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Editorial on the Research Topic

Mechanisms byWhich SLE-Associated Genetic Variants Contribute to SLE Pathogenesis

Systemic lupus erythematosus (SLE) is a complex disease strongly influenced by genetic factors
(1). Through their effects on gene expression and function, genetic variants may modify disease
manifestation and outcomes by facilitating certain cellular behaviors (2). This Research Topic
brings together original and review papers that explore how individual genes and their variants
may affect SLE development, pathogenesis, and therapeutics. Alperin et al. present a review
article that describes monogenic syndromes that share clinical and pathological similarities
with SLE. The extreme phenotypes associated with the genetic deficiencies that cause these
syndromes demonstrate the role of individual genes in the immune system. Martínez-Bueno and
Alarcón-Riquelme present a bioinformatics imputation analysis that identifies 98 candidate genes
that may contribute to SLE through rare variants that cannot be detected in conventional genetic
association studies.

Transcription of the long non-coding RNA Linc00513 is shown by Xue et al. to be affected by an
SLE-associated single-nucleotide polymorphism (SNP). Cells bearing the risk allele have increased
levels of Linc00513 because the SLE-associated variant promotes its transcription in response to
type I IFN. This lncRNA facilitates the expression of a relatively large number of IFN-induced
genes. Therefore, the presence of the risk allele could amplify the signal conveyed by type I IFN.

The paper by Ju et al. describes a previously unknown variant of the Nasp gene identified
as a pathogenic element located in the Slec1 sublocus of the NZM2410 mouse (3, 4). The
lupus-associated variant modified the sNASP protein resulting in an increased capacity to bind
histones. Importantly, in the presence of the lpr mutation (Faslpr), the risk variant ofNasp increased
lymphoproliferation and tissue inflammation (lung and kidney), suggesting that it may possess a
pathogenic capacity.

Gorman et al. present a thorough analysis of the functional effects of the TYK2P1104A variant that
protects against multiple autoimmune diseases, including SLE (5). They show that healthy humans
carrying the protective allele have a lower number of circulating follicular helper T cells (TFH)
and switched memory B cells. Moreover, the amino acid substitution decreased the response of
CD4T cells to IL-12, IL-23, and IFN-α, confirming that it represents a hypomorphic allele. In vivo,
the Tyk2P1104A variant protected mice from experimental autoimmune encephalomyelitis (EAE),
although it did not show any effects in two models of murine lupus-like disease.

Molineros et al. conducted a detailed study that identified a SNP (rs11631591) that facilitates
binding of hnRNP-K. Because it is located in an enhancer region, the risk allele increases the
expression of RASGRP1 and, consequently, MAP kinase signaling. Calcium/Calmodulin Kinase IV
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(CaMK4) is a serine/threonine kinase that regulates cell signaling
and gene expression in a variety of cells that includes T cells,
podocytes, and mesangial cells. Expression levels and activity of
CaMK4 are abnormally increased in T cells from patients with
SLE (6) and in renal cells in a variety of immune and non-
immune conditions (7). The review by Ferretti et al. describes
the role of CaMK4 in human disease and mouse models
and discusses strategies to block the activity of this kinase as
interesting and novel therapies.

Two of the papers explore the effects that sex, either
through chromosomal or hormonal differences, imposes on gene
expression and function (Harris et al.) and disease phenotype
(Savelli et al.). Finally, the review by Vukelic et al. discusses novel
therapeutic strategies in SLE.

The papers included in this Research Topic illustrate the
complex relationship between genetic variants, environmental

stimuli, and immune function, and offer a glance into how
individual variants may affect the behavior of specific types of
cells in manners that may promote or avoid autoimmune and/or
inflammatory organ damage. We believe that understanding how
genetic variants affect immune function in the steady state and in
the setting of chronic inflammation will improve our capacity to
predict disease phenotypes, including prognosis and response to
therapy of individual patients.
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Calcium/Calmodulin Kinase IV
Controls the Function of Both T Cells
and Kidney Resident Cells
Andrew P. Ferretti*, Rhea Bhargava, Shani Dahan, Maria G. Tsokos and George C. Tsokos

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

Calcium calmodulin kinase IV (CaMK4) regulates multiple processes that significantly

contribute to the lupus-related pathology by controlling the production of IL-2 and

IL-17 by T cells, the proliferation of mesangial cells, and the function and structure of

podocytes. CaMK4 is also upregulated in podocytes from patients with focal segmental

glomerulosclerosis (FSGS). In both immune and non-immune podocytopathies, CaMK4

disrupts the structure and function of podocytes. In lupus-pronemice, targeted delivery of

a CaMK4 inhibitor to CD4+ T cells suppresses both autoimmunity and the development

of nephritis. Targeted delivery though to podocytes averts the deposition of immune

complexes without affecting autoimmunity in lupus-prone mice and averts pathology

induced by adriamycin in normal mice. Therefore, targeted delivery of a CaMK4

inhibitor to podocytes holds high therapeutic promise for both immune (lupus nephritis)

and non-immune (FSGS) podocytopathies.

Keywords: calcium/calmodulin kinase IV, CaMK4, IL-2 deprivation, Treg deficiency, IL-17, podocyte dysfunction

INTRODUCTION

Calcium/calmodulin-dependent kinase IV (CaMK4) is a serine threonine kinase important
for activating transcription factors downstream of T cell receptor (TCR) signaling. Aberrant
activation of CaMK4 contributes to T cell abnormalities in systemic lupus erythematosus (SLE),
a chronic systemic autoimmune disease presenting with diverse clinical manifestations (1).
Immunologic abnormalities are a hallmark in the pathogenesis of SLE including altered antigen
receptor–mediated activation and signaling in both T and B cells, defective clearance of immune
complexes, neutrophil extracellular traps formation, auto-antibody production, and complement
activation (2). Importantly, a multitude of pathways contribute to the expression of SLE pathology
and this complicates the identification of a single specific molecule that will result in a successful
treatment for all or the majority of the patients. However, many studies suggest that CaMK4 is a
central molecule contributing to multiple pathological pathways in T cells from patients with SLE
including suppression of IL-2, increased production of IL-17, and imbalance between regulatory
and Th17 cells.

Ca2+/CALMODULIN DEPENDENT PROTEIN KINASES (CaMKs)

Calcium (Ca2+) is a ubiquitous universal intracellular secondmessenger, responsible for the control
of numerous cellular processes (3). It exerts its functions by forming a complex with calmodulin
(CaM), a 148-amino acid key protein that transduces signals in response to elevation of intracellular
Ca2+ (4). Ca2+ binding to CaM induces conformational changes, leading to increased affinity

6
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of the complex for its targets. One such target is CaMK4
(4, 5). The multifunctional CaMK4 has been isolated and
localized in the nucleus, with a rather limited normal tissue
distribution in discrete regions of the brain, T-lymphocytes,
and post-meiotic germ cells (6–8). CaMK4 is activated by the
binding of Ca2+/CaM causing a structural modification by
removing the auto-inhibitory domain exposing the catalytic
pocket and enabling substrate access. To be fully activated
and gain independent activity, CaMK4 requires phosphorylation
on a threonine residue in the activation loop. This is
generated by the upstream Ca2+/CaM-dependent kinase kinases
(CaMKKs) (9).

Upon activation, the autonomous CaMK4 is translocated
into the nucleus, where it regulates the activity of several
transcription-related components, including cyclic-AMP-
response-element-binding protein (CREB), CREB-binding
protein, cyclic-AMP response element modulator α

(CREMα), histone deacetylase 4, monocyte enhancer factor
2A (MEF2), and retinoid orphan receptor (ROR) (4, 10–
16). These factors play a key role in immune system
development and function, including regulation of T
cell differentiation, cytokines secretion and cell signaling
(13, 17–19).

CONTRIBUTION OF CaMK4 TO THE
SUPPRESSION OF IL-2 PRODUCTION IN
SLE

Reduced IL-2 is a fundamental immunologic abnormality of T
lymphocytes from patients with SLE and mice prone to lupus
(20, 21). Since regulatory T (Treg) cells depend highly on IL-
2 and IL-2 is diminished in patients with SLE, the number
and function of Treg cells is also reduced in SLE patients (22).
This skewed cytokine production in SLE also leads to impaired
T cell regulation of B cell immunoglobulin production and
poor activity of cytotoxic T cells. As a result, SLE patients are
predisposed to severe life-threatening infections (23).

CaMK4 is a key molecule contributing to reduced IL-2
production in SLE T cells because it controls the ratio of
phosphorylated CREB (pCREB) and phosphorylated CREM
(pCREM). Activation of the transcription factor CREB by
phosphorylation induces IL-2 transcription while activation
of CREM by phosphorylation represses IL-2 transcription
(24). In T cells from patients with SLE, translocation of
CaMKIV to the nucleus is increased. In the nucleus, CaMK4
phosphorylates CREMα, promotes the binding of CREMα to the
IL-2 promoter and represses IL-2 transcription (Figure 1) (14).
Mechanistically, CREMα recruits DNMT3a and HDAC1 which
promote hypermethylation and silencing of gene transcription
(25, 26). This mechanism likely contributes to reduced levels of
IL-2 in patients with SLE because deletion of CaMK4 reduces
pCREMα binding to the IL-2 promoter, restores production
of IL-2, and improves in vitro polarization of Treg cells.
In the MRL/lpr lupus-prone mouse, depletion of CaMK4
restores serum levels of IL-2 as well as Treg cell numbers and
function (16).

The specific mechanism leading to increased CaMK4 activity
in T cells remains nebulous. One potential cause may be the
increased calcium signaling in T cells from patients with SLE.
Extensive evidence suggests that the CD3 complex in T cells from
patients with SLE is rewired to produce an aberrantly enhanced
TCR signal (27). Normally, TCR stimulation signals through
immune receptor tyrosine-based motifs (ITAM) containing
CD3ζ. CD3ζ associates with ZAP70 to propagate the signal. In
contrast, T cells from patients with SLE have reduced CD3ζ
and the Fc receptor common γ chain (FcRγ) associates with
the TCR. Instead of associating with ZAP70, FcRγ associates
with spleen tyrosine kinase (Syk) (28). Signaling through FcRγ-
Syk in comparison to CD3ζ-ZAP70 transmits a stronger signal
leading to enhanced intracellular Ca2+ concentration (29, 30).
Thus, this enhanced intracellular calcium flux may lead to
enhanced CaMK4 activation. Interestingly, in T cells from
healthy patients, CaMK4 is activated in response to exposure
to IgG isolated from sera from patients with SLE (14). The
induction of CaMK4 is attributed to anti-TCR/CD3 antibodies
because absorption of serum on TCR/CD3 positive cells but
not TCR/CD3 negative cells diminishes CREM binding to
the IL-2 promoter. Therefore, in addition to antigen specific
activation, activation of the TCR by IgG from patients with
SLE potentially contributes to a non-specific activation of T
cells.

ABERRANT CaMK4 ACTIVATION
DISRUPTS THE BALANCE OF TREG AND
Th17 CELLS IN SLE

At the single cell level, the differentiation into either Treg
or Th17 cell lineage appears reciprocal in nature (31). For
example, upon TCR stimulation, the addition of TGFβ drives
naïve T cells to express FoxP3 and differentiate into Treg
cells. However, the addition of IL-6 to TGFβ promotes RORγt
expression, steers cells toward Th17 differentiation and inhibits
FoxP3 and Treg cell differentiation. The reciprocal nature of
Treg and Th17 cells is also apparent in SLE where numbers
and activity of anti-inflammatory Treg cells are reduced while
proinflammatory Th17 cells are increased (32). CaMK4 plays
a central role in the imbalance of Treg and Th17 cells.
As noted above, CaMK4 contributes to the reduction of
IL-2 and limits Treg cells in patients with SLE. Since IL-
2 is known to inhibit Th17 differentiation (33), inhibition
of IL-2 by CaMK4 likely also promotes Th17 differentiation
indirectly.

Furthermore, our lab has established a direct mechanism
whereby CaMK4 promotes the polarization of Th17 cells.
Increased CaMK4 activity causes increased expression and
activity of CREMα in T cells from patients with SLE and
lupus-prone mice. Activated CREMα binds to CRE sites in
the proximal IL-17 promoter (Figure 1) (34). In contrast to
the IL-2 promoter discussed above, CREM binding to the
IL-17 promoter facilitates the transcription of IL-17 in T
cells from SLE patients (25). An additional pathway whereby
CaMK4 promotes Th17 differentiation is through the activation
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FIGURE 1 | Overactive CaMK4 in T cells signals to reduce IL-2 and increase

IL-17 production. In patients with SLE, FcRγ, instead of CD3ζ, associates with

the TCR complex and signals through Syk generating a stronger calcium

signal. Overactive CaMK4 phosphorylates CREMα and mitigates IL-2

transcription. Concomitantly, CaMK4 promotes IL-17 production through

activation of RORγt by phosphorylating AKT.

of RORγt (Figure 1). RORγt is a key transcription factor
for Th17 differentiation and IL-17 production (13). In T
cells from MRL/lpr mice, CaMK4 binds to and activates
AKT activating the mTOR/S6K pathway (15), a pathway
known to activate RORγt. Thus, CaMK4 promotes the
differentiation of Th17 cells indirectly by inhibiting IL-2
transcription and directly by promoting IL-17 transcription
through CREMα and by activating RORγt through the
AKT/mTOR/S6K pathway.

This mechanism is supported by in vitro and in vivo evidence
that suggests CaMK4 promotes Th17 differentiation. In normal
T cells, overexpression of CaMK4 increases differentiation of
Th17 cells in vitro and genetic depletion of CaMK4 disrupts
Th17 cell differentiation in T cells derived from normal or
autoimmune prone MRL/lpr mice (15). Moreover, mice lacking
CaMK4 or mice subject to pharmacological inhibition of CaMK4
are resistant to experimental autoimmune encephalomyelitis
(EAE), which has been well established that it depends on
Th17 cells (15, 35). Thus, ample evidence suggests CaMK4
is a key contributor to IL-17 production and Th17 cell
differentiation.

Further evidence suggests CaMK4 activation alters the balance
of Treg and Th17 cells in patients with SLE. Activation of CaMK4
is increased in T cells from patients with SLE (14) and lupus-
prone MRL/lpr mice (16). In T cells from autoimmune-prone
MRL/lpr mice, CaMK4 is induced the most after stimulating
naïve T cells under Th17 but not Th1, Th2, or Treg polarizing
conditions (15). Importantly, depletion of CaMK4 restores IL-2
production (16) and improves Treg cell number and function

in MRL/lpr mice (36). At the same time, depletion of CaMK4
inhibits Th17 development in SLE T cells (15) and prevents
infiltration of IL-17 producing cells in the kidney (35). In
sum, increased activation of CaMK4 directs T cells toward
Th17 differentiation and away from Treg cell differentiation.
Inhibition of CaMKIV restores the Treg/Th17 imbalance, limits
lymphocyte proliferation and activation, suppresses nephritis
and skin disease, and improves survival in lupus-prone mice
(16, 35, 37).

CaMK4 IN RESIDENT KIDNEY CELLS

Lupus nephritis is a major manifestation of SLE occurring
in more than 50% of SLE patients and is characterized by
immune complex deposition and cell proliferation (38). Resident
kidney cells including mesangial cells and podocytes have
been implicated in the expression of nephritis in patients
with SLE. Interestingly, CaMK4 also plays a role in resident
kidney cells and contributes to the pathogenesis of lupus
nephritis by promoting mesangial cell proliferation through IL-
6 production. Mesangial cells in the glomerulus are known
to produce IL-6 when exposed to dsDNA antibodies (39),
and in an autocrine fashion, IL-6 stimulates mesangial cell
proliferation (40, 41). This is thought to contribute to the
pathogenesis of lupus nephritis since blockade of IL-6 or the
IL-6 receptor ameliorates kidney disease in lupus-prone mice
(42–44). In MRL/lpr mice, IL-6 production by mesangial cells
in increased, especially upon stimulation with platelet-derived
growth factor (PDGF). This increased production is reversed
when mice are treated with a CaMK4 inhibitor or genetic
depletion of CaMK4. Moreover, global depletion of CaMK4
reduces mesangial cell proliferation, and greatly reduces kidney
damage (45).

CaMK4 appears to contribute to podocyte disfunction in
autoimmune kidney disease. Podocytes from lupus nephritis
patients exhibit elevated levels of CaMK4. While the exact
mechanism responsible for CaMK4 upregulation is unknown,
autoantibodies likely play a role because podocytes exposed
to IgG from patients with lupus nephritis display increased
CaMK4 and alter the expression of proteins known to
be important for the structure and function of podocytes
including podocin and nephrin, respectively (46). Also, exposure
of podocytes to IgG from patients with SLE causes an
increase in the expression of the costimulatory molecules
CD80 and CD86 on the surface membrane (46, 47). Global
genetic ablation of CaMK4 in MRL.lpr mice greatly reduces
proteinuria (45).

Podocytes from patients with FSGS also express increased
levels of CaMK4 suggesting that this kinase may represent
a shared molecule in the expression of immune and
non-immune podocytopathies. At the biochemical level,
increased levels of CaMK4 disrupt the maintenance of the
slit diaphragm by phosphorylating the adaptor molecule
14-3-3β. 14-3-3β stabilizes synaptopodin, an actin binding
molecule that is critical for the maintenance of normal actin
fiber dynamics. Therefore, phosphorylation of 14-3-3β by
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FIGURE 2 | CaMK4 contributes to podocyte dysfunction in autoimmune and non-autoimmune kidney disease. Multiple stimuli including IgG from SLE patients or LPS

upregulate CaMK4 leading to destabilization of the actin network and downregulation of nephrin and podocin. TRPC5, short transient receptor potential channel 5.

CaMK4 causes the release and degradation of synaptopodin
leading to destabilization of the actin fiber network (Figure 2)
(48).

TARGETING CaMK4 IN LUPUS

To address potential off target concerns of systematic delivery
of CaMK4 inhibitors, our lab has explored nanolipogel-
based delivery of the CAMK4 inhibitor KN-93 to target
CaMK4 specifically in T cells or podocytes. Use of KN-93
packaged nanolipogels coated with an antibody recognizing
CD4 targeted KN-93 specifically to CD4T cells without
increasing cell death. Delivery of KN-93 targeted to
CD4T cells to lupus-prone MRL/lpr mice increased IL-2
levels in the serum, reduced IL-17 producing infiltrating
cells in the kidneys and improved kidney function as
measured by proteinuria. Importantly, the effective dose
of KN-93 delivered by nanolipogels was 10% of the dose
necessary to warrant an effect from systemically delivered
KN-93 (35).

Using the same delivery approach, KN-93 targeted to
podocytes MRL.lpr mice at the beginning of their clinical disease
surprisingly never developed proteinuria and immune complexes
never deposited despite the fact that humoral and cellular
elements of autoimmunity were rampant in these mice. This
observation suggests that immune complexes do not deposit
if the structure and the function of the podocytes is kept
intact. Interestingly, the treated mice did not develop crescents
which have been claimed to originate from podocytes (48).
Pharmacologic inhibition or silencing of CaMK4 in cultured
podocytes subjected to scratch injury did not move to fill up the
inflicted empty space.

TARGETING CaMKIV IN FSGS

Focal segmental glomerulosclerosis (FSGS) is the most common
primary glomerular disease which results in end-stage renal
disease. It is a heterogeneous clinical entity characterized by a

characteristic histologic pattern. The origin of FSGS is diverse
and genetic, metabolic, infectious, and unknown factors have
been claimed to be involved in its expression. Proteinuria
is the typical clinical finding of FSGS (49). The podocyte
is the target cell for injury in FSGS and a growing list of
disease-causing gene mutations encoding proteins that regulate
podocyte survival and homeostasis has been identified in FSGS
patients (50).

Adriamycin has been used extensively to study aspects
of FSGS (51). Injection of adriamycin into mice increases
the expression of CaMK4 in podocytes. Targeted delivery of
a CaMK4 inhibitor to podocytes at the time of injection of
adriamycin prevented the development of glomerular damage
and more importantly, delivery of the CaMK4 inhibitor 7 days
later reversed all damage (48). This evidence strongly urges the
consideration of novel approaches to limit FSGS which, through
the invariable need of kidney dialysis and transplantation,
is responsible for major taxation of the health system
expenses.

In summary, CaMK4 is a central molecule that regulates
multiple processes that significantly contribute to the pathology
of SLE by controlling the production of IL-2 and IL-17 by T
cells, the proliferation of mesangial cells and the function and
structure of podocytes. CaMK4 is also upregulated in podocytes
from patients with FSGS. In both immune and non-immune
podocytopathies, CaMK4 disrupts the structure and function
of podocytes. It is not known at this point whether CaMK4 is
increased in the podocytes from patients with other glomerular
diseases and whether it represents a common molecular link for
several kidney diseases. It is also not known whether CaMK4
is increased in renal tubular cells in patients with immune
and non-immune kidney injury. Although in lupus nephritis
it appears that IgG that enters podocytes elicits an increase in
the expression of CaMK4, the involved mechanism is still at
large. Similarly, we have no insight in to the causes of increased
expression of CaMK4 in patients with FSGS although the known
increased calcium flux certainly contributes (52). In lupus-
prone mice, targeted delivery of a CaMK4 inhibitor suppresses
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both autoimmunity and the development of nephritis. Yet,
targeted delivery to podocytes averts the deposition of immune
complexes without affecting autoimmunity. This observation
strongly suggests that immune complexes may deposit after
podocytes have been injured and changes the approach we should
take to prevent kidney damage. It appears that delivery of a
CaMK4 inhibitor to podocytes holds high therapeutic promise
for both immune (lupus nephritis) and non-immune (FSGS)
podocytopathies.
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Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients

with a single gene defect. This rare variant of lupus generally presents with early onset

severe disease, especially affecting the kidneys and central nervous system. To date,

a significant number of genes have been implicated in monogenic lupus, providing

valuable insights into a very complex disease process. Throughout this review, we will

summarize the genes reported to be associated with monogenic lupus or lupus-like

diseases, and the pathogenic mechanisms affected by the mutations involved upon

inducing autoimmunity.

Keywords: lupus, monogenic, familial, genetic, mendelian

INTRODUCTION

Systemic lupus erythematosus (SLE or lupus) is a complex multisystem disease whose underlying
disease mechanism continues to be a topic of intense research. SLE can affect many organs
including the kidneys, skin, joints, lungs, cardiovascular system, central nervous system, and
hematopoietic system. As with most complex diseases, the etiology of SLE is incompletely
understood, however, cumulative evidence has pointed to the involvement of both genetic and
epigenetic mechanisms (1, 2). Multiple genetic variants associated with lupus susceptibility
have been identified through genome-wide association studies (GWAS). Support for a genetic
component of lupus can be realized from twin studies. Concordance rate of lupus in monozygotic
and dizygotic twins has been reported to be 24 and 2%, respectively, demonstrating a role for
genetic susceptibility in lupus (3). In parallel, monozygotic twin studies have also provided evidence
highlighting the relevance of DNA methylation changes (4). At the same time, non-genetic factors
such as viral infections or exposure to ultraviolet (UV) light among others are clearly involved, as
suggested by incomplete concordance in monozygotic twins.

Patients with childhood onset SLE usually present with a more severe phenotype and have
an increased frequency of glomerulonephritis, cytopenias, neuropsychiatric disease, cutaneous
manifestations, anti-dsDNA antibodies, and hemolytic anemia (5). It can be presumed that in early
onset disease, genetic factors may play a more important role than environmental and hormonal
factors (5). Monogenic lupus is a form of SLE that typically presents early in life, usually at<5 years
of age, with severe disease manifestations. This form of lupus is caused directly by a genetic variant
in a specific gene. Monogenic lupus represents a collection of distinct genetic abnormalities causing
similar clinical features and resulting in autoantibody production. In particular, consanguinity
presents a significant increased risk for monogenic lupus and should prompt consideration in
patients with familial SLE. Though monogenic lupus accounts for only a small subset of lupus
patients, it provides significant insight into the cause and mechanisms of lupus, and potential
treatment strategies.
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In the last years, large achievements understanding the genetic
component of SLE have been accomplished. More than 80
loci have been reported to be associated with susceptibility
in polygenic lupus, and a considerable number of monogenic
causes of SLE and lupus-like syndromes are emerging due to the
evolution of new sequencing techniques that can identify rare
genetic variations across the entire genome. Through this review,
we will explore the implications on the disease pathogenesis of
the genes that have been found to cause monogenic lupus or
lupus-like phenotype (Figure 1, Table 1).

INTERFERONOPATHIES

Although the clinical manifestations and severity observed
are different among patients, the interferonopathies are a
wide group of complex genetic disorders with a common
pathogenic mechanism characterized by imbalance of interferon
(IFN) mediated immune responses. Given that studies have
repeatedly identified an increased blood IFN signature in SLE
patients (35, 36), it is not surprising that clinical features of
some of the diseases classified as interferonopathies overlap
with systemic lupus erythematosus. Consequently, some of
these diseases, such as Aicardi-Goutières Syndrome (AGS) and
Spondyloenchondrodysplasia (SPENCD) can also be considered
as forms of monogenic lupus or lupus-like syndromes.

Aicardi-Goutières Syndrome
Aicardi-Goutières Syndrome is a genetic syndrome caused by
multiple genetic defects. The disease phenotype resembles a
congenital viral infection and many patients develop lupus as
a feature of the syndrome. AGS develops in young patients,
typically before 6 months of age and is characterized by
encephalopathy that is usually associated with calcification
of the basal ganglia and white matter changes on brain
imaging (37). Frequently, there is cutaneous involvement and,
in particular, chilblains. Patients with AGS have been shown to
have multiple IgG autoantibodies particularly directed against
nuclear antigens, basement membrane components, gliadin,
and brain endothelial cells and astrocytes. Patient with AGS
develop elevated type I IFN levels in both serum and cerebral
spinal fluid (7). These observations suggest that genetic defects
in RNA or DNA clearance result in increased type I IFN
production and interferon stimulated genes (ISGs), and then
lead to autoimmunity. AGS is associated with mutations in
multiples genes and many of these overlap with various
forms of monogenic lupus, suggesting a spectrum of disease
likely influenced by the location of the mutation as well as
environmental factors (7).

Mutations of TREX1 gene have been identified in AGS.
Approximately 25% of AGS patients have a TREX1 mutation.
Patients with AGS due to a TREX1 mutation have a prototypical
disease phenotype. A review of autoimmune features in
AGS patients showed that approximately 60% of patients
with a TREX1 variant had at least one autoimmune feature:
thrombocytopenia, leukopenia, antinuclear antibodies (ANA),
skin lesions, oral ulceration, arthritis, anti-dsDNA antibodies, or
antibodies to extractable nuclear antigens (ENA) (34). Persisting

severe physical and intellectual disability is frequent. In the
large majority, patients will have no purposeful gross motor,
hand or communication function. About a third of patients
with a TREX1-related AGS present in the neonatal period with
thrombocytopenia, hepatosplenomegaly, and a transaminitis
in addition to neurological disease (7). For reasons that are
not understood, these extra-neurological features often resolve
within the first year of life. A broad spectrum of mutations
across TREX1 have been associated with different immune-
mediated diseases. Most patients with AGS show biallelic
mutations within TREX1 with autosomal recessive inheritance,
which usually causes a complete loss of protein function.
However, some heterozygous mutations have also been identified
in individuals diagnosed with AGS (34). Early-onset familial
chilblain lupus (FCL) is a rare form of cutaneous lupus
which results in cold-induced severe discoloration of hands,
feet, and ears, where the lesions frequently ulcerate. Most of
these patients have heterozygous mutations with autosomal
dominant inheritance (34). In addition, heterozygous mutations
in TREX1 with autosomal dominant inheritance has been linked
to retinal vasculopathy with cerebral leukodystrophy (RVCL)
(38). Interestingly, a deleterious homozygous variant of this
gene has been recently identified in a patient with cerebral
SLE (39), and, it is worth noting that several single nucleotides
polymorphisms (SNPs) in TREX1 have been found associated
with common forms of SLE in different populations (40–
42). This gene, located on chromosome 3, encodes a protein
with exonuclease activity which is an IFN-inducible protein
responsible for degradation of genomic DNA in response to
DNA damage. Therefore, it plays an important role in the
immune response to single-stranded (ss)-DNA and dsDNA (43),
and maintains immune tolerance to cytosolic self-DNA (44).
When TREX1 is dysfunctional, the cytosolic DNA does not
get degraded which constitutes a damage-associated molecular
pattern (DAMP). This activates the cGAS-STING-mediated
type I IFN response and systemic inflammation (44). TREX1
deficiency is thought to trigger autoimmunity through the
accumulation of self DNA in the cytosol. These are sensed by
cyclic GMP-AMP (cGAMP) synthase (cGAS). cGAMP is a ligand
for stimulator of IFN genes protein (STING), which leads to
the production of type I IFN (43). On the other hand, TREX1
is a DNase component of the SET complex which is involved,
among other mechanisms, in apoptosis (45). Altogether, these
data provide different pathomechanisms for the involvement of
TREX1 dysfunction in SLE.

Patients with IFIH1 (interferon induced with helicase C
domain 1) gain of function mutations can develop early
onset SLE and AGS-like disease, including musculoskeletal
involvement and Jaccoud’s arthropathy (46). IFIH1 gene, which
encodes MDA5 (melanoma differentiation-associated protein 5),
is a cytoplasmic RNA receptor that binds cytoplasmic double-
stranded RNA. IFIH1 belongs to the RIG-I–like family which is
part of the pathway responsible for activating type I interferon
signaling (19). The gain of function mutation in IFIH1 gene
leads to activated dendritic cells and macrophages, which are
the primary producers of IFN-alpha in response to nucleic acid
(47). This leads to the activation of T cells and production of
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FIGURE 1 | Schematic representation depicting genes and chromosomal locations previously identified to be implicated in monogenic lupus. This figure was

produced using ‘circlize’ in R (http://cran.r-project.org/web/packages/circlize/).

autoantibodies (48). It is interesting to note that polymorphisms
in IFIH1 have been reported in patients with inflammatory
myopathies and anti-MDA5 antibodies are seen in some patients
with amyopathic dermatomyositis (49). Remarkably, a recent
study revealed that these patients showed a high activity of type I
IFN system. Although the mechanisms are still unclear, the study
detected high levels of transcripts of IFN-associated sensors and
several IFN-inducible genes were up-regulated in these patients
(50).

SAMHD1 (SAM domain and HD domain-containing protein
1) is a dGTP-dependent triphosphohydrolase responsible
for the regulation of intracellular levels of deoxynucleoside
triphosphates (dNTPs), the building blocks of DNA synthesis
(51, 52). In unaffected individuals, SAMHD1 promotes cell

stability and prevents reverse transcription of retroviruses.
Deficiency of SAMHD1 results in unbalanced pools of dNTPs.
This leads to loss of DNA replication and repair, DNA damage,
and apoptosis leading to a sustained IFN production (53).
SAMHD1 is upregulated in response to viral infections. It plays
a role in the antiviral immune response through initiation of the
interferon pathway (51). SAMHD1 disease-causing variants can
present with AGS, SLE, and chilblain lupus (29, 30). SAMHD1
has been shown to be reduced or absent in the cells of patients
with AGS (54). Cells from patients with SAMHD1 mutations
exhibited increased dNTP pools and DNA damage resulting
in a failure of the cell cycle and cellular senescence. Increased
DNA damage leads to upregulation in IFN-stimulated genes by
activation of the innate immune system (53).
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TABLE 1 | List of genes identified to cause monogenic lupus or lupus-like diseases.

Locus Gene name Gene

Location

Protein Inheritance Pathway Phenotype References

ACP5 Acid phosphatase 5,

tartrate resistant

19p13.2 TRAP AR Nucleic acid sensing and

degradation Type I IFN

SPENCD

SLE

(6)

ADAR1 Adenosine deaminase,

RNA specific

1q21.3 Adenosine

deaminase, RNA

specific

AR/AD Type I IFN AGS

SLE

(7, 8)

C1QA Complement C1q A

chain

1p36.12 C1q AR Complement Complement deficiencies

SLE

(9)

C1QB Complement C1q B

chain

1p36.12 C1q AR Complement Complement deficiencies

SLE

(9)

C1QC Complement C1q C

chain

1p36.12 C1q AR Complement Complement deficiencies

SLE

(9)

C1R Complement C1r 12p13.31 C1r AR Complement Complement deficiencies

SLE

(10)

C1S Complement C1s 12p13.31 C1s AR Complement Complement deficiencies

SLE

(11)

C2 Complement C2 6p21.33 C2 AR Complement Complement deficiencies

SLE

(12)

C4A complement C4A 6p21.33 C4 AR Complement Complement deficiencies

SLE

(13)

C4B complement C4B 6p21.33 C4 AR Complement Complement deficiencies

SLE

(13)

CYBB Cytochrome b-245

beta chain

Xp21.1-p11.4 NADPH oxidase 2 X-linked Phagocytosis Chronic granulomatous

disease

(14)

DNASE1 Deoxyribonuclease 1 16p13.3 DNASE1 AD Nucleic acid sensing and

degradation

SLE (15)

DNASE1L3 Deoxyribonuclease 1

like 3

3p14.3 DNASE1L3 AR Nucleic acid sensing and

degradation

SLE (16)

FAS or

TNFRSF6

Fas cell surface death

receptor

10q23.31 FAS AD Apoptosis ALPS (17)

FASL Fas ligand 1q24.3 FASL AD Apoptosis ALPS (18)

IFIH1 Interferon induced with

helicase C domain 1

2q24.2 IFIH1 AD Type I IFN AGS

SLE

(19)

ISG15 ISG15 ubiquitin-like

modifier

1p36.33 ISG15 AR Type I IFN AGS (20)

KRAS KRAS proto-oncogene,

GTPase

12p12.1 KRAS AD RAS-MAPK signaling Noonan syndrome (21)

LAMAN or

MAN2B1

Mannosidase alpha

class 2B member 1

19p13.13 Lysosomal Alpha-

mannosidase

AR Metabolism of

carbohydrates

Alpha-mannosidosis (22)

PEPD Peptidase D 19q13.11 PEPD AR Aminopeptidase activity Prolidase defiency (23)

PRKCD Protein kinase C delta 3p21.1 PRKCD AR Self-tolerance SLE (24)

PSMA3 Proteasome subunit

alpha 3

14q23.1 PSMA3 AD Proteasome CANDLE (25)

PSMB4 Proteasome subunit

beta 4

1q21.3 PSMB4 AD Proteasome CANDLE (25)

PSMB8 Proteasome subunit

beta 8

6p21.32 PSMB8 AD Proteasome CANDLE (25)

PTPN11 Protein tyrosine

phosphatase,

non-receptor type 11

12q24.13 PTPN11 AD RAS-MAPK signaling Noonan syndrome (26)

RAG2 Recombination

activating 2

11p12 RAG2 AR/AD Self-tolerance SLE (27)

RNASEH2A Ribonuclease H2

subunit A

19p13.13 RNASEH2

Complex

AR Nucleic acid sensing and

degradation

AGS (28)

RNASEH2B Ribonuclease H2

subunit B

13q14.3 RNASEH2

Complex

AR Nucleic acid sensing and

degradation

AGS (28)

(Continued)
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TABLE 1 | Continued

Locus Gene name Gene

Location

Protein Inheritance Pathway Phenotype References

RNASEH2C Ribonuclease H2

subunit C

11q13.1 RNASEH2

Complex

AR Nucleic acid sensing and

degradation

AGS (28)

SAMHD1 SAM and HD domain

containing

deoxynucleoside

triphosphate

triphosphohydrolase 1

20q11.23 SAMHD1 AR Type I IFN AGS

SLE

FCL

(29, 30)

SHOC2 SHOC2, leucine rich

repeat scaffold protein

10q25.2 SHOC2 AD RAS-MAPK signaling Noonan syndrome (31)

SLC7A7 Solute carrier family 7

member 7

14q11.2 SLC7A7 AR Amino acid transporter Lysinuric protein

intolerance

(32)

TMEM173 transmembrane protein

173

5q31.2 STING AD Type I IFN SAVI (33)

TREX1 three prime repair

exonuclease 1

3p21.31 TREX1 AD Nucleic acid sensing and

degradation

AGS

FCL

(34)

AGS, Aicardi-Goutières Syndrome; AD, autosomal dominant; ALPS, autoimmune lymphoproliferative syndrome; AR, autosomal recessive; CANDLE, chronic atypical neutrophilic

dermatosis with lipodystrophy and elevated temperature; FCL, familial chilblain lupus; SAVI, STING-associated vasculopathy with onset in infancy; SLE, systemic lupus erythematosus;

SPENCD, Spondyloenchondrodysplasia.

RNaseH2 (Ribonuclease H2) is a nucleic acid repair
surveillance enzyme expressed in all cells and functions to
remove ribonucleotides from DNA hybrid complexes. Three
different genes encode the three protein components of the
RNaseH2 complex, RNASEH2A, RNASEH2B and RNASEH2C.
Mutations in all three genes have been associated with AGS and
SLE. A recent study established mice models in which mutations
in RNASEH2B trigger an increase of the expression levels of ISGs.
The results of this work also proposed that this inflammatory
response is dependent upon the cGAS/STING pathway (28).
The findings of another study described that these mutations
result in accumulation of ribonucleotides in genomic DNA
placed during replication, which causes chronic DNA damage
triggering the p53 pathway and type I IFN production (55). It
has also been reported that fibroblasts from patients with SLE
and AGS secondary to RNaseH2 mutations, as well as RNaseH2
deficient mice have significant accumulation of ribonucleotides
and increased DNA in the cytoplasm. Furthermore, patient
fibroblasts revealed an upregulation in IFN stimulated genes,
which was enhanced, among other factors, by UV light
exposure. UV light is a major trigger of SLE symptoms and
it is thought that UV can raise apoptotic debris containing
nucleic acids. Therefore, a deficiency in RNAseH2 in individuals
exposed to UV light could be a possible link between genetic
and environmental factors in the pathogenesis of SLE (55).
Approximately one-third of AGS patients with variants in the
RNaseH2 complex have positive ANA. Sequencing of the genes
encoding the RNaseH2 complex in 600 SLE subjects identified
18 rare variants. Clinically, these patients mainly showed
cutaneous involvement, photosensitivity, arthritis, lymphopenia,
and autoantibody formation; internal organ involvement was less
frequent (41).

ADAR1 (adenosine deaminase, RNA specific) gene, located
on chromosome 1, encodes a widely expressed enzyme which is
involved in the editing of long double strand RNA. Mutations

in this gene have been reported to cause AGS and SLE (7, 8).
A proinflammatory signal upon recognition of viral or cellular
dsRNA unedited due to loss of function mutations in ADAR1
has been described (56). Interestingly, mutations in this gene also
cause Dyscrhromatosus Symmetrica Hereditaria (DSH1), a rare
skin condition which has been associated with SLE (57).

ISG15 is transcriptionally regulated by IFN-alpha and beta.
Patients with ISG15 deficiency have increased risk of viral
infection. Mutations in ISG15 are associated with central nervous
system (CNS) disease including intracranial calcifications and
seizures (20). Patients show immunological and clinical signs
of enhanced IFN-alpha/beta immunity. Interestingly, mutations
in ISG15 have been found in AGS and, in addition, a
higher expression of this gene in SLE patients has been
reported in several studies (58–60) ISG15 negatively regulates
IFN-alpha and beta production (58), and is known as an
activator of natural killer (NK) cells and a driver of IFNγ

secretion (61). Therefore, ISG15 has emerged as a potentially
critical bridge between type I and type II IFN immune
responses.

Spondyloenchondrodysplasia
Spondyloenchondrodysplasia (SPENCD) is a rare immuno-
osseous disorder which causes skeletal dysplasia as well as
variable neurologic manifestations (spacticity, developmental
delay, intracranial calcification). In addition, it has been
reported that SPENCD patients also may show overlapping
features of lupus such as nephritis, thrombocytopenia, and
dsDNA antibodies amongst others. Indeed, some of these
patients fulfilled the American College of Rheumatology
classification criteria for lupus (6, 62). The ACP5 gene encodes
tartrate-resistant acid phosphate (TRAP) protein which is
mostly expressed in monocytic cells including osteoclasts,
macrophages, and dendritic cells (63). Several different biallelic
null mutations in ACP5 distributed throughout the protein
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have been identified in individuals diagnosed with SPENCD-
associated lupus. All mutations identified to date, cause a
complete loss of enzymatic function. TRAP regulates the
phosphorylation levels of osteopontin (OPN) which is a
cytokine required for the production of type I IFN by
plasmacytoid dendritic cells in response to TLR9 stimulation
(64). It has been described that decreased expression of
TRAP triggers increased phosphorylation of OPN leading to
overproduction of type I interferon (6, 62). In addition, after
TLR9 stimulation, a reduced expression of TRAP provokes
higher levels of IFN-alpha, interleukin-6, ISGs, and tumor
necrosis factor (TNF) (65). It is worth to note that in a recent
study ACP5 was sequenced in nearly 1,000 SLE patients and
more than 500 healthy controls. The results of this study
showed a significant increase in heterozygous ACP5 missense
variants in SLE patients compared to healthy individuals
(65).

COMPLEMENT DEFICIENCIES

The classical complement pathway begins with C1, which
consists of C1q, two C1r molecules, and two C1s molecules.
C1 binds to the Fc portion of IgG or IgM antibody which
complexes to antigens. The binding results in the activation of
C1q which activates C1r, and then activates C1s. C1s cleaves
C4 (to C4a and C4b) and C2 (to C2a and C2b). C4b and
C2b combine and cleave C3 which is added to the complex
resulting in C4bC2bC3b (also known as C5 convertase). This
complex will cleave C5 resulting in the assembly of themembrane
attack complex (C5bC6C7C8C9). The alternative complement
pathway begins with the hydrolysis of C3 to C3(H2O). C3(H2O)
is always present to a small degree but is maintained in
homeostasis. The alternate pathway is initiated when C3(H2O)
binds to factor Bb (factor B having been cleaved by factor D
to form factor Ba and Bb) which forms C3b(H2O)Bb. The
C3b(H2O)Bb is an alternative C3 convertase (66). Any defect
in these complement components might prevent or hinder the
removal or clearance of apoptotic cells or immune complexes,
thus allowing these potential autoantigens to activate the immune
system and lead to a loss of tolerance. Therefore, deficiencies of
C1q, C1r, C1s, C2, or C4 have been strongly associated with both
immunodeficiency as well as autoimmunity, including lupus-like
phenotype (67).

Approximately 90% of people with C1q deficiency develop
lupus like-phenotype (9, 68) including clinical characteristics
such as photosensitive skin rash, nephritis, oral ulceration,
and arthritis. Most of these patients have early onset disease
with an age range from 6 months to 42 years, and a median
age of onset of 6 years (69). Interestingly, patients with C1q
deficiency have normal complement C3 and C4 levels with
low total hemolytic complement levels which can be a helpful
tool in diagnosis (70). Of interest, there are case reports of
treatment with plasma transfusion, which restores C1q levels,
leading to resolution of symptoms (71). Another small case
series reported successful cure of patients with a C1q deficiency
with bone marrow transplantation (72). C1q is encoded by

three genes (C1QA, C1QB, and C1QC) which are closely linked
on chromosome 1p34-1p36 (69). Multiple causal mutations,
in the three genes, resulting in the deficiency of C1q have
been identified in individuals with SLE-like phenotype. C1q
is directly responsible for identification and opsonization of
apoptotic cells which stimulates phagocytosis and activates
the classical complement pathway. Apoptosis generates cellular
debris, which if not properly cleared, can promote autoimmunity.
Thus, deficiency of C1q results in autoantigen presentation with
subsequent loss of tolerance (44). In addition, C1q suppresses
IFN alpha production by interacting with leucocyte associated
Ig-like receptor (LAIR)1 on plasmacytoid dendritic cells, and
indirectly through uptake of C1q containing immune complexes
by monocytes rather than plasmacytoid dendritic cells which
are the primary producers of IFN alpha (68). Furthermore, C1q
can inhibit TLR7 and TLR9 induced IFN-alpha production.
Consequently, it has been described that patients with C1q
deficiency develop increased levels of IFN alpha (9, 68). Taken
into consideration the IFN-signature found in these patients,
complement deficiencies could be also considered as secondary
interferonopathies.

Deficiencies in C1r and C1s are rare and these patients
usually die at a young age due to recurrent and severe
infections. However, more than a half of these patients
develop a lupus-like disease, with skin involvement and
ANA positivity being the most noticeable features (73).
Both genes encoding C1s and C1r are located on the
short arm of chromosome 12 and several deleterious
mutations, resulting in no detectable protein in the serum,
have been identified in patients with lupus-like phenotype.
Remarkably, consistent reduction in the serum protein levels
of C1s in patients with C1r deficiency and low levels of
C1r in patients with C1s deficiency have been observed
(10, 11, 74).

C2 is the most common complement deficiency, occurring
in about 1 in 20,000 individuals of European descent, however
lupus develops only in about 10% of patients with C2
deficiency (73). This is likely due to the fact that C2 can
be bypassed by the alternative complement pathway and is
therefore not required for activation of the complement system
(12). Patients with SLE secondary to C2 deficiency are similar
in presentation and severity to the general SLE population,
with a mean age of onset of 39 years. These patients will
typically develop multiple infections at an early age, but are
otherwise phenotypically similar to other patients with SLE
(75).

C4 is a key component of the classical complement pathway.
Homozygous deficiency of C4 results in a dysfunctional immune
response which can cause lupus with >75% of penetrance (76).
This protein is encoded by two genes, C4A and C4B, closely
located within the human major histocompatibility complex
(MHC) on chromosome 6. There is a complex pattern of
variation in this region and duplications of C4 genes are
common. The copy number variation (CNV) of these genes range
from two to eight copies (13). Interestingly, the relationship
of C4 gene copy number with non-Mendelian SLE has been
repeatedly analyzed in different populations and the results of
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these studies consistently reported that the fewer the number
of gene copies the higher the risk of lupus. Conversely, an
increased number of C4 gene numbers is protective (77, 78). A
deficiency in C4 in mice alters B cell tolerance by increasing the
number of self-reactive B cells. These mice develop lupus-like
features like glomerulonephritis and high levels of autoantibodies
(79).

AUTOIMMUNE LYMPHOPROLIFERATIVE
SYNDROME

Autoimmune lymphoproliferative syndrome (ALPS) is a rare
autoimmune disease mainly caused by mutations in FAS-
mediated apoptotic pathway genes (17, 18). ALPS patients
present with clinical features similar to SLE and mutations
in these genes have been associated with both diseases (17,
18). The fas cell surface death receptor (FAS) is a protein
in the TNF receptor superfamily. It plays a key role in
programmed cell death; the binding of this receptor with its
ligand results in signaling complex that includes Fas-associated
death domain protein (FADD), caspase 8, and caspase 10 (17).

Apoptosis is of particular interest in lupus as abnormalities
in this process provide a source of autoantigens which are
thought to drive the autoimmune response in this disease.
Apoptotic cell death results in increased DNA fragments,
which if not properly processed can accumulate and result
in autoimmunity. FAS gene polymorphisms have been shown
to be associated with SLE (80) and variants in the FASL
gene have been related to increase apoptosis (81). In this
context, it is noteworthy that mice with deficiencies in Fas and
FasL develop clinical features similar to SLE and ALPS, thus
represent useful murine models to study the pathophysiology
of both diseases. Specifically, MRL/lpr mice have been widely
used to investigate lupus and these studies significantly
contributed to our current knowledge of the pathogenesis of
SLE (82, 83).

OTHER GENES INVOLVED IN MONOGENIC
LUPUS

PRKCD (protein kinase c delta) is a signaling kinase with
multiple downstream target proteins which plays a role in

FIGURE 2 | Protein-protein interaction network of proteins encoded by genes found to cause monogenic lupus. The confidence of data supporting these interactions

are represented by the thickness of the lines. The analysis was performed using STRING V10.0 (STRING https://string-db.org/).
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regulating B cell development, proliferation, and apoptosis (84).

The absence of PRKCD results in chronic B cell receptor

signaling, decreased apoptosis, and increased response to

stimulation. Conversely, overexpression of PRKCD results in

inhibition of cell growth (85). A mutation in the PRKCD

gene has been identified in a family with monogenic SLE,

and is associated with loss of B cell tolerance and an

increased number of immature B cells even in family members

heterozygous for the mutation (24). In addition, PRKCD has

a negative role in T cell proliferation and a deficiency in

PRKCD results in increased T cell activation contributing to

T cell autoimmunity (84). Patients with SLE secondary to

PRKCDmutation demonstrate typical features of lupus including

autoantibody production as well as increased incidence of

glomerulonephritis.

Both DNASE1 (deoxyribonuclease 1) and DNASE1L3

(deoxyribonuclease 1 like 3) genes encode proteins involved in

the nucleic acid degradation pathway. DNASE1L3 enzyme plays

an important role in the clearance of DNA debris from apoptotic

cells and exogenous DNA. A loss of function variant in this gene

has been identified as the cause of a monogenic form of lupus.

Positive ANA, anti-dsDNA, and hypocomplementemia among

other features were present in all lupus patients harboring this

variant (16). DNASE1L3 variations have also been reported

in patients with hypocomplementemic urticarial vasculitis

syndrome (86). A heterozygous null allele in DNASE1, which

encodes for an endonuclease with certain degree of homology

to DNASE1L3, has also been identified in individuals diagnosed

with a monogenic form of SLE (15). Further studies have also

reported the association of polymorphisms in DNASE1 with

non-Mendelian SLE (87). All these findings are consistent

with the demonstration that mice deficient in DNASE1

develop a lupus-like phenotype (88). Interestingly, mutations

in DNASE2, which encodes another member of the DNAse

family, have been identified in three children presenting with

severe autoimmune features. Although these patients did not

fulfill criteria for a classification of SLE, all of them showed

high levels of anti-DNA antibodies among others lupus-like

symptoms (89).

Others monogenic disorders presenting rare cases of lupus-

like phenotype have been reported. Although in most of them

the mechanism causing autoimmunity is unclear, several causal

genes have been described (Table 1), including CYBB gene

causing chronic granulomatous disease, PTPN11 and SHOC2

genes associated with Noonan Syndrome, among others. Further

studies focused on understanding the role of these genes in

autoimmunity will help to better understand the pathogenesis

of SLE.

FINAL CONSIDERATIONS

Understanding the implications of the genes identified to cause

monogenic lupus have enhanced our knowledge of pathways and

molecular mechanisms involved in the pathogenesis of SLE. As it

has been explored through this review, monogenic lupus results

from mutations in genes related to the immune response, either

in the innate or in the adaptive immune system. Furthermore,

protein-protein interaction analysis suggests that these genes

encode proteins with related functions, creating molecular

networks (Figure 2). Specifically, these genes are primarily

involved in pathways including the complement system, nucleic

acid repair, nucleic acid degradation and sensing, apoptosis, and

type I interferon regulation. Although we do not yet know the

full extent of monogenic lupus, the study of this type of lupus has

provided new areas of investigation applicable to non-Mendelian

SLE. Many genes have been identified as causes of monogenic

lupus and at the same time have been associated with common

forms of SLE, such as C4 number variation and polymorphisms

in TREX1, among others. Besides, a recent study proposes that a

set of rare variants across PRKCD play a role in a wider context

of SLE susceptibility (90). Altogether, these findings reinforce the

idea of analyzing the genetics of complex diseases by taking into

consideration their Mendelian forms, and highlight the potential

contribution of rare variants to the heritability of SLE.

The molecular complexity of autoimmune diseases and the

clinical overlap among them makes accurate diagnosis and

specific targeted therapy more challenging. In this context, a

better knowledge of the genetic bases may generate insights into

biomarker development and new drug targets.
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Purpose of Review: The standard treatment options for systemic lupus erythematosus

(SLE) are focused on non-specific immunosuppression. Over the past few years,

scientific studies and ongoing clinical trials have shifted the paradigmwith rapid advances

in developing biologics and small molecules. A number of monoclonal antibodies and

small molecule inhibitors have been developed to target specific pathways involved in

SLE. Many of these novel therapeutic agents are already being tested in clinical trials

and they may 1 day reshape the landscape of SLE treatment. Herein we review potential

future therapeutic options for SLE.

Keywords: lupus, biologics, small molecules, treatment, clinical trails

INTRODUCTION

In the past few years, greater understanding of the pathogenesis of SLE has translated into
the development of more targeted therapeutic agents in various stages of clinical trials.
Current treatment regiments for SLE typically comprise some combination of glucocorticoids,
antimalarials, immune suppressive drugs, and cytotoxic agents in severe cases. The first biologic
agent approved for SLE, Belimumab, has been in clinical practice for more than 5 years with overall
positive albeit modest results (1). Therefore, developing more effective treatment for lupus remains
a priority in the field.

Recent studies have identified numerous immunological checkpoints that are dysregulated in
SLE and contribute to the loss of self-tolerance. A pipeline of novel agents are being developed
to specifically target intracellular signaling pathways, inflammatory cytokines, chemokines, cell
surface costimulation molecules, and the proteasome (Figure 1). Herein we will review the
potential novel treatment options that are currently being tested in clinical trials for SLE.

B Cell Inhibition
Systemic lupus erythematosus is a multisystem autoimmune disease characterized by the
production of autoantibodies that primarily target a variety of nuclear antigens, deposit in tissues
and activate complement. Plasma cells and their precursors, B cells, are fundamental to the
development of these antibodies, and therefore are a prime therapeutic target for intervention in
the disease.

B Lymphocyte Stimulator (BLyS)/A Proliferation-Inducing Ligand (APRIL) Belimumab was the
first FDA approved fully humanized monoclonal anti-BLyS antibody for use in SLE more than
5 years ago. Administration of Belimumab was found to benefit SLE patients who had positive
anti-double-stranded (ds) DNA and low complement (C3 or C4) levels. Moreover, the pivotal trials
that lead to the approval of belimumab used a novel at the time composite outcome measure, the
SLEDAI response index (SRI). Patients would be regarded SRI responders if they have (1) at least
4 points decrease in their SLEDAI scores over the period of the study, (2) No worsening of the
physician global assessment (PGA), and (3). No new BILAG A or more than one BILAG B scores.
The original SRI can be modified to require higher decrease in SLEDAI score e.g., by 5 or 6 points
(SRI-5, SRI-6, respectively).
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Compared to the placebo group’s 44% SLEDAI response index
(SRI)-4, the belimumab group had SRI-4 of 58%, indicating
a statistically significant but yet modest effect. This modest
effectiveness was later confirmed by an extensive post- marketing
surveillance, as well as, its overall safety profile. Subcutaneously
administered belimumab had similar efficacy at week 52 with
SRI-4 response of 61.4% vs. placebo 48.4% (p = 0.0006) (2). It
is worth mentioning that the effectiveness of belimumab remains
unclear in severe renal and CNS disease as patients with these
manifestations were excluded from the initial studies (1, 3). A
study investigating the usefulness of belimumab in patients with
lupus nephritis is currently ongoing (NCT01639339).

Tabalumab, a monoclonal antibody against BLyS that
neutralizes membrane-bound and soluble BLyS, was assessed for
its effectiveness in moderately active lupus in two large phase
III clinical trials (ILLUMINATE-1 & 2). Although tabalumab
treatment resulted in favorable changes in disease biomarkers
(anti-dsDNA abs and complement levels), efficacy was marginal
with SRI-5 of 38.4% in the tabalumab-treated vs. 27.7% in the
placebo group (p = 0.002) in one trial. There was no statistical
difference between the two groups in the second trial. Again, the
treatment with tabalumab was found to be relatively safe as was
the case with belimumab (4–6).

Blisibimod is a BLyS -neutralizing agent composed of a
tetrameric BLyS binding domain fused to a human IgG1 Fc
region. It binds both soluble and membrane-bound BLyS. In the
recently completed phase III trial (CHABLISSC1) in patients with
severe disease (SELENA-SLEDAI score ≥10), blisibimod showed
a statistically significant steroid-sparing effect, reduction in SLE
autoantibodies, B cell count, and proteinuria while increasing
complement levels (7). SRI-6 as a primary end point was not
met since response rate in the control subjects in this study was
very high compared to prior SLE trials; 46.9% in the Blisibimod
vs. 42.3% jn the control group. Higher steroid dosing in the
placebo armmay have contributed to the relatively high response
rates, confounding the primary efficacy outcome. Blisibimod was
well-tolerated and the most common adverse events were upper
respiratory or urinary tract infection and diarrhea (7).

Atacicept is a fully human recombinant fusion protein made
of the extracellular portion of the TACI receptor and the Fc
portion of human IgG. As atacicept blocks both BLyS and APRIL
(8), it was predicted that atacicept may have a more potent effect
on immunoglobulin production. Indeed, a significant high risk of
severe infection and a decreased in immunoglobulin levels lead to
a terminated phase II/III APRIL-SLE trial in nephritis (9). Similar
effect on immunoglobulin levels was seen in the ADDRESS II trial
(10) where effectiveness of atacicept to improve serologicmarkers
and prevent lupus flares was superior to placebo only with 150mg
twice weekly dosing. The safety profile was acceptable with no
reportedly increase in the overall frequency of serious adverse
effects as compared to placebo. However, further assessment
of the long-term safety of atacicept is warranted as this study
only evaluated the safety and efficacy at 24-weeks (10). Given
these results, the initial enthusiasm with this molecule has largely
dissipated.

Overall, anti-BLyS but probably not anti-APRIL therapies,
represent a moderately effective and safe approach in the

management of patients with moderately active SLE with
musculoskeletal and skin manifestations, especially if they
remain corticosteroid dependent.

Anti-CD 20
Unlike BLyS inhibition with the capacity of altering B cell
maturation, CD20 targeting therapy depletes mature B cells
without affecting plasma cells. Rituximab (RTX) is the most
widely used anti-CD20 antibody; due to its chimeric nature,
it was found to cause allergic reactions in approximately
10% of patients. Therefore, in the past few years several
fully humanized anti-CD20 antibodies have been developed,
such as ocrelizumab, ofatumumab, and obinutuzumab. Small
uncontrolled trials showed that rituximab, already known to
be effective in rheumatoid arthritis (11), can also ameliorate
lupus (12). The non-randomized “Rituxilup” trial (n = 50) used
rituximab and methyl prednisolone followed by mycophenolate
mofetil in newly diagnosed lupus nephritis. Ninety percent of
patients achieving a partial or complete remission by 37 weeks
of treatement. A randomized multicenter clinical trial conducted
by Rovin et al., was recently terminated prematurely due to slow
recruitment (CTN84054592). But other pivotal trials in lupus
nephritis (LUNAR) (13) and non-renal SLE (EXPLORER) were
largely negative (14). Currently, the European League Against
Rheumatism (EULAR) recommends rituximab as a treatment of
last resort in severe lupus (15).

More recently, a few case reports (16, 17) and a phase 2A
open-label proof-of-concept suggested that the combination of
RTX and anti-BLyS (belimumab, BLM) could be effective. 11/16
patients with refractory SLE achieved renal responses (defined
as proteinuria decreased to ≤0.7 g/24 h, normal serum albumin,
stable creatinine and a normal urinary sediment). Importantly,
RTX+ BLM reduced nuclear autoantibody titers, and prevented
the spike of circulating BLyS that is common after B-cell
depletion. Similar results were observed in another small case
series of patients with refractory SLE, who entered long term
remission and discontinued corticosteroids (18, 19).

Similarly, the humanized anti-CD20 ocrelizumab failed to
show significant efficacy in two early terminated phase III trials
(BELONG and BEGIN). Patients with class III and IV nephritis
were enrolled in BELONG (20) that compared ocrelizumab
to placebo. Patients also received mycophenolate mofetil or
cyclophosphamide (euro-lupus nephritis treatment protocol).
Non-renal SLE patients were enrolled in the BEGIN trial.
Both trials were terminated after significant increases of severe
infections were noted in the ocrelizumab group. It has to be noted
that efficacy analysis showed a trend favoring ocrelizumab over
placebo.

Ofatumumab was administered to 16 SLE patients who could
not tolerate rituximab; 87% (14/16) of these patients tolerated
the infusion. About 85% patient achieved B cell-depletion
with associated improvements in serological markers of disease
activity (ANA, anti-dsDNA and complement levels). Half of
the patients with lupus nephritis achieved renal remission by
6 months. Overall safety profile seems acceptable with 5/16
patients developing grade III infections; no malignancies or
deaths were reported during the 28 months follow up (21).
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FIGURE 1 | Therapeutic targets and novel treatments in SLE. Target molecules (black) and corresponding therapeutic agents (red) in clinical trials are illustrated. pDC,

plasmacytoid dendritic cell; MHC, major histocompatibility complex; CD, cluster of differentiation; APRIL, a proliferating-induced ligand; BLys, B-lymphocyte

stimulator; IL, interleukin; TCR, T cell receptor; IFNAR1, Interferon alpha receptor 1; BTK, Bruton’s tyrosine kinase; mTOR, mammalian target of rapamycin; Jak, Janus

kinases; STAT, signal transducer and activator of transcription proteins; Ub, ubiquitin; E3, Ubiquitin protein ligases.

One SLE patient with autoimmune hemolytic anemia who failed
rituximab, achieved clinical remission after ofatumumab (22).
Four patients with nephritis achieved reduction of proteinuria
and anti-dsDNA levels (23). There are no active formal clinical
trials in SLE. A 52-week, phase II trial studying safety and
efficacy of obinutuzumab, a different anti-CD20 antibody, in
lupus neprhritis is currently active with estimated completion
date in December 2019 (NCT02550652).

As per EULAR recommendations, anti-CD20 treatment can
be tried in refractory SLE patients. Severe infections remain a
concern as many of these patients are already receiving other
immunosuppressive medications.

Anti-CD22
CD22 is a surface molecule that modulates B cell activation and
migration. Epratuzumab is a humanized anti-CD22 antibody,
initially showed positive results reaching its primary endpoint
(BICLA response) in the EMBLEM phase II trials (24). However,
the beneficial effect was not replicated in the larger and more
stringently performed phase III EMBODY trial (25). The reason
of failure was thought due to sub-optimal dosing, high placebo

response rates, and inadequate optimization of standard of
care. Interestingly, some promising response was observed
in subgroups of patient with features of Sjogren’s syndrome
and positive anti-SSA antibodies. Further research is needed
to explore this and other potential sub-groups that might
respond (26).

Anti-CD19
CD19 is a surface receptor found exclusively on B cells.
XmAb5871 is an antibody that co-engages CD19 and the
inhibitory FcγRIIb receptor, resulting in B cell inhibition but
not ablation (27). There is an ongoing randomized, double-
blinded, placebo-controlled study of XmAb5871 to determine
its ability to maintain SLE remission achieved by a brief course
of steroid therapy (NCT02725515). This clinical trial has an
interesting design: Moderately active SLE patients are taken
off traditional therapies and are given high dose parenteral
steroids. In theory most patients will become clinically inactive.
Then the patients of both XmAb5871 and placebo group are
observed for development of flare. The outcome measure would
be time to relapse after the initial induction of remission. This
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unconventional study design is likely to reduce the placebo
response by eliminating the effect of background therapy.

Proteasome Inhibitors
The lack of expression of CD20 on plasma cells, especially long-
lived plasma cells may be one of the reasons for the poor
performance of anti-CD20 therapies in SLE (28). This can be
addressed by targeting specifically the plasma cell ability to
produce immune globulins by inhibiting the proteasome. This
organelle handles misfolded proteins, produced at high levels
during immune-globulin assembly, and has proven critical for
plasma cell function.

Bortezomib is a proteasome inhibitor, that is efficacious in
plasma cell cancers. In lupus proneMPL/lprmice, administration
of bortezomib was found effective in preventing and more
importantly treating established disease (29). Similar effects were
observed with two other proteasome inhibitors, carfilzomib
(30), and delanzomib (31) when used in preclinical models
of lupus nephritis (NZBW F1 and MRL/lpr mice). Following
these successful studies, bortezomib was infused in 12 patients
with refractory SLE. The patients had significant improvement
in several clinical parameters such as dermatitis, proteinuria,
arthritis, and serositis. Neuropathy developed in 2/12 patients as
a major side effect. Currently, bortezomib is assessed in a phase
II clinical trial in SLE patients (NCT02102594) with estimated
completion date in December 2018.

Although proteasome inhibition is attractive, the main
concern for adding these seemingly potent medications in the
SLE therapeutic armamentarium remains the severe toxicity
associated with their chronic use.

INTRACELLULAR SIGNALING

Bruton’s Tyrosine Kinase (Btk)
Btk is a B-cell receptor (BCR) associated kinase that activates
the NFkB pathway (32). Importantly though it also associates
with the Fc receptor in monocytes (33) and can bridge BCR
and TLR9 signaling (34). Mutations in the Btk gene result in
agammaglobulinemia (35). Ibrutinib is already in use for B cell
malignancies and has good safety profile (36). Inmousemodels of
lupus nephritis treatment with Btk inhibitors PF-06250112 (37)
and ibrutinib (38) resulted in less severe nephritis. This served
as the base for the Btk inhibitor MSC2364447C (M2951) to be
evaluated in a phase Ib trial in SLE patients withmild tomoderate
disease (NCT02537028). Fenebrutinib (GDC-0853), an orally
available inhibitor of Btk, is evaluated in a phase II clinical study
in patients with moderate to severe active SLE (NCT03407482).
Participants will receive GDC-0853 twice daily for 48 weeks and
will be followed for additional 8 weeks to evaluate the long-term
safety and efficacy.

Cereblon Modulator (CC-220)
CC-220 binds to cereblon (CRBN), a substrate receptor
of CUL4CRBN E3 ubiquitin ligase complex. As an
immunomodulatory compound, CC-220 can lead a substrate
specific ubiquitination of transcription factors Ikaros (IKZF1)
and Aiolos (IKZF3) both essential for antibody production

(38–40). A Pilot phase II randomized, placebo-controlled,
double-blind study is underway to evaluate efficacy, safety,
tolerability, pharmacokinetics of CC-220 in patients with SLE
(NCT02185040). CC-220 showed some efficacy but there were
important safety issues in a 12-week, phase II, dose-escalation
study of 42 patients and 14% of patients stopped treatment
because of adverse effects. Higher doses of CC-220 were
associated with neutropenia, pneumonia, and dermatitis (41).

Calcineurin Inhibitors
Activated lupus T cells show an exaggerated calcium response,
which leads to early and sustained activation of the phosphatase
calcineurin and its substrate, the transcription factor nuclear
factor of activated T cells (NFAT). NFAT upregulates a
number of genes, including CD154 (also called CD40L)
(42), a critical molecule for T:B cell interaction. Calcineurin
inhibitors cyclosporine and tacrolimus, have been successfully
used in preventing transplant rejection through blocking this
important pathway. Moreover, calcineurin inhibitors may have
an antiproteinuric effect, rendering them an important treatment
alternative or adjuvant therapy for lupus nephritis. Compared to
mycophenolate mofetil, tacrolimus was found to be non-inferior
in induction of remission (62 vs. 59%). However, there was a
trend for more flares in the tacrolimus group (43).

Voclosporin, a novel calcineurin inhibitor, was investigated
in a phase II trial for lupus nephritis as a combination
therapy with mycophenolate mofetil (AURA trial). Patients
received mycophenolate alone or Voclosporin at 39.5 or 27.5mg
combined with mycophenolate. Remission rates at 6 months
favored the combination therapy over mycophenolate alone
(OR = 2.03). Unfortunately, the voclosporin-mycophenolate
combination resulted in severe side effects including 12 deaths
vs. 1 death in the mycophenolate group alone (44) despite the
use of rather low corticosteroid doses. Double-blind, placebo-

controlled AURORA (NCT03021499) phase 3 clinical trial has
started with a plan to include 320 patients with nephritis. It will
determine if a combination of voclosporin and a standard of care
therapy with mycophenolate mofetil increases kidney function,
compared with to standard of therapy alone.

Overall, calcineurin inhibitors alone or combined with
mycophenolate represent acceptable alternatives for lupus
nephritis treatment; the combination though may carry a
significant risk for serious infections.

Mammalian Target of Rapamycin (mTOR)
Signaling Inhibitor
mTOR is a highly conserved serine/threonine kinase and is well
known to be essential for the regulation of cell metabolism,
growth, and proliferation (45, 46). Activated mTOR in lupus T
cells is associated with several abnormalities including expansion
of both TH17 and CD3+CD4−CD8− double negative T, as well
as, contraction of Tregs (47, 48).

Administration of the mTOR inhibitor rapamycin, results
in immediate inhibition of mTORC1 signaling and delayed
inhibition of mTORC2 signaling. It has a marked effect on
the immune system, partly by interrupting metabolic demands
associated with lymphocyte proliferation and effector function.
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In the context of SLE, rapamycin ameliorated nephritis and
improved IL-2 production in MRL/lpr mice (49). In an
open-label clinical trial, rapamycin improved the clinical and
laboratory parameters in patients with recalcitrant SLE (50). A
larger clinical trial in SLE (NCT00779194) is under way.

The N-acetylcysteine (NAC), a potent anti-oxidant and
glutathione precursor, also inhibits mTOR. NAC administration
in SLE patients resulted in improvement of disease activity (51).
NAC also led to the expansion of CD4+CD25+FoxP3+ Tregs
and depletion of phospho-S6RPhi DN T cells (52). NAC is well
tolerated with its major side-effect being nausea at high doses
(over 4.8 g per day).

JAK/STAT Inhibitors
The Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) system fine-tunes immune cell activation
(53), defining their differentiation. In SLE, there is mounting
evidence of the critical involvement of this system in disease
pathogenesis. In a recent study, it was shown that increased
STAT5 signaling in lupus T cells is related to changes
in circulating CD4T cell subsets and correlated with more
aggressive disease (54).

Following the success in treating RA with tofacitinib, the first
oral JAK inhibitor (55), several JAK inhibitors are currently under
investigation. As type I interferons, known to be upregulated
in SLE, transduce their signal through JAK, the JAK1 inhibitor
GSK2586184 was used in a small trial to block the expression
of interferon-related genes in SLE. The trial failed to show a
difference (56) without being powered to address the broader
effect JAK inhibition may have on disease activity.

Tofacitinib was studied in phase Ib trial in patients with mild
to moderate lupus, stratified based on the presence or absence
of STAT4 risk alleles. Although data are not available to date,
this study is one of the first to address the link between genetic
susceptibility and response to treatment in SLE. Baricitinib, a
more selective JAK 1/2 inhibitor was evaluated in a phase II
trial in SLE patients that was completed with positive yet modest
results (57). A third JAK1 inhibitor, Filgotinib, is currently being
evaluated in patients with moderate to severe active cutaneous
lupus (NCT03134222) and with membranous lupus nephropathy
(NCT03285711).

BMS-986165 is broad inhibitor against a panel of 265 kinases
and pseudokinases. BMS-986165 protected NZB/W lupus-prone
mice from nephritis possibly through its effect on interferon
signaling (58). BMS-986165 also suppresses IL-23/IL-17 and IL-
12. An ongoing phase 2 randomized, double-blind, placebo-
controlled trial is exploring the efficacy and safety in patients
with SLE (59). Finally, our group identified STAT3 that associates
with JAK and mediates IL-6 and IL-23 signaling, as a potential
therapeutic target in SLE (60, 61). STAT3 influences SLE T cell
cytokine production, cell migration and B cell activity in lupus
prone mice (62). In a preclinical study, Stattic, a small molecular
STAT3 blocker, alleviated nephritis in lupus prone MRL/lpr mice
(58, 63).

The Jak-STAT pathway therefore represents a very promising
therapeutic target in both non-renal and renal lupus. Moreover,
the use of small molecular oral agents to inhibit this pathway as

opposed to biologic inhibitors of cytokines, makes this approach
even more appealing.

Rho Kinase (ROCK) Inhibitors
ROCKs are a family of serine-threonine kinases (59) that
function as downstream effectors for the GTPase Rho. The
main isoforms ROCK1 and ROCK2 regulate multiple biological
functions, including proliferation, differentiation, and migration
by cytoskeletal reorganization. The potential of this pathway as a
treatment target in SLE, was first shown by the ROCK inhibitor
Y27632 that blocked the ability of SLE T cells to migrate in vitro
(64, 65). Subsequently, ROCK2 was found to be selectively
activated in murine lupus T cells. In these lupus models, ROCK2
regulates IRF4 and increases IL-17 and IL-21 production (66).

A wide array of available ROCK inhibitors has been
investigated in SLE including Fasudil and Y27632. Fasudil is
non-isoform selective ROCK inhibitor that attenuates disease
activity in MRL/lpr mice and NZBWF1 mice (64). Fasudil can
also cause vasodilation and hence was evaluated for the treatment
of systemic sclerosis patients with Raynaud’s phenomenon. A
single oral dose of 40 or 80mg fasudil though, did not improve
skin temperature recovery or increase digital blood flow (67).

Although, there are no current clinical trials investigating
ROCK inhibitors in patient with SLE, they are evaluated in
patients with angina pectoris, pulmonary hypertension (68),
idiopathic pulmonary fibrosis (NCT02688647) and psoriasis
vulgaris (NCT02317627).

CO-STIMULATION

T cell activation is a tightly controlled process that consists of
several steps to allow proper T cell differentiation. Each step in
this process has the potential to serve as therapeutic target for
autoimmune diseases. Following antigenic binding to the T-cell
receptor, the strength of the immune response depends on the
expression and interaction of costimulatory surface molecules
on antigen presenting cells with those on T cells (68, 69). Here
we review the role of disrupting the two most important co-
stimulatory pairs, CD28/B7 and CD40/CD154 as a therapeutic
strategy in SLE.

CD28/B7
Inhibition of co-stimulatory pathway has already been utilized
in in the treatment of rheumatoid arthritis with abatacept. This
is a fusion protein made of CTLA4 (cytotoxic T-lymphocyte-
associated protein 4) and an immunoglobulin chain (CTLA4-
Ig). It binds CD80/86 with a higher affinity than CD28. This
interaction leads to both inhibition of T cell proliferation and
B cell antibody production (70, 71). Efficacy and safety of
abatacept added to standard of care with mycophenolate mofetil
and steroids was evaluated in a phase III double-blind placebo-
controlled trial that randomized over 400 lupus patients with
class III or IV nephritis. The study end point was complete
renal remission and corticosteroid dose assessed at 52 weeks.
The trial did not reach its primary endpoint with 35% of
patients treated with abatacept achieving remission vs. 33%
in the placebo group (p = 0.73). Abatacept treatment was
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associated with improvement of immunologic markers (anti-ds
DNA, C3, and C4 levels) as compared to placebo. In patients
with nephrotic-range proteinuria, treatment with abatacept led
to more rapid and greater reduction of proteinuria compared
with placebo. Infection rates were similar as previously reported
for RA patients. Thus, far, there have been several other trials of
abatacept in active lupus nephritis but none achieved its primary
endpoint (72, 73).

Targeting the CD28 instead of B7 has been challenging by
the lack of inhibitory antibodies that would not crosslink CD28
and trigger a cytokine storm (74). One solution was to develop
pegylated monovalent anti-CD28 antibodies such as lulizumab
(75). Lulizumab was evaluated in phase II trial in non-renal
lupus following acceptable safety profile in phase I trial. The
trial was terminated early as it failed to meet protocol objectives
(NCT02265744).

CD154/CD40
Another pair of co-stimulatory receptor-ligand system whose
engagement has profound effects on B, dendritic and endothelial
cells is the CD40-CD40 ligand (CD154). Following T cell
activation, CD154 is expressed on the surface of the cell, allowing
binding to B cells through CD40; that in turn leads to IgG class
switching (76). Two drugs are currently explored as therapeutic
agents in phase II trials for patients with moderately to severely
active SLE. The first one, Dapirolizumab, a polyethylene glycol
conjugated anti-CD40L Fab’ fragment, was well tolerated in phase
I study (77). At 12 weeks of treatment 46% of high disease activity
patients showed reduction in disease activity measured by BILAG
and 41% had improved SRI-4. The second one, BI 655064 is
a humanized monoclonal anti-CD40 antibody. Its efficacy will
be assessed in a double-blind, randomized, placebo-controlled
trial for patients with active class III and IV lupus nephritis
(NCT03385564). The study is actively enrolling and the primary
endpoint is defined as complete renal response at 1 year.

CYTOKINES

SLE is characterized by skewed cytokine production that can
directly cause local tissue damage and contribute to systemic
symptomatology. Besides the interferons, other inflammatory
and immunomodulatory cytokines have been investigated as
therapeutic targets for SLE.

Interleukin-2 (IL-2)
There has been resurgent interest in interleukin-2 since the
discovery of its homeostatic potential on CD4T cells and its
ability to redirect immune responses toward tolerance. IL-2
promotes the expansion and survival of regulatory T cells, and
can be used in low doses to promote tolerance averting graft
vs. host disease in bone marrow recipients (78–80). In SLE,
low-dose IL-2 therapy is of particular interest, as these patients
have low levels of IL-2, defective regulatory T cell function, and
overactive T effector cells (81, 82). This imbalance can potentially
be reversed with the addition of IL-2 (83). In preclinical studies,
low dose IL-2 abrogated the development of nephritis in lupus-
prone mice and mediated selective expansion of regulatory T

cells in SLE patients (84, 85). This approach was tested in
an open label phase I/II trial of subcutaneous low-dose IL-
2 injection on alternate days for 3 cycles in 38 SLE patients.
More than 80% of patients showed significant SRI-4 response
by week 12, in addition to increased numbers of regulatory T
cells, decreased Th17, follicular helper and double negative T
cells (86, 87). This paved the way for larger placebo-controlled
trials of low dose IL-2, using different IL-2 preparations and
dosing schedules: AMG 592 (NCT03451422); LUPIL-2 trial with
ILT-101 (NCT02955615); and Charact-IL-2 with Aldesleukin
(NCT03312335).

Interleukin (IL)-12/23
Elevated IL-23 levels have been found in patients with
lupus nephritis (83, 88, 89). Activation of IL-23/IL-17A axis
induces expansion of highly pathogenic TH17 cells, ultimately
contributing to pathogenesis of lupus nephritis by enhancing
immunoglobulin and complement deposition (90, 91). Sole
targeting of IL-17 in murine lupus nephritis models either
with genetic deletion or utilizing a blocking antibody against
IL-17A had no impact on the disease (92, 93). However,
upstream targeting of this axis with ustekinumab, a monoclonal
anti-IL-12/23 antibody that is already approved and well
tolerated in patients with a variety of autoimmune diseases,
showed promising data. Ustekinumab was evaluated in placebo-
controlled phase II trial that recruited 102 SLE patients with
active disease despite ongoing standard of care therapy (steroid,
antimalarial and/or immunosuppressive therapies) (94). The
protocol allowed intravenous loading, followed by subcutaneous
administration every 8 weeks. At week 24, ustekinumab arm
showed a significant improvement of the SLEDAI-2K score
compared to placebo (SRI-4: 60 vs. 31%, respectively, p= 0.0046),
which was the predetermined primary endpoint. A number of
other metrics also improved, including anti-dsDNA, C3 levels,
musculoskeletal and mucocutaneous manifestations. Moreover,
a significant lower risk of a new BILAG flare was found in the
ustekinumab group (p = 0.0078) but there was no difference in
BILAG or BICLA scores at week 24 among the groups. Safety
and adverse events of ustekinumab were similar to safety profile
reported for other indications. Overall, this is very promising
therapeutic option with an ongoing phase III trial that will
address ultimately its usefulness in SLE.

IL-10
IL-10 has been shown to be increased in the serum of SLE patients
and levels do correlate with disease activity (95). Its exact role in
the propagation of the disease is unclear as IL-10 has both pro
and anti-inflammatory effects. The anti-IL-10 antibody, BT063,
is currently undergoing a phase II trial (NCT02554019); the trial
aims at recruiting 36 patients with SLE who are to receive 50mg
of BT063. Safety and efficacy will be compared to standard of
care. The drug will be administered over 8 cycles of intravenous
infusion in 12 weeks period. Although no data are available, the
clinical development program for this molecule is active.
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IL-6
IL-6 is a proinflammatory cytokine found to be elevated in
patients with active SLE (96). Rationale for its therapeutic
blockade comes from data that showed diverse biologic function,
spanning from promoting terminal differentiation of B and
TH17 cells to locally driving tissue damage (97–99). Additionally,
in animal models of SLE, disrupting IL-6 signaling either by
utilizing an anti-IL-6 monoclonal antibody or anti-IL-6 receptor
antibody led to improved survival, decreased levels of ds-
DNA and proteinuria (100, 101). The opposite was found
when mice were injected with recombinant human IL-6 (101,
102). Unfortunately, the clinical trials though have not been as
encouraging.

PF-04236921, a monoclonal IL-6 antibody failed to meet
its primary efficacy endpoint (SRI-4) a phase II trial that
enrolled 183 patients assigned to receive subcutaneous 10mg,
50mg or 200mg drug or placebo (103). In the 200mg dose
group, there were four deaths secondary to infections and
thrombosis. A subgroup analysis showed that benefit can be
seen in patients with high disease activity at baseline who
received the 10mg dose. They had significantly improved SRI-
4 and BICLA response rates compared to placebo (49 vs. 25.1%,
p < 0.05) and decreased incidence of severe lupus flares. Two
other monoclonal antibodies failed to demonstrate efficacy in
phase II trials, sirukumab (104), and vobarilizumab. Finally, the
monoclonal antibody MRA003US is currently in a phase I trial
(NCT00046774) and no results have been released to date.

The Interferons (IFN)
The hypothesis that IFNs have an important role in SLE
pathogenesis is supported by plethora of findings both in
humans and animals. Patients with active lupus have elevated
levels of type I IFN. Moreover, patients with active and
quiescent disease have evidence of continuous exposure to type
I interferons based on multiple gene expression studies that show
upregulated interferon responsive genes, collectively known as
“IFN signature” (105–108). Given modulatory potential of IFNs
to initiate or amplify immune responses leading to organ damage
in lupus, this cytokine system became an excellent therapeutic
target.

Sifalimumab, an anti-IFNα monoclonal antibody was
evaluated in a phase II clinical trial in patients with moderate
to severe SLE (109). Compared to placebo, patients receiving
monthly IV infusions of sifalimumab (1,200, 600, and 200mg
groups) had statistically superior SRI-4 response index compared
to placebo that received standard of care treatment at 52
weeks (sifalimumab: 59.8, 56.5, and 58.3 vs. 45.4% placebo,
respectfully). At baseline, approximately 80% of patients had the
IFN signature of gene expression at baseline, and tended to have
better responses. The most common infectious complication
was herpes zoster in patients receiving high dose (9.3 vs. 0.9%
in the placebo group) that responded to treatment. There
was one recurrence among patients who continued receiving
sifalimumab. Overall, this was a positive study but given the
modest effect size, there was no further development of this drug.

Rontalizumab is another humanized IgG1 anti-IFNα antibody
that can neutralize all 12 subtypes of interferon-alpha. It was

evaluated in the placebo control phase II trial, ROSE (110). At
baseline, 76% of patients had high IFN regulated gene expression.
At 24 weeks of treatment, the drug failed to meet the primary
endpoint. Unexpectedly, treatment with rontalizumab showed
consistent benefits with higher SRI-4 responses compared to
controls in the subgroup of patients who had low interferon
signature detected (72.7 vs. 41.7% placebo) and this group
achieved meaningful rates of prednisone dose reduction to
≤10mg daily. Rontalizumab was well tolerated and serious
adverse events were 14.6 vs. 8.3% in the placebo group, all
classified as unrelated to the study drug. Therefore, higher
doses of rontalizumab would be well tolerated and possibly
more effective but no additional trials are planned to answer
this question. There are currently two phase I trials with other
monoclonal antibodies against IFN-α: IAGS-009 completed
phase I (NCT00960362) and JNJ-55920839 is in recruiting phase
(NCT02609789).

Another strategy to inhibit the IFN-I pathway is to block
its receptor, the interferon alpha receptor 1 (IFNAR1) that
binds all type I IFNs including IFNα and IFNβ. Anifrolumab,
a monoclonal antibody against IFNAR1, was granted fast- track
status by the FDA and was successful in phase II open-label trial
(108, 109). In this study, 75% of patients had high IFN signature
at baseline. The primary endpoint consisting of composite SRI-
4 combined with a measure of steroid sparing to <10 mg/day
was achieved in both anifrolumab dose groups at higher rates
than placebo (28.8% in the 1,000mg IV monthly, 34.3% in
300mg IV monthly vs. 17.6% in the placebo group). At 1
year, 56.4% of the patients taking a 300mg dose met the
SRI end-point, as compared to 31.7% receiving 1000mg dose
(p = 0.595) and 26.6% on placebo. Regarding the infections
rate, patients receiving anifrolumab had dose-dependent increase
in herpes zoster cases (placebo: 2.0%; 300 mg: 5.1%; 1,000 mg:
9.5%) and a greater number of influenza infections (placebo:
2.0%; 300 mg: 6.1%; 1,000 mg: 7.6%). However, most cases of
influenza were unconfirmed. With this positive data, two phase
III studies are currently underway via the TULIP (NCT02547922)
program. TULIP-LN1 on the other hand is phase IIb study
designed to assess efficacy and safety of two intravenous doses of
anifrolumab vs. placebo while taking standard of care treatment
with mycophenolate mofetil and corticosteroids in adults with
active proliferative lupus nephritis. On August 31, 2018, it was
reported that in one of the phase III trials (TULIP I), anifrolumab
failed to meet its primary endpoint.

In conclusion, IFNAR blocking has been a promising
therapeutic approach for SLE patients who fail to respond to
available therapies. The recently released result though from the
phase III trial dampen the enthusiasm for the usefulness of this
approach.

Interferon-γ (IFNγ)
The pathogenic role of IFNγ has been better characterized in
mice, as opposed to humans (111), where elevated levels and
correlation with disease activity is found in both NZB/W and
MRL/lprmice. Administration of IFN-γ acceleratesmurine lupus
while early treatment with anti-IFNγ antibody rescues mice from
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TABLE 1 | New and emerging therapies in SLE.

Molecular

target

Treatment Status

B CELLS

BAFF/APRIL Belimumab Approved for non-renal SLE

Ongoing phase IV for efficacy, safety, and

tolerability

Ongoing phase III in combination with

Rituximab

Tabalumab Phase III without significant effect

(terminated)

Blisibimod Phase III did not meet SRI-6 primary end

point

Atacicept APRIL-SLE study terminated due to

increased infection rate

ADDRESS II study has acceptable safety

profile

CD20 Rituximab Phase III failed (nephritis and non-nephritis)

Ocrelizumab Phase III trial completed

CD22 Epratuzumab Phase III failed

CD19 XmAb5871 Phase II trial

Proteasome

inhibitors

Bortezomib Phase II trial

INTRACELLULAR SIGNALING

Btk M2951 Ongoing phase II

Fenebrutinib Ongoing phase II trial

mTOR N-acetylcysteine Small study showed decrease in SLEDAI,

no further development

Rapamycin Open-label study showed an effect on

BILAG. Larger study planned.

JAK/STAT GSK2586184 Ineffective on interferon signature in phase

II, safety data do not support further study

JAK 2 Baricitinib Phase II positive data; Phase III trial

ongoing

JAK3 Tofacitinib Ongoing Phase I/II trial

ROCK Fasudil Effective in preclinical studies in patient

with Raynaud’s, phase III completed with

uninterpretable data.

CO-STIMULATION

CD40:CD154 Dapirolizumab Ongoing phase II trial

BI 655064 Ongoing phase II trial

CD28:B7 Abatacept Ineffective in phase III in nephritis and

general SLE

Lulizumab Phase II trial terminated—failed to meet

protocol objectives

CYTOKINES

Sifalimumab Limited effect in phase II and III. No further

development

Rontalizumab Phase II without significant results

Interferon-α Anifrolumab Phase II positive data; 2 Phase III trials

ongoing (one reported negative)

IAGS-009 Completed phase I, no data released

JNJ-55920839 In recruiting phase

IFNα-k Successful phase I; ongoing phase II trial

Interleukin-2 Aldesleukin Ongoing open-label phase II trial

AMG 592 Ongoing phase Ib and IIa trial

(Continued)

TABLE 1 | Continued

Molecular

target

Treatment Status

ILT-101 Ongoing phase II trial

Interleukin 12/23 Ustekinumab Met primary end-point in phase II trial;

ongoing phase III trial

Interleukin-6 PF-04236921 Failed phase II trial; safety compromised

Sirukumab Failed phase II trial

MRA003US Ongoing phase II trial

Vobarilizumab Ongoing phase I trial

Interleukin-10 BT063 Ongoing phase II trial

OTHER

Lupuzor Phase III trial failed to meet the primary

end point

disease (112). Unfortunately two phase I studies of the anti-
IFNγ antibody AMG811 in the treatment of mild to moderate
systemic and cutaneous lupus (113) showed safety with favorable
immunogenicity profile but did not show significant therapeutic
effect despite decreasing IFNγ-related gene expression (114). The
negative results from these small studies led to discontinuation of
the development program for AMG811.

IFNα Kinoid (IFNα-K)
This is another interesting approach for neutralizing I IFN that
received fast track status by the FDA. It is currently in phase IIb
trial aiming at recruiting 185 patients (NCT02665364). Patients
are assigned to receive IFNα-K immunotherapy or placebo
in addition to standard treatment with immunosuppressives,
antimalarials, and/or steroids. The drug is composed of
inactivated IFN-α coupled to the keyhole limpet haemocyanin
protein and when injected, leads to induction of polyclonal anti-
IFNα responses with transient immunity against all 13 subtypes
of interferon alpha. In preclinical stage, IFNα-K was able to slow
disease progression in NZB/W mice (115). From an infectious
standpoint, this would be an advantageous approach as cellular
tolerance and host defense against viral infections would remain
intact. The primary end point in the phase II is the BILAG-based
Composite Lupus Assessment (BICLA) response at week 36.

Other
Lupuzor/P140 peptide or regiremod, is a 21-mer linear peptide
derived from nuclear ribonucleoprotein U1-70K that needs to
be phosphorylated at the Ser140 position in order to exert
its immunomodulatory properties via binding to MHC class
II. This allows recognition in the context of T cell receptor,
both in lupus patients and mice and alters autoreactive T cell
phenotype. In a phase IIb data, patients receiving Lupuzor 200
µg subcutaneously every 4 weeks achieved the SRI response
at week 12 at higher rates than standard of care therapy that
included stroids, antimalarials, azathioprine or methotrexate
(53.1 vs. 36.2%). These positive results in IIb trial were more
pronounced among patients with SLEDAI-2K ≥6 at baseline,
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showing that 61.9% achieved SRI response at week 12 vs. 38.6%
in the placebo group. Nevertheless, in the phase III clinical
trial, Lupuzor failed to meet the primary endpoint (p = 0.2631
vs. placebo). The investigational treatment in this trial though
holds promise for patients with anti-dsDNA autoantibodies as
7.6% of these patients in the Lupuzor group went into full
remission, compared with none in the placebo treated group.
The company launched 6 months open label extension study
for all participants of phase III trial, allowing continuation of
Lupuzor treatment in combination with standard therapy for
additional 48 weeks. Finally, this study confirmed the already
known Lupuzor’s good safety profile with zero adverse effects
reported.

CONCLUSIONS

To date, belimumab (anti-BLyS) is the only FDA approved
biologic for treating SLE. Over the last decade and despite

the setbacks including the recent failure of the highly

promising anti-IFNαR therapy, our understanding of the
mechanisms of SLE contributed to expansion of the drug
pipeline for SLE (Table 1). Currently, drugs representing a
variety of therapeutic strategies are moving to phase III trials.
These include: cytokine infusions (low dose IL-2); antibodies
against cytokines (ustekinumab); and finally, small molecule
inhibitors against kinases (Jak inhibitors) and phosphatases
(calcineurin inhibitors). It is highly likely that these targeted
therapies in conjunction with biomarker development and
more rigorous outcome measures will finally result in a
fundamental change of the stagnant therapeutic paradigm in
SLE.
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Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized

by augmented type I interferon signaling. High-throughput technologies have identified

plenty of SLE susceptibility single-nucleotide polymorphisms (SNPs) yet the exact roles

of most of them are still unknown. Functional studies are principally focused on SNPs

in the coding regions, with limited attention paid to the SNPs in non-coding regions.

Long non-coding RNAs (lncRNAs) are important players in shaping the immune response

and show relationship to autoimmune diseases. In order to reveal the role of SNPs

located near SLE related lncRNAs, we performed a transcriptome profiling of SLE

patients and identified linc00513 as a significantly over expressed lncRNA containing

functional SLE susceptibility loci in the promoter region. The risk-associated G allele of

rs205764 and A allele of rs547311 enhanced linc00513 promoter activity and related

to increased expression of linc00513 in SLE. We also identified linc00513 to be a novel

positive regulator of type I interferon pathway by promoting the phosphorylation of STAT1

and STAT2. Elevated linc00513 expression positively correlated with IFN score in SLE

patients. Linc00513 expression was higher in active disease patients than those inactive

ones. In conclusion, our data identify two functional promoter variants of linc00513 that

contribute to increased level of linc00513 and confer susceptibility on SLE. The study

provides new insights into the genetics of SLE and extends the role of lncRNAs in the

pathogenesis of SLE.

Keywords: single-nucleotide polymorphism, long non-coding RNA, systemic lupus erythematosus, interferon,

CRISPR-dCas9
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a heterogenous
autoimmune disease with complex immune phenotype
and diverse clinical manifestations (1, 2). Genetic and
environmental factors are considered the two most important
pathogenic factors, however the exact etiology of SLE remains
obscure (3–5). High-throughput technologies used in genome-
wide association studies (GWASs) have identified plenty of
important SLE susceptibility loci (6–8) yet the exact roles
of these SNPs are still largely unknown. It is interesting
to note that the vast majority of the identified SNPs are
located in non-coding regions, and some of them have been
proven to be functional. For instance, our previous study
revealed a variant in miR-146a promoter could regulate
miR-146a expression and contribute to SLE disease risk
(9). However, most of the functional studies are focused on
SNPs in the coding regions (10–13), with limited attention
paid to the function of SNPs that located in the non-coding
regions, markedly in the regions around disease related
lncRNAs.

LncRNAs have been proved to be effective regulators of
gene expression and important modulator in diverse biological
processes (14–16). Deregulation of lncRNAs was demonstrated
to have relevance to aberrant immune response and linked
to autoimmune diseases such as multiple sclerosis (MS),
rheumatoid arthritis (RA) and SLE (17–19). Although SLE is a
highly heterogeneous disease, a large part of the patients have
the common feature of high expression levels of interferon
(IFN)-inducible genes, which is so called IFN signature (20–
22). As recently revealed by hitherto the largest transcriptional
profiling of SLE patients, about 80% of the SLE patients
have the IFN signature (23). Type I IFN is the cytokine that
functions in shaping various immune responses (24–26). Many
potential mechanisms have been identified to be implicated
in exacerbation of SLE disease by IFN (27–30). Hence type
I IFN is thought to be one of the most important signaling
pathways involved in SLE pathogenesis. Non-coding RNAs
like microRNAs miR-146a and miR-155 have been reported
to be effective regulators of type I IFN pathway (31, 32). It

is conceivable that lncRNAs may probably also play a non-
negligible role in regulating IFN pathway and contribute to SLE
disease development.

In an effort to reveal the role of SNPs located near
SLE related lncRNAs, we made an attempt to dissect the
function of SLE susceptible variants by focusing on those
near the candidate lncRNA selected based on high-throughput
transcriptome analysis. We identified linc00513 from a group
of distinctly over expressed lncRNAs as it contained SLE
susceptible SNP in the promoter (6). We demonstrated that
linc00513 was a novel positive regulator of IFN signaling
pathway and was responsible for the amplified IFN signaling
in SLE patients. Our data also provided evidence that SNPs
rs205764 and rs547311 in the promoter region of linc00513,
which modulate its expression, can affect disease susceptibility of
SLE.

MATERIALS AND METHODS

Patients and Ethics Statement
139 SLE patients were recruited for the genotyping and mRNA
expression studies. All patients that recruited met the 1997
American College of Rheumatology (ACR) criteria for SLE. The
study was conducted in accordance with the principles expressed
in the Declaration of Helsinki and was approved by the Research
Ethics Board of Renji Hospital, School of Medicine, Shanghai
Jiaotong University.

IFN Scores Calculation
The IFN scores were calculated from the expression data for three
representative IFN-inducible genes according to a previously
described algorithm (33). In this study we selected three typically
type I IFN-inducible genes IFI44, Mx1, and OAS1 to calculate
(20, 21, 34). The mean IFN score for the SLE patients was 19.37
± 22.25, and the mean IFN score for the 21 sex- and age-matched
healthy controls was 0± 2.82.

DNA Isolation and Genotyping
Genomic DNA was isolated from human whole blood samples
using QIAamp DNA blood kit (Qiagen) and quantified using a
NanoDrop spectrophotometer (NanoDrop Technologies). SNPs
rs205764 and rs547311 were genotyped with specified TaqMan
SNP genotyping probes (Applied Biosystems) following the
manufacturer’s recommendations for allelic discrimination in
the QuantStudioTM 7 Flex Real-Time PCR System (Applied
Biosystems).

RNA Sequencing
RNAs isolated from 22 SLE patients and 7 sex- and age-matched
controls renal tissues were qualified by agarose electrophoresis
and Agilent 2100 bioanalyzer system under a criteria of 260/280
within 1.8- 2.0, RIN >7, 28S/18S >1.5 and concentration >50
ng/µl. Strand-specific cDNA library was generated from 3µg of
RNA using NEBNext Ultra Directional RNA Library Prep Kit
for Illumina (NEB, New England Biolabs) after removal of rRNA
by Ribo-Zero Gold rRNA Removal Kit (Illumina). Libraries
were then sequenced on a Illumina HiSeq 4000 instrument
with paired-end reads 150 bp per sample. Filtered and trimmed
reads were mapped to human genome reference sequence
(UCSC hg38), count the mapped reads to estimate transcriptome
abundance. Differential expression analysis was performed using
R software. The threshold to define up-regulation was fold change
>2 and p < 0.05.

Antisense Oligonucleotides (ASOs) and
Constructs
ASOs were designed from Sfold website according to a set of
principles and synthesized by Sangon Biotech, Shanghai. Seeded
hela cells were transfected with 200 nM ASO or negative control
using Lipofectamine RNAimax (Invitrogen) according to the
manufacturer’s instructions for 24 h and then either treated with
1,000 units/ml type I IFN (PBL) according to the experimental
needs. To compare the activity of linc00513 promoter containing
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the two different alleles, linc00513 promoter–luciferase reporter
vectors containing four different combinations of alleles were
generated by cloning a 1.12 kb region upstream and approximate
to the TSS of linc00513 (−684 to +439) into the pGL3-basic
luciferase vector (Promega). To create dCas9/CRISPRi lncRNA
expression regulation system, single-guide RNAs (sgRNAs) were
designed on Optimized CRISPR Design Website (http://crispr.
mit.edu), and cloned either into sgRNA vector that constructed
from pEMT vector backbone by our laboratory or into SAM-
sgRNA vector that kindly provided by Professor Feng Zhang
from MIT. DCas9-Krab and dCas9-VP64 vector were kindly
provided by Professor Lei S. Qi from Stanford University and
Professor Feng Zhang from MIT, respectively. The sequences
of the ASOs, sgRNAs and cloning primers of promoter used in
this study were listed in the Supplementary Materials (Table S1,
Figure S1).

Cell Culture, Stimulation, and Transfection
Hela and THP-1 cells were obtained from the Cell Bank, Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences
and grown in Dulbecco’s modified Eagle’s medium (Gibco) or
RPMI 1640 (Gibco) containing 10% fetal bovine serum (Gibco).
PBMCs were isolated freshly from human peripheral blood
using Ficoll-Paque (GE Healthcare). Neutrophils were isolated
from the buffy coat after lysis of red blood cells. PBMCs and
neutrophils were cultured in RPMI 1640 (Gibco) supplemented
with 10% FBS. All cells were maintained at 37◦C with a
5% CO2 atmosphere. Type I IFN (PBL) was added in the
final concentration of 1,000 units/ml. Plasmids and ASOs were
transfected into hela cells with Lipofectamine 2000 (Invitrogen)
and Lipofectamine RNAiMAX (Invitrogen) according to the
manufacturer’s instructions, respectively. Plasmids, ASOs and
transfection reagents were diluted with Opti-MEMI medium
(Gibco) and incubation at room temperature for 20min after
gently mixed, and then the transfection mixture was added to the
cell culture. Fresh media were exchanged 5 h after transfection.

RNA Extraction and Real-Time PCR
Total RNA was extracted using TRIzol (Ambion), and
then cDNA was synthesized by reverse transcription using
PrimeScript RT Reagent kit (Takara) followed by amplification
and quantification by real-time PCR with SYBR Premix Ex TaqTM

kit (Takara) in QuantStudioTM 7 Flex Real-Time PCR System
(Applied Biosystems). The relative expression levels of target
genes and lncRNA were calculated using the 2−1CT method
normalized to GAPDH. The primers used in the experiments
were shown in the Supplementary Materials (Table S1).

Reporter Gene Assay
One hundred nanogram of 1.12 kb–linc00513 promoter
luciferase reporter vector or control pGL3-basic luciferase vector
together with 10 ng of Renilla vector were transfected into
each well of hela cells that seeded in 96-well plate. Twenty
four hours after transfection, cell lysates were added to a 96-
well black flat bottom microplate (Greiner Bio-one) and their
luciferase activities were measured on a CENTRO XS3 LB 960
luminometer (Berthold) using Dual-Luciferase Reporter Assay

System (Promega). The ratio of firefly to Renilla luciferase of
each well was calculated and analyzed. All experiments were
performed in triplicate or quadruplicate.

Rapid Amplification of cDNA Ends (RACE)
RACE was performed using SMARTer RACE 5′/3′ Kit (Clontech,
Takara) according to manufacturer’s instructions to identify the
whole sequence of linc00513 transcripts. Briefly, total RNA
was extracted freshly from hela cells and 3′- and 5′-RACE-
ready cDNAs were synthesized using SMARTScribe Reverse
Transcriptase. The amplified PCR products were purified by
electrophoresis in 1% agarose gel followed by gel extraction.
The purified PCR fragments were cloned into linearized pRACE
vector and then sequenced. 3′- and 5′-RACE gene-specific
primers (GSPs) were designed according to the reads sequence
obtained from RNA-seq. The 3′- and 5′- GSPs and nest
GSPs sequences were available in the Supplementary Materials
(Table S1).

Fluorescence in situ Hybridization
Hela cells were seeded and grew on the surface of a poly-L-lysine
prepared slide inside a 10-cm cell culture dish and then fixed
with ethanol. Fixed cells were permeated with DEPC treated 0.1%
tritonX-100 for 15min and wished twice with PBS. Slides were
successively treated with SSC, 75, 85, and 100% ethanol and then
dried at room temperature. Cells on the slides were detected
with 100 µl of the pre-heated hybridization buffer containing
probe by incubating in the dark at 37◦C in a humidified
chamber over night. 5 ng/ml DAPI was used to counter stain the
nuclei in the dark at 37◦C for 30min. Slides were washed and
observed under a fluorescence microscope. Probe used in FISH
experiment was 5′CY3 modified. Probe sequence was shown in
the Supplementary Materials (Table S1).

Western Blotting
Hela cells were seeded at 4 × 105/well in a 6-well plate and
transfected with ASO at the final concentration of 200 nM for
24 h. Then cells were stimulated with IFN (1,000 units/ml)
for 15min or 1 h and lysed with RIPA buffer (Pierce, Thermo
Scientific) supplemented with protease inhibitor cocktail (Pierce,
Thermo Scientific). The cell protein was loaded to SDS-PAGE gel
electrophoresis and blotted with the appropriate antibodies. Band
signals were visualized with a SuperSignal West Pico kit (Pierce,
Thermo Scientific). The antibodies used were as follows: GAPDH
rabbit mAb (HRP conjugate), STAT1 rabbit mAb, phospho-
STAT1 rabbit mAb, STAT2 rabbit mAb, phospho-STAT2 rabbit
mAb, IRF9 rabbit mAb, HRP-linked anti-rabbit IgG. All the
antibodies were from Cell Signaling Technology. The primary
antibodies were diluted by 1:1,000. The secondary antibody was
diluted by 1:2,000.

Flow Imaging Cytometry
Hela cells transfected with NC or ASOs were stimulated with IFN
(1,000 units/ml) for 30min and then fixed and permeated with
eBioscience transcription factor staining buffer set (Invitrogen)
according to the manufacturer’s protocol. Cells were resuspended
in 100 µl of FACS buffer and incubated with antibody (diluted by
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1:50) for at least 30min at room temperature in dark. DAPI was
used to stain cell nuclei for <3min. Cells were then washed and
resuspended in FACS buffer (volume between 20 and 200 µl) in
an appropriate cell concentration of 1–2 × 107/ml. Cell samples
were loaded and analyzed using Amnis ImageStream MarkII
(Merck). Similarity between STAT1 and nuclei staining pattern
were calculated. The antibody used in flow imaging cytometry
experiment was STAT1 rabbit mAb (PE Conjugate; Cell Signaling
Technology).

Data Analysis
Statistical tests were performed with GraphPad Prism software,
version 5.01. Figure data are expressed as the arithmetic mean
± SEM. The nonparametric Mann–Whitney U-test was used
to compare linc00513 expression between the genotype groups
and gene expression between the patients and controls. The
unpaired t-test was used to compare the expression of genes and
the luciferase activity of the reporter genes. Spearman’s test was
used for correlation analysis. Two-tailed p-values < 0.05 were
considered to be statistically significant. Linkage disequilibrium
(LD) patterns were analyzed and displayed with HaploView (35).

RESULTS

Linc00513 Is an Over Expressed LncRNA in
SLE Containing Disease Susceptibility Loci
in the Promoter Region
To identify the aberrant LncRNA expression profile in SLE, we
performed transcriptome analysis in 22 lupus patients and 7
controls renal tissues and found 56 significantly over expressed
lncRNAs with fold change >2 and p-value < 0.05 (Table S2).
Then we selected candidate lncRNA from the list using two
approaches. The first approach took advantage of differentially
expressed lncRNAs profiling in SLE. LncRNAs that aberrantly
expressed as compared with controls were selected. In the
second approach, we focused on the SNPs identified by previous

reported GWAS to have association with lupus susceptibility that
closely located to the candidate lncRNAs (Figure 1A). Linc00513
was then chosen for further analysis as it ranked the second
over expression and meanwhile contained lupus susceptibility
SNP rs547311(G>A) approximate to the transcriptional starting
region (Figure 1B). According to the GWAS of SLE in a Chinese
Han population genotyping 1,047 cases and 1,205 controls, the
minor A allele (14.95%) of rs547311 confer risk on SLE, odds
ratio [OR] = 1.46, p value = 3.88 × 10−4 (6). We also analyzed
another SNP rs205764 (T>G) in close proximity to linc00513
transcriptional starting site in the HapMap database. The two
SNPs had very high LD (r2 = 0.9. Figure 2A), which implied
the two SNPs in linc00513 promoter region, rs205764 along with
rs547311 could play a role in the pathogenesis of SLE.

Rs205764 and Rs547311 Modulate
Linc00513 Expression
According to GWASdb database (36, 37), up to 50 SNPs in
400 kb region around rs205764 and rs547311 have been reported
to show human disease susceptibility, which indicates the gene
region could be important to human diseases. In order to
examine whether the two SNPs in the promoter region of
linc00513 were functional, we cloned the promoter of linc00513
(1.12 kb, from −684 to +439) carrying different SNP alleles
into the pGL3-basic dual fluorescent reporter gene vector, and
determined that the minor alleles (G of rs205764 and A of
rs547311) significantly enhanced the transcriptional activity of
the linc00513 promoter (Figure 2B). We further tested whether
different alleles were associated with linc00513 expression level
in SLE patients. Because many confounding factors could disturb
the result of expression quantitative trait loci (eQTL) effect, it is
preferable to study gene expression in a single cell subset. We
examined the eQTL effect in neutrophils because of their good
availability and good representativeness of peripheral blood cells.
Meanwhile, neutrophils were recently considered very important
player in lupus pathogenesis (23, 38–40). We genotyped 139 SLE

FIGURE 1 | Identification of linc00513 as a significantly over expressed lncRNA in SLE that contains lupus susceptibility SNP in the promoter region. (A) Schematic

diagram of the whole experiment process. (B) 56 lncRNAs showed significant over expression in transcriptome profiling of renal tissues from 22 SLE and 7 controls.

FPKM of linc00513 in SLE and control samples were compared using non-parametric Mann-Whitney U-test, ** indicates p < 0.01. Linc00513 ranked the second over

expression and meanwhile contained lupus susceptibility SNPs approximate to the transcriptional starting region mentioned by previous GWAS report.
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FIGURE 2 | Rs205764 and rs547311 could modulate the expression of linc00513 expression. (A) LD patterns of 50 human disease related SNPs in the gene region.

Two haplotype blocks were constructed based on the strength of LD in each gene region. (B) Luciferase reporter gene assay of linc00513 promoter. 1.12 kb

approximate to the TSS of linc00513 (−684 to +439) was cloned into the pGL3-basic luciferase vector. HeLa cells were transfected with linc00513 promoter or

control pGL3-basic luciferase reporter vector and Renilla reporter vector. 24 h after transfection, cells were lysed and ratio of firefly to Renilla luciferase activity was

analyzed. The data shown are means ± SEM and are representative of three independent experiments performed in triplicate or quadruplicate. P-values were

(Continued)
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FIGURE 2 | analyzed with two-tailed unpaired t-test. ***indicates p < 0.001. Rs205764G allele and rs547311A allele improved linc00513 promoter activity. (C)

Relative expression level of linc00513 was measured for the different genotypes of rs205764 and rs547311 in neutrophils from 139 SLE individuals (rs205764: TT,

n = 113; TG, n = 24; GG, n = 2. rs547311: GG, n = 115; GA, n = 22; AA, n = 2.) P-values were analyzed with non-parametric Mann-Whitney U-test. *indicates

p < 0.05. (D) Gene structural models of linc00513 as determined by 3′ and 5′ RACE. (E) Nuclear and plasma distribution of linc00513 in hela cells as showed by

FISH. Upper left: white light; upper right: linc00513 (red); lower left: DAPI (blue); lower right: merge of linc00513 and DAPI.

FIGURE 3 | Identification of genes that are regulated by IFN-stimulated lncRNA linc00513. (A) Induction of linc00513 by 1,000 U/ml type I IFN in four different cell

types on indicated time points, 0, 1, 3, 6, 12h. (B) GO and Pathway analysis of linc00513-regulated genes from RNA-seq result in hela cells. (C) Expression change of

ISGs in hela cells after up-regulation of linc00513 by CRISPR/dCas9-VP64 as compared with cells transfected with empty vectors.

patients and quantified linc00513 expression in their neutrophils.
Patients with TG/GG of rs205764 or GA/AA of rs547311 showed
higher expression level of linc00513. So rs205764 (T>G) and
rs547311 (G>A) presented eQTL effects on linc00513 in SLE
patients (Figure 2C).

Since we have demonstrated that linc00513 was distinctly
high expressed in SLE and its promoter could be propelled by
two SLE risk related SNPs, so linc00513 could probably be an
important lncRNA in SLE. We identified the whole sequence of
linc00513 transcript in hela cells using RACE technology, and
determined a 921 nt 4-exons isoform of linc00513. An alternative
isoform lacking the third exon was also found (Figure 2D,
Figures S2, S3). On the basis of whole sequence identification,
specific probe was designed for FISH experiment to explore its
subcellular localization. As the result revealed, linc00513 showed
punctate aggregation distribution in the nucleus with partially
dispersed in the cytoplasm (Figure 2E).

Identification of Linc00513-Regulated
Genes
Genomatix prediction revealed the possible binding sites of
STAT1 and NF-kB in linc00513 promoter, which were crucial

transcription factors downstream of IFN signaling pathway. This
result suggested linc00513 might be an IFN-stimulated lncRNA.
In order to verify this issue, we treated hela cells with 1,000
U/ml type I IFN and found linc00513 could be induced by IFN
with strongest induction on 1 h (Figure 3A). We also showed
the induction of linc00513 in response to type I IFN treatment
is not restricted to specific cell types. In addition to hela cells,
the induction were also observed in other human cell lines and
primary blood cells, including THP-1 cells, peripheral blood
mononuclear cells (PBMCs) and neutrophils (Figure 3A). We
then intended to detect the exact role of linc00513 in SLE.
We overviewed the landscape of genes that might be regulated
by linc00513. As CRISPR/dCas9-VP64 vector system could be
applied to up-regulate gene transcription in situ (41, 42), we
constructed CRISPR/dCas9-VP64 vector system by designing
a sgRNA targeting linc00513 promoter region to effectively
promote linc00513 transcription. Then we performed RNA-
seq transcriptome analysis in hela cells and revealed 615 genes
significantly changed after up-regulating linc00513 (Fold change
>2). Intriguingly, we could see genes regulated by linc00513
were mainly interferon-inducible genes, and GO enrichment
and KEGG pathways analysis revealed significant involvement
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of IFN signaling pathway in linc00513-regulated gene network
(Figures 3B,C). These results strongly imply that linc00513 may
play an important role in regulating the downstream pathway of
IFN.

Linc00513 Promotes the Expression of
Downstream Genes of IFN Pathway
To explore the effect of linc00513 on the IFN signaling
pathway, we knocked down the expression of linc00513 in
hela cells by two different means, ASOs transfection and
CRISPR/dCas9-KRAB vector system. The knock down efficiency
of ASOs and CRISPR/dCas9-KRAB vector system were about
75 and 60%, respectively. After knockdown of linc00513,

IFN-stimulated gene (ISG) IFIT1 expression was significantly
inhibited either with or without IFN stimulation. OAS1

expression also significantly decreased after IFN stimulation,
though it didn’t significantly decrease without IFN stimulation
(Figures 4A,B). We also performed linc00513 up-regulation
experiment using CRISPR/dCas9-VP64 vector system. Similarly,
up-regulation of linc00513 significantly promoted IFIT1 and
OAS1 expression (Figure 4C). Taken together, these data indicate
that linc00513 is the positive regulator of the IFN signaling
pathway.

Effects of Linc00513 on the
Phosphorylation of Key Molecules in Type I
IFN Signaling Pathway
Several lncRNAs that involved in immune pathways have been

reported may act through altering the phosphorylation of
important transcription factors (43, 44). We tested whether

FIGURE 4 | Promotion of the downstream genes of IFN pathway by linc00513. (A) Hela cells were transfected with NC or specific ASOs (200 nM) for 24 h and then

stimulated with type I IFN. (B) Hela cells were transfected with control vectors or specific sgRNA and dCas9-Krab vectors for 24 h and then stimulated with type I IFN.

(C) Hela cells were transfected with control vectors or specific SAM-sgRNA and dCas9-VP64 vectors for 48 h and then stimulated with type I IFN. Type I IFN was used

at the final concentration of 1,000 U/ml for 6 h. The relative expression of linc00513, IFIT1, and OAS1 were analyzed by qPCR. The data shown are means ± SEM

and are representative of three independent experiments performed in triplicate. P-values were analyzed with two-tailed unpaired t-test. *indicates p < 0.05, **p <

0.01, ***p < 0.001.
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FIGURE 5 | Linc00513 affects the phosphorylation of STAT1 and STAT2 in type I IFN pathway. (A) Western blotting of hela cells transfected with NC or specific ASOs

(200 nM) for 24 h and then stimulated with type I IFN (1,000 U/ml) for 15min or 1 h. Blots are representative of three repeated experiments. Quantification of band

intensities analysis was shown in Figure S4. (B) Flow imaging cytometry of hela cells transfected with NC or specific ASOs (200 nM) for 24 h and then stimulated with

type I IFN (1,000 U/ml) for 30min. Cells were stained with antibody to STAT1 and DAPI after fixation and permeabilization. Values of similarity represent the extent of

STAT1 translocation to the nuclei. The data shown are means ± SEM and are representative of three repeated experiments. P-values were analyzed with two-tailed

unpaired t-test. **indicates p < 0.01, ***p < 0.001. Cell images are representative of three repeated experiments.

FIGURE 6 | Association between linc00513 and SLE Disease. (A) Positive correlation between the expression of linc00513 and IFN scores in SLE patients. P-value

was determined by Spearman’s correlation test. (B) The expression of linc00513 was higher in active SLE patients (n = 36) than those inactive ones (n = 103).

P-value was determined by non-parametric Mann-Whitney U-test, **indicates p < 0.01. (C) Overview of the modulation of linc00513 by SLE-associated genetic

variants and the regulation of type I IFN signaling pathway by linc00513.
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linc00513 played a role in the IFN signaling pathway by
modulating key pathway molecules phosphorylation. Western
blotting was performed in hela cells tranfected with ASOs
targeting linc00513. Knockdown of linc00513 significantly
reduced the phosphorylation of STAT1 and STAT2. Intriguingly,
to a certain extent, STAT1, STAT2, and IRF9 are also interferon-
inducible genes, so it could be explicable that total STAT1,
total STAT2, and IRF9 expression also slightly decreased after
linc00513 down-regulation (Figure 5A). We then also performed
western blotting in hela cells that over expressed linc00513 by
CRISPR/dCas9-VP64 vector system transfection. Up-regulation
of linc00513 could significantly increase the phosphorylation
of STAT1 and STAT2 (Figure S5). Both results supported the
role of linc00513 in type I IFN signaling pathway. In type I
IFN pathway, the phosphorylation of STAT1 and STAT2 occurs
downstream of IFNAR activation, leading to the assembly of the
ISGF3 complex which is composed of STAT1-STAT2 dimers and
IRF9 (45, 46). ISGF3 translocates into the nucleus and binds
to IFN-stimulated response elements (ISRE) in the promoters
of IFN-inducible genes to regulate their expression. We further
verified the previous result by using flow imaging cytometry
and determined the nuclear translocation of STAT1 was reduced
after knockdown of linc00513 (Figure 5B). Therefore, we
concluded that linc00513 promotes IFN pathway by modulating
the phosphorylation of key transcription factors STAT1 and
STAT2.

Association Between Elevated Linc00513
and SLE Disease
Our data have showed the expression of linc00513 was elevated
in lupus patients and linc00513 was a positive regulator of IFN
pathway. Then we explored whether there was a correlation
between linc00513 expression and IFN score in lupus patients.
We analyzed neutrophils from 139 SLE patients and found
a significant positive correlation between linc00513 expression
and IFN score (r = 0.3935, p < 0.0001; Figure 6A). Clinical
information of the patients was listed in Table 1. In addition,
we also analyzed the relationship between linc00513 expression
levels and SLE disease activity in the same group of patients.
Linc00513 expression was higher in active disease patients
(SLEDAI-2K > 4) than those inactive ones (SLEDAI-2K ≤ 4; p
= 0.0017; Figure 6B). Taken together, these data indicate that
linc00513 is responsible for the amplified IFN signaling in SLE
patients and can contribute to SLE disease activity.

TABLE 1 | Demographic, clinical, and laboratory features of the SLE patients.

Characteristics n = 139

Females 130 (93.5%)

Age (years) 33.8 ± 13.2

ANA (+) 139 (100%)

Anti-dsDNA (+) 106 (76.3%)

Anti-Sm (+) 30 (21.6%)

SLEDAI-2K 10.2 ± 5.8

DISCUSSION

LncRNAs are emerging as indispensable regulators in various
biological processes. Aberrations in the lncRNA-mediated
immune responses regulation has been linked to autoimmune
and autoinflammatory diseases (18, 47, 48). In lupus, over
expression of lncRNA NEAT1 was reported to promote
secretion of multiple pro-inflammatory cytokines and
positively correlated with lupus disease activity (17). The
expression of another lncRNA linc0949 was significantly
decreased in lupus patients PBMCs and was associated with
complement component C3 level and incidence of lupus
nephritis (49). While certain lncRNAs have been reported
to be involved in SLE pathogenesis, systemic profiling of
differentially expressed lncRNAs in SLE is still limited. Our
transcriptional profiling in renal tissues of SLE patients and
controls revealed abnormally expressed lncRNAs in SLE and
identified linc00513 as one of the most significantly over
expressed lncRNAs with lupus susceptible SNP loci in the
promoter region.

SLE is a complex autoimmune disease with obscure etiology.
The type I IFN signaling pathway is recognized to play a pivotal
role in SLE pathogenesis among the diverse immunological
aberrations present in SLE patients. Several coding genes have
been previously identified capable of balancing IFN signaling,
like cyclin-dependent kinase 1 (CDK1), a cell cycle regulatory
protein gene, could contribute to the over activation of IFN
pathway in SLE (50). Our recent research characterized the role
of a lncRNA as a positive regulator of the type I IFN signaling
by modulating the phosphorylation of key transcription factors
STAT1 and STAT2 in this pathway. Knockdown of linc00513
in hela cells reduced the expression of IFIT1 and OAS1, two
representative IFN-inducible genes. Similarly, up-regulation of
linc00513 promoted ISGs expression. The expression level of
linc00513 positively correlated with the IFN score of lupus
patients. Thus, we identified linc00513 as a novel robust
regulator of type I IFN pathway, providing new evidence for
the contribution of non-coding RNAs to the pathogenesis of
lupus.

The role of genetic factors in autoimmune disease risk

has long been established, however studies on functional
exploration of SNPs are quite limited, especially for SNPs
in lupus related lncRNA regions. By contrast, it’s remarkable
that functional studies of cancer related lncRNA SNPs are
making continuous progresses. Several specialized databases have
even been set up (51, 52). As for lupus, in 2006, six SNPs
in the promoter region of Growth arrest-specific 5 (GAS5)
had been identified to cause 11-fold down-regulation of the
lncRNA expression and correlated with nephritis susceptibility
in spontaneous lupus nephritis mouse model BXSB strain
(53). Here in our study, we demonstrated rs205764 and
rs547311 in the promoter of linc00513 could augment its
transcription as determined by reporter gene assay and eQTL
effect, thus making linc00513 a distinctly high expressed lncRNA
in lupus patients and promoting disease development. To
the best of our knowledge, this is the first report to reveal
a functional genetic variant in a lncRNA promoter that
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contributing to SLE disease in human. Our work spotlights
the importance of exploring SNP variants in lncRNA regions,
which have been more or less ignored in previous genetic
studies.

In conclusion, our findings reveal the over expression of
linc00513 plays a role in lupus pathogenesis by promoting
IFN signaling pathway. SNP variants of the linc00513
promoter are functionally significant in regulating linc00513
expression and conferring susceptibility on SLE (Figure 6C).
The study provides new insights into the genetics of SLE
and suggests lncRNAs can be novel biomarkers of SLE
pathogenesis.
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TYK2 is a JAK family member that functions downstream of multiple cytokine receptors.

Genome wide association studies have linked a SNP (rs34536443) within TYK2 encoding

a Proline to Alanine substitution at amino acid 1104, to protection from multiple

autoimmune diseases including systemic lupus erythematosus (SLE) and multiple

sclerosis (MS). The protective role of this SNP in autoimmune pathogenesis, however,

remains incompletely understood. Here we found that T follicular helper (Tfh) cells,

switched memory B cells, and IFNAR signaling were decreased in healthy individuals

that expressed the protective variant TYK2A1104 (TYK2P). To study this variant in vivo,

we developed a knock-in murine model of this allele. Murine Tyk2P expressing T cells

homozygous for the protective allele, but not cells heterozygous for this change, manifest

decreased IL-12 receptor signaling, important for Tfh lineage commitment. Further,

homozygous Tyk2P T cells exhibited diminished in vitro Th1 skewing. Surprisingly, despite

these signaling changes, in vivo formation of Tfh and GC B cells was unaffected

in two models of T cell dependent immune responses and in two alternative SLE

models. TYK2 is also activated downstream of IL-23 receptor engagement. Here, we

found that Tyk2P expressing T cells had reduced IL-23 dependent signaling as well

as a diminished ability to skew toward Th17 in vitro. Consistent with these findings,

homozygous, but not heterozygous, Tyk2P mice were fully protected in a murine model

of MS. Homozygous Tyk2P mice had fewer infiltrating CD4+ T cells within the CNS.

Most strikingly, homozygous mice had a decreased proportion of IL-17+/IFNγ
+, double

positive, pathogenic CD4+ T cells in both the draining lymph nodes (LN) and CNS. Thus,

in an autoimmunemodel, such as EAE, impacted by both altered Th1 and Th17 signaling,

the Tyk2P allele can effectively shield animals from disease. Taken together, our findings

suggest that TYK2P diminishes IL-12, IL-23, and IFN I signaling and that its protective

effect is most likely manifest in the setting of autoimmune triggers that concurrently

dysregulate at least two of these important signaling cascades.

Keywords: TYK2, autoimmunity, lupus, Tfh, IL-12, IL-23, IFNAR, germinal center

46

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00044
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00044&domain=pdf&date_stamp=2019-01-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jbuckner@benaroyaresearch.org
mailto:drawling@uw.edu
https://doi.org/10.3389/fimmu.2019.00044
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00044/full
http://loop.frontiersin.org/people/649217/overview
http://loop.frontiersin.org/people/649372/overview
http://loop.frontiersin.org/people/460372/overview
http://loop.frontiersin.org/people/660300/overview
http://loop.frontiersin.org/people/610020/overview
http://loop.frontiersin.org/people/505886/overview
http://loop.frontiersin.org/people/649208/overview
http://loop.frontiersin.org/people/638951/overview
http://loop.frontiersin.org/people/634331/overview


Gorman et al. TYK2P1104A Restricts T Cell Subsets

INTRODUCTION

Systemic lupus erythematosus (SLE) comprises a group of
heterogenous disorders classified under a broad clinical
phenotype of systemic autoimmunity (1, 2). Loss of tolerance
and sustained autoantibodies are key factors in the SLE
pathogenesis (1). T cells play a critical role in SLE pathogenesis
and previous work has identified alterations in CD4+ T cell
subsets in patients with lupus (1). This reflects differentiation
of naïve CD4+ T cells into alternative specialized T helper (Th)
subtypes, including Th1, Th2, Th17, and T follicular helper (Tfh)
cells. Differentiation is dependent on the cytokine milieu that the
T cell encounters, and appropriate signaling through multiple
cytokine pathways is required for lineage commitment. In SLE,
heightened percentages of Tfh-like cells are present in both
germinal centers and peripheral blood and correlate with serum
autoantibody titers (3, 4). Tfh cells are key components of the
adaptive immune response, providing the T cell help necessary
for the development and maintenance of germinal center (GC)
B cells and a robust antibody response (3, 5–7). Commitment
to the Tfh lineage is driven by expression of transcription factor
Bcl-6 expression (8). A number of cytokine signals have been
implicated in the regulation of Bcl-6 expression, including
IL-6, IL-21, IL-12, IL-2, IL-23, TGF-β, and IFN-γ through the
Janus Kinase (JAK)-STAT pathways (9–13). Not surprisingly,
dysregulation of these cytokine programs can contribute to
disease through preferential expansion or depletion of particular
Th lineages (3, 14).

Consistent with the altered T cell subsets observed in SLE,

IL-12, and IL-23 levels have been found to be increased in SLE
patients (3, 15, 16). Further, a positive correlation between levels

of IL-12 and SLEDAI were seen in these lupus patients and
active lupus nephritis had even higher levels of IL-12 compared
to inactive SLE patients (15, 16). Type I interferons (IFN I) are

also frequently upregulated in SLE subjects. IFN I impacts T cell
subset commitment by promoting Bcl-6 expression, independent
of STAT3 signaling and IL-21 production (17). However, IFN I
has also been shown to be a corepressor of Tfh in the absence
of STAT3 while augmenting interferon stimulated genes (ISGs)
and Th1-like commitment (18). Given the complexity of T
cell subset generation and the genetic heterogeneity of human
autoimmunity, further work is needed to define the interplay of
signals that control Tfh development and survival, and the role of
T cell subsets in the pathogenesis of SLE and other autoimmune
disorders.

TYK2 (non-receptor tyrosine-protein kinase), a member of
the Janus Kinase (JAK) family, has been identified as a mediator
in signaling cascades for IL-12, IL-23, IFN I, IL-6, IL-10, and IL-
13 (19). The first human subject described with TYK2 deficiency
presented with hyper-IgE syndrome (HIES) (20). However,
studies of additional TYK2-deficient subjects revealed specific
alterations in cytokine signaling cascades without evidence
for HIES (21, 22). Specifically, TYK2-deficient human T cells
exhibited impaired responses to IL-12, IL-23, IFN-α, and IL-
10 and these subjects presented with mycobacterial and viral
infections (21). Consistent with these human data, Tyk2-deficient
mice exhibit defective IL-12, IL-23, IFN I signaling and decreased

Th1 in vitro skewing (23, 24). Further, TYK2 regulates early
responses of IL-10 through Jak1-STAT3-SOCS3 signaling cascade
(25). Tyk2−/− mice are also more susceptible to vesicular
stomatitis virus (VSV), and murine cytomegalovirus (MCMV)
but, intriguingly, are protected from experimental autoimmune
encephalomyelitis (EAE) (19, 23, 26, 27).

Genome wide association studies (GWAS) have identified
a single nucleotide polymorphism (SNP; rs34536443) in the
TYK2 gene associated with several autoimmune diseases (28–
33). This SNP results in a proline to alanine substitution at
amino acid 1,104 in the kinase domain of the protein (P1104A;
A1104 referred to hereafter as TYK2P) (31). Strikingly, the
TYK2P variant has been associated with protection frommultiple
autoimmune diseases including: SLE, type 1 diabetes (T1D),
multiple sclerosis (MS), rheumatoid arthritis, psoriasis, Crohn’s
disease, inflammatory bowel disease, and ulcerative colitis (28–
34). Early studies suggested that TYK2P was a hypomorphic allele
(35, 36). However, these studies reported conflicting results using
alternative cell lineages suggesting that the signaling activity of
the variant might depend on context and cell type (35, 36).
More recent work has shown that TYK2P leads to hypomorphic
signaling including reduced IFN I responses in all cell types
and reduced IL-12/IL-23 signaling in human and murine T cells
(33). The precise role(s) for TYK2P in altering autoimmune
pathogenesis, however, remains poorly elucidated.

In the current study, we utilized cells from healthy human
subjects with the variant and knock-in mice to assess the impact
of TYK2P on T cell subsets and cytokine signaling and on normal
and autoimmune responses in vivo. First, we demonstrate that
healthy individuals with the protective variant exhibit decreased
IFN I signaling and have a decreased frequency of circulating Tfh
cells and switched memory B cells. We established a knock-in
murine model of this allele and show that homozygous Tyk2P T
cells exhibit decreased IL-12 receptor signaling and diminished
in vitro Th1 skewing. Surprisingly, in vivo formation of Tfh and
GC B cells was unaffected by Tyk2P expression in alternative
murine models of T cell dependent immune responses. Further,
expression of the protective variant did not protect against
murine lupus in alternative murine SLE models. Additionally,
we found that Tyk2P expressing T cells had reduced IL-23
dependent signaling and diminished ability to skew toward Th17
in vitro. Unlike lupus murine models, homozygous Tyk2P mice
were fully protected from EAE, and infiltrating CD4+ T cells
within the CNS. Moreover, homozygous variant mice had a
markedly decreased population of pathogenic IL-17+/IFNγ

+

CD4+ T cells in both the draining lymph nodes (LN) and CNS.
Thus, our data suggest that TYK2P reduces IFN I, IL-12, and
IL-23 signaling in T cells, and that only when autoimmune
disease synchronously dysregulates multiple cytokine signaling
programs will the protective phenotype be observed.

MATERIALS AND METHODS

Human Samples and Genotyping
Cryopreserved PBMCs were obtained from adult participants
in the Benaroya Research Institute (BRI) Immune Mediated
Diseases Registry and Repository. Subjects were selected based on
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TYK2 genotype and the absence of autoimmune disease or any
family history of autoimmunity. Study groups were designated
as follows: subjects homozygous for the non-protective (NP)
allele “C” at rs34536443: “NP/NP”; subjects homozygous for the
protective (P) allele “G” at rs34536443: “P/P”, and heterozygous
subjects: “NP/P”. TYK2 SNP rs2304256 was held constant “C/A”
as far as possible (all NP/NP and NP/P subjects). The “P/P”
group was homozygous “A/A” at rs2304256 in all cases. Subjects
were age matched (mean age: NP/NP group, 37.7 ± 12.6 years;
NP/P group, 37.7 ± 14.3 years; P/P group, 45.3 ± 18.1 years)
and sex matched as far as possible (NP/NP group, 21 males and
20 females; NP/P group, 15 males and 17 females; P/P group
3 male and 1 female). All experiments were performed in a
blinded manner with respect to TYK2 genotype. Genomic DNA
was genotyped for the TYK2 SNPs rs34536443 (C/G) (P1104A)
and rs2304256 (C/A) (V362F) using a Taqman SNP genotyping
assay (Applied Biosciences) or were genotyped using the Illumina
ImmunoChip by the University of Virginia Center for Public
Health Genomics. The Taqman genotyping assay was validated
using HapMap DNAs of known genotype, and controls of each
genotype were included in every genotyping experiment. Results
were checked for adherence toHardy-Weinberg equilibrium. The
research protocols were approved by the Institutional Review
Board at BRI (#07109-148).

Mice
A construct designed to generate a P1124A mutation in exon 21
of Tyk2 by homologous recombination in C57BL/6J mice was
generated and injected by Biocytogen as previously described
(37). After successful recombination, two FRT sequences with
a neomycin-resistance selection cassette were inserted into
intron 21. To create lineage-specific deletion, loxP sites were also
present in intron 19 and 21. C57BL/6J embryonic stem (ES) cells
had the introduction of the construct and clones were obtained
by limited dilution. G418 selection was used to select clones.
Clones that contained successful integration of the knock-in
template into the locus were confirmed by Southern blot and
PCR analysis of genomic DNA. Successfully targeted clones
were injected into BALB/c blastocysts and were subsequently
transferred into pseudopregnant females. One clone gave rise to
a line with germline transmission of the allele. The mutation was
confirmed by sequencing of Exon 21 (Supplementary Figure 1),
and PCR was used to genotype all litters (using the following
primers: 5′-CCACTCCTAACCTTGTAGAGCAC-3′ and 5′-
AACGCAAATCTCTACAACAGTGG-3′). Mice were crossed
with B6.Cg-Tg(ACTFLPe)9205Dym/J (Jackson Laboratory)
mice to delete the neomycin-resistance selection cassette. In Th1
skewing assays, Tyk2 knockout mice were created by Dr. Mathias
Müller and were kindly provided by Dr. George Yap (23).
Tyk2 knockout mice were also generated by crossing TYK2P

mice with B6.C-Tg(CMV-cre)1Cgn/J (Jackson Laboratory)
strain to make a global knockout of Tyk2. Deletion was
confirmed by sequencing loxP sites (Supplementary Figure 1),
and PCR was used to genotype all litters (using the following
primers: 5′-CCACTCCTAACCTTGTAGAGCAC-3′ and 5′-
CCTCCCTGTGTGTGATGTGG-3′). WAS–/– mice are on a
C57BL/6J background (38). All strains were maintained in

a specific-pathogen-free facility, and studies were performed
in accordance with procedures approved by the Institutional
Animal Care and Use Committees of Seattle Children’s Research
Institute.

In vitro Stimulation and Th Skewing Assays
For IL-12 signaling, thawed PBMCs were washed and
resuspended in complete medium (RPMI, 10% human serum,
1% PenStrep) at 4 × 106 cells/ml. Cells were activated with
anti-CD3/CD28 Dynabeads (ThermoFisher) at a bead to cell
ratio of 1:10 for 72 h. Following removal of the magnetic beads,
cells were rested in X-vivo 15 medium (Lonza) for 2 h, washed
with PBS and stimulated with 2.5 ng/ml of recombinant human
IL-12 (BD Pharmingen) for 30min. For IFN-α signaling, thawed
PBMCs were washed and rested in X-vivo 15 medium for
45min. Cells were washed and stimulated with 2,000 IU/ml of
recombinant IFN-α (PBL) for 12min.

Mouse spleens went through RBC lysis and made into
single cell suspensions. CD4+ T cells were positively isolated
(Miltenyi Biotec) and placed into wells that were coated with
anti-CD3/CD28 (5µg/ml; 145-2c11/37.51; BioXcell and UCSF
Monoclonal Antibody Core). Murine cells were cultured in
complete media containing RMPI-1640 supplemented with
10% FBS, 1% non-essential amino acids, 1% sodium pyruvate,
1% GlutaMAX, and 0.1% β-ME. For IL-12 stimulation, cells
were activated for 72 h and let rest for 24 h. Cells were
then stimulated with IL-12 for 20min and subsequently
analyzed for intracellular pSTAT3. For Th1 skewing assays, cell
cultures were supplemented with the following Th0 and Th1
cytokines respectively; anti-IFN-γ (30µg/ml; BioXcell) and anti-
IL-4 (20µg/ml; BioXcell); IL-2 (50 ng/ml; Peprotech), IL-12
(20 ng/ml; R&D systems), and anti-IL-4 (20µg/ml; BioXcell). At
48 h, cells were split into two wells and fresh media was added
to each condition with the respective cytokines described above.
Cells were harvested on day 5 and examined for intracellular
IFN-γ. For IL-23/pSTAT3 stimulation, total splenocytes were
cultured in media containing anti-CD3 (2.5µg/ml; BioXcell),
IL-6 (30 ng/ml), TGF-β (3 ng/ml; R&D systems), and anti-IFN-
γ (10µg/ml). At 72 h, anti-IFN-γ and IL-23 (10 ng/ml; R&D
systems) were added to the cultures. Cells were harvested on
day 6 and stimulated with IL-23 for 15min at 37◦C. CD4+

T cells were than analyzed for intracellular pSTAT3. For Th17
skewing assays, total splenocytes were cultured with the same
supplements as described for IL-23/pSTAT3 stimulation above.
At 72 h, anti-IFN-γ and IL-23 were added to the cultures
on day 3, 7, and 10. On day 12, cells were stimulated with
PMA (50 ng/ml; EMD Millipore), Ionomycin (1µg/ml; Sigma-
Aldrich), and Monensin (20 ng/ml; eBioscience) to be analyzed
for intracellular IL-17.

In vitro Tfh Generation
Splenic CD4+ T cells were isolated as described above. All cells
were stimulated with anti-CD3/CD28 coated beads (Thermo
Fisher), with IL-2 (Peprotech) and supplemented with the
following for Th0 and Tfh, respectively: anti-IFN-γ (30µg/ml;
BioXcell) and anti-IL-4 (20µg/ml; BioXcell); IL-12 alone (20
ng/ml). Beads were removed after 48 h of stimulation and fresh
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media was added to each condition with the respective cytokines
described above. Cells were harvested six days after initial
stimulation to assess for Tfh surface markers.

In vitro GC Stimulation
Splenic B cells were purified from mice with CD43+ depletion
(Miltenyi Biotec). Cells were cultured in complete media (RMPI-
1640 supplemented with 10% FBS, 1% penicillin-streptomycin,
1% sodium pyruvate, 1% Hepes, 1% GlutaMAX, and 0.1% β-
ME) for 48 h at 37◦C. B cells were stimulated with or without
the following reagents; R848 (5 ng/ml); anti-mouse IgM F(ab’)2
fragment (1µg/ml; Jackson ImmunoResearch, Inc.); anti-mouse
CD40 (1µg/ml; SouthernBiotech); IL-12 (20 ng/ml). Supernatant
was collected and evaluated with an IL-6 ELISA (eBioscience).

In vivo Immunizations
VLPs were made with bacteriophage Qβ capsid protein that
contain single-stranded RNA which were kindly provided by
Dr. Baidong Hou (39). Mice were injected with 2 µg of VLPs
i.p. Twelve days post-immunization, spleens and serum were
harvested from the mice. Cells were stained with surface markers
for Tfh and GC B cells. Serum was analyzed for VLP-specific
antibodies as previously described (40).

Mice were immunized by i.p. with 200 µl of PBS containing
20% sheep red blood cells (SRBCs). Spleens and serum were
harvested on day 5 to assess surface markers and total IgG1 by
ELISA.

Bone Marrow Transplantation
BM was harvested from the femora and tibiae ofWas−/−.Tyk2P,
Was−/−.Tyk2NP, Was−/−.Tyk2NP/P and Was−/−.IL12R−/−

mice. Single cell suspensions were depleted for CD138+

cells (Miltenyi Biotec). CD138-depleted Was−/−.Tyk2P,
Was−/−.Tyk2NP, Was−/−.Tyk2NP/P and Was−/−.IL12Rβ2−/−

donor BMwasmixed with respective Tyk2P.µMT, Tyk2NP.µMT,
Tyk2NP/P.µMT, and IL12Rβ2−/−

µMT at a 20:80 ratio, and 6
× 106 total BM cells were injected retro-orbitally into lethally
irradiated mice (450cGy x 2 doses) to generate WAS chimeras in
which all hematopoietic lineages express the variant Tyk2Pallele.
Resulting BM chimeras were bled at 12 weeks and 24 weeks
post-transplant date by retro-orbital puncture and sacrificed at
24–26 weeks post-transplant. Serum dsDNA antibodies were
assessed as previously described (37).

Experimental Autoimmune

Encephalomyelitis (EAE)
EAE was induced with s.c. immunization of the flanks with an
emulsifiedmixture containing CFA,MOG35−55 peptide (100µg),
andMycobacterium tuberculosis extract H37Ra (4µg/ml; Difco).
Each animal also received i.p. immunization of pertussis toxin
(200 ng) on days 0 and 2. Mice were assessed daily for clinical
symptoms of EAE and scored according to the following criteria:
0-no signs of disease; 1-limp tail; 2-hind limb weakness; 3-hind
limb paralysis; 4-hind limb, and forelimb paralysis.

Flow Cytometry
PBMCs were thawed, washed with PBS and rested in X-vivo
15 medium (Lonza) at 37◦C and 5% CO2 for 45min. Cells
were washed with PBS and 1 × 106 cells were stained in
FACS buffer (PBS/0.5% BSA/0.1 NaN3) with a cocktail of
fluorophore-conjugated antibodies at RT for 20min. For human
IL-12/pSTAT signaling, cells were fixed and permeabilized
using Fix buffer I (BD Biosciences) and Perm buffer III
(BD Biosciences), respectively, according to the manufacturer’s
instructions. Cells were washed and stained simultaneously for
surface markers and intracellular pSTAT3 and pSTAT4 at RT
for 45min. For human IFN-α, cells were washed and stained
simultaneously for surface markers and intracellular pSTAT1 at
RT for 45min. IFNAR surface levels were determined in unfixed,
non-permeabilized cells. The following antibodies were used
for the detection of proteins in human samples: CD3-AF700
(UCHT1), CXCR3-PE (G025H7), CCR6-PerCP/Cy5.5 (G034E3),
PD1-BV605 (EH12.2H7), CD3-PerCp/Cy5.5 (UCHT1), CD19-
AF700 (HIB19), IgM-FITC (MHM-88), CD38-PE-Cy5 (Hit5),
CD24-BV510 (ML5), CD10-PE-Cy7 (HI10a), CD8-PerCP/Cy5.5
(RPA-T8), CD45RA-PE-Cy7 (HI100), CD56-BV421 (HCD56),
from BioLegend; CD8-PE-Cy7 (SFCI21Thy2D3) from Beckman
Coulter; CD4-BV510 (SK3), CD45RA-PE-Cy5 (HI100), CXCR5-
BV421 (RF8B2), CD27-BV605 (L128), IL-12Rb1- APC (2.4E6),
pSTAT3-PE (4/P-STAT3), pSTAT4-PerCP/Cy5.5 (38/p-Stat4),
pSTAT1-AF488 (4a) from BD Biosciences; IFNAR-APC (85228)
from R&D Systems. The following antibodies were used
for the detection in mouse samples: pSTAT3-Alexa647 (4/P-
STAT3), CXCR5-Biotin (2G8), Streptavidin-PE-Cy7, CD19-PE-
Cy7 (1D3), FAS-PE (Jo2) from BD Biosciences; CD4-Pacific
Blue (RM4-5), IFNg-APC (XMG1.2), B220-PerCP-Cy5.5 (RA3-
6B2), IL-17A-PE (TC11-18H10.1), IL-17A-PerCP-Cy5.5 (TC11-
18H10.1) were from BioLegend; CD3-APC-eFLuor780 (17A2),
GL7-Alexa 647 (GL-7), PE-IFNg (XMG1.2), PE-Cy5 (GK1.5),
CD3e-Fitc (eBio500A2), CD3e-PerCP-Cy5.5 (145-2c11) were
from eBioscience; CD4-APC (GK.1) were from Southern
Biotech; PD1 Fitc (J43) were from Life Technologies; PNA-
FITC (FI-1071) were from Vector Labs. Live/Dead Near-IR Dead
Cell Stain Kit (Invitrogen) was used to assess viability by flow
cytometry. Alexa Fluor 647-labeld Q-VLP was kindly provided
by Dr. Baidong Hou (39, 41). FlowJo (version 10) was used for
data analysis.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism
(version 7). All statistical tests and P-values are specified in the
figure legends.

RESULTS

Healthy Subjects With the TYK2P Variant

Exhibit a Decrease in Both Tfh Cells and

Switched Memory B Cells
To evaluate the effect of TYK2P on lymphocyte populations,
we examined peripheral blood mononuclear cells (PBMC) in
healthy individuals with no family history of autoimmunity.
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Specifically, we assessed adaptive immune cells which require
TYK2-dependent pathways for development and activation
(27). Thawed PBMCs were stained with fluorophore-conjugated
antibodies for a panel of T and B cell subset markers and analyzed
by flow cytometry. We observed no effect of TYK2P on the
frequency of CD4+ naïve (RA+) and memory (RA−) T cells or
of total CD3−CD19+ or memory CD3−CD19+CD27+CD10− B
cells. In contrast, we found that individuals expressing the TYK2P

allele have decreased circulating CD4+CD45RA−PD1+CXCR5+

Tfh cells (Figures 1A,B). Consistent with the role for Tfh
cells in promoting B cell GC responses, we also observed a
reduced frequency of CD3−CD19+CD27+CD10-IgM− switched
memory B cells (Figures 1C,D) in individuals with the protective
allele. Thus, individuals expressing TYK2P exhibited low
frequencies of Tfh cells, essential for germinal center formation,
and switched memory B cells, products of germinal centers,
suggesting that TYK2 plays a role in cytokine pathways
important for regulation of germinal centers and immune
activation.

In vitro IL-12 Driven Tfh Generation and B

Cell IL-6 Production Is Decreased Using

Murine Tyk2P Cells
To gain better understanding of the function of TYK2P in
cytokine signaling and autoimmune disease, we generated a
knock-in mouse strain containing the identical amino-acid
substitution in the murine TYK2 protein (Tyk2-P1124A),
hereafter referred to as Tyk2P mice or as Tyk2NP/P and Tyk2P/P

for heterozygous and homozygous animals, respectively
(further detailed explanation of genotypes, please see
Supplementary Table 1). To generate founder mice, we
used homologous recombination on the non-autoimmune prone
C57BL/6 genetic background (Supplementary Figures 1A–C).
Gene targeting produced the variant coding change
(encoding the substitution P1124A) in exon 21 of Tyk2
(Supplementary Figure 1B). Based upon our targeting strategy,
we also crossed Tyk2P mice with a murine line ubiquitously
expressing CRE to create Tyk2 knockout (Tyk2−/−) animals
of an identical genetic background for use in some studies
(Supplementary Figures 1A,C).

The TYK2-dependent IL-12 cytokine pathway is important
for Tfh generation by promoting phosphorylation of STAT3
(pSTAT3) (12). To test pSTAT3 levels in murine cells, we isolated
CD4+ T cells from littermate control (Tyk2NP/NP), heterozygous
(Tyk2NP/P) or homozygous (Tyk2P/P) and assessed for IL-12-
induced pSTAT3. We found that homozygous Tyk2P/P cells
exhibited diminished pSTAT3 (Figure 2A). Further, Tyk2P/P

CD4+ T cells were also unable to skew toward a Th1
phenotype in vitro, a process also dependent on IL-12 signaling
(Figure 2B). Similar to previously published findings, Tyk2−/−

CD4+ T cells exhibited a similar decrease in the capacity
to skew toward a Th1 phenotype (24, 42). These data
mirrored our findings using Tyk2P/P CD4+ T cells implying
that the protective allele encoded for a TYK2 protein with
reduced functional activity. Despite the decreased Tfh cells
in the circulation in human subjects heterozygous for the

protective variant, we could not discern significant differences
in IL-12-induced pSTAT3 or pSTAT4 using primary human
CD4+ T cells from a cohort of heterozygous healthy subjects
(Supplementary Figures 2A–H).

To explore the role of TYK2P in IL-12-induced Tfh
cell generation, we used an in vitro assay to examine this
question. Tyk2P/P CD4+ T cells were not able to generate
Tfh-like cells as efficiently as Tyk2NP/NP cells in response to
IL-12 alone (Figure 2C). Based on the diminished switched
memory population in healthy donors with the protective
variant (Figure 1D), we assessed the role of IL-12 signaling
in modulating the activation of Tyk2P murine B cells.
Previous work has implicated IL-12 in promoting B cell
activation and antibody production (43, 44). We used an
in vitro “GC-like” stimulation with and without the addition
of IL-12 and monitored the production of IL-6. IL-6 is
produced by activated B cells and promotes GC B and Tfh
cell development (45), and B cell intrinsic IL-6 production
is required for autoimmune GC B cell responses (46).
Under all conditions, Tyk2P/P B cells exhibited a trend for
diminished IL-6 production compared to control Tyk2NP/NP

or heterozygous (Tyk2NP/P) B cells (Figure 2D) but these
differences did not reach statistical significance. In summary,
diminished in vitro Tfh-like and Th1 generated T cells from
Tyk2P/P mice were most likely secondary to diminished IL-12
signaling.

Tyk2P Does Not Impact Tfh and GC B Cell

Formation Following T-Dependent

Immunization
Next, based on its impact on Tfh cells in vitro and in human
subjects, we examined the effect of Tyk2P on generation of
Tfh and GC B cells in vivo. We first assessed T cell-dependent
immunization using TLR7-loaded virus-like particles (VLP)
in control (Tyk2NP/NP) mice, mice heterozygous (Tyk2NP/P),
or homozygous (Tyk2P/P) for the protective variant. At the
peak of the immune response, there was no difference in
the proportion or number of Tfh cells or GC B cells
generated by these strains (Figures 3A–C). Additionally, we
saw no differences in VLP-specific GC B cells or in high-
affinity anti-VLP IgG2c antibodies (Figures 3D,E). We expanded
upon this result by using a second immunization strategy
designed to promote a more sustained GC response triggered
via delivery of sheep red blood cells (SRBCs) and also
included cohorts of Tyk2−/− animals. Again, all strains
exhibited equivalent production of GC B cells, Tfh cells,
and antibodies (Supplemental Figures 3A–D). Taken together,
Tyk2P appears to have little or no impact on T-dependent
GC and antibody formation in response to immunization
strategies that rely on the formation and function of Th1/Th2
cells.

Tyk2P Does Not Affect Tfh and GC B Cell

Formation in Murine Lupus Models
TYK2P has been associated with protection from multiple
autoimmune diseases including SLE (32). Therefore, we next
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FIGURE 1 | Healthy subjects expressing the TyK2 protective variant exhibit decreased proportion of circulating Tfh and switched memory B cells. (A) Gating strategy

for T follicular helper (Tfh) cells, defined as CD4+CD45RA−CXCR5+PD1+ T cells. Shown are representative dot plots of the Tfh cell frequency in subjects with

TYK2NP/NP (NP/NP), TYK2NP/P (NP/P), or TYK2P/P (P/P) (non-protective (NP) vs. protective (P) alleles of rs34536443; encoding for Alanine-1104 vs. Proline-1104).

(B) Quantification of Tfh cell frequency. (C) Gating strategy for switched memory B cells, defined as plasmablast (PB) negative CD3−CD19+CD27+CD10− IgM− B

cells. Shown are representative dot plots of the switched memory B cell frequency in subjects. (D) Quantification of switched memory B cell frequency (Each symbol

represents an individual donor) (B,D); small horizontal lines indicate the mean (± s.d.). Data from a combined total of n = 19 Tyk2NP/NP donors, n = 19 TYK2NP/P

donors, and n = 2 TYK2P/P donors (A,B); n = 15 TYK2NP/NP donors, n = 13 TYK2NP/P donors, and n = 4 TYK2P/P donors (C,D). Statistical analysis indicated

from a Mann-Whitney U (B,D).

directly assessed the role of the protective variant in disease
development using alternative murine lupus models utilizing
Tyk2P mice. As an initial test, we used the BM12T cell adoptive
transfer model of lupus. The BM12 strain was derived from
C57BL/6 mice and contains a three-amino-acid change in the
major histocompatibility complex class II molecule H2-AB1b

(47). An autoimmune GC response is generated when BM12
CD4+ T cells are adoptively transferred into C57BL/6 recipients
leading to production of autoantibodies directed against dsDNA
within ∼3 weeks following the cell transfer (48, 49). Therefore,
to assess the impact of Tyk2P in this setting, we transferred
BM12 CD4+ T cells into control (Tyk2NP/NP), heterozygous
(Tyk2NP/P), or homozygous (Tyk2P/P) recipient mice. Following

CD4+ T cell transfer, there was no difference in the proportion
of Tfh and GC B cells in any strain (data not shown). We also
observed no differences in autoantibody levels at disease peak
(Figures 4A–C).

To further examine the role of Tyk2P in murine lupus, we
utilized the Wiskott-Aldrich Deficient (WASp−/−) B cell bone
marrow (BM) chimera lupus model (38, 46, 50–53). In chimeras
with B cell intrinsic loss of WASp−/−, mice display spontaneous
GCs, autoantibodies, renal histopathology, and early mortality
(38). In order to assess the impact of various Tyk2P alleles in
all relevant cell lineages in the development of lupus in this
model, we first intercrossed µMT−/− mice with our knock-
in strain to establish µMT−/− mice co-expressing Tyk2NP/NP,

Frontiers in Immunology | www.frontiersin.org 6 January 2019 | Volume 10 | Article 4451

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gorman et al. TYK2P1104A Restricts T Cell Subsets

FIGURE 2 | Murine Tyk2P lymphocytes exhibit decreased IL-12 signaling and reduced in vitro generation Tfh cells and IL-6 production in response to GC

programming. (A–C) Splenic CD4+ T cells were isolated from Tyk2NP/NP (NP/NP), Tyk2NP/P (NP/P), Tyk2P/P (P/P), or Tyk2−/− (KO) mice. (A) CD4+ T cells were

stimulated with 2 ng/mL of IL-12 for 20min and assessed for phosphorylation of STAT3 (pSTAT3) using flow cytometry. (B) Frequency of IFN-γ+ CD4+ T cells

following in vitro Th1 skewing culture conditions with IL-12, IL-2, and anti-IL-4 for five days and analyzed by flow cytometry. (C) Frequency of Tfh-like T cells (CD4+

CXCR5+PD1+) following culture with the indicated cytokines for six days. (D) Splenic B cells were isolated from Tyk2NP/NP (NP/NP), Tyk2NP/P (NP/P), or Tyk2P/P

(P/P) mice. IL-6 production from B cells stimulated with the indicated cytokines for 48 h. Small horizontal lines indicate the mean (± s.e.m.). Statistical analysis were

performed using Friedman Test with Dunn’s multiple comparison (A), one-way ANOVA with Tukey’s multiple comparisons test (B,D), and two-way ANOVA with

Tukey’s multiple comparisons test (C). Data are derived from three (A,C,D) or seven independent experiments (B). Each symbol represents an individual biological

replicate (individual mouse); Tyk2NP/NP n = 3, Tyk2NP/P n = 3, or Tyk2P/P n = 3 (A,D); Tyk2NP/NP n = 7, Tyk2NP/P n = 5,Tyk2P/P n = 6 or Tyk2KO n = 5

(B); Tyk2NP/NP n = 3, Tyk2NP/P n = 4, or Tyk2P/P n = 3 (C).

Tyk2NP/P, or Tyk2P/P, respectively. As shown schematically in
Figure 4D, cohorts of animals for each of these µMT−/− strains
were lethally irradiated and reconstituted by BM transplantation
using a mixture of 80% µMT−/− BM (expressing Tyk2NP/NP,
Tyk2NP/P, or Tyk2P/P, respectively) and 20% WAS−/− BM
(co-expressing Tyk2NP/NP, Tyk2NP/P, or Tyk2P/P, respectively;
Figure 4D). As an additional control to assess the impact of IL-12
receptor signaling in disease development, we utilized µMT−/−

recipient strains and donor BM cells both deficient for IL-12Rβ2
(Figure 4D). Strikingly, all recipients of WAS−/− BM developed
high-titer class-switched IgG2c anti-dsDNA and anti-smRNP
antibodies within 4 months post-transplant. We also observed
no differences in relative levels of autoantibody production, GC
B cells, or Tfh cells between recipients with alternative Tyk2P

alleles (Figures 4D–H). Moreover, despite the anticipated role
for IL-12 in modulating T and B cell activation, IL-12Rβ2
deficiency exerted no appreciable impact on disease within this

model with recipients developing autoantibodies, GC B cells,
and Tfh cells as efficiently asWAS−/− chimeras (Figures 4D–H).
Taken together, these findings suggest that Tyk2P does not
play a major role in development of autoimmune GC
responses or in modulating autoantibody production in murine
SLE.

Type I Interferon Signaling Is Reduced in T

Cells From TYK2P Healthy Subjects
Another pathway with a requirement for TYK2 is type I
interferon (IFN I) signaling (18). This pathway may also
impact Tfh generation. To test the role of TYK2P in type I
interferon receptor (IFNAR) signaling, we stimulated PBMCs
from healthy control subjects and subjects heterozygous for the
protective variant using IFN-α and examined phosphorylated
STAT1 (pSTAT1) levels following activation. Naïve TYK2NP/P

CD4+ and CD8+ T cells exhibited a decrease in IFN-α induced
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FIGURE 3 | Tfh and GC B cell formation in vivo in response to immunization with virus-like particles is not impacted by Tyk2P expression. (A) Experimental schematic

for VLP immunization. Tyk2NP/NP (NP/NP), Tyk2NP/P (NP/P), or Tyk2P/P (P/P) mice were immunized i.p. with 2 µg of TLR7-loaded virus-like particles (VLP) or with

PBS as control. Splenocytes were analyzed for frequency of: (B) germinal center (GC) B cells (B220+FAS+PNA+); (C) Tfh cells (CD4+CXCR5+PD1+); and (D) VLP+

GC B cells at day 12 post-immunization. (E) Sera was collected at day 12 post-immunization and assessed by ELISA for VLP-specific IgG2c antibodies. Small

horizontal lines indicate the mean (± s.e.m.). ELISA results are displayed as absorbance at 450 nm normalized to results using a blank well and presented in arbitrary

units (AU) (E). Representative data are shown from one of two independent experiments (B–E). Statistical analysis was performed using one-way ANOVA with Tukey’s

multiple comparisons test (B–D). Each symbol represents an individual biological replicate; Tyk2NP/NP n = 4, Tyk2NP/P n = 4, Tyk2P/P n = 3, PBS n = 2, or Positive

Control n = 1 (B–E).

pSTAT1 levels compared to cells from control TYK2NP/NP

subjects (Figures 5A–D), a difference that was not due to altered
IFNAR surface expression. These findings were consistent with a
previous report showing diminished pSTAT1 and pSTAT3 levels
following IFN-α stimulation in subjects with the protective allele
(33). Thus, IFNAR signaling is reduced by the expression of

TYK2P.

TYK2P Is Involved in IL-23 Signaling, Th17

Skewing, and Tfh-17 Formation
Circulating human Tfh cells are comprised of three distinct
developmental subsets that can be discriminated based on
relative surface expression levels of CXCR3, CCR6, and
CCR7 (14). Therefore, we next investigated whether a specific
Tfh lineage was preferentially impacted by expression of
TYK2P. Though not statistically different, we discovered
that individuals expressing the protective variant exhibited a

trend for a decrease in the relative proportion Tfh-17 cells
(p = 0.123) but exhibited no changes in the proportion
of Tfh-1 or Tfh-2 cells (Figures 6A–C). Consistent with this
data, TYK2 is activated downstream of the IL-23 receptor
engagement (19). To further study the role of TYK2P in
Th17 commitment and in Tfh-17 cells, we investigated IL-23

signaling in the murine CD4+ T cells derived from control
(Tyk2NP/NP), heterozygous (Tyk2NP/P) or homozygous (Tyk2P/P)
mice and from Tyk2−/− animals. Both Tyk2P/P and Tyk2−/−

T cells exhibited decreased IL-23 dependent pSTAT3 and
heterozygous Tyk2NP/P T cells exhibited a trend consistent
with an intermediate phenotype (Figure 6D). Further, both
Tyk2P/P and Tyk2−/− T cells displayed a diminished Th17
skewing in vitro (Figure 6E). In summary, TYK2P plays a role
in IL-23 signaling mostly likely contributing to the observed
decrease in Tfh-17 cells in subjects expressing the protective
variant.

Frontiers in Immunology | www.frontiersin.org 8 January 2019 | Volume 10 | Article 4453

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gorman et al. TYK2P1104A Restricts T Cell Subsets

FIGURE 4 | Tyk2P and IL− 12R−/− mice are not protected in murine models of lupus. (A) Experimental schematic for BM12 CD4+ T cell adoptive transfer model.

5.0 × 106 BM12 CD4+ T cells were adoptively transferred into Tyk2NP/NP, Tyk2NP/P, or Tyk2P/P recipient mice and autoantibodies and splenic cell populations (not

shown) were assessed at indicated times. Serum ELISA analysis for: (B) anti-dsDNA IgG and (C) anti-dsDNA IgG2c autoantibodies. (D) Schematic for establishment

of B cell-specific bone marrow (BM) chimeras using an 80%:20% mixture of bone marrow from µMT−/− mice and WT or Wiskott-Aldrich knock-out (WAS−/−) donor

cells with the indicated Tyk2 or IL-12R alleles (WAS−/−Tyk2NP/NP, WAS−/−Tyk2NP/P, WAS−/−Tyk2P/P, WAS−/− IL-12R−/−), respectively. Yellow lightning bolt

represents irradiation of recipient mice. See methods for additional details of experimental design. (E,F) ELISA analysis of serum at 16 week post-transplantation for:

(E) anti-dsDNA IgG2c and (F) anti-smRNP IgG2c autoantibodies in indicated recipient mice. (G,H) Splenocytes were isolated at 16 week and analyzed by flow

cytometry for frequency of: (G) GC and (H) Tfh cells as described in Figure 2. Small horizontal lines indicate the mean (± s.e.m.). ELISA results are displayed as

absorbance at 450 nm normalized to results of a blank well and presented in arbitrary units (AU). (B,C,E,F) Statistical analysis was performed using one-way ANOVA

with Tukey’s multiple comparisons test. Data are representative of two independent experiments (B,C) or data combined from two independent experiments (E–H).

Each symbol represents an individual biological replicate;Tyk2NP/NP n = 3, Tyk2NP/P n = 4,Tyk2P/P n = 3 or PBS n = 2 (A-C); WT n = 4,Tyk2NP/NP n = 9,

Tyk2NP/P n = 12,Tyk2P/P n = 7 or IL-12R−/− n = 8 (E,F); WT n = 8,Tyk2NP/NP n = 9, Tyk2NP/P n = 12,Tyk2P/P n = 7 or IL-12R−/− n = 8 (G,H).
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FIGURE 5 | Decreased IFN-α/pSTAT1 signaling in naive T cells from healthy subjects expressing the TYK2 protective variant. PBMC from healthy subjects with

TYK2NP/NP (NP/NP) or heterozygote for the protective allele TYK2NP/P (NP/P), were thawed and stimulated with 2,000 IU/ml recombinant IFN-α for 12min and

assessed using flow-cytometry for phosphorylation of STAT1 (pSTAT1) or IFN I receptor (IFNAR) surface expression. Quantification of pSTAT1 MFI following IFN-α

stimulation in: (A) naive (RA+) and memory (RA-) CD4+ and (B) CD8+ T cells. Quantification of IFNAR mean fluorescence intensity (MFI) in: (C) naive (RA+) and

memory (RA-) CD4+ and (D) CD8+ T cells. Each symbol represents an individual donor (A–D); small horizontal lines indicate the mean (± s.d.). Data from a combined

total of n = 10 TYK2NP/NP donors or n = 14 TYK2NP/P donors (A–D). Statistical analysis performed using Mann-Whitney U testing (A–D).

Tyk2P Mice Are Protected From EAE and

Exhibit Reduced Numbers of IFN-γ+/IL-17+

Pathogenic CD4+ T Cells
TYK2P has also been associated with protection in MS (31). We
used a murine model of MS, experimental autoimmune
encephalomyelitis (EAE), to test the role of Tyk2P in
modulating disease. As shown schematically in Figure 7A,
control (Tyk2NP/NP), heterozygous Tyk2NP/P and homozygous
Tyk2P/P mice were immunized with MOG peptide in complete
Freund’s adjuvant (CFA) and also treated with pertussis
toxin to increase permeability of the blood brain barrier.
While both control and heterozygous Tyk2NP/P animals
developed disease manifestations beginning at ∼10 days
post-immunization, mice expressing Tyk2P/P were completely
protected from EAE (Figure 7A, lower panel). Both Th1 and
Th17 cells have been shown to be important for EAE disease
development (54). Notably, the proportion of draining LN T
cells expressing IL-17+ was similar in Tyk2NP/NP, Tyk2NP/P

and Tyk2P/P animals and there was only a trend toward
a reduced proportion of IFN-γ+ cells in Tyk2P/P animals
(Figures 7B–E). In contrast, the proportion of double-positive
IFN-γ+/IL-17+ pathogenic CD4+ T cells was specifically
decreased in Tyk2P/P mice (Figure 7E). The number of
CD4+ T infiltrating the central nervous system (CNS) was

markedly reduced in Tyk2P/P mice and included reduction
in both IFN-γ+ or IFN-γ+/IL-17+ double positive T cells
(Figures 7F–I). Altogether, these data demonstrate that Tyk2P

protects from EAE by decreasing pathogenic CD4+ T cells which

depend on both IL-12 and IL-17 signaling to promote disease
development.

DISCUSSION

While TYK2P has been shown to be a hypomorphic allele, its
protective role in autoimmunity still remains largely unexplored.
Here we show that TYK2P limits signaling in response to
IL-12, IL-23, and IFN I cytokines. Despite these cytokine
defects, Tyk2P mice were not protected in two independent
lupus models and exhibited no difference in the response
toward two different T dependent immunization models. Yet
healthy individuals expressing TYK2P displayed diminished Tfh
and switched memory B cells, and homozygous Tyk2P mice
were fully protected in a murine model of MS. Our findings
highlight the complexity of the cytokine milieu that regulate
immune responses in both man and mouse, and the likely
requirement for concurrent alterations in multiple cytokine
signals in order for this variant to manifest a disease protective
phenotype.
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FIGURE 6 | Healthy subjects expressing the TYK2 protective variant exhibit decreased circulating Tfh-17 cells and Tyk2P mice exhibit reduced IL-23 signaling and

Th17 skewing. (A–C), Quantification of Tfh subsets in healthy subjects with TYK2NP/NP (NP/NP), TYK2NP/P (NP/P), or TYK2P/P (P/P) alleles, respectively. Results of

flow cytometry studies assessing the frequency of: (A), CXCR3+CCR6− Tfh-1; (B) CXCR3−CCR6− Tfh-2; and (C) CXCR3−CCR6+ Tfh-17 T cells within the

CD4+CXCR5+ cell population. Each symbol represents an individual donor. (D,E) Splenic CD4+ T cells were isolated from Tyk2NP/NP (NP/NP), Tyk2NP/P (NP/P),

Tyk2P/P (P/P) or Tyk2−/− (KO) mice. (D) CD4+ T cells were stimulated with using the indicated amounts of IL-23 for 15min and assessed using flow cytometry for

phosphorylation of STAT3 (pSTAT3). (E) CD4+ T cells were cultured in Th-17 skewing conditions with indicated amounts of IL-23 and assessed for the frequency of

IL-17+ CD4 (Th-17) T cells. (A–C) small horizontal lines indicate the mean (± s.d.) and (D) mean (± s.e.m.). Data from a combined total of n = 10 TYK2NP/NP donors,

n = 10 TYK2NP/P donors, and n = 4 TYK2P/P donors (A–C). Data are representative of three independent experiments (D) and one experiment (E). Statistical

analysis were performed using Kruskal-Wallis (A–C) and two-way ANOVA with Tukey’s multiple comparisons test (D).

Functional Role of TYK2P in Cytokine

Signaling
In our murine model, we found a deficiency in IL-12 induced
pSTAT3 in homozygous Tyk2P expressing CD4+ T cells. This
was complimentary to a recent study that developed a similar
mouse model of Tyk2P1104A and showed decreased IL-12 induced
pSTAT4 (33). Similar to the murine data, Dendrou et al. found
diminished IL-12 induced pSTAT4 in human CD4+ T cells
expressing TYK2P/P compared to TYK2NP/NP T cells (33). In
contrast, we did not identify differences in pSTAT3 or pSTAT4
following IL-12 stimulation in homozygous non-protective vs.
heterozygous protective individuals. Our findings are consistent
with a recent data set comparing TYK2NP/NP to TYK2NP/P

participants (55). Differences between our studies likely reflect
the large number of homozygous TYK2P individuals (7 vs. 2)
studied by Dendrou et al. and/or differences in stimulation

conditions. Further, we found that IL-23 signaling and IL-
17+ cells were decreased in murine homozygous Tyk2P CD4+

Th17 populations consistent with previous mouse and human
data (33). Lastly, we demonstrate that TYK2P also limits type
I interferon signaling in humans, and in the Tyk2P murine
model (data not shown) as observed in human TYK2P T
cells (33). Of note, while Tyk2NP/NP and Tyk2NP/P T and B
cells did not exhibit statistically significant differences in IL-
12 mediated signals (Figures 2A–D), in each assay, Tyk2NP/P

cells showed a slight decrease in pSTAT3 and Th skewing
(and in IL-12 triggered B cell IL-6 production) compared to
Tyk2NP/NP cells suggesting a potential dose-dependent effect on
in vitro IL-12 signaling. The findings mimicked the impact of
heterozygous dosage of the protective variant in human cells
in various settings. Taken together, our observations support
the conclusion that TYK2P exerts an allele-dose dependent
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FIGURE 7 | Tyk2P variant mice are protected in a murine model of multiple sclerosis. (A) (Upper) Schematic of experimental design for induction of EAE by

immunization with MOG peptide. Tyk2NP/NP (n = 8), Tyk2NP/P (n = 13), and Tyk2P/P (n = 6) mice were immunized (red arrow) and evaluated clinically for 15 days.

(Lower) EAE clinical score was determined as per methods (1=Tail limp, 2=1 hind leg paralyzed, 3=2 hind legs paralyzed, 4=front leg paralyzed). (B–G) Tissues were

collected at Day 13 or Day 15 post-immunization and T lymphocyte populations were evaluated using flow cytometry. (B–D) Frequency of T cells within the draining

lymph nodes (dLN) showing: (B) total T cells; (C) IFN-γ+ T cells (D) IL-17+ T cells, and (E) IL-17+/IFN-γ+ double positive T cells (F–I). Frequency of T cells within the

central nervous system (CNS) showing: (F) total T cells; (G) IFN-γ+ T cells; (H), IL-17+ T cells; and (I) IL-17+/IFN-γ+ T cells. (B–I); Each symbol represents an

individual animal; small horizontal lines indicate the mean (± s.e.m.). Flow cytometry data shown are from 2 independent experiments including: Tyk2NP/NP (n = 7)

Tyk2NP/P (n = 7) and Tyk2P/P (n = 6) animals. (C–I) Data shown are combined from cells collected on day 13 or 15. Statistical analysis was performed using a

two-way ANOVA with Tukey’s multiple comparisons test.

limiting effect on in vitro responses to IL-12, IL-23, and IFN I
signaling.

Individuals that are TYK2-deficient manifest impaired
cytokine responses to IL-12, IL-23, IFN-α, and IL-10
(21). Moreover, these patients exhibit an increased risk for
mycobacterial and viral infections (21). Consistent with this

phenotype, TYK2P individuals also exhibit signaling defects in
IL-12, IL-23, and IFN-α. However, based upon the clinical data
within our biorepository, the small number of homozygous
protective variant-expressing subjects have not displayed
increased infections similar to the TYK2-deficient patients (21)
and other studies to date also have not reported an increase
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in infectious risk for such individuals; suggesting that larger
populations studies are likely required to address this question
(33). Differences between complete TYK2 deficiency versus a
hypomorphic allele may reflect retention of a protein scaffold
function. This idea may also be consistent with observations
that individuals or mice heterozygous for the protective allele
exhibit subtle alterations in lymphocyte subsets and signaling
activity, implying a possible dominant negative effect of
the protective allele. Studies have also linked loss of TYK2
expression to altered stability of STAT proteins in murine cells
and TYK2 associated receptor surface expression on human
cells (20, 21, 23, 33). Similar findings have not been previously
reported or observed in our Tyk2P murine model (data not
shown). TYK2P expression was shown not to affect IFNAR
surface expression (Figures 5C,D) and IL-12R (33). More work
is needed to fully elucidate the TYK2 interactome in various cell
lineages and its impact(s) in modulation of cytokine signaling.

Dysregulation of the IL-12, IL-23, or IFN signaling pathways
may also contribute to SLE disease (3, 15, 16). However, signaling
molecules within these pathways seem to compensate for each
other. Hence, there is the need for multiple aberrant pathways
to lead to complex autoimmune diseases such as SLE. There is
evidence that these pathways are on a fine axis. When one is
dysregulated, it throws off the balance of the other pathways
leading to further abnormal signaling, irregular activation and
ultimately autoimmune disease. One example of this is deficiency
in STAT3 which causes a decrease in Tfh and GC B cells, leading
Th cells to take on the Th1-like phenotype. However, in STAT3
deficient cells the normal populations are rescued when IFNAR
is blocked (18). Together these cytokine pathways are dependent
on one another in vivo and must be studied collectively to get a
complete picture of how such signals contribute to disease.

TYK2P and T Helper Subsets
IL-12 and IL-23 represent critical cytokines for generation of
Th1 and Th17 cells, respectively. Herein we show that IL-12 and
IL-23 signaling and their respective Th subsets are diminished
in an in vitro setting when TYK2P is expressed. Importantly,
these cytokines are also involved in Tfh cell generation. We
show for the first time that Tfh cells, specifically the Tfh-17
cell subset which has superior ability to provide B cell help
(56), are reduced in healthy human subjects with the TYK2P

allele. Further, we show that naïve murine Tyk2P CD4+ T cells
exhibit a defect in in vitro Tfh generation. Consistent with
these findings, individuals lacking IL-12Rβ1 exhibit diminished
circulating memory Tfh and memory B cells (57). IL-23 also
signals through STAT3 and can to contribute to Tfh generation
(13). Our combined observations support a model wherein
combined reduction in IL-12 and IL-23 signals leads to a reduced
number of Tfh-17 cells in healthy TYK2P donors. Thus, TYK2P

is a critical regulator for Tfh populations by reducing IL-12 and
IL-23 signaling cascades.

Herein we also found healthy individuals expressing TYK2P

to have diminished switched memory B cells. This is consistent
with IL-12Rβ1 deficient subjects who exhibited both reduced
switched and unswitched memory B cells (57). This reduction
is most likely due to defective GC responses from diminished

IL-12 signaling in T cells. IL-12 is an efficient inducer of IL-21
production from Tfh cells, a cytokine critical for the activation of
human GC B cells (14, 58). Additionally, IL-12Rβ1-, TYK2-, or
STAT3-deficient CD4+ T cells display reduced IL-12 induced IL-
21 production in vitro (12). However, Tyk2P mice did not display
any differences in GC responses post-immunization. Further
investigation is needed to assess GC formation and its link to
memory B cells in Tyk2P mice.

TYK2P in Autoimmune Disease
TYK2P has been associated with protection from MS (31) and
Tyk2−/− mice are fully protected from EAE (26). In our study, we
found that homozygous Tyk2P/P mice are completely protected
from EAE. Infiltrating T cells within the CNS were markedly
reduced in Tyk2P/P mice and protection correlated most strongly
with a reduction in double-positive IFN-γ+/IL-17+ CD4+ T cells
within both the draining lymph nodes and the CNS. Of note,
consistent with the partial in vitro phenotype in response to
cytokine stimulation, heterozygous Tyk2NP/P mice exhibited a
trend toward reduced single IFN-γ+ and double-positive IFN-
γ
+/IL-17+ CD4+ T cells in the draining lymph nodes. However,

heterozygous animals were not protected from EAE in vivo.
Our combined findings are consistent with and expand upon
previous data from Dendrou et al. (33). Both the IL-12 and IL-
23 signaling programs contribute to EAE disease (59). Protection
for EAE in Tyk2P/P mice aligns with the reduced IL-12 and
IL-23 signaling and reduced Th1 and Th17 in vitro skewing
described above. MS patients also exhibit populations of Tfh-1
and Tfh-17 cells and the relative proportions of these effectors
varies among MS cohorts, with IL-23 signaling playing a more
dominant role in some subjects(3, 60). More work is required to
determine whether protection from MS in TYK2P carriers might
be predicted based upon the proportion of Tfh-17 cells and/or
dual-positive IFN-γ+/IL-17+ CD4+ effector T cells.

In contrast to the EAE data, we show that Tyk2P does
not shield mice from autoantibody production and disease
progression in two separate lupus models even though GWAS
has linked this variant to protection from SLE (28–30, 33). SLE is
a heterogeneous disorder that reflects both variable genetic and
environmental contributions. The lack of protection observed in
our studies may reflect the specific disease models studied. We
observed no impact of Tyk2P in the BM12 adoptive transfer lupus
model where autoantibody production is driven by self-reactive
T cell triggered autoimmune GC responses that are characterized
by expanded Tfh populations. Despite our findings of altered Tfh
and memory B cell populations in healthy TYK2P subjects, we
did not observe alterations in Tfh or autoantibody generation in
this model. We also showed no impact of Tyk2P in the WAS B
cell chimera lupus model. This latter model leads to spontaneous
autoimmune GC responses driven by altered B cell receptor
(BCR) and TLR7 signaling. Autoimmune GC production is
also dependent upon B cell intrinsic antigen presenting cell
(APC) activity, IFNγ1-R1 signaling, and IL-6 production (46, 51).
Surprisingly, in the current study, we also show that the WAS
chimera model is not impacted by global Il12rb2 deficiency and
our previous work has shown that B cell-intrinsic IFNAR is also
dispensable for lupus development in this model (51). Thus,

Frontiers in Immunology | www.frontiersin.org 13 January 2019 | Volume 10 | Article 4458

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gorman et al. TYK2P1104A Restricts T Cell Subsets

two key programs modulated by Tyk2P play a limited role in
this model. As noted above, TYK2P can function to limit IFN I
signaling. IFN I signaling is increased in a subset of SLE subjects
and IFN I blockade has provided partial benefit in some patients
(61–63). Thus, the potential protective impact of Tyk2P may be
most relevant in lupus models that are driven or accelerated by
an altered IFN I program. Future studies using co-modeling with
other relevant SLE GWAS risk alleles, including the common
IFIH1 risk variant (37), may provide insight into the impact of
TYK2P in SLE disease pathogenesis.

TYK2A1104 allele is a rare variant at ∼2.7% overall allelic
frequency (64). Thus, the association with protection in multiple
autoimmune disorders is predominantly within heterozygous
individuals. As noted above, while we observed alterations
in key lymphocyte populations in healthy subjects with the
protective allele, we observed only trends toward reduced
signaling activity using heterozygous Tyk2NP/P murine and
human cells in our in vitro studies. Disease protection in vivo,
when present, was only evident in Tyk2P/P animals. The
requirement for homozygous TYK2P expression to manifest
differences in our assays suggests that protection likely involves
a more complex process than simply altering a single cytokine
program. Instead, the variant appears to provide protection by
modestly altering multiple pathways, thereby subtly diminishing
immune responses that lead to autoimmunity. This complex
role for TYK2P in protection from autoimmune pathogenesis
highlights the value of our combinatorial studies using both
murine models and healthy human subjects to assess its
impact on human disease. Whether protection primarily reflects
diminished Tfh cell populations or another cell type remains to
be fully defined the ability of TYK2 to impact a subset of key
cytokine pathways highlights its potential utility as a therapeutic
target. Consistent with this concept, recent findings using an
oral TYK2 inhibitor have demonstrated beneficial effects in
treatment of adult subjects with psoriasis (65). Taken together,
our findings suggest that targeting TYK2 kinase activity may
provide a relatively broad therapeutic window for protection
from autoimmune disease while limiting the potential risk for
immunosuppression.
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The importance of low frequency and rare variation in complex disease genetics

is difficult to estimate in patient populations. Genome-wide association studies are

therefore, underpowered to detect rare variation. We have used a combined approach

of genome-wide-based imputation with a highly stringent sequence kernel association

(SKAT) test and a case-control burden test. We identified 98 candidate genes containing

rare variation that in aggregate show association with SLE many of which have

recognized immunological function, but also function and expression related to relevant

tissues such as the joints, skin, blood or central nervous system. In addition we also find

that there is a significant enrichment of genes annotated for disease-causing mutations in

the OMIM database, suggesting that in complex diseases such as SLE, such mutations

may be involved in subtle or combined phenotypes or could accelerate specific organ

abnormalities found in the disease. We here provide an important resource of candidate

genes for SLE.

Keywords: SLE, systemic lupus erythematosus, imputated rare variation, GWAS—genome-wide association study,

sequence kernel association test, aggregated case-control enrichment

INTRODUCTION

Genome-wide association studies have been designed primarily to capture common variation and
so far some 10,000 common genetic variants have been robustly associated with a wide range of
complex diseases (1). Therefore, this methodology is underpowered to detect the effects of rare
variants. There has been much debate as to the role of rare genetic variation on complex traits
(2–4) and how rare variant studies complement GWASs (5). It is now accepted that rare variants
located in different genes could in fact play a more important role in disease susceptibility than
common variants (4). The challenge arises in measuring and statistically analyzing rare variation. It
would be very unexpected to find rare variants that could have substantial effect sizes and therefore
high penetrance contributing to complex traits, being more likely to have mutations with modest
effects. For small effect sizes association testing may require composite tests of overall “mutational
load,” pooling rare variants for analysis by addressing the question: do rare variants increase or
decrease disease risk? (6). In-depth whole-genome sequencing is themost comprehensive approach
for measuring rare and common variation in both coding and non-coding regions. However,
nowadays, its application is limited by the costs and various computational challenges, especially
for large-scale cohorts. Whole-exome sequencing is a cost-effective alternative, however one of its
obvious drawback is the absence of variants in non-coding regions, whichmay be especially relevant
in the context of complex disease genetics. Genotype imputation is likely to remain a valuable tool.
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At this point an interesting cost and a computationally effective
alternative would be to combine genotype imputation with
targeted sequencing in a gene-centered strategy. For dense
genotyping arrays, imputation is able to predict nearly all missing
common variation with high accuracy, but as the variant minor
allele frequency (MAF) decreases, so does the accuracy of
imputation, depending mainly on the size of the reference panel
and the ancestry of the imputed samples, with the best efficiencies
in European cohorts, mainly due to the sufficiently large size of
the European reference panels (7–13).

We have previously tested the overall effect of imputed
rare variation on particular genes in systemic autoimmunity
(14). Recently, we have implemented and successfully applied a
method based on genotype imputation of rare variation, on a set
of genes detected by exome sequencing as possible candidates for
association to systemic lupus erythematosus (SLE) by mutation
in members of Icelandic SLE-multicase families (15).

In the present work the method has been brought to the
genome level to scan for association of protein coding genes
with SLE by rare variation in the European ancestry population.
We executed stringent imputation in a densely genotyped set for
analyzing association with SLE in a sample from the European
population selecting the protein coding genes of the genome and
then applying tests to detect those that significantly associated
with the disease by rare-variation. This procedure provided a
set of 98 genes as good candidates for association with SLE by
mutation. Many of these genes showed immunological related
functions or effects on other organs or tissues affected by
the pathology, such as joints, skin, central nervous system or
blood and some were involved in human energy metabolism
and more specifically as part of the respiratory chain. Such a
diversity of functions is to be expected because of the phenotypic
heterogeneity of a complex disease as SLE.

MATERIALS AND METHODS

Genome-Wide Association Analysis
We used GWAS data from 5,478 individuals of European
ancestry including 4254 SLE patients and 1,224 controls
genotyped using the Illumina HumanOmni1_Quad_v1-0_B
chip. In order to increase the number of controls, additional
data from European subjects were obtained from the dbGaP
database (http://www.ncbi.nlm.nih.gov/gap) including the
DCEG Imputation Reference Dataset (phs000396.v1.p1)
with 1,175 individuals representing general population, and
controls subjects from two case-control studies: 1,047 from
the High Density SNP Association Analysis of Melanoma
(phs000187.v1.p1) and 903 from GENIE UK-ROI Diabetic
Nephropathy GWAS (phs000389.v1.p1). Note that only control
from both case-control studies were included in our analysis.
In total, the initial dataset consisted of 4,254 SLE patients and
4,349 controls.

In order to obtain a quality-controlled working dataset
satisfying current state-of-the-art criteria for association studies,
data filtering was conducted using PLINK v1.07 1 (16) applying
the following criteria: minimum total call rate per sample of 90%,
minimum call rate per marker of 98%, minor allele frequency

(MAF) threshold of 1%, Hardy-Weinberg Equilibrium (HWE)
p-value for cases and controls at a minimum of 0.0001, and in
addition at 0.01 only for controls, and finally a cutoff p-value
of 0.00001 for differential missingness in, the software REAP
was used (17) applying a kinship coefficient threshold <0.055.
To correct for stratification, principal component analysis (PCA)
was performed with smartpca, EIGENSOFT 4.0 beta package 2
(18). To confirm the European ancestry we ran a PCA with the
set of independent markers (r2 < 0.1) that maximized differences
in allelic frequencies between the four main 1000 Genomes
subpopulations (EUR, AFR, AMR, and ASN). No samples were
detected as “non-European” (Supplemental Figure 1). Next, the
PCA was performed with the set of r2 < 0.1, that maximized
differences in the allelic frequencies in 1000 Genomes EUR
subpopulations (CEU, GBR, IBS, TSI, and FIN) and two
additional subpopulations from our sample dataset, Greek
and Turkish (GRK and TUR) representing the south-eastern
European ancestry. The resulting PCs perfectly classified the
individuals from reference populations by their geographical
origin (Supplemental Figure 2). This last set of PCs was used for
correcting for genetic stratification in the case-control association
analysis (Supplemental Figure 3). This resulted in a λGC = 1.05
using the first 10 principal components. The final data set used for
association analysis consisted of 4,212 cases and 4,065 controls.

Imputation
Release 19 (GRCh37.p13) was used as reference (https://
www.encodeproject.org/files/gencode.v19.annotation/). Of
19,430 sequences annotated as “protein coding” in the
gencode.v19.annotation.gtf file, 15,763 included in the final
QC-filtered genotyping data set became our imputation working
gene list. Each protein-coding gene region was extended 500,000
additional base pairs upstream and downstream, respectively,
as it is known that large buffers may improve accuracy for
low-frequency variants during imputation. Markers within
each extended region were extracted from the GWAS data
for imputation with IMPUTE2 (19) using the 1000 Genomes
Project as reference panel. Specifically, we used 1000 Genomes
Phase 3, b37 (October 2014), as these haplotypes have lower
genotype discordance and improved imputation performance
into downstream GWAS samples, especially for low frequency
variants (20, 21). Genome-Wide Association Analysis of Imputed
Rare Variants in complex diseases has been previously used as
a gene-centered approach (7). In this paper imputation into a
GWAS scaffold using the WTCCC European analysis cohort
explicitly showed substantial gains in power to detect rare variant
association within the gene where the extent of the increase in
power depends crucially on the number of individuals in the
reference panel. Therefore, power gains obtained from 500 to
4,000 samples in the reference panel were not as great as from
120 to 500 samples. Based on this, and for the objective of our
study we considered as adequate the 2,504 samples present in
the 1000 Genomes phase 3 reference panel (2014 release, http://
mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/) of which 503
are of European descent. Prior to imputation, each GWAS gene
extended region was phased with SHAPEIT using the 1000
Genomes EUR subpopulation as reference (http://www.shapeit.
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fr/). A restrictive QC-filter was applied on the imputed genotypes
(SNP genotyping rate ≥ 99%, sample genotyping rate ≥ 95%)
without restriction of allele frequencies, in order to include both
rare and low frequency variants. To ensure a highly reliable
imputation, a conservative IMPUTE info_value threshold of ≥
0.75 for each marker were applied as imputation quality score.

Functional Annotation of Genetic Variants
Annotation of analyzed genetic variants in their different
functional categories was carried out using ANNOVAR (22).

Gene Case-Control Association Analysis
by Rare Variation
While there is no universally accepted definition of “rare variant,”
and a minor allele frequency (MAF) of 1% is the conventional
definition of polymorphism, then a MAF < 1% would be
understood as “rare variation.” We tested whether any of the
N genes in the human genome had statistical evidence of
association with SLE in the general European population due
to the combined effect of all rare variation within each gene
(MAF < 1%). Each gene was analyzed using two procedures:
the sequence kernel association (SKAT) test (20, 21) and a case-
control burden test by adjusting a logistic regression model
with a “transformed” “genetic variable” equals to the sum of
minor frequency alleles for all markers below the (<1%) in
the tested gene in each i individual (7). To note that in such
case-control burden test, a result statistically significant indicates
that the overall effect of rare variation on the gene goes in the
same direction being either of risk (aggregate odd ratio > 1) or
alternatively protective (aggregate odd ratio < 1). This feature of
case-control burden analysis helps to interpret the effect of rare
variation on the phenotype. In addition, running two association
procedures, SKAT

⋂
case-control burden test would reduce the

rate of false positives. Thus, we will consider as true positives
those genes with significant association test for both procedures,
SKAT and case-control burden test. However, in association
tests that simultaneously include several markers, one effect of
linkage disequilibrium (LD) between these markers could be
collinearity. We have addressed the LD issue running the tests
with a set of independent markers by applying a very restrictive
LD threshold of r2 < 0.1. It could be argued that association
signals would be lost by applying such a strict threshold of r2

but even so, if the signal remains it supports it as “true positive”
(15). Supplemental Figure 4 summarizes the study workflow.

Correcting for Stratification in Rare Variant
Association Analysis
We verified that the set of Principal Components computed
with common variation was able to correct stratification for rare
variant association analysis in our sample (15). To be as stringent
as possible, the 10 first principal components (PC’s) and genomic
control (GC) were used to correct for stratification in both tests.
For case-control burden 10 PC’s corrected tests, the genomic
inflation factor (λGC) was equal to 1.11 and for SKAT 10 PC’s
corrected tests it was equal to 1.24. These λGC values were used
for correction of the resulting inflation on each type of association
test (GC correction = Statistic 10PC′c_corrected/ λGC). When no

PC’s correction was used, the λGC for case-control burden tests
was equal to 1.44 and 2.97 for SKAT. Thus, the 10 PC’s correction
reduced the inflation by 33% in the case-control burden tests, and
in 174% in the SKAT tests.

Correcting for Multiple Testing in Gene
Case-Control Association Analysis of Rare
Variation
Regarding the question of correcting for multiple testing in gene
association by rare variants, a genomic association threshold
of 106 is accepted (equivalent to Bonferroni correction for
19,000–20,000 protein encoding genes in the genome). It is
also accepted that Bonferroni, although mathematically right
would be very penalizing for biological data, therefore we opted
for techniques based on permutation processes. Our multi-test
correction procedure brings together the genotypes of all rare
variants in all tested genes as columns into a single table. For each
gene a number of markers equal to that of the gene was randomly
extracted from this table and its association test calculated. By
repeating the procedure for N times an empirical corrected P-
value was calculated for each tested gene. It can be argued
that when randomization is done, LD relations are abrogated
affecting the empirical P-values computation in random tests,
but this problem did not affect our multi-testing correction
procedure since we use a working set of independent markers
(r2 < 0.1) (15).

Enrichment in OMIM Annotations in the
“Result-List” of Genes Associated to SLE
by Rare Variation
Taking into account that pleiotropic effects on human complex
traits was widespread (23), it would be expected that in a list
of genes significantly enriched in rare variation there would
also be an enrichment of diseases caused by mutations. To
test this, we used three data sets. First, we downloaded the
OMIM database (http://www.omim.org/downloads/; updated:
March 23, 2015), and employed it to build a ‘gene-disease’ table
with its 20,707 records (“gene-disease” pairs); second, the list of
all GWAS imputed protein-coding genes in our final dataset;
and thirdly, the list of N genes resulting as candidates to be
SLE-associated from our rare variants association analysis. Then
if our “result-list” of N associated genes provided annotations
for X OMIM diseases, the procedure for testing enrichment in
OMIM annotations was to randomly select a set of N genes
from the list of GWAS imputed protein-coding genes, and count
how many of them appeared on the OMIM “gene-disease” table.
This procedure was repeated 1,000 times. The average number of
OMIMdisease and its standard deviation was calculated and then
a Z-score test was performed providing the statistical significance
of this enrichment.

RESULTS

Imputation
A total of 13,956 genes passed the QC filter of the imputation
process, summing a set of 5,305,811 markers, 2,595,206 variants
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with MAF > 1% (48.93%), and 2,709,605 variants (mutations)
with MAF < 1% (51.07%). A set of 1,549,436 independent
markers was obtained by applying a threshold of r2 < 0.1. As
expected, rare variation was much less affected by the linkage
disequilibrium than common variation, which resulted in 87,853
variants with MAF > 1% (5.56%) and 1,491,583 variants with
MAF <1% (94.44%) (Figure 1).

A working set of 1,306,324 independent (r2 < 0.1) rare
variants (MAF < 0.1) was used to test genes for case-
control association to the SLE phenotype (185,219 were non-
polymorphic). The reliability of these tests depends on the
accuracy of the imputation. When analyzing reliability of
imputation in rare variants 3 intervals are usually differentiated:
“singletons,” “very rare” variation and “rare” variation (4, 24). It
is known that as the variant MAF decreases, so does the accuracy
of imputation, improving with the size of the reference panel,
and singletons, meaning that the minor allele is observed only in
one chromosome, are not reliably imputed under any conditions.
In our data set, 189,893 (14.5%) variants were singletons (in the
8,277 individuals sample this means a MAF = 0.006%) and if an

FIGURE 1 | After QC filtering, imputation provided a set of 5,305,811

markers: 2,595,206 with MAF > 1% (48.93%) and 2,709,605 with MAF < 1%

(51.07%). A set of 1,549,436 independent markers was obtained by applying

a threshold of r² < 0.1. Rare variation was less affected by the linkage

disequilibrium than common variation, which resulted in 87,853 variants with

MAF > 1% (5.56%) and 1,491,583 variants with MAF < 1% (94.44%). This

last set of 1,491,583 independent rare-variants constituted our working set.

TABLE 1 | Number of independent rare variants vs. sum of minor alleles.

Number of variants Number of minor alleles

Singletons 189,893 (14.5%) 189,893 (0.64%)

MAF<0.01% 676,621 (51.8%) 4,671,537 (16.04%)

0.01% > MAF ≤ 1% 439,810 (33.7%) 24,266,676 (83.33%)

1,306,324 (100%) 29,128,106 (100%)

Rare variation was classified into 3 categories by their minor allele frequencies (MAFs):

(1) singletons that in the 8,277 individuals sample means a MAF = 0.006%, (2)

“very rare-variants,” 0.006% <MAF< 0.1%, (3) and rare variation in a “strict sense,”

0.1% < MAF≤ 1%.

additional threshold of MAF < 0.1% to distinguish rare variant
from a category of “very” rare variant was applied, then 676,621
(51.8%) variants were classified as very rare-variants, while
439,810 (33.7%) had MAF between 0.1 and 1%. These results
suggested that imputed genotype data used in the association
analysis could be unreliable because of the predominance of
markers belonging to the categories of very rare variants and
singletons over the most reliable imputation category of rare
variation, 0.1 < MAF ≤ 1%. However, in tests based on the
combined effect of variants, the main factor is not the number
of markers aggregated but more importantly the count of alleles
of minor frequency in the sample of analyzed individuals. Thus,
in our 8,277 individuals dataset the 3 categories of rare variation
sum up 29,128,106 minor alleles. Singletons represented 14.5%
of rare variation but only 0.65% of minor alleles. The 51.8% of
the markers included in the very rare variation category add up
to 4,671,537 minor frequency alleles, that is, 16.04%; while the
remaining markers, sum up to 24,266,676 of minor frequency
alleles, which represented the 83.33%, resulting in a 5 times
greater ratio of “0.1%<MAF ≤ 1%” variation compared to the
sum of the other two categories (Table 1, Figure 2). Therefore,
despite its lower proportion, the expected effect of rare variation
on the aggregate test would be greater than that of the “very
rare” variation and singletons providing a higher reliability to
the analysis.

Note that the proportions of the different functional categories
in the rare variation (MAF < 1% with and without r² filtering
was similar (Table 2, Figure 3), being the intronic the most
abundant category, 85% of the total, while the exonic rare
variants represented only 2%, of which more than 98% were
synonymous (Figure 4).

Rare-Variant Association Gene-Centered
Analysis, and OMIM Annotation
Enrichment
Under these conditions a set of 281 genes showed SKAT test
with Genomic Control and multi-testing corrected P < 0.05
(Supplemental Table 1). Noted that 441 genes also presented
Genomic Control and multi-testing corrected significant tests
for enrichment in rare variation (Supplemental Table 2). When
the OMIM annotation enrichment analysis were executed, the
list of SKAT associated genes was significantly enriched with
119 OMIM diseases (Supplemental Table 3) instead of the 81
expected at random, which gave a value of P = 3E-03. Of
these 281 genes, 139 were enriched in mutations in cases vs.
controls and the remaining 142 were depleted. Note that the
list of 139 genes enriched in mutations had 80 OMIM diseases
annotations when expected was just 40, which gave a P-value
of 6E-05. Remark that the 140 depleted genes showed no
significant enrichment in OMIM diseases annotations (39 vs. 41
expected, P = 0.59).

As best candidates for SLE association by rare variation,
we selected the set of 98 genes which simultaneously showed
Genomic Control and multi-testing corrected P < 0.05 in both
SKAT test and case-control burden test, with the purpose of
reducing the proportion of possible spurious associations. These
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FIGURE 2 | Numbers of variants were represented by dark columns: in the set

of 1,306,324 independent (r² < 0.1) polymorphic rare variants (MAF < 0.1),

189,893 (14.5%) were singletons (in the 8,277 individuals sample this means a

MAF = 0.006%), 676,621 (51.8%) were classified as “very rare-variants”

(0.006% <MAF < 0.1%), and 439,810 (33.7%) considered as a rare variation

in a “strict sense” (0.1% < MAF ≤ 1%); these numbers of variants were

represented by dark columns. Lighter columns represented the sums of alleles

of minor frequency in each of the 3 categories of rare variation, these 3

categories sum up 29,128,106 minor alleles: the 189,893 singletons

represented only 0.65% of minor alleles; the 676,621 the markers, which were

very rare variation, add up to 4,671,537 minor frequency alleles, it was the

16.04%; while the remaining markers, sum up to 24,266,676 of minor

frequency alleles representing the 83.33%.

are shown in Table 3. Some of these are discussed as excellent
candidates for the identification of individuals with particular
clinical phenotypes that may be directly targeted for sequencing.
ANNOVAR annotation of the independent mutations mapped
on these 98 genes are shown in Supplemental Table 5.

DISCUSSION

We have described a strategy to identify the association of rare
variation with a complex disease based on densely genotyped data
and stringent imputation. Our study provides a first list of genes
potentially involved in SLE through rare mutations that may have
an impact on the clinical presentation of the disease.

Although it could seem difficult to justify the role of non-
coding rare gene variation as causal, there are numerous
examples that support it. Efforts to identify risk alleles usually
are focused on exploring coding mutation by exome sequencing,
noting Pullabhatla et al. (25), as a recent example in SLE, but
analogous works for non-coding variants are scant. As examples
supporting the causative role of rare non-coding gene variation
in these complex phenotypes, it has been recently reported that
non-noding mutation affected plasma lipid traits in a founder
population (26), or in a more generalized perspective, it has
been demonstrated that rare variants contribute to large gene

TABLE 2 | Functional annotation of rare variation with and without r² filtering.

No r2 threshold r² < 0.1

Intronic 2,305,643 (85.09%) 1,253,088 (84.011%)

Intergenic 175,180 (6.465%) 101,187 (6.784%)

UTR3 46,322 (1.71%) 27,637 (1.853%)

Exonic 46,133 (1.70%) 30,053 (2.015%)

Downstream 26,690 (0.985%) 16,688 (1.119%)

Upstream 23,791 (0.878%) 15,095 (1.012%)

UTR5 9,872 (0.364%) 6,215 (0.417%)

Splicing 231 (0.009%) 171 (0.012%)

ncRNA intronic 68,381 (2.524%) 36,967 (2.478%)

ncRNA exonic 6,066 (0.224%) 3,600 (0.241%)

FIGURE 3 | Functional annotation of rare variation. Note that the percentages

of the different functional categories in rare variation with and without r² filtering

was similar, being the intronic the most abundant category, 85% of the total.

expression changes across tissues and provide an integrative
method for interpretation of rare variants effects (27).

It is important to point out that a significant test for aggregated
case-control burden test would indicate that in the set of
individuals forming the sample, the overall effect of the rare
variation on the gene goes in the same direction being either of
risk or protective. This feature of case-control burden analysis
helps to interpret the effect of rare variation on the phenotype,
which is measured by the overall OR values, OR > 1 or OR
<1, risk or protection, respectively. Mutations associated with
diseases were usually considered to be detrimental to health,
increasing the risk of disease. However, there are a growing
number of reported mutations shown to be protective, lowering
the risk of certain diseases and conditions (28–31). In this
context we can explain why the gene STAT4 associated to SLE
by common variation (32–45) and our 20th SKAT best-hit, failed
the burden test (Supplemental Tables 1, 4). There were two
sets of rare variation mapping on the gene with opposite join
effects and therefore reducing the power of the overall burden
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FIGURE 4 | Functional annotation of exonic rare variation. The exonic rare

variants represented only 2%, and more than 98% of these exonic mutations

were synonymous.

test. The same rationale could be applied to the other SLE
associated genes by common variation also detected as targets
by rare variation with SKAT but not by burden test in our
study (Supplemental Tables 1, 4): GTF2IRD1 (39, 42), DAB2
(41), NOTCH4 (37), CLEC16A (32, 42, 44), TNFSF4 (32, 40–46),
and C2 (36). The same can be argued for DOCK8 (ORburden.test

=2.33, P SKAT.corr = 0.03 and Pburden.test.corr = 0.204) the cause
of Hyper-IgE recurrent infection syndrome (HIES) autosomal
recessive by homozygous or compound heterozygous mutation
(OMIM #243700). Note that it has been reported a case of
DOCK8 deficiency caused by a truncating mutation, associated
with SLE (47).

Focusing on the best-hits which meet the criteria of
simultaneous significant association in both rare variation tests,
SKAT and burden test, we found some genes described
as associated with SLE by common variation such as
TMEM55B (46), SPATA8 (36), PRDM1 (32, 40, 42, 44, 48),
and HLA-DRB1 (36, 40, 42, 43, 45) (Table 3). Note IRF7 also
associated to SLE through common variants (32, 38, 44) had
association values through rare variation close to statistical
significance (PSKAT.corr = 0.082 and Pburden.test.corr = 0.036)
(Supplemental Table 4).

In this kind of studies it is usual to obtain lists of genes
with a difficult functional justification. However, in this case
we can relate many of the best hits in Table 3 directly to
immunological functions or with effects on other organs or
tissues affected by SLE, such as skin, central nervous system or
blood. For example our list contained C4A, PSKAT.corr = 0.014
and Pburden.test.corr = 0.0034, ORburden.test = 0.43 and
CI95%.burden.test = (0.23, 0.79), which was early related to
SLE through mutation [OMIM: 152700; (49)]. The zinc finger

E-box binding homeobox 1 gene, ZEB1, P SKAT.corr < 1.00E-
03 and Pburden.test.corr < 1.00E-03, ORenrich = 2.03 and CI

95%.enrich = (1.35, 3.05), acts as a transcriptional repressor
inhibiting interleukin-2 (IL-2) gene expression. Note that
IL-2 plays a critical role in immune tolerance, and insufficient
IL-2 production upon stimulation has been recognized in
SLE pathogenesis, particularly it has been described a new
epigenetic pathway in the control of IL-2 production in SLE
whereby low levels of miR-200a-3p accumulate the binding of
the ZEB1-CtBP2 complex to the IL-2 promoter and suppresses
IL-2 production (50). The role of CCR3 [P SKAT.corr = 0.00838
and Pburden.test.corr < 1.00E-03, ORburden.test = 3.74 and CI

95%.burden.test = (1.74, 8.02)] in inflammation is widely known
(OMIM ∗601268).

The protein encoded by CYP26B1, P SKAT.corr = 0.01
and Pburden.test.corr < 1.00E-03, ORburden.test = 1.7 and CI

95%.burden.test = (1.31, 2.21), functions as a critical regulator of all-
trans retinoic acid levels by the specific inactivation of all-trans
retinoic acid to hydroxylated forms. Mast cells (MCs) are known
to be regulators of inflammation. It has been reported that the
ATP-P2X7 pathway induces MCs activation and consequently
exacerbates inflammation. P2X7 expression onMCs was reduced
by fibroblasts in the skin. Cyp26b1 was highly expressed in skin
fibroblasts. Cyp26b1 inhibition resulted in upregulation of P2X7
on MCs and the presence of excessive amounts of retinoic acid
correlated with the increased expression of P2X7 on skin MCs
and consequent P2X7- and MC-dependent dermatitis (so-called
retinoid dermatitis) (51).

The protein encoded by TIGD7 belongs to the
“tigger subfamily of the pogo superfamily of DNA-
mediated transposons” in humans, P SKAT.corr = 0.0139
and Pburden.test.corr = 0.00179, ORburden.test = 3.04 and
CI95%.burden.test = (1.58, 5.86). The exact function of this gene
is not known, but it is very similar to CENPB considered a
major centromere auto-antigen recognized by sera from patients
with anti-cetromere-antibodies (ACA), which occur in some
autoimmune diseases, frequently in limited systemic scleroderma
and occasionally in its diffuse form (52, 53).

AQP8, P SKAT.corr = 0.0115 and Pburden.test.corr = 0.0063,
ORburden.test = 2.5 and CI 95%.burden.test = (1.42, 4.41). It has
been reported that efficient induction of B cell activation and
differentiation requires H2O2 fluxes across the plasmamembrane
for signal amplification. NADPH-oxidase 2 is the main source
of H2O2 and AQP8 is the transport facilitator across the
plasma membrane. AQP8 silencing inducible B lymphoma cells
responded poorly to TLR and BCR stimulation. Conversely
a silencing-resistant AQP8 rescued responsiveness (54). In
addition AQP8 was the major antibody target on human salivary
glands in patients with primary Sjögren’s syndrome (55).

It was known that SAMSN1 (=HACS1), P SKAT.corr = 0.012
and Pburden.test.corr = 0.0091, ORburden.test = 1.74 and
CI95%.burden.test = (1.21, 2.5), is up-regulated by B cell
activation signals and it participates in B cell activation and
differentiation (56).

MICB, P SKAT.corr = 0.0297 and Pburden.test.corr = 0.0062,
ORburden.test = 0.62 and CI 95%.burden.test = (0.45, 0.84), acts as
a stress-induced self-antigen that is recognized by gamma delta
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TABLE 3 | Best gene candidates for SLE association through rare variation in European ancestry population.

Gene Description NMUT nMAF.aff nMAF.ctr OR CI.95lo CI95up Pburden.test.corr PSKATcorr

ZEB1 Zinc finger E-box binding homeobox 1 74 1077 886 2.03 1.35 3.05 <1.00E-03 <1.00E-03

PRKAG3 Protein kinase, AMP-activated, gamma 3

non-catalytic subunit

4 53 95 0.55 0.39 0.78 <1.00E-03 <1.00E-03

COQ10B Coenzyme Q10 homolog B (S. cerevisiae) 3 11 38 0.25 0.13 0.5 <1.00E-03 <1.00E-03

MAD2L2 MAD2 mitotic arrest deficient-like 2 (yeast) 19 417 517 0.59 0.45 0.77 <1.00E-03 3.60E-03

TMEM69 Transmembrane protein 69 5 18 42 0.32 0.19 0.54 <1.00E-03 4.40E-03

KRTAP9-2 Keratin associated protein 9-2 3 4 14 0.16 0.05 0.5 <1.00E-03 6.20E-03

SERINC4 Serine incorporator 4 4 27 4 5.98 2.23 16.03 <1.00E-03 6.40E-03

CCR3 Chemokine (C-C motif) receptor 3 33 750 431 3.74 1.74 8.02 <1.00E-03 8.40E-03

CYP26B1 Cytochrome P450, family 26, subfamily B,

polypeptide 1

20 170 93 1.7 1.31 2.21 <1.00E-03 1.01E-02

TMEM106B Transmembrane protein 106B 24 103 244 0.56 0.38 0.82 <1.00E-03 1.77E-02

POU3F3 POU class 3 homeobox 3 2 66 33 3.47 1.46 8.22 <1.00E-03 2.41E-02

TIGD7 Tigger transposable element derived 7 14 109 55 3.04 1.58 5.86 1.80E-03 1.39E-02

KLF1 Kruppel-like factor 1 (erythroid) 3 90 48 3.01 1.46 6.2 1.80E-03 2.29E-02

PSMB8 Proteasome (prosome, macropain)

subunit, beta type, 8 (large multifunctional

peptidase 7)

30 439 490 0.64 0.48 0.84 1.80E-03 2.46E-02

MAPK15 Mitogen-activated protein kinase 15 6 55 78 0.57 0.4 0.82 1.80E-03 2.67E-02

AMACR Alpha-methylacyl-CoA racemase 20 347 261 1.64 1.17 2.29 1.80E-03 2.77E-02

UBE3A Ubiquitin protein ligase E3A 73 1164 1340 0.53 0.35 0.82 1.80E-03 3.93E-02

TRIM16L Tripartite motif containing 16-like 13 179 227 0.52 0.34 0.78 3.40E-03 <1.00E-03

CTSK Cathepsin K 3 23 41 0.26 0.1 0.68 3.40E-03 6.20E-03

HYPK Huntingtin interacting protein K 3 33 6 13.76 2.45 77.3 3.40E-03 8.30E-03

C4A Complement component 4A (Rodgers

blood group)

2 17 33 0.43 0.23 0.79 3.40E-03 1.40E-02

WNT10A Wingless-type MMTV integration site

family, member 10A

16 153 215 0.52 0.34 0.81 3.40E-03 1.57E-02

OR5B12 Olfactory receptor, family 5, subfamily B,

member 12

3 98 141 0.44 0.26 0.75 3.40E-03 1.78E-02

TAGLN3 Transgelin 3 27 225 275 0.58 0.4 0.84 3.40E-03 2.62E-02

PALM Paralemmin 65 653 740 0.52 0.34 0.79 3.40E-03 2.84E-02

SPACA1 Sperm acrosome associated 1 25 405 279 2.02 1.3 3.12 4.80E-03 6.10E-03

POPDC2 Popeye domain containing 2 36 444 309 2.47 1.39 4.4 4.80E-03 6.30E-03

ALG11 Asparagine-linked glycosylation 11,

alpha-1,2-mannosyltransferase homolog

(yeast)

10 60 91 0.59 0.42 0.83 4.80E-03 7.90E-03

SF3B4 Splicing factor 3b, subunit 4, 49kDa 3 58 88 0.39 0.2 0.78 4.80E-03 1.78E-02

DUSP7 Dual specificity phosphatase 7 4 32 12 8.12 2.03 32.54 4.80E-03 3.11E-02

MRGPRX4 MAS-related GPR, member X4 9 74 108 0.62 0.46 0.85 6.30E-03 7.50E-03

AQP8 Aquaporin 8 9 141 83 2.5 1.42 4.41 6.30E-03 1.15E-02

PI3 Peptidase inhibitor 3, skin-derived 2 20 4 3.85 1.29 11.5 6.30E-03 1.58E-02

FRS3 Fibroblast growth factor receptor

substrate 3

28 384 447 0.66 0.49 0.87 6.30E-03 2.78E-02

MICB MHC class I polypeptide-related

sequence B

47 1110 1166 0.62 0.45 0.84 6.30E-03 2.97E-02

GPBP1L1 GC-rich promoter binding protein 1-like 1 10 172 193 0.57 0.38 0.86 7.70E-03 <1.00E-03

DOLK Dolichol kinase 1 15 3 5.66 1.59 20.2 7.70E-03 9.90E-03

CSTA Cystatin A (stefin A) 23 266 200 2.26 1.28 3.97 7.70E-03 1.59E-02

KLHL31 Kelch-like 31 (Drosophila) 39 465 518 0.51 0.32 0.81 7.70E-03 1.61E-02

GPR26 G protein-coupled receptor 26 58 934 734 332 1.25 2.94 7.70E-03 1.65E-02

PRDM1 PR domain containing 1, with ZNF domain 26 278 332 0.62 0.44 0.86 7.70E-03 2.45E-02

COX17 COX17 cytochrome c oxidase assembly

homolog (S. cerevisiae)

32 398 280 2.13 1.31 3.46 7.70E-03 3.26E-02

(Continued)
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TABLE 3 | Continued

Gene Description NMUT nMAF.aff nMAF.ctr OR CI.95lo CI95up Pburden.test.corr PSKATcorr

SAMSN1 SAM domain, SH3 domain and nuclear

localization signals 1

129 1977 1622 1.74 1.21 2.5 9.10E-03 1.20E-02

ST8SIA2 ST8 alpha-N-acetyl-neuraminide

alpha-2,8-sialyltransferase 2

153 1583 1653 0.51 0.32 0.81 9.10E-03 1.75E-02

MAS1L MAS1 oncogene-like 12 141 171 0.52 0.32 0.83 9.10E-03 3.38E-02

TBCB Tubulin folding cofactor B 21 236 174 1.66 1.14 2.42 1.05E-02 <1.00E-03

FGR Gardner-Rasheed feline sarcoma viral

(v-fgr) oncogene homolog

6 154 93 1.97 1.17 3.3 1.05E-02 2.67E-02

WNK4 WNK lysine deficient protein kinase 4 5 161 116 2.06 1.25 3.41 1.05E-02 4.41E-02

MGAT5 Mannosyl (alpha-1,6-)-glycoprotein beta-

1,6-N-acetyl-glucosaminyltransferase

426 3961 3984 0.51 0.33 0.79 1.18E-02 2.64E-02

FEZF1 FEZ family zinc finger 1 3 49 74 0.37 0.18 0.79 1.18E-02 4.02E-02

ZNF461 Zinc finger protein 461 6 55 80 0.37 0.18 0.77 1.32E-02 2.34E-02

RAB25 RAB25, member RAS oncogene family 8 82 110 0.45 0.25 0.81 1.32E-02 3.94E-02

APLNR Apelin receptor 5 65 44 2.67 1.21 5.87 1.45E-02 1.07E-02

DUS1L Dihydrouridine synthase 1-like (S.

cerevisiae)

15 58 89 0.38 0.19 0.75 1.45E-02 2.60E-02

ASAH2 N-acylsphingosine amidohydrolase

(non-lysosomal ceramidase) 2

16 256 177 2.34 1.3 4.24 1.45E-02 2.76E-02

MRPS18B Mitochondrial ribosomal protein S18B 23 554 584 0.61 0.42 0.88 1.58E-02 1.76E-02

IL18RAP Interleukin 18 receptor accessory protein 22 278 213 1.62 1.12 2.34 1.58E-02 2.77E-02

BNIP2 BCL2/adenovirus E1B 19kDa interacting

protein 2

21 196 246 0.59 0.4 0.87 1.58E-02 2.93E-02

HAX1 HCLS1 associated protein X-1 2 47 17 2.04 1.16 3.61 1.58E-02 3.08E-02

ITFG3 Integrin alpha FG-GAP repeat containing 3 72 993 1076 0.5 0.3 0.8 1.58E-02 3.63E-02

ZNF99 Zinc finger protein 99 8 18 32 0.24 0.08 0.74 1.71E-02 1.51E-02

ZIK1 zinc finger protein interacting with K

protein 1 homolog (mouse)

15 173 116 1.9 1.18 3.06 1.71E-02 2.43E-02

PDZK1 PDZ domain containing 1 12 324 376 0.67 0.48 0.92 1.84E-02 2.43E-02

KRCC1 Lysine-rich coiled-coil 1 28 272 203 1.64 1.12 2.41 1.84E-02 4.45E-02

MAP1LC3C Microtubule-associated protein 1 light

chain 3 gamma

10 161 206 0.58 0.38 0.89 1.97E-02 2.24E-02

LRP4 Low density lipoprotein receptor-related

protein 4

1 12 2 5.28 1.16 23.99 1.97E-02 2.59E-02

OR52K2 Olfactory receptor, family 52, subfamily K,

member 2

14 158 196 0.57 0.36 0.88 1.97E-02 4.29E-02

GML Glycosylphosphatidylinositol anchored

molecule like protein

66 427 496 0.45 0.25 0.8 2.10E-02 1.30E-02

ARL4A ADP-ribosylation factor-like 4A 19 163 97 1.96 1.17 3.28 2.10E-02 3.85E-02

ANKRD39 Ankyrin repeat domain 39 3 36 55 0.58 0.38 0.9 2.22E-02 1.95E-02

HLA-DRB1 Major histocompatibility complex, class II,

DR beta 1

6 52 71 0.4 0.19 0.83 2.22E-02 2.51E-02

PNO1 Partner of NOB1 homolog (S. cerevisiae) 8 79 44 2.49 1.17 5.31 2.22E-02 3.94E-02

LCE2D Late cornified envelope 2D 3 45 49 0.38 0.17 0.86 2.22E-02 4.75E-02

ANAPC11 Anaphase promoting complex subunit 11 1 18 33 0.52 0.29 0.94 2.35E-02 4.86E-02

OR7A17 Olfactory receptor, family 7, subfamily A,

member 17

7 109 73 2.15 1.16 4.01 2.47E-02 3.93E-02

PTGDS Prostaglandin D2 synthase 21kDa (brain) 17 166 124 1.76 1.09 2.86 2.60E-02 1.01E-02

CCR1 Chemokine (C-C motif) receptor 1 8 149 89 1.81 1.09 3 2.72E-02 7.30E-03

CCDC12 Coiled-coil domain containing 12 29 380 272 1.98 1.13 3.47 2.97E-02 1.95E-02

REEP4 Receptor accessory protein 4 10 115 83 2.03 1.13 3.65 3.09E-02 3.22E-02

ZNF513 Zinc finger protein 513 3 18 29 0.51 0.28 0.94 3.09E-02 3.56E-02

SPATA8 Spermatogenesis associated 8 19 145 100 1.87 1.1 3.16 3.22E-02 3.60E-03

(Continued)
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TABLE 3 | Continued

Gene Description NMUT nMAF.aff nMAF.ctr OR CI.95lo CI95up Pburden.test.corr PSKATcorr

TAF15 TAF15 RNA polymerase II, TATA box

binding protein (TBP)-associated factor,

68kDa

49 439 346 1.89 1.12 3.19 3.22E-02 3.13E-02

POLR2I Polymerase (RNA) II (DNA directed)

polypeptide I, 14.5kDa

11 142 96 1.7 1.07 2.71 3.22E-02 3.84E-02

KCTD5 Potassium channel tetramerisation domain

containing 5

24 217 250 0.54 0.33 0.89 3.34E-02 1.59E-02

NKX2-5 NK2 homeobox 5 11 109 74 2.06 1.11 3.79 3.46E-02 3.23E-02

SCARA3 Scavenger receptor class A, member 3 69 593 469 1.68 1.09 2.59 3.46E-02 4.51E-02

EFNA4 Ephrin-A4 7 37 51 0.39 0.16 0.93 3.70E-02 2.52E-02

NRM Nurim (nuclear envelope membrane

protein)

11 229 233 0.65 0.44 0.95 3.82E-02 2.26E-02

TMEM55B Transmembrane protein 55B 8 72 45 1.57 1.06 2.31 3.94E-02 9.30E-03

MPL Myeloproliferative leukemia virus oncogene 15 83 44 2.48 1.16 5.31 4.06E-02 1.93E-02

PTGS2 Prostaglandin-endoperoxide synthase 2

(prostaglandin G/H synthase and

cyclooxygenase)

6 79 109 0.29 0.1 0.86 4.18E-02 3.61E-02

NT5DC1 5’-nucleotidase domain containing 1 87 736 558 2.43 1.09 5.41 4.18E-02 4.54E-02

MAFG v-maf musculoaponeurotic fibrosarcoma

oncogene homolog G (avian)

7 68 90 0.69 0.5 0.97 4.54E-02 1.11E-02

C5orf28 Chromosome 5 open reading frame 28 10 72 90 0.52 0.28 0.99 4.54E-02 3.22E-02

C8orf58 Chromosome 8 open reading frame 58 19 347 413 0.6 0.38 0.95 4.66E-02 3.85E-02

SNX5 Sorting nexin 5 63 490 374 1.99 1.08 3.64 4.77E-02 2.51E-02

PTER Phosphotriesterase related 98 846 716 2.11 1.06 4.2 4.89E-02 5.50E-03

ZNF708 Zinc finger protein 708 8 68 88 0.54 0.31 0.96 4.89E-02 1.69E-02

We selected the set of 98 genes which simultaneously showed Genomic Control and multi-testing corrected P-values < 0.05 in both SKAT test and Case-Control burden test (Case-

Control burden test helps to interpret the effect that the rare variation on each associated gene had on the phenotype, which is measured by the overall OR value and its 95%

confidence interval).

NMUT, number of mutations on tested gene; nMAF.aff, sum of minor frequency alleles in nMUT mutations in cases (4,212 cases); nMAF.ctr, sum of minor frequency alleles in nMUT

mutations in controls (4,065 controls); OR, case-control burden test Odds Ratio; CI.95lo, case-control burden test 95% Confidence Interval minor value; CI.95up: case-control burden

test 95% Confidence Interval major value; Pburden.test.corr , case-control burden test corrected P-value; and PSKAT.corr , SKAT corrected P-value.

T cells. MICB might play a role in both SLE and cutaneous
LE (CLE) in european population (57). In addition MICB
has been associated with susceptibility to SLE in Han Chinese
Population (58, 59).

CTSK, P SKAT.corr = 0.0062 and Pburden.test.corr = 0.0034,
ORburden.test = 0.28 and CI95%.burden.test = (0.1, 0.68), is highly
expressed by rheumatoid synovial fibroblasts (RSF) that are
activated by toll-like receptor signaling pathways in rheumatoid
arthritis and is known to play a key role in the degradation of
type Iand type II collagen. Thus, cathepsin K is implicated in
the degradation of bone and cartilage in RA (60). In addition
it has been suggested that CTSK is involved in development
of psoriasis-like skin lesions through TLR-dependent Th17
activation (61).

Autoinflammation, lipodystrophy, and dermatosis syndrome
(ALDD) can be caused by homozygous mutations in the
PSMB8 gene (OMIM: # 256040), P SKAT.corr = 0.0246
and Pburden.test.corr = 0.00179, ORburden.test = 0.64 and
CI 95%.burden.test = (0.48, 0.84). This autosomal recessive
systemic autoinflammatory disorder is characterized by
early childhood onset of annular erythematous plaques on
the face and extremities with subsequent development of
partial lipodystrophy and laboratory evidence of immune
dysregulation. More variable features include recurrent fever,

severe joint contractures, muscle weakness and atrophy,
hepatosplenomegaly, basal ganglia calcifications, and microcytic
anemia (62–64). This disorder encompasses Nakajo-Nishimura
syndrome (NKJO); joint In contractures, muscular atrophy,
microcytic anemia, and panniculitis-induced lipodystrophy
(JMP syndrome); and chronic atypical neutrophilic dermatosis
with lipodystrophy and elevated temperature syndrome
(CANDLE). Furthermore, mutations in PSMB8 and other
proteasome unit genes were shown to lead to an increased type I
interferon signature (65), a characteristic of SLE.

The roles of TRIM16L, P SKAT.corr = 0.0033 and
Pburden.test.corr < 1.00E-03, ORburden.test = 0.52 and
CI95%.burden.test = (0.34, 0.78), in immune response are
unknown, however it has been reported that in fish models
TRIM16L exerted negative regulation of the interferon immune
response against DNA virus infection (66). The early events that
facilitate viral persistence in chronic viral infections have been
linked to the activity of the immunoregulatory cytokine IL-10. It
has been reported that IL-10 induced the expression ofMGAT5, a
glycosyltransferase that enhances N-glycan branching on surface
glyco- proteins, P SKAT.corr = 0.0264 and Pburden.test.corr = 0.0118,
ORburden.test = 0.51 and CI 95%.burden.test = (0.33, 0.79). Increased
N-glycan branching on CD8+ T cells promoted the formation
of a galectin 3-mediated membrane lattice, which restricted
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the interaction of key glycoproteins, ultimately increasing the
antigenic threshold required for T cell activation allowing the
establishment of chronic infection (67).

The serine incorporator 4, SERINC4, P SKAT.corr = 0.0064
and Pburden.test.corr < 1.00E-03, ORburden.test = 5.98 and
CI95%.burden.test = (2.23, 16.03), incorporates amino acid serine
into membranes and facilitates the synthesis of two serine-
derived lipids, phosphatidylserine and sphingolipids (68).

Gene KLF1, PSKAT.corr = 0.00179 and Pburden.test.corr = 0.0229,
ORburden.test = 3.01 and CI95%.burden.test = (1.46, 6.20), encodes
a hematopoietic-specific transcription factor that induces high-
level expression of adult beta-globin and other erythroid genes.
Heterozygous loss-of-function mutations in this gene result
in the dominant In(Lu) blood phenotype (69). Compound
heterozygosity for KLF1 mutations is associated with microcytic
hypochromic anemia and increased fetal hemoglobin (70).
Mutations in KLF1 cause dyserythropoietic anemia congenital
type IV (OMIM: 613673).

TMEM106B [P SKAT.corr < 1.00E-03 and
Pburden.test.corr = 0.0177, ORburden.test = 0.56 and
CI95%.burden.test = (0.38, 0.82)] was associated with
frontotemporal dementia (71, 72). In addition TMEM106B
has been associated with inflammation, neuronal loss, and
cognitive deficits, even in the absence of known brain disease,
and their impact is highly selective for the frontal cerebral cortex
of older individuals (73).

Mutations affecting the gene ALG11 [PSKAT.corr = 0.0079
and Pburden.test.corr = 0.0048, ORburden.test = 0.56 and
CI95%.burden.test = (0.42, 0.83)] cause congenital disorder
of glycosylation 1P (CDG1P) [OMIM: 613661], a
multisystem disorder caused by a defect in glycoprotein
biosynthesis and characterized by under-glycosylated serum
glycoproteins. Congenital disorders of glycosylation result
in a wide variety of clinical features, such as defects in the
nervous system development, psychomotor retardation,
dysmorphic features, hypotonia, coagulation disorders, and
immunodeficiency (74, 75).

MAD2L2, PSKAT.corr < 0.001 and Pburden.test.corr = 0.0036,
ORburden.test = 0.59 and CI95%.burden.test = (0.45, 0.77), controls
DNA repair at telomeres and DNA breaks by inhibiting 5’
end resection (76). Note that a role for MAPK15 (=ERK8), P

SKAT.corr = 0.0018 and P enrich.corr = 0.0267, OR enrich = 0.57 and
CI 95%.enrich = (0.40,0.77), in the response to, or repair of, DNA
single strand breaks has been proposed (77), and it is annotated
as “positive regulation of telomerase activity,” biological process
(GO:0051973). MRGPRX4 (= MrgX4) [P SKAT.corr = 0.0063
and Pburden.test.corr = 0.00748, ORburden.test = 0.62 and
CI95%.burden.test = (0.46, 0.85)] is a Mas-related G-protein
coupled receptor X (MrgXs). It was described as an oncogene
in human colorectal cancers (78), however, it has recently been
linked to immunological functions. AG-30/5C is an angiogenic
host defense peptide (HDP) that activates various functions of
fibroblasts and endothelial cells, including cytokine/chemokine
production andwound healing. It has been shown that AG-30/5C
enhanced the production of cytokines/chemokines and facilitated
keratinocyte migration and proliferation mainly via MrgX3 and
MrgX4 receptors constitutively expressed in keratinocytes and

up-regulated upon stimulation with TLR ligands. AG-30/5C-
induced activation of keratinocytes was controlled by MAPK and
NF-κB pathways (79).

In addition other genes associated to human energy
metabolism and more specifically in the mitochondrion, as part
of the respiratory chain, the best hit associated to SLE by rare
variation was COQ10B, PSKAT.corr <0.001 and Pburden.test.corr
<0.001, ORburden.test = 0.25 and CI95%.burden.test = (0.13,
0.50). It encodes coenzyme Q, an essential component of
the electron transport chain. The copper metallochaperone
COX17, P SKAT.corr = 0.0077 and Pburden.test.corr = 0.0326,
ORburden.test = 2.13 and CI95%.burden.test = (1.31, 3.46), is
essential for the assembly and activation of the cytochrome
c oxidase complex (80), the terminal component of the
mitochondrial respiratory chain that catalyzes the electron
transfer from reduced cytochrome c to oxygen. Null mutations
in COX17 elicit a loss of cytochrome oxidase due to the
failure of the mutants to complete assembly of the complex
[OMIM: ∗604813]. It has been reported that SLE T-cells
have persistently hyperpolarized mitochondria associated with
increased mitochondrial mass, high levels of reactive oxygen
species (ROS) and low levels of ATP. These hyperpolarized
mitochondria resist the depolarization required for activation-
induced apoptosis and predispose T cells for necrosis, thus
stimulating inflammation in SLE (81, 82). Necrotic cell
lysates activate dendriticcells and might account for increased
interferon a production and inflammation in lupus patients
(83). Additionally, the mitochondrial ATP deficits also reduce
the macrophage energy that is needed to clear apoptotic
bodies (84). The mitochondrial transmembrane potential is
result of the respiratory electron transport chain that drives
the flow of electrons from NADH to molecular oxygen by
its last enzyme the cytochrome c oxidadase. Note that it
has been reported that COX17 is essential for activation of
cytochrome C oxidase (80) linking the COX17 function with the
SLE phenotype.

CONCLUSIONS

Here we present a set of 98 genes as good candidates for
association with SLE by mutation affecting a diversity of
functions in different organs and tissues. Considering that
complex phenotypes involves the intervention of multiple genes
associated by common variation, the same scheme could be
expected for genes associated by rare variation. Thus, each gene
or set of genes would influence in a small group of affected
carriers explaining the clinical heterogeneity or complexity
of this pathology. However, it is necessary to remark that
these results are preliminary and would need to be confirmed
by sequencing in the best candidate carriers in our sample
data set.
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Background: CXorf21 and SLC15a4 both contain risk alleles for systemic lupus

erythematosus (SLE) and Sjögren’s syndrome (pSS). The former escapes X inactivation.

Our group predicts specific endolysosomal-dependent immune responses are driven by

the protein products of these genes, which form a complex at the endolysosomal surface.

Our previous studies have shown that knocking out CXorf21 increases lysosomal pH in

female monocytes, and the present study assesses whether the lysosomal pH in 46,XX

women, who overexpress CXorf21 in monocytes, B cells, and dendritic cells (DCs), differs

from 46,XY men.

Methods: To determine endolysosome compartment pH we used both LysoSensorTM

Yellow/Blue DND-160 and pHrodo® Red AM Intracellular pH Indicator in primary

monocyte, B cells, DCs, NK cells, and T cells from healthy men and women volunteers.

Results: Compared to male samples, female monocytes, B cells, and DCs had lower

endolysosomal pH (female/male pH value: monocytes 4.9/5.6 p < 0.0001; DCs 4.9/5.7

p = 0.044; B cells 5.0/5.6 p < 0.05). Interestingly, T cells and NK cells, which both

express low levels of CXorf21, showed no differential pH levels betweenmen andwomen.

Conclusion: We have previously shown that subjects with two or more X-chromosomes

have increased CXorf21 expression in specific primary immune cells. Moreover,

knockdown of CXorf21 increases lysosomal pH in female monocytes. The present

data show that female monocytes, DC, B cells, where CXorf21 is robustly expressed,

have lower lysosomal pH compared to the same immune cell populations from

males. The lower pH levels observed in specific female immune cells provide a

function to these SLE/SS-associated genes and a mechanism for the reported inflated

endolysosomal-dependent immune response observed in women compared tomen (i.e.,

TLR7/type I Interferon activity).

Keywords: systemic lupus erythematosus, Sjögren’s syndrome, lysosome, pH, X chromosome, sex bias
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INTRODUCTION

Systemic lupus erythematosus (SLE) and Sjögren’s syndrome
(SS) are chronic autoimmune diseases that are highly related
in both clinical and serological manifestations. In terms of
the latter, autoantibodies binding the Ro/La (or SSA/SSB)
ribonucleoprotein particle are found in about half of patients with
SLE and up to 80% of those with SS (1). Like most autoimmune
diseases, both SLE and SS much more commonly affect women
than men with ratios of about 10 to 1 for SLE, and up to 15 to 1
women to men in SS (2). While either disease can have its onset
throughout the entire lifespan, the peak age of onset for SLE is
about 30, while that for SS is in older adulthood.

The diseases are also related in regards to pathophysiology.
For instance, most risk genes identified in genome wide
association studies are shared between SLE and SS (3–6).
Pertinent to the work presented herein, another aspect of
shared pathophysiology involves interferon. There is increased

expression of interferon-regulated genes in peripheral blood

mononuclear cells from patients with either disease (7–10).
Evidence from both human disease (11–13) and murine models
(14–17) suggests that signaling through lysosomal, nucleic acid-
binding toll-like receptors (TLR) 7 and 9 is in part responsible
for the pathogenicity, including increased interferon activity in
these diseases.

Signaling through stimulation of intracellular TLRs is
exquisitely sensitive to lysosomal pH. The soluble carrier protein
15a4 (SLC15a4) and CXorf21 genes have been identified as
containing risk alleles for both SLE and SS (3, 6, 18). The
protein products of these genes are binding partners on the
lysosomal membrane (19). The SLC15a4 protein participates in
movement of hydrogen ion and oligopeptides in and out of the
lysosome. Thus, SLC15a4 regulates antigen processing in the
lysosome along with TLR7/9–mediated cytokine secretion, NF-
κB signaling and antibody production (20, 21). The regulatory
role of SLC15a4 is at least in part mediated by control
of lysosomal pH (21). A loss of function Slc15a4 mutation
ameliorates murine lupus and impairs interferon production
mediated through TLR7 stimulation (20). An allele within
CXorf21 was recently identified as a lupus risk gene (18). Our
data demonstrate the CXorf21 protein is expressed in only
monocytes, B lymphocytes and dendritic cells. In addition,
CXorf21 routinely escapes X inactivation (22) with both mRNA
and protein levels higher in female cells compared to male cells
(Harris et al., unpublished). CXorf21 knockdown using small
guide RNA resulted in an abrogation of interferon production
after exposure of female cells to TLR7 agonist. In addition, we
found an increased lysosomal pH in female cells with CXorf21
knockdown (Harris et al., unpublished).

While there have beenmany theories concerning the increased
risk for autoimmune disease in women, based on studies of X
chromosome aneuploidies in subjects with SLE or SS, we propose
that the female risk of SLE and SS is a result of a dose effect
for the X chromosome. Our previous data show that Klinefelter
men (47,XXY) are enriched 30-fold among men with either
SLE or SS (23, 24). Also, SLE or SS affected women have an
increased prevalence of 47,XXX compared to healthy control

women or women with either rheumatoid arthritis or primary
biliary cirrhosis (25). Because CXorf21 escapes X inactivation;
and, therefore, female cells have approximately twice the amount
of CXorf21 protein, this gene is a candidate to mediate the X
chromosome dose effect found for both SLE and SS, but not other
studied, female-biased autoimmune diseases where no X dose
effect was found.

We undertook the present study to further characterize
the cellular function of CXorf21. In particular, the complex
of SLC15a4 and CXorf21 affects lysosomal pH, and CXorf21
expression is greater in female cells compared to male cells. Thus,
we sought to determine whether there is a difference in lysosomal
pH between male and female immune cells, in which CXorf21 is
known to be expressed.

METHODS

Patients/Donors
Whole blood was donated by volunteer healthy controls.
Healthy female and male controls were recruited pair-wise to
control for day-to-day variability. EBV-transformed B cells or
lymphoblastoid cell lines (LCLs) derived from healthy controls
or SLE patients with and without chromosomal aneuploidies
were obtained from the Lupus Family Registry and Repository
(26). Eight male and 8 female buffy coats were obtained from
the Oklahoma Blood Institute (OBI) (Oklahoma City, OK).
All donors were Caucasian with ages ranging between 28 and
45 years old. Healthy subjects had no known chronic medical
illness and tested negative for OBI blood safety screening panel.
Buffy coats were stored at room temperature until cell isolation.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
University of Oklahoma Health Sciences Center Institutional
Review Board.

Isolation of Cells
STEMCELL EasySepTM monocyte, dendritic cells, B cell, natural
killer cells (NK cells), and T cells were used to isolate monocytes,
dendritic cells, B cells, NK cells, and T cells, respectively,
from PBMCs of healthy controls. Briefly, PBMCs were first
purified from buffy coats using density gradient centrifugation
using Lymphoprep (STEMCELL Technologies, Cambridge, MA)
according to the manufacturer’s protocol. Cells were resuspended
in EasySepTM buffer, the EasySepTM Magnet was used to
sequentially isolate CD14+ (using the EasySepTM Human CD14
enrichment kit), CD19+ (using the EasySep Human CD19

positive selection kit II), CD3-CD56+ (EasySep
TM

Human
NK Cell Isolation Kit) and CD3+ (EasySepTM Human T Cell
Isolation Kit). Cell population purity was confirmed by Moxi-
Flow cytometry with the protocol as described (27).

Western Blot Analysis
SDS-PAGE was carried out according to Laemmli et al., except
for using pre-cast 4–20% gradient gels (Bio-Rad). Gel proteins
were transferred to nitrocellulose membranes using Trans-Blot
Turbo transfer system and Trans-Blot Turbo transfer pack
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(Bio-Rad). Proteins were probed with anti-CXorf21 and anti-
actin antibodies (Novus Biotechnologies) and detected with
alkaline phosphatase/nitro blue tetrazolium/5-bromo-5-chloro-
3-indolyl phosphate system. Protein bands were quantified using
densitometry (ImageJ).

Lysosomal pH Determination
To detect differences in intracellular pH in live human male
and female primary monocytes, dendritic cells, B cells, NK

cells, and T cells, the LysoSensor
TM

Yellow/Blue DND-
160 (Thermofisher) and pHrodo R© Red AM Intracellular
pH Indicator (Thermofisher) was used according to the
manufacturer’s suggested protocol. Briefly, primary cells
were treated with LysoSensor reagents as ratiometric means
for measuring lysosomal pH via fluorescence. The ratio of
fluorescence allows for the adjustment for possible variability
between particle uptake. To quantitate pH, primary cells plated
on a 96-well plate were loaded with 5µM pHrodo R© Red AM
intracellular pH indicators for 30min. Cells were then washed
with a series of Live Cell Imaging MediaTM and standard buffers
containing 10µM nigericin and 10µM valinomycin were added
for 5min in order to clamp intracellular pH values 4.5, 5.5,
6.5, and 7.5. We determined the mean cellular fluorescence
in triplicate samples using a spectrophotometer (Synergy H1,
Biotek). A standard curve for male or female samples showed a
linear relationship between the intracellular pH and the relative
fluorescence units.

Statistics
Statistical analyses were carried out using T-test, one-way
ANOVA with multiple comparisons, or Fisher’s Exact test using
GraphPad Prism 7.

RESULTS

Primary Female Human Monocytes Have a
More Acidic Lysosomal pH Compared to
Male Cells
CXorf21 mRNA and protein are expressed at higher levels
in primary monocytes, CD19+ B cells, and Lymphoblastoid
cell lines (LCLs) from female healthy subjects compared to
male controls (Figure 1: Harris et al., unpublished). Based
on the function of the CXorf21 protein and its interaction
with SLC15A4, which is known to regulate lysosomal pH,
we hypothesized that, with greater expression of the CXorf21
protein, lysosomal pH would be lower in female male monocytes.
In order to assess a difference in lysosomal pH between male
and female monocytes, we performed ex vivo lysosomal pH
measurements. Following a 30-min incubation period of the cells
with pH calibration buffers, a standard curve for both male
and female (Figure 2A) primary monocytes to determine pH
based on male and female (Figure 2B) relative fluorescence was
generated. We found that unstimulated female monocytes have
a significantly more acidic lysosomal pH (4.9) compared to male
monocytes (5.6) (Figure 2C) (p= 0.0001 by Fisher’s exact test).

FIGURE 1 | CXorf21 is differentially expressed in primary immune cells of

healthy controls and SLE-affected patients. Total protein extract was harvested

from healthy male and female primary B cells (lane 1 and 2), primary

monocytes (lanes 3 and 4), and lymphoblastoid cell lines (LCLs) (lane 5 and 6)

and subjected to SDS-PAGE. Western blotting using human anti-CXorf21

antibody (34 kD) identifying bands at the appropriate molecular weight. Human

anti-actin (42 kD) is shown as a loading control. Densitometry via Image J was

used to quantitative optical density of protein bands.

Other Cell Types in Which CXorf21 Is
Expressed Higher in Female Cells
This trend for lower pH in the lysosomes of female cells held
true for both dendritic cells, where female DCs lysosomal pH
was 4.9 and male DCs were 5.7 (p-value 0.044; Figure 3), as well
as B lymphocytes, where female lysosomal pH was 5.0 and male
lysosomal pHwas 5.6 (p= 0.0447 by Fisher’s exact test; Figure 4).
These data suggest that female monocytes, DCs, and B cells,
immune cells with increased CXorf21 and TLR7 expression, have
a more favorable lysosomal processing environment compared to
male cells, and may drive the robust TLRs/lysosomal-dependent
immune response observed women compared to men (28).

Lysosomal pH in Cells That do Not
Express CXorf21
In order to assess the role of female overexpression of CXorf21 in
lysosomal pH, we studied immune cells in which the expression
of CXorf21 is absent. To that end, we isolated primary T cell
and NK cells, two immune cells with minimal CXorf21 and
TLR7 levels. We found, while their lysosomal pH was optimal
for lysosomal signaling, there was no significant difference in pH
between the sexes (Figures 4D,E).

DISCUSSION

There are ∼80 autoimmune disease, the great majority of which
affect women more than men. Both SLE and SS have a ratio of
about 10 affected women for every one affected man (2). The
sex bias in SLE is present among patients with childhood onset
(29). In SLE and SS, more women are affected than men in
older adulthood at ages where women are post-menopausal (30).
Despite much investigation, a compelling explanation for this
sex bias has not been forthcoming. Skewing of X chromosome
inactivation, acquired X chromosome monosomy, sex hormone
levels have all been studied and found to not explain the sex
bias (30–34). SS is much less well studied than SLE; however,
again no explanation of the marked predilection for women has
been made.
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FIGURE 2 | Differences in lysosomal pH in female and male monocytes. (A) Male (n = 6) and female monocytes (n = 6) standard curve using pHrodoTM Red AM with

Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph and a linear trend line was

fitted to get a pH standard curve. (B) Male monocytes female monocytes were stained with pHrodoTM Red AM solution and relative fluorescence units (RFUs) were

measured with multi-well plate reader (Details in Materials and Methods). (C) pH determined using pHrodo indication kit according to manufactures protocol. Student’s

t-test was used to determine statistical difference in RFUs that was converted into pH values via each standard curve. **p = 0.0001; Error bar represent SEM.

Based on data concerning X chromosome aneuploidies, we
have proposed that the increased female risk of SLE and SS is the
result of the X chromosome complement. Men with Klinefelter’s
syndrome (47,XXY) are enriched 15-fold in these diseases (23,
24). In addition, 47,XXX women are also found in excess among
those with either SLE or SS, but not rheumatoid arthritis or
primary biliary cirrhosis (25). Very rare abnormalities of the X
chromosome among patients with SLE or SS, including partial
triplications, as well as rare patients with Turner’s syndrome
and SLE may localize the effect to the X chromosome distal p
arm (35, 36).

Of course, in cells with two or more X chromosomes all but
one X is inactivated in order to equalize gene dose compared
to male cells. However, X inactivation is not an all or none
phenomenon with a significant fraction (up to 20%) of X-
linked human genes escaping X inactivation (22, 37). Thus,
a key factor in the idea that an X chromosome gene dose
effect mediates the sex bias of SLE and SS is the escape of
X inactivation such that female cells have bi-allelic mRNA
expression and potentially more functional protein of a given
X-linked gene.

Two genes that escape X inactivation in immune cells, contain
SLE-risk alleles, and have critical roles in production of interferon
are CXorf21 and TLR7 (38). Thus, on this basis, these genes are
candidates to mediate the X chromosome gene dose effect for the

sex bias of SLE and SS. CXorf21 is a binding partner of another
SLE-risk gene—Slc15a4. As noted above SLC15A4 is involved in
transport of oligopeptides and hydrogen ions out of the lysosome,
and knockout of Slc15a4 results in abrogation of TLR7 signaling
as well as amelioration of murine lupus (17, 18, 20, 21). We
have shown that CXorf21 protein is expressed exclusively in
monocytes, B cells, and dendritic cells, and the protein levels are
two–three-fold higher in female cells compared to male cells. In
addition knockdown of CXorf21 with CRISPR-Cas resulted in
abrogation of interferon, TNF-α and IL6 secretion after TLR7
activation in female cells. Furthermore, lysosomal pH increased,
suggesting an environment less conducive to lysosomal signaling
(Harris et al., unpublished).

Because lysosomal pH was affected by decreased expression
of CXorf21 and because female cells express more CXorf21
than do male cells, we hypothesized that female cells expressing
CXorf21 would have a more acidic pH than male cells.
Therefore, we studied lysosomal pH in B cells, monocytes
and dendritic cells from healthy human subjects. In fact, the
present results demonstrate that female cells had a more acidic
lysosomal pH than did these cells from male subjects. T
lymphocytes and NK cells, which do not express CXorf21 at
appreciable levels, did not have a pH difference between male
and female derived cells. Thus, we conclude that a possible
functional role of CXorf21 is regulation of lysosomal pH,
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FIGURE 3 | Differences in lysosomal pH in female and male dendritic cells. (A) Male (n = 6) and female dendritic cells (n = 6) standard curve using pHrodoTM Red AM

with Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph and a linear trend line

was fitted to get a pH standard curve. (B) Male DCs or female DCs were stained with pHrodoTM Red AM solution and relative fluorescence units (RFUs) were

measured with multi-well plate reader (Details in Material and Methods). (C) pH determined using pHrodo indication kit according to manufactures protocol. Student’s

t-test was used to determine statistical difference in RFUs that was converted into pH values via each standard curve. *p-value 0.044; Error bar represent SEM.

and that differing levels of expression between the sexes lead
to distinct lysosomal pH. To our knowledge this is the first
report of a lysosomal pH difference between male and female
immune cells.

We have ventured to predict a mechanism of action for the
uncharacterized protein CXorf21 as a short-chain dehydrogenase
reductase. We put forth two plausible functions: (1) as a
reductase CXorf21 utilizes NADPH to generate hydrogen
ions for lysosome proton pump consumption (i.e., v-ATPase
pump); or, (2) as a dehydrogenase generates NAPDH for
lysosome superoxide production by the lysosomal-resident
NOX2 complex. Both scenarios could result in changes in
lysosomal pH.

What might be the functional consequences of this pH
difference? Simply, altered (auto)antigen processing and
presentation or modulation of endolysosomal resident TLR7
activity. As noted above, a recent report demonstrates that the
X-linked TLR7 gene is bi-allelically expressed in immune cells
(that is, escapes X inactivation), and has increased protein levels
in female cells compared to male cells (38). In addition to an
increase in lysosomal pH and abrogation of TLR7 signaling, our
data using CXorf21 CRISPR-Cas knockdown show that there
is a loss of TLR7 agonist-induced increased TLR7 expression

(both mRNA and protein). Thus, CXorf21 is critically involved
in TLR7 signaling, including a feedforward expression loop
for TLR7. Thus, we propose increased expression of CXorf21,
either because of the presence of two X chromosomes and the
escape of X inactivation, or because the SLE-risk allele increases

expression (18), leads to increased TLR7 signaling and increased
interferon production.

The present study is limited, especially in regard to studying
lysosomal pH and its regulation in regards to the pathogenesis
and treatment of SLE. Endosomal TLR signaling, which leads
to type 1 interferon production, is clearly important in
SLE pathogenesis, both in humans and animal models (39).
Furthermore, this signaling is exquisitely sensitive to changes in
endolysosomal pH. CXorf21, Slc15a4, TLR7, and NCF1 (encodes
the p47phox NOX2 subunit) all contain SLE risk alleles (4–
6). Published data discussed above demonstrate that SLC15A4
regulates endolysosomal pH, and data herein show that the
protein product of CXorf21 also regulates this pH. NOX2 is
activated by phosphorylation of its p47phox subunit by TLR7
signaling (40, 41). Meanwhile, TLR7 and NOX2 signaling are
both regulated by endolysosomal pH, and activated NOX2
regulates endolysosomal pH (42, 43). Both CXorf21 and TLR7
escape X inactivation (22). Thus, determining how these genes,
all of which are involved in endososomal TLR signaling and
type 1 interferon production, impact the pathogenesis and sex
bias of SLE will need a great deal more investigation. The
treatment of SLE may also be impacted by the interaction
of these genes, their SLE-associated alleles and their protein

products. Hydroxychloroquine, an important mainstay of SLE
therapy (44–49), has a variety of effects (50–54), including
altering endolysosomal pH, antigen presentation, TLR signaling
and cytokine production. Obviously, these mechanisms of action
intersect with the TLR7 signaling pathway and the genes
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FIGURE 4 | Differences in lysosomal pH in female and male CD19+ B cells, pan-T cells, and NK cells. (A) Male and female B cells (n = 6) standard curve using

pHrodoTM Red AM with Intracellular pH Calibration Buffer Kit for the translation of fluorescence ratios into pH. An average of six data points was plotted in the graph

and a linear trend line was fitted to get a pH standard curve. (B) Male B cells or female B cells were stained with pHrodoTM Red AM solution and relative fluorescence

units (RFUs) were measured with multi-well plate reader (Details in Material and Methods). (C) pH determined using pHrodo indication kit according to manufactures

protocol. Male and Female (D) pan-T cells and (E) NK cell pH was determined as described above (standard curves and RFUs data not shown) Student’s t-test was

used to determine statistical difference in RFUs and pH that was converted into pH values via each standard curve; *p < 0.05; ns=not significant; Error bar represent

SEM.

discussed above. We have not addressed how the SLE-associated
alleles in these four genes might influence the efficacy of
hydroxychloroquine, which will likely require study of healthy
controls as well as SLE patients with various combinations of
these alleles.

These data demonstrate the function of SLC15A4 and
CXorf21, which form a complex that regulates lysosomal pH,
and in turn regulates TLR7 signaling. Furthermore, based on
the differential expression of CXorf21 between the sexes, we
have shown that lysosomal pH, a key factor in signaling in this
cellular compartment, is different betweenmen and women. This
difference and the resulting functional immune differences may

contribute to the X chromosome gene dose that underlies the sex
bias of SLE and SS.
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The Sle2c1rec1c (rec1c) sublocus is derived from the mouse lupus susceptibility 2

(Sle2) locus identified in the NZM2410 model. Our current study dissected the functional

characters and the genetic basis of the rec1c locus relative to lupus when co-expressed

with the Faslpr mutation, an established inducer of autoimmunity. The rec1c.lpr mice

exhibitedmild expansion of lymph nodes and had a normal T cell cellularity, but developed

significantly kidney and lung inflammation, indicating that the rec1c amplifies lpr-induced

autoimmune pathogenesis. A variant of somatic nuclear autoantigenic sperm protein

(sNASP) was identified from the rec1c interval as a substitution of two consecutive amino

acid residues in the histone-binding domain, resulting in an increased binding affinity to

histone H4 and H3.1/H4 tetramer. To determine the role of the sNASP rec1c allele in

mouse lupus, a novel strain was generated by introducing the rec1c mutations into the

B6 genome. In this transgenic model, the sNASP allele synergized with the lpr mutation

leading to moderate autoimmune phenotypes and aggravating inflammatory pathology

alterations in kidney and lung that were similar to those observed in the rec1c.lpr mice.

These results establish that the sNASP allele is a pathogenic genetic element in the rec1c

sublocus, which not only promotes autoimmunity, but also exacerbates the inflammation

reaction of end organs in mouse lupus pathogenesis. It also shows the complexity of the

Sle2c locus, initially mapped as the major locus associated with B1a cell expansion. In

addition to Cdkn2c, which regulates this expansion, we have now identified in the same

locus a protective allele of Csf3r, a variant of Skint6 associated with T cell activation, and

now a variant of sNASP that amplifies autoimmunity and tissue damage.

Keywords: mouse, lupus, lupus nephritis, genetics, NASP, histone-binding protein

INTRODUCTION

Mouse models of systemic lupus erythematosus (SLE) have greatly contributed to the
understanding of SLE pathogenesis, including by the identification of genetic pathways whose
alterations lead to increased disease susceptibility or resistance (1). Although great efforts have been
invested in the genetic analysis of spontaneous lupus mouse models, only a few lupus susceptibility
genes have been identified with a putative causative etiology (2, 3). Although polymorphisms in
these genes so far do not seem to be directly involved in human lupus, they fit into pathways that
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have been associated with lupus or other rheumatic diseases
(2). The murine lupus susceptibility locus Sle2 was identified on
chromosome 4 as one of the three major loci associated with
nephritis in the NZM2410 model (4). Sle2 expression on a non-
autoimmune background in the B6.Sle2 congenic strain revealed
that it regulates B cell hyperactivity (5) and B1a cell expansion
(6), but is not sufficient for clinical disease. However, the co-
expression of Sle2 with the lpr mutation in the Fas gene in the
B6.Sle2.lpr mice resulted in more severe lupus nephritis and
marked lymphadenopathy compared with B6.lpr mice (7).

The dissection of Sle2 revealed a complex genetic architecture,
with three independent loci, Sle2a, Sle2b, and Sle2c, contributing
to B1a cell expansion, with the NZB-derived Sle2c being the
strongest contributor (8). We identified a hypomorph allele
of Cdkn2c as responsible for the Sle2c B1a cell expansion
(9, 10). Sle2c contains a suppressive Sle2c2 sublocus (11) that
we have mapped to a missense mutation in the Csf3r gene
encoding for the GCSF receptor and regulates the development
of CD8a+ dendritic cells (11–13). In addition, we mapped the
pathological phenotype synergizing with lpr to the centromeric
portion of Sle2c, the Sle2c1 sublocus (7). Subsequently, we
generated a series of shorter Sle2c1 intervals and investigated
their epistatic interaction with lpr (14). Two non-overlapping
subloci with non-redundant phenotypes were identified: The
centromeric portion of Sle2c1, Sle2c1rec1a, which contains
Cdkn2c, exerts a strong contribution to lupus autoimmunity
without clinical phenotypes. A more telomeric sublocus named
Sle2c1rec1d (rec1d) was associated with more severity of renal
inflammation and lymphadenopathy, and higher frequency of
dermatitis in the B6.Sle2c1rec1d.lpr (rec1d.lpr) mice than that
in the B6.Sle2c1rec1a.lpr (rec1a.lpr) mice (14). It is reasonable
to assume that the Sle2c1rec1c (rec1c) sublocus can contribute to
mouse lupus by synergizing with the overlapping region of the
rec1a and rec1d subloci, because the rec1d.lpr mice developed
more severe autoimmune disease than rec1a.lpr mice (14).

Recently, we produced a novel recombinant rec1d1 from the
rec1d sublocus (Figure 1) that narrowed down the location of the
gene responsible for the severe autoimmune disease with striking
lymphadenopathy in the rec1d1.lpr mice (15). The only gene in
the rec1d1 interval that presented a non-synonymous mutation
was Skint6, and this mutation resulted in a truncated secretory
peptide (15). The Skint6 protein is mainly expressed in mouse
skin, and we obtained evidence that non-hematopoietic cells
expressing the rec1d1 Skint6 allele promoted T cell proliferation
in vivo, suggesting that the Skint6 variant is the most likely causal
gene in the rec1d1 sublocus.

The focus of this study was to analyze the phenotypes
associated with the expression of rec1c, which is telomeric of
rec1d1 (14, 15). When combined with lpr, rec1c showed a modest
effect on autoimmune phenotypes, and greatly aggravated kidney
and lung pathology. Exon sequencing of all the coding genes

Abbreviations: NASP, nuclear autoantigenic sperm protein; sNASP, somatic

nuclear autoantigenic sperm protein; SLE, systemic lupus erythematosus; SNPs,

single nucleotide polymorphisms; ES, embryonic stem cell; KI, knockin;

IPTG, Isopropyl β-D-1-thiogalactopyranoside; APS, aminopropylsilane; GN,

glomerulonephritis; BLI, biolayer interferometer.

FIGURE 1 | Physical map of the rec1c interval. The gray rectangles indicate

the Sle2c1 NZB-derived genomic fragments on the B6 genomic background

located on mouse chromosome 4. The white rectangles highlight the areas of

recombination between the B6 and NZB genomes. Fine mapping of the ends

of each recombinant interval was performed by using markers that are

polymorphic between the NZB and B6 genomes and are shown with names

and positions at the top. The protein-encoding genes in the rec1c interval and

its recombination area are displayed at the bottom. All mouse genome

informatics used in this project were calculated from the NCBI m37 assembly.

present in the rec1c sublocus identified two non-synonymous
mutations in the rec1c allele of the sNASP gene. The sNASP is the
somatic isoform of the NASP protein, a histone-binding protein
that controls H3.1 folding and regulates the pool of soluble H3-
H4 histones available for DNA synthesis (16). NASP controls
the progression through the cell cycle (17, 18) and regulates
chromatin folding (19, 20). More recently, it has been shown
that NASP regulates chromatin accessibility by maintaining a
pool of H3K9me1 methylated histones (21), an epigenetic mark
associated with active transcription sites (22). We show here
that the rec1c allele of sNASP has a greater binding affinity for
H4 histone or H3.1/H4 tetramers in vitro. Further, B6.lpr mice
in which the mutated sNASP has been knocked-in displayed
phenotypes similar to that of the rec1c.lpr mice, but also showed
some extra autoimmune alterations. These results identify a
gain of function allele of sNASP with the ability of increasing
autoimmunity and aggravating inflammatory damage in end
organs during lupus development. This discovery adds a new
member to the list of pathogenic genes in murine lupus models
and provides insights into new mechanisms of autoimmune
diseases. It also identifies for the first time a natural variant of
a histone-binding gene as a lupus susceptibility gene, potentially
by regulating chromatin accessibility.

MATERIALS AND METHODS

Mice
B6.lpr mice were purchased from Jackson Laboratory (Bar
Harbor, ME, USA). The B6.Sle2c1rec1c.lpr strain was previously
described (7). All available polymorphic genetic markers were
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used to refine the rec1c interval and define its ends. The
B6.1sNASP mouse with the mutated bases of the rec1c
sNASP allele introduced into the B6 genome was created by
Cyagen Biosciences Inc. with the targeting strategy presented
in Figure 6A. The mutated bases of the rec1c sNASP allele are
in exon 12 of Nasp-001 ENSMUST00000030456. To construct
the targeting vector, two homology arms were generated by
PCR using BAC clone RP24-384F21 and RP24-72F14 from
the C57BL/6J library as template. The CTGTACTCCATGAGC
sequence in exon 12 of the NASP gene, corresponding to exon 10
of the sNASP isoform, wasmutated to CTATATTCCATGAGC in
the 5′ homology arm. In the targeting vector, a Neo cassette was
flanked by Frt sites and DTA was used for negative selection. The
constructed targeting vector was electroporated into C57BL/6
mouse embryonic stem (ES) cells, and then selected positive ES
clones were microinjected into blastocysts. Chimeric mice were
screened by genotyping and then bred with an Flp-deleter mouse
to generate F1 mouse with constitutive knockin (KI) rec1c sNASP
allele through Flp-mediated recombination. Finally, F1mice were
intercrossed to obtain a homozygous transgenic B6.1sNASP
model. Following the previously described protocol (6), the lpr
mutation was bred into the B6.1sNASP mouse to generate a
B6.1sNASP.lpr strain. Both male and female mice were used in
this study, without difference between genders. The protocols for
mice used in this research were approved by the Institute Animal
Care and Use Committees of the University of Florida, USA and
Weifang Medical University, China.

DNA Sequencing and RT-PCR
Genomic DNA of the lupus-prone strains MRL/MpJ-Faslpr/J,
NZM2410/J, BXSB/MpJ, NZB/B1NJ, and NZW/Lac/J was
purchased from Jackson Laboratory. The Agilent SureSelect
XT Mouse All Exon Capture Kit (Agilent Technologies, Inc.,
Santa Clara, CA, USA) used in this project has 50Mb capture,

covering the complete mouse exome and spanning over 221,784
exons and 24,306 genes. Mouse whole exome sequencing was
performed by the Beijing Genomics Institute (Shenzhen, China),
including DNA fragmentation, adapter ligation, hybridization
with capture library, next-generation Illumina sequencing with
an average 30x coverage, and bioinformatics analysis according
to mouse genome assembly NCBIm37 (strain C57BL/6J).
We selected the homozygous SNPs corresponding to non-
synonymous mutations, frameshifts, deletions, insertions, stop
loss or gain in coding regions. Total RNA was purified from
tissues using the Qiagen RNeasy kit (Qiagen, Valencia, CA, USA)
and converted into cDNA by reverse transcription using the
SuperScript III First-Strand Synthesis System (Thermo Fisher
Scientific, Waltham, MA). The Sanger method was used to
sequence cDNA or specific exons. RT-PCR was utilized to semi-
quantitatively detect sNASP mRNA expression (Forward primer:
5′ ACAAGCCCATCTTAAACTTGGAG3′; Reverse primer: 5′

CTGAGATTCCTTTGCGTCTTCTA 3′).

Protein Expression, Purification, and
Binding Kinetics of Protein Interaction
The full-length mouse sNASP cDNA (encoding 448 amino acids)
was prepared fromB6.lprmouse using RT-PCR and then inserted

into the pET30a expression vector to obtain a pET30a-WT
sNASP protein expression vector. The mutated bases of the
rec1c sNASP allele were introduced into the WT sNASP protein
expression vector using the Q5 R© Site-Directed Mutagenesis Kit
(NEB, Ipswich, MA) to generate a pET30a-rec1c sNASP allele
protein expression vector. All sNASP constructs were confirmed
by DNA sequencing. WT and mutated expression vectors were
transformed into E. coli BL21(DE3)and protein expression was
induced by Isopropyl β-D-1-thiogalactopyranoside (IPTG). Ion-
exchange chromatography and size exclusion chromatography
were used to purify proteins from the bacterial lysate. The
protein purity was verified using SDS-PAGE electrophoresis.
Western-blotting was used to identify mouse sNASP protein
using anti-mouse NASP mAb (A-7, Santa Cruz Biotechnology,
Inc., Dallas, TX).

Mouse histones H1a, H3.1, H4 were purchased from Lifespan
Biosciences (Seattle, WA). The H3.1/H4 tetramer complex was
prepared by incubating a mixture of mouse H3.1 and H4
overnight at room temperature followed by purification with size
exclusion chromatography. The binding affinity of sNASP for
histones was determined using biolayer interferometer Octet K2
system (Pall Fortebio Corp., Menlo Park, CA) at 30′C, following
the instrument user guide. Briefly, aminopropylsilane (APS)
biosensors were rinsed in assay buffer for 120 s to obtain an
initial baseline. Next, mouse sNASP WT and mutant proteins
were immobilized on the APS biosensors for 110 s to get a
loading curve. Third, the sNASP-immobilized-APS biosensors
were dipped into assay buffer for 120 s to acquire another
baseline. Fourthly, the sNASP-immobilized-APS biosensors were
exposed to various concentrations of histone H1a, H3.1, H4,
and H3.1/H4 tetramer complex in assay buffer for 240 s to
obtain association curves (Kon/M

−1s−1). Finally, the sNASP-
immobilized-APS biosensors were again dipped into assay buffer
without histones to get disassociation curves (Koff/s

−1). The
interaction of mouse sNASP and mouse histones was expressed
as layer thickness (nm) over time (second). The binding affinity
(KD) was calculated by dividing Kon by Koff. The protein
expression, purification and measurements of binding kinetics
were performed by Detai Biologics Company (Nanjing, China).

IgG Autoantibody Detection
IgG anti-dsDNA and anti-chromatin IgG were measured by
ELISA as previously described (6). Briefly, mBSA-coated plates
were coated overnight with 50 mg/ml dsDNA for anti-dsDNA
autoantibody detection. 10 mg/ml of histone H1, H2A, H2B,
H3, and H4 were added to the dsDNA-coated plate for anti-
chromatin autoantibodymeasurement. Test sera at 1:100 dilution
was added to the plates and bound autoantibodies were detected
using alkaline phosphatase-conjugated goat anti-mouse IgG and
pNPP substrate. Raw optical densities were converted to units per
milliliter, using a standard curve derived from pooled MRL/lpr
serum, arbitrarily setting the reactivity of a 1:100 dilution of this
serum to 100 U/ ml.

Flow Cytometry
Cell subsets and activation status in spleen and lymph nodes
were determined by flow cytometry as previously described (8).
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In brief, single-cell suspensions were prepared and depleted
of red blood cells with 0.83% NH4Cl Tris-buffer. Cells were
blocked with saturating amounts of anti-CD16/CD32 (2.4G2)
and stained with fluorochrome-conjugated antibodies against
CD3e (145-2C11), CD4 (RM4-5), CD69 (H1.2F3), CD44 (IM7).
All antibodies were purchased from BD Pharmingen (San Jose,
CA, USA) or eBioscience (San Diego, CA, USA). At least 50,000
events were acquired per sample using a FACSCalibur cytometer
(BD Biosciences, San Jose, CA, USA).

Kidney, Lung, and Liver Pathology
Tissues from 4 to 5-months-old mice were fixed and stained
with hematoxylin and eosin (H&E). In addition, kidneys were
also stained with periodic acid Schiff (PAS). Renal lesions were
scored in a blindedmanner following the previous report (7), and
briefly speaking: grade 0, normal glomeruli, and evident capillary
loops and unexpanded mesangium; grade 1, evident capillary
loops, and widened mesangium with mild hypercellularity; grade
2, evident capillary loops, and expanded mesangium with more
than moderate hypercellularity; grade 3, diminished capillary
loops, swollen glomeruli, and more than 50% of all glomeruli
with diffuse endocapillary proliferation; grade 4, no capillary
loops, and basement membrane thickening and significant
mesangial proliferation, more than 90% of all glomeruli with
diffuse endocapillary proliferation. Lung pathology alterations
were evaluated semi-quantitatively following the protocols in
our publication (15), to briefly summarize: grade 0, normal
lung architecture; grade 1, 1–10% of alveolar in lung has the
pathological alterations of exudates, atelectasis and increased
inflammatory cell number; grade 2, 10–25% of alveolar in lung
shows the above pathological alterations and mild infiltrate of
inflammatory cells around arteries and veins; grade 3, 25–50%
alveolar in lung displays the above pathological alterations and
moderate infiltrate of inflammatory cells around arteries and
veins; grade 4, >50% alveolar in lung demonstrates the above
pathological alterations and heavy infiltrate of inflammatory cells
around arteries and veins.

The presence of immune complexes in the kidneys were
evaluated on 5µm frozen sections stained with FITC-conjugated
rat anti-mouse C3 (SC-58926, Santa Cruz Biotechnology,
Dallas, TX) and IgGκ BP-CFL 488 (SC-516176, Santa Cruz
Biotechnology, Dallas, TX). Staining intensity was evaluated
by examining sections with Olympus BX53 fluorescence
microscope and DP80 camera (Diagnostic Instruments). Average
20 glomeruli for each sample was recorded as semi quantitative
0–4 scale using Image J software (NIH).

Statistical Analysis
Data were analyzed with GraphPad Prism 5.0 software with the
statistical tests indicated in the text. Non-parametric tests were
used when data were not distributed normally.

RESULTS

Fine-Mapping of the rec1c Sublocus
Since the rec1c interval is of NZB origin (8), we refined
its map and defined its ends by genotyping all available
markers that are polymorphic between the NZB and B6

genomes (Figure 1), including microsatellite Mit and single-
nucleotide polymorphisms (SNPs) markers collected from the
Mouse Genome Informatics (MGI), the National Center for
Biotechnology Information (NCBI) or identified through our
own genomic sequencing. The rec1c interval includes D4Mit278
at the centromeric end and rs27480282 at the telomeric end, but
excludes the Novel5 marker and rs27513842, defining rec1c as a
1.39–2.99Mb interval (Figure 1). The rec1c and rec1d1 subloci
do not overlap, but together cover the entire rec1d sublocus. The
rec1c is in a gene-rich region, which contains 44 protein-coding
genes, including those in the intersection area of B6 and NZB
genomes (Figure 1).

The rec1c Sublocus Promotes End Organ
Inflammation in the rec1c.lpr Mouse
We analyzed the autoimmune pathology of the rec1c.lpr strain
by comparing with control B6.lpr mice at the age of 4–6
months. The spleen sizes of rec1c.lpr mice were similar as that
of B6.lpr mice, but the rec1c.lpr mice presented larger pooled
lymph nodes (469 ± 46mg), about 2 times larger than that
of B6.lpr mice (292 ± 16mg) (Figure 2A). The rec1c.lpr mice
showed the same percentage of CD3+ T cells in spleen and
lymph nodes (Figure 2B) and similar frequencies of CD4+ T

cell expressing the early activation marker CD69 (Figure 2C)
as B6.lpr mice. A small but significant increased frequency of
CD44+CD4+ effector T cells was however observed in rec1c.lpr
mice (Figure 2D).

The rec1c.lpr mice produced the same amount of serum anti-
dsDNA and anti-chromatin IgG as the B6.lpr mice (Figure 3A).
As the rec1c.lpr mice displayed a milder lymphadenopathy than
rec1a.lpr or rec1d.lpr mice, the pathology of their kidneys and
lungs was not examined in our previous report (7). Unexpectedly,
we found that rec1c.lpr mice developed significantly more severe
renal and lung inflammation than age-matched B6.lpr mice
(Figures 3B,C). B6.lpr mice showed a mild mesangial expansion,
but the rec1c.lpr mice displayed a markedly proliferative kidney
pathology with glomerular cell proliferation and inflammatory
cell infiltrates in addition to mesangial expansion (Figure 3B).
Most of B6.lpr mice exhibited normal blood vessels in
their lungs, thin inter-alveolar septum, or a low degree of
inflammatory infiltrates. In contrast, the rec1c.lpr lungs showed
obvious histopathological alterations, including the presence of
numerous congested blood vessels, large peribronchiolar and
perivascular inflammatory cell infiltrates (Figure 3C). We also
examined liver tissues and skin appearance. Most of B6.lpr or
rec1.lpr mice displayed normal liver histology, although a few
of them had perivascular inflammatory cell infiltrations without
a difference between strains. Neither rec1c.lpr nor B6.lpr mice
develop skin disease. These results indicated that the rec1c
sublocus contains some potential disease-causing allele(s), which
promotes inflammation of end organs.

A sNASP Variant Allele Was Identified in
the rec1c Interval
To uncover potentially pathogenic genetic variants in the rec1c
interval, we sequenced all exons of its 44 protein-coding genes
using whole exome sequencing (WES). As a result, we identified
a variant of somatic nuclear autoantigenic sperm protein gene
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FIGURE 2 | The rec1c.lpr mice show mild immune activation. Weight of

spleen and lymph nodes (A), and percentages of CD3+ T cells (B) as well as

CD69+CD4+ (C) and CD44+CD4+ (D) T cell subsets in spleen and lymph

nodes in B6.lpr and rec1c.lpr mice at age of 4–5 months. Statistical analysis

was performed using two-tailed Mann-Whitney tests.

(sNASP) with two mutations in exon 10: Chr4:g116,276,661
G>A and Chr4:g116,276,664 C>T (NCBI m37 assembly), which
correspond to 841G>A and 844C>T, respectively, in the sNASP
cDNA sequence (Figure 4A). Consequently, the rec1c allele of the
sNASP protein has a substitution of two consecutive amino acid
residues, V281I and L282F, in its putative histone-binding motif
(19). We therefore anticipate that the rec1c sNASP protein may
have an altered binding to histones. Sequencing of sNASP exon 10
in the NZB, NZW, NZM2410, MRL/lpr, and BXSB lupus-prone
mice showed the rec1c mutations in the NZB and NZM2410
genomes, as expected, also in the NZW and MRL/lpr strains,
but not in the BXSB strain (Figure 4B). B6.lpr and rec1c.lpr
mice produced comparable amount of sNASP mRNA in their
skin, thymus, bone marrow, and spleen (Figure 4C). Overall,

FIGURE 3 | The re1c.lpr mice develop glomerulonephritis and lung

inflammation. (A) Serum levels of IgG anti-dsDNA and anti-chromatin

autoantibodies. (B) Representative PAS-stained kidney section (× 400

magnification) and renal histopathology scores. (C) Representative

H&E-stained lung section (× 100 magnification) and pulmonary histopathology

scores. All samples were harvested from B6.lpr and rec1c.lpr mice at age of

4–5 months. Data analysis was performed using two-tailed

Mann-Whitney tests.

these results identify the sNSAP allele as a candidate gene for the
rec1c interval through its possibly altered binding to histones,
and show that this allele is shared among several lupus-prone
mouse genomes.

The rec1c sNASP Protein Is Dysfunctional
in Binding Histones
We next investigated the histone-binding function of the
rec1c sNASP protein function. WT sNASP and rec1c sNASP
proteins were expressed in E. coli and purified by ion-exchange
chromatography and size exclusion chromatography with more
than 90% purity (Figure 5A). Quantitative binding studies of
the sNASP protein interacting with mouse histones H1a, H3.1,
H4, and the H3.1/H4 tetramer were measured using biolayer
interferometry (BLI). A representative BLI assay graph in
Figure 5B shows the interaction of WT sNASP binding H4
histone as expressed by layer thickness (nm) over time (second).
Table 1 lists the binding constants of the WT sNASP and rec1c
sNASP proteins interacting with histones H1a, H3.1, H4, and
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FIGURE 4 | A sNASP variant is identified in the rec1c interval. DNA sequencing

was performed using the Sanger method. The mutated bases of the sNASP

allele (red arrows) are present in the rec1c.lpr cDNA (A) and in the exon 10 of

the NZB, NZW, NZM2410, and MRL/lpr sNASP gene (B). (C) sNASP mRNA

expression in skin (Ski), thymus (Thy), bone marrow (BM), lymph node (LN),

and spleen (Spl) was detected by RT-PCR. Gapdh was used as a control.

H3.1/H4 tetramer. Both WT and rec1c sNASP proteins showed
a stronger binding affinity for H3.1 than for H1a histone, with
almost a 40-fold difference. However, the WT and rec1c sNASP
proteins did not show any different affinity in binding these two
histones. sNASP also showed a strong binding affinity for H4
histone or H3.1/H4 tetramer in comparison with its binding to

FIGURE 5 | Expression, purification, and detection of histone-binding affinity

of the mouse sNASP protein. Proteins were expressed in E. coli and purified

using ion-exchange chromatography and size exclusion chromatography.

(A) The purity of recombinant WT sNASP and rec1c sNASP proteins was

more than 90% as confirmed by SDS-PAGE gel. Biolayer interferometer was

used to detect the affinity of WT sNASP and rec1c sNASP proteins binding

mouse histones H1a, H3.1, H4, and H3.1/H4 tetramer. (B) A graph of a

representative assay shows the interaction of WT sNASP binding histone 4 at

the indicated concentrations from 62.5 to 1,000 nM. Each experiment is

represented by an initial baseline (a), a sNASP immobilization curve (b),

another baseline (c), an association curve (d), and a disassociation curve (e).

H1a histone (Table 1). The rec1c sNASP showed significantly
lower Kd values for binding to H4 histone or H3.1/H4 tetramer
than WT sNASP. This indicated that the rec1c sNASP protein
has a significantly stronger affinity for binding H4 histone
or H3.1/H4 tetramer than WT sNASP protein. These data
demonstrate that the substitution of two consecutive amino acid
residues in the rec1 sNASP protein leads to an increased affinity
of binding mouse H4 histone or H3.1/H4 tetramer.

The rec1c sNASP Allele Promotes
Autoimmunity and Exacerbates End Organ
Inflammation in a Transgenic
1sNASP.lpr Model
To test the hypothesis that the rec1c sNASP protein, which
displays an increased affinity for H4 histone and H3.1/H4
tetramer, is involved in autoimmune diseases, the most reliable
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TABLE 1 | Binding kinetics and affinities for the interactions of mouse WT sNASP and rec1c variant sNASP proteins with mouse histones H1a, H3.1, H4, and H3.1/H4

tetramer.

Kon (1/Ms) Koff (1s) Kd (nM)

Mean SEM Mean SEM Mean SEM P-value

H1a BINDING

WT sNASP 1.006 × 104 0.0281 × 104 3.89 × 10−4 0.337 × 10−4 387 11.3 p > 0.05

sNASP variant 0.959 × 104 0.0281 × 104 3.95 × 10−4 0.353 × 10−4 412 12.6

H3.1 BINDING

WT sNASP 0.869 × 104 0.0088 × 104 1.181 × 10−4 0.105 × 10−4 13.6 1.21 p > 0.05

sNASP variant 0.895 × 104 0.0094 × 104 0.755 × 10−4 0.144 × 10−4 8.45 1.61

H4 BINDING

WT sNASP 0.199 × 104 0.0010 × 104 0.81 × 10−4 0.054 × 10−4 40.7 3.6 p < 0.01

sNASP variant 1.587 × 104 0.0147 × 104 3.68 × 10−4 0.123 × 10−4 23.2 0.81

H3.1/H4 TETRAMER BINDING

WT sNASP 2.44 × 104 0.076 × 104 9.78 × 10−4 0.700 × 10−4 40.2 3.14 p < 0.01

sNASP variant 3.72 × 104 0.117 × 104 5.39 × 10−4 0.549 × 10−4 14.5 1.54

Quantitative binding studies of the interactions of mouse WT sNASP and rec1c variant sNASP proteins with mouse histones H1a, H3.1, H4, and H3.1/H4 tetramer were measured

using biolayer interferometer. The binding kinetic parameters were determined from four separate experiments (n = 4). Values in the table indicate mean and SEM (standard error of

mean). Calculated Kd = koff /kon.

approach is to construct a transgenic model with the mutated
bases of the rec1c sNASP allele on the B6 background.
Following the targeting strategy shown in Figure 6A, we used
DNA homologous recombination to substitute the guanine at
4:116276661 and cytosine at 4:116276664 in the B6 genome with
the corresponding adenine and thymine present in the rec1c
sNASP allele. This transgenic model was called B6.1sNASP.
DNA sequencing confirmed that B6.1sNASP mouse has the
mutated bases of the rec1c allele in sNASP cDNA sequence
(Figure 6B), which indicates that the rec1c sNASP allele was
correctly introduced into B6 genome. Western blotting revealed
that both B6 and B6.1sNASP strains express similar amounts
of sNASP protein in the skin, spleen, and thymus (Figure 6C),
indicating that the sNASP protein expression was not affected in
the B6.1sNASP model. Moreover, similar to B6.rec1c mouse, the
B6.1sNASP mouse displayed a normal growth and procreation,
and did not develop any detectable autoimmune phenotypes
(data not shown). Adopting the same strategy as we used with
B6.rec1c.lpr, we introduced the lprmutation into the B6.1sNASP
model to generate B6.1sNASP.lpr (1sNASP.lpr) mice.

We comprehensively evaluated the autoimmune phenotypes
and organ pathology of the 1sNASP.lpr as compared to B6.lpr
mice at the age of 4–6 months. The 1sNASP.lpr mice developed
an enhanced lymphadenopathy with an average weight of the
spleen or lymph nodes about twice and triple that of B6.lpr mice,
respectively (Figure 7A). Total cell numbers in spleen and lymph
node of 1sNASP.lpr mice significantly increased in comparison
with B6.lpr mice (Figure 7B). The percentages of CD3+ T cells
(Figure 7C) and CD19+ B cells (Figure 7D) in spleen and lymph
nodes were comparable between B6.lpr and 1sNASP.lpr mice.
However, 1sNASP.lpr mice have more absolute numbers of
splenic and LN T cells (Figure 7E) as well as splenic B cells
(Figure 7F) than B6.lpr mice. In addition, 1sNASP.lpr mice
showed higher percentages of activated CD69+CD4+ T cells

(Figure 7G) and effector CD44+CD4+ T cells (Figure 7H) than
B6.lpr mice in spleen and lymph nodes.

The 1sNASP.lpr mice produced modestly elevated levels of
serum anti-chromatin and anti-dsDNA IgG as compared with
B6.lpr mice (Figure 8A). The immune complexes in kidney
were detected using the indirect immunofluorescence technique.
Although a small amount of mouse IgG was present in glomeruli,
1sNASP.lpr mice showed significantly more IgG deposits in
glomeruli than B6.lpr mice (Figure 8B). The 1sNASP.lpr mice
showed trace C3 deposit in glomeruli (Figure 8C). B6.lpr
mice seemed to have less C3 accumulation in glumeruli
than 1sNASP.lpr mice. However, there were no statistical
difference for C3 deposit in glomeruli between 1sNASP.lpr
and B6.lpr mice (Figure 8C). Pathological examination showed
that the 1sNASP.lpr mice, in addition to mild mesangial
expansion, develop an enhanced proliferative renal pathology
with an increased glomerular cell number and an infiltration of
inflammatory cells in comparison with B6.lpr mice (Figure 8D).
The renal pathology scores of the 1sNASP.lpr mice were
significantly higher than that of B6.lpr mice. However, both
sNASP.lpr and B6.lpr mice at age of 4–6 months have trace
proteinuria, without a significant difference between these two
strains.Moreover, the1sNASP.lprmice also showed significantly
a more severe lung inflammation than B6.lpr mice (Figure 8E).
The lung pathological characteristics of 1sNASP.lpr mice were
similar to what we observed in the rec1c.lpr mice. On the other
hand, the 1sNASP.lpr mice did not develop liver inflammation
and dermatitis. In summary, the 1sNASP.lpr mice not only
reproduced all autoimmune phenotypes and organ pathology
alterations of rec1c.lpr mice, but also developed additional
autoimmune phenotypes, including increased sizes of spleen and
lymph nodes, lymphocyte increase, expansion of activated or
effector CD4+ T cells, IgG autoantibody elevation, and more IgG
deposit in glomeruli. The characterization of the 1sNASP.lpr
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FIGURE 6 | Generation of a transgenic mouse model B6.1sNASP expressing

the rec1c sNASP allele. (A) Targeting strategy used to construct a transgenic

mouse model B6.1sNASP in which the mutated bases of the rec1c sNASP

allele were introduced into the B6 genome. (B) The sNASP cDNA sequence of

B6.1sNASP mouse was verified to have the mutated bases (red arrows) of

rec1c sNASP allele. (C) The sNASP protein expression was determined by

Western blotting in tissues and compared between WT B6 and transgenic

B6.1sNASP mice, and mouse β-actin was used as control.

model demonstrates that the sNASP allele is responsible for
pathogenic contribution of the rec1c sublocus to mouse lupus.

DISCUSSION

The rec1c.lpr mice exhibited a normal spleen size and a modest
lymphadenopathy in comparison with control B6.lpr mice, but
they developed more significant kidney and lung inflammation,

two end-organ manifestations of SLE. These results suggest
that the rec1c sublocus seemingly is not involved in systemic
autoimmunity, but is rather aggravating its consequences. This
is a contrast to the adjacent rec1d1 sublocus since the rec1d1.lpr
mice showed 3-fold expanded spleen or even 10-fold enlarged
lymph node relative to B6.lpr mice, and this expansion was
largely accounted for T cells, suggesting that red1d1 contributes
to lupus by targeting T cells (15). We have proposed a model for
the genes involved in lupus pathogenesis with a first group of
genes breaking tolerance, such as Ly108 in Sle1b (23), a second
group amplifying/ polarizing autoimmune activation, such as
Pbx1 in Sle1a (24), and a third group of genes modulating disease
severity in target organs, such as the kallycrein gene family in
Sle3 (25) in the NZM2410 lupus model (26). We propose that
the Skint6 allele in rec1d1 belong to group 2 while sNASP variant
in rec1c belongs to the third group. The detailed analysis of the
Sle2c locus revealed a complex architecture with a total of four
genes so far associated with lupus susceptibility: Cdkn2c, which
regulates B1a cell expansion, the original selecting phenotype for
Sle2c (8), a protective allele of Csf3r (11), a variant of Skint6
associated with T cell activation (15) and now a variant of sNASP
that amplifies autoimmunity and aggravate tissue pathology. The
presence of these two latter variants may explain why Sle2, which
is not associated by itself to any end-organ pathology (27), was
mapped in association with glomerulonephritis when it interacts
with other NZM2410 loci (4) or with lpr (7).

Exon sequencing of the rec1c interval identified the
substitution of two consecutive amino acid residues in the
NASP gene. NASP contains two isoforms, a longer testis-specific
tNASP and a shorter somatic sNASP. However, both isoforms
often occur in transformed cell lines (28). It is well known that
the sNASP functions as a histone chaperone to perform their
vital role in genome maintenance by interacting with soluble
histones, driving the accurate assembly and disassembly of
nucleosomes (9). The substitution of two consecutive amino
acid residues in the rec1c sNASP variant protein occurs in the
histone-binding domain. We demonstrated that this variant has
an increased binding affinity for histone H4 and the H3.1/H4
tetramer, suggesting that the amino acid substitutions alter its
three-dimensional structure and dysfunction.

To test the functional significance of the rec1c sNASP
variant, we introduced the corresponding two mutations
into the B6 genome to generate a transgenic B6.1sNASP
mouse and its derived 1sNASP.lpr strain. The B6.1sNASP
mice did not develop any detectable autoimmunity. However,
the 1sNASP.lpr mice produced more IgG autoantibodies,
had bigger spleen and lymph nodes along with lymphocyte
elevation, displayed mild increase of activated and effector
CD4+ T cells in peripheral lymph organs, and more IgG
deposit in glomeruli in comparison to B6.lpr mice. These
phenotypes of 1sNASP.lpr mice are a sign of autoimmunity.
The 1sNASP.lpr mice developed more severe kidney and
lung inflammation than the control B6.lpr mice. Therefore,
the 1sNASP.lpr mice reproduced most of the autoimmune-
pathological phenotypes of the rec1c.lpr mice. These findings
establish that the sNASP mutant allele is responsible for the
contribution of the rec1c interval to lupus pathogenesis. On
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FIGURE 7 | The 1sNASP.lpr mice present activated immune phenotypes. Weight of spleen and lymph nodes (A) of B6.lpr and B6.1sNASP.lpr mice at age of 4–5

months. Total cell number of spleen and lymph nodes (B). Percentages of CD3+ T cells (C) and CD19+ B cells (D), absolute T cell number (E) and absolute B cell

number (F) as well as CD69+CD4+ T cells (G) and CD44+CD4+ T cells (H) in spleen and lymph node of 1sNASP.lpr and B6.lpr mice. Statistical analysis was

performed using two-tailed Mann-Whitney tests.

the other hand, as the 1sNASP.lpr mice did not develop
significant proteinuria, their exacerbated kidney inflammation
was not sufficient to result in renal dysfunction. As for the
reason why 1sNASP.lpr mice presented some autoimmune
phenotypes different that were not found in rec1c.lpr mice,
we speculate it most likely due to unlinked NZM2410 genetic
contamination carried over in the rec1c.lpr congenic genome that
may interfere with the sNASP allele. Such contamination has been
documented in other NZM2410-derived congenics [(24) and
Morel unpublished].

The MRL/lpr strain develops a rapid onset of lupus due to
the lpr mutation in the Fas gene on chromosome 19. A lpr
modifier locus, Lprm1, has been mapped to chromosome 4 in
a genomic location close to the rec1c sublocus (29). We found
that the MRL/lpr genome shares the same sNASP allele with the
rec1c NZM2410 allele, suggesting that it may be responsible for
the Lprm1 phenotypes. Our study demonstrated that the sNASP
mutant allele with higher binding affinity for histone interacts
with the lpr mutation to modestly enhance lymphadenopathy
and autoimmunity and greatly promote tissue inflammation in
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FIGURE 8 | The 1sNASP.lpr mice exhibit severe inflammatory lesions in the

kidneys and lungs. Serum levels of IgG anti-dsDNA and anti-chromatin

autoantibodies (A). Representative images of mouse IgG (B) and C3 (C)

deposit in glomeruli from B6.lpr and 1sNASP.lpr mice (× 400 magnification)

and their respective fluorescence intensity grades. Representative PAS-stained

kidney section (× 400 magnification) and renal histopathology scores (D).

Representative H&E-stained lung section (× 100 magnification) and pulmonary

histopathology scores (E). All samples were harvested from B6.lpr and

B6.1sNASP mice at age of 4–6 months. Data analysis was performed using

two-tailed Mann-Whitney tests.

the1sNASP.lpr model. Therefore, it is reasonable to hypothesize
that the interaction of the sNASP mutant allele and the lpr
mutation represents an important contribution to autoimmune
pathogenesis in the MRL/lpr model.

How the sNASP allele in the rec1c sublocus promotes
inflammation needs to be elucidated in the future studies.
We hypothesize that the increased histone-binding affinity
of the sNASP allele may enhance the transcription of
inflammatory cytokines, either by immune cells or local
cells in target organs. A recent study has reported that sNASP
maintains homeostasis of the innate immune response as
a negative regulator of TLR signaling by binding TRAF6
and preventing its auto-ubiquitination in unstimulated
macrophages (30). Following LPS stimulation, CK2 binds
and phosphorylates sNASP protein at serine 158, allowing
sNASP protein to dissociate from TRAF6. Free TRAF6 is
then auto-ubiquitinated and participates in TLR signaling
to trigger the transcription of inflammatory cytokines (30).
We speculate that the sNASP variant protein in the rec1c
sublocus may have a decreased binding affinity for TRAF6, or
be more easily phosphorylated by CK2 in innate immune cells
following TLR stimulation, leading to excessive TRAF6 auto-
ubiquitination and inflammatory cytokine release. The rec1c
sNASP allele may also enhance the production of inflammatory
cytokines directly by facilitating access of transcriptional
site or through long-range chromatin alterations. Indeed,
NASP regulates chromatin accessibility by maintaining a
pool of H3K9me1 methylated histones (21), an epigenetic
mark associated with active transcription sites (22). Abnormal
histone modification patterns have been reported in the
CD4+ T cells of lupus patients (31). Epigenetic factors play
a pivotal role in regulating cytokine expression, and hence
effector functions, in lupus T cells (32). Specifically, CREMa
increases IL-17A transcription (33) and the transcription
factor RFX1 regulates the expression of CD11a and CD70
(34) through histone modifications in lupus CD4+ T cells.
The critical and complex role of epigenetic regulations in
lupus T cells was demonstrated by showing that specifically
demethylating either CD4+ or CD8+ T cells had beneficial
effects while systemic demethylation worsened disease in
MRL/lpr lupus-prone mice (35). A complex pattern of DNA
methylation profiles has been revealed in twins discordant
for lupus with hypo-and hyper-methylation differences,
including some that were cell-specific (36). Defining the
mechanisms by which the histone-binding protein NASP variant
contributes to lupus pathogenesis using the mouse models
that we have generated, either through epigenetic alterations,
or other processes such as TRAF6 activation will benefit our
understanding of lupus and the regulation of inflammation in
autoimmune diseases.
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APS is the association of antiphospholipid antibodies (aPL) with thromboses and/or

recurrent pregnancy loss (RPL). Among patients with SLE, one-third have aPL and

10–15% have a manifestation of secondary APS. Animal studies suggested that

complement activation plays an important role in the pathogenesis of thrombosis and

pregnancy loss in APS. We performed a cross-sectional study on complement proteins

and genes in 525 patients with aPL. Among them, 237 experienced thromboses and 293

had SLE; 111 had both SLE and thromboses, and 106 had neither SLE nor thrombosis.

Complement protein levels were determined by radial immunodiffusion for C4, C3 and

factor H; and by functional ELISA for mannan binding lectin (MBL). Total C4, C4A and

C4B gene copy numbers (GCN) were measured by TaqMan-based realtime PCR. Two

to six copies of C4 genes are frequently present in a diploid genome, and each copy

may code for an acidic C4A or a basic C4B protein. We observed significantly (a)

higher protein levels of total C4, C4A, C4B, C3, and anticardiolipin (ACLA) IgG, (b)

increased frequencies of lupus anticoagulant and males, and (c) decreased levels of

complement factor H, MBL and ACLA-IgM among patients with thrombosis than those

without thrombosis (N = 288). We also observed significantly lower GCNs of total C4

and C4A among aPL-positive patients with both SLE and thrombosis than others. By

contrast, aPL-positive subjects with SLE had significantly reduced protein levels of C3,

total C4, C4A, C4B and ACLA-IgG, and higher frequency of females than those without

SLE. Patients with thrombosis but without SLE (N = 126), and patients with SLE but

without thrombosis (N = 182) had the greatest differences in mean protein levels of C3

(p = 2.6 × 10−6), C4 (p = 2.2 × 10−9) and ACLA-IgG (p = 1.2 × 10−5). RPL occurred

in 23.7% of female patients and thrombotic SLE patients had the highest frequency of

RPL (41.0%; p = 3.8 × 10−10). Compared with non-RPL females, RPL had significantly
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higher frequency of thrombosis and elevated C4 protein levels. Female patients with

homozygous C4A deficiency all experienced RPL (p = 0.0001) but the opposite was

true for patients with homozygous C4B deficiency (p = 0.017). These results provide

new insights and biomarkers for diagnosis and management of APS and SLE.

Keywords: C3 and C4, C4A and C4B, Copy number variation, Factor H, Lupus anticoagulant, Mannan binding

lectin, Recurrent pregnancy loss, Thrombosis

INTRODUCTION

Antiphospholipid syndrome (APS) is characterized by vascular
thrombosis and/or pregnancy morbidity such as recurrent
fetal loss in the persistent presence of antiphospholipid
antibodies (aPL) (1–7). aPL are a heterogeneous group of
autoantibodies that include antibodies against phospholipid
binding protein β2-glycoprotein I (β2GPI), anticardiolipin
antibodies (ACLA), and lupus anticoagulant (LAC) (8). Human
subjects with triple positivity for all three groups of aPL appeared
to be at high risk to experience recurrent thromboembolic
events (9). A majority of clinical tests for aPL detects antibodies
against β2GPI. β2GPI is a plasma protein consisting of five
structural domains known as short consensus repeats that are
characteristic features of controlling proteins for the complement
system (10–12).

SLE is a common autoimmune disease associated with
APS. SLE features the generation of autoantibodies against
nuclear antigens including double-stranded DNA (13, 14). In
a study of European APS patients, over 40% were found to
have SLE or a lupus-like disease (15). Among the general
SLE population, between 30 and 40% have aPL; and 10–
15% of patients with SLE also have clinical manifestations of
APS (15–20). In addition to the presence of autoantibodies,
hypocomplementemia is another hallmark of human SLE (21–
25). Low serum complement levels for C4 and C3 in patients with
SLE can be triggered by a combination of heritable and acquired
factors: genetic deficiencies, low copy number of complement
C4 genes, robust consumption caused by immune complex-
mediated complement activation, or the presence of inhibitors
that inactivate or prevent accessibility. A complete genetic
deficiency in any one of the early components specific for the
classical complement activation pathway almost always lead to
pathogenesis of human SLE, inferring that an intact classical
pathway of the complement system is essential for the protection
against systemic autoimmunity (26–28).

Activations of complement C3 and C5 in the presence of
antigen-antibody complexes occur via the formation of the
C1 complex (C1q-C1r2-C1s2), followed by the activations of
C4 and C2 to form C4b and C2a, respectively (29). C4b and

Abbreviations: ANOVA, analysis of variance; aPL, antiphospholipid antibodies;

APS, antiphospholipid syndrome; CNV, copy number variation; GCN, gene copy

number; LAC, lupus anticoagulant; MBL, mannan binding lectin; NS, no SLE; NT,

no thrombosis; NTS, no thrombosis and no SLE; RMSE, root mean square error;

RPL, recurrent pregnancy loss; S, SLE; So, SLE without thrombosis; SLE, systemic

lupus erythematosus; T, thrombosis, To, thrombosis without SLE; TS, thrombosis

and SLE.

C2a are subunits of the C3 and C5 convertases, essential for
the classical and lectin activation pathways (26). There are
two isotypes of native C4 proteins. C4A is the acidic isotype
believed to play an essential role in immune clearance and
immunotolerance. C4B is the basic isotype that is capable
of rapid propagation of complement activation (30–34). In
a diploid genome, complement C4 gene copy number varies
among different individuals. Two to eight copies of C4 genes
are generally present in a diploid genome among most human
subjects (35, 36). Each C4 gene either codes for a C4A or a
C4B protein. Such gene copy number variation contributes to
quantitative and qualitative diversities in C4 protein levels and
function, and therefore different intrinsic strengths for effector
functions of innate and adaptive immune responses (25, 34, 36–
40). Among European and East-Asian subjects, low copy number
of total C4 or C4A is a risk factor for SLE, while high copy
number of total C4 or C4A is protective against susceptibility to
SLE (22, 38, 41, 42).

An injection of human aPL into animal models including
wild-type mice induced an increase in thrombus size (43, 44).
An injection of human aPL into pregnant mice resulted in
fetal resorption. (45, 46). Mice deficient in complement C3
or C5, as well as mice injected with a monoclonal antibody
against C5, did not exhibit an increase in thrombus size in
the presence of aPL. Blockade of complement activation by
genetic deletion of C3 or C4, or with transgenic insertion of
complement regulatory protein Crry-Ig, a soluble inhibitor of
mouse C3 convertase, protected mice, rats or hamsters from
pregnancy complications induced by injections of human aPL
(45, 47–56). These phenomena suggest that complement proteins
or their activated products are engaged in the pathogenesis
of APS, as they probably provide immune effectors for aPL-
mediated thromboses, tissue injury and/or fetal loss in mouse
models. The generation of immune complexes between aPL
and ligands (such as β2GPI binding to phospholipids) leads
to activation of the complement classical pathway, release
of C5a and C3a anaphylatoxins (50, 57, 58), which may
attract neutrophils and other granulocytes to the site of
complement activation, increase vascular permeability, and
elicit inflammatory response that contributes to tissue injuries
including pregnancy morbidity. Culmination of complement
activation pathways leads to the assembly of the membrane
attack complex (C5b-9) and provides the “second-hit” to trigger
vascular thrombosis (53). Consistent with this notion, it was
shown that C3, C5, or C6-deficient rodents were protected from
aPL induced thrombosis (56, 59). Such protective effects of
complement deficiency in APS-associated disorders observed in
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animal models are opposite to the causal effects of deficiencies
in early components for the classical complement pathway in
human lupus (26, 60). Among human patients with APS, elevated
levels of complement activation products (C4a, C3a, C5a, C5b-
9) have been demonstrated (55, 61, 62). However, systematic
and meticulous studies on how complement proteins and genes
contribute to the pathology of human APS (recurrent vascular
thrombosis or pregnancy morbidity) and the concurrence of SLE
and APS were scarce or limited by small sample size.

Here we performed a cross-sectional study on 525 human
subjects with aPL from the Antiphospholipid Syndrome
Collaborative Registry. Based on clinical presentations of
thrombosis and SLE, these subjects were categorized to four
groups: patients with thrombosis only (To), with thrombosis
and SLE (TS), with SLE only (So), and without thrombosis
and without SLE (NTS). Plasma protein concentrations for
complement total C4, C4A, C4B, C3, factor H, and functional
mannan binding lectin (MBL) were measured. Total C4, C4A
and C4B gene copy numbers were elucidated. The results
reveal substantial phenotypic differences for complement protein
concentrations among patients with thromboses or recurrent
pregnancy loss, and SLE. There was also a significant difference
in C4 gene copy number variations between patients with both
thrombosis and SLE, and patients without SLE and thrombosis.

PATIENTS AND METHODS

Study Population
This study was approved by the Institutional Review Board at
Nationwide Children’s Hospital. Peripheral blood plasma and
matched genomic DNA samples without personal identifiers
from 525 patients with aPL and clinical status were provided
by the APS Core at University of North Carolina (8, 63).
These aPL-positive patients were recruited with written informed
consent. Of these patients, 444 (84.57%) were female and
81 (15.43%) were male. The mean age (±SD) was 45.01
± 12.97 years old. Among these aPL-positive patients, 184
(35.05%) met the Sapporo criteria for definite APS (1); an
additional 175 subjects (33.33%) met the extended definition
of APS, and 166 asymptomatic subjects (31.6%) who had aPL
but no manifestations of thrombosis or pregnancy morbidity.
Patients with definite APS as defined by the preliminary or
modified Sapporo criteria (1, 6) must have one or more
clinical episodes of vascular thrombosis and/or pregnancy
morbidity as well as ACLA, anti-β2GPI IgG and/or IgM or
LAC present on two or more occasions at least 6 weeks
apart. The expanded APS group was defined by institutions
participating in APSCORE and include those patients with
one or more clinical manifestations characteristic of APS but
not fulfilling the strict definition and either the Sapporo
laboratory criteria or one of a group of APS-associated
autoantibodies. Asymptomatic patients fulfill the Sapporo
laboratory criteria but have no clinical manifestations related
to APS.

To perform refined analyses based on clinical presentations,
we segregated the aPL subjects based on the presence and absence
of thrombosis, SLE and recurrent pregnancy loss. Among the
study cohort, 237 subjects had a history of thrombosis and

288 subjects did not have thrombosis. A total of 293 subjects
were diagnosed with SLE according to the American College
of Rheumatology criteria (64) and 232 subjects did not have
a diagnosis of SLE at the time of recruitment. Of the 444
female subjects with aPL, 106 (23.87%) experienced recurrent
pregnancy loss.

Quantifications of Total C4, C4A, and C4B

Genes by Real-Time PCR
A series of real-time PCR assays was applied to determine
the copy number variations of total C4, C4A, and C4B genes
(35). All real time PCR assays used the TaqMan MGB probes
(ABI). The target probes (C4, C4A, and C4B) were VIC-labeled.
The endogenous control probe, which targeted an invariant
exon 4 of the RP1 gene, was FAM-labeled. Each reaction
consisted of 0.5 to 1µM of both forward and reverse primers
for the target and control amplicons, 100 nM of the target
and endogenous control probes, 25 ng of sample DNA and
TaqMan Universal PCR master mix (ABI, PN 4323018). All
assays were performed in triplicates using the ABI 7500 RT-
PCR system per manufacturer’s recommendations. The relative
standard curve method was utilized to calculate the copy number
of each target gene. The accuracy of C4A and C4B gene copy
number assignments for each sample was cross-confirmed as
the gene copy number of total C4 equals the sum of C4A
and C4B.

Complement C3, C4, Factor H (CFH) and
Mannan Binding Lectin (MBL) Protein
Concentrations in Citrate-Plasma
Platelet poor plasma samples were processed with a consistent
protocol. Briefly, blood samples in citrate tubes were centrifuged

at 1,500 g for 10min, at 4–8◦C. Plasma samples were transferred
to microcentrifuge tubes and spun again at 2,000 g for
5min. Aliquots were kept frozen at −80◦C. Plasma protein
concentrations of complement C3 and C4 were determined
by single radial immunodiffusion assays using commercial kits
from The Binding Site (Birmingham, United Kingdom). A
comparison of C4 protein concentrations of (a) SLE patients
without thrombosis from this study and (b) an independent
cross-sectional study of Ohio SLE (38) revealed that protein
concentrations of complement C4 assayed from platelet-
poor citrate plasma, which were subjected to two rounds of
centrifugation, were∼14.5% lower than that of EDTA-plasma C4
harvested after a single round of centrifugation.

Complement factor H plasma protein concentrations were
measured using homemade RID plates according to a standard
protocol (65). Plasma concentrations for MBL were determined
using a functional assay kit from the Antibody Shop (Denmark).

Complement C4 Protein Allotyping
Plasma C4A and C4B protein allotypes were determined
by immunofixation and immunoblot techniques, as described
previously (66–68). The relative band intensities of C4A
and C4B allotypes from each sample were quantified by
ImageQuant Software. The corresponding plasma C4A and
C4B protein concentrations were calculated from the total C4
protein concentrations.
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TABLE 1 | Demographics of study populations: aPL patients with definite APS, extended APS and non-APS.

Definite APS Extended APS Non-APS p*

n (%) 184 (35.1) 175 (33.3) 166 (31.6)

Sex, F/M (ratio) 147/37 (4.20:1) 152/23 (6.61:1) 145/21 (6.90:1) 0.099

Age ± SD; years old 44.40 ± 12.54 46.82 ± 13.09 43.78 ± 13.19 0.071

Race: White/Black/Others,‖ n (% in each group) 81/24/79 (44.0/13.0/42.9) 67/27/81 (38.3/15.4/46.3) 80/23/63 (48.2/13.9/38.0) 0.44

BMI 28.66 ± 6.86 28.94 ± 7.58 28.22 ± 6.57 0.64

Thrombosis, Y/N, n (%) 154/30 (83.7) 83/92 (47.4) 0/166 (0) 1.4 × 10−69

Pregnancy loss, female, Y/N, n (%) 80/67 (54.4) 26/126 (17.1) 0/166 (0) 1.7 × 10 −32

SLE, Y/N, n (%) 89/95 (48.4) 99/76 (56.6) 105/61 (63.3) 0.019

Complement C3 ± SD; mg/dL 124.1 ± 36.0 128.4 ± 37.8 118.8 ± 33.4 0.048

Complement C4 ± SD; mg/dL 22.9 ± 10.9 20.0 ± 9.2 16.6 ± 8.8 2.6 × 10−8

Correlations between C3 and C4, r2 0.217 (p = 3.0 × 10−11) 0.310 (p = 2.7 × 10−15) 0.321 (p = 4.0 × 10−15)

r, coefficient of correlation.

*p values obtained by χ
2 analyses for categorical data, or by ANOVA (analysis of variance) for continuous data; ‖others: other racial and multi-racial groups; p- <0.05 are in bold fonts.

Statistical Analyses
Descriptive statistics, including means, standard deviations
(SD), and 95% confidence intervals (95% CI) were computed
for numeric data, and frequency distributions were determined
for categorical variables, using statistical software JMP13
(SAS Institute) and GraphPad Prism6 software. Two
group comparisons were based on t-tests that accounted
for unequal variances if appropriate. Specifically, Tukey
HSD test with an alpha set at 0.05 was applied, and
was followed by pairwise Student’s t-tests that yielded p-
values. Dunnett’s test with an alpha of 0.05 was applied for
comparing study groups to controls. Categorical data were
compared by χ

2 analyses and odds ratios were calculated
whenever appropriate.

To allow a standardized comparison of all continuous

parameters contributing to thrombosis without SLE, SLE without
thrombosis, SLE with thrombosis, and no thrombosis and no

SLE, we determined the root mean square error (RMSE) of
each parameter in these four groups by analysis of variance

(ANOVA). The difference in the mean protein levels for each
protein between any two groups divided by its RMSE to give the
effect size index (69). The mean values of parameters in the NTS

group were used as references and the effect size indices for To, So,
and TS groups were graphically plotted. This enabled a uniform
depiction on effects of all continuous parameters under different
clinical conditions.

Stepwise multiple logistic regression analyses were used
to identify independent parameters significant for clinical
outcomes: thrombosis, arterial thrombosis, venous thrombosis,
pregnancy loss, and SLE. Such analyses allowed controlled studies
for continuous and categorical parameters. For analyses of a
clinical presentation as a response, we first put all parameters
studied [i.e., C3 or C4, factor H, MBL, ACLA-IgM, ACLA-
IgG, BMI, age, gender (F/M), LAC (presence or absence), SLE
(presence or absence)] into the regression model. Those that
did not give a p-value smaller than 0.1 were removed from
the subsequent analyses. The last best model with parameters
represented by p-values smaller than 0.05 was maintained and

presented. Unit Odds Ratio (OR) and range OR were computed.
Parameters that could not coexist in the regressionmodel because
of strong correlation (e.g., C3 and C4) were put into the
regression models separately and the stronger parameter was
kept. When C4 was identified as a significant parameter in a
model, we further asked whether C4A or C4B or both C4 isotypes
were playing a major role.

RESULTS

The study population consisted of 525 human subjects
with antiphospholipid antibodies (aPL), recruited through the
APSCORE. The mean age of subjects at the time of recruitment
was 45.0 ± 13.0 (mean ± SD) years old. These study subjects
were initially segregated into three groups: definite APS, extended
APS, and non-APS based on clinical manifestations associated
with APS, which included vascular thromboses and pregnancy
morbidity. Results for an initial characterization for these three
groups of patients are shown in Table 1. One remarkable feature
emerged was the steady and highly significant increase in the
mean protein concentration of complement C4 from non-APS
(16.6 ± 8.8 mg/dL), to extended APS (20.0 ± 9.2 mg/dL),
and definitive APS (22.9 ± 10.0 mg/dL) (p = 2.6 × 10−8).
These three groups of patients had different frequencies of SLE,
thromboses and pregnancy morbidities. Thus, we set to examine
quantitative variations of plasma complement proteins among
aPL subjects with different clinical manifestations for thrombosis
and/or SLE in both female and male patients, and recurrent
pregnancy loss among female patients. The demographic and
clinical features for these aPL-positive subjects are shown
in Table 2.

Variations of Plasma Complement Protein
and ACLA Levels in aPL-Positive Subjects
With and Without Thromboses
Among the aPL-positive subjects, 45.1% had a past history
of thrombosis, and 55.8% were diagnosed with SLE at the
time of recruitment. When the mean plasma complement
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TABLE 2 | Demographic data and disease status of aPL-positive subjects.

A. Thrombosis status

T NT p

N 237 288

Age 46.4 ± 13.4 43.9 ± 12.5 0.029

Sex 7.2 × 10−6

F 182 (0.768) 262 (0.910)

M 55 (0.232) 26 (0.090)

F/M ratio 3.21 10.1

BMI 29.6 ± 7.6 27.8 ± 6.4 0.0033

Race 0.72

White 107 (0.452) 121 (0.420)

Black 31 (0.131) 43 (0.149)

Others 99 (0.418) 124 (0.431)

B. SLE status

S NS

N 293 232

Age 44.6 ± 12.4 45.5 ± 13.7 0.42

Sex 0.0031

F 260 (0.884) 184 (0.793)

M 33 (0.113) 48 (0.207)

F/M ratio 7.88 3.83

BMI 28.7 ± 7.3 28.5 ± 6.7 0.76

Race, n (frequency in each group) 7.0 × 10−7

White 107 (0.365) 121 (0.522)

Black 60 (0.205) 14 (0.060)

Others 126 (0.430) 97 (0.418)

C. Thrombosis and SLE status

To TS So NTS p

N 126 111 182 106

Age 47.7±13.9 44.9 ± 12.8 44.4 ± 12.1 43.0 ± 13.1 0.041

Sex 1.2 × 10−7

F 85 (0.675) 97 (0.874) 163 (0.896) 99 (0.934)

M 41 (0.325) 14 (0.126) 19 (0.104) 7 (0.066)

F/M ratio 2.07 6.93 8.58 14.1

BMI 29.7 ± 7.2 29.5 ± 8.0 28.2 ± 6.7 27.0 ± 5.8 0.014

Race 2.9 × 10−6

White 60 (0.476) 47 (0.423) 60 (0.330) 61 (0.576)

Black 11 (0.087) 20 (0.180) 40 (0.220) 3 (0.028)

Others 55 (0.436) 44 (0.396) 82 (0.451) 42 (0.396)

Pregnancy loss 2.0 × 10−10

yes 24 (0.282) 44 (0.448) 14 (0.086) 24 (0.242)

no 61 (0.718) 53 (0.552) 149 (0.914) 75 (0.758)

Correlations between C3 and C4

r2 0.167 0.212 0.320 0.352

p 2.0 × 10−6 5.3 × 10−7 2.5 × 10−16 2.5 × 10−11

Key: BMI, body mass index; NS, no SLE; NT, no thrombosis; NTS, no thrombosis and no SLE; S, SLE; So, SLE without thrombosis; T, thrombosis; To, thrombosis without SLE; TS,

thrombosis and SLE; frequency in each group is shown in parenthesis. p-values of statistical significance are in bold fonts.

protein concentrations and aPL between thrombotic and non-
thrombotic groups were compared, highly significant phenotype
differences for total C4, C4A, C4B, MBL, ACLA-IgM, and
ACLA-IgG were observed (Table 3). The mean protein level
(and 95% confidence interval) for total C4 was 22.7 (21.3–24.0)

mg/dL in the thrombotic group, and 17.7 (16.6–18.7) mg/dL
in the non-thrombotic group, which represented a difference
of 28.2% (p= 1.3× 10−8).

Parallel increases in complement C4A and C4B were observed
in the thrombotic group. Mean concentration of plasma C4A in
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TABLE 3 | Mean plasma complement and ACLA protein levels in aPL-positive subjects with (T) and without thrombosis (NT).

n Mean ± SD 95% CI p (NT vs. T)

C3 protein (mg/dL) 0.013

NT 284 120.2 ± 35.1 116.1–124.3

T 236 128.1 ± 36.6 123.4–132.8

C4 protein (mg/dL) 1.3 × 10−8

NT 282 17.7 ± 9.0 16.6–18.7

T 235 22.7 ± 10.6 21.3–24.0

C4A protein (mg/dL) 8.2 × 10−6

NT 273 9.6 ± 5.6 8.9–10.3

T 233 12.1 ± 6.7 11.2–12.9

C4B protein (mg/dL) 6.7 × 10−6

NT 283 8.3 ± 5.0 7.8–8.9

T 234 10.5 ± 6.0 9.8–11.3

CFH protein (mg/dL) 0.057

NT 249 52.3 ± 15.0 50.5–54.2

T 207 49.9 ± 12.1 48.2–51.5

MBL protein 0.0007

NT 242 0.167 ± 0.173 0.145–0.189

T 214 0.117 ± 0.129 0.100–0.135

ACLA IgM protein (MPL) 0.0022

NT 254 29.9 ± 37.5 25.3–34.6

T 202 19.5 ± 33.2 14.9–24.1

ACLA IgG protein (GPL) 0.0043

NT 254 29.6 ± 46.7 23.9–35.4

T 206 45.1 ± 68.4 35.7–54.5

Odds ratio (95% CI) p

LAC-Positivity (freq.) 2.63 (1.76–3.94) 1.3 × 10−6

NT 260 0.531

T 199 0.749

Sex (F/M ratio) 0.33 (0.20–0.54) 7.2 × 10−6

NT 288 (262/26) 10.0

T 237 (182/55) 3.23

CI, confidence interval. Odds ratios were calculated for T vs. NT. p-values of statistical significance are in bold fonts.

the thrombotic group was 12.1 (11.2–12.9) mg/dL, and 9.6 (8.9–
10.3) mg/dL in the non-thrombotic group (p = 8.2 × 10−6).
Plasma C4B mean protein concentration in the thrombotic
group was 10.5 (9.8–11.3) mg/dL, and 8.3 (7.8–8.9) mg/dL in

the non-thrombotic group (p = 6.7 × 10−6). For complement

C3, moderately higher mean protein level was observed in the
thrombotic group than the non-thrombotic group (T: 128.1

mg/dL; NT: 120.2 mg/dL; p= 0.013).
By contrast, mean plasma protein level for functional MBL

among thrombotic subjects was significantly lower than that

of non-thrombotic subjects, which were 0.117 (0.100–0.135)
mg/dL and 0.167 (0.145–0.189) mg/dL, respectively (p= 0.0007).

Slightly lower levels of factor H protein were also observed in the

thrombotic group (T: 49.9 mg/dL; NT: 52.3 mg/dL; p= 0.057).
The mean values of anticardiolipn antibodies among

thrombotic subjects were 19.5 (14.9–24.1) units for ACLA-IgM
and 45.1 (35.7–54.5) units for ACLA-IgG. In non-thrombotic

subjects, the corresponding values were 29.9 (25.3–34.6) and

29.6 (23.9–35.4) units (p= 0.0022 for ACLA-IgM; p= 0.0043 for

ACLA-IgG). Thrombotic subjects had lower levels of ACLA-IgM
but higher levels of ACLA-IgG. Three-quarters (74.9%) of
thrombotic subjects tested positive for the presence of lupus
anticoagulant (LAC), compared to slightly over one-half (53.3%)
among non-thrombotic subjects (p= 1.7× 10−6).

Thrombotic subjects had significantly lower female to male
ratio (3.23 to 1) when compared with non-thrombotic subjects
(10.0 to 1; p= 7.2× 10−6).

Plasma Complement Protein and ACLA
Levels in aPL-Positive Subjects With and
Without SLE
Quantitative variations of complement and ACLA plasma
protein were compared between the aPL-positive patients with
and without SLE (Table 4). The mean C3 concentrations
were 118.3 (114.2–122.4) mg/dL in SLE and 130.8 (126.2–
135.4) mg/dL in non-SLE, which represented a reduction
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TABLE 4 | Mean plasma protein concentrations of complement and ACLA in aPL-positive subjects with (S) and without (NS) SLE.

n Mean ± SD 95% CI p (NS vs. S)

C3 protein (mg/dL) 8.0 × 10−5

NS 230 130.8 ± 35.4 126.2–135.4

S 290 118.3 ± 35.6 114.2–122.4

C4 protein (mg/dL) 0.0006

NS 230 21.6 ± 9.6 20.4–22.9

S 287 18.6 ± 10.3 17.4–19.8

C4A protein (mg/dL) 0.0038

NS 228 11.6 ± 5.8 10.9–12.4

S 278 10.0 ± 6.5 9.2–10.8

C4B protein (mg/dL) 0.005

NS 230 10.1 ± 5.4 9.4–10.8

S 287 8.7 ± 5.7 8.1–9.4

CFH protein (mg/dL) 0.02

NS 203 52.9 ± 14.4 50.9–54.9

S 253 49.9 ± 13.1 48.3–51.5

MBL protein 0.29

NS 204 0.135 ± 0.140 0.116–0.154

S 252 0.151 ± 0.168 0.130–0.172

ACLA IgM protein (MPL) 0.22

NS 183 22.8 ± 29.6 18.5–27.1

S 273 27.0 ± 39.7 22.3–31.8

ACLA IgG protein (GPL) 0.0002

NS 187 48.8± 70.1 38.7–59.0

S 273 28.2 ± 46.1 22.7–33.7

Odds ratio (95% CI) p

LAC-positivity (freq) 0.79 (0.54–1.16) 0.22

NS 190 0.658

S 269 0.602

Sex (F/M ratio) 2.06 (1.27–3.33) 0.0031

NS 232 (184/48) 3.81

S 293 (260/33) 7.62

LAC, lupus anticoagulant. Odds ratios were calculated for S vs. NS. p-values of statistical significance are in bold fonts.

of 9.6% of mean C3 level in SLE (p = 8 × 10−5). The
mean total C4 concentrations were 18.6 (17.4–19.8) mg/dL
in SLE and 21.6 (20.4–22.9) mg/dL in non-SLE, which
corresponded to a reduction of 13.9% of total C4 in SLE
(p = 0.0006). The mean C4A and C4B concentrations were
10.0 (9.2–10.8) mg/dL and 8.7 (8.1–9.4) mg/dL, respectively,
in the SLE group; and were 11.6 (10.9–12.4) mg/dL and 10.1
(9.4–10.8) mg/dL, respectively, in the non-SLE group (p =

0.0038 for C4A; p = 0.005 for C4B). Thus, lower plasma

levels of complement C3 and C4 were conspicuous in the

SLE group.
The mean plasma protein levels of MBL between the SLE and

non-SLE groups were not significantly different [S: 0.151 (0.130–

0.172) mg/dL, NS: 0.135 (0.116–0.154) mg/dL; p = 0.29]. The
mean plasma protein level of factor H was slightly lower in the

SLE group [49.9 (48.3–51.5) mg/dL] than that in the non-SLE

group [52.9 (50.9–54.9) mg/dL; p= 0.02].

The mean ACLA-IgG level was significantly lower in the SLE
than non-SLE [S: 28.2 (22.7–33.7) GPL, NS: 48.8 (38.7–59.0);
p = 0.0002]. By contrast, the mean ACLA-IgM levels and the
frequency for the presence of LAC were similar between the SLE
and the non-SLE groups.

Among the aPL subjects, SLE patients had a
higher female to male ratio (7.62 to 1) than non-SLE
patients (3.81 to 1; p= 0.0031).

Differential Plasma Protein Levels of
Complement and ACLA in aPL-Positive
Subjects With Thrombosis, SLE, Both
Thrombosis and SLE, and Neither
Thrombosis Nor SLE
Our study results revealed higher levels of mean plasma
complement C4, C3, and ACLA-IgG in aPL-positive subjects
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FIGURE 1 | Scattered-plots of complement C4 and C3 plasma protein concentrations in aPL-positive subjects segregated by thrombosis and SLE status and

compared. NTS, no thrombosis and no SLE; So, SLE only, To, thrombosis only; TS, with both thrombosis and SLE. Horizontal bars represent means and standard

errors. Overall p-values are: 2.8 × 10−7 for C4; 0.0024 for C3; 5.9 × 10−5 for C4A; and 2.7 × 10−6 for C4B.

with a history of thrombosis, but lower levels of complement
C4, C3, and ACLA-IgG among aPL-positive subjects with
SLE. A proportion (37.9%) of aPL-positive subjects diagnosed
with SLE also experienced thromboses. To distinguish the
roles of complement proteins and ACLA in thromboses and
SLE, we segregated the study subjects according to their
thrombosis and SLE status: thrombosis only (To), thrombotic
SLE (TS), SLE only (So), and no thrombosis and no SLE (NTS)
(Figure 1, Table 5). Among these four groups, significantly
higher mean protein levels were observed for patients with
thrombosis only than with SLE only for plasma protein levels
of total C4 (p = 2.2 × 10−9), C4A (p = 1.9 × 10−6),
C4B (p = 1.3 × 10−6), C3, (p = 2.6 × 10−5), ACLA-
IgG (p = 1.2 × 10−5), and in female to male ratio sex
ratio (p= 1.6× 10−6).

For functionalMBL and the presence of LAC,main differences
were observed between the thrombotic groups and the non-
thrombotic groups. Mean MBL protein levels were significantly
lower in To and TS than in So (To vs. So, p = 0.0041; TS
vs. So, p = 0.0046). The mean level of MBL in aPL-positive
subjects without thrombosis and SLE (NTS) was slightly higher

than those of To and TS (p = 0.078 and 0.076), and similar
to that of So (p = 0.416). For lupus anticoagulant, 73.5% of
patients in To and 76.3% of patients in TS were tested positive,
compared to 51.2% in So (To vs. So, p = 0.0002; TS vs. So,
p = 0.000038) and 56.8% in NTS (To vs. NTS, p = 0.015;
TS vs. NTS, p= 0.0048).

Gene Copy Number Variations of Total C4,
C4A, and C4B in Patients With aPL
Gene copy numbers (GCN) for total C4, C4A, and C4B from 472
aPL-positive subjects were elucidated by TaqMan based real-time
PCR using genomic DNA (35). The copy number of total C4
genes in this study cohort varied from 2 to 6;C4A from 0 to 5; and
C4B from 0 to 4. The distribution of total C4, C4A, and C4B gene
copy number variations among To, TS, So, and NTS are shown
in Table 6.

The distribution of GCN groups was analyzed first as
categorical data. The distribution of C4A genes was statistically
different among To, TS, So, and NTS (p = 0.034, χ

2 analysis).
Variations of GCNs for total C4 (p = 0.088) and C4B (p= 0.13)
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TABLE 5 | Mean plasma protein levels of complement and ACLA in aPL-positive subjects segregated by thrombosis and SLE status.

n Concentrations 95% CI P To: TS To: So To: NTS TS: So TS: NTS So: NTS

C3 protein (RMSE: 35.4) mg/dL 0.011 2.6 × 10−5 0.18 0.19 0.26 0.011

1. To 126 133.6 ± 37.8 127.0–140.3

2. TS 110 121.8 ± 34.4 115.3–128.3

3. So 180 116.1 ± 36.2 110.8–121.5

4. NTS 104 127.3 ± 32.2 121.0–133.6

C4 protein (RMSE: 9.72) mg/dL 0.073 2.2 × 10−9 0.0004 0.0001 0.083 0.056

1. To 126 23.7 ± 9.7 22.0–25.4

2. TS 109 21.4 ± 11.5 19.2–23.6

3. So 178 16.8 ± 9.0 15.5–18.1

4. NTS 104 19.1 ± 8.8 17.4–20.8

C4A protein (RMSE: 6.12) mg/dL 0.247 1.9 × 10−6 0.017 0.0009 0.23 0.049

1. To 126 12.5 ± 5.9 11.5–13.5

2. TS 107 11.6 ± 7.6 10.1–13.0

3. So 171 9.0 ± 5.6 8.2–9.9

4. NTS 102 10.5 ± 5.6 9.5–11.6

C4B protein (RMSE: 5.46) mg/dL 0.045 1.3 × 10−6 0.0008 0.012 0.19 0.31

1. To 126 11.2 ± 5.3 10.3–12.2

2. TS 108 9.8 ± 6.7 8.5–11.0

3. So 179 8.1 ± 4.9 7.4–8.8

4. NTS 104 8.8 ± 5.2 7.8–9.8

CFH protein (RMSE:13.7) mg/dL 0.059 0.78 0.121 0.079 0.001 0.053

1. To 111 51.5 ± 13.6 49.0–54.1

2. TS 96 47.9 ± 9.7 46.0–49.9

3. So 157 51.1 ± 14.6 48.8–53.4

4. NTS 92 54.5 ± 15.4 51.3–57.7

MBL protein (RMSE: 0.154) mg/dL 0.95 0.0041 0.078 0.0046 0.076 0.42

1. To 114 0.118 ± 0.140 0.092–0.144

2. TS 100 0.117 ± 0.115 0.094–0.139

3. So 152 0.173 ± 0.192 0.143–0.204

4. NTS 90 0.157 ± 0.137 0.128–0.185

ACLA-IgM protein (RMSE: 35.7) g/L 0.28 0.0039 0.013 0.092 0.092 0.95

1. To 101 16.8 ± 24.7 11.9–21.7

2. TS 101 22.3 ± 39.9 14.4–30.1

3. So 172 29.8 ± 39.5 23.9–35.8

4. NTS 82 30.1 ± 33.4 22.8–37.5

ACLA-IgG protein (RMSE: 56.9) g/L 0.0063 1.2 × 10−5 0.058 0.17 0.488 0.041

1. To 103 56.0 ± 87.7 38.9–73.1

2. TS 103 34.3 ± 38.5 26.7–41.8

3. So 170 24.5 ± 49.9 17.0–32.0

4. NTS 84 40.1 ± 37.8 31.9–48.3

LAC-positivity (Frequency) 0.65 0.0002 0.015 3.8 × 10−5 0.0048 0.39

1. To 102 0.735

2. TS 97 0.763

3. So 172 0.512

4. NTS 88 0.568

Sex (F/M ratio) 0.0005 1.6 × 10−6 3.4 × 10−7 0.43 0.088 0.26

1. To 126 2.07

2. TS 111 6.40

3. So 182 8.58

4. NTS 106 14.1

p-values of statistical significance are in bold fonts.
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TABLE 6 | Gene copy number variations (CNVs) of total C4, C4A and C4B among aPL-positive subjects.

To (N = 109) TS (N = 100) So (N = 166) NTS (N = 98) p

GCN N f N f N f N f

A. C4 CNVs of aPL-positive subjects segregated by thrombosis and SLE status.

Total C4 0.088

2 1 0.009 6 0.060 5 0.030 2 0.020

3 29 0.266 35 0.350 51 0.307 29 0.296

4 72 0.661 57 0.570 96 0.578 57 0.582

5 7 0.064 2 0.020 14 0.084 8 0.082

6 0 0 0 0 0 0 2 0.020

C4A 0.034

0 0 0 4 0.040 1 0.006 1 0.010

1 23 0.211 23 0.230 36 0.217 16 0.163

2 72 0.661 61 0.610 106 0.639 57 0.582

3 14 0.128 12 0.120 23 0.139 19 0.194

4 0 0 0 0 0 0 4 0.041

5 0 0 0 0 0 0 1 0.010

C4B 0.13

0 1 0.009 1 0.010 4 0.024 5 0.051

1 22 0.202 27 0.270 35 0.211 30 0.306

2 77 0.706 69 0.690 116 0.699 57 0.582

3 9 0.083 3 0.030 11 0.066 5 0.051

4 0 0 0 0 0 0 1 0.010

B. Mean gene copy numbers (±SD) for total C4, C4A and C4B among aPL-positive subjects.

N total C4 GCN C4A GCN C4B GCN

a. Thrombosis (T) and non-thrombosis (NT)

NT 263 3.741 ± 0.378 1.989 ± 0.696 1.753 ± 0.633

T 209 3.670 ± 0.613 1.866 ± 0.636 1.804 ± 0.541

P 0.24 0.049 0.36

b. SLE (S) and non-SLE (NS)

NS 206 3.782 ± 0.637 2.014 ± 0.702 1.767 ± 0.636

S 266 3.654 ± 0.656 1.872 ± 0.643 1.782 ± 0.561

p 0.035 0.022 0.79

c. Thrombosis and SLE status

1. To 109 3.780 ± 0.567 1.917 ± 0.579 1.862 ± 0.552

2. TS 100 3.550 ± 0.642 1.810 ± 0.692 1.740 ± 0.524

3. So 166 3.717 ± 0.659 1.910 ± 0.611 1.807 ± 0.582

4. NTS 97 3.784 ± 0.710 2.124 ± 0.807 1.660 ± 0.705

To vs. TS P 0.011 0.25 0.14

To vs. So P 0.43 0.93 0.45

To vs. NTS P 0.97 0.027 0.015

TS vs. So P 0.042 0.24 0.37

TS vs. NTS P 0.012 0.001 0.34

So vs. NTS P 0.42 0.012 0.052

To, thrombosis without SLE; TS, thrombotic SLE; So, SLE without thrombosis; NTS, non-thrombosis and non-SLE; f, frequency. GCN, gene copy number. The reference values for

mean GCNs of total C4, C4A, and C4B are 3.82 ± 0.75, 2.09 ± 0.79, and 1.74 ± 0.63, respectively, for healthy subjects; and 3.56 ± 0.77, 1.81± 0.89, and 1.76 ± 0.58, respectively,

for SLE subjects (38). p values <0.05 were in bold fonts.

had not reached statistical significance. The median GCN groups
for total C4 is 4, and for C4A and C4B are both 2. Low and
high copy number groups are defined as those below and above
median GCN groups, respectively. Variations in frequencies were

observed for the low and high GCN groups of C4 genes. For
example, 41.0% of the TS group had 2 or 3 copies of total C4
genes (low GCN), compared to 27.5% in To and 31.6% in NTS.
By contrast, only 2.0% of the TS group had 5 or 6 copies of total
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C4 (high GCN), compared to 10.2% in the NTS group. A similar
pattern was observed for C4A genes. There was an increase in the
frequency of low C4A GCN (27.0% in TS, 17.3% in NTS), and
a decrease in the frequency of high C4A GCN in the TS group
(12.0% in TS, 24.5% in NTS).

The GCN values were analyzed as continuous data to compare
means by Student’s t-test. The means for total C4, C4A, and
C4B were 3.67, 1.87, and 1.80, respectively, for the thrombotic
subjects; and were 3.74, 1.99, and 1.75, respectively, for the non-
thrombotic subjects. Lower mean C4A gene copy number was
observed in the thrombotic group (p= 0.049) (Table 6).

The mean GCN for total C4, C4A, and C4B were 3.65, 1.87,
and 1.78, respectively, for the SLE patients; and were 3.78, 2.01,
and 1.77, respectively, for non-SLE subjects. Significantly lower
mean GCNs for total C4 and C4A were present in the SLE group
(p= 0.035 for total C4; p= 0.022 for C4A) (Table 6B). The mean
C4B gene copy numbers were almost identical between patients
with and without SLE.

When the aPL subjects were segregated and compared based
on both thrombosis and SLE status, it revealed that the NTS
group without thrombosis and SLE had the highest mean GCNs
for total C4 and C4A (3.78 and 2.12, respectively), but the lowest
C4B mean GCN (1.66). The thrombotic SLE group (TS) had the
lowest values of total C4 at 3.55 and C4A at 1.81.

The mean GCN of total C4 for NTS was significantly higher
than that of TS (p = 0.012); of C4A for NTS was significantly
higher than those of To (p = 0.027), So (p = 0.012) and
TS (p = 0.001); and of C4B was significantly lower than that
of To (p= 0.015).

For TS, the mean GCN of total C4was significantly lower than
those of To (p= 0.011), So (p= 0.042), and NTS (p= 0.012); and
of C4A was significantly lower than that of NTS (p= 0.001).

Plasma C4 Protein Concentrations Per C4
Gene Copy in Thrombosis and SLE
Both C4 gene copy number variation and clinical conditions of
aPL subjects are important determining factors for C4 plasma
protein concentrations. To examine the respective roles of
genetic variants and clinical status on plasma protein levels
of complement C4, we calculated the C4 protein per gene
copy in each study subject by dividing the C4 plasma protein
concentration with the C4 gene copy number. The mean C4
protein concentrations per gene dose among To, TS, So and NTS
were 6.42, 6.21, 4.72, and 5.11 mg/dL, respectively. Thus, the
C4 plasma protein yield per gene copy was the highest in aPL
subjects with thrombosis only, and the lowest in aPL subjects with
SLE only. Highly significant differences were present between the
two thrombotic groups (To and TS) and the two non-thrombotic
groups (So and NTS) (Figure 2).

Differential Complement and ACLA Plasma
Protein Levels and C4 Genetic Deficiencies
in aPL-Positive Subjects With and Without
Recurrent Pregnancy Loss (RPL)
Of the 444 female aPL-positive subjects, 106 experienced
recurrent pregnancy loss (RPL). Thromboses occurred in 63.8%
of the RPL patients, compared to 33.7% in non-RPL patients (p=

FIGURE 2 | A comparison of mean total plasma C4 protein concentrations

per gene-copy (with 95% confidence levels) among aPL-positive subjects

categorized by thrombosis and SLE status. Protein concentration per

gene-copy allows a comparison of C4 protein levels under various clinical

conditions by eliminating the effects of C4 gene copy number variations

among patients.

5.1× 10−8). SLEwere diagnosed in 54.3% of the RPL patients and
59.8% in non-RPL patients (p = 0.32). Strikingly, RPL had the
highest frequency in patients with both thrombosis and SLE (TS,
41.0%) but lowest in patients with SLE only (So, 13.3%); patients
of the NTS and To groups each had a frequency of 22.9%. The
frequencies of RPL are significantly different among aPL-positive
patients when segregated into To, So, TS, and NTS (Table 6; χ2

= 46.2, degree of freedom = 3, p = 3.8 × 10−10). TS patients
had an odds ratio (95% confidence interval) of 8.63 (4.37–17.0)
over So patients to experience recurrent pregnancy loss (p = 1.6
× 10−11).

Lupus anticoagulant was present in 67.1% of patients with
RPL and 58.4% of non-RPL female patients (p = 0.057).
Mean total C4 and ACLA-IgG protein levels were significantly
increased, while mean CFH level was reduced (Table 7) among
RPL patients. The mean total C4 level was 21.8 (19.9 ± 23.7)
mg/dL in RPL and 19.1 (18.1 ± 20.2) mg/dL in non-RPL (p =

0.015). The ACLA-IgG was 44.2 (35.1 ± 53.3) g/l in RPL and
30.0 (24.2 ± 35.8) g/l in non-RPL (p = 0.01). The CFH mean
concentrations in RPL were 48.8 (46.6 ± 51.0) mg/dL and 52.1
(50.5± 53.7) mg/dL in non-RPL (p= 0.019).

Homozygous C4A deficiency (GCN of C4A = 0) was present
in five female aPL patients and all of these five subjects
experienced RPL (p = 0.0001). On the contrary, homozygous
C4B deficiency (GCN of C4B = 0) was present in 11 female
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TABLE 7 | Plasma complement and ACLA levels and risk factors for recurrent pregnancy loss (RPL) in female aPL-positive subjects.

a. Continuous data n Mean ± SD 95% CI P

C3 Protein, mg/dL N-RPL 336 123.6 ± 34.0 120.0–127.3 0.23

RPL 105 131.8 ± 41.8 123.1–140.4

C4 protein, mg/dL N-RPL 334 19.2 ± 9.9 18.1–20.2 0.009

RPL 103 22.1 ± 9.6 19.9–23.7

C4A protein N-RPL 324 10.3 ± 5.9 9.6–10.91 0.039

RPL 103 11.7 ± 5.5 10.5–12.8

C4B protein N-RPL 333 9.1± 5.5 8.5–9.7 0.051

RPL 104 10.3 ± 5.8 9.2–11.4

CFH protein, mg/dL N-RPL 296 52.1 ± 14.2 50.5–53.7 0.019

RPL 87 48.8 ± 10.4 46.6–51.0

MBL protein, mg/dL N-RPL 269 0.166 ± 0.164 0.147–0.185 0.051

RPL 84 0.128 ± 0.130 0.100–0.156

ACLA-IgM g/L N-RPL 300 26.8 ± 37.2 22.6–31.0 0.56

RPL 90 33.6 ± 108.5 10.9–56.4

ACLA IgG, g/L N-RPL 301 30.0 ± 51.1 24.2–35.8 0.01

RPL 91 44.2 ± 43.7 35.1–53.3

b. Categorical data Case/total f P Remarks

C4T, GCN = 2 N-RPL 7/261 0.0269 0.15

RPL 5/79 0.0633

C4A, GCN = 0 N-RPL 0/263 0 0.0001 Risk

RPL 5/81 0.0617

C4B, GCN = 0 N-RPL 11/261 0.0421 0.017 Protective

RPL 0/75 0

LAC-Positivity N-RPL 168/294 0.584 0.057

RPL 64/94 0.671

Thromboses N-RPL 114/338 0.337 5.1 × 10−8 Risk

RPL 67/105 0.638

SLE N-RPL 136/338 0.414 0.32

RPL 48/105 0.467

c. Subgroup freq. To So TS NTS p

N-RPL, n (%) 61 (18.1) 149 (44.1) 53 (15.7) 75 (22.2) 3.8 × 10−10

RPL, n (%) 24 (22.9) 14 (13.3) 43 (40.1) 24 (22.9)

So, p 7.2 × 10−5 -

TS, p 0.021 1.6 × 10−11 -

NTS, p 0.54 0.0006 0.0024 -

f, frequency; N-RPL, no recurrent pregnancy loss; RPL, with recurrent pregnancy loss. p-values of statistical significance are in bold fonts.

aPL patients and none of them experienced RPL (p = 0.017).
Thus, homozygous C4A deficiency was a strong risk factor for,
and homozygous C4B deficiency was a strong protective factor
against, recurrent pregnancy loss.

Standardized Comparison of Numeric
Parameters Associated With Thrombosis
and SLE
To allow a standardized comparison of complement and ACLA
protein variations in thrombosis and SLE, we determined the
effect size index (69) of each parameter in To, So, and TS,

using the mean protein concentrations or antibody levels of the
group without thrombosis and SLE (NTS) as a reference. The
difference of mean protein levels for each protein at To, So,
or TS from NTS was divided by its root mean square error
(RMSE), which was computed by ANOVA, to yield the effect
size index. The effect size indices for complement and ACLA
proteins with quantitative variations are depicted in Figure 3.
In descending order, the greatest intergroup effect size indices
are: C4, To vs. So: 0.709; C4B, To vs. So: 0.570; C4A, To vs.
So: 0.566; ACLA-IgG, To vs. So: 0.554; complement factor H,
TS vs. NTS: 0.483; ACLA-IgM, To vs. NTS: 0.373; and MBL,
TS vs. So: 0.367.
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FIGURE 3 | (Upper) Categorization of aPL-positive subjects according to their thrombosis and SLE status. (Lower) Standardized differences (effect size index) of

mean complement protein levels and ACLA levels among aPL-positive subjects with thrombosis without SLE (To), thrombosis and SLE (TS), SLE without thrombosis

(So) when compared to the non-thrombotic and non-SLE (NTS) group. Root mean square error (RMSE) value for each protein was derived from Oneway ANOVA.

Differences of mean protein levels for To, TS and So from NTS were each divided by their associated RMSE and charted to derive the effect size index. The effect size

indices allow a standardized comparison of different parameters under different clinical conditions.

DISCUSSION

This is a cross-sectional study of complement protein profiles and

copy number variations of C4 genes in a relatively large cohort

of human subjects with aPL antibodies. These aPL-positive
subjects had a variety of clinical presentations: thrombosis, SLE,

thrombosis and SLE, no thrombosis and no SLE. Many female
aPL-positive subjects also experienced pregnancy morbidity

such as recurrent pregnancy losses. Extensive analyses of gene
copy number variations for total C4, C4A, and C4B, plasma
protein levels of total C4, C4A, C4B, C3, factor H and
MBL, and antiphospholipid antibodies revealed distinct patterns
of diversity that can be relevant and effective quantitative
biomarkers for thrombosis, SLE and recurrent pregnancy loss.

An intriguing aspect of complement C4 genetics is the
frequent gene copy number variations (30, 38, 40). Genetic
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deficiency (60, 70) or low gene copy numbers of total C4 or C4A
has been shown to be a prevalent risk factor for SLE in European
and East-Asian Americans (22, 38, 41, 71–73). C4 gene copy
number variations in the aPL-positive subjects were determined
and validated by quantitative real-time PCR (35). When SLE
and non-SLE subjects were compared, lower total C4 and C4A
mean gene copy numbers were found among the SLE subjects,
suggesting that aPL-positive subjects with low total C4 or C4A
gene copy numbers carried a greater risk of developing SLE, as we
reported in earlier studies (22, 38). Among the NTS subjects who
were not afflicted with thrombosis and SLE, there were higher
mean GCN of C4A, which would be protective against SLE; and
low GCN of C4B that would lead to lower C4B protein levels and
thereby reducing the risk of thrombosis.

Using thrombosis as a response, multiple logistic regression
analyses suggested that higher plasma C4 protein levels and the
presence of lupus anticoagulant (LAC) were among the strongest
independent biomarkers associated with thrombosis (C4, p= 6.2
× 10−9; LAC, p = 6.9 × 10−5) (Supplementary Table). Other
relevant parameters for increased risk of thrombosis included
male sex and a reduction of complement factor H level, which was
also observed by Nakamura and colleagues (74). Higher plasma
C4 protein levels and the presence of LAC were the two most
prominent risk factors for arterial thrombosis. The higher level
of C4 protein in arterial thrombosis was mainly attributable to
higher C4B (p = 2.1 × 10−5). The risk factors identified for
venous thrombosis also included increased protein level of total
C4 (p = 0.01) and the presence of LAC (p = 0.012). Reduced
protein level of functional MBL (p = 0.0012) and male gender
also had prominent effects.

While the presence of LAC and elevated ACLA-IgG levels
have long been recognized for their connections with thrombosis
and recurrent pregnancy loss (75), this report provides a firm
documentation on the significance of higher C4 plasma protein
levels among aPL-positive subjects with APS-related clinical
manifestations. The presence of LAC and elevated protein level
of complement C4 together are predictors for increased risk
of thrombosis with values of sensitivity at 0.707 and specificity
at 0.664. This study also reveals lower complement factor
H protein levels among subjects with SLE and thrombosis.
Deficiency, mutation or autoantibody of complement factor
H have been linked to atypical hemolytic uremic syndrome
that is characterized by thrombotic microangiopathy (76, 77).
Along with observations that plasma protein levels of MBL were
decreased, evidence for an involvement of complement proteins
in human thrombosis or pregnancy loss are compelling and
deserve clinical attention (78). High levels of plasma C4 among
patients with thrombosis could result in a procoagulation or
thromboinflammatory state, which provide large quantities of
reagents to fuel the complement cascades, leading to greater
extent of complement-mediated tissue injuries. The abundance
of the fast-reacting C4B could aggravate the pathogenic process
in arterial thrombosis.

Using SLE as a response, multiple logistic regression analysis
of plasma protein data suggested that reduced levels of C3, C4,
and ACLA-IgG, and female gender were strong risk factors for
SLE C3 is downstream of C4 in the classical and the MBL

activation pathways, the activation and consumption of C3 are
amplified by a positive feedback mechanism (79–81). In other
words, moderate activation of C4 can lead to large consumption
of C3. Thus, fluctuations of serum C3 levels tend to be a more
sensitive biomarker for SLE disease activity than C4 does.

Among the female aPL-positive subjects, patients with
thrombosis and particularly, thrombotic SLE, had high
frequencies of recurrent pregnancy loss. RPL patients had
elevated levels of complement C4 and ACLA-IgG, and decreased
concentration of factor H. Remarkably, female aPL-positive
subjects with homozygous C4B deficiency were all protected
from RPL, which is consistent with observations in mouse
models that complement C4 deficiency or C3 deficiency were
protective from RPL induced by injection of human aPL (16).
It is also of interest to note that aPL-positive female (human)
patients with homozygous C4A deficiency all experienced RPL,
which underlies the importance of C4A protein in achieving
tolerance or defense against autoimmunity and fetal rejections.

It is important to recognize that the direction of changes
for plasma protein levels of complement C3, C4, and ACLA-
IgG among aPL-positive patients with SLE and with thrombosis
or pregnancy morbidity are mostly opposite to each other. The
highest mean protein levels for these proteins were present
in the To group (thrombosis without SLE), and the lowest in
the So group (SLE without thrombosis). Thus, the inter-group
differences of these proteins were highly significant (To vs. So:
p = 2.6 × 10−5 for C3; p = 2.2 × 10−9 for C4; p = 1.2 ×

10−5 for ACLA-IgG). The resultant effects for these two opposing
forces, SLE and thrombosis, are shown in the thrombotic SLE
group TS, by which the mean plasma protein levels of C3, C4,
C4A, C4B, and ACLA-IgG all fell between those of To and So
groups, and their values were closer to those present in the NTS
group. When standardized by the gene copy numbers, highly
significant differences for mean C4 protein concentrations per
gene-copy were observed between the thrombotic subjects and
non-thrombotic subjects, and the greatest difference remained
between To and So (6.42 mg/dL/gene for To, 4.72 mg/dL/gene
for So; p = 3.5 × 10−8). The mean C4 protein per gene-copy
in TS (6.21 mg/dL/gene) was only slightly lower than that of To.
This implies the presence of trans-acting factor(s) among patients
with thrombosis that upregulates C4 protein biosynthesis, and/or
reduces its turnover that would have decreased the protein levels.
While complement activation is a noted feature for clinical
manifestations of APS, such activation likely occurs locally that
may not result in systemic and parallel decline of plasma protein
levels for C4 and C3, a phenomenon analogous to what we
observed in many patients with juvenile dermatomyositis (82).

The target sites for most aPL appear to be located at the
domain D1 or complement controlling protein repeat on β2GPI.
Recombinant antibody recognizing this domain D1 induced fetal
loss and coagulation in animal models (83). Interestingly, an
engineered β2GPI antibody without the IgG heavy chain CH2-
domain, which was devoid of the C1q binding site and unable to
fix or activate complement, was shown to compete and control
the coagulation and abortive effects in animals burgeoned by
injection of human aPL (83). Biochemical studies revealed that
β2GPI in its linear conformation can serve as a regulator for the
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classical and alternative pathway C3 convertases, as it diminished
the activation of C3 (to form C3a) and the assembly of C5b-9
in a dose-dependent manner. Active β2GPI also enhanced the
degradation of C3b in the presence of factor I and factor H
(84, 85). The effects of aPL on the functional activities of β2GPI
and plasma complement protein concentrations and activities
remain to be elucidated.

The relationships amongMBL deficiency, SLE and thrombosis
were complex and it was not clear whether MBL deficiency was a
risk factor for SLE (86, 87). In a study of 91 SLE patients, Garred
et al. demonstrated a near doubling of thrombosis in individuals
homozygous for MBL protein structural variants (B,D,C) that
led to functional deficiencies of MBL (88). Subsequently, an
association was made between MBL deficiency and arterial
thrombosis (89). In a study of structural variants and promoter
alleles for high and low expression of MBL2 gene in 114 SLE
patients, Font et al. observed that low MBL expression genotypes
were associated with venous thrombosis (90). Data from our
study further clarifies the role of MBL in SLE and thrombosis:
reduced plasma protein concentrations of functional MBL were
present among aPL-positive patients with thrombosis, regardless
of SLE status. Therefore, the link between MBL-deficiency
(or low expression of MBL) and SLE could be secondary to
low functional MBL in SLE patients with APS. As a lectin
binding protein that binds to simple carbohydrate (mannose)
components on cell membranes, it is possible that MBL could
compete with aPL for binding to phospholipids or phospholipid-
binding proteins to reduce the risk of aPL on initiating
thrombotic events.

Our study population includes multiple racial and ethnic
backgrounds but the majority were of Northern European
ancestry. When we analyzed the complement and ACLA data on
this specific ethnic group, similar conclusions on the contrasting
patterns of complement C4 and ACLA in thromboses and SLE
can be reached. Results on three clinical studies on stroke or
recurrent pregnancy loss were in accord with our observations
that high C4 and/or high C3 plasma protein levels are associated
with thrombosis or recurrent pregnancy loss (91–93).

Our observations are consistent with a parallel and
independent study that revealed that pediatric SLE patients
undergoing a clinical trial (94) with a history of hypertension
had persistently higher serum levels of complement C4 and
C3 and higher gene copy number of C4B (Mulvihill et al,
submitted). Here, we further show that patients with both SLE
and thrombosis had the lowest mean GCNs for total C4 (3.55)
and C4A (1.81), which underscores the importance of C4A
deficiency as a genetic risk factor for systemic autoimmune
disease. Paradoxically, hypocomplementemia is both a cause
and an effect of human SLE. SLE-associated disorders such as
lupus nephritis, hemolytic anemia, high titers of anti-dsDNA,
and lupus disease flares are notably marked by low serum
complement levels due to massive consumption of C3 and C4
(21–23, 25). Systemic and concurrent consumptions of C4 and
C3 can be reflected by higher coefficients of correlation (r or
r2) between these two proteins, which are conspicuous among
aPL-positive patients in the So and NTS groups (Table 2) (25).
Detailed diagnostic disorders of SLE (64) and triple positivity

of aPL autoantibodies (9) were not available for this study to
examine the extent of hypocomplementemia in various organ
involvement and tissue damage, but these would be relevant
topics for future investigations.

This cross-sectional study represents a snapshot of
complement and aPL in a population of human subjects
with antiphospholipid antibodies. The relatively large study
population provided an informative dataset to examine
specific patterns of complement and aPL among patients with
thrombosis, SLE and recurrent pregnancy loss. Along time
courses of patients with chronic, systemic autoimmune disease,
plasma or serum complement C3 and C4 levels and their
cell-bound products would fluctuate with disease activities.
The status of SLE/APS disease activities including flare and
remission for each patient at the time of sample collection
was not available and therefore not accounted for in our data
analyses. The lack of data from longitudinal studies, and blood
samples from healthy subjects with and without aPL being
processed in parallel with similar methodologies are other
limitations of this study. Further studies with large sample size of
patients for measurements of complement component protein
levels under defined genetic backgrounds, plus determination
of activation products C3a, C4a, and C5a, cell-bound and fluid
phase levels of C4d and C3d, and membrane attack complexes
may provide important insights into mechanism(s) on how
complement modulate aPL associated clinical manifestations
and disease activities of SLE and APS (55, 58, 61, 62). In
addition, effects of complement-mediated tissue damage
and thromboses would be more readily demonstrated by
immunohistochemical methods.

In conclusion, our results can serve as a foundation for further
studies of SLE and APS disease mechanisms, more sensitive
disease diagnosis, and possibly better prognosis of disease course
and profile. It would be desirable to elucidate the C4 gene
copy numbers among aPL-positive subjects for a prevention
purpose, as those with low total C4 or C4A gene copy number
would have a higher risk to develop SLE, and high C4B GCN
would have greater risk for complement-mediated complications
such as thrombosis, recurrent pregnancy loss in females, and
tissue injuries.
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Enhancer Contributing to SLE
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Julio E. Molineros 1†, Bhupinder Singh 1†, Chikashi Terao 2,3, Yukinori Okada 4,

Jakub Kaplan 1, Barbara McDaniel 1, Shuji Akizuki 3, Celi Sun 1, Carol F. Webb 5,

Loren L. Looger 6 and Swapan K. Nath 1*
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Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic

component. We recently identified a novel SLE susceptibility locus nearRASGRP1,which

governs the ERK/MAPK kinase cascade and B-/T-cell differentiation and development.

However, precise causal RASGRP1 functional variant(s) and their mechanisms of

action in SLE pathogenesis remain undefined. Our goal was to fine-map this locus,

prioritize genetic variants likely to be functional, experimentally validate their biochemical

mechanisms, and determine the contribution of these SNPs to SLE risk. We performed

a meta-analysis across six Asian and European cohorts (9,529 cases; 22,462 controls),

followed by in silico bioinformatic and epigenetic analyses to prioritize potentially

functional SNPs. We experimentally validated the functional significance and mechanism

of action of three SNPs in cultured T-cells. Meta-analysis identified 18 genome-

wide significant (p < 5 × 10−8) SNPs, mostly concentrated in two haplotype

blocks, one intronic and the other intergenic. Epigenetic fine-mapping, allelic, eQTL,

and imbalance analyses predicted three transcriptional regulatory regions with four

SNPs (rs7170151, rs11631591-rs7173565, and rs9920715) prioritized for functional

validation. Luciferase reporter assays indicated significant allele-specific enhancer

activity for intronic rs7170151 and rs11631591-rs7173565 in T-lymphoid (Jurkat) cells,

but not in HEK293 cells. Following up with EMSA, mass spectrometry, and ChIP-

qPCR, we detected allele-dependent interactions between heterogeneous nuclear

ribonucleoprotein K (hnRNP-K) and rs11631591. Furthermore, inhibition of hnRNP-K

in Jurkat and primary T-cells downregulated RASGRP1 and ERK/MAPK signaling.

Comprehensive association, bioinformatics, and epigenetic analyses yielded putative

functional variants of RASGRP1, which were experimentally validated. Notably, intronic
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variant (rs11631591) is located in a cell type-specific enhancer sequence, where its risk

allele binds to the hnRNP-K protein and modulates RASGRP1 expression in Jurkat and

primary T-cells. As risk allele dosage of rs11631591 correlates with increased RASGRP1

expression and ERK activity, we suggest that this SNPmay underlie SLE risk at this locus.

Keywords: RASGRP1, homology, ERK (extracellular-signal-regulated kinase), genetic variant, luciferase, ChIP-

qPCR, EMSA (electrophoretic mobility shift assay)

INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex autoimmune
disease that disproportionately affects people of Asian, African,
and Hispanic ethnicities and women, in particular, with higher
incidence and disease severity (1). Much of SLE etiology remains
mysterious. It has been proposed that complex interactions
amongst numerous genes and their products with pathogens
and other environmental factors promotes dysregulation of
both the innate and adaptive immune responses in SLE.
Over 80 SLE susceptibility loci have been identified so far
across multiple ethnic groups by genome-wide association
studies (GWAS) and candidate gene studies (2, 3). However,
the precise underlying variants and functional mechanisms
associated with disease are largely unidentified for the vast
majority of these SLE-associated signals. Understanding SLE
pathogenesis requires identification of true causal variants and
the target genes and mechanisms by which they contribute
to disease.

Previously, we reported a novel SLE susceptibility signal
near the RAS guanyl-releasing protein 1 (RASGRP1) in
Asians (4). We identified several associated variants, the most
significant being an intergenic variant (rs12900339) between
RASGRP1 and C15orf53 (4). However, the actual predisposing
variants, target genes, and underlying mechanisms of action
for this region are largely unknown. RASGRP1 belongs to a
family of RAS guanyl nucleotide-releasing proteins (RASGRPs)
comprising four members (RASGRP1 through RASGRP4), all
with a diacylglycerol (DAG)-binding C1 catalytic domain.
Upon antigen stimulation, DAG binding and phospholipase
C (PLC) signaling drive RASGRPs to the membrane, where
they play important roles in RAS activation (5, 6). RASGRP1,
originally cloned from the brain (7), was later found highly
expressed in T-lymphocytes (8); small amounts of RASGRP1
expression can also occur in B-lymphocytes, neutrophils, mast
cells, and natural killer cells (9–11). RASGRP1 has been
shown to be involved in B-cell development, activation and
tolerance, in both mice and humans (12, 13). RASGRP1−/− mice
have been reported for marked deficiency in thymocyte and
lymphocyte development, which was associated with impaired
proliferation in response to TCR stimulation (14). Deficiency
in RASGRP1 in mice has been associated with CD4+ and
CD8+ T cell lymphopenia (8). However, humans deficient
in RASGRP1 show a decrease in CD4+T concurrent with a
relative increase in CD8+T cells (15). RASGRP1 inhibition
impairs T-cell expansion and increases susceptibility to Epstein-
Barr virus infection, as well as suppressing proliferation of
activated T-cells occurring in autoimmune conditions (16). A

recent study reported a heterozygous mutation in RASGRP1
correlated with autoimmune lymphoproliferative syndrome
(ALPS)-like disease (17). RASGRP1 expression in T-cells also
correlated negatively with rheumatoid arthritis disease activity
(18). Dysregulated expression of RASGRP1 has been observed
in human SLE. The ratio of normal RASGRP1 isoforms
to isoforms missing exon-11 could be linked to defective
poly[ADP-ribose] polymerase 1 (PARP1) expression and reduced
lymphocyte survival in SLE patients (19, 20). Aberrant splice
variants accumulate in SLE patients and adversely affect T-
cell function (21). There are conflicting reports of the effect
of RASGRP1 on ERK signaling. On one hand, deficiency in
RASGRP1 expression reportedly decreases ERK phosphorylation
in B- and T-cells (15). Hydralazine, a drug that causes drug-
induced lupus erythematosus, is reported to inhibit ERK
signaling, inducing autoimmunity and the production of anti-
dsDNA autoantibodies in mice (22). However, some reports
found significantly higher levels of pERK and pJNK in SLE
patients with active disease vs. controls and inactive SLE
patients (23–25), contradicting earlier reports. In spite of these
conflicting reports, the consensus is that RASGRP1 dysfunction
is mechanistically associated with autoimmune phenotypes
including SLE.

Here, we fine-mapped an SLE locus near RASGRP1 that
we previously identified (4). Using trans-ethnic meta-
analysis across six Asian and European cohorts followed
by bioinformatic analyses and experimental validation, we
identified potential SLE predisposing variants and defined
mechanisms by which these functional variants contribute to
SLE pathogenicity.

MATERIALS AND METHODS

Patients and Data
We used all associated SNP data at this locus from six
cohorts reported previously (Table 1). We began with our
published Asian cohort report [see Supplementary Table 5
in Sun et al. (4)] and augmented this with two publicly
available sets of GWAS summary statistics (26, 27) and a
partially published Japanese cohort (28). Our original report
contained three Asian cohorts (3AS: Korean, Han Chinese,
and Malaya Chinese). Japanese samples included samples (456
cases and 1,102 controls) collected under support of the
Autoimmune Disease Study Group of Research in Intractable
Diseases, Japanese Ministry of Health, Labor and Welfare, and
the BioBank Japan Project (28), and added samples obtained
at Kyoto University, Japan. SLE classification followed the
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TABLE 1 | Cohorts used in this study.

Population Cohort Cases Controls Publication

Asian 3AS 2,487 7,620 (4)

HC Han Chinese 1,659 3,398 (26)

EU European 4,036 6,958 (27)

JAP Japanese 1,347 4,486 (28) + new Data

TOTAL 9,529 22,462

We utilized samples from our previous report (4) (3AS: Korean, Han Chinese and Malaya

Chinese) for RASGRP1 SLE association. We added a Han Chinese (HC) and a European

(EU) cohort from (26) and a Japanese cohort containing the patients from Okada et al.

(28) and additional Japanese samples (JAP).

American College of Rheumatology criteria (29). All sample
collections were approved by the Institutional Review Board of
the Oklahoma Medical Research Foundation as well as by the
collaborating institutions.

Quality Control
SNP quality control for our initial Asian cohort has been
described elsewhere (4). Quality control for European, Han
Chinese 2, and Japanese samples was described in the original
publications (26–28). All SNPs in the study were in Hardy-
Weinberg equilibrium (P > 1 × 10−6) and had minor allele
frequency >0.5%. Genotypic missingness was <10%. In order
to match risk alleles between cohorts, we compared their allele
frequencies to the parent populations from the 1,000 Genomes
Project. We used the SNP reference dbSNP142 as the SNP-
naming convention in common for all variants. SNP imputation
for all cohorts was described in their original publications. For
this study, SNPs with r2 and imputation quality information<0.7
were dropped.

Study Design
In order to identify RASGRP1 functional variants and their
mechanisms of action, our analysis followed the workflow
presented in Figure 1. We first extracted all summary GWAS
information in and around RASGRP1 (118 SNPs) from
Supplementary Table 5 in our previous study of Asian SLE (4).
We combined these results with a European (27), an Asian
(26), and a partially published Japanese cohort (28), to perform
meta-analysis. SNPs that passed the genome-wide significant
association threshold (p = 5 × 10−8) were further annotated
with functional information. A series of bioinformatics and
epigenomic analyses was conducted for each of the candidate
SNPs including their effects on gene expression (expression
quantitative trait loci, eQTLs), transcription factor binding,
promoter/enhancer activities, and chromatin interaction sites.
Together, we prioritized and nominated SNPs with stronger
association signals and with higher annotated likelihood
of being functional (Supplementary Tables 1, 2). Finally, we
experimentally validated predicted functions of the nominated
SNPs in Jurkat and HEK293 cell lines. Following SNP
prioritization, we performed electrophoretic mobility shift
assays (EMSAs), followed by mass spectrometry, chromatin

immuno-precipitation quantitative PCR (ChIP-qPCR), and
inhibition-based expression assays.

Association Analysis and Trans-Ethnic
Meta-Analysis
Association analysis for all cohorts was performed using PLINK
(30) and SNPTEST. Meta-analysis for all cohorts was performed
in METAL (31) using cohort sample size correction and standard
error correction to estimate the 95% confidence interval for odds
ratios. Heterogeneity of odds ratios was estimated and informed
the use of Pmeta values in the study. Variants with Pmeta < 5 ×

10−3 were selected for further study.

Bioinformatic Analysis
Given that candidate SNPs were located in non-coding regions
of the genome, we performed a thorough epigenetic annotation
of the variants. Initial annotation of epigenetic features was
performed in Haploreg (32). Each SNP in the region was
collocated with active and regulatory histone marks including
H3K27ac, H3K4me1, and H3K4me3, and DNase hypersensitivity
sites (DHS) in GM12878, and CD4+ and CD8+ T cells
(Supplementary Figure 1). Histone modifications and DHS
data were obtained from the ENCODE project (33) and the
BLUEPRINT epigenome project (34).

SNP Prioritization
We used a prioritization algorithm to narrow down the large
list of SNPs for further validation. Our strategy consisted
of two Bayesian algorithms to score each SNP [3dSNP (35)
and RegulomeDB (36)], as well as additional expression,
epigenetic, and preferential allele-specific information about
each SNP. First, we used the 3dSNP (35) tool to assign
functional weights based on the presence of enhancers,
promoters, experimentally determined (ChIP-seq) transcription
factor binding sites (TFBSs), TFBS motif matching, evolutionary
conservation, and presence of 3D chromatin interactions. We
assigned a 3dSNP weight of 2 to SNPs >2 standard deviations
above the mean, a weight of 1 for scores above the mean, and
a weight of 0 for the rest. RegulomeDB (36) scores were also
assigned for each candidate SNP and converted to an associated
weight. Each functional category, i.e., eQTL, enhancer/super-
enhancer, rSNP (37), capture Hi-C, TFBS, and allele-specific
expression/binding, was assigned a weight of 1 if the SNP had
this feature. Finally, we summed all weights for each SNP and
nominated the top SNPs for further experimental validation.

Expression Quantitative Trait Loci (eQTLs)
All the candidate SNPs were annotated for the presence of eQTLs
changing expression of RASGRP1 and its surrounding genes in
multiple tissues. We used expression databases for whole blood
(38, 39), immune cell lines (40), and multiple tissues (41) (GTEx
Analysis Release V6p). In order to identify quantitative changes
in methylation in blood cell lines, we used the WP10 database
from the Blueprint epigenome project (42).
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FIGURE 1 | Framework of study design. Our study followed our bioinformatics-prioritized potential functional SNPs with laboratory validation along many different

dimensions.

Transcription Factor Binding Sites (TFBSs)
In order to identify allele-specific effects on transcription factor
binding (TFBSs), we used the motifBreakr (43) algorithm
implemented in R, as well as the PERFECTOS-APE algorithm
that identifies fold-changes in binding affinity of SNPs against
HOCOMOCO10, HOMER, JASPER, Swiss Regulon, and HT-
Selex motif databases. We selected only TFBSs that had at least
5-fold change in affinity.

Assessing SNP Effects on
Enhancer/Promoter Sequences
We assessed whether each SNP was located within regulatory
(enhancer/promoter) regions across multiple cell lines using
active histone marks (H3K27ac, H3K4me1, and H3K4me3)
collocation implemented in the 3dSNP application (35). Super-
enhancers were annotated using the dbSuper (44), Prestige (45),
and EnhancerAtlas (46) databases.

Chromatin Interactions
Chromatin looping was identified using capture Hi-C assays
obtained from 3D Genome (47), 3DSNP (35) and CHiCP (48);
as well as from Promoter-capture Hi-C (49–52) experiments.

Allele-Specific Binding
Candidate SNPs within the association peaks were further
targeted to assess allele-specific binding (ASB) of histone
marks H3K4me1 and H3K4me3 in and around them. ASB
was calculated using seven heterozygous cell lines (GM10847,
GM12890, GM18951, GM19239, GM19240, GM2610, and
SNYDER). ASB was implemented in SNPhood (53).

Luciferase Reporter Assays
To test candidate SNP-containing regions for allele-specific
enhancer activity, we cloned all three SNPs (rs1163159,
rs7173565-rs7173565, and rs9920715) individually into
the enhancer reporter plasmid pGL4.26[luc2/minP/Hygro]
(Promega, USA). In brief, genomic DNA from the Coriell cell
line having different genotypes for the SNP tested (obtained from
NIGMS Human Genetic Cell Repository at the Coriell Institute
for Medical Research) was amplified using specific primers
containing KpnI and HindIII sites (Supplementary Table 3).
These amplified PCR products surrounding rs11631591 (481
bp), rs7170151 (579 bp), and rs9920715 (455 bp) were digested
with KpnI and HindIII restriction enzymes and ligated into
the pGL4.26 plasmid. After cloning and transformation, the
plasmids generated for each genotype were confirmed by direct
Sanger DNA sequencing. To study cell type-dependence, we
used two different cell types: human embryonic kidney HEK293
and T-lymphoid Jurkat cell lines. HEK293 cells were seeded in
24-well sterile plastic culture plates at a density of 1x105 cells per
well with complete growth medium. The cells were transfected
with 500 ng of pGL4.26 (with or without insert) along with 50
ng Renilla plasmid as control vector to control for differences
in transfection efficiency. LipofectAMINE 3000 (Invitrogen,
USA) was used for transfection into HEK293 cells, according
to the manufacturer’s protocol. For Jurkat transfections, we
used the Neon Transfection System (Thermo Fisher Scientific).
A total of 5 × 105 Jurkat cells was electroporated with a
Neon Transfection System (Invitrogen) under the following
conditions: voltage (1,050V), width (30ms), pulses (Two), 10-µl
tip, and Buffer R. For transfection, we used 2 µg of each plasmid
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containing the insert with risk or non-risk allele, along with 50
ng Renilla plasmid. Firefly and Renilla luciferase activities were
measured consecutively at 24 h after transfection using Dual-
luciferase assays (Promega), according to the manufacturer’s
instructions. Luciferase activity was analyzed with Student’s t-test
implemented in GraphPad Prism7. Differences between relative
luciferase activity levels were considered significant if Student’s
t-test P-value < 0.05.

Identification of DNA-Binding Proteins
Electrophoretic Mobility Shift Assays (EMSAs) and

DNA Pulldown Assays
Jurkat cell lines were obtained from ATCC and maintained in
RPMI 1640 medium with 2mm L-glutamine, 100µg/ml each
of streptomycin and penicillin, and 10% fetal bovine serum
at 37◦C with 5% CO2. Cells were harvested at a density of 8
× 105 cells/ml, and nuclear extracts were prepared using the
NER nuclear extraction kit (Invitrogen) with complete protease
inhibitors (Roche Diagnostics). Protein concentrations were
measured using a BCA reagent. Biotinylated DNA sequence
surrounding the candidate SNPs (rs7170151 and rs11631591)
was prepared using a synthetic single-stranded DNA sequence
(Integrated DNA Technologies, USA) (Supplementary Table 3).
Biotinylated DNA sequence with a 5-bp deletion at the SNP
region served as a control for the assay. Twenty-five pmol
of each DNA product was bound to 1mg Dynabeads R© M-
280 Streptavidin (Invitrogen, USA), as per the manufacturer’s
recommendations. Dynabeads M-280 Streptavidin (Dynal, Inc.,
Lake Success, NY, USA) were prepared by washing three times
in phosphate-buffered saline (pH 7.4) containing 0.1% bovine
serum albumin and two times with Tris-EDTA containing 1M
NaCl. Between each wash, beads were pulled down with a Dynal
magnetic particle concentrator. Double-stranded, biotinylated
oligonucleotides were added to the washed beads, and the mix
was rotated for 20–30min at 21 ◦C. Equal cpm of proteins
translated in vitro were diluted to 1× with binding buffer and
mixed with ∼100 µg of Dynabeads containing 10 pmol of the
individual oligonucleotide probe in a final volume of 250 µl. The
mixture was rotated at room temperature for 20min. Proteins
bound to the beads were separated from unbound proteins by
successive washes, three times with 0.5× binding buffer and
once with 1× binding buffer. Higher stringency washes included
two washes with 2× binding buffer. Beads and bound proteins
were pulled down with a magnetic concentrator, suspended in
1× sample buffer, boiled for 5min, and resolved on SDS-PAGE
gels, followed by peptide mass fingerprint MALDI-MS analysis
of single bands.

Mass Spectrometry Analysis
Mass spectrometry analysis was performed using a Thermo-
Scientific LTQ-XL mass spectrometer coupled to an Eksigent
splitless nanoflow HPLC system. Bands of interest were excised
from the silver nitrate-stained Bis-Tris gel and de-stained with
Farmer’s reducer (50mM sodium thiosulfate, 15mM potassium
ferricyanide). The proteins were reduced with dithiothreitol,
alkylated with iodoacetamide, and digested with trypsin. Samples
were injected onto a 10 cm × 75mm inner diameter capillary

column packed with Phenomenex Jupiter C18 reverse phase
resin. The peptides were eluted into the mass spectrometer at
a flow rate of 175 nl/min. The mass spectrometer was operated
in a data-dependent mode acquiring one mass spectrum and
four CID spectra per cycle. Data were analyzed by searching
all acquired spectra against the human RefSeq databases using
Mascot (Matrix Science Inc., Boston, MA, USA). Minimum
identification criteria required two peptides with ion scores
>50% and were verified by manual inspection. We verified the
identity of the assayed proteins by Western blot.

Confirmation of Identified Protein by
Western Blot
Mass spectrometry-identified proteins were confirmed by
Western blot. Jurkat nuclear extracts after DNA pulldown assay
were lysed in sample buffer [62.5mM Tris·HCl (pH 6.8 at 25◦C),
2% wt/vol SDS, 10% glycerol, 50mM dithiothreitol, 0.01% wt/vol
bromophenol blue]. Equal amounts of protein were loaded onto
a 10% SDS-PAGE gel (GTX gel BioRad USA). After it resolved,
samples were blotted to Nitrocellulose paper using the Trans-blot
Turbo Transfer System (BioRad, USA).Membranes were blocked
using LI-COR blocking buffer for 2 h and then incubated with
primary antibody 1:1,000 dilution (hnRNP-K, Santa Cruz USA)
at 4◦C overnight, and with a donkey anti-mouse IR-Dye 800
(LI-COR, USA) secondary antibody for 1 h. The membrane was
imaged with a LI-COR Odyssey using Auto-Scan. Background-
subtracted signal intensity was quantified using Image Studio
4.0 software.

Chromatin Immuno-Precipitation (ChIP)
Assay Followed by qPCR (ChiP-qPCR)
ChIP assays were performed using the MAGnify ChIP system
(Life Technologies, NY), according to the manufacturer’s
protocol. Jurkat cells were fixed for 10min with 1% formaldehyde
to crosslink DNA-protein and protein-protein complexes. The
cross-linking reaction was stopped using 1.25M glycine for
5min. The cells were lysed, sonicated to shear DNA, and
sedimented. Then, their diluted supernatants were incubated
with 5 µg hnRNP-K antibody. Ten percent of the diluted
supernatants were saved as “input” for normalization. Several
washing steps were followed by protein digestion using
proteinase K. Reverse crosslinking was carried out at 65◦C.
DNA was subsequently purified and amplified by quantitative
PCR on an SDS 7900 (Applied Biosystems) using specific
primers. Because the Jurkat cell line is heterozygous for the
SNPs rs11631591 and rs7170151, we performed Sanger DNA
sequencing with the ChIP-eluted PCR product.

Isolation of CD3+ T-Cells From Human
Blood
We used leukoreduction system chambers (LRS chambers) from
human blood donors. LRS chambers were obtained from the
Oklahoma Blood Institute (OK, USA) (Supplementary Table 12;
Supplementary Figure 9). LRSCs were sterilized externally using
70% (v/v) ethanol and handled in a class 2 laminar flow cabinet.
External tubing was cut, the chamber inverted over a 50ml sterile
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centrifuge tube (Greiner Bio-One), and the contents allowed to
drip through. The contents (usually 20ml) were then diluted
to 90ml in RPMI medium. The peripheral blood mononuclear
cells (PBMCs) were isolated by carefully layering 30ml fractions
over 17ml of histopaque-1077 (Sigma-Aldrich), which was then
centrifuged at 340 g for 45min at 20◦C. The PBMC layer was
isolated and washed three times with culture medium with cells
centrifuged at 340 g for 15min for the first wash and 10min for
the subsequent two washes. The isolated PBMCs were counted
and viability assessed with Trypan blue using a hemocytometer,
then centrifuged at 340 g for 10min. The untouched CD3+

T cells were collected using MojoSortTM Human CD3+ T-Cell
Isolation Kit, as per manufacturer instructions (BioLegend, San
Diego, CA).

Inhibition of hnRNP-K and ERK
Phosphorylation
Inhibition of hnRNP-K was performed in CD3+ T cells from
healthy controls, as well as in Jurkat T-cells using 5-Fluorouracil
(5-FU) (Sigma Aldrich, USA), as described previously (54).
Isolated CD3+ T-cells and Jurkat cells were cultured in RPMI-
1640 medium containing 10% heat-inactivated fetal bovine
serum (Invitrogen) and kept at 37◦C in 5% CO2 conditions.
For 5-FU treatment, the drug was first dissolved in dimethyl
sulfoxide (DMSO) and further diluted in medium before use.
Cells were treated with 20 ng/µl 5-FU, unless otherwise stated.
Next, to examine whether hnRNP-K and/or RASGRP1 down-
regulation by 5-FU led to inhibition of EKR phosphorylation
of ERK, Jurkat and CD3+ T-cells were pretreated with PMA
5µg/µl for 30min, prior to drug (5-FU) treatment. Inhibition of
hnRNP-K and RASGRP1 was detected using mRNA expression
analysis with quantitative PCR (after 48 h) and by Western blot
(after 72 h).

RESULTS

Patients and Samples
We used five Asian cohorts and one cohort of European descent;
sample sizes for the meta-analysis were 9,529 SLE cases and
22,462 controls (Table 1).

Fine-Mapping, Replication and
Meta-Analysis of RASGRP1 Association
First, we probed our previously reported SLE-associated region
(chr15: 38.4–39.2MB, hg19) and extracted association results for
six cohorts from the region containing the genes RASGRP1 (RAS
guanyl-releasing protein 1, a diacylglycerol-regulated guanine
nucleotide exchange factor) and C15orf53 [encoding a protein
of unknown function linked to alcohol dependence (55)]. The
strongest association signal among Asian cohorts localized to
intron 2 of RASGRP1 (Figure 2; Table 2). Meta-analysis with all
cohorts identified the largest signal at intronic SNP rs8032939
[Pmeta = 3.2 × 10−11, OR (95%CI) = 0.88 (0.85–0.92)]. We
identified 17 genome-wide significant (GWS) SNPs (Pmeta < 5
× 10−8). Our previously reported lead SNP rs12900339 (4) did
not reach GWS (Pmeta = 9.2 × 10−7) (Table 2). Analysis of the
association signals in the context of linkage disequilibrium (LD)

of 1,000 Genome populations (EUR, ASN; Figure 2) identified
two uncorrelated association signals (Supplementary Table 1).
The main signal occurred at rs8032939 in intron 2 (Figure 2),
while the second signal localized to the intergenic region between

RASGRP1 and C15orf53: SNP rs9920715 [60 kb 5
′

of RASGRP1;
Pmeta = 5.1× 10−9; OR (95%CI)= 0.89(0.86–0.93)]. Many (27 of
118 SNPs) variants were intronic (Figure 2). We then examined
the 18 GWS SNPs with bioinformatic and epigenomic analysis
(Table 2). Our top SNP (rs8032939) was previously reported as
a rheumatoid arthritis (RA)-associated SNP (56). Within the
intronic signal, we also identified rs8035957 (Pmeta = 1.3 ×

10−10), associated with Type I Diabetes (57).

Evaluating Functional SNPs
To identify putative functional SLE SNPs in and around
RASGRP1, we computed weighted scores for each SNP by
integrating multiple sources of functional annotation, including
allele-dependent gene expression, overlap with annotated
enhancers and promoters, binding affinity to transcription
factors, and collocation with anchors in promoter-enhancer-
capture Hi-C experiments (Supplementary Table 2).

Gene Expression
We then identified allele-dependent changes in gene expression
by annotating SNPs using expression quantitative trait locus
(eQTL) databases for multiple tissues (Methods). All candidate
LD SNPs were eQTLs in blood cell lines (3.2 × 10−3 > P > 1.9
× 10−4; Supplementary Table 4), as well as in skin, esophagus,
and testis (Table 3). The intronic (main signal) SNPs affected
expression of both RASGRP1 and C15orf53, while the intergenic
(secondary) SNPs (in LD with rs9920715) altered expression of
only RASGRP1. RASGRP1 SNPs also affected expression of long
non-coding RNAs (lncRNAs) RP11-102L12.2 and RP11-275I4.2
in non-blood cell lines. All eQTL risk alleles increased expression
of RASGRP1 in multiple cell lines (Supplementary Table 4;
Supplementary Figure 2), but had opposing effects on the
neighboring gene C15orf53 (Supplementary Table 4). We also
found significant effects of two linked SNPs (rs11073344,
rs11631591) on methylation of RASGRP1 in T-cells and
neutrophils, respectively (Supplementary Table 5).

Overlap With Enhancers and
Super-Enhancers
Then, we investigated the potential of the candidate SNPs
to act as enhancers of RASGRP1 expression. Three GWS
SNPs (rs6495979, rs11631591, and rs7173565) overlapped with
ENCODE-annotated enhancers for RASGRP1 in lymphoblastoid
cells (GM12878, GM12892) and also in CD8+ T-cells. These
three GWS SNPs (all intronic) localized to super-enhancers
[i.e., collections of multiple contiguous enhancers (58)] for
RASGRP1 in CD4+ CD25− CD45RA+ naïve cells, CD4+

CD25− CD45RO+ memory cells, CD8+ primary cells, CD4+

CD25− Il17+ phorbol myristate acetate (PMA)-stimulated Th17
cells, and CD4+ CD25− Il17− PMA-stimulated Th17 cells
(Supplementary Table 6). This suggests that these SNPs may
regulate RASGRP1 in T-lymphocytes.
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FIGURE 2 | Meta-analysis in the RASGRP1 region. Blue diamond: lead SNP rs8032939 following initial meta-analysis. Red circles: SNPs chosen for experimental

validation. rs11631591-rs7173565 are considered together due to their proximity; only rs11631591 is labeled. Purple diamond: our previously reported (4) lead SNP

rs12900339. Linkage disequilibrium in the region (bottom) is notably different between European (EUR) and Asian (ASN) populations.

Chromatin Interactions
Since all candidate SNPs reside outside of the RASGRP1
promoter, we investigated if the SNPs overlapped with
anchors in promoter-enhancer connections through
chromatin interactions. We used promoter-capture Hi-
C data on blood cell lines, in particular T-cells, to
identify physical interactions between the intronic signal
and the RASGRP1 promoter (Supplementary Table 7;
Supplementary Figure 3). We also examined the physical
interaction between the intergenic region (represented by
rs9920715) and the promoters of RASGRP1 and C15orf53.
We identified multiple significant promoter-enhancer
interactions between the intronic signal and RASGRP1,
C15orf53, FAM98B, and SPRED1, and multiple interactions
between the intergenic signal and the promoter of RASGRP1
(Supplementary Table 7).

Effect on Cytokine Production
A critical feature in SLE pathogenicity is cytokine production
(59); thus, we investigated if these SNPs alter cytokine abundance.
Our candidate SNPs significantly increased expression of

interleukins IL6 and IL22 and tumor necrosis factor (TNFα),
while SNP rs9920715 exclusively increased IL22 expression
(Supplementary Table 8).

Allele-Specific Binding
We found that 14 of the candidate GWS SNPs also had allele-
specific binding (ASB) to H2K27ac in monocytes, neutrophils,
and T-cells (Supplementary Table 9), while rs9920715 showed
ASB with H3K4me1 in T-cells and neutrophils. To characterize
the regulatory mechanisms involved, we assessed ASB of
histone marks H3K4me1 and H3K4me3 at and around
candidate SNPs (Supplementary Table 9; Table 3). We identified
a significant regulatory region associated with promoter mark
H3K4me3 with a higher binding affinity to the extended region
(∼1 kb) containing the risk alleles (both C) of intronic SNPs
rs11631591-rs7173565 (Supplementary Figure 4a). In addition,
we identified marginally significant ASB to enhancer mark
H3K4me1 at SNPs rs6495979 and rs7170151, which tagged a
regulatory region within ∼500 bp (Supplementary Figure 4b).
These data indicate that allele-specific differences might affect
chromatin interactions.
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FIGURE 3 | Luciferase reporter assay for rs7170151, rs11631591-rs7173565 and rs9920715. (A) Jurkat cells. (B) HEK293 cells. Empty vector pGL4.26 was used as

reference. NR: non-risk. P-values are for Student’s t-test.

Validation of Enhancer by Luciferase
Assays
When testing in a luciferase reporter assay, rs7170151 and
rs11631591 showed marked (up to 10-fold over empty vector)
enhancer activity in Jurkat cells (P = 3.0 × 10−4, P = 1.0
× 10−3, respectively) and less so (1.6-fold) in HEK293 cells
(P = 4.0 × 10−2, P = 3.0 × 10−3); on the other hand
rs9920715 functioned as a very weak enhancer only in HEK293
(P = 4.1 × 10−2) (Figure 3). Furthermore, rs7170151 and
rs11631591 showed dramatic allelic differences in enhancer
function. Genomic regions containing homozygous risk alleles of
rs7170151 (C) and rs11631591 (C) showed significantly higher
enhancer activity (∼50% increase; P = 1.0 × 10−2 and P = 2.3
× 10−3, respectively; Figure 3A) compared to non-risk alleles,
but only in Jurkat cells. This allele-dependent enhancer activity
is consistent with the allele-specific expression we observed in
the eQTL data. There were no significant differences in HEK293
cell lines (Figure 3B), suggesting that enhancer activity depends
on white blood cell-specific factors. The third intergenic SNP
(rs9920715) did not show enhancer activity in any assayed cell
type (Figures 3A,B).

Transcription Factor Binding
We next assessed allele-specific changes in transcription factor
binding site (TFBS) affinity using fivemotif databases (Methods).
We identified 256 TFBSs significantly affected by ten of our SNPs
(Supplementary Table 10). Notably, we found 43-fold higher
affinity of promoter-specific TF YY1 to the non-risk allele (T) of
rs7173565 and 42-fold higher affinity of TF GATA (GATA1..3.p2
motif) to the risk (T) allele of rs6495979. Interestingly, SLE-risk
ETS1 (60) binding had 10-fold higher affinity to the risk (C) allele
of rs7173565, while SLE-risk IRF5 (61) bound 6-fold more tightly
to the non-risk (C) allele of rs6495979.

Identification of DNA-Binding Proteins
We detected DNA-binding protein complexes using
electrophoretic mobility shift assays (EMSAs) and DNA
pulldown assays using a 41 bp-long dsDNA containing the
rs11631591-rs7173565 (homozygous risk, CC; or homozygous
non-risk, TT) alleles (Supplementary Table 11). We prepared
nuclear extracts from Jurkat cells and incubated them with
biotin-labeled dsDNA (risk vs. non-risk) bound to magnetic
beads coated in streptavidin. EMSA showed multiple bands
of DNA-bound proteins (Supplementary Figure 5). We
observed allele-specific binding of a protein complex at 75
kDa. Although EMSA is not a quantitative assay, we observed
in multiple independent experiments that the intensity of
the band with the risk (CC) oligo was darker than with the
non-risk (TT) oligo, suggesting allele-specific differential
binding (Supplementary Figure 5). Using mass spectrometry
analysis of bound proteins, we identified heterogeneous nuclear
ribonucleoprotein K (hnRNP-K) isoform b as the most abundant
bound protein (Supplementary Table 11). hnRNP-K was also
the protein whose binding was most diminished by substitution
of the risk CC by non-risk TT nucleotides. We also confirmed
that the identified protein bound with the risk oligo for the
region of rs11631591 was hnRNP-K through EMSA followed by
Western blot (Supplementary Figure 6).

SNPs Bind to Different Transcription
Factors in an Allele-Specific Manner
Using EMSA and mass spectrometry, we showed that hnRNP-
K protein has tighter binding affinity to the risk genotype (CC)
of SNP rs11631591-rs7173565. We validated these findings using
Jurkat (heterozygous CT at rs11631591-rs7173565) to perform
chromatin-immunoprecipitation (ChIP) followed by RT-qPCR
(ChIP-qPCR). We observed significant enrichment in binding
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FIGURE 4 | (A) ChIP-qPCR of sequences containing SNPs

rs11631591-rs7173565, rs7170151 or rs9920715 in Jurkat cells. SNP

rs11631591 showed 3-fold enrichment of hnRNP-K binding over IgG control.

No significant enrichment at the other two SNPs was observed. P-values are

for Student’s t-test. (B) Sequence chromatographs from a heterozygous

sample at rs11631591 showing difference in binding between the input (equal

binding to the two alleles, above) and the ChIP assay at the risk allele (2–3×

more binding to the risk C allele, below).

of the hnRNP-K antibody to the SNP region of rs11631591, but
did not observe any binding of hnRNP-K antibody to either
rs7170151 or rs9920715 (Figure 4A). To determine preferential
or allele-specific binding, we performed Sanger sequencing on
the region containing rs11631591-rs7173565. Both alleles were
present in the original input sample; however, only the risk allele
(C) was detected significantly higher than the non-risk allele (T)
in chromatograms of the ChIP-eluted PCR product (Figure 4B).
These data suggest preferential allele-specific binding of the
rs11631591-rs7173565 risk locus to hnRNP-K.

hnRNP-K Plays an Important Role in
RASGRP1 Expression
To investigate the role of endogenous hnRNP-K in Jurkat and
primary CD3+ T-cells, we transiently inhibited hnRNP-K using

5-fluorouracil (5-FU). After 5-FU treatment (48 h), we observed
significantly reduced mRNA expression for both hnRNP-K (P
= 1.4 × 10−3; Figure 5A) and RASGRP1 (P = 3.0 × 10−4;
Figure 5B). 5-FU-induced hnRNP-K downregulation correlated
with reduced expression of RASGRP1 (Figures 6A,B). This
result suggests that hnRNP-K plays an important role in
RASGRP1 expression in Jurkat cells as well as in primary T-cells.
Furthermore, we observed the reduction of ERK phosphorylation
with 5-FU after initial induction with PMA in Jurkat and primary
T-cells (Figures 6A–D). It is of note that stimulation with PMA
did not influence cell viability (Supplementary Figure 7).

DISCUSSION

In this study, we fine-mapped our previously reported SLE locus
near RAS guanyl-releasing protein 1 (RASGRP1), a lynchpin of
T-cell development and the RAS/MAP kinase signaling cascade
following antigen exposure. We performed a trans-ethnic meta-
analysis of the locus with cohorts of Asian and European
descent, followed by multiple lines of bioinformatic analysis of its
epigenetic context to prioritize SNPs as candidate causal variants.
Experimental testing of the top candidates validated them as
plausible variants underlying association of this locus with SLE
(and perhaps other autoimmune phenotypes).

We identified two independently associated regions correlated
with RASGRP1 regulation and expression. The first signal lies in
RASGRP1 intron 2, represented by SNPs rs11631591-rs7173565
and rs7170151, which regulate RASGRP1 expression as eQTLs
(esophageal mucosa and skin), enhancers (in CD8+ T-cells and
thymic and lymphoblastoid cell lines), and as interaction anchors
with the nearby C15orf53 promoter. The SNPs in this region
are within a robust enhancer, with the risk alleles (rs7170151-
C and rs11631591-C/rs7173565-C) greatly increasing RASGRP1
expression in multiple tissues (databases) and in Jurkat T-cells
(our experiments). Furthermore, this enhancer is targeted by
promoter interactions in CD8+ and CD4+ T-cells, B-cells, and
monocytes (62) (Supplementary Figure 3). We also identified

another intergenic signal around 60 kb 5
′

of RASGRP1, at
rs9920715, another SNP within promoter-interacting chromatin
that acts as an eQTL for RASGRP1 in B- and T-cell lines (62).
However, this SNP did not show enhancer activity in our assays.

Mammalian gene regulatory elements, especially those that
are tissue-specific, show high in vivo nucleosome occupancy,
which can effectively compete with TF binding (63, 64). This
nucleosome-mediated restricted access to regulatory information
is a key element for inducible or cell type-specific control of
gene expression (65). In the current study, we observed strong
enhancer activity at rs11631591-rs7173565 or rs7170151 only in
Jurkat but not HEK293 cells. Furthermore, our candidate SNPs
show allele-specific RASGRP1 expression, with the risk alleles
driving substantially more (∼50%) expression than the non-
risk alleles. Other studies on numerous complex diseases have
demonstrated enrichment of disease-associated loci in cell type-
specific regulatory regions of corresponding disease-relevant cell
types (58, 66–69). Additional studies now document the direct
effects of common variation in enhancer elements on enhancer
states (70–73), gene expression (70, 74), and disease (75–79). Risk

Frontiers in Immunology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 1066123

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Molineros et al. RASGRP1 Variants in SLE Susceptibility

FIGURE 5 | Downregulation of hnRNP-K by 5-FU treatment. 5-FU treatment reduces hnRNP-K expression levels in Jurkat cells. Jurkat cells were treated with DMSO

vehicle or 5-FU (20 ng/µl) for 24 or 48 h. hnRNP-K (A) and RASGRP1 (B) were examined with GADPH as loading control.

alleles of rs11631591 also showed significant binding to hnRNP-K
protein in an allele-specific manner.

DNA/protein interaction assays demonstrated that hnRNP-K
preferentially binds to sequences containing the rs11631591 risk
(C) allele. We confirmed this allele-specific binding by EMSA
and ChIP DNA sequencing. We only observed allele-specific
binding of hnRNP-K at SNP rs116311591-rs7173565, but not
at rs7170151 or rs9920715. We also observed that inhibition
of hnRNP-K correlates with RASGRP1 expression and ERK
phosphorylation. In fact, expression of RASGRP1 and hnRNP-K
(P = 9.8 × 10−5; P = 1.4 × 10−2, respectively) in spleen
(Supplementary Figure 8) shows a positive correlation between
the risk allele of rs116311591 and both these genes. These data
suggest that SNP rs11631591 is a functional SNP andmay directly
contribute to modulating RASGRP1 expression. Abnormal
expression of RASGRP1 isoforms will perturb lymphocytes of
SLE patients regardless of their clinical disease activity, and
may contribute to impaired lymphocyte function and increased
apoptosis in SLE patients (19). Abnormal RASGRP1 expression
also induces ERK and JNK phosphorylation in the MAPK
pathway, which in turn alters T-cell development, contributes
to long-term organ damage, and ultimately increases SLE
susceptibility (22, 24, 25). In the present study, we also observed
the role of RASGRP1 expression in the phosphorylation of ERK
activity. Altogether, our results indicate increased RASGRP1
expression correlates with the risk alleles in our functional
SLE loci and T-cell dysfunction. However, our study did
not examine the differences in RASGRP1 isoform expression
reportedly associated with SLE and correlated with low RASGRP1
expression (19).

In this study, we characterized the genetic risk of SLE in
RASGRP1. We also propose a mechanism by which functional
SNPs could affect SLE pathogenesis. We identified two functional
regions affecting expression and regulation of RASGRP1 in an
intronic region including two SNPs (rs11631591 and rs7170151)
and another in an intergenic region harboring SNP rs9920715.
All identified SNPs are RASGRP1 eQTLs and exhibit regulatory

potential through enhancer-promoter chromatin interactions.
SNP rs11631591 showed T-cell-specific enhancer activity and an
allele-specific interaction with hnRNP-K protein. Inhibition of
hnRNP-K protein by 5-FU decreased expression of RASGRP1
in T-cells, suggesting that hnRNP-K plays an important role in
RASGRP1 expression through interactions with the risk genotype
of SNP rs11631591. These results are consistent with this SNP
being an important factor contributing to SLE pathogenicity.

Heterogeneous nuclear ribonucleoproteins (hnRNPs)
represent a large family of nucleic acid-binding proteins
implicated in various cellular processes including transcription
and translation (24, 80). hnRNP-K is a highly multifunctional
protein, with annotated roles in chromatin remodeling,
transcription, splicing and translation (80). It is primarily
referred to as an RNA-binding protein specific for “poly-C”
repeats (81), but it actually prefers single-stranded DNA and
can bind to double-stranded DNA (82). hnRNP-K can act as
a transcriptional activator or repressor (83); notable examples
include transcriptional repression of CD43 in leukocytes (84)
and transcriptional activation of c-myc in B-cells (85). Its
DNA-binding preference is found to be repeats of the CT
motif, separated by several base pairs (82), confirmed by
structure determination (86). There are several CT motifs in
the immediate environment of rs11631591, whose hnRNP-
K binding could be affected by the SNP. It should also be
noted that several of the other abundant proteins pulled
down by the double-stranded DNA EMSA are primarily
annotated as RNA-binding proteins, including hnRNP-M
and splicing factor U2AF. Other transcription factors were
also abundant, including far upstream element-binding
protein 3, supporting the notion that this locus is indeed
transcriptionally active.

Taken together, we have identified and mechanistically
dissected a lupus risk locus in the 2nd intron of RASGRP1,
which regulates T- and B-cell development and the MAP kinase
pathway. Single SNPs were found to control transcriptional
activation and binding to several proteins, including the
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FIGURE 6 | (A) RasGRP1 reduction influences the phosphorylation of ERK. 5-FU treatment reduces hnRNP-K and RasGRP1 expression levels in Jurkat and healthy

human CD3+ T cells. Pretreatment with PMA increases levels of RasGRP1 and phospho-ERK. Inhibition of hnRNP-K with 5-FU decreases levels of RasGRP1 and

phospho-ERK, even after PMA stimulation. (B) 5-FU treatment reduces hnRNP-K as well as RasGRP1 expression level in primary CD3+ T-cells. Pretreatment with

PMA induces RasGRP1 expression and leads to phosphorylation of ERK and reduction of RasGRP1; treatment with 5-FU also leads to reduction of phosphorylation

of ERK. (C) Densitometric analysis for RASGRP1 normalized to β-actin: primary T-cells and Jurkat cells. Results are presented as relative fold-change following drug

treatment with and without stimulation. (D) Densitometry analysis for phospho-ERK normalized to β-actin: primary T-cells and Jurkat cells. Results are presented as

relative fold-change following drug treatment with and without PMA stimulation. **P < 0.05; ***P < 0.005.

transcription factor hnRNP-K. Experiments confirmed that
both the single base-pair risk-to-non-risk substitutions and
pharmacological inhibition of hnRNP-K decreased MAPK
signaling in T-cells. Systematic refinement of large GWAS

peaks to single SNPs, combined with experimental mechanistic
analysis, is critical to understand the genetics of highlymultigenic
diseases and to drive therapeutic interventions to improve
human health.
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