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We numerically investigate the role of mechanical stress in modifying the conductivity
properties of cardiac tissue, and also assess the impact of these effects in the
solutions generated by computational models for cardiac electromechanics. We follow
the recent theoretical framework from Cherubini et al. (2017), proposed in the context
of general reaction-diffusion-mechanics systems emerging from multiphysics continuum
mechanics and finite elasticity. In the present study, the adapted models are compared
against preliminary experimental data of pig right ventricle fluorescence optical mapping.
These data contribute to the characterization of the observed inhomogeneity and
anisotropy properties that result from mechanical deformation. Our novel approach
simultaneously incorporates two mechanisms for mechano-electric feedback (MEF):
stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify
their influence into the nonlinear spatiotemporal dynamics. It is found that (i) only specific
combinations of the two MEF effects allow proper conduction velocity measurement; (i)
expected heterogeneities and anisotropies are obtained via the novel stress-assisted
diffusion mechanisms; (i) spiral wave meandering and drifting is highly mediated by
the applied mechanical loading. We provide an analysis of the intrinsic structure of the
nonlinear coupling mechanisms using computational tests conducted with finite element
methods. In particular, we compare static and dynamic deformation regimes in the onset
of cardiac arrhythmias and address other potential biomedical applications.

Keywords: cardiac electromechanics, stress-assisted diffusion, stretch-activated currents, finite elasticity,
reaction-diffusion

1. INTRODUCTION

Cardiac tissue is a complex multiscale medium constituted by highly interconnected units,
cardiomyocytes, that conform a so-called syncitium with unique structural and functional
properties (Pullan et al., 2005). Cardiomyocytes are excitable and deformable muscular cells that
present themselves an additional multiscale architecture in which plasma membrane proteins and
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intracellular organelles all depend on the current mechanical
state of the tissue (Salamhe and Dhein, 2013; Schonleitner et al.,
2017). Dedicated proteic structures, such as ion channels or
gap junctions, rule the passage of charged particles throughout
the cell as well as between different cells and they are usually
described mathematically through multiple reaction-diffusion
(RD) systems (Cabo, 2014; Dhein et al., 2014; Kleber and Saffitz,
2014). All these coupled nonlinear and stochastic dynamics,
emerge then to conform the coordinated contraction and
pumping of the heart (Augustin et al, 2016; Land and et.
al., 2016; Quarteroni et al., 2017). During the overall cycle,
the mechanical deformation undoubtedly affects the electrical
impulses that modulate muscle contraction, also modifying the
properties of the substrate where the electrical wave propagates.
These multiscale interactions have commonly been referred in
the literature as the mechano-electric feedback (MEF) (Ravelli,
2003). Experimental, theoretical and clinical studies have been
contributing to the systematic investigation of MEF effects,
already for over a century; however, several open questions
still remain (Quinn et al.,, 2014; Quinn and Kohl, 2016; Land
et al,, 2017; Sack et al., 2018). For example, and focusing on the
cellular level, it is still now not completely understood what is
the effective contribution of stretch-activated ion channels and
which is the most appropriate way to describe them. In addition,
and focusing on the organ scale, the clinical relevance of MEF in
patients with heart diseases remains an open issue (Orini et al.,
2017), and more specifically, how MEF mechanisms translate
into ECGs (Meijborg et al., 2017) and what is the specific role of
mechanics during cardiac arrhythmias (Christoph et al., 2018).

The theoretical and computational modeling of cardiac
electromechanics has been used to investigate some key aspects
of general excitation-contraction mechanisms. For instance,
the transition from cardiac arrhythmias to chaotic behavior,
including the onset, drift and breakup of spiral/scroll waves
(Panfilov and Keldermann, 2005; Bini et al., 2010; Keldermann
et al, 2010; Dierckx et al, 2015), pinning and unpinning
phenomena due to anatomical obstacles (Cherubini et al., 2012;
Horning, 2012; Chen et al, 2014), as well as the multiscale
and stochastic dynamics both at subcellular, cellular and tissue
scale (Trayanova and Rice, 2011; Hurtado et al., 2016; Land
et al,, 2017). However, the formulation of MEF effects into
mathematical models has been primarily focused on accounting
for the additive superposition of an active and passive stress
to stretch-activated currents (Panfilov and Keldermann, 2005).
Recent contributions have advanced an energy-based framework
for the comparison of active stress, stretch-activated currents and
inertia effects (Cherubini et al., 2008; Ambrosi and Pezzuto, 2012;
Rossi et al., 2014; Costabal et al., 2017). These works further
highlight the role of mechanics into the resulting heart function
at different temporal and spatial scales.

In order to further motivate our theoretical developments, we
provide an experimental representative example of the strong
MEF coupling in cardiac tissue, observable on the macroscale.
The data shown in Figurel were obtained via dedicated
fluorescence optical mapping applied on a pig right ventricle
(the experimental procedure has been previously described in
Fenton et al., 2009; Gizzi et al., 2013; Uzelac et al.,, 2017).

After motion suppression via blebbistatin, the perfused tissue
was electrically stimulated via an external bipolar stimulator
with strength twice diastolic threshold. An excitation pulse
with constant pacing cycle length of 1s was delivered within
the field of view (red spot in Figure 1) for several seconds
(reaching a steady-state configuration) and for three different
mechanical loading conditions on the same wedge: (a) free
edges, (b) static uniaxial horizontal stretch, (c) static uniaxial
vertical stretch with respect to a prescribed tissue orientation.
The figure displays the underlying structure with clear evidence
of the deformed tissue architecture, isochrones of electrical
activation for a representative stimulus, and a sequence of spatial
activation maps, where the colors indicate the level of activation-
Action Potential (AP). Since in this proof of concept setup
active contraction is inhibited by blebbistatin, these experiments
clearly indicate that an additional degree of heterogeneity and
anisotropy appears in the tissue and affects the AP excitation
wave due to the intensity and direction of the externally applied
deformation. In addition, this behavior does not correspond
to a mere linear mapping from the reference to the deformed
configuration (as a visual scaling of the image would easily show),
but one observes that mechanical deformations induce higher,
nonlinear and non-trivial anisotropies and heterogeneities in the
tissue.

To better characterize such features, in Figure 2 we provide an
extended analysis of the local conduction velocity (CV) thorough
histogram plots measured as follows:

e we identify wavefront isochrones at 50% of depolarization
for eleven consecutive frames at 2 ms each (this produces ten
consecutive measures of CV per direction selected);

e we compute the contour normal direction and the
corresponding distance between consecutive isochrones;

e we measure the local CV for all the computed normal
directions, along the isochrone path and for seven consecutive
action potential activations at constant pacing cycle length of
Is;

e we exclude the extreme values from the histogram to take out
spurious results, e.g., boundary effects.

The chosen methodology allows to represent tissue
heterogeneity, provides a robust measure of the local CV
distribution characterizing the underlying ventricular structure,
and homogenizes physiological beat-to-beat variabilities. We
summarize the results of such an extended analysis in Table 1,
distinguishing between the three loading cases as described in
Figure 1, providing sample size and statistical features of the
computed CV histogram distribution, i.e., mean and median.
We also provide the box plot representation of the obtained
distributions for the three stretch states, respectively, to further
highlight dispersion of the measured velocities. Every single
feature in the study confirms a slower conduction velocity
under stretch, and this behavior is full agreement with previous
studies (Ravelli, 2003).

Also, in Figure 3 we demonstrate that the tissue is at steady-
state for the selected stimulation rate providing a quantitative
comparison of the spatial and temporal activation sequences.
In particular, after several activations (> 5), beat n and beat
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A B C

FIGURE 1 | MEF observed in pig right ventricle via fluorescence optical mapping. From top to bottom, we provide: underlying tissue structure in reference (A) and
deformed (B,C) states; activation isochrones each 4 ms originating from the stimulation point (red spot in the field of view-the bar indicates a length of 1.cm), and
activation sequences. The three cases refer to no-stretch (A), static horizontally (B), and vertical (C) stretch in the directions indicated by the yellow arrows. The
sequence of spatial activation uses the color code scaled to the AP level (yellow/green—high/low). Selected frames highlight the anisotropy induced by stretch. The
outer black region is the noisy area not useful for the field of view.
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FIGURE 2 | CV histograms measured on tissue wedges for three different loading states overlapping local measures for seven consecutive activations at constant
pacing cycle length of 1s. All the normal directions to the AP propagation are considered as indicated by orange arrows on a representative isochrone contour. The
box plot of the distribution is provided as inset for the three histogram, respectively, highlighting the amount of dispersion and the reduction of CV under stretch (see
Table 1 for details). Cut-off of spurious values is set at 0.05 and 1.3 m/s.

TABLE 1 | Summary of the local CV measurement, indicating histogram sample
size and representative statistical features of the computed distribution: mean and
median.

No-Stretch Horizontal stretch Vertical stretch
Sample size 28,760 20,645 18,746
Mean [m/s] 0.42 0.36 0.38
Median [m/s] 0.36 0.31 0.32

n + 10 are shown for a selected frame in terms of normalized
AP distribution and its spatial difference, as well as comparing
the time course of two consecutive activations (B, B2) for a
representative pixel under the field of view. In both cases, the
spatio-temporal differences recorded are within the physiological
variability of a ventricular wedge, and the tissue shows a steady-
state regime which is considered at resting state for the numerical
model.

Clear MEF effects evidenced in the previous experimental
exercise suggest the incorporation of deformation and stress
into the conduction properties of the cardiac tissue itself. The
preliminary character of the proposed minimal model implies
that we do not take into account the intrinsic structural variability
of the tissue, but we stress that these effects will be investigated in
future validation works. Accordingly, as a base line model, in the
present study we will adapt the formulation recently proposed
in Cherubini et al. (2017) and designed for general purpose
stress-diffusion couplings. Doing so will allow us to readily and
selectively incorporate two main MEF-related mechanisms into
the computational modeling of cardiac electromechanics: (i)

stretch-activated currents (SAC) and (ii) stress-assisted diffusion
(SAD). The first paradigm relates the deformed mechanical
state to the excitability of the medium via additional reaction
functions (ionic-like currents); whereas the second one collects
the homogenized effects of the deformation field on the
diffusion processes originating the spatio-temporal patterns of
the membrane voltage.

Within such a framework, we expect stretch-activated currents
and stress-assisted diffusion to counterbalance each other by
locally enhancing tissue excitability as well as smoothing the
excitation wave according to the mechanical state of the tissue.
In particular, since an external loading activates SAC at locations
where the stretch is high and, at the same time, induces
an heterogeneous and anisotropic diffusion tensor via the
SAD mechanisms, our study focuses on the role of different
mechanical boundary conditions in affecting action potential
propagation and onset of arrhythmias. Accordingly, these two
MEF mechanisms will be studied numerically in terms of
three basic lines. First, by conducting a parametric analysis
of the competing nonlinearities such to identify the limits of
applicability of the proposed models. In particular, we select
in the SAD mechanisms the most reliable modeling approach
able to reproduce the experienced conduction velocity reduction
upon an applied static loading state. Then, by performing
a selective investigation of spiral onset protocols we will
characterize the additional nonlinearities that arise due to MEF.
Here we identify the different time span of the vulnerable window
obtained via an S1S2 excitation protocol. Finally, by means of
long-run analyses of arrhythmic scenarios, we compare and
contrast static and dynamic displacement and traction loadings
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difference in the third row (color code is indicated). The last row indicates the time course of a representative pixel in the center of the field of view for two consecutive
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on a two-dimensional, idealized tissue slab. In this regard, we
show how spiral core meandering results highly affected by the
mechanical state and becomes unstable when SAC and SAD
parameters are stronger.

Our results highlight several interesting conclusions regarding
the propagation of the excitation wave in the presence of
two competing MEF effects. These findings call for novel
and additional experimental investigations. Finally, we provide
a thorough discussion of the applicability of the proposed
modeling approach and its extensions toward more realistic and
multiphysics scenarios.

2. METHODS

The classical stress-assisted formulation proposed in Aifantis
(1980) was developed in the context of dilute solutes in a solid.
A similarity exists between this fundamental process and the
propagation of membrane voltage within cardiac tissue. Indeed,
on a macroscopically rigid matrix, the propagating membrane
voltage can be regarded as a continuum field undergoing slow
diffusion. Here we consider a similar approach (developed in
Cherubini et al., 2017) which generalizes Fick’s diffusion by using
the classical Euler’s axioms of continuously distributed matter.
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In particular, the balance of momentum can be imposed such
to ensure frame invariance, a property of high importance in
mechanical applications (Tadmor et al., 2012). We also assume
quasi-static conditions for the continuum body, such that its
macroscopic response is, in principle, independent from the
diffusion process. On the contrary, the diffusion process will
strongly depend on the mechanical state of the tissue.

2.1. Continuum Electromechanical Model
We will assume that the body is a hyperelastic material and its
motion will be described using finite kinematics. We will adopt
an indicial notation where repeated indices indicate summation.
We identify the relationship between material (reference), X,
and spatial (deformed), x;, coordinates via the smooth map
xi{(X1). The deformation gradient tensor F;; = dx;/9X; allows
to determine further properties of the continuum’s motion. We
indicate with ] = detF;; the Jacobian of the map and with
Cy = FyFjy and Bjj = FigFjk the right and left Cauchy-Green
deformation tensors, respectively. We assume that the generic
myocardial fiber direction (the unit vector characterizing the
microstructural property of the continuum body) in the material
configuration, aj, is mapped to the deformed configuration as
a; = Fjaj such that we can define the current fiber a; =
ar/A. Following the standard frame indifference mechanical
framework (Spencer, 1989), these quantities are related to the
invariants of the deformation in the following manner

L =Cy, L = [(CH)Z — CUC]]] , I3 =detCpy = ]2 R

1
2

Iy = Cyayay. (1)
The principal invariants I; and I, rule the deviatoric response of
the medium, the third invariant I3 quantifies volumetric changes
of the material, while the fourth pseudo-invariant Iy measures
the directional fiber stretch, A. This last entity is intrinsically
directional, so for two-dimensional models, we will simply assign
a horizontal myocardial direction (1,0)T. In what follows, the
symbol §;; denotes the second-order identity tensor.

As anticipated above, we will base our model on the stress-
assisted diffusion formulation from Cherubini et al. (2017). We
do however, generalize the governing equations adopting a more
accurate nondimensional three-variable model of cardiac action
potential (AP) propagation introduced in Fenton and Karma
(1998b), and we will account for SAC (Panfilov and Keldermann,
2005), that were not considered in Cherubini et al. (2017). Even
though several more physiological assumptions could be made,
here we will focus on a purely phenomenological approach.

In the deformed configuration, the electrophysiological model
consists of three variables: the membrane potential u, and a
fast and slow transmembrane ionic gates v, w. They satisfy the
following RD system

ou 0 u

ot = aixl (dlf(al])ax]> — Lion (1, v, W) + Lsac(A, 1) + Lext,
(2a)

dv 1—v %

— =(1—-H, —H.—, 2b

o ( c) ( - ) o (2b)

M~ Hy

dt (2¢)

(1 — w) 0
Ty ‘ o
where Neumann zero-flux boundary conditions are imposed
for Equation (2a), ie., [d;ou/dxj]n; = 0, where n; is the
outward normal on the domain boundary. System (2) describes
the propagation of a normalized dimensionless membrane
potential, which can be mapped to physical quantities as u =
(Vi — Vo) / (Vﬁ — Vo) (see Fenton and Karma, 1998b for details
as modified Beeler-Reuter fit) where V,, stands for the physical
transmembrane potential, V, is the resting membrane potential
and V; represents the Nernst potential of the fast inward current.
In Equation (2a), the total transmembrane density current,
Lion(tt, v, w), is the sum of a fast inward depolarizing current,
I5(u,v), a slow rectifying outward current, I;(u), and a slow
inward current, I;(u, w), given by

Iﬁ(u, V)
Lo (u) = % (1 -H)+ %HC’
1) = 22 (1 + tanh [k )

—;He (L —u) (u —ue)

where 7,7 (v) = H,t,; + (1 —H,) 1, is the time constant
governing the reactivation of the fast inward current, and Hy =
H, (u — uy) is the standard Heaviside step function. Iey is the
space and time-dependent external stimulation current with
amplitude I*. All model parameters are collected in Table 2.

The mechanical problem, stated also on the current
configuration and occupying the domain (t), respects the
balance of linear momentum and mass, written in terms of
displacement, ¢, and pressure, p, and set in a quasi-static form.
The problem is complemented with displacement and traction
boundary conditions set on two different parts of the boundary
FD or FN:

doij . A .
o 0 and pdv = pydV, in  Q(»1), (3a)
Xi
Y = ¢(t)> on l“D(t)> (3b)
opn = 4i(t), on Tn(b), (30)

where pg, p and dV, d? are the densities and volumes of the solid
in the undeformed and deformed configurations, respectively.

TABLE 2 | Model parameters for the electromechanical three-variable model,
considered as in Fenton and Karma (1998b) and Cherubini et al. (2017).

g 4 1y Cm/Gs s 667 € 0.1 unt =0
v 50 Cm 1 uF/cm? Ty 11 k7 9.58 vinit — 4
5 45 Vo -85 ue 013 ¢y 6 winit = 1
n 83 Vi 15 u, 0055 ¢ 2 Nt =0
5 833 Dy 1.1073 U 085 Gs [0;025 pht=0
t; 1000 Dy [-15:0]-107% & 10 Usac 04 Tht=02
T, 196 Dp 1.1075 max 2 fpax 9

Time units are ms, length is cm, the term gy is in mS/cm2, dimensional voltages are in
mV, and stiffness in MPa. Square brackets indicate range of parameter variability, and the
rightmost column specifies initial conditions for a resting tissue.
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In Equation (3b), @(t) is a known (possibly time-dependent)
displacement and in Equation (3c), #;(t) is a (possibly time-
dependent) traction force. In both cases, the tissue is stretched
up to a maximum level of 20% of the resting length such to
activate all MEF components. In addition, the time-variation
of the imposed boundary conditions is much slower than the
governing dynamic physical processes, and therefore a quasi-
static mechanical equilibrium is maintained.

The two sub-problems (Equations 2, 3) are completed via
the following mixed constitutive prescriptions for incompressible
isotropic hyperelastic materials (J = 1):

ojj = chB,'j - 262351 —p&'j + Taaij , (4a)

aT,
ata = e(u)(kr,u — Ta), (4b)
d,J(O’,J) = Doé;j + Dyojj + Dyoikoy; (4¢)
Liac(X, 1) = GsHgac(A — 1)(ttsac — 1) . (4d)

Equation (4a) specifies a constitutive form for the Cauchy
stress tensor (total equilibrium stress in the current deformed
configuration) highlighting two multiscale contributions on the
tissue deformation. First, the passive material response follows
that of an incompressible Mooney-Rivlin hyperelastic solid and
it is characterized by two stiffness parameters ¢; and ¢; and
secondly, the active component contributing to the total stress
in the form of an additional hydrostatic force with amplitude
T,. The dynamics of T, are described by Equation (4b), where
the constant k7, modulates the amplitude of the active stress
contribution, while €(u) is a contraction switch function: e(u) =
€ if u < 0.005, and €(u) = 10¢( if u > 0.005.

Equation (4c) characterizes the stress-assisted diffusion
contribution describing the effect of tissue deformation on the
AP spreading. The parameter Dy represents the usual diffusion
coefficient for isotropic media, i.e., diffusivity = [L2 T~1], while
D and D, introduce the impact of mechanical stress through
linear and nonlinear contributions, respectively, on the diffusive
flux. Accordingly, D; and D, have units of [L2 T-! P~1] and
[L2 7! P2, respectively. We also remark that Equation (4c)
reduces to the characterization of the classical diffusion equation
for Dl = D2 =0.

Finally, Equation (4d) describes the stretch-activated current
contribution (which is usually adopted as the sole MEF effect).
The term Ig (A, u) affects the ionic (reaction) currents in the
electrophysiological system and is formulated as a linear function
of the membrane potential u and the fiber stretch A. Here,
G; modulates the amplitude of the current, ug, represents a
referential (resting) potential while, Hg, is a switch activating
this additional reaction current only when the myocardial fiber
is elongated, i.e., Hsae = 1 for A > 1and Hgc = O for A < 1.

We also introduce the definition of spiral tip (core of the spiral
wave) as the point with instantaneous null velocity (see Fenton
and Karma, 1998b for details). In practice, for two-dimensional
domains, we choose an isopotential line of constant membrane
voltage, u(Ry,t) = uiso, where Ry = XtipX1 + yrip Y1 represents
the position vector in the reference undeformed configuration
identifying the boundary between depolarized and repolarized

regions. Accordingly, the spiral tip can be defined as the point
in space where the excitation front meets the repolarization
waveback of the action potential, conforming with the operative
definition:

8u(R1, t)
ot

M(RI: t) — Ujso = 0. (5)

We numerically identify the tip coordinates (xip,ytp) by
considering ujs, = 0.5 with tolerance of 1074,

2.2. Numerical Approximation

The electromechanical problem is rewritten in the undeformed
configuration and subsequently computationally solved via a
finite element method. Even if the model originates as an
extension of our contribution in Cherubini et al. (2017), the
numerical method employed here is simpler, as we do not solve
for stresses explicitly but rather postprocess them from the
computed discrete displacements. The overall numerical scheme
for active stress electromechanics with SAC is therefore not
precisely novel, but we will still provide a few details for sake
of completeness of the presentation and future reproducibility
of results. Further details could be found in e.g., Ruiz-Baier
(2015). We discretize displacements with vectorial piecewise
quadratic and continuous polynomials, and the pressure field
using piecewise linear and discontinuous elements. All remaining
unknowns (associated to the electrophysiology and to the active
tension) are approximated using piecewise linear and continuous
elements. Let us then consider a regular, quasi-uniform partition
Ty of Q(0) into triangles T of diameter hr, where h
max{hr: T € 7T} is the meshsize. The finite element spaces
mentioned above are defined as (see e.g., Quarteroni and Valli,
1994)

Hy:={¢ € H(R(0): ¥|r € [Po(T)]* VT € Ty, and
¥ =0o0nI'p(0)},

Qu:={q € L*(Q0)): qlr € P1(T) VT € Ty},

W= {¢ € HY(Q(0): ¥|r € PI(T) VT € Tp},

for the case of clamped boundaries at I'p(0).

Let us also construct an equispaced partition of the time
domain 0 0 < At < < tM
tmax. The coupled problem is solved sequentially between the
mechanical and electrochemical blocks. A description of the
needed computations at each time step ¢” is as follows:

Step 1: From the known values w, vy, wp, T, ,,Dp, Ay, find

r - a,h’
nt+1  n+l |, n+l gntl
u, v LW, Tu,h such that

uZ-H
1//”"_/ Dnvun—H 'un
/Q(O) At h Q0) h h h
Q(0) At
1
7/ VZ—H v
At Q(0)

+ Iion(”ﬁ; VZ> WZ) + Isac()LZ) uZ) + Iext] W,'f,

1 n
— + (un,vni|¢v,
/Q(O)[At Wt St vi) |V

h=
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1

1
- ntlgw
At 00) wy 1//;, /( |:Atwh +fw(uh> Wh)] 1/’;1)
at o Tt = [ ST e T v
At Q0) ah Th Q0) Al’ ah a\"*h> ah

for all (Y, vy, ¥y, ¥,") € [V,]%. This scheme for the
electric/activation system is given in a first-order semi-implicit
form: the nonlinear reaction terms and the coupling stress-
assisted diffusion are taken explicitly, while the linear part of
diffusion is advanced implicitly. Here

D! = DoC N (@)) + —

A, = /Culep),

are the explicit approximation of the stress-assisted diffusivity
and of the stretch in the fiber direction, all in the reference
configuration.

Step 2: Given the activation value computed in Step 1 of
this iteration, solve the nonlinear elasticity equations

2
]( n) (‘Ph)+]( ,,)2 ((0]1)

n+1
Tu

/ o F@LISL T Yy =0 ey
Q(0
f LBUE =0 Vo<,
Q0

where

S = 2[c1 + catr (Clo T — 262C(<PZ+1)
=P @ THCT e + Th I CT o,

is the second Piola-Kirchhoft stress tensor.

Step 3: The solution of the problem in Step 2 uses a Newton-
Raphson method whose iterations are terminated once the energy
residual drops below the relative tolerance of 10~°. The solution
to each linear tangent problem is conducted with the BICGSTAB
method preconditioned with an incomplete LU(0) factorization.
The iterations of the Krylov solver are terminated after reaching
the absolute tolerance 107°. The residual computation for the
mechanical problem also contains the terms arising from time-
dependent displacement or traction boundary conditions, which
also need to be assigned at each timestep. For instance, in an
uniaxial test (denoted dynamic displacement in the examples
below), the left segment of the boundary is clamped (zero
displacements are imposed), the bottom and top edges are subject
to zero normal stress, and the right edge is pulled according to the
displacement @(t) = [0.2L sin?(7 /400 t), O]T.

All tests are conducted using a two-dimensional slab of
dimensions L x L 6.2 x 6.2cm?, which is the same
configuration used to produce the dynamics analyzed in Fenton
and Karma (1998b). The computational domain is discretized
with a structured triangular mesh of 10,000 elements. After
a mesh convergence test involving conduction velocities and
reproducing the expected values for planar excitation waves
reported in Fenton and Karma (1998b), we proceeded to fix the

temporal and spatial resolutions to At = 0.1 ms, h = 0.062 cm,
respectively. A representative example of the mesh is provided
in Figure 4, plotted in the deformed configuration under both
traction and displacement boundary conditions and highlighting
the spiral wave resolution. All numerical tests were carried out
using the open-source finite element library FEniCS (Alnees et al.,
2015).

3. RESULTS

In the following, we adopt a parametric setup fitted for the
modified Beeler-Reuter model (Equation 2), while selectively
changing MEF parameters (D, G;). This choice provides a
reference, unloaded, model configuration with constant CV of
0.42 m/s and a circular meandering for a free spiral on a
homogeneous and isotropic domain. Such values deviate as the
MEF coupling is activated.

3.1. Conduction Velocity Analysis

We start analyzing the parameter space associated to the two
MEF contributions in our model. That is, the stress-assisted
coeflicients Dy, D, and the SAC amplitude G;. The study will be
restricted to a static homogeneous stretched state (e.g., a uniaxial
Dirichlet boundary condition ¢ = [0.2L, 0] set on the right edge
of the domain). All remaining material and electrophysiology
parameters will be kept constant, except that we fix the relative
influence of the nonlinear contribution in the stress-assisted
diffusion, by setting D, to be one order of magnitude smaller than
D;. This configuration will highlight MEF effects in a minimal,
but still comprehensive manner.

Figure 5 portrays the conduction velocity obtained for all
combinations of (D, Gs) on the parameter space. The quantity
is measured as the wave-front velocity of a planar excitation wave
along its propagation. The plot illustrates the variability of the
recorded CV amplitude (in the range 0.25-0.5 m/s) according to
the MEF coupling intensity variation and to histogram measures
in Figure 2. In particular, starting from a physiological baseline
of 0.42 m/s, when neither SAC nor SAD is present (D; = 0, G; =
0), we observe a net increase of CV for (D; = 0,G; > 0) while
we recover CV decrements for (D; < 0,G; = 0). This specific

FIGURE 4 | Example of structured mesh employed in the computational
results. The grid is displayed on the deformed configuration when the domain
is subject to traction (arrows) and fixed displacement (lines) boundary
conditions, and a zoom exemplifies the mesh resolution for a rather coarse

spiral front.

Frontiers in Physiology | www.frontiersin.org

13

December 2018 | Volume 9 | Article 1714


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Loppini et al.

Competing Mechanisms in Cardiac Electromechanics

aspect reproduces what is expected from experimental evidence,
i.e., MEF decreases the CV of the excitation wave (Ravelli, 2003).

Besides, for higher values of G;, we obtain two unexpected
results. First, for Gg > 0.15 we observe a decrement of CV for
different values of D;. Second, for the particular combination
(D < —107%4,G; > 0.15) the wave disappears from the
domain or annihilates due to excessive activation (see e.g., side
panels in Figure 5 or the top row in Figure 8). Consequently,
we are not able to measure any propagation (which reflects
in the combinations with x of the figure). This last result
is somehow counterintuitive since, as evidenced by Figure 1,
we experimentally experience a complete depolarization of the
tissue with AP propagation, in the case of fixed stretch. To
support this point, in Figure 6 we provide a representative
sequence of point-wise activations delivered on our simplified

2D domain and mimicking the experimental protocol conducted
in Figurel for a selected parameter choice, ie., (D}, Gs) =
(—0.75 - 1074, 0). In this case, the AP excitation wave propagates
differently according to the applied stretch state, both horizontal
and vertical displacement and traction. In addition, the computed
CVs change similarly to what observed in Figure 2. We remark
that such a comparison with experimental observations is purely
qualitative and does not represent a definitive validation of the
model.

3.2. $1-S2 Excitation Protocol

We further investigate the strength of MEF coupling effects.
In particular, we want to determine which specific contribution
(stretch-activated currents or stress-assisted diffusion) exhibits
a better match against experimental evidence, and for this we
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FIGURE 5 | MEF parameter space associated to the conduction velocity measured on the propagating front of a planar excitation wave (stimulation on the left edge
and propagation toward the right boundary) elicited on a static uniaxially stretched domain (CV in [m/s]). Four selected combinations of MEF parameters (A,B,C,D, in
Table 3) are highlighted together with two additional cases in which CV was not recorded. On the right, three consecutive time frames of the activation are selected.
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FIGURE 6 | Point-wise activation frame for five different static boundary conditions qualitatively reproducing ventricle wedge preparation measurements considering
the parameter combination (D1, Gs) = (—0.75 - 1074, 0): (A) free edges, (B) horizontal displacement, (C) vertical displacement, (D) horizontal traction, (E) vertical
traction. Color code refers to the normalized action potential.
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assess changes in the S1-S2 stimulation protocol. In practice,
in order to induce a spiral wave on an excitable tissue, one
typically generates a planar electrical excitation (S1), followed by
a second broken stimulus (S2) during the repolarization phase of
the S1 wave, the so called vulnerable window (Karma, 2013). In

TABLE 3 | Parameter calibration associated to the S1-S2 protocol.

D4 Gs CV [m/s] tg'zi" — 132 [ms]
A 0 0 0.45 225-240
B: -0.75- 1074 0 0.36 243-255
C: 0 0.125 0.52 133-147
D: -0.75-10~4 0.125 0.42 143-157

Combination of MEF parameters (D1,Gs), corresponding CV, minimum, t’gf”, and
maximum, z"S”:X , stimulation time required for spiral wave onset (vulnerable window).

our case, we selected a reduced set of MEF parameters (Dj, G;)
indicated in Table3 as A,B,C,D. These values are motivated
by the results from Figure 5. In particular, we select only the
parameter combinations that produce either a unique decrement
or increment of CV.

Figure 7 shows the different dynamics obtained via the SI-
S2 protocol for the four different sets of MEF parameters.
The first column is set at 100 ms from the S1 stimulus for all
the combinations, while the remaining frames are selected to
highlight the elicited behavior. As a result, we observe that the
deformation state of the tissue influences the overall dynamics
differently. The first column highlights the variability in the AP
wavelength, representing the spatial extension of the activation
wave, which is due to the different repolarization states of the
tissue induced by stress-assisted diffusion and stretch-activated
currents. In particular, the AP wavelength varies as > 6.2cm
for case A, = 6.2cm for case B, and < 2cm for cases C, D.
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FIGURE 7 | S1-S2 stimulation protocol applied on a static uniaxial stretched configuration for different combinations of MEF parameters (D1, Gs) as provided in
Table 3. The color code refers to normalized dimensionless membrane potential, u, (blue-red mapped to [0-1]). Selected time frames are provided in the subpanels.
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In fact, when the G, contribution is present, the excitation wave  using the combination (D1, Gs) = (—0.75 - 107%,0.125), which
is much reduced with respect to the profiles generated with the  allows the quantification of CV but can eventually lead to spiral
electrophysiological three-variable model (2) and fine-tuned on  breakup and non-sustainability of the arrhythmic patterns due
experimental data. Such an effect is not present when G; = 0. to the mechanical state of the tissue (corresponding to the case

Secondly, cases A and B (that is, where only D is activated)  of dynamic traction, described below). This is a representative
provide a similar behavior for spiral onset and case B shows  example of the key importance of boundary conditions and how
the expected reduction in CV. Contrariwise, cases C and D  MEEF effects could be effectively translated into clinical studies.
(where also the contribution of G; is present) induce much more
complex dynamics, not expected in an isotropic medium. In 3.3, Spiral Drift and Effects due to
particular, case C leads to a wave break and multiple spirals Boundary Conditions
generation at the S2 stimulus that eventually collide and result
in a single spiral wave. On the other hand, case D shows a more
stable behavior generated by the presence of D;.

In addition, Table3 also provides the minimum and
maximum delay for the S2 stimulation (vulnerable window)
allowing to induce a spiral wave in the uniaxially stretched tissue.
It is evident that the presence of SAC reduces the minimum S2
stimulation time, tg‘;i“, by about 100 ms with respect to the other
cases and slightly increase the overall time span of the vulnerable
window. Such a variation is motivated on the additional reaction

Finally, we turn to the analysis of meandering for the spiral tip
for long run simulations (4s of physical time) comparing the
four selected sets of parameters A,B,C,D in combination with
static/dynamic-displacement/traction boundary conditions. In
particular, we initiate the spiral wave via the S1-S2 stimulation
protocol as discussed in the previous section, in absence of any
mechanical loading such to start from the same initial conditions
for each selected case. After spiral onset and stabilization
(namely, for t > t, = 250ms), we apply the following four

] ° different loadings:
current induced by the presence of Igc(A, 1) everywhere in the
medium, but it is not expected from the experimental isochrones ~ ® Static displacement: uniaxial displacement ¢ = [0.1L,0]"
provided in Figure 1. applied on the right boundary while keeping the left one
To further corroborate this analysis, we provide in the top clamped (Figure 9A).
panels of Figure8 an additional sequence referring to the e Dynamic  displacement: uniaxial ~ time-dependent
combination (Dy,Gs) = (—1.5 - 107%,0.25) in the case with displacement @(f) = [0.1Lsin?(/400 t),O]T applied on
static displacement boundary conditions, which falls in the range the right boundary while keeping the left one clamped
where no CV wave was measured. As anticipated, an excessive (Figure 9B).
contribution due to SAC elicits extra activations where the stretch e Static traction: uniaxial sigmoidal time-dependent force
is maximum, i.e., at the corners of the domain. This particular () = tmax [1,0 —exp(—(t — 1)/ 5)] applied on the left
behavior is not obtained when the stress-assisted contribution D and right boundaries while keeping the bottom side clamped
is very high. Next, the bottom panels of Figure 8 show results (Figure 9C).
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FIGURE 8 | Example of different propagation patterns according to different mechanical boundary conditions and parameter space. First row shows the uniaxial static
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Second row shows the dynamic traction configuration for which the initiated spiral wave goes through breakup due to the effect of mechanical loading.
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e Dynamic traction: uniaxial time-dependent force L) =

tmax Sin%(7 /400 t) applied on the left and right boundaries

while keeping the bottom side clamped (Figure 9D).

For each mechanical loading, panels in Figure9 show the
trajectories of the spiral tip for the four MEF parameters

First, for each combination of the mechanical loading, the
presence of the stress-assisted conductivity D; tends to stabilize
the meandering (see black and green traces). This behavior is
particularly evident in Figure 9C where the combination D; =
—0.75 - 1074, Gy = 0 results into a localized core, while the
case Dy = 0,G; = 0 presents a circular, but slightly drifting

combinations. Two important aspects are worthy of core. Consequently, local stress-based heterogeneities appear
attention. in the medium when D; is different from zero, leading to
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FIGURE 9 | Tip trajectories for four combinations of MEF parameters (D1, Gs) (see Table 3), applying static/dynamic—displacement/traction boundary conditions as
indicated in the corresponding inset. Inset color code refers to the magnitude of the displacement field. (A) The last second of simulation is shown for the four cases
with localized cores. (B) The last 3 s of simulations are shown highlighting the differences of the meandering. (C) Different times are shown for the four cases since for
Gs > 0 the spirals exit the domain soon after initiation. (D) The last 3 s are shown for the case Gs > 0 highlighting the different meandering obtained with respect to
Gs = 0. Minor discontinuities are due to the frame resolution for post processing analysis and are not linked to the accuracy of the numerical solution.
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pinning-like phenomena also observed in Cherry and Fenton
(2008), Cherubini et al. (2012), Jiménez and Steinbock (2012),
and Liu et al. (2013). Moreover, these conditions are associated
with an ellipsoidal shape of the core underlying the effective
anisotropy induced by the stress-assisted coupling. All these
observations agree with the conclusions from the extended
analysis conducted on the chosen AP model in the original work
from Fenton and Karma (1998b).

Secondly, when also SAC is present, the spiral meandering is
unpredictable and strongly dependent on the applied boundary
conditions (see blue and red traces). In this scenario, it

is interesting to note that static loading induces a simple
meandering which eventually pushes the spiral wave out from
the domain (see Figure 9C), whereas dynamic conditions dictate
a chaotic behavior that makes the spiral either to explore
the whole domain, or to exit it. These patterns seem to be
extreme conditions of hyper-excitability not expected in a two-
dimensional isotropic medium (Fenton and Karma, 1998a;
Fenton et al., 2002).

Finally, we highlight the symmetry of the observed behavior
according to the clockwise or counterclockwise rotation of the
spiral. This particular analysis is provided in Figure 10 and
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FIGURE 10 | (A) Clockwise (blue) and counterclockwise (red) tip trajectories obtained in a dynamic uniaxially stretched case with MEF parameters
D1 = 0,Gs = 0.125 and initiated via the $1-S2 stimulation protocol. (B) Counterclockwise spiral initiation from top (red) or bottom (blue) boundary. Side panels show
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further links the excitation dynamics to the mechanical features.
The different traces refer to the spiral core meandering observed
for a dynamic uniaxially stretched case with MEF parameters
D; = 0,Gs = 0.125 and initiated via the S1-S2 stimulation
protocol: case (a) compares a clockwise and counterclockwise
spiral propagation; case (b) shows a counterclockwise spiral
core initiated from the top (red) and bottom (blue) case.
Corresponding sequences are also shown as side panels. This
result is limited to the simplified nature of the domain adopted,
ie, 2D isotropic. A more realistic computational domain,
embedding fiber directionality and tissue thickness, would show
more involved dynamics in a complex spatiotemporal and
clinical relevant perspective.

4. CONCLUSION

We have advanced a minimal model for the electromechanics
of cardiac tissue, where the mechano-electrical feedback is
incorporated through two competing mechanisms: the stretch-
activated currents commonly found in the literature, and the
stress-assisted diffusion (or stress-assisted conductivity) recently
proposed by Cherubini et al. (2017). Both the electrophysiology
and the mechanical response adopt a phenomenological
simplified description, but a preliminary validation is
provided through a set of numerical simulations that agree
qualitatively with a set of experimental data for pig right
ventricle.

The implications of the intensity and degree of nonlinearity
assumed for the stress-assisted diffusion effect are studied
from the viewpoint of changes in the conduction velocity
and the dynamics of spiral waves in simplified 2D domains.
Multiple electrical stimulations protocols and non-trivial
mechanical loadings have been investigated highlighting the
strong coupling due to the different MEF contributions. The
analysis supports the hypothesis that the simplistic formulation
adopted for stretch-activated currents seems to deviate from
the experimental evidence, in line with recent contributions
addressing the coupled modeling of SACs and stretch-induced
myofilament calcium release at the myocyte level (Timmermann
et al, 2017). On the other hand, in a homogenized
setting, the stress-assisted diffusion formulation produces
a series of interesting phenomena that qualitatively match
heterogeneities and anisotropies observed during mechanical
stretching of pig right ventricle via fluorescence optical
mapping.

Limitations of the present work are partially linked to the
phenomenological approach adopted to describe the complex
multiscale mechanisms intrinsic in the cardiac tissue and partially
due to the simplified computational domain. In this regards,
we aim at investigating more reliable stretch-activated current
formulations leading to alternans behaviors (Galice et al., 2016)
within a multiscale mechanobiology perspective (Nava et al,
2016; Stalhand et al.,, 2016; Cyron and Humphrey, 2017) and
tacking into account the intracellular calcium cycling influenced
by mechanical stretch, because all these effects have been
proposed as concurring mechanisms of arrhythmogenesis within

the heart. From the mechanical point of view, we mention as
main limitation the adoption of a simplified isotropic hyperelastic
material model which can be generalized to more complex and
reliable formulations. This will include, for example, active strain
anisotropies, muscular and collagen fiber distributions in an
orthotropic mechanical framework that the authors have been
extensively developing during the last decade (Cherubini et al.,
2008; Nobile et al., 2012; Gizzi et al., 2015, 2016, 2018; Pandolfi
et al., 2016). Such a generalization will maintain the nature of
the present theoretical framework in terms of MEF competing
effects. In this line, we also aim to generalize our theoretical
and computational approach toward intrinsic multiscale and
multiphysics mechano-transduction problems (Weinberg et al.,
2017; Lenarda et al, 2018), e.g., the uterine smooth muscle
activity (Young, 2016; Yochum et al., 2017) or the intestine
biomechanics activity (Pandolfi et al., 2017; Brandstaeter et al,,
2018) by implying the usage of network approaches (Giuliani
et al., 2014; Robson et al, 2018) and data assimilation
procedures (Barone et al., 2017). In addition, the investigation
of the complex spatiotemporal dynamics, chaos control and
multiphysics couplings in excitable systems (see e.g., Horning
et al., 2017; Christoph et al., 2018) can be emphasized within
the proposed electromechanical framework by using realistic
three-dimensional cardiac structures (Lafortune et al., 2012).
We also mention implications of the proposed models in the
mathematical study of general stress-assisted diffusion problems,
as recently carried out in Gatica et al. (2018). Finally, we
hope that the present contribution may open new experimental
studies to translate the complex MEF phenomena into the
clinical practice (Meijborg et al, 2017; Orini et al, 2017)
identifying novel risk indices for cardiac arrhythmias (Gizzi et al.,
2017).
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The field of computational cardiology has steadily progressed toward reliable and
accurate simulations of the heart, showing great potential in clinical applications such
as the optimization of cardiac interventions and the study of pro-arrhythmic effects
of drugs in humans, among others. However, the computational effort demanded by
in-silico studies of the heart remains challenging, highlighting the need of novel numerical
methods that can improve the efficiency of simulations while targeting an acceptable
accuracy. In this work, we propose a semi-implicit non-conforming finite-element scheme
(SINCFES) suitable for cardiac electrophysiology simulations. The accuracy and efficiency
of the proposed scheme are assessed by means of numerical simulations of the electrical
excitation and propagation in regular and biventricular geometries. We show that the
SINCFES allows for coarse-mesh simulations that reduce the computation time when
compared to fine-mesh models while delivering wavefront shapes and conduction
velocities that are more accurate than those predicted by traditional finite-element
formulations based on the same coarse mesh, thus improving the accuracy-efficiency
trade-off of cardiac simulations.

Keywords: non-conforming finite elements, computational cardiology, cardiac electrophysiology, conduction
velocity, nonlinear finite elements

1. INTRODUCTION

Computer simulations of the electrical activity of the heart have increasingly gained attention
in the medical community, as they have steadily shown potential in the study of cardiac
diseases and in the design of novel cardiac therapies. Current models of the human heart are
able to represent the complex three-dimensional anatomical structure of the heart chambers,
incorporating key functional features such as the Purkinje network and the cardiomyocyte
orientation (Vadakkumpadan et al., 2009). Such advanced representation of the heart has enabled
novel in-silico studies of undesired pro-arrhythmic effects of drugs in patients (Sahli Costabal
et al., 2018), potentially reducing the number of subjects needed in a clinical trial by aiding the
experiment design. Computational models of the heart have also shown promise in assisting the
design of effective therapies for terminating atrial fibrillation (Trayanova et al., 2018). While these
examples can only confirm the tremendous relevance of computational models in advancing the
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field of cardiology, they share the fundamental challenge of
being highly demanding in terms of wall-clock time needed in
computer simulations.

Mathematical models of the heart require the computer
implementation of spatio-temporal discretization techniques in
order to obtain a sequence of numerical representations of
the physiological fields under study. Two fundamental aspects
directly responsible for the computation time (CT) in a heart
simulation are the ionic model used to account for subcellular
electrochemical mechanisms, and the level of spatio-temporal
discretization in terms of time-step size and mesh size (Sundnes
et al., 2006). The choice of the mesh size typically faces a well-
known trade-off problem of accuracy vs. efficiency, as decreasing
the mesh size in a simulation results in more accurate numerical
approximations, at the cost of increasing the number of degrees
of freedom (DOFs), which drives the CT. Indeed, current
simulations of the heart typically employ mesh sizes in the range
of tens to hundreds of micrometers for domains with lengths in
the order of centimeters, which ultimately translates into large
systems of equations with several millions of DOFs that need to
be solved at each time step. Such high dimensionality renders the
solution of heart simulations extremely challenging for personal
computers, and calls for improving their implementation in high-
performance computing (HPC) platforms (Niederer et al., 2011a;
Vazquez et al., 2011).

In the particular case of cardiac electrophysiology simulations,
a common criterion to select the mesh size is the ability of
the numerical simulation to recover an accurate conduction
velocity (CV) and wavefront shape (Pathmanathan et al., 2010;
Krishnamoorthi et al., 2013; Dupraz et al., 2015). It has been
shown that both the wavefront shape and the CV suffer from
a strong dependence on the spatial discretization, which for
the case of finite-element (FE) discretization using linear basis
functions results in a significant loss of accuracy for the case
of mesh sizes > 0.1mm (Pezzuto et al., 2016). In order to
achieve larger mesh sizes, higher-order FE formulations have
been proposed, which show that FE Lagrange basis functions
of order 2 and 3 result in accurate CV for coarser meshes
(Arthurs et al., 2012; Pezzuto et al., 2016). It should be noted,
however, that higher-order FE schemes based on Lagrange
basis functions necessarily increase the total number of DOFs
in simulations when compared to linear-element formulations,
as well as they require an additional computational effort
for quadrature procedures, as higher-order basis functions
demand the use of more quadrature-point evaluations (Cantwell
et al., 2014). Recently, Hurtado and Rojas (2018) introduced
a non-conforming finite-element scheme (NCFES) for the
spatial discretization of the monodomain equation of cardiac
electrophysiology that allows for the use of coarse meshes without
significant loss of accuracy measured in terms of CV and
wavefront shape. More specifically, hexahedral trilinear elements
(Q1l) were enhanced with non-conforming basis functions
of degree 2 to create a non-conforming element (QINC)
that is capable of representing a second-order polynomial
within the element domain, a concept widely employed in
the context of solid mechanics FE simulations (Wilson et al.,
1973; Taylor et al., 1976). Further, they showed that the DOFs

associated to the non-conforming basis functions can be solved
at the element level, and therefore the number of global
DOFs of the QINC scheme equals that of a standard Ql
FE scheme. As a result, QINC simulations delivered a CV
and wavefront shape similar to that of second-order Lagrange
formulations (Q2) at the computational cost in the order of a Q1
formulation.

During the development of the NCFES for cardiac
electrophysiology, a fully-implicit (FI) backward-Euler time-
stepping method was considered (Hurtado and Rojas, 2018).
While FI schemes have important advantages in delivering a
larger time-step stability region in cardiac simulations (Ying
etal., 2008; Hurtado and Henao, 2014), they require the solution
of a large system of non-linear equations at each time step that
can be very costly in computational terms, and may not be well-
suited to parallel-computing platforms when compared to other
numerical schemes. To improve the computational efficiency,
the semi-implicit integration method has been proposed in
the literature for solving the semi-discrete equations resulting
from standard FE discretizations, showing a relevant decrease
in the CT of cardiac simulations, as well as being amenable to
HPC platforms (Whiteley, 2006; Pathmanathan et al., 2010).
Consequently, the scientific question that motivates this work
is: Can we further improve the efficiency-accuracy trade-off in
cardiac simulations by combining non-conforming FE spatial
discretizations with semi-implicit time-integration schemes? To
answer such question, in the following we develop the numerical
framework and present an algorithm for the implementation
of a semi-implicit non-conforming FE scheme to solve the
monodomain electrophysiology equations, and investigate the
numerical consequences and potential contributions to cardiac
simulations.

2. METHODS

2.1. Monodomain Model of Cardiac
Electrophysiology

Let Q € R? be the heart domain where electrical impulses travel
during the time interval [0, T], and Vi, : @ x [0, T] — R be the
transmembrane potential. A local statement of current balance
yields the monodomain equation (Pullan et al., 2005)

Am (CmaaLtm + Lion(Vim» r)) —div(eVVy) =0, inQx(0,T],

(1
where Ap, Cy, are the surface-to-volume ratio and membrane
capacitance, respectively, o is the conductivity tensor, [joy is the
ionic current depending on the transmembrane potential Vi,
and r: Q x (0, T] — R™ is a vector field of state variables that
include gating variables and ion concentrations. For convenience,
we consider the normalized transmembrane potential field

Vin(x,t) — V,
q&(x,t):M,
Vo= Vi

where V}, and V; are the peak and resting voltages, respectively.
Based on this normalization, we obtain the non-dimensional
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monodomain equation,

0

8—? — div(DV¢) — f(¢,r) =0 in Q2 x (0, T], (2)
where D = ma is the normalized conductivity tensor, and
flp,r) = —% is the normalized ionic current. The time

evolution of state variables is governed by kinetic equations of the
form

ar

= in 2 x (0, T].
o7 in 2 x (0, T]

g(¢.1) 3)
The expressions for f(¢, r) and g(¢, r) will depend on the choice
of ionic model representing the transmembrane ionic current in
a single cell. Equations (2, 3) are complemented with Dirichlet

and Neumann boundary conditions,

(4)
(5)

¢ = ¢
q-n=q

on 0824 x (0, T],
on 924 x (0, T],

respectively, as well as initial conditions

¢(x> 0) = ¢0(x)) b AS Q)

r(x,0) = ro(x), x¢€ Q.

To state the weak form of the cardiac electrophysiology problem,
we consider trial spaces S?, S” and test spaces V?, V" defined as

S? = (¢ € L*((0, T); HY(Q,R)): ¢ = ¢ on 92 x (0, T]} (6)

S" = {r e L*((0, T]; L*(,R™))} (7)
V? = (v e H(Q,R): v =00n 0} (8)
V' = {n € L*(2,R™)} )

Multiplying (2) and (3) by appropriate test functions, integrating
over € and applying the divergence theorem yields the weak
equations, and the statement of the weak formulation reads: V ¢ €
(0, T, find (¢, 7) € S? x S" such that

0
G (), (s )] /Quaif dx+fQVv-DV¢dx

—/ vf(qﬁ,r)dx—i—/ vg ds
Q 92,
=0, Vve)? (10)
d
Gl ()] = / n{a—r —g(«p,r)}dx
Q t
—0, Vype) (11)

2.2. Spatial Discretization Using a
Non-conforming Finite-Element Scheme

A Galerkin finite-element scheme to solve the weak formulation
of the monodomain problem can be stated as follows. Let Q" =
Ui\]jlﬁe be a domain discretization where Ny is the number of
elements, and all elements comply with the condition 2;NQ; = ¢

for i # j. We construct finite-dimensional subspaces Sff c s,

S, C 8" and VZ) C V%, VI C V', to solve the following FE
problem (Goktepe and Kuhl, 2009; Hurtado and Kuhl, 2014):

Vte(0,T], find (9", ") € S x S} such that

Gl ), 0l =0, W' eVy

G'l(¢" ™), 0" M1 =0, vn' eV
A traditional discretization FE scheme is the hexahedral
isoparametric finite-element space,

V= {vh e CUQ" R) Vg, € Qu(S),e = 1,...,Ne1}

where Qi (£2.) represents the space of isoparametric functions
resulting from n-tensor product of 1-D Lagrange polynomials
of order k, which are defined over the standard (isoparametric)
domain € = [—1,1]" and mapping to a hexahedral element. We
expand an element v € Y, as

Nofs

vi(x) = ) Na(®)va,
A=1

where {Na}a—1N,,. are the basis functions, Ny is the number
of element nodes with unknown degrees of freedom, and
{vala=1,ny are the nodal coefficients. Using the same element
basis functions, we expand the trial functions as

Ndofs

¢"(x, 1) = D Na(®)ua(t) + upc(x 1),

A=1

(12)

where {ua(t)}a=1,n,, correspond to the nodal values of the
transmembrane potential field, and upc € 8% is a function
that satisfies the boundary conditions (4), i.e., upc ¢ in
9Q¢ x (0, T]. For simplicity, and without loss of generality, in
the following we assume that ugc = 0. To construct the elements
of V;, we write

Na Nq
") =" M, (13)
e=1 g=1
where Mg is a characteristic function defined by
LxeQ
My = { FE e (14)
1 0,x ¢ Qe,q

and Q.4 C e is the subdomain containing the g—quadrature
point x4, and is such that U;Zl Qeg = Qeand Qg N Qe =¥

whenever g # ¢'. Analogously, we expand an element /' € S as

Nel Nq

Pt =)0 M),

e=1 g=1

(15)

where rg :(0, T] — R™ represents the time evolution of the state
variables at the g-quadrature point.
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In this work, we consider a non-conforming spatial-
discretization scheme for the monodomain equations (Hurtado
and Rojas, 2018). To this end, we rewrite the residuals as

Gl (vm] =Y

2AL
_/Qe vf(¢,7) dx—l—/me)q vg ds], (16)
Xl

and note that in such form, integrability of the trial and test
functions and their weak derivatives is required only at the

Nel a¢

v—dx—i—/ Vv -DVe¢ dx
ot Q

Nel

G0, (v,ml =)

e=1

—g(¢,r)}dx}, (17)

element level. We enhance the polynomial basis of Vf at the
element level by adding polynomial terms not included in
Qi (£2¢). To this end, we consider the non-conforming space

= {#" 810, € Prn(@e\Qu20)

where m € Z4 and Pyy,,(£2,) is the space of polynomial functions
of degree k + m defined on the standard domain 2. We then
consider enhanced test functions v/ which we expand as

Ngofs Nel Npc
vi(x) = Z Na(®)va + )Y Wix)BE (18)
e=1 c=1

where 8¢ € R are coefficients, W¢ are non-conforming element
basis functions, and it holds that W¢{ = 0,x ¢ Q°. Analogously,

we enhance SZ) with the time-dependent non-conforming space

ff , and expand the enhanced trial functions as

d"(x,t) = ul'(x, 1) + o (x, 1) (19)
where
Ndofs
W'(x,t):= ) Np(x)up(t) (20)
B=1
el Ny
" t):=) > Wixas() (21)
e=1 d=1

and «§:(0,T] — R is a time-dependent coefficient that
scales the non-conforming basis functions W7. Substitution of
approximations Equations (13 15, 18, and 19) into the residuals
Equations (16) and (17) yields the following semi-discrete

problem: V t € (0, T], find (W, ol ¥y e SZ) X ]—'Z’ X Sh’ such
that

/NA{uh+dh}dx+/ VNA-DV{uh+oth}dx—/ Naf(u"
Q Q Q
+ah,rh)dx+f Nagds=0, A=1,...,Njofe (22)
99

/ wg{ah+ah}dx+[ VWE-DV{u" + o) dx
Qe Qe

—f W + ol M)dx =0, e=1,...,Ng; c=1,...,Nnc,
QE
(23)

/ Mer —gh + o Mdx =0, e=1,...,Ny; q=1,.,Nq (24)

2.3. Semi-implicit Temporal Discretization
To integrate (22), (23) and (24) in time, we consider partitioning
the time interval into [0,..., %, fy41,..., T'], and approximate
the time-dependent coefficients £J(t,,) ~ [J,,. For a generic time
interval [t,, t,+1] we define At: = t,41 — t,. We further group
the expansion coefficients into vectors, and write

ty = [tns s tnNg)Ts 0l =l a0l 1T
e e e T (25)
re = [rn)l, .. ,rn)Nq]

Following a semi-implicit (SI) time-integration approach
(Whiteley, 2006), time derivatives are replaced by the
finite-difference approximation

Dn-H - Dn

D(thrl) ~ At

(26)
Diffusive terms in Equations (22) and (23) are evaluated at t =
ty+1 and the reaction terms are evaluated at + = t,. Evolution
Equation (24) were integrated using an explicit Forward-Euler
scheme. As a result, the incremental time update for t = t,4
reads: Given uy, (% 1Yot xy» find s, (0 175 et
such that

o

B=1

N4Np
o At

“r/ VNA . DVNB} Up+1,B
Q

Nel Nic

.
- {/ &{quLaﬁ}—i—/ NAf(uf’,—f-otZ,rﬁ)} =0,
o At Q

A=1

1A

Nnc

3

NAW¢
At

+/VNA DVWd} ol

. Ndofs: (27)

Nen

+/QEVWf-DVN§} w

—.1€
_'ch

<

=1

WEN?
At
We
+/ VWf~DVW§}aZHd
Qe ’

'K‘)‘cd
We
—{/ —C{uﬁ+ai’}+/ Wﬁf(uﬁ+aﬁ>rﬁ)}=
€ At Qe

= Pac
yNep; c=1,...

e = 1, ;Nnc (28)

Ng

€ _ e
MetLs  ms
Z s At g

s=1

Me

L

(”Z + aﬁ,rﬁ) dx =0,
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e=1,...,Ng; g=1,..,Ng, (29)

where N;: = Njp
to the local element domain, and uj is the corresponding
nodal value, where lowercase letters indicate the local degree of
freedom b corresponding to its global counterpart B. At this
point, we note that Equation (28) can be written in matrix
form as

. is the restriction of the basis function

e e € e (4 e e €
L Ut Kaan+1 —-p (un’an’rn) =0,

fore = 1,..., N, from where we define the time update for the
element non-conforming coefficient vector as

—1
at (g s ug,ap,ry) = {KG | pl (uy, g, 1y)

— (K2} roul,, (30)

which is computed exclusively using element-level variables,
given the element vector u;_ ;. To update the gating-variable
field, we note from Equation (14) that Equation (29) can be solved
point-wise at each quadrature point x, inside an element, and

thus is equivalent to writing

re 1 _ re
qn pn h h
— g1y (x9) + o (xg), 75 ,) = 0,

e=1...,Ng; g=1,..,Ny,

from which the (explicit) time update for the gating variables can
be solved at the quadrature-point level as

rZ’;H(uZ,a‘;, ) =rg,+ Atg(uﬁ(xq) + aﬁ(xq), ron)- (1)

We now turn to residual Equation (27), and note that it can
be constructed by assembling element-level nodal contributions
defined by

N,
en NaNb
Rze:=;{ Y +/QEVNa-DVNb}uZ+Lb

=K¢

Uab

Na W,

+/ VNa-DVWd}oczH)d

Lex
Na o p | n W, bk
- {ug +opt+ | Naf(up +o,,r0)p,  (32)
Qe At Qe

Pp—
=P,

which can also be written in matrix form at the element level as

ue __ yre, e eT e er.e e e
R _Kuun+1+L Oyl _Pu(un’an’rn)'

(33)

Substituting update Equation (30) into Equation (33), we obtain
an element residual that only depends on #, , | that reads

—1
RY = (K, — LT {Ke ) 1) uy,

A€

LRS! P (el ) — pl (el rs)  (34)

b (ul,al,ré)

As a consequence, solving residual Equation (27) is equivalent to
solving the matrix linear system

Aty +b, =0 (35)
where A and b, are the global matrix and vector assembled from
element contributions defined in Equation (34). We note that
Equation (35) defines the time update for the global potential
vector

u:+1(un> {“fp rfl}ff:l,.‘.,Nel): = _A_lbn (36)

We remark that matrix A does not depend on the coefficient
vectors, and therefore will take the same values for all time steps.
Thus, it can be computed on a initialization stage, inverted and
stored for later use in updating the potential vector. For the sake
of clarity, the steps for the solving the semi-implicit scheme are
summarized in Algorithm 1.

2.4. The Q1NC Element

We materialize the non-conforming scheme defined in the
previous section using incompatible-modes basis functions
(Wilson et al., 1973; Taylor et al, 1976), which enhance Q1
elements. We recall that the isoparametric basis functions for Q1
3D (solid) elements are

R = é(l —E)(1 - E)(1 — &),

R = S0+ 600 +8)0 — ),

~ 1
N, = g(l + &)1 = &)1 — &),
N 1
Ny = g(l — &)+ &)1 -&),
Rs = é(l CE)1 &)1 +E),  Re= %(1 FEN — E)(1+ &),

Ry = %(1 FENI4+E)1+E), N %(1 )+ E)1 4 E),

where (£1,8,&) € Q: = [~1,1]?,and
N¢ = Nyox !

with
8
x= E Nax?,
a=1

where x{ is the vector with nodal coordinates. Incompatible
modes enhance the Q1(£2°) element basis by adding basis
functions {M¢}.=1,,3, with M¢ = M, o %71 where

o 2

Mz =1~ (&)

My =1—(&) M =1-(&)>
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Algorithm 1: Solution algorithm

/* initialization */
Uy =0

ro = Finit

=0

A=0

fore = 1to N, do
Compute K¢, K¢ and L¢ (Equations (28) and (32)) and
store
Compute A¢ (Equation (34)) and assemble contribution
to A

end

Compute A~! and store

/* time integration loop

for n = 0 to Niteps do

fore = 1to N do
Compute b®(u;,, aj,, r;,) (Equation (34)) and assemble
contribution to by,

end

Update u, 1 = u:+1(un, {og, rhte=1,..Ny) = —A"'b,

fore =1to N, do
Update ez, , ; = ot (a3

*/

e e € 3
u;, o, ;) (see Equation

30)
for g = 1to Nq do
Update r;,n+1 = rg’;_’_l(ufl,ocfl, r¢) (see Equation
31)
end
end

end

TABLE 1 | Element DOFs and quadrature rules employed in numerical integration
of residuals and tangents.

Element DOFs Quadrature rule

Q1 8 DOFs 2 x 2 x 2 = 8-point
QINC 8 DOFs + 3 IMs 2 x 2 x 2 = 8-point
Q2 27 DOFs 3 x 3 x 3 =27-point

DOFs, degrees of freedom,; NC, incompatible mode (internal variable).

for (&1,6,&) € Q. Table1 details the number of DOFs
used for the 3D elements considered in this work. Integrals
have been approximated using Gaussian quadrature on the
standard domain. Table 1 reports the quadrature rules employed
in the numerical integration of Q1l, QINC and Q2 element
implementations.

2.5. The Modified Aliev-Panfilov Model for

Transmembrane lonic Current

All  simulations considered the modified Aliev-Panfilov
model, which accounts for physiological voltage upstroke
slopes and conduction velocities (Aliev and Panfilov, 1996;
Hurtado et al., 2016), whose expressions are described below for

TABLE 2 | Parameter values for the modified Aliev-Panfilov model.

o 1 (>3 n1 723 b y Vr[mV] Vp[mV]
0.05 52 8 0.1 0.3 0.25 0.002 -85 15
completeness:

f(@1) =c1¢(¢ — )1 — @) — corp (37)

Mm1r
U2+ ¢

g(e,r) = ()/ + ) (—r— ¢ -b-1) (38)

where i, ¢, @, ¥, i1, (42 and b are constants, whose values are
included in Table 2, and are the same employed by Hurtado and
Rojas (2018). To account for a steady-state regime, initial values
of the recovery value where set to r = 0.1146.

3. RESULTS

Finite-element simulations using Q1, Q2, and QINC element
formulations were implemented for the FI and SI time-
integration schemes described in the previous section in an
enhanced version of FEAP (Taylor, 2014).

3.1. Plane-Wave Tests on CV and CT

A 3D cardiac rod with a total length of 25 mm was discretized
using regular hexahedral elements with a uniform element size,
with the exception of elements adjacent to the boundary where
the size was at times smaller to fit the geometry. To study the
effect of the element size, simulations were carried out with mesh
sizes ranging from h = 2mm to h = 0.0156 mm. A zero-flux
boundary condition was assumed for all boundary surfaces, with
exception of the left end of the rod which was stimulated with
a normalized external current of 20 mV /ms, which corresponds
to 28,000 uA/cm3, for 2ms to elicit a plane traveling wave
along the direction of the rod. A time-step size of 0.001 ms
was set for all simulations, which is small when compared to
standard cardiac simulations using the selected ionic model
(Hurtado et al., 2016). Such small time-step size is chosen to
minimize the contribution of the temporal discretization error
to the overall numerical error. To compute the CV, we tracked
the voltage evolution on x; 18mm and x;
and recorded the activation time, which is defined as the time
when the ¢ > 0.5 for the first time at a certain point. Then,
the CV was calculated as the difference between x, and x;
divided by the difference in the activation time. The results
for the CV for different element sizes are shown in Figure 1A.
All formulations converged to a CV = 36.9cm/s as the mesh
size approached h = 0.0156 mm. CV monotonically decreased
as mesh size was decreased for Q1 and Q2 formulations. The
computational effort of simulations in terms of CT is reported
in Figure 1B. We observe that the computational demand of
simulations monotonically increases as the mesh size decreases,
independently of the element formulation. We do observe,
however, that the FI time-integration scheme always results in

22 mm
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FIGURE 1 | CV tests for plane-waves propagating on a 3D bar for Fl and Sl schemes on different element formulations. (A) Convergence study of CV as a function of
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FIGURE 2 | Accuracy-efficiency analysis: Computation time vs. conduction-velocity error for the different spatial discretization schemes using (A) fully-implicit time
integration, and (B) semi-implicit time integration. Dashed gray line displays the Pareto frontier, which encompasses optimal cases. Suboptimal combinations are
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higher CT than the SI scheme for all element formulations
considered.

To facilitate the analysis of the accuracy-efficiency trade-oft
of the different schemes studied, Figure 2 shows the CT vs. the
error in CV for the Q1, Q2, and QINC formulations for both
the implicit and semi-implicit time updates. Since we seek to
minimize two objective functions, namely the CT and the CV
error, the Pareto frontier, defined as the set of choices that are
Pareto-efficient, is included in each subfigure. The subset of the
Pareto-efficient cases that correspond to the QINC formulation
are {1.2,1.5}[mm] and {1.0, 1.2, 1.5,2.0}[mm] for the FI and SI
cases, respectively.

3.2. Benchmark Simulations on a Cardiac

Cuboid
We studied the behavior of the SINCFES using as a second test
case the benchmark study on a cardiac cuboid developed by

Niederer et al. (2011b), and adapted to the case of the Aliev-
Panfilov model by Hurtado et al. (2016). To this end, we consider
a cuboid domain with dimensions of 20 x 7 x 3mm with
cardiac fibers oriented in the longest axis direction. A subdomain
with dimensions 1.5 x 1.5 x 1.5mm located at one of the
corners of the cuboid was stimulated with an electrical current
density of 50,000/cm® for 2ms. The normalized longitudinal
and transversal conductivities were 0.0952 and 0.0126 mm?/ms,
respectively. Figure 3A shows the activation map and isochrones
obtained on a plane that contains opposite corners in the
diagonal, as defined in Niederer et al. (2011b), for a fine (Baseline)
and coarse discretization using Q1 elements, and for the same
coarse discretization using QINC elements. We note that the
QINC case with mesh size h = 0.8 mm resulted in an activation
map and isochrones similar to the baseline case, defined as a Q1
model with mesh size & = 0.1 mm. In contrast, the activation
map delivered by the Q1 coarse-mesh case with mesh size h =
0.8 mm largely differed from the baseline case, delivering a less

Frontiers in Physiology | www.frontiersin.org

28

October 2018 | Volume 9 | Article 1513


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Jilberto and Hurtado

SINCFES for Cardiac Electrophysiology

Mesh

Activation Map

>

Q1 Baseline

QINC

0 20 50 70

Activation time [ms]

FIGURE 3 | Numerical simulations on cuboid benchmark test (A) Meshes and activation maps, and (B) Activation time profile along the cuboid diagonal.
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FIGURE 4 | Numerical simulations on human biventricular idealized geometries. The Q1NC model displays a propagating wave similar to the baseline case during the
ventricular activation sequence, whereas the Q1 model hastens the electrical stimulation ahead of the baseline case.
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curved wave-front profile. Figure 3 displays the activation time
values along the diagonal of the cuboid for the three cases
under study. We observe that the QINC case closely follows
the baseline case, whereas the Q1 coarse-mesh case resulted in
shorter activation times at all locations along the diagonal. As a
reference, the CT for the Baseline (Q1 fine), QINC and Q1 cases
were 122, 341, 344, and 184 s, respectively, which is equivalent to
a CT ratio of 665:2: 1.

3.3. Biventricular Human Heart Simulations
To study the potential of the QINC-SI formulation in whole-
heart cardiac simulations, we modeled the propagation of an

action potential on an idealized human biventricular domain
stimulated at the atrio-ventricular node. The heart biventricular
geometry was generated from two truncated ellipsoids (Streeter
and Hanna, 1973), and later discretized using non-regular
hexahedral elements. For the baseline case, a size-varying mesh
with average characteristic length of 0.48 mm was employed. A
coarse mesh with average element length of 1.0 mm was also
considered for two additional cases with Q1 and QINC element
formulations, see left column of Figure 4 for a representation
of the biventricular meshes. All three cases considered the same
initial boundary conditions and time step size of 0.001 ms.
The transmembrane potential distribution at different time
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FIGURE 5 | Spiral generation simulation in a 2D slab. Due to the higher CV, the Q1 case (coarse mesh) cannot capture the genesis of the spiral wave.

instants during ventricular activation is depicted in Figure 4. We
clearly observe that, as time elapses, the action-potential wave
front of the QINC case is very similar to the Baseline case,
whereas the Q1 case results in a wave front that propagates
faster than the other two models due to the artificially high
CV. The last column in Figure4 shows the activation maps,
where we observe that isochrones for the Baseline and QINC
cases are very similar, and they both differ from the QI case.
Biventricular simulations were ran in a HPC cluster with 128
GB of RAM memory using 32 processors using the parallel
implementation of the code FEAP (Taylor, 2014). The CT for
the baseline, the QINC and the Q1 simulation were 1805, 452
and 154 min respectively, which is equivalent to a CT ratio of
18:3:1.

3.4. Spiral Wave Simulations

To assess the performance of the proposed non-conforming
scheme in the simulation of spiral waves, we considered a 50 x
50 mm cardiac domain excited by means of an S1-S2 stimulation
protocol. To this end, we first applied a surface stimulus (S1) of
12mV/(ms mm?) for 2ms on the border defined by x = 0 to
create a plane wave. After 280 ms, we applied a second stimulus
(S2) of 15mV/(ms mm?) in the quadrant x < 25, y < 25 mm for
5 ms, which resulted in the formation of a spiral wave (Costabal
et al., 2017). This S1-S2 model was solved using three numerical
models: a fine mesh with element size & = 0.1 mm using Q1
elements (Baseline), a coarse mesh with element size h = 1 mm
using QI elements (Q1), and a coarse mesh with # = 1 mm using

the proposed non-conforming element formulation (QINC). In
all cases, we considered a semi-implicit time update with time-
step size At = 0.005 ms. Figure 5 shows the distribution of the
transmembrane potential of the three models under study for
several time instants. We note that at early times (+ = 110ms)
the Q1 case displays a wave front that advanced considerably
faster than the baseline and QINC cases. At t = 400 ms a spiral
wave formed in the Baseline and QINC cases, whereas for the
Q1 case a curved wave front propagated in the outward direction
but did not create a spiral. At a later instant (f = 600 ms),
a spiral was steadily rotating in the Baseline and QINC cases,
constantly reexciting tissue, whereas in the Q1 case cardiac tissue
was found under complete rest, and no electrical activity was
observed.

4. DISCUSSION

In this work we have studied the features and advantages of a
novel SINCFES in the solution of the monodomain model of
cardiac electrophysiology. From plane-wave CV tests we note
that the FI and SI schemes yield similar results for the conduction
velocity for the time-step size employed, see Figure 1A. This
is expected, as the time-step size considered here is small
compared to standard values employed in numerical simulations
(Krishnamoorthi et al., 2013). Interestingly, we observe that in
the case of mesh sizes h < 0.6 mm, the Q1, Q2, and QINC
element formulations delivered very similar results in terms of
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CV error. For the cases where h > 0.6 mm, the CV error incurred
by the QI formulation grows at a much faster rate than the
Q2 and QINC formulations. An interesting result that deserves
further study is the convergence trend of the QINC formulation,
as it is not monotonically convergent in the whole range of
mesh sizes studied, and it reverts the sign of the CV error in a
bounded interval of mesh sizes. A similar convergence trend has
been reported in the literature for standard FE discretizations, in
the context of mass-lumping techniques (Pezzuto et al., 2016),
which suggest as future work a more detailed study of the effect
of NC spatial discretization schemes on the stiffness and mass
matrices that govern the dynamics of the problem. To better
analyze the accuracy-efficiency trade-off for each scheme, we
constructed CT vs CV-error plots, where the Pareto frontier
has been identified. We conclude that the SINCFES delivers
Pareto-optimal results for cases with mesh size in the range
of {1.0,1.2,1.5,2.0}[mm]. For smaller mesh sizes, traditional
Q1 formulations deliver better combinations of CT and CV-
error than QINC and Q2. It is interesting to note that, in
general, Q2 elements are less efficient than the Q1 and QINC
elements from a Pareto-optimality viewpoint for the whole range
of mesh sizes studied. We also note that these conclusions are
particular to a plane-wave propagation case, where anisotropy
of conductivity and curvature of propagating wavefronts are
absent.

We further studied the performance of QINC elements
using a benchmark problem on a cuboid cardiac domain
(Niederer et al., 2011b). Our simulations showed that the
QINC formulation on a coarse mesh (h 0.8 mm) can
result in activation maps that are similar to those obtained on
fine meshes using Q1 (h 0.1 mm) , adequately capturing
the anisotropic conduction of the propagating waves, see
Figure 3A. An analysis of the activation-time profile along
the cuboid diagonal shows that the QINC scheme delivers
an accurate conduction velocity, which is comparable to Q1
meshes with mesh sizes that are 8 times smaller, see Figure 3B.
This result confirms the ability of QINC elements to capture
the propagation of electrical waves in anisotropic media with
good accuracy at significantly reduced CTs. In contrast, Ql
coarse-mesh simulations resulted in markedly higher conduction
velocity profiles, and did poorly in capturing the anisotropic
propagation of wavefronts when compared to the QINC
formulation.

Numerical simulations on a biventricular domain showed
that our non-conforming scheme can be effectively used in
unstructured meshes of idealized anatomical geometries of
the heart, see Figure4. Similarly to the cardiac rod case,
a coarse mesh using QINC elements performs much better
than a simulation using standard Q1 elements on the same
discretization level, as it predicts more accurately the wavefront
propagation pattern, when compared to the baseline case. This
conclusion is also reached from observing the resulting activation
maps, where the spatial distribution and curved shape of
isochrones in the QINC and baseline are similar, whereas the
QI formulation delivers an isochrone distribution with lower

activation-time values. We note here that this study considered
an idealized and smooth geometrical representation of the
ventricles of the human heart, useful for numerical verification
purposes. It is important to note that such idealized domain
does not include important anatomical structures such as the
intricate endocardial surface, papillary muscles, and Purkinje
network, that are currently included in advanced heart models
(Ponnaluri et al., 2016; Sahli Costabal et al., 2016). Future
work should focus in understanding how non-conforming
formulations can handle such fine-scale anatomical details and
structures.

The performance of the SINCFES was studied in the
simulation of spiral waves. Remarkably, a very coarse mesh using
QINC elements is capable to correctly produce, and sustain in
time, a spiral wave, whereas a standard Q1 formulation using
the same mesh size results in no activation of cardiac tissue.
The ability of SINCFES to reproduce spiral wave formation
and dynamics is a key result of this work, as it shows
that the method is physically more accurate than standard
FE formulations for coarse discretizations. This result can
be explained by the reduced dependance of the CV on the
mesh size, and highlights the potential of the SINCFES in
the simulation of cardiac arrhythmias, the main clinical focus
of cardiac electrophysiology simulations. While spiral patterns
and dynamics obtained with the QINC formulation are very
similar to the baseline results, a time delay is observed for the
former, which resulted in differences in the spatial distribution
of the transmembrane voltage, see last column of Figure 5. Such
delay, which can ultimately be attributed to differences in the
local CV, has also been observed in studies employing very
high-order space-time formulations (Coudiére and Turpault,
2017), confirming that state-of-the-art simulations of spirals
using standard values of mesh size and time step are also
affected by this time delay. Despite this persistent numerical
error, we believe that the focus of future studies should be
in recovering the overall dynamical features of spirals, ie.,
spiral tip trajectories (Fenton and Karma, 1998; Gizzi et al.,
2013).

We close by noting that while whole-heart simulations
reported in the literature predominantly employ tetrahedral
discretizations, effective methods for generating patient-
specific hexahedral meshes are currently available (Lamata
et al, 2011). Further, hexahedral meshes have gained great
attention in the context of cardiac simulations, as the
numerical performance of hexahedral elements is superior
to tetrahedral elements when solving mechanics of the heart,
particularly under the assumption of incompressible and
quasi-incompressible regimes (Hadjicharalambous et al,
2014). As a conclusion, a natural continuation of this
work is the application of non-conforming schemes in the
solution of electromechanical models of the heart (Nash and
Panfilov, 2004). One important reason for mesh-coarsening
FE models of the heart is to reduce the number of DOFs,
which in the case of electromechanical cardiac models is
much larger than in pure electrophysiological simulations,
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as displacement, fiber stretch/stress variables, and the non-
linearity of tissue constitutive models drastically increase the
dimensionality and computational effort needed to solve the
governing equations (Goktepe and Kuhl, 2010; Hurtado et al.,
2017).
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Electroanatomical mapping is currently used to provide clinicians with information about
the electrophysiological state of the heart and to guide interventions like ablation. These
maps can be used to identify ectopic triggers of an arrhythmia such as atrial fibrillation
(AF) or changes in the conduction velocity (CV) that have been associated with poor cell
to cell coupling or fibrosis. Unfortunately, many factors are known to affect CV, including
membrane excitability, pacing rate, wavefront curvature, and bath loading, making
interpretation challenging. In this work, we show how endocardial conduction velocities
are also affected by the geometrical factors of muscle thickness and wall curvature.
Using an idealized three-dimensional strand, we show that transverse conductivities
and boundary conditions can slow down or speed up signal propagation, depending
on the curvature of the muscle tissue. In fact, a planar wavefront that is parallel to
a straight line normal to the mid-surface does not remain normal to the mid-surface
in a curved domain. We further demonstrate that the conclusions drawn from the
idealized test case can be used to explain spatial changes in conduction velocities in a
patient-specific reconstruction of the left atrial posterior wall. The simulations suggest that
the widespread assumption of treating atrial muscle as a two-dimensional manifold for
electrophysiological simulations will not accurately represent the endocardial conduction
velocities in regions of the heart thicker than 0.5 mm with significant wall curvature.

Keywords: cardiac electrophysiology, bidomain model, conduction velocity, bath-loading conditions, left atrial
posterior wall, electroanatomical mapping, atrial fibrillation

1. INTRODUCTION

Atrial fibrillation (AFib) is the most common cardiac arrhythmia, and symptoms can range
from being nonexistent to severe, possibly leading to stroke, heart failure, sudden death, and
cardiovascular morbidity (January et al., 2014; Kirchhof et al., 2016). Electroanatomic mapping,
which involves acquiring extracellular signals (electrograms) at multiple locations using catheter-
based electrode, is often used in clinical procedures to identify triggers of the AF and to characterize
the electrophysiological health of the tissue. One outcome of this mapping is a display of the
pattern of the spread electrical activation obtained by identifying the local activation time from
the electrograms. These activation maps can be used to estimate the conduction velocity and
help to localize regions of slow conduction associated with cellular decoupling and fibrosis
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(King et al., 2013; Grossi et al., 2016). Several approaches can
be used to evaluate CVs from the measured electrophysiological
data, such as polynomial surface-fitting algorithms, finite-
difference techniques, and triangulation, among many
others (Cantwell et al., 2015). Because of the paucity of data
that can be acquired at high resolution in a clinical procedure,
accurate CV estimates are difficult to obtain, particularly in
regions of the heart with significant curvature. In addition,
it is well known that conduction velocity is very sensitive to
membrane excitability, tissue conductivity, fiber orientation,
wavefront shape, and even the properties of the adjoining blood,
making interpretation of CV measurements challenging at best.

To better understand the various factors affecting both
normal and abnormal conduction, computer models of the atria
have been developed (Harrild and Henriquez, 2000; Seemann
et al., 2006; Muifoz et al, 2011; McDowell et al, 2012;
Rossi and Griffith, 2017). Because of the high computational
cost required by these simulations, the atria are sometimes
simplified as a single two-dimensional manifold (Harrild and
Henriquez, 2000; Seemann et al, 2006; Muifioz et al., 2011;
McDowell et al., 2012; Rossi and Griffith, 2017). However, this
surface representation of the atria cannot be used to describe
the endo-epicardial electrical dissociation taking place during
AFib (Gharaviri et al., 2012). To overcome this limitation, bilayer
models have been proposed (Gharaviri et al., 2012; Labarthe
et al, 2014; Coudiere et al, 2017). Although these models
have a reduced computational cost with respect to fully three-
dimensional simulations, they fail to capture the loading of
the muscle thickness and adjoining blood layer. The complete
effects of the geometric factors on conduction can only be
determined in a volumetric model of the atria. The goal of this
work is to investigate how wall thickness and curvature affect
conduction velocity and whether these geometric factors need to
be considered in modeling relatively thin tissue such as the atria.
In addition, we investigate how the thickness of the adjoining
blood layer affects the CV and the resulting extracellular signals.
Simulations are performed on idealized geometries and a patient
specific geometry of the posterior wall of the atria. The results
show that variations of more than 10% in CV can derive from
the atrial geometry even without considering changes in the
transmural properties.

The blood is the natural volume conductor that bathes the
cardiac wall (Trayanova, 1997). Since endocardial bipolar signals
measured by electroanatomical mapping systems are influenced
by the presence of blood, our computational model is augmented
with a perfusing endocardial bath (Henriquez et al., 1996). The
role of muscle thickness on the CV in the presence of a bath
has been studied only on a thick strand of muscle without
curvature (Roth, 1991). Although the role of the perfusing bath
has been extensively studied (Roth, 1991, 1996; Henriquez et al.,
1996; Trayanova, 1997; Srinivasan and Roth, 2004; Vigmond
et al., 2009; Bishop et al., 2011; Colli-Franzone et al., 2011),
and methods have been proposed to reduce the computational
demands of these simulations (Bishop and Plank, 2011), the
minimum depth of the bath that adequately accounts for the
bath-loading conditions on CV is not currently known. For this
reason, we investigate the role of the bath thickness on the

CVs and bipolar signals. Our results show that a bath thickness
of at least 1.5 mm is needed to capture endocardial CVs with
good accuracy. The same thickness of the intracardiac bath layer
also guarantees a satisfactory representation of the endocardial
bipolar signals.

2. THE BIDOMAIN MODEL

Most common tissue-scale models of cardiac electrophysiology
consider the myocardium to be composed of continuous
intracellular and extracellular compartments, coupled via a
continuous cellular membrane. This study considers such
a model; specifically, we consider the bidomain model of
the propagation of the action potential in cardiac muscle.
The bidomain model of the propagation of the action
potential in cardiac muscle formulated by Tung (1978) is a
continuum model derived from a homogenized description of
excitation propagation in the cardiac microarchitecture (Neu and
Krassowska, 1993; Keener and Sneyd, 1998; Griffith and Peskin,
2013).

The bidomain equations describe the dynamics of a local
average of the voltages in the intracellular and extracellular
compartments over a control volume. One of the assumptions
required by the homogenization procedure is that the control
volume is large compared to the scale of the cellular micro-
architecture, but small compared to any other important spatial
scale of the system, such as the width of the action potential
wavefront. Although the validity of this model has been
questioned, for example by Bueno-Orovio et al. (2014), this
approach has been extremely successful, and at present, most
organ-scale simulations of cardiac electrophysiology use such
a model. For a detailed review of the bidomain model and
other models of cardiac electrophysiology, we refer to other
references (Griffith and Peskin, 2013; Franzone et al., 2014).

In our model, we also consider a conductive blood cavity
adjacent to the tissue. In the bidomain model, current flow
is restricted to the intracellular (denoted by subscript i),
extracellular (denoted by subscript e), and bath (denoted by
subscript b) compartments and is described by a set of coupled
partial differential equations. Referring to Figure 1A, Qy, denotes
the muscle region and €, denotes the perfusing bath. From
charge conservation, the bidomain equations can be written in
the muscle region 2y, as

V- (DiVV) + V- (D;VVe) = x (Cnd;V + Lion) — I,
V- (DiVV)+ V- ((Di+De) VVe) = IV |,

(1
2

in which V; and V. are the potentials of the homogenized
intracellular and extracellular compartments, respectively, such
that V. = V; — V. is the transmembrane potential difference,
D; and D, are the intracellular and extracellular conductivity
tensors, Cy, is the membrane capacitance, y is membrane
area per unit volume of tissue, and I and I{ are the
volumetric intracellular and extracellular applied currents such
that I = I + IJ. The dynamics of the transmembrane
current [joy, accounting for charged ionic species moving from
the intracellular compartment to the extracellular compartment
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FIGURE 1 | (A) Schematic representation of the configurations of the muscle and blood bath. Inside the heart, blood acts as a low resistance conductor. Outside the
heart, between the epicardium and the epicardial sac, an interstitial fluid can also act as a conductor. (B) Schematic representation of the idealized left atrial posterior
wall. A rectangular strand of muscle (green) of length L = 2.3 cm and thickness ¢ is adjacent to an endocardial bath (blue) of thickness ¢,. The thickness of the muscle
£m and of the bath ¢}, are varied to study their influence on endocardial CVs. Curvature is applied to the top part of the rectangle such that the curved endocardial
length Le is fixed at 2 cm. The corresponding curvature « is defined as the inverse of the endocardial radius. The curvature is positive if the muscle is bent to the left
and it is negative if it is bent to the right. Endocardial CVs are measured using the activation times at x4 (yellow circle) and xo (red circle). In the straight geometry, x4
and x» correspond to the points X1=(0cm, 1cm) and X»=(0cm, 1.5cm), fixed at distance 5 mm. As described by equation (7), endocardial CVs are defined as the
distance between these two points divided by the difference of the respective activation times. Unipolar extracellular signals V; and Vg are recorded at 1 kHz at p4
and po, corresponding to the points P1=(0cm, 1.75cm) and P»=(0cm, 1.95cm) in the straight geometry. Bipolar signals were computed as the difference Vg - Vé.

and vice-versa, are described by a set of ordinary differential  intracellular and extracellular surface currents, I’ and I, are
equations, called the ionic model. More precisely, the ionic model ~ zero. At the bath boundary I'y,, we enforce no current flux in
introduces the additional variables w, satisfying o;w = g (V,w),  the blood domain n - (DyVV}) = 0. Along the muscle-blood

such that Iipn = Lion(V, w). interface I'j, we require continuity of the extracellular and
In the blood region, the bath potential V}, satisfies the  bath potentials Ve = Vj, continuity of the normal currents
Poisson’s equation n - (D.VVe) = n - (D,VVy) and zero intracellular current
density n - (D;VV;). We refer to the Supplementary Material
V- (DyVVp) = I, () for more details on the model and its numerical

discretization.

in which Dy, represents the blood conductivity tensor and I, is a
volumetric applied current in the blood domain.

The anisotropic nature of the muscle is accounted for in the
bidomain model through the conductivity tensors D; and D..
Denoting with f the local direction of the fiber field, we assume
axial symmetry relative to f, such that the conductivity tensors

can be written as D; = oI + (oif — crf) f®f,and D, = ol +

A modified version of the Courtemanche et al. (1998) ionic
model available on Model DB (Carnevale and Hines, 2006;
McDougal et al., 2017), defining the ionic current I, and gating
variable dynamics g (V, w), is chosen to represent human atrial
action potential.

2.1. Idealized Model of the Atrial Left

Posterior Wall

To study the effects of muscle thickness, muscle curvature, and
bath-loading conditions on the measured conduction velocities,
we devised a simple idealized test case. Although our main
interest is to understand measurements of endocardial CVs in
the posterior wall of the left atrium, which has overall positive
curvature, our study is not limited to that application. For this
reason, we also consider negative curvatures. Although those
cases are not representative of the left atrial posterior wall, the
relationships between negative curvature and CV can be easily

explored in our idealized model.
A strand of muscle is connected to a bath as depicted in
Figure 1B. This simplified model represents a piece of atrial
n-(DiVV) =n-(D;V(V+ V) =1, (4)  tissue where the endocardial surface I'; separates the blood from
n- (DVVe) = I, (5) the muscle. We c0'1151der a straight strand of tissue of leggth 2..3
cm. To study the influence of curvature, the strand of tissue is
in which the vector n is the outward unit normal to the boundary ~ then bent on both sides keeping the length of the endocardial
of the tissue domain. In the following, we shall assume that the  interface fixed. The epicardial boundary is instead allowed to

<cref — aet) f ® f. Here, o and o' denote the tissue conductivities
along and across the fiber direction in the intracellular space,
O’ef and o denote the extracellular conductivities, and I is the
identity tensor. The blood conductivity is assumed isotropic,
so that Dy = oy,I. Representative values of the intracellular,
extracellular, and blood conductivities are taken from the work of
Roth (1996). Specifically, we set oef = aif = 4.5 mS/cm, aet =18
mS/cm, 0! = 0.45 mS/cm, and o1, = 20 mS/cm.

The boundary conditions for the tissue are those derived for
a spatially periodic cellular syncytium by Krassowska and Neu
(1994). Referring to Figure 1A, at the muscle boundaries I'p,
current fluxes in the intracellular and extracellular compartments
depend on externally applied surface currents,
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change in length. For this reason, curved domains with opposite
curvature are not symmetric.

Consider Figure 1B. The initial muscle domain is a rectangle
of length L 2.3 ¢cm and thickness £,,, such that Qp,
[0cm, €] % [—0.3 cm,2 cm]. Denote with Le=2 cm the length
of the rectangle where curvature will be varied. We set the
“endocardial” surface I'; = {0 cm} x [—0.3 cm, L] on the left
edge of the muscle. The length Le = 2 cm denotes the length of
the endocardial surface where curvature will be imposed. A bath
is added adjacent to the interface I'; with thickness ¢y, such that
Qp = [—€p,0cm] x [—0.3 cm, L.]. These geometrical settings
represent the straight domain with zero curvature. We denote
with (X, Y) the coordinates of a point in this straight domain.
Given an angle & € (0,7], we bend the domain, keeping the
measure L. of the top part of the endocardial interface I'; fixed
at 2 cm. The transformation from the straight rectangle to the
curved one is performed using the relations

X ifY <0,
x = Y .

c (RO — Rcos (9—)) ifY >0,

Ymax
(6)

Y ifY <0,
y= . Y .

cRsin [ 6 —— if Y >0,

max

in which the parameter ¢ specifies in which direction the bending
is performed, that is, c = —1 means bending to the right whereas
¢ = 1 means bending to the left. The radius of curvature of T is
given by Ry = Ypayx/0, such that R = Ry + ¢X, in which Ypax
is the maximum Y coordinate. We define the curvature of the
interface I'; by k = 1/ (cRy) , such that the curvature is negative if
¢ is negative (bend to the right) and positive if ¢ is positive (bend
to the left). Given such construction, geometries with opposite
curvature will not be symmetric even though the length and the
magnitude of the curvature of the endocardial interface are the
same. For any possible curvature, the region defined by the points
{(x.y) € R?: y < 0} is the same in all cases. Applying the same
initial conditions and the same initial stimulus in this region, we
can compare the effects of curvature on the conduction velocity.

Before applying any curvature, the domain €2 is discretized
using a structured triangular mesh with mesh size hy = 50 um
in the longitudinal fiber direction and hyx 25 um in the
transversal fiber direction. Denoting with vx the conduction
velocity in the longitudinal fiber direction, we used the CFL
condition hx/vx < 1 to determine the timestep (Rossi and
Griffith, 2017). We chose the largest negative power of 2 such
that the CFL condition was satisfied, which led to the timestep
At = 0.03125 ms. This choice is also sufficient to ensure the
stability of the time integrator used for the ionic model.

To quantify the changes in endocardial conduction velocity
with respect to the curvature, we use a simple finite difference
method: measuring the activation times t; and f, on the
endocardial surface I'; at two locations x; and x;, corresponding
to the points X; = (0cm,1cm) and X, = (0cm, 1.5cm) in
the straight domain (no curvature), we define the conduction

velocity as

. e — il

||X2 —X1|| o 0.5 cm
bh—t n

s 7
I —t h—1t @

where || - ||, represents the distance between x; and x; on the
endocarial surface. Referring to Figure 1B, the points x; and x;
correspond to the position on the muscle-bath interface I'; of the
yellow and red circles, respectively.

An equal and opposite stimulus is applied in the interior
and exterior compartments of the muscles such that I¥
100 £A/cm® for the first 2 ms if y was smaller than —-0.2797
mm. This choice generates a plane wave propagating in the
longitudinal direction whenever the domain is straight (no
curvature) and no bath region is considered.

Unipolar signals V! and V2 were recorded at 1 kHz on the
endocardial surface at p, and p, corresponding to the points
Py = (0cm, 1.75 cm) and P, (0 cm, 1.95 cm) of the straight
domain. Referring to Figure 1B, the points p, and p, correspond
to the position on the muscle-bath interface I'y of the light
blue and pink red stars, respectively. Bipolar signals were then
computed taking the difference V2 — V!

e

2.2. Left Atrial Posterior Wall

A detailed geometry of the whole left atrium was collected
by fast anatomical mapping (FAM) with a 2-5-2 PentaRay
catheter. High-density maps of the left atrial posterior wall
(LAPW) endocardial surface were created using the Carto3
electroanatomic mapping system (Biosense Webster, Diamond
Bar, CA). The LAPW was mapped following pulmonary vein
isolation by wide antral circumferential ablation (WACA). The
region was defined as the area of the posterior left atrium
between WACA lesion sets encircling the bilateral pulmonary
veins and extending from their inferior margin to their superior
margin. The LAPW surface was extracted from the reconstructed
geometry of the left atrium and its geometrical representation was
generated using SOLIDWORKS (Dassault Systémes, Waltham,
MA). The surface was then thickened outward to obtain a
uniform 1.5 mm LAPW thickness. The bath region was created
thickening in the opposite direction for 2.85 mm. We used the
Trelis software (Computational Simulation Software, American
Fork, UT American Fork, Utah) to generate a simplex mesh of the
LAPW with bath. The mesh size for muscle domain was selected
to yield 16 elements through the muscle thickness. As the solution
in the bath is smooth, a larger mesh size was used in the bath
domain. Still, on the muscle-bath interface I'j, the two meshes
are conforming.

To investigate the role of muscle thickness and curvature
on the LAPW, we used SOLIDWORKS to flatten the LAPW
endocardial surface. The same procedure as for the curved LAPW
was then used to thicken and mesh the resulting geometry. The
resulting geometries are shown in Figure 2A.

The fiber field was created by assuming the existence of a
harmonic potential ¢ (x) such that f = Vg. In practice, we
solve numerically the equation A¢ = 0 with mixed boundary
conditions. In particular, we set ¢ = 0 on the surface I'y and ¢ =
lonTy,and 99 = 00n 3Ry, \ (Tp U I'1), where the surfaces Ty,
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V [mV]
-81.2 -60.0 -40.0 -20.0 0.0 30.0

FIGURE 2 | (A) Reconstructed model of the left atrial posterior wall (LAPW) and its flattened representation. The muscle domain of thickness 1.5 mm is represented in
green, and the intracardiac bath of thickness 2.85 mm is presented in light blue. (B) Fiber field of the posterior wall generated by a rule-based method based on
Poisson interpolation. The fibers fields are defined only in the muscular region of the computational domain. The color scheme, representing the z-component of the
fiber vector field, is chosen to highlight the direction in which the muscle fibers are aligned. (C) Graphical representation of the initial condition of the simulation: an
intracellular potential of 30 mV is set at the bottom edge of the left atrial posterior wall. In the bath the transmembrane potential is not defined, and the whole bath is
represented in dark yellow.

and I'y are the boundaries delimiting the LAPW from thetopand et al., 2010; Bishop and Plank, 2011; Landajuela et al., 2018).
from the bottom. The resulting fiber field, depicted in Figure 2B, ~ The intracellular, extracellular, and bath potentials are solved
qualitatively matches the anatomical structures of the LAPW  monolithically (Bernabeu and Kay, 2011), using IMEX temporal
shown by Markides et al. (2003). Referring to Figure 2B, 'y and ~ schemes. We use the C++ implementation of the model of
I'; are the boundaries orthogonal to the fiber field. Similarly, a ~ Courtemanche et al. (1998) provided by Hsing-Jung Lai and
fiber field was generated for the flattened geometry. Sheng-Nan Wu on Model DB (McDougal et al., 2017), which
The simulations were initiated by imposing an initial  includes the modifications by Ingemar Jacobson (Carnevale
condition for the transmembrane potential V. As shown in  and Hines, 2006) needed for ion concentrations to be stable
Figure 2C, the potential was set to 30 mV on I'g and to its resting ~ at a pacing rate of 1 Hz. Since the Courtemanche ionic
value of —81.2 mV everywhere else. Similarly, we imposed the =~ model contains many discontinuous parameters that negatively
initial condition on the flattened geometry. influence the expected optimal rate of convergence of the finite
For both the LAPW and the flattened LAPW, we solved the  element discretization (Arthurs et al., 2012), we rely on the simple
bidomain equations in three scenarios: (1) considering only the ~ IMEX BDF1 method. We refer to the Supplementary Material
endocardial surface (referred to as 2D); (2) considering only  for more details on the numerical methods used. Unless explicitly
the muscle domain (referred to as 3D); and (3) considering  stated, we used the same set of parameters for all the numerical
the muscle with bath-loading conditions (referred to as Bath).  tests presented below. The parameters are reported in Table 1.
In all cases, we registered the activation times A; (x), as the The code developed in this work, Beatlt (available at
earliest time when the transmembrane potential was larger  github.com/rossisimone/beatit), relies on the parallel C++ finite
than —5 mV. The endocardial conduction velocities were then  element library libMesh (Kirk et al., 2006) and on PETSc (Balay
reconstructed on each node of the triangulation in the following et al, 1997, 2017) and HYPRE linear solvers (Falgout and
way. For each triangle K on the endocardial surface, we definethe ~ Yang, 2002). More specifically, we used the FieldSplit
elemental conduction velocity vk = VA(/ (VA - VAy). Since Ay preconditioner (Brown et al., 2012) provided by PETSc to
is interpolated between the nodes using linear basis functions on  solve the system using the block Gauss-Seidel method, and each
each element, its gradient VA and the conduction velocity vk are  sub-block is preconditioned using BoomerAMG (Falgout et al.,
constant on each triangle. For each vertex g, we define the patch ~ 2010). More details about the algorithmic implementation can
[T, as the set of triangles K surrounding the node g. The averaged ~ be found in the Supplementary Material. Using a uniform

nodal velocity is then given as structured grid for the muscle and bath domain, simulations
> xen. IKl vk of the two-dimensional idealized test case were run in serial

vy = —_— (8) on a Linux workstation. Simulations on the patient-specific

ZKEHq IK] left atrial posterior wall used a fine discretization in the muscle

in which |K| denotes the area of the triangle K. domain and a coarse one in the bath domain. A boundary layer
in the mesh of the bath was created to correctly resolve the bath

3. NUMERICAL RESULTS potential close to the muscle interface. Simulations were run on a

single node (44 processors) of the Dogwood Linux cluster at the

The bidomain model was discretized in space using linear finite ~ University of North Carolina at Chapel Hill. The visualization
elements (Plank et al., 2005; Franzone et al., 2006; Pathmanathan ~ of the results and their analysis have been carried out using

Frontiers in Physiology | www.frontiersin.org 38 October 2018 | Volume 9 | Article 1344


https://github.com/rossisimone/beatit
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Rossi et al.

Geometry Influences Atrial Conduction Velocities

TABLE 1 | Bidomain model parameters used in the numerical simulations.
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FIGURE 3 | (A) Endocardial CVs as a function of the curvature when no bath-loading conditions are considered (£, = 0 mm) for muscle thicknesses £y, = 0.25 um,
0.5, 1, 1.5, and 2 mm. Note that the construction of the domain leads to different geometries for positive and negative curvatures. This is because we keep the
endocardial length fixed, but we allow the epicardial surface to become shorter or longer. When a planar wave travels on a curved domain, endocardial CV are faster
for negative curvatures and slower for positive curvatures. Since the left atrial posterior wall has mostly positive curvature, endocardial CVs are expected to be slower
than in a flat piece of muscle. The case of mucles thickness 25 um correspends to the case of two-dimensional manifolds in three-dimensional simulations.

(B) Relative change in conduction velocities (with respect to CVs in a straight muscle) as a function of curvature for three selected values of the longitudinal
conductivity coefficients but fixed transveral conductivities. Muscle thickness was fixed at 1.5 mm. Relative changes in CVs are not influenced by longitudinal
conductivities. (C) Relative change in conduction velocities (with respect to CVs in a straight muscle) as a function of curvature for four selected values of the
transversal conductivity coefficients but fixed longitudinal conductivities. Muscle thickness was fixed at 1.5 mm. Even for isotropic conditions (purple) endocardial CVs
change depending on the curvature. Relative changes in CVs are only slightly influenced by transversal conductivities.

curvature [1/cm]

Paraview (Ahrens et al., 2005) and MATLAB The Mathworks,
Inc., Natick, MA.

3.1. Without Bath-Loading Conditions
Endocardial CVs Depend on

Tissue-Thickness and Curvature

We start investigating how muscle thickness influences the
endocardial conduction velocities when no bath-loading
conditions are considered. For this test, we consider muscles of
thicknesses £, = 0.025, 0.5, 1, 1.5, and 2 mm. The thickness
£y = 0.025 mm corresponds to the case where the atrial tissue
is considered to be so thin that can be approximated with a
bidimensional manifold.

Figure 3A shows the evaluation of the conduction velocities
on the endocardial surface for the considered muscle thicknesses.
When the curvature is zero, the conduction velocity is
independent of muscle thickness. If the muscle thickness is small
enough, say of the order of a handful of cardiomyocytes, the
conduction velocities are also independent of the curvature.
On the other hand, when curvature is imposed on a thicker
muscle the endocardial conduction velocities can change quite
drastically. For positive curvatures (bending to the left) the
endocardial CVs become slower, while for negative curvatures
(bending to the right) the endocardial CVs become faster.

We also test if the relative changes in the CVs are influenced
by the anisotropy ratio (AR) for muscle thickness of 1.5
mm. In a first test we have increased and decreased the
longitudinal conductivities of = aif by 50%, keeping fixed the

e =

transversal conductivities. As shown in Figure 3B, variations in
the longitudinal conductivities do not affect the relative changes
in CVs with respect to curvature. Clearly, the magnitude of the
CVs is different. For k = 0 cm™!, if 6f = of = 4.5 mS/cm,
the CV is measured to be 73.7 cm/s; if of = aif = 6.75 mS/cm
(+50% case), the CV is measured to be 90.4 cm/s; if O'ef = crif =
2.25 mS/cm (-50% case), the CV is measured to be 51.8 cm/s.
These values are in accordance with the expected dependence on
the CVs on the square root of the conductivities. In a second test,
we have increased and decreased the transversal conductivities
of = aif by 50%, keeping fixed the longitudinal conductivities.
The relative changes in CVs are shown in Figure 3C, where we
have also included the results for isotropic propagation. Although
some differences can be found at different anisotropy ratios,
changes in the ARs seem to only have a minor effect on the
relative changes in CVs. In all these cases for which x = 0 cm™!,
the endocardial CV was measured to be about 73.7 cm/s.
Although, we have found that the AR does not influence the
relative changes in the CVs, AR does influence the shape of
the wavefront in the curved domains. We show in Figure 4
the shapes of the wavefronts at different internal and external
anisotropic ratios (AR; and AR;) for « 7 /2. Specifically,
fixing the longitudinal conductivity coefficients o Uif =45
mS/cm, we show the activation times (black lines are iscochrones
separated by 1 ms increments) in various cases changing the
transversal conductivities. As shown in Figure 4A, the initial
condition creates a plane wave in the straight region of the
domain. Figure 4A shows the rectangular region where we look
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FIGURE 4 | (A) Transmembrane potential wavefront at t = 4 ms without bath-loading conditions for curvature k = /2 cm~. The initial stimulus generates a plane
wave in the straight part of the muscle for any anisotropy ratio (AR). (B=F) Shape of the wavefronts at 1ms distance (zoom of the rectangular region in A) for several
external (ARe) and internal (AR;) anisotropy ratios. The longitudinal conductivity aé = aif is fixed for all cases and the transversal condcitivities are changed. While in the
isotropic case (B) the fronts remain almost planar, in all other cases, the wavefronts become curved.
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FIGURE 5 | (A) Activation times at about 3.3 ms distance at different curvatures without bath-loading conditions for a muscle thickness of 1.5 mm. The change in
shape of the wavefronts in the curved domains is clearly noticeable. The shapes depend on the sign and magnitude of the curvature k. Note that the construction of
the domain leads to different geometries for positive and negative curvatures. This is because that we keep the endocardial length fixed, but we allow the epicardial
surface to become shorter or longer. (B) Endocardial CVs as a function of the curvature for several muscle thicknesses when an intracardiac bath of size ¢, =6 mmis
considered. (C) Endocardial CVs as a function of the curvature for several muscle thicknesses when intracardiac and extracardiac baths of size £y, =3 mm are
considered. As for the case with no bath-loading conditions conduction endocardial CVs speed up for negative curvatures and slow down for positive curvatures
(B,C). The case of mucles thickness 25 um correspends to the case of two-dimensional manifolds in three-dimensional simulations. When the muscle thickness ¢ is
very small (25 um), the CVs are independent of the curvature. In this case, the signal speed is strongly influenced by the bath conductivities. If £m >1 mm, then
muscle thickness does change much endocardial CVs but curvature does.

at the wavefronts. Under isotropic conditions, the wavefronts  for negative curvature (bending on the right) than in the straight
remain straight even in the curved domain. This is shown in  case.
Figure 4B, where the isochrones are radial. Under anisotropic

conditions, Figures 4C-F, the wavefronts have a different .
orientation with respect to the radial direction. Additionally, the 3.2. Endocardial CVs Depends on

boundary conditions induce wavefront curvatures close to the Muscle-Thickness and Curvature With
boundaries. Bath-Loading Conditions

Finally, we show in Figure 5A the activation times at different ~ Here, we investigate the role of muscle thickness and curvature
curvatures for £, = 1.5 mm, using the parameters specified in  in presence of a bath. We consider a fixed intracardiac bath
Table 1. The black isolines are at distance 3.3 ms. The marked  thickness £, = 6 mm and we test muscle thicknesses £, = 0.025,
solid black line represents the endocardial surface where we  0.5,1, 1.5, and 2 mm. In Figure 5B, we show the endocardial CV's
measure the conduction velocities. As it can be seen, curvature  evaluated for the different muscle sizes. It can be noted here that
greatly influences the activation times: the endocardial activation  in the case of muscle thickness £, = 25 um, the conduction
is slower for positive curvature (bending on the left) and faster  velocities are mainly dictated by the conductivity of the bath.
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are still in good agreement with the case of intracardiac and extracardiac baths.)
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FIGURE 6 | Transmembrane potentials in the muscle region and extracellular potentials in the bath regions at time t = 32 ms for a muscle thickness of 2 mm. (A)
When the domain is straight (x = 0 cm*1) and both intracardiac and extracardiac bath-loading conditions are considered, the wavefront takes the characteristic "V”
shape. (B) When the domain is curved, the wavefront does not take the characteristic "V"-shape. (C) If we consider only the intracardiac bath, the endocardial CVs
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FIGURE 7 | Bipolar signals V2 — V! recorded at 1 kHz for three selected curvatures « = 7/2 cm™(A),0 cm~(B), and 7/2 cm~(C) for bath size £, = 6 mm and

varying muscle thickness ¢m. The case of mucles thickness 25 um correspends to the case of two-dimensional manifolds in three-dimensional simulations. When the
muscle thickness is small (25 um) the peak of the signal is shifted because the wavefront propagates faster. In that case, the amplitude of the signal is also extremely
small. Substantial differences in the amplitude of the signals can be found at larger muscle thicknesses. The curvature of the domain does not play a major role in the

recorded signals.

A small thickness is sufficient to reveal the dependence on muscle
curvature.

We also consider the case of intracardiac and extracardiac
baths of thickness £, = 3 mm, testing again muscle thicknesses
fm = 0.025, 0.5, 1, 1.5, and 2 mm. The corresponding CV's are
shown in Figure 5C. Once again, if £, = 25 um, the CVs are
independent of the curvature. As expected, the extracardiac bath
mainly influences endocardial CVs for muscle thickness smaller
than 1 mm.

We can conclude that if we are interested only in
capturing endocardial CVs, using only an intracardiac bath
is sufficient if the muscle thickness is greater than 1 mm.
We show this in Figure 6, which shows the wavefront and
the extracellular potential at time ¢ 32 ms for muscle
thickness of 2 mm. As a reference, we show in Figure 6A
the characteristic V-shaped wavefront when intracardiac and
extracardiac bath are both considered in a straight domain. In
the curved domain, Figure 6B, the front loses the characteristic
V-shape. When only the intracardiac bath is considered,
Figure 6C, the epicardial details of the front are lost, but

the endocardial CVs are about the same. This can be
noted by comparing the position of the endocardial fronts
in Figures 6B,C.

Finally, in Figure 7, we plot the bipolar signals measured
on the endocardial surface, as explained in section 2.1, on
three selected curvature: k 7/2 cm™L, « 0 cm~!, and
—m/2 cm~!. Once again, if the muscle thickness is not
accounted for, the peak of the signal is out of phase due to
the increased CVs. Moreover, the amplitude of the signal is not
accurate. Nonetheless, we can appreciate that the amplitude of
the signals is greatly affected by the thickness of the muscle.
No major differences in the signals can be noted for different
curvatures.

K =

3.3. Endocardial CVs Depends on
Bath-Size and Curvature at Fixed Muscle

Thickness
In this test, we evaluate the size of the bath that is needed
to correctly capture the endocardial CVs. Fixing the muscle
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FIGURE 8 | (A) Extracellular potential on selected curvatures for £m =1.5 mm and ¢, =6 mm at time t = 15 ms. The curvature of the domain changes the
endocardial CVs as well as the shape of the wavefront. The wavefront is located at the sharp transition between negative (blue) and positive (red) voltages.

(B) Endocardial CVs as a function of the curvature for muscle thickness ¢m =1.5 mm and several thicknesses of the intracardiac bath. As expected the presence of
bath-loading conditions increases the speed at which the wavefronts propagate. Positive (negative) curvature of the muscle decreases (increases) the endocardial
CVs. A bath size of at least 1.5 mm was need to correctly capture the effects of the intracardiac bath-loading conditions.
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We show in Figure 8A the extracellular potential V, at t = 20
ms for some selected curvatures and ¢, = 6 mm. The solid black
line corresponds to the endocardial interface. The front of the
wave is localized in the muscle region where we have an abrupt
change in the polarity of V.. We can appreciate from these plots
the differences in the wavefront curvatures which depends both
on the curvature of the domain and on the imposed boundary
and interface conditions.

Figure 8B shows the dependence of the endocardial CVs on
the curvature of the domain. We note here that for baths larger
than 1.5 mm we measure the same CVs. This suggests that the
bath should be at least of the size of the muscle to correctly
capture the magnitude of the CVs.

Similarly to the simplified case studied above, the conduction
velocities strongly depend on the muscle curvature. Still,
curvature has small effects on the bipolar signals. In Figure 9,
we show the bipolar signals recorded at 1 kHz for the different
bath sizes at three selected curvatures. Specifically, we show in
Figures 9A-C the bipolar signals recorded for bath sizes between
0 and 2 mm, and in Figures 9D-F the bipolar signals recorded
for bath sizes between 1.5 and 6 mm. These plots also suggest
that a bath size of at least 1.5 mm is needed to correctly capture
the bipolar signals.

1.5 mm, we vary the bath thickness

3.4. Patient-Specific Left Atrial Posterior
Wall

In Figure 10, we show the solutions of the bidomain model on the
patient-specific LAPW. More specifically, we show Figure 10A,
the endocardial activation times (black isochrones at about 10
ms) when using the bath-loading conditions. In Figure 10B, we
show the extracellular potential in the muscle and in the bath
regions at time ¢t = 40 ms. In Figure 10C, we show the shape
of the wavefront at time t = 80 ms without a bath. The wavefront
is highlighted in white, and the corresponding straight wavefront
is depicted in the dashed green line. The corresponding results
in the flattened LAPW are shown in Figures 10D-F. While in

the flat geometry the wavefront remains straight, in the curved
domain transversal conductivity and boundary conditions lead
to a transmurally curved wavefront.

Finally, we show in Figure 11 the distributions of the
endocardial CV evaluated using (8). The CV of the LAPW and of
the flattened LAPW have the same distribution if a bidimensional
manifold is considered, where the most frequent conduction
velocities are around 74-76 cm/s; see Figure 11A. Additionally,
in the flattened LAPW, the thickness of the muscle does not
influence the endocardial CV distribution; see Figure 11B. In the
curved LAPW, the small thickness of the muscle is sufficient to
slow down the endocardial conduction velocities; see Figure 11C.
This is represented by the broader distribution of the 3D
simulation in the CVs smaller than 70 cm/s. Additionally,
the peak of the three-dimensional distribution corresponds to
slightly slower CVs of about 72-75 cm/s. A similar difference
can be noted also when comparing the distributions of the
endocardial CVs for the flat and curved three-dimensional
domains; see Figure 11D. When the bath-loading effects are
considered; see Figure 11E, the differences are smaller but still
noticeable: the peak of the distribution slows down from 85
to 84 cm/s and CVs smaller than 80 cm/s are more frequent
throughout the domain.

4. CONCLUSIONS

Measurements of endocardial CVs can be used to characterize
the electrophysiological health of the tissue substrate in patients
with atrial fibrillation (AFib). CV is known to be affected
by membrane excitability, front curvature, fiber orientation,
and tissue anisotropy (Roberts et al, 1979; Rogers and
McCulloch, 1994; Kléber and Rudy, 2004). In patients with
persistent AFib, the morphological structure of the left atrium
is correlated with pro-arrhythmic wave dynamics (Song et al.,
2018). Heterogeneous atrial wall thickness is believed to
contribute spiral wave localization or drift (Yamazaki et al., 2012;
Biktasheva et al., 2015) and to support scroll waves underlying
AFib maintenance (Yamazaki et al, 2012). The regional left
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FIGURE 9 | Bipolar signals \/g — \/é recorded at 1 kHz for three selected curvatures k = /2 cm™1,0 cm, /2 cm~" for different bath sizes and muscle thickness
¢m = 1.5 mm using the modified version of the Courtemanche atrial ionic model. (A-C) Bipolar signals for bath sizes between 0 and 2 mm. (D-F) Bipolar signals for
bath sizes between 1.5 and 6 mm. An overlap of the data has been used between the top and bottom rows to better understand the differences in signals for different
bath sizes. The curvature of the domain does not play a major role in the recorded signals. Large differences in the signal amplitudes can be found for bath sizes
smaller than 2 mm. Although minor differences can also be noted for bath larger than 1.5 mm, the amplitude of the signals is well captured for baths of size at least

3 mm.
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FIGURE 10 | (A-C) Solution on the flattened posterior wall. (D-F) Solution on the patient-specific left atrial posterior wall. (A,D) Comparison of the endocardial
activation times for a muscle size of 1.5 mm and the bath size of 2.85 mm. The curved geometry has slower conduction velocities. (B,E) Comparison of the
extracellular potential Ve at t = 40 ms. (C,F) Comparison of the wavefront when no bath is considered. The front in the curved geometry deviates from being straight
through the thickness of the muscle. We show in the dashed green line the straight profile.
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FIGURE 11 | Distributions of the nodal endocardial CVs for the patient-specific LAPW. Simulations were run considering 2D (neglecting thickness) and 3D
representations of the posterior wall (PW). To investigate the role of curvature, simulation were run on a flattened version of the posterior wall (flat). We also considered
the case the of intracardiac bath-loading conditions (bath). The 2D simulations resulted in very similar distributions (A), where the most frequent conduction velocities
are around 74-76 cm/s. The conduction velocity distributions are also very similar when one considers a 2D and 3D flattened posterior wall (B). On the contrary, in the
actual curved posterior wall, the thickness of the tissue influences the distributions of the conduction velocities: the thickness of the muscle leads to a broader
distribution of slower conduction velocities (C). Similarly, the broader distribution of slower conduction velocities can be noted comparing the thick flattened and the
actual posterior wall simulations (D). When the bath is added to the simulation (E) the endocardial conduction velocities are substantially increased and the differences
between the curved and the flattened geometries are reduced although they can still be appreciated.

atrial wall thickness has been strongly correlated with the
dominant frequency, Shannon entropy, and the presence of
complex fractionated atrial electrogram, associated with diseased
tissue (Song et al, 2018). In addition, it has been shown
that electrical dissociation between the epicardial layer and the
endocardial layer during AFib increases stability and complexity
of the AFib and is more pronounced in regions of thicker
atrial wall (Eckstein et al., 2010). Along with wall thickness,
curvature changes in wall geometry can also contribute to the
initiation and maintenance of reentries by promoting wave-
breaks (Rogers, 2002). Rogers showed that an expansion of
the diffusive term of the monodomain model in terms of
curvilinear coordinates reveals the role of curvature and muscle
thickness on CVs (Rogers, 2002). For a spiral wave on a spherical
manifold, an analytical expression for the angular velocities as a
function of the curvature can be derived (Davydov and Zykov,
1991). These findings suggests that even under spatially uniform
electrical and membrane properties, the complex geometry of
the heart can destabilize wavefronts, causing fragmentation
and complex activation patterns (Rogers, 2002). Rogers found
that propagation was only affected by surface curvature when
curvature was present in two directions (Rogers, 2002). In our
simulations of an initially planar wave, we also found that that
surface curvature in one direction does not influence propagation
if the muscle is represented by a surface in three dimensions.
Our simulations on a surface representation of a patient-specific
left atrial posterior wall (LAPW) showed that the distributions

of CVs are not influenced by the Gaussian curvature (curvature
in two directions). As soon as muscle thickness is incorporated,
curvature in one direction is sufficient to affect wavefront
propagation speed.

We started our investigation by considering the role of
thickness and curvature without bath-loading conditions. As
expected, CVs are not influenced by muscle thickness if no
curvature is imposed on the domain. Additionally, CVs are
not influenced by curvature whenever the muscle thickness is
negligible (e.g., 25 pm). This situation corresponds also to the
manifold representation of the atria in some computational
models (Vigmond et al., 2001; Zemlin et al., 2001; Virag et al.,
2002; van Dam and van Oosterom, 2003; Weiser et al., 2010;
Patelli et al., 2017). For larger muscle thicknesses, geometrical
curvature influences the propagation of the electrical signal. For
negative curvatures, the signal propagates faster, whereas for
positive curvatures, the signal propagates with decreased CVs.
For thin muscles (up to about 1 mm), the thicker the muscle
the slower (faster) the CVs for positive (negative) curvatures.
This relationship between curvature, muscle thickness, and CV is
analogous to the well-known dependence of propagation efficacy
on wavefront curvature (Tyson and Keener, 1988; Rogers and
McCulloch, 1994; Rogers, 2002). We have shown that these
changes in CV take place even without considering variations in
the transmural properties of the muscle.

Under conditions with uniform transmural properties one
might assume that a planar wavefront remains planar for any
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curvature. The term planar wavefront is used in analogy with the
theory of plates, in which straight lines normal to the mid-surface
remain normal to the mid-surface after deformation. In a similar
sense, we understand that a planar wavefront is a front that is
parallel to a straight line normal to the mid-surface and remains
normal for any curvature of the domain. We have demonstrated
in our tests that this assumption holds only under isotropic
conditions. When anisotropy is introduced, the wavefront in
curved domains does not remain planar. The transmural shape
of the wavefront depends on two factors: (i) the anisotropy ratio
and (ii) the boundary conditions. Even in more refined versions
of the surface-based models of atrial electrophysiology (Chapelle
etal., 2013), derived from asymptotic analysis averaging through
the thickness, these factors are not well captured. For example,
the surface-based models cannot represent the dissociation of
endocardial and epicardial electrical activities during fibrillation.
Single layer surface models have been improved by introducing a
second layer to account for a more three-dimensional character
of the fibrillatory conduction (Gharaviri et al., 2012; Labarthe
et al,, 2014; Coudiere et al., 2017). Comparisons of these bilayer
models with three-dimensional simulations are very limited and
do not consider the possible influence of geometrical curvature
on the electrical propagation. We have also shown that even
under isotropic conditions where the fronts remain planar in
curved domains, the endocardial CVs depend on the curvature.
These results show that the fully three-dimensional atrial models
are necessary to accurately capture the propagation of electrical
signals and the corresponding conduction velocities on the
endocardial surface.

A number of studies have shown that bath-loading conditions
can increase conduction velocities (Roth, 1991, 1996; Henriquez
et al,, 1996; Srinivasan and Roth, 2004; Bishop et al.,, 2011).
Comparing Figures 3 and 5, the CV for a muscle thickness
of 25 pum increases from 74 to 104 cm/s in the presences
of a bath. But as in the cases that omit the bath, curvature
does not play a major role in determining the velocities. For
muscle thicknesses between 0.5 and 2 mm, we have found that
curvature in the presence of a bath acts to increase endocardial
conduction velocities, but, in accordance with Roth (1991), the
differences between the various thicknesses are smaller than they
are without a bath. For positive curvatures, we have found that
when no bath is considered, changes up 10% of the planar CVs
can be measured. Although the curvature effect is smaller with
bath-loading conditions, changes of up to 6% were found. These
variations in CVs can actually be measured by electroanatomic
mapping systems. We also found that changes in CVs for
negative curvatures were more pronounced. For large negative
curvature, we found variations of more than 10 cm/s. Even if
these results may not be applied directly to the measurements of
the CVs on the LAPW, which has mostly positive curvature, they
highlight the strong correlation between structure and speed of
propagation. We conclude that in the presence of bath-loading,
three-dimensional atrial models are still necessary to accurately
capture the propagation of electrical signals and their conduction
velocities. To reduce the computational cost when bath-loading
conditions are considered, and the main interest is the evaluation
of endocardial conduction velocity during normal propagation,

it could be possible to consider a uniform atrial thickness of
about 1 mm. On the other hand, this approximation may fail to
correctly represent endo-epicardial dissociation and transmural
breakthrough during Afib. In accordance to the results shown
by Bishop and Plank (2011), in our simplified test case, fixing
the muscle thickness at 1.5 mm, a bath size larger than 1.5 mm
was necessary to correctly capture endocardial CVs. The effects
of curvature on CVs are important for all bath sizes and the same
considerations as in the case with no bath-loading conditions
described above hold.

The above considerations, drawn from a simple two-
dimensional test case, were found to also hold in realistic
geometries. Specifically, we have reconstructed a human model of
the LAPW, assuming a uniform fiber field, in which the direction
of anisotropy was obtained from a scalar harmonic potential. We
solved the anisotropic bidomain model considering: (i) only the
endocardial surface; (ii) only the atrial muscle with thickness 1.5
mm; and (iii) the atrial muscle with an intracardiac bath of 2.85
mm of thickness. Additionally, in patient-specific geometries, it
is not possible to precisely control the direction of propagation.
Therefore, to study the role of curvature, we recreated a flattened
version of the LAPW. Endocardial conduction velocities were
computed at each vertex of the triangulation of the domain
using weighted averages based on the gradients of the activation
times. Comparing the distributions in the various scenarios, we
have concluded that curvature and muscle thickness can strongly
influence the measured conduction velocities. In fact, we have
found a shift in the peak CVs, with a reduction of about 2-4
cm/s, when comparing the distributions of the three-dimensional
patient-spceific geometry with those of a manifold or a flattened
representation of the LAPW. More importantly, when muscle
thickness and curvature are included, the overall distributions
have slower decays on the left and faster decays on the right. A
two-sample t-test (Snedecor and William, 1989) has determined
that the difference in two distributions means is statistically
significant (p value = 0). This behavior, shown in Figure 11, leads
to an overall slow down of the propagation of the electrical signal.

Because clinical CV maps are derived from extracellular
electrograms, we also investigated how bipolar signals are
affected by muscle thickness, curvature, and bath size. To mimic
clinical conditions, the unipolar signals were sampled at 1 kHz at
two points on the endocardial surface at a distance of 2 mm. We
found that curvature does not play any substantial role on the
electrogram morphology. On the other hand, muscle thickness
and bath size can influence the amplitude of the signals. Still, the
differences for a bath size larger than 1.5 mm were small. A major
difference was found when approximating the muscle thickness
with a bidimensional manifold. This corresponds to the test with
a muscle thickness of 25 um. In this case, the amplitude and the
shape of the signals were very different from the cases in which
the muscle thickness was between 0.5 and 2 mm. In particular,
we recorded a maximum peak smaller than 1 mV for 25 um
muscle thickness, while for thicker muscles the peak was greater
than 1 mV. Given the faster CVs for the thin muscle case, the
maximum peak was recorded earlier than for thicker muscles.
We also note that, accordingly to the discussion above on CVs,
the time at which the peak bipolar signal is recorded depends
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on the muscle curvature. This finding suggests the use of three-
dimensional models for atrial electrophysiology for accurately
simulating surface electrogarms.

To verify that our findings were not largely affected by the
numerical methods used, we also solved the bidomain model
with a cubic reaction term in place of the Courtemanche ionic
model. This simple reaction model can be used to represent a
propagating front guaranteeing a second order convergence of
the numerical method used herein (Rossi and Griffith, 2017).
The details of this model and the results can be found in the
Supplementary Material. Except for some differences in the
details of the registered bipolar signals due to the different
shape of the propagating pulse, the same qualitative behavior
with respect to muscle thickness, curvature, and bath size was
found. This suggests that our findings obtained using numerical
methods with a suboptimal order of convergence are correct.

In conclusion, we have found evidence that even under
homogeneous conditions, a surface-based model of the atria is
not accurate in capturing the endocardial CVs and magnitude
of the endocardial bipolar signals. In general, the change in
CV for different curvatures is a function of muscle thickness
(Figure 3). This effect is reduced in the presence of an adjoining
bath. For the left atrial posterior wall with positive curvature,
the electrical signal propagates more slowly on the endocardial
surface than it would on a flat region. It has been shown
in the ventricles that regions of slow conduction regions are
correlated with anatomical sites critical for tachycardia (Irie et al.,
2015). This slowing seen during curvature may be exacerbated
under compromised electrophysiological conditions. The effects
of geometry and bath-loading on conduction is important if CV
is to be used as an index to indicate regions with fibrosis or poor
conductivity. From the computational point of view, the findings
suggest that models of atrial electrophysiology used to guide and
understand endocardial catheter measurements should be fully
three-dimensional and account for bath-loading effects with a
simulated bath size of at least 1.5 mm was necessary for our
simulation to get consistent CV measurements.

5. LIMITATIONS

Our simulations had several limitations. First, we considered
uniform muscle thicknesses between 0.5mm and 2mm and
uniform curvatures. The atrial wall (Bishop et al., 2015) thickness
varies and has been shown to affect wavefront dynamics in
atrial fibrillation (Rogers, 2002; Biktasheva et al., 2015; Song
et al, 2018). Although the cases we considered are within
the range of left atrial wall thicknesses (Bishop et al., 2015),
measurements of the LAPW have shown that the muscle
thickness can be as large as 5,mm superiorly and 8 mm
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Cardiac contraction is coordinated by a wave of electrical excitation which propagates
through the heart. Combined modeling of electrical and mechanical function of the heart
provides the most comprehensive description of cardiac function and is one of the latest
trends in cardiac research. The effective numerical modeling of cardiac electromechanics
remains a challenge, due to the stiffness of the electrical equations and the global
coupling in the mechanical problem. Here we present a short review of the inherent
assumptions made when deriving the electromechanical equations, including a general
representation for deformation-dependent conduction tensors obeying orthotropic
symmetry, and then present an implicit-explicit time-stepping approach that is tailored
to solving the cardiac mono- or bidomain equations coupled to electromechanics of the
cardiac wall. Our approach allows to find numerical solutions of the electromechanics
equations using stable and higher order time integration. Our methods are implemented
in a monoalithic finite element code GEMS (Ghent Electromechanics Solver) using the
PETSc library that is inherently parallelized for use on high-performance computing
infrastructure. We tested GEMS on standard benchmark computations and discuss
further development of our software.

Keywords: cardiac arrhythmias, electromechanics, cardiac modeling, ionic models, anatomical models

1. INTRODUCTION

The heart is an electromechanical pump whose mechanical contraction is initiated by electrical
activation, in a process called excitation-contraction coupling. In normal circumstances,
contraction is highly synchronized, resulting in an efficient throughput of oxygenated blood to the
body. Failure in doing so can lead to sudden cardiac death. The contraction also affects excitation
via the process called mechano-electrical feedback. An example of mechano-electrical feedback
that has fatal consequences is commotio cordis (Maron and Estes, 2010), a long-known (Akenside,
1763; Meola, 1879; Nesbitt et al., 2001) phenomenon where a blow to the chest (even without
damaging the heart) may cause ventricular fibrillation. Commotio cordis is still an important cause
of sudden cardiac death in young athletes (Maron, 2003). The underlying mechanism of mechano-
electrical feedback is caused by several factors, including stretch-activated ionic channels (Kohl
et al., 2001). Although much is already known about the subcellular contributions to mechano-
electrical feedback (Quinn et al., 2014), it is still unclear how these translate to macroscopic scales.
Computational models can further help understand the mechanisms and consequences of cardiac
mechano-electrical feedback up to the organ level.
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The heart is mostly modeled as a continuum via partial
differential equations (PDEs). For the spatial coupling between
cells, the cardiac mono- or bidomain equations (Keener and
Sneyd, 2009) are commonly used, in which any specific
model for individual cardiac cells can be inserted. For the
mechanical problem, the most commonly used are the PDEs
of finite (hyper)elasticity (Nash and Hunter, 2000). The joint
solution of these equations is a considerable numerical challenge.
The difficulties largely originate from the different physical
interactions that occur on a wide range of spatial and temporal
scales (Plank et al., 2008; Keyes et al., 2013). The multiphysics
nature makes it impossible to use a general-purpose black-box
solver for this task. Solvers can only be optimal if they use as
much information as possible about the problem. For example,
implicit/explicit integrators need to know which processes are
fast or slow, field-split preconditioners (Brown et al., 2012; Liu
and Keyes, 2015) need to be able to extract fields belonging to
different physics, and multigrid (Briggs et al., 2000; Trottenberg
et al., 2000) and domain decomposition (Quarteroni and Valli,
1999; Smith et al., 2004) solvers need information about the
meshes and discretizations.

In recent years, computational modeling of cardiac
electromechanics has become an active field of research see
e.g., (Goktepe and Kuhl, 2010; Lafortune et al., 2012; Land
et al., 2012; Fritz et al., 2014; Rossi et al., 2014; Franzone et al.,
2015; Augustin et al., 2016). However, different groups often use
different descriptions for the same problems with different forms
for deformation-dependent conduction tensors and sometimes
convective terms in the undeformed configuration. In addition,
current electromechanics codes are often the result of ad hoc
coupling methods between the electrophysiology and finite
elasticity codes, limiting time integration to only first order
numerical schemes and poor stability, although some approaches
are known to address these stability issues (Niederer and Smith,
2008; Pathmanathan and Whiteley, 2009). This problem is
common in other fields that use multiphysics (Keyes et al., 2013).

Our contributions in this paper are the following. First,
we give a consistent derivation of the continuum equations
of coupled electromechanics of the heart based on basic
principles from geometry and physics and the clarification of the
constitutive equations used. From this we show that there are
no convective terms in the undeformed configuration and that
the variety of deformation-dependent conduction tensors from
literature are all special cases of a more general form that we
present here. Second, we generalize Euler-based implicit-explicit
schemes for electromechanics to higher order implicit-explicit
Runge-Kutta schemes, based on the knowledge of fast/slow
dynamics. Third, we explain on how to solve the resulting non-
linear implicit equations from a general multiphysics perspective.

This paper is structured as follows. In section 2 we introduce
the necessary notations and concepts and present the strong
and weak form for the continuum electromechanics equations,
followed by a brief discussion on how to discretize the weak form
equations using finite elements in section 3. Next, we discuss on
how to discretize the electromechanics equations in time using
implicit-explicit schemes and how to solve the resulting non-
linear equations in 4. Finally, in section 5 we explain how we

implemented this using PETSc (Balay et al., 1997, 2016a,b) in our
GEMS (Ghent ElectroMechanics Solver) code, and give examples
of numerical results in section 6.

2. PHYSICS

In this section we introduce the mathematical basis for physical
modeling in the moving domain, distinguishing between the
Eulerian and Lagrangian viewpoints. Then we show how the
balance equations (i.e., physical conservation laws) need to be
closed by constitutive equations. By imposing symmetry (e.g.,
a locally uniaxial medium), the constitutive equations involving
tensors cannot be chosen freely, but need to be of certain form
which we here propose and discuss. We conclude by splitting the
equations in fast and slow components, which will be respectively
treated implicitly and explicitly during time stepping in section
4. At the end of this section, we will have cast the modeling
equations in variational form, suitable for use in the finite
element approach.

2.1. Definitions and Notation for

Geometrical Concepts

To formulate the problem of electromechanics, it is important
to understand the underlying geometry. Since we will consider
continuum equations here, it is natural to consider them on a
manifold, i.e., a “curved” space which locally resembles Euclidean
space. For additional background material we refer to Marsden
and Hughes (1994) and Frankel (2012).

Let B be the material manifold of dimension m. This is a
reference manifold for our body. For an excitable surface, m = 2
and for a three-dimensional tissue, m = 3. On every patch of B,
we define material coordinates X/, I = 1,.., m.

The space in which the body moves is given by the spatial
manifold S (which is sometimes called the ambient or target
manifold), of dimension n. For example, if an excitable surface
is restricted to move in a plane, n = 2. However, in the general
case where the tissue can move in 3D, n = 3. On every patch of
S, we define spatial coordinates x'.

We will assume that we have a metric for these manifolds,
which we denote by resp. G and g, so that we have Riemannian
manifolds. In the simplest case (which we will use further) S
will be n-dimensional Euclidean space, such that x' are Cartesian
coordinates x, y,z, and B will be an open subset of Euclidean
m-dimensional space. However, a non-Euclidean metric on B
can be important in growth and remodeling phenomena (Ozakin
and Yavari, 2010), e.g., hypertrophy and thermoelasticity (Yavari,
2010).

A configuration of BB is a mapping ¢ : B — S which represents
the deformation of the body and we will often use the notation
x' = ¢ The set of all configurations of B is called the
configuration space C and is an infinite-dimensional manifold.

The tangent map Top: TB — TS, Top(X, V) = (¢(X), Dp(V))

is called the deformation gradient F and is F’I % in
components. This tells us how a tangent vector at a point X € B
transforms under ¢.
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Another important concept is the deformation tensor C, which
is the pullback of the metric g: C = ¢*g, or in components Cjj =

F’Ig,]F]] Note that the squared infinitesimal distance between

nearby points with coordinates X! and X? +dX” or x' and x + dx’
is ds? = gjidx'dy’ = CyydX'dX’, showing that Cy is a measure for
how length and angles between fixed pairs of points in the tissue
change under a deformation. If we pull back the volume form dv
on S to BB, we get ¢*dv = JdV, where dV is the volume form on

Band] = ‘/7‘;(:‘; det F the Jacobian of the deformation.

The strain in the tissue will depend on how the current length
and angles relate to the reference case, which is quantified by the
strain tensor E = ¢*‘%_G. Since ¢ is an isometry only if ¢*¢g = G,
E measures the deviation between the current deformation and
an isometry.

In cardiac contraction, the configuration (or deformation) ¢
is time-dependent, which can be represented by a curve C in
configuration space, i.e., a mapping R — C;t — ¢, called the
motion. The material velocity and acceleration are then defined
to be respectively the first and second time derivatives of the

; i .
motion. Their components are given by V! = % and A" =
av’

at ‘
Since we use Euclidean space for S, we have y]’k =0.

+ (y]’k o ¢)VIVE, where )/]’k are connection coefficients on S.

At this point, it is useful to discuss the Eulerian and
Lagrangian viewpoints. Given the above definitions, any objects
that are defined on B are called Lagrangian or material, while
the concepts defined on S are called Eulerian or spatial. The
Lagrangian and Eulerian point of view are equivalent, because
anything that is defined in one can be transformed to the other.
For cardiac tissue it is natural to use the Lagrangian framework.
This has the advantage that we do not need convective derivatives
in the description.

To model the cardiac microstructure, i.e., the fiber, sheet and
normal direction, we will use frame fields, which are also called
vielbeins in physics. Frame fields are a set of orthonormal vector
fields. They span at each point of a manifold a basis for the
tangent space. If G is the metric of our (material) manifold and
{Ea}i_, the frame field, the orthonormality condition is

G(Ea, Ep) = 84s- (1)
The dual of the frame field is denoted E4 (with upper indices) and
called the coframe field. It is defined to obey EA(Ep) = 82, such
that it can be used to write the metric in the simple form

m
G= ZEA ® EA.
A=1

(2)

We will denote the components of the frame field E4 in the
coordinate basis by E}, and of the coframe field E* by EZ.

2.2, Balance Equations

Although the bidomain and elasticity equations are well-
known, we will still derive for consistency the equations of
cardiac electromechanics here starting from basic continuum
balance laws. This will allow us explicitly mention assumptions

and approximations made, and to emphasize that cardiac
electromechanics is more than just the sum of bidomain and
elasticity equations, giving rise to more complicated constitutive
equations (such as deformation-dependent conduction tensors).

Our starting point are physical conservation laws: balance of
charge in the intra- and extracellular domains, no accumulation
of total charge, balance of momentum, and the dynamics
of the internal variables (such as gating variables and ionic
concentrations):

0Q;

9t + DIV Ji = —Iion, (33)
d
a% + DIV Je = Lion, (3b)
8 .
(Qi+Qo) _ 0. (39
at
PRrefA — DIVP — ppeB = 0, (3d)
oI
— =R, 3
o (3e)

where Q; and Q, are the intra- and extracellular charge densities,
Ji and ], are the intra- and extracellular current densities, pper is
the reference mass density, A is the acceleration, P the first Piola-
Kirchhoff stress tensor, B is the body force (e.g., gravity), I is a
column matrix of the internal variables and R are their reaction
rates. Note that all quantities live on the material manifold 5 and
DIV is the divergence operator on B.

The assumptions in the bidomain formulation are the
following. First, the cell membrane can be modeled as a capacitor:
Qi — Q. = 2C,, Vyyy, where C,, is the capacitance per volume and
Vim = Vi — V, the transmembrane voltage. Second, the intra-
and extracellular space are ohmic conductors, with intra- and
extracellular conductivities ¥; and X, . Thus we get the following
set of equations:

A(CpV,
% + DIV (Z; - GRAD V,,)) + DIV (%; - GRAD V,) = —Iipn,
(4a)
DIV (X; - GRAD V,,) 4+ DIV ((Zi4) - GRAD V,) = 0,
(4b)
ar
— =R,
ot
(4¢)
PrefA — DIVP — pgeeB = 0.
(4d)

An assumption often made in cardiac mechanics is the neglect
of the inertial term pg.fA. This is justified because sound waves
occur on a much faster time scale than the electrical waves in
cardiac tissue: the ratio of the speed of sound to conduction
velocity is around 25. This was also validated numerically in an
electromechanical model of a 1D fiber (Whiteley et al., 2007).

2.3. Constitutive Equations
To close Equations (4) we need to specify constitutive equations
for X;, o, Lion, R, and P. We will only consider the dependencies
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as pointwise functions of material position X, transmembrane
potential V,,, internal variables I" and deformation C:

% = %X, 0), (5a)
Te = 2e(X, O), (5b)
Tion = Tion(X, Vi, T, C), (5¢)
R=R(X, Vp, C) (5d)
P =FS(X,T,Q). (5¢)

Instead of working with a function P for the first Piola-Krichhoff
stress tensor, we directly work with a function S for the second
Piola-Kirchhoff stress tensor, because it is symmetric. It is also
possible that the material capacitance depends on deformation,
and therefore we write C,, = C(X, C). Based on the symmetries
of the material we can deduce more specific representations for
the scalar (Ijpn, R, and C,,) and symmetric second order tensor
functions (2, =, ). Because of the specific microstructure of
cardiac tissue, we only focus on orthotropic materials, but more
general symmetries based on crystal groups are possible (Smith,
2012). For the following we will use the notation {Ea} ac(r,s,n} for
the local fiber, sheet and sheet normal directions.

Let us start with the scalar functions. It can be shown
(Itskov, 2013) that every scalar-valued function of a symmetric
rank-2 tensor M, such as the deformation tensor C, the second
Piola-Kirchhoff stress tensor S and the conduction tensors
%, Xe, which is invariant under orthotropic symmetries
can be written as a function of the seven invariants
{MFE, Mss, MNN» (MFs)?, (Mpn)?, (Msn)?, MpsMsn MNF}. If
det(M) = 1, (e.g, when M is the deformation tensor of
an incompressible material), these seven invariants are not
independent anymore and we can leave out the last one. In that
case our scalar constitutive equations would be a function of
the six invariants {Mgg, Mss, MNN, (Mps)z, (MFN)Z, (MSN)Z}.
Often f,-on and R are taken to be a function of the fiber stretch
L = /Cgr only, see for example Niederer et al. (2006) and
Panfilov et al. (2007).

Orthotropic tensor-valued functions T of a symmetric tensor
M can be shown to be of the form (Itskov, 2013)

o= )

Ae{F,S,N}

—I—'l%A(M'EA@EA—FEA@EA'M)

|:&A (EA ® Ep) (6)

+ L (M- Ea @ Ea + A ® Ea - M?)

A

$
+ 5 (M-Ex®Ex —EA® Ea - M)
éA 2 2
+ 7(M "EAQEys—EA®Es- M )}
where &, f, 7, 8, and € are now scalar-valued functions of M.

Note that for i“(M) symmetric S4 = é4 = 0 while for f“(M)
antisymmetric &y = 4 = ya = 0.

When we write out this expression in components of the E4
frame (A, B € {F, S, N}, no summation implied) we get:

N da + &g Ba+ B+ 54— 5p
Tap(M) = ?(SAB + 5 Map
YA+ 7B+ €a—€p
+ (M%) ap. (7)

2

The second Piola-Kirchhoff stress tensor S is symmetric and

in the case that it is hyperelastic (such that SUec) = 2%,

where 1/ is a function of the invariants), the constitutive equation
simplifies to

S(C) = Z

A€{E,S,N}

~

|:&A(EA®EA)+57A(C'EA ® Ey

+Es ® Eg - C)] +pCh (8)

For ventricular cardiac tissue, the Guccione (Guccione et al.,
1995) and Holzapfel-Ogden (Holzapfel and Ogden, 2009)
constitutive equations are popular choices.

Throughout the literature on cardiac electromechanical
modeling, several deformation-dependent conduction tensors
have been proposed. The simplest form is obtained by making
the conduction coefficients ¥4 dependent on the stretch along
the principal material directions: with A4 = 4/C(E4, Ex),

2= > a(ha)Ea®Ea 9)
Ae{F,S,N)
Examples for these are f)A()»A) = X4, ie., deformation-

independent or “gap-junction based” conduction(Bakir and
Dokos, 2015) or Xo(Ag) = % (Colli Franzone et al., 2016). Yet
A

another form for the conduction tensor can be found in Bakir and
Dokos (2015), which they call “spatially based” conduction:

2@ =Jut | Y ZaGWEA®Es|-UT,

Ae{E,S,N}

(10)

where U is the right stretch tensor, i.e., U = +/C. A related form
is (Sachse, 2004):

SO=W-| Y TaCWEa®@Ea|W

Ae{F,S,N}

where W = U™! (]l +0(U — ]l)) and 0 € [0,1] is a parameter
which reduces this conduction tensor to the “spatial based”
conduction for & = 0 (apart from the Jacobian factor) and to
a “gap-junction based” conduction for 6 = 0.

In Goktepe and Kuhl (2010) and Goktepe et al. (2013) the
following transversely isotropic form

3(C) = BiC " + TaniEr ® Er (12)
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was used and in Plank et al. (2013):

$(C) = Z SAEAQEY | -cL (13)

Ae{F,S,N}

This variety of deformation-dependent conduction tensors is
mostly a consequence of the assumptions that were made about
the conduction coefficients, for example one assumes that the
conduction coefficients are constant in the spatial or in the
material frame. However, nothing says a priori if these should
even be constant. So to have realistic deformation-dependent
conduction tensors relationships, the conduction coefficients
should be based on measurements with different deformations.

2.4. Variational Formulation

In view of the time-integration methods which will be presented
in section 4.1, let us split R in fast processes (to be treated
implicitly) and slow processes: R = R + Rg. Furthermore, let
Pgpp1 denote the applied pressure on the pressure boundary of
the deformation ¢ (e.g., the fluid pressure at the endocardial
surfaces). Writing the fast processes on the left-hand side and
the slow processes at the right-hand side, the weak or variational
form for electromechanics can be written as: find V,,, V,, I, ¢
such that

v,
/avmd,—"‘d\u/ 8Vinly ()Y (Vinly + Vely) dvsz 8ViuLiondV
B at B B

(14a)

/ 5Vely (507 Vinly + (Sipe)? Velj)dV =0 (14b)
B

I
‘/BF(af—R[)dV:/ ST RgdV
B ot B

(14¢)

/ 5¢"|Ip{dv+/ 8¢ Poppt] (F~1) 'iNpdS = 0, (14d)
B B

N
for all test functions 8V,,,8V,,8T",8¢. The notation |; was
introduced for the I'th component of the covariant derivative, i.e.,

i a(s¢' P o i . .
Vel = % and 8¢’|I = g;,) +)/j’k§¢’F}f (again, for Euclidean
S the connection y vanishes).

Note that we can write any left-hand side of (14) in the

following form:

v - godS (15)

N B

/B(v-fo+w:f1)dv+/8

where v represents any of the test functions and fy, f, and go are
general functions of V,,, Ve, I, and ¢, their gradients and time
derivatives, time and spatial coordinates. More specifically, we
can summarize all the fast physics by pointwise functions in the
following table:

L fo fi 8o
V| B % VVe+ VY,

Ve ar i+ VVi + (EH—E) -VV, (16)
F W - RI .
¢ p PypJFT-N

For implicit time integration we will also need the Jacobian of the
left-hand side. Its action on the increments AV,,, AV,, AT, and
A¢ is given by

/B(SmeAdeV+/86Vm|I(Zi)U AViulydV (17a)
/stmh(z,-)ﬂ AVl dv (17b)
/B(SVeh(Ei)UAthdV (17¢)
/B(SVell (Zire)! AV dv (17d)
/;381* <y - %) ATdV (17e)

/5¢i|1Ain] A¢f|IdV+/ 5¢"Papp13ij’ AQ|,ds  (17f)
B InB

where y is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
steph,y =h~!)and

- sle)

B =g =M (GRS
- (FY, Y. (18)
and
1y op!
i T (19)
TP,

is called the first elasticity tensor (Marsden and Hughes, 1994).
The expressions (17) can generally be written as

Jbm ol (o] av s [ bl s [, s

(20)
and the pointwise Jacobians can be summarized as
Joo  fir g

(VWl) Ve) Ei
(Ve> Vm) % (21)
(Ve, V) Dite

(r,r) |y -

(¢, 9) A PapplB

where for example (V,,, V,) refers to the derivative of the weak
equation for Vi, w.r.t. V.

3. DISCRETIZATION

In this section we apply standard methods to express the
variational equations in a finite element basis, to obtain a
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large non-linear system to solve instead of continuum partial
differential equations.

We will use the finite element method (Ciarlet, 2002; Brenner
and Scott, 2007; Zienkiewicz et al., 2013) to spatially discretize
the weak forms (14). Let the manifold 5 be triangulated into
E m-simplices {KE}E 1 (cells/elements), each diffeomorphic to

the standard m-simplex K (w1th coordinates SI ): for each e

there is a coordinate map X¢: K — K¢ for which their
ax!

agl
continuous). If we also choose a function space P and a basis
for the dual space ¥ over each element, the triple (K,P, X)
defines the finite element (Ciarlet, 2002). Here we will only use 1%

order Lagrange elements (Brenner and Scott, 2007). Let {(pp}dimp
=1 and {‘Wq}Q be
the quadrature points of a quadrature rule with Q quadrature
points (e.g., Gauss-Jacobi in the case of simplices Karniadakis and
Sherwin, 2013). Then we can define the element basis evaluation,
derivative and integration matrices as (B°) »= ©p(&g) (Df)q b=
) s
;Z’;’(sq) (U97") Fand (W®),, = 84pwq det (J.)

Following (Brown, 2010; Knepley et al., 2013) we discretize the
volume terms

element Jacobians (]e)§ = and their inverse exist (and are

denote the basis functions for P and let {éq}

(22)

/ (v-fo+ Vv:ifi)dv
B

as
el [(Be)waAf(fo) + Z(Df)TWeAe(fl]):| , (23)
e I

where &, is the element restriction operator and A° transforms a
function into function evaluations at the quadrature points. Note
that evaluation of a field u at the quadrature points are evaluated
as u® = B°&,u and their derivatives as Viu® = Di&,u.

The boundary integrals

/ v - godS (24)
avB

are discretized as

Z ‘SeT(f) [(Be(f))TWfAe(f)(go)] ,
!

(25)

where e(f) refers to the neighboring element of f, i.e., we evaluate
at the quadrature points of the face using the neighboring
element’s basis functions and field coefficients.

4. ALGORITHMS

In this section we present IMEX integration schemes, the
resulting non-linear equations and approaches to solve them
numerically for the specific structure of the electromechanical
equations.

4.1. Time Integration Using IMEX Schemes
For systems that have multiple time scales that are well-separated,
we have to choose a time scale that we are interested in. In
studying the long term or slowly varying behavior, the fast
transient processes don’t need to be fully resolved, as these decay
rapidly. These systems are called stiff (see Soderlind et al., 2015
for a discussion on stiffness). Note that in discretized PDEs,
the fastest time scale often comes in the form of a Courant-
Friedrichs-Levy limit (Courant et al, 1928), making it mesh-
dependent.

Explicit schemes require the time step to be of the same order
as the fastest process for stability, so they are very inefficient for
stiff systems. Implicit schemes can step over those fast processes,
but the downside is that they produce large fully coupled non-
linear systems. Implicit-Explicit (IMEX) schemes combine the
best of both worlds: they integrate the fast processes implicitly
and the slow processes explicitly. A class of IMEX methods
are Additive Runge-Kutta Implicit-Explicit (ARKIMEX) schemes
(Ascher et al., 1997; Kennedy and Carpenter, 2001; Giraldo et al.,
2013). They combine two s-stage methods (ERK and (ES)DIRK),
summarized by two Butcher tableaus (Butcher, 2016)

additively to integrate equations of the following form

My = f'(n. 1) + fE (1), 27)

where y:I — RN describes the evolution of the discretized
state, f! and fF are resp. the implicitly and the explicitly treated
functions and M is a mass matrix. The implicit function contains
the fast or stiff physics, whereas the explicit function contains the
slow or non-stiff physics. Often f7 is linear and fE non-linear. The
i-th stage value Y; can then be computed as

i—1 i
Yi=yathy af¥F+ny
=1 =1

where the implicit and explicit stage derivates are given by Y/ =
M_lfI(Y,-, t, +cih) and YiE = M_le(Yi, t, + c;h). The difference
between both terms is that the stage Y; depends on only previous
stages for the explicit part, but also on the current stage for the
implicit part. The numerical constants a{j, ag- follow from the

aly!

Ly, (28)

chosen integration scheme, see the Butcher tableaus (26).
After rearranging, Equation (28) produces a non-linear
equation in Y, if the al, # 0:

My(Y; = Zi) — f/(Yi, tu + cih) = 0, (29)

where y is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
step h, y = h™1). The Jacobian for this equation is

T

J
oM=L ity + e (30)
dy
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and is used while iteratively solving Equation (29) for Y;.
Thereafter, the implicit stage derivative can be simply found as
Y/ =y(Yi—Z) (31)

and the explicit stage derivative by evaluating the explicit
function

YE = M7YfE(Y;, by + cih). (32)
The solution at the next time step is then calculated as
N N
Ynp1 =yn+h Y _BEYE+ 1Y bIY]. (33)

i=1 j=1

Note that if f/ = 0 we have a purely explicit scheme and if
fE = 0 we have a purely implicit scheme. In order to avoid the
need to invert M, we will only use schemes for which al, = bl
and ak bE, the so-called globally stiffly accurate schemes
(Boscarino et al., 2013). Then, the completion step (33) can be
skipped. For a more thorough discussion on the technical aspects,
we refer to Kennedy and Carpenter (2001). In the context of
electrophysiology they were previously applied only to single
cell models, where they have been shown to outperform other
integration schemes (Spiteri and Dean, 2008).

4.2. Non-linear Solvers

The IMEX schemes allow us to put some of the complicated
non-linear dependencies in the right-hand sides, making the
implicit solve easier. If we make the following assumptions, we
can essentially solve the whole non-linear system by solving each
subproblem one after another: the ionic current, the stretch-
dependent terms in the cell models and dependence of the
tension variables on Ca; or V,, must be in the RHS. Now
we can solve for the stage values by doing the following:
first solve the active tension internal variable equations, then
solve the mechanical equations (14d), then solve the bidomain
equations ((14a) and (14b)) together and finally solve the
electrophysiological internal variable equations (14c). This
approach is nothing more than the non-linear Gauss-Seidel
method applied to the fields:

Algorithm 1 Nonlinear Gauss-Seidel

Given initial u = (uy, -+, u,)T
fork=1,---,ndo
Solve Fy(uf,--- ,u}, -+ ,uy) = 0 for uy

end for

During this process, we solve the bidomain and, if possible,
the implicit internal variables equations with a linear solver (to
be specified below), while we solve the non-linear mechanical
equations with Newton’s method. If for some reason some of the
above assumptions do not hold and coupling between variables is
strong enough, more Gauss-Seidel sweeps are done to converge.
Alternatively, one could use the above algorithm as a non-linear
preconditioner (Liu and Keyes, 2015).

4.3. Linear Solvers and Preconditioners
4.3.1. Bidomain

We solve the discretized bidomain equations with conjugate
gradients preconditioned by block preconditioners (Sundnes
et al.,, 2002; Pennacchio and Simoncini, 2009; Bernabeu et al.,
2010; Pavarino and Scacchi, 2011). For this we use PETSCs
FieldSplit preconditioner, allowing us to flexibly choose between
different strategies (Brown et al, 2012) from the command
line. Both blocks are preconditioned with one V-cycle of
PETSc’s native algebraic multigrid preconditioner (GAMG). If
no Dirichlet boundary conditions are given for the extracellular
voltage, we also provide the constant nullspace vector to the
respective block solve.

4.3.2. Mechanics

We solve the linearized elasticity equations arising from Newton’s
method with conjugate gradients, preconditioned with PETSc’s
algebraic multigrid preconditioner. The difference here with
previous work (Franzone et al., 2015; Gurev et al., 2015; Augustin
et al,, 2016) is that this algebraic multigrid preconditioner uses
smoothed aggregation (Vanék et al., 1996), which is more efficient
for elasticity problems (Van et al., 2001; Adams, 2002). We
provide the rigid body modes to PETSc’s GAMG preconditioner
to obtain more accurate coarse spaces, resulting in a significant
drop in iterations. Here we use a full multigrid cycle as this also
helps in lowering the number of iterations of the linear solver at
the expense of only a small percentage more work than a single
V-cycle.

4.3.3. Internal Variables

As the internal variables on different points are completely
decoupled these can be solved easily as small linear systems. Very
often these systems are even diagonal, for example when most of
the stiffness comes from the gating variables.

5. IMPLEMENTATION: GEMS

5.1. Source Code in C Using PETSc

We implemented our code in C using the PETSc library (Balay
et al., 1997, 2016a,b). This allows us to have a large choice
of scalable and efficient algorithms and data structures for the
solution of time-dependent PDE’s, which can be easily changed
or finetuned through command line options. By using PETSC’s
unstructured mesh data structure, we can easily read and write
common mesh formats, (re)distribute meshes and associated data
and we have access to powerful solvers which need access to mesh
and field information (e.g., multigrid and block preconditioners).
More specifically, we used DMPlex (Isaac and Knepley, 2015;
Knepley et al., 2015; Lange et al., 2015) for mesh management
and PetscFE for finite element technology, TS (Abhyankar, 2014)
for time stepping, SNES for non-linear solvers and KSP/PC for
linear solvers and preconditioners. Input and output routines
are coupled to PETSc. Meshes can be read in through DMPlex
if it is of the ExodusIl (Schoof and Yarberry, 1994), Gmsh
(Geuzaine and Remacle, 2009), CGNS (Poirier et al., 1998), MED
(Open CASCADE, 2017), Fluent Case (Fluent, 2006), or PLY
(Wikipedia, 2017) file format. Alternatively, meshes can also
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be created by giving the vertex numbers per cell and vertex
coordinates. Output can be generated using the builtin PETSc
viewers. For example, DM (mesh) and Vec (representing discrete
fields) objects can be stored as HDF5 (The HDF Group, 1997-
2017) data, which can be read by ParaView (Ayachit, 2015)
or Vislt (Childs et al.,, 2012) with XDMF metadata (Kitware,
2017). The extensible nature of PETSc also makes it possible
to implement new solvers and use them through PETSc. This
way we implemented a SNES solver called SNESFieldSplit, which
is the non-linear block Gauss-Seidel solver we discussed in 4.2.
Once this solver knows about the field layout and the equations
per field through the DM, it can automatically do the subsolves.
This is the non-linear equivalent to PCFieldSplit (Brown et al.,
2012), already in PETSc.

5.2. Main GEMS Classes and Usage

The most important part of our GEMS library is the GEMSModel
class. It is responsible for providing all the model-dependent
information such as pointwise residuals and Jacobians,
discretizations, null spaces, and initial guess/conditions
to the appropriate PETSc classes. Current subclasses
include ~ GEMSModelMonodomain, = GEMSModelBidomain,
GEMSModelElasticity, GEMSModelElectromechanics (combining
monodomain and quasi-static elasticity), and GEMSModelFibres
(to create rule-based fiber directions based on solving Laplace
equations, following Bayer et al., 2012).

Typical usage for a non-linear problem is illustrated in 1.
Note that nothing should be done extra to run simulations
in different dimensions besides changing the mesh, which can
be as simple as just changing the filename of the mesh. The
...FromOptions(...) functions are meant to be configured from the
command line or options file. For example, if the GEMSModel
should be changed to GEMSModelMonodomain, the option -
gemsmodel_type monodomain would be added to the command
line or options file.

Listing 1 | Typical usage of the GEMSModel class

MPI_Comm comm;
SNES snes;
DM dm;
Vec u;

GEMSModel model;

/+ Initialize GEMS, PETSc,

options x/
GEMSInitialize(&argc, &argv, NULL, help);
comm = PETSC_COMM_WORLD;

MPI, read

/% Create a DMPlex using, e.g.,
DMPlexCreateFromPFile () x/
DMPlexCreate ... ( comm, ., &dm);

/% Create and configure a GEMSModel x/
GEMSModelCreate (comm, &model);
GEMSModelSetFromOptions (model );

/% Set model—specific discretizations and
equations in the DM x/

GEMSModelSetUpDiscretization (model, dm);

/% Create model—specific near—null space
(this is used by GAMG) x/

GEMSModelCreateNearNullSpace (model, dm,
NULL);

/% Create and initialize the solution
vector x/

DMCreateGlobalVector (dm, &u);

PetscObjectSetName (( PetscObject)u,
"solution");

ModellnitializeSolutionVector (model, dm,

u);

/* Use DMPlex’s internal FEM routines %/

DMSNESSetBoundaryLocal (dm,
DMPlexSNESComputeBoundaryFEM , NULL);

DMSNESSetFunctionLocal (dm,
DMPlexSNESComputeResidualFEM , NULL);

DMSNESSetJacobianLocal (dm,
DMPlexSNESComputeJacobianFEM , NULL);

/* Create and configure the nonlinear
solver and solve x/

SNESCreate (comm, &snes);

SNESSetDM (snes , dm);

SNESSetFromOptions (snes );

SNESSolve (snes, NULL, u);

/% View the mesh x/
DMViewFromOptions (dm, NULL, "—dm_view");
/% View the solution x*/
VecViewFromOptions (u, NULL,

__view");

"
—sol_vec_

/% Clean up x/
SNESDestroy(&snes );
VecDestroy(&u);
ModelDestroy(&model );
DMDestroy(&dm);
GEMSFinalize ();

Further we have a class for the electrophysiological 0D cell
models called GEMSCellModel. Its only function is to give
the pointwise implicit and explicit functions, Jacobian and
initial conditions. Currently implemented cell models include
FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et al., 1962) and
Ten Tusscher-Panfilov 2006 (ten Tusscher and Panfilov, 2006)
models.

5.3. Comparison to Other Cardiac Solvers

One of the main features of GEMS is, that it uses PETSc (and
other third party packages it interfaces) as much as possible and
not just as a linear algebra solver. In particular it uses the DM
object prominently, which makes it easy to input/output meshes
and field data in various formats, feed field and mesh data to
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various advanced (non)linear, often consisting of combinations  (the numbers in the names of these integration scheme names
of subsolvers, etc (for example, the block preconditioners for  reflect the number of explicit and implicit stages and the order
bidomain or incompressible elasticity in which each field has a  of accuracy). As an extra, we also ran the benchmark using
different preconditioner and linear iterative solver). These solvers ~ a large time step of 0.5 ms at a spatial resolution of 0.1
(and their subsolvers) can then be configured just from command ~ mm, to showcase the stability and temporal convergence of
line options, without recompiling. Thus it strives for maximal  the used methods. The internal variables were stored at the
flexibility and easy experimentation. Other cardiac solvers such  quadrature points. In Figure 1 we display the activation times
as Chaste (Mirams et al., 2013) or Continuity (Continuity, 2018)  along the diagonal of the bar geometry. We see that increasing
have already existed for many years and have functionalities  spatial and temporal resolutions have opposite effects on arrival
such as reading generic cell models through CellML and solving  times: increasing spatial resolution raises the arrival time, while
mechanics. But the typical approach to electromechanics is first  increasing the temporal resolution lowers the arrival time. The
order operator splitting with separate codes for mechanics and  faster convergence rate of the arrival time for higher order
electrophysiology. Our library was built with a flexible approach  time integration is also noticeable. For example, for the BPR353
to coupling between different physics from the beginning. To  scheme the arrival times for the time steps of 0.05, 0.01, and 0.005
specify a problem we start with a coupled set of equations are almost indistinguishable. In Niederer et al. (2011) different
(defined by pointwise residuals, right hand sides and Jacobians)  codes were found to have arrival times between 37.8 and 48.7
and through command line options we can configure the solvers. ~ ms at the highest spatial and temporal resolutions. Our arrival
This makes experimentation with different combinations of  times are within those bounds at these highest resolutions. (It is
solvers a whole lot easier and also makes it possible to use higher  inevitable that at lower resolutions the arrival time will deviate
order integration schemes. more.) Execution times for the simulations can be found in
Table 1.

6. NUMERICAL RESULTS 6.2. Electromechanics

6.1. Electrophysiology At this stage of development of our package we decided just
As a first test we did the benchmark for electrophysiology with  to illustrate the solution of electromechanical equations using
the cardiac monodomain equations as described in Niederer  the most simple tools. The comparison of various integration
et al. (2011), with the suggested spatial resolutions of 0.5, 0.2,  methods and constitutive relations will be done at a later stage. As
and 0.1 mm (using linear tetrahedral elements) and temporal  an illustration for the fully coupled electromechanical equations
resolutions of 0.05, 0.01, and 0.005 ms. We did the benchmark of ~ we simulated the contraction of an idealized biventricular
propagation in a 3D slab with three different integration schemes: ~ geometry that was stimulated at the apex. The mesh for this
with FBE111 (forward-backward Euler), the ARS222 (Ascher  geometry was created using Gmsh (Geuzaine and Remacle,
et al,, 1997), and the BPR353 schemes (Boscarino etal, 2013) ~ 2009) with a resolution of 0.2 mm resulting in a tetrahedral

FBEI111 ARS222 BPR353

__60

[%2]

£

g 40

e

o

=20

2

©

© - 3

0.0 10.7 21.4 0.0 10.7 21.4 0.0 10.7 21.4

distance (mm) distance (mm) distance (mm)

————— Ax=0.1 mm At=0.5ms
------ Ax=0.1 mm At=0.05ms
........... Ax=0.1 mm At=0.01 ms
—— Ax=0.1 mm At=0.005 ms
...... Ax=0.2 mm At=0.05ms
Ax=0.2 mm At=0.01 ms
— Ax=0.2 mm At=0.005 ms
______ Ax=0.5 mm At=0.05 ms
- Ax=0.5 mm At=0.01 ms
— Ax=0.5 mm At=0.005 ms

FIGURE 1 | Activation times calculated with the FBE111, ARS222, and BPR353 integration scheme with several spatial and temporal resolutions along the diagonal
of the bar geometry.
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Table 1 | Execution times for Niederer's electrophysiology benchmark.

Scheme Ax (mm) At (ms) Execution time (s)
FBE111 0.1 0.5 420108
FBE111 0.1 0.05 1.27 -10%
FBE111 0.1 0.01 6.34-10%
FBE111 0.1 0.005 1.24.10°
FBE111 0.2 0.05 1.81.10%
FBE111 0.2 0.01 9.00-108
FBE111 0.2 0.005 1.82.10%
FBE111 05 0.05 2.94.102
FBE111 05 0.01 1.48.108
FBE111 05 0.005 3.10-10°
ARS222 0.1 0.5 5.40-108
ARS222 0.1 0.05 2.51-10%
ARS222 0.1 0.01 1.25.10°
ARS222 0.1 0.005 2.48.105
ARS222 0.2 0.05 3.48.10°
ARS222 0.2 0.01 1.77 -10%
ARS222 0.2 0.005 3.44.104
ARS222 05 0.05 4.30-102
ARS222 05 0.01 2.19.10°
ARS222 05 0.005 4.40-10°
BPR353 0.1 0.5 1.10- 10%
BPR353 0.1 0.05 5.27-10%
BPR353 0.1 0.01 2.59-10%
BPR353 0.1 0.005 5.22.105
BPR353 0.2 0.05 7.28.108
BPR353 0.2 0.01 3.57-10%
BPR353 0.2 0.005 7.12.104
BPR353 05 0.05 7.45.102
BPR353 05 0.01 3.67-10°
BPR353 05 0.005 7.15-10°

Simulations were run on 32 nodes of Intel E5-2670 CPUSs, using 1 core per node. See
section 6.1 for details.

mesh consisting of 1529230 cells and 312888 vertices. We used
the algorithm from Bayer et al. (2012) to generate myofiber
orientations. The fiber angle varied from —45° (epi) to 75°
(endo). We used the monodomain formulation and the TNNP06
(ten Tusscher and Panfilov, 2006) model for electrophysiology,
with the same parameters as in Niederer et al. (2011). For the
passive hyperelastic equations we used the Guccione constitutive
equations (Guccione et al., 1995), where a penalty term « /2(J —
1)?> was added to the strain energy and for the active tension
generation we used the Niederer-Hunter-Smith model (Niederer
et al.,, 2006). Parameters were taken from Keldermann et al.
(2010) and k was taken as 350 kPa. Here we used a timestep of
0.5 ms with the FBE111 scheme and we used linear elements for
the transmembrane voltage and deformations, while the internal
variables were stored at the quadrature points. The resulting
activation and contraction sequence can be seen in Figure 2. The
simulation took 7.5 h on 32 nodes of Intel E5-2670 CPUs, using
1 core per node. The electromechanical testing will be continued
in subsequent studies.

7. DISCUSSION AND OUTLOOK

In this paper we presented an overview of the methodology used
in cardiac electromechanics and our numerical approach to these
challenging problems. In particular, in section 2 we presented
a short derivation of the main equations of electromechanics
from basic principles (i.e., geometry and balance equations)
in strong and weak form. We discussed constitutive equations
to close these equations and clearly list all assumptions
made. We derived a general representation of a deformation-
dependent conduction tensor, assuming orthotropic symmetry
and pointwise dependence on deformation and showed that
previous deformation-dependent conduction tensors found in
literature are all special cases of this. Note however, that the
scalar functions in this representation still need to be determined
from experiment. In section 3 we applied standard finite element
methods to express the variational equations in a finite basis,
which can then be solved by the numerical methods in section 4.
There we discussed additive implicit-explicit Runge-Kutta time
integration methods and how with appropriate partitioning of
fast and slow physics the non-linear implicit equations can be
solved more easily by solving smaller problems belonging to
different fields one after another. Efficient (non-)linear solvers
for these problems were also discussed. Further we reviewed the
structure and possibilities of the GEMS library in section 5 and
how PETSc gives us a wide range of tools to solve our PDE’s,
including meshes, I/O and solvers. In section 6 we presented
some numerical results as verification and illustration of the
GEMS library.

Our main conclusion is that additive implicit-explicit Runge-
Kutta time integration methods, combining the advantages
of implicit and explicit integration, work very well for
electromechanical problems. This method allows larger time
steps, with limited complication of Jacobians and non-linear
solves. Our numerical implementation uses the PETSc library
extensively, which gave us access to powerful and scalable mesh
management, time stepping and (non)linear solvers which may
need mesh and field information. One of the things which could
be further researched is whether we can get much advantage
of anistropic mesh adaptation through the PRAgMaTIc library
(Rokos and Gorman, 2013), which has been recently interfaced
to PETSc (Barral et al., 2016). This could also be used to build
mesh hierarchies in a geometric multigrid approach.

The GEMS package is still in the process of further
development. Although the user can access and set all solver
options through the command line, a graphical user interface
may be desirable in the future, both for input and visualization.
Regarding modeling, we currently hard-coded two cell models
(FHN and TP06) and foresee to import more models of cardiac
electrophysiology in a semi-automated way via the CellML
repository (www.cellml.org). We are currently using pressure
boundary conditions on the endocardial surface, which can be
extended with physical models for circulation and valve action.

Our method has been designed to enable strong coupling
between the electrical and mechanical subsystems at every time
step of the simulation, and at the same high spatial resolution,
both for the electrical and mechanical equations. One possible
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FIGURE 2 | Time sequence of electromechanical contraction of a full 3D biventricular cardiac geometry. Color coding shows transmembrane potential.

speed-up factor is the following: currently all field values and  not focus on specific scientific applications. Such simulations
gradients at the quadrature points are calculated for each residual ~ can definitely be performed using our methodology and will be
or Jacobian belonging to some field(s), for maximum flexibility. ~ presented in subsequent papers.
Thus, one may avoid unnecessary interpolation in order to
accelerate the computation of the residuals: if the residual of field ~ AUTHOR CONTRIBUTIONS
A is independent of field B, the value or gradient of field B at the
quadrature points is not needed. AP and HD designed the research. SA implemented the methods.

The use of PETSc enables to parallelize the computation on  SA, HD, and AP wrote the manuscript.
high-performance computing clusters (HPC). Smaller (test) runs,
can be run on a desktop computer, requiring about 32GB of FUNDING
RAM memory to run the biventricular model in Figure 2 with
the TPO6 cell model. There is no significant difference in memory  SA was funded by BOF-Ghent. HD was funded by FWO-Flanders
cost between mono- and bidomain equations, since the latter  during part of this work.
introduces only few new state variables (extracellular potential,
extracellular conductivities). ACKNOWLEDGMENTS

In this paper we have chosen to illustrate our approach using
simple standard problems: the benchmark for electrophysiology ~ The computational resources (Stevin  Supercomputer
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NOTATION

A acceleration

B body force

B material manifold

C deformation tensor

E strain tensor

{Ea}ae(rs,Ny material fiber directions

F deformation gradient

G material metric

g spatial metric

] Jacobian of deformation

P first Piola-Kirchhoff stress tensor
Pappl applied pressure

R reaction rates for internal variables
S second Piola-Kirchhoff stress tensor
S spatial manifold

e extracellular conduction tensor

¥ intracellular conduction tensor

Vv velocity

Ve extracellular voltage

Vin transmembrane voltage

X material coordinates

x spatial coordinates

r internal variables (i.e., ionic concentrations,

gating variables, tensions variables)
deformation field

<
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Diabetic retinopathy (DR) is a leading cause of vision loss worldwide. Microaneurysms
(MAs), which are abnormal outpouchings of the retinal vessels, are early and hallmark
lesions of DR. The presence and severity of MAs are utilized to determine overall DR
severity. In addition, MAs can directly contribute to retinal neural pathology by leaking
fluid into the surrounding retina, causing abnormal central retinal thickening and thereby
frequently leading to vision loss. Vascular perfusion parameters such as shear rate
(SR) or wall shear stress (WSS) have been linked to blood clotting and endothelial cell
dysfunction, respectively in non-retinal vasculature. However, despite the importance
of MAs as a key aspect of diabetic retinal pathology, much remains unknown as to
how structural characteristics of individual MAs are associated with these perfusion
attributes. MA structural information obtained on high resolution adaptive optics scanning
laser ophthalmoscopy (AOSLO) was utilized to estimate perfusion parameters through
Computational Fluid Dynamics (CFD) analysis of the AOSLO images. The HemelB flow
solver was used to simulate steady-state and time-dependent fluid flow using both
commodity hospital-based and high performance computing resources, depending on
the degree of detail required in the simulations. Our results indicate that WSS is lowest
in MA regions furthest away from the feeding vessels. Furthermore, areas of low SR are
associated with clot location in saccular MAs. These findings suggest that morphology
and CFD estimation of perfusion parameters may be useful tools for determining the
likelihood of clot presence in individual diabetic MAs.

Keywords: diabetic retinopathy, microaneurysm, adaptive optics, blood flow, computational fluid dynamics
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INTRODUCTION

As the worldwide prevalence of diabetes mellitus continues to
increase, diabetic retinopathy (DR) remains the most common
vascular complication in diabetic patients (Kempen et al,
2004; Klein, 2007; Ko et al., 2012). The chronic hyperglycemic
state of diabetes results in pathological alterations of retinal
microvascular structures and blood flow (Curtis et al., 2009).
Retinal microaneurysms (MAs), which are outpouchings of the
retinal capillary walls, are one of the earliest clinical signs
in the diabetic eye and are among the key lesions for DR
severity classification (ETDRS_No10, 1991; ETDRS_Nol12, 1991;
Wilkinson et al., 2003; Hirai et al., 2007). Whereas some MAs
do not appear to affect vision, other MAs can be associated
with abnormal vascular leakage caused by the local loss of
endothelial barrier function. In some cases, this may lead to
subsequent retinal edema and associated vision loss (Nunes et al.,
2009; Murakami et al, 2011). MA leakage affecting the local
neural retina can often be detected by fluorescein angiography
(FA), and treated by intraocular injections of anti vascular
endothelial growth factor agents or steroids, as well as macular
laser photocoagulation (Duh et al., 2017).

Several studies have evaluated the pathogenesis and natural
history of MAs using ex vivo (e.g., transmission electron
microscopy and scanning electron microscopy) and in
vivo (scanning laser ophthalmoscopy and optical coherence
tomography) imaging approaches to characterize pericyte loss,
basement membrane thickening, and endothelial proliferation
and disruption (Wise, 1957; Cogan et al., 1961; de Oliveira, 1966;
Ashton, 1974; Moore et al., 1999). One study (Ezra et al., 2013)
proposed using MA-to-vessel radius ratio as a potential marker
for assessing risk of leakage, and suggested that shear stress at the
MA wall may lead to endothelial dysfunction.

Advances in adaptive optics scanning laser microscopy
(AOSLO) have recently enabled non-invasive investigation of the
living human retina with single cell level resolution (~2 pm)
(Tam et al., 2010; Chui et al, 2012, 2013), allowing detailed
characterization of MA features (wall hyper-reflectivity, wall
deformability), morphology (saccular, fusiform, focal bulge,
irregular) and perfusion status (fully/partially perfused or non-
perfused). One recent study (Dubow et al, 2014), which
combined high resolution AOSLO with FA to provide a high-
resolution and high-contrast view of individual MAs, extended
the qualitative morphologic classification into six morphology
groups.

Retinal MAs are known to be highly dynamic lesions.
Over the course of the disease, some lesions will disappear
(possibly due to thrombus formation and revascularization)
while others will either stabilize or grow. A series of studies
(Goatman et al., 2003; Bernardes et al., 2009; Ribeiro et al.,
2013) have characterized MA turnover (defined as the sum of
the MA formation and disappearance rates Ribeiro et al., 2013)
and found this metric to be a predictor of macular edema
progression. However, these studies were limited in their ability
to fully characterize MAs and did not include perfusion status
or morphological characteristics of individual MAs in their
analysis.

In a recent study, we demonstrated the feasibility of
computational fluid dynamics (CFD) analysis to characterize
the hemodynamic environment of the diabetic eye (Lu et al,
2016). Comparable approaches have been extensively used for
the characterization of larger scale vascular lesions, such as
intracranial aneurysms (IA) (Dhar et al, 2008; Chien et al.,
2011). Morphological parameters, such as aneurysm aspect
ratio and non-sphericity index (Chien and Sayre, 2014) have
been identified as risk factors for rupture of IA. Perfusion
parameters, such as velocity, wall shear stress (Tarbell, 2010),
and shear rate have been proposed to study IA progression
and resolution. In particular, a relationship between shear
rate and IA thrombosis has been established (Ribeiro de
Sousa et al.,, 2016), leading to a better understanding of IA
progression.

In this study, morphological and CFD analyses of individual
diabetic MAs were performed based on high resolution AOSLO
technology. Our aim is to develop a method capable of
establishing which MA characteristics are associated with a
higher risk of leakage or clotting. We propose two novel
morphological indices to quantify MA shape and aspect ratio.
In addition, we introduce two CFD-based perfusion parameters
to predict areas with higher risks of endothelial dysfunction and
blood clotting. Finally, we demonstrate how to account for the
pulsatile nature of blood flow in the models development and
investigate the previous indices throughout the cardiac cycle.

METHODS

Imaging Instrument

The AOSLO used in this study was a modified version of
the Indiana system described previously (Burns et al., 2007).
A near infrared superluminesent diode (SLD) with a central
wavelength of 830nm (BLM-S-830, Superlum, Ireland) was
used for imaging. Another SLD with a central wavelength of
780 nm (BLM-S-780, Superlum, Ireland) was used for wavefront
sensing. A micro-electro-mechanical system deformable mirror
(DM, Multi-DM, Boston Micromachines Corp., Cambridge,
MA, USA) provided wavefront correction. The DM has an
active area of 4.95 x 4.95mm and 12 x 12 actuators with a
maximum stroke of 5.5 m. The system uses doubler mirrors
to amplify the usable stroke of the DM (Webb et al., 2004).
The maximum beam size at the exit pupil is 6.5mm. Based
on theoretical calculations, this AOSLO system is capable
of compensating for over 90% of the optical aberrations
from an eye with clear media and a dilated pupil, achieving
~2.5um resolution. With such resolution, MA structural and
perfusion information can be characterized in much greater
detail than previously achievable with standard techniques
such as fundus photography or fluorescein angiography
(Figure 1).

Image Processing and Morphological
Analysis

MA Segmentation and Skeletonisation

The body and feeding/draining vessels of the MAs under study
were manually segmented from AOSLO images. The MA outline
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FIGURE 2 | Segmentation of a partially clotted MA, (a) delineation of the MA body and feeding/draining capillaries against AOSLO movie frame, (b) same delineation
against perfusion map, (c) MA body (red) and MA feeding/draining capillaries (black) were independently segmented, (d) using AOSLO video files for reference, the
perfused (blue) vs. clotted regions (green) within the MA body were also segmented.

was created by using the Fiji/Image] “Polygon Selections” tool
to define series of line segments along the MA wall. The outline
was adjusted based on both the scattered light images (Figure 2a)
and their corresponding “perfusion map” (standard deviation
map) images calculated from the AOSLO frames (Figure 2b).
The “Create Mask” function was used to turn the segmentation
file into a binarized figure file. In the segmentation process,
the length of each feeding/draining capillary was taken to be
roughly equal to the MA body length along the flow direction
axis (see section Hemodynamic Analysis for more details). The
region representing the MA body was differentiated from the
feeding/draining vessels (Figure 2c). In the subset of MAs in
which we could identify blood clots, the perfused versus clotted
areas within the MA body were also segmented (Figure 2d).
Direction of flow was recorded from the AOSLO videos of
each MA. Binary masks defining the two-dimensional projection

of the MA body along with feeding/draining capillaries were
prepared for further processing. In the cases where clots were
present, the clotted area was also included in the binary
mask. We employed the methodology described previously
(Bernabeu et al., 2014) to calculate the MA centerline and
radii along the centerline from the Voronoi diagram of the
pixels defining the boundary of each binary mask (Attali and
Montanvert, 1997). Briefly, the centerline is the subset of the
Voronoi diagram defining the medial axis of the mask. For any
point along the centerline, its radius is given by the largest
circle centered on that point and inscribed within the mask
(Figure 3).

Morphological Analysis
In this work, we propose two novel indices to describe the
morphology of a retinal MA: the body-to-neck ratio (BNR)
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FIGURE 3 | BNR is defined as the largest caliber registered along the
centerline of the MA body (blue arrows) divided by the narrowest caliber along
the feeding/draining vessels (red arrows).

and the asymmetry ratio (AR). BNR provides a measure
of how dilated the MA body is in relation to the caliber
of the feeding/draining capillaries. BNR is defined as the
quotient between the MA body width and the caliber of the
feeding/draining vessels (see Figure 3). Chien et al. employed
a similar measure to characterize arterial brain aneurysms and
found a trend for increases in this index when comparing
aneurysms before and after rupture (Chien and Sayre, 2014).
BNR is computed based on the skeleton/radii analysis described
in section MA Segmentation and Skeletonisation. Briefly, the MA
width and feeding/draining vessel caliber are defined to be the
largest and smallest radii registered along the skeleton of the MA,
respectively.

AR quantifies the degree of asymmetry of the MA body.
AR is defined as the ratio between the larger (A1) and smaller
(A2) areas in the MA body mask to each side of the centerline
(Al divided by A2 in Figure 4, respectively, where A1>A2).
Vorp et al. proposed a comparable measure of asymmetry for
idealized aortic abdominal aneurysm (AAA) geometries and used
it to characterize mechanical wall stress (Vorp et al., 1998).
In subsequent work, Finol et al. studied the impact of AAA
asymmetry on their hemodynamics and found that asymmetry
tends to increase the maximum wall shear stress at peak flow and
to induce the appearance of secondary flows in late diastole in
idealized AAA geometries (Finol et al., 2003). AR is computed
based on the MA body segmentation and centerline. Briefly, the
polygon approximating the MA body is split into two along the
MA centerline and the area of each sub-polygon is subsequently
calculated. Custom Python scripts were developed to calculate
BNR and AR.

Hemodynamic Analysis

Based on the MA skeletonisation previously described and
assuming rotational symmetry, we reconstructed the three-
dimensional luminal surface of each MA under study (Figure 5).
This surface encloses the approximate MA volume including

FIGURE 4 | AR is defined as the projected area on one side of the centerline
(A1) divided by the area on the other side of the centerline (A2), where A1 >
A2. This definition applies to both saccular (left) and fusiform (right) MAs as
shown in this figure.

its body and feeding/draining capillaries. The CFD package
HemeLB (Bernabeu et al., 2014) was used to simulate both steady-
state and time-dependent flow of a shear-thinning fluid modeled
with the Carreau-Yasuda rheology model parametrized for
human blood (Boyd and James, 2007). HemeLB uses the Lattice
Boltzmann Method for the numerical simulation of blood flow.
The interested reader can refer to (Aidun and Clausen, 2010;
Kriiger et al., 2017) for a complete presentation. The velocity
field at the inlet was assumed to be parabolic (Poiseuille flow)
for a given centerline peak velocity. To define this velocity, we
took advantage of recent measurements of blood flow velocities
in parafoveal capillaries by de Castro et al. (2016). Figure 4b of de
Castro et al. (2016) reports velocity values over 4 cardiac cycles
(equivalent to 3.13 s), which we used in the time-dependent flow
simulations, with a mean capillary velocity of 1.69 mm/s, which
we used in the steady-state flow simulations. Furthermore, no-
slip velocity was imposed at the walls and a reference pressure was
set at the outlet. To ensure that the flow field in the MAs is not
affected by the finite length of the feeding/draining capillaries, we
take them to be longer than the entrance length, L., required for
laminar flow to fully develop in a circular straight pipe. This is
given by the expression L, = 0.035% D R, (Bird et al,, 2002),
where D and R, are the diameter and Reynolds number of the
feeding vessel, respectively. In all the MAs studied L, can be
shown to be shorter than D. Therefore, the feeding/draining
capillaries were segmented to be of length comparable to the
MA body length along the flow axis for statistical purposes in
the hemodynamic analyses that follow. Steady-state HemeLB
simulations were run inexpensively in a four-core commodity
hospital-based workstation, while time-dependent simulations
made use of ARCHER, the UK National Supercomputing
Service (http://www.archer.ac.uk). Typical execution times for
the latter ranged between 4 and 10h using 312 cores. All
computational domains were discretized as a regular grid
ensuring a minimum of 8 lattices sites across the narrowest point
in the domain (Bernabeu etal., 2014) and comprised between
45,000 and 520,000 fluid lattices sites.

Our computer simulations generated a description of
the velocity, shear rate, and pressure fields in the whole
computational domain as well as the wall shear stress on the
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FIGURE 5 | The image series shows the process for hemodynamic analysis. (A) The MA is imaged using AOSLO muiltiply scattered light imaging modality; (B) a
perfusion map of the MA is created (calculated based on pixel-by-pixel standard deviation method) highlighting blood flow; (C) a binary mask of the MA is generated
using the outline of the MA and its feeding and draining vessels; (D) a 3-D model of the MA is created under the assumption that it is rotationally symmetric; (E) flow
streamlines, colored according to velocity magnitude, are plotted to show the paths followed by blood inside the MA, arrow indicates direction of flow.
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model surface. In this study, we decided to characterize the
changes in shear rate (SR) and wall shear stress (WSS) present
in the MAs. Low SR has been associated with blood cell
aggregation and clotting (Runyon et al., 2007) and abnormal
WSS levels have been linked to endothelial cell dysfunction
and changes in permeability (Tarbell, 2010). To reduce the
dimensionality of the data and facilitate further statistical
analysis we propose two indices for the characterization of
the hemodynamic state of an MA: the shear rate mean drop
(SRMD) and the wall shear stress mean drop (WSSMD). SRMD
reports the ratio between the mean of the SR field in the
MA feeding/draining vessels and the same measurement inside
the MA body. Similarly, WSSMD indicates the ratio between
the mean of the WSS on the MA feeding/draining vessels
surface and the same measurement on the surface of the
MA body. SRMD and WSSMD are dimensionless quantities.
Finally, in the case of MA displaying clots, we also estimated
SRMD for the clotted and perfused parts of the MA separately.
Custom Python scripts were developed to calculate SRMD
and WSSMD.

Study Cohort

In this study, 20 MAs were imaged from 13 eyes of 11
diabetic patients with varying severity of DR. The patient
and MA characteristics are given in Supplementary Table 1.
In this cohort, 9 of 11 patients had Type 1 diabetes, mean
diabetes duration was 25 years and mean HbAlc was 8.1%.
Informed written consent was obtained from each subject
prior to the performance of any study procedures. This study
adhered to the tenets of the Declaration of Helsinki and was
approved by the institutional review board of the Joslin Diabetes
Center.

Imaging Protocol and Light Safety

Mydriasis and cycloplegia were achieved by instillation of 1
drop each of 1% tropicamide (Akorn, Inc., Lake Forest, IL) and
2.5% phenylephrine hydrochloride (Akorn, Inc., Lake Forest,
IL). Prior to AOSLO imaging, eye axial length (IOL Master,
Zeiss, Germany) was measured to determine the magnification
factor on AOSLO images. Ultrawide field, 200° digital fundus
sphotographs (Optos 200Tx and Optos California, UK) were
taken to determine MA location. During imaging, the subject’s
head was placed on a chin rest, and a head rest was used
against the forehead for secure positioning. Precise head position
adjustment and pupil alignment were achieved using a three-
axis motorized stage (MT3-Z8 Thorlabs, NJ). MAs were imaged
using AOSLO confocal imaging mode and multiply scattered
light imaging mode with 75-frame videos. A 500 wm and 150 pm
pinhole was used for forward scattering image and confocal
imaging, respectively. Two SLDs were used for for imaging
(830nm) and wavefront sensing (780nm). Output power at
the cornea was 200 pW for the imaging SLD, and 70 uW
for the wavefront sensing SLD. The light power was checked
periodically to ensure compliance with the ANSI laser safety
standard (American National Standards Institute, 2014).

Statistical Analysis

The segmentation of all the MAs and clotted regions are
performed by at least 2 trained graders. For agreement between
graders, <10% area variation for each MA and sub-region is
ensured. All statistical analyses are completed using custom
Python scripts and the Statistics package of the SciPy library
(https://www.scipy.org). The Wilcoxon rank-sum test is used
to test for significance in the comparison between groups.
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FIGURE 7 | AOSLO images of the 5 MAs where a clot was identified.
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FIGURE 9 | MA body size by MA groups.

A p < 0.05 is used to reject the null hypothesis that two
sets of measurements are drawn from the same distribution.
Associations between continuous variables are evaluated using
Pearson’s correlation coefficient.

RESULTS

Morphological and Hemodynamic Indices
Twenty MAs were imaged from 13 eyes of 11 diabetic
subjects as shown in Figure 6, 10 were classified as saccular
(5 partially clotted) and 10 as fusiform (none was clotted).
For each MA, projected MA body size, asymmetry ratio (AR),
body-to-neck ratio (BNR), shear rate mean drop (SRMD),
and wall shear stress mean drop (WSSMD) are shown in
Supplementary Table 2.

Analysis of Partially Perfused Mas

In the 5 partially perfused MAs (Figure 7), which had evidence of
clot within the MA body, we calculated the hemodynamic indices
within the perfused and clotted regions of the MA separately
(Table 1).

Among the partially clotted MAs, the SRMD and WSSMD
values in the perfused regions were lower (mean £ SD: 63.36 &+
39.66 and 29.02 + 16.74, respectively) than the values (211.85 +
118.22 and 82.94 £ 30.91, respectively) in the clotted regions.

Asymmetry Ratio Predicts Manual MA

Morphology Classification

All of the MAs in the study were qualitatively classified as saccular
or fusiform according to the taxonomy proposed by Dubow et al.
(2014). AR was calculated for all MAs and was found to be lower
on average in the fusiform group compared to the saccular group
(p < 0.001, Figure 8). Our data indicate that an AR threshold
of ~1.5 reliably distinguishes fusiform from saccular MAs in
this cohort. However, given the degree of overlap between both
groups in terms of AR, it may not be advisable to define a unique
cutoff value for automatic classification. Instead we propose a
semi-automatic approach were MA with an AR below 1.4 and
above 1.8 are automatically classified as fusiform and saccular,
respectively, while those in the 1.4-1.8 region are labeled for
manual classification by graders.

Association of MA Morphology and Size

The area defined by the MA body segmentation, which is
determined from an en face projection (xy plane) of the MA
volume, was calculated for all the MAs in the study and used
as a surrogate measure of MA size. Saccular MAs were found to
be smaller than fusiform MAs (p = 0.004, Figure 9) with some
saccular outliers having comparable size to the fusiform group.
Moore et al. (1999) measured the extent of saccular and fusiform
MAs in the direction perpendicular to the en face projection
(z axis) and found no statistically significant difference. Taken
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FIGURE 10 | Asymmetry ratio index in saccular MAs by clot presence.

TABLE 1 | Perfusion indices of the 5 MA within perfused versus clotted areas.

MA# Region SRMD WSSMD
MA1 Perfused 34.93 16.82
MA1 Clotted 321.68 93.13
MAB Perfused 125.94 56.72
MA6 Clotted 352.52 132.08
MA7 Perfused 33.09 14.91
MA7 Clotted 173.48 58.41
MA14 Perfused 43.51 26.87
MA14 Clotted 112.18 72.41
MA20 Perfused 79.35 29.80
MA20 Clotted 99.41 58.66

together these results could indicate that size variability is more
likely to be observed along the en face cross section compared to
the transverse direction.

Shear Rate Mean Drop Is Higher in MA
Regions Likely to Clot

In the current study, all the MAs containing clots were of
saccular type. MAs presenting clots appeared to have a higher AR
approaching statistical significance in the comparison (p = 0.061,
Figure 10).

Clots were always identified in contact with the MA
wall. We performed hemodynamics analysis of the MAs to
understand the relationship between flow and clot formation.
The flow models were defined to include both the perfused
and clotted portions of any given MA. In the 5 partially
perfused MAs, we found that SRMD and WSSMD were higher
in the regions where the clots were present compared to those
that had not developed clots (p = 0.028 and p = 0.009,
respectively, Figure 11). This speaks in favor of a model where
MA thrombosis occurs in regions adjacent to the wall that
experience low shear rates (hence high SRMD). In agreement
with our results, low SR has been associated with blood
clotting in vitro (Runyon et al, 2007) and with thrombus

formation in intracranial aneurysms (Ribeiro de Sousa et al,
2016). Indeed, despite the obvious structural and hemodynamic
differences between the macro and microcirculation, flow
diverters, which rely on the principle of flow reduction from
the parent circulation into the aneurysm body (hence SR
reduction), are an established treatment for brain aneurysms
(Jiang et al,, 2016) to promote progressive intra-aneurysmal
thrombosis.

Body-to-Neck Ratio Correlates With
Perfusion Changes in the MA Body

Both saccular and fusiform MAs are characterized by a sudden
and non-uniform expansion of the vascular lumen. This change
is most asymmetrical in the saccular class of MAs. This abnormal
morphological configuration has a profound impact on the
hemodynamics of the MA. We propose BNR as a simple metric
for the quantification of hemodynamic abnormalities. Our results
demonstrate that BNR is a good surrogate marker of SRMD
(Pearson’s r = 0.9, Figure 12) and WSSMD (Pearson’s r = 0.83,
Figure 12). Furthermore, mean WSSMD in this cohort was 35.2
with values as high as 78.4 (compared to a theoretical value of
~1 in the absence of MAs) showing the highly abnormal level
of WSS experienced by endothelial cells lining the MA body wall
compared to those in neighboring vessels.

Hemodynamic Changes Throughout the
Cardiac Cycle

Blood flow displays pulsatile characteristics throughout the
cardiac cycle. In our flow models, we can account for this
property by defining a time-dependent inlet boundary condition
based on the velocity traces measured by de Castro et al. (2016).
Based on these simulations, we investigate the changes in velocity
and shear rate throughout the cardiac cycle and their potential
link with MA perfusion status and MA progression.

As expected, we find velocity and shear rate to be
largest during systole, with regions that have developed clots
experiencing reduced velocity and shear rate. We hypothesize
that clots will form in areas of slow flow (i.e., low velocity) due to
a sustained reduction in shear rate throughout the cardiac cycle
(i.e., alow shear rate threshold). This is in agreement with in vitro
studies looking at clot formation and propagation (Runyon et al.,
2007). We calculate this threshold for the clotted region of MA1
to be ~1 s~! on the previously described AOSLO delineation. In
Supplementary Movie 1, we show the variation in the velocity
field inside MA1 throughout the cardiac cycle and, color-coded
in yellow, the regions of the MA experiencing a shear rate smaller
or equal to 15 s~1. Interestingly, we observe how MA regions
adjacent to the clotted part will fall below the threshold following
systole (hence the yellow color disappear/appear in this region)
when flow in the MA slows down.

Based on this observation, we postulate that a clot can
propagate over time in areas where shear rate remains under
threshold. We selected two MAs from the same eye for follow-up,
one partially clotted at the time of baseline imaging (MA1) and
another fully perfused (MA4). After 15 months of follow-up, the
body of MA1 appeared to become non-perfused with persistent
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blood flow through a central vessel (Figure 13). Interestingly, the ~ mean drop, WSSMD). The limitations of the CFD methodology
shape of MA4 remained unchanged and no clot development was  include the assumption of rotational symmetry in the MA surface

observed. reconstruction and the use of non-patient-specific boundary
conditions. We calculated these indices in a set of 20 retinal MAs
DISCUSSION AND CONCLUSIONS imaged with AOSLO. Our aim is to develop a method capable

of establishing which MA characteristics are associated with a
In the current work, we propose 4 novel indices for the  higher risk of leakage or clotting.
classification and study of retinal MAs. Two of them are The data demonstrate that the proposed AR index is highly
structural (asymmetry ratio, AR and body-to-neck ratio, BNR),  correlated with the qualitative MA classification of being either
and the other two describe the hemodynamic environment of  saccular or fusiform as performed by trained graders. The area
the MA (shear rate mean drop, SRMD and wall shear stress  calculated from the en face AOSLO projection of the MA body
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FIGURE 13 | Saccular (A) and fusiform (B) MAs from the same eye of a patient with severe NPDR. The shape and the perfusion status of the saccular MA changed
dramatically, whereas the fusiform MA's shape and perfusion status was maintained during the 15-month non-treatment period.

volume was found to be smaller in the saccular MAs studied
compared to fusiform MAs.

It remains elusive why only some MAs are associated with
retinal edema due to the disruption of endothelial cell barrier
function. Previous work has linked abnormal WSS levels to
endothelial cell dysfunction and changes in permeability (Tarbell,
2010). In the current work, we have proposed a method
for the quantification of the changes in WSS experienced
by the cells lining the MAs. Our results show a consistent
WSS reduction with up to one order of magnitude difference
among all cases (7- vs. 78-fold reduction). In future work, we
will investigate the association between WSSMD and clinically
observed MA leakage in longitudinal datasets. Furthermore, we
shall investigate associations between the changes in WSSMD
throughout the cardiac cycle and MA outcomes as changes in
hemodynamic frequency have been shown to regulate pathologic
phenotypes in endothelial cells (Feaver et al., 2012).

Previous studies have described and quantified the dynamic
turnover of MAs in retinal vasculature (Goatman et al., 2003,
Bernardes et al., 2009). In the current work, we took advantage of
high resolution AOSLO imaging to observe partially clotted MAs.
Five out of 20 MAs presented clots. All the partially clotted cases
were of saccular type. Therefore asymmetry appeared to play a
role in clotting. In one occasion, we could observe thrombosis
of the MA body and remodeling of the affected capillary. Based
on previous reports of the relationship between hemodynamics
and blood clotting (Runyon et al., 2007) and thrombosis of
vascular lesions (Ribeiro de Sousa et al., 2016), we studied
SRMD and WSSMD in the MAs prior to clot development
and identified a statistically significant reduction of both indices
in the regions that would subsequently develop clots. Taken
together, these results are consistent with the hypothesis that
MA asymmetry promotes MA thrombosis through the well-
characterized mechanism of blood clotting at low shear stress.

We anticipate that this work will shed light on the assessment
of the dynamic processes of retinal MA development, clotting,
and regression. We believe the proposed indices can be exploited
as biomarker for vascular stability and DR disease progression.
In future work, we will quantify this relationship and establish
WSSMD/SRMD thresholds that facilitate the prediction of MA
progression on a lesion-specific basis, as well as their relationship
with MA leakage.
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Cardio/cerebrovascular diseases (CVD) have become one of the major health issue in
our societies. Recent studies show the existing clinical tests to detect CVD are ineffectual
as they do not consider different stages of platelet activation or the molecular dynamics
involved in platelet interactions. Further they are also incapable to consider inter-individual
variability. A physical description of platelets deposition was introduced recently in
Chopard et al. (2017), by integrating fundamental understandings of how platelets
interact in a numerical model, parameterized by five parameters. These parameters
specify the deposition process and are relevant for a biomedical understanding of
the phenomena. One of the main intuition is that these parameters are precisely the
information needed for a pathological test identifying CVD captured and that they capture
the inter-individual variability. Following this intuition, here we devise a Bayesian inferential
scheme for estimation of these parameters, using experimental observations, at different
time intervals, on the average size of the aggregation clusters, their number per mm?,
the number of platelets, and the ones activated per p¢ still in suspension. As the
likelihood function of the numerical model is intractable due to the complex stochastic
nature of the model, we use a likelihood-free inference scheme approximate Bayesian
computation (ABC) to calibrate the parameters in a data-driven manner. As ABC requires
the generation of many pseudo-data by expensive simulation runs, we use a high
performance computing (HPC) framework for ABC to make the inference possible for
this model. We consider a collective dataset of seven volunteers and use this inference
scheme to get an approximate posterior distribution and the Bayes estimate of these five
parameters. The mean posterior prediction of platelet deposition pattern matches the
experimental dataset closely with a tight posterior prediction error margin, justifying our
main intuition and providing a methodology to infer these parameters given patient data.
The present approach can be used to build a new generation of personalized platelet
functionality tests for CVD detection, using numerical modeling of platelet deposition,
Bayesian uncertainty quantification, and High performance computing.

Keywords: platelet deposition, numerical model, Bayesian inference, approximate Bayesian computation, high
performance computing
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1. INTRODUCTION

Blood platelets play a major role in the complex process
of blood coagulation, involving adhesion, aggregation, and
spreading on the vascular wall to stop a hemorrhage while
avoiding the vessel occlusion. Platelets also play a key role
in the occurrence of cardio/cerebro-vascular accidents that
constitute a major health issue in our societies. In 2015,
Cardiovascular diseases (CVD), including disorders of the heart
and blood vessels, were the first cause of mortality worldwide,
causing 31% of deaths (Organization, 2015). Antiplatelet therapy
generally reduces complications in patients undergoing arterial
intervention (Mehta et al., 2001; Steinhubl et al., 2002). However,
the individual response to dual antiplatelet therapy is not uniform
and consistent studies reported that even under platelets therapy
there were recurrences of atherothrombotic events (Matetzky
et al., 2004; Gurbel et al., 2005; Geisler et al., 2006; Hochholzer
et al., 2006; Marcucci et al., 2009; Price et al.,, 2008; Sibbing
et al,, 2009). In most cases, a standard posology is prescribed to
patients, which does not take into account the inter-individual
variability linked to the absorption or the effectiveness of these
molecules. This was supported by a recent study (Koltai et al.,
2017), reporting the high patient-dependency of the response
of the antithrombotic drugs. We should also note that the
evaluation of the response to a treatment by the existing tests is
test-dependent.

Nowadays, platelet function testing is performed either
as an attempt to monitor the efficacy of anti-platelet drugs
or to determine the cause of abnormal bleeding or pro-
thrombotic status. The most common method consists of using
an optical aggregometer that measures the transmittance of
light passing through plasma rich in platelets (PRP) or whole
blood (Born and Cross, 1963; Harrison, 2009), to evaluate how
platelets tend to aggregate. Other aggregometers determine the
amount of aggregated platelets by electric impedance (Velik-
Salchner et al., 2008) or luminescence. In specific contexts,
flow cytometry (Michelson et al., 2002) is also used to assess
platelet reactivity (VASP test; Bonello et al., 2009). Determination
of platelet functions using these different existing techniques
in patients undergoing coronary stent implantation have been
evaluated in Breet et al. (2010), which shows the correlation
between the clinical biological measures and the occurrence of
a cardiovascular event was null for half of the techniques and
rather modest for others. This may be due to the fact that no
current test allows the analysis of the different stages of platelet
activation or the prediction of the in vivo behavior of those
platelets (Picker, 2011; Koltai et al., 2017). It is well-known that
the phenomenon of platelet margination (the process of bringing
platelets to the vascular wall) is dependent on the number and
shape of red blood cells and their flow (Piagnerelli et al., 2007),
creating different pathologies for different diseases (e.g., diabetes,
End Renal Kidney Disease, hypertension, sepsis). Further, platelet
margination is also known to be influenced by the aspect ratio
of surrogate platelet particles (Reasor et al., 2013). Although
there is a lot of data reported by recent research works (Maxwell
et al., 2007) on the molecules involved in platelet interactions,
these studies indicate that there is a lack of knowledge on

some fundamental mechanisms that should be revealed by new
experiments.

Hence, the challenge is to find parameters connecting the
dynamic processes of adhesion and aggregation of platelets
to the data collected from the individual patients. Recently,
by combining digital holography microscopy (DHM) and
mathematical modeling, (Chopard et al., 2015; Boudejltia et al.,
2015; Chopard et al,, 2017) provided a physical description
of the adhesion and aggregation of platelets in the Impact-
R device. A numerical model is developed that quantitatively
describes how platelets in a shear flow adhere and aggregate on
a deposition surface. This is the first innovation in understanding
the molecular dynamics involved in platelet interactions. Five
parameters specify the deposition process and are relevant for
a biomedical understanding of the phenomena. One of the
main intuition is that the values of these parameters (e.g.,
adhesion and aggregation rates) are precisely the information
needed to assess various possible pathological situations and
quantify their severity regarding CVD. Further, it was shown
in Chopard et al. (2017) that, by hand-tuning the parameters
of the mathematical model, the deposition patterns observed
for a set of healthy volunteers in the Impact-R can be
reproduced.

Assuming that these parameters can determine the severity
of CVD, how do we estimate the adhesion and aggregation
rates of given patients by a clinical test? The determination of
these adhesion and aggregation rates by hand-tuning is clearly
not a solution as we need to search the high-dimensional
parameter space of the mathematical model, which becomes
extremely expensive and time consuming. We further notice,
this has to be repeated for each patient and thus requires a
powerful numerical approach. In this work, we resolve the
question of estimating the parameters using Bayesian uncertainty
quantification. Due to a complex stochastic nature, the numerical
model for platelet deposition does not have a tractable likelihood
function. We use Approximate Bayesian Computation (ABC),
a likelihood-free inference scheme, with an optimal application
of HPC (Dutta et al., 2017a) to provide a Bayesian way to
estimate adhesion and aggregation rates given the deposition
patterns observed in the Impact-R of platelets collected from
a patient. Obviously, the clinical applicability of the proposed
technique to provide a new platelet function test remains
to be explored, but the numerical model (Chopard et al,
2017) and the proposed inference scheme here, bring the
technical elements together to build a new class of medical
tests.

In section 2 we introduce the necessary background
knowledge about the platelet deposition model, whereas section 3
recalls the concept of Bayesian inference and introduces the HPC
framework of ABC used in this study. Then we illustrate the
results of the parameter determination for platelet deposition
model using ABC methodology, collectively for seven patients
in section 4. Clearly, the same methodology can be used to
determine the parameter values for each individual patients in
a similar manner for a CVD clinical test. Finally, in section 5
we conclude the paper and discuss its impact from a biomedical
perspective.
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2. BACKGROUND AND SCIENTIFIC
RELEVANCE

The Impact-R (Shenkman et al., 2008) is a well-known platelet
function analyzer. It is a cylindrical device filled in with whole
blood from a donor. Its lower end is a fixed disk, serving as
a deposition surface, on which platelets adhere and aggregate.
The upper end of the Impact-R cylinder is a rotating cone,
creating an adjustable shear rate in the blood. Due to this shear
rate, platelets move toward the deposition surface, where they
adhere or aggregate. Platelets aggregate next to already deposited
platelets, or on top of them, thus forming clusters whose size
increase with time. This deposition process has been successfully
described with a mathematical model in Chopard et al. (2015);
Chopard et al. (2017).

The numerical model (coined M in what follows) requires
five parameters that specify the deposition process and are
relevant for a bio-medical understanding of the phenomena.
In short, the blood sample in the Impact-R device contains
an initial number Npjroper(0) of non-activated platelets per ¢
and a number Ny piareler(0) of pre-activated platelets per .
Initially both type of platelets are supposed to be uniformly
distributed within the blood. Due to the process known as shear-
induced diffusion, platelets hit the deposition surface. Upon such
an event, an activated platelets will adhere with a probability
that depends on its adhesion rate, p4,4, that we would like to
determine. Platelets that have adhered on the surface are the
seed of a cluster that can grow due to the aggregation of the
other platelets reaching the deposition surface. We denote with
pag the rate at which new platelets will deposit next to an
existing cluster. We also introduce pr the rate at which platelets
deposit on top of an existing cluster. An important observation
made in Chopard et al. (2015); Chopard et al. (2017) is that
albumin, which is abundant in blood, compete with platelet for
deposition. This observation is compatible with results reported
in different experimental settings (Sharma et al., 1981; Remuzzi
and Boccardo, 1993; Fontaine et al., 2009). As a consequence, the
number of aggregation clusters and their size tends to saturate
as time goes on, even though there are still a large number of
platelets in suspension in the blood.

To describe this process in the model, two extra parameters,
pr, the deposition rate of albumin, and ar, a factor that accounts
for the decrease of platelets adhesion and aggregation on
locations where albumin has already deposited, were introduced.
The numerical model is described in full detail in Chopard et al.
(2015); Chopard et al. (2017). Here we simply repeat the main
elements. Due to the mixing in the horizontal direction, it was
assumed that the activated platelets (AP), non-activated platelets
(NAP) and albumin (Al) in the bulk can be described by a 1D
diffusion equation along the vertical axis z

0o = Dazz,o J = —Dgradp (1)

where p is the density of either AP, NAP or Al, J and D are
correspondingly the flux of particles and the shear induced
diffusion. Upon reaching a boundary layer above the deposition

substrate, adhesion and aggregation will take place according to

N = —J(0, )AS — paN(®) )
where N is the number of particles in the boundary layer,
AS a surface element on the deposition surface, and p; is the
deposition rate, which evolves during time and varies across the
substrate, according to the deposition history. For the deposition
process, particles are considered as discrete entities that can
attach to any position of the grid representing the deposition
surface, as sketched in Figure 1. In this figure, the gray levels
illustrate the density of albumin already deposited in each cell.
The picture also illustrates the adhesion, aggregation, and vertical
deposition along the z-axis. On the left panel, activated platelets
(gray side disks) deposit first. Then in the second panel, non-
activated platelets (white side disks) aggregate next to an already
formed cluster. Both pre-activated and non-activated platelets
can deposit on top of an existing cluster.

The deposition rules are the following. An albumin that
reaches the substrate at time ¢ deposits with a probability P(t)
which depends on the local density p,(t) of already deposited Al.
We assume that P is proportional to the remaining free space in
the cell,

(©)

where pr is a parameter and p,,4y is determined by the constraint
that at most 100,000 albumin particles can fit in a deposition
cell of area AS 5 (wm)?, corresponding to the size of a
deposited platelet (obtained as the smallest variation of cluster
area observed with the microscope).

An activated platelet that hits a platelet-free cell deposits with
a probability Q, where Q decreases as the local concentration py;
of albumin increases. We assumed that

P(t) = PF(pmax — Par(t))s

Q = pad exp(—arpar)s (4)
where p44 and ar are parameters. This expression can be justified
by the fact that a platelet needs more free space than an albumin
to attach to the substrate, due to their size difference. In other
words, the probability of having enough space for a platelet,
decreases roughly exponentially with the density of albumin in
the substrate. This can be validated with a simple deposition
model on a grid, where small and large objects compete for
deposition.

Once an activated platelet has deposited, it is the seed of a
new cluster that grows further due to the aggregation of further
platelets. In our model, AP and NAP can deposit next to already
deposited platelets. From the above discussion, the aggregation
probability R is assumed to be

R= PAg exp(_anal)> (5)
with pag another parameter.

The above deposition probabilities can also be expressed as
deposition rate over the given simulation time step At = 0.01 s
(see Chopard et al., 2017 for details), hence giving a way to couple
the diffusion Equation (1) with the 2D discrete deposition process
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Black dots represent the deposited platelets that are grouped in clusters.

FIGURE 2 | The deposition surface of the Impact-R device after 300 s (Left) and the corresponding results of the deposition in the mathematical model (Right).
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sketched in Figure 1. Particles that did not deposit at time ¢ are
re-injected in the bulk and contribute to boundary condition of
Equation (1) atz = 0.

To the best of our knowledge, except for Chopard et al. (2015);
Chopard et al. (2017) there is no model in the literature that
describes quantitatively the proposed in-vitro experiment. The
closest approach is that of Affeld et al. (2013) but albumin is not
included, and the role of pre-activated and non-activated platelets
is not differentiated. Also, we are not aware of any other study
than ours that reports both the amount of platelets in suspension
as a function of time and those on the deposition surface.

The validity of the proposed numerical model has been
explored in detail in Chopard et al. (2017). This validation is
based on the fact that the model, using hand-tuned parameters
can reproduce the time-dependent experimental observations
very well. We refer the readers to Chopard et al. (2017) for a
complete discussion. Here we briefly recall the main elements
that demonstrate the excellent agreement of the model and the
simulations. We reproduce Figure 2 from Chopard et al. (2017),
showing the visual similarity between the actual and simulated
deposition pattern. In the validation study, the evolution of the
number of clusters, their average size and the numbers of pre-
activated and non-activated platelets still in suspension matched
quantitatively with the experimental measurements at times 20,
60, 120, and 300 s. In addition, a very good agreement between
the simulated deposition pattern and the experiment was also

found by comparing the distributions of the areas and volumes
of the aggregates.

To be noticed, the validation reported in Chopard et al. (2017)
was done using manually estimated parameters. As the main
goal of this research is to propose an inference scheme to learn
the parameters in a data-driven manner, a validation for the
model and the inference scheme is reported in Figure 6 below,
using the inferred posterior distribution which also includes a
quantification of prediction error.

For the purpose of the present study, the model M is
parametrized in terms of the five quantities introduced above,
namely the adhesion rate p,4, the aggregation rates ps, and pr,
the deposition rate of albumin pp, and the attenuation factor ar.
Some additional parameters of the model, specifically, the shear-
induced diffusion coefficient and the thickness of the boundary
layer (Chopard et al., 2017), are assumed here to be known.
Collectively, we define

0= (PAg;pAd:pT’PF) ﬂT).

If the initial values for Npjrerer(0) and Nyt plareler(0), as well as
the concentration of albumin are known from the experiment, we
can forward simulate the deposition of platelets over time using
model M for the given values of these parameters § = 6*:

MO = 0*] - {(Sagg—clust(t)’ Nugg—clust(t)’ Nplatelet(t)> Nuct—platelet(t)) >
t=0,...,T}. (6)
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where Saggfclust(t)» Naggfclust(tx Nplatelet(t) , and Nactfplatelet(t)
are correspondingly average size of the aggregation clusters, their

number per mm?, the number of non-activated and pre-activated
platelets per 2 still in suspension at time .

The Impact-R experiments have been repeated with the whole
blood obtained from seven donors and the observations were
made at time, 0 , 20 , 60 , 120, and 300s. At these five time
points, [’Saggfclust(t)) Nuggfclust(t)s Nplatelet(t)> Nactfplatelet(t)] are
measured. Let us call the observed dataset collected through
experiment as,

x0 = {(Sggg—clust
.,300s.}.

0 0 0 .
(®), Nugg—clust(t)’ Nplutelet(t)’ Nuct—plutelet(t)) :

t=0s.,.. (7)
By comparing the number and size of the deposition aggregates
obtained from the in-vitro experiments with the computational
results obtained by forward simulation from the numerical model
(see Figure?2 for an illustration), the model parameters were
manually calibrated by a trial and error procedure in Chopard
et al. (2017). Due to the complex nature of the model and high-
dimensional parameter space, this manual determination of the
parameter values are subjective and time consuming.

However, if the parameters of the model could be learned
more rigorously with an automated data-driven methodology, we
could immensely improve the performance of these models and
bring this scheme as a new clinical test for platelet functions. To
this aim, here we propose to use ABC for Bayesian inference of
the parameters. As a result of Bayesian inference to this context,
not only we can automatically and efficiently estimate the model
parameters, but we can also perform parameter uncertainty
quantification in a statistically sound manner, and determine if
the provided solution is unique.

3. BAYESIAN INFERENCE

We can quantify the uncertainty of the unknown parameter 6 by
a posterior distribution p(@ |x) given the observed dataset x = x°.
A posterior distribution is obtained, by Bayes’ Theorem as,

7 (0)p(x(6)

p6lx) = )

; (8)

where 7 (@), p(x|6) and m(x) fn(O)p(xlB)dG are
correspondingly the prior distribution on the parameter 6, the
likelihood function, and the marginal likelihood. The prior
distribution 7 (@) ensures a way to leverage the learning of
parameters with prior knowledge, which is commonly known
due to the availability of medical knowledge regarding cardio-
vascular diseases. If the likelihood function can be evaluated, at
least up to a normalizing constant, then the posterior distribution
can be approximated by drawing a sample of parameter values
from the posterior distribution using (Markov chain) Monte
Carlo sampling schemes (Robert and Casella, 2005). For the
simulator-based models considered in section 2, the likelihood
function is difficult to compute as it requires solving a very high
dimensional integral. In next subsection 3.1, we illustrate ABC to
perform Bayesian Inference for models where the analytical form

of the likelihood function is not available in closed form or not
feasible to compute.

3.1. Approximate Bayesian Computation
ABC allows us to draw samples from the approximate posterior
distribution of parameters of the simulator-based models in
absence of likelihood function, hence to perform approximate
statistical inference (e.g., point estimation, hypothesis testing,
model selection etc.) in a data-driven manner. In a fundamental
Rejection ABC scheme, we simulate from the model M(f) a
synthetic dataset ASIM for 4 parameter value @ and measure the
closeness between xS™ and x° using a pre-defined discrepancy
function d(xS"™,x%). Based on this discrepancy measure, ABC
accepts the parameter value & when d(xSim,xo) is less than a
pre-specified threshold value €.

As the Rejection ABC scheme is computationally ineflicient,
to explore the parameter space in an efficient manner, there exists
a large group of ABC algorithms (Marin et al., 2012). As pointed
in (Dutta et al., 2017a), these ABC algorithms, consist of four
fundamental steps:

1. (Re-)sample a set of parameters 6 either from the prior
distribution or from an already existing set of parameter
samples;

2. For each of the sample from the whole set or a subset, perturb
it using the perturbation kernel, accept the perturbed sample
based on a decision rule governed by a threshold or repeat the
whole second step;

3. For each parameter sample calculate its weight;

. Normalize the weights, calculate a co-variance matrix and

adaptively re-compute the threshold for the decision rule.

These four steps are repeated until the weighted set of parameters,
interpreted as the approximate posterior distribution, is
“sufficiently close” to the true posterior distribution. The steps
(1) and (4) are usually quite fast, compared to steps (2) and (3),
which are the computationally expensive parts.

These ABC algorithms can be generally classified into
two groups based on the decision rule in step (2). In the

first group, we simulate xS'™ using the perturbed parameter

and accept it if dxS™,x%) < ¢, an adaptively chosen
threshold. Otherwise we continue until we get an accepted
perturbed parameter. For the second group of algorithms,
we do not have this “explicit acceptance” step but rather a
probabilistic one. Here we accept the perturbed parameter with
a probability that depends on ¢; if it is not accepted, we keep
the present value of the parameter. The algorithms belonging
to the “explicit acceptance” group are RejectionABC (Tavaré
et al., 1997) and PMCABC (Beaumont, 2010), whereas
the algorithms in the “probabilistic acceptance” group are
SMCABC (Del Moral et al., 2012), RSMCABC (Drovandi and
Pettitt, 2011), APMCABC Lenormand et al. (2013), SABC (Albert
et al., 2015), and ABCsubsim Chiachio et al. (2014). For an
“explicit acceptance” to occur, it may take different amounts of
time for different perturbed parameters (more repeated steps
are needed if the proposed parameter value is distant from
the true parameter value). Hence the first group of algorithms
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are inherently imbalanced. We notice that an ABC algorithm
with “probabilistic acceptance” do not have the similar issue of
imbalance as a probabilistic acceptance step takes approximately
the same amount of time for each parameter.

The generation of £S1M from the model, for a given parameter
value, usually takes up huge amounts of computational resources
(e.g., 10 min for the platelets deposition model in this paper).
Hence, we want to choose an algorithm with faster convergence
to the posterior distribution with minimal number of required
forward simulations. For this work we choose Simulated
Annealing ABC (SABC) which uses a probabilistic decision rule
in Step (2) and needs minimal number of forward simulation
than other algorithms as shown in Albert et al. (2015). As all tasks
of SABC in Step (2) can be run independently, in our recent work
Dutta et al., 2017a, we have adapted SABC for HPC environment.
Our implementation is available in Python package ABCpy and
shows a linear scalability.

We further note that the parallelization schemes in ABCpy
were primarily meant for inferring parameters from models, for
which forward simulation takes almost equal time for any values
of 6. Due to the complex stochastic nature of the numerical
model, forward simulation time for different values of 8, can be
quite variable. To solve this imbalance in the forward simulation,
additionally to the imbalance reported for ABC algorithms, we
use a new dynamic allocation scheme for MPI developed in Dutta
et al. (2017b).

3.2. Dynamic Allocation for MPI

Here we briefly discuss how a dynamic allocation strategy
for map-reduce provides better balancing of ABC algorithms
compared to a straightforward allocation approach.

In the straightforward approach, the allocation scheme
initially distributes m tasks to n executors, sends the map function
to each executor, which in turn applies the map function, one
after the other, to its m/n map tasks. This approach is visualized
in Figure 3, where a chunk represents the set of m/n map
tasks. For example, if we want to draw 10, 000 samples from the
posterior distribution and we have n 100 cores available, at
each step of SABC we create groups of 100 parameters and each
group is assigned to one individual core.

On the other hand, the dynamic allocation scheme initially
distributes k < m tasks to the k executors, sends the map
function to each executor, which in turn applies it to the single
task available. In contrast to the straightforward allocation, the
executor requests a new map task as soon as the old one is
terminated. This clearly results in a better balance of the work.
The dynamic allocation strategy is an implementation of the
famous greedy algorithm for job-shop scheduling, which can be
shown to have an overall processing time (makespan) up to twice
as better than the best makespan (Graham, 1966).

This approach is illustrated in Figure 3, reproduced from
Dutta et al. (2017b). The unbalanced behavior is apparent if
we visualize the run time of the individual map tasks on each
executor. In Figure 4, the individual map tasks processing time is
shown for an ABC algorithm performing inference on a weather
prediction model, reported in Dutta et al. (2017b). Each row
corresponds to an executor (or rank) and each bar corresponds

to the total time spent on all tasks assigned to the respective
rank (row) for one map call. For the straightforward allocation
strategy, one can easily verify that most of the ranks finish their
map tasks in half the time of the slowest rank. This clearly leads
to large inefficiencies. Conversely, using the dynamic allocation
strategy, the work is more evenly distributed across the ranks.
The unbalancedness is not a problem that can be overcome
easily by adding resources, rather speed-up and efficiency can
drop drastically compared to the dynamic allocation strategy with
increasing number of executors. For a detailed description and
comparison, we direct readers to Dutta et al. (2017b).

3.3. Posterior Inference

Using SABC within HPC framework implemented in ABCpy
(Dutta et al., 2017a), we draw Z = 5000 samples approximating
the posterior distribution p(9|x?), while keeping all the tuning
parameters for the SABC fixed at the default values suggested in
ABCpy package, except the number of steps and the acceptance
rate cutoff, which was chosen respectively as 30 and 1e~*. The
parallelized SABC algorithm, using HPC makes it possible to
perform the computation in 5 h [using 140 nodes with 36-
core of Piz Daint Cray architecture (Intel Broadwell + NVidia
TESLA P100)], which would have been impossible by a sequential
algorithm. To perform SABC for the platelets deposition model,
the summary statistics extracted from the dataset, discrepancy
measure between the summary statistics, prior distribution of
parameters, and perturbation Kernel to explore the parameter
space for inference are described next.

Summary Statistics
Given a dataset, x

Nuct—plutelet ()t
summary statistics.

{(Sagg—clust(t)’ Nagg—clust(t)’ Nplatelet(t)’
0s.,...,300s.}, we compute an array of

F:x— (u,0,ac,c,cc)

defined as following,

- = (1, 42, 43, L4), Mean over time.

- o = (01, 02,03,04), variance over time.

- ac = (acy, acy, acs, acy), auto-correlation with lag 1.

- ¢ = (c1,¢2, 3,4, C5, Cg), correlation between different pairs of
variables over time.

- ¢cc = (ccy,cea,ce3,cca, CC5, CCp), cross-correlation with lag 1
between different pairs of variables over time.

The summary statistics, described above, are chosen to capture
the mean values, variances, and the intra- and inter- dependence
of different variables of the time-series over time.

Discrepancy Measure

Assuming the above summary statistics contain the most
essential information about the likelihood function of the
simulator-based model, we compute Bhattacharya-coefficient
(Bhattachayya, 1943) for each of the variables present in the time-
series using their mean and variance and Euclidean distances
between different inter- and intra- correlations computed over
time. Finally we take a mean of these discrepancies, such that,
in the final discrepancy measure discrepancy between each of
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the summaries are equally weighted. The discrepancy measure
between two datasets, x' and x? can be specified as,

di' %) = d(F@xh), Fxd)
4
1
= 3 > (= exp(—p(uf, ui, o}, 07)
i=1
1 1 4 6 6
+ 5 116 (Z(aci1 —ach)? + Z(Cil -2+ Z(CC,'I - CC?)Z),
i=1 i=1 i=1

where p(u!, u?,0l,02%)
1 (w—p??
4 ol4o?
1943) and 0 < exp(—p(e)) < 1. Further, we notice the value of
the discrepancy measure is always bounded in the closed interval
[0, 1].

tog(J(m+a+2)) +

is the Bhattacharya-coefficient (Bhattachayya,

Prior

We consider independent Uniform distributions for the
parameters with a pre-specified range for each of them, ps, ~
U(5,20), pag ~ U(50,150), pr ~ U(0.5¢e — 3,3e — 3), pp ~
U(.1,1.5), and ar ~ U(0, 10).

Perturbation Kernel

To explore the parameter space of @ = (pag, pad> P> PF>ar) €
[5,20]x[50, 150] x [0.5e—3, 3e—3] x[.1, 1.5] x [0, 10], we consider
a five-dimensional truncated multivariate Gaussian distribution
as the perturbation kernel. SABC inference scheme centers the
perturbation kernel at the sample it is perturbing and updates the
variance-covariance matrix of the perturbation kernel based on
the samples learned from the previous step.

3.4. Parameter Estimation

Given experimentally collected platelet deposition dataset x°,
our main interest is to estimate a value for €. In decision
theory, Bayes estimator minimizes posterior expected loss,
Ep(olxo)([l(e, )|x%) for an already chosen loss-function L. If we

have Z samples (Oi)lZ: | from the posterior distribution p(@ 1x9),
the Bayes estimator can be approximated as,

M

~ 1
6 = argmin — L£(6;,0). 9)
9 M ; l

As we consider the Euclidean loss-function [,(G,é) = (0 — 5)2 as
the loss-function, the approximate Bayes-estimator can be shown
tobed = E,q,0/0) ~ 5 37, 6.
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FIGURE 5 | Marginal posterior distribution (black-dashed) and Bayes Estimate (back-solid) of (pAd,pAg, pT,p/:,aT) for collective dataset generated from of seven
patients. The smoothed marginal distribution is created by a Gaussian-kernel density estimator on 5000 i.i.d. samples drawn from the posterior distribution using
SABC. The (gray-solid) line indicates the manually estimated values of the parameters in Chopard et al. (2017).

4. INFERENCE ON EXPERIMENTAL
DATASET

The performance of the inference scheme described in section 3
is reported here, for a collective dataset created from the
experimental study of platelets deposition of seven blood-donors.
The collective dataset was created by a simple average of
(Saggfclust(t)) Naggfclust(t)x Nplutelet(t)) Nactfplatelet(t)) Oover seven
donors at each time-point t. In Figure 5, we show the Bayes
estimate (black-solid) and the marginal posterior distribution
(black-dashed) of each of the five parameters computed using
5000 samples drawn from the posterior distribution p(6 |x°) using
SABC. For comparison, we also plot the manually estimated
values of the parameters (gray-solid) in Chopard et al. (2017).
We notice that the Bayes estimates are in a close proximity of
the manually estimated values of the parameters and also the
manually estimated values observe a significantly high posterior
probability. This shows that, through the means of ABC we
can get an estimate or quantify uncertainty of the parameters
in platelets deposition model which is as good as the manually
estimated ones, if not better.

Next we do a Posterior predictive check to validate our
model and inference scheme. The main goal here is to analyze
the degree to which the experimental data deviate from the
data generated from the inferred posterior distribution of the
parameters. Hence we want to generate data from the model
using parameters drawn from the posterior distribution. To
do so, we first draw 100 parameter samples from the inferred
approximate posterior distribution and simulate 100 data sets,
each using a different parameter sample. We call this simulated
dataset as the predicted dataset from our inferred posterior
distribution and present the mean predicted dataset (blue-solid)
compared with experimental dataset (black-solid) in Figure 6.
Note that since we are dealing with the posterior distribution,
we can also quantify uncertainty in our predictions. We plot
the 1/4-th quantile, 3/4-th quantile (red-dashed), minimum
and maximum (gray-dashed) of the predicted dataset at each
timepoints to get a sense of uncertainty in the prediction. Here
we see a very good agreement between the mean predicted
dataset and the experimentally observed one, while the 1/4-
and 3/4-th quantile of the prediction being very tight. This
shows a very good prediction performance of the numerical
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model of platelet deposition and the proposed inference
scheme.

Additionally, to point the strength of having a posterior
distribution for the parameters we compute and show the
posterior correlation matrix between the five parameters in
Figure 7, highlighting a strong negative correlation between
(pr-ar), strong positive correlations between (pr, pag)
and (pp,pr). A detailed investigation of these correlation
structure would be needed to understand them better, but
generally they may point toward: (a) the stochastic nature
of the considered model for platelet deposition and (b)
the fact that the deposition process is an antagonistic or
synergetic combination of the mechanisms proposed in the
model.

Note finally that the posterior distribution being the joint
probability distribution of the five parameters, we can also
compute any higher-order moments, skewness etc. of the
parameters for a detailed statistical investigation of the natural
phenomenon.

5. CONCLUSIONS

Here, we have demonstrated that approximate Bayesian
computation (ABC) can be used to automatically explore
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<
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FIGURE 7 | Posterior correlation matrix of (paq, Pag, PT,PF,aT) computed
from the 5000 i.i.d. samples drawn from the posterior distribution using SABC.

the parameter space of the numerical model simulating the
deposition of platelets subject to a shear flow as proposed in
Chopard et al. (2015); Chopard et al. (2017). We also notice
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the good agreement between the manually tuned parameters
and the Bayes estimates, while saving us from subjectivity
and a tedious manual tuning. This approach can be applied
patient per patient, in a systematic way, without the bias of a
human operator. In addition, the approach is computationally
fast enough to provide results in an acceptable time for
contributing to a new medical diagnosis, by giving clinical
information that no other known method can provide. The
clinical relevance of this approach is still to be explored and
our next step will be to apply our approach at a personalized
level, with a cohort of patients with known pathologies.
The possibility of designing new platelet functionality
test as proposed here is the result of combining different
techniques: advanced microscopic observation techniques,
bottom-up numerical modeling and simulations, recent
data-science development and high performance computing
(HPC).

Additionally, the ABC inference scheme provides us with
a posterior distribution of the parameters given observed
dataset, which is much more informative about the underlying
process. The posterior correlations structure shown in
Figure 7 may not have a direct biophysical interpretation,
though it illustrates some sort of underlying and unexplored
stochastic mechanism for further investigation. Finally we
note that, although the manual estimates achieve a very
high posterior probability, they are different from the
Bayes estimates learned using ABC. The departure reflects
a different estimation of the quality of the match between
experimental observation and simulation results. As the ABC
algorithms are dependent on the choice of the summary
statistics and the discrepancy measures, the parameter
uncertainty quantified by SABC in section 4 or the Bayes
estimates computed are dependent on the assumptions in
section 3.3 regarding their choice. Fortunately there are
recent works on automatic choice of summary statistics and
discrepancy measures in ABC setup (Gutmann et al.,, 2017),
and incorporating some of these approaches in our inference
scheme is a promising direction for future research in this
area.

REFERENCES

Affeld, K., Goubergrits, L., Watanabe, N., and Kertzscher, U. (2013). Numerical
and experimental evaluation of platelet deposition to collagen coated surface
at low shear rates. J. Biomech. 46, 430-436. doi: 10.1016/j.jbiomech.2012.
10.030

Albert, C., Hans, R. K., and Scheidegger, A. (2015). A simulated annealing
approach to approximate Bayesian computations. Stat. Comput. 25,1217-1232.
doi: 10.1007/s11222-014-9507-8

Beaumont, M. A. (2010). Approximate bayesian
evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41,
doi: 10.1146/annurev-ecolsys-102209-144621

Bhattachayya, A. (1943). On a measure of divergence between two statistical
population defined by their population distributions. Bull. Calcutta Math. Soc.
35, 28.

Bonello, L., Camoin-Jau, L., Armero, S., Com, O., Arques, S., Burignat-Bonello, C.,
et al. (2009). Tailored clopidogrel loading dose according to platelet reactivity
monitoring to prevent acute and subacute stent thrombosis. Am. J. Cardiol. 103,
5-10. doi: 10.1016/j.amjcard.2008.8.048

computation in
379-406.

ETHICS STATEMENT

This study conforms with the Declaration of Helsinki and its
protocol was approved by the Ethics Committee of CHU de
Charleroi(comité déthique OMO008). All volunteers gave their
written informed consent.

DATA AVAILABILITY

The codes used to simulate the platelets deposition processes
and to infer the process parameters from data can be
downloaded from: https://github.com/eth-cscs/abcpy-models/
tree/master/BiologicalScience/PlateletsDeposition.

AUTHOR CONTRIBUTIONS

RD, BC, and AM design of the research. RD performed research.
KZB and FD experimental data collection. RD and BC writing of
the paper. AM, KZB, JL, FD, and AM contribution to the writing.
BCand JL design and coding of the numerical forward simulation
model.

FUNDING

RD and AM are supported by Swiss National Science Foundation
Grant No. 105218_163196 (Statistical Inference on Large-
Scale Mechanistic Network Models). We thank CADMOS for
providing computing resources at the Swiss Super Computing
Center. We acknowledge partial funding from the European
Union Horizon 2020 research and innovation programme for
the CompBioMed project (http://www.compbiomed.eu/) under
grant agreement 675451.

ACKNOWLEDGMENTS

We thank Dr. Marcel Schoengens, CSCS, ETH Ziirich for helps
regarding HPC services to run ABCpy on super computers. We
thank CHU Charleroi for supporting the experimental work used
in this study.

Born, G. V.,and Cross, M. J. (1963). The aggregation of blood platelets. J. Physiol.
168, 178-195.

Boudejltia, K. Z., Ribeiro de Sousa, D., Uzureau, P., Yourassowsky, C., Perez-
Morga, D., Courbebaisse, G., et al. (2015). Quantitative analysis of platelets
aggregates in 3d by digital holographic microscopy. Biomed. Opt. Express 6,
3556-3563. doi: 10.1364/BOE.6.003556

Breet, N. J., van Werkum, J. W., Bouman, H. J., Kelder, J. C., Ruven, H. J,,
Bal, E. T., et al. (2010). Comparison of platelet function tests in predicting
clinical outcome in patients undergoing coronary stent implantation. JAMA
303, 754-762. doi: 10.1001/jama.2010.181

Chiachio, M., Beck, J. L., Chiachio, J., and Rus, G. (2014). Approximate
bayesian computation by subset simulation. SIAM ].Sci. Comput. 36,
A1339-A1358. doi: 10.1137/130932831

Chopard, B., de Sousa, D. R., Litt, J., Dubois, F., Yourassowsky, C., Van Antwerpen,
P., et al. (2015). A physical description of the adhesion and aggregation of
platelets. ArXiv e-prints.

Chopard, B., de Sousa, D. R., Litt, J., Mountrakis, L., Dubois, F., Yourassowsky, C.,
etal. (2017). A physical description of the adhesion and aggregation of platelets.
R. Soc. Open Sci. 4, 170219. doi: 10.1098/rs0s.170219

Frontiers in Physiology | www.frontiersin.org

August 2018 | Volume 9 | Article 1128


https://github.com/eth-cscs/abcpy-models/tree/master/BiologicalScience/PlateletsDeposition
https://github.com/eth-cscs/abcpy-models/tree/master/BiologicalScience/PlateletsDeposition
http://www.compbiomed.eu/
https://doi.org/10.1016/j.jbiomech.2012.10.030
https://doi.org/10.1007/s11222-014-9507-8
https://doi.org/10.1146/annurev-ecolsys-102209-144621
https://doi.org/10.1016/j.amjcard.2008.08.048
https://doi.org/10.1364/BOE.6.003556
https://doi.org/10.1001/jama.2010.181
https://doi.org/10.1137/130932831
https://doi.org/10.1098/rsos.170219
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Dutta et al.

Parameter Estimation of Platelets Deposition

Del Moral, P., Doucet, A., and Jasra, A. (2012). An adaptive sequential monte carlo
method for approximate bayesian computation. Stat. Comput. 22, 1009-1020.
doi: 10.1007/s11222-011-9271-y

Drovandi, C. C., and Pettitt, A. N. (2011). Estimation of parameters for
macroparasite population evolution using approximate bayesian computation.
Biometrics 67, 225-233. doi: 10.1111/§.1541-0420.2010.01410.x

Dutta, R., Schoengens, M., Onnela, ], and Mira, A. (2017a). “Abcpy: a
user-friendly, extensible, and parallel library for approximate bayesian
computation,” in Proceedings of the Platform for Advanced Scientific Computing
Conference (Lugano: ACM).

Dutta, R., Schoengens, M., Ummadisingu, A., Onnela, J. P., and Mira, A. (2017b).
Abcpy: a high-performance computing perspective to approximate bayesian
computation. arXiv preprint arXiv:1711.04694.

Fontaine, E., Warwick, R., Sastry, P., and Poullis, M. (2009). Effect of foreign
surface pacification with albumin, aprotinin, propofol, and high-density
lipoprotein. J. Extra Corpor. Technol. 41, 3.

Geisler, T., Langer, H., Wydymus, M., Gohring, K., Ziirn, C., Bigalke, B.,
et al. (2006). Low response to clopidogrel is associated with cardiovascular
outcome after coronary stent implantation. Eur. Heart J. 27, 2420-2425.
doi: 10.1093/eurheartj/ehl275

Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell Labs
Techn. J. 45, 1563-1581.

Gurbel, P. A,, Bliden, K. P., Guyer, K., Cho, P. W., Zaman, K. A, Kreutz, R. P,,
et al. (2005). Platelet reactivity in patients and recurrent events post-stenting:
results of the prepare post-stenting study. J. Am. Coll. Cardiol. 46, 1820-1826.
doi: 10.1016/j.jacc.2005.07.041

Gutmann, M. U, Dutta, R, Kaski, S., and Corander, J. (2017).
Likelihood-free inference via classification. Stat. Comput. 28, 411-425.
doi: 10.1007/s11222-017-9738-6

Harrison. P. (2009). Assessment of platelet function in the laboratory.
Hdmostaseologie 29, 25-31.

Hochholzer, W., Trenk, D., Bestehorn, H. P., Fischer, B., Valina, C. M., Ferenc, M.,
etal. (2006). Impact of the degree of peri-interventional platelet inhibition after
loading with clopidogrel on early clinical outcome of elective coronary stent
placement. J. Am. Coll. Cardiol. 48, 1742-1750. doi: 10.1016/j.jacc.2006.06.065

Koltai, K., Kesmarky, G., Feher, G., Tibold, A., and Toth, K. (2017).
Platelet aggregometry testing: Molecular mechanisms, techniques and clinical
implications. Int. J. Mol. Sci. 18:1803. doi: 10.3390/ijms18081803

Lenormand, M., Jabot, F., and Deffuant, G. (2013) Adaptive approximate bayesian
computation for complex models. Comput. Stat. 28, 2777-2796.
doi: 10.1007/s00180-013-0428-3

Marcucci, R., Gori, A. M., Paniccia, R., Giusti, B., Valente, S., Giglioli, C.,
et al. (2009). Cardiovascular death and nonfatal myocardial infarction
in acute patients receiving coronary stenting
are predicted by residual platelet reactivity to adp detected by a
point-of-care assay: a 12-month follow-up. Circulation 119, 237-242.
doi: 10.1161/CIRCULATIONAHA.108.812636

Marin, J. M., Pudlo, P., Robert, C., and Ryder, R. (2012). English Approximate
Bayesian computational ~methods. Stat. Comput. 22, 1167-1180.
doi: 10.1007/s11222-011-9288-2

Matetzky, S., Shenkman, B., Guetta, V., Shechter, M., Beinart, R., Goldenberg,
L, et al. (2004). Clopidogrel resistance is associated with increased risk of
recurrent atherothrombotic events in patients with acute myocardial infarction.
Circulation 109, 3171-3175. doi: 10.1161/01.CIR.0000130846.46168.03

Maxwell, M. J., Westein, E., Nesbitt, W. S., Giuliano, S., Dopheide, S.
M., Jackson, S. P. (2007). Identification of a 2-stage platelet aggregation
process mediating shear-dependent thrombus formation. Blood 109, 566-576.
doi: 10.1182/blood-2006-07-028282

Mehta, S. R., Yusuf, S, Peters, R. ], Bertrand, M. E., Lewis, B. S., Natarajan, M. K.,
et al. (2001). Effects of pretreatment with clopidogrel and aspirin followed by

coronary syndrome

long-term therapy in patients undergoing percutaneous coronary intervention:
the pci-cure study. Lancet 358, 527-533. doi: 10.1016/S0140-6736(01)05701-4

Michelson, A. D., Barnard, M. R., Krueger, L. A., Frelinger, A. III., and Furman,
M. L. (2002). “Flow cytometry,” in Platelets, ed A. D. Michelson (San Diego, CA:
Academic Press), 297-315.

Organization WH. (2015). Available online at http://www.who.int/mediacentre/
factsheets/fs317/en/

Piagnerelli, M., Zouaoui Boudjeltia, K., Brohee, D., Vereerstraeten, A., Piro,
P., Vincent, J. L., et al. (2007). Assessment of erythrocyte shape by flow
cytometry techniques. J. Clin. Pathol. 60, 549-554. doi: 10.1136/jcp.2006.0
37523

Picker, S. (2011). In-vitro assessment of platelet function. Transfus Apher Sci. 44,
305-319. doi: 10.1016/j.transci.2011.03.006

Price, M. J., Endemann, S., Gollapudi, R. R., Valencia, R., Stinis, C. T,
Levisay, J. P., et al. (2008). Prognostic significance of post-clopidogrel platelet
reactivity assessed by a point-of-care assay on thrombotic events after drug-
eluting stent implantation. Eur. Heart J. 29, 992-1000. doi: 10.1093/eurheartj/
ehn046

Reasor, D. A., Mehrabadi, M., Ku, D. N., and Aidun, C. K. (2013). Determination
of critical parameters in platelet margination. Ann. Biomed. Eng. 41, 238-249.
doi: 10.1007/s10439-012-0648-7

Remuzzi, A., and Boccardo, P. (1993). Albumin treatment reduces in vitro platelet
deposition to pmma dialysis membrane. Int. J. Artif. Org. 16, 128-131.

Robert, C. P., and Casella, G. (2005). Monte Carlo Statistical Methods (Springer
Texts in Statistics). Secaucus, NJ;New York, NY: Springer-Verlag , Inc.

Sharma, N. C., Mohammad, S. F., Chuang, H. Y., and Mason, R. G. (1981).
Albumin-igg complexes in human serum and plasma that inhibit blood platelet
adhesion. Proc. Natl. Acad. Sci. 78, 7750-7753.

Shenkman, B., Einav, Y., Salomon, O., Varon, D., and Savion, N. (2008). Testing
agonist-induced platelet aggregation by the impact-r [cone and plate (let)
analyzer (cpa)]. Platelets 19, 440-446. doi: 10.1080/09537100802082256

Sibbing, D., Braun, S., Morath, T., Mehilli, J., Vogt, W., Schomig, A., et al.
(2009). Platelet reactivity after clopidogrel treatment assessed with point-of-
care analysis and early drug-eluting stent thrombosis. J. Am. Coll. Cardiol. 53,
849-856. doi: 10.1016/j.jacc.2008.11.030

Steinhubl, S. R., Berger, P. B., Mann, J. T. III, Fry, E. T., DeLago, A., Wilmer,
C., et al. (2002). Early and sustained dual oral antiplatelet therapy following
percutaneous coronary intervention: a randomized controlled trial. JAMA 288,
2411-2420. doi: 10.1001/jama.288.19.2411

Tavaré, S., Balding, D. J., Griffiths, R. C., and Donnelly, P. (1997). Inferring
coalescence times from dna sequence data. Genetics 145, 505-518.

Velik-Salchner, C., Maier, S., Innerhofer, P., Streif, W., Klingler, A., Kolbitsch,
C., et al. (2008). Point-of-care whole blood impedance aggregometry
versus classical light transmission aggregometry for detecting aspirin and
clopidogrel: the results of a pilot study. Anesth. Analg. 107, 1798-1806.
doi: 10.1213/ane.0b013e31818524c1

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer JB and handling Editor declared their shared affiliation

Copyright © 2018 Dutta, Chopard, Ldtt, Dubois, Zouaoui Boudjeltia and Mira.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology | www.frontiersin.org

August 2018 | Volume 9 | Article 1128


https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1111/j.1541-0420.2010.01410.x
https://doi.org/10.1093/eurheartj/ehl275
https://doi.org/10.1016/j.jacc.2005.07.041
https://doi.org/10.1007/s11222-017-9738-6
https://doi.org/10.1016/j.jacc.2006.06.065
https://doi.org/10.3390/ijms18081803
https://doi.org/10.1007/s00180-013-0428-3
https://doi.org/10.1161/CIRCULATIONAHA.108.812636
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1161/01.CIR.0000130846.46168.03
https://doi.org/10.1182/blood-2006-07-028282
https://doi.org/10.1016/S0140-6736(01)05701-4
http://www.who.int/mediacentre/factsheets/fs317/en/
http://www.who.int/mediacentre/factsheets/fs317/en/
https://doi.org/10.1136/jcp.2006.037523
https://doi.org/10.1016/j.transci.2011.03.006
https://doi.org/10.1093/eurheartj/ehn046
https://doi.org/10.1007/s10439-012-0648-7
https://doi.org/10.1080/09537100802082256
https://doi.org/10.1016/j.jacc.2008.11.030
https://doi.org/10.1001/jama.288.19.2411
https://doi.org/10.1213/ane.0b013e31818524c1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

1' frontiers
in Physiology

ORIGINAL RESEARCH
published: 14 August 2018
doi: 10.3389/fphys.2018.01002

OPEN ACCESS

Edited by:

Raimond L. Winslow,
Johns Hopkins University,
United States

Reviewed by:

Pablo Lamata,

King's College London,

United Kingdom

Martyn R Nash,

University of Auckland, New Zealand

*Correspondence:
Viatcheslav Gurev
vgurev@us.ibm.com

Specialty section:

This article was submitted to
Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 25 January 2018
Accepted: 09 July 2018
Published: 14 August 2018

Citation:

Di Achille F, Harouni A, Khamzin S,
Solovyova O, Rice JJ and Gurev V
(2018) Gaussian Process Regressions
for Inverse Problems and Parameter
Searches in Models of Ventricular
Mechanics. Front. Physiol. 9:1002.
doi: 10.3389/fphys.2018.01002

Check for
updates

Gaussian Process Regressions for
Inverse Problems and Parameter
Searches in Models of Ventricular
Mechanics

Paolo Di Achille’, Ahmed Harouni?, Svyatoslav Khamzin®#, Olga Solovyova?*,
John J. Rice' and Viatcheslav Gurev ™

! Healthcare and Life Sciences Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, United States, 2 IBM
Research Almaden, San Jose, CA, United States, ° Ural Federal University, Yekaterinburg, Russia, * Institute of Immunology
and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia

Patient specific models of ventricular mechanics require the optimization of their many
parameters under the uncertainties associated with imaging of cardiac function. We
present a strategy to reduce the complexity of parametric searches for 3-D FE models
of left ventricular contraction. The study employs automatic image segmentation and
analysis of an image database to gain geometric features for several classes of patients.
Statistical distributions of geometric parameters are then used to design parametric
studies investigating the effects of: (1) passive material properties during ventricular
filling, and (2) infarct geometry on ventricular contraction in patients after a heart attack.
Gaussian Process regression is used in both cases to build statistical models trained
on the results of biophysical FEM simulations. The first statistical model estimates
unloaded configurations based on either the intraventricular pressure or the end-diastolic
fiber strain. The technique provides an alternative to the standard fixed-point iteration
algorithm, which is more computationally expensive when used to unload more than 10
ventricles. The second statistical model captures the effects of varying infarct geometries
on cardiac output. For training, we designed high resolution models of non-transmural
infarcts including refinements of the border zone around the lesion. This study is a
first effort in developing a platform combining HPC models and machine learning to
investigate cardiac function in heart failure patients with the goal of assisting clinical
diagnostics.

Keywords: LV mechanics, FEM, infarct model, unloaded configuration, kriging, inverse optimization, statistical
learning

1. INTRODUCTION

Multi-scale models of cardiac mechanics, although are promising (e.g., Kerckhoffs et al., 2007;
Nordsletten et al., 2011; Gurev et al., 2015; Land et al., 2017), have found limited applications for
diagnosis and treatment. To reach the levels of accuracy needed to assist clinical decisions, models
need to overcome major complications related to accessing clinical data, constraining unknown
parameters, and coping with computational complexity. Some of the uncertainties associated to
patient-specific cardiac models can be partially addressed with increased public access to large
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clinical datasets (Fonseca et al., 2011) and to high performance
computing resources (Towns et al., 2014). Sophisticated finite
element (FE) biomechanical simulations can be combined with
machine learning techniques to translate parametric studies into
efficient statistical models of virtual patient populations. Once
an upfront computational cost is paid for training, the coupled
effects of varying model parameters can be explored almost in
real time, facilitating the solution of the optimization and inverse
estimation problems that are required to personalize models for
specific patients.

This paper discusses statistical models based on a machine
learning technique called Gaussian Process (GP) regression, also
known as kriging (Rasmussen and Williams, 2006). After training
a “surrogate” of the more expensive FE models, GP regression
can be used to assist optimization algorithms, even in complex
cases where objective functionals cannot be easily differentiated
(Booker et al.,, 1999; Abramson et al,, 2009). More recently,
GP regression has also been used in cardiovascular modeling,
where it has found application in both fluid and solid mechanics
(Marsden et al., 2008; Sankaran and Marsden, 2011; Pérez et al.,
2016).

Recent developments in medical imaging techniques have
opened new opportunities for cardiac modeling to augment
image-based biomarkers from CT, MRI, and ultrasound scans
(Lamata et al., 2014). As accuracy and availability of imaging
modalities continues to improve, there is a growing need for
novel strategies that exploit the capabilities of multi-scale models
to enhance diagnostic tools. We present a systematic analysis
of the Sunnybrook Cardiac MRI database, a public collection
of cine-MRIs (Radau et al., 2009). Statistics gathered from the
database were used to design two parametric studies investigating
the passive behavior of the myocardium upon inflation and the
effects of infarct on cardiac performance.

In the first parametric study, we developed a novel strategy
to estimate the unloaded configuration (needed to initialize
both passive and active FEM simulations) given either the
end-diastolic intraventricular pressure, or the end-diastolic fiber
strain. The new method relies on solving multiple forward
problems to train a regression model from which unloaded
configurations can be inferred for ventricles with arbitrary
shapes. Despite such a problem could be alternatively solved with
the fixed point iteration method (Sellier, 2011; Genet et al., 2015),
our approach has some advantages. Specifically, our method can
be easily applied in situations where the intraventricular pressure
is not directly known (but could be inferred, for example, from
the fiber strain), or where the unloaded geometry is one of the
unknown parameters of an optimization problem.

The second example integrates machine learning and multi-
scale modeling in a systematic parametric study investigating the
effects of infarct on simulated cardiac performance. Location,
size, and transmural depth of the infarct were chosen as
input variables of a GP regression model predicting changes in
simulated stroke volume due to the scar. This work exploited
the capabilities of our in-house solver and an automatized
workflow to run 40 simulations of infarct with varying shapes
and locations. After training on results of FE simulations, the GP
regression model provides a useful representation for the analysis

of complex effects. Non-transmural infarcts were simulated with
a high numerical accuracy.

2. METHODS

2.1. Cine-MRI Segmentations and

Parameterization via Idealized Models
Publicly available imaging datasets from the Sunnybrook Cardiac
MRI database (Radau et al., 2009) were systematically processed
to establish boundaries and proper feature distribution for
parametric exploration. The Sunnybrook database gathered 45
cine-MRI scans collected from healthy subjects (N, n = 9),
patients with ventricular hypertrophy (HYP, n 12), and
patients affected by heart failure both in presence and absence
of myocardial infarction (HF-I, n = 12 and HF-NI, n = 12,
respectively). For each scan, we considered only the short axis
stack series, which provided ~10-15 axial slices per left ventricle
(LV) and 20 frames per cardiac cycle. Average voxel sizes were
(1.36 £ 0.057 mm) x (1.36 + 0.057 mm) x (8.8 & 1.0 mm)
in the left-right, anterior-posterior, and apical-basal directions,
respectively.

An in-house multi-atlas image processing technique (Xie et al.,
2015) was used to co-register the axial slices of each dataset
and then segment the LV boundaries. The first 2 columns
of Figure 1A show the procedure applied to a representative
3-D image from the database. Outputs were labeled voxels
marking the LV blood pool (shown in white semi-transparent
overlay) and the ventricular wall (shown in red). The low
resolution in the apical-basis direction typical of cine-MRI short
axis views introduced segmentation artifacts that prevented
direct use in FEM models. We therefore performed a further
parameterization step (see third column) to approximate LV
geometries as truncated prolate spheroids, as initially proposed
by Streeter and Hanna (1973) and more recently revisited by
Pravdin etal. (2014). According to such a scheme, the endocardial
and epicardial profiles of an idealized axisymmetric LV were
described by the following relations

Pepi = Rp [60051// 4+ (1 —e)(1 —sin 1/f)]

Sepi = Z(1 —siny)

Pend = (Ry — 1) [ecosyy + (1 — e)(1 — sin )]
Cend = (Z - H)(l — sin lﬁ) +H

1)

linking the radial (p) and axial ({) coordinates of the epicardial
and endocardial boundaries to the angle variable y € [y, 7/2].
In the equations above, the idealized geometry is defined by
6 parameters: the outer radius at base, Ry; the length of the
longitudinal semi-axis of the outer spheroid, Z; the ventricular
wall thicknesses at base and apex, L and H, respectively; the
sphericity/conicity of the spheroid, e € [0,1]; and, finally, the
truncation angle, 1. Figure 1B shows a schematic of an idealized
LV annotated with geometric descriptions of the parameters.

In order to describe the segmentation results in terms of
the idealized models described above, we implemented an ad
hoc optimization procedure to find sets of parameters &
{Ry,Z,L, H, e, ¥y} that would best match the MRI segmentations
(Imr)- Each iteration involved first generating a binary 3-D image
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MRI

Segmentation

representative case (I-01 at beginning of diastole).

Parameterization

FIGURE 1 | Automatic processing of cine-MRI images from the Sunnybrook Cardiac MRI database and fitting of idealized geometric model. (A) Complete processing
of a representative short axis view frame from patient I-01 in the database. This Cine-MRI modality showed sufficient in-plane resolution, but significantly lower detail in
the long axis view (e.g., compare first and second row of the first column). An atlas-based image processing algorithm was employed to extract LV boundaries for
each patient. Segmented pixels are shown marked in red in the second and third column. Finally, an idealized 6-parameter model of LV geometry was fitted to the
segmentation results, partially correcting for the artifacts introduced by the low resolution in the long axis (see model cross-section rendered in white in the third
column). (B) Geometric meaning of idealized LV model parameters. Radial and axial coordinates are indicatd by p and ¢, respectively. R, = outer radius at base, L =
wall thickness at base, Z = distance from center of the ventricle to apex of outer wall, H = wall thickness at apex, ¥y = truncation angle. Not shown is the e
parameter, which governs the curvature of the LV external and internal walls. More details on analytical expressions of the LV geometric profile are provided in the text.
(C) Top and lateral 3-D views of overlapped segmentation (rendered as a red surface) and best-fit idealized model (rendered as a gray transparent overlay) for a

Iz marking the LV volume defined by &, and then evaluating an
objective function J defined as

JUe, Iyr) = 1 —

1 <Cg N CMmR

1 We N Wmr 2)
C: U Cur ’

2 We U Wamr

where Cz and Cumr indicate the ventricular cavity regions in
the idealized and MR segmentation images, respectively; and
Wg and Wyr similarly indicate corresponding ventricular wall
volumes. In other words, ] € [0,1] provides a measure of
similarity between a “synthetic” segmentation Iz generated for
any given £ and the actual MRI processing results Iyr. The
“Nelder-Mead” algorithm available in SciPy was used to carry
out the optimization up to convergence for every image dataset
included in the database.

The relations in (1) do not include any parameters accounting
for the rigid translation and rotations that LVs normally
experience during a cardiac cycle. To overcome such limitation
and to improve fitting results, each objective function evaluation
was preceded by a rigid transformation step aimed at aligning the
idealized model to the target segmented geometry. Specifically,
we first estimated the main longitudinal axis of the segmented
ventricle as the best-fit direction aligning the centers of gravity
of the LV segmented axial slices. We then rigidly transformed
the idealized models to let the longitudinal axes and the
centers of gravity of the two geometries coincide. Figure 1C
shows overlapped optimization results and corresponding MRI
segmentation for a representative cine-MRI frame after rigid
motion correction.

2.2, Passive Material Properties
To assess whether the inverse esimation method presented in this
work would generalize to describe other constitutive behaviors

(e.g., from future experiments on animal and human tissues,
or from novel modeling developments), we considered 3 sets
of material parameters (and related functional formulations)
from the literature that describe experimental findings on
canine, swine, and human ventricle biomechanics. Usyk et al.
(2000) fitted a Fung-type orthotropic strain energy function to
experiments on canine models

c

Wy =2 (exp(Q —1), Q= bgEf+ bsEys + bunFry
+bfs (E%s + Ezf) + bg (E%n + Eif)
+bns (s + E2n) » ®)

where Ejj (i,j = f,s,n) are components of the Green-Lagrange
strain tensor expressed in a reference frame locally aligned along
the fiber direction (f), the orthogonal direction spanning the
myocardial sheet (s), and the cross-fiber direction (n). Values for
the C and bjj (i, j = f, s, n) coefficients are reported in Table 1.

The remaining 2 constitutive behaviors here considered
followed the constitutive law based on the invariants of the right
Cauchy-Green strain tensor C proposed by Holzapfel and Ogden
(2009),

Wio = 2% {exp [b(I; —3)]} + _Xﬂ: ;—é {exp [bily; — 1)*] — 1}
{exp [br I ] — 1}

ass

+ 2bg,

(4)

where I1=tr C is the first invariant of C, here applied as the
argument of an exponential term; Iy; = v; - (C - v;), i =
ff,ss is the fourth invariant of C, which corresponds to the
squared stretch of a line element oriented along the fiber (vg)
or sheet (vg) directions; finally, Iy, = fo - (C - sg) is the eighth
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TABLE 1 | Sets of material properties considered in the study.

Reference C.a b Er bgr ass bss ars by bnin,f,s]
(species) (kPa) (kPa) (kPa) (kPa)
Wy Usyk et al. (2000) 0.88 8.00 6.00 12.00 3.00
(canine)
W)_/‘,/O Wang et al. (2013) 0.24 10.81 20.04 14.2 3.72 5.16 0.41 11.30
(swine)
Wﬁo Gultekin et al. 0.4 6.55 3.05 29.05 1.25 36.65 0.15 6.28
(2016)
(human)

Wy is expressed in terms of components of the Green-Lagrange strain tensor E, while WLVOV'G) depends on invariants of the right Cauchy-Green tensor C.

invariant of C, which captures the effects of strain coupling.
Equation (4) has been shown to describe well experiments on pig
ventricles (Dokos et al., 2002), and more recently the biaxial and
triaxial tests conducted on human myocardial tissue by Sommer
et al. (2015). Among best-fit values reported in literature, we
selected materials parameters for (4) from Wang et al. (2013)
(W}VIVO, fitted to experiments on swine models) and Giiltekin
et al. (2016) (Wgo, fitted to experiments on human tissue). The
coeflicients for all considered material properties are reported in
Table 1.

2.3. FEM Models of LV Passive

Biomechanics

High-resolution FEM simulations of LV biomechanics are at
the core of the parameter exploration and inverse estimation
strategies presented in this work. To cope with the complexities
of the mechanical behavior of the myocardium, we employed
a recently validated numerical solver suitable for dealing
with incompressible hyperelastic material laws such as those
in (3) and (4) (Gurev et al, 2015), and extended to use
stabilized P1/P1 finite elements. The capabilities are necessary
for infarct simulations, where capturing sufficient detail at
the border zone region around the lesion is pivotal (see
section 2.6). The solution algorithm also allows multi-scale
effects, and we used the TriSeg ODE-based model with
parameters for human to drive myofilament active contraction
(Lumens et al., 2009; Gurev et al., 2015). Coupling between
cellular and tissue mechanics occurred at the Gauss point
level.

To handle the relatively large number of simulations needed
to train statistical models, we developed an automatic workflow
to construct high-resolution computational domains from any
given sets of geometric parameters £ describing LV anatomy.
In this pipeline, analytical models built according to (1)
were first converted to 3-dimensional triangulated surfaces,
and then to solid meshes of several hundred thousands of
tetrahedral elements. Nodes at the base of the ventricle were
prevented to move axially, while epicardial nodes in the vicinity
of the base (i.e., closer than 3 mm) were fully locked to
prevent rigid motions. Boundary traction effects from the
pericardial membrane and the right ventricle were neglected,
and intraventricular pressure was uniformly applied at the

endocardial surface in quasi-static steps. The vector vg of
alignment of myocardial fibers varies heterogeneously along
the radial direction of the myocardium (McCulloch, 1999;
Humphrey, 2002). Without specific measurements for the
patients in the database, we relied on a rule-based approach
to assign fiber directions linearly varying their angle with
respect to the circumferential direction from 90° at the
endocardial surface (i.e., longitudinally aligned) to -60° at the
epicardium.

The mechanical equilibrium equations were solved in
parallel on the Cognitive Computing Cluster (CCC), a
hybrid high performance shared resource developed at IBM
Research deploying both Intel and Power8 nodes. Active infarct
simulations required ~10 times more resources than passive
models, and were run on the Uran Supercomputer hosted by UB
RAS and Ural Federal University. Outputs of the simulations
were nodal displacement vector fields, and components of stress
and strain tensors defined at the element Gauss points. To
relate predictions also to strain dependent length activation of
the sarcomere, we also evaluated stretch in the fiber direction,
defined as

M=V C- v,

where v is the vector aligned along the myofiber direction (as
described above), and C is the right Cauchy-Green strain tensor.
As a representative scalar of each loading state, we also averaged
Mg at midwall, which we defined as a tissue slab located between
40 and 60% of the LV wall thickness and between 45 and 55% of
the apex-base distance.

©)

2.4. Parameterization of FEM Results

A key aspect of the inverse unloading method presented in this
work is the re-parameterization of FEM simulation results in
terms of the same geometric parameters employed to process
the Sunnybrook database. A 2-step optimization procedure
was implemented to fit idealized models of LV anatomy to
the deformed configurations predicted by the FEM analyses
upon varying loading conditions. First, optimal values for
Ry, Z, e, and Wy were found to minimize average nodal
distance between the profile of an idealized epicardium and
the corresponding boundary obtained from a FE mesh warped
according to the simulations results. Second, a similarly defined
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nodal distance measure was used to quantify discrepancies
between endocardial profiles in order to adjust the remaining
L and H parameters. The 2 steps were re-iterated until
reaching convergence. An alternative monolithic approach
where the 6 parameters were optimized at the same time
was also evaluated, but proved to be less computationally
efficient.

2.5. Statistical Learning of LV Unloading

Bulk processing the Sunnybrook cine-MRI image datasets
provided information on expected anatomical variability among
patients. As part of our inverse unloading estimation strategy,
we leveraged database statistics to define a 6-D parameteric
space that enclosed all likely LV unloaded configurations. More
specifically, we reasoned that the parametric study should
conservatively admit and explore large variations in ventricle

geometries, since the unloaded state might differ significantly
from any of the imaged configurations. Limits of the parametric
space were therefore defined to encompass variations of more
than 3 standard deviations from the average beginning of diastole
(BoD) state, which we chose as most reasonable guess lacking
the measurements needed for better estimates (e.g., Xi et al,
2013). More details on the subdivision of the cardiac cycle into
its phases are reported in the Supplemental Material. Figure 2A
shows pairs of limit parameter values and corresponding LV
cross-sections representing maximum allowed variations of each
of the 6 geometric features. In drawing the profiles, only one
of the 6 parameters was changed while keeping the remaining
5 at corresponding mid-range values. Unloaded configurations
admitted to our study were, therefore, intermediate states of
the low- and high-parameter geometries shown in Figure 2A in
gray and black tones, respectively. The statistical distribution of

A R, L z
30 20 (mm) 80

|
0 Along. Y, non-TM
+1/2

Depth ™

FIGURE 2 | Design of training sets for the 2 statistical models: LV unloading (A-C) and infarct shape effects (D-F). (A) Pairs of LV cross-sections representing

extreme geometries limiting parameter space dimensions. Gray (black) cross-sections correspond to extreme negative (positive) variations of one of the geometric
parameters, with the remaining 5 parameters kept at mid-range values. (B) Projection of the 6-D parametric space onto a 3-D cube obtained by neglecting the last 3
dimensions (H, e, and Wq). Spherical glyphs indicate locations of 600 sampling points chosen via latin hypercube sampling from a normal distribution centered on the
average LV geometry and with a doubled standard deviation compared to that of the complete Sunnybrook database. (C) Cross-section of the parameter space for
LV unloading showing combined variations of R, and Z parameters. (D) Similar to (A), but showing pairs of FE meshes including infarct regions with extreme shapes.
The lightest tone of gray indicates the healthy region, the darkest tone indicates the infarct, and the intermediate one marks the refined border zone. (E) 3-D projection
of the 4-D parameter space defining infarct shape obtained neglecting the ALong. dimension. Similarly to (B), spheres indicate locations of 40 sampling points
chosen uniformly in the allowed range parameters. (F) Mid-range slice of the 3-D projection showing representative FE meshes accounting for combined variations of
longitudinal location and transmural depth of the infarct.
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BoD states was also used to design an efficient probing scheme
for the parametric space defined above. As is common now
(Marsden, 2014), we used latin hypercube sampling to select 600
points (i.e., 100 times the number of parameters) from a normal
distribution centered on the average BoD state and with doubled
standard deviation compared to that of the Sunnybrook database.
Samples falling beyond the limits defined in Figure 2A were
projected onto the closest admissible point. A cloud of chosen
probing locations is shown within a unitary 3-D projection of
the parameter space in Figure 2B. For this representation, the
H, e, and ¥, dimensions were neglected. Figure2C further
shows a mid-slice of the parametric cube exploring geometries
corresponding to coupled variations of the R, and Z parameters.

For each of the 600 sampled ventricle geometries we ran
passive inflation simulations for inner LV pressures ranging
between 0 and 5 kPa. Results were processed as described
in section 2.4 to find optimal geometric parameters for 100
intermediate loading configurations (ie., differing by 0.05
kPa). These best-fit parameters constituted the training set
for GP regression models mapping loaded configurations to
their corresponding unloaded state. Overall, we optimized 100
statistical models (one for each considered inner pressure), and
fitted 2 additional GP regressions for unloading the inflated
configurations for which the midwall fiber stretch reached the
values of 10 and 15%.

2.6. Statistical Learning of Infarct Shape

and Size on LV Performance

With our solver capable of handling high-resolution tetrahedral
meshes, we explored the effects of different infarct shapes and
locations on simulated LV cardiac cycles. The lesions were
parameterized according to 4 features: longitudinal position
(Long. € [0,1]), indicating whether an infarct was closer to
the base (Long.=0) or apex (Long.=1); circumferential extension
(ACirc. € [0,7]), indicating the portion of circumference
(measured in radians) occupied by the infarct; longitudinal
extension (ALong. € [0,1]) indicating the fraction of
longitudinal cross section harboring a lesion; and wall depth
(Depth € [0,1]), indicating the transmural extension of the
infarct, with the maximum value of 1 indicating a fully
transmural lesion. Figure 2D shows computational domains
reconstructed from limit cases of the infarct parameterization.
Similar to that presented in section 2.5, latin hypercube sampling
was used to efficiently probe the parameter space. Our sample
size was of 40 points, (i.e., 10 times the number of parameters),
and we assumed a uniform distribution of parameters across
the admissible range. Also, to restrict our attention to the
effects of infarct without the added complications introduced by
changing LV geometry, all lesions were inserted into the same
baseline LV from patient I-02. Infarct effects were simulated
by deactivating active contraction in the lesion regions, while
maintaining the same passive material properties. Similar to
Figures 2B,C,E,F show projections of selected samples onto the
considered parameter space of infarct lesions. More details on the
general procedure followed to mesh infarcted regions of arbitrary
shapes are available in the Supplemental Material.

3. RESULTS

Once enhanced with rigid motion correction, the 6-parameter
description of LV geometry was able to capture anatomical and
kinematic features from the Sunnybrook MRI scans. Median
values of the similarity functional J(I¢, Imr) averaged for each
category of patients were 0.29 for N, 0.30 for HYP, 0.23 for
HE-NI and 0.19 for HF-I, respectively. Figure 3 shows average
group traces of best-fit geometric parameters (see Equation
1) over the course of a normalized cardiac cycle. Certain
trends agreed well with known morphologic features of cardiac
disease. Patients affected by heart failure (i.e., from the HF-I
and HEF-NI categories) presented on average the most dilated
ventricles, as indicated by the largest R, values, and the
smallest cyclical variations in both e and Wy, probably due to
myocardial dysfunction. Hypertrophic patients, on the other
hand, maintained highest L values throughout the cycle (L = 12
mm on average) and showed a large systolic thickening (L = 15
mm at peak systole for HYP patients). Only N subjects contracted
more visibly, with an average 54% increase in L from diastole
to systole. N and HYP subjects overall exhibited the largest
changes in truncation angles. Other parameterization findings
were less intuitive. For all LVs, contraction in the longitudinal
direction was captured mainly by varying W, rather than Z,
which instead remained close to constant throughout the cycle.
Also, the dynamic pattern of e observed in HF patients was
peculiar. For example, 10 out of 12 HF-I subjects exhibited
increased e at systole compared to diastole, while the opposite
was typically observed in the N and HYP categories of patients.
Combined behavior of e and ¥ differed also among the 2 classes
of HF patients: in presence of an infarct, both e and W, were
smaller in magnitude, indicating that HF-NI ventricles tended to
be more spherical than the HF-I ones. Table 2 reports best fit sets
of geometric parameters for all 45 patients at both beginning and
end of diastole (BoD and EoD, respectively).

The distribution of LV shapes at BoD (see Table 2) was pivotal
to design our admissible parameter space, both for establishing
range limits and for choosing the frequency of allowed variations.
Figure 4A shows 3 representative unloaded configurations out
of the 600 selected to probe the space. Each geometry was
first discretized into a computational domain (see meshes below
the idealized profiles) and then inflated with inner pressures
up to 5 kPa. Shown also are color coded distributions of the
first invariant of the Green-Lagrange strain tensor (I;g). Strain
fields were visibly larger in the LVs endowed with Wy material
properties (i.e., those on the first row of each subgroup) than in
those endowed with Wgo (i.e., those on the second row of each
subgroups). While the parameteric study extensively explored
combined effects of LV geometric features on deformation, the
subsequent processing step converted results back to the 6-
parameter description (see profiles in gray above and below strain
results). Out of the chosen 600 probing profiles, 67 exhibited
incompatible features that prevented completion of the FEM
simulations (e.g., a disproportionately large L and negative ¥,
in a ventricle with minimum Rj), and were therefore excluded
from the analysis. Figure 4B shows violin plots of geometric
parameter distributions for ventricles at the BoD configuration
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FIGURE 3 | Kinematics of LV motion during a normalized cardiac cycle described by changes over time to the 6 parameters of an idealized model of LV geometry.
Traces show averages (marked solid line) over the 4 patient groups (N, normal; HYP, hypertrophic; HF-NI, heart failure without infarct; HF-1, heart failure with infarct)
plus or minus standard deviations (shown as semi-transparent overlays). Each subplots shows results for one of the geometric parameters. Results were obtained by
custom procedure to fit idealized model to segmentation results. See text for more detail.

20.0

0.25 0.50

t/T

0.75

12

H (mm)

0.25 0.75

0.25

0.50
T

0.75 1.00

from the database, at the assumed unloaded configuration, and
at 10 deformed configurations for pressures ranging from 0.5
to 5.0 kPa. The BoD distributions (see plots in black tone,
leftmost sector) clearly reflected the categories of the database.
For example, the violin plot of the R, parameter (first row)
indicated a bimodal distribution, as expected given the sharp
differences in ventricle radius between HF patients and the
others. By design, the sampled unloaded configurations followed
a normal distribution allowing large variations (see plots in
lightest gray tone, second sector from the left). Some hard limits
on admissible parameter values were enforced to reduce the
number of incompatible geometries selected (see section 2.5).
The effects of these hard limits were noticeable particularly within
the L, e, and W, distributions (see last 3 rows), the tails of which
were thickened by assimilating parameters beyond allowed range.

Finally, the distributions of loaded configurations (see plots in
intermediate gray tones, three rightmost sectors) showed the
evolution of geometric parameters upon pressurization, which
followed the expected behavior for incompressible hyperelastic
materials. For example, the R;, parameter increased relatively
fast at low pressures, but then dilation progressively stopped
accounting for the exponential increase in stiffness. The thickness
parameters L and H decreased upon pressurization (also ensuring
incompressibility), while the W, parameter distributions were the
most sensitive to pressure. Finally, the material properties could
be ranked in order of increasing stiffness as Wy, W, and W}y,
as shown by changes in mean values from the distributions (see
white lines inside the violin plots).

The computational cost of optimizing a GP regression to a few
hundred training points (~1 CPU min) is negligible compared
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TABLE 2 | Best-fit geometric parameters for all patients in correspondence of beginning and end of diastole configuration (BoD, and EoD, respectively).

Rp (mm) L (mm) Z (mm) H (mm) Yo (°)

EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD
N-02 33 29 8.1 11 49 49 8.4 7.9 0.71 0.64 —74 —77
N-03 33 30 7.5 13 46 45 5.4 5.6 0.75 0.78 —79 —56
N-05 30 26 8.1 12 43 44 6.9 6.3 0.7 0.71 —61 —48
N-06 32 29 7.3 11 44 44 5.6 5.2 0.87 0.8 —69 —58
N-07 34 30 9.3 12 54 55 11 12 0.7 0.6 —60 —44
N-09 38 32 8.2 12 a7 51 9.1 13 0.72 0.54 —78 —66
N-10 33 30 10 17 56 63 5.4 " 0.73 0.69 -80 —56
N-11 34 31 8.7 14 48 49 6.6 7.2 0.8 0.68 -50 —52
N-40 29 26 8.1 ih 49 50 9.7 10 0.87 0.81 —40 —34
HYP-01 32 27 74 12 39 40 5.3 6.4 0.64 0.46 -79 -70
HYP-03 34 33 9.5 18 42 47 6.1 8.0 0.6 0.55 —72 —43
HYP-06 34 29 9.3 12 38 37 6.4 5.6 0.75 0.68 —76 —76
HYP-07 39 35 12 18 53 57 7.9 7.3 0.96 0.89 -50 —47
HYP-08 44 41 14 20 65 64 11 9.6 0.82 0.93 —61 —42
HYP-09 35 32 7.9 13 54 45 7.5 9.6 0.82 0.7 —76 —68
HYP-10 40 36 9.0 13 46 45 5.3 5.1 0.69 0.56 —61 —56
HYP-11 31 29 9.7 14 37 33 6.6 5.1 0.83 0.98 —79 —79
HYP-12 28 24 71 12 49 52 8.3 i 0.7 0.43 —66 —49
HYP-37 36 32 i 17 51 54 13 12 0.67 0.55 —33 —28
HYP-38 34 30 13 17 68 64 19 16 0.66 0.52 —45 —53
HYP-40 32 30 13 16 50 50 10 10 0.8 0.85 —41 -39
HF-NI-03 46 44 11 13 52 54 6.3 6.5 0.88 0.96 —78 —60
HF-NI-04 42 40 8.4 13 49 49 5.9 5.2 0.71 0.69 -73 —58
HF-NI-07 39 37 8.8 11 64 62 12 10 0.69 0.75 —68 —73
HF-NI-11 44 42 9.7 10 59 56 5.7 5.2 0.69 0.67 -79 —77
HF-NI-12 47 44 8.7 11 62 61 7 6.7 0.79 0.87 —78 —74
HF-NI-13 4 40 9.7 12 62 64 8.4 9.5 0.9 0.88 -80 —79
HF-NI-14 40 37 ihl 12 53 55 7.6 10 0.79 0.82 —68 —62
HF-NI-15 36 32 9.3 9.7 56 57 12 12 0.81 0.92 —64 —58
HF-NI-31 40 35 9.4 11 49 49 5.8 5.2 0.84 0.98 -78 -79
HF-NI-33 37 34 9.2 12 57 55 6.7 6.2 0.7 0.64 -80 —77
HF-NI-34 40 39 9.4 13 58 63 5.1 10 0.71 0.72 —71 —49
HF-NI-36 43 41 8.5 9.3 45 44 5.2 5.4 0.79 0.77 —77 —79
HF-I-01 38 36 8.3 9.4 54 54 5.1 5.1 0.84 0.95 —64 —67
HF-I-02 44 40 9.5 10 52 53 5.7 5.9 0.65 0.65 -75 —75
HF-1-04 4 40 8.8 11 50 51 5.7 5.3 0.66 0.66 —63 —55
HF-I1-05 4 38 9.4 11 48 54 8.9 11 0.68 0.83 —67 —48
HF-1-06 39 38 8.5 11 54 57 5.3 5.3 0.7 0.84 -77 -75
HF-1-07 38 37 10 14 42 43 6.8 8.1 0.57 0.46 —71 —70
HF-1-08 42 41 9.4 11 54 54 5.4 5.2 0.77 0.77 —59 —57
HF-1-09 51 50 10 11 65 64 5.4 5.2 0.74 0.73 —72 —69
HF-I-10 49 47 9.2 10 53 58 5.1 9.0 0.74 0.83 —73 —79
HF-I-11 40 39 7.2 9.4 55 54 5.9 5.0 0.68 0.81 —59 —61
HF-I-12 36 34 8.4 15 54 56 7.6 7.2 0.69 0.74 —-67 —50
HF-I-40 33 31 8.2 12 54 51 13 10 0.76 0.88 -80 —78
Avg. N 33+3 29+2 84+09 13+2 48+4 50 + 6 76+21 87+29 076+0.07 069+009 -66=+14 —-55 £+ 12
Avg. HYP 35+4 32+5 10+2 15+3 49+10 49+10 89+40 88+32 074+010 067+0.19 —62+16 —54 £ 16
Avg. HF-NI' 41 +3 39+4 94+£09 11+£1 56+ 6 56+62 73+24 77+£25 077008 0.81£0.12 —74+£6 —69 + 11.0
Avg. HF-| 41+5 39+5 89+08 11+2 53+5 54+ 5 6.7+23 69+22 071007 076+0.13 —69+7 —65 + 11
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FIGURE 4 | Generation of training dataset for the unloading problem. (A) Passive inflation and subsequent parameterization results for selected sample of 3 out of
600 left ventricle geometries considered to build the training datasets for the unloading problem. Idealized geometries, chosen via latin hypercube sampling to probe
the parameter space, were discretized and subjected to passive inflation using 3 different sets of material properties. Shown in the panel are results for 2 sets of
material properties (W, and WSO) and 2 loading pressures (1 and 5 kPa). Shown also are color-coded distributions of strain expressed as the first invariant of the
Green-Lagrange tensor. (B) Violin plots depicting changes in geometric parameter distributions upon inflation for all the 533 LV geometries included in the training
datasets, and for the 3 sets of material properties. Black tone plots indicate distributions of geometric parameters at the BoD configuration. Lightest gray tone plots
correspond to distributions synthesized via latin hypercube sampling from a normal distribution constructed based on the BoD configuration, but allowing 2-times
larger variations. White segments close to the center of the distribution indicate mean values. See text for more details.
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FIGURE 5 | Unloading via kriging and comparison to the fixed point iteration
method. (A) Unloading procedure is shown applied to a representative case
(NI-14, unloading pressure P = 1 kPa, and Wﬁo material properties) for which
a statistical model trained on 75 arbitrary ventricles matched best unloading
results via fixed point iteration method. While the fixed point iteration method
required meshing of the ventricles in the loaded configuration and iterative
updates (middle row), the statistical method allowed to infer the unloaded
geometry directly from the 6 parameters describing the end-diastolic (loaded)
configuration (bottom row). Top row is similar to bottom row, but shows result
obtained after training a statistical model on results from the full parametric
study of 500+ LVs. The rightmost column shows overlapped cross-sections of
unloaded LVs obtained via the fixed point iteration method (dashed boundary)
and 2 statistical models (solid gray tones). (B) Similar to (A), but applied to
another representative case (I-07, unloading pressure P = 2 kPa, and W
material properties) for which the statistical learning method (with ny 4y = 75)
yielded the worst overlap to fixed point iteration results (Dice score of 0.90). In
this case, increasing the training set size led to improved results (Dice score of

S
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0.96).

to that of running even only a single passive high resolution
simulation. To optimize the use of computational resources, we
sought, therefore, the minimum training set size that ensured

satisfactory accuracy in estimating the unloaded configurations
for all patients in the dataset. Figures 5A,B show cases where
predictions by GP regression compared best (see Figure 5A) and
least well (see Figure 5B) to the configurations predicted via fixed
point iteration for a relatively small training size (#rain=75). As
starting (loaded) configurations, we chose geometries from the
database at EoD (see first column in both panels), and from these
we inferred corresponding unloaded configurations assuming
inner LV pressures of either 1 or 2 kPa. Comparison between
results from the 2 methods were evaluated in terms of Dice
score between unloaded profiles (see Supplemental Material for
details on Dice score computations). According to our analysis,
Nrain=75 was the minimum training set size ensuring Dice scores
larger or equal than 0.90 for all cases considered (i.e., including
all the LV geometries, both EoD inner pressures, and the 3 sets
of material properties). From the last column of Figure 5B one
can appreciate how even a Dice score of 0.90 corresponds to a
visibly good match between the GP regression prediction (see
LV in gray tone) and corresponding geometry obtained via fixed
point iteration (see overlapped dashed line). Small mismatches
could be observed even in cases with high Dice score in regions
close to the base of the LV (e.g., see last column of Figure 5A).
These artifacts could be attributed to the zero-displacement
boundary condition applied to epicardial elements within 3 mm
from the base in the fixed point optimizations. Note that the
fixed point iteration method required discretization of the EoD
domain and repeated mesh deformation steps (see middle row
in both panels). In contrast, after GP regression training the
unloaded configurations could be inferred almost in real time,
and as another advantage, the GP regression method eliminates
potential issues introduced by iteratively warping the mesh (e.g.,
element degeneration) in the fixed point iteration method. The
top row in both panels shows unloaded profiles inferred from GP
regressions trained on the full set of simulation results. In the best
match case shown in panel A results were essentially the same
for nin=75, while the Dice score increased by 0.06 when we
expanded the training dataset from #y,in =75 to 533 in the worst
match case (see Figure 5B).

Figure 6 plots average Dice scores comparing GP regressions
to fixed point iteration. The 3 rows in Figure 6A show results
for different sets of material properties at an unloading pressure
of 1 kPa (first column) or 2 kPa (second column). As expected,
increasing training sizes generally yielded better Dice scores,
although little improvement was observed beyond #y,in=75. Also
reported are average Dice scores quantifying the overlap between
fixed point iteration and the BoD or EoD configurations, as well
as the average overlap with the OptD configuration, which was
chosen as the imaged diastolic configuration that matched best
the unloaded geometry. White dashed lines overlapped to the
bars indicate the lower 10th-percentile Dice score observed for
predictions from GP regressions.

Additional GP regression models were trained to handle
situations where intraventricular pressure is unknown, but
can be estimated by indirect measurements such as the fiber
strain at midwall (see section 2.3). Table 3 reports unloaded
geometries for all patients in the Sunnybrook database under
the assumptions of Wy material properties and end-diastolic
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FIGURE 6 | Accuracy of unloading via GP regression compared to unloading via fixed point iteration method. (A) Barplots of average Dice scores comparing
beginning of diastole (BoD), end of diastole (EoD), the best-matching diastolic configuration (OptD), and unloaded configurations obtained via kriging with different
Nirain to unloaded configurations predicted via the fixed point iteration method. Subplots show results for combinations of considered material properties (W, , WSO,
or W%) and unloading pressures (P = 1 kPa or 2 kPa). (B) Similar to (A), but unloaded configurations are estimated prescribing average midwall strain at end diastole
()Lﬁwo% on the left, Aﬁ15% in the right column). In both panels the dashed white lines drawn on kriging-related bars indicate lower 10th-percentile Dice score for each
subcategory.

fiber strains of either 1.10 ()\11{0%) or 1.15 ()LIITS%). Outputs  in lesion sizes yielded significant drops in SV. Maximum
of the procedure included end-diastolic LV pressure values combined effect was reached by increasing both circumferential
corresponding to the target fiber strains in the loaded and transmural extension. Starting from a baseline failing LV

configurations. Figure 6B reports accuracy of GP regression  with SV = 49 ml, GP regression predicted a drop down
predictions measured in terms of Dice score with predictionsvia  to SV = 21 mL at maximum depth and circumferential
fixed-point iteration method. extension. Figure 7B shows 5-fold cross-validation for evaluating

Other than being used for inverse problems, GP regressions  progressive convergence of GP regression for increasing training
are ideal as tools for rapidly exploring multi-dimensional  sizes. Average relative discrepancies between SV values from
parameter spaces. As a proof of concept for the usage, we  simulations and corresponding predictions from GP regression
show preliminary results for a parametric study of the effect  progressively decreased to 6% for a maximum training size of 40
of infarct location and shape on cardiac performance as  simulations.
assessed by stroke volume (SV). Figure 7A shows color maps Figure 8A compares in detail 2 simulations from the training
of simulated SV over 2-D slices of the 4-D parameteric space.  set characterized by different infarct morphologies. While INF;¢
Also shown, are projections onto each slice of the probing  (on the left) harbored a non-transmural basal infarct, the lesion
locations composing the full training set (see black dots). Each  in INF3( was larger, more apical, and fully transmural. The high
plot isolates the combined effects of 2 out of the 4 parameters  level of mesh refinement within and surrounding the infarct
used to define infarct shape and location. As expected, increases  (see regions in darkest and intermediate gray tones, respectively)
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TABLE 3 | Unloaded geometries inferred via GP regression assuming EoD fiber stretches at midwall of either 1.10 (A;fO%) or1.15 ()Lng%) and Wy, set of material
properties.

Rp (mm) L (mm) Z (mm) H (mm) e Yo (°)

Pat. x:fo"/o x:fs% x;‘fO% l:fs% 1%0% xzfs% x;lfO% x:fs% x;‘fO% x:fs% 1}0% l:fs%
N-02 30 30 9.3 10 50 51 9.1 9.8 0.65 0.65 —68 —60
N-03 30 29 8.4 9.4 47 47 6 6.5 0.70 0.71 —74 —66
N-05 28 28 9.3 10 45 46 7.6 8.1 0.65 0.65 —53 —45
N-06 29 29 8.4 9.3 45 45 6 6.6 0.86 0.89 —60 —583
N-07 32 32 1 12 56 58 12 13 0.63 0.63 —583 —45
N-09 35 34 9.6 11 54 55 12 13 0.70 0.70 —53 —45
N-10 30 30 11 12 58 58 5.6 6.1 0.69 0.71 -75 —68
N-11 32 32 10 11 49 50 7.4 7.9 0.76 0.78 —43 -35
N-40 28 28 9.5 10 51 52 10 11 0.83 0.84 -33 -27
HYP-01 30 30 7.9 8.9 39 39 6.2 6.8 0.57 0.56 —73 —64
HYP-03 32 32 11 12 43 43 6.9 7.6 0.54 0.54 —64 —55
HYP-06 32 32 ih 12 38 39 7.4 8.1 0.73 0.75 —64 —57
HYP-07 37 36 14 15 56 57 8.8 9.3 1.00 1.00 —37 —31
HYP-08 41 41 16 17 68 70 iRl 12 0.82 0.84 —51 —44
HYP-09 33 32 9 9.7 55 55 8 8.7 0.80 0.81 -70 —63
HYP-10 36 35 9.5 10 46 46 6.2 6.9 0.58 0.57 —75 —66
HYP-11 29 29 12 13 38 39 7.3 7.9 0.83 0.86 —67 —60
HYP-12 26 26 8.1 9.1 51 51 8.7 9.4 0.65 0.65 —60 —53
HYP-37 31 32 11 12 53 54 13 14 0.55 0.55 —48 —40
HYP-38 32 33 14 15 71 72 17 17 0.61 0.60 -38 -32
HYP-40 31 31 15 16 53 54 11 12 0.78 0.80 -31 —24
HF-NI-03 43 42 12 13 52 53 7.2 8 0.89 0.91 —60 —53
HF-NI-04 39 38 9.3 10 49 49 6.9 7.7 0.66 0.66 —73 —64
HF-NI-07 36 35 9.4 10 66 67 14 14 0.59 0.58 —61 —54
HF-NI-11 40 39 11 12 60 60 6.4 7 0.63 0.63 —76 —68
HF-NI-12 43 41 9.6 10 63 63 8.4 9.2 0.77 0.77 —73 —67
HF-NI-13 38 37 11 11 63 63 9 9.6 0.89 0.90 —74 —68
HF-NI-14 37 36 12 14 54 55 8.3 9.1 0.77 0.79 —58 -50
HF-NI-15 34 34 11 12 60 61 13 14 0.85 0.86 —48 —41
HF-NI-31 37 36 11 12 50 50 6.6 7.2 0.84 0.86 —69 —62
HF-NI-33 34 33 10 11 58 58 7.3 8 0.64 0.64 —-76 —69
HF-NI-34 37 36 10 1 59 60 5.6 6.3 0.65 0.65 —67 —59
HF-NI-36 40 39 9.4 10 45 46 5.9 6.6 0.82 0.83 —65 —58
HF-I-01 35 34 9.4 10 55 56 55 6 0.82 0.84 —57 —-50
HF-1-02 41 39 11 12 53 53 6.6 7.3 0.59 0.58 -70 —61
HF-1-04 38 38 9.8 1 50 51 6.6 7.3 0.59 0.58 —57 —49
HF-1-05 39 38 11 12 49 50 10 ih 0.61 0.60 —-59 -50
HF-1-06 36 35 9.4 10 55 55 5.9 6.5 0.64 0.64 —74 —66
HF-1-07 36 36 12 14 42 43 7.8 8.6 0.50 0.50 —62 —53
HF-1-08 39 38 10 12 55 55 5.6 6.3 0.74 0.75 —58 -50
HF-1-09 47 45 10 12 74 74 13 14 0.73 0.73 —68 —62
HF-I-10 46 44 10 11 52 53 5.9 6.7 0.70 0.70 —66 —58
HF-I-11 36 35 71 7.8 54 54 5.7 6.4 0.60 0.59 —67 —59
HF-1-12 33 33 9.4 10 55 56 8.3 9 0.63 0.63 —62 —54
HF-1-40 31 30 9.6 10 55 56 13 14 0.71 0.70 —73 —65
N-avg 30 30 9.6 11 51 51 8.4 9.1 0.72 0.73 —57 —49
(+0) @ @ (1.0) (1) (6) (6) (2.9) @.7) (0.08) (0.09) (14) (14)
HYP-avg 32 32 12 12 51 52 9.3 10 0.71 0.71 —56 —49
(o) ) (4) ©)] ©)] (1) (1) 3.2 (©) ©.14) 0.15) (15 (14)
HF-NI-avg 38 37 10 11 57 57 8.2 8.9 0.80 0.76 —67 -59
(+0) 3 ©)] (1) (1) (7) (7) @.7) (2.6) ©.9) 0.12) ©) ©)

HF-l-avg 38 37 9.9 1 54 55 7.8 8.6 0.66 0.65 —64 —56
(o) ©) (4) (12 @ @) @) 2.8) 2.9 (0.09) (0.09 ©) ©6)

See text for more details
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FIGURE 7 | Statistical model of infarct shape and location effects on simulated
SV. (A) Color-coded distribution of SV as predicted by kriging on 6 slices of the
4-D parametric hyperspace. Each plot shows combined effects of variations of
2 parameters on simulated SV, as shown by scale bar (values outside the
range are truncated). Darker (lighter) color tones indicate stronger (weaker)
impairment due to infarct. Dots represent projections of the probing points
onto the slice plane. (B) 5-fold cross-validation to assess performance of the
statistical model for varying training sizes ny4in. Relative error on simulated SV
predictions approached 6% for the maximum training set size (Ny4in = 40).

required the capability of our solver of handling high resolution
tetrahedral meshes. Figure 8B compares simulated PV loops
for the 2 models described above. As expected, INF3; (see
dashed line), which harbored a larger lesion, exhibited a stronger
impairment in simulated cardiac performance. The PV loops
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FIGURE 8 | Comparison between 2 select simulations (out of the 40
considered). (A) On the left, the INF1g model has a smaller basal infarct
(volume of 8.8 ml, Long. = 0.43, ACirc. = 1.22, ALong. = 0.40, Depth =
0.40). On the right, INF3q presents a larger transmural lesion (volume of 16 ml,
Long. = 0.79, ACirc. = 1.57, ALong. = 0.46, Depth = 1.0). (B) Simulated PV
loops showing smaller SV for the largest lesion INFzg (dashed line), as
expected.

show the weaker contraction generated by INF3, despite an
increase in end-diastolic volume (i.e., SV = 40 ml and SV = 32
ml for INF; and INF3, respectively).

4. DISCUSSION

Numerous computational models of LV mechanics have been
developed over the years to understand better LV function in
normal and diseased hearts with the ultimate goal of assisting
personalized diagnostics and treatment. Available models differ
both in terms of enclosed biophysical detail and of anatomical
representation. In the simplest form, left ventricular function can
be captured by a time-varying elastance model, where a single
time-varying ODE couples the evolution of intraventricular
pressure and volume over the course of a cycle (Suga and Sagawa,
1972; Stergiopulos et al., 1996). At the other end of the complexity
scale, models of LV mechanics incorporate phenomenological
or biophysical descriptions of muscle contraction at the
microscopic level, while at the same time capturing in detail
the cardiac anatomy on high-resolution computational domains
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(e.g., Guccione et al., 1995; Kerckhoffs et al.,, 2007; Goktepe
and Kuhl, 2010; Baillargeon et al., 2014; Sundnes et al., 2014;
Gurev et al,, 2015; Augustin et al., 2016). Although these highly
refined 3D models provide valuable information, they entail
high computational costs. To improve computational efficiency,
models with intermediate levels of complexity have been based on
simplifying assumptions on ventricular geometry and structure
(Arts et al., 1979; Beyar and Sideman, 1984; Lumens et al,
2009). For prolate spheroid geometries and passive mechanics
simulations, distributions of stress in other low order models
can match well FEM results despite running faster than in
real-time (Moulton and Secomb, 2013, 2014; Moulton et al.,
2017).

Significant reductions in computational costs can be similarly
achieved by training machine learning models on the results
of opportunely sampled biophysical simulations. As a proof of
concept, in this paper we applied GP regression, a popular
supervised learning technique, to 2 problems of interest in
cardiac mechanics modeling. First, 600 LV geometries described
by a 6-parameter (Rp, L, Z, H, Wy, e) prolate spheroid were
extracted randomly from a conservatively defined parameter
space. For each geometry, a forward simulation was run to
trace ventricle geometries upon inflation at progressively larger
intraventricular pressures. GP regression models then allowed
to infer unloaded configurations given sets of 6 parameters
defining the loaded geometries and either their corresponding
intraventricular pressure or their fiber strain at midwall.
For the second statistical model, we built a GP regression
between parameters characterizing the location and shape of
an infarct and corresponding stroke volumes predicted by
high-resolution simulations accounting for the presence of the
lesion.

4.1. Ventricular Shape Analysis

The Sunnybrook Cardiac MRI database was the primary source
of imaging data for this study. Conventional analyses of the
segmentations from such a database have employed methods to
either extract features directly from images (e.g., Chumarnaya
et al, 2016), or have used finite element models to analyze
ventricular shapes and build statistical classifiers of patient
disease (e.g., Piras et al., 2017). A geometric description with
fewer parameters is better suited for parameterizing the geometry
of ventricles in regressions trained on biophysical simulation
results. Therefore, instead of finite element models, we adopted
a 6-parameter description (Streeter and Hanna, 1973; Pravdin
et al., 2014) to approximate ventricular geometry. In spite
of its simplicity, this approach was able to capture some of
the shape features and biomarkers that have been previously
extracted using the conventional finite element models (e.g.,
Zhang et al., 2014). In particular, ventricular sphericity (e)
separated ventricles with and without myocardial infarction
in patients with heart failure (see HF-I and HF-NI traces
in Figure3). The 6-parameter model analysis also captured
higher average wall thickness in hypertrophic hearts and highest
relative dynamic thickening in normal patients. To partially
compensate for the limits of considering a fully axisymmetric
parameterization, we accounted for eventual rigid rotations

and translations to better align parameterized and segmented
ventricles throughout the cardiac cycle. This ensured us overall
good fitting results, especially for the failing hearts, which
proved to be more symmetric. Nonetheless, the methods here
presented could be promptly extended also to non-axisymmetric
parameterizations such as those based on non-uniform rational
B-splines at the expense of extending the parameter space to
additional dimensions.

Out of the several field views provided in the Sunnybrook
database, we restricted our analyses to short-axis stack series,
which have the disadvantage of providing relatively low
resolution in the coronal planes. As a result, some artifacts
were particularly evident close to the apex of the ventricle,
where the segmentation and subsequent parameterization
were sometimes not able to resolve correctly the apical
thickness, especially in the thinner failing LVs. Not surprisingly
then, the H parameter showed the largest relative standard
deviations within the same cardiac cycle for all patients,
indicating that apex parameterization accuracy could be
likely corrected by registering and merging multiple MRI
views.

4.2. Ventricular Unloading

Standard FE simulations need to be initialized from an unloaded
state, which cannot be directly extracted from images because
ventricles are pressurized in all of the configurations imaged
by cine-MRI or CT scans. Given material properties and
inner LV pressure, iterative approaches such as the fixed point
iteration method allow to estimate the unloaded configuration
by progressively correcting a loaded state (Sellier, 2011; Genet
et al, 2015). Nonetheless, due to their large computational
cost and added complexity, these techniques are not typically
incorporated into sophisticated optimization schemes proposed
to estimate model parameters from images (Asner et al,
2016, 2017; Nasopoulou et al, 2017). To ensure feasibility,
many modeling studies tend instead to use representative
loaded configurations (i.e., at beginning or end of diastole) as
approximations for the unknown unloaded state. As shown by
our analyses, this could significantly bias results, since BoD
and EoD configurations tend to match poorly to the profiles
of unloaded geometries (see Figure 6). GP regression models
of unloading can help circumvent some of the limitations
associated with iterative methods and enable larger parameter
search studies. Somewhat surprisingly, even a training set of
Nirain=75 forward simulations was sufficient to ensure good
inverse estimation results. LV profiles inferred from the statistical
model matched those obtained via fixed point iteration with
Dice scores always larger than 0.90 under 2 loading pressures
and for 3 different sets of material properties. Considering
that in our experience 7-10 iterations are needed to reach
convergence via fixed point iteration, the preparation of an
accurate statistical model might then require a computational
cost comparable to unloading 7-10 ventricles with the standard
method. Unlike fixed point iteration our strategy requires
also an additional step of re-parameterizing simulation results
in a format that can be handled by the machine learning
model. The computational cost of reparameterizing is often
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negligible (on the order of few CPU mins), and after
training the statistical model can be further interrogated to
unload additional geometries at essentially no computational
cost.

In addition to morphology, estimating the unloaded
configuration relies on the knowledge of loading conditions
and of the material properties of the myocardium. To fully
characterize the material behavior of cardiac tissue, sophisticated
experiments are required to reproduce in vitro the principal
strain modes experienced by the heart during the cycle. The
most extensive dataset on the passive behavior of the human
myocardium is provided by Sommer et al. (2015). This work
confirms how the micro-architecture of myocardial sheets
leads to complex nolinear anisotropic behavior combined to a
persisting viscoelastic response. Although viscoelastic effects
were neglected in this work, we considered material properties
based on the triaxial experiments of Sommer et al. (2015) as well
as 2 other sets of constitutive behaviors based on experiments
on animal models (Usyk et al., 2000; Wang et al., 2013; Gtiltekin
et al., 2016). Our unloading procedure proved to work well for
all of these sets of material properties.

In the form presented herein, our method for ventricular
unloading required building a new training dataset and
subsequently a new GP regression model for each set of material
properties considered. Nonetheless, for future applications,
the input parametric space could be extended to additional
dimensions to account also for variations in material properties.
While more training simulations would likely be needed to reach
the desired convergence, the presented approach could still prove
to be convenient for material property identification based on
strain energy functions with reduced number of parameters (e.g.,
Nasopoulou et al., 2017), and especially in cases where large
high performance machines are available to tackle the required
computational cost in a distributed fashion.

The diastolic fiber strain at midwall, the constitutive law,
and the shape of the ventricles at end-diastole are sufficient to
uniquely unload geometries either via fixed-point iteration or GP
regression. In this paper, we proposed to constrain end-diastolic
fiber stretch to account for scenarios where diastolic pressure in
the ventricles is not known. Animal model experiments suggest
that end-diastolic fiber strain varies within a relatively small range
in several circumstances (e.g., see Ross et al., 1971). Inspired
by studies on inverse stress identification (Miller et al., 2010;
Miller and Lu, 2013), we therefore tried to find the unloaded
ventricular shape without solving for ventricular pressure. This
was also motivated by the fact that unloading by strain would
yield the same unloaded configuration independently from a
homogeneous scaling of the constitutive law (i.e., predicted end-
diastolic pressures would scale accordingly). To illustrate the
potential of such approach, we additionally computed Dice scores
between unloaded ventricles with 10% diastolic fiber strain using
different constitutive laws. Our results (Dice scores of 0.90 & 0.05
for Wy vs. W, 0.85 £ 0.03 for Wy vs. Wi, and 0.96 £ 0.03 for
WS, vs. Wi, respectively) suggested strong similarity between
unloaded ventricles endowed with umlaut Gultekin and Wang
material behaviors, which followed the same Holzapfel-Ogden
functional formulation.

4.3. Modeling of Infarct Mechanics

Two main factors increase the complexity of ischemia and
myocardial infarction models. The first one is the need to
account for the progressive changes in passive and active material
properties that are triggered by the lesion and driven by tissue
damage recovery and remodeling (Holmes et al., 2005). The
second one is the more complex numerical framework required
to handle the large finite element meshes needed to accurately
capture realistic infarct shapes. In the past, only few studies have
simulated non-transmural infarcts (Leong et al., 2015; Duchateau
et al., 2016; Leong et al., 2017), while most models have either
simulated infarct with simplified morphologies, or have allowed
infarct/ischemic regions crossing the finite element boundaries
(e.g., Mazhari et al., 2000; Jie et al., 2010; Wenk et al., 2011;
Mojsejenko et al., 2015). Here, we present a model of non-
transmural infarct that has refined elements in the border region
of infarct. To handle large finite element meshes that result
from such a refinement, we use an iterative solver for the large
system of linearized equations with an efficient preconditioner
(Gurev et al, 2015). To quickly summarize our results, the 2
main parameters affecting simulated SV were the transmural
and circumferential extensions of the lesion, while location of
the infarct played a minor role. Our models of infarct and the
corresponding statistical model are still at a preliminary stage of
development, and were here presented mainly to demonstrate the
concept of integration between statistical and physical models.

4.4. Summary

This work shows 2 applications of GP regression in modeling
ventricular heart mechanics. First, we present a strategy to
estimate the ventricular unloaded configuration given material
properties and intraventricular pressure (or alternatively fiber
strain at midwall). Once an upfront computational cost
(amounting to ~10 applications of a conventional iterative
method) is paid for training, GP regression models allow the
estimation of unlimited unloaded geometries at no additional
cost. The method is therefore suitable to be used in analyses
involving large number of patients such as those collected in
publicly available databases. Second, we use GP regression as
a convenient tool to explore results of a parametric study
investigating coupled effects of infarct shape and location.
While just a proof of concept study, these preliminary results
demonstrate the power of the approach. That is, we were able
to characterize a large variation in infarct location and size,
including non-transmural infarcts with highly complex meshes
that are computationally demanding to solve.
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A recent advance in understanding stem cell differentiation is that the cell is able to
translate its morphology, i.e., roundish or spread, into a fate decision. We hypothesize
that strain states in the nuclear envelope (NE) cause changes in the structure of the
nuclear pore complexes. This induces significant changes in the NE's permeability to the
traffic of the transcription factors involved in stem cell differentiation which are imported
into the nucleus by passive diffusion. To demonstrate this, we set up a numerical model of
the transport of diffusive molecules through the nuclear pore complex (NPC), on the basis
of the NPC deformation. We then compared the prediction of the model for two different
cell configurations with roundish and spread nuclear topologies with those measured on
cells cultured in both configurations. To measure the geometrical features of the NPC,
using electron tomography we reconstructed three-dimensional portions of the envelope
of cells cultured in both configurations. We found non-significant differences in both the
shape and size of the transmembrane ring of single pores with envelope deformation. In
the numerical model, we thus assumed that the changes in pore complex permeability,
caused by the envelope strains, are due to variations in the opening configuration of
the nuclear basket, which in turn modifies the porosity of the pore complex mainly
on its nuclear side. To validate the model, we cultured cells on a substrate shaped
as a spatial micro-grid, called the “nichoid,” which is nanoengineered by two-photon
laser polymerization, and induces a roundish nuclear configuration in cells adhering
to the nichoid grid, and a spread configuration in cells adhering to the flat substrate
surrounding the grid. We then measured the diffusion through the nuclear envelope of
an inert green-fluorescent protein, by fluorescence recovery after photobleaching (FRAP).
Finally, we compared the diffusion times predicted by the numerical model for roundish
vs. spread cells, with the measured times. Our data show that cell stretching modulates
the characteristic time needed for the nuclear import of a small inert molecule, GFP,
and the model predicts a faster import of diffusive molecules in the spread compared to
roundish cells.

Keywords: nuclear pore complex, passive diffusion, nuclear envelope permeability, stem cell differentiation, finite
element modeling, scanning transmission electron microscopy, confocal microscopy
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INTRODUCTION

The mechanobiological cues guiding stem cell fate are currently
being intensely explored in vivo (Rompolas et al., 2013) and in
vitro (Nava et al., 2012). In vitro, they can be modulated through
substrate stiffness, surface nanotopography, microgeometry, and
extracellular forces. For example, the culture of mesenchymal
stem cells (MSCs) on substrates with tuned elasticity (Swift et al.,
2013), or with a size and geometry constraint (Nathan et al.,
2011; Tseng et al., 2012), results in an alteration in cell spreading,
leading to major remodeling of the cellular cytoskeleton. This
remodeling, in turn, alters the nuclear shape, mediated by
the traction transmitted to the nucleus by the filamentous
actin cytoskeleton (Badique et al., 2013). However, exactly how
alterations in nuclear shape are transduced into stem cell fate are
unknown.

Here, we hypothesize that strain states in the nuclear envelope
(NE) cause changes in the structure of the nuclear pore
complex (NPC). This would lead to a significant change in
the permeability of the nuclear envelope to the traffic of those
transcription factors involved in stem cell differentiation which
are very small and thus imported in the nucleus through the
NPCs by simple passive diffusion. The molecular weight of these
diffusive molecules has been estimated to be lower than 40 kDa
(Paine et al., 1975; Ribbeck and Gorlich, 2001) but can reach
dimensions up to 70 kDa (Wei et al., 2003; Cardarelli and
Gratton, 2010; Bizzarri et al., 2012).

The multiprotein structure of a NPC is detailed in Figure 1.
NPCs are a substructure assembly composed of several coaxial
rings and 8-fold rotational (Goldberg and Allen, 1996; Beck et al.,
2004; Loschberger et al.,, 2012) symmetrical structures named
according to their spatial location: (1) The cytoplasmic ring (CR)
and filaments in the cytoplasmic side; (2) The spoke ring (SR)
and transmembrane ring, which provide stiffness and stability
to the complete NPC, in the nuclear envelop; (3) The nuclear
ring (NR), which is attached to the lamina, the nuclear basket,
and the distal ring (DR) in the nuclear side. For a detailed
description of the structure of the NPC, see the review paper
(Garcia et al., 2016).

NPCs pose efficient barriers to big inert objects (Mohr
et al., 2009) and regulate the protein translocation between the
cytoplasm and cell nucleus, thus suppressing an intermixing
of the contents of the two compartments in order to control
cell life and regulate gene expression, as in cell differentiation.
Small proteins and molecules can pass unassisted through the
NPC by passive diffusion. This translocation process becomes
increasingly restricted as the particle size increases (Paine et al.,
1975; Wei et al., 2003). Passive diffusion becomes very inefficient
approaching an upper molecular weight limit of around 40-
70 kDa. Thus, larger proteins are let into the nucleus by a
NPC selective receptor on the FG-domain, which recognizes
a specific import motif (called the nuclear localization signal)
expressed by the cargos. This process of protein translocation,
named facilitated translocation, is often associated with an input
of metabolic energy, thus enabling transport also against a
concentration gradient (Paine et al., 1975; Ribbeck and Gorlich,
2001; Naim et al., 2007).

According to the basic principles of mass transport, the
nuclear flux of small transcription factors occurring by passive
diffusion should be proportional to their concentration gradient
across the NPC, by a coeflicient related to the dimension of the
pore lumen. Variable diameters have been observed in the NPC,
likely made possible by large-scale rearrangements of double-
ring protein subcomplexes (Bui et al., 2013). Such large-scale
rearrangements are now believed to be biologically significant
only for the transport of huge macromolecular cargoes.

To the best of our knowledge, no one has yet hypothesized
a role for the pore dimensional variations in regulating the
purely diffusive nuclear fluxes of signaling molecules, such
as transcription factors, including those involved in stem cell
differentiation. This work defines one of these mechanisms using
an advanced mechanobiology model based on the integration of
a computational model of protein nuclear diffusion with nuclear
deformation, with direct measurements on the cells of nuclear
import flows of small diffusive proteins.

Computational modeling of nuclear diffusion-deformation
phenomena entails coupling structural mechanics models for
the NE and NPC with diffusion equations for the transcription
factors, which is an essentially unexplored field. Few published
examples of numerical simulations address the mechanics of the
NPC and its effect on nucleocytoplasmic transport (reviewed
in Garcia et al.,, 2016). At the cell scale, our group developed
a finite element simulation of passive diffusive fluxes from the
cytoplasm to the nucleus, accounting for nuclear deformation
(Nava et al., 2015a). This model coupled nuclear diffusion with
local NE deformation in transient conditions, through a strain-
dependent diffusion coefficient. At the nanoscale, numerical
simulations based on molecular dynamics predicted a cargo
trajectory through an NPC by interaction with the FG-domain
of an NPC selective receptor (Moussavi-Baygi et al., 2011). This
model also supports the hypothesis that the mechanical response
of the NPC may affect the diffusion of cargos and smaller
molecules through the nuclear pore.

A major challenge in calibrating these numerical models
is the direct measurement of small diffusive proteins in cells
of the nuclear import flows. The study of protein mobility
or translocation of protein between different compartments
of live cells (such as nucleocytoplasmic translocation) was
made possible by the discovery and development of fluorescent
proteins (FPs) (Chalfie, 1994; Tsien, 1998). FPs are a class of
genetically encodable proteins derived from sea organisms and,
in particular, from the jellyfish Aequorea victoria.

Using molecular biology techniques and commercial scanning
microscopes, FPs can be tagged to any protein of interest. In
addition, fluorescent microscopy can visualize, localize and track
proteins in live cells and also reveal the extensive networks
of protein-protein interactions that regulate cell processes
(Lippincott-Schwartz et al., 2003). Fluorescence recovery after
photobleaching (FRAP) is particularly useful in assessing the
dynamic and biochemical properties of intracellular proteins in
a single or multiple cell compartment (Sprague and McNally,
2005). FRAP was originally conceived in 1974 by Peters et al.
(1974) and is very useful for studying protein mobility because
it is only based on the change in optical properties, whereas
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FIGURE 1 | The nuclear pore complex. (A) From micro (STEM cell) to nanoscale (nuclear pore complex structure). (B) Main sub-structural groups (rings, filaments,
and basket) that make up an NPC. (Reproduced from Garcia et al., 2016 with permission from the Royal Society of Chemistry).
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the dynamics and biochemistry of the molecules of interest
are not perturbed. FRAP, along with other optical fluorescence
microscopy techniques, has been widely used to study and
understand passive and active diffusion mechanisms through the
NPC (Wei et al., 2003; Yang et al., 2004; Cardarelli and Gratton,
2010; Bizzarri et al., 2012).

In this work, we hypothesized that strain states in the NE
cause changes in the structure of the NPC, thus in turn causing a
significant change in the permeability of the NE to the traffic of
transcription factors that are imported into the nucleus by passive
diffusion. To quantify this effect, we set up a numerical model
of the interaction between the NPC and the NE. We measured

geometrical parameters of the NPC size/shape on reconstructed
three-dimensional (3D) portions of the NE, in both roundish and
spread cell configurations, by applying electron tomography (ET)
analysis on cultured cells. We set up a computational model of the
NPC-NE mechanical interaction in which the changes in NPC
permeability due to the NE strains are caused by variations in
the opening configuration of the nuclear basket, which in turn
modifies the porosity of the NPC nuclear side in the NE.

To validate this model, we cultured cells in a substrate
nanoengineered by two-photon laser polymerization which can
maintain roundish cell nuclei due to the isotropic adhesion of
cells to a 3D micro-lattice, called the “nichoid” (Raimondi, 2013).
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Cells adhering to the flat substrate surrounding the individual
nichoids adhered in standard spread conditions to the flat 2D
surface and showed spread nuclei. We transfected untagged
GFP protein into MSCs grown in both roundish and spread
conditions.

Our aim was to quantify, with FRAP experiments, how cell
morphology affects the nuclear envelope permeability and hence
the nucleocytoplasmic exchange of transcription factors. Finally,
we compared the diffusion time constants predicted by the
numerical model for roundish vs. spread cells with the constants
measured by FRAP.

MATERIALS AND METHODS

Experimental Protocols for NE

Reconstruction by Scanning TEM (STEM)
Cell Culture

MSCs were isolated from the bone marrow of adult rats (Zoja
et al.,, 2012). Cells were isolated and cultured in alpha-MEM
medium supplemented with 20% fetal bovine serum (FBS), 1%
L-glutamine (2 mM), penicillin (10 units/ml), and streptomycin
(10 pg/ml) at 37°C and in 5% CO; (Euroclone, Italy). The culture
medium was changed every 2-3 days and cells were used at
stages 1-3 after thawing. The animal protocols used in this study
comply with the institutional protocols for ethical use currently
in force.

Sample Preparation for STEM Analysis

MSCs were plated (20,000 cells/cm?, n = 3) on glass coverslips
(13 mm diameter) or 35 mm-Petri dishes. One day after plating,
the culture medium was removed and cells were washed with
phosphate buffered saline. To model the deformed (spread)
configuration, MSCs were fixed for 2h at room temperature
with 1.5% glutaraldehyde in 0.1 M sodium cacodylate (pH 7.2),
detached by scraping, centrifuged to recover the pellet, kept
overnight at 4°C in 1.5% glutaraldehyde in 0.1M sodium
cacodylate and finally rinsed in 0.1 M sodium cacodylate (pH
7.2). To model the undeformed (roundish) configuration, MSCs
were detached with trypsin, centrifuged to recover the pellet,
fixed overnight with 1.5% glutaraldehyde in 0.1M sodium
cacodylate, and rinsed in 0.1 M sodium cacodylate.

T Y B _ (38 Nucleus'|
% N CaShiay Yt W W

Em(él‘ope

FIGURE 2 | TEM image of the NE with NPCs (in circles).

STEM Analysis

After chemical fixation, MSCs cells in the spread and roundish
configurations were washed several times in 0.1M sodium
cacodylate (pH 7.2), post-fixed in 1% osmium tetroxide in
distilled water for 2h and stained overnight at 4°C in an
aqueous 0.5% uranyl acetate solution. After several washes in
distilled water, the samples were dehydrated in a graded ethanol
series, and embedded in EPON resin. Sections of about 70 nm
were cut with a diamond knife (DIATOME) on a Leica EM
UC6 ultramicrotome. Transmission electron microscopy (TEM)
images were collected with an FEI Tecnai G2 F20 (FEI Company,
The Netherlands). EM tomography was performed in scanning
TEM (STEM) mode, using a high angular annular dark field
(HAADF) detector on 400 nm thick sections of MSCs cells in
both spread and roundish configurations. The tilt series were
acquired from a £60° tilt range. The resulting images had a
pixel size of 1.85nm as shown in Figure 2. The tomograms
were computed with IMOD (version 4.8.40) (Kremer et al.,
1996). Isosurface based segmentation and three-dimensional
visualization on unbinned and unfiltered tomograms were
performed using Amira (FEI Visualization Science Group,
Bordeaux, France).

Nuclear Envelope 3D Reconstruction

Open source image processing software, IMOD (Kremer et al.,
1996), specialized in tomographic reconstruction developed
by the University of Colorado was used to segment STEM
images. Segmentation was performed manually on each slice.
This process was guided by first locating the heterochromatin
which is located very close to the membrane on the nuclear
side (Figure 2). Figure 3A shows a typical slice segmentation
detailing the location of several nuclear pores in the membrane.
This process was followed for each slice as shown in
Figure 3B. The nuclear envelope was then reconstructed by
linear interpolation of the segmentation between consecutive
slices (Figure 3C).

When the 3D reconstruction of the NE had been modeled,
the geometrical data of the pores were measured directly using
IMOD. Since the pore section is slightly elliptical, in order
to obtain the area of each NPC, the two main diameters
were obtained by measuring the pixel-by-pixel distances using
IMOD. Additional post-processing regarding pore dimensions
was performed in Matlab R2017b. Since we were measuring the
main distances of the pixels between the mounted segmented
slices, the main diameters were the closest approximations to
the real diameters, due to the limited resolution of the STEM
images. In order to obtain an accurate approximation of the pore
area, a total of 16 and 19 pores were found in the reconstruction
and measured for both spread and roundish configurations,
respectively.

Experimental Protocols to Analyse the

Diffusive Process on Cells

Cell Culture on Flat and 3D Substrates

To recreate the two spread and roundish cell morphologies, cells
were seeded on a chambered 160 pm-thick cover glass (Lab-
Tek II, Thermo Scientific-Nunc) patterned with 3D “nichoid”
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<. Segmentation -

FIGURE 3 | STEM Cell segmentation of the Nuclear Envelope and Pores. (A) Cell electron tomography with Nuclear Envelope segmentation (green). (B) Segmented
cell tomographies for 3D reconstruction. (C) 1-slide segmentation of the NE (blue-left). 3D reconstruction (blue-right).

structures fabricated using an organic-inorganic photoresist
(SZ2080) by two-photon laser polymerization (Raimondi, 2013).
In each chamber well, three niches were arranged in a triangular
pattern, at a relative distance of 200 pm. Individual niches were
30 um high and 90 x 90um? in transverse dimensions. They
consisted of a lattice with interconnected lines, comprising a
complex structure with pores of a graded size (Figure 4). The
lines had a uniform spacing of 15 um in the vertical direction,
and a graded spacing of 10, 20, and 30 wm in the transverse
direction. Each niche was surrounded by four outer confinement
walls, made up of horizontal rods spaced by 7.5 um, resulting in
small gaps of 2 um, which allow the diffusion of nutrients, but
prevent the cells from escaping outside the niche (Nava et al.,
2015b).

Before cell seeding, samples were washed three times in
deionized water, incubated overnight in ethanol 70%, washed
three times in sterile deionized water and irradiated with UV
light for at least 1h. The samples were then treated with
0.01% of Poly-L-lysine solution (Sigma-Aldrich, Italy) to improve

the cell adhesion, and again washed three times with sterile
deionized water. Once dry, 20 - 10> MSCs cells were seeded
on each chamber. The day after, the cells were transient
transfected with untagged GFP protein (pmaxGFP, Lonza,
Switzerland).

Cell Transfection

Cells were transiently transfected with GFP plasmid (pmaxGFP,
Lonza, Switzerland) using the jet PRIME reagent (Polyplus,
USA). A solution consisting of 0.5 ug of DNA, 25 ul of jet
PRIME buffer and 1.12 ul of jet PRIME reagent was prepared and
kept at RT for 15 min. Cells were incubated with the transfection
solution added to 400 ! of antibiotic-free medium (alpha-MEM,
20% (FBS), 1% L-Glutamine; Euroclone, Italy). After 4h, the
solution was replaced with the complete medium. The day after,
the medium was replaced with a DMEM phenol-red free medium
(Lonza, Switzerland) containing 10% FBS, 1% Pen/Strep, 1% L-
Glutamine. Nuclei were stained with 1 M DRAQ5 fluorescent
probe (ThermoFisher, Italy) 10 min before the measurements.
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visible—this is because the photoresist, SZ2080, is auto-fluorescent.

FIGURE 4 | A representative sample. (A) one SEM image of the NICHE produced with the two-photon laser polymerization technique, and two images acquired in
fluorescence confocal microscopy; (B) spread MSCs cells grown on the flat part of the sample; and (C) roundish MSCs cells grown in the NICHE. MSCs were seeded
on the samples, transfected with GFP protein (green), and their nuclei were marked with the DRAQS dye (red). In the images of roundish cell, the niche is also

Fluorescence Recovery After Photobleaching (FRAP)
FRAP measurements were performed with a confocal Laser
Scanning microscope (Leica SP8, Germany) equipped with an
Argon laser and a white laser, a 63X PlanApo oil-immersion
objective (NA 1.4) and the incubator chamber. To identify the
cell nucleus and choose the best plane to perform the FRAP
measurement, DRAQ5 dye was detected using 8% of the Leica
white-light laser (excitation 633 nm, emission 650-750 nm). For
each cell, a region of interest identifying the section of the nucleus
on which the FRAP measurement was later taken, was recorded
to calculate the area. To acquire GFP protein emission, 0.2% of
the 70% full power argon laser (excitation wavelength 488 nm,
emission wavelength 500-580nm) was used. Photobleaching
of nuclear GFP was achieved by a single-point bleach (non-
scanning) near the center of the nucleus with the 488 nm laser
at full (100%) power. The time required to photobleach most
of the nuclear fluorescence, without destroying too much of
the cytosolic fluorescence, in flat cells was 3-5s. In the case of
cells grown in the niche, the maximum photobleaching time
was 100 ms to avoid bleaching the GFP protein present in the
cytoplasm.

Fluorescence recovery was measured starting a time-lapse
acquisition within a few hundred milliseconds (382 ms) after

the bleaching, acquiring 20 images every 191 ms and then 90
images every 6s. Image size was 256 X 256 pixels and
the scan speed was 700 Hz. Pinhole size was set to the value
of 3.0 Airy, corresponding to a z resolution of 2.3 um. Ten
acquisitions were performed for cells grown on a flat surface
(spread cells) and cells grown in the 3D scaffold (roundish cells),
respectively. The recovery of the fluorescence was evaluated for
about 10 min, which is enough time to observe a fluorescence
intensity plateau for a few minutes in the recovery curve. This
plateau means that the exchange of dark and bright protein
from the cytosol and the nucleus is indistinguishable. The curves
associated with the image background was subtracted from
each acquisition. To remove the intrinsic loss of fluorescence
due to the imaging process, the nuclear fluorescence data were
normalized to the total cell GFP-fluorescence intensity calculated
with a ROI located on the cell edge (Figures 5A,B). Data were
also normalized by the average value of the nuclear fluorescence
intensity calculated over the last 30 s of the measurement. The
curves obtained were then shifted to start at zero of the graph.

The fluorescence signal was assumed as being proportional to
the GFP concentration and described by the function:

E(t) = F® () + (F* (t) — F® (1) )elt (1)
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FIGURE 5 | Example of a FRAP experiment. (A,B) Representative images of
the nuclear fluorescence recovery in a spread and a roundish MSC. In red is
highlighted the nucleus, in yellow the cell edge. The bolt represents the
fluorescence bleaching performed with the high-power Argon laser at 488 nm.
(C) Representative graphs of the FRAP curve in one spread cell (blue line) and
in one roundish cell (red line). The GFP protein ratio bleached during the
measurement and the ratio of fluorescent GFP protein recovered into the cell
nucleus are highlighted.

This average and normalized fluorescence recovery in the cell
nucleus of the spread and roundish cells was calculated and was
fitted (Origin Pro software) to a single exponential function using
the following equation:

y=yo+Ael (2)

where t; is the characteristic time (time constant) of the
protein translocation from the cytosol to the nucleus,
Ay, is the difference between the nuclear fluorescence
after the bleaching and the nuclear fluorescence at the
end of the recovery, which corresponds to the fraction of
protein involved, and y is the fluorescence background (see
Table 2).

Numerical Modeling of the Passive
Diffusion Stretch Dependency Through the
NE

Mechanical stretching of the nuclear lamina network (LN) plays
a vital role in our hypothesis of stretch-dependent passive
diffusion along the NE through the NPCs. This cytoplasmic fiber
remodeling of the cytoskeleton (i.e., actin-myosin contraction)
induces lamina deformation, therefore the NPC structure
deforms at the nuclear ring (since it is directly linked to the
lamina), and thus opening and closing the NR depending on
the nuclear deformation. This effect causes an increase in flux in
the case of the NR opening, since the effective area through the
nuclear basket will become larger and thus leads to an increment
on the velocity exchange of solutes. In addition, the flux of
calcium released from the endoplasmic reticulum increasing
through the NPCs, also increases the effective area of the distal
ring (Stoffler et al., 1999a).

It thus seems logical to suggest that the permeability of the NE
increases due to the increase in the NPC’s effective transport area
(because of the mechanotransduction to the lamina network-
NPC assembly) in the nuclear basket and the distal ring (DR).
In this section, we propose a stretch-dependent model of the NE
permeability, ¢ng;. The model depends upon the local Green-
Lagrange deformation tensor of the NE. Figure 6 summarizes the
main aspects of the calculation of the local permeability, and thus
the local diffusion coefficient.

The local diffusion coeflicient Dy, along the NE shown in
FicK’s Laws is calculated as a product of the Diffusion Coefficient
of the GFP in the cytoplasm (assumed to be free diffusion)
Deyto and the local permeability ¢ng;. To calculate the local
permeability, as shown in Figure 6, we first calculated the local
deformation at every point of the NE surface assuming that the
nuclear envelope was isotropic and subject to a biaxial plane-
stress distribution. We then used these values to calculate the
effective transport area through the NPC by modifying the
surface area of the basket. Finally, the local permeability is the
ratio between the effective area of transport and the total area
corresponding to a single NPC. The results predicted with this
numerical model are compared with experiments described in
section Confocal Analysis and Results of the GFP Transport
Measurement.

Numerical simulations of the diffusion of GFP between
the nucleus and cytoplasm were carried out in two different
ellipsoidal configurations of the nucleus, roundish (cells
proliferating in the niche) and flat (cells growing out in flat
environment outside the niche), see Figure 4. The dimensions of
the ellipsoidal main axis are taken from the experimental analysis
previously reported by our group (Nava et al., 2015a).

Multiscale Numerical Model of Stretch-Dependent
Diffusion for the Nucleocytoplasmic Exchange of
Solutes

In order to determine the strain field in the NE, it is assumed that
nucleus deformation occurs at a constant volume, as reported in
(Nava et al., 2015a). In addition, it is assumed that the stress-free
configuration of the nucleus corresponds to a sphere, whereas the
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FIGURE 6 | Stretch-dependent permeability model. Local permeability of the nuclear membrane varies according to the degree of deformation of the nuclear envelop
separating the cytoplasm (gray) from the nucleus (light violet). The orange arrows in the biaxial stretching illustration shows the Lamina Network. The bottom panel

depicts a typical nuclear envelope permeability distribution for cells with roundish and spread shapes.
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deformed configuration is an ellipsoid. The mapping between the
sphere and the ellipsoid surfaces can be written as

X = %X,
y= iY’ (3)
z= 32,

where R is the radius of the reference sphere, a, b, and c, are the
semi-axes of the deformed ellipsoid, X, Y, Z are the coordinates
of the points in the nucleus in the reference sphere, and x, y, z
are the coordinates of the points in the nucleus in the deformed
configuration. This mapping can be parametrized in terms of
spherical coordinates 6 (polar angle) and ¢ (azimuthal angle)

x = acosfsin g,
y ="bsinOsing,
Z = ccos g,

X = Rcos0 sin ¢,
Y = Rsinf sin g, (4)
Z = Rcos ¢.

As already noted, the parametrization in Equation (4) provides
a one-to-one mapping between the reference and deformed
configuration.

The in-plane deformation of the nuclear envelope between the
reference sphere and the deformed ellipsoid can be calculated
using standard continuum mechanics theory from the exact
mapping described in Equations (3) and (4). In this regard, the
principal in-plane Green-Lagrange deformations are given as

Ey =ty - (Etg), )

Ey=t,- (Bty),
where ty and t,, are tangent vectors along the polar and azimuthal
direction in the reference sphere, respectively

—sin @ cos 6 cos @
tp=| cos® |,t, = |sinfcosg |, (6)
0 —sing

and E is the Green-Lagrange deformation tensor

E=_(FF-1I), (7)

1
2
with F = ;’7" the deformation gradient obtained from the
mapping in Equation (3). Substituting in Equation (5) results
in the following expression for the principal in-plane Green-
Lagrange deformations

E = (;—22 — 1) cos? 6 cos? ¢ + (2—22 — 1) sin? 6 cos? ¢
+ (1% — 1) sin? @, (8)
E, = (;—2 — 1) sin% 6 + (Z—zz — 1) cos® 6.

Figure7 shows the “Lamina-NR-basket-DR” assembly
considered in the model. Since the radius of curvature of
the NE is larger than the nuclear pore dimensions (radius of
a curvature ratio of 100:1), the pore in the nuclear lamina can
be modeled as a plate with a circular hole under biaxial stress

oo u(re) ==~ e Sy Ry Lamina
< 0T, | Tnpe; >
(\ ,—;/ 00
s 1y
~ ¥ G
O / ~)
Sconei

FIGURE 7 | Lamina Network-Nuclear Ring-Nuclear Basket-Distal Ring
(LN-NR-NB-DR assembly) illustration of the equibiaxial stress configuration of
a single NPC.

which allows for an analytic solution (Mal and Singh, 1991).
We also assume that the NE deformation induces an equibiaxial
state of stress/deformation on every pore in which the stress
is proportional to the trace of the in-plane Green-Lagrange
deformation i.e., tr (E;) = E; + E;. Note that, in the case of
plane-stress, the trace of the in-plane Green-Lagrange tensor in
small deformations is proportional to the relative area change.
Following the solution in Mal and Singh (1991), the change in
the nuclear ring radius (see Figure 7), r, is given by

tr(E;)

Ar = 10,
1-v"

)

where tr (E;) is the trace of the local in-plane Green-Lagrange
deformation tensor, v is the Poisson ratio of the lamina, assumed
as 0.3, and r is the undeformed NR radius. Hence, the radius of
the deformed NR after deformation is

tr(E;)
Tupe; = 1o + Ar =19 (1—1—2(1_"))). (10)
With these calculated radii of the NR in the deformed

configurations, it is possible to obtain the lateral surface of the
nuclear basket, Scone;» (see Figure 7) and thus the effective area of
the transport of solutes through one single pore as
Anpc,- (El) = ADR + [Sconei (El) - (1 - Ae) Sconeo] > (11)
where Apr is the area of the Distal Ring, Scone, is the value
of the lateral surface of the nuclear basket in the undeformed
configuration, and A, is a surface correction factor accounting
for the pillars connecting the NR and DR which reduce the
effective area of transport. In the model, A, is set to 0 which
implies that the lateral surface of the basket is closed in the
undeformed configuration. Once the effective transport surface
area has been computed, the local permeability and the local
Diffusion Coefficient can be readily calculated as:
Anpc,- (El) Anpc,- (Ei) Anpc,- (El)
®NE; = = Np =
Aj ANE ANE

pnpcANEo (12)

where A; = % is the area ratio corresponding to a single

P
NPC, ANg is the total area of the nuclear envelope, Np is the
total number of pores, pupc = Np/ANg, is the pore density
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(number of pores per unit area), and Ang, is the zero-stress
(spherical) surface area of the NE. With the expression of the
permeability in Equation (12), the effective nuclear membrane
diffusion coefficient can be calculated as:

DNE,- = R¢NE,-Dcyto: (13)
where Dy, is the GFP-FRAP free diffusion coefficient and R
is a “traffic resistance” parameter that takes into account the
resistance to the trafficking of high molecular weight cargos
through the pore (pores are always full of molecules passing
through them). Therefore, the final permeability is reduced due
to the resistance. Note, however, that R is considered to be the
same for the roundish and spread configurations. In our case, we
found that 96.1% flux resistance was optimal to fit the numerical
model to the experimental results.

The presented model is used to compute local values of
diffusion Dyg; to be included in a finite element model of the
passive nuclear transport (see Figure 6, bottom panel). As can
be seen, the finite element models of diffusion consist in a
symmetric octant of a solid ellipsoidal stem cell (created using
Comsol Multiphysics), one for a roundish and another for spread
configurations. Such models were meshed with a total of 2,91,420
hexahedral elements and 3,02,236 nodes for the roundish cell,
and 4,62,264 elements with 4,77,468 nodes for the spread cell. We
divided the FE models in three main parts: (i) an external thin
layer of elements that represents the nuclear envelope, in which
the different calculated values of Dyg, were added in each of the
elements (accounting for the permeability of the NE-NPC). (ii)
The full nucleus and cytoplasm volumes in which free diffusion
was considered. The model simulates (run in Abaqus 6.14-1) the
transport of GFP from the cytoplasm to nucleus through the NE
until equilibrium is reached. (iii) Finally, a post-process of the
simulation results is performed suing Python-Matlab to calculate
the total concentration in the nucleus vs. time.

Since the numerical finite element model is meant to be able to
fit the experimental results, the different parameters in the model
were selected to be of the same order of magnitude as reported in
the literature (Stoffler et al., 1999b; Beck et al., 2004; Moussavi-
Baygi et al., 2011; Maimon et al., 2012; Adams and Wente, 2013;
Bui et al., 2013; Eibauer et al,, 2015). In particular, the SR radius
was taken as 0.01 pm, the initial NR radius was 0.04 um, the DR
radius as 0.0 um (since the DR is assumed not to be influenced
by mechanical deformations of the NE), and a basket length of
0.075 um. In addition, the value of GFP-FRAP free diffusion
coefficient was taken as Dy = 31 mTz (Baum et al., 2014), and
the nuclear pore density pnp = 10 % (Bizzarri et al., 2012),
with which we obtain a total of 2908 NPCs/nucleus.

RESULTS

Nuclear Envelope 3D Reconstruction

Table 1 shows the pore diameters and areas obtained from the
3D reconstruction. It is worth mentioning that in line with the
STEM, the diameters measured correspond to the distance at the
SR level since it is only possible to visualize the NE rather than the
NPC itself. The mean diameter values show a higher deformation
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FIGURE 8 | (A) Elliptical principal measured diameters of the SR of the NPCs.
(B) Box plot of the resulting areas of the NPCs. The average area values for
both cell configurations are plotted in light blue (for spread cells) and dark
green (for roundish cells).

of the pore area in the spread cells compared to the roundish cells.
These differences in diameter between the spread and roundish
configurations are shown in Figure 8A. Despite this change in
diameter, both the spread and roundish configurations show
similar pore areas values, see Table 1, with a higher dispersion of
values in the spread cells as shown in Figure 8B. The difference
in the pore area between the roundish and spread configurations
was tested with a paired, two-sided signed rank test that founded
no statistical differences (p = 0.19). These results reinforce the
strong hypothesis that the effective area of diffusive transport
relies on the NR-basket-DR assembly due to the deformation of
the NE-Lamina Network (directly linked to the NR). Thus, the
SR and the transmembrane ring become the main substructures
on which the main stiftness of the whole NPC depends.

Confocal Analysis and Results of the GFP
Transport Measurement

One day after MSC transient transfection with GFP protein,
FRAP experiments on cell nuclei were performed. GFP-
transfected cell images are reported in Figures 4B,C which shows
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TABLE 1 | Diameters of the NPCs of both roundish and spread configurations.

Spread Roundish
di(nm) d2(nm) NPCarea di(nm) d2(nm) NPC area
Mean 92.17 64.83 4723.40 85.31 69.78 4690.60
Std 9.07 9.12 944.33 6.21 6.60 696.93

Data are reported as mean and standard deviations.

TABLE 2 | Parameters of the mono-exponential function used to fit the
fluorescence recovery curve on spread and roundish cells: t1 is the characteristic
time of the GFP protein translocation from cytosol to the nucleus; A1 corresponds
to the fraction of protein involved in the exchange; and yj is the fluorescence
background.

Sample yo (a.u) Aq (a.u) tqy (s) oyg(@.u) oA, ot (s)
Roundish cells 0.6 -0.6 26 0.004 0.008 2.6
Spread cells 0.4 -0.3 56 0.003 0.007 2.5

images acquired before the FRAP experiment of a cell grown
in the niche, and of a spread cell adhered to the glass substrate
shown in Figure 4A. The pictures show that the cell morphology
drastically changes depending on the environment, flat glass
substrate-—2D— or the NICHEs-—3D—, in which the cell is
grown.

FRAP experiments were performed as reported in the
Materials and Methods (see section entitled FRAP) and
representative images of the nuclear fluorescence recovery are
shown in Figures 5A,B. The graph in Figure 5C shows the
relative curves of the fluorescence recovery in the cell nucleus.
Each of these functions shows the initial value of nuclear
fluorescence, on which the curves were normalized, the bleaching
time and the recovery of the nuclear fluorescence over time. As
shown in the graph, despite the GFP being a non-interacting
protein with other cellular components, the recovery of the
fluorescence does not reach the initial intensity because, during
the bleaching time, many GFP-proteins (in and outside the
nucleus) are irreversibly bleached. In particular, in the 3D cell
configuration, it is not possible to reach very low level (80% of
bleaching) of fluorescence in the nucleus without destroying the
cellular fluorescence. The bleaching time needs to be reduced
from a few seconds (for the spread cells) to 100 ms and the
total recovery is calculated considering only 30% of the initial
fluorescence.

Figure 9 shows the fit of the recovery curves of the spread and
roundish cells. The bleached area in the two populations is on
average Agpread = 123 £+ 34 wm?, Apoundish = 40 £ 13 um?.
The curves are well fitted with a monoexponential function,
as demonstrated by the statistical analysis (reduced-x? spread
cells = 0.979 reduced-y? roundish cells = 0.946). The parameters
extracted from the fits are reported in Table 2, which highlights
the characteristic diffusion time of the GFP translocation between
the cytosol and cell nucleus of the spread and roundish cells
(tspread = 56 £ 2.6 5, and troyngish = 26 = 2.5).
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FIGURE 9 | Fit of the experimental recovery of GPF protein in MSCs grown in
different conformations.

Numerical Simulations of Stretch
Dependent Diffusion of GFP

Figure 10 shows the finite element simulation results of the
recovery of GFP by the stretch-dependent diffusion model
previously described for both spread (blue) and roundish (red)
configurations of the nucleus. The faster recovery of the spread
compared to the roundish nucleus is clear, since the level of
deformation in the NE of the spread nucleus is larger than
in the roundish nucleus, and therefore more permeable (see
Figure 6 bottom panel). According to the results in Figure 10,
the corresponding characteristic time for both spread and
roundish configurations were found to be tigpreqq = 17.2 s
and tyoungish = 254 s which were very similar to those
obtained experimentally. These results were obtained using the
aforementioned structural/dimensional values of the pores and
the corresponding permeability. The difference in recovery times
is only due to the degree of modulation that the deformation of
the NE exerts on the NE permeability.

DISCUSSION

To the best of our knowledge, there are no papers in the
literature that specifically use computational mechanics and
numerical analyses to demonstrate strain-dependent passive
diffusion through the NE. Instead the focus has been on the
mechanisms that lead with the active transport of cargoes
through the NPCs, see for example (Moussavi-Baygi et al., 2011;
Azimi and Mofrad, 2013; Mahboobi et al., 2015). The work
by Nava et al. (2015b) treated the passive diffusion of solutes
between the nucleus and the cytoplasm as strain-dependent. In
their analysis, the whole nucleus is deformed and assumed as a
permeable material. In our literature search we found no other
studies on this topic.
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FIGURE 10 | Computational simulation of the recovery of GFP transcription
factor in spread vs. roundish configuration.

The multiscale numerical model presented in this paper, is
thus the first attempt to directly analyse the passive diffusion
of small molecules through the deformed NPCs (nano-level) at
the nuclear envelope scale (micro-level) by including a strain-
dependent variable permeability barrier in the NE. Our results
highlight the potential of our numerical model to describe the
passive transport through the nuclear membrane, that is, the
passive diffusive flux of small molecular weight particles. Note
that, since the DR diameter is a variable parameter of the
numerical model, it may also account for calcium effects on distal
ring opening. However, in our numerical simulations, we set
the DR diameter to 0 wum in order to only analyze the passive
diffusion mechanical dependency. This is because the DR is
chemically opened/activated by a calcium flux through the NPC
(Stoftler et al., 1999a; Wang and Clapham, 1999).

An important limitation regarding our model is the use
of small deformation theory for the NPC and isotropic linear
elastic behavior for the NE-lamina network. We assumed such
mechanical properties due to the lack of available data for the NE-
lamina-NPC assembly. We also consider this numerical model as
a first attempt to demonstrate our hypothesis, and we believe that
more complex material properties should not greatly qualitatively
modify our final results. However, these assumptions require
further research in order to obtaining more accurate results that
would reinforce our final hypothesis.

Fluorescence recovery after photobleaching belongs to a class
of measures based on photoperturbation. This means that only
the optical properties of the protein of interest are changed
and, after the perturbation, the protein redistribution in space is
monitored in time-lapse. This class of measures is also known as
ensemble-averaging, in fact it is possible to obtain results over a
relatively long time (from hundreds of milliseconds to minutes)
and they are the result on average of the behavior of many
molecules. This means that the measure masks the fast diffusion

process or hides the properties of sub-populations. In general,
their results need to be coupled with a mathematical model to
help in the data interpretation.

Usually, in FRAP experiments, a high concentration of the
protein of interest is expressed in a live cell fused with a
fluorescent protein (GFP protein for example). A small area,
in a single cell compartment, i.e., the region of interest, is
permanently bleached by a strong laser illumination, and the
redistribution of the fluorescence in the entire cell is monitored
by low intense excitation (as in Figures 5A,B). If the protein
of interest is immobile, the bleached area will remain dark. On
the other hand, if it is mobile, then a redistribution between the
fluorescent and bleached protein happens between the region of
interest and the rest of the cell.

In order to study the mobility of a nuclear protein, due to the
confocal\ wide field microscopy set up, the bleaching takes place
in a cylindrical volume of a few microns along the z axis, which
include the cell nucleus and also the cytoplasm. This involves the
destruction of the fluorescence of a small portion of the protein
in the cell cytoplasm. However, this does not affect the measure
because in cells grown on a 2D flat surface (like our spread cells),
these cytosolic bleached volumes were very small, because the
nucleus generally fills the space between the upper and lower
plasma membranes.

This technique has been used to evaluate the protein
redistribution between two different cell compartments i.e.,
between the cell cytoplasm and nucleus. In this experimental
configuration, as in our experiments, a wide as possible
photobleached area within the nucleus was used, to ensure
that the entire nucleus was photobleached, and the nuclear
intensity recovery, as a consequence of the protein transport
between the cytoplasm and the nucleus, was monitored. In this
case, the prolonged GFP fluorescence recovery of the nuclear
compartment (tens of seconds), compared to the GFP free
diffusion in the nucleus or in the cell cytoplasm (2 s) (Lippincott-
Schwartz et al., 2001; Wei et al., 2003; Sprague and McNally, 2005;
Bizzarri et al., 2012), is due to the restricted diffusion across the
nuclear envelope, which is in line with the diffusion through the
open NPCs (~0.01 of total NE surface area, Wei et al., 2003). This
is also shown in our work, from the graphs in Figure 5C.

Our results also show that our experimental conditions—
the long bleaching time performed on spread cells, and the
large volume of cytoplasm above and below the nucleus in the
roundish cells—induced a high ratio of fluorescence protein
disruption. This is also supported by the fact that we are working
with a single GFP which is a non-toxic inert protein that
does not interact with nuclear and cytosolic components, and
therefore which does not show an immobile fraction during
the FRAP measures. As is evident from our results on the GFP
translocation, the characteristic time between the cytoplasm and
the nucleus of the spread cells is comparable with those of the
literature performed on cells grown on a standard flat substrate
such as a glass coverslip (Wei et al.,, 2003; Sunn et al., 2005;
Bizzarri et al., 2012). At the same time, we were unable to
compare the results obtained on roundish cells because in the
literature there are no similar experiments performed on cells
grown on 3D scaffolds.
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A comparison of the characteristic recovery time of the
nuclear fluorescence of these two cell populations, led to the
unexpected result: the fluorescence recovery was faster for the
round cells than the spread cells. A careful evaluation revealed
that we were evaluating the fluorescence recovery on a single
(3 wm in thickness) plane of the cell, in which the area of

the nucleus differed greatly between spread cells and roundish
Aspread

cells (W =
particles have to translocate and therefore it takes a longer time
for the GFP to diffuse over the area of the spread cell nucleus.
However, an experimental analysis performed on MSCs cells
grown on a glass flat substrate and in the nichoid did not show
a significant difference in the nuclear volume (Nava et al., 2015a),
which suggests that the number of proteins that translocate from
the cytosol to the cell nucleus in FRAP experiments does not
strongly influence the measure. Other factors therefore need to
be considered that may affect the recovery time, such as a strong
modulation of the number of pores, or a reduction/increment in
the effective nuclear surfaces.

None of the results presented in this manuscript i.e., the NPC
spoke ring area via STEM analysis, the numerical parametric
finite element diffusion model and FRAP experiments with
the confocal microscopy, contradict the hypothesis that the
deformation/strain of the nuclear envelope induces structural
modifications in the NPCs and thus directly affects the passive
diffusion of molecules. These results can be directly linked to the
existence of small diameter secondary channels through the NPC
that may allow small molecules such as ions to pass from the
cytosol to the nucleus. In the case of a full blockage of the NPC
due to high trafficking and deformation, it therefore allows the
ions to open the distal ring and thus, to increase the flux through
the NPC. We already mentioned this in a previous paper (Garcia
et al., 2016) and referenced the works of (Maimon et al., 2012;
Eibauer et al., 2015) which showed such secondary channels.

A major limitation of the work discussed in the present paper
is that we were forced to use two different techniques to maintain
roundish cells in the experiments. The cells were fixed in
suspension to keep them roundish for the STEM reconstructions
used to estimate the NPC dimensions, and they were cultured
in the nichoid substrate for the FRAP measurement of the GFP
nuclear import. In fact, the nichoid substrate is made of a fragile
polymer that cannot be sectioned for STEM preparation without
it being destroyed. Moreover, cells cannot be measured by FRAP
for nuclear import flows while in suspension.

Reducing the cell adhesion sites by limiting the area
of the adhesion substrate available for integrin binding,
which is a similar approach to suspension culture, is a
widely-accepted method used to induce a roundish cell
morphology in mechanobiological studies (Badique et al,
2013). However, reducing the adhesion sites to maintain
cells in a roundish morphology is likely to down-regulate
the activation of mechanobiological transcription factors and
other signaling molecules linked to the pathways activated
by focal adhesions. Thus, inducing cell adhesion to a 3D
scaffold is preferable to limiting the cell adhesion sites, for
mechanobiology investigations. However, here we did not

3). This means that a larger number of

measure the activation or nuclear imports of transcription factors
or signaling molecules, we only measured the nuclear imports
of the GFP protein, expressed in the cell following transfection
regardless of the cell morphology. In designing the experiments,
we basically assumed that nuclear pore activation was primarily
affected by NE local strains induced by nuclear deformation,
regardless of the means used by the cell to adhere to its
environment.

Another important limitation of our study is that in the
nichoid culture model, the mechanical properties of the adhesion
substrate were different for the spread and roundish cells. Spread
cells adhered to glass, with a Youngs modulus of around 80
GPa, while the photo-polymerized nichoid micro-lattice has a
Young’s modulus in the order of 0.138 GPa, i.e., three orders
of magnitude less stiff than glass. The stiffness of a substrate to
which the cell adheres is known to correlate significantly with
the fate of several stem cell types, including MSCs, thanks to
pioneering demonstrations by the research groups of Discher and
Engler. It could thus be argued that the differences between the
roundish and spread cells that we measured by FRAP in terms of
nuclear flows are related to differences in the adhesion substrate
stiffness. However, our previous findings using the nichoid cell
culture model (Nava et al., 2015b) suggest, in addition to the
stiffness theory, that the substrate stiffness combines with the
substrate architecture in generating an adhesion configuration
for the cell, which can be either isotropic (roundish) or very far
from isotropic (spread), which correlates with the shape of the
cell’s nucleus.

We deduced that the level of nuclear isotropy induced by
the combination of stiffness and architecture of the adhesion
substrate, and not the substrate stiffness itself, was indeed the
primary parameter correlating with the cell fate. In order to move
from correlation to causation, in this work we introduced the
hypothesis that, when the cell spreads, a primary mechanism
activating the master switch between cell programs is the NPC
stretch activation leading to a sudden increase in the permeability
of the NE to purely diffusive signaling molecules. Our modeling
approach, far from negating the primary role of substrate stiffness
on cell fate, integrates substrate stiffness with its 3D architecture,
thus providing a mechanistic interpretation of this effect, which
is well corroborated by in vivo measurements of changes in
diffusive nuclear flows due to nuclear morphology.

In future works, we will test our hypothesis on the key
transcription factors involved in MSC differentiation. Many of
these are molecules are in the range 40-70 kDa, which can
diffuse freely (without consuming chemical energy) through
NPCs. For example, the molecular weight of MyoD, a key
myogenic transcription factor, is in the range 34-45 kDa. The
molecular weight of Cbfal (also called Runx2), a transcriptional
activator of osteoblast differentiation, is 55 kDa. Thus, these
key transcription factors may diffuse freely through the NPCs.
Thanks to the mechanobiology model developed here, we will be
able to computationally predict their nuclear import flows on the
basis of their molecular weight, and we will be able to interpret
and validate these predictions with FRAP measurements on cells
cultured in the nichoid model. To perform FRAP measurements,
we will fuse the transcription factors with an inert fluorescent
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protein, such as GFP which is only 27 kDa in size, enabling us to
still fall within the 70 kDa limit in the overall molecular weight
of the fused protein, for NPC translocation based on passive
diftusion. In fact, we selected GFP in this work because of its very
limited size, as it falls well below the 40 kDa lower limit known
for the passive diffusion of molecules through NPCs.

We also plan to characterize, in cells of a different
morphology, the activation of gene expression induced by the
nuclear translocation of the transcription factors of interest.
However, a quantitative correlation between NE permeability and
the up-regulation of gene expression is not expected, because
up-regulation very much depends on the degree of chromatin
packing influencing DNA accessibility to the chemical binding
of the transcription factors.

In conclusion, here we have proposed a fundamental
mechanism which uses nuclear mechanics to orchestrate the
response of progenitor cells to the architectural properties of
the extracellular environment. Our data show that cell stretching
modulates the characteristic time needed for the nuclear import
of a small inert molecule, GFP. What still needs to be proven is
whether this modulation effect is due to an opening of the distal
ring. We also still need to prove that a transcription factor with
a comparable size to GFP would be subjected to the modulation
effect that we found for GFP.

If further verified on specific transcription factors involved
in MSC differentiation, this idea could thereby contribute
directly to the definition of better differentiation protocols for
MSCs, primarily based on guiding the spontaneous tendency
of stem cells to differentiate in culture, by the mechanical
cues provided by “physically” biomimetic culture niches. A
new research field that could be impacted by our hypothesis
is the fate control of induced pluripotency stem (iPS) cells.
The iPS technology consists in converting adult somatic cells,
usually fibroblasts or epithelial cells, to a pluripotent phenotype
using genetic engineering. Despite the high potential of iPS to
revolutionize medicine, to date there are very few successful
re-differentiation protocols regarding mature phenotypes for
these cells. Neurobiology is the only field where there are
stable differentiation protocols. Our hypothesis could produce
the knowledge and technology, the nichoid culture substrate, to
direct the differentiation of iPS to lineages other than neural and
potentially enable iPS to be applied in the clinical field.
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Realistic simulations of detailed, biophysics-based, multi-scale models often require
very high resolution and, thus, large-scale compute facilities. Existing simulation
environments, especially for biomedical applications, are typically designed to allow for
high flexibility and generality in model development. Flexibility and model development,
however, are often a limiting factor for large-scale simulations. Therefore, new models
are typically tested and run on small-scale compute facilities. By using a detailed
biophysics-based, chemo-electromechanical skeletal muscle model and the international
open-source software library OpenCMISS as an example, we present an approach to
upgrade an existing muscle simulation framework from a moderately parallel version
toward a massively parallel one that scales both in terms of problem size and in terms
of the number of parallel processes. For this purpose, we investigate different modeling,
algorithmic and implementational aspects. We present improvements addressing both
numerical and parallel scalability. In addition, our approach includes a novel visualization
environment which is based on the MegaMol framework and is capable of handling large
amounts of simulated data. We present the results of a number of scaling studies at the
Tier-1 supercomputer HazelHen at the High Performance Computing Center Stuttgart
(HLRS). We improve the overall runtime by a factor of up to 2.6 and achieve good
scalability on up to 768 cores.

Keywords: skeletal muscle mechanics, biophysical modeling, multi-scale modeling, scalability, high-performance
computing, numerical efficiency, visualization

1. INTRODUCTION

Even “simple” tasks like grabbing an object involve highly coordinated actions of our
musculoskeletal system. At the core of such coordinated movements are voluntary contractions
of skeletal muscles. Understanding the underlying mechanism of recruitment and muscle force
generation is a challenging task and subject to much research (e.g., Kandel et al., 2000; MacIntosh
et al., 2006). One of the few non-invasive and clinically available diagnostic tools to obtain insights
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into the functioning (or disfunctioning) of the neuromuscular
system are electromyographic (EMG) recordings, i. e., measuring
the activation-induced, resulting potentials on the skin
surface (e.g., Merletti and Parker, 2004). Conclusions on
the neuromuscular system are often drawn from results obtained
through signal processing, although such signal processing
techniques typically ignore the underlying muscular structure.
Further limitations of (surface) EMG measurements are, for
example, that they only capture activity from muscle parts
close to the surface. This leads to difficulties in identifying,
for example, cross-talk (e.g., Farina et al.,, 2005). Moreover, an
EMG often only records weak signals due to layers of adipose
tissue, and, in some cases, is restricted to isometric contractions.
Hence, to obtain more holistic insights into the neuromuscular
system, computational models can be employed (for a review
see e.g., Mesin, 2013). Such models need to capture much
of the electro-mechanical properties of skeletal muscle tissue
and the interaction between neural recruitment and muscular
contraction.

The contractile behavior of skeletal muscle tissue has been
extensively modeled using lumped-parameter models such as
Hill-type skeletal muscle models (e.g., Zajac, 1989), continuum-
mechanical skeletal muscle models (e.g., Johansson et al., 2000;
Blemker et al., 2005; Rohrle and Pullan, 2007; Bol and Reese,
2008), or multi-scale, chemo-electromechanical skeletal muscle
models (e.g., Rohrle et al., 2008, 2012; Herndndez-Gascon et al.,
2013; Heidlauf and Réhrle, 2013). To predict the resulting
EMG of a particular stimulation, there exist analytical models
(e.g., Dimitrov and Dimitrova, 1998; Farina and Merletti,
2001; Mesin and Farina, 2006) with short compute times, or
numerical approaches (e.g., Lowery et al, 2002; Mesin and
Farina, 2006; Mordhorst et al., 2015, 2017). For realistic muscle
geometries, however, numerical methods are almost unavoidable.
The chemo-electromechanical models as proposed by Rohrle
et al. (2012), Heidlauf and Rohrle (2013, 2014), or Heidlauf
et al. (2016) are particularly well-suited to incorporate many
structural and functional features of skeletal muscles. They
embed one-dimensional computational muscle fibers within a
three-dimensional skeletal muscle model and associate them with
a particular motor unit. Moreover, those models can be directly
linked to motor neuron models either phenomenologically
(e.g., Heckman and Binder, 1991; Fuglevand et al., 1993) or
biophysically (e.g., Cisi and Kohn, 2008; Negro and Farina,
2011) to further investigate the relationship between neural and
mechanical behavior. The desired degree of detail and complexity
within these models requires the coupling of different physical
phenomena on different temporal and spatial scales, e.g., models
describing the mechanical or electrical state of the muscle tissue
on the organ scale and the bio-chemical processes on the cellular
scale (cf. section 2.1).

Being able to take into account all these different processes
on different scales requires a flexible multi-scale, multi-physics
computational framework and significant compute power. The
availability of computational resources restricts the number of
individual muscle fibers that can be considered within a skeletal
muscle. The chemo-electromechanical models as implemented
within the international open-source libraries OpenCMISS (e.g.,

Bradley et al, 2011; Heidlauf and Rohrle, 2013; Mordhorst
et al, 2015) allow general muscle geometries with about
1,000 embedded computational muscle fibers. As most skeletal
muscles, however, have significantly more fibers (ranging from
several thousands to more than a million McCallum, 1898;
Feinstein et al., 1955), the embedded muscle fibers geometrically
represent only a selection from the actual muscle fibers located in
its geometrical vicinity. While simulations with 1,000 fibers and
less can potentially provide some insights into the neuromuscular
system, some effects, such as the motor unit recruitment over the
full range of motor units and muscle fibers and their implication
on the resulting EMG, can not be estimated unless a detailed
and realistic model with a realistic number of muscle fibers is
simulated. This full model allows us to estimate the accuracy
of “reduced” models by comparing them to the output of the
detailed full “benchmark” model. Unless such comparisons are
carried out it is hard to make predictions on how additional
details such as, for example, more fibers or functional units
(motor units) affect the overall outcome—both in terms of
muscle force generation and in terms of computed EMG signals.

Highly optimized and highly parallel software exist in the
community for biomechanical applications, e.g., for chemo-
electromechanical heart models (Xia et al, 2012; Lafortune
et al.,, 2012; Gurev et al.,, 2015; Colli Franzone et al., 2015).
Skeletal muscle tissue and cardiac muscle tissue share many
similarities with respect to the underlying microstructure.
Therefore similar simulation techniques can be utilized both for
heart models and skeletal muscle models. However, significant
differences exist with respect to recruitment and action potential
propagation between cardiac and skeletal muscle tissue. Whilst
there is a homogeneous and continuous spreading of the
action potential across a three-dimensional myocardium, the
behavior of skeletal muscle exhibits highly heterogeneous
recruitment and action potential propagation—essentially each
muscle fiber can be recruited independently leading to complex
potential fields. Moreover, there exist feedback mechanisms,
e.g., afferent feedback, that directly modulate recruitment. To
simulate such complex physiological behavior, one requires
flexible computing frameworks and a careful analysis of different
parallelization strategies for specific applications like skeletal
muscle recruitment.

Most  multi-purpose  computational frameworks for
biomedical applications such as OpenCMISS, for example,
are developed to provide flexibility using parallel simulation
environments, but are typically not designed for highly parallel
simulations on Tier-1 supercomputers. This flexibility is
achieved through standards like CellML (e.g., Lloyd et al,
2004) and FieldML (e.g., Christie et al.,, 2009). The respective
frameworks are utilized to enhance existing multi-physics
models for a wide range of (bioengineering) applications.
Most computational frameworks are designed to be run by
biomedical researchers on small-sized compute clusters. While
they typically can be compiled on large-scale HPC compute
clusters such as HazelHen at the HLRS in Stuttgart, they often
are not capable of exploiting the full potential of the hardware
for a number of reasons. Moreover, simulation run time is
typically considered less important than model complexity and
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output. Hence, typical simulations of biomedical applications
are not necessarily optimized for numerical efficiency, parallel
scalability, the exploitation of novel algorithms, or file I/O. In
this paper, we demonstrate how one can exploit analysis tools,
suitable numerical techniques, and coupling strategies to obtain
an efficient chemo-electro-mechanical skeletal muscle model
that is suitable to be run on a large-scale HPC infrastructure.
The model is thus capable of running with a sufficient resolution
and number of muscle fibers to provide the required high-
resolution details. Once large-scale simulations of biomedical
applications have been solved with a high degree of detail, most
specialized visualization tools such as OpenCMISS-Zinc can no
longer handle the large amount of simulation data. Dedicated
visualization tools for large-scale visualizations are required. In
this work, the MegaMol framework (Grottel et al., 2015) has
been adapted to visualize the different biophysical simulation
parameters and the resulting EMG.

2. MODEL AND METHODS
2.1. The Multi-Scale Skeletal Muscle Model

Before outlining our the model in its full detail, we first
provide a brief overview on some anatomical and physiological
characteristics of skeletal muscles that are relevant. From an
anatomical point of view, skeletal muscles are a hierarchical
system. Starting from its basic unit, the so-called sarcomere,
several sarcomeres arranged in-series and in-parallel constitute
a cylindrically shaped myofibril. Several myofibrils arranged in-
parallel make up a skeletal muscle fiber and multiple muscle
fibers form a fascicle. All the fascicles together constitute an
entire muscle and these fascicles are connected together through
the extracellular matrix (ECM). From a physiological point of
view, several fibers are controlled by a single lower motor neuron
through nervous axons. The entire unit consisting of the lower
motor neuron, the axons and the respective fibers that are
innervated by the axons, is referred to as a motor unit. The
motor unit is the smallest unit within a skeletal muscle that can
voluntarily contract. The lower motor neuron sends rate-coded
impulses called action potentials (AP) to all fibers belonging to
the same motor unit (neural stimulation). Moreover, motor units
are activated in an orderly fashion, starting from the smallest, up
to the largest (recruitment size principle). After a motor neuron
stimulates a muscle fiber at the neuromuscular junction, an AP
is triggered and propagates along the muscle fiber, resulting in
a local activity (contraction). For more comprehensive insights
into muscle physiology and anatomy, we refer to the book of
Maclntosh et al. (2006).

As the focus of this research is on enabling the simulation
of biophysically detailed skeletal models on HPC architectures,
this section provides an overview of the multi-scale modeling
framework of our chemo-electromechanical skeletal muscle
model that is based on the work by Rohrle et al. (2012),
Heidlauf and Rohrle (2013, 2014), and Heidlauf et al. (2016).
These models can account for the main mechanical and electro-
physiological properties of skeletal muscle tissue, including a
realistic activation process and resulting force generation. These
results are realized by linking multiple sub-models, describing

different physical phenomena on different length and time scales.
To reduce the computational costs, the different sub-models are
simulated using different discretizations, i.e., spatial resolution
and time-step size. Data are exchanged between the sub-models
using homogenization and interpolation techniques. The link
to neuromuscular recruitment, i.e., an entire neuromuscular
model, is modeled using predefined stimulation trains for the
fibers associated with individual motor units. This recruitment
assumption can be replaced without any modifications with a
biophysical motor neuron model (e.g., Cisi and Kohn, 2008;
Negro and Farina, 2011).

2.1.1. The 3D Continuum-Mechanical Muscle Model
The physiological working range of skeletal muscles includes
large deformations. Therefore, we use a continuum mechanical
modeling approach that is based on the theory of finite elasticity
to simulate the macroscopic deformations and stresses in the
muscle tissue. In continuum mechanics, the placement function
x describes the motion of a material point, i.e., it assigns every
material point with position X in the reference (non-deformed)
domain Q¢ C R? at a time f, to a position x = x(X,¢) in the
actual (deformed) domain 2; C R? at time ¢. The deformation of
the body at a material point can be described by the deformation
gradient tensor F: = g—g‘( = g—}’;, which is defined as the
partial derivative of the placement function x with respect to the
reference configuration. The local displacement is defined by the
vector u = x — X.

The governing equation of the continuum mechanical model
is the balance of linear momentum. Under the assumption of
no acceleration (i.e., inertia forces vanish) and neglecting body
forces, the balance of linear momentum in its local form can be
written as

divP = 0 in Q; forallt, (1)

where div(-) denotes the divergence operator and P is the first
Piola-Kirchhoff stress-tensor. To solve the balance of linear
momentum, one needs to define a constitutive equation that
relates P to deformation. The constitutive equation describes the
overall mechanical behavior of the muscle and can be divided
into a passive and an active component. The latter represents the
muscle’s ability to contract and produce forces. In this work, we
assume a superposition of the active and passive behavior, i. e., an
additive split of P.

Passive skeletal muscle tissue is assumed to be hyperelastic
and transversely isotropic. Consequently, the passive part to
the first Piola-Kirchhoff stress tensor Ppassive(F, M) depends
on the deformation gradient tensor F and a structure tensor
M = ay ® ay, which is defined by the muscle fiber direction
ag. The isotropic part of the passive stress-tensor assumes a
Mooney-Rivlin material. It is enhanced by an additive anisotropic
contribution accounting for the specific material properties in the
muscle fiber direction ay.

The active force is generated on a microscopic scale, i.e.,
within a half-sarcomere (the smallest functional unit of a muscle)
consisting of thin actin and thick myosin filaments. Based on
geometrical considerations of the half-sarcomere structure, it
is known that the active muscle force depends on the actual
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half-sarcomere length s (force-length relation) (Gordon et al.,
1966). When a half-sarcomere is activated by calcium as a
secondary messenger, actin and myosin filaments can form cross-
bridges and produce forces (cross-bridge cycling). The active
force state of the microscopic half-sarcomere is summarized
in an activation parameter y that enters the macroscopic
constitutive equation. Furthermore, we assume that the active
stress contribution acts only along the fiber direction ay. When
considering only isometric or slow contractions, the active stress
tensor Pyctive (F, M, ) can be defined as a function of the lumped
activation parameter y, the deformation gradient tensor F, and
the structure tensor M. An additional force-length relationship
needs to be included within Pjctive.

Finally, we assume skeletal muscle tissue to be incompressible,
which implies the incompressibility constraint detF = 1. The
resulting first Piola-Kirchhoft stress tensor reads

P(F,M,y) = Ppassive(F) M) + Pyctive(F, M, ) _PFiT , (2)

where p is the hydrostatic pressure, which enters the equation as
a Lagrange multiplier enforcing the incompressibility constraint.
The material parameters of the continuum-mechanical skeletal
muscles are fitted to experimental data (Hawkins and Bey, 1994),
and can be found in Heidlauf and Rohrle (2014).

2.1.2. The 1D Model for Action Potential Propagation
The electrical activity of skeletal muscles resulting from the
local activity of all muscle fibers can be analyzed by measuring
the extracellular potential. The bidomain-model is a framework
widely used in continuum mechanics to simulate the electrical
activity of living tissues (Pullan et al., 2005). It is based on
the assumption that the intracellular and extracellular spaces
homogeneously occupy the same domain. The intracellular and
extracellular spaces are electrically coupled by an electrical
current I, flowing across the cell membrane, i. e.,

—div ¢; = div q. = AnIm,

where ¢g; and g, denote the current density in the intracellular and
extracellular space, respectively, and Ap, is the fiber’s surface to
volume ratio. The muscle fiber membrane is nearly impermeable
for ions and serves as a capacitor. However, ions can be
transported through the membrane by ion channels and active
ion pumps. This process can be mathematically described by
the biophysically motivated modeling approach proposed by
Hodgkin and Huxley (1952) which leads to the constitutive
equation

In, = CmaaLtm + Iion(}’> Vi Istim) » (3)
where Vi, is the transmembrane potential, Cy, is the capacitance
of the muscle fiber membrane (sarcolemma) and Iion is
the transmembrane-potential-dependent ionic current flowing
through the ion-channels and -pumps. Further state variables are
summarized in y, e. g., the states of different ion channels. Igin is
an externally applied stimulation current, e. g., due to a stimulus
from the nervous system. Assuming that the intracellular space

and extracellular space show the same anisotropy, which is the
case for 1D problems, the bidomain equations can be reduced
to the monodomain equation. We thus use the one-dimensional
monodomain equation in the domain I'; C R:

W 1 (3, Vm .
9t AmG a(geff W) = Amlion (9 Vs Litim) | in T’
mv“m
(4)

Here, x denotes the spatial coordinate along a one-dimensional
line, i.e., the fiber, and o is the effective conductivity.

2.1.3. The 0D Sub-cellular Muscle Model
The model proposed by Shorten et al. (2007) provides a basis to
compute the lumped activation parameter y, which is the link
to the 3D continuum-mechanical muscle model. Its evolution
model is steered by the ionic current [ipn of the 1D model. In
more detail, the 0D sub-cellular muscle model contains a detailed
biophysical description of the sub-cellular excitation-contraction
coupling pathway. Specifically, it models the depolarization of
the membrane potential in response to stimulation, the release
of calcium from the sarcoplasmic reticulum (SR) which serves
as a second messenger, and cross-bridge (XB) cycling. To
do so, the Shorten model couples three sub-cellular models:
A Hodgkin-Huxley-type model is utilized to simulate the
electrical potentials and ion currents through the muscle-fiber
membrane and the membrane of the T-tubule system. For
calcium dynamics, a model of the SR membrane ryanodine
receptor (RyR) channels (Rios et al., 1993) is coupled to the
electrical potential across the T-tubule membrane and models
the release of calcium from the SR. Additionally, the calcium-
dynamics model describes diffusion of calcium in the muscle
cell, active calcium transport through the SR membrane via
the SERCA pump (sarco/endoplasmic reticulum Ca*"-ATPase),
binding of calcium to buffer molecules (e.g. , parvalbumin or
ATP), and binding of calcium to troponin enabling the formation
of cross-bridges. The active force generation is simulated by
solving a simplified Huxley-type model (Razumova et al., 1999),
which is the basis for calculating the activation parameter y.

All incorporated sub-cellular processes are modeled with a set
of coupled ordinary differential equations (ODEs)

d
a—f = Gy (9 Vi Lsim) » (5)

where G, summarizes the right-hand-side of all the ODEs
associated with the state variables y which number, in the case
of the Shorten et al. model, more than 50.

The final activation parameter y is computed from the state
variable vector y and the length and contraction velocity of
the half-sarcomere, Iy and k. For isometric or very slow
contractions, the contraction velocity can be neglected. Hence,
following Razumova et al. (1999) and Heidlauf and Rohrle
(2014), the activation parameter is calculated as

min
Ay — Al
max min °
A2 - A2

¥ (9 Ins) = fet (Ihs) (6)

Here, the function fi (lys) is the force-length relation for a
cat skeletal muscle by Rassier et al. (1999), Ay € y is the
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concentration of post power-stroke cross-bridges, AY** is the
concentration of post power-stroke cross-bridges for a tetanic
contraction (100 Hz stimulation after 500 ms stimulation) and
AN is an offset parameter denoting the concentration of post
power-stroke cross-bridges in the resting state.

2.1.4. Summary of the Full Model
In summary, the chemo-electromechanical behavior of a skeletal
muscle is described by the following coupled equations:

0 = diVP(F,M,y(y, lhs)) in Qforall t, (7a)
ZVm _ (g
3t AmCm \0x\ 0 9x
—Amlion (1, Vm,Isﬁm)> on all fibers T';, (7b)
B
a—}; =G, (y, Vm,Istim) at all sarcomere positions. (7c)

Realistic material parameters and muscle fiber directions,
appropriate boundary and initial condition (i.e., Dirichlet
boundary conditions for the three-dimensional, continuum-
mechanical model to describe the displacement of a tendon and,
hence, of the skeletal muscle tissue, as a result of motion, or the
stimulus train, Iy;m (¢)) for all fibers, need to be chosen (cf. section
3.1 for a particular example).

2.2. Numerical Methods

To enable multi-scale skeletal muscle models, e.g., such as the
ones described in section 2.1, to run efficiently and scalably on
(large-scale) clusters, we first present the numerical methods
as implemented in Heidlauf and Rohrle (2013) (section 2.2.1)
followed by algorithmic optimizations aiming to achieve efficient
and scalable code (section 2.2.2). To distinguish between the
implementation of Heidlauf and Roéhrle (2013) and the new
optimized implementation, we denote the former as the baseline
implementation.

2.2.1. Discretization and Solvers

2.2.1.1. Spatial discretization

The sub-models of the multi-scale skeletal muscle model have
significantly different characteristic time and length scales.
To solve the overall model efficiently, different discretization
techniques and resolutions are required for the sub-models. In
Heidlauf and Rohrle (2013), as in this work, the continuum-
mechanics model is solved via the finite element method using
Taylor-Hood elements (i. e., a mixed formulation of tri-quadratic
and tri-linear Lagrange basis functions to approximate the
displacements and the hydrostatic pressure respectively). The
one-dimensional muscle fibers are represented by embedded,
one-dimensional finite element meshes with linear Lagrange
basis functions. Figure 1 (left) shows the embedding of n, x
n, discretised 1D fibers within the 3D muscle domain
discretised with ex x e, X e, tri-quadratic finite elements, where
ey, €y, and e, are the number of elements in the x, y, and z
direction respectively. Each node of the 1D fiber mesh serves as
sarcomere position where one instance of the sub-cellular model
is calculated.

The different discretizations of the coupled multi-physics
problem require data to be transfered between the different
spatial discretizations. Within our model, the transfer of
information from the microscopic scale to the macroscopic scale
is realized via the activation parameter y. The microscopic
sarcomere forces y provided by the monodomain model are
projected to the macroscopic three-dimensional continuum-
mechanics model (y — y). This homogenization is performed
for all Gauss points in the 3D model by averaging the
y values of all monodomain model nodes nearest to the
respective Gauss point. Similarly, the node positions of the one-
dimensional computational muscle fibers are updated from the
actual displacements u of the three-dimensional, continuum-
mechanics model by interpolating the node positions via the basis
functions of the three-dimensional model. Based on this step, the
microscopic half-sarcomere lengths Ij,(x) can be calculated.

2.2.1.2. Time discretization

To compute an approximate solution for Equation (7), the
different characteristic time scales of the 3D, 1D and 0D
problems can be exploited. The action potential propagates faster
than the muscle deformation, and the sub-cellular processes
evolve considerably faster than the diffusive action potential
propagation. From a computational point of view, it is desirable
to have common global time steps. To achieve this, we choose
dtsp/N = dt;jp = K - dtpp with N,K € N. Then, each discrete
time is uniquely defined as t,,, ,, . : = m - dt3p + n - dtip + k - dtop,
withM e N,n=0,.,N—1and k=0,..,K — 1. Moreover, state
values associated with time ¢, ,, x are denoted with the superscript
(-)™™k . Employing different time steps requires a time splitting
scheme. The baseline implementation in Heidlauf and Rohrle
(2013) uses a first-order accurate Godunov splitting scheme, for
which one time-step of the three-dimensional equation including
all sub-steps for the one-dimensional monodomain equation is
given by:

1. Forn=0,...,N—1do

a. For k = 0,...,K — 1 perform explicit Euler steps for
Equation (7c) and the 0D portion of Equation (7b).
b. Set Vm,n,O - Vm,n,K and ym,n+1,0 - ym,n,K
. 0 " : .
c. Perform one implicit Euler step for the 1D portion of
Equation (7b) to compute V110,

2. Set Vm+1,0,0 . — Vm,N,O and ym+1,0,0 .= ym,N,O
. m : m : .
3. Calculate y(y™+100, ZLHS’O’O) and compute the homogenized
values y at the Gauss points of the 3D finite element mesh.
. . 1
. Calculate the activation parameter y (y™*1, l;ﬁ).
. Solve Equation (7a).
6. Interpolate the actual configuration x™*100 to the fibers

nodes for computing the local half-sacromere length [ 100

(207N

Figure 1 (right) schematically depicts this algorithm.

2.2.1.3. Linear solvers

The coupled time stepping algorithm described above contains
two large systems of equations that need to be solved. The first
one results from the 3D elasticity problem (7a) and the second
one stems from an implicit time integration of the linear 1D
diffusion problem of the fiber (7b). In Heidlauf and Réhrle (2013)
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the linear systems are obtained by applying Newton’s method to
the 3D and 1D problems and are solved using GMRES (Saad and
Schultz, 1986) as implemented within the PETSc library (Balay
etal., 1997, 2015).

2.2.2. Algorithmic Optimizations

While section 2.2.1 describes the implementation as in
Heidlauf and Rohrle (2013), in the following paragraphs we
propose some algorithmic optimizations to improve numerical
efficiency.

2.2.2.1. Spatial discretization

We optimize the interpolation and homogenization routines,
and leave the spatial discretization as described in section 2.2.1
unchanged in this work: interpolation and homogenization steps
involve the transfer of information between values at Gauss
points of the 3D elements to nodes of the 1D fibers. To allow for a
general domain decomposition later on, a mapping between the
respective 3D and 1D finite elements is necessary. In Heidlauf
and Rohrle (2013), the homogenization was achieved using
a naive search over all locally stored fibers. This search was
performed for each 3D element. We replace this approach,
which exhibits quadratic complexity (in terms of the number of
involved elements), with a calculation of linear complexity. This
is achieved by calculating - in constant time - the indices of the
1D elements that are located inside a 3D element.

2.2.2.2. Second-order time stepping

To reduce computational cost, we replace the first-order
Godunov splitting with a second-order Strang splitting as
proposed by, e.g., Qu and Garfinkel (1999). A higher order means
that we advance from an O(dt) approach to an O(dt?) for a
given steplength dt in time. Second-order time-stepping schemes
reduce the discretization error much faster with a decreasing time
step size dt and thus, the required accuracy might be achieved

using larger time steps. Along with the change of the splitting
approach, we replace the explicit Euler method for Equation (7¢)
and the 0D portion of Equation (7b) with the method of Heun
and employ an implicit Crank-Nicolson method for the diffusion
part of Equation (7b). In contrast to the simpler Godunov
splitting, Strang splitting uses three sub-steps per time step: a first
step with length dt;p/2 for the 0D part, a second step with length
dtip for the diffusion, and a third step with length dt;p /2 again
for the 0D part. The modified algorithm at time t,,0 is given
by:

1. Forn=0,...,N—1do

a. Fork = 0,...,K/2 — 1 perform explicit Heun steps for
Equation (7c) and the 0D portion of Equation (7b).
b. Set V0 = yiK/2
. il = .
c. Perform one implicit Crank-Nicolson step for the 1D
portion of Equation (7b).
d. Set VglmK/Z . ymntl0
. : g .
e. For k = K/2,...,K — 1 perform explicit Heun steps for
Equation (7c) and the 0D portion of Equation (7b).

f. Set Vmntl0. — ymnK gnd ymntl0, — ymnk,

2. Set VL0 — ymNO gpg ym+1.00: — ymNO,

3. Calculate y(y™+100, I 09) and compute the homogenized
values y at the Gauss points of the 3D finite element mesh.

4. Solve Equation (7a).

5. Interpolate the displacements #"+190 to the fibers’ nodes for
computing the local half-sacromere length [ HLO0.

The explicit Heun step in 1.a. and 1.d. (see above) is given by:

Gy (7, Vi, )

|: ] mnk
+ dtop 1 s (8a)
Vim - F Tion (ym,n,k > V:nn'n’k) Istim)

m
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(8b)
Gy (ym,n,k) Vrrnn,n,k’ Istim)

dtOD +Gy (}’Pre, V‘};re, Istim)

2 1
- (Iion (ym'"’k» V,’r'l""’k, Islim)
Cm

FIion (J'Pre > Vglre’ Istim) )

In 1.b., we solve the system resulting from the Crank-Nicolson
time discretization of the diffusion part in Equation (7b):

dt 9 aymn0
Vlrnn,n+1,0 — Vlrnn,n,o + 1D ( <0'eff m )

2AmCm \ 0x ax
P avm,n+l,0
+—oer —— ) )> )
0x dx

2.2.2.3. Optimal complexity linear solver

The GMRES solver is a robust choice for general sparse systems
of linear equations but it does not exploit the symmetry, positive
definiteness and tri-diagonal structure of the 1D diffusion system.
For symmetric matrices the conjugate gradient (CG) solver
(Hestenes and Stiefel, 1952) is an appropriate iterative solver. For
tri-diagonal matrices one could even employ the most simple
Thomas algorithm (Thomas, 1949). To maintain flexibility, we
currently replace the GMRES solver by a direct solver from
the MUMPS library (Amestoy et al., 2001, 2006) that exploits
the structure and exhibits optimal complexity for tridiagonal
systems.

2.3. Domain Partitioning and Parallelization
For parallelization, the computational domains must be
partitioned appropriately. This is particularly challenging
for multi-scale problems, as considered in this work, as the
parallelization induces communication due to dependencies of
local data on data in neighboring partitions. To motivate the
discussion below, we briefly outline the main challenges in the
scope of this work:

1. Solving for the propagation of Vp,, i.e., using an implicit
Euler or Crank-Nicolson method (equation 9) to solve the
monodomain equation (equation 4), requires communication
of data along a single fiber. The resulting communication cost
per process is thus linear in the number of fibers that are
split in the global 3D partitioning, and whose parts are thus
assigned to different partitions.

2. Computing the muscle displacements u of the 3D model
involves all processes. This is a result of using a finite
element discretization, which inherently requires peer-to-
peer communication between processes which share partition
boundaries. These costs are proportional to the surface area of
the 3D partitions.

3. Interpolating the muscle displacements u of the 3D muscle
mesh to 1D fiber mesh node positions and calculating I,
requires ghost layers at the partition boundaries containing
one layer of 3D elements. Note that for the reverse transfer,
the accumulation of the activation parameter y from the 0D
model at the Gauss points of the elements in the 3D mesh,
i.e., computing y, does not involve communication since the

process is completely local as all 0D points are contained
within the respective 3D element and reside on the same
process.

2.3.1. Pillar-Like Domain Decomposition

In the baseline implementation by Heidlauf and Roéhrle (2013),
the domain decomposition for parallel execution was hard-coded
for only four processes, following a partitioning ensuring that
entire fibers remain within the same partition at all times, which
is anatomically motivated. Since all skeletal muscle fibers are,
from an electrical point of view, independent of each other, this
is also computationally attractive as no quantities in the 0D and
1D sub-models need to be exchanged between fibers. We extend
the approach to an arbitrary number of processes, and keep the
structure of partitioning the 3D and 1D meshes in the same way,
such that quantities in the 3D, 1D and 0D models corresponding
to the same spatial location are stored on the same process.
This avoids unnecessary inter-process volume-communication
between the sub-models.

2.3.2. New Spatial Domain Decomposition

In addition to the extension of the pillar-like domain partitioning,
we investigate a second approach with nearly cube-shaped
partitions, cf. Figure2. In contrast to partitioning strategies
based on space-filling curves such as Schamberger and Wierum
(2005), graph partitioning such as Miller et al. (1993) and Zhou
et al. (2010), or problem-specific approaches such as the pillar-
shaped partitioning, a cuboid partition has the advantage that the
interaction of one cuboid partition with others is guaranteed to
be planar and bounded by the maximum number of neighboring
partitions, i.e., 3> — 1 = 26. This allows communication with
reduced complexity and cost.

However, we cannot completely avoid obtaining sub-domains
at the boundary of the computational domain that have
less elements than other domains. Given a fixed number of
available cores, we thus maximize the number of employed
processes by adapting the number of sub-divisions in each axis
direction corresponding to a factorization of the total number of
processes. By carefully choosing the factorization, we reduce the
impact on sub-optimal load-balancing in these ‘nearly cuboid’
partitioning cases. By introducing the additional constraint
that each generated partition has to be larger than a specified
“atomic” cuboid of elements, we can easily ensure that each
process contains only entire fibers (pillar-like partition), a fixed
number of fiber subdivisions (cube-like partition), or anything in
between.

In summary, based on the communication dependencies 1
and 2 as described at the beginning of this section, we enhance the
original pillar-like domain partitioning in two ways: (i) we allow
for an arbitrary number of processes instead of a fixed number of
four processes and (ii) we introduce a new partitioning concept
with nearly cuboid partitions that minimize the partitioning’s
surface area.

Note, when considering the simulation of realistic muscle
geometries that cannot be discretized using rectangular elements,
e.g., using unstructured meshes, a domain decomposition into
pillar-like or nearly cuboid partitions is generally no longer
feasible. The same is true for a skeletal muscle with complex
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subdomains with px, py, and pz subdivisions in x-, y-, and z-direction, respectively.

FIGURE 2 | Visualization of pillar-like (Left) and cuboid (Right) domain decomposition approaches. Both depicted approaches partition the same domain into 16

muscle fiber distributions. In such a case, one cannot ensure that
fibers are always contained within a single partition when using
a pillar-like domain decomposition. However, the strategy to aim
for minimal surface domains is always possible as it inherently
involves cutting fibers at process boundaries.

Within this work, we assume that it is possible to create nearly
optimal cube-shaped partitions.

2.4. Visualization of Muscle Simulations
Performing large scale simulations is only the first step to
gain an improved insight into the musculoskeletal system.
Visual analysis and interactive exploration of the simulation
data gives the opportunity to investigate every facet of large
and complex systems. General-purpose visualization tools like
ParaView (Ahrens et al., 2005) or Vislt (Childs et al., 2012a)
can only provide a first glimpse of such data sets. However, for
the above-mentioned in-depth analysis, a tailored visualization
tool is necessary. The standard visualization framework within
the OpenCMISS software project is OpenCMISS-Zinc. This
framework already offers a range of visualization techniques
for muscle fiber data, for example, a convex hull calculation to
construct a mesh geometry from point cloud data. However,
OpenCMISS-Zinc lacks important features that are required to
develop efficient visualizations intended to run on HPC systems.
These missing features are, for example, a suitable platform for
fast visualization prototyping, distributed rendering, or CPU-
based visualization. The open-source visualization framework
MegaMol (Grottel et al., 2015) fulfills these criteria and offers
additional functionality and features that are valuable for this
project. Therefore, we use MegaMol as the basis for improved
musculoskeletal visualizations. For example, one additional
feature is the infrastructure for brushing and linking that allows
for developing interactive visual analytics applications. MegaMol
also offers a built-in headless mode and a remote control
interface, which is crucial for HPC-based in-situ rendering.
In-situ visualization is an alternative approach to traditional
post-hoc data processing. The key idea is to process and
visualize data on the HPC system while the simulation is
running. Consequently, writing raw data to disk can be avoided
completely. Since our new visualization tool is intended to cope

with the visual analysis of large-scale muscle simulations, we
require an architecture that allows us to employ this approach
in the future. There are three different approaches that are
considered as in-situ visualization, identified by Childs et al.
(2012b). The first one is known as co-processing, where the
visualization tool runs simultaneously with the simulation and
accesses the simulations memory for further processing and
visualization. In the second approach, the visualization runs
on separate nodes and communicates data via a network. This
method is known as concurrent-processing. The last possibility,
the hybrid technique, directly accesses the simulation’s memory
and reduces the data for less network load while sending the
data to visualization nodes. We are planning to add the first
two methods—co-processing and concurrent processing—into
our implementation. However, we cannot completely disregard
the hybrid technique as we might need to identify the workload
of each node and the network traffic of a running large-scale
simulation with in-situ visualization first.

Interactive visualization typically uses graphics APIs like
OpenGL to employ the GPU for rendering. GPU-accelerated
rendering uses polygon rasterization, i.e., large numbers of
triangles can be processed and rendered in parallel. All geometric
objects that are rendered thus have to be represented by triangle
meshes. This visualization approach is, for example, also used
by OpenCMISS-Zinc. An alternative rendering approach to
GPU-accelerated rasterization is ray tracing. Here, one or more
view rays are computed for each pixel. Each ray is tested for
intersection with the objects in the scene in order to find out
which objects are visible at this pixel. Note that this approach
can not only render triangles but also all objects that have a
mathematical representation that can be used for computing the
ray-object intersection (e. g., spheres or cylinders). Ray tracing is
usually computed on the CPU and was traditionally only used
for high-quality offline rendering due to its higher computational
complexity. The combination of modern hardware and improved
algorithms, however, enables interactive ray tracing, even on
single desktop workstations.

MegaMol offers GPU rendering (rasterization) and CPU ray
tracing via a thin abstraction layer. The GPU rendering uses
the OpenGL API, whereas the CPU rendering is based on the
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ray tracing engine OSPRay (Wald et al.,, 2017). In particular
the CPU-based ray tracing enables image synthesis on any
computer, regardless of the availability of dedicated GPUs. This
is especially important for HPC clusters, which are typically
not equipped with GPUs: Currently, only two of the top-ten
HPC systems in the Top500 list GPU systems. Since ray tracing
simulates the transport of light, it offers advanced rendering
and shading methods (e.g., global illumination and ambient
occlusion) that enhance the perception of depth. MegaMol is
currently not optimized for HPC usage. However, it provides the
necessary basic infrastructure for enabling distributed rendering
on an HPC system. Furthermore, MegaMol is already capable
of rendering discretized muscle fibers as continuous geometry.
The visual quality and scalability obtained by MegaMol using
integrated OSPRay ray tracing are discussed in section 3.4.

3. RESULTS

Before simulating realistic and complex models on HPC systems,
it is essential to first analyse numerical complexity, i. e., scalability
in terms of the size of the problem both for the baseline methods
described in section 2.2.1 and our optimized methods presented
in section 2.2.2. To avoid any geometrical effects stemming
from realistic geometries, we perform the analysis on a test
example introduced in section 3.1. As the old parallel code used
4 cores, only, in section 3.3 we restrict our analysis of the parallel
scalability to the proposed new parallelization strategies.

3.1. Test Scenario

As a test scenario, we use a generic cubic muscle geometry
(I x 1 x 1lcm). The muscle fibers are aligned in parallel to
one cube-edge (the x-direction). The discretization in space and
time is as carried out as described in sections 2.2.1 and 2.2.2.
The discretization parameters will be specified for the respective
experiments. For the material parameters for the continuum-
mechanics model, the effective conductivity o.g, the surface-to-
volume ratio Ap,, and the membrane capacity C,, we use exactly
the same values as reported in Heidlauf and Rohrle (2014).

To constrain the muscle, Dirichlet boundary conditions (zero
displacement) are used to fixate the following faces of the muscle
cube: the left and the right faces (faces normal to the x-direction),
the front face (face normal to the y-direction) and the bottom
face (face normal to the z-direction). Further, no current flows
over the boundary of the computational muscle fibers, i. e., zero
Neumann boundary conditions are assumed at both muscle fiber
ends. As far as the skeletal muscle recruitment is concerned, we
consider an isometric single-twitch experiment by stimulating
all fibers at their mid-points for ¢ € [0,0.1 ms] with I, () =
1200 wA/cm?. For all other t, Igim(f) is assumed to be 0.

3.2. Numerical Investigations

In the following, we present numerical experiments
demonstrating, in particular, the increase in efficiency with
the new second-order time discretization method. All runtimes
are measured in serial, on an Intel® Core™ i5-4590 CPU
(3.3 GHz, 32 GB RAM) for Secs. 3.2.1 and 3.2.2, and an
Intel® Xeon™ E7-8880 v3 CPU (2.3 GHz, 504 GB RAM) for
Secs. 3.2.3, 3.2.4, using the OpenCMISS implementation.

3.2.1. Time Discretization for the Sub-cellular Model

In a first step, we verify the convergence order of Heun’s method
experimentally. Therefore, we restrict ourselves to the reaction
term, i.e., step 1.a of the Godunov algorithm, but use Heun’s
method for Equation (7c) and the 0D portion of Equation (7b).
The diffusion term is thus completely neglected. We use the test
setup as presented in Sect. 3.1. To compare the accuracy of Heun’s
method with an explicit Euler method, we compare the values of
Vm and [jop at a stimulated material point on a muscle fiber while
varying the time step size dfgp. As a reference solution, we use the
solution calculated with Heun’s method for a very high resolution
(K: = dtip/dtopp = 4096). We restrict ourselves to the time
interval [0, df;p], with dtjp = 0.5 s. To compare the methods
in terms of efficiency, we measure the related compute times.
Figure 3A depicts the relative error depending on the number K
of 0D time steps while on the right the necessary CPU-times to
reach a certain accuracy for the different solvers are compared.
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. ==« Euler, Ly g 10° e Heun, V,,
‘g 10 — Heun, Vi, 2
. a
o 107 Heun, I, O 102
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[] ©
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FIGURE 3 | (A) Relative error dependency on the number K of OD time steps in [0, dt1p]. The error of Euler’s and Heun's method shows the expected O(K—1) and
O(K*Z) behavior. (B) Dependency of the runtime on the required accuracy for explicit Euler and Heun. We varied the time step dtgp between 5 - 20 and5.2-12 s
for Euler and between 5 - 20 and 5 - 2= 11 s for Heun.
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Figure 3A shows the expected first-order convergence for
the explicit Euler method and second-order convergence for
Heun’s method. From an application point of view, however,
efficient computation (“Which accuracy can be achieved in which
runtime?”) is more important than the order of convergence.
Therefore, in order to reveal the potential of Heun’s method in
decreasing the runtime for a given required accuracy, we take into
account the different computation time per step of the methods.
Figure 3B shows that two Heun steps with dfgp = 2.5 us replace
50 forward Euler steps yielding a theoretical speedup of 12.5 for
the OD-solver. At the same time, the error decreases by a factor
of approximately 3. All times are normalized with respect to the
CPU-time of a single step of the Euler method (K = 1).

3.2.2. Time Discretization for the Muscle Fibers

In a second experiment, we verify the convergence order of
the Strang splitting scheme, i.e., we couple 0D reaction and
1D diffusion. Again, the same test setup as above is considered
except that we use a larger time interval [0, 0.1 ms] and vary the
number, N, of 1D time steps. Based on the previous results for the
isolated 0D problem, we choose K = 2 for the Strang-splitting
scheme and K 5 for the Godunov-splitting scheme. This
ensures a comparable relative error for the 0D sub-problem while
saving computational time. The reference solution is computed
using a Strang-splitting scheme with dt;p 0.25 ps, yielding
V(0.1 ms) &~ —23.5219mV.

Figure 4A shows the relative errors of Vi, (0.1ms) at a
stimulated sub-cell for the Godunov- and Strang-splitting
schemes. Comparable relative errors as for the Godunov scheme
with dtip 0.5pus are achieved for the Strang splitting
scheme with dtjp = 2 or 4 us. Qu and Garfinkel (1999) applied
the Strang splitting scheme on the monodomain equation in
cardiac conduction, using a different reaction term than in this
work. However, it is not entirely clear whether second order
convergence is exhibited by their numerical experiments. For
an electrocardiogram simulation Sundnes et al. (2005) used the
same scheme on the more general bidomain equation, achieving
a nearly second order scheme. In contrast to these works our
results show a true second-order error dependency. The resulting

Godunov to Strang data points. There, the compute times are
normalized with respect to the compute time of the Godunov
scheme for dt;p = 0.5 pus.

Based on a relative error in Vi, of about 2- 1073, the improved
time stepping scheme achieves a speedup of 7.54, if the accuracy
requirement is weakened slightly. If the error constraint is not
weakened, we still obtain a speedup of 3.89. Note that, for more
restrictive error limits, the speedup achieved with a second-order
scheme will be even higher due to the higher convergence order.

3.2.3. Solving the Linear Systems of Equations in the
1D Model

In a further experiment, which solves a 1D diffusion problem,
we consider a single fiber inside one 3D element for the
time interval t € [0,3ms]. The Godunov splitting scheme
is employed with time step sizes dtip 5. 103 ms and
dtop 10~*ms, as t