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Abstract: Remotely sensed geophysical datasets are being produced at increasingly fast rates to
monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative
use of these datasets to understand hydrological processes in various climatic and vegetation regimes
under anthropogenic impacts has become an important challenge, but with a wide range of research
opportunities. The ten contributions in this Special Issue have addressed the following four research
topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations
and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques.
Moreover, the authors have provided broader discussions, on how to make the most out of the state-
of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to
enhance their skills in reproducing processes for the fast-changing world.

Keywords: remote sensing; model; hydrological prediction; climate change; land use change; evapo-
transpiration

1. Introduction

We are living in a world where geophysical datasets, particularly, remote sensing
datasets, are created at fast increasing rates [1]. The efficient and innovative use of these
datasets for understanding hydrological processes in various climatic and vegetation
regimes under anthropogenic influence has become an important challenge, which of-
fers a wide range of research opportunities at the same time [2,3]. This is particularly
urgent for the hydrological research community at large who has relied on both spatially
distributed and lumped hydrological models for hydrological simulations/predictions
over the last several decades [4]. The demand for increasingly accurate water information
spatially distributed at high resolution requires a deeper understanding of the under-
lying processes and more skillful predictions, at resolutions that do not commensurate
with the traditional hydrological data. This is an important challenge to the conventional
hydrological modelling.

To address these challenges, efforts need to be made to innovatively integrate various
remote sensing techniques into hydrological simulations and predictions, which is more
critical in a changing world. This Special Issue of Remote Sensing contributes towards this
aim through investigations on how a better and smarter use of high-to-moderate-resolution
remote sensing datasets can improve hydrological simulations and predictions. Ten peer-
reviewed papers are published in this Issue, which are grouped into four categories using
remote sensing techniques:
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Evapotranspiration estimation;
Rainfall monitoring and prediction;
Flood simulations and predictions; and
Monitoring ecohydrological processes.

2. Contributed Papers
2.1. Estimating Evapotranspiration

In this category, two papers are published. Zhang and Song et al. [5] estimated the
Evapotranspiration (ET) of Beijing city at a 10-m resolution, using vegetation information
from Sentinel-2 satellite data. For the first time, monthly ET ata 10 x 10-m resolution for the
Beijing Sponge City was estimated, using a water-carbon coupling model (PML-V2) driven
by the 10-m resolution of the Sentinel-2-based Leaf Area Index (LAI), Sentinel-2-based
land cover classification data, and surface meteorological data. Model validations show
that the Sentinel-2-based LAI has a good correlation (R? = 0.74) with the observed values.
The PML-V2-estimated ET compares well (R? = 0.64-0.90) with the flux measurements at
three fields within the Beijing region. Model simulation results show that LAI, ET, and
the Gross Primary Productivity (GPP) are 0.83 m? m~2, 1.6 mm d~!,and 2.8 gCm~2d"!,
respectively, during June 2018. Water bodies, including lakes and rivers, show the high-
est ET of >8 mm d~!, followed by mixed forest and croplands that have ET varying in
4-6mm d~! and grasslands with ET varying in 2-4 mm d~!. Compared to these land
cover types, the impervious surface occupying ~60% of the sponge city areas shows the
smallest ET of <2.0 mm d~!. This study demonstrates that it is feasible to use the high-
resolution satellite data to have detailed simulations of hydrological processes in urban
ecosystems. Jepsen et al. [6] analyzed the suitability of remotely sensed ET for calibrating a
hydrological model in the upper Kings River watershed (3999 km?) of California’s Sierra
Nevada, a snow-influenced watershed in a Mediterranean climate. They compared a
spatiotemporal pattern of ET from a remote-sensing product, MODIS MOD16A2, to that
from a hydrological model (SWAT) calibrated against an observed streamflow. The ET
estimates from both MOD16A2 and SWAT modelling were evaluated against observations
from three flux towers at elevations of 1160-2700 m. It was found that the SWAT-modelled
ET performs better than MOD16A2 ET, indicated by the Nash-Sutcliffe efficiency (+0.36 ver-
sus —0.43) and error in the elevational trend (+7.7% versus +81%). For this particular
modelling experiment, the authors concluded that it is challenging for the remotely sensed
ET product used for watershed-model parameter estimation. By analyzing ET-weather
relationships, the authors found that the relatively large errors in MODIS ET may be related
to weather-based corrections to water limitation not representative of the hydrology of this
snow-influenced, Mediterranean-climate area. Therefore, attention should be paid when
using global ET products (such as MOD16A2) at a watershed scale, particularly when the
watershed involves snowmelt processes. Moreover, it is necessary to have bias corrections
of the ET data before use for model parameterization [7].

2.2. Rainfall Monitoring and Prediction

In this category, two papers are published. Han et al. [8] investigated the potential to
use next-generation millimeter-wave backhaul technologies for rainfall monitoring in a
dense urban environment. Traditionally, microwave backhaul links are mainly used for
communications between cellular base stations. In this study, the authors used the links for
measuring the path-averaged rain rate. In particular, they investigated the rain attenuation
characteristics in Gothenburgh, Sweden using the new microwave backhaul techniques
at different mmWave frequencies and link lengths. They found that estimating the path-
average rainfall using mmWave links is very effective. The mmWave link measurement-
derived rain rate is very well correlated (R = 0.8-0.9) to the local measurement from rainfall
gauges. Their study indicates that there is a great potential to use the mmWave links
for monitoring rainfall in urban areas. Liu et al. [9] investigated how the assimilation
frequency of radar reflectivity affects the rain storm prediction in the Daginghe basin
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of northern China, using the Three-Dimensional Variational Data Assimilation (3DVAR)
system of the Weather Research Forecast (WRF) model. Their results show that the WRE-
3DVAR system noticeably improves its performance for predicting the location, tendency,
and development of rain storm, using the assimilation of radar reflectivity and Global
Telecommunication System (GTS) data collectively. Moreover, this study suggests that it is
important to validate and correct the assimilated measurement data before performing data
assimilation, which can benefit not only prediction accuracy but also assimilation efficiency.

2.3. Flood Simulations and Predictions

In this category, four papers are published. Ma et al. [10] conducted a flash flood warn-
ings study in Yunnan Province, China using NASA's Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement (GPM-IMERG) precipitation products. They tested
two GPM-IMERG products: The near-real-time IMERG Early run product (IMERG-E) and
the post-real-time IMERG Final run product (IMERG-F) with a 6-h temporal resolution.
The results show that MERG-F is better than IMERG-E over the study area, indicated by
an hourly R of 0.46 and relative bias of 23%. Furthermore, the IMERG-F results are well
corresponding to the gauge data when using the Rainfall Triggering Index (RTI) model for
calibration, suggesting that MERG-F is suitable for flash flood warnings. Wang et al. [11]
investigated if the prediction of flash flood can be improved for mountainous catchments of
northern China using the WRF-3DVAR module through coupled atmospheric-hydrologic
systems. Compared to the baseline (openloop) model run, the assimilation improved the
accuracy of rainfall accumulation as well as provided more accurate flood forecasting.
Based on the grid-based Hebei model, an atmospheric-hydrological coupling system was
established and performed by predicting the flash flood as well as obtaining the best
performance of Nash-Sutcliffe Efficiency (NSE) = 0.874 after assimilation, compared to
NSE = 0.64 before assimilation. Moreover, the authors pointed out the need to carefully
transfer hydrological parameters, since the locally derived hydrodynamic parameters may
not be applicable to mesoscale areas. Zhu et al. [12] proposed a modelling framework for
the urban flood analysis in ungauged catchments using short-term and high-resolution
rainfall data. The framework includes three steps. First, generate extreme rainfall events
using a rainfall generator named RainyDay together with a 9-year record of hourly, 0.1°
remotely sensed rainfall data. Second, simulate runoff using an Urban Hydrological Model
(SWMM) under different rainfall return periods and durations. Third, analyze urban flood
using flood indicators, such as flood time, maximum rainfall rates, and total maximum
rainfall volume. This framework was tested in Guagzhou city, China. The results show
that a combination of RainyDay and short-term remotely sensed rainfall data can expand
the rainfall records for urban hydrological simulations and predictions. Furthermore, the
proposed framework shows a good performance for runoff process simulation, especially
for high return periods or long durations (NSE > 0.90), demonstrating that the proposed
framework has potential for urban flood analysis in ungauged catchments. Yasir et al. [13]
analyzed and simulated runoff processes in a heavily regulated river basin, the Lhasa
River where there are Zhikong and Pangduo hydropower dams changing hydrological
regimes. The analysis indicates that the Lhasa River streamflow shows stronger variations
during 2000-2016, compared to pre-2000. The Zhikong hydropower plant and the Pangduo
power plant began operations in 2006 and 2013, respectively, which strongly influence the
Lhasa River streamflow. The modelling results indicate that the SWAT hydrological model
is capable of simulating the streamflow under reservoir influence, and can be used for
predicting future streamflow. The predicted streamflow has a similar behavior to the obser-
vation while decreasing in the years from 2017 to 2025, indicating that the hydrological
regimes in this region are simultaneously affected by climate change and anthropogenic
impacts. Yang et al. [14] proposed a new method using an Unmanned Aerial Vehicle (UAV)
combined with the incipient motion of stone to calculate the peak streamflow of ephemeral
rivers in northwestern China. Critical initial velocities of moving stones were estimated
using two methods: Logarithmic and exponential velocity distribution methods. Their
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results indicate that the exponential velocity distribution method outperforms the loga-
rithmic method. Under high flood events (>20 m?/s), the proposed method can achieve
model errors less than 10%. Under a low streamflow condition (1 m3/s), the accuracies are
relatively low. Nevertheless, this study provides an alternative way to calculate streamflow
in ungagged rivers, which are particularly useful for peak flood estimation. The proposed
approach is easy to apply and has potential for large-scale application, considering the
quick advance of the UAV technology.

2.4. Monitoring Ecohydrological Processes

In this category, one paper is published. Qiao et al. [15] investigated how water
transfer in arid northwestern China influences the wetland ecosystem via surface and
groundwater interactions. In arid and semiarid regions, water transfer is a useful way to
prevent vegetation degradations and maintain healthy ecosystems. This study analyzed
the spatiotemporal pattern of vegetation coverage before and after water transfer in Qingtu
Lake and the surrounding area. The results show that water transfer from the upstream
contributes to the expansion of water bodies and vegetation, particularly for the condition of
fractional vegetation coverage of 30-50%. The groundwater and soil water content increase
can remain at high levels for the following months after water transfer, suggesting that the
transferred water can be stored as ground water or soil water due to the strong surface and
subsurface interactions, which provide water use for vegetation in the following year.

3. Editorial Summary and Comments

There are various ways that remote sensing techniques are used to improve hydro-
logical simulations and predictions, enhancing our collective efforts. The efforts can be
summarized into, but not limited to, the following categories: (1) Detecting hydrological
and other related changes using state-of-the-art remote sensing techniques; (2) mapping
eco-hydrological and hydrological processes and their driving factors using large samples
and high-resolution datasets; (3) understanding hydrological processes in a rapidly chang-
ing world using hydrological modelling together with high-to-moderate-resolution (several
meters to hundred meters) remote sensing data; (4) improving hydrological prediction
skills by modifying hydrological model structures to incorporate remote sensing data and
using various model calibrations against remote sensing data; (5) developing hydrological
modelling frameworks using advanced cloud cluster computation techniques and tools,
such as the Google Earth Engine; (6) using remote sensing data together with data assimila-
tion or/and machine learning techniques to improve predictions of various hydrological
variables and hydrological signatures; and (7) using remote sensing techniques for water-
related studies, such as on the water—food-energy security nexus. Although the ten papers
published in this Special Issue only cover parts of the summarized categories, we believe
that continued efforts in using remote sensing techniques in hydrology definitely promote
the development of hydrology, particularly in the fields of fusion of hydrological model
and remote sensing and ground observations that cover all of the categories 1-7 (Figure 1).

In fact, the first guest editor and his team (we) had put lots of efforts in these categories
and shared some researches below. For instance, we used the Google Earth Engine platform
to develop a carbon-water coupled model (PML-V2) for estimating the actual evapotranspi-
ration and gross primary production products across the global land surface with 500 m and
8-day resolution for the period of 2002 to 2020 [16]. This is a particular example followed
in the categories of 2, 3, and 5. Another example of category 4 is to develop state-of-the-art
model-data fusion techniques for predicting runoff in ungauged catchments. We used
remotely sensed ET data only to calibrate hydrological model parameters. Since it does not
require observed streamflow data for model calibration, it has the great potential runoff
prediction in poorly gauged or ungauged regions. We demonstrate that this approach is
very useful in Australia [17] and China [7] after bias corrections. Last but not least, we
modify the rainfall-runoff modelling structure for better incorporating remote sensing data.
The reasoning is that traditional rainfall-runoff models do not have a structure to simulate
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the impact of Land Use and Land Cover Change (LUCC), and are not reliable to simulate
hydrological processes with rapid LUCC. We modified traditional rainfall-runoff models
by changing their submodule for describing soil moisture and actual evapotranspiration
processes [18,19]. The modified rainfall-runoff models improve hydrological simulations
noticeably in the catchments experiencing rapid land cover changes [18].

Fusion of hydrological model with
remote sensing and ground observations

Precipitation

Transpiration -

] Evaporation

A planetary-scale
platform for Earth
science data &

analysis

ta archive includes more than forty.
vy and scientific datasets, updated

b

Precipitation

Evapotranspiration Streamflow Soil moisture

Figure 1. Conceptualized summary of model and data fusion techniques for improving hydrological predictions.

4. Conclusions

The world is quickly changing with land surface conditions changing dramatically due
to anthropogenic impacts over the last two decades. Correspondingly, geophysical datasets,
particularly, remote sensing datasets, are created at fast increasing rates. It is challenging to
efficiently and innovatively use these datasets for understanding hydrological processes in
various climatic and vegetation regimes under anthropogenic impacts, which also offer
a wide range of research opportunities. To address these challenges, efforts need to be
undertaken to use various remote sensing techniques to improve hydrological simulations
and predictions in a changing world. Ten peer-reviewed papers were published in this
Special Issue, and can be summarized into the following four categories:

Estimating evapotranspiration;
Rainfall monitoring and prediction;
Flood simulations and predictions; and
Monitoring ecohydrological processes.
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The ten papers presented in this Special Issue reflect the efforts for improving hydro-
logical simulations and predictions using various remote sensing techniques. The papers
published in this issue advance the remote sensing of hydrology by applying a new mea-
surement approach, such as UAV or model-data fusions. Though the published ten papers
in this Special Issue only cover parts of the summarized categories, we believe that continu-
ous efforts in using remote sensing techniques in hydrology definitely promote hydrology.
Furthermore, the authors more broadly discuss how to smartly use the state-of-the-art
remote sensing techniques to improve hydrological model simulations and predictions to
tackle a quickly changing world.
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Abstract: Analyzing flooding in urban areas is a great challenge due to the lack of long-term rainfall
records. This study hereby seeks to propose a modeling framework for urban flood analysis in
ungauged drainage basins. A platform called “RainyDay” combined with a nine-year record of
hourly, 0.1° remotely sensed rainfall data are used to generate extreme rainfall events. These events
are used as inputs to a hydrological model. The comprehensive characteristics of urban flooding are
reflected through the projection pursuit method. We simulate runoff for different return periods for a
typical urban drainage basin. The combination of RainyDay and short-record remotely sensed rainfall
can reproduce recent observed rainfall frequencies, which are relatively close to the design rainfall
calculated by the intensity-duration-frequency formula. More specifically, the design rainfall is closer
at high (higher than 20-yr) return period or long duration (longer than 6 h). Contrasting with the
flood-simulated results under different return periods, RainyDay-based estimates may underestimate
the flood characteristics under low return period or short duration scenarios, but they can reflect
the characteristics with increasing duration or return period. The proposed modeling framework
provides an alternative way to estimate the ensemble spread of rainfall and flood estimates rather
than a single estimate value.

Keywords: urban flood; design rainfall; ungauged drainage basin; RainyDay; IDF formula

1. Introduction

Under the combined influences of global climate change and rapid urban development,
the occurred frequency of record-breaking rainfall events has increased significantly [1,2].
Floods caused by extreme rainfall events not only bring serious economic losses, but also
cause huge casualties [3,4]. According to the data report of the World Resources Institute,
the global economic loss caused by flood events was nearly 45.9 billion dollars; as well,
4500 people were killed, accounting for 40% of the global natural disaster deaths in 2019 [5].
The number of casualties caused by floods and the economy will continue to increase in
the next decades [6,7]. Numerous studies have shown that record-breaking short-duration
rainfall is an important factor causing the increasingly serious urban flood, while the
lack of high temporal resolution rainfall records restricts the practices of hydrological
engineering and urban flood analysis [8-10]. Zhu et al. [11] and Yu et al. [12] emphasized
that hydrologic model-based flood analysis should carefully consider rainfall temporal
resolution in the changing complex environment; they found that the simulated peak
discharges can be significantly impacted by rainfall with different temporal resolution (e.g.,
1-h and 24-h) at the same magnitude. However, most regions lack long-term and high-
temporal resolution (sub-daily) rainfall records, especially for developing countries and
newly built cities [13]. The available rainfall records show a decrease and non-stationary
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trend in a changing environment [14,15]. In hydrological practice, however, the length-of-
record limitations can limit the traditional methods for calculating the rainfall intensity—
frequency—duration relationship.

In order to overcome the lack of rainfall records in urban flood analysis, many re-
searchers have provided various coping methods (e.g., Li et al. [16], Kastridis et al. [17],
Papaioannou et al. [18]), which can be categorized into five types. (i) Empirical probability
statistics method. Traditional urban flood analysis is often based on frequency statistical
methods and empirical assumptions, such as Gumbel, Pearson-1II, maximum likelihood
estimation, and other probability distribution models for parametric empirical statistical
analysis [19]. However, the data time series is highly requisite based on the empirical value
hypothesis [20]. Moreover, climate change and human activities lead to non-stationary
changes of regional rainfall, making it difficult to ensure the accuracy and rationality of
the estimation results [21]. (ii) Hydrologic model-based simulation. With the continuous
improvement of hydrological models and hydrological theory, using a hydrological model
to simulate urban flooding has become one of the most common methods. To some extent,
the scope and application of hydrological data, theory, and tools are improved through the
hydrological model. However, it needs detailed basic data to improve its accuracy [22,23].
(iii) Surrogate-data technique. Due to the lack of rainfall datasets, many studies use the
rainfall data from adjacent stations to analyze regional flood frequency or calculate hy-
drological engineering. For example, Mohanty et al. [24] moved the rainfall data of three
neighboring rain gauge stations to the study area, which was used for flood analysis.
Although the surrogate-data technique can increase the rainfall sample size and make up
for the lack of observation data, its accuracy is difficult to guarantee and its uncertainty
is high [25]. (iv) Rainfall generator. Rainfall generators are often used to generate more
diverse rainfall scenarios or higher spatial and temporal resolution rainfall data to enrich
the regional rainfall sample size [26,27]. For example, the meteorological model (e.g., GCM)
can simulate more rainfall events and other meteorological elements based on short-record
data sets, but it needs strict meteorological data such as temperature and wind speed, and
has the disadvantage of requiring complex calculations [26,28]. (v) Remote sensing analysis
method. Combined with GIS technology, remote sensing data and the digital elevation
model are often used to obtain regional hydrological characteristics and draw flood risk
maps for flood analysis [29,30]. It can analyze the distribution of flood risk in a large area
with coarse data, but it cannot fully consider the hydrological process [31].

It is undeniable that the above methods can solve the problem of data shortage in
flood analysis to a certain extent, but there are still obvious disadvantages in different types
of methods [32]. With the increase of high temporal resolution remote sensing rainfall data,
there is a new way to do flood analysis in both natural and urban watersheds [33-35]. In
recent years, it has become popular to comprehensively analyze floods by coupling remote
sensing rainfall data and hydrological models, which solves the shortages of high spatial-
temporal resolution rainfall data. For example, Shakti et al. [36] combined remote sensing
rainfall data and a distributed hydrological model to analyze inundation. Komi et al. [37]
have shown that using relatively rough spatial resolution remote sensing data as inputs
to the distributed hydrological model can also roughly predict the flood range in Africa,
where topographic and hydrological data are scarce. The coupling of high spatial-temporal
resolution remote sensing rainfall data and a hydrological model is used to analyze the
regional flood characteristics and widely used by more and more scholars [11,38].

On the other hand, urban flood analysis based on hydrological model mainly focuses
on a single factor such as maximum rate, meaning many important indicators are often
ignored [39,40]. Zhu et al. [40] emphasized that urban flood analysis should consider not
only the maximum rate, but also the flood time, total inundation volume, and other factors.
Hereby, urban flood analysis needs to address the high-dimension disaster problem. In
order to reflect the characteristics of urban flooding, traditional methods such as the fuzzy
comprehensive evaluation method, principal component analysis, and analytic hierarchy
process (AHP) are often used for analyzing flood characteristics (e.g., Yang et al. [41];
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Nandi eta al. [42]; Sarmah et al. [43]), but most of them have the shortcomings of human-
subjective perceptions or being based on an ideal hypothesis [44]. In order to overcome
these drawbacks, Zhu et al. [40] used the projection pursuit method to comprehensively
analyze urban flood characteristics, and pointed out that this method can objectively
evaluate urban flood characteristics.

As stated above, a lack of high-temporal rainfall records is a prominent limitation
to flood analysis and hydrological engineering practices [14,45]. Rainfall remote sensing
datasets with high temporal-spatial resolution and large coverage can overcome this
limitation. This study seeks to propose a modeling framework for urban flood assessments
based on short-record remotely sensed rainfall and hydrologic model in ungauged drainage
basins. We do so by combining short (2008-2016), hourly remote sensing rainfall data and
the RainyDay model to estimate the regional design rainfall under different frequencies.
To be consistent with convention [46], the obtained design rainfall is transformed into
the Chicago rainfall pattern and put into the SWMM hydrological model to simulate
and analyze runoff processes and flood characteristics under different return periods.
The projection pursuit method is used to comprehensively analyze flood characteristics
based on the outputs of the SWMM hydrological model. It is worth mentioning that this
study is not meant to demonstrate the superiority of the proposed framework compared
with the traditional methods, but to explore the feasibility of analyzing small ungauged
urban drainage basins based on short-term remote sensing rainfall data, and to provide an
alternative framework for urban flood assessment.

2. Methodology

The proposed model framework used to analyze urban flooding based on short-record
remotely sensed rainfall and hydrologic model includes three parts. (i) Generating extreme
rainfall events. A rainfall generator named Rainyday with the short (nine years), gridded
(0.1° x 0.1°), and hourly record of remote sensing rainfall is used to generate extreme
rainfall events with 20 realizations at 2-, 10-, 20-, 50-, and 100-yr return periods for 2 h,
6 h, 12 h, and 24 h durations. These events are compared to the traditional design rainfall
(i.e., intensity-duration-frequency (IDF) formula-based estimates) for rationality analysis.
(ii) Simulating runoff under different rainfall return periods and durations. We leverage
SWMM to construct a rainfall-runoff model for simulating the runoff under different
rainfall return periods and durations, and the time distribution of the design rainfall
follows the Chicago rainfall pattern. (iii) Analyzing urban flood. On the basis of analyzing
the flood indicators (i.e., flood time, maximum rainfall rate, total maximum rainfall volume)
under different rainfall return periods and durations, its comprehensive characteristics are
analyzed by projection pursuit method.

2.1. Stochastic Storm Transposition

The traditional estimation methods of design rainfall for urban areas often have
some drawbacks, such as a high requirement of rainfall series and a limited scope of
application [27]. Many of them cannot meet the requirements of urban flood analysis in
areas lacking data [11]. In order to conquer these drawbacks, this study uses RainyDay
software with the core technique of stochastic storm transposition (SST) to estimate the
design rainfall at different return periods in the area lacking data.

RainyDay is developed by Wright et al. [27] based on Python. The core of this model
is to combine SST and remote sensing rainfall products to transpose the spatial location
of observed rainfall events. It can effectively lengthen the rainfall record and expand the
sample size of observed rainfall events. Figure 1 shows an example of transposing two
observed rainfall events to the study area through RainyDay. It is worth mentioning that
RainyDay only changes the spatial location of the observed rainfall events, but does not
change the temporal distribution. The reader is directed to Zhu et al. [11], Wright et al. [27],
Yu et al. [47], and Franchini et al. [48] for more details. The following is a brief introduction
to RainyDay.
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Figure 1. Schematic diagram of rainfall spatial transposition of RainyDay. Where Rpps1 and Rpps2 are the observed rainfall

events in the transposition domain, respectively; Ry, 1 and Rry,,2 are the rainfall events after transposition, respectively.

Step 1. Selecting the transposition domain. RainyDay requires that (i) the selected
transposition domain should contain the study area; (i) the selected transposition domain
has the same climatic conditions and similar rainfall characteristics as the study area; (iii)
the area of the transposition domain is more than 10 times larger than the study area.
We selected a typical residential district in Guangzhou as case-study area. Following the
requirements of RainyDay, Guangdong Province, which belongs to the same administrative
region as the case-study area, is selected as the transposition domain.

Step 2. Identifying the “parent storms”. RainyDay selects the m largest t-hour rainfall
events that occurred in the transposition domain over n-year record of gridded rainfall
dataset, in terms of rainfall accumulation with the same size (i.e., single grid in this study)
of study area. The selected rainfall events, which do not occur in the same 24 h, are
temporally non-overlapping. That is, RainyDay only selects one t-hour event when there
are two or more {-hour events in the top m events occurring in the same 24 h. These selected
rainfall events are defined as “parent storms”.

Step 3. Calculating the distribution probability of extreme rainfall events. The oc-
curred probability of extreme rainfall events is spatially non-uniform in the transposition
domain. RainyDay calculates the probability through the two-dimensional Gaussian kernel
according to the storm centers of the “parent storms”. The sum of the probability of each
grid in the transposition domain is on one.

Step 4. Transposing rainfall events. RainyDay randomly selects k rainfall events
from the “parent storms” to generate rainfall events, where k is an integer and indicates
a “number of storms per year”. Besides, RainyDay assumes that k follows a Poisson
distribution with annual occurrence rate A, where A represents the ratio of the selected m
parent storms to n-year rainfall records, A = m/n. More details about Poisson-distributed
storm occurrences can be found in Wilson and Foufoula-Georgiou [49]. The selected rainfall
events can be transposed to any position in the transposition domain according to the
distribution probability of extreme rainfall events, but only the rainfall that occurred in the
study area is calculated. RainyDay extracts the f-hour maximum rainfall, and the extracted
rainfall is regarded as the maximum t-hour annual rainfall.

Step 5. Generating T'max annual maximum rainfall. The Tryax annual maximum rainfall
can be generated through repeating Step 4 Trax times. To obtain the intensity-duration-
frequency relationships, the maximas are ranked i = 1... Tnax from smallest to largest
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based on rainfall accumulation. Then, the return period P of each these ranks can be
calculated as P; = 1/(i/ Tmax)- Each return period includes N realizations after repeating
Step 4 and this step N times, that is, RainyDay provides the ensemble spread of rainfall
accumulation rather than a single estimated value at each return period.

In this study, RainyDay is used to generate 5- to 100-yr design rainfall events with
durations of 2 h, 6 h, 12 h and 24 h, respectively. Each return period includes 20 realizations
for different durations. For simplicity, we only analyze the mean, minimum, and maximum
of 20 realizations, since these results include the ensemble spread of all the realizations.
In addition, we compare these results (i.e., RainyDay-based estimates) with IDF formula-
based estimates to reflect the reasonability of the proposed framework.

2.2. Constructing Different Rainfall Scenarios

The design rainfall used in urban drainage systems and flood control is often calculated
through coupling the IDF formula and the Chicago rainfall pattern [50]. To be consistent
with this, the Chicago rainfall pattern is also used to allocate the RainyDay-based estimates
at different times. The difference between IDF formula-based and the minimum, maximum

and mean in 20 realizations of RainyDay-based estimates are compared. IDF formula is the

167x A(1+ClgP)
(t+b)"

intensity of -minute duration at return period P (year); A, C, b, and n are the constant

parameters that are derived and modified based on long-term rainfall records using the
Gauss-Newton iterative algorithm [46]. For the case-study area, the IDF formula is shown
in Equation (4).

empirical formula g = , where g (L/(s-hm?)) indicates the design rainstorm

~ 3618.27(1 + 0.4381gP)
(t +11.259)%70

In order to analyze the difference between the IDF-based and RainyDay-based esti-
mates impact in urban flood analysis, we combine different return periods (5-, 10-, 20-, 50-,
100-yr), durations (2 h, 6 h, 12 h, 24 h), and estimates (IDF formula-based estimates, and
the minimum, maximum, and mean in 20 realizations of RainyDay-based estimates) to
generate 80 rainfall scenarios for urban flood analysis. For all rainfall scenarios, the rain
peak coefficient is set to 0.375 to be consistent with the design specification for outdoor
drainage in China [46].

(O]

2.3. Urban Hydrologic Model

In this study, an urban hydrologic model named SWMM is used to simulate and
reflect the relationships between rainfall and runoff. SWMM is widely used in urban flood
analysis and hydraulic practices, and it has very good simulated performances in both
urban and natural basins [51,52]. Since the theory of the SWMM model is introduced in
detail in a previous study by Gironas et al. [53], we do not show more details about the
SWMM model in this study.

Because the calibrated and verified hydrological model in Zhu et al. [15] is used in
this study, the reader is directed to Zhu et al. [15] for more information about case-study
area and the performance of the model. In this model, the nonlinear reservoir method is
selected to calculate the surface runoff, the Saint-Venant equations are used to calculate the
flow, the Horton model is used to calculate the infiltration process, the Manning formula
and the approximate continuity equation are used to convert the runoff of each sub basin
into the outflow process, and the Newton-Raphson method and finite difference method
are used to calculate the time-varying process of runoff. Zhu et al. [54] calibrated and
verified the model based on the observed rainfall and runoff data, while the Nash-Sutcliffe
efficiency (NSE) index is used to assess the model’s performance.

In order to reflect the performance of RainyDay-based estimates for runoff process
simulation, we take the time distributions of the RainyDay-based and IDF formula-based
estimates as the inputs of the constructed urban hydrologic model and compare their
differences. The model used in this study is same as that in Zhu et al. [54] and the calibration
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and verification results show that the model can be used to simulate the runoff process of
the case-study area. The applicability and rationality of the model are demonstrated. More
details about the model can be found in Zhu et al. [54].

2.4. Projection Pursuit Algorithm

The projection pursuit algorithm is a robust and powerful algorithm for the ex-
ploratory analysis of multivariate high-dimensional data. It is widely used to reduce
dimensionality for feature extraction, especially for flood and environment analysis. For
instance, Zhi et al. [55] coupled the drainage model, 2D flood simulation model, and
projection pursuit algorithm to assess urban flood risk; when Guo et al. [56] proposed
an evaluation framework to assess atmospheric environment carrying capacity based on
an evaluation index system including 20 indicators, the projection pursuit algorithm was
used to reduce dimensionality. The basic theory of the projection pursuit algorithm is to
project the data into low-dimensional subspace via projection vectors. It has the advantages
of a strong anti-jamming capability and not depending on subjective evaluation criteria.
In this study, the projection pursuit algorithm is adopted to analyze the comprehensive
characteristics of urban flooding by constructing an evaluation index system. The system
includes three indicators, i.e., flood time, maximum rate, and total inundation volume.
Zhu et al. [40] demonstrated that flood characteristics could be estimated well based on
these indicators. The general steps are summarized as follows; more details are provided
in Kruskal and Shepard [57] and Zhu et al. [40].

Step 1: Construct and normalize the evaluation indicator set. Flood time, max-
imum rate, and total inundation volume are selected as the evaluation indicator set
X= {Xij 1i1=1,2,3;j=1,2,..., p}), where X,'j represents the value of the ith evaluation
indicator of the jth sample, j and i represent the number of evaluation indicators and
sample size, respectively. The normalized set x;; is calculated as follow:

X = Xij — Xjmin @
ijax - ijin
where Xjmax and Xjmin denote the maximum and minimum of ith evaluation indicator.

Step 2: Establishing the projection indicator function Q(a). The evaluation indicator
set is synthesized into a 1 x 3 vector (i.e., a = {a;|i = 1,2,3}) as the projection direction.
Therefore, the projection value of jth sample is calculated as follow:

3
Z]-:Za,-x,-j(jzl,Z,.,.,p) 3)

i=1

Then, Q(a) can be expressed as:
Q(a) = SzDz ()
52= |2 (2() - 7)° ®
2=\ po X j

3 P

Dz =} (R—=R(,jJu(R~r(i}j)) ©)

where Sz and Dz note the interclass distance and local density of Z;, respectively; Z represents
the mean of Z;; R(R = 0.157) means the cutoff radius; u(R — (i, j) ) is the unit step function,
ifR—r(i,j) > 0,u(R—r(i,j)) = 1; otherwise, u(R — r(i,j)) = 0.

Step 3: Calculating the best projection direction. Q(a) is determined by the projection
direction 4 if the value of the evaluation indicator is given. For the projection direction,
the higher the value of Q(a) the better. When the value of Q(a) is at its maximum, the
corresponding projection direction is the best. In order to seek the best projection direc-
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tion, the optimum objective function can be constructed as max(Q(a) = SzDy), and the

constraint condition is % a%(j) = 1. Seeking the best projection direction is a nonlinear
=1

global optimization préblem; the particle swarm optimization (PSO) technique is widely

used to solve such problems. We also adopt it in this study, and more details are directed

to Kennedy and Eberhart [58].

Step 4: Analyzing the comprehensive characteristics of urban flooding. The best
projection values can be obtained through putting the best projections direction into
Equation (4). The best projection values represent the comprehensive characteristics of
urban flooding. The larger the values are, the more severe is the urban flood.

Based on analyzing the runoff processes at the outlet of the case-study area, we focus
on the flood characteristics under RainyDay-based and IDF formula-based estimates at the
manholes (i.e., junctions) for the case-study area drainage system in this section. Three
flood indicators (i.e., flood time, maximum rate, total inundation volume), which are
demonstrated to reflect the urban flood characteristics by Zhu et al. [40], are selected to
analyze the flood characteristics at each manhole. The comprehensive flood characteristics
are analyzed by combining these three indicators with the projection pursuit algorithm.

3. Data and Case-Study Area
3.1. Data

The hourly, 0.1° gauge-adjusted remotely sensed rainfall data (http://www.cma.
gov.cn/2011gxfw/2011gsjgx/, accessed date: 15 November 2020) from the China Mete-
orological Administration merges CMORPH (the Climate Prediction Center Morphing
algorithm) and the observations of 30,000 automatic rain gauges. This rainfall product is
optimized and verified by the probability density function matching technique and optimal
interpolation method. The temporal resolution is coarsened to one hour. Its total error
is less than 10%, and the errors for heavy rainfall in the area with sparse ground gauge
networks are less than 20%. The accuracy is higher than similar rainfall products and the
product has been widely used for precipitation studies [59]. In order to verify the feasibility
of estimating the design rainfall based on short-record remote sensing rainfall data, the
rainfall data from 2008 to 2016 are selected in this study, where 2008 is the earliest year
when data are available.

The rainfall and runoff data used for calibration and verification are observed from the
case-study area, where the rainfall data is observed by RainLoggerTM rain gauge (RainWise
Inc.; USA), and the runoff data is observed by Stingray open channel gauge (Greyline
Instruments Inc.; Germany). The observed time steps are 10 min.

3.2. Case-Study Area

In this study, the transposition domain selected for RainyDay is Guangdong Province
in the south of China. The latitude ranges from 20.08 to 25.32 °N, and longitude ranges
from 109.04 to 117.20 °E (Figure 2). The area belongs to a subtropical monsoon climate,
and the rainfall has the characteristics of large amount and high intensity. The annual
average rainfall is 1300 to 2500 mm. The rainfall in this area is seasonal, mainly from April
to September, and record-breaking rainfall and flood disasters occur frequently during
these months.
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Figure 2. The transposition domain and the location of the case-study area (a), and the land use and
drainage system of the case-study area (b).

In order to verify the rationality of the proposed framework, a highly developed and
typical residential area (22.08-23.09 °N, 113.20-113.21 °E) is selected as the case-study
area in Guangzhou city (Figure 2). It belongs to the subtropical monsoon climate, and
the average annual rainfall is 1675 mm. Extreme rainfall events may occur throughout
the year, but are mainly concentrated in April to September. In the past 60 years, the
maximum and minimum annual rainfall are 2865 and 1009 mm, respectively. The area of
the case-study area is about 1.55 x 10° m?, and its land use types can be generalized into
three types such as building, green space, and road land (Figure 2). The slope ratio of the
drainage system is 0.1~1.0%, and the pipe diameter is 600~1650 mm. The drainage system
of the case-study area is designed according to rainfall accumulation at 2-yr return period.
However, the regional flood problem has become increasingly prominent with increasing
record-breaking extreme rainfall events.

According to the generalization theory of SWMM, the case-study area is divided into
10 sub-catchments, while the drainage system is generalized into 18 pipes, 18 manholes,
and 1 outlet (Figure 2). More details are referred to in Zhu et al. [54].
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4. Results
4.1. Estimating the Design Rainfall

The important assumption of RainyDay for estimating design rainfall is that the
storms in the transition domain are likely to occur in the study area. In order to illustrate
the rationality of the selected transition domain, this study analyzes the spatial distribution
and storm occurrence probability of 200 maximum storms under different durations (2 h,
6 h, 12 h, and 24 h) (Figure 3). The spatial distribution of storms with different durations
is basically similar to each other. Generally speaking, the frequency of storms in coastal
areas is relatively higher, but its spatial distribution is still relatively random, that is, heavy
storms may occur everywhere in the selected transition domain (Figure 3). Similar to the
spatial distribution, the spatial probability distribution of storms in the transition domain
is relatively uniform, but there are still some differences. The storm occurrence probability
decreases from south to north (Figure 3), which is in line with the actual distribution of
storms (see Wang et al. [60] for evaluation of rainfall distribution in different precipitation
products). The selected transition domain is reasonable since the probability of storm
occurrence of 200 maximum storms varies from around 0.0002 to 0.0014 in the transition
domain, i.e., the storms in the transition domain are likely to occur in the study area or
other regions.
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Figure 3. The probability of storm occurrence and spatial distribution of 200 maximum storms under
2h(a), 6 h (b), 12h (c), and 24 h (d) durations over the transition domain. Shading denotes spatial
probability of storm occurrence calculated based on 200 maximum storms. Black dots represent the
rainfall centroids of 200 maximum storms, and its size means the relative rainfall depth of each storm.

Figure 4 shows the relationships between IDF formula-based and RainyDay-based
estimates for different durations at different return periods. The ensemble spread of
20 realizations is shown as shaded area. Comparing results indicates that RainyDay
is generally able to estimate urban extreme rainfall for different durations, but it may
relatively underestimate or overestimate the rainfall accumulation. The results show that
RainyDay usually underestimates the rainfall accumulation at low return periods or short
rainfall durations; the RainyDay-based estimates are usually larger than the IDF formula-
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Rainfall (mm)

based estimates when the rainfall duration is long or the return period is high. Specifically,
RainyDay overall underestimates the rainfall accumulation when the rainfall duration is
2 h at different return periods. The degree of underestimation, which varies from 0.4%
(100-yr) to 57% (5-yr), decreases with increasing the return period (Table 1). When the
duration reaches 6 h, the underestimation is improved. The IDF formula-based estimates,
overall, fall within the ensemble spread of RainyDay-based estimates with the increase of
duration. At each return period for 6 h or longer durations, the absolute value of the ratio
of at least one RainyDay-based estimate (maximum, minimum, or average estimates) to
IDF formula-based estimate is less than 10% (Table 1).

2h
B ch

N 12h
24h

T T

5 10 20 50 100 200 500
Return period (yr)

Figure 4. The relationships between IDF formula-based and RainyDay-based estimates for different durations at different

return periods. The shaded areas mean the ensemble spread of RainyDay-based estimates. The solid lines denote the
ensemble mean for 20 realizations. The symbols of different shapes represent the IDF formula-based estimates.

Table 1. Relative deviations between IDF formula-based and RainyDay-based estimates (%).

Return 2h 6h 12h 24h

Period min mean max min mean max min mean max min mean max
5-yr —57 —53.3 —48.4 —17.2 -9.6 2.7 -206 —152 —104 —127 —8.2 —4.1
10-yr —48.7 —40.7 —349 —183 —-10.3 —34 —-125 —6.5 1.7 —8.3 0.9 10.4
20-yr —42.1 —30.6 —20.6 —17.8 —-11.3 —4 —8.2 1.5 10.8 —4.5 9.5 20.2
50-yr —-31.9 —-229 —14.1 —16.8 —4.8 8.6 -1 11.2 24.1 -1 19.1 30.8

100-yr —34.8 —-17.8 —-0.4 —13.6 24 28.5 1 16.4 33.9 52 24 47.6

The IDF formula-based estimates gradually approach to the lower boundary of the
shaded area with increasing return period. It indicates that the RainyDay-based estimates
basically can reflect the observed design rainfall for long (6 h or longer) durations. To be
consistent with the design specification for outdoor drainage in China, the time distribu-
tions of the RainyDay-based and IDF formula-based estimates for urban flood simulation
are determined by the Chicago rainfall pattern. The time distribution results show that
the main difference comes from the rainfall peak. The rainfall peak is underestimated
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from RainyDay-based estimates at low return periods or short rainfall durations, while it
is generally matched or slightly overestimated at high return periods or for long rainfall
duration. In order to better explain this fact, the time distributions at different return
periods for 6 h duration and at 20-yr return period for different durations are selected as in
the below examples (Figures 5 and 6). When the duration is 6 h, the rainfall peak of the
RainyDay-based estimates is relatively smaller than the IDF formula-based estimates at 5-
and 10-yr return period, but the rainfall peak of IDF formula-based estimates generally falls
within the ensemble spread of RainyDay-based estimates, and the average of the ensemble
spread is generally matched to the IDF formula-based estimates when the return period
reaches 50-yr or higher (Figure 5). On the other hand, when the return period is at 20-yr re-
turn period, the time distributions of RainyDay-based and IDF formula-based estimates are
essentially coincidental, and the coincidence increases with lengthening rainfall duration
(Figure 6). Overall, the RainyDay-based estimates show a good performance for design
rainfall analysis. The relationship between the time distributions of RainyDay-based and
IDF formula-based estimates at other return periods for other rainfall durations are similar
to the above selected rainfall scenarios, so the time distributions of other scenarios are
not shown.
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Figure 5. The time distributions of RainyDay-based and IDF formula-based estimates at 5-yr (a),
10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e) return periods for 6 h duration.
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Figure 6. The time distributions of RainyDay-based and IDF formula-based estimates at 20-yr return
period for different durations.

4.2. Simulating the Runoff Process Based on RainyDay-Based Estimates

The simulated results show that the RaiyDay-based estimates basically can be used for
runoff process simulation. The difference between the runoff processes of RainyDay-based
and IDF formula-based estimates is similar to the time distributions of design rainfall, but
the difference of peak discharge is smaller than the rainfall peak. Similar to the analysis
of time distribution of rainfall estimates, we also take the runoff processes at different
return periods for 6 h duration and at 20-yr return period for different durations as in
the below example (Figures 7 and 8). The runoff processes of RainyDay-based and IDF
formula-based estimates indicate that the difference of runoff process decreases as the
rainfall duration lengthens. The difference of peak discharge at high return periods (20-yr
or higher) or for long durations (6 h or longer) is very small. For example, the difference of
the RainyDay-based and IDF formula-based rainfall peaks is relatively significant, but the
differences of peak discharges are very small at 5- and 10-yr return periods (Figures 5 and 7).
The RainyDay-based peak discharges become closer and closer, and even approximate
overlapping IDF formula-based peak discharges with increasing return period. For the
same return period (take 20-yr return period for example), the peak discharge is still
slightly underestimated for 2 h duration, but the runoff process is predicted pretty well
with the lengthening duration (Figure 8). In addition, we use NSE to evaluate the predicted
performance of RainyDay-based estimates, i.e., the difference of runoff processes between
RainyDay-based and IDF formula-based estimates. Results show that the values of NSE
are generally small for short duration or at low return period (e.g., NSE = 0.53 at 5-yr
return period for 6 h duration, NSE = 0.77 at 20-yr return period for 2 h duration); however,
the values become larger with increasing rainfall duration or rainfall return period (e.g.,
NSE = 0.98 at 100-yr return period for 6 h duration, NSE = 0.99 at 20-yr return period for
24 h duration). For long duration (6 h or longer) or high return period (10-yr or higher), the
values of NSE are generally above 0.5, i.e., the RainyDay-based estimates of long duration
or high return period are satisfied to analyze the runoff process.
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Figure 7. The runoff processes at the outlet of the case-study area at 5-yr (a), 10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e)

return periods for 6 h duration.

3 4
2h 6h 12h 24h
'\\ I o RainyDay-based
lh k I\} :\l {\ "~ mean and spread
= | I ol A [ | - - - IDF formula-based
s iy l | NSE(2h, mean)=0.77
% L | I | | sEen, mean~059
= i i | | NSE(12h, mean)=1.00
S ) \\'\ : ! , \ ' | NSE(24h, mean)=0.99
= R :
2R I I ¥ A \ ! \
:,| \ \l( v/ \\ / \
A NN N
l’ \\_“ Ty JA\ -
0. jlk':_/{_ﬁ-‘zs:::: L ey,

0

Figure 8. The runoff processes at the outlet of the case-study area at 20-yr return period for

different durations.

21

120 240 360 480 600 720 840 960

Time (min)




Remote Sens. 2021, 13, 2204

4.3. Analyzing Flood Characteristics Based on RainyDay-Based Estimates

Results show that the characteristics of urban flooding are generally underestimated
based on RainyDay-based estimates at low return periods or short rainfall durations. For
short durations or at low return periods, the underestimation of the values of these indica-
tors at each manhole are more significant than runoff processes at the outlet. Specifically,
the RainyDay-based estimates underestimate the values of flood time, maximum rate, and
total inundation volume when the return period is lower than 10-yr or duration is shorter
than 6 h. The underestimation decreases with increasing return period or lengthening
rainfall duration. The values of flood time, maximum rate, and total inundation volume
simulated based on IDF formula-based estimates generally fall within the ensemble spread
of RainyDay-based estimates at high (20-yr or high) return period or long (6 h or longer)
duration (Figures 9 and 10). That is to say, the RainyDay-based estimates can be used to
assess the flood characteristics at each manhole at relatively high return periods or long
rainfall durations.
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Figure 9. The flood characteristics of each manhole at different return periods for 6 h duration. The flood time at 5-yr, 10-yr,
20-yr, 50-yr, and 100-yr return periods is shown in (a), (d), (g), (j), and (m), respectively. The maximum rate at 5-yr, 10-yr,
20-y1, 50-yr, and 100-yr return periods is shown in (b), (e), (h), (k), and (n), respectively. The total inundation volume at 5-yr,
10-yr, 20-yr, 50-yr, and 100-yr return periods is shown in (c), (), (i), (1), and (o), respectively. The grey boxes indicate the
spread of RainyDay-based, and points represent IDF formula-based, values.
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Figure 10. The flood characteristics of each manhole at 20-yr return period for different durations. The flood time for 2 h,
6 h, 12 h, and 24 h durations is shown in (a-d), respectively. The maximum rate for 2 h, 6 h, 12 h, and 24 h durations is
shown in (e-h), respectively. The total inundation volume for 2 h, 6 h, 12 h, and 24 h durations is shown in (i-1), respectively.
The grey boxes indicate the spread of RainyDay-based, and points represent IDF formula-based, values.

In order to better clarify the changing characteristics of urban flooding at each manhole
with rainfall return period or rainfall duration, we also take the flood characteristics
of each manhole at 20-yr return period for different durations and at different return
periods for 6 h duration as an example. For 6 h rainfall duration, the RainyDay-based
estimates significantly underestimate the values of the selected indicators at 5-yr return
period; when the return period increases to 10-yr, the RainyDay-based estimates can
reflect the flood characteristics at each manhole to a certain extent, but it is still relatively
underestimated; while the rainfall return period reaches 20-yr or more, the values of
indicators simulated by IDF formula-based estimates basically fall within the ensemble
spread of RainyDay-based estimates. On the other hand, when the rainfall return period is
20-yr, the RainyDay-based estimates can basically reflect the flood characteristics of each
manhole under different rainfall duration scenarios, especially for long (6 h or longer)
rainfall duration. The flood characteristics of some manholes will be slightly overestimated
with the increasing rainfall duration.

The results shown in Figures 9 and 10 cannot comprehensively assess the flood
characteristics of each manhole, therefore, the projection pursuit algorithm is used to
reduce three dimensions (i.e., three indicators) to one dimension. The one-dimension
values (i.e., the projection values) indicate the comprehensive characteristics of urban
flooding for each manhole. Results show that the flood hotspot manholes are J3, J7, and
J13, but they are significant underestimated based on RainyDay-based estimates at low
return periods or short rainfall durations (Figures 9 and 10). The changing characteristics
of projection values with return periods or duration are similar to the values of the three
indicators, but the degree of underestimation for the projection values is larger than the
values of indicators (Figures 11 and 12). However, the degree of underestimation decreases
with increasing return period or duration. Similar to the values of three indicators, the
projection values estimated based on IDF formula-based estimates fall within the RainyDay-
based ensemble spread at high (20-yr or higher) return periods or long (6 h or longer)
durations. The comprehensive analysis results for urban flooding demonstrates that the
RainyDay-based estimates can be used for urban flood analysis, especially for high (20-yr
or high) return periods or long (6 h or longer) durations.
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Figure 11. The projection values of each manhole at 5-yr (a), 10-yr (b), 20-yr (c), 50-yr (d), and 100-yr (e) return periods for
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Figure 12. The projection values of each manhole at 20-yr return period for 2 h (a), 6 h (b), 12 h (c), and 24 h (d) durations.
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5. Discussion

Regarding the limitations of traditional urban flood analysis, lacking high-resolution
rainfall records should be one of the primary issues [61]. Although many models and
frameworks were proposed to solve this issue, many inherent limitations still exist [16,62].
Therefore, a modeling framework for urban flood analysis is introduced based on short-
record rainfall from remote sensing, RainyDay, and urban hydrological model, which
effectively overcomes the high-temporal-resolution and long-term rainfall requirements
for urban flood analysis. It should be emphasized that this work does not seek to show
the proposed framework better than the traditional methods, but rather to provide an
alternative framework for urban flood analysis based on short-term remote sensing rainfall
records, and discuss its feasibility and rationality.

The results of this study for design rainfall estimates are very similar to Wright et al. [27] ,
though simulated at a much smaller scale (0.155 km? vs. 4000 km?) based on a different
time-space resolution (hourly vs. hourly, and 3 h; 0.1° grid vs. 4-km, and 0.25° grid) and
length of rainfall records (nine-year vs. 13-year, and 17-year). These two studies show
that the design rainfall is generally underestimated with remote sensing data at low return
periods or short durations. The underestimation could be explained by the length of rainfall
records and spatial resolution (nine-year and 0.1° grid for the remote sensing rainfall record
vs. more than 20 years and approximately 0.1 m? for the rain gages) in this study. For
short duration rainfall, temporal resampling using RainyDay is significantly affected by
rainfall detection errors on bias correction and conditional biases [63-66]. Also, this can be
attributed to the fundamental structure of RainyDay, i.e., the Poisson distribution is utilized
in this study (see Kim and Onof [67] for discussion). Conversely, the slight overestimation
of RainyDay-based estimates are showed at high return periods and long durations, but
the overestimation is not as severely as the underestimation. This might potentially be
attributed to conditional bias for rain rate [68] and the domain area including coastal areas
where the typhoon landed. Some existed studies show that the accuracy of the estimates
may be improved by higher temporal-spatial resolution remote sensing data, which can
better address and understand some rainfall biases [27,69].

The main parts of this study include estimating design rainfall based on nine-year
remote sensing rainfall and RainyDay, and revealing the relationship between design
rainfall and runoff through hydrological model. Previous studies showed that the design
rainfall can be well estimated by RainyDay at different scales (e.g., 14.3 km? in Zhou
et al. [70], 4400 km? in Wright et al. [66]). Though the feasibility is shown varying from
small to large scales, the limit on the size of study area can arise since the presence of
complex terrain features. The reader is directed to Wright et al. [27] for more discussion.
On the other hand, the selected hydrological model (i.e., SWMM) has been widely used for
modeling rainfall-driven flood at different scales, especially for urban areas. The proposed
modeling framework offers opportunities to analyze urban flooding based on short-record
remote sensing rainfall and hydrologic model. However, the size of the case-study area is
small, it may cannot represent all the urban flood conditions. We will continue to expand
the capabilities of the proposed modeling framework.

Case study shows that the runoff process at the outlet of case-study area and the flood
characteristics (i.e., flood time, maximum rate, total inundation volume) of each manhole
can be simulated well at relatively high return periods (20-yr or higher) or long durations
(6 h or longer) based on the selected rainfall record. But the flood characteristics are more
sensitive to the return period and duration of design rainfall than runoff process. The main
difference in the rainfall hydrographs between RainyDay-based and IDF formula-based is
from the peak rainfall, which can significantly impact the flood characteristics.

Our findings indicate that the rainfall estimates play a key role in flood analysis, similar
results are also showed in Peleg et al. [26]. That is, improving the accuracy of the rainfall
estimates is the most important in the proposed framework. Lots of studies indicated
that rainfall estimates based on historical rainfall records might not be appropriate due to
climate change [71]. Doing so would require higher-resolution remote sensing rainfall data
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and considering climate change [27,70,71]. We are developing frameworks for considering
both rainfall space-time structure and climate change based on Regional Climate Model
(RCM) simulations for RainyDay-based rainfall estimates.

Despite the proposed framework overcomes some drawbacks (e.g., rainfall records)
of traditional approaches for urban flood analysis, there still remain several limitations.
(i) Applicability of the proposed framework is insufficient for low return period or short
duration rainfall scenarios. The undervaluation of design rainfall and urban flood char-
acteristics are generally showed at these scenarios. The main reason is mentioned above,
and the applicability can be improved by utilizing higher resolution and longer rainfall
records [70,72]. (ii) The uncertainties from the rainfall data and RainyDay are hard to
minimize, which have direct impacts in design rainfall estimates and urban flood analysis.
The dominant uncertainty in the input rainfall data comes from the difference between
remote sensing rainfall data and ground-based observations [27,73]; and the uncertainty
in Rainyday comes from the input requirements (e.g., geographic transposition domain,
rainfall record) and its structure [70]. (iii) The proposed framework uses idealized assump-
tion (i.e., Chicago rainfall pattern) to determine the distributions of design rainfall. That
is consistent with the guidelines of design rainfall [46]. On the other hand, the rainfall
temporal resolution of remote sensing records is general coarser than 30-min. Comparing
the relationships between RainyDay-based and IDF formula-based analysis results suggest
that the proposed framework is an applicable way for analyzing urban flooding at high
return periods (20-yr or higher) or long durations (6 h or longer). Though limitations still
remain, we continue to develop its capabilities.

6. Conclusions

Rainfall remote sensing datasets have the advantages of high temporal-spatial reso-
lution and large coverage, which can overcome limitations such as a lack of gauge-based
rainfall records. In this study, we propose a modeling framework for urban flood analysis
based on short-record remote sensing rainfall and hydrologic model. The framework is
largely motivated by the fact that, in spite of increased interest in urban flood analysis using
high-temporal remote sensing rainfall data, the inherent limitation of a lack of long-term
high-temporal rainfall data still exists. We used RainyDay and a nine-year record of hourly,
0.1° remotely sensed rainfall data to generate extreme rainfall events for an urban hydro-
logic model (SWMM). The rainfall estimates of RainyDay-based and IDF formula-based
methods were compared, as well as the corresponding runoff process at 5-, 10-, 20-, 50-,
100-yr return periods for 2 h, 6 h, 12 h, and 24 h durations. In addition, the projection
pursuit method was used to reflect the comprehensive characteristics of the urban flooding.
A typical urban drainage basin in the south of China was selected as the case-study area.
The main conclusions include the following:

1.  Combining RainyDay and short-term remotely sensed rainfall data can lengthen the
rainfall record through transposing the spatial location of observed rainfall events.
It is able to estimate urban extreme rainfall at different return periods (e.g., range
in return period from 5- to 100-yr), despite the short (nine-year) observed rainfall
record. According to a comparison of the differences between the RainyDay-based
and IDF formula-based (a traditional published source of rainfall frequencies) rainfall
estimates, RainyDay-based rainfall estimates are basically acceptable for estimating
regional design rainfall, especially for relatively high return periods (20-yr or higher)
or long durations (6 h or longer).

2. The proposed framework shows a good performance for runoff process simulation at
the outlet based on RainyDay-based estimates, especially for high return periods or
long durations. In the case study, the difference of runoff process between RainyDay-
based and IDF formula-based methods is relatively significant at low return periods
or for short durations (e.g., NSE = 0.53 at 5-yr return period for 6 h duration), but the
difference decreases with the lengthening rainfall duration or increasing return period.
The values of NSE are generally above 0.90 at high return periods or long durations.
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3. Contrasting with the flood-simulated results under different return periods and
durations, the flood characteristics of urban flooding at each manhole can be generally
revealed based on RainyDay-based estimates at relatively high (20-yr and beyond)
return periods or long (6 h or longer) durations. Similar to the results of runoff
processes, though RainyDay-based estimates basically underestimate the values of
flood indicators (i.e., flood time, maximum rainfall rate, total maximum rainfall
volume) or the comprehensive characteristics of urban flooding under low return
period or short duration scenarios, these values can be well revealed with increasing
duration or return period.

4. The proposed modeling framework provides an alternative framework for urban
flood analysis in an ungauged drainage basin. This alternative is attractive for the
following reasons. First, the proposed framework can produce probabilistic extreme
rainfall scenarios based on a very short rainfall record (e.g., nine-year in this study),
and it excludes the older rainfall records to eliminate the effect of nonstationarity.
Second, the proposed framework provides a way to estimate the ensemble spread of
rainfall and flood estimates, rather than a single estimate value; such spread is central
to hydrological engineering practices.
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Abstract: An attempt was made to evaluate the impact of assimilating Doppler Weather Radar (DWR)
reflectivity together with Global Telecommunication System (GTS) data in the three-dimensional
variational data assimilation (3DVAR) system of the Weather Research Forecast (WRF) model on
rain storm prediction in Daginghe basin of northern China. The aim of this study was to explore the
potential effects of data assimilation frequency and to evaluate the outputs from different domain
resolutions in improving the meso-scale NWP rainfall products. In this study, four numerical
experiments (no assimilation, 1 and 6 h assimilation time interval with DWR and GTS at 1 km
horizontal resolution, 6 h assimilation time interval with radar reflectivity, and GTS data at 3 km
horizontal resolution) are carried out to evaluate the impact of data assimilation on prediction of
convective rain storms. The results show that the assimilation of radar reflectivity and GTS data
collectively enhanced the performance of the WRE-3DVAR system over the Beijing-Tianjin-Hebei
region of northern China. It is indicated by the experimental results that the rapid update assimilation
has a positive impact on the prediction of the location, tendency, and development of rain storms
associated with the study area. In order to explore the influence of data assimilation in the outer
domain on the output of the inner domain, the rainfall outputs of 3 and 1 km resolution are compared.
The results show that the data assimilation in the outer domain has a positive effect on the output of
the inner domain. Since the 3DVAR system is able to analyze certain small-scale and convective-scale
features through the incorporation of radar observations, hourly assimilation time interval does
not always significantly improve precipitation forecasts because of the inaccurate radar reflectivity
observations. Therefore, before data assimilation, the validity of assimilation data should be judged
as far as possible in advance, which can not only improve the prediction accuracy, but also improve
the assimilation efficiency.

Keywords: assimilation frequency; data assimilation; WRF-3DAVR; radar reflectivity; rainfall forecast

1. Introduction

There have been higher requirements put forward for the prediction of convective
systems precipitation and its related disasters in recent years. Improving the accuracy of
precipitation forecast has long been a challenge for Numerical Weather Prediction (NWP)
model researchers and operational communities [1,2]. Kryza and Werner et al. [3] forecasted
several short and intensive rainfalls over the SW area of Poland using the Weather Research
and Forecasting Model (WRF) with different parameterization and spatial resolution. The
results show that none of the experimented model configurations was able to reproduce
a local intensive rainfall properly. Hamill and Thomas [4] applied ensemble prediction
systems to describe the performance of the WREF precipitation forecasts. Although ensemble
forecast can reflect the predictability or reliability of real atmosphere to some extent, it
cannot improve the physical mechanism of the model. Among many considerable causes
that could lead to the inherent low predictability of convective precipitation forecasting
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using an NWP system, ambiguous description of the atmosphere initial state is one of
them. Rainfall features are always generated in an inaccurate manner, regarding location,
initiation, timing, and intensity, especially of convective storms [5]. As a result, accurately
obtaining the initial state of a storm for the regional model is the key issue for a successful
prediction of the convective system.

Several studies have confirmed it is possible to remedy defects through data assim-
ilation into the NWP model. Among the numerous data assimilation methods, those
commonly used by researchers include the optimal interpolation methods, the three-
dimensional variational (3DVAR) [6,7], the four-dimensional variational (4DVAR) [8,9],
and the Kalman filter [10] approaches. Thereinto, 3DVAR is practicable in terms of compu-
tational efficiency, thus is adopted the most frequently [5]. Variational data analysis system
was first developed by Sun and Juanzhen et al. [11], which is called Variational Doppler
Radar Analysis System (VDRAS) and began this pioneering work. Subsequently, it was
expanded by Sun and Crook [12] to use for short-term forecast initialization during con-
vective precipitation. Yang and Duan et al. [13] discussed if 3DVar data assimilation could
potentially improve the rainfall forecast in the WRF model, an obvious improvement of the
event with even rainfall in temporal distribution was found regarding the northeastern
Tibetan Plateau area. Physical initialization combined with the three-dimensional varia-
tional data assimilation method (PI3DVAR_rh) was designed by Gan and Yang et al. [14],
through which the spatial pattern forecasting of radar reflectivity and precipitation were
improved based on WRF. Vedrasco and Sun et al. [15] certified that the 3DVAR analysis
with the constraint introduced into WRF could improve the initial state of the model and
guide the convective characteristics exhibited by six summer convection cases across Brazil.
These studies show that 3DAVR plays a positive role in rainfall forecast, and this system,
which is widely used in data assimilation, is also adopted in this study.

With high-resolution observation data becoming increasingly rich, it has been a hot
research topic worldwide in recent years to improve the short-term quantitative precipita-
tion prediction level by using high-resolution observation. High-resolution observations
like Doppler radar and GTS data, can provide huge amounts of detailed information
with high spatial and temporal resolution, which makes it possible to further improve
the convective rainstorm forecast. Doppler radar can make millions of measurements of
precipitation with a spatial resolution of a few kilometers and a temporal resolution of a
few minutes [5]. Compared with existing meso-scale measure platforms, such a significant
advantage of spatial and temporal resolution has great potential for improving small-scale
and short-term rainfall prediction.

Many researchers combine high-resolution observational data with numerical models,
which plays a positive role in promoting the development of convective rainfall prediction,
improving the initial state of numerical models, as well as alleviating the imbalance caused
by interpolation [16-19]. Routray and Mohanty [20] believed that the assimilation of radar
data (radial velocity and reflectivity factor) has a positive impact on enhancing performance
of the WRF-3DVAR (WREF-three-dimensional variational) system for the Indian region.
Gvindankutty and Chandrasekar et al. [21] investigated how the 3DVAR assimilation of
DWR radial wind and GTS data positively affected the precipitation intensity as well as
spatial distribution. Abhilash and Sahai et al. [22] demonstrated improvement in spatial
pattern of rainfall of convective systems precipitation by assimilating relevant parameter
obtained by the WRF-3DVAR system, including DWR radial velocity and reflectivity as
well as GTS data. Osuri and Mohanty et al. [23] used the WRE-3DVAR system to assimilate
DWR with GTS, thus conducting 24 cases to predict tropical cyclones of Bay of Bengal,
and the results show that this method helps to provide a positive impact on the credibility
of prediction. Sugimoto and Crook et al. [5] indicated that in the 3DVAR framework and
the storm case, assimilating the radial velocity as well as reflectivity can achieve the best
performance, applied on short-range precipitation forecasting. A cycling data assimilation
improves the regional models’ initial state on the one hand, and meanwhile introduces
observation data to mitigate the imbalance caused by interpolation of prediction on the
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other hand [24]. The data assimilation system allows higher-resolution observations to be
used as the background through update-cycling procedure [25,26], which makes the data
assimilation system rely on a specified combination of error statistics to obtain the optimal
short-term forecast analysis.

Although data assimilation is capable of improving the NWP (i.e., WRF) convective
precipitation in an effectively manner, the quality of data assimilation creates uncertainty
about results. Some studies have shown that the quality of assimilated data is critical to
forecast results. Liu and Tian et al. [27] indicated that data assimilation via WRF-3DVar
could potentially improve the rainfall forecasting in northern China, with GTS data, radar
reflectivity, and radial velocity assimilated every 6 h. From their study, it is concluded
that it is the effective information in the assimilated data that exhibited more significant
results rather than the volume of data. Tian and Liu et al. [28] further explored the
effect of assimilating radar data from different height layers on the improvement of the
NWP rainfall accuracy. The results showed that the accuracy of the forecasted rainfall
deteriorated with the rise of the height of the assimilated radar reflectivity. In the process
of data assimilation, the frequency of assimilation determines the amount of effective
data assimilated. Considering the time cost, most operation departments choose a 6 h
assimilation interval [3,27,29]. In later developments, many researchers and principal
operational centers upgraded the regional NWP systems with a 3 h assimilation time
interval [30]. For highly convective storms, more frequent data assimilation with a shorter
time interval is found to be more effective to produce reliable predictions [31]. Li and
Wang et al. [32] demonstrated that the assimilation of radial velocity every half an hour
could enhance the intensity analyses and forecasts of rainfall compared to results without
assimilating radar data. Kawabata and Seko et al. [33] applied four-dimensional variational
(4DVAR) with a horizontal resolution of 2 km and 1 h length of the assimilation window
to forecast heavy rainfall at the central part of Tokyo. In most cases, researchers tend to
assimilate observations as they are originally obtained, rather than choose an appropriate
assimilation frequency or time interval.

Despite the wide application of data assimilation in enhancing precipitation forecasts,
the sensitivity of data assimilation frequency has not yet gained enough attention. This
study mainly aims at evaluating how the WRF-3DVAR with different assimilation fre-
quencies affects the accuracy of the forecast precipitation. Four typical rain storms that
occurred in semi-humid and semi-arid area of northern China were chosen as study objects.
Doppler radar and GTS data were assimilated in four designed experiments with the time
intervals of 6 and 1 h by WRF-3DVAR. The results would be helpful to improving data
assimilation efficiency with WRF-3DVAR, and provide guidance for the development of a
similar basin rainstorm forecast system. At the same time, in order to study the sensitivity
of data assimilation to rainfall forecast, the quality of radar data is also analyzed.

2. Methodology

To explore the data assimilation frequency of the short-range precipitation forecasting,
the numerical model WREF is chosen for this study [7] and its assimilating extension
WREF-3DAVR is used. WRF version 3.7 is used for all experiments. The WRF model is a
fully compressible, non-hydrostatic, mesoscale NWP, and atmospheric simulation system.
In addition, WRF-3DAVR can further influence the initial state of the WRF model by
assimilating different high-resolution observations. A brief overview of the basic model
settings and the system description can be found in the following sections.

2.1. A Brief Description of WRF-3DVAR

The fundamental objective of the 3DVAR system is to seek an optimal estimate of
initialization at parsing time through an iterative solution of a pre-determined function,
including observations, background forecast from the NWP system, etc. [34].

1@ =14 = 5 (x= ) B - S ERR ) @
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Tterative solutions to Equation (1) can summarize the Dimensional Variational As-
similation problem, to seek the analysis state variable x to minimize J(x). In the formula,
x is the variable that represents the surface and atmospheric surface state, x’ is the first
guess (or background) acquired from the previous forecast, and y° is the assimilated ob-
servation. Y = H(x) is the model-derived observation space, which is transformed from
gridded analysis x by the observation operator H for comparison against y°. The individual
data points are fitted by the weight of its error estimate: B, E, and F are the background
error covariance matrix, observation error covariance matrix, and representativity error
covariance matrices, respectively. This solution represents a minimum variance estimate of
the true state of the atmosphere given the two sources of a priori data: the first guess x”
and the observation 3 [35].

The WRF-3DVar is a variational data assimilation system designed and built in the
WRF model, and is used to assimilate radar reflectivity and GTS in this study [6,36]. The
background error covariance CV3 created by the National Meteorological Center (NMC)
was employed, which has the advantage of wide applicability [37].

2.2. WRF Model Configuration

The primary focus of this study is Fuping and Zijingguan catchments covered by the
innermost domain of a three nested domain. For the study area, the center of the domain
is at 39°26'00"N and 114°46/00"E, and from the outermost to the innermost the nested
domain sizes are 1260 x 1260, 450 x 360, and 145 x 115 km?. Considering the diversity in
assimilation variables, the horizontal grid spacing of the outermost domain is set at 9 km
and the grid size of the innermost layer is set to be 1 km, where the downscaling radio is
set to be 1:3 [38,39]. The locations of the nested domain and radar coverage are shown in
Figure 1. Forty vertical pressure levels are considered for the three nested domains with a
model top at 50 hPa [40,41].

111°0'E 114°0'E 117°0'E 120°0'E
1 1

Fuping catchment
Daginghe catchment
[ Radar caverage

:l Provincial boundaries

T
111°0'E 114°0'E 117°0'E 120°0'E

Figure 1. The study area with nested configuration of WRF domains at 9, 3, and 1 km resolution.
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The 1° x1° spatial resolution of Global Forecast System (GFS) forecast data provide
the initial and lateral boundary conditions for the simulations. Considering the resolution
of the GFS data, it would be more reasonable to add another domain with 27 km horizontal
grid spacing as the outermost one. Unfortunately, experimental runs are carried out and
the effects of data assimilation are found to be similar with the current domain settings.
Since rainstorm forecasting has a high requirement of effectiveness for a given period of
time, in practical application it is beneficial to obtain the forecasting information as soon as
possible. Therefore, the 27 km grid is not applied in this study. The integration time-step
of the WRF model and WRF-3DAVR system is 6 s and the time interval for the output
is set to be 1 h. The GFS data, which is updated every six hours, is a real-time product
provided by National Centers for Environmental Prediction (NCEP). Because GFS has not
been processed by assimilation analysis, it has been used in many studies to forecast the
storm events in WRF model and WRF-3DAVR [3,5,31].

The performance of the model is highly dependent on the parameterized scheme, and
the scheme selected in the study may be suitable for one storm event in one region, but
not necessarily for others [42]. Since it is difficult to judge which scheme is most suitable
for future storm events, parameterized schemes are usually determined in advance for
practical application [43]. Based on relevant experimental research on the selection of
sensitive parameterization schemes for ensemble rainfall forecasting [44,45], the physical
parameters with the best applicability in the study area were adopted in this study. Details
of the parameterizations that have significant impacts on the generation of rainfall used
in the assimilation experiments are shown in Table 1. It is worth noting that the cumulus
scheme is switched off for the 3 and 1 km domain.

Table 1. Details of the parameterizations used in the assimilation experiments.

Parameterization Chosen Option Reference
Microphysics scheme WSMe6 [46]
Longwave radiation Rapid Radiative Transfer Model (RRTM) [47]
Shortwave radiation Dudhia [48]
Land surface scheme Noah [49]
Planetary boundary layer Mellor-Yama-da-Janjic (MY]) [50]
Cumulus convection Kain-Fritsch (KF) [51]

3. Case Study and Data
3.1. Study Area and Storm Events

The main focus of this study is the Fuping and Zijingguan watershed covered by
Domain 2 and Domain 3 of the WRF model. According to the temporal and spatial
distribution characteristics of rainfall and the representatives of rainfall-runoff generation
characteristics, the case used in this study is four 24-h rainstorm events, which occurred in
Fuping and Zijingguan watershed. Fuping catchment is located at 39°22'N~38°47'N and
113°40'E~114°18'E with a drainage area of 2210 km? and Zijingguan catchment is located at
39°13'~39°40'N and 114°28'~115°11'E with a drainage area of 1760 km2. They belong to the
south and the north branch of the Daqinghe basin respectively, located in northern China,
having a warm temperate continental monsoon climate. Terrain elevation of the study area
varies from 2286 m in the northwest part to 200 m in the southeast mountains. The average
annual rainfall in the study catchments is approximately 600 mm, the short episodes of
intensive precipitation are more frequent in late May and early September. The steep
terrain leads to a short confluence time of the flood, which together with high-intensity,
short-duration precipitation is prone to cause severe flood disasters. They are concentrated
in areas with thin soil layer and low vegetation coverage especially. In particular, on 21 July
2012, the 24 h rainstorm event occurred in the Beijing-Tianjin-Hebei region, which has been
widely concerned because of the heavy rainfall intensity and large losses. The duration
of the four storm events and the accumulative rainfall amounts are shown in Table 2.
Among the four storms, event 4 is the heaviest one trigged by a severe convective system,
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concentrated in a small area of the watershed and with high rainfall intensity in a short
time period. The other three storms are typical stratiform rains with moderate intensity but
various distributions in space and time. The measured rainfall data are rainfall stations and
the time interval is 1 h. The 24 h rainfall accumulation is computed by Thiessen polygon
method, which averages the observations from the rain gauges. Figure 2 demonstrates a
detailed map of the study area, such as the rain gauges, watershed boundary, catchment
outlets topography, and major rivers.

Table 2. Duration, accumulated rainfall, and maximum stream flow of the four selected 24 h storm events.

Event ID Catchment Storm Start Time Storm End Time Accumulated Rainfall (mm)
1 Fuping 29/07 /2007 20:00 30/07/2007 20:00 63.38
11 Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48
1T Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82
v Zijingguan 21/07/2012 04:00 22/07/2012 04:00 155.43
114°(}'0"E 115°(}'0"E 116°({'0"E
40°0'0"" N+ 40°0'0"N
39°0'0"" N+ 39°0'0"N
Legend Daginghe DEM
Value
38°0'0"" N+ E Fuping catchment . 2739 38°0'0"N
D Zijingguan catchment
:l Daginghe catchment
®  Rain gauge 0 30 60 120 Kilometers
A Catchment outlet . 3 Lieen n fln 0 n-]
River
T T T
114°0'0"E 115°0'0"E 116°0'0"E

Figure 2. Location map and two study sites in the Daginghe catchment.

In reality, the precipitation in northern China is not absolutely even in time and space,
which is different from that in southern China. To study the spatial and temporal evenness
of the precipitation in study catchments, both spatial and temporal variation coefficient (Cv)
of four storm events from 1985 to 2015 are calculated. A threshold of 5% was employed
to separate even and uneven rainfall events. The evenness of the rainstorm events is
quantitatively evaluated in the spatial and temporal dimensions by variation coefficient
Cuv in this study. The lower Cv is, the more even the rainfall is. Based on the thresholds
selected, we found two critical values: 0.4 for spatial Cv and 0.6 for temporal Cv. When the
rainfall Cv values were less than the threshold Cv values, storm events have a relatively
even distribution of rainfall over the respective catchment. Table 3 shows the Cv values
of the four storm events in the both spatial and temporal dimensions. It can be found
that the rainfall is more uneven in time than in space, which is helpful to analyze the
spatiotemporal distribution of rainfall forecast results. It can be seen from Table 3 that the
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four rainstorms have different spatial and temporal evenness, and the selection of rainfall
events can provide reference for different types of rainfall in northern China.

(i) @

In the spatial dimension, x;jis the accumulated 24 h rainfall at the rain gauge j, and X is
the average of x;. N is the number of rain gauges. In the temporal dimension, X is average
hourly rainfall from all the rain gauges at time j, and N is the number of hours. The higher
Cuv is, the more uneven the rainfall distribution is.

Table 3. Rainfall evenness of the four selected 24-h storm events in space and time.

Event ID I I 111 v
Spatial Cv 0.3975 0.1927 0.7400 0.6098
Temporal Cv 0.6011 1.0823 2.3925 1.8865

3.2. Data Assimilation Experiments

In this study the radar reflectivity and GTS data observations forecasting are assimi-
lated into WRF and WRF-3DVAR system for 24 h typical storm events.

3.2.1. Weather Radar Data

The Doppler radar used in this study is the S-band radar located at Shijiazhuang city,
which is provided by the National Meteorological Administration and covers a radius of
250 km and can completely cover the two study areas. The radar completed a volume
sweep every 6 min, with 9 beam angles. By using a data format conversion program, the
binary base data file of Shijiazhuang Doppler radar is directly written into “ob.radar” file
as the observation field input file of wrfvar.exe. The format of the ob.radar file can be found
in the WRFDA user guide. The ob.radar file includes the latitude and longitude of the pixel
center and the height of the radar beam above that pixel. The technique details of the radar
data are provided in Table 4.

Table 4. Basic parameters of S-band radar in Shijiazhuang.

Parameters Information
Location 38.5°,114.68°
Administrative location Shijiazhuang
Antenna diameter 1.3m
Emission frequency 2.7~3.0 GHz
Observation radius 250 km
Effective radius of observation 230 km
Spatial resolution 1km
Sweep time 6 min
Beam angles 0.5°,1.5°,24°,3.4°,4.3°,6.0°,9.9°,14.6°, 19.5°

The radar reflectivity is conducted through the quality control chain to improve the
quality of the measurements before importing the assimilation process [52]. Therefore,
before being assimilated by WRF-3DVAR, radar data are supported by China Integrated
Meteorological Information Service System (CIMISS) of China Meteorological Administra-
tion to remove artefacts such as ground clutter, radial interference echo, speckles through
quality control. For convenience, dBZ is often used to represent radar reflectivity:

dBZ =101g%/Zy 3)
where, Zj =1 mm® m3, is a constant, and Z is reflectivity.
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According to Sun and Crook [12], the radar data are assimilated through an obser-
vational operator that describes the relationship between radar reflectivity and rainwater
mixing ratio by

Z = 43.1+17.5l0g (pq,) 4)

where Z is the reflectivity, p is the air density in kg/m?, and g, is the rainwater mixing
ratio. This relation is derived analytically by assuming the Marshall-Palmer distribution of
raindrop size. At the same time, the pixel-based radar reflectivity is assimilated directly in
WRE-3DVar, by stating the latitude and longitude of the pixel center and the height of the
radar beam above that pixel.

3.2.2. GTS Data

The downloaded GTS data is a collection of all kinds of meteorological observation
data, including surface weather station, ship, buoy, pilot balloon, sonde, aircraft, and
satellite observations, and its format is easily recognized by WRF-3DVAR. The decoded
data is converted into a suitable Little_R format by shell script, which is used for data
assimilation of WRF-3DVAR. Five GTS datasets, including Sound, Synop, Pilot, AIREP,
and Metar, were incorporated into the WRF model at 6 h assimilation time interval in
this study, the number of observations were 2718, 4217, 733, 201, 612, respectively. The
assimilated GTS data was directly interpolated into the background field of the model, and
the background field was corrected by a certain algorithm.

GTS data has the characteristics of wide coverage and small spatial density, which
is suitable for assimilation on a large scale. On the other hand, radar data coverage is
relatively restricted, but the data spatial density is intense, and therefore is more suitable
for assimilation in small scale. Since the scanning radius of the radar is 250 km, thus the
coverage range is similar to that of Domain 2, which is much smaller than that of the outer
domain and larger than the innermost domain. Therefore, in this study the radar data is
assimilated only in Domain 2, whereas the GTS data is assimilated in the outer domain
(Domain 1). Since the GTS data is released every six hours, in the hourly assimilation
scheme, GTS is only assimilated at the 6th, 12th, 18th, and 24th hour from the start of
the storm.

Four experiments were conducted at different horizontal resolutions while keeping all
physical settings the same. In scheme “NA_1km”, Global Forecast System (GFS) forecast
data is interpolated to the model grid as the initial conditions for the 24 h forecast without
data assimilation in all the three nested domains. In scheme “DA_1h_1km”, 1 h data
assimilation is carried out with rainfall forecasts output from the 1 km domain (Domain 3).
The settings of Scheme “DA_1h_3km” are the same as DA_1h_1km, except that rainfall
forecasts are output from the 3 km domain (Domain 2). In the scheme “DA_6h_3km”, the
1 km innermost domain is removed with only Domain 1 and Domain 2 left. Radar and GTS
data are assimilated every 6 h and rainfall forecasts are output from Domain 2. Detailed
explanations of the experimental design and the settings of the four schemes are shown in
Table 5. Before the data assimilation cycle starts, the WRF model spins up for 30 h in all
schemes with the initial condition from GFS. For cycling data assimilation, the prediction
of the previous assimilation run serves as the background for the next run.

The root mean square error (RMSE), the mean bias error (MBE), and the critical success
index (CSI) are used to evaluate the simulated precipitation of the WRF and WRF-3DAVR
model. After the analysis of indices, CSI/RMSE is used as the comprehensive evaluation
index to explore the more intuitive response of different rainfall types to forecast errors in
temporal and spatial scales.
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Table 5. Experiment description.

Domain Radar Data GTS Data Outout
Experiments . Data Assimilation Assimilation Assimilation pt
Resolutions . . Resolutions
Time Interval Time Interval
NA_lkm Domain 1 (9 km) 1km
(=no assimilation) Domain 2 (3 km) no ne noe (Domain 3)
Domain 3 (1 km)
DA_.lh._lk.m . Domain 1 (9 km) Radar reflectivity
(=data assimilation with . . . 1km
R Domain 2 (3 km)  in Domain 2 + GTS 1h 6h .
1 hinterval and output from . K . (Domain 3)
R Domain 3 (1 km) in Domain 1
1 km domain)
DAilhT?)k.m . Domain 1 (9 km) Radar reflectivity
(=data assimilation with . . . 3 km
R Domain 2 (3 km) in Domain 2 + GTS 1h 6h .
1 hinterval and output from . K . (Domain 2)
. Domain 3 (1 km) in Domain 1
3 km domain)
DA_6h_3km .
(=data assimilation with Domain 1 (9 km) 'Radar r(?ﬂect1v1ty 3km
. . in Domain 2 + GTS 6h 6h .
6 h interval and output from Domain 2 (3 km) in Domain 1 (Domain 2)

3 km domain)

CSI [53] denotes the percentage of correct simulation between the forecast and ob-
servations, and the perfect score is 1. According to Equation (6), the calculation of CSI
depends on whether it rains or not. Since the essence of WRF model simulation is to solve
equations, it is inevitable that the rainfall calculation result is close to 0. In order to avoid
the light rain in the prediction being included in H or R, hourly rain rate less than 0.01 mm
is considered as no rain, and CSI is based on the method in Table 6 to classify the rainfall
simulation results.

Table 6. Rain/no rain contingency table for the WRF simulation against observation.

Prediction/Observation Yes (>0.01 mm) No

Yes hits (H) misreports (R)
No misses (S) /

Classified variables H, R and S represent whether the predicted and observed values in
a certain observation period or observation position are greater than 0.01. If both predicted
and observed values are greater than 0.01, that is, rainfall is captured in model, H+1; If the
predicted value is greater than 0.01 and the observed value is less than or equal to 0.01,
that is, the model misreports rainfall, then R+1; If the predicted value is less than or equal
to 0.01 and the observed value is greater than 0.01, that is, the rainfall is missed in model,
then S+1. If both the predicted value and the observed value are equal to 0.01, that is, the
model accurately predicts the scenario without rainfall.

2
- Q) )
1 M H;
CSI = L s (6)
1M,
MBE =) (Qf - Q) @)

For the spatial dimension, Q;" and Q; denote the observation and prediction of 24 h
rainfall accumulations at each rain gauge i. M is the number of the rain gauges, which is 8
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for the Fuping catchment and 11 for the Zijingguan catchment. For the temporal dimension,
Q/’ and Q; are the average areal rainfall of observation and prediction at each time step i.
This time M is 24, which represents the number of the time steps. The specific meaning can
be seen in Table 7.

Table 7. The meaning of letter in formulas, including Q/, Q;, i, and M.

Letter For the Spatial Dimension For the Temporal Dimension
’ Observation of 24 h rainfall accumulations average areal rainfall
Qi at each rain gauge of observation
Prediction of 24 h rainfall accumulations at average areal rainfall
Qi each rain gauge of prediction
i Rain gauge ID each time step
M Total numbers of rain gauges 24h

The calculation of CSI is based on the rain or no rain contingency table (Table 7). For
the spatial dimension, the predicted rainfall was compared with observations at rain gauge
locations to calculate the indices of H, R, and S at the time i, and then the values of the
indices at all times are averaged to obtain CSI according to Equation (6). M is the number
of total times. In this study, the time i is consistent with output frequency of the model,
which is 1 h. That is, CSI is the average value of the H/(H + R + S) for each hour of the
24 h rainfall duration. Similarly, for the temporal dimension, the indices in Table 7 are
calculated based on the time series data obtained for the simulated and observed areal
rainfall at the rain gauge i. The values of the indices at all rain gauges are then averaged to
produce the final CSI value based on Equation (6). In this case, M refers to the total number
of rain gauges rather than the simulation time.

4. Results
4.1. Effect of Data Assimilation on Temporal Rainfall Distributions

As illustrated by Figure 3, it shows the results of different assimilation frequencies.
The first guess file generated from the previous run will provide the initial conditions for
the next run. “DA_1h_lkm” and “DA_1h_3km” are assimilated data with an interval of
1h, and “DA_6h_3km” is 6 h. The forecasted accumulative rainfall is calculated from the
average value of rainfall at each grid point in the study area. When the area of the grid
within the watershed boundary accounts for more than 50% of the grid area, the rainfall
value of the grid point participates in the calculation of the rainfall accumulations. As for
the observations, the observed accumulative rainfall is calculated by averaging rain gauge
observations using the Thiessen polygon method.

When the different assimilation frequencies are chosen in the model, the curve struc-
ture in the rainfall forecasting is significantly altered (“DA_1h_3km” and “DA_6h_3km”).
The evolution of “DA_1h_3km” and “DA_6h_3km” in WRE-3DAVR system shows similar
patterns with higher differences in the rainfall peak. The improvement of assimilation
frequency led to a significant increase in precipitation. In WRF-3DVAR system, the opera-
tion with high assimilation frequency will produce incremental adjustment, which makes
the prediction closer to the observation. In addition, through evaluating the outputs from
different domain resolution on rainfall prediction, the improvement of WRF-3DVAR sys-
tem domain output resolution is less obvious on the accumulative rainfall (“DA_1h_lkm”
and “DA_1h_3km”). In other words, the data assimilation of the outer domain has a
positive effect on the output of the inner domain, but the improvement is not obvious.
This may be due to the fact that no data is assimilated on the 1 km horizontal resolution
domain. The larger the volume of assimilation data import to model, the longer time it
will take to forecast the rainstorm. However, rainstorm forecasting has a high requirement
for effectiveness for a given period of time, so in practical application it is beneficial to
obtain the effective information of rainfall as soon as possible. In order to balance the
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accuracy and timeliness of rainstorm forecasting, data assimilation is not carried out in the
innermost domain.
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Figure 3. Rainfall accumulation of rain gauge and four data assimilation schemes for Event I, II,
111, TV.

4.2. Effect of Data Assimilation on Spatial Rainfall Distributions

The spatial distributions of predicted precipitation with and without assimilation
are shown in Figure 4. It is not difficult to see that after the data assimilation, the spatial
temporal distribution of rainfall forecast has been improved in varying degrees compared
with without assimilation. “DA_1h_1km”, “DA_1h_3km”, and “DA_6h_3km” performed
much better as rainfall forecasts, respectively, than “NA_1km” in spatial distributions. The
results show that the WRF-3DAVR system can obtain the major rain band located around
the east and south border of the study area while the same rain band is disorganized in
the WRF model. That is, the improvements to certain extents in spatial distributions after
data assimilation.

Figure 4 shows spatial distributions of the 24 h accumulative rainfall for the four
storm events in the Fuping and Zijingguan catchment. It can be intuitively seen from
the spatial variations in Event II-IV that the rainfall forecast after data assimilation is
significantly larger in numerical value than before assimilation. The storm centers of events
were captured relatively well by WRF-3DAVR; however, some parts of the catchments with
high rainfall accumulations were missed by WRF-3DAVR, such as the northern rainband
of Event III and the western rainband of Event IV. By analyzing the evenness of storm
events, the temporal and spatial distribution of Event I is more even, Event Il is uneven
in time, and Event III-IV is uneven in space and time. The results show that the rainfall
with even spatial distribution has the best predicted results on the spatial scale, while the
rainfall with uneven spatial distribution has the worst predicted results on the spatial scale.
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WRE-3DAVR is easier to accurately simulate or forecast rainfall with more uniform spatial
distribution, while WRF-3DAVR is more difficult to accurately forecast rainfall area with
uneven spatial distribution. It can also be obtained from the index analysis of each rainfall
forecast result in Table 8. In addition, whether the rainfall is evenly distributed on the
time scale has a certain influence on the forecast results of rainfall on the spatial scale but
does not play a decisive role. From “DA_1h_lkm” and “DA_1h_3km”, simply increasing
the resolution of domain has no significant improvement in the spatial dimension of the
rainfall simulations, this is probably because the innermost domain does not assimilate
data. Furtherly, Table 8 in Section 4.3 provides the root mean square error (RMSE), mean
bias error (MBE), critical success index (CSI), and CSI/RMSE of 24 h rainfall accumulation
values using WRF and the different WRF-3DAVR schemes.

(4) Event IV

Figure 4. Spatial rainfall distributions of gauge observations and forecasts from four data assimilation schemes for Event I,
11, 111, 1V, from left to right: (a) observation; (b) NA_1km; (c) DA_1h_1km; (d) DA_1h_3km; (e) DA_6h_3km.

4.3. Evaluation on the Storm Process Improvements

The evaluation scores for the four 24-h rainstorm forecasts from 1 and 6 h time
intervals with and without assimilation are shown in Table 8. In evaluations in the spatial
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scale, the model forecasts are interpolated to the rain gauge locations for comparisons
with the observations. Firstly, compared with “NA_1km”, the rainfall forecasts at different
assimilation schemes are improved significantly. For example, RMSE of “NA_1km” without
assimilation in Event I on the temporal dimension was 2.3393, while the highest RMSE with
data assimilation is 2.1320 (DA_6h_3km) and the lowest RMSE is 1.7816 (DA_1h_1km).
Possibly it is because Event I has a relatively even distribution in both time and space
(0.3975 for spatial Cv and 0.6011 for temporal Cv), and data assimilation has no large
improvement on the rainfall forecasting with even spatial-temporal distribution. Similarly,
on the spatial dimension, RMSE of the assimilated schemes is better than that without
assimilation. In the spatial dimension, for example, RMSE of “NA_1km” in Event III is
2.8849, which is no assimilation, while the worst RMSE with data assimilation in Event III
is 1.4068 (DA_6h_3km). Therefore, the good performance for selected typical precipitation
events shown by the cycling data assimilation gradually improves not only temporal but
also spatial variability.

Secondly, the performance of the 1 h assimilation time interval with respect to its
6 h counterpart with data assimilation is examined. It is shown (Table 8) that experiment
hourly assimilation time interval has lower RMSE than its 6-hourly counterpart in most
events in both the temporal and spatial dimension, indicating the potential for a better
forecast. Event I, Event III, and Event IV show positive effect in rapid update assimilation,
and much precipitation rises in WRF-3DAVR compared to low assimilation frequency
(“DA_1h_3km” and “DA_6h_3km"). In the case of Event IV in the spatial dimension, for
example, a decrease in RMSE from 12.6979 after 6 h assimilation time interval to 8.7782
occurred after hourly assimilation frequency; a similar trend was noted during Event
I and Event III. In the meantime, hourly assimilation frequency has a lower MBE than
6-hourly assimilation time interval for most events. This might be the result that the
regional approach with higher-resolution observations and closing to actual atmospheric
boundary conditions may improve the assimilation effect and help offset temporal and
spatial information lost by WRE. For the study area with small-scale, the assimilation time
interval of 6 h is too long, and the model background field is not corrected in time. As time
goes on, the observation error of radar is constantly amplified in the model background
field, which reduces the effect of rainfall forecast.

However, WRF-3DAVR and high assimilation frequency are mixed. In Event II,
experiment hourly cycled configuration had slightly lower scores than those of the 6-hourly
counterpart in the both time dimension and spatial distribution for Event II. Although
the low assimilation frequency appears to be slightly better than the high assimilation
frequency for Event II, this does not seem to pose a threat to the hourly assimilation
frequency. But it also reflects the disadvantages of spreading too much radar information
to places where the radar data are not available.

In addition, the influence of data assimilation of outer domain on the output of inner
domain is discussed, and the precipitation outputs of 3 and 1 km domain are compared.
The results show that although the data assimilation of outside domain has a positive
impact on the output of the inside domain, inside domain generated very small helpful
increments, especially in the time scale.

All the schemes show different amounts of false precipitation in study areas from CSI.
The high CSI are Event I and I, indicating that the model basically captures the occurrence
time and rainstorm area of Event I and II, the low CSI are Event III and IV, and the lowest
is Event ITI, indicating that the simulation results of these rainfall fields are poor in terms of
time and space. In order to further evaluate the forecasting results of WRF-3DAVR system
for each rainfall type on the temporal scale, CSI/RMSE was taken as a comprehensive index
to evaluate the forecasting results. In the temporal dimension, the forecasting results of
Event I and Event II are the best, with the value range of four schemes of CSI/RMSE being
0.2412 to 0.4538, while the forecasting results of Event IIl and Event IV are the worst, value
range of four schemes of CSI/RMSE being 0.0345 to 0.0948. In the spatial distribution,
the same law is presented, that is, WRF-3DAVR system is easier to accurately simulate
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or forecast rainfall with more uniform time distribution, but more difficult to simulate
or forecast rainfall with short duration and concentrated rainfall. Combined with the
calculation of the spatiotemporal variation coefficient (Cv) of precipitation events, it shows
that Event II-IV are more uneven in time and space than Event I. In Event III, for example,
the temporal Cv value of 2.3925 and the spatial Cv value of 0.7400 are much higher than
those of Event I (0.6011 and 0.3975). This may explain the increased bias in assimilation,
since the improved effectiveness of the rainfall forecast after assimilation is determined by
the amount of effective information contained in the data. It is easier for radar reflectivity
and GTS data to capture data during periods of rainfall that is homogeneously distributed
in space and time.

Table 8. Temporal and spatial values of the four assessment indices for Event I, II, III, IV with four schemes.

Events Experience Temporal Dimension Spatial Dimension

Scheme RMSE MBE CSsI CSI/RMSE RMSE MBE CSI CSI/RMSE

NA_1km 2.3393 —1.9322 0.7519 0.3214 1.7908 —1.7003 0.7478 0.4176

I DA_1h_lkm 1.7816 —1.4615 0.6820 0.3828 1.1295 —1.0476 0.7835 0.6936

DA_1h_3km 1.7967 —1.4837 0.8153 0.4538 1.1343 —0.9890 0.8155 0.7189

DA_6h_3km 2.1320 —1.6189 0.7872 0.3692 1.7171 —1.6280 0.6719 0.3913

NA_1km 2.3752 —1.5909 0.5729 0.2412 2.5884 —2.5600 0.5729 0.2213

It DA_1h_lkm 1.9468 1.3097 0.5791 0.2974 0.9473 0.9425 0.5744 0.6063

DA_1h_3km 1.9584 1.3263 0.5759 0.2940 0.9523 0.8136 0.5729 0.6016

DA_6h_3km 1.9360 1.2940 0.5791 0.2991 0.9047 0.6404 0.5744 0.6349

NA_1km 3.4189 —1.7446 0.1180 0.0345 2.8849 —2.4168 0.1910 0.0662

I DA_1h_lkm 2.0987 —1.0273 0.1038 0.0495 1.0594 —1.0353 0.1875 0.1770

DA_1h_3km 2.1185 —1.0381 0.1676 0.0791 1.2250 —1.1401 0.1667 0.1361

DA_6h_3km 22778 —1.2869 0.2004 0.0880 1.4068 —1.2895 0.1806 0.1283

NA_1km 8.5700 —5.8656 0.6601 0.0770 12.6979 —10.4946 0.5524 0.0435

v DA_1h_lkm 5.9530 —4.0378 0.5449 0.0915 8.7782 —3.5646 0.5524 0.0629

DA_1h_3km 5.9566 —4.0304 0.5648 0.0948 8.8033 —3.6767 0.5131 0.0583

DA_6h_3km 6.6525 —4.3429 0.6601 0.0992 9.3979 —5.4607 0.4270 0.0454

Assimilation of all possible data with high assimilation frequency may not be the
most effective method in precipitation forecasting. Especially, the influence of assimilation
frequency on rainfall forecast is rather small in Event II; the precipitation forecasts with 1 h
cycle do not have much difference from those with 6 h cycle. That may indicate the impact
of false rainfall forecasting fields is enlarged because of the inaccurate radar observed data.
One may wonder whether the results of assimilation have anything to do with the quality
of the assimilated data, such as radar data. To answer that question, the ability of Doppler
radar to retrieve precipitation is plotted (Figure 5). In each single subfigure, the black bars
and yellow solid curve indicate measure rainfall and accumulative rainfall from rain gauge,
respectively. Green bars and pink curve indicate rainfall and accumulative rainfall from
radar observed reflectivity inverse calculation. The left y-axis is the cumulative rainfall
value, corresponding to the curve, and the y-axis on the right is the value of hourly rainfall,
which corresponds to the bar graph.

As can be seen from Figure 5, the radar precipitation estimation of Event I was closer to
the observation accumulation curve, and at the same time, assimilation effect of Event I was
also the best in all events. In addition, there was substantial rainfall growth during the first
nine hours of the rainfall after the radar data assimilation for Event III, and the accumulated
rainfall increased abruptly. Additionally, we found that the radar measures rainfall from
the 1st hour to the 9th hour as much larger than the observed rainfall (Figure 5), as revealed
in many previous studies [54]. Therefore, in our storm events selected, the accuracy of
radar reflectivity is of primary importance in improving the quality of precipitation forecast
within the time range of forecasting [5].

When WRE-3DVAR technology is applied, a matter of effective radar data assimilation
could be tackled by using shorter assimilation time interval to achieve greater informa-
tion assimilation. Although the assimilated radar data can help WRF model to forecast
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precipitation effectively, it increases the conflict between radar data and domain. In the
process of data assimilation, the validity of assimilated data should be judged as far as
possible in advance, which can not only improve the prediction accuracy of WRF model,
but also improve the assimilation efficiency. There are many factors affecting assimilation,
and radar data may be only a part of them, and more factors need to be further explored,
such as the resolution of GFS data, nested boundary conditions, the dynamic structure of
the model, numerical discretization, etc.
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Figure 5. Observations and radar measurements of 24 h rainfall accumulations for Event I, II, III, IV.

5. Discussion

By carrying out a comparative analysis on the output results of different assimilation
frequencies, it can be proved that by reducing the length of the assimilation window, the
rainfall forecasting can be closer to the observations and can better present storm center.
The hourly data assimilation frequency in the WRF-3DVAR allows for the addition of useful
information and results in improved performance of the rainfall forecasting. However,
misestimates may be caused when applying high assimilation frequency.

First, the quality of the output analysis depends on the error in the model initializa-
tion when inaccurate boundary field and background information is inputted into the
assimilation system. As is widely understood, accurate initial condition is crucial to data
assimilation and prediction of numerical weather prediction (NWP) system. Data assimila-
tion system can combine all useful information about atmospheric conditions in the given
time window, and obtain estimated value of the valid atmospheric conditions in given anal-
ysis time. Where, information used for model calculations is sourced from the observations,
background, previous estimate of the atmospheric state, as well as their specific inherent
errors. Compared with other error sources (e.g., physical parameterization, boundary
conditions, and predicting dynamics), the relative importance of prediction errors caused
by initial condition errors depend on many factors, including resolution, domain, data
density, orography as well as the forecast product of interest [55]. The assimilation data of
the WRE-3DVAR system is dedicated to providing initial conditions and further improving
the WREF predictions, and then applied to creating forecasting of regional climates in the
future, which is excitingly possible.

Especially, the radar data as one of the assimilation data sources, which represent the
small-scale and rapid evolution in the boundary layer, are often unsatisfactory, especially
in the events of extreme rainfall intensity. This is because the rainfall estimate of radar is
not directly measured, but is indirectly obtained by the measured radar reflectivity. The
measurement of radar reflectivity and the conversion process from reflectivity to intensity
are affected by many error sources. In order to improve the accuracy of the radar data used
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for initial conditions of mode, it can be adjusted according to the rain gauge measurements.
In this way, it can combine the advantages of the precise measurement of rainfall by the
rain gauge at the point and the better performance of the radar in the spatial distribution,
and overcome the disadvantages of the rainfall deviation caused by the uncertainty of the
radar in the rain measurement. Studies are being conducted to find the optimal technique
for radar observations to improve the initial state of the model.

Second, the error in the actual numerical prediction system may be highly non-linear,
although the variational method includes linearized dynamic and physical processes, which
limits the practicability of variational data assimilation in highly non-linear regions (such
as convective scale or tropical region). Therefore, it is necessary to develop a more objective
method, such as a method based on ensemble prediction for estimating the uncertainty
of a flow-related prediction background [5]. Nevertheless, despite these limitations, this
study provides a prototype for short-term practical prediction of a local convective weather
system. It is hoped that these research topics can be discussed in the future research and
application of the 3DVAR system.

Furthermore, it is shown that the WRF model can reasonably predict a low-intensity
and long-lasting rainfall event. However, the result from this study indicates that this model
often leaves out rare small-scale and short-term rainfall prediction events or underestimates
the precipitation intensity, because small-scale interference is filtered when large-scale
analysis keeps a better balance [15]. The main reason for this is that convection is a small-
scale phenomenon, and false estimates may be caused if the increment in diffusion spreads
too far. This is exactly what should be improved in the predictions, by applying different
model parameterization technology [56] or data assimilation technology for instance [3].

For mesoscale catchments, the spatial distribution of rainfall is also important due
to its significant impact on the flood volume, flood peak, and time to peak [28]. In addi-
tion, approaches to improve the spatial accuracy of precipitation predictions after data
assimilation are also worth exploring. It is necessary to analyze more storm events in
different survey regions in order to find more general radar data assimilation criteria and
thus facilitate numerical prediction.

6. Conclusions

This study explores the effect of radar reflectivity and GTS data assimilation from
assimilation frequency using WRF-3DVar for rainfall forecasting. Four heavy storm events
at the Daqinghe catchment in the Beijing Tianjin Hebei region of northern China are selected
to be regenerated by the WRF model. We employed three nested domains, and adopted
the GFS data for driving the WRF model. From two aspects of cumulative rainfall and
spatial distribution of rainfall, two observational data types (radar reflectivity and GTS
data) assisted in investigating how WREF rainfall forecasts were potentially improved in
space and time through data assimilation. We designed four data assimilation schemes
considering various possible combinations of the two data assimilation frequency types
in the three nested domains. We compared the analysis with data assimilation and that
without data assimilation, finding that the assimilation results partly fit observations in
the case and that WRF-3DAVR with radar reflectivity and GTS data better represents the
rainfall forecasts in space and time.

Precipitation simulated by the WRF model is always much lower than observed
rainfall, but assimilation systems can increase rainfall. The improved initial conditions
in WRF-3DVAR system via radar data assimilation and GTS data achieved better short-
term and convective strong precipitation in the both temporal dimension and spatial
dimension. The high assimilation frequency significantly helps to trigger and maintain the
convective activities in the 3DVAR framework as well as the storm case applied. Forecasts
of events indicate that the temporal rainfall distributions of convective storms can be much
better predicted with high assimilation frequency, compared with the 6 h assimilation
time interval run. At the same time, employing the high assimilation frequency to the
assimilation showed improved skill of precipitation forecasting in WRF-3DVAR on spatial
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rainfall distributions. The only exception happened in Event II. In this case, the impact of
false rainfall forecasting fields is enlarged because of the inaccurate radar observed data,
so that the negative impact was found after assimilation. However, this does not seem
to pose a threat to the hourly assimilation frequency. In addition, the data assimilation
of outside domain has small impact on output of inside domain in not only temporal but
also spatial dimension. In general, the hourly data assimilation frequency together with
strict outputs from domain resolutions is closer to actual precipitation. In this study, the
assimilation by combining the radar reflectivity and Global Tele-communication System
(GTS) data with high assimilation frequency is helpful for further enhancing the temporal
and spatial distribution of the short-term precipitation forecast. The results can be used as
a reference for areas with similar climatic conditions as well as rainfall characteristics. The
methodology is of guiding significance for WRF-3DAVR rainfall forecasting. In this case, in
order to explore universally applicable data assimilation guidelines for rainfall forecasting,
research should be conducted over more storm events in different study areas.
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Abstract: Estimating accurately evapotranspiration (ET) in urban ecosystems is difficult due to the
complex surface conditions and a lack of fine measurement of vegetation dynamics. To overcome
such difficulties using recent developments of remote sensing technology, we estimate leaf area index
(LAI) from Sentinel-2-based Normalized Difference Vegetation Index (NDVI) using the NDVI-LAI
nonlinear relationship. By applying Sentinel-2-based LAI and land cover classification (LCC) to a
carbon-water coupling model (PML-V2.1) with surface meteorological forcing data as input, we, for
the first time, estimate monthly ET at 10m x 10m resolution for the Beijing Sponge City. Results
show that for the whole sponge city during June 2018, the LAI, ET and gross primary productivity
(GPP) are 0.83 m?m 2, 1.6mmd!and28 gC m2d1, respectively. For different LCCs, lakes
and rivers have the highest ET (>8 mm d~!), followed by mixed forests and croplands (ET is
4-6 mm d~! and LAT is 2-3 m? m~2) with dominant contribution (>80%) from plant transpiration,
while grasslands (2-4 mm d~1) have 50-70% from transpiration due to smaller LAT (1~2 m? m~2).
The impervious surfaces occupying ~60% of the sponge city area, have the smallest ET (<2.0 mm d 1)
in which interception evaporation by impervious surface contributes 20-30%, and transpiration
from greenbelts (0.5-1.0 m?> m~2 of LAI) contributes 40-50%. These findings can provide a valuable
scientific basis for policymaking and urban water use planning. This study proposes a Sentinel-
2-based technology for estimating ET as a feasible framework to evaluate city-level hydrological

dynamics in urban ecosystems.

Keywords: evaporation; evapotranspiration; LAI; NDVI; urban ecosystem; sponge city; PML-V2;
Penman-Monteith equation; Sentinel-2

1. Introduction

Owing to the high heterogeneity and complexity in urban ecosystems, it is rather
difficult to monitor or predict the hydrological dynamics of urban surfaces [1]. Some
megacities, e.g., Beijing—the capital city of China—have experienced strong urbanization,
large population inflow, island effect and climate change during the past few decades [2].
These changes induce urban hydrological processes to be highly uncertain and make
policymakers face tough challenges in water use planning and management. Therefore,
there is an urgent need to accurately estimate urban hydrological processes.

Evapotranspiration (ET), as a key component of the urban hydrological processes and
surface energy balance, plays an important role in regulating water resource supply and
relieving the urban island effect (e.g., surface cooling) [3]. Different from natural ecosystems,
the urban ecosystems include large proportions of artificial modifications in land cover,
such as impervious surfaces including roofs, squares and cement or asphalt roads. These
man-made reconstructions could contribute a large fraction of evaporation [4-6], but the
quantification at city levels remains highly uncertain due to a lack of clearly distinguishing
estimations of ET between impervious surfaces and vegetated or bare-soil lands. The
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good news is that recent developments of fine resolution remote sensing for land use and
land cover classification, vegetation dynamics and environmental monitoring provide new
opportunities to estimate urban ET more accurately [7]. For example, the Sentinel-2, as part
of the European Commission’s Copernicus program with the launch of satellite Sentinel-2A
on 23 June 2015, are monitoring variability in global land surface conditions at a 10-60m
resolution and a 5-10-day revisit [8].

In this study, we take the sponge city project in Beijing city as a study case to estimate
ET of the urban ecosystem at 10m resolution using the satellite-based land cover map
and vegetation information derived from Sentinel-2 data. Beijing city has 5-year mean
annual precipitation of 560 mm and mean annual temperature of 12 °C, with the potential
evaporation of 550~600 mm year~!. To reduce stress on water supply (e.g., ~30 m? per
capita water use per year in Beijing) and urban environment, the Beijing Sponge City
project was started on 4 December 2017, aiming at turning 20% of Beijing city into a sponge
city covered area by 2020 [9]. Therefore, to evaluate the benefit of this project, it is essential
to implement a city-level assessment of the project-induced ecohydrological changes at
fine resolution.

2. Materials and Methods
2.1. Observational Forcing Datasets
2.1.1. Land Cover Map at 10m Resolution Derived from Sentinel-2

The land cover classification (LCC) global map at 10m resolution was obtained from
FROM-GLC10 [7]. The FROM-GLC10 LCC data is developed based on Sentinel-2 data in
2017 with Google Earth Engine, and the overall accuracy of this LCC validated against
the circa 2015 validation sample is 73% [7]. The LCC data includes 10 classes (i.e., crop-
land, forest, grassland, shrubland, wetland, tundra, impervious surface, bare land, and
snow/ice). The most advances of the FROM-GLC10 LCC map compared to previous Land-
sat series-based LCC products are that it provides more spatial detail, better distinguish
the forest from shrub or grassland classes, and better performance in coastal areas [7].

2.1.2. NDVI and LAI at 10m Resolution Derived from Sentinel-2

We calculate the Normalized Difference Vegetation Index (NDVI) from the Sentinel-2
reflected radiance by
Rnir - Rred
Ryir + Rred

where R,;, and R,,; are the spectral bands at near infrared (842 nm) and red (665 nm),
respectively. The Sentinel-2 reflectance data are available at the USGS EROS Center
(https:/ /www.usgs.gov/centers/eros, accessed on 8 April 2021). The leaf area index (LAI)
at a 10m resolution was derived from the retrieved Sentinel-2 NDVI using a nonlinear
regression model between LAI and NDVI,

NDVI = 1)

LAI =axexp(bx NDVI) +c¢ 2)

where the parameters 4, b and ¢ are determined as 12.4, 6.4 and 0.6, respectively.

The determination process was based on MODIS-based NDVI and LAI products,
which was described as: (i) The MODIS LAI (MOD15A2H) and surface reflectance (SR)
products (MODO09A1) at 500m were collected over the study area (Beijing Sponge City)
for the summer months (June, July, and August) from 2013 to 2019. The NDVI was then
estimated using the 500m SR product (Equation (1)). (ii) MODIS LAI and NDVI values
were collocated on the pixel basis. As the MODIS LAI product has a valid range between
0 and 6.9, with a precision of 0.1, we classified all NDVI values into 69 groups based on
unique LAI values (eliminating the zero-LAI group). The probability density plots for each
group are shown in Figure 1a. (iii) For each LAI-based value group, the probability density
was fitted using the Gaussian distribution function. Then, the NDVI value corresponded by
the maximum probability density was extracted and collocated with the specific LAI value.
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The result shows a strong exponential relationship between NDVI and LAI, especially
when the LAI value increased beyond 0.5-0.6 (Figure 1b). Therefore, the scatter values
were fitted using the exponential model (Equation (2)), which resulted in an R? of 0.82,
implying that such exponential model in Equation (2) is robust for the Beijing Sponge City.
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1 2 3 4 5 6
(b) LAI (m? m-?)

E 4.
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0.0 0.2 04 0.6 0.8

NDVI

Figure 1. The nonlinear relationship between LAl and NDVI. (a) Frequency distribution of NDVI-LAI Higher values of the
scatter number in (a) indicate stronger relation between LAI and NDVI. (b) Regression between LAI and NDVI. The brown
curve was fitted using Equation (2) from the NDVI-LAI values (blue stars) under the maximum probability density.

2.1.3. Surface Climate Driving Dataset

To estimate evapotranspiration of urban ecosystem at 10m resolution, a high-resolution
surface climate forcing data including precipitation, surface air temperature, wind speed,
surface pressure, specific humidity, downward shortwave and longwave radiations, etc., is
needed to drive the terrestrial evapotranspiration model (PML-V2 model, see Section 2.2).
In this study, we used the China Meteorological Forcing Dataset (CMFD) version 1 at
0.1° x 0.1° and daily resolution for June 2018 as input for the PML-V2 model. The CMFD
V1.0 dataset covered the period of 1979-2018 and was downscaled from station-based data,
TRMM satellite-based precipitation, GEWEX-SRB shortwave radiation and the GLDAS
forcing dataset [10]. The surface climate driving variables used for the Beijing Sponge City
area were spatially bilinearly interpolated onto a 10m x 10m resolution. The monthly CO,
concentration observed in June 2018 is set as 407 ppm.
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2.2. PML-V2.1 Model

Version 2 of the Penman—-Monteith-Leuning model (PML-V2) was developed by
coupling the widely-used photosynthesis model [11] and a canopy stomatal conductance
model [12] with the Penman-Monteith energy balance equation [13] to jointly estimate
gross primary productivity (GPP), E; and E; [14-18]. The PML-V2 model also simulates
the E; based on a revised Gash-model scheme [19]. The PML-V2 model has been applied
to successfully produce the MODIS LAI-based global GPP and ET products at a 500m and
8-day resolution from 2002 to present, which were noticeably better than most widely used
GPP and ET products [16]. In this study, we incorporated modules of impervious surface
evaporation (E;) and open-water evaporation (E;) into the PML model (PML-V2.1) to
make it suitable for urban ecosystems. Key parameters used in the PML-V2.1 model are
provided in Table 1. The following shows the detailed description for PML-V2.1.

Table 1. Key parameters used in the PML-V2.1 model.

Land Cover Classification @

Parameter Definition Unit
CRO MIF GRA SHR WET WAT IMP BAR
4 Surface albedo for shortwave radiation — 0.150 0.150 0.250 0.250 0.250 0.050 0.350 0.350
€ Emissivity for longwave radiation — 0.960 0.990 0950 0950 0960 0990 0940 0.940
Do Reference vapor pressure deficit at kPa 2000 0552 0.638 0864 0661 0700 0552 0.864
stomatal conductance reduction
ko Extinction coefficient of PAR — 0721 0386 0595 0.230 0.996 0.600 0.386 0.230
ka Extinction coefficient of available - 0.899 0899 0900 0.888 0.888 0700 0.899 0.888
energy
Steaf Specific canopy rainfall storage mm 0010 0198 0227 0014 0022 0000 0198 0014
capacity per unit leaf area
Specific ratio of evaporation rate over
Fero rainfall intensity per unit vegetation — 0.092 0.256 0.010 0.010 0.017 0.000 0.256 0.010
cover
Specific canopy rainfall storage
Su capacity per unit impervious surface mm 0.014 0.014 0.014 0.014 0014 0.014 0.014 0.014
area
LAIV(,f Reference LAI m 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
h Canopy height m 1.000 10.00 0.5000 10.000 0.500 0.500 10.00 0.500
Maximum catalytic capacity of umol
-2
Vinos Rubisco per unit leaf area at 25°C r:il 22560 28.450 29.560 18.770 24.440 0.000 28.450 18.770
B Initial photochemical efficiency — 0.029 0.029 0.029 0.029 0.029 0.000 0.029 0.029
Initial value of the slope of CO mol
7 v P 2 m~2 0.069 0.040 0.026 0.024 0.069 0.000 0.040 0.024
response curve o1
m Ball-Berry coefficient — 5289 8355 3934 4406 9211 0.000 8355 4.406
Dnin The threshold below which thereisno—yp. 4 499 0711 0650 1493 0664 1.000 0711 1493
vapor pressure constraint
Dygy ~ 1hethresholdabove whichthereisno 1 p. (500 3500 5199 5797 5188 6500 3500 5797

assimilation

@ CRO: cropland, MIF: mixed forest, GRA: grassland, SHR: shrubland, WET: wetland, WAT: water body, IMP: impervious surface and
BAR: bare land.
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2.2.1. Energy Balance at Urban Land Surface
Based on the surface energy balance, the net radiation (R;;) can be balanced by the

latent heat flux (LE), sensible heat flux (H) and ground heat flux (G). As for a biweekly or
longer estimation, the G is often negligible (G < H + LE), then the H is given by

H=R,—LE—G~R,—LE ®3)

The net radiation at the surface is the sum of the net shortwave downward radiation
and the net longwave downward radiation,

Ry = (1—a)SW+ (Lw - eaTa4> )

where the shortwave downward radiation SW (W m~2), the longwave downward radiation
LW (W m~2) and the surface air temperature T, (K) are from atmospheric forcing input
data [10]. The shortwave albedo « (-) and the longwave emissivity € (-) are from satellite-
based estimations. ¢ is the Stefan—Boltzmann constant (5.67 x 1078 W m—2 K—%). The
latent heat flux (LE, W m~2) is calculated by LE = %)LET and

ET = Ec+ Es + E; + Ey + Eq ()

where A = 2500 — 2.2(T, — 273.15) is the latent heat of vaporization (k] kg ') at T,, and
¢ (=86.4) is a conversion factor for units from (MJ m~2 d~ ') to (W m~2). ET is the evapo-
transpiration (mm d ') summed from the canopy transpiration (E.) and soil evaporation
(Es), interception evaporation (E;), impervious surface evaporation (E,) and open-water
evaporation (Ey).

2.2.2. Canopy Transpiration (E. ) and Soil Evaporation (Es)

The transpiration at canopy scales (E.) is coupled with the photosynthesis process
(Ags) via the dynamical modulation of the canopy stomatal conductance (Gc), and the soil
evaporation (Es) depends on absorbed energy flux and soil water deficit,

_eAcH (0cp/v)DGa

Ee e+14 Ga/Ge ©
feAs

Es = 7

ST e+l @

where the surface available energy (A = R, — G) is divided into canopy absorbed energy
(A¢) and soil absorbed energy (As), Ac = (1—-71)A and A; = TA, T = exp(—ksLAI),
kg =06.e= %, and A is the slope of the curve relating saturation water vapor pressure
to temperature (kPa °C™1). p is the density of air (g m~3); cp is the specific heat of air at
constant pressure (J g~ °C™1); D is vapor pressure deficit (kPa); G, is the aerodynamic
conductance (m s~1); G¢ (m s~ 1) is the canopy conductance; f is a dimensionless variable
that determines the water availability for soil evaporation.

The canopy stomatal conductance (G;) is calculated by the photosynthesis process
(Ags) for each PFT with the constraint of D at surface.

mAgs

Ge= =
© 7 Ci(1+D/Dy)

®)

©)

{kLAH—ln P+ P+ Py }

Py + Pyexp(kLAI) + Py
_ Vipsexpla(T — 25)]
1+ exp[b(T —41)]

(10)
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where Py = AyBlon; Po = AwpBlo; P3 = AunCa; Py = BloynCa; A = 0.5Vm. Ij is the
photosynthetically active radiation (PAR, in mol) from shortwave downward radiation. C,
is the atmospheric CO, concentration (in ppm or mol mol ). Vin2s, B, 11, M, Diyin, Dinax
and Dy are the parameters (see Table 1) in the PML-V2.1 model.

Finally, the gross primary productivity (GPP) is calculated by

GPP = Ag fp 1)
]-r D < Dmin

fD = %/ Dmin < D < Dyax (12)
0, D > Diax

where fp is the D constraint function; D,,;, and D,y are the parameters (see Table 1).

2.2.3. Interception Evaporation (E;) by Canopy Vegetation

The rainfall interception evaporation (E;) is calculated by the van Dijk model, which
was developed by van Dijk and Bruijnzeel [19,20], who modified it from the original Gash
model [21,22]. The modified Van Dijk model used in this study is described by

E — { fvP for P < Pyet (13)
! fVPwet+fER(P_Pwet) forPZPwet

with
LAI
fr=1—exp <_LAI,gf> (14)
fER) Sy

Pypet = —In{1— "= ) — 15

wet ( fV fER ( )

fer = fvFER0 (16)

Sv = SieasLAI 17)

where P is rainfall rate (mm d 1), and Py, is reference threshold precipitation rate when
the canopy is wet (mm d ). i describes the fraction area covered by intercepting leaves,
which is determined by the leaf area index (LAI) and reference LAI (LA, s see Table 1)
for the specific vegetation types. fr is the ratio of the average evaporation rate over the
average rainfall intensity during storms, and Sy is the canopy rainfall storage capacity
(mm), which currently is parameterized as water storage in the leaf at the canopy level.
The fpro and Sy, 5 are the parameters shown in Table 1.

2.2.4. Impervious Surface Evaporation (E;)

Impervious surface evaporation (E,) is calculated by the revised van Dijk model in
this study,

- fuP for P < Py,
Ev= { fUPwet+fER(P_quet) forPZPwett (18)
with
fu=1-fv—fo (19)
— (1 fLR) Su
Pt = —In (1 ) (20)
fer = fuFero (21)

where f; describes the fractional area covered by impervious surface in urban ecosystems,
which is the rest fraction of vegetation coverage (fy) and water body covered fraction (fy).
Sy is the impervious surface storage capacity (mm).
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Sentinel-2 LAl (m? m?2)

PML-V2 ET (mm d?)

2.2.5. Open-Water Evaporation (Ey)

The open-water evaporation (Ey) in lakes, rivers and other water bodies for Northern
China is parameterized on the basis of Dalton’s Law [23],

Ey = 0.144(1 + 0.75Uy 5)[D + A(Ty5) (& — 1) Ty 5] (22)

where U; 5 and T 5 is wind speed (m/s) and air temperature (°C) at 1.5 m height, re-
spectively. A(T;s) is the slope of the curve relating saturation water vapor pressure to
temperature Ty 5. « — 1 is a regulator coefficient for atmospheric stability.

3. Results
3.1. Validation of Estimated LAl and ET

The LAI estimated from the Sentinel-2-based NDVI was compared to the observed
LAI for June 2018 in the Beijing Sponge City (Figure 2a). The observed LAI was measured
within the region around 39.50-40.50° N, 115.40-116.10° E. The result shows that the
Sentinel-2-based LAI has a high correlation with the observed values (R? = 0.74), indicating
that the LAI at 10m resolution estimated from Sentinel-2 can be well applied to estimate ET
for the Beijing Sponge City.
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Figure 2. Validation of the Sentinel-2-retrieved LAI and the PML-V2-simulated ET. (a) The Sentinel-2-retrieved LAI
compared to observed LAI for June 2018; (b—d) The PML-V2-simulated 8-day ET based on MODIS LAI compared to
observed ET for the three flux tower sites at Daxing, Miyun and Guantao, respectively, in the Beijing area over 2008-2010.

We also validate the performance of PML-V2 in simulating ET in the Beijing region.
Figure 2b—d shows the comparisons of PML-V2-estimated ET based on MODIS LAI with
the observed ET over 2008-2010 from three field sites (i.e., Daxing, Miyun and Guantao)
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which are located within the Beijing region. The result indicates that PML-V2 has satisfied
performance in simulating ET for Beijing Sponge City with (R? = 0.64-0.90). Therefore,
based on the above good performance in the Sentinel-2-estimated LAI and the PML-
V2-estimated ET, we further evaluate NDVI, LAI, and ET and related variables at 10m
resolution for Beijing Sponge City.

3.2. Land Use and Vegetation Information in Beijing Sponge City

By analyzing the Sentinel-2-derived 10m resolution LCC map in 2017, we find that the
Beijing Sponge City project (Figure 3) covers ~1265 km? over the central Beijing city, China,
including impervious surface buildings (59.27%), grasslands (26.08%), mixed forest (7.34%),
croplands (5.10%), and wetlands and water bodies (~2%). Figure 3 presents fine spatial
details of the urban ecosystem, such as clear patterns of lakes, rivers and streets. Most
grasslands are parks, and fixed forests are mainly concentrated in northwestern Beijing
Sponge City, while the eastern parts are croplands.
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Figure 3. Land cover classification at 10m resolution for Beijing Sponge City. Land cover map for 2017 derived from the
FROM-GLC10-based Sentinel-2.

We further analyze the NDVI and LAI for June 2018, which was composited from
10-day Sentinel-2 images in June 2018 in clear-sky conditions. We can see high spatial
details in the NDVI from Figure 4a. The NDVI for lakes and rivers is <0.0, the impervious
surfaces (e.g., large mansions and main streets) are 0.0-0.25, and grasslands and croplands
are 0.1-0.5, while mixed forests and some parks with forest reserve have NDVI values of
0.5-0.7 (Figure 4a). A high NDVI indicates a high LAI in this study. Figure 4b shows the
detailed pattern of LAI for different land cover classes for the sponge city area. As expected,
the lakes and rivers have no LAI, and the impervious surfaces (e.g., large mansions and
main streets) have only <1.0 m? m~2 of LAIL but 1~2 m? m~2 of LAI can be seen in many
avenues with greenbelts. The mixed forests in northwestern Beijing Sponge City have LAI
values ranging from 1 to 3 m> m~2. Most grasslands and croplands have 1~2 m? m~2 of
LAI but some parks with forest reserves show the highest values (3-8 m? m~2) of LAI
(Figure 4b).
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Figure 4. Vegetation index at 10m resolution for Beijing Sponge City. (a) NDVI and (b) LAI (m? m~2) for June 2018 derived
from the Sentinel-2.

3.3. ET and Related Variables in Beijing Sponge City

Based on the Sentinel-2-derived LCC and LAI data, we conducted daily simulations
for June 2018 at 10m resolution using the PML-V2 model with daily climate forcing data
from CMFD v1.0. Figure 5 presents the spatial patterns of simulated monthly ET and
GPP averaged over the daily output for June 2018. Lakes and rivers have the highest ET
(>8 mm d 1) due to the full water supply for evaporation in Summer. There is no GPP
in lakes and rivers as simulated by PML-V2. The vegetation production activities are
strongest in mixed forests and croplands, with the GPP ranging from 8§ to 16 gC m~2 d !
(Figure 5b). In these mixed forests and croplands, the ET is also high (4-6 mm d~!), where
the plant transpiration (Ec) plays a dominant role with ratios of Ec to ET larger than 0.8
(Figure 6a). In addition, the impervious surfaces have very small ET (<2 mm d ') and GPP
(<4 g¢Cm~2 d~1), indicating both Ec and soil evaporation (Es) are very small in these areas.
The grasslands have 2-4 mm d~! of ET and 4-8 gC m~2 d~! of GPP in the sponge city
(Figure 5), where the ratio Ec/ET are 0.5-0.7 (Figure 6a).
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In summary, on average, for the whole sponge city, we find that the LAI in June 2018
is 0.83 m? m~Z%; the ET is about 1.6 mm d~1; the GPP is 2.8 gC m~2d-!. Table 2 further
gives the evaluation for different districts in the sponge city. It shows that the central
areas (i.e., Xicheng and Dongcheng districts) have the smallest LAI (0.66-0.7 m? m~2), ET
(~1.61 mm d~!) and GPP (2.36-2.44 gC m~2 d~!), while the western areas (i.e., Shijingshan
and Haidian districts) have the highest LAI (0.93-1.05 m? m~2), ET (~1.65 mm d ') and
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Figure 5. ET and GPP at 10m resolution for Beijing Sponge City estimated using the PML-V2 model and Sentinel-2 data. (a)
Monthly ET (mm d 1) in June 2018; (b) Monthly GPP (gC m~2 d~') in June 2018.
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Table 2. The ecohydrological environment in different districts in Beijing Sponge City.

District in LAI ET GPP
Beijing Sponge City (m?m~2) (mmd-1) (gCm—2d1)
Xicheng 0.66 1.62 2.36
Dongcheng 0.70 1.60 2.44
Shijingshan 1.05 1.67 3.53
Haidian 0.93 1.64 3.10
Chaoyang 0.84 1.51 2.79
Fengtai 0.74 1.50 2.56
Tongzhou 0.86 1.66 3.01
Overall Mean 0.83 1.60 2.83

We further investigate how ET changes spatially with increasing LAI for June 2018.
It is shown that the fraction Ec/ET increases with LAI for the three vegetation types
(grassland, mixed forest and cropland) in the sponge city (Figure 6b). The Ec/ET for mixed
forests increase from 0.4 (LAI = 0.5) to 0.8 (LAI > 3), while Ec/ET for grasslands and
croplands show higher values, increasing from 0.6 (LAI = 0.5) to 0.9 (LAI > 3). The ratio
ET/LAI represents the amount of water loss per unit LAI In Figure 6¢, we can find that
ET/LAI for mixed forests and some grassland parks show the lowest ET/LAI (0.8-1.2),
while impervious surfaces have the highest ET/LAI, with about 2-3 times larger values
(2.4-3.6). The ET/LAI for the major vegetation types (grassland, mixed forest and cropland)
decrease with LAl increase (Figure 6d); with LAI increasing from 0.5 to 5.0, the ET/LAI
for mixed forests decrease from 2.0 to 0.6, and ET/LAI for grasslands and croplands from
3.0 to 1.0. This result indicates that grasslands and croplands have much higher water
consumption per unit LAI than mixed forests.

Fractional contributions of other ET components to ET have been estimated (Figure 7).
Soil evaporation (Es) contributes a relatively small fraction (<0.2) due to a very small
fraction of bare lands and large vegetation coverage in mixed forests, grasslands and
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croplands in June 2018 in the Beijing Sponge City. The fraction of Ei/ET is small (<0.1)
in most LCC types but in grasslands is 0.1-0.2 (Figure 7b). According to a previous
study, the city impervious surface could contribute less than 20% of ET [4]. Surprisingly,
the impervious surface evaporation (Eu) for the Beijing Sponge City contributes 0.2-0.3
fractions to the ET in June 2018 in most impervious areas (Figure 7c). Finally, all ET from
lakes and rivers are contributed by water body evaporation Ew (Figure 7d).

ES/ET

0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
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Figure 7. The fraction of Es, Ei, Eu and Ew to ET in June 2018 for the Beijing Sponge City. (a) Spatial pattern of fraction
Es/ET; (b) Spatial pattern of fraction Ei/ET; (c) Spatial pattern of fraction Eu/ET; (d) Spatial pattern of fraction Ew/ET.

ET can be converted to latent heat flux (LE, in W m~2) and plays an important role
in regulating surface energy balance (Figure 8). For June 2018 in Beijing, the surface
receives about 260-270 W m~2 of shortwave radiation, but about half is reflected in the
atmosphere with the net radiation (Rn) for impervious surface less than 130 W m 2. For
mixed forests and grasslands, the Rn is about 140-150 W m~2, and the croplands and
water bodies have a higher Rn of 170-180 W m2 (Figure 8b). Lakes and rivers have the
highest LE (>250 W m~2) but the smallest sensible heat flux (SH, <—60 W m~2). The SH
for mixed forests, forest parks and croplands are relatively small (—20 to 20 W m~2), while
both impervious surfaces and grasslands are high (40-60 W m~2) (Figure 8d). This result
indicates that the high surface air temperature (reflected by SH) in the summer of Beijing’s
central city is mostly contributed by impervious surfaces and grasslands.
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Figure 8. Energy fluxes in June 2018 for the Beijing Sponge City. (a) Downward shortwave radiation; (b) Surface net
radiation; (c) Latent heat flux; (d) Sensible heat flux. Units are in W m~2.

4. Discussion

In this study, we applied a water-carbon coupling model (PML-V2) with the use of
Sentinel-2 LAI and land use and cover data and with surface meteorological forcing data as
the input to estimate urban ET and its components at 10m resolution for the Beijing Sponge
City. Our results indicate that the current vegetation coverage for the Beijing Sponge City
is still at a low level (only with mean LAI <1 m2 m~2 in June 2018), and the city gains
relatively limited benefits from urban ecosystem services.

Eddy covariance measurements to study evaporation from urban ecosystems [24,25]
generally helped us to understand the combined evaporation from all land cover types,
lacking the capability to divide individual contributions from such as impervious surfaces
(roofs, roads and plazas, etc.) and vegetated areas (bare soil, forests, grasslands and
croplands, etc.). For different land cover classes, by using an advanced water-carbon
coupling ET model driven by Sentinel-2 LAI, we find that lakes and rivers have the highest
ET (>8 mm d 1), followed by mixed forests and croplands (ET is 4-6 mm d ! and LAI
is 2-3 m? m~2), where the plant transpiration (Ec) plays the dominant role (>80%), then
grasslands have 2-4 mm d~! of ET, where the LAI is 1~2 m? m~2, while impervious
surfaces have smallest ET (<2.0 mm d~'). In most impervious areas, the impervious
surface evaporation (Eu) contributes 20-30% of ET, which is larger than the estimate (18%)
from previous studies [4]. We have shown that another 40-50% of ET in impervious areas
are contributed by plant transpiration (Ec) due to the small fractional area covered by
greenbelts with trees and grassland (LAI is 0.5-1.0 m? m~2). This study did not consider
water vapor conversion from human water use activities, which also contributes to the
impervious evaporation from building indoor water use [25].

5. Conclusions

First of all, we show the good performances of the nonlinear regression model (Equa-
tion (2)) for estimating Sentinel-2 LAI based on the strong exponential relationship between
NDVI and LAI and the PML-V2.1 model of estimating ET and GPP at 10m resolution
using Sentinel-2 LAI and land cover map. This Sentinel-2-based technology using the
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PML-V2.1 model with surface meteorological forcing data as the input for estimating ET
provides a new framework to evaluate city-level hydrological dynamics in urban ecosys-
tems. Secondly, we find that plant transpiration from greenbelts with trees and grassland
play an important role in most impervious areas for Beijing Sponge City. Thirdly, mixed
forests, forest parks and croplands due to their high ET have much smaller surface heat
contribution than the impervious and grasslands, providing better ecosystem services (e.g.,
cooling) for the sponge city.
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Abstract: The damming of rivers has altered their hydrological regimes. The current study evaluated
the impacts of major hydrological interventions of the Zhikong and Pangduo hydropower dams on
the Lhasa River, which was exposed in the form of break and change points during the double-mass
curve analysis. The coefficient of variability (CV) for the hydro-meteorological variables revealed an
enhanced climate change phenomena in the Lhasa River Basin (LRB), where the Lhasa River (LR)
discharge varied at a stupendous magnitude from 2000 to 2016. The Mann-Kendall trend and Sen’s
slope estimator supported aggravated hydro-meteorological changes in LRB, as the rainfall and LR
discharge were found to have been significantly decreasing while temperature was increasing from
2000 to 2016. The Sen’s slope had a largest decrease for LR discharge in relation to the rainfall and
temperature, revealing that along with climatic phenomena, additional phenomena are controlling
the hydrological regime of the LR. Reservoir functioning in the LR is altering the LR discharge. The
Soil and Water Assessment Tool (SWAT) modeling of LR discharge under the reservoir’s influence
performed well in terms of coefficient of determination (R?), Nash-Sutcliffe coefficient (NSE), and
percent bias (PBIAS). Thus, simulation-based LR discharge could substitute observed LR discharge
to help with hydrological data scarcity stress in the LRB. The simulated—observed approach was
used to predict future LR discharge for the time span of 2017-2025 using a seasonal AutoRegressive
Integrated Moving Average (ARIMA) model. The predicted simulation-based and observation-based
discharge were closely correlated and found to decrease from 2017 to 2025. This calls for an efficient
water resource planning and management policy for the area. The findings of this study can be
applied in similar catchments.

Keywords: SWAT; double-mass analysis; coefficient of variability; seasonal ARIMA; MK-S trend
analysis

1. Introduction

Dams are intended to offer substantial aid to humankind by ensuring an enhanced
water availability for municipal, industrial, and agricultural uses, as well as increased
capability of flood regulation and hydropower generation [1]. On the other hand, the
construction of dams has considerably changed the natural flow regime of rivers worldwide.
Above half of the 292 large river systems in the world have been affected by dams [2,3]. The
influence of human activities in altering river discharge has profoundly increased in recent
decades [4]. Over an intermediate time scale (e.g., decadal scale), human interferences in
terms of water consumption, land-use change, dam construction, and sand mining, among
others, are the powerful factors that escalate basin-scale hydrological changes. Therefore,
a site-specific study is needed to disclose the governing effects of human disruptions on
these hydrological changes [5-7].

To temper river floods, reduce water collection for irrigation, hydropower generation
and facilitate navigation, dams have been created across big rivers around the world [8].
Dams have grown to one of the most perturbing human intrusions in river systems as the
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number of dams and the total storage capacity of reservoirs rapidly increase [4]. Therefore,
knowledge of dam construction and its regulating effects on river discharge is crucial for
river and delta management and restoration. Highly regulated rivers in China are subject
to large-scale ecosystem amendments made by hydrological alterations. Many of the earlier
studies related to dam-induced hydrological alterations across river basins in China focused
on the impacts of large dams that generally aim to control floods in large basins, such as
the Lancang River [9], the Mekong River [10], the Pearl River [11], the Yangtze River [12],
and the Yellow River [13,14]. In addition to large dams, the development of small dams
has also been highlighted in national energy policies in China [15]. Therefore, small dam
construction is intense in China, especially in South China, where hydropower resources
are extensive. Thus, to fill in the knowledge void, the present study focused on the impact
appraisal of reservoir functioning in the Lhasa River Basin, a Qinghai-Tibetan Plateau basin
in South China (for more information, see Section 2.2). Several researchers have established
a numbe