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Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential
Systems
Reprinted from: Mathematics 2019, 7, 1038, doi:10.3390/math7111038 . . . . . . . . . . . . . . . . 223

vi



About the Editors

Francisco Rodrı́guez is currently an Associate Professor of Applied Mathematics at the

University of Alicante (UA), Alicante, Spain. He develops his research in mathematical modelling in

Biology and Engineering in the Dep. of Applied Mathematics and the Multidisciplinary Institute for

Environmental Studies (IMEM) , UA.
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Preface to ”Models of Delay Differential Equations”

Models of differential equations with delay have pervaded many scientific and technical fields

in the last decades. The use of delay differential equations and partial delay differential equations to

model problems with the presence of lags or hereditary effects have demonstrated a valuable balance

between realism and tractability. Of special interest in recent years is the development and analysis

of models with interactions between delay and random effects, through the use of stochastic and

random delay differential equations.

In this Special Issue we gather quite a balanced picture of mainstreams topics in the realm of

delay differential equations. Indeed, we can find contributions dealing with the construction of exact

solutions, numerical methods, dynamical properties, and applications to mathematical modeling

of phenomena and processes in biology, economics and engineering, in both deterministic and

stochastic settings.

In the paper by Arenas et al. a mathematical model is proposed, based on a set of delay

differential equations, that describes intracellular HIV infection. The model considers the time delay

between viral entry into a target cell and the production of new virions. The study includes local

stability analysis and the design of a non-standard difference scheme that preserves some relevant

properties of the continuous mathematical model. In his paper, Kashchenko studies the nonlocal

dynamics of a system of delay differential equations with large parameters using the method of

steps. This system simulates coupled generators with delayed feedback. The study shows that

the dynamics of the system are significantly different in the case of positive coupling and in the

case of negative coupling. In the paper by Debbouche and Fedorov, local unique solvability for

a class of degenerate fractional differential equations and its application to study initial-boundary

value problems for systems of equations with delays is proved. Hendy and Staelen introduce a high

order numerical approximation method for convection diffusion wave equations with a multiterm

time fractional Caputo operator and a nonlinear fixed time delay. In the paper by Matsumoto and

Szidarovszky, the dynamic behavior of n-firm oligopolies is studied, assuming the companies are able

to face both implementation and information delays. The analysis includes a classification of stability

scenarios depending on the relationship between delays. Continuing within the economical setting,

the paper by Abia et al. presents a new numerical method to obtain the solution to a size-structured

population model that describes the evolution of a consumer feeding on a dynamical resource that

reacts to the environment with a lag-time response. The model is formulated by combining a partial

and an ordinary differential equation with delay. Two papers address the numerical and theoretical

analysis of linear random delay differential equations. The first one, by Calatayud et al., proposes a

mean square convergent non-standard numerical scheme while the second one, by Cortés and Jornet,

constructs, rigorously, a solution in the important case that the source term is a stochastic process.

In the realm of applications, Majchrzak and Mochnacki, propose a second-order dual phase lag

equation to model phase changes associated with heating and cooling of thin metal films. In the paper

by Gómez-Valle et al. a partial differential equation for pricing an Asian-style option, termed a freight

option, derived from a stochastic delay differential equation is established. This partial differential

equation permits attainment of lower and upper bounds for the prime of this type of derivative.

The theoretical findings are nicely illustrated using real data from the Baltic Exchange. Zhe Ying

et al. study the stability of an age-structured susceptible–exposed—infective–recovered–susceptible

(SEIRS) model with time delay. After obtaining one disease-free equilibrium point and one endemic

ix



equilibrium point of the model, they establish sufficient conditions in order for the local stability

to be guaranteed. In the paper by A. Ashyralyev and D. Agirseven, the initial value problem

for a semilinear delay hyperbolic equation in Hilbert spaces with a self-adjoint positive definite

operator from a theoretical standpoint is studied. This analysis is complemented with some numerical

experiments in the case of semilinear hyperbolic equations with unbounded time delay term, since,

in general, it is not possible to obtain the exact solution. The volume finishes with the study of exact

and nonstandard finite difference schemes for a class of coupled linear delay differential systems.

The study includes the analysis of consistency properties of the new nonstandard schemes and several

illustrative examples.

Francisco Rodrı́guez, Juan Carlos Cortés López, Marı́a Ángeles Castro

Editors

x
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Abstract: We propose a mathematical model based on a set of delay differential equations that
describe intracellular HIV infection. The model includes three different subpopulations of cells
and the HIV virus. The mathematical model is formulated in such a way that takes into account
the time between viral entry into a target cell and the production of new virions. We study the
local stability of the infection-free and endemic equilibrium states. Moreover, by using a suitable
Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic reproduction
ratio is less than unity, the infection-free equilibrium is globally asymptotically stable. In addition, we
designed a non-standard difference scheme that preserves some relevant properties of the continuous
mathematical model.

Keywords: HIV infection; mathematical delay model; eclipse phase; NSFD; numerical simulation

1. Introduction

History has recorded that infectious diseases have caused devastation in the human
population. Despite the great advances in epidemic control, it was believed that infectious
diseases would soon be eradicated, but this has clearly not been the case. Microorgan-
isms adapt and evolve, and consequently, new infectious diseases such as AIDS, Ebola or
COVID-19 appear, which cause many deaths. In addition, the genome of some microor-
ganisms can sometimes change slightly and consequently, they can acquire resistance to
some drugs [1]. According to the World Health Organization, since its first registration
in the 1980s, Human Immunodeficiency Virus (HIV), the causative agent of Acquired Im-
munodeficiency Syndrome (AIDS), has caused more than 35 million deaths worldwide [2].
The greatest impact of deaths caused by AIDS occurs in underdeveloped or very poor
countries, especially in sub-Saharan Africa [2,3].

HIV is an RNA virus that belongs to the retroviridae family, specifically to the
lentivirus subfamily, and acts against the immune system, weakening its defense sys-
tems against infections and certain types of cancer, which is why the infected person
gradually loses its immunodeficiency [4,5]. The HIV replication process is active and
dynamic in the sense that when the virus enters the body, the cells that have the CD4+
receptor are infected, most of them are TCD4+ lymphocytes. After entering the cell, the HIV
virus can remain latent, replicate in a controlled manner, or undergo massive replication
that results in a cytopathic effect for the infected cell. In most lymphocytes the virus is
latent, and the infection gradually decreases the amount of these in both the tissues and
the blood. This leads the patient to a severe state of cellular immunosuppression, and then
a group of microorganisms causes infections. As a consequence, there is a great mortality
of people affected by HIV [6].

Mathematics 2021, 9, 257. https://doi.org/10.3390/math9030257 https://www.mdpi.com/journal/mathematics
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Epidemiologists conduct scientific experiments, sometimes in controlled settings
through self-experimentation, to analyze the spread and possible control strategies of infec-
tious diseases. However, designing such controlled experiments is sometimes impossible
due to ethical concerns and the possible collection of erroneous data [1,7,8]. These reasons
motivate the possibility of using mathematical models as tools to corroborate the perception
of disease transmission, test theories, and suggest better intervention and control strategies.

Recently, there have been a growing literature regarding mathematical models for
virus infection within-host [9–19]. These mathematical models include a variety of char-
acteristics related to the viral dynamics. For instance, some models include discrete time
delays, cell to cell viral transmissions, and the most well-known virus to cell transmis-
sion [10,15,17,19–21]. This article presents a new mathematical model, by means of a set
of differential equations with delay, to determine the effect of how to produce viruses by
target cells inside the dynamics of viruses. In this case, two types of virus-infected cells are
analyzed: the cells in the eclipse phase that are not producing the virus IE, and the cells
that are actively producing the virus I. The cells in the eclipse phase change to the state of
virus production at a m rate, and the mortality rate of each cell type is δIE and δI , respec-
tively. Cells in the eclipse phase may die because they could be recognized as infectious by
mediators of innate immunity or due to the accumulation of DNA intermediates in the cell
cytoplasm, see [22,23].

Numerous mathematical models represented by means of a system of differential
equations, with or without delay, have been discretized by means of the non-standard
finite difference method proposed by Ronald Mickens, see [24–34]. Their use is mainly
because they are very effective in preserving certain qualitative properties of the original
differential equations and the convergence, consistency and stability of their solutions have
been demonstrated, see [35–46].

In this study, we also design a non-standard finite difference (NSFD) scheme that
allows us to obtain numerical solutions of a set of delayed and ordinary differential equations,
which describes the dynamics of HIV infection within-host. First, we apply the techniques
designed by Mickens for the construction of the non-standard finite difference (NSFD)
scheme to our HIV mathematical model. Secondly, we prove some main properties of the
non-standard finite difference (NSFD) scheme, and that agree with qualitative properties
on the HIV mathematical model with discrete time delay. One important property that the
non-standard finite difference (NSFD) scheme has is that it allows us to guarantee accurate
and positive solutions. This is very important when solving inverse problems related to
estimation of parameters [13,47–51]. Finally, we perform some numerical simulations that
show the advantages regarding accuracy and computational cost.

This paper is organized as follows. In Section 2, we present the mathematical model of
HIV within-host with discrete time delay. Section 3 is devoted to the stability mathematical
analysis. In Section 4, we construct the NSFD numerical scheme. We include in this
section the study of some properties of this numerical scheme such as stability analysis.
In Section 5, the numerical simulation results using the constructed NSFD scheme are
shown, and the last section is devoted to the conclusions.

2. Mathematical Model of HIV Within-Host with Discrete Time Delay

We construct the mathematical model using a combination of virus facts, hypotheses,
and previous proposed mathematical models within-host [9,11,14,52–55]. Despite there
has been a growing number of studies related to viral dynamics within-host there are still
some aspects that are not well understood [8,9,18,56–58]. Moreover, mathematical models
include assumptions that make them more tractable to be able to extract useful information
and test different hypotheses [9,55,59,60]. We start noticing that it has been argued that at
least in vitro, most HIV-infected cells die before virus production begins [22,61,62]. Virus-
producing cells produce virions V at a rate of NδI , where N is the average number of
infectious virions released by an infected cell during its lifetime. In general, it is accepted
that most virions produced by infected cells are not infectious [63–65], and since these

2
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virions are not contributing to the infection of new cells, non-infectious virions are not
considered in this model. On the other hand, V virions that are infectious can be removed
by the immune system from the population of virus-free cells at intrinsic clearance rate
C, or they can infect target cells (CD4+ T) at a β rate, with T the concentration of target
cells, where Λ is the generation rate of uninfected CD4+ T cells and μ0 mortality rate of
uninfected cells. In the constructed mathematical model there are two classes of infected
cells. The first one is the class that includes the cells in the eclipse phase which are not
making the virus, IE. The second class include the cells that are actively producing the
virus, I. Cells in the eclipse phase transition to the class I at a rate, m. These cells die at
rate δIE . The cells in class I then die at rate δI . Cells in the eclipse phase die due to the
immune systems. Notice that the number of targets cells T are not virus-infected and vary
depending on the parameters Λ and the particular death rate for target cells μ0.

Based on the previous assumptions, we propose a model that describes the intracellular
dynamics of HIV and is given by the following system of ordinary differential equations,

dIE(t)
dt

= βT(t)V(t)− (m + δIE)IE(t)

dI(t)
dt

= mIE(t)− δI I(t) (1)

dV(t)
dt

= NδI I(t)− CV(t)− βT(t)V(t)

dT(t)
dt

= Λ − βT(t)V(t)− μ0T(t).

Notice, that the transmission term βT(t)V(t) also appears in the equation for virions
because of the assumption that it takes only one virion to infect a target cell [52,66]. The pos-
sibility of multiple infected cells is excluded [66]. It also should be noted that during the
eclipse phase (the time from viral entry to the active production of viral particles) the
infected cells are not producing virions [8,9,16,67,68]. This delay affects the maximum viral
load time and the probability that a viral infection will be established [9,68–70], and there-
fore should be explicitly modeled [9,68]. For this case, let Δ > 0 be the duration of the
eclipse phase and iE(t, τ) the density of cells at a time t that were infected τ units of time
before of t, i.e., are infected cells of age τ. Then iE(t, Δ) represents the proportion of cells in
the eclipse phase that go into the state of virus production, whereby

dI(t)
dt

= iE(t, Δ)− δI I(t). (2)

Since the mortality rate of eclipse cells δIE is constant, it is appropriate to assume
that iE(t, τ) satisfies the equation of McKendrick-Von Foerster age-structured population
dynamics model, see [71] that is

∂iE(t, τ)

∂t
+

∂iE(t, τ)

∂τ
= −δIE iE(t, τ), (3)

subject to the boundary condition iE(t, 0) = βT(t)V(t). Thus, the solution of the Equation (3)
is given by iE(t, τ) = βT(t − τ)V(t − τ)e−δIE τ . Therefore, Equation (2) is given by

dI(t)
dt

= βT(t − Δ)V(t − Δ)e−δIE Δ − δI I(t). (4)

The total number of cells in the eclipse phase is given by IE(t) =
∫ Δ

0 iE(t, τ)dτ, and by
integrating both sides of Equation (3) on the interval [0, Δ] we have

dIE(t)
dt

= βT(t)V(t)− βT(t − Δ)V(t − Δ)e−δIE Δ − δIE IE(t). (5)

3
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Thus the mathematical model given in (1) takes the form

dIE(t)
dt

= βT(t)V(t)− βT(t − Δ)V(t − Δ)e−δIE Δ − δIE IE(t)

dI(t)
dt

= βT(t − Δ)V(t − Δ)e−δIE Δ − δI I(t) (6)

dV(t)
dt

= NδI I(t)− CV(t)− βT(t)V(t)

dT(t)
dt

= Λ − βT(t)V(t)− μ0T(t),

where Δ is the duration of the eclipse phase, e−δIE Δ represents the probability that an infected
cell will survive a time Δ after viral entry. Notice that Δ is a fixed time delay, and then we
have a differential equation with a discrete time delay. For a better understanding of the
mathematical model, we can analyze it from the following flow chart shown in Figure 1 [54]:

Figure 1. Flow chart of model (6).

In addition, the system (6) satisfies the initial conditions given by

T(s) = ξ1(s), V(s) = ξ2(s), s ∈ [−Δ, 0], (7)

with ξ1(s), ξ2(s) positive continuous functions defined from the interval [−Δ, 0] to R2
+,

and equipped with the norm ‖ξ1,2‖ = sup
−Δ≤s≤0

|ξ1,2|.

3. Properties of the Solutions of the Mathematical Model

Using the fundamental theory of functional differential equations [72,73], it follows
that the solution of the system (6) with the initial condition (7) exists for all t ≤ 0 and
is unique.

Next, we will establish different dynamic properties of the solution of the mathematical
model described by the system of Equation (6). Since the system (6) represents a biological
model, it is important to determine the nature of the solution. Thus, if it is assumed that
all the parameters are non-negative as well as the initial conditions IE(s), I(s), V(s), T(s),
for s ∈ [−Δ, 0]. Therefore, we must guarantee the positivity and boundedness of the solu-
tion (IE(t), I(t), V(t), T(t)) of the system (6) at [0, ∞). The following results characterizes
these properties.

Theorem 1. If the initial conditions IE(0) = IE0 , I(0) = I0, V(0) = V0, T(0) = T0 of the
mathematical model (6) are positive, then the solutions (IE(t), I(t), V(t), T(t)) of the system (6)
are positive for all t ∈ [0, ∞).

4
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Proof. Let us start by noting that the solutions of the differential equations of IE(t) and
I(t) given in (6) can be written as

IE(t) = e−δIE t
[

IE0 +
∫ t

t−Δ
βT(s)V(s)eδIE sds

]
, (8)

I(t) = e−δI t
[

I0 +
∫ t

0
βT(s − Δ)V(s − Δ)e(δI−δIE )sds

]
. (9)

Therefore, the positivity of the solutions T(t) and V(t) for all t > 0, allows us to
guarantee the positivity of IE(t) and I(t) and thus of system (6). Thus, for T(t) given as
in (6) we have that T(t) > 0, for all t ≥ 0. Indeed, suppose that the positivity does not

holds, therefore there must be a t0 > 0 such that T(t0) = 0,
dT(t0)

dt
≤ 0 and T(t) > 0 for all

t ∈ [0, t0), because the initial condition T0 > 0. Thus, T(t) must be negative from some t0.
However, in the interval [0, t0) the function T(t) is positive, and at point t0 the derivative
at t0 is non-positive. Thus, from the fourth equation of model (6), it follows that for t0,

dT(t0)

dt
= Λ − βT(t0)V(t0)− μ0T(t0) = Λ > 0,

which contradicts that
dT(t0)

dt
≤ 0. Therefore, we must have T(t) > 0, for all t ≥ 0. Now,

we affirm that if V(t) is given by the system (6), it follows that

V(t) > 0, for all t ≥ 0. (10)

Indeed, suppose that there exists a t1 > 0 such that V(t1) = 0,
dV(t1)

dt
≤ 0 and

V(t) > 0 for all t ∈ [0, t1). Then it holds that I(t) > 0 for all t ∈ [0, t1). Otherwise, there

should be a t2 such that 0 < t2 < t1, I(t2) = 0,
dI(t2)

dt
≤ 0 and I(t) > 0 for all t ∈ [0, t2).

Thus, from the second equation of system (6), if follows that for t2 ∈ (Δ, t1) it holds

dI(t2)

dt
= βT(t2 − Δ)V(t2 − Δ)e−δIE Δ − δI I(t2) = βT(t2 − Δ)V(t2 − Δ)e−δIE Δ.

But, −Δ < t2 − Δ < t1 − Δ < t1. From the initial conditions given by (7) and the

hypothesis for V(0) > 0 it follows that V(t2 − Δ) > 0. This, contradicts that
dI(t2)

dt
≤ 0.

Thus, I(t) > 0, for all t ∈ [0, t1). Next, from third equation of system (6) for t1 > 0,

dV(t1)

dt
= NδI I(t1)− CV(t1)− βT(t1)V(t1) = NδI I(t1) > 0.

This is a contradiction since
dV(t1)

dt
≤ 0. Therefore, V(t) > 0 for all t ≥ 0.

Theorem 2. The solution (IE(t), I(t), V(t), T(t)) of system (6) is uniformly bounded in [0, ∞).

Proof. From system (6), one can see that

dIE(t)
dt

+
dI(t)

dt
+

dT(t)
dt

= Λ − δIE IE(t)− δI I(t)− μ0T(t) ≤ Λ − M(IE(t) + I(t) + T(t)),

where M = min
{

δIE , δI , μ0
}

. This implies that

IE(t) + I(t) + T(t) ≤ e−Mt
[

IE0 + I0 + T0 +
∫ t

0
ΛeMsds

]
= e−Mt[IE0 + I0 + T0

]
+

Λ
M

(
1 − e−Mt

)
.

5
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Thus,

lim sup
t→∞

(IE(t) + I(t) + T(t)) ≤ Λ
M

.

Accordingly, IE(t), I(t) and T(t) are uniformly boundedness. Even more, given ε > 0,
there exists t1 > 0 such that for all t ≥ t1,

I(t) ≤ Λ
M

+ ε.

Then, since
dV(t)

dt
≤ NδI I(t)− CV(t), and V(t) > 0 for all t > t1, one obtains that

dV(t)
dt

+ CV(t) ≤ NδI

(
Λ
M

+ ε

)
.

It follows that

V(t) ≤ V0e−Ct +
(

1 − e−Ct
)(NδI

C

)(
Λ
M

+ ε

)
.

As t −→ ∞, then V(t) ≤
(

NδI
C

)(
Λ
M

+ ε

)
. Since ε > 0, V(t) is uniformly bounded-

ness. This completes the proof.

3.1. Equilibrium Points

The model described by the system of differential Equation (6) has two stationary
states, the first one corresponds to the disease-free equilibrium and the second to the
endemic equilibrium, which we will denote P0 and P∗ respectively. To determine both

states we must calculate the critical points of the system (6) by setting
dIE(t)

dt
=

dI(t)
dt

=

dV(t)
dt

=
dT(t)

dt
= 0. Thus, we have

0 = βTV − βTVe−δIE Δ − δIE IE

0 = βTVe−δIE Δ − δI I (11)

0 = NδI I − CV − βTV

0 = Λ − βTV − μ0T.

The disease-free equilibrium point of a model are solutions of steady state in the
absence of infection. For this case, we must consider IE = 0, I = 0, V = 0, and T > 0,

in the system (11). Then P0 will be of the form P0 = (0, 0, 0, T0), where T0 =
Λ
μ0

. Therefore,

P0 =

(
0, 0, 0,

Λ
μ0

)
.

On the other hand, we can determine the basic reproductive number using the next
generation matrix methodology. With the terms of infection and viral production in the
mathematical model (11), matrices F and V are given by

F =

⎛⎜⎝0 0 βT0
(

1 − e−δIE Δ
)

0 0 βT0e−δIE Δ

0 0 0

⎞⎟⎠, V =

⎛⎝δIE 0 0
0 δI 0
0 NδI C + βT0

⎞⎠,

6
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where T0 =
Λ
μ0

, which it is the number of target cells before infection. Thus, the basic

reproductive number R0, is calculated as the spectral radius of the matrix given by

FV−1 =

⎛⎜⎝0 0 βT0
(

1 − e−δIE Δ
)

0 0 βT0e−δIE Δ

0 0 0

⎞⎟⎠
⎛⎜⎝

1
δIE

0 0

0 −δI 0
0 − N

C+βT0
1

C+βT0

⎞⎟⎠

=

⎛⎜⎜⎜⎝
0 −

NβT0
(

1−e
−δIE

Δ)
βT0+C

βT0
(

1−e
−δIE

Δ)
βT0+C

0 − NβT0e
−δIE

Δ

βT0+C
βT0e

−δIE
Δ

βT0+C
0 0 0

⎞⎟⎟⎟⎠.

Therefore, the basic reproductive number R0 is given by

R0 =
NβΛe−δIE Δ

Cμ0 + βΛ
. (12)

Now, the endemic equilibrium point of a model is its steady-state solutions in the
presence of infection or disease, for which it must be considered IE > 0, I > 0, V > 0 and
T > 0 in the system (11.) Then P∗ will be of the form P∗ = (I∗E, I∗, V∗, T∗). In this case,
from the system (11) the following equalities are obtained

I∗E =
βT∗V∗(1 − e−δIE Δ)

δIE

. (13)

I∗ =
βT∗V∗e−δIE Δ

δI
. (14)

I∗ =
V∗

NδI
(C + βT∗). (15)

T∗ =
Λ

βV∗ + μ0
. (16)

Replacing (16) in (14) and (15), is obtains

I∗ =
βΛV∗e−δIE Δ

δI(βV∗ + μ0)
=

V∗

NδI

(
C +

βΛ
βV∗ + μ0

)
. (17)

Then

V∗ =
NβΛe−δIE Δ − Cμ0 − βΛ

Cβ
=

(Cμ0 + βΛ)
NβΛe−δIE Δ

Cμ0 + βΛ
− 1

Cβ
. (18)

Thus, if R0 > 1, then NβΛe−δIE Δ − Cμ0 − βΛ > 0. Hence, we can write V∗ as

V∗ =
(Cμ0 + βΛ)(R0 − 1)

Cβ
. (19)

Next, we replace (18) in (17) to get

I∗ =
NβΛe−δIE Δ − Cμ0 − βΛ

δI βeδIE Δ(Ne−δIE Δ − 1)
=

(Cμ0 + βΛ)(R0 − 1)

δI βeδIE Δ(Ne−δIE Δ − 1)
. (20)

7
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Now, substituting (18) in (16) one gets

T∗ =
ΛC

(Cμ0 + βΛ)(R0 − 1) + Cμ0
. (21)

Finally, we replace (18) and (21) in (13) to obtain

I∗E =

(
NβΛe−δIE Δ − Cμ0 − βΛ

)(
eδIE Δ − 1

)
δI βeδIE Δ

(
Ne−δIE Δ − 1

) =
(Cμ0 + βΛ)(R0 − 1)

(
eδIE Δ − 1

)
δI βeδIE Δ

(
Ne−δIE Δ − 1

) (22)

Note that I∗E > 0, I∗ > 0, V∗ > 0 and T∗ > 0 if only if R0 =
NβΛe−δIE Δ

Cμ0 + βΛ
> 1. Thus,

Ne−δIE Δ >
Cμ0 + βΛ

βΛ
> 1.

3.2. Local Stability of the Equilibrium Points

Theorem 3. The disease-free equilibrium point P0 of the system (6) is locally asymptotically stable
if R0 < 1.

Proof. The eigenvalues of the Jacobian matrix of system (6) evaluated at point P0, are given
as the roots of polynomial

(−δI − λ)(−μ0 − λ)

[
λ2 +

(
δI + C +

βΛ
μ0

)
λ +

(
δIC +

δI βΛ
μ0

− βe−δIE ΔNδIΛ
μ0

)]
= 0.

Therefore, the first two eigenvalues of the Jacobian matrix evaluated at P0 are λ1 =
−δI < 0 and λ2 = −μ0 < 0.

Next, since R0 < 1 then the coefficients of equation

λ2 +

(
δI + C +

βΛ
μ0

)
λ +

δI
μ0

(Cμ0 + βΛ)(1 −R0) = 0, (23)

are positives. Thus, since there is no sign change between its terms, and by Descartes’ sign
rule it is concluded that Equation (23) does not have positive roots. Now, if λ is replaced
by −λ in (23) then

λ2 −
(

δI + C +
βΛ
μ0

)
λ +

δI
μ0

(Cμ0 + βΛ)(1 −R0) = 0. (24)

Thus, if R0 < 1 Equation (24) has two sign changes in its terms, and by Descartes’ sign
rule it is concluded that there are exactly two negative roots in Equation (23). Therefore,

P0 =

(
0, 0, 0,

Λ
μ0

)
is locally asymptotically stable if R0 < 1.

Theorem 4. The P∗ endemic point of the system (6) is locally asymptotically stable if R0 > 1.

8
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Proof. We note that R1 = Ne−δIE Δ − 1 > 0. Thus, the characteristic equation is given by

(−δIE − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−δI − λ
Ce−δIE Δ

R1

βΛR1e−δIE Δ

C
− μ0e−δIE Δ

NδI −C − C
R1

− λ μ0 − βΛR1

C

0 − C
R1

− βΛR1

C
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Therefore, the first eigenvalue of the Jacobian matrix will be λ1 = −δIE < 0, and the
other, are the roots of polynomial

λ3 +

(
δI + C +

C
R1

+
βΛR1

C

)
λ2 +

(
δI βΛR1

C
+ βΛR1 +

Cμ0

R1

)
λ + δI(Cμ0 + βΛ)(R0 − 1) = 0. (25)

If R0 > 1 all the coefficients of Equation (25) are positive, i.e., there is no sign change
between their terms, and by Descartes’s sign rule it is concluded that there are no positive
roots. Now if λ is replaced by −λ in (25) it gives us that

− λ3 +

(
δI + C +

C
R1

+
βΛR1

C

)
λ2 −

(
δI βΛR1

C
+ βΛR1 +

Cμ0

R1

)
λ + δI(Cμ0 + βΛ)(R0 − 1) = 0 (26)

Then, if R0 > 1 the polynomial (26) has three sign changes between its terms,
and by Descartes’s sign rule it is concluded that there are exactly three negative roots
of Equation (25). Thus, P∗ is locally asymptotically stable if R0 > 1.

3.3. Global Stability Analysis of the Mathematical Model

Since the variable IE does not appear in the other three equations, without loss of
generality we will only consider the following three-dimensional system,

dI(t)
dt

= βT(t − Δ)V(t − Δ)e−δIE Δ − δI I(t)

dV(t)
dt

= NδI I(t)− (C + βT(t))V(t) (27)

dT(t)
dt

= Λ − βT(t)V(t)− μ0T(t).

To analyze the global stability of the equilibrium points of the system (27), we use the
method of the Lyapunov’s functions, and we will use the Volterra function

G(x) = x − 1 − ln x (28)

for x > 0, which is no negative for any x > 0 and G(x) = 0 if and only if x = 1.

Theorem 5. If R0 < 1 then the disease-free equilibrium point Pf =
(

0, 0, Λ
μ0

)
of system (27) is

globally asymptotically stable.

Proof. We define the Lyapunov functional

V(t) = e−δIE ΔT0G
(

T(t)
T0

)
+

1
N

V(t) + I(t) + e−δIE Δ
∫ Δ

0
βT(t − θ)V(t − θ) dθ.

Now, calculating the time derivative of V(t) along the solution of model (27), one
gets that

9
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dV(t)
dt

=e−δIE Δ T(t)− T0

T(t)
dT(t)

dt
+

1
N

dV(t)
dt

+
dI(t)

dt
+ e−δIE Δ d

dt

∫ Δ

0
βT(t − θ)V(t − θ) dθ

=− μ0e−δIE Δ
(
T(t)− T0)2

T(t)
− e−δIE ΔβT(t)V(t) + e−δIE ΔβV(t)T0 + δI I(t)− C

N
V(t)− βT(t)V(t)

N

+ βT(t − Δ)V(t − Δ)e−δIE Δ − δI I(t)− βT(t − Δ)V(t − Δ)e−δIE Δ − δI I(t) + e−δIE ΔβT(t)V(t)

≤− μ0e−δIE Δ
(
T(t)− T0)2

T(t)
+

C
N
(R0 − 1).

Thus,
dV(t)

dt
< 0 when R0 < 1. Therefore, by Lyapunov–LaSalle Invariance Principle,

the infection-free equilibrium Ef is globally asymptotically stable.

4. Design of a NSFD Scheme for the Mathematical Model

The use of differential equations in the modeling of the transmission of infectious
diseases has represented a versatile tool to understand better the dynamics of a variety of
infectious diseases [7,59,60,74–76]. Mathematical models based on differential equations
have been useful to study how to reduce the burden of infectious diseases. The models
allow the determination of optimal controls and estimate the impact of a variety of virus on
the disease dynamics [67,75,77]. One advantage of mathematical models is that different
simulations can be performed, and this allows us to analyze different main driven factors
of epidemics under a variety of complex scenarios [8,11,59]. However, there are no general
formulas that allow the obtaining of precise analytical solutions for many differential
equation systems. These solutions exist only occasionally and are often difficult to find,
so good approximations are necessary that preserve the qualitative properties of said
solution, for which numerical methods have been used, see [24,25,31,48–50,78–83].

Discrete epidemic models generated by numerical methods contain additional param-
eters to those that already exist in differential equations, such as the time and space steps.
Variations in these additional parameters can generate solutions to the discrete equations
that do not correspond to any solution of the original differential equations, producing ficti-
tious bifurcations, artificial chaos, spurious solutions, and false stable states [24–26,45,83,84].
Therefore, we must choose numerical discrete schemes that guarantee the qualitative prop-
erties of the mathematical models. There are several methods that can be used to obtain
accurate solutions. For instance, the Richardson extrapolation on uniform and nonuniform
grids or NSFD schemes have been used for that end [45,85–90] .

Another, important aspect where a robust numerical method plays an important role is
when solving inverse problems to estimate the parameters of the model [48,51,56,57,91,92].
Thus, for mathematical models of a variety of virus is of paramount importance to have
a robust and efficient numerical method for solving the differential equations [25,49,51].
Usually, when a differential equation is solved numerically a certain tolerance is prescribed
and this has an impact in the success in estimating the parameters [48,49,93,94]. In this
paper, we deal with a mathematical model that is based on system of differential equations
with discrete time delay [17,32,60,72,95–97]. There are different numerical methods to
deal with this type of equations, and some are analogous to the ones used for ordinary
differential equations but with additional issues [50,98–102]. One particular numerical
method that we are interested in is by using NSFD schemes to guarantee some properties
of the continuous mathematical model. Some previous works using this methodology have
been developed for linear and nonlinear delay differential equations [103–107].

For the construction of a discrete numerical scheme that allows us to efficiently
approximate the solutions of the system (6), we use the methodology proposed by Ronald

10
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Mickens, see [24–27]. In that order of ideas, for the discrete approximation of the time
derivative of a function X(t) ∈ C1(R), we define the non-standard derivative as

dN X(t)
dt

=
X(t + h)− X(t)

ϕ(h)
+O(h), (29)

where ϕ(h) is a real positive valued function that satisfies ϕ(h) = h +O(h2), and N is to
denote the non-standard derivative.

Although there is no general algorithm for constructing an NSFD schema that ap-
proximates the solutions of a given system of differential equations, the following general
rules are often useful to correctly design these schemes.

Rule 1. The discrete derivatives in a numerical scheme must be of the same orders as the
continuous derivatives that appear in the differential equation.

Rule 2. Discrete derivatives may have non-trivial denominators.
Rule 3. Nonlinear terms that appear in differential equations must have non-local repre-

sentations.
Rule 4. The numerical solution must preserve all the special conditions that hold for the

solutions of the corresponding differential equations.
Rule 5. The scheme must not introduce unnecessary or false solutions, i.e., convergence to

false steady states.

Let us denote by In
E, In, Vn and Tn the approximations of IE(nh), I(nh), V(nh) and

T(nh), respectively, for n = 0, 1, 2..., and for h size step in time of the scheme. The value of
In+1
E for n = 0, 1, · · · , is calculated using Equation (8) and a quadrature formula. For this

case, we use

In+1
E = e−δIE Δ(n+1)h

[
In
E +

m1h
2

(
βTn+1Vn+1eδIE Δ(n+1)h + βTn+1−m1 Vn+1−m1 eδIE Δ(n+1−m1)h

)]
, (30)

with Δ = m1h.
Next, we make the following non-local approximations of the terms on the right side

of the system (27)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βT(t)V(t) → βTnVn

−βT(t − Δ)V(t − Δ)e−δIE Δ → −βTn−m1+1Vn−m1 e−δIE Δ

−δIE IE(t) → −δIE In+1
E

−δI I(t) → −δI In+1

NδI I(t) → NδI In+1

−(C + βT(t))V(t) → −(C + βTn)Vn+1

−βT(t)V(t) → −βTn+1Vn

−μ0T(t) → −μ0Tn+1

(31)

Then, we approximate the derivatives on the left side of the system (27) as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dN I(t)
dt

→ In+1 − In

ϕ(h)
dNV(t)

dt
→ Vn+1 − Vn

ϕ(h)
dNT(t)

dt
→ Tn+1 − Tn

ϕ(h)

(32)

11
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Consequently, the system (27) can be discretized as an implicit NSFD scheme given by

Tn+1 − Tn

ϕ(h)
= Λ − βTn+1Vn − μ0Tn+1,

In+1 − In

ϕ(h)
= βTn−m1+1Vn−m1 e−δIE Δ − δI In+1, (33)

Vn+1 − Vn

ϕ(h)
= NδI In+1 − CVn+1 − βTnVn+1.

And the explicit form is given by

Tn+1 =
ϕ(h)Λ + Tn

1 + ϕ(h)(βVn + μ0)
,

In+1 =
ϕ(h)βTn−m1+1Vn−m1 e−δIE Δ + In

1 + ϕ(h)δI
, (34)

Vn+1 =
ϕ(h)NδI In+1 + Vn

1 + ϕ(h)(C + βTn)
,

where m1 =
Δ
h

∈ N. The initial conditions of scheme (34) are given by

Tj = ξ
j
1, Vj = ξ

j
2, j = −m1, −m1 + 1, · · · , 0.

The positivity of scheme (34) is trivially satisfied, since for n > 0 it holds that Tn, In, Vn

are positive.

Theorem 6. Let (Tn, In, Vn) be a solution of system (34). Then is uniformly bounded for all
n > 0.

Proof. From the first equation of scheme (33), one gets that

Tn+1 − Tn

ϕ(h)
= Λ − βTn+1Vn − μ0Tn+1 ≤ Λ − μ0Tn+1.

When n → ∞ and since ϕ(h) = h + O(h2), then ϕ(h) coincide with 0 in the limit as

h → 0. This implies that lim sup
n→∞

Tn ≤ Λ
μ0

.

Next, let Wn = Tn−m1 + eδIE Δ In. From first and second equation of system (33),
one obtains

Wn+1 −Wn

ϕ
=

Tn−m1+1 − Tn−m1

ϕ(h)
+ eδIE Δ In+1 − In

ϕ(h)
= Λ − μ0Tn−m1+1 − δI e

δIE Δ In+1

≤Λ − dWn+1,

where d = min{μ0, δI}. Thus, lim sup
n→∞

Wn ≤ Λ
d

. Therefore, lim sup
n→∞

In ≤ Λe−δIE Δ

d
. Then,

give ε > 0 we can choose a M ∈ N such that In ≤ Λe−δIE Δ

d
+ ε for n ≥ M. Using the last

equation of (33) it is concluded that

Vn+1 − Vn

ϕ(h)
≤ NδI In+1 − CVn+1 ≤ NδI

(
Λe−δIE Δ

d
+ ε

)
− CVn+1

12
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for n ≥ M + 1. Then lim sup
n→∞

Vn ≤ NδI
C

(
Λe−δIE Δ

d
+ ε

)
, and as is for all ε > 0 it fol-

lows that lim sup
n→∞

Vn ≤ NδI
C

(
Λe−δIE Δ

d

)
. This completes the proof. Moreover, from

Equation (27) it follows that In
E is bounded.

4.1. Equilibrium Points of the NSFD Numerical Scheme

The equilibrium points of the scheme (34) are given by analyzing the behavior of
system when n approaches to infinity. Thus, after a few calculations we find that

I∗ =
ϕ(h)βT∗V∗e−δIE Δ + I∗

1 + ϕ(h)δI
(35)

V∗ =
ϕ(h)NδI I∗ + V∗

1 + ϕ(h)(C + βT∗)

T∗ =
ϕ(h)Λ + T∗

1 + ϕ(h)(βV∗ + μ0)
.

Note that the equations of the scheme (35) correspond to Equations (14)–(16). Thus,
the critical points of the discrete scheme will coincide in the limit h → 0, with those of the
continuous model.

4.2. Local Stability of the NSFD Numerical Scheme

For the study of the local stability of the critical points of the numerical scheme (34) it
is necessary to use the following lemma:

Lemma 1. The roots of the quadratic polynomial λ2 − a1λ + a2 = 0, satisfy |λi| < 1 for i = 1, 2
if and only if the following conditions hold:

i. 1 − a1 + a2 > 0,
ii. 1 + a1 + a2 > 0,
iii. a2 < 1.

Proof. See [7].

Theorem 7. The disease-free equilibrium point Pf =
(

0, 0, Λ
μ0

)
of the scheme (34) is locally

asymptotically stable if R0 < 1.

Proof. Calculating the eigenvalues of the Jacobian matrix of the system (34) at the disease-
free point, we obtain the following characteristic polynomial

(
1

1 + ϕ(h)μ0
− λ

)∣∣∣∣∣∣∣∣
1

1 + ϕ(h)δI
− λ

ϕ(h)βe−δIE ΔΛ
μ0(1 + ϕ(h)δI)

μ0hNδI
μ0 + μ0hC + hβΛ

μ0

μ0 + μ0hC + hβΛ
− λ

∣∣∣∣∣∣∣∣ = 0.

Thus, the first eigenvalue is

λ1 =
1

1 + ϕ(h)μ0
< 1.

The other two eigenvalues, are the roots of quadratic polynomial

λ2 −
(

1
p
+

μ0

q

)
λ +

μ0 − ϕ(h)2δI NβΛe−δIE Δ

μ0 pq
= 0, (36)

13
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where p = 1 + ϕ(h)δI > 0 and q = μ0 + μ0 ϕ(h)C + ϕ(h)βΛ. Next, let a1 =
1
p
+

μ0

q
and

a2 =
μ0 − ϕ(h)2δI NβΛe−δIE Δ

μ0 pq
. We have the following affirmations.

1. If 1 > R0, it follows that ϕ(h)2δI(Cμ0 + βΛ) > ϕ(h)2δI NβΛe−δIE Δ. Thus,

δI(μ0 + μ0hC + hβΛ) > μ0δI + ϕ(h)δI NβΛe−δIE Δ ⇐⇒
(1 + ϕ(h)δI)q > q + ϕ(h)μ0δI + ϕ(h)2δI NβΛe−δIE Δ ⇐⇒
pq + μ0 > q + ϕ(h)μ0δI + ϕ(h)2δI NβΛe−δIE Δ + μ0 ⇐⇒

pq + μ0 > q + ϕ(h)2δI NβΛe−δIE Δ + pμ0 ⇐⇒

1 −
(

1
p
+

μ0

q

)
+

μ0 − h2δI NβΛe−δIE Δ

pq
> 0

Therefore, one gets that 1 + a2 > a1.

2. Since a1 > 0, it is sufficient to prove that 1 + a2 > 0. By hypothesis 1 > R0, then

μ0 + q + ϕ(h)δIμ0 + ϕ(h)2δI(μ0C + βΛ) > ϕ(h)2δI(μ0C + βΛ) > ϕ(h)2δI NβΛe−δIE Δ.

Accordingly

μ0 + q + ϕ(h)δI(μ0 + μ0 ϕ(h)C + ϕ(h)βΛ) > ϕ(h)2δI NβΛe−δIE Δ ⇐⇒
μ0 + q + ϕ(h)δIq > ϕ(h)2δI NβΛe−δIE Δ ⇐⇒

μ0 + (1 + ϕ(h)δI)q > ϕ(h)2δI NβΛe−δIE Δ ⇐⇒

1 +
μ0 − ϕ(h)2δI NβΛe−δIE Δ

pq
> 0

3. Given that

μ0 − ϕ(h)2δI NβΛe−δIE Δ < μ0 + μ0 ϕ(h)C + ϕ(h)βΛ + ϕ(h)δIq,

then

μ0 − ϕ(h)2βe−δIE ΔΛNδI
pq

< 1,

that is a2 < 1.

Next, by virtue of Lemma 1 we have that the eigenvalues of the Jacobian matrix of the
system (35) evaluated at Pf satisfy |λi| < 1. for i = 1, 2. Then Pf is locally asymptotically
stable if R0 < 1.

4.3. Global Stability of the NSFD Numerical Scheme

Several authors have used discrete Lyapunov functions to study the global behav-
ior of numerical solutions generated by non-standard finite difference schemes (NSFD),
see [19,106–110]. For the study of the global stability of the critical points of the numerical
scheme (34) it is necessary to use the Lyapunov functions and Equation (28).

Theorem 8. The disease-free equilibrium point Pf =
(

0, 0, Λ
μ0

)
of the scheme (34) is globally

asymptotically stable if R0 ≤ 1.
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Proof. Let the following Lyapunov function be

Ln =

T0g
(

Tn

T0

)
+ eδIE Δ In + βT0

(
1
C
+ ϕ(h)

)
Vn

ϕ(h)
+

n−1

∑
i=n−m1

βTi+1Vi. (37)

Using the inequality ln z ≤ z − 1, the difference of Ln in (37) satisfies

Ln+1 −Ln ≤
(

Tn+1 − T0

Tn+1

)(
Λ − βTn+1Vn − μ0Tn+1

)
+ eδIE Δ

(
βTn−m1+1Vn−m1 e−δIE Δ − δI In+1

)
+

βT0

C

(
NδI In+1 − CVn+1 − βTnVn+1

)
+ βT0

(
Vn+1 − Vn

)
+ βTn+1Vn − βTn−m1+1Vn−m1

≤ −μ0
Tn+1 − T0

Tn+1 − eδIE ΔδI In+1(1 −R0).

It follows that Ln+1 −Ln ≤ 0 for all n ≤ 0 if R0 ≤ 1. This means that Ln is monotone
decreasing sequence and since Ln ≥ 0 for n ≥ 0 then there exists a limit, i.e., lim

n→∞
Ln ≥ 0.

Hence lim
n→∞

(
Ln+1 −Ln) = 0, which implies that lim

n→∞
Tn = T0, lim

n→∞
In = 0, and from (34)

lim
n→∞

Vn = 0. By the previous analysis, we conclude that Pf is globally asymptotically stable

for scheme (34).

5. Numerical Simulations Using the NSFD Scheme

In this section, we present some numerical solutions of the mathematical model of
HIV. To carry out the simulations we use the constructed NSFD numerical scheme (34).
We choose the parameter values based on existing experimental data and previous model
studies, see [54,106,111,112]. The values of these parameters are given in Tables 1 and 2.
For the first case we choose values such R0 < 1 and for the second we have the case
R0 > 1.

Table 1. Parameter values for the numerical simulations when R0 < 1.

Parameters Value

β 4.8 × 10−6 mm3day−1

C 3 mm3 day−1

Λ 2.3 day−1

δI 0.24 day−1

δIE 0.05 day−1

μ0 0.0046 day−1

Δ 0.4 day
N 500
V0 1 mm−3

T0 100 mm−3

IE0 0
I0 0
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Table 2. Parameter values for the numerical simulations when R0 > 1.

Parameters Value

β 4.8 × 10−6 mm3day−1

C 2.4 mm3 day−1

Λ 23 day−1

δI 0.2 day−1

δIE 0.05 day−1

μ0 0.0046 day−1

Δ 0.4 day
N 500
V0 1 mm−3

T0 100 mm−3

IE0 1
I0 1

For the numerical simulations we use a small step size, h = 0.001. For the discrete
derivatives given in system (33), we have many options for the denominator function
ϕ. We have chosen ϕ(h) = (1 − exp(−hp))/p, where p = max

{
A, Δ, μ0, δI , δIE

}
are

parameters of the model and included in the numerical scheme (33). This particular ϕ
usually provides better numerical results based on previous articles related to NSFD
schemes [113,114]. In addition, this option satisfies the asymptotic relation ϕ(h) = h +
O(h2), and Rule 1. We performed numerical simulations to show that the solutions obtained
by the proposed NSFD scheme and the well-known MATLAB routine dde23 agree. A great
advantage of the proposed NSFD numerical scheme (34) is that the computation time is
smaller. For the first case, the numerical solution using the NSFD scheme is obtained in
approximately 0.083992 s, while the dde23 routine spent 2.573003 s. For the second case,
the numerical solution using the NSFD scheme is obtained in approximately 0.176461 s,
while the routine dde23 spent 11.181812 s. The results obtained are shown in Figures 2 and
3 respectively. It can be seen that the numerical solution of the proposed NSFD numerical
scheme (34) and the one obtained by means of the routine dde23 agree.

Figure 2. Simulation NSFD versus dde23 when R0 < 1.
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Figure 3. Simulation NSFD versus dde23 when R0 > 1.

6. Conclusions

We proposed a mathematical model based on a set of delay differential equations that
describe intracellular HIV infection. The model considers three different subpopulations
of cells and the HIV virus. The mathematical model is formulated in such a way that
takes into account the time between viral entry into a target cell and the production of
new virions. Moreover, this time is included using a discrete time delay. We analyzed
the local stability of the infection-free and endemic equilibrium states. By using a suitable
Lyapunov functional and the LaSalle invariant principle, it is proved that if the basic re-
production ratio is less than unity, the infection-free equilibrium is globally asymptotically
stable. In addition, we designed a non-standard difference scheme that preserves some
properties of the continuous model. We prove that the constructed NSFD scheme has the
same equilibrium points of the continuous model, and the disease-free equilibrium holds
the same stability properties. As required by the constraints of the real phenomena, the
solutions given by the numerical scheme satisfy positivity and boundedness. The numer-
ical simulations corroborate that the developed NSFD numerical scheme preserves the
properties of the continuous model and presents a robust behavior when working with a
variety of parameter values.
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method of steps, we construct asymptotics of solutions. By these asymptotics, we construct a special
finite-dimensional map. This map helps us to determine the structure of solutions. We study the
dependence of solutions on the coupling parameter and show that the dynamics of the system is
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1. Introduction

Consider equation
u̇(t) = −νu(t) + λF(u(t − T)), (1)

where u is a scalar function, parameters ν, T, and λ are positive, F(u) is some nonlinear compactly
supported function. This equation is a mathematical model in problems of radiophysics and biology.
It simulates a generator with nonlinear delayed feedback with a first-order RC low-pass filter
(see, for example, [1–3]). Such generators are used in the manufacture of sonars, noise radars,
and D-amplifiers [2]. Equation (1) models a biological process where the single state variable u
decays with a rate ν proportional to u in the present and is produced with a rate dependent on the
value of u some time in the past [4]. Such processes arise in a variety of problems in various areas
in biology (see Table 1 and references in [4]). In addition, the dynamics of Equation (1) is of general
scientific interest [5–13]. The authors find complicated periodic solutions [5–7] and chaos [8] in this
model in the case of “step-like” nonlinearity. In Ref. [9], authors study properties of solutions and
find a global attractor of model (1) with delayed positive feedback and in the paper [10] existence
and stability of relaxation cycle of the multidimensional system (1) in the case of large λ is studied.
In Refs. [11–13], the authors study properties of solutions of normalized Equation (1) (parameters
ν = λ = 1) in the case of sufficiently large T (T 
 1). They deal with equation

εu̇(t) = −u(t) + f (u(t − 1)), (2)

where ε = 1/T and study how the dynamics of this equation when ε is small (when T is large in (1)) is
related with dynamics of this equation in the case ε = 0.

In this paper, we deal with a system of two coupled normalized (ν = 1) equations of the form (1){
u̇1 + u1 = λF(u1(t − T)) + γ(u2 − u1),
u̇2 + u2 = λF(u2(t − T)) + γ(u1 − u2).

(3)
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Here, delay time T is a positive constant, a nonlinear sufficiently smooth function F(u) is
compactly supported:

F(u) =

{
f (u), |u| ≤ p,

0, |u| > p,

where p is some positive constant.
We assume that function f (u) on the segment u ∈ [−p, p] satisfies the conditions:

f (p) = f (−p) = 0;
f (u) �= 0 except for a finite number of points;
if f (u∗) = 0, then f ′(u∗) �= 0 or f ′′(u∗) �= 0.

(4)

and that coefficient λ is large enough: λ 
 1.
This model simulates two coupled D-amplifiers or two noise-radars with a large amount of

feedback. If coupling parameter γ is asymptotically small at λ → +∞, then exponentially orbitally
stable relaxation cycles coexist in model (3) (see [14,15]). Now, we are interested in nonlocal dynamics
of this model in the case γ is some nonzero constant and we study how the dynamic properties of the
system differ in the cases of positive and negative coupling.

The paper is organized as follows. In Section 2, we introduce some set of initial conditions and
integrating by steps system (3) under some non-degeneracy conditions we construct solutions with
initial conditions from the chosen set. By formulas of solution, we obtain the operator of translation
along the trajectories Π and map describing dynamics of this operator. Using this map, we clarify
asymptotics of solutions of system (3) in the case γ > 0 in Section 3 and in the case γ < 0 in Section 4.
In Section 5, as an example, we consider a narrower class of functions f and prove that asymptotic
formulas of solution given in Sections 2–4 are valid for a wide set of initial conditions (for all initial
conditions from this set, non-degeneracy conditions hold) and prove the existence of relaxation cycles
in system (3). We show that the dynamics of system (3) is significantly different in the case of positive
and negative coupling in Section 6 and, in Section 7, we draw conclusions.

2. Constructing the Asymptotics of Solutions

Let’s find relaxation solutions of (3) and study the dynamics of this system. For this
purpose, we consider initial conditions (u1(s), u2(s))T ∈ C[−T,0](R

2) outside of the strip
|uj(s)| < p (s ∈ [−T, 0], j = 1, 2) and construct asymptotics of all solutions of system (3) for this set of
initial conditions.

Due to the choice of initial conditions on the segment t ∈ [0, T], system (3) has the form{
u̇1 + u1 = γ(u2 − u1),
u̇2 + u2 = γ(u1 − u2).

(5)

Moreover, system (3) has form (5) until at least one of the components of the solution comes into
the strip |uj| < p. Thus, for t ≥ 0, until at least one of the components of the solution of system (3) for
the first time comes into the strip |uj| < p, a solution of system (3) has form

u1(t) = 1
2 (u1(0) + u2(0))e−t + 1

2 (u1(0)− u2(0))e−(1+2γ)t,
u2(t) = 1

2 (u1(0) + u2(0))e−t − 1
2 (u1(0)− u2(0))e−(1+2γ)t.

(6)

It follows from (6) that, in the case γ < − 1
2 , there exist solutions of system (3) tending to infinity,

and, in the case γ = − 1
2 , there exist solutions of system (3) tending to a constant at t → +∞. We are

interested in relaxation solutions, which is why we assume further that γ > − 1
2 .
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If γ > − 1
2 , then at least one component of a solution eventually comes into the strip |uj| < p

(j = 1 or 2). Let t1 ≥ 0 be the first time moment such that some component of the solution (we denote
it as ui) gets inside the strip |ui(t)| ≤ p:

|u1(s + t1)| ≥ p, |u2(s + t1)| ≥ p for s ∈ [−T, 0), (7)

|ui(t1)| = p and |ui(t)| < p if t1 < t < t1 + δ (where δ > 0 is some constant and
i equals 1 or 2). Then,

ui(t1) = kp, u3−i(t1) = xp, (8)

where k denotes the sign of ui(t1) (parameter k takes values −1 or 1) and x is some value such
that |x| ≥ 1. We denote the set of pairs of initial functions (u1(s), u2(s))T ∈ C[−T,0](R

2) satisfying
conditions (7) and (8) as IC(i, k, x).

We will integrate system (3) using a method of steps. It follows from (7) that, on the first step
(time segment t ∈ [t1, t1 + T]), system (3) has form (5) and the solution has a form

ui(t) = (k+x)p
2 e−(t−t1) + (k−x)p

2 e−(1+2γ)(t−t1),
u3−i(t) = (k+x)p

2 e−(t−t1) + (x−k)p
2 e−(1+2γ)(t−t1).

(9)

Since function ui is inside the strip |ui| < p for t ∈ [t1, t1 + δ], then, for t ∈ [t1 + T, t1 + 2T],
we have that F(ui(t − T)) is not identically equal to 0. In addition, F(u3−i(t − T)) may be identically
equal to 0 or not (it depends on value of x). Then, on the second step (t ∈ [t1 + T, t1 + 2T]), we consider
system (3) as an inhomogeneous system of ordinary differential equations (here functions F(ui(t − T))
and F(u3−i(t − T)) are known from the previous step and we consider them as inhomogeneity). Thus,
the following formula for solution of system (3) holds:

ui(t) =
(k+x)p

2 e−(t−t1) + (k−x)p
2 e−(1+2γ)(t−t1) + λ

2 A(k, x, t, t1),
u3−i(t) =

(k+x)p
2 e−(t−t1) + (x−k)p

2 e−(1+2γ)(t−t1) + λ
2 B(k, x, t, t1),

(10)

where

A(k, x, t, t1) =
t∫

T+t1

(
es−t + e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (k−x)p
2 e(1+2γ)(t1+T−s)

)
ds

+
t∫

T+t1

(
es−t − e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (x−k)p
2 e(1+2γ)(t1+T−s)

)
ds,

B(k, x, t, t1) =
t∫

T+t1

(
es−t − e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (k−x)p
2 e(1+2γ)(t1+T−s)

)
ds

+
t∫

T+t1

(
es−t + e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (x−k)p
2 e(1+2γ)(t1+T−s)

)
ds.

Let’s introduce the following conditions on the functions A and B:

Assumption 1. Number of points t∗ ∈ [t1 + T, t1 + 2T] for which A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0) is

finite. If A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0), then there exists j ∈ N such that
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t∗

�= 0

(
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t∗

�= 0, respectively).

Assumption 2. Inequality A(k, x, t1 + 2T, t1)B(k, x, t1 + 2T, t1) �= 0 holds.
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Under Assumption 2, we obtain that

ui(t1 + 2T) = λ
2

(
A(k, x, t1 + 2T, t1) + o(1)

)
,

u3−i(t1 + 2T) = λ
2

(
B(k, x, t1 + 2T, t1) + o(1)

) (11)

at λ → +∞ and that both functions ui(t) and u3−i(t) at the point t = t1 + 2T are outside of the strip
|uj| < p.

Lemma 1. If Assumptions 1 and 2 hold, then on the segment t ∈ [t1 + 2T, t1 + 3T] functions ui(t) and
u3−i(t) have the form

ui(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

+ λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u3−i(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

− λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

(12)

Proof. Let t ∈ [t1 + 2T, t1 + 3T]. On this segment, we consider system (3) as a system of
inhomogeneous linear ordinary differential equations (on this time segment we consider known
functions λF(ui(t − T)) and λF(u3−i(t − T)) as inhomogeneity). Therefore, a solution of this
system on the time segment t ∈ [t1 + 2T, t1 + 3T] has the form of a sum of particular integral (PI)
and complementary function (CF, solution of linear part of system (3)–system (5)) with constants
determined from the initial conditions (11):

ui(t) = uiCF (t) + uiPI (t),
u3−i(t) = u(3−i)CF

(t) + u(3−i)PI
(t).

Let’s find asymptotics of particular integral of this system at λ → +∞. A particular integral of
the system (3) on the time segment t ∈ [t1 + 2T, t1 + 3T] has the form

uiPI (t) =
λ
2

t∫
t1+2T

(es−t + e(1+2γ)(s−t))F(ui(s − T)) + (es−t − e(1+2γ)(s−t))F(u3−i(s − T))ds,

u(3−i)PI
(t) = λ

2

t∫
t1+2T

(es−t − e(1+2γ)(s−t))F(ui(s − T)) + (es−t + e(1+2γ)(s−t))F(u3−i(s − T))ds.
(13)

Suppose a particular integral (13) is non-zero. This integral on some segment is non-zero only
if functions F(ui(s − T)) or F(u3−i(s − T)) are non-zero on this segment. Function F(ui(t − T))
(F(u3−i(t − T))) is non-zero only if |ui(t − T)| < p (|u3−i(t − T)| < p). For sufficiently large
values of λ this condition holds only if A(k, x, t − T, t1) (B(k, x, t − T, t1) respectively) is in the
neighborhood of zero. Function A(k, x, ·, t1) (B(k, x, ·, t1)) is continuous; consequently, there exists
point t∗ ∈ [t1 + T, t1 + 2T] such that A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0, respectively).

Consider the point t∗ ∈ [t1 + T, t1 + 2T] such that A(k, x, t∗, t1) = 0. It follows from Assumption 1

that there exist j ∈ N such that
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t∗

�= 0. Let q be the minimum from these numbers j.

Consequently, it follows from (10) that, in the neighborhood of t∗, we have

ui(t − T) =
(k + x)p

2
e−(t−T−t1) +

(k − x)p
2

e−(1+2γ)(t−T−t1)

+
λ

2

(∂q A(k, x, t∗, t1)

∂tq + o(1)
) (t − T − t∗)q

q!
. (14)
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Let’s estimate “time of living” Δt∗ of function ui(t − T) in the strip |ui| < p in the neighborhood of
the point t − T = t∗ (“time of living” means here length of the maximal interval of values t such that t∗

belongs to this segment and inequality |ui(t)| < p is true for all points t from this segment). From (14),

under the condition that λ is sufficiently large, we get that Δt∗ ≤ M1λ
− 1

q , where M1 = M1(k, x, γ) is
some positive value. From Assumption 1, we know that number of points t∗ such that A(k, x, t∗, t1) = 0
is finite, which is why there exists Q = qmax—maximum from values q for all points t∗. Then, on
the whole segment t − T ∈ [t1 + T, t1 + 2T] “time of living” Δttotal of function ui(t − T) in the strip

|ui| < p has estimate Δttotal ≤ M2λ
− 1

Q , where M2 = M2(k, x, γ) is some positive value. Similarly,
for function u3−i(t − T), we have estimate Δttotal ≤ M3λ− 1

P , where M3 and P are some positive values.
Function F is bounded, which is why, for a particular integral (13), we have the following estimate:

|uiPI (t)| ≤ Mλ
max{P,Q}−1

max{P,Q} , |u(3−i)PI
(t)| ≤ Mλ

max{P,Q}−1
max{P,Q} ,

where M is some positive value, t ∈ [t1 + 2T, t1 + 3T].
A solution of linear part of system (3) satisfying initial conditions (11) on this segment has form

uiCF (t) =
λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

+ λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u(3−i)CF
(t) = λ

4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

− λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

Thus, a complementary function gives us the leading term of asymptotics of solution of system (3)
on the segment t ∈ [t1 + 2T, t1 + 3T] and thus a solution on this segment has form (12).

Corollary 1. The leading term of asymptotics of solution of system (3) coincides with solution of system (5)
with initial conditions (11) on the segment t ∈ [t1 + 2T, t1 + 3T].

Let’s study asymptotics of solutions of system (3) for values t > t1 + 3T. While both components
of solution are outside of the strip |uj| < p (j = 1, 2), system (3) has form (5) and solution has form (12).
If some component of solution comes to the strip |uj| < p at the point t = t0 > t1 + 2T, then on
the next step t ∈ [t0 + T, t0 + 2T] nonlinearity F is non-zero and the leading term of asymptotics of
solution may change. Whether it changes or not is determined by the values of the functions

G±(t) = (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1))

±(A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1))e−2γ(t−t1−2T)

in the neighborhood of the point t0.
Note that, in terms of functions G+ and G− on the segment t ∈ [t1 + 2T, t0], we have the following

representation of functions ui and u3−i:

ui(t) =
λ

4

(
G+(t) + o(1)

)
e−(t−t1−2T), (15)

u3−i(t) =
λ

4

(
G−(t) + o(1)

)
e−(t−t1−2T). (16)

There exists two principally different cases when function ui(t) (or u3−i(t)) comes into the strip
|uj| < p at the point t = t0 > t1 + 2T:
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1. The second multiplier in Formula (15) or Formula (16) at some point from an asymptotically small
at λ → +∞ neighborhood of the point t = t0 is equal to zero.

2. The second multiplier in Formulas (15) and (16) in some (independent from λ) neighborhood of
the point t = t0 is non-zero and the third multiplier is asymptotically small on λ at λ → +∞ in
the neighborhood of the point t = t0.

Note that, for some functions F and values of parameters k, x, and γ, Case 1 does not take place.
Suppose we have function F and values of parameters k, x, and γ such that this Case occurs. Then, we
have the following Lemma.

Lemma 2. Suppose some component of solution comes into the strip |uj| < p at the point t = t0 > t1 + 2T
and Formula (12) is valid for the leading term of asymptotics of solution on the segment t ∈ [t1 + 2T, t0]. If there
exists a point from an asymptotically small at λ → +∞ neighborhood of the point t = t0 such that the second
multiplier in (15) or (16) is equal to zero, then asymptotics of solution on the segment t ∈ [t0 + T, t0 + 2T] has
form (12).

Proof. First, note that, if the second multiplier in (15) or (16) is equal to zero at some point from the
small neighborhood of the point t = t0, then there exists value t∗ such that |t∗ − t0| = o(1) at λ → +∞
and G+(t∗)G−(t∗) = 0.

Each equation G+(t) = 0 and G−(t) = 0 has at most one root and, if one equation has a root,
then another equation has no roots. This root does not depend on λ, and it follows from Assumption 2
that if G+(t∗) = 0 (G−(t∗) = 0), then G′

+(t∗) �= 0 (G′
−(t∗) �= 0, respectively).

Assume without loss of generality that function ui comes into the strip |ui| < p at the point t = t0

and G+(t∗) = 0. Acting like in the proof of Lemma 1, we obtain that “time of living” Δt∗ of function
ui(t) in the strip |ui| < p in the neighborhood of the point t = t∗ has estimate Δt∗ ≤ constλ−1. This is
why a particular integral of the system (3) on the segment t ∈ [t0 + T, t0 + 2T] has estimate

|uiPI (t)| ≤ const1, |u(3−i)PI
(t)| ≤ const2,

and a complementary function has estimate

|uiCF (t)| ≥ const3λ, |u(3−i)CF
(t)| ≥ const4λ,

where const3 > 0 and const4 > 0.
Thus, on the segment t ∈ [t0 + T, t0 + 2T], Formula (12) is valid.

For the further reasoning, we need a notation of the time moment of leaving the strip |uj| < p
in Case 1 (if this Case occurs). We denote it as tleave. It follows from Lemma 2 that tleave < t∗ + T.
If Case 1 does not take place, then we define tleave = t1 + 2T. Thus, there exists a constant Mt.l. > 0
independent on λ such that tleave < Mt.l.

Lemma 2 implies the following statement.

Corollary 2. For all t > tleave, both functions ui(t) and u3−i(t) are outside of the strip |uj| < p until
Case 2 occurs.

Let’s study Case 2 in more detail.
First, consider the case γ > 0. If non-degeneracy condition

A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) �= 0 (17)

holds, then there exist positive constants cmin, cMax, such that

0 < cmin < |G±(t) + o(1)| < cMax
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in some independent on λ neighborhood of the point t = t0. Therefore, |λe−(t0−t1−2T)| < M4 at
λ → +∞, where M4 is some positive constant. This is why

t0 − t1 = (1 + o(1)) ln λ (18)

at λ → +∞. In addition, in the neighborhood of the point t = t0, solution of system (3) has form

ui(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T),

u3−i(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T).

(19)

Consider the case − 1
2 < γ < 0. If non-degeneracy condition

A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) �= 0 (20)

holds, then, for some positive constants dmin and dMax in some independent on λ neighborhood of the
point t = t0, we have

0 < dmin < |(G±(t) + o(1))e2γ(t−t1−2T)| < dMax.

Therefore, we obtain that |λe−(1+2γ)(t0−t1−2T)| < M5 at λ → +∞, where M5 is some
positive constant. Consequently,

t0 − t1 = ((1 + 2γ)−1 + o(1)) ln λ (21)

at λ → +∞ and in the neighborhood of the point t = t0 solution of system (3) has form

ui(t) = λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u3−i(t) = − λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

(22)

From Formulas (18) and (21), we get that t0 − tleave > T. In addition, it follows from
Formulas (19) and (22) that if |uj(t0)| = p, then there exists δ > 0 such that |uj(t)| < p for all
t ∈ (t0, t0 + δ). Thus, there exists t2 (it is equal to t0 from the Case 2), such that

t2 − t1 =

{
(1 + o(1)) ln λ, γ > 0,

((1 + 2γ)−1 + o(1)) ln λ, − 1
2 < γ < 0,

(23)

|u1(s + t2)| > p, |u2(s + t2)| > p for all s ∈ [−T, 0), (24)

and
uī(t2) = k̄p, u3−ī(t2) = x̄p (25)

at λ → +∞.
It follows from Lemmas 1 and 2, Corollaries 1 and 2 and from the reasoning given above that the

next statement is true.

Corollary 3. On the time segment t ∈ [t1 + 2T, t2], a solution of system (3) has form (12).

It follows from Formulas (24) and (25) that we obtain an operator of translation along the
trajectories that map our set of initial conditions IC(i, k, x) to a set IC(ī, k̄, x̄). Thus, at the point
t2, we return to the initial situation with replacement k, x, i, and t1 by k̄, x̄, ī, and t2. If we do the
same steps as in this section and in all the next iterations, Assumptions 1 and 2 and non-degeneracy
condition (17) in the case γ > 0 (non-degeneracy condition (20) in the case − 1

2 < γ < 0, respectively)
hold (with new values k = kn, x = xn, i = in and replacing t1 with tn (n = 2, 3, . . .)), then, from an
operator of translation along the trajectories, we obtain a map on in, kn, and xn. This map determines
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dynamics of the system (3) because on the segments t ∈ [tn, tn+1] solution satisfies Formulas (9), (10)
amd (12) with i = in, k = kn, x = xn, t1 = tn.

In the next two sections, we construct an exact form of maps on i = in, k = kn, and x = xn in the
case γ > 0 (see Section 3) and in the case − 1

2 < γ < 0 (see Section 4) and using dynamical properties
of these maps clarify asymptotics of solution on the intervals t ∈ [tn, tn+1] (n = 2, 3, . . .).

3. Dynamics in the Case of the Positive Coupling

In this section, we construct a map on kn, xn, and in and make conclusions on dynamics of
system (3) in the case of positive coupling (γ > 0).

Define C(n) and D(n) as

C(n) = A(kn, xn, 2T + tn, tn) + B(kn, xn, 2T + tn, tn),
D(n) = A(kn, xn, 2T + tn, tn)− B(kn, xn, 2T + tn, tn),

where n ∈ N. Suppose that
C(n) �= 0, (26)

((26) is condition (17) with k = kn, x = xn, t1 = tn) and Assumptions 1 and 2 hold for values kn, xn

and tn for all n ∈ N. Then, acting like in Section 2, we get that in the case of positive coupling values
ui(tn+1) and u3−i(tn+1) have form

ui(tn+1) =
λ
4 (C(n) + o(1))e−(tn+1−tn−2T),

u3−i(tn+1) =
λ
4 (C(n) + o(1))e−(tn+1−tn−2T).

Thus, we obtain that, in the case γ > 0, values tn (n = 1, 2, . . .) satisfy

tn+1 − tn = (1 + o(1)) ln λ (27)

at λ → +∞.
From (12) and (27), we get that the mapping on kn, xn, and in has form

kn+1 = sign(C(n)),

in+1 =

{
in, sign(C(n)D(n)) = −1,

3 − in, sign(C(n)D(n)) = 1,
xn+1 = kn+1 + O(λ−2γ)

(28)

at λ → +∞.
It follows from (28) that we have kn − xn = o(1) for all n = 2, 3, . . . under the condition that

Assumptions 1 and 2 and inequality (26) are fulfilled. Thus, starting from the second iteration
Assumption 1 should be satisfied for parameters k = kn, x = kn + o(1), and t1 = tn. Let’s formulate
this assumption for these values of parameters k, x, and t1. Functions A(kn, kn + o(1), t, tn) and
B(kn, kn + o(1), t, tn) have form

A(kn, kn + o(1), t, tn) = B(kn, kn + o(1), t, tn) + o(1) = 2
t∫

T+tn

es−tF
(
kn petn+T−s) ds + o(1).

In Assumption 1 value t ∈ [tn + T, tn + 2T], so, for each n value, t̃ = t − tn is in the segment
[T, 2T]. Since

t∫
T+tn

es−tF
(

kn petn+T−s
)

ds =
t̃∫

T

es−t̃F
(

kn peT−s
)

ds,
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then Assumption 1 for any n = 2, 3, . . . is the same (only kn may change, but it takes two values only).
Thus, if the following assumption holds, then Assumption 1 holds for all n = 2, 3, . . .

Assumption 3. Number of points t∗ ∈ [T, 2T] such that h(k, t∗) = 0 is finite. If h(k, t∗) = 0, then there

exists j ∈ N such that
∂jh(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

is non-zero. Here, k = 1 or −1 and

h(k, t̃) =
t̃∫

T

es−t̃F
(

kpeT−s
)

ds.

Under Assumption 3, the asymptotics of the solution has form

uin(t) = kn pe−(t−tn) + o(1),
u3−in(t) = kn pe−(t−tn) + o(1)

(29)

on the time segments t ∈ [tn, tn + T], where n = 2, 3, . . . ((29) is Formula (9) with i = in, k = kn,
x = xn = kn + o(1), and t1 = tn). On the segments t ∈ [tn + T, tn + 2T], the main terms of asymptotics
of solution is given by the formula

uin(t) = λ
(
h(kn, t − tn) + o(1)

)
,

u3−in(t) = λ
(
h(kn, t − tn) + o(1)

) (30)

((30) is Formula (10) with i = in, k = kn, x = xn = kn + o(1), and t1 = tn, where functions A and B are
rewritten in terms of function h).

We assume that the following non-degeneracy condition holds:

h(1, 2T)h(−1, 2T) �= 0 (31)

(the fulfillment of this inequality guarantees that the Assumption 2 and (26) are satisfied for all
n = 2, 3, . . .).

Then, on the segments, a t ∈ [tn + 2T, tn+1] solution satisfies equalities

uin(t) = λ
(

h(kn, 2T) + o(1)
)

e−(t−tn−2T),

u3−in(t) = λ
(

h(kn, 2T) + o(1)
)

e−(t−tn−2T).
(32)

at λ → +∞ ((32) is Formula (12) with i = in, k = kn, x = xn = kn + o(1), and t1 = tn, where functions
A and B are rewritten in terms of function h).

Thus, we have the following theorem:

Theorem 1. Suppose γ > 0 and for values of k1 and x1 Assumptions 1, 2, and inequality (17) hold. Suppose
Assumption 3 and inequality (31) hold. Then, for any sufficiently large λ > 0, there exists t2 = t2(k1, x1) > 0
such that for all t > t2 solution of system (3) satisfies Formulas (29), (30), and (32).

In Figure 1, an example of a solution of system (3) in the case of γ > 0 is shown.
Since F is smooth and xn+1 − kn+1 = O(λ−2γ) at λ → +∞, then, in the case γ > 1

2 , we have the
following statement.
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Figure 1. Example of solution. Values of parameters: T = 1, γ = 0.1, p = 1, λ = 10,000.
Black line—u1(t), orange dashed line—u2(t).

Corollary 4. Suppose γ > 1
2 and for values k1 and x1 Assumptions 1 and 2 hold and inequality (17) is true.

Suppose Assumption 3 and inequality (31) are true. Then, for any sufficiently large λ > 0, there exists
t2(k1, x1) > 0 such that for all t > t2 inequality |u1(t)− u2(t)| = o(1) is true.

4. Dynamics in the Case of Negative Coupling

In this section, we assume that − 1
2 < γ < 0. We construct map on kn, xn, and in for these values

of γ and make conclusions about dynamics of system (3).
Suppose inequality

D(n) �= 0 (33)

and Assumptions 1 and 2 for values kn, xn, and tn hold for all n ∈ N. Then, like in Section 2, we obtain
that, in the case − 1

2 < γ < 0, values ui(tn+1) and u3−i(tn+1) have the form

ui(tn+1) =
λ
4 (D(n) + o(1))e−(1+2γ)(tn+1−tn−2T),

u3−i(tn+1) =
λ
4 (−D(n) + o(1))e−(1+2γ)(tn+1−tn−2T).

Thus, we obtain that, in the case of negative coupling,

tn+1 − tn =

(
1

1 + 2γ
+ o(1)

)
ln λ (34)

at λ → +∞. It follows from (12) and (34) that the mapping on kn, xn, and in has form

kn+1 =

{
sign(D(n)), sign(C(n)D(n)) = −1,

− sign(D(n)), sign(C(n)D(n)) = 1,

in+1 =

{
in, sign(C(n)D(n)) = −1,

3 − in, sign(C(n)D(n)) = 1,

xn+1 = −kn+1 + O
(

λ
2γ

1+2γ

)
,

(35)

at λ → +∞.
Thus, under Assumptions 1, 2 and (33) on the n-th (where n ≥ 2) iteration of mapping, we have

kn + xn = o(1) at λ → +∞. Thus, starting from the second iteration, Assumption 1 should be satisfied
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for k = kn, x = −kn + o(1), and t1 = tn. Let’s formulate this assumption for these values of parameters.
Functions A(kn, −kn + o(1), t, tn) and B(kn, −kn + o(1), t, tn) have the form

A(kn, −kn + o(1), t, tn) =
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds + o(1),

B(kn, −kn + o(1), t, tn) =
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds + o(1).

Value t in Assumption 1 on the n-th iteration of steps described in Section 2 is in the segment
[tn + T, tn + 2T]; therefore, for each step value, t̃ = t − tn is in the segment [T, 2T]. Note that

t∫
T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds

=
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(

kn pe(1+2γ)(T−s)
)

ds +
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(
−kn pe(1+2γ)(T−s)

)
ds

and

t∫
T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds

=
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(

kn pe(1+2γ)(T−s)
)

ds +
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(
−kn pe(1+2γ)(T−s)

)
ds.

Thus, for each n = 2, 3, . . ., Assumption 1 is the same (only kn may change). Thus, if the following
assumption holds, then Assumption 1 holds for all n = 2, 3, . . ..

Assumption 4. Number of points t∗ ∈ [T, 2T] such that g1(k, t∗) = 0 (g2(k, t∗) = 0) is finite. If g1(k, t∗) =

0 (g2(k, t∗) = 0), then there exists j ∈ N such that
∂jg1(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

(
∂jg2(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

, respectively) is non-zero.

Here, k = 1 or k = −1 and

g1(k, t̃) =
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(

kpe(1+2γ)(T−s)
)

ds

+
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(
−kpe(1+2γ)(T−s)

)
ds,

g2(k, t̃) =
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(

kpe(1+2γ)(T−s)
)

ds

+
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(
−kpe(1+2γ)(T−s)

)
ds.
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Thus, under Assumption 4, the asymptotics of the solution has form

uin(t) = kn pe−(1+2γ)(t−tn) + o(1),
u3−in(t) = −kn pe−(1+2γ)(t−tn) + o(1)

(36)

on the segments t ∈ [tn, tn + T] ((36) is Formula (9) with i = in, k = kn, x = xn = −kn + o(1),
and t1 = tn). On the segments, the t ∈ [tn + T, tn + 2T] solution satisfies equalities

uin(t) =
λ
2

(
g1(kn, t − tn) + o(1)

)
,

u3−in(t) =
λ
2

(
g2(kn, t − tn) + o(1)

) (37)

((37) is Formula (10) with i = in, k = kn, x = xn = −kn + o(1), and t1 = tn, where functions A and B
are rewritten in terms of functions g1 and g2).

Suppose that the following non-degeneracy condition holds:

g1(1, 2T)g1(−1, 2T)g2(1, 2T)g2(−1, 2T) �= 0,
g1(1, 2T) �= g2(1, 2T),

g1(−1, 2T) �= g2(−1, 2T),
(38)

(the fulfillment of these inequalities leads to fulfillment of Assumption 2 and inequality (33) for all
n = 2, 3, . . .). Thus, under condition (38) on the segments t ∈ [tn + 2T, tn+1], we have the following
asymptotics of solution:

uin(t) =
λ
2

(
2T∫
T

es
(

F
(

kn pe(1+2γ)(T−s)
)
+ F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
etn−t

+ λ
2

(
2T∫
T

e(1+2γ)s
(

F
(

kn pe(1+2γ)(T−s)
)
− F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
e(1+2γ)(tn−t),

u3−in(t) =
λ
2

(
2T∫
T

es
(

F
(

kn pe(1+2γ)(T−s)
)
+ F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
etn−t

− λ
2

(
2T∫
T

e(1+2γ)s
(

F
(

kn pe(1+2γ)(T−s)
)
− F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
e(1+2γ)(tn−t)

(39)

((39) is Formula (12) with i = in, k = kn, x = xn = −kn + o(1), and t1 = tn, where functions A and B
are rewritten in terms of function F).

We obtain the following result on dynamics of system (3).

Theorem 2. Suppose − 1
2 < γ < 0 and for values of k1 and x1 Assumptions 1, 2, and inequality (20) hold.

Suppose Assumption 4 and inequalities (38) hold. Then, for any sufficiently large λ > 0, there exists
t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (36), (37), and (39).

In Figure 2, an example of the solution in the case of − 1
2 < γ < 0 is shown.
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Figure 2. Example of solution. Values of parameters: T = 0.9, γ = −0.2, p = 1, λ = 10,000.
Black line—u1(t), orange dashed line—u2(t).

5. Example

In this section, we show how method described in Sections 2–4 works in the case when function f
satisfies conditions (4) and inequality

u f (u) > 0 if 0 < |u| < p (40)

and initial conditions satisfy inequalities

kx > 0 if γ > 0,
kx < 0 if − 1

2 < γ < 0
(41)

(here k and x are defined as in Section 2).
As in Section 2, we construct asymptotics of all solutions of system (3) with initial conditions

outside of the strip |uj| < p (j = 1, 2) and satisfying inequality (41). Let t1 and i be defined as in
Section 2. Then, the following lemmas hold.

Lemma 3. If initial conditions fulfill (41), then functions ui(t) and u3−i(t) do not change their signs on the
segment t ∈ [t1, t1 + T] and for all t ∈ [t1, t1 + T] inequalities

ui(t)u3−i(t) > 0 if γ > 0,
ui(t)u3−i(t) < 0 if − 1

2 < γ < 0
(42)

hold.

Proof. Consider the case k = 1. If γ > 0, then x ≥ 1 > 0. For these values of k, x, and γ system
of inequalities, {

|k + x| > |x − k|,
e−(t−t1) ≥ e−(1+2γ)(t−t1)

(43)

holds. Since ui(t) and u3−i(t) have form (9), k + x > 0 and (43) holds, then we get that

ui(t) > 0, u3−i(t) > 0 (44)
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on the interval t ∈ [t1, t1 + T]. If − 1
2 < γ < 0, then x ≤ −1 < 0. This is why we obtain that{

|k + x| < |x − k|,
e−(t−t1) ≤ e−(1+2γ)(t−t1).

(45)

It follows from (9), k − x > 0, and (45) that

ui(t) > 0, u3−i(t) < 0 (46)

on the interval t ∈ [t1, t1 + T].
Consider the case k = −1. If γ > 0, then x ≤ −1 < 0. Then, from (9), k + x < 0, and (43),

we obtain that
ui(t) < 0, u3−i(t) < 0 (47)

on the interval t ∈ [t1, t1 + T]. In addition, in the case − 1
2 < γ < 0, we get that x ≥ 1 > 0 and from (9),

k − x > 0, and (45), we get
ui(t) < 0, u3−i(t) > 0 (48)

on the interval t ∈ [t1, t1 + T].
It follows from (44), (46)–(48) that inequalities (42) hold.

Lemma 4. If function ui(t) comes into the strip |ui(t)| < p at the point t = t1, then (1) x satisfies inequality

|x| ≤ |1 + 1/γ|; (49)

(2) function ui is in the strip |ui(t)| < p for all t ∈ (t1, t1 + T].

Proof. It follows from (9) that

u′
i(t) = − (k + x)p

2
e−(t−t1) − (1 + 2γ)

(k − x)p
2

e−(1+2γ)(t−t1), (50)

therefore
u′

i(t1) = −
( k + x

2
p + (1 + 2γ)

k − x
2

p
)

.

Consider the case k = 1. For k = 1 value, ui(t1) is equal to p. If this function comes into the strip
|ui(t)| < p at the point t = t1, then derivative u′

i(t1) is non-positive. For k = 1 inequality, u′
i(t1) ≤ 0 is

equivalent to 1 + γ ≥ γx. It follows from condition (41) that γx > 0 in the case k = 1. Thus, in the
case k = 1, inequality (49) holds.

Consider the case k = −1. For k = −1 value ui(t1) = −p and if this function comes into the strip
|ui(t)| < p at the point t = t1, then derivative u′

i(t1) is non-negative. For k = −1 condition, u′
i(t1) ≥ 0

is equivalent to inequality −1 − γ ≤ γx. From (41), we get that γx < 0, so inequality (49) is true in
this case, too.

It follows from (41) and (49) that in the case γ > 0 system of inequalities{
|k + x| ≥ |(1 + 2γ)(x − k)|,
e−(t−t1) > e−(1+2γ)(t−t1)

(51)

holds and in the case − 1
2 < γ < 0 system of inequalities{

|k + x| ≤ |(1 + 2γ)(x − k)|,
e−(t−t1) < e−(1+2γ)(t−t1)

(52)

is true on the interval t ∈ (t1, t1 + T]
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Using (50)–(52), and (41), we obtain that

u′
i(t) < 0 if k = 1,

u′
i(t) > 0 if k = −1

(53)

on the interval t ∈ (t1, t1 + T]. Combining (44), (46)–(48) with (53), we get that function ui(t) is in the
strip |ui(t)| < p for all t ∈ (t1, t1 + T].

Lemma 5. If function f satisfies (4) and (40), initial conditions satisfy (41) and

|x| < |1 + 1/γ|, (54)

then Assumptions 1–4 hold.

Proof. Consider some function f (u), satisfying conditions (4) and (40).
Let us prove that for this function Assumption 1 holds. From Lemmas 3 and 4, we obtain that

ui(t) is in the strip |ui(t)| < p and it does not change sign on the interval t ∈ (t1, t1 + T]. This is why
from condition (40) we get that the first summands in A(k, x, t, t1) and B(k, x, t, t1) are non-zero. Thus,
from formulas (44), (46)–(48), and assumption (40), we obtain that the following inequalities hold

A(k, x, t, t1) > 0, B(k, x, t, t1) > 0 if k = 1, γ > 0
A(k, x, t, t1) > 0, B(k, x, t, t1) < 0 if k = 1, − 1

2 < γ < 0
A(k, x, t, t1) < 0, B(k, x, t, t1) < 0 if k = −1, γ > 0
A(k, x, t, t1) < 0, B(k, x, t, t1) > 0 if k = −1, − 1

2 < γ < 0

(55)

on the interval t ∈ (t1 + T, t1 + 2T]. Thus, we have proved that under condition (40) functions
A(k, x, t, t1) and B(k, x, t, t1) are non-zero on the interval t ∈ (t1 + T, t1 + 2T]. If t∗ = t1 + T,

then A(k, x, t∗, t1) = B(k, x, t∗, t1) = 0. Derivatives
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

= 0 for j = 1, 2 and

derivatives
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

= 0 for j = 1, 2, 3. Expressions

∂3 A(k, x, t, t1)

∂t3

∣∣∣
t=t1+T

= 2 f ′′(kp)
( k + x

2
p + (1 + 2γ)

k − x
2

p
)2

and
∂4B(k, x, t, t1)

∂t4

∣∣∣
t=t1+T

= 2γ f ′′(kp)
( k + x

2
p + (1 + 2γ)

k − x
2

p
)2

,

are non-zero: under condition (54) last factor in these derivatives is non-zero and f ′′(kp) �= 0 because

of (4) (if x = ±(1+ 1/γ), then for all j ∈ N expressions
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

and
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

equal zero). Consequently, Assumption 1 holds under condition (54). This assumption holds for
x = ±k + o(1) at λ → +∞, so Assumptions 3 and 4 hold.

Since the system of inequalities (55) is true for t = t1 + 2T, then Assumption 2 holds.

Note that if function ui(t) comes to the strip |ui(t)| < p, then x satisfies inequality (49), and for all x
such that (54) hold, Assumption 1 is true. Thus, only for two values of parameter x : x1,2 = ±(1+ 1/γ)

is Assumption 1 false.

Lemma 6. If function f satisfies (4) and (40), then inequalities (26) and (31) are true in the case γ > 0 and
inequalities (33) and (38) hold in the case − 1

2 < γ < 0.

Proof. It follows from Lemma 5 that A(k, x, t1 + 2T, t1) and B(k, x, t1 + 2T, t1) have the same sign
in the case γ > 0 and the opposite signs in the case − 1

2 < γ < 0. Therefore, in the case γ > 0
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(− 1
2 < γ < 0) inequality (26) (inequality (33) respectively) holds for all n = 1, 2, 3, . . .. Thus, inequalities

(31) and (38) are fulfilled because they are equivalent to Assumption 2 and conditions (26) and (33) for
n = 2, 3, . . ..

Thus, we have proved that all assumptions in Theorems 1 and 2 are true if function f satisfies (4)
and (40) and for x1 conditions (41) and (54) hold. Therefore, for class of functions f considered in this
section, the following theorems are true.

Theorem 3. Suppose γ > 0 and inequalities (41) and x1 �= ±(1 + 1/γ) hold. Then, for any sufficiently large
λ > 0 there exists t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (29),
(30) and (32).

Theorem 4. Suppose − 1
2 < γ < 0 and inequalities (41) and x1 �= ±(1+ 1/γ) hold. Then, for any sufficiently

large λ > 0 there exists t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (36),
(37) and (39).

Remark 1. If x1 = ±(1 + 1/γ), then Assumption 1 is not true, so Theorems 3 and 4 are not proven. However,
probably, they are true because for all initial conditions in the neighborhood of these values they are true.

Consider the map (28). If we take set {1} × [1, 1 + 1/γ − δ] (where δ is a small positive constant
(0 < δ < 1/γ)) of pairs (k, x), then it follows from Lemmas 3–6 that the image of this set under the
map (28) is set {1} × [1, 1 + a], where a = o(1) at λ → +∞. Therefore, there exists at least one fixed
point of the operator of translation along the trajectories and positive relaxation cycle of system (3)
corresponds to this fixed point (if k1 and x1 fulfill (41) and function f satisfies (40), then in the case of
positive coupling solution of system (3) does not change its sign). Similarly, there exists at least one
negative relaxation cycle of system (3) in the case of positive coupling.

In Figure 3, there are examples of two coexisting relaxation cycles of system (3).

�

�

�

�

�

�

�

Figure 3. Two coexisting relaxation cycles of the system (3). Values of parameters: T = 1, γ = 0.4,
p = 1, λ = 10,000. Black line—u1(t), orange dashed line—u2(t).

If − 1
2 < γ < 0, then it follows from (35) that xn+1 = −kn+1 + o(1) at λ → +∞. It follows from

Lemmas 3–6 that for all (kn, xn) ∈ {−1} × [1, 1 + 1/γ − δ] and (kn, xn) ∈ {1} × [−1 − 1/γ + δ,−1]
Theorem 4 is true. Therefore, there exists at least one q ∈ N, such that image of the set {−1} ×
[1, 1 + 1/γ − δ] (or {1} × [−1 − 1/γ + δ,−1]) under the q-th iteration of map (35) belongs to the set
{−1} × [1, 1 + 1/γ − δ] (or {1} × [−1 − 1/γ + δ,−1] respectively). Thus, in the case of − 1

2 < γ < 0,
there exists at least one relaxation cycle.

Thus, the following statement holds.

Corollary 5. Suppose conditions (4) and (40) are true. Then, in the case γ > 0, there exists at least two
relaxation cycles of system (3) and in the case of − 1

2 < γ < 0 there exists at least one relaxation cycle of
system (3).
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6. Dependence of Dynamics of System (3) on the Sign of Coupling

In this section, we show how asymptotics and difference tn+1 − tn (analog of period) of solutions
of system (3) depends on the value γ in the case γ > 0 and in the case − 1

2 < γ < 0 (in this section
below, we discuss only such solutions of system (3) for those assumptions of Theorem 1 or 2 fulfill).

First, consider the case γ > 0. From Formulas (29), (30), and (32), we obtain that components
u1(t) and u2(t) have the same leading terms of asymptotics on the interval t ∈ [t2,+∞) and that
these leading terms of asymptotics do not depend on γ. Thus, from Formulas (9), (10), (12), (29), (30)
and (32), we obtain that the leading term of asymptotics of solution of system (3) depends on γ only
for t ∈ [0, t2] (see Figure 4). From Corollary 4, we get that in the case γ > 1

2 difference u1(t)− u2(t)
has order o(1) at λ → +∞ for all t ≥ t2, so we may say that in the case γ > 1

2 oscillators u1(t) and
u2(t) “synchronize” (for smaller values of γ oscillators u1(t) and u2(t) may “synchronize”, too, but in
the case γ > 1

2 they must “synchronize”).
The leading term of asymptotics of the difference tn+1 − tn does not depend on γ, too.
Figure 4 illustrates dependence of solutions of system (3) on γ in the case γ > 0. There are

solutions of system (3) with identical function F, parameters λ and T, and initial conditions for
different parameters γ in Figure 4.

Figure 4. Solutions of system (3) for different values of parameter γ. Values of parameters: T = 2,
p = 1.5, λ = 1000, k = 1, x = 3, (a) γ = 0.2; (b) γ = 0.6; (c) γ = 1; (d) γ = 1.5. Black line—u1(t),
orange dashed line—u2(t).

Now, consider the case − 1
2 < γ < 0.

From (9), (10), (12), (36), (37), and (39), we get that asymptotics of solutions of system (3) depends
crucially on the value of parameter γ for all t ≥ 0 in the case − 1

2 < γ < 0 and that oscillators u1(t)
and u2(t) are not close to each other (the leading terms of their asymptotics are different for all t ≥ t2).

It follows from (34) that difference tn+1 − tn increases with the decreasing of parameter γ

(see Figure 5).
Thus, asymptotics and shape of solution and difference tn+1 − tn depend crucially on the value of

γ in the case − 1
2 < γ < 0 (see Figure 5).
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Figure 5 illustrates the dependence of solutions of system (3) on γ in the case − 1
2 < γ < 0.

Solutions of system (3) with identical function F, parameters λ and T, and initial conditions for
different parameters γ are presented in Figure 5.

Figure 5. Solutions of system (3) for different values of parameter γ. Values of parameters: T = 2,
p = 1.5, λ = 1000, k = 1, x = −4, (a) γ = −0.1; (b) γ = −0.25; (c) γ = −0.4; (d) γ = −0.45.
Black line—u1(t), orange dashed line—u2(t).

7. Conclusions

In this paper, we have studied the nonlocal dynamics of a system of two coupled generators with
delayed feedback and dependence of solutions on the value of coupling.

For a wide set of initial conditions from the phase space of system (3) using method of steps and
special constructed finite dimensional map, we get asymptotics of relaxation solutions. We obtain
relaxation cycles of system (3).

We prove that the dynamics of system (3) are qualitatively different in case γ > 0 and case
− 1

2 < γ < 0: in the case γ > 0, there exists a moment of time t2 after that both components of
solution have the same leading term of asymptotics and this leading term does not depend on γ if
t > t2, generators u1(t) and u2(t) “synchronize” if γ > 1

2 ; in the case of − 1
2 < γ < 0, the leading

term of asymptotics and shape of solution depend on γ, oscillators u1(t) and u2(t) are not close to
each other; the leading term of asymptotics of the value tn+1 − tn (this value serves us an analog of
period) increase with decreasing of the value γ in the case − 1

2 < γ < 0 and remains unchanged with
changing γ in the case γ > 0.

The method of research used in this paper is applicable for systems of higher dimensions (case of n
identically diffusion coupled oscillators, where n > 2) and for systems of n (n ≥ 2) coupled oscillators
with other types of coupling.
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Abstract: We establish a class of degenerate fractional differential equations involving delay
arguments in Banach spaces. The system endowed by a given background and the generalized
Showalter–Sidorov conditions which are natural for degenerate type equations. We prove the results
of local unique solvability by using, mainly, the method of contraction mappings. The obtained
theory via its abstract results is applied to the research of initial-boundary value problems for both
Scott–Blair and modified Sobolev systems of equations with delays.

Keywords: Gerasimov–Caputo fractional derivative; differential equation with delay; degenerate
evolution equation; fixed point theorem

1. Introduction

During the last decades, fractional differential equations and their potential applications have
gained a lot of importance, mainly because fractional calculus has become a powerful tool with more
accurate and successful results when modeling several complex phenomena in numerous seemingly
diverse and widespread fields of science and engineering [1]. It was found that various, especially
interdisciplinary applications, can be elegantly modeled with the help of fractional derivatives which
provide an excellent instrument for the description of memory and hereditary properties of various
materials and processes [2,3]. Advanced analysis and numerical simulations of several fractional-order
systems have been shown to be very interesting, producing more useful results in applied sciences [4,5].

Delay differential equations are a type of equations in which the derivative of the unknown
function at a certain time is given in terms of the values of the function at previous times. It arises in
many biological and physical applications, and it often forces us to consider variable or state-dependent
delays [6–8]. Integer or fractional-order degenerate differential equations, i.e., evolution equations
not solved with respect to the highest order derivative, are often used to describe various processes
in science and engineering: in [9,10] certain classes of the time-fractional order partial differential
equations with polynomials differential with respect to the spatial variables elliptic self-adjoint operator,
which contain some equations from hydrodynamics and the filtration theory, are studied. In [11]
approximate controllability issues for such models are investigated; the unique solvability of similar
equations with distributed order time derivatives are researched in [12].

In applications, fractional-order degenerate evolution equations with a delay are often successful.
Such kinds of equations with a degenerate operator at the highest-order fractional derivative describe
the dynamics of some fractional models of viscoelastic fluids (see the application in the last section of

Mathematics 2020, 8, 1700; doi:10.3390/math8101700 www.mdpi.com/journal/mathematics43
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this work). There are very few papers dealing with essentially degenerate fractional-order equations
with delay. Motivated by this fact, the purpose of this work is a step towards eliminating this gap.

We are concerned with the following fractional differential equations with delay

LDα
t x(t) = Mx(t) +

0∫
−r

K(s)x(t + s)ds + g(t), t ∈ [0, T], (1)

where X , Y are Banach spaces, L, M : X → Y are linear operators, L is continuous, ker L �= {0} (for this
reason such equations are called Sobolev type equations [13,14], or degenerate [15]), operator M is
closed and densely defined in X , Dα

t is the Gerasimov-Caputo derivative of the order α ∈ (m − 1, m],
m ∈ N. Equation (1) is endowed by a given background

Px(t) = h(t), t ∈ [−r, 0], (2)

and by the generalized Showalter–Sidorov conditions

(Px)(k)(0) = xk, k = 0, 1, . . . , m − 1, (3)

which are natural for degenerate evolution equations. Here, P is a projector along the degeneration
space of the homogeneous equation LDα

t x(t) = Mx(t), it will be defined below. By the contraction
mappings method, the local unique solvability of problems (1)–(3) is established.

Degenerate first-order evolution equations in Banach spaces were studied in [16,17] under various
conditions on the operators L, M and on the delay term. The unique solvability results for problems (1)
and (2) with a strongly (L, p)-radial operator M, g ≡ 0 at α = 1 were obtained in [18]. Here we use a
similar approach, which is adapted to the case of a fractional derivative. The second section contains
the preliminary results which are needed for supporting our results, in particular, the theorem on
unique solvability of the Cauchy problem to the inhomogeneous linear Equation (1) with K ≡ 0.
In the third section, we obtain the proof of the main result by means of the Banach fixed point theorem.
The fourth and fifth sections demonstrate the applications of the obtained abstract results to the study
of the unique solvability of initial-boundary value problems for time-fractional systems of partial
differential equations with delay.

2. Solvability of Degenerate Inhomogeneous Equation

Let for δ > 0, t > 0 gδ(t) := Γ(δ)−1tδ−1, Jδ
t h(t) :=

t∫
0

gδ(t − s)h(s)ds, m − 1 < α ≤ m ∈ N,

Dm
t is the usual derivative of the order m ∈ N, J0

t be the identical operator. The Gerasimov-Caputo
derivative of a function h is defined as

Dα
t h(t) = Dm

t Jm−α
t

(
h(t)−

m−1

∑
k=0

h(k)(0)gk+1(t)

)
.

Lemma 1. Ref. [19]. Let Z be a Banach space, l − 1 < β ≤ l ∈ N, t > 0. Then

∃Cβ > 0 ∀h ∈ Cl([0, t]; Z) ‖Dβ
t h‖C([0,t];Z) ≤ Cβ‖h‖Cl([0,t];Z).

For Banach spaces, X and Y denote as L(X ; Y) the Banach space of all linear continuous operators,
acting from X to Y . Let C l(X ; Y) be the set of all linear closed operators, densely defined in X , with the
image in Y .

In further consideration, we will assume that L ∈ L(X ;Y), ker L �= {0}, M ∈ C l(X ; Y), DM is
the domain of M with the graph norm ‖ · ‖DM := ‖ · ‖X + ‖M · ‖Y . Denote ρL(M) := {μ ∈ C :
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(μL − M)−1 ∈ L(Y ; X )}. An operator M is called (L, σ)-bounded, if a ball Ba(0) := {μ ∈ C : |μ| < a}
with some a > 0 contains the set ρL(M). If M is (L, σ)-bounded, we have the projections

P :=
1

2πi

∫
|μ|=a

(μL − M)−1L dμ ∈ L(X ), Q :=
1

2πi

∫
|μ|=a

L(μL − M)−1 dμ ∈ L(Y)

(see [14] (pp. 89–90)). Set X 0 := ker P, X 1 := imP, Y0 := ker Q, Y1 := imQ. Denote by Lk (or Mk) the
restriction of the operator L (or M) on X k (or DMk := DM ∩ X k respectively), k = 0, 1.

Theorem 1. Ref. [14] (pp. 90–91). Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L
(
X 1; Y1), M0 ∈ C l

(
X 0; Y0), Lk ∈ L

(
X k; Y k), k = 0, 1;

(ii) there exist operators M−1
0 ∈ L

(
Y0; X 0), L−1

1 ∈ L
(
Y1; X 1).

Denote N0 := {0} ∪ N, G := M−1
0 L0. For p ∈ N0 operator M is called (L, p)-bounded, if it is

(L, σ)-bounded, Gp �= 0, Gp+1 = 0.
Consider the degenerate inhomogeneous equation

LDα
t x(t) = Mx(t) + f (t), t ∈ [0, T]. (4)

A solution of this equation is a function x ∈ C([0, T]; DM), such that Dα
t x ∈ C([0, T];X ) and

equality (4) holds. A solution of the generalized Showalter–Sidorov problem

(Px)(k)(0) = xk, k = 0, 1, . . . , m − 1, (5)

to Equation (4) is a solution of the equation, such that conditions (5) are true.

Denote by Eα,β(z) =
∞
∑

n=0

zn

Γ(αn+β)
the Mittag-Leffler function.

Theorem 2. Refs. [20,21]. Let p ∈ N0, an operator M be (L, p)-bounded, Q f ∈ C([0, T];Y),
for all l = 0, 1, . . . , p there exist (GDα

t )
l M−1

0 (I − Q) f , Dα
t (GDα

t )
l M−1

0 (I − Q) f ∈ C([0, T];X ),
x0, x1, . . . , xm−1 ∈ X 1. Then, problems (4) and (5) have a unique solution

x f (t) =
m−1
∑

k=0
tkEα,k+1(L−1

1 M1tα)Pxk +
t∫

0
Eα,α(L−1

1 M1(t − s)α)L−1
1 Q f (s)ds −

p
∑

l=0
(GDα

t )
l M−1

0 (I − Q) f (t). (6)

Remark 1. Due to Lemma 1 a function f ∈ Cm(p+1)([0, T]; Y) satisfies the conditions of Theorem 2.

3. Main Result

Consider the problem

Px(t) = h(t), t ∈ [−r, 0], (Px)(k)(0) = xk, k = 0, 1, . . . , m − 1, (7)

for the degenerate fractional evolution equation with delay

LDα
t x(t) = Mx(t) +

0∫
−r

K(s)x(t + s)ds + g(t), t ∈ [0, T], (8)

where h(0) = x0, K : [−r, 0] → L(X ; Y), g : [0, T] → Y .
A function x ∈ C([0, T); DM) ∩ C([−r, T);X ) is called a solution of problems (7) and (8),

if Dα
t x ∈ C([0, T); X ), it satisfies Equalities (7) and (8).
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Theorem 3. Let p ∈ N0, an operator M be (L, p)-bounded, h ∈ C([−r, 0]; X 1), xk ∈ X 1, k = 0, 1, . . . , m − 1,
h(0) = x0, T0 > 0, g ∈ Cm(p+1)([0, T0];Y), K ∈ Cm(p+1)([−r, 0];L(X ;Y)), K(n)(−r) = K(n)(0) = 0 at
n = 0, 1, . . . , m(p+ 1)− 1. Then there exists T ∈ (0, T0), such that problems (7) and (8) have a unique solution.

Proof. Fix T > 0 and consider on the segment [0, T] Equation (4) with some f ∈ Cm(p+1)([0, T];Y).
Due to Theorem 2 and Remark 1 we have the solution x f of problems (4) and (5) with the given
xk, k = 0, 1, . . . , m − 1. For brevity denote Xβ(t) := Eα,β(L−1

1 M1tα)P, β > 0, put at t ∈ [−r, 0)
x f (t) = h(t) + h0(t) with some h0 ∈ C([−r, 0]; X 0) and define the operator

[Φ f ](t) :=
0∫

−r

K(s)x f (t + s)ds + g(t) =
0∫

−t

K(s)
m−1

∑
k=0

(t + s)kXk+1(t + s)xkds+

+

0∫
−t

K(s)
t+s∫
0

Xα(t + s − τ)L−1
1 Q f (τ)dτds −

0∫
−t

K(s)
p

∑
l=0

(GDα
t )

l M−1
0 (I − Q) f (t + s)ds+

+

0∫
t−r

K(s − t)(h(s) + h0(s))ds + g(t), t ∈ [0, r),

[Φ f ](t) :=
0∫

−r

K(s)x f (t + s)ds + g(t) =
0∫

−r

K(s)
m−1

∑
k=0

(t + s)kXk+1(t + s)xkds+

+

0∫
−r

K(s)
t+s∫
0

Xα(t+ s− τ)L−1
1 Q f (τ)dτds−

0∫
−r

K(s)
p

∑
l=0

(Dα
t G)l M−1

0 (I −Q) f (t+ s)ds+ g(t), t ∈ [r, T],

By induction, we can prove that at t ∈ [0, T], n = 0, 1, . . . , m(p + 1)

[Φ f ](n)(t) =
dn

dtn

t∫
t−r

K(τ − t)x f (τ)dτ + g(n)(t) = (−1)n
0∫

−r

K(n)(s)x f (t + s)ds + g(n)(t), (9)

since K(n)(−r) = K(n)(0) = 0 at n = 0, 1, . . . , m(p + 1)− 1. Therefore, for every f from the Banach
space Cm(p+1)([0, T]; Y) with the standard norm ‖ · ‖m(p+1) we have Φ f ∈ Cm(p+1)([0, T]; Y).

Let tr := min{t, r}. For f1, f2 ∈ Cm(p+1)([0, T]; Y), t ∈ [0, T], n = 0, 1, . . . , m(p + 1), due to (9)

dn

dtn ([Φ f1](t)− [Φ f2](t)) = (−1)n
0∫

−tr

K(n)(s)
t+s∫
0

Xα(t + s − τ)L−1
1 Q( f1(τ)− f2(τ))dτds−

−(−1)n
0∫

−tr

K(n)(s)
p

∑
l=0

(GDα
t )

l M−1
0 (I − Q)( f1(t + s)− f2(t + s))ds,

therefore, using Theorem 1 and Lemma 1, we obtain

‖Φ f1 − Φ f1‖m(p+1) ≤ C1

0∫
−tr

(t + s)
m(p+1)

∑
n=0

‖K(n)(s)‖L(X ;Y)ds‖ f1 − f2‖0+

+C2

0∫
−tr

m(p+1)

∑
n=0

‖K(n)(s)‖L(X ;Y)ds‖ f1 − f2‖mp ≤ CF(T)‖ f1 − f2‖m(p+1),
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where, for the monotonously non-decreasing non-negative function

F(t) :=
0∫

−tr

m(p+1)

∑
n=0

‖K(n)(s)‖L(X ;Y)ds

we have F(t) → 0 as t → 0+. So, the inequality ‖Φ f1 − Φ f1‖m(p+1) ≤ q‖ f1 − f2‖m(p+1) with some
q ∈ (0, 1) is valid for sufficiently small T > 0 and there exists a unique fixed point f0 of the operator Φ
in Cm(p+1)([0, T]; Y). Therefore,

LDα
t x f0(t)− Mx f0(t) = f0(t) = [Φ f0](t) =

0∫
−r

K(s)x f0(t + s)ds + g(t),

and the function x f0 , which is defined as in the beginning of this proof, is a solution of problems (7)
and (8).

Note that the choice of function h0 does not affect the proof, hence, we can choose
h0(t) ≡ (I − P)x f0(0), then the obtained x f0 is continuous on [−r, T].

Let there exist two solutions x1, x2 of the problem, denoted as fi(t) =
0∫

−r
K(s)xi(t + s)ds, i = 1, 2.

As before, we have fi ∈ Cm(p+1)([0, T]; Y) and LDα
t xi − Mxi = fi, hence, by the construction Φ fi = fi,

i = 1, 2. Thus, Φ has two fixed points, it is a contradiction. Consequently, f1 ≡ f2, for y := x1 − x2

we have LDα
t y − My = 0, y(k)(0) = 0, k = 0, 1, . . . , m − 1, therefore, y ≡ 0 due to Theorem 2. So,

the solution of problems (7) and (8) is unique.

4. A Scott–Blair Type System

Consider the problem

∂kv
∂tk (x, 0) = zk(x), x ∈ Ω, k = 0, 1, . . . , m − 1, (10)

v(x, t) = h(x, t), x ∈ Ω, t ∈ [−r, 0], (11)

v(x, t) = 0, (x, t) ∈ ∂Ω × [0, T], (12)

(1 − χΔ)Dα
t v(x, t) = −(ṽ · ∇)v(x, t)− (v · ∇)ṽ(x, t)− r(x, t)+

+

0∫
−r

(K1(s)v(t + s) + K2(s)r(t + s))ds, (x, t) ∈ Ω × [0, T], (13)

∇ · v(x, t) = 0, (x, t) ∈ Ω × [0, T], (14)

where Ω ⊂ Rn is a bounded region with a smooth boundary ∂Ω, χ ∈ R, ṽ is a given function.
Function of the fluid velocity v = (v1, v2, . . . , vn) and of the pressure gradient r = (r1, r2, . . . , rn) = ∇p
are unknown.

This system without delay can be obtained, if the dynamics of a Scott–Blair medium [22] are
described by using a fractional derivative of the same order as in the rheological relation for this
medium, with subsequent linearization.

Let L2 := (L2(Ω))n, H1 := (W1
2 (Ω))n, H2 := (W2

2 (Ω))n. The closure of {v ∈ (C∞
0 (Ω))n : ∇ · v =

0} in the space L2 will be denoted by Hσ, and in the space H1 it will be H1
σ. We have the decomposition

L2 = Hσ ⊕ Hπ , where Hπ is the orthogonal complement for Hσ. Denote by Π : L2 → Hπ the
corresponding to this decomposition orthoprojector, Σ = I − Π, H2

σ = H1
σ ∩H2.

The operator A := ΣΔ with the domain H2
σ in the space Hσ has a real, negative, discrete spectrum

with a finite multiplicity, condensing at −∞ [23].
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At ṽ ∈ H1 by the formula Dw = −(ṽ · ∇)w − (w · ∇)ṽ operator D ∈ L(H2
σ;L2) is defined.

Put
X = H2

σ ×Hπ , Y = L2 = Hσ ×Hπ , (15)

L =

(
I − χA O

−χΠΔ O

)
∈ L(X ; Y), M =

(
ΣD O

ΠD −I

)
∈ L(X ; Y). (16)

By the choice of the space X we take into account Equation (14) and condition (12). The function
r(·, t) is a gradient, since it belongs to the space Hπ at t ≥ 0.

Lemma 2. Ref. [24]. Let χ �= 0, χ−1 /∈ σ(A), the spaces X and Y and the operators L and M be defined
by (15) and (16) respectively. Then the operator M is (L, 0)-bounded and the projectors have the form

P =

(
I O

χΠΔ(I − χA)−1ΣD + ΠD O

)
, Q =

(
I O

−χΠΔ(I − χA)−1 O

)
.

The form of the projectors P and Q implies that X 0 = {0} × Hπ , X 1 = {(w1, w2) ∈ H2
σ ×

Hπ : w2 = (χΠΔ(I − χA)−1ΣD + ΠD)w1}, Y0 = {0} ×Hπ , Y1 = {(w1, w2) ∈ Hσ ×Hπ : w2 =

−χΠΔ(I − χA)−1w1}.

Theorem 4. Let h ∈ C([−r, 0];H2
σ), zk ∈ H2

σ, k = 0, 1, . . . , m − 1, h(·, 0) = z0(·), Ki ∈ Cm([−r, 0];R),
K(n)

i (−r) = K(n)
i (0) = 0 at n = 0, 1, . . . , m − 1, i = 1, 2. Then there exists T > 0, such that

problems (10)–(14) have a unique solution.

Proof. Due to Lemma 2 and Theorem 3 at p = 0, g ≡ 0 we obtain the required statement.

5. A Modified Sobolev System

Consider another problem

∂kv
∂tk (x, 0) = zk(x), x ∈ Ω, k = 0, 1, . . . , m − 1, (17)

v(x, t) = h(x, t), x ∈ Ω, t ∈ [−r, 0], (18)

vn(x, t) :=
3

∑
i=1

vi(x, t)ni(x) = 0, (x, t) ∈ ∂Ω × [0, T], (19)

Dα
t v(x, t) = [v(x, t), ω]− r(x, t) +

0∫
−r

(K1(s)v(t + s) + K2(s)r(t + s))ds, (x, t) ∈ Ω × [0, T], (20)

∇ · v(x, t) = 0, (x, t) ∈ Ω × [0, T], (21)

where Ω ⊂ R3, is a bounded region with a smooth boundary ∂Ω, ω ∈ R3.
Such a system without delay and at α = 1 describes the dynamics of small internal movements of

a stratified fluid in an equilibrium state [25].
Following the approach of S.L. Sobolev [25], we use the generalized statement of the

problem (17)–(21), replacing incompressibility Equation (21) and boundary condition (19) with
the equation

Πv(·, t) = 0, t ∈ [0, T], (22)
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where Π is the same orthoprojector as in the previous section. Indeed, the set {∇ϕ : ϕ ∈ C∞(Ω)} is
dense in the subspace Hπ and the integral identity∫

Ω

〈v, ∇ϕ〉R3 =
∫

∂Ω

vn ϕds −
∫
Ω

(∇ · v)ϕdx

is true for all ϕ ∈ C∞(Ω), v ∈ H1, hence, for every v ∈ H1 the satisfaction of conditions (19), (21) is
equivalent to the inclusion v ∈ Hσ. Rejecting the restriction H1 we obtain condition (22).

Define by Bw = [w, ω] at a fixed ω ∈ R3 the linear operator B ∈ L(L2;L2). Put X = Y = L2 =

Hσ ×Hπ ,

L =

(
I O
O O

)
∈ L(X ; Y), M =

(
ΣB O
ΠB −I

)
∈ L(X ; Y).

Then it can be shown directly (see [26]), that the operator M is (L, 0)-bounded and the projectors
have the form

P =

(
I O

ΠB O

)
, Q =

(
I O

O O

)
.

Therefore, X 0 = {0} × Hπ , X 1 = {(w1, w2) ∈ H2
σ × Hπ : w2 = ΠBw1}, Y0 = {0} × Hπ ,

Y1 = Hσ × {0}. As in the previous section Theorem 3 at p = 0, g ≡ 0 implies the next result.

Theorem 5. Let h ∈ C([−r, 0];Hσ), zk ∈ Hσ, k = 0, 1, . . . , m − 1, h(·, 0) = z0(·), Ki ∈ Cm([−r, 0];R),
K(n)

i (−r) = K(n)
i (0) = 0 at n = 0, 1, . . . , m − 1, i = 1, 2. Then there exists T > 0, such that

problems (17), (18), (20), (22) have a unique solution.

6. Conclusions

We studied the local unique solvability of the problem with the generalized Showalter–Sidorov
conditions, which is associated by a given background for degenerate fractional evolution equations in
Banach spaces with delay, including the Gerasimov–Caputo derivative and a relatively bounded pair
of linear operators. The complexity of the studied problem is the simultaneous presence of a fractional
derivative, a degenerate operator at it, and a delay argument in the equation. The obtained result
shows that by the methods of the theory of resolving families of operators for degenerate evolution
equations, this complex problem can be solved. Abstract results can be used for investigating problems
for partial differential equations, demonstrated on a problem for Scott–Blair and modified Sobolev
systems of equations with delays.
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Abstract: In this paper, we introduce a high order numerical approximation method for convection
diffusion wave equations armed with a multiterm time fractional Caputo operator and a nonlinear
fixed time delay. A temporal second-order scheme which is behaving linearly is derived and analyzed
for the problem under consideration based on a combination of the formula of L2 − 1σ and the
order reduction technique. By means of the discrete energy method, convergence and stability of
the proposed compact difference scheme are estimated unconditionally. A numerical example is
provided to illustrate the theoretical results.

Keywords: fractional convection diffusion-wave equations; compact difference scheme; nonlinear
delay; spatial variable coefficients; convergence and stability
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1. Introduction

Fractional derivatives and integrals have recently gained high interest in many fields of science.
The ability of classifying and capturing the memory and hereditary properties of various materials and
processes is an advantage of fractional derivatives over their integer counterparts, e.g., the modeling
of anomalous diffusion by fractional differential equations gives more informative and interesting
models [1]. For time-fractional differential equations, the memory feature implies that all previous
information is needed to evaluate the time fractional derivative at the current time level. Accordingly,
designing a numerical differentiation formula of good accuracy is as ever paramount, but especially
hard. The approximation formulas based on the interpolation approximation, such as L1 [2] and
L2 − 1σ [3], are of significance to design numerical algorithms to solve time-fractional differential
equations. Demonstrated applications in numerous seemingly diverse and widespread fields of
physics, such as in porous and glassy materials, in percolation clusters over fractals to semi-conductors,
polymers, random media, and beyond, like geophysical and biological systems or processes (e.g., [4,5]),
can be effectively modeled by time-fractional diffusion-wave equations of different types. Here, we are
seeking to design a compact difference scheme that behaves linearly to numerically solve the non-linear

Mathematics 2020, 8, 1696; doi:10.3390/math8101696 www.mdpi.com/journal/mathematics51
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delayed multiterm time fractional convection diffusion-wave equation (dmfCDWEs) with spatial
variable coefficients. More specifically, we consider

m

∑
r=0

pr
∂αr u(x, t)

∂tαr
=

∂

∂x

(
q1(x)

∂u
∂x

)
+ q2(x)

∂u
∂x

+ f (u(x, t), u(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (1a)

with the following initial and boundary conditions

u(x, t) = d(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0),
∂u(x, 0)

∂t
= ψ(x) = lim

t→−0

∂d(x, t)
∂t

, (1b)

u(0, t) = φ0(t), u(L, t) = φL(t), 0 < t ≤ T, (1c)

where s > 0 is a fixed delay parameter, q1(x) and q2(x) are functions chosen, respectively, to be sufficiently
and arbitrary differentiable functions. The fractional derivative is defined in Caputo sense and the
fractional orders {αr | 1 ≤ r ≤ m} are specified in the manner {1 < αm ≤ αm−1 < · · · < α0 = 2}.
The existence and uniqueness of the global mild solutions for the problem of nonlinear fractional
reaction–diffusion equations with delay and Caputo’s fractional derivatives are addressed in [6].

This work can be considered to be an extension of our previously published work [7], in which we
discussed a single term time fractional wave equation with spatial constant coefficients. The scheme
was of 2 − α order in time and fourth in space. Here, we treat the multiterm time fractional order
case with spatial variable coefficients and seek to have temporal second order of convergence.
Accordingly, we hinged on the proposed numerical formula in [8] to approximate the multiterm
Caputo fractional derivatives of order αr(0 < αr ≤ 1) at the super-convergent point. The formula
L2 − 1σ can achieve at least second-order accuracy at this point. We rely on the compact operator
proposed in [9] in order to attain a fourth order accuracy with respect to space in case of having spatial
variable coefficients.

There are some results and findings available regarding the theoretical analysis and numerical
computation of single term time fractional sub or super diffusion equations with delay. In [10],
the authors introduced a satisfactory numerical method for time fractional diffusion equations with
delay. In [11], a novel discrete Grönwall inequality is used to simplify the analysis of difference schemes
for time-fractional multi-delayed sub-diffusion equations. Convergence and stability of a compact
finite difference method for nonlinear time fractional reaction-diffusion equations with a fixed delay are
proposed in [12] by the aid of a new discrete form of the fractional Grönwall inequalities. A numerical
solution for a class of time fractional diffusion equations with delay is proposed in [13] that is based
on a smooth difference approximation of specific L1 type. Additionally, there are many difference
and spectral approaches proposed for multiterm or distributed order time fractional differential
equations. An efficient spectral method that is based on Jacobi–Gauss–Radau collocation is applied
in order to solve a system of multi-dimensional distributed-order generalized Schrödinger equations
in [14]. A combined difference and Galerkin–Legendre spectral method in [15] is used to solve time
fractional diffusion equations with nonlinear source term. A Legendre spectral-collocation method
for the numerical solution of distributed-order fractional initial value problems is designed in [16].
In [17], the authors proposed a spectral τ-scheme to discretize the fractional diffusion equation with
distributed-order fractional derivative in time and Dirichlet boundary conditions. The model solution
is expanded in multi-dimensions in terms of Legendre polynomials and the discrete equations are
obtained with the τ-method. The two-dimensional distributed-order time fractional cable equation is
numerically solved based on the finite difference/spectral method, as clarified in [18]. Two classes of
finite difference methods that are based on backward differential formula discretization in the temporal
direction are proposed in [19] to efficiently solve the semilinear space fractional reaction–diffusion
equation with time-delay. The coefficients of the problem are constants, a fractional centered difference
approximation is employed for the space fractional derivative [20], and it gains a fourth order
approximation in space due to the use of a specific compact operator [21].
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The main purpose of our work is the manufacturing of a difference scheme for problems of the
kind of (1). Until now, few works hace paid close attention to the multiterm fractional wave equation
with variable coefficients and delay argument simultaneously. It is well known that it may be a more
challenging task to solve the fractional partial differential equation with delay effectively, since the
evolution of a fractional partial differential equation with delay at time t not only depends on its value at
t − s, but also depends on all previous solutions due to the non-locality of the fractional operator. Higher
order numerical schemes are extremely scarce and difficult in regard to the analysis and implementation
for the variable coefficient multiterm time fractional convection-diffusion wave equation with delay. For a
single temporal term for that kind of problem, we refer to [22]. For the multiterm problem, we design
the difference scheme at a super-convergent point to gain a high order of convergence [8] which is more
challenging than the single term problem at the level of theoretical analysis.

In order to simplify the problem, an exponential transformation technique [23] can be applied to
system (1) to avoid the difficulties resulting from the spatial variable when constructing high order
compact difference methods. That technique is used to eliminate the convection term. Assume that
q1(x)
q2(x) is integrable in the spatial interval [0, L] and let u(x, t) = exp

(∫ x
0 r̃(s)ds

)
ω(x, t), this yields

∂αr u
∂tαr

= exp
(∫ x

0
r̃(s)ds

)
∂αr ω

∂tαr
, (2)

∂u
∂x

= exp
(∫ x

0
r̃(s)ds

) [
r̃(x)ω(x, t) +

∂ω

∂x

]
, (3)

∂2u
∂x2 = exp

(∫ x

0
r̃(s)ds

) [
r̃2(x)ω(x, t) + 2r̃(x)

∂ω

∂x
+ r̃′(x)ω(x, t) +

∂2ω

∂x2

]
. (4)

When substituting (2)–(4) into (1), one directly obtains

m

∑
r=0

pr
∂αr ω(x, t)

∂tαr
= q1(x)

∂2ω

∂x2 +
[
q′1(x) + 2q1(x)r̃(x) + q2(x)

] ∂ω

∂x

+
[
q1(x)r̃2(x) + q1(x)r̃′(x) + q′1(x)r̃(x) + q2(x)r̃(x)

]
ω(x, t)

+ exp
(
−

∫ x

0
r̃(s)ds

)
g(ω(x, t), ω(x, t − s), x, t),

where, g(ω(x, t), ω(x, t − s), x, t) = f (u(x, t), u(x, t − s), x, t). By selecting r̃(x) = − 1
2

q2(x)
q1(x) ,

the system (1) is transformed in

m

∑
r=0

pr
∂αr ω(x, t)

∂tαr
=

∂

∂x

(
q1(x)

∂ω

∂x

)
+ f̃ (ω(x, t), ω(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (5a)

with the following initial and boundary conditions

ω(x, t) = exp
(
−

∫ x

0
r̃(s)ds

)
d(x, t) := d̃(x, t), t ∈ [−s, 0),

∂ω(x, 0)
∂t

= lim
t→−0

∂d̃(x, t)
∂t

:= ψ̃(x), (5b)

ω(0, t) = φ0(t), ω(L, t) = exp
(
−

∫ x

0
r̃(s)ds

)
φL(t) := φ̃L(t), 0 < t ≤ T, (5c)

where

f̃ (ω(x, t), ω(x, t − s), x, t) =
[
q1(x)r̃2 + q1(x)r̃′(x) + q′1(x)r̃(x) + q2(x)r̃(x)

]
ω(x, t)

+ exp
(
−

∫ x

0
r̃(s)ds

)
g(ω(x, t), ω(x, t − s), x, t).
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In order to transform (5) to a system with zero Dirichlet boundary conditions, we define h(x, t) :=
φ0(t) + x

L (φ̃L(t)− φ0(t)) and introduce the new function ν(x, t) = ω(x, t)− h(x, t). Hence, we have

m

∑
r=0

pr
∂αr ν(x, t)

∂tαr
=

∂

∂x

(
q1(x)

∂ν

∂x

)
+ f̃ (ν(x, t), ν(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (6a)

with the following initial and boundary conditions

v(x, t) = r̂(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0),
∂v(x, 0)

∂t
= ψ̂(x) = lim

t→−0

∂r(x, t)
∂t

, (6b)

v(0, t) = v(L, t) = 0, t > 0. (6c)

According to the new transformed system (6), we analytically overcame the first degree of complexity
by the elimination of the convection term. There are still two degrees of complexity to be numerically
overcome; the multiterm fractional order on the one hand and the nonlinear delay on the other.

Throughout this work, we assume that the function f (μ, v, x, t) and the solution ν(x, t) of (6) are
sufficiently smooth in the following sense:

• Assume that ν(x, t) ∈ C(6,4) ([0, L]× [0, T]),
• The partial derivatives f̃μ(μ, ν, x, t) and f̃ν(μ, ν, x, t) are continuous in the ε0-neighborhood of the

solution. Define

c1 = sup
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

∣∣ f̃μ(ν(x, t) + ε1, ν(x, t − s) + ε2, x, t)
∣∣ , (7a)

c2 = max
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

∣∣ f̃ν(u(x, t) + ε1, ν(x, t − s) + ε2, x, t)
∣∣ . (7b)

The structure of this paper is arranged, as follows. First, we introduce a derivation of the compact
difference scheme. Next, in the third section, convergence and stability for the compact difference
scheme are carried out. Finally, the paper ends with a numerical illustration and a conclusion.

2. A Compact Difference Scheme

A linearized numerical method that combines the super-convergence approximation L2 − 1σ

with the order reduction method is derived. Some further notations are fixed before we continue.
Take two positive integers M and n0, let h = L

M , τ = s
n0

and denote xi = i h for i = 0, . . . , M; tk = k τ

and tk+σ = (k + σ) τ, for k = −n0, . . . , N, where N =
⌊

T
τ

⌋
. Using the points xi in space and tk in

time, we cover the space-time domain by Ωhτ = Ωh × Ωτ , where Ωh = {xi | 0 ≤ i ≤ M} and
Ωτ = {tk | −n0 ≤ k ≤ N}.

2.1. L2 − 1σ Super-Convergence Scheme

Here, we give a preliminary for the Alikhanov scheme. Denote γr = αr − 1 (0 ≤ r ≤ m) and

F (σ) =
m

∑
r=0

pr

Γ(3 − γr)
σ1−γr

[
σ − (1 − γr

2
)
]

τ2−γr ,

such that 0 < γm < γm−1 < · · · < γ0 ≤ 1. Additionally, now we invoke the following lemmas from
Alikhanov work.

Lemma 2.1 ([8]). A unique positive root σ∗ ∈ [1 − γ0/2, 1 − γm/2] exists for F (σ) = 0.
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Lemma 2.2 ([8]). For m = 0, the root of F (σ) = 0 is 1 − γ0/2. However, if m ≥ 1, the root σ∗ can be
obtained by the Newton iteration method. The Newton iteration sequence {σk}∞

k=0 generated by σ0 = 1 − γm/2

and σk+1 = σk − F (σk)
F′(σk)

for k = 0, 1, 2, . . . is monotonically decreasing and convergent to σ∗.

For the sake of simplicity, let σ = σ∗ here and later. Define [3]

a0 = σ1−γ, aγ
l = (σ + l)1−γ − (σ + l − 1)1−γ,

bγ
l =

1
2 − γ

[
(l + σ)2−γ − (l − 1 + σ)2−γ

]
− 1

2

[
(l + σ)1−γ + (l − 1 + σ)1−γ

]
,

for each l ∈ N+. Next, we define {C(k+1,γ)
n }, as follows

C(k+1,γ)
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a0, n = 0, k = 0,

aγ
0 + bγ

1 , n = 0, k ≥ 1,

aγ
n + bγ

n+1 − bγ
n , 1 ≤ n ≤ k − 1, k ≥ 1,

aγ
k − bγ

k , n = k, k ≥ 1.

(8)

Denote

Ĉ(k+1)
n =

m

∑
r=0

pr
τ−γr

Γ(2 − γr)
C(k+1,γr)

n , b̂n =
m

∑
r=0

pr
τ−γr

Γ(2 − γr)
b(γr)

n , n = 0, 1, . . . , k.

The next two lemmas are devoted to the properties of the coefficients Ĉ(k)
n and b̂n.

Lemma 2.3 ([8]). Given any non-negative integer m and positive constants p0, p1, . . . , pm, for any {γr ∈
(0, 1] | r = 0, 1, · · · , m} it holds

Ĉ(k+1)
1 > Ĉ(k+1)

2 > · · · > Ĉ(k+1)
k−2 > Ĉ(k+1)

k−1 >
m

∑
r=0

pr
τ−γr

Γ(2 − γr)

1 − γr

2
(k − 1 + σ)−γr .

In addition, there exists a τ0 > 0, such that (2σ − 1)Ĉ(k+1)
0 − σĈ(k+1)

1 > 0, when τ ≤ τ0, n = 2, 3, · · · ,

and Ĉ(k+1)
0 > Ĉ(k+1)

1 .

Lemma 2.4 ([24]). The sequences Ĉ(k)
n and b̂n satisfy

Ĉ(k+1)
n =

{
C(k)

n , 0 ≤ n ≤ k − 2,

C(k)
n + b̂n+1, n = k − 1.

(9)

Additionally, the following estimates hold:

k

∑
n=1

Ĉ(k+1)
n ≤

m

∑
r=0

pr
3τ−γr

2Γ(2 − γr)
(k + σ)1−γr

and
k

∑
n=1

b̂n ≤
m

∑
r=0

pr
γrτ−γr

2Γ(3 − γr)
(k + σ)1−γr .

Let Wh =
{

w : Ωhτ → R | w(xi, tk) = wk
i ; i = 0, 1, . . . , M; k = −n0, −n0 + 1, . . . , N

}
be a grid

function space on Ωhτ and also define Ŵh = {w ∈ Wh, w(x0, ·) = w(xM, ·) = 0}. Introduce the
following notations
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wk
i+1/2 =

1
2

[
wk

i+1 + wk
i

]
, δxwk

i+1/2 =
1
h

[
wk

i+1 − wk
i

]
, δtw

1
2
i =

1
τ

[
w1

i − w0
i

]
, (10)

δx̂wk
i =

1
2h

[
wk

i+1 − wk
i−1

]
, δ2

xwk
i =

1
h

[
δxwk

i+1/2 − δxwk
i−1/2

]
, (11)

wk+σ
i = σwk+1

i + (1 − σ)wk
i , ∂t̂w

k
i =

1
2τ

[
(2σ + 1)wk+1

i − 4σwk
i + (2σ − 1)wk−1

i

]
. (12)

Moreover, denote κ1 = (q′1)
2/q1 − 1

2 q′′1 and κ2 = q1 − h2

12κ1. The compact operator acting on the
spatial variable is defined as [9],

Awi =

⎧⎨⎩wi +
h2

12

[
δ2

xwi − δx̂

(
q′1
q1

w
)

i

]
, i = 1, . . . , M − 1,

wi, i = 0, M.

Lemma 2.5 ([9]). Let g(x) ∈ C6[0, L], such that f (x) = ∂x(q1(x)g(x)), and then it holds

AFi = δx(κ2(x)δxG)i + O(h4),

where Fi = f (xi) and Gi = g(xi).

For any ν, w ∈ Wh, we define the following inner products

〈ν, w〉 = h

[
1
2

ν0w0 +
M−1

∑
i=1

νiwi +
1
2

νMwM

]
, 〈ν, w〉1 = h

M−1

∑
i=1

(δxwi+1/2)(δxνi+1/2),

〈ν, w〉κ2 = h
M−1

∑
i=1

κ2(xi+1/2)(δxwi+1/2)(δxνi+1/2), 〈w, ν〉A = 〈w, ν〉 − h2

12
〈w, ν〉.

and their corresponding norms and semi-norms

‖w‖2 = 〈w, w〉, |w|21 = 〈w, w〉1, ‖w‖2
A = 〈w, w〉A, |w|21,κ2

= 〈w, w〉κ2 , ‖w‖∞ = max
0≤i≤M

|wi|.

Furthermore, assume that the coefficients satisfy

b0 ≤ q1(x) ≤ b1, b2 ≤ κ2(x) ≤ b3,
∣∣∣∣ q′1
q1

∣∣∣∣ ≤ b3, (13)

where all bi are positive constants.

Lemma 2.6 ([25]). For any grid function w ∈ Ŵh, it holds that

‖w‖ ≤ L√
6
|w|1, ‖w‖∞ ≤

√
L

2
|w|1,

√
2
3
‖w‖ ≤ ‖w‖A ≤ ‖w‖ .

Lemma 2.7 ([26]). For any grid function w1, w2 ∈ Ŵh, it holds that

|〈Aw, w〉| ≥ ‖w‖2
A − c3h

12
‖w‖2 , |〈Aw1, w2〉| ≤

1
2

[
‖w1‖2

A + ‖w2‖2
A
]
+

c3h
24

[
‖w1‖2 + ‖w2‖2

]
.

Lemma 2.8 ([8]). For any h(t) ∈ C3[0, T] and γr ∈ (0, 1], 0 ≤ r ≤ m, such that γ0 > γ1 > · · · > γm,,
the L2 − 1σ formula has the following order of convergence
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m

∑
r=0

pr 0Dγr
t h(tk+σ) =

k

∑
n=0

(
m

∑
r=0

pr
τ−γr

Γ(2 − γr)
C(k+1,γr)

n

)
(h(tk−n+1)− h(tk−n)) +O(τ3−γ0) (14)

=
k

∑
n=0

Ĉ(k+1)
k−n [h(tn+1)− h(tn)] +O(τ3−γ0). (15)

Lemma 2.9 ([24]). For any h(t) ∈ C3[0, T], we can obtain

∂t̂h(tk) ∼=
1

2τ
[(2σ + 1)h(tk+1)− 4σh(tk) + (2σ − 1)h(tk−1)] (16)

=
∂h
∂t

(tk+σ) +O(τ2), k ≥ 1. (17)

Lemma 2.10 ([24]). Suppose that 〈·, ·〉∗ is an inner product on Ŵh and ‖·‖∗ is a norm deduced by the inner
product. For any grid functions w0, w1, . . . , wk+1 ∈ Ŵh, we have the following inequality〈

k

∑
n=0

Ĉ(k+1)
k−n

[
wn+1 − wn

]
, wk+σ

〉
∗
≥ 1

2

k

∑
n=0

Ĉ(k+1)
k−n

[∥∥∥wn+1
∥∥∥2

∗
− ‖wn‖2

∗

]
, (18)

〈
∂t̂w

k, wk+σ

〉
∗
≥ 1

4τ

(
E k+1 − E k

)
, (19)

where

E k+1 = (2σ + 1)
∥∥∥wk+1

∥∥∥2
− (2σ − 1)

∥∥∥wk
∥∥∥2

+ (2σ2 + σ − 1)
∥∥∥wk+1 − wk

∥∥∥2
, k ≥ 0.

Additionally, it holds that

E k+1 ≥ 1
σ

∥∥∥wk+1
∥∥∥2

, k ≥ 0.

Let us initiate by order reduction for system (6) by letting γr = αr − 1, (0 ≤ r ≤ M) and
V(x, t) = νt(x, t), then

∂αr ν(x, t)
∂tαr

=
∂γrV(x, t)

∂tγr
,

and so

∂t

(
∂

∂x

(
q1(x)

∂ν

∂x

))
=

∂

∂x

(
q1(x)

∂V
∂x

)
.

Subsequently, the equivalent system to (6) after order reduction can be formulated as

m

∑
r=0

pr
∂γrV(x, t)

∂tγr
=

∂

∂x

(
q1(x)

∂ν

∂x

)
+ f̃ (ν(x, t), ν(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (20a)

∂t

(
∂

∂x

(
q1(x)

∂ν

∂x

))
=

∂

∂x

(
q1(x)

∂V
∂x

)
, (20b)

with the following initial and boundary conditions

v(x, t) = r̂(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0), V(x, 0) = ψ̂(x), 0 ≤ x ≤ L, (20c)

v(0, t) = v(L, t) = 0, 0 < t ≤ T, (20d)

V(0, t) = V(L, t) = 0, 0 < t ≤ T. (20e)

2.2. Compact Difference Scheme Construction

Suppose that νt(x, t) = V(x, t) ∈ C6,4
x,t ([0, T]× [0, L]) , define the discretized functions

Vk
i = V(xi, tk), Vk

i = ν(xi, tk), 0 ≤ i ≤ M, 0 ≤ k ≤ N.
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Consider (20a) at (xi, tk+σ),, and then we get

m

∑
r=0

pr
∂γrV(xi, tk+σ)

∂tγr
=

∂

∂x

(
q1(xi)

∂ν(xi, tk+σ)

∂x

)
+ f̃ k+σ

i 0 < i < M, 0 ≤ k ≤ N − 1, (21)

such that
f̃ k
i = f̃ (ν(xi, tk), ν(xi, tk − s), xi, tk).

From Lemma 2.10, we conclude that

m

∑
r=0

pr
∂γrV(xi, tk+σ)

∂tγr
=

k

∑
n=0

Ĉk+1
k−n

(
Vn+1

i − Vn
i

)
+ O

(
τ3−γ0

)
, 0 < i < M, 0 ≤ k ≤ N − 1, (22)

and a direct expansion of Taylor type yields

f̃ k+σ
i = F̃k+σ

i + O
(

τ2
)

, (23)

such that

F̃k+σ
i = f̃

(
(σ + 1)Vk

i − σVk−1
i , σVk+1−n0

i + (1 − σ)Vk−n0
i , xi, tk+σ

)
. (24)

Acting the averaging operator A on both sides of (21), noticing Lemma 2.10 and using Taylor
expansion, we arrive at

k

∑
n=0

Ĉk+1
k−n

(
AVn+1

i −AVn
i

)
= A

[
∂

∂x

(
q1(xi)

∂ν(xi, tk+σ)

∂x

)]
+A f̃ k+σ

i 0 < i < M, 0 ≤ k ≤ N − 1, (25)

Next, by using Lemma 2.5 and (23), we obtain

k

∑
n=0

Ĉk+1
k−n

(
AVn+1

i −AVn
i

)
= δx (κ2δxV)k+σ

i +AF̃k+σ
i + Sk+σ

i , (26)

where a constant c̃0 exists in order that

|Sk+σ
i | ≤ c̃0

(
τ2 + h4

)
, 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1.

By considering (20b) at (xi, t1/2) and (xi, tk+σ), respectively, operating by A on both equations,
we obtain by the aids of Taylor expansions and Lemmas 2.5 and 2.9, which

δt

(
δx (κ2δxV)1/2

i

)
= δx (κ2δxV)1/2

i + s1/2
i , 1 ≤ i ≤ M − 1, (27)

∂t̂

(
δx (κ2δxV)k+σ

i

)
= δx (κ2δxV)k+σ

i + sk+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (28)

Moreover, there exists a constant c̃1 > 0, such that

|s1/2
i | ≤ c̃1(τ

2 + h4), 1 ≤ i ≤ M − 1, (29)

|sk+σ
i | ≤ c̃1(τ

2 + h4), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1. (30)

By omitting the small terms in (26)–(28) and noticing the initial and boundary conditions,
we construct a spatial fourth order difference scheme for problem (6), as follows
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k

∑
n=0

Ĉk+1
k−n

(
AVn+1

i −AVn
i

)
= δx (κ2δxν)k+σ

i +AF̃ k+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (31a)

δt

(
δx (κ2δxν)1/2

i

)
= δx (κ2δxV)1/2

i , 1 ≤ i ≤ M − 1, (31b)

∂t̂

(
δx (κ2δxν)k+σ

i

)
= δx (κ2δxV)k+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (31c)

νk
i = r̂k

i , 1 ≤ i ≤ M − 1, −n0 ≤ k ≤ 0, V0
i = ψ̂(xi), 1 ≤ i ≤ M − 1, (31d)

νk
0 = νk

M = 0, 0 ≤ k ≤ N, (31e)

V k
0 = V k

M = 0, 0 ≤ k ≤ N. (31f)

where

F̃ k+σ
i = f̃

(
(σ + 1) νk

i − σνk−1
i , σνk+1−n0

i + (1 − σ)νk−n0
i , xi, tk+σ

)
. (32)

3. The Stability and Convergence of the Constructed Difference Schemes

First, we will start with some technical lemmas, which will be helpful in the context of convergence
and stability.

The nonlinear delay term f̃ (μ, ν, x, t) is sufficiently smooth and it satisfies the Lipschitz condition

| f̃ (μ1, ν, x, t)− f̃ (μ2, ν, x, t)| ≤ c1|μ1 − μ2|, ∀μ1, μ2 ∈ [0, L]× [0, T], (33)

| f̃ (μ, ν1, x, t)− f̃ (μ, ν2, x, t)| ≤ c1|ν1 − ν2|, ∀ν1, ν2 ∈ [0, L]× [−τ, T], (34)

where c1 and c2 are two positive constants.

Lemma 3.1. For any Vk
i , Uk

i ∈ Ŵh, if we define εk
i = Vk

i − Uk
i , and also

F̃ k+σ
i = f̃

(
(σ + 1)Uk

i − σUk−1
i , σUk+1−n0

i + (1 − σ)Uk−n0
i , xi, tk+σ

)
, (35)

the following estimate is satisfied∥∥∥F̃k+σ
i − F̃ k+σ

i

∥∥∥2
≤ 4

[
2c2

1

(∥∥∥εk
i

∥∥∥2
+

∥∥∥εk−1
i

∥∥∥2
)
+ c2

2

(∥∥∥εk+1−n0
i

∥∥∥2
+

∥∥∥εk−n0
i

∥∥∥2
)]

. (36)

Proof. Recalling F̃k+σ
i from (24) and under the assumptions of the nonlinear delay term (33), we can

deduce the following estimate

|F̃k+σ
i − F̃ k+σ

i | ≤ c1|(σ + 1)εk
i − σεk−1

i |+ c2|σεk+1−n0
i + (1 − σ)εk−n0

i |, 1 ≤ i ≤ M − 1,

and so∥∥∥F̃k+σ
i − F̃ k+σ

i

∥∥∥2
≤ h

M−1

∑
i=1

(
c1|(σ + 1)εk

i − σεk−1
i |+ c2|σεk+1−n0

i + (1 − σ)εk−n0
i |

)2
(37)

≤ 2c2
1h

M−1

∑
i=1

[
|(σ + 1)εk

i − σεk−1
i |

]2
+ 2c2

2h
M−1

∑
i=1

[
|σεk+1−n0

i + (1 − σ)εk−n0
i |

]2
(38)

≤ 4
[

2c2
1

(∥∥∥εk
i

∥∥∥2
+

∥∥∥εk−1
i

∥∥∥2
)
+ c2

2

(∥∥∥εk+1−n0
i

∥∥∥2
+

∥∥∥εk−n0
i

∥∥∥2
)]

. (39)

For the convenience of our analysis, the following Grönwall inequality is recalled.
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Lemma 3.2. Suppose that {Hk | k ≥ 0} is a non negative sequence that satisfies

Hk+1 ≤ A + Bτ
k

∑
j=1

Hj, k = 0, 1, . . . ,

then
Hk+1 ≤ A exp(Bkτ), k = 0, 1, . . . ,

in which the positivity of the constants A and B must be taken into account.

Lemma 3.3. For any pk
i , qk

i ∈ Ŵh, the following estimates are satisfied

〈
δt

(
δx (κ2δx p)1/2

i

)
, −2σp1

i

〉
=

2σ

τ

⎡⎣∣∣∣p1
i

∣∣∣2
1,κ2

−
〈

p0
i , p1

i

〉
κ2

⎤⎦ , (40)

〈
δx (κ2δxq)1/2

i , −2σp1
i

〉
= σ

⎡⎣〈q1
i , p1

i

〉
κ2

+

〈
q0

i , p1
i

〉
κ2

⎤⎦ , (41)

〈
∂t̂

(
δx (κ2δx p)k+σ

i

)
, −pk+σ

i

〉
≥ 1

4τ

(
Ẽ k+1 − Ẽ k

)
, (42)〈

δx (κ2δxq)k+σ
i , −pk+σ

i

〉
= 〈qk+σ

i , pk+σ
i 〉κ2 . (43)

where

Ẽ k+1 = (2σ + 1)|wk+1|21,κ2
− (2σ − 1)|wk|21,κ2

+ (2σ2 + σ − 1)|wk+1 − wk|21,κ2
, k ≥ 0. (44)

Proof. Starting from the l.h.s of (40),〈
δt

(
δx (κ2δx p)1/2

i

)
, −2σp1

i

〉
=

−2σ

τ

〈
δx

(
(κ2δx p)1

i

)
− δx

(
(κ2δx p)0

i

)
, p1

i

〉
(45)

=
2σ

τ
h

M−1

∑
i=0

[
(κ2)i+1/2δx p1

i+1/2δx p1
i+1/2 − (κ2)i+1/2δx p0

i+1/2δx p1
i+1/2

]
, (46)

then the r.h.s of (40) is achieved directly. Additionally, starting from the l.h.s of (41),〈
δx (κ2δxq)1/2

i , −2σp1
i

〉
=

−2σ

2

〈
δx

(
(κ2δxq)1

i

)
+ δx

(
(κ2δxq)0

i

)
, p1

i

〉
(47)

= σh
M−1

∑
i=0

[
(κ2)i+1/2δxq1

i+1/2δx p1
i+1/2 + (κ2)i+1/2δxq0

i+1/2δx p1
i+1/2

]
, (48)

then the r.h.s of (41) is immediately held. Invoking the previous estimates and Lemma 2.10, we deduce〈
∂t̂

(
δx (κ2δx p)k+σ

i

)
, −pk+σ

i

〉
=

〈
∂t̂ pk+σ

i , pk+σ
i

〉
κ2

(49)

≥ 1
4τ

(
Ẽ k+1 − Ẽ k

)
, (50)

where Ẽ k+1 is defined by (44) and so (42) is achieved. The estimate (43) is simply calculated.
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Now, we are in a position to combine the Lemmas 3.1–3.3 to prove the convergence and stability
of the proposed compact difference scheme. To that end, Let

ρk
i = Vk

i − V k
i , ek

i = Vk
i − νk

i , 0 ≤ i ≤ M, 0 ≤ k ≤ N.

Subtracting (31) from (26)–(28), (20c)–(20e), respectively, we obtain the error equations, as follows

k

∑
n=0

Ĉk+1
k−n

(
Aρn+1

i −Aρn
i

)
= δx (κ2δxe)k+σ

i +A
(

F̃k+σ
i − F̃ k+σ

i

)
+ Sk+σ

i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (51a)

δt

(
δx (κ2δxe)1/2

i

)
= δx (κ2δxρ)1/2

i + s1/2
i , 1 ≤ i ≤ M − 1, (51b)

∂t̂

(
δx (κ2δxe)k+σ

i

)
= δx (κ2δxρ)k+σ

i + sk+σ
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (51c)

ek
i = 0, 1 ≤ i ≤ M − 1, −n0 ≤ k ≤ 0, ρ0

i = 0, 1 ≤ i ≤ M − 1, (51d)

ek
0 = ek

M = 0, 0 ≤ k ≤ N, (51e)

ρk
0 = ρk

M = 0, 0 ≤ k ≤ N. (51f)

Theorem 1. Assume that u(x, t) ∈ C6,4
x,t ([0, L]× [−τ, T]) is the smooth solution of (5) and {V k

i , νk
i |0 ≤ i ≤

M, −n0 ≤ k ≤ N} the numerical solution of the scheme (31). Subsequently, there exist positive constants h0

and τ0, independent of h and τ, such that, when h ≤ h0 and τ ≤ τ0, we have the error estimate

∥∥∥ek
∥∥∥

∞
≤ C1

(
τ2 + h4

)
, τ

k

∑
n=1

‖ρn‖ ≤ C1

(
τ2 + h4

)
, −n0 ≤ k ≤ N.

Proof. The proof will be preformed in two steps. Let us tackle the first one.
Step 1. When k = 0, the system (51) is as follows

Ĉ1
0

(
Aρ1

i −Aρ0
i

)
= σδx (κ2δxe)1

i + (1 − σ)δx (κ2δxe)0
i + Sσ

i , 1 ≤ i ≤ M − 1, (52a)

δt

(
δx (κ2δxe)1/2

i

)
= δx (κ2δxρ)1/2

i + s1/2
i , 1 ≤ i ≤ M − 1, (52b)

ek
i = 0, 1 ≤ i ≤ M − 1, −n0 ≤ k ≤ 0, ρ0

i = 0, 1 ≤ i ≤ M − 1, (52c)

e0
0 = e0

M = 0, (52d)

ρ0
0 = ρ0

M = 0. (52e)

Taking the inner product of (52a) with ρ1, we obtain

Ĉ1
0

∥∥∥ρ1
∥∥∥2

A
= Ĉ1

0〈Aρ0, ρ1〉+ 〈δx (κ2δxe)σ , ρ1〉+ 〈Sσ, ρ1〉

= Ĉ1
0〈Aρ0, ρ1〉+ 〈σδx (κ2δxe)1 + (1 − σ)δx (κ2δxe)0 , ρ1〉+ 〈Sσ, ρ1〉 (53)

= Ĉ1
0〈Aρ0, ρ1〉 − σ〈e1, ρ1〉κ2 + (1 − σ)〈δx (κ2δxe)0 , ρ1〉+ 〈Sσ, ρ1〉,

Taking the inner product of (52b) with −2σe1 and invoking Lemma 3.3, we arrive at

2σ

τ

∣∣∣e1
∣∣∣2
1,κ2

=
2σ

τ

〈
e0, e1

〉
κ2

+ σ

(〈
e1, ρ1

〉
κ2

+
〈

ρ0, e1
〉
κ2

)
− 2σ〈s1/2, e1〉. (54)

Adding (53) with (54) and using Young inequality and Lemma 2.6, we obtain
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2
3

Ĉ1
0

∥∥∥ρ1
∥∥∥2

+
2σ

τ

∣∣∣e1
∣∣∣2
1,κ2

≤ Ĉ1
0〈Aρ0, ρ1〉+ (1 − σ)〈δx (κ2δxe)0 , ρ1〉+ 〈Sσ, ρ1〉 (55)

+
2σ

τ

〈
e0, e1

〉
κ2

+ σ
〈

ρ0, e1
〉
κ2

− 2σ〈s1/2, e1〉

≤
[

2
9

Ĉ1
0

∥∥∥ρ1
∥∥∥2

+
9
8

Ĉ1
0

∥∥∥ρ0
∥∥∥2

]
+

[
2Ĉ1

0
9

∥∥∥ρ1
∥∥∥2

+
9(1 − σ)

8Ĉ1
0

∥∥∥δx (κ2δxe)0
∥∥∥2

]

+

[
2Ĉ1

0
9

∥∥∥ρ1
∥∥∥2

+
9

8Ĉ1
0
‖Sσ‖2

]
+

[
2σ

9τ

∣∣∣e1
∣∣∣2
1,κ2

+
9σ

2τ

∣∣∣e0
∣∣∣2
1,κ2

]
+

[
2σ

9τ

∣∣∣e1
∣∣∣2
1,κ2

+
9τσ

8

∣∣∣e0
∣∣∣2
1,κ2

]
+

[
2σ

9τ

∣∣∣e1
∣∣∣2
1,κ2

+
3στ

2
L2

∥∥∥s1/2
∥∥∥2

]
, (56)

after a simplification, we get∣∣∣e1
∣∣∣2
1,κ2

≤ 27τ

32σ
Ĉ1

0

∥∥∥ρ0
∥∥∥2

+
27τ(1 − σ)

32σĈ1
0

∥∥∥δx (κ2δxe)0
∥∥∥2

+
27τ

32σĈ1
0
‖Sσ‖2 +

27
8

∣∣∣e0
∣∣∣2
1,κ2

+
27τ2

32

∣∣∣e0
∣∣∣2
1,κ2

+
9τ2

8
L2

∥∥∥s1/2
∥∥∥2

, (57)

it follows from (52b) that

δx (κ2δxe)1
i = δx (κ2δxe)0

i + τδx (κ2δxρ)1/2
i + τs1/2

i , 1 ≤ i ≤ M − 1. (58)

Substituting (58) into (52a), we have

Ĉ1
0

(
Aρ1

i −Aρ0
i

)
=

[
τσδx (κ2δxρ)1/2

i + τs1/2
i

]
+ δx (κ2δxe)0

i + Sσ
i , 1 ≤ i ≤ M − 1. (59)

Taking the inner product of (59) with ρ1/2, we obtain

Ĉ1
0〈
(
Aρ1 −Aρ0

)
, ρ1/2〉 = −τσ

∣∣∣ρ1/2
∣∣∣2
1,κ2

+ 〈τσs1/2, ρ1/2〉+ 〈δx (κ2δxe)0 , ρ1/2〉 (60)

+ 〈Sσ, ρ1/2〉, (61)

By summation by parts and the Young inequality ab ≤ 1
2θ a2 + θ

2 b2, with θ = 3
Ĉ1

0
, this yields

Ĉ1
0

2

(∥∥∥ρ1
∥∥∥2

A
−

∥∥∥ρ0
∥∥∥2

A

)
= 〈δx (κ2δxe)0 , ρ1/2〉 − τσ

∣∣∣ρ1/2
∣∣∣2
1,κ2

+ 〈Sσ, ρ1/2〉+ 〈τσs1/2, ρ1/2〉

≤
[

3
2Ĉ1

0

∥∥∥δx (κ2δxe)0
∥∥∥2

+
Ĉ1

0
6

∥∥∥ρ1/2
∥∥∥2

]
+

[
3

2Ĉ1
0
‖Sσ‖2 +

Ĉ1
0

6

∥∥∥ρ1/2
∥∥∥2

]

+

[
3τ2σ2

2Ĉ1
0

∥∥∥s1/2
∥∥∥2

+
Ĉ1

0
6

∥∥∥ρ1/2
∥∥∥2

]

≤ Ĉ1
0

4

(∥∥∥ρ0
∥∥∥2

+
∥∥∥ρ1

∥∥∥2
)
+

3
2Ĉ1

0

∥∥∥δx (κ2δxe)0
∥∥∥2

+
3

2Ĉ1
0
‖Sσ‖2 +

3τ2σ2

2Ĉ1
0

∥∥∥s1/2
∥∥∥2

. (62)

Subsequently, by invoking Lemma 2.6 and some simple manipulations, we get

∥∥∥ρ1
∥∥∥2

≤ 9
∥∥∥ρ0

∥∥∥2
+

18(
Ĉ1

0
)2

∥∥∥δx (κ2δxe)0
∥∥∥2

+
18(

Ĉ1
0
)2 ‖Sσ‖2 +

18τ2σ2(
Ĉ1

0
)2

∥∥∥s1/2
∥∥∥2

. (63)

Step 2. When k ≥ 1, we take the inner product of (51a) with ρk+σ and obtain
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〈
k

∑
n=0

Ĉk+1
k−n

(
Aρn+1 −Aρn

)
, ρk+σ

〉
= 〈δx (κ2δxe)k+σ , ρk+σ〉

+ 〈A
(

F̃k+σ − F̃ k+σ
)

, ρk+σ〉+ 〈Sk+σ, ρk+σ〉, 1 ≤ k ≤ N − 1. (64)

By Lemmas 2.4 and 2.10, we deduce for 1 ≤ k ≤ N − 1,

〈
k

∑
n=0

Ĉk+1
k−n

(
Aρn+1 −Aρn

)
, ρk+σ

〉
≥ 1

2

k

∑
n=0

Ĉk+1
k−n

[∥∥∥ρn+1
∥∥∥2

A
− ‖ρn‖2

A

]

=
1
2

(
k+1

∑
n=1

Ĉk+1
k−n+1 ‖ρn‖2

A −
k

∑
n=1

Ĉk
k−n ‖ρn‖2

A − b̂k

∥∥∥ρ1
∥∥∥2

A
− Ĉk+1

k

∥∥∥ρ0
∥∥∥2

A

)
. (65)

Young inequality is used for any θ > 0 to yield∣∣∣∣∣〈Sk+σ, ρk+σ〉
∣∣∣∣∣ ≤ θ

∥∥∥ρk+σ
∥∥∥2

+
1
4θ

∥∥∥Sk+σ
∥∥∥2

. (66)

Using Lemma 3.1 and also Young inequality, this gives

〈A
(

F̃k+σ − F̃ k+σ
)

, ρk+σ〉 ≤ θ
∥∥∥ρk+σ

∥∥∥2
+

1
4θ

∥∥∥F̃k+σ − F̃ k+σ
∥∥∥2

A

≤ θ

2

∥∥∥ρk+σ
∥∥∥2

+
1
2θ

[
2c2

1

(∥∥∥ρk
∥∥∥2

+
∥∥∥ρk−1

∥∥∥2
)
+ c2

2

(∥∥∥ρk+1−n0

∥∥∥2
+

∥∥∥ρk−n0

∥∥∥2
)]

. (67)

Substituting (65)–(67) in (64), we get, for all 1 ≤ k ≤ N − 1,

1
2

(
k+1

∑
n=1

Ĉk+1
k−n+1 ‖ρn‖2

A −
k

∑
n=1

Ĉk
k−n ‖ρn‖2

A − b̂k

∥∥∥ρ1
∥∥∥2

A
− Ĉk+1

k

∥∥∥ρ0
∥∥∥2

A

)

≤ 〈δx (κ2δxe)k+σ , ρk+σ〉+ θ
∥∥∥ρk+σ

∥∥∥2
+

1
4θ

∥∥∥Sk+σ
∥∥∥2

+
θ

2

∥∥∥ρk+σ
∥∥∥2

+
1
2θ

[
2c2

1

(∥∥∥ρk
∥∥∥2

+
∥∥∥ρk−1

∥∥∥2
)
+ c2

2

(∥∥∥ρk+1−n0
∥∥∥2

+
∥∥∥ρk−n0

∥∥∥2
)]

. (68)

Taking the inner product of (51c) with −ek+σ, we obtain

−
〈

∂t̂

(
δx (κ2δxe)k+σ

)
, ek+σ

〉
= −

〈
δx (κ2δxρ)k+σ , ek+σ

〉
−

〈
sk+σ, ek+σ

〉
, 1 ≤ k ≤ N − 1. (69)

For the l.h.s of (69), after recalling Lemmas 2.10 and 3.3, we get

−
〈

∂t̂

(
δx (κ2δxe)k+σ

)
, ek+σ

〉
≥ 1

4τ

(
Ẽ k+1 − Ẽ k

)
, 1 ≤ k ≤ N − 1, (70)

such that

Ẽ k+1 = (2σ + 1)|ek+1|21,κ2
− (2σ − 1)|ek|21,κ2

+ (2σ2 + σ − 1)|ek+1 − ek|21,κ2
, k ≥ 0,

and additionally,

Ẽ k+1 ≥ 1
σ
|ek+1|21,κ2

, k ≥ 0. (71)
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By the Cauchy–Schwarz inequality, we have∣∣∣∣∣−
〈

sk+σ, ek+σ

〉∣∣∣∣∣ ≤ 1
2

∥∥∥ek+σ
∥∥∥2

+
1
2

∥∥∥sk+σ
∥∥∥2

, 1 ≤ k ≤ N − 1, (72)

so plugging (70) and (72) into (69), this gives

1
4τ

(
Ẽ k+1 − Ẽ k

)
≤ −

〈
δx (κ2δxρ)k+σ , ek+σ

〉
+

1
2

∥∥∥ek+σ
∥∥∥2

+
1
2

∥∥∥sk+σ
∥∥∥2

, 1 ≤ k ≤ N − 1. (73)

Adding (68) and (73), we obtain

1
2

(
k+1

∑
n=1

Ĉk+1
k−n+1 ‖ρn‖2

A −
k

∑
n=1

Ĉk
k−n ‖ρn‖2

A − b̂k

∥∥∥ρ1
∥∥∥2

A
− Ĉk+1

k

∥∥∥ρ0
∥∥∥2

A

)
+

1
4τ

(
Ẽ k+1 − Ẽ k

)
≤ 1

2

∥∥∥ek+σ
∥∥∥2

+
1
2

∥∥∥sk+σ
∥∥∥2

+ θ
∥∥∥ρk+σ

∥∥∥2
+

1
4θ

∥∥∥Sk+σ
∥∥∥2

+
θ

2

∥∥∥ρk+σ
∥∥∥2

+
1
2θ

[
2c2

1

(∥∥∥ρk
∥∥∥2

+
∥∥∥ρk−1

∥∥∥2
)
+ c2

2

(∥∥∥ρk+1−n0

∥∥∥2
+

∥∥∥ρk−n0

∥∥∥2
)]

.

Now, multiply both sides of (74) by 4τ, use Lemma 2.6 and do some arrangements, we then have

2τ
k+1

∑
n=1

Ĉk+1
k−n+1 ‖ρn‖2

A + Ẽ k+1 ≤ 2τ

(
k

∑
n=1

Ĉk
k−n ‖ρn‖2

A

))
+ Ẽ k + 2τ

(
b̂k

∥∥∥ρ1
∥∥∥2

+ Ĉk+1
k

∥∥∥ρ0
∥∥∥2

)
+

4τ

2

∥∥∥ek+σ
∥∥∥2

+
4τ

2

∥∥∥sk+σ
∥∥∥2

+
4τ

4θ

∥∥∥Sk+σ
∥∥∥2

+ 2τ(1 + 2θ)
∥∥∥ρk+σ

∥∥∥2
(74)

+
4τ

2

[
2c2

1

(∥∥∥ρk
∥∥∥2

+
∥∥∥ρk−1

∥∥∥2
)
+ c2

2

(∥∥∥ρk+1−n0

∥∥∥2
+

∥∥∥ρk−n0

∥∥∥2
)]

.

Denote Hk+1 = 2τ ∑k+1
n=1 Ĉk+1

k−n+1 ‖ρn‖2
A + Ẽ k+1,, we can write

Hk+1 ≤ Hk + 2τ

(
b̂k

∥∥∥ρ1
∥∥∥2

+ Ĉk+1
k

∥∥∥ρ0
∥∥∥2

)
+

4τ

2

∥∥∥ek+σ
∥∥∥2

+
4τ

2

∥∥∥sk+σ
∥∥∥2

+
4τ

4θ

∥∥∥Sk+σ
∥∥∥2

+ 8τθ
∥∥∥ρk+σ

∥∥∥2
+

4τ

θ

[
2c2

1

(∥∥∥ρk
∥∥∥2

+
∥∥∥ρk−1

∥∥∥2
)
+ c2

2

(∥∥∥ρk+1−n0
∥∥∥2

+
∥∥∥ρk−n0

∥∥∥2
)]

≤ H1 + 2τ

(
k

∑
n=1

b̂n

∥∥∥ρ1
∥∥∥2

+
k

∑
n=1

Ĉk+1
n

∥∥∥ρ0
∥∥∥2

)
+

8τ

2

k+1

∑
n=1

‖en‖2 +
4τ

2

k

∑
n=1

∥∥sn+σ
∥∥2 (75)

+
4τ

4θ

k

∑
n=1

∥∥Sn+σ
∥∥2

+ 4τ(1 + 2θ)
k+1

∑
n=1

‖ρn‖2 +
4τ

2

k

∑
n=1

[
2c2

1

(
‖ρn‖2 +

∥∥∥ρn−1
∥∥∥2

)

+ c2
2

(∥∥∥ρn+1−n0
∥∥∥2

+
∥∥ρn−n0

∥∥2
)]

, 1 ≤ k ≤ N − 1.

From (71) and Lemma 2.4,

Hk+1 ≥ τ
m

∑
r=0

pr
(1 − γr)T−γr

Γ(2 − γr)
(k + σ)1−γr

k+1

∑
n=1

‖ρn‖2
A +

1
σ
|ek+1|21,κ2

, 1 ≤ k ≤ N − 1, (76)

H1 = 2τĈ1
0

∥∥∥ρ1
∥∥∥2

A
+ E1 ≤ 2τĈ1

0

∥∥∥ρ1
∥∥∥2

+ (2σ + 1)|e1|21,κ2
+ (2σ2 + σ − 1)|e1|21,κ2

. (77)
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Inserting the above two inequalities into (76) and considering

c := max{c1, c2}, A :=
2
3

m

∑
r=0

pr
(1 − γr)T−γr

Γ(2 − γr)
(k + σ)1−γr ,

yields

1
σ
|ek+1|21,κ2

+ τA
k+1

∑
n=1

‖ρn‖2 ≤ 2τĈ1
0

∥∥∥ρ1
∥∥∥2

+ (2σ2 + 3σ)|e1|21,κ2

+ 2τ

(
k

∑
n=1

b̂n

∥∥∥ρ1
∥∥∥2

+
k

∑
n=1

Ĉk+1
n

∥∥∥ρ0
∥∥∥2

)
+ 4τ

k+1

∑
n=1

‖en‖2 + 2τ
k

∑
n=1

∥∥sn+σ
∥∥2

+
τ

θ

k

∑
n=1

∥∥Sn+σ
∥∥2

+ 4τ(1 + 2θ + 3c2)
k+1

∑
n=1

‖ρn‖2 .

By choosing θ to achieve A ≥ 4(1 + 2θ + 3c2), invoking (57), (63), and denoting

Gk+1 := 2τ

(
Ĉ1

0 +
k

∑
n=1

b̂n

)[
9
∥∥∥ρ0

∥∥∥2
+

18(
Ĉ1

0
)2

∥∥∥δx (κ2δxe)0
∥∥∥2

+
18(

Ĉ1
0
)2 ‖Sσ‖2 +

18τ2σ2(
Ĉ1

0
)2

∥∥∥s1/2
∥∥∥2

]

+ (2σ2 + 3σ)

[
27τ

32σ
Ĉ1

0

∥∥∥ρ0
∥∥∥2

+
27τ(1 − σ)

32σĈ1
0

∥∥∥δx (κ2δxe)0
∥∥∥2

+
27τ

32σĈ1
0
‖Sσ‖2 +

27
8

∣∣∣e0
∣∣∣2
1,κ2

(78)

+
27τ2

32

∣∣∣e0
∣∣∣2
1,κ2

+
9τ2

8
L2

∥∥∥s1/2
∥∥∥2

]
+ 2τ

k

∑
n=1

Ĉk+1
n

∥∥∥ρ0
∥∥∥2

+ 2τ
k

∑
n=1

∥∥sn+σ
∥∥2

+
τ

θ

k

∑
n=1

∥∥Sn+σ
∥∥2 ,

we obtain directly after following the assumptions (13),

|ek+1|21 ≤ 1
b2

|ek+1|21,κ2
≤ 4τσ

b2

k+1

∑
n=1

‖en‖2 +
σ

b2
Gk+1, 1 ≤ k ≤ N − 1, (79)

invoking Lemma 2.6 gives

|ek+1|21 ≤ 2τL2σ

3b2

k+1

∑
n=1

|en|21 +
σ

b2
Gk+1, 1 ≤ k ≤ N − 1, (80)

applying Grönwall Lemma 3.2 yields

|ek+1|21 ≤ σ

b2
exp

(
4L2σ

3b2

)
Gk+1, 1 ≤ k ≤ N − 1. (81)

Accordingly, the proof is completed.

4. Almost Unconditional Stability

To discuss the stability of the compact difference scheme (31), we also use the discrete energy
method. Let {V̄ k

i , ν̄k
i |0 ≤ i ≤ M, −n0 ≤ k ≤ N} be the solution of
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k

∑
n=0

Ĉk+1
k−n

(
AV̄n+1

i −AV̄n
i

)
= δx (κ2δx ν̄)k+σ

i +AF̃k+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (82a)

δt

(
δx (κ2δx ν̄)1/2

i

)
= δx (κ2δx ν̄)1/2

i , 1 ≤ i ≤ M − 1, (82b)

∂t̂

(
δx (κ2δx ν̄)k+σ

i

)
= δx (κ2δx ν̄)k+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (82c)

ν̄k
i = r̂k

i + �k
i , 1 ≤ i ≤ M − 1, −n0 ≤ k ≤ 0, ν̄0

i = ψ̂(xi), 1 ≤ i ≤ M − 1, (82d)

ν̄k
0 = ν̄k

M = 0, 0 ≤ k ≤ N, (82e)

V̄ k
0 = V̄ k

M = 0, 0 ≤ k ≤ N, (82f)

where

F̃k+σ
i = f̃

(
(σ + 1) ν̄k

i − σν̄k−1
i , σν̄k+1−n0

i + (1 − σ)ν̄k−n0
i , xi, tk+σ

)
. (83)

where �k
i denotes an initial perturbation term that is very small.

Theorem 2. Let ρ̄k
i = V̄ k

i − V k
i , ēk

i = ν̄k
i − νk

i , for 0 ≤ i ≤ M,−n0 ≤ k ≤ N. Subsequently, there exist
constants c4, c5, h0, τ0 that fulfill

∥∥∥ēk
∥∥∥

∞
≤ c4

0

∑
k=−n

∥∥∥�k
∥∥∥ , 0 ≤ k ≤ N,

conditioned by
h ≤ h0, τ ≤ τ0, max

−n≤k≤0
0≤i≤M

∣∣∣ēk
i

∣∣∣ ≤ c5.

Proof. The perturbation equations in terms of ρ̄k
i and ēk

i come by subtracting (82) from (31) and similar
to the proof of Theorem 1, the conclusion of stability holds immediately.

5. Generalized Scheme for the Distributed Order Case

We are now in a position to consider the distributed order form of dmfCDWEs, which means that

∫ 2

1
ω(α)

∂αu(x, t)
∂tα

dα =
∂

∂x

(
q1(x)

∂u
∂x

)
+ q2(x)

∂u
∂x

+ f (u(x, t), u(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (84a)

with the following initial and boundary conditions

u(x, t) = d(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0),
∂u(x, 0)

∂t
= ψ(x) = lim

t→−0

∂d(x, t)
∂t

, (84b)

u(0, t) = φ0(t), u(L, t) = φL(t), 0 < t ≤ T, (84c)

Following the same manipulations illustrated before; starting from an exponential transformation
technique, then a transformation to zero Dirichlet boundary conditions, we obtain the following system

∫ 2

1
ω(α)

∂αν(x, t)
∂tα

dα =
∂

∂x

(
q1(x)

∂ν

∂x

)
+ f̃ (ν(x, t), ν(x, t − s), x, t), 0 < t ≤ T, 0 ≤ x ≤ L, (85a)

with the initial and boundary conditions as

v(x, t) = r̂(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0),
∂v(x, 0)

∂t
= ψ̂(x) = lim

t→−0

∂r(x, t)
∂t

, (85b)

v(0, t) = v(L, t) = 0, t > 0. (85c)
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A numerical quadrature rule can be adapted to transform the system (85) to dmfCDWEs. We recall
Simpson’s rule (also known as the three-point Newton–Cotes quadrature rule), a proof of which can
be found in any descent textbook.

Lemma 5.1. Consider an equidistant partition of the interval [1, 2] into 2J subintervals, let Δα = 1
2J and

denote αl = 1 + l Δα, 0 ≤ l ≤ 2J. Subsequently, the composite Simpson’s rule reads

∫ 2

1
f (α)dα = Δα

2J

∑
l=0

γl f (αl)−
(Δα)4

180
f (4)(ζ), ζ ∈ [1, 2], (86)

where

γl =

⎧⎪⎪⎨⎪⎪⎩
1
3 , l = 0, 2J,
2
3 , l = 2, 4, . . . , 2J − 4, 2J − 2,
4
3 , l = 1, 3, . . . , 2J − 3, 2J − 1.

Define the function G(· ; xi, tj) : α �→ ω(α)
∂αv(xi ,tj)

∂tα . Suppose that G(α) ∈ C4([1, 2]), then by using
Lemma 5.1, we approximate the distributed derivative as

∫ 2

1
ω(α)

∂αv(xi, tk+σ)

∂tα
dα = Δα

2J

∑
l=0

γl ω(αl)
C
0 Dαl

t v(xi, tk−1/2)−
(Δα)4

180
G(4)(α; xi, tk+σ)

∣∣∣∣
α=ζk

i

,

= Δα
2J

∑
l=0

γlω(αl)
C
0 Dαl

t v(xi, tk+σ) + O (Δα)4 , (87)

for a ζk
i ∈ [1, 2]. Define

ˆ̄C(k+1)
n = Δα

2J

∑
l=0

γlω(αl)
τ−γl

Γ(2 − γl)
C(k+1,γl)

n , n = 0, 1, . . . , k,

then the constructed compact difference scheme has the following form

k

∑
n=0

ˆ̄Ck+1
k−n

(
AVn+1

i −AVn
i

)
= δx (κ2δxν)k+σ

i +AF̃ k+σ
i , 1 ≤ i ≤ M − 1, 0 ≤ k ≤ N − 1, (88a)

δt

(
δx (κ2δxν)1/2

i

)
= δx (κ2δxV)1/2

i , 1 ≤ i ≤ M − 1, (88b)

∂t̂

(
δx (κ2δxν)k+σ

i

)
= δx (κ2δxV)k+σ

i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N − 1, (88c)

νk
i = r̂k

i , 1 ≤ i ≤ M − 1, −n0 ≤ k ≤ 0, V0
i = ψ̂(xi), 1 ≤ i ≤ M − 1, (88d)

νk
0 = νk

M = 0, 0 ≤ k ≤ N, (88e)

V k
0 = V k

M = 0, 0 ≤ k ≤ N. (88f)

Remark 1. The local truncation error of the compact difference scheme (88) for the distributed order
system (85) is of order O

(
τ2 + h4 + (Δα)4

)
. The convergence and stability estimates can be derived

in the same manner as in Theorem 1 and Theorem 2.

6. Numerical Illustration

The purpose of the present section is to demonstrate the convergence rate of the method. We will
consider the maximum absolute error between the exact solution u(xi, tk) of the continuous problem
and corresponding approximations uk

i , which is given by

ετ,h = max
0≤i≤M, 0≤k≤N

|u(xi, tn)− un
i |. (89)
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Moreover, we define the standard rates

ρx
τ,h = log2

(
ετ,2h

ετ,h

)
, & &ρt

τ,h = log2

(
ε2τ,h

ετ,h

)
. (90)

We consider the following multiterm time fractional delay sup-diffusion problem

2

∑
r=0

pr
∂αr u(x, t)

∂tαr
=

(x + 1)
2

∂2u
∂x2 + (x + 1)2 ∂u

∂x
+ f (u(x, t), u(x, t − 0.2), x, t), (91)

f (u(x, t), u(x, t − 0.2), x, t) = −u2(t, x) + u(t − 0.2, x) + g(x, t), ∀(x, t) ∈ [0, 1]× [0, 1]. (92)

Note that g(x, t) is defined/derived, such that u(x, t) = exx2(1 − x)2t3 is the exact solution. The exact
solution determines the initial condition and boundary conditions. The difference scheme (31) is
employed in order to obtain the numerical solution. First, the numerical accuracy of this scheme in
time will be verified. Taking a sufficiently small step size h and varying step size τ, the numerical
errors and numerical convergence orders are listed in the lower half of Table 1. The computational
results presented in Table 1 confirm the second-order convergence of the difference scheme (31) in time.

Table 1. Absolute errors and standard convergence rates in space and time when approximating
the solution u of (1) with (α1 = 1.3, α2 = 1.5, α3 = 1.7), while using the difference method (31).
The parameters and conditions employed in this case correspond to those in Example 6.

Spatial Analysis of Convergence

(p0 = 1, p1 = 1.25, p2 = 2) (p0 = 2, p1 = 1.75, p2 = 1)

τ h ετ,h ρx
τ,h ετ,h ρx

τ,h

0.001

0.02 × 2−1 1.877 × 10−3 − 4.179 × 10−4 −
0.02 × 2−2 1.388 × 10−4 3.765 2.676 × 10−5 3.965
0.02 × 2−3 9.733 × 10−6 3.834 1.697 × 10−6 3.979
0.02 × 2−4 6.306 × 10−7 3.948 1.066 × 10−7 3.992

0.0005

0.02 × 2−1 2.480 × 10−4 − 6.981 × 10−5 −
0.02 × 2−2 1.601 × 10−5 3.953 4.430 × 10−6 3.978
0.02 × 2−3 1.016 × 10−6 3.978 2.791 × 10−7 3.988
0.02 × 2−4 6.399 × 10−8 3.989 1.750 × 10−8 3.995

Temporal Analysis of Convergence

(p0 = 1, p1 = 1.25, p2 = 2) (p0 = 2, p1 = 1.75, p2 = 1)

h τ ετ,h ρt
τ,h ετ,h ρt

τ,h

0.005

0.01 × 2−1 3.357 × 10−4 − 7.278 × 10−5 −
0.01 × 2−2 9.152 × 10−5 1.875 1.842 × 10−5 1.984
0.01 × 2−3 2.395 × 10−5 1.934 4.640 × 10−6 1.989
0.01 × 2−4 7.450 × 10−6 1.978 1.164 × 10−6 1.995

0.001

0.01 × 2−1 9.375 × 10−5 − 5.378 × 10−6 −
0.01 × 2−2 2.472 × 10−5 1.923 1.359 × 10−6 1.987
0.01 × 2−3 6.366 × 10−6 1.964 3.409 × 10−7 1.994
0.01 × 2−4 1.592 × 10−6 1.993 8.534 × 10−8 1.998

Next, the numerical accuracy of the difference scheme in space for solving this example is
examined. The numerical results of this scheme for different step sizes in space are calculated and the
numerical errors, as well as the numerical convergence orders are recorded in the upper half of Table 1.
Again, from which, one can find that, in this case the fourth-order convergence is achieved.
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7. Conclusions

A linearized difference scheme for solving a class of dmfCDWEs is constructed. With the
help of an easy to execute and invertible exponential transformation, the considered problem can
be converted into the delay variable coefficient fractional diffusion wave equation equivalently.
Subsequently, we establish a fourth-order accurate numerical scheme that is based on a variable
coefficient compact operator and with a temporal second order of convergence at a super-convergent
point. The convergence and stability of the current numerical scheme are proved at length and a
numerical example is finally added for the sake of demonstrating the theoretical findings.
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Abstract: The dynamic behavior of n-firm oligopolies is examined without product differentiation
and with linear price and cost functions. Continuous time scales are assumed with best response
dynamics, in which case the equilibrium is asymptotically stable without delays. The firms are
assumed to face both implementation and information delays. If the delays are equal, then the model
is a single delay case, and the equilibrium is oscillatory stable if the delay is small, at the threshold
stability is lost by Hopf bifurcation with cyclic behavior, and for larger delays, the trajectories show
expanding cycles. In the case of the non-equal delays, the stability switching curves are constructed
and the directions of stability switches are determined. In the case of growth rate dynamics, the local
behavior of the trajectories is similar to that of the best response dynamics. Simulation studies verify
and illustrate the theoretical findings.

Keywords: implementation delay; information delay; stability switching curve; Cournot oligopoly;
growth rate dynamics

1. Introduction

Examining oligopoly models is a very frequently studied research area in mathematical economics.
Based on the pioneering work of Cournot [1], many researchers were devoted to this interesting and
challenging model and its variants and extensions. One frequently studied extension is obtained by
considering the dynamic behavior of the firms. These models can be divided into several categories
including linear and nonlinear models, discrete and continuous time scales, best response, and gradient
adjustments. For discrete time scales Theocharis [2] showed that the equilibrium of n-firm linear
oligopolies without product differentiation is asymptotically stable if n = 2, marginally stable if
n = 3 and unstable if n > 3. For continuous time scales, McManus and Quandt [3] showed that
the equilibrium is always asymptotically stable in the linear case regardless of the values of the
positive speeds of adjustments. These classical results already indicated that the dynamic properties
of the equilibrium strongly depends on the selection of time scales. Several generalizations and
extensions were then introduced and studied in the literature. The early results up to the mid-70s
are summarized in Okuguchi [4] and their multiproduct generalizations are presented in Okuguchi
and Szidarovszky [5]. Different aspects of the classical Theocharis model were then examined by
several authors including Canovas et al. [6], Hommes et al. [7], Lampart [8], Puu [9,10], Matsumoto
and Szidarovszky [11] among others. Nonlinear models are discussed in Bischi et al. [12] and their
extensions including delays are examined in Matsumoto and Szidarovszky [13].

In this paper, we reconsider the classical Theocharis model by examining the dynamic behavior
of linear n-firm oligopolies without product differentiation and with the additional assumption that
the firms face both implementation and information delays. As it is well known that in the linear case
best response and gradient adjustment processes are equivalent with different speeds of adjustments,
we deal only with best response dynamics. It is assumed that the firms face equal delays in both types.
If the implementation and information delays are equal, then the model is equivalent with a single delay

Mathematics 2020, 8, 1615; doi:10.3390/math8091615 www.mdpi.com/journal/mathematics71
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case mathematically. In this case, we show that the equilibrium is oscillatory asymptotically stable if the
common delay is sufficiently small, at the threshold Hopf bifurcation occurs with cyclic and for larger
delays expanding cyclic trajectories. If the delays are different, then a two-delay model is obtained.
The stability switching curves are first constructed and then the directions of stability switches are
determined. Growth rate dynamics result in nonlinear systems, their local linearizations around the
equilibrium result in linear dynamics, that is equivalent to the best response case. So the local dynamics
of the two systems are equivalent. Simulation studies verify and illustrate the theoretical findings of
the paper. Even in the very special case of linear models, our analysis discovered several aspects of the
dynamics which were not studied in the literature before. The importance of examining linear models is
verified in addition to the fact that linearized nonlinear models have the same mathematical structures.

This paper develops as follows. Section 3 introduces the best response dynamics. First stability
switching curves are constructed and then the case of equal delays is discussed in detail. Growth rate
dynamics are introduced in Section 4. First, the stability switching curves are shown and then the
directions of stability switches are determined. In both sections, numerical results and simulation
studies verify and illustrate the theoretical results. Section 5 offers conclusions and outlines further
research directions.

2. Model

The classical oligopoly model is presented reconsidering the classical results of Theocharis [2]
and McManus and Quandt [3]. In the model, n firms are producing a homogeneous output. The price
function is assumed to be linear,

p = a − b
n

∑
j=1

xj

where a > 0 is the maximum price, b > 0 is the slope of the price function and xj is firm j’s output.
The production cost is also assumed to be linear with no fixed cost. The marginal cost of firm j is
denoted by cj, being positive. The profit function of firm i is defined by

πi =

(
a − b

n

∑
j=1

xj

)
xi − cixi.

Under the Cournot competition, the firms decide how much to produce. As we focus only on
interior solutions (If the optimal output level of a firm is zero, then the firm leaves the industry, so we
can igonore such firms), the first-order condition of firm i for profit maximization is

∂πi
∂xi

= a − 2bxi − b
n

∑
j �=i

xj − ci = 0

and the second-order condition is satisfied,

∂2πi

∂x2
i

= −2b < 0.

The best reply function is obtained through the first-order condition and depends on the choices
of other firms,

x∗
i =

a − ci − b ∑n
j �=i xj

2b
.

Let us introduce a new notation,

αi =
a − ci

2b
, β =

1
2

and Q =
n

∑
j=1

xj
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and make the conventional assumption:

Assumption 1. ci = c for all i and a > c.

Assumption 1 implies αi = α > 0 for all i. As each firm makes an optimal choice at the Cournot
equilibrium, its best reply function is written as

x∗
i =

α − βQ∗

1 − β
.

The aggregate output of all firms is obtained by adding the individual outputs,

Q∗ =
n

∑
i=1

x∗
i = n

α − βQ∗

1 − β

that is solved for Q∗ to have
Q∗ =

nα

1 + (n − 1) β
.

Substituting Q∗ into the best reply gives the individual output values at the Cournot equilibrium,

xe
i =

α

1 + (n − 1) β
for i = 1, 2, ..., n.

3. Best Reply Dynamics

Dynamic interpretation of the oligopoly model depends on how to define a learning process on
how each firm observes its competitors’ choices. Theocharis (1960) constructs the best reply dynamics
with naive expectations in discrete time scales,

xi(t + 1) = α − β
n

∑
j �=i

xj(t)

where the adjustment to the optimal output in each period is perfect. His provocative result shows that
the stability of the Cournot equilibrium is determined only by the number of the firms in an industry
as mentioned in the Introduction. McManus and Quandt (1961) makes two reasonable modifications
of Theocharis’ assumptions: the discrete-time scales are replaced with continuous-time scales and the
imperfect adjustment assumption is adopted in which the direction of output change is proportional
to the discrepancy between the optimal and actual values,

ẋi(t) = ki

[
α − β

n

∑
j �=i

xj(t)− xi(t)

]
with ki > 0.

It is demonstrated that the Cournot equilibrium is always stable when the adjustment speeds are
the same (i.e., ki = k). Their result is in sharp contrast to Theocharis’ result. We also note that this
result remains true if all adjustment speeds are positive.

3.1. Stability Switching

In this study, we move one step forward from the McManus and Quandt model and introduce
implementation delays (i.e., τ1 > 0) on the firm’s own production and information delays (τ2 > 0) on
the competitors’ productions,

ẋi(t) = k

[
α − β

n

∑
j �=i

xj(t − τ2)− xi(t − τ1)

]
for i = 1, 2, ..., n. (1)

73



Mathematics 2020, 8, 1615

Notice that dynamic system (1) has the Cournot equilibrium as the steady-state and its
homogeneous part is

ẋi(t) = k

[
−xi(t − τ1)− β

n

∑
j �=i

xj(t − τ2)

]
for i = 1, 2, ..., n. (2)

The characteristic equation is

ϕ(λ) =

⎛⎜⎜⎜⎝
λ + ke−λτ1 kβe−λτ2 · · · kβe−λτ2

kβe−λτ2 λ + ke−λτ1 · · · kβe−λτ2

· · · · · · · ·
kβe−λτ2 kβe−λτ2 · · · λ + ke−λτ1

⎞⎟⎟⎟⎠ = 0.

With new notation,

D = diag
(

λ + ke−λτ1 − kβe−λτ2 , ..., λ + ke−λτ1 − kβe−λτ2
)
(n,n)

a =
(

kβe−λτ2
)
(n,1)

and b = (1)(n,1),

the characteristic equation can be written as

ϕ(λ) = det
(

D + abT
)

,

= det D det
(

I + D−1abT
)

,

= det D
[
1 + bT D−1a

]
.

Hence

ϕ(λ) =
[
λ + ke−λτ1 − kβe−λτ2

]n
[

1 +
nkβe−λτ2

λ + ke−λτ1 − kβe−λτ2

]
=

(
λ + ke−λτ1 − kβe−λτ2

)n−1 (
λ + ke−λτ1 + kβ(n − 1)e−λτ2

)
.

It follows that we have two possibilities to solve ϕ(λ) = 0,

(i) λ + ke−λτ1 − kβe−λτ2 = 0,

(ii) λ + ke−λτ1 + kβ(n − 1)e−λτ2 = 0.

Without delays τ1 = τ2 = 0, the eigenvalues are negative,

λ1 = −k(1 − β) < 0 and λ2 = −k [1 + β(n − 1)] < 0,

implying that the equilibrium is asymptotically stable.
For positive delays, we follow the method discussed in Matsumoto and Szidarovszky [13] based

on Gu et al. [14]. Consider equation (i) first. As λ = 0 does not solve equation (i), it can be rewritten as

1 + a1(λ)e−λτ1 + a2(λ)e−λτ2 = 0 (3)

where
a1(λ) =

k
λ

and a2(λ) = − kβ

λ
.

Equation (3) must have a pair of pure imaginary solutions when a stability switch occurs. Hence let
λ = iω with ω > 0 (It is possible to take its conjugate with ω < 0. Even so, we can arrive at the same
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result.) and we may consider the three terms in (3) as three vectors in the complex plane with the
magnitudes 1, |a1(iω)| and |a2(iω)|, respectively. Equation (3) means that if we put these vectors head
to tail, they form a triangle with the internal angles θ1 and θ2 as illustrated in Figure 1.

Figure 1. Triangle conditions.

These vectors form a triangle if and only if the sum of the lengths of any two adjacent line
segments is not shorter than the length of the remaining line segment:

|a1(iω)|+ |a2(iω)| ≥ 1

and
−1 ≤ |a1(iω)| − |a2(iω)| ≤ 1.

For λ = iω,

a1(iω) = −i
k
ω

and a2(λ) = i
kβ

ω

where the absolute values are

|a1(iω)| = k
ω

and |a2(iω)| = kβ

ω

and the arguments are

arg [a1(iω)] =
3π

2
and arg [a2(iω)] =

π

2
.

From the triangle conditions, we have the interval of ω for which λ = iω can be a solution of
equation (i) for some τ1 and τ2,

ω ∈ I =
[

1
2

k,
3
2

k
]

.

The internal angles of θ1 and θ2 are calculated by the law of cosine as

θ1(ω) = cos−1
[

4ω2 + 3k2

8kω

]
and

θ2(ω) = cos−1
[

4ω2 − 3k2

4kω

]
.

For any ω ∈ I, we may find all pairs of (τ1, τ2) satisfying (3) as follows:

τ±
1 (ω, �1) =

1
ω

[
3
2

π + (2�1 − 1)π ± θ1(ω)

]
(4)
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and

τ∓
2 (ω, �2) =

1
ω

[
1
2

π + (2�2 − 1)π ∓ θ2(ω)

]
. (5)

Since a symmetric triangle can be formed below the horizontal axis in Figure 1, four inner angles
are defined, ±θ1(ω) and ∓θ2(ω) (double-sign correspondence). By the definitions of the interior
angles, we have the followings:

arg
(

a1(ω)e−iωτ1
)
+ 2�1π ± θ1(ω) = π

and
arg

(
a2(ω)e−iωτ2

)
+ 2�2π ∓ θ2(ω) = π

for �1 = 0, 1, 2, ... and �2 = 0, 1, 2, ... Solving these equations for τ1 and τ2 yields (4) and (5). So we have
two sets of line segments,

C+
1 (�1, �2) =

{
(τ+

1 (ω, �1), τ−
2 (ω, �2))

∣∣ ω ∈ I, (�1, �2) ∈ Z
}

and
C−

1 (�1, �2) =
{
(τ−

1 (ω, �1), τ+
2 (ω, �2))

∣∣ ω ∈ I, (�1, �2) ∈ Z
}

.

As �1 is the horizontal shift parameter and �2 is the vertical shift parameter, changing these values
shifts these segments accordingly. Connecting these segments creates the stability switching curve
(SSC, henceforth) under equation (i).

We now turn attention to equation (ii) that can be written as

1 + b1(λ)e−λτ1 + b2(λ)e−λτ2 = 0 (6)

where

b1(λ) =
k
λ

and b2(λ) =
kβ(n − 1)

λ
.

With λ = iω,

b1(iω) = −i
k
ω

and b2(iω) = −i
kβ(n − 1)

ω
,

their absolute values are

|b1(iω)| = k
ω

and |b2(iω)| = kβ(n − 1)
ω

,

and their arguments are

arg (b1(iω)) =
3
2

π and arg (b2(iω)) =
3
2

π.

By the triangle conditions, the domains of ω are defined, respectively, by

I2 =

[
1
2

k,
3
2

k
]

if n = 2

and

In =

[
n − 3

2
k,

n + 1
2

k
]

if n ≥ 3.

As in the same way, the internal angles denoted as θ̄1 and θ̄2 generated under equation (ii) are
obtained as

θ̄1(ω) = cos−1
[

4ω2 − k2 (n − 3) (n + 1)
8kω

]
and

θ̄2(ω) = cos−1
[

4ω2 + k2 (n − 3) (n + 1)
4k(n − 1)ω

]
.
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For any ω ∈ I2 or In, we may find all pairs of (τ1, τ2) satisfying (6) as follows:

τ̄±
1 (ω, m1) =

1
ω

[
3
2

π + (2m1 − 1)π ± θ̄1(ω)

]
(7)

and

τ̄∓
2 (ω, m2) =

1
ω

[
3
2

π + (2m2 − 1)π ∓ θ̄2(ω)

]
. (8)

As before, we have again two sets of line segments,

C+
2 (m1, m2) =

{
(τ̄+

1 (ω, m1), τ̄−
2 (ω, m2))

∣∣ ω ∈ I2 or In, (m1, m2) ∈ Z
}

and
C−

2 (m1, m2) =
{
(τ̄−

1 (ω, m1), τ̄+
2 (ω, m2))

∣∣ ω ∈ I or In, (m1, m2) ∈ Z
}

which are shifted horizontally and vertically by changing the values of m1 and m2. Connecting these
segments creates again the stability switching curves under equation (ii).

3.2. Equal Delays

Having found the delays’ critical values, we may draw attention to the equal delay case before
proceeding further with the different delay case. When the delays are equal, conditions (i) and (ii) are
changed to

(i)’ λ + ke−λτ − kβe−λτ = 0,

(ii)’ λ + ke−λτ + kβ(n − 1)e−λτ = 0.

For λ = iω with ω > 0, equation (i)’ is

iω + k(1 − β) (cos ωτ − i sin ωτ) = 0.

Separating the real and imaginary parts gives the equations,

k(1 − β) cos ωτ = 0

k(1 − β) sin ωτ = ω

from which
cos ωτ = 0, sin ωτ = 1 and ω =

k
2

.

Hence the critical values of τ for equation (i)’ are determined as

τ∗
� =

2
k

(π

2
+ 2�π

)
for � = 0, 1, 2, ... (9)

Similarly, for equation (ii)’, we have

cos ωτ = 0, sin ωτ = 1 and ω =
k (n + 1)

2
.

Hence the critical values of τ are determined as

τ∗
m(n) =

2
k(n + 1)

(π

2
+ 2mπ

)
for m = 0, 1, 2, ... (10)

It is confirmed that
τ∗

0 (n) < τ∗
0 for any n ≥ 2.
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Therefore stability switching occurs when τ = τ∗
0 (n). To check the direction of stability

switches, we select τ as the bifurcation parameter and consider the eigenvalues as functions of
τ, λ = λ(τ). Then we differentiate equation (ii)’ with respect to τ,

λ′ + k(1 + (n − 1)β)eλτ
(
−λ′τ − λ

)
= 0

and solving this for λ′ gives

λ′ =
−λ2

1 + λτ
.

The sign of the real part for λ = iω is positive,

Re
[(

λ′)
λ=iω

]
=

ω2

1 + (ωτ)2 > 0.

As equations (i)’ is obtained from (ii)’ with n = 0, this derivation also applies to equation (i)’.
Hence we have the following result when the delays are equal:

Theorem 1. The Cournot equilibrium is locally asymptotically stable for τ < τ∗
0 (n), loses its stability at

τ = τ∗
0 (n) and stability cannot be regained for τ > τ∗

0 (n) where

τ∗
0 (n) =

π

k(n + 1)
.

Theorem 1 is numerically confirmed when

α = 10, k = 0.5.

We perform simulations with three different values of n, n = 2, n = 3, and n = 4. The simulations
are done with Mathematica, ver. 12.1. The corresponding critical values of τ are

τ∗
0 (2) =

2π

3
, τ∗

0 (3) =
π

2
and τ∗

0 (4) =
2π

5

which imply that the stability region becomes smaller as n increases. This is also clear from the form of
τ∗

0 (n) in Theorem 1. In each simulation below, we take τ = τ∗
0 (n)− 0.2 for the red convergent curve

and τ = τ∗
0 (n) + 0.1 for the divergent green curve and assume constant functions for t ≤ 0.

In duopoly, the initial functions are defined as

ϕ1(t) = xe
1 − 3 and ϕ2(t) = xe

2 − 2 for t ≤ 0.

In tiropoly and quartopoly, the appropriate functions are similarly defined and the initial values
are selected from the neighborhood of the equilibrium point. Although it is clear that the simulation
results strongly depend on the model’s specification, we can see the followings from those simulations
illustrated in Figure 2A–C:

(1) Theorem 1 is numerically confirmed for n = 2, 3, 4; it is seen that the Cournot equilibrium is
stable for τ < τ∗

0 (n), loses stability, and bifurcates to a cyclic oscillation for τ = τ∗
0 (n).

(2) The trajectories are oscillatory because only complex roots can solve the characteristic equations.
(3) It is further confirmed that the trajectories are oscillatory expanding for τ > τ∗

0 (n) and thus
sooner or later become negative, losing economic meaning.

(4) The time at which the negative production takes place the first time becomes smaller as n
increases. Indeed, the green curve first crosses the horizontal axis at t � 32.012 in triopoly in
Figure 2B and at t � 25.423 in quartopoly in Figure 2C. Although it is not illustrated in Figure 2A,
the trajectory becomes negative at t � 59.641 in duopoly.
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Results (3) and (4) are inevitable because the best reply functions are linear and the resultant
dynamical system does not have enough nonlinearities to prevent the trajectories from becoming
negative. We also have essentially the same results in the case of different delays.

(A)

(B)

(C)

Figure 2. (A) Oscillatory dynamics in duopoly. (B) Oscillatory dynamics in triopoly. (C) Oscillatory
dynamics in quartopoly.

4. Growth Rate Dynamics

In this section, we make one modification to the delay best reply dynamical system, (1), and pursue
the possibility of bounded dynamics when the system includes some nonlinearities. In particular,
the growth rate adjustment is assumed in which the growth rate of output is controlled by the difference
between the optimal output and the actual output,

ẋi(t)
xi(t)

= k

[
α − xi(t − τ1)− β

n

∑
j �=i

xj(t − τ2)

]
for i = 1, 2, ..., n. (11)
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System (11) has the same stationary point as system (1). The homogeneous part of its linearized
version is

ẋi(t) = K

[
−xi(t − τ1)− β

n

∑
j �=i

xj(t − τ2)

]
for i = 1, 2, ..., n, (12)

where
K = kxe.

Comparing (12) with (2) reveals that only the adjustment parameters are different. Thus, the formulas
for the critical delays in (4), (5), (7) and (8) obtained in the best reply dynamic system can be applied to
the growth rate dynamical system (12) if k is replaced with K.

The remaining part of this section is divided into two. The stability switching curves under the
growth rate dynamics are constructed and numerical simulations are performed in the first subsection.
The stability index is examined to provide theoretical backgrounds with the directions of stability
switches for the numerical results in the second part.

4.1. Stability Switching Curves

It is assumed henceforth that K replaces k. Then the pairs of (τ+
1 (ω, �1), τ−

2 (ω, �2)) and
(τ−

1 (ω, �1), τ+
2 (ω, �2)) in (4) and (5) satisfy the following characteristic equation,

λ + Ke−λτ1 − Kβe−λτ2 = 0 (13)

where the definitions of θ1 and θ2 should be changed to

θ1(ω) = cos−1
[

4ω2 + 3K2

8Kω

]
, (14)

θ2(ω) = cos−1
[

4ω2 − 3K2

4Kω

]
(15)

and the interval ω is redefined by

I =
[

1
2

K,
3
2

K
]

.

We then have two sets of line segments in the first quadrant of the (τ1, τ2) plane,

L+
1 (�1, �2) =

{
(τ+

1 (ω, �1), τ−
2 (ω, �2))

∣∣ ω ∈ I, (�1, �2) ∈ Z
}

(16)

and
L−

1 (�1, �2) =
{
(τ−

1 (ω, �1), τ+
2 (ω, �2))

∣∣ ω ∈ I, (�1, �2) ∈ Z
}

(17)

similar to the case of best reply dynamics. Lemma 1 characterizes the relations of the segments
L+

1 (�1, �2) and L−
1 (�1, �2) for the extreme values of ω in interval I.

Lemma 1. L+
1 (�1, �2 + 1) = L−

1 (�1, �2) holds for the initial point of I, ω = K/2, and L−
1 (�1, �2) = L+

1 (�1, �2)

holds for the terminal point of I, ω = 3K/2.

Proof. Substituting ω = K/2 into (14) and (15) gives

θ1(K/2) = cos−1(1) = 0 and θ2(K/2) = cos−1(−1) = π

implying that

τ±
1 (K/2, �1) =

2
K

(
3
2

π + (2�1 − 1)π

)
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and

τ+
2 (K/2, �2 + 1) = τ−

2 (K/2, �2) =
2
K

(
1
2

π + 2�2π

)
.

Hence L+
1 (�1, �2 + 1) = L−

1 (�1, �2) at the initial point of I. In the same way, for ω = 3K/2,

θ1(3K/2) = cos−1(1) = 0 and θ2(3K/2) = cos−1(1) = 0

implying that

τ+
1 (3K/2, �1) = τ−

1 (3K/2, �1) =
2

3K

(
3
2

π + (2�1 − 1)π

)
and

τ−
2 (3K/2, �2) = τ+

2 (3K/2, �2) =
2

3K

(
1
2

π + (2�2 − 1)π

)
.

Hence L+
1 (�1, �2) = L−

1 (�1, �2) at the terminal point of I. This completes the proof.

Pairs of (τ̄+
1 (m1), τ̄−

2 (m1)) and (τ̄−
1 (m2), τ̄+

2 (m2)) from (7) and (8) satisfy the characteristic equation,

λ + Ke−λτ1 + Kβ(n − 1)e−λτ2 = 0 (18)

where the definitions of θ̄1 and θ̄2 should be changed to

θ̄1(ω) = cos−1
[

4ω2 − K2 (n − 3) (n + 1)
8Kω

]
(19)

and

θ̄2(ω) = cos−1
[

4ω2 + K2 (n − 3) (n + 1)
4K(n − 1)ω

]
(20)

and the interval for ω is defined, respectively, by

I2 =

[
1
2

K,
3
2

K
]

if n = 2

and

In =

[
n − 3

2
K,

n + 1
2

K
]

if n ≥ 3.

We also have two line segments of (τ1, τ2),

L+
2 (m1, m2) =

{
(τ̄+

1 (ω, m1), τ̄−
2 (ω, m2))

∣∣ ω ∈ I2 or In, (m1, m2) ∈ Z
}

(21)

and
L−

2 (m1, m2) =
{
(τ̄−

1 (ω, m1), τ̄+
2 (ω, m2))

∣∣ ω ∈ I or In, (m1, m2) ∈ Z
}

(22)

similarly to the case of best reply dynamics. Similarly to Lemma 1, we have the followings:

Lemma 2. In the case of n = 2, L+
2 (m1, m2 + 1) = L−

2 (m1, m2) holds for the initial point of I2, ω = K/2,
and L−

2 (m1, m2) = L+
2 (m1, m2) holds for the terminal point of I2, ω = 3K/2.

Notice that for n = 3,

lim
ω→0

τ±
1 (ω, m1) = ∞ and lim

ω→0
τ±

2 (ω, m2) = ∞.

The equality of the segments does not hold at the initial point of I3 but only at the terminal point
which can be proved similarly to Lemma 1.
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Lemma 3. In the case of n = 3, L+
2 (m1, m2) = L−

2 (m1, m2) holds for the terminal point of I3, ω = 2K.

If n ≥ 4, then the following result holds.

Lemma 4. In the case of n ≥ 4, L+
2 (m1, m2) = L−

2 (m1 + 1, m2) holds for the initial point of In, ω =

(n − 1)K/2 and L+
2 (m1, m2) = L−

2 (m1, m2) holds for the terminal point ω = (n + 1)K/2.

In the following, we will construct stability switching curves. To this end, we specify the
parameters’ values as α = 10 and k = 0.1. In Figure 3, the dotted red loci are described by L−

1 (�1, �2)

with �1 = 0 and �2 = 0, 1 and the dotted blue locus by L+
1 (0, 1). The black point a′ is the initial point of

L+
1 (0, 1) and L−

1 (0, 0) and its coordinates are

a′ =
(

3
2

π,
3
2

π

)
at which L+

1 (0, 1) = L−
1 (0, 0) holds by Lemma 1. The black point b′ is the terminal point of L+

1 (0, 1)
and L−

1 (0, 1) and its coordinates are

b′ =
(

1
2

π,
3
2

π

)
at which L+

1 (0, 1) = L−
1 (0, 1) holds by Lemma 1. The blue and red solid curves are described by L+

2 (0, 0)
and L−

2 (0, 0). They are connected at point a,

a =

(
1
2

π,
1
2

π

)
at which L+

2 (0, 0) = L−
2 (0, 0) by Lemma 2.

The dotted and solid curves are smoothly connected as is seen in Figure 3. As a result, the (τ1, τ2)
region is divided into two subregions by the stability switching curve connecting the left-most parts
among the segments of L±

2 (0, 0), L±
1 (0, 1), and L−

1 (0, 1). As the Cournot equilibrium is stable when
there are no delays, it is stable in the region including the origin and left to the connecting curve.

Figure 3. Stability switching curve (SSC) with n = 2.
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We want to investigate the influence of τ1 and τ2. Two simulations in the case of n = 2 are
performed with initial functions,

ϕ1(t) = xe
1 − 2 and ϕ2(t) = xe

2 + 1 for t ≤ 0.

The first simulation result along the diagonal is presented in Figure 4A. The delays increase
from τi = 0 to τi = 3.4 with an increment of 0.003 along the diagonal. The Cournot equilibrium is
asymptotically stable for smaller delays and becomes unstable through a Hopf bifurcation at

τa
i = τ∗

0 (2) =
1
2

π for i = 1, 2,

producing a limit cycle that further bifurcates to a multi-periodic cycle for larger delays. The second
result with the different two delays is given in Figure 4B. The value of τ1 increases from τ1 =

τA
1 (� 1.423) to τ1 = τB

1 (= 3.4) along the dotted horizontal line at τ2 = 3. More precisely,
the bifurcation diagrams with two delays are constructed in the following procedure with Mathematica,
version 12.1. The value of τ2 is fixed at 3, and the value of τ1 is increased from τmin = τA

1 to
τmax = τB

1 with an increment (τmax − τmin)/1000. For each value of τ1, dynamic system (11) runs for
0 ≤ t ≤ T(= 2000), and the data for t ≤ T − 100 are discarded to get rid of the initial disturbance.
The local maxima and minima out of the remaining data are plotted against this τ1 value. Then the
value of τ1 is increased and then the same procedure is repeated until τ1 arrives at τmax. The following
bifurcation diagrams are obtained in the same way. The resulting bifurcation diagram shows that
the dynamic system experience similar dynamics. The stability of the equilibrium point is confirmed
for the zero delay and holds for τ1 < τA

1 and τ2 = 3. In both diagrams (and the following diagrams),
notation x̃e = log [xe] is used.

(A) Equal delays (B) Different delays

Figure 4. Bifurcation diagrams with n = 2.

We now increase the number of firms to 3. Figure 5A shows the stability switching curves.
The line segments of L+

2 (0, 0) (i.e., the solid blue curve) and L−
2 (0, 0) (i.e., the solid red curve) take

the L-shaped profile and rotate counter-clockwise at point a to the extent that the solid red curve is
located furthermost to the left. By Lemma 4, both line segments head to point a, the terminal point as ω

increases to 2K. We simulate the model (11) along the diagonal (i.e., τ1 = τ2) and the dotted horizontal
line at τ2 = 3 (i.e., τ1 �= τ2) in Figure 5A. As we find qualitatively no big differences between these
simulation results as in Figure 4A,B, we depict only the bifurcation diagram with different delays in
Figure 5B. It is seen that alá “period-doubling bifurcation” occurs in which the Cournot equilibrium is
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asymptotically stable for τ1 < τA
1 (�1.136), loses stability at τ1 = τA

1 and bifurcates to a limit cycle from
which new limit cycles emerge having a doubled period of the cycle as τ1 increases from τA

1 . We also
see that further increasing τ1 gives rise to complicated dynamics that suddenly shrinks to a limit cycle
with multiple local maxima and minima at some critical point.

(A) SSC (B) Bifurcation diagram

Figure 5. Dynamic properties of Equation (11) with n = 3.

In the case of n = 4, as is seen in Figure 6A, the solid red and blue segments rotate counter-clockwise
further at point a, leading to that the red segment crosses the vertical axis. In Figure 6B, we see that the
bifurcation diagram gets more complicated and various dynamics can emerge.

(A) SSC (B) Bifurcation diagram

Figure 6. Dynamic properties of Equation (11) with n = 4.

Lastly, we simulate system (11) with n = 9. The shape of the stability switching curve is
different from those with smaller n. In Figure 7A, the positive-sloping dotted line is the diagonal,
the dotted-red line is L−

2 (0, 0) as before and the black dots are the starting or ending points of the
segments. A remarkable difference is that the solid red-blue segments consist of the wave-shaped
curve. Accordingly, the bifurcation diagram is obtained along the horizontal dotted line at τ2 = 2
and exhibits a different route to chaos. The stability of the Cournot equilibrium is lost at τ1 = τA

1
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(�0.646), regained at τ1 = τB
1 (�5.441), and then lost again at τ1 = τC

1 (�7.306). Unstable oscillatory
trajectories get complicated for τ1 > τD

1 (�7.697). It is known that time delays destabilize dynamic
systems. This simulation, however, indicates that time delays can also stabilize the systems.

(A) SSC (B) Bifurcation diagram

Figure 7. Dynamic properties of Equation (11) with n = 9.

Dynamic system (11) examines the birth of complicated dynamics through a period-doubling
bifurcation and the occurrence of stability loss and gain. Needless to say, time delays play prominent
roles. In addition, taking account of the fact that only the firm’s number is different in those
numerical studies, the larger number could influence the system’s dynamics by increasing the degree
of interactions among the firms.

4.2. Stability Index

We compute the stability index to provide a theoretical background for finding directions of
stability switches. First, we denote the second and third vectors of (3) by Q1 and Q2,

Q1 = a1(iω)e−iωτ1 = −i
K
ω

(cos ωτ1 − i sin ωτ1)

and
Q2 = a2(iω)e−iωτ2 = i

Kβ

ω
(cos ωτ2 − i sin ωτ2) .

Having Q1 and Q2, we further denote the real and imaginary parts by the followings:

R1 = ReQ1 = − K
ω

sin ωτ1 and I1 = ImQ1 = − K
ω

cos ωτ1

and
R2 = ReQ2 =

Kβ

ω
sin ωτ2 and I2 = ImQ2 =

Kβ

ω
cos ωτ2.

Finally, the stability index is defined as follows:

S = R2 I1 − R1 I2

=
K2β

ω2 (sin ωτ1 cos ωτ2 − cos ωτ1 sin ωτ2) ,
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hence

S =
K2β

ω2 sin [ω (τ1 − τ2)] . (23)

In the same way, we denote the second and third vectors of (6) by Q̄1 and Q̄2,

Q̄1 = b1(iω)e−iωτ1 = −i
K
ω

(cos ωτ1 − i sin ωτ1)

and

Q̄2 = b2(iω)e−iωτ2 = −i
Kβ(n − 1)

ω
(cos ωτ2 − i sin ωτ2) .

The real and imaginary parts are the followings:

R̄1 = ReQ̄1 = − K
ω

sin ωτ1 and Ī1 = ImQ̄1 = − K
ω

cos ωτ1

and

R̄2 = ReQ̄2 = −Kβ(n − 1)
ω

sin ωτ2 and Ī2 = ImQ̄2 = −Kβ(n − 1)
ω

cos ωτ2,

moreover, the stability index is as follows:

S̄ = R̄2 Ī1 − R̄1 Ī2

= −K2β(n − 1)
ω2 (sin ωτ1 cos ωτ2 − cos ωτ1 sin ωτ2) .

Hence

S̄ = −K2β(n − 1)
ω2 sin [ω (τ1 − τ2)] . (24)

We call the direction of the curve that corresponds to increasing ω the positive direction. We also
call the region on the left-hand side the region on the left when we head in the positive direction of the
curve. Region on the right is defined similarly. Concerning the stability changes, we have the following
result from Matsumoto and Szidarovszky (2018) that is based on Gu et al. (2005):

Theorem 2. Let (τ1, τ2) be a point on the stability switching curves, when iω is a simple pure complex
eigenvalue. Assume we look toward increasing values of ω on the curve, and a point (τ1, τ2) moves from the
region on the right to the region on the left. A pair of eigenvalues crosses the imaginary axis to the right if S > 0
or S̄ > 0. If S < 0 or S̄ < 0, then crossing is in the opposite direction.

The condition of the theorem is satisfied if all iω egenvalues are single. It can be proved that
the multiple eigenvalues, if any, are isolated from each other, so do the corresponding points on the
stability switching curve. Hence at these points, the directions of stability switching are the same as
those in the points of their neighborhoods.

We now compute the stability index on the solid red segment of the stability switching curve in
Figure 3. The red segment is a locus of the following points,

L−
2 (0, 0) =

{(
τ̄−

1 (ω, 0), τ̄+
2 (ω, 0)

) ∣∣ ω ∈
[

1
2

K,
3
2

K
]}

From (7) and (8), we have

ω
(
τ̄−

1 (ω, 0)− τ̄+
2 (ω, 0)

)
=

[
3
2

π − π − θ̄1(ω)

]
−

[
3π

2
− π + θ̄2(ω)

]
= −

[
θ̄1(ω) + θ̄2(ω)

]
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implying
sin [ω (τ1 − τ2)] = − sin

[
θ̄1(ω) + θ̄2(ω)

]
< 0

when θ1 + θ2 < π. If θ1 + θ2 = π, then the triangle reduces to a line such that

|a1(iω)| − |a2(iω)| = ±1.

That is, in Equation (13),
K
ω

− Kβ

ω
=

K
2ω

= 1

showing that ω = π/2 being the left endpoint of interval I, given for ω, which gives the common
starting point of two line segments. In the case of Equation (18),

K
ω

− Kβ(n − 1)
ω

=
K
ω

(
3 − n

2

)
.

If n = 2, this equals +1 if ω = K/2, which is the initial point of I. If n = 3, then this expression
is always zero, so cannot be +1 or −1. If n > 3, then this expression can be only −1, when ω =

K(n − 3)/2, which is the left endpoint of interval In which gives again the common starting point of
two line segments. In these points, the direction of stability switching is the same as that in the two
connecting segments. So in the rest of the discussion, we will assume that θ1 + θ2 < π. Hence the
stability index S̄ is positive on the solid red segments of the stability switching curve. In Figure 3,
the arrows on the solid red segment indicate the positive direction and the red R and L mean the right
and left regions along the red segment. As (τ1, τ2) moves from the R-region to the L-region and S̄ > 0,
Theorem 2 implies that a solution pair of (18) crosses the imaginary axis to the right. That is, stability is
lost. As seen in Figure 4B, the stability is lost at point A with τ1 = τA

1 when τ1 increases along the
horizontal dotted line at τ0

2 = 3.
Similarly, we can compute the stability index on the solid blue segment,

L+
2 (0, 0) =

{(
τ̄+

1 (ω, 0), τ̄−
2 (ω, 0)

) ∣∣ ω ∈
[

1
2

K,
3
2

K
]}

.

From (7) and (8) with K,

ω
(
τ̄+

1 (ω, 0)− τ̄−
2 (ω, 0)

)
=

[
3
2

π − π + θ̄1(ω)

]
−

[
3π

2
− π − θ̄2(ω)

]
= θ̄1(ω) + θ̄2(ω).

Then
sin

[
ω

(
τ̄+

1 (ω, 0)− τ̄−
2 (ω, 0)

)]
= sin

[
θ̄1(ω) + θ̄2(ω)

]
> 0.

The stability index S̄ is negative,

S̄ = −K2β(n − 1)
ω2 sin

[
θ̄1(ω) + θ̄2(ω)

]
< 0.

The blue L and R denote the right-region and the left-region with respect to the solid blue segment.
Hence the stability is lost when a pair of (τ1, τ2) crosses the blue segment from the L-region to the
R-region.

Consider the stability switching on the dotted red segment located in the upper-left corner of
Figure 3. The segment is described by

L−
1 (0, 1) =

{(
τ−

1 (ω, 0), τ+
2 (ω, 1)

) ∣∣ ω ∈
[

1
2

K,
3
2

K
]}

.
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Then
ω

(
τ−

1 (ω, 0)− τ+
2 (ω, 1)

)
= −π − (θ1(ω) + θ2(ω)) .

The stability index is positive

S =
K2β

ω
sin [θ1(ω) + θ2(ω)] > 0

showing that crossing these segments from R to L, stability is lost.
In the lower part of Figure 3, there is a small segment of L−

1 (0, 0) where

L−
1 (0, 0) =

{
τ−

1 (ω, 0), τ+
2 (ω, 0)

∣∣ ω ∈
[

1
2

K,
3
2

K
]}

,

so

ω
(
τ−

1 (ω, 0)− τ+
2 (ω, 0)

)
=

[
3
2

π − π − θ1(ω)

]
−

[
1
2

π + π − θ2(ω)

]
= π − [θ1(ω) + θ2(ω)] .

Then
sin

[
ω

(
τ−

1 (ω, 0)− τ+
2 (ω, 0)

)]
= sin

[
θ̄1(ω) + θ̄2(ω)

]
> 0

meaning that crossing this segment from the stable region, at least one eigenvalue changes the sign of
its real part from negative to positive, implying stability loss.

5. Concluding Remarks

In this paper, n-firm dynamic oligopolies were examined without product differentiation and
with linear price and cost functions. Continuous time scales were assumed reconsidering the classical
dynamic model of McManus and Quandt (1961) with the best response dynamics. Without delays,
the equilibrium is always asymptotically stable without delays regardless of the values of the positive
adjustment speeds. We examined how this stability is lost when the firms face implementation and
information delays. For the sake of mathematical simplicity, it was assumed that the firms have the
same marginal costs and identical delays in both types. If these delays are equal, then a single-delay
model is obtained. If the delay is sufficiently small, then the equilibrium is oscillatory stable, at the
threshold, the trajectories show cyclic behavior and for larger delays, the cycles become expanding.
If the delays are different, then in the resulting two-delay case the stability switching curves were first
constructed and then the directions of the stability switches were determined. Growth rate dynamics
brought nonlinearities into the model, but their linearized version is identical with best response
dynamics, so shows similar local dynamics. Numerical results and simulation studies verify and
illustrate the theoretical findings.

This research can be continued in two different ways. One is the consideration of different model
modifications such as product differentiation, multi-product models, oligopsonies, labor-managed,
and rent seeking oligopolies, including market saturation to mention only a few. The other research
direction could be to examine nonlinear models, the local dynamics are similar to that of linear models,
however with very different global dynamic behavior.
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Abstract: In this paper, we go through the development of a new numerical method to obtain the
solution to a size-structured population model that describes the evolution of a consumer feeding on a
dynamical resource that reacts to the environment with a lag-time response. The problem involves the
coupling of the partial differential equation that represents the population evolution and an ordinary
differential equation with a constant delay that describes the evolution of the resource. The numerical
treatment of this problem has not been considered before when a delay is included in the resource
evolution rate. We analyzed the numerical scheme and proved a second-order rate of convergence by
assuming enough regularity of the solution. We numerically confirmed the theoretical results with an
academic test problem.

Keywords: size-structured population; consumer-resource model; delay differential equation;
numerical methods; characteristics method; convergence analysis
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1. Introduction

We consider a model that describes the evolution of a size-structured consumer in an environment
inhabited by a single unstructured resource. We assume that the resource responds to the environment
with a constant time delay. The model is composed of two nonlinear coupled problems. On the
one hand, a size-structured population model governed by a first-order hyperbolic equation with a
nonlocal and nonlinear boundary condition, which represents the evolution over time of the consumer:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + (g(x, s(t), t) u)x = −μ(x, s(t), t) u, x0 < x < xM(t), t > 0,

g(x0, s(t), t) u(x0, t) =
∫ xM(t)

x0

α(x, s(t), t) u(x, t) dx, t > 0,

u(x, 0) = u0(x), x0 ≤ x ≤ x0
M.

(1)

Variables x and t represent the size and the time, respectively. Size is the variable which structures
the individuals in the consumer population, x0 denotes the newborn individual’s size (the size at birth)
that is assumed to be constant and positive and xM(t) represents the maximum size of individuals at
time t. Then, xM(0) = x0

M is the initial maximum size. The dependent variables u and s are the density
of individuals of size x and the amount of the resource available at time t, respectively. The so-called
vital rates, the mortality, the fertility and the growth rates, are given by μ, α and g, respectively.
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The mortality and the fertility are nonnegative functions and the growth rate has no-sign restriction,
although we assume that g(x0, ·, ·) > 0, which means that each individual increases in size at birth.
Vital rates depend on the structuring variable, the time and the amount of the resource available,
to take into account the influences of these factors on the dynamics of the population. The size of the
individuals changes according to the differential equation

x′(t) = g(x(t), s(t), t), t > 0.

As we allow a negative growth rate g, we are considering the case in which an individual in
the population could shrink in size under a food shortage environmental condition. In particular,
the maximum size, xM(t), is not fixed in the model and evolves following the corresponding
characteristic curve of (1) {

x′
M(t) = g(xM(t), s(t), t), t > 0,

xM(0) = x0
M.

(2)

On the other hand, the unstructured resource s(t), t ≥ 0, which provides feeding for the
individuals of the population, evolves with time according to the following initial value problem for a
delay ordinary differential equation:{

s′(t) = f (s(t), s(t − τ), I(t), t), t > 0,

s(t) = s0(t), t ∈ [−τ, 0].
(3)

The rate of change in the evolution of the resource is given by a function f that includes
dependence on time and on the consumer population through the nonlocal term

I(t) =
∫ xM(t)

x0

γ(x, s(t), t) u(x, t) dx, t ≥ 0, (4)

where γ is a function that represents the individual rate of consumption for individuals of a determined
size. It also depends on the amount of the resource available at times t and t − τ, s(t) and s(t − τ)

respectively. The memory effect, s(t − τ), can be seen as a deferred influence on the environment of the
resource affordability. A common biological situation for this phenomenon occurs when the resource
population is close to the carrying capacity of the environment or near extinction, which can make the
population react with a certain delay [1]. Another situation in which this deferred influence occurs
is when the resource is formed only by the adult individuals of the population, and the delay is due
to the maturation time [2]. The solution of the model (1), (3) is determined once we know the initial
conditions u(x, 0) = u0(x), x0 ≤ x ≤ x0

M, and s(t) = s0(t), t ∈ [−τ, 0].
Although a large number of papers on consumer models have been considered in past years, not

so many address the case in which one of the populations is structured. Consumer-resource models
have been studied from the very initial work of Kooijman and Metz [2]. These authors presented a
mathematical model for the development of an ectothermic population (Daphnia magna, water flea) in
which the amount of food they are supplied with represents a regulatory mechanism for the population
density. The model was length-structured and also included a stage of maturity: a differentiation
among juveniles and adults. This work is considered as the origin of the modern dynamic energy
budget theory. The well-posedness of the model equations and the continuously dependence on model
data was studied by Thieme [3]. The dynamical properties of the model were explored numerically
in [4], and later, analytically in [5–7]. However the description of the evolution of the resource as a
delay differential equation within a physiological structured consumer-resource model has not been
developed theoretically yet.

The theoretical treatment of this model is not easy; therefore, its numerical analysis is a valid
tool and sometimes the only one affordable. The integration of the model without delay has been
developed by means of the Excalator Boxcar Train (EBT) [8] and a characteristics method [9]. This last
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work included the convergence proof of the method while the convergence of the popular EBT method
was recently considered [10,11]. However, the numerical treatment of the coupled model with a
resource evolving according to a delay differential equation remained unexplored until our study,
so our goal was to provide a numerical method to perform the integration of such a model and its
convergence analysis.

The remainder of the paper is organized as follows. Section 2 is devoted to the introduction of
the numerical method to integrate problem (1), (3). We employ the technique of integration along
the characteristic curves in order to obtain the new numerical scheme. In Section 3, we carry out the
convergence analysis of the scheme. It is based on a theoretical framework that involves the properties
of consistency and stability of the numerical method. We also pay attention to the properties required
by the numerical quadrature rule used in the integration. Finally, in Section 4, we present a test done
in order to numerically confirm the theoretical order of convergence.

2. Numerical Method

We begin with the description of the numerical scheme. We must employ the integration along
the characteristic curves; therefore, we should remind the reader of the definition of x(t; t∗, x∗),
x∗ ∈ [x0, xM(t)], t∗ > 0, as the solution of⎧⎨⎩

d
dt

x(t; t∗, x∗) = g(x(t; t∗, x∗), s(t), t), t ≥ t∗,

x(t∗; t∗, x∗) = x∗,
(5)

that represents the characteristic curve that at time t∗ starts at x∗. Now, we consider w(t; t∗, x∗) =

u(x(t; t∗, x∗), t), for each x∗ ∈ [x0, xM(t)], t∗ > 0. It satisfies the following initial value problem⎧⎨⎩
d
dt

w(t; t∗, x∗) = −μ∗(x(t; t∗, x∗), s(t), t)w(t; t∗, x∗), t > t∗,

w(t∗; t∗, x∗) = u(x∗, t∗),
(6)

where μ∗(x, s(t), t) = μ(x, s(t), t) + gx(x, s(t), t), whose solution is given by the following formula

u(x(t; t∗, x∗), t) = u(x∗, t∗) exp
{
−

∫ t

t∗
μ∗ (x (�; t∗, x∗) , s(�), �) d�

}
, t ≥ t∗. (7)

For the numerical method, we discretize this expression, together with the boundary condition
and the initial data in (1), and the initial value problem in (3).

The integration is carried out on a finite time interval [0, T]. Then, given J, L ∈ N, we define
the discretization parameters h = (x0

M − x0)/J, k = τ/L, and the number of discrete time levels
N = [T/k], which are given by tn = n k, −L ≤ n ≤ N. We begin the description of the numerical
method with the initial values, which, in this case, are the initial size discretization X0, X0

j = x0 + j h,

0 ≤ j ≤ J, the initial condition on the initial grid, U0, U0
j = u0(X0

j ), 0 ≤ j ≤ J, and the resource,
that has to be initialized on the interval [−τ, 0], with the values Sn = s0(tn), −L ≤ n ≤ 0.

We compute, for 0 ≤ n ≤ N − 1, the approximation at the general level tn+1: {Xn+1, Sn+1, Un+1},
Xn+1 = (Xn+1

0 , Xn+1
1 , . . . , Xn+1

J+n+1), Un+1 = (Un+1
0 , Un+1

1 , . . . , Un+1
J+n+1) when the values at the previous

time steps are known: {Xm, Sm, Um}, Xm = (Xm
0 , Xm

1 , . . . , Xm
J+m), Um = (Um

0 , Um
1 , . . . , Um

J+m), 0 ≤ m ≤
n. We should point out that we design a second-order method based on the modified Euler scheme
and on the trapezoidal quadrature rule. This means that we need an intermediate stage in which we
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compute a first-order approximation: {Xn+1,∗, Sn+1,∗, Un+1,∗}, Xn+1,∗ = (Xn+1,∗
0 , Xn+1,∗

1 , . . . , Xn+1,∗
J+n+1),

Un+1,∗ = (Un+1,∗
0 , Un+1,∗

1 , . . . , Un+1,∗
J+n+1), given by the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xn+1,∗
0 = x0, Xn+1,∗

j+1 = Xn
j + k g(Xn

j , Sn, tn), 0 ≤ j ≤ J + n,

Sn+1,∗ = Sn + k f (Sn, Sn−L, Q(Xn, γn (X, S) · Un), tn),

Un+1,∗
j+1 = Un

j exp
{
−k μ∗(Xn

j , Sn, tn)
}

, 0 ≤ j ≤ J + n,

g(Xn+1,∗
0 , Sn+1,∗, tn+1)Un+1,∗

0 = Q(Xn+1,∗, αn+1,∗ (X, S) · Un+1,∗).

(8)

As soon as we have computed the intermedium quantities {Xn+1,∗, Sn+1,∗, Un+1,∗} we can obtain
the approximations at the advanced time level with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1
0 = x0, Xn+1

j+1 = Xn
j +

k
2

(
g(Xn

j , Sn, tn) + g(Xn+1,∗
j+1 , Sn+1,∗, tn+1)

)
, 0 ≤ j ≤ J + n,

Sn+1 = Sn +
k
2

(
f (Sn, Sn−L, Q(Xn, γn (X, S) · Un), tn)

+ f (Sn+1,∗, Sn+1−L, Q(Xn+1,∗, γn+1,∗ (X, S)·Un+1,∗), tn+1)
)

,

Un+1
j+1 = Un

j exp
{
− k

2

(
μ∗(Xn

j , Sn, tn) + μ∗(Xn+1,∗
j+1 , Sn+1,∗, tn+1)

)}
, 0 ≤ j ≤ J + n,

g(Xn+1
0 , Sn+1, tn+1)Un+1

0 = Q(Xn+1, αn+1 (X, S) · Un+1).

(9)

In (8) and (9), at each time level, γn (X, S) and αn (X, S) represent vectors with components
γn

j (X, S) = γ(Xn
j , Sn, tn) and αn

j (X, S) = α(Xn
j , Sn, tn), 0 ≤ j ≤ J + n, respectively, and γn,∗ (X, S) and

αn,∗ (X, S) vectors with components γn,∗
j (X, S) = γ(Xn,∗

j , Sn,∗, tn) and αn,∗
j (X, S) = α(Xn,∗

j , Sn,∗, tn),
0 ≤ j ≤ J + n + 1, respectively. The notation γn (X, S) · Un, αn (X, S) · Un, γn,∗ (X, S) · Un,∗ and
αn,∗ (X, S) · Un,∗ represent the componentwise products of the corresponding vectors, and Q is an
appropriate second-order quadrature rule, as given below. We observed that, in this procedure,
the total number of nodes in the grid increases in one at each time step due to the new node that
fluxes from the left boundary into the domain. This feature led us to name this kind of scheme the
aggregation grid nodes method (AGN) [12]. The algorithm is explicit and totally straightforward and
can be resumed as in the pseudocode given in Box 1.

Box 1. Pseudocode of the algorithm AGN (and SGN).

% Choose L, J integers
k = τ/L; h = (x0

M − x0)/J
N = [T/k]
% Initialization
do j=0,J

X0
j = x0 + j h % Initial grid points

U0
j = u0(X0

j )
end
do n=-L,0

Sn = s0(tn)
end
% Advancing the solution on time, step by step
do n=0, N-1

Formulae in (8) % First stage to Xn+1,∗, Sn+1,∗, Un+1,∗

Formulae in (9) % Second stage to Xn+1, Sn+1, Un+1

% Optional (difference between AGN and SGN methods)
Formulae in (10) % Selection procedure in case of SGN method

end
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In the numerical experimentation, we use a more efficient procedure in order to keep the number of
nodes constant (and consequently, to not increase the computational cost) at each time step. Toward that
goal, we eliminate a chosen node from the grid at each time step. The selection procedure we use
in the method depends on the dynamics of the grid, as it was introduced in [13]. We refer to this
kind of scheme as the selection grid nodes method (SGN) [12]. The node picked out is the first Xn+1

l
that satisfies

|Xn+1
l+1 − Xn+1

l−1 | = min
1≤j≤J

|Xn+1
j+1 − Xn+1

j−1 |. (10)

Once it is elected, we rename the nodes to keep the index labels from j = 0 to j = J.
Finally, we pay attention to the nonlocal terms; they are discretized by means of a composite

quadrature rule, based on the trapezoidal formula, on the grid points X = (X0, X1, . . . , Xℵ), ℵ ∈ N,

Q(X, V) =
ℵ−1

∑
l=0

Xl+1 − Xl
2

(Vl + Vl+1), where V = (V0, V1, . . . , Vℵ).

3. Convergence Analysis

The convergence analysis here follows the discretization framework developed in [14]. In this
framework, suitable discrete normed spaces and operators are introduced to formulate the equations
of the numerical method. Then, appropriate properties of consistency and nonlinear stability are
established. The numerical method is an adaptation of the one given in [9], and so is the analysis.
However, for the sake of completeness, we provide the details of the numerical method formulation,
and for the sake of simplicity, we present only those parts of the convergence analysis proofs associated
with estimates derived from the discretization of the delay term in the differential equation. That means
that the step by step recurrences for the errors at each time level increase the order of the difference
equation as the time discretization parameter tends to zero. For the theoretical analysis, we consider
the AGN method.

With this aim, we fix T > 0 and assume that the problem (1), (3) has a unique solution u(x, t),
x ∈ [x0, xM(t)], and s(t), t ∈ [−τ, T], with the following regularity assumptions:

Hypothesis 1 (H1). u ∈ C2([x0, xM(t)]× [0, T]) and is nonnegative.

Hypothesis 2 (H2). s ∈ C2([−τ, T]) and is nonnegative.

Additionally, we assume that there exists a compact neighborhood D of {s (t) , 0 ≤ t ≤ T}, such
that

Hypothesis 3 (H3). γ ∈ C2([x0, xM(t)]× D × [0, T]) and is nonnegative.

Hypothesis 4 (H4). μ ∈ C2([x0, xM(t)]× D × [0, T]) and is nonnegative.

Hypothesis 5 (H5). α ∈ C2([x0, xM(t)]× D × [0, T]) and is nonnegative.

Hypothesis 6 (H6). g ∈ C3([x0, xM(t)] × D × [0, T]) and there exists a positive constant C such that
g(x0, s, t) ≥ C, s, t ≥ 0. In addition, the characteristic curves x(t; t∗, x∗) defined by (5), are continuous and
differentiable with respect to the initial values (t∗, x∗) ∈ [0, T]× [x0, xM(t)].

Finally, we suppose that there are compact neighborhoods, Df of {s (t) , −τ ≤ t ≤ T}, and DI of{∫ xM(t)

x0

γ(x, s(t), t) u(x, t) dx, 0 ≤ t ≤ T
}

, such that

Hypothesis 7 (H7). f ∈ C2(Df × Df × DI × [0, T]) and is nonnegative.
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Now, we choose L ∈ N and assume that the time discretization parameter, k, takes values in
the set

K = {k : k = τ/(ν L), ν ∈ N}.

Then for k ∈ K, we set N = [T/k] and choose J ∈ N such that h = (x0
M − x0)/J, and the ratio

r := k/h is a positive constant fixed throughout the analysis. Then, x0
M is always the last node in the

size grid. For each k ∈ K, we define the space

Ak =
N

∏
n=0

(
RJ+n ×RJ+n+1

)
×RL+N+1,

where vectors
(
y0, V0, . . . , yN , VN , a

)
∈ Ak are used to describe the following approximations: to the

inner and right-hand boundary grid nodes, given by yn ∈ RJ+n, and to the theoretical solution at the
complete grid, Vn ∈ RJ+n+1, for each time level tn, 0 ≤ n ≤ N; and to the theoretical solution to the
delay differential equation at time levels tn, −L ≤ n ≤ N, provided by a ∈ RL+N+1. We also consider
the space

Bk =
(
RJ ×RJ+1 ×RL+1

)
×RN ×

N

∏
n=1

(
RJ+n ×RJ+n

)
×RN ,

where each component of vector
(
Y0, P0, A0, P0, Y1, P1, . . . , YN , PN , A

)
∈ Bk describes the residuals

of the discrete solution when it is substituted on the discrete equations that define the numerical
method: we discriminate Y0, P0, A0 = (A−L, A−L+1, . . . , A0), given by the approximations to the
initial conditions; P0, provided by the solution at the left boundary node at each time level; Yn, Pn,
0 ≤ n ≤ N, given by the grid nodes and solution to them; and A = (A1, A2, . . . , AN), due to the
solution to the delay differential equation, as we show below. Both spaces, Ak and Bk, have the
same dimension.

In order to measure the size of the errors, we define

‖η‖∞ = max
1≤j≤ℵ

|ηj|, η = (η1, η2, . . . , ηℵ) ∈ Rℵ,

‖Vn‖1 =
J+n

∑
j=0

h |Vn
j |, Vn = (Vn

0 , Vn
1 , . . . , Vn

J+n) ∈ RJ+n+1.

Thus, we endow the spaces Ak and Bk with the following norms. If
(
y0, V0, . . . , yN , VN , a

)
∈ Ak,

‖
(

y0, V0, . . . , yN , VN , a
)
‖Ak = max

(
max

0≤n≤N
‖yn‖∞, max

0≤n≤N
‖Vn‖∞, ‖a‖∞

)
.

On the other hand, if
(
Y0, P0, A0, P0, Y1, P1, . . . , YN , PN , A

)
∈ Bk,

‖
(

Y0, P0, A0, P0, Y1, P1, . . . , YN , PN , A
)
‖Bk

=‖Y0‖∞ + ‖P0‖∞ + ‖A0‖∞ + ‖P0‖∞ +
N

∑
n=1

k ‖Yn‖∞ +
N

∑
n=1

k ‖Pn‖∞ +
N

∑
n=1

k |An|.

Now, for each k ∈ K, we define

xn = (xn
1 , . . . , xn

J+n) ∈ RJ+n, x0
j = x0 + j h, 1 ≤ j ≤ J; xn

j = x(tn; tn−1, xn−1
j−1 ), 1 ≤ j ≤ J + n, 1 ≤ n ≤ N; (11)
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and we denote xn
0 = x0, n ≥ 0. Recall that x(t; t∗, x∗) represents the theoretical solution to problem (5),

t∗ ∈ [0, T], x∗ ∈ [x0, xM(t)]. In addition, if u represents the theoretical solution to (1) we define

un = (un
0 , un

1 , . . . , un
J+n) ∈ RJ+n+1, un

j = u(xn
j , tn), 0 ≤ j ≤ J + n, 0 ≤ n ≤ N. (12)

Finally, if s is the theoretical solution to (3) then we define

sk = (s−L, s−L+1, . . . , sN), sn = s(tn), −L ≤ n ≤ N. (13)

Therefore, ũk = (x0, u0, x1, u1, . . . , xN , uN , sk) ∈ Ak.
In the following, we introduce the discretization operator. Let R be a positive constant and let we

denote by BAk (ũk, R kp) ⊂ Ak the open ball with center ũk and radius R kp, 1 < p < 2. Then, we define

Φk : BAk (ũk, R kp) → Bk,

Φk

(
y0, V0, . . . , yN , VN , a

)
=

(
Y0, P0, A0, P0, Y1, P1, . . . , YN , PN , A

)
, (14)

given by the following equations, first

Y0 = y0 − X0 ∈ RJ , (15)

P0 = V0 − U0 ∈ RJ+1, (16)

A0 = a0 − S0 ∈ RL+1, (17)

where a0 = (a−L, a−L+1, . . . , a0). Vectors X0 and U0 represent approximations at t = 0, respectively,
to the initial grid nodes and to the theoretical solution at these nodes. Vector S0 represents an
approximation to the initial resource in the interval [−τ, 0]. Second,

Pn+1
0 = Vn+1

0 − Q
(
yn+1, αn+1(y, a) · Vn+1)

g (x0, an+1, tn+1)
, (18)

Yn+1
j+1 =

1
k

{
yn+1

j+1 − yn
j − k

2

(
g(yn

j , an, tn) + g(yn+1,∗
j+1 , an+1,∗, tn+1)

)}
, (19)

Pn+1
j+1 =

1
k

{
Vn+1

j+1 − Vn
j exp

(
− k

2

(
μ∗

(
yn

j , an, tn
)
+ μ∗

(
yn+1,∗

j+1 , an+1,∗, tn+1
)))}

, (20)

0 ≤ j ≤ J + n − 1,

An+1 =
1
k

{
an+1 − an − k

2

(
f
(

an, an−L, Q(yn, γn(y, a) · Vn), tn
)

+ f
(

an+1,∗, an−L+1, Q(yn+1,∗, γn+1,∗(y, a) · Vn+1,∗), tn+1
))}

, (21)

0 ≤ n ≤ N − 1. Where, with the notation introduced in Section 2,

yn+1,∗
j+1 = yn

j + k g(yn
j , an, tn), (22)

Vn+1,∗
j+1 = Vn

j exp
(
−k μ∗

(
yn

j , an, tn
))

, (23)

0 ≤ j ≤ J + n − 1,

Vn+1,∗
0 =

Q(yn+1,∗, αn+1,∗(y, a) · Vn+1,∗)
g(x0, an+1,∗, tn+1)

, (24)
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an+1,∗ = an + k f
(

an, an−L, Q(yn, γn(y, a) · Vn), tn
)

, (25)

0 ≤ n ≤ N − 1. We rewrite the quadrature rule employed in (18)–(25) in the next general form

Q(X, V) =
J+n

∑
l=0

ql(X)Vl . Written in this way, we highlight that the number of nodes considered at

each time level tn is J + n + 1, counting both the boundary node Xn
0 = xn

0 = x0, 0 ≤ n ≤ N and the
interior grid nodes Xn

j , 1 ≤ j ≤ J + n, 0 ≤ n ≤ N. This notation is also valid even when we consider
quadrature rules whose nodes are, at each time level, a subgrid of Xn, 0 ≤ n ≤ N, by asumming that
the corresponding weights ql(X) of some of the nodes are zero .

Note that Φk takes into account all the grid nodes and their corresponding solution values
at each time level, and it employs quadrature rules possibly based on a subgrid. If Ũk =

(X0, U0, X1, U1, . . . , XN , UN , sk) ∈ BAk (ũk, R kp), satisfies

Φk(Ũk) = 0 ∈ Bk, (26)

the nodes, Xn and 0 ≤ n ≤ N and the corresponding values of the solution, Un, 0 ≤ n ≤ N, at such
nodes are numerical solutions to the scheme defined by (9) when the composite trapezoidal quadrature
rule is used on a subgrid at each time step. On the other hand, the numerical solution to the scheme
defined by (9) satisfies (26).

Henceforth, C will denote a positive constant, independent of k, h (k = r h), j (0 ≤ j ≤ J + n) and
n (−L ≤ n ≤ N), and C may have different values at different places.

As in [12], it is possible to establish the following property that we called (SG) for the selection

procedure given by (10): if
{

xn
jnl

}M(n)

l=0
, denotes a subgrid of the grid

{
xn

j

}J+n+1

j=0
at the time level tn,

0 ≤ n ≤ N,

(SG) There exists a positive constant C such that, for h sufficiently small, xn
jnl+1

− xn
jnl

≤ C h,

0 ≤ l ≤ M(n)− 1, xn
jn0
= x0, xn

jnM(n)
= xn

J+n, 0 ≤ n ≤ N.

The property (SG) condenses the essential information about the adaptive selection procedure to
allow the proof, under the hypotheses (H1)–(H7), of the following general properties of the composite
trapezoidal quadrature Q (X, V) based on the subgrids,

(P1) |I(tn)−Q (xn, γn(x, s) · un)| ≤ C h2, when h → 0, 0 ≤ n ≤ N.

(P2)
∣∣∣∣∫ xM(tn)

x0

α(x, s(tn), tn) u(x, tn) dx −Q (xn, αn(x, s) · un)

∣∣∣∣ ≤ C h2, when h → 0, 0 ≤ n ≤ N.

(P3) |qj(x
n)| ≤ q h, where q is a positive constant independent of h, k, j (0 ≤ j ≤ J + n) and n

(−L ≤ n ≤ N), for 0 ≤ j ≤ J + n, 0 ≤ n ≤ N.
(P4) Let R and p be positive constants with 1 < p < 2. The quadrature weights qj are Lipschitz

continuous functions on B∞(xn, R kp), 0 ≤ j ≤ J + n, 0 ≤ n ≤ N.
(P5) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R kp), Vn ∈ B∞(un, R kp)

and an ∈ B∞(sn, R kp); then∣∣∣∣∣J+n

∑
i=0

(qi(y
n)− qi(z

n)) γ(zn
i , an, tn)Vn

i

∣∣∣∣∣ ≤ C‖yn − zn‖∞,

when k → 0, 0 ≤ n ≤ N.
(P6) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R kp), Vn ∈ B∞(un, R kp)

and an ∈ B∞(sn, R kp); then∣∣∣∣∣J+n

∑
i=0

(qi(y
n)− qi(z

n)) α (zn
i , an, tn) Vn

i

∣∣∣∣∣ ≤ C‖yn − zn‖∞,

when h → 0, 0 ≤ n ≤ N.
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Then, the properties (P1)–(P6) allow us to establish that the nonlinear discrete operators describing
Φk are well defined for k ∈ K small enough, as we formulate in the following theorem (we refer to [9]
about details of the proof).

Theorem 1. Assume that hypotheses (H1)–(H7) hold and that the quadrature rules used in (18)–(25) satisfy
the properties (P1)–(P6). If (

X0, V0, . . . , XN , VN , S
)
∈ BAk (ũk, R kp),

where R is a fixed positive constant and 1 < p < 2, then, for k sufficiently small,

Q(Xn, γn(X, S) · Vn) ∈ DI , (27)

0 ≤ n ≤ N. Furthermore, there exists a positive constant R′, independent of k, such that, as k → 0,
Xn,∗ ∈ B∞(xn, R′ kp), Sn,∗ ∈ B∞(sn, R′ kp) and Vn,∗ ∈ B∞(un, R′ kp), and

Q(Xn,∗, γn,∗(X, S) · Vn,∗) ∈ DI , (28)

1 ≤ n ≤ N.

Now, we define the local discretization error as

Φk(ũk) = (Z0, L0, σ0, L0, Z1, L1, . . . , ZN , LN , σ) ∈ Bk,

and we say that the discretization (14) is consistent if, as k → 0,

lim ‖Φk(ũk)‖Bk = 0.

The following theorem establishes the consistency of the numerical scheme defined by
Equations (26).

Theorem 2 (Consistency). Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules
satisfy properties (P1)–(P6). Then, as k → 0, the local discretization error satisfies

‖Φk(ũk)‖Bk = ‖u0 − U0‖∞ + ‖x0 − X0‖∞ + max
−L≤n≤0

|sn − Sn|+ O(h2 + k2). (29)

Proof. The only novelty with respect to the proof of the consistency in [9] is to establish bounds
for the truncation errors in the numerical approximations to the solution of the delay differential
equation that drives the dynamics of the resource. Therefore, the regularity hypotheses (H1)–(H7),
properties (P1), (P2) of the quadrature rule and error bounds for the explicit Euler method allow us to
bound

|sn − sn,∗| ≤
∣∣∣s(tn)− sn−1 − k f

(
sn−1, sn−1−L, I(tn−1), tn−1

)∣∣∣
+ k

∣∣∣ f
(

sn−1, sn−1−L, I(tn−1), tn−1
)
− f

(
sn−1, sn−1−L, Q(xn−1, γn−1(x, s) · un−1, tn−1)

)∣∣∣
≤ C

(
k2 + k

∣∣∣I(tn−1)−Q(xn−1, γn−1(x, s) · un−1)
∣∣∣)

≤ C (k2 + k h2). (30)

As was made in [9], for h sufficiently small, we also can attain,

|Q (xn, γn(x, s) un)−Q (xn,∗, γn,∗(x, s) un,∗)| ≤ C (h2 + k2), (31)
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and bounds on the truncation errors corresponding to the numerical approximations to the nodal
grids, Zn, 1 ≤ n ≤ N,

|Zn
j | ≤ C (k2 + h2 k), 1 ≤ j ≤ J + n, 1 ≤ n ≤ N. (32)

Next, (21), the regularity hypotheses (H1)–(H7), the property (P1), inequalities (30) and (31) and
the error bound of the modified Euler scheme employed, allow us to achieve

|σn| ≤ 1
k

{∣∣∣∣sn − sn−1 − k
2

(
f
(

sn−1, sn−1−L, I(tn−1), tn−1
)
+ f

(
sn, sn−L, I(tn), tn

))∣∣∣∣
+

k
2

∣∣∣ f
(

sn−1, sn−1−L, I(tn−1), tn−1
)
− f

(
sn−1, sn−1−L, Q(xn−1, γn−1(x, s) · un−1), tn−1

)∣∣∣
+

k
2

∣∣∣ f
(

sn, sn−L, I(tn), tn
)
− f

(
sn,∗, sn−L, I(tn), tn

)∣∣∣
+

k
2

∣∣∣ f
(

sn,∗, sn−L, I(tn), tn
)
− f

(
sn,∗, sn−L, Q(xn,∗, γn,∗(x, s) · un,∗), tn

)∣∣∣}
≤ C

{
k2 + |sn − sn,∗|+

∣∣∣I(tn−1)−Q(xn−1, γn−1(x, s) · un−1)
∣∣∣

+ |I(tn)−Q(xn, γn(x, s) · un)|+ |Q(xn, γn(x, s) · un)−Q(xn,∗, γn,∗(x, s) · un,∗)|}
≤ C

(
k2 + h2

)
, (33)

1 ≤ n ≤ N. Finally, the bounds for the truncation errors produced by Un
j , 0 ≤ j ≤ J + n, 1 ≤ n ≤ N,

are derived as in [9],

|Ln
j | ≤ C (k2 + h2), 0 ≤ j ≤ J + n, 1 ≤ n ≤ N. (34)

Therefore, (29) follows from (32)–(34).

Another piece of notion that plays an important role in the analysis of the numerical method is
the stability with k-dependent thresholds. For k ∈ K, let Rk be a real number ( the stability threshold)
with 0 < Rk < ∞. We say that the discretization (26) is stable for ũk restricted to the thresholds Rk,
if there exist two positive constants k0 ∈ K and S ( the stability constant) such that, for any k ∈ K with
k ≤ k0, the open ball BAk (ũk, Rk) is contained in the domain of Φk„ and for all Ṽk, W̃k in that ball,

‖Ṽk − W̃k‖Ak ≤ S ‖Φk(Ṽk)− Φk(W̃k)‖Bk .

We introduce the following auxiliary result, proved in [9] where the same quadrature rule and the
same procedure of selection of the subgrid at each time step were used.

Proposition 1. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy
properties (P1)–(P6). Let be yn, zn ∈ B∞(xn, R kp), Vn, Wn ∈ B∞(un, R kp) and an, bn ∈ B∞(sn, R kp),
where R is a positive constant and 1 < p < 2. Then, as k → 0,

|Q(yn, γn(y, a) · Vn)−Q(zn, γn(z, b) · Wn)| ≤ C (‖Vn − Wn‖1 + ‖yn − zn‖∞ + |an − bn|) , (35)

|Q(yn,∗, γn,∗(y, a) · Vn,∗)−Q(zn,∗, γn,∗(z, b) · Wn,∗)| ≤ C (‖Vn,∗ − Wn,∗‖1 + ‖yn,∗ − zn,∗‖∞ + |an,∗ − bn,∗|) , (36)

1 ≤ n ≤ N.

Now, we introduce the theorem that establishes the stability of the discretization defined by
Equations (26).

Theorem 3 (Stability). Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules
satisfy properties (P1)–(P6). Then, the discretization is stable for ũk with Rk = R kp, 1 < p < 2.
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Proof. We denote

Φk

(
y0, V0, y1, V1, . . . , yN , VN , a

)
=

(
Y0, P0, A0, P0, Y1, P1, . . . , YN , PN , A

)
,

Φk

(
z0, W0, z1, W1, . . . , zN , WN , b

)
=

(
Z0, R0, B0, R0, Z1, R1, . . . , ZN , RN , B

)
,

for
(
y0, V0, y1, V1, . . . , yN , VN , a

)
,
(
z0, W0, z1, W1, . . . , zN , WN , b

)
∈ BAk (ũk, Rk). Now, we set

En = Vn − Wn ∈ RJ+n+1, Δn = yn − zn ∈ RJ+n, 0 ≤ n ≤ N; σn = bn − an ∈ R, −L ≤ n ≤ N,

En,∗ = Vn,∗ − Wn,∗ ∈ RJ+n+1, Δn,∗ = yn,∗ − zn,∗ ∈ RJ+n, σn,∗ = bn,∗ − an,∗ ∈ R,

1 ≤ n ≤ N. From (22) and hypothesis (H6), we obtain

‖Δn,∗‖∞ ≤ (1 + C k)
∥∥∥Δn−1

∥∥∥
∞
+ C k

∣∣∣σn−1
∣∣∣ , (37)

1 ≤ n ≤ N. Next, from (25), by means of hypothesis (H7) and inequality (35), we arrive at

|σn,∗| ≤ |σn−1|+ k
∣∣∣ f

(
an−1, an−1−L, Q

(
yn−1, γn−1(y, a) · Vn−1

)
, tn−1

)
− f

(
bn−1, bn−1−L, Q

(
zn−1, γn−1(z, b) · Wn−1

)
, tn−1

)∣∣∣
≤ (1 + C k) |σn−1|+ C k |σn−1−L|+ C k

{∥∥∥Δn−1
∥∥∥

∞
+

∥∥∥En−1
∥∥∥

1

}
, (38)

1 ≤ n ≤ N. Now, from (23), hypotheses (H4), (H6) and the boundedness of ‖Wn‖∞, we have, for k
sufficiently small,

|En,∗
j | ≤ (1 + C k)

∥∥∥En−1
∥∥∥

1
+ C k

{∣∣∣σn−1
∣∣∣+ ∥∥∥Δn−1

∥∥∥
∞

}
, (39)

1 ≤ j ≤ J + n. Additionally, (24), hypothesis (H6) and inequalities (36)–(38), allow us to obtain, for k
sufficiently small,

|En,∗
0 | ≤ C

{∣∣∣σn−1
∣∣∣+ ∣∣∣σn−1−L

∣∣∣+ ∥∥∥Δn−1
∥∥∥

∞
+

∥∥∥En−1
∥∥∥

1
+ ‖En,∗‖1

}
, (40)

1 ≤ n ≤ N. Then, we multiply |En,∗
j | by h and sum in j, 0 ≤ j ≤ J + n, to achieve a bound of ‖En,∗‖1,

1 ≤ n ≤ N. Therefore, from (39), (40) and that k = r h, we derive, for h sufficiently small,

‖En,∗‖1 ≤ C h
{∣∣∣σn−1

∣∣∣+ ∣∣∣σn−1−L
∣∣∣+ ∥∥∥Δn−1

∥∥∥
∞
+

∥∥∥En−1
∥∥∥

1
+ ‖En,∗‖1

}
+ h

J+n

∑
j=1

{
(1 + C k)

∥∥∥En−1
∥∥∥

1
+ C k

(∣∣∣σn−1
∣∣∣+ ∥∥∥Δn−1

∥∥∥
∞

)}
≤ C h ‖En,∗‖1 + C

{∣∣∣σn−1
∣∣∣+ ∣∣∣σn−1−L

∣∣∣+ ∥∥∥Δn−1
∥∥∥

∞
+

∥∥∥En−1
∥∥∥

1

}
, (41)

1 ≤ n ≤ N, and for h sufficiently small,

‖En,∗‖1 ≤ C
{∣∣∣σn−1

∣∣∣+ ∣∣∣σn−1−L
∣∣∣+ ∥∥∥Δn−1

∥∥∥
∞
+

∥∥∥En−1
∥∥∥

1

}
, (42)
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1 ≤ n ≤ N. Next, (19), hypotheses (H6)–(H7), (37) and (38) enable us to arrive at

|Δn
j | ≤ (1 + C k) |Δn−1

j−1 |+ C k
{
|σn−1|+

∣∣∣Δn,∗
j

∣∣∣+ |σn,∗|
}
+ k

∣∣∣Yn
j − Zn

j

∣∣∣
≤ (1 + C k) |Δn−1

j−1 |+ C k
{∥∥∥Δn−1

∥∥∥
∞
+

∥∥∥En−1
∥∥∥

1
+

∣∣∣σn−1
∣∣∣+ ∣∣∣σn−1−L

∣∣∣}+ k
∣∣∣Yn

j − Zn
j

∣∣∣ , (43)

1 ≤ j ≤ J + n, 1 ≤ n ≤ N. Thus, from (43), when N ≥ n > j ≥ 1, we have

|Δn
j | ≤ C k

j−1

∑
l=0

(1 + C k)l
(
‖En−1−l‖1 + ‖Δn−1−l‖∞ +

∣∣∣σn−1−l
∣∣∣+ ∣∣∣σn−1−l−L

∣∣∣)
+ k

j−1

∑
l=0

(1 + C k)l |Yn−l
j−l − Zn−l

j−l |, (44)

and when J + n ≥ j ≥ n ≥ 1, it follows that

|Δn
j | ≤ (1 + C k)n |Δ0

j−n|+ C k
n−1

∑
l=0

(1 + C k)l
(
‖En−1−l‖1 + ‖Δn−1−l‖∞ +

∣∣∣σn−1−l
∣∣∣+ ∣∣∣σn−1−l−L

∣∣∣)
+ k

n−1

∑
l=0

(1 + C k)l |Yn−l
j−l − Zn−l

j−l |. (45)

Then, by means of (44) and (45), we can conclude that

‖Δn‖∞ ≤ C

{
‖Δ0‖∞ +

n−1

∑
m=0

k ‖Em‖1 +
n−1

∑
m=0

k ‖Δm‖∞ +
n−1

∑
m=−L

k |σm|+
n

∑
m=1

k ‖Ym − Zm‖∞

}
, (46)

1 ≤ n ≤ N. On the other hand, from (21), (H7) and (35)–(38) and (42), for k small enough, we obtain
that

|σn| ≤ (1 + C k) |σn−1|+ C k
{
|σn,∗|+

∣∣∣σn−L
∣∣∣+ |Q(yn,∗, γn,∗(y, a) · Vn,∗)−Q(zn,∗, γn,∗(z, b) · Wn,∗)|

+
∣∣∣Q(yn−1, γn−1(y, a) · Vn−1)−Q(zn−1, γn−1(z, b) · Wn−1)

∣∣∣+ ∣∣∣σn−L−1
∣∣∣}+ k |An − Bn|

≤ (1 + C k) |σn−1|+ C k
{∥∥∥Δn−1

∥∥∥
∞
+

∥∥∥En−1
∥∥∥

1

}
+ C k

{
‖Δn,∗‖∞ + ‖En,∗‖1 + |σn,∗|+

∣∣∣σn−L−1
∣∣∣+ ∣∣∣σn−L

∣∣∣}+ k |An − Bn|

≤ (1 + C k) |σn−1|+ C k
{∣∣∣σn−L−1

∣∣∣+ ∣∣∣σn−L
∣∣∣+ ∥∥∥Δn−1

∥∥∥
∞
+

∥∥∥En−1
∥∥∥

1

}
+ k |An − Bn|, (47)

1 ≤ n ≤ N. Thus,

|σn| ≤ (1 + C k)n |σ0|+ k
n−1

∑
l=0

(1 + C k)l |An−l − Bn−l |

+ C k
n−1

∑
l=0

(1 + C k)l
{∣∣∣σn−l−L−1

∣∣∣+ ∣∣∣σn−l−L
∣∣∣+ ∥∥∥Δn−l−1

∥∥∥
∞
+

∥∥∥En−l−1
∥∥∥

1

}
, (48)

1 ≤ n ≤ N. Therefore,

|σn| ≤ C

{
|σ0|+

n−L

∑
m=−L

k |σm|+
n

∑
m=1

k |Am − Bm|+
n−1

∑
m=0

k ‖Δm‖∞ +
n−1

∑
m=0

k ‖Em‖1

}
, (49)
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1 ≤ n ≤ N. Finally, when we study the residuals caused by the approximation to the solution,
from (20), hypotheses (H4), (H6), (H7), the inequalities (35), (37), (38) and ‖Wn−1‖∞ ≤ C, we have,
for k sufficiently small,

|En
j | ≤ k |Pn

j − Rn
j |+ (1 + C k) |En−1

j−1 |+ C k
{∣∣∣Δn−1

j−1

∣∣∣+ ∣∣∣σn−1
∣∣∣+ ∣∣∣Δn,∗

j

∣∣∣+ |σn,∗|
}

≤ k |Pn
j − Rn

j |+ (1 + C k) |En−1
j−1 |+ C k

{∥∥∥Δn−1
∥∥∥

∞
+

∥∥∥En−1
∥∥∥

1
+

∣∣∣σn−1
∣∣∣+ ∣∣∣σn−1−L

∣∣∣} , (50)

1 ≤ j ≤ J + n, 1 ≤ n ≤ N. Now, we derive the stability estimate for the boundary node from (18).
We employ hypotheses (H5) and (H6), the properties (P3) and (P6), and that ‖Wn‖∞ ≤ C, to achieve

|En
0 | ≤ |Pn

0 − Rn
0 |+ C {|σn|+ ‖Δn‖∞ + ‖En‖1} , (51)

1 ≤ n ≤ N. Thus, from (50), when N ≥ n > j ≥ 1, we obtain

|En
j | ≤ (1 + C k)j |En−j

0 |+ k
j−1

∑
l=0

(1 + C k)l |Pn−l
j−l − Rn−l

j−l |

+ C k
j−1

∑
l=0

(1 + C k)l
{
‖En−1−l‖1 + ‖Δn−1−l‖∞ + |σn−1−l |+ |σn−1−l−L|

}
. (52)

Additionally, when J + n ≥ j ≥ n ≥ 1, it follows that

|En
j | ≤ (1 + C k)n |E0

j−n|+ k
n−1

∑
l=0

(1 + C k)l |Pn−l
j−l − Rn−l

j−l |

+ C k
n−1

∑
l=0

(1 + C k)l
{
‖En−1−l‖1 + ‖Δn−1−l‖∞ + |σn−1−l |+ |σn−1−l−L|

}
. (53)

Thus, we can conclude that

|En
j | ≤ C

{
‖E0‖1 +

n−1

∑
m=0

k ‖Em‖1 +
n−1

∑
m=0

k ‖Δm‖∞ +
n−1

∑
m=−L

k |σm|+
n

∑
m=1

k ‖Pm − Rm‖∞

}
. (54)

As we are interested in a maximum norm bound of En, next, we proceed to achieve a bound for
the term ‖En‖1, 1 ≤ n ≤ N. Then, for k small enough,

‖En‖1 ≤ C
{
‖E0‖1 + ∑n

m=1 k ‖Em‖1 + ∑n
m=0 k ‖Δm‖∞ + ∑n

m=−Lk |σm|+ ∑n
m=1 k ‖Pm − Rm‖∞ + ‖P0 − R0‖∞

}
, (55)

1 ≤ n ≤ N. Thus, by means of the discrete Gronwall lemma,

‖En‖1 ≤ C

{
‖E0‖1 +

n

∑
m=0

k ‖Δm‖∞ +
n

∑
m=−L

k |σm|+
n

∑
m=1

k ‖Pm − Rm‖∞ + ‖P0 − R0‖∞

}
, (56)

1 ≤ n ≤ N. Next, we substitute (56) into (46), and by means of the discrete Gronwall Lemma, for k
sufficiently small, it follows that

‖Δn‖∞ ≤ C

⎧⎨⎩‖Δ0‖∞ + ‖E0‖1 +
n−1

∑
m=−L

k |σm|+ ‖P0 − R0‖∞ +
n−1

∑
m=1

k ‖Pm − Rm‖∞ +
n

∑
m=1

k ‖Ym − Zm‖∞

⎫⎬⎭ , (57)
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1 ≤ n ≤ N. Now, we substitute (56) and (57) in (49), and apply again the discrete Gronwall
Lemma, to attain

|σn| ≤ C

{
‖Δ0‖∞ + ‖E0‖1 + ‖σ0‖∞ +

n

∑
m=1

k |Am − Bm|+ ‖P0 − R0‖∞

+
n−1

∑
m=1

k ‖Pm − Rm‖∞ +
n−1

∑
m=1

k ‖Ym − Zm‖∞

}
, (58)

1 ≤ n ≤ N. Then, we substitute (58) in (56) and (57) to obtain

‖Δn‖∞ ≤ C

{
‖Δ0‖∞ + ‖E0‖1 + ‖σ0‖∞ + ‖P0 − R0‖∞ +

n−1

∑
m=1

k |Am − Bm|

+
n−1

∑
m=1

k ‖Pm − Rm‖∞ +
n

∑
m=1

k ‖Ym − Zm‖∞

}
, (59)

and

‖En‖1 ≤ C

{
‖Δ0‖∞ + ‖E0‖1 + ‖σ0‖∞ + ‖P0 − R0‖∞ +

n

∑
m=1

k |Am − Bm|

+
n

∑
m=1

k ‖Pm − Rm‖∞ +
n

∑
m=1

k ‖Ym − Zm‖∞

}
, (60)

1 ≤ n ≤ N. Finally, we substitute (58)–(60) in (51) and (54) to arrive at

‖En‖∞ ≤ C

{
‖Δ0‖∞ + ‖E0‖1 + ‖σ0‖∞ + ‖P0 − R0‖∞ +

n

∑
m=1

k |Am − Bm|

+
n

∑
m=1

k ‖Pm − Rm‖∞ +
n

∑
m=1

k ‖Ym − Zm‖∞

}
, (61)

1 ≤ n ≤ N. Thus, due to (58), (59) and (61) we have

‖
(

Δ0, E0, . . . , ΔN , EN , σ
)
‖Ak

≤ C ‖(Δ0, E0, σ0, P0 − R0, Y1 − Z1, P1 − R1, . . . , YN − ZN , PN − RN , A − B)‖Bk .

We finish the analysis of the numerical method with the convergence. The global discretization
error is defined as

ẽk = ũk − Ũk ∈ Ak,

We say that the discretization (26) is convergent if there exists k0 ∈ K such that, for each k ∈ K
with k ≤ k0, (26) has a solution Ũk for which, as k → 0,

lim ‖ũk − Ũk‖Ak = lim ‖ẽk‖Ak = 0.

In our analysis, we use the following result of the general discretization framework introduced
in [14].

Theorem 4. Assume that (26) is consistent and stable with thresholds Rk. If Φk is continuous in B(ũk, Rk)

and ‖lk‖Bk = o(Rk) as k → 0, then:
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i) For k sufficiently small, the discrete Equations (26) possess a unique solution in B(ũk, Rk).
ii) As k → 0, ‖ẽk‖Ak = O(‖lk‖Bk ).

Finally, we propose the next theorem which establishes the convergence of the numerical method
defined by Equations (26).

Theorem 5. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy
properties (P1)–(P6). Then, for k sufficiently small, the numerical method defined by Equations (26) has
a unique solution Ũk ∈ B(ũk, Rk) and

‖Ũk − ũk‖Ak ≤ C
(
‖x0 − X0‖∞ + ‖u0 − U0‖∞ + ‖s0 − S0‖∞ + O(h2 + k2)

)
. (62)

The proof of Theorem 5 is immediately derived by means of consistency (Theorem 2), stability
(Theorem 3) and Theorem 4. Specifically, if X0 = x0, U0 = u0 and S0 = s0, the proposed numerical
scheme is second-order accurate.

Next, we also establish an error bound for the differences between the theoretical solution
u evaluated at the numerical values of the grid nodes, and the approximation obtained with the
numerical method.

Theorem 6. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy
properties (P1)–(P6). Then, for k sufficiently small, let

u†
k =

(
u0,†, u1,†, . . . , uN,†

)
∈

N

∏
n=0

RJ+n,

be defined by un,† =
(

u(Xn
0 , tn), u(Xn

1 , tn), . . . , u(Xn
J+n, tn)

)
∈ RJ+n, 0 ≤ n ≤ N, where Xn

j , 0 ≤ j ≤ J + n,

0 ≤ n ≤ N, are the grid nodes given in (26). Then, the solution Ũk satisfies

max
0≤n≤N

{
max

{
‖un,† − Un‖∞, |s(tn)− Sn|

}}
≤ C

(
‖x0 − X0‖∞ + ‖u0 − U0‖∞ + ‖s0 − S0‖∞ + O(h2 + k2)

)
. (63)

Proof. We only have to consider the triangle inequality

|u(Xn
j , tn)− Un

j | ≤ |u(Xn
j , tn)− u(xn

j , tn)|+ |u(xn
j , tn)− Un

j |,

0 ≤ j ≤ J + n, 0 ≤ n ≤ N. The smoothness hypothesis (H1) on u is enough to derive that the first
term on the right hand side of the inequality is O(|Xn

j − xn
j |) = O(h2 + k2), as proved in Theorem 5.

Additionally, the second-order rate of convergence proved in such a Theorem shows that the second
term is O(h2 + k2).

The last convergence theorem remains true even if the method employs a cuadrature rule at each
time-step in which only a selection of nodes are involved, whenever the subgrid of these cuadrature
nodes satisfies the (SG) property. In the case of the selection procedure given by (10), the convergence
can be demonstrated in two stages. First, as proven in [12], we can establish that the selection
procedure (10) creates subgrids with the property (SG) if the procedure is applied to a grid whose
nodes are in the neighborhood of the theoretical ones within a radius R kp. This is just the case, as the
convergence Theorem 6 establishes, step by step, if the solutions at each fixed time level are obtained
by the discrete operator (14).

4. Numerical Results

We carried out different simulations with the aim of exploring the behavior of the numerical
method for the structured consumer population with a delayed resource model (1), (3). We tried to
corroborate the convergence theoretical results with an academical test. It consisted of a test problem
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with meaningful nonlinearities both from mathematical and biological points of view in which the
delay differential equation for the resource employed τ = 1. We used the following size-specific
growth, fertility and mortality rates

g(x, z, t) =
λ

2
1 + z

z

((
z

1 + z

)2
− x2

)
+

x ρ

1 + z

(
29
30

− z
κ

)
,

α(x, z, t) =
3
2

λ

1 +
(

z
Λ ( 29

30 − z
κ )

)−30 λ
29 ρ

1 + 2
(

z
Λ ( 29

30 − z
κ )

)−30 λ
29 ρ

,

μ(x, z, t) = λ
1 + z

z

(
z

1 + z
+ 2 x

)
− 3 ρ

1 + z

(
29
30

− z
κ

)
.

The weight function in (4) was γ(x, z, t) = x2, and finally, the function that drove the dynamics of
the resource (3) was chosen to be

f (z(t), z(t − 1), ζ, t) = ρ z(t)
(

1 − z(t − 1)
κ

)
− ρ ζ (κ + 30 (z(t)− z(t − 1)))

(1 + z(t))5

κ (z(t))4 (1 + 4 e−λt)
.

With this choice of data functions, the problem (1), (3) has the following solution:

u(x, t) =
(

s(t)
1 + s(t)

− x
)2

+ e−λt

((
s(t)

1 + s(t)

)2

− x2

)
,

s(t) =
29
30

Λ e29 ρ t/30

1 + Λ e29 ρ t/30/κ
,

where Λ = 24; κ = 5; and ρ and λ are parameters that must be fixed. In the experiment, we employed
ρ = 0.1 and λ = 0.3.

The knowledge of the exact solution to the problem allowed us to compare it with the numerical
solution and to compute the error caused by the numerical approximation. Then, given h and
k the discretization parameters in size and time, and the corresponding numerical solution with
(X0, U0, X1, U1, . . . , XN , UN , S), we computed

ê†
h,k = max

{
max

0≤n≤N

{
max
0≤j≤J

|u(Xn
j , tn)− Un

j |
}

, max
0≤n≤N

{|s(tn)− Sn|}
}

. (64)

Note that the exact positions of the grid nodes, xn
j , 0 ≤ j ≤ J, 0 ≤ n ≤ N, are unknown, so we

compared them with the solution on the computed grid Xn
j , 0 ≤ j ≤ J, 0 ≤ n ≤ N. In Figure 1, we

show the evolution of the computed error in both consumer and resource populations. We observe
that the error is produced mainly at the birth (minimum size) and increases with time.

We can also obtain the experimental order of convergence by means of the following
well-known formula:

ôrder2 h,2 k =
log (ê†

2 h,2 k/ê†
h,k)

log 2
.

We can show the convergence of our method and that it is second-order accurate by means
of Table 1. In the test, the initial size interval was taken as [0, x0

M], with x0
M = 0.8, and the numerical

integration was carried out on the time interval [0, T], with T = 10. Each column and each row of the
table represent a computation with different values of the time and size discretization parameters,
respectively. The upper number of each entry in columns two to six of said table represents the error
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computed from (64) and the lower quantity is the experimental order of convergence. We also remark
that the ratio r := k/h was kept fixed as soon as we considered approximations along each diagonal of
the table. We realize that the results in Table 1 clearly confirm the expected (theoretically) second-order
convergence for these approximations. Different values of parameters ρ and λ confirm the same
behavior of the error.

Figure 1. k = 1.25 × 10−2, h = 1.25 × 10−1.Plot on the left: evolution of the error in the consumer
population; plot on the right: evolution of the error in the resource population.

Table 1. T = 10. For each value of h and k, the corresponding upper number is ê†
h,k; the lower number

is ôrder
†
h,k.

h\k 1.25 × 10−2 6.25 × 10−3 3.125 × 10−3 1.5625 × 10−3 7.8125 × 10−4

1.25 × 10−1 3.003180 × 10−4 5.059363 × 10−5 9.929120 × 10−6 2.615432 × 10−5 2.965525 × 10−5

6.25 × 10−2 3.260311 × 10−4 7.522357 × 10−5 1.271462 × 10−5 2.473141 × 10−6 6.535886 × 10−6

2.00 1.99 2.01 2.00

3.125 × 10−2 3.334010 × 10−4 8.200264 × 10−5 1.880835 × 10−5 3.186199 × 10−6 6.163402 × 10−7

1.99 2.00 2.00 2.00

1.5625 × 10−2 3.359480 × 10−4 8.344165 × 10−5 2.046955 × 10−5 4.704060 × 10−6 7.979058 × 10−7

2.00 2.00 2.00 2.00

7.8125 × 10−3 3.363417 × 10−4 8.380967 × 10−5 2.093071 × 10−5 5.118703 × 10−6 1.176429 × 10−6

2.00 2.00 2.00 2.00

5. Conclusions

We proposed a numerical method specially adapted to integrate a model that describes the
evolution of a size-structured consumer population feeding on a dynamical resource. The model
couples a first-order hyperbolic partial differential equation with nonlocal and nonlinear boundary
condition and a differential equation driving the dynamics of the resource. The novelty of the model
is the appearance of a delay in the resource evolution rate. Numerical methods are the only feasible
approach, except in exceptional cases, for the approximation of the solution of the problem and
eventually studying the dynamical behavior of the model. The authors have in preparation [15], using
this model, a numerical study on the effect of the delay in the resource evolution rate on the dynamics
of a population of the Daphnia magna (water flea).

The analyzed numerical method integrated the problem along its characteristic curves. We proved
optimal second-order of convergence to the solution; this was confirmed numerically by means of an
academic test problem. This is the first convergence analysis to our knowledge for the discretization of
this kind of problem.
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Abstract: In this paper, we are concerned with the construction of numerical schemes for linear
random differential equations with discrete delay. For the linear deterministic differential equation
with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD)
methods from an exact numerical scheme on the whole domain. The family of NSFD schemes
had increasing order of accuracy, was dynamically consistent, and possessed simple computational
properties compared to the exact scheme. In the random setting, when the two equation coefficients
are bounded random variables and the initial condition is a regular stochastic process, we prove that
the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows
for approximating the expectation and the variance of the solution stochastic process. In practice, the
NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed
by using the linearity of the expectation. This procedure permits retaining the increasing order
of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach.
The theoretical m.s. convergence rate is supported numerically, even when the two equation
coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically.
A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution
of a photosynthetic bacterial population is presented.

Keywords: delay random differential equation; non-standard finite difference method; mean
square convergence

1. Introduction

Modeling physical systems for which the future state depends on history due to hereditary
characteristics, such as aftereffects or time lags, usually requires the use of delay differential models.
The delay may be discrete or continuous, depending on whether a specific or complete past information
is used. The inclusion of a delay requires specific techniques for the theoretical study of the differential
model [1–4]. In practice, delay differential models play a key role in different scientific and technical
fields [5–10].

In the context of delay differential equations, the construction of non-standard finite difference
(NSFD) numerical schemes has not been much explored. Historically, NSFD schemes were developed
by Mickens in the years 1994 and 2000 [11,12], together with a later edited book in 2005 [13]. Mickens
observed that traditional standard finite difference schemes may be modified, on the basis of exact
numerical schemes for basic ordinary differential equations, so that the essential properties of the

Mathematics 2020, 8, 1417; doi:10.3390/math8091417 www.mdpi.com/journal/mathematics109
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governing continuous model are mimicked [14]. Until relatively recently, NSFD schemes were
successfully designed and applied for ordinary, partial and fractional differential equations [15].
However, delay differential equations have not been addressed in detail.

Recently, [16] proposed a NSFD scheme for the general linear delay problem{
x′(t) = αx(t) + βx(t − τ), t > 0,

x(t) = f (t), −τ ≤ t ≤ 0,
(1)

(τ > 0) from an exact scheme on the whole domain, providing high order of accuracy and consistent
dynamical behavior with simple computational properties. Such approach was extended to the
non-scalar case in [17].

In modeling, the variability of data, due to limited knowledge and fluctuation of the process
under study, lack of information, bad calibration machines, etc., gives rise to variability in the model
coefficients. Therefore, for a more realistic description of the process, coefficients should be regarded
as random quantities on an abstract probability space. When the coefficients are random variables
and regular stochastic processes, the solution to the model becomes a differentiable stochastic process,
whose realizable trajectories solve the deterministic version of the model. A common treatment of
random differential models uses mean square (m.s.) calculus [18–24]. Of special importance is the
computation of the mean and the variance of the solution stochastic process, or even its probability
density function.

We are interested on delay random differential equations. Specifically, the randomization of (1) as{
x′(t, ω) = α(ω)x(t, ω) + β(ω)x(t − τ, ω), t > 0, ω ∈ Ω,

x(t, ω) = f (t, ω), −τ ≤ t ≤ 0, ω ∈ Ω.
(2)

Here α and β are random variables and f is a stochastic process on a complete probability space
(Ω, F ,P), where Ω is the sample space formed by the outcomes ω ∈ Ω, F is the σ-algebra of events,
and P : F → [0, 1] is the probability measure. The solution x is a differentiable stochastic process.

Only recently, a theoretical study on delay random differential equations was started. General
delay random differential equations were analyzed in the m.s. sense in [25], with the goal of extending
some of the existing results on random differential equations with no delay from the book [18].
Problem (2) was solved in the m.s. sense in [26], and later generalized to equations with a random
forcing term in [27]. On the other hand, in [28] the authors studied (2), but considered the solution
in the sample-path sense and computed its probability density function via the random variable
transformation technique, for certain forms of the initial condition process.

In this paper, we are concerned with computational aspects of delay random differential equations.
Standard finite difference methods have already been applied to random ordinary, partial and fractional
differential equations, by establishing the m.s. convergence, and even the convergence of densities,
of the numerical discretizations towards the stochastic process solution [29–34]. Here we aim at
extending the NSFD method from [16] to (2), by assessing the m.s. convergence of the discretizations.
This permits approximating the expectation and the variance of the solution with high accuracy,
whenever computationally feasible.

The organization of this paper is the following. In Section 2, the main results on m.s. calculus
are exposed. The material for this section is essentially taken from [18]. In Section 3, the NSFD
numerical scheme from [16] is presented. The randomization of the scheme, its m.s. convergence and
its usefulness for approximating moments are discussed in Section 4. Illustration of the theory with
numerical examples is conducted in Section 5. Finally, Section 6 draws the main conclusions.
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2. M.s. Calculus

We are interested in second order real random variables y : Ω → R, satisfying

E[y2] =
∫

Ω
y(ω)2 dP(ω) < ∞. (3)

We refer the reader to ([18], Ch. 4), [35]. The set of these random variables is a Hilbert space,
denoted as L2(Ω) and endowed with the inner product 〈y1, y2〉 = E[y1y2]. This inner product gives
rise to the norm ‖y‖2 = (E[y2])1/2. By Cauchy–Schwarz inequality ([18], p. 19) E[|y1y2|] ≤ ‖y1‖2‖y2‖2.
Random variables in L2(Ω) are characterized by having finite variance:

V[y] = E[(y −E[y])2] = E[y2]− (E[y])2 < ∞. (4)

This is one of the principal reasons for working with second order random variables, since
the main statistical information for uncertainty quantification, namely the average value and the
dispersion, are well-defined.

Given a stochastic process {z(t) : t ∈ I ⊆ R}, it is of second order if the random variable z(t) is of
second order, for all t ∈ I. By Cauchy–Schwarz inequality, it is straightforward to check that a second
order stochastic process possesses a correlation function, E[z(t1)z(t2)].

Convergence in L2(Ω) is defined through its norm ‖ · ‖2: a sequence of random variables {yn}∞
n=1

converges to y in L2(Ω) if limn→∞ ‖yn − y‖2 = 0. This is referred to as m.s. convergence.
M.s. convergence preserves the convergence of the expectation and the variance. This is a key

fact. In general, if {xn}∞
n=1 and {yn}∞

n=1 are two sequences of second order random variables such that
xn → x and yn → y as n → ∞ in the m.s. sense, then E[xnyn] → E[xy] ([18], p. 88).

In the particular case that {xn}∞
n=1 is a sequence of second order random variables such that its

mean and its variance tend to zero, i.e., E[xn] → 0 and V[xn] → 0 as n → ∞, then {xn}∞
n=1 is m.s.

convergent to zero, since (‖xn‖2)
2 = E[(xn)2] = V[xn] + (E[xn])2 → 0 as n → ∞. The converse is

also true.
M.s. convergence gives rise to m.s. calculus, where continuity, differentiability and Riemann

integrability of a stochastic process are naturally defined by taking m.s. limits in the classical definitions.
A stochastic process {z(t) : t ∈ I ⊆ R} is m.s. continuous at t0 ∈ I if z(t) → z(t0) as t → t0 in the m.s.
sense. It is m.s. differentiable at t0 ∈ I if limh→0

z(t0+h)−z(t0)
h exists in the m.s. sense, which is denoted

as z′(t0). Finally, z(t) is m.s. Riemann integrable on an interval [a, b] ⊆ I if there exists a sequence
of partitions {Pn}∞

n=1 with mesh tending to 0, Pn = {a = tn
0 < tn

1 < . . . < tn
rn = b}, such that for any

choice of points sn
i ∈ [tn

i−1, tn
i ], i = 1, . . . , rn, the limit limn→∞ ∑rn

i=1 z(sn
i )(t

n
i − tn

i−1) exists in the m.s.

sense, and it is denoted as
∫ b

a z(t)dt.
The following important properties will be used: m.s. continuity on an interval implies m.s.

Riemann integrability ([18] Section 4.5.1 (1)), ‖
∫ b

a z(t)dt‖2 ≤
∫ b

a ‖z(t)‖2 dt for any m.s. Riemann
integrable process z(t) ([18] Section 4.5.1 (3)), and the fundamental theorem of m.s. calculus ([18]
Section 4.5.1 (5), (6)).

Finally, we mention that the essential supremum norm is defined as

‖y‖∞ = inf{C ≥ 0 : |y| ≤ C almost surely}. (5)

The set of random variables satisfying ‖y‖∞ < ∞ gives rise to the Banach space L∞(Ω). Obviously,
for two random variables y1 ∈ L∞(Ω) and y2 ∈ L2(Ω), it holds ‖y1y2‖2 ≤ ‖y1‖∞‖y2‖2 < ∞.
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3. NSFD Methods for Linear Deterministic Differential Equations with Delay

Based on the explicit solution to (1),

x(t) = f (0)
m−1

∑
k=0

βk(t − kτ)k

k!
eα(t−kτ)

+
m−2

∑
k=0

βk+1

k!

∫ 0

−τ
(t − (k + 1)τ − s)keα(t−(k+1)τ−s) f (s)ds

+
βm

(m − 1)!

∫ t−mτ

−τ
(t − mτ − s)m−1eα(t−mτ−s) f (s)ds, (6)

for (m − 1)τ < t ≤ mτ, m ≥ 1, an exact numerical difference scheme for (1) is obtained in [16,17]. It is
detailed in the following theorem.

Theorem 1. ([16], Theorem 2), ([17], Theorem 2) Consider a size mesh h > 0 such that Nh = τ, for some
integer N ≥ 1. Write tn = nh and xn = x(tn), for n ≥ −N. Then the numerical solution given by xn = f (tn),
for −N ≤ n ≤ 0, and by

xn+1 = eαh
m−1

∑
k=0

βkhk

k!
xn−kN +

βm

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1eα(tn−mτ+h−s) f (s)ds, (7)

where (m − 1)τ ≤ nh < mτ and m ≥ 1, defines an exact numerical scheme for (1).

Having an exact numerical scheme is ideal, since it reproduces the exact values of the solution at
the points of the mesh. However, a drawback of (7) is that definite integrals need to be numerically
computed. The number of definite integrals increases with increasing times. Thus, a NSFD method is
proposed to maintain sufficient accuracy and adequate dynamical properties, but reduce the complexity
by avoiding definite integrals. In the first M intervals [0, τ], . . . , [(M − 1)τ, Mτ], the exact solution (7)
is used (or any other numerical method with sufficiently high accuracy), but afterward the integral
part from (7) is discarded. The precision of the method increases with M.

Theorem 2. ([16], Theorem 3), ([17], Theorem 3) Fix M ≥ 1, and compute the numerical solution to (1) in
the intervals (m − 1)τ ≤ nh ≤ mτ, for 0 ≤ m ≤ M with the exact method (7) or with any other numerical
method of global error at most O(hM). Then, for m ≥ M + 1 and (m − 1)τ ≤ nh < mτ, the expression

xn+1 = eαh
M

∑
k=0

βkhk

k!
xn−kN (8)

defines a NSFD scheme of global error O(hM).

As detailed in ([16], Remark 1), the method (8) has the characteristics of a NSFD method:

xn+1 − xn

(eαh − 1)/α
= αxn +

αeαh

eαh − 1

M

∑
k=1

βkhk

k!
xn−kN . (9)

Furthermore, in the rest of [16], it is proved and illustrated that the method from Theorem 2
is dynamically consistent with (1), for asymptotic stability, positive preserving properties, and
oscillation behavior.
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4. NSFD Methods for Linear Random Differential Equations with Delay: Approximations
of Moments

When α and β are random variables and f is a stochastic process, problem (1) is randomized.
These inputs depend on each outcome ω ∈ Ω and (2) is obtained. The numerical schemes from
Section 3 are also randomized. The exact scheme (7) becomes

xn+1(ω) = eα(ω)h
m−1

∑
k=0

β(ω)khk

k!
xn−kN(ω)

+
β(ω)m

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1eα(ω)(tn−mτ+h−s) f (s, ω)ds, (10)

where the integral is considered in the m.s. sense (it is assumed that f is a m.s. integrable stochastic
process), while (8) becomes

xn+1(ω) = eα(ω)h
M

∑
k=0

β(ω)khk

k!
xn−kN(ω). (11)

We translate Theorem 2 into m.s. convergence.

Theorem 3. Suppose that α and β are bounded random variables, and that f is a m.s. continuous stochastic
process on [−τ, 0]. Fix M ≥ 1, and compute the numerical stochastic solution to (2) in the intervals (m − 1)τ ≤
nh ≤ mτ, for 0 ≤ m ≤ M with the exact method (10). Then, for m ≥ M + 1 and (m − 1)τ ≤ nh < mτ, the
expression (11) defines a random NSFD scheme of m.s. global error O(hM).

Proof. For n = MN, we have tn = nh = Mτ and tn+1 = (n + 1)h > Mτ. For tk, k ≤ n, the exact
scheme (10) is used, so that ‖x(tk)− xk‖2 = 0. By (10) and (11), one gets

‖x(tn+j+1)− xn+j+1‖2 ≤ ‖eαh‖∞

M

∑
k=0

‖β‖k
∞hk

k!
‖x(tn+j−kN)− xn+j−kN‖2

+
‖β‖m

∞
(m − 1)!

∫ tn+j−mτ+h

tn+j−mτ
(tn+j − mτ + h − s)m−1‖eα(tn+j−mτ+h−s)‖∞‖ f (s)‖2 ds, (12)

for (m − 1)τ ≤ tn+j < mτ, m − 1 ≥ M, j ≥ 0.
Let M0 = ‖β‖∞, and M1, M2 > 0 such that ‖eαs‖∞ < M1 and ‖ f (s)‖2 < M2 for s ∈ [0, h]. We

first consider j = 0, . . . , N − 1 and m − 1 = M. By (12),

‖x(tn+1)− xn+1‖2 ≤ ‖β‖m
∞

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1‖eα(tn−mτ+h−s)‖∞‖ f (s)‖2 ds

≤ Mm
0 M1M2

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1 ds

=
Mm

0 M1M2

m!
hm ≤ C1hm = C1hM+1, (13)

where C1 is a constant independent of m and h,

‖x(tn+2)− xn+2‖2 ≤ ‖eαh‖∞‖x(tn+1)− xn+1‖2 + C1hM+1 ≤ C1

(
e‖α‖∞h + 1

)
hM+1, (14)

‖x(tn+3)− xn+3‖2 ≤ ‖eαh‖∞‖x(tn+2)− xn+2‖2 + C1hM+1 ≤ C1

(
e2‖α‖∞h + e‖α‖∞h + 1

)
hM+1, (15)

. . .
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‖x(tn+N)− xn+N‖2 ≤ C1

(
N−1

∑
j=0

ej‖α‖∞h

)
hM+1

= C1
eN‖α‖∞h − 1
e‖α‖∞h − 1

hM+1 = C1
e‖α‖∞τ − 1
e‖α‖∞h − 1

hM+1

=

(
C1

(
e‖α‖∞τ − 1

) ‖α‖∞h
e‖α‖∞h − 1

1
‖α‖∞

)
hM ≤ C2hM, (16)

where C2 is a constant that only depends on τ, ‖α‖∞ and ‖β‖∞. Thus,

max
n+1≤j≤n+N

‖x(tj)− xj‖2 = O(hM). (17)

We continue by evaluating ‖x(tn+N+j) − xn+N+j‖2, 1 ≤ j ≤ N, by starting from (12) and by
employing the bounds already obtained:

‖x(tn+N+j)− xn+N+j‖2 ≤ e‖α‖∞h‖x(tn+N+j−1)− xn+N+j−1‖2 + e‖α‖∞h‖β‖∞hC2hM + C1hM+1. (18)

By solving this first order recursive inequality, we derive

‖x(tn+N+j)− xn+N+j‖2 ≤ ej‖α‖∞h‖x(tn+N)−xn+N‖2+
j

∑
k=1

hM+1
(

C1+C2‖β‖∞e‖α‖∞h
)

e‖α‖∞h(j−k)

≤ C2hMeN‖α‖∞h + hM+1
(

C1 + C2‖β‖∞e‖α‖∞h
) e‖α‖∞hj − 1

e‖α‖∞h − 1

≤ C2hMe‖α‖∞τ + hM
(

C1 + C2‖β‖∞e‖α‖∞h
) (

e‖α‖∞τ − 1
)( ‖α‖∞h

e‖α‖∞h − 1

)
1

‖α‖∞

≤ C3hM, (19)

where C3 is a constant that only depends on τ, ‖α‖∞ and ‖β‖∞. Therefore,

max
n+N+1≤j≤n+2N

‖x(tj)− xj‖2 = O(hM). (20)

In general, we proceed by induction. Suppose that ‖x(tj)− xj‖2 ≤ ChM for n + 1 ≤ j ≤ n + lN,
where C = C(τ, ‖α‖∞, ‖β‖∞) > 0 is constant and l ≥ 1. We prove that maxn+lN+1≤j≤n+(l+1)N ‖x(tj)−
xj‖2 = O(hM). Fix 1 ≤ j ≤ N. From (12) and by induction hypothesis,

‖x(tn+lN+j)− xn+lN+j‖2 ≤ e‖α‖∞h‖x(tn+lN+j−1)− xn+lN+j−1‖2

+e‖α‖∞h
M

∑
k=1

‖β‖k
∞hk

k!
ChM + ChM+1. (21)

By solving this first order recursive inequality, we derive (for h < 1)

‖x(tn+lN+j)− xn+lN+j‖2 ≤ ej‖α‖∞h‖x(tn+lN)− xn+lN‖2

+
j

∑
k=1

ChM+1

(
e‖α‖∞h

M

∑
r=1

‖β‖r
∞hr−1

r!
+ 1

)
e‖α‖∞h(j−k)

≤ ChMe‖α‖∞τ + ChM+1
(

e‖α‖∞+‖β‖∞ + 1
) e‖α‖∞hj − 1

e‖α‖∞h − 1
(22)

≤ ChM
(

e‖α‖∞τ +
(

e‖α‖∞+‖β‖∞ + 1
) (

e‖α‖∞τ − 1
) h

e‖α‖∞h − 1

)
≤ C̃hM,
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where C̃ = C̃(τ, ‖α‖∞, ‖β‖∞) > 0 is constant. This concludes the proof by induction.

Remark 1. As shall be seen in the numerical computations from Section 5, the boundedness of α and β from
Theorem 3 is sufficient, but not necessary. Nonetheless, for unbounded α and/or β, if one wants to ensure
the m.s. convergence of the NSFD scheme a priori, it is possible to properly truncate the support of α and β.
Indeed, since limm→∞ P[α ∈ (−m, m)] = 1, one may take a sufficiently big interval (−m∗, m∗) in such a
way that P[α ∈ (−m∗, m∗)] ≈ 1, and truncate the support of α to (−m∗, m∗) (analogously for β). In fact, by
applying the generalized Markov’s inequality, it may be demonstrated that any second order random variable
can be truncated to the interval [mean ± 10 × deviation], so that this interval contains 99% of the probability
mass irrespective of the probability distribution. In the theory of m.s. calculus, the boundedness of the random
input coefficient must be usually imposed: as proved in ([36], Example p. 541), in order for an autonomous and
homogeneous first order linear random differential equation (i.e., x′(t) = ax(t), where a is a random variable) to
possess a m.s. solution for every m.s. integrable initial condition x(0) = x0, the coefficient a must be bounded.

M.s. convergence guarantees convergence of the expectation and the variance. In the computer,
xn(ω) is explicitly and symbolically expressed in terms of α(ω), β(ω) and f (·, ω), by employing either
the exact scheme (10) along all the integration region or, at cheaper cost, the NSFD scheme from
Theorem 3. By using the linearity of the expectation E, one can explicitly compute E[xn]. If the NSFD
scheme is being used, one is approximating the true expectation of the solution to (2). Complexity is
severely increased for large times t, large N (small h), and moderate or high dimension of the random
space. The variance may also be approximated by symbolically expressing xn(ω)2 and explicitly
computing V[xn] = E[x2

n]− (E[xn])2, although the complexity becomes significantly affected because
the symbolic expression handled is larger.

Notice that working with these symbolic expressions for xn(ω) seems to be necessary. Indeed, if

one applies the expectation operator directly in (11), for instance, then E[xn+1] = ∑M
k=0 E[e

αh βkhk

k! xn−kN ].

Since each xn−kN depends on α and β, the expectation E[eαh βkhk

k! xn−kN ] cannot be split as

E[eαh]E[β
k ]hk

k! E[xn−kN ], unless both α and β are nonrandom. So there does not seem to exist a recursive
relation formula for {E[xn]}n.

Notice that by Jensen’s and Cauchy–Schwarz inequalities,

|E[xn]−E[x(tn)]| = |E[xn − x(tn)]| ≤ E[|xn − x(tn)|] ≤ ‖xn − x(tn)‖2. (23)

By triangular, Jensen’s and Cauchy–Schwarz inequalities,

|V[xn]−V[x(tn)]| = |E[(xn)
2]− (E[xn])

2 −E[(x(tn))
2] + (E[x(tn)])

2|
≤ E[|(xn)

2 − (x(tn))
2|] + |(E[xn])

2 − (E[x(tn)])
2|

= E[|xn − x(tn)||xn + x(tn)|] + |E[xn]−E[x(tn)]||E[xn] +E[x(tn)]| (24)

≤ ‖xn − x(tn)‖2‖xn + x(tn)‖2 + |E[xn]−E[x(tn)]|(|E[xn]|+ |E[x(tn)]|)
≤ ‖xn − x(tn)‖2(‖xn‖2 + ‖x(tn)‖2) + |E[xn]−E[x(tn)]|(|E[xn]|+ |E[x(tn)]|).

So the approximations of the expectation and the variance inherit the rate of convergence
corresponding to the m.s. norm, which is O(hM) when the exact numerical scheme (10) is used
for the first M intervals of length τ and (11) is used for the subsequent intervals (Theorem 3).

In the following section, the m.s. convergence of the NSFD scheme is illustrated with some
numerical computations. We point out that the boundedness of α and β from Theorem 3 is sufficient,
but not necessary. It may be possible that a random coefficient is unbounded and the NSFD scheme
converges in the m.s. sense.
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5. Numerical Examples

The theoretical discussion is illustrated with some numerical computations. We consider specific
probability distributions for α, β and/or f , and a fixed delay τ > 0. We denote by xn the discretization
of the random NSFD method from Theorem 3. The exact solution x(tn) is computed with the exact
scheme (10). Both random variables are explicitly and symbolically expressed in terms of α(ω), β(ω)

and f (·, ω). These expansions are employed to compute the expectation and the variance, by using the
linearity of the expectation. To check the accuracy, the absolute errors in the approximations of the
mean value, εN,M = |E[x(tn)]−E[xn]|, and the variance, δN,M = |V[x(tn)]−V[xn]|, are calculated for
different values of N and M. According to the theoretical discussion, the errors should decay as O(hM)

when h → 0, which entails accuracy up to a significant number of digits. We remark that such level of
accuracy cannot be achieved by Monte Carlo simulation, since its error decreases as the reciprocal of
the square root of the number of realizations.

The implementations and computations are performed with Mathematica® (Wolfram Research,
Inc, Mathematica, Version 12.0, Champaign, IL, USA, 2019), owing to its capability to handle both
symbolic and numeric computations.

Example 1. Let τ = 0.35. Consider f (t) = 1 and α = −1, while β is a random variable, uniformly distributed
on the interval [0.1, 0.2].

Figure 1 plots absolute errors εN,M of the approximation of the expectation. First, N = 10 is fixed and
M ∈ {1, 2, 3, 4} varies. Second, M = 1 is fixed and N ∈ {5, 7, 10} varies. In addition, third, these errors
are divided by h to show, because of the overlapping, the decrease O(hM) as h → 0. Observe that the error is
exactly 0 on the first M intervals of length τ. In the fourth panel, E[xn] is plotted, where xn is the output of the
NSFD scheme of Theorem 3; the estimated expected values are validated by Monte Carlo simulation. Figure 2 is
analogous with the variance and the absolute error of its approximation, δN,M. According to ([16], Lemma 4,
Theorem 7), since α + β < 0 and α ≤ β almost surely, the NSFD scheme converges to 0 almost surely as t → ∞
(it is asymptotically stable almost surely). In both figures, observe that E[xn] and V[xn] tend to 0 as t → ∞,
which means that the NSFD scheme is asymptotically stable in the m.s. sense. Finally, the numerical solution is
always positive because β > 0 almost surely and f (t) > 0 ([16], Theorem 8).

Example 2. Let τ = 0.35. Consider f (t) = 1, α = 0, and β random with Gaussian distribution, of zero
mean and 0.3 standard deviation. Notice that the support of β is unbounded; however, we will see that m.s.
convergence of the NSFD scheme described in Theorem 3 holds.

Figure 3 reports absolute errors εN,M of the approximation of the expectation, where N and M take on the
same values as in Example 1. The decay O(hM) as h → 0 is captured again. The last panel of the figure plots
the expectation of the numerical solution from the NSFD scheme of Theorem 3, E[xn], together with Monte
Carlo simulation. Figure 4 is analogous with the variance and the absolute error of its approximation, δN,M.
This example is interesting from the dynamics viewpoint. By ([16], Lemma 4), the probability that the zero
solution to the realizations of (2) is asymptotically stable is the probability that β < 0 and τ < τ∗ = 1/|β|, i.e.,
−1/τ < β < 0. Taking into account the Gaussian distribution of β, this probability is ≈ 0.5 up to 12 decimals,
i.e., approximately half of the time a realizable NSFD scheme tends to 0 as t → ∞, and half of the time it does
not. The m.s. treatment mixes these two behaviors. In the figures, both E[xn] and V[xn] seem to increase as t
advances, which means that the NSFD scheme is unstable in the m.s. sense. Finally, notice that β has one half of
probability of being negative and the mean of the solution is positive ([16], Theorem 8).
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Figure 1. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the expectation with the NSFD scheme, with M = 1 and N = 7, and comparison
with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 1.
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Figure 2. Upper left panel: Absolute errors (log-scale) in the approximation of the variance with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the variance with the NSFD scheme, with N = 5, 7, 10, 20 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the variance with the NSFD scheme, with M = 1 and N = 7, and comparison with
Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 1.
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Figure 3. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the expectation with the NSFD scheme, with M = 1 and N = 7, and comparison
with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 2.
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Figure 4. Upper left panel: Absolute errors (log-scale) in the approximation of the variance with the
NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors (log-scale)
in the approximation of the variance with the NSFD scheme, with N = 5, 7, 10 (h = τ/N) and M = 1.
Lower left panel: Errors from the upper right panel divided by h. Lower right panel: Approximation
of the variance with the NSFD scheme, with M = 1 and N = 7, and comparison with Monte Carlo
simulation (circles) using 10,000 realizations. This figure corresponds to Example 2.

Example 3. Let τ = 0.35. Consider f (t) = γ, where γ is a random variable. It is assumed that α, β and γ are
independent random quantities, uniformly distributed on the interval [0.1, 0.2].
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As Example 1, Figure 5 reports absolute errors εN,M of the approximation of the expectation. First, for
fixed N = 10 and M ∈ {1, 2, 3, 4}. Second, for fixed M = 2 and N ∈ {5, 7, 10}. In addition, third, these errors
are divided by h2 to highlight, because of the overlapping, the decrease O(hM) as h → 0. The fourth panel plots
E[xn] with the discretization xn computed via the NSFD scheme of Theorem 3, which is validated by Monte
Carlo simulation. For the variance, computations become more expensive, due to the dimension three of the
random space. In particular, the symbolic expression of the exact scheme (10) becomes unfeasible, so the exact
error δN,M of the variance approximation cannot be reported. In Figure 6, we plot V[xn] with the discretization
xn from the NSFD scheme of Theorem 3. Comparison is performed with Monte Carlo simulation, showing
agreement of the estimates. Based on ([16], Lemma 4, Theorem 7), the condition α + β > 0 almost surely entails
that the NSFD scheme does not approach 0 as t → ∞ (almost sure instability). This fact agrees with the plots of
E[xn] and V[xn], which seem to increase as t grows; this behavior entails that the NSFD scheme is unstable in
the m.s. sense. Finally, β > 0 and γ > 0 almost surely implies the positivity of the numerical solution ([16],
Theorem 8).
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Figure 5. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with the
NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right: Absolute errors (log-scale) in
the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N) and M = 2.
Lower left panel: Errors from the upper right panel divided by h2. Lower right panel: Approximation
of the expectation with the NSFD scheme, with M = 2 and N = 7, and comparison with Monte Carlo
simulation (circles) using 10,000 realizations. This figure corresponds to Example 3.
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Figure 6. Approximation of the variance with the NSFD scheme, with M = 1 and N = 5 (h = τ/N),
and comparison with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds
to Example 3.
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We would like to remark that even when M = 1 and the global error of the NSFD scheme is O(h), its
error is lower than Euler’s method, given by xn+1 = (1 + αh)xn + βhxn−N. Euler’s method has already
been employed for random differential equations (ordinary and fractional) in the m.s. sense [29,30,34]. In this
Example 3, Figure 7 plots errors εN for approximations of the mean, for comparing Euler’s method and the
NSFD scheme with M = 1 fixed. Observe that in log scale, both errors are located in parallel, but the error
corresponding to the NSFD scheme is lower; this may be due to the non-standard nature of the method and
being error-free on [0, τ]. Although the proposed NSFD method is restricted to the linear random differential
equation with delay, it may provide the foundation for designing new non-standard numerical methods for delay
nonlinear equations.
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Figure 7. Absolute errors (log-scale) in the approximation of the mean value, with Euler’s method
(dashed lines) and with the NSFD scheme M = 1 (solid lines). For step size h = τ/N, the left panel
corresponds to N = 7 and the right panel to N = 10. This figure corresponds to Example 3.

Remark 2. In the recent literature, the m.s. convergence of Euler’s method has not been formally proved
for delay random differential equations. If randomness is not incorporated into the system by the coefficients,
but by a Wiener noise instead (Itô stochastic delay differential equation, which gives rise to non-differentiable
solutions), then Euler’s method (Euler-Maruyama’s method, which considers discrete increments of the driving
Wiener process) was rigorously studied and its m.s. convergence was proved in [37]. In the context of delay
random differential equations (those with randomness manifested in coefficients and no Wiener noise), we
focus on the linear case (2) studied in this paper assuming, as in Theorem 3, that α and β are bounded
random variables, so that ‖α‖∞ and ‖β‖∞ are finite. The exact m.s. solution to (2) satisfies x(tn+1) =

x(tn) + α
∫ tn+h

tn
x(s)ds + β

∫ tn+h
tn

x(s − τ)ds, where the integrals are m.s. Riemann. If en = x(tn)− xn

denotes the difference between the exact solution and the discretization at the mesh point tn, then

en+1 = en + α
∫ tn+h

tn
(x(s)− xn)ds + β

∫ tn+h

tn
(x(s − τ)− xn−N)ds, (25)

by a simple subtraction. Given any interval [−τ, T], T > 0, the m.s. Lipschitz condition ‖x(s1)− x(s2)‖2 =

‖
∫ s1

s2
x′(s)ds‖2 ≤ |

∫ s1
s2

‖x′(s)‖2 ds| ≤ λ|s1 − s2| holds, λ = λ(T) = max[−τ,T] ‖x′(s)‖2 > 0. Then
‖x(s) − xm‖2 ≤ ‖x(s) − x(tm)‖2 + ‖em‖2 ≤ λh + ‖em‖2, m ≥ −N, s ∈ [tm, tm + h], tm + h ≤ T.
Consequently,

‖en+1‖2 ≤ ‖en‖2 + ‖α‖∞h (λh + ‖en‖2) + ‖β‖∞h (λh + ‖en−N‖2)

= (1 + ‖α‖∞h) ‖en‖2 + ‖β‖∞h‖en−N‖2 + (‖α‖∞ + ‖β‖∞) h2λ. (26)
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For 0 ≤ n ≤ N (notice that en−N = 0), by solving the first order recursive inequality for ‖en‖2, we derive
the following bounds:

‖en‖2 ≤
n

∑
i=1

(‖α‖∞ + ‖β‖∞) h2λ (1 + ‖α‖∞h)n−i

= h2λ (‖α‖∞ + ‖β‖∞)
(1 + ‖α‖∞h)n − 1

‖α‖∞h

≤ hλ
‖α‖∞ + ‖β‖∞

‖α‖∞

[
(1 + ‖α‖∞τ/N)N − 1

]
(27)

≤ hλ
‖α‖∞ + ‖β‖∞

‖α‖∞

(
e‖α‖∞τ − 1

)
= C1h,

where C1 = C1(λ, τ, ‖α‖∞, ‖β‖∞) is constant. Then

max
0≤n≤N

‖en‖2 = O(h). (28)

For N + 1 ≤ n ≤ 2N, based on similar calculations,

‖en‖2 ≤ (1 + ‖α‖∞h)n−N ‖eN‖2 + ∑n
i=N+1 [‖β‖∞‖ei−N‖2 + (‖α‖∞ + ‖β‖∞) λh] h (1 + ‖α‖∞h)n−i

≤ C1he‖α‖∞τ + [C1‖β‖∞ + (‖α‖∞ + ‖β‖∞) λ] h2 (1+‖α‖∞h)n−N−1
‖α‖∞h

≤ C2h,

(29)

where C2 = C2(λ, τ, ‖α‖∞, ‖β‖∞) is constant. Then

max
N+1≤n≤2N

‖en‖2 = O(h). (30)

For 2N + 1 ≤ n ≤ 3N, 3N + 1 ≤ n ≤ 4N, etc. one proceeds similarly. This proves that the random
Euler’s method has m.s. global error O(h). This proof corresponds to the linear case, although it may be
extendible to delay random differential equations satisfying a m.s. Lipschitz condition.

Example 4. In this example, the linear model (2) is considered for fitting the time evolution of a photosynthetic
bacterial population, Rhodobacter capsulatus (R. capsulatus) [38], under infrared lighting conditions. Direct cell
counts were made for the first 7 days, every two to three days, during which the population grew with no effect of
competition for resources (light and/or CO2) that would yield logistic nonlinearities. For days 0, 2, 4 and 7, the
population sizes, measured in cells/mL scaled by one million, were 0.583, 0.635, 1.08 and 3.20, respectively. For
delay τ = 1 and initial function f (t) = 0.583 on [−τ, 0], the least-squares estimates for α and β are 1.20426
and −1.18024, respectively. The effect of small random displacements on the coefficients is studied here. Let
us suppose 0.5% displacements of α and β with respect to their least-squares estimates, with zero mean values.
According to the maximum entropy principle [39], α and −β follow truncated exponential distributions, with
rates 1/1.20426 and 1/1.18024 respectively. The expectation and the variance of the output are approximated
with the random NSFD scheme. Figure 8 plots the results for M = 2 and distinct N (mean values in solid line,
and mean ± 2 × standard deviation in dashed lines), together with the least-squares fitting. Observe that a small
uncertainty of 0.5% for parameters may cause significant changes in the final solution, up to 30% variation for
the seventh day compared to an idealized situation containing no uncertainty. Observe also that as N increases,
the approximations from the NSFD scheme tend to overlap, thus indicating convergence.
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Figure 8. Application of the random NSFD scheme for the model of the R. capsulatus bacterial
population, for M = 2 and different values of N (mean values in solid line, and mean ± 2 × standard
deviation in dashed lines). The least-squares fitting is also plotted. A zoom for a particular region is
included for a better appreciation of convergence as N grows. This figure corresponds to Example 4.

6. Conclusions

In this paper, we have extended a NSFD numerical scheme recently proposed for deterministic
linear differential equations with delay to the random framework. Incorporating randomness into
models is important to account for measurement errors in data. M.s. convergence of the numerical
discretizations has been established when the two equation coefficients are bounded random variables
and the initial condition is a regular stochastic process, with rate of convergence given by O(hM),
where h is the step size and M is the number of intervals of length τ where the exact scheme is
applied. M.s. convergence allows for approximating the expectation and the variance of the solution
at inherited rate O(hM), by symbolically expanding the discretizations in terms of the random inputs.
The numerical examples have illustrated and assessed the proposed approach. The convergence rate
O(hM) has been supported numerically, even when the two equation coefficients are unbounded
random variables. The asymptotic behavior of the expectation and the variance as the time t grows has
been evaluated, graphically and taking into account theoretical results on deterministic stability and
instability of the zero solution. A comparison with Euler’s method has been performed when M = 1;
although both methods have global errors O(h), the error of the NSFD scheme is lower, possibly due
to the non-standard nature of the scheme and being error-free on [0, τ]. Also, we have considered an
example dealing with actual experimental data for a bacterial specie growing under infrared lighting
conditions, and have calculated numerical solutions after randomizing the input parameters according
to the maximum entropy principle.

The advantage of the random NSFD scheme is the high accuracy to approximate some statistics,
which cannot be achieved with Monte Carlo methods. In addition, the procedure is simple: one only
symbolically expands the discretizations in terms of the random inputs and afterward applies the
corresponding statistical operator. However, this strategy possesses some limitations. Obviously, the
necessity of symbolically expressing the discretizations restricts the applicability of the NSFD scheme
to moderate step size h and time variable t, as well as small dimension of the random space. Although
the calculation of the expectation of the discretization seems to be quite feasible in the computer, the
calculation of the variance may become a big issue with this approach, let alone other statistics of order
greater than two. We ask ourselves about the possibility of accurately calculating statistics with the
random NSFD scheme without relying on symbolic expansions. We admit that for the moment, Monte
Carlo simulation seems the best option for large time variable t, small step size h or large dimension
of the random space, where each realization of the governing delay model is numerically solved by
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employing a NSFD scheme. For estimating densities, the symbolic expression is too complex and
kernel methods are the preferable.

Mickens’ methodology on NSFD schemes has shown fruitful applications along the years on
ordinary, partial and fractional deterministic differential equations. However, only very recently, the
application of NSFD numerical schemes to delay deterministic differential equations has been explored,
in the context of linear models. Thus, this is the first contribution that proposes the use of NSFD
schemes for quantifying uncertainty for delay random differential equations. Further study of NSFD
methods for delay deterministic and random differential equations needs to be conducted, especially
for nonlinear equations, for applications to modeling of real-life systems with aftereffects or time lags.

We propose specific lines of research for possible future developments:

• In the deterministic setting, the extension of the NSFD method to nonlinear delay differential
equations. We believe that this extension may be done by linearization or by applying the
empirical rules proposed by Mickens.

• Randomization of the NSFD method for delay random differential equations and applications
without relying on symbolic expansions. Symbolic computations are the main drawback of the
method proposed in the present paper.

• A theoretical analysis of m.s. dynamic consistency.
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Abstract: This paper aims at extending a previous contribution dealing with the random
autonomous-homogeneous linear differential equation with discrete delay τ > 0, by adding a
random forcing term f (t) that varies with time: x′(t) = ax(t) + bx(t − τ) + f (t), t ≥ 0, with initial
condition x(t) = g(t), −τ ≤ t ≤ 0. The coefficients a and b are assumed to be random variables,
while the forcing term f (t) and the initial condition g(t) are stochastic processes on their respective
time domains. The equation is regarded in the Lebesgue space Lp of random variables with finite p-th
moment. The deterministic solution constructed with the method of steps and the method of variation
of constants, which involves the delayed exponential function, is proved to be an Lp-solution, under
certain assumptions on the random data. This proof requires the extension of the deterministic
Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when
the delay τ tends to 0, the random delay equation tends in Lp to a random equation with no delay.
Numerical experiments illustrate how our methodology permits determining the main statistics of
the solution process, thereby allowing for uncertainty quantification.

Keywords: random linear delay differential equation; stochastic forcing term; random Lp-calculus;
uncertainty quantification

1. Introduction

In this paper, we are concerned with random delay differential equations, defined as classical delay
differential equations whose inputs (coefficients, forcing term, initial condition, . . .) are considered
as random variables or regular stochastic processes on an underlying complete probability space
(Ω,F ,P), which may take a wide variety of probability distributions, such as Binomial, Poisson,
Gamma, Gaussian, etc.

Equations of this kind should not be confused with stochastic differential equations of Itô type,
forced by an irregular error term called White noise process (formal derivative of Brownian motion).
In contrast to random differential equations, the solutions to stochastic differential equations exhibit
nondifferentiable sample-paths. See [1] (pp. 96–98) for a detailed explanation of the difference between
random and stochastic differential equations. See [1–6], for instance, for applications of random
differential equations in engineering, physics, biology, etc. Thus, random differential equations require
their own treatment and study: they model smooth random phenomena, with any type of input
probability distributions.

From a theoretical viewpoint, random differential equations may be studied in two senses: the
sample-path sense or the Lp-sense. The former case considers the trajectories of the stochastic processes
involved, so that the realizations of the random system correspond to deterministic versions of the
problem. The latter case works with the topology of the Lebesgue space (Lp, ‖ · ‖p) of random
variables with finite absolute p-th moment, where the norm ‖ · ‖p is defined as: ‖U‖p = E[|U|p]1/p

Mathematics 2020, 8, 1013; doi:10.3390/math8061013 www.mdpi.com/journal/mathematics127
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for 1 ≤ p < ∞ (E denotes the expectation operator), and ‖U‖∞ = inf{C ≥ 0 : |U| ≤ C almost surely}
(essential supremum), U : Ω → R being any random variable. The Lebesgue space (Lp, ‖ · ‖p) has the
structure of a Banach space. Continuity, differentiability, Riemann integrability, etc., can be considered
in the aforementioned space Lp, which gives rise to the random Lp-calculus.

In order to fix concepts, given a stochastic process x(t) ≡ x(t, ω) on I × Ω, where I ⊆ R

is an interval (notice that as usual the ω-sample notation might be hidden), we say that x is
Lp-continuous at t0 ∈ I if limh→0 ‖x(t0 + h) − x(t0)‖p = 0. We say that x is Lp-differentiable at

t0 ∈ I if limh→0 ‖ x(t0+h)−x(t0)
h − x′(t0)‖p = 0, for certain random variable x′(t0) (called the derivative

of x at t0). Finally, if I = [a, b], we say that x is Lp-Riemann integrable on [a, b] if there exists a sequence
of partitions {Pn}∞

n=1 with mesh tending to 0, Pn = {a = tn
0 < tn

1 < . . . < tn
rn = b}, such that, for

any choice of points sn
i ∈ [tn

i−1, tn
i ], i = 1, . . . , rn, the limit limn→∞ ∑rn

i=1 x(sn
i )(t

n
i − tn

i−1) exists in Lp. In
this case, these Riemann sums have the same limit, which is a random variable and is denoted by∫ b

a x(t)dt.
This Lp-approach has been widely used in the context of random differential equations with no

delay, especially the case p = 2 which corresponds to the Hilbert space L2 and yields the so-called mean
square calculus; see [5,7–15]. Only recently, a theoretical probabilistic analysis of random differential
equations with discrete constant delay has been addressed in [16–18]. In [16], general random delay
differential equations in Lp were analyzed, with the goal of extending some of the existing results on
random differential equations with no delay from the celebrated book [5]. In [17], we started our study
on random delay differential equations with the basic autonomous-homogeneous linear equation,
by proving the existence and uniqueness of Lp-solution under certain conditions. In [18], the authors
studied the same autonomous-homogeneous random linear differential equation with discrete delay
as [17], but considered the solution in the sample-path sense and computed its probability density
function via the random variable transformation technique, for certain forms of the initial condition
process. Other recent contributions for random delay differential equations, but focusing on numerical
methods instead, are [19–21].

There is still a lack of theoretical analysis for important random delay differential equations.
Motivated by this issue, the aim of this contribution is to advance further in the theoretical analysis of
relevant random differential equations with discrete delay. In particular, in this paper we extend the
recent study performed in [17] for the basic linear equation by adding a stochastic forcing term:{

x′(t, ω) = a(ω)x(t, ω) + b(ω)x(t − τ, ω) + f (t, ω), t ≥ 0, ω ∈ Ω,
x(t, ω) = g(t, ω), −τ ≤ t ≤ 0, ω ∈ Ω.

(1)

The delay τ > 0 is constant. The coefficients a and b are random variables. The forcing term
f (t) and the initial condition g(t) are stochastic processes on [0, ∞) and [−τ, 0] respectively, which
depend on the outcome ω ∈ Ω of a random experiment which might be sometimes omitted in notation.
The term x(t) represents the differentiable solution stochastic process in a certain probabilistic sense.
Formally, according to the deterministic theory [22], we may express the solution process as

x(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+
∫ 0

−τ
ea(ω)(t−s)eb1(ω),t−τ−s

τ (g′(s, ω)− a(ω)g(s, ω))ds

+
∫ t

0
ea(ω)(t−s)eb1(ω),t−τ−s

τ f (s, ω)ds, (2)
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where b1 = e−aτb and

ec,t
τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + c
t
1!

, 0 ≤ t < τ,

1 + c
t
1!

+ c2 (t − τ)2

2!
, τ ≤ t < 2τ,

...
...

n

∑
k=0

ck (t − (k − 1)τ)k

k!
, (n − 1)τ ≤ t < nτ,

is the delayed exponential function [22] (Definition 1), c, t ∈ R, and n = �t/τ + 1 (here �· denotes
the integer part defined by the so-called floor function). This formal solution is obtained with the
method of steps and the method of variation of constants.

The primary objective of this paper is to set probabilistic conditions under which x(t) is an
Lp-solution to (1). We decompose the original problem (1) as{

y′(t, ω) = a(ω)y(t, ω) + b(ω)y(t − τ, ω), t ≥ 0,
y(t, ω) = g(t, ω), −τ ≤ t ≤ 0,

(3)

and {
z′(t, ω) = a(ω)z(t, ω) + b(ω)z(t − τ, ω) + f (t, ω), t ≥ 0,
z(t, ω) = 0, −τ ≤ t ≤ 0.

(4)

System (3) does not possess a stochastic forcing term, and it was deeply studied in the recent
contribution [17]. Under certain assumptions, its Lp-solution is expressed as

y(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+
∫ 0

−τ
ea(ω)(t−s)eb1(ω),t−τ−s

τ (g′(s, ω)− a(ω)g(s, ω))ds, (5)

as a generalization of the deterministic solution to (3) obtained via the method of steps [22] (Theorem 1).
Problem (4) is new and requires an analysis in the Lp-sense, in order to solve the initial problem (1).
Its formal solution is given by

z(t, ω) =
∫ t

0
ea(ω)(t−s)eb1(ω),t−τ−s

τ f (s, ω)ds, (6)

see [22] (Theorem 2). In order to differentiate (6) in the Lp-sense, one requires the extension of the
deterministic Leibniz’s integral rule for differentiation to the random scenario. This extension is an
important piece of this paper.

In Section 2, we show preliminary results on Lp-calculus that are used through the exposition,
which correspond to those preliminary results from [17] and the new random Leibniz’s rule for
Lp-Riemann integration. Auxiliary but novel results to demonstrate the random Leibniz’s integral
rule are Fubini’s theorem and a chain rule theorem. In Section 3, we prove in detail that x(t) defined
by (2) is the unique Lp-solution to (1), by analyzing problem (4). We also find closed-form expressions
for some statistics (expectation and variance) of x(t) related to its moments. Section 4 deals with the
Lp-convergence of x(t) as the delay τ tends to 0. We then show a numerical example that illustrates
the theoretical findings. Finally, Section 5 draws the main conclusions.

In order to complete a fair overview of the existing literature, it must be pointed out that, apart
for random delay differential equations (which is the context of this paper), other complementary
approaches are stochastic delay differential equations and fuzzy delay differential equations. Stochastic
delay differential equations are those in which uncertainty appears due to stochastic processes with
irregular sample-paths: the Brownian motion process, Wiener process, Poisson process, etc. A new
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tool is required to tackle equations of this type, called Itô calculus [23]. Studies on stochastic delay
differential equations can be read in [24–28], for example. On the other hand, in fuzzy delay differential
equations, uncertainty is driven by fuzzy processes; see [29] for instance. In any of these approaches,
the delay might even be considered random; see [30,31].

2. Results on Lp-calculus

In this section, we state the preliminary results on Lp-calculus needed for the following sections.
Proposition 1 is the chain rule theorem in Lp-calculus, which was first proved in [8] (Theorem 3.19) in
the setting of mean square calculus (p = 2). Both Lemma 1 and Lemma 2 provide conditions under
which the product of three stochastic processes is Lp-continuous or Lp-differentiable. Proposition 2
is a result concerning Lp-differentiation under the Lp-Riemann integral sign, when the interval of
integration is fixed. These four results have been already used and stated in the recent contribution [17],
and will be required through our forthcoming exposition.

For the sake of completeness, we demonstrate Proposition 2 with an alternative proof to [17],
based on Fubini’s theorem for Lp-Riemann integration. In the random framework, Fubini’s theorem
has not been tackled yet in the recent literature. It states that, if a stochastic process depending on two
variables is Lp-continuous, then the two iterated Lp-Riemann integrals can be interchanged.

We present a new result, Proposition 3, in which we put conditions in order to Lp-differentiate
an Lp-Riemann integral whose interval of integration depends on t. This proposition supposes the
extension of the so-called Leibniz’s rule for integration to the random scenario. The proof relies on a
new chain rule theorem.

Proposition 1 (Chain rule theorem ([17] Proposition 2.1)). Let {X(t) : t ∈ [a, b]} be a stochastic process,
where [a, b] is any interval in R. Let f be a deterministic C1 function on an open set that contains X([a, b]). Fix
1 ≤ p < ∞. Let t ∈ [a, b] be any point such that:

(i) X is L2p-differentiable at t;
(ii) X is path continuous on [a, b];

(iii) there exist r > 2p and δ > 0 such that sups∈[−δ,δ] E[| f ′(X(t + s))|r] < ∞.

Then f ◦ X is Lp-differentiable at t and ( f ◦ X)′(t) = f ′(X(t))X′(t).

Lemma 1 ([17] Lemma 2.1). Let Y1(t, s), Y2(t, s) and Y3(t, s) be three stochastic processes and fix 1 ≤ p < ∞.
If Y1 and Y2 are Lq-continuous for all 1 ≤ q < ∞, and Y3 is Lp+η-continuous for certain η > 0, then the
product process Y1Y2Y3 is Lp-continuous.

On the other hand, if Y1 and Y2 are L∞-continuous, and Y3 is Lp-continuous, then the product process
Y1Y2Y3 is Lp-continuous.

Lemma 2 ([17] Lemma 2.2). Let Y1(t), Y2(t) and Y3(t) be three stochastic processes, and 1 ≤ p < ∞. If
Y1 and Y2 are Lq-differentiable for all 1 ≤ q < ∞, and Y3 is Lp+η-differentiable for certain η > 0, then the
product process Y1Y2Y3 is Lp-differentiable and d

dt (Y1(t)Y2(t)Y3(t)) = Y′
1(t)Y2(t)Y3(t) + Y1(t)Y′

2(t)Y3(t) +
Y1(t)Y2(t)Y′

3(t).
Additionally, if Y1 and Y2 are assumed to be L∞-differentiable, and Y3 is Lp-differentiable, then Y1Y2Y3 is

Lp-differentiable, with d
dt (Y1(t)Y2(t)Y3(t)) = Y′

1(t)Y2(t)Y3(t) + Y1(t)Y′
2(t)Y3(t) + Y1(t)Y2(t)Y′

3(t).

Lemma 3 (Fubini’s theorem for iterated Lp-Riemann integrals). Let H(t, s) be a process on [a, b]× [c, d].
If H is Lp-continuous, then

∫ b
a

∫ d
c H(t, s)ds dt =

∫ d
c

∫ b
a H(t, s)dt ds, where the integrals are regarded as

Lp-Riemann integrals.

Proof. The proof is a variation of Fubini’s theorem for Itô stochastic integration with respect to the
standard Brownian motion ([32] Theorem 2.10.1). The stochastic processes H(t, s),

∫ d
c H(t, s)ds and∫ b

a H(t, s)dt are Lp-continuous, so the iterated integrals exist. Let {Pn}∞
n=1 be a sequence of partitions
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of [a, b] with mesh tending to 0. Write Pn = {a = tn
0 < tn

1 < · · · < tn
n = b}, and let rn

i ∈ [tn
i−1, tn

i ],
1 ≤ i ≤ n, n ≥ 1. Consider the processes Gn(t, s) = ∑n

i=1 H(rn
i , s)�[tn

i−1,tn
i ]
(t) (here � denotes the

characteristic function of a set) and Fn(s) =
∫ b

a Gn(t, s)dt = ∑n
i=1 H(rn

i , s)(tn
i − tn

i−1). Notice that, by

definition of Lp-Riemann integral, limn→∞ Fn(s) =
∫ b

a H(t, s)dt in Lp.
By definition of Lp-Riemann integral,

∫ d

c
Fn(s)ds =

n

∑
i=1

(∫ d

c
H(rn

i , s)ds
)
(tn

i − tn
i−1)

n→∞−→
∫ b

a

∫ d

c
H(t, s)ds dt

in Lp. On the other hand,∥∥∥∥∫ d

c

∫ b

a
H(t, s)dt ds −

∫ d

c
Fn(s)ds

∥∥∥∥
p
=

∥∥∥∥∫ d

c

(∫ b

a
H(t, s)dt − Fn(s)

)
ds

∥∥∥∥
p

≤
∫ d

c

∥∥∥∥∫ b

a
H(t, s)dt − Fn(s)

∥∥∥∥
p

ds,

where the last inequality is due to a property of Lp-integration ([5] p. 102). As H(t, s) and Fn(s) are
Lp-bounded on [a, b]× [c, d] and [c, d], respectively (uniformly on n ≥ 1), the dominated convergence
theorem allows concluding that limn→∞

∫ d
c Fn(s)ds =

∫ d
c

∫ b
a H(t, s)dt ds in Lp.

Proposition 2 (Lp-differentiation under the Lp-Riemann integral sign). Let F(t, s) be a stochastic process
on [a, b]× [c, d]. Fix 1 ≤ p < ∞. Suppose that F(t, ·) is Lp-continuous on [c, d], for each t ∈ [a, b], and
that there exists the Lp-partial derivative ∂F

∂t (t, s) for all (t, s) ∈ [a, b] × [c, d], which is Lp-continuous on

[a, b]× [c, d]. Let G(t) =
∫ d

c F(t, s)ds (the integral is understood as an Lp-Riemann integral). Then G is

Lp-differentiable on [a, b] and G′(t) =
∫ d

c
∂F
∂t (t, s)ds.

Proof. We present an alternative and simpler proof to ([17] Proposition 2.2), based on Fubini’s
theorem (Lemma 3). Since ∂F

∂t is Lp-continuous, by Barrow’s rule ([5] p. 104) we can write

G(t) =
∫ d

c F(a, s)ds +
∫ d

c

∫ t
a

∂F
∂t (τ, s)dτ ds =

∫ d
c F(a, s)ds +

∫ t
a

∫ d
c

∂F
∂t (τ, s)ds dτ. The stochastic

process τ ∈ [a, b] �→
∫ d

c
∂F
∂t (τ, s)ds is Lp-continuous; therefore, G′(t) =

∫ d
c

∂F
∂t (t, s)ds in Lp, as a

consequence of the fundamental theorem for Lp-calculus; see ([5] p. 103).

Lemma 4 (Version of the chain rule theorem). Let G(t, s) be a stochastic process on [a, b] × [c, d]. Let
u : [a, b] → [c, d] be a differentiable deterministic function. Suppose that G(t, s) has Lp-partial derivatives, with
∂G
∂t (t, s) being Lp-continuous on [a, b]× [c, d], and ∂G

∂s (t, ·) being Lp-continuous on [c, d], for each t ∈ [a, b].
Then d

dt G(t, u(t)) = ∂G
∂t (t, u(t)) + u′(t) ∂G

∂s (t, u(t)) in Lp.

Proof. For h �= 0, by the triangular inequality,∥∥∥∥G(t + h, u(t + h))− G(t, u(t))
h

− ∂G
∂t

(t, u(t))− u′(t)
∂G
∂s

(t, u(t))
∥∥∥∥

p

≤
∥∥∥∥G(t + h, u(t + h))− G(t, u(t + h))

h
− ∂G

∂t
(t, u(t))

∥∥∥∥
p︸ ︷︷ ︸

I1(t,h)

+

∥∥∥∥G(t, u(t + h))− G(t, u(t))
h

− u′(t)
∂G
∂s

(t, u(t))
∥∥∥∥

p︸ ︷︷ ︸
I2(t,h)

.
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By Barrow’s rule ([5] p. 104) and an inequality from ([5] p. 102),

I1(t, h) =
∥∥∥∥1

h

∫ t+h

t

∂G
∂t

(τ, u(t + h))dτ − ∂G
∂t

(t, u(t))
∥∥∥∥

p

=

∥∥∥∥1
h

∫ t+h

t

(
∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
)

dτ

∥∥∥∥
p

≤ 1
|h|

∣∣∣∣∣
∫ t+h

t

∥∥∥∥∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
∥∥∥∥

p
dτ

∣∣∣∣∣ .

The process ∂G
∂t (t, u(r)) is Lp-uniform continuous on [a, b]× [a, b]; therefore,

I1(t, h) ≤ sup
τ∈[t,t+h]∪[t+h,t]

∥∥∥∥∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
∥∥∥∥

p

h→0−→ 0.

On the other hand, let Y(r) = G(t, r), for t ∈ [a, b] fixed. To conclude that limh→0 I2(t, h) = 0, we
need (Y ◦ u)′(t) = Y′(u(t))u′(t). We have that Y is Lp-C1([c, d]) and that u is differentiable on [a, b], so
the following existing version of the chain rule theorem applies: ([33] Theorem 2.1).

Remark 1. Although not needed in the subsequent development, Lemma 4 gives in fact a general
multidimensional chain rule theorem for Lp-calculus, for the composition of a stochastic process G(t, s) and two
deterministic functions (v(r), u(r)). This is the generalization of ([33] Theorem 2.1) to several variables. Indeed,
let G(t, s) be a stochastic process on an open set Λ ⊆ R2, with Lp-partial derivatives, ∂G

∂t (t, s) and ∂G
∂s (t, s),

being Lp-continuous on Λ. Let v, u : [a, b] → R be two C1 deterministic functions with (v(r), u(r)) ∈ Λ. Then
d
dr G(v(r), u(r)) = v′(r) ∂G

∂t (v(r), u(r))+ u′(r) ∂G
∂s (v(r), u(r)). For the proof, just define G(t, r) = G(v(t), r).

By ([33] Theorem 2.1), ∂G
∂t (t, r) = v′(t) ∂G

∂t (v(t), r), which is Lp-continuous on (t, r). Additionally, ∂G
∂r (t, r) =

∂G
∂s (v(t), r) is Lp-continuous. Then G(v(r), u(r)) = G(r, u(r)) can be Lp-differentiated at each r, by our

Lemma 4: d
dr G(v(r), u(r)) = ∂G

∂t (r, u(r)) + u′(r) ∂G
∂r (r, u(r)) = v′(r) ∂G

∂t (v(r), u(r)) + u′(r) ∂G
∂s (v(r), u(r)).

Proposition 3 (Random Leibniz’s rule for Lp-calculus). Let F(t, s) be a stochastic process on [a, b]× [c, d].
Let u, v : [a, b] → [c, d] be two differentiable deterministic functions. Suppose that F(t, ·) is Lp-continuous on
[c, d], for each t ∈ [a, b], and that ∂F

∂t (t, s) exists in the Lp-sense and is Lp-continuous on [a, b]× [c, d]. Then

H(t) =
∫ v(t)

u(t) F(t, s)ds is Lp-differentiable and

H′(t) = v′(t)F(t, v(t))− u′(t)F(t, u(t)) +
∫ v(t)

u(t)

∂F
∂t

(t, s)ds

(the integral is considered as an Lp-Riemann integral).

Proof. First, notice that H(t) is well-defined, since F(t, ·) is Lp-continuous. Decompose H(t) as
H(t) =

∫ v(t)
a F(t, s)ds −

∫ u(t)
a F(t, s)ds. Let G(t, r) =

∫ r
a F(t, s)ds, t ∈ [a, b], r ∈ [c, d]. We have

H(t) = G(t, v(t))− G(t, u(t)).
Let us check the conditions of Lemma 4. By Lemma 2, ∂G

∂t (t, r) =
∫ r

a
∂F
∂t (t, s)ds, which is

Lp-continuous on [a, b]× [c, d] as a consequence of the Lp-continuity of ∂F
∂t (t, s). On the other hand,

∂G
∂r (t, r) = F(t, r), by the fundamental theorem of Lp-calculus ([5] p. 103), with ∂G

∂r (t, ·) = F(t, ·) being
Lp-continuous. Thus, by Lemma 4,

H′(t) =
∂G
∂t

(t, v(t)) + v′(t)
∂G
∂r

(t, v(t))− ∂G
∂t

(t, u(t))− u′(t)
∂G
∂r

(t, u(t))

= v′(t)F(t, v(t))− u′(t)F(t, u(t)) +
∫ v(t)

u(t)

∂F
∂t

(t, s)ds.
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Remark 2 (Proposition 3 against another proof of the random Leibniz’s rule). In [10, Proposition 6], a
result pointing towards the conclusion of Proposition 3 was stated (in the mean square case p = 2, with v(t) = t,
u(t) = 0 and [c, d] = [a, b]). However, the proof presented therein is not correct. In the notation therein, the
authors proved an inequality of the form

‖K(t, Δt)‖2 ≤ (t − a) max
x∈[a,t]

‖K1(x, t, Δt)‖2 + max
x∈[t,t+Δt]

‖K2(x, t, Δt)‖2.

The authors justified correctly that ‖K1(x, t, Δt)‖2 →0 and ‖K2(x, t, Δt)‖2 →0 as Δt → 0, for each x ∈ [a, b].
However, this fact does not imply

max
x∈[a,t]

‖K1(x, t, Δt)‖2
Δt→0−→ 0, max

x∈[t,t+Δt]
‖K2(x, t, Δt)‖2

Δt→0−→ 0,

as they stated at the end of their proof. For K1, one has to utilize the dominated convergence theorem. For K2,
one should use uniform continuity.

Remark 3 (Random Leibniz’s rule cannot be proved with a mean value theorem). In the deterministic
setting, both Proposition 2 and Proposition 3 can be proven with the mean value theorem. However, such proofs
do not work in the random scenario, as there is no version of the stochastic mean value theorem. In previous
contributions (see [15] Lemma 2.4, Corollary 2.5; [34] Lemma 3.1, Theorem 3.2), there is an incorrect version of
it. For instance, if U ∼ Uniform(0, 1) and Y(t) = �{t>U}(t), t ∈ [0, 1], then Y is mean square continuous on

[0, 1] (notice that ‖Y(t)− Y(s)‖2
2 = |t − s|). Suppose that there exists η ∈ [0, 1] such that

∫ 1
0 Y(s)ds = Y(η)

almost surely. Then Y(η) = 1 − U almost surely. But this is not possible, since 1 − U ∈ (0, 1) and
Y(η) ∈ {0, 1}. Thus, Y does not satisfy any mean square mean value theorem.

3. Lp-solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term

In this section we solve (1) in the Lp-sense. To do so, we will demonstrate that x(t) defined by (2)
is the unique Lp-solution to (1). We will take advantage of the decomposition of problem (1) into its
homogeneous part, (3), and its complete part, (4). The formal solution to (3) is given by y(t) defined as
(5), while the formal solution to (4) is given by z(t) expressed as (6). The previous contribution [17]
provides conditions under which y(t) defined by (5) solves (3) in the Lp-sense. Thus, our primary goal
will be to find conditions under which z(t) given by (6) is a true solution to (4) in the Lp-sense.

Again, recall that the integrals that appear in the expressions (2), (5) and (6) are Lp-Riemann
integrals.

The uniqueness (not existence for now) of (1) is proved analogously to ([17] Theorem 3.1),
by invoking results from [7] that connect Lp-solutions with sample-path solutions, which satisfy
analogous properties to deterministic solutions. The precise uniqueness statement is as follows.

Theorem 1 (Uniqueness). The random differential equation problem with delay (1) has at most one Lp-solution,
for 1 ≤ p < ∞.

Proof. Assume that (1) has an Lp-solution. We will prove it is unique. Let x1(t) and x2(t) be two
Lp-solutions to (1). Let u(t) = x1(t)− x2(t), which satisfies the random differential equation problem
with delay {

u′(t, ω) = a(ω)u(t, ω) + b(ω)u(t − τ, ω), t ≥ 0,

u(t, ω) = 0, −τ ≤ t ≤ 0.
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If t ∈ [0, τ], then t − τ ∈ [−τ, 0]; therefore, u(t − τ) = 0. Thus, u(t) satisfies a random differential
equation problem with no delay on [0, τ]:{

u′(t, ω) = a(ω)u(t, ω), t ∈ [0, τ],

u(0, ω) = 0.
(7)

In [7], it was proved that any Lp-solution to a random initial value problem has a product
measurable representative which is an absolutely continuous solution in the sample-path sense. Since
the sample-path solution to (7) must be 0 (from the deterministic theory), we conclude that u(t) = 0
on [0, τ], as desired. For the subsequent intervals [τ, 2τ], [2τ, 3τ], etc., the same reasoning applies.

Now we move on to existence results. First, recall that the random delayed exponential function
is the solution to the random linear homogeneous differential equation with pure delay that satisfies
the unit initial condition.

Proposition 4 (Lp-derivative of the random delayed exponential function ([17] Prop 3.1)). Consider the
random system with discrete delay{

x′(t, ω) = c(ω)x(t − τ, ω), t ≥ 0,

x(t, ω) = 1, −τ ≤ t ≤ 0,
(8)

where c(ω) is a random variable.
If c has absolute moments of any order, then ec,t

τ is the unique Lp-solution to (8), for all 1 ≤ p < ∞.
On the other hand, if c is bounded, then ec,t

τ is the unique L∞-solution to (8).

In [17], two results on the existence of solution to (3) were stated and proved. In terms of notation,
the moment-generating function of a random variable a is denoted as φa(ζ) = E[eaζ ], ζ ∈ R.

Theorem 2 (Existence and uniqueness for (3), first version ([17] Theorem 3.2)). Fix 1 ≤ p < ∞. Suppose
that φa(ζ) < ∞ for all ζ ∈ R, b has absolute moments of any order, and g belongs to C1([−τ, 0]) in the
Lp+η-sense, for certain η > 0. Then the stochastic process y(t) defined by (5) is the unique Lp-solution to (3).

Theorem 3 (Existence and uniqueness for (3), second version ([17] Theorem 3.4)). Fix 1 ≤ p < ∞.
Suppose that a and b are bounded random variables, and g belongs to C1([−τ, 0]) in the Lp-sense. Then the
stochastic process y(t) defined by (5) is the unique Lp-solution to (3).

In what follows, we establish two theorems on the existence of a solution to (4); see Theorem 4
and Theorem 5. As a corollary, we will derive the solution to (1); see Theorem 6 and Theorem 7.

Theorem 4 (Existence and uniqueness for (4), first version). Fix 1 ≤ p < ∞. Suppose that φa(ζ) < ∞ for
all ζ ∈ R, b has absolute moments of any order, and f is continuous on [0, ∞) in the Lp+η-sense, for certain
η > 0. Then the stochastic process z(t) defined by (6) is the unique Lp-solution to (4).

Proof. At the beginning of the proof of ([17] Theorem 3.2), it was proved that b1 = e−aτb has absolute
moments of any order, as a consequence of Cauchy-Schwarz inequality, therefore Proposition 4 tells
us that the process eb1,t

τ is Lq-differentiable, for each 1 ≤ q < ∞, and d
dt eb1,t

τ = b1eb1,t−τ
τ . It was also

proved that, by the chain rule theorem (Proposition 1), the process eat is Lq-differentiable, for each
1 ≤ q < ∞, and d

dt eat = aeat. To justify these two assertions on eb1,t
τ and eat, the hypotheses φa(ζ) < ∞

and b having absolute moments of any order are required.
Fix 0 ≤ s ≤ t. Let Y1(t, s) = ea(t−s), Y2(t, s) = eb1,t−τ−s

τ and Y3(s) = f (s), according to the
notation of Lemma 1. Set the product of the three processes F(t, s) = Y1(t, s)Y2(t, s)Y3(s), so that
our candidate solution process becomes z(t) =

∫ t
0 F(t, s)ds. We check the conditions of the random
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Leibniz’s rule, see Proposition 3, to differentiate z(t). By the first paragraph of this proof, in which we
stated that both eb1,t

τ and eat are Lq-differentiable, for each 1 ≤ q < ∞, we derive that Y1 and Y2 are
Lq-continuous on both variables, for all 1 ≤ q < ∞. Since Y3 is Lp+η-continuous, for certain η > 0 by
assumption, we deduce that F is Lp-continuous on both variables, as a consequence of Lemma 1.

Fixed s, let Y1(t) = ea(t−s), Y2(t) = eb1,t−τ−s
τ and Y3 = f (s). We have that Y1 and Y2 are

Lq-differentiable, for each 1 ≤ q < ∞. The random variable Y3 belongs to Lp+η . By Lemma 2, F(·, s) is
Lp-differentiable at each t, with

∂F
∂t

(t, s) =
{

aea(t−s)eb1,t−τ−s
τ + ea(t−s)b1eb1,t−2τ−s

τ

}
f (s).

Let us see that ∂F
∂t (t, s) is Lp-continuous at (t, s). Since a has absolute moments of any order

(by finiteness of its moment-generating function) and ea(t−s) is Lq-continuous at (t, s), for each
1 ≤ q < ∞, we derive that aea(t−s) is Lq-continuous at each (t, s), for every 1 ≤ q < ∞, by Hölder’s
inequality. Thus, we have that Y1(t, s) = aea(t−s) and Y2(t, s) = eb1,t−τ−s

τ are Lq-continuous at (t, s),
for each 1 ≤ q < ∞, while Y3(s) = f (s) is Lp+η-continuous. By Lemma 1, aea(t−s)eb1,t−τ−s

τ f (s) is
Lp-continuous at each (t, s). Analogously, ea(t−s)b1eb1,t−2τ−s

τ f (s) is Lp-continuous at (t, s). Therefore,
∂F
∂t (t, s) is Lp-continuous at (t, s). By Proposition 3, the process z(t) is Lp-differentiable and
z′(t) = F(t, t) +

∫ t
0

∂F
∂t (t, s)ds = f (t) + az(t) + bz(t − τ) (by definition of F(t, s) in the proof,

F(t, t) = ea(t−t)eb1,t−τ−t
τ f (t) = eb1,−τ

τ f (t) = f (t), where eb1,−τ
τ = 1 by definition of delayed exponential

function), and we are done.
Once the existence of Lp-solution has been proved, uniqueness follows from Theorem 1.

Theorem 5 (Existence and uniqueness for (4), second version). Fix 1 ≤ p < ∞. Suppose that a and b
are bounded random variables, and f is continuous on [0, ∞) in the Lp-sense. Then the stochastic process z(t)
defined by (6) is the unique Lp-solution to (4).

Proof. As was shown in ([17] Theorem 3.4), the process eb1,t
τ is L∞-differentiable and d

dt eb1,t
τ = b1eb1,t−τ

τ ,
because b1 = e−aτb is bounded. Additionally, the process eat is L∞-differentiable and d

dt eat = aeat, as a
consequence of the deterministic mean value theorem and the boundedness of a.

The rest of the proof is completely analogous to the previous Theorem 4, by applying the second
part of both Lemma 1 and Lemma 2.

Theorem 6 (Existence and uniqueness for (1), first version). Fix 1 ≤ p < ∞. Suppose that φa(ζ) < ∞ for
all ζ ∈ R, b has absolute moments of any order, g belongs to C1([−τ, 0]) in the Lp+η-sense and f is continuous
on [0, ∞) in the Lp+η-sense, for certain η > 0. Then the stochastic process x(t) defined by (2) is the unique
Lp-solution to (1).

Proof. This is a consequence of Theorem 2 and Theorem 4, with x(t) = y(t) + z(t). Uniqueness
follows from Theorem 1.

Theorem 7 (Existence and uniqueness for (1), second version). Fix 1 ≤ p < ∞. Suppose that a and b
are bounded random variables, g belongs to C1([−τ, 0]) in the Lp-sense and f is continuous on [0, ∞) in the
Lp-sense. Then the stochastic process x(t) defined by (2) is the unique Lp-solution to (1).

Proof. This is a consequence of Theorem 3 and Theorem 5, with x(t) = y(t) + z(t). Uniqueness
follows from Theorem 1.

Remark 4. As emphasized in ([17] Remark 3.6), the condition of boundedness for a and b in Theorem 7 is
necessary if we only assume that g ∈ C1([−τ, 0]) in the Lp-sense. See ([7] Example p. 541), where it is proved
that, in order for a random autonomous and homogeneous linear differential equation of first-order to have an
Lp-solution for every initial condition in Lp, one needs the random coefficient to be bounded.
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Assume the conditions from Theorem 6 or Theorem 7. From expression (2), it is possible to
approximate the statistical moments of x(t). We focus on its expectation, E[x(t)], and on its variance,
V[x(t)] = E[x(t)2]− (E[x(t)])2. These statistics provide information on the average and the dispersion
of x(t), and they are very useful for uncertainty quantification for x(t). For ease of notation, denote
the stochastic processes

F1(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω),

F2(t, s, ω) = ea(ω)(t−s)eb1(ω),t−τ−s
τ (g′(s, ω)− a(ω)g(s, ω)),

F3(t, s, ω) = ea(ω)(t−s)eb1(ω),t−τ−s
τ f (s, ω).

Due to the linearity of the expectation and its interchangeability with the L1-Riemann integral ([5]
p. 104), if p ≥ 1,

E[x(t)] = E[F1(t)] +
∫ 0

−τ
E[F2(t, s)]ds +

∫ t

0
E[F3(t, s)]ds. (9)

To compute V[x(t)] when p ≥ 2, we start by

x(t)2 = F1(t)2 +
∫ 0

−τ

∫ 0

−τ
F2(t, s1)F2(t, s2)ds2 ds1

+
∫ t

0

∫ t

0
F3(t, s1)F3(t, s2)ds2 ds1 + 2

∫ 0

−τ
F1(t)F2(t, s)ds

+2
∫ t

0
F1(t)F3(t, s)ds + 2

∫ 0

−τ

∫ t

0
F2(t, s1)F3(t, s2)ds2 ds1.

Each of these integrals has to be considered in Lp/2; see ([35] Remark 2). This is due to the loss of
integrability of the product, by Hölder’s inequality. By applying expectations,

E[x(t)2] = E[F1(t)2] +
∫ 0

−τ

∫ 0

−τ
E[F2(t, s1)F2(t, s2)]ds2 ds1

+
∫ t

0

∫ t

0
E[F3(t, s1)F3(t, s2)]ds2 ds1 + 2

∫ 0

−τ
E[F1(t)F2(t, s)]ds

+2
∫ t

0
E[F1(t)F3(t, s)]ds + 2

∫ 0

−τ

∫ t

0
E[F2(t, s1)F3(t, s2)]ds2 ds1. (10)

As a consequence, one derives an expression for V[x(t)], by utilizing the relation V[x(t)] =

E[x(t)2]− (E[x(t)])2. Other statistics related to moments could be derived in a similar fashion.
In Example 1, we will show how useful these expressions are to determine E[x(t)] and V[x(t)] in

practice. Our procedure is an alternative to the usual techniques for uncertainty quantification: Monte
Carlo simulation, generalized polynomial chaos (gPC) expansions, etc. [1,2].

4. Lp-convergence to a Random Complete Linear Differential Equation When the Delay Tends to 0

Given a discrete delay τ > 0, we denote the Lp-solution (2) to (1) by xτ(t). We denote the
Lp-solutions (5) and (6) to (3) and (4) by yτ(t) and zτ(t), respectively, so that xτ(t) = yτ(t) + zτ(t).
Thus, we are making the dependence on the delay τ explicit. If we put τ = 0 into (1), (3) and (4), we
obtain random linear differential equations with no delay:{

x′
0(t, ω) = (a(ω) + b(ω))x0(t, ω) + f (t, ω), t ≥ 0,

x0(0, ω) = g(0, ω),
(11)

{
y′

0(t, ω) = (a(ω) + b(ω))y0(t, ω), t ≥ 0,

y0(0, ω) = g(0, ω),
(12)
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{
z′0(t, ω) = (a(ω) + b(ω))z0(t, ω) + f (t, ω), t ≥ 0,

z0(0, ω) = 0,
(13)

respectively. The following results establish conditions under which (11), (12) and (13) have
Lp-solutions.

Theorem 8 ([17] Corollary 4.1). Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, and
g(0) ∈ Lp+η for certain η > 0, then the stochastic process y0(t) = g(0)e(a+b)t is the unique Lp-solution
to (12).

On the other hand, if a and b are bounded random variables and g(0) ∈ Lp, then the stochastic process
y0(t) = g(0)e(a+b)t is the unique Lp-solution to (12).

Theorem 9. Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, and f is continuous on [0, ∞)

in the Lp+η-sense for certain η > 0, then the stochastic process z0(t) =
∫ t

0 e(a+b)(t−s) f (s)ds is the unique
Lp-solution to (13).

On the other hand, if a and b are bounded random variables and f is continuous on [0, ∞) in the Lp-sense,
then the stochastic process z0(t) =

∫ t
0 e(a+b)(t−s) f (s)ds is the unique Lp-solution to (13).

Proof. Take the first set of assumptions. Let F(t, s) = e(a+b)(t−s) f (s) be the process inside the integral
sign. Since φa < ∞ and φb < ∞, the chain rule theorem (Proposition 1) allows differentiating e(a+b)t

in Lq, for each 1 ≤ q < ∞. In particular, e(a+b)(t−s) is Lq-continuous at (t, s), for 1 ≤ q < ∞. As f
is continuous on [0, ∞) in the Lp+η-sense, we derive that F is Lp-continuous at (t, s). It also exists
∂F
∂t (t, s) = (a+ b)e(a+b)(t−s) f (s) in Lp. Since a+ b has absolute moments of any order, (a+ b)e(a+b)(t−s)

is Lq-continuous at (t, s), for 1 ≤ q < ∞. Then ∂F
∂t is Lp-continuous at (t, s). By Proposition 3, z0 is

Lp-differentiable and z′0(t) = F(t, t) +
∫ t

0
∂F
∂t (t, s)ds = f (t) + (a + b)z0(t), and we are done.

Suppose that a and b are bounded random variables and f is continuous on [0, ∞) in the Lp-sense.
If a and b are bounded, then e(a+b)t is L∞-differentiable (this is because of an application of the
deterministic mean value theorem; see ([17] Theorem 3.4)). Then an analogous proof to the previous
paragraph works in this case, by only assuming that f is continuous on [0, ∞) in the Lp-sense.

Theorem 10. Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, g(0) ∈ Lp+η , and f is
continuous on [0, ∞) in the Lp+η-sense for certain η > 0, then the stochastic process x0(t) = g(0)e(a+b)t +∫ t

0 e(a+b)(t−s) f (s)ds is the unique Lp-solution to (11).
On the other hand, if a and b are bounded random variables, g(0) ∈ Lp, and f is continuous on [0, ∞) in

the Lp-sense, then the stochastic process x0(t) = g(0)e(a+b)t +
∫ t

0 e(a+b)(t−s) f (s)ds is the unique Lp-solution
to (11).

Proof. It is a consequence of Theorem 8 and Theorem 9 with x0(t) = y0(t) + z0(t).

Our goal is to establish conditions under which limτ→0 xτ(t) = x0(t) in Lp, for each t ≥ 0. To do
so, we will utilize limτ→0 yτ(t) = y0(t) and limτ→0 zτ(t) = z0(t).

The first limit, limτ→0 yτ(t) = y0(t), was demonstrated in ([17] Theorem 4.5), by using inequalities
for the deterministic and random delayed exponential function ([36] Theorem A.3), ([17] Lemma 4.2,
Lemma 4.3, Lemma 4.4).

Theorem 11 ([17] Theorem 4.5). Fix 1 ≤ p < ∞. Let a and b be bounded random variables and let g be a
stochastic process that belongs to C1([−τ, 0]) in the Lp-sense. Then, limτ→0 yτ(t) = y0(t) in Lp, uniformly
on [0, T], for each T > 0.

Next we prove the convergence limτ→0 zτ(t) = z0(t). As a corollary, we will be able to derive
limτ→0 xτ(t) = x0(t).

137



Mathematics 2020, 8, 1013

Theorem 12. Fix 1 ≤ p < ∞. Let a and b be bounded random variables and let f be a continuous stochastic
process on [0, ∞) in the Lp-sense. Then, limτ→0 zτ(t) = z0(t) in Lp, uniformly on [0, T], for each T > 0.

Proof. Notice that zτ(t) defined by (6) (see the first paragraph of this section) exists by Theorem 5,
which used the boundedness of a and b and the Lp-continuity of f on [0, ∞). Analogously, z0(t) exists
by Theorem 9.

Fix t ∈ [0, T]. We bound

‖zτ(t)− z0(t)‖p ≤
∫ t

0

∥∥∥ea(t−s) f (s)
(

eb1,t−τ−s
τ − eb(t−s)

)∥∥∥
p

ds

≤
∫ t

0

∥∥∥ea(t−s)
∥∥∥

∞
‖ f (s)‖p

∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞

ds.

We have ‖ea(t−s)‖∞ ≤ e‖a‖∞T and ‖ f (s)‖p ≤ Cf = maxs∈[0,T] ‖ f (s)‖p. These bounds yield

‖zτ(t)− z0(t)‖p ≤ Cf e‖a‖∞T
∫ t

0

∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞

ds. (14)

Let k be a number such that k ≥ ‖b1‖∞ = ‖eaτb‖∞, for all τ ∈ (0, 1]. By ([17] Lemma 4.3),∥∥∥eb1,t−τ−s
τ − eb1(t−s)

∥∥∥
∞

≤ CT,k · τ, (15)

for t ∈ [0, T], 0 ≤ s ≤ t and τ ∈ (0, 1]. On the other hand, by the deterministic mean value theorem
(applied for each outcome ω),

eb1(t−s) − eb(t−s) = ee−aτb(t−s) − eb(t−s)

= b(t − s)eξτ,ωb(t−s)(e−aτ − 1),

where ξτ,ω ∈ (1, e−aτ) ∪ (e−aτ , 1). In particular, |ξτ,ω | ≤ 1 + e‖a‖∞ . We apply again the deterministic
mean value theorem to e−aτ − 1:

e−aτ − 1 = eξτ,ω (−aτ),

where ξτ,ω ∈ (−aτ, 0) ∪ (0, −aτ). In particular,

‖e−aτ − 1‖∞ ≤ e‖a‖∞‖a‖∞τ.

As a consequence,

‖eb1(t−s) − eb(t−s)‖∞ ≤ ‖b‖∞Te(1+e‖a‖∞ )‖b‖∞Te‖a‖∞‖a‖∞︸ ︷︷ ︸
CT,‖a‖∞ ,‖b‖∞

τ. (16)

By combining (15) and (16) and by the triangular inequality,∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞

≤
∥∥∥eb1,t−τ−s

τ − eb1(t−s)
∥∥∥

∞

+
∥∥∥eb1(t−s) − eb(t−s)

∥∥∥
∞

≤
(

CT,k + CT,‖a‖∞ ,‖b‖∞

)
τ.

Substituting this inequality into (14),

‖zτ(t)− z0(t)‖p ≤ Cf e‖a‖∞T
(

CT,k + CT,‖a‖∞ ,‖b‖∞

)
τ

τ→0−→ 0,

uniformly on [0, T].
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Theorem 13. Fix 1 ≤ p < ∞. Let a and b be bounded random variables, let g be a stochastic process that
belongs to C1([−τ, 0]) in the Lp-sense, and let f be a continuous stochastic process on [0, ∞) in the Lp-sense.
Then, limτ→0 xτ(t) = x0(t) in Lp, uniformly on [0, T], for each T > 0.

Proof. This is a consequence of Theorem 11 and Theorem 12, with xτ(t) = yτ(t) + zτ(t) and x0(t) =
y0(t) + z0(t).

Example 1. This is a test example, with arbitrary distributions, to show how (9) and (10) may be
employed to compute the expectation and the variance of the stochastic solution. Theoretical results
are also illustrated. Let a ∼ Beta(2, 3) and b ∼ Uniform(0.2, 1). Define g(t, ω) = sin(sin(d(ω)t2))

and f (t, ω) = cos(te(ω)2), where d and e are random variables with d ∼ Triangular(1, 1.15, 1.3) and
e ∼ Uniform(0.1, 0.2). By using the chain rule theorem, Proposition 1, it is easy to prove that both
g and f are C∞ in the Lp-sense, 1 ≤ p < ∞. The random variables a, b, d and e are assumed to be
independent. Consider the solution stochastic process xτ(t) defined by (2). It is an Lp-solution for all
1 ≤ p < ∞, by Theorem 7. With expressions (9) and (10), we can compute E[xτ(t)] and V[xτ(t)]; see
Figure 1. The results agree with Monte Carlo simulation on (1). Observe that, as τ approaches 0, the
solution stochastic process tends to the solution with no delay defined in Theorem 10, as predicted by
Theorem 13.

0.5 1.0 1.5 2.0
t

1
2
3
4
5
6
7
[x (t)]

=0=0.01=0.1=0.2=0.3=0.4

0.5 1.0 1.5 2.0
t

2

4

6

8

[x (t)]
=0=0.01=0.1=0.2=0.3=0.4

Figure 1. Expectation (up) and variance (down) of xτ(t), Example 1.

Example 2. In this example, we specify new probability distributions for the input coefficients. Let
a ∼ Uniform(0.2, 1), b ∼ Uniform(−1, 0), d ∼ Beta(1, 1.3) and e ∼ Uniform(−0.2,−0.1), all of
them independent. The stochastic process xτ(t) given by (2) is an Lp-solution for all 1 ≤ p < ∞,
by Theorem 7. We compute E[xτ(t)] and V[xτ(t)] with (9) and (10), see Figure 2. Observe that the
convergence when τ → 0 agrees with Theorem 13.
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Figure 2. Expectation (up) and variance (down) of xτ(t), Example 2.

We now comment on some computational aspects. We have used the software Mathematica®,
version 11.2 [37]. The integrals and expectations from (9) and (10) have been computed as
multidimensional integrals with the built-in function NIntegrate (recall that the expectation is an
integral with respect to the corresponding probability density function). Expression (9) does not
pose serious numerical challenges, and one can use a standard NIntegrate routine with no specified
options. However, for expression (10), we have set the option quasi-Monte Carlo with 105 sampling
points (otherwise the computational time would increase dramatically). We have checked numerically
that the following factors increase the computational time: large ratio t/τ; probability distributions
with unbounded support for the input data; and moderate or large dimensions of the random space.

5. Conclusions

In this paper, we have performed a comprehensive stochastic analysis of the random linear
delay differential equation with stochastic forcing term. The equation considered has one discrete
delay τ > 0, two random coefficients a and b (corresponding to the non-delay and the delay term,
respectively) and two stochastic processes f (t) and g(t) (corresponding to the forcing term on [0, ∞)

and the initial condition on [−τ, 0], respectively). Our setting supposes a step further than the previous
contribution [17], in which no forcing term was considered (i.e., f (t) = 0). We have rigorously
addressed the problem of extending the deterministic theory to the random scenario, by proving that
the deterministic solution constructed via the method of steps and the method of variation of constants
is an Lp-solution, under certain assumptions on the random data. A new result, the random Leibniz’s
rule for Lp-Riemann integration has been necessary to derive our conclusions. We have also studied
the behavior in Lp of the random delay equation when the delay tends to zero.

Our approach has been shown to be useful to approximate the statistical moments of the solution
stochastic process, in particular its expectation and its variance. Thus, it is possible to perform
uncertainty quantification. Our procedure is an alternative to the usual techniques for uncertainty
quantification: Monte Carlo simulation, generalized polynomial chaos (gPC) expansions, etc.

Our approach could be extendable to other random differential equations with or without delay.
As usual, one could prove that the deterministic solution also works in the random framework. To do
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so, a rigorous and careful analysis of the probabilistic properties of the solution based on Lp-calculus
should be conducted.

Finally, we humbly think that advancing in theoretical aspects of random differential equations
with delay will permit rigorously applying this class of equations to modeling phenomena involving
memory and aftereffects together with uncertainties. In particular, they may be crucial to capture
uncertainties inherent to some complex modeling problems, since input parameters of this type of
equations may belong to a wider range of probability distributions than the ones considered in Itô
differential equations.
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Abstract: The process of partial melting and resolidification of a thin metal film subjected to a
high-power laser beam is considered. The mathematical model of the process is based on the
second-order dual phase lag equation (DPLE). Until now, this equation has not been used for
the modeling of phase changes associated with heating and cooling of thin metal films and the
considerations regarding this issue are the most important part of the article. In the basic energy
equation, the internal heat sources associated with the laser action and the evolution of phase change
latent heat are taken into account. Thermal processes in the domain of pure metal (chromium)
are analyzed and it is assumed that the evolution of latent heat occurs at a certain interval of
temperature to which the solidification point was conventionally extended. This approach allows
one to introduce the continuous function corresponding to the volumetric fraction of solid or liquid
state at the neighborhood of the point considered, which significantly simplifies the phase changes
modeling. At the stage of numerical computations, the authorial program based on the implicit
scheme of the finite difference method (FDM) was used. In the final part of the paper, the examples
of numerical computations (including the results of simulations for different laser intensities and
different characteristic times of laser pulse) are presented and the conclusions are formulated.

Keywords: second-order dual phase lag equation; laser heating; thin metal films; melting and
resolidification; finite difference method

1. Introduction

Heat transfer through thin films subjected to an ultrafast laser pulse is of vital importance in
microtechnology applications and is a reason that the problems related to the fast heating of solids
have become a very active research area. The problems of melting/resolidification processes modeling,
which may be the result of heating with a laser beam, are also important from the technical point of
view. So far, the method using the equation based on the second order model with two delay times for
the phase changes modeling was not presented in literature. This was the most important motivation
for the authors to undertake research in this area. In Section 5, the comparison of the results obtained
with the similar solution on the basis of the first-order dual phase lag equation (DPLE) is presented.

The mathematical model of macroscale heat conduction is based on the parabolic Fourier equation.
This equation was formulated under the assumption of instantaneous propagation of the thermal
wave in the domain considered. It is obvious that this assumption is not correct, but for the problems
concerning the analysis of macroscale heat conduction processes, the obtained results are fully
satisfactory. Despite this, the attempts have been made to modify the Fourier equation to a form that
better reproduces the real conditions of heat conduction in solids. Thus, about seventy years ago,

Mathematics 2020, 8, 999; doi:10.3390/math8060999 www.mdpi.com/journal/mathematics143



Mathematics 2020, 8, 999

Cattaneo proposed a modification of the Fourier equation now called the Cattaneo–Vernotte equation.
This is the hyperbolic partial differential equation (PDE) and contains the parameter τq called the
relaxation time (the lag time of the heat flux in relation to the temperature gradient) [1,2]. Especially
important differences between the Fourier model and the real course of thermal processes appear in the
case of microscale heat transfer problems. For example, the very high heating rates accompanying the
heating of thin metal films with a laser beam mean that the inclusion of the finite value of thermal wave
velocity must be taken into account. The deviations appear mainly when the mean free path of the
heat carriers becomes comparable to the characteristic length of the domain considered and the time
scale of interest becomes comparable to or smaller than the relaxation time of the heat carriers [3,4].

For the analysis of this type of process, the model with two delay times called a dual-phase lag
model is presently applied. In addition to the relaxation time, the thermalization time is introduced.
The relaxation time τq takes into account the small-scale response in time, while the thermalization
time τT takes into account the small-scale response in space [3–6]. The dual phase lag equation (DPLE)
results from the generalized form of the Fourier law

q
(
x, t + τq

)
= −λ ∇T(x, t + τT) (1)

where q is a heat flux vector; ∇T is a temperature gradient; λ is a thermal conductivity; and x and
t denote the geometrical co-ordinates and time, respectively. Both sides of the last dependence are
developed into a power series and, finally (depending on the number of components), the first- or
second-order DPLE can be obtained.

The literature on equations with two delay times is very extensive (especially in the case of the first
order equations), and here we quote only a few important articles. The first publications concerning
the model with two delay times appeared in the early nineties of the last century. There may be
mentioned, for example, the papers [7–9]. Currently, one can already find books devoted to this type
of non-Fourier heat conduction model, for example, [10–13].

In this brief literature review, the selected papers on analytical and numerical solutions of
first-order DPLE will be listed. First of all, the works containing the analytical solutions of first-order
DPLE (usually 1D tasks) will be mentioned [14–18]. The paper [14] concerns the laser heating of
ultra-thin metal film; in the papers [15,16], the bio-heat transfer problems are discussed; while in the
paper [18], the multi-layered metal domain is considered.

A much larger number of articles concern the application of numerical methods in the tasks based
on the models with two delay times. It should be pointed out that, first of all, different variants of
finite difference method (FDM) are applied (see, for example, [19–24]). In the paper [19], the numerical
model of heating of the double-layered thin film has been applied for the analysis of the thermal
deformation process. In the paper [20], the 3D FDM numerical model of the thin metal film heating has
been presented. In [21], the explicit scheme of the FDM has been used and the problem of biological
tissue freezing process has been discussed. The stability problem of the algorithm of this type is
analyzed in [22]. In [23], the problem based on DPLE has been solved using the alternating direction
implicit FDM scheme. In the paper [24], the adaptation of typical boundary conditions for non-Fourier
equations has been shown. The FDM numerical solutions of the inverse problems can also be found
(e.g., [25]).

The number of works presenting solutions using the other numerical methods is significantly
smaller. Here, one can mention the papers [26–32]. In particular, solutions based on the finite element
method [26–28], the boundary element method [29], the control volume method [30], or the lattice
Boltzmann method [31,32] are discussed in the above-mentioned papers.

Literature on the second-order DPLE is not as extensive as for the first-order equations. As an
example, the papers [33–37] can be mentioned. The main subject of these papers (except [37]) is related
to the construction of algorithms for numerical modeling of problems described by second-order DPLE
(the different variants of FDM are used). Additionally, the transformed second-order equations are
shown in [20,34,37] and the changed forms are more convenient at the stage of numerical modeling.
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At the stage of melting/resolidification modeling, the concept presented in [38] (for the macroscale
problems) is applied. The capacity of the internal heat source related to the phase change is proportional
to the melting/solidification rate. To define this function (in particular, the volumetric fraction of liquid
state fL(T)) in the form of a continuous one, the melting point corresponding to the temperature Tm is
conventionally replaced by a certain interval [Tm − ΔT, Tm + ΔT], and then the function discussed can
be described by a broken line. For this interval, the substitute thermal capacity is defined and the one
domain approach can be used. It should be pointed out that the testing computations show a little
impact of the interval ΔT width (within reasonable limits) on the results of numerical simulations.

At the beginning of the part of the article devoted to own research, the assumed form of the dual-
phase lag equation and the mathematical formulas determining the laser action and the evolution of
phase change latent heat are presented. Both phenomena are taken into account by an introduction to the
energy equation of the functions determining the efficiency of internal heat sources. Next, the numerical
algorithm based on the implicit scheme of FDM is discussed. In the final part of the paper, the results of
numerical computations concerning the heating/cooling process of the thin metal film made of chrome
are shown. The conclusions resulting from the performed research are also formulated.

2. Governing Equations

The starting point for the formulation of the energy equation with delays is the generalized Fourier
law (1). To obtain the DPLE, the left and right sides of Equation (1) are developed into the Taylor series

q(x, t) + τq
∂ q(x, t)
∂ t +

τ2
q

2
∂2 q(x, t)
∂ t2 + . . . =

−λ
[
∇T(x, t) + τT

∂ ∇ T(x, t)
∂ t +

τ2
T

2
∂2∇T(x, t)
∂ t2 + . . .

] (2)

Let us apply the well-known diffusion equation, namely,

c
∂ T(x, t)
∂ t

= −∇ · q (x, t) + Q(x, t) (3)

where c is a volumetric specific heat and Q(x, t) is a capacity of volumetric internal heat sources.
When the components containing the second derivatives (Equation (2)) are taken into account,

after mathematical manipulations, Equation (3) takes the form

x ∈ Ω : c
[
∂ T(x, t)
∂ t + τq

∂2 T(x, t)
∂ t2 +

τ2
q

2
∂3T(x, t)
∂ t3

]
= ∇[λ∇ T(x, t)]+

τT
∂ {∇[λ∇ T(x, t)]}

∂ t +
τ2

T
2
∂2{∇[λ∇ T(x, t)]}

∂ t2 + Q(x, t) + τq
∂ Q(x, t)
∂ t +

τ2
q

2
∂2 Q(x, t)
∂ t2

(4)

When the melting and resolidification problem is considered, the internal heat source in Equation (4)
must contain the term controlling the phase change process. This appropriate source function Qm (x, t)
can be defined as

Qm(x, t) = −L
∂ fL(x, t)
∂ t

− Lτq
∂2 fL(x, t)
∂ t2 − L

τq
2

2
∂3 fL(x, t)
∂ t3 (5)

where L is the volumetric latent heat phase change and fL(x, t) is the volumetric molten state fraction at
the neighborhood of the point considered. The last equation is a generalization of what is well known
in the thermal theory of foundry processes definition of Qm (e.g., [38]). The function fL(x, t) is equal to
zero at the beginning of the heating process until T1 = Tm − ΔT and fL(x, t) = 1 for T2 > Tm + ΔT (Tm is
the melting point). In the interval [Tm − ΔT, Tm + ΔT], the function fL(x, t) changes from 0 to 1 in a
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linear way (such an assumption is fully acceptable). Generally speaking, the volumetric liquid state
fraction is given in the form of broken line, this means

fL(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 T(x, t) > Tm + ΔT
T(x,t)−Tm+ΔT

2ΔT Tm − ΔT ≤ T(x, t) ≤ Tm + ΔT
0 T(x, t) < Tm − ΔT

(6)

The derivative of fL(x, t) with respect to the temperature is equal to 0 for T(x, t) < Tm − ΔT and
T(x, t) > Tm + ΔT, while between the border temperatures dfL(x, t)/dT = 1/2ΔT. Thus, the source term
Qm(x, t) acts only for T(x, t) from the interval [Tm − ΔT, Tm + ΔT], and then

Qm(x, t) = − L
2Δ T

⎡⎢⎢⎢⎢⎣∂ T(x, t)
∂ t

+τq
∂ T2(x, t)
∂ t2 +

τq
2

2
∂ T3(x, t)
∂ t3

⎤⎥⎥⎥⎥⎦, T(x, t) ∈ [Tm − ΔT, Tm + ΔT] (7)

Let us introduce the piece-vise constant function C(T)

C(T) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c2 T(x, t) > Tm + ΔT
0.5(c1 + c2) +

L
2ΔT Tm − ΔT ≤ T(x, t) ≤ Tm + ΔT

c1 T(x, t) < Tm − ΔT
(8)

where c1 and c2 are the volumetric specific heats of the solid and liquid states, respectively.
Then, Equation (4) can be written as follows

x ∈ Ω : C(T)
[
∂ T(x, t)
∂ t + τq

∂2 T(x, t)
∂ t2 +

τ2
q

2
∂3T(x, t)
∂ t3

]
= ∇[λ∇ T(x, t)]+

τT
∂ {∇[λ∇ T(x, t)]}

∂ t +
τ2

T
2
∂2{∇[λ∇ T(x, t)]}

∂ t2 + Ql(x, t) + τq
∂ Ql(x, t)
∂ t +

τ2
q

2
∂2 Ql(x, t)
∂ t2

(9)

Thermal conductivity λ in Equation (9) is defined just like the parameter C(T).
The mathematical formula determining the intensity of the internal heat source Ql (x, t) resulting

from the laser action can be taken in the form [39]

Ql(x, t) = (1−R)
I0

δ tp
exp

⎡⎢⎢⎢⎢⎢⎣−
x2

1 + x2
2

r2
D

− x3

δ
− 4 ln 2

(t− 2tp)
2

t2
p

⎤⎥⎥⎥⎥⎥⎦, x = {x1, x2, x3} (10)

where I0 [J/m2] is the laser intensity, tp [s] is the characteristic time of laser pulse, δ [m] is the optical
penetration depth, R is the reflectivity of the irradiated surface, rD [m] is the laser beam radius, and x3

is a vertical axis. The derivatives of Ql with respect to time can be found analytically.
On the outer surface of the system, the adiabatic conditions are assumed (the external heat flux

is taken into account in the appropriate source function). The mathematical form of the Neumann
boundary condition for the second-order DPLE is as follows [36]

x ∈ Γ : − λ
[
n·∇T(x, t) + τT

∂[n·∇T(x, t)]
∂t +

τ2
T

2
∂2[n·∇T(x, t)]

∂t2

]
=

qb(x, t) + τq
∂qb(x, t)
∂t +

τ2
q

2
∂2 qb(x, t)
∂ t2

(11)

where n is a normal outward vector and (in the case considered) qb (x, t) = 0, of course.
The mathematical model is also supplemented by the initial conditions

t = 0 : T(x, 0) = Tp,
∂T(x, t)
∂t

∣∣∣∣∣∣
t=0

=
Q(x, 0)

c1
,
∂2T(x, t)
∂t2

∣∣∣∣∣∣
t=0

=
1
c1

∂Q(x, t)
∂t

∣∣∣∣∣∣
t=0

(12)

where Tp is an initial temperature.
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3. Mathematical Description of 1D Problem

At the stage of numerical modeling, the 1D problem was considered and the basis for the
construction of the FDM algorithm is the following system of equations and conditions:

- energy equation for thin metal film domain

C(T)
[
∂ T(x, t)
∂ t + τq

∂2 Tx,t)
∂ t2 +

τ2
q

2
∂3T(x, t)
∂ t3

]
=

∂
∂ x

[
λ
∂ T(x, t)
∂ x

]
+ τT

∂2

∂ t ∂ x

[
λ
∂ T(x, t)
∂ x

]
+

τ2
T

2
∂3

∂ t2 ∂ x

[
λ
∂ T(x, t)
∂ x

]
+ Z(x, t)

(13)

where

Z(x, t) = Ql(x, t) + τq
∂ Ql (x, t)

∂ t
+

τq
2

2
∂2 Ql(x, t)
∂ t2 (14)

- source function Ql

Ql(x, t) = (1−R)
I0

δ tp
exp

⎡⎢⎢⎢⎢⎢⎣− x
δ
− 4 ln 2

(t− 2tp)
2

t2
p

⎤⎥⎥⎥⎥⎥⎦ (15)

adiabatic boundary conditions

x = 0∪G : ∇T(x, t) + τT

∂
[
∂ T(x, t)
∂ x

]
∂t

+
τ2

T
2

∂2
[
∂ T(x, t)
∂ x

]

∂t2 = 0 (16)

- initial conditions

t = 0 : T(x, 0) = Tp,
∂T(x, t)
∂t

∣∣∣∣∣∣
t=0

=
Q(x, 0)

c1
,
∂2T(x, t)
∂t2

∣∣∣∣∣∣
t=0

=
1
c1

∂Q(x, t)
∂t

∣∣∣∣∣∣
t=0

(17)

4. Numerical Model Based on FDM

Let T f
i = T(xi, f Δt), where xi = ih, i = 0, 1, . . . , n and f = 0, 1, . . . , F. Taking into account the initial

conditions (17), one has

T0
i = Tp

T1
i −T0

i
Δt = 1

c1
Ql(xi, 0) → T1

i = T0
i +

Δt
c1

Ql(xi, 0)
T2

i −2T1
i +T0

i

(Δt)2 = 1
c1

∂Ql(xi,t)
∂t

∣∣∣∣
t=0
→ T2

i = 2T1
i − T0

i +
(Δt)2

c1

∂Qj(xi,t)
∂t

∣∣∣∣∣
t=0

(18)

For the transition t f−1 → t f (f ≥ 3), the approximate form of Equation (13) resulting from the
introduction of the assumed differential quotients is as follows

C f−1
i

[
T f

i −T f−1
i

Δ t + τq
T f

i −2T f−1
i +T f−2

i

(Δt)2 +
τ2

q
2

T f
i −3T f−1

i +3T f−2
i −T f−3

i

(Δt)3

]
=

[
∂
∂ x

(
λ∂ T
∂ x

)] f

i
+ τT

Δ t

{[
∂
∂ x

(
λ∂ T
∂ x

)] f

i
−
[
∂
∂ x

(
λ∂ T
∂ x

)] f−1

i

}
+

wTτ
2
T

2(Δt)2

{[
∂
∂ x

(
λ∂ T
∂ x

)] f

i
− 2
[
∂
∂ x

(
λ∂ T
∂ x

)] f−1

i
+
[
∂
∂ x

(
λ∂ T
∂ x

)] f−2

i

}
+ Z f

i

(19)

where

[
∂
∂ x

(
λ∂ T
∂ x

)]s
i
= 1

h

[(
λ∂ T
∂ x

)s
i+0.5

−
(
λ∂ T
∂ x

)s
i−0.5

]
= 1

h

(
λs

i+0.5
T s

i+1−T s
i

h − λs
i−0.5

T s
i −T s

i−1
h

)
=

1
h

(
λs

i+λs
i+1

2
T s

i+1−T s
i

h − λs
i−1+λs

i
2

T s
i −T s

i−1
h

)
= 1

2h2

[(
λs

i + λs
i+1

)(
T s

i+1 − T s
i

)
+
(
λs

i−1 + λs
i

)(
T s

i−1 − T s
i

)] (20)
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while s = f, s = f − 1, or s = f − 2.
Thus,

T f
i −T f−1

i
Δ t + τq

T f
i −2T f−1

i +T f−2
i

(Δt)2 +
τ2

q
2

T f
i −3T f−1

i +3T f−2
i −T f−3

i

(Δt)3 =

2(Δt)2+2τTΔ t+τ2
T

4C f−1
i h2(Δt)2

[(
λ

f−1
i + λ

f−1
i+1

)(
T f

i+1 − T f
i

)
+
(
λ

f−1
i−1 + λ

f−1
i

)(
T f

i−1 − T f
i

)]
−

2τTΔ t+2τ2
T

4C f−1
i h2(Δt)2

[(
λ

f−1
i + λ

f−1
i+1

)(
T f−1

i+1 − T f−1
i

)
+
(
λ

f−1
i−1 + λ

f−1
i

)(
T f−1

i−1 − T f−1
i

)]
+

τ2
T

4C f−1
i h2(Δt)2

[(
λ

f−2
i + λ

f−2
i+1

)(
T f−2

i+1 − T f−2
i

)
+
(
λ

f−2
i−1 + λ

f−2
i

)(
T f−2

i−1 − T f−2
i

)]
+

Z f
i

C f−1
i

(21)

and after mathematical manipulations, one has

A f
i T f

i−1 + B f
i T f

i + C f
i T f

i+1 = D f
i (22)

where

A f
i = − [2(Δt)2+2τTΔ t+τ2

T]
(
λ

f−1
i−1 +λ

f−1
i

)

4C f−1
i h2(Δt)2 ,

B f
i =

2(Δt)2+2τqΔ t+τ2
q

2(Δt)3 +
[2(Δt)2+2τTΔ t+τ2

T]
(
λ

f−1
i−1 +2λ f−1

i +λ
f−1
i+1

)

4C f−1
i h2(Δt)2 ,

C f
i = − [2(Δt)2+2τTΔ t+τ2

T]
(
λ

f−1
i+1+λ

f−1
i

)

4C f−1
i h2(Δt)2 ,

D f
i =

2(Δt)2+4τq Δt+3τ2
q

2(Δt)3 T f−1
i − 2τq Δt+3τ2

q

2(Δt)3 T f−2
i +

τ2
q

2(Δt)3 T f−3
i −

2τTΔt+2τ2
T

4C f−1
i h2(Δt)2

[(
λ

f−1
i + λ

f−1
i+1

)(
T f−1

i+1 − T f−1
i

)
+
(
λ

f−1
i−1 + λ

f−1
i

)(
T f−1

i−1 − T f−1
i

)]
+

τ2
T

4C f−1
i h2(Δt)2

[(
λ

f−2
i + λ

f−2
i+1

)(
T f−2

i+1 − T f−2
i

)
+
(
λ

f−2
i−1 + λ

f−2
i

)(
T f−2

i−1 − T f−2
i

)]
+

Z f
i

C f−1
i

(23)

The approximation of boundary conditions (16) is as follows

- for x = 0:

T f
1−T f

0
h + τT

Δt

(
T f

1−T f
0

h − T f−1
1 −T f−1

0
h

)
+

τ2
T

2(Δt)2

(
T f

1−T f
0

h − 2
T f−1

1 −T f−1
0

h +
T f−2

1 −T f−2
0

h

)
= 0 (24)

- for x = G:

T f
n−T f

n−1
h + τT

Δt

(
T f

n−T f
n−1

h − T f−1
n −T f−1

n−1
h

)
+

τ2
T

2(Δt)2

(
T f

n−T f
n−1

h − 2
T f−1

n −T f−1
n−1

h +
T f−2

n −T f−2
n−1

h

)
= 0 (25)

or
−
[
2(Δt)2 + 2τTΔt + τ2

T

]
T f

0 +
[
2(Δt)2 + 2τTΔt + τ2

T

]
T f

1 =(
2τTΔt + 2τ2

T

)(
T f−1

1 − T f−1
0

)
− τ2

T

(
T f−2

1 − T f−2
0

) (26)

and
−
[
2(Δt)2 + 2τTΔt + τ2

T

]
T f

n−1 +
[
2(Δt)2 + 2τTΔt + τ2

T

]
T f

n =(
2τTΔt + 2τ2

T

)(
T f−1

n − T f−1
n−1

)
− τ2

T

(
T f−2

n − T f−2
n−1

) (27)

The transition from t f − 1 to t f (f ≥ 3) requires the solution of the system of Equations (22), (26),
and (27) with a three-band main matrix that can be solved quickest using the Thomas algorithm [40].
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5. Results of Computations

The computations were performed for the thin metal film of the thickness G = 100 nm made of
chromium. The surface x = 0 is subjected to the laser pulse with the parameters R = 0.93, I0 = 3825 J/m2,
δ = 15.3 nm, and tp = 10 ps—c.f. Formula (15). The following values of chromium parameters
are assumed: thermal conductivities λ1 = 93 W/(m K), λ2 = 35 W/(m K), volumetric specific heats
c1 = 3.2148 MJ/(m3 K), c2 = 2.79276 MJ/(m3 K) [24], relaxation time τq = 0.136 ps, thermalization time
τT = 7.86 ps, melting temperature Tm = 2180 K, and volumetric heat of fusion L = 2904 MJ/m3.

Different temporal-spatial meshes were considered; see Table 1. For each combination of mesh
steps, the temperature after 80 ps on the heated surface was recorded. As can be seen, the result
does not depend much on the time step, while the number of nodes is important. Analysis of the
results obtained showed that the satisfactory accuracy provides the geometrical mesh containing
n = 1000 nodes (h = 0.1 nm) and time step Δt = 0.0005 ps (see Table 1, column 5).

Table 1. Temperature of the irradiated surface after 80 ps for different time steps and number of nodes.

Δt [ps] n = 100 n = 200 n = 500 n = 1000

0.0001 1484.22 1498.47 1507.06 1511.45
0.00025 1484.19 1498.43 1507.07 1511.43
0.0005 1484.08 1498.44 1507.05 1511.47

Figure 1 shows the temperature courses at the points x = 0 (heated surface) and x = 20 nm.
The results were compared to those published in [24], where the first order DPL equation and slightly
different partial melting model were used. As one can see, the differences are small, but visible. For the
second-order model (solid lines), the maximum temperature of the heated surface occurs after 28.8 ps
and is equal to 2323.28 K, while for the first-order model (dashed lines), the maximum temperature
occurs after 28 ps and equals 2307.20 K.

Figure 1. Temperature histories at the points x = 0 and x = 20 nm; comparison of the results
obtained using the first-order (dashed line [24]) and second-order dual phase lag (DPL) (solid line) for
I0 = 3825 J/m2, tp = 10 ps.

In Figure 2, the fragments of heating/cooling curves for different widths of ΔT are shown. One can
see that the results are similar. For ΔT = 3 K, the maximum temperature is the highest; for ΔT = 7 K,
the maximum temperature is the lowest; while the biggest differences between them are of the order
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10 K. After the resolidification process, the cooling curves for all cases are very similar. Further
computations were carried out for ΔT = 3 K.

Figure 2. Comparison of obtained temperature courses for different intervals ΔT (on the surface x = 0),
(1) ΔT = 3 K, (2) ΔT = 5 K, (3) ΔT = 7 K.

In Figure 3, the temperature courses on the irradiated surface for the laser intensity I0 = 3825 J/m2

and different characteristic times of laser pulse tp are presented. The impact of changes in this parameter
on the course of the heating/cooling curves is clearly visible. It is obvious that an increase in intensity
of the laser pulse causes a more rapid heating process. Interesting, however, are the effects of changes
of characteristic time tp. Shortening this time increases the heating rate of the metal film and maxima
of the cooling/heating curves shift to the left. At the same time, the maximum values of temperatures
increase slightly. A detailed analysis of Equation (10) determining the time-dependent efficiency of the
laser-related internal heat source shows that such an effect could be expected.

Figure 3. Heating/cooling curves on the surface x = 0 for different characteristic times of laser pulse.
tp: (1) tp = 2 ps, (2) tp = 6 ps, (3) tp = 10 ps (I0 = 4500 J/m2).
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Finally, Figure 4 shows the changes of molten layer thicknesses in time. The successive curves
correspond to tp = 2, 6, and 10 ps. For tp = 2 ps, the maximal depth is equal to g = 17.6 nm; for tp = 6 ps,
it is equal to g = 15.3 nm; while for tp = 10 ps, it is equal to g = 13 nm.

Figure 4. Changes in the thickness of the molten layer for different characteristic times of laser pulse,
(1) tp = 2 ps, (2) tp = 6 ps, (3) tp = 10 ps.

Changes in the characteristic time of laser pulse cause a similar effect to that seen in the previous
figure. The depth of the molten layer increases with the reduction of time tp and the process is more
dynamic. Such analysis and information obtained on its basis can often be useful in engineering practice.

6. Conclusions

The mathematical model, the numerical algorithm, and exemplary results of the computations
concerning the heating of thin metal film subjected to the laser beam are discussed, wherein the
problem is described using the second-order DPLE. The laser beam power is so high that, in the domain
under consideration, the partial melting and then resolidification of the material take place. To our
knowledge, the application of the second-order DPLE to solve this type of the problem has not yet been
presented. The task is treated as a non-linear one and the thermophysical parameters of the material
are temperature-dependent. The melting point is substituted by a certain interval of temperature.
This assumption allows one to introduce the continuous function determining the local and temporary
volumetric liquid state fraction of the metal. The influence of the width of this interval on the results of
numerical calculations is also examined. The laser action and the evolution of latent heat are taken into
account by the introduction of two internal heat sources to the energy equation.

At the stage of numerical modeling, the 1D problem was considered, but the generalization of the
algorithm and computer program implementing the numerical computations for the larger number
of dimensions is not difficult. The computer program is based on the implicit scheme of the finite
difference method. The algorithm is unconditionally stable and the transition from time t to t + Δt
requires the solution of the system of linear equations, whose main matrix is a three-diagonal one.
In this place, the very effective Thomas algorithm was used.

The obtained results are in line with the expectations; their comparison with the solution of a
similar problem described by the first-order equation shows visible, but slight differences.

We are planning the following further research in this scope:

- numerical algorithm and computer program for 3D problems;
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- numerical algorithm and computer program for axially-symmetrical tasks (this geometry is very
convenient because of the typical shape of the function describing the laser action);

- adaptation of the algorithm presented in this work for modeling the ablation process;
- research on other approaches to phase changes modeling.
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Abstract: Freight derivative prices have been modeled assuming that the spot freight follows a
particular stochastic process in order to manage them, like freight futures, forwards and options.
However, an explicit formula for pricing freight options is not known, not even for simple spot
freight processes. This is partly due to the fact that there is no valuation equation for pricing freight
options. In this paper, we deal with this problem from two independent points of view. On the
one hand, we provide a novel theoretical framework for pricing these Asian-style options. In this
way, we build a partial differential equation whose solution is the freight option price obtained from
stochastic delay differential equations. On the other hand, we prove lower and upper bounds for
those freight options which enables us to estimate the option price. In this work, we consider that the
spot freight rate follows a general stochastic diffusion process without restrictions in the drift and
volatility functions. Finally, using recent data from the Baltic Exchange, we compare the described
bounds with the freight option prices.

Keywords: spot freight rates; freight options; stochastic diffusion process; stochastic delay differential
equation; risk-neutral measure; arbitration arguments; partial differential equations

1. Introduction

In this global economy, the transport of every kind of goods around the world has become of
great importance. In fact, more than 95% of the world trade is carried by marine vessels, see [1].

The freight (transport by vessels) market is usually considered as a part of the commodity market.
However, there are important differences between them. Most commodities are real products while a
freight is a service and, as a result, it is not storable. Freight rates also present remarkable properties
such as high volatility and risk. The cost of sea transport is affected by fleet supply and commodity
demand, but also by external factors such as the price of bunker fuel or seasonal pressures, see [2].
As a consequence, freight derivatives were initially provided to protect ship-owners and charterers
against risk. Besides, more recently financial institutions also found great opportunities in it.

There are different types of freight derivatives such as futures, forwards or options, but all of
them depend on the freight rate in a settlement period before the maturity, see [3] for more detail.
Traded freight options are contracts whose payoffs are the difference between the average of freight
rates in a settlement period and the strike price. That is, they are arithmetic Asian-style options.
This procedure avoids the possible manipulation, by large participants in the market, of the price just
at maturity time. Moreover, the transportation of goods usually takes several days and the freight
rates change along this time period.

Mathematics 2020, 8, 620; doi:10.3390/math8040620 www.mdpi.com/journal/mathematics155
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Taking into account that the freight market is very recent, at the moment, not much scientific
research has been done yet. When the spot freight follows a geometric process, a framework for its
valuation is developed by Koekebakker et al. [4]. Tvedt [5] models the log spot freight rate in shipping
by means of a geometric mean reversion process. Prokopczuk [1] considers that the log spot freight
follows an Ornstein–Uhlenbeck process and studies the pricing and hedging of freight futures contract.
When the log spot follows a jump-diffusion stochastic process, an accurate valuation of freight options
is developed by Nomikos et al. [6] and Kyriakou et al. [7].

In general, in order to obtain a freight option price, it is necessary to use the conditional expectation
under the risk-neutral measure because there is no valuation partial differential equation (PDE) for
pricing this kind of options, unlike what happens with other derivatives (bonds, futures, European options,
etc). Therefore, the Monte Carlo method is used to approximate this conditional expectation, see for
example [8]. However, this method is very expensive and inaccurate from a computational point of view.

In this paper, we deal with the freight option valuation problem in two ways. On the one hand,
we provide a novel partial differential equation whose solution is the freight option price. This PDE
depends on three independent state variables: the spot freight rate, its delay and the continuous
version of the average of the spot freight rate over a time period. This framework opens a new way
to address this valuation problem. For example, this PDE could be used to obtain a partial explicit
solution of the freight option in some models. In other cases, the solution could be approximated by
using numerical methods for PDE. We obtained lower and upper bounds of the freight option price.
These bounds provide valuable estimations to the option prices.

Our contributions need no restrictive conditions on the model: the spot freight follows a general
stochastic diffusion process without restrictions in the drift and volatility functions.

The paper is arranged as follows. In Section 2, a one-factor diffusion model to price freight options
is introduced. In Section 3, we provide a novel PDE for pricing these kind of options. In particular,
for the geometric model, we obtained a partial solution for this price. In Section 4, we provide lower
and upper bounds for the freight option prices. In Section 5, we compare these bounds with the freight
option prices in a test problem using data from the Baltic Exchange. Finally, Section 6 concludes.

2. The Option Pricing Model

In this section, we consider a general one-factor diffusion model, which we use to price
freight derivatives.

Define (Ω, F , {F}t≥0,P) as a complete filtered probability space which satisfies the usual
conditions and {F}t≥0 is a filtration, see [9,10].

We assume that the spot freight rate follows the diffusion process, under the risk-neutral measure Q,

dS(t) = μ(S(t))dt + σ(S(t))dW(t), (1)

where μ(S) and σ(S) are the drift and volatility of the process, respectively, and W is a Wiener process.
We suppose that the functions μ and σ satisfy suitable regularity conditions as follows (see [11]):

Assumption 1. Functions μ and σ are measurable and there exists a constant C such that, for all x ∈ R,

|μ(x)|+ |σ(x)| ≤ C(1 + |x|),

Assumption 2. There exists a constant D such that, for all x, y ∈ R,

|μ(x)− μ(y)|+ |σ(x)− σ(y)| ≤ D|x − y|.
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The freight call option price at time t, with settlement period [T1, TN ], t ≤ TN , and strike price K,
can be expressed as C(t, S; K, T1, . . . , TN), and at maturity it is

C(TN , S; K, T1, . . . , TN) =

(
1
N

N

∑
i=1

S(Ti)− K

)+

. (2)

On the other hand, we consider a discount factor D(t) = e−
∫ t

0 r(u) du. If we assume that the riskless
interest rate r is constant, then D(t) = e−rt. According to the fundamental theorem of asset pricing
(see [10]), the price of a freight call option, at time t, and strike price K, is given by the following
conditional expectation

C(t, S; K, T1, . . . , TN) = e−r(TN−t) EQ

⎡⎣( 1
N

N

∑
i=1

S(Ti)− K

)+

|S(t) = S

⎤⎦ . (3)

This price can be represented, taking into account that it is a European call option on a forward
freight agreement (FFA), by means of the following expectation (see [4])

C(t, S; K, T1, . . . , TN) = e−r(TN−t) EQ
[
(F(TN , S; T1, . . . , TN)− K)+ |S(t) = S

]
, (4)

where F(t, S; T1, . . . , TN) = EQ
[

1
N ∑N

i=1 S(Ti)|S(t) = S
]

is the FFA price with settlement period

[T1, TN ]. Finally, note that F(TN , S; T1, . . . , TN) = EQ
[

1
N ∑N

i=1 S(Ti)|S(TN) = S
]
= 1

N ∑N
i=1 S(Ti).

3. Valuation Partial Differential Equation

As we have seen in previous sections, freight options are arithmetic Asian-style options, where the
average is calculated over a fixed settlement period. Even though in the standard Asian options the
settlement period is the total period until maturity, in freight options it is a fixed period close to maturity.

With respect to the standard Asian options, geometric ones usually have an exact pricing formula,
however, for arithmetic Asian options such a price does not exist. In the literature, this fact has led to
use different methodologies for acceptable and tractable valuation: Monte Carlo simulation approach
(see [12,13]) and numerical methods for the PDE provided in [14], as in [15,16], where the spot freight rate
follows a geometric process. Moreover, when the arithmetic average is calculated on a fixed period lower
than in the standard Asian options, there is not a valuation equation for pricing these freight options.

Therefore, Equation (3) is, nowadays, the main available method to price this kind of derivatives.
Unfortunately, in general, it is not an easily manageable form for the empirical application. In order
to provide a new framework that allows us to price the freight options in a different way, here we
develop a PDE for pricing freight options when the spot freight follows a general diffusion stochastic
process. To this end, we will make a similar reasoning for pricing standard Asian options, as in [14],
but we need to incorporate a new variable, the delayed spot freight rate. Moreover, when the spot
freight rate follows a geometric process, we obtain a partial solution to this PDE.

First, we consider a settlement period [T1, TN ] such that d = TN − T1 is a fixed time span,
for example, one month. Then, we introduce a continuous version of the average of the spot price,
for t ≤ TN , as the process A(t):

A(t) =

⎧⎪⎨⎪⎩
∫ t

0 S(z) dz, if 0 ≤ t ≤ d,

∫ t
t−d S(z) dz, if t > d.

(5)
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We write Equation (5) in differential form and obtain the following stochastic delay differential equation

dA(t) =

⎧⎪⎨⎪⎩
S(t) dt, if 0 ≤ t ≤ d,

(S(t)− S(t − d)) dt, if t > d,
(6)

In order to obtain the equation that verifies the freight option price, we introduce a new variable
which is a delay of the spot freight rate along a time period d. We denote this delayed spot freight rate
as the new variable

X(t) =

⎧⎪⎨⎪⎩
S(0), if 0 ≤ t ≤ d,

S(t − d), if t > d.

Therefore, we can rewrite Equation (6) as

dA(t) =

⎧⎪⎨⎪⎩
S(t) dt, if 0 ≤ t ≤ d,

(S(t)− X(t)) dt, if t > d.

Then, the process A(t) depends on the spot freight rate and on its delay value X as a new variable.
In this case, we can approximate the average value of the spot freight rate in the discrete Equation (2),
by means of Equation (5), in a continuous way as

C(TN , S, X, A; K, T1, . . . , TN) =

(
1
d

A(TN)− K
)+

, (7)

and the expectation in Equation (3) as

C(t, S, X, A; K, T1, . . . , TN) = e−r(TN−t) EQ
[(

1
d

A(TN)− K
)+

|S(t) = S, X(t) = X, A(t) = A

]
. (8)

The following theorem provides a PDE satisfied by the freight call option price.

Theorem 1. The freight call option price function C(t, S, X, A; K, T1, . . . , TN) in Equation (8) satisfies,
when d < t < TN, the following PDE

Ct + μ(S)CS + μ(X)CX + (S − X)CA +
1
2

σ2(S)CSS +
1
2

σ2(X)CXX − rC = 0, (9)

S > 0, X > 0, A > 0.

However, when 0 < t < d, the function C in Equation (8) verifies the PDE

Ct + μ(S)CS + SCA +
1
2

σ2(S)CSS − rC = 0, (10)

S > 0, X > 0, A > 0.

Proof of Theorem 1. Applying arbitrage arguments in the market, the discounted freight option price
is a martingale under the risk-neutral measure Q, see [10]. That is,

EQ [D(TN)C(TN , S, X, A; K, T1, . . . , TN)|S(t) = S, X(t) = X, A(t) = A]

= D(t)C(t, S, X, A; K, T1, . . . , TN).

Then, in the development of d(D(t)C(t, S, X, A; K, T1, . . . , TN)), the dt term must be zero.
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Note that dSdS = σ2(S)dt and

dXdX =

⎧⎪⎨⎪⎩
0, if 0 < t < d,

σ2(X) dt, if t > d.

Moreover, dSdX = 0, because dW(t)dW(t − d) = 0, and dAdA = dSdA = dXdA = 0.
Therefore, by means of Ito Lemma, for d < t < TN , we obtain

d(e−rtC) = e−rt
(
−rC + Ct + μ(S)CS + μ(X)CX + (S − X)CA + 1

2 σ2(S)CSS + 1
2 σ2(X)CXX

)
dt

+e−rt (CSσ(S)dW(t) + CXσ(X)dW(t − d)) ,
(11)

and for 0 < t < d,

d(e−rtC) = e−rt
(
−rC + Ct + μ(S)CS + SCA +

1
2

σ2(S)CSS

)
dt + e−rtCSσ(S)dW(t). (12)

Finally, the vanishing of the dt terms in Equations (11) and (12) leads to Equations (9) and (10),
respectively.

Remark 1. This result allows us to address the valuation problem of freight options in a new way: We obtain a
pure final value problem associated to a PDE whose solution gives the freight option price. However, it is very
difficult to solve this problem, except in some particular cases. Next, we will consider one of these situations.

In the freight options literature, some stochastic processes are commonly used to describe the
dynamic of the spot freight rate. In particular, it is usual to consider a geometric process where the
functions in Equation (1) are μ(S) = μS and σ(S) = σS, with constants μ and σ. In such a case, in the
literature there exist some techniques to approximate the freight option prices although none of them
are exact solutions. However, in a similar way to [14], here we value the option on the FFA when the
average of the spot freight verifies A ≥ dK, by solving the PDEs Equations (9) and (10) in Theorem 1.

Proposition 1. Let μ(S) = μS and σ(S) = σS be the drift and volatility of the process (Equation (1)),
respectively, with μ and σ constants. Then, the following function is solution to the PDEs, seen in
Equations (9) and (10) and verifies the final condition of Equation (7) when A ≥ dK:

C̃(t, S, X, A; K, T1, . . . , TN) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1
d

A − K
)

e−r(TN−t) +
e−r(TN−t)

dμ

(
S(eμ(TN−t) − 1)− X(eμ(TN−d) − 1)

)
, 0 ≤ t ≤ d,

(
1
d

A − K
)

e−r(TN−t) +
e−r(TN−t)

dμ
(S − X)(eμ(TN−t) − 1), d ≤ t ≤ TN .

(13)

Proof of Proposition 1. First of all, we change the time variable by considering τ = TN − t. Then,
from Equations (7) and (9) we have the initial value problem

Cτ = μSCS + μXCX + (S − X)CA +
1
2

σ2S2CSS +
1
2

σ2X2CXX − rC, 0 < τ < TN − d, (14)

C(0, S, X, A; K) =
(

1
d

A − K
)+

. (15)
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For A ≥ dK, as in [14], we look for a linear solution to this problem as:

C(τ, S, X, A; K) =
(

1
d

A − K
)

B1(τ) + (S − X)B2(τ), 0 ≤ τ ≤ TN − d, (16)

where B1 and B2 are functions depending only of time. Replacing Equation (16) in the PDE Equation (14),
we obtain that the functions B1 and B2 must verify the following system of ordinary differential equations

B′
1(τ) = −rB1(τ),

B′
2(τ) = (μ − r)B2(τ) +

1
d

B1(τ).

From Equation (15), we get the initial conditions B1(0) = 1 and B2(0) = 0. Solving this system,
we obtain the solution to the problem Equations (14) and (15)

C(τ, S, X, A; K) =
(

1
d

A − K
)

e−rτ + (S − X)
e−rτ

dμ
(eμτ − 1), 0 ≤ τ ≤ TN − d. (17)

Now, the same change of variable τ in Equation (10), and the value of Equation (17) in TN − d,
provide the initial value problem

Cτ = μSCS + SCA +
1
2

σ2S2 − rC, TN − d < τ < TN , (18)

C(TN − d, S, X, A; K) =
(

1
d

A − K
)

e−r(TN−d) + (S − X)
e−r(TN−d)

dμ
(eμ(TN−d) − 1). (19)

Again, we look for a linear solution as

C(τ, S, X, A; K) =
(

1
d

A − K
)

A1(τ) + SA2(τ) + XA3(τ), TN − d ≤ τ ≤ TN , (20)

where A1, A2 and A3 are functions of time.
If we replace Equation (20) into the PDE Equation (18) we obtain that A1, A2 and A3 verify the

system of ordinary differential equations:

A′
1(τ) = −rA1(τ),

A′
2(τ) = (μ − r)A2(τ) +

1
d

A1(τ), (21)

A′
3(τ) = −rA3(τ),

and from Equation (19) we derive the initial conditions

A1(TN − d) = e−r(TN−d),

A2(TN − d) =
e−r(TN−d)

dμ
(eμ(TN−d) − 1),

A3(TN − d) = −e−r(TN−d)

dμ
(eμ(TN−d) − 1).

Solving the system Equation (21) with the previous initial conditions, we obtain the solution

C(τ, S, X, A; K) =
(

1
d

A − K
)

e−rτ + S
e−rτ

dμ
(eμτ − 1)− X

e−rτ

dμ
(eμ(TN−d) − 1), TN − d ≤ τ ≤ TN .

Finally, if we return to the original time variable t, we obtain the expression in Equation (13) for C̃
which provides the call freight option price when A ≥ dK.
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Remark 2. Note that the solution that provides Equation (13) is only valid for A ≥ dK. Unfortunately,
for other values of the continuous average of the spot rate we do not have an explicit expression for the freight
call option price. Therefore, even in this simple case, the partial solution to the PDE that we get is not sufficiently
to price the freight option. However, it could be useful for the numerical solution of the problem, as we remark in
a later section.

Remark 3. Although knowing the PDE problem previously described is not sufficient, in general, to get the
exact price of the option, we could use numerical methods in order to approximate its solution. However, this is
a very hard problem. On the one hand, the PDE involves four independents variables: the time, the spot rate,
its delay and the average of the spot rate in the settlement period. Then, it is necessary to design suitable
specific numerical methods for this expensive multidimensional problem. On the other hand, the application
of numerical methods for a pure final problem requires appropriate boundary conditions. In this sense, for the
specific stochastic processes considered in Proposition 1, we can use Equation (13) to obtain such boundary
conditions (in a similar way to [14] for Asian options). In any case, the numerical approach of this problem is
beyond the scope of this work.

4. Lower and Upper Bounds for Freight Options

For arithmetic standard Asian options, several bounds have been presented in the literature (see
for example [14,17]) and they are obtained in terms of European options. Therefore, assuming a specific
dynamics of the spot rate in order to know its probability distribution, these bounds can be valuated.
For example, in [18] and [7], an optimal lower bound for freight options is provided when the log spot
freight price follows a jump-diffusion process with mean reversion.

In this section, we obtain lower and upper bounds for freight options but, unlike what happens in the
Asian case, we do not assume a particular expression of the functions in the spot freight stochastic process.

In the following theorem, as in Equation (4), we consider that the freight option is a European
option on an FFA.

Theorem 2. Let C(t, S; K, T1, . . . , TN) be a freight call option price with settlement period [T1, TN ] and strike
price K. Then,

e−r(TN−t) (F(t, S; T1, . . . , TN)− K)+ ≤ C(t, S; K, T1, . . . , TN) ≤
1
N

N

∑
i=1

e−r(TN−Ti)CE(t, S; K, Ti), (22)

where F(t, S; T1, . . . , TN) is an FFA with settlement period [T1, TN ], and CE(t, S; K, Ti) is a European plain
vanilla call option with maturity Ti.

Proof of Theorem 2. First of all, note that for a convex function φ, E[φ(X)] ≥ φ(E[X]). Therefore,
starting with Equation (3) for the freight call option price and taking into account that the maximum
function is convex, then

C(t, S; K, T1, . . . , TN) = e−r(TN−t)EQ

⎡⎣( 1
N

N

∑
i=1

S(Ti)− K

)+

|S(t) = S

⎤⎦
≥ e−r(TN−t)

(
EQ

[
1
N

N

∑
i=1

S(Ti)− K|S(t) = S

])+

= e−r(TN−t)

(
EQ

[
1
N

N

∑
i=1

S(Ti)|S(t) = S

]
− K

)+

= e−r(TN−t) (F(t, S; T1, . . . , TN)− K)+ ,
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arriving at the lower bound in Equation (22) which depends on the FFA price F(t, S; T1, . . . , TN).
In order to deduce the upper bound, we use the following relation(

N

∑
i=1

ai

)+

≤
N

∑
i=1

(ai)
+,

which is satisfied for every collection of real numbers {ai}N
i=1.

If we apply this relation to the option price formula (Equation (3)), we obtain

C(t, S; K, T1, . . . , TN) = e−r(TN−t)EQ

⎡⎣( 1
N

N

∑
i=1

S(Ti)− K

)+

|S(t) = S

⎤⎦
= e−r(TN−t) 1

N
EQ

⎡⎣( N

∑
i=1

S(Ti)− NK

)+

|S(t) = S

⎤⎦
= e−r(TN−t) 1

N
EQ

⎡⎣( N

∑
i=1

(S(Ti)− K)

)+

|S(t) = S

⎤⎦
≤ e−r(TN−t) 1

N

N

∑
i=1

EQ
[
(S(Ti)− K)+ |S(t) = S

]
=

1
N

N

∑
i=1

e−r(TN−t)er(Ti−t)CE(t, S; K, Ti)

=
1
N

N

∑
i=1

e−r(TN−Ti)CE(t, S; K, Ti).

In this case, we obtain the upper bound in Equation (22) which depends on the European plain
vanilla call options on the spot freight rate CE(t, S; K, Ti), with maturities at the different dates of the
settlement period, Ti, i = 1, . . . , N.

Remark 4. As we mentioned in the previous section, pricing the freight call option (Equation (3)) is a complex
task. However, its lower and upper bounds, presented in Equation (22), are easier to obtain: FFA and European
vanilla option prices with several maturities are required. Therefore, the values of these bounds can be used as an
estimation of the window where the freight call option price lies.

5. Empirical Application

In this section, we analyze the accuracy of the bounds obtained in Section 4. To this end, we consider
that the spot freight rate follows a geometric process, which is widely used in the literature (as, for example,
in [4]). That is, we assume that the spot freight rate follows a geometric stochastic process

dS(t) = μS(t)dt + σS(t)dW(t). (23)

We estimated the parameters in Equation (23) using Baltic Dry Index data from 2013 to 2019.
This index, daily issued by the London-based Baltic Exchange, is mostly used in the freight market.
As the spot freight rate follows a geometric Brownian process, we use maximum likelihood obtaining
the values μ = 0.0041 and σ = 0.3738.

Assuming that the market price of risk is λ = 0, then, the drift under the risk-neutral measure is
equal to the drift under physical measure

μS(t)− λ = μS(t).
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The bounds in Theorem 2 are obtained in the following way. The lower bound is computed
using the FFA price obtained by [4] for a geometric Brownian motion. As far as the upper bound is
concerned, the prices of the European plain vanilla call options on the spot freight rate are obtained in
a similar way that in [19], but considering that λ = 0.

In order to compare the bounds in Equation (22) with the freight option price, we approximate
the latter using the Monte Carlo simulation technique, which has been proved to be a flexible and
handy method to price options (see, for example, [13]). We approximate the expectation in Equation
(3) using a daily time step (Δt = 1

252 ) and the previously established parameters. We generated 100,000
paths and consider that the settlement period is 1 month and the interest rate is 0.5%. We assumed
that the spot freight rate is S0 = 1034.6, which is the average of the Baltic Dry Index from January
2013 to January 2019, and different strike prices from 70% to 130% of this spot freight rate. In order to
increase the precision of this technique, we used the antithetic variable method as a variance reduction
technique, see [13].

Tables 1 and 2 show several option prices and their corresponding bounds for different maturities
(1 and 3 months, respectively) and strike prices (as percentages of the spot price). Both tables confirm
the validity of the bounds in Equation (22).

We conclude that the window defined by the bounds, when the maturity is 1 month, is narrower
than the one obtained with a maturity of 3 months. In both cases the maximum width of the window
is for options at the money (30.56 monetary units for 1 month and 70.05 for 3 months). Moreover,
around the spot price the upper bound is closer to the option price than the lower bound. This fact can
be observed clearly in Figure 1 that plots the option prices (solid line) and their corresponding lower
and upper bounds (dotted and dashed lines, respectively) for several strike prices with maturities of
1, 3, 6 and 12 months. Note that, the higher the maturity the wider the window but, in all cases the
behavior of the upper bound fits the option price better than the lower bound.

Finally, Table 3 shows the differences, absolute and relative, between each bound and the freight
option price for different values of the strike price, and with a maturity of 3 months. The last row
provides the mean of the differences presented in the previous rows. As we can see, when the option
is out of the money, the differences in both bounds are higher than when the option is in the money.
In fact, these differences reach a maximum when the option is at the money. If we compare the mean
of the differences, we observe that the upper bound is much more accurate than the lower bound.
Therefore, in this case the upper bound is a good estimation of the option price.

Table 1. European freight call option prices with a maturity of 1 month, for several strikes and their
corresponding lower and upper bounds.

Strike LB Option Price UB

70% 310.45 310.44 310.45
75% 258.74 258.73 258.76
80% 207.03 207.03 207.19
85% 155.32 155.42 156.20
90% 103.61 104.86 107.22
95% 51.90 59.63 63.50
100% 0.18 26.68 30.74
105% 0 8.90 12.92
110% 0 2.28 5.05
115% 0 0.42 1.85
120% 0 0.06 0.63
125% 0 0.01 0.21
130% 0 0 0.06
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Table 2. European freight call option prices with a maturity of 3 months, for several strikes and their
corresponding lower and upper bounds.

Strike LB Option Price UB

70% 310.90 311.64 311.93
75% 259.23 261.69 262.19
80% 207.56 213.70 214.69
85% 155.83 169.37 170.73
90% 104.22 129.67 131.58
95% 52.56 95.78 98.19
100% 0.89 68.69 70.94
105% 0 47.48 49.69
110% 0 31.66 33.79
115% 0 20.94 22.36
120% 0 12.87 14.43
125% 0 8.11 9.10
130% 0 4.86 5.63

Figure 1. The lower and upper bounds and the option prices according to the strike prices. Maturities:
1, 3, 6 and 12 months.
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Table 3. Absolute and relative differences between the freight call option prices with a maturity of 3
months and their lower and upper bounds, for several strike prices.

Strike Price-LB UB-Price (Price-LB)/Price (UB-Price)/Price

70% 0.7437 0.2871 0.0024 0.0009
75% 2.4605 0.4989 0.0094 0.0019
80% 6.1367 0.9898 0.0287 0.0046
85% 13.4723 1.3604 0.0795 0.0080
90% 25.4416 1.9107 0.1962 0.0147
95% 43.2186 2.4072 0.4512 0.0251

100% 67.7966 2.2578 0.9871 0.0329
105% 47.4780 2.2100 1.0000 0.0465
110% 31.6570 2.1323 1.0000 0.0673
115% 20.9388 1.4180 1.0000 0.0677
120% 12.8660 1.5607 1.0000 0.1213
125% 8.1064 0.9952 1.0000 0.1228
130% 4.8566 0.7709 1.0000 0.1587

Mean 21.9364 1.4461 0.5965 0.0517

6. Discussion and Conclusions

The freight market is a relatively new market but a very important one nowadays. Therefore,
more scientific research is necessary in this area. In the freight market, in order to avoid price
manipulations by large participants, setting is against the average value of a freight index. As a
consequence, freight derivatives have, in general, average-style payoffs which makes them more
difficult to price.

In the freight markets literature, we can find few models and methods to price this kind of
derivatives. More precisely, to this end, it is usual to consider very specific parametric models.
Here we propose new strategies that open a path to price these freight derivatives with general models,
which will facilitate its application in the market by practitioners.

The contribution of this paper is twofold. On the one hand, we prove that the freight option price
verifies PDEs with three independent state variables: the spot rate, its delay and the average of the spot
rate in the settlement period. This result is notable because it offers a new approach to deal with the
freight option valuation problem. Moreover, it opens the door to apply numerical methods for pricing
freight options. On the other hand, we find and prove some lower and upper bounds for freight
options which allow us to approximate its price. Finally, as an empirical application, we calculate these
bounds using the Baltic Dry Index, issued by the Baltic Exchange in London, for freight options with
different maturities. In such a case, we observe that the upper bound is close to the option price and
then, it could be used as approximation to the price, especially for options in the money.
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Abstract: This paper is concerned with the stability of an age-structured susceptible–exposed–
infective–recovered–susceptible (SEIRS) model with time delay. Firstly, the traveling wave solution
of system can be obtained by using the method of characteristic. The existence and uniqueness
of the continuous traveling wave solution is investigated under some hypotheses. Moreover, the
age-structured SEIRS system is reduced to the nonlinear autonomous system of delay ODE using
some insignificant simplifications. It is studied that the dimensionless indexes for the existence of
one disease-free equilibrium point and one endemic equilibrium point of the model. Furthermore,
the local stability for the disease-free equilibrium point and the endemic equilibrium point of the
infection-induced disease model is established. Finally, some numerical simulations were carried out
to illustrate our theoretical results.

Keywords: SEIRS model; age structure; time delay; traveling wave solution; local asymptotic stability;
Hopf bifurcation

1. Introduction

In recent years, the study of epidemiology has been a vital problem in ecology. The research
of population dynamics has developed rapidly, and many mathematical models have been used to
analyze various infectious diseases. Many results have been established in the stability analysis of
different epidemic models. The first susceptible–infective–recovered (SIR) epidemic model about
disease transmission was established by Kermack and McKendrick in 1927 [1]. Since then, the
population dynamics of infectious diseases have attracted the attention of scientists. In 2012, the
field of mathematical biology was expanded, particularly in the context of the spread of infectious
diseases by Fred Brauer et al. [2]. Nowadays, there are some research work devoted to study the
stability of steady states of the SIR, SIRS, SEIR, etc. models [3–7]. It is well known, in the spread of
infectious diseases, some infective individuals of population are immune after being recovered (e.g.,
measles, smallpox, mumps, and others). Meanwhile, some recovered individuals have no immunity
(e.g., AIDS, hyperthyroidism, lupus erythematosus, and others), who will return to the susceptible
population and continue to be infected. In fact, the probability of becoming infected is different
among different individuals, which may depend on the type of infectious diseases and the status of
individuals. Therefore, it is necessary to discuss the SEIRS model, which can more clearly describe the
spread of infectious diseases in real life.

Time delay is ubiquitous and can be applied in many epidemiology related studies [8,9]. For
example, measles has an incubation period of 8–13 days and the incubation period of canine madness
is a few months or several years after infection. Sharma et al. [10] developed a five compartmental
infection model to describe the spread of avian influenza A (H7N9) virus with two discrete time delays.
In addition, Xu et al. [11] analyzed the stability of a SIRS model with time delay. Similarly, Shu [12] and
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De la Sena [13] discussed the stability of the SEIR epidemic models with distributed delay respectively.
Actually, many authors, such as Cooke [14], Gao [15] and Wang [16], have studied various SEIRS
models with time delay.

Besides, age structure is also an important consideration in infectious diseases modeling such
as rubella, poliomyelitis, and pertussis, which are transmitted only among children, and venereal
diseases, which are transmitted only among adults. Besides, tuberculosis virus carriers in the early
incubation period have a higher risk of becoming infective individuals than ones in the late incubation
period [17]. Age-structured models have been applied in the epidemic dynamics for decades. In 1986,
the dynamics of structured populations was discussed by Metz et al. [18]. Then, the mathematical
theory of the age-structured population dynamics was proposed by Iannelli [19]. Afterwards, more
and more epidemic models with age structure were studied in [20–28]. Recently, a new age-structured
malaria model incorporating the age of latent period and the age of prevention period was formulated
by Guo et al. [29]. A new SIRS epidemic model with relapse and infection age on a scale-free network
was introduced Huo et al. [30]. However, as far as we can tell, there have been no results on an
age-structured SEIRS model with time delay.

The main aim of this paper is to study the stability of an age-structured SEIRS model with time
delay. The well-known method of characteristics [25–28] for first-order hyperbolic equations is used to
solve this epidemic model. The explicit traveling wave solution is calculated at the preceding moment
of time and is described in integral form. Under some hypotheses, the existence and uniqueness of the
continuous traveling wave solution of the age-structured SEIRS model is investigated. Moreover, an
age-structured SEIRS model with time delay is reduced to the nonlinear ordinary differential equation
under some insignificant simplifications. After that, the dimensionless indexes are derived for the
existence of the disease-free equilibrium point and the endemic equilibrium point. The local asymptotic
stability of the disease-free equilibrium point is studied. By using Hurwitz’s criterion and Descartes’
rule of signs, the local asymptotic stability of the endemic equilibrium point of system is obtained.

The rest of the paper is organized as follows. In Section 2, an age-structured SEIRS model with
time delay is proposed. In Section 3, the traveling wave solution is obtained and some sufficient
conditions are established to guarantee the existence and uniqueness of the solution. In Section 4, the
stability and Hopf bifurcation analysis of the proposed model are discussed. In Section 5, numerical
simulations are provided to illustrate the effectiveness of our main results. Finally, some conclusions
are given in Section 6.

2. An Age-Structured SEIRS Model with Time Delay

Motivated by the referred works [28], we discuss two age stages of each subpopulation of
an age-structured SEIRS model with time delay in this paper, which include immature stage and
mature stage. In the immature stage, individuals can be born, grow up, die, or survive until the
maximum age a1, but, in this case, the individuals are not proliferate until the maximum age a1.
The age a1 is considered to be the maximum age in the immature stage and it is also considered
to be the initial age in the mature stage. In the mature stage, individuals have reached maturity
(a > a1) and can grow up, proliferate, die, or survive to the maximum age A. Here, we consider
susceptible, exposed, infective, and recovered individuals of two age stages in an age-structured SEIRS
model. Let S(a, t), E(a, t), I(a, t), and R(a, t) be the distribution densities of susceptible, exposed,
infective ,and recovered individuals of age x at time t, and they take place in the domain Ω =

{(a, t) : 0 ≤ a ≤ A, 0 ≤ t ≤ T}. The integrals Ns(t) =
∫ A

0 S(a, t)da, Ne(t) =
∫ A

0 E(a, t)da, Ni(t) =∫ A
0 I(a, t)da, and Nr(t) =

∫ A
0 R(a, t)da are considered as the number of susceptible, exposed, infective

and recovered individuals, respectively. The total population N(t) is: N(t) = Ns(t) + Ne(t) + Ni(t) +
Nr(t). What needs to be added is that S(a, t), E(a, t), I(a, t), and R(a, t) should belong to L1(Ω) because
we assume that the initial total population is limited. Then, the following differential equations with
time delay are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t

+
∂S
∂a

= −
(
α̂1(a, t) + σθ̂1(a, t)

)
S(a, t)−

(
γ1(a, t − τ)

∫ A

0
β(a, a′, t − τ)I(a′, t − τ)da′

)
S(a, t)

+ ρ(a, t)R(a, t), (a, t) ∈ Ω,

∂E
∂t

+
∂E
∂a

= −
(
α̂2(a, t) +σθ̂2(a, t)

)
E(a, t)+

(
γ1(a, t − τ)

∫ A

0
β(a, a′, t − τ)I(a′, t − τ)da′

)
S(a, t)

− γ2(a, t)E(a, t), (a, t) ∈ Ω,

∂I
∂t

+
∂I
∂a

= −
(
α̂3(a, t) + σθ̂3(a, t)

)
I(a, t) + γ2(a, t)E(a, t)− γ3(a, t)I(a, t), (a, t) ∈ Ω,

∂R
∂t

+
∂R
∂a

= −
(
α̂4(a, t) + σθ̂4(a, t)

)
R(a, t) + γ3(a, t)I(a, t)− ρ(a, t)R(a, t), (a, t) ∈ Ω,

(1)

with initial conditions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(a, 0) = S0(a), a ∈ [0, A],

E(a, 0) = E0(a), a ∈ [0, A],

I(a, t) = I0(a, t), a ∈ [0, A], t ∈ [−τ, 0],

R(a, 0) = 0, x ∈ [0, A],

(2)

and boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(0, t) =
∫ A

a1

(
μ1θ1(a, t)S(a, t) + μ2θ2(a, t) (1−p(a, t)) E(a, t) + μ3θ3(a, t) (1 − q(a, t)) I(a, t)

+ μ4θ4(a, t)R(a, t)
)

da, t ∈ (0, T),

E(0, t) = μ2

∫ A

a1

p(a, t)θ2(a, t)E(a, t)da, t ∈ (0, T),

I(0, t) = μ3

∫ A

a1

q(a, t)θ3(a, t)I(a, t)da, t ∈ (0, T),

R(0, t) = 0, t ∈ (0, T),

(3)

where θ̂i(a, t)(i = 1, 2, 3, 4) denote fertility rates of females of each subpopulation of age a; θ̂i(a, t) =
θi(a, t), if a ∈ [a1, A]; θ̂i(a, t) = 0, if a /∈ [a1, A]; α̂i(a, t) are natural death rates of each subpopulation
of age a; σ is the provided parameter: σ = 1 if the individuals die when they produce and σ =

0 if the individuals continue to survive when they produce; γ1(a, t) is a transmission coefficient
which describes the varying probability of infectiousness and it is related to a great many social,
environmental, and epidemiological factors; β(a, a′, t) is the contact rate between infected population
(age a′) and susceptible population (age a) per unit time; τ (τ > 0) is a fixed incubation period of
infection; γ2(a, t) is the conversion rate from exposed population to infected population of age a;
γ3(a, t) is the recovery rate of age a; ρ(a, t) is the conversion rate from recovered population losing
immunity to the susceptible population of age a; μi(i = 1, 2, 3, 4) are reproductive rates of each
subpopulation in the proliferating stage; p(a, t) is part of exposed individuals which procreate new
exposed individuals of age a; and, similarly, q(a, t) is part of infective individuals which procreate new
infective individuals of age a.

3. Traveling Wave Solution

In this section, we mainly use the method of characteristics [2,18,25–28] for first-order hyperbolic
partial differential equations (Equation (1)). Then, the system in Equation (1) is reduced to nonlinear
delayed integro-differential equations along the characteristics curve a − t = constant [25,26]. Let
u = a − t, the following system with time delay is obtained:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = −
(
α̂1(u + t, t) + σθ̂1(u + t, t)

)
S(u + t, t)−

(
γ1(u + t, t − τ)

∫ A

0
β(a, a′, t − τ)I(a′, t − τ)da′

)
× S(u + t, t) + ρ(u + t, t)R(u + t, t),

Et = −
(
α̂2(u + t, t) + σθ̂2(u + t, t)

)
E(u + t, t) +

(
γ1(u + t, t − τ)

∫ A

0
β(a, a′, t − τ)I(a′, t − τ)da′

)
× S(u + t, t)− γ2(u + t, t)E(u + t, t),

It = −
(
α̂3(u + t, t) + σθ̂3(u + t, t)

)
I(u + t, t) + γ2(u + t, t)E(u + t, t)− γ3(u + t, t)I(u + t, t),

Rt = −
(
α̂4(u + t, t) + σθ̂4(u + t, t)

)
R(u + t, t) + γ3(u + t, t)I(u + t, t)− ρ(u + t, t)R(u + t, t),

(4)

with initial functions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(u, 0) = S0(u),

E(u, 0) = E0(u),

I(u + t, t) = I0(u + t, t), t ∈ [−τ, 0],

R(u, 0) = R0(u) = 0.

(5)

In general, we divide time interval [0, T] into K intervals [tk−1, tk], where k = 1, ..., K, t0 = 0,
tK = T, tk = kA. Then, Ω can be grouped into two sets:

Ω(1)
k = {(a, t)|t ∈ [(k − 1)A, (a + (k − 1)A)], a ∈ [0, A]} , (6)

Ω(2)
k = {(a, t)|t ∈ [(a + (k − 1)A), kA], a ∈ [0, A]} , (7)

Ω = ∪K
k=1(Ω

(1)
k ∪ Ω(2)

k ). (8)

We also need to define an auxiliary set for k = 1, ..., K:

Ω̄(k) =
{
[−u(k)

n , −u(k)
n+1] | u(k)

n = na1 + (k − 1)A, n = 1, ..., N − 1, u(k)
N = kA

}
, (9)

where N = [ A
a1
] + 1, i f A

a1
− [ A

a1
] > 0; N = A

a1
, i f A

a1
− [ A

a1
] > 0. [x] denotes a whole part of real number

x. The following hypotheses are given:
(H1): S0(a), E0(a) and I0(a, 0) are non-negative and continuous when a ∈ [ 0, A]; when a → A − 0,

S0(A) = 0, E0(A) = 0 and I0(A, 0) = 0.
(H2): α̂i(a, t), θi(a, t), γi(a, t), β(a, t), ρ(a, t), p(a, t), q(a, t) ∈ C(Ω).
(H3): α̂i(a, t) > 0, θi(a, t) ≥ 0, γi(a, t) > 0, β(a, t) ≥ 0. In addition, 0 <

∫ A
a1

θi(a, t)da ≤ 1,

0 <
∫ A

0 β(a, t)dx ≤ 1, 0 ≤ ρ(a, t) ≤ 1, 0 ≤ p(a, t) ≤ 1, 0 ≤ q(a, t) ≤ 1.
(H4): zero-order compatibility conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0(0) =
∫ A

a1

(
μ1θ1(a, 0)S0(a) +μ2θ2(a, 0)

(
1−p(a, 0)

)
E0(a) +μ3θ3(a, 0)

(
1−q(a, 0)

)
I0(a, 0)

)
da,

E0(0) = μ2

∫ A

a1

θ2(a, 0)p(a, 0)E0(a)da,

I0(0, 0) = μ3

∫ A

a1

θ3(a, 0)q(a, 0)I0(a, 0)da,

R0(0) = 0.

(10)

For convenience, we assume Hypotheses (H1)–(H4) are satisfied.
Then, we solve the system in Equation (4) by using the well-known steps method [8,9]. For the

first step h = 1, i.e., for the first time interval t ∈ [0, τ], the solution to the initial value problem in
Equation (4) can be obtained according to the known values of function I(x, t − τ). Repeating the
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pervious step for h = 2, 3, 4, ..., H, for the time interval t ∈ [(h − 1)τ, hτ], we can obtain the solution to
the initial value problem in Equation (4) for the whole time interval t ∈ [0, T]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(u, t) = S0(u)W1(u, 0, t, τ) +
∫ t

0
W1(u, φ, t, τ)ρ(u + φ, φ)R(u + φ, φ)dφ, t ∈ [0, τ],

Sh(u, t) = Sh−1(u)W1(u, (h − 1)τ, t, τ) +
∫ t

(h−1)τ
W1(u, φ, t, τ)ρ(u + φ, φ)R(u + φ, φ)dφ

= S0(u)W1(v, 0, t, τ) +
∫ t

0
W1(u, φ, t, τ)ρ(v + φ, φ)R(u + φ, φ)dφ, t ∈ [(h − 1)τ, hτ],

W1(u, t0, t, τ) = exp
(
−

∫ t

t0

(
α1(u + φ, φ) + γ1(u + φ, φ − τ)D(u + φ, φ − τ)

)
dφ

)
,

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1(u, t) = E0(u)W2(u, 0, t) +
∫ t

0
W2(u, φ, t)γ1(u + φ, φ − τ)S(u + φ, φ)D(u + φ, φ − τ)dφ,

t ∈ [0, τ],

Eh(u, t) = Eh−1(u)W2(u, (h − 1)τ, t) +
∫ t

(h−1)τ
W2(u, φ, t)γ1(u + φ, φ − τ)S(u + φ, φ)

× D(u + φ, φ − τ)dφ = E0(u)W2(u, 0, t) +
∫ t

0
W2(u, φ, t)γ1(u + φ, φ − τ)

× S(u + φ, φ)D(u + φ, φ − τ)dφ, t ∈ [(h − 1)τ, hτ],

W2(u, t0, t) = exp
(
−

∫ t

t0

(
α2(u + φ, φ)+γ2(u + φ, φ)

)
dφ

)
,

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(u, t) = I0(u, 0)W3(u, 0, t) +
∫ t

0
W3(u, φ, t)γ2(u + φ, φ − τ)E(u + φ, φ)dφ, t ∈ [0, τ],

Ih(u, t) = Ih−1(u, (h − 1)τ)W3(u, (h − 1)τ, t) +
∫ t

(h−1)τ
W3(u, φ, t)γ2(u + φ, φ − τ)

× E(u + φ, φ)dφ = I0(u, 0)W3(u, 0, t) +
∫ t

0
W3(u, φ, t)γ2(u + φ, φ − τ)

× E(u + φ, φ)dφ, t ∈ [(h − 1)τ, hτ],

W3(u, t0, t)= exp
(
−

∫ t

t0

(
α3(u + φ, φ)+γ3(u + φ, φ)

)
dφ

)
,

(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(u, t) =
∫ t

0
W4(u, φ, t)γ3(u + φ, φ − τ)I(u + φ, φ)dφ, t ∈ [0, τ]

Rh(u, t) = Rh−1(u, (h − 1)τ)W4(u, (h − 1)τ), t) +
∫ t

(h−1)τ
W4(u, φ, t)γ3(u + φ, φ − τ)

× I(u + φ, φ)dφ =
∫ t

0
W4(u, φ, t)γ3(u + φ, φ − τ)I(u + φ, φ)dφ, t ∈ [(h − 1)τ, hτ],

W4(u, t0, t) = exp
(
−

∫ t

t0

(
α4(u + φ, φ) + ρ(u + φ, φ)

)
dφ

)
,

(14)

where αi(a, t) = α̂i(a, t) + σθ̂i(a, t), i = 1, 2, 3, 4, D(u + φ, φ − τ) =
∫ A

0 β(u + φ, η, φ − τ)I(η, φ − τ)dη.
The exact solution to Equations (11)–(14) of the system in Equation (4) can be expressed in terms

of the original variables. Let k = 1 and u = a − t; we have the solution of the system in Equation (1)
in the sets Ω(1)

k and Ω(2)
k . Repeating this process for k = 2, 3, ...K, the form of explicit traveling wave

solution, i.e., numerical solution of the system in Equation (1), can be obtained in all domains Ω(1)
k and

Ω(2)
k for the values of k = 1, ..., K:

171



Mathematics 2020, 8, 455

(S(a, t), E(a, t), I(a, t), R(a, t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(k−1)
h (u, t) = S(k−1)

h (a − t, t),

E(k−1)
h (u, t) = E(k−1)

h (a − t, t),

I(k−1)
h (u, t) = I(k−1)

h (a − t, t),

R(k−1)
h (u, t) = R(k−1)

h (a − t, t),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
i f (a, t) ∈ Ω(1)

k ,

S(k)
h (u, t) = S(k)

h (a − t, t),

E(k)
h (u, t) = E(k)

h (a − t, t),

I(k)h (u, t) = I(k)h (a − t, t),

R(k)
h (u, t) = R(k)

h (a − t, t),

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
i f (a, t) ∈ Ω(2)

k ,

(15)

⎧⎪⎪⎨⎪⎪⎩
S(0)(u, t) = S0(u)W1(u, 0, t, τ) +

∫ t

0
W1(u, φ, t, τ)ρ(u + φ, φ)R(0)(u + φ, φ)dφ,

S(k)(u, t) = F(k)(u)W1(u, −u, t, τ) +
∫ t

−u
W1(u, φ, t, τ)ρ(u + φ, φ)R(k)(u + φ, φ)dφ,

(16)

⎧⎪⎨⎪⎩
E(0)(u, t) = E0(u)W2(u, 0, t) +

∫ t

0
W2(u, φ, t)γ1(u + φ, φ − τ)S(0)(u + φ, φ)D(u + φ, φ − τ)dφ,

E(k)(u, t) = G(k)(u)W2(u, −u, t)+
∫ t

−u
W2(u, φ, t)γ1(u + φ, φ −τ)S(k)(u + φ, φ)D(u + φ, φ−τ)dφ,

(17)

⎧⎪⎪⎨⎪⎪⎩
I(0)(u, t) = I0(u, 0)W3(u, 0, t) +

∫ t

0
W3(u, φ, t)γ2(u + φ, φ − τ)E(0)(u + φ, φ)dφ,

I(k)(u, t) = Q(k)(u)W3(u, −u, t) +
∫ t

−u
W3(u, φ, t)γ2(u + φ, φ − τ)E(k)(u + φ, φ)dφ,

(18)

⎧⎪⎪⎨⎪⎪⎩
R(0)(u, t) =

∫ t

0
W4(u, φ, t)γ3(u + φ, φ − τ)I(0)(u + φ, φ)dφ,

R(k)(u, t) =
∫ t

−u
W4(u, φ, t)γ3(u + φ, φ − τ)I(k)(u + φ, φ)dφ,

(19)

where W1(u, t0, t, τ), W2(u, t0, t), W3(u, t0, t), and W4(u, t0, t) are shown in Equations (11)–(14),
respectively. F(k)(u), G(k)(u), and Q(k)(u) are given by defining functions F(k)

n (u), G(k)
n (u), Q(k)

n (u),
S(k)

n (u), E(k)
n (u), I(k)n (u), and R(k)

n (u), k = 1, ..., K:

(F(k)(u)), G(k)(u), Q(k)(u)) = (F(k)
n (u)), G(k)

n (u), Q(k)
n (u)), u ∈ [−u(k)

n , −u(k)
n−1], n = 1, ..., Nτ ,

thus we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(k)
n (u, t) = F(k)

n (u)W1(u, −u, t, τ) +
∫ t

−u
W1(u, φ, t, τ)ρ(u + φ, φ)R(k)

n (u + φ, φ)dφ,

E(k)
n (u, t) = G(k)

n (u)W2(u, −u, t)+
∫ t

−u
W2(u, φ, t)γ1(u + φ, φ −τ)S(k)

n (u + φ, φ)D(u + φ, φ−τ)dφ,

I(k)n (u, t) = Q(k)
n (u)W3(u, −u, t) +

∫ t

−u
W3(u, φ, t)γ2(u + φ, φ − τ)E(k)

n (u + φ, φ)dφ,

R(k)
n (u, t) =

∫ t

−u
W4(u, φ, t)γ3(u + φ, φ − τ)I(k)n (u + φ, φ)dφ,
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where n = 1, ..., Nτ − 1 and functions F(k)
n (u), G(k)

n (u), and Q(k)
n (u) can be defined according to the

recurrent algorithm as follows:

F(k)
1 (v) =

∫ A+v

a1+v

[
μ1θ1(u − v, −v)S(k−1)(u, −v) + μ2θ2(u − v, −v) (1 − p(u − v, −v)) E(k−1)(u, −v)

+ μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k−1)(u, −v) + μ4θ4(u − v, −v)R(k−1)(u, −v)
]
du,

v ∈ [−u(k)
1 , −u(k)

0 ],

G(k)
1 (v) = μ2

∫ A+v

a1+v
p(u − v, −v)θ2(u − v, −u)E(k−1)(u, −v)du, v ∈ [−u(k)

1 , −u(k)
0 ],

Q(k)
1 (v) = μ3

∫ A+v

a1+v
q(u − v, −v)θ3(u − v, −u)I(k−1)(u, −v)du, v ∈ [−u(k)

1 , −u(k)
0 ],

F(k)
2 (v) =

∫ −u(k)
0

a1+v

[
μ1θ1(u − v, −v)S(k)(u, −v) + μ2θ2(u − v, −v) (1 − p(u − v, −v)) E(k)(u, −v)

+ μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k)(u, −v) + μ4θ4(u − v, −v)R(k)(u, −v)
]
du

+
∫ A+v

−u(k)
0

[
μ1θ1(u − v, −v)S(k−1)(u, −v) + μ2θ2(u − v, −v) (1 − p(u − v, −v))

× E(k−1)(u, −v) + μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k−1)(u, −v) + μ4θ4(u − v, −v)

× R(k−1)(u, −v)
]
du, v ∈ [−u(k)

2 , −u(k)
1 ],

G(k)
2 (v) = μ2

∫ −u(k)
0

a1+v
p(u − v, −v)θ2(u − v, −u)E(k)(u, −v)du + μ2

∫ A+v

−u(k)
0

p(u − v, −v)

× θ2(u − v, −u)E(k−1)(u, −v)du, v ∈ [−u(k)
2 , −u(k)

1 ],

Q(k)
2 (v) = μ3

∫ −u(k)
0

a1+v
q(u − v, −v)θ3(u − v, −u)I(k)(u, −v)du + μ3

∫ A+v

−u(k)
0

q(u − v, −v)

× θ3(u − v, −u)I(k−1)(u, −v)du, v ∈ [−u(k)
2 , −u(k)

1 ],

F(k)
n (v) =

∫ −u(k)
n−2

a1+v

[
μ1θ1(u − v, −v)S(k)(u, −v) + μ2θ2(u − v, −v) (1 − p(u − v, −v)) E(k)(u, −v)

+ μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k)(u, −v) + μ4θ4(u − v, −v)R(k)(u, −v)
]
du

+
n−3

∑
i=0

∫ −u(k)
i

−u(k)
i+1

[
μ1θ1(u − v, −v)S(k)

i+1(u, −v) + μ2θ2(u − v, −v) (1 − p(u − v, −v))

× E(k)
i+1(u, −v) + μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k)i+1(u, −v) + μ4θ4(u − v, −v)

+ R(k)
i+1(u, −v)

]
du +

∫ A+v

−u(k)
0

[
μ1θ1(u − v, −v)S(k−1)(u, −v) + μ2θ2(u − v, −v)

× (1 − p(u − v, −v)) E(k−1)(u, −v) + μ3θ3(u − v, −v) (1 − q(u − v, −v)) I(k−1)(u, −v)

+ μ4θ4(u − v, −v)R(k−1)(u, −v)
]
du, v ∈ [−u(k)

n , −u(k)
n−1], n = 3, ..., Nτ ,

G(k)
n (v) = μ2

∫ −u(k)
n−2

a1+v
p(u − v, −v)θ2(u − v, −u)E(k)

n−1(u, −v)du + μ2

n−3

∑
i=0

∫ −u(k)
i

−u(k)
i+1

p(u − v, −v)

× θ2(u − v, −u)E(k)
i+1(u, −v)du + μ2

∫ A+v

−u(k)
0

p(u − v, −v)θ2(u − v, −u)E(k−1)(u, −v)du,

v ∈ [−u(k)
n , −u(k)

n−1], n = 3, ..., Nτ ,

173



Mathematics 2020, 8, 455

Q(k)
n (v) = μ3

∫ −u(k)
n−2

a1+v
q(u − v, −v)θ3(u − v, −u)I(k)n−1(u, −v)du + μ3

n−3

∑
i=0

∫ −u(k)
i

−u(k)
i+1

q(u − v, −v)

× θ3(u − v, −u)I(k)i+1(u, −v)du + μ3

∫ A+v

−u(k)
0

q(u − v, −v)θ3(u − v, −u)I(k−1)(u, −v)du,

v ∈ [−u(k)
n , −u(k)

n−1], n = 3, ..., Nτ ,

F(k)
1 (u) =

∫ A

a1

[
μ1θ1(v, −u)S(k−1)(v, −u) + μ2θ2(v, −u) (1 − p(v, −u)) E(k−1)(v, −u)

+ μ3θ3(v, −u) (1 − q(v, −u)) I(k−1)(v, −u) + μ4θ4(v, −u)R(k−1)(v, −u)
]
dv,

G(k)(u) = μ2

∫ A

a1

p(v, −u)θ2(v, −u)E(k−1)(v, −u)dv,

Q(k)(u) = μ3

∫ A

a1

q(v, −u)θ3(v, −u)I(k−1)(v, −u)dv.

Theorem 1. If Assumptions (H1)–(H4) are satisfied, there exists a unique continuous traveling wave solution
to Equations (15)–(19) of the system in Equation (1).

Proof. By analogy with [28], if S0(a), E0(a), I0(a, 0), and R0(a) satisfy compatibility conditions (i.e.,
Hypothesis H4), then two parts of the traveling wave in Equation (15) can be combined continuously.
If the parameters of the system in Equation (1) fulfill Hypotheses (H1)–(H3), there exists a unique
continuous traveling wave solution to Equations (15)–(19) of the system in Equation (1). The method is
very similar, thus we omit it.

4. Stability Analysis of System

Consider the nonlinear autonomous system in Equation (1) where the following parameters
are constants: θi(a, t) = θi0(i = 1, 2, 3, 4), αi(a, t) = αi0 = αi + σθi0(i = 1, 2, 3, 4), γ1(a, t) = γ10,
γ2(a, t) = γ20, γ3(a, t) = γ30, β(a, a′, t) = β0, p(a, t) = p0, q(a, t) = q0, and ρ(a, t) = ρ0, where
αi0, θi0, γi0, β0, p0, q0, and ρ0 are positive constants. In this paper, a partial differential equation
(Equation (1)) with the initial-boundary values in Equations (2) and (3) reduced to a nonlinear ordinary
differential equation. Take the maturity age a1 → 0, which is not an essential simplification. Integrating
Equation (1) in regard to age a from 0 to A, and using the real conditions S(A, t) = 0, E(A, t) = 0,
I(A, t) = 0 and R(A, t) = 0, the initial value problem of the nonlinear ordinary differential equation
autonomous system that describes the population dynamics of the number of population Ns(t), Ne(t),
Ni(t), and Nr(t) is:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

N′
s(t) = −(α10 − μ1θ10)Ns(t)− γ10β0Ns(t)Ni(t − τ) + μ2θ20(1 − p0)Ne(t)

+ μ3θ30(1 − q0)Ni(t) + (μ4θ40 + ρ0)Nr(t),

N′
e(t) = −(α20 + γ20 − μ2θ20 p0)Ne(t) + γ10β0Ns(t)Ni(t − τ),

N′
i (t) = −(α30 + γ30 − μ3θ30q0)Ni(t) + γ20Ne(t),

N′
r(t) = −(α40 + ρ0)Nr(t) + γ30Ni(t),

(20)

with initial functions ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ns(0) =
∫ A

0
S0(a)da,

Ne(t) =
∫ A

0
E0(a, t)da, t ∈ [−τ, 0],

Ni(0) =
∫ A

0
I0(a)da,

Nr(0) = 0.

(21)
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The basic reproduction number [31] is defined as

R0 =
Nγ20γ10β0

(α20 + γ20 − μ2θ20 p0)(α30 + γ30 − μ3θ30q0)
. (22)

According to the analysis of [28], if R0 > 1, it can lead to the outbreak of infectious diseases.
Hence, the following theorem is obtained.

Theorem 2. If γ10 = 0, the system in Equation (20) has only a disease-free equilibrium point H0=(0, 0, 0, 0); if
R0 > 1 and the parameters of the system in Equation (20) satisfy R1 > 1, R2 < 1, R3 < 1, and R4 < 1, where

R1 = μ1θ10
α10

, R2 = μ2θ20 p0
α20+γ20

, R3 = μ3θ30q0
α30+γ30

, and R4 = μ3θ30(1−q0)γ20+γ20γ30(μ4θ40+ρ0)(α40+ρ0)
−1

(α20+γ20−μ2θ20)(α30+γ30−μ3θ30q0)
. The system in

Equation (20) has only a positive endemic equilibrium point H∗ = (N∗
s , N∗

e , N∗
i , N∗

r ), where N∗
s , N∗

e , N∗
i , and

N∗
r are given in the proof.

Proof. When γ10 = 0, that is no infectious diseases, there exists one disease-free equilibrium point
H0=(0, 0, 0, 0). When the fertility rate and the death rate of susceptible population are satisfied by

R1 =
μ1θ10

α10
> 1, (23)

where R1 is a dimensionless index for the existence of the disease-free equilibrium point. It can be
seen that R1 > 1 presents that death rate of susceptible population is less than their reproductive rate.
We can take it further into consideration with the dynamic behavior of susceptible population. The
endemic equilibrium point H∗= (N∗

s , N∗
e , N∗

i , N∗
r ) is the solution of nonlinear system

− (α10 − μ1θ10)N∗
s −γ10β0N∗

s N∗
i + μ2θ20(1 − p0)N∗

e + μ3θ30(1 − q0)Ni(t) + (μ4θ40 + ρ0)N∗
r = 0, (24)

− (α20 + γ20 − μ2θ20 p0)N∗
e + γ10β0N∗

s N∗
i = 0, (25)

− (α30 + γ30 − μ3θ30q0)N∗
i + γ20N∗

e = 0, (26)

− (α40 + ρ0)N∗
r + γ30N∗

i = 0. (27)

On the basis of the parameters of the system in Equation (1) satisfying Hypothesis (H1)–(H3), the
endemic equilibrium point N∗

s > 0, N∗
e > 0, N∗

i > 0 and N∗
r > 0 exist if and only if the parameters of

Equations (24)–(27) satisfy

R2 =
μ2θ20 p0

α20 + γ20
< 1, (28)

R3 =
μ3θ30q0

α30 + γ30
< 1, (29)

R4 =
μ3θ30(1 − q0)γ20 + γ20γ30(μ4θ40 + ρ0)(α40 + ρ0)

−1

(α20 + γ20 − μ2θ20)(α30 + γ30 − μ3θ30q0)
< 1, (30)

where R2, R3, and R4 are dimensionless indexes for the existence of the endemic equilibrium point H∗.
It can be known that R2 < 1 presents that the death rate and conversion rate of exposed population
outweigh their reproductive rate. The density of exposes cannot increase indefinitely because of
the balance of death rate, conversion rate, and reproductive rate. From the biological point of view,
higher death rate and conversion rate are the consequence of infectious disease. R3 < 1 denotes that
reproductive rate of infected population is less than their death rate and conversion rate. From the
biological point of view, higher death rate and conversion rate in both cases are the fundamental
results of infectious diseases. Let M0 = (α20 + γ20 − μ2θ20)(α30 + γ30 − μ3θ30q0)− μ3θ30(1 − q0)γ20 −
γ20γ30(μ4θ40 + ρ0)(α40 + ρ0)

−1. The inequality R4 < 1 is equivalent to M0 > 0. Then, the endemic
equilibrium point H∗ = (N∗

s , N∗
e , N∗

i , N∗
r ) exists and can be explicitly expressed as
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N∗
s =

(α20 + γ20 − μ2θ20 p0)(α30 +γ30− μ3θ30q0)

γ20γ10β0
, N∗

e =
(α30 + γ30 − μ3θ30q0)

γ20
N∗

i ,

N∗
i =

(μ1θ10 − α10)γ20

M0
N∗

s , N∗
r =

γ30

(α40 + ρ0)
N∗

i .

First, the local stability of the disease-free equilibrium point H0 is analyzed.

Theorem 3. For all τ ≥ 0, the disease-free equilibrium point H0 = (0, 0, 0, 0) is locally asymptotically stable
if R1 < 1, R2 < 1 and R3 < 1.

Proof. The characteristic equation of the system in Equation (20) for the disease-free equilibrium point
H0 is

(λ + α10 − μ1θ10)(λ + α20 + γ20 − μ2θ20 p0)(λ + α30 + γ30 − μ3θ30q0)(λ + α40 + ρ0) = 0. (31)

Four roots λ1,2,3,4 of Equation (31) are given:

λ1 = μ1θ10 − α10, λ2 = −(α20 + γ20 − μ2θ20 p0), λ3 = −(α30 + γ30 − μ3θ30q0), λ4 = −(α40 + ρ0).

If α10 > μ1θ10(R1 < 1), α20 + γ20 > μ2θ20 p0 (R2 < 1), and α30 + γ30 > μ3θ30q0 (R3 < 1),
characteristic equation in Equation (31) has four real negative roots. Then, the disease-free equilibrium
point H0 = (0, 0, 0, 0) is locally asymptotically stable.

Next, we study the stability of the endemic equilibrium point H∗ by linearizing the nonlinear
autonomous system and calculating characteristic equations. Accordingly, we can obtain polynomial
equations which can analyze the stability of system. After linearization of the system in Equation (20),
we get ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L′
s(t) = −(α10 − μ1θ10)Ls(t)− γ10β0[Ls(t)N∗

i + N∗
s Li(t − τ)] + μ2θ20(1 − p0)Le(t)

+ μ3θ30(1 − q0)Li(t) + (μ4θ40 + ρ0)Lr(t),

L′
e(t) = −(α20 + γ20 − μ2θ20 p0)Le(t) + γ10β0 [Ls(t)N∗

i + N∗
s Li(t − τ)] ,

L′
i(t) = −(α30 + γ30 − μ3θ30q0)Li(t) + γ20Le(t),

L′
r(t) = −(α40 + ρ0)Lr(t) + γ30Li(t).

(32)

Consider the form of the exponential solution of the linearized system in Equation (32) as

Ls(t) = L̃seλτ , Le(t) = L̃eeλτ , Li(t) = L̃ieλτ , Lr(t) = L̃reλτ , (33)

where λ is a parameter. Substituting these solutions into Equation (32), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(λ + α10 − μ1θ10 + γ10β0N∗
i )L̃s + [γ10β0N∗

s e−λτ − μ3θ30(1 − q0)]L̃i − μ2θ20(1 − p0)L̃e

− (μ4θ40 + ρ0)L̃r = 0,

(λ + α20 + γ20 − μ2θ20 p0)L̃e − γ10β0 L̃sN∗
i − γ10β0N∗

s L̃ie−λτ = 0,

(λ + α30 + γ30 − μ3θ30q0)L̃i − γ20 L̃e = 0,

(λ + α40 + ρ0)L̃r − γ30 L̃i = 0.

Denote M1 = μ1θ10 − α10, M2 = α20 + γ20 − μ2θ20, M3 = α40 + ρ0, M4 = α20 + γ20 − μ2θ20 p0 and
M5 = α30 + γ30 − μ3θ30q0. Hence M1 > 0, M2 > 0, M3 > 0, M4 > 0 and M5 > 0. The characteristic
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equation of the system in Equation (32) for the endemic equilibrium point H∗=(N∗
s , N∗

e , N∗
i , N∗

r ) is
given:

λ4 − (λ2 + D1λ − D2)D3e−λτ + D5λ3 + D6λ2 + D7λ = 0, (34)

where D1 = M3 − M1, D2 = M1M3, D3 = M4M5, D4 = M4 + M5, D5 = D1 + D4 + M1D3M−1
0 , D6 =

D1D4 − D2 + D3 + [D4 − μ2θ20(1 − p0) + M3]M1D3M−1
0 , D7 = D1D3 − D2D4 + [(M2 + M5)M3 +

M2M5 − μ3θ30(1 − q0)γ20]M1D3M−1
0 .

Theorem 4. For the system in Equation (20), if D5(D6 − D3)(D7 − D1D3)− D2
5D2D3 − (D7 − D1D3)

2 >

0, the endemic equilibrium point H∗=(N∗
s ,N∗

e ,N∗
i ,N∗

r ) is locally asymptotically stable when τ = 0.

Proof. When τ = 0, the characteristic equation (Equation (34)) becomes

λ4 + D5λ3 + (D6 − D3)λ
2 + (D7 − D1D3)λ + D2D3 = 0. (35)

It is evident that D2 > 0, D3 > 0 and D4 > 0 when N∗
s , N∗

e , N∗
i , N∗

r satisfy the nonnegativity
conditions in Equation (23)–(30). The following equations are also satisfied:

D3M−1
0 − 1 = [μ3θ30(1 − q0)γ20 −γ20γ30(μ4θ40 + ρ0)M−1

3 ]M−1
0 > 0,

D5 = D4 + M1(D3M−1
0 − 1)+ M3 > 0,

D6 − D3 = D2(D3M−1
0 − 1) + M1M5D3M−1

0 + M4[μ3θ30(1 − q0)γ20 +γ20γ30(μ4θ40 + ρ0)M−1
3 ]

> 0,

D7 − D1D3 = M4[μ3θ30(1 − q0)γ20 +γ20γ30(μ4θ40 + ρ0)M−1
3 ]D2M−1

0 + M5D2(D3M−1
0 − 1)

+ M1D3 + γ20γ30(μ4θ40 + ρ0)M−1
3 M1D3M−1

0 > 0,

D2D3 = M1M3M4M5 > 0.

Suppose that

D5(D6 − D3)(D7 − D1D3)− D2
5D2D3 − (D7 − D1D3)

2 > 0, (36)

Then, according to the Routh–Hurwitz criterion, the roots of the characteristic equations of system
are all negative real. Thus, the endemic equilibrium point of the autonomous system in Equation (20)
is asymptotically stable with τ = 0.

Next, the characteristic equation (Equation (34)) with τ > 0 is presented for discussion.

Theorem 5. For the system in Equation (20), if D2
6 − 2D5D7 − D2

3 > 0 and D2
7 − 2D2D2

3 − D2
1D2

3 > 0, the
results can be obtained:

(i) When 0 < τ < τ0, the endemic equilibrium point H∗=(N∗
s , N∗

e , N∗
i , N∗

r ) is locally
asymptotically stable.

(ii) When τ > τ0, the endemic equilibrium point H∗=(N∗
s , N∗

e , N∗
i , N∗

r ) is unstable.
(iii) A Hopf bifurcation occurs at H∗ = (N∗

s , N∗
e , N∗

i , N∗
r ) when τ = τk (k = 0, 1, 2, · · · ).

Proof. When τ > 0, suppose that Equation (34) has a purely imaginary root λ = iω(ω > 0). The
characteristic equation (Equation (34)) converses to the following form:

ω4 − (−ω2 + iD1ω − D2)D3(cos(ωτ)− i sin(ωτ))− iD5ω3 − D6ω2 + iD7ω = 0.
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Separating the real and imaginary parts yields two corresponding equations:

ωD1D3 sin(ωτ)− (ω2D3 + D2D3) cos(ωτ) = ω4 − D6ω2, (37)

(ω2D3 + D2D3) sin(ωτ) + ωD1D3 cos(ωτ) = D7ω − D5ω3. (38)

Thus,

sinωτ =
(ω2D3 + D2D3)(D7ω − D5ω3) + ωD1D3(ω

4 − D6ω2)

(ωD1D3)2 + (ω2D3 + D2D3)2 , (39)

cosωτ =
ωD1D3(D7ω − D5ω3)− (ω4 − D6ω2)(ω2D3 + D2D3)

(ωD1D3)2 + (ω2D3 + D2D3)2 . (40)

Let x = ω2. Squaring Equations (37) and (38) and adding them together, we can get

x4 + (D2
5 − 2D6)x3 + (D2

6 − 2D5D7 − D2
3)x2 + (D2

7 − 2D2D2
3 − D2

1D2
3)x − D2

2D2
3 = 0. (41)

Let l(x) = x4 + (D2
5 − 2D6)x3 + (D2

6 − 2D5D7 − D2
3)x2 + (D2

7 − 2D2D2
3 − D2

1D2
3)x − D2

2D2
3.

According to the previous restrictions in Equation (23)–(30), we can also get

D2
5 − 2D6 = M2

3 + M2
4 + M2

5 + M2
1(D3M−1

0 − 1)2 + 2μ2θ20(1 − p0)M1D3M−1
0 > 0. (42)

Suppose that

D2
6 − 2D5D7 − D2

3 > 0, (43)

D2
7 − 2D2D2

3 − D2
1D2

3 > 0. (44)

In accordance with Descartes’ rule of signs, Equation (41) has only one changed sign. Thus, it
only has one positive root. Let x∗ be the small unique positive root and it always exists. The unknown
parameter ω of Equations (37) and (38) is defined as ±iω0 = ±i

√
x0. Combining with Equations (37)

and (38), the form of time delay τk is gained:

τk =
1

ω0
arcsin(

(ω2
0 D3 + D2D3)(D7ω0 − D5ω3

0) + ω0D1D3(ω
4
0 − D6ω2

0)

(ω0D1D3)2 + (ω2
0 D3 + D2D3)2

+ 2kπ), k = 0, 1, 2, · · · . (45)

Therefore, when τ ∈(0, τ0), all roots of Equation (34) have strictly negative real parts. The endemic
equilibrium point H∗=(N∗

s , N∗
e , N∗

i , N∗
r ) of the system in Equation (20) is locally asymptotically stable.

When τ = τ0, the roots of Equation (34) have strictly negative real parts except for ±iω0. When τ > τ0,
the endemic equilibrium point H∗ = (N∗

s , N∗
e , N∗

i , N∗
r ) of the system in Equation (20) is unstable. Then,

differentiating both sides of Equation (34) with respect to τ, we obtain

(
dλ

dτ
)−1 =

(2λ + D1)D3 − (4λ3 + 3D5λ2 + 2D6λ + D7)eλτ

(λ3 + D1λ2 − D2λ)D3
− τ

λ
. (46)

Further, one leads to

Re
{
(

dλ

dτ
)−1

}
λ=iω0

=
Q1 + Q2 − Q3

ω2
0 [(ω0D1D3)2 + (ω2

0D3 + D2D3)2]
, (47)

where

Q1 = ω2
0D1D3(4ω3

0 − 2D6ω0)sinω0τ0 + ω2
0D1D3(D7 − 3D5ω2

0)cosω0τ0,

Q2 = ω0(ω
2
0D3 + D2D3)(D7 − 3D5ω2

0)sinω0τ0 − ω0(ω
2
0D3 + D2D3)(4ω3

0 − 2D6ω0)cosω0τ0,

Q3 = 2ω2
0D3(ω

2
0D3 + D2D3) + (ω0D1D3)

2.
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Since conditions in Equation (42)–(44) hold, then

sign
{

Re(
dλ

dτ
)
}

τ=τ0
= sign

{
Re(

dλ

dτ
)−1

}
λ=iω0

= sign
{ l′(x0)

(ω0D1D3)2 + (ω2
0 D3 + D2D3)2

}
x0=ω2

0

> 0, (48)

where l′(x0) = 4x3
0 + 3(D2

5 − 2D6)x2
0 + 2(D2

6 − 2D5D7 − D2
3)x0 + (D2

7 − 2D2D2
3 − D2

1D2
3) > 0. Hence,

based on the properties of the Hopf bifurcation discussed in [32], the transversal condition holds and a
Hopf bifurcation occurs at τ = τ0. The proof is complete.

5. Simulation

To affirm the stability analysis above, we numerically simulated the disease-free equilibrium
point H0 and the endemic equilibrium point H∗ of the system in Equation (20). We are more concerned
with the indicators and conditions for outbreaks of “local” population or local asymptotic stability of
equilibrium points. All programs were developed using the software Matlab R2016a (see Program S1).

First, we considered the stability of the disease-free equilibrium point H0 = (0, 0, 0, 0). Let
αi0 = 0.13, i = 1, 2, 3, 4; μ1 = 0.3; μ2 = 0.5; μ3 = 0.5; μ4 = 0.3; θ10 = 0.4; θ20 = 0.1; θ30 = 0.1; θ40 =

0.2; γ10 = 0.1; γ20 = 0.15; γ30 = 0.1; β0 = 0.0023; p0 = 0.1; q0 = 0.15; ρ0 = 0.02; and the initial value
was (Ns(0), Ne(0), Ni(0), Nr(0)) = (1500, 1000, 500, 0). The parameters of the system in Equation (20)
satisfy conditions R1 < 1, R2 < 1, and R3 < 1 and the conditions in Theorem 3 are satisfied in Figure 1.
The disease-free equilibrium point H0 of the system in Equation (20) is locally asymptotically stable.
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N
r

Figure 1. Local asymptotic stability of the disease-free equilibrium point H0 = (0, 0, 0, 0).

Next, we considered the endemic equilibrium point H∗ = (N∗
s , N∗

e , N∗
i , N∗

r ) with τ = 0. Let
αi0 = 0.13, i = 1, 2, 3, 4; μ1 = 0.6; μ2 = 0.5; μ3 = 0.5; μ4 = 0.3; θ10 = 0.4; θ20 = 0.1; θ30 = 0.1; θ40 =

0.2; γ10 = 0.1; γ20 = 0.15; γ30 = 0.1; β0 = 0.0023; p0 = 0.1; q0 = 0.15; ρ0 = 0.02; and the initial value
was (Ns(0), Ne(0), Ni(0), Nr(0)) = (1500, 1000, 500, 0). The parameters of the system in Equation (20)
satisfy the condition in Equation (36). The result is presented in Figure 2, which comes from Theorem
4; the system in Equation (20) has a unique endemic equilibrium point H∗ = (N∗

s , N∗
e , N∗

i , N∗
r )≈

(1723, 1108, 797, 531) and the system in Equation (20) is locally asymptotically stable.
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Figure 2. Local asymptotic stability of the endemic equilibrium point H∗ = (N∗
s , N∗

e , N∗
i , N∗

r ) when
τ = 0.

Similarly, let αi0 = 0.13, i = 1, 2, 3, 4; μ1 = 0.6; μ2 = 0.5; μ3 = 0.5; μ4 = 0.3; θ10 = 0.4; θ20 =

0.1; θ30 = 0.1; θ40 = 0.2; γ10 = 0.1; γ20 = 0.16; γ30 = 0.1; β0 = 0.0023; p0 = 0.1; q0 = 0.15; ρ0 = 0.02;
and the initial value be (Ns(0), Ne(0), Ni(0), Nr(0))=(1500, 1000, 500, 0). In other words, Ns(0) < N∗

s ,
Ne(0) < N∗

e , Ni(0) < N∗
i , and Nr(0) < N∗

r . The parameters of the system in Equation (20) satisfy the
conditions in Equations (43) and (44). In this case, we have the roots of Equation (41) are x1 = −0.1398,
x2=0.0073, and x3,4 = −0.213 ± 0.0248i. Thus, we get x0 = 0.0073, ω0 = 0.0855, τ0 = 5.3526, and
τ1 = 73.4875. The population dynamic behaviors of the endemic equilibrium point H∗ are shown
in Figure 3 (τ = 4.3526) and Figure 4 (τ = 6.3526), respectively. It can been shown that the endemic
equilibrium point H∗ spends longer time to become locally asymptotically stable only when 0 < τ < τ0

(see Figure 3). When τ > τ0, it is quite clear that larger values of the time delay causes periodic
oscillations. The equilibrium point loses its stability. Thus, the solution of the system in Equation (20)
is unstable with the increase of time t (see Figure 4).

(a) (b)

Figure 3. Local asymptotic stability of the endemic equilibrium point H∗ = (N∗
s , N∗

e , N∗
i , N∗

r ) when
τ = 4.3526 < τ0. (a) Time response diagram of Ns, Ne, Ni and Nr; (b) Phase diagram of Ns, Ne and Ni.
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(a) (b)

(c) (d)

(e)

Figure 4. Instability of the endemic equilibrium point H∗ = (N∗
s , N∗

e , N∗
i , N∗

r ) when τ = 6.3526 > τ0.
(a) Time response diagram of Ns; (b) Time response diagram of Ne; (c) Time response diagram of Ni;
(d) Time response diagram of Nr; (e) Phase diagram of Ns, Ne and Ni.

6. Concluding Remarks

In this article, the theory of an age-structured SEIRS model with time delay is analyzed. The
model is based on the delayed nonlinear partial differential equation of initial-boundary value
problems. The traveling wave solution of the system in Equation (1) is obtained using the method
of characteristic and the recurrent algorithm. Then, we can obtain the existence and uniqueness
of the continuous traveling wave solution of system according to hypotheses. The age-structured
SEIRS model with time delay is reduced to a nonlinear ordinary differential equation under some
insufficient simplifications. This allows us to obtain some sufficient conditions of existence of two
equilibrium points of an age-structured SEIRS system: R1 is a dimensionless index for the existence
of the disease-free equilibrium point H0. R2, R3, and R4 are dimensionless indexes for the existence
of the endemic equilibrium point H∗. From the biological point of view, the endemic equilibrium
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point H∗ only exists in the case of high values of death and conversion rate of exposed and infected
population. The disease-free equilibrium point H0 and the endemic equilibrium point H∗ are given.
The disease-free equilibrium point H0 = (0, 0, 0, 0) is locally asymptotically stable if R1 < 1, R2 < 1,
and R3 < 1. The stability of the endemic equilibrium point H∗ = (N∗

s , N∗
e , N∗

i , N∗
r ) with τ = 0 and

τ > 0 are analyzed: for R0 > 1, if the condition in Equation (36) holds, the endemic equilibrium point
H∗ is locally asymptotically stable when τ = 0; if the conditions in Equations (43) and (44) hold, the
endemic equilibrium point H∗ is locally asymptotically stable when time delay 0 < τ < τ0; if the
conditions in Equations (43)–(44) hold, the endemic equilibrium point H∗ is unstable when τ satisfies
τ > τ0; Hopf bifurcation occurs at τ = τk(k = 0, 1, 2, ...). When time delay exceeds the critical value τ0,
the system in Equation (20) loses its stability and Hopf bifurcation occurs. In this case, the susceptible,
exposed, infected, and recovered population in the model will coexist in an oscillating mode and
infectious diseases will get out of control. It can be seen that time delay has an important effect on
the spread of infectious diseases. Therefore, we should shorten the time delay as much as possible
in order to predict and eliminate infectious diseases. Our further research is using some bifurcation
control strategies to control the occurrence of the Hopf bifurcation so as to control the occurrence of
infectious diseases.

In general, this study provides the practical understanding of the different dynamic behaviors of
an age-structured susceptible–exposed–infected–recovered–susceptible model with time delay, which
is helpful for us to understand the application of epidemiology better in real life.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/3/455/s1,
Program S1: Software source code for Figures 1–4.
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Abstract: In this paper, we study the initial value problem for a semilinear delay hyperbolic equation
in Hilbert spaces with a self-adjoint positive definite operator. The mean theorem on the existence and
uniqueness of a bounded solution of this differential problem for a semilinear hyperbolic equation
with unbounded time delay term is established. In applications, the existence and uniqueness
of bounded solutions of four problems for semilinear hyperbolic equations with time delay in
unbounded term are obtained. For the approximate solution of this abstract differential problem,
the two-step difference scheme of a first order of accuracy is presented. The mean theorem on the
existence and uniqueness of a uniformly bounded solution of this difference scheme with respect to
time stepsize is established. In applications, the existence and uniqueness of a uniformly bounded
solutions with respect to time and space stepsizes of difference schemes for four semilinear partial
differential equations with time delay in unbounded term are obtained. In general, it is not possible to
get the exact solution of semilinear hyperbolic equations with unbounded time delay term. Therefore,
numerical results for the solution of difference schemes for one and two dimensional semilinear
hyperbolic equation with time delay are presented. Finally, some numerical examples are given to
confirm the theoretical analysis.

Keywords: semilinear problems with delay; hyperbolic equations; difference scheme; stability;
Hilbert space

MSC: 39A30; 35L20; 65M06

1. Introduction

Delay differential equations are used to model biological, physical, system engineering,
and sociological processes as well as naturally occurring oscillatory systems (see, for examples, [1–9]).

It is known that in differential and difference equations, the involvement of the delay term
causes deep difficulties in the analysis of these equations. Lu [10] studies modified iterative schemes
by combing the method of upper-lower solutions and the Jacobi method or the Gauss–Seidel
method for finite-difference solutions of reaction-diffusion systems with time delays. Ashyralyev
and Sobolevskii [11] study the initial-value problem for linear delay parabolic equations in a Banach
space and present a sufficient condition for the stability of the solution of this initial-value problem.
The stability estimates in Hölder norms for the solutions of the initial-boundary value problem for delay
parabolic equations were established.

Ashyralyev and Agirseven [12–18] studied some initial-boundary value problems for linear delay
parabolic differential equations. Theorems on stability and convergence of difference schemes for the
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numerical solution of initial and boundary value problems for linear parabolic equations with time
delay were proved. Moreover, Ashyralyev, Agirseven, and Ceylan [19] investigated finding sufficient
conditions for the existence and uniqueness of a bounded solution of the initial value problem for
the semilinear delay parabolic equation in a Banach space. The main theorem on the existence and
uniqueness of a bounded solution of this problem was established. In applications, existence and
uniqueness of a bounded solution of problems for four semilinear delay parabolic equations were
obtained. Numerical results were given.

Henriquez, Cuevas, and Caicedo [20] investigated the existence of almost periodic solutions for
linear retarded functional differential equations with finite delay. The existence of almost periodic
solutions with the stabilization of distributed control systems was obtained.

Hao, Fan, Cao, and Sun [21] proposed a linearized quasi-compact finite difference scheme for
semilinear space-fractional diffusion equations with a fixed time delay. Under the local Lipschitz
conditions, they proved the solvability and convergence of the scheme in the discrete maximum norm
by the energy method.

Liang [22] studied the convergence and asymptotic stability of semidiscrete and full discrete
schemes for linear parabolic equations with time delay. She proved that the semidiscrete scheme,
backward Euler and Crank–Nicolson full discrete schemes can unconditionally preserve the
delay-independent asymptotic stability with some additional restrictions on time and spatial stepsizes
of the forward Euler full discrete scheme.

Bhrawy, Abdelkawy, and Mallawi [23] investigated the Chebyshev Gauss–Lobatto pseudospectral
scheme in spatial directions for the approximate solution of one-dimensional, coupled,
and two-dimensional parabolic equations with time delays. They also develop an efficient numerical
algorithm based on the Chebyshev pseudospectral algorithm to obtain the two spatial variables in
approximate solving the two-dimensional parabolic equations with time delay.

Applying Vishik’s results and methods of operator tools, Ismailov, Guler, and Ipek [24] described
all solvable extensions of a minimal operator generated by linear delay differential-operator expression
of first order in the Hilbert space of vector-functions in finite interval. Sharp formulas for the spectrums
of these solvable extensions were obtained. Theoretical results have been supported by applications.

Piriadarshani and Sengadir [25] obtained an existence theorem for a semilinear partial differential
equation with infinite delay employing a phase space in which discretizations can naturally be
performed. For linear partial differential equations with infinite delay they show that the solutions of
the ordinary differential equation with infinite delay obtained by the semi-discretization converge to
the original solution.

Castro, Rodriguez, Cabrera, and Martin [26] developed an explicit finite difference scheme for a
model with coefficients variable in time and studied their properties of convergence and stability.

Hyperbolic equations without time delay arise in many branches of science and engineering, for
example, electrodynamics, thermodynamics, hydrodynamics, fluid dynamics, wave propagation,
hyperbolic geometry, and discrete mathematics (see, e.g., [8,9,27–34], and the references given
therein). The geometry of complex networks is closely related with their structure and function.
Shang Yilun [34] investigated the Gromov-hyperbolicity of the Newman–Watts model of small-world
networks. It is known that asymptotic Erdős–Rényi random graphs are not hyperbolic. We show that
the Newman–Watts ones built on top of them by adding lattice-induced clustering are not hyperbolic
as the network size goes to infinity. Numerical simulations are provided to illustrate the effects of
various parameters on hyperbolicity in this model. The geometry of complex networks has a close
relationship with their structure and function. Shang Yilun [33] investigated Gromov-hyperbolicity of
inhomogeneous random networks modeled by the Chung-Lu model G(w). His numerical simulations
illustrate this non-hyperbolicity of G(w) for power law degree distributions among others.

In numerical methods for solving hyperbolic equations, the problem of stability has received a
great deal of importance and attention. The method of operators as a tool for the study of the stability of
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the solution of local and nonlocal problems to hyperbolic differential and difference equations in Hilbert
and Banach spaces has been systematically developed by many authors (see, e.g., [27–32,35–37]).

A large cycle of works on difference schemes for hyperbolic equations (see, e.g., [38–42] and the
references given therein), in which stability was established under the assumption that the magnitude
of the grid steps τ and h with respect to the time and space variables, were connected. In abstract
terms that means that the condition τ||Ah|| → 0 when τ → 0 holds.

Of course there is great interest in the study of absolute stable difference schemes of a high order
of accuracy for hyperbolic equations, in which stability was established without any assumptions in
respect to the grid steps τ and h. Such type of stability inequalities for the solutions of the first order of
accuracy difference scheme for the abstract hyperbolic equation in Hilbert spaces were established for
the first time in [43]. The first and second order of accuracy difference schemes generated by integer
power of space operator of approximate solutions of the abstract initial value problem for the abstract
hyperbolic equation in Hilbert spaces were presented in [11]. The stability estimates for the solution of
these difference schemes were established.

The survey paper [44] contains the recent results on the local and nonlocal well-posed problems
for second order differential and difference equations. Stability of differential problems for hyperbolic
equations and of difference schemes for approximate solution of these problems were presented.

However, the stability theory of problems for a hyperbolic equation with unbounded time delay
term is not well-investigated. A few researchers are interested in these kinds of problems. Bounded
solutions of semilinear one dimensional hyperbolic differential equations with time delay term have
been investigated in earlier papers [45–48]. In the paper [49] the existence and uniqueness of a bounded
solution of nonlinear hyperbolic differential equations with bounded time delay term were established.
The generality of the operator approach allows for treating a wider class of delay nonlinear hyperbolic
differential equations with bounded time delay term. In general, hyperbolic differential equations
with unbounded time delay term are blown up [7]. Therefore, the boundedness solution of problems
for hyperbolic equations with unbounded time delay term is not well-investigated.

Our goal in the present paper is to investigate the boundedness solution of problems for semilinear
hyperbolic equations with unbounded time delay term. We study the initial value problem for the
semilinear hyperbolic differential equation with time delay⎧⎪⎨⎪⎩

d2u(t)
dt2 + Au(t) = f (t, u(t), ut(t − w), u(t − w)), t > 0,

u(t) = ϕ(t), −ω ≤ t ≤ 0
(1)

in a Hilbert space H with a self-adjoint positive definite operator A. Here ϕ(t) is a continuously
differentiable abstract function defined on the interval [−ω, 0] with values in H and f (t) is continuous
abstract function defined on the interval [0, ∞) with values in H. Assume that A is unbounded operator
and (Ax, x) > δ(x, x), for x �= 0, x ∈ H and δ > 0.

A function u(t) is called a solution of problem (1), if the following conditions are fulfilled:

i. u(t) is twice continuously differentiable function on the interval [0, ∞), f (t, u(t), ut(t − w), u(t −
w)) is continuous and bounded function on [0, ∞)

ii. The element u(t) belongs to D(A) for all t ∈ [0, ∞), and the function Au(t) is continuous on the
interval [0, ∞).

iii. u(t) satisfies the equation and initial conditions in Equation (1).

In the present paper, the main theorem on the existence and uniqueness of a bounded solution
of the differential problem (1) is established. In applications, the existence and uniqueness of a
bounded solution of four problems for semilinear hyperbolic equations with time delay are obtained.
A first order of accuracy difference scheme for the numerical solution of this problem is presented.
The theorem on the existence and uniqueness of a uniformly bounded solution of this difference scheme
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with respect to τ is established. In applications, existence and uniqueness of a bounded solution of
a problem for four semilinear delay parabolic equations were established. Numerical results for the
solution of difference schemes for one and two dimensional nonlinear hyperbolic equation with time
delay are presented.

2. Main Existence and Uniqueness Theorem of the Differential Problem

Throughout this paper, c(t) and s(t) are operator-functions defined by formulas

c(t)u =
eiA

1
2 t + e−iA

1
2 t

2
u, s(t)u =

t∫
0

c(y)udy. (2)

We will give some auxiliary statements which will be useful in the sequel.
Recall that the norm ‖A‖H→H of a bounded operator A : H → H is by definition the smallest

number C for which estimate
‖Au‖H ≤ C‖u‖H

holds. Equivalently,
‖A‖H→H = sup

‖u‖H=1
‖Au‖H .

Lemma 1. For t ≥ 0, the following estimates hold:

‖A− 1
2 ‖H→H ≤ δ−

1
2 , ‖c(t)‖H→H ≤ 1, ‖As(t)‖H→H ≤ 1. (3)

Proof. Applying formulas (2) and the spectral representation of the self-adjoint positive definite
operator A in a Hilbert space H, we can write (see [50])∥∥∥A− 1

2

∥∥∥
H→H

≤ sup
δ≤λ<∞

∣∣∣λ− 1
2

∣∣∣ ≤ δ−
1
2 ,

‖c(t)‖H→H ≤ sup
δ≤λ<∞

∣∣∣∣∣∣ eiλ
1
2 t + e−iλ

1
2 t

2

∣∣∣∣∣∣ = sup
δ≤λ<∞

∣∣∣cos
(

λ
1
2 t
)∣∣∣ ≤ 1,

∥∥∥A
1
2 s(t)

∥∥∥
H→H

≤ sup
δ≤λ<∞

∣∣∣∣∣∣ eiλ
1
2 t − e−iλ

1
2 t

2i

∣∣∣∣∣∣ = sup
δ≤λ<∞

∣∣∣sin
(

λ
1
2 t
)∣∣∣ ≤ 1,

for any t ≥ 0. Lemma 1 is proved.

The approach of proof of main theorem is based on reducing problem (1) to an integral equation
of Volterra type

u(t) = c (t − (m − 1)w) u((m − 1)w) + s (t − (m − 1)w)
du((m − 1)w)

dt

+
∫ t

(m−1)w
s (t − y) f (y, u(y), uy(y − w), u(y − w))dy,

(m − 1)w ≤ t ≤ mw, m = 1, 2, ..., u(t) = ϕ(t), −w ≤ t ≤ 0

in [0, ∞)× H and the application of successive approximations. Note that on (m − 1)w ≤ t ≤ mw,
m = 1,2,..., ut(t − w) and u(t − w) are given. Therefore, the recursive formula for the solution of

188



Mathematics 2019, 7, 1163

problem (1) is

ui(t) = c (t − (m − 1)w) u((m − 1)w) + s (t − (m − 1)w) du((m−1)w)
dt

+
∫ t
(m−1)w s (t − y) f (y, ui−1(y), uy(y − w), u(y − w))dy,

(4)

u0(t) = c (t − (m − 1)w) u((m − 1)w) + s (t − (m − 1)w)
du((m − 1)w)

dt
,

(m − 1)w ≤ t ≤ mw, m = 1, 2, ...,

ui(t) = ϕ(t), i = 1, 2, ..., −w ≤ t ≤ 0.

Theorem 1. Suppose that ϕ(t) is a continuously differentiable function on [−ω, 0] and ϕ(t) ∈ D(A),
ϕ′(t) ∈ D(A

1
2 ) and

‖Aϕ(t)‖H ≤ M, ‖A1/2 ϕ′(t)‖H ≤ M̃. (5)

Besides let f : [0, ∞)× H × H × H −→ H be continuous and bounded function, that is

‖ f (t, u, v, z)‖H ≤ M̄ (6)

in [0, ∞)× H × H × H and Lipschitz condition holds uniformly with respect to t, v and z

‖ f (t, u, v, z)− f (t, w, v, z)‖H ≤ L‖u − w‖H . (7)

Here, M, M̃, M̄, Ł are positive constants. Then there exists a unique solution to problem (1) which is
bounded in C(H). Here, C(H) = C([0, ∞), H) stands for the Banach space of the abstract continuous and
bounded functions v(t) defined on [0, ∞) with values in H, equipped with the norm

‖ v ‖C(H)= sup
0≤t<∞

‖v(t)‖H .

Proof. Let 0 ≤ t ≤ ω. Then, according to Equation (4), we get

ui(t) = c (t) ϕ(0) + s (t) ϕ′(0) +
∫ t

0
s (t − y) f (y, ui−1(y), ϕy(y − w), ϕ(y − w))dy, (8)

u′
i(t) = −As (t) ϕ(0) + c (t) ϕ′(0) +

∫ t

0
c (t − y) f (y, ui−1(y), ϕy(y − w), ϕ(y − w))dy (9)

for all i = 1, 2, .... Therefore,

u(t) = u0(t) +
∞

∑
i=0

(ui+1(t)− ui(t)), (10)

u′(t) = u′
0(t) +

∞

∑
i=0

(u′
i+1(t)− u′

i(t)), (11)

where
u0(t) = c (t) ϕ(0) + s (t) ϕ′(0), u′

0(t) = −As (t) ϕ(0) + c (t) ϕ′(0).

Applying the triangle inequality and estimates (3) and (5), we get

‖u0(t)‖H ≤ ‖A−1‖H→H

×
[
‖c (t) ‖H→H‖Aϕ(0)‖H + ‖A1/2s (t) ‖H→H‖A1/2 ϕ′(0)‖H

]
≤ δ−1

[
‖Aϕ(0)‖H + ‖A1/2 ϕ′(0)‖H

]
≤ δ−1

[
M + M̃

]
,

‖u′
0(t)‖H ≤ ‖A− 1

2 ‖H→H
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×
[
‖A1/2s (t) ‖H→H‖Aϕ(0)‖H + ‖c (t) ‖H→H‖A1/2 ϕ′(0)‖H

]
≤ δ−

1
2

[
‖Aϕ(0)‖H + ‖A1/2 ϕ′(0)‖H

]
≤ δ−

1
2

[
M + M̃

]
.

Applying formulas (8) and (9) and the triangle inequality and estimates (3) and (6), we get

‖u1(t)− u0(t)‖H ≤ ‖A− 1
2 ‖H→H

×
∫ t

0
‖A1/2s (t − y) ‖H→H‖ f (y, u0(y), ϕy(y − w), ϕ(y − w))‖Hdy ≤ δ−

1
2 M̄t,

‖u′
1(t)− u′

0(t)‖H ≤
∫ t

0
‖c (t − y) ‖H→H‖ f (y, u0(y), ϕy(y − w), ϕ(y − w))‖Hdy ≤ M̄t.

Using the triangle inequality, we get

‖u1(t)‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄t,

‖u′
1(t)‖H ≤ δ−

1
2

[
M + M̃

]
+ M̄t.

Applying formulas (8) and (9) and estimates (3), (6), and (7), we get

‖u2(t)− u1(t)‖H ≤ ‖A− 1
2 ‖H→H

×
∫ t

0
‖A1/2s (t − y) ‖H→H‖ f (y, u1(y), ϕy(y − w), ϕ(y − w))− f (y, u0(y), ϕy(y − w), ϕ(y − w))‖Hdy

≤ δ−
1
2 L

∫ t

0
‖u1(y)− u0(y)‖Hdy ≤ δ−1LM̄

∫ t

0
ydy =

M̄
L
(δ−

1
2 Lt)2

2!
,

‖u′
2(t)− u′

1(t)‖H

≤
∫ t

0
‖c (t − y) ‖H→H‖ f (y, u1(y), ϕy(y − w), ϕ(y − w))− f (y, u0(y), ϕy(y − w), ϕ(y − w))‖Hdy

≤ L
∫ t

0
‖u1(y)− u0(y)‖Hdy ≤ δ−

1
2 LM̄

∫ t

0
ydy = δ−

1
2

M̄
L
(Lt)2

2!
.

Then

‖u2(t)‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄t +

M̄
L
(δ−

1
2 Lt)2

2!
,

‖u′
2(t)‖H ≤ δ−

1
2

[
M + M̃

]
+ M̄t +

M̄

Lδ−
1
2

(Lt)2

2!
.

Let

‖un(t)− un−1(t)‖H ≤ M̄
L
(δ−

1
2 Lt)n

n!
, ‖u′

n(t)− u′
n−1(t)‖H ≤ M̄

Lδ−
1
2

(Lt)n

n!

and

‖un(t)‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄t +

M̄
L
(δ−

1
2 Lt)2

2!
+ · · ·+ M̄

L
(δ−

1
2 Lt)n

n!
,

‖u′
n(t)‖H ≤ δ−

1
2

[
M + M̃

]
+ M̄t +

M̄

Lδ−
1
2

(Lδ−
1
2 t)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 t)n

n!
.

Then, we obtain
‖un+1(t)− un(t)‖H ≤ ‖A− 1

2 ‖H→H
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×
∫ t

0
‖A1/2s (t − y) ‖H→H‖ f (y, un(y), ϕy(y−w), ϕ(y−w))− f (y, un−1(y), ϕy(y−w), ϕ(y−w))‖Hdy

≤ δ−
1
2 L

∫ t

0
‖un(y)− un−1(y)‖Hdy ≤ δ−

1
2 L

∫ t

0

M̄
L
(δ−

1
2 Ly)n

n!
ydy =

M̄
L
(δ−

1
2 Lt)n+1

(n + 1)!
,

‖u′
n+1(t)− u′

n(t)‖H

≤
∫ t

0
‖c (t − y) ‖H→H‖ f (y, un(y), ϕy(y − w), ϕ(y − w))− f (y, un−1(y), ϕy(y − w), ϕ(y − w))‖Hdy

≤
∫ t

0
L‖un(y)− un−1(y)‖Hds ≤

∫ t

0
L

M̄
L
(δ−

1
2 Ly)n

n!
dy =

M̄

Lδ−
1
2

(Lδ−
1
2 t)n+1

(n + 1)!
.

Therefore,

‖un+1(t)− un(t)‖H ≤ M̄
L
(δ−

1
2 Lt)n+1

(n + 1)!
, ‖u′

n+1(t)− u′
n(t)‖H ≤ M̄

Lδ−
1
2

(Lδ−
1
2 t)n+1

(n + 1)!

and

‖un+1(t)‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄t +

M̄
L
(δ−

1
2 Lt)2

2!
· · ·+ M̄

L
(δ−

1
2 Lt)n+1

(n + 1)!
,

‖u′
n+1(t)‖H ≤ δ−

1
2

[
M + M̃

]
+ M̄t +

M̄

Lδ−
1
2

(Lδ−
1
2 t)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 t)n+1

(n + 1)!

are true for any n, n ≥ 1 by mathematical induction. In a similar manner, for any n, we can obtain

‖A
1
2 un+1(t)− A

1
2 un(t)‖H ≤ M̄

Lδ−
1
2

(Lδ−
1
2 t)n+1

(n + 1)!

and

‖A
1
2 un+1(t)‖H ≤ δ−

1
2

[
M + M̃

]
+ M̄t +

M̄

Lδ−
1
2

(Lδ−
1
2 t)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 t)n+1

(n + 1)!
.

From that and formulas (10) and (11) it follows that

‖u(t)‖H ≤ ‖u0(t)‖H +
∞

∑
i=0

‖ui+1(t)− ui(t)‖H

≤ δ−1
[

M + M̃
]
+

∞

∑
i=0

M̄
L
(δ−

1
2 Lt)i+1

(i + 1)!

≤ δ−1
[

M + M̃
]
+

M̄
L

eδ−
1
2 Lt, 0 ≤ t ≤ w,

‖u′(t)‖H ≤ ‖u′
0(t)‖H +

∞

∑
i=0

‖u′
i+1(t)− u′

i(t)‖H

≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 t)i+1

(i + 1)!

≤ δ−
1
2

[
M + M̃

]
+

M̄

Lδ−
1
2

eLδ−
1
2 t, 0 ≤ t ≤ w,

‖A
1
2 u(t)‖H ≤ ‖A

1
2 u0(t)‖H +

∞

∑
i=0

‖A
1
2 ui+1(t)− A

1
2 ui(t)‖H
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≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 t)i+1

(i + 1)!

≤ δ−
1
2

[
M + M̃

]
+

M̄

Lδ−
1
2

eLδ−
1
2 t, 0 ≤ t ≤ w,

which proves the existence of a bounded solution of problem (1) in [0, w]× H.
Let mω ≤ t ≤ (m + 1)ω, m = 1, 2, .... Then, according to Equation (4), we can write

ui(t) = c (t − mw) u(mw) + s (t − mw) du(mw)
dt

+
∫ t

mw s (t − y) f (y, ui−1(y), uy(y − w), u(y − w))dy, i = 1, 2, ...,
(12)

u′
i(t) = −As (t − mw) u(mw) + c (t − mw) du(mw)

dt
+

∫ t
mw c (t − y) f (y, ui−1(y), uy(y − w), u(y − w))dy, i = 1, 2, ....

(13)

Therefore,

u(t) = u0(t) +
∞

∑
i=0

(ui+1(t)− ui(t)), (14)

u′
i(t) = u′

0(t) +
∞

∑
i=0

(u′
i+1(t)− u′

i(t)), (15)

where

u0(t) = c (t − mw) u(mw) + s (t − mw)
du(mw)

dt
,

u′
0(t) = −As (t − mw) u(mw) + c (t − mw)

du(mw)

dt
.

Assume that problem (1) has a bounded solution in [(m − 1)ω, mw]× H and

‖A1/2u(t)‖H ≤ Mm−1, ‖u′(t)‖H ≤ M̃m−1. (16)

Applying estimates (3) and (16), we get

‖u0(t)‖H ≤ ‖A− 1
2 ‖H→H

×
[
‖c (t) ‖H→H‖A1/2u(mw)‖H + ‖A1/2s (t) ‖H→H‖u′(mw)‖H

]
≤ δ−

1
2

[
Mm−1 + M̃m−1

]
,

‖u′
0(t)‖H ≤

[
‖A1/2s (t) ‖H→H‖A1/2u(mw)‖H + ‖c (t) ‖H→H‖ϕ′(0)‖H

]
≤ Mm−1 + M̃m−1.

Applying formulas (12) and (13) and estimates (3) and (6), we get

‖u1(t)− u0(t)‖H ≤ ‖A− 1
2 ‖H→H

×
∫ t

mω
‖A1/2s (t − y) ‖H→H‖ f (y, u0(y), uy(y − w), u(y − w))‖Hdy ≤ δ−

1
2 M̄ (t − mω) ,

‖u′
1(t)− u′

0(t)‖H ≤
∫ t

mω
‖c (t − y) ‖H→H‖ f (y, u0(y), uy(y − w), u(y − w))‖Hdy ≤ M̄ (t − mω) .

Using the triangle inequality, we get

‖u1(t)‖H ≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (t − mω) ,

‖u′
1(t)‖H ≤ Mm−1 + M̃m−1 + M̄ (t − mω) .
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Applying formulas (9) and (12) and estimates (3), (6), and (7), we get

‖u2(t)− u1(t)‖H ≤ ‖A− 1
2 ‖H→H

×
∫ t

0
‖A1/2s (t − y) ‖H→H‖ f (y, u1(y), uy(y − w), u(y − w))− f (y, u0(y), uy(y − w), u(y − w))‖Hdy

≤ δ−
1
2 L

∫ t

mω
‖u1(y)− u0(y)‖Hdy ≤ δ−1LM̄

∫ t

mω
(y − mω) dy =

M̄
L
(δ−

1
2 L (t − mω))2

2!
,

‖u′
2(t)− u′

1(t)‖H

≤
∫ t

mω
‖c (t − y) ‖H→H‖ f (y, u1(y), uy(y − w), u(y − w))− f (y, u0(y), uy(y − w), u(y − w))‖Hdy

≤ L
∫ t

mω
‖u1(y)− u0(y)‖Hdy ≤ LM̄δ−

1
2

∫ t

mω
(y − mω) dy =

M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))2

2!
.

Then

‖u2(t)‖H ≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (t − mω) +

M̄
L
(δ−

1
2 L (t − mω))2

2!
,

‖u′
2(t)‖H ≤ Mm−1 + M̃m−1 + M̄ (t − mω) +

M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))2

2!
.

Let

‖un(t)− un−1(t)‖H ≤ M̄
L
(δ−

1
2 L (t − mω))n

n!
, ‖u′

n(t)− u′
n−1(t)‖H ≤ M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))n

n!

and

‖un(t)‖H ≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (t − mω) +

M̄
L

(δ−
1
2 L (t − mω))2

2!
+ · · ·+ M̄

L
(δ−

1
2 L (t − mω))n

n!
,

‖u′
n(t)‖H ≤ Mm−1 + M̃m−1 + M̄ (t − mω) +

M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))n

n!
.

Then, we obtain
‖un+1(t)− un(t)‖H ≤ ‖A− 1

2 ‖H→H

×
∫ t

mω
‖A1/2s (t − y) ‖H→H‖ f (y, un(y), uy(y−w), u(y−w))− f (y, un−1(y), uy(y−w), u(y−w))‖Hdy

≤ δ−
1
2 L

∫ t

mω
‖un(y)− un−1(y)‖Hdy ≤ δ−

1
2 L

∫ t

mω

M̄
L
(δ−

1
2 L (y − mω))n

n!
dy =

M̄
L
(δ−

1
2 L (t − mω))n+1

(n + 1)!
,

‖u′
n+1(t)− u′

n(t)‖H

≤
∫ t

mω
‖c (t − y) ‖H→H‖ f (y, un(y), uy(y − w), u(y − w))− f (y, un−1(y), uy(y − w), u(y − w))‖Hdy

≤
∫ t

mω
L‖un(y)− un−1(y)‖Hds ≤

∫ t

mω
L

M̄
L
(Lδ−

1
2 (y − mω))n

n!
dy =

M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))n+1

(n + 1)!
.

Therefore,

‖un+1(t)− un(t)‖H ≤ M̄
L
(δ−

1
2 L (t − mω))n+1

(n + 1)!
, ‖u′

n+1(t)− u′
n(t)‖H ≤ M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))n+1

(n + 1)!
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and

‖un+1(t)‖H ≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (t − mω) + M̄

L
(δ−

1
2 L(t−mω))2

2! · · ·+ M̄
L

(δ−
1
2 L(t−mω))n+1

(n+1)! ,

‖u′
n+1(t)‖H ≤ Mm−1 + M̃m−1 + M̄ (t − mω) + M̄

Lδ−
1
2

(Lδ−
1
2 (t−mω))2

2! + · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 (t−mω))n+1

(n+1)!

are true for any n, n ≥ 1 by mathematical induction. From that and formulas (14) and (15) it follows that

‖u(t)‖H ≤ ‖u0(t)‖H

+
∞

∑
i=0

‖ui+1(t)− ui(t)‖H ≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄
L
(δ−

1
2 L (t − mω))i+1

(i + 1)!

≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+

M̄
L

eδ−
1
2 L(t−mω), mω ≤ t ≤ (m + 1)w,

‖u′(t)‖H ≤ ‖u′
0(t)‖H +

∞

∑
i=0

‖u′
i+1(t)− u′

i(t)‖H

≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 (t − mω))i+1

(i + 1)!

≤ Mm−1 + M̃m−1 +
M̄

Lδ−
1
2

eLδ−
1
2 (t−mω), mω ≤ t ≤ (m + 1)w

which proves the existence of a bounded solution of problem (1) in [mω, (m + 1)w]× H.
Now we will prove uniqueness of the bounded solution of the problem. Suppose that there

is a bounded solution v(t) of problem (1) and v(t) �= u(t). Denoting z(t) = v(t)− u(t) and using
Equation (1), we get{

d2z(t)
dt2 + Az(t) = f (t, v(t), vt(t − w), v(t − w))− f (t, u(t), ut(t − w), u(t − w)), t > 0,

z(t) = 0, −w ≤ t ≤ 0

for z(t).
Let 0 ≤ t ≤ w. Since v(t − w) = u(t − w) = ϕ(t − w), we can write{

d2z(t)
dt2 + Az(t) = f (t, v(t), ϕt(t − w), ϕ(t − w))− f (t, u(t), ϕt(t − w), ϕ(t − w)), t > 0,

z(t) = 0, −w ≤ t ≤ 0.

Therefore,

z(t) =
∫ t

0
s (t − y)

[
f (y, v(y), ϕy(y − w), ϕ(y − w))− f (y, u(y), ϕy(y − w), ϕ(y − w))

]
dy.

Applying estimates (3) and (6), we get

‖z(t)‖H ≤ ‖A− 1
2 ‖H→H

×
∫ t

0
‖A1/2s (t − y) ‖‖ f (y, v(y), ϕy(y − w), ϕ(y − w))− f (y, u(y), ϕy(y − w), ϕ(y − w))‖Hdy

≤ Lδ−
1
2

∫ t

0
‖v(y)− u(y)‖Hds ≤ Lδ−

1
2

∫ t

0
‖z(y)‖Hdy.
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Applying the integral inequality, we get

‖z(t)‖H ≤ 0.

From that it follows that z(t) = 0 which proves the uniqueness of a bounded solution of
problem (1) in [0, w]× H. Using the same method and mathematical induction, we can establish the
uniqueness of a bounded solution of problem (1) in [0, ∞)× H. Theorem 1 is proved.

3. Applications

First, we consider the initial value problem for a semilinear hyperbolic equation with time delay
and with nonlocal conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x)− (a(x)ux (t, x))x + δu(t, x) = f (t, x, u(t, x), ut(t − w, x), u(t − w, x)),

0 < t < ∞, x ∈ (0, l) ,

u(t, x) = ϕ(t, x), − ω ≤ t ≤ 0, x ∈ [0, l] ,

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), 0 ≤ t < ∞,

(17)

where a(x) and ϕ(t, x) are given sufficiently smooth functions, δ > 0 is the sufficiently large number.
Suppose that a(x) ≥ a > 0 and a(l) = a(0).

Theorem 2. Suppose the following hypotheses:

1. For any t, −w ≤ t ≤ 0
‖ϕ(t, .)‖W2

2 [0,l] ≤ M,
∥∥ϕ′(t, .)

∥∥
W1

2 [0,l] ≤ M̃. (18)

2. The function f : [0, ∞)× (0, l)× L2 [0, l]× L2 [0, l]× L2 [0, l] → L2 [0, l] be continuous and bounded,
that is

‖ f (t, ·, u, v, w)‖L2[0,l] ≤ M (19)

and Lipschitz condition is satisfied uniformly with respect to t, z, w

‖ f (t, ·, u, z, w)− f (t, ·, v, z, w)‖L2[0,l] ≤ L ‖u − v‖L2[0,l] .

3. Here and in future, M, M̃, M, Ł are positive constants. Assume that all compatibility conditions are
satisfied. Then there exists a unique solution to problem (17) which is bounded in [0, ∞)× L2 [0, l].

The proof of Theorem 2 is based on the abstract Theorem 1, on the self-adjointness and positivity
in L2 [0, l] of a differential operator A defined by the formula

Au = − d
dx

(
a(x)

du
dx

)
+ δu (20)

with domain D(A) =
{

u ∈ W2
2 [0, l] : u (0) = u (l) , u′ (0) = u′ (l)

}
[51] and on estimates

‖c{t}‖L2[0,l]→L2[0,l] ≤ 1, ‖ (A)
1
2 s{t}‖L2[0,l]→L2[0,l] ≤ 1, t ≥ 0. (21)
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Second, we consider the initial value problem for a semilinear hyperbolic equation with time
delay and with involution⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x)− (a(x)ux (t, x))x + δu(t, x)− β (a(−x)ux (t, −x))x

= f (t, x, u(t, x), ut(t − w, x), u(t − w, x)), 0 < t < ∞, x ∈ (−l, l) ,

u(t, x) = ϕ(t, x), −ω ≤ t ≤ 0, x ∈ [−l, l] ,

u(t, −l) = u(t, l) = 0, 0 ≤ t < ∞,

(22)

where a(x) and ϕ(t, x) are given sufficiently smooth functions, δ > 0 is the sufficiently large number.
Suppose that a ≥ a (x) = a (−x) ≥ δ > 0, δ − a |β| ≥ 0.

Theorem 3. Suppose the following hypotheses:

1. For any t, −w ≤ t ≤ 0

‖ϕ(t, .)‖W2
2 [−l,l] ≤ M,

∥∥ϕ′(t, .)
∥∥

W1
2 [−l,l] ≤ M̃.

2. The function f : [0, ∞)× (−l, l)× L2 [−l, l]× L2 [−l, l]× L2 [−l, l] → L2 [−l, l] be continuous and
bounded, that is

‖ f (t, ·, u, v, w)‖L2[−l,l] ≤ M

and Lipschitz condition is satisfied uniformly with respect to t, z, w

‖ f (t, ·, u, z, w)− f (t, v, z, w)‖L2[−l,l] ≤ L ‖u − v‖L2[−l,l] .

Assume that all compatibility conditions are satisfied. Then there exists a unique solution to problem (22)
which is bounded in [0, ∞)× L2 [−l, l].

The proof of Theorem 3 is based on the abstract Theorem 1, on the self-adjointness and positivity
in L2 [−l, l] of a differential operator A defined by the formula

Av(x) = − (a(x)vx(x)x − β (a(−x)vx (−x))x + δv (x)

with the domain D(A) =
{

u ∈ W2
2 [−l, l] : u (−l) = u (l) = 0

}
[52] and on the estimate

‖c{t}‖L2[−l,l]→L2[−l,l] ≤ 1, ‖ (A)
1
2 s{t}‖L2[−l,l]→L2[−l,l] ≤ 1, t ≥ 0.

Third, let Ω ⊂ Rm be a bounded open domain with smooth boundary S, Ω = Ω ∪ S. In [0, ∞)× Ω
we consider the initial boundary value problem for a multidimensional semilinear delay differential
equation of hyperbolic type⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 −

m
∑

r=1
(ar(x)uxr )xr + δu(t, x)

= f (t, x, u(t, x), ut(t − w, x), u(t − w, x)), 0 < t < ∞, x = (x1, ..., xm) ∈ Ω,

u(t, x) = ϕ(t, x), −ω ≤ t ≤ 0, x ∈ Ω,

u(t, x) = 0, x ∈ S, 0 ≤ t < ∞,

(23)
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where ar(x) and ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the sufficiently large
number and ar(x) > 0.

Theorem 4. Suppose the following hypotheses:

1. For any t, −w ≤ t ≤ 0,

‖ϕ(t, .)‖W2
2 (Ω) ≤ M,

∥∥ϕ′(t, .)
∥∥

W1
2 (Ω) ≤ M̃.

2. The function f : [0, ∞)× Q × L2(Ω)× L2(Ω)× L2(Ω) → L2(Ω) be continuous and bounded, that is

‖ f (t, u, v, w)‖L2(Ω) ≤ M

and Lipschitz condition is satisfied uniformly with respect to t, z, w

‖ f (t, u, z, w)− f (t, v, z, w)‖L2(Ω) ≤ L ‖u − v‖L2(Ω) .

Assume that all compatibility conditions are satisfied. Then there exists a unique solution to problem (23)
which is bounded in [0, ∞)× L2(Ω).

The proof of Theorem 4 is based on the abstract Theorem 1, on the self-adjointness and positivity
in L2(Ω) of a differential operator A defined by the formula

Au(x) = −
m

∑
r=1

(ar(x)uxr )xr + δu(x) (24)

with domain [53]

D(A) =
{

u(x) : u(x), uxr (x), (ar(x)uxr )xr ∈ L2(Ω), 1 ≤ r ≤ m, u(x) = 0, x ∈ S
}

and on the estimate

‖c{t}‖L2(Ω)→L2(Ω) ≤ 1, ‖ (A)
1
2 s{t}‖L2(Ω)→L2(Ω) ≤ 1, t ≥ 0 (25)

and on the following theorem on the coercivity inequality for the solution of the elliptic differential
problem in L2(Ω).

Theorem 5. For the solutions of the elliptic differential problem{
Axu(x) = ω(x), x ∈ Ω,

u(x) = 0, x ∈ S,

the coercivity inequality [53]
m

∑
r=1

‖uxr xr‖L2(Ω) ≤ M1||ω||L2(Ω).

is satisfied. Here M1 is independent of ω(x).

197



Mathematics 2019, 7, 1163

Fourth, in [0, ∞)× Ω we consider the initial boundary value problem for a multidimensional
semilinear delay hyperbolic equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 −

m
∑

r=1
(ar(x)uxr )xr + δu(t, x)

= f (t, x, u(t, x), ut(t − w, x), u(t − w, x)), x = (x1, ..., xm) ∈ Ω,

u(t, x) = ϕ(t, x), −ω ≤ t ≤ 0, x ∈ Ω,

∂u
∂−→p (t, x) = 0, x ∈ S, 0 ≤ t < ∞,

(26)

where ar(x) and ϕ(t, x) are given sufficiently smooth functions and δ > 0 is the sufficiently large
number and ar(x) > 0. Here, −→p is the normal vector to Ω.

Theorem 6. Suppose that assumptions of Theorem 4 hold. Assume that all compatibility conditions are satisfied.
Then same stability estimates for the solution of (26) hold.

The proof of Theorem 6 is based on the abstract Theorem 3, on the self-adjointness and positivity
of a differential operator A defined by the formula

Au(x) = −
m

∑
r=1

(ar(x)uxr )xr + δu(x) (27)

with domain

D(A) =

{
u(x) : u(x), uxr (x), (ar(x)uxr )xr ∈ L2(Ω), 1 ≤ r ≤ m,

∂

∂−→p u(x) = 0, x ∈ S
}

in L2(Ω) and on the following theorem on the coercivity inequality for the solution of the elliptic
differential problem in L2(Ω).

Theorem 7. For the solutions of the elliptic differential problem⎧⎨⎩Axu(x) = ω(x), x ∈ Ω,
∂u(x)
∂−→p = 0, x ∈ S,

the coercivity inequality [53]
m

∑
r=1

‖uxr xr‖L2(Ω) ≤ M1(δ)||ω||L2(Ω)

is satisfied. Here M1(δ) is independent of ω(x).
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4. The Main Theorem on Existence and Uniqueness of a Uniformly Bounded Solution of the
Difference Scheme

In the present section for the approximate solution of Equation (1) we will study the first order of
accuracy difference scheme

uk+1−2uk+uk−1

τ2 + Auk+1 = f (tk, uk, uk−N−uk−N−1

τ , uk−N),

tk = kτ, 1 ≤ k < ∞, Nτ = ω,

(
I + τ2 A

) uk+1−uk

τ = uk−uk−1

τ , k = mN, m = 0, 1, ...,

uk = ϕk, ϕk = ϕ(tk), tk = kτ, −N ≤ k ≤ 0.

(28)

The approach of proof of the theorem on the existence and uniqueness of a bounded solution of
difference scheme (28) uniformly with respect to τ is based on reducing this difference scheme to an
equivalent nonlinear equations. Equivalent nonlinear equations for the difference scheme (28) is

uk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0 + τRR̃ ϕ0−ϕ−1
τ , k = 1,

Rk−1+R̃k−1

2 ϕ0 + τ
(

R − R̃
)−1 (

Rk − R̃k
)

RR̃ ϕ0−ϕ−1
τ

+τ
(

R − R̃
)−1 k−1

∑
p=1

RR̃
(

Rk−p − R̃k−p
)

f (tp, jup,
ϕp−N−ϕp−N−1

τ , ϕp−N)τ,

2 ≤ k ≤ N,

umN + τRR̃ umN−umN−1

τ , k = mN + 1,

Rk−mN−1+R̃k−mN−1

2 umN +
(

R − R̃
)−1 (

Rk−mN − R̃k−mN
)

RR̃ umN−umN−1

τ

+τ
(

R − R̃
)−1 k−1

∑
p=mN+1

RR̃
(

Rk−p − R̃k−p
)

f (tp, up, up−N−up−N−1

τ , up−N)τ,

2 + mN ≤ k ≤ (m + 1)N, m = 1, 2, · · ·

(29)

in Cτ (H) and the use of successive approximations. Here and in future R = (I + τiA
1
2 )−1, R̃ = (I −

τiA
1
2 )−1 and Cτ (H) = C ([0, ∞)τ , H) stands for the Banach space of the mesh functions vτ =

{
vl
}∞

l=0
defined on a grid space

[0, ∞)τ = {tk = kτ, k = 0, 1, ..., Nτ = w}

with values in H, equipped with the norm

‖ vτ ‖Cτ(H)= sup
0≤l<∞

∥∥∥vl
∥∥∥

H
.

199



Mathematics 2019, 7, 1163

The recursive formula for the solution of difference scheme (28) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

juk+1−2juk+juk−1

τ2 + Ajuk+1 = f (tk, (j − 1) uk, uk−N−uk−N−1

τ , uk−N),

tk = kτ, mN + 1 ≤ k ≤ (m + 1) N, m = 0, 1, 2, · · ·, Nτ = ω,

(
I + τ2 A

) juk+1−juk

τ = juk−juk−1

τ , k = mN, m = 1, ...,

uk = ϕk, tk = kτ, −N ≤ k ≤ 0,

j = 1, 2, · · ·, 0uk is given for any k.

(30)

From Equations (29) and (30) it follows

juk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0 + τRR̃ ϕ0−ϕ−1
τ , k = 1,

Rk−1+R̃k−1

2 ϕ0 + τ
(

R − R̃
)−1 (

Rk − R̃k
)

RR̃ ϕ0−ϕ−1
τ

+τ
(

R − R̃
)−1 k−1

∑
p=1

RR̃
(

Rk−p − R̃k−p
)

f (tp, jup,
ϕp−N−ϕp−N−1

τ , ϕp−N)τ,

2 ≤ k ≤ N,

umN + τRR̃ umN−umN−1

τ , k = mN + 1,

Rk−mN−1+R̃k−mN−1

2 umN + τ
(

R − R̃
)−1 (

Rk−mN − R̃k−mN
)

RR̃ umN−umN−1

τ

+
(

R − R̃
)−1

RR̃

×τ
k−1

∑
p=mN+1

(
Rk−p − R̃k−p

)
f (tp, (j − 1) up, up−N−up−N−1

τ , up−N)τ,

mN ≤ k ≤ (m + 1)N, m = 1, 2, · · ·, j = 1, 2, ...,

(31)

where

0uk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0 + RR̃ ϕ0−ϕ−1
τ , k = 1,

Rk−1+R̃k−1

2 ϕ0 + τ
(

R − R̃
)−1 (

Rk − R̃k
)

RR̃ ϕ0−ϕ−1
τ ,

2 ≤ k ≤ N,

umN + τRR̃ umN−umN−1

τ , k = mN + 1,

Rk−mN−1+R̃k−mN−1

2 umN + τ
(

R − R̃
)−1 (

Rk−mN − R̃k−mN
)

RR̃ umN−umN−1

τ

2 + mN ≤ k ≤ (m + 1)N, m = 1, 2, · · ·.
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Let us give the lemma that will be needed below.

Lemma 2. The following estimates hold:

‖R‖H→H ≤ 1, ‖τAR‖H→H ≤ 1, ‖ R̃‖H→H ≤ 1, ‖τA R̃‖H→H ≤ 1, (32)∥∥∥τA(I + τ2 A2)−1
∥∥∥

H→H
≤ 1. (33)

The proof of Lemma 2 is based on the spectral representation of the self-adjoint positive definite
operator in a Hilbert space (see, [50]).

Theorem 8. Let the assumptions of Theorem 1 be satisfied. Then, there exists a unique solution uτ =
{

uk
}∞

k=0
of difference scheme (28) which is bounded in Cτ (H) of uniformly with respect to τ.

Proof. Step 1. Uniformly boundedness of solution of difference scheme (28) on [0, w]τ . Assume that
1 ≤ k ≤ N. According to the method of recursive approximation (31), we get

uk = 0uk +
∞

∑
i=0

[
(i + 1)uk − iuk

]
, (34)

where
0u1 = ϕ0 + τRR̃

ϕ0 − ϕ−1

τ
,

0uk =
Rk−1 + R̃k−1

2
ϕ0 + τ

(
R − R̃

)−1 (
Rk − R̃k

)
RR̃

ϕ0 − ϕ−1

τ
, 2 ≤ k ≤ N, (35)

ju1 = ϕ0 + τRR̃
ϕ0 − ϕ−1

τ
, j = 1, 2, · · ·,

juk = Rk−1+R̃k−1

2 ϕ0 + τ
(

R − R̃
)−1 (

Rk − R̃k
)

RR̃ ϕ0−ϕ−1
τ + τ

(
R − R̃

)−1

×
k−1

∑
p=1

RR̃
(

Rk−p − R̃k−p
)

f (tp, jup,
ϕp−N−ϕp−N−1

τ , ϕp−N)τ, 2 ≤ k ≤ N, j = 1, 2, · · ·.
(36)

Applying formula (35), the triangle inequality and estimates (5), (32), and (33), we get

∥∥∥0u1
∥∥∥

H
≤ ‖A−1‖H→H

[
‖Aϕ0‖H +

∥∥∥τA
1
2 RR̃

∥∥∥
H→H

∥∥∥∥A
1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

]
≤ δ−1

[
M + M̃

]
,

∥∥∥∥0u1 − ϕ0

τ

∥∥∥∥
H

≤ ‖A− 1
2 ‖H→H

∥∥∥RR̃
∥∥∥

H→H

∥∥∥∥A
1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

≤ δ−
1
2 M̃,

∥∥∥0uk
∥∥∥

H
≤ ‖A−1‖H→H

[
1
2

[
‖R‖k−1

H→H +
∥∥∥R̃

∥∥∥k−1

H→H

]
‖Aϕ0‖H +

1
2

[
‖R‖k

H→H +
∥∥∥R̃

∥∥∥k

H→H

]
×

∥∥∥∥A
1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

]
≤ δ−1

[
‖Aϕ0‖H +

∥∥∥∥A
1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

]
≤ δ−1

[
M + M̃

]
,∥∥∥∥∥0uk − 0uk−1

τ

∥∥∥∥∥
H

≤ ‖A− 1
2 ‖H→H

[
1
2

[
‖R‖k−1

H→H +
∥∥∥R̃

∥∥∥k−1

H→H

]
‖Aϕ0‖H +

1
2

[
‖R‖k

H→H +
∥∥∥R̃

∥∥∥k

H→H

]

×
∥∥∥∥A

1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

]
≤ δ−

1
2

[
‖Aϕ0‖H +

∥∥∥∥A
1
2

ϕ0 − ϕ−1

τ

∥∥∥∥
H

]
≤ δ−

1
2

[
M + M̃

]
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for any 2 ≤ k ≤ N. Applying formula (36), and estimates (6), (32), and (33), we get

‖1u1 − 0u1‖H = 0,

‖1uk − 0uk‖H ≤ ‖A− 1
2 ‖H→H

×
k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]
‖ f (tp, 1up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)‖Hτ ≤ δ−

1
2 M̄tk,

∥∥∥∥1u1 − ϕ0

τ
− 0u1 − ϕ0

τ

∥∥∥∥
H
= 0,∥∥∥∥∥1uk − 1uk−1

τ
− 0uk − 0uk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]
‖ f (tp, 1up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)‖Hτ ≤ M̄tk

for any k = 2, · · ·, N. Using the triangle inequality, we get

‖1uk‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄tk,

∥∥∥∥∥1uk − 1uk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+ M̄tk

for any k = 1, · · ·, N. Applying formula (36), and estimates (7), (32), and (33), we get

‖2u1 − 1u1‖H = 0,

‖2uk − 1uk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, 1up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)− f (tp, 0up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)

∥∥∥∥
H

τ

≤ δ−
1
2

k−1

∑
p=1

L‖1up − 0up‖Hτ ≤ δ−
1
2

k−1

∑
p=1

Lδ−
1
2 M̄tpτ ≤ δ−1LM̄

t2
k

2!
,

∥∥∥∥2u1 − 2u0

τ
− 1u1 − 1u0

τ

∥∥∥∥
H
= 0,∥∥∥∥∥2uk − 2uk−1

τ
− 1uk − 1uk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, 1up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)− f (tp, 0up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)

∥∥∥∥
H

τ

≤
k−1

∑
p=1

L‖1up − 0up‖Hτ ≤
k−1

∑
p=1

Lδ−
1
2 M̄tpτ ≤ M̄

Lδ−
1
2

(
δ−

1
2 Ltk

)2

2!
,

for any k = 2, · · ·, N. Using the triangle inequality, we get

‖2uk‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄tk +

M̄
L

(
δ−

1
2 Ltk

)2

2!
,
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∥∥∥∥∥2uk − 2uk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+ M̄tk +

M̄

Lδ−
1
2

(
δ−

1
2 Ltk

)2

2!

for any k = 1, · · ·, N. Let

‖nuk − (n − 1)uk‖H ≤ M̄
L
(Lδ−

1
2 tk)

n

n!
,∥∥∥∥∥nuk − nuk−1

τ
− (n − 1)uk − (n − 1)uk−1

τ

∥∥∥∥∥
H

≤ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n

n!
,

‖nuk‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄tk + M̄

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 tk)

n

n!
,∥∥∥∥∥nuk − nuk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+ M̄tk

+
M̄

Lδ−
1
2

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n

n!

for any k = 1, · · ·, N. Applying formula (36), and estimates (7), (32), and (33), we get

‖ (n + 1) u1 − nu1‖H = 0,

‖ (n + 1) uk − nuk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, nup,

ϕp−N − ϕp−N−1

τ
, ϕp−N)− f (tp, (n − 1) up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)

∥∥∥∥
H

τ

≤ δ−
1
2

k−1

∑
p=1

L‖nup − (n − 1) up‖Hτ ≤ δ−
1
2 L

k−1

∑
p=1

M̄
L
(Lδ−

1
2 tp)n

n!
τ ≤ M̄

L
(Lδ−

1
2 tk)

n+1

(n + 1)!
,

∥∥∥∥ (n + 1) u1 − nu0

τ
− nu1 − nu0

τ

∥∥∥∥
H
= 0,∥∥∥∥∥ (n + 1) uk − (n + 1) uk−1

τ
− nuk − nuk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, nup,

ϕp−N − ϕp−N−1

τ
, ϕp−N)− f (tp, (n − 1) up,

ϕp−N − ϕp−N−1

τ
, ϕp−N)

∥∥∥∥
H

τ

≤
k−1

∑
p=1

L‖nup − (n − 1) up‖Hτ ≤
k−1

∑
p=1

L
M̄

Lδ−
1
2

(Lδ−
1
2 tp)n

n!
τ ≤ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!

for any k = 2, · · ·, N. Using the triangle inequality, we get

‖(n + 1)uk‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄tk +

M̄
L

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 tk)

n+1

(n + 1)!
,

∥∥∥∥∥ (n + 1)uk − (n + 1)uk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+ M̄tk
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+
M̄

Lδ−
1
2

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!

for any k = 1, · · ·, N. Therefore, for any n, n ≥ 1, we have that

‖ (n + 1) uk − nuk‖H ≤ M̄
L
(Lδ−

1
2 tk)

n+1

(n + 1)!
,

∥∥∥∥∥ (n + 1) uk − (n + 1) uk−1

τ
− nuk − nuk−1

τ

∥∥∥∥∥
H

≤ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!

and

‖(n + 1)uk‖H ≤ δ−1
[

M + M̃
]
+ δ−

1
2 M̄tk +

M̄
L

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 tk)

n+1

(n + 1)!
,∥∥∥∥∥ (n + 1)uk − (n + 1)uk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+ M̄tk

+
M̄

Lδ−
1
2

(
δ−

1
2 Ltk

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!

for any k = 1, · · ·, N by mathematical induction. In a similar manner, for any n, we can obtain

‖A
1
2 (n + 1) uk − A

1
2 nuk‖H ≤ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!

and

‖(n + 1)uk‖H ≤ δ−
1
2

[
M + M̃

]
+ M̄tk +

M̄

Lδ−
1
2

(Lδ−
1
2 t)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 tk)

n+1

(n + 1)!
.

From that and formula (34) it follows that

‖uk‖H ≤
∥∥∥0uk

∥∥∥
H
+

∞

∑
i=0

∥∥∥(i + 1)uk − iuk
∥∥∥

H

≤ δ−1
[

M + M̃
]
+

∞

∑
i=0

M̄
L
(δ−

1
2 Ltk)

i+1

(i + 1)!
≤ δ−1

[
M + M̃

]
+

M̄
L

eδ−
1
2 Ltk , 1 ≤ k ≤ N,

∥∥∥∥∥uk − uk−1

τ

∥∥∥∥∥
H

≤
∥∥∥∥∥0uk − 0uk−1

τ

∥∥∥∥∥
H

+
∞

∑
i=0

∥∥∥∥∥ (i + 1)uk − (i + 1)uk−1

τ
− iuk − iuk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 tk)

i+1

(i + 1)!
≤ δ−

1
2

[
M + M̃

]
+

M̄

Lδ−
1
2

eδ−
1
2 Ltk , 1 ≤ k ≤ N,

∥∥∥A
1
2 uk

∥∥∥
H

≤
∥∥∥A

1
2 0uk

∥∥∥
H
+

∞

∑
i=0

∥∥∥A
1
2 (i + 1)uk − A

1
2 iuk

∥∥∥
H

≤ δ−
1
2

[
M + M̃

]
+

∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 tk)

i+1

(i + 1)!
≤ δ−

1
2

[
M + M̃

]
+

M̄

Lδ−
1
2

eδ−
1
2 Ltk , 1 ≤ k ≤ N

which proves the existence of a bounded solution of difference scheme (28) in [0, w]τ × H of uniformly
with respect to τ.
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Step 2. Uniformly boundedness of solution of difference scheme (28) on [mw, (m + 1)w]τ .
We consider solution of difference scheme (28) in mN ≤ k ≤ (m + 1)N, m = 1, 2, .... Then, according
to the method of recursive approximation (31), we get

uk = 0uk +
∞

∑
i=0

[
(i + 1)uk − iuk

]
, (37)

where
0umN+1 = umN + τRR̃ umN−umN−1

τ ,
0uk = Rk−mN−1+R̃k−mN−1

2 umN

+τ
(

R − R̃
)−1 (

Rk−mN − R̃k−mN
)

RR̃ umN−umN−1

τ ,

2 + mN ≤ k ≤ (m + 1)N, m = 1, 2, · · ·,

(38)

junN+1 = umN + τRR̃ umN−umN−1

τ , j = 1, 2, · · ·,
juk = Rk−mN−1+R̃k−mN−1

2 umN + τ
(

R − R̃
)−1 (

Rk−mN − R̃k−mN
)

RR̃ umN−umN−1

τ

+τ
(

R − R̃
)−1 k−1

∑
p=mN+1

RR̃
(

Rk−p − R̃k−p
)

f (tp, (j − 1) up, up−N−up−N−1

τ , up−N)τ,

2 + mN ≤ k ≤ (m + 1)N, m = 1, 2, · · ·, j = 1, 2, · · ·.

(39)

Assume that difference scheme (28) in [(m − 1) N, mN]τ × H of uniformly with respect to τ and

‖A1/2uk‖H ≤ Mm−1,

∥∥∥∥∥uk − uk−1

τ

∥∥∥∥∥
H

≤ M̃m−1. (40)

Applying formula (38), the triangle inequality and estimates (32), (33), and (40), we get

∥∥0umN+1
∥∥

H ≤ ‖A− 1
2 ‖H→H

[∥∥∥A
1
2 umN

∥∥∥
H
+

∥∥∥τA
1
2 RR̃

∥∥∥
H→H

∥∥∥ umN−umN−1

τ

∥∥∥
H

]
≤ δ−

1
2

[
Mm−1 + M̃m−1

]
,

∥∥∥∥0umN+1 − umN

τ

∥∥∥∥
H

≤
∥∥∥RR̃

∥∥∥
H→H

∥∥∥∥umN − umN−1

τ

∥∥∥∥
H

≤ M̃m−1,

∥∥∥0uk
∥∥∥

H
≤ ‖A− 1

2 ‖H→H

[
1
2

[
‖R‖k−1

H→H +
∥∥∥R̃

∥∥∥k−1

H→H

] ∥∥∥A
1
2 umN

∥∥∥
H
+

1
2

[
‖R‖k

H→H +
∥∥∥R̃

∥∥∥k

H→H

]

×
∥∥∥∥umN − umN−1

τ

∥∥∥∥
H

]
≤ δ−

1
2

[∥∥∥A
1
2 umN

∥∥∥
H
+

∥∥∥∥umN − umN−1

τ

∥∥∥∥
H

]
≤ δ−

1
2

[
Mm−1 + M̃m−1

]
,∥∥∥∥∥0uk − 0uk−1

τ

∥∥∥∥∥
H

≤
[

1
2

[
‖R‖k−1

H→H +
∥∥∥R̃

∥∥∥k−1

H→H

] ∥∥∥A
1
2 umN

∥∥∥
H
+

1
2

[
‖R‖k

H→H +
∥∥∥R̃

∥∥∥k

H→H

]

×
∥∥∥∥umN − umN−1

τ

∥∥∥∥
H

]
≤

∥∥∥AumN
∥∥∥

H
+

∥∥∥∥A
1
2

umN − umN−1

τ

∥∥∥∥
H

≤ Mm−1 + M̃m−1

for any 2 + mN ≤ k ≤ (m + 1) N. Applying formula (39), and estimates (6), (32) and (33), we get

‖1umN+1 − 0umN+1‖H = 0,

‖1uk − 0uk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=mN+1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, (j − 1) up,

up−N − up−N−1

τ
, up−N)

∥∥∥∥
H

τ ≤ δ−
1
2 M̄ (tk − mN) ,
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∥∥∥∥1umN+1 − umN

τ
− 0umN+1 − umN

τ

∥∥∥∥
H
= 0,∥∥∥∥∥1uk − 1uk−1

τ
− 0uk − 0uk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=mN+1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]
‖ f (tp, 1up,

up−N − up−N−1

τ
, up−N)‖Hτ ≤ M̄ (tk − mN)

for any 2 + mN ≤ k ≤ (m + 1) N. Using the triangle inequality, we get

‖1uk‖H ≤ δ−
1
2

[
M + M̃

]
+ δ−

1
2 M̄ (tk − mN) ,

∥∥∥∥∥1uk − 1uk−1

τ

∥∥∥∥∥
H

≤ Mm−1 + M̃m−1 + M̄ (tk − mN)

for any 1 + mN ≤ k ≤ (m + 1) N. Applying formula (39), and estimates (7), (32), and (33), we get

‖2u1 − 1u1‖H = 0,

‖2uk − 1uk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=mN+1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, 1up,

up−N − up−N−1

τ
, up−N)− f (tp, 0up,

up−N − up−N−1

τ
, up−N)

∥∥∥∥
H

τ

≤ δ−
1
2

k−1

∑
p=mN+1

L‖1up − 0up‖Hτ ≤ δ−
1
2

k−1

∑
p=mN+1

Lδ−
1
2 M̄tp−mNτ ≤ δ−1LM̄

(tk − mN)2

2!
,

∥∥∥∥2u1 − 2u0

τ
− 1u1 − 1u0

τ

∥∥∥∥
H
= 0,∥∥∥∥∥2uk − 2uk−1

τ
− 1uk − 1uk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=mN+1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, 1up,

up−N − up−N−1

τ
, up−N)− f (tp, 0up,

up−N − up−N−1

τ
, up−N)

∥∥∥∥
H

τ

≤
k−1

∑
p=mN+1

L‖1up − 0up‖Hτ ≤
k−1

∑
p=mN+1

Lδ−
1
2 M̄tp−mNτ ≤ M̄

Lδ−
1
2

(
δ−

1
2 L (tk − mN)

)2

2!

for any 2 + mN ≤ k ≤ (m + 1) N. Using the triangle inequality, we get

‖2uk‖H ≤ δ−
1
2

[
M + M̃

]
+ δ−

1
2 M̄ (tk − mN) +

M̄
L

(
δ−

1
2 L (tk − mN)

)2

2!
,

∥∥∥∥∥2uk − 2uk−1

τ

∥∥∥∥∥
H

≤ Mm−1 + M̃m−1 + M̄ (tk − mN) +
M̄

Lδ−
1
2

(
δ−

1
2 L (tk − mN)

)2

2!

for any 1 + mN ≤ k ≤ (m + 1) N. Let

‖nuk − (n − 1)uk‖H ≤ M̄
L
(Lδ−

1
2 (tk − mN))n

n!
,
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∥∥∥∥∥nuk − nuk−1

τ
− (n − 1)uk − (n − 1)uk−1

τ

∥∥∥∥∥
H

≤ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n

n!
,

‖nuk‖H ≤ δ−1
[

Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (tk − mN)

+M̄

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 (tk − mN))n

n!
,∥∥∥∥∥nuk − nuk−1

τ

∥∥∥∥∥
H

≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ M̄ (tk − mN)

+
M̄

Lδ−
1
2

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n

n!

for any 1 + mN ≤ k ≤ (m + 1) N. Applying formula (39), and estimates (7), (32), and (33), we get

‖ (n + 1) u1 − nu1‖H = 0,

‖ (n + 1) uk − nuk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=mN+1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, nup,

up−N − up−N−1

τ
, up−N))− f (tp, (n − 1) up,

up−N − up−N−1

τ
, up−N)

∥∥∥∥
H

τ

≤ δ−
1
2

k−1

∑
p=mN+1

L‖nup − (n − 1) up‖Hτ ≤ δ−
1
2 L

k−1

∑
p=mN+1

M̄
L
(Lδ−

1
2 tp−mN)

n

n!
τ

≤ M̄
L
(Lδ−

1
2 (tk − mN))n+1

(n + 1)!
,

∥∥∥∥ (n + 1) u1 − nu0

τ
− nu1 − nu0

τ

∥∥∥∥
H
= 0,∥∥∥∥∥ (n + 1) uk − (n + 1) uk−1

τ
− nuk − nuk−1

τ

∥∥∥∥∥
H

≤
k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tp, nup,

up−N − up−N−1

τ
, up−N))− f (tp, (n − 1) up,

up−N − up−N−1

τ
, up−N)

∥∥∥∥
H

τ

≤
k−1

∑
pmN+1

L‖nup − (n − 1) up‖Hτ ≤
k−1

∑
p=mN+1

L
M̄

Lδ−
1
2

(Lδ−
1
2 tp−mN)

n

n!
τ

≤ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n+1

(n + 1)!

for any 2 + mN ≤ k ≤ (m + 1) N. Using the triangle inequality, we get

‖(n + 1)uk‖H ≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (tk − mN)

+M̄

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 (tk − mN))n+1

(n + 1)!
,∥∥∥∥∥ (n + 1)uk − (n + 1)uk−1

τ

∥∥∥∥∥
H

≤ Mm−1 + M̃m−1 + M̄ (tk − mN)
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+
M̄

Lδ−
1
2

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n+1

(n + 1)!

for any 1 + mN ≤ k ≤ (m + 1) N. Therefore, for any n, n ≥ 1, we have that

‖ (n + 1) uk − nuk‖H ≤ M̄
L
(Lδ−

1
2 (tk − mN))n+1

(n + 1)!
,

∥∥∥∥∥ (n + 1) uk − (n + 1) uk−1

τ
− nuk − nuk−1

τ

∥∥∥∥∥
H

≤ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n+1

(n + 1)!

and
‖(n + 1)uk‖H ≤ δ−

1
2

[
Mm−1 + M̃m−1

]
+ δ−

1
2 M̄ (tk − mN)

+
M̄
L

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

L
(Lδ−

1
2 (tk − mN))n+1

(n + 1)!
,∥∥∥∥∥ (n + 1)uk − (n + 1)uk−1

τ

∥∥∥∥∥
H

≤ Mm−1 + M̃m−1 + M̄ (tk − mN)

+
M̄

Lδ−
1
2

(
δ−

1
2 L (tk − mN)

)2

2!
+ · · ·+ M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))n+1

(n + 1)!

for any 1 + mN ≤ k ≤ (m + 1) N by mathematical induction. From that and formula (37) it follows
that

‖uk‖H ≤
∥∥∥0uk

∥∥∥
H
+

∞

∑
i=0

∥∥∥(i + 1)uk − iuk
∥∥∥

H

≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+

∞

∑
i=0

M̄
L
(δ−

1
2 L (tk − mN))i+1

(i + 1)!

≤ δ−
1
2

[
Mm−1 + M̃m−1

]
+

M̄
L

eδ−
1
2 L(tk−mN),∥∥∥∥∥uk − uk−1

τ

∥∥∥∥∥
H

≤
∥∥∥∥∥0uk − 0uk−1

τ

∥∥∥∥∥
H

+
∞

∑
i=0

∥∥∥∥∥ (i + 1)uk − (i + 1)uk−1

τ
− iuk − iuk−1

τ

∥∥∥∥∥
H

≤ Mm−1 + M̃m−1 +
∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))i+1

(i + 1)!

≤ Mm−1 + M̃m−1 +
M̄

Lδ−
1
2

eδ−
1
2 L(tk−mN),

∥∥∥A
1
2 uk

∥∥∥
H

≤
∥∥∥A

1
2 0uk

∥∥∥
H
+

∞

∑
i=0

∥∥∥A
1
2 (i + 1)uk − A

1
2 iuk

∥∥∥
H

≤ Mm−1 + M̃m−1

+
∞

∑
i=0

M̄

Lδ−
1
2

(Lδ−
1
2 (tk − mN))i+1

(i + 1)!
≤ Mm−1 + M̃m−1 +

M̄

Lδ−
1
2

eδ−
1
2 L(tk−mN)

for any 1 + mN ≤ k ≤ (m + 1) N which proves the existence of a bounded solution of difference
scheme (28) in [mω, (m + 1)w]τ × H of uniformly with respect to τ.
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Step 3. Uniqueness of solution of difference scheme (28). We prove uniqueness of the uniformly

bounded solution of problem (28). Suppose that there is a bounded solution vτ =
{

vk
}∞

k=0
of

problem (28) and vτ �= uτ . Denoting zτ = vτ − uτ and using Equation (28), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk+1−2zk+zk−1

τ2 + Azk+1

= f (tk, vk, vk−N−vk−N−1

τ , vk−N)− f (tk, uk, uk−N−uk−N−1

τ , uk−N), k ≥ 1,

(
I + τ2 A

) zk+1−zk

τ = zk−zk−1

τ , k = mN, m = 1, ...,

zk = 0, −N ≤ k ≤ 0

for zτ . We consider the interval 1 ≤ k ≤ N. Since vk−N = uk−N = ϕ(tk−N), we have that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zk+1−2zk+zk−1

τ2 + Azk+1

= f (tk, vk, ϕk−N−ϕk−N−1
τ , ϕk−N)− f (tk, uk, ϕk−N−ϕk−N−1

τ , ϕk−N), 1 ≤ k ≤ N,

(
I + τ2 A

)
z1 = 0, z0 = 0.

Therefore,

‖zk‖H ≤ ‖A− 1
2 ‖H→H

k−1

∑
p=1

1
2

[
‖R‖k−p

H→H +
∥∥∥R̃

∥∥∥k−p

H→H

]

×
∥∥∥∥ f (tk, vk,

ϕk−N − ϕk−N−1
τ

, ϕk−N)− f (tk, uk,
ϕk−N − ϕk−N−1

τ
, ϕk−N)

∥∥∥∥
H

τ.

Applying estimates estimates (7), (32), and (33), we get

‖zk‖H ≤ δ−
1
2 L

k−1

∑
m=1

‖zm‖Hτ.

Using the discrete analogy of the integral inequality, we get

‖zk‖H ≤ 0.

From that it follows that zk = 0, 1 ≤ k ≤ N which proves the uniqueness of a bounded solution of
problem (28) in [0, w]τ × H of uniformly with respect to τ. Using the same method and mathematical
induction, we can prove the uniqueness of a bounded solution of problem (28) in [mω, (m + 1)w]τ × H
of uniformly with respect to τ. Theorem 8 is proved.

5. Applications of Theorem 8

First, we consider the initial value problem (17) for the one dimensional semininear hyperbolic
differential equation with time delay term and with nonlocal conditions.

The discretization of problem (17) is provided in two steps. To the differential operator A
generated by problem (17), we assign the difference operator Ax

h by the formula

Ax
h ϕh(x) = {−(a(x)ϕx)x,r + δϕr(x)}K−1

1 , (41)
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acting in the space of grid functions ϕh(x) = {ϕr}K
0 satisfying the conditions ϕ0 = ϕK, ϕ1 − ϕ0 =

ϕK − ϕK−1. It is known that Ax
h is a self-adjoint positive definite operator in L2h = L2([0, l]h) [51].

With the help of Ax
h , we arrive at the initial value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2uh(t,x)
dt2 + Ax

huh(t, x) = f h(t, x, uh(t, x), uh
t (t − w, x), uh(t − w, x)),

0 < t < ∞, x ∈ [0, l]h,

uh(t, x) = ϕh(t, x), −ω ≤ t ≤ 0, x ∈ [0, l]h.

(42)

In the second step, we replace problem (42) by first order of accuracy difference scheme (28)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k (x)+uh
k−1(x)

τ2 + Ax
huh

k+1(x) = f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)),

tk = kτ, 1 ≤ k < ∞, Nτ = ω,

(
I + τ2 Ax

h
) uh

k+1(x)−uh
k (x)

τ =
uh

k (x)−uh
k−1(x)

τ , k = mN, m = 0, 1, ...,

uh
k(x) = ϕh(tk, x), tk = kτ, −N ≤ k ≤ 0, x ∈ [0, l]h.

(43)

Theorem 9. Suppose that assumptions of Theorem 2 hold. Then, there exists a unique solution
{

uh
k

}∞

k=0
of

difference scheme (43) which is bounded in [mω, (m + 1)w]τ × L2h, m = 0, 1, · · · of uniformly with respect
to τ and h.

Proof. Difference scheme (43) can be written in abstract form (28) in a Hilbert space L2h = L2([0, l]h)
with self-adjoint positive definite operator Ah = Ax

h by formula (41). Here,

f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)) and uh
k = uh

k(x) are abstract mesh functions defined on
[0, l]h with the values in H = L2h. Therefore, the proof of Theorem 9 is based on Theorem 8 and
symmetry properties of the difference operator Ax

h .

Second, we study the initial nonlocal boundary value problem (22) for one dimensional semilinear
delay hyperbolic equations type with involution. The discretization of problem (22) is provided in
two steps. To the differential operator A generated by problem (22), we assign the difference operator
Ax

h by the formula

Ax
h ϕh(x) = {−(a(x)ϕx(x))x,r − β(a(−x)ϕx(−x))x,r + δϕr(x)}M−1

−M+1, (44)

acting in the space of grid functions ϕh(x) = {ϕr}M
−M satisfying the conditions ϕ−M = ϕM = 0. It is

known that Ax
h is a self-adjoint positive definite operator in L2h = L2([−l, l]h) [52]. With the help of

Ax
h , we arrive at the initial value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2uh(t,x)
dt2 + Ax

huh(t, x) = f h(t, x, uh(t, x), uh
t (t − w, x), uh(t − w, x)),

0 < t < ∞, x ∈ [−l, l]h,

uh(t, x) = ϕh(t, x), −ω ≤ t ≤ 0, x ∈ [−l, l]h.

(45)
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In the second step, we replace problem (45) by first order of accuracy difference scheme (28)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k (x)+uh
k−1(x)

τ2 + Ax
huh

k+1(x) = f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)),

tk = kτ, 1 ≤ k < ∞, Nτ = ω,

(
I + τ2 Ax

h
) uh

k+1(x)−uh
k (x)

τ =
uh

k (x)−uh
k−1(x)

τ , k = mN, m = 0, 1, ...,

uh
k(x) = ϕh(tk, x), tk = kτ, −N ≤ k ≤ 0, x ∈ [−l, l]h.

(46)

Theorem 10. Suppose that assumptions of Theorem 3 hold. Then, there exists a unique solution
{

uh
k

}∞

k=0
of

difference scheme (46) which is bounded in [mω, (m + 1)w]τ × L2h, m = 0, 1, · · · uniformly with respect to τ

and h.

Proof. Difference scheme (46) can be written in abstract form (28) in a Hilbert space L2h = L2([−l, l]h)
with self-adjoint positive definite operator Ah = Ax

h by formula (44). Here,

f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)) and uh
k = uh

k(x) are abstract mesh functions defined on
[−l, l]h with the values in H = L2h. Therefore, the proof of Theorem 10 is based on Theorem 8 and
symmetry properties of the difference operator Ax

h .

Third, we study the initial boundary value problem (23) for multidimensional semilinear delay
hyperbolic equations.

The discretization of problem (23) is provided in two steps. In the first step, here and in future,
we define the grid space

Ωh = {x = xr = (h1 j1, · · · , hmjm) , j = (j1, · · · , jm) , 0 ≤ jr ≤ Nr,

Nrhr = 1, r = 1, · · · , m} , Ωh = Ωh ∩ Ω, Sh = Ωh ∩ S.

We introduce the Banach space L2h = L2(Ωh) of the grid functions ϕh(x) = {ϕ(h1r1, ..., hmrm)}
defined on Ωh, equipped with the norm

‖ϕh‖L2h
=

⎛⎝ ∑
x∈Ωh

|ϕh(x)|2 h1 · · · hm

⎞⎠1/2

to the differential operator A generated by problem (23), we assign the difference operator Ax
h by

the formula

Ax
huh(x) = −

m

∑
r=1

(ar(x)uxr ,h)xr ,jr
(47)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0(∀ x ∈ Sh). It is known
that Ax

h is a self-adjoint positive definite operator in L2h. With the help of Ax
h, we arrive at the initial

value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2uh(t,x)
dt2 + Ax

huh(t, x) = f h(t, x, uh(t, x), uh
t (t − w, x), uh(t − w, x)),

0 < t < ∞, x ∈ Ωh,

uh(t, x) = ϕh(t, x), −ω ≤ t ≤ 0, x ∈ Ωh.

(48)
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In the second step, we replace problem (48) by first order of accuracy difference scheme (28)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
h (x)−2uk

h(x)+uk−1
h (x)

τ2 + Ax
huk+1

h (x) = f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)),

tk = kτ, 1 ≤ k < ∞, Nτ = ω, x ∈ Ωh,

(
I + τ2 Ax

h
) uk+1

h (x)−uk
h(x)

τ =
uk

h(x)−uk−1
h (x)

τ , k = mN, m = 0, 1, ...,

uk
h(x) = ϕh(tk, x), tk = kτ, −N ≤ k ≤ 0, x ∈ Ωh.

(49)

Theorem 11. Suppose that assumptions of Theorem 4 hold. Then, there exists a unique solution
{

uh
k

}∞

k=0
of

difference scheme (49) which is bounded in [mω, (m + 1)w]τ × L2h, m = 0, 1, · · · uniformly with respect to τ

and h.

Proof. Difference scheme (49) can be written in abstract form (28) in a Hilbert space L2h =

L2(Ωh) with self-adjoint positive definite operator Ah = Ax
h by formula (47). Here,

f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)) and uh
k = uh

k(x) are abstract mesh functions defined
on Ωh with the values in H = L2h. Therefore, the proof of Theorems 11 is based on the abstract
Theorem 8 and symmetry properties of the difference operator Ax

h defined by formula (47) and the
following theorem on coercivity inequality for the solution of the elliptic problem in L2h [53].

Theorem 12. For the solutions of the elliptic difference problem⎧⎪⎪⎨⎪⎪⎩
Ax

huh(x) = ωh(x), x ∈ Ωh,

uh(x) = 0, x ∈ Sh,

the coercivity inequality
n

∑
r=1

∥∥∥uh
xr xr

∥∥∥
L2h

≤ M1||ωh||L2h

is satisfied, where M1 does not depend on h and ωh.

Fourth, we study the initial boundary value problem (26) for multidimensional semilinear delay
hyperbolic equations. The discretization of problem (23) is provided in two steps. To the differential
operator A generated by problem (26), we assign the difference operator Ax

h by the formula

Ax
huh(x) = −

m

∑
r=1

(
ar(x)uh

xr

)
xr ,jr

+ δuh(x) (50)

acting in the space of grid functions uh(x), satisfying the conditions Dhuh(x) = 0 (∀ x ∈ Sh). Here Dh

is the approximation of operator
∂

∂−→p . With the help of Ax
h , we arrive at the initial value problem (48).

In the second step, we replace problem (48) by first order of accuracy difference scheme (28), we get
Equation (49).
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Theorem 13. Suppose that assumptions of Theorem 6 hold. Then, there exists a unique solution
{

uh
k

}∞

k=0
of

difference scheme (49) which is bounded in [mω, (m + 1)w]τ × L2h, m = 0, 1, · · · uniformly with respect to τ

and h.

Proof. Difference scheme (49) can be written in abstract form (28) in a Hilbert space L2h
= L2(Ωh) with self-adjoint positive definite operator Ah = Ax

h by formula (50). Here,

f (tk, x, uh
k(x),

uh
k−N(x)−uh

k−N−1(x)
τ , uh

k−N (x)) and uh
k = uh

k(x) are abstract mesh functions defined
on Ωh with the values in H = L2h. Therefore, the proof of Theorems 13 is based on the abstract
Theorem 8 and symmetry properties of the difference operator Ax

h defined by formula (50) and the
following theorem on coercivity inequality for the solution of the elliptic problem in L2h [53].

Theorem 14. For the solutions of the elliptic difference problem⎧⎪⎪⎨⎪⎪⎩
Ax

huh(x) = ωh(x), x ∈ Ωh,

Dhuh(x) = 0, x ∈ Sh,

the coercivity inequality
n

∑
r=1

∥∥∥uh
xr xr

∥∥∥
L2h

≤ M2||ωh||L2h

is satisfied, where M2 does not depend on h and ωh.

6. Numerical Experiments

In general, it is not able to get the exact solution of semilinear hyperbolic problems. Therefore,
numerical results for the solution of difference schemes for one and two dimensional semilinear
hyperbolic equations with time delay are presented. These results fit with the theoretical
results perfectly.

6.1. One Dimensional Case

For the numerical experiment, we consider the mixed problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 − ∂2u(t,x)

∂x2 = 2e−t sin x + cos (u (t, x) u (t − 1, x))

− cos
(
e−t sin x u (t − 1, x)

)
, 0 < t < ∞, 0 < x < 2π,

u (t, x) = e−t sin x, 0 ≤ x ≤ 2π, −1 ≤ t ≤ 0,

u (t, 0) = u (t, 2π) , ux (t, 0) = ux (t, 2π) , t ≥ 0

(51)
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for the semilinear delay one dimensional hyperbolic differential equation with nonlocal boundary
conditions. The exact solution of problem (51) is u (t, x) = e−t sin x. We will consider the following
iterative difference scheme of first order of approximation in t for the numerical solution of problem (51)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

juk+1
n −2(juk

n)+juk−1
n

τ2 − ju
k+1
n+1−2(juk+1

n )+ju
k+1
n−1

h2 = 2e−tk sin xn

+ cos
((

j−1uk
n

)
uk−N

n

)
− cos

(
e−tk sin xn

(
uk−N

n

))
,

tk = kτ, xn = nh, 1 ≤ k < ∞, 1 ≤ n ≤ M − 1, Nτ = 1, Mh = 2π,

juk+1
n −juk

n
τ − τ

h2

(
juk+1

n+1 −j uk
n+1 − 2

(
juk+1

n −j uk
n

)
+j uk+1

n−1 −j uk
n−1

)
= uk

n−uk−1
n

τ , k = mN + 1, m = 0, 1, ..., k ≥ 1,

uk
n = e−tk sin xn, tk = kτ, xn = nh, 0 ≤ n ≤ M, −N ≤ k ≤ 0,

juk
0 =j uk

M, juk
1 −j uk

0 =j uk
M −j uk

M−1, 0 ≤ k < ∞, j = 1, 2, ...

(52)

for the semilinear delay hyperbolic equation. Here and in future j denotes the iteration index and an
initial guess 0uk

n, k ≥ 1, 0 ≤ n ≤ M is to be made.
For solving difference scheme (52), the numerical steps are given below. For 0 ≤ k < N,

0 ≤ n ≤ M the algorithm is as follows :

1. j = 1.
2. j−1uk

n is known.

3. juk
n is calculated.

4. If the max absolute error between j−1uk
n and juk

n is greater than the given tolerance value, take
j = j + 1 and go to step 2. Otherwise, terminate the iteration process and take juk

n as the result of
the given problem.

We write (52) in matrix form

A
(

juk+1
)
+ B

(
juk

)
+ C

(
juk−1

)
= Rϕ(j−1uk, uk−N), 1 ≤ k < ∞,

uk =
{

e−tk sin xn
}M

n=0 , −N ≤ k ≤ 0, (53)

juk+1−juk

τ −
{

τ
h2

(
juk+1

n+1 −j uk
n+1 − 2

(
juk+1

n −j uk
n

)
+j uk+1

n−1 −j uk
n−1

)}M−1

n=1
= uk−uk−1

τ , k = mN + 1, k ≥ 1.
(54)

Here R, A, B, and C are (M + 1)× (M + 1) matrices given below:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . 0 0
0 1 0 0 0 . 0 0
0 0 1 0 0 . 0 0
. . . . . . . .
0 0 0 0 0 . 1 0
0 0 0 0 0 . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . 0 −1
a b a 0 0 . 0 0
0 a b a 0 . 0 0
0 0 a b a . 0 0
0 0 0 a b . 0 0
. . . . . . . .
0 0 0 0 0 . b a
1 −1 0 0 0 . −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . 0 0
0 c 0 0 0 . 0 0
0 0 c 0 0 . 0 0
0 0 0 c 0 . 0 0
. . . . . . . .
0 0 0 0 0 . c 0
0 0 0 0 0 . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . 0 0
0 d 0 0 0 . 0 0
0 0 d 0 0 . 0 0
0 0 0 d 0 . 0 0
. . . . . . . .
0 0 0 0 0 . d 0
0 0 0 0 0 . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

a = − 1
h2 , b =

1
τ2 +

2
h2 , c = − 2

τ2 , d =
1
τ2 .

Finally, here ϕ(j−1uk, uk−N) and jus, s = k, k ± 1 are (M + 1)× 1 column vectors as

ϕ(j−1uk, uk−N) =

⎡⎢⎢⎢⎢⎢⎣
0

j ϕ
k
1

.

j ϕ
k
M−1
0

⎤⎥⎥⎥⎥⎥⎦ , jus =

⎡⎢⎢⎢⎢⎢⎣
jus

0

jus
1

.

jus
M−1

jus
M

⎤⎥⎥⎥⎥⎥⎦ ,

j ϕ
k
n = 2e−tk sin xn + cos

(
(j−1uk

n)(u
k−N
n )

)
− cos

(
e−tk sin xnuk−N

n

)
for 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1.

So, we have the initial value problem for the second order difference equation with respect to k
with matrix coefficients. From Equations (53) and (54) it follows that

juk+1 = −A−1
(

Bjuk − Cjuk−1 + A−1Rϕk(j−1uk, uk−N)
)

,

juk =
{

e−tk sin xn
}M

n=0 , −N ≤ k ≤ 0,

juk+1 = ψ
(

uk, uk−1
)

, k = mN + 1, m = 0, 1, ..., k ≥ 1. (55)

Here, ψ
(

uk, uk−1
)

is (M + 1)× 1 column vector defined by formula (54).
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In computations the initial guess is chosen as 0uk = {sin xn}M
n=0 and when the maximum errors

between two consecutive results of iterative difference scheme (52) become less than 10−8, the iterative
process is terminated. We present numerical experimental results for different values of N and M
and uk

n represent the numerical solutions of difference scheme (52) at (tk, xn) . The table of numerical
results is constructed for N = M = 30, 60, 120 in t ∈ [0, 1] , t ∈ [1, 2] , t ∈ [2, 3], respectively and the
errors are computed by the following formula

mEN
M = max

mN+1≤k≤(m+1)N,0≤n≤M

∣∣∣u (tk, xn)−j uk
n

∣∣∣ .

As can be seen from tables, these numerical experiments support the theoretical statements.
The number of iterations and maximum errors are decreasing with the increase of grid points.

In Table 1, as we increase values of M and N each time starting from M = N = 30 by a factor of 2
the errors in the first order of accuracy difference scheme decrease approximately by a factor of 1/2.
The errors presented in Table 1 indicate the first order of accuracy of the difference scheme.

Table 1. The errors (52) (Number of the iteration = j).

mEN
M /(N, M) (30,30) (60,60) (120,120)

in t ∈ [0, 1] 4.1195 × 10−3, j = 6 2.0322 × 10−3, j = 6 1.0098 × 10−3, j = 6

in t ∈ [1, 2] 2.3014 × 10−3, j = 6 1.1297 × 10−3, j = 6 5.6051 × 10−4, j = 2

in t ∈ [2, 3] 1.0245 × 10−3, j = 6 5.0161 × 10−4, j = 6 2.4864 × 10−4, j = 6

6.2. Two-Dimensional Case

For the numerical experiment, we consider the mixed boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x,y)
∂t2 − ∂2u(t,x,y)

∂x2 − ∂2u(t,x,y)
∂y2 = 2e−t sin x sin y + cos (u (t, x, y) u (t − 1, x, y))

− cos
(
e−t sin x sin y u (t − 1, x, y)

)
, 0 < t < ∞, 0 < x, y < π,

u (t, x, y) = e−t sin x sin y, 0 ≤ x, y ≤ π, −1 ≤ t ≤ 0,

u (t, 0, y) = u (t, π, y) = 0, 0 ≤ y ≤ π, t ≥ 0,

u (t, x, 0) = u (t, x, π) = 0, 0 ≤ x ≤ π, t ≥ 0

(56)
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for the semilinear two dimensional delay hyperbolic equation. The exact solution of problem (56) is
u (t, x) = e−t sin x sin y. We will consider the following iterative difference scheme of first order of
approximation in t for the numerical solution of the initial-boundary value problem (56)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ju
k+1
n,i −2(juk

n,i)+ju
k−1
n,i

τ2 − ju
k+1
n+1,i−2(ju

k+1
n,i )+ju

k+1
n−1,i

h2 − ju
k+1
n,i+1−2(ju

k+1
n,i )+ju

k+1
n,i−1

h2

= 2e−tk sin xn sin xi + cos
((

j−1uk
n,i

)
uk−N

n,i

)
− cos

(
e−tk sin xn sin xiuk−N

n,i

)
,

tk = kτ, xn = nh, 1 ≤ k < ∞, 1 ≤ n, i ≤ M − 1, Nτ = 1, Mh = π,

uk
n,i = e−tk sin xn sin xi, tk = kτ, xn = nh, 0, i ≤ M, −N ≤ k ≤ 0,

ju
k+1
n,i −juk

n,i
τ − τ

h2

(
juk+1

n+1,i −j uk
n+1,i − 2

(
juk+1

n,i −j uk
n,i

)
+j uk+1

n,i−1 −j uk
n,i−1

)
− τ

h2

(
juk+1

n,i+1 −j uk
n,i+1 − 2

(
juk+1

n,i −j uk
n,i

)
+j u1

n−1,i −j uk
n−1,i

)
=

uk
n,i−uk−1

n,i
τ , k = mN + 1, m = 0, 1, ..., k ≥ 1,

juk
0,i =j uk

M,i = 0, 0 ≤ i ≤ M,j uk
n,0 =j uk

n,M = 0, 0 ≤ n ≤ M,

0 ≤ k < ∞, j = 1, 2, ...

(57)

for the semilinear delay hyperbolic equation. Here and in the future j denotes the iteration index
and an initial guess 0uk

n,i, k ≥ 1, 0 ≤ n, i ≤ M is to be made. For solving difference scheme (57),
the numerical steps are given below. For 0 ≤ k < N, 0 ≤ n, i ≤ M the algorithm is as follows :

1. j = 1.
2. j−1uk

n,i is known.

3. juk
n,i is calculated.

4. If the max absolute error between j−1uk
n,i and juk

n,i is greater than the given tolerance value, take
j = j + 1 and go to step 2. Otherwise, terminate the iteration process and take juk

n,i as the result of
the given problem.

We write Equation (57) in matrix form

A
(

juk+1
)
+ B

(
juk

)
+ C

(
juk−1

)
= Rϕ(j−1uk, uk−N), 1 ≤ k < ∞,

uk =
{

e−tk sin xn sin xi
}M

n,i=0 , −N ≤ k ≤ 0, (58)

juk+1 −j uk

τ
−

{ τ

h2

(
juk+1

n+1,i −j uk
n+1,i − 2

(
juk+1

n,i −j uk
n,i

)
+j uk+1

n,i−1 −j uk
n,i−1

)}M−1

n,i=1

−
{ τ

h2

(
juk+1

n,i+1 −j uk
n,i+1 − 2

(
juk+1

n,i −j uk
n,i

)
+j uk+1

n−1,i −j uk
n−1,i

)}M−1

n,i=1

=
uk − uk−1

τ
, k = mN + 1, m = 0, 1, ..., k ≥ 1.

Here R, A, B, and C are (M + 1)× (M + 1)× (M + 1) given matrices and ϕ(j−1uk, uk−N) and

jus, s = k, k ± 1 are given (M + 1)× (M + 1)× 1 column vectors. Therefore, we will use the same
algorithm as the one dimensional case.

217



Mathematics 2019, 7, 1163

So, we have the initial value problem for the second order difference equation with respect to k
with matrix coefficients. From Equations (53) and (54) it follows that

juk+1 = −A−1
(

Bjuk − Cjuk−1 + A−1Rϕk(j−1uk, uk−N)
)

, 1 ≤ k < ∞,

uk =
{

e−tk sin xn sin xi
}M

n,i=0 , −N ≤ k ≤ 0,

juk+1 = ψ
(

uk, uk−1
)

, k = mN + 1, m = 0, 1, ..., k ≥ 1. (59)

Here, ψ
(

uk, uk−1
)

is the given (M + 1)× (M + 1)× 1 column vector.

In computations the initial guess is chosen as 0uk = {sin xn sin xi}M
n,i=0 and when the maximum

errors between two consecutive results of iterative difference scheme (57) become less than 10−6,
the iterative process is terminated. We present numerical results for different values of N and M and
uk

n,i represent the numerical solutions of this difference scheme at (tk, xn, xi) . The table is constructed
for N = M = 20, 40, 80 in t ∈ [0, 1] , t ∈ [1, 2] , t ∈ [2, 3], respectively and the errors are computed by
the following formula

mEN
M,M = max

mN+1≤k≤(m+1)N,0≤n,i≤M

∣∣∣u (tk, xn, xi)−j uk
n,i

∣∣∣ .

As can be seen from table, these numerical experiments support the theoretical statements.
The number of iterations and maximum errors are decreasing with the increase of grid points.

In Table 2, as we increase values of M and N each time starting from M = N = 30 by a factor of 2
the errors in the first order of accuracy difference scheme decrease approximately by a factor of 1/2.
The errors presented in tables indicate the the time convergence order is one. This result fits with the
theoretical results perfectly.

Table 2. The errors of difference scheme (57) (Number of the iteration = j).

mEN
M,M /(N, M, M) (20,20,20) (40,40,40) (80,80,80)

in t ∈ [0, 1] 1.2517 × 10−2, j = 4 0.6554 × 10−2, j = 4 0.3348 × 10−2, j = 4

in t ∈ [1, 2] 1.2517 × 10−2, j = 3 0.6556 × 10−2, j = 3 0.3348 × 10−2, j = 3

in t ∈ [2, 3] 2.3678 × 10−3, j = 2 1.4306 × 10−3, j = 2 0.7870 × 10−3, j = 2

6.3. Conclusions and Our Future Plans

1. In the present paper, the main theorem on the existence and uniqueness of a bounded solution
of the initial value problem for a semilinear hyperbolic equation with time delay in a Hilbert space with
the self adjoint positive definite operator is established. In applications, the existence and uniqueness
of a bounded solution of four problems for semilinear hyperbolic equations with time delay are
obtained. A first order of accuracy difference scheme for the numerical solution of the abstract problem
is presented. The theorem on the existence and uniqueness of an uniformly bounded solution of this
difference scheme with respect to τ is established. In applications, the existence and uniqueness of
a uniformly bounded solutions with respect to time and space stepsizes of difference schemes for
four semilinear partial differential equations with time delay are obtained. Numerical results for the
solution of difference schemes for one and two dimensional semilinear delay hyperbolic equation
are presented.

2. We are interested in studying uniformly boundedness of solutions of high order of accuracy
difference schemes uniformly with respect to time stepsize of approximate solutions of this initial-value
problem, in which bounded solutions were established without any assumptions in respect to the
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grid steps τ and h. We have not been able to establish such type of results for the solution of the very
well-known second order difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1−2uk+uk−1

τ2 + Auk = f (tk, uk, uk−N−uk−N−1

τ , uk−N),

tk = kτ, 1 ≤ k < ∞, Nτ = ω,

(
I + τ2 A

) uk+1−uk

τ = 2uk−3uk−1+uk−2

τ , k = mN, m = 1, ...,

uk = ϕ(tk), tk = kτ, −N ≤ k ≤ 0.

Note that absolute stable two-step difference schemes of the high order of approximation for
hyperbolic partial differential equations were presented and investigated in papers [11,54]. Applying
methods of the present paper and papers [11,54] we can establish the similar stability and convergence
results of this paper for the solution of the absolute stable two-step difference schemes of high order of
approximation for semilinear delay hyperbolic equations.

3. Investigate the uniform to-step difference schemes and asymptotic formulas for the solution of
initial value perturbation problem⎧⎪⎨⎪⎩

ε2u′′(t) + Au(t) = f (t, u(t), ut(t − w), u(t − w)), t > 0,

u(t) = ϕ(t), −w ≤ t ≤ 0

for a semilinear delay hyperbolic equation in a Hilbert space H with the self adjoint positive definite
operator A and with ε ∈ (0, ∞) parameter multiplying the highest order derivative term.

In [31], the uniform difference schemes and asymptotic formulas for the solution of initial value
perturbation problem for a linear hyperbolic equation in a Hilbert space with the self adjoint positive
definite operator and with ε ∈ (0, ∞) parameter multiplying the highest order derivative term were
presented and investigated.

4. Investigate the initial value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt(t)dt + Au(t)dt = f (t, u(t), ut(t − w), u(t − ω))dwt,

wt =
√

tξ, ξ ∈ N(0, 1), t > 0,

u(t) = 0, −ω ≤ t ≤ 0

for a semilinear stochastic hyperbolic equation with time delay in a Hilbert space H with the self
adjoint positive definite operator A. Here, wt is a standard Wiener process given on the probability
space (Q, F, P).

Note that absolute stable difference schemes for stochastic linear hyperbolic equations in Hilbert
spaces were presented and investigated in [30].

Finally, in paper [55], a Lie algebra approach is applied to solve an SIS model where infection rate
and recovery rate are time-varying. The method presented here has been used widely in chemical and
physical sciences but not in epidemic applications due to insufficient symmetries.
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Abstract: In recent works, exact and nonstandard finite difference schemes for scalar first order linear
delay differential equations have been proposed. The aim of the present work is to extend these
previous results to systems of coupled delay differential equations X′(t) = AX(t) + BX(t − τ), where
X is a vector, and A and B are commuting real matrices, in general not simultaneously diagonalizable.
Based on a constructive expression for the exact solution of the vector equation, an exact scheme is
obtained, and different nonstandard numerical schemes of increasing order are proposed. Dynamic
consistency properties of the new nonstandard schemes are illustrated with numerical examples,
and proved for a class of methods.

Keywords: delay systems; nonstandard numerical methods; dynamic consistency

1. Introduction

Due to the presence of time lags in the dynamics of most real systems, delay differential equations
(DDE) have become basic instruments in the mathematical modelling of a wide range of problems
in science and engineering, such as in population biology, physiology, epidemiology, economics,
and control problems (see, e.g., [1–5], and references therein), and special methods have been developed
to compute numerical solutions for DDE [6]. In the case of differential problems without delay, exact
schemes have been defined for different particular problems, and the use of nonstandard finite
difference (NSFD) numerical schemes has gained increasing interest in the last years [7–9]. The NSFD
numerical schemes can be competitive in terms of accuracy while providing dynamically consistent
solutions, i.e., they can provide numerical discrete solutions that inherit the structural properties
defining the dynamical behaviour of the original continuous equation [10]. The possibility of defining
NSFD schemes that reproduce the qualitative behaviour of the continuous solutions has made them
specially attractive for population and epidemiology models (e.g., [11–15]), and they have also been
proposed for some problems with delay [16–21]. However, for DDE models the construction of exact
schemes, and consequently of NSFD methods derived from them, has not been much developed.

In [22], a NSFD method was proposed for the scalar first order linear delay problem

x′(t) = αx(t) + βx(t − τ), t > 0, (1)

x(t) = f (t), −τ ≤ t ≤ 0, (2)

where α, β ∈ R, τ > 0, and f : [−τ, 0] → R is a continuous function. The method of [22] was exact
in the initial time interval 0 ≤ t ≤ τ, and then switched to a NSFD method of second order at most.
More recently [23], an exact scheme for problem (1)–(2) was constructed, valid in the whole domain
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of definition, and a family of increasing order NSFD schemes was defined. The NSFD methods
presented in [22,23] were shown to be consistent with different dynamical properties of the continuous
problem (1)–(2).

In the present work, we consider the coupled linear delay system

X′(t) = AX(t) + BX(t − τ), t > 0, (3)

satisfying the initial condition
X(t) = F(t), −τ ≤ t ≤ 0, (4)

where X(t) and F(t) are d-dimensional real vector functions, and A and B are d × d commuting real
matrices, in general not simultaneously diagonalizable.

The usefulness of nonstandard schemes for scalar linear delay problems and their possible
advantages over alternative numerical methods have been discussed in [22,23]. Particularly, the family
of schemes proposed in [23] allows the computation of numerical solutions for scalar linear delay
problems with the required degree of accuracy and with comparatively low computational complexity.
Moreover, the numerical approximations obtained with these nonstandard schemes reproduce
dynamical properties of the exact continuous solutions, such as asymptotic stability, positivity,
and oscillation behaviour.

The aim, and main contribution, of the present work is to make available, for a wide class of
coupled linear delay differential systems, NSFD methods that possess analogous advantages to those
in the scalar setting, exhibiting similar properties in terms of accuracy and dynamic consistency. It is
to be remarked that for a class of the new NSFD schemes proposed in this work, the FM schemes
as defined in Theorem 3, it is rigorously proved that they preserve delay dependent stability. This
is a property that usual alternative methods, such as natural Runge-Kutta methods, do not possess,
and that is challenging to prove for numerical methods for linear delay systems [6] (p. 356).

There are two main difficulties when dealing with problem (3)–(4), compared with the
corresponding scalar problem (1)–(2). Firstly, the obtention of an exact constructive solution that would
allow deriving an exact scheme. Secondly, once the new NSFD schemes are defined, the process of
proving dynamical properties, which is much more complex than in the scalar case. To overcome these
difficulties, the key point is to assume commutativity of the coupled coefficient matrices, a property
also considered in other problems involving delay systems [24]. With this assumption, a compact
expression for the exact solution of problem (3)–(4), analogous to the scalar case, can be obtained. Also,
for commuting matrices, a common Schur basis exists and both matrix coefficients in (3), A and B,
can be simultaneously reduced to triangular form, which facilitates analyzing the dynamical properties
of the new proposed NSFD schemes.

This paper is structured as follows. In the next section, based on a constructive expression for the
exact solution of the initial value vector problem (3)–(4), an exact scheme that is valid in the whole
domain of definition is obtained. In Section 3, a family of new nonstandard schemes of increasing order
of accuracy are proposed. Next, in Section 4, dynamic consistency properties of the new nonstandard
schemes are illustrated with numerical examples and proved for a class of methods. In the final section,
the results are summarized and discussed.

2. Exact Numerical Scheme

In our next theorem we present an explicit expression for the solution of problem (3)–(4), derived
by using the method of steps [25] (pp. 45–47) and an integral convolution [26] (p. 67), in a similar way
as was done in [27] for the scalar problem (1)–(2).
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Theorem 1. The exact solution of (3)–(4) is given by X(t) = F(t), for −τ ≤ t ≤ 0, and, for (m − 1)τ < t ≤
mτ and m ≥ 1,

X(t) =
m−1

∑
k=0

Bk(t − kτ)k

k!
eA(t−kτ)F(0) +

m−2

∑
k=0

Bk+1

k!

∫ 0

−τ
(t − (k + 1)τ − s)keA(t−(k+1)τ−s)F(s)ds

+
Bm

(m − 1)!

∫ t−mτ

−τ
(t − mτ − s)m−1eA(t−mτ−s)F(s)ds, (5)

where the second summation is assumed to be empty for m = 1.

Proof. For m = 1, one has X(t) = eAtF(0) + B
∫ t−τ
−τ eA(t−τ−s)F(s)ds, so that X(0) = F(0) and X′(t) =

AX(t) + BF(t − τ) = AX(t) + BX(t − τ). For m > 1, it is also immediate to check that X′(t) =

AX(t) + BX(t − τ), and that the expressions given by (5) for two consecutive intervals agree at the
connecting points t = mτ. Thus, X(t) is continuous for t > −τ, with continuous derivative for t > 0,
and satisfies (3)–(4).

From the exact solution given in Theorem 1, an exact numerical difference scheme can be obtained,
in a similar way as done in [23] for the scalar case, as shown in the next theorem.

Theorem 2. Let h > 0 such that Nh = τ, for some integer N ≥ 1. Writing tn ≡ nh and Xn ≡ X(tn), for
n ≥ −N, the numerical solution given by Xn = F(tn), for −N ≤ n ≤ 0, and, for (m − 1)τ ≤ nh < mτ and
m ≥ 1 by

Xn+1 = eAh
m−1

∑
k=0

Bkhk

k!
Xn−kN +

Bm

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1eA(tn−mτ+h−s)F(s)ds, (6)

defines an exact numerical scheme for problem (3)–(4).

Proof. Write X(t) = E1(t) + E2(t) + E3(t), corresponding to the three terms in expression (5). Then,
expanding the binomial terms and rearranging and renaming indices, one has

E1(tn+1) = E1(tn + h) =
m−1

∑
k=0

Bk(tn − kτ + h)k

k!
eA(tn−kτ+h)F(0)

= eAh
m−1

∑
k=0

k

∑
r=0

Brhr

r!
Bk−r(tn − rτ − (k − r)τ)k−r

(k − r)!
eA(tn−rτ−(k−r)τ)F(0)

= eAh
m−1

∑
k=0

Bkhk

k!

m−1−k

∑
r=0

Br(tn − kτ − rτ)r

r!
eA(tn−kτ−rτ)F(0) = eAh

m−1

∑
k=0

Bkhk

k!
E1(tn − kN).

In a similar way, one gets

E2(tn+1) = eAh
m−2

∑
k=0

Bkhk

k!
E2(tn − kN) = eAh

m−1

∑
k=0

Bkhk

k!
E2(tn − kN),

since E2(tn − (m − 1)N) = 0 for (m − 1)τ ≤ tn < mτ. Also,

E3(tn+1) = eAh
m−1

∑
k=0

Bkhk

k!
E3(tn − kN) +

Bm

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1eA(tn−mτ+h−s)F(s)ds,

so that expression (6) is recovered.
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Remark 1. The expressions given in Theorems 1 and 2 are also valid when A = 0, i.e., for the particular case of
the pure delay problem

X′(t) = BX(t − τ), t > 0, X(t) = F(t), −τ ≤ t ≤ 0. (7)

If A and B are diagonal, or in the case where they are simultaneously diagonalizable after the usual change
of variables, problem (3)–(4) consists of d independent scalar problems, and the expressions given by Theorems 1
and 2 for each component of X(t) coincide with those given in [23] for the corresponding scalar problems.

Example 1. Figure 1 presents a numerical example of application of the results of this section, showing the
continuous solution given by Theorem 1 (lines) and the exact numerical solution of Theorem 2 with N = 5
(points), for the problem (3)–(4) with parameters τ = 1 and

A =

(
−3/2 1
−2 3/2

)
, B =

(
5/4 −1

2 −7/4

)
, F(t) =

(
2(t + 1)
(t + 1)2

)
.

(a) (b)

Figure 1. Exact solutions (lines) and numerical solutions provided by the exact scheme (points) for the
two components of Example 1. (a) First component, X1(t). (b) Second component, X2(t).

3. Nonstandard Finite Difference Methods of Increasing Orders

The exact numerical solution given by Theorem 2 has the drawback of the integral term in (6),
as an exact expression could be obtained for certain initial functions F(t), but in general a numerical
approximation would be needed. A class of methods could be derived by approximating this integral
term, either by using some numerical integration algorithm or by approximating the initial function
with some family of functions that allowed the explicit computation of the integral. Instead, as
proposed in [23] for the scalar problem, a family of nonstandard methods of increasing orders can be
derived by computing the exact solution in the first M intervals and then discarding the integral term,
as shown in the next theorem. We define two classes of methods of order M, FM and TM methods,
depending on whether the full sum in (6) is kept or a truncated sum is used.

Theorem 3. Let N ≥ 1 and h = τ/N. For a given M ≥ 1, assume that the values of Xn, for n = −N . . . MN,
are computed using the exact scheme of Theorem 2. Define FM and TM schemes to compute successive values for
any m > M by the expressions

FM := Xn+1 = eAh
m−1

∑
k=0

Bkhk

k!
Xn−kN , (m − 1)τ ≤ nh < mτ, (8)
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TM := Xn+1 = eAh
M

∑
k=0

Bkhk

k!
Xn−kN , (m − 1)τ ≤ nh < mτ. (9)

Then, both numerical schemes, FM and TM, have local error O(hM+1) and order M.

Proof. Let ‖ ‖ be any vector norm and a compatible norm for matrices, and consider the scheme TM.
Assume that ‖X(tk)− Xk‖ = O(hM+1) for k ≤ n, which is the case for nh ≤ Mτ. Then, for m ≥ M + 1
and (m − 1)τ ≤ nh < mτ, using (6), one gets

‖X(tn+1)− Xn+1‖ ≤ ‖eAh‖
M

∑
k=0

‖B‖khk

k!
‖X(tn−kN)− Xn−kN‖

+
‖B‖m

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1‖eA(tn−mτ+h−s)‖‖F(s)‖ds. (10)

Let M = ‖B‖, and M1, M2 > 0 such that ‖eAs‖ < M1 and ‖F(s)‖ < M2 for s ∈ [0, h]. Then,
by the induction hypothesis, the first term in (10) is O(hM+1) and the second term is bounded by

Mm M1M2

(m − 1)!

∫ tn−mτ+h

tn−mτ
(tn − mτ + h − s)m−1ds <

Mm M1M2

(m − 1)!
hm ≤ O(hM+1).

Similar arguments result in the same bounds holding for the scheme FM.

Remark 2. The results of Theorem 3 also hold if the values for Xn in the first intervals are computed using any
numerical method of order at least O(hM+1), instead of using the exact scheme. Although both types of schemes,
FM and TM, have the same order, more general dynamic consistency properties can be proved for the class of
FM schemes, as shown in the next section.

The error analysis of the methods provided by Theorem 3 is illustrated in the next two figures.
Errors of numerical solutions for Example 1, computed using TM schemes of three different orders,
are shown in Figure 2 (top). The corresponding errors relative to the expected order, i.e., errors divided
by hM, are shown in Figure 2 (bottom), with results in agreement with the expected orders given by
Theorem 3.

Figure 3 presents the errors in relation with the size of the mesh for numerical solutions of
Example 1 computed using T3, the truncated method with M = 3. Errors overlap when divided by h3,
clearly showing that the method is of order three, as established in Theorem 3.
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(a) (b)

(c) (d)

Figure 2. Absolute errors (log-scale) of numerical solutions for Example 1, computed using three
different TM schemes of increasing orders, with h = 0.1. (a,b) Absolute errors for the first and second
component, respectively. (c,d) Errors divided by hM.

(a) (b)

(c) (d)

Figure 3. Errors (log-scale) of numerical solutions for Example 1, computed with the method T3 using
three different mesh sizes. (a,b) Absolute errors for the first and second component, respectively.
(c,d) Errors divided by h3.
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4. Dynamic Consistency Properties

In this section we analyse the consistency between dynamic properties of the numerical solutions
resulting from applying the FM and TM schemes defined in Theorem 3 and the continuous solutions
of problem (3)–(4).

4.1. Asymptotic Stability

First we will show that the FM schemes defined in Theorem 3 preserve delay-dependent stability,
i.e., that they are τ(0)-stable [28].

It is well known that for the trivial solution of (3)–(4) to be asymptotically stable it is necessary
and sufficient that all the roots λi of the characteristic equation

det(λI − A − e−λτ B) = 0, (11)

where I is the d × d identity matrix, have negative real parts, "(λi) < 0. This condition, involving a
transcendental equation with an infinite number of roots, is difficult to verify in general. However,
when A and B commute, there is a common Schur basis for them, and they can be simultaneously
reduced to triangular form, with elements in the diagonal corresponding to the eigenvalues of each
matrix [29]. Thus, in this case, condition (11) is equivalent to

d

∏
i=1

(λ − αi − e−λτ βi) = 0, (12)

where (αi, βi) are pairs of eigenvalues of A and B, as they appear in the i diagonal position in the
common triangular form. Hence, writing (α, β) for any of these pairs, it follows that if the trivial
solution of (3)–(4) is asymptotically stable then

λ − α − e−λτ β = 0 (13)

implies "(λ) < 0.
Consider now the difference equations system (8) defining the FM scheme. For any n such that

(m − 1)τ ≤ nh = nτ/N < mτ, the integer part of n/N is [n/N] = m − 1. Thus, we can write (8) in
the form of a Volterra difference system of convolution type,

Xn+1 =
n

∑
j=0

BjXn−j, (14)

by setting Bj = 0, the d-dimensional zero matrix, when j �= kN, and

Bj = eAh Bj/Nhj/N

(j/N)!
(15)

when j = kN, for integer k. Thus, using the Z-transform method, it holds that the system (14) is
asymptotically stable if all roots of the characteristic equation

det(zI − B̃(z)) = 0, (16)

satisfy |z| < 1 [30] (Theorem 5.21), where B̃(z) is the Z transform of B. In this case,

B̃(z) =
∞

∑
j=0

Bjz−j = eAh
∞

∑
k=0

Bkhk

k!
z−kN = eAheBh/zN

. (17)

Now we have the basis to prove our next theorem.
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Theorem 4 (τ(0)-stability). Consider problem (3)–(4) and the FM schemes defined in Theorem 3. If the trivial
solution of (3)–(4) is asymptotically stable then the numerical solutions computed using FM schemes are also
asymptotically stable.

Proof. From the common triangular decompositions of A and B, it follows that every root of (16) must
satisfy, for some pair of ordered eigenvalues (α, β),

z − eαheβh/zN
= 0 =⇒ ln(z)− αh − βh/zN = 0. (18)

Writing ln(z) = λτ/N, so that z−N = exp(−λτ), one gets from (18)

λτ/N − αh − βh exp(−λτ) = 0, (19)

which is equivalent to (13), since h = τ/N. Hence, if the trivial solution of (3)–(4) is asymptotically
stable it must hold that "(λ) < 0, and therefore |z| = exp("(λτ/N)) < 1.

Remark 3. For the class of TM schemes, a general and unconditional result similar to Theorem 4 is not to be
expected, as shown by considering the simple case where A = 0, M = 1, and N = 1, so that the T1 scheme
reduces to

Xn+1 = Xn + BhXn−1. (20)

If B has a real eigenvalue β, the trivial solution of the pure delay problem (7) is asymptotically stable if
|β| < π/2, while the asymptotic stability of (20) requires the more stringent condition |β| < 1 [31].

Delay Independent Stability

Our next theorem shows that the class of TM schemes do preserve absolute or delay independent
stability, i.e., that they are P-stable [6] (p. 296). This is also trivially the case for FM schemes, as
P-stability is a weaker condition than τ(0)-stability.

Theorem 5 (P-stability). Consider problem (3)–(4) and the TM schemes defined in Theorem 3. If the trivial
solution of (3)–(4) is asymptotically stable for all values of τ, then the numerical solutions computed using TM
schemes are also asymptotically stable.

Proof. Using the common triangular forms of A and B, and considering a pair of ordered eigenvalues
(α, β), a necessary condition for the trivial solution of (3)–(4) to be delay-independent asymptotically
stable is [31,32]

"(α) + |β| < 0. (21)

The solution of the difference system (9) defining the TM scheme is asymptotically stable if all
roots of the characteristic equation

det

(
zMN+1 I − eAh

M

∑
k=0

Bkhk

k!
z(M−k)N

)
= 0 (22)

are inside the unit disc. A nonzero z is a root of (22) if for a pair (α, β) it holds that

z − eαh
M

∑
k=0

βkhk

k!
z−kN = 0. (23)

Thus, if condition (21) hold and we assume that there is a root with |z| ≥ 1, we would get a
contradiction, since, from (23),

230



Mathematics 2019, 7, 1038

|z| ≤ e"(αh)
M

∑
k=0

|β|khk

k!
|z|−kN < e("(α)+|β|)h < 1. (24)

The stability analysis provided by Theorems 4 and 5 assures that, for a fixed delay, the region of
asymptotic stability for (3)–(4) is contained in the region of asymptotic stability of FM schemes, while
for TM schemes it can only be assured that the region of asymptotic stability of (3)–(4) for all delays
is contained in the corresponding region for the numerical solution. However, TM schemes usually
perform much better than can be guaranteed, as shown in the next example.

Example 2. Figure 4 shows the numerical solutions computed with the method T2, with N = 5, for the pure
delay problem (7) with parameters

B =

(
−0.435 0.0325

0.13 −0.435

)
, F(t) =

(
cos(πt)
(t + 1)2

)
,

and two different values of delay, τ = 3 and τ = 3.3.
Matrix B has real eigenvalues, λ1 = −0.37 and λ2 = −0.5. Hence, in this case the trivial solution of (7) is

asymptotically stable if all the eigenvalues β of B satisfy |β|τ < π/2 [6] (p. 289), i.e., for τ < π. As shown in
Figure 4, the numerical solutions present the correct behaviour, even for values of τ close to the limit of stability.
For both components, the solution approach zero as t increases for τ = 3, inside the region of stability (Figure 4,
top), while they diverge for τ = 3.3, outside the region of stability (Figure 4, bottom).

(a) (b)

(c) (d)

Figure 4. Numerical solutions computed with the method T2 for Example 2 with two different values
of delay, showing stable and unstable behaviours. (a,b) First and second component, respectively,
with delay τ = 3. (c,d) First and second component, respectively, with delay τ = 3.3.
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4.2. Oscillation and Positivity

Our next theorem shows that FM schemes also preserve the oscillation properties of exact
solutions for problem (3)–(4).

We recall that a solution of (3) is said to oscillate if every component of the solution has arbitrary
large zeros; otherwise it is called non-oscillatory [33] (Definition 5.0.1). It is known that every solution
of the delay differential system (3) oscillates if and only if the characteristic Equation (11) has no real
roots [33] (Theorem 5.1.1).

Theorem 6 (Oscillation). If every solution of (3)–(4) oscillates, then the numerical solutions computed using
FM schemes also oscillate.

We will use the result of the following lemma, whose proof is similar to that of Theorem 7.1.1
in [33].

Lemma 1. Consider the linear system of difference Equation (8) defining the FM scheme. Every solution of (8)
oscillates if and only if the characteristic Equation (16) has no positive roots.

Proof of Theorem 6. Using common triangular decompositions of A and B, if every solution of (3)–(4)
oscillates then, for any pair of ordered eigenvalues (α, β), Equation (13), or equivalently Equation (19),
has no real roots. If we assume that there is a non-oscillatory solution of (8) we get a contradiction,
since, from Lemma 1, there would be a positive z satisfying

z − eαheβh/zN
= 0, (25)

and writing z = exp(λh), we would get Equation (19) with λ a real root.

Remark 4. For the class of TM schemes, a general result similar to Theorem 6 seems difficult, although particular
cases could be dealt with, as shown in our next proposition.

Proposition 1. If every solution of the pure delay problem (7) oscillates, then the numerical solutions computed
using the T1 scheme also oscillate.

Proof. For the pure delay problem (7), an equivalent condition for every solution to oscillate is that B
has no real eigenvalues in the interval [−1/eτ,+∞) [33] (Theorem 5.2.2). The characteristic equation
for the system of difference equations (9) defining the T1 scheme, i.e., Equation (22) with A = 0 and
M = 1, reads

det
(
(zN+1 − zN)I − Bh

)
= 0, (26)

and every solution oscillates if (26) has no positive roots [33] (Theorem 7.1.1). But z is a root of (26) if
for an eigenvalue β of B it holds that

zN+1 − zN = βh. (27)

Thus, if every solution of (7) oscillates, so that any possible real eigenvalue β of B satisfies
βτ < −1/e, and we assume that there is a positive root of (27), we get a contradiction. From (27), if z
is positive, then β is real and zN(z − 1) = βτ/N < 0. Hence, it follows that z < 1 and

NzN(1 − z) = −βτ > e−1.

But for 0 < z < 1, the maximum value of NzN(1 − z) is attained when z = N/(N + 1), so that

NzN(1 − z) ≤
(

N
N + 1

)N+1
< e−1.

232



Mathematics 2019, 7, 1038

Example 3. Figure 5 shows the numerical solution computed with the method T2, with N = 10, for the first
component of the pure delay problem (7) with parameters τ = 1 and B and F(t) as in Example 2. In this case,
every solution oscillates if all the eigenvalues β of B satisfy |β|τ > 1/e ≈ 0.3679. As shown in Figure 4,
the numerical solutions preserve the correct behaviour, even for a value of τ very close to the limit of oscillation.

(a) (b)

(c) (d)

Figure 5. Numerical solution for the first component of Example 1 and zoom-views in different
intervals. (a) t ∈ [0, 50]. (b) t ∈ [13, 22]. (c) t ∈ [20, 25]. (d) t ∈ [46, 50].

Positivity

Conditions for the solution of a DDE system to preserve positivity, in the sense that for any
component-wise positive initial function F(t) the solution always remains positive, are necessarily
very restrictive.

Consider the pure delay problem (7). If B = (bij) > 0 element-wise, i.e., bij > 0, i, j = 1 . . . d, then
it is clear from the expression of the exact solution given in (5) that for any component-wise positive
initial function F(t) all components of the solution X(t) remain positive for all t > 0. In this case, it is
also clear from the expressions of FM and TM schemes given in Theorem 3 that the numerical solutions
computed with both methods also remain positive for all t > 0.

If B is only non-negative, i.e., B ≥ 0 element-wise, then the exact as well as the numerical solutions
remain non-negative for any non-negative initial function and all t > 0. The condition of all elements
of B being non-negative is also necessary to preserve positivity, for if there is an element of B, say b1r,
negative, then it is possible to find an initial function, component-wise positive, for which some
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component of X(t) becomes negative, already in the first interval 0 < t < τ. To see this, take F(t) with
components Fr(t) = t2 and Fj(t) = δt2, j �= r, and choose δ such that

0 < δ < −b1r/| ∑
j �=r

b1j|.

Taking into account that, from (5), for 0 < t < τ one gets X(t) = BG(t), where the components of
G(t) are Gr(t) = h(t) and Gj(t) = δh(t), j �= r, with h(t) = ((t − τ)3 − (−τ)3)/3, it follows that the
first component of X(t) becomes negative,

X1(t) = b1rh(t) + δ ∑
j �=r

b1jh(t) <

(
b1r − b1r

∑j �=r b1j

| ∑j �=r b1j|

)
h(t) < 0,

since h(t) > 0 for t ∈ (0, τ).
For the general linear problem (3)–(4), if B > 0 and also A > 0 element-wise, then it is also

immediate that positivity is preserved both in the exact solution and in the numerical solutions
computed using the FM and TM schemes. For B ≥ 0, non-negativity of the solutions, both exact and
numerical, is preserved if A is Metzler, i.e., with non-negative off-diagonal elements, as then exp(At)
is non-negative for any t > 0.

5. Conclusions

Despite the growing interest in NSFD methods, including their application to some problems
with delay, the scheme presented in Theorem 2 is possibly the first example of an exact scheme for a
system of delay differential equations, generalising to systems of linear DDE with commuting matrix
coefficients the results presented in [23] for scalar linear DDE problems.

The families of FM and TM schemes defined in Theorem 3 allow the computation of numerical
solutions for problem (3)–(4) with high accuracy and low computational costs for extended time
intervals, showing good dynamic consistency properties. In particular, FM schemes have been
proved to preserve delay-dependent asymptotic stability of the continuous solution, i.e., they are
τ(0)-stable difference methods, while TM schemes have been proved to preserve delay-independent
asymptotic stability, i.e., they are P-stable methods. Also, FM schemes preserve the oscillation
behaviour of the exact solution, which has also been proved for the T1 scheme when applied to the
pure delay problem (7). Both types of scheme also provide numerical solutions that remain positive,
or non-negative, when the original problem satisfy conditions assuring the corresponding property.

Several problems and lines of research are open from the results presented in this work. Proving
dynamic consistency properties similar to those of FM schemes for some particular TM schemes,
either in general or when applied to some type of problems or under certain conditions, could deserve
further attention, as TM schemes offer the same accuracy than FM schemes with reduced computational
needs. Applying the new schemes to low order systems, e.g., with coefficients being 2 × 2 or 3 × 3
matrices, might allow to express the systems of difference equations defining the schemes in the
more usual form of a NSFD method, with derivatives for each component being approximated by the
corresponding increments divided by a scalar function ϕ(h) = h + O(h2), as has been done for some
examples of systems without delay [34,35]. This could also be the case when considering problems
where the matrix coefficients A and B posses some special structure.
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