read length of 205 called bases and an average chip loading of
71%. A total of 3,185 genetic variants were called. A computational functional genomics
analysis indicated that the proposed NGS gene panel covers biological processes
identified previously as characterizing the functional genomics of persisting pain.

Conclusion: Results of the NGS assay suggested that the produced nucleotide
sequences are comparable to those earned with the classical Sanger sequencing
technique. The assay is applicable for small to large-scale experimental setups to target
the accessing of information about any nucleotide within the addressed genes in a study
cohort.

Keywords: pain, data science, knowledge discovery, functional genomics, next generation sequencing (NGS)
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INTRODUCTION

Persisting pain has been proposed to result from a gene
environment interaction where nerve injuries or inflammatory
processes act as triggers while the clinical symptoms develop only
in a minority of subjects (Lee and Tracey, 2013). A role of the
genetic background in pain is supported by evidence of many
variants modulating the individual perception of pain and the
development of its persistence (Diatchenko et al., 2005; Lötsch
et al., 2009b; Mogil, 2012). Genetic variants have been reported
to confer protection against pain such as the rs1799971 variant in
the µ-opioid receptor gene (OPRM1) (Lötsch et al., 2006), or to
increase the risk for persisting pain such as the rs12584920 variant
of the 5-hydroxytryptamine receptor 2A gene (HTR2A) (Nicholl
et al., 2011) or the rs734784 polymorphism in the voltage-
gated potassium ion channel modifier, subfamily S member 1,
gene (KCNS1) (Costigan et al., 2010). Nevertheless, the genetic
background of persisting pain is still incompletely understood
(Mogil, 2009; Lötsch and Geisslinger, 2010) and under intense
discussion.

Until recently, research focused on the role of selected
functional genetic variants as protective or risk factors of
persisting pain. This has changed with the broader availability
of next generation sequencing (NGS) (Metzker, 2010). To make
use of these technical advancements, we developed a custom
AmpliSeqTM library and sequencing assay for efficient detection
of genetic variants possibly associated with persisting pain. We
propose an assay of a set of 77 genes supported by evidence of an
involvement in pain and its development toward persistence. The
set size fully uses the technical specifications of the AmpliSeqTM

gene sequencing library technique.

MATERIALS AND METHODS

Selection of Genes Relevant for
Persisting Pain
A set of candidate genes with shown or biologically plausible
relevance to persisting pain was created by applying a
combination of criteria, which provided three different genetic
subsets. Subset 1 was chosen exclusively on the basis of
computational functional genomics based on a recently published
analysis of persisting pain regarded as displaying systemic
features of learning and neuronal plasticity (Mansour et al., 2014).
As discussed previously (Ultsch et al., 2016), the view of chronic
pain as a dysregulation in biological processes of learning and
neuronal plasticity (Alvarado et al., 2013) seems to be captured
by the controlled vocabulary (Camon et al., 2004) of the Gene
Ontology (GO) knowledge base by the GO terms “learning or
memory” (GO:0007611)1 and “nervous system development”
(GO:0007399)2. An intersection of the genes annotated to these
GO terms with a set of 539 “pain genes” identified empirically as
relevant to pain provided the first subset of 34 genes described
in detail previously (Ultsch et al., 2016). Briefly, the intersecting

1http://amigo.geneontology.org/amigo/term/GO:0007611
2http://amigo.geneontology.org/amigo/term/GO:0007399

set of so-called “pain genes” consists of a combination of (i) genes
listed in the PainGenes database (Lacroix-Fralish et al., 2007)3, (ii)
genes causally involved in human hereditary diseases associated
with extreme pain phenotypes, (iii) genes found to be associated
with chronic pain in at least three human studies, and (iv) genes
coding for targets of novel analgesics under clinical development
(Lötsch et al., 2013).

Subset 2 consisted of genes that were reported to carry
variants modulating the risk or the phenotypic symptoms in
at least two different clinical settings of persisting pain. They
were obtained using (i) a PubMed database search for the
string “(chronic OR persisting OR neuropathic OR back OR
inflammatory OR musculoskeletal OR visceral OR widespread
OR idiopathic OR fibromyalgia) AND pain AND (polymorphism
OR variant) NOT review,” to which genes highlighted in
overviews on pain genetics (e.g., Edwards, 2006) were added. The
intersection of the queried genes with the set of 539 “pain genes”
(see above) provided a subset of 13 genes (Table 1).

Finally, subset 3 comprised genes that have consistently been
included in human pain research projects over the last several
years. One of them is the OPRM1 gene that codes for the human
µ-opioid receptor and which has been shown to modulate the
time course of persisting cancer pain by delaying the necessity
of opioid treatment (Lötsch et al., 2010). However, further genes
were added such as the GDNF gene coding for the glial cell
derived neurotrophic factor, which has been shown to be involved
in a glia-dependent mechanism of neuropathic pain (Wang et al.,
2014) although no modulating human genetic variants have been
reported so far. Following expert counseling within the EU-
funded “glial-opioid interface in chronic pain, GLORIA” research
consortium (Kringel and Lötsch, 2015)4, a subset of 30 genes
(Table 1) was identified. Thus, the complete set as the union of
the three subsets comprised 43 + 13 + 30 = 77 genes that are
proposed to be included in an NGS panel of human persisting
pain.

DNA Sample Origin
Due to the costs of assay development (for details, see second
paragraph of the Discussion), the AmpliseqTM panel was
established in a limited number of n = 72 DNA samples. This
corresponds to the number of samples used in comparable recent
studies for NGS assay establishment and validation (Bruera et al.,
2018; De Luca et al., 2018; Mustafa et al., 2018; Shah et al.,
2018). To further limit the project costs, the AmpliseqTM panel
was established in a subset of samples originating from a clinical
cohort of 1,000 women who had undergone breast cancer surgery
(Kaunisto et al., 2013; Lötsch et al., 2018). The study followed the
Declaration of Helsinki and was approved by the Coordinating
Ethics Committee of the Helsinki University Hospital. Each
participating subject had provided a written informed consent
including genetic studies.

Specifically, for the presently reported method establishment,
a subsample of 72 women (age 58.4 ± 8 years, mean ± standard
deviation, weight 69.3 ± 11 kg), was drawn from the clinical

3http://www.jbldesign.com/jmogil/enter.html
4http://gloria.helsinki.fi

Frontiers in Pharmacology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 100837

http://amigo.geneontology.org/amigo/term/GO:0007611
http://amigo.geneontology.org/amigo/term/GO:0007399
http://www.jbldesign.com/jmogil/enter.html
http://gloria.helsinki.fi
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01008 September 17, 2018 Time: 10:19 # 3

Kringel et al. NGS for Persistent Pain

TABLE 1 | Genes included in the proposed NGS panel of persisting pain, combined from three subsets included on different bases.

Gene symbol NCBI Gene description Reference

Subset #1

ADCY1 107 Adenylate cyclase 1 Vadakkan et al., 2006

BDNF 627 Brain-derived neurotrophic factor Obata and Noguchi, 2006

CDK5 1020 Cyclin-dependent kinase 5 Yang et al., 2014

CHRNB2 1141 Cholinergic receptor, nicotinic, beta 2 Dineley et al., 2015

CNR1 1268 Cannabinoid receptor 1 (brain) Smith et al., 1998

DLG4 1742 Disks, large homolog 4 (Drosophila) Florio et al., 2009

DRD1 1812 Dopamine receptor D1 Onojjighofia et al., 2014

DRD2 1813 Dopamine receptor D2 Onojjighofia et al., 2014

DRD3 1814 Dopamine receptor D3 Potvin et al., 2009

EGR1 1958 Early growth response 1 Ko et al., 2005

FOS 2353 Cellular oncogene FOS Abbadie et al., 1994

FYN 2534 Src family tyrosine kinase Liu et al., 2014

GABRA5 2558 GABA A receptor, alpha 5 Bravo-Hernández et al., 2016

GALR2 8811 Galanin receptor 2 Hulse et al., 2012

GRIN1 2902 Glutamate receptor, NMDA 1 Petrenko et al., 2003

GRIN2A 2903 Glutamate receptor, NMDA 2A Petrenko et al., 2003

GRIN2B 2904 Glutamate receptor, NMDA 2B Petrenko et al., 2003

GRM5 2915 Glutamate receptor, metabotropic 5 Walker et al., 2001

HRH3 11255 Histamine receptor H3 Huang et al., 2007

KIT 3815 Tyrosine kinase KIT Sun et al., 2009

NF1 4763 Neurofibromin 1 Wolters et al., 2015

NGF 4803 Nerve growth factor Kumar and Mahal, 2012

NTF4 4909 Neurotrophin 4 Kumar and Mahal, 2012

NTRK1 4914 Neurotrophic tyrosine kinase 1 Kumar and Mahal, 2012

OXT 5020 Oxytocin prepropeptide Goodin et al., 2015

PLCB1 23236 Phospholipase C, beta 1 Shi T.-J.S. et al., 2008

PRKCG 5582 Protein kinase C, gamma Sluka and Audette, 2006

PRNP 5621 Prion protein Gadotti and Zamponi, 2011

PTN 5764 Pleiotrophin Gramage and Herradon, 2010

PTPRZ1 5803 Protein tyrosine phosphatase Z 1 Ultsch et al., 2016

RELN 5649 Reelin Buchheit et al., 2012

S100B 6285 S100 calcium binding protein B Zanette et al., 2014

SLC6A4 6532 Serotonin transporter Offenbaecher et al., 1999

TH 7054 Tyrosine hydroxylase Bravo et al., 2014

Subset #2

ADRB2 154 Adrenoceptor beta 2 Hocking et al., 2010

COMT 1312 Catechol-O-methyltransferase Feng et al., 2013

ESR1 2099 Extrogen Receptor 1 Ribeiro-Dasilva et al., 2009

GCH1 2643 GTP cyclohydrolase 1 Tegeder et al., 2006

IL1B 3553 Interleukin 1B Loncar et al., 2013

IL4 3565 Interleukin 4 Sugaya et al., 2002

IL6 3569 Interleukin 6 Shoskes et al., 2002

IL10 3586 Interleukin 10 Stephens et al., 2014

P2RX7 5027 Purinergic Receptor P2X7 Sorge et al., 2012

SCN9A 6335 Sodium voltage-gated alpha subunit 9 Reimann et al., 2010

SOD2 6648 Superoxide dismutase 2 Schwartz et al., 2009

TNF 7124 Tumor necrosis factor Leung and Cahill, 2010

TRPV1 7442 Transient receptor potential cation channel, subfamily V, member 1 Bourinet et al., 2014

Subset #3

ABHD12 26090 Abhydrolase domain containing 12 Kim, 2015

ABHD16A 7920 Abhydrolase domain containing 16A Kim, 2015

ABHD6 57406 Abhydrolase domain containing 6 Kim, 2015

(Continued)
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TABLE 1 | Continued

Gene symbol NCBI Gene description Reference

CACNG2 10369 Calcium voltage-gated channel auxiliary subunit gamma 2 Nissenbaum et al., 2010

CSF1 1435 Colony stimulating factor 1 Thuault, 2016

DRD4 1815 Dopamine receptor D4 Buskila et al., 2004

FAAH 2166 Fatty acid amide hydrolase Jayamanne et al., 2006

FKBP5 2289 Fk506 binding protein 5 Fujii et al., 2014

GDNF 2668 Glial cell derived neurotrophic factor Sah et al., 2005

GFRA1 2674 GDNF family receptor alpha 1 Yamamoto et al., 2003

GPR132 29933 G protein-coupled receptor 132 Hohmann et al., 2017

HCN2 610 Hyperpolarization-activated cyclic nucleotide-gated Tsantoulas et al., 2016

HLA-DQB1 3119 Major histocompatibility complex, class II, DQ beta 1 Dominguez et al., 2013

HLA-DRB1 3123 Major histocompatibility complex, class II, DR beta 1 Dominguez et al., 2013

HTR1A 3350 5-hydroxytryptamine (serotonin) receptor 1A Lindstedt et al., 2012

HTR2A 3356 5-hydroxytryptamine (serotonin) receptor 2A Nicholl et al., 2011

IL1R2 7850 Interleukin 1 receptor type 2 Stephens et al., 2014

KCNS1 3787 Potassium voltage-gated channel, modifier subfamily S, member 1 Costigan et al., 2010

LTB4R 1241 Leukotriene b4 receptor Zinn et al., 2017

LTB4R2 56413 Leukotriene b4 receptor 2 Zinn et al., 2017

OPRD1 4985 Opioid receptor delta 1 Law et al., 2013

OPRK1 4986 Opioid receptor kappa 1 Guerrero et al., 2010

OPRM1 4988 Opioid receptor mu 1 Lötsch and Geisslinger, 2005

RET 5979 RET receptor tyrosine kinase Snider and McMahon, 1998

RUNX1 861 Runt related transcription factor 1 Chen et al., 2006

TLR4 7099 Toll like Receptor 4 Hutchinson et al., 2010

TRPA1 8989 Transient receptor potential cation channel, subfamily A, member 1 Bourinet et al., 2014

TRPM8 79054 Transient receptor potential cation channel, subfamily M, member 8 Bourinet et al., 2014

TRPV4 59341 Transient receptor potential cation channel, subfamily V, member 4 Bourinet et al., 2014

TSPO 706 Translocator protein Loggia et al., 2015

Subset #1 comprises d = 34 genes that had resulted from a computational functional genomics analysis (Ultsch et al., 2016) pursuing the hypothesis that persisting pain
displays systemic features of learning and neuronal plasticity (Mansour et al., 2014). Hence, from a set of genes identified empirically as relevant to pain and listed in the
PainGenes database (http://www.jbldesign.com/jmogil/enter.html, Lacroix-Fralish et al., 2007), those were selected that are annotated to the Gene Ontology (Ashburner
et al., 2000) terms “learning or memory” and “nervous system development.” The references are those found to provide evidence for an association with pain, except for
PTPRZ1 that was a novel finding in (Ultsch et al., 2016). Subset #2 comprises d = 13 genes identified empirically as relevant to pain and listed in the PainGenes database
(http://www.jbldesign.com/jmogil/enter.html, Lacroix-Fralish et al., 2007) and reported to carry variants that modulated the risk or the symptomatology in at least two
different clinical settings of persisting paint. Subset #3 comprises d = 30 genes repeatedly shown during the last several years to play a role in the human genetics of
persisting pain or recently reported as novel players.

subgroup not having developed persisting pain during the
observation period. This was believed to come closer to a
random sample than a mixture of patients with persisting and
without persisting pain. This limitation of the sample selection
has probably affected which and how many variants were
identified. However, it is unlikely to have jeopardized the general
applicability of the gene selection heuristics, assay establishment
and validation, and of the functional analysis of the selected
subset of genes.

DNA Template Preparation and
Amplification
A multiplex PCR amplification strategy for the coding gene
sequences was accomplished online (Ion AmpliseqTM Designer)5

to amplify the target region specified above (for primer
sequences, see Supplementary Table 1) with 25 base pair exon
padding. After a comparison of several primer design options,

5http://www.ampliseq.com

the design providing the maximum target sequence coverage
was chosen. The ordered 1,953 amplicons covered approximately
97.5% of the target sequence (Supplementary Table 2). A total
of 10 ng DNA per sample was used for the target enrichment by
a multiplex PCR and each DNA pool was amplified with the Ion
AmpliseqTM Library Kit in conjunction with the Ion AmpliseqTM

“custom Primer Pool”-protocols according to the manufacturer’s
procedures (Life Technologies, Darmstadt, Germany).

After each pool had undergone 18 PCR cycles, the PCR
primers were removed with FuPa Reagent and the amplicons
were ligated to the sequencing adaptors with short stretches of
index sequences (barcodes) that enabled sample multiplexing
for subsequent steps (Ion XpressTM Barcode Adapters Kit;
Life Technologies). After purification with AMPure XP beads
(Beckman Coulter, Krefeld, Germany), the barcoded libraries
were quantified with a Qubit R© 2.0 Fluorimeter (Life Technologies,
Darmstadt, Germany) and normalized for DNA concentration
to a final concentration of 20 pmol/l using the Ion Library
EqualizerTM Kit (Life Technologies, Darmstadt, Germany).
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Equalized barcoded libraries from seven to eight samples at a time
were pooled. To clonally amplify the library DNA onto the Ion
Sphere Particles (ISPs; Life Technologies, Darmstadt, Germany),
the library pool was subjected to emulsion PCR by using an
Ion PGM HI-Q View Template Kit on an PGM OneTouch
system (Life Technologies, Darmstadt, Germany) following the
manufacturer’s protocol.

Sequencing
Enriched ISPs which carried many copies of the same DNA
fragment were subjected to sequencing on an Ion 318 Chip to
sequence pooled libraries with seven to eight samples. During
this process, bases are inferred from light intensity signals, a
process commonly referred to as base-calling (Ledergerber and
Dessimoz, 2011). The number of combined libraries that can
be accommodated in a single sequencing run depends on the
size of the chip, the balance of barcoded library concentration,
and the coverage required. The high-capacity 318 chip was
chosen (instead of the low-capacity 314 or the medium-capacity
316 chip) to obtain a high sequencing depth of coverage for a
genomic DNA library with >95% of bases at 30x. Sequencing
was performed using the sequencing kit (Ion PGM Hi-Q
Sequencing Kit; Life Technologies, Darmstadt, Germany) as
per the manufacturer’s instructions with the 200 bp single-
end run configuration. This kit contained the most advanced
sequencing chemistry available to users of the Ion PGM System
(Life Technologies, Darmstadt, Germany).

Data Analysis
Bioinformatics Generation of Sequence Information
The raw data (unmapped BAM-files) from the sequencing runs
were processed using Torrent Suite Software (Version 5.2.2, Life
Technologies, Darmstadt, Germany) to generate read alignments
which were filtered by the software into mapped BAM-files
using the reference genomic sequence (hg19) of target genes.
Variant calling was performed with the Torrent Variant Caller
Plugin using as key parameters: minimum allele frequency = 0.15,
minimum quality = 10, minimum coverage = 20 and minimum
coverage on either strand = 3.

The annotation of called variants was done using the Ion
Reporter Software (Version 4.4; Life Technologies, Darmstadt,
Germany) for the VCF files that contained the nucleotide reads
and the GenomeBrowse R© software (Version 2.0.4, Golden Helix,
Bozeman, MT, United States) to map the sequences to the
reference sequences GRCh37 hg19 (dated February 2009). The
SNP and Variation Suite software (Version 8.4.4; Golden Helix,
Bozeman, MT, United States) was used for the analysis of
sequence quality, coverage and for variant identification.

Based on the observed allelic frequency, the expected
number of homozygous and heterozygous carriers of the
respective SNP (single nucleotide polymorphism) was calculated
using the Hardy-Weinberg equation. Only variants within the
Hardy-Weinberg equilibrium as assessed using Fisher’s exact
test (Emigh, 1980) were retained. The SNP and Variation
Suite software (Version 8.4.4; Golden Helix, Bozeman, MT,
United States) was used for the analysis of sequence quality,
coverage and for variant identification.

Assay Validation
Method validation was accomplished by means of Sanger
sequencing (Sanger and Coulson, 1975; Sanger et al., 1977) in an
independent external laboratory (Eurofins Genomics, Ebersberg,
Germany). As performed previously with different AmpliSeqTM

panels (Kringel et al., 2017) and other genotyping assays (Skarke
et al., 2004, 2005), four DNA samples have been chosen randomly
from an independent cohort of healthy subjects and sequenced
with the current NGS panel. For the detected variant type,
single nucleotide polymorphisms from five different genomic
regions for which clinical associations have been reported
(Table 2), i.e., rs324420 (FAAH), rs333970 (CSF1), rs4986790
(TLR4), rs4633 (COMT), and rs17151558 (RELN) were chosen
for external sequencing. Amplification of the respective
DNA segments was done using PCR primer pairs (forward,
reverse) of (i) 5′-TTTCTTAAAAAGGCCAGCCTCCT-3′
and 5′-AATGACCCAAGATGCAGAGCA-3′ (ii) 5′-GCCTT
CAACCCCGGGATGG-3′ and 5′-CTCCGATCCCTGGTGC
TCCTC-3′ (iii) 5′-TTTATTGCACAGACTTGCGGGTTC-3′
and 5′-AGCCTTTTGAGAGATTTGAGTTTCA-3′ (iv) 5′-CC
TTATCGGCTGGAACGAGTT-3′ and 5′-GTAAGGGCTTT
GATGCCTGGT-3′ (v) 5′-GTTATTCCTCTGTAAGCAGCTGCC
T-3′ and 5′-TGTTTGTTTTAGATTGTGGTGGGTT-3′.
Results of Sanger sequencing were aligned with the genomic
sequence and analyzed using Chromas Lite R© (Version 2.1.1,
Technelysium Pty Ltd, South Brisbane, QLD, Australia) and the
GenomeBrowse R© (Version 2.0.4, Golden Helix, Bozeman, MT,
United States) was used to compare the sequences obtained with
NGS or Sanger techniques.

RESULTS

The NGS assay of the proposed set of 77 human genes
relevant to persisting pain was established in 72 genomic DNA
samples. As applied previously (Kringel et al., 2017), only exons
including 25 bases of padding around all targeted coding regions
for which the realized read-depths for each nucleotide was
higher than 20 were contemplated as successfully analyzed.
With this acceptance criterion the whole or almost whole
coverage of the relevant sequences was obtained (Table 1; for
details on missing variants, see Supplementary Table 3). The
NGS sequencing process of the whole patient cohort required
ten separate runs, each with samples of n = 7 or n = 8
patients. Coverage statistics were analogous between all runs
and matched the scope of accepted quality levels [20–22].
A median of 2.85 · 106 reads per run was produced. The mean
depth was close to 200 reads, the mean read length of called
bases resulted in 205 bases and average chip loading was 71%
(Figure 1A). To establish a sequencing output with a high
density of ISPs on a sequencing chip, the chip loading value
should exceed 60% (Life Technologies, Carlsbad, United States).
The generated results of all NGS runs matched with the
results obtained with Sanger sequencing of random samples
(Figure 1B), meaning the accordance of nucleotide sequences
between NGS and Sanger sequencing was 100% in all validated
samples.
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TABLE 2 | A list of coding human variants in the 77 putative chronic pain genes, found in the present random sample of 72 subjects of Caucasian ethnicity, for which
clinical associations have been reported.

Gene Variant dbSNP# accession number Known clinical association Reference

Pain context

FAAH 1:46870761-SNV rs324420 Effect of endocannabinoid degradation on pain Cajanus et al., 2016

FAAH 1:46870761-SNV rs324420 Cold and heat pain sensitivity Kim et al., 2006b

CSF1 1:110466338-SNV rs333970 Rheumatoid arthritis Solus et al., 2015

NGF 1:115829313-SNV rs6330 Procedural pain Ersig et al., 2017

NGF 1:115829313-SNV rs6330 Susceptibility to migraine Coskun et al., 2016

IL1B 2:113590966-SNV rs1143634 Adverse effects in postoperative pain Somogyi et al., 2016

IL1B 2:113590966-SNV rs1143634 Low back pain Feng et al., 2016

SCN9A 2:167099158-SNV rs6746030 Pain susceptibility in Parkinson disease Greenbaum et al., 2012

SCN9A 2:167099158-SNV rs6746030 Congenital insensitivity to pain Klein et al., 2013

SCN9A 2:167099158-SNV rs6746030 Basal Pain Sensitivity Duan et al., 2015

SCN9A 2:167145122-SNV rs188798505 Altered pain perception Reimann et al., 2010

DRD3 3:113890815-SNV rs6280 Acute pain in sickle cell disease Jhun et al., 2014

DRD3 3:113890815-SNV rs6280 Higher prevalence of migraine Hu et al., 2014

ADRB2 5:148206646-SNV rs1042717 Musculoskeletal pain Diatchenko et al., 2006

ADRB2 5:148206885-SNV rs1800888 Migraine Schurks et al., 2009

ESR1 6:152129077-SNV rs2077647 Migraine Schürks et al., 2010

ESR1 6:152129077-SNV rs2077647 Musculoskeletal pain Wise et al., 2009

OPRM1 6:154360797-SNV rs1799971 Pain of various origins Lötsch et al., 2009c

SOD2 6:160113872-SNV rs4880 Migraine Palmirotta et al., 2015

IL6 7:22771039-SNV rs13306435 Low back pain Eskola et al., 2010

OPRK1 8:54142157-SNV rs702764 Neuropathic pain Garassino et al., 2013

TLR4 9:120475302-SNV rs4986790 Musculoskeletal pain Gębura et al., 2017

TH 11:2188238-SNV rs6357 Widespread Pain Jhun et al., 2015

TH 11:2190951-SNV rs6356 Migraine Corominas et al., 2009

BDNF 11:27679916-SNV rs6265 Widespread Pain Ersig et al., 2017

DRD2 11:113283459-SNV rs6277 Post-surgical pain Kim et al., 2006a

DRD2 11:113283477-SNV rs6275 Migraine Onaya et al., 2013

P2RX7 12:121600253-SNV rs208294 Cold pain sensitivity Ide et al., 2014

P2RX7 12:121605355-SNV rs7958311 Neuropathic pain Ursu et al., 2014

HTR2A 13:47409034-SNV rs6314 Migraine susceptibility Yücel et al., 2016

TRPV1 17:3480447-SNV rs8065080 Neuropathic pain Doehring et al., 2011

KCNS1 20:43723627-SNV rs734784 Neuropathic pain Doehring et al., 2011

COMT 22:19950235-SNV rs4633 Postoperative pain Khalil et al., 2017

COMT 22:19950263-SNV rs6267 Widespread Pain Lin et al., 2017

COMT 22:19951271-SNV rs4680 Altered pain perception Wang et al., 2015

Other context

CSF1 1:110466466-SNV rs1058885 Periodontitis Chen et al., 2014

CSF1 1:110466555-SNV rs2229165 Carcinogenesis/breast cancer Savas et al., 2006

NTRK1 1:156846233-SNV rs6334 Nephropathy Hahn et al., 2011

NTRK1 1:156848946-SNV rs6339 Acute myeloid leukemia Schweinhardt et al., 2008

SCN9A 2:167143050-SNV rs41268673 Erythromelalgia Klein et al., 2013

TRPM8 2:234854550-SNV rs11562975 Hyperresponsiveness in bronchial asthma Naumov et al., 2015

TRPM8 2:234905078-SNV rs11563208 Anthropometric parameters Potapova et al., 2014

DRD3 3:113890789-SNV rs3732783 Phenotypic traits relevant to anorexia nervosa Root et al., 2011

KIT 4:55593464-SNV rs3822214 Cancer risk Pelletier and Weidhaas, 2010

KIT 4:55602765-SNV rs3733542 Glandular odontogenic cyst Siqueira et al., 2017

HTR1A 5:63257483-SNV rs1799921 Bipolar disorders Goodyer et al., 2010

ADRB2 5:148206646-SNV rs1042717 Cognitive dysfunction in opioid-treated patients with cancer Kurita et al., 2016

DRD1 5:174868840-SNV rs155417 Alcohol dependence Hack et al., 2011

HLA-DQB1 6:32629920-SNV rs41544112 Ulcerative colitis Achkar et al., 2012

FKBP5 6:35544942-SNV rs34866878 Clinical response in pediatric acute myeloid leukemia Mitra et al., 2011

(Continued)
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TABLE 2 | Continued

Gene Variant dbSNP# accession number Known clinical association Reference

CNR1 6:88853635-SNV rs1049353 Bone mineral density Woo et al., 2015

CNR1 6:88853635-SNV rs1049353 Alcohol dependence Marcos et al., 2012

CNR1 6:88853635-SNV rs1049353 Nicotine dependence Chen et al., 2008

CNR1 6:88853635-SNV rs1049353 Obesity Schleinitz et al., 2010

CNR1 6:88853635-SNV rs1049353 Psychiatric disorders Hillard et al., 2012

ESR1 6:152129077-SNV rs2077647 Breast cancer susceptibility Li et al., 2016

ESR1 6:152129077-SNV rs2077647 Prostate cancer development Jurečeková et al., 2015

ESR1 6:152129077-SNV rs2077647 Osteoporosis Sonoda et al., 2012

ESR1 6:152129308-SNV rs746432 Mood disorders Mill et al., 2008

ESR1 6:152201875-SNV rs4986934 Endometrial cancer risk Wedrén et al., 2008

OPRM1 6:154360508-SNV rs6912029 Irritable bowel syndrome Camilleri et al., 2014

OPRM1 6:154360797-SNV rs1799971 Schizophrenia Serý et al., 2010

OPRM1 6:154414573-SNV rs562859 Depressive disorder Garriock et al., 2010

OPRM1 6:154414563-SNV rs675026 Treatment response for opiate dependence Al-Eitan et al., 2012

SOD2 6:160113872-SNV rs4880 Development of type 2 diabetes mellitus Li et al., 2015

SOD2 6:160113872-SNV rs4880 Breast cancer susceptibility Rodrigues et al., 2014

SOD2 6:160113872-SNV rs4880 Asthma Yucesoy et al., 2012

ADCY1 7:45703971-SNV rs1042009 Bipolar disorder Shi J. et al., 2008

RELN 7:103124207-SNV rs1062831 Attention deficit hyperactivity disorder Kwon et al., 2016

RELN 7:103251161-SNV rs362691 Childhood epilepsy Dutta et al., 2011

OPRK1 8:54142154-SNV rs16918875 Susceptibility to addiction Kumar et al., 2012

TRPV1 8:72948588-SNV rs13280644 Perception olfactory stimuli Schütz et al., 2014

TLR4 9:120475602-SNV rs4986791 Breast cancer susceptibility Milne et al., 2014

GRIN1 9:140051238-SNV rs6293 Schizophrenia Georgi et al., 2007

RET 10:43610119-SNV rs1799939 Hirschsprung’s disease Vaclavikova et al., 2014

RET 10:43615094-SNV rs1800862 Medullary thyroid carcinoma Ceolin et al., 2012

GFRA1 10:117884950-SNV rs2245020 Age-related macular degeneration Schmidt et al., 2006

DRD4 11:637537-Del rs587776842 Acousticous neurinoma Nöthen et al., 1994

BDNF 11:27720937-SNV rs66866077 Irritable bowel syndrome-diarrhea Camilleri et al., 2014

DRD2 11:113283484-SNV rs1801028 Neurologic disorders Doehring et al., 2009

GRIN2B 12:13717508-SNV rs1806201 Alzheimer’s disease Andreoli et al., 2014

TRPV4 12:110252547-SNV rs3742030 Hyponatremia Tian et al., 2009

P2RX7 12:121592689-SNV rs17525809 Multiple sclerosis Oyanguren-Desez et al., 2011

HTR2A 13:47466622-SNV rs6305 Susceptibility to substance abuse Herman and Balogh, 2012

LTB4R 14:24785092-SNV rs34645221 Asthma susceptibility Tulah et al., 2012

GABRA5 15:27182357-SNV rs140682 Autism-spectrum disorders Hogart et al., 2007

GRIN2A 16:9943666-SNV rs2229193 Hyperactivity disorder Kim et al., 2017

DLG4 17:7099811-SNV rs17203281 Schizophrenia Tsai et al., 2007

SLC6A4 17:28530193-SNV rs6352 Autism-spectrum disorders Prasad et al., 2009

NF1 17:29553485-SNV rs2285892 Neurofibromatosis Maertens et al., 2007

HCN2 19:607984-SNV rs3752158 Risk of depression McIntosh et al., 2012

PRKCG 19:54394965-SNV rs3745396 Osteosarcoma susceptibility Lu et al., 2015

PRNP 20:4680251-SNV rs1799990 Creutzfeldt-Jakob disease Mead et al., 2009

HRH3 20:60791422-SNV rs3787430 Risk of chronic heart failure He et al., 2016

S100B 21:48022230-SNV rs1051169 Schizophrenia Liu et al., 2005

The selection is restricted to one or two publications per variant, and it focuses on a pain context corresponding to the main aim of the present NGS gene panel; however,
functional variants highlighted in another clinical context are additionally provided in the lower part of the table. #Database of Single Nucleotide Polymorphisms (dbSNP).
Bethesda (MD, United States): National Center for Biotechnology Information, National Library of Medicine. Available from: http://www.ncbi.nlm.nih.gov/SNP/ (Sherry
et al., 2001).

Following elimination of nucleotides agreeing with the
standard human genome sequence GRCh37 g1k (dated February
2009), the result of the NGS consisted of a vector of nucleotide
information about the d = 77 genes for each individual DNA

sample (Figure 2). This vector had a length equaling the set
union of the number of chromosomal positions in which a non-
reference nucleotide had been found in any probe of the actual
cohort. Specifically, a total of 3,185 genetic variants was found, of
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FIGURE 1 | Assay establishment and validation. (A) Pseudo-color image of
the Ion 318TM v2 Chip plate showing percent loading across the physical
surface. This sequencing run had a 76% loading, which ensures a high Ion
Sphere Particles (ISP) density. Every 318 chip contains 11 million wells and the
color scale on the right side conduces as a loading indicator. Deep red
coloration stays for a 100% loading, which means that every well in this area
contains an ISP (templated and non-templated) whereas deep blue coloration
implies that the wells in this area are empty. (B) Alignment of a segment of the
ion torrent sequence of the COMT gene as a Golden Helix Genome Browse R©

readout versus the same sequence according to an externally predicted
Sanger electropherogram. Highlighted is the COMT variant rs4633 (COMT
c.186C>T→ p.His62 = ) as a heterozygous mutation and a non-mutated wild
type. The SNP is part of the functional COMT haplotype comprising rs4633,
rs4818 and rs4680, which showed >11-fold difference in expressed enzyme
activity and was reported to be associated with different phenotypes of pain
sensitivity (Diatchenko et al., 2005).

which 659 were located in coding parts of the genes, 1,241 were
located in introns and 1,285 in the 3′-UTR, 5′-UTR, upstream or
downstream regions. The coding variants for which a clinical or
phenotypic association have been reported are listed in Table 2
together with an example of each variant. Most of the observed
variants were single nucleotide polymorphisms (d = 571) whereas
mixed polymorphisms (d = 26), nucleotide insertions (d = 18) or
nucleotide deletions (d = 44) were more rarely found.

DISCUSSION

In this report, development and validation of a novel AmpliseqTM

NGS assay for the coding regions and boundary parts of d = 77

genes qualifying as candidate modulators of persisting pain is
described. The NGS assay produced nucleotide sequences that
corresponded, with respect to the selected validation probes, to
the results of classical Sanger sequencing. However, the NGS
assay substantially reduced the laboratory effort to obtain the
genetic information and provides the perquisites to be used
in high throughput environments. In particular, the presented
NGS assay is convenient for small up to large-scale setups. As
mentioned in the methods section, a limitation of the present
results applies to the identified genetic variants as only samples
from Caucasian women were included. By contrast, the validity of
gene selection and assay establishment is unlikely to be reduced
by this selection chosen to remain within the financial limits of
the present project.

Specifically, as observed previously (Kringel et al., 2017), the
comprehensive genetic information and the high throughput are
reflected in the assay costs. Specifically, sequencing of the 77
genes in 72 DNA samples required approximately € 18,000 for
the AmpliSeqTM custom panel, € 5,500 for library preparation,
€ 700 for template preparation and € 700 for sequencing. Ten 318
sequencing chips cost around € 7,000 and in addition and basic
consumables and laboratory supplies issued approximately € 800.
With 7–8 barcoded samples loaded on ten chips, the expense
to analyses the gene sequence for a single patient were around
€ 325. While NGS costs are likely to decrease in the near future
(Lohmann and Klein, 2014), present assay establishment was
therefore applied in DNA samples planned for future genotype
versus phenotype association analysis, which required using DNA
from patients of a pain-relevant cohort instead from a true
random sample of healthy subjects.

As a result of the present assay development, a set of d = 77
genes was chosen as potentially relevant to persisting pain. The
chosen set of genes differs from alternative proposals aiming
at similar phenotypes (Mogil, 2012; Zorina-Lichtenwalter et al.,
2016). However, when analyzing these alternatives for mutual
agreement, only limited overlap could be observed (Figure 3).
This emphasizes that the genetic architecture of persisting
pain is incompletely understood, and several independent
lines of research can be pursued. Of note, the present set
showed the largest agreement with a set of d = 539 genes
identified empirically as relevant to pain and listed in the
PainGenes database (Lacroix-Fralish et al., 2007)6 or recognized
as causing human hereditary diseases associated with extreme
pain phenotypes (Lötsch et al., 2013; Ultsch et al., 2016).
Combining all proposals into a large panel was not an option due
to the technical limitations of the IonTorrent restricting the panel
size to 500 kb (pipeline version 5.6.2); therefore, further genes
would need to be addressed in separate panels.

In the present study sample, selected with a certain bias by
using, as explained above for cost saving, clinical samples from
only women and only Caucasians, a total of 659 genetic coding
variants were found. Regardless of the sample preselection, 105
clinical associations (Table 2) could be queried for the observed
variants from openly obtainable data sources comprising (i) the

6http://www.jbldesign.com/jmogil/enter.html
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FIGURE 2 | Mosaic plot representing a contingency table of the types of genetic variants detected by means of the present AmpliSeqTM panel versus the genes
included in the assay. The vertical size of the cells is proportional to the number of variants of a particular type; the horizontal size of the cells is proportional to the
number of variants found in the respective gene. The location of the variants is indicated at the left of the mosaic plot in letters colored similarly to the respective bars
in the mosaic plot. Variants were not found at all possible locations of each gene, which causes the reduction of several bars to dashed lines drawn as placeholders
and indicating that at the particular location no variant has been found in the respective gene. The figure has been created using the R software package (version
3.4.2 for Linux; http://CRAN.R-project.org/, R Development Core Team, 2008). UTR: untranslated region. NCExonic: Non-coding exonic.
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FIGURE 3 | Venn diagram (Venn, 1880) visualizing the intersections between
the presently proposed set of human genes involved in modulating the risk or
the clinical course of persisting pain (“Current set,” green frame), and two
alternative proposals [“Mogil” (Mogil, 2012), blue frame and
“Zorina-Lichtenwalter” (Zorina-Lichtenwalter et al., 2016), violet frame]. In
addition, a set of d = 539 genes identified empirically as relevant to pain and
either listed in the PainGenes database (http://www.jbldesign.com/
jmogil/enter.html, Lacroix-Fralish et al., 2007) or added because recognized as
causing human hereditary diseases associated with extreme pain phenotypes,
found to be regulated in chronic pain in at least three studies including human
association studies, or being targets of novel analgesics. The number of
shared genes between data sets is numerically shown in the respective
intersections of the Venn diagram. The figure has been created using the R
software package (version 3.4.2 for Linux; http://CRAN.R-project.org/, R
Development Core Team, 2008) with the particular package “Vennerable”
(Swinton J., https://r-forge.r-project.org/R/?group_id=474).

Online Mendelian Inheritance in Man (OMIM R©) database7, (ii)
the NCBI gene index database8, the GeneCards database9 [27]
and the “1000 Genomes Browser”10 (all accessed in December
2017). The observation of functional variants in the present
cohort preselected for the absence of pain persistence is plausible
as (i) variants can exert protective effects against chronic pain
and (ii) most genetic variants identified so far exert only small
effects on pain and the individual result of their functional
modulations depends on their combined effects or from the sum
of positive and negative effects on pain perception (Lötsch et al.,
2009a).

The selection of genes (Table 1) relied on empirical evidence
of their involvement in pain. For subset #1 (d = 34), this had been
shown for 33 genes in the original paper (Ultsch et al., 2016). As
the hypothesis that persisting pain displays systemic features of

7http://www.ncbi.nlm.nih.gov/omim
8http://www.ncbi.nlm.nih.gov/gene
9http://www.genecards.org
10https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes

learning and of neuronal plasticity (Mansour et al., 2014) could
be substantiated at a computational functional genomics level,
the further gene (PTPRZ1, protein tyrosine phosphatase Z 1)
can also be regarded as supported by prior knowledge to be
included in the present set. The subset comprised, for example,
genes associated with the mesolimbic dopaminergic system, i.e.,
DRD1, DRD2, DRD3, which code for dopamine receptors, and
TH, which is the coding gene for the tyrosine hydroxylase, a
metabolic restricting enzyme in dopaminergic pathways, which
have been implicated in promoting chronic back pain (Hagelberg
et al., 2003, 2004; Jaaskelainen et al., 2014; Martikainen et al.,
2015). Further 14 genes were involved in the circadian rhythm
recognized as a modulatory factor in various pain conditions
such as arthritis (Haus et al., 2012; Gibbs and Ray, 2013) and
neuropathic pain (Gilron and Ghasemlou, 2014). The subset
further included three NMDA receptor genes (GRIN1, GRIN2A,
and GRIN2B) known to be major players in a number of essential
physiological functions including neuroplasticity (Coyle and Tsai,
2004). In addition, metabotropic glutamate receptors (mGluR)
have been implemented in several chronic pain conditions. One
subtype, mGluR5, coded by GRM5, is of particular interest
in the context of pain conditions as recent studies showed
a pro-nociceptive role of mGluR5 in models of chronic pain
(Walker et al., 2001; Crock et al., 2012). Furthermore, genes
associated with histaminergic signaling such as HRH3 have been
implicated in pain transmission (Hough and Rice, 2011) and
analgesia (Huang et al., 2007).

The second subset of genes relied on a new PubMed
search rather than on a previously published and hypothesis-
based selection of candidate genes. A computational functional
genomics analysis of this subset (details not shown) suggested
its involvement in (i) immune processes and (ii) nitric oxide
signaling. The genes annotated to the GO term “immune system
process” included interleukin (IL1B, IL4, IL6, IL10) (Dinarello,
1994; Choi and Reiser, 1998; Mocellin et al., 2004; Nemeth
et al., 2004) and histocompatibility complex related (HLA-B)
genes (Dupont and Ceppellini, 1989), which have been shown to
be involved in immunological mechanisms of pain (Sato et al.,
2002; de Rooij et al., 2009). This is also supported by published
evidence for the further genes in this list, such as, TNF (Vassalli,
1992; Franchimont et al., 1999), GCH1 (Schott et al., 1993) and
P2RX7 (Chen and Brosnan, 2006). The second major process
group emerging from the functional genomics analysis of the
key evidence for genetic modulation of clinical chronic pain
was nitric oxide signaling, in particular metabolic processes,
summarized in this context under the GO term “reactive oxygen
species metabolic process” which includes the genes IL6 (Deakin
et al., 1995), TNF (Deakin et al., 1995; Katusic et al., 1998),
ESR1 (Clapauch et al., 2014), IL10 (Cattaruzza et al., 2003),
GCH1 (Katusic et al., 1998; Zhang et al., 2007), IL1B (Katusic
et al., 1998), IL4 (Coccia et al., 2000), P2RX7 (Gendron et al.,
2003), SOD2 (Fridovich, 1978). Furthermore, catecholamines
including noradrenaline, adrenaline and dopamine have multiple
functions in the brain and spinal cord including pain perception
and processing (D’Mello and Dickenson, 2008). Catechol-O-
methyltransferase, encoded by the COMT gene, is one of several
enzymes that degrade dopamine, noradrenaline and adrenaline
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FIGURE 4 | Top–down representation of the annotations (GO terms) representing the taxonomy of the functional differences between the set of d = 77 genes
included in the proposed NGS panel of persisting pain and two alternative proposals of genes modulating persisting pain in humans (Mogil, 2012;
Zorina-Lichtenwalter et al., 2016). The figure represents the results of an over-representation analysis of the present set of d = 77 genes against the reference
comprising the set intersection of the alternative gene lists. A p-value threshold of 0.01 and Bonferroni α-correction were applied. Significant terms are shown as
colored circles with the number of member genes, the number of expected genes by change and the significance of the deviation of the observed from the expected
number of genes indicated (yellow = headline, red = significant term, blue = significant term located as a leave at the end of a taxonomy in the polyhierarchy). The
graphical representation follows the standard of the GO knowledgebase, where GO terms are related to each other by “is-a,” “part-of,” and “regulates” relationships
forming a polyhierarchy organized in a directed acyclic graph (DAG, Thulasiraman and Swamy, 1992). The figure has been created using our R library “dbtORA”
(https://github.com/IME-TMP-FFM/dbtORA, Lippmann et al., 2018) on the R software package (version 3.4.2 for Linux; http://CRAN.R-project.org/, R Development
Core Team, 2008) and the freely available graph visualization software GraphViz (http://www.graphviz.org, Gansner and North, 2000).

and has become one of the most frequently addressed genes in
pain research (Nackley et al., 2006).

Finally, subset #3 (d = 30) consists of genes repeatedly shown
to play a role in the genetic modulation of persisting pain in
humans or, by contrast, included a few novel items only recently
published in the context of pain. This included members of
the transient receptor potential (TRP) family (TRPA1, TRPM8,
TRPV4) that are expressed at nociceptors and which are well
established players in the perception of pain via their excitation
by chemical, thermal or mechanical stimuli (Clapham, 2003).
This similarly applies to the opioidergic system represented by
the inclusion of the genes coding for the major opioid receptors
(OPRM1, OPRK1 OPRD1), which have been associated with
variations in pain or opioid response in various settings (Lötsch
and Geisslinger, 2005). The most important of this group, the
µ-opioid receptor encoded by the OPRM1 gene, carriers several
variants of which the 118 A>G (rs1799971) has been studied
most extensively since the early description of its association with
a functional phenotype in humans (Lötsch et al., 2002).

Almost half of the present sets of genes were chosen based
on a computational functional genomics analysis that attributed
persisting pain to GO processes of “learning or memory” and
“nervous system development” (Ultsch et al., 2016) as likely
to reflect systemic features of persisting pain. This implied
a functional bias and therefore, the present set of d = 77
genes (Figure 4) was analyzed whether this bias prevailed
when comparing it with the alternative sets of human genes
proposed to modulate persisting pain (Mogil, 2012; Zorina-
Lichtenwalter et al., 2016). As applied previously (Lippmann
et al., 2018), the biological roles of the set of d = 77 genes
were queried from the Gene Ontology knowledgebase (GO)11

(Ashburner et al., 2000) where the knowledge about the biological
processes, the molecular functions and the cellular components
of genes is formulated using a controlled and clearly defined
vocabulary of GO terms. Particular biological roles of the set
of d = 77 genes, among all human genes, were analyzed by

11http://www.geneontology.org/
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TABLE 3 | Current targeting of the genes included in the proposed NGS panel of persisting pain by novel drugs that are currently under active clinical development and
include analgesia as the main clinical target or at least as one of the intended clinical indication.

Gene Status Drug Action Company

ABHD12 – – – –

ABHD16A – – – –

ABHD6 Preclinical Benzylpiperidin methanone Acylamino-Acid-Releasing Enzyme Scripps Research Institute

ADCY1 Under Active Development NB-001 Adenylate Cyclase Inhibitors Forever Cheer International

ADRB2 Phase II/III Gencaro Signal Transduction Modulators ARCA

BDNF Phase I CXB-909 Nerve Growth Factor (NGF) Enhancers Krenitsky

CACNG2 Preclinical Hanfangchin Calcium Channel Blockers Millenia Hope Kaken

CDK5 Biological Testing Litvinolin CDK5/p25 Inhibitors Hong Kong University

CHRNB2 Biological Testing Epiboxidine Nicotinic alpha4beta2 Receptor Agonists Pfizer

CNR1 Registered Epidiolex Cannabinoid Receptor Agonists InSys Therapeutics

COMT Clinical Nitecapone Catechol-O-Methyl Transferase (COMT) Inhibitors Orion

CSF1 – – – –

DLG4 Preclinical AB-125 Protein Inhibitors Lundbeck University of Copenhagen

DRD1 Phase II/III Ecopipam Dopamine D1 Receptor (DRD1) Antagonists Merck & Co.

DRD2 Phase II/III Sarizotan hydrochloride Dopamine D2 Receptor (DRD2) Antagonists Newron

DRD3 Phase II Brilaroxazine D3 Receptor (DRD3) Agonists Reviva Pharmaceuticals

DRD4 Biological Testing Mesulergine hydrochloride Dopamine Receptor Agonists Novartis

EGR1 Phase II Brivoligide EGR1 Expression Inhibitors Adynxx

ESR1 Phase II Zindoxifene Selective Estrogen Receptor Modulators Evonik

FAAH Phase I/II Minerval Fatty Acid Amide Hydrolase (FAAH) Inhibitors Scripps Research Institute

FKBP5 Phase II Barusiban Oxytocin Receptor Antagonist Ferring

FOS Registered Macrilen FOS Expression Enhancers Strongbridge Biopharma

FYN Phase II Bafetinib Fyn Kinase Inhibitors Nippon Shinyaku

GABRA5 Phase III Ganaxolone GABA(A) Receptor Modulators Marinus Pharmaceuticals

GALR2 Preclinical NAX-810-2 GAL2 Receptor Ligands NeuroAdjuvants

GCH1 – – – –

GDNF Phase II Edonerpic maleate Signal Transduction Modulators Toyama

GFRA1 – – – –

GPR132 – – – –

GRIN1 Phase II Dimiracetam Signal Transduction Modulators Metys Pharmaceuticals

GRIN2A Phase I Dexanabinol NMDA Receptor Antagonists e-Therapeutics Pharmos

GRIN2B Phase I Gacyclidine NMDA Receptor Antagonists INSERM

GRM5 Phase II Mavoglurant Signal Transduction Modulators Novartis

HCN2 Clinical Ivabradine Adrenoceptor Antagonists Servier

HLA-DQB1 – – – –

HLA-DRB1 – – – –

HRH3 Phase I Immethridine Histalean Abbott

HTR1A Phase II Eltoprazine hydrochloride 5-HT1A Receptor Agonists Elto Pharma

HTR2A Phase II Midomafetamine 5-HT2 Receptor Agonists Assoc

IL10 Phase II BT-063 Signal Transduction Modulators Anti-IL-10 Biotest AG

IL1B Phase III Resunab IL-1beta Inhibitors Corbus

IL1R2 – – – –

IL4 – – – –

IL6 Preclinical Azintrel Signal Transduction Modulators Anti-IL-6 Jazz Pharmaceuticals

KCNS1 Preclinical Crotamine Voltage-Gated K(V) Channel Blockers Celtic Biotech

KIT Phase II Vatalanib succinate KIT (C-KIT) Inhibitors Novartis

LTB4R Phase II Coversin Signal Transduction Modulators Akari Therapeutics

LTB4R2 Phase II Coversin Signal Transduction Modulators Akari Therapeutics

NF1 – – – –

NGF Phase III Tanezumab Anti-Nerve Growth Factor (NGF) Pfizer

NTF4 – – – –

(Continued)
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TABLE 3 | Continued

Gene Status Drug Action Company

NTRK1 Phase II Danusertib NTRK1 Inhibitors Pfizer

OPRD1 Preclinical Metenkephalin Delta-Opioid Receptor Agonists TNI Pharmaceuticals

OPRK1 Phase III Morphine glucuronide Opioid Receptor Agonists PAION

OPRM1 Registered Naltrexone mu-Opioid Receptor Antagonists Pfizer

OXT Phase II Barusiban Oxytocin Receptor Antagonist Ferring

P2RX7 Preclinical BIL-06v Anti-P2RX7 Biosceptre International

PLCB1 Biological Testing Vinaxanthone Signal Transduction Modulators Roche

PRKCG Phase III Rydapt Protein Kinase C (PKC) Inhibitors Yeda

PRNP – – – –

PTN – – – –

PTPRZ1 – – – –

RELN Preclinical IAIPs Serine Protease Inhibitors ProThera Biologics

RET Phase II Danusertib Ret (RET) Inhibitors Pfizer

RUNX1 – – – –

S100B – – – –

SCN9A Phase III Priralfinamide Voltage-Gated Sodium Channel Blockers Newron

SLC6A4 Phase II Litoxetine Signal Transduction Modulators Sanofi

SOD2 Phase II Avasopasem manganese Superoxide Dismutase (SOD) Mimetics MetaPhore

TH – – – –

TLR4 Phase II Eritoran tetrasodium Toll-Like Receptor 4 (TLR4) Antagonists Eisai

TNF Phase III Givinostat hydrochloride TNF-alpha Release Inhibitors Italfarmaco

TRPA1 Phase II Cannabidivarin TRPA1 Agonists GW Pharmaceuticals

TRPM8 Phase II Cannabidivarin TRPM8 Antagonists GW Pharmaceuticals

TRPV1 Phase I/II Resiniferatoxin TRPV1 (Vanilloid VR1 Receptor) Agonists Icos

TRPV4 Phase II GSK-2798745 TRPV4 Antagonists GlaxoSmithKline

TSPO Clinical [11C]CB-184 Translocator Protein (TSPO) Ligands Tokyo Metrop Geriatr
Hosp Inst Gerontol

The information was queried from the Thomson Reuters Integrity database at https://integrity.thomson-pharma.com on July 11, 2018.

means of over-representation analysis (ORA). This compared
the occurrence of the particular GO terms associated with
the present set of genes with their expected occurrence by
chance (Backes et al., 2007). In contrast to enrichment analysis,
any quantitative criteria such as gene expression values are
disregarded (Backes et al., 2007). The analyses were performed
using our R library “dbtORA” (Lippmann et al., 2018)12 on the R
software environment (version 3.4.2 for Linux; R Development
Core Team, 2008)13.

Surprisingly, the results of this analysis indicated that the
functional bias of the present gene set toward “learning or
memory” (GO:0007611) and “nervous system development”
(GO:0007399) was not maintained against the alternative gene
sets. Instead, a few more general GO terms such as “behavior”
(“single organism behavior,” GO:0044708), or “response to
organic cyclic compound” (GO:0014070) and response to
alkaloid (GO:0043279), which could be identified as morphine
and cocaine when repeating the analysis with a less conservative
α-correction (further details not shown), were overrepresented,
as well as the pain specific term “sensory perception of pain”
(GO:0019233). A possible explanation that the selection bias of

12https://github.com/IME-TMP-FFM/dbtORA
13http://CRAN.R-project.org/

the present gene set was not maintained when comparing it
with alternative proposals is that the two biological processes,
“learning or memory” and “nervous system development,” reflect
indeed an important biological function of persisting pain and
even when choosing candidate genes without having these
processes in mind as for the alternative gene sets, they are
nevertheless included. This may be regarded as support for the
present gene set as suitable candidates for future association
studies with persisting pain phenotypes.

Although the present gene set has been assembled with
a focus of a relevance to pain, many of its members have
pharmacological implications. Specifically, 58 of the 77 genes
(75%) have been chosen as targets of analgesics, approved or
under current clinical development (Table 3). Moreover, several
of the genes in the present NGS panel have been implicated
in pharmacogenetic modulations of drug effects (Table 4).
Possibly the most widely studied gene in analgesic research is
OPRM1 because coding for the primary target of opioids (Peiro
et al., 2016). Several polymorphisms have been described in
OPRM1, among which the best characterized may be rs1799971
(OPRM1 118A>G) that leads to an asparagine to aspartate
substitution at the extracellular terminal of the receptor protein
(Bond et al., 1998). May studies have addressed this variant
(for reviews, see Walter et al., 2013; Somogyi et al., 2015).
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TABLE 4 | Summary of variants in genes included in the proposed NGS panel of persisting pain, that have been implicated in a pharmacogenetic context to modulate
the effects of drugs administered for the treatment of pain or as disease modifying therapeutics in painful disease.

Modulated process Gene Variant Affected drug Findings Reference

G protein coupled signaling COMT rs4680 (Val158Met) Morphine Carriers of val/val and val/met genotype
required higher morphine dose
compared to carriers of met/met
genotype

Reyes-Gibby et al., 2007

DRD2 rs6275 Heroine Polymorphism is associated with
decreased likelihood of headache
disorders

Cargnin et al., 2014

DRD4 rs1800955 Heroine Polymorphism had lower pain threshold
versus CC/CT controls

Ho et al., 2008

OPRM1 rs1799971 (A118G) Various opioids Tendency toward increased pain in
dose-dependent manner with the
µ-opioid receptor variant 118G

Lötsch et al., 2009c

OPRK1 rs1051660 Morphine Patients with the polymorphism and
cancer-related pain may require a
reduced dose escalation of morphine

Chatti et al., 2017

Neurotransmitters BDNF rs6265 Various opioids Polymorphism is associated with
decreased likelihood of headache
disorders

Cargnin et al., 2014

HTR2A rs12584920 Various opioids Increased likelihood of having chronic
widespread pain

Nicholl et al., 2011

Ion Channels TRPV1 7 intronic SNPs Capsaicin TRPV1 polymorphisms had only 50%
of the mRNA and protein expression
levels of normally sensing subjects

Park et al., 2007

Proinflammatory Cytokines IL6 rs1800795 Etanercept Polymorphism is associated with
increased response to adalimumab,
etanercept or infliximab in people with
painful Arthritis

Davila-Fajardo et al., 2014

Other ESR1 rs2234693 Leflunomide Polymorphism is associated with
increased response to leflunomide in
women with painful Arthritis

Dziedziejko et al., 2011

FAAH rs2295632 Various opioids Polymorphism is associated with
increased risk of Respiratory
Insufficiency

Biesiada et al., 2014

TLR4 rs4986790 Methotrexate Polymorphism associated with
increased risk of adverse drug events
when treated with folic acid and
methotrexate in people with Arthritis

Kooloos et al., 2010

TNF rs361525 Infliximab Polymorphism is associated with
increased response to infliximab in
people with painful Arthritis

Maxwell et al., 2008

The information was derived by literature search and by querying the Pharmacogenetics Research Network/Knowledge base at http://www.pharmgkb.org (accessed in
July 2018). Only key or example references are given.

Summarizing its effects, the variant is associated with decreased
receptor expression and signaling efficiency (Oertel et al.,
2012) which leads to reproducibly reduced pharmacodynamic
effects in human experimental settings while the effect size
seems insufficient to be a major factor of opioid response in
clinical settings, despite several reports of modulations of opioid
demands or side effects. For example, subjects carrying the
118A>G variant were found to have a reduced response to
morphine treatment (Hwang et al., 2014), reduced analgesic
response to alfentanil (Oertel et al., 2006) and demanded higher
doses of morphine for pain relief (Klepstad et al., 2004; Hwang
et al., 2014). However, the importance of this variant seems to be
comparatively high in patients with an Asian ethnic background,

which might be related to the higher allelic frequency as
compared to other ethnicities. COMT is a key modulator of
dopaminergic neurotransmission and in the signaling response
to opioids The Val158Met polymorphism (rs4680) causes an
amino acid substitution in the enzyme, which reduced the
enzyme active to a forth (Peiro et al., 2016). Carriers of the
homozygous Met/Met variant had lower morphine requirements
than those with a the wild type COMT (Rakvag et al., 2005).
Furthermore, a modulation of the effects of TRPV1 targeting
analgesics is supported by observations that intronic TRPV1
variants were associated with insensitivity to capsaicin (Park
et al., 2007) while the coding TRPV1 variant rs8065080 was
associated with altered responses to experimentally induced pain
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(Kim et al., 2004). Moreover, gain-of-function mutations in
TRPV1 have been associated with increased pain sensitivity
(Boukalova et al., 2014), for which TRPV1 antagonists would
enable a specific pharmacogenetics-based personalized cure.

CONCLUSION

The breakthrough in mapping the whole human genome
(Lander et al., 2001; Venter et al., 2001) along with genome
wide association studies (GWAS) has led to rapid advances
in the knowledge of the genetic bases of human diseases
(Wellcome Trust Case Control and Consortium, 2007). Genetic
research in pain medicine has directed to the recognition of
genes in which variants influence pain behavior, post-operative
drug requirements, and the temporal developments of pain
toward persistence (James, 2013). While many candidate gene
association studies have identified multiple genes relevant for
pain phenotypes (Fillingim et al., 2008), pain related genetic
studies have so far been owned by investigations of a limited
number of genes. Roughly ten genes or gene complexes account
for over half of the extant findings and several of these candidate
gene associations have held up in replication (Mogil, 2012).
The selection of variants has been limited and they have been
addressed in most studies repeatedly, leading to the perception
that genetic research in pain produces often unsatisfactory results
(Mogil, 2009). However, this may soon change with the arise
of new technologies. In this manuscript, we present a validated
NGS assay for a set of 77 genes supported by empirical evidence
and computational functional genomics analyses as relevant

factors modulating the risk for persisting pain or its clinical
picture.
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Up to half of all patients do not respond to pharmacological treatment as intended.

A substantial fraction of these inter-individual differences is due to heritable factors

and a growing number of associations between genetic variations and drug response

phenotypes have been identified. Importantly, the rapid progress in Next Generation

Sequencing technologies in recent years unveiled the true complexity of the genetic

landscape in pharmacogenes with tens of thousands of rare genetic variants. As each

individual was found to harbor numerous such rare variants they are anticipated to

be important contributors to the genetically encoded inter-individual variability in drug

effects. The fundamental challenge however is their functional interpretation due to the

sheer scale of the problem that renders systematic experimental characterization of

these variants currently unfeasible. Here, we review concepts and important progress

in the development of computational prediction methods that allow to evaluate the effect

of amino acid sequence alterations in drug metabolizing enzymes and transporters.

In addition, we discuss recent advances in the interpretation of functional effects of

non-coding variants, such as variations in splice sites, regulatory regions and miRNA

binding sites. We anticipate that these methodologies will provide a useful toolkit to

facilitate the integration of the vast extent of rare genetic variability into drug response

predictions in a precision medicine framework.

Keywords: precision medicine, personalizedmedicine, variant effect prediction, ADME, NGS, rare variant analysis,

noncoding variation, pharmacogenomics

INTRODUCTION

Inter-individual differences in drug response are clinically important phenomena that result in
reduced efficacy or adverse reactions in 25–50% of all patients and genetic factors have been
estimated to account for around 20–30% of these (Spear et al., 2001; Sim et al., 2013). Fueled
by technological advances in Next-Generation Sequencing (NGS) technologies, the application of
comprehensive sequencing approaches is on the rise for various applications, including studies of
biodiversity, population genetics and biomedical research (Levy and Myers, 2016). Furthermore,
plummeting costs to <1,000 USD per human genome and increasing worldwide sequencing
capacities that we estimate to exceed 100 petabases per year (1015 bases corresponding to the size of
around 100,000 human genomes) open tremendous possibilities for NGS to revolutionize precision
medicine.
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Strikingly, these massive NGS data sets revealed that
individuals harbored on average more than 3.7 million single
nucleotide variants (SNVs) and more than 350,000 insertions
and deletions across different populations, emphasizing the
substantial variability of the human genome (The 1000 Genomes
Project Consortium, 2012). Particularly genes involved in drug
absorption, distribution, metabolism and excretion (ADME)
proved to be highly diverse and genetically complex (Fujikura
et al., 2015; Bush et al., 2016; Kozyra et al., 2017). Across 208
ADME genes more than 69,000 SNVs have been described, 98.5%
of these being rare with minor allele frequencies (MAF) <1%
(Ingelman-Sundberg et al., 2018). The overall pharmacogenetic
variability was highly population specific, particularly for isolated
populations, such as Ashkenazi Jews (Ahn and Park, 2017;
Kozyra et al., 2017; Zhou and Lauschke, 2018). Given this
enormous pharmacogenetic variability, one of the key frontiers
of contemporary pharmacogenomics is the translation of these
comprehensive genomic data into clinically actionable treatment
recommendations (Lauschke and Ingelman-Sundberg, 2016a,
2018).

Heterologous expression in cell lines followed by quantitative
determination of gene product functionality using appropriate
end points is considered as the gold standard strategy to
characterize the functional impact of pharmacogenetic variants.
Furthermore, epidemiological association studies can provide
additional indications about the consequences of genetic variants
on drug metabolism related phenotypes in vivo. However, for the
functional interpretation of rare variants these approaches suffer
from multiple shortcomings:

i) These methods are generally low throughput and are not
compatible with the interrogation of tens of thousands of
variants.

ii) Experimental characterizations are time consuming,
expensive and require specially trained technical staff,
which renders them unsuitable for the rapid functional
interpretation of the pharmacogenotype of an individual
patient at the point of care.

iii) Epidemiological analyses require a sufficient number of
patients who carry the allele, which drastically limits their
feasibility for rare genetic variant studies.

Thus, in the absence of viable experimental strategies,
computational prediction methodologies are routinely used
to predict the functional impact of genetic variants. Most of these
algorithms focus on predicting the functional consequences
of variants that result in amino acid substitutions. However,
recently much progress has also been made regarding the
interpretation of non-coding variants that affect splice sites,
promoters, enhancers or miRNA binding sites (Figure 1).

Prediction algorithms are generally trained on pathogenic
variant sets and most tools base their conclusions, at least in part,
on the evolutionary conservation of the respective sequence.
Importantly however, pharmacogenes are hallmarked by low
evolutionary conservation and are generally not associated with
human disease. These peculiarities result is specific problems
for the interpretation of pharmacogenetic variants. Here, we
provide an updated overview of computational approaches

for the functional interpretation of genetic variants, specifically
focusing on their suitability for pharmacogenetic predictions.We
describe the underlying statistical frameworks and discuss their
different bases for decision-making. Furthermore, we highlight
important progress particularly in the interpretation of non-
coding genetic variability. We conclude that computational tools
are essential for the functional interpretation of an individual’s
pharmacogenotype and that their further improvement
constitutes one of the most important frontiers for the clinical
implementation of NGS-based genotyping.

INTERPRETATION OF VARIANTS
RESULTING IN AMINO ACID EXCHANGES

Genetic variants that result in amino acid substitution,
henceforth termed missense variants, can impact the
functionality of the respective protein by various mechanisms,
including alterations in active sites, structural destabilization due
to protein misfolding, perturbations in solvent accessibility or
modification of post-translational processing. Each individual
harbors 10,000–12,000 missense variants, many of which are
rare (The 1000 Genomes Project Consortium, 2015). These
rare variants have been suggested as important modulators of
complex disease risk (Kryukov et al., 2007) and inter-individual
differences in drug response (Kozyra et al., 2017). Among
all variant classes, missense variants are the most extensively
studied and a plethora of computational methods is available for
their functional interpretation. Conceptually, these algorithms
predict the functional impact of missense variants based on
sequence information, primarily evolutionary conservation of
the respective residues, and/or structural information of the
corresponding gene product. In the following, we highlight
recent progress, provide an overview of available tools and
discuss their utility for pharmacogenetic predictions. For
methodological details we refer the interested reader to excellent
recent reviews (Ng and Henikoff, 2006; Peterson et al., 2013;
Tang and Thomas, 2016).

Predictions Based on Sequence
Information
Evolutionary conservation scores are calculated by analyzing
the evolutionary variation dynamics of DNA or amino acid
sequences among homologs with the hypothesis that the extent
of conservation is a strong predictor of the importance of
the respective sequence for structure and function of the
corresponding gene product. Thus, positions with a high
evolutionary rate are thought to be dispensable, whereas slowly
evolving, i.e., conserved sequences indicate a selective pressure
against variation in these regions and thus deleterious effects if
mutated.

Evolutionary conservation as a metric to distinguish
deleterious from neutral variants is considered by most
computational prediction algorithms. The majority of
approaches that focus on the functional interpretation of
missense variants utilize amino acid sequence alignment, whereas
others utilize nucleotide sequence alignments or a combination
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FIGURE 1 | Overview of features that can be assessed by current computational prediction methods. Different parameters and features are assessed for genetic

variants depending on whether they are localized in putatively regulatory sequences, untranslated regions (UTR) of the gene, its coding sequences (CDS) or within

introns. ESE/ESS, exonic splicing enhancer/silencer; ISE/ISS, intronic splicing enhancer/silencer; NMD, nonsense-mediated decay; RBP, RNA binding protein.

of both methods (Table 1). While alignment of amino acid
sequence proved to be effective for the analysis of missense
variants, genomic sequence alignments provide additional
versatility and allow to extend functional interpretations to
variant classes that do not alter the amino acid sequence, such as
synonymous and regulatory variants. Notably, commonly used
conservation-based functionality predictors do not consider
sequence interdependencies. Explicit integration of residue
dependency information obtained from multiple sequence
alignments was however recently shown to improve predictive
performance (Hopf et al., 2017), emphasizing the added value
of complementing conservation based functionality predictions
with variant interaction data.

On the basis of multiple sequence alignments, algorithms
derive their functionality predictions either based on direct
theoretical models, or by various machine-learning approaches.
The former methods predict the functional impact of variants
based on phenomenological scores derived from theoretical
models that are known a priori. In contrast, machine learning
methods search for patterns in multi-dimensional training data
sets consisting of labeled deleterious and benign variations, which
will then be used as the basis to generate predictions on new
unlabeled data. Machine learning approaches include support
vector machines, random forests, artificial neural networks,
naive Bayes approaches, gradient tree boosting and regression
models. With increasing wealth of large-scale data sets to learn
from, machine learning methods become increasingly popular
as versatile tools to generate predictive models in many areas of
biomedicine (Camacho et al., 2018).

Commonly used algorithms are generally designed to flag
deleterious variants, which are mostly assumed to result in a
reduced gene product function, and their performance of gain-
of-function variants is substantially worse (Flanagan et al., 2010).

Notably, the algorithm B-SIFT, a modified version of the widely
used SIFT tool (Ng and Henikoff, 2001), was developed to
overcome this limitation (Lee et al., 2009). Conceptually, B-
SIFT identifies increased functionality variants based on protein
sequence alignments by scoring whether a given mutation results
in a change commonly present in protein homologs and the tool
successfully identified experimentally validated gain-of-function
variants in cancer.

While computational missense variant predictors are
generally reported to achieve high predictive accuracies with
areas under the receiver operating characteristic curve (AUCROC)
that often pivot around 0.9, drastic drops in performance to
AUCROC of 0.5–0.75 have been reported on independent,
functionally determined human variant datasets (Mahmood
et al., 2017). These findings were corroborated by a recent
cross-comparison of 23 methods based on three independent
pathogenicity datasets in which the authors found that REVEL
and VEST3 performed overall best, whereas the most commonly
used methods SIFT and PolyPhen-2 performed only medially
(Li et al., 2018). Furthermore, no functional consequences could
be detected using various in vitro or in vivo tools for 40% of
variants predicted to be deleterious by common functionality
prediction tools (Miosge et al., 2015). Thus, while current
tools have proven powerful in clinical diagnostics to prioritize
potentially causative mutations in genetic diseases for further
analyses (Boycott et al., 2013), their predictive power is not yet
sufficient to predict functional variant effects without substantial
subsequent validations.

Importantly, the quality of prediction models critically
relies on accurate training data sets. For instance, models are
commonly generated using training sets of pathogenic variants
as positive controls and polymorphisms identified to be common
in large-scale sequencing projects as negative, i.e., functionally
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TABLE 1 | Methods to predict the functional effect of missense variants based on sequence information.

Algorithm Model Basis of decision Model training or evaluation References

SIFT Direct Prediction of functionality based on sequence

conservation metrics that make use of Dirichlet

priors

Variants from protein specific studies (LacI,

HIV-1 Protease and Bacteriophage T4

Lysozyme)

Ng and

Henikoff,

2001

PANTHER HMM Sequence conservation analysis using HMM Variants from HGMD and dbSNP as

deleterious and functionally neutral

variants, respectively

Thomas et al.,

2003

MAPP Direct Quantification of the physicochemical

characteristics at each position of the amino acid

sequence based on observed evolutionary variation

Protein specific studies (LacI, HIV-1

Protease, HIV reverse transcriptase and

Bacteriophage T4 Lysozyme)

Stone and

Sidow, 2005

PhastCons HMM Identification of conserved elements using a

two-state phylogenetic HMM

Calibration on genomes from four model

species (human, D. melanogaster, C.

elegans, and S. cerevisiae)

Siepel et al.,

2005

SNPs3D SVM Variant effect prediction based on amino acid

sequence conservation metrics and folded state

stability of protein structure

Variants from HGMD and dbSNP as

deleterious and functionally neutral

variants, respectively

Yue et al.,

2006

PhD-SNP SVM Prediction of variant pathogenicity based on

sequence profiles

Variants from HumVar and HumVarProf

datasets

Capriotti

et al., 2006

SiPhy HMM Sequence conservation analysis using HMM ENCODE Phase I regions Garber et al.,

2009

LRT Direct Evolutionary conservation model across 32

vertebrates

Variants in three sequenced human

genomes

Chun and

Fay, 2009

SNPs&GO SVM Variant effect prediction based on sequence

information, evolutionary conservation and defined

gene ontology score

Variants from SwissProt Calabrese

et al., 2009

B-SIFT Direct Sequence conservation metrics that calculate the

difference between wild-type and mutant allele

Variants from SwissProt database and

protein specific study (Dnase I)

Lee et al.,

2009

PolyPhen-2 NB Considering sequence conservation, Structure

parameters such as hydrophobic propensity and B

factor

Variants fromn HumDiv and HumVar from

UniProt Database

Adzhubei

et al., 2010

MutationTaster NB Prediction of mutation pathogenicity based on

evolutionary conservation, splice-site changes, loss

of protein features and changes that affect

expression levels

Variants from OMIM database, HGMD and

the literature as pathogenic set and neutral

variants from dbSNP as controls

Schwarz

et al., 2014

MutationAssessor Direct Evolutionary conservation patterns within protein

families and across species using combinatorial

entropy

Variants from UniProt database

(HumSaVar)

Reva et al.,

2011

Condel Direct Integration of five algorithms (SIFT, PolyPhen-2

MAPP, MutationAssessor, and Log R Pfam E-value)

into single output score

Variants from HumVar, HumDiv, Cosmic

database, IARC TP53 database

González-

Pérez and

López-Bigas,

2011

PROVEAN Direct Alignment-based score that can also assess

in-frame insertions, deletions, and multiple amino

acid substitutions

Missense variants and indels,

replacements from UniProt database

Choi et al.,

2012

FATHMM HMM Identification of pathogenic variants based on

sequence conservation, protein domain-based

information and species-specific pathogenicity

weights. Also suitable for prediction of non-coding

variations.

Variants from the HGMD and Uniprot

databases

Shihab et al.,

2013, 2015;

Rogers et al.,

2018

VEST RF Prioritization of variants underlying Mendelian

diseases

Rare variants from HGMD database as

pathogenic set and variants from ESP

Carter et al.,

2013

Evolutionary

Action

Direct Prediction of variant effects on evolutionary fitness

using a formal genotype-phenotype perturbation

equation

Variants from 1000 Genomes Project Katsonis and

Lichtarge,

2014

MetaSVM SVM Ensemble score integrating nine functionality

predictors (SIFT, PolyPhen-2, GERP++,

MutationTaster, MutationAssessor, FATHMM, LRT,

SiPhy and PhyloP)

Variants causing Mendelian diseases as

pathogenic set and variants that are not

associated with any phenotypes as

controls, all from Uniprot database

Dong et al.,

2015

MetaLR RM Same as MetaSVM but using logistic regression instead of SVM . Dong et al.,

2015

(Continued)
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TABLE 1 | Continued

Algorithm Model Basis of decision Model training or evaluation References

SuSPect SVM Sequence conservation metrics, structure features

and additional network information

Variants from Humsavar database Yates et al.,

2014

PredictSNP EL Ensemble score integrating six functionality

predictors (MAPP, PhD-SNP, PolyPhen-1,

PolyPhen-2, SIFT and SNAP)

Variants mainly from SwissProt, HGMD,

dbSNP and Humsavar database

Bendl et al.,

2014

SNAP2 NN Prediction of amino acid variations based on amino

acid properties, predicted binding residues,

predicted disordered and low-complexity regions,

proximity to N- and C-terminus, statistical contact

potentials, co-evolving positions, secondary

structure and solvent accessibility

Variants from PMD, Swiss-Prot, OMIM,

HumVar and protein specific data sets

(LacI)

Hecht et al.,

2015

REVEL RF Ensemble method tailored specifically for the

prediction of rare genetic variant effects integrating

MutPred, FATHMM, VEST, PolyPhen, SIFT,

PROVEAN, MutationAssessor, MutationTaster, LRT,

GERP, SiPhy, phyloP, and phastCons

Variants from HGMD as pathogenic set

and neutral variants from ESP as controls

Ioannidis

et al., 2016

ConSurf Empirical Bayesian

method and

maximum

likelihood

estimation

Mapping of evolutionarily conserved residues on

protein surfaces by estimating the evolutionary rates

of each nucleic acid and amino acid sequence

position using multiple sequence alignments. Also

offers RNA secondary structure predictions.

Protein with at least five known 3D

structure homologs and precise

annotation of their functional sites (with

different nature)

Ashkenazy

et al., 2016

VIPUR RM Combination of sequence- and structure-based

features to identify and functionally interpret

deleterious variants

Variants from HumDiv and UniProt with

clear evidence of protein disruption

Baugh et al.,

2016

Envision GTB Decision tree ensemble-based tool using a

stochastic gradient boosting learning algorithm

Variants from nine large-scale experimental

mutagenesis datasets in eight proteins

Gray et al.,

2018

EVmutation Direct Unsupervised method exploiting sequence

conservation by incorporating interaction

information between all pairs of residues in protein

34 data sets from 21 proteins and a tRNA

gene extracted from 27 publications

Hopf et al.,

2017

PredSAV GTB Identification of pathogenic variants based on

sequence, structure, residue-contact networks as

well as structural neighborhood features

Human variants from Uniprot and OMIM

as pathogenic set and Ensemble variants

as neutral controls

Pan et al.,

2017

SNPMuSiC NN Structure stability based, implement PoPMuSiC and

HoTMuSiC on the basis of 13 statistical potentials

(distence potentials, solvent accessibility potentials

and torsion potentials) and 2 biophysical

characteristics (solvent accessibility of mutated

residue and difference in volume)

Variants from dbSNP, SwissVar and

HumSaVar datasets

Ancien et al.,

2018

DEOGEN2 RF Integration of 11 scores and metrices into one

meta-score, considering evolutionary features,

folding predictions, domain information as well as

gene features to identify deleterious variants

Training and test on variants from the

UniProt Humsavar16 dataset

Raimondi

et al., 2017

ADME prediction

framework

Direct Integration of prediction scores from five orthogonal

algorithms (LRT, MutationAssessor, PROVEAN,

VEST3 and CADD) using parameters optimized for

pharmacogenes

Training and validation specifically on

experimentally characterized

pharmacogenetic data sets from 43

ADME genes

Zhou et al.,

2018

HMM, hidden Markov model; SVM, support vector machine; NB, naïve Bayes classifier; EL, ensemble learning; RF, random forest; RM, regression model; NN, neural networks; GTB,

gradient tree boosting; HGMD, Human Gene Mutation Database; OMIM, Online Mendelian Inheritance in Man; ESP, Exome Sequencing Project; PMD, Protein Mutant Database.

neutral variants. For pharmacogenetic predictions such a strategy
is associated with multiple problems: Firstly, training on disease-
associated data sets will, in the best case, result in prediction
models that accurately predict the pathogenicity of variants.
However, only very few ADME genes are directly associated
with disease, suggesting that pathogenicity is not the right
endpoint to inform about variant effects in the pharmacogenetic
arena. Secondly, while evolutionary conservation constitutes a
useful metric to predict functional consequences in genes under

purifying selection, evolutionary conservation in pharmacogenes
is generally much lower (Fujikura, 2016), indicating that
conservation cannot reliably inform about functional impacts
of variations in pharmacogenes. Finally, the choice of common
polymorphisms as neutral training sets is problematic. Genetic
variants that occur with high frequencies are not necessarily
functionally neutral, particularly in pharmacogenetic loci, as
evidenced by a multitude of high-frequency loss of function
variants in CYP genes, such as CYP3A5∗3 (MAF = 95% in
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Europeans), CYP2C19∗2 (MAF = 34% in South Asians) and
CYP2D6∗4 (MAF= 16% in Latinos) (Zhou et al., 2017).

The indicated problems incentivized us to develop
a prediction framework tailored specifically toward
pharmacogenetic functionality assessment (Zhou et al.,
2018). Specifically, the model was devised using a two-step
procedure: Firstly, functionality classification threshold of
18 commonly used functional prediction algorithms were
optimized by leveraging a dataset of 337 experimentally
characterized pharmacogenetic variants using 5-fold cross
validations. In a second step, we integrated the best performing
orthogonal algorithms following a strategy that had been shown
to further improve predictive accuracy (Martelotto et al., 2014).
The resulting method achieved 93% for both sensitivity and
specificity for both loss-of-function and functionally neutral
variants. Moreover, the returned score can provide quantitative
estimates of the effect of the variant in question on gene function,
thus facilitating the functional and personalized interpretation of
an individual’s NGS-based pharmacogenome.

Recent progress in large-scale experimental mutagenesis
screens provides a promising approach to further expand the
development of powerful training resources for missense variant
effect predictors. While such a strategy has already been used to
develop a prediction method based on 10 proteins from different
species with disparate structures (Gray et al., 2018), we propose
that deepmutational scanning data fromADME proteins is likely
to substantially refine the resulting model for pharmacogenetic
predictions. For such an endeavor, we recommend to use
multiple substrates for each protein, as correlations between
prediction and experiments improved with more comprehensive
interrogation of protein function (Gallion et al., 2017). Combined
with ADME-optimized prediction models, we envision that such
an approach can further enhance the predictive accuracy of in
silico methods and yield sufficiently accurate tools to allow for
the clinical implementation of computational pharmacogenetic
predictions.

Utilization of Structural Data
While evolutionary conservation scores can provide useful
metrics to assess the pathogenicity of missense variants, they have
limitations when applied to the less conserved genes, such as
most ADME genes, which prompted the search for additional
orthogonal in silico methods. To this end, the analysis of
predicted or experimental structural data provides an appealing
concept, as the correct folding of polypeptide chains into three-
dimensional tertiary structures is of paramount importance for
their biological functions. Structure-based approaches either
directly use known crystal or NMR structures, preferably at high
resolution <2–3 Å (Wlodawer et al., 2008) or, should such data
not be available, leverage knowledge of the experimental 3D
structures of homologous sequences (Table 2).

The effect of variants is predicted by how the folding
free energy difference between the unfolded and folded states
(1G◦) is modified upon point mutations (11G◦) with negative
and positive values of 11G◦ indicating destabilizing and
stabilizingmutations, respectively. In recent years a large number
of mechanistically diverse approaches have been presented,

with machine learning-based strategies being most prevalent.
SDM constitutes a statistical potential energy function that
can estimate variant effects on protein stability (Topham
et al., 1997). This approach pioneered the knowledge-based
prediction of mutation effects on protein stability and has also
been successfully used in combination with machine learning
techniques (Pires et al., 2014a). An updated version of the
tool, SDM2 (Pandurangan et al., 2017), with a 5-fold increase
in underlying structural information as well as extensions for
interaction modeling can be accessed through a free, publically
available web server interface. Similarly, the algorithm HOPE
(Venselaar et al., 2010) can calculate structural and functional
effects of amino acid exchanges based on homology modeling.
It should be however noted that most of the current tools
are strongly biased toward the detection of destabilizing effects
(Pucci et al., 2018).

Approximately 70% of the human proteome can be
structurally modeled by homology (Somody et al., 2017).
Yet, the number of resolved 3D structures for genes involved
in drug ADME remains relatively low, at least in part due
to the membrane bound nature of many of these proteins.
Furthermore, as many metabolic enzymes, such as cytochrome
p450s (CYPs) exhibit marked active-site flexibility, which often
results in ligand-induced conformational changes, prediction of
variant effects based on direct structural data is difficult for these
proteins and substrate-specific effects have to be considered.
Thus, while the prediction of amino acid exchanges on substrate
metabolism remain difficult, folding stability of variant proteins
of interest can be estimated using existing computational tools
based on sequence homology modeling (Kulshreshtha et al.,
2016).

EVALUATION OF TRUNCATION VARIANTS

Drug metabolizing enzymes and transporters have been found
to harbor a multitude of truncation variants, such as micro-
insertions andmicro-deletions (indels) causing frameshifts, stop-
gain and start-lost variants. Some of these variants are clinically
relevant and occur with high frequencies in specific populations,
including the stop-gain variant CYP2C19∗3 in East Asians and
the frameshift variants CYP2D6∗3 and CYP2D6∗6 in Europeans
(Zhou et al., 2017). As most pharmacogenes have only minor
endogenous functions, they are under low evolutionary pressure
and, consequently, such loss-of-function variants are often not
selected against (Lauschke et al., 2017). Moreover, it has been
speculated that pharmacogenetic loss-of-function alleles can even
be selected for in modern humans, possibly due to reduced
bioactivation of dietary toxicants (Fujikura, 2016). Truncation
variants are commonly assumed to have deleterious effects and
only few studies have been presented that provide approaches
to quantitatively assess the functional consequences of such
mutations (Cline and Karchin, 2011).

Early bioinformatic tools, such as LOFTEE, prioritize
truncation variants based on a set of empirical rules, including
whether the variant of interest occurs in the last 5% of
transcript or whether the truncating allele is the ancestral
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TABLE 2 | Methods to predict the functional effect of missense variants based primarily on structural features.

Algorithm Model Basis of decision Model training or evaluation References

SDM Direct Predicts variant effects on thermal protein stability

using conformationally constrained

environment-specific substitution tables derived

from 2,054 protein family sequence and structure

alignments from the TOCCATA database

Validated on 2,690 SNVs from 132

different protein structures.

Topham et al.,

1997;

Pandurangan

et al., 2017

I-Mutant SVM Protein structure or sequence-based prediction of

point mutation effects on protein stability

Training and testing on thermodynamic

experimental data of free energy changes

of protein stability upon mutation from the

ProTherm database

Capriotti

et al., 2005

HOPE Direct Analyzes the structural and functional effects of

point mutations based on available crystal

structures, homology modeling and sequence

information.

Evaluated using case studies. Venselaar

et al., 2010

mCSM RM Translation of distance patterns between atoms into

graph-based signatures providing data that is

complementary to potential energy based

approaches

Prediction of protein stability changes,

protein-protein and protein-nucleic acid

interactions and pathogenicity based on

an array of preexisting experimental data

sets

Pires et al.,

2014b

DUET SVM SVM predictor that integrates mCSM and SDM in a

consensus prediction

Benchmarking again mCSM and SDM

alone on p53 data set.

Pires et al.,

2014a

STRUM GTB Predicts variant effects on protein stability based on

3D models constructed by iterative threading

assembly refinement simulations

Evaluated on 3,421 experimentally

determined mutations distributed across

150 proteins.

Quan et al.,

2016

ELASPIC GTB Predicts effects of mutations on protein folding and

protein–protein interactions using homology

modeling of domains and domain–domain

interactions

Performance analysis via case study using

EP300 mutations found in COSMIC

Witvliet et al.,

2016

SAAFEC RM Prediction of effects of amino acid changes on

folding free energy using a Molecular Mechanics

Poisson-Boltzmann approach

Training and testing on thermodynamic

experimental data of free energy changes

of protein stability upon mutation from the

ProTherm database

Getov et al.,

2016

SVM, support vector machine; RM, regression model; GTB, gradient tree boosting.

state (MacArthur et al., 2012). Other approaches, such as
Likelihood-ratio scoring (Zia and Moses, 2011), SIFT Indel (Hu
and Ng, 2012) and NutVar (Rausell et al., 2014), primarily
utilize the evolutionary conservation of amino acid residues.
However, predictive performance of these tools for loss-of-
function mutations is limited when trained on only missense
mutations. Moreover, these methods are trained on genes that
have high-quality annotations, which poses problems for the
functional interpretation of truncation variants in genes for
which such annotations are not readily available.

To overcome these shortcomings, CADD was developed by
integrating many diverse functional genomics annotations into
a single score for each variant, which allows to estimate the
impact of all classes of genetic variation, including truncating
variants (Kircher et al., 2014). Newer approaches, such as DDIG-
in (Folkman et al., 2015) and VEST-Indel (Douville et al.,
2016) supplement conservation-based features with information
about sequence and structural properties at nucleotide and
protein levels as well as intrinsic disorder predictions from the
region affected by stop gain and frameshift variants. Notably,
the recently developed tool ALoFT (Annotation of Loss-of-
Function Transcripts) can categorize the pathogenic importance
of putative loss-of-function mutations by integrating variant

information with redundancy and haplosufficiency data of the
corresponding gene (Balasubramanian et al., 2017). However,
aforementionedmethods are primarily focused on distinguishing
benign and disease-causing mutations. Thus, future studies are
needed to evaluate whether this emphasis on the pathogenicity of
variants might affect the performance of these methods regarding
the functionality prediction of truncating variants in genes not
associated with disease, such as many ADME genes.

In addition to impacts on functional and structural properties
of proteins, truncating variants can affect nonsense-mediated
mRNA decay (NMD). NMD is a conserved translation-
dependent mechanism that is responsible for recognizing
and eliminating aberrant mRNA transcripts to prevent the
production of truncated peptides, thereby playing a critical
role in preventing the accumulation of misfolded protein and
subsequent initiation of the unfolded protein response (UPR)
(Kervestin and Jacobson, 2012; Schoenberg and Maquat, 2012).
Recently, Hsu et al. presented NMD Classifier, a tool for the
systematic classification of NMD events, which was reported
to correctly identify 99.3% of the NMD-causing transcript
structural changes (Hsu et al., 2017). The incorporation of this
information alongside functional estimates is expected to not
only increase discriminative power but also to suggest the nature
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of the functional impact of a given variant. Interestingly, there
is evidence that NMD efficiency varies between individuals and
that these differences correlate with response to NMD inhibitors
in cystic fibrosis patients (Linde et al., 2007; Kerem et al., 2008).
While this phenomenon has to the best of our knowledge not
been explicitly tested in the context of pharmacogenomics, inter-
individual differences in NMD magnitude could, at least in part,
explain the large differences in drug response between patients
with loss-of-function genotypes (Jukić et al., 2018) and thus have
important implications for therapy.

In summary, much progress has been made regarding the
functional interpretation of variants causing truncations of the
corresponding gene product and current computational tools are
able to incorporate a variety of features into their predictions,
including evolutionary conservation, sequence and structural
information as well as putative effects on NMD. However, it
remains to be demonstrated whether these available tools will also
be suitable for the prediction of effects of truncation variants in
poorly conserved pharmacogenetic loci.

PREDICTION OF ABERRANT SPLICING
EVENTS

Splicing of pre-mRNA is a critical step during mRNAmaturation
in which introns are excised and exons are ligated. This process

necessitates the presence of 5
′
and 3

′
splicing signals and branch

point sequence and is further regulated by exonic and intronic
splicing enhancer/silencer (ESE/ESS and ISE/ISS, respectively)
(Lee and Rio, 2015; Shi, 2017). Mutations in these regions can
disrupt the splicing process and result in aberrantly processed
transcripts, which can trigger NMD or result in the production
of dysfunctional proteins. The functional importance of genetic
variants in splice sites is emphasized by estimates that around
15% of human pathogenic mutations cause dysregulation of
splicing (Baralle et al., 2009).

Variants located in canonical splice sites are considered having
the largest effect on splicing events. Therefore, a multitude
of computational algorithms were developed to handle the

prediction of 5
′
and 3

′
splice site, such as NNSplice (Reese

et al., 1997), MaxEntScan (Yeo and Burge, 2004), GeneSplicer
(Pertea et al., 2001), and SplicePort (Dogan et al., 2007; Table 3).
Moreover, variants outside splice sites can have substantial
effects on splicing (Soukarieh et al., 2016) and a variety of
computational methods have been developed to predict the
effect of such regulatory sequences. Examples are sequence the
conservation-based algorithm Skippy (Woolfe et al., 2010) and
the machine learning tools MutPred Splice (Mort et al., 2014),
scSNVEL (Jian et al., 2014b), SPANR (Xiong et al., 2015), and
CryptSplice (Lee et al., 2017). Further tools are available for the
identification of branch point sequences (Corvelo et al., 2010;
Zhang et al., 2017). Lastly, the secondary structure of pre-mRNAs
can interfere with splice-site recognition, modulate spliceosome
binding or can facilitate splicing efficiency by bringing splice
donors and acceptors into close proximity (Warf and Berglund,
2010). Consequently, genetic variants that alter pre-mRNA
structure were found to promote alternative splicing (Wan et al.,

2014), incentivizing the incorporation of structural information
provided by tools, such as TurboFold (Harmanci et al., 2011) or
CentroidFold (Sato et al., 2009), into variant effect predictions.
For a more detailed description of structural RNA analyses we
refer the interested reader to excellent recent reviews (Jian et al.,
2014a; Lorenz et al., 2016; Ohno et al., 2018).

In ADME genes, dysregulation of splicing has long been
recognized as a cause for inter-individual variability drug
metabolism (Hanioka et al., 1990) and toxicity (Raida et al., 2001)
and the liver was found to be is among the tissues with highest
levels of alternative splicing activity (Yeo et al., 2004). As splicing
is highly tissue specific, these data indicate that algorithms for the
prediction of variant splice effects in pharmacogenetics should
ideally be trained on positive control sets for which aberrant
splicing is confirmed in the tissue of interest, i.e., primarily liver.
To this end, the GTEx project (GTExConsortium, 2017) provides
a rich resource that has already been successfully utilized for the
identification of tissue-specific splice events in pharmacogenes
(Chhibber et al., 2017).

In summary, the toolkit of available computational algorithms
for the prediction of variant effects on splicing has rapidly grown
and by now allows not only to evaluate direct impact on splice
sites, but also to assess mutations in regulatory splice enhancers
and silencers, as well as branch points. For the application of these
methods for pharmacogenomics there is a need to benchmark
available tools on splice variants in ADME genes. Moreover, we
anticipate that the utilization of tissue-specific expression data
will further refine splice site predictions.

FUNCTIONAL IMPACT OF VARIANTS IN
UNTRANSLATED REGIONS

miRNAs play important roles in the regulation of mRNA
stability and translation. miRNA-mRNA interaction occurs

through conserved miRNA binding sites in the 3
′
-UTRs and

at least 10% of all SNPs are located in 3
′
-UTRs and might

affect complementary miRNA-mRNA pairing (Xiao et al., 2009).
Furthermore, miRNAs have been shown to be important
modulators of ADME gene expression profiles (Rieger et al.,
2013). Therefore, functional interpretation of genetic variations
within miRNA target sites constitutes an important factor for
the prediction of the fate of corresponding transcript. Thus, to
evaluate the potential relevance of genetic polymorphisms in
UTRs various databases, such as the polymiRTS Database 3.0
(Bhattacharya et al., 2014) or MirSNP (Liu et al., 2012), provide
useful resources that contains a collection of experimentally
confirmed SNPs and indels not only in miRNA target sites but
also in miRNA seed regions responsible for mRNA binding.
Furthermore, a variety of other SNP effect prediction servers are
publically available (Fehlmann et al., 2017).

In case no experimental data is available, various
computational tools can be used to predict possible disruption
of the miRNA-mRNA pairing for a given variant (Table 3).
MicroSNiPer (Barenboim et al., 2010) and ImiRP (Ryan et al.,
2016) identify and predict such disruptions by comparing

the mutant 3
′
-UTR sequences with major variant databases.
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TABLE 3 | Tools for the prediction of variant effects on splicing, transcript levels or translation.

Algorithm Application Basis of decision Model training or evaluation References

NMD Classifier NMD Prediction of NMD for a given transcript based on

comparison to most similar coding transcript

Simulation-based evaluation based on

screening artificial transcript

structure-altering events

Hsu et al.,

2017

NNSplice Splicing (splice

sites)

Sequence splice site analysis using HMM Distinguish splice site sequences from

sequences in the neighborhood of real

splice sites

Reese et al.,

1997

MaxEntScan Splicing (splice

sites)

Splice site analysis by modeling short sequence

motifs using the maximum entropy principle with

constraints estimated from available data.

1,821 transcripts unambiguously aligned

across the entire coding region, spanning

a total of 12,715 introns

Yeo and

Burge, 2004

GeneSplicer Splicing (splice

sites)

Splice site prediction using maximal dependence

decomposition with the addition of markov model to

capture dependencies among neighboring bases

Annotated genes from the Exon-Intron

Database

Pertea et al.,

2001

SplicePort Splicing (splice

sites)

Splice site prediction using C-modified least

squares learning based on positional and

compositional sequence features

Training on 4,000 pre-mRNA human

RefSeq sequences and test on B2Hum

data set

Dogan et al.,

2007

Skippy Splicing (regulatory

sequences)

Prediction of variants causing exon skipping, exon

inclusion or ectopic splice site activation based on

sequence information, proximity to splice junctions

and evolutionary constraint of the peri-variant region

Multiple exonic splicing regulatory

elements datasets as positive data and

HapMap variants as splicing-neutral

variants

Woolfe et al.,

2010

MutPred Splice Splicing (regulatory

sequences)

Prediction of auxiliary splice sequences using

multiple variant-, flanking exon- and gene-based

features

Splicing variants from HGMD as

pathogenic set and non-splicing variants

from both HGMD and 1000G as neutral

controls

Mort et al.,

2014

scSNVEL Splicing (splice

sites)

Ensemble prediction using 8 algorithms using

random forest learning

Splice variants from HGMD, SpliceDisease

database and DBASS as pathogenic set

and variants not implicated in splicing from

both HGMD and 1000G as controls

Jian et al.,

2014b

SPANR Splicing (splice

sites and splice

regulatory

sequences)

Integrating 1,393 sequence features from each

exon and its neighboring introns and exons to

identify splice sites as well as intronic and exonic

splice regulators

10,689 exons that displayed evidence of

alternative splicing

Xiong et al.,

2015

CryptSplice Splicing (splice

sites)

Prediction of cryptic splice-site activation using an

SVM model

Sequences from the annotated NN269

and HS3D splice datasets with positive

sequence in splice sites and control

sequence outside splice sites

Lee et al.,

2017

Corvelo et al. Splicing (branch

points)

Analysis of splice site sequence conservation and

position bias using SVM

A set of 8,156 conserved putative branch

point sequences from 7 mammalian

species

Corvelo et al.,

2010

BPP Splicing (branch

points)

Identification of branch point motifs by integrating

information on the branch point sequence and the

polypyrimidine tract

Intron sequences longer than 300

nucleotides

Zhang et al.,

2017

TurboFold Splicing

(pre-mRNA

structure)

Probabilistic method that integrates comparative

sequence analyses with thermodynamic folding

models

Thorough benchmarking against three

methods that estimate base pairing

probabilities and eight tools for structural

predictions based on known RNA

structures

Harmanci

et al., 2011

CentroidFold Splicing

(pre-mRNA

structure)

RNA secondary structure prediction using the

γ-centroid estimator

Validation based on 151 RNA

experimentally determined RNA structures

Sato et al.,

2009

mrSNP miRNA binding miRNA binding energy calculations for reference

and variant containing sequence and report of

binding difference

Evaluation based on variants that map to

miRNA targets predicted by TargetScan

Deveci et al.,

2014

PinPor RBP binding Bayesian network approach that incorporates

information about sequence features, stabilization of

RNA secondary structure and evolutionary

conservation

Inframe indels from HGMD as pathogenic

and common indels from 1000G as

neutral controls

Zhang et al.,

2014

HGMD, Human Gene Mutation Database; 1000G=1000 Genomes Project; DBASS, Database for Aberrant Splice Sites; NMD, nonsense-mediated decay; HMM, hidden Markov model;

RBP, RNA binding protein.
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Similarly, mrSNP can predict the effect of any variant identified
in NGS-based projects on miRNA-target transcript interaction
(Deveci et al., 2014). However, it is important to note that
miRNA target predictions seem to have a high false-positive rate
(Pinzón et al., 2017), suggesting that these problems might be
lingering for studies utilizing miRNA-target databases without
stringent experimental validations. Besides predicting the effect
of genetic variants in putative miRNA target sites, multiple
online tools are available for inverse approaches, analyzing
variants in miRNAs or pre-miRNAs for possible deleterious
effects. For more comprehensive collection of miRNA related
variant interpretation tools the reader is referred to the recent
reviews and online resources (Akhtar et al., 2016; Moszynska
et al., 2017).

In addition, recent approaches expanded the methodological
portfolio beyond miRNA binding site prediction to include
effects of UTR variants on binding of RNA-binding proteins
(RBPs), translational efficacy and ribosomal loading. Effects
of indels on RBP binding can be evaluated using PinPor,
which has been demonstrated to have some success in
distinguishing disease-causing and neutral indels (Zhang et al.,
2014). Furthermore, Sample et al. presented the preprint of a deep
learning approach based on experimental polysome profiling to
predict the impact of UTR sequence on translation (Sample et al.,
2018). These developments nicely indicate the diversification of
parameters that can incorporated into variant effect predictions,
thus further refining biological interpretation of NGS data sets.

ANALYSIS OF REGULATORY VARIANTS

Non-coding regions account for more than 99% of the human
genome and, consequently, their consideration substantially
expands the analysis space of computational predictions. Variants
in non-coding regions can affect regulatory elements, such as
promoters, enhancers, silencers, and insulators, which, in turn,
may alter their affinity to transcription factor or remodel the
local chromatin structure (Zhang and Lupski, 2015; Deplancke
et al., 2016). Accurate prediction of the functional consequences
of such variants constitutes one of the major challenges in human
genetics.

To interpret noncoding variants, a variety of different
strategies have been presented. The first approaches, such as
SiPhy (Garber et al., 2009), PhyloP (Pollard et al., 2010),
PhastCons (Siepel et al., 2005), GERP++ (Davydov et al.,
2010), or SCONE (Asthana et al., 2007), were based on
evolutionary constraint using sequence alignments. However,
the observation that no enhanced constraints were identified
in regulatory elements at the level of DNA sequence despite
conserved transcription factor binding led to the realization
that conservation of regulatory regions can only be a weak
indicator of the functional effects of SNVs in regulatory regions
(Schmidt et al., 2010; Arbiza et al., 2013). Consequently,
conservation metrics were complemented with additional
functional genomics features, such as the sequence and genic
context, transcription factor binding profiles (Johnson et al.,
2007), histone modification data (Zhang et al., 2010) and DNase

I hypersensitive sites (Boyle et al., 2008) in an attempt to
improve prediction quality. Based on these rich data sets, a
variety of ensemble classifiers were developed using various
machine learning approaches that aim to distinguish neutral
from pathogenic variants, including GWAVA (Ritchie et al.,
2014), CADD (Kircher et al., 2014), FATHMM (Shihab et al.,
2013, 2015; Rogers et al., 2018), DANN (Quang et al., 2015),
DIVAN (Chen et al., 2016), and Genomiser (Smedley et al., 2016)
(Table 4).

In contrast, other methods, such as gkm-SVM (Lee et al.,
2015) and DeepSEA (Zhou and Troyanskaya, 2015) have been
developed to predict regulatory elements based on primary
sequence alone. Trained on publically available cell type-specific
chromatin data provided by ENCODE (The ENCODE Project
Consortium, 2012) and the Roadmap Epigenomics Project
(Roadmap Epigenomics Consortium et al., 2015) as well as
transcription factor binding patterns accessible via JASPAR
(Khan et al., 2018), these algorithms predict to what extent a
genetic variant will cause changes to the local chromatin profiles
and how these effects translate into functional consequences.
The resulting data demonstrate that inferring consequences
from functional genomics data is highly cell type and context
specific and relies on biologically appropriate training sets. These
convincing findings incentivize the generation of functional
genomics data from carefully phenotyped human tissues
involved in drug ADME to derive tissue-specific regulatory lexica
and we envision that training machine learning approaches on
these data sets will substantially increase the power of regulatory
pharmacogenetic prediction classifiers.

As with coding variants, the use of potentially biased training
sets and multi-dimensional circularity between training and
test data constitutes an inherent problem for current variant
prediction tools (Grimm et al., 2015). For instance, a variety of
algorithms consider common variants from the 1000 Genomes
project as functionally neutral control sets for model training.
However, while these variants are likely to be depleted of
pathogenic variants in haploinsufficient genes, many common
variants entail functional consequences in their respective gene
product, particularly if the gene is rapidly evolving, such as
many CYP genes. Similar problems arise when the model is
trained using phenotype associated GWAS polymorphisms as
functional variant sets, as only 5.5% of GWAS index SNPs are
estimated to be causal whereas the remainder is only in linkage
disequilibrium with the true functional variant in the locus (Farh
et al., 2015).

To overcome these problems, unsupervised approaches
have been developed that do not rely on the labeling of
training data, thereby reducing the dependence on preexisting
variant classifications and existing models of mutation. These
unsupervised models, such as GenoCanyon (Lu et al., 2015)
and Eigen (Ionita-Laza et al., 2016), represent powerful tools
for the genome-wide interpretation of variants. However, as
they are calibrated on genome-wide data, it remains to be
determined whether gene class-specific peculiarities, such as low
evolutionary conservation in ADME genes, might affect the
predictive accuracy of these approaches for pharmacogenetic
applications.
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TABLE 4 | Algorithms for the functional interpretation of regulatory variants.

Algorithm Model Application Model training Features References

FATHMM HMM Pathogenic

variants

HGMD regulatory variants as pathogenic

set and common 1000G variants as

controls

Evolutionary conservation data (PhastCons and

PhyloP), chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data, genome segmentation, frequency

data (1000G and ESP) and information about genic

and sequence context

Shihab et al.,

2013, 2015;

Rogers et al., 2018

GWAVA RF Pathogenic

variants

HGMD regulatory variants as pathogenic

set and common 1000G variants as

controls

Evolutionary conservation data (GERP), chromatin

accessibility (DNase-HSS and FAIRE-Seq), TF

binding and histone modification ChIP-Seq data,

genome segmentation, frequency data (1000G) and

information about genic and sequence context

Ritchie et al., 2014

CADD SVM Deleterious

variants

Sites with MAF<5% where for which the

human genome differed from the inferred

human-chimp ancestral genome and

equal number of simulated variants

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS and FAIRE-Seq), TF binding and

histone modification ChIP-Seq data, genome

segmentation, frequency data (1000G and ESP)

and information about genic and sequence context

Kircher et al., 2014

DANN NN Deleterious

variants

Same as CADD but using deep neural networks instead of linear SVM. Quang et al., 2015

DeepSEA NN Variants that affect

gene expression

HGMD regulatory variants, eQTLs and

NHGRI GWAS phenotype-associated

SNPs

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS and FAIRE-Seq), TF binding and

histone modification ChIP-Seq data

Zhou and

Troyanskaya, 2015

gkm-SVM SVM Variants that affect

gene expression

Tissue-specific enhancer sequences

marked by H3K4me1 from length-, GC

content- and repeat-matched random

control

Definition of tissue-specific regulatory dictionary

based on chromatin accessibility (DNase-HSS) and

H3K4me1 ChIP-Seq data

Lee et al., 2015

fitCons INSIGHT Prediction of

cis-regulatory

elements

Unsupervised classifier that clusters

genomic regions on the basis of functional

genomic data and then estimates a

probability of fitness consequences for

each group from associated patterns of

genetic polymorphism and divergence.

Evolutionary conservation data (GERP, PhastCons

and PhyloP), chromatin accessibility (DNase-HSS),

TF binding and histone modification ChIP-Seq data,

genome segmentation and RNA-Seq data

Gulko et al., 2015

GenoCanyon US Identification of

functional regions

Unsupervised classifier based on the

estimated proportion of functional regions

in the human genome.

Evolutionary conservation data (GERP and PhyloP),

chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data

Lu et al., 2015

DIVAN EL Disease-specific

risk variants

Disease-specific regulatory NHGRI GWAS

SNPs and common 1000G variants or

benign GWAS SNPs as controls

Chromatin accessibility (DNase-HSS and

FAIRE-Seq), TF binding and histone modification

ChIP-Seq data

Chen et al., 2016

Genomiser RF Mendelian disease Sites with MAF<5% where for which the

human genome differed from the inferred

human-chimp ancestral genome as

functionally neutral variation and 453

positive variants based on literature review

Evolutionary conservation data (GERP++,

PhastCons and PhyloP), chromatin accessibility

(DNase-HSS), TF binding and histone modification

ChIP-Seq data, frequency data (1000G and ESP)

and information about enhancer context from

FANTOM5

Smedley et al.,

2016

Eigen US Effect of variants

on gene

expression and

disease risk

Unsupervised classifier based on the

blockwise conditional independence

between annotations given the functional

impact of the variant.

Evolutionary conservation data (GERP, PhastCons

and PhyloP), chromatin accessibility (DNase-HSS

and FAIRE-Seq), TF binding and histone

modification ChIP-Seq data and frequency data

(1000G)

Ionita-Laza et al.,

2016

RF, random forest; SVM, support vector machine; HMM, hidden Markov model; EL, ensemble learning; NN, neural networks; INSIGHT, Inference of Natural Selection from Interspersed

Genomically Coherent Elements Gronau et al., 2011; US, unsupervised; HGMD, Human Gene Mutation Database; 1000G, 1000 Genomes Project; ESP, Exome Sequencing Project; TF,

transcription factor; HSS, hypersensitive site; FAIRE, Formaldehyde-Assisted Isolation of Regulatory Elements Giresi et al., 2007; NHGRI, National Human Genome Research Institute.

CONCLUSIONS

Technical progress in NGS technology has resulted in
its routine application in medical genetics and clinical
diagnostics. In contrast, clinical implementation of NGS-based

pharmacogenomics is largely lagging behind (Lauschke and
Ingelman-Sundberg, 2016b; Ji et al., 2018). Most importantly, in
order to utilize the major advantage of NGS-based genotyping,
which is the discovery of the entire panorama of the individual’s
genetic portfolio, tools have to be in place, which allow to
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translate these variability data into functional consequences
and clinical recommendations. Whereas, the identification of
rare putatively deleterious mutations in congenital diseases is
aided by clear phenotypic alterations of the affected patient
and the possibility to perform comparative genomic analyses of
unaffected family members, pharmacogenomic phenotypes are
generally more difficult to detect as they only present in a given
context, such as exposure to specific medications. In the absence
of drug response associations or experimental characterizations
that support the functional interpretation of rare variants, there
is thus an urgent need for reliable computational prediction tools
to fill this space.

Importantly, recent developments in computational variant
effect prediction methods promise to narrow the gap to
meet the exacting demands on genomics applications in the
clinics. Machine learning constitutes an important tool kit to
fully harness the power of large data sets provided by NGS.
However, these approaches rely on accurate labeling of input
variants, i.e., training data need to be correctly classified into
deleterious and functionally neutral variants. Thus, we advocate

for approaches that leverage smaller data sets of variants
for which comprehensive experimental or functional genomic
data is available instead of training algorithms on large but
functionally poorly annotated data, such as treating all common
polymorphisms identified in the 1000 Genomes Project as
functionally neutral. In addition, we endorse previous appeals for
the sharing of codes and data sets, which will enable comparative
benchmarking of newly developed tools and algorithms and will
accelerate research progress within the area of computational
pharmacogenomics and beyond (Kalinin et al., 2018).

The functional consequences of missense variants have
been most extensively studied. Respective methods base
their predictions on evolutionary conservation and structural
information of the polypeptide encoded by the respective gene.
Importantly, while evolutionary conservation is a suitable
measure to inform about the deleteriousness of a variant, i.e., its
effect on organismal fitness, it is not suitable for the prediction
of variant effects in genes under low selective pressure, such as
most pharmacogenes. Recognition of these conceptual problems
resulted in the development of computational predictors trained

FIGURE 2 | The past, present and future of pharmacogenetic phenotype predictions. (A) Conventionally, pharmacogenetic predictions were based on the

interrogation of few common candidate SNPs, whose functional effects were predicted based on extensive literature evidence, resulting in high predictive accuracy

but only few considered variations. (B) With increasing prevalence of whole exome sequencing (WES), a multitude of pharmacogenetic variants with unknown

functional relevance are identified. These variants can be interpreted using computational methods. However, current algorithms are generally trained to detect the

pathogenicity rather than the functionality of queried variants, resulting in overall relatively low predictive accuracy. Furthermore, only effects of missense and nonsense

variants are evaluated. (C) In the near future, whole genome sequencing (WGS) will become the predominant genotyping methodology, revealing not only coding

variants but also variants in regulatory regions and introns. To facilitate interpretation of this data, we envision that pharmacogenetic predictors will be directly trained

on functionally annotated ADME data sets. Emerging technologies, such as deep mutational scanning for the systematic interrogation of missense variants or

mutagenesis screens in microphysiological systems (MPS) for the characterization of variants in regulatory regions, provide powerful tools to generate these data,

boosting the predictive performance of data hungry machine learning tools. These advances allow to go beyond the interpretation of missense and nonsense variants

and to include also non-coding and regulatory variations into pharmacogenetic assessments.
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specifically on ADME missense variants (Zhou et al., 2018). We
envision that these approaches will become more powerful with
increasing functionally annotated pharmacogenetic variant data.

Furthermore, multiple strategies have been developed to
analyze the functional impact of variants in non-coding regions
of the genome, which are increasingly recognized as a substantial
contributor to inter-individual variability. An increasing number
of algorithms is by now available that base their predictions
on a multitude of different parameters, including effects on
miRNA binding or translational efficiency, modulation of
splicing and impacts on transcriptional events by disruption
of transcription factor binding sites or polymerase loading
(Figure 1). While these developments provide a methodological
arsenal to comprehensively characterize all different classes
of genetic variants, these methods are generally trained on
pathogenic variant sets and have not been benchmarked
on independent data sets. Thus, their predictive power for
pharmacogenetic assessments remains to be evaluated.

The prediction of drug metabolism phenotypes based on the
genotype of the individual has made tremendous progress over
the last decades (Figure 2). Conventional approaches use data
from few candidate variants for which substantial in vitro or in
vivo characterization data was available to predict drug response.
While this strategy has been successful in incorporating common
pharmacogenetic variability into clinical decision-making, they
fail to address functional effects of the vast extent of rare
genetic variants. To also include rare variants, pilot programs
were initiated in which WES was used to comprehensively
interrogate the genetic landscape of pharmacogenomic loci
(Bielinski et al., 2014). However, analyses were restricted to
pharmacogenetic missense variants and the effects of SNVs
with unknown functional relevance were interpreted using
computational models trained on pathogenic data sets with
negative impacts on the accuracy of phenotype predictions,
as discussed above. Thus, while these strategies constitute an
important step toward the further personalization of genotype-
guided treatment decisions their predictive accuracy is rather
low.

We expect that technological, methodological and analytical
progress will contribute to a further refinement of NGS-
guided drug treatment in the near future. Firstly, technological
advances will result in an increasing dissemination of WGS,
which facilitates the incorporation of the entire profile of an
individual’s genetic variability, including regulatory variants,
into pharmacogenetic predictions. Secondly, we envision
that novel high-throughput methodologies for functional
characterizations, such as deep mutational scanning, will provide
powerful approaches to generate large functionally annotated
pharmacogenetic variant data sets. In addition, recent advances
in the development of microphysiological systems (MPS) that

allow tomodel key target tissues associated with drugmetabolism
or safety provide (Ewart et al., 2018) provide promising tools
to generate tissue-specific and human-relevant data sets for
studies of gene-drug interactions (Ingelman-Sundberg and
Lauschke, 2018). Using this integrated wealth of functional
pharmacogenetic data to train machine learning models aspires
to provide high-accuracy predictions based on the entire genetic
variability landscape of the respective patient.

Importantly, leveraging this information as guidance for
clinical decision-making promises to increase treatment
efficacy and reduce the risks of adverse events in carriers
of pharmacogenetic variants whose effects have not been
experimentally evaluated. Current market analysis estimates
suggests that implementation of artificial intelligence into the
clinical decision support toolbox might increase average life
expectancy in the Western World by 0.2–1.3 years and reduce
total health care expenditures by 5–9%, corresponding to 2
trillion to 10 trillion USD globally per year (Bughin et al.,
2017). However, in order to realize these exciting prospects,
there is a need for prospective, randomized controlled trials
that evaluate patient outcomes and cost-effectiveness of
such preemptive advice across genes, drugs and health care
systems.

In summary, computational prediction methods are essential
for the implementation of NGS into clinical decision-making.
While much progress has been made and a plethora of
conceptually diverse tools is already available, there is a need
to develop specialized methods that are optimized for the
prediction of variant functionality rather than pathogenicity and
are calibrated specifically on pharmacogenetic data. We envision
that technological, methodological and analytical advances will
soon allow to comprehensively predict variant effects with
sufficient accuracy to justify the design of trials in which the
clinical value of NGS-guided treatment decisions can be tested
in a prospective setting.
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A New Panel-Based Next-Generation
Sequencing Method for ADME Genes
Reveals Novel Associations of
Common and Rare Variants With
Expression in a Human Liver Cohort
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Tim Scheurenbrand3,4, Elke Schaeffeler1,2, Saskia Biskup3,4, Matthias Schwab1,2,5,6 and
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1 Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, 2 Medical School, University of
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We developed a panel-based NGS pipeline for comprehensive analysis of 340 genes
involved in absorption, distribution, metabolism and excretion (ADME) of drugs, other
xenobiotics, and endogenous substances. The 340 genes comprised phase I and
II enzymes, drug transporters and regulator/modifier genes within their entire coding
regions, adjacent intron regions and 5′ and 3′UTR regions, resulting in a total panel
size of 1,382 kbp. We applied the ADME NGS panel to sequence genomic DNA from
150 Caucasian liver donors with available comprehensive gene expression data. This
revealed an average read-depth of 343 (range 27–811), while 99% of the 340 genes
were covered on average at least 100-fold. Direct comparison of variant annotation
with 363 available genotypes determined independently by other methods revealed an
overall accuracy of >99%. Of 15,727 SNV and small INDEL variants, 12,022 had a minor
allele frequency (MAF) below 2%, including 8,937 singletons. In total we found 7,273
novel variants. Functional predictions were computed for coding variants (n = 4,017) by
three algorithms (Polyphen 2, Provean, and SIFT), resulting in 1,466 variants (36.5%)
concordantly predicted to be damaging, while 1,019 variants (25.4%) were predicted to
be tolerable. In agreement with other studies we found that less common variants were
enriched for deleterious variants. Cis-eQTL analysis of variants with (MAF≥ 2%) revealed
significant associations for 90 variants in 31 genes after Bonferroni correction, most of
which were located in non-coding regions. For less common variants (MAF < 2%),
we applied the SKAT-O test and identified significant associations to gene expression
for ADH1C and GSTO1. Moreover, our data allow comparison of functional predictions
with additional phenotypic data to prioritize variants for further analysis.

Keywords: ADME, next generation sequencing, pharmacogenomics, eQTL analysis, rare variants

Frontiers in Genetics | www.frontiersin.org 1 January 2019 | Volume 10 | Article 775

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00007
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00007&domain=pdf&date_stamp=2019-01-31
https://www.frontiersin.org/articles/10.3389/fgene.2019.00007/full
http://loop.frontiersin.org/people/9293/overview
http://loop.frontiersin.org/people/649624/overview
http://loop.frontiersin.org/people/96724/overview
http://loop.frontiersin.org/people/380899/overview
http://loop.frontiersin.org/people/31424/overview
http://loop.frontiersin.org/people/349536/overview
http://loop.frontiersin.org/people/21265/overview
http://loop.frontiersin.org/people/9601/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00007 January 29, 2019 Time: 16:59 # 2

Klein et al. NGS Analysis of ADME Genes

INTRODUCTION

Genetic variation in genes that function in the absorption,
distribution, metabolism, and elimination (ADME) of drugs
contributes significantly to the interindividual variability in
efficacy and toxicity of numerous drugs from practically all
therapeutic categories. In the past half century, pharmacogenetic
research has unraveled many clinically meaningful associations
between germline genetic variants and pharmacokinetic or
drug response phenotypes (Meyer, 2004; Zanger and Schwab,
2013; Alfirevic and Pirmohamed, 2017). Clinical implementation
of this knowledge is currently being pursued worldwide by
several consortia (Caudle et al., 2013; Dunnenberger et al.,
2015; Relling and Evans, 2015; Cecchin et al., 2017; Swen
et al., 2018). For example, the Clinical Pharmacogenetics
Implementation Consortium (CPIC) has so far issued 65
dosing guidelines for 38 drugs and 15 relevant genes (October
20181). Until recently, pharmacogenetics has mainly focused
on common genetic variants, which can be relatively easily
assessed for association with pharmacokinetic or drug response
phenotypes. However, a considerable proportion of genetic
variability remains unexplained even for well-studied genes like
CYP2D6, as recently shown by twin studies (Matthaei et al.,
2015). Currently, it is widely assumed that rare deleterious
variants fill this gap and contribute significantly to functional
variability, which is further supported by the fact that rare
variants are enriched for deleterious alleles due to purifying
selection (1000 Genomes Project Consortium et al., 2012;
Lek et al., 2016; Ingelman-Sundberg et al., 2018). Indeed,
with the increasing availability of next-generation-sequencing
(NGS) technology, several studies explored genetic variability
of pharmacologically relevant “pharmacogenes” and revealed
large numbers of rare variants, most of which were previously
unknown (Tennessen et al., 2012; Fujikura et al., 2015; Han
et al., 2016; Kozyra et al., 2016; Hovelson et al., 2017;
Schärfe et al., 2017). For statistical reasons it is intrinsically
more difficult to investigate the functional significance of
rare variants as compared to common variants, especially
regarding pharmacogenetic phenotypes, for which studies
including relevant phenotypic data are essentially lacking. On
the other hand, in vitro testing of thousands of variants is
currently prohibitive for time and financial reasons. Current
hopes to integrate rare variants into clinical pharmacogenomics
therefore rely mainly on computational prediction tools, many
of which are publically available (Ingelman-Sundberg et al.,
2018; Zhou et al., 2018a). Computational predictions of
“damaging” or “loss-of-function” (LOF) versus “tolerable” (TOL)
functionality performed on ADME rare variants detected in
genetic screens indicated that up to 30% of drug response

Abbreviations: ADME, Absorption Distribution Metabolism Excretion; bp,
basepair; CNV, copy number variant; eQTL, expression quantitative trait
loci; HWE, Hardy–Weinberg equilibrium; INDEL, insertion/deletion; Kbp, kilo
basepair; LOF, loss of function; MAF, minor allele frequency; NGS, next
generation sequencing; RFLP, restriction fragment length polymorphism; SNP,
single nucleotide polymorphism; SNV, single nucleotide variant; TOL, tolerated;
UTR, untranslated region.
1www.pharmgkb.org/guidelines

variability could be due to rare variants and that likely
every patient carries at least one “actionable” pharmacogenetic
variant (Crosslin et al., 2015; Ji et al., 2016). However, data
on the validity of functional prediction are scarce and their
performance as well as the true contribution of rare variants
to pharmacogenetics variability remains unclear, especially since
current predictive algorithms rely largely on principles of
evolutionary conservation, which may be more appropriate
in the context of disease than for drug metabolism and
response.

In this study we have developed a panel-based NGS pipeline
for comprehensive sequence analysis of 340 ADME genes
comprising all major genes known to be involved in phase 1
and phase 2 drug metabolism, drug transport and its regulation,
as well as numerous additional genes of potential interest in
this context. We applied our ADME NGS panel on genomic
DNA from 150 human liver samples that we have previously
genotyped by other methods and for which comprehensive
mRNA expression data and some additional ADME phenotypes
are available. This allowed us to directly compare genotype with
expression for common and rare variants, unraveling numerous
novel associations and potential candidates. In addition, we
performed functional prediction for subsets of variants and
exemplarily compared these with hepatic phenotype. This type
of analysis, which has rarely been done, should be helpful to
improve functional prediction and allow to prioritization of
interesting rare variants for further analysis.

MATERIALS AND METHODS

Patient DNA and Liver Samples
Liver tissues and corresponding blood samples were previously
collected from patients of White European descent undergoing
liver surgery at the Department of General, Visceral, and
Transplantation Surgery (A. K. Nuessler, P. Neuhaus, Campus
Virchow, University Medical Center Charité, Humboldt
University Berlin, Germany) (Klein et al., 2012). The study
protocol was approved by the ethics committees of the medical
faculties of the Charité, Humboldt University, and the University
of Tübingen. The study was conducted in accordance with the
Declaration of Helsinki, and written informed consent was
obtained from each patient. Only non-tumorous tissue was
collected, as confirmed by histological examination, and stored
at −80◦C. Available patient documentation includes sex, age,
smoking habits, alcohol consumption, presurgery medication,
diagnosis leading to liver resection, and serological liver function
parameters. Samples from patients with hepatitis, cirrhosis, or
chronic alcohol abuse were excluded. A summary of the data is
presented in Supplementary Table S1.

Phenotypic data were available from previous studies.
Genome-wide mRNA expression profiling was previously
performed using Illumina Human-WG6v2 Expression BeadChip
(see below). For selected genes quantitative mRNA levels were
determined by real-time PCR, protein levels by Western blot,
and enzyme activity levels by mass spectrometry (Supplementary
Table S2).
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Genomic DNA was isolated from corresponding blood
samples as described previously (Gomes et al., 2009). Quality
and concentration of gDNA were determined using both, the
Qubit Fluorometric Quantitation (Thermo Fisher Scientific,
Dreieich, Germany) and Nanodrop ND-8000 (Thermo Fisher
Scientific, Dreieich, Germany). Gene expression and genotyping
data assessed by Human-WG6v2 Expression BeadChip and
HumanHap300 Genotyping BeadChip (Illumina, Eindhoven,
Netherlands) were preprocessed as previously described
(Schröder et al., 2013) and the data are accessible through GEO
Series accession numbers GSE32504 and GSE39036, respectively.

Targeted ADME NGS Panel Sequencing
Genomic DNA was enriched using a custom design Agilent
SureSelect XT in-solution kit (Agilent Technologies, Santa
Clara, CA, United States). The design of the PGX panel
for all relevant ADME classified and ADME related genes
(340 genes in total) included publically available gene lists of
PharmaADME.org2 (CORE/EXTEND, n = 236), pharmGKB3

(Whirl-Carrillo et al., 2012); [very important pharmacogenes
(VIP), n = 36], as well as additional genes with confirmed or
putative ADME-related function according to literature search
(n = 104; Supplementary Table S2). For analysis, the genes
were assorted into functional groups as follows: ATP-binding
cassette transporters (ABC; n = 45), solute carrier transporters,
solute carrier organic anion transporters, and ion channels
(SLC/SLCO; n = 64), members of phase I metabolism excluding
cytochrome P450 and other modifying enzymes (Phase1: n = 36),
members of phase II metabolism (Phase 2; n = 53), cytochrome
P450s/modifying enzymes (CYP/modifiers; n = 53), nuclear
receptors/transcription regulators (NR/TR; n = 46), and genes
of other background and potentially related to ADME (others;
n = 43) (Figure 1B and Supplementary Table S2). Positions
of exon regions, 3′ and 5′ UTR (untranslated regions) were
based on RefSeq major transcripts sequences (GRCh37; hg19;
UCSC genome browser). Exon sizes were extended by 20
nucleotides on each side. Sequence of very short exons was
symmetrically increased to at least 160 nucleotides. For selected
genes 5′ regions were extended to cover 2 kbp (n = 29). The
total number of exons was 4,210 and total target size reached
1,382 kbp (Supplementary Table S2). Panel details are available
on demand.

Target capturing was specifically designed for NGS of selected
regions and DNA libraries were generated using Agilent in-
solution target capture technology from up to 1 µg high quality
genomic DNA for each sample. NGS was carried out on the
Illumina HiSeq2500 system (Illumina Inc., San Diego, CA,
United States) at high depth with 2 × 100 bps paired-end reads.
Raw sequencing reads generated by the Illumina platform were
demultiplexed using Illumina bcl2fastq (1.8.2) (Illumina, San
Diego, CA, United States). Adapter sequences were removed with
cutadapt and the trimmed reads mapped to the human reference
genome (GRCh37 hg19) using the Burrows Wheeler Aligner
(BWA-mem 0.7.2; Li and Durbin, 2010). Reads mapping to more

2http://pharmaadme.org
3https://www.pharmgkb.org/

than one location with identical mapping scores were discarded
(in house software). Read duplicates likely resulting from PCR
amplification were removed (samtools 0.1.18). Variants were
called using samtools and varscan (2.3.5)4. Technical artifacts
were removed (in-house software) and the remaining variants
were annotated based on several internal and external databases.
We created a read count matrix for sequenced targets and
150 samples using the R package cn.mops.1.12.0 and the BAM
files to assess the quality of coverage per gene and per target
region. Approximately 5.9 million on target reads were generated
per sample with a mean mapping quality of 58.2 and a mean
coverage of 343 per target site. A Frequentist or a Bayesian
algorithm was applied to call SNVs and small insertions/deletions
(INDELs). Detection of insertions is limited by read length and
no insertions above 50 bp were observed. Variant annotations
were retrieved from UCSC genome data browser5, dbSNP
build151 (March 22, 2018), and Sequence Ontology (SO) terms
to describe the effect of each variant on genes in terms of
transcript structure. Enrichment and sequencing procedure were
established, validated, and provided by CeGaT GmbH, Tübingen,
Germany. CeGaT is accredited by DAkkS according to DIN EN
ISO 15189:2014, by the College of American Pathologists (CAP)
and CLIA-certified (Dohrn et al., 2017). Sequence variant data
has been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession
number EGAS00001003426. Further information about EGA
can be found on https://ega-archive.org (Lappalainen et al.,
2015).

High Quality Variants
Only variants within the predefined target regions were selected
and further analyzed (n = 16,928). Variant calls with sequencing
coverage below 20× were regarded as invalid. Moreover,
heterozygous calls were regarded as invalid when variant allele
ratios were <5%. Invariant positions and variants with less than
70% valid values in all samples were excluded. Furthermore,
696 variants with HWE p-values < 10−5 were considered
suspicious and consequently excluded from all subsequent
analyses. Finally, 13,838 SNVs and 1,889 INDELs were further
investigated in this work. Genedata Profiler Analyst Module
(V12.0.2.; Genedata AG, Basel, Switzerland) and GraphPad Prism
(V5.04; GraphPad Software Inc., La Jolla, CA, United States)
were used for data filtering, visualization, and basic statistical
calculations.

Global Validation
Evaluation of ADME panel sequencing data was performed by
direct comparison of sample genotypes to available genome
wide SNP data (Illumina HumanHAP300 SNP; GEO Series
accession number GSE39036; Schröder et al., 2013) as well as
genotype data of 87 individual SNVs determinations obtained
with several other genotyping methods in former studies (RFLP,
Sanger sequencing, TaqMan allelic discrimination, MALDI-TOF,
and other arrays) from the same sample set. Array variant data

4http://dkoboldt.github.io/varscan
5https://genome.ucsc.edu/cgi-bin/hgVai

Frontiers in Genetics | www.frontiersin.org 3 January 2019 | Volume 10 | Article 777

http://pharmaadme.org/
http://pharmaadme.org
https://www.pharmgkb.org/
https://ega-archive.org
http://dkoboldt.github.io/varscan
https://genome.ucsc.edu/cgi-bin/hgVai
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00007 January 29, 2019 Time: 16:59 # 4

Klein et al. NGS Analysis of ADME Genes

FIGURE 1 | Study overview. (A) Schematic overview of the workflow for the ADME NGS panel sequencing. cov, coverage; NAF, novel allele frequency; HWE,
Hardy–Weinberg equilibrium; MAF, minor allele frequency; eQTL, expression quantitative trait loci. (B) Composition of ADME NGS target genes displayed in % of
total number (n = 340). Number of target genes within a family is given in brackets. Sum of target size is given in kbp. Major functional classes were defined as Phase
1, phase 1 enzymes; CYP/modifiers, cytochrome P450 and modifying enzymes; Phase 2, phase 2 enzymes; ABC, ABC transporters; SLC/SLCO, SLC/SLCO
transporters and ion channels; NR/TR, nuclear receptors and transcriptional regulators; Others, other genes. For further details see Supplementary Table S1.
(C) Ideogram of the genes included in ADME NGS panel. Target genes (n = 340) are denoted by red arrows besides chromosomes (GRCh37).

were “lifted” to GRCh37 (hg19), and only SNVs within the
target regions defined above and with HWE p-value > 10−5

were extracted (n = 276). Finally, genotype data for 363 variants
were available for validation. Concordance of genotype data
from ADME NGS and results from orthogonal methods was
evaluated by computing percentage of identical genotype calls
over all variants and samples. Variant positions within the
above defined target boundaries were extracted from publically

available databases from the Exome Aggregation Consortium
ExAC6 (Lek et al., 2016) and 1000 Genomes project7 (1000
Genomes Project Consortium et al., 2015). In total, 11,558
and 68,918 variants were retrieved in the demanded genomic
regions from 1000G and ExAC, respectively. Chromosomal

6http://exac.broadinstitute.org/
7http://www.internationalgenome.org/
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position and nucleotide change (reference/alternative) were
used to identify corresponding variants in the ADME NGS
panel data. After adjusting frequency data to MAF numbers
ranging between 0 and 50%, MAF from European (EUR,
1000G) or non-Finnish European (NFE, ExAC) were compared
to observed MAF from our cohort. In addition, several well
known variants in CYP2D6, CYP2C9, CYP2C19 and CYP2B6,
NAT2 and DPYD were confirmed by Sanger sequencing.
A concordance of 100% was observed covering 57 SNVs in 19
samples.

In silico Prediction
The impact of coding variants on protein function was
predicted using Polyphen 2 (PP28 Adzhubei et al., 2013) as
well as the Provean Human Genome Variants tool [Protein
Variation Effect Analyzer (PROV)9; Choi et al., 2012], providing
Provean and in addition SIFT (Sorting Intolerant from Tolerant;
Sim et al., 2012) scores. All algorithms are based, among
other features, on sequence conservation and were used
with default settings. For a total of 4,017 coding variants
including missense (n = 3,893), frameshift (n = 37), initiator
codon (n = 7), stop codon (n = 46) and other coding
variants (Table 1), prediction was performed using chromosomal
genomic positions, reference and variant nucleotide. Functional
predictions of the type LOF versus tolerated (TOL) was
retrieved from Provean (cutoff 2.5; deleterious/neutral), SIFT
(cutoff 0.05; damaging/tolerated) and Polyphen2 (probably
and possibly damaging/benign). It must be pointed out that
frameshift variants (n = 37) as well as mutations of stop
codons (gain/loss; n = 46) are not predictable by these
tools.

Cis-eQTL Analyses
Cis-eQTL analysis between the 15,727 variants (13,838 SNVs and
1,889 INDELs) and their corresponding gene were performed

8http://genetics.bwh.harvard.edu/pph2/
9http://provean.jcvi.org/index.php

with statistical software R-3.5.0 (R Core Team, 2018) and
additional packages SNPassoc (v1.9-2; González et al., 2014),
SKAT (v1.3.2.1; Lee, 2017), and illuminaHumanv2.db (v1.26.0;
Dunning et al., 2015).

mRNA expression levels were assessed by Human-WG6v2
Expression BeadChip (Illumina, Eindhoven, Netherlands) and
preprocessed as described (Schröder et al., 2013). Probe sets
were re-annotated using the R package illuminaHumanv2.db
(Dunning et al., 2015). Only probe sets with “good” or “perfect”
probe quality as defined by illuminaHumanv2fullReannotation
were considered for the eQTL analyses. Of the 340 ADME and
ADME related genes described above, 303 genes (89%) were
represented on the Human-WG6v2 Expression BeadChip with
at least one “good” or “perfect” probe set. If several “good” or
“perfect” probe sets were annotated to a gene, data of these
entire probe sets (i.e., log2 normalized expression signals) were
averaged, finally resulting in an expression matrix of size 303
genes × 150 samples for the eQTL analyses. Of the 15,727
variants, 14,294 (90.9%) were annotated to one of the 303 genes.

For individual eQTL analyses, only variants with MAF ≥ 2%
and annotated to one of the 303 genes (n = 3,241) were
considered, in order to avoid testing variants with very few
minor allele carriers (a MAF ≥ 2% in 150 patients corresponds
to at least 3 minor allele carriers; in our dataset, all variants
with MAF ≥ 2% actually comprised at least 4 minor allele
carriers). For 8 of the 303 genes, only variants with MAF < 2%
were annotated in the ADME NGS panel (ABCB9, ALDH2,
CYP11A1, GSTK1, GSTM1, GSTT1, PRMT1, and SULT1A4),
leaving 295 genes and 3,241 variants for individual cis-eQTL
analyses. These analyses were performed using the generalized
linear model framework of R-package SNPassoc (González et al.,
2014), considering four different genetic models: codominant,
dominant, recessive, and additive. Only the minimal p-value of
the four genetic models for each SNP was reported. Besides
univariate analyses, cis-effects of variants on mRNA expression
were analyzed controlling for 10 covariates [sex, age, smoking,
alcohol consumption, diagnosis, C-reactive protein (CRP) level,
cholestatic liver disease, presurgical medication (no drugs, P450

TABLE 1 | Structural classification of ADME panel variants (n = 15,727).

Coding (n = 6,058; 38.5%) Non-coding (n = 9,669; 61.5%)

Classa Variant Variant Classa Variant Variant

(knownb) (novelb) (knownb) (novelb)

Initiator_cod 3 4 Upstream 476 359

Missense 1,610 2,283 5′UTR 501 499

Stop_gained 22 22 Non-coding exon 95 34

Stop_lost 2 Intron 1,166 1,441

Synonymous 1,219 764 Splice 296 520

Inframe 29 28 3′UTR 2,922 1,261

Frameshift 19 18 Downstream 68 31

Other codingc 26 9

Total 2,930 (48%) 3138 (52%) Total 5,524 (57%) 4,145 (43%)

aClassification nomenclature according to ENSEMBLE variation sequence ontology terms. bKnown/novel: with/without dbSNP database identifier. c Including: coding-
exon-variant, stop-retained.
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FIGURE 2 | Variability of gene families. (A) Distribution of known and novel
variants in ADME gene families. The numbers of observed known and novel
variants (including SNVs and INDELs) per gene are shown for the seven major
functional classes of ADME genes defined in Figure 1. Open boxes, known
variants; filled boxes, novel variants; boxes show median with 75th and 25th
percentiles and whiskers represent 10th and 90th percentiles. Lower part:
statistical significance calculated by Kruskal–Wallis with Dunn’s multiple
comparison test of total number of variants per genes between family groups:
∗P ≤ 0.05, ∗∗∗P ≤ 0.001. (B) Functional categorization of variants. Total
number and proportion of variants observed in each functional class is shown
separately for known and novel variants. Functional classes are defined as
follows: 5′UTR, upstream and 5′ untranslated region; MIS, initiator codon,
missense and stop codon variants; SPLICE, variants in consensus splice site
acceptor and donor regions; 3′UTR, downstream and 3′ untranslated region;
OTHER, other functional classes (intronic, frameshift, synonymous, other
coding and non-coding variants). (C) Comparison of minor allele frequencies

(Continued)

FIGURE 2 | Continued
(MAF) between novel and known observations. Total number of known
observations with dbSNP identifier (open white bars; n = 8,454), novel
observations (filled purple bars; n = 7,273); dotted line marks MAF = 2
and 5%.

inducer and other drugs), serum total bilirubin (TBILI) level,
and serum gamma glutamyl transferase (GGT) level; see further
details in Supplementary Table S1]. We used the Bonferroni
method for multiple testing correction and set the significance
level at 0.05/3,241 = 1.54E-05.

Moreover, we performed combined cis-eQTL analyses of
the rare variants (MAF < 2%; n = 11,053) using the optimal
unified association test framework for sets of variants (SKAT-
O; Lee et al., 2012) implemented in R-package SKAT. To
be more precise, for each of the 303 genes, the association
of the set of all rare variants annotated to this gene and
the corresponding mRNA expression data was investigated
applying the SKAT-O test with standard weights. The
same 10 covariates as in the eQTL analysis of common
variants were used for an analogous multivariate SKAT-O
analysis. For combined cis-eQTL analysis of rare variants, the
Bonferroni-corrected significance level was set to 0.05/303 =
1.65E-04.

RESULTS

Development and Performance of the
Targeted ADME NGS Panel
Figure 1A gives an overview of the project workflow. The
selection of genes was based on the PharmaADME.org gene
lists “core” and “extend” and the PharmGKB VIP genes and
was complemented with numerous additional genes of potential
relation to drug metabolism (Figure 1B). All 340 genes finally
included were targeted for all exons, exon/intron boundaries,
as well as 5′ and 3′UTRs. An extended 5′ region of 2 kb was
included for a group of 29 selected genes. The total panel
size comprised 1,382 kbp distributed over all chromosomes
except the Y chromosome (Figure 1C and Supplementary
Table S2). In our cohort of 150 liver samples, the gene target
regions were covered to a mean read-depth of 343× (25th
percentile = 265; 75th percentile = 398; Supplementary Figure
S1A). More than 98% of the target regions were covered
at more than 30×. The highest coverage was obtained for
UGT2B11 (average 811), while GSTT2B showed the lowest
average coverage of 27. These discrepancies did not hinder our
analysis and can be resolved in a further iteration of design.
Overall, 99% of the genes were covered on average at least
100-fold. Direct comparison of variant annotation with 363
available genotypes determined independently by other methods
revealed an overall concordance of >99% (Supplementary
Figure S2). The accuracy obtained with data derived from
the Illumina HumanHap300 genotyping platform (99.3%)
was slightly lower compared to data from other genotyping
methods (99.6%), which may be due to inaccurate genotype
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TABLE 2 | eQTL analysis: Significant associations from multivariate regression models after Bonferroni correction (only minimal p-values of four genetic models used are
listed).

Gene Varianta dbSNP151 Functional class Minimal p-valueb

ABCA5 17_67242245_G_A rs12942867 3′UTR 1.20E-08 A

17_67242551_AG_A rs321469 3′UTR 1.20E-08 A

17_67242756_G_A rs1990248 3′UTR 9.00E-08 A

17_67243289_A_T rs15886 3′UTR 1.20E-08 A

17_67260926_A_G rs12449649 Synonymous 1.00E-08 A

17_67267317_T_C rs557491 Missense 1.10E-07 A

17_67282332_T_C rs1550828 Intron 1.00E-08 A

ABCC11 16_48250011_G_A rs11863233 Intron 6.90E-11 A

16_48250026_G_T rs11863236 Missense 6.90E-11 A

16_48250218_T_C rs28654935 Intron 6.90E-11 A

16_48256602_T_C rs16945974 Synonymous 6.90E-11 A

16_48265777_C_T rs16945988 Missense 6.90E-11 A

16_48269120_TAGAGATGCAA_T rs398088092 Upstream 3.20E-10 C

16_48269140_AAGAGATGCAA_A Upstream 1.80E-09 A

16_48269561_A_G rs10521167 Upstream 6.90E-11 A

16_48269918_T_C rs16946006 Upstream 6.90E-11 A

16_48270429_C_T rs9926206 Upstream 6.90E-11 A

16_48270508_T_C rs9934833 Upstream 6.90E-11 A

16_48270574_A_G rs9932328 Upstream 6.90E-11 A

AOC1 7_150553605_C_T rs10156191 Missense 8.50E-06 A

7_150555915_A_G rs10893 Synonymous 3.40E-08 R

7_150557622_G_A rs12179 Synonymous 6.50E-09 R

7_150557665_C_G rs1049793 Missense 6.50E-09 R

7_150558366_C_T rs12539 3′UTR 6.30E-09 D

ALDH6A1 14_74527190_A_G rs8204 3′UTR 1.40E-05 C

ARNT 1_150783934_G_GCACA rs71580328 3′UTR 1.90E-10 D

1_150783934_G_GCACACA rs71580328 3′UTR 5.80E-10 C

1_150783985_T_C rs11552229 3′UTR 3.10E-12 A

1_150804401_G_GA rs200891935 Intron 4.60E-10 C

1_150808889_C_G rs2228099 Synonymous 6.70E-12 A

1_150850904_CA_C rs10305645 Upstream 1.50E-11 D

ARSA 22_51062832_G_A rs8142033 3′UTR 9.10E-15 A

22_51063477_T_C rs6151429 3′UTR 3.70E-18 A

22_51064039_G_C rs743616 Missense 6.40E-07 A

22_51064416_T_C rs2071421 Missense 7.30E-12 A

CAV1 7_116200587_C_T rs1049337 3′UTR 2.50E-16 A

CYP2D6 22_42528382_C_G rs1080985 Upstream 2.40E-06 D

CYP2R1 11_14900931_G_A rs117913124 Synonymous 1.10E-05 D

CYP3A5 7_99245914_A_G rs15524 3′UTR 2.10E-13 D

CYP4F11 19_16023318_C_G rs61175303 3′UTR 3.10E-06 C

19_16023378_G_A rs58046343 3′UTR 3.10E-06 C

19_16023619_T_C rs58153611 3′UTR 3.10E-06 C

CYP4F12 19_15791132_T_A rs2074568 Intron 1.80E-09 A

19_15793235_T_C rs2285888 Missense 8.30E-06 A

19_15807884_A_G rs593818 Missense 1.80E-06 A

EPHX2 8_27373923_T_C rs4149243 Splice_region 2.20E-08 D

8_27396208_G_A rs4149253 Synonymous 5.80E-06 C

8_27401964_A_C rs1126452 Synonymous 3.60E-12 D

8_27402074_A_G rs1042032 3′UTR 3.60E-12 D

8_27402132_T_C rs1042064 3′UTR 1.20E-12 D

FMO4 1_171311003_A_C rs1042772 3′UTR 1.70E-06 A

GPX4 19_1106477_G_C rs8178977 Intron 1.80E-09 A

19_1106615_T_C rs713041 3′UTR 6.90E-06 A

(Continued)
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TABLE 2 | Continued

Gene Varianta dbSNP151 Functional class Minimal p-valueb

GPX7 1_53074532_C_A rs1047635 3′UTR 2.50E-23 C

GSR 8_30535660_C_A rs3594 3′UTR 1.10E-15 A

8_30536581_A_G rs1138054 3′UTR 2.90E-07 A

GSTM2 1_110210780_C_G rs530021 Splice_region 6.10E-07 A

GSTO2 10_106034491_A_G rs2297235 5′UTR 1.00E-12 A

10_106037894_T_C rs157077 Intron 2.40E-08 A

GSTZ1 14_77788908_G_A rs2363643 Intron 1.40E-06 A

14_77793207_G_A rs7975 Missense 8.70E-06 A

NUDT8 11_67395714_C_T rs7124513 Synonymous 2.50E-07 A

PIAS2 18_44390536_T_C rs17472 3′UTR 3.50E-07 A

18_44391566_T_TAG rs149022619 3′UTR 3.50E-07 A

PON1 7_94927924_C_T rs854552 3′UTR 1.20E-06 A

7_94953895_G_A rs705379 Upstream 1.90E-09 A

SLC22A10 11_63057925_G_A rs1790218 Stop_gained 2.50E-21 C

11_63064823_T_C rs576641 Synonymous 5.10E-19 A

11_63072310_C_T rs1201559 Missense 2.50E-21 C

11_63078986_T_C rs1404608 3′UTR 2.50E-21 C

11_63079101_AT_A rs5792282 3′UTR 4.40E-20 A

SLC29A4 7_5338714_T_C rs6950111 Synonymous 8.20E-09 A

7_5342413_T_C rs11979775 Intron 4.10E-07 D

7_5342980_C_T rs56166050 3′UTR 2.80E-06 D

SQSTM1 5_179260153_C_T rs4935 Synonymous 1.40E-13 A

5_179260213_G_A rs4797 Synonymous 2.80E-13 A

5_179264731_T_C rs10277 3′UTR 7.60E-17 A

5_179264915_G_T rs1065154 3′UTR 1.30E-15 A

SULT2A1 19_48374306_G_A rs112468411 3′UTR 3.50E-10 C

19_48374320_C_T rs112285002 3′UTR 1.50E-61 C

19_48374538_T_C rs296366 3′UTR 1.90E-64 C

19_48374551_C_G rs296365 3′UTR 5.60E-21 R

19_48389363_G_A rs296361 Intron 3.30E-34 C

UGT2A1 4_70454289_A_G rs4148312 3′UTR 5.20E-08 A

UROC1 3_126200146_A_T rs777513 3′UTR 1.40E-10 A

3_126200291_C_T rs800950 3′UTR 7.70E-07 R

3_126200403_A_C rs1799398 3′UTR 3.10E-12 A

3_126202257_G_A rs1687477 Synonymous 8.50E-06 R

VKORC1 16_31102321_C_T rs7294 3′UTR 5.50E-07 A

XRCC5 2_217012901_A_G rs207906 Synonymous 7.60E-06 D

aVariant identifier “chromosome _ position _ reference nucleotide _ variant nucleotide”. bGenetic model with minimal p-value: A, additive; R, recessive; D, dominant; C,
codominant.

calling by the array method. Further details on performance
and validation of the ADME NGS panel are presented in
the Sections “Materials and Methods” and Supplementary
Material.

Analysis of DNA Variants
A total of 16,928 genetic variants were detected within the
defined target regions. Of these, 1,201 were excluded from
further analysis because of low genotype quality (n = 505)
or due to HWE p-values below 10−5 (n = 696). The
remaining 15,727 variants comprised 13,838 SNV and 1,889
variants classified as small insertions or deletions (INDELs).
The length changes of these ranged from deletion of 33
nucleotides up to insertion of 20 nucleotides, with 1 bp

deletions or insertions being the most frequent. Larger
structural variants including copy number variations
(CNVs) are currently under investigation using other
methods.

As expected, most SNVs were biallelic, only 62 were triallelic
and no tetraallelic variants were found. Among triallelic variants,
transversions were more common (n = 80) than transitions, and
G to T and G to A were the most common observations (n = 26
and n = 25, respectively).

None of the sequenced regions was invariant. On average, we
observed 10.5 variants/kbp, corresponding to a mean distance
of variants of 95 bp. Based on SNV density, the least variable
genes were UGT1A9 and UGT1A10 with <2 SNVs/kbp and the
genes with highest observed variant densities were CYP4F11
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FIGURE 3 | Cis-eQTL analysis of common variants. Top cis-associations of common variants to mRNA expression. Manhattan plot presenting top results from
multivariate cis association analysis between mRNA expression and common variants (MAF ≥ 2%) investigated for the corresponding gene. Displayed are minimal
p-values (min. p) from four genetic models (codominant, dominant, recessive, and additive). In total, n = 3,241 common variants in n = 295 genes were analyzed.
Only genes with at least one significant cis-association after Bonferroni correction (p < 0.05/3,241 = 1.54E-05; dotted line) are shown with all minimal p-values. The
significant p-values are presented in Table 2.

(42 SNVs/kbp) and CYP2D6 (31 SNVs/kbp) (Supplementary
Figure S1C).

Variant annotation revealed that 7,273 (46.2%) of the
variants were not yet annotated in the NCBI dbSNP database
(dbSNP build 151, March 2018) and thus considered as novel
observations. Figure 2A displays the number of variants per gene
for known and unknown variants in the different ADME gene
groups while Figure 2B depicts the fraction of variants according
to functional annotation. The number of variants per gene was
highest in the ABC and SLC/SLCO transporters and lowest in
phase II genes. As reported in several recent studies the number
of novel observations was substantial in all gene and functional
groups (Fujikura et al., 2015; Gordon et al., 2016; Han et al., 2016).
Of 15,727 SNV and small INDEL variants, 12,022 had a MAF
below 2%, including 8,937 singletons. Of the 7,273 novel variants,
7,139 (>98%) had MAFs below 2% (Figure 2C), while 80 (1.1%)
had MAFs ≥ 5%. Most of these were located in non-coding
regions.

Functional classification based on major transcripts for each
gene according to UCSC database revealed 6,058 variants in
coding regions (including 3,893 missense and 46 stop gain
variants; Table 1 and Figure 2B) and 9,669 variants in various
non-coding regions (e.g., 1,000 in 5′UTR and 4,138 in 3′UTR;
Table 1 and Figure 2B). We also analyzed 36 VIP genes, derived
from PharmaGKB and PharmaADME websites separately for
novel SNVs. In total we observed 502 unannotated variants
in these genes (dbSNP151), 120 of them representing missense
variants (Supplementary Table S3).

For comparison with publically available population data,
we extracted small variants from the 1000 Genomes (EUR
population) and ExAC (NFE, non-Finnish European) databases
for the ADME NGS panel target regions, resulting in 11,558 and
68,918 variants, respectively (Supplementary Figure S3A). The
MAFs of the matching variants in our sample set (ExAC/NFE:
n = 2,993; 1000G/EUR: n = 4,913) were in good correlation
with published population frequency data (Pearson r = 0.96 and

r = 0.98 for both EUR and NFE populations, respectively). The
median MAF of these SNVs was 1.16% for NFE and 2.98%
for EUR. We did not detect another 6,645 (EUR) and 65,925
(NFE) known variants with median MAFs of 0.1% (EUR) and
0.002% (NFE) (Supplementary Figures S3A,B). Together these
data indicate that mainly very rare variants with allele frequencies
below 0.1% were missed in our cohort.

Association With Expression Levels
To directly evaluate the functional impact of variants, we assessed
liver mRNA expression in an existing dataset (Schröder et al.,
2013). To ensure high data quality only mRNA expression data
of genes with “perfect” or “good” probes (see section “Materials
and Methods”) were considered (available for n = 303 genes).
Due to sample size and statistical power considerations, we
performed separate analyses for less common (MAF < 2%) and
more common (MAF ≥ 2%) variants.

To evaluate the impact of more common variants (n = 3,241)
on expression of the corresponding genes we performed cis-
eQTL analysis using univariate regression models. This analysis
revealed significant associations for 94 variants after Bonferroni
correction. In multivariate analysis with correction for 10
covariates (see section “Materials and Methods”) 90 variants in 31
genes remained significant after Bonferroni correction (minimal
p-value of the four genetic models < 1.54E-05; Figure 3 and
Table 2). Interestingly, 62 (70%) of these were located in non-
coding regions, and most of these (n = 40) in 3′UTR regions. Of
note, three eQTLs represented PharmGKP VIP genes (CYP2D6:
rs1080985; CYP3A5: rs15524; VCORC1: rs7294).

Association analysis of rare variants is challenging. To
overcome the problem of limited sample size/statistical power,
various methods have been developed to test sets of rare variants.
Here we used the SKAT-O approach (Lee et al., 2012) for group-
wise association of all rare variants in a gene with mRNA
expression data. These variants are incorporated into a gene-wise
test statistic via a weighted sum. Thus, p-values relate to genes,
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FIGURE 4 | Cis-associations of rare variants and mRNA expression (SKAT-O analysis). (A) Manhattan plot displaying SKAT-O test p-values from uni- and multivariate
cis-association analysis between mRNA expression and the set of all rare variants (MAF < 2%) investigated for the corresponding gene. In total, n = 11,053 rare
variants in 303 genes were analyzed. Only genes with a minimal association p-value < 0.05 are shown. Horizontal dotted lines indicate significance level at 0.05
(lower) and Bonferroni corrected significance level at 0.05/303 = 1.65E-04 (upper). Blue squares: univariate analysis, orange circles: multivariate analysis.
(B) Boxplots of ADH1C and GSTO1 gene expression, the two genes with SKAT-O test p-values < 1.65E-05 in both uni- and multivariate analysis. All variants are
heterozygous. Patients with rare variants (MAF < 2%) in ADH1C or GSTO1 are marked by triangles if several patients are carrying a rare mutation or diamonds if a
rare mutation is only present in one patient. Gray dots represent patients without rare variants for the gene displayed. Colors differentiate variants.

not to variants. SKAT-O combines the strengths of burden tests
thereby being powerful in different scenarios, i.e., when many
variants of a gene are associated with expression levels and have
the same effect direction, or when there are only few associated
variants or variants that differ in effect direction. Figure 4A
summarizes the results for univariate and multivariate SKAT-O
analyses. After correction for multiple testing, two associations,
for ADH1C and GSTO1, remained statistically significant.
Further details showing expression levels of individual carriers
are presented in Figure 4B. For example, five samples with a
rather low expression were heterozygous carriers of the SNP
chr10_106027186 A > T (3′UTR; rs17885600), including the two

individuals with the lowest GSTO1 levels (Figure 4B). Hence,
SKAT-O analysis resulted in identification of at least two genes
with plausible genotype–phenotype correlations for variants with
MAF < 2%.

Prediction of Functional Effects
We concentrated on coding variants resulting in amino acid
change (missense), frameshift, or affecting initiator and stop
codons, together accounting for 66% of coding variants and one
fourth of all variants (Figure 2B). We used the common tools
Polyphen 2 (PP2), Provean, and SIFT, that make dichotomous
functional predictions of the type “loss of function” (LOF) versus
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FIGURE 5 | Prediction of coding variant effects. (A) Comparison of loss-of-function (LOF) and tolerable (TOL) predictions obtained by three different prediction tools.
Venn diagrams are shown for “LOF” and “TOL” predictions for n = 4,017 coding variants from Provean (“deleterious”), SIFT (“damaging”), Polyphen2 (PP2;
“probably/possibly damaging”). (B) Occurrence of TOL and LOF variants in gene family groups. The distribution of the number of concordant TOL (n = 1,019; blue
colored) and LOF (n = 1,466; red colored) predictions is shown for the indicated gene groups for known (filled bars) and novel (hatched bars) variants. Upper chart:
variants with MAF ≥ 2%; lower chart: variants with MAF < 2%. (C) Top LOF-variant carrier genes. Shown are genes with at least seven predicted LOF-variants.

“tolerated” (TOL) (Zhou et al., 2018a). Of the analyzed subset
of 4,017 coding variants, more than 95% were predictable by
these algorithms (PP2, n = 3,818; PROV, n = 3,874; SIFT,
n = 3,881). LOF prediction was retrieved concordantly by all three
algorithms for 1,466 variants (36.5%) and TOL was concordantly
calculated for 1,019 variants (25.4%; Figure 5A). In agreement
with other studies (Bush et al., 2016; Han et al., 2016; Hovelson
et al., 2017) we found that the proportion of LOF- versus

TOL-predicted variants was significantly higher among the less
common (MAF < 2%) compared to more common variants
(Chi-square test, p < 0.0001). With one exception (SLC28A1
G254V, MAF = 2.3%) all novel LOF-predicted variants were less
common with MAF < 2% (Figure 5B).

Interestingly, transporters and nuclear
receptors/transcriptional regulators had large proportions
of predicted LOF variants that had not yet been listed in the
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dbSNP database. The highest number of predicted LOF variants
in one gene was observed in NCOR2 (n = 47), and nine ABC
transporters (A7, A2, A4, C1, C10, C8, A3, and C11) are found
among the genes with the highest LOF-predicted variants
(Figure 5C).

Integrating Prediction and Association
While the SKAT-O test identified only two significant
associations, functional prediction indicated a much larger
number of predicted LOF variants, as also reported by others
(Han et al., 2016; Hovelson et al., 2017). In contrast to former
studies, our data allow inspection of genotype-phenotype
correlations individually for each variant and for several available
phenotypes. While these excessive data are currently being
analyzed, we illustrate here a typical example. Of particular
interest are protein levels, as functionally damaging ADME
gene variants are frequently associated with lower protein levels.
Figure 6 shows exemplarily the correlation of all detected
amino acid variants of ABCC11, encoding the drug transporter
MRP8, with MRP8 protein levels obtained for the same liver
cohort in a previous study (Magdy et al., 2013). Interestingly,
carriers of concordantly LOF-predicted variants (n = 73) showed
highly variable protein levels (23-fold; coefficient of variation
81%), essentially covering the entire range of MRP8 variability,
while carriers of only TOL-predicted variants (n = 30) were
spread across a smaller protein range (ninefold; coefficient
of variation 53%). Of note, the median protein levels of
carriers of LOF-predicted and TOL-only-predicted variants
were similar (P = 0.73; Figure 6). Thus, our phenotypic data
allow identification of several MRP8 low and high expressors
in relation to genotype. While there does not seem to be a
simple relation between functional prediction and phenotypic
expression, our data should be helpful to prioritize variants for
further investigation and to improve prediction tools.

DISCUSSION

In this study we designed a new panel to target 340 ADME
genes for NGS. We tested and validated our ADME NGS panel
on a cohort of 150 human liver specimens with comprehensive
genetic, functional, and medical characterization. This allowed us
not only to perform extensive genotype-phenotype correlations
to identify novel relationships for common and rare variants but
also to compare computational predictions of functional effects
with real phenotypes, which should be useful to further develop
and optimize prediction algorithms for variant effects.

We designed our ADME NGS panel to comprise 340 genes
including most phase I and phase II enzymes, drug transporters
and numerous transcriptional regulators and other modifiers of
xenobiotics and endogenous substances. We used Agilent in-
solution target capture technology to allow informed selection
of relevant regions and optimization of coverage on targets.
Only four genes, SULT1A3, SULT1A4, MIF, and CYP26C1,
were covered below 100-fold. Low coverage of some genes
was also observed by others who speculated that common
null functional alleles, high sequence homology as well as

FIGURE 6 | Genotype-phenotype relation of ABCC11 missense variants to
MRP8 protein expression. Relative MRP8 protein abundance in the same
human liver samples used for NGS was determined by Western blot analysis
(Magdy et al., 2013). Symbols: open black circles, all variants; red filled circles,
carriers of LOF-predicted variants; green open circles, carriers of only
TOL-predicted variants; green box and whisker: carriers of TOL-predicted
variants not carrying LOF-variants (n = 30); red box and whisker: carriers of at
least one LOF (n = 73). Novel variants are indicated by a star.

pseudogenes may disturb capture of such regions (Han et al.,
2016). Direct comparison of 363 genotype data available from
previous pharmacogenetic studies in the liver cohort revealed an
overall accuracy of the ADME NGS panel of >99%. The overall
performance of our ADME NGS panel was comparable to other
targeted capture sequencing panels (Bush et al., 2016; Gordon
et al., 2016; Han et al., 2016; Hovelson et al., 2017). Compared to
these other platforms we included a greater number of genes with
the intention to investigate not only established ADME genes but
also less well known ADME candidate genes.

While several NGS studies of different types recently explored
genetic variation in ADME genes (Fujikura et al., 2015; Bush
et al., 2016; Han et al., 2016; Kozyra et al., 2016; Hovelson
et al., 2017; Schärfe et al., 2017), our study is, to our knowledge,
the only one that provides phenotypic measurements in human
samples. In this study we analyzed only SNVs and small INDELs,
while larger structural variations will be analyzed separately
(Tremmel et al., in preparation). For the more common
variants (MAF ≥ 2%) multivariate eQTL analysis revealed 90
significantly associated variants, most of them located in non-
coding regions. Six of these loci had already been described
in our previous genome wide association study, e.g., rs7294 in
VKORC1 3′UTR, or rs1201559 (P516L) in SLC22A10 (Schröder
et al., 2013). Interestingly, several of the SNVs located in 3′UTRs
(ARNT rs11552229, CYP3A5∗10 rs15524, EPHX2 rs1042032
and rs1042064, UGT2A1 rs4148312 and VKORC1 rs7294) are
discussed as potential micro-RNA binding sites, partially proven
by tissue eQTL (Wei et al., 2012). Furthermore, our data confirm
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predicted eQTL effects on expression in liver tissue in the
Genotype-Tissue Expression portal (GTex10; Lonsdale et al.,
2013) e.g., for the EPHX2 variant rs1042032 and VKORC1 rs7294.
Some other eQTLs we found had also been reported previously
in the context of phenotype/genotype correlations. For example,
rs1080985 in CYP2D6 corresponds to the −1584C > G variant
that is linked to the low-expression CYP2D6∗41 allele (Raimundo
et al., 2000; Raimundo et al., 2004); the PON1 rs854552 variant
had been found in a nutrigenetic approach on markers of
cardiovascular disease (Rizzi et al., 2016); and the AOC1 (diamine
oxidase) variant rs10156191 was associated with hypersensitivity
response to non-steroidal anti-inflammatory drugs (Agúndez
et al., 2012).

In contrast to common variants, association of individual rare
variants is greatly limited by sample size and thus presents a
special challenge. The problem is aggravated by the fact that by
far most rare variants occur in heterozygous condition, where
any effect could be masked by the variability of the “normal”
allele. Furthermore, rare variants can be damaging in many ways,
affecting expression, protein abundance, or catalytic function.
A single phenotype such as expression may thus not reveal
the deleterious nature of a particular variant. Nevertheless we
assume that analysis of gene or protein expression should be most
promising, because damaging variants often affect expression
negatively. This is the case, for example, for most low-activity
CYP variants (e.g., CYPs 2B6, 2C19, 2D6, 3A4, 3A5 mostly
due to aberrant splicing; Zanger and Schwab, 2013), and many
established variants of clinical relevance like UGT1A1∗28 and
Gilberts syndrome (Ehmer et al., 2012) and VKORC1 variants
in warfarin metabolism (Li et al., 2009). Our statistical approach
to relate rare variants to gene expression data by SKAT-O test
revealed two significant associations for rare variants of ADH1C
and GSTO1, both of which appear highly plausible and would not
have been detected by the cis-eQTL analysis. The variant rs283413
in ADH1C, a stop gain mutation at protein position G78, is
discussed as risk factor for Parkinson’s disease (Buervenich et al.,
2005) and alcohol biodisposition (Martínez et al., 2010; Way et al.,
2015). The GSTO1 rare variants have so far not been reported to
be associated with expression to our knowledge, but a significant
genotype influence of the 3′UTR SNP rs17885600 on expression
of the adjacent GSTO2 in liver tissue supports a potential eQTL
effect of this variant (Lonsdale et al., 2013).

As a further approach to identify deleterious ADME rare
variants, we used computational prediction, which has recently
been used in several studies (Bush et al., 2016; Han et al.,
2016; Hovelson et al., 2017). However, in none of these studies,
phenotypic information was provided to compare prediction
with a phenotypic parameter. Similar to other studies we found
a considerable fraction of all variants (36.5%) to be predicted
as damaging by all three prediction tools used. Somewhat
unexpectedly, preliminary analyses did not reveal statistically
significant associations between LOF-predicted variants and
lower expression. As exemplarily illustrated for ABCC11 and
MRP8 protein abundance, LOF predicted variants were not more
frequently associated with lower protein levels as compared to

10https://commonfund.nih.gov/gtex

TOL predicted variants. Thorough analyses of these data are
currently in progress. A recent advanced approach integrated
prediction and functional activity data available from diverse
sources to develop an improved prediction framework adopted
to pharmacogenetic assessments (Zhou et al., 2018b). Our data
should be highly valuable to test and further improve such
approaches.

CONCLUSION

We designed a new targeted NGS pipeline to determine
SNVs and small INDELs for 340 ADME genes and used
it to analyze 150 well characterized human liver samples.
In addition to common known variants we confirmed the
existence of large numbers of rare and previously unknown
germline variants. Available phenotypic information on the
samples allowed us to elucidate numerous novel eQTLs for
common variants and to identify novel relationships between
rare variants and expression. Furthermore our data allow direct
comparison of computationally predicted functional effects for
coding variants with actual phenotypes. Using data for the
transporter ABCC11/MRP8, we showed that variants predicted
as deleterious are present in both high and low expressors of
MRP8. While this emphasizes challenges and current limitations
of computational prediction approaches to integrate rare variants
into pharmacogenomics, such data are important to assess and
improve the current strategies.
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Purpose: The etiopathogenesis of drug-induced liver injury (DILI) is still far from being

elucidated. This study aims to the study of genetic variations in DILI, related to the drug

target, and specifically in the genes coding for the cyclooxygenase enzymes.

Methods: By using Next-generation Sequencing we analyzed the genes coding for

COX enzymes (PTGS1 and PTGS2) in 113 individuals, 13 of which were patients with

DILI caused by COX-inhibitors.

Results: The key findings of the study are the increased frequency, among DILI patients,

of SNPs causing alterations in transcription factor binding sites and non-synonymous

PTGS gene variants, as compared to control subjects. Moreover, the association with

non-synonymous SNPs was exclusive of DILI patients with late-onset (50 days or more)

Pc < 0.001 as compared to DILI patients with early onset, or with control subjects.

Conclusions: Our findings suggest an interaction of long-term exposure to COX

inhibitors combined with functional variants of the COX enzymes in the risk of developing

DILI. This is a novel observation that might have been overlooked by previous genetic

studies on DILI because of the limited coverage of PTGS genes in exome chips.

Keywords: PTGS1, PTGS2, next generation sequencing, drug-induced liver injury, COX1, COX2

BACKGROUND

Although drug-induced liver injury (DILI) is a rare adverse drug event, it is often life-threatening
because of the risk of developing acute liver failure. The mechanisms underlying DILI risk are
not well understood and hence, the search for biomarkers of DILI risk is a major research field
that aims to identify markers that could be used as both proof of the mechanisms involved and
of the risk factors that can be used for DILI prediction, as has already been done with many
pharmacogenomics biomarkers (Lucena et al., 2008, 2010; Agúndez, 2009; Agundez et al., 2009,
2011; Andrade et al., 2009; Robles-Diaz et al., 2016; Nicoletti et al., 2017). There are presently several
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independent hypotheses to explain idiosyncratic DILI, but none
of these is able to explain all the circumstances in which
DILI occurs.

Some genetic biomarkers for DILI either mechanistically-
based using a case-control strategy or with a GWAs/exome
sequencing approaches have been identified [for a review,
see (Robles-Diaz et al., 2016)]. However, the involvement of
genetic changes in DILI risk (for instance HLA risk alleles)
has been documented for only a few drugs (Kaliyaperumal
et al., 2018). On the other hand, case-control genotyping
studies, GWAS and exome sequencing have important
limitations because only some SNPs are tested, and most
of the target sequence is not checked. To overcome
this problem, deep sequencing comprising whole genes
is necessary.

In this study, we analyzed the potential effect of mutations in
cyclooxygenase genes (PTGS1 and PTGS2) on DILI risk related
to NSAIDs. From a mechanistic point of view, such a risk could
be related to genetic alteration in the arachidonic acid pathways,
which are closely related to inflammation. On the other hand,
adverse drug events for drugs acting on the COX enzymes
(that is, COX inhibitors) may be more likely if COX activity
is altered because of genetic variations. For this reason, we
analyzed patients who developed DILI after the administration
of COX-inhibitors and healthy individuals who tolerated
COX-inhibitors.

CASE PRESENTATION

Thirteen patients (8 women and 5 men) who experienced
DILI caused by COX inhibitors and 100 individuals who
tolerated COX-inhibitors at standard doses were included in
this study. The culprit drug for DILI and clinical details
of patients are shown in Table 1. Gender-matched control
individuals who tolerated COX-inhibitors (62 women and 38
men) individuals were recruited among staff and medical
students of the Hospitals and the Universities participating
in this study. Individuals which were considered as healthy
after medical examination, to exclude pre-existing disorders
and history of adverse events after the use of COX-inhibitors,
were asked to participate and over 95% of these agreed
to do so. We selected consecutive control subjects matched
with patients for drug exposure: Fifty control subjects who
have received ibuprofen within the previous month to sample
collection, 20 who received diclofenac, 10 indomethacin, 10
naproxen, and 10 rofecoxib. These frequencies match with the
frequencies for the DILI patients, except that no control subject
received nimesulide since this drug was discontinued from the
Spanish market due to liver safety. Both patients and controls
were Caucasian Spanish individuals. Written informed consent
for participation in this case report was obtained from all

Abbreviations: COX, Cyclooxygenase, prostaglandin-endoperoxide synthase;

NSAID, Non-steroidal anti-inflammatory drug; DILI, Drug-induced liver injury;

GWAS, Genome-wide association study; SNP, Single nucleotide polymorphism;

HLA, Human leukocyte antigen; PTGS1, Prostaglandin-Endoperoxide Synthase 1;

PTGS2, Prostaglandin-Endoperoxide Synthase 2.

participants. The protocol for this study was in accordance
with the Declaration of Helsinki and its subsequent revisions
and was approved by the respective Ethics Committees of the
participating Hospitals.

DESCRIPTION OF LABORATORY
INVESTIGATIONS AND DIAGNOSTIC
TESTS

To achieve complete gene capture, we sequenced all exons,
intron-exon boundaries as well as the 5′ and 3′ flanking
regions for both genes. Referred to the GRCh37 assembly
of the human genome, the sequences studied were the
following: PTGS1: Chromosome 9:125.131.159 to 125.158.017;
PTGS2: Chromosome 1:186.640.825 to 186.651.605. Partially
overlapping amplicons with a size lower than 400 bp were
designed. A total of 62 CS1/CS2 tagged primer pairs were
synthesized and used to amplify 113 DNA samples using
the Access Array platform (Fluidigm). During amplification,
samples were labeled with standard MID barcodes designed
for the FLX454 sequencing system. After amplification and
MID-labeling, individual amplicon libraries were analyzed using
a Bioanalyzer 2100 (Agilent) and bioanalyzer traces were
used to estimate the amplicon concentration for each sample.
Samples were then pooled, and libraries were purified by SPRI
using Ampure beads to remove all possible traces of small
molecules, primers, primer-dimers, or any other contaminants.
The pooled library was again quantified and titrated so that
a final amount of 1.95E+10 molecules with an enrichment
percentage of 7% was loaded on a Pico Titer Plate (Roche)
for a 200-cycle titanium-based sequencing run, made on FLX-
454 equipment. Reads were processed using an amplicon
processing pipeline and sff files were used for further analyses.
Coverage averaged around 50x for the whole project. Coverage
for the SNPs identified (shown in Supplemental Table 1) was
always over 50x. Sequencing reads were de-multiplexed and
aligned using the Amplicon Variant Analyzer software v2.8
(Roche) so that reads for each particular sample- target region
combination were analyzed in search of variants. Details
of the amplification and sequencing primers are available
in Supplemental Table 1.

The putative effect on the non-synonymous variants identified
in silico was assessed by using the Sorting Tolerant form
Intolerant (SIFT) and Polymorphism Phenotyping (PolyPhen)
scores as shown in the 1,000 genomes website for every SNP,
as well as the online application MutationAssessor (http://
mutationassessor.org/r3/).

RESULTS

The sequencing results (summarized in Table 2) reveal that
PTGS genes are well conserved. Although dozens of PTGS1
and PTGS2 single nucleotide polymorphisms (SNPs) have been
described to occur in Caucasian populations (see Agúndez
et al., 2015), our findings show that most of these SNPs
were not identified, or were extremely rare, in this cohort.
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TABLE 3 | Detailed genotype distribution for relevant SNPs.

Coordinate GRCh37.p13

(GCA_000001405.14)

rs ID Effect Patients with late-onset DILI

N = 5

(Non carriers / heterozygous/

homozygous); MAF

Rest of DILI patients

N = 8

(Non carriers / heterozygous/

homozygous); MAF

Control individuals

N = 100

(Non carriers / heterozygous/

homozygous); MAF

9:125131832 rs10306225 UGV 3/0/2; 0.400 8/0/0; 0.000 100/0/0; 0.000

9:125133479 rs1236913 MSV 2/3/0; 0.300 8/0/0; 0.000 88/11/1; 0.065

9:125133507 rs3842787 MSV 3/2/0; 0.200 8/0/0; 0.000 89/10/1; 0.060

9:125140823 rs5787 MSV 4/0/1; 0.200 8/0/0; 0.000 100/0/0; 0.000

9:125143707 rs3842792 MSV 4/1/0; 0.100 8/0/0; 0.000 100/0/0; 0.000

1:186646005 rs3218622 MSV 4/1/0; 0.100 8/0/0; 0.000 100/0/0; 0.000

MAF, Minor allele frequency; UGV, Upstream gene variant; MSV, Missense variant.

TABLE 4 | Haplotype analysis.

Haplotype frequencies rs10306225 rs1236913 rs3842787 rs5787 rs3842792 rs3218622 Frequency

(Total)

Frequency

(late-onset DILI

cases)

Frequency (controls)

1 A T C G A C 0.9048 0.300 0.935

2 A C T G A C 0.0619 0.100 0.060

3 T T C A A C 0.0095 0.200 NA

4 A C C G A C 0.0048 NA 0.005

5 A T C G A T 0.0048 0.100 NA

6 T C C G A C 0.0048 0.100 NA

7 T T C G A C 0.0048 0.100 NA

8 T T C G A C 0.0048 0.100 NA

9 T T C G A C 0.0048 0.100 NA

Haplotype association

with late-onset DILI

rs10306225 rs1236913 rs3842787 rs5787 rs3842792 rs3218622 Frequency

(Total)

OR (95% CI) P-value

1 A T C G A C 0.9048 1.00 —

2 A C T G A C 0.0619 0.09 (0.01–1.43) 0.0910

Rare haplotypes * * * * * * 0.0333 0.00 (0.00–0.09) 0.0024

Global haplotype association p < 0.0001.

NA, not applicable; *any nucleotide.

Interestingly, most of the PTGS1 and PTGS2 SNPs included
in the Illumina human exome chip or human core exome
chip (Urban et al., 2012) are also absent in this study
group. This raises doubts about the coverage of exome
chips to identify genetic associations related to PTGS1 and
PTGS2 genes.

In the whole population study, we identified 31 single
nucleotide polymorphisms (SNPs) for PTGS1, including four
non-synonymous SNPs. For PTGS2 we identified 31 SNPs
including one non-synonymous. We observed an increased
frequency of PTGS1 and PTGS2mutations among DILI patients,
as compared to that observed in control individuals. Most
of the SNPs identified in patients were rare among control
individuals and were rare also according to the 1,000 genomes

database (as shown in Table 2). All patients but one (case 1

in Table 2) had mutations at the PTGS1 gene and all patients
but one (case 5 in Table 2) had mutations at the PTGS2 gene.

Table 3 summarizes the comparison of relevant SNPs across

patients with late-onset DILI, the rest of DILI patients and

control individuals.

DISCUSSION OF THE UNDERLYING
PATHOPHYSIOLOGY AND THE NOVELTY
OR SIGNIFICANCE OF THE CASE

The most remarkable findings in this study are the presence
among DILI patients of SNPs causing alterations in transcription
factor binding sites such as the PTGS1 SNP rs10306225 (Agundez
et al., 2014), and the PTGS2 SNPs rs4648253, rs689466, and
rs20417, as well as non-synonymous SNPs such as PTGS1
rs1236913 (W 8 R), rs3842787 (P 17 L), rs5787 (R 108
Q), rs3842792 (K 185 T), and PTGS2 rs3218622 (R 228H).
These missense variants are extremely rare among European
individuals (Agúndez et al., 2015). The putative effects of
the most relevant SNPs shown in Table 3 have been revised
elsewhere (Agúndez et al., 2015). In brief, besides the rs10306225
SNP, which is a promoter variant that causes a modification
in a CDX1 binding site (Agundez et al., 2014), the rest of
SNPs are non-synonymous. According to functional predictions
and functional analyses (reviewed in Agúndez et al., 2015)
the SNPs rs1236913, rs3842787 have a little functional effect,
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although clinical associations for these SNPs with urticaria
induced by NSAIDs (Cornejo-Garcia et al., 2012) andmyocardial
infarction/stroke (Lee et al., 2008; Lemaitre et al., 2009; Gao et al.,
2014), respectively, have been proposed. The functional effect
of the rs5787 SNP is unknown, although functional prediction
suggests a mild functional impact (see Table 2), rs3842792 SNP
is predicted as functional (Table 2), but in vitro findings suggest
reduced functionality (Lee et al., 2007), and no functional impact
for the PTGS2 SNP rs3218622 has been described.

No particular association of missense SNPs with culprit drug,
age, gender, clinical presentation, type of liver injury, and severity
of the disease was identified. However, as shown in Table 1,
there is heterogeneity in the duration of treatment before DILI
onset. This heterogeneity, rather than being a weakness, is a
strong point in this study because it allowed discriminating
the frequencies of PTGS gene variations in DILI patients with
late and short-term onset. All the five DILI patients with the
longest times to DILI onset (50 or more days; patients n◦ 3,
8, 9, 10, 12 in Table 1) had missense variants, and no patient
with shorter time to DILI onset had such missense variants.
The intergroup comparison values for carriers of any non-
synonymous PTGS variants were as follows: Patients with late
DILI onset (50 or more days) vs. the rest of DILI patients (P
< 0.001). Patients with late DILI onset vs. control individuals
(P < 0.001). By turn, no significant differences for carriers of
non-synonymous PTGS variants were observed among patients
with DILI onset shorter than 50 days and control subjects (P =

0.325). Haplotype analyses (Table 4), and linkage disequilibrium
(LD) analyses (Supplemental Table 2), show that the risk is due
to the presence of rare haplotypes (containing missense variants)
in the group of patients with late-onset DILI, but it is not due to
LD variations for these variants. The strong association observed
in this report, although it is based in five cases only, suggests a
relationship of non-synonymous PTGS gene variations with DILI
onset after long-term NSAID therapy. This is a novel observation
that has not been raised by previous studies. Although the
putative role of PTGS gene variations has been explored using
the Illumina human exome chip or human core exome chip,
it is of note that chip coverage was very limited for PTGS
genes (Urban et al., 2012). By turn, this study has complete

coverage thus allowing the identification of, as yet, disregarded

SNPs. Another relevant difference with most DILI genetic
studies is that in this report we stratified patients according
to the time to onset. It cannot be ruled out heterogeneity in
the etiopathogenesis of DILI, and it is conceivable that the
mechanisms involved in DILI with a late onset might be different
from those involved in immediate or short-latency reactions.
This study, albeit with the inherent limitations of statistical
power that case reports have, reinforces the view that a complete
gene coverage and a detailed phenotype stratification of DILI
patients could be essential to gain strength in further genetic
association studies.
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Olanzapine, a second-generation antipsychotic medication, plays a critical role in current
treatment of schizophrenia (SCZ). It has been observed that the olanzapine responses
in schizophrenia treatment are different across individuals. However, prediction of this
individual-specific olanzapine response requires in-depth knowledge of biomarkers of
drug response. Here, we performed an integrative investigation on 238 Han Chinese
SCZ patients to identify predictive biomarkers that were associated with the efficacy of
olanzapine treatment. This study applied HaloPlex technology to sequence 143 genes
from 79 Han Chinese SCZ patients. Our result suggested that there were 12 single
nucleotide polymorphisms (SNPs) had significant association with olanzapine response
in Han Chinese SCZ patients. Using MassARRAY platform, we tested that if these
12 SNPs were also statistically significant in 159 other SCZ patients (independent
cohort) and the combined 238 SCZ patients (composed of two tested cohorts). The
result of this analysis showed that 2 SNPs were significantly associated with the
olanzapine response in both independent cohorts (rs324026, P = 0.023; rs12610827,
P = 0.043) and combined SCZ patient population (rs324026, adjust P = 0.014;
rs12610827, adjust P = 0.012). Our study provides systematic analyses of genetic
variants associated with olanzapine responses of Han Chinese SCZ patients. The
discovery of these novel biomarkers of olanzapine-response will facilitate to advance
future olanzapine treatment specific for Han Chinese SCZ patients.

Keywords: olanzapine, polymorphism, schizophrenia, pharmacogenetics, biomarker, association study

INTRODUCTION

Schizophrenia (SCZ) is a severe chronic neuropsychiatric illness. According to a survey carried out
in 33 countries, about 15 out of 100,000 individuals were suffering from SCZ globally (McGrath
et al., 2004). These SCZ patients were estimated to have higher risk of death (about 2.5 times more)
compared to healthy individuals (McGrath et al., 2004; Saha et al., 2007). Patients with SCZ disorder
require long-term treatments to prevent themselves from illness progression or symptom relapse
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(Howes et al., 2015; Chong et al., 2016). Although the
development of SCZ has long been regarded as caused by
a combination of genetic and environmental factors, detailed
pathophysiological mechanism of SCZ still remains unclear.

Second-generation antipsychotic (SGA) medications are
widely considered as the most advanced and effective treatment
for SCZ patients nowadays. These SGA includes olanzapine
(OLA), risperidone and quetiapine (Owen et al., 2016). However,
SCZ patients who received SGA treatments often experienced
severe adverse drug reactions (ADRs) (Zhang and Malhotra,
2011). In fact, current SGA therapies could be seen as a
subjective “trial and error” process. For some of the SCZ
patients, these SGA treatments did not exert any therapeutic
effects on their symptoms. This individual-specific response to
SGA may be caused by the association between individual-
specific genetic variation and the efficacy of SGAs (Zhang
and Malhotra, 2011). In order to address such specificity of
SGA response across different patients, scientists in pharmaco-
genomics field is now exploring the possibility of predicting
drug response using individual-specific genetic signatures
(Arranz and de Leon, 2007).

Olanzapine is one of the most commonly used SGAs. It has
been shown to have relatively superior efficacy in various clinical
trials compared to other SGAs (Lieberman et al., 2005; Leucht
et al., 2009). It has been reported that OLA treatment had
relatively low extrapyramidal side effects and better efficacy
to minimize negative symptoms of SCZ patients when it is
used in clinically effective doses (Meltzer, 1999). OLA binds to
serotonin type 2 (5-HT2) and dopamine (D2) receptors with high
affinity in patients’ body. Diphosphate glucuronosyltransferases
(UGT), a member of cytochrome P450 family and flavin-
containing monooxygenase 1 (FMO1), catalyze the oxidative
hepatic metabolism process of OLA (Ring et al., 1996; Kassahun
et al., 1997; Linnet, 2002). On the other hand, due to the
heterogeneity in different SCZ patients, not all patients respond
to OLA treatment adequately well as we expected. Some patients
who received OLA therapy even experienced severe adverse side
effects that resulted in non-compliance with drug treatment
(Zhang and Malhotra, 2011; Musil et al., 2015). If these SCZ
patients with no other effective therapies specific for them they
would have to face the coming disease progression, relapses
and potential long-term hospitalizations (Robinson et al., 1999;
King et al., 2014).

Although numerous studies have been performed on the
factors that influence the therapeutic efficacy of OLA, there
were very few of them focused on the individual-specific genetic
biomarkers of OLA response (Söderberg and Dahl, 2013). In
comparison, earlier attempts to search for biomarkers of OLA
response focused mainly on the relationship between OLA
response and its metabolic pathways, including glucuronidation,
hydroxylation, N-demethylation and N-oxidation pathways
(Laika et al., 2010; Haslemo et al., 2012; Mao et al., 2012;
Söderberg et al., 2013; Brandl et al., 2015). A number of
genetic variants, including UGT2B10 rs61750900 (UGT2B10∗2)
(Erickson-Ridout et al., 2011), CYP1A2 rs762551 (CYP1A2∗1F)
(Laika et al., 2010), DRD3 rs6280 (Adams et al., 2008),
AHR rs4410790 (Söderberg et al., 2013), FMO3 K158–G308,

FMO1 rs12720462 (FMO1∗6) and FMO1 rs7877 have been
reported to play important roles to influence OLA metabolism
(Soderberg et al., 2013). In addition, the drug response and the
pharmacokinetics of OLA have also been found to associate with
genetic elements that are not directly involved in the metabolic
pathway of OLA (Lin et al., 2006; Meary et al., 2008; Cabaleiro
et al., 2013; Yu et al., 2018). For example, P-glycoprotein,
a membrane protein that pumps foreign substances out of
cells and is regarded as element that is not directly related to
OLA metabolic pathway, affects the penetration of OLA into
the central nervous system (Lin et al., 2006). These discoveries
suggested that a comprehensive study of OLA response requires
clear understanding of the complicated biological network that
is composed of enzymes involved in drug metabolism, drug
transportation and drugs targeted receptors.

In this study, we investigated the associations between SNPs
in 143 genes and the OLA response of 79 Han Chinese SCZ
patients using target-sequencing technology. The newly found
biomarkers was considered as genetic signature of drug responses
to 8-week treatment with OLA and were validated in the other
independent Han Chinese SCZ patient cohort.

MATERIALS AND METHODS

Subjects
In this study, we collected 2 independent sets of OLA response
data from Han Chinese SCZ patients in order to validate our
discoveries. We named the first set as ‘discovery cohort’ and
other one as ‘independent cohort.’ The demographics and clinical
details of the both sets of patients are demonstrated in Table 1.

The discovery cohort was composed of 79 recruited Han
Chinese SCZ patients who had been treated with OLA from the
Shanghai Mental Health Center of China. It comprised 37 males
and 42 females. The mean age of them was 43.1 ± 18.3 years
old (Table 1). SCZ of the patients was diagnosed according
to the criteria of the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV) and confirmed by
at least two experienced psychiatrists. Patients who had physical
complications or other substance abuse were excluded from this
investigation. Our analysis only considered patients who had
not been previously treated with atypical antipsychotics and had
not received any medication for more than 4 weeks before their
enrollment in this study.

The independent cohort contained 159 recruited Han Chinese
SCZ patients who were undergoing OLA monotherapy from
the Shanghai Mental Health Center of China and the First
Hospital of Shanxi Medical University. They were composed of
75 males and 84 females. The mean age of independent cohort
was 38.5 ± 16.4 years (Table 1). This cohort of patients was
used to validate the novel biomarkers found by the analysis
of discovery cohort. The selection criteria were similar to the
discovery cohort. Finally, patient data from discovery cohort
and independent cohort were combined in order to gain a
greater power in statistical analysis. Therefore, a total of 238
patients were used to perform another validation of the newly
found biomarkers.
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TABLE 1 | Demographic and clinical details of patients suffering from schizophrenia in three cohorts.

Baseline characteristicsa Discovery cohort P-value Independent cohort P-value Total cohort P-value

Good Poor Good Poor Good Poor

responders responders responders responders responders responders

Number 38 41 − 119 40 – 157 81 –

Age (years) 45.4 ± 19.7 39.9 ± 16.2 0.15 39.5 ± 16.77 36.68 ± 15.4 0.35 41.1 ± 17.6 39.1 ± 16.2 0.41

Gender (male/female) 17/21 20/21 0.72 56/63 19/21 0.96 73/84 39/42 0.78

BMI, kg m−2 21.6 ± 3.5 21.9 ± 3.6 0.84 22.8 ± 3.8 22.5 ± 3.4 0.71 22.5 ± 3.8 22.1 ± 3.4 0.46

PANSS total score T0 78.4 ± 18.0 73.8 ± 12.2 0.32 82.6 ± 23.3 78.0 ± 21.1 0.28 81.5 ± 22.1 75.9 ± 17.4 0.051

PANSS total score T1 45.5 ± 6.9 58.3 ± 8.4 <0.001 44.2 ± 10.1 63.3 ± 14.4 <0.001 44.5 ± 9.4 60.9 ± 12.1 <0.001

BMI, body mass index; T0 – baseline measurement, T1 – follow-up measurement (8 weeks). Bold font indicates statistically significant values (P < 0.05).
Values are shown as means ± standard deviation.
aGender was analyzed by χ2 test and other characteristics were analyzed by Student’s t-test.

Clinical Assessment
Clinical effects of patients were evaluated using the Positive
and Negative Syndrome Scale (PANSS) by two fully qualified
psychiatrists during the 8 weeks of OLA treatment. The inter-
rater reliability between the two raters was found to be high
since the intraclass correlation coefficients (ICCs) was larger
than 0.8. Based to Obermeier’s method, patients were classified
as good responders (reduction of PNASS score ≥ 50%) and
poor responders (reduction of PNASS score < 50%) for analysis
(Obermeier et al., 2010). The initial daily dose of OLA was
10 mg per day and then it gradually increased to 15 mg
per day within the 1st week. After that, the dosage was
adjusted based on individual tolerance to the treatment. During
the medication period, nursing staff closely monitored any
medication compliance occurred in patients. No other drugs were
administered when OLA monotherapy was performed, except
for sennoside for constipation, flunitrazepam or lorazepam
for acute insomnia and biperiden for any extrapyramidal
side effects.

Ethics Statement
The study was approved by the Ethical Committee of Human
Genetic Resources in Shanghai, China. All subjects or their
legal guardians understood the procedure and had given written
informed consent to their participation in this study according to
the Declaration of Helsinki (Human, 1999).

Targeted Genes and Capture Design
One hundred and forty-three genes were selected for targeted
sequencing were based on their involvement in drug metabolism
(including genes encode for drug-metabolizing enzymes,
drug-transporting enzymes and the receptors mediating
drug responses) from PharmGKB database1 and the relevant
literatures (Arranz et al., 2011; Li and Bluth, 2011; Arranz et al.,
2016) that reported potential genes related to SGAs efficacy.
We aimed to study these genes in order to investigate novel
biomarkers of OLA response. The details of these 143 genes are
listed in Supplementary Table S1.

1https://www.pharmgkb.org/

Sequencing probes for the 143 targeted genes were designed
using Agilent’s SureDesign tool2. Targeted regions of these
genes of interest included their coding regions ± 10 bp and
untranslated regions (UTR) according to information from
RefSeq, Ensembl, CCDS, and GENCODE databases (Harrow
et al., 2012; Pruitt et al., 2014; Cunningham et al., 2015).

Library Preparation and Next
Generation Sequencing
Genomic DNA was extracted from whole blood using a QIAamp
DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany). The
quantity and quality of the genomic DNA were measured
by Nanodrop 2000 (Thermo Scientific, United States). Then
we adjusted the genomic DNA to a final concentration of
100 ng/µl with high-purity water and stored at −20◦C. Libraries
were prepared with a HaloPlex Target Enrichment System
Kit (Agilent Technologies, Santa Clara, CA, United States)
following the manufacturer’s instructions. Libraries were
then quantified using the Agilent 2100 Bioanalyzer (Agilent
Technologies). Sequencing was performed with the HiSeq
2500 platform (Illumina, San Diego, CA, United States) using
paired-end libraries (2× 101-bp).

Raw data were processed following standard protocols used
in earlier reports (Gaynor et al., 2016). In short, raw image
files were first converted to the FASTQ format and the reads
were aligned to the human reference genome (hg19, GRCh37).
SNPs were identified according to GATK standard hard filtering
parameters (DePristo et al., 2011). On average, 99% of reads
covered >80× and 81% >200×, which suggested that the
coverage was sufficiently high to detect variants with appropriate
sensitivity. The program ANNOVAR was used to annotate
SNVs that covered >20× according to the information from
Ensembl Variation, dbSNP, and 1000genome database (Sherry
et al., 2001; Abecasis et al., 2010; Wang et al., 2010; Flicek et al.,
2012). Subsequently, individual and SNP-level quality controls
were performed using PLINK (v1.07) software (Purcell et al.,
2007). Data cleaning was performed according to the following
criteria: genotypic call rate < 95%, Hardy–Weinberg equilibrium
(HWE) < 0.001, and minor allele frequency (MAF) < 0.01.

2www.agilent.com/genomics/suredesign
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After we conducted quality controls of the sequences, there were
77 individuals (38 good responders and 39 poor responders) and
807 SNPs remained in our data for later analysis.

Validation Trial
We identified 12 SNPs that were significantly associated
with OLA response using discovery cohort. Similar analysis
was performed using both independent cohort and patient
samples with two cohort combined in order to validate these
newly found SNPs. These 12 SNPs were genotyped using
the Sequenom MassARRAY platform (Agena Bioscience, San
Diego, CA, United States) following manufacturer’s instructions.
MassARRAY primers were designed using a semi-automated
software Assay Design Suite v2.03. The primer sequences are
listed in Supplementary Table S2. Data cleaning was performed
according to the following criteria: genotypic call rate < 95%,
Hardy–Weinberg equilibrium (HWE) < 0.001, and minor allele
frequency (MAF) < 0.01. Similarly, to the earlier processing of
discovery cohort, quality control was carried on and only the
filtered data was used for our analysis.

Statistical Analyses
The demographic characteristics of the both ‘good responder’
and ‘poor responder’ groups were examined to confirm the
homogeneity of the data used in our analysis. The data was
found to have normal distribution, allowing student’s t-tests to
be performed on the obtained data (age, PANSS score, etc.).
Gender differences were analyzed using the Chi-square test.
SPSS software (version 11.0, Chicago, IL, United States) was
used for all the statistical analyses in this study. The association
between genotype and OLA response was assessed using logistic
regression model by PLINK vl.07 software (Purcell et al., 2007).
P-values were corrected using Bonferroni method for multiple
testing adjustments. Two-tailed P-values of 0.05 were considered
to be statistically significant. Power analysis was performed by the
software GPower 3.1.

RESULTS

Patients Characteristics and
Sequencing Profile
The demographic and clinical details of patient subjects included
in this study are shown in Table 1. Among the 79 patients in the
discovery cohort, 38 patients were defined to be good responders
to OLA while 41 of them were poor responders. On the other
hand, among 159 patients in independent cohort, 119 patients
were good responders and 40 as poor responders to OLA. In
the total cohort that comprised both sets, there were 157 good
responders and 81 poor responders out of a total of 238 patient
subjects. There was no statistically significant difference in
the baseline characteristics between good responders and poor
responders, except in the case of the PANSS total scores
at the 8-week endpoint, meaning that the population was
homogeneous (Table 1).

3https://agenacx.com/

Effects of Individual Polymorphisms on
the OLA Response in the
Discovery Cohort
Twelve out of 807 tested SNPs were found to be significantly
associated with OLA response of 79 Han Chinese SCZ patients in
discovery cohort. Table 2 lists the results of the SNP association
analysis of pharmacogenetic impact on OLA treatment response
(P < 0.05). Two newly found variants were located on the
exon’s region (rs6280, P = 0.026, OR = 3.0, 95% CI = 1.14–7.87;
rs2011404, P = 0.04, OR = 5.4, 95% CI = 1.08–26.93). The other
10 variants, which were not located in exons regions, were also
found to be significantly associated with OLA response. However,
there were no variants remained statistically significant after
multiple-testing corrections (data not shown).

Verification of the Genetic Variants
Associated With the Response to OLA
in the Independent and Total Cohort
We used independent cohort and total sample population
composed of both discovery cohort and independent cohort
to validate the 12 SNP signatures found from the analysis of
discovery cohort. The relevant clinical information of the data is
shown in Table 1. A total of 12 SNPs was genotyped from patients
in these two sets. In particular, SNP rs324026 and rs12610827
were found to be significantly associated with OLA treatment
response in the independent cohort (P = 0.023 and P = 0.023).
In the combined cohort, 4 SNPs displayed significant difference
in OLA response between good responders and poor responders.
We obtained strong evidence to conclude that these 2 variants
(rs324026 and rs6280) in the dopamine receptor D3 (DRD3) gene
were significantly associated with OLA response in Han Chinese
SCZ patients (P = 0.001 and 0.0047). In addition, SNP rs12610827
(near to PLK5) and rs1543494 (located in SUPT16H) were also
shown to be significantly associated with the OLA treatment
response (P = 0.001 and 0.038). Detailed information of these
significant SNPs is shown in Table 3.

Power Analysis
Post hoc power analysis revealed that the statistical power of
the discovery cohort size (n = 79) in detecting a significant
association (P < 0.05) was 0.76 with a medium effect size (Odds
ratio = 2.0). The power of independent cohort size (n = 159) was
0.96 with the same effect size. These results indicated that the
sample size in our study was sufficient to achieve a considerably
low risk of a type II error.

DISCUSSION

To date, most pharmacogenomic studies on the OLA response
focused on a few genes that are known to be relevant to OLA
metabolism. Our study represents a more systematic survey of
genetic biomarkers, including drug metabolic enzyme genes,
receptor genes and other related genes. 143 genes of interest were
sequenced using Next-generation sequencing technology for our
association analysis. This study is one of the most comprehensive
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TABLE 2 | 12 SNPs that were found to be significantly associated with responses to olanzapine treatment, by targeted sequencing.

Chr SNP Chr. Pos MA R_freq NR_freq OR (95% CI) P Gene Annotation

2 rs4325692 211539363 A 0.07 0.00 NA 0.023 CPS1 Intronic

3 rs6280 113890815 C 0.31 0.18 3.0 (1.14–7.87) 0.026 DRD3 Non-synonymous

19 rs12610827 1538138 T 0.14 0.03 6.1 (1.23–30.30) 0.027 PLK5 (neighboring gene) Intergenic

14 rs7157205 43129681 C 0.20 0.07 3.9 (1.17–12.81) 0.027 CTD-2307P3.1 Intronic

7 rs1547470 151432869 T 0.14 0.04 4.9 (1.13–17.71) 0.032 PRKAG2 Intronic

3 rs324026 113891042 C 0.31 0.18 2.9 (1.08–7.54) 0.034 DRD3 Intronic

14 rs1543494 21829404 T 0.10 0.01 7.4 (0.86–63.22) 0.035 SUPT16H Intronic

2 rs2011404 234627937 T 0.12 0.03 5.4 (1.08–26.93) 0.040 UGT1A4 Synonymous

19 rs2232778 8370120 T 0.27 0.39 0.3 (0.11–0.95) 0.040 CD320 3′UTR

8 rs4737005 39900682 T 0.08 0.20 0.3 (0.09–0.97) 0.045 IDO2 (neighboring gene) Intergenic

10 rs1831019 120691814 A 0.18 0.08 3.0 (1.01–9.02) 0.048 LDHAP5 (neighboring gene) Intergenic

10 rs9422807 126093991 T 0.03 0.11 0.23 (0.05–1.12) 0.049 OAT Intronic

Chr, chromosome; SNP, single-nucleotide polymorphism; Chr. Pos, chromosome position; MA, minor allele; R_freq, responder frequency; NR_freq, non-responder
frequency; OR, odds ratio; CI, confidence interval.

TABLE 3 | Validation of SNPs associated with the olanzapine response.

Functional

Chr SNP Chr. Pos MA Total cohort Independent cohort Gene consequence

OR (95% CI) P Adjust Pa OR (95% CI) P

3 rs324026 113891042 C 2.35 (1.41–3.93) 0.001 0.014 2.11 (1.1–4.0) 0.023 DRD3 Intronic

19 rs12610827 1538138 T 3.9 (1.81–8.45) 0.00098 0.012 2.49 (1.0–6.0) 0.043 PLK5 (neighboring gene) –

3 rs6280 113890815 C 2.1 (1.25–3.46) 0.0047 0.057 1.85 (0.98–3.51) 0.058 DRD3 Missense

14 rs1543494 21829404 T 2.48 (1.05–5.86) 0.038 0.46 1.42 (0.55–3.67) 0.47 SUPT16H Intronic

Chr, chromosome; SNP, single-nucleotide polymorphism; Chr. Pos, chromosome position; MA, minor allele; OR, odds ratio; CI, confidence interval; aP were adjusted by
Bonferroni method. Bold font indicates statistically significant values.

pharmacogenetic analyses of association between SNP variants
and OLA response.

Our result suggested that SNP rs324026 in DRD3 gene had
significant association with OLA response using independent
cohort. This difference still remained significant in the total
cohort comprised 2 cohorts even after Bonferroni correction.
However, the other variant rs6280 was only found to be signi-
ficantly associated with an 8-week treatment of OLA response in
the combined cohort population and did not have evidence to
have significant associations with OLA response in independent
cohort. This inconsistent result may be caused by the small
sample set we tested. Notably, these 2 SNPs both exhibited
strong linkage disequilibrium (r2 > 0.9) in the HaploReg database
(Ward and Kellis, 2012). Therefore, both rs6280 and rs324026
may serve as biomarkers of OLA treatment response.

It is known that rs6280 mutation leads to a glycine for serine
substitution and is associated with altered dopamine binding
affinity. This glycine variant had been suggested to be able to
increase the densities of the dopamine receptor D3 (DRD-3) in
some areas in human brain (Jeanneteau et al., 2006). Adams
et al. (2008) reported that DRD-3 gly/gly genotype and other
polymorphisms in linkage disequilibrium with ser-9-gly variant
were significantly associated with an increase in PANSS total
score. Therefore, we concluded that our result was consistent with
the earlier discoveries of the association between ser-9-gly variant
and clozapine, which is the most similar receptor binding profile
to OLA. Cerrato et al. (2017) surveyed 65 papers and found that

rs6280 was successfully replicated as prognostic biomarkers of
clozapine efficacy. In contrast, rs324026 variant had never been
reported to affect the therapeutic efficacy of OLA. Rs324026 is
located next to exon 5. Our analysis results suggested that we
could only find evidence of significant association between SNP
rs324026 and OLA efficacy after Bonferroni correction in the
combined sample with both discovery and independent cohorts.
Additionally, individuals with C alleles of rs324026 generally
experience significantly better efficacy of OLA treatment.

In this study, SNP rs12610827 was validated in patients
from independent cohort and its association with OLA response
remained significant for multiple testing in the total cohort
after Bonferroni correction. Rs12610827 variant is located near
the PLK5 gene. Polo-like kinases (Plks) family, consisted of
5 members (Plk1-Plk5), is traditionally regarded to play an
important part only in cell cycle progression. However, mounting
evidence showed that Plk2 and Plk5 are also closely involved in
neuron biology (de Carcer et al., 2011a). It had been suggested
that Plk2 modulates neurite formation in response to activities
of brain-derived growth factor (BDGF) (Inglis et al., 2009).
Additionally, Plk5 was highly expressed in the central nervous
system and it serve as a Plk2-like role in the cerebellum according
earlier report (de Carcer et al., 2011b). It had been suggested that
Plk5 was regulated by CpG methylation of the promoter region
on the transcriptional level (de Carcer et al., 2011a). The level
of PLK5 gene expression may be influenced by the methylation
status of this variant. In this study, Han Chinese SCZ patients who
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carried allele T in SNP rs12610827 showed more good response
in OLA treatment. However, no previous reports have found such
association between PLK5 variants and drug response. Therefore,
we believe rs12610827 variant is worthy of further investigations
in order to verify its influence on OLA response in the future.

This study has several limitations. First, our analysis did not
consider some other genes that may have significant association
with antipsychotic. Therefore, our results may have neglected
some important biomarkers of OLA response due to this
incomplete gene collection. Secondly, a number of identified SNP
associations failed to stay statistically significant after Bonferroni
corrections. This may be caused by over-correction because
sample size was relatively small. Therefore, employing strict
multiple corrections such as Bonferroni to the data may be too
harsh for this specific study.

CONCLUSION

In sum, we performed a comprehensive study on 238 Han
Chinese SCZ patients in order to identify potential biomarkers
of Han Chinese-specific OLA responses. The result showed
that 143 genes were significantly associated with OLA. In
addition, 2 variants (rs324026 and rs12610827) were found
to have significant association with the OLA response. Future
investigations with larger sample sizes and high-throughput
methods such as high-density SNP arrays and whole exome
sequencing are warranted to find more biomarkers to predict the
efficacy of OLA in the Han Chinese population.
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Background: Genetic variability in some of the genes that affect absorption,
distribution, metabolism, and elimination (“pharmacogenes”) can significantly influence
an individual’s response to the drug and consequently the effectiveness of treatment
and possible adverse drug events. The rapid development of sequencing methods
in recent years and consequently the increased integration of next-generation
sequencing technologies into the clinical settings has enabled extensive genotyping
of pharmacogenes for personalized treatment. The aim of the present study was to
investigate the frequency and variety of potentially actionable pharmacogenetic findings
in the Slovenian population.

Methods: De-identified data from diagnostic exome sequencing in 1904 cases
submitted to our institution were analyzed for variants within 293 genes associated
with drug response. Filtered variants were classified according to population frequency,
variant type, the functional impact of the variant, pathogenicity predictions and
characterization in the Pharmacogenomics Knowledgebase (PharmGKB) and ClinVar.

Results: We observed a total of 24 known actionable pharmacogenetic variants
(PharmGKB 1A or 1B level of evidence), comprising approximately 26 drugs, of
which, 12 were rare, with the population frequency below 1%. Furthermore, we
identified an additional 61 variants with PharmGKB 2A or 2B clinical annotations.
We detected 308 novel/rare potentially actionable variants: 177 protein-truncating
variants and 131 missense variants predicted to be pathogenic based on several
pathogenicity predictions.

Conclusion: In the present study, we estimated the burden of pharmacogenetic
variants in nationally based exome sequencing data and investigated the potential
clinical usefulness of detected findings for personalized treatment. We provide the
first comprehensive overview of known pharmacogenetic variants in the Slovenian
population, as well as reveal a great proportion of novel/rare variants with a potential
to influence drug response.

Keywords: next-generation sequencing, pharmacogenomics, personalized medicine, Slovenian population,
PharmGKB

Frontiers in Pharmacology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 240105

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00240
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2019.00240
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00240&domain=pdf&date_stamp=2019-03-14
https://www.frontiersin.org/articles/10.3389/fphar.2019.00240/full
http://loop.frontiersin.org/people/615715/overview
http://loop.frontiersin.org/people/666432/overview
http://loop.frontiersin.org/people/46209/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00240 March 12, 2019 Time: 19:11 # 2
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INTRODUCTION

Genetic variation in genes associated with drug pharmacokinetics
(i.e., absorption, distribution, metabolism, elimination) or
pharmacodynamics (e.g., alerting a drug’s target or perturbing
biological pathways) can significantly contribute to individual
responsiveness to drugs, and thus on the therapeutic efficacy and
toxicity (Dunnenberger et al., 2015; Relling and Evans, 2015).
As an integral part of personalized medicine, pharmacogenomics
has great potential to enhance clinical benefit, decrease adverse
drug reactions and cost of treatment by optimizing drug
selection and dosing for an individual. The rapidly dropping
cost of next-generation sequencing within recent years, and
consequently, the increased integration of these technologies into
the clinical settings offered an unprecedented opportunity for
extensive genotyping of pharmacogenes. Exome sequencing is a
powerful tool for gaining insight into both common and rare
coding variation. However, presently, there are no comprehensive
studies regarding the application of exome sequencing data for
reporting of pharmacogenetic variants. Therefore, there are two
challenges that arise while analyzing exome-sequencing data.
First, how and which variants with established pharmacogenomic
effects should be reported, and second, how to evaluate novel
putatively functional variants or variants in genes with less
established pharmacogenetic function.

The lack of a comprehensive overview of the distribution of
rare variants in pharmacogenes among different ethnic groups
and the lack of knowledge about their functional consequences
and clinical actionability additionally limit the fully integrated use
of pharmacogenomics in a routine clinical practice. Therefore,
pharmacogenomics usually remains focused on a limited number
of common variants in a small number of genes, the detection of
which is primarily based on targeted gene panels or genotyping
arrays, such as AmpliChip CYP450 test (Roche) or Affymetrix
DMET Plus Assay (Potamias et al., 2014). However, these
approaches do not consider the complete heterogeneity of the
variation within pharmacogenes and do not address the issue of
rare and private variants with potentially large effects. Moreover,
previous studies have shown that the vast majority of protein-
coding variation is rare, previously unknown, population-
specific and enriched for deleterious alleles (Nelson et al., 2012;
Tennessen et al., 2012; Gordon et al., 2014; Fujikura et al.,
2015). Thus, it is likely that rare variation importantly contributes
to some currently unexplained differences in pharmacological
responsiveness and metabolism. Consistent with this notion,
recent research highlighted that rare variants account for 30–
40% of the functional variability in the pharmacogenes (Kozyra
et al., 2016). In the study by Ramsey et al. (2012), authors

Abbreviations: ABC, ATP-binding cassette; ACMG, American College of Medical
Genetics and Genomics; BWA, Burrows-Wheeler algorithm; CADD, Combined
Annotation–Dependent Depletion Score; CNV, copy number variation; CPIC,
Clinical Pharmacogenetics Implementation Consortium; CYP, cytochrome P450
superfamily; FDA, Food and Drug Administration; MAF, minor allele frequency;
MAFSlo, minor allele frequencies for the Slovenian population; gnomAD, the
Genome Aggregation Database; PGRN, Pharmacogenomics Research Network;
PharmGKB, Pharmacogenomics Knowledgebase; SLC, solute carrier; TCAs,
tricyclic antidepressants; UGTs, UDP-glucuronosyltransferases; UCSC, University
of California Santa Cruz.

showed that rare variants account for 17.8% of the variability
attributed to SLCO1B1, a gene associated with methotrexate
clearance and disposition of many other medications including
statins and irinotecan.

With an objective to enable the clinical use of
pharmacogenomics, projects like eMERGE are systematically
documenting and evaluating both common and rare variants
in pharmacogenes, thus creating clinically useful electronic
networks of pharmacogenetic variation (Rasmussen-Torvik
et al., 2014). Additionally, the Clinical Pharmacogenetics
Implementation Consortium (CPIC1) (Caudle et al.,
2014), a shared project between the Pharmacogenomics
Knowledgebase (PharmGKB2) (Whirl-Carrillo et al., 2012) and
the Pharmacogenomics Research Network (PGRN) (Shuldiner
et al., 2013), started to develop peer-reviewed, evidence-based
guidelines for specific gene/drug combinations. By September
2018 CPIC published 65 dosing guidelines covering 15 genes
and 38 drugs3. The efforts to facilitate implementation have
also been undertaken by other nationwide networks such as
the Royal Dutch Association for the Advancement of Pharmacy
and Canadian Pharmacogenomics Network for Drug Safety
(Ross et al., 2010). Currently, 23 different genes have described
actionable variants (corresponding to PharmGKB level 1A or 1B
of evidence) for germline pharmacogenomics (last accessed on
September 9th, 2018).

However, there are presently no consensus recommendations
on which pharmacogenetic findings should be actively sought
and reported back to patients when analyzing exome or
genome sequencing data. Nevertheless, the potential usefulness
of pharmacogenomic findings in the exome sequencing data
has recently been implicated. In the study of Lee et al. (2016),
21 potentially useful PharmGKB actionable variants (1A and
1B) were identified in 645 individuals who have undergone
clinical exome sequencing. In a related study by Cousin et al.
(2017), secondary pharmacogenetic findings from clinical whole
exome sequencing (WES) testing were reported in a cohort of
94 primarily pediatric patients referred for a suspected genetic
disorder. The study results showed that 91% of patients had at
least one pharmacogenetic variant allele in CYP2C19, CYP2C9,
and VKORC1 genes and that 20% of them had potential
immediate implications on current medication use. A study on
60,706 human exomes from ExAC population dataset further
estimated the prevalence of common as well as rare functional
variants in 806 drug-related genes and its implications for 1236
FDA approved drugs. The extended exome data analysis revealed
that four in five patients are likely to carry a variant with possibly
functional effects (Schärfe et al., 2017).

As population data are specific and cannot be generalized,
even within closely related European populations (Mizzi
et al., 2017), we used a genomic database of 1904 Slovenian
individuals to comprehensively assess the population burden
of pharmacogenetic variants. We conducted a nationally based
survey of genetic variation within 293 genes, known to influence

1www.eu-pic.net
2www.pharmgkb.org
3www.pharmgkb.org/guidelines
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drug response. Our additional motivation was to assess the
applicability of the pharmacogenetic reporting as a part of
the routine analysis of exomes and to gain insight into the
opportunities and challenges that arise. Accordingly, we analyzed
(1) which pharmacogenomic variants could be covered with
exome sequencing data, (2) the frequency of known actionable
variants in the Slovenian population, (3) and the frequency of rare
variants with putative functional impacts and the possibilities for
their interpretation.

MATERIALS AND METHODS

Participants
Exome datasets from 1904 patients who were referred to the
Clinical Institute of Medical Genetics, University Medical Centre,
Ljubljana, Slovenia from July 2014 to October 2017, and have
undergone clinical (Illumina TruSight One panel, targeting 4813
genes associated with Mendelian disorders) or whole exome
sequencing (Agilent SureSelect All Exon V5 or Illumina Nextera
coding exome capture), were recruited for this analysis. All
patients gave informed consent for participation in accordance
with the Declaration of Helsinki. The study was approved by the
Slovenian National Medical Ethics Committee (0120-561/2016).
Data were de-identified and phenotype data of the patients
were not available.

Panel Design
The panel of genes analyzed in the present study was selected
based to include genes that were captured with all of the used
protocols (Illumina TruSight One protocol, Nextera Coding
Exome, and the Agilent SureSelect All Exon v5 protocol).
We have established the pharmacogenetic list of 293 genes
associated with pharmacological impacts, which is based on 33
genes from VeraCode R© ADME Core Panel Assay (Illumina) and
supplemented with 260 additional genes from PharmaADME
(198 genes), PharmGKB (37 genes), and eMERGE-PGx (Sphinx)
(25 genes) websites (Supplementary Table S1). Combining
clinically relevant genes from these sources ensures that our gene
set covers the majority of the key genes currently reviewed in
pharmacogenomics research that are also captured with both –
the clinical and whole exome sequencing.

Exome Sequencing
Of the 1904 samples sequenced, the majority (1,582 samples,
83.1%) of the samples were enriched using the Illumina TruSight
One protocol, followed by Nextera Coding Exome (188 samples,
9.9%) and the remaining were analyzed using the Agilent
SureSelect All Exon v5 (134 samples, 7.0%) protocol. Raw
sequence files were processed using a custom exome analysis
pipeline, based upon GATK best practices backbone. Reads were
aligned to UCSC hg19 human reference genome assembly using
Burrows-Wheeler (BWA) algorithm and duplicate sequences
were removed using Picard MarkDuplicates, followed by base
quality score recalibration, variant calling, variant quality score
recalibration, and variant filtering using elements of the GATK
toolset (Depristo et al., 2011). In all cases, we attained a minimum

median exome coverage of 60x, with over 95% of targets covered
with at least 10× sequencing depth. Although the cytochrome
genes are characterized by a high degree of homology, we were
able to uniquely map over 90% of the reads in these regions, while
the non-uniquely mapped reads were attributed mapping quality
of 0 by the BWA. GATK variant caller did not emit sequence
variants in these regions, thereby reducing the rate of low-quality
variants in regions of high homology.

Variant Analysis
Variants were stored and annotated in our in-house variant
collection and annotation system, which is based on vTools
software. Variant effect predictions were made using snpEff
(Cingolani et al., 2012) and ANNOVAR tools (Wang et al.,
2010) and were based on RefSeq gene models (O’Leary
et al., 2016), whereas annotations from dbSNP v141 were
used for single nucleotide polymorphism (SNP) annotation.
Genome Aggregation Database (gnomAD) (Lek et al., 2016)
was employed as a source of variant frequencies in worldwide
populations. The consensus calls of dbNSFP v2 (Liu et al.,
2013) precomputed pathogenicity predictions were used to
predict functional effect for missense variants, including SIFT
(Sim et al., 2012), Polyphen-2 (Adzhubei et al., 2010),
MutationTaster (Schwarz et al., 2014), CADD (Combined
Annotation–Dependent Depletion Score) (Kircher et al., 2014),
and MetaSVM (Dong et al., 2015). GERP++ rejected substation
(RS) scores were used as the source of information for
evolutionary sequence conservation applicable to all types of
variants (Davydov et al., 2010). Our pipeline included ClinVar
as a source of known disease or drug response association
of identified variants. Variants that reached coverage less
than 20 and quality less than 300 were excluded from the
subsequent analysis.

Variant Filtration and Characterization
Firstly, we applied a 293-gene panel for the filtration of
exome data. Next, variants were characterized according to
PharmGKB levels of evidence for variant-drug associations4

(Whirl-Carrillo et al., 2012) (accessed on 9th September 2018).
Level 1A category includes variant-drug pairs with a CPIC
pharmacogenetic guideline or variants implemented at a PGRN
site or another major health system. Level 1B annotations
comprise variant-drug combinations in which the preponderance
of evidence shows an association that has been replicated in
more than one cohort, with significant p-values and preferably
with a strong effect size. Clinical annotation of Level 2A refers
to variants within known pharmacogenes that are more likely
to have a functional significance. Level 2B annotation refers to
variant-drug pairs with moderate evidence of an association that
has been replicated, but the results might not be statistically
significant or the effect size may be small. Initially, we searched
for actionable variants, defined as variants with PharmGKB 1A
and 1B levels of evidence. The search was based on dbSNP
accession numbers. Star allele assignments (ec. CYP2C9∗3) were
searched for corresponding rs numbers where possible, using

4www.pharmgkb.org/downloads
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star-allele nomenclature from PharmVar Database5 and TPMT
Nomenclature Committee websites6. Additionally, we extracted
variant-drug pairs with PharmGKB annotations of 2A or 2B.
We also inspected how many variants with ClinVar accession
“drug response” were detected in our dataset. The dosing
algorithms were obtained from CPIC guidelines and variant-
drug-phenotype associations from PharmGKB website7.

Next, we filtered variants on the basis of their minor
allele frequencies (MAFs), with an exclusion of variants with
MAF > 0.01 in the gnomAD database. We also excluded
variants that were detected in more than 19 (1%) individuals as
heterozygous and variants detected in more than 15 individuals
as homozygous in the Slovenian genomic database. We rated
the variants according to variant functional impact, variant
type, and theoretical pathogenicity predictions (PolyPhen-
2, SIFT, Mutation Tester, MetaSVM, CADD). Additionally,
median Phred normalized CADD annotation scores for each
gene were calculated (Kircher et al., 2014). Subsequently,
we examined the distribution of rare exonic and splicing

5www.pharmvar.org/genes
6www.imh.liu.se/tpmtalleles
7www.pharmgkb.org

variation across major pharmacogenetic gene groups, including
cytochrome P450 (CYP) superfamily, ATP-binding cassette
(ABC) superfamily, solute carrier (SLC) superfamily, and UDP-
glucuronosyltransferases (UGTs).

RESULTS

Overview
Using exome-sequencing data from 1904 individuals we detected
a total of 72,293 high-quality variants in 293 pharmacogenes.
Our data revealed that most of the variants in pharmacogenes
were rare (n = 65,059, MAFgnomAD < 0.01), comprising about
90.0% of all variants. Of these rare variants 4360 were annotated
as missense, 2239 as synonymous, 174 as frameshifts, and 127
as stop gained. Among the rare non-coding variants, 48,822
were classified as intronic, 1142 as upstream variants, 700 as
downstream variants, 1914 as 3′UTR variants, and 735 as 5′UTR
variants. Of the rare variants, 9229 (14.2%) were previously
reported in the gnomAD database. The number of variants
by type is summarized in Table 1. The counts by variant
annotation impact and variant annotation type for rare exonic
and splicing variation are presented in Figure 1. The distribution

TABLE 1 | SNPEff Variant types.

In Slovenian genomic dataset In gnomAD In dbSNP 141 Novel (not in gnomAD, dbSNP or ClinVar)

All variants 72293 10646 3083 59428

Rare variants
(MAFgnomAD < 0.01), number of
heterozygotes < 19, number of
homozygotes < 15

61060 9229 2269 51393

Intronic rare 48822 2703 20 46087

Upstream rare 1142 70 0 1070

Downstream rare 700 58 0 641

3′UTR rare 1914 286 2 1354

5′UTR rare 735 155 3 528

Exonic + splicing rare 7571 5831 2225 1669

Missense rare 4360 3394 2079 920

Frameshift rare 174 81 0 86

Synonymous rare 2239 1786 71 448

Splice Acceptor rare 48 24 9 23

Splice Donor rare 60 38 13 21

Stop Gain rare 127 80 48 40

Splice region rare 563 428 6 135

Rare CADD > 20 2101 1615 990 437

Missense rare 4xD +
CADD > 20

565 420 260 131

HIGH impact rare (truncating
variants)

429 234 76 177

ClinVar at least one 6 (all) 89 70

ClinVar at least one 6 (rare) 16 9

PharmGKB Level 1A/1B (all) 24 23

PharmGKB Level 1A/ 1B (rare) 12 12

PharmGKB Level 2A/2B (all) 68 50

PharmGKB Level 2A/ 2B (rare) 12 4

gnomAD, Genome Aggregation Database; MAF, minor allele frequency; PharmGKB, Pharmacogenomics Knowledgebase.
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FIGURE 1 | Counts by variant annotation impact (SNPEfff) (A) and variant
annotation type (SNPEfff) (B) for rare exonic and splicing variation in 293
pharmacogenes (MAF < 0.01).

of rare variation across major pharmacogenetic gene groups is
presented in Figure 2.

Known Actionable Pharmacogenetic
Variants
Firstly, we focused on variants featured in the PharmGKB
or/and in ClinVar database. We looked for PharmGKB annotated
variant-drug combinations with four highest levels of evidence
1A, 1B, 2A, and 2B. Within the exome sequencing data we
identified 24 PharmGKB unique variants with the highest levels
of evidence, 1A or 1B, associated with response to about 26
drugs. Twelve of them were rare, with the MAF not exceeding
1% in gnomAD and the Slovenian genomic database. Rare
actionable variants (PharmGKB 1A or 1B) located in the exonic
or splicing regions were observed in the following genes: CYP2D6
(frameshift variant), CYP2C19 (one start lost and another
missense variant), CFTR (disruptive inframe deletion and five
missense variants), DYPD (one missense variant and another
splice donor variant), and TPMT (one missense variant).

We estimated minor allele frequencies for the Slovenian
population (MAFSlo) for each potentially actionable finding and
the results are presented in Table 2 and Supplementary Tables
S2–S4. The most prevalent actionable variant (PharmGKB 1A
or 1B level) in our database was a missense variant in CYP4F2
gene (Val433Met, rs2108622) with MAFSlo of 27.4%, associated
with warfarin dosage (PharmGKB level 1A of evidence),
followed by missense variants in CYP2B6 (Gln172His, rs3745274,
MAFSlo = 22.4%, PharmGKB 1B), CYP2D6 (Pro34Ser, rs1065852,
MAFSlo = 19.5%, PharmGKB 1A), and SLCO1B1 (Val174Ala,
rs4149056, MAFSlo = 19.2%, PharmGKB 1A) genes. Further
most prevalent variants in PharmGKB 1A or 1B category were
splice acceptor variant (c.506-1G > A, rs3892097) in CYP2D6
gene (MAFSlo = 16.7%) and synonymous variant (Pro227Pro,
rs4244285) in CYP2D6 gene (MAFSlo = 12.6%).

Additionally, we identified 68 variants with PharmGKB
2A or 2B levels of evidence, with seven of them also in
the 1st categories (PharmGKB 1A and 1B), but presented a
different type of an association or different drug-variant pair
and were for that reason listed twice. Altogether, the most

common pharmacogenetic variant detected in the Slovenian
genomic database was a missense variant in the F5 gene
(Gln534Arg, rs6025, PharmGKB 2A) with MAFSlo of 88.4%
(MAFgnomAD = 98.0%). This was followed by a synonymous
variant in ABCC4 gene (Lys1116Lys, rs1751034, PharmGKB
2B), associated with a response to tenofovir and MAFSlo of
77.0% (MAFgnomAD = 81.0%). A missense variant in the TP53
gene (Pro72Arg, rs1042522, PharmGKB 2B) with MAF in the
Slovenian population of 71.8% (MAFgnomAD = 66.9%) was
the third most frequently detected pharmacogenetic variant in
Slovenian individuals. The variant is associated with the efficacy
and toxicity/ADR of antineoplastic agents, such as cisplatin,
cyclophosphamide, fluorouracil, and paclitaxel. A start lost
variant in VDR gene (Met1? rs2228570) was the second most
prevalent variant in the PharmGKB 2A category, with MAFSlo
of 52.8% (MAFgnomAD = 62.9%). The variant is associated with
the efficacy in response to peginterferon alfa-2b in patients
suffering from chronic hepatitis C. A missense variant in COMT
gene (Val158Met, rs4680, PharmGKB 2A) reached the MAFSlo
of 48.6%, which is in line with gnomAD MAF frequency of
46.3%. Variant-drug pairs along with corresponding frequencies
are summarized in Table 2 and Supplementary Tables S2–S4.

We detected 89 ClinVar variants with at least one accession
number 6 (“drug response”), 16 of them with MAF of less than
1% (ClinVar version 02.10.2017).

When we compared MAFs for each risk variant in the
Slovenian genomic database to MAFs in the gnomAD database,
we generally got consistent results for detected exonic and
splicing variation. However, some inconsistencies in the MAFs
among databases were apparent. For example, the variant in
ANKK1 gene (Glu713Lys, rs1800497) associated with the toxicity
and ADR of antipsychotics, had a MAF of 26.4% in the gnomAD
database (MAFEuropean(Non−Finnish) = 19.2%), but had a MAF of
only 17.3% in the Slovenian genomic database. A synonymous
variant in the CYP2C19 gene (Pro227Pro, rs4244285) influencing
the efficacy of several drugs including amitriptyline, clopidogrel,
citalopram, and clomipramine, had a MAF of in 17.6% in the
gnomAD database (MAFEuropean(Non−Finnish) = 14.7%) and 12.6%
in the Slovenian database. The variant in F5 gene (Gln534Arg,
rs6025), associated with the adverse event of thrombosis in
systemic hormonal contraceptives use, had a MAF of 98.0%
in gnomAD (MAFEuropean(Non−Finnish) = 97.0%) and only of
88.4% in Slovenian population. In contrast, missense variant in
the SLCO1B1 gene (Val174Ala, rs4149056) associated with the
adverse drug reaction and toxicity of simvastatin, has MAF of
13.3% in gnomAD (MAFEuropean(Non−Finnish) = 15.6%) and 19.2%
in the Slovenian database. It is important to note that some of the
detected variants were intronic, therefore, their MAFSlo may be
unreliable due to the lack of sequence coverage for these regions
in exome sequencing data.

Functional Impacts of Variants
Next, we characterized the rare variants on the basis of
predicted functional impacts. We detected 2101 variants that
reached CADD score above the cut-off value of 20 and thus
ranked into the 1st percentile of the most deleterious variants
(Kircher et al., 2014). Several in silico prediction algorithms
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TABLE 2 | Variant-drug pairs with 1A or 1B clinical annotation according to Pharmacogenomics Knowledgebase (PharmGKB).

Gene Variant type Transcript level
variant

Functional effect dbSNP MAFgnomAD HetSlo MAFSlo HomSlo PharmGKB Drugs

CYP2C9 (∗3) Missense c.1075A > C Ile359Leu 1057910 0.0636 247 0.0691 8 1A Warfarin, phenytoin

CYP2C9 (∗2) Missense c.430C > T Arg144Cys 1799853 0.0926 390 0.121 35 1A Warfarin, phenytoin

CYP2D6 (∗4) Splice acceptor c.506-1G > A – 3892097 0.138 487 0.167 74 1A Amitriptyline,
clomipramine,
desipramine, doxepin,
imipramine,
nortriptyline,
trimipramine

CYP2D6 (∗6)
(non-functional)

Frameshift c.454delT Trp152fs 5030655 0.00791 42 0.0110 0 1A Paroxetine,
fluvoxamine,
amitriptyline,
nortriptyline, codeine

CYP2D6 (all the
variants in which it
appears have
reduced
or no CYP2D6
activity)

Missense c.100C > T Pro34Ser 1065852 0.207 511 0.195 115 1A Paroxetine,
nortriptyline, codeine,
amitriptyline

1B Tramadol

SLCO1B1 (∗5) Missense c.521T > C Val174Ala 4149056 0.133 585 0.192 73 1A Simvastatin

CYP2D6 (∗3) Frameshift c.775delA Arg259fs 35742686 0.0124 67 0.0186 2 1A Amitriptyline,
nortriptyline,
trimipramine,
clomipramine,
tamoxifen, codeine,
paroxetine, doxepin,
fluvoxamine

1B Tramadol

VKORC1 3′-UTR c.∗134G > A – 7294 . 64 0.0273 20 1B Warfarin

CYP4F2 Missense c.1297G > A Val433Met 2108622 0.274 759 0.274 142 1A Warfarin

CYP2B6 Missense c.516G > T Gln172His 3745274 0.272 651 0.224 101 1B Efavirenz

CYP2C19 (∗2) Synonymous c.681G > A Pro227Pro 4244285 0.176 411 0.126 35 1A Amitriptyline,
clopidogrel

CYP2C19 (∗4) Start lost c.1A > G Met1? 28399504 0.00231 11 0.00289 0 1A Clopidogrel

CYP2C19 (∗8)
(non-functional)

Missense c.358T > C Trp120Arg 41291556 0.00152 11 0.00289 0 1A Clopidogrel

CFTR Disruptive
inframe
deletion

c.1521_1523
delCTT

Phe508del 113993960 0.00696 39 0.0102 0 1A Ivacaftor

CFTR Missense c.220C > T Arg74Trp 115545701 0.00142 1 0.000263 0 1A Ivacaftor

CFTR Missense c.328G > C Asp110His 113993958 0.0000203 1 0.000263 0 1A Ivacaftor

CFTR Missense c.3154T > G Phe1052Val 150212784 0.000632 4 0.00105 0 1A Ivacaftor

CFTR Missense c.3209G > A Arg1070Gln 78769542 0.000623 1 0.000263 0 1A Ivacaftor

CFTR Missense c.3454G > C Asp1152His 75541969 0.000407 2 0.000526 0 1A Ivacaftor

DYPD Missense c.2846A > T Asp949Val 67376798 0.00284 9 0.00236 0 1A Capecitabine,
fluorouracil, pyrimidine
analogs, tegafur

DPYD (∗2A) Splice donor c.1905+1G > A – 3918290 0.00574 10 0.00263 0 1A Capecitabine,
fluorouracil, pyrimidine
analogs, tegafur

TPMT (∗2) Missense c.238G > C Ala80Pro 1800462 0.00172 6 0.00158 0 1A Azathioprine,
mercaptopurine, purine
analogs, thioguanine

(Continued)
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TABLE 2 | Continued

Gene Variant type Transcript level
variant

Functional effect dbSNP MAFgnomAD HetSlo MAFSlo HomSlo PharmGKB Drugs

TPMT
(∗3B/potentially
encoding ∗3A allele)

Missense c.460G > A Ala154Thr 1800460 0.0280 93 0.0249 1 1A Azathioprine,
mercaptopurine, purine
analogs, thioguanine

TPMT (potentially
encoding ∗3C allele
/∗3A)

Missense c.719A > G Tyr240Cys 1142345 0.0366 98 0.0268 2 1A Azathioprine,
mercaptopurine, purine
analogs, thioguanine

HetSlo, number of heterozygotes in the Slovenian genomic database; HomSlo, number of homozygotes in Slovenian genomic database; MAF, minor allele frequency; 1A,
variant-drug pairs with a CPIC pharmacogenetic guideline or variants implemented at a PGRN site or another major health system; 1B, variant-drug pairs in which the
preponderance of evidence shows an association that has been replicated in more than one cohort, with significant p-values and preferably with a strong effect size.

FIGURE 2 | Distribution of rare (MAF < 0.01) exonic and splicing variation across major pharmacogenetic gene groups. (A) Distribution of rare exonic and splicing
variation across CYP genes, (B) Distribution of rare exonic and splicing variation across SLC genes, (C) Distribution of rare exonic and splicing variation across ABC
genes, (D) Distribution of rare exonic and splicing variation across ABC genes, (E) Distribution of rare exonic and splicing variation across UGT genes.

(Mutation Tester, Polyphen-2, SIFT, MetaSVM) predicted in
consensus as pathogenic 565 missense variants that also reached
CADD score above 20. These included 131 novel variants- not
previously reported in gnomAD, dbSNP or ClinVar database
(Supplementary Table S5). We further analyzed rare variants
with protein-truncating effects, including frameshift variants,

stop-gain variants, and variants affecting splicing, which resulted
in additional 429 variants predicted to be highly pathogenic
based on their functional impact, of which 177 were novel
(Supplementary Table S6). Most of the rare putatively functional
variants were thus missense, followed by frameshift (n = 174) and
stop-gain variants (n = 127).
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Additionally, we examined CADD annotation scores
separately for each gene and further compared median CADD
scores of rare variants with common variants. We observed the
highest median CADD scores for rare variants in the following
genes: CDA, SLC10A2, TPMT, and SULF1. Among CYP genes,
the highest median score was detected in the CYP1A1 gene,
followed by CYP24A1, and CYP2R1. In the SLC group, SLC10A2,
SLC22A2, and SLC22A6 genes ranked the highest. Altogether,
the highest CADD score of 54 was detected for the known
pathogenic variant in ABCA4 gene (c.6445C > T, Arg2149∗,
rs61750654), followed by the stop-gain variant in EPHX2 gene
(Arg467∗, CADD = 51). Expectedly, we identified significantly
more damaging variants among the rare variants than among
common variants with the population frequency exceeding 1%.

DISCUSSION

The implementation of exome sequencing technologies into
daily clinical practice makes the prospect of a personalized
treatment increasingly available. Here, we showed that by
using clinical and whole exome sequencing technologies it is
possible to identify not only variants that are causative for
patients’ clinical presentation but also a considerable proportion
of pharmacogenetics findings with established evidence and
potential clinical utility.

Within the study population, we identified a high frequency of
well-established examples of common genetic polymorphisms, as
well as known rare actionable variants. We detected 24 variants
with compelling evidence of pharmacogenetic significance
(PharmGKB level 1A or 1B variants) associated with about 26
drugs, where 12 of them were rare, and 61 additional variants
with a level 2A or 2B PharmGKB evidence. Our results are
consistent with those of the previously published study by Lee
et al. (2016), in which authors used combined SNP chip and
exome sequence data of 1101 individuals. In their study, 29
variants were detected that ranked in the PharmGKB 1A and
1B categories; 21 of them were detected by exome sequencing
technology. Similarly, 22 actionable clinical variants (PharmGKB
1A/1B) were found in 120 pharmacogenes when analyzing 1000
Genomes Phase 3 data of 2540 individuals (Wright et al., 2018).

Furthermore, our results are correlated with the already
known fact that rare variants are enriched for deleterious
variation. We identified 308 novel variants of potential functional
significance, including 131 missense variants (predicted in
consensus as pathogenic by functional prediction algorithms:
Mutation Tester, Polyphen-2, SIFT, MetaSVM, CADD) and 177
protein-truncating variants. We observed that especially when
testing an expanded set of genes, novel putatively functional
variants and variants in genes with less established effects
represent a considerable challenge in result interpretation and
reporting. To date, very few studies have conducted a systematic
overview of the distribution and frequency of genetic variation
with potentially high impact over a large set of pharmacogenes
(Kozyra et al., 2016; Schärfe et al., 2017; Wright et al., 2018). So
far, studies examining rare genetic variation have been limited
to small sets of genes or on gene groups, such as largely
studied cytochrome P450 (CYP) gene family (Gordon et al.,

2014; Fujikura et al., 2015). Further evaluation of functional
consequences and clinical effects is required to extend our
understanding of rare variants. Therefore, a considerable part of
the variation in response to treatment still remains unclear and
has not yet been integrated into routine clinical practice.

Moreover, we have observed that MAFs of some known
variants differ significantly in the Slovenian dataset when
compared to gnomAD MAFs. This raises the importance of
establishing population specific databases of pharmacogenomics
variation. With growing pharmacogenetic databases and
increased integration of sequencing technologies into clinical
practice, we will also gain additional insight into the rare
pharmacogenetic variation. This will make publicly accessible
and easily updatable data repositories such as CPIC, PharmGKB,
ClinVar, Pharmacogene Variation (PharmVar) Consortium,
as well as population-specific databases, essential for the
accurate interpretation of pharmacogenomics results along with
the subsequent integration of dosing recommendations and
guidelines into electronic healthcare record systems.

Also, the identification and reporting of pharmacogenetic
findings are in many aspects distinct from reporting of the disease
causative variants. The proposed American College of Medical
Genetics and Genomics (ACMG) criteria for interpretation
of sequence variants are not intended for pharmacogenomic
findings (Richards et al., 2015). While the comprehensive
phenotyping data could be of particular value when interpreting
the putative disease-causative variants, the genotype-phenotype
correlation for pharmacogenomic findings is apparent only when
the patient is exposed to a specific drug. Furthermore, the results
may not be useful at the time of reporting, but only when the
particular drug is prescribed to the patient. However, by potential
reporting or storing of actionable variants from sequencing data
preemptively, they may be available prior the prescription and for
a wide range of medications, subsequently influencing decisions
about treatment, which could significantly medically benefit the
patients (Dunnenberger et al., 2015; Ji et al., 2016).

Compared to approaches targeting only known
pharmacogenetics variants, sequencing technologies are
beneficial for a number of additional aspects. SNP genotyping
assays may be unable to detect low-frequency variants with
potential deleterious functional effects. Besides, the response to
a majority of the drugs is influenced by several genes, including
genes encoding drug metabolizing enzymes, transporters,
drug targets, and disease-modifying genes, or by various
variants within the same gene, which may not be detected
using approaches targeting known pharmacogenetics variants
(Relling and Evans, 2015). We have demonstrated that exome
sequencing is an effective method for the detection of both rare
and common pharmacogenetic variants in a large set of genes
under one investigation.

The present study identifies a high number of clinically
relevant highly actionable variant-drug associations, with already
established dosing guidelines and recommendations applicable
for the use in personalized treatment. Here we highlight the
potential clinical utility for a selection of variants detected in the
Slovenian database.

A decreased function missense variant in the SLCO1B1
gene (Val174Ala, rs4149056, allele ∗5) has a MAF of 19.2%
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Hočevar et al. Pharmacogenomic Variation of Slovenian Population

in the Slovenian population. It was identified as heterozygous
in 585/1904 (31%) individuals and as homozygous in 73/1904
(4%) individuals, who, therefore, have an intermediate and
high myopathy risk, respectively, when receiving simvastatin
treatment. Consequently, a lower dose or alternative statin (e.g.,
pravastatin or rosuvastatin) and routine creatine kinase (CK)
surveillance are recommended for these individuals (Wilke et al.,
2012; Ramsey et al., 2014).

Variants of CYP2D6 and CYP2C19 genes affect the exposure,
efficacy, and safety of tricyclic antidepressants (TCAs) (Hicks
et al., 2013). A synonymous variant (Pro227Pro, rs4244285) in
the CYP2C19 gene represents no function allele (∗2) and thus
greatly decreases the conversion of tertiary amines to secondary
amines, which may cause a sub-optimal response. The MAF
of the variant in the Slovenian population was estimated at
12.6%; 35/1904 (1.8%) individuals carried the variant in the
homozygous state, who should avoid the use of tertiary amine
and alternative drugs that are not metabolized by CYP2C19 are
recommended. Moreover, we detected c.506-1G > A variant
(allele ∗4, rs3892097), with anticipated effect on splicing in
CYP2D6 gene, resulting in a greatly reduced metabolism of TCAs
to less active compounds. The variant was found in 487/1904
(25.6%) of Slovenian individuals as heterozygous, and in 74/1904
(3.9%) as homozygous. Additionally, the variant also has a major
role in the activation of prodrugs such as codeine and tramadol.

Cytochrome P450 CYP2C19 also catalyzes the bioactivation
of the antiplatelet prodrug clopidogrel that inhibits the ADP-
dependent P2Y12 receptor. CYP2C19 (∗2) loss-of-function allele
impairs formation of active metabolites (Scott et al., 2013). Both
heterozygous 411/1904 (21.6%) and homozygous 35/1904 (1.8%)
clopidogrel-treated patients with acute coronary syndromes have
significantly reduced platelet inhibition and thus an increased
risk for serious adverse cardiovascular events. Alternative
antiplatelet medication, such as prasugrel or ticagrelor is strongly
recommended in individuals with this variant.

Furthermore, we detected two rare variants with PharmGKB
level 1A of evidence, one variant with the effect on splicing
(c.1905+1G > A, allele ∗2A, rs3918290, MAFSlo = 0.263%) and
another missense variant (c.2846A > T, Asp949Val, rs67376798,
MAFSlo = 0.236%) in the DPYD gene. Heterozygotes for one of
the detected variants in the DPYD gene have reduced leukocyte
dihydropyrimidine dehydrogenase (DPD) activity (at 30–70%
that of the normal population) and an increased risk of severe
or even lethal drug toxicity when treated with fluoropyrimidine
drugs. At least 50% reduction in starting dose is recommended,
followed by titration of dose based on toxicity or pharmacokinetic
test (Caudle et al., 2013).

Our study also has some limitations. Firstly, the application
of exome sequencing for the detection of pharmacogenomics
variants is limited (Londin et al., 2014). Because of the lack
of coverage of the exome test, we were not able to accurately
detect the majority of the intronic variation (e.g., the rs9923231
variant of the VKORC1 gene). Due to technical limitations,
structural variants and repetitive regions were not sufficiently
assessed. We also recognize the limitation of the sensitivity
of exome sequencing in highly homologous regions of the
human genome, including the cytochrome genes (e.g., part of

the known actionable variability of the CYP2D6 gene). We
recognize the possibility that we failed to detect a minor part
of pharmacogenomic variation due to the limited detection
of variants in these regions. Furthermore, in the present
study, we did not extend the exome analysis on copy number
variation (CNVs). Also, with de-identified data, we could
not identify the compound heterozygous states or assess the
polygenic effects of variants. Nevertheless, when analyzing each
patient’s data separately, it will be possible to include multigenic
effects, compound heterozygous states and some of the risk
haplotypes with established pharmacogenetic effects in future
patient’s records, which will add the considerable value to the
exome sequencing results. With such valuable data, we could
significantly benefit future patients by increasing the efficacy and
decreasing adverse drug responses of pharmacologic treatment.

CONCLUSION

In conclusion, our results demonstrate that nationally
based exome sequencing data represents a valuable source
for identification of pharmacogenetic variants. The direct
inclusion of actionable pharmacogenetics findings in patient’s
records could significantly improve the outcome in patients
who underwent diagnostic exome and genome sequencing.
Furthermore, our data provide the first comprehensive overview
of the distribution of both rare and common variants within
several pharmacogenes and provides first estimates on their
prevalence for the Slovenian population. We have shown that
testing beyond known polymorphisms is warranted to gain
further insight into rare variation and to facilitate more reliable
future interpretation and reporting of pharmacogenetic findings.
We anticipate that the present dataset will be of great importance
for future research and validation of pharmacogenetics variation
in the Slovenian population. Based on our results we propose that
known pharmacogenetic variants with well-established effects
should be a part of every genetic report.
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Pharmacogenomics has been recognized as a fundamental tool in the era of
personalized medicine with up to 266 drug labels, approved by major regulatory bodies,
currently containing pharmacogenomics information. Next-generation sequencing
analysis assumes a critical role in personalized medicine, providing a comprehensive
profile of an individual’s variome, particularly that of clinical relevance, comprising of
pathogenic variants and pharmacogenomic biomarkers. Here, we propose a strategy
to integrate next-generation sequencing into the current clinical pharmacogenomics
workflow from deep resequencing to pharmacogenomics consultation, according to
the existing guidelines and recommendations.

Keywords: clinical pharmacogenomics, workflow, implementation, next-generation sequencing, clinical decision
support tools

INTRODUCTION

Since the 1950s, many pioneers in the biomedicine field have reported individual variability
in disease management and envisioned personalized medicine in health care (Evans and
Relling, 1999). Notwithstanding, the realistic application of genomic findings and technologies
in the clinic goes beyond the discovery of gene variants and their validation in clinical trials.
Lam (2013) has suggested a series of stages regarding the development and implementation
pathways for pharmacogenomic tests, namely: (i) discovery of pharmacogenomic biomarkers
and validation in well-controlled studies with independent populations; (ii) replication of drug-
gene(s) association and demonstration of utility in at-risk patients; (iii) development and
regulatory approval of companion diagnostic test; (iv), assessing the clinical impact and cost-
effectiveness of the pharmacogenomic biomarkers; (v), involvement of all stakeholders in clinical
implementation (Lam, 2013).

Noteworthy, the scientific challenges and implementation barriers existing within the
abovementioned stages are still rather unmet. Pharmacogenomic testing occurs by genotyping
or sequencing and is mostly outsourced from hospitals to private companies, being a time-
consuming and costly process (Harper and Topol, 2012). Unfortunately, there is still a profound
lack of understanding within the medical community regarding genomics and the impact of
genomic variants in rationalizing drug prescription (Stanek et al., 2012; Mitropoulou et al., 2014).
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On the other hand, the pharmacy benefit managers (involved
with authorizing of fulfilling most prescriptions in the
United States) have been particularly interested in the use
of pharmacogenomic testing to save employers (their customers)
the cost of a drug through genotyping, making the pharmacy
benefit managers in question more competitive (Topol, 2010).

In 2013, the United States Food and Drug Administration
(FDA) announced a guidance for industry entitled “Clinical
Pharmacogenomics: Premarket Evaluation in Early-Phase
Clinical Studies and Recommendations for Labeling1” in an effort
to address the challenges that need to be met. The FDA has also
established the Genomics and Targeted Therapy Group2 toward
the advancement of the application of genomic technologies in
the discovery, development, regulation, and use of medications.
In the same context, the United States National Cancer Institute
has announced a rather similar research and development
workflow toward treatment strategies in cancer, including: (i)
the support of the routine collection of germline and tumor
biospecimens from clinical trials or population-based studies, (ii)
the support in efficacy/toxicity biomarker development, (iii) the
incorporation of pharmacogenomic markers into clinical trials,
and (iv) the consideration of ethical, legal, social, biospecimen,
and data-sharing implications of pharmacogenomics research
(Freedman et al., 2010). Today, FDA has approved 266 drugs
that include genetic information in their labels (Drozda et al.,
2018) and the same is true for the European Medicines Agency
(Ehmann et al., 2015). The distribution of these drugs between
various target diseases indicates that oncology, cardiology,
psychiatry, and neurology are among the most common ones
in which pharmacogenomics are readily applicable for routine
clinical care (Potamias et al., 2014).

NEXT-GENERATION SEQUENCING
GENOTYPING IN
PHARMACOGENOMICS

Considering the plummeting cost of genotyping, particularly
in a high-throughput format, such as panel-based genotyping
and/or next-generation sequencing as well as data accuracy
improvements, one would envisage that comprehensive
pharmacogenomic testing using these approaches could be
readily applicable in a clinical setting (Kitzmiller et al., 2011).
Indeed, major academic institutions, government-sponsored as
well as private organizations and research consortia are engaged
into collaborative programs that focus on next generation
sequencing of the cancer genome, aiming to describe the
architecture of cancer-specific somatic alterations and as
such, aid clinicians toward disease management (Simon and
Roychowdhury, 2013), while others, such as the SEAPharm
Consortium3 are currently exploring the use of targeted
pharmacogene resequencing in 100 pharmacogenes to explore
the pharmacogenomic variants allelic architecture and the

1https://federalregister.gov/a/2013-01638
2https://www.fda.gov/drugs/scienceresearch/ucm572617.htm
3http://www.pharmagtc.org/seapharm

most prevalent pharmacogenomic biomarkers in Southeast
Asian populations.

Recently, by investigating the exome sequences or over 60000
individuals, Ingelman-Sundberg et al. (2018) demonstrated that
each individual harbors, on average, approximately 41 putatively
functional pharmacogenomic variants from which 10.8% are rare
and found to be highly gene- and drug-specific, accounting for a
substantial part of the unexplained inter-individual differences in
drug metabolism phenotypes.

Still, and contrary to identifying the genetic basis of disorders
characterized by a high degree of phenotypic and clinical
variability and/or genetic heterogeneity (Ku et al., 2016), in
case of pharmacogenomic testing, where the role of several
pharmacogenes is well established, targeted gene resequencing
seems to be perhaps more relevant compared to whole exome
sequencing, as it also captures rare pharmacovariants that are
present in other genomic positions than the gene exons, such as
promoters, intronic and untranslated sequences, which have been
shown to lead to drastic reduction of drug metabolizing enzyme
activity. This is further highlighted in a recent study comparing
the results obtained by whole genome sequencing, whole exome
sequencing, and microarray-based genotyping, indicating that
the performance of genotyping arrays is similar to that of
whole genome sequencing, whereas whole exome sequencing is
not suitable for pharmacogenomics predictions (Reisberg et al.,
2019). In any case, novel and rare pharmacovariants that can
only be identified by next-generation sequencing approaches are
of utmost importance in personalized drug therapy to provide
information of use to avoid adverse drug reactions and lack of
response (Lauschke and Ingelman-Sundberg, 2018).

Tumor samples are known to contain both acquired and
inherited alterations, along with somatic DNA. Thus, cancer
sequencing efforts also capture germline information. This
germline information plays a crucial role in optimizing the
dose and selection of therapy. A unique benefit to next
generation sequencing is the ability to discover rare variants
(in cancer patients, germline DNA is also analyzed as a
means to identify variants in the tumor) in the genome and
then, delineate their impact on drug response (Gillis et al.,
2014). This has been previously demonstrated by Mizzi et al.
(2014), indicating that novel and rare variants can exert
a deleterious effect in drug metabolizing enzymes, such as
CYP2D6, TPMT, CYP2C19, involved in anti-cancer, psychiatric
and cardiology drug treatment, among others, by introducing
premature stop-codons or out-of-frame frameshifts very close to
the N-terminus of the enzyme. These authors also demonstrated
that whole genome sequencing could identify novel CYP2C9
variants relevant to anticoagulation treatment, which could
not have been identified using microarray-based genotyping
approaches, which could potentially guide toward alternative
anticoagulation treatment modalities in two patients suffering
from atrial fibrillation (Mizzi et al., 2014). Furthermore, rather
than Sanger sequencing, next generation sequencing technology
yields more accurate quantitative results, when somatic variation
is considered and can be achieved at a higher throughput
scale (Simon and Roychowdhury, 2013). Indeed, findings
in genes involved in the metabolism of anti-cancer drugs
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further demonstrate the potential applicability of whole genome
sequencing for pharmacogenomic testing in a clinical setting in
the not too distant future (McCarty et al., 2011; Mizzi et al., 2014;
Karageorgos et al., 2015).

INFORMATION TECHNOLOGIES AND
DATA INTERPRETATION

Currently, difficulties in pharmacogenomics data interpretation
are claimed responsible for the slow clinical uptake of
pharmacogenomics. Two main aspects of data interpretation
have been identified to affect pharmacogenomics translation into
clinical practice: (i) the interpretation of reported genetic results
by clinicians and (ii) the interpretation of published research
results. It has become evident that the vast majority of health
professionals even though acknowledges that genetic variations
may influence drug response, only a limited number of those
feel adequately informed about pharmacogenomic testing and
data interpretation (Stanek et al., 2012; Mitropoulou et al., 2014).
So far, standardization in conducting pharmacogenomics studies
is lacking, mainly due to inconsistencies in results reporting
(O’Donnell and Ratain, 2012). These inconsistencies make
data interpretation challenging or even chaotic to researchers,
professional organizations, consortia and clinicians alike and
international efforts are currently ongoing to standardize
pharmacogenomics testing reporting (Kalman et al., 2016).

With the advent of next generation sequencing, collaboration
toward data accumulation would help maximize its clinical
benefit, as large sample sizes would provide the means to
retrospectively analyze large patient cohorts for (i) discovery
of common and rare variants, (ii) validation, and (iii)
pharmacogenomics outcomes toward decision-making. Today,
the Electronic Medical Records and Genomics (eMERGE)
Network, attempts to maximize the benefit from next generation
sequencing analyses, focusing on the combination of DNA
biorepositories with electronic medical records to facilitate large-
scale, high-throughput genetic research and return genetic testing
results to patients in a clinical setting (McCarty et al., 2011).
Such efforts would be beneficial to be exploited, including somatic
and germline variation discovery and implementation as well as
clinical and uptake outcomes.

To this end, in the big data era, biomedicine scientists
need to critically appraise data, collaborate in an efficient and
effective way and make decisions. For this, large-scale volumes of
complex multi-faceted data need to be meaningfully assembled,
mined, analyzed and provided in a user-friendly manner.
An innovative web-based collaboration support platform that
adopts a hybrid approach on the basis of the synergy between
machine and human intelligence was previously reported,
aiming to facilitate the underlying sense-making and decision
making processes (Tsiliki et al., 2014). Clinical decision support
(CDS) tools have been also proved valuable in the context of
clinical pharmacogenomics, as they provide guidance on clinical
decisions, through electronic medical records (Bell et al., 2014).
Again, these tools demand clear and precise algorithms based on
scientifically robust findings, ideally synergizing among different

variant prediction tools to take novel and rare pharmacogenomic
variants into consideration to determine their pathogenicity.

VALIDATION AND ACCREDITATION
OF SERVICES

The application of pharmacogenomics in personalized medicine
is very challenging and influence medicine and biomedical
research in many areas, namely clinical medicine, drug
development, drug regulation, pharmacology, and toxicology
(Tremblay and Hamet, 2013; Drozda et al., 2018). However, many
issues have to be addressed including genomic data quality and
assays’ accreditation.

According to the European Medicines Agency (EMA)
guidelines, there is a regulatory framework defined by Good
Clinical Practice (DCP) compliance (European Medicines
Agency, 2001/2005), Good Laboratory Practice (GLP)
compliance (European Medicines Agency, 2015), Good
Manufacturing Practice (GMP), and Good Distribution Practice
(GDP) (European Medicines Agency, 2001), while recently
a guideline for Good Pharmacogenomics Practice has been
produced (European Medicines Agency, 2018). In particular,
this guideline stresses the importance of all steps included in
any next-generation sequencing protocol from DNA extraction,
DNA processing, preparation of libraries, generation of sequence
reads and base calling, sequence mapping, variant annotation
and filtering, variant classification, and interpretation. According
to this guideline, a crucial parameter for next-generation
sequencing analysis is the minimum sequencing coverage, which
in case of germline pharmacovariants should be at least 30×,
while in case of rare variants, a higher coverage is needed in
order to ensure that also the rarer variants are detected by
the sequencing. Also, in case or highly homologs genes and
pseudogenes, that can contribute to miscalled variants due to
sequencing artifacts, it is recommended to include methods that
use substantially longer read lengths, i.e., fragments longer that
1000 base pairs.

This guideline portfolio has been developed to ensure the
quality of medical products and services. The transfer of this
policy to pharmacogenomics assays is critical, since numerous
studies have pointed sources of inter- and intra-laboratory error
and variability in experimental results (Ji and Davis, 2006).
The quality issues of pharmacogenomics rely on the genomic
complexity of the region of interest that can impact accuracy and
precision of an assay. Consequently, it is important to understand
and give due consideration to assay design (Pant et al., 2014),
especially when it comes to next-generation sequencing.

Additionally, the validation of the discovery findings coming
from pharmacogenomics studies in large randomized clinical
trials is often difficult, due to high costs and ethical considerations
(Wheeler et al., 2013). In the case of prospective clinical trials,
specific drug-dosing schedules are used, providing consistent
and well-maintained drug data for pharmacogenomics studies.
To increase the sample size for a particular phenotype, it
may be useful to combine data from the treatment arms of
a clinical trial and then, control for potential confounding,
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owing to treatment differences during the statistical analyses.
In this context, cancer pharmacogenomics studies have shown
promising results, although replication may still be an issue
(Hyman et al., 2015). Currently, there are not enough well
phenotypic patient data sets for most cancer drugs under
investigation to make replication studies feasible, especially
when effect sizes are small (Spencer et al., 2009; Daly, 2010).
Despite the limitations and difficulties with samples’ size, cancer
pharmacogenomics studies have demonstrated the potential to
make therapy safer and more effective for patients (Spencer et al.,
2009; Daly, 2010; Wheeler et al., 2013).

CONSULTATION

There is uncertainty about the ways that the results of
pharmacogenomics can be translated into clinical care decisions
by the government agencies. This reflects the complex genetic
interactions, the paucity of evidence (in some cases) as well as
the legal constraints by the regulatory bodies. As a consequence,
health professionals are in a vulnerable position (Maliepaard
et al., 2013; Trent et al., 2013). This status is imprinted by the
United States FDA policy that orders every pharmacogenomics
product to provide any relative information available, but
without any use recommendation (Maliepaard et al., 2013;
Trent et al., 2013). Uncertainty and lack of information ask
for additional pressure on professional societies to develop the
appropriate clinical practice guidelines to ensure that patient
care is not compromised or unnecessary genetic testing is
avoided (Maliepaard et al., 2013; Trent et al., 2013). No
doubt, multiple sources of information on pharmacogenomics
tests can create confusion in clinical decision-making. To
overcome this, PharmGKB4 was established to consolidate
datasets into one curated database, where users can query
for drug, gene, disease or metabolic pathway to obtain
information such as drug properties, pathway diagrams as
well as related publications in a centralized manner. Also, the

4www.pharmgkb.org

Clinical Pharmacogenetics Implementation Consortium (CPIC5)
and the Dutch Pharmacogenetics Working Group (Dutch
Pharmacogenetics Working Group, 2005) have issued guidelines
per gene-drug combination assisting healthcare professional
to interpret pharmacogenomic testing results and reciprocally
adjust the dose or select an alternative drug.

CONCLUDING REMARKS

In the era of big data and -omics technologies, the translation
of pharmacogenomics in the clinic has yet to be met. This does
not only refer to next-generation sequencing-based genotyping
but also the more easily applicable low-to-medium throughput
(single variant to panel-based) genotyping. Nevertheless, next-
generation sequencing will soon be part of the clinical reality and
as such, one of the first areas that will be readily applicable is the
rationalization of drug use.

Depending on the available resources and infrastructure,
application of next-generation sequencing in pharmacogenomics
will vary from targeted pharmacogene resequencing in low
resource settings, be it either in a panel-based format per
drug categories (e.g., cardiovascular diseases, oncology,
psychiatric diseases, etc.) or in a more comprehensive pre-
emptive pharmacogenomics format including as many
pharmacogenes as possible. In those settings, where whole
exome, or – ideally – whole genome, sequencing is available,
then pharmacogenomic variant identification will be performed
simultaneously with the disease genetic diagnosis, focusing only
on those variants in the pharmacogenes. As such, the following
workflow is recommended for clinical pharmacogenomics
(outlined in Figure 1):

(1) Next generation sequencing (targeted pharmacogene
resequencing, whole exome and/or whole genome
sequencing) will be performed in duly accredited
laboratories, following the established guidelines for
good pharmacogenomics and other practices,

5www.cpicpgx.org

FIGURE 1 | A schematic representation for the clinical pharmacogenomics workflow described herein. We feel that the advent of next generation sequencing (NGS)
will accelerate the clinical applications of pharmacogenomics through a series of reliable, cost-effective opportunities. Data collection and interpretation will benefit
from the interplay of consortia and information technologies. Regulatory bodies will lead the way toward assay validation and accreditation, considering the
difficulties of pharmacogenomics studies replication. Consultation, as the final step of our workflow, facilitates the bench-to-bed transition.
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(2) Data analysis will follow for the identification of the
common, rare and even novel, genomic variants in the
pharmacogenes and other genes involved and/or related
to drug metabolism and transport, using dedicated data
analysis software packages,

(3) An integral part of the pharmacogenomic variant
annotation will be the calculation and assignment, to each
pharmacovariants, of a specific score. This score will be
calculated based on certain criteria, such as: (i) the variant
itself [known (well established function) or novel (not
functionally validated)], (ii) in case of novel variants or
variants of unknown significance, the nature of the variant
itself (nonsense, frameshift, non-synonymous, other, etc.),
the effect of which will be determined in silico by a battery of
variant prediction tools, (iii) the variant’s frequency in the
population (common or rare), (iv) the existing evidence of
the pharmacogene role, in which the variant is identified, in
drug metabolism and transport, deducted from the various
databases [e.g., Level A–D (for CPIC) or Level 1–4 (for
PharmGKB), etc]. Subsequently, variant prioritization will
be performed, based on these scores,

(4) After pharmacogenomic variants are prioritized, their
interpretation will follow, based on the scientific literature,
databases, algorithms, from which the corresponding drug
response predictions will be derived, also in conjunction
with recommendation resources, such as the CPIC,
PharmGKB, or the Dutch Pharmacogenomics Working
Group, and lastly,

(5) Pharmacogenomics consultation, performed by a qualified
pharmacogenomics expert or clinical geneticist, that will
include the provision of advice regarding the drug choice
from a shortlist of suggested medications to avoid adverse
drug reactions and/or to ensure the optimal drug treatment.

Such a pharmacogenomics scoring system is currently being
developed (Patrinos GP, unpublished) to facilitate integration
of next-generation sequencing for pharmacogenomics
into the routine clinical care. In addition, there are
further opportunities for omics-related disciplines, beyond
genomics, to be employed for personalized drug response
predictions, namely pharmacoepigenomics (Lauschke
et al., 2018), pharmacometagenomics (Balasopoulou et al.,
2016) and/or pharmacometabolomics (Balasopoulou et al.,
2016; Balashova et al., 2018).

We feel that proper implementation of the proposed workflow
for next-generation sequencing-based pharmacogenomic testing
can occur only via the synergy of all stakeholders and their will
to implement the current technological advances, in this case,
next generation sequencing and information technologies. In
cancer, particularly, such a synergy would be greatly beneficial
toward the enigmatic complexity of the disease and great
individual variability.
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Nudix Hydrolase 15 (NUDT15) and Thiopurine S-Methyltransferase (TPMT) are strong 
genetic determinants of thiopurine toxicity in pediatric acute lymphoblastic leukemia 
(ALL) patients. Since patients with NUDT15 or TPMT deficiency suffer severe adverse 
drug reactions, star (*) allele-based haplotypes have been used to predict an optimal 
6-mercaptopurine (6-MP) dosing. However, star allele haplotyping suffers from insufficient, 
inconsistent, and even conflicting designations with uncertain and/or unknown functional 
alleles. Gene-wise variant burden (GVB) scoring enables us to utilize next-generation 
sequencing (NGS) data to predict 6-MP intolerance in children with ALL. Whole exome 
sequencing was performed for 244 pediatric ALL patients under 6-MP treatments. We 
assigned star alleles with PharmGKB haplotype set translational table. GVB for NUDT15 
and TPMT was computed by aggregating in silico deleteriousness scores of multiple coding 
variants for each gene. Poor last-cycle dose intensity percent (DIP < 25%) was considered 
as 6-MP intolerance, resulting therapeutic failure of ALL. DIPs showed significant differences 
( p < 0.05) among NUDT15 poor (PM, n = 1), intermediate (IM, n = 48), and normal (NM, 
n = 195) metabolizers. TPMT exhibited no PM and only seven IMs. GVB showed significant 
differences among the different haplotype groups of both NUDT15 and TPMT ( p < 0.05). 
Kruskal–Wallis test for DIP values showed statistical significances for the seven different 
GVB score bins of NUDT15. GVBNUDT15 outperformed the star allele-based haplotypes in 
predicting patients with reduced last-cycle DIPs at all DIP threshold levels (i.e., 5%, 10%, 
15%, and 25%). In NUDT15-and-TPMT combined interaction analyses, GVBNUDT15,TPMT 
outperformed star alleles [area under the receiver operating curve (AUROC) = 0.677 vs. 
0.645] in specificity (0.813 vs. 0.796), sensitivity (0.526 vs. 0.474), and positive (0.192 vs. 
0.164) and negative (0.953 vs. 0.947) predictive values. Overall, GVB correctly classified 
five more patients (i.e., one into below and four into above 25% DIP groups) than did 
star allele haplotypes. GVB analysis demonstrated that 6-MP intolerance in pediatric ALL 
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INTRODUCTION

6-Mercaptopurine (6-MP) is a commonly used drug in the 
maintenance therapy of pediatric acute lymphoblastic leukemia 
(ALL). Since patients have a potential to experience medication-
induced life-threatening side effects including bone marrow 
suppression and hepatotoxicity, providing a tailored drug dosing 
regimen is essential in clinical practice (Vogenberg et al., 2010). 

One of the strongest ways to determine initial 6-MP dose is an 
experimental assessment of potential for drug adverse reactions, 
such as severe neutropenia by monitoring 6-MP metabolite 
concentration or using in vitro activity profiles (Dubinsky et 
al., 2000; Ansari et al., 2002; Cuffari, 2005; Bradford, 2011; 
Supandi et  al., 2018). However, applying such methods into 
routine clinical practice for predicting drug-induced toxicity 
is still challenging because it is extremely time-consuming, 
expensive, and inefficient (González-Lama and Gisbert, 2016).

As recent studies have demonstrated the strong association 
between genetic polymorphisms and inter-individual variability 
in 6-MP dose intensity, approaches to predict drug tolerance on 
the basis of individual genomic profiles have arisen. The primary 
genetic determinant of thiopurine toxicity is TPMT, which plays a 
crucial role in identifying patients in need of treatment modification 
with reduced enzyme activity (Lennard, 2014). However, this has 
not been applicable to East Asian populations since the frequency 
of TPMT polymorphisms varies by ethnicity (Relling et al., 2013). 
Recently, a novel pharmacogenetic marker, NUDT15, has clarified 
its role in predicting thiopurine toxicity in Asian populations (Yang 
et al., 2014; Yang et al., 2015; Zgheib et al., 2016; Kakuta et  al., 
2017). Clinical Pharmacogenetics Implementation Consortium 
(CPIC) published an updated guideline for thiopurine dosing 
based on both TPMT and NUDT15 genotypes using the star 
allele-based dose prediction method (Relling and Klein, 2009; 
Relling et al., 2018). This prevailing method provides therapeutic 
recommendations for dosing based on star allele genotypes. 
However, the utilization of star alleles in clinical practice has 
many obstacles that occur mainly due to 1) the extremely complex 
nomenclature system, 2) the limited resolution of phenotype 
prediction due to many unknown and uncertain function alleles, 
3) ignorance of functional impacts of rare and/or novel variants, 
and 4) limited use in previously studied populations only (Robarge 
et al., 2007). Next-generation sequencing (NGS) challenges the 
conventional star alleles on the basis of genotyping technologies 
and clinical studies in case–control settings.

In the era of NGS, the comprehensive genotyping capabilities 
of NGS platform have enabled us to capture the true diversity of 
gene variation, and researchers propose alternative ways to predict 
individual intolerance towards a drug. One promising method 
is a gene-wise variant burden (GVB) scoring approach that can 

calculate gene-wise cumulative variant deleteriousness scores 
including common, rare, and even novel genetic variants for each 
gene (Lee et al., 2016). Here, we assessed the utility of GVB scoring 
method in quantifying the potential contributing effect of variants 
on enzymatic activity. By combining the clinically proven and 
well-established associations between the two genes, i.e., NUDT15 
and TPMT, and 6-MP dose intensity percent (DIP, actual/planned 
dose) as a clinical endpoint, we performed a comparison study of 
the conventional star allele-based haplotyping and GVB scoring 
methods for predicting the last-cycle 6-MP DIP as an indicator for 
6-MP intolerance of ALL patients with NUDT15 and/or TPMT 
deficiency. Overall, both star alleles and GVB showed significant 
correlations with 6-MP DIP values. Star allele-based haplotype 
groups showed significant correlation with GVB score groups. 
For predicting reduced last-cycle DIP values, GVB analysis 
outperformed the conventional star allele method for NUDT15 
and showed comparable result for TPMT. In NUDT15-and-TPMT 
combined interaction analyses, GVBNUDT15,TPMT outperformed 
star allele-based predictions [area under the receiver operating 
curve (AUROC) = 0.677 vs. 0.645] in specificity (0.813 vs. 0.796), 
sensitivity (0.526 vs. 0.474), and positive (PPV; 0.192 vs. 0.164) and 
negative (NPV; 0.953 vs. 0.947) predictive values. It is demonstrated 
that gene-wise evaluation of in silico deleterious variant score 
burden can be a useful method for predicting 6-MP intolerance 
in pediatric ALL patients, considering NGS-based common, 
rare, and novel variants concurrently while not hampering the 
predictive power of the conventional haplotype analysis.

MATERIALS AND METHODS

Patients and Clinical Data Collection
A total of 298 Korean pediatric ALL patients with 6-MP treatment 
during maintenance therapy were recruited in the present study 
from two major teaching hospitals, i.e., Asan Medical Center 
(AMC) and Seoul National University Hospital (SNUH). Of the 298 
subjects, 244 individuals who did not meet the exclusion criteria 
(i.e., relapse of the disease, stem cell transplantation, Burkitt’s 
lymphoma, mixed phenotype acute leukemia, infant ALL, or very 
high risk) were selected. All participants provided written informed 
consent. The study was approved by the AMC Review Boards and 
the SNUH Review Boards. The 6-MP dose per meter body surface 
area over a 12-week cycle was recorded. The maximum tolerated 
dose of 6-MP was defined as the dose at the last maintenance cycle 
for each patient. Patients from two hospitals had received treatment 
under the same treatment protocol and dose adjustment guidelines 
to maintain the ANC levels within target levels (500–1,500/µL). 
Genotype-guided dose modification was not conducted. Additional 
demographic data are shown in Table 1.

can be reliably predicted by aggregating NGS-based common, rare, and novel variants 
together without hampering the predictive power of the conventional haplotype analysis.

Keywords: 6-mercaptopurine, drug toxicity, variant burden, pharmacogenetics, pharmacogenomics, next-
generation sequencing, Nudix Hydrolase 15 (NUDT15), Thiopurine S-Methyltransferase (TPMT)
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Data Generation and Sequencing
Exome sequencing was performed using Ion AmpliSeq™ Exome 
panel to screen coding sequence region of entire genome. This panel 
included the exome of 19,072 genes and the size of the total targeted 
region was 57.7 Mb. The panel contained 293,903 primer pairs that 
were multiplexed into 12 pools to avoid primer-dimer formation 
and interference during PCR. The range of amplicons amplified by 
these oligo primer pairs ranged from 125 to 275 bp, and the rate of 
“on target” coverage for this panel was 95.69%. PCR assays were 
performed directly to amplify 100 ng of genomic DNA samples 
extracted from normal blood cells in bone marrow aspirates or 
peripheral blood so as to collect the target regions using the oligo 
primer pairs of the panel. Reaction parameters were as follows: 99°C 
for 2 min, followed by 10 cycles of 99°C for 15 s, 60°C for 16 min, 
and 10°C for 1 min. After amplification, library construction 
was performed by using the Ion AmpliSeq library kit plus as 
described in the manufacturer’s instructions (Thermo Scientific, 
Waltham, MA). Libraries were quantified using an Agilent 2100 
Bioanalyzer (Agilent, Santa Clara, CA) and then diluted to ~10 pM. 
Subsequently, 33.3 μL of the barcoded libraries was combined in 
sets of three barcodes. The combined libraries were sequenced 
using the Ion Proton platform with PI chip V3, following the 
manufacturer’s instructions (Thermo Scientific, Waltham, 
MA). Reads were mapped to the human reference genome build 
(hg19) with a mapping alignment program from Thermo Fisher 
(version  4.4, Torrent Suite Software) on germ-line and low 
stringency settings (minimum observed allele frequency required 
for a non-reference variant call is 0.18 for single-nucleotide variant 
(SNV) and 0.23 for InDel, minimum phred scales call quality is 14 
for SNV and 19 for InDel, minimum coverage for called variants is 
35 for SNV and 40 for InDel, and maximum strand bias is 0.95 for 
SNV and 0.75 for InDel). Single-nucleotide variants (SNVs) and 
short insertions/deletions (InDels) were identified via Genome 
Analysis Toolkit (GATK) 2.8-1 Unified Genotyper (DePristo 
et  al., 2011). To estimate the pathogenicity of variants, two 
in silico variant deleteriousness prediction scores were annotated: 
sorting intolerant from tolerant (SIFT) (Ng, 2003) and combined 
annotation dependent depletion (CADD) (Kircher et al., 2014). 
The protein-coding gene region was defined using ANNOVAR 

(http://annovar.openbioinformatics.org/) (Wang et al., 2010). 
All the variants identified in 244 ALL samples are described in 
Supplementary Table S1 and S2.

Calculation of Gene-Wise Variant 
Burden Score
Gene-wise deleterious variant burden was computed for NUDT15 
and TPMT as described by Lee et al. (2016) and Seo et al. (2018). 
Under the hypothesis that variants that have potential effects 
to change protein function not necessarily guarantee but have 
power to cause harmful phenotypes, only variants with SIFT 
scores less than 0.7 were further considered. 

 G v vi = { |      . }with a SIFT score less than 0 7  

As SIFT does not provide functional scores for InDels, adjv for 
all InDel variants were assigned as 1e-8 under the hypothesis that 
InDels are more deleterious than single-nucleotide substitutions. 
Considering the dosage effects, adjusted SIFT score adjv was 
calculated for each variant according to their genotype. 
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TABLE 1 | Clinical characteristics of study subjects.

Characteristics Study cohorts

AMC SNUH Total

No. of subjects 95 149 244
Age at diagnosis (year), mean ± SD† 5.23 ± 1.8 8.57 ± 4.6 7.26 ± 4.1
Sex
 Male 52 93 145
 Female 43 56 99
Last-cycle 6-MP dose (mg/m2/day), mean ± SD (N)
 6-MP < 12.5 8.14 ± 1.7 (2) 6.25 ± 2.9 (4) 6.88 ± 2.6 (6)
 12.5 ≤ 6-MP < 25 17.39 ± 3.4 (4) 19.40 ± 3.6 (9) 18.78 ± 3.7 (13)
 25 ≤ 6-MP < 37.5 32.19 ± 3.4 (10) 30.72 ± 4.0 (16) 31.28 ± 3.8 (26)
 37.5 ≤ 6-MP < 50 44.52 ± 3.7 (13) 45.80 ± 3.5 (14) 45.18 ± 3.6 (27)
 6-MP ≥ 50 79.15 ± 18.1 (66) 78.84 ± 23.1 (106) 78.96 ± 21.3 (172)
 Total 65.37 ± 26.6 (95) 65.03 ± 30.0 (95) 65.16 ± 28.7 (244)

†Data for age at diagnosis were not available for one subject. 6-MP, 6-mercaptopurine; AMC, Asan Medical Center; SNUH, Seoul National University Hospital.
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We obtained GVBg values for each individual ranging from 0 
to 1. To predict 6-MP sensitivity, GVBNUDT15,TPMT was generated 
by calculating the geometric mean of GVBNUDT15 and GVBTPMT.

 GVB GVB GVBNUDT TPMT NUDT TPMT15 15
1
2, ( )       = ×  

Prediction of Star Allele Diplotypes for 244 
Acute Lymphoblastic Leukemia Samples
To classify 244 ALL samples into three metabolizer groups, we 
inferred haplotypes using the PHASE 2.1.1 software (Stephens 
et al., 2001; Stephens and Scheet, 2005) (Supplementary Figure 
S3). On the basis of the inferred haplotype information, we 
extracted star alleles that matched the haplotype set translational 
table from PharmGKB (https://www.pharmgkb.org/) (Whirl-
Carrillo et al., 2012). Predicted genotypes were translated into 
molecular phenotypes on the basis of the coded  genotype–
phenotype translation tables from Moriyama et al. (2016) for 
NUDT15 and from PharmGKB tables for TPMT. 

Estimation of Diagnostic Accuracies 
by Receiver Operating Curve Analyses
To assess prediction accuracies, we calculated DIP, the percentage 
of the actual administered dose to the planned dose, as an index 
for 6-MP drug toxicity. Dose in the last maintenance cycle was 
used, since the doses of 6-MP in the final maintenance cycle 
were supposed to be the maximum tolerated doses for patients 
(Kim et al., 2012). DIP prediction accuracies of GVB (GVBNUDT15, 
GVBTPMT, and GVBNUDT15,TPMT) and star allele-based predictions 
were compared using AUROC analysis with the R language 
pROC package (Robin et al., 2011). We computed specificity, 
sensitivity, PPV, and NPV under the binary classification model 
with nine different cutoff levels (i.e., 5%, 10%, 15%, 25%, 35%, 
45%, 60%, 80%, and 100%) for defining high-risk DIP groups. All 
statistical analyses were performed using R version 3.5.1.

RESULTS

Relation of Gene-Wise Variant Burden and 
Star Allele-Based Molecular Phenotypes
NUDT15 and TPMT haplotypes of each subject were first 
inferred from whole exome sequencing (WXS) data by using 
the PHASE tool, and matched star allele genotypes were 
assigned for each subject. The star allele genotypes were then 
translated into three molecular phenotype groups according to 
their allele combinations; poor (PM, No function|No function), 
intermediate (IM, Normal|No function or Normal|Decreased), 
and normal (NM, Normal|Normal) metabolizers. Six and four 
star alleles were identified for NUDT15 and TPMT genes, 
respectively, from the 244 ALL patients with their frequencies 
(Table 2). Table  3 shows the distribution of subsequently 
predicted enzymatic metabolizer phenotypes for NUDT15 and 
TPMT among the 244 ALL patients.

While 49 (20.1%) of 244 ALL patients were classified into 
non-NM (one PM and 48 IMs) phenotype for NUDT15, only 

seven (2.9%) IMs were identified for TPMT, reflecting ethnic 
variation of NUDT15 and TPMT variants, in a consistent manner 
(Table 3). Since individuals with TPMT homozygous mutant 
alleles are rarely observed in East Asian population, none of the 
patients were classified into the poor metabolizer group. IMs were 
stratified into two groups: 1) individuals carrying one copy of a 
normal function allele and one copy of a decreased function allele 
and 2) individuals carrying one copy of a normal function allele 
and one copy of no function allele. Carriers of non-functional 
allele, compared with carriers of decreased function allele, are 
considered to be at an increased risk for functional decline.

Patients with NUDT15 normal metabolizing alleles (DIP  = 
67.608 ± 28.2, n = 195) tolerated significantly higher DIPs of 6-MP 
than did slow metabolizers [5.712 (PM, n = 1), 56.452 ± 28.2 (IM, 
n =  48)] (Figure 1A). Clinical usefulness of the conventional 
star allele-based classification was successfully demonstrated for 
NUDT15 variants in the present study. Due to the small number of 
non-NM subjects for TPMT in Korean ALL patients, the difference 
of DIPs between NM (65.702 ± 28.4, n = 237) and IM (46.805 ± 35.7, 
n = 7) did not reach statistical significance (p = 0.10, Figure 1B).

GVB scores among different molecular phenotype groups 
for NUDT15 (PM = 0.09, IM = 0.248 ± 0.1, and NM = 0.995 ± 
0.1, Figure 2A) and for TPMT (IM = 0.229 ± 0.3, NM = 1 ± 
0.0, Figure 2B) showed statistically significant differences. 
The observed positive correlation between our GVB score and 
the conventional enzymatic metabolizer phenotypes for both 

TABLE 2 | Alleles identified in 244 ALL samples with known allele functions.

Gene Number of 
identified alleles

Alleles identified in 
244 ALL samples

Frequencies 
(%)

NUDT15 6 *1 438 (89.75)
*2 6 (1.23)
*3 35 (7.17)
*4 4 (0.82)
*5 4 (0.82)
*6 1 (0.20)

TPMT 4 *1 127 (26.02)
*1S 354 (72.54)
*3C 6 (1.23)
*6 1 (0.20)

Haplotypes were inferred via PHASE 2. Star alleles were assigned by the PharmGKB 
haplotype set translational table. ALL, acute lymphoblastic leukemia.

TABLE 3 | Distribution of predicted enzymatic metabolizer phenotypes.

Molecular 
phenotype

Function NUDT15 TPMT

Poor (%) No function | No function 1 (0.41) NA
Intermediate (%) Normal | No function 48 (19.67) 6 (2.46)

Normal | Decreased NA 1 (0.41)
Normal (%) Normal | Normal 195 (79.92) 237 (97.13)

Total (%) 244 (100) 244 (100)

Molecular phenotypes were assigned using the PharmGKB haplotype set translational 
table. Star (*) allele genotype-to-phenotype correlation was adapted from information 
available at the Moriyama et al. (NUDT15) and the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) guideline ( TPMT ); NA, not available.
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NUDT15 and TPMT variants strongly supported our further 
analysis. Note that those pharmacogenetic star alleles have long 
been empirically developed by clinical case–control studies and/
or animal and molecular studies. In contrast, the GVB analysis is 
based on purely theoretical ab initio and in silico methods without 

requiring empirical studies that are prohibitively costly considering 
the numerous drugs and genetic variants discovered by NGS 
technologies and the interactions. In the following sections, we 
explore the potential of the GVB scoring method for predicting 
DIPs as an indicator of 6-MP intolerance in pediatric ALL patients.

FIGURE 1 | Distribution of last-cycle dose intensity percent of 6-mercaptopurine according to star allele-based molecular phenotype groups in ALL. Dose intensity 
percent distribution across (A) Nudix Hydrolase 15 (NUDT15) and (B) Thiopurine S-Methyltransferase (TPMT) molecular phenotype groups. Normal metabolizers 
of NUDT15 showed significantly higher dose intensity percent than did intermediate ( p = 0.006) and poor ( p = 0.090) metabolizers. *p < 0.1, **p < 0.05, and 
***p < 0.01 by Mann–Whitney U test.

FIGURE 2 | Distribution of gene-wise variant burden (GVB) scores according to the star allele-based molecular phenotype groups. Gene-wise variant burden (GVB) 
scores across (A) NUDT15 and (B) TPMT molecular phenotype groups. Normal metabolizers showed significantly higher dose intensity percent than did intermediate 
(NUDT15, p = 4.17E−52; TPMT p = 5.84E−47) and poor (NUDT15, p = 1.9E−22) metabolizers. *p < 0.1, **p < 0.05, and ***p < 0.01 by Mann–Whitney U test.
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Gene-Wise Variant Burden Scores for 
Predicting Last-Cycle 6-Mercaptopurine 
Dose Intensity Percent 
Since both NUDT15 and TPMT genes are not highly variable, 
only seven and two GVB value groups for NUDT15 and TPMT, 
respectively, were identified in the 244 ALL patients. GVBNUDT15 
demonstrated statistically significant positive correlation with DIP 
(p = 0.016 by Kruskal–Wallis test, p = 0.001 (p = 0.21) by Spearman’s 
rank correlation, p = 0.001 (𝜏 = 0.17) by Kendall’s rank correlation) 
(Figure 3A). Exclusion of the two patients having both NUDT15 
and TPMT variants slightly improved statistical significance 
(Supplementary Figure S4). Due to the low frequency of TPMT 
alleles in East Asian population, 97.5% (n = 238) of all ALL patients 
were classified into wild type (GVBTPMT = 1.00 ± 0.00) and only 
six (2.50%) were classified into variant type (GVBTPMT = 0.10  ± 
0.00) groups, resulting in poor statistical significance (p = 0.408 
by T-test, p = 0.272 (ρ = 0.07) by Spearman’s rank correlation, p = 
0.271 (𝜏 = 0.06) by Kendall’s rank correlation) (Figure 3B).

Performance Comparisons Between 
Gene-Wise Variant Burden and Star Allele-
Based Molecular Phenotypes Across 
Different Risk Group Decision Thresholds 
Using ROC analysis, we evaluated the performances of GVB 
at nine cutoff levels (i.e., DIP < 5%, 10%, 15%, 25%, 35%, 45%, 
60%, 80%, and 100%) for defining the 6-MP high-risk groups. 
Star allele-based classification was also applied for systematic 
comparison across different DIP threshold levels. DIP below 
25% of planned dose of 6-MP is a generally accepted threshold 
for predicting 6-MP intolerance. Figure 4A demonstrates that 
GVBNUDT15 showed better AUCs at all threshold DIP levels below 
25% (0.998 (DIP < 5%), 0.676 (DIP < 10%), 0.669 (DIP < 15%), 

and 0.653 (DIP < 25%)) than did the conventional star allele-
based molecular phenotypes (AUC = 0.618). Moreover, exclusion 
of the two confounding patients with both NUDT15 and TPMT 
variant alleles slightly improved performances than did both 
before-exclusion GVBNUDT15 at all threshold DIP levels below 25% 
[AUC = 0.998 (DIP < 5%), 0.676 (DIP < 10%), 0.639 (DIP < 15%), 
and 0.627 (DIP < 25%)] and the star allele-based (AUC = 0.596) 
analyses (Figure 4B). Mainly due to the low frequency of TPMT 
variant alleles in East Asian population, both GVBTPMT and star 
allele-based predictions using TPMT seem to show poor AUCs 
for predicting DIP at all threshold levels (Figure 4C and D).

More importantly, we performed ROC analysis by aggregating 
the genetic effects of these two genes, NUDT15 for East Asian 
and TPMT for European heritages. We computed and evaluated 
GVBNUDT15,TPMT, which outperformed GVBNUDT15 or GVBTPMT 

alone as well as the combined molecular phenotypes of both 
NUDT15 and TPMT at all DIP threshold levels (Figure 5). In 
summary, at the clinically important DIP level of below or 
above 25%, the best AUC values for GVBNUDT15,TPMT, GVBNUDT15, 
GVBTPMT, and combined star alleles were 0.677, 0.653, 0.574, 
and 0.645, respectively. GVBNUDT15,TPMT not only showed the best 
performance but also successfully included the two confounding 
patients with both NUDT15 and TPMT variant alleles. While 
combining GVB scores of multiple genes is simple and 
straightforward, it is not the case for star alleles, which do not 
provide a uniform way of combining method for multiple genes.

Comparison of Prediction Accuracies 
Between Gene-Wise Variant Burden 
and Star Allele-Based Methods
To test the clinical utility of GVB method for guiding 6-MP dosing 
and/or for providing systematic framework for clinical studies of 

FIGURE 3 | Distribution of last-cycle dose intensity percent of 6-mercaptopurine according to gene-wise variant burden (GVB) score bins. (A) GVBNUDT15 [Kruskal–
Wallis p-value = 0.016, Spearman’s rank correlation p-value = 0.001 ( ρ = 0.21), and Kendall’s rank correlation p-value = 0.001 (𝜏 = 0.17)]. (B) GVBTPMT [Kruskal–
Wallis p-value = 0.271, Spearman’s rank correlation p-value = 0.272 ( ρ = 0.07), and Kendall’s rank correlation p-value = 0.271 (𝜏 = 0.06)].
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6-MP intolerance and its genetic determinants of NUDT15 and TPMT 
for predicting DIP groups, we evaluated the diagnostic characteristics 
of the conventional star allele-based and GVB scoring methods 
in a simulated clinical setting. Table 4A and 4B exhibits diagnostic 
accuracies for star allele-based molecular phenotype groups and gene-
wise variant burden score groups, respectively, for 6-MP intolerance 
among 244 pediatric ALL patients by the last-cycle DIP of 6-MP. Of 
the 244 ALL patients, 189 (84.4%) exhibited no NUDT15 or TPMT 

variant and hence was classified into NMs for both genes (Table 4A). 
Of the rest 55 non-NM patients, nine (16.4%) showed DIP below 25%, 
while 10 of 189 (5.3%) NM patients showed low DIP values.

Although one can choose many threshold levels of GVB, because 
star alleles can just provide a small number of categories, we chose the 
most reliable binning threshold of GVBNUDT15,TPMT ≤ 0.3, the cut-point 
that maximizes the Youden index (Supplementary Figure S5),  
for classifying the patients into the below and above 25% DIP 

FIGURE 4 | Comparison of diagnostic accuracies between star allele-based molecular phenotyping and GVB scoring for 6-mercaptopurine intolerance in ALL. Diagnostic 
accuracies are measured by using AUROC analysis for (A) GVBNUDT15 excluding two subjects with TPMT variants (DeLong’s p-value = 0.163), (B) GVBNUDT15 (DeLong’s 
p-value = 0.163), (C) GVBTPMT excluding seven subjects with NUDT15 variants (DeLong’s p-value = 0.5), and (D) GVBTPMT (DeLong’s p-value = 0.841). Numbers in the last 
parentheses indicate area under the curve (AUC) with 95% confidence intervals. DIP, dose intensity percent; AUC, area under the curve.
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groups as shown in Table 4B. It is a coincidence that Lee et al. (2016) 
also suggested GVBPharmacogenes ≤ 0.3 as the threshold for predicting 
pharmaceutical market withdrawals in general. GVBNUDT15,TPMT 
correctly classified one more high-risk (DIP ≤ 25%) and four more 
low-risk (DIP > 25%) patients into the correct-risk groups (Table 4B) 
than did the traditional haplotype-based method (Table 4A), with 
an improved sensitivity from 47.36% to 52.63% and an improved 
specificity from 79.56% to 81.33%, though the difference did not 
reach statistical significance (p-value for sensitivity = 1 and p-value 
for specificity = 0.134, as determined using a McNemar test). Both 
PPV and NPV increase from 16.36% to 19.23% and from 94.70% to 
95.31%, respectively. Overall, it is suggested that the “computational” 
GVBNUDT15,TPMT is an improved or at least comparable predictor than 
the “empirical” star allele-based haplotypes for determining subjects 
with increased risk of 6-MP intolerance in pediatric ALL patients 
measured by the last-cycle 6-MP DIP.

DISCUSSION

An enduring challenge in precision medicine is to predict adequate 
drug responses for individual patients (Shah and Shah, 2012). 
Recent discoveries have revealed a few highly functional and 
clinically relevant novel variants associated with 6-MP intolerance. 
However, since implicating drug toxicity based on a single variant 
is notoriously unreliable as shown in Supplementary Figure S1 
for SIFT and Supplementary Figure S2 for CADD, developing 
strategies to aggregate the key effects over a range of genomic 

FIGURE 5 | Comparison of diagnostic accuracies between combined (NUDT15 
and TPMT) star allele-based molecular phenotyping and GVB scoring for 
6-mercaptopurine intolerance in ALL. Diagnostic accuracies are measured by 
using AUC analysis for GVBNUDT15,TPMT (DeLong’s p-value = 0.175). Numbers 
in the last parentheses indicate AUC with 95% confidence intervals. DIP, 
dose intensity percent; AUC, area under the curve.

TABLE 4 | Comparison of star allele-based haplotyping versus gene-wise variant burden (GVBNUDT15,TPMT) analyses for 6-mercaptopurine intolerance measured by last-
cycle dose intensity percent in ALL. Diagnostic accuracy table of (A) star allele-based haplotypes and dose intensity percent groups and (B) gene-wise variant burden 
score and dose intensity percent groups.

(A)

NUDT15 and TPMT metabolizer Dose intensity percent groups Total

≤25 >25

PM + IM 9 46 55 PPV
16.36% (9/55)

NM 10 179 189 NPV 
94.70% (179/189)

Total 19 225 244

Sensitivity
47.36% (9/19)

Specificity
79.56% (179/225)

Accuracy
77.05% (188/244)

(B)

Gene-wise variant burden score Dose intensity percent groups Total

≤25 >25

GVBNUDT15,TPMT ≤ 0.3 10 42 52 PPV
19.23% (10/52)

GVBNUDT15,TPMT > 0.3 9 183 192 NPV
95.31% (183/192)

Total 19 225 224

Sensitivity
52.63% (10/19)

Specificity
81.33% (183/225)

Accuracy
79.10% (193/244)

PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; PPV, positive predictive value; NPV, negative predictive value.
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region is highly required. In the present study, we evaluated the 
utility of gene-wise deleterious variant burden scoring method, 
as a sequencing-based, simple, reliable, quantitative, and easy-to-
compare score for predicting 6-MP intolerance of 244 pediatric ALL 
patients. In addition to DIP, GVB showed a statistically significant 
negative correlation with the incidence of grade 4 neutropenia 
(p = 1.43E−04 by Kruskal–Wallis test, p = 3.89E−07 (ρ = −0.32) 
by Spearman’s rank correlation, and p = 8.06E−07 (𝜏 = −0.27) by 
Kendall’s rank correlation (Supplementary Figure S6). This implies 
that GVB is a reliable score that can predict hematological toxicity 
in pediatric ALL patients. When beginning treatment, NGS-based 
drug intolerance prediction is useful because it is practical to detect 
patients at high risk of toxicity. For example, patients with low GVB 
have a high probability of 6-MP toxicity at the initial recommended 
dose range; thus, clinicians may attempt to reduce the initial target 
dose of 6-MP. After an initial target dose is determined, a close 
therapeutic drug monitoring could help to avoid potential causes for 
toxicity, such as clinically relevant drug–drug interactions, reduced 
drug clearance due to liver and/or renal impairment, and altered 
drug utilization due to physiological conditions, as a complementary 
type of practice during the treatment (Ju-Seop Kang, 2009).

GVB analysis has several benefits over conventional star allele-
based approaches. GVB 1) quantitates gene-wise variant burden 
with a single score; 2) provides a measure of inter-individual genetic 
variability for each gene; 3) considers common, rare, and novel 
genetic variants together; 4) provides an ethnic variability-neutral 
method for studying pharmacogenomics; 5) provides a systematic 
and reliable framework for designing further pharmacogenomics 
studies considering many gene interactions for clinical endpoints; and 
6) adopts the contributing effect of novel low-frequency variants with 
potentially reduced function in predicting individual drug toxicity. 

Based upon the very recent CPIC updates on NUDT15, three 
newly enrolled alleles were characterized (Moriyama et al., 2017). 
Since new haplotype designation is highly dependent on the 
characteristics of the study population, there will be restrictions 
in incorporating new or even as-yet-unidentified evidences in 
predicting future drug intensity. GVB can be used to develop a 
model to determine optimal doses without requiring a multi-ethnic 
population study, especially for under-studied subpopulations. 

The following limitations are inherent in the present study. To 
evaluate the validity of GVB, independent replication studies for 
an expanded gene–drug set with sufficient sample sizes in diverse 
ethnic groups are required as no novel variant was identified in 
the current study. A conventional single variant-based association 
test of rare variants requires infeasible magnitude of sample sizes 
(Bansal et al., 2010), but approaches that aggregate common, rare, 
and novel variants jointly will substantially reduce a required 
effective sample sizes (Witte, 2012). The robustness of the analysis 
framework shall further be improved as novel prognostic markers 
on 6-MP DIP are acquired. The limitations in interpreting the 
score includes that all InDels are treated as highly damaging as 
SIFT provides scores for only single-nucleotide variants. As there 
are many in silico variant deleteriousness scoring method based on 
different principles, comprehensive evaluation of different method 
is required (Supplementary Figure S7). We also performed 
CADD-based computation of GVB values, resulting in similar 

results (Supplementary Figures S8 and S9). It has been reported 
that CADD tends to evaluate in-frame InDels as relatively benign 
(Kircher et al., 2014). However, recent in vitro activity assay of 
NUDT15 (Moriyama et al., 2017) proved that in-frame InDel carriers 
are more likely to be in states with severely diminished response 
to 6-MP. It is strongly recommended that for clinical applications, 
potential clinical impacts of genetic variants on drug sensitivity 
should be further examined to improve estimation accuracy, as in 
silico prediction scores can exhibit incorrect predictions. Producing 
a custom capture panel for clinically actionable genes could be 
more cost-effective than an exome-based approach.

One subject who was correctly classified by GVB carried a low-
frequency novel deletion and predicted to belong to the high-risk 
group by GVB, whereas star allele-based prediction classified this 
patient into the NM group for both NUDT15 and TPMT. The 
patient required reduced dose than recommended (DIP = 23.7%), 
supporting that GVB analysis resulted in 6-MP dose-related adverse 
drug reactions. The patient’s variant was heterozygous p.Gly17_
Val18del, which was very recently assigned as NUDT15*9 with 
uncertain functionality. The other four who were correctly classified 
by GVB had p.Arg139His on one allele, which has assigned them to 
the IM (NUDT15 *1/*4) group. GVB classified them as relatively 
safe for drug toxicity, and none of them required a 25% reduction 
from the starting dose. Additionally, one patient who was classified 
as high risk by GVB was assigned to IM for both NUDT15 and 
TPMT and required a severely reduced dose (14%), suggesting 
that GVBNUDT15,TPMT exhibits benefits in aggregating effects of many 
moderate genetic determinants into a single quantitative value.
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The prevalence of allergic diseases and drug hypersensitivity reactions (DHRs) during

recent years is increasing. Both, allergic diseases and DHRs seem to be related

to an interplay between environmental factors and genetic susceptibility. In recent

years, a large effort in the elucidation of the genetic mechanisms involved in these

disorders has been made, mostly based on case-control studies, and typically focusing

on isolated SNPs. These studies provide a limited amount of information, which

now can be greatly expanded by the complete coverage that Next Generation

Sequencing techniques offer. In this study, we analyzed the promoters of sixteen

genes related to the Vitamin D pathway and the high-affinity IgE receptor, including

FCER1A, MS4A2, FCER1G, VDR, GC, CYP2R1, CYP27A1, CYP27B1, CYP24A1,

RXRA, RXRB, RXRG, IL4, IL4R, IL13, and IL13RA1. The study group was composed

of patients with allergic rhinitis plus asthma (AR+A), patients with hypersensitivity to

beta-lactams (BLs), to NSAIDs including selective hypersensitivity (SH) and cross-

reactivity (CR), and healthy controls without antecedents of atopy or adverse drug

reactions. We identified 148 gene variations, 43 of which were novel. Multinomial

analyses revealed that three SNPs corresponding to the genes FCER1G (rs36233990

and rs2070901), and GC (rs3733359), displayed significant associations and, therefore,

were selected for a combined dataset study in a cohort of 2,476 individuals. The

strongest association was found with the promoter FCER1G rs36233990 SNP that

alters a transcription factor binding site. This SNP was over-represented among

AR+A patients and among patients with IgE-mediated diseases, as compared

with control individuals or with the rest of patients in this study. Classification
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models based on the above-mentioned SNPs were able to predict correct clinical group

allocations in patients with DHRs, and patients with IgE-mediated DHRs. Our findings

reveal gene promoter SNPs that are significant predictors of drug hypersensitivity, thus

reinforcing the hypothesis of a genetic predisposition for these diseases.

Keywords: Next-Generation Sequencing (NGS), vitaminD, high-affinity IgE receptor (FCεRI), NSAIDs (non-steroidal

anti-inflammatory drugs), beta-lactam antibiotic, drugs hypersensitivity reactions, allergic rhinitis, asthma

INTRODUCTION

The prevalence of atopy, allergic diseases, and drug
hypersensitivity reactions (DHRs) is increasing worldwide.
In Europe, studies have estimated a prevalence of 20–
25% allergic diseases in adults, with many young people
being unaware of their disease (Linneberg, 2011; Kruse and
Vanijcharoenkarn, 2018), which means an important economic
impact for healthcare (European Commission, 2008; Bouvy
et al., 2015) reaching an amount from e55 to e151 billion
per year in European Union, including indirect costs related
to the absence or reduced productivity at work (Zuberbier
et al., 2014; Kruse and Vanijcharoenkarn, 2018). Due to their
complexity, it is difficult to understand the specific mechanisms
and molecules involved in the development of these diseases or
to establish a way to prevent or reduce them. Allergic rhinitis
(AR) reduces the quality of life by affecting sleep, school, work
productivity, and social life. AR is an immunoglobulin E (IgE)
mediated inflammatory disease, which is associated with other
inflammatory diseases such as asthma. It has been estimated
that around 20% of people in the USA and Europe suffer from
allergic rhinitis (Durham et al., 2012; Ozdoganoglu and Songu,
2012; Rondon et al., 2017). Taking this into consideration, AR
has been classified as a major chronic respiratory disease (Brozek
et al., 2017). Drug hypersensitivity reactions (DHR) account

for, ∼3 to 6% of all hospital admissions. These reactions occur
in 10 to 15% of hospitalized patients (Gomes and Demoly,
2005; Szczeklik and Nizankowska-Mogilnicka, 2009; Doña et al.,
2014). Beta-lactam antibiotics (BLs) are the most common
cause of DHRs mediated by specific immunological mechanisms
(Antúnez et al., 2006; Doña et al., 2012, 2014) and, although the
mechanisms of how the immune system recognizes these drugs

are not fully determined, BLs are considered the classical model
of this type of reactions (Blanca et al., 2009). Together with BLs,
non-steroidal anti-inflammatory drugs (NSAIDs) are account

for the vast majority of DHRs (Gomes et al., 2004; Messaad et al.,
2004; Chen et al., 2012; Doña et al., 2012), but, in this case, these
DHRs are not exclusively mediated by specific immunological
mechanisms (selective hypersensitivity), involving a response to
a single drug and good tolerance to other chemically unrelated
NSAIDs (Canto et al., 2009; Cornejo-Garcia et al., 2009); but also
by nonspecific immunological mechanisms (cross-reactions),
which can be caused by more than one chemically unrelated
NSAIDs (Agúndez et al., 2012; Kowalski et al., 2013).

Recent investigation proposes the vitamin D pathway among
putative factors linked to allergic diseases, because of its
important role in immune system (Veldman et al., 2000;

Cantorna et al., 2015) and its direct relation with allergic diseases
(Black and Scragg, 2005; Camargo et al., 2007; Benson et al.,
2012; Suaini et al., 2015). There are many molecules involved in
the vitamin D pathway: hydroxylases from CYP450 family, such
as CYP27A1, CYP27B1, CYP2R1, and CYP24A1; the vitamin D
binding protein (GC) that acts like a transporter, the vitamin D
receptor (VDR), the retinoid receptor X (RXR) and interleukins
which participate in downstream pathway (IL4 and IL13). In
addition, there are other targetmolecules and signaling pathways,
which could be involved in allergic mechanisms, such as the
high-affinity IgE Receptor (FCεRI), which plays a key role in
allergic reactions. This receptor is stimulated by IgE, triggering
mast cells and basophils activation, and the consequent release
of inflammatory mediators. In human mast cells and basophils,
FCεRI consist of a heterotetramer composed by three subunits:
FCεRIα, the ligand-binding subunit which is encoded by FCER1A
gene; FCεRIβ, a signal-augmenting subunit encoded by MS4A2;
and FCεRIγ, a signal-transducing subunit that is presented like
a dimer and it is encoded by FCER1G (Kinet, 1999; Potaczek
and Kabesch, 2012). Elevated levels of IgE have been detected in
atopic conditions like allergic rhinitis, asthma, atopic dermatitis,
anaphylaxia (Platts-Mills, 2001; Wallace et al., 2008) thus making
FCεRI a plausible target molecule in the study of the mechanisms
involved in the development and in the clinical presentation
of allergy.

It could be hypothesized that variations related to expression
and/or function in genes of the vitamin D signaling pathways
or FCεRI might modify the risk of developing rhinitis or
DHRs, and/or the presentation of clinical manifestations of these
reactions. As a matter of fact, several studies demonstrated an
association between different allergic diseases, including DHRs,
and polymorphisms in these genes (Poon et al., 2004; Raby et al.,
2004; Donfack et al., 2005; Bossé et al., 2009; Saadi et al., 2009;
Pillai et al., 2011; Micheal et al., 2013; Berenguer et al., 2014; Amo
et al., 2016a; Narozna et al., 2016). Several studies addressed the
putative impact of exonic and intronic SNPs within the above-
mentioned genes and the risk of allergic diseases and/or DHR
(Wjst, 2005; Wjst et al., 2006; Battle et al., 2007; Arshad et al.,
2008; Sadeghnejad et al., 2008; Weidinger et al., 2008; Black et al.,
2009; Bossé et al., 2009; Ferreira et al., 2009; Knutsen et al., 2010;
Li et al., 2010, 2012, 2014, 2016; Michel et al., 2010; Moffatt et al.,
2010; Cooper et al., 2011; Joubert et al., 2011; Liu et al., 2011; Lu
et al., 2011; Park et al., 2011; Paternoster et al., 2011; Pillai et al.,
2011; Burkhardt et al., 2012; Choi et al., 2012; Granada et al.,
2012; Lasky-Su et al., 2012; Ramasamy et al., 2012; Robinson
et al., 2012; Zhou et al., 2012; Anderson et al., 2013; Hur et al.,
2013; Ismail et al., 2013; Movahedi et al., 2013; Potaczek et al.,
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2013; Sharma et al., 2014; Yang et al., 2014; Kumar et al., 2015;
Papadopoulou et al., 2015; Pino-Yanes et al., 2015; Tian et al.,
2015; Amo et al., 2016a,b; Han et al., 2016; Karaca et al., 2016;
Narozna et al., 2016; Overton et al., 2016; Ådjers et al., 2017;
Ashley et al., 2017; Park and Tantisira, 2017; Sun et al., 2017; Xu
et al., 2017; Zhang et al., 2017; Zhao et al., 2017). However, there
is little information about SNPs located in the promoters of these
genes, which might have functional consequences.

In an attempt to identifying genetic susceptibility factors
associated with allergy and/or DHRs, that may provide novel
information to gain a better understanding of these pathologies,
we carried out an exhaustive analysis of genetic variations
situated in the promoter region of the mentioned genes by using
Next Generation Sequencing (NGS) in patients with allergic
rhinitis plus asthma (AR+A), BLs hypersensitivity, selective
NSAIDs hypersensitivity (SH) and cross-reactions to NSAIDs
(CR), as well as in healthy control individuals. The genes included
in the study were FCER1A,MS4A2, FCER1G,VDR,GC, CYP2R1,
CYP27A1, CYP27B1, CYP24A1, RXRA, RXRB, RXRG, IL4, IL4R,
IL13, and IL13RA1. In addition, we also analyzed the interaction
of genetic and non-genetic factors, such as age, gender, and
antecedents of atopy, in the risk of developing these diseases.

PATIENTS AND METHODS

Study Population
A total cohort of 2,476 individuals participated in this study.
All were Caucasian Spanish individuals. These included 406
healthy controls without antecedents of atopy or adverse drug
reactions, 528 patients with AR+A, 561 individuals with BLs
hypersensitivity, 668 patients with NSAIDs cross-reactivity (CR),
and 313 selective hypersensitivity patients (SH) which were
single-NSAIDs responders.Written consent for participation was
obtained for all participants. Patients were recruited at Hospitals
participating in the study. All the patients who were invited to
participate in the study agreed to do so. Control individuals were
selected among students and staff in the University and Hospitals
participating in the study. Characteristics of the study groups
are summarized in Table 1. The diagnosis was carried out as
described elsewhere (García-Martín et al., 2007; Doña et al., 2011;
Amo et al., 2016a; Lacombe-Barrios, 2018). The protocol for this
study was in accordance with the Declaration of Helsinki and its
subsequent revisions and was approved by the respective Ethics
Committees of the participating Hospitals.

To get a further analysis of the sample, we put together some
of the groups of patients which share a specific characteristic.
Thus, we defined three new groups of study: “DHR group,” were
we included all the patients with DHR: namely, patients with
hypersensitivity to BLs and NSAIDs (both, CR and SH); “DHR-
IgE Group,” which comprises selective hypersensitivity to BLs
and SH; and ”IgE Mediated Group,” where we included all the
IgE-mediated reactions (AR+A, BLs and SH).

Identification of Novel Variants Using NGS
A subset of participants were selected for this phase. A total
cohort of 175 individuals participated in this NGS analysis.
These included 22 healthy controls without antecedents of

atopy or adverse drug reactions, 22 patients with AR+A, 43
individuals with BLs hypersensitivity, 41 patients with NSAIDs
cross-reactivity (CR), and 46 selective hypersensitivity patients
(SH) which were single-NSAIDs responders. Characteristics of
the participants are summarized in Table S1. Genomic DNA was
obtained from leukocytes and purified according to standard
procedures. DNA samples were analyzed by NGS after specific
enrichment based on the Haloplex design. Details of the areas
sequenced are shown in Table S2. DNA was digested with
restriction enzymes specific for this design (Haloplex, Agilent,
Santa Clara, CA, USA), followed by hybridization with specific
probes, DNA circularization and selection of the target areas,
according to the protocol supplied. Sequencing was carried out
in a MiSeq sequencer (Illumina, San Diego, CA, USA) using
the pair end format. The coverage was always higher than that
recommended by the manufacturer (23.7Mb per sample). All
variants identified had at least a 50X coverage and more than
95% of these had more than 100x coverage. The sequencing
results were analyzed by using the application SureCall 4.0
(Agilent, Santa Clara, CA, USA), adapted to the analysis of
enriched Haloplex sequences, and MiseqReporter V04 (Illumina,
San Diego, CA). Sequence revision against human genome was
carried out by using the Integrative Genomes Viewer (Broad
Institute, Cambridge, MA, USA).

Combined Dataset Analyses
All patients and controls participated in this phase. Analyses
were carried out by using TaqMan genotyping focused on
the SNVs raised after multiple comparison analyses of the
NGS phase (see the results section for further details). The
SNPs were analyzed in triplicate, by using SNP TaqMan
assays (Life Technologies S.A., Alcobendas, Madrid, Spain),
and following the conditions specified by the manufacturer.
Assay details are as follows: FCER1G-rs36233990, Custom
TaqMan R© Assay; FCER1G-rs2070901, (C__15867981_20); and
GC-rs3733359, (C__25652813_40).

Statistical Analysis
The R package SNPasoc (Gonzalez et al., 2014) was used to
calculate allele and genotypic frequencies, to determine the
Hardy-Weinberg equilibrium using exact test (Wigginton, 2005)
and to analyse differences between groups (González et al.,
2007). The comparison between groups was performed with
the Fisher’s Exact Test (FET) and Likelihood Ratio Test (LRT)
with an initial crude analysis followed by an adjusted analysis
including gender as the categorical covariate when it was
possible. False Discovery Rate (FDR) correction was used for the
multiple comparison adjustments (Benjamini et al., 2001). The
results were considered statistically significant when P-values
were under 0.05. The association between SNPs and traits was
estimated by odds ratio (OR) with a 95% confidence interval
(CI) or by Relative Risk (RR) when the variation was not found
in the control group. The Relative Risk was calculated by using
EpiBasic, a tool for statistical analysis of tabular information,
performing a stratified analysis, using the inverse variance
(1/SE2) as weigh. This tool was developed as a companion
to a Danish textbook on epidemiology (Juul, 2012), and the
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TABLE 1 | Characteristics of the participants.

Healthy controls

(n = 406)

Patients with AR+A

(n = 528)

Patients with BLs

hypersensitivity

(n = 561)

Patients with NSAIDs

cross-reactions (CR)

(n = 668)

Patients with NSAIDs

selective hypersensitivity (SH)

(n = 313)

Women. n (%) 253 (62.3%) 292 (55.3%) 318 (56.7%) 390 (58.4%) 204 (65.2%)

Age + sd (range) 22.1 ± 4.7 (20–58) 32.4 ± 14.2 (14–79) 46.7 ± 14.5 (4–91) 41.8 ± 15.3 (5–92) 45.5 ± 16.0 (5–82)

Antecedents of atopy 0 100% 23.3% 20.8% 23.3%

spreedsheat could be download from the following link (Juul and
Frydenberg, 2016): http://ph.medarbejdere.au.dk/undervisning-
og-uddannelse/software/.

Association between each SNP and each clinical phenotype
was assessed by using binary logistic regression. Then, predictive
Models based on Multinomial Logistic Regression (MLR)
(Agresti, 2003) were performed for SNPs showing association
in the binary regression analyses by using SPSS (IBM SPSS
Statistics for Windows, Version 22.0). The p-values associated
with every SNP were calculated using the Chi-Square test. Each
model has associated several pseudo-R2 coefficients as indicators
of the strength of the association between the response and the
predictor variables. Cox and Snell is based on the loglikelihood
for the model compared to the log likelihood for a baseline
model and it has a theoretical maximum value of <1, even
for a “perfect” model (Cox and Snell, 1989) and Nagelkerke is
an adjusted version of the Cox & Snell R-square that adjusts
the scale of the statistic to cover the full range from 0 to
1 (Nagelkerke, 1991). McFadden is another version, based on
the log-likelihood kernels for the intercept-only model and the
full estimated model. This is the pseudo-R2 coefficient most
frequently used and the correlation between variables is good
when the values are comprised between 0.2 and 0.4, and better
up to 0.4 (McFadden, 1974, 1977). The first model includes
all the groups separately, that is, AR+A, BLs, CR and SH.
Model 2 considered two groups of patients: AR+A and a
group combining all DRH patients. Model 3 considered three
groups of patients: AR+A, patients with Ige-Mediated DHR, and
patients with DHR not related to IgE (that is, CR patients). For
all models the control group was always the reference group.
Coefficients were calculated by dropping samples with missing
data in explanatory variables, which have been selected using
stepwise regression method. The statistical power was calculated
from variant allele frequencies with a genetic model analysing the
frequency for carriers of the disease gene with a RR value = 2
(p= 0.05) for the genetic associations identified in the combined
dataset model as described elsewhere (Pértegas Díaz and Pita
Fernández, 2003). These values are shown in Table S3. The
functional impact of the gene variants was analyzed by using
TRANSFAC (Matys et al., 2003, 2006).

RESULTS

Identification of Novel Variants Using NGS
In this phase we identified 148 variations situated in the promoter
region of genes related with vitamin D and FCεRI genes.

The information about the variations, their frequency in the
whole sample and the Hardy-Weinberg equilibrium values is
summarized in Table 2. It is to be noted that 84 out of the 148
(56.7%) of the SNPs identified in this study were found in cases
only and not in control individuals.

Among the 148 gene variations identified, 43 were novel.
Within the 105 already described SNPs, 25 have not been
described or studied earlier in European individuals, although
they show marginal MAF in our study (only three SNPs show
MAF above 0.010). Regarding known SNPs, the frequencies
are concordant with the results previously described in the
1,000 Genomes public database (http://grch37.ensembl.org/
index.html) for individuals with European descent for all the
variations except for the rs4020369 SNP in the GC gene, where
the described frequency for Europeans is equal to 0, but in our
population it shows a MAF close to 0.040, that is in agreement
with the global frequency described in 1,000 Genomes for
overall individuals.

One hundred and three out of the 148 variants identified
were at Hardy-Weinberg equilibrium (HWE) in the overall study
population (see Table S4), which is to be expected given the high
number of SNPs analyzed and the limited sample size in the
NGS analyses. Within the 45 variants that were not in HWE,
only 7 showed a MAF>0.050 in agreement with frequencies
described in literature. We carried out binary logistic regression
analyses excluding those variants with MAF<0.02 (see Table 2).
Results of the regression analyses are shown in Table S5. Among
the 44 variants we selected those with adjusted P ≤ 0.10 for
multinomial analyses. Therefore, 25 variants were included in
the multinomial analysis as well as gender, antecedents of atopy
and clinical group (Allergic rhinitis + Asthma; BLs, CR and
SH). It is to be noted that some SNPs with a high significance
after logistic binary regression analyses (See Table S5), such as
rs1467664 (RXRG), rs3733359 (GC), rs2070874 (IL4), rs4303288,
and rs4307775 (VDR) and rs2259735 (CYP24A1), were not
significant after multinomial analysis. The statistically significant
variables raised after this analysis were three SNPs (FCER1G
rs36233990, FCER1G rs2070901, and GC rs3733359), as well as
antecedents of atopy.

Combined Dataset Analyses
The three SNPs mentioned above were analyzed in the whole
study group. The FCER1G rs36233990 SNP was monomorphic in
the control group, whereas heterozygous subjects were identified
in all subgroups of patients and homozygous individuals were
identified in the AR+A and CR groups. Statistically significant
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TABLE 2 | SNPs with MAF ≥ 0.02 observed in the NGS study.

Gene dbSNP Chromosomal

Location

Alleles MAF HWE MAF 1,000

Genomes

MAF 1,000

Genomes

MAF

genomAD

MAF

genomAD

ALL

individuals

European

individuals

ALL

individuals

European

individuals

FCER1A rs2427837 1:159258545 G/A 0.213A 0.501 0.151A 0.304A 0.217A 0.289 A

FCER1A rs61828219 1:159258641 C/A 0.141A 0.752 0.085A 0.160A 0.129A 0.175 A

FCER1A rs12135235 1:159259029 T/G 0.043G 1.000 0.033G 0.033G 0.034G 0.037 G

FCER1G rs36233990 1:161184658 C/T 0.020 T 0.134 0.011 T 0.006 T 0.010 T 0.013 T

FCER1G None 1:161184792 GTCTCAAAAA/G 0.023G 1.000 – – – –

FCER1G None 1:161184793 TCTCAAAAA/T 0.026 T 1.000 – – – –

FCER1G None 1:161184794 CTCAAAAAA/C 0.052C 1.000 – – – –

FCER1G None 1:161184795 TCAAAAA/T 0.121 T 0.474 – – – –

FCER1G None 1:161184796 C/A 0.020A 0.000 – – – –

FCER1G rs11587213 1:161184875 A/G 0.171G 0.284 0.146G 0.179G 0.142G 0.171 G

FCER1G rs41270847 1:161184976 G/A 0.023A 1.000 0.007A 0.020A 0.010A 0.015 A

FCER1G rs2070901 1:161185058 G/T 0.276 T 0.328 0.391 T 0.269 T 0.314 T 0.248 T

RXRG rs3753897 1:165414511 C/A 0.152A 0.082 0.215A 0.195A 0.211A 0.193 A

RXRG rs1467664 1:165414933 T/C 0.178C 0.073 0.203C 0.142C 0.181C 0.138 C

GC rs3733359 4:72649774 G/A 0.069A 0.894 0.206A 0.055A 0.122A 0.060 A

GC rs76781122 4:72669661 C/A 0.034A 1.000 0.013A 0.034A 0.019A 0.028 A

GC rs6843222 4:72669944 C/T 0.029 T 1.000 0.004 T 0.016 T 0.007 T 0.011 T

GC rs35096193 4:72670093 C/A 0.236A 0.059 0.165A 0.284A 0.203A 0.272 A

GC rs1565572 4:72670191 A/C 0.210C 0.499 0.432C 0.196C 0.363C 0.192 C

GC rs4020369 4:72670448 G/A 0.037A 1.000 0.033A 0 0.037A 0.008 A

IL13 None 5:131992098 G/C 0.023C 0.000 – – – –

IL13 rs1800925 5:131992809 C/T 0.223 T 0.001 0.255 T 0.178 T 0.270 T 0.226 T

IL13 rs2066960 5:131994435 C/A 0.082A 1.000 0.199A 0.115A 0.176A 0.125 A

IL13 rs1295687 5:131994462 G/C 0.072C 0.045 – – 0.131C 0.064 C

IL4 rs2243250 5:132009154 C/T 0.141 T 0.752 0.470 T 0.168 T 0.371 T 0.176 T

IL4 rs2070874 5:132009710 C/T 0.132 T 0.507 0.401 T 0.168 T 0.279 T 0.148 T

RXRB rs76929655 6:33169182 T/C 0.020C 1.000 0.002C 0.005C 0.007C 0.011 C

CYP2R1 rs12794714 11:14913575 G/A 0.445A 0.647 0.349A 0.447A 0.406A 0.433 A

MS4A2 rs573790 11:59855385 C/T 0.382 T 1.000 0.441 T 0.356 T 0.460 T 0.411 T

MS4A2 rs574700 11:59855483 C/T 0.032 T 1.000 0.124 T 0.039 T 0.084 T 0.018 T

MS4A2 rs1441585 11:59855711 T/C 0.032C 1.000 0.112C 0.038C – –

MS4A2 rs1441586 11:59856028 T/C 0.414C 0.755 0.460C 0.456C 0.425C 0.418 C

VDR rs117397914 12:48276613 A/G 0.031G 0.150 0.009G 0.018G 0.011G 0.016 G

VDR rs11168293 12:48293716 G/T 0.284 T 0.712 0.166 T 0.321 T 0.282 T 0.355 T

VDR rs4303288 12:48336619 A/C 0.467C 0.035 0.404A 0.397A 0.402A 0.389 A

VDR rs4307775 12:48336623 C/G 0.139G 0.000 0.171G 0.209G 0.185G 0.249 G

IL4R rs12927172 16:27325021 G/A 0.424A 0.013 0.405A 0.372A 0.353A 0.367 A

IL4R rs12927543 16:27325023 A/G 0.109G 0.125 0.082G 0.088G 0.066G 0.080 G

CYP24A1 rs35873579 20:52788190 G/A 0.023A 1.000 0.001A 0.004A 0.002A 0.003 A

CYP24A1 rs36106327 20:52788294 C/A 0.026A 0.100 0.007A 0.020A 0.010A 0.016 A

CYP24A1 rs2259735 20:52788314 T/C 0.455C 0.029 0.566C 0.420C 0.515C 0.408 C

CYP24A1 rs2762943 20:52790786 G/T 0.095 T 0.652 0.034 T 0.085 T 0.037 T 0.081 T

CYP24A1 rs2585427 20:52790976 G/C 0.376C 0.873 0.444C 0.390C 0.447C 0.373 C

IL13RA1 rs6603441 X:117861321 T/G 0.356G 0.000 0.452G 0.315G 0.407G 0.322 G

-, not described; MAF, Minor Allele Frequency.

differences were identified for this SNP in all subgroups of
patients (Table 3), although after FDR correction differences
remained significant for the AR+A and BLs groups. The FCER1G

rs2070901 SNP had a marginal trend toward higher frequency of
the variant allele among CR patients, which was not statistically
significant after FDR analysis. These two FCER1G SNPs are not
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TABLE 3 | Combined dataset analyses.

Rhinits+Asthma (AR+A) vs.

controls comparison values

(N = 528 vs. 406)

Bls vs. Controls comparison

values (N = 561 vs. 406)

CR vs. Controls comparison

values (N = 668 vs. 406)

SH vs. Controls comparison

values (N = 313 vs. 406)

SNP ID Genotype Control

frequency

AR+A

frequency

OR (95% CI)

with

covariates

(1) (2)

Pcov

(FDR) (2)

BLs

frequency

OR (95% CI)

with

covariates

(1) (2)

Pcov

(FDR) (2)

CR

Frequency

OR (95% CI)

with

covariates

(1) (2)

Pcov

(FDR) (2)

SH

Frequency

OR (95% CI)

with

covariates

(1) (2)

Pcov

(FDR) (2)

FCER1G-

rs36233990

C/C 1 0.953 1.00 0.000

(0.000)

0.991 1.00 0.025

(0.041)

0.990 1.00 0.043

(0.071)

0.993 1.00 0.077

(0.231)

C/T 0 0.045 1.76

(1.66–1.86)

0.009 1.67

(1.53–1.76)

0.008 * 0.007 *

T/T 0 0.002 * – – 0.002 * 0 –

FCER1G-

rs2070901

G/G 0.482 0.531 1.00 0.065

(0.097)

0.545 1.00 0.073

(0.073)

0.524 1.00 0.047

(0.071)

0.521 1.00 0.328

(0.492)

G/T 0.453 0.381 0.75

(0.56–0.99)

0.380 0.73

(0.55–0.96)

0.382 0.77

(0.59–1.01)

0.399 0.81

(0.59–1.11)

T/T 0.065 0.088 1.18

(0.69–2.00)

0.075 1.00

(0.58–1.72)

0.094 1.32

(0.80–2.20)

0.080 1.13

(0.62–2.06)

GC-rs3733359 G/G 0.874 0.892 1.00 0.646

(0.646)

0.910 1.00 0.027

(0.041)

0.901 1.00 0.212

(0.212)

0.886 1.00 0.632

(0.632)

G/A 0.118 0.104 0.88

(0.57–1.36)

0.090 0.73

(0.47–1.13)

0.098 0.79

(0.52–1.22)

0.110 0.92

(0.57–1.49)

A/A 0.008 0.004 0.50

(0.08–3.03)

0 0.00 (0.00–) 0.002 0.22

(0.02–2.10)

0.003 0.37

(0.04–3.63)

Comparison between groups of patients and controls. (1) Relative Risk was calculated when the reference group (control) shows only non-mutated frequency. (2) OR and P-value were adjusted for gender. (*) OR adjusted by gender

cannot be calculated due to lack of cases.
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at linkage disequilibrium, being the D’ value = 0.3415 and the r
value= 0.0504. The minor allele frequency for the GC rs3733359
SNP was lower in the BLs group as compared to that of healthy
individuals. This comparison remained statistically significant
after FDR analysis.

The patients were grouped according to the underlying
mechanism of the reaction. The first group was composed of all
patients with drug hypersensitivity (DHR group), that is, (BLs +
CR + SH). The second group of patients was composed of all
patients with IgE-mediated drug hypersensitivity (D-IgE) (BLs+
SH). The third group of patients was composed of all patients
with IgE-mediated reactions (BLs + SH + AR+A), which were
compared vs. healthy controls (Table 4). The two FCER1G SNPs
displayed statistically significant differences in DHR and IgE-
mediated reactions as compared to control individuals, although
the only difference that remained significant after FDR correction
was that of the SNP FCER1G rs2070901 in patients with IgE-
mediated diseases (Table 4).

Classification Models
We built models including the three SNPs with significant
associations in the combined dataset analyses phase, as well as the
antecedents of atopy and gender, and the pseudo R-square values
for eachmodel (those which provide the best classification of each
patient in its correct group) are shown in Table 5. All the models
selected the FCER1G rs36233990 as a good variable. The variable
“Antecedents of atopy” was also selected, although this was
expected because none of the control individuals had antecedents
of atopy. Model 1 was made by including the three SNPs with
a significant P-value and all the clinical groups separately, as
compared to control subjects. Model 2 included all patients with
DHR compared to control individuals, and model 3 included all
patients with IgE-mediated diseases vs. control individuals. The
classifications per group are shown inTable 6. It is to be noted the
high percentage of correct allocations using the three SNPs only
(that is, without considering antecedents of atopy and gender).
For comparison, we show in Table 6 the results of the same
models including covariables such as antecedents of atopy, age
and gender. The fact that antecedents of atopy predicted 100%
of AR+A patients has little value because control individuals had
no antecedents. Age and gender, however, are not good predictors
either (Table 6). Therefore, these covariables did not improve the
predictive capacity of the models based on the SNPs.

DISCUSSION

Genetic variation is amajor cause of interindividual differences in
the susceptibility to a number of disorders. In this regard, a huge
number of genetic association studies related to allergic disorders
and drug hypersensitivity events have been carried out. Most
of these studies have a case-control design interrogating only
a few polymorphisms, typically, a few SNPs located within the
coding region. The use of NGS techniques allows for a complete
coverage of large areas thus revealing novel SNPs or analysing
SNPs that are not included in most studies. In a previous NGS
study in the promoter area of the genes encoding the COX-1
and COX-2 enzymes, we identified several novel SNPs. More T
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TABLE 5 | Statistically significant variables in each model and goodness-of-fit

measures.

Variables Model 1:

Single groups

model

(p-value)*

Model 2:

DHR Model

(BLs, CR,

SH)/Rhinitis+

asthma/Control)

(p-value)*

Model 3:

IgE Mediated Drugs

Model (BLs,

SH)/Rhinitis+

asthma/CR/Control)

(p-value)*

FCER1G

rs36233990

0.001 0.000 0.000

FCER1G

rs2070901

0.520 0.169 0.337

GC

rs3733359

0.810 0.517 0.766

Antecedents

of atopy

0.030 0.000 0.000

Gender 0.000 0.106 0.137

Pseudo R-square

Cox and Snell 0.522 0.520 0.521

Nagelkerke 0.546 0.606 0.557

McFadden 0.237 0.376 0.268

*The overall effectiveness of the model was assessed by using the Chi-square statistic.

TABLE 6 | Prediction models.

Observed

(clinical

classification)

Predicted (Group

allocation according to

the model) SNPs only (%)

correct

Predicted (Group allocation

according to the model) SNPs

+ Antecedents of atopy +

gender+ age (%) correct

AR+A (n = 481) 4.1 98.2

BLs (n = 230) 49.0 7.0

CR (n = 553) 53.4 68.6

SH (n = 300) 0 12.3

DHR (n = 1083) 99.0 81.8

DHR IgE-Mediated

(n = 530)

99.2 49.6

All IgE-Mediated

(n = 1,326)

99.9 79.6

than 70 SNPs modified transcription factor binding sites, either
by disrupting existing sequences or by creating new binding
sites (Agundez et al., 2014).

The present study is aimed to analyse the promoter areas of
16 genes related to allergic diseases and drug hypersensitivity
reactions (DHRs). We have focused on the promoter gene region
due to its crucial role in transcriptional activity and expression
of the gene, as it has been observed for the SNPs located in the
promoter of FCER1A (Potaczek et al., 2009), or IL13 (Cameron
et al., 2006; Kiesler et al., 2009; Li et al., 2014). The rationale
for the selection of the 16 genes included in this study is based
on putative mechanisms involved this type of reactions. FCERI
plays an essential role in IgE-mediated mechanisms and variants
in FCERI genes have been previously described as genetic factors
related to asthma (Cui et al., 2003; Kim et al., 2006; Palikhe et al.,
2008; Joubert et al., 2011; Ramphul et al., 2014; Yang et al., 2014),
allergy (Hasegawa et al., 2003; de Guia et al., 2015; Liao et al.,

2015; Amo et al., 2016a,b), and food sensitization (Liu et al.,
2011; Hong and Wang, 2012). It has been also described that
some variants in genes involved in the vitamin D pathway are
related with asthma (Poon et al., 2004; Raby et al., 2004; Wjst,
2005; Wjst et al., 2006; Bossé et al., 2009; Saadi et al., 2009; Li
et al., 2011; Pillai et al., 2011; Maalmi et al., 2013; Leung et al.,
2015; Hutchinson et al., 2017), especially variations in genes
regulated by vitamin D, such as IL4 and its receptor (Burchard
et al., 1999; Donfack et al., 2005; Ober and Hoffjan, 2006; Battle
et al., 2007; Michel et al., 2010; Baye et al., 2011; Hesselmar
et al., 2012; Liu et al., 2012; Micheal et al., 2013; Nie et al.,
2013; Zhu et al., 2013; Al-Muhsen et al., 2014; Berenguer et al.,
2014; Klaassen et al., 2015; Zhang et al., 2015; Narozna et al.,
2016) and IL13 (Black et al., 2009; Bottema et al., 2010; Palikhe
et al., 2010; Cui et al., 2012; Accordini et al., 2016; Xu et al.,
2017), which are also related to IgE (Marsh et al., 1994; Kabesch
et al., 2006). According to previous research, the mechanisms
involved in cross-reactions and selective ones are different, (Doña
et al., 2012; Ayuso et al., 2013; Torres et al., 2014; Nissen et al.,
2015; Amo et al., 2016a) and previously published results show
that some variations, either related to FCERI or to vitamin
D, are strongly associated with IgE-mediated pathologies, like
rs12135235 in FCER1A, rs144205117 in CYP2R1, rs1467664 in
RXRG or rs4303288 in VDR. Association between the rs2070874
in IL4 and atopy and hypersensitivity, has been described in
previously published works (Burchard et al., 1999; Donfack et al.,
2005; Kabesch et al., 2006; Ober and Hoffjan, 2006; Kim et al.,
2010; Madore and Laprise, 2010; Baye et al., 2011; Lu et al., 2011;
Liu et al., 2012; Andiappan et al., 2013; Hsu et al., 2013; Micheal
et al., 2013; Movahedi et al., 2013; Zhu et al., 2013; Berenguer
et al., 2014; Caniatti et al., 2014; Li et al., 2014; de Guia et al.,
2015; Klaassen et al., 2015; Zhang et al., 2015; Hua et al., 2016;
Narozna et al., 2016).

Although binary logistic regression analyses pointed to six
SNPs corresponding to RXRG, GC, IL4, VDR, and CYP24A1
(see the Results section), statistical significance for these SNPs
was not supported after multinomial analysis, except for the
GC SNP. By turn, two additional FCER1G SNPs, as well as
the GC SNP, were statistically significant after multinomial
analyses. It is important to note that the major findings obtained
in the present study are novel, since only one of the three
SNPs that remained after the multinomial analysis have been
previously related with atopy or drug hypersensitivity. Among
these, one of the FCER1G SNPs is novel and hence have not
been studied before, and the other one has been related with
food sensitization (Liu et al., 2011) and has been previously
studied in patients with selective hypersensitivity to NSAIDs
and allergic rhinitis without significant association (Amo et al.,
2016a,b). After the NGS and combined dataset analyses phases,
prediction models revealed that one of these SNPs, designated
as FCER1G rs36233990 was correct in all models and it allowed
an excellent prediction for patients with DHR, IgE-mediated
DHR and all IgE-mediated diseases analyzed. It should be
taken into consideration that the significant p-values observed
for rs36233990 in case-control association analyses might be
inflated because this SNP was not observed in controls. However,
this is a commonly observed SNP in European populations,
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which underscores the need for large control sets. This is a
limitation in this study. The rs36233990 variation is located in
a regulatory region where multiple transcription factor binding
sites exist. The variant allele T triggers the appearance of
E2F-3:Prrxl1 complex and GKLF (KLF4). On the other hand,
the variant allele T leads the disappearance of a binding site
for the transcription factor p300. Our own previous findings
supported a role of FCER gene variations in patients with
AR+A, but not in patients with SH (Park et al., 2011; Amo
et al., 2016a) which are consistent with those raised in this
study. The minor allele of rs2070901 in FCERIG triggers the
disappearance of a transcription factor binding site for ELK-
1: OC-2. The GC variation designated as rs3733359 is located
in a splice region for transcripts 2 and 3 of GC, and in the 5’
untranslated region for transcripts 1 and X1. This variant has
been previously related to immune and other disorders (Jung
et al., 2011; Wang et al., 2015; Xie et al., 2018). Our findings
regarding the GC polymorphism support the hypothesis of a
relevant role of vitamin D in allergy (Hall and Agrawal, 2017;
Tian and Cheng, 2017.

In summary, our findings show that the analysis of the
gene promoters is useful for the identification of genetic
biomarkers of risk for DHRs and AR+A. Models using these
gene variations allow a high degree of prediction, that is,
correct group allocations (Table 6) based on these SNPs only.
It should be kept in mind that the variant allele frequencies
for these SNPs are relatively low, that is, the frequency of
carriers of the risk variants is relatively low, specially for the
most significant SNP FCER1G rs36233990 (<2% of patients).
The frequencies of carriers for other two SNPs are 47 and
10.5% for FCERIG rs2070901 and GC rs3733359, respectively.
Therefore, the presence of these gene variations cannot explain,
by itself, the development of most cases of DHR. However, the
SNPs raised in this study, point to mechanisms involved in

DHR and add novel information that can be used as a proof
of mechanism.
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