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Abstract: Remotely sensed geophysical datasets are being produced at increasingly fast rates to
monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative
use of these datasets to understand hydrological processes in various climatic and vegetation regimes
under anthropogenic impacts has become an important challenge, but with a wide range of research
opportunities. The ten contributions in this Special Issue have addressed the following four research
topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations
and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques.
Moreover, the authors have provided broader discussions, on how to make the most out of the state-
of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to
enhance their skills in reproducing processes for the fast-changing world.

Keywords: remote sensing; model; hydrological prediction; climate change; land use change; evapo-
transpiration

1. Introduction

We are living in a world where geophysical datasets, particularly, remote sensing
datasets, are created at fast increasing rates [1]. The efficient and innovative use of these
datasets for understanding hydrological processes in various climatic and vegetation
regimes under anthropogenic influence has become an important challenge, which of-
fers a wide range of research opportunities at the same time [2,3]. This is particularly
urgent for the hydrological research community at large who has relied on both spatially
distributed and lumped hydrological models for hydrological simulations/predictions
over the last several decades [4]. The demand for increasingly accurate water information
spatially distributed at high resolution requires a deeper understanding of the under-
lying processes and more skillful predictions, at resolutions that do not commensurate
with the traditional hydrological data. This is an important challenge to the conventional
hydrological modelling.

To address these challenges, efforts need to be made to innovatively integrate various
remote sensing techniques into hydrological simulations and predictions, which is more
critical in a changing world. This Special Issue of Remote Sensing contributes towards this
aim through investigations on how a better and smarter use of high-to-moderate-resolution
remote sensing datasets can improve hydrological simulations and predictions. Ten peer-
reviewed papers are published in this Issue, which are grouped into four categories using
remote sensing techniques:

Remote Sens. 2021, 13, 3865. https://doi.org/10.3390/rs13193865 https://www.mdpi.com/journal/remotesensing
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• Evapotranspiration estimation;
• Rainfall monitoring and prediction;
• Flood simulations and predictions; and
• Monitoring ecohydrological processes.

2. Contributed Papers

2.1. Estimating Evapotranspiration

In this category, two papers are published. Zhang and Song et al. [5] estimated the
Evapotranspiration (ET) of Beijing city at a 10-m resolution, using vegetation information
from Sentinel-2 satellite data. For the first time, monthly ET at a 10 × 10-m resolution for the
Beijing Sponge City was estimated, using a water-carbon coupling model (PML-V2) driven
by the 10-m resolution of the Sentinel-2-based Leaf Area Index (LAI), Sentinel-2-based
land cover classification data, and surface meteorological data. Model validations show
that the Sentinel-2-based LAI has a good correlation (R2 = 0.74) with the observed values.
The PML-V2-estimated ET compares well (R2 = 0.64–0.90) with the flux measurements at
three fields within the Beijing region. Model simulation results show that LAI, ET, and
the Gross Primary Productivity (GPP) are 0.83 m2 m−2, 1.6 mm d−1, and 2.8 gC m−2 d−1,
respectively, during June 2018. Water bodies, including lakes and rivers, show the high-
est ET of >8 mm d−1, followed by mixed forest and croplands that have ET varying in
4–6 mm d−1 and grasslands with ET varying in 2–4 mm d−1. Compared to these land
cover types, the impervious surface occupying ~60% of the sponge city areas shows the
smallest ET of <2.0 mm d−1. This study demonstrates that it is feasible to use the high-
resolution satellite data to have detailed simulations of hydrological processes in urban
ecosystems. Jepsen et al. [6] analyzed the suitability of remotely sensed ET for calibrating a
hydrological model in the upper Kings River watershed (3999 km2) of California’s Sierra
Nevada, a snow-influenced watershed in a Mediterranean climate. They compared a
spatiotemporal pattern of ET from a remote-sensing product, MODIS MOD16A2, to that
from a hydrological model (SWAT) calibrated against an observed streamflow. The ET
estimates from both MOD16A2 and SWAT modelling were evaluated against observations
from three flux towers at elevations of 1160–2700 m. It was found that the SWAT-modelled
ET performs better than MOD16A2 ET, indicated by the Nash-Sutcliffe efficiency (+0.36 ver-
sus −0.43) and error in the elevational trend (+7.7% versus +81%). For this particular
modelling experiment, the authors concluded that it is challenging for the remotely sensed
ET product used for watershed-model parameter estimation. By analyzing ET-weather
relationships, the authors found that the relatively large errors in MODIS ET may be related
to weather-based corrections to water limitation not representative of the hydrology of this
snow-influenced, Mediterranean-climate area. Therefore, attention should be paid when
using global ET products (such as MOD16A2) at a watershed scale, particularly when the
watershed involves snowmelt processes. Moreover, it is necessary to have bias corrections
of the ET data before use for model parameterization [7].

2.2. Rainfall Monitoring and Prediction

In this category, two papers are published. Han et al. [8] investigated the potential to
use next-generation millimeter-wave backhaul technologies for rainfall monitoring in a
dense urban environment. Traditionally, microwave backhaul links are mainly used for
communications between cellular base stations. In this study, the authors used the links for
measuring the path-averaged rain rate. In particular, they investigated the rain attenuation
characteristics in Gothenburgh, Sweden using the new microwave backhaul techniques
at different mmWave frequencies and link lengths. They found that estimating the path-
average rainfall using mmWave links is very effective. The mmWave link measurement-
derived rain rate is very well correlated (R = 0.8–0.9) to the local measurement from rainfall
gauges. Their study indicates that there is a great potential to use the mmWave links
for monitoring rainfall in urban areas. Liu et al. [9] investigated how the assimilation
frequency of radar reflectivity affects the rain storm prediction in the Daqinghe basin
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of northern China, using the Three-Dimensional Variational Data Assimilation (3DVAR)
system of the Weather Research Forecast (WRF) model. Their results show that the WRF-
3DVAR system noticeably improves its performance for predicting the location, tendency,
and development of rain storm, using the assimilation of radar reflectivity and Global
Telecommunication System (GTS) data collectively. Moreover, this study suggests that it is
important to validate and correct the assimilated measurement data before performing data
assimilation, which can benefit not only prediction accuracy but also assimilation efficiency.

2.3. Flood Simulations and Predictions

In this category, four papers are published. Ma et al. [10] conducted a flash flood warn-
ings study in Yunnan Province, China using NASA’s Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement (GPM-IMERG) precipitation products. They tested
two GPM-IMERG products: The near-real-time IMERG Early run product (IMERG-E) and
the post-real-time IMERG Final run product (IMERG-F) with a 6-h temporal resolution.
The results show that MERG-F is better than IMERG-E over the study area, indicated by
an hourly R of 0.46 and relative bias of 23%. Furthermore, the IMERG-F results are well
corresponding to the gauge data when using the Rainfall Triggering Index (RTI) model for
calibration, suggesting that MERG-F is suitable for flash flood warnings. Wang et al. [11]
investigated if the prediction of flash flood can be improved for mountainous catchments of
northern China using the WRF-3DVAR module through coupled atmospheric-hydrologic
systems. Compared to the baseline (openloop) model run, the assimilation improved the
accuracy of rainfall accumulation as well as provided more accurate flood forecasting.
Based on the grid-based Hebei model, an atmospheric-hydrological coupling system was
established and performed by predicting the flash flood as well as obtaining the best
performance of Nash-Sutcliffe Efficiency (NSE) = 0.874 after assimilation, compared to
NSE = 0.64 before assimilation. Moreover, the authors pointed out the need to carefully
transfer hydrological parameters, since the locally derived hydrodynamic parameters may
not be applicable to mesoscale areas. Zhu et al. [12] proposed a modelling framework for
the urban flood analysis in ungauged catchments using short-term and high-resolution
rainfall data. The framework includes three steps. First, generate extreme rainfall events
using a rainfall generator named RainyDay together with a 9-year record of hourly, 0.1◦
remotely sensed rainfall data. Second, simulate runoff using an Urban Hydrological Model
(SWMM) under different rainfall return periods and durations. Third, analyze urban flood
using flood indicators, such as flood time, maximum rainfall rates, and total maximum
rainfall volume. This framework was tested in Guagzhou city, China. The results show
that a combination of RainyDay and short-term remotely sensed rainfall data can expand
the rainfall records for urban hydrological simulations and predictions. Furthermore, the
proposed framework shows a good performance for runoff process simulation, especially
for high return periods or long durations (NSE > 0.90), demonstrating that the proposed
framework has potential for urban flood analysis in ungauged catchments. Yasir et al. [13]
analyzed and simulated runoff processes in a heavily regulated river basin, the Lhasa
River where there are Zhikong and Pangduo hydropower dams changing hydrological
regimes. The analysis indicates that the Lhasa River streamflow shows stronger variations
during 2000–2016, compared to pre-2000. The Zhikong hydropower plant and the Pangduo
power plant began operations in 2006 and 2013, respectively, which strongly influence the
Lhasa River streamflow. The modelling results indicate that the SWAT hydrological model
is capable of simulating the streamflow under reservoir influence, and can be used for
predicting future streamflow. The predicted streamflow has a similar behavior to the obser-
vation while decreasing in the years from 2017 to 2025, indicating that the hydrological
regimes in this region are simultaneously affected by climate change and anthropogenic
impacts. Yang et al. [14] proposed a new method using an Unmanned Aerial Vehicle (UAV)
combined with the incipient motion of stone to calculate the peak streamflow of ephemeral
rivers in northwestern China. Critical initial velocities of moving stones were estimated
using two methods: Logarithmic and exponential velocity distribution methods. Their
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results indicate that the exponential velocity distribution method outperforms the loga-
rithmic method. Under high flood events (>20 m3/s), the proposed method can achieve
model errors less than 10%. Under a low streamflow condition (1 m3/s), the accuracies are
relatively low. Nevertheless, this study provides an alternative way to calculate streamflow
in ungagged rivers, which are particularly useful for peak flood estimation. The proposed
approach is easy to apply and has potential for large-scale application, considering the
quick advance of the UAV technology.

2.4. Monitoring Ecohydrological Processes

In this category, one paper is published. Qiao et al. [15] investigated how water
transfer in arid northwestern China influences the wetland ecosystem via surface and
groundwater interactions. In arid and semiarid regions, water transfer is a useful way to
prevent vegetation degradations and maintain healthy ecosystems. This study analyzed
the spatiotemporal pattern of vegetation coverage before and after water transfer in Qingtu
Lake and the surrounding area. The results show that water transfer from the upstream
contributes to the expansion of water bodies and vegetation, particularly for the condition of
fractional vegetation coverage of 30–50%. The groundwater and soil water content increase
can remain at high levels for the following months after water transfer, suggesting that the
transferred water can be stored as ground water or soil water due to the strong surface and
subsurface interactions, which provide water use for vegetation in the following year.

3. Editorial Summary and Comments

There are various ways that remote sensing techniques are used to improve hydro-
logical simulations and predictions, enhancing our collective efforts. The efforts can be
summarized into, but not limited to, the following categories: (1) Detecting hydrological
and other related changes using state-of-the-art remote sensing techniques; (2) mapping
eco-hydrological and hydrological processes and their driving factors using large samples
and high-resolution datasets; (3) understanding hydrological processes in a rapidly chang-
ing world using hydrological modelling together with high-to-moderate-resolution (several
meters to hundred meters) remote sensing data; (4) improving hydrological prediction
skills by modifying hydrological model structures to incorporate remote sensing data and
using various model calibrations against remote sensing data; (5) developing hydrological
modelling frameworks using advanced cloud cluster computation techniques and tools,
such as the Google Earth Engine; (6) using remote sensing data together with data assimila-
tion or/and machine learning techniques to improve predictions of various hydrological
variables and hydrological signatures; and (7) using remote sensing techniques for water-
related studies, such as on the water–food–energy security nexus. Although the ten papers
published in this Special Issue only cover parts of the summarized categories, we believe
that continued efforts in using remote sensing techniques in hydrology definitely promote
the development of hydrology, particularly in the fields of fusion of hydrological model
and remote sensing and ground observations that cover all of the categories 1–7 (Figure 1).

In fact, the first guest editor and his team (we) had put lots of efforts in these categories
and shared some researches below. For instance, we used the Google Earth Engine platform
to develop a carbon-water coupled model (PML-V2) for estimating the actual evapotranspi-
ration and gross primary production products across the global land surface with 500 m and
8-day resolution for the period of 2002 to 2020 [16]. This is a particular example followed
in the categories of 2, 3, and 5. Another example of category 4 is to develop state-of-the-art
model-data fusion techniques for predicting runoff in ungauged catchments. We used
remotely sensed ET data only to calibrate hydrological model parameters. Since it does not
require observed streamflow data for model calibration, it has the great potential runoff
prediction in poorly gauged or ungauged regions. We demonstrate that this approach is
very useful in Australia [17] and China [7] after bias corrections. Last but not least, we
modify the rainfall-runoff modelling structure for better incorporating remote sensing data.
The reasoning is that traditional rainfall-runoff models do not have a structure to simulate
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the impact of Land Use and Land Cover Change (LUCC), and are not reliable to simulate
hydrological processes with rapid LUCC. We modified traditional rainfall-runoff models
by changing their submodule for describing soil moisture and actual evapotranspiration
processes [18,19]. The modified rainfall-runoff models improve hydrological simulations
noticeably in the catchments experiencing rapid land cover changes [18].

 

Figure 1. Conceptualized summary of model and data fusion techniques for improving hydrological predictions.

4. Conclusions

The world is quickly changing with land surface conditions changing dramatically due
to anthropogenic impacts over the last two decades. Correspondingly, geophysical datasets,
particularly, remote sensing datasets, are created at fast increasing rates. It is challenging to
efficiently and innovatively use these datasets for understanding hydrological processes in
various climatic and vegetation regimes under anthropogenic impacts, which also offer
a wide range of research opportunities. To address these challenges, efforts need to be
undertaken to use various remote sensing techniques to improve hydrological simulations
and predictions in a changing world. Ten peer-reviewed papers were published in this
Special Issue, and can be summarized into the following four categories:

• Estimating evapotranspiration;
• Rainfall monitoring and prediction;
• Flood simulations and predictions; and
• Monitoring ecohydrological processes.
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The ten papers presented in this Special Issue reflect the efforts for improving hydro-
logical simulations and predictions using various remote sensing techniques. The papers
published in this issue advance the remote sensing of hydrology by applying a new mea-
surement approach, such as UAV or model-data fusions. Though the published ten papers
in this Special Issue only cover parts of the summarized categories, we believe that continu-
ous efforts in using remote sensing techniques in hydrology definitely promote hydrology.
Furthermore, the authors more broadly discuss how to smartly use the state-of-the-art
remote sensing techniques to improve hydrological model simulations and predictions to
tackle a quickly changing world.
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Abstract: Analyzing flooding in urban areas is a great challenge due to the lack of long-term rainfall
records. This study hereby seeks to propose a modeling framework for urban flood analysis in
ungauged drainage basins. A platform called “RainyDay” combined with a nine-year record of
hourly, 0.1◦ remotely sensed rainfall data are used to generate extreme rainfall events. These events
are used as inputs to a hydrological model. The comprehensive characteristics of urban flooding are
reflected through the projection pursuit method. We simulate runoff for different return periods for a
typical urban drainage basin. The combination of RainyDay and short-record remotely sensed rainfall
can reproduce recent observed rainfall frequencies, which are relatively close to the design rainfall
calculated by the intensity-duration-frequency formula. More specifically, the design rainfall is closer
at high (higher than 20-yr) return period or long duration (longer than 6 h). Contrasting with the
flood-simulated results under different return periods, RainyDay-based estimates may underestimate
the flood characteristics under low return period or short duration scenarios, but they can reflect
the characteristics with increasing duration or return period. The proposed modeling framework
provides an alternative way to estimate the ensemble spread of rainfall and flood estimates rather
than a single estimate value.

Keywords: urban flood; design rainfall; ungauged drainage basin; RainyDay; IDF formula

1. Introduction

Under the combined influences of global climate change and rapid urban development,
the occurred frequency of record-breaking rainfall events has increased significantly [1,2].
Floods caused by extreme rainfall events not only bring serious economic losses, but also
cause huge casualties [3,4]. According to the data report of the World Resources Institute,
the global economic loss caused by flood events was nearly 45.9 billion dollars; as well,
4500 people were killed, accounting for 40% of the global natural disaster deaths in 2019 [5].
The number of casualties caused by floods and the economy will continue to increase in
the next decades [6,7]. Numerous studies have shown that record-breaking short-duration
rainfall is an important factor causing the increasingly serious urban flood, while the
lack of high temporal resolution rainfall records restricts the practices of hydrological
engineering and urban flood analysis [8–10]. Zhu et al. [11] and Yu et al. [12] emphasized
that hydrologic model-based flood analysis should carefully consider rainfall temporal
resolution in the changing complex environment; they found that the simulated peak
discharges can be significantly impacted by rainfall with different temporal resolution (e.g.,
1-h and 24-h) at the same magnitude. However, most regions lack long-term and high-
temporal resolution (sub-daily) rainfall records, especially for developing countries and
newly built cities [13]. The available rainfall records show a decrease and non-stationary
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trend in a changing environment [14,15]. In hydrological practice, however, the length-of-
record limitations can limit the traditional methods for calculating the rainfall intensity–
frequency–duration relationship.

In order to overcome the lack of rainfall records in urban flood analysis, many re-
searchers have provided various coping methods (e.g., Li et al. [16], Kastridis et al. [17],
Papaioannou et al. [18]), which can be categorized into five types. (i) Empirical probability
statistics method. Traditional urban flood analysis is often based on frequency statistical
methods and empirical assumptions, such as Gumbel, Pearson-III, maximum likelihood
estimation, and other probability distribution models for parametric empirical statistical
analysis [19]. However, the data time series is highly requisite based on the empirical value
hypothesis [20]. Moreover, climate change and human activities lead to non-stationary
changes of regional rainfall, making it difficult to ensure the accuracy and rationality of
the estimation results [21]. (ii) Hydrologic model-based simulation. With the continuous
improvement of hydrological models and hydrological theory, using a hydrological model
to simulate urban flooding has become one of the most common methods. To some extent,
the scope and application of hydrological data, theory, and tools are improved through the
hydrological model. However, it needs detailed basic data to improve its accuracy [22,23].
(iii) Surrogate-data technique. Due to the lack of rainfall datasets, many studies use the
rainfall data from adjacent stations to analyze regional flood frequency or calculate hy-
drological engineering. For example, Mohanty et al. [24] moved the rainfall data of three
neighboring rain gauge stations to the study area, which was used for flood analysis.
Although the surrogate-data technique can increase the rainfall sample size and make up
for the lack of observation data, its accuracy is difficult to guarantee and its uncertainty
is high [25]. (iv) Rainfall generator. Rainfall generators are often used to generate more
diverse rainfall scenarios or higher spatial and temporal resolution rainfall data to enrich
the regional rainfall sample size [26,27]. For example, the meteorological model (e.g., GCM)
can simulate more rainfall events and other meteorological elements based on short-record
data sets, but it needs strict meteorological data such as temperature and wind speed, and
has the disadvantage of requiring complex calculations [26,28]. (v) Remote sensing analysis
method. Combined with GIS technology, remote sensing data and the digital elevation
model are often used to obtain regional hydrological characteristics and draw flood risk
maps for flood analysis [29,30]. It can analyze the distribution of flood risk in a large area
with coarse data, but it cannot fully consider the hydrological process [31].

It is undeniable that the above methods can solve the problem of data shortage in
flood analysis to a certain extent, but there are still obvious disadvantages in different types
of methods [32]. With the increase of high temporal resolution remote sensing rainfall data,
there is a new way to do flood analysis in both natural and urban watersheds [33–35]. In
recent years, it has become popular to comprehensively analyze floods by coupling remote
sensing rainfall data and hydrological models, which solves the shortages of high spatial-
temporal resolution rainfall data. For example, Shakti et al. [36] combined remote sensing
rainfall data and a distributed hydrological model to analyze inundation. Komi et al. [37]
have shown that using relatively rough spatial resolution remote sensing data as inputs
to the distributed hydrological model can also roughly predict the flood range in Africa,
where topographic and hydrological data are scarce. The coupling of high spatial-temporal
resolution remote sensing rainfall data and a hydrological model is used to analyze the
regional flood characteristics and widely used by more and more scholars [11,38].

On the other hand, urban flood analysis based on hydrological model mainly focuses
on a single factor such as maximum rate, meaning many important indicators are often
ignored [39,40]. Zhu et al. [40] emphasized that urban flood analysis should consider not
only the maximum rate, but also the flood time, total inundation volume, and other factors.
Hereby, urban flood analysis needs to address the high-dimension disaster problem. In
order to reflect the characteristics of urban flooding, traditional methods such as the fuzzy
comprehensive evaluation method, principal component analysis, and analytic hierarchy
process (AHP) are often used for analyzing flood characteristics (e.g., Yang et al. [41];
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Nandi eta al. [42]; Sarmah et al. [43]), but most of them have the shortcomings of human-
subjective perceptions or being based on an ideal hypothesis [44]. In order to overcome
these drawbacks, Zhu et al. [40] used the projection pursuit method to comprehensively
analyze urban flood characteristics, and pointed out that this method can objectively
evaluate urban flood characteristics.

As stated above, a lack of high-temporal rainfall records is a prominent limitation
to flood analysis and hydrological engineering practices [14,45]. Rainfall remote sensing
datasets with high temporal-spatial resolution and large coverage can overcome this
limitation. This study seeks to propose a modeling framework for urban flood assessments
based on short-record remotely sensed rainfall and hydrologic model in ungauged drainage
basins. We do so by combining short (2008–2016), hourly remote sensing rainfall data and
the RainyDay model to estimate the regional design rainfall under different frequencies.
To be consistent with convention [46], the obtained design rainfall is transformed into
the Chicago rainfall pattern and put into the SWMM hydrological model to simulate
and analyze runoff processes and flood characteristics under different return periods.
The projection pursuit method is used to comprehensively analyze flood characteristics
based on the outputs of the SWMM hydrological model. It is worth mentioning that this
study is not meant to demonstrate the superiority of the proposed framework compared
with the traditional methods, but to explore the feasibility of analyzing small ungauged
urban drainage basins based on short-term remote sensing rainfall data, and to provide an
alternative framework for urban flood assessment.

2. Methodology

The proposed model framework used to analyze urban flooding based on short-record
remotely sensed rainfall and hydrologic model includes three parts. (i) Generating extreme
rainfall events. A rainfall generator named Rainyday with the short (nine years), gridded
(0.1◦ × 0.1◦), and hourly record of remote sensing rainfall is used to generate extreme
rainfall events with 20 realizations at 2-, 10-, 20-, 50-, and 100-yr return periods for 2 h,
6 h, 12 h, and 24 h durations. These events are compared to the traditional design rainfall
(i.e., intensity-duration-frequency (IDF) formula-based estimates) for rationality analysis.
(ii) Simulating runoff under different rainfall return periods and durations. We leverage
SWMM to construct a rainfall-runoff model for simulating the runoff under different
rainfall return periods and durations, and the time distribution of the design rainfall
follows the Chicago rainfall pattern. (iii) Analyzing urban flood. On the basis of analyzing
the flood indicators (i.e., flood time, maximum rainfall rate, total maximum rainfall volume)
under different rainfall return periods and durations, its comprehensive characteristics are
analyzed by projection pursuit method.

2.1. Stochastic Storm Transposition

The traditional estimation methods of design rainfall for urban areas often have
some drawbacks, such as a high requirement of rainfall series and a limited scope of
application [27]. Many of them cannot meet the requirements of urban flood analysis in
areas lacking data [11]. In order to conquer these drawbacks, this study uses RainyDay
software with the core technique of stochastic storm transposition (SST) to estimate the
design rainfall at different return periods in the area lacking data.

RainyDay is developed by Wright et al. [27] based on Python. The core of this model
is to combine SST and remote sensing rainfall products to transpose the spatial location
of observed rainfall events. It can effectively lengthen the rainfall record and expand the
sample size of observed rainfall events. Figure 1 shows an example of transposing two
observed rainfall events to the study area through RainyDay. It is worth mentioning that
RainyDay only changes the spatial location of the observed rainfall events, but does not
change the temporal distribution. The reader is directed to Zhu et al. [11], Wright et al. [27],
Yu et al. [47], and Franchini et al. [48] for more details. The following is a brief introduction
to RainyDay.
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Figure 1. Schematic diagram of rainfall spatial transposition of RainyDay. Where RObs1 and RObs2 are the observed rainfall
events in the transposition domain, respectively; RTran1 and RTran2 are the rainfall events after transposition, respectively.

Step 1. Selecting the transposition domain. RainyDay requires that (i) the selected
transposition domain should contain the study area; (ii) the selected transposition domain
has the same climatic conditions and similar rainfall characteristics as the study area; (iii)
the area of the transposition domain is more than 10 times larger than the study area.
We selected a typical residential district in Guangzhou as case-study area. Following the
requirements of RainyDay, Guangdong Province, which belongs to the same administrative
region as the case-study area, is selected as the transposition domain.

Step 2. Identifying the “parent storms”. RainyDay selects the m largest t-hour rainfall
events that occurred in the transposition domain over n-year record of gridded rainfall
dataset, in terms of rainfall accumulation with the same size (i.e., single grid in this study)
of study area. The selected rainfall events, which do not occur in the same 24 h, are
temporally non-overlapping. That is, RainyDay only selects one t-hour event when there
are two or more t-hour events in the top m events occurring in the same 24 h. These selected
rainfall events are defined as “parent storms”.

Step 3. Calculating the distribution probability of extreme rainfall events. The oc-
curred probability of extreme rainfall events is spatially non-uniform in the transposition
domain. RainyDay calculates the probability through the two-dimensional Gaussian kernel
according to the storm centers of the “parent storms”. The sum of the probability of each
grid in the transposition domain is on one.

Step 4. Transposing rainfall events. RainyDay randomly selects k rainfall events
from the “parent storms” to generate rainfall events, where k is an integer and indicates
a “number of storms per year”. Besides, RainyDay assumes that k follows a Poisson
distribution with annual occurrence rate λ, where λ represents the ratio of the selected m
parent storms to n-year rainfall records, λ = m/n. More details about Poisson-distributed
storm occurrences can be found in Wilson and Foufoula-Georgiou [49]. The selected rainfall
events can be transposed to any position in the transposition domain according to the
distribution probability of extreme rainfall events, but only the rainfall that occurred in the
study area is calculated. RainyDay extracts the t-hour maximum rainfall, and the extracted
rainfall is regarded as the maximum t-hour annual rainfall.

Step 5. Generating Tmax annual maximum rainfall. The Tmax annual maximum rainfall
can be generated through repeating Step 4 Tmax times. To obtain the intensity-duration-
frequency relationships, the maximas are ranked i = 1 . . . Tmax from smallest to largest
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based on rainfall accumulation. Then, the return period P of each these ranks can be
calculated as Pi = 1/(i/Tmax). Each return period includes N realizations after repeating
Step 4 and this step N times, that is, RainyDay provides the ensemble spread of rainfall
accumulation rather than a single estimated value at each return period.

In this study, RainyDay is used to generate 5- to 100-yr design rainfall events with
durations of 2 h, 6 h, 12 h and 24 h, respectively. Each return period includes 20 realizations
for different durations. For simplicity, we only analyze the mean, minimum, and maximum
of 20 realizations, since these results include the ensemble spread of all the realizations.
In addition, we compare these results (i.e., RainyDay-based estimates) with IDF formula-
based estimates to reflect the reasonability of the proposed framework.

2.2. Constructing Different Rainfall Scenarios

The design rainfall used in urban drainage systems and flood control is often calculated
through coupling the IDF formula and the Chicago rainfall pattern [50]. To be consistent
with this, the Chicago rainfall pattern is also used to allocate the RainyDay-based estimates
at different times. The difference between IDF formula-based and the minimum, maximum
and mean in 20 realizations of RainyDay-based estimates are compared. IDF formula is the
empirical formula q =

167×A(1+ClgP)
(t+b)n , where q (L/(s·hm2)) indicates the design rainstorm

intensity of t-minute duration at return period P (year); A, C, b, and n are the constant
parameters that are derived and modified based on long-term rainfall records using the
Gauss–Newton iterative algorithm [46]. For the case-study area, the IDF formula is shown
in Equation (4).

q =
3618.27(1 + 0.438lgP)

(t + 11.259)0.750 (1)

In order to analyze the difference between the IDF-based and RainyDay-based esti-
mates impact in urban flood analysis, we combine different return periods (5-, 10-, 20-, 50-,
100-yr), durations (2 h, 6 h, 12 h, 24 h), and estimates (IDF formula-based estimates, and
the minimum, maximum, and mean in 20 realizations of RainyDay-based estimates) to
generate 80 rainfall scenarios for urban flood analysis. For all rainfall scenarios, the rain
peak coefficient is set to 0.375 to be consistent with the design specification for outdoor
drainage in China [46].

2.3. Urban Hydrologic Model

In this study, an urban hydrologic model named SWMM is used to simulate and
reflect the relationships between rainfall and runoff. SWMM is widely used in urban flood
analysis and hydraulic practices, and it has very good simulated performances in both
urban and natural basins [51,52]. Since the theory of the SWMM model is introduced in
detail in a previous study by Gironás et al. [53], we do not show more details about the
SWMM model in this study.

Because the calibrated and verified hydrological model in Zhu et al. [15] is used in
this study, the reader is directed to Zhu et al. [15] for more information about case-study
area and the performance of the model. In this model, the nonlinear reservoir method is
selected to calculate the surface runoff, the Saint-Venant equations are used to calculate the
flow, the Horton model is used to calculate the infiltration process, the Manning formula
and the approximate continuity equation are used to convert the runoff of each sub basin
into the outflow process, and the Newton-Raphson method and finite difference method
are used to calculate the time-varying process of runoff. Zhu et al. [54] calibrated and
verified the model based on the observed rainfall and runoff data, while the Nash-Sutcliffe
efficiency (NSE) index is used to assess the model’s performance.

In order to reflect the performance of RainyDay-based estimates for runoff process
simulation, we take the time distributions of the RainyDay-based and IDF formula-based
estimates as the inputs of the constructed urban hydrologic model and compare their
differences. The model used in this study is same as that in Zhu et al. [54] and the calibration

13



Remote Sens. 2021, 13, 2204

and verification results show that the model can be used to simulate the runoff process of
the case-study area. The applicability and rationality of the model are demonstrated. More
details about the model can be found in Zhu et al. [54].

2.4. Projection Pursuit Algorithm

The projection pursuit algorithm is a robust and powerful algorithm for the ex-
ploratory analysis of multivariate high-dimensional data. It is widely used to reduce
dimensionality for feature extraction, especially for flood and environment analysis. For
instance, Zhi et al. [55] coupled the drainage model, 2D flood simulation model, and
projection pursuit algorithm to assess urban flood risk; when Guo et al. [56] proposed
an evaluation framework to assess atmospheric environment carrying capacity based on
an evaluation index system including 20 indicators, the projection pursuit algorithm was
used to reduce dimensionality. The basic theory of the projection pursuit algorithm is to
project the data into low-dimensional subspace via projection vectors. It has the advantages
of a strong anti-jamming capability and not depending on subjective evaluation criteria.
In this study, the projection pursuit algorithm is adopted to analyze the comprehensive
characteristics of urban flooding by constructing an evaluation index system. The system
includes three indicators, i.e., flood time, maximum rate, and total inundation volume.
Zhu et al. [40] demonstrated that flood characteristics could be estimated well based on
these indicators. The general steps are summarized as follows; more details are provided
in Kruskal and Shepard [57] and Zhu et al. [40].

Step 1: Construct and normalize the evaluation indicator set. Flood time, max-
imum rate, and total inundation volume are selected as the evaluation indicator set
(X = {Xij|i = 1, 2, 3; j = 1, 2, . . . , p}), where Xij represents the value of the ith evaluation
indicator of the jth sample, j and i represent the number of evaluation indicators and
sample size, respectively. The normalized set xij is calculated as follow:

xij =
Xij − Xjmin

Xjmax − Xjmin
(2)

where Xjmax and Xjmin denote the maximum and minimum of ith evaluation indicator.
Step 2: Establishing the projection indicator function Q(a). The evaluation indicator

set is synthesized into a 1 × 3 vector (i.e., a = {ai | i = 1, 2, 3}) as the projection direction.
Therefore, the projection value of jth sample is calculated as follow:

Zj =
3

∑
i=1

aixij (j = 1, 2, . . . , p) (3)

Then, Q(a) can be expressed as:

Q(a) = SZDZ (4)

SZ =

√√√√ 1
p − 1

p

∑
j=1

(Z(j)− Z)2 (5)

DZ =
3

∑
i=1

p

∑
j=1

(R − R(i, j)u(R − r(i, j)) (6)

where SZ and DZ note the interclass distance and local density of Zj, respectively; Z represents
the mean of Zj; R(R = 0.1SZ) means the cutoff radius; u(R− r(i, j)) is the unit step function,
if R − r(i, j) ≥ 0, u(R − r(i, j)) = 1; otherwise, u(R − r(i, j)) = 0.

Step 3: Calculating the best projection direction. Q(a) is determined by the projection
direction a if the value of the evaluation indicator is given. For the projection direction,
the higher the value of Q(a) the better. When the value of Q(a) is at its maximum, the
corresponding projection direction is the best. In order to seek the best projection direc-
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tion, the optimum objective function can be constructed as max(Q(a) = SZDZ), and the

constraint condition is
p
∑

j=1
a2(j) = 1. Seeking the best projection direction is a nonlinear

global optimization problem; the particle swarm optimization (PSO) technique is widely
used to solve such problems. We also adopt it in this study, and more details are directed
to Kennedy and Eberhart [58].

Step 4: Analyzing the comprehensive characteristics of urban flooding. The best
projection values can be obtained through putting the best projections direction into
Equation (4). The best projection values represent the comprehensive characteristics of
urban flooding. The larger the values are, the more severe is the urban flood.

Based on analyzing the runoff processes at the outlet of the case-study area, we focus
on the flood characteristics under RainyDay-based and IDF formula-based estimates at the
manholes (i.e., junctions) for the case-study area drainage system in this section. Three
flood indicators (i.e., flood time, maximum rate, total inundation volume), which are
demonstrated to reflect the urban flood characteristics by Zhu et al. [40], are selected to
analyze the flood characteristics at each manhole. The comprehensive flood characteristics
are analyzed by combining these three indicators with the projection pursuit algorithm.

3. Data and Case-Study Area

3.1. Data

The hourly, 0.1◦ gauge-adjusted remotely sensed rainfall data (http://www.cma.
gov.cn/2011qxfw/2011qsjgx/, accessed date: 15 November 2020) from the China Mete-
orological Administration merges CMORPH (the Climate Prediction Center Morphing
algorithm) and the observations of 30,000 automatic rain gauges. This rainfall product is
optimized and verified by the probability density function matching technique and optimal
interpolation method. The temporal resolution is coarsened to one hour. Its total error
is less than 10%, and the errors for heavy rainfall in the area with sparse ground gauge
networks are less than 20%. The accuracy is higher than similar rainfall products and the
product has been widely used for precipitation studies [59]. In order to verify the feasibility
of estimating the design rainfall based on short-record remote sensing rainfall data, the
rainfall data from 2008 to 2016 are selected in this study, where 2008 is the earliest year
when data are available.

The rainfall and runoff data used for calibration and verification are observed from the
case-study area, where the rainfall data is observed by RainLoggerTM rain gauge (RainWise
Inc.; USA), and the runoff data is observed by Stingray open channel gauge (Greyline
Instruments Inc.; Germany). The observed time steps are 10 min.

3.2. Case-Study Area

In this study, the transposition domain selected for RainyDay is Guangdong Province
in the south of China. The latitude ranges from 20.08 to 25.32 ◦N, and longitude ranges
from 109.04 to 117.20 ◦E (Figure 2). The area belongs to a subtropical monsoon climate,
and the rainfall has the characteristics of large amount and high intensity. The annual
average rainfall is 1300 to 2500 mm. The rainfall in this area is seasonal, mainly from April
to September, and record-breaking rainfall and flood disasters occur frequently during
these months.
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Figure 2. The transposition domain and the location of the case-study area (a), and the land use and
drainage system of the case-study area (b).

In order to verify the rationality of the proposed framework, a highly developed and
typical residential area (22.08–23.09 ◦N, 113.20–113.21 ◦E) is selected as the case-study
area in Guangzhou city (Figure 2). It belongs to the subtropical monsoon climate, and
the average annual rainfall is 1675 mm. Extreme rainfall events may occur throughout
the year, but are mainly concentrated in April to September. In the past 60 years, the
maximum and minimum annual rainfall are 2865 and 1009 mm, respectively. The area of
the case-study area is about 1.55 × 105 m2, and its land use types can be generalized into
three types such as building, green space, and road land (Figure 2). The slope ratio of the
drainage system is 0.1~1.0%, and the pipe diameter is 600~1650 mm. The drainage system
of the case-study area is designed according to rainfall accumulation at 2-yr return period.
However, the regional flood problem has become increasingly prominent with increasing
record-breaking extreme rainfall events.

According to the generalization theory of SWMM, the case-study area is divided into
10 sub-catchments, while the drainage system is generalized into 18 pipes, 18 manholes,
and 1 outlet (Figure 2). More details are referred to in Zhu et al. [54].
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4. Results

4.1. Estimating the Design Rainfall

The important assumption of RainyDay for estimating design rainfall is that the
storms in the transition domain are likely to occur in the study area. In order to illustrate
the rationality of the selected transition domain, this study analyzes the spatial distribution
and storm occurrence probability of 200 maximum storms under different durations (2 h,
6 h, 12 h, and 24 h) (Figure 3). The spatial distribution of storms with different durations
is basically similar to each other. Generally speaking, the frequency of storms in coastal
areas is relatively higher, but its spatial distribution is still relatively random, that is, heavy
storms may occur everywhere in the selected transition domain (Figure 3). Similar to the
spatial distribution, the spatial probability distribution of storms in the transition domain
is relatively uniform, but there are still some differences. The storm occurrence probability
decreases from south to north (Figure 3), which is in line with the actual distribution of
storms (see Wang et al. [60] for evaluation of rainfall distribution in different precipitation
products). The selected transition domain is reasonable since the probability of storm
occurrence of 200 maximum storms varies from around 0.0002 to 0.0014 in the transition
domain, i.e., the storms in the transition domain are likely to occur in the study area or
other regions.

Figure 3. The probability of storm occurrence and spatial distribution of 200 maximum storms under
2 h (a), 6 h (b), 12 h (c), and 24 h (d) durations over the transition domain. Shading denotes spatial
probability of storm occurrence calculated based on 200 maximum storms. Black dots represent the
rainfall centroids of 200 maximum storms, and its size means the relative rainfall depth of each storm.

Figure 4 shows the relationships between IDF formula-based and RainyDay-based
estimates for different durations at different return periods. The ensemble spread of
20 realizations is shown as shaded area. Comparing results indicates that RainyDay
is generally able to estimate urban extreme rainfall for different durations, but it may
relatively underestimate or overestimate the rainfall accumulation. The results show that
RainyDay usually underestimates the rainfall accumulation at low return periods or short
rainfall durations; the RainyDay-based estimates are usually larger than the IDF formula-
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based estimates when the rainfall duration is long or the return period is high. Specifically,
RainyDay overall underestimates the rainfall accumulation when the rainfall duration is
2 h at different return periods. The degree of underestimation, which varies from 0.4%
(100-yr) to 57% (5-yr), decreases with increasing the return period (Table 1). When the
duration reaches 6 h, the underestimation is improved. The IDF formula-based estimates,
overall, fall within the ensemble spread of RainyDay-based estimates with the increase of
duration. At each return period for 6 h or longer durations, the absolute value of the ratio
of at least one RainyDay-based estimate (maximum, minimum, or average estimates) to
IDF formula-based estimate is less than 10% (Table 1).

Figure 4. The relationships between IDF formula-based and RainyDay-based estimates for different durations at different
return periods. The shaded areas mean the ensemble spread of RainyDay-based estimates. The solid lines denote the
ensemble mean for 20 realizations. The symbols of different shapes represent the IDF formula-based estimates.

Table 1. Relative deviations between IDF formula-based and RainyDay-based estimates (%).

Return
Period

2 h 6 h 12 h 24 h

min mean max min mean max min mean max min mean max

5-yr −57 −53.3 −48.4 −17.2 −9.6 −2.7 −20.6 −15.2 −10.4 −12.7 −8.2 −4.1
10-yr −48.7 −40.7 −34.9 −18.3 −10.3 −3.4 −12.5 −6.5 1.7 −8.3 0.9 10.4
20-yr −42.1 −30.6 −20.6 −17.8 −11.3 −4 −8.2 1.5 10.8 −4.5 9.5 20.2
50-yr −31.9 −22.9 −14.1 −16.8 −4.8 8.6 −1 11.2 24.1 −1 19.1 30.8

100-yr −34.8 −17.8 −0.4 −13.6 2.4 28.5 1 16.4 33.9 5.2 24 47.6

The IDF formula-based estimates gradually approach to the lower boundary of the
shaded area with increasing return period. It indicates that the RainyDay-based estimates
basically can reflect the observed design rainfall for long (6 h or longer) durations. To be
consistent with the design specification for outdoor drainage in China, the time distribu-
tions of the RainyDay-based and IDF formula-based estimates for urban flood simulation
are determined by the Chicago rainfall pattern. The time distribution results show that
the main difference comes from the rainfall peak. The rainfall peak is underestimated
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from RainyDay-based estimates at low return periods or short rainfall durations, while it
is generally matched or slightly overestimated at high return periods or for long rainfall
duration. In order to better explain this fact, the time distributions at different return
periods for 6 h duration and at 20-yr return period for different durations are selected as in
the below examples (Figures 5 and 6). When the duration is 6 h, the rainfall peak of the
RainyDay-based estimates is relatively smaller than the IDF formula-based estimates at 5-
and 10-yr return period, but the rainfall peak of IDF formula-based estimates generally falls
within the ensemble spread of RainyDay-based estimates, and the average of the ensemble
spread is generally matched to the IDF formula-based estimates when the return period
reaches 50-yr or higher (Figure 5). On the other hand, when the return period is at 20-yr re-
turn period, the time distributions of RainyDay-based and IDF formula-based estimates are
essentially coincidental, and the coincidence increases with lengthening rainfall duration
(Figure 6). Overall, the RainyDay-based estimates show a good performance for design
rainfall analysis. The relationship between the time distributions of RainyDay-based and
IDF formula-based estimates at other return periods for other rainfall durations are similar
to the above selected rainfall scenarios, so the time distributions of other scenarios are
not shown.

 
Figure 5. The time distributions of RainyDay-based and IDF formula-based estimates at 5-yr (a),
10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e) return periods for 6 h duration.
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Figure 6. The time distributions of RainyDay-based and IDF formula-based estimates at 20-yr return
period for different durations.

4.2. Simulating the Runoff Process Based on RainyDay-Based Estimates

The simulated results show that the RaiyDay-based estimates basically can be used for
runoff process simulation. The difference between the runoff processes of RainyDay-based
and IDF formula-based estimates is similar to the time distributions of design rainfall, but
the difference of peak discharge is smaller than the rainfall peak. Similar to the analysis
of time distribution of rainfall estimates, we also take the runoff processes at different
return periods for 6 h duration and at 20-yr return period for different durations as in
the below example (Figures 7 and 8). The runoff processes of RainyDay-based and IDF
formula-based estimates indicate that the difference of runoff process decreases as the
rainfall duration lengthens. The difference of peak discharge at high return periods (20-yr
or higher) or for long durations (6 h or longer) is very small. For example, the difference of
the RainyDay-based and IDF formula-based rainfall peaks is relatively significant, but the
differences of peak discharges are very small at 5- and 10-yr return periods (Figures 5 and 7).
The RainyDay-based peak discharges become closer and closer, and even approximate
overlapping IDF formula-based peak discharges with increasing return period. For the
same return period (take 20-yr return period for example), the peak discharge is still
slightly underestimated for 2 h duration, but the runoff process is predicted pretty well
with the lengthening duration (Figure 8). In addition, we use NSE to evaluate the predicted
performance of RainyDay-based estimates, i.e., the difference of runoff processes between
RainyDay-based and IDF formula-based estimates. Results show that the values of NSE
are generally small for short duration or at low return period (e.g., NSE = 0.53 at 5-yr
return period for 6 h duration, NSE = 0.77 at 20-yr return period for 2 h duration); however,
the values become larger with increasing rainfall duration or rainfall return period (e.g.,
NSE = 0.98 at 100-yr return period for 6 h duration, NSE = 0.99 at 20-yr return period for
24 h duration). For long duration (6 h or longer) or high return period (10-yr or higher), the
values of NSE are generally above 0.5, i.e., the RainyDay-based estimates of long duration
or high return period are satisfied to analyze the runoff process.
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Figure 7. The runoff processes at the outlet of the case-study area at 5-yr (a), 10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e)
return periods for 6 h duration.

Figure 8. The runoff processes at the outlet of the case-study area at 20-yr return period for
different durations.
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4.3. Analyzing Flood Characteristics Based on RainyDay-Based Estimates

Results show that the characteristics of urban flooding are generally underestimated
based on RainyDay-based estimates at low return periods or short rainfall durations. For
short durations or at low return periods, the underestimation of the values of these indica-
tors at each manhole are more significant than runoff processes at the outlet. Specifically,
the RainyDay-based estimates underestimate the values of flood time, maximum rate, and
total inundation volume when the return period is lower than 10-yr or duration is shorter
than 6 h. The underestimation decreases with increasing return period or lengthening
rainfall duration. The values of flood time, maximum rate, and total inundation volume
simulated based on IDF formula-based estimates generally fall within the ensemble spread
of RainyDay-based estimates at high (20-yr or high) return period or long (6 h or longer)
duration (Figures 9 and 10). That is to say, the RainyDay-based estimates can be used to
assess the flood characteristics at each manhole at relatively high return periods or long
rainfall durations.

 
Figure 9. The flood characteristics of each manhole at different return periods for 6 h duration. The flood time at 5-yr, 10-yr,
20-yr, 50-yr, and 100-yr return periods is shown in (a), (d), (g), (j), and (m), respectively. The maximum rate at 5-yr, 10-yr,
20-yr, 50-yr, and 100-yr return periods is shown in (b), (e), (h), (k), and (n), respectively. The total inundation volume at 5-yr,
10-yr, 20-yr, 50-yr, and 100-yr return periods is shown in (c), (f), (i), (l), and (o), respectively. The grey boxes indicate the
spread of RainyDay-based, and points represent IDF formula-based, values.
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Figure 10. The flood characteristics of each manhole at 20-yr return period for different durations. The flood time for 2 h,
6 h, 12 h, and 24 h durations is shown in (a–d), respectively. The maximum rate for 2 h, 6 h, 12 h, and 24 h durations is
shown in (e–h), respectively. The total inundation volume for 2 h, 6 h, 12 h, and 24 h durations is shown in (i–l), respectively.
The grey boxes indicate the spread of RainyDay-based, and points represent IDF formula-based, values.

In order to better clarify the changing characteristics of urban flooding at each manhole
with rainfall return period or rainfall duration, we also take the flood characteristics
of each manhole at 20-yr return period for different durations and at different return
periods for 6 h duration as an example. For 6 h rainfall duration, the RainyDay-based
estimates significantly underestimate the values of the selected indicators at 5-yr return
period; when the return period increases to 10-yr, the RainyDay-based estimates can
reflect the flood characteristics at each manhole to a certain extent, but it is still relatively
underestimated; while the rainfall return period reaches 20-yr or more, the values of
indicators simulated by IDF formula-based estimates basically fall within the ensemble
spread of RainyDay-based estimates. On the other hand, when the rainfall return period is
20-yr, the RainyDay-based estimates can basically reflect the flood characteristics of each
manhole under different rainfall duration scenarios, especially for long (6 h or longer)
rainfall duration. The flood characteristics of some manholes will be slightly overestimated
with the increasing rainfall duration.

The results shown in Figures 9 and 10 cannot comprehensively assess the flood
characteristics of each manhole, therefore, the projection pursuit algorithm is used to
reduce three dimensions (i.e., three indicators) to one dimension. The one-dimension
values (i.e., the projection values) indicate the comprehensive characteristics of urban
flooding for each manhole. Results show that the flood hotspot manholes are J3, J7, and
J13, but they are significant underestimated based on RainyDay-based estimates at low
return periods or short rainfall durations (Figures 9 and 10). The changing characteristics
of projection values with return periods or duration are similar to the values of the three
indicators, but the degree of underestimation for the projection values is larger than the
values of indicators (Figures 11 and 12). However, the degree of underestimation decreases
with increasing return period or duration. Similar to the values of three indicators, the
projection values estimated based on IDF formula-based estimates fall within the RainyDay-
based ensemble spread at high (20-yr or higher) return periods or long (6 h or longer)
durations. The comprehensive analysis results for urban flooding demonstrates that the
RainyDay-based estimates can be used for urban flood analysis, especially for high (20-yr
or high) return periods or long (6 h or longer) durations.
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Figure 11. The projection values of each manhole at 5-yr (a), 10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e) return periods for
6 h duration.

Figure 12. The projection values of each manhole at 20-yr return period for 2 h (a), 6 h (b), 12 h (c), and 24 h (d) durations.
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5. Discussion

Regarding the limitations of traditional urban flood analysis, lacking high-resolution
rainfall records should be one of the primary issues [61]. Although many models and
frameworks were proposed to solve this issue, many inherent limitations still exist [16,62].
Therefore, a modeling framework for urban flood analysis is introduced based on short-
record rainfall from remote sensing, RainyDay, and urban hydrological model, which
effectively overcomes the high-temporal-resolution and long-term rainfall requirements
for urban flood analysis. It should be emphasized that this work does not seek to show
the proposed framework better than the traditional methods, but rather to provide an
alternative framework for urban flood analysis based on short-term remote sensing rainfall
records, and discuss its feasibility and rationality.

The results of this study for design rainfall estimates are very similar to Wright et al. [27] ,
though simulated at a much smaller scale (0.155 km2 vs. 4000 km2) based on a different
time-space resolution (hourly vs. hourly, and 3 h; 0.1◦ grid vs. 4-km, and 0.25◦ grid) and
length of rainfall records (nine-year vs. 13-year, and 17-year). These two studies show
that the design rainfall is generally underestimated with remote sensing data at low return
periods or short durations. The underestimation could be explained by the length of rainfall
records and spatial resolution (nine-year and 0.1◦ grid for the remote sensing rainfall record
vs. more than 20 years and approximately 0.1 m2 for the rain gages) in this study. For
short duration rainfall, temporal resampling using RainyDay is significantly affected by
rainfall detection errors on bias correction and conditional biases [63–66]. Also, this can be
attributed to the fundamental structure of RainyDay, i.e., the Poisson distribution is utilized
in this study (see Kim and Onof [67] for discussion). Conversely, the slight overestimation
of RainyDay-based estimates are showed at high return periods and long durations, but
the overestimation is not as severely as the underestimation. This might potentially be
attributed to conditional bias for rain rate [68] and the domain area including coastal areas
where the typhoon landed. Some existed studies show that the accuracy of the estimates
may be improved by higher temporal-spatial resolution remote sensing data, which can
better address and understand some rainfall biases [27,69].

The main parts of this study include estimating design rainfall based on nine-year
remote sensing rainfall and RainyDay, and revealing the relationship between design
rainfall and runoff through hydrological model. Previous studies showed that the design
rainfall can be well estimated by RainyDay at different scales (e.g., 14.3 km2 in Zhou
et al. [70], 4400 km2 in Wright et al. [66]). Though the feasibility is shown varying from
small to large scales, the limit on the size of study area can arise since the presence of
complex terrain features. The reader is directed to Wright et al. [27] for more discussion.
On the other hand, the selected hydrological model (i.e., SWMM) has been widely used for
modeling rainfall-driven flood at different scales, especially for urban areas. The proposed
modeling framework offers opportunities to analyze urban flooding based on short-record
remote sensing rainfall and hydrologic model. However, the size of the case-study area is
small, it may cannot represent all the urban flood conditions. We will continue to expand
the capabilities of the proposed modeling framework.

Case study shows that the runoff process at the outlet of case-study area and the flood
characteristics (i.e., flood time, maximum rate, total inundation volume) of each manhole
can be simulated well at relatively high return periods (20-yr or higher) or long durations
(6 h or longer) based on the selected rainfall record. But the flood characteristics are more
sensitive to the return period and duration of design rainfall than runoff process. The main
difference in the rainfall hydrographs between RainyDay-based and IDF formula-based is
from the peak rainfall, which can significantly impact the flood characteristics.

Our findings indicate that the rainfall estimates play a key role in flood analysis, similar
results are also showed in Peleg et al. [26]. That is, improving the accuracy of the rainfall
estimates is the most important in the proposed framework. Lots of studies indicated
that rainfall estimates based on historical rainfall records might not be appropriate due to
climate change [71]. Doing so would require higher-resolution remote sensing rainfall data
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and considering climate change [27,70,71]. We are developing frameworks for considering
both rainfall space-time structure and climate change based on Regional Climate Model
(RCM) simulations for RainyDay-based rainfall estimates.

Despite the proposed framework overcomes some drawbacks (e.g., rainfall records)
of traditional approaches for urban flood analysis, there still remain several limitations.
(i) Applicability of the proposed framework is insufficient for low return period or short
duration rainfall scenarios. The undervaluation of design rainfall and urban flood char-
acteristics are generally showed at these scenarios. The main reason is mentioned above,
and the applicability can be improved by utilizing higher resolution and longer rainfall
records [70,72]. (ii) The uncertainties from the rainfall data and RainyDay are hard to
minimize, which have direct impacts in design rainfall estimates and urban flood analysis.
The dominant uncertainty in the input rainfall data comes from the difference between
remote sensing rainfall data and ground-based observations [27,73]; and the uncertainty
in Rainyday comes from the input requirements (e.g., geographic transposition domain,
rainfall record) and its structure [70]. (iii) The proposed framework uses idealized assump-
tion (i.e., Chicago rainfall pattern) to determine the distributions of design rainfall. That
is consistent with the guidelines of design rainfall [46]. On the other hand, the rainfall
temporal resolution of remote sensing records is general coarser than 30-min. Comparing
the relationships between RainyDay-based and IDF formula-based analysis results suggest
that the proposed framework is an applicable way for analyzing urban flooding at high
return periods (20-yr or higher) or long durations (6 h or longer). Though limitations still
remain, we continue to develop its capabilities.

6. Conclusions

Rainfall remote sensing datasets have the advantages of high temporal-spatial reso-
lution and large coverage, which can overcome limitations such as a lack of gauge-based
rainfall records. In this study, we propose a modeling framework for urban flood analysis
based on short-record remote sensing rainfall and hydrologic model. The framework is
largely motivated by the fact that, in spite of increased interest in urban flood analysis using
high-temporal remote sensing rainfall data, the inherent limitation of a lack of long-term
high-temporal rainfall data still exists. We used RainyDay and a nine-year record of hourly,
0.1◦ remotely sensed rainfall data to generate extreme rainfall events for an urban hydro-
logic model (SWMM). The rainfall estimates of RainyDay-based and IDF formula-based
methods were compared, as well as the corresponding runoff process at 5-, 10-, 20-, 50-,
100-yr return periods for 2 h, 6 h, 12 h, and 24 h durations. In addition, the projection
pursuit method was used to reflect the comprehensive characteristics of the urban flooding.
A typical urban drainage basin in the south of China was selected as the case-study area.
The main conclusions include the following:

1. Combining RainyDay and short-term remotely sensed rainfall data can lengthen the
rainfall record through transposing the spatial location of observed rainfall events.
It is able to estimate urban extreme rainfall at different return periods (e.g., range
in return period from 5- to 100-yr), despite the short (nine-year) observed rainfall
record. According to a comparison of the differences between the RainyDay-based
and IDF formula-based (a traditional published source of rainfall frequencies) rainfall
estimates, RainyDay-based rainfall estimates are basically acceptable for estimating
regional design rainfall, especially for relatively high return periods (20-yr or higher)
or long durations (6 h or longer).

2. The proposed framework shows a good performance for runoff process simulation at
the outlet based on RainyDay-based estimates, especially for high return periods or
long durations. In the case study, the difference of runoff process between RainyDay-
based and IDF formula-based methods is relatively significant at low return periods
or for short durations (e.g., NSE = 0.53 at 5-yr return period for 6 h duration), but the
difference decreases with the lengthening rainfall duration or increasing return period.
The values of NSE are generally above 0.90 at high return periods or long durations.
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3. Contrasting with the flood-simulated results under different return periods and
durations, the flood characteristics of urban flooding at each manhole can be generally
revealed based on RainyDay-based estimates at relatively high (20-yr and beyond)
return periods or long (6 h or longer) durations. Similar to the results of runoff
processes, though RainyDay-based estimates basically underestimate the values of
flood indicators (i.e., flood time, maximum rainfall rate, total maximum rainfall
volume) or the comprehensive characteristics of urban flooding under low return
period or short duration scenarios, these values can be well revealed with increasing
duration or return period.

4. The proposed modeling framework provides an alternative framework for urban
flood analysis in an ungauged drainage basin. This alternative is attractive for the
following reasons. First, the proposed framework can produce probabilistic extreme
rainfall scenarios based on a very short rainfall record (e.g., nine-year in this study),
and it excludes the older rainfall records to eliminate the effect of nonstationarity.
Second, the proposed framework provides a way to estimate the ensemble spread of
rainfall and flood estimates, rather than a single estimate value; such spread is central
to hydrological engineering practices.
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Abstract: An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR)
reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional
variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on
rain storm prediction in Daqinghe basin of northern China. The aim of this study was to explore the
potential effects of data assimilation frequency and to evaluate the outputs from different domain
resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical
experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km
horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km
horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of
convective rain storms. The results show that the assimilation of radar reflectivity and GTS data
collectively enhanced the performance of the WRF-3DVAR system over the Beijing-Tianjin-Hebei
region of northern China. It is indicated by the experimental results that the rapid update assimilation
has a positive impact on the prediction of the location, tendency, and development of rain storms
associated with the study area. In order to explore the influence of data assimilation in the outer
domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared.
The results show that the data assimilation in the outer domain has a positive effect on the output of
the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale
features through the incorporation of radar observations, hourly assimilation time interval does
not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity
observations. Therefore, before data assimilation, the validity of assimilation data should be judged
as far as possible in advance, which can not only improve the prediction accuracy, but also improve
the assimilation efficiency.

Keywords: assimilation frequency; data assimilation; WRF-3DAVR; radar reflectivity; rainfall forecast

1. Introduction

There have been higher requirements put forward for the prediction of convective
systems precipitation and its related disasters in recent years. Improving the accuracy of
precipitation forecast has long been a challenge for Numerical Weather Prediction (NWP)
model researchers and operational communities [1,2]. Kryza and Werner et al. [3] forecasted
several short and intensive rainfalls over the SW area of Poland using the Weather Research
and Forecasting Model (WRF) with different parameterization and spatial resolution. The
results show that none of the experimented model configurations was able to reproduce
a local intensive rainfall properly. Hamill and Thomas [4] applied ensemble prediction
systems to describe the performance of the WRF precipitation forecasts. Although ensemble
forecast can reflect the predictability or reliability of real atmosphere to some extent, it
cannot improve the physical mechanism of the model. Among many considerable causes
that could lead to the inherent low predictability of convective precipitation forecasting
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using an NWP system, ambiguous description of the atmosphere initial state is one of
them. Rainfall features are always generated in an inaccurate manner, regarding location,
initiation, timing, and intensity, especially of convective storms [5]. As a result, accurately
obtaining the initial state of a storm for the regional model is the key issue for a successful
prediction of the convective system.

Several studies have confirmed it is possible to remedy defects through data assim-
ilation into the NWP model. Among the numerous data assimilation methods, those
commonly used by researchers include the optimal interpolation methods, the three-
dimensional variational (3DVAR) [6,7], the four-dimensional variational (4DVAR) [8,9],
and the Kalman filter [10] approaches. Thereinto, 3DVAR is practicable in terms of compu-
tational efficiency, thus is adopted the most frequently [5]. Variational data analysis system
was first developed by Sun and Juanzhen et al. [11], which is called Variational Doppler
Radar Analysis System (VDRAS) and began this pioneering work. Subsequently, it was
expanded by Sun and Crook [12] to use for short-term forecast initialization during con-
vective precipitation. Yang and Duan et al. [13] discussed if 3DVar data assimilation could
potentially improve the rainfall forecast in the WRF model, an obvious improvement of the
event with even rainfall in temporal distribution was found regarding the northeastern
Tibetan Plateau area. Physical initialization combined with the three-dimensional varia-
tional data assimilation method (PI3DVAR_rh) was designed by Gan and Yang et al. [14],
through which the spatial pattern forecasting of radar reflectivity and precipitation were
improved based on WRF. Vedrasco and Sun et al. [15] certified that the 3DVAR analysis
with the constraint introduced into WRF could improve the initial state of the model and
guide the convective characteristics exhibited by six summer convection cases across Brazil.
These studies show that 3DAVR plays a positive role in rainfall forecast, and this system,
which is widely used in data assimilation, is also adopted in this study.

With high-resolution observation data becoming increasingly rich, it has been a hot
research topic worldwide in recent years to improve the short-term quantitative precipita-
tion prediction level by using high-resolution observation. High-resolution observations
like Doppler radar and GTS data, can provide huge amounts of detailed information
with high spatial and temporal resolution, which makes it possible to further improve
the convective rainstorm forecast. Doppler radar can make millions of measurements of
precipitation with a spatial resolution of a few kilometers and a temporal resolution of a
few minutes [5]. Compared with existing meso-scale measure platforms, such a significant
advantage of spatial and temporal resolution has great potential for improving small-scale
and short-term rainfall prediction.

Many researchers combine high-resolution observational data with numerical models,
which plays a positive role in promoting the development of convective rainfall prediction,
improving the initial state of numerical models, as well as alleviating the imbalance caused
by interpolation [16–19]. Routray and Mohanty [20] believed that the assimilation of radar
data (radial velocity and reflectivity factor) has a positive impact on enhancing performance
of the WRF-3DVAR (WRF-three-dimensional variational) system for the Indian region.
Gvindankutty and Chandrasekar et al. [21] investigated how the 3DVAR assimilation of
DWR radial wind and GTS data positively affected the precipitation intensity as well as
spatial distribution. Abhilash and Sahai et al. [22] demonstrated improvement in spatial
pattern of rainfall of convective systems precipitation by assimilating relevant parameter
obtained by the WRF-3DVAR system, including DWR radial velocity and reflectivity as
well as GTS data. Osuri and Mohanty et al. [23] used the WRF-3DVAR system to assimilate
DWR with GTS, thus conducting 24 cases to predict tropical cyclones of Bay of Bengal,
and the results show that this method helps to provide a positive impact on the credibility
of prediction. Sugimoto and Crook et al. [5] indicated that in the 3DVAR framework and
the storm case, assimilating the radial velocity as well as reflectivity can achieve the best
performance, applied on short-range precipitation forecasting. A cycling data assimilation
improves the regional models’ initial state on the one hand, and meanwhile introduces
observation data to mitigate the imbalance caused by interpolation of prediction on the
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other hand [24]. The data assimilation system allows higher-resolution observations to be
used as the background through update-cycling procedure [25,26], which makes the data
assimilation system rely on a specified combination of error statistics to obtain the optimal
short-term forecast analysis.

Although data assimilation is capable of improving the NWP (i.e., WRF) convective
precipitation in an effectively manner, the quality of data assimilation creates uncertainty
about results. Some studies have shown that the quality of assimilated data is critical to
forecast results. Liu and Tian et al. [27] indicated that data assimilation via WRF-3DVar
could potentially improve the rainfall forecasting in northern China, with GTS data, radar
reflectivity, and radial velocity assimilated every 6 h. From their study, it is concluded
that it is the effective information in the assimilated data that exhibited more significant
results rather than the volume of data. Tian and Liu et al. [28] further explored the
effect of assimilating radar data from different height layers on the improvement of the
NWP rainfall accuracy. The results showed that the accuracy of the forecasted rainfall
deteriorated with the rise of the height of the assimilated radar reflectivity. In the process
of data assimilation, the frequency of assimilation determines the amount of effective
data assimilated. Considering the time cost, most operation departments choose a 6 h
assimilation interval [3,27,29]. In later developments, many researchers and principal
operational centers upgraded the regional NWP systems with a 3 h assimilation time
interval [30]. For highly convective storms, more frequent data assimilation with a shorter
time interval is found to be more effective to produce reliable predictions [31]. Li and
Wang et al. [32] demonstrated that the assimilation of radial velocity every half an hour
could enhance the intensity analyses and forecasts of rainfall compared to results without
assimilating radar data. Kawabata and Seko et al. [33] applied four-dimensional variational
(4DVAR) with a horizontal resolution of 2 km and 1 h length of the assimilation window
to forecast heavy rainfall at the central part of Tokyo. In most cases, researchers tend to
assimilate observations as they are originally obtained, rather than choose an appropriate
assimilation frequency or time interval.

Despite the wide application of data assimilation in enhancing precipitation forecasts,
the sensitivity of data assimilation frequency has not yet gained enough attention. This
study mainly aims at evaluating how the WRF-3DVAR with different assimilation fre-
quencies affects the accuracy of the forecast precipitation. Four typical rain storms that
occurred in semi-humid and semi-arid area of northern China were chosen as study objects.
Doppler radar and GTS data were assimilated in four designed experiments with the time
intervals of 6 and 1 h by WRF-3DVAR. The results would be helpful to improving data
assimilation efficiency with WRF-3DVAR, and provide guidance for the development of a
similar basin rainstorm forecast system. At the same time, in order to study the sensitivity
of data assimilation to rainfall forecast, the quality of radar data is also analyzed.

2. Methodology

To explore the data assimilation frequency of the short-range precipitation forecasting,
the numerical model WRF is chosen for this study [7] and its assimilating extension
WRF-3DAVR is used. WRF version 3.7 is used for all experiments. The WRF model is a
fully compressible, non-hydrostatic, mesoscale NWP, and atmospheric simulation system.
In addition, WRF-3DAVR can further influence the initial state of the WRF model by
assimilating different high-resolution observations. A brief overview of the basic model
settings and the system description can be found in the following sections.

2.1. A Brief Description of WRF-3DVAR

The fundamental objective of the 3DVAR system is to seek an optimal estimate of
initialization at parsing time through an iterative solution of a pre-determined function,
including observations, background forecast from the NWP system, etc. [34].

J(x) = Jb+Jo =
1
2

(
x − xb

)T
B−1

(
x − xb

)
+

1
2
(y − yo)T(E + F)−1(y − yo) (1)
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Iterative solutions to Equation (1) can summarize the Dimensional Variational As-
similation problem, to seek the analysis state variable x to minimize J(x). In the formula,
x is the variable that represents the surface and atmospheric surface state, xb is the first
guess (or background) acquired from the previous forecast, and y0 is the assimilated ob-
servation. Y = H(x) is the model-derived observation space, which is transformed from
gridded analysis x by the observation operator H for comparison against y0. The individual
data points are fitted by the weight of its error estimate: B, E, and F are the background
error covariance matrix, observation error covariance matrix, and representativity error
covariance matrices, respectively. This solution represents a minimum variance estimate of
the true state of the atmosphere given the two sources of a priori data: the first guess xb

and the observation y0 [35].
The WRF-3DVar is a variational data assimilation system designed and built in the

WRF model, and is used to assimilate radar reflectivity and GTS in this study [6,36]. The
background error covariance CV3 created by the National Meteorological Center (NMC)
was employed, which has the advantage of wide applicability [37].

2.2. WRF Model Configuration

The primary focus of this study is Fuping and Zijingguan catchments covered by the
innermost domain of a three nested domain. For the study area, the center of the domain
is at 39◦26′00′′N and 114◦46′00′′E, and from the outermost to the innermost the nested
domain sizes are 1260 × 1260, 450 × 360, and 145 × 115 km2. Considering the diversity in
assimilation variables, the horizontal grid spacing of the outermost domain is set at 9 km
and the grid size of the innermost layer is set to be 1 km, where the downscaling radio is
set to be 1:3 [38,39]. The locations of the nested domain and radar coverage are shown in
Figure 1. Forty vertical pressure levels are considered for the three nested domains with a
model top at 50 hPa [40,41].

Figure 1. The study area with nested configuration of WRF domains at 9, 3, and 1 km resolution.
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The 1◦×1◦ spatial resolution of Global Forecast System (GFS) forecast data provide
the initial and lateral boundary conditions for the simulations. Considering the resolution
of the GFS data, it would be more reasonable to add another domain with 27 km horizontal
grid spacing as the outermost one. Unfortunately, experimental runs are carried out and
the effects of data assimilation are found to be similar with the current domain settings.
Since rainstorm forecasting has a high requirement of effectiveness for a given period of
time, in practical application it is beneficial to obtain the forecasting information as soon as
possible. Therefore, the 27 km grid is not applied in this study. The integration time-step
of the WRF model and WRF-3DAVR system is 6 s and the time interval for the output
is set to be 1 h. The GFS data, which is updated every six hours, is a real-time product
provided by National Centers for Environmental Prediction (NCEP). Because GFS has not
been processed by assimilation analysis, it has been used in many studies to forecast the
storm events in WRF model and WRF-3DAVR [3,5,31].

The performance of the model is highly dependent on the parameterized scheme, and
the scheme selected in the study may be suitable for one storm event in one region, but
not necessarily for others [42]. Since it is difficult to judge which scheme is most suitable
for future storm events, parameterized schemes are usually determined in advance for
practical application [43]. Based on relevant experimental research on the selection of
sensitive parameterization schemes for ensemble rainfall forecasting [44,45], the physical
parameters with the best applicability in the study area were adopted in this study. Details
of the parameterizations that have significant impacts on the generation of rainfall used
in the assimilation experiments are shown in Table 1. It is worth noting that the cumulus
scheme is switched off for the 3 and 1 km domain.

Table 1. Details of the parameterizations used in the assimilation experiments.

Parameterization Chosen Option Reference

Microphysics scheme WSM6 [46]
Longwave radiation Rapid Radiative Transfer Model (RRTM) [47]
Shortwave radiation Dudhia [48]
Land surface scheme Noah [49]

Planetary boundary layer Mellor-Yama-da-Janjic (MYJ) [50]
Cumulus convection Kain-Fritsch (KF) [51]

3. Case Study and Data

3.1. Study Area and Storm Events

The main focus of this study is the Fuping and Zijingguan watershed covered by
Domain 2 and Domain 3 of the WRF model. According to the temporal and spatial
distribution characteristics of rainfall and the representatives of rainfall-runoff generation
characteristics, the case used in this study is four 24-h rainstorm events, which occurred in
Fuping and Zijingguan watershed. Fuping catchment is located at 39◦22′N~38◦47′N and
113◦40′E~114◦18′E with a drainage area of 2210 km2 and Zijingguan catchment is located at
39◦13′~39◦40′N and 114◦28′~115◦11′E with a drainage area of 1760 km2. They belong to the
south and the north branch of the Daqinghe basin respectively, located in northern China,
having a warm temperate continental monsoon climate. Terrain elevation of the study area
varies from 2286 m in the northwest part to 200 m in the southeast mountains. The average
annual rainfall in the study catchments is approximately 600 mm, the short episodes of
intensive precipitation are more frequent in late May and early September. The steep
terrain leads to a short confluence time of the flood, which together with high-intensity,
short-duration precipitation is prone to cause severe flood disasters. They are concentrated
in areas with thin soil layer and low vegetation coverage especially. In particular, on 21 July
2012, the 24 h rainstorm event occurred in the Beijing-Tianjin-Hebei region, which has been
widely concerned because of the heavy rainfall intensity and large losses. The duration
of the four storm events and the accumulative rainfall amounts are shown in Table 2.
Among the four storms, event 4 is the heaviest one trigged by a severe convective system,
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concentrated in a small area of the watershed and with high rainfall intensity in a short
time period. The other three storms are typical stratiform rains with moderate intensity but
various distributions in space and time. The measured rainfall data are rainfall stations and
the time interval is 1 h. The 24 h rainfall accumulation is computed by Thiessen polygon
method, which averages the observations from the rain gauges. Figure 2 demonstrates a
detailed map of the study area, such as the rain gauges, watershed boundary, catchment
outlets topography, and major rivers.

Table 2. Duration, accumulated rainfall, and maximum stream flow of the four selected 24 h storm events.

Event ID Catchment Storm Start Time Storm End Time Accumulated Rainfall (mm)

I Fuping 29/07/2007 20:00 30/07/2007 20:00 63.38
II Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48
III Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82
IV Zijingguan 21/07/2012 04:00 22/07/2012 04:00 155.43

Figure 2. Location map and two study sites in the Daqinghe catchment.

In reality, the precipitation in northern China is not absolutely even in time and space,
which is different from that in southern China. To study the spatial and temporal evenness
of the precipitation in study catchments, both spatial and temporal variation coefficient (Cv)
of four storm events from 1985 to 2015 are calculated. A threshold of 5% was employed
to separate even and uneven rainfall events. The evenness of the rainstorm events is
quantitatively evaluated in the spatial and temporal dimensions by variation coefficient
Cv in this study. The lower Cv is, the more even the rainfall is. Based on the thresholds
selected, we found two critical values: 0.4 for spatial Cv and 0.6 for temporal Cv. When the
rainfall Cv values were less than the threshold Cv values, storm events have a relatively
even distribution of rainfall over the respective catchment. Table 3 shows the Cv values
of the four storm events in the both spatial and temporal dimensions. It can be found
that the rainfall is more uneven in time than in space, which is helpful to analyze the
spatiotemporal distribution of rainfall forecast results. It can be seen from Table 3 that the
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four rainstorms have different spatial and temporal evenness, and the selection of rainfall
events can provide reference for different types of rainfall in northern China.

Cv =

√√√√∑N
j=1

( xj
x − 1

)2

N
(2)

In the spatial dimension, xj is the accumulated 24 h rainfall at the rain gauge j, and x is
the average of xj. N is the number of rain gauges. In the temporal dimension, xj is average
hourly rainfall from all the rain gauges at time j, and N is the number of hours. The higher
Cv is, the more uneven the rainfall distribution is.

Table 3. Rainfall evenness of the four selected 24-h storm events in space and time.

Event ID I II III IV

Spatial Cv 0.3975 0.1927 0.7400 0.6098
Temporal Cv 0.6011 1.0823 2.3925 1.8865

3.2. Data Assimilation Experiments

In this study the radar reflectivity and GTS data observations forecasting are assimi-
lated into WRF and WRF-3DVAR system for 24 h typical storm events.

3.2.1. Weather Radar Data

The Doppler radar used in this study is the S-band radar located at Shijiazhuang city,
which is provided by the National Meteorological Administration and covers a radius of
250 km and can completely cover the two study areas. The radar completed a volume
sweep every 6 min, with 9 beam angles. By using a data format conversion program, the
binary base data file of Shijiazhuang Doppler radar is directly written into “ob.radar” file
as the observation field input file of wrfvar.exe. The format of the ob.radar file can be found
in the WRFDA user guide. The ob.radar file includes the latitude and longitude of the pixel
center and the height of the radar beam above that pixel. The technique details of the radar
data are provided in Table 4.

Table 4. Basic parameters of S-band radar in Shijiazhuang.

Parameters Information

Location 38.5◦, 114.68◦
Administrative location Shijiazhuang

Antenna diameter 1.3 m
Emission frequency 2.7~3.0 GHz
Observation radius 250 km

Effective radius of observation 230 km
Spatial resolution 1km

Sweep time 6 min
Beam angles 0.5◦, 1.5◦, 2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, 19.5◦

The radar reflectivity is conducted through the quality control chain to improve the
quality of the measurements before importing the assimilation process [52]. Therefore,
before being assimilated by WRF-3DVAR, radar data are supported by China Integrated
Meteorological Information Service System (CIMISS) of China Meteorological Administra-
tion to remove artefacts such as ground clutter, radial interference echo, speckles through
quality control. For convenience, dBZ is often used to represent radar reflectivity:

dBZ = 10 lgZ/Z0 (3)

where, Z0 = 1 mm6/m3, is a constant, and Z is reflectivity.
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According to Sun and Crook [12], the radar data are assimilated through an obser-
vational operator that describes the relationship between radar reflectivity and rainwater
mixing ratio by

Z = 43.1+17.5log (ρq r) (4)

where Z is the reflectivity, ρ is the air density in kg/m3, and qr is the rainwater mixing
ratio. This relation is derived analytically by assuming the Marshall–Palmer distribution of
raindrop size. At the same time, the pixel-based radar reflectivity is assimilated directly in
WRF-3DVar, by stating the latitude and longitude of the pixel center and the height of the
radar beam above that pixel.

3.2.2. GTS Data

The downloaded GTS data is a collection of all kinds of meteorological observation
data, including surface weather station, ship, buoy, pilot balloon, sonde, aircraft, and
satellite observations, and its format is easily recognized by WRF-3DVAR. The decoded
data is converted into a suitable Little_R format by shell script, which is used for data
assimilation of WRF-3DVAR. Five GTS datasets, including Sound, Synop, Pilot, AIREP,
and Metar, were incorporated into the WRF model at 6 h assimilation time interval in
this study, the number of observations were 2718, 4217, 733, 201, 612, respectively. The
assimilated GTS data was directly interpolated into the background field of the model, and
the background field was corrected by a certain algorithm.

GTS data has the characteristics of wide coverage and small spatial density, which
is suitable for assimilation on a large scale. On the other hand, radar data coverage is
relatively restricted, but the data spatial density is intense, and therefore is more suitable
for assimilation in small scale. Since the scanning radius of the radar is 250 km, thus the
coverage range is similar to that of Domain 2, which is much smaller than that of the outer
domain and larger than the innermost domain. Therefore, in this study the radar data is
assimilated only in Domain 2, whereas the GTS data is assimilated in the outer domain
(Domain 1). Since the GTS data is released every six hours, in the hourly assimilation
scheme, GTS is only assimilated at the 6th, 12th, 18th, and 24th hour from the start of
the storm.

Four experiments were conducted at different horizontal resolutions while keeping all
physical settings the same. In scheme “NA_1km”, Global Forecast System (GFS) forecast
data is interpolated to the model grid as the initial conditions for the 24 h forecast without
data assimilation in all the three nested domains. In scheme “DA_1h_1km”, 1 h data
assimilation is carried out with rainfall forecasts output from the 1 km domain (Domain 3).
The settings of Scheme “DA_1h_3km” are the same as DA_1h_1km, except that rainfall
forecasts are output from the 3 km domain (Domain 2). In the scheme “DA_6h_3km”, the
1 km innermost domain is removed with only Domain 1 and Domain 2 left. Radar and GTS
data are assimilated every 6 h and rainfall forecasts are output from Domain 2. Detailed
explanations of the experimental design and the settings of the four schemes are shown in
Table 5. Before the data assimilation cycle starts, the WRF model spins up for 30 h in all
schemes with the initial condition from GFS. For cycling data assimilation, the prediction
of the previous assimilation run serves as the background for the next run.

The root mean square error (RMSE), the mean bias error (MBE), and the critical success
index (CSI) are used to evaluate the simulated precipitation of the WRF and WRF-3DAVR
model. After the analysis of indices, CSI/RMSE is used as the comprehensive evaluation
index to explore the more intuitive response of different rainfall types to forecast errors in
temporal and spatial scales.
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Table 5. Experiment description.

Experiments
Domain

Resolutions
Data Assimilation

Radar Data
Assimilation
Time Interval

GTS Data
Assimilation
Time Interval

Output
Resolutions

NA_1km
(=no assimilation)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

no no no 1 km
(Domain 3)

DA_1h_1km
(=data assimilation with

1 h interval and output from
1 km domain)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
1 h 6 h 1 km

(Domain 3)

DA_1h_3km
(=data assimilation with

1 h interval and output from
3 km domain)

Domain 1 (9 km)
Domain 2 (3 km)
Domain 3 (1 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
1 h 6 h 3 km

(Domain 2)

DA_6h_3km
(=data assimilation with

6 h interval and output from
3 km domain)

Domain 1 (9 km)
Domain 2 (3 km)

Radar reflectivity
in Domain 2 + GTS

in Domain 1
6 h 6 h 3 km

(Domain 2)

CSI [53] denotes the percentage of correct simulation between the forecast and ob-
servations, and the perfect score is 1. According to Equation (6), the calculation of CSI
depends on whether it rains or not. Since the essence of WRF model simulation is to solve
equations, it is inevitable that the rainfall calculation result is close to 0. In order to avoid
the light rain in the prediction being included in H or R, hourly rain rate less than 0.01 mm
is considered as no rain, and CSI is based on the method in Table 6 to classify the rainfall
simulation results.

Table 6. Rain/no rain contingency table for the WRF simulation against observation.

Prediction/Observation Yes (>0.01 mm) No

Yes hits (H) misreports (R)
No misses (S) /

Classified variables H, R and S represent whether the predicted and observed values in
a certain observation period or observation position are greater than 0.01. If both predicted
and observed values are greater than 0.01, that is, rainfall is captured in model, H+1; If the
predicted value is greater than 0.01 and the observed value is less than or equal to 0.01,
that is, the model misreports rainfall, then R+1; If the predicted value is less than or equal
to 0.01 and the observed value is greater than 0.01, that is, the rainfall is missed in model,
then S+1. If both the predicted value and the observed value are equal to 0.01, that is, the
model accurately predicts the scenario without rainfall.

RMSE =

√√√√ 1
M

M

∑
i=1

(Q ′
i − Qi

)2
(5)

CSI =
1
M

M

∑
i=1

Hi
Hi+Si+Ri

(6)

MBE =
1
M

M

∑
i=1

(
Q′

i − Qi
)

(7)

For the spatial dimension, Qi
′ and Qi denote the observation and prediction of 24 h

rainfall accumulations at each rain gauge i. M is the number of the rain gauges, which is 8
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for the Fuping catchment and 11 for the Zijingguan catchment. For the temporal dimension,
Qi

′ and Qi are the average areal rainfall of observation and prediction at each time step i.
This time M is 24, which represents the number of the time steps. The specific meaning can
be seen in Table 7.

Table 7. The meaning of letter in formulas, including Qi
′, Qi, i, and M.

Letter For the Spatial Dimension For the Temporal Dimension

Qi
′ Observation of 24 h rainfall accumulations

at each rain gauge
average areal rainfall

of observation

Qi
Prediction of 24 h rainfall accumulations at

each rain gauge
average areal rainfall

of prediction
i Rain gauge ID each time step

M Total numbers of rain gauges 24 h

The calculation of CSI is based on the rain or no rain contingency table (Table 7). For
the spatial dimension, the predicted rainfall was compared with observations at rain gauge
locations to calculate the indices of H, R, and S at the time i, and then the values of the
indices at all times are averaged to obtain CSI according to Equation (6). M is the number
of total times. In this study, the time i is consistent with output frequency of the model,
which is 1 h. That is, CSI is the average value of the H/(H + R + S) for each hour of the
24 h rainfall duration. Similarly, for the temporal dimension, the indices in Table 7 are
calculated based on the time series data obtained for the simulated and observed areal
rainfall at the rain gauge i. The values of the indices at all rain gauges are then averaged to
produce the final CSI value based on Equation (6). In this case, M refers to the total number
of rain gauges rather than the simulation time.

4. Results

4.1. Effect of Data Assimilation on Temporal Rainfall Distributions

As illustrated by Figure 3, it shows the results of different assimilation frequencies.
The first guess file generated from the previous run will provide the initial conditions for
the next run. “DA_1h_1km” and “DA_1h_3km” are assimilated data with an interval of
1 h, and “DA_6h_3km” is 6 h. The forecasted accumulative rainfall is calculated from the
average value of rainfall at each grid point in the study area. When the area of the grid
within the watershed boundary accounts for more than 50% of the grid area, the rainfall
value of the grid point participates in the calculation of the rainfall accumulations. As for
the observations, the observed accumulative rainfall is calculated by averaging rain gauge
observations using the Thiessen polygon method.

When the different assimilation frequencies are chosen in the model, the curve struc-
ture in the rainfall forecasting is significantly altered (“DA_1h_3km” and “DA_6h_3km”).
The evolution of “DA_1h_3km” and “DA_6h_3km” in WRF-3DAVR system shows similar
patterns with higher differences in the rainfall peak. The improvement of assimilation
frequency led to a significant increase in precipitation. In WRF-3DVAR system, the opera-
tion with high assimilation frequency will produce incremental adjustment, which makes
the prediction closer to the observation. In addition, through evaluating the outputs from
different domain resolution on rainfall prediction, the improvement of WRF-3DVAR sys-
tem domain output resolution is less obvious on the accumulative rainfall (“DA_1h_1km”
and “DA_1h_3km”). In other words, the data assimilation of the outer domain has a
positive effect on the output of the inner domain, but the improvement is not obvious.
This may be due to the fact that no data is assimilated on the 1 km horizontal resolution
domain. The larger the volume of assimilation data import to model, the longer time it
will take to forecast the rainstorm. However, rainstorm forecasting has a high requirement
for effectiveness for a given period of time, so in practical application it is beneficial to
obtain the effective information of rainfall as soon as possible. In order to balance the
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accuracy and timeliness of rainstorm forecasting, data assimilation is not carried out in the
innermost domain.

 

 
Figure 3. Rainfall accumulation of rain gauge and four data assimilation schemes for Event I, II,
III, IV.

4.2. Effect of Data Assimilation on Spatial Rainfall Distributions

The spatial distributions of predicted precipitation with and without assimilation
are shown in Figure 4. It is not difficult to see that after the data assimilation, the spatial
temporal distribution of rainfall forecast has been improved in varying degrees compared
with without assimilation. “DA_1h_1km”, “DA_1h_3km”, and “DA_6h_3km” performed
much better as rainfall forecasts, respectively, than “NA_1km” in spatial distributions. The
results show that the WRF-3DAVR system can obtain the major rain band located around
the east and south border of the study area while the same rain band is disorganized in
the WRF model. That is, the improvements to certain extents in spatial distributions after
data assimilation.

Figure 4 shows spatial distributions of the 24 h accumulative rainfall for the four
storm events in the Fuping and Zijingguan catchment. It can be intuitively seen from
the spatial variations in Event II-IV that the rainfall forecast after data assimilation is
significantly larger in numerical value than before assimilation. The storm centers of events
were captured relatively well by WRF-3DAVR; however, some parts of the catchments with
high rainfall accumulations were missed by WRF-3DAVR, such as the northern rainband
of Event III and the western rainband of Event IV. By analyzing the evenness of storm
events, the temporal and spatial distribution of Event I is more even, Event II is uneven
in time, and Event III-IV is uneven in space and time. The results show that the rainfall
with even spatial distribution has the best predicted results on the spatial scale, while the
rainfall with uneven spatial distribution has the worst predicted results on the spatial scale.
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WRF-3DAVR is easier to accurately simulate or forecast rainfall with more uniform spatial
distribution, while WRF-3DAVR is more difficult to accurately forecast rainfall area with
uneven spatial distribution. It can also be obtained from the index analysis of each rainfall
forecast result in Table 8. In addition, whether the rainfall is evenly distributed on the
time scale has a certain influence on the forecast results of rainfall on the spatial scale but
does not play a decisive role. From “DA_1h_1km” and “DA_1h_3km”, simply increasing
the resolution of domain has no significant improvement in the spatial dimension of the
rainfall simulations, this is probably because the innermost domain does not assimilate
data. Furtherly, Table 8 in Section 4.3 provides the root mean square error (RMSE), mean
bias error (MBE), critical success index (CSI), and CSI/RMSE of 24 h rainfall accumulation
values using WRF and the different WRF-3DAVR schemes.

 
(1) Event I 

 
(2) Event II 

 
(3) Event III 

 
(4) Event IV 

Figure 4. Spatial rainfall distributions of gauge observations and forecasts from four data assimilation schemes for Event I,
II, III, IV, from left to right: (a) observation; (b) NA_1km; (c) DA_1h_1km; (d) DA_1h_3km; (e) DA_6h_3km.

4.3. Evaluation on the Storm Process Improvements

The evaluation scores for the four 24-h rainstorm forecasts from 1 and 6 h time
intervals with and without assimilation are shown in Table 8. In evaluations in the spatial
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scale, the model forecasts are interpolated to the rain gauge locations for comparisons
with the observations. Firstly, compared with “NA_1km”, the rainfall forecasts at different
assimilation schemes are improved significantly. For example, RMSE of “NA_1km” without
assimilation in Event I on the temporal dimension was 2.3393, while the highest RMSE with
data assimilation is 2.1320 (DA_6h_3km) and the lowest RMSE is 1.7816 (DA_1h_1km).
Possibly it is because Event I has a relatively even distribution in both time and space
(0.3975 for spatial Cv and 0.6011 for temporal Cv), and data assimilation has no large
improvement on the rainfall forecasting with even spatial-temporal distribution. Similarly,
on the spatial dimension, RMSE of the assimilated schemes is better than that without
assimilation. In the spatial dimension, for example, RMSE of “NA_1km” in Event III is
2.8849, which is no assimilation, while the worst RMSE with data assimilation in Event III
is 1.4068 (DA_6h_3km). Therefore, the good performance for selected typical precipitation
events shown by the cycling data assimilation gradually improves not only temporal but
also spatial variability.

Secondly, the performance of the 1 h assimilation time interval with respect to its
6 h counterpart with data assimilation is examined. It is shown (Table 8) that experiment
hourly assimilation time interval has lower RMSE than its 6-hourly counterpart in most
events in both the temporal and spatial dimension, indicating the potential for a better
forecast. Event I, Event III, and Event IV show positive effect in rapid update assimilation,
and much precipitation rises in WRF-3DAVR compared to low assimilation frequency
(“DA_1h_3km” and “DA_6h_3km”). In the case of Event IV in the spatial dimension, for
example, a decrease in RMSE from 12.6979 after 6 h assimilation time interval to 8.7782
occurred after hourly assimilation frequency; a similar trend was noted during Event
I and Event III. In the meantime, hourly assimilation frequency has a lower MBE than
6-hourly assimilation time interval for most events. This might be the result that the
regional approach with higher-resolution observations and closing to actual atmospheric
boundary conditions may improve the assimilation effect and help offset temporal and
spatial information lost by WRF. For the study area with small-scale, the assimilation time
interval of 6 h is too long, and the model background field is not corrected in time. As time
goes on, the observation error of radar is constantly amplified in the model background
field, which reduces the effect of rainfall forecast.

However, WRF-3DAVR and high assimilation frequency are mixed. In Event II,
experiment hourly cycled configuration had slightly lower scores than those of the 6-hourly
counterpart in the both time dimension and spatial distribution for Event II. Although
the low assimilation frequency appears to be slightly better than the high assimilation
frequency for Event II, this does not seem to pose a threat to the hourly assimilation
frequency. But it also reflects the disadvantages of spreading too much radar information
to places where the radar data are not available.

In addition, the influence of data assimilation of outer domain on the output of inner
domain is discussed, and the precipitation outputs of 3 and 1 km domain are compared.
The results show that although the data assimilation of outside domain has a positive
impact on the output of the inside domain, inside domain generated very small helpful
increments, especially in the time scale.

All the schemes show different amounts of false precipitation in study areas from CSI.
The high CSI are Event I and II, indicating that the model basically captures the occurrence
time and rainstorm area of Event I and II, the low CSI are Event III and IV, and the lowest
is Event III, indicating that the simulation results of these rainfall fields are poor in terms of
time and space. In order to further evaluate the forecasting results of WRF-3DAVR system
for each rainfall type on the temporal scale, CSI/RMSE was taken as a comprehensive index
to evaluate the forecasting results. In the temporal dimension, the forecasting results of
Event I and Event II are the best, with the value range of four schemes of CSI/RMSE being
0.2412 to 0.4538, while the forecasting results of Event III and Event IV are the worst, value
range of four schemes of CSI/RMSE being 0.0345 to 0.0948. In the spatial distribution,
the same law is presented, that is, WRF-3DAVR system is easier to accurately simulate
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or forecast rainfall with more uniform time distribution, but more difficult to simulate
or forecast rainfall with short duration and concentrated rainfall. Combined with the
calculation of the spatiotemporal variation coefficient (Cv) of precipitation events, it shows
that Event II–IV are more uneven in time and space than Event I. In Event III, for example,
the temporal Cv value of 2.3925 and the spatial Cv value of 0.7400 are much higher than
those of Event I (0.6011 and 0.3975). This may explain the increased bias in assimilation,
since the improved effectiveness of the rainfall forecast after assimilation is determined by
the amount of effective information contained in the data. It is easier for radar reflectivity
and GTS data to capture data during periods of rainfall that is homogeneously distributed
in space and time.

Table 8. Temporal and spatial values of the four assessment indices for Event I, II, III, IV with four schemes.

Events
Experience

Scheme

Temporal Dimension Spatial Dimension

RMSE MBE CSI CSI/RMSE RMSE MBE CSI CSI/RMSE

I

NA_1km 2.3393 −1.9322 0.7519 0.3214 1.7908 −1.7003 0.7478 0.4176
DA_1h_1km 1.7816 −1.4615 0.6820 0.3828 1.1295 −1.0476 0.7835 0.6936
DA_1h_3km 1.7967 −1.4837 0.8153 0.4538 1.1343 −0.9890 0.8155 0.7189
DA_6h_3km 2.1320 −1.6189 0.7872 0.3692 1.7171 −1.6280 0.6719 0.3913

II

NA_1km 2.3752 −1.5909 0.5729 0.2412 2.5884 −2.5600 0.5729 0.2213
DA_1h_1km 1.9468 1.3097 0.5791 0.2974 0.9473 0.9425 0.5744 0.6063
DA_1h_3km 1.9584 1.3263 0.5759 0.2940 0.9523 0.8136 0.5729 0.6016
DA_6h_3km 1.9360 1.2940 0.5791 0.2991 0.9047 0.6404 0.5744 0.6349

III

NA_1km 3.4189 −1.7446 0.1180 0.0345 2.8849 −2.4168 0.1910 0.0662
DA_1h_1km 2.0987 −1.0273 0.1038 0.0495 1.0594 −1.0353 0.1875 0.1770
DA_1h_3km 2.1185 −1.0381 0.1676 0.0791 1.2250 −1.1401 0.1667 0.1361
DA_6h_3km 2.2778 −1.2869 0.2004 0.0880 1.4068 −1.2895 0.1806 0.1283

IV

NA_1km 8.5700 −5.8656 0.6601 0.0770 12.6979 −10.4946 0.5524 0.0435
DA_1h_1km 5.9530 −4.0378 0.5449 0.0915 8.7782 −3.5646 0.5524 0.0629
DA_1h_3km 5.9566 −4.0304 0.5648 0.0948 8.8033 −3.6767 0.5131 0.0583
DA_6h_3km 6.6525 −4.3429 0.6601 0.0992 9.3979 −5.4607 0.4270 0.0454

Assimilation of all possible data with high assimilation frequency may not be the
most effective method in precipitation forecasting. Especially, the influence of assimilation
frequency on rainfall forecast is rather small in Event II; the precipitation forecasts with 1 h
cycle do not have much difference from those with 6 h cycle. That may indicate the impact
of false rainfall forecasting fields is enlarged because of the inaccurate radar observed data.
One may wonder whether the results of assimilation have anything to do with the quality
of the assimilated data, such as radar data. To answer that question, the ability of Doppler
radar to retrieve precipitation is plotted (Figure 5). In each single subfigure, the black bars
and yellow solid curve indicate measure rainfall and accumulative rainfall from rain gauge,
respectively. Green bars and pink curve indicate rainfall and accumulative rainfall from
radar observed reflectivity inverse calculation. The left y-axis is the cumulative rainfall
value, corresponding to the curve, and the y-axis on the right is the value of hourly rainfall,
which corresponds to the bar graph.

As can be seen from Figure 5, the radar precipitation estimation of Event I was closer to
the observation accumulation curve, and at the same time, assimilation effect of Event I was
also the best in all events. In addition, there was substantial rainfall growth during the first
nine hours of the rainfall after the radar data assimilation for Event III, and the accumulated
rainfall increased abruptly. Additionally, we found that the radar measures rainfall from
the 1st hour to the 9th hour as much larger than the observed rainfall (Figure 5), as revealed
in many previous studies [54]. Therefore, in our storm events selected, the accuracy of
radar reflectivity is of primary importance in improving the quality of precipitation forecast
within the time range of forecasting [5].

When WRF-3DVAR technology is applied, a matter of effective radar data assimilation
could be tackled by using shorter assimilation time interval to achieve greater informa-
tion assimilation. Although the assimilated radar data can help WRF model to forecast
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precipitation effectively, it increases the conflict between radar data and domain. In the
process of data assimilation, the validity of assimilated data should be judged as far as
possible in advance, which can not only improve the prediction accuracy of WRF model,
but also improve the assimilation efficiency. There are many factors affecting assimilation,
and radar data may be only a part of them, and more factors need to be further explored,
such as the resolution of GFS data, nested boundary conditions, the dynamic structure of
the model, numerical discretization, etc.

 

Figure 5. Observations and radar measurements of 24 h rainfall accumulations for Event I, II, III, IV.

5. Discussion

By carrying out a comparative analysis on the output results of different assimilation
frequencies, it can be proved that by reducing the length of the assimilation window, the
rainfall forecasting can be closer to the observations and can better present storm center.
The hourly data assimilation frequency in the WRF-3DVAR allows for the addition of useful
information and results in improved performance of the rainfall forecasting. However,
misestimates may be caused when applying high assimilation frequency.

First, the quality of the output analysis depends on the error in the model initializa-
tion when inaccurate boundary field and background information is inputted into the
assimilation system. As is widely understood, accurate initial condition is crucial to data
assimilation and prediction of numerical weather prediction (NWP) system. Data assimila-
tion system can combine all useful information about atmospheric conditions in the given
time window, and obtain estimated value of the valid atmospheric conditions in given anal-
ysis time. Where, information used for model calculations is sourced from the observations,
background, previous estimate of the atmospheric state, as well as their specific inherent
errors. Compared with other error sources (e.g., physical parameterization, boundary
conditions, and predicting dynamics), the relative importance of prediction errors caused
by initial condition errors depend on many factors, including resolution, domain, data
density, orography as well as the forecast product of interest [55]. The assimilation data of
the WRF-3DVAR system is dedicated to providing initial conditions and further improving
the WRF predictions, and then applied to creating forecasting of regional climates in the
future, which is excitingly possible.

Especially, the radar data as one of the assimilation data sources, which represent the
small-scale and rapid evolution in the boundary layer, are often unsatisfactory, especially
in the events of extreme rainfall intensity. This is because the rainfall estimate of radar is
not directly measured, but is indirectly obtained by the measured radar reflectivity. The
measurement of radar reflectivity and the conversion process from reflectivity to intensity
are affected by many error sources. In order to improve the accuracy of the radar data used
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for initial conditions of mode, it can be adjusted according to the rain gauge measurements.
In this way, it can combine the advantages of the precise measurement of rainfall by the
rain gauge at the point and the better performance of the radar in the spatial distribution,
and overcome the disadvantages of the rainfall deviation caused by the uncertainty of the
radar in the rain measurement. Studies are being conducted to find the optimal technique
for radar observations to improve the initial state of the model.

Second, the error in the actual numerical prediction system may be highly non-linear,
although the variational method includes linearized dynamic and physical processes, which
limits the practicability of variational data assimilation in highly non-linear regions (such
as convective scale or tropical region). Therefore, it is necessary to develop a more objective
method, such as a method based on ensemble prediction for estimating the uncertainty
of a flow-related prediction background [5]. Nevertheless, despite these limitations, this
study provides a prototype for short-term practical prediction of a local convective weather
system. It is hoped that these research topics can be discussed in the future research and
application of the 3DVAR system.

Furthermore, it is shown that the WRF model can reasonably predict a low-intensity
and long-lasting rainfall event. However, the result from this study indicates that this model
often leaves out rare small-scale and short-term rainfall prediction events or underestimates
the precipitation intensity, because small-scale interference is filtered when large-scale
analysis keeps a better balance [15]. The main reason for this is that convection is a small-
scale phenomenon, and false estimates may be caused if the increment in diffusion spreads
too far. This is exactly what should be improved in the predictions, by applying different
model parameterization technology [56] or data assimilation technology for instance [3].

For mesoscale catchments, the spatial distribution of rainfall is also important due
to its significant impact on the flood volume, flood peak, and time to peak [28]. In addi-
tion, approaches to improve the spatial accuracy of precipitation predictions after data
assimilation are also worth exploring. It is necessary to analyze more storm events in
different survey regions in order to find more general radar data assimilation criteria and
thus facilitate numerical prediction.

6. Conclusions

This study explores the effect of radar reflectivity and GTS data assimilation from
assimilation frequency using WRF-3DVar for rainfall forecasting. Four heavy storm events
at the Daqinghe catchment in the Beijing Tianjin Hebei region of northern China are selected
to be regenerated by the WRF model. We employed three nested domains, and adopted
the GFS data for driving the WRF model. From two aspects of cumulative rainfall and
spatial distribution of rainfall, two observational data types (radar reflectivity and GTS
data) assisted in investigating how WRF rainfall forecasts were potentially improved in
space and time through data assimilation. We designed four data assimilation schemes
considering various possible combinations of the two data assimilation frequency types
in the three nested domains. We compared the analysis with data assimilation and that
without data assimilation, finding that the assimilation results partly fit observations in
the case and that WRF-3DAVR with radar reflectivity and GTS data better represents the
rainfall forecasts in space and time.

Precipitation simulated by the WRF model is always much lower than observed
rainfall, but assimilation systems can increase rainfall. The improved initial conditions
in WRF-3DVAR system via radar data assimilation and GTS data achieved better short-
term and convective strong precipitation in the both temporal dimension and spatial
dimension. The high assimilation frequency significantly helps to trigger and maintain the
convective activities in the 3DVAR framework as well as the storm case applied. Forecasts
of events indicate that the temporal rainfall distributions of convective storms can be much
better predicted with high assimilation frequency, compared with the 6 h assimilation
time interval run. At the same time, employing the high assimilation frequency to the
assimilation showed improved skill of precipitation forecasting in WRF-3DVAR on spatial
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rainfall distributions. The only exception happened in Event II. In this case, the impact of
false rainfall forecasting fields is enlarged because of the inaccurate radar observed data,
so that the negative impact was found after assimilation. However, this does not seem
to pose a threat to the hourly assimilation frequency. In addition, the data assimilation
of outside domain has small impact on output of inside domain in not only temporal but
also spatial dimension. In general, the hourly data assimilation frequency together with
strict outputs from domain resolutions is closer to actual precipitation. In this study, the
assimilation by combining the radar reflectivity and Global Tele-communication System
(GTS) data with high assimilation frequency is helpful for further enhancing the temporal
and spatial distribution of the short-term precipitation forecast. The results can be used as
a reference for areas with similar climatic conditions as well as rainfall characteristics. The
methodology is of guiding significance for WRF-3DAVR rainfall forecasting. In this case, in
order to explore universally applicable data assimilation guidelines for rainfall forecasting,
research should be conducted over more storm events in different study areas.
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Abstract: Estimating accurately evapotranspiration (ET) in urban ecosystems is difficult due to the
complex surface conditions and a lack of fine measurement of vegetation dynamics. To overcome
such difficulties using recent developments of remote sensing technology, we estimate leaf area index
(LAI) from Sentinel-2-based Normalized Difference Vegetation Index (NDVI) using the NDVI–LAI
nonlinear relationship. By applying Sentinel-2-based LAI and land cover classification (LCC) to a
carbon-water coupling model (PML-V2.1) with surface meteorological forcing data as input, we, for
the first time, estimate monthly ET at 10m × 10m resolution for the Beijing Sponge City. Results
show that for the whole sponge city during June 2018, the LAI, ET and gross primary productivity
(GPP) are 0.83 m2 m−2, 1.6 mm d−1 and 2.8 gC m−2 d−1, respectively. For different LCCs, lakes
and rivers have the highest ET (≥8 mm d−1), followed by mixed forests and croplands (ET is
4–6 mm d−1 and LAI is 2–3 m2 m−2) with dominant contribution (>80%) from plant transpiration,
while grasslands (2–4 mm d−1) have 50–70% from transpiration due to smaller LAI (1~2 m2 m−2).
The impervious surfaces occupying ~60% of the sponge city area, have the smallest ET (<2.0 mm d−1)
in which interception evaporation by impervious surface contributes 20–30%, and transpiration
from greenbelts (0.5–1.0 m2 m−2 of LAI) contributes 40–50%. These findings can provide a valuable
scientific basis for policymaking and urban water use planning. This study proposes a Sentinel-
2-based technology for estimating ET as a feasible framework to evaluate city-level hydrological
dynamics in urban ecosystems.

Keywords: evaporation; evapotranspiration; LAI; NDVI; urban ecosystem; sponge city; PML-V2;
Penman–Monteith equation; Sentinel-2

1. Introduction

Owing to the high heterogeneity and complexity in urban ecosystems, it is rather
difficult to monitor or predict the hydrological dynamics of urban surfaces [1]. Some
megacities, e.g., Beijing—the capital city of China—have experienced strong urbanization,
large population inflow, island effect and climate change during the past few decades [2].
These changes induce urban hydrological processes to be highly uncertain and make
policymakers face tough challenges in water use planning and management. Therefore,
there is an urgent need to accurately estimate urban hydrological processes.

Evapotranspiration (ET), as a key component of the urban hydrological processes and
surface energy balance, plays an important role in regulating water resource supply and
relieving the urban island effect (e.g., surface cooling) [3]. Different from natural ecosystems,
the urban ecosystems include large proportions of artificial modifications in land cover,
such as impervious surfaces including roofs, squares and cement or asphalt roads. These
man-made reconstructions could contribute a large fraction of evaporation [4–6], but the
quantification at city levels remains highly uncertain due to a lack of clearly distinguishing
estimations of ET between impervious surfaces and vegetated or bare-soil lands. The
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good news is that recent developments of fine resolution remote sensing for land use and
land cover classification, vegetation dynamics and environmental monitoring provide new
opportunities to estimate urban ET more accurately [7]. For example, the Sentinel-2, as part
of the European Commission’s Copernicus program with the launch of satellite Sentinel-2A
on 23 June 2015, are monitoring variability in global land surface conditions at a 10–60m
resolution and a 5–10-day revisit [8].

In this study, we take the sponge city project in Beijing city as a study case to estimate
ET of the urban ecosystem at 10m resolution using the satellite-based land cover map
and vegetation information derived from Sentinel-2 data. Beijing city has 5-year mean
annual precipitation of 560 mm and mean annual temperature of 12 ◦C, with the potential
evaporation of 550~600 mm year−1. To reduce stress on water supply (e.g., ~30 m3 per
capita water use per year in Beijing) and urban environment, the Beijing Sponge City
project was started on 4 December 2017, aiming at turning 20% of Beijing city into a sponge
city covered area by 2020 [9]. Therefore, to evaluate the benefit of this project, it is essential
to implement a city-level assessment of the project-induced ecohydrological changes at
fine resolution.

2. Materials and Methods

2.1. Observational Forcing Datasets
2.1.1. Land Cover Map at 10m Resolution Derived from Sentinel-2

The land cover classification (LCC) global map at 10m resolution was obtained from
FROM-GLC10 [7]. The FROM-GLC10 LCC data is developed based on Sentinel-2 data in
2017 with Google Earth Engine, and the overall accuracy of this LCC validated against
the circa 2015 validation sample is 73% [7]. The LCC data includes 10 classes (i.e., crop-
land, forest, grassland, shrubland, wetland, tundra, impervious surface, bare land, and
snow/ice). The most advances of the FROM-GLC10 LCC map compared to previous Land-
sat series-based LCC products are that it provides more spatial detail, better distinguish
the forest from shrub or grassland classes, and better performance in coastal areas [7].

2.1.2. NDVI and LAI at 10m Resolution Derived from Sentinel-2

We calculate the Normalized Difference Vegetation Index (NDVI) from the Sentinel-2
reflected radiance by

NDVI =
Rnir − Rred
Rnir + Rred

(1)

where Rnir and Rred are the spectral bands at near infrared (842 nm) and red (665 nm),
respectively. The Sentinel-2 reflectance data are available at the USGS EROS Center
(https://www.usgs.gov/centers/eros, accessed on 8 April 2021). The leaf area index (LAI)
at a 10m resolution was derived from the retrieved Sentinel-2 NDVI using a nonlinear
regression model between LAI and NDVI,

LAI = a ∗ exp(b ∗ NDVI) + c (2)

where the parameters a, b and c are determined as 12.4, 6.4 and 0.6, respectively.
The determination process was based on MODIS-based NDVI and LAI products,

which was described as: (i) The MODIS LAI (MOD15A2H) and surface reflectance (SR)
products (MOD09A1) at 500m were collected over the study area (Beijing Sponge City)
for the summer months (June, July, and August) from 2013 to 2019. The NDVI was then
estimated using the 500m SR product (Equation (1)). (ii) MODIS LAI and NDVI values
were collocated on the pixel basis. As the MODIS LAI product has a valid range between
0 and 6.9, with a precision of 0.1, we classified all NDVI values into 69 groups based on
unique LAI values (eliminating the zero-LAI group). The probability density plots for each
group are shown in Figure 1a. (iii) For each LAI-based value group, the probability density
was fitted using the Gaussian distribution function. Then, the NDVI value corresponded by
the maximum probability density was extracted and collocated with the specific LAI value.
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The result shows a strong exponential relationship between NDVI and LAI, especially
when the LAI value increased beyond 0.5–0.6 (Figure 1b). Therefore, the scatter values
were fitted using the exponential model (Equation (2)), which resulted in an R2 of 0.82,
implying that such exponential model in Equation (2) is robust for the Beijing Sponge City.

Figure 1. The nonlinear relationship between LAI and NDVI. (a) Frequency distribution of NDVI–LAI. Higher values of the
scatter number in (a) indicate stronger relation between LAI and NDVI. (b) Regression between LAI and NDVI. The brown
curve was fitted using Equation (2) from the NDVI–LAI values (blue stars) under the maximum probability density.

2.1.3. Surface Climate Driving Dataset

To estimate evapotranspiration of urban ecosystem at 10m resolution, a high-resolution
surface climate forcing data including precipitation, surface air temperature, wind speed,
surface pressure, specific humidity, downward shortwave and longwave radiations, etc., is
needed to drive the terrestrial evapotranspiration model (PML-V2 model, see Section 2.2).
In this study, we used the China Meteorological Forcing Dataset (CMFD) version 1 at
0.1◦ × 0.1◦ and daily resolution for June 2018 as input for the PML-V2 model. The CMFD
V1.0 dataset covered the period of 1979–2018 and was downscaled from station-based data,
TRMM satellite-based precipitation, GEWEX-SRB shortwave radiation and the GLDAS
forcing dataset [10]. The surface climate driving variables used for the Beijing Sponge City
area were spatially bilinearly interpolated onto a 10m × 10m resolution. The monthly CO2
concentration observed in June 2018 is set as 407 ppm.
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2.2. PML-V2.1 Model

Version 2 of the Penman–Monteith–Leuning model (PML-V2) was developed by
coupling the widely-used photosynthesis model [11] and a canopy stomatal conductance
model [12] with the Penman–Monteith energy balance equation [13] to jointly estimate
gross primary productivity (GPP), Ec and Es [14–18]. The PML-V2 model also simulates
the Ei based on a revised Gash-model scheme [19]. The PML-V2 model has been applied
to successfully produce the MODIS LAI-based global GPP and ET products at a 500m and
8-day resolution from 2002 to present, which were noticeably better than most widely used
GPP and ET products [16]. In this study, we incorporated modules of impervious surface
evaporation (Eu) and open-water evaporation (Ew) into the PML model (PML-V2.1) to
make it suitable for urban ecosystems. Key parameters used in the PML-V2.1 model are
provided in Table 1. The following shows the detailed description for PML-V2.1.

Table 1. Key parameters used in the PML-V2.1 model.

Parameter Definition Unit
Land Cover Classification (a)

CRO MIF GRA SHR WET WAT IMP BAR

α Surface albedo for shortwave radiation − 0.150 0.150 0.250 0.250 0.250 0.050 0.350 0.350

ε Emissivity for longwave radiation − 0.960 0.990 0.950 0.950 0.960 0.990 0.940 0.940

D0
Reference vapor pressure deficit at

stomatal conductance reduction kPa 2.000 0.552 0.638 0.864 0.661 0.700 0.552 0.864

kQ Extinction coefficient of PAR − 0.721 0.386 0.595 0.230 0.996 0.600 0.386 0.230

kA
Extinction coefficient of available

energy − 0.899 0.899 0.900 0.888 0.888 0.700 0.899 0.888

Slea f
Specific canopy rainfall storage

capacity per unit leaf area mm 0.010 0.198 0.227 0.014 0.022 0.000 0.198 0.014

FER0

Specific ratio of evaporation rate over
rainfall intensity per unit vegetation

cover
− 0.092 0.256 0.010 0.010 0.017 0.000 0.256 0.010

SU

Specific canopy rainfall storage
capacity per unit impervious surface

area
mm 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

LAIre f Reference LAI m 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

h Canopy height m 1.000 10.00 0.5000 10.000 0.500 0.500 10.00 0.500

Vm,25
Maximum catalytic capacity of

Rubisco per unit leaf area at 25°C

μmol
m−2

s−1
22.560 28.450 29.560 18.770 24.440 0.000 28.450 18.770

β Initial photochemical efficiency − 0.029 0.029 0.029 0.029 0.029 0.000 0.029 0.029

η
Initial value of the slope of CO2

response curve

mol
m−2

s−1
0.069 0.040 0.026 0.024 0.069 0.000 0.040 0.024

m Ball-Berry coefficient − 5.289 8.355 3.934 4.406 9.211 0.000 8.355 4.406

Dmin
The threshold below which there is no

vapor pressure constraint kPa 1.499 0.711 0.650 1.493 0.664 1.000 0.711 1.493

Dmax
The threshold above which there is no

assimilation kPa 6.500 3.500 5.199 5.797 5.188 6.500 3.500 5.797

(a) CRO: cropland, MIF: mixed forest, GRA: grassland, SHR: shrubland, WET: wetland, WAT: water body, IMP: impervious surface and
BAR: bare land.
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2.2.1. Energy Balance at Urban Land Surface

Based on the surface energy balance, the net radiation (Rn) can be balanced by the
latent heat flux (LE), sensible heat flux (H) and ground heat flux (G). As for a biweekly or
longer estimation, the G is often negligible (G � H + LE), then the H is given by

H = Rn − LE − G ≈ Rn − LE (3)

The net radiation at the surface is the sum of the net shortwave downward radiation
and the net longwave downward radiation,

Rn = (1 − α)SW +
(

LW − εσTa
4
)

(4)

where the shortwave downward radiation SW (W m−2), the longwave downward radiation
LW (W m−2) and the surface air temperature Ta (K) are from atmospheric forcing input
data [10]. The shortwave albedo α (-) and the longwave emissivity ε (-) are from satellite-
based estimations. σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4). The
latent heat flux (LE, W m−2) is calculated by LE = 1

c λET and

ET = Ec + Es + Ei + Eu + Ew (5)

where λ = 2500 − 2.2(Ta − 273.15) is the latent heat of vaporization (kJ kg−1) at Ta, and
c (=86.4) is a conversion factor for units from (MJ m−2 d−1) to (W m−2). ET is the evapo-
transpiration (mm d−1) summed from the canopy transpiration (Ec) and soil evaporation
(Es), interception evaporation (Ei), impervious surface evaporation (Eu) and open-water
evaporation (Ew).

2.2.2. Canopy Transpiration (Ec ) and Soil Evaporation (Es)

The transpiration at canopy scales (Ec) is coupled with the photosynthesis process
(Ags) via the dynamical modulation of the canopy stomatal conductance (Gc), and the soil
evaporation (Es) depends on absorbed energy flux and soil water deficit,

Ec =
εAc +

(
ρcp/γ

)
DGa

ε + 1 + Ga/Gc
(6)

Es =
f εAs

ε + 1
(7)

where the surface available energy (A = Rn − G) is divided into canopy absorbed energy
(Ac) and soil absorbed energy (As), Ac = (1 − τ)A and As = τA, τ = exp(−kALAI),
kA = 0.6. ε = Δ

γ , and Δ is the slope of the curve relating saturation water vapor pressure
to temperature (kPa ◦C−1). ρ is the density of air (g m−3); cp is the specific heat of air at
constant pressure (J g−1 ◦C−1); D is vapor pressure deficit (kPa); Ga is the aerodynamic
conductance (m s−1); Gc (m s−1) is the canopy conductance; f is a dimensionless variable
that determines the water availability for soil evaporation.

The canopy stomatal conductance (Gc) is calculated by the photosynthesis process
(Ags) for each PFT with the constraint of D at surface.

Gc =
mAgs

Ca(1 + D/D0)
(8)

Ags =
P1Ca

k(P2 + P4)

{
kLAI + ln

P2 + P3 + P4

P2 + P3 exp(kLAI) + P4

}
(9)

Vm =
Vm,25 exp[a(T − 25)]
1 + exp[b(T − 41)]

(10)
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where P1 = AmβI0η; P2 = AmβI0; P3 = AmηCa; P4 = βI0ηCa; Am = 0.5Vm. I0 is the
photosynthetically active radiation (PAR, in mol) from shortwave downward radiation. Ca
is the atmospheric CO2 concentration (in ppm or mol mol−1). Vm,25, β, η, m, Dmin, Dmax
and D0 are the parameters (see Table 1) in the PML-V2.1 model.

Finally, the gross primary productivity (GPP) is calculated by

GPP = Ags fD (11)

fD =

⎧⎪⎨
⎪⎩

1, D < Dmin
Dmax−D

Dmax−Dmin
, Dmin < D < Dmax

0, D > Dmax

(12)

where fD is the D constraint function; Dmin and Dmax are the parameters (see Table 1).

2.2.3. Interception Evaporation (Ei) by Canopy Vegetation

The rainfall interception evaporation (Ei) is calculated by the van Dijk model, which
was developed by van Dijk and Bruijnzeel [19,20], who modified it from the original Gash
model [21,22]. The modified Van Dijk model used in this study is described by

Ei =

{
fV P

fV Pwet + fER(P − Pwet)
f or P < Pwet
f or P ≥ Pwet

(13)

with

fV = 1 − exp

(
− LAI

LAIre f

)
(14)

Pwet = −ln
(

1 − fER
fV

)
SV
fER

(15)

fER = fV FER0 (16)

SV = Slea f LAI (17)

where P is rainfall rate (mm d−1), and Pwet is reference threshold precipitation rate when
the canopy is wet (mm d−1). fV describes the fraction area covered by intercepting leaves,
which is determined by the leaf area index (LAI) and reference LAI (LAIre f , see Table 1)
for the specific vegetation types. fER is the ratio of the average evaporation rate over the
average rainfall intensity during storms, and SV is the canopy rainfall storage capacity
(mm), which currently is parameterized as water storage in the leaf at the canopy level.
The fER0 and Slea f are the parameters shown in Table 1.

2.2.4. Impervious Surface Evaporation (Eu)

Impervious surface evaporation (Eu) is calculated by the revised van Dijk model in
this study,

Eu =

{
fU P

fU Pwet + fER(P − Pwet)
f or P < Pwet
f or P ≥ Pwet

(18)

with
fU = 1 − fV − fw (19)

Pwet = −ln
(

1 − fER
fU

)
SU
fER

(20)

fER = fU FER0 (21)

where fU describes the fractional area covered by impervious surface in urban ecosystems,
which is the rest fraction of vegetation coverage ( fV) and water body covered fraction ( fw).
SU is the impervious surface storage capacity (mm).
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2.2.5. Open-Water Evaporation (Ew)

The open-water evaporation (Ew) in lakes, rivers and other water bodies for Northern
China is parameterized on the basis of Dalton’s Law [23],

Ew = 0.144(1 + 0.75U1.5)[D + Δ(T1.5)(α − 1)T1.5] (22)

where U1.5 and T1.5 is wind speed (m/s) and air temperature (◦C) at 1.5 m height, re-
spectively. Δ(T1.5) is the slope of the curve relating saturation water vapor pressure to
temperature T1.5. α − 1 is a regulator coefficient for atmospheric stability.

3. Results

3.1. Validation of Estimated LAI and ET

The LAI estimated from the Sentinel-2-based NDVI was compared to the observed
LAI for June 2018 in the Beijing Sponge City (Figure 2a). The observed LAI was measured
within the region around 39.50–40.50◦ N, 115.40–116.10◦ E. The result shows that the
Sentinel-2-based LAI has a high correlation with the observed values (R2 = 0.74), indicating
that the LAI at 10m resolution estimated from Sentinel-2 can be well applied to estimate ET
for the Beijing Sponge City.

 
Figure 2. Validation of the Sentinel-2-retrieved LAI and the PML-V2-simulated ET. (a) The Sentinel-2-retrieved LAI
compared to observed LAI for June 2018; (b–d) The PML-V2-simulated 8-day ET based on MODIS LAI compared to
observed ET for the three flux tower sites at Daxing, Miyun and Guantao, respectively, in the Beijing area over 2008–2010.

We also validate the performance of PML-V2 in simulating ET in the Beijing region.
Figure 2b–d shows the comparisons of PML-V2-estimated ET based on MODIS LAI with
the observed ET over 2008–2010 from three field sites (i.e., Daxing, Miyun and Guantao)
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which are located within the Beijing region. The result indicates that PML-V2 has satisfied
performance in simulating ET for Beijing Sponge City with (R2 = 0.64–0.90). Therefore,
based on the above good performance in the Sentinel-2-estimated LAI and the PML-
V2-estimated ET, we further evaluate NDVI, LAI, and ET and related variables at 10m
resolution for Beijing Sponge City.

3.2. Land Use and Vegetation Information in Beijing Sponge City

By analyzing the Sentinel-2-derived 10m resolution LCC map in 2017, we find that the
Beijing Sponge City project (Figure 3) covers ~1265 km2 over the central Beijing city, China,
including impervious surface buildings (59.27%), grasslands (26.08%), mixed forest (7.34%),
croplands (5.10%), and wetlands and water bodies (~2%). Figure 3 presents fine spatial
details of the urban ecosystem, such as clear patterns of lakes, rivers and streets. Most
grasslands are parks, and fixed forests are mainly concentrated in northwestern Beijing
Sponge City, while the eastern parts are croplands.

 

Figure 3. Land cover classification at 10m resolution for Beijing Sponge City. Land cover map for 2017 derived from the
FROM-GLC10-based Sentinel-2.

We further analyze the NDVI and LAI for June 2018, which was composited from
10-day Sentinel-2 images in June 2018 in clear-sky conditions. We can see high spatial
details in the NDVI from Figure 4a. The NDVI for lakes and rivers is ≤0.0, the impervious
surfaces (e.g., large mansions and main streets) are 0.0–0.25, and grasslands and croplands
are 0.1–0.5, while mixed forests and some parks with forest reserve have NDVI values of
0.5–0.7 (Figure 4a). A high NDVI indicates a high LAI in this study. Figure 4b shows the
detailed pattern of LAI for different land cover classes for the sponge city area. As expected,
the lakes and rivers have no LAI, and the impervious surfaces (e.g., large mansions and
main streets) have only <1.0 m2 m−2 of LAI, but 1~2 m2 m−2 of LAI can be seen in many
avenues with greenbelts. The mixed forests in northwestern Beijing Sponge City have LAI
values ranging from 1 to 3 m2 m−2. Most grasslands and croplands have 1~2 m2 m−2 of
LAI, but some parks with forest reserves show the highest values (3–8 m2 m−2) of LAI
(Figure 4b).
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Figure 4. Vegetation index at 10m resolution for Beijing Sponge City. (a) NDVI and (b) LAI (m2 m−2) for June 2018 derived
from the Sentinel-2.

3.3. ET and Related Variables in Beijing Sponge City

Based on the Sentinel-2-derived LCC and LAI data, we conducted daily simulations
for June 2018 at 10m resolution using the PML-V2 model with daily climate forcing data
from CMFD v1.0. Figure 5 presents the spatial patterns of simulated monthly ET and
GPP averaged over the daily output for June 2018. Lakes and rivers have the highest ET
(≥8 mm d−1) due to the full water supply for evaporation in Summer. There is no GPP
in lakes and rivers as simulated by PML-V2. The vegetation production activities are
strongest in mixed forests and croplands, with the GPP ranging from 8 to 16 gC m−2 d−1

(Figure 5b). In these mixed forests and croplands, the ET is also high (4–6 mm d−1), where
the plant transpiration (Ec) plays a dominant role with ratios of Ec to ET larger than 0.8
(Figure 6a). In addition, the impervious surfaces have very small ET (<2 mm d−1) and GPP
(<4 gC m−2 d−1), indicating both Ec and soil evaporation (Es) are very small in these areas.
The grasslands have 2–4 mm d−1 of ET and 4–8 gC m−2 d−1 of GPP in the sponge city
(Figure 5), where the ratio Ec/ET are 0.5–0.7 (Figure 6a).
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In summary, on average, for the whole sponge city, we find that the LAI in June 2018
is 0.83 m2 m−2; the ET is about 1.6 mm d−1; the GPP is 2.8 gC m−2 d−1. Table 2 further
gives the evaluation for different districts in the sponge city. It shows that the central
areas (i.e., Xicheng and Dongcheng districts) have the smallest LAI (0.66–0.7 m2 m−2), ET
(~1.61 mm d−1) and GPP (2.36–2.44 gC m−2 d−1), while the western areas (i.e., Shijingshan
and Haidian districts) have the highest LAI (0.93–1.05 m2 m−2), ET (~1.65 mm d−1) and
GPP (3.10–3.53 gC m−2 d−1).

 

Figure 5. ET and GPP at 10m resolution for Beijing Sponge City estimated using the PML-V2 model and Sentinel-2 data. (a)
Monthly ET (mm d−1) in June 2018; (b) Monthly GPP (gC m−2 d−1) in June 2018.
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Figure 6. Spatial sensitivity of ET to LAI for the Beijing Sponge City. (a) Spatial pattern of the fraction of Ec to ET in June
2018; (b) Change in the fraction of Ec to ET with LAI; (c) Spatial pattern of the ratio of ET to LAI in June 2018; (d) Change in
ratio of ET to LAI with LAI.

Table 2. The ecohydrological environment in different districts in Beijing Sponge City.

District in
Beijing Sponge City

LAI
(m2 m−2)

ET
(mm d−1)

GPP
(gC m−2 d−1)

Xicheng 0.66 1.62 2.36
Dongcheng 0.70 1.60 2.44
Shijingshan 1.05 1.67 3.53

Haidian 0.93 1.64 3.10
Chaoyang 0.84 1.51 2.79

Fengtai 0.74 1.50 2.56
Tongzhou 0.86 1.66 3.01

Overall Mean 0.83 1.60 2.83

We further investigate how ET changes spatially with increasing LAI for June 2018.
It is shown that the fraction Ec/ET increases with LAI for the three vegetation types
(grassland, mixed forest and cropland) in the sponge city (Figure 6b). The Ec/ET for mixed
forests increase from 0.4 (LAI = 0.5) to 0.8 (LAI > 3), while Ec/ET for grasslands and
croplands show higher values, increasing from 0.6 (LAI = 0.5) to 0.9 (LAI > 3). The ratio
ET/LAI represents the amount of water loss per unit LAI. In Figure 6c, we can find that
ET/LAI for mixed forests and some grassland parks show the lowest ET/LAI (0.8–1.2),
while impervious surfaces have the highest ET/LAI, with about 2-3 times larger values
(2.4–3.6). The ET/LAI for the major vegetation types (grassland, mixed forest and cropland)
decrease with LAI increase (Figure 6d); with LAI increasing from 0.5 to 5.0, the ET/LAI
for mixed forests decrease from 2.0 to 0.6, and ET/LAI for grasslands and croplands from
3.0 to 1.0. This result indicates that grasslands and croplands have much higher water
consumption per unit LAI than mixed forests.

Fractional contributions of other ET components to ET have been estimated (Figure 7).
Soil evaporation (Es) contributes a relatively small fraction (≤0.2) due to a very small
fraction of bare lands and large vegetation coverage in mixed forests, grasslands and
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croplands in June 2018 in the Beijing Sponge City. The fraction of Ei/ET is small (≤0.1)
in most LCC types but in grasslands is 0.1–0.2 (Figure 7b). According to a previous
study, the city impervious surface could contribute less than 20% of ET [4]. Surprisingly,
the impervious surface evaporation (Eu) for the Beijing Sponge City contributes 0.2–0.3
fractions to the ET in June 2018 in most impervious areas (Figure 7c). Finally, all ET from
lakes and rivers are contributed by water body evaporation Ew (Figure 7d).

 

Figure 7. The fraction of Es, Ei, Eu and Ew to ET in June 2018 for the Beijing Sponge City. (a) Spatial pattern of fraction
Es/ET; (b) Spatial pattern of fraction Ei/ET; (c) Spatial pattern of fraction Eu/ET; (d) Spatial pattern of fraction Ew/ET.

ET can be converted to latent heat flux (LE, in W m−2) and plays an important role
in regulating surface energy balance (Figure 8). For June 2018 in Beijing, the surface
receives about 260–270 W m−2 of shortwave radiation, but about half is reflected in the
atmosphere with the net radiation (Rn) for impervious surface less than 130 W m−2. For
mixed forests and grasslands, the Rn is about 140–150 W m−2, and the croplands and
water bodies have a higher Rn of 170–180 W m−2 (Figure 8b). Lakes and rivers have the
highest LE (>250 W m−2) but the smallest sensible heat flux (SH, <−60 W m−2). The SH
for mixed forests, forest parks and croplands are relatively small (−20 to 20 W m−2), while
both impervious surfaces and grasslands are high (40–60 W m−2) (Figure 8d). This result
indicates that the high surface air temperature (reflected by SH) in the summer of Beijing’s
central city is mostly contributed by impervious surfaces and grasslands.
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Figure 8. Energy fluxes in June 2018 for the Beijing Sponge City. (a) Downward shortwave radiation; (b) Surface net
radiation; (c) Latent heat flux; (d) Sensible heat flux. Units are in W m−2.

4. Discussion

In this study, we applied a water-carbon coupling model (PML-V2) with the use of
Sentinel-2 LAI and land use and cover data and with surface meteorological forcing data as
the input to estimate urban ET and its components at 10m resolution for the Beijing Sponge
City. Our results indicate that the current vegetation coverage for the Beijing Sponge City
is still at a low level (only with mean LAI < 1 m2 m−2 in June 2018), and the city gains
relatively limited benefits from urban ecosystem services.

Eddy covariance measurements to study evaporation from urban ecosystems [24,25]
generally helped us to understand the combined evaporation from all land cover types,
lacking the capability to divide individual contributions from such as impervious surfaces
(roofs, roads and plazas, etc.) and vegetated areas (bare soil, forests, grasslands and
croplands, etc.). For different land cover classes, by using an advanced water-carbon
coupling ET model driven by Sentinel-2 LAI, we find that lakes and rivers have the highest
ET (≥8 mm d−1), followed by mixed forests and croplands (ET is 4–6 mm d−1 and LAI
is 2–3 m2 m−2), where the plant transpiration (Ec) plays the dominant role (>80%), then
grasslands have 2–4 mm d−1 of ET, where the LAI is 1~2 m2 m−2, while impervious
surfaces have smallest ET (<2.0 mm d−1). In most impervious areas, the impervious
surface evaporation (Eu) contributes 20-30% of ET, which is larger than the estimate (18%)
from previous studies [4]. We have shown that another 40–50% of ET in impervious areas
are contributed by plant transpiration (Ec) due to the small fractional area covered by
greenbelts with trees and grassland (LAI is 0.5–1.0 m2 m−2). This study did not consider
water vapor conversion from human water use activities, which also contributes to the
impervious evaporation from building indoor water use [25].

5. Conclusions

First of all, we show the good performances of the nonlinear regression model (Equa-
tion (2)) for estimating Sentinel-2 LAI based on the strong exponential relationship between
NDVI and LAI and the PML-V2.1 model of estimating ET and GPP at 10m resolution
using Sentinel-2 LAI and land cover map. This Sentinel-2-based technology using the
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PML-V2.1 model with surface meteorological forcing data as the input for estimating ET
provides a new framework to evaluate city-level hydrological dynamics in urban ecosys-
tems. Secondly, we find that plant transpiration from greenbelts with trees and grassland
play an important role in most impervious areas for Beijing Sponge City. Thirdly, mixed
forests, forest parks and croplands due to their high ET have much smaller surface heat
contribution than the impervious and grasslands, providing better ecosystem services (e.g.,
cooling) for the sponge city.
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Abstract: The damming of rivers has altered their hydrological regimes. The current study evaluated
the impacts of major hydrological interventions of the Zhikong and Pangduo hydropower dams on
the Lhasa River, which was exposed in the form of break and change points during the double-mass
curve analysis. The coefficient of variability (CV) for the hydro-meteorological variables revealed an
enhanced climate change phenomena in the Lhasa River Basin (LRB), where the Lhasa River (LR)
discharge varied at a stupendous magnitude from 2000 to 2016. The Mann–Kendall trend and Sen’s
slope estimator supported aggravated hydro-meteorological changes in LRB, as the rainfall and LR
discharge were found to have been significantly decreasing while temperature was increasing from
2000 to 2016. The Sen’s slope had a largest decrease for LR discharge in relation to the rainfall and
temperature, revealing that along with climatic phenomena, additional phenomena are controlling
the hydrological regime of the LR. Reservoir functioning in the LR is altering the LR discharge. The
Soil and Water Assessment Tool (SWAT) modeling of LR discharge under the reservoir’s influence
performed well in terms of coefficient of determination (R2), Nash–Sutcliffe coefficient (NSE), and
percent bias (PBIAS). Thus, simulation-based LR discharge could substitute observed LR discharge
to help with hydrological data scarcity stress in the LRB. The simulated–observed approach was
used to predict future LR discharge for the time span of 2017–2025 using a seasonal AutoRegressive
Integrated Moving Average (ARIMA) model. The predicted simulation-based and observation-based
discharge were closely correlated and found to decrease from 2017 to 2025. This calls for an efficient
water resource planning and management policy for the area. The findings of this study can be
applied in similar catchments.

Keywords: SWAT; double-mass analysis; coefficient of variability; seasonal ARIMA; MK-S trend
analysis

1. Introduction

Dams are intended to offer substantial aid to humankind by ensuring an enhanced
water availability for municipal, industrial, and agricultural uses, as well as increased
capability of flood regulation and hydropower generation [1]. On the other hand, the
construction of dams has considerably changed the natural flow regime of rivers worldwide.
Above half of the 292 large river systems in the world have been affected by dams [2,3]. The
influence of human activities in altering river discharge has profoundly increased in recent
decades [4]. Over an intermediate time scale (e.g., decadal scale), human interferences in
terms of water consumption, land-use change, dam construction, and sand mining, among
others, are the powerful factors that escalate basin-scale hydrological changes. Therefore,
a site-specific study is needed to disclose the governing effects of human disruptions on
these hydrological changes [5–7].

To temper river floods, reduce water collection for irrigation, hydropower generation
and facilitate navigation, dams have been created across big rivers around the world [8].
Dams have grown to one of the most perturbing human intrusions in river systems as the
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number of dams and the total storage capacity of reservoirs rapidly increase [4]. Therefore,
knowledge of dam construction and its regulating effects on river discharge is crucial for
river and delta management and restoration. Highly regulated rivers in China are subject
to large-scale ecosystem amendments made by hydrological alterations. Many of the earlier
studies related to dam-induced hydrological alterations across river basins in China focused
on the impacts of large dams that generally aim to control floods in large basins, such as
the Lancang River [9], the Mekong River [10], the Pearl River [11], the Yangtze River [12],
and the Yellow River [13,14]. In addition to large dams, the development of small dams
has also been highlighted in national energy policies in China [15]. Therefore, small dam
construction is intense in China, especially in South China, where hydropower resources
are extensive. Thus, to fill in the knowledge void, the present study focused on the impact
appraisal of reservoir functioning in the Lhasa River Basin, a Qinghai–Tibetan Plateau basin
in South China (for more information, see Section 2.2). Several researchers have established
a number of approaches with the objective of reckoning of the hydrologic modifications
caused by human activity. However, hydrological modeling can be an effective alternative
for hydrological analysis in different scenarios [16]. The SWAT (Soil and Water Assessment
Tool) model developed by the authors of [17] has already been in widespread use for
water resource management in many different rivers [18–23]. Additionally, there has been
a general lack of applications of physically-based hydrological models to the Yarlung
Tsangbo River Basin, especially the Lhasa River Basin [24]. The SWAT model was applied
to the Lhasa River Basin in a recent study [25], where streamflow and sediment load were
predicted for the Lhasa River in future. The SWAT model was applied to the Lhasa River
Basin to simulate its streamflow variability under reservoir influence [26]. The SWAT model
was utilized in [27] for hydrological drought propagation in the South China Dongjiang
River Basin using the “simulated–observed approach”. Their study estimated the effects of
human regulations on hydrological drought from the perspective of the development and
recovery processes using the SWAT model.

Streamflow forecasting is of great significance to water resource management and
planning. Medium-to-long-term forecasting including weekly, monthly, seasonal, and
even annual time scales is predominantly beneficial in reservoir operations and irrigation
management, as well as the institutional and legal features of water resource management
and planning. Due to their reputation, a large number of forecasting models have been
developed for streamflow forecasting, including concept-based, process-driven models
such as the low flow recession model, rainfall–runoff models, and statistics-based data-
driven models such as regression models, time series models, artificial neural network
models, fuzzy logic models, and the nearest neighbor model [28]. Of various streamflow
forecasting methods, time series analysis has been most widely used in the previous
decades because of its forecasting capability, inclusion of richer information, and more
systematic way of building models in three modeling stages (identification, estimation, and
diagnostic check), as standardized by Box and Jenkins (1976) [29]. The current study made
use of "simulated–observed approach" after [27] for predicting the Lhasa River streamflow
under reservoir operations in the Lhasa River Basin. SWAT-simulated and observed
hydrological time series were used introduced to a stochastic AutoRegressive Integrated
Moving Average (ARIMA) model. As a common data-driven method, the ARIMA model
has been widely used in time series prediction due to its simplicity and effectiveness [30].
Adhikary et al. (2012) [31] used seasonal ARIMA (SARIMA) model to model a groundwater
table. They took weekly time series and concluded that SARIMA stochastic models can be
applied for ground water level variations. Valipour et al. (2013) [32] modeled the inflow of
the Dez dam reservoir with SARIMA and ARMIA stochastic models. His research results
showed that the SARIMA model yielded better results than the ARIMA model. Ahlert
and Mehta (1981) [33] analyzed the stochastic process of flow data for the Delaware River
by the ARIMA model. Yurekli et al. (2005) [34] applied SARIMA stochastic models to
model the monthly streamflow data of the Kelkit River. Modarres and Ouarda (2013) [35]
demonstrated the heteroscedasticity of streamflow time series with the ARIMA model
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in comparison to GARCH (Generalized Autoregressive Conditionally Heteroscedastic)
models. Their results showed that ARIMA models performed better than GARCH models.
Ahmad et al. (2001) [36] used the ARIMA model to analyze water quality data. Kurunç et al.
(2005) [37] used the ARIMA and Thomas Fiering stochastic approach to forecast streamflow
data of the Yesilurmah River. Tayyab et al. (2016) [38] used an auto regressive model in
comparison to neural networks to predict streamflow.

The current study primarily aimed to (i) investigate the reservoir operations’ impact on
the Lhasa River discharge, (ii) apply the SWAT model to simulate Lhasa River streamflow
under multiple reservoir functioning, and (iii) to predict Lhasa River streamflow under
reservoir’s influence using ‘observed’ and ‘SWAT-simulated’ hydrological data series as a
step forward in overcoming the data scarcity problem of the area. The study was intended
to benefit water resource managers and hydrological engineers in understanding the future
hydrological regime in the Lhasa River Basin under reservoir functioning and aiding
in developing better management practices and planning for hydrological resources in
the area. The current study holds novelty in combining a physical-based hydrological
model and a statistical time series forecasting model for the simulation and prediction,
of the discharge of the Lhasa River respectively, one of the important rivers in the data-
scarce Qinghai–Tibetan Plateau, which is under the influence of recent major hydraulic
interventions in the form of the Zhikong and Pangduo hydropower reservoirs.

2. Materials and Methods

2.1. Study Area—Lhasa River Basin

The Lhasa River Basin (LRB), ranging from 29◦19′ to 31◦15′N and from 90◦60′ to
93◦20′E, is the economical and authoritative hub of the autonomous Qinghai–Tibetan
plateau (QTP). The Lhasa River (LR) is the longest tributary of the Yarlung Tsangpo River;
LRB covers a ≈32,321 km2 basin area (ArcSWAT-estimated area by the digital elevation
model used in the current study), comprising 13.5% of the total area of the Yarlung Tsangpo
basin [39]. The LRB exhibits typical semi-arid monsoonal climate conditions, where the
major proportion of received rainfall is concentrated in the summer season from June to
September with the simultaneous generation of peak LR discharge during the same time.
Peng et al. (2015) [24] showed that rainfall in summer is a governing feature in producing
summer stream flow in the Lhasa River basin. Thus, the rainfall disproportion poses
a direct influence on the rainfall-dependent runoff generation phenomena in the basin.
The hydrometric and meteorological records for the LRB are maintained at the Pondo,
Tanggya, and Lhasa hydrometric stations and the Damxung, Maizhokunggar, and Lhasa
meteorological stations, respectively.

The LR stretches to a length of 551 km with a hydropower potential of 1.177 million
kWh [39], and it is substantial in fulfilling the hydropower and agricultural requirements
of the local community. The LR has been exposed to major hydraulic interventions in the
form of reservoir development and confinement during the last and present decades. It
is of vital importance to understand the hydrological phenomena of the LRB under the
influence of hydraulic structures for a better understanding of the hydrological behavior
of the study area to facilitate the understanding of future water resource availability and
management in the area. The major hydraulic developments in the study area are the
installation of Zhikong and Pangduo hydropower stations over the LR.

Zhikong and Pangduo Reservoirs Impoundment on Lhasa River

The Zhikong and Pangduo Dams were built in 2006 and 2013, respectively, on the LR.
The Zhikong Dam is located 96 km upstream the urban Lhasa city in the middle and lower
reaches of the LR, and it is 65 km downstream the Pangduo Dam, thus impounding the
upper LR. To meet the substantially increasing power demand of the Tibet plateau, the
Zhikong Dam was built with an installed power capacity of 100 MW and a reservoir water
storage capacity of 0.225 billion m3. The other purposes of this installation include flood
control in high rainfall months and irrigation water supply in low rainfall spells during
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the year. However, Wu et al. (2018) [39] showed that impoundment by the Zhikong Dam
unswervingly altered the hydrological behavior of the downstream channels of the LR.
The succeeding major hydrological intervention on the LR was the construction of the
Pangduo Dam with 160 MW of installed capacity and 1.23 billion m3 of reservoir water
storage capacity. The development purposes of the Pangduo water conservancy project
include irrigation water availability, power generation, and flood control. It is the pillar
project and a leading reservoir developed for the enormous growth of the LRB.

2.2. Datasets Used

The current study utilized an arrangement of hydro-meteorological and geospatial
information of the LRB in order to establish the desired results. The datasets included the
following.

2.2.1. Geospatial Data of LRB

To extract the topographical features of the LRB, a 90 m resolution Advanced Thermal
Emission and Reflection Radiometer, Global Digital Elevation Model (ASTER, GDEM) was
developed for the study area (Figure 1). The land use features of the LRB were established
using Landsat-8 Operational Land Imager (OLI) imagery with a 30 m resolution. The best
cloud free images, with (137, 39) and (138, 39) path and row respectively, were used to
delineate the land use map for the study area using maximum likelihood classification of
the land features. The soil profile of the LRB was described using FAO-UNESCO (Food
and Agricultural Organization-United Nations Educational, Scientific, and Cultural Or-
ganization) Harmonized World Soil Database version 1.2 (HWSD v1.2), a 30 arc-second
raster database with over 15,000 different soil mapping units within the 1:5,000,000 scale
FAO-UNESCO Soil Map of the World. All the datasets were projected to Universal Trans-
verse Mercator 45N projection. All these datasets were mandatory input for SWAT model
to simulate the LR streamflow.

Figure 1. Location map of the Lhasa River Basin extracted from the Advanced Thermal Emission and Reflection Radiometer,
Global Digital Elevation Model (ASTER GDEM) dataset showing hydrological and meteorological stations, hydropower
plants, and some other features of the study area.
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2.2.2. Hydro-Meteorological Data of LRB

The long-term continuous records for Lhasa River streamflow were obtained from
the Lhasa hydrological station located in Lhasa city, 120 km below the Zhikong Dam
near the basin outlet. The hydrological data records are maintained at three hydrometric
stations, but the current study utilized the data records of the Lhasa station because they
represented the total river discharge contributed from the entire catchment from 1956
to 2016. For data on the required climatic variables in the current study, the long-term
data from three meteorological stations—Damxung, Maizhokunggar, and Lhasa—were
used. The meteorological dataset includes records of daily precipitation, maximum and
minimum temperature, relative humidity, wind speed, and sunshine hours. Data on these
climate variables were fed into the SWAT model to simulate LR streamflow.

2.3. Method
2.3.1. Reservoir Impact Assessment on LR Discharge

The current study intended to estimate the impact of reservoir functioning by using
the modest, graphical, and useful method of double-mass curve (DMC) analysis for the
consistent and long-term trend examination of hydro-meteorological data. The concept
of the double-mass curve is that a plot of the two cumulative quantities during the same
period displays a straight line as long as the proportionality between the two remains
unchanged, and the slope of the line represents the proportionality. The advantages of
this method are that it can smooth a time series and eliminate random components in the
series, thus showing the main trends of the time series. In last 30 years, Chinese researchers
have explored the effects of soil and water conservation measures and land use/cover
changes on runoff and sediment using the DMC method, resulting in some very good
outcomes [40]. For the current study, the double-mass analysis of annual LR discharge and
LRB precipitation for the long time span of 1956–2016 and the chosen study time period
from 2000 to 2016 were done separately to ensure the accuracy and verification of the
change points, if any, in the hydrological time series.

The coefficient of variation (CV) was used to determine the variability of climatic and
hydrological changes in the LRB by using the long-term available hydro-meteorological
time series. CV is defined as:

CV =
σ

μ
∗ 100% (1)

where ‘σ’ is the standard deviation and ‘μ’ is the mean.
The construction and operation of water conservancy projects (dams, channel modifi-

cations, drainage works, etc.) have transformed the seasonal distribution of and caused
abrupt changes in streamflow at the basin scales [41–43]. How to attribute the physi-
cal causes of hydrological variability and how to correctly identify the human-caused
signals from natural hydrological variability are therefore important questions [44–46].
Understanding hydrological variability is initially needed to solve these queries, as well
as for hydrological simulation and forecasting, water resource management, control of
water disasters, and many other water activities [47]. However, the correct detection and
attribution of complex variability in hydrological processes at multi-time scales are still
challenging tasks [48,49], and the difficulty has not been resolved, although many methods
are presently used [50,51]. There have been a large number of methods such as the moving
T-test (Student’s T-test) [52], moving F-test (also known Fisher-Snedecor distribution) [53],
Mann–Kendall test [54], and Pettitt test [55]. The evaluation of a trend in time series of
hydro-meteorological phenomena has been done using the non-parametric Mann–Kendall
test (MK) [56–58] in the MS Excel software supported by XLSTAT 2014 macro. This test is
extensively used and can deal with missing and distant data. The test has two parameters
that are substantial for trend detection: a significance level (p) that represents the power of
the test and a slope magnitude estimate (MK-S) that represents the direction and volume of
the trend. The trends in time series were completed by a calculation of Kendall coefficient
‘τ’ [59–61]. In the current study, the MK trend at a significance level of 5% (p < 0.05) was ap-
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plied to the hydro-meteorological time series. Specific attention was paid to the streamflow
exposure of the LR to the impact of reservoir operations by analyzing the MK trend and
changes in it with time.

2.3.2. SWAT Modelling of LR Streamflow

The SWAT model is among the most extensively applied open source, semi-distributed
watershed-scale hydrologic models to simulate the water quantity, surface runoff, and qual-
ity of streamflow in river channels [62]. According to the working principle of the SWAT
model, a watershed is initially divided into sub-basins, and each sub-basin is subdivided
into hydrologic response units (HRUs) based on land use, topography, soil, and slope maps.
The hydrologic cycle for each HRU is simulated based on the water balance, including pre-
cipitation, interception, surface runoff, evapotranspiration, percolation, lateral flow from
the soil profile, and return flow from shallow aquifers. In this study, ArcSWAT2012 running
on an ArcGIS 10.2 platform was used for watershed delineation and sub-basin discretiza-
tion, resulting in 21 sub-basins that were further categorized to 149 HRUs. Srinivasan et al.
(2010) [63] stated that since the accuracy of simulated streamflow may be reduced by not
considering a reservoir or dam in a watershed, the calibration of the reservoir component is
needed to improve the accuracy of simulated streamflow. The SWAT model provides four
different reservoir outflow estimation methods: measured daily flow, measured monthly
flow, average annual release rate for uncontrolled reservoir, and controlled outflow with
target release. The selection of the method depends on available data regarding the reser-
voir. Therefore, the SWAT model was forced to simulate LR streamflow under the reservoir
influence by using the default reservoir module of SWAT. The reservoir details including
surface area, reservoir water volume, reservoir operational year, and monthly LR discharge
data for the time span of 2000–2016 were poured into the model to simulate LR discharge
under the hydraulic interventions of the Zhikong and Pangduo dams. The model was
calibrated for the years 2005–2010 and validated for 2011–2016 with 500 simulations each
using SWAT-CUP (SWAT Calibration and Uncertainty Procedures) algorithm. The global
sensitivity method was used to rank the selected sensitive parameters.

The sensitivity and significance degree of each parameter were analyzed by the t-Stat
and p-value, as well as the p-factor and r-factor; the higher the value of t-Stat, the greater
its sensitivity is, and the lower the p-value, the greater the sensitivity is. The p-factor is
the percentage of data that is enclosed by the 95PPU (95 Percent Prediction Uncertainty)
band (ranging from 0 to 1, where 1 shows that all the prediction are within the 95PPU
band), while the r-factor is the average width of the 95PPU band divided by the standard
deviation of the measured variable (from 0 to ∞, with 0 showing perfect match). During the
calibration and validation periods, the calculated monthly streamflow was compared with
the observed data from the Lhasa hydrometric station using the Nash–Sutcliffe coefficient
(NSE) [64], the coefficient of determination (R2) [65], and the percent bias (PBIAS, %) [66].
Additionally, the observed and simulated discharge records were statistically tested for the
correspondence between them using Pearson correlation [67], Spearman’s correlation [67],
and Kendall’s rank correlation [68] for the credibility verification of SWAT modelling under
the reservoir operations for LR streamflow simulation. Additionally, the forecasted river
discharges using the observed and simulated hydrological time series were correlated
using the same correlation tests.
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2.3.3. ARIMA Forecasting of LR Discharge Time Series

An ARIMA time series model, which was pioneered by Box and Jenkins (1970), was
employed in this study [28]. In the ARIMA (p, d, and q) model, where, p is autoregressive
(AR), d is differencing, and q is moving average (MA). ARIMA models have two common
forms: one is non-seasonal ARIMA (p, d, and q) and the other is seasonal ARIMA (p, d,
and q) (P, D, and Q) S, where P, D, and Q represent seasonal parts and p, d, and q are
non-seasonal parts of the model. SARIMA was applied in the current study using the
observation-based LR discharge recorded at the Lhasa hydrometric station and the SWAT-
simulation-based LR discharge to predict the future hydrological time series for the LRB.
The SARIMA was used for predicting the LR discharge using both the observed and
simulated hydrological time series in R. The SARIMA models can be used for stationary
time series data, which was ensured through decomposition for non-stationarity and log
transformation for de-seasonality of the SWAT-simulated and observed hydrological time
series. The SARIMA model developed for the observation-based and simulation-based LR
hydrological time series was trained for the time span of 2005–2012 and validated for the
years 2013–2016 under the reservoir influence to minimize the ambiguity in the prediction
of LR streamflow, and LR discharge forecasting was carried out from 2017 to 2025.

We constructed the model and depicted the autocorrelation function (ACF) and partial
autocorrelation function (PACF) of model residuals to confirm autoregressive and moving
average parameters. The final automatic ARIMA model selection was carried out in
the R environment. The ACF and PACF of residuals were determined to evaluate the
goodness of fit. The two most commonly used ARIMA model selection criteria, the
Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC), were
examined and compared for ARIMA model selection. The AIC was used for the purpose
of selecting an optimal model fit to given data. The model that had the minimum AIC was
selected as a parsimonious model [69–72]. The BIC was also utilized for the identification
of the best fit model for LR flow prediction. The model with the least BIC was suitable for
time series prediction [73].

AIC, in general case, is:

AIC = 2k = n1n(SSE/n) (2)

where k is the number of parameters in the statistical model, n is the number of observations,
and SSE is square sum of error given by

SSE =
n

∑
i=1

ε2
i (3)

BIC, in general, is given by

BIC = k1n(n) + n1n(SSE/n) (4)

R2, root mean square error (RMSE), and mean absolute percentage error (MAPE) were
selected to assess the ability of SARIMA in forecasting the LR discharge. A Ljung–Box
test [74] at p = 0.05 was also performed to make sure best fit of the SARIMA model for
both time series for LR discharge. Finally, we applied the best fitted models to forecast
the monthly LR discharge using the observation-based and simulation-based hydrological
time series. The schematic representation of study design is shown in Figure 2.
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Figure 2. Schematic representation of reservoir impact evaluation, seasonal AutoRegressive Integrated Moving Average
(SARIMA) and Soil and Water Assessment Tool (SWAT) model setup for the current study. LR: Lhasa River; DMC: double-
mass curve; MK-S: non-parametric Mann–Kendall test; CV: coefficient of variability; PACF: partial autocorrelation function;
AIC: Akaike’s information criterion; BIC: Bayesian information criterion; RMSE: root mean square error; MAPE: mean
absolute percentage error; Q: Discharge (m3/s).

3. Results

3.1. Reservoir Impact Evaluation on Lhasa River Flow
3.1.1. Double-Mass Curve Analysis of Lhasa River Flow

To reckon LR discharge change under reservoir influence, DMC analysis, along with
regression lines for two time spans, was carried out to better understand the hydrological
phenomena and the likely change years in the time series. The double-mass curves for
annually recorded rainfall and discharge, following the work of Searcy and Hardison
(1960) [75], were individually applied for the time spans of 1956–2016 and 2000–2016
(Figures 3 and 4) respectively. The application of individual cumulative mass curves for
two time spans was done with the aim of developing a more valid and reliable impact
assessment in terms of change in the hydrological time series of the LR.

The DMC analysis of LR discharge from 1956 to 2016 revealed a nearly proportional
behavior of the rainfall in correspondence to the measured LR discharge. However, we
saw certain years of change along the time series that served as break points in the pattern
of high and low flows in the LR discharge. The years for change are highlighted and
indicated in Figure 3, where the pattern of streamflow breaks to differ from the preceding
years. The result of the long-term DMC analysis was the identification of the change years,
of which the years 2007 and 2013 were of particular significance for the current study.
These two years marked the operation of the two major reservoirs (Zhikong and Pangduo,
respectively) that were considered for the current study. The impact of chosen reservoir
functioning on the hydrological behavior of the LR manifested itself in the long-term
DMC analysis.

To further understand the phenomena of reservoir influence on LR discharge, double-
mass analysis was applied to the time series from 2000 to 2016 (Figure 4), and we saw three
identified change points in the time series during these years.
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Figure 3. Double-mass curve for cumulative rainfall and cumulative discharge of the Lhasa River for the time span of
1956–2016. The years for change in hydrological time series are highlighted and supported by text.

 
Figure 4. Double-mass curve for the cumulative rainfall and cumulative discharge of the Lhasa River for the time span of
2000–2016. The years for change in hydrological time series are supported by the text.
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The year 2003 showed a change, as the maximum rainfall was recorded in this year
and produced the simultaneously highest discharge during the year for the chosen study
time period. The next identified change year was 2007, which deviated from the streak of
data points along the regression line. This was the time when one of the selected reservoirs
in the study was built on the LR. The Zhikong hydropower station was completed in
2006 and started functioning in September 2007. The most prominent break point in the
hydrologic time series was identified in 2013 when the second major reservoir started
operating on the LR, i.e., the Pangduo hydropower station, where the data points deviated
from the regression line and indicated a peculiar hydrological behavior in the LRB. Yet
again, the hydraulic interventions demonstrated themselves in the form of change points
across the study time span of hydrologic time series.

3.1.2. Variation Assessment of Lhasa River Streamflow under Reservoir Operations

Figure 5 shows the inter-annual variation of the hydro-meteorological behavior of the
LRB along the two time phases. The CV for the hydro-meteorological phenomena from
1956 to 1999 and from 2000 to 2016 exposed an aggravated variability in the latter time
span compared to the previous time span. The CV of 24% for LRB precipitation during
1956–1999 was lowered to 20% in the second time span of 2000–2016; however, the CV
values for both time spans were relatively closer, which means that the change in the
pattern of precipitation advanced with a greater pace in the study time span compared to
the former long time span of 1956–1999. Similarly, for the annual temperature, the CVs of
8% and 6% for the time spans of 1956–1999 and 2000–2016, respectively, were again closer
values and revealed a faster temperature change in the LRB during 2000–2016.

Figure 5. Changes of annual river discharge (at the Lhasa hydrometric station), annual mean temperature, and annual
recorded precipitation for the Lhasa River Basin from 1956 to 1999 and from 2000 to 2016 (study time period with reservoirs
functioning in the study area).

Since it is a typical QTP catchment, the LRB is prone to complex climate change
phenomena [25]. These climate variables are closely associated with the hydrologic cycle.
Particularly for the LRB, the LR discharge is furnished by the precipitation [25], and
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variability in rainfall poses a direct influence on the hydrological behavior of the LRB.
Temperature is also an important feature in determining hydrological phenomena because
it asserts its influence in the form of evapotranspiration, and, thus, variations in the
temperature of the LRB may have a potential impact on the water resources in the area.

The CV values for LR discharge revealed an increased variability in 2000–2016 com-
pared to 1956–1999. The CV of 25% for 1956–1999 copiously increased to 34% during the
study time span of 2000–2016. With rainfall being the determining factor for discharge in
the LRB, we saw that during the years of 1956–1999, the CV for rainfall and LR discharge
were very close at 24% and 25%, respectively, thus indicating a close correspondence among
them. Conversely, a large difference in the variability of rainfall and LR discharge was
unveiled during the study time span of 2000–2016. This signified that during this time
span, apart from the climatological justification, some other factor proclaimed its influence
on the LR’s hydrological dynamics.

The LR was subjected to some major hydraulic interventions during the years of
2000–2016, and the increased discharge alteration can be well-attributed to the reservoir
operations in the LRB during this time period. The Zhikong and Pangduo reservoirs became
operational in 2006 and 2013, respectively, establishing a clearly visible modification in the
LR’s hydrological regime, as presented in Figure 5. The LRB is experiencing an aggravated
climatological variation accompanied with human interferences, resulting in a substantially
altered hydrological phenomena in the area that warrants better planning and management
practices in future.

3.2. MK-S Trend Analysis on Lhasa Streamflow under Reservoir Influence

Investigations of the trends in the time series of hydrological data were found to be
an imperative means for the detection and understanding of changes in a rainfall–runoff
process. Their results are exploitable in water management planning and flood-protection.
Climatic changes, together with a different type and stage of human impact, are considered
to be the main causes of rainfall–runoff changes [76]. In the current study, an MK-S test was
applied to determine the direction and magnitude of the trend of hydro-meteorological
phenomena of the LRB; the findings are presented as Table 1.

Table 1. Trend analysis on hydro-meteorological variables of the Lhasa River Basin. MK–τ represents Mann–Kendall’s trend
at p = 0.05 (bold values are significant at p-value), and S represents the Sen’s slope estimator for change. The negative sign
indicates a decrease.

Rainfall (P) Temperature (T) Discharge (Q)

1956–1999 2000–2016 1956–1999 2000–2016 1956–1999 2000–2016

MK–τ 0.04 −0.13 0.54 0.44 0.03 −0.41

S 0.52 (mm yr−1) −4.30 (mm yr−1) 0.03 (◦C yr−1) 0.06 (◦C yr−1) 0.30 (m3 s−1 yr−1) −14.02 (m3 s−1 yr−1)

Dams influence variations in river discharge, particularly over seasonal time scales [77,78].
The seasonal variation in LR discharge is presented in Table 2, where maximum variation is
shown to be have been experienced by the high flow months of the wet monsoonal season
from June to October with a CV value of 62%, followed by the spring season from March
to May with a CV value of 56%. The dry winter season from November to February was
found to experience the minimum variability with a CV of 47%.

3.3. Lhasa River Streamflow Simulation and Prediction
3.3.1. SWAT Modeling of Lhasa River Flow under Reservoir Influence

In the current study, the SWAT model identified nine parameters sensitive to the
runoff generation phenomena of the LRB. The sensitivity, ranges, and optimum values of
the selected parameters for the study (as identified by SUFI-CUP) are presented in Table 3.
The model ranked SOL_BD, EPCO, GW_REVAP, ESCO, and GW_DELAY as the most
influential parameters in controlling the runoff phenomena in the LRB. This indicated
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that the LR discharge is predominantly controlled by the soil physical characteristics,
evapotranspiration, and ground water processes in the LRB. This was supported by the
previously discussed seasonal MK-S trend results for LR discharge, which also indicated a
strong association of evapotranspiration phenomena and ground water movement in the
LRB in the runoff generation process, particularly in the dry winter season.

Table 2. The change and trend on seasonal Lhasa River discharge for the time period of 2000–2016.
CV stands for coefficient of variation, MK–τ represents Mann–Kendall’s trend at p = 0.05 (bold values
are significant at p), and S represents the Sen’s slope estimator for change in LR discharge (m3 s−1

month−1). The negative sign indicates a decrease.

Dry Winter Season
(Nov-Feb)

Spring Season
(Mar-May)

Wet summer Season
(Jun-Oct)

CV 47% 56% 62%

MK–τ −0.28 −0.14 −0.27

S −0.6 (m3 s−1 yr−1) −0.4 (m3 s−1 yr−1) −5.6 (m3 s−1 yr−1)

Table 3. Sensitivity of selected parameters in influencing Lhasa River flow.

No Parameter Parameter Description
Method
chosen

Range
Min-Max

Fitted Value t-stat p-Value Rank

1. r__SOL_BD Soil bulk density (mg/m3) Relative −0.5–0.5 0.17 2.287 0.045 1

2. v__EPCO Plant uptake compensation
factor Replace −1–1 0.65 1.830 0.097 2

3. v__GW_REVAP Ground water “revap”
coefficient Replace 0.02–0.2 0.13 1.249 0.240 3

4. v__ESCO Soil evaporation
compensation factor Replace 0.01–1 0.85 −0.711 0.492 4

5. v__GW_DELAY Ground water delay (days) Replace 0–500 12.50 0.630 0.542 5

6. r__OV_N Manning’s “n” value for
overland flow Relative −0.5–0.5 −0.02 0.397 0.699 6

7. r__SOL_AWC Available water capacity of
soil layer (mm H2O/mm soil) Relative −0.2–0.2 0.07 −0.204 0.842 7

8. r__SOL_K Saturated hydraulic
conductivity (mm/h) Relative −0.5–0.5 0.47 0.182 0.858 8

9. r__CN2 Initial SCS curve number for
soil condition II Relative −0.2–0.0 −0.17 −0.022 0.982 9

“r” denotes the relative method, and “v” denotes the replace method.

The performance of the SWAT model in simulating LR discharge under the chosen
reservoirs’ influence for the time span of 2000–2016 is presented in Figure 6a. A comparison
of observed and simulated LR discharge is shown in Figure 6b. The simulated hydrological
time series corresponded appreciably well to the observed data series and regularly fluctu-
ated with the precipitation pattern. The high peaks were very well captured by the SWAT
model most of the time, particularly during the calibration years (2005–2010), with a few
being under-estimated. For the validation years (2011–2016), the model again managed
to capture the high peaks, but some peaks were under-estimated. The lower flow was
consistently under-estimated by the model. A similar weakness of the SWAT model in
capturing the low flows of the LR was reported in [25]. Overall, the model performed well
in simulating the LR streamflow by conforming to the work of Moriasi et al. (2007) [79],
where the modeling performance was acceptable if R2 > 0.5, NSE > 0.5, and PBIAS < ±25%.
The performance of the SWAT model during calibration and validation is presented in
Table 4. However, the comparison between observed and simulated hydrological data
series revealed an R2 value of 0.75 (Figure 6b), and majority of the values were enclosed by
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the 95% prediction and confidence interval. Few of the high flow values were dispersed
because they were under-estimated by the model. This confirmed the competency of the
SWAT model in simulating the LR discharge under the reservoir operations selected for
the current study.

 
(a) 

 
(b) 

Figure 6. (a) SWAT simulation of Lhasa River discharge recorded at the Lhasa hydrometric station
for time span of 2005–2016. (b) Comparison of observed and SWAT-simulated Lhasa River discharge
from 2005 to 2016.

The association of observed and SWAT-simulated LR discharge was verified by the
correlation tests presented in Table 5. All the correlation coefficients produced high values
and thus proved that the SWAT-simulated results could be used to predict the future LR
discharge from 2017–2025.
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Table 4. Performance of the SWAT model in simulation of Lhasa River flow under reservoir opera-
tions. p-factor: percentage of data that is enclosed by the 95PPU band; r-factor: the average width of
the 95PPU band divided by the standard deviation of the measured variable (from 0 to ∞, with 0
showing perfect match).

No. Performance Criteria
2000–2016 (00–04 Warm-Up)

Calibration (05–10) Validation (11–16)

1. p-factor 0.96 0.50

2. r-factor 1.09 0.47

3. R2 0.91 0.58

4. NSE 0.86 0.50

5. PBIAS 5.5 5.5

Table 5. Statistical correlation of observed and SWAT-simulated Lhasa River discharge.

No. Correlation Coefficient Value

1. Pearson’s correlation 0.87

2. Spearman’s correlation 0.87

3. Kendall’s rank correlation 0.68

Bold values are significant at p = 0.05.

3.3.2. Seasonal ARIMA Application for Predicting Hydrological Regime of Lhasa River
Basin under Reservoir Operations

While making use of the observed LR hydrological time series to identify the future
trend of LR streamflow under reservoir operations for the years 2017–2025, the SARIMA
model (1, 0, 0) (2, 1, 2)12 was found to be the optimum combination for forecasting of ob-
served streamflow under the cumulative impact of reservoirs by justifying the performance
evaluation criteria presented in Table 6 for attaining the lowest AIC and BIC values, a lower
RMSE value of 0.29 m3/s, and a MAPE value of only 4.02%—values which confirmed
the validity of the model. The SARIMA model was validated for the years of 2013–2016.
SARIMA produced closely corresponding predicted values for LR streamflow during the
validation time span, with its correlation coefficient of R2 = 0.80 revealing an efficient model
that is capable of predicting the future discharge for the LR. The forecasted monthly LR
discharge was seen to follow a decreasing trend during the time period of 2017–2025 under
reservoir influence (Figure 7a).

Table 6. Performance of SARIMA model in predicting Lhasa River streamflow from 2017 to 2025
using observed and simulated hydrological time series.

Performance Criterion Forecasted Qobs Forecasted Qsim

AIC 76.7 199.4

BIC 91.28 209.12

RMSE 0.29 (m3/s) 0.65 (m3/s)

MAPE 4.02% 31.09%

The SARIMA model (1, 0, 0) (2, 1, 0)12 was found to be the optimum combination
for forecasting of SWAT-simulated streamflow under the cumulative impact of reservoirs.
The SARIMA model produced correlation coefficient of R2 = 0.88 for the validation years
from 2013 to 2016 for SWAT-simulated and forecasted LR discharge with a relatively higher
MAPE value of 31.09% (Table 6) for the simulation-based forecasted LR discharge. The
predicted discharge using the SWAT-simulated hydrological time series likewise showed a
decreasing discharge.
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(a) 

 
(b) 

Figure 7. (a) Forecasted monthly Lhasa River streamflow for time span of 2013–2025 using the observed hydrological time
series from 2005 to 2016. SARIMA model validation years from 2013 to 2016 are marked. (b) Forecasted monthly Lhasa
River streamflow for time span of 2013–2025 using SWAT-simulated hydrological time series from 2005 to 2016. SARIMA
model validation years from 2013 to 2016 are marked.
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The comparison of observation-based and simulation-based LR discharge presented in
Figure 8a showed a very close correspondence between both hydrological time series with
an R2 of 0.90. However, the simulation-based forecasted LR discharge was higher for high
flow months in future. In advancing through the years from 2017 to 2025, the difference
in the high peaks was seen to be increasing among the observation and simulation-based
forecasted LR discharge, as presented in Figure 8b. However, both hydrological data series
were shown to experience a decrease in the future years researched in the study.

(a) 

(b) 

Figure 8. (a) Comparison between observation-based and SWAT-simulation-based Lhasa River
forecasted flow from 2017 to 2025. (b) Scatter plot of observation-based and simulation-based
forecasted monthly Lhasa River discharge for 2017–2025.
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To corroborate the association of both forecasted hydrological time series, statistical
correlational tests used in the study produced values of ≥0.80 and are presented in Table 7.
This testifies to the credibility of the approach used in the current study and shows that
simulation-based future LR discharge can be a replacement to observation-based discharge
and be utilized for further analyses regarding water resource management, planning,
distribution, hydropower generation, irrigation scheduling, and reservoir operational
procedures in the LRB. This can prove to be an aid in overcoming the hydrological data
scarcity issue because the LRB is a quintessential basin of the QTP with barely observed
data [25].

Table 7. Statistical correlation between forecasted observation-based and simulation-based Lhasa
River discharge, 2017–2025.

No. Correlation Coefficient Value

1. Pearson’s correlation 0.95

2. Spearman’s correlation 0.95

3. Kendall’s rank correlation 0.80

Bold values are significant at p = 0.05.

A flow–duration curve offers a practical approach for studying the flow characteristics
of streams and for examining the association of one basin with another. A flow–duration
curve is a cumulative frequency curve that shows the percent of time during which specified
discharges were equaled or exceeded in a given period. A rather easier conception of the
flow–duration curve is that it is a streamflow data demonstration combining the flow
characteristics of a stream throughout the ranges of discharge in one curve [80]. The
flow–duration curves for the observed LR discharge and forecasted observation-based and
simulation-based LR discharge are presented in Figure 9.

Figure 9. Flow–duration curves for the monthly observed, forecasted observation-based, and SWAT-
simulation-based Lhasa River discharge.

We saw that the SWAT-simulation-based predicted LR discharge produced a steeper
sloped curve following the similar high and low flow pattern of the observed LR discharge.
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However, the simulation-based predicted low flows dropped drastically through the years
taken for the study. On the contrary, the forecasted observation-based LR discharge
revealed a flat sloped curve with a remarkably low peak events for the coming years. The
authors of [25] also revealed a significantly decreased LR streamflow in future, though
under the impact of climate change, and they attributed the decrease to the temperature
change. Our study also revealed a considerable decrease in the future LR discharge under
reservoir influence. The LRB is the largest inhabited QTP basin experiencing aggravated
climate change and human interference impacts on its rainfall-dominated runoff generation
mechanism. This suggests a call for better and strategic water resource management in
the LRB. The findings from the current study can be used by water resource managers
and hydropower engineers to develop flow–duration curves for the hydropower plants
considered in the study by using their turbine capacity to estimate the required and
available flow for producing power in future years. The study can also be replicated in
basins with similar characteristic around the globe.

4. Discussion

We saw that the escalated variation in hydro-meteorological parameters revealed by
the previously discussed CV values was reaffirmed by the MK-S test for the time period
of 2000–2016 compared to the years 1956–1999. The trend of rainfall pattern in the LRB
during the two time spans was shown to have undergone a decrease in the latter time span
that was also of greater magnitude, as exposed by Sen’s slope estimator. However, the
decrease was not significant. Looking at the temperature change trend in the LRB during
the two time spans, a significant increase in the temperature was revealed by the MK-S
test, with a rapid rise in temperature in the study time span compared to the previous
long-term time period. The authors of [81] also reported a significant increase in all the
QTP basins including the LRB, with a range of 0.03–0.06 ◦C year−1, which was similar to
the findings of our study. The LR discharge trend revealed a non-significant increase in
the former long-term time span. Conversely, for the study time span, we saw a significant
decrease in the LR discharge with a larger magnitude, as estimated by the Sen’s slope. We
saw that the rainfall also decreased along the same time span, and the temperature was
seen to have risen, which could have a serious impact on the LR discharge in the form
of lower precipitation and aggravated evapotranspiration in the LRB. However, it can be
seen that the decrease in the magnitude of LR discharge during 2000–2016 was far more,
which clearly leads to the conclusion that in addition to the climatic phenomena, some
other factors were causing the pronounced decrease in LR discharge during 2000–2016.
During these years, major hydraulic interventions were witnessed in the LRB in the form
of dam construction, including the Zhikong hydropower project (2006) and the Pangduo
hydropower project (2013). These hydraulic structures impounded the water and caused
the prominent decrease in LR discharge.

The MK-S test revealed a decreasing LR trend for all the seasonal flows, and the
decrease reached significance in wet summer season and the dry winter season. Sen’s slope
estimator revealed that the greatest reduction in the LR discharge was experienced in the
wet summer season, followed by the dry winter season. The spring season was shown
to experience the lowest reduction in discharge. This phenomena of the LR discharge
trend could be explained by the fact that the wet summer season was the peak flow time
in the LRB, where the major portion of LR discharge was generated (~90%) during these
months. This water was stored in the reservoirs built on the LR for the succeeding dry wet
season with a minimum rainfall and was responsible for the significantly decreased LR
discharge during peak flow season. The higher variability and non-significant decrease
in the LR discharge during spring season could be attributed to the snow and glacier
melting, which is a completely-climate driven phenomena in the LRB. Thus, the variation
of LR discharge during spring season is highly prone to the snowfall received during the
winter season. In LRB, from April to May is a melting season when air temperature is, on
average, above zero [81]. This snowmelt contributes to LR discharge and hence stabilizes
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the effect of rising temperature in the form of evapotranspiration and may be a reason for
smaller decrease in LR discharge during spring season. Increasing air temperatures lead
to less snow accumulation in the winter and an earlier peak runoff in the spring, as well
as reduced flows in summer and autumn [82–85]. The change in the streamflow regime
results in a substantial impact on regional water resources and seasonal water supplies [86].
For the dry winter LR discharge, a significant decrease with a greater magnitude and lower
variability compared to the spring season could have been a possible manifestation of the
increase rate of temperature. The MK-S test showed a significant and intensified increase
in temperature of the LRB for the years 2000–2016. Similar behavior was reported in [25]
for the LRB, where the increase rate of the minimum temperature was found to be higher
in spring and winter than in summer, whereas the maximum temperature showed the
opposite trend. This increased minimum temperature is causing an overall warming of
the LRB and is showing its effects in the form of evapotranspiration with minimal rainfall
to balance it, thus leading to a decreased LR discharge during the dry winter season.
Additionally, the water demand in the LRB during the dry winter months is met by ground
water abstraction and the reservoir-stored water during the wet summer season. This is
again a factor that affects the LRB’s hydrological behavior in dry spells of a year.

While predicting the LRB streamflow, we saw that in both situations, the LR discharge
was predicted to decrease under the reservoir influence. This could be attributed to the
inertial characteristic of the ARIMA model forecasts. If the historical data rise rapidly right
before the peak value, they cannot be foreseen by the ARIMA model and the peak value
would therefore be underestimated; however, if the rise is slow and steady, the rising trend
would be expected to continue after the peak by the ARIMA model [28]. Here in the case
of observed LR discharge, we saw a decreasing development through the years 2000–2016,
which was confirmed by the MK-S test results presented earlier. Thus, ARIMA predicted
an obvious decrease in the observation-based forecasted LR discharge. For the SWAT-
simulation based LR discharge, the ARIMA model again predicted a decreasing yet stable
future streamflow for 2017–2025, following the same behavior as the SWAT-simulated flow
(Figure 7b).

The current study was intended to overcome the data scarcity issue of the study area,
which is a major concern of the QTP catchments. In the current study, data availability on
reservoir operations was a major constraint. Additionally, the data quality and availability
for hydro-meteorological parameters included in the study were a prime concern for the
trans-boundary Lhasa River.

5. Conclusions

The current study was carried out to evaluate the reservoir construction’s impact
on LR discharge using double-mass curve analysis, estimating the CV for the closely
related hydro-meteorological phenomena of LRB and identifying a trend on the hydro-
meteorological behavior of the LRB using the well-known MK-S test. We found that:

1. The reservoir operation years showed themselves in the double-mass curve analysis
for both the long-term (1956–2016) data series and the study time span of 2000–2016
as the break points in both curves.

2. CV values were individually calculated for two time spans of 1956–1999 and 2000–
2016, and they showed that the variability in the hydro-meteorological phenomena
for LRB was remarkably intensified in the latter time span compared to the years
during the first time span. The variability in rainfall, temperature, and LR discharge
escalated during the years 2000–2016. For the former time span, the LR discharge
varied in accordance with the rainfall variation. For the latter time span, the variation
in LR discharge was seen to be far greater than the rainfall variability. Additionally,
the temperature change in the LRB was seen to be more rapid in the latter time period.
However, the enormous variation in the LR discharge could not solely be attributed
to the climatic factors, so some other factors are controlling the LR hydrological
phenomena. This strong variation in LR discharge during the time span of 2000–
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2016 was the outcome of the two dams built over the LR. The Zhikong hydropower
plant and the Pangduo power plant—which began operations in 2006 and 2013,
respectively—have been influencing the LR discharge and causing a substantial
variation in the LR discharge.

3. The MK-S test revealed a non-significant increase in the rainfall and a subsequent
increase in LR discharge for the time 1956–1999. However, for the time span of
2000–2016, the rainfall in LRB experienced a non-significant decrease, whereas the LR
discharge significantly decreased with an amplified magnitude that could be well-
attributed to the reservoir functioning in the LRB. The temperature in the LRB was
found to significantly decrease for the time spans of 1956–1999 and 2000–2016. The
increase in temperature was more in the latter time span and potentially affected the
snowmelt, evapotranspiration, and (ultimately) the discharge of the LR on a seasonal
scale.

While predicting the LR discharge from 2017 to 2025, SWAT-ARIMA coupling revealed:

4. The SWAT model was capable of simulating the LR discharge under reservoir in-
fluence, and simulation-based LR discharge can be a replacement to observed LR
discharge. This could undisputedly aid in overcoming the hydrological data scarcity
constraint in the LRB.

5. The best-fitted seasonal ARIMA has forecasted a closely corresponding decreasing LR
discharge time series for the years 2017–2025 when using the observation-based and
simulation-based LR hydrological data. The observation-based predicted discharge
was seen to decline at a greater extent, but the simulation-based predicted discharge
was seen to follow the similar behavior to the observed LR discharge but while
decreasing in the years from 2017 to 2025.

6. This study revealed that a prominent climate change phenomena and human in-
terferences are simultaneously affecting the hydrological regime of the LRB. This
demands a more extensive study with a special influence on data availability for
reservoir operations and procedures, water resource usage and allocation, ground
water processes, etc. The study holds significance in assisting the water resource plan-
ning, management, availability, and requirement of water in hydropower generation,
irrigation, domestic uses, etc., in the future for the LRB.
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Abstract: The ability to spatially characterize runoff generation and forest health depends partly on
the accuracy and resolution of evapotranspiration (ET) simulated by numerical models. A possible
strategy to increase the accuracy and resolution of numerically modeled ET is the use of remotely
sensed ET products as an observational basis for parameter estimation (model calibration) of those
numerical models. However, the extent to which that calibration strategy leads to a realistic rep-
resentation of ET, relative to ground conditions, is not well understood. We examined this by
comparing the spatiotemporal accuracy of ET from a remote sensing product, MODIS MOD16A2,
to that from a watershed model (SWAT) calibrated to flow measured at an outlet streamgage. We
examined this in the upper Kings River watershed (3999 km2) of California’s Sierra Nevada, a
snow-influenced watershed in a Mediterranean climate. We assessed ET accuracies against obser-
vations from three eddy-covariance flux towers at elevations of 1160–2700 m. The accuracy of ET
from the stream-calibrated watershed model surpassed that of MODIS in terms of Nash-Sutcliffe
efficiency (+0.36 versus −0.43) and error in elevational trend (+7.7% versus +81%). These results
indicate that for this particular experiment, an outlet streamgage would provide a more effective
observational basis than remotely sensed ET product for watershed-model parameter estimation.
Based on analysis of ET-weather relationships, the relatively large errors we found in MODIS ET may
be related to weather-based corrections to water limitation not representative of the hydrology of this
snow-influenced, Mediterranean-climate area.

Keywords: evapotranspiration; model; SWAT; calibration; regression; remote sensing; Sierra Nevada;
flux tower; water limitation; vapor pressure deficit

1. Introduction

Accurate knowledge of evapotranspiration (ET) is needed for detailed mapping and
characterization of water losses from terrestrial runoff [1,2] and impacts of drought and
climate variability on forest health [3–5]. Advances in the ability to predict/characterize ET
with ever increasing resolution (e.g., smaller spatial scale) will likely be made through the
integration of remote sensing products with hydrologic modeling tools. Remote sensing
products provide spatiotemporal estimates of ET based on satellite-measured light re-
flectance, meteorological data, and underlying mathematical models that are physical [6–9]
or empirical in nature [10]. Two examples of remote sensing ET products, denoted ETrs,
are the MODerate Resolution Imaging Spectroradiometer (MODIS) ET product [11,12] and
the Global Land Evaporation Amsterdam Model (GLEAM) ET product [13]. ETrs products
such as these offer a potential source of observational data against which watershed nu-
merical models can be calibrated, a process needed for the estimation of model parameters
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that cannot be determined through direct observation [14,15]. ETrs products are currently
available at a much finer spatial resolution than the effective spatial resolution of most
streamgages, the alternative and prevalent source of calibration data. The effective spatial
resolution of a streamgage, which scales as the square root of the upstream contributing
area unique to that gage, is typically orders of magnitude coarser than the spatial resolution
of ETrs products such as MODIS MOD16 or Landsat based provisional product [16,17].
This finer resolution of ETrs affords the modeler the ability to estimate parameters at a
correspondingly finer spatial resolution than is possible with stream-based calibration.

Previous studies have not examined whether ETrs products are sufficiently accurate
to substitute for stream discharge observations as an observational basis for watershed
model calibration. For that substitution to make sense, the ETrs product would need to be
more accurate—relative to ground based observations—than the ET that is simulated by
a watershed model calibrated to stream discharge. Otherwise, the calibration procedure
would only move predictions from the watershed model further from reality in order
to more closely match the remote sensing data. In order to evaluate the sufficiency of
ETrs accuracy, one would need to directly compare the accuracy of ETrs to the accuracy
of ET from watershed model calibrated to streamgage and not ETrs. Such evaluation
has not been carried out in previous studies calibrating watershed models to remotely
sensed ET [18–27]. It is important to recognize that ET products from remote sensing and
watershed models are both derived from models each having their own relative strengths
and weaknesses. ETrs products have been found to suffer in accuracy in certain types
of environments such as nivean montane forest [8,28] and temperate grassland with dry
surface conditions [9,29]. Meanwhile, watershed models are known to have especial
difficulty during rainless periods [23] and periods of extreme runoff [30]. Inadequate
attention has been given to determining when one type of model is accurate enough to
serve as “observations” in calibration of another type of model.

The objective of this study was to determine if a specific remote-sensing ET product,
MODIS MOD16A2, is accurate enough to be used to calibrate a watershed model of a snow-
influenced, streamgage-equipped watershed in a Mediterranean climate. The guiding
question was: Would calibrating the watershed model to ETrs make the ET predictions
from that watershed model more or less accurate than ET predictions from the same
watershed model calibrated to observed streamflow? To address this, we compared the
accuracy of ET from the following two models: (1) the model behind the MOD16A2 ETrs
product, and (2) a watershed model of ET calibrated to a streamgage. In addition, we
analyzed ET-seasonality and ET-weather relationships from both models in order to identify
environmental conditions conducive to model strengths and weaknesses. We applied this
study to the upper Kings River watershed of California’s Sierra Nevada, assessing all
accuracies relative to ground based observations from eddy-covariance flux towers located
along a 1160–2700 m elevational transect.

2. Study Area

The study area is the upper Kings River watershed in the southern Sierra Nevada
mountain range of California, USA. The watershed collects runoff, largely as snowmelt,
from a 3999 km2 area ranging in elevation from 285 m in the western foothills to 4338 m
along the Pacific Crest in the east (Figure 1, lower right). Different forks of the Kings River
pass through a series of reservoirs operated for flood control and hydroelectric power (not
shown) [31] to eventually empty into the Pine Flat Reservoir at the western outlet of the
watershed (Figure 1, lower right). Runoff from the watershed provides water to over a
million acreas of some of the world’s most fertile and productive agricultural land [31].
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Figure 1. Location of (lower right) upper Kings River watershed in southern Sierra Nevada, California, and (a–c) flux towers
within watershed. In (a–c), fishnets are grid cell boundaries of the MODIS MOD16A2 ET product, and HRUs are Hydrologic
Response Units of SWAT watershed model (color-shaded areas) selected for analysis based on proximity to flux tower.
Topography from USGS National Elevation Dataset [32], water bodies from USGS National Hydrography Dataset [33].

The climate of the area is Mediterranean, with cool moist winters and warm dry
summers. Based on 1981–2010 climatic normals from the PRISM Norm81d product [34,35],
the watershed receives approximately 999 mm of precipitation per year on average, most
of which (85%) occurs during the wet six-month period of November–April. A little over
half of all precipitation (54%) flows out of the watershed as the Kings River based on
1981–2010 full-natural streamflow below Pine Flat Reservoir [36]. Annual precipitation
in the watershed increases with elevation, from approximately 530 mm in the lowermost
areas to approximately 1200 mm in the uppermost areas (Supplement Figure S1). Average
air temperature is 7.1 ◦C at the mean elevation of 2329 m, and decreases with elevation
at a rate of −5.4 ◦C per km (Supplement Figure S2). The phase of precipitation shifts
from rain to snow with increasing elevation, becoming mostly snow at elevations above
approximately 2000 m [37,38]. A little over two-thirds of the watershed (68%) resides above
this rain-snow transition elevation.

Soils are distributed over approximately 59% of the watershed up to an elevation of
approximately 2700 m [39,40], with exposed bedrock dominating the higher elevations. The
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soils grade from thermic Alfisols at lowest elevations into frigid Entisols and Inceptisols
at higher elevations. These soils are loamy to sandy, well- to excessively drained, with
thicknesses ranging from 20 to 250 cm [39,40]. In addition to soil, the underlying regolith
(weathered bedrock) is also known to be an important source of water to vegetation [41,42].
The dominant land cover types accounting for 99% of the watershed are evergreen forest
(52%), shrub/scrub (30%), barren land (rock/sand/clay) (9.8%), grassland/herbaceous
(6.0%), and open water (1.4%) [43].

The watershed contains the Southern Sierra Critical Zone Observatory (SSCZO) operated
in cooperation with the Kings River Experimental Watersheds program (KREW) [37,44]. This
observatory includes three eddy-covariance flux towers [28], maintained by the Goulden Lab
at University of California, Irvine [45], which provided the ET observations used in this study
(Section 3.3). For more information about the soils, vegetation, and climate of these sites, the
readers are referred to Hunsaker et al. [37], Bales et al. [38], O’Geen et al. [42], Bales et al. [44],
and Safeeq and Hunsaker [46].

3. Methods

3.1. Summary

Our methods were designed to address two objectives. The first objective was to deter-
mine which would be more accurate, ET predictions from a watershed model calibrated to
streamgage (ETwm) or ET predictions from a watershed model of the same area calibrated
to ETrs product (rather than streamgage). We did this by comparing the ET accuracy of
two models: (1) MODIS MOD16, (2) SWAT calibrated to streamgage. Model accuracies
were evaluated relative to ET observations at three eddy-covariance flux towers (Figure 1).
If ETrs is more accurate than ETwm, then it follows that calibrating the watershed model
to that remote-sensing ET product could potentially improve the watershed model’s ET
accuracy over that of a purely stream-based calibration approach. Conversely, if ETrs is
less accurate than ETwm, then calibrating the watershed model to those ETrs would only
degrade the watershed model’s ET accuracy relative to a stream-based calibration approach.
ET observations and simulations were considered on a monthly basis during water years
2009–2018, with a water year defined to extend from October 1 through September 30. For
metrics of ET model accuracy, we used the Nash-Sutcliffe efficiency (NSE) [47] which equals
the fraction of variance in observations explained by a model, and model percent-bias in
average ET (PBIAS) [48]. We also evaluated how well the two models producing ETrs and
ETwm captured the relationship between average ET and elevation (1160–2700 m). Metrics
of NSE and PBIAS were reported for the period of all water years during 2009–2018, water
years with annual precipitation below the 2001–2019 median of 803 mm (“dry years”)
based on PRISM AN81d product [34,35], and water years with annual precipitation at or
above that median.

The second objective of this study was to compare and contrast ET from flux towers
and models in a way that identifies seasonal conditions associated with model strengths
and weaknesses. We started this out with an examination of monthly time series plots.
Next, we compared and contrasted ET “seasonality”, defined as the set of monthly ET
averages during the calendar year. Lastly, we examined relationships between monthly ET
and weather variables of air temperature and vapor pressure deficit (Section 3.2), variables
which influence atmospheric water demand and are also used to limit canopy conductance
in the ETrs model (Section 3.4).

3.2. Weather Data

Weather data for watershed modeling and examination of ET-weather relationships
were obtained from daily 2.5-arcminute PRISM AN81d product [34,35,49] and GridMET
product [50]. Air temperature and vapor pressure deficit were computed from PRISM
values of minimum air temperature, maximum air temperature, and dewpoint tempera-
ture, along with the equation for saturation vapor pressure in Murray [51]. Downward
solar radiation and wind speed were obtained from GridMET. Daily weather time series
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were assembled for each subbasin of the watershed (N = 47; Figure 1, lower right) by
downsampling the gridded weather data to approximately 250-m resolution, masking the
downsampled data to subbasin boundaries, and computing spatial averages (Supplement
section S1). These weather time series were input to ArcSWAT to force spatial elements of
the watershed model referred to as Hydrologic Response Units (HRUs) (Section 3.5). The
weather data used for the examination of ET-weather relationships were taken from the
model HRUs nearest to the flux towers as shown in Figure 1.

3.3. Flux Tower Observations of ET

The ET observations used in this study were collected at three flux towers (Figure 1)
situated along an environmental gradient ranging from rain-dominated Ponderosa pine at
1160 m to snow-dominated Lodgepole pine at 2700 m [28] (Table 1). The observations were
collected during the day at 30-minute intervals using the eddy covariance method [52], at a
height of 5–10 m above the tallest trees [28]. We first obtained the 30-minute ET observations
and “Flexible Filler” processing script (Matlab) from the Goulden Lab [45]. Using the
Flexible Filler script, we filtered out 30-minute data during calm atmospheric conditions
and filled the resulting gaps using the regression approach in Goulden et al. [28,52]. The
filtered, gap-filled data were then aggregated to monthly values, requiring at least 50%
data availability for each month. Dates of data availability slightly differed for each flux
tower, as shown in Table 1.

Table 1. Site characteristics of eddy covariance flux towers providing ET observations for this study [28]. These sites are
mapped in Figure 1. Water years of data used for this study are listed at right. Years with partial data availability, indicated
with asterisk, provided less than 11 out of 12 months’ worth of data.

Site Name
(This Paper)

Local Site
Name

Elevation (m) Dominant Vegetation
Latitude

(deg)
Longitude

(deg)
Data Availability

(Water Years)

Upper Short Hair
Creek 2700 Lodgepole pine 37.0671 −118.9871 2010–2011, 2012 *,

2015 *, 2016–2018

Middle Providence 301 2015 White fir, pine, cedar 37.0673 −119.1948 2009–2018

Lower Soaproot
Saddle 1160 Ponderosa pine, oak 37.0311 −119.2563 2011–2018

3.4. Remote Sensing of ET

The ETrs product used in this study was the 8-day, 0.25-arcminute global MOD16A2
product from MODIS sensors onboard the Terra and Aqua satellites [11,12,53]. The model
behind this product uses a modifed Penman-Monteith approach adapted from Cleugh
et al. [6] to predict evaporation from wet and dry soil, evaporation from wet canopy, and
transpiration from dry canopy [12,54]. The model operates at a daily time step using
meteorology from NASA’s Global Modeling and Assimilation Office (GMAO) reanalysis
dataset (1.0 × 1.25◦ resolution), 8-day composites of absorbed photosynthetically active
radiation (FPAR) and leaf area index (LAI), and 16-day composites of albedo. Limitations
on ET associated with water availability and stomatal physiology (e.g., Jarvis [55]) are
modeled in the MOD16A2 product using canopy conductance correction factors consisting
of linear functions of vapor pressure deficit and minimum air temperature [11,12,54]. These
functions are parameterized by biome-specific look-up tables organized by land cover
classification (Table 3.2 of Running et al. [54]).

There was some uncertainty as to how ET in individual MODIS cells, each approxi-
mately 500-m across, would correspond to flux tower observations which collect fluxes
from areas (footprints) typically measuring 100–2000 m across [56]. For the comparisons to
ET from SWAT and flux towers, and in consideration of plausible intra-footprint variability
in MODIS data (see Supplement Figure S3), we decided to obtain the MODIS ET data
from the single MODIS cells containing the flux tower locations (Figure 1). This decision
followed from the results in Supplement Figure S3 showing that MODIS intra-footprint
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variability tends to be substantially less than same-cell differences between MODIS and
flux tower. We filtered out any MOD16A2 data having QA/QC flags not of “good qual-
ity” and not free of “significant” cloud cover, then aggregated it to monthly values using
time-weighted averaging and requiring at least 50% data availability for each month.

3.5. Watershed Modeling of ET

We modeled ET in the upper Kings River using the Soil & Water Assessment Tool
(SWAT) version 2012, with ArcSWAT version 2012 for model construction. SWAT dates back
to the late 1970s for research into land management impacts on water, sediment, nutrients,
and pesticides [57–59]. It has been widely used to simulate hydrologic fluxes in snow-
influenced watersheds such as this study area [60–65]. In SWAT, the water conservation
equation is solved at a daily time step in HRUs, each of which is a numerical 1-D element
(“bucket”) of homogeneous land cover, soil, and slope. Each HRU exchanges water/energy
with the atmosphere (including ET) and delivers runoff directly to the stream reach within
enclosing subbasin (subbasins shown in Figure 1, lower right). We selected the Penman-
Monteith option for potential ET; actual ET was computed based on potential ET and water
availability in soil and underlying aquifer [66].

To construct the watershed model, we first built a “base model” in ArcSWAT using
the parameters and input datasets for elevation, soil, land cover, meteorology, and snow
cover detailed in Supplement section S1. We then initialized the base model with LAI
and biomass from the end of a 30-year spin-up forced by dynamic steady-state weather
(Supplement section S2), forming the “plant spin-up” model representing mature forest
conditions at the start of simulations. Next, we applied a calibration procedure to the plant
spin-up model as follows. First, we used a global sensitivity analysis (GSA) to identify
the most influential parameters of the plant spin-up model to estimate via calibration.
Using the Sobol method of GSA [67], we identified the influential parameters (N = 12)
accounting for 99% of the variance in model streamflow error (Supplement section S3).
Next, we calibrated the plant spin-up model by estimating values of influential parameters
that minimized model errors relative to 2003–2010 monthly, full-natural streamflow at
the watershed outlet [36], as described in Supplement section S4. We used for calibration
the Sequential Uncertainty Fitting algorithm (SUFI-2) calibration and uncertainty tool of
the SWAT-CUP software package [68–70]. Lastly, we validated the calibrated model to
2011–2019 monthly, full-natural streamflow using the parameter ranges obtained from
calibration (Supplement Table S6). Simulations for calibration and validation were spun
up to a total of 13 years of weather data, consisting of 10 years of dynamic steady-state
weather (for aquifer equilibration) followed by three years of real weather (for soil and
plant equilibration) (Supplement sections S2 and S4). In terms of model performance, the
calibrated and validated models both showed “very good” results (Figure 2) based on
criteria in Moriasi et al. [48] and Abbaspour et al. [68]. For the comparisons to flux tower
and MODIS, we used monthly ET of the “best” simulation (Figure 2) taken from the HRUs
nearest to the flux towers (Figure 1).
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Figure 2. Monthly stream discharge at Pine Flat Dam from observations versus best simulation of SWAT watershed model.
95% simulation probability also shown, defined at the 2.5– to 97.5–percentile of monthly simulations. Fit statistics are for
“best simulation” having the highest objective function, i.e., the Kling-Gupta efficiency (KGE) [71]. NSE = Nash-Sutcliffe
efficiency [47], PBIAS = model percent bias [48].

4. Results

4.1. Long-term ET

Long-term ET observations were substantially greater than the MODIS model pre-
dictions and greater but more similar to the SWAT model predictions. Observed ET
averaged across all months and flux towers was 54.6 mm/mo (Figure 3). This value
was 13% greater than SWAT’s prediction (48.5 mm/mo), 83% greater than MODIS’s
prediction (29.8 mm/mo) (Figure 3). In addition, observed long-term ET in the upper
Kings River decreased with elevation at a markedly steeper rate than the MODIS model
predicted. Based on the flux tower network, ET decreased with elevation at a rate of
−0.013 mm mo−1 m−1 (Figure 3). This rate was fairly close (7.7%) to the SWAT model
prediction of −0.012 mm mo−1 m−1 (Figure 3). In contrast, the MODIS model predicted
an elevational trend of only −0.0025 mm mo−1 m−1, one-fifth the observed value. These
results showed that both magnitude and elevational trend in long-term ET were predicted
much more accurately by SWAT than MODIS.

4.2. Monthly ET

ET observations from the flux towers followed a seasonal pattern that roughly tracked
the length of daylight, with peak values occurring near the middle of calendar years
and minimum values occurring near the end of calendar years (Figure 4). Outputs from
the SWAT model followed a similar seasonal timing, although the shape of its annual
waveforms was sometimes excessively narrowed and peaked, such as in year 2016 at the
middle site (Figure 4, middle). The MODIS model produced annual waveforms in ET that
were notably out of phase with observations and SWAT model predictions. ET-values
from MODIS tended to be on a descending limb, or near their annual minima (within one
month thereof), during summer when observed and SWAT-modeled ET were near their
maxima. This out-of-phase characteristic of MODIS predictions was especially apparent
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during years 2016–2018 at the lower and middle sites (Figure 4). In addition, the annual ET
waveforms from MODIS appeared less distinct than those from observations and SWAT.

 
Figure 3. Average monthly ET versus elevation from flux towers, MODIS, and SWAT. Averages across
all elevations are parenthesized in the legend. m = slope of linear-regression trendline, R2 = coefficient
of determination of linear-regression fit.

In terms of the NSE metric of model fitness, the SWAT model matched monthly ET
observations better than the MODIS model. The NSE of SWAT across all flux tower sites
was +0.36, ranging from +0.04 at the middle site to +0.68 at the upper site (Table 2). In
comparison, the NSE of MODIS across all sites was −0.43, ranging from −0.73 at the middle
site to −0.33 at the lower site. These negative NSE-values indicate a level of prediction
efficiency lower than that provided by knowledge of long-term observed ET. Both SWAT
and MODIS showed minimum prediction efficiency at the middle site (Table 2). In addition,
both models showed slightly lower prediction efficiency (NSE lower by ~0.2) during wet
years than dry years (Table 2).
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Figure 4. Monthly ET from flux towers, MODIS, and SWAT at three sites in upper Kings River watershed.

In terms of model bias, both SWAT and MODIS underestimated long-term ET as
shown by negative PBIAS-values in Table 2. However, the underestimates from MODIS
were substantially greater in magnitude than those from SWAT. The SWAT model underes-
timated average monthly ET across all sites by 13% (PBIAS = −13%). These underestimates
ranged from 23% at the middle site to 5% at the other two sites. In comparison, the MODIS
model underestimated average monthly ET across all sites by 47% (PBIAS = −47%), with
underestimates ranging from 50% at the middle site to 35% at the upper site.

4.3. Seasonality in ET and Weather

Seasonal distributions in ET, potential ET (PET), and weather variables are plotted in
Figure 5. Observed ET at the flux towers reached peak values in June or July, following
a seasonal distribution (“seasonal curve”) that was well aligned with PET from MODIS
(Figure 5, left column). Air temperature and vapor pressure deficit reached peak values in
July or August (Figure 5, middle column), following seasonal curves that closely tracked
one another. This close tracking indicated a strong cross-correlation of these weather
variables on a monthly time scale (R2 = 0.89–0.94 for three sites, not shown). Based on
these results, air temperature and vapor pressure deficit reached maximum seasonal values
within approximately one month of observed ET and MODIS PET. This timing seemed
reasonable given that these weather variables are known to strongly influence atmospheric
water demand.
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Table 2. Error statistics of monthly ET from MODIS, SWAT, and air temperature corrected MODIS,
relative to flux tower observations. “All site” statistics (bottom) are for monthly ET data concatenated
across the three sites. “All years” are water years 2009–2018, “wet years” are water years 2009–
2011 and 2016–2017, and “dry years” are water years 2012–2015 and 2018. NSE = Nash-Sutcliffe
efficiency [47], PBIAS = percent bias (positive = model overestimate) [48], N = number of months.

All years Wet years Dry years

Site Product NSE PBIAS N NSE PBIAS N NSE PBIAS N

Upper

MODIS −0.56 −35 57 −0.66 −32 39 −0.42 −40 18

SWAT +0.68 −5.4 68 +0.67 −3.8 47 +0.70 −9.1 21

Corrected
MODIS +0.77 +1.7 57 +0.78 +2.2 39 +0.75 +0.67 18

Middle

MODIS −0.73 −50 104 −1.0 −57 46 −0.54 −43 58

SWAT +0.04 −23 120 −0.04 −31 60 +0.13 −15 60

Corrected
MODIS +0.69 −1.5 104 +0.70 −12 46 +0.64 +9.3 58

Lower

MODIS −0.33 −49 91 −0.45 −53 33 −0.23 −47 58

SWAT +0.41 −5.3 95 +0.27 +3.5 36 +0.53 −10.7 59

Corrected
MODIS +0.60 −1.3 91 +0.63 −7.0 33 +0.57 +2.1 58

All sites

MODIS −0.43 −47 252 −0.56 −49 118 −0.31 −44 134

SWAT +0.36 −13 283 +0.27 −14 143 +0.46 −12 140

Corrected
MODIS +0.67 −0.89 252 +0.71 −7.1 118 +0.63 +4.9 134

A seasonal asynchronicity was observed between MODIS ET and MODIS PET. MODIS
ET reached a seasonal minimum only 1–2 months after the seasonal maximum in MODIS
PET (Figure 5, left). MODIS PET reached a maximum value in July at all three sites. In
comparison, MODIS ET reached a minimum value only one month later at the lower and
middle sites, and two months later at the upper site (Figure 5, left). Such occurrences
of minimum ET near the time of maximum atmospheric water demand are indicative of
pronounced limitations on ET in the MODIS model.

Seasonal curves of SWAT ET tended to be skewed toward times earlier in the year
relative to SWAT PET (Figure 5, right). These ET and PET curves closely tracked one
another between December and mid-summer. Then, in mid-summer, the ET curves began
following descending limbs 1–2 months before descending limbs of PET. This difference
in timing of descending limbs produced summer and fall deficits of ET relative to PET
(Figure 5, right). Such skewness of ET relative to PET is indicative of a seasonal shift in
limitation on ET in the SWAT model.

4.4. ET-weather Relationships

The SWAT- and MODIS-models produced markedly different relationships between
monthly ET and weather. Monthly ET from SWAT, as well as flux towers, showed a
significant positive relationship to air temperature (Figure 6, left and middle columns). At
the flux towers, slopes of linear regression between ET and temperature ranged from 3.8 to
4.0 mm mo−1 (◦C)−1. These slopes for SWAT ranged from 3.0 to 5.2 mm mo−1 (◦C)−1. In
contrast, monthly ET from MODIS showed either no significant relationship to temperature
(p-value > 0.05) or a significant negative relationship (Figure 6, right column). At the lower
and middle sites where no significant relationship to temperature occurred, there were
distinct mid-temperature peaks in MODIS ET. At the lower site, MODIS ET reached a peak
value at an intermediate air temperature of 16.1 ◦C (Figure 6i). At the middle site, this
peak ET occurred at an intermediate temperature of 7.9 ◦C (Figure 6f). Mid-temperature
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ET peaks such as these did not occur in the flux tower observations or SWAT predictions.
Vapor pressure deficit, noted earlier to be strongly correlated to temperature, showed a
significant positive relationship to ET from both flux towers and SWAT model (Supplement
Figure S6). In contrast, vapor pressure deficit showed either no significant relationship
(p-value > 0.05) or a significant negative relationship to ET from MODIS (Supplement
Figure S6).

 

Figure 5. Monthly averages in air temperature (T), vapor pressure deficit (VPD), ET, and potential ET (PET) at the (a–c)
upper site, (d–f) middle site, and (g–i) lower site. TWR = flux tower observation, MOD = MODIS value, SWT = SWAT value.
MODIS PET (MOD PET) values have been multipled by 0.5.
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Figure 6. Monthly ET versus air temperature from different data sources at the (a–c) upper site, (d–f) middle site, and (g–i)
lower site. Dashed lines are best fits from linear regression. m = slope of regression best-fit with asterisk where p-value < 0.05,
R2 = coefficient of determination of best-fit. In center column, SWAT modeled ET supplied primarily by aquifer water
(“revap” flux) are plotted as blue-colored diamond symbols.

Scatterplots of monthly ET from SWAT exhibited kink-like features at the middle and
upper sites, and a bifurcation pattern at the lower site (Figure 6, middle column). Data
points within the elbows of these kinks and lower arms of bifurcation occurred during
times when SWAT ET was supplied primarily by aquifer water (blue diamond symbols in
Figure 6, middle column). At other times, SWAT ET was supplied primarily by water in
soil overlying the aquifer. The transition from soil- to aquifer-sourced ET was observed (not
shown) to coincide with the relatively abrupt declines in SWAT ET during late summer and
fall (Figure 4), and may have contributed to the excessively narrow shapes of ET annual
waveforms mentioned in Section 4.2.
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5. Discussion

5.1. Need to Assess Remotely Sensed ET before Use in Watershed Model Calibration

Our results illustrate a case where spatiotemporal information about ET would be
represented more accurately by a watershed model calibrated to streamflow than a wa-
tershed model calibrated to ETrs. This assertion follows from our finding that the ETrs
(MODIS) data were less accurate than ET predictions from watershed model calibrated to
streamflow. ET from the MODIS model had a PBIAS of −47% and NSE of −0.43 across all
sites, compared to a PBIAS of −13% and NSE of +0.36 for ET from the stream-calibrated
watershed model (Table 2). Moreover, the negative relationship between long-term ET and
elevation (Figure 3) was underestimated by 81% in the MODIS model compared to only 8%
in the stream-calibrated watershed model. In general, there would clearly be cases where
a watershed model’s representation of ET would likely be improved via calibration to
ETrs, one example being a watershed not instrumented with any streamgages. More study
is needed, however, to understand the conditions (e.g., climate, modeling frameworks,
density of observations) for which the use of ETrs for watershed model calibration would
produce superior ET accuracy over use of observed stream discharge.

5.2. Representation of Water Iimitation in Remote Sensing Products

Plants respond to water stress by regulating their stomata, which in turn modifies tran-
spiration rate [8]. This regulation process is known to be a complex function of atmospheric
conditions and plant water potential (including cell turgor pressure) [55,72]. The MODIS ET
model accounts for this by numerically correcting the canopy conductance of water vapor
using functions of minimum air temperature and vapor pressure deficit (VPD) [11,12,54].
The air temperature component of this conductance correction is meant to account for
temperature limitation on plant growth while the VPD component is meant to account
for water limitation. For weather at the lower site, the MODIS algorithm would predict
an increase in canopy conductance with air temperature to approximately 15 ◦C, then a
decrease in canopy conductance with further warming (Supplement Figure S7b). Below
the transition temperature of 15 ◦C, the temperature-correction component dominates the
overall correction to ET giving “temperature-limited” transpiration. Above the transition
temperature, the VPD-correction component dominates giving “water-limited” transpira-
tion. The transition temperature of 15 ◦C approximately coincides with the observed air
temperature at which MODIS ET reaches a peak value at the lower site, 16 ◦C (Figure 6i).
Based on this finding, the negative trend shown in Figure 6i between MODIS ET and air
temperature for air temperatures > 16 ◦C, and absence of significant relationship between
ET and temperature overall, can be explained by unrealistically high VPD-limitation on ET
in the MODIS model.

This argument also seems to apply to the middle site. As a reminder, the air temperatures
used in an ET-weather relationship were obtained from the watershed subbasin containing
the selected site of interest (Section 3.2, Figure 1). Air temperatures at the middle site were
8 ◦C cooler on average than at the lower site (Figure 5e versus Figure 5h). This temperature
difference exactly coincides with the −8 ◦C offset of maximum MODIS ET at the middle
site relative to the lower site (Figure 6f versus Figure 6i). This can be explained as follows.
The 8 ◦C difference in air temperature between the lower and middle sites occurred across
a relatively short distance of approximately 7 km (Figure 1). A difference in weather across
this short of distance would not be registered in the MODIS ET product because of its use of
weather data at 1◦ × 1.25◦ resolution [11,12]. A mismatch in resolution of weather forcings
between the SWAT model (0.042◦ × 0.042◦) and MODIS model (1◦ × 1.25◦) would thus
introduce an apparent ET offset of −8 ◦C at the middle site relative to the lower site. This
argument does not seem to apply at the upper site because at that location, a clear transition
from temperature-limited ET to water-limited ET with increasing air temperature did not
occur (Figure 6c).

Based on this interpretation, the relatively large underestimates in warm-season ET
from MODIS (Figures 4 and 5) stemmed from excessive VPD-limitation on canopy conduc-
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tance in the MODIS model. In addition to atmospheric conditions, canopy conductance
is known to be a function of plant water potential, which in turn depends on subsurface
water availability and the ability of plants to access that water through their roots [72].
Weather, water availability, and plant roots are independent factors (at least to some degree),
which is likely a reason for differing ET-VPD relationships across different geographic
regions [73,74]. In the snow-influenced Mediterranean climate of the study area, snowmelt
is known to be an important source of water to forest during the dry season. In such
environments, VPD and actual water availability in the subsurface may be more loosely
coupled than in the environments to which the MODIS model has been trained [75].

5.3. Regression-Based Correction to Remotely Sensed ET

ET from observations and the MODIS model showed markedly different relationships to
weather variables (Section 4.4). Correlations between ET and air temperature were signifi-
cantly positive at the flux towers (Figure 6, left) and either negative or not significant from
MODIS (Figure 6, right). These contrasting ET-temperature relationships provided a possible
basis for correcting MODIS ET to weather using linear regression. MODIS ET error expressed
as a fraction of PET, defined as yregr = (MODIS ET − flux tower ET)/(MODIS PET), was found
to be well correlated to air temperature. Best fits from linear regression had slopes ranging
from −0.010 to −0.024 ◦C−1 and R2-values of 0.25–0.66 (Figure 7a−c). The best of all fits was
found at the upper site, where the R2 was 0.66 (Figure 7c). We used this regression model to
predict corrected values of MODIS ET, set equal to MODIS ET − [(MODIS PET) × yregr]. The
resulting predictions of corrected MODIS ET matched the flux tower observations better than
both the original MODIS ET and the SWAT model (Figure 7d–f). The corrected MODIS ET
had an NSE-value of +0.67 and a PBIAS of −0.9% across all sites, statistics considerably better
than those of both the uncorrected MODIS model and the SWAT model (Table 2, bottom). In
addition, most of the error in elevational trend in long-term MODIS ET was removed by the
regression-based correction to weather (Figure 3 versus Figure 7f). The PBIAS of the corrected
MODIS ET was noted to be 12% higher during dry years than wet years (Table 2, bottom),
suggesting that regression models trained separately to dry and wet periods may provide
further improvement to the correction method.

104



Remote Sens. 2021, 13, 1258

 

Figure 7. Weather correction to MODIS monthly ET using linear regression with air temperature as predictor variable. (a–c)
Results of linear regression between MODIS ET error, as fraction of MODIS potential ET, and monthly air temperature
for each site. MODIS ET error is defined as MODIS ET—flux tower ET. (d) Original (uncorrected) MODIS ET versus
flux tower ET shown with 1:1 line. (e) Weather-corrected MODIS ET versus flux tower ET. (f) Average monthly ET from
weather-corrected MODIS, flux tower, and SWAT versus elevation for comparison to Figure 3. Dashed lines are trendlines
from linear regression, labeled with value of slope.

6. Conclusions

The concept of using remotely sensed ET products as “observations” for watershed
model calibration offers great potential for resolving spatial heterogeneity in landscape
properties. However, the extent to which that numerically resolved information corre-
sponds to actual conditions on the ground has yet to be determined. That correspondence
should depend on the relative accuracies of the two models involved: (1) the model behind
the remote sensing product and (2) the watershed model not calibrated to the remote
sensing product. We examined this by comparing the accuracy of ET from a remote sens-
ing product, MODIS MOD16A2, to the accuracy of ET from a watershed model (SWAT)
calibrated to streamflow. ET accuracies were evaluated relative to observations from three
flux towers in a Mediterranean climate extending from rain-dominated Ponderosa pine at
1160-m elevation to snow-dominated Lodgepole pine at 2700-m elevation.

The accuracy of ET from the SWAT watershed model surpassed that from the MODIS
model across time and space. SWAT explained 4–68% (36% overall) of the variance in
monthly ET observations at the flux towers, while MODIS explained none of the observed
variance as shown by negative values of Nash-Sutcliffe efficiency. Long-term ET observed
across the towers decreased with elevation at a rate of −0.013 mm mo−1 m−1. This
elevational trend in long-term ET was slightly underestimated by SWAT, 7.7%, and largely
underestimated by MODIS, 81%. These findings show that if the watershed model had been
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calibrated to remotely sensed ET rather than to stream discharge observations, the resulting
accuracy of watershed model ET-predictions would have been substantially degraded.

The relatively large ET-errors from the MODIS model are interpreted to stem at least
in part from an unrealistic dependence of canopy conductance on vapor pressure deficit
(VPD). This interpretation is based on an erroneous reversal in slope of MODIS ET versus
air temperature that approximately coincides with the transition from temperature- to
VPD-controlled limitation on canopy conductance in the MODIS algorithm. This would
explain the large underestimates in MODIS ET during the warmest times of the year when
VPD reaches peak values. The empirical correction used in the MODIS algorithm to account
for water limitation on ET may not represent the actual dynamics of water availability
in the study area, which may be more loosely coupled to VPD than is assumed in the
MODIS model.

Errors in monthly MODIS ET were found to be well correlated to air temperature.
We showed that this could be used to “correct” ET-values from MODIS using linear
regression with inputs of MODIS ET error, MODIS potential ET, and air temperature.
This correction procedure removed much of the error in ET from the MODIS model, and
produced ET predictions more accurate than those from the SWAT model. The regression-
corrected MODIS ET may therefore serve as an improved source of “observations” for
spatial calibration of a watershed model over the original MODIS ET data.
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Abstract: The data assimilation technique is an effective method for reducing initial condition errors
in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather
research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module
in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic
systems. The WRF model with the assimilation of radar reflectivity and conventional surface and
upper-air observations provided the improved initial and boundary conditions for the hydrological
process; subsequently, three atmospheric-hydrological systems with variable complexity were estab-
lished by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling
system. Four storm events with different spatial and temporal rainfall distribution from mountainous
catchments of northern China were chosen as the study objects. The assimilation results showed a
general improvement in the accuracy of rainfall accumulation, with low root mean square error and
high correlation coefficients compared to the results without assimilation. The coupled atmospheric-
hydrologic systems also provide more accurate flood forecasts, which depend upon the complexity
of the coupled hydrological models. The grid-based Hebei system provided the most stable forecasts
regardless of whether homogeneous or inhomogeneous rainfall was considered. Flood peaks before
assimilation were underestimated more in the lumped Hebei model relative to the other coupling
systems considered, and the model seems more applicable for homogeneous temporal and spatial
events. WRF-Hydro did not exhibit desirable predictions of rapid flood process recession. This may
reflect increasing infiltration due to the interaction of atmospheric and land surface hydrology at
each integration, resulting in mismatched solutions for local runoff generation and confluence.

Keywords: WRF-3DVar data assimilation; coupled atmospheric-hydrologic system; rainfall-runoff
prediction; lumped Hebei model; grid-based Hebei model; WRF-Hydro modeling system

1. Introduction

The last decades have witnessed significant changes in climate and hydrological
conditions. The increased frequency of extreme storm floods has led to major risks of
damage due to weather-related hazards. Forecasting of such high-intensity floods on a
shorter time scale has immense benefits such as saving lives, protecting economic assets,
and improving quality of life [1–3]. For mesoscale mountain areas along the Daqing
River of northern China, steep slopes, combined with high intensity and short duration
convective rainfall, substantially shorten hydrological lead times. In addition, due to the
lack of high-resolution and dense observations, the “throughfall” observed by rain gauges
cannot reflect the realistic rainfall distribution in space and time, thus the accuracy of
forecasting is limited by the layout of the rain gauge network. For processes of runoff and
routing, different dependent processes are added and derived within models including
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soil infiltration, overland transport, and channel routing, which result in the complexities
and uncertainties in deducing the generation mechanisms of flash floods. In this study,
we selected two upstream mountainous catchments along the Daqing River in which there
is an urgent need for accurate flood prediction to prevent and reduce risks facing the
construction of the downstream including Xiong’an New Area.

Although recent advances have improved rainfall forecasting [4], several challenges
remain. One such challenge is the reproduction of the magnitude and the disturbance
patterns of rainfall that can assimilate suitable observations into numerical weather pre-
diction (NWP) models [3]. Rainfall is among the variables generated with the greater
errors in NWP models, while it plays an important role in forecasting the atmospheric-
hydrological processes for its influence on the time and scale of floods [5,6]. There are three
main sources of error in rainfall prediction: the initial conditions, the lateral boundary
conditions, and the physical approximations in the model equations. Data assimilation
allows atmospheric information to be extracted from multiple data sources, thereby im-
proving the reliability of coarse resolution data and the complexity of atmospheric motion,
reducing the initial and lateral boundary errors [7,8]. Routray et al. [9] found that weather
research forecasting (WRF) can be used to assimilate observations from different sources
and contribute to a better understanding of mesoscale rainfall convective activity within
the Indian monsoon region. Kumar and Varma [10] further explored a short duration
intense rainfall event in India, demonstrating the potential of WRF to adapt to rainfall
forecast accuracy. Fierro et al. [11] conducted a data assimilation study in the eastern part
of the USA that showed that WRF, in conjunction with data assimilation, could significantly
improve models of local short-term rainfall processes. Although data assimilation can help
NWP models to more accurately capture rainfall and enable rainfall-runoff conversion by
constructing an atmospheric-hydrological model system, its potential to further improve
flood forecasting has not been fully investigated.

A reliable atmospheric-hydrological model system is required to improve rainfall
predictions and hydrological forecasts for early flood hazard mitigation [12]. A promising
method is the coupling of hydrological models to a regional model such as NWP, in order
to rapidly obtain high-resolution rainfall and flood forecasting data. In [13–15], Lin et al.
and Lu et al. discussed the implementation and improvement of the Canadian regional
mesoscale compressible community mode (MC2) rainfall forecasting in the Huaihe Basin
of southern China, concentrating on the Huaihe sub-basin coupled to the Xinanjiang hy-
drological model. Wu et al. [16] further explored MC2 and the multiple linear regression
integrated forecast and found that high-resolution rainfall distributions were problematic
at finer temporal and spatial scales, requiring data assimilation or sub-grid-scale parame-
terization. Yucel et al. [4] and Moser et al. [17] tested WRF data assimilation as the input
for flood forecasting in the Black Sea and Iowa, respectively, both finding an enhancement
in the accuracy of flood warnings.

With regard to the selection of coupled models, it is subject to a diversity of laws
and non-universality, which makes it difficult to accurately express physical movement
processes. The hydrological model has a more comprehensive physical foundation in-
cluding lumped, grid-based, and fully distributed setups [18,19]. Not only the above
physically-based models are used, but machine learning models are also widely applied in
rainfall-runoff forecasting (i.e., artificial neural networks (ANNs) [20], support vector ma-
chines (SVM) [21], and the recent emergence of theory-guided data science (TGDS) [22,23].
For flood forecasting, which is affected by the discretization construction method, different
construction expressions determine variations between heterogeneity analysis and model
calculation structure, and further influence the accuracy of physical expressions in the
prediction processes of the hydrological model [24–26]. To analyze the scale of hydrological
processes, large-scale studies are still the mainstay. During the last ten years, a focus
has been made on downscaling and modeling through appropriate discrete methods [27].
The development of models with high prediction accuracy and computational efficiency
is a key issue for basin-scale flood forecasting. Liu et al. [28] conducted coupled lumped
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hydrological modeling and WRF flood forecasting on a 135.2 km2 catchment with a 10 km
resolution; Li et al. [29] used the rainfall of a 20 km WRF output to drive the distributed
Luxihe model, extending the forecast period of flood forecast in the Liujiang catchment
(58,270 km2). Rogelis [30] compared the flow results of different resolution data (minimum
resolution 1.67 km) driven by WRF on a 380 km2 catchment driving different lumped hy-
drological models. Previous studies have mostly focused on humid regions; consequently,
runoff methods are mostly based on saturation excess, and limited discussion of the appro-
priate construction of atmospheric-hydrological model systems have been conducted for
semi-humid and semi-arid areas.

The coupling system can also integrate land surface models (LSM) with hydrological
models. Most LSM and hydrological models incorporate the same descriptions of water
balance, albeit with different aims [31,32]. LSM evolves from land-atmosphere coupling
models with the purpose of solving the surface energy balance equation and providing the
necessary lower boundary conditions for the atmosphere [31,33]. Inversely, hydrological
models focus less on radiation and more on hydrological changes (i.e., the lateral route
of water along land surfaces). Such models are the most complicated among the current
coupling systems due to their complex structure and the sensitive parameters to be de-
termined in the relevant physical processes as well as hard parameters (fixed parameters
written directly into the source code during the compilation of the model).

Limited research has been undertaken to model atmospheric-hydrological processes
in semi-humid and semi-arid regions of northern China. Consequently, there is a lack of
effective atmospheric-hydrological coupling forecasting systems for this region. Herein,
we used WRF models, three-dimensional variational (3DVar) data assimilation modules
coupled to three model sets of varying complexity to construct the required model systems.
To test the influence of various levels of complexity, three types models were selected,
namely the lumped Hebei model, the grid-based Hebei model, and the WRF-Hydro
model. These models were both standalone and coupled with the WRF model and three-
dimensional variational (3DVar) data assimilation module. Four typical storm flood events
with different spatial and temporal rainfall distributions, all of which occur in the upper
catchment of the Daqing catchment, were explored before and after data assimilation.
The purpose of this study was to investigate the impact of data assimilation on forecasting
different types of rainfall-runoff events after coupling with variable hydrological structures.
It should be noted that the atmospheric-hydrologic coupling in this study refers to “one-
way” coupling of the three standalone hydrological model structures with the WRF and
3DVar data assimilation module, which means that the hydrological models are driven
by the WRF and 3DVar outputs without feedback to the atmospheric modeling processes.
The results obtained in this way can simply reflect the direct effects of data assimilation on
rainfall as well as runoff forecasts.

There were four basic questions we aimed to explore:

• What are the differences in the improvement of rainfall before and after data as-
similation for the storm events with different spatial and temporal distributions in
semi-humid areas of northern China?

• What are the corresponding runoff effects of different coupling systems on the im-
proved rainfall from WRF and its assimilation mode?

• What differences exist between the runoff processes modeled by the coupled systems
of different complexity before and after assimilation?

• How does the complexity of the hydrological structure affect the transmission of
rainfall improvement from data assimilation to runoff?

2. Study Area and Events

2.1. Study Area

We studied two mountainous catchments of the Daqing River (i.e., Fuping (2210 km2)
and Zijingguan (1760 km2)). Two catchments lie along the upper reach of the Shazhi
River on the south branch and the upper reach of the Juma River on the north branch,
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respectively (Figure 1). Low vegetation coverage, bare hills, mountains, and thin soil layers
cause uneven infiltration capacity distribution across the study areas, and the surface often
features extra-infiltration flow, which means surface flow occurs when the intensity of
infiltration exceeds the intensity of precipitation. Rainfall occurs primarily during the
flood season from late May to early September. The combined effects of the western
Pacific subtropical high, the westerly cold vortex, and the western Taihang Mountain uplift
influence the heavy convective rainfall that prevails in the region. Additionally, due to
steep terrain, it is easy to form high intensity, short duration floods with a large peak flow.
These floods cause damage in the region. According to statistics of torrential rain and flood
data from 1958 to 2015 in both catchments, floods that occurred more than once a decade
occurred five times in Fuping and six times in Zijingguan, with increasing frequency in
extreme events in recent years.

 

Figure 1. Locations of the Fuping and Zijingguan catchments covered by the weather research forecasting (WRF) nested
domains and the weather radar.

2.2. Storm Events

Four storm events in the Fuping and Zijingguan catchments were screened. The events
were divided according to their spatial and temporal distribution. In comparison to the
southern part of China, it is difficult to find absolute homogeneous rainfall events in
northern China, either in spatial or temporal dimensions. Herein, we calculated the storm
events’ coefficient of variance (Cv) values to indicate the relative response to the spatio-
temporal homogeneousness of the flood events [34]. Cv values were calculated as follows:

Cv =

√√√√√ N
∑

i=1

( xi
x − 1

)2

N
(1)

where x is the average of xi. When calculating Cv in the temporal dimension, xi is the
catchment areal rainfall at the ith hour and N is the total number of hours of the storm
event. In this case, time Cv represents the temporal deviation of the catchment areal rainfall
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at each time step. When calculating Cv in the spatial dimension, xi is the 24 h rainfall
accumulation at the ith gauge and N is the number of rain gauges. In this case, the Cv value
reflects the spatial deviation of the rainfall accumulation at each rain gauge.

The results are shown in Table 1, where larger Cv values represent a more uneven
spatio-temporal distribution. Based on this criterion, the spatio-temporal consistency of
the rainfall-runoff events listed in Table 1 were classified. Events 1 and 2 had relatively
uniform spatial and temporal distributions, whereas Events 3 and 4 featured rainfall with
uneven spatial and temporal distributions. As shown in Figure 2, the rainfall-runoff events
had a flood recession time with different lengths, so we used a 72-h time window for Event
1 and Event 2, a 60-h time window for Event 3, while for Event 4, a 36-h time window was
adopted. Different time windows were used to calculate the statistics when evaluating the
forecasting results. Event 4 occurred on 21 July 2012, bringing the largest flood disaster
in 60 years to Beijing and the Daqing River. The rainfall at the largest monitoring point
corresponded to an event that occurred once in more than 500 years. In the Zijingguan
catchment, its 24 h maximum single station cumulative rainfall was 355 mm, and the
maximum flow at the outlet reached 2580.0 m3/s. Figure 2 and Table 1 show other rainfall
and flood characteristics.

Table 1. Storm events and spatio-temporal rainfall evenness characterized by Cv.

Storm
Event Catchment Storm Duration 24 h Rainfall

Accumulation (mm)
Peak Flow

(m3/s)
Temporal Cv Spatial Cv

Even 1 Fuping 29 July 2007 20:00 to 30 July 2007 20:00 63.4 29.7 0.6011 0.3975
Event 2 Fuping 30 July 2012 10:00 to 31 July 2012 10:00 50.5 70.7 1.0823 0.1927
Event 3 Fuping 11 August 2013 07:00 to 12 August 2013 07:00 30.9 46.6 2.3925 0.7400
Event 4 Zijingguan 21 July 2012 04:00 to 22 July 2012 04:00 172.2 2580.0 1.8865 0.6098

Figure 2. Observed rainfall-runoff processes for the four selected storm events.

3. Three Atmospheric–Hydrologic Coupled Systems

3.1. The Numerical Weather Prediction (NWP) Model

The mesoscale NWP model has limited skill in convective precipitation forecast, even
in the WRF model. One of the considerable reasons for the poor performance is due to its
nonlinear and chaotic nature, since solving quasistationary meso-β and meso-γ processes
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is complicated [35,36], and the power spectrum of the turbulence in convective motion
has a resolution of a few kilometers [37,38]. 3DVar data assimilation could merge the fine
rainfall information into the modeling system to obtain accurate high-precision rainfall
data. The following are detailed descriptions of the WRF model configurations and the
3DVar data assimilation techniques used in this study.

3.1.1. Weather Research Forecasting (WRF) Model Configurations

As a next-generation mesoscale forecasting model and data assimilation system,
the simulated scale used in the WRF spans tens of meters to thousands of kilometers, and is
mainly used to enhance understanding and forecasting of mesoscale weather, assist oper-
ational forecasting, and improve atmospheric research. Detailed descriptions of specific
WRF model settings are shown in Table 2 and Figure 1. The inner research area includes the
Taihang Mountains, Bohai Sea, and major cities in Beijing, Tianjin, and Hebei. A warm-up
time period is necessary for both WRF and WRF-Hydro. A seven-day length warm-up time
period was set to generate the restart file, which serves mainly as the starting condition for
WRF, and was also used to provide the initial soil moisture condition for WRF-Hydro to
generate more realistic runoff. The WRF has an output time step of 1 h and an integration
step of 6 s. Global Forecast System (GFS) data in each 6 h window was to provide the initial
side boundary and atmospheric background conditions.

Table 2. Detailed configurations of the weather research forecasting (WRF).

Subject Chosen Option Subject Chosen Option

Driving data GFS each 6 h WRF output interval 1 h
Integration time step Dom1: 18 s domain center 39◦04′15” N, 113◦59′26” E

Dom2: 6 s Vertical discretization 40 layers
Horizontal
resolution

Dom1: 9 km Pressure 50 hPa
Dom2: 3 km Projection resolution Lambert

Horizontal grid
number

Dom1: 140 × 140 Longwave radiation RRTM
Dom2: 150 × 120 Shortwave radiation Dudhia

The parameterization scheme chosen can affect the mode of operation of the WRF;
different parameterization schemes have different emphases on physical processes. The di-
versity of parameterization schemes and the corresponding differences in rainfall events
in specific regions result in difficulties inherent to the accurate simulation of spatial and
temporal rainfall distributions and cumulative rainfall. For the four rainfall processes
in this study, we chose the optimal physical parameterization based on the relevant ex-
perimental research on the selection of sensitive parameterization schemes for ensemble
rainfall forecasting (more details can be found in Tian et al. [39,40]). The microphysical
parameterization schemes chosen for our forecasts included Purdue-Lin (Lin) [41] and
WRF Single-Moment 6 (WSM6) [42]; the cumulus convection schemes included the Kain-
Fritsch (KF) [43] and Grell-Devenyi (GD) [44] ensembles; and the planetary boundary layer
schemes included the Yonsei University (YSU) [42] and Mellor-Yamada-Janjic (MYJ) [45]
schemes. The specific parameterization details of the four studied storms are shown in Table 3.
It should be noted that the cumulus parameterization was not used in the innermost
domain, where the convective rainfall generation was assumed to be explicitly resolved.

Table 3. Optimal physical parameterization for the studied storm events.

Ensemble Scenarios Event 1 Event 2 Event 3 Event 4

Microphysics scheme Lin �

WSM6 � � �

Cumulus convection
KF � �

GD � �

Planetary boundary layer YSU � � �

MYJ �
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3.1.2. Data Assimilation with WRF-3DVar

3D variational assimilation has numerous advantages, for example, that the objective
function contains physical processes and utilizes the model itself as a dynamic constraint
(i.e., it can efficiently represent complex nonlinear constraint relationships). The objective
function of WRF-3DVar assimilation can be expressed as follows:

J(X) =
1
2
(X − Xb)

T B−1(X − Xb) +
1
2
(H(X)− Y0)

T R−1(H(X)− Y0) (2)

where X is a parameter reflecting the atmosphere and surface conditions; Xb is the back-
ground field at the time of change; B is the corresponding background field error covariance
matrix; and H is the observation function containing X variables. H can change the vari-
ables in the atmospheric model from model space projected into the observation space.
Y0 represents the assimilated observation vector and R is the error covariance matrix
from observation.

Global Telecommunications System (GTS) data and Doppler radar data were used
as the assimilation data in this study. In previous studies, we have demonstrated that the
assimilation of radar reflectivity can improve local rainfall processes, especially for data
<500 m, and can thus improve the reliability of assimilation information for forecasting
systems [46,47]. Taking into account the spatial resolution of data from different sources and
maintaining the stability of the atmospheric motion, we chose to assimilate <500 m radar
reflectivity data in the inner domain (Dom2) and GTS data in the outer domain (Dom1).
This assimilation method was supported by multi-source data assimilation experiments
carried out in the same study area [47].

GTS data are a collection of traditional ground and upper air meteorological data
including barometric pressure, wind direction and velocity, temperature, and humidity.
GTS data have wide coverage in both the vertical and horizontal directions. These data
are updated at 6 h intervals and are therefore widely used in large-scale atmospheric
studies. GTS data provided by the National Center for Atmospheric Research (NCAR)
were assimilated for the outer domain, sourced from sounders, ground-based weather
stations, pilot balloons, and aircraft observations. An observation preprocessor with
defined observation error covariance was employed to ensure quality control of the GTS
data prior to assimilation, and a default U.S. Air Force (AFWA) OBS error file was also
used for processing the GTS data and identifying instrumental and sensor errors.

The forecasting radar site of the Shijiazhuang s-band Doppler weather radar and
specific coverage is shown in Figure 1. Its reflectance spatial resolution was 1 km × 1◦
with a scan radius of 250 km (i.e., it covered both the Fuping and Zijingguan catchments).
The radar completed a cycle every 6 min at nine different scan elevation angles (0.5◦, 1.5◦,
2.4◦, 3.4◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, and 19.5◦). Raw data for the radar were obtained from the
National Meteorological Administration of China and, following quality control, the radar
reflectivity was programmed to conform to the WRF-3DVar data format.

The absorption of radar reflectivity data by the WRF-3DVar module presupposes that
the total water mixing ratio is used as a control variable and that a warm rainfall process
is simultaneously introduced into the assimilation module. Assuming a Marshall-Palmer
raindrop size distribution and no ice relative reflectivity effect, the following equation can
be derived for radar reflectivity Z by introducing a rainwater mixing ratio qr, in which ρ is
the density of air in kg m−3:

Z = 43.1 + 17.5 log(ρqr) (3)

For the four storm events, we selected a uniform 24 h time window that completely
described the entire process of rainfall. The duration of the WRF is required to cover the
start and end of the rainfall time window; therefore, the assimilation data started to be
merged 6 h before the storm events, then assimilated every 6 h until five assimilation
cycles were completed, for a total running duration of 36 h (6 × 6 h). Figure 3 presents a
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schematic diagram of the assimilation using Event 4 for further explanation. As illustrated
in Figure 3, there was a seven day warm-up time period (indicated with a dashed line)
and a 6 h spin-up time period (indicated with dotted lines) for WRF, and run1 presents
the initial WRF run with no data assimilation. Data assimilation started at 00:00 on 21 July
2012 and, subsequently, run2, run3, run4, run5, and run6 were executed at 6 h intervals
(i.e., at 00:00, 06:00, 12:00, and 18:00 on 21 July 2012 and 00:00 on 22 July 2012, respectively).
The first output file generated in the previous run was used to provide the initial and
lateral boundary conditions for subsequent runs and was treated as a benchmark reflecting
improvements in rainfall simulation after data assimilation.

Figure 3. The cycling data assimilation process for Event 4.

3.2. Hydrological Models with Differing Complexity
3.2.1. The Lumped Hebei Model

The lumped Hebei model was developed based on rainfall-runoff mechanisms iden-
tified in semi-humid and semi-arid catchments in northern China and has been applied
to real-time flood forecasting in Hebei Province. The model comprehensively considers
the two inflow mechanisms of infiltration excess and saturation excess (shown in Figure 4).
W’ and WMM represent the point storage capacity and the storage capacity of the maxi-
mum point in catchments. γ and λ are the proportion of the infiltration capability beyond
a certain value and the proportion of runoff generation in the catchment. When rainfall
intensity was greater than infiltration intensity during the studied period, surface runoff oc-
curs, whereupon continuous infiltration supplements the soil moisture deficiency until the
system reaches the point soil water capacity, generating underground runoff. The model
divides soil into two layers, in which soil depth should be determined according to the
conditions of the catchment. The volume of infiltration (ft), surface (rs), and groundwater
(rg) can be calculated using Equations (2)–(4) as follows:

ft =
t

∑
i=1

f i =

(
i − i(1+n)

(1 + n) f n
m

)
e−um + fc (4)

rs = pt − ft (5)

where pt (mm/h) is the rainfall rate during the ith hour and f i (mm/h) is the ith hour
empirical infiltration rate computed by a variant of Horton equation; m (mm) is the
surface soil moisture; and u is an index accounting for the decreasing infiltration rate with
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increasing soil moisture. fc (mm/h) and fm (mm/h) are the stable infiltration rate and the
infiltration capacity, respectively. It follows that:

rg =

{
ft + pa − et − wm pa + ft ≥ wm

ft + pa − et − wm + wm

(
1 − ft+pa

wm

)1+b
pa + ft < wm

(6)

where et is the evaporation volume; pa (mm) represents the rainfall influenced; wm (mm) is
the average storage capacity; and b is a coefficient of the water storage capacity curve.
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Figure 4. Rainfall-runoff mechanisms for the grid-based Hebei model.

3.2.2. The Grid-Based Hebei Model

The grid-based Hebei model retains the runoff generation concepts behind the lumped
Hebei model. Furthermore, it develops terrain index T [48,49] to obtain a grid-type repre-
sentation of soil moisture storage and infiltration capacity. T = ln(α/tanβ), where α and β
are the grid scale and shape parameters, respectively. The value of T in the Fuping and
Zijingguan catchments were statistically analyzed. Experimentation demonstrated that the
cumulative distribution curves of T values between different regions are always similar [50].
The T values of different grids in the same region can be expressed by a parabolic empirical
formula. Hence, the soil water storage capacity and infiltration capacity of different grids
can be determined as followed:

Wi
WMM

= exp

{
−
[

ln(Ti − Tmin + 1)
α

]β
}

(7)

fi
fm

=

{
1 −

[
1 − exp[− 1

α
[ln(Ti − Tmin + 1)]β

]b
}1/n

(8)

where i is a certain grid cell, and Ti and Wi (mm) are the corresponding moisture storage
capacity and terrain index of the ith grid. Tmin is the minimum value of the grid terrain
index. In a non-channel grid, surface runoff outflow qso = qsi + qs, where qs is the grid
surface runoff. qs occurs when the rainfall intensity exceeds fm. qsi denotes the runoff values
generated via the surrounding upstream grid. Similarly, the generated groundwater runoff
from upstream grid (i.e., qg, is transmitted to the groundwater runoff outflow according
to qgo, qgo = qgi·(1 − μ) + qg, where μ is the ratio coefficient). The grid-based Hebei
model adopts a simplified form of the Saint Venant equations for confluence calculation.
Due to perennial channel water shortage and substantial channel seepage in the study
area, an additional Horton infiltration equation was considered in the grid-based Hebei
model [50].
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3.2.3. The WRF-Hydro Modeling System

The open-code WRF-Hydro model is a multi-core parallel, multi-physics, multiscale,
fully distributed hydraulic model. It can be operated only with meteorological data or cou-
pled with the WRF model to constitute the atmospheric-hydrological model system. Its mul-
tiscale 3D land surface hydrological simulation mode can improve the one-dimensional
vertical generalization of water transport using the original LSM Noah and Noah-MP.
WRF-Hydro can use additional modules to achieve lateral flow exchange between the
surface and subsurface, thereby improving upon the “column-only” one-dimensional
vertical structure. It uses a disaggregation-aggregation solution module between the land
model and terrain routing grid, which enables convergence processes occurring at a smaller
resolution. WRF-Hydro can set the variables of the scale factor including soil moisture and
excess infiltration into the fine grid values.

Noah or Noah-MP LSM are connected to WRF-Hydro to calculate water and heat flux
exchange processes. In Noah-MP, a column cylinder structure is used to substitute soil lay-
ers into thicknesses, from top to bottom, of 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm.
The inputs required by WRF-Hydro include meteorological forcing data such as rainfall, air
temperature, relative air humidity, surface pressure, wind speed, downward longwave radi-
ation, and downward solar radiation. Gochis and Chen [51] described a sub-grid, spatially
weighted disaggregation-aggregation solution to coordinate the land model and terrain
routing grid in WRF-Hydro. Its runoff generation method uses a simple water balance
(SWB) [52]. Similar to the Hebei model, when the rainfall capacity exceeds the infiltration
capacity, a surface infiltration excess occurs in the top soil layer and the corresponding
change in surface water depth h (m) is:

∂h
∂t

=
∂pe

∂t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −

[
4
∑

k=1
Zi(δs − δk)

][
1 − exp

(
−S Rdt

R f d
Δt

86400

)]

pe +

[
4
∑

k=1
Zi(δs − δk)

][
1 − exp

(
−S Rdt

R f d
Δt

86400

)]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

where h (m) refers to the change in surface water depth; Δt (s) is the model time step; k is
the integer number of the soil layer (i.e., 1–4), Zk (m) and δk (m3m−3) are the depth and
grid soil moisture of the kth soil layer; δs (m3m−3) is the maximum soil moisture content;
S is a coefficient given by Richards’ equation to regulate runoff infiltration; and Rdt and
Rfd represent the tunable surface infiltration coefficient and saturated hydraulic conductiv-
ity, respectively.

Subsurface routing followed the approach of Wigmosta and Lettenmaier [53] by using
a quasi-3D flow taking into account topography, saturated soil depth, and saturated hy-
draulic conductivity with soil depth. Overland routing is a fully unsteady finite-difference
and diffuse wave approach, implemented as described in Downer et al. [54]. River routing
is similar to the overland case, using an explicit, one-dimensional, variable time-step diffu-
sion wave equation. Details of specific rainfall-runoff processes can be obtained from the
official user guide [55].

3.3. Establishment of Three Coupled Atmospheric-Hydrological Systems

Figure 5 shows a flood prediction diagram for coupled systems comprising three types
of hydrological models, WRF models, and WRF-3DVar data assimilation modules. Rainfall
in the WRF model was enhanced through optimal parameter scenarios and assimilation.
GTS data and radar reflectivity were assimilated every 6 h to generate 3 km grid data
in the inner layer Dom2. To eliminate the deviation of rainfall, for each storm, the best
performance in the assimilated rainfall ensemble was selected as the forecast forcing data.
Subsequently, predicted rainfall was converted into discharges using the aforementioned
three models, with parameters calibrated using 17 historical rainfall-runoff events from
the two studied catchments since the 1980s. For the calibration of WRF-Hydro, previous
parameter sensitivity analysis in the study area noted several key parameters that can
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cause large fluctuations in flooding prediction including the runoff infiltration parameter
(REFKDT), the channel Manning roughness parameter (MannN), the surface retention depth
scaling parameter (RETDEPRTFAC), and the overland flow roughness scaling parameter
(OVROUGHRTFAC). To evaluate the impact of data assimilation on the obtained runoff,
WRF outputs under the selected optimal parameterization scheme were also used to drive
the model for runoff forecasting; the results of the three systems before and after data
assimilation were compared as described below.

 

Figure 5. Framework for the coupled atmospheric-hydrologic modeling systems used for rainfall-
runoff prediction.

The three coupling systems tested showed three types of rainfall input at different
resolutions. The lumped model gives selected grid-averaged rainfall data across the
sub-basins, whereas the grid-based Hebei model and WRF-Hydro directly pass the grid
coordinates to locate forcing data. The former has a rainfall resolution of 3 km, and the latter
has a grid division factor of 10 to allow further downscaling from the WRF assimilation
data to 300 m of routing data.

The Nash efficiency coefficient (NSE), relative flood peak (Rp), and relative flood
volume (Rv) were used to analyze the flow discharge forecasts as follows:

NSE = 1 −

n
∑

i=1
(q′i − qi)

2

n
∑

i=1
(qi − q)2

(10)

Rp =
(
q′p − qp

)
/qp (11)

Rv = (r′v − rv)/rv (12)

where i is the time step; n is the total i of flood processes; q′i, qi, and q are the simulated,
observed, and averaged flood discharge, respectively; q′p and qp are the simulated and
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observed discharge; respectively; and r′v and rv are the simulated and observed flood
volumes, respectively.

4. Results

The forecasting results for the three coupled systems before and after data assimilation
for the four studied rainfall-runoff events are shown in Figure 6. In each single subfigure,
the black bars and black solid curve indicate observed rainfall and runoff, respectively.
Red and blue bars and curves indicate rainfall and runoff before and after data assimilation.
For the studied coupling systems, assimilation had different degrees of enhancement on
rainfall and runoff. The following analyses were conducted separately for data assimilation
on the rainfall, runoff, and model systems.

Figure 6. Rainfall-runoff predictions for the three atmospheric-hydrologic coupled systems before and after data assimilation:
(a) Lumped Hebei; (b) Grid-based Hebei; (c) WRF-Hydro.

4.1. Effect of Data Assimilation on Rainfall Prediction

Figure 7 shows the cumulative precipitation variation over the simulated period
caused by the cycling assimilation processes. The black solid curve represents the observed
precipitation, while the other colors represent different assimilation periods. As above-
mentioned, run1 was a non-assimilated precipitation process. Under conditions of data
assimilation every 6 h, it was found that the cumulative rainfall gradually approached the
observed values by the end of run6. For Event 2 and Event 3, the performance of run2 and
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run3 relative to run1 was impressive. For Event 1, run4 and run5 changed and improved the
temporal distribution of precipitation within a few hours after data assimilation, while run2
and run3 seemed to show slightly worse results than run1, if no further assimilation took
place. Generally, forecasts of cycling data assimilation after five cycles were largely stable
for all events and the final curve integrated by the data assimilation runs (run2 to run6)
was enhanced relative to the original run (run1). In addition to showing good performance
for selected typical precipitation events, the cycling data assimilation gradually improved
the temporal variability.

Figure 7. Cumulative rainfall curves before and after data assimilation under different assimilation
run conditions.

Table 4 presents further statistics regarding the performance of data assimilation
in improving cumulative rainfall. This shows that precipitation significantly increased
compared to the period of no data assimilation. Overall, the relative error (RE) before
and after assimilation was reduced by 0.26; Event 3 errors resulted in the most significant
change, with a reduction in deviation of 0.342, while Event 4 rainfall increased most after
assimilation by 19.76 mm.

Table 4. Observed and forecasted rainfall accumulation before and after data assimilation.

Storm
Event

Observed
No Data Assimilation Data Assimilation Improvement

Forecasted RE Forecasted RE Forecasted RE

Event 1 63.38 49.35 −0.221 67.46 0.064 18.11 0.157
Event 2 50.48 37.22 −0.263 52.18 0.034 14.96 0.229
Event 3 30.82 19.05 −0.382 29.58 −0.040 10.53 0.342
Event 4 172.17 128.36 −0.254 148.12 −0.140 19.76 0.114
Average 79.21 58.49 −0.280 74.34 −0.020 15.85 0.260

The normalized Taylor diagrams of cumulative rainfall (in which the horizontal and
vertical coordinates are normalized by dividing by the standard deviation (SD) of the
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observed series) before and after assimilation are shown in Figure 8. The variations of the
assimilated results were closer to the actual observations. The correlation coefficients (CC)
for both cumulative rainfall before and after assimilation were above 0.9 and the correlation
coefficient and root mean square error (RMSE) after data assimilation showed a significant
improvement compared to the corresponding values before assimilation, especially for
Event 1, in which the CC increased from 0.93 to 0.99. In the case of Event 3, a decrease in
CC from 0.98 to 0.96 occurred after assimilation; a similar trend was noted during Event 4.
The previous calculations of the temporal Cv values for precipitation events showed that
the two precipitation events were more heterogeneous in time and space than Event 1 and
Event 2. In Event 3, for example, the temporal Cv value of 2.3925 was much higher than that
of Event 1 (0.6011). This may explain the increased bias in assimilation, since the improved
effectiveness of the rainfall forecast after assimilation is determined by the amount of
effective information contained in the data. It is clearly easier for radar and GTS to capture
data during periods of rainfall that are homogeneously distributed in space and time.

Figure 8. Taylor diagrams of forecasted hourly cumulative rainfall before and after data assimilation.

The above results demonstrate that WRF-3DVar effectively improved the consis-
tency of simulated precipitation. Specifically, cycling assimilations of radar reflectivity
and GTS data in the study area were able to improve both initial and lateral boundary
conditions, providing a basis for future research into the accurate modeling of atmospheric-
hydrological systems.

4.2. Effect of Data Assimilation on Runoff Prediction

In addition to the above analyses of the precipitation process, the performance of the
data assimilation on the runoff process was also of interest. We found that runoff forecasts
were relatively effective when data assimilation was used. For example, the coupling
system from the lumped model simulated Event 2 had significant improvements in flood
peak after assimilation (Figure 6).

The evaluation of the NSE, Rv, and Rp indices heat map among the flood processes for
the four studied events are given in Figure 9. To evaluate the effects of data assimilation on
runoff prediction, the indices of events were averaged from the results of the three coupled
systems with different complexities. Figure 9 also shows the degree of improvement of the
three types of indices after assimilation, demonstrating an overall improvement in NSE, Rv,
and Rp of 0.386, 0.474, and 0.252. Event 1 presented a relatively homogeneous distribution
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in space and time and showed the most significant improvements in Rp and NSE after
assimilation compared to the case of no assimilation, by 0.502 and 0.597, respectively.
In contrast, although Event 3 showed the largest improvement in assimilating the RE in
cumulative rainfall (Table 4), it resulted in the smallest improvement in both Rv and NSE
of 0.293 and 0.322, respectively. This improved mitigation performance may stem from
the poor spatial and temporal homogeneity of Event 3 of the studied storms, which poses
difficulties for coupled systems prediction, even if the overall rainfall input does not differ
significantly from the actual observations. The indices measured are thus a reflection of the
complexity of rainfall-runoff processes.

Figure 9. Averaged runoff prediction indices for NSE, Rv, and Rp of the four storm events.

Figure 10 shows the normalized Taylor diagrams of runoff events for the atmospheric-
hydrological coupling systems before and after assimilation. The assimilated runoff pro-
cesses corresponded to smaller RMSE and SD results closer to the mean observation series,
with the exception of Event 3. Assimilated flood discharge may have a higher CC than
the case of no data assimilation, but this was not always the case; indeed, parts of the
spatio-temporally heterogeneous rainfall-runoff events in all three coupling systems were
slightly smaller. The CC values after rainfall data assimilation were mostly above 0.6,
such that only WRF-Hydro simulations of Event 2 and Event 3 had smaller CC, as shown
in Figure 8. This corresponds to the rainfall processes of Event 2 (where there were two
rainfall peaks) and Event 3 (featuring a short and concentrated rainfall process).
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Figure 10. Taylor diagrams of forecasted hourly runoff before and after data assimilation.

4.3. Effect of Data Assimilation on Coupled Systems with Variable Complexity

Smaller catchments are particularly vulnerable to uncertainties and spatial shifts in
rainfall patterns that may result in poor streamflow performance [27]. Figure 10 illustrates
the coupling systems’ stability from the grid-based model in blue, WRF-Hydro in yellow,
and the lumped model in red. It can be observed that the CC for the grid-based model both
before and after assimilation reached above 0.9 and that the values of RMSE were smaller
than those of the other coupling systems, with the exception of Event 3. The lumped model
had the next highest CC values, between 0.6 and 0.9, whereas WRF-Hydro exhibited a more
scattered CC distribution. Nonetheless, after assimilation, the latter captured a better flood
peak for Event 4. Detailed indices are given below for storm events, followed by further
distinctions in between the effects of varying coupled systems under different types of
rainfall before and after assimilation, as shown in Figure 11.

Figure 11. Runoff prediction indices of NSE, Rv, and Rp for different atmospheric-hydrologic model-
ing systems.

4.3.1. Results with the Lumped Hebei Model

Most lumped models lack the spatial information required to describe hydrological
processes [56]. The lumped Hebei model consistently responds to spatial variability with
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probability functions (i.e., infiltration excess and saturation excess curves), thus ignoring
the true spatial distribution. For the studied storms, the lumped model generally obtains
an early flood peak for rainfall-runoff events, being 8 h and 4 h earlier for Event 3 and
Event 4, respectively (Figure 6). Both Event 3 and Event 4 exhibited inhomogeneous spatial
and temporal rainfall distributions. For the studied events, forecasts from the lumped
model increased the inaccuracy of the peak present time. This may be due to the fact that
when the catchment-averaged rainfall is used as an input, the effect of spatial variability in
the underlying surface layer on runoff generation can only be considered when the spatial
distribution of the rainfall is homogeneous (i.e., neither the combined effect of spatially
heterogeneous rainfall distribution and underlying surface layer variability, nor the effect
of net rainfall processes as multiple input sources when the spatial distribution of rainfall
is heterogeneous).

4.3.2. Results with the Grid-Based Hebei Model

Based on the grid-based Hebei model, an atmospheric-hydrological coupling system
was constructed for different rainfall resolutions and applied to the study area. This ap-
proach further demonstrated that descriptions of rainfall-runoff generation are compatible
with local rainfall and flood forecasting, and that the grid-based Hebei model is more stable
for forecasts both before and after assimilation compared with the other coupling systems
tested. Flood forecasts before assimilation were slightly less accurate than WRF-Hydro for
Event 1 and Event 2, but were generally better than the lumped model. Particularly, for the
flood processes of Event 4, the grid-based Hebei model obtained the best NSE results
(0.643 before assimilation and 0.874 after assimilation), demonstrating that this model is
well-adapted to modeling flash floods. Although there was no clearly defined division of
soil in the grid-based hydrological model, the influence of spatial heterogeneity due to soil
type was somewhat reduced due to the relatively homogeneous nature of the study area.

4.3.3. Results with the WRF-Hydro Modeling System

WRF-Hydro exhibited the opposite prediction accuracy compared with the lumped
model. A better forecast for the spatio-temporally heterogeneous Event 3 and Event 4 was
noted than for Event 1. With the exception of Event 4, flooding processes were found to
exhibit faster surface runoff recession, which may be related to rainfall-runoff generation
and interactions between land surface that occurs at every short integration time step in the
WRF-Hydro. This increased the volume of infiltrated precipitation, producing higher soil
moisture and reducing runoff [57]. For Event 1, which had a small flood magnitude and
long flood duration, the flood process was subject to a rapid recession, resulting in a poor
NSE (−0.5 before assimilation and −0.107 after assimilation). Nevertheless, WRF-Hydro
provided a more favorable forecast for Event 4, demonstrating its potential ability to
predict flash floods. Overall, however, the accuracy of the WRF-Hydro forecasts was poor,
supporting the findings of previous studies by Wang et al. [58] and Sharma et al. [31].

4.4. Improvement with Different Coupled Systems after Data Assimilation

Figure 12 provides further statistics on the extent to which the three coupled systems
contribute to an overall improvement in response to flood events. The indices of systems
were averaged from the results of the four studied storm events with different spatial and
temporal characteristics.
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Figure 12. Improvement of the forecasted runoff indices of NSE, Rv, and Rp for the three coupled systems.

Data assimilation promoted flooding in all three coupled systems. The coupling
system using the lumped model had a weak response with no data assimilation, denoted
by low Rp (−0.640) and Rv (−0.504) values, and therefore the most significant enhancement
in Rp and Rv after assimilation, especially Rp, with an enhancement of 0.604. Before assimilation,
the grid-based system was found to be more stable than the other two systems, so that
the improvement was moderate among the three systems. For the WRF-Hydro system,
responses to the Rp of Event 3 and Event 4, which were spatially and temporally heteroge-
neous rainfall events, was better before assimilation, but problems such as rapid surface
runoff recession remain a concern. The improvements in Rp and Rv were more obvious
after assimilation, whereas NSE was less improved.

5. Discussion

The forecasting accuracy of the flood peaks of the lumped model seems to be more
demanding in terms of the accuracy of the input rainfall than the two other coupling
systems, since the flood peaks of the lumped model were more moderate when unas-
similated rainfall was poorly simulated such as in Event 4, where less than a quarter of
the observed flood peaks were simulated before assimilation. Although the results of
the corresponding indices were better following assimilation, this characteristic greatly
increased the uncertainty of the atmospheric-hydrological coupling process, which can
easily lead to errors when studying flash floods since it is difficult to guarantee the accuracy
of the rainfall forecasting.

Although data assimilation improves the precipitation input required by WRF-Hydro,
it is still insufficient for complex model systems due to the need to input more meteoro-
logical variables. To improve the performance of the coupled system in the prediction
of hydrological processes, research on WRF-Hydro also includes the assimilation of soil
moisture variables [59] and real-time flood assimilation. Indeed, the coupling system of
the WRF-Hydro model has a stronger basis in physical processes than the former two
coupled systems; however, the complexity of parameter estimation that emerges from
the model also poses a greater challenge, which is a typical problem in many complex
physics-based models such as the variable infiltration capacity model and the community
land model (CLM) [60]. In addition to data assimilation, more precise expressions of
regional rainfall-runoff mechanisms also need to be further explored. The hydrodynamic
parameters developed for local areas may not necessarily be applicable to mesoscale areas;
therefore, although the model structure is feasible, the parameters of WRF-Hydro in terms
of soil properties are not fully calibrated for northern China. There is an urgent need to find
easily available parameters and expression equations that reflect the spatial heterogeneity
of local infiltration processes across the region as an alternative to model application.

6. Conclusions

In this study, WRF-3DVar data assimilation experiments were conducted, in which
radar reflectivity and GTS data were assimilated with the involvement of coupled hy-
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drological structures of different complexity for rainfall-runoff prediction. The perfor-
mance of three atmospheric-hydrological systems, established by coupling WRF with the
lumped Hebei model, the grid-based Hebei model, and the fully distributed WRF-Hydro,
were compared and analyzed for storms with different temporal and spatial distribution
characteristics before and after data assimilation. We further explored model potentials and
limitations in the localization of flood events. Focusing on the impact of data assimilation
on flood forecasting after improving different types of rainfall and coupling systems of
varying complexity, we found that WRF-3DVar produces more accurate rainfall forecasts,
and that the assimilated model system provides higher confidence in the flood forecasts.

When the lumped model was coupled, its input rainfall was averaged over all
grid points at the catchment scale, which may conceal the potential advantages of high-
resolution rainfall datasets. The grid-based Hebei model obtained better flood forecasting
results, but it did not provide a more comprehensive description of the spatial and tempo-
ral processes of the land-surface hydrology. The WRF-Hydro system, on the other hand,
is built on the basis of water balance and heat balance in terms of the physical processes,
thus clearly necessary for future flood research. The main reasons for the lack of accu-
racy of the WRF-Hydro predictions might be the preciseness of the input meteorological
elements and the structure of the modeling system. Demonstrating the former requires
further exploration of the transition from multi-source data assimilation to multi-process
data assimilation. The coupling system of WRF-Hydro may differ from actual regional
characteristics in its representation of the rainfall-runoff mechanisms, and thus its spatial
scale and applicability need to be further explored in the future, especially in relation to the
high-resolution land surface and hydrological processes that are essential for flash flood
forecasting. There is also a need for future work to build on the strengths of this model and
tailor atmospheric-hydrological coupling systems to the study area.
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Abstract: The use of ecological water transfer to maintain the ecological environment in arid or
semiarid regions has become an important means of human intervention to alleviate vegetation
ecosystem degradation in arid and semiarid areas. The water transfer to downstream in a catchment
is often carried out during the non-growing season, due to the competitive water use between the
upper and middle reaches and lower reaches of rivers. However, the impacts and mechanism of
artificial water transfer on vegetation and wetland ecosystem restoration have not been thoroughly
investigated, especially in northwest China. Taking the Qingtu Lake wetland system in the lower
reaches of the Shiyang River Catchment as the study area, this study analyzed the spatial and temporal
distribution surface area of Qingtu Lake and the surrounding vegetation coverage before and after
water transfer, by interpreting remote sensing data, the variation of water content in the vadose zone,
and the groundwater level by obtaining field monitoring data, as well as the correlation between
the water body area of Qingtu Lake and the highest vegetation coverage area in the following year.
The conclusion is that there is a positive correlation between the water body area of Qingtu Lake in
autumn and the vegetation coverage in each fractional vegetation coverage (FVC) interval in the next
summer, especially in terms of the FVC of 30–50%. The groundwater level and soil water content
increase after water transfer and remain relatively high for the following months, which suggests
that transferred water from upstream can be stored as groundwater or soil water in the subsurface
through surface water and subsurface water interaction. These water sources can provide water for
the vegetation growth the next spring, or support plants in the summer.

Keywords: ecological water transfer; wetland vegetation ecosystem; surface and groundwater
interaction; northwestern China; remote sensing

1. Introduction

The arid and semiarid regions in the world usually have fragile ecological environments due to low
precipitation and a lack of water resources. Excessive use of water resources leads to ecological system
degradation, including wetland degradation and plant ecosystem deterioration [1,2]. For example,
climate change and water resource exploitation currently threaten groundwater-dependent ecosystems
and put vegetation at risk of degradation in the Nalenggele River Basin, located in the southwest
Qaidam Basin in the Qinghai province of northwest China [3]. Due to intense water usage in the
Junggar Basin of northwestern China over the last few decades, the water flowing into Ebinur Lake
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has been greatly reduced. Thus, Ebinur Lake, which lies on the southwest margin of the basin,
has been continuously shrinking; the water area had shrunk from over 1000 km2 to less than 500 km2

in 2011. The water reduction of Ebinur Lake has led to a serious recession of lakeshore vegetation,
with 60% of the desert forest around the lake vanishing, and the desertification area is expanding at
a speed of 39.8 km2 per year on average [4]. Similar situations have also occurred in other countries,
such as Australia [5], Mexico [6,7], Nepal [8], the North Basin in Kenya [9], Iran, and Afghanistan [10].
In the Narran Lakes in Australia, one of the most important Ramsar-listed wetlands due to its provision
of habitat for wetland fauna during key life history stages, reduced ibis breeding due to water resource
exploitation has been reported, from 1 in 4.2 years to 1 in 11.4 years [5]. The increase of water withdrawal
and introduction of exotic herbage species have aggravated the transformation of the ecosystem in
San Miguel and Zanjon River in the northwest of Mexico, such that the range of crops and grasslands
have been significantly reduced and desert shrub species significantly increased [7]. The excessive
abstraction of Ewaso Ng’iro River water in the Upper Ewaso Ng’iro North Basin in Kenya has greatly
affected downstream water users, and led to the deterioration of the vegetative cover and a reduction
in water flow in the Ewaso Ng’iro River and its major tributaries [9]. Hence, the excessive use of
water resources can lead to a decline of the groundwater level. Problems associated with this include
salinization, land subsidence, and deterioration of water quality, which could be harmful to vegetation
and cause ecosystem degradation [11].

Given the current situation, the restoration of wetlands has become an important option for the
international community. However, ecological reversal to the natural status is a long-term dynamic
change process [12]. People are working to accelerate the restoration of the ecosystem through manual
intervention, and ecological water transportation to ecologically fragile areas is one of the most
important methods to achieve this [13,14]. In northwest China, this measure has been employed to
maintain the ecological system balance of downstream waters, especially for wetland vegetation
systems. For example, Xinjiang’s Tarim River received water from a water transfer project during
ecological emergency periods eight times between 2001 and 2006; the transfer improved groundwater
quality and restored natural grasslands [15]. Similarly, a total of 4.512 billion m3 of water was
transferred to the downstream area in the Heihe River Basin from 2000 to 2008, which led to extensive
vegetation restoration [16]. Maintaining the ecosystem in downstream waters through ecological water
transportation has become the focus of ecological research of arid areas throughout the world [13,14].
Due to the demand for water resources in the upper and middle reaches of these arid river basins in
spring and summer for agriculture, little water tends to be available to transfer downstream. Normally,
waters in autumn, when the water demand is alleviated in the upstream, are transferred downstream.
However, vegetation normally stops growing during this period. Will the water transferred in autumn
help maintain the vegetation ecosystem in spring and summer, and if so, how? The quantity and
timing of water transfer can determine the effect of water transfer on ecological restoration. However,
few studies have been reported on this issue.

Shiyang River is China’s third-largest inland river. Its lower reaches are located in the Minqin
Basin, the wedge of which is at the cross-point of the Badain Jaran Desert and Tengger Desert. This oasis
is an important barrier to prevent inland movement of big sandstorms from the desert. Qingtu Lake,
located at the northern edge of Minqin Basin, is the terminal lake of the Shiyang River. It has
important ecological significance in preventing the connection of the two big deserts [17]. Because of
the construction of a water conservancy project in the upper reaches, and the Hongyashan Reservoir in
the middle reaches of Shiyang River, the main channel of Shiyang River in the lower reaches had been
dry for a long time, which led to Qingtu Lake, the terminal lake of the Shiyang River, drying in 1959.
As a result, the wetland ecosystem and vegetation was transformed into desert, and most areas near
the wetland were covered by quicksand, while the regional ecosystem continued to deteriorate [18].
In order to improve the ecological environment in the lower reaches of Shiyang River, the government
promoted a water transfer project that transports ecological water into Qingtu Lake downstream via
a channel. This started in September 2010 and has continued in autumn every year since. By November
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2016, a 25.16 km2 area of water body surface had formed in the Qingtu Lake [19]. Due to conflict around
the ecological water demand in the lower reaches and the agricultural water needs in the middle
and upper reaches of Shiyang River in spring and summer, ecological water transportation has been
implemented in autumn, when the vegetation has almost stopped growing. However, the impacts and
mechanism of artificial water transfer on vegetation and wetland ecosystem restoration remain poorly
understood. Taking the Qingtu Lake wetland ecosystem in the lower reaches of the Shiyang River
Basin as an example, this study investigated the effect of the water transfer in autumn on the wetland
vegetation ecosystem, and explored the mechanism of how water input during the non-growing season
improves the vegetation ecosystem.

2. Study Area

Qingtu Lake, the terminal lake of the Shiyang River, is located on the northeast edge of Minqin
County, Gansu Province, between 39◦04′ and 39◦09′ N latitude and 103◦36′ and 103◦39′ E longitude
(Figure 1). The area has a temperate continental arid desert climate. The mean annual temperature is
8.87 ◦C; the maximum temperature is 37.8 ◦C and the minimum temperature is −29.5 ◦C. The mean
annual precipitation is 110 mm, with 73% of this occurring in June, July, and August. The mean
annual evaporation is 2644 mm [20]. The main vegetation species include Phragmites australis,
Nitraria tangutorum, Suaeda glauca, Haloxylon ammodendron, and Kalidium foliatum. Accompanying
shrubs include Lycium ruthenicum, Artemisia sphaerocephala, and Kalidium foliatum. Herbaceous plants
include those such as Salsola ruthenica, Zygophyllum fabago, Cynanchum sibiricum, Salsola collina,
and Agriophyllum squarrosum. They are all typical desert vegetation types [21]. The water of Qingtu
Lake is mainly used to maintain the ecological system balance around the wetland, especially for
improving the vegetation ecosystem [20,22]. The water in Qingtu Lake is weakly alkaline and Na–SO4

(Cl) type, with high salinity and total dissolved solids (TDS) [23]. The lithology is shown in the cross
section (Figure 2). The sediments in this area consist of mainly sand, silt, and loam [24].

Figure 1. Location of the study area (a) and monitoring locations in the Qingtu Lake wetland (b).

135



Remote Sens. 2020, 12, 2516

Figure 2. Simplified geological cross section from V01 to V06 (locations are shown in Figure 1b).

During the Western Han Dynasty, Qingtu Lake covered an area of 4000 km2. Due to the increase
of water consumption in the upper reaches of Qingtu Lake, the surface area of the water body of
Qingtu Lake began to gradually diminish after 1924. In the 1950s, the construction of the Hongyashan
Reservoir caused the Shiyang River to dry quickly [25]. Since the 1960s, there have been a series of
ecological problems in the lower reaches of Shiyang River, such as the decline of the groundwater
level, vegetation degradation, and soil salinization [23]. In order to restore the regional ecological
environment, the local government decided to begin transferring ecological water from Hongyashan
Reservoir to Qingtu Lake in September 2010. The water is transferred through irrigation channels from
September to October of each year. It is a typical ecological water transportation system, carried out
during the non-growing season.

3. Data and Methods

3.1. Data Sources and Preprocessing

Ten monitoring sites were constructed in July and August 2018. Instrumentation at the V01–V10
locations was implemented using 5TE probes developed by the Decagon Company, with a precision
of 3% for monitoring the soil water content at different depths along the soil profile (Figure 1b).
The G01–G10 wells with screens at depths between 1 and 3.6 m were installed with Canadian
Solinst3001 titanium gold edge water-level loggers with a precision of 0.05% for recording the
groundwater level, water salinity, and temperature (Figure 1b). The soil water content and parameters
in the groundwater were recorded every 30 min. Meteorological data in the study area (temperature,
precipitation, air pressure) were downloaded from the China Meteorological Data Sharing Network
(http://data.cma.cn).

Considering the timing of water transfer from Hongyashan Reservoir to Qingtu Lake and
vegetation evolution, the remote sensing data used in this study were acquired from Landsat series
satellite data, including Landsat 8 OLI, Landsat 7 OFF, and Landsat 4-5 TM from 2009 to 2018,
with a resolution of 30 m, a synthetic image resolution of 15 m, and a temporal resolution of 16 d.
The remote sensing data from after May 2013 were from the Landsat 8 OLI series, while data from
before May 2013 were from the Landsat 7 OFF or Landsat 4-5 TM series. The data from the Landsat
7 OFF series were damaged; the images showed data overlap and about 25% of the data was lost.
All of the satellite data of the Landsat 7 OFF series used in this study were repaired by the strip removal
method [26]. The available Landsat data from before May 2013 were limited, and there were nine
images from 2009 to 2018.

All the image data were preprocessed with ENVI 5.2 for radiometric calibration, layer stacking,
atmospheric correction, geometric correction, and cropping [27].
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3.2. Methods

3.2.1. Water Extraction Methods

The NDWI (normalized difference water index) proposed by McFeeters was initially designed to
enhance the difference between water and nonwater bodies, in order to generate initial water body
maps. However, it cannot efficiently suppress the signal noise coming from the land cover features of
built-up areas [28,29]. Hence, Xu [30] proposed a modified NDWI (MNDWI), which is defined as:

MNDWI =
(Green−MIR)
(Green + MIR)

(1)

where Green is the green band, which corresponds to the TM/ETM + image band 2 (0.52–0.60 μm) and
the OLI image band 3 (0.525–0.600 μm). MIR represents the mid-infrared band, which corresponds to
the TM/ETM + image band 5 (1.55–1.75 μm) and OLI image band 6 (1.560–1.660 μm) [30,31].

Water bodies have positive values in the MNDWI, while soil, vegetation, and built-up classes
tend to have negative values. Hence, the normal empirical threshold is zero [29].

3.2.2. Method for FVC Estimation

FVC (fractional vegetation cover) is defined as the fraction of green vegetation seen from nadir,
which can characterize the growth conditions and horizontal density of land surface live vegetation.
There are three major algorithms for FVC estimation, which include empirical methods, pixel unmixing
models, and machine learning methods [32]. The dimidiate pixel model, which was used in this
study, is a method of pixel unmixing and widely used for FVC estimation [33]. It is assumes the NDVI
(normalized difference vegetation index) in a pixel consists of soil and vegetation, and the NDVI can
be derived by [34,35]:

NDVI = FVC×NDVIveg + (1− FVC)×NDVIsoil (2)

where NDVIveg represents the NDVI value of a pure vegetation pixel and NDVIsoil represents the
NDVI value of a pure soil pixel. The NDVIsoil selected an NDVI value with a cumulative frequency of
0.5%, and the NDVIveg selected an NDVI value with a cumulative frequency of 99.5% [36,37].

Hence, the FVC can be derived by modifying Equation (2) as:

FVC =
(NDVI − NDVI soil )

(NDVI veg − NDVIsoil
) (3)

3.2.3. Classification Method of FVC

For the entire Minqin Basin, there are few vegetation areas and vegetation types. The vegetation
coverage types of the Minqin Basin can be divided into five main vegetation coverage categories [38]:
extremely low, low, medium, medium and high, and high (Table 1).

Table 1. Vegetation Coverage Classification Standards [38].

Class Vegetation Coverage
Status of Fractional

Vegetation Coverage (FVC)
Description

1 extremely low FVC ≤ 10% Intense desertified land, bare rock,
bare soil, and waters

2 low 10% < FVC ≤ 30% Moderately desertified land, low yield grassland,
and sparse woodland

3 medium 30% < FVC ≤ 50% Slightly desertified land, medium grassland, low
canopy woodland, and cultivated land

4 medium and high 50% < FVC ≤ 70% Medium and high yield grassland, forest, and
cultivated land

5 high vegetation FVC > 70% High yield grassland, forest, and cultivated land
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3.2.4. Correlation Analysis

This analysis aims to explore the influence of the former expansion of Qingtu Lake on the
secondary vegetation coverage around Qingtu Lake after ecological water transfer. The two variables
are one-to-one, corresponding, and relatively continuous, so the Pearson correlation coefficient was
selected for calculation. The equation is given below [39].

r =
∑
(X−X)(Y−Y)√∑
(X−X)2∑(Y−Y)2

(4)

where X and Y represent the two groups of variables, and X and Y represent the average values of the
two groups of variables. If r is greater than 0, then a positive correlation between the two variables is
indicated; if the contrary, there is a negative correlation. In addition, the greater the absolute value of r,
the stronger the correlation between the two variables.

4. Result

4.1. Spatial and Temporal Variations of the Water Body Area of Qingtu Lake from 2009 to 2018

4.1.1. Temporal Change

Since September 2010, the ecological waters have been transferred from the reservoir to Qingtu
Lake from September to October each year [40]. The surface area of the water body of Qingtu Lake
exhibited a dynamic change trend (Figure 3). The lake water body reached the largest surface area
from November to the following January, with a maximum area of 13.7 km2. It normally exhibits the
lowest area from July to August each year.

Figure 3. The change in the surface area of the water body of Qingtu Lake over time.

4.1.2. Spatial Change

Due to the similar temporal trend of the Qingtu Lake water surface area each year, only the spatial
distributions of Qingtu Lake water area in different months of 2017 are shown in Figure 4. The water
surface area of Qingtu Lake changed little between January and February, ranging between 9.2 km2

and 9.6 km2 (Figure 4). After April, the water area began to shrink rapidly, and then reached the lowest
level (0.8226 km2) in July. From September, the water area began to expand again, since the water
transfer to Qingtu Lake was started in September. The water body expanded to the south and north,
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and then gradually spread to the west, reaching the highest lake level in November and December.
The lake water level then almost stabilized from November to the following February.

Figure 4. Spatial distribution of the Qingtu Lake water body from January to December 2017. The spatial
trend of the lake water body distribution was similar in other years after 2010.

4.2. Variation of Groundwater Level and Soil Water Saturation in Qingtu Lake Wetland Area

4.2.1. Variation of the Groundwater Level

During the frozen period, the groundwater monitoring data loggers at locations G02, G08, and G10
were taken out from the wells in December 2018, and thus the data between December 2018 and
May 2019 were missing. As shown in Figure 5, the groundwater level at each monitoring location showed
a significant rise after 25 August, and then gradually stabilized. After November, the groundwater
level at G05, which is located farther away from the lake center, first declined, and after January,
the water level at G04 also showed a downward trend because of the groundwater recharge surface
water. After March, the groundwater level at G04 and G05 rose obviously. It is speculated that this
phenomenon was caused by the rise of the soil surface temperature, which made the frozen surface soil
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water melt and recharge the groundwater. In winter, the groundwater at G03, G07, and G09 overflowed
the surface, and the groundwater level remained relatively stable for a long time. It can also be seen
that the direction of the regional groundwater flow is from G04 to the west and north, and from G9 to
G08 and G10.

Figure 5. Groundwater-level hydrographs at various monitoring points in the Qingtu Lake wetland
area from 2018 to 2019.

Long-term groundwater depth monitoring data at well W01 showed that the groundwater depth
gradually decreased from July 2010 to December 2016 under the impact of the water transfer in autumn.
The infiltrated surface water greatly increased the groundwater level. Within the same year, the overall
groundwater depth fluctuated with greater depth from June to August (Figure 6).

Figure 6. Long-term groundwater depth at location W01 near the Qingtu Lake wetland.

4.2.2. Variation in Soil Water Saturation

The water contents were converted to saturation according to Equation (5) [41]:

Sr =
θ

n
(5)

where Sr represents the soil water saturation, θ is the soil water content, and n is the porosity.
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The monitored water contents were normalized by dividing by soil porosity to more clearly show
the change in soil water content (Figure 7). The normalized data shown in Figure 7 refer to the soil water
saturation. The V02 and V04 locations are close to the center of the lake, and the saturation at V02 and
V04 was between 0.10 and 1. The V07, V08, and V09 locations are farther away, and the groundwater
overflowed the surface after the water transfer each year. The saturation at V07 was between 0.388
and 1, the saturation at V08 was between 0.155 and 1, and the saturation at V09 was between 0.078
and 1. The V01, V05, V06, and V10 locations are farthest from the lake, and the groundwater could
not submerge the surface; the saturation at V01 was between 0.02 and 1, the saturation at V05 was
between 0 and 1, the saturation at V06 was between 0 and 0.471, and the saturation at V10 was between
0 and 0.791.

Figure 7. Variation of soil water saturation at various monitoring points.

As is shown in Figure 7, the variation of saturation at each location (except V06) was similar.
The saturation of surface soil at each location was low, while the saturation of deep soil at each
location was high. The saturation at the V02, V04, V07, V08, and V09 locations, which are closer to
the lake, was low from January to March, and increased after March as the surface soil water melted.
The conditions described are consistent with the variation characteristics of the groundwater level.
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4.3. Variation in Vegetation Coverage around Qingtu Lake Wetland and Mingqin Basin

The vegetation classification of the entire Minqin Basin was calculated by referring to the vegetation
coverage classification criteria in Table 1. Due to the influence of agricultural crops in the central
basin [42], the interpreted vegetation classification with satellite data may not reflect the restoration of
the vegetation cover area caused by water transfer. Therefore, this study interpreted the vegetation
cover both in the entire Mingqin Basin and the natural vegetation within 10 km around Qingtu Lake.
By comparing and analyzing the vegetation coverage degree within 10 km around Qingtu Lake
and the entire Minqin Basin, we found that the characteristics of vegetation coverage were similar,
and an obvious seasonal change trend was shown in the vegetation coverage areas for each category.
Thus, we only showed the temporal and spatial vegetation coverage change within a 10 km area
around Qingtu Lake in Figure 8. Generally, the lowest vegetation cover area occurred from the former
November to the latter February, and the highest vegetation cover area occurred from June to September.
However, there were some differences in vegetation cover area for each category. For example, the areas
of bare rock, bare soil, and water, with the range of 0–10% vegetation coverage, varied little with the
seasons, and the area was basically of the same order of magnitude. However, in the range of vegetation
coverage above 30%, the vegetation coverage area varied greatly with the seasons, and the order of
magnitude was not uniform. Sometimes, a season with an area of 0 may even occur. It is worth noting
that, whether considering the entire Minqin Basin or a 10 km area around Qingtu Lake, the vegetation
area with vegetation coverage above 70% was abnormal on 15 July 2010 and 18 July 2011. Compared
with the data of the same period in other years, the magnitude difference was large. After analysis,
it was found that the remote sensing images of these two days were from Landsat 4-5 TM and there
were clouds, so it is speculated that the reason for this finding may be cloud interference in the remote
sensing images. Meanwhile, the total vegetation coverage within a 10 km area around Qingtu Lake
showed an obvious increasing trend since 2009 (Figure 8). The vegetation coverage in each category
had increased, and the effect was most obvious in the vegetation coverage between 30 and 50%.

Figure 8. Variations over time of the vegetation coverage for different fractional vegetation coverage
(FVC) categories in Qingtu Lake and its surrounding area within 10 kilometers. (Note: There is a lack of
Landsat series satellite data from 2009 to 2013, among which there are only two data sets from August
and September in 2009, four data sets from July, August and September in 2010, one data set from July,
2011, and two data sets from August and September in 2012).

142



Remote Sens. 2020, 12, 2516

Figure 9 shows the variation of land use from 1970 to 2017. The obvious changes were in the
marshes and low coverage of grass of the natural oasis, which was influenced by the lake area. The area
of low coverage grass of the natural oasis increased while the sand area decreased, which was consistent
with the variation in vegetation coverage around the Qingtu Lake wetland (Figure 8).

Figure 9. Variation of land use from 1970 (a) to 2017 (b).

4.4. Spatial Distribution of Vegetation Coverage in Qingtu Lake Wetland Area

The temporal change pattern of vegetation coverage is similar for different years, and thus we
only show the spatial distribution of vegetation coverage from January to December 2017 in Figure 10.
The areas with high FVC are mainly concentrated in locations close to Qingtu Lake and the south side
of the study area, and the FVC of these areas varies greatly with the seasons. In the entire study area,
the maximum FVC reached 18.6% from January to April. The maximum FVC reached 67.7% in June.
The maximum FVC reached 68.7% in July. The vegetation coverage began to decline after September.
In October, the FVC was low, and only sporadic areas had an FVC of more than 30%, while other areas
had an FVC of less than 20%. After that, vegetation coverage continued to decline. The FVC, except at
Qingtu Lake and the south side of the study area, was lower than 15% for a long time.

5. Discussion

Since September 2010, the water transfer to Qingtu Lake each year began at the end of August [40].
In order to explore the influence of this water transfer on the vegetation growth in the next year around
Qingtu Lake, we analyzed the correlation between the water body area of Qingtu Lake in autumn and
the maximum vegetation coverage in each FVC range in the following year, combining multiyear data.
As shown in Table 2, the correlation coefficients varied among the vegetation areas, with different
FVC ranges, and the area of the Qingtu Lake water body. The vegetation area with an FVC of 70 to
100% was small, making it difficult to show any correlation. The lake water body area and vegetation
areas in other FVC ranges exhibited a positive correlation, suggesting that the more water transferred
into Qingtu Lake in the previous autumn season, the larger the vegetation coverage in the following
summer season. Compared with other FVC ranges, the vegetation coverage between 30 and 50% had
a stronger correlation with the lake water body area. The correlation between the total vegetation
coverage area and lake water body area was also strong, with an overall correlation coefficient of 0.839.
As shown by the correlation coefficients, the transferred water had largest impact on the vegetation
coverage, from 0 to 50% (Figures 3 and 8). Thus, we concluded that an increase in the vegetation
coverage can contribute to the water transfer.

143



Remote Sens. 2020, 12, 2516

Figure 10. Variation of the spatial distribution of vegetation coverage near the Qingtu Lake wetland.

Table 2. Correlation Coefficients Between Different FVC Ranges and the Surface Area of the Water
Body Formed by the Water Transfer.

FVC 0–10% 10–30% 30–50% 50–70% All

Correlation coefficient 0.853 0.788 0.982 0.437 0.839

The rapid increase of the groundwater level in response to the water transfer suggested that
the transfer surface water recharged groundwater (Figure 5). Then, the groundwater level slowly
decreased, indicating the dissipation of infiltrated water. Following this, the thawing of frozen water
also led to an increase of the groundwater level in spring. Long term, the groundwater-table depth
has been slowly recovering since 2010, which could be ascribed to the infiltration from transferred
surface water since 2010 (Figure 6). This process is similar to that which occurred in the Tarim River,
where the water table near the riverbank was raised by 2–4 m during ecological water transfer during
2001 to 2006 [43]. Many studies reported that the decreased water table led to severe degradation of
groundwater-dependent ecosystems in the arid and semiarid area [44], and thus, the increased water
table in the study area has benefitted and improved the ecological environment for the vegetation
system. A similar conclusion was reported in Heihe River Basin, northwest China [45], where the
terminal East Juyan Lake has accumulated 6.19 × 108 m3 water. The groundwater table rose by
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an average 0.56 m downstream in the basin. This occurred after receiving ecological water transferred
from upper and middle reaches from 2002 until about 2012, which led to an increase in areas of forest
and grassland.

Responding to the surface water infiltration and groundwater level increase, increases in soil
water content were observed at different monitoring locations, and higher water saturation began to be
maintained from April to May (Figure 7). Thus, the soil water can be continuously supplied to the
root zone and supports plant growth during spring [46]. In soil that undergoes seasonal freezing and
thawing, reduced evaporation and seepage could be beneficial to conserve the soil water and maintain
the high water content, and the thawing of frozen soil in spring also increased the water content
(Figure 7) [47]. These soil water conditions in arid and semiarid areas are important for supporting the
vegetation system. Thus, soil freeze–thaw processes are important for local ecohydrological processes,
such as plant germination and growth in spring [48,49]. The transferred waters flowing over the ground
surface could also infiltrate, to be either stored as soil water or recharged to groundwater, especially for
the shallow distribution of clay soil [50]. The role of fine-textured soil in retaining water recharged by
intermittent ecological water conveyances or prior floods as a lasting legacy to sustain riparian plant
species over extended drought periods were also reported in the middle Heihe River, China [51] and
the lower Rio Grande River, USA [52]. Through the interaction between surface water, groundwater
and soil water, ecological water transfer in autumn increased the groundwater level and supported
the relatively higher soil water content, providing essential water for vegetation during spring and
summer in the following year.

6. Conclusions

To improve the degraded vegetation ecosystem in the arid areas of northwest China, caused by
human activities and natural factors, artificial water delivery has become the main method of human
intervention. Due to the contradiction between water use for agriculture and vegetation water demand
in spring and summer, water transfer is generally carried out in autumn. However, the impact and
mechanism of artificial water transfer on vegetation and wetland ecosystem restoration have not been
thoroughly investigated, especially in northwest China. Taking the Qingtu Lake wetland system in
the lower reach of Shiyang River in northwestern China as the study area, this study illustrated how
water transfer affects the surface water, groundwater, and soil water interaction, and improves the
vegetation ecosystem.

The surface area of Qingtu Lake expanded to the maximum in autumn and winter after water was
transferred, and largely decreased the next summer of each year after 2010. The coverage of vegetation
around Qingtu Lake area the next spring and summer also increased significantly each year from
2010. A positive correlation was found between the surface area of the lake body area in autumn and
the vegetation coverage in each FVC interval the following summer, suggesting that water transfer
improved the vegetation ecosystem in the study area. Further, we also explored the mechanism of how
the water transfer in autumn, when the vegetation stops growing, improves the vegetation coverage
in the following year. We found that the groundwater level increased after water transfer, and the
soil water content increased and remained relatively high for the following months, which suggests
that transferred water from upstream can be stored as groundwater or soil water in the subsurface
through surface water. These water sources can provide the water for vegetation growth the next
spring, or support the plants in the summer. Thus, ecological water transfer plays an important role in
improving the vegetation ecosystem, even when the water is transferred in seasons when vegetation
does not grow.
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Abstract: NASA’s Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG)
is a major source of precipitation data, having a larger coverage, higher precision, and a higher
spatiotemporal resolution than previous products, such as the Tropical Rainfall Measuring Mission
(TRMM). However, there rarely has been an application of IMERG products in flash flood warnings.
Taking Yunnan Province as the typical study area, this study first evaluated the accuracy of the
near-real-time IMERG Early run product (IMERG-E) and the post-real-time IMERG Final run product
(IMERG-F) with a 6-hourly temporal resolution. Then the performance of the two products was
analyzed with the improved Rainfall Triggering Index (RTI) in the flash flood warning. Results show
that (1) IMERG-F presents acceptable accuracy over the study area, with a relatively high hourly
correlation coefficient of 0.46 and relative bias of 23.33% on the grid, which performs better than
IMERG-E; and (2) when the RTI model is calibrated with the gauge data, the IMERG-F results matched
well with the gauge data, indicating that it is viable to use MERG-F in flash flood warnings. However,
as the flash flood occurrence increases, both gauge and IMERG-F data capture fewer flash flood
events, and IMERG-F overestimates actual precipitation. Nevertheless, IMERG-F can capture more
flood events than IMERG-E and can contribute to improving the accuracy of the flash flood warnings
in Yunnan Province and other flood-prone areas.

Keywords: flash flood; Integrated Multi-Satellite Retrievals for Global Precipitation Measurement;
Rainfall Triggering Index; Yunnan

1. Introduction

Flash floods, triggered by heavy rainfall (i.e., short duration, high intensity), are the rapid flooding
of water within minutes up to several hours in small basins (hundred square kilometers or less) [1]. It is
one of the most devastating floods in the world, which can cause great economic losses and casualties.
From 1 October 2007 to 1 October 2015, the National Weather Service (NWS) of the U.S. reported that
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278 people died from flash floods, 10% of which resulted in an average property loss of over $100,000 [2].
China is also suffering from severe flash floods, where 984 people have died from flash floods every year
on average since 1950 [3]. With the increase in global precipitation and rapid economic development,
the frequency and impacts of flash floods will be further exacerbated [4]. The most crucial approach
to adapt to flash floods is accurate warnings, which can leave people with more time to respond to
these emergencies. However, flash flood early warning remains challenging, especially given the
conditions of a short lead time (less than 1–3 h). Accurate and continuous precipitation datasets with
high spatial (i.e., 1–4 km) and temporal resolutions (i.e., 5 min to hourly) are critical to the success of
flood warnings [5]. Considering climate change and land degradation processes, new tools for flood
disaster monitoring and reduction are strongly required. Satellite precipitation products have wide
coverage, a high spatiotemporal resolution, and easy data acquisition, and are not restricted by terrain
conditions. These products are extremely important to flood warnings in mountainous areas prone to
flash floods, where there is scarcely measured rainfall data, and some satellite precipitation products
have been used to assess the floods over the basins. However, satellite precipitation products may
underestimate extremely strong precipitation, and the accuracy of the satellite precipitation products
in catching flash floods remains poorly understood [6,7].

Nowadays, numerous satellite precipitation products, such as the Tropical Rainfall Measuring
Mission (TRMM) and Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM)
Mission (IMERG), are available for providing post-real-time (PRT) estimation and near-real-time
(NRT) estimation. PRT products generally undergo ground-based gauge adjustments while NRT
products do not, indicating the former is usually more accurate than the latter [8]. These satellite
precipitation products generally have high spatiotemporal resolutions (finer than a 0.25◦ spatial
resolution and shorter than the daily temporal interval) with a wide quasi-global coverage (broader
than the 50◦ N–50◦ S latitude band); these products are very useful for hydrological studies, especially
in data-sparse or ungauged basins [9]. GPM is a new generation of satellite products inheriting TRMM
satellite products, with more comprehensive data and higher spatiotemporal accuracy. IMERG is
the Level 3 precipitation estimation algorithm of GPM, which can combine gauged rainfall data and
satellite data to obtain global rainfall data. IMERG provides three types of products, including the
NRT IMERG Early run (hereafter IMERG-E), Late run (hereafter IMERG-L) and the PRT IMERG
Final run (hereafter IMERG-F) [10]. Previous studies have proclaimed that IMERG-F has higher
accuracy, especially on land, while the IMERG-E and IMERG-L products have better timeliness, which
is attractive for flood prediction and monitoring. However, due to the limitations in observation
position, density, topography, etc., it is difficult to directly analyze the actual spatial distribution of
rainfall with gauged rainfall data [11]. Meanwhile, satellite products also contain uncertainties from
instruments, sampling, and retrieval algorithms, and therefore should be comprehensively validated
using local gauge data [12].

An appropriate flash flood warning method is another key factor to ameliorate the flash flood
warning accuracy. Typical examples include Flash Flood Guidance (FFG), Soil Water Index (SWI),
Rainfall Triggering Index (RTI), etc. [13]. FFG is one of the most widely used methods developed by
the US River Forecasting Center in the early 1970s, and it calculates the rainfall required to produce
bank-full flood conditions associated with flash floods in a given time and area. The calculation steps of
the FFG are as follows: (1) gaining the current soil moisture with the hydrological model; (2) reversing
the flood peak flow of the basin outlet section; and (3) obtaining the critical rainfall required when the
flow reaches the early warning flow [14]. However, FFG has more data requirements since it considers
almost all influencing factors. For example, the soil moisture index is an indicator that can accurately
describe the trend in soil moisture in the aeration zone, which is mainly calculated from the total water
depth of a three-layer tank model with fixed parameters, and FFG has only one parameter related to the
infiltration time; however, it is difficult to obtain this parameter regardless of concentration calculation
or distribution calculation [15]. The RTI comprehensively considers the effective accumulated rainfall
and rainfall intensity in the prediction of flash floods. It focuses on antecedent conditions and has been
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put into practice for over 10 years in Taiwan [13]. However, this method relies too much on rainfall
stations, fails to fully consider intermittent rainfall, and is greatly affected by rainfall field segmentation.
Meanwhile, using the deduction coefficient of “t” days in the RTI model for the antecedent rainfall
calculation will result in a higher false alert rate under some rainfall patterns. Therefore, Chen et al.
(2017) proposed an improved RTI to calculate the antecedent rainfall and effective accumulated rainfall
to solve the abovementioned problems, which achieved good practical application effects in Taiwan’s
2017 disaster warning [16].

As satellite precipitation data is widely used in large-scale watershed hydrological simulation or
land surface process simulation, it is still difficult to meet the needs of flash flood prediction in small
and medium-sized watersheds. Most of the existing research focus on the corrected products, but there
scarcely has been application verification for real-time products. Most of the satellite products are
applied on a large scale, and little attention has been paid to their applicability in small-scale flash flood
warnings. Additionally, flash floods generally occur in small and medium-sized river basins with poor
economic conditions, low station network coverage density, and there is great difficulty in obtaining
data. Given that IMERG products have high spatiotemporal precision, it is therefore of great practical
significance to evaluate the applicability of these products to flash flood warnings. Moreover, regional
studies are also very common and popular because precipitation exhibits strong spatial variations and
different products show varying performance over different regions. Meanwhile, there are still few
studies on the inter-comparison of the IMERG products, especially in China, where the superiority of
its application in flash flood warnings still needs further exploration [17]. Therefore, taking Yunnan
Province in China as the study area, based on two fifth-generation IMERG products (IMERG-E,
IMERG-F) and China Meteorological Administration (CMA) data, this study first evaluated these two
products with particular attention paid to their systematic and random errors. Then, the empirical
RTI method was utilized to evaluate the applicability of the different IMERG products in flash flood
warnings. This paper is further organized as follows: Section 2 describes the materials and data;
Section 3 presents an assessment of IMERG-E and IMERG-F based on locally measured data and
analyzes the effects of flash flood warnings based on satellite precipitation data; and the conclusions
are summarized in Section 4.

2. Materials and Data

2.1. Study Area

Yunnan Province is located at the low latitude plateau of southwest China, with an area of
390,000 km2, accounting for 4.1% of China’s total area [18]. The terrain in Yunnan Province is very
complex, coupled with the low economic level of remote mountain areas, resulting in the lack of
early disaster data. For example, the main terrains are mountains (84%), plateaus and hills (10%),
and basins and valleys (6%). The altitude is high in the northwest and low in the southeast, descending
stepwise from north to south in this region, and the average altitude is 1980 m, and 87.21% of the land
is located in middle-latitude areas (1000–3500 m). The area with a slope below 25◦ accounts for 56.46%
of the national total area. Besides, Yunnan Province is characterized by the most widely distributed
karst topography, accounting for 28.9% of the province’s area; this results in low water retention and
frequent flood disasters. Yunnan is rich in water resources, but unevenly distributed in time and space,
where more than 70% of the water resources are concentrated in remote mountainous areas. The total
population is 47.1 million in 2014, accounting for 3.5% of the national total population. Yunnan has
a typical monsoon climate, mainly dominated by the east Asian monsoon and southwest monsoon,
and 90% of the precipitation is concentrated from May to October, especially in the flood season
(June to August). For example, long-term studies have shown that the critical rainfall is 35–200 mm
in northwest Yunnan, 50–200 mm in southwest Yunnan, and 100–300 mm in eastern Yunnan [19].
The above reasons led to frequent flash flood disasters, which has caused extremely serious disasters.
For example, 72 people died from flash floods in Yunnan Province in 2014, accounting for 22.2% of the
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national total deaths from flash floods. All the preliminary works have promoted the development of
flash flood prevention in Yunnan Province [20], but further exploration is still needed, and therefore
Yunnan Province was selected as the study area in this study. Figure 1 shows the map of the topography
and flash flood disaster distribution in Yunnan Province.

Figure 1. Topographical map and locations of flash flood disasters in Yunnan Province (2011–2018).

2.2. Data

2.2.1. Satellite Data

TRMM Multi-Satellite Precipitation Analysis (TMPA) (50◦ N–50◦ S) can retrieve
microwave–infrared satellite precipitation estimates with gauge adjustments and can generate rational
precipitation estimates at fine spatiotemporal scales (0.25◦ × 0.25◦ and 3-hourly temporal intervals)
within the global scope (60◦N–60◦ S) [21,22]. As the successor of TRMM, the GPM constellation consists
of a core observation platform and 10 cooperative satellites to observe global precipitation through
inter-satellite cooperation. The GPM program offers three different levels of data products, all of which
are available on the NASA website (http://www.nasa.gov/mission_pages/GPM). This study focuses on
the GPM Level 3 products based on the IMERG algorithm. IMERG not only has a high spatial resolution
(0.1◦ × 0.1◦, 0.5 h) and fully global coverage (60◦ S~60◦ N), but also predicts flood disasters by reducing
the uncertainty associated with short-term precipitation accumulation. At present, IMERG data has
been developed from the first version to the sixth version, and IMERG-V06B is the latest version of the
satellite rainfall data. However, Mohammad et al. (2019) verified that IMERG V05 performs better
than V06, and therefore this study has employed IMERG V05 to estimate the precipitation data [23].

IMERG has three different products: Early, Late, and Final. In the real-time phase, the IMERG
data generation system generates Early products after running once and then generates Late products
after running again. The main difference between them is that the Early product is generated only by
the forward propagation algorithm in the cloud mobile vector propagation algorithm, while the Late
product is added with the backpropagation algorithm. The time-lag product Final introduces more
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sensor data sources based on the Late product. Meanwhile, the time of the extracted satellite data is
matched with the station’s data (08:00 a.m.) [24]. Table 1 shows the detailed information of the three
IMERG products, with a study period of 2015–2018. Since IMERG-E and IMERG-L products are NRT
products, they are released after 4 h and 12 h after observation, respectively; in turn, the IMERG-F is a
PRT product, which has been calibrated for the deviation of the ground rainfall station, so it has a high
accuracy and is usually released after two months of observation. Therefore, this study has adopted
CMA data as calibration data, pays attention to the accuracy of the IMERG rainfall data to capture
flash flood disasters, and combines the precipitation data estimated by IMERG-E and IMERG-F to
discuss the accuracy of capturing flash flood, and thereby contributes to obtaining the static early
warning thresholds.

Table 1. List of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement
(IMERG) products.

IMERG-E IMERG-L IMERG-F

Spatiotemporal resolution 0.1◦, 0.5 h 0.1◦, 0.5 h 0.1◦, 0.5 h
Lag time 6 h 18 h 4 Month
Monitoring range 90◦ N~90◦ S 90◦ N~90◦ S 90◦ N~90◦ S
Data period Mar. 2015–Dec. 2018 Mar. 2015–Dec. 2018 Mar. 2015–Dec. 2018

2.2.2. Ground Observation Precipitation Data

The regional hourly precipitation integration products of the CMA (http://cdc.cma.gov.cn) is a
reference product, which is based on the hourly precipitation observed by more than 30,000 automatic
weather stations nationwide and the Climate Prediction Center morphing (CMORPH) satellite. Using
the probability density function and optimal interpolation method, the precipitation fusion products
with a high spatiotemporal resolution (0.1◦ × 0.1◦ and 1-h interval) have been generated in China.
Among them, the optimal interpolation method is to combine the semi-hourly infrared data of the
Geostationary Earth Orbit (GEO) satellite to interpolate the Passive microwave (PMW) inversion data,
and then obtain the relatively fine precipitation. The gauge data involved in the CMA are subject to
extreme quality control, including consistency checks, both internal and spatiotemporal. Meanwhile,
the complex terrain, the low economic level in remote mountainous areas, and the sparse distribution of
the ground stations have led to large errors in the measured data. The CMA data has a wide coverage
and high spatiotemporal resolution; the overall error of this product is within 10%, and the error for
heavy precipitation and site sparse areas is within 20%, which is more accurate than other similar
products in China. Therefore, CMA products are suitable as the calibration data for product evaluation,
but their scale should be consistent with the IMERG product in the calibration process [25]. Besides,
when using CMA data to estimate the rainfall distribution, we should consider that the dataset may
have a delayed phenomenon since it is actually a fusion of measured data and CMORPH satellite
rainfall data.

The rainfall level is defined by the CMA, for example, the intraday rainfall is categorized into the
rain and light-moderate rain (0–25 mm), heavy rain (25–50 mm), and rainstorm (>50 mm). Meanwhile,
the minimum amount of precipitation that the gauges can measure is 0.1 mm. The critical rainfall
in Yunnan Province mainly comes from the China rainstorm parameters atlas, which describes the
statistical characteristics and laws of China’s rainstorms. Based on the study period 2015–2018, the flash
flood data were mainly from officially published data. In this study, a total of 120 flash flood events
were analyzed, all of which resulted in deaths or missing of people. Additionally, some other data
were also employed; for example, the topographic data came from a 1:250,000 digital elevation model
(DEM) of the Yunnan Province.
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2.3. Methodology

2.3.1. RTI Method

Since 2005, the RTI model has been widely applied in flash flood warnings, which effectively
reduced the casualties caused by flash floods. Considering that flash floods are mainly caused by
hourly peak rainfall, this method is used to predict flash flood by multiplying the effective cumulative
rainfall (Rt) and rainfall intensity (I). Among them, the effective accumulated rainfall mainly uses the
accumulated rainfall in the previous 7 days before the flash flood occurs. Based on historical rainfall,
this method obtains the flash flood probability under different rainfall conditions by calculating the RTI,
and then divides the critical rainfall map into three regions for early warning (low possible, medium,
and high) [13]. Meanwhile, it also defines how to segment the rainfall events, i.e., the start time is
defined as the rainfall per hour exceeding 4 mm, and the end time is the rainfall per hour falling below
4 mm for six consecutive hours. A single day refers to the period from yesterday at 08:00 a.m. to today
at 08:00 a.m. Rainfall data were selected according to the flash flood disaster events. If the flash flood
disaster occurs in an area without a monitoring station, calculations are performed using data from the
nearest rainfall stations (within a radius of 50 mm). The RTI equations are as follows:

RTIt = I ∗Rt (1)

Rt =
n∑

i=0

αiRi (2)

where RTIt is the RTI calculated at time t; I is the rainfall intensity; Rt is the effective cumulative rainfall;
i means the antecedent day number from one to n; α is the rainfall attenuation coefficient, mainly taken
from the measured value of 0.78 by Cui Peng in Jiangjiagou, Yunnan Province [26]; αi is the reduction
factor of the previous i day; and Ri is the 24-h cumulative rainfall of the previous i-day, where the
initial cumulative rainfall R0 is 50 mm, which is mainly obtained through actual statistical analysis.

Since the previous rainfall was calculated using “t” days of accumulated rainfall, the false alarms
rate is higher in certain rainfall patterns (e.g., long-term duration and low rainfall intensity). Besides,
this method does not consider the effects of intermittent rainfall and rainfall segmentation, etc.; all of the
above results in low accuracy. Therefore, based on the reduction period and the reduction coefficient
being unchanged, Chen et al. (2018) proposed an improved RTI method and provides a detailed
flowchart describing the method [16]. The specific equation of this method is

Rt = It + Rt−1 ∗ (α)
1

24 (3)

where It is the current rainfall intensity at time t (mm/h); and Rt−1 is the effective cumulative rainfall one
hour earlier. In Formula (2), each operation needs to calculate Ri separately, multiply it by αi, and then
accumulate; however, in Formula (3), it has only one rainfall intensity and one accumulated rainfall,
which greatly reduces the calculation amount and contributes to the future subsequent large-scale
grid operations.

2.3.2. Evaluation Metrics

Six indicators were employed to evaluate the accuracy of the satellite precipitation products.
Table 2 shows the formulas and optimal values of these indexes. CC (correlation coefficient) represents
the correlation between the satellite precipitation data and site precipitation data, the greater the better;
BIAS (Relative Bias) and RMSE (Root Mean Square Error) are quantitative indicators, representing
the deviation degree between the satellite precipitation data and ground station precipitation data.
The method also includes three classification indicators: Probability Of Detection (POD), False Alarm
Ratio (FAR), and Critical Success Index (CSI), which can comprehensively reflect the ability of the
precipitation products to estimate the probability of precipitation event occurrence. Among them,
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POD is the correct forecast rate, while FAR is the wrong forecast rate. The critical success index (CSI) is
the function of POD and FAR that provides a more balanced estimate of the satellite products [27].

Table 2. List of the formulas and optimal values of the indexes.

Diagnostic Statistics Equation Optimum Value Value Ranges Unit

CC CC =

n∑
i=1

(Di−D)(Mi−M)√
n∑

i=1
(Di−D)

2 n∑
i=1

(Mi−M)
2 1 (−1,1) -

RMSE RMSE =

√
1
n

n∑
i=1

(Di −Mi)
2

0 (0, Inf) mm

BIAS BIAS =

1
n

n∑
i=1

(Di−Mi)

n∑
i=1

Mi

× 100% 0 (−Inf, Inf) %

POD POD = O
O+U 1 (0,1) -

FAR FAR = P
O+P 0 (0,1) -

CSI CSI = O
O+U+P = 1

1/(1−FAR)+1/POD−1 1 (0,1) -

Variables: n, total number of flash floods; Di, the i-th of the evaluated; Mi, the i-th of the reference data; D, mean of
Di; M, mean of Mi; O, number of hits; U, number of misses; P, number of false positive.

2.3.3. Systematic or Random Error

Random error is an avoidable error caused by measurement or calculation. Systematic error is
the unavoidable error caused by the experimental instrument or accuracy. Systematic and random
errors are determined by objective and subjective factors, respectively, both of which can be reduced
but not eliminated [28]. The spatiotemporal variability of precipitation, measurement error, and the
uncertainty of sampling affects the satellite precipitation data accuracy, where the uncertainties include
systematic and random errors (hereafter Syst and Rand), mainly from (1) sensor observation; (2) the
algorithm used to estimate rainfall; and (3) sampling error. Reference [29] developed a method for
estimating Syst and Rand for satellite precipitation products. The system of mean square error (MSE)
and the formula for random error are

MSE = MSES + MSER (4)∑
n(x− y)2

n
=

∑
n(x̂− y)2

n
+

∑
n(x− x̂ )2

n
(5)

where x is the satellite precipitation; y is the CMA precipitation; and n is the time steps number (here
days); the formula for calculating x̂ is as follows:

x̂ = ay + b (6)

where a and b are the slope and intercept parameters that need to be calibrated, respectively.
The calculation formula is

Syst =
∑

n(x̂− y)2

n
/
∑

n(x− y)2

n
(7)

Rand =

∑
n(x− x̂)2

n
/
∑

n(x− y)2

n
(8)
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3. Results and Discussion

3.1. Spatial Distribution of Precipitation

Figure 2 shows the spatial distributions of the daily average precipitation in Yunnan Province
captured by IMERG-E, IMERG-F, and CMA from March 2015 to December 2018. Using CMA data as the
reference calibration data, the rainfall distribution in Yunnan Province is shown in Figure 2a. In Yunnan
Province, the precipitation increases from northeast to southwest, with the largest precipitation
occurring in the western border region. Referring to Figure 1, Yunnan’s terrain is complex and
changeable, with a high northwest and low southeast, descending stepwise from north to south.
Moreover, flash floods are mainly concentrated in the southwest region and densely distributed in
parts of the northeast, reflecting that the flash flood disaster is mainly affected by multiple factors with
heavy rainfall as the main trigger. Meanwhile, there is a clear precipitation zone in the western region,
with the smallest precipitation in the northwest and more precipitation in the central-western region.
Figure 2b,c presents the distribution of the estimated precipitation in Yunnan Province using IMERG-E
and IMERG-F, respectively. The overall trend is consistent with the precipitation distribution measured
by CMA; that is, the estimated precipitation is relatively large in the southwest area, while low in the
northeast relatively. Among them, the estimated rainfall of IMERG-E is less in the northeast region
and has a larger coverage area, which is lower than that of CMA. The estimated maximum rainfall area
is consistent with the CMA, but its coverage area is much smaller than the CMA. Therefore, IMERG-E
underestimates the precipitation, especially in the southwest region. IMERG-F is the opposite of
IMERG-E; its estimated rainfall covers a larger area, and the minimum and maximum rainfall are higher
than the CMA. IMERG-F overestimates precipitation, especially in the central and western regions.

Figure 2. Spatial distributions as per the CMA (a), IMERG-E (b), and IMERG-F (c).

3.2. Evaluation of IMERG-E and IMERG-F

Figure 3 presents the spatial patterns of six indicators obtained from IMERG-E and the CMA using
hourly data over the Yunnan Province. Generally, CC was relatively low, changing from 0.2 to 0.5,
especially over the northwest regions (CC < 0.2) with the highest altitudes. As for the RMSE and BIAS,
their spatial patterns are similar, with an increasing trend for the RMSE and BIAS and a decreasing
trend for relative error from northwest to southeast. Many previous studies have confirmed that
satellite precipitation estimates are usually low with large errors in mountainous areas. For example,
compared with the highest regions in the Northwest, IMERG-E’s BIAS is underestimated by about
50% [30]. As for satellite-based precipitation metrics, there is also a significant trend; that is, POD
and CSI are increasing, while FAR is decreasing, which is in harmony with the overall trend of the
IMERG-E data. Table 3 shows the evaluation metrics for IMERG calculated with the mean value at
hourly and daily timescales; the evaluation index calculated by the mean is larger on a daily scale than
that on an hourly scale. Given the relatively low accuracy of IMERG-E, the differences between the
IMERG-E and CMA were relatively obvious.
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Figure 3. The spatial patterns of six metrics (CC (a), RMSE (b), BIAS (c), POD (d), FAR (e), and CSI (f))
generated from IMERG-E and CMA using hourly data in Yunnan Province.

Table 3. Calculation results for evaluating IMERG.

Timescale Product CC RMSE (mm) BIAS (%) POD FAR CSI

Hourly IMERG-E 0.41 1.1 −0.69 0.39 0.53 0.27
IMERG-F 0.46 0.97 23.33 0.43 0.51 0.29

Daily IMERG-E 0.63 7.59 −1.18 0.63 0.38 0.45
IMERG-F 0.73 5.74 28.24 0.66 0.34 0.48

The spatial patterns of the six metrics derived from IMERG-F and CMA (Figure 4) exhibited
similar trends as those from IMERG-E and CMA. Table 2 revealed the four indicators CC, BIAS, POD,
and CSI of NRL IMERG-E products are lower than these for PRL IMERG-F, regardless of daily and
hourly data, while the two indicators RMSE and FAR are higher than that for IMERG-F. Therefore,
IMERG-F indicated a better performance in this region. For instance, the POD and CSI of IMERG-F and
CMA were also overall higher than those of IMERG-F and CMA, especially for CSI. Besides, in both
Figures 3 and 4, the POD and CSI in these two figures show significant differences inside and outside
of the Yunnan Province, which is mainly due to the complex and changeable terrain that induces large
systematic errors in satellite precipitation. Besides, there is no actual rainfall measurement site outside
the Yunnan border, and the rainfall distribution obtained only by interpolation appears discontinuous.

The following is a further analysis of the error source (i.e., systematic error or random error) of
EMERG-E. The spatial patterns of systematic and random errors in IMERG-E at the 1 and 24 h temporal
scales in Yunnan Province, respectively, demonstrated almost the same spatial patterns (Figure 5).
Overall, the system error is mainly distributed in the northwest region of Yunnan Province with a high
altitude (about 80%), and the coverage area is relatively small. Meanwhile, except for the northwestern
part of Yunnan Province, the systematic error at 1 h is significantly higher than that at 24 h, especially
the error at 24 h mostly disappeared. Random error mainly occurs in the southern region of Yunnan
Province with relatively high rainfall (about 80%), but a relatively low in the northwest region. Besides,
the random error is higher at 24 h than at 1 h. Therefore, for the IMERG-E data, the estimated error
in the high-altitude and low-precipitation areas of Yunnan Province is mainly determined by the
systematic error; the southern area of Yunnan Province with a low elevation and high precipitation is
dominated by random errors.
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Figure 4. The spatial pattern of six indicators generated from hourly data of IMERG-F and CMA in
Yunnan, where the indicators indicated by (a), (b), (c), (d), (e), and (f) are CC, RMSE, BIAS, POD,
FAR, CSI.

Figure 5. The spatial patterns of the system and random errors for IMERG-E at the 1 h and 24 h
temporal scales in Yunnan Province, respectively, where (a) and (b) are the systematic errors of 1 h and
24 h, respectively; (c) and (d) are random error of 1 h and 24 h.

As for IMERG-F, systematic errors accounted for less than 20% of the total errors across the
whole study area at both the 1 and 24 h temporal scales. Compared with IMERG-E, IMERG-F has
been significantly improved because the systematic errors were effectively reduced, especially in
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mountainous areas with the complex terrain. Figure 6 shows that the IMERG-F data error (≥80%) is
primarily a random error, independent of the underlying surface features. Besides, Figures 6 and 7
behave differently inside and outside the Yunnan border. This phenomenon is mainly due to the
complex and changeable terrain of Yunnan Province, which further triggers the discontinuous changes
in satellite precipitation errors. It is a discontinuous problem in the original satellite’s precipitation
error, rather than using different spatiotemporal resolution rainfall. Therefore, the overall IMERG-F
data is better than the IMERG-E data.

Figure 6. The spatial patterns of the system and random errors in IMERG-F at the 1 and 24 h temporal
scales, respectively; where (a) and (b) are the systematic errors of 1 h and 24 h, respectively; (c) and
(d) are random error of 1 h and 24 h.

3.3. Applicability Analysis of IMERG in Flash Flood Warning

Based on historical flash flood disaster events, combined with three types of rainfall products
(IMERG-E and -F, and CMA), the multi-period rainfall (1 h, 3 h, 6 h, and 24 h) is obtained. The resultant
effective accumulated multi-period rainfall is calculated by the improved RTI method. Meanwhile,
combined with the flash floods’ actual frequency and the rainstorm statistical parameter atlas of
China, the multi-period critical rainfall (1 h, 3 h, 6 h, and 24 h) (hereafter, CR1, CR3, CR6, and CR24)
is obtained; the G (x) early warning model is constructed for effective cumulative rainfall (Rt) and
corresponding period critical rainfall (CRt). Since this model does not take into account the potential
multiple influencing factors, such as slope, vegetation, and human activity, when issuing the flash
flood warning, we should make a comprehensive analysis regarding the flash flood risk distribution
to determine whether a flash flood event has been captured. Considering the flash flood risk map
obtained by Ma et al. (2019), the obtained results are shown in Figures 7 and 8 [31].
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Figure 7. The performance of the flash floods captured by the three products (IMERG-F, EMERGE,
and CMA) for different times (1 h, 3 h, 6 h, and 24 h). Note: Red indicates that the warning issued has
captured the flash flood event; blue indicates that the issued warning has not captured the flash flood
event, where (a), (b), (c), and (d) are the distribution of IMERG-E products in 1 h, 3 h, 6 h and 24 h to
capture flash flood disasters; (e), (f), (g), and (h) are the distribution of IMERG-F products in 1 h, 3 h,
6 h and 24 h to capture flash flood disasters; (i), (j), (k), and (l) are the distribution of CMA products in
1 h, 3 h, 6 h and 24 h to capture flash flood disasters.

Figure 8. Percentage of flash floods caught by CMA, IMERG-E, and IMERG-F. Note: CRt represents
the critical rainfall at time t.

Obviously, for the same product, the captured flash flood events has decreased over time, where
the hit rate of both CR6 and CR24 is less than 60%. Among them, the flash floods events captured by
these three rainfall products are concentrated in western Yunnan, while there are fewer flash flood
events in the relatively flat southwest and central Yunnan. In general, if a flash flood event cannot be
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captured in a short period, it will not be anyhow captured. Moreover, the effect of IMERG-E products
on capturing disasters is significantly lower than that of IMERG-F, and the capture rate in each period
is less than 50%. However, the capture accuracy of IMERG-F at CR1 and CR3 is almost comparable to
the CMA—only a 1% difference—and the capture rate of CR1 is nearly 80%, with an extremely high
accuracy. Nonetheless, with the time marching, the capture effect decreased significantly. Meanwhile,
if the flash flood events cannot be captured by IMERG-F and CMA, the same phenomenon occurs in
IMERG-F; but, as time goes on, there is an out-of-sync phenomenon in the catching flash flood events
by IMERG-F and CMA. Besides, the CMA data is a fusion of measured data and CMORPH, leading to
possible delays in data acquisition. Therefore, the hit rate is decreasing with an increasing temporal
resolution or increasing the averaging time of the satellite images.

4. Conclusions

This study first quantitatively evaluated the IMERG-E and IMERG-F satellite precipitation
products, and then combined the improved RTI method to analyze its application effects in flash flood
warnings, which has three major contributions:

(i) Flash flood warning aspects are integrated, for the first time, with satellite precipitation to account
for the applicability of satellite data in flash flood warnings. The result shows that the early
warning effect of IMERG-F products is better at the 1 h and 3 h scale than that at the daily scale;

(ii) the study area has not been documented in previous studies. Yunnan Province is characterized by
a low latitude but high altitude where satellite precipitation exhibited some new characteristics,
including that precipitation in Yunnan Province has increased from northeast to southwest, where
the largest precipitation occurred in the flood-prone area in the southwest part;

(iii) this study reveals some interesting phenomena that were not reported in related research [32].
For example, the systematic error of IMERG-E is mainly distributed in areas with high altitudes
and low precipitation, and the random error is mainly distributed in areas with low altitudes
and high precipitation. The most important thing is that as for the same satellite rainfall product,
the flash flood disaster events that can be captured decreases with time. For different satellite
rainfall products, the flash flood events captured by the IMERG-E products are significantly lower
than IMERG-F. Meanwhile, the capture rate of each period is less than 50%.

To sum up, the above research results will contribute to the application of satellite remote sensing
data in flash flood warnings.
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Abbreviations

Acronyms Full Name

NASA National Aeronautics and Space Administration
NWS National Weather Service
DEM Digital Elevation Model
GEO Geostationary Earth Orbit
PMW Passive Microwave
CMORPH Climate Prediction Center morphing
IMERG Integrated Multi-Satellite Retrievals for Global Precipitation Measurement
TRMM Tropical Rainfall Measuring Mission
IMERG-E IMERG Early run product
IMERG-F IMERG Final run product
PRT Post-real-time
NRT Near-real-time
GPM Global Precipitation Measurement
TMPA TRMM Multi-Satellite Precipitation Analysis
FFG Flash Flood Guidance
RTI Rainfall Triggering Index
SWI Soil Water Index
CC Correlation Coefficient
RMSE Root Mean Square Error
BIAS Relative Bias
POD Probability of Detection
FAR False Alarm Ratio
CSI Critical Success Index
CMA Regional hourly precipitation integration products of the China Meteorological Administration
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Abstract: Ephemeral rivers are vital to ecosystem balance and human activities as essential surface
runoff, while convenient and effective ways of calculating the peak discharge of ephemeral rivers
are scarce, especially in ungauged areas. In this study, a new method was proposed using an
unmanned aerial vehicle (UAV) combined with the incipient motion of stones to calculate the peak
discharge of ephemeral rivers in northwestern China, a typical arid ungauged region. Two field
surveys were conducted in dry seasons of 2017 and 2018. Both the logarithmic and the exponential
velocity distribution methods were examined when estimating critical initial velocities of moving
stones. Results reveal that centimeter-level orthoimages derived from UAV data can demonstrate
the movement of stones in the ephemeral river channel throughout one year. Validations with peak
discharge through downstream culverts confirmed the effectiveness of the method. The exponential
velocity distribution method performs better than the logarithmic method regardless of the amount
of water through the two channels. The proposed method performs best in the combination of the
exponential method and the river channel with evident flooding (>20 m3/s), with the relative accuracy
within 10%. In contrast, in the river channel with a little flow (around 1 m3/s), the accuracies are
weak because of the limited number of small moving stones found due to the current resolution of
UAV data. The poor performance in the river channel with a little flow could further be improved
by identifying smaller moving stones, especially using UAV data with better spatial resolution.
The presented method is easy and flexible to apply with appropriate accuracy. It also has great
potential for extensive applications in obtaining runoff information of ephemeral rivers in ungauged
regions, especially with the quick advance of UAV technology.

Keywords: UAV remote sensing; Ephemeral rivers; flood peak discharge; incipient motion; arid
ungauged regions

1. Introduction

Water tensions are particularly acute in arid regions globally due to the infrequency and short
periods of rainfall. The urbanization process of expanding populations has exacerbated water scarcity
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in these areas, which are generally underdeveloped and lack hydrological gauging stations [1–3].
The quantity and quality of water resources in arid ungauged regions remain crucial issues of common
concern to international communities [4].

In arid ungauged regions, most water resources are in the form of surface runoff, largely accounted
for by ephemeral rivers, especially in upstream mountainous water systems [5]. As one of the
least-known aquatic ecosystems, ephemeral rivers are not only crucial as an essential water supply,
but also support vegetation and other biota living nearby [6]. The structure, productivity, and spatial
distribution of biotic communities in semi-arid and arid regions are strongly affected by ephemeral
water flows [7,8]. There is thus an urgent need to monitor the discharge of ephemeral rivers, especially in
upstream watersheds. Moreover, the shortage of available data for traditional hydrological research
methods severely impedes the study of ephemeral rivers and related ecological-hydrological processes
in arid regions, which further limits the rational exploitation and management of water resources.

Hydrological models have long been used to demonstrate hydrological processes and to estimate
the discharge of ephemeral rivers [9], such as the lump model [10] and the Soil and Water Assessment
Tool (SWAT) model [11]. However, the time-consuming processing of hydrological models requires a
great deal of observation data and regional parameterization. Furthermore, results of hydrological
models vary significantly because of highly unpredictable flow patterns, complex interactions with
and among anthropogenic pressures, and lack of information on the physiographic and environmental
conditions of many catchments [11,12]. Satellite remote sensing has been widely applied to extract
river hydraulic variables in the calculation of peak discharge because of its low cost and high sequence
characteristics [13–15], and most studies have estimated discharge by constructing the relationship
between channel geometry and discharge [16–18]. Nevertheless, the extremely high variability of
ephemeral river runoff at different spatial and temporal scales has made it hard to estimate the
discharge of ephemeral rivers with the abovementioned methods [19]. Specifically, when the river
is too narrow or the river only flows for a few days, it is difficult to determine the water level and
water surface area, and furthermore, to extract hydraulic variables with coarse remotely sensed data.
Additionally, the peak discharge of ephemeral rivers has commonly been calculated by indirect means,
such as the slope-area method [20]. The continuous slope-area method for gaging volumetric discharge
has been tested in various ephemeral channels [21,22], while the method is still hard to implement in
arid ungauged regions where access is limited.

In recent years, the rapid development of unmanned aerial vehicle (UAV) techniques has made it
possible to obtain terrain information at centimeter-level precision [23–25]. These advances help to
determine the hydraulic geometry accurately [26], and thus to identify riverbed change and sediment
movement in a river channel, especially of ephemeral rivers in arid ungauged regions. With the help
of UAV data, the study of riverbed sediment could provide a new perspective to estimate flood peak
discharge [27]. The most commonly used approach defining the critical hydrodynamic conditions of
sediment transport is still regarded as the Shields approach [28]. In subsequent studies, the threshold
of the initiation of sediment transport was expressed by either the bed shear stress or the average flow
rate, and numerous equations have been published based on simplified assumptions, laboratory data,
and field measurements [29–31]. Among the equations, the power law and Prandt–von Karman
velocity distribution are widely employed to estimate the critical velocities of sediment transport
in open-channel flow, separately representing the logarithmic and exponential velocity distribution.
Therefore, it is worth exploring the performance of UAVs in estimating the flood peak discharge of
ephemeral rivers, with the logarithmic or the exponential velocity distribution equations applied.

The present paper uses high-resolution UAV data identifying stone movements to explore a fast
and convenient method of calculating the flood peak discharge of ephemeral rivers in ungauged arid
regions. The research objectives of the study are (1) to identify the movement of stones in the channel of
the ephemeral river and to calculate the critical initial velocities of moving stones using high-resolution
UAV data, (2) to obtain the flood peak discharge of the ephemeral river, and (3) to compare the
performance of the logarithmic and the exponential velocity distribution methods. The proposed
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method of estimating the flood peak discharge of ephemeral rivers is presented to address the conflict
between the shortage of hydrological gauge data and the data needs for research and management of
ephemeral rivers.

2. Study Area

The study area comprised two small watersheds, namely Harulin (45◦0’22"–45◦8’52"N,
80◦53’15"–80◦59’17"E) and Sailimu (44◦47’10"–44◦49’2"N, 80◦9’15"–81◦11’26"E), located in the Bortala
River Basin of northwestern China (Figure 1). The two watersheds are in the upstream mountainous
area of the Bortala River, separately covering an area of 47.9 km2 (Harulin watershed) and 4.0 km2

(Sailimu watershed). The climate in Bortala River Basin is a typical temperate continental climate
with annual precipitation less than 100 mm and annual evaporation more than 1600 mm. With an
arid climate, the primary source of the water system in the basin is seasonal ice and snow meltwater
from the top of the mountain and the surface runoff formed by heavy precipitation in summer [32].
Therefore, many streams in the basin are usually ephemeral, and the runoff from April to August often
accounts for more than 50% of the annual runoff. Culverts with flood watermarks were only found in
the main river channels of Harulin and Sailimu watersheds. Thus, the maximum flood peak flow of
ephemeral rivers based on the water level can be calculated in the two watersheds. The main river
channels in the two watersheds are separately referred to as river channel H and river channel S.

Figure 1. (a) Location of Bortala River Basin in China, (b) topography and water systems of Bortala
River Basin, (c) Harulin watershed, and (d) Sailimu watershed.
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3. Methodology

In this study, a new method is presented to estimate the peak discharge of ephemeral rivers, in
which high-resolution UAV data was taken as a primary data source, and the method of initiation
of motion was carried out. The detailed workflow of the study is as follows (Figure 2): Step 1,
high-resolution UAV data acquired in the field were processed to obtain Digital Orthophoto Maps
(DOMs) and Digital Surface Models (DSMs) of the studied channels. Step 2, orthoimages were
compared to identify moved stones around selected cross sections, then the critical velocities of these
stones were calculated separately using logarithmic and exponential velocity distributions. Step 3, the
average velocity of selected cross sections was calculated from the critical velocities of moving stones,
and the discharge through cross sections was then obtained with the extracted cross-sectional area
taken from the DSM. Step 4, essential hydraulic variables of culverts were extracted from orthoimages
and the DSM to calculate the discharge through a culvert for validation.

Figure 2. Workflow of the method calculating flood peak discharge of ephemeral rivers.

3.1. Data

3.1.1. UAV Data Collection

Aerial images were acquired via a DJI Phantom 3 Professional UAV (DJI, Shenzhen, China),
manually flown by sight and equipped with an independent camera set to take photographs at a
fixed interval (Table 1). The DJI Phantom 3 Professional UAV has a vertical takeoff weight of 1280 g and
can reach a maximum speed of 16 m/s. Fully charged batteries provide a maximum flight time of 23 min.
The camera was a standard lens mounted on a Cardan suspension and based on complementary metal-oxide
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semiconductor (CMOS) image sensor technology. The FC300X sensor provides images with 12.4 million
effective pixels and has separate channels for red, green, and blue light. The spatial and elevation resolution
of the acquired UAV data was confirmed to be centimeter-level in our previous study [33].

Table 1. Key parameters of the unmanned aerial vehicle (UAV).

Characteristics FC300X

Sensor (Type) 1/2.3” CMOS sensor
Image size (Columns and Rows) 1.2 million (4000 × 3000)

Million effective pixels 12.4
Maximum aperture f/2.8
Camera focal length 20 mm

Field of view 94◦
ISO range 100–1600 (photo)

UAV images were acquired twice, in August of 2017 and 2018, the dry season of the study area
with no flow through the channel. In each survey, the same study area was surveyed in two flight
missions pre-programmed with Pix4D Capture software for several waypoints to achieve a 90% image
overlap along the track. The flight altitude was on average 70 m and was a trade-off between the size
of the studied channel and the desired spatial detail of approximately 3 cm per pixel. The two in situ
surveys produced 380 and 384 UAV images separately. A total of 8 Ground Control Points (GCPs), 4 for
each river channel, were measured by Real-Time Kinematic in situ surveys. The root-mean-square error
(RMSE) between the ground measurements and UAV data was ±2.79 cm in the horizontal direction,
which is feasible to identify the stone movement in the exposed channel.

3.1.2. UAV Data Processing

The stereoscopic images were processed using the rapid and automatic professional processing
software Pix4Dmapper. The software supports not only UAV data but also aerial photography,
oblique photography, and close-range photogrammetry. Through data importing, initial processing,
and point cloud encryption, Pix4D mapper provides a high-resolution Digital Ortho Map (DOM) and
a Digital Surface Model (DSM) [34,35] (Figure 3). The processing steps include (1) determining the
internal orientation element and calibrating the camera, (2) searching and fast matching the same name
point employing the scale-invariant feature transform (SIFT) algorithm [36], (3) using the position
information of the same name point and the image to adjust the regional network and to restore the
position and posture of the image, (4) performing aerial triangulation encryption and generating an
image point cloud using the control point or the matching point, and (5) generating the DSM from an
image point cloud and then generating the DOM.

 
Figure 3. (a) The derived Digital Surface Model (DSM), (b) the three-dimensional triangulation process
by UAV and the flight path, and (c) the derived Digital Orthophoto Map (DOM).
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3.1.3. In Situ Survey Data

In situ surveys were conducted in August of 2017 and 2018, the same time as UAV data collection.
During the surveyed dry season, river channel H and S were completely exposed. Evident watermarks
were found both on the bank of some reaches and the downstream culvert of the studied river channels.
There is also a clear vegetation growth boundary to help determine the water level. The watermark
conditions of the two years on the riverbank were compared and measured by tape to determine the
maximum water level of the peak flood throughout the year. Cross sections with the determined
maximum water levels were selected from the measured river reaches for subsequent calculation.
The watermarks on the culvert were also measured to determine the maximum water level when the
peak flood passed through the downstream culvert in each study site for validation.

3.2. Critical Velocity of Particle Transport

In arid ungauged regions, upstream ephemeral rivers rarely flow, and river channels are scarcely
affected by human activities. Limited stones scattered in the river channel, especially identifiable
moving stones, are regarded as only moved by water flow. When the flood flow promotes a stone to
move, the movement of the stone is less likely affected by the surrounding stones and bed materials.
Thus, the description of a moving stone targeted at the incipience by a hydraulically rough wall-shear
flow can be illustrated in Figure 4. The catalyst forces for the moving stone are the hydrodynamic drag
force FD and the lift force FL. The submerged weight W brings the stabilizing condition to the stone.
The three forces reach equilibrium and have the relationship [37]:

FD = tan∅(W − FL), (1)

where ∅ is the angle of repose.

Figure 4. Major forces exerted on stones on the incipient motion.

The submerged weight W, drag FD, and lift FL can be expressed as

FD = CD
πd2

4
ρU0

2

2
, (2)

FL = CL
πd2

4
ρU0

2

2
(3)

W =
1
6
(ρs − ρ)πd3, (4)

where U0 is the fluid velocity at the bottom of the channel, CD and CL are respectively the drag and lift
coefficients, d is particle nominal diameter, ρs is stone density, and ρ is liquid density.

In the studied river channels, size compositions of the surface sediment mainly include sand
fraction (<2 mm), and gravel fraction (2–20 mm). Cobbles (20–200 mm) and boulders (>200 mm) are
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scattered on the riverbed, and only some could be identified from UAV images due to the resolution.
Most of the stones in the channel are granite with an average empirical density ρs = 2.80 g/cm3 [38,39].

In the studied river channels H and S, four cross sections (sections A, B, C, and D) were analyzed
and measured in situ individually (Figure 5). The research reach refers to the range of 5 meters
upstream and downstream of each section. In each research reach, moved and unmoved stones were
identified by comparing the high-resolution orthoimages taken over two years. For each moved stone,
the average flow rate when it starts to move can express the water flow intensity. The power law and
Prandt–von Karman logarithmic velocity were used to simulate the velocity profile and to calculate
the critical velocity of the incipient motion of each moving stone separately.

Figure 5. (b) and (c) present the location of cross sections and the downstream culvert in river channels
H and S. (a) and (d) are fieldwork photos of measuring flood max water level.

3.2.1. Logarithmic Distribution of the Flow Velocity

Assuming that the flow velocity profile in the channel follows the power law representing a
logarithmic velocity distribution, the average velocity through a cross section of the open channel with
turbulence can be expressed using the Einstein unified formula [40]:

U
U′∗

= 5.75lg
(

12.27R′χ
ks

)
, (5)

where ks is the height of the protrusion of the boundary roughness, also known as the side-wall
roughness or the riverbed roughness. U′∗ is the shear velocity corresponding to the sand resistance and
U′∗ =

√
gR′ J. χ is a correction factor related to ks/δ. δ is the calculated thickness of the viscous bottom

layer and δ = 11.6ν/U∗. R’ is the hydraulic radius corresponding to the sand resistance.
The critical initial shear stress can be expressed as:

Θ =
τc

(ρs − ρ)D = f
(U∗D
ν

)
. (6)

Sand waves have not yet formed, so let R’ = R and Uc represent the average vertical velocity of
the critical condition of incipient motion. The critical initial condition expressed by the average critical
velocity through the cross section Uc can be derived as:

Uc√
ρs−ρ
ρ gD

= 5.75
√

Θlg
(12.75Rχ

ks

)
, (7)
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where Θ = f (R∗) ≈ 0.06 under a turbulent condition (R∗ 
 500). The density of water ρ = 1 g/cm3.
g is the acceleration due to gravity and has a value of 9.8 m/s2. D is the nominal diameter of stones.
In the case of a wide and shallow channel, the hydraulic radius R equals the water depth, the Einstein
correction factor χ = 1.0, and the roughness height ks = D.

3.2.2. Exponential Distribution of the Flow Velocity

Assuming the average velocity on the cross section is exponentially distributed on the vertical
line, the critical initial velocity can be written as

Uc = K
√
ρs − ρ
ρ

gD(
h
D
)

1/6
, (8)

where K is a comprehensive coefficient that considers the submerged weight of the stones, lifting force,
drag force, and effect of the irregular shape of stones on the three force coefficients. Shamov combined
measurement and laboratory data of a river, determining K as 1.14, which has been widely used with
good effect [41].

3.3. Discharge Calculation of River Sections

It is assumed that the hydraulic conditions in a relatively short reach of a river do not vary
obviously, and the average velocity through each section can then be expressed as the mean of the
critical velocity of all scattered moving stones. The DSM acquired in the dry season and the identified
riverbank watermarks are used to obtain the profile in each section when the flood peak flows through
the river channel. The peak discharge through each section is then calculated as

Q = v×A, (9)

where Q is the peak flood discharge through each section, v is the average velocity of the flow through
each section, and A is the cross-sectional area when the flood peak flows through culverts.

3.4. Performance Evaluation

Studies have long been conducted to estimate the discharge through culverts on various hydraulic
conditions, and flood watermarks have also been used to identify the maximum water level during
a specific period [42]. In each river channel, the peak discharge through the downstream culvert
(Figure 5) was calculated by Equations (9) and Equation (10) (the Manning formula) to validate the
effectiveness of the proposed method and to evaluate the performance of two velocity distributions
during the calculation process. The underwater cross-sectional area when the flood peak flows
through the culverts is derived from the culvert profile obtained from the DSM and the measured
maximum water depth. The Manning formula is normally used to calculate the flow velocity of open
channels [43], but its reliability to estimate a peak discharge from the channel cross section has also
been confirmed [44]. The general form of the Manning formula is written as

vc =
k
nc

Rc
2/3 J1/2, (10)

where vc is the average velocity of the flow, Rc is the hydraulic radius, and J is the hydraulic
gradient. k is the factor of conversion between the International System of Units (SI) and English units,
normally regarded as 1 for SI units. nc is the roughness coefficient of the culvert, determined by the
riverbed materials, water bank, and growing plants [45].

The relative accuracy (RA) was calculated to indicate the accuracy of individual calculation
results, and the threshold for the relative accuracy of discharge was set to 20% according to empirical
studies [46]. Root-mean-square error and mean absolute percentage error (MAPE) were used to evaluate
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the performance of logarithmic and exponential velocity distribution in the method. These metrics are
calculated as:

Relative accuracy =
|Qi −Qm|

Qm
, (11)

RMSE =

√⎛⎜⎜⎜⎜⎝∑(Qe −Qm)
2

n

⎞⎟⎟⎟⎟⎠, (12)

MAPE =
1
n

∑ |Qe −Qm|
Qm

, (13)

where Qi is the individual result of the estimated peak discharge through each cross section (i = 1, 2, 3, 4),
Qe is the estimated peak discharge through each culvert, Qm is the average peak discharge through all
calculated cross sections in each river channel, and n is the number of calculated cross sections.

4. Results

4.1. Stone Movement and Velocity Distribution in the River Channel

Comparing the derived orthoimages in two years, stone movement by water flow was identified
in 10 m river reaches over each selected cross section in two river channels (Figure 6). In the magnified
view in the white rectangular area in each river reach over the two years, it is possible to distinguish
the movement or non-movement of stones in each river channel. Stones found in the 2017 image but
that had disappeared in the 2018 image were identified as moving with the flow throughout the year,
while stable stones were regarded as unmoved stones. The nominal particle size of the identified
stones was at least 8 cm due to the resolution of the UAV images, and most of these stones can be
described as cobbles. The particle sizes of some large boulders in the river section are even more than
the average water depth of the selected cross section during the large peak flow event. These boulders
were excluded from the circle selection in Figure 6 and the following calculation.

Figure 6. Moved and unmoved cobbles in four river reaches of river channel H and S throughout the year.
Magnified views of the moved cobbles are presented in each white rectangular area. (a–d) identified
stones in river channel H in 2017, (e–h) identified stones in river channel H in 2018, (i–l) identified
stones in river channel S in 2017, and (m–p) identified stones in river channel S in 2018.

In both river channel H and S, the movement of cobbles was visible, and cobbles apparently
moved by water flow were mainly distributed in the main channel. The main channel was more specific
in river channel H with more moved cobbles (8–15) found in red circles (Figure 6a–h). In river channel
S (Figure 6i–p), cobbles of various sizes were found, and the main channel was not obviously washed
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by flow over one year. Consequently, more unmoved cobbles (3-25) in blue circles were identified in
river channel S.

Considering that all moving cobbles were mainly moved by water flow, the initial velocities of
all identified moving cobbles calculated by the logarithmic or the exponential velocity distribution
are presented in Figure 7. In four river reaches of river channel H (Figure 7a–h), the critical initial
velocity of the same moving cobble calculated using the logarithmic method is appreciably larger than
the velocity calculated using the exponential method. In river reach A, the critical initial velocities of
moving cobbles greatly varied, 1.96–2.65 m/s for the exponential method and 3.40–4.39 m/s for the
logarithmic method. In addition, there were more cobbles in the higher velocity grading (shown with
the longer arrow) for the logarithmic method (Figure 7a) than for the exponential method (Figure 7e).
In river reach B, the critical initial velocities of moving cobbles were low, and there were more cobbles
with the lowest velocity grading for the logarithmic method (Figure 7b) than for the exponential
method (Figure 7f). The channel in river reach C was slowly washed by the water flow and the critical
initial velocities of moving cobbles were high (above 4 m/s by the logarithmic method and above 2.4 m/s
by the exponential method). There were more cobbles with the highest velocity for the logarithmic
method (Figure 7c) than for the exponential method (Figure 7g), with there being more red arrows in
Figure 7c.

Figure 7. The critical initial velocities of all identified moving cobbles in four river reaches of river
channel H and S are calculated separately by the logarithmic or the exponential velocity distribution.
Each arrow indicates the direction of the water flow when each moving cobble starts to move, and a
longer length of the arrow indicates a higher initial velocity. (a–d) initial velocities calculated by the
logarithmic velocity distribution in river channel H, (e–h) initial velocities calculated by the exponential
velocity distribution in river channel H, (i–l) initial velocities calculated by the logarithmic velocity
distribution in river channel S, and (m–p) initial velocities calculated by the exponential velocity
distribution in river channel S.

Regarding river channel S (Figure 7i–p), velocities obtained by the logarithmic method and
exponential method were similar, but the former method produced a slightly broader range of
velocities (1.66–2.31 m/s) than the latter method (1.68–1.90 m/s). The logarithmic velocities of moving
cobbles in river reach A (Figure 7i) were the lowest among four reaches, all graded at the minimum
velocity level, whereas the calculated exponential velocities (Figure 7m) were graded at the average
level for the four sections. The critical initial velocities of the moving cobbles in river reach C were
similar for the two methods. The condition of river reaches B and D was alike. The maximum velocities
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calculated using the logarithmic method were concentrated in river reaches B and D (Figure 7j,l) while
the maximum and minimum velocities obtained using the exponential method were both in sections B
and D (Figure 7n,p).

4.2. Peak Discharge of the River Cross Section

The profiles of each selected cross section at the highest water level are presented in Figure 8.
In two river channels, the elevation of the riverbed and riverbank in each cross section continuously
decreased downstream. The underwater area of each cross section of river channel H was relatively
large, and the section shape was likely rectangular. In contrast, the underwater area of river channel S
was relatively small, and the section shape was irregular.

Figure 8. Profile of four selected cross sections in river channel H and S.

When the maximum peak flood flowed through cross sections of the two rivers, the maximum
water depth and average water depth of the section greatly varied, while the submerged underwater
area was similar (Table 2). At the highest peak water level, the average critical initial velocity of all
identified moving cobbles in each river reach was regarded as the cross-sectional flow velocity, and the
cross-sectional flow rate and peak discharge calculated using the logarithmic and exponential methods
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were obtained, as shown in Table 2. The cross-section velocities of the river channel H are different
using the two methods, with all logarithmic velocities exceeding 3 m/s and all exponential velocities
being around 2 m/s. The difference in the cross-sectional velocity in river channel S is not apparent
between the two calculation methods, with all velocities being about 2 m/s. Additionally, the peak
discharge calculated by the logarithmic method is larger than that by the exponential method in the
case of river channel H. For river channel S, the calculated peak discharges are also similar in four
cross sections using the logarithmic and exponential method, with the biggest peak discharges both in
section C and the smallest both in section D.

Table 2. Results of the average velocity and discharge through four cross sections in river channels H
and S.

River
Channel

Cross
Section

Cross
Section

Area A (m2)

Exponential Logarithmic

Velocity Uc
(m/s)

Discharge Q
(m3/s)

Velocity Uc
(m/s)

Discharge Q
(m3/s)

H

A 8.47 2.33 19.74 3.90 33.03
B 8.69 2.37 20.60 3.66 31.81
C 8.46 2.53 21.40 4.19 35.45
D 8.84 2.59 22.89 4.08 36.05

Average - 2.46 21.15 3.96 34.08

S

A 0.89 1.95 1.74 2.17 1.93
B 0.93 2.00 1.86 1.82 1.69
C 1.19 1.95 2.32 2.29 2.73
D 0.91 1.85 1.68 1.66 1.51

Average - 1.94 1.90 1.99 1.96

4.3. Validation of the Estimated River Discharges

The specific profile and key hydraulic variables of each culvert at the time of the maximum peak
flood within one year were determined from the topographic information from the DSM and the field
measurement (Figure 9). Culvert H is a wide and shallow box-type culvert with a maximum water
depth of 1.25 m when the flood peak passed through. The abundant water in river channel H was
almost close to the maximum design discharge of the culvert, while culvert S was square with a smaller
water flow. The maximum water depth of culvert S was only 0.3 m. The bases of the two culverts
were relatively flat laying a large amount of sediment mixed with sporadically distributed gravel
stones. The culvert roughness nc was confirmed as 0.033, a practical value from local hydrological
work experience according to conditions of the culvert.

vc =
k
nc

Rc
2/3J1/2 (14)

The validation of the peak flood in each river channel is given in Table 3. The flooding in river
channel H is evident with a larger peak discharge through culvert H than culvert S, while in river
channel S there is little water with larger relative accuracies. The relative accuracies of the logarithmic
method and in river channel S all exceed the threshold of 20%. Only the exponential method applied
in river channel H indicates an accurate estimation, with the relative accuracies within 10%. The RMSE
and MAPE help to further evaluate the performance of different velocity distributions used in the
proposed method. RMSE and MAPE are both lower for the exponential method than for the logarithmic
method in two river channels, indicating that the former method is more accurate in terms of the
incipient motion of moving cobbles regardless of the amount of water in the river channel.
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Figure 9. (a) and (c) are the magnified view of bridge culverts H and S. (b) and (d) present cross-section
profiles and hydraulic parameters used to calculate average velocity and peak discharge through
culverts H and S. Ac is the underwater cross-sectional area of the culvert, Xc is the wetted perimeter, J
is the hydraulic gradient, Rc is the hydraulic radius, and nc is the roughness coefficient.

Table 3. Validation of the peak discharge estimation.

River
Channel

Cross
Section

The Average
Peak Discharge

(m3/s)

Exponential Velocity
Distribution

Logarithmic Velocity
Distribution

RA
RMSE
(m3/s)

MAPE
(m3/s)

RA
RMSE
(m3/s)

MAPE
(m3/s)

H

A

22.02

10%

1.45 0.06

50%

12.18 0.55
B 6% 44%
C 3% 61%
D 4% 64%

S

A

0.76

174%

1.17 1.51

193%

1.29 1.59
B 186% 169%
C 232% 273%
D 168% 151%

5. Discussion

5.1. Value and Extension of the Proposed Method

The present paper provides a convenient, flexible, and reliable method of obtaining the annual
peak discharge of an ephemeral river in arid ungauged regions. In empirical studies, statistical methods,
hydrological models, and multi-source remote sensing methods are most commonly used to estimate
peak discharge (Table 4). In the application of these methods, a variety of ways have been conducted
for verification. Most studies used records from nearby gauging stations, such as the water level, the
flow rate, and the discharge, to validate discharge estimations [47–53]. A few studies were verified
directly by field observations [16,46,54]. Furthermore, flood marks on the deposits, places, cliffs and
other facilities were also commonly used to calculate the flood peak discharge with reliable accuracy
in regions lacking flood gauging measurements or to reconstruct historical floods [48,55–58]. In arid
ungauged regions, flood processes of ephemeral rivers are few and continue to be difficult to directly
monitor. Therefore, the identification of clear flood watermarks on construction facilities can be used
to verify the existence of flood processes effectively and to validate the maximum peak discharge.
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Daily precipitation data of the study area were also collected from the nearest meteorological
station during the study period to reveal the characteristics of the precipitation in the study area.
According to empirical studies, the average rainfall intensity in the study area is around 22.14 mm/h [60].
Generally, it will take more than one hour to generate surface runoff for continuous precipitation
with this rainfall intensity in arid regions [61]. In the study area, considerable precipitation was rare,
and the top 10 precipitations (>30 mm) during the study period are presented (Figure 10). Only during
concentrated precipitations would the surface flow probably yield and then lead to flooding in the
channel. Stones in the ephemeral river channel could have been moved by only one or two flood peaks
in September of 2017 or July of 2018. Therefore, the stone movement by flooding in the channel could
be used to estimate the discharge of the flood peak.

Figure 10. Top 10 precipitations in the study area in 2017.8–2018.8.

The proposed method takes full advantage of the UAV data and the long-term water-free
characteristic of ephemeral rivers to estimate peak discharge of ephemeral rivers in ungauged regions.
Considering both geographical variables and hydraulic variables, the proposed method is similar to the
classic slope-area method, but with the high-resolution UAV data playing a dominant role in the process.
On the one hand, the UAV data help to identify terrain information and stone movement. On the
other hand, the UAV data are used to derive significant hydraulic variables, such as hydraulic slope,
hydraulic radius, and underwater cross-sectional area. The proposed method is vital to the effective
long-term monitoring of ephemeral rivers in vast ungauged regions and has great potential to promote
at spatial and temporal scales. The primary data required for this method is high-resolution imagery in
the dry season. In addition to the UAV data used in this study, other centimeter-level high-resolution
images can also be used as data sources. Selecting a typical cross section during the dry season is only
needed for in situ measurements, and the water level at the time of the maximum peak flood flow can
be determined by comparing the distribution of the soil layer, vegetation, and cobbles. The method
established in this paper can also be extended to calculate the maximum peak floods of ephemeral
rivers in other typical arid and semi-arid regions with determined dry seasons in these regions.

5.2. Performance Evaluation of the Estimated Velocities

Due to the short and variable flowing time of ephemeral rivers during the year, it remains hard to
capture the flooding process in time and to obtain field measurements for validation. According to
empirical studies, the culvert peak discharge estimated by flood watermarks was regarded as reliable
and could be used to evaluate the estimated peak discharge. In addition to the validation of the peak
discharge, we also examined the performance of cross-sectional velocity estimations by the incipient
motion of stones. The culvert peak discharge was regarded as the real flood peak discharge and was
used to calculate cross-sectional velocities (Equation (15)) for evaluating the estimated velocities by
logarithmic and exponential velocity distribution methods:

vi =
Qc

Ai
, (15)
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where vi represents the cross-sectional velocities calculated by the culvert peak discharge (i = 1,2,3,4,5),
Qc is the culvert peak discharge through each river channel, and Ai is the cross-sectional area
(i = 1,2,3,4,5).

Results indicate that the performance of velocity estimation was best using the exponential method
in channel H (Figure 11). The overestimation by the logarithmic method was mostly due to the poor
performance of original parameters of large grain sediment [27,40]. In contrast, the exponential velocity
equation used in this study was the classic formula proposed by Shamov. The formula is concise and
generalized, only using K as a comprehensive coefficient to represent three major forces exerted on
the stones and the effects of the irregular shape of stones on the incipient motion. The K value used
in this study, also proposed by Shamov, has been verified by many experiments and popularization,
and is most suitable for inland arid areas [35]. Furthermore, the river channel S only has a small peak
discharge of 0.74 m3/s, which could move only small stones during the flood. Due to the current spatial
resolution of UAV data, enough small stones moved by water could not be identified. Therefore, the
estimated velocities by both methods in channel S significantly deviated from the velocities calculated
by culvert peak discharge.

Figure 11. Error analysis of cross-sectional velocity estimation by the incipient motion of moving stones.

We also added one more cross section (cross section E) to each river channel to evaluate the performance
of velocity estimation by the proposed method when smaller stones were used. The identified stone
movements of cross section E are presented in Figure 12. The main difference of the new cross section E
is that moving stones were much smaller than the other four cross sections, with an average nominal
diameter of around 8 cm (Table 5). When smaller stones were identified and used, estimated velocities by
the exponential method decreased. In channel S, using smaller stones significantly lead to a decrease of the
error of cross-sectional velocity, and the error of cross section E is the minimum in channel S. In channel H,
with evident flooding, only using small stones in the calculation could not reveal the real peak flood and
led to underestimations. Regarding the logarithmic method, using smaller stones also reduced the error
of velocity estimations in cross section E of channel H. Regardless of using smaller stones, the logarithmic
method still performed poorly in channel S with only a little flow.

Table 5. Comparison of the size of moving stones.

Cross Section
Average Nominal Diameter of Moving Stones (cm)

River Channel H River Channel S

A 16.35 14.00
B 18.14 18.56
C 16.25 16.98
D 18.99 19.34
E 7.97 8.30
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Figure 12. Stone movement in section E in two river channels.

5.3. The Effects of the Selection of Large Boulders on the Estimation of Peak Discharge

Some of the identified moving stones in the river channel are irregular and appreciably larger than
other moving stones in the riverbed. They cannot be entirely submerged during the flood peak events,
and major forces exerted on them are different when they start to move [62]. Therefore, whether large
boulders are selected in the calculation may affect the estimation of peak discharge and is worth
exploring [63,64]. Moved boulders were only identified in cross sections A and D of river channel H,
and were found in all four cross sections of river channel S. The results of the critical initial velocity and
peak discharge in two river channels using two velocity distribution methods are compared in Figure 13.

Figure 13. Cross section velocity and peak discharge results on condition of boulder selection:
(a) logarithmic velocity distribution of river channel H, (b) logarithmic velocity distribution of river
channel S, (c) exponential velocity distribution of river channel H, (d) exponential velocity distribution
of river channel S.
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In the case of river channel H with a large amount of water flow, the selection of large boulders
apparently increases the cross-sectional velocity and discharge for both logarithmic and exponential
methods (Figure 13a,c). The peak discharge in river channel H obtained using the logarithmic method is
initially greater than the culvert flow, and the peak discharge thus deviates further from the culvert peak
discharge considering the large boulders. In the case of the exponential method, the calculated peak
discharge is similar to the culvert peak discharge, irrespective of whether large boulders are included
in the calculation. In the case of river channel S with only a small amount of water, there are many
stones with an equal nominal diameter more substantial than the average water depth (around 0.1 m).
When large boulders are included, the velocity and peak discharge calculated by the logarithmic
method are relatively stable in three cross sections A, C, and D, and only decrease in cross section B
with a corresponding decline in the deviation of peak discharge (Figure 13b). Instead, the velocity and
peak discharge obtained by the exponential method in four sections of channel S increase, and the
deviation from the peak discharge of the culvert further increases (Figure 13d). In all, whether large
boulders are considered does affect the discharge estimation, and the effect greatly varies in two river
channels with different scales of water flow. With a large amount of water flow, the inclusion of large
moved boulders in the calculation significantly increases the estimation of peak discharge in the river
channel. Nevertheless, the inclusion of large moved boulders does not significantly affect the results of
peak discharge if there is only a small amount of water in the river channel.

5.4. Limitations and Uncertainties of the Present Research

The proposed method of calculating the peak discharge of ephemeral rivers using the critical initial
velocity still has some weaknesses and uncertainties. First of all, the resolution of the UAV dramatically
affects the number of stones identified moving, and the measurement accuracy of the length and width
of the cobbles. With the current image resolution, we failed to distinguish enough small moving stones,
which leads to less accurate estimations in river channel S with a small discharge. Topographic data
and orthoimages with higher resolution could effectively enhance the performance of the method
in the future, especially in ephemeral rivers with a small discharge [65]. Secondly, stone properties,
such as density and shape, would also generate uncertainties [66–68]. In the study area, most of the
river stones are irregular granite stones. The constant value of density and the generalized size of
stones used in critical initial velocity estimations influenced the accuracies of the peak flood discharge.
In addition, only classic incipient motion theories were adopted in this study, while the equation
to calculate the critical initial velocity of each moved cobble could be modified with local empirical
studies for future extension.

6. Conclusions

Ephemeral rivers, as an essential part of surface runoff, maintain the stability of the watershed
ecosystem and fulfill the water requirements of humans living in arid ungauged regions. With the
advantage of high-resolution data and flexible application, the UAV technique has provided more
perspectives for runoff monitoring in addition to the traditional hydrological model and satellite
remote sensing methods. In this study, a method was proposed to estimate the flood peak discharge
of ephemeral rivers using the sediment mobility and UAV data derived in dry seasons. The main
conclusions are as follows:

1. The proposed method performs best in the combination of the exponential method and the river
channel with evident flooding (>20 m3/s), with relative accuracy within 10%. In the river channel
with a little flow (around 1 m3/s), the accuracies are weak because of the limited number of small
moving stones found due to the current resolution of UAV data.

2. The exponential velocity distribution method performs better regardless of the amount of
water through the two channels, because of the reliable comprehensive coefficient used in the
generalized formula.
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3. The effects of using small moving stones or large boulders in the proposed method depend on
the discharge in the ephemeral river. In the river with a little flow, identifying smaller moving
stones would increase the estimation accuracy. In large ephemeral rivers, estimation results are
greatly influenced by using smaller stones or large boulders.

The proposed methodology provides a fast and flexible way of estimating the peak discharge
of ephemeral rivers in arid ungauged regions with appropriate accuracy. The method is worthy of
further development and local calibration for extensive applications in obtaining runoff information of
ephemeral rivers in ungauged regions in the future, especially with the quick advance of UAV technology.
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Abstract: High-resolution and accurate rainfall monitoring is of great importance to many applications,
including meteorology, hydrology, and flood monitoring. In recent years, microwave backhaul links
from wireless communication networks have been suggested for rainfall monitoring purposes,
complementing the existing monitoring systems. With the advances in microwave technology, new
microwave backhaul solutions have been proposed and applied for 5G networks. Examples of the
latest microwave technology include E-band (71–76 and 81–86 GHz) links, multi-band boosters,
and line-of-sight multiple-input multiple-output (LOS-MIMO) backhaul links. They all rely on
millimeter-wave (mmWave) technology, which is the fastest small-cell backhaul solution. In this
paper, we will study the rain attenuation characteristics of these new microwave backhaul techniques
at different mmWave frequencies and link lengths. We will also study the potential of using these new
microwave solutions for rainfall monitoring. Preliminary results indicate that all the test mmWave
links can be very effective for estimating the path-averaged rain rates. The correlation between the
mmWave link measurement-derived rain rate and the local rain gauge is in the range of 0.8 to 0.9,
showing a great potential to use these links for precipitation and flood monitoring in urban areas.

Keywords: rainfall monitoring; remote sensing; rain rate estimation; 5G; millimeter-wave; E-band;
LOS-MIMO

1. Introduction

Accurate and continuous monitoring of rainfall is very important in many applications. While
measurements equipment such as satellites, radar, and weather stations are commonly used for
rainfall monitoring, other opportunistic sources for relevant data are being exploited as we are living
in the era of big data [1,2]. Big data research is pushing the boundaries of these new technologies
and analytic tools, and one such important technology for providing weather data is the use of
existing physical measurements in wireless microwave signals, such as the signal level in commercial
cellular communication networks for near-ground rainfall monitoring [3]. Microwave backhaul links
are used for communications between cellular base stations, and can also be used for measuring
the path-averaged rain rate. Utilizing microwave backhaul links for environmental monitoring has
also been recently mentioned as one of the Internet of Things (IoT) applications [4]. The densely
deployed microwave links all of the world have great potential to be used to complement existing
monitoring systems.

In the telecommunications industry, to meet the ever increasing demand in consumer data traffic,
many countries have already started the deployment of 5G networks. Microwave backhauling is widely
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used in many frequency bands above 6 GHz and will also remain an essential medium for transport
of 5G, in addition to fiber for macro radio deployments. Forty percent of backhaul connections are
expected to be based on microwave by 2023, as reported in [5].

The radio spectrum is a scarce resource that is governed by national and international regulations.
Operation of 5G networks requires enormous transmission capacity and ultra-low transmission
latency [6], which bring great challenges to microwave transmission links [5]. Lower frequencies allow
signals to transmit over longer distances and penetrate buildings better. At higher frequencies, signals
have limited coverage, however because of much wider bandwidths they can achieve high capacity.
The millimeter-wave (mmWave) technology ranging from 30 to 300 GHz is the key to enabling fast
speed and high capacity backhauling in future wireless networks [7].

Governments around the world have allowed operations in the millimeter bands for backhauling,
often for little or no licensing fee. Traditional backhaul communications are typically used throughout
the 6–42 GHz frequency bands, but they are becoming increasingly popular at various mmWave
frequency bands in the 50 GHz, 60 GHz, E-band (71–76 and 81–86 GHz), and 92–95 GHz bands
throughout the world [8,9]. Even higher frequencies may be of interest to support the evolution of
mobile broadband backhauling beyond 2020, such as 92–114.5 (W-band) and 141–174.8 GHz (D-band)
frequency ranges [10,11].

A typical cellular network covers a large area and includes conditions ranging from urban canyons
to open rural land. Depend on population density and propagation characteristics, geographical land
is classified into one of four categories: dense urban, urban, suburban, and rural. For 5G networks,
backhaul links in different frequency bands are adopted for different environments to achieve high
capacity [5]. For densely populated areas (categorized as “dense urban”), the E-band (70 or 80 GHz)
is favorable for links over a few kilometers and offering high capacity in the 10 Gbps band. The
W-band (92–114.5 GHz) and D-band (130–174.7 GHz) are currently under investigation and high
millimeter frequency bands will be able to support 40 Gbps capacity over about a kilometer range.
Microwave links for urban environments typically have short distances and high capacity demand.
An E-band link is suitable in these scenarios. In suburban areas, the link length increases and capacity
is lower compared to dense urban and urban areas. Traditional bands (e.g., 6 to 42 GHz), multi-carrier,
and multi-band, (mid-band, 15–23 GHz) with E-band solutions can be deployed. The range is typically
8 km. For rural environments, the link length increases further, while end site capacity decreases.
For these environments, the traditional microwave band is preferred. The range is typically around
15 km. In this article, examples of several latest microwave technologies, including E-band (71–76
and 81–86 GHz) links, line-of-sight multiple-input multiple-output (LOS-MIMO) backhaul links, and
multi-band solutions, are investigated.

E-band can provide double the 5 GHz bandwidth, offering a 10 GHz aggregate spectrum (71–76
and 81–86 GHz), enabling Gbps data rates. An 1.4-km long E-band link, which was tested by Ericsson
and Deutsche Telekom, has demonstrated a data transmission rate of 40 Gbps, with a round-trip latency
performance of less than 100 ms [12]. This is about four times greater data throughput compared
to current mmWave backhaul links. The outdoor small cell E-band backhaul links can be rapidly
deployed everywhere, including street lamps, rooftops, and the sides of buildings. E-band is becoming
an essential backhauling band with high global alignment, which is also expected to facilitate dense
mmWave 5G deployments on street-level sites. However, signals in mmWave frequencies are known
to suffer from large propagation loss and rain attenuation is one of the main limiting factors [13,14]. As
a result, the E-band links are used for high capacity transmission but at shorter distances compared to
traditional bands, and can generally be applied to lengths of up to 3 km.

The emerging concept of carrier aggregation enables a much more efficient use of diverse backhaul
spectrum assets. As it is easier to obtain wider channels at higher frequencies, we can aggregate a
low frequency carrier for availability and a high frequency carrier for capacity. A multi-band solution
combining E-band with traditional bands can increase the transmission distance. The traditional
band links are used to guarantee the availability of high-priority services and support transmission
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distances of 3 to 10 km. This will allow the use of E-band to provide transmission for 5G in much
wider geographical areas. A commonly used combination is 18–42 GHz bands and E-band (70 or
80 GHz) for distances up to 5 km (dense urban and urban environments), and 6-15 and 18–42 GHz
bands for longer transmission ranges (suburban and rural environments). In this article, we will study
the impact of atmospheric conditions on E-band backhaul links in city environments, especially rain
attenuation. A 38 GHz mmWave backhaul link deployed in the same region will also be studied for
comparison analysis.

The different forms of antenna technology refer to single or multiple inputs and outputs. When
there are more than one antenna at the transmit side and receive side of the radio link, this is referred
to as a multiple-input multiple-output (MIMO) system. MIMO can be used to provide improvements
in both channel robustness and channel throughput compared to a single-input single-output (SISO)
system, where there is a single antenna at the transmit side and receive side of the radio link [15,16].
MIMO has been widely used in wireless local area networks (WLANs), long-term evolution (LTE)
mobile networks, and fifth generation cellular systems. MIMO with a spatial multiplexing scheme
allows capacity to increase almost linearly with the number of antennas. Recently, MIMO technology
has been applied to increase transmission rates in point-to-point backhaul links in mmWave bands for
next-generation wireless backhaul networks [17–20]. This is referred to as a line-of-sight multi-input
multi-output (LOS-MIMO) communication system. Most existing studies of the impact of rain on
signal attenuation are for SISO microwave links. Signal attenuation in a MIMO backhaul link due to
rain and other meteorological conditions are yet to be studied.

Large signal attenuation can occur due to heavy rain and can severely affect the mmWave
link quality. Modeling and measurements of mmWave attenuation due to rainfall for near-ground
communication links have been addressed in recent studies and are considered very important
topics [21–26]. A power law empirical mathematical model relating the rain rate and rain-induced
signal attenuation is given by International Telecommunication Union (ITU) Recommendation P. 838-3
and other relevant papers [27–29]. This model is used in the design of reliable communication
systems. Recently, it has been suggested that microwave links in cellular networks can be considered
as passive weather monitoring sensors, and a power law model relating the rain and rain attenuation
can be adopted for rainfall estimation [30–32]. This approach exploits the fact that the strength
of electromagnetic signals is weakened by certain weather conditions, especially rain. It makes
microwave linking a potential tool for monitoring rainfall conditions with high temporal and spatial
resolution. There is significant potential to increase the number of observation points and improve
the quality of weather services, including forecasting, now-casting, flood warnings, and hydrological
measurements. The most powerful impact is expected in developing countries and regions where
no other measurements currently exist. Making use of the existing commercial wireless networks
is equivalent to deploying a very high density of weather monitoring sensors and forming wireless
environmental sensor networks (WESN) [30,33] all over the world.

The major contributions in this paper are (1) studying and comparing the rain attenuation
characteristics of latest mmWave backhaul links and (2) studying the performance of rain rate
estimation based on SISO and MIMO links at different frequencies, using existing measurements of the
received signal level of the mmWave backhaul links.

This paper is organized as follows. Section 2 presents a brief summary of characteristics of
mmWave propagation, the method of rain rate retrieval from the received signal level of mmWave
links, and the setup of outdoor test links. Section 3 presents the experimental results on signal variation
in sunny and rainy weather, wet antenna effects and the performance of rain rate retrieval studies using
the latest mmWave backhaul test links. Then, the uncertainties in the experiment and the potentials of
the proposed technology in supporting rainfall and flood monitoring in urban areas are discussed in
Section 4. Finally, we summarize the work in Section 5.
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2. Materials and Methods

2.1. Millimeter-Wave Propagation

For a point-to-point LOS mmWave link, the received power PB (dBm) may be related to the
transmitted power PT (dBm); the antenna gains GT (dBi) and GR (dBi); and the propagation path loss
(PL), atmospheric loss (AL) and other losses (OL). The link can be written as:

PB = PT + GT + GR − PL − AL − OL (1)

The propagation path loss can be expressed as [34]:

PL(fc, d) = 32.4 + 20log10(fc) + 10nlog10(d/d0) + χσ, d ≥ 1m (2)

where fc denotes the carrier frequency in GHz, d is the transmitter and receiver separation distance,
the reference distance d0 is 1 m, and n represents the path loss exponent. Here, χσ is a zero-mean
Gaussian random variable with a standard deviation σ in dB.

2.2. LOS-MIMO-Based mmWave Backhaul System

The principle of a 2 x 2 LOS-MIMO microwave backhaul link is to design a MIMO channel with a
phase difference of 90 degrees between short and long paths to make the signal streams orthogonal to
each other. The channel is denoted by a N ×M matrix H, and each element represents the channel from
the mth transmit (Tx) antenna to the receive (Rx) antenna nth. Note that N =M = 2 in our measurement
setup. Each element of the channel matrix can be written as Hmn = ejθmn , where θmn is the phase of
the sub-channel. For the phase of the sub-channel from the nth transmit antenna to the mth receive
antenna, θmn =2πrmn/λ, where λ is the wavelength and rmn is the propagation distance between the
transmit antenna n and receive antenna m [19,20]. This can be achieved by designing the antenna
separation distance at the transmitter d1 and receiver d2 to fulfill, d1 x d2 = λL/N, where L is the path
length between the transmit site and receive site. Let X and Y denote the transmit and receive signal
vector, respectively. The N × 1 received signal vector can be written as:

Y =
√

PRHX + W[
Y1

Y2

]
=
√

PR

[
H11 H12

H21 H22

][
XA1

XA2

]
+

[
W1

W2

]
(3)

where W is the N × 1 complex additive white Gaussian noise vector and its variance equals No; PR is
the average received power, expressed in watts, where PR = 10PB/10.

In practice, a sub-optimal linear zero-forcing algorithm can be applied to simply invert the channel
and independently decode the data streams at the receiver to recover the spatially multiplexed signals:

G = PR
−1/2H+ = PR

−1/2
(
HHH

)−1
HH (4)

The character + denotes the pseudo-inverse operation. By applying the pseudo-inverse of the
channel matrix to the received signal we get:

X̃ = G
(
PR

1/2HX + W
)
= X + GW

= X + PR
−1/2H+W

(5)

The SNR after interference cancellation for the ith sub-channel is given as:

SNRi =
PR

N0

[(
HHH

)−1
]
i,i

(6)
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Here,
[(

HHH
)−1
]
i,i

refers to the (i, i)th elements of
(
HHH

)−1
. The independent and identical (i.i.d)

MIMO channel capacity, assuming equal transmit power, is given as:

C =
N∑

i=1

log2(1 + SNRi) (7)

where (·)H denotes the Hermitian transpose.

2.3. Atmospheric Attenuation

Atmospheric attenuation and weather effects are important for mmWave propagation. The
atmospheric loss is generally defined in terms of decibel (dB) loss per kilometer of propagation. Since
the fraction of the signal loss is a strong function of the distance travelled, the actual signal loss
experienced by a specific mmWave link due to atmospheric effects depends directly on the length of
the link. A simple model describing the attenuation of mmWave for the range of 1 to 100 GHz through
atmosphere AL can be described as follows:

AL = Ar + Av + Ao + Ap (dB) (8)

which primarily includes the attenuation effects of dry air (including oxygen), humidity, fog, and rain.
Here, Ar refers to the attenuation caused by rain, Av represents the water vapor attenuation, Ao

represents the attenuation due to dry air, and Ap is the attenuation as a result of other-than-rain
precipitation (i.e., fog, sleet, snow).

There are other possible causes of losses (OL), such as the coaxial cable loss at the transmitter
and receiver; temperature and water vapor affecting the stability of the transmit and receive signal
terminals (equipment, circuits, etc.); wetness of the transmit and receive antenna surface causing
considerable attenuation; and anything that obstructs the LOS channel introducing additional loss.

2.3.1. Water Vapor Attenuation

Attenuation due to absorption by oxygen and water vapor is always present and should be
included in the calculation of total propagation loss at frequencies above approximately 10 GHz. For
the millimeter frequency range, the resonance lines for water vapor and oxygen are at 22.3, 183.3,
323.8 GHz; and 57–63 and 118.74 GHz, respectively.

To illustrate the electromagnetic signal attenuation due to dry air and water vapor, Figure 1 was
plotted based on the equations given in [35], for a given barometric pressure and temperature. The
first excess attenuation occurs at around 22 GHz due to water vapor, and the second at 60 GHz due to
oxygen. Oxygen absorption has a maximum attenuation at 60 GHz and contributes to 7–15 dB/km in
the received signal strength at the frequency range of 57–63 GHz. For 32 and 38 GHz, the signal is
mainly affected by water vapor, and the attenuation is less than 0.15 dB for a 1 km link length. For
signals in E-band, the attenuation due to humidity can reach approximately 0.5 dB/km [24,35].

191



Remote Sens. 2020, 12, 1045

 
Figure 1. Frequency-dependent attenuation of electromagnetic radiation in standard atmosphere
(barometric pressure 1013 mbar, temperature 15 ◦C, water vapor density of 7.5 g/m3) and rain attenuation
in dB/km at various rainfall rates.

2.3.2. Rainfall Effects on Radio Signals

A power law empirical model is often used in the calculation of rain-induced attenuation Ar and
the average rain rate R [28,29] along the path:

Ar = aRbL (dB) (9)

where the constants a and b are related to frequency, rain temperature, the rain drop size distribution,
and polarization, depending on the rain attenuation model. In our study, L (km) is the length of
the microwave link and Ar is the overall signal attenuation induced by rain between the transmitter
and receiver. A set of commonly used power law coefficients can be found in International
Telecommunication Union (ITU) Recommendation P. 838-3 [28]. The power law coefficients for vertical
polarization (aV, bV) and horizontal polarization (aH, bH) at different frequencies are summarized in
Table 1. Assuming vertical polarization, the power law coefficients a and b used in our measurement
are given in Table 1.

Table 1. Power law coefficients for different frequencies.

Frequency aH aV bH bV a b

32 GHz 0.2778 0.2646 0.9302 0.8981 0.2646 0.8981
38 GHz 0.4001 0.3844 0.8816 0.8552 0.3844 0.8552
72 GHz 1.0618 1.0561 0.7293 0.7171 1.0561 0.7171
82 GHz 1.1946 1.1915 0.7077 0.6988 1.1915 0.6988

The rain attenuation values for the considered millimeter frequency band in this study at various
rainfall rates (R) are given in Table 2. We categorized the rainfall intensity into six groups, including
very light rain (rain rate < 1mm/h), light rain (1 mm/h ≤ rain rate < 2 mm/h), moderate rain (2 mm/h
≤ rain rate < 5 mm/h), heavy rain (5 mm/h ≤ rain rate < 10 mm/h), very heavy rain (10 mm/h ≤
rain rate < 20mm/h), extreme heavy rain (rain rate ≥ 20 mm/h). The theoretical rain-induced signal
attenuation per kilometer based on Equation (9) for our considered millimeter frequencies is presented
in Figure 2a. Compared to other atmospheric factors, atmospheric attenuation due to rain is one of
the most noticeable components of excess losses at our considered frequencies. It is not important
for low frequency bands, but rain affects links in millimeter frequency ranges, especially for higher
frequencies. For increasing rain rate, the rain attenuation experienced by E-band links becomes more
severe compared to the 32 and 38 GHz links. For a very heavy rain event, the rain-induced signal
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attenuation can be up to 9.7 dB for the 82 GHz link at a rain intensity of 20 mm/h. Figure 2b gives
the theoretical rain attenuation for our measurement setup. Both 32 and 38 GHz links are 7-km long,
and both 72 and 82 GHz are 3 km long. Based on the power law coefficients given by ITU-R P. 838-3,
a 7-km long 38 GHz link experiences similar or less signal attenuation compared to a 3 km E-band link
for rain intensity lower than 7 mm/h. At 32 GHz, the rain attenuation is lower compared to an E-band
signal, even if the link has more than double the deployment length.

Table 2. Signal loss due to rain (dB/km).

Description
Rain Rate

(mm/h)
Signal Loss (dB) Per Kilometer

32 GHz 38 GHz 72 GHz 82 GHz

Very light rain R < 1 < 0.3 < 0.4 < 1.1 <1.2
Light rain 1 ≤ R < 2 < 0.5 < 0.7 < 1.7 <1.9

Moderate rain 2 ≤ R < 5 < 1.1 < 1.5 < 3.3 <3.7
Heavy rain 5 ≤ R < 10 < 2.1 < 2.75 < 5.5 <6.0

Very heavy rain 10 ≤ R < 20 < 3.9 < 5.0 < 9.1 <9.7
Extreme rain R ≥ 20 (e.g., 50) ≥ 3.8 (8.9) ≥ 5.0 (10.9) ≥ 9.1 (17.5) ≥9.7 (18.3)

(a) (b) 

Figure 2. The theoretical rain-induced signal attenuation for various rain rates at different frequencies:
(a) per kilometer; (b) over a 7-km long 32 GHz 2 × 2 line-of-sight multiple-input multiple-output
(LOS-MIMO) link, a 7-km long single-input single-output (SISO) 38 GHz link, a 3-km long 72 GHz link,
and a 3-km long 82 GHz test link using our measurement scenario.

2.3.3. Rain Rate Estimation Using the Receive Signal Levels from Millimeter-Wave Links

The use of microwave links for near-ground environmental monitoring is a new technology, and it
has shown to be an effective tool for rainfall monitoring in over 20 countries. The method of retrieving
the rain rate from the rain-induced attenuation in the received signal level is based on the power law
model in Equation (9) from the recommendations of the ITU-R P. 838-3:

R =
b

√
Ar

aL
(mm/h) (10)

For a vertical polarized setup, the power law coefficients a and b for the frequencies considered in
this study are presented in Table 1, derived from [28]. Therefore, the average rain rate along a link
can be derived from the microwave link rain-induced attenuation. In order to determine the signal
attenuation caused by rain, we will need to choose a reference level Pref, which can be calculated using
the average of the received power in the previous 3 hours in dry weather before rain [36,37]. If there
are I observations, then the rain attenuation for the ith observation becomes:

Ar,i = Pre f − PR,i (11)
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For the case of the LOS-MIMO system, we assume that link length L is the same for all MIMO
data streams.

2.4. Outdoor Measurement

We present here a summary of the measurements from three outdoor test mmWave links and local
rainfall measurements using rain gauges. These measurements are also used to validate the accuracy
of rain rate estimation.

The locations of the three test links are illustrated in Figure 3. The measurement setup parameters
are given in Table 3. The transmitter and the receiver of the 32 GHz LOS-MIMO link and the 38 GHz
link were closely installed between site A and B. Both links had a length of approximately 6.87 km.
One side of the two links was on the roof of the Ericsson building (site A), close to water. Both the 32
GHz LOS-MIMO link and 38 GHz SISO link were operated in a line-of-sight environment. The 32
GHz LOS-MIMO link was horizontally deployed, with antenna separation at both sites. The antenna
separation at one end (site B) was fixed and installed at 5 m, whereas antennas at the other end
(site A) were installed on tripods, with an antenna separation distance of 7.93 m. The details of the
measurement setup can be found in [38]. Here, the radio link operating in the forward transmission
direction is referred to as link 1, while the radio link operating in the opposite transmission direction is
referred to as link 2. The 32 GHz LOS-MIMO link employed 2 antennas at both the transmit and receive
sides, while 2 data streams were transmitted in the forward direction and in the opposite direction over
the radio link. Altogether, 4 data streams were in transmission simultaneously. Note that the data used
in this study from the LOS-MIMO test link is recorded at the receiver without post-processing, but for
practical deployment, the received data streams should be decoupled using carrier-to-interference (C/I)
measurement. Since the rain attenuation is mainly distance dependent as shown in Equation (9), the
actual wanted and interference signal power will not impact on the accuracy of rain retrieval analysis.

 

Figure 3. The measurement setup and locations in Gothenburgh, Sweden. SMHI, Swedish
Meteorological and Hydrological Institute.
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Table 3. Outdoor measurement parameters.

Parameter 32 GHz 38 GHz 72.625 GHz 82.625 GHz

Sampling interval 30 s
Antenna type Cassegrain antenna

Location 57◦42′18.97” N, 11◦56′29.67” E;
57◦44′52.8” N, 12◦1′26.4” E

57◦42′18.97” N, 11◦56′29.67” E;
57◦41′20.04” N, 11◦54′10.76” E

Link length 6.87 km 3 km
Setup MIMO SISO SISO SISO

Antenna no. 2 × 2 1 × 1 1 × 1 1 × 1
Antenna

Separation 5 m; 7.93 m N/A N/A N/A

Tx power 5 dBm 15 dBm 7 dBm 7 dBm
Tx antenna gain 43.6 dBi 40.3 dBi 50.5 dBi 50.5 dBi
Tx half power
beam width 0.5◦ 0.5◦ 0.5◦ 0.5◦

Tx polarization V V V V
Rx antenna gain 43.6 dBi 40.3 dBi 50.5 dBi 50.5 dBi
Rx half power
beam width 0.5◦ 0.5◦ 0.5◦ 0.5◦

Rx polarization V V V V

For the 38 GHz SISO link, one data stream was transmitted in the forward and reverse directions,
and there were 2 data streams transmitting instantaneously over the radio link.

For the 3 km SISO E-band link, one end was also installed on the roof of the Ericsson building at
site A and was deployed between sites A and C. The geographic locations of the E-band links are listed
in Table 3. In the forward transmission the radio link operates at 72.625 GHz, while in the reverse
transmission the radio link operates at 82.625 GHz.

All the mmWave links have a sampling interval of 30 seconds. Rain, humidity, temperature, air
pressure, and wind information were provided by a weather station equipped with a rain gauge located
at the rooftop of the Ericsson building. The accuracy of the rain gauge is of the order +/− 3% [39]. We
used the measurement from this rain gauge for the analysis in the results section. As this weather
station was located on the rooftop, we also selected the closest rain gauges operated by the Swedish
Meteorological and Hydrological Institute (SMHI). The SMHI rain gauge reported the cumulative rain
amount in mm over 1 day and its location is indicated in Figure 3.

3. Measurement Results

During the outdoor trial measurements, the received signal level and path attenuation were
recorded in changing weather conditions for the three mmWave links at 32 GHz, 38 GHz, and E-band
ranges. All the links were in operation at the same time.

3.1. Rainfall Effects

The received signal variation and the rain intensity on 7 and 11 June 2017 are presented in Figures 4
and 5, respectively. Assuming other losses (wet antenna attenuation, water vapor attenuation, etc.) are
the same, the average signal attenuation values over 1 km distance are also compared in Figures 4b
and 5b, which show more clearly the impact of rain on links at different frequencies. The measured
rain attenuation result is consistent with the theoretical predictions in Table 2. Although the 32 and
38 GHz links were built over a much longer distance compared to the E-band links, the rain-induced
attenuation in the 32 and 38 GHz links was lower. This difference in rain-induced attenuation between
the lower and higher frequency mmWave link becomes more significant as the rain intensity increases.
The 32 GHz and 38 GHz links are more robust to poor weather conditions compared to the E-band link,
although they are deployed over longer distances. The attenuation of the links, especially the E-band
link, was a lot more severe than expected in late evening on 7 and 11 June. One possible reason is that
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the rain gauge provides a point measurement, while the measured signal attenuation is caused by the
rain along the link. Although one side of all links is located on top of the same building, the links are
built across different and wide areas, with a separation distance of up to 10 km. The rain intensity
that each link experienced along the path could be very different from the rain gauge measurement,
and it could contribute to the difference in attenuation value. In addition, the rain gauge that was used
for the analysis was located on the rooftop of a building. There could be a significant under catch of
rainfall in the gauge especially during windy conditions, and more rainfall could have been detected
by the mmWave link.

 
  (a)  

  (b) 

 
(c) 

Figure 4. (a) Received signal variation of the test links on June 7, 2017; (b) received signal variation of
the test links averaged over 1 km distance; (c) rain rate monitored by a rain gauge.
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  (a)  

  (b) 

 
(c) 

Figure 5. (a) Received signal variation of the test links on June 11, 2017. (b) received signal variation of
the test links averaged over 1 km distance. (c) rain rate monitored by a rain gauge.

3.2. Water Vapor Attenuation

As discussed in the previous section, change in water vapor level may also cause additional
attenuation. Atmospheric attenuation of signal level due to dry air and water vapor is related to
the air pressure, temperature, and the water vapor density. For the dry period from 13 to 15 June
2017, the changes in temperature, air pressure, and humidity level are presented in Figure 6a, and
the variations of the received signal level from the test links are also given in Figure 6. During these
sunny days, it can be seen that the received signal level also varies over time as a result of atmospheric
effects. The variation of temperature and humidity is inversely related with a correlation coefficient
of −0.9. Attenuation from water vapor is a function of the pressure p (hPa), temperature T (◦C),
and the water vapor density ρ (g/m3) [35]. For the frequencies considered in this study, the signal
attenuation due to oxygen absorption is negligible. The attenuation due to changes in water vapor
density at 32 and 38 GHz is very low, approximately up to 1 dB for a 7-km long link, as shown in
Figure 6b,c. As the frequency increases to the E-band, variation in water vapor density can contribute
over 0.45–0.55 dB/km for E-band signals, and therefore a total of 1.35–1.65 dB for the 3 km link, which
is illustrated in Figure 6d.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. (a) The variations in temperature, humidity, and pressure during 13-15 June, 2017. (b) The
variations in the signal attenuation and humidity of the 32 GHz link (link 1, data streams 1 and 2).
(c) Links 1 and 2 at 38 GHz; (d) The 72.625 and 82.625 GHz links.

3.3. Data Post-Processing and Uncertainties

The determination of the baseline level and wet antenna attenuation are very important for
accurate estimation of rain rates from the mmWave links [40–42]. Here, we consider the reference
level to be the average received signal strength over 3 hours in dry weather before rain. Subtracting
the baseline level, also called the reference level, from the actual received signal levels gives the
rain-induced, path-integrated attenuation, which can be transformed into the path averaged rain rate.

During rainy periods, the dampening of the radomes of the antenna causes attenuation, and this
additional attenuation factor is known as the wet antenna effect [40]. The wet antenna effect has been
shown to be consistent for a specific microwave link, but varies from link to link. Therefore, it has
been suggested that the wet antenna attenuation depends on the specific link properties, such as the
signal polarization, frequency, and the radome material, meaning each link needs to be examined
individually. For a rainfall event lasting for a long period of time, the wet antenna attenuation is
expected to increase with increasing thickness of water film on the antenna. In addition to wet
antenna attenuation, water vapor may also cause additional variation at high frequencies, as shown in
Section 3.2. As discussed in [41,42], bias due to the instability of the transmit power of commercial
microwave backhaul equipment could be up to 1.6 dB, therefore causing more attenuation to the
received signal level. Therefore, hardware (radio, antenna) and alignment possibly also contribute
to this difference. This could be studied as future work if long term measurement is carried out
and analyzed.

For the experiment period, the measured statistics of rain attenuation versus calculated rain
attenuation, based on Equation (9), are plotted in Figure 7. Each point represents the rain rate and
measured attenuation value from the link measurement over a 15 min interval. The correction factor,
which mainly accounts for wet antennas, is applied to the measurement data. As the water vapor
attenuation is insignificant, it is combined in one correction factor. The distribution of rain attenuation
values for increasing rain rate before and after applying the correction factor is presented.
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(a) 

 
(b) 

 
(c)  

(d) 

 
(e)  

(f) 

 
(g) 

 
(h) 

Figure 7. Rain attenuation statistics from the measurement before correction and after correction in
comparison with the calculated rain attenuation, using the ITU model from Equation (9) for different
frequencies: (a,b) 32 GHz; (c,d) 38 GHz; (e,f) 72 GHz; (g,h) 82 GHz.

3.4. Rain Rate Estimation

We evaluate the rainfall estimates from mmWave test links through three metrics—the Pearson
correlation coefficient, the root mean square difference, and the bias.

The linear dependence of the time series data of average rain attenuation obtained from the link
measurement X = Ar and rain rate measurement Y = R from the rain gauge is estimated by calculating
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the correlation coefficient of the variables. If each variable has I averaged observations, the Pearson
correlation coefficient is calculated as:

r(Ar,i, Ri) = r(Xi, Yi) =
1

I − 1

I∑
i=1

(
Xi − μX

σX

)(
Yi − μY

σY

)
(12)

where μX and σX are the mean and standard deviation of X, respectively, and μY and σY are the mean
and standard deviation of Y. Here, r ranges from −1 to +1. A high correlation coefficient value shows
stronger relation between two data sets. On 7 and 11 June 2017, the signal power attenuation is mainly
caused by rainfall and the values are highly correlated, resulting in an average correlation coefficient
greater than 0.8. The strong correlation between the receive signal attenuation and rain rate during the
measurement period indicates that it is possible to retrieve the rain rate from the receive signals of the
mmWave links.

After applying the correction to the signal attenuation, the rain rate is estimated on a 15 min
basis using Equation (10). The time series data of average rain rate derived from the mmWave link
measurement X = Rlink is then compared with the rain rate measurement Y = R from rain gauge, based
on Equation (12). Figures 8 and 9 show the comparison between the link-derived rain rate estimation
and rain gauge measurement. The accuracy of the rain estimation using different links is presented in
Table 4. The root mean square difference (RMSD) was also computed for accuracy analysis according
to the following formula:

RMSD =

√√√
1
I

I∑
i=1

(Xi −Yi)
2 (mm/h) (13)

The bias is a measure of the average error between the link estimate rain rate and the rain gauge
measurements, and it can be calculated using the following formula:

Bias =
1
I

I∑
i=1

(Xi −Yi) (14)

The rain rates derived from the three mmWave links are closely related to the observed rain rate
recorded by the weather stations, with a very good accuracy. The RMSD is found to be in the range of
0.36–1.00 mm/h for the test links.

Using the latest introduction of MIMO mmWave links, the number of rain estimation values
grows linearly with the minimum number of transmitter and receiver antennas of the MIMO link
compared to the case of a single rain rate estimation value from a SISO backhaul link. Both the forward
and reverse links can be used for rainfall estimation, and the 4 data streams in 2 × 2 MIMO links can
effectively provide up to 4 rain rate estimation values over the path. All the data streams can contribute
to understanding of the statistics of the local rain rates.
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(a) 

 
(b) 

 
(c) 

Figure 8. Average rain rate per 15 min derived from the signal link compared with the rain gauge
measurement on 7 June 2017: (a) 32 GHz link; (b) 38 GHz link; (c) E-band link.

 
(a) 

 
(b) 

 
(c) 

Figure 9. Average rain rate per 15 min derived from the signal link compared with the rain gauge
measurement on 11 June 2017: (a) 32 GHz link; (b) 38 GHz link; (c) E-band link.
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Table 4. Accuracy analysis of rain retrieval from the three test links.

Frequency Data Stream Correction Correlation RMSD BIAS

32 GHz 1 (link 1) 1.5 dB 0.87 0.95 0.60
2 (link 1) 1.5 dB 0.88 0.84 0.56
1 (link 2) 1.5 dB 0.84 1.00 0.55
2 (link 2) 1.5 dB 0.85 0.94 0.49

38 GHz 1 (link 1) 1.0 dB 0.90 0.36 0.06
1 (link 2) 1.0 dB 0.88 0.48 0.25

73 GHz 1 (link 1) 1.5 dB 0.83 0.48 0.12
83 GHz 1 (link 2) 1.75 dB 0.80 0.61 0.26

4. Discussion

It can be seen from the results that the link-experienced rain attenuation could be much higher
than the ITU model [28]-predicted attenuation value calculated using the rain gauge records. One
possible reason was the location of the rain gauge. The weather station used in this study was located
on the rooftop of a business building. A non-rooftop weather station operated by SMHI near the
measurement area is available, but the data was not collected very frequently, making comparison
with the microwave link derived rain rate at 15 minutes interval difficult. The daily rainfall amounts
recorded by the SMHI rain gauge were 39 and 9 mm on 7 and 11 June, respectively, while the recorded
daily rainfall values by the rain gauge used for this study was 17.4 and 7 mm, respectively, during
these two days. Compression of atmospheric streamlines will produce significant Bernoulli lifting and
cause under catch of rainfall in the rain gauge located on the rooftop. The actual rainfall along the links
was greater than the rain gauge measurements, which was also indicated by the bias calculation results.
The positive bias values show that the rainfall estimated based on the attenuation of the mmWave
link signals is higher than the rain rate recorded by the rain gauge. As expected, the mmWave links
detected more rainfall than the rooftop rain gauge, which underestimated the rainfall amount.

The widely deployed microwave links from existing cellular networks have become
installation-free facilities, and they can be particularly useful for applications in urban hydrology
and in supporting monitoring in flood-prone urban areas. Rain gauges have high accuracy but the
measurement data is collected at the point scale. Because of the temporal and spatial variability
of rainfall, especially in the heavy rain and flooding events, the changes of rain rate occur at very
short time intervals. Even in dense urban areas, the density of rain gauges is often not sufficient to
capture significant variation in observed rainfall. Radars and satellites can monitor over much wider
areas, but the estimates from those sources are less accurate at near-ground levels, and the temporal
and spatial resolution is not sufficient for flood monitoring purposes. The measurements presented
here records a received signal level measurement every 30 seconds, producing 10 rain rate estimates
within 5 minutes, which is usually the time resolution of weather radars. Microwave backhaul links
can measure near-ground rain rates more accurately with high time resolution, which could assist
in flash flood warnings [43–45], as the wireless networks exist over large regions of land, including
complex topographies, where traditional monitoring equipment cannot be easily installed. Therefore,
this technology could also be very useful in cities that lack monitoring of rainfall by radar. As more
mmWave links are expected to be widely deployed in cities, those densely deployed links can all be
used for rainfall monitoring, and the amount of rainfall estimation data will be impressively large.
These links can be further processed using standard interpolation methods to create rainfall maps, or
combined with other existing monitoring networks based on radars and rain gauges to produce high
temporal and spatial resolution rainfall maps [46].

5. Conclusions

New mmWave technologies, including E-band, multi-band boosters, and LOS-MIMO, have been
recently introduced to meet the global demand on microwave backhaul capacity and 5G network
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build-out. The large bandwidth available at mmWave frequencies in the 30-300 GHz range will
enable very high connection speed and capacity. With large available bandwidth, E-bands (71–76 and
81–86 GHz) are considered a strategic solution for 5G heterogeneous networks. While E-band links
are generally used up to 3 km, a multi-band technology combining E-band with traditional lower
frequency bands is suggested for longer distance deployment. Supporting transmission of multiple
data streams simultaneously, LOS-MIMO is the latest wireless backhaul technology to significantly
increase the capacity of short-range, point-to-point, mmWave line-of-sight connections. In this paper,
these new wireless backhaul technologies are studied using outdoor test links deployed in the same
region. The trial was performed in Gothenburgh, Sweden, over the Ericsson premises in 2017.

Real time path attenuation caused by changing weather conditions were monitored and recorded
for a 32 GHz 2× 2 LOS-MIMO link and a 38 GHz SISO link over 6.87 km, as well as an E-band microwave
backhaul link over 3 km. The measurement records showed that the rain-induced attenuation of all
the three test links are closely related to the variation of the rain rate, with an average correlation
value greater than 0.8. The 32 GHz LOS-MIMO link and 38 GHz link were deployed in the same
location; the rain attenuation was similar for the two links, but the LOS-MIMO has greater capacity
compared to a SISO link. While the 32 and 38 GHz links were built over a much longer distance than
the E-band link, but they were less affected by atmospheric attenuation. For light rainfall, the difference
in the signal attenuation observed in three test links is less significant. As the rain intensity increases,
over a relatively short deployment of 3 km, for the 82 GHz link, the rain attenuation could be greater
than 40 dB for a heavy rain event. The high rain attenuation restricts the use of E-band links over
longer distances. While E-band backhaul links can achieve high throughput, the coverage is limited;
lower frequency links are more robust and can be deployed over much longer distances. Multi-band
booster technology pairs a higher frequency link with a lower frequency link, meaning the capacity
and coverage requirements for the next-generation microwave backhaul links can be met compared to
a single frequency microwave link.

Accurate rain monitoring of precipitation is of great importance to many applications, including
meteorology, hydrology, agriculture, and flood monitoring. Microwave backhaul link is considered
as a new tool for near-ground rainfall monitoring. We examined the accuracy of using these new
mmWave backhaul technologies for rain rate estimation. Additional attenuation due to effects of
water film on the antenna surface and other atmospheric conditions, such as humidity, needs to be
considered for rain rate estimation for improved accuracy. In real deployments, the measured rain
attenuation of the test links is found to be 1–1.75 dB higher than calculated rain attenuation based
on the ITU model. We have applied data post-processing and attenuation correction to the received
signal level measurement. The derived rain rate from all the links have been shown to be very good
compared to the rain rate recorded by the weather stations located in the measurement site. These
additional weather data obtained from commercial cellular networks will be particularly useful for big
data analysis. Furthermore, mmWave backhauls are expected to be widely used for 5G and smart city
networks in cities and densely populated areas, and there is a great potential to use these links for
precipitation and flood monitoring in urban areas.
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