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Preface

“I hate all those stupid quotes at the beginning of each chapter.”
– Anyone who hates all the stupid quotes at the beginning of each

chapter

Behind every text, however technical, there is a personal story of its
author1 and the author’s motivations.

Having worked for a couple of months in an engineering company that
manufactured electronic equipment, I decided that perhaps it was the best
time to finish my education. So, I enrolled at the department of Computer
Science at the University of Gdańsk. Among other topics, one lab was
devoted to data processing heuristics jointly named “computational intelli-
gence”.

Our first meeting was spent getting acquainted with the programming
language R that we were supposed to use throughout the semester for the
assignments. But I balked.

On the one hand, I’ve used many programming languages throughout
my career: JavaScript, Python, PHP, Perl, Bash, Matlab, SQL, C, C++,
Assembly, Haskell, Erlang, Prolog, Pascal, BASIC, VisualBasic, MiniKan-
ren, and a few others. Some of those languages were really mind-expanding
in their own unique ways.

On the other hand, being a rather seasoned Schemer, I knew that most
of these languages were only inferior incarnations of Lisp, and I could find
little value in learning a new syntactical disguise for those well-established
concepts.

I was very soon to find out that my skepticism was right, and that
learning R would require internalizing a lot of unfortunate idiosyncrasies
that the authors of the language had chosen for their own idiosyncratic rea-
sons, and that I would be constantly stumbling over those incomprehensible
limitations and discrepancies between common practices and the language
developers’ decisions. And for that main reason I didn’t want to waste my
time.

1Even if the text was generated by a machine, and the machine was designed by a
computer program, and so on, this causal chain eventually has its author.

1



2 CONTENTS

Bjarne Stroustrup said that there are only two kinds of languages: the
ones people complain about and the ones nobody uses2. The advocates of
R sometimes admit that perhaps the language isn’t perfect, but it contains
a lot of convenient libraries to make the whole thing worthwhile.

Being a nobody, I was in a gray area where I could complain about
the language or not. I asked my TA whether he would allow me to choose
another language for doing the assignments, and he agreed.

My language of choice was of course Scheme, or – more precisely – Guile
Scheme. I chose Guile Scheme because it has a wonderful trait: rather than
helplessly complain about features I don’t like, I can replace them with
whatever I find more suitable. If a feature is missing from the language, I
can add it, rather than swear and curse its developers.

The title of this pamphlet may suggest that it is written against the R
programming language, but it is actually written against the majority of
programming languages in use today3. The ultimate goal of this text is to
violently eliminate them all.

Recognizing that the aforementioned goal is rather quixotic, I will be
satisfied instead if anyone finds any value in this pamphlet, whether it be
education, entertainment or personal hygiene4.

Structure of this pamphlet

This pamphlet assumes no prior knowledge of programming. If you think
you already possess programming knowledge, you’ll probably see much that
is new here.

Throughout the subsequent chapters, a large subset of the Scheme pro-
gramming language will be laid out, later chapters building upon the earlier.
The first chapter introduces all the elementary notions needed for program-
ming in Scheme. The next two chapters show how to use that knowledge in
practice. The fourth chapter introduces a few more features of the language
that are used in the fifth chapter.

Each chapter will introduce new definitions to be used in later applica-
tions. For example, the third chapter presents the notion of equivalence-
-classes used extensively throughout the fifth chapter.

The vision of programming presented here departs significantly from the
mainstream view, where a program is perceived as a sequence of steps that
lead us to a desired goal.

2He probably said that, because he was himself a creator of a popular language that
everybody complains about.

3 However, the case of the R programming language is particularly interesting, because
initially it was just a harmless implementation of Scheme; but then as a result of the
irresponsible experiments of mad scientists it mutated into a monster[3].

4Concerns the printed copies
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On the contrary, I intended to explain programs as intellectual con-
structs of increasing complexity; hence, reading the chapters in their proper
sequence is strongly recommended.

How to read this pamphlet

The most essential part of this pamphlet are the definitions. Everything
else is just scaffolding whose purpose is to facilitate their comprehension.
The ultimate goal is to make those definitions dance in the reader’s head;
hence each definition should be studied with care. If there are no examples
given, it is up to the reader to come up with proper examples, because if a
definition is the dance, then examples are the dancers.

The whole point of a definition is to create or express a notion that can
be further used to think about phenomena in the real world. Internalizing
a definition is not always a pleasant task, because it requires an intellectual
effort of focusing and remembering.

Reading programs isn’t like reading novels. Because of their familiar
narrative generality, we typically absorb stories almost effortlessly. However,
comprehending logical abstractions requires a very different approach. Well
written programs are a bit like mathematical textbooks. The latter usually
consist mainly of definitions, examples, theorems and proofs (and exercises).

The role of theorems is usually diminished in the realm of computer
programs: essential are the constructions, the definitions. Examples (some-
times called unit tests by software folks) serve mainly as a means of ensuring
a program behaves as expected, which gains importance as the program is
subjected to changes. Theorems manifest themselves in the weak form of as-
sertions and type signatures, while proofs are usually performed by specific
tools such as type checkers or model checkers. Furthermore, false assertions
can typically be refuted during the execution of a program.

In the case of math textbooks, exercises and examples are a way of facil-
itating comprehension. It is usually much easier to understand an abstract
definition if we consider examples that are concrete instances of the abstract
definition. Similarly, exercises are like examples but where some or all of the
reasoning is left out; as such, they can be thought of as “partial examples”
where we are challenged to come up with the reasoning for ourselves.

Reading a math textbook without doing the exercises is also possible,
but it is up to the reader to come up with the deeper and broader under-
standing5.

5 Programmers usually read computer programs in order to change them, which is an
ultimate exercise in the comprehension of complex systems. On the other hand, programs
are often written with the purpose of “doing their job”, rather than being comprehended
and modified.
From my experience, this approach dominates, not only in industry (which is under-

standable), but also in education (which is harmful to industry).
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Who should read this pamphlet

The title of this pamphlet may be misleading since readers might think
we are only concerned with computational methods. Although there are
certainly computational methods involved, this work is really about thinking
and communicating thoughts.

While it is difficult to imagine anyone who would not benefit from the
knowledge presented here, there are some groups who are particularly en-
couraged to do so. For instance, this text may be of interest to philoso-
phers and linguists, as it presents a linguistic perspective on communicating
thoughts in a precise manner.

It may also be interesting to evolutionary biologists, because it contains
a quote from Richard Dawkins and stuff like that.

It should be of particular interest to computer scientists and program-
ming language designers, to convince them to stop designing new languages
immediately!, because – as the history teaches us – they often enough suc-
ceed, thereby forcing generations of programmers to suffer due to the igno-
rance of their creators.

However, as previously indicated, this book is about programming and
clear thinking in equal measure, and it is difficult to imagine someone who
could not benefit from this combination.

And so perhaps the shortest answer to the question posited in the title
of this section is: you.

Acknowledgements
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Reporting bugs
I realize that the quality of this text may be questionable. After all, this is a
pamphlet. However, if you find any parts of the text obscure or difficult to
understand, or if you find any mistakes in the explanations presented here,
or simply want to talk about how miserable the world is, feel free to write
an e-mail to godek.maciek+pamphlet@gmail.com.

Also make sure that you are reading the latest version of this pamphlet,
always available from

https://panicz.github.io/pamphlet
as many of the bugs may already have been fixed.

Finally, if you would like to become a co-author and add your own chap-
ters or examples, it will be my pleasure to merge your pull-requests.
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Introduction

“The acts of the mind [...] are chiefly these three: 1. Com-
bining several simple ideas into one, and thus all complex ideas
are made. 2. [...] bringing two ideas, whether simple or com-
plex, together, and setting them by one so as to take a view of
them at once, without uniting them into one, by which it gets all
its ideas of relations. 3. [...] separating them from all the other
ideas that accompany them in their real existence: this is called
abstraction, and thus all its general ideas are made.”

John Locke, An Essay Concerning Human Understanding (1690)
[...]
A powerful programming language [...] serves as a framework within

which we organize our ideas [...]. Every programming language has three
mechanisms for accomplishing this:

• primitive expressions [...]

• means of combination [...]

• means of abstraction [...]

– Hal Abelson and Gerald Sussman, Structure and Interpretation of
Computer programs

1.1 Epistemic role of programming

This text was written with the belief that programming is not only a way of
automating common repetitive tasks, but – most importantly – it is a means
(probably the most efficient) of representing knowledge and understanding
the world and its phenomena, as well as expressing original ideas.

7



8 1. INTRODUCTION

This view is frequently obscured by some bad practices that are widespread
among programmers. Apart from expressing knowledge and ideas, program-
ming languages allow programmers to do virtually everything they like – it
is therefore possible that they write code which gets in the way to under-
standing, rather than facilitate it1.

The claim that many programmers write code in “the wrong way”, and
that the author of this pamphlet knows which way is “the right way” may
seem pretentious. It must therefore inevitably be left to the reader to judge
whether the author’s claims are true.

1.1.1 Expression-based programming

Throughout this pamphlet, we will be perceiving computer programs as
constructions of compound objects. This view has recently been gaining
more popularity, but it is still far from the mainstream view, which claims
that a program is a set of instructions that ought to be performed in a given
order.

The latter view is often called imperative programming, and has tradi-
tionally been contrasted with declarative programming. Within the realm of
declarative programming, there is a particular subset called functional pro-
gramming, where the programmer creates programs by defining functions
(in mathematical sense).

However, since the notion of functional programming has recently been
somewhat appropriated by Haskell, and for some reasons that shall become
clear later, I will prefer to use the term expression-based programming or
constructive programming.

For example, let’s say that someone wishes to write a program that
computes a sum of squares of initial seven prime numbers. The
imperative program that does this could look as follows:

counter := 7
number := 0
sum := 0
while(counter > 0):

if is_prime(number):
sum := sum + number^2
counter := counter - 1

number := number + 1

1Apparently even excellent programmers and great erudites have been failing at this
task. One of the most extreme examples is the code from Donald Knuth’s The Art of
Programming. Written in the MIX assembly, the code only hides the conceptual structure
of presented solutions from the reader.
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After its execution, the sum variable will contain the desired value.
However, if we take a look at the specification of the problem, we will

notice that it can be itself perceived as a part of the solution: the expression
“sum of squares of initial seven prime numbers” has a certain linguistic (or
syntactic) structure, and a corresponding conceptual (or semantic) struc-
ture. The syntactic structure may not be immediately apparent, but simple
analysis shows that the outer form of the expression is “sum of X”, where X
is “squares of initial seven prime numbers”. We can further decompose the
latter, extracting the form “squares of Y ”, where Y is “initial seven prime
numbers”. Making yet another step, we obtain the expression “initial N
prime numbers”, where N is “seven”.

sum

squares

prime-numbers

initial seven

This isn’t the only way in which we can perform decomposition. That’s
because the natural language that we use in our everyday communication
is naturally ambiguous. For instance, by “initial seven prime numbers”, do
we mean “a set of initial prime numbers”, or “a sequence of initial prime
numbers”?

This distinction is of course insignificant from the point of view of our
task, because addition is commutative, and hence the order in which we
compute this sum is arbitrary. On the other hand, if we asked someone to
name the initial seven prime numbers, it would be likely that he or she would
enumerate them in the ascending order. If we investigated further into that
phenomenon, it would probably turn out that the order is a consequence of
the order in which the numbers are computed by the speaker. Indeed, what
a shocking experience it would be to hear those numbers being uttered in a
random or descending order!

In order to avoid such shocks, people apply the so-called cooperative
principles to their conversations2: they try to adopt their utterances to the
expectations of their interlocutors (to the extent in which they can recognize
them), or – in the parlance of programmers – they “try to design clean and
simple APIs”3.

2 The theory of Cooperative Principles was formulated by Paul Grice. He explicated
four maxims that ought to be applied in effective communication. Probably the most
relevant to programming and the one that is least respected by programmers is the Maxim
of Manner, which recommends to avoid obscurity of expression, avoid ambiguity, be brief
and be orderly.

3Seriously.
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Note however, that even if there is no natural order of elements in a
set, whenever we wish to enumerate elements from that set, imposing some
order is inevitable.

Therefore, unless specified otherwise, whenever we speak about some
multitude of elements, we shall mean a sequence of those elements, rather
than a set (even if the order is irrelevant).

Returning to our example, we have a function “initialN prime numbers”,
where N is a natural number. The value of a function, for a given N , is
an ascending sequence of N initial prime numbers. For instance, the value
(or meaning 4, or denotation) of expression “initial 7 prime numbers” is a
sequence (2 3 5 7 11 13 17) 5.

This is as far as we can go with the linguistic analysis. Obviously, the
expressions under consideration consist of words, but their meanings do not
(at least not in this particular case)6: the sequence of numbers consists of
numbers and their order. We could therefore ask: what is the structure of
a sequence?

We can note that sequences can be empty, as it is the case with the
denotation of the expression “initial 0 prime numbers”, or “empty sequence”.
Non-empty sequences can be decomposed into their first element, and the
remainder of its elements (which may be empty). This prompts us with a
recipe to construct sequences recursively. First, let’s note that the phrase
“initial N prime numbers” is synonymous with “N least prime numbers
greater than 0”. Therefore we have function of two arguments: “N least
prime numbers greater than M”.

We can define this function as follows:

The meaning of “0 least prime numbers greater than M” is
an empty sequence.

The meaning of “N + 1 prime numbers greater than M” is:

• a sequence whose first element isM+1, and whose remain-
ing elements are the N prime numbers greater than M + 1,
if M + 1 is a prime number;
• otherwise it’s just the same as N+1 prime numbers greater
than M + 1.

4As it was shown by Frege, the word “meaning” is also ambiguous, and can either mean
intension/connotation or extension/denotation. Intension of a semantically compound
concept is its formulation in simpler terms.

5Of course, we cannot write down a sequence, and so we are forced to write down a
textual representation of a sequence. In fact, we can only write down two distinct textual
expressions, hoping that the reader will establish in her or his mind, that those distinct
two expressions are meant to refer to the same abstract object.

6It is possible to build linguistic expressions whose meanings consist of words. A fine
example is a linguistic expression “This sentence”, which refers to a sequence of two words:
(This sentence).
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Although the above formulation is a legitimate description that explains
how to construct a sequence of subsequent prime numbers, it disconcert-
ingly brings legal gibberish to mind. It also makes it difficult to distinguish
between the strict definitional part of the text from its more explanatory
fragments. Moreover, as it was noted before, the syntactical structure of the
text isn’t immediately clear even for the simplest examples.

In order to handle these issues, it is customary to introduce a formal
notation. It is a common practice in mathematics, where mathematicians
use special symbols to denote certain abstract concepts, and in logic, where
logicians try to make certain reasonings more explicit.

1.2 Introduction to Scheme

In the quest for our perfect notation, we shall stick to the rule of parsimony:
we want to make as few assumptions and conventions as possible, but we
also want to make sure that they are universal. Firstly, let’s embrace the
compound syntactical units in parentheses. Then, the expression “sum of
squares of initial seven prime numbers” becomes:

(sum (squares (initial seven prime numbers)))
While at first the parentheses may seem difficult to match, they allow to

avoid confusions and ambiguities that are typical for the natural language.
Note also, that we got rid of the “of” prepositions, because they provide no
information: we can simply read (f x) as “f of x” (provided that f has
only one argument).

Furthermore, let’s stick to a convention, that a single concept is expressed
using a single word, where by words we mean sequences of letters separated
with parentheses or white spaces. Also, let’s make sure that the ruling word
of the expressions appears at the first position. We can make compound
words using hyphens:

(sum (squares (prime-numbers initial seven)))
This formulation expresses the structure of our problem well enough us-

ing so-called fully parenthesized Polish notation – certainly we can no longer
be confused with lawyers. Now the only thing that’s left is to explain in
basic terms what we mean by sum, squares and prime-numbers. The ques-
tion which terms are to be regarded as basic depends on the context. In this
particular case, we also happen to have written (a fragment of) a program
in a programming language called Scheme, which enumerates a whole set of
notions that are regarded as simple7, and the notion of prime-numbers cer-
tainly does not belong to that set. It does, however, contain the notions of
numbers, addition, multiplication, division, comparison and it also provides

7The exact specification of the basic terms of Scheme is provided in the Revisedn Report
on the Algorithmic Language Scheme that can be found at http://www.schemers.org/
Documents/Standards.

http://www.schemers.org/Documents/Standards
http://www.schemers.org/Documents/Standards
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some means to construct and deconstruct sequences. Most importantly, it
provides means for defining new notions.

1.2.1 Constructions

Paraphrasing our construction of “least N prime numbers greater than M”
from previous section, we can write:

(define (prime-numbers amount from)
(if (= amount 0)

’()
(if (prime? from)

(cons from (prime-numbers (- amount 1) (+ from 1)))
(prime-numbers amount (+ from 1)))))

Although conceptually we present nothing new here compared to the
previous section, there are a few formal elements that need to be explained.
First of all, we use a special define form from the Scheme language. This
way, we give a name to the new concept that we are defining8. We also
observe that there are quite a few new concepts used in the definition. The
body (or definiens, if you please) consists of an if expression, which – in
general – takes the following form:

(if <condition> <then> <else>)
The value of the if expression depends on the value of <condition>. If

it is true in a given context, then the value of the whole expression becomes
the value of the <then> expression. Otherwise, it is the value of the <else>
expression. (This is actually quite straightforward, if you think about it.)

The expression that appears as the <condition> has a form (= amount
0). The meaning of the word = is the numerical comparison, commonly
found in mathematics. It can be surprising to see it used as (= x y) rather
than (x = y). Recall however our convention that “the ruling word of the
expression appears at the first position”. We could depart from that rule for
mathematical expressions (and whoever knows where else), but this would
only make our rule set more complex. However, it actually turns out that
mathematical expressions do not appear so frequently in computer programs
to make it worth the trouble, and having a simple language turns out much
greater an advantage.

As one can expect, the (= amount 0) expression evaluates to the logi-
cal truth, if the meaning of amount is 0 in that context, and otherwise it
evaluates to the logical falsehood.

In the first case, the value of the if expression becomes ’(), that is –
an empty sequence. In the second case, the expression becomes:

8Although the concept might not be so new for us, because we have defined it informally
in the previous section, it certainly is new for the Scheme interpreter.
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(if (prime? from)
(cons from (prime-numbers (- amount 1) (+ from 1)))
(prime-numbers amount (+ from 1)))

This, again, is an if expression. Its <condition> clause takes form
(prime? from). The intent is, that prime? is a function that evaluates
to the logical truth if its argument is a prime number, and to the logical
falsehood if its argument is a non-prime number. We will explain later what
we exactly mean by that.

It may be surprising for someone to see a punctuation mark being a
part of a name of a concept. There is however a common convention among
Scheme programmers to end the names of predicates9 with question marks10.

The <then> clause of the considered if expression is interesting. It has
a form:

(cons from (prime-numbers (- amount 1) (+ from 1)))
There are four things to be noted here: first, the expression refers to the

cons function, which is used for constructing sequences. Second, the second
argument to cons refers to the notion of prime-numbers, which is currently
being defined. This form of definitions is often called recursive. Third, we
use the elementary mathematical operations of addition and subtraction in
the same way that we used the numerical comparison earlier, i.e. using the
prefix notation. Lastly, the fact that we pass amount decreased by one to
the recursive call, in conjunction with the fact that the sequence of 0 prime
numbers is empty, guarantees that our construction will terminate, provided
there is enough prime numbers.

The <else> clause of the second if expression has a form:
(prime-numbers amount (+ from 1))
In other words, it establishes the fact that if n isn’t a prime number,

then the prime numbers starting from n are the same as the prime numbers
starting from n+ 1.

So far we have defined prime-numbers in terms of primitive notions,
such as addition, subtraction, construction, conditionals and recursion. The
only thing that’s left is to explain what it means that a number is prime?.

We know from the mathematics that a prime number is a number whose
only natural divisors are 1 and the number itself. We also know that a
number cannot be divisible by a number greater than itself. Hence, in order
to find a list of numbers, we can try all numbers starting from 1.

9i.e. functions whose values can either be logical truth or logical falsehood.
10 A cautious reader probably noticed that the = function used before is also a predicate,

although it’s name doesn’t end with a question mark. This lack of consequence isn’t
bothersome in practice though, because naming conventions are not as essential to the
structure of a language as the rules given earlier.
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(define (divisors n from)
(if (> from n)

’()
(if (= (remainder n from) 0)

(cons from (divisors n (+ from 1)))
(divisors n (+ from 1)))))

This definition has a very similar structure to the previous one. We used
some new elementary functions, namely the comparison predicate > (greater
than) and the remainder operation.

Perhaps the program could be made clearer if we had defined what it
means for a number to divide another number. However, if we decided to
define a predicate (divides? a b), it wouldn’t be clear whether we mean
that “a divides b” or that “b divides a” – this is an apparent limitation of
the prefix notation.

This problem could be solved by adding another pair of parentheses in
our definition:

(define ((divides? a) b)
(= (remainder a b) 0))

Now it should be clearer that we ask whether b divides a. Although the
core Scheme doesn’t allow such notation, one of the modules contained in
this pamphlet’s repository legalizes it. From the semantic point of view, it
defines divides? as a function of a whose value is a function of b that
compares the remainder of the division of a by b with 0.

Since we have means to construct the sequence of divisors of a given
number, we can check whether the number is a prime simply by comparing
its list of divisors with a list containing only the number 1 and the considered
number itself:

(define (prime? number)
(equal? (divisors number 1) (list 1 number)))

We have used here two new primitive functions: equal? and list. They
are not entirely primitive, as they could be defined rather easily in terms
of other operations (we will see how to do that shortly), but every Scheme
implementation certainly provides those, so for now we can consider them
as such.

The list function simply returns a list of values of its arguments. In this
particular example, we could as well have written (cons 1 (cons number
’())) instead of using list.

The equal? function is a predicate which says that two or more com-
pound objects are identical.
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In Scheme, there are a few distinct concepts of equality. The first that we
have seen is called numerical equality and is expressed using the = symbol.
The second that we’ve just seen above is called identity, and is expressed
using the equal? symbol. The third is called sameness and is expressed
using the eq? symbol.

It is guaranteed that two symbols having the same shape are eq? and
that all empty sequences are eq?. However for various reasons it is not guar-
anteed that two instances of the same number are eq?. Two lists probably
won’t be eq? even if they have all the same elements in the same order –
the reason for that is that usually each usage of cons or list creates a new
object in the computer memory.

It is noteworthy that if two things are eq? or =, they will certainly be
equal?, so the latter predicate is most general and can be used in most
situations.

1.2.2 How do we know

So far, we have defined a few notions that were used in the formulation of
the original problem. We defined them by means of recursion, so we had
to worry only about two things: what would be the shape of the simplest
instance of a given notion, and how do we build a more complex instance
out of a simpler one.

It would be helpful to have some means of verifying whether our defi-
nitions actually work as expected. It turns out, that those means are also
very simple: those are substitution and reduction.

Let’s see how it works for the divisors function. To begin with some-
thing simple, let’s see what is the denotation of (divisors 4 1). We ob-
tain the connotation of the expression by substituting the complex notion
of divisors with its definition, replacing any formal parameters with their
values. Thus we obtain:

(if (> 1 4)
’()
(if (= (remainder 4 1) 0)

(cons 1 (divisors 4 (+ 1 1)))
(divisors n (+ 1 1))))

We see that the first condition is clearly false, because 1 is smaller than
4. We can therefore substitute the conditional with its <else> branch:

(if (= (remainder 4 1) 0)
(cons 1 (divisors 4 (+ 1 1)))
(divisors n (+ 1 1))))
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If we substitute the expression (remainder 4 1) with its value, i.e. the
number 0, it is apparent that the condition (= 0 0) is true, so we can replace
the conditional with its <then> branch:

(cons 1 (divisors 4 (+ 1 1)))

It is also clear that (+ 1 1) is 2. We therefore go back to the initial
situation, with the difference that our expression is now an argument to
cons function, and its from argument has value 2 instead of 1.

By expanding the expression with its connotation and performing ap-
propriate reductions, we obtain the following form:

(cons 1 (cons 2 (divisors 4 3)))

In next iteration of substitutions and reductions it will turn out that
the remainder of 4 divided by 3 is non-zero, so the above expression can be
rewritten as:

(cons 1 (cons 2 (divisors 4 4)))

As the remainder of the division of 4 by 4 is 0, we rewrite the above as:

(cons 1 (cons 2 (cons 4 (divisors 4 5)))

Now the <condition> of the outer if form is satisfied, so the (divisors
4 5) expression evaluate to empty sequence to yield:

(cons 1 (cons 2 (cons 4 ’()))

which eventually evaluates to the sequence (1 2 4). The assumptions
under which we performed the above inference are called the substitutional
model of computation.

1.2.3 Destructuring

So far, we managed to explain what we mean by the expression “initial N
prime numbers” from our formulation of the original problem. The formu-
lation was a bit more complex, because it asked to sum the squares of those
numbers.

So in order to accomplish that task, we still need to explain what we
mean by squares and their sum. Let’s begin with the denotation of the
expression “squares of Y ”. From our previous considerations we know that
Y is a list of numbers. Intuitively, if Y were a list (1 2 3), then the meaning
of the outer expression would be a list (1 4 9), that is, each element of the
denotation of the expression “squares of Y ” is a square of the corresponding
element of Y .

A square of a number is – by definition – that number multiplied by
itself:
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(define (square number)
(* number number))

To make it clear what the squares of a sequence of numbers are, or rather
to explain how they are constructed, we need to notice that the squares of
an empty sequence of numbers are an empty sequence.

As for a non-empty sequence, we know that it can be decomposed into its
first element and the sequence of its remaining elements. We could therefore
define squares of a non-empty sequence as a sequence, whose first element
is a square of the first element of the input sequence, and whose remaining
elements are the squares of the remaining elements of the input sequence
(this statement sounds very tautological indeed, but we will see shortly how
to deal with that)

(define (squares numbers)
(if (eq? numbers ’())

’()
(cons (square (car numbers)) (squares (cdr numbers)))))

The most important thing about this definition is that it reveals the
means for destructuring lists. For historical reasons, the function whose
value is the first item of a list is called car, and the function that yields the
remaining of the list is called cdr.

It should be clear that for any values a and b, (car (cons a b)) is a
and (cdr (cons a b)) is b.

The names car and cdr used to be popular, because they prompted
contractions like (caddr x), which was an abbreviation of (car (cdr (cdr
x))). Although some examples from this chapter will be written using those
functions, a more powerful (and readable) technique will be presented in one
of the later sections.

Looking back at our definition of squares, we notice that there’s some-
thing essentially wrong with it. Linguistically, the word squares is just a
plural form of square. This relation isn’t reflected in our usage.

Suppose that we wanted to solve a problem of finding the cubes of a
list of numbers, rather than squares. Following the above pattern, we would
need to define the function cube that would explain what a cube of a number
is. Then we would define a function cubes that would apply the function
cube to each elements of a given list.

Such a practice would be very unhandy. We would rather wish to have
a function, let’s call it plural, that would take a function of one argument,
and return a function of list of arguments:

(define ((plural concept) list)
(if (eq? list ’())

’()
(cons (concept (car list)) ((plural concept) (cdr list)))))
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While it would be completely fine to have and use such function, his-
torically things have gone differently, and the grammatical plural form is
achieved using the map function11:

(define (map f l)
(if (eq? l ’())

’()
(cons (f (car l)) (map f (cdr l)))))

Therefore, “the squares of initial seven primes” should be written as (map
square (prime-numbers 7 1)).

The only thing that’s left is to explain what the sum of a list is. We
should consider the boundary condition first: what would be the sum of an
empty list? We know that no elements are zero elements, so we could expect
that a sum of zero elements will be zero. Otherwise it’s the value of the first
element added to the value of the remaining elements12:

(define (sum numbers)
(if (eq? numbers ’())

0
(+ (car numbers) (sum (cdr numbers)))))

We can now present the solution to the original problem: “the sum of
squares of initial 7 primes” is

(sum (map square (prime-numbers 7 1)))
Note the similarity between the formulation and the solution. This sort

of similarity isn’t reserved for the Scheme programming language, and can
be achieved in virtually every programming language that allows to create
functions13. The advantage of Scheme however is its simplicity: we already
know almost everything about the syntax of our language, and our knowl-
edge of its semantics is sufficient to construct many advanced programs.

The most important thing is that, unlike the imperative code given ear-
lier, this code explains exactly what it is about: the reader doesn’t need to
recognize any implicit patterns, as everything has been laid out explicitly.

The only thing that may seem mysterious at first sight is the role of
arguments to prime-numbers. We could add a comment that would explain
that role.

Scheme has three types of comments. There are comments that begin
with a semicolon (;) and end with the end of the line, block comments that

11Note that map is a built-in function, so there’s no actual need to define it. More-
over, the built-in version is in fact better than our variant, so redefining it is strongly
discouraged.

12We could also define sum without resorting to zero, by specifying it for lists whose
length is at least one, but that would actually make the code more complicated.

13Some additional practical considerations may regard languages that do not automat-
ically reclaim storage, such as C.
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begin with #| and end with |#, and very useful comments that begin with
#; and comment out exactly one expression that follows them. We could
therefore enrich our solution with additional information:

(sum (map square (prime-numbers 7 #;greater-than-or-equal 1)))

1.2.4 Getting your hands dirty

So far, we have been using a formal notation to express certain mathematical
notions in a precise manner – everything was going on on the paper and in
our heads. There’s yet another important advantage of our notation: it
can be “comprehended” by computers, so on one hand, we have a practical
instance of verification whether our beliefs regarding the meanings of certain
expressions are right, and on the other – we can employ the computer to
do some parts of reasoning for us. Of course, if you do not wish an inferior
machine to perform the noble task of reasoning for you, you can still benefit
from reading the pamphlet and exercising the strict notation.

There are many free practical implementations of Scheme. Probably the
most popular and accessible is Racket, which comes with a very intuitive
editor. Another nice implementation is MIT/GNU Scheme, that comes with
a slightly less intuitive editor. There are implementations that focus on
speed, such as Gambit or Stalin, and those that compile to some popular
platforms like Java or JavaScript. There’s also an implementation called
Biwa Scheme, that can be run directly in a web browser.

The implementation that is going to be used in this text is called Guile.
It is not so easy to install, but it is very convenient for practical interactions
and incremental development. It integrates particularly well with the Emacs
editor through the Geiser package. The only bad thing about Emacs is that
it requires getting used to.

The detailed information regarding setting up Emacs, Geiser and Guile
is platform-dependent and as such is beyond the scope of this pamphlet. An
interested reader will easily find the required information on the web.

Assuming that everything is up and running, you can evaluate a single
expression in a Scheme interpreter. The most common way is to enter an
expression into a so-called command line or REPL (which stands for “read-
eval-print loop”), however having a proper environment like Emacs with
Geiser, it is possible to enter an expression in a text file and evaluate it
using a magic keystroke14.

Before we get anything done, we need to legalize the syntactic exten-
sions that are used throughout this pamphlet: first, the additional modules
need to be downloaded from the pamphlet’s repository, available at https:
//github.com/panicz/pamphlet (the libraries directory), and placed

14By default, it’s C-x C-e in Geiser.

https://github.com/panicz/pamphlet
https://github.com/panicz/pamphlet
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somewhere in Guile’s %load-path, and then we need to type in the ex-
pression:

(use-modules (ice-9 nice-9) (srfi srfi-1) (pamphlet))

Finally, we can feed the interpreter with all the necessary definitions: we
need to explain what we mean by divisors, what it means for a number
to be prime?, how to construct a sequence of prime-numbers, what is a
square of a number and how to sum a list of numbers.

Then, we can ask the computer to give us the value of the expression
(sum (map square (prime-numbers 7 1))).

1.2.5 Looking down

So far, as we were referring to certain expressions of the English language
whose meanings we were trying to paraphrase, we were usually quoting
them. For example, we could say: “The meaning of the expression «first
three natural numbers» is a sequence (0 1 2)”. It is therefore typical,
especially when talking about the meanings of linguistic expressions, to use
the quotation operator.

In Scheme, the quotation operator is expressed using quote form. For
example, the value of the expression (quote (sum (map square (prime-
-numbers 7 1)))) is a sequence of two elements, whose first element is
a symbol sum, and whose second element is a sequence of three elements,
whose first element is a symbol map, second element is a symbol square, and
third element is a sequence of three elements: a symbol prime-numbers, a
number 7 and a number 0.

We’ve actually already seen an example of quotations in our definitions:
it turns out that the operation of quotation is so useful that it has a no-
tational shorthand: ’x means the same as (quote x ), so our notation for
the empty sequence – ’() – could equivalently be written as (quote ()).
Note that the quote operator is very different from the quotation marks
that are often used in programming languages for constructing strings, be-
cause it allows us to quote structures, rather than create flat sequences of
characters.

As you might have already noticed, the compound expressions in Scheme
are also sequences15. This property, called homoiconicity, is one of the
most valuable properties of Scheme, because it allows to treat programs
as syntactic objects and write programs that transform other programs in
Scheme rather easily.

15Note that we need to quote the empty sequence in order for it to mean the empty
sequence, because the meaning of an empty expression is unspecified. Some dialects of
Lisp blur this distinction and assume that the meaning of an empty expression is the
empty sequence. This may be confusing though, and the Schemers are proud that their
language is conservative in this regard
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It also allows to create new languages with a common syntax. Or, as
Alfred Tarski would put it, it allows to use Scheme as a meta-language for
some other formal languages16.

To illustrate that idea, we will describe the semantics of a simple formal
system called propositional logic, which captures how compound sentences
are built from simpler ones. The simplest units of propositional logic are
called atomic formulas – they stand for propositions that aren’t analyzed in
simpler terms, and that can only be asserted or rejected.

The expressions of propositional logic are either propositional variables
p, q, r, ... standing for atomic formulas, or junctions of expressions: φ ∨ ψ,
φ∧ψ, φ⇒ ψ, φ ≡ ψ, ¬φ. These compound expressions mean disjunction (“φ
or ψ”), conjunction (“φ and ψ”), implication (“if φ then ψ”), equivalence (“φ
if and only if ψ”), and negation (“it is not the case that φ”), accordingly. For
the remainder of this example we shall be concerned only with conjunction,
disjunction and negation.

The semantics of propositional logic determines the logical value (i.e.
truth or falsehood) of each formula with respect to some given valuation,
i.e. a mapping from propositional variables to logical values.

If a formula is atomic, then its value is simply specified by the valuation.
Otherwise it is a compound formula: a negation, a disjunction or a conjunc-
tion. If it is a negation, then it is true only if the negated formula is false;
if it is a disjunction, then it is true only if at least one of its sub-formulas is
true; finally, if it is a conjunction, then it is true only if all its sub-formulas
are true.

A formula is satisfiable if there exists a valuation under which it is true.
A formula is logically valid if it is true for any valuation. For example, p∨¬p
is a valid formula, because if p is true, then the whole disjunction is true,
and if p is false, then ¬p is true and the disjunction is true as well. It is easy
to see that if a formula is valid then its negation is not satisfiable.

Testing whether a given valuation satisfies a given formula can be a
tedious task that can be performed more efficiently on a computer.

We will use our fully parenthesized Polish notation to represent formulas
of propositional calculus. We will write (and φ ψ) to mean conjunction,
(or φ ψ) to mean disjunction and (not φ) to mean negation.

Note that conjunction and disjunction both possess an algebraic property
of associativity, i.e. (φ◦ψ)◦χ = φ◦ (ψ ◦χ) for ◦ ∈ {∧,∨}. We can therefore
interpret (and φ1 φ2 ... φn) as φ1∧φ2∧ ...∧φn with no ambiguity. The
same applies to disjunction.

Having a fixed representation, we can explicate the conditions under
16 It is also possible to use Scheme as a meta-language for itself – this technique, called

meta-circular evaluation, has been explored in the grand book Structure and Interpretation
of Computer Programs[1]. This idea was at the heart of the seminal paper Recursive Func-
tions of Symbolic Expressions and their Computation by Machine by John McCarthy[4],
which gave birth to the predecessor of Scheme called Lisp.
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which a formula is satisfied? under a given valuation. However, we need
to find some way to represent a valuation. One obvious representation of
a mapping is by enumerating the name-value pairs. For example, if there
are three distinct atomic formulas p, q, r in φ, one of the eight possible
valuations could be written as ’((p . #t)(q . #f)(r . #t)). The #t
and #f inscriptions represent the logical truth and falsehood in Scheme.

Notice the strange dot that appears between each key and its corre-
sponding value. This is because we said that we will represent the mapping
using a key-value pairs, rather than two-element lists. We could as well have
chosen the latter representation, but we didn’t, so that the strange dot could
appear.

We said earlier that cons is a primitive function that constructs lists.
However, it would be more accurate to say that (cons a b) creates (or
allocates) a new pair, whose left value (or car) is its first argument, a, and
whose right value (or cdr) is its second argument, b.

A list is therefore either an empty sequence, or a pair whose right value
is a list17.

Now it turns out that the list (1 2 4) could equivalently be written
as (1 . (2 . (4 . ())))18, and similarly, the (cons a b) expression
could be written as (cons . (a . (b . ()))). The list notation is
therefore a shorthand for a pair notation19.

So under this representation, if we wish to obtain a value of a given
atomic formula from a given valuation, we may need to use the lookup
procedure:

(define (lookup key #;in mapping)
(let* ((this (car mapping))

(remaining (cdr mapping))
(name (car this))
(value (cdr this)))

(if (eq? name key)
value
(lookup key remaining))))

We see a new construct here – the let* form. The form is useful for
naming the intermediate components of the object that we are trying to
obtain. We could equivalently have written:

17A nesting of pairs whose last right value is not the empty list is called improper list.
18 Note the spaces between the symbols and the dot: they are important, because it is

fine to use the dot as a part of a symbol or a number.
19Note that the distinction of the left element of the pair as a first element of the list is

only a matter of convention – for example, if Lisp was invented in the Arabic countries,
it could have been the other way around.
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(define (lookup key #;in mapping)
(if (eq? (car (car mapping)) key)

(cdr (car mapping))
(lookup key (cdr mapping))))

but this only increases the nesting level of expressions and makes the
code more difficult to read. We could also have introduced intermediate
names using local define forms:

(define (lookup key #;in mapping)
(define this (car mapping))
(define remaining (cdr mapping))
(define name (car this))
(define value (cdr this))
(if (eq? name key)

value
(lookup key remaining)))

The extent of the inner define forms is limited to the outer define
form. However, the structure of the code is more difficult to follow, as it
contains many obscure symbols.

Finally, I promised before that we won’t be using the car and cdr func-
tions, because our code doesn’t deal with vehicles nor compact disc record-
ing. Instead we can use the marvelous feature of pattern matching:

(define (lookup key #;in mapping)
(let* ((((name . value) . remaining) mapping))

(if (eq? name key)
value
(lookup key remaining))))

This definition is much more compact than the original one, but may
be slightly more difficult to follow. It simply decomposes the structure of
mapping, i.e. that it is a pair whose left value is a pair, and names its parts
accordingly: the left value of the left value of mapping is named name, the
right value of the left value of mapping is named value, and the right value
of mapping is named remaining.

Note that all the above variants of the lookup function assume that there
has to be an element whose left value is key somewhere in the mapping, and
it is an error if that condition isn’t satisfied (because it is an error to talk
about the left or right value of something that isn’t a pair).

Equipped with the lookup, we can go back to the original problem and
explain what it means for a proposition to be satisfied:
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(define (satisfied? formula #;under valuation)
(match formula

((’and . clauses)
(every (lambda (clause)

(satisfied? clause #;under valuation))
clauses))

((’or . clauses)
(any (lambda (clause)

(satisfied? clause #;under valuation))
clauses))

((’not clause)
(not (satisfied? clause #;under valuation)))

((? symbol?)
(lookup formula #;in valuation))))

There are many new things going on in here: the main part of the
definition is the match expression, which – in general – takes the following
form:

(match <expression>
(<pattern-1> <value-1>)
(<pattern-2> <value-2>)
...)

The first <pattern> is (’and . clauses). It matches against all pairs
whose left element is the symbol and, and if the match succeeds, the right
element of the pair gets bound with the name clauses. So this part of code
could be rewritten as20:

(if (and (pair? formula) (eq? (car formula) ’and))
(let* ((clauses (cdr formula)))

<value-1>)
(match formula

((<pattern-2> <value-2>)
...)))

The <value> part from the scope of the first <pattern> is (every
(lambda (clause) (satisfied? clause valuation)) clauses). The
function every takes a predicate and a list, and evaluates to the logical
truth if the predicate is satisfied for every element in the list.

20Technically speaking, the code is equivalent only if the formula always evaluates to
the same value. In other cases, we would need to capture the value of formula before
expansions.
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The first argument to every is a lambda21 expression. The lambda
expression takes the form:

(lambda <arguments> <body>)
It creates a new anonymous function. Actually we’ve already used

lambda expressions before, albeit implicitly: the (define (f . <args>)
<body>) is equivalent to (define f (lambda <args> <body>)).

The second (<pattern> <value>) is similar, except that it uses the any
function. The only unobvious part that is left is the (? symbol?) pattern.
This pattern matches only if the formula satisfies the predicate symbol?,
or in other words, the pattern is matched if it is the case that (symbol?
formula).

1.2.6 Building structures

The match expression isn’t a native Scheme form. It is a “specialized lan-
guage” for destructuring complex objects, and it was added to Scheme
through its powerful syntax extension mechanism.

So far we have been using the cons or list functions for creating complex
structures. I promised that in the remainder of this text we won’t be using
car and cdr, because match allows to do the same task better.

We usually won’t be using cons as well. There’s yet another “specialized
language” that is meant for building complex objects. It makes use of the
fact, that – just as the notation ’x is a shorthand for (quote x) – the nota-
tion ‘x is a shorthand for (quasiquote x), ,x is a shorthand for (unquote
x), and ,@x is a shorthand for (unquote-splicing x).

Those words alone, quasiquote, unquote and unquote-splicing, mean
nothing. As with every other word in Scheme, you can make it mean what-
ever you want. However, the quasiquote by default is a syntactic extension
that gives a special meaning to the other two words, and allows to quote
only a part of a list. For example, the expression ‘((+ 2 3) ,(+ 2 3))
evaluates to a list ((+ 2 3) 5), and the expression ‘(0 ,@(divisors 4
1) 5) evaluates to (0 1 2 4 5).

So instead of writing (cons a b), we shall write ‘(,a . ,b) from now
on.

21 One has to admit that lambda is a rather strange name. The reason for this weirdness
is that the semantics of Scheme is based on a very simple powerful model of computation
known as λ-calculus. Allegedly, its name is a result of editor’s mistake, and dates back
to the logical opus magnum of Bertrand Russell and Alfred North Whitehead, Principia
Mathematica, where they used the notation f(x̂) to mean a function of x, rather that the
value of f in the point x. Alonzo Church modified the notation by taking the x̂ before
the function application, i.e. x̂.f(x). A typesetter wrote that as Λx.f(x), someone read
that as the Greek letter lambda[2].
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1.2.7 Conclusion

At this point, we know enough about Scheme to use it to represent advanced
notions and to solve some practical problems.



2

Genetic Algorithms

“It is absolutely safe to say that if you meet somebody who claims
not to believe in [what Richard Dawkins claims to believe], that
person is ignorant, stupid or insane.”

– Richard Dawkins

In the previous chapter, we defined what it means for a proposition to
be satisfied under a given valuation. We also said informally, what it means
for a propositional logic formula to be satisfiable – namely, that there exists
a valuation such that the formula is satisfied.

This formulation is rather easy to comprehend, but in practice the
amount of checks that we may need to perform to see if a formula is sat-
isfiable may grow exponentially with the number of atomic propositions
occurring in the formula: adding another atomic proposition doubles the
number of possibilities, so the problem quickly becomes intractable.

The problem isn’t just theoretical. Although propositional calculus is
extremely simple, it has some useful practical applications in software veri-
fication.

Besides, despite the fact that the general solutions fail for more complex
formulas, one can frequently find some heuristics that perform very well for
the most common cases.

2.1 Biological inspiration
One of such heuristics is called genetic algorithms. It is inspired by the
process of natural selection. Most generally, the idea is to encode the solution
as a sequence of chromosomes that behave as binary switches, where each
switch splits the search space in half.

The solutions are searched in larger groups called populations. Each
specimen of a population is evaluated using a so-called fitness function,
which measures the quality of a solution. Rather than saying that a given
specimen is good or bad, the fitness function assigns it a number.

27
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2.1.1 Chromosomal crossover

During the evolution process, the best solutions are combined with each
other, and the worst ones are rejected. The hope is that if we combine a
few individuals into a new one, it has a chance to inherit the good traits of
its originals. In practice, the chromosomes of couples of the best specimens
from the population are recombined in a crossing-over process: therefore
the new individuals can be regarded as an offspring of the old ones.

The crossing-over can be defined as a function that takes two chromo-
somes, splits them at a random point and returns a new one composed of
the prefix of the first one and the suffix of the second:

(define (cross-over daddy mommy)
(assert (= (length daddy) (length mommy)))
(let* ((position (random (length daddy)))

(sperm (take daddy position))
(ovum (drop mommy position)))

‘(,@sperm ,@ovum)))

Of the things that deserve attention, the first one is the presence of an
assertion. An assertion essentially does nothing more than informing the
reader about the assumptions that the author made about the intended us-
age of a function – in this particular case, he assumed that the two arguments
– mommy and daddy – are lists of equal length.

Then we choose a random1 position from the range between 0 and the
length of chromosome minus 1. We use the prefix of the daddy chromosome
(for example, if daddy is (a b c d e), then (take daddy 3) evaluates to
(a b c)) and the suffix of the mommy chromosome (similarly, if mommy is (u
v w x y), then (drop mommy 3) evaluates to (x y)).

Finally, we construct a new list from the prefix and the suffix.
Now that we’ve seen the intimate details of copulation, we can have a

look at the process from the social perspective.

2.1.2 The ceremony of procreation

Whether a given specimen becomes a daddy or a mommy is a matter of luck,
and it may happen that the same specimen serves as a mommy during an
intercourse with one partner, and as a daddy with another. It is important
however, that the specimen with the high social status (i.e. better fitness
function) procreate more often than the ragtag.

1Each occurrence of the (random n) expression can be replaced with a value randomly
chosen from the range 0 to n − 1. This indeterminism is the main reason why I prefer
the term expression-based programming to functional programming. Disallowing such
non-deterministic expressions would make many simple things complex.
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Also, contrary to what many catholic priests say, it is perfectly fine when
a specimen copulates with itself: when it happens, its child is an exact copy
of its sole parent (however in practice this privilege is reserved to the elite).

The ceremony proceeds as follows. First, a census is prepared, where
each member of the population is assigned a value of a fitness function.
Then, the census is sorted according to that value. Subsequently, the lottery
drawing occurs, where each member of the population draws an opportunity
to copulate. A single specimen can appear on the list more than once, and
the probability of being enrolled to the list is higher for the specimens that
are higher on the list. The length of the list equals the population.

Finally, each one of those lucky beggars is assigned a partner from an-
other list generated in the same way (so, as it was said before, it can happen
that the he-and-she spends the night with a very familiar company), and
then the new generation comes to the fore.

This cycle can repeat for a few hundreds of times or more, until the best
man from the population is satisfactory to its transcendent creator.

It can also happen, say, once in a generation on average, that a chromo-
some of a specimen is mutated.

The social perspective on the ceremony of copulation can be expressed
in Scheme in the following way:

(define (procreate population social-status)
(let* ((census (map (lambda (specimen)

‘(,(social-status specimen) . ,specimen))
population))

(social-ladder (sort census (lambda ((a . _) (b . _))
(> a b))))

(population (map (lambda ((status . specimen)) specimen)
social-ladder))

(size (length population))
(males (biased-random-indices size))
(females (shuffle (biased-random-indices size)))
(offspring (map (lambda (man woman)

(cross-over (list-ref population man)
(list-ref population woman)))

males females)))
(map (on-average-once-in size (mutate #;using not)) offspring)))

Note that the arguments to lambda provided to the sort function are
destructured (pattern-matched) in place. This is a convenient syntactic
extension to Scheme that replaces the built-in lambda.

Also, we provided three arguments to map, rather than two – one function
of two arguments and two lists. The value of the expression will be a list
whose elements are values of the function for the first element from the first
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list and the first element of the second list, the second element of the first
list and the second element of the second list, and so on. It is assumed that
the length of both lists is the same – and that will also be the length of the
result.

We will learn how to define functions of variable number of arguments
later. For now it is sufficient to know that it is possible to do so, which can
often be convenient.

It is apparent that the cross-over function is given two arguments that
result from the invocation of the built-in list-ref function, which takes a
list of length n > 0 and an index i (starting from 0) and returns the i-th
element of the list.

The procedure biased-random-indices generates a list of indices with
the desired distribution:

(define (biased-random-indices size)
(if (= size 0)

’()
‘(,(random size) . ,(biased-random-indices (- size 1)))))

The length of the generated list will be size. Furthermore, the index 0
is guaranteed to appear on the list as the last element, has a 50% chance
to appear as the penultimate element, one third to appear one before, and
so on, so it will almost certainly appear on the list more than once. On the
other hand, the last index can appear only as the first element of the list,
but this opportunity is shared evenly by all the other indices, so it is rather
unlikely that it will ever happen. This strategy is called “equal opportunity
policy” by the social ideologies.

Two separate lists are created for males and females. In order to in-
crease the variation of the population, the list of females is shuffled, which
gives them a chance to advance to the upper class.

The shuffling proceeds as follows: if the list has more than one element,
then a random pivot point is chosen, and the (recursively shuffled) sub-lists
are swapped with a 50% probability. Otherwise the shuffled list is identical
with the original one.

(define (shuffle l)
(match (length l)

(0 ’())
(1 l)
(n (let ((left right (split-at l (random n))))

(if (= (random 2) 1)
‘(,@(shuffle right) ,@(shuffle left))
‘(,@(shuffle left) ,@(shuffle right)))))))
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The last thing that requires an explanation is the mutation. We wish
it to occur on average once per generation, therefore we define a function
that applies a given function with a probability 1

n for a given n, where n is
a positive integer:

(define ((on-average-once-in n action) arg)
(assert (and (integer? n) (> n 0)))
(if (= (random n) 0)

(action arg)
arg))

The action of mutation that we wish to apply inverts the random
chromosome:

(define ((mutate how) specimen)
(let* ((n (random (length specimen)))

(mutation (how (list-ref specimen n))))
(alter #;element-number n #;in specimen #;with mutation)))

The meaning (alter n l value) is a list that contains all the same
elements as l, except its n-th element, which has a new value.

2.1.3 Evolution

The struggles of a sole generation in the quest for the perfect society are
unlikely to bring satisfactory results (especially if these struggles boil down
to copulation). Only within the span of many lifetimes can the true value
arise. It is entirely up to the creator to decide many cycles of lives and
deaths will the world witness, how complex can its inhabitants be, and how
many of them will be brought to existence.

(define (evolve population #;towards criterion #;for iterations)
(assert (and (integer? iterations) (>= iterations 0)))
(if (<= iterations 0)

population
(evolve (procreate population criterion)

#;towards criterion
#;for (- iterations 1))))

(define (generate-specimen dimension)
(generate-list dimension (lambda () (= (random 2) 0))))

(define (generate-population size dimension)
(generate-list size (lambda () (generate-specimen dimension))))
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(define (optimize dimension population-size iterations criterion)
(let* ((population (generate-population population-size dimension))

(modern-society (evolve population #;towards criterion
#;for iterations)))

(argmax criterion modern-society)))

The generate-list procedure takes a lambda expression of no argu-
ments that evaluates nondeterministically to some value (in our case, it is
either logical truth or logical falsehood) and generates a list containing a
specified number of results of such evaluation:

(define (generate-list n generator)
(assert (and (integer? size) (>= size 0)))
(if (= n 0)

’()
‘(,(generator) . ,(generate-list (- n 1) generator))))

Lastly, the argmax is a library function that takes a measure function
and a list and evaluates to the element of the list that has the greatest
measure.

2.2 Solving the SAT

In the previous section, we have presented a heuristic for optimizing certain
problems with reasonable (linear) computational means. In this section,
we will apply that heuristic to the problem of satisfiability in propositional
logic.

2.2.1 Parsing DIMACS CNF files

We are not going to operate in vacuum – there are many resources on the
Web that provide the information and databases of examples. However,
the format in which the examples are encoded may vary. One such format,
proposed by the Center for Discrete Mathematics and Theoretical Computer
Science, is called DIMACS CNF (for Conjunction Normal Form), and is
encoded in text files.

A DIMACS CNF file is line-based. If a line begins with the c character,
then it is a comment and shall be ignored. A first line of the DIMACS CNF
file that is not a comment should take the form:

p cnf <variables> <clauses>
where <variables> specifies the maximum number of atomic proposi-

tions that appear in the formula, and <clauses> specifies the number of
disjunctive clauses in the formula, or the number of meaningful lines that
follow the given line.
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After the header, there appear <clauses> lines that contain sequences
of integers (possibly negative) separated with white space and terminated
with zero. A number n means that an atomic formula appears in a given
disjunctive clause, or – if it is negative – that it negation appears in the
disjunctive clause.

This may sound complicated, so it can be instructive to see an example.
The file

c simple_v3_c2.cnf
c
p cnf 3 2
1 -3 0
2 3 -1 0

would correspond to the formula
(and (or x1 (not x3)) (or x2 x3 (not x1)))

As we can see, the whole expression is a conjunction (this is why it’s
called conjunctive normal form), and its sub-expressions are disjunctions.
There are two of them, as there are lines below the DIMACS CNF header.
The first line contains numbers 1 -3 0, which correspond to the expression
(or x1 (not x3)), and the second line contains numbers 2 3 -1 0 that
correspond to the expression (or x2 x3 (not x1)).

It can be puzzling why someone decided to be able to represent only
conjunctions of disjunctions of formulas and their negations, but it turns out
that for every formula of classical logic one can find an equivalent conjunctive
normal form. The details are beyond the scope of this pamphlet.

We therefore need to find a way to transform the numbers given in the
lines of the DIMACS CNF file into S-expressions.

We will be using the (ice-9 regex) library bundled with Guile and
its ability to process regular expressions. The regular expressions will be
exposed here rather than explained, as the more detailed explanation can
be found rather easily among the vast resources of the Worldwide Web.

Also, we are going to process the file line by line. The Scheme it-
self doesn’t provide facilities for doing that, but Guile comes with the
(ice-9 rdelim) library which provides a function that returns a next avail-
able line from a given input-port. We will fix the input-port to mean
(current-input-port), which is a notion similar to standard input known
from UNIX and its descendants.

We shall gather the input lines from the list. The function terminates
when it approaches an end-of-file object:
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(define (input-lines)
(let* ((line (read-line (current-input-port))))

(if (eof-object? line)
’()
‘(,line . ,(input-lines)))))

We shall ignore all the lines that contain anything else than (possibly
negative) numbers separated with white-spaces and terminated with 0. For
that, we will use the filter function which takes a predicate and a list, and
returns a new list that contains only those elements from the old list that
satisfy the predicate (preserving the order). Thus, the expression

(filter (lambda (line)
(string-match "^\\s*(-?[0-9]+\\s+)+0\\s*$" line))

(input-lines))

will evaluate to a list that contains only the meaningful lines. Note that
we used the string-match procedure here, that takes a regular expression
and a string (I didn’t mention it before, but Scheme also provides strings
as its elementary data type) and evaluates to truth-ish value if the string
matches the regular expression2. The meaning of the regular expression is
as follows. The ^ character anchors the regular expression at the beginning
of the string. Then, "\\s*" allows a sequence of white spaces to appear
at the beginning. The group "(-?[0-9]+\\s+)+" requires that there will
appear (one or more times) a non-empty sequence of digits followed by a
non-empty sequence of white-spaces, and that it can be prepended with the
minus sign. Lastly, the expression "0\\s*$" says that 0 has to appear at the
end of the sequence, and that it can optionally be followed with a sequence
of white characters.

We now have a sequence of valid lines that need to be converted to
propositional logic expressions. If a line has a form of a string "2 3 -1 0",
then if we split the line by spaces, we obtain a list of strings ("2" "3" "-1"
"0"). We can then further convert each of those strings (but the last one)
to number using the built-in string->number function. We used the plural
form, so it will probably require the use of map.

Lastly, we need to convert the number to an expression, that is – either
a symbol or a negation of a symbol. We can therefore define:

(define (number->expression number)
(if (negative? number)

‘(not ,(number->expression (- number)))
((numbered-symbol ’x) number)))

2 We said that the logical truth is expressed using the #t syntax, but in fact any value
other than #f is regarded as true in the context of the if form and its derivatives.
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where numbered-symbol could be defined in terms of the primitive Scheme
functions:

(define ((numbered-symbol symbol) number)
(symbol-append symbol (string->symbol (number->string number))))

Putting it all together, we can define our DIMACS-CNF processor:

(define (process-dimacs-cnf)
(define (disjunction line)

(let* (((strings ... "0") (filter (lambda (s)
(not (equal? s "")))

(string-split line #\space)))
(numbers (map string->number strings))
(expressions (map number->expression numbers)))

‘(or . ,expressions)))
(let* ((data-lines (filter (lambda (line)

(string-match
"^\\s*(-?[0-9]+\\s+)+0$"
line))

(input-lines))))
‘(and . ,(map disjunction data-lines))))

The only thing that can be unobvious is binding the value of the expres-
sion (string-split line #\space) to the pattern (strings ... "0").
What it actually does is that it skips the last element (that is assumed to
be "0") from the result of string-split. The ... operator for the pat-
tern matcher behaves in a complementary way to the unquote-splicing
operator, so for example, in the expression

(match ’(1 2 3 4 5 6)
((a b c ... z))
‘(,a ,b ,@c ,z))

a,b and z will be bound with 1, 2 and 6, respectively, and the c name will
be bound with the list (3 4 5), so the value of the above expression will
simply be the list (1 2 3 4 5 6). The ... operator cannot appear more
than once in a list, so for example patterns like (a ... k ... z) are
illegal, as they would result in an ambiguous match. The ... operator has
another magical property – in the pattern

(match ’((a . 1) (b . 2) (c . 3))
(((keys . values) ...)
‘(,keys ,values)))
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the keys symbol will be bound with the list (a b c), and the values symbol
– with (1 2 3), so the list subjected to pattern matching will be unzipped.
We will be making a use of this feature later.

Back to our parser, note that we used the value #\space as the second
argument to string-split. It is a Scheme name for the “space” character
(characters are also a data type in Scheme). Note also that we had to apply
another filter on the result of the string-split, in order to remove empty
strings from it, that appeared if there were two or more consecutive spaces
in a given line.

2.2.2 Applying the genetic strategy

Now that we know how to convert the DIMACS CNF files to Scheme, we can
test whether the provided formulas are satisfiable – or, to put it in another
way – seek for a valuation under which they are satisfied.

It is rather obvious that our chromosomes will denote the values of subse-
quent atomic propositions for the valuations (therefore, they will be rather
straightforward to decode). We need to know how many distinct atomic
formulas are there in the main formula:

(define (atomic-formulas proposition)
(match proposition

((’not clause)
(atomic-formulas clause))

((operator . clauses)
(delete-duplicates (append-map atomic-formulas clauses)))

((? symbol?)
‘(,proposition))))

The code uses two library functions, delete-duplicates (that does
exactly what it says3) and append-map, which is like map except that its
functional argument is expected to return a list, and that list is appended
to the resulting list, rather than inserted as a single element.

The structure of the formulas – the conjunctive normal form – also
prompts us with the fitness function: that will be the number of the satisfied
disjunctive sub-clauses.

3 It is very important in programming to choose appropriate names for concepts,
whether ultimate or intermediate, because knowing that we can trust the names, we
don’t need to resort to documentation.
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(define (number-of-satisfied-subformulas #;of cnf #;for chromosome)
(let* ((variables (generate-variables #;from 1 #;to (length chromosome)))

(valuation (map cons variables chromosome))
((’and . or-clauses) cnf))

(count (lambda (subformula)
(satisfied? subformula #;under valuation))

or-clauses)))

;; where
(define (generate-variables #;from first to #;last)

(if (> first last)
’()
‘(,((numbered-symbol ’x) first)

. ,(generate-variables #;from (+ first 1) #;to last))))

Here, we use the library function count that takes a predicate and a list
and returns the number of elements of the list that satisfy the predicate.

The only thing that’s left is to put the pieces together and enjoy the
show4:

(let* ((formula (with-input-from-file "dubois20.cnf"
process-dimacs-cnf))

(dimension (length (atomic-formulas formula)))
(measure (lambda (chromosome)

(number-of-satisfied-subformulas #;of formula
#;for chromosome))))

(optimize dimension 160 100 measure))

4The file “dubois20.cnf”, among others, was obtained from the website http://people.
sc.fsu.edu/~jburkardt/data/cnf/cnf.html.

http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
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3

Fuzzy Logic

“A lie told often enough becomes the truth.”
– Vladimir Ilyich Ulyanov

3.1 Basic concepts

In the previous two chapters, we have been inquiring into the issue of satis-
fiability of propositional calculus. We expressed the notion of satisfiability
by means of the notions of truth and falsehood, that were represented by
the Scheme special values #t and #f.

It is customary however to represent these notions using numerical val-
ues: truth is usually represented using 1, and falsehood – using 0. If we
view it that way, the conjunction can be perceived as a particular case of
the minimum function, and disjunction – as an instance of the maximum
function. Furthermore, the negation can be interpreted as the function 1−x,
where x is the logical value of the negated formula.

This observation could prompt someone to allow propositional formulas
to take any real value between 0 and 1, for example 0.785398, because then
the basic junctions would generalize naturally to support those values.

However unrealistic it may sound, this actually happened: in the 1960.
Lotfi Zadeh proposed a theory of fuzzy sets, where the aforementioned ob-
servation found its application. Unlike in the traditional set theory, where a
given element either belongs to a given set, or it does not, Zadeh proposed a
theory where an element can belong to a set with a certain degree, and each
set is characterized with a membership function that describes how certain
elements (usually being real numbers) belong – or not – to that set.

39
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3.2 Criticism

Having formulated a theory, Zadeh tried to find an application for it. There-
fore he announced that his theory models the way in which vague expressions
behave in the natural language, and how people perform approximate rea-
soning.

Worst of all, Zadeh really believed it. In the justification of his work,
he claimed that “a natural language is basically a system for describing
perceptions”[6], not even caring how is the sentence “a natural language is
basically a system for describing perceptions” a description of a perception.
Reading Zadeh’s work, one gets the sense that, trying to prove the value of
his idea, he indeed started to reason in a vague and imprecise way.

Among the examples that Zadeh gives is the notion of “tallness”. For
example, most people will admit that a person that is two-meters tall could
be called a tall person. On the other hand, if a person has 1.5 meter, he
will unlikely be called a tall person. It is however impossible to set the limit
between the height to be considered tall and non-tall: we are more likely to
admit that the shift between tallness and non-tallness occurs gradually.

Zadeh claims that the accurate description is to provide a membership
function that would describe the interpolation between tallness and its nega-
tion.

The problem is that it is that there could be many competing member-
ship functions that differ only in some tiny details, but there is no criterion
to prefer any one of these functions over another.

A deeper problem is that the whole “thought experiment” makes ab-
solutely no sense: those seemingly “vague” descriptions usually serve the
practical purpose of designating an object of interest. We have no problem
to understand an expression “the tall midget” when presented a group of
midgets of varying height. But we are rarely faced with the task of demar-
cating between being tall and being non–tall.

Although the notion of fuzzy logic is very susceptible to criticism that
it has been receiving ever since it was formulated, for some reason it also
received a lot of attention among people who dealt with Artificial Intelli-
gence, and some practical tools were built based on that theory (It may be
impressive to some that this actually succeeded, but in practice the results
were usually much less efficient than they could be if the classical control
theory was applied). Because of that, it will also be presented here, albeit
in a rather flaccid way.

3.3 Exposition

The remainder of this chapter will assume some basic intuitions concerning
real-valued functions of real variables. The humanity won’t suffer if you
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decide to skip it. (Make however sure to read the section regarding the
notion of equivalence-classes.)

Also, if you wish to get a detailed explanation of the presented method,
it’s best if you look elsewhere.

We will use fuzzy logic to implement a virtual underwriter, whose pur-
pose is to give a rating of potential clients for an insurance agency based on a
set of parameters, such as Body-Mass Index, the level of glycated hemoglobin
in organism or the blood pressure.

The underwriter performs the inference based on a set of fuzzy rules, like
“if BMI is underweight or BMI is obese or the glycated hemoglobin level is
low, then the rating is refuse”.

We could define the set of rules for the considered problem in the follow-
ing way.

(define underwriter-rules
’((if (or (is bmi underweight) (is bmi obese)

(is glycated-hemoglobin low))
(is rating refuse))

(if (or (is bmi overweight) (is glycated-hemoglobin low)
(is blood-pressure slight-overpressure))

(is rating standard))
(if (and (is bmi healthy) (is glycated-hemoglobin normal)

(is blood-pressure normal))
(is rating preferred))))

An inquisitive reader could ask an uncomfortable question: why should
we consider this set of rules as valid, rather than some other one? The
slack-off answer is that this particular set was specified by an experienced
professional who encoded his or her intuitions acquired throughout the years
of practice.

Now we need to define what it means for the glycated hemoglobin to be
normal or low:
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(define health-categories
‘((bmi (underweight ,(gaussian 9.25 3.0))

(healthy ,(gaussian 21.75 3.0))
(overweight ,(gaussian 27.5 3.0))
(obese ,(gaussian 35.0 3.0)))

(glycated-hemoglobin (low ,(cone 4.0 5.0))
(normal ,(cone 5.25 5.0))
(high ,(cone 7.0 5.0)))

(blood-pressure (normal ,(gaussian 0.0 2.5))
(slight-overpressure ,(gaussian 10.0 2.5))
(overpressure ,(gaussian 20.0 2.5))
(high-overpressure ,(gaussian 30.0 2.5)))

(rating (refuse ,(cone 10.0 5.0))
(standard ,(cone 5.0 5.0))
(preferred ,(cone 1.0 5.0)))))

An inquisitive reader could ask an uncomfortable question: what makes
us choose these shapes of membership functions rather than some other
ones? The slack-off answer would be that the data was prepared and evalu-
ated by a team of highly educated medical experts who spent years study-
ing the complicated machinery of human body and now are able to present
their knowledge and linguistic intuitions in a highly digestive form of a few
functions of a single variable. Even if you didn’t trust that guy from the
insurance, it would be insane not to trust the medicals, or wouldn’t it?
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It should be instructive to see the plots of at least some of the mem-
bership functions, to appeal to our visual intuitions. Also, for the practical
purposes it is inevitable to define the formulas for the cone and the gaussian
curve:

(define ((gaussian center deviation) x)
(exp (- (/ (square (- x center))

(* 2 (square deviation))))))

(define ((cone center radius) x)
(cond ((<= x (- center radius))

0)
((<= x center)
(/ (+ x (- radius center)) radius))

((< x (+ center radius))
(/ (+ (- x) center radius) radius))

(else
0)))

In the definition of gaussian we refer to the built-in exponential function
(exp x), or ex.

The definition of the cone function contains a cond clause that we
haven’t seen before. It is actually a variant of the if instruction that we’re
already familiar with, and the definition could as well have been written
using the latter form:

(define ((cone center radius) x)
(if (<= x (- center radius))

0
(if (<= x center)

(/ (+ x (- radius center)) radius)
(if (< x (+ center radius))

(/ (+ (- x) center radius) radius)
0))))
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It is apparent that the form using if has a more complex structure
because of the higher nesting level.

As all the rules and words’ meanings are already known, the only thing
that’s left is to actually conduct the inference: given a tuple of labeled pa-
rameters describing a patient, say, ((bmi 29) (glycated-hemoglobin 5)
(blood-pressure 20)), we wish to provide a desired rating for it. In other
words, want to (infer #;from underwriter-rules #;about patient #;within
health-categories).

First, we need to say to what extent does a patient belong to a given
classes: for example, according to the membership functions defined above,
the BMI parameter of 29 may be considered overweight with the degree 0.88,
obese with the degree 0.13, healthy with the degree 0.05 and underweight
with a degree very close to 0.

So it would be convenient to have a function that, for a given labeled
tuple, returns the extent in which the tuple’s values belong to certain classes
defined within specified categories. It could also be handy if the classes were
sorted, so that the classes to which a given values “belongs more” would
appear earlier on the list.

(define (extent #;in-which entity #;belongs-to categories)
(map (lambda ((property value))

(let* ((category (lookup property categories))
(classes (map (lambda ((name extent))

‘(,name ,(extent value)))
category)))

‘(,property . ,(sort classes
(lambda ((_ degree-1) (_ degree-2))

(> degree-1 degree-2))))))
entity))

(e.g.
(extent ’((bmi 29) (glycated-hemoglobin 5) (blood-pressure 20))

health-categories)
===> ((bmi (overweight 0.8824969025845955)

(obese 0.1353352832366127)
(healthy 0.053926197030622854)
(underweight 3.879522352578383e-10))

(glycated-hemoglobin (normal 0.95) (low 0.8) (high 0.6))
(blood-pressure (overpressure 1.0)

(slight-overpressure 3.3546262790251185e-4)
(high-overpressure 3.3546262790251185e-4)
(normal 1.2664165549094176e-14))))

Probably the most surprising is the use of the e.g. form. This is
a syntactic extension that serves as a lightweight unit test framework: it
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evaluates the function before the ===> sign and raises an error condition it
its value isn’t equal? to the value on the right. It therefore enhances the
reliability of the system, because we have a confirmation that our function
works as expected.

More importantly, it enriches the code with the information that is more
concrete and easier to digest than the sole definition, because it shows ex-
actly, which outputs can be expected for given inputs.

The example could not be comprehended in the absence of the defini-
tion of health-categories, but it shows us what kind of output from the
function we should expect, which in turn prompts us with the idea of how
this output should be processed further.

We ought to take another look at our underwriter-rules. They all
take the form

‘(if ,condition (is ,property ,classification))
where condition either has a form
‘(is ,property ,classification)
or is a junction (i.e. conjunction, disjunction or negation) of simpler

formulas. In the first case, say, (is bmi overweight) we evaluate it to the
extent in which the BMI belongs to the set “overweight”. In the particular
case of BMI being equal 29, it will be the value of approx. 0.82.

In the case of the junction of formulas, we evaluate it according to the
rules given above: conjunction is the minimum function, disjunction – the
maximum function, and negation – the 1 − x function. Note the resem-
blance between the below satisfaction-degree function and the definition
satisfied? from the earlier chapters.

(define (satisfaction-degree formula interpretation)
(match formula

((’and . clauses)
(minimum (map (lambda (clause)

(satisfaction-degree clause interpretation))
clauses)))

((’or . clauses)
(maximum (map (lambda (clause)

(satisfaction-degree clause interpretation))
clauses)))

((’not clause)
(- 1.0 (satisfaction-degree clause interpretation)))

((’is property classification)
(let* ((classifications (lookup property interpretation))

((extent) (lookup classification classifications)))
extent))))
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;; where
(define (maximum list)

(match list
((last)
last)

((first . rest)
(max first (maximum rest)))))

(define (minimum list)
(match list

((last)
last)

((first . rest)
(min first (minimum rest)))))

We defined two auxiliary functions that designate the minimum and
maximum of the list, using the built-in min and max functions that return
the largest of its arguments. As we will see in the following chapters, that
definition wasn’t strictly necessary.

Now that we can determine the satisfaction-degree of a given pred-
icative formula, we have a set of rules and the preconditions of those rules,
the only thing that is left is to conduct the inference.

This is actually the trickiest part, as it is concerned with a notion (or
rather pseudo-notion) of defuzzification. Let me remind that the underwriter-
-rules consist of three rules, corresponding to three possible classifications
of rating: standard, perfect and refuse. For example, the first rule said:

(if (or (is bmi underweight) (is bmi obese)
(is glycated-hemoglobin low))

(is rating refuse))

We need to blend those three rules, based on the extents of their pre-
conditions, in order to choose the “right” classification.

One idea would be to choose the rule whose precondition is the highest
satisfaction-degree. However, according to Wikipedia, “this approach
loses information”. Therefore another method is used: first we clip the
membership functions for the various classes of the category rating, so
that their values are limited to the the satisfaction-degrees, then we create
a new function that gives the maximum of each of the clipped functions,
and finally we apply some numerical method like calculation of the center
of gravity of the function (Wikipedia lists 20 other defuzzification functions,
each of them being equally arbitrary, none of them having any apparent
advantages over the another).
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(define (infer #;from rules #;about entity #;within categories)
(let* ((judgment (extent entity categories))

(conclusions
(map (lambda ((’if condition (’is property classification)))

(let* ((degree (satisfaction-degree condition judgment))
(categories (lookup property categories))
((membership) (lookup classification categories))
(conclusion (clip membership 0 degree)))

‘(,property ,conclusion)))
rules))

(common-subject (equivalence-classes
(lambda ((property-1 _) (property-2 _))

(eq? property-1 property-2))
conclusions)))

(map (lambda (((properties functions) ...))
(let* (((property . _) properties)

(composition (lambda (x)
(maximum (map (lambda (f)

(f x))
functions)))))

‘(,property ,composition)))
common-subject)))

The code above is somewhat terse, and requires a bit of explanation.
First we calculate the judgment using the condition function. The judgment
therefore contains a list of the form ’((bmi (overweight 0.9) (normal
0.1) ...) (glycated-hemoglobin (normal 0.9) ...) ...). Then for
each rule we decompose it into condition and the consequent of the form
(’is property classification), so for example, the name condition
can be bound to the sequence ’(or (is bmi underweight) (is bmi obese)
(is glycated-hemoglobin low)), property is bound to ’rating, and
classification is bound to ’refuse. Then we take the membership
function for the given property and classification pair. In the case
of rating, refuse it is the (cone 10.0 5.0) function. Eventually we re-
turn a pair with the name of the classification and the clipped membership
function.

Note that although it isn’t the case with our example, we could in general
have more properties than just rating contained in the consequents of our
rules. Therefor we would need to split the rules that refer to the same
property. This is what the equivalence-classes concept is for. In general,
it takes a set and the so-called equivalence relation1 and returns a list of lists

1 Intuitively, an equivalence relation expresses some sort of common property, like “X
is of the same religion as Y ”. This particular relation divides humans into equivalence
classes such as Buddhists, Christians, Jews, Muslims, and so on, which leads to many
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whose elements all belong to the same equivalence class.
For example, if we had a list of natural numbers, say, (1 2 3 4 5 6 7

8 9), then its equivalence classes for the equivalence relation “x and y have
the same remainder of the division by 3” would be a list of three lists: ((1
4 7) (2 5 8) (3 6 9)).

Although the notion of equivalence-classes isn’t essential for this
particular task, it will be used later, so I will present the code here without
any comments, except the note that it preserves the original order among the
elements of the classes, and the observation that it uses the so-called named-
let construct that won’t be covered in this pamphlet. The explanation isn’t
difficult to find with Google.

(define (equivalence-classes equivalent? set)
(let next-item ((set set)(result ’()))

(match set
(()
(reverse (map reverse result)))

((item . set)
(match result

(()
(next-item set ‘((,item) . ,result)))

((this . next)
(let next-class ((past ’()) (present this) (future next))

(match present
((paradigm . _)
(if (equivalent? item paradigm)

(next-item set ‘((,item . ,present)
. (,@past ,@future)))

(match future
(()
(next-item set ‘((,item) ,@result)))

((this . next)
(next-class ‘(,present . ,past) this next)))

)))
)))))))

Having the conclusions split into equivalence-classes of conclusions
that regard the same property, we create a composition of the clipped
functions of membership to given classifications, which are constructed
by selecting the maximum value of each of the component functions.

The only thing that may be unknown at this point is what it means to
clip a function. This is rather straightforward:

pointless wars.
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(define ((clip function bottom top) x)
(assert (<= bottom top))
(max bottom (min top (function x))))

The infer function returns a list of form ((property function) ...).
In order to get the classifications of the property values, we need to defuzzify
each function.

We are going to use the aforementioned method of computing the center-
-of-gravity. This method is based on numerical integration that will not
be covered here.

(with-default ((bottom 0)
(top 100)
(step 0.1))

(define (center-of-gravity function)
(let* ((step (specific step))

(domain (range #;from (specific bottom)
#;to (specific top) #;by step)))

(/ (sum (map (lambda (x) (* x (function x) step)) domain))
(sum (map (lambda (x) (* (function x) step)) domain))))))

;; where
(define (range #;from bottom #;to top #;by step)

(if (> bottom top)
’()
‘(,bottom . ,(range #;from (+ bottom step) #;to top #;by step))))

The surprising thing is the use of the with-default derived form. It is
used to give some default values to certain names, but without committing
to those values. The form will be explained in one of the later chapters.

Finally, we can evaluate the expression

(let* ((conclusions (infer #;from underwriter-rules
#;about ’((bmi 29)

(glycated-hemoglobin 5)
(blood-pressure 20))

#;within health-categories)))
(map (lambda ((property function))

‘(,property ,(center-of-gravity function)))
conclusions))

to find out that the rating received by our candidate is 7.46. In other
words, we passed along some numbers to receive yet another number.
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Matrix Operations

“Code is like poetry; most of it shouldn’t have been written.”
– David Jacobs

In the previous chapters we’ve been dealing with certain methods of soft
computing. The numerical packages (or “programming languages”, as some
people call them) like R, SPSS or Matlab have often been praised for their
“native” support for matrix operations and statistical notions.

In this chapter, we will show how easily these concepts can be imple-
mented in Scheme using the means that we already know. We will also
learn to define and use variadic functions.

It is common in mathematics and science to organize the computations
in the form of matrices, because this allows to process large amounts of data
in a systematic and uniform manner.

A matrix is a rectangular array of numbers, for example

1 2 3 4
0 4 5 8
0 0 7 6


We can use lists of lists of equal length to represent matrices, for example

’((1 2 3 4)
(0 4 5 8)
(0 0 7 6))

4.0.1 Matrix addition

Given a matrix, we can determine its dimensions. For example, the above
matrix is three-by-four.

51
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(define (dim x)
(match x

((first . rest)
‘(,(length x) . ,(dim first)))

(_
’())))

Probably the simplest algebraic operation that one can conduct on a ma-
trix is matrix addition: given matrices of the same dimensions, we add each
element of one matrix to the corresponding element of the second matrix:

(define (M+2 A B)
(assert (equal? (dim A) (dim B)))
(map (lambda (a b)

(map + a b))
A B))

(e.g.
(M+2 ’((1 2 3)

(4 5 6)) ’((1 2 3)
(4 5 6))) ===> ((2 4 6)

(8 10 12)))

4.0.2 Variadic functions

I called the function M+2 to emphasize that it takes two arguments. However,
because matrix addition is associative (like conjunction and disjunction in
propositional logic), so it might be more convenient to write (M+ A B C)
instead of (M+ (M+ A B) C) or (M+ A (M+ B C)). Actually you can check
that this is already the case for scalar addition: the expression (+ 1 2 3)
evaluates to 6. This is also true for multiplication.

We can use the M+2 function to perform the generalization to the arbi-
trary number of arguments, but no less than one.

(define (M+ . MM)
(match MM

((M)
M)

((A B . X)
(apply M+ ‘(,(M+2 A B) . X)))))

We have used an improper list of arguments, or a dotted tail notation.
An improper list is a list whose last cdr is not the empty list. If the list
of arguments is improper, then the symbol in the dotted tail will be bound
the list of remaining arguments, so for example if we had no list function
defined, we could use that feature:
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(define (list . items)
items)

;; or equivalently:

(define list (lambda items items))

Note the use of the apply function. It takes a function and a list of
arguments, and applies the function to arguments. For example, if l is a list
containing three elements, then (apply f l) is equivalent to (f (first l)
(second l) (third l)). However, if the number of arguments is unknown,
then the use of apply is inevitable if we want to preserve generality.

Note also, that since the max and min functions can take the arbitrary
number of arguments (and return the greatest and the smallest of them,
respectively), instead of defining the maximum and minimum functions, we
could have written (apply max ...) and (apply min ...).

The apply function can also take a variable number of arguments – all
arguments between the first and the last are simply consed to the last, so
we could have written (apply M+ (M+2 A B) X) in the previous definition,
yielding the same effect.

4.0.3 Transpose

If we swap columns and rows of a matrix, we obtain its transpose. For
example, the transpose of the matrix(

1 2 3
4 5 6

)

is the matrix 1 4
2 5
3 6


The code for constructing the transpose of a matrix is a bit tricky:

(define (transpose M)
(apply map list M))

To see why it works, let’s try to evaluate

(transpose ’((1 2 3)
(4 5 6)))

According to our definition, it can be rewritten as

(apply map list ’((1 2 3) (4 5 6)))
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which – according to what we said earlier – can be rewritten as

(map list ’(1 2 3) ’(4 5 6))

which yields the desired result.

4.0.4 Matrix multiplication

Multiplying two matrices is much trickier than adding them and is best
explained by a math tutor pointing fingers on the blackboard.

If A and B are matrices, the product AB is defined only if the number
of columns of matrix A equals the number of rows of the matrix B. Then,
the number of rows of AB is the same as the number of rows of A, and the
number of columns of AB is the same as the number of columns of B.

(define (M*2 A B)
(assert (let* (((A-rows A-cols) (dim A))

((B-rows B-cols) (dim B)))
(= A-cols B-rows)))

(let* ((B^T (transpose B)))
(map (lambda (rA)

(map (lambda (cB)
(sum (map * rA cB)))

B^T))
A)))

We can extend the M*2 to support arbitrary number of arguments ana-
logically as we did for M+2.

There are some other important operations that can be defined for ma-
trices, like the determinant or rank. Their exposition is beyond the scope of
this pamphlet, but some of them can be found in this pamphlet’s repository.
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Classifiers

“Truth is a mobile army of metaphors.”
– Friedrich Nietzsche

5.1 Introduction

In this chapter, we will be dealing with the task of classifying data – given a
tuple, we need to classify it to one of given categories, based on some set of
existing classifications (called the training set). We do not know what the
underlying rules of classification are – our system should infer that for us.

For the remainder of this chapter, we will be assuming that a database
will be a list of lists, and that the first list of the database will be a header
(a list of symbols) and all the remaining lists will contain data, whether it
be numerical or nominal.

5.2 Naive Bayes and Probability

First of the classifiers that we are going to consider is based on the notion
of conditional probability and makes an indirect use of the so-called Bayes
theorem. The underlying idea is very simple: first we compute the absolute
probability that the record belongs to a given class (based on the training
set), then for each possible class we compute the conditional probabilities of
an item of this class having the specified values as the certain fields of the
tuple, multiply it altogether and choose whichever product of probabilities
turns out to be the greatest. For example, if our data set has the form

(define computer-purchase
’((age income student credit-rating buys)

(31..40 high no fair yes)
(>40 medium no fair yes)

55
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(>40 high yes excellent yes)
(>40 low yes excellent no)
(31..40 low no excellent yes)
(<=30 medium no fair no)
(<=30 low yes fair no)

))

and we are to predict the class of a new record (>40 low no fair ?),
then we first compute the probabilities P (buys = yes) and P (buys = no),
then we compute the conditional probabilities P (age = > 40|buys = yes)
and P (age = > 40|buys = no), the conditional probabilities P (income =
low|buys = yes) and P (income = low|buys = no), and so on (for all the
other data). For example, for this particular database, P (buys = yes) is 4

7 ,
because there are 7 entries, and 4 of them have the buys field equal to yes.
Similarly, P (age = > 40|buys = yes) equals 2

4 , because there are 4 entries
that have the buys field equal to yes, and 2 of them have the age field equal
to >40.

Note that, unlike in the case of fuzzy logic, the values of probabilities have
a well-defined meaning, so we shouldn’t be disgusted with this approach, at
least not in principle.

Having computed the conditional probabilities for both buys=yes and
buys=no, we multiply them by the corresponding probabilities of belonging
to given buys classes and choose the class whose probability is higher.

5.2.1 What is the universe

We have used the notation that is commonly used in the mathematics: P (φ)
is a probability that the proposition φ is satisfied, and P (φ|ψ1, ..., psin) is
a probability that the proposition φ is satisfied given that ψ1, ..., psin are
satisfied.

The exact meaning of the proposition is usually relative to some context
or situation (in this case – our database). In the remainder of this pamphlet,
we will be referring to this situation as universe.

In our case, the structure of a universe is rather simple and can be
divided into two realms: the realm of ideas and the realm of entities. The
realm of ideas names the possible properties of each single entity, and each
entity consists of values whose meaning is specified in the realm of ideas. The
variable computer-purchase is an example of a universe: the first element of
the list is the realm of ideas, and contains the names of 5 properties: (age
income student credit-rating buys). The rest of the lists contains 7
individual entities, each of them obviously having 5 properties.

We may wish to refer to the property of an entity from the specific
universe, for example the age of a person. For this purpose, we will define
the function the:
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(with-default ((universe ’(()())))
(define (the property #;of item)

(let* (((names . things) (specific universe))
(index (list-index (lambda (label)

(eq? label property))
names)))

(if (not index)
(throw ’not-found property names))

(list-ref item index))))

We have used the with-default derived form that we have also used
in the definition of the center-of-gravity function that was used in the
defuzzification process. The default universe consists of an empty realm of
ideas and of a single entity with no properties.

Unlike the center-of-gravity function, the default context of the the
function isn’t particularly helpful, so we will likely need to override the
desired value somehow. For this purpose, we will use another derived form
called specify.

For example, the expression

(specify ((universe ’((name age))))
(the ’age #;of ’(George 48)))

evaluates to 48.
If we wanted to express the naive Bayes classifier, we’d need to use the

notion of probability. The proposition in the form P (φ) can be expressed
using regular functions (i.e. lambdas) ranging the objects in the universe,
for example P (buys = yes) could be paraphrased as

(probability
(lambda (item)

(eq? (the ’buys item) ’yes)))

Likewise, we could define probability as a variadic function, treating
all the additional arguments as the given propositions:

(with-default ((universe ’(()())))
(define (probability proposition #;given . circumstances)

(let* (((names . things) (specific universe))
(known-world (filter (apply compose circumstances)

things)))
(/ (count proposition known-world)

(length known-world)))))

where compose is a function that takes arbitrary number of functions and
returns their composition (if there are no arguments, the identity function
is returned), i.e. ((compose f g) x) means the same as (f (g x)).
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Back to the Naive Bayes classifier, we can stick to the convention that the
unknown property (whose value is supposed to be used) will be represented
using the question mark symbol. Therefore we expect that the

(specify ((universe computer-purchase))
(naive-bayes ’(>40 low no fair ?)))

will try to classify the last entry in the tuple, i.e. the buys property.
Therefore we may need to be able to retrieve the name of the unknown
property, as well as the names of the known properties (note that we assume
that there’s only one unknown per tuple):

(without-default ((universe ’(()()))
(unknown? (lambda (x) (eq? x ’?))))

(define (unknown-label+rest tuple)
(let* (((header . data) (specific universe))

(unknown/index (list-index (specific unknown?) tuple))
(unknown-property (list-ref header unknown/index))
(known-properties (filter (lambda (label)

(not (eq? label unknown-property)))
header)))

(values unknown-property known-properties))))

The novel thing is the use of the function values. One of the most
controversial features of Scheme is the functions’ ability to have more than
one value. It is useful on some occasions though, because it allows to extend
a function to give additional information without breaking any existing code.
It may be considered inelegant though, and perhaps it would be better to
define two functions rather than one.

In addition to retrieving the name of the unknown, it would also be help-
ful if we were able to get all the possible values of a given property within a
universe, in order to compute the appropriate conditional and unconditional
probabilities:

(with-default ((universe ’(()())))
(define (column name)

(let* (((header . data) (specific universe))
(index (list-index (lambda (x) (eq? x name)) header)))

(map (lambda (row)
(list-ref row index))

data)))

(define (possible-values attribute)
(delete-duplicates (column attribute))))
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(e.g.
(specify ((universe computer-purchase))

(possible-values ’age)) ===> (<=30 31..40 >40))

Note that we also defined a column auxiliary function that allows us to
project the universe onto one of its dimensions. That function will also be
used later.

We can now define the Naive Bayes of a record in the following way:

(with-default ((universe ’(()())))
(define (naive-bayes tuple)

(let* ((unknown-property known-properties
(unknown-label+rest tuple))

(classes (possible-values unknown-property)))

(define (unconditional-probability class)
(probability (lambda (x)

(eq? (the unknown-property x) class))))

(define (partial-conditional-probabilities #;for class)
(map (lambda (property)

(probability
(lambda (item)

(eq? (the property item) (the property tuple)))
#;given
(lambda (item)

(eq? (the unknown-property item) class))))
known-properties))

(apply argmax (lambda (class)
(apply * (unconditional-probability class)

(partial-conditional-probabilities
class)))

classes))))

In the definition, we introduced two auxiliary definitions of unconditional-
-probability of belonging to a class and of partial-conditional-probabi-
lities of having certain properties given that we belong to given class.

We have also used the argmax library function that takes a measure
function and arbitrary number of arguments and returns the argument whose
measure is the greatest.

The code above expresses the idea of the naive Bayesian classifier in a
manner that is probably a lot more precise and concise than the textual
description given at the beginning of this section. It may take some time
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to be able to both read and write such code, but once it is mastered, it
becomes as natural as listening and talking, allowing to express more and
more advanced concepts.

5.3 Decision Trees and Information

The naive Bayes classifier is structurally very simple. In this section we are
going to learn about a slightly more sophisticated classifier known as the
decision tree. It is interesting, because in addition to being a classifier, it
can also be seen as an algorithm for compressing knowledge contained in a
data set.

In general, a decision tree is an acyclic directed graph whose nodes alter-
nately represent questions and possible answers to those questions. Usually
there are many ways in which a decision tree can be constructed for a given
data set, but some of those graphs are more compact than others (i.e. con-
tain less nodes). In the worst case the number of leaves in a tree can be
equal to the number of database entries. This can depend on both the struc-
ture of data and on the order in which we decide to ask questions, so it is
important to ask them in a way that allows to reject as many alternative
options as possible.

For example, let’s take a look at this slightly larger version of the computer-
-purchase database:

(define computer-purchase
’((age income student credit-rating buys)

(<=30 high no fair no)
(<=30 high no excellent no)
(31...40 high no fair yes)
(>40 medium no fair yes)
(>40 low yes fair yes)
(>40 low yes excellent no)
(31...40 low yes excellent yes)
(<=30 medium no fair no)
(<=30 low yes fair yes)
(>40 medium yes fair yes)
(<=30 medium yes excellent yes)
(31...40 medium no excellent yes)
(31...40 high yes fair yes)
(>40 medium no excellent no)

))

We can notice, that if a person’s age is <=30, then that person buys a
computer only if she or he is a student – thus we can get the answer after two
questions. People whose age is 31...40 always buy a computer. If a person’s



5.3. DECISION TREES AND INFORMATION 61

age is >40, then he or she buys a computer only if the credit-rating is
fair.

The above decision process can be represented in the form of a tree:

age

<=30

student

no

no

yes

yes

31...40

yes

>40

credit-rating

fair

yes

excellent

no

5.3.1 Representing trees in Scheme

One could ask how can we represent such a tree in Scheme. The truth is
however that we already have, by using nested lists. The most straightfor-
ward way of representing a binary tree with labeled nodes is to use a list of
the form (label branches ...), where branches are also trees. The only
exception is that we represent leaves as atomic objects. So for example, the
above tree could be written as the following Scheme expression:

(age (<=30 (student (no no)
(yes yes)))

(31...40 yes)
(>40 (credit-rating (fair yes)

(excellent no))))

It may not be immediately apparent that those two objects are isomor-
phic, and besides the former is much more pleasant to watch, so it would be
helpful if we could convert Scheme expressions to pictures in a systematic
way. This shouldn’t be particularly difficult – the above tree was generated
in LATEX using the qtree package from the following code:

\Tree [.age
[.<=30

[.student
[.no no ]
[.yes yes ] ] ]

[.31...40 yes ]
[.>40

[.credit-rating
[.fair yes ]
[.excellent no ] ] ] ]
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(Note the resemblance). Before we create our converter, however, we
should note one thing: although for simple examples such as the one above
we could decide, for a given path on the tree, which label should be assigned
to a given data tuple, our database could contain a few tuples with the same
values but different labels, like:

...
(<=30 high no fair no)
...
(<=30 high no fair yes)
...

In such situations, we would rather that the leaf contained the probability
distribution of belonging to certain classes, than a single value. How do we
do that, if we already used pairs to represent trees?

One way would be to change our representation of a tree, so that the
nodes, branches or leaves were tagged somehow. However that would add
complexity (and perhaps ambiguity) to our representation.

Another way would be to freeze compound data structures so that they
could be seen as atomic objects in the context of a tree, but could also be
defrost for further processing.

Scheme does provide some means for freezing the compound objects:
in addition to lists or pairs, one can also use containers called vectors,
and convert vectors to lists and lists to vectors using vector->list and
list->vector built-in procedures.

We can therefore assume that a leaf of a tree is either a symbol or a
vector, and in the latter case we would like to generate a table containing
the information from that vector. The probability table will have the form

#((class-1 probability-1)
(class-2 probability-2)
...)

where #(elements ...) is a legitimate Scheme notation for vectors.
The code for converting Scheme objects to LATEX trees and tabulars looks

as follows:
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(define (latex/tabular rows)
(let* ((columns (length (first rows))))

(string-append
"\\begin{tabular}{"
(string-join (make-list columns "c") "")
"} "
(string-join
(map (lambda (row)

(string-join (map ->string row) " "))
rows)

" \\\\ \\hline ")
" \\end{tabular}")))

(define (latex/qbranch tree)
(match tree

((node . branches)
(string-append
"[." (->string node) " "
(string-join (map latex/qbranch branches) " ")
" ] "))

((? vector?)
(string-append
"\n[.{"
(latex/tabular (vector->list tree))
"} ] "))

(leaf
(->string leaf))))

(define (latex/qtree tree)
(string-append
"\\begin{figure}"
"\\Tree "
(latex/qbranch tree)
"\\end{figure}"))

The latex/qtree interface is a simple wrapper on the latex/qbranch
function that “does all the work”, i.e. that converts a tree into a string
containing LATEX code for displaying a tree. The latex/tabular function
does nothing beyond the obvious.

The defined functions make an extensive use of built-in functions string-
-append and string-join as well as a library function ->string that con-
verts arbitrary Scheme objects to strings.

Note that we had to escape the slash symbols for LATEX.
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5.3.2 Constructing a decision tree

Now that we are equipped with proper tools for visualizing the tree struc-
tures, we can try to construct a tree for a given data set. In order to do
so, let’s recall the informal construction of the tree that we conducted at
the beginning of this section. The first question that we chose to divide our
set was about the age, because it seemed intuitive that this parameter was
most informative with regard to the question whether a given person buys
a computer or not.

Regardless of the underlying intuitions, we can show how to construct a
decision tree, provided that we know how to specify what is an information-
-gain of an attribute with regard to a certain label (which, in the above
case, is the buys attribute).

The construction for a given database will proceed by splitting the
database rows into equivalence classes according to the values of the con-
sidered attributes, and removing the columns containing the attributes that
have already been considered. The smaller databases created in this way
will be called slices:

(define (drop-column database label)
(let* (((header . data) database)

(index (list-index (lambda (name) (eq? name label)) header)))
(map (lambda (row)

(skip index row))
database)))

(define (slices #;of database #;on attribute)
(specify ((universe database))

(let* (((names . things) database)
(classes (possible-values attribute)))

(values
(map (lambda (class)

(let* ((peers (filter (lambda (item)
(eq? (the attribute item)

class))
things)))

(drop-column ‘(,names . ,peers) attribute)))
classes)

classes))))

The (skip i l) is a library function that returns a copy of list l without
its i-th element.

The construction stops (for a given slice) either when every record of that
slice has the same value of the label attribute (e.g. buys=yes), or when
the only column left in the database is the label – in the former case we
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know what the node value should be, but in the latter we need to construct
the probability distribution table:

(define (probability-table ((label) . column))
(specify ((universe ‘((,label) . ,column)))

(let* ((classes (possible-values label)))
(map (lambda (class)

‘(,class ,(probability (lambda (item)
(eq? (the label item)

class)))))
classes))))

(define (decision-tree #;of data #;for label)
(match data

(((last) . _)
(assert (eq? label last))
(list->vector (probability-table data)))

((names . things)
(let* ((attributes (filter (lambda (name)

(not (eq? name label)))
names))

(attribute (apply argmax
(lambda (attribute)

(specify ((universe data))
(information-gain attribute label)))

attributes))
(sections classes (slices #;of data #;on attribute))
(branches (map (lambda (class section)

(specify ((universe section))
(match (possible-values label)

((result)
‘(,class ,result))

(_
‘(,class ,(decision-tree section

label))))))
classes sections)))

‘(,attribute . ,branches)))))

What’s left before our code can actually work is to define the information-
-gain somehow. There are many ways in which it can be defined. I will
present the definition based on Claude Shannon’s notion of information en-
tropy, although I need to note that I do not comprehend it fully.

We start off by defining the measure of information contribution of given
proposition:
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(define (information proposition #;given . circumstances)
(let ((p (apply probability proposition circumstances)))

(if (zero? p)
0.0
(- (* p (log p))))))

As we can see, the notion of information is defined in terms of probability,
so it needs a specific universe to operate on. It also allows to specify “con-
ditional information”, which corresponds exactly to the conditional proba-
bility.

We had to check whether the probability of given event is zero, because
if it were, then the logarithm of that probability would be −∞, and in the
Scheme arithmetic zero times ∞ is not a number.

The notion of information is used in the definition of information-gain:

(define (information-gain attribute target-class)
(let* ((classes (possible-values target-class)))

(- (sum (map (lambda (class)
(information (lambda (item)

(eq? (the target-class item)
class))))

classes))
(attribute-entropy attribute target-class))))

;; where
(define (attribute-entropy attribute target-class)

(let* ((classes (possible-values target-class))
(options (possible-values attribute)))

(sum (map (lambda (option)
(sum (map (lambda (class)

(* (information
(lambda (item)

(eq? (the target-class item)
class))

#;given
(lambda (item)

(eq? (the attribute item)
option)))

(probability
(lambda (item)

(eq? (the attribute item)
option)))))

classes)))
options))))
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The definitions are rather simple structurally, and the only problem with
their comprehension may stem from the lack of understanding of the under-
lying theory.

5.3.3 Deciding upon a decision tree

Now that we know how to build trees, we may wish to use them as classifiers:
we shall follow the tree according to the path specified by the properties of
the data that we wish to classify. If the leaf that we reached is a single value,
we simply assign it to our tuple. Otherwise it is a probability distribution
table, and we should draw lots according to that distribution:

(define (draw-lots probability-table)
(let* ((((classes probabilities) ...) probability-table)

(cumulative-distribution (scan + 0 probabilities))
(lot (random 1.0))
((class upper-limit) (find (lambda ((class upper-limit))

(<= lot upper-limit))
(zip classes

cumulative-distribution))))
class))

we used here the scan library function for calculating prefix sum. As-
suming that (random 1.0) returns an evenly distributed random variable,
this method is known as inverse transform sampling.

The code for actually making a decision based on the tree isn’t particu-
larly complicated.
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(with-default ((universe ’(()())))

(define (decide/tree tuple)
(let* ((unknown-label (unknown-label+rest tuple))

(tree (decision-tree (specific universe) unknown-label)))
(tree-decide tree tuple)))

(define (tree-decide tree tuple)
(match tree

((property . selections)
(let* ((class (the property tuple))

((_ next) (find (lambda ((value next))
(eq? value class))

selections)))
(tree-decide next tuple)))

((? vector? probability-table)
(draw-lots probability-table))

(_
tree))))

The decide/tree procedure constructs a tree for the unknown label, and
then refers to the tree-decide function that actually traverses the path
on the tree by recursively calling itself. The code follows the established
convention of operating within the context of universe.

5.4 k Nearest Neighbours
So far we have been dealing with a nominal database, i.e. such that its
entries belonged to a finite set of unordered values. In this section, we are
going to learn about the k Nearest Neighbours classifier that is intended to
handle the numerical data, i.e. data consisting of real numbers.

For this purpose, we will use the database acquired from The Data-
mining Project called “iris.csv”, which – as its name suggests – is stored in
a CSV file.

Although the format is rather simple (it is a simple line-based text file),
there is a readily available library for Guile (surprisingly called “Guile-CSV”)
that we will use for reading the data. The patched version of the library
(with a simplified interface) is available in the pamphlet’s repository, as well
as the database itself.

In order to load the “iris.csv” database, having loaded the (guile csv)
module, we shall write

(define iris (read-csv "iris.csv"))
The database is compatible with previously described structure of the

universe. All columns but the last contain some numerical data (dimen-
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sions of certain parts of flowers), while the last column, labeled as class,
contains the name of the flower species: Iris-setosa, Iris-versicolor or
Iris-virginica.

The numerical parameters of database entries can be seen as points in a
multi-dimensional space. The idea behind the k Nearest Neighbours classifier
is simple: given a point that we wish to classify, we take a look at the k
nearest existing points, and classify the new point to the class to which the
majority of those nearest points belongs.

We will be assuming, that in the given data set the classification is always
the last field. While this may not be the most fortunate idea in general, it
turned out to be sufficiently good in practice (it is always OK to generalize
the code when needed).

In order to build the desired classifier, we actually only need only three
functions: one that would allow us to compute the distance between two
points, another for finding the nearest neighbours and one for taking the
majority of them.

With regard to the distance, we will be using the euclid-distance
function:

(define (euclid-distance a b)
(sqrt (sum (map square (map - a b)))))

Note that – in addition to the built-in sqrt function for computing the
square root of a number, we have used two functions defined in the first
chapter. How surprising the life can be!

Also note, that the function makes no assumptions on the dimensionality
of the space that we investigate.

In the case of the nearest-neighbours procedure, we will simply sort
the data according to the distance between its points and the point being
classified, and then we take the k first points from the list. For the prac-
tical reasons, we will compute the distance and attach that information to
database before sorting – that way we will avoid computing the value of the
distance function in each comparison.

(define ((nearest-neighbours k #;in data) #;of sample)
(let* ((measured (map (lambda ((values ... label))

‘(,(euclid-distance values sample)
,@values ,label))

data))
(sorted+ (sort measured

(lambda ((distance-1 . _) (distance-2 . _))
(< distance-1 distance-2))))

(sorted (map (lambda ((distance . data)) data) sorted+)))
(take sorted k)))
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Lastly, we need to choose the label such that the majority of the points
bear it. We will use the equivalence-classes operation to facilitate that:

(define (dominant-label labeled-points)
(let* ((classes (equivalence-classes

(lambda ((_ ... label-1) (_ ... label-2))
(eq? label-1 label-2))

labeled-points))
(biggest (apply argmax length classes))
(((_ ... label) . _) biggest))

label))

The only thing that’s left is to bring those ideas together:

(define (((classify/knn k) universe) sample)
(let* (((header . data) universe))

(dominant-label ((nearest-neighbours k data) sample))))

5.5 Quantization of numerical data

Suppose that we want to classify numerical data using our decision trees
or naive Bayes classifier. Applying them to numerical data could be rather
inefficient, because we would likely obtain very low probabilities in the naive
Bayes classifier, and very complex and inaccurate decision trees (and most
likely no path on the decision tree would correspond to our data).

A possible solution would be to split the numerical data into intervals,
and construct trees or compute probabilities for those intervals, rather than
exact numbers. This method is called quantization. In particular, if all the
intervals (except, perhaps, the first and the last one) are of the same length,
then we deal with uniform quantization1.

This section presents briefly how the numerical data can be quantized.
The procedure is rather straightforward – for each dimension, we need

to take the extreme values (the lowest and the highest). They will span over
the range that will be used for quantization. Additional categories will be
created for points lying beyond those extremes.

In order to classify a point, we search all the intervals and return the
one the given point belongs to.

We need to classify each dimension separately, so we shall create a list
of quantizers (i.e. functions that assign a point the name of its range).

This is how this works in practice:

1Perhaps a more fruitful idea would be to quantize the data so that the number of
elements that belong to various intervals is equal, rather than the length of the intervals.
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(with-default ((intervals 5)
(universe ’(()())))

(define ((quantizer label) value)
(let* ((data (column label))

(low high (apply min+max data))
(unit (/ (- high low) (specific intervals)))
(range (iota (specific intervals) low unit))
(upper-bound (find (lambda (upper-bound)

(< value upper-bound))
range)))

(if upper-bound
(symbol-append ’< (number->symbol upper-bound))
(symbol-append ’>= (number->symbol high)))))

(define (quantize-item)
(let* ((((header ... class) . _) (specific universe))

(quantizers (map quantizer header)))
(lambda ((values ... label))

‘(,@(map (lambda (quantize value)
(quantize value))

quantizers values) ,label)))))

(define (quantize universe)
(let (((header . data) universe))

(specify ((universe universe))
‘(,header . ,(map (quantize-item) data)))))

For creating the names of the labels, we have used library functions
symbol-append and number->symbol, whose names are rather self-explanatory.
As you can see, we only use the upper-bounds to name the intervals, so for
example if we want to classify number 21.5 to one of intervals (−∞, 18.0],
(20.0, 22.0], (22.0, 24.0], (24.0,+∞), it will be labeled as <22.0.

Of course, we need to create a quantized version of a universe in order
to further operate on it, for example:

(define iris/quantized (quantize iris))

5.6 Evaluating classifiers

Although we have presented a few methods for classifying data, it would
be interesting to ask whether they actually work, or to what extent we can
rely on them. This section will present a small framework for evaluating the
classifiers.
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The idea is to divide our data set into two parts: the training part
(that would be the base for the construction of decision trees, calculating
Bayesian probabilities, or determining the set of neighbours that we use for
classification) and the verification part that would allow us to determine
how many predictions were right and in how many cases our classifier was
mistaken, and what sort of errors it made.

In order to do so, we shall write a procedure that takes a given strategy
(understood as a function that takes the training set and produces a func-
tion that actually performs classification of samples), a training/verification
set and a fraction that expresses how big should be the training set com-
pared to verification set, and returns some detailed information regarding
the confusions made.

(define (evaluate-strategy strategy training-proportion data)
(assert (< 0 training-proportion 1))
(let* (((header . data) data)

(classes (equivalence-classes
(lambda ((_ ... label-1) (_ ... label-2))

(eq? label-1 label-2))
data))

(((training . verify) ...)
(map (lambda (class)

(let* ((total-size (length class))
(training-size (inexact->exact

(floor (* training-proportion
total-size))))

(training verify (split-at class
training-size)))

‘(,training . ,verify)))
classes))

(training verify (values ‘(,header . ,(concatenate training))
(concatenate verify)))

(classify (strategy training))
(classified (map (lambda ((sample ... label))

‘(,(classify sample) . ,label))
verify)))

(values
(confusion-matrix classified)
(exact->inexact (/ (count (lambda ((guess . real))

(not (eq? guess real)))
classified)

(length classified))))))

Despite its length, the code is rather simple. The only new thing here
is the use of the library function concatenate that takes a list of lists and
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returns a list of elements of those lists, for example (concatenate ’((1
2) ’(3) ’(4 5))) would return a list (1 2 3 4 5), and the use of the
inexact->exact procedure, that requires a bit of explanation. The Scheme
programming language has two distinct types of numbers: exact, which
include integers and rationals, and inexact, that correspond to the notion
of floating point numbers2. The exact numbers are called so because they
can be arbitrarily large (with regard to integers) or arbitrarily small (with
regard to fractions), while the inexact numbers are always represented with
limited precision. The above use of the inexact->exact function stems
from the fact that for some reason the floor function (which returns the
largest integer part of its argument) returns an inexact number, while the
split-at function takes an exact.

The most important thing that the evaluate-strategy function does
is producing a pair of labels (guess . real) based on the verification set
and gathering them in the classified list. Then the list is passed on to
the confusion-matrix procedure that makes a summary of errors:

(define (confusion-matrix classified-data)
(let* ((rows (equivalence-classes (lambda ((a . _)(b . _))

(eq? a b))
classified-data)))

(map (lambda (row)
(let* ((classes (equivalence-classes

(lambda ((_ . a) (_ . b))
(eq? a b))

row))
(total (length row)))

(map (lambda (class)
(let* ((((labeled . guessed) . _) class)

(classified (length class)))
‘(,labeled ,guessed ,classified ,total

,(exact->inexact
(/ classified total)))))

classes)))
rows)))

As we said earlier, the use of the evaluator requires us to stick to certain
conventions – the strategy needs to be a function that takes data and returns
a classifier for a single sample. The classify/knn function already conforms
to that convention (once the k is settled), but the other two classifiers do
not, and therefore we need to adopt them:

2Actually, the notion of inexact numbers also embraces complex numbers that are
represented as pairs of floating point numbers.
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(define ((classify/naive-bayes data) sample)
(specify ((universe data))

(naive-bayes ‘(,@sample ?))))

(define ((classify/decision-tree data) sample)
(specify ((universe data))

(let* ((tree (decision-tree data ’class)))
(tree-decide tree sample))))

Note that the classify/decision-tree will misbehave under the sub-
stitutional model of computation, because it will require to reconstruct the
decision tree for each sample. This can be solved easily using the technique
of memoization that we will not cover here.

Finally, we can use our evaluator to verify the quality of our classifiers:

(evaluate-strategy classify/decision-tree 7/10 iris/quantized)

5.7 Clusterization

In the previous sections we’ve been dealing with a task of assigning known
labels to the elements in a set. This section presents a method called k
means that allows to establish distinct categories within an unlabeled set of
numerical data. This technique is in general called clusterization.

Although it may sound fancy, the method of k means is rather simple,
but also limited, because it requires its user to provide the maximum number
of clusters that are to be found in the set.

Once it is done, we choose random points in a given space and for each
of those points, we assign it the samples that are the nearest. Then we
replace the random points with mean values of those samples, and repeat
that process until we reach a fixed point, i.e. until the points remain the
mean values of the attracted samples.

In order to pick the random values, we first need to specify the ranges
among which we ought to choose, so that we can select a value from within
that range. Then, we simply generate a list of points of the desired length:

(define (random-centers k data)
(let* ((upper (apply map max data))

(lower (apply map min data)))
(generate-list k (lambda ()

(map (lambda (lower upper)
(+ lower (random (- upper lower))))

lower
upper)))))
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Once you get used to using map, apply and lambda, the code is very
straightforward and needs no comment. Before this happens, you probably
need to practice a lot, though.

The assignment of samples to the alleged cluster centers is also very
simple, once you get familiar with the notion of equivalence-classes:

(define (classify data centroids)
(let* ((nearest-centroid (lambda (point)

(apply argmin
(lambda (c)

(euclid-distance point c))
centroids)))

(clusters (equivalence-classes
(lambda (a b)

(equal? (nearest-centroid a)
(nearest-centroid b)))

data)))
clusters))

When we put those two above together, we get the clusterization routine:

(define (clusterize data k)
(let* ((centroids (random-centers k data))

(clusters (classify data centroids))
(new-centroids (map (lambda (cluster)

(apply map (lambda elements
(mean elements)) cluster))

(filter pair? clusters))))
(if (equal? centroids new-centroids)

(values clusters new-centroids)
(clusterize data new-centroids))))

Probably the most surprising part is the (filter pair? clusters)
expression – its purpose is to filter out empty clusters, if they happen to
appear, because for them, calculating the mean wouldn’t make sense (so
effectively the final number of clusters can be smaller than the initially
assumed). The mean function is obviously defined as

(define (mean list)
(/ (sum list) (length list)))

We can observe the result of clusterization on the following picture. Com-
pared to the original labeling, only one label was classified improperly. The
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clusterization was performed on the data preprocessed by Principal Com-
ponent Analysis3, and the plot shows two most significant principal compo-
nents.
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3 Principal Component Analysis is a technique for reducing the number of parameters
in a numerical data set while preserving the most significant information. The Scheme
code for PCA that I used is based on Singular Value Decomposition routine extracted from
the Scheme numerical package scmutils. More information about PCA can be found in
[5].



What to do next?

“Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to
human beings what we want [...]”

– Donald Knuth

Barry Rowlingson, one of the contributors to the R project, wrote: “This
is all documented in TFM. Those who WTFM don’t want to have to WTFM
again on the mailing list. RTFM”.

My hope is that after reading this pamphlet at least some readers will
see that there is another way – that instead of being divided into groups
of “software package creators” and “software package users”, we can all
use participate in the joint movement of software literacy: that we will
R&WTFSC and FTM.

There’s plenty of ingenious ideas that have found their expression in
the Scheme programming language, although they made it so without the
“rock-star status”, going against the flow.

I encourage the interested readers to take a look at the papers available
at http://readscheme.org.

$ chmod -R 666 /

77

http://readscheme.org
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